Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8#include <linux/acpi.h>
9#include <linux/console.h>
10#include <linux/cpu.h>
11#include <linux/crash_dump.h>
12#include <linux/dma-map-ops.h>
13#include <linux/efi.h>
14#include <linux/ima.h>
15#include <linux/init_ohci1394_dma.h>
16#include <linux/initrd.h>
17#include <linux/iscsi_ibft.h>
18#include <linux/memblock.h>
19#include <linux/panic_notifier.h>
20#include <linux/pci.h>
21#include <linux/root_dev.h>
22#include <linux/hugetlb.h>
23#include <linux/tboot.h>
24#include <linux/usb/xhci-dbgp.h>
25#include <linux/static_call.h>
26#include <linux/swiotlb.h>
27#include <linux/random.h>
28
29#include <uapi/linux/mount.h>
30
31#include <xen/xen.h>
32
33#include <asm/apic.h>
34#include <asm/efi.h>
35#include <asm/numa.h>
36#include <asm/bios_ebda.h>
37#include <asm/bugs.h>
38#include <asm/cacheinfo.h>
39#include <asm/coco.h>
40#include <asm/cpu.h>
41#include <asm/efi.h>
42#include <asm/gart.h>
43#include <asm/hypervisor.h>
44#include <asm/io_apic.h>
45#include <asm/kasan.h>
46#include <asm/kaslr.h>
47#include <asm/mce.h>
48#include <asm/memtype.h>
49#include <asm/mtrr.h>
50#include <asm/realmode.h>
51#include <asm/olpc_ofw.h>
52#include <asm/pci-direct.h>
53#include <asm/prom.h>
54#include <asm/proto.h>
55#include <asm/thermal.h>
56#include <asm/unwind.h>
57#include <asm/vsyscall.h>
58#include <linux/vmalloc.h>
59
60/*
61 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
62 * max_pfn_mapped: highest directly mapped pfn > 4 GB
63 *
64 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
65 * represented by pfn_mapped[].
66 */
67unsigned long max_low_pfn_mapped;
68unsigned long max_pfn_mapped;
69
70#ifdef CONFIG_DMI
71RESERVE_BRK(dmi_alloc, 65536);
72#endif
73
74
75unsigned long _brk_start = (unsigned long)__brk_base;
76unsigned long _brk_end = (unsigned long)__brk_base;
77
78struct boot_params boot_params;
79
80/*
81 * These are the four main kernel memory regions, we put them into
82 * the resource tree so that kdump tools and other debugging tools
83 * recover it:
84 */
85
86static struct resource rodata_resource = {
87 .name = "Kernel rodata",
88 .start = 0,
89 .end = 0,
90 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
91};
92
93static struct resource data_resource = {
94 .name = "Kernel data",
95 .start = 0,
96 .end = 0,
97 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
98};
99
100static struct resource code_resource = {
101 .name = "Kernel code",
102 .start = 0,
103 .end = 0,
104 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
105};
106
107static struct resource bss_resource = {
108 .name = "Kernel bss",
109 .start = 0,
110 .end = 0,
111 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
112};
113
114
115#ifdef CONFIG_X86_32
116/* CPU data as detected by the assembly code in head_32.S */
117struct cpuinfo_x86 new_cpu_data;
118
119struct apm_info apm_info;
120EXPORT_SYMBOL(apm_info);
121
122#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
123 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
124struct ist_info ist_info;
125EXPORT_SYMBOL(ist_info);
126#else
127struct ist_info ist_info;
128#endif
129
130#endif
131
132struct cpuinfo_x86 boot_cpu_data __read_mostly;
133EXPORT_SYMBOL(boot_cpu_data);
134
135#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
136__visible unsigned long mmu_cr4_features __ro_after_init;
137#else
138__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
139#endif
140
141#ifdef CONFIG_IMA
142static phys_addr_t ima_kexec_buffer_phys;
143static size_t ima_kexec_buffer_size;
144#endif
145
146/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
147int bootloader_type, bootloader_version;
148
149/*
150 * Setup options
151 */
152struct screen_info screen_info;
153EXPORT_SYMBOL(screen_info);
154struct edid_info edid_info;
155EXPORT_SYMBOL_GPL(edid_info);
156
157extern int root_mountflags;
158
159unsigned long saved_video_mode;
160
161#define RAMDISK_IMAGE_START_MASK 0x07FF
162#define RAMDISK_PROMPT_FLAG 0x8000
163#define RAMDISK_LOAD_FLAG 0x4000
164
165static char __initdata command_line[COMMAND_LINE_SIZE];
166#ifdef CONFIG_CMDLINE_BOOL
167char builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
168bool builtin_cmdline_added __ro_after_init;
169#endif
170
171#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
172struct edd edd;
173#ifdef CONFIG_EDD_MODULE
174EXPORT_SYMBOL(edd);
175#endif
176/**
177 * copy_edd() - Copy the BIOS EDD information
178 * from boot_params into a safe place.
