Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
 
 
 
 
 
 
   8#include <linux/acpi.h>
 
 
 
 
 
 
   9#include <linux/console.h>
  10#include <linux/cpu.h>
  11#include <linux/crash_dump.h>
  12#include <linux/dma-map-ops.h>
 
  13#include <linux/efi.h>
  14#include <linux/ima.h>
  15#include <linux/init_ohci1394_dma.h>
  16#include <linux/initrd.h>
  17#include <linux/iscsi_ibft.h>
  18#include <linux/memblock.h>
  19#include <linux/panic_notifier.h>
 
 
  20#include <linux/pci.h>
  21#include <linux/root_dev.h>
  22#include <linux/hugetlb.h>
  23#include <linux/tboot.h>
  24#include <linux/usb/xhci-dbgp.h>
  25#include <linux/static_call.h>
  26#include <linux/swiotlb.h>
  27#include <linux/random.h>
 
 
 
 
 
 
 
 
 
 
  28
  29#include <uapi/linux/mount.h>
 
 
  30
  31#include <xen/xen.h>
  32
 
  33#include <asm/apic.h>
 
 
 
 
  34#include <asm/efi.h>
  35#include <asm/numa.h>
 
 
 
 
 
 
  36#include <asm/bios_ebda.h>
 
 
  37#include <asm/bugs.h>
  38#include <asm/cacheinfo.h>
  39#include <asm/coco.h>
 
  40#include <asm/cpu.h>
  41#include <asm/efi.h>
 
 
  42#include <asm/gart.h>
 
 
 
 
  43#include <asm/hypervisor.h>
  44#include <asm/io_apic.h>
  45#include <asm/kasan.h>
  46#include <asm/kaslr.h>
  47#include <asm/mce.h>
  48#include <asm/memtype.h>
  49#include <asm/mtrr.h>
  50#include <asm/realmode.h>
  51#include <asm/olpc_ofw.h>
  52#include <asm/pci-direct.h>
 
 
 
 
 
 
 
 
 
  53#include <asm/prom.h>
  54#include <asm/proto.h>
  55#include <asm/thermal.h>
  56#include <asm/unwind.h>
  57#include <asm/vsyscall.h>
  58#include <linux/vmalloc.h>
  59
  60/*
  61 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  62 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  63 *
  64 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  65 * represented by pfn_mapped[].
  66 */
  67unsigned long max_low_pfn_mapped;
  68unsigned long max_pfn_mapped;
  69
  70#ifdef CONFIG_DMI
  71RESERVE_BRK(dmi_alloc, 65536);
  72#endif
  73
  74
  75unsigned long _brk_start = (unsigned long)__brk_base;
  76unsigned long _brk_end   = (unsigned long)__brk_base;
  77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78struct boot_params boot_params;
 
  79
  80/*
  81 * These are the four main kernel memory regions, we put them into
  82 * the resource tree so that kdump tools and other debugging tools
  83 * recover it:
  84 */
  85
  86static struct resource rodata_resource = {
  87	.name	= "Kernel rodata",
  88	.start	= 0,
  89	.end	= 0,
  90	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  91};
  92
  93static struct resource data_resource = {
  94	.name	= "Kernel data",
  95	.start	= 0,
  96	.end	= 0,
  97	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  98};
  99
 100static struct resource code_resource = {
 101	.name	= "Kernel code",
 102	.start	= 0,
 103	.end	= 0,
 104	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 105};
 106
 107static struct resource bss_resource = {
 108	.name	= "Kernel bss",
 109	.start	= 0,
 110	.end	= 0,
 111	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 112};
 113
 114
 115#ifdef CONFIG_X86_32
 116/* CPU data as detected by the assembly code in head_32.S */
 117struct cpuinfo_x86 new_cpu_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118
 119struct apm_info apm_info;
 120EXPORT_SYMBOL(apm_info);
 121
 122#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 123	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 124struct ist_info ist_info;
 125EXPORT_SYMBOL(ist_info);
 126#else
 127struct ist_info ist_info;
 128#endif
 129
 
 
 
 
 
 130#endif
 131
 132struct cpuinfo_x86 boot_cpu_data __read_mostly;
 133EXPORT_SYMBOL(boot_cpu_data);
 134
 135#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 136__visible unsigned long mmu_cr4_features __ro_after_init;
 137#else
 138__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 139#endif
 140
 141#ifdef CONFIG_IMA
 142static phys_addr_t ima_kexec_buffer_phys;
 143static size_t ima_kexec_buffer_size;
 144#endif
 145
 146/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 147int bootloader_type, bootloader_version;
 148
 149/*
 150 * Setup options
 151 */
 152struct screen_info screen_info;
 153EXPORT_SYMBOL(screen_info);
 154struct edid_info edid_info;
 155EXPORT_SYMBOL_GPL(edid_info);
 156
 157extern int root_mountflags;
 158
 159unsigned long saved_video_mode;
 160
 161#define RAMDISK_IMAGE_START_MASK	0x07FF
 162#define RAMDISK_PROMPT_FLAG		0x8000
 163#define RAMDISK_LOAD_FLAG		0x4000
 164
 165static char __initdata command_line[COMMAND_LINE_SIZE];
 166#ifdef CONFIG_CMDLINE_BOOL
 167char builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 168bool builtin_cmdline_added __ro_after_init;
 169#endif
 170
 171#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 172struct edd edd;
 173#ifdef CONFIG_EDD_MODULE
 174EXPORT_SYMBOL(edd);
 175#endif
 176/**
 177 * copy_edd() - Copy the BIOS EDD information
 178 *              from boot_params into a safe place.
 179 *
 180 */
 181static inline void __init copy_edd(void)
 182{
 183     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 184	    sizeof(edd.mbr_signature));
 185     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 186     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 187     edd.edd_info_nr = boot_params.eddbuf_entries;
 188}
 189#else
 190static inline void __init copy_edd(void)
 191{
 192}
 193#endif
 194
 195void * __init extend_brk(size_t size, size_t align)
 196{
 197	size_t mask = align - 1;
 198	void *ret;
 199
 200	BUG_ON(_brk_start == 0);
 201	BUG_ON(align & mask);
 202
 203	_brk_end = (_brk_end + mask) & ~mask;
 204	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 205
 206	ret = (void *)_brk_end;
 207	_brk_end += size;
 208
 209	memset(ret, 0, size);
 210
 211	return ret;
 212}
 213
 214#ifdef CONFIG_X86_32
 
 
 
 
 
 
 
 
 
 
 
 215static void __init cleanup_highmap(void)
 216{
 217}
 218#endif
 219
 220static void __init reserve_brk(void)
 221{
 222	if (_brk_end > _brk_start)
 223		memblock_reserve(__pa_symbol(_brk_start),
 224				 _brk_end - _brk_start);
 225
 226	/* Mark brk area as locked down and no longer taking any
 227	   new allocations */
 228	_brk_start = 0;
 229}
 230
 231#ifdef CONFIG_BLK_DEV_INITRD
 232
 233static u64 __init get_ramdisk_image(void)
 234{
 235	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 236
 237	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 238
 239	if (ramdisk_image == 0)
 240		ramdisk_image = phys_initrd_start;
 241
 242	return ramdisk_image;
 243}
 244static u64 __init get_ramdisk_size(void)
 245{
 246	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 247
 248	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 249
 250	if (ramdisk_size == 0)
 251		ramdisk_size = phys_initrd_size;
 252
 253	return ramdisk_size;
 254}
 255
 256static void __init relocate_initrd(void)
 257{
 258	/* Assume only end is not page aligned */
 259	u64 ramdisk_image = get_ramdisk_image();
 260	u64 ramdisk_size  = get_ramdisk_size();
 261	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 
 
 
 
 
 
 
 
 262
 263	/* We need to move the initrd down into directly mapped mem */
 264	u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 265						      PFN_PHYS(max_pfn_mapped));
 266	if (!relocated_ramdisk)
 267		panic("Cannot find place for new RAMDISK of size %lld\n",
 268		      ramdisk_size);
 269
 270	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 
 
 
 271	initrd_end   = initrd_start + ramdisk_size;
 272	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 273	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 274
 275	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 276
 277	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 278		" [mem %#010llx-%#010llx]\n",
 279		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 280		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 281}
 282
 283static void __init early_reserve_initrd(void)
 284{
 285	/* Assume only end is not page aligned */
 286	u64 ramdisk_image = get_ramdisk_image();
 287	u64 ramdisk_size  = get_ramdisk_size();
 288	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 289
 290	if (!boot_params.hdr.type_of_loader ||
 291	    !ramdisk_image || !ramdisk_size)
 292		return;		/* No initrd provided by bootloader */
 293
 294	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295}
 296
 297static void __init reserve_initrd(void)
 298{
 299	/* Assume only end is not page aligned */
 300	u64 ramdisk_image = get_ramdisk_image();
 301	u64 ramdisk_size  = get_ramdisk_size();
 302	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 
 303
 304	if (!boot_params.hdr.type_of_loader ||
 305	    !ramdisk_image || !ramdisk_size)
 306		return;		/* No initrd provided by bootloader */
 307
 308	initrd_start = 0;
 309
 310	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 311			ramdisk_end - 1);
 
