Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8#include <linux/acpi.h>
9#include <linux/console.h>
10#include <linux/cpu.h>
11#include <linux/crash_dump.h>
12#include <linux/dma-map-ops.h>
13#include <linux/efi.h>
14#include <linux/ima.h>
15#include <linux/init_ohci1394_dma.h>
16#include <linux/initrd.h>
17#include <linux/iscsi_ibft.h>
18#include <linux/memblock.h>
19#include <linux/panic_notifier.h>
20#include <linux/pci.h>
21#include <linux/root_dev.h>
22#include <linux/hugetlb.h>
23#include <linux/tboot.h>
24#include <linux/usb/xhci-dbgp.h>
25#include <linux/static_call.h>
26#include <linux/swiotlb.h>
27#include <linux/random.h>
28
29#include <uapi/linux/mount.h>
30
31#include <xen/xen.h>
32
33#include <asm/apic.h>
34#include <asm/efi.h>
35#include <asm/numa.h>
36#include <asm/bios_ebda.h>
37#include <asm/bugs.h>
38#include <asm/cacheinfo.h>
39#include <asm/coco.h>
40#include <asm/cpu.h>
41#include <asm/efi.h>
42#include <asm/gart.h>
43#include <asm/hypervisor.h>
44#include <asm/io_apic.h>
45#include <asm/kasan.h>
46#include <asm/kaslr.h>
47#include <asm/mce.h>
48#include <asm/memtype.h>
49#include <asm/mtrr.h>
50#include <asm/realmode.h>
51#include <asm/olpc_ofw.h>
52#include <asm/pci-direct.h>
53#include <asm/prom.h>
54#include <asm/proto.h>
55#include <asm/thermal.h>
56#include <asm/unwind.h>
57#include <asm/vsyscall.h>
58#include <linux/vmalloc.h>
59
60/*
61 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
62 * max_pfn_mapped: highest directly mapped pfn > 4 GB
63 *
64 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
65 * represented by pfn_mapped[].
66 */
67unsigned long max_low_pfn_mapped;
68unsigned long max_pfn_mapped;
69
70#ifdef CONFIG_DMI
71RESERVE_BRK(dmi_alloc, 65536);
72#endif
73
74
75unsigned long _brk_start = (unsigned long)__brk_base;
76unsigned long _brk_end = (unsigned long)__brk_base;
77
78struct boot_params boot_params;
79
80/*
81 * These are the four main kernel memory regions, we put them into
82 * the resource tree so that kdump tools and other debugging tools
83 * recover it:
84 */
85
86static struct resource rodata_resource = {
87 .name = "Kernel rodata",
88 .start = 0,
89 .end = 0,
90 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
91};
92
93static struct resource data_resource = {
94 .name = "Kernel data",
95 .start = 0,
96 .end = 0,
97 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
98};
99
100static struct resource code_resource = {
101 .name = "Kernel code",
102 .start = 0,
103 .end = 0,
104 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
105};
106
107static struct resource bss_resource = {
108 .name = "Kernel bss",
109 .start = 0,
110 .end = 0,
111 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
112};
113
114
115#ifdef CONFIG_X86_32
116/* CPU data as detected by the assembly code in head_32.S */
117struct cpuinfo_x86 new_cpu_data;
118
119struct apm_info apm_info;
120EXPORT_SYMBOL(apm_info);
121
122#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
123 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
124struct ist_info ist_info;
125EXPORT_SYMBOL(ist_info);
126#else
127struct ist_info ist_info;
128#endif
129
130#endif
131
132struct cpuinfo_x86 boot_cpu_data __read_mostly;
133EXPORT_SYMBOL(boot_cpu_data);
134
135#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
136__visible unsigned long mmu_cr4_features __ro_after_init;
137#else
138__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
139#endif
140
141#ifdef CONFIG_IMA
142static phys_addr_t ima_kexec_buffer_phys;
143static size_t ima_kexec_buffer_size;
144#endif
145
146/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
147int bootloader_type, bootloader_version;
148
149/*
150 * Setup options
151 */
152struct screen_info screen_info;
153EXPORT_SYMBOL(screen_info);
154struct edid_info edid_info;
155EXPORT_SYMBOL_GPL(edid_info);
156
157extern int root_mountflags;
158
159unsigned long saved_video_mode;
160
161#define RAMDISK_IMAGE_START_MASK 0x07FF
162#define RAMDISK_PROMPT_FLAG 0x8000
163#define RAMDISK_LOAD_FLAG 0x4000
164
165static char __initdata command_line[COMMAND_LINE_SIZE];
166#ifdef CONFIG_CMDLINE_BOOL
167char builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
168bool builtin_cmdline_added __ro_after_init;
169#endif
170
171#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
172struct edd edd;
173#ifdef CONFIG_EDD_MODULE
174EXPORT_SYMBOL(edd);
175#endif
176/**
177 * copy_edd() - Copy the BIOS EDD information
178 * from boot_params into a safe place.
179 *
180 */
181static inline void __init copy_edd(void)
182{
183 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
184 sizeof(edd.mbr_signature));
185 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
186 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
187 edd.edd_info_nr = boot_params.eddbuf_entries;
188}
189#else
190static inline void __init copy_edd(void)
191{
192}
193#endif
194
195void * __init extend_brk(size_t size, size_t align)
196{
197 size_t mask = align - 1;
198 void *ret;
199
200 BUG_ON(_brk_start == 0);
201 BUG_ON(align & mask);
202
203 _brk_end = (_brk_end + mask) & ~mask;
204 BUG_ON((char *)(_brk_end + size) > __brk_limit);
205
206 ret = (void *)_brk_end;
207 _brk_end += size;
208
209 memset(ret, 0, size);
210
211 return ret;
212}
213
214#ifdef CONFIG_X86_32
215static void __init cleanup_highmap(void)
216{
217}
218#endif
219
220static void __init reserve_brk(void)
221{
222 if (_brk_end > _brk_start)
223 memblock_reserve(__pa_symbol(_brk_start),
224 _brk_end - _brk_start);
225
226 /* Mark brk area as locked down and no longer taking any
227 new allocations */
228 _brk_start = 0;
229}
230
231#ifdef CONFIG_BLK_DEV_INITRD
232
233static u64 __init get_ramdisk_image(void)
234{
235 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
236
237 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
238
239 if (ramdisk_image == 0)
240 ramdisk_image = phys_initrd_start;
241
242 return ramdisk_image;
243}
244static u64 __init get_ramdisk_size(void)
245{
246 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
247
248 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
249
250 if (ramdisk_size == 0)
251 ramdisk_size = phys_initrd_size;
252
253 return ramdisk_size;
254}
255
256static void __init relocate_initrd(void)
257{
258 /* Assume only end is not page aligned */
259 u64 ramdisk_image = get_ramdisk_image();
260 u64 ramdisk_size = get_ramdisk_size();
261 u64 area_size = PAGE_ALIGN(ramdisk_size);
262
263 /* We need to move the initrd down into directly mapped mem */
264 u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
265 PFN_PHYS(max_pfn_mapped));
266 if (!relocated_ramdisk)
267 panic("Cannot find place for new RAMDISK of size %lld\n",
268 ramdisk_size);
269
270 initrd_start = relocated_ramdisk + PAGE_OFFSET;
271 initrd_end = initrd_start + ramdisk_size;
272 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
273 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
274
275 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
276
277 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
278 " [mem %#010llx-%#010llx]\n",
279 ramdisk_image, ramdisk_image + ramdisk_size - 1,
280 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
281}
282
283static void __init early_reserve_initrd(void)
284{
285 /* Assume only end is not page aligned */
286 u64 ramdisk_image = get_ramdisk_image();
287 u64 ramdisk_size = get_ramdisk_size();
288 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
289
290 if (!boot_params.hdr.type_of_loader ||
291 !ramdisk_image || !ramdisk_size)
292 return; /* No initrd provided by bootloader */
293
294 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
295}
296
297static void __init reserve_initrd(void)
298{
299 /* Assume only end is not page aligned */
300 u64 ramdisk_image = get_ramdisk_image();
301 u64 ramdisk_size = get_ramdisk_size();
302 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
303
304 if (!boot_params.hdr.type_of_loader ||
305 !ramdisk_image || !ramdisk_size)
306 return; /* No initrd provided by bootloader */
307
308 initrd_start = 0;
309
310 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
311 ramdisk_end - 1);
312
313 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
314 PFN_DOWN(ramdisk_end))) {
315 /* All are mapped, easy case */
316 initrd_start = ramdisk_image + PAGE_OFFSET;
317 initrd_end = initrd_start + ramdisk_size;
318 return;
319 }
320
321 relocate_initrd();
322
323 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
324}
325
326#else
327static void __init early_reserve_initrd(void)
328{
329}
330static void __init reserve_initrd(void)
331{
332}
333#endif /* CONFIG_BLK_DEV_INITRD */
334
335static void __init add_early_ima_buffer(u64 phys_addr)
336{
337#ifdef CONFIG_IMA
338 struct ima_setup_data *data;
339
340 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
341 if (!data) {
342 pr_warn("setup: failed to memremap ima_setup_data entry\n");
343 return;