179 *
180 */
181static inline void __init copy_edd(void)
182{
183 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
184 sizeof(edd.mbr_signature));
185 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
186 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
187 edd.edd_info_nr = boot_params.eddbuf_entries;
188}
189#else
190static inline void __init copy_edd(void)
191{
192}
193#endif
194
195void * __init extend_brk(size_t size, size_t align)
196{
197 size_t mask = align - 1;
198 void *ret;
199
200 BUG_ON(_brk_start == 0);
201 BUG_ON(align & mask);
202
203 _brk_end = (_brk_end + mask) & ~mask;
204 BUG_ON((char *)(_brk_end + size) > __brk_limit);
205
206 ret = (void *)_brk_end;
207 _brk_end += size;
208
209 memset(ret, 0, size);
210
211 return ret;
212}
213
214#ifdef CONFIG_X86_32
215static void __init cleanup_highmap(void)
216{
217}
218#endif
219
220static void __init reserve_brk(void)
221{
222 if (_brk_end > _brk_start)
223 memblock_reserve(__pa_symbol(_brk_start),
224 _brk_end - _brk_start);
225
226 /* Mark brk area as locked down and no longer taking any
227 new allocations */
228 _brk_start = 0;
229}
230
231#ifdef CONFIG_BLK_DEV_INITRD
232
233static u64 __init get_ramdisk_image(void)
234{
235 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
236
237 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
238
239 if (ramdisk_image == 0)
240 ramdisk_image = phys_initrd_start;
241
242 return ramdisk_image;
243}
244static u64 __init get_ramdisk_size(void)
245{
246 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
247
248 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
249
250 if (ramdisk_size == 0)
251 ramdisk_size = phys_initrd_size;
252
253 return ramdisk_size;
254}
255
256static void __init relocate_initrd(void)
257{
258 /* Assume only end is not page aligned */
259 u64 ramdisk_image = get_ramdisk_image();
260 u64 ramdisk_size = get_ramdisk_size();
261 u64 area_size = PAGE_ALIGN(ramdisk_size);
262
263 /* We need to move the initrd down into directly mapped mem */
264 u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
265 PFN_PHYS(max_pfn_mapped));
266 if (!relocated_ramdisk)
267 panic("Cannot find place for new RAMDISK of size %lld\n",
268 ramdisk_size);
269
270 initrd_start = relocated_ramdisk + PAGE_OFFSET;
271 initrd_end = initrd_start + ramdisk_size;
272 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
273 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
274
275 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
276
277 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
278 " [mem %#010llx-%#010llx]\n",
279 ramdisk_image, ramdisk_image + ramdisk_size - 1,
280 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
281}
282
283static void __init early_reserve_initrd(void)
284{
285 /* Assume only end is not page aligned */
286 u64 ramdisk_image = get_ramdisk_image();
287 u64 ramdisk_size = get_ramdisk_size();
288 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
289
290 if (!boot_params.hdr.type_of_loader ||
291 !ramdisk_image || !ramdisk_size)
292 return; /* No initrd provided by bootloader */
293
294 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
295}
296
297static void __init reserve_initrd(void)
298{
299 /* Assume only end is not page aligned */
300 u64 ramdisk_image = get_ramdisk_image();
301 u64 ramdisk_size = get_ramdisk_size();
302 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
303