 
 
 
 
 
 
 312
 313	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 314				PFN_DOWN(ramdisk_end))) {
 315		/* All are mapped, easy case */
 
 
 
 
 316		initrd_start = ramdisk_image + PAGE_OFFSET;
 317		initrd_end = initrd_start + ramdisk_size;
 318		return;
 319	}
 320
 321	relocate_initrd();
 322
 323	memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
 324}
 325
 326#else
 327static void __init early_reserve_initrd(void)
 328{
 329}
 330static void __init reserve_initrd(void)
 331{
 332}
 333#endif /* CONFIG_BLK_DEV_INITRD */
 334
 335static void __init add_early_ima_buffer(u64 phys_addr)
 336{
 337#ifdef CONFIG_IMA
 338	struct ima_setup_data *data;
 339
 340	data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
 341	if (!data) {
 342		pr_warn("setup: failed to memremap ima_setup_data entry\n");
 343		return;
 344	}
 345
 346	if (data->size) {
 347		memblock_reserve(data->addr, data->size);
 348		ima_kexec_buffer_phys = data->addr;
 349		ima_kexec_buffer_size = data->size;
 350	}
 351
 352	early_memunmap(data, sizeof(*data));
 353#else
 354	pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
 355#endif
 356}
 357
 358#if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
 359int __init ima_free_kexec_buffer(void)
 360{
 361	if (!ima_kexec_buffer_size)
 362		return -ENOENT;
 363
 364	memblock_free_late(ima_kexec_buffer_phys,
 365			   ima_kexec_buffer_size);
 366
 367	ima_kexec_buffer_phys = 0;
 368	ima_kexec_buffer_size = 0;
 369
 370	return 0;
 371}
 372
 373int __init ima_get_kexec_buffer(void **addr, size_t *size)
 374{
 375	if (!ima_kexec_buffer_size)
 376		return -ENOENT;
 377
 378	*addr = __va(ima_kexec_buffer_phys);
 379	*size = ima_kexec_buffer_size;
 380
 381	return 0;
 382}
 383#endif
 384
 385static void __init parse_setup_data(void)
 386{
 387	struct setup_data *data;
 388	u64 pa_data, pa_next;
 389
 
 
 390	pa_data = boot_params.hdr.setup_data;
 391	while (pa_data) {
 392		u32 data_len, data_type;
 393
 394		data = early_memremap(pa_data, sizeof(*data));
 
 
 395		data_len = data->len + sizeof(struct setup_data);
 396		data_type = data->type;
 397		pa_next = data->next;
 398		early_memunmap(data, sizeof(*data));
 
 
 399
 400		switch (data_type) {
 401		case SETUP_E820_EXT:
 402			e820__memory_setup_extended(pa_data, data_len);
 403			break;
 404		case SETUP_DTB:
 405			add_dtb(pa_data);
 406			break;
 407		case SETUP_EFI:
 408			parse_efi_setup(pa_data, data_len);
 409			break;
 410		case SETUP_IMA:
 411			add_early_ima_buffer(pa_data);
 412			break;
 413		case SETUP_RNG_SEED:
 414			data = early_memremap(pa_data, data_len);
 415			add_bootloader_randomness(data->data, data->len);
 416			/* Zero seed for forward secrecy. */
 417			memzero_explicit(data->data, data->len);
 418			/* Zero length in case we find ourselves back here by accident. */
 419			memzero_explicit(&data->len, sizeof(data->len));
 420			early_memunmap(data, data_len);
 421			break;
 422		default:
 423			break;
 424		}
 425		pa_data = pa_next;
 
 426	}
 427}
 428
 429static void __init memblock_x86_reserve_range_setup_data(void)
 430{
 431	struct setup_indirect *indirect;
 432	struct setup_data *data;
 433	u64 pa_data, pa_next;
 434	u32 len;
 435
 
 
 436	pa_data = boot_params.hdr.setup_data;
 437	while (pa_data) {
 438		data = early_memremap(pa_data, sizeof(*data));
 439		if (!data) {
 440			pr_warn("setup: failed to memremap setup_data entry\n");
 441			return;
 442		}
 
 
 
 
 443
 444		len = sizeof(*data);
 445		pa_next = data->next;
 
 
 
 446
 447		memblock_reserve(pa_data, sizeof(*data) + data->len);
 
 
 
 
 448
 449		if (data->type == SETUP_INDIRECT) {
 450			len += data->len;
 451			early_memunmap(data, sizeof(*data));
 452			data = early_memremap(pa_data, len);
 453			if (!data) {
 454				pr_warn("setup: failed to memremap indirect setup_data\n");
 455				return;
 456			}
 
 
 
 457
 458			indirect = (struct setup_indirect *)data->data;
 
 
 459
 460			if (indirect->type != SETUP_INDIRECT)
 461				memblock_reserve(indirect->addr, indirect->len);
 462		}
 463
 464		pa_data = pa_next;
 465		early_memunmap(data, len);
 466	}
 
 
 
 
 467}
 468
 469static void __init arch_reserve_crashkernel(void)
 
 
 
 
 
 
 
 
 
 
 
 
 470{
 471	unsigned long long crash_base, crash_size, low_size = 0;
 472	char *cmdline = boot_command_line;
 473	bool high = false;
 474	int ret;
 475
 476	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
 477		return;
 478
 479	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
 480				&crash_size, &crash_base,
 481				&low_size, &high);
 482	if (ret)
 483		return;
 484
 485	if (xen_pv_domain()) {
 486		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 487		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488	}
 
 489
 490	reserve_crashkernel_generic(cmdline, crash_size, crash_base,
 491				    low_size, high);
 
 
 
 
 
 
 
 492}
 
 
 
 
 
 493
 494static struct resource standard_io_resources[] = {
 495	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 496		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 497	{ .name = "pic1", .start = 0x20, .end = 0x21,
 498		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 499	{ .name = "timer0", .start = 0x40, .end = 0x43,
 500		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 501	{ .name = "timer1", .start = 0x50, .end = 0x53,
 502		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 503	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 504		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 505	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 506		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 507	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 508		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 509	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 510		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 511	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 512		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 513	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 514		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 515};
 516
 517void __init reserve_standard_io_resources(void)
 518{
 519	int i;
 520
 521	/* request I/O space for devices used on all i[345]86 PCs */
 522	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 523		request_resource(&ioport_resource, &standard_io_resources[i]);
 524
 525}
 526
 527static bool __init snb_gfx_workaround_needed(void)
 528{
 529#ifdef CONFIG_PCI
 530	int i;
 531	u16 vendor, devid;
 532	static const __initconst u16 snb_ids[] = {
 533		0x0102,
 534		0x0112,
 535		0x0122,
 536		0x0106,
 537		0x0116,
 538		0x0126,
 539		0x010a,
 540	};
 541
 542	/* Assume no if something weird is going on with PCI */
 543	if (!early_pci_allowed())
 544		return false;
 545
 546	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 547	if (vendor != 0x8086)
 548		return false;
 549
 550	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 551	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 552		if (devid == snb_ids[i])
 553			return true;
 554#endif
 555
 556	return false;
 557}
 558
 559/*
 560 * Sandy Bridge graphics has trouble with certain ranges, exclude
 561 * them from allocation.
 562 */
 563static void __init trim_snb_memory(void)
 564{
 565	static const __initconst unsigned long bad_pages[] = {
 566		0x20050000,
 567		0x20110000,
 568		0x20130000,
 569		0x20138000,
 570		0x40004000,
 571	};
 572	int i;
 573
 574	if (!snb_gfx_workaround_needed())
 575		return;
 576
 577	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 578
 579	/*
 580	 * SandyBridge integrated graphics devices have a bug that prevents
 581	 * them from accessing certain memory ranges, namely anything below
 582	 * 1M and in the pages listed in bad_pages[] above.
 583	 *
 584	 * To avoid these pages being ever accessed by SNB gfx devices reserve
 585	 * bad_pages that have not already been reserved at boot time.
 586	 * All memory below the 1 MB mark is anyway reserved later during
 587	 * setup_arch(), so there is no need to reserve it here.
 588	 */
 589
 590	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 591		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 592			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 593			       bad_pages[i]);
 594	}
 595}
 596
 