344 }
345
346 if (data->size) {
347 memblock_reserve(data->addr, data->size);
348 ima_kexec_buffer_phys = data->addr;
349 ima_kexec_buffer_size = data->size;
350 }
351
352 early_memunmap(data, sizeof(*data));
353#else
354 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
355#endif
356}
357
358#if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
359int __init ima_free_kexec_buffer(void)
360{
361 if (!ima_kexec_buffer_size)
362 return -ENOENT;
363
364 memblock_free_late(ima_kexec_buffer_phys,
365 ima_kexec_buffer_size);
366
367 ima_kexec_buffer_phys = 0;
368 ima_kexec_buffer_size = 0;
369
370 return 0;
371}
372
373int __init ima_get_kexec_buffer(void **addr, size_t *size)
374{
375 if (!ima_kexec_buffer_size)
376 return -ENOENT;
377
378 *addr = __va(ima_kexec_buffer_phys);
379 *size = ima_kexec_buffer_size;
380
381 return 0;
382}
383#endif
384
385static void __init parse_setup_data(void)
386{
387 struct setup_data *data;
388 u64 pa_data, pa_next;
389
390 pa_data = boot_params.hdr.setup_data;
391 while (pa_data) {
392 u32 data_len, data_type;
393
394 data = early_memremap(pa_data, sizeof(*data));
395 data_len = data->len + sizeof(struct setup_data);
396 data_type = data->type;
397 pa_next = data->next;
398 early_memunmap(data, sizeof(*data));
399
400 switch (data_type) {
401 case SETUP_E820_EXT:
402 e820__memory_setup_extended(pa_data, data_len);
403 break;
404 case SETUP_DTB:
405 add_dtb(pa_data);
406 break;
407 case SETUP_EFI:
408 parse_efi_setup(pa_data, data_len);
409 break;
410 case SETUP_IMA:
411 add_early_ima_buffer(pa_data);
412 break;
413 case SETUP_RNG_SEED:
414 data = early_memremap(pa_data, data_len);
415 add_bootloader_randomness(data->data, data->len);
416 /* Zero seed for forward secrecy. */
417 memzero_explicit(data->data, data->len);
418 /* Zero length in case we find ourselves back here by accident. */
419 memzero_explicit(&data->len, sizeof(data->len));
420 early_memunmap(data, data_len);
421 break;
422 default:
423 break;
424 }
425 pa_data = pa_next;
426 }
427}
428
429static void __init memblock_x86_reserve_range_setup_data(void)
430{
431 struct setup_indirect *indirect;
432 struct setup_data *data;
433 u64 pa_data, pa_next;
434 u32 len;
435
436 pa_data = boot_params.hdr.setup_data;
437 while (pa_data) {
438 data = early_memremap(pa_data, sizeof(*data));
439 if (!data) {
440 pr_warn("setup: failed to memremap setup_data entry\n");
441 return;
442 }
443
444 len = sizeof(*data);
445 pa_next = data->next;
446
447 memblock_reserve(pa_data, sizeof(*data) + data->len);
448
449 if (data->type == SETUP_INDIRECT) {
450 len += data->len;
451 early_memunmap(data, sizeof(*data));
452 data = early_memremap(pa_data, len);
453 if (!data) {
454 pr_warn("setup: failed to memremap indirect setup_data\n");
455 return;
456 }
457
458 indirect = (struct setup_indirect *)data->data;
459
460 if (indirect->type != SETUP_INDIRECT)
461 memblock_reserve(indirect->addr, indirect->len);
462 }
463
464 pa_data = pa_next;
465 early_memunmap(data, len);
466 }
467}
468
469static void __init arch_reserve_crashkernel(void)
470{
471 unsigned long long crash_base, crash_size, low_size = 0;
472 char *cmdline = boot_command_line;
473 bool high = false;
474 int ret;
475
476 if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
477 return;
478
479 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
480 &crash_size, &crash_base,
481 &low_size, &high);
482 if (ret)
483 return;
484
485 if (xen_pv_domain()) {
486 pr_info("Ignoring crashkernel for a Xen PV domain\n");
487 return;
488 }
489
490 reserve_crashkernel_generic(cmdline, crash_size, crash_base,
491 low_size, high);
492}
493
494static struct resource standard_io_resources[] = {
495 { .name = "dma1", .start = 0x00, .end = 0x1f,
496 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
497 { .name = "pic1", .start = 0x20, .end = 0x21,
498 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
499 { .name = "timer0", .start = 0x40, .end = 0x43,
500 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
501 { .name = "timer1", .start = 0x50, .end = 0x53,
502 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
503 { .name = "keyboard", .start = 0x60, .end = 0x60,
504 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
505 { .name = "keyboard", .start = 0x64, .end = 0x64,
506 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
507 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
508 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
509 { .name = "pic2", .start = 0xa0, .end = 0xa1,
510 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
511 { .name = "dma2", .start = 0xc0, .end = 0xdf,
512 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
513 { .name = "fpu", .start = 0xf0, .end = 0xff,
514 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
515};
516
517void __init reserve_standard_io_resources(void)
518{
519 int i;
520
521 /* request I/O space for devices used on all i[345]86 PCs */
522 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
523 request_resource(&ioport_resource, &standard_io_resources[i]);
524
525}
526
527static bool __init snb_gfx_workaround_needed(void)
528{
529#ifdef CONFIG_PCI
530 int i;
531 u16 vendor, devid;
532 static const __initconst u16 snb_ids[] = {
533 0x0102,
534 0x0112,
535 0x0122,
536 0x0106,
537 0x0116,
538 0x0126,
539 0x010a,
540 };
541
542 /* Assume no if something weird is going on with PCI */
543 if (!early_pci_allowed())
544 return false;
545
546 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
547 if (vendor != 0x8086)
548 return false;
549
550 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
551 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
552 if (devid == snb_ids[i])
553 return true;
554#endif
555
556 return false;
557}
558
559/*
560 * Sandy Bridge graphics has trouble with certain ranges, exclude
561 * them from allocation.
562 */
563static void __init trim_snb_memory(void)
564{
565 static const __initconst unsigned long bad_pages[] = {
566 0x20050000,
567 0x20110000,
568 0x20130000,
569 0x20138000,
570 0x40004000,
571 };
572 int i;
573
574 if (!snb_gfx_workaround_needed())
575 return;
576
577 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
578
579 /*
580 * SandyBridge integrated graphics devices have a bug that prevents
581 * them from accessing certain memory ranges, namely anything below
582 * 1M and in the pages listed in bad_pages[] above.
583 *
584 * To avoid these pages being ever accessed by SNB gfx devices reserve
585 * bad_pages that have not already been reserved at boot time.
586 * All memory below the 1 MB mark is anyway reserved later during
587 * setup_arch(), so there is no need to reserve it here.
588 */
589
590 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
591 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
592 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
593 bad_pages[i]);
594 }
595}
596
597static void __init trim_bios_range(void)
598{
599 /*
600 * A special case is the first 4Kb of memory;
601 * This is a BIOS owned area, not kernel ram, but generally
602 * not listed as such in the E820 table.
603 *
604 * This typically reserves additional memory (64KiB by default)
605 * since some BIOSes are known to corrupt low memory. See the
606 * Kconfig help text for X86_RESERVE_LOW.
607 */
608 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
609
610 /*
611 * special case: Some BIOSes report the PC BIOS
612 * area (640Kb -> 1Mb) as RAM even though it is not.
613 * take them out.
614 */
615 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
616
617 e820__update_table(e820_table);
618}
619
620/* called before trim_bios_range() to spare extra sanitize */
621static void __init e820_add_kernel_range(void)
622{
623 u64 start = __pa_symbol(_text);
624 u64 size = __pa_symbol(_end) - start;
625
626 /*
627 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
628 * attempt to fix it by adding the range. We may have a confused BIOS,
629 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
630 * exclude kernel range. If we really are running on top non-RAM,
631 * we will crash later anyways.
632 */
633 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
634 return;
635
636 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
637 e820__range_remove(start, size, E820_TYPE_RAM, 0);
638 e820__range_add(start, size, E820_TYPE_RAM);
639}
640
641static void __init early_reserve_memory(void)
642{
643 /*
644 * Reserve the memory occupied by the kernel between _text and
645 * __end_of_kernel_reserve symbols. Any kernel sections after the
646 * __end_of_kernel_reserve symbol must be explicitly reserved with a
647 * separate memblock_reserve() or they will be discarded.
648 */
649 memblock_reserve(__pa_symbol(_text),
650 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
651
652 /*
653 * The first 4Kb of memory is a BIOS owned area, but generally it is
654 * not listed as such in the E820 table.