304 if (!boot_params.hdr.type_of_loader ||
305 !ramdisk_image || !ramdisk_size)
306 return; /* No initrd provided by bootloader */
307
308 initrd_start = 0;
309
310 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
311 ramdisk_end - 1);
312
313 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
314 PFN_DOWN(ramdisk_end))) {
315 /* All are mapped, easy case */
316 initrd_start = ramdisk_image + PAGE_OFFSET;
317 initrd_end = initrd_start + ramdisk_size;
318 return;
319 }
320
321 relocate_initrd();
322
323 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
324}
325
326#else
327static void __init early_reserve_initrd(void)
328{
329}
330static void __init reserve_initrd(void)
331{
332}
333#endif /* CONFIG_BLK_DEV_INITRD */
334
335static void __init add_early_ima_buffer(u64 phys_addr)
336{
337#ifdef CONFIG_IMA
338 struct ima_setup_data *data;
339
340 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
341 if (!data) {
342 pr_warn("setup: failed to memremap ima_setup_data entry\n");
343 return;
344 }
345
346 if (data->size) {
347 memblock_reserve(data->addr, data->size);
348 ima_kexec_buffer_phys = data->addr;
349 ima_kexec_buffer_size = data->size;
350 }
351
352 early_memunmap(data, sizeof(*data));
353#else
354 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
355#endif
356}
357
358#if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
359int __init ima_free_kexec_buffer(void)
360{
361 if (!ima_kexec_buffer_size)
362 return -ENOENT;
363
364 memblock_free_late(ima_kexec_buffer_phys,
365 ima_kexec_buffer_size);
366
367 ima_kexec_buffer_phys = 0;
368 ima_kexec_buffer_size = 0;
369
370 return 0;
371}
372
373int __init ima_get_kexec_buffer(void **addr, size_t *size)
374{
375 if (!ima_kexec_buffer_size)
376 return -ENOENT;
377
378 *addr = __va(ima_kexec_buffer_phys);
379 *size = ima_kexec_buffer_size;
380
381 return 0;
382}
383#endif
384
385static void __init parse_setup_data(void)
386{
387 struct setup_data *data;
388 u64 pa_data, pa_next;
389
390 pa_data = boot_params.hdr.setup_data;
391 while (pa_data) {
392 u32 data_len, data_type;
393
394 data = early_memremap(pa_data, sizeof(*data));
395 data_len = data->len + sizeof(struct setup_data);
396 data_type = data->type;
397 pa_next = data->next;
398 early_memunmap(data, sizeof(*data));
399
400 switch (data_type) {
401 case SETUP_E820_EXT:
402 e820__memory_setup_extended(pa_data, data_len);
403 break;
404 case SETUP_DTB:
405 add_dtb(pa_data);
406 break;
407 case SETUP_EFI:
408 parse_efi_setup(pa_data, data_len);
409 break;
410 case SETUP_IMA:
411 add_early_ima_buffer(pa_data);
412 break;
413 case SETUP_RNG_SEED:
414 data = early_memremap(pa_data, data_len);
415 add_bootloader_randomness(data->data, data->len);
416 /* Zero seed for forward secrecy. */
417 memzero_explicit(data->data, data->len);
418 /* Zero length in case we find ourselves back here by accident. */
419 memzero_explicit(&data->len, sizeof(data->len));
420 early_memunmap(data, data_len);
421 break;
422 default:
423 break;
424 }
425 pa_data = pa_next;
426 }
427}
428
429static void __init memblock_x86_reserve_range_setup_data(void)
430{
431 struct setup_indirect *indirect;
432 struct setup_data *data;
433 u64 pa_data, pa_next;
434 u32 len;
435
436 pa_data = boot_params.hdr.setup_data;
437 while (pa_data) {
438 data = early_memremap(pa_data, sizeof(*data));
439 if (!data) {
440 pr_warn("setup: failed to memremap setup_data entry\n");
441 return;
442 }
443