 
 597static void __init trim_bios_range(void)
 598{
 599	/*
 600	 * A special case is the first 4Kb of memory;
 601	 * This is a BIOS owned area, not kernel ram, but generally
 602	 * not listed as such in the E820 table.
 603	 *
 604	 * This typically reserves additional memory (64KiB by default)
 605	 * since some BIOSes are known to corrupt low memory.  See the
 606	 * Kconfig help text for X86_RESERVE_LOW.
 607	 */
 608	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 
 609
 610	/*
 611	 * special case: Some BIOSes report the PC BIOS
 612	 * area (640Kb -> 1Mb) as RAM even though it is not.
 613	 * take them out.
 614	 */
 615	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 616
 617	e820__update_table(e820_table);
 618}
 619
 620/* called before trim_bios_range() to spare extra sanitize */
 621static void __init e820_add_kernel_range(void)
 622{
 623	u64 start = __pa_symbol(_text);
 624	u64 size = __pa_symbol(_end) - start;
 625
 626	/*
 627	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 628	 * attempt to fix it by adding the range. We may have a confused BIOS,
 629	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 630	 * exclude kernel range. If we really are running on top non-RAM,
 631	 * we will crash later anyways.
 632	 */
 633	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 634		return;
 635
 636	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 637	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 638	e820__range_add(start, size, E820_TYPE_RAM);
 639}
 640
 641static void __init early_reserve_memory(void)
 642{
 643	/*
 644	 * Reserve the memory occupied by the kernel between _text and
 645	 * __end_of_kernel_reserve symbols. Any kernel sections after the
 646	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
 647	 * separate memblock_reserve() or they will be discarded.
 648	 */
 649	memblock_reserve(__pa_symbol(_text),
 650			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 651
 652	/*
 653	 * The first 4Kb of memory is a BIOS owned area, but generally it is
 654	 * not listed as such in the E820 table.
 655	 *
 656	 * Reserve the first 64K of memory since some BIOSes are known to
 657	 * corrupt low memory. After the real mode trampoline is allocated the
 658	 * rest of the memory below 640k is reserved.
 659	 *
 660	 * In addition, make sure page 0 is always reserved because on
 661	 * systems with L1TF its contents can be leaked to user processes.
 662	 */
 663	memblock_reserve(0, SZ_64K);
 664
 665	early_reserve_initrd();
 666
 667	memblock_x86_reserve_range_setup_data();
 
 668
 669	reserve_bios_regions();
 670	trim_snb_memory();
 671}
 672
 673/*
 674 * Dump out kernel offset information on panic.
 675 */
 676static int
 677dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 678{
 679	if (kaslr_enabled()) {
 680		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 681			 kaslr_offset(),
 682			 __START_KERNEL,
 683			 __START_KERNEL_map,
 684			 MODULES_VADDR-1);
 685	} else {
 686		pr_emerg("Kernel Offset: disabled\n");
 687	}
 688
 689	return 0;
 690}
 691
 692void x86_configure_nx(void)
 693{
 694	if (boot_cpu_has(X86_FEATURE_NX))
 695		__supported_pte_mask |= _PAGE_NX;
 696	else
 697		__supported_pte_mask &= ~_PAGE_NX;
 698}
 699
 700static void __init x86_report_nx(void)
 701{
 702	if (!boot_cpu_has(X86_FEATURE_NX)) {
 703		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
 704		       "missing in CPU!\n");
 705	} else {
 706#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 707		printk(KERN_INFO "NX (Execute Disable) protection: active\n");
 708#else
 709		/* 32bit non-PAE kernel, NX cannot be used */
 710		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
 711		       "cannot be enabled: non-PAE kernel!\n");
 712#endif
 713	}
 714}
 715
 716/*
 717 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 718 * passed the efi memmap, systab, etc., so we should use these data structures
 719 * for initialization.  Note, the efi init code path is determined by the
 720 * global efi_enabled. This allows the same kernel image to be used on existing
 721 * systems (with a traditional BIOS) as well as on EFI systems.
 722 */
 723/*
 724 * setup_arch - architecture-specific boot-time initializations
 725 *
 726 * Note: On x86_64, fixmaps are ready for use even before this is called.
 727 */
 728
 729void __init setup_arch(char **cmdline_p)
 730{
 731#ifdef CONFIG_X86_32
 732	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 
 733
 734	/*
 735	 * copy kernel address range established so far and switch
 736	 * to the proper swapper page table
 737	 */
 738	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 739			initial_page_table + KERNEL_PGD_BOUNDARY,
 740			KERNEL_PGD_PTRS);
 741
 742	load_cr3(swapper_pg_dir);
 743	/*
 744	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 745	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 746	 * will not flush anything because the CPU quirk which clears
 747	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 748	 * load_cr3() above the TLB has been flushed already. The
 749	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 750	 * so proper operation is guaranteed.
 751	 */
 752	__flush_tlb_all();
 753#else
 754	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 755	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 756#endif
 757
 758#ifdef CONFIG_CMDLINE_BOOL
 759#ifdef CONFIG_CMDLINE_OVERRIDE
 760	strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 761#else
 762	if (builtin_cmdline[0]) {
 763		/* append boot loader cmdline to builtin */
 764		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 765		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 766		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 767	}
 768#endif
 769	builtin_cmdline_added = true;
 770#endif
 771
 772	strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 773	*cmdline_p = command_line;
 774
 775	/*
 776	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 777	 * reserve_top(), so do this before touching the ioremap area.
 778	 */
 779	olpc_ofw_detect();
 780
 781	idt_setup_early_traps();
 782	early_cpu_init();
 783	jump_label_init();
 784	static_call_init();
 785	early_ioremap_init();
 786
 787	setup_olpc_ofw_pgd();
 788
 789	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 790	screen_info = boot_params.screen_info;
 791	edid_info = boot_params.edid_info;
 792#ifdef CONFIG_X86_32
 793	apm_info.bios = boot_params.apm_bios_info;
 794	ist_info = boot_params.ist_info;
 
 
 
 
 
 
 795#endif
 796	saved_video_mode = boot_params.hdr.vid_mode;
 797	bootloader_type = boot_params.hdr.type_of_loader;
 798	if ((bootloader_type >> 4) == 0xe) {
 799		bootloader_type &= 0xf;
 800		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 801	}
 802	bootloader_version  = bootloader_type & 0xf;
 803	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 804
 805#ifdef CONFIG_BLK_DEV_RAM
 806	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 
 
 807#endif
 808#ifdef CONFIG_EFI
 809	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 810		     EFI32_LOADER_SIGNATURE, 4)) {
 811		set_bit(EFI_BOOT, &efi.flags);
 812	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 813		     EFI64_LOADER_SIGNATURE, 4)) {
 814		set_bit(EFI_BOOT, &efi.flags);
 815		set_bit(EFI_64BIT, &efi.flags);
 
 
 816	}
 817#endif
 818
 819	x86_init.oem.arch_setup();
 820
 821	/*
 822	 * Do some memory reservations *before* memory is added to memblock, so
 823	 * memblock allocations won't overwrite it.
 824	 *
 825	 * After this point, everything still needed from the boot loader or
 826	 * firmware or kernel text should be early reserved or marked not RAM in
 827	 * e820. All other memory is free game.
 828	 *
 829	 * This call needs to happen before e820__memory_setup() which calls the
 830	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
 831	 * early reservations have happened already.
 832	 */
 833	early_reserve_memory();
 834
 835	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 836	e820__memory_setup();
 837	parse_setup_data();
 
 
 838
 839	copy_edd();
 840
 841	if (!boot_params.hdr.root_flags)
 842		root_mountflags &= ~MS_RDONLY;
 843	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
 
 
 
 
 
 
 
 
 
 
 844
 845	code_resource.start = __pa_symbol(_text);
 846	code_resource.end = __pa_symbol(_etext)-1;
 847	rodata_resource.start = __pa_symbol(__start_rodata);
 848	rodata_resource.end = __pa_symbol(__end_rodata)-1;
 849	data_resource.start = __pa_symbol(_sdata);
 850	data_resource.end = __pa_symbol(_edata)-1;
 851	bss_resource.start = __pa_symbol(__bss_start);
 852	bss_resource.end = __pa_symbol(__bss_stop)-1;
 
 
 
 
 
 
 
 853
 854	/*
 855	 * x86_configure_nx() is called before parse_early_param() to detect
 856	 * whether hardware doesn't support NX (so that the early EHCI debug
 857	 * console setup can safely call set_fixmap()).
 