655 *
656 * Reserve the first 64K of memory since some BIOSes are known to
657 * corrupt low memory. After the real mode trampoline is allocated the
658 * rest of the memory below 640k is reserved.
659 *
660 * In addition, make sure page 0 is always reserved because on
661 * systems with L1TF its contents can be leaked to user processes.
662 */
663 memblock_reserve(0, SZ_64K);
664
665 early_reserve_initrd();
666
667 memblock_x86_reserve_range_setup_data();
668
669 reserve_bios_regions();
670 trim_snb_memory();
671}
672
673/*
674 * Dump out kernel offset information on panic.
675 */
676static int
677dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
678{
679 if (kaslr_enabled()) {
680 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
681 kaslr_offset(),
682 __START_KERNEL,
683 __START_KERNEL_map,
684 MODULES_VADDR-1);
685 } else {
686 pr_emerg("Kernel Offset: disabled\n");
687 }
688
689 return 0;
690}
691
692void x86_configure_nx(void)
693{
694 if (boot_cpu_has(X86_FEATURE_NX))
695 __supported_pte_mask |= _PAGE_NX;
696 else
697 __supported_pte_mask &= ~_PAGE_NX;
698}
699
700static void __init x86_report_nx(void)
701{
702 if (!boot_cpu_has(X86_FEATURE_NX)) {
703 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
704 "missing in CPU!\n");
705 } else {
706#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
707 printk(KERN_INFO "NX (Execute Disable) protection: active\n");
708#else
709 /* 32bit non-PAE kernel, NX cannot be used */
710 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
711 "cannot be enabled: non-PAE kernel!\n");
712#endif
713 }
714}
715
716/*
717 * Determine if we were loaded by an EFI loader. If so, then we have also been
718 * passed the efi memmap, systab, etc., so we should use these data structures
719 * for initialization. Note, the efi init code path is determined by the
720 * global efi_enabled. This allows the same kernel image to be used on existing
721 * systems (with a traditional BIOS) as well as on EFI systems.
722 */
723/*
724 * setup_arch - architecture-specific boot-time initializations
725 *
726 * Note: On x86_64, fixmaps are ready for use even before this is called.
727 */
728
729void __init setup_arch(char **cmdline_p)
730{
731#ifdef CONFIG_X86_32
732 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
733
734 /*
735 * copy kernel address range established so far and switch
736 * to the proper swapper page table
737 */
738 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
739 initial_page_table + KERNEL_PGD_BOUNDARY,
740 KERNEL_PGD_PTRS);
741
742 load_cr3(swapper_pg_dir);
743 /*
744 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
745 * a cr3 based tlb flush, so the following __flush_tlb_all()
746 * will not flush anything because the CPU quirk which clears
747 * X86_FEATURE_PGE has not been invoked yet. Though due to the
748 * load_cr3() above the TLB has been flushed already. The
749 * quirk is invoked before subsequent calls to __flush_tlb_all()
750 * so proper operation is guaranteed.
751 */
752 __flush_tlb_all();
753#else
754 printk(KERN_INFO "Command line: %s\n", boot_command_line);
755 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
756#endif
757
758#ifdef CONFIG_CMDLINE_BOOL
759#ifdef CONFIG_CMDLINE_OVERRIDE
760 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
761#else
762 if (builtin_cmdline[0]) {
763 /* append boot loader cmdline to builtin */
764 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
765 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
766 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
767 }
768#endif
769 builtin_cmdline_added = true;
770#endif
771
772 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
773 *cmdline_p = command_line;
774
775 /*
776 * If we have OLPC OFW, we might end up relocating the fixmap due to
777 * reserve_top(), so do this before touching the ioremap area.
778 */
779 olpc_ofw_detect();
780
781 idt_setup_early_traps();
782 early_cpu_init();
783 jump_label_init();
784 static_call_init();
785 early_ioremap_init();
786
787 setup_olpc_ofw_pgd();
788
789 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
790 screen_info = boot_params.screen_info;
791 edid_info = boot_params.edid_info;
792#ifdef CONFIG_X86_32
793 apm_info.bios = boot_params.apm_bios_info;
794 ist_info = boot_params.ist_info;
795#endif
796 saved_video_mode = boot_params.hdr.vid_mode;
797 bootloader_type = boot_params.hdr.type_of_loader;
798 if ((bootloader_type >> 4) == 0xe) {
799 bootloader_type &= 0xf;
800 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
801 }
802 bootloader_version = bootloader_type & 0xf;
803 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
804
805#ifdef CONFIG_BLK_DEV_RAM
806 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
807#endif
808#ifdef CONFIG_EFI
809 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
810 EFI32_LOADER_SIGNATURE, 4)) {
811 set_bit(EFI_BOOT, &efi.flags);
812 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
813 EFI64_LOADER_SIGNATURE, 4)) {
814 set_bit(EFI_BOOT, &efi.flags);
815 set_bit(EFI_64BIT, &efi.flags);
816 }
817#endif
818
819 x86_init.oem.arch_setup();
820
821 /*
822 * Do some memory reservations *before* memory is added to memblock, so
823 * memblock allocations won't overwrite it.
824 *
825 * After this point, everything still needed from the boot loader or
826 * firmware or kernel text should be early reserved or marked not RAM in
827 * e820. All other memory is free game.
828 *
829 * This call needs to happen before e820__memory_setup() which calls the
830 * xen_memory_setup() on Xen dom0 which relies on the fact that those
831 * early reservations have happened already.
832 */
833 early_reserve_memory();
834
835 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
836 e820__memory_setup();
837 parse_setup_data();
838
839 copy_edd();
840
841 if (!boot_params.hdr.root_flags)
842 root_mountflags &= ~MS_RDONLY;
843 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
844
845 code_resource.start = __pa_symbol(_text);
846 code_resource.end = __pa_symbol(_etext)-1;
847 rodata_resource.start = __pa_symbol(__start_rodata);
848 rodata_resource.end = __pa_symbol(__end_rodata)-1;
849 data_resource.start = __pa_symbol(_sdata);
850 data_resource.end = __pa_symbol(_edata)-1;
851 bss_resource.start = __pa_symbol(__bss_start);
852 bss_resource.end = __pa_symbol(__bss_stop)-1;
853
854 /*
855 * x86_configure_nx() is called before parse_early_param() to detect
856 * whether hardware doesn't support NX (so that the early EHCI debug
857 * console setup can safely call set_fixmap()).
858 */
859 x86_configure_nx();
860
861 parse_early_param();
862
863 if (efi_enabled(EFI_BOOT))
864 efi_memblock_x86_reserve_range();
865
866#ifdef CONFIG_MEMORY_HOTPLUG
867 /*
868 * Memory used by the kernel cannot be hot-removed because Linux
869 * cannot migrate the kernel pages. When memory hotplug is
870 * enabled, we should prevent memblock from allocating memory
871 * for the kernel.
872 *
873 * ACPI SRAT records all hotpluggable memory ranges. But before
874 * SRAT is parsed, we don't know about it.
875 *
876 * The kernel image is loaded into memory at very early time. We
877 * cannot prevent this anyway. So on NUMA system, we set any
878 * node the kernel resides in as un-hotpluggable.
879 *
880 * Since on modern servers, one node could have double-digit
881 * gigabytes memory, we can assume the memory around the kernel
882 * image is also un-hotpluggable. So before SRAT is parsed, just
883 * allocate memory near the kernel image to try the best to keep
884 * the kernel away from hotpluggable memory.
885 */
886 if (movable_node_is_enabled())
887 memblock_set_bottom_up(true);
888#endif
889
890 x86_report_nx();
891
892 apic_setup_apic_calls();
893
894 if (acpi_mps_check()) {
895#ifdef CONFIG_X86_LOCAL_APIC
896 apic_is_disabled = true;
897#endif
898 setup_clear_cpu_cap(X86_FEATURE_APIC);
899 }
900
901 e820__reserve_setup_data();
902 e820__finish_early_params();
903
904 if (efi_enabled(EFI_BOOT))
905 efi_init();
906
907 reserve_ibft_region();
908 x86_init.resources.dmi_setup();
909
910 /*
911 * VMware detection requires dmi to be available, so this
912 * needs to be done after dmi_setup(), for the boot CPU.
913 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
914 * called before cache_bp_init() for setting up MTRR state.