444 len = sizeof(*data);
445 pa_next = data->next;
446
447 memblock_reserve(pa_data, sizeof(*data) + data->len);
448
449 if (data->type == SETUP_INDIRECT) {
450 len += data->len;
451 early_memunmap(data, sizeof(*data));
452 data = early_memremap(pa_data, len);
453 if (!data) {
454 pr_warn("setup: failed to memremap indirect setup_data\n");
455 return;
456 }
457
458 indirect = (struct setup_indirect *)data->data;
459
460 if (indirect->type != SETUP_INDIRECT)
461 memblock_reserve(indirect->addr, indirect->len);
462 }
463
464 pa_data = pa_next;
465 early_memunmap(data, len);
466 }
467}
468
469static void __init arch_reserve_crashkernel(void)
470{
471 unsigned long long crash_base, crash_size, low_size = 0;
472 char *cmdline = boot_command_line;
473 bool high = false;
474 int ret;
475
476 if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
477 return;
478
479 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
480 &crash_size, &crash_base,
481 &low_size, &high);
482 if (ret)
483 return;
484
485 if (xen_pv_domain()) {
486 pr_info("Ignoring crashkernel for a Xen PV domain\n");
487 return;
488 }
489
490 reserve_crashkernel_generic(cmdline, crash_size, crash_base,
491 low_size, high);
492}
493
494static struct resource standard_io_resources[] = {
495 { .name = "dma1", .start = 0x00, .end = 0x1f,
496 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
497 { .name = "pic1", .start = 0x20, .end = 0x21,
498 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
499 { .name = "timer0", .start = 0x40, .end = 0x43,
500 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
501 { .name = "timer1", .start = 0x50, .end = 0x53,
502 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
503 { .name = "keyboard", .start = 0x60, .end = 0x60,
504 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
505 { .name = "keyboard", .start = 0x64, .end = 0x64,
506 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
507 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
508 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
509 { .name = "pic2", .start = 0xa0, .end = 0xa1,
510 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
511 { .name = "dma2", .start = 0xc0, .end = 0xdf,
512 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
513 { .name = "fpu", .start = 0xf0, .end = 0xff,
514 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
515};
516
517void __init reserve_standard_io_resources(void)
518{
519 int i;
520
521 /* request I/O space for devices used on all i[345]86 PCs */
522 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
523 request_resource(&ioport_resource, &standard_io_resources[i]);
524
525}
526
527static bool __init snb_gfx_workaround_needed(void)
528{
529#ifdef CONFIG_PCI
530 int i;
531 u16 vendor, devid;
532 static const __initconst u16 snb_ids[] = {
533 0x0102,
534 0x0112,
535 0x0122,
536 0x0106,
537 0x0116,
538 0x0126,
539 0x010a,
540 };
541
542 /* Assume no if something weird is going on with PCI */
543 if (!early_pci_allowed())
544 return false;
545
546 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
547 if (vendor != 0x8086)
548 return false;
549
550 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
551 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
552 if (devid == snb_ids[i])
553 return true;
554#endif
555
556 return false;
557}
558
559/*
560 * Sandy Bridge graphics has trouble with certain ranges, exclude
561 * them from allocation.