 
 858	 */
 859	x86_configure_nx();
 860
 861	parse_early_param();
 862
 863	if (efi_enabled(EFI_BOOT))
 864		efi_memblock_x86_reserve_range();
 865
 866#ifdef CONFIG_MEMORY_HOTPLUG
 867	/*
 868	 * Memory used by the kernel cannot be hot-removed because Linux
 869	 * cannot migrate the kernel pages. When memory hotplug is
 870	 * enabled, we should prevent memblock from allocating memory
 871	 * for the kernel.
 872	 *
 873	 * ACPI SRAT records all hotpluggable memory ranges. But before
 874	 * SRAT is parsed, we don't know about it.
 875	 *
 876	 * The kernel image is loaded into memory at very early time. We
 877	 * cannot prevent this anyway. So on NUMA system, we set any
 878	 * node the kernel resides in as un-hotpluggable.
 879	 *
 880	 * Since on modern servers, one node could have double-digit
 881	 * gigabytes memory, we can assume the memory around the kernel
 882	 * image is also un-hotpluggable. So before SRAT is parsed, just
 883	 * allocate memory near the kernel image to try the best to keep
 884	 * the kernel away from hotpluggable memory.
 885	 */
 886	if (movable_node_is_enabled())
 887		memblock_set_bottom_up(true);
 888#endif
 889
 890	x86_report_nx();
 891
 892	apic_setup_apic_calls();
 
 893
 894	if (acpi_mps_check()) {
 895#ifdef CONFIG_X86_LOCAL_APIC
 896		apic_is_disabled = true;
 897#endif
 898		setup_clear_cpu_cap(X86_FEATURE_APIC);
 899	}
 900
 901	e820__reserve_setup_data();
 902	e820__finish_early_params();
 
 
 
 
 903
 904	if (efi_enabled(EFI_BOOT))
 905		efi_init();
 906
 907	reserve_ibft_region();
 908	x86_init.resources.dmi_setup();
 909
 910	/*
 911	 * VMware detection requires dmi to be available, so this
 912	 * needs to be done after dmi_setup(), for the boot CPU.
 913	 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
 914	 * called before cache_bp_init() for setting up MTRR state.
 915	 */
 916	init_hypervisor_platform();
 917
 918	tsc_early_init();
 919	x86_init.resources.probe_roms();
 920
 921	/* after parse_early_param, so could debug it */
 922	insert_resource(&iomem_resource, &code_resource);
 923	insert_resource(&iomem_resource, &rodata_resource);
 924	insert_resource(&iomem_resource, &data_resource);
 925	insert_resource(&iomem_resource, &bss_resource);
 926
 927	e820_add_kernel_range();
 928	trim_bios_range();
 929#ifdef CONFIG_X86_32
 930	if (ppro_with_ram_bug()) {
 931		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
 932				  E820_TYPE_RESERVED);
 933		e820__update_table(e820_table);
 934		printk(KERN_INFO "fixed physical RAM map:\n");
 935		e820__print_table("bad_ppro");
 936	}
 937#else
 938	early_gart_iommu_check();
 939#endif
 940
 941	/*
 942	 * partially used pages are not usable - thus
 943	 * we are rounding upwards:
 944	 */
 945	max_pfn = e820__end_of_ram_pfn();
 946
 947	/* update e820 for memory not covered by WB MTRRs */
 948	cache_bp_init();
 949	if (mtrr_trim_uncached_memory(max_pfn))
 950		max_pfn = e820__end_of_ram_pfn();
 951
 952	max_possible_pfn = max_pfn;
 953
 954	/*
 955	 * Define random base addresses for memory sections after max_pfn is
 956	 * defined and before each memory section base is used.
 957	 */
 958	kernel_randomize_memory();
 959
 960#ifdef CONFIG_X86_32
 961	/* max_low_pfn get updated here */
 962	find_low_pfn_range();
 963#else
 
 
 964	check_x2apic();
 965
 966	/* How many end-of-memory variables you have, grandma! */
 967	/* need this before calling reserve_initrd */
 968	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
 969		max_low_pfn = e820__end_of_low_ram_pfn();
 970	else
 971		max_low_pfn = max_pfn;
 972
 973	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 974#endif
 975
 976	/* Find and reserve MPTABLE area */
 977	x86_init.mpparse.find_mptable();
 
 
 978
 979	early_alloc_pgt_buf();
 980
 981	/*
 982	 * Need to conclude brk, before e820__memblock_setup()
 983	 * it could use memblock_find_in_range, could overlap with
 984	 * brk area.
 985	 */
 986	reserve_brk();
 987
 988	cleanup_highmap();
 989
 990	memblock_set_current_limit(ISA_END_ADDRESS);
 991	e820__memblock_setup();
 992
 993	/*
 994	 * Needs to run after memblock setup because it needs the physical
 995	 * memory size.
 996	 */
 997	mem_encrypt_setup_arch();
 998	cc_random_init();
 999
1000	efi_find_mirror();
1001	efi_esrt_init();
1002	efi_mokvar_table_init();
1003
1004	/*
1005	 * The EFI specification says that boot service code won't be
1006	 * called after ExitBootServices(). This is, in fact, a lie.
1007	 */
1008	efi_reserve_boot_services();
1009
1010	/* preallocate 4k for mptable mpc */
1011	e820__memblock_alloc_reserved_mpc_new();
1012
1013#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1014	setup_bios_corruption_check();
1015#endif
1016
1017#ifdef CONFIG_X86_32
1018	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1019			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1020#endif
1021
1022	/*
1023	 * Find free memory for the real mode trampoline and place it there. If
1024	 * there is not enough free memory under 1M, on EFI-enabled systems
1025	 * there will be additional attempt to reclaim the memory for the real
1026	 * mode trampoline at efi_free_boot_services().
1027	 *
1028	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1029	 * are known to corrupt low memory and several hundred kilobytes are not
1030	 * worth complex detection what memory gets clobbered. Windows does the
1031	 * same thing for very similar reasons.
1032	 *
1033	 * Moreover, on machines with SandyBridge graphics or in setups that use
1034	 * crashkernel the entire 1M is reserved anyway.
1035	 *
1036	 * Note the host kernel TDX also requires the first 1MB being reserved.
1037	 */
1038	x86_platform.realmode_reserve();
1039
1040	init_mem_mapping();
1041
1042	/*
1043	 * init_mem_mapping() relies on the early IDT page fault handling.
1044	 * Now either enable FRED or install the real page fault handler
1045	 * for 64-bit in the IDT.
1046	 */
1047	cpu_init_replace_early_idt();
1048
1049	/*
1050	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1051	 * with the current CR4 value.  This may not be necessary, but
1052	 * auditing all the early-boot CR4 manipulation would be needed to
1053	 * rule it out.
1054	 *
1055	 * Mask off features that don't work outside long mode (just
1056	 * PCIDE for now).
1057	 */
1058	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1059
1060	memblock_set_current_limit(get_max_mapped());
 
 
 
 
 
 
 
 
 
 
 
 
1061
1062	/*
1063	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1064	 */
1065
1066#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1067	if (init_ohci1394_dma_early)
1068		init_ohci1394_dma_on_all_controllers();
1069#endif
1070	/* Allocate bigger log buffer */
1071	setup_log_buf(1);
1072
1073	if (efi_enabled(EFI_BOOT)) {
1074		switch (boot_params.secure_boot) {
1075		case efi_secureboot_mode_disabled:
1076			pr_info("Secure boot disabled\n");
1077			break;
1078		case efi_secureboot_mode_enabled:
1079			pr_info("Secure boot enabled\n");
1080			break;
1081		default:
1082			pr_info("Secure boot could not be determined\n");
1083			break;
1084		}
1085	}
1086
1087	reserve_initrd();
1088
1089	acpi_table_upgrade();
1090	/* Look for ACPI tables and reserve memory occupied by them. */
1091	acpi_boot_table_init();
1092
1093	vsmp_init();
1094
1095	io_delay_init();
1096
1097	early_platform_quirks();
 
 
 
1098
1099	/* Some platforms need the APIC registered for NUMA configuration */
1100	early_acpi_boot_init();
1101	x86_init.mpparse.early_parse_smp_cfg();
1102
1103	x86_flattree_get_config();
1104
1105	initmem_init();
1106	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1107
1108	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1109		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1110
1111	/*
1112	 * Reserve memory for crash kernel after SRAT is parsed so that it
1113	 * won't consume hotpluggable memory.
1114	 */
1115	arch_reserve_crashkernel();
1116
1117	if (!early_xdbc_setup_hardware())
1118		early_xdbc_register_console();
1119
1120	x86_init.paging.pagetable_init();
 
 
1121
1122	kasan_init();
 
 
 
1123
1124	/*
1125	 * Sync back kernel address range.
1126	 *
1127	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1128	 * this call?
1129	 */
1130	sync_initial_page_table();
1131
1132	tboot_probe();
1133
 
1134	map_vsyscall();
 
1135
1136	x86_32_probe_apic();
1137
1138	early_quirks();
1139
1140	topology_apply_cmdline_limits_early();
1141
1142	/*
1143	 * Parse SMP configuration. Try ACPI first and then the platform
1144	 * specific parser.
1145	 */
1146	acpi_boot_init();
1147	x86_init.mpparse.parse_smp_cfg();
 
1148
1149	/* Last opportunity to detect and map the local APIC */
1150	init_apic_mappings();
 
 
 
1151
1152	topology_init_possible_cpus();
1153
1154	init_cpu_to_node();
1155	init_gi_nodes();
1156
1157	io_apic_init_mappings();
 