915 */
916 init_hypervisor_platform();
917
918 tsc_early_init();
919 x86_init.resources.probe_roms();
920
921 /* after parse_early_param, so could debug it */
922 insert_resource(&iomem_resource, &code_resource);
923 insert_resource(&iomem_resource, &rodata_resource);
924 insert_resource(&iomem_resource, &data_resource);
925 insert_resource(&iomem_resource, &bss_resource);
926
927 e820_add_kernel_range();
928 trim_bios_range();
929#ifdef CONFIG_X86_32
930 if (ppro_with_ram_bug()) {
931 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
932 E820_TYPE_RESERVED);
933 e820__update_table(e820_table);
934 printk(KERN_INFO "fixed physical RAM map:\n");
935 e820__print_table("bad_ppro");
936 }
937#else
938 early_gart_iommu_check();
939#endif
940
941 /*
942 * partially used pages are not usable - thus
943 * we are rounding upwards:
944 */
945 max_pfn = e820__end_of_ram_pfn();
946
947 /* update e820 for memory not covered by WB MTRRs */
948 cache_bp_init();
949 if (mtrr_trim_uncached_memory(max_pfn))
950 max_pfn = e820__end_of_ram_pfn();
951
952 max_possible_pfn = max_pfn;
953
954 /*
955 * Define random base addresses for memory sections after max_pfn is
956 * defined and before each memory section base is used.
957 */
958 kernel_randomize_memory();
959
960#ifdef CONFIG_X86_32
961 /* max_low_pfn get updated here */
962 find_low_pfn_range();
963#else
964 check_x2apic();
965
966 /* How many end-of-memory variables you have, grandma! */
967 /* need this before calling reserve_initrd */
968 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
969 max_low_pfn = e820__end_of_low_ram_pfn();
970 else
971 max_low_pfn = max_pfn;
972
973 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
974#endif
975
976 /* Find and reserve MPTABLE area */
977 x86_init.mpparse.find_mptable();
978
979 early_alloc_pgt_buf();
980
981 /*
982 * Need to conclude brk, before e820__memblock_setup()
983 * it could use memblock_find_in_range, could overlap with
984 * brk area.
985 */
986 reserve_brk();
987
988 cleanup_highmap();
989
990 memblock_set_current_limit(ISA_END_ADDRESS);
991 e820__memblock_setup();
992
993 /*
994 * Needs to run after memblock setup because it needs the physical
995 * memory size.
996 */
997 mem_encrypt_setup_arch();
998 cc_random_init();
999
1000 efi_find_mirror();
1001 efi_esrt_init();
1002 efi_mokvar_table_init();
1003
1004 /*
1005 * The EFI specification says that boot service code won't be
1006 * called after ExitBootServices(). This is, in fact, a lie.
1007 */
1008 efi_reserve_boot_services();
1009
1010 /* preallocate 4k for mptable mpc */
1011 e820__memblock_alloc_reserved_mpc_new();
1012
1013#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1014 setup_bios_corruption_check();
1015#endif
1016
1017#ifdef CONFIG_X86_32
1018 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1019 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1020#endif
1021
1022 /*
1023 * Find free memory for the real mode trampoline and place it there. If
1024 * there is not enough free memory under 1M, on EFI-enabled systems
1025 * there will be additional attempt to reclaim the memory for the real
1026 * mode trampoline at efi_free_boot_services().
1027 *
1028 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1029 * are known to corrupt low memory and several hundred kilobytes are not
1030 * worth complex detection what memory gets clobbered. Windows does the
1031 * same thing for very similar reasons.
1032 *
1033 * Moreover, on machines with SandyBridge graphics or in setups that use
1034 * crashkernel the entire 1M is reserved anyway.
1035 *
1036 * Note the host kernel TDX also requires the first 1MB being reserved.
1037 */
1038 x86_platform.realmode_reserve();
1039
1040 init_mem_mapping();
1041
1042 /*
1043 * init_mem_mapping() relies on the early IDT page fault handling.
1044 * Now either enable FRED or install the real page fault handler
1045 * for 64-bit in the IDT.
1046 */
1047 cpu_init_replace_early_idt();
1048
1049 /*
1050 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1051 * with the current CR4 value. This may not be necessary, but
1052 * auditing all the early-boot CR4 manipulation would be needed to
1053 * rule it out.
1054 *
1055 * Mask off features that don't work outside long mode (just
1056 * PCIDE for now).
1057 */
1058 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1059
1060 memblock_set_current_limit(get_max_mapped());
1061
1062 /*
1063 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1064 */
1065
1066#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1067 if (init_ohci1394_dma_early)
1068 init_ohci1394_dma_on_all_controllers();
1069#endif
1070 /* Allocate bigger log buffer */
1071 setup_log_buf(1);
1072
1073 if (efi_enabled(EFI_BOOT)) {
1074 switch (boot_params.secure_boot) {
1075 case efi_secureboot_mode_disabled:
1076 pr_info("Secure boot disabled\n");
1077 break;
1078 case efi_secureboot_mode_enabled:
1079 pr_info("Secure boot enabled\n");
1080 break;
1081 default:
1082 pr_info("Secure boot could not be determined\n");
1083 break;
1084 }
1085 }
1086
1087 reserve_initrd();
1088
1089 acpi_table_upgrade();
1090 /* Look for ACPI tables and reserve memory occupied by them. */
1091 acpi_boot_table_init();
1092
1093 vsmp_init();
1094
1095 io_delay_init();
1096
1097 early_platform_quirks();
1098
1099 /* Some platforms need the APIC registered for NUMA configuration */
1100 early_acpi_boot_init();
1101 x86_init.mpparse.early_parse_smp_cfg();
1102
1103 x86_flattree_get_config();
1104
1105 initmem_init();
1106 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1107
1108 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1109 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1110
1111 /*
1112 * Reserve memory for crash kernel after SRAT is parsed so that it
1113 * won't consume hotpluggable memory.
1114 */
1115 arch_reserve_crashkernel();
1116
1117 if (!early_xdbc_setup_hardware())
1118 early_xdbc_register_console();
1119
1120 x86_init.paging.pagetable_init();
1121
1122 kasan_init();
1123
1124 /*
1125 * Sync back kernel address range.
1126 *
1127 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1128 * this call?
1129 */
1130 sync_initial_page_table();
1131
1132 tboot_probe();
1133
1134 map_vsyscall();
1135
1136 x86_32_probe_apic();
1137
1138 early_quirks();
1139
1140 topology_apply_cmdline_limits_early();
1141
1142 /*
1143 * Parse SMP configuration. Try ACPI first and then the platform
1144 * specific parser.
1145 */
1146 acpi_boot_init();
1147 x86_init.mpparse.parse_smp_cfg();
1148
1149 /* Last opportunity to detect and map the local APIC */
1150 init_apic_mappings();
1151
1152 topology_init_possible_cpus();
1153
1154 init_cpu_to_node();
1155 init_gi_nodes();
1156
1157 io_apic_init_mappings();
1158
1159 x86_init.hyper.guest_late_init();
1160
1161 e820__reserve_resources();
1162 e820__register_nosave_regions(max_pfn);
1163
1164 x86_init.resources.reserve_resources();
1165
1166 e820__setup_pci_gap();
1167
1168#ifdef CONFIG_VT
1169#if defined(CONFIG_VGA_CONSOLE)
1170 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1171 vgacon_register_screen(&screen_info);
1172#endif
1173#endif
1174 x86_init.oem.banner();
1175
1176 x86_init.timers.wallclock_init();
1177
1178 /*
1179 * This needs to run before setup_local_APIC() which soft-disables the
1180 * local APIC temporarily and that masks the thermal LVT interrupt,
1181 * leading to softlockups on machines which have configured SMI
1182 * interrupt delivery.
1183 */
1184 therm_lvt_init();
1185
1186 mcheck_init();
1187
1188 register_refined_jiffies(CLOCK_TICK_RATE);
1189
1190#ifdef CONFIG_EFI
1191 if (efi_enabled(EFI_BOOT))
1192 efi_apply_memmap_quirks();
1193#endif
1194
1195 unwind_init();
1196}
1197
1198#ifdef CONFIG_X86_32
1199
1200static struct resource video_ram_resource = {
1201 .name = "Video RAM area",
1202 .start = 0xa0000,
1203 .end = 0xbffff,
1204 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1205};
1206
1207void __init i386_reserve_resources(void)
1208{
1209 request_resource(&iomem_resource, &video_ram_resource);
1210 reserve_standard_io_resources();
1211}
1212
1213#endif /* CONFIG_X86_32 */
1214
1215static struct notifier_block kernel_offset_notifier = {
1216 .notifier_call = dump_kernel_offset
1217};
1218
1219static int __init register_kernel_offset_dumper(void)
1220{
1221 atomic_notifier_chain_register(&panic_notifier_list,
1222 &kernel_offset_notifier);
1223 return 0;
1224}
1225__initcall(register_kernel_offset_dumper);
1226
1227#ifdef CONFIG_HOTPLUG_CPU
1228bool arch_cpu_is_hotpluggable(int cpu)
1229{
1230 return cpu > 0;
1231}
1232#endif /* CONFIG_HOTPLUG_CPU */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8#include <linux/console.h>
9#include <linux/crash_dump.h>
10#include <linux/dma-map-ops.h>
11#include <linux/dmi.h>
12#include <linux/efi.h>
13#include <linux/init_ohci1394_dma.h>
14#include <linux/initrd.h>
15#include <linux/iscsi_ibft.h>
16#include <linux/memblock.h>
17#include <linux/panic_notifier.h>
18#include <linux/pci.h>
19#include <linux/root_dev.h>
20#include <linux/hugetlb.h>
21#include <linux/tboot.h>
22#include <linux/usb/xhci-dbgp.h>
23#include <linux/static_call.h>
24#include <linux/swiotlb.h>
25
26#include <uapi/linux/mount.h>
27
28#include <xen/xen.h>
29
30#include <asm/apic.h>
31#include <asm/numa.h>
32#include <asm/bios_ebda.h>
33#include <asm/bugs.h>
34#include <asm/cpu.h>
35#include <asm/efi.h>
36#include <asm/gart.h>
37#include <asm/hypervisor.h>
38#include <asm/io_apic.h>
39#include <asm/kasan.h>
40#include <asm/kaslr.h>
41#include <asm/mce.h>
42#include <asm/mtrr.h>
43#include <asm/realmode.h>
44#include <asm/olpc_ofw.h>
45#include <asm/pci-direct.h>
46#include <asm/prom.h>
47#include <asm/proto.h>
48#include <asm/thermal.h>
49#include <asm/unwind.h>
50#include <asm/vsyscall.h>
51#include <linux/vmalloc.h>
52
53/*
54 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
55 * max_pfn_mapped: highest directly mapped pfn > 4 GB
56 *
57 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
58 * represented by pfn_mapped[].