562 */
563static void __init trim_snb_memory(void)
564{
565 static const __initconst unsigned long bad_pages[] = {
566 0x20050000,
567 0x20110000,
568 0x20130000,
569 0x20138000,
570 0x40004000,
571 };
572 int i;
573
574 if (!snb_gfx_workaround_needed())
575 return;
576
577 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
578
579 /*
580 * SandyBridge integrated graphics devices have a bug that prevents
581 * them from accessing certain memory ranges, namely anything below
582 * 1M and in the pages listed in bad_pages[] above.
583 *
584 * To avoid these pages being ever accessed by SNB gfx devices reserve
585 * bad_pages that have not already been reserved at boot time.
586 * All memory below the 1 MB mark is anyway reserved later during
587 * setup_arch(), so there is no need to reserve it here.
588 */
589
590 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
591 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
592 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
593 bad_pages[i]);
594 }
595}
596
597static void __init trim_bios_range(void)
598{
599 /*
600 * A special case is the first 4Kb of memory;
601 * This is a BIOS owned area, not kernel ram, but generally
602 * not listed as such in the E820 table.
603 *
604 * This typically reserves additional memory (64KiB by default)
605 * since some BIOSes are known to corrupt low memory. See the
606 * Kconfig help text for X86_RESERVE_LOW.
607 */
608 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
609
610 /*
611 * special case: Some BIOSes report the PC BIOS
612 * area (640Kb -> 1Mb) as RAM even though it is not.
613 * take them out.
614 */
615 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
616
617 e820__update_table(e820_table);
618}
619
620/* called before trim_bios_range() to spare extra sanitize */
621static void __init e820_add_kernel_range(void)
622{
623 u64 start = __pa_symbol(_text);
624 u64 size = __pa_symbol(_end) - start;
625
626 /*
627 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
628 * attempt to fix it by adding the range. We may have a confused BIOS,
629 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
630 * exclude kernel range. If we really are running on top non-RAM,
631 * we will crash later anyways.
632 */
633 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
634 return;
635
636 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
637 e820__range_remove(start, size, E820_TYPE_RAM, 0);
638 e820__range_add(start, size, E820_TYPE_RAM);
639}
640
641static void __init early_reserve_memory(void)
642{
643 /*
644 * Reserve the memory occupied by the kernel between _text and
645 * __end_of_kernel_reserve symbols. Any kernel sections after the
646 * __end_of_kernel_reserve symbol must be explicitly reserved with a
647 * separate memblock_reserve() or they will be discarded.
648 */
649 memblock_reserve(__pa_symbol(_text),
650 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
651
652 /*
653 * The first 4Kb of memory is a BIOS owned area, but generally it is
654 * not listed as such in the E820 table.
655 *
656 * Reserve the first 64K of memory since some BIOSes are known to
657 * corrupt low memory. After the real mode trampoline is allocated the
658 * rest of the memory below 640k is reserved.
659 *
660 * In addition, make sure page 0 is always reserved because on
661 * systems with L1TF its contents can be leaked to user processes.
662 */
663 memblock_reserve(0, SZ_64K);
664
665 early_reserve_initrd();
666
667 memblock_x86_reserve_range_setup_data();
668
669 reserve_bios_regions();
670 trim_snb_memory();
671}
672
673/*
674 * Dump out kernel offset information on panic.
675 */
676static int
677dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
678{
679 if (kaslr_enabled()) {
680 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
681 kaslr_offset(),
682 __START_KERNEL,
683 __START_KERNEL_map,
684 MODULES_VADDR-1);
685 } else {
686 pr_emerg("Kernel Offset: disabled\n");
687 }
688
689 return 0;
690}
691
692void x86_configure_nx(void)
693{
694 if (boot_cpu_has(X86_FEATURE_NX))
695 __supported_pte_mask |= _PAGE_NX;
696 else
697 __supported_pte_mask &= ~_PAGE_NX;
698}
699
700static void __init x86_report_nx(void)
701{
702 if (!boot_cpu_has(X86_FEATURE_NX)) {
703 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
704 "missing in