1158
1159	x86_init.hyper.guest_late_init();
1160
1161	e820__reserve_resources();
1162	e820__register_nosave_regions(max_pfn);
1163
1164	x86_init.resources.reserve_resources();
1165
1166	e820__setup_pci_gap();
1167
1168#ifdef CONFIG_VT
1169#if defined(CONFIG_VGA_CONSOLE)
1170	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1171		vgacon_register_screen(&screen_info);
 
 
1172#endif
1173#endif
1174	x86_init.oem.banner();
1175
1176	x86_init.timers.wallclock_init();
1177
1178	/*
1179	 * This needs to run before setup_local_APIC() which soft-disables the
1180	 * local APIC temporarily and that masks the thermal LVT interrupt,
1181	 * leading to softlockups on machines which have configured SMI
1182	 * interrupt delivery.
1183	 */
1184	therm_lvt_init();
1185
1186	mcheck_init();
1187
1188	register_refined_jiffies(CLOCK_TICK_RATE);
1189
1190#ifdef CONFIG_EFI
1191	if (efi_enabled(EFI_BOOT))
1192		efi_apply_memmap_quirks();
1193#endif
1194
1195	unwind_init();
1196}
1197
1198#ifdef CONFIG_X86_32
1199
1200static struct resource video_ram_resource = {
1201	.name	= "Video RAM area",
1202	.start	= 0xa0000,
1203	.end	= 0xbffff,
1204	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1205};
1206
1207void __init i386_reserve_resources(void)
1208{
1209	request_resource(&iomem_resource, &video_ram_resource);
1210	reserve_standard_io_resources();
1211}
1212
1213#endif /* CONFIG_X86_32 */
1214
1215static struct notifier_block kernel_offset_notifier = {
1216	.notifier_call = dump_kernel_offset
1217};
1218
1219static int __init register_kernel_offset_dumper(void)
1220{
1221	atomic_notifier_chain_register(&panic_notifier_list,
1222					&kernel_offset_notifier);
1223	return 0;
1224}
1225__initcall(register_kernel_offset_dumper);
1226
1227#ifdef CONFIG_HOTPLUG_CPU
1228bool arch_cpu_is_hotpluggable(int cpu)
1229{
1230	return cpu > 0;
1231}
1232#endif /* CONFIG_HOTPLUG_CPU */
v3.1
 
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *	David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/mca.h>
  38#include <linux/root_dev.h>
  39#include <linux/highmem.h>
  40#include <linux/module.h>
  41#include <linux/efi.h>
  42#include <linux/init.h>
  43#include <linux/edd.h>
 
  44#include <linux/iscsi_ibft.h>
  45#include <linux/nodemask.h>
  46#include <linux/kexec.h>
  47#include <linux/dmi.h>
  48#include <linux/pfn.h>
  49#include <linux/pci.h>
  50#include <asm/pci-direct.h>
  51#include <linux/init_ohci1394_dma.h>
  52#include <linux/kvm_para.h>
  53
  54#include <linux/errno.h>
  55#include <linux/kernel.h>
  56#include <linux/stddef.h>
  57#include <linux/unistd.h>
  58#include <linux/ptrace.h>
  59#include <linux/user.h>
  60#include <linux/delay.h>
  61
  62#include <linux/kallsyms.h>
  63#include <linux/cpufreq.h>
  64#include <linux/dma-mapping.h>
  65#include <linux/ctype.h>
  66#include <linux/uaccess.h>
  67
  68#include <linux/percpu.h>
  69#include <linux/crash_dump.h>
  70#include <linux/tboot.h>
  71
  72#include <video/edid.h>
  73
  74#include <asm/mtrr.h>
  75#include <asm/apic.h>
  76#include <asm/trampoline.h>
  77#include <asm/e820.h>
  78#include <asm/mpspec.h>
  79#include <asm/setup.h>
  80#include <asm/efi.h>
  81#include <asm/timer.h>
  82#include <asm/i8259.h>
  83#include <asm/sections.h>
  84#include <asm/dmi.h>
  85#include <asm/io_apic.h>
  86#include <asm/ist.h>
  87#include <asm/setup_arch.h>
  88#include <asm/bios_ebda.h>
  89#include <asm/cacheflush.h>
  90#include <asm/processor.h>
  91#include <asm/bugs.h>
  92
  93#include <asm/system.h>
  94#include <asm/vsyscall.h>
  95#include <asm/cpu.h>
  96#include <asm/desc.h>
  97#include <asm/dma.h>
  98#include <asm/iommu.h>
  99#include <asm/gart.h>
 100#include <asm/mmu_context.h>
 101#include <asm/proto.h>
 102
 103#include <asm/paravirt.h>
 104#include <asm/hypervisor.h>
 
 
 
 
 
 
 
 105#include <asm/olpc_ofw.h>
 106
 107#include <asm/percpu.h>
 108#include <asm/topology.h>
 109#include <asm/apicdef.h>
 110#include <asm/amd_nb.h>
 111#ifdef CONFIG_X86_64
 112#include <asm/numa_64.h>
 113#endif
 114#include <asm/mce.h>
 115#include <asm/alternative.h>
 116#include <asm/prom.h>
 
 
 
 
 
 117
 118/*
 119 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
 120 * The direct mapping extends to max_pfn_mapped, so that we can directly access
 121 * apertures, ACPI and other tables without having to play with fixmaps.
 
 
 122 */
 123unsigned long max_low_pfn_mapped;
 124unsigned long max_pfn_mapped;
 125
 126#ifdef CONFIG_DMI
 127RESERVE_BRK(dmi_alloc, 65536);
 128#endif
 129
 130
 131static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 132unsigned long _brk_end = (unsigned long)__brk_base;
 133
 134#ifdef CONFIG_X86_64
 135int default_cpu_present_to_apicid(int mps_cpu)
 136{
 137	return __default_cpu_present_to_apicid(mps_cpu);
 138}
 139
 140int default_check_phys_apicid_present(int phys_apicid)
 141{
 142	return __default_check_phys_apicid_present(phys_apicid);
 143}
 144#endif
 145
 146#ifndef CONFIG_DEBUG_BOOT_PARAMS
 147struct boot_params __initdata boot_params;
 148#else
 149struct boot_params boot_params;
 150#endif
 151
 152/*
 153 * Machine setup..
 
 
 154 */
 
 
 
 
 
 
 
 
 155static struct resource data_resource = {
 156	.name	= "Kernel data",
 157	.start	= 0,
 158	.end	= 0,
 159	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 160};
 161
 162static struct resource code_resource = {
 163	.name	= "Kernel code",
 164	.start	= 0,
 165	.end	= 0,
 166	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 167};
 168
 169static struct resource bss_resource = {
 170	.name	= "Kernel bss",
 171	.start	= 0,
 172	.end	= 0,
 173	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
 174};
 175
 176
 177#ifdef CONFIG_X86_32
 178/* cpu data as detected by the assembly code in head.S */
 179struct cpuinfo_x86 new_cpu_data __cpuinitdata = {0, 0, 0, 0, -1, 1, 0, 0, -1};
 180/* common cpu data for all cpus */
 181struct cpuinfo_x86 boot_cpu_data __read_mostly = {0, 0, 0, 0, -1, 1, 0, 0, -1};
 182EXPORT_SYMBOL(boot_cpu_data);
 183static void set_mca_bus(int x)
 184{
 185#ifdef CONFIG_MCA
 186	MCA_bus = x;
 187#endif
 188}
 189
 190unsigned int def_to_bigsmp;
 191
 192/* for MCA, but anyone else can use it if they want */
 193unsigned int machine_id;
 194unsigned int machine_submodel_id;
 195unsigned int BIOS_revision;
 196
 197struct apm_info apm_info;
 198EXPORT_SYMBOL(apm_info);
 199
 200#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 201	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 202struct ist_info ist_info;
 203EXPORT_SYMBOL(ist_info);
 204#else
 205struct ist_info ist_info;
 206#endif
 207
 208#else
 209struct cpuinfo_x86 boot_cpu_data __read_mostly = {
 210	.x86_phys_bits = MAX_PHYSMEM_BITS,
 211};
 212EXPORT_SYMBOL(boot_cpu_data);
 213#endif
 214
 
 
 215
 216#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 217unsigned long mmu_cr4_features;
 218#else
 219unsigned long mmu_cr4_features = X86_CR4_PAE;
 
 
 
 
 