59 */
60unsigned long max_low_pfn_mapped;
61unsigned long max_pfn_mapped;
62
63#ifdef CONFIG_DMI
64RESERVE_BRK(dmi_alloc, 65536);
65#endif
66
67
68/*
69 * Range of the BSS area. The size of the BSS area is determined
70 * at link time, with RESERVE_BRK() facility reserving additional
71 * chunks.
72 */
73unsigned long _brk_start = (unsigned long)__brk_base;
74unsigned long _brk_end = (unsigned long)__brk_base;
75
76struct boot_params boot_params;
77
78/*
79 * These are the four main kernel memory regions, we put them into
80 * the resource tree so that kdump tools and other debugging tools
81 * recover it:
82 */
83
84static struct resource rodata_resource = {
85 .name = "Kernel rodata",
86 .start = 0,
87 .end = 0,
88 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
89};
90
91static struct resource data_resource = {
92 .name = "Kernel data",
93 .start = 0,
94 .end = 0,
95 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
96};
97
98static struct resource code_resource = {
99 .name = "Kernel code",
100 .start = 0,
101 .end = 0,
102 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
103};
104
105static struct resource bss_resource = {
106 .name = "Kernel bss",
107 .start = 0,
108 .end = 0,
109 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
110};
111
112
113#ifdef CONFIG_X86_32
114/* CPU data as detected by the assembly code in head_32.S */
115struct cpuinfo_x86 new_cpu_data;
116
117/* Common CPU data for all CPUs */
118struct cpuinfo_x86 boot_cpu_data __read_mostly;
119EXPORT_SYMBOL(boot_cpu_data);
120
121unsigned int def_to_bigsmp;
122
123struct apm_info apm_info;
124EXPORT_SYMBOL(apm_info);
125
126#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
127 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
128struct ist_info ist_info;
129EXPORT_SYMBOL(ist_info);
130#else
131struct ist_info ist_info;
132#endif
133
134#else
135struct cpuinfo_x86 boot_cpu_data __read_mostly;
136EXPORT_SYMBOL(boot_cpu_data);
137#endif
138
139
140#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
141__visible unsigned long mmu_cr4_features __ro_after_init;
142#else
143__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
144#endif
145
146/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
147int bootloader_type, bootloader_version;
148
149/*
150 * Setup options
151 */
152struct screen_info screen_info;
153EXPORT_SYMBOL(screen_info);
154struct edid_info edid_info;
155EXPORT_SYMBOL_GPL(edid_info);
156
157extern int root_mountflags;
158
159unsigned long saved_video_mode;
160
161#define RAMDISK_IMAGE_START_MASK 0x07FF
162#define RAMDISK_PROMPT_FLAG 0x8000
163#define RAMDISK_LOAD_FLAG 0x4000
164
165static char __initdata command_line[COMMAND_LINE_SIZE];
166#ifdef CONFIG_CMDLINE_BOOL
167static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
168#endif
169
170#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
171struct edd edd;
172#ifdef CONFIG_EDD_MODULE
173EXPORT_SYMBOL(edd);
174#endif
175/**
176 * copy_edd() - Copy the BIOS EDD information
177 * from boot_params into a safe place.
178 *
179 */
180static inline void __init copy_edd(void)
181{
182 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
183 sizeof(edd.mbr_signature));
184 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
185 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
186 edd.edd_info_nr = boot_params.eddbuf_entries;
187}
188#else
189static inline void __init copy_edd(void)
190{
191}
192#endif
193
194void * __init extend_brk(size_t size, size_t align)
195{
196 size_t mask = align - 1;
197 void *ret;
198
199 BUG_ON(_brk_start == 0);
200 BUG_ON(align & mask);
201
202 _brk_end = (_brk_end + mask) & ~mask;
203 BUG_ON((char *)(_brk_end + size) > __brk_limit);
204
205 ret = (void *)_brk_end;
206 _brk_end += size;
207
208 memset(ret, 0, size);
209
210 return ret;
211}
212
213#ifdef CONFIG_X86_32
214static void __init cleanup_highmap(void)
215{
216}
217#endif
218
219static void __init reserve_brk(void)
220{
221 if (_brk_end > _brk_start)
222 memblock_reserve(__pa_symbol(_brk_start),
223 _brk_end - _brk_start);
224
225 /* Mark brk area as locked down and no longer taking any
226 new allocations */
227 _brk_start = 0;
228}
229
230u64 relocated_ramdisk;
231
232#ifdef CONFIG_BLK_DEV_INITRD
233
234static u64 __init get_ramdisk_image(void)
235{
236 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
237
238 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
239
240 if (ramdisk_image == 0)
241 ramdisk_image = phys_initrd_start;
242
243 return ramdisk_image;
244}
245static u64 __init get_ramdisk_size(void)
246{
247 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
248
249 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
250
251 if (ramdisk_size == 0)
252 ramdisk_size = phys_initrd_size;
253
254 return ramdisk_size;
255}
256
257static void __init relocate_initrd(void)
258{
259 /* Assume only end is not page aligned */
260 u64 ramdisk_image = get_ramdisk_image();
261 u64 ramdisk_size = get_ramdisk_size();
262 u64 area_size = PAGE_ALIGN(ramdisk_size);
263
264 /* We need to move the initrd down into directly mapped mem */
265 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
266 PFN_PHYS(max_pfn_mapped));
267 if (!relocated_ramdisk)
268 panic("Cannot find place for new RAMDISK of size %lld\n",
269 ramdisk_size);
270
271 initrd_start = relocated_ramdisk + PAGE_OFFSET;
272 initrd_end = initrd_start + ramdisk_size;
273 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
274 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
275
276 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
277
278 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
279 " [mem %#010llx-%#010llx]\n",
280 ramdisk_image, ramdisk_image + ramdisk_size - 1,
281 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
282}
283
284static void __init early_reserve_initrd(void)
285{
286 /* Assume only end is not page aligned */
287 u64 ramdisk_image = get_ramdisk_image();
288 u64 ramdisk_size = get_ramdisk_size();
289 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
290
291 if (!boot_params.hdr.type_of_loader ||
292 !ramdisk_image || !ramdisk_size)
293 return; /* No initrd provided by bootloader */
294
295 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
296}
297
298static void __init reserve_initrd(void)
299{
300 /* Assume only end is not page aligned */
301 u64 ramdisk_image = get_ramdisk_image();
302 u64 ramdisk_size = get_ramdisk_size();
303 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
304
305 if (!boot_params.hdr.type_of_loader ||
306 !ramdisk_image || !ramdisk_size)
307 return; /* No initrd provided by bootloader */
308
309 initrd_start = 0;
310
311 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
312 ramdisk_end - 1);
313
314 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
315 PFN_DOWN(ramdisk_end))) {
316 /* All are mapped, easy case */
317 initrd_start = ramdisk_image + PAGE_OFFSET;
318 initrd_end = initrd_start + ramdisk_size;
319 return;
320 }
321
322 relocate_initrd();
323
324 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
325}
326
327#else
328static void __init early_reserve_initrd(void)
329{
330}
331static void __init reserve_initrd(void)
332{
333}
334#endif /* CONFIG_BLK_DEV_INITRD */
335
336static void __init parse_setup_data(void)
337{
338 struct setup_data *data;
339 u64 pa_data, pa_next;
340
341 pa_data = boot_params.hdr.setup_data;
342 while (pa_data) {
343 u32 data_len, data_type;
344
345 data = early_memremap(pa_data, sizeof(*data));
346 data_len = data->len + sizeof(struct setup_data);
347 data_type = data->type;
348 pa_next = data->next;
349 early_memunmap(data, sizeof(*data));
350
351 switch (data_type) {
352 case SETUP_E820_EXT:
353 e820__memory_setup_extended(pa_data, data_len);
354 break;
355 case SETUP_DTB:
356 add_dtb(pa_data);
357 break;
358 case SETUP_EFI:
359 parse_efi_setup(pa_data, data_len);
360 break;
361 default:
362 break;
363 }
364 pa_data = pa_next;
365 }
366}
367
368static void __init memblock_x86_reserve_range_setup_data(void)
369{
370 struct setup_data *data;
371 u64 pa_data;
372
373 pa_data = boot_params.hdr.setup_data;
374 while (pa_data) {
375 data = early_memremap(pa_data, sizeof(*data));
376 memblock_reserve(pa_data, sizeof(*data) + data->len);
377
378 if (data->type == SETUP_INDIRECT &&
379 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
380 memblock_reserve(((struct setup_indirect *)data->data)->addr,
381 ((struct setup_indirect *)data->data)->len);
382
383 pa_data = data->next;
384 early_memunmap(data, sizeof(*data));
385 }
386}
387
388/*
389 * --------- Crashkernel reservation ------------------------------
390 */
391
392#ifdef CONFIG_KEXEC_CORE
393
394/* 16M alignment for crash kernel regions */
395#define CRASH_ALIGN SZ_16M
396
397/*
398 * Keep the crash kernel below this limit.