 220#endif
 221
 222/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 223int bootloader_type, bootloader_version;
 224
 225/*
 226 * Setup options
 227 */
 228struct screen_info screen_info;
 229EXPORT_SYMBOL(screen_info);
 230struct edid_info edid_info;
 231EXPORT_SYMBOL_GPL(edid_info);
 232
 233extern int root_mountflags;
 234
 235unsigned long saved_video_mode;
 236
 237#define RAMDISK_IMAGE_START_MASK	0x07FF
 238#define RAMDISK_PROMPT_FLAG		0x8000
 239#define RAMDISK_LOAD_FLAG		0x4000
 240
 241static char __initdata command_line[COMMAND_LINE_SIZE];
 242#ifdef CONFIG_CMDLINE_BOOL
 243static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 
 244#endif
 245
 246#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 247struct edd edd;
 248#ifdef CONFIG_EDD_MODULE
 249EXPORT_SYMBOL(edd);
 250#endif
 251/**
 252 * copy_edd() - Copy the BIOS EDD information
 253 *              from boot_params into a safe place.
 254 *
 255 */
 256static inline void __init copy_edd(void)
 257{
 258     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 259	    sizeof(edd.mbr_signature));
 260     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 261     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 262     edd.edd_info_nr = boot_params.eddbuf_entries;
 263}
 264#else
 265static inline void __init copy_edd(void)
 266{
 267}
 268#endif
 269
 270void * __init extend_brk(size_t size, size_t align)
 271{
 272	size_t mask = align - 1;
 273	void *ret;
 274
 275	BUG_ON(_brk_start == 0);
 276	BUG_ON(align & mask);
 277
 278	_brk_end = (_brk_end + mask) & ~mask;
 279	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 280
 281	ret = (void *)_brk_end;
 282	_brk_end += size;
 283
 284	memset(ret, 0, size);
 285
 286	return ret;
 287}
 288
 289#ifdef CONFIG_X86_64
 290static void __init init_gbpages(void)
 291{
 292	if (direct_gbpages && cpu_has_gbpages)
 293		printk(KERN_INFO "Using GB pages for direct mapping\n");
 294	else
 295		direct_gbpages = 0;
 296}
 297#else
 298static inline void init_gbpages(void)
 299{
 300}
 301static void __init cleanup_highmap(void)
 302{
 303}
 304#endif
 305
 306static void __init reserve_brk(void)
 307{
 308	if (_brk_end > _brk_start)
 309		memblock_x86_reserve_range(__pa(_brk_start), __pa(_brk_end), "BRK");
 
 310
 311	/* Mark brk area as locked down and no longer taking any
 312	   new allocations */
 313	_brk_start = 0;
 314}
 315
 316#ifdef CONFIG_BLK_DEV_INITRD
 317
 318#define MAX_MAP_CHUNK	(NR_FIX_BTMAPS << PAGE_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319static void __init relocate_initrd(void)
 320{
 321	/* Assume only end is not page aligned */
 322	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 323	u64 ramdisk_size  = boot_params.hdr.ramdisk_size;
 324	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 325	u64 end_of_lowmem = max_low_pfn_mapped << PAGE_SHIFT;
 326	u64 ramdisk_here;
 327	unsigned long slop, clen, mapaddr;
 328	char *p, *q;
 329
 330	/* We need to move the initrd down into lowmem */
 331	ramdisk_here = memblock_find_in_range(0, end_of_lowmem, area_size,
 332					 PAGE_SIZE);
 333
 334	if (ramdisk_here == MEMBLOCK_ERROR)
 
 
 
 335		panic("Cannot find place for new RAMDISK of size %lld\n",
 336			 ramdisk_size);
 337
 338	/* Note: this includes all the lowmem currently occupied by
 339	   the initrd, we rely on that fact to keep the data intact. */
 340	memblock_x86_reserve_range(ramdisk_here, ramdisk_here + area_size, "NEW RAMDISK");
 341	initrd_start = ramdisk_here + PAGE_OFFSET;
 342	initrd_end   = initrd_start + ramdisk_size;
 343	printk(KERN_INFO "Allocated new RAMDISK: %08llx - %08llx\n",
 344			 ramdisk_here, ramdisk_here + ramdisk_size);
 345
 346	q = (char *)initrd_start;
 347
 348	/* Copy any lowmem portion of the initrd */
 349	if (ramdisk_image < end_of_lowmem) {
 350		clen = end_of_lowmem - ramdisk_image;
 351		p = (char *)__va(ramdisk_image);
 352		memcpy(q, p, clen);
 353		q += clen;
 354		ramdisk_image += clen;
 355		ramdisk_size  -= clen;
 356	}
 
 
 
 
 
 
 
 357
 358	/* Copy the highmem portion of the initrd */
 359	while (ramdisk_size) {
 360		slop = ramdisk_image & ~PAGE_MASK;
 361		clen = ramdisk_size;
 362		if (clen > MAX_MAP_CHUNK-slop)
 363			clen = MAX_MAP_CHUNK-slop;
 364		mapaddr = ramdisk_image & PAGE_MASK;
 365		p = early_memremap(mapaddr, clen+slop);
 366		memcpy(q, p+slop, clen);
 367		early_iounmap(p, clen+slop);
 368		q += clen;
 369		ramdisk_image += clen;
 370		ramdisk_size  -= clen;
 371	}
 372	/* high pages is not converted by early_res_to_bootmem */
 373	ramdisk_image = boot_params.hdr.ramdisk_image;
 374	ramdisk_size  = boot_params.hdr.ramdisk_size;
 375	printk(KERN_INFO "Move RAMDISK from %016llx - %016llx to"
 376		" %08llx - %08llx\n",
 377		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 378		ramdisk_here, ramdisk_here + ramdisk_size - 1);
 379}
 380
 381static void __init reserve_initrd(void)
 382{
 383	/* Assume only end is not page aligned */
 384	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 385	u64 ramdisk_size  = boot_params.hdr.ramdisk_size;
 386	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 387	u64 end_of_lowmem = max_low_pfn_mapped << PAGE_SHIFT;
 388
 389	if (!boot_params.hdr.type_of_loader ||
 390	    !ramdisk_image || !ramdisk_size)
 391		return;		/* No initrd provided by bootloader */
 392
 393	initrd_start = 0;
 394
 395	if (ramdisk_size >= (end_of_lowmem>>1)) {
 396		memblock_x86_free_range(ramdisk_image, ramdisk_end);
 397		printk(KERN_ERR "initrd too large to handle, "
 398		       "disabling initrd\n");
 399		return;
 400	}
 401
 402	printk(KERN_INFO "RAMDISK: %08llx - %08llx\n", ramdisk_image,
 403			ramdisk_end);
 404
 405
 406	if (ramdisk_end <= end_of_lowmem) {
 407		/* All in lowmem, easy case */
 408		/*
 409		 * don't need to reserve again, already reserved early
 410		 * in i386_start_kernel
 411		 */
 412		initrd_start = ramdisk_image + PAGE_OFFSET;
 413		initrd_end = initrd_start + ramdisk_size;
 414		return;
 415	}
 416
 417	relocate_initrd();
 418
 419	memblock_x86_free_range(ramdisk_image, ramdisk_end);
 420}
 
 421#else
 
 
 
 422static void __init reserve_initrd(void)
 423{
 424}
 425#endif /* CONFIG_BLK_DEV_INITRD */
 426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427static void __init parse_setup_data(void)
 428{
 429	struct setup_data *data;
 430	u64 pa_data;
 431
 432	if (boot_params.hdr.version < 0x0209)
 433		return;
 434	pa_data = boot_params.hdr.setup_data;
 435	while (pa_data) {
 436		u32 data_len, map_len;
 437
 438		map_len = max(PAGE_SIZE - (pa_data & ~PAGE_MASK),
 439			      (u64)sizeof(struct setup_data));
 440		data = early_memremap(pa_data, map_len);
 441		data_len = data->len + sizeof(struct setup_data);
 442		if (data_len > map_len) {
 443			early_iounmap(data, map_len);
 444			data = early_memremap(pa_data, data_len);
 445			map_len = data_len;
 446		}
 447
 448		switch (data->type) {
 449		case SETUP_E820_EXT:
 450			parse_e820_ext(data);
 451			break;
 452		case SETUP_DTB:
 453			add_dtb(pa_data);
 454			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455		default:
 456			break;
 457		}
 458		pa_data = data->next;
 459		early_iounmap(data, map_len);
 460	}
 461}
 462
 463static void __init e820_reserve_setup_data(void)
 464{
 
 465	struct setup_data *data;
 466	u64 pa_data;
 467	int found = 0;
 468
 469	if (boot_params.hdr.version < 0x0209)
 470		return;
 471	pa_data = boot_params.hdr.setup_data;
 472	while (pa_data) {
 473		data = early_memremap(pa_data, sizeof(*data));
 474		e820_update_range(pa_data, sizeof(*data)+data->len,
 475			 E820_RAM, E820_RESERVED_KERN);
 476		found = 1;
 477		pa_data = data->next;
 478		early_iounmap(data, sizeof(*data));
 479	}
 480	if (!found)
 481		return;
 482
 483	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 484	memcpy(&e820_saved, &e820, sizeof(struct e820map));
 485	printk(KERN_INFO "extended physical RAM map:\n");
 486	e820_print_map("reserve setup_data");
 487}
 488
 489static void __init memblock_x86_reserve_range_setup_data(void)
 490{
 491	struct setup_data *data;
 492	u64 pa_data;
 493	char buf[32];
 494
 495	if (boot_params.hdr.version < 0x0209)
 496		return;
 497	pa_data = boot_params.hdr.setup_data;
 498	while (pa_data) {
 499		data = early_memremap(pa_data, sizeof(*data));
 500		sprintf(buf, "setup data %x", data->type);
 501		memblock_x86_reserve_range(pa_data, pa_data+sizeof(*data)+data->len, buf);
 502		pa_data = data->next;
 503		early_iounmap(data, sizeof(*data));
 504	}
 505}
 506
 507/*
 508 * --------- Crashkernel reservation ------------------------------
 509 */
 510
 511#ifdef CONFIG_KEXEC
 