399 *
400 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
401 * due to mapping restrictions.
402 *
403 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
404 * the upper limit of system RAM in 4-level paging mode. Since the kdump
405 * jump could be from 5-level paging to 4-level paging, the jump will fail if
406 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
407 * no good way to detect the paging mode of the target kernel which will be
408 * loaded for dumping.
409 */
410#ifdef CONFIG_X86_32
411# define CRASH_ADDR_LOW_MAX SZ_512M
412# define CRASH_ADDR_HIGH_MAX SZ_512M
413#else
414# define CRASH_ADDR_LOW_MAX SZ_4G
415# define CRASH_ADDR_HIGH_MAX SZ_64T
416#endif
417
418static int __init reserve_crashkernel_low(void)
419{
420#ifdef CONFIG_X86_64
421 unsigned long long base, low_base = 0, low_size = 0;
422 unsigned long low_mem_limit;
423 int ret;
424
425 low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
426
427 /* crashkernel=Y,low */
428 ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
429 if (ret) {
430 /*
431 * two parts from kernel/dma/swiotlb.c:
432 * -swiotlb size: user-specified with swiotlb= or default.
433 *
434 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
435 * to 8M for other buffers that may need to stay low too. Also
436 * make sure we allocate enough extra low memory so that we
437 * don't run out of DMA buffers for 32-bit devices.
438 */
439 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
440 } else {
441 /* passed with crashkernel=0,low ? */
442 if (!low_size)
443 return 0;
444 }
445
446 low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
447 if (!low_base) {
448 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
449 (unsigned long)(low_size >> 20));
450 return -ENOMEM;
451 }
452
453 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
454 (unsigned long)(low_size >> 20),
455 (unsigned long)(low_base >> 20),
456 (unsigned long)(low_mem_limit >> 20));
457
458 crashk_low_res.start = low_base;
459 crashk_low_res.end = low_base + low_size - 1;
460 insert_resource(&iomem_resource, &crashk_low_res);
461#endif
462 return 0;
463}
464
465static void __init reserve_crashkernel(void)
466{
467 unsigned long long crash_size, crash_base, total_mem;
468 bool high = false;
469 int ret;
470
471 total_mem = memblock_phys_mem_size();
472
473 /* crashkernel=XM */
474 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
475 if (ret != 0 || crash_size <= 0) {
476 /* crashkernel=X,high */
477 ret = parse_crashkernel_high(boot_command_line, total_mem,
478 &crash_size, &crash_base);
479 if (ret != 0 || crash_size <= 0)
480 return;
481 high = true;
482 }
483
484 if (xen_pv_domain()) {
485 pr_info("Ignoring crashkernel for a Xen PV domain\n");
486 return;
487 }
488
489 /* 0 means: find the address automatically */
490 if (!crash_base) {
491 /*
492 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
493 * crashkernel=x,high reserves memory over 4G, also allocates
494 * 256M extra low memory for DMA buffers and swiotlb.
495 * But the extra memory is not required for all machines.
496 * So try low memory first and fall back to high memory
497 * unless "crashkernel=size[KMG],high" is specified.
498 */
499 if (!high)
500 crash_base = memblock_phys_alloc_range(crash_size,
501 CRASH_ALIGN, CRASH_ALIGN,
502 CRASH_ADDR_LOW_MAX);
503 if (!crash_base)
504 crash_base = memblock_phys_alloc_range(crash_size,
505 CRASH_ALIGN, CRASH_ALIGN,
506 CRASH_ADDR_HIGH_MAX);
507 if (!crash_base) {
508 pr_info("crashkernel reservation failed - No suitable area found.\n");
509 return;
510 }
511 } else {
512 unsigned long long start;
513
514 start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
515 crash_base + crash_size);
516 if (start != crash_base) {
517 pr_info("crashkernel reservation failed - memory is in use.\n");
518 return;
519 }
520 }
521
522 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
523 memblock_free(crash_base, crash_size);
524 return;
525 }
526
527 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
528 (unsigned long)(crash_size >> 20),
529 (unsigned long)(crash_base >> 20),
530 (unsigned long)(total_mem >> 20));
531
532 crashk_res.start = crash_base;
533 crashk_res.end = crash_base + crash_size - 1;
534 insert_resource(&iomem_resource, &crashk_res);
535}
536#else
537static void __init reserve_crashkernel(void)
538{
539}
540#endif
541
542static struct resource standard_io_resources[] = {
543 { .name = "dma1", .start = 0x00, .end = 0x1f,
544 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
545 { .name = "pic1", .start = 0x20, .end = 0x21,
546 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
547 { .name = "timer0", .start = 0x40, .end = 0x43,
548 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
549 { .name = "timer1", .start = 0x50, .end = 0x53,
550 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
551 { .name = "keyboard", .start = 0x60, .end = 0x60,
552 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
553 { .name = "keyboard", .start = 0x64, .end = 0x64,
554 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
555 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
556 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
557 { .name = "pic2", .start = 0xa0, .end = 0xa1,
558 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
559 { .name = "dma2", .start = 0xc0, .end = 0xdf,
560 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
561 { .name = "fpu", .start = 0xf0, .end = 0xff,
562 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
563};
564
565void __init reserve_standard_io_resources(void)
566{
567 int i;
568
569 /* request I/O space for devices used on all i[345]86 PCs */
570 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
571 request_resource(&ioport_resource, &standard_io_resources[i]);
572
573}
574
575static __init void reserve_ibft_region(void)
576{
577 unsigned long addr, size = 0;
578
579 addr = find_ibft_region(&size);
580
581 if (size)
582 memblock_reserve(addr, size);
583}
584
585static bool __init snb_gfx_workaround_needed(void)
586{
587#ifdef CONFIG_PCI
588 int i;
589 u16 vendor, devid;
590 static const __initconst u16 snb_ids[] = {
591 0x0102,
592 0x0112,
593 0x0122,
594 0x0106,
595 0x0116,
596 0x0126,
597 0x010a,
598 };
599
600 /* Assume no if something weird is going on with PCI */
601 if (!early_pci_allowed())
602 return false;
603
604 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
605 if (vendor != 0x8086)
606 return false;
607
608 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
609 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
610 if (devid == snb_ids[i])
611 return true;
612#endif
613
614 return false;
615}
616
617/*
618 * Sandy Bridge graphics has trouble with certain ranges, exclude
619 * them from allocation.
620 */
621static void __init trim_snb_memory(void)
622{
623 static const __initconst unsigned long bad_pages[] = {
624 0x20050000,
625 0x20110000,
626 0x20130000,
627 0x20138000,
628 0x40004000,
629 };
630 int i;
631
632 if (!snb_gfx_workaround_needed())
633 return;
634
635 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
636
637 /*
638 * SandyBridge integrated graphics devices have a bug that prevents
639 * them from accessing certain memory ranges, namely anything below
640 * 1M and in the pages listed in bad_pages[] above.
641 *
642 * To avoid these pages being ever accessed by SNB gfx devices reserve
643 * bad_pages that have not already been reserved at boot time.
644 * All memory below the 1 MB mark is anyway reserved later during
645 * setup_arch(), so there is no need to reserve it here.
646 */
647
648 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
649 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
650 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
651 bad_pages[i]);
652 }
653}
654
655static void __init trim_bios_range(void)
656{
657 /*
658 * A special case is the first 4Kb of memory;
659 * This is a BIOS owned area, not kernel ram, but generally
660 * not listed as such in the E820 table.
661 *
662 * This typically reserves additional memory (64KiB by default)
663 * since some BIOSes are known to corrupt low memory. See the
664 * Kconfig help text for X86_RESERVE_LOW.
665 */
666 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
667
668 /*
669 * special case: Some BIOSes report the PC BIOS
670 * area (640Kb -> 1Mb) as RAM even though it is not.
671 * take them out.
672 */
673 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
674
675 e820__update_table(e820_table);
676}
677
678/* called before trim_bios_range() to spare extra sanitize */
679static void __init e820_add_kernel_range(void)
680{
681 u64 start = __pa_symbol(_text);
682 u64 size = __pa_symbol(_end) - start;
683
684 /*
685 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
686 * attempt to fix it by adding the range. We may have a confused BIOS,
687 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
688 * exclude kernel range. If we really are running on top non-RAM,
689 * we will crash later anyways.
690 */
691 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
692 return;
693
694 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
695 e820__range_remove(start, size, E820_TYPE_RAM, 0);
696 e820__range_add(start, size, E820_TYPE_RAM);
697}
698
699static void __init early_reserve_memory(void)
700{
701 /*
702 * Reserve the memory occupied by the kernel between _text and
703 * __end_of_kernel_reserve symbols. Any kernel sections after the
704 * __end_of_kernel_reserve symbol must be explicitly reserved with a
705 * separate memblock_reserve() or they will be discarded.
706 */
707 memblock_reserve(__pa_symbol(_text),
708 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
709
710 /*
711 * The first 4Kb of memory is a BIOS owned area, but generally it is
712 * not listed as such in the E820 table.
713 *
714 * Reserve the first 64K of memory since some BIOSes are known to
715 * corrupt low memory. After the real mode trampoline is allocated the
716 * rest of the memory below 640k is reserved.
717 *
718 * In addition, make sure page 0 is always reserved because on
719 * systems with L1TF its contents can be leaked to user processes.
720 */
721 memblock_reserve(0, SZ_64K);
722
723 early_reserve_initrd();
724
725 if (efi_enabled(EFI_BOOT))
726 efi_memblock_x86_reserve_range();
727
728 memblock_x86_reserve_range_setup_data();
729
730 reserve_ibft_region();
731 reserve_bios_regions();
732 trim_snb_memory();
733}
734
735/*
736 * Dump out kernel offset information on panic.
737 */
738static int
739dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
740{
741 if (kaslr_enabled()) {
742 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
743 kaslr_offset(),
744 __START_KERNEL,
745 __START_KERNEL_map,
746 MODULES_VADDR-1);
747 } else {
748 pr_emerg("Kernel Offset: disabled\n");
749 }
750
751 return 0;
752}
753
754/*
755 * Determine if we were loaded by an EFI loader. If so, then we have also been
756 * passed the efi memmap, systab, etc., so we should use these data structures
757 * for initialization. Note, the efi init code path is determined by the
758 * global efi_enabled. This allows the same kernel image to be used on existing
759 * systems (with a traditional BIOS) as well as on EFI systems.
760 */
761/*
762 * setup_arch - architecture-specific boot-time initializations
763 *
764 * Note: On x86_64, fixmaps are ready for use even before this is called.
765 */
766
767void __init setup_arch(char **cmdline_p)
768{
769#ifdef CONFIG_X86_32
770 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
771
772 /*
773 * copy kernel address range established so far and switch
774 * to the proper swapper page table
775 */
776 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
777 initial_page_table + KERNEL_PGD_BOUNDARY,
778 KERNEL_PGD_PTRS);
779
780 load_cr3(swapper_pg_dir);
781 /*
782 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
783 * a cr3 based tlb flush, so the following __flush_tlb_all()
784 * will not flush anything because the CPU quirk which clears
785 * X86_FEATURE_PGE has not been invoked yet. Though due to the
786 * load_cr3() above the TLB has been flushed already. The
787 * quirk is invoked before subsequent calls to __flush_tlb_all()
788 * so proper operation is guaranteed.
789 */
790 __flush_tlb_all();
791#else
792 printk(KERN_INFO "Command line: %s\n", boot_command_line);
793 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
794#endif
795
796 /*
797 * If we have OLPC OFW, we might end up relocating the fixmap due to
798 * reserve_top(), so do this before touching the ioremap area.
799 */
800 olpc_ofw_detect();
801
802 idt_setup_early_traps();
803 early_cpu_init();
804 jump_label_init();
805 static_call_init();
806 early_ioremap_init();
807
808 setup_olpc_ofw_pgd();
809
810 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
811 screen_info = boot_params.screen_info;
812 edid_info = boot_params.edid_info;
813#ifdef CONFIG_X86_32
814 apm_info.bios = boot_params.apm_bios_info;
815 ist_info = boot_params.ist_info;
816#endif
817 saved_video_mode = boot_params.hdr.vid_mode;
818 bootloader_type = boot_params.hdr.type_of_loader;
819 if ((bootloader_type >> 4) == 0xe) {
820 bootloader_type &= 0xf;
821 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
822 }
823 bootloader_version = bootloader_type & 0xf;
824 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
825
826#ifdef CONFIG_BLK_DEV_RAM
827 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
828#endif
829#ifdef CONFIG_EFI
830 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
831 EFI32_LOADER_SIGNATURE, 4)) {
832 set_bit(EFI_BOOT, &efi.flags);
833 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
834 EFI64_LOADER_SIGNATURE, 4)) {
835 set_bit(EFI_BOOT, &efi.flags);
836 set_bit(EFI_64BIT, &efi.flags);
837 }
838#endif
839
840 x86_init.oem.arch_setup();
841
842 /*
843 * Do some memory reservations *before* memory is added to memblock, so
844 * memblock allocations won't overwrite it.
845 *
846 * After this point, everything still needed from the boot loader or
847 * firmware or kernel text should be early reserved or marked not RAM in
848 * e820. All other memory is free game.
849 *
850 * This call needs to happen before e820__memory_setup() which calls the
851 * xen_memory_setup() on Xen dom0 which relies on the fact that those
852 * early reservations have happened already.
853 */
854 early_reserve_memory();
855
856 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
857 e820__memory_setup();
858 parse_setup_data();
859
860 copy_edd();
861
862 if (!boot_params.hdr.root_flags)
863 root_mountflags &= ~MS_RDONLY;
864 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
865
866 code_resource.start = __pa_symbol(_text);
867 code_resource.end = __pa_symbol(_etext)-1;
868 rodata_resource.start = __pa_symbol(__start_rodata);
869 rodata_resource.end = __pa_symbol(__end_rodata)-1;
870 data_resource.start = __pa_symbol(_sdata);
871 data_resource.end = __pa_symbol(_edata)-1;
872 bss_resource.start = __pa_symbol(__bss_start);
873 bss_resource.end = __pa_symbol(__bss_stop)-1;
874
875#ifdef CONFIG_CMDLINE_BOOL
876#ifdef CONFIG_CMDLINE_OVERRIDE
877 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
878#else
879 if (builtin_cmdline[0]) {
880 /* append boot loader cmdline to builtin */
881 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
882 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
883 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
884 }
885#endif
886#endif
887
888 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
889 *cmdline_p = command_line;
890
891 /*
892 * x86_configure_nx() is called before parse_early_param() to detect
893 * whether hardware doesn't support NX (so that the early EHCI debug
894 * console setup can safely call set_fixmap()). It may then be called
895 * again from within noexec_setup() during parsing early parameters
896 * to honor the respective command line option.
897 */
898 x86_configure_nx();
899
900 parse_early_param();
901
902#ifdef CONFIG_MEMORY_HOTPLUG
903 /*
904 * Memory used by the kernel cannot be hot-removed because Linux
905 * cannot migrate the kernel pages. When memory hotplug is
906 * enabled, we should prevent memblock from allocating memory
907 * for the kernel.
908 *
909 * ACPI SRAT records all hotpluggable memory ranges. But before
910 * SRAT is parsed, we don't know about it.
911 *
912 * The kernel image is loaded into memory at very early time. We
913 * cannot prevent this anyway. So on NUMA system, we set any
914 * node the kernel resides in as un-hotpluggable.
915 *
916 * Since on modern servers, one node could have double-digit
917 * gigabytes memory, we can assume the memory around the kernel
918 * image is also un-hotpluggable. So before SRAT is parsed, just
919 * allocate memory near the kernel image to try the best to keep
920 * the kernel away from hotpluggable memory.
921 */
922 if (movable_node_is_enabled())
923 memblock_set_bottom_up(true);
924#endif
925
926 x86_report_nx();
927
928 if (acpi_mps_check()) {
929#ifdef CONFIG_X86_LOCAL_APIC
930 disable_apic = 1;
931#endif
932 setup_clear_cpu_cap(X86_FEATURE_APIC);
933 }
934
935 e820__reserve_setup_data();
936 e820__finish_early_params();
937
938 if (efi_enabled(EFI_BOOT))
939 efi_init();
940
941 dmi_setup();
942
943 /*
944 * VMware detection requires dmi to be available, so this
945 * needs to be done after dmi_setup(), for the boot CPU.