 
 512
 513static inline unsigned long long get_total_mem(void)
 514{
 515	unsigned long long total;
 516
 517	total = max_pfn - min_low_pfn;
 518
 519	return total << PAGE_SHIFT;
 520}
 521
 522/*
 523 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 524 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 525 * On 64 bits, kexec-tools currently limits us to 896 MiB; increase this
 526 * limit once kexec-tools are fixed.
 527 */
 528#ifdef CONFIG_X86_32
 529# define CRASH_KERNEL_ADDR_MAX	(512 << 20)
 530#else
 531# define CRASH_KERNEL_ADDR_MAX	(896 << 20)
 532#endif
 533
 534static void __init reserve_crashkernel(void)
 535{
 536	unsigned long long total_mem;
 537	unsigned long long crash_size, crash_base;
 
 538	int ret;
 539
 540	total_mem = get_total_mem();
 
 541
 542	ret = parse_crashkernel(boot_command_line, total_mem,
 543			&crash_size, &crash_base);
 544	if (ret != 0 || crash_size <= 0)
 
 545		return;
 546
 547	/* 0 means: find the address automatically */
 548	if (crash_base <= 0) {
 549		const unsigned long long alignment = 16<<20;	/* 16M */
 550
 551		/*
 552		 *  kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
 553		 */
 554		crash_base = memblock_find_in_range(alignment,
 555			       CRASH_KERNEL_ADDR_MAX, crash_size, alignment);
 556
 557		if (crash_base == MEMBLOCK_ERROR) {
 558			pr_info("crashkernel reservation failed - No suitable area found.\n");
 559			return;
 560		}
 561	} else {
 562		unsigned long long start;
 563
 564		start = memblock_find_in_range(crash_base,
 565				 crash_base + crash_size, crash_size, 1<<20);
 566		if (start != crash_base) {
 567			pr_info("crashkernel reservation failed - memory is in use.\n");
 568			return;
 569		}
 570	}
 571	memblock_x86_reserve_range(crash_base, crash_base + crash_size, "CRASH KERNEL");
 572
 573	printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
 574			"for crashkernel (System RAM: %ldMB)\n",
 575			(unsigned long)(crash_size >> 20),
 576			(unsigned long)(crash_base >> 20),
 577			(unsigned long)(total_mem >> 20));
 578
 579	crashk_res.start = crash_base;
 580	crashk_res.end   = crash_base + crash_size - 1;
 581	insert_resource(&iomem_resource, &crashk_res);
 582}
 583#else
 584static void __init reserve_crashkernel(void)
 585{
 586}
 587#endif
 588
 589static struct resource standard_io_resources[] = {
 590	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 591		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 592	{ .name = "pic1", .start = 0x20, .end = 0x21,
 593		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 594	{ .name = "timer0", .start = 0x40, .end = 0x43,
 595		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 596	{ .name = "timer1", .start = 0x50, .end = 0x53,
 597		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 598	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 599		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 600	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 601		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 602	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 603		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 604	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 605		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 606	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 607		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 608	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 609		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 610};
 611
 612void __init reserve_standard_io_resources(void)
 613{
 614	int i;
 615
 616	/* request I/O space for devices used on all i[345]86 PCs */
 617	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 618		request_resource(&ioport_resource, &standard_io_resources[i]);
 619
 620}
 621
 622static __init void reserve_ibft_region(void)
 623{
 624	unsigned long addr, size = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625
 626	addr = find_ibft_region(&size);
 
 627
 628	if (size)
 629		memblock_x86_reserve_range(addr, addr + size, "* ibft");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630}
 631
 632static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 633
 634static void __init trim_bios_range(void)
 635{
 636	/*
 637	 * A special case is the first 4Kb of memory;
 638	 * This is a BIOS owned area, not kernel ram, but generally
 639	 * not listed as such in the E820 table.
 640	 *
 641	 * This typically reserves additional memory (64KiB by default)
 642	 * since some BIOSes are known to corrupt low memory.  See the
 643	 * Kconfig help text for X86_RESERVE_LOW.
 644	 */
 645	e820_update_range(0, ALIGN(reserve_low, PAGE_SIZE),
 646			  E820_RAM, E820_RESERVED);
 647
 648	/*
 649	 * special case: Some BIOSen report the PC BIOS
 650	 * area (640->1Mb) as ram even though it is not.
 651	 * take them out.
 652	 */
 653	e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
 654	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 655}
 656
 657static int __init parse_reservelow(char *p)
 658{
 659	unsigned long long size;
 
 
 
 
 
 
 
 660
 661	if (!p)
 662		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 663
 664	size = memparse(p, &p);
 665
 666	if (size < 4096)
 667		size = 4096;
 668
 669	if (size > 640*1024)
 670		size = 640*1024;
 
 671
 672	reserve_low = size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673
 674	return 0;
 675}
 676
 677early_param("reservelow", parse_reservelow);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 678
 679/*
 680 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 681 * passed the efi memmap, systab, etc., so we should use these data structures
 682 * for initialization.  Note, the efi init code path is determined by the
 683 * global efi_enabled. This allows the same kernel image to be used on existing
 684 * systems (with a traditional BIOS) as well as on EFI systems.
 685 */
 686/*
 687 * setup_arch - architecture-specific boot-time initializations
 688 *
 689 * Note: On x86_64, fixmaps are ready for use even before this is called.
 690 */
 691
 692void __init setup_arch(char **cmdline_p)
 693{
 694#ifdef CONFIG_X86_32
 695	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 696	visws_early_detect();
 697
 698	/*
 699	 * copy kernel address range established so far and switch
 700	 * to the proper swapper page table
 701	 */
 702	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 703			initial_page_table + KERNEL_PGD_BOUNDARY,
 704			KERNEL_PGD_PTRS);
 705
 706	load_cr3(swapper_pg_dir);
 
 
 
 
 
 
 
 
 
 707	__flush_tlb_all();
 708#else
 709	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 
 710#endif
 711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712	/*
 713	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 714	 * reserve_top(), so do this before touching the ioremap area.
 715	 */
 716	olpc_ofw_detect();
 717
 718	early_trap_init();
 719	early_cpu_init();
 
 
 720	early_ioremap_init();
 721
 722	setup_olpc_ofw_pgd();
 723
 724	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 725	screen_info = boot_params.screen_info;
 726	edid_info = boot_params.edid_info;
 727#ifdef CONFIG_X86_32
 728	apm_info.bios = boot_params.apm_bios_info;
 729	ist_info = boot_params.ist_info;
 730	if (boot_params.sys_desc_table.length != 0) {
 731		set_mca_bus(boot_params.sys_desc_table.table[3] & 0x2);
 732		machine_id = boot_params.sys_desc_table.table[0];
 733		machine_submodel_id = boot_params.sys_desc_table.table[1];
 734		BIOS_revision = boot_params.sys_desc_table.table[2];
 735	}
 736#endif
 737	saved_video_mode = boot_params.hdr.vid_mode;
 738	bootloader_type = boot_params.hdr.type_of_loader;
 739	if ((bootloader_type >> 4) == 0xe) {
 740		bootloader_type &= 0xf;
 741		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 742	}
 743	bootloader_version  = bootloader_type & 0xf;
 744	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 745
 746#ifdef CONFIG_BLK_DEV_RAM
 747	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 748	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 749	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 750#endif
 751#ifdef CONFIG_EFI
 752	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 753#ifdef CONFIG_X86_32
 754		     "EL32",
 755#else
 756		     "EL64",
 757#endif
 758	 4)) {
 759		efi_enabled = 1;
 760		efi_memblock_x86_reserve_range();
 761	}
 762#endif
 763
 764	x86_init.oem.arch_setup();
 765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 767	setup_memory_map();
 768	parse_setup_data();
 769	/* update the e820_saved too */
 770	e820_reserve_setup_data();
 771
 772	copy_edd();
 773
 774	if (!boot_params.hdr.root_flags)
 775		root_mountflags &= ~MS_RDONLY;
 776	init_mm.start_code = (unsigned long) _text;
 777	init_mm.end_code = (unsigned long) _etext;
 778	init_mm.end_data = (unsigned long) _edata;
 779	init_mm.brk = _brk_end;
 780
 781	code_resource.start = virt_to_phys(_text);
 782	code_resource.end = virt_to_phys(_etext)-1;
 783	data_resource.start = virt_to_phys(_etext);
 784	data_resource.end = virt_to_phys(_edata)-1;
 785	bss_resource.start = virt_to_phys(&__bss_start);
 786	bss_resource.end = virt_to_phys(&__bss_stop)-1;
 787
 788#ifdef CONFIG_CMDLINE_BOOL
 789#ifdef CONFIG_CMDLINE_OVERRIDE
 790	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 791#else
 792	if (builtin_cmdline[0]) {
 793		/* append boot loader cmdline to builtin */
 794		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 795		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 796		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 797	}
 798#endif
 799#endif
 800
 801	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 802	*cmdline_p = command_line;
 803
 804	/*
 805	 * x86_configure_nx() is called before parse_early_param() to detect
 806	 * whether hardware doesn't support NX (so that the early EHCI debug
 807	 * console setup can safely call set_fixmap()). It may then be called
 808	 * again from within noexec_setup() during parsing early parameters
 809	 * to honor the respective command line option.
 810	 */
 811	x86_configure_nx();
 812
 813	parse_early_param();
 814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815	x86_report_nx();
 816
 817	/* after early param, so could get panic from serial */
 818	memblock_x86_reserve_range_setup_data();
 819
 820	if (acpi_mps_check()) {
 821#ifdef CONFIG_X86_LOCAL_APIC
 822		disable_apic = 1;
 823#endif
 824		setup_clear_cpu_cap(X86_FEATURE_APIC);
 825	}
 826
 827#ifdef CONFIG_PCI
 828	if (pci_early_dump_regs)
 829		early_dump_pci_devices();
 830#endif
 831
 832	finish_e820_parsing();
 833
 834	if (efi_enabled)
 835		efi_init();
 836
 837	dmi_scan_machine();
 