946 */
947 init_hypervisor_platform();
948
949 tsc_early_init();
950 x86_init.resources.probe_roms();
951
952 /* after parse_early_param, so could debug it */
953 insert_resource(&iomem_resource, &code_resource);
954 insert_resource(&iomem_resource, &rodata_resource);
955 insert_resource(&iomem_resource, &data_resource);
956 insert_resource(&iomem_resource, &bss_resource);
957
958 e820_add_kernel_range();
959 trim_bios_range();
960#ifdef CONFIG_X86_32
961 if (ppro_with_ram_bug()) {
962 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
963 E820_TYPE_RESERVED);
964 e820__update_table(e820_table);
965 printk(KERN_INFO "fixed physical RAM map:\n");
966 e820__print_table("bad_ppro");
967 }
968#else
969 early_gart_iommu_check();
970#endif
971
972 /*
973 * partially used pages are not usable - thus
974 * we are rounding upwards:
975 */
976 max_pfn = e820__end_of_ram_pfn();
977
978 /* update e820 for memory not covered by WB MTRRs */
979 mtrr_bp_init();
980 if (mtrr_trim_uncached_memory(max_pfn))
981 max_pfn = e820__end_of_ram_pfn();
982
983 max_possible_pfn = max_pfn;
984
985 /*
986 * This call is required when the CPU does not support PAT. If
987 * mtrr_bp_init() invoked it already via pat_init() the call has no
988 * effect.
989 */
990 init_cache_modes();
991
992 /*
993 * Define random base addresses for memory sections after max_pfn is
994 * defined and before each memory section base is used.
995 */
996 kernel_randomize_memory();
997
998#ifdef CONFIG_X86_32
999 /* max_low_pfn get updated here */
1000 find_low_pfn_range();
1001#else
1002 check_x2apic();
1003
1004 /* How many end-of-memory variables you have, grandma! */
1005 /* need this before calling reserve_initrd */
1006 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1007 max_low_pfn = e820__end_of_low_ram_pfn();
1008 else
1009 max_low_pfn = max_pfn;
1010
1011 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1012#endif
1013
1014 /*
1015 * Find and reserve possible boot-time SMP configuration:
1016 */
1017 find_smp_config();
1018
1019 early_alloc_pgt_buf();
1020
1021 /*
1022 * Need to conclude brk, before e820__memblock_setup()
1023 * it could use memblock_find_in_range, could overlap with
1024 * brk area.
1025 */
1026 reserve_brk();
1027
1028 cleanup_highmap();
1029
1030 memblock_set_current_limit(ISA_END_ADDRESS);
1031 e820__memblock_setup();
1032
1033 /*
1034 * Needs to run after memblock setup because it needs the physical
1035 * memory size.
1036 */
1037 sev_setup_arch();
1038
1039 efi_fake_memmap();
1040 efi_find_mirror();
1041 efi_esrt_init();
1042 efi_mokvar_table_init();
1043
1044 /*
1045 * The EFI specification says that boot service code won't be
1046 * called after ExitBootServices(). This is, in fact, a lie.
1047 */
1048 efi_reserve_boot_services();
1049
1050 /* preallocate 4k for mptable mpc */
1051 e820__memblock_alloc_reserved_mpc_new();
1052
1053#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1054 setup_bios_corruption_check();
1055#endif
1056
1057#ifdef CONFIG_X86_32
1058 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1059 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1060#endif
1061
1062 /*
1063 * Find free memory for the real mode trampoline and place it there. If
1064 * there is not enough free memory under 1M, on EFI-enabled systems
1065 * there will be additional attempt to reclaim the memory for the real
1066 * mode trampoline at efi_free_boot_services().
1067 *
1068 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1069 * are known to corrupt low memory and several hundred kilobytes are not
1070 * worth complex detection what memory gets clobbered. Windows does the
1071 * same thing for very similar reasons.
1072 *
1073 * Moreover, on machines with SandyBridge graphics or in setups that use
1074 * crashkernel the entire 1M is reserved anyway.
1075 */
1076 reserve_real_mode();
1077
1078 init_mem_mapping();
1079
1080 idt_setup_early_pf();
1081
1082 /*
1083 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1084 * with the current CR4 value. This may not be necessary, but
1085 * auditing all the early-boot CR4 manipulation would be needed to
1086 * rule it out.
1087 *
1088 * Mask off features that don't work outside long mode (just
1089 * PCIDE for now).
1090 */
1091 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1092
1093 memblock_set_current_limit(get_max_mapped());
1094
1095 /*
1096 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1097 */
1098
1099#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1100 if (init_ohci1394_dma_early)
1101 init_ohci1394_dma_on_all_controllers();
1102#endif
1103 /* Allocate bigger log buffer */
1104 setup_log_buf(1);
1105
1106 if (efi_enabled(EFI_BOOT)) {
1107 switch (boot_params.secure_boot) {
1108 case efi_secureboot_mode_disabled:
1109 pr_info("Secure boot disabled\n");
1110 break;
1111 case efi_secureboot_mode_enabled:
1112 pr_info("Secure boot enabled\n");
1113 break;
1114 default:
1115 pr_info("Secure boot could not be determined\n");
1116 break;
1117 }
1118 }
1119
1120 reserve_initrd();
1121
1122 acpi_table_upgrade();
1123 /* Look for ACPI tables and reserve memory occupied by them. */
1124 acpi_boot_table_init();
1125
1126 vsmp_init();
1127
1128 io_delay_init();
1129
1130 early_platform_quirks();
1131
1132 early_acpi_boot_init();
1133
1134 initmem_init();
1135 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1136
1137 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1138 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1139
1140 /*
1141 * Reserve memory for crash kernel after SRAT is parsed so that it
1142 * won't consume hotpluggable memory.
1143 */
1144 reserve_crashkernel();
1145
1146 memblock_find_dma_reserve();
1147
1148 if (!early_xdbc_setup_hardware())
1149 early_xdbc_register_console();
1150
1151 x86_init.paging.pagetable_init();
1152
1153 kasan_init();
1154
1155 /*
1156 * Sync back kernel address range.
1157 *
1158 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1159 * this call?
1160 */
1161 sync_initial_page_table();
1162
1163 tboot_probe();
1164
1165 map_vsyscall();
1166
1167 generic_apic_probe();
1168
1169 early_quirks();
1170
1171 /*
1172 * Read APIC and some other early information from ACPI tables.
1173 */
1174 acpi_boot_init();
1175 x86_dtb_init();
1176
1177 /*
1178 * get boot-time SMP configuration:
1179 */
1180 get_smp_config();
1181
1182 /*
1183 * Systems w/o ACPI and mptables might not have it mapped the local
1184 * APIC yet, but prefill_possible_map() might need to access it.
1185 */
1186 init_apic_mappings();
1187
1188 prefill_possible_map();
1189
1190 init_cpu_to_node();
1191 init_gi_nodes();
1192
1193 io_apic_init_mappings();
1194
1195 x86_init.hyper.guest_late_init();
1196
1197 e820__reserve_resources();
1198 e820__register_nosave_regions(max_pfn);
1199
1200 x86_init.resources.reserve_resources();
1201
1202 e820__setup_pci_gap();
1203
1204#ifdef CONFIG_VT
1205#if defined(CONFIG_VGA_CONSOLE)
1206 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1207 conswitchp = &vga_con;
1208#endif
1209#endif
1210 x86_init.oem.banner();
1211
1212 x86_init.timers.wallclock_init();
1213
1214 /*
1215 * This needs to run before setup_local_APIC() which soft-disables the
1216 * local APIC temporarily and that masks the thermal LVT interrupt,
1217 * leading to softlockups on machines which have configured SMI
1218 * interrupt delivery.
1219 */
1220 therm_lvt_init();
1221
1222 mcheck_init();
1223
1224 register_refined_jiffies(CLOCK_TICK_RATE);
1225
1226#ifdef CONFIG_EFI
1227 if (efi_enabled(EFI_BOOT))
1228 efi_apply_memmap_quirks();
1229#endif
1230
1231 unwind_init();
1232}
1233
1234#ifdef CONFIG_X86_32
1235
1236static struct resource video_ram_resource = {
1237 .name = "Video RAM area",
1238 .start = 0xa0000,
1239 .end = 0xbffff,
1240 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1241};
1242
1243void __init i386_reserve_resources(void)
1244{
1245 request_resource(&iomem_resource, &video_ram_resource);
1246 reserve_standard_io_resources();
1247}
1248
1249#endif /* CONFIG_X86_32 */
1250
1251static struct notifier_block kernel_offset_notifier = {
1252 .notifier_call = dump_kernel_offset
1253};
1254
1255static int __init register_kernel_offset_dumper(void)
1256{
1257 atomic_notifier_chain_register(&panic_notifier_list,
1258 &kernel_offset_notifier);
1259 return 0;
1260}
1261__initcall(register_kernel_offset_dumper);