 838
 839	/*
 840	 * VMware detection requires dmi to be available, so this
 841	 * needs to be done after dmi_scan_machine, for the BP.
 
 
 842	 */
 843	init_hypervisor_platform();
 844
 
 845	x86_init.resources.probe_roms();
 846
 847	/* after parse_early_param, so could debug it */
 848	insert_resource(&iomem_resource, &code_resource);
 
 849	insert_resource(&iomem_resource, &data_resource);
 850	insert_resource(&iomem_resource, &bss_resource);
 851
 
 852	trim_bios_range();
 853#ifdef CONFIG_X86_32
 854	if (ppro_with_ram_bug()) {
 855		e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
 856				  E820_RESERVED);
 857		sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 858		printk(KERN_INFO "fixed physical RAM map:\n");
 859		e820_print_map("bad_ppro");
 860	}
 861#else
 862	early_gart_iommu_check();
 863#endif
 864
 865	/*
 866	 * partially used pages are not usable - thus
 867	 * we are rounding upwards:
 868	 */
 869	max_pfn = e820_end_of_ram_pfn();
 870
 871	/* update e820 for memory not covered by WB MTRRs */
 872	mtrr_bp_init();
 873	if (mtrr_trim_uncached_memory(max_pfn))
 874		max_pfn = e820_end_of_ram_pfn();
 
 
 
 
 
 
 
 
 875
 876#ifdef CONFIG_X86_32
 877	/* max_low_pfn get updated here */
 878	find_low_pfn_range();
 879#else
 880	num_physpages = max_pfn;
 881
 882	check_x2apic();
 883
 884	/* How many end-of-memory variables you have, grandma! */
 885	/* need this before calling reserve_initrd */
 886	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
 887		max_low_pfn = e820_end_of_low_ram_pfn();
 888	else
 889		max_low_pfn = max_pfn;
 890
 891	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 892#endif
 893
 894	/*
 895	 * Find and reserve possible boot-time SMP configuration:
 896	 */
 897	find_smp_config();
 898
 899	reserve_ibft_region();
 900
 901	/*
 902	 * Need to conclude brk, before memblock_x86_fill()
 903	 *  it could use memblock_find_in_range, could overlap with
 904	 *  brk area.
 905	 */
 906	reserve_brk();
 907
 908	cleanup_highmap();
 909
 910	memblock.current_limit = get_max_mapped();
 911	memblock_x86_fill();
 912
 913	/*
 914	 * The EFI specification says that boot service code won't be called
 915	 * after ExitBootServices(). This is, in fact, a lie.
 916	 */
 917	if (efi_enabled)
 918		efi_reserve_boot_services();
 
 
 
 
 
 
 
 
 
 
 919
 920	/* preallocate 4k for mptable mpc */
 921	early_reserve_e820_mpc_new();
 922
 923#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
 924	setup_bios_corruption_check();
 925#endif
 926
 927	printk(KERN_DEBUG "initial memory mapped : 0 - %08lx\n",
 928			max_pfn_mapped<<PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929
 930	setup_trampolines();
 
 
 
 
 
 931
 932	init_gbpages();
 
 
 
 
 
 
 
 
 
 933
 934	/* max_pfn_mapped is updated here */
 935	max_low_pfn_mapped = init_memory_mapping(0, max_low_pfn<<PAGE_SHIFT);
 936	max_pfn_mapped = max_low_pfn_mapped;
 937
 938#ifdef CONFIG_X86_64
 939	if (max_pfn > max_low_pfn) {
 940		max_pfn_mapped = init_memory_mapping(1UL<<32,
 941						     max_pfn<<PAGE_SHIFT);
 942		/* can we preseve max_low_pfn ?*/
 943		max_low_pfn = max_pfn;
 944	}
 945#endif
 946	memblock.current_limit = get_max_mapped();
 947
 948	/*
 949	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
 950	 */
 951
 952#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
 953	if (init_ohci1394_dma_early)
 954		init_ohci1394_dma_on_all_controllers();
 955#endif
 956	/* Allocate bigger log buffer */
 957	setup_log_buf(1);
 958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959	reserve_initrd();
 960
 961	reserve_crashkernel();
 
 
 962
 963	vsmp_init();
 964
 965	io_delay_init();
 966
 967	/*
 968	 * Parse the ACPI tables for possible boot-time SMP configuration.
 969	 */
 970	acpi_boot_table_init();
 971
 
 972	early_acpi_boot_init();
 
 
 
 973
 974	initmem_init();
 975	memblock_find_dma_reserve();
 
 
 
 976
 977#ifdef CONFIG_KVM_CLOCK
 978	kvmclock_init();
 979#endif
 
 
 
 
 
 980
 981	x86_init.paging.pagetable_setup_start(swapper_pg_dir);
 982	paging_init();
 983	x86_init.paging.pagetable_setup_done(swapper_pg_dir);
 984
 985	if (boot_cpu_data.cpuid_level >= 0) {
 986		/* A CPU has %cr4 if and only if it has CPUID */
 987		mmu_cr4_features = read_cr4();
 988	}
 989
 990#ifdef CONFIG_X86_32
 991	/* sync back kernel address range */
 992	clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
 993			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 994			KERNEL_PGD_PTRS);
 995#endif
 
 996
 997	tboot_probe();
 998
 999#ifdef CONFIG_X86_64
1000	map_vsyscall();
1001#endif
1002
1003	generic_apic_probe();
1004
1005	early_quirks();
1006
 
 
1007	/*
1008	 * Read APIC and some other early information from ACPI tables.
 
1009	 */
1010	acpi_boot_init();
1011	sfi_init();
1012	x86_dtb_init();
1013
1014	/*
1015	 * get boot-time SMP configuration:
1016	 */
1017	if (smp_found_config)
1018		get_smp_config();
1019
1020	prefill_possible_map();
1021
1022	init_cpu_to_node();
 
1023
1024	init_apic_mappings();
1025	ioapic_and_gsi_init();
1026
1027	kvm_guest_init();
1028
1029	e820_reserve_resources();
1030	e820_mark_nosave_regions(max_low_pfn);
1031
1032	x86_init.resources.reserve_resources();
1033
1034	e820_setup_gap();
1035
1036#ifdef CONFIG_VT
1037#if defined(CONFIG_VGA_CONSOLE)
1038	if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1039		conswitchp = &vga_con;
1040#elif defined(CONFIG_DUMMY_CONSOLE)
1041	conswitchp = &dummy_con;
1042#endif
1043#endif
1044	x86_init.oem.banner();
1045
1046	x86_init.timers.wallclock_init();
1047
 
 
 
 
 
 
 
 
1048	mcheck_init();
1049
1050	arch_init_ideal_nops();
 
 
 
 
 
 
 
1051}
1052
1053#ifdef CONFIG_X86_32
1054
1055static struct resource video_ram_resource = {
1056	.name	= "Video RAM area",
1057	.start	= 0xa0000,
1058	.end	= 0xbffff,
1059	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1060};
1061
1062void __init i386_reserve_resources(void)
1063{
1064	request_resource(&iomem_resource, &video_ram_resource);
1065	reserve_standard_io_resources();
1066}
1067
1068#endif /* CONFIG_X86_32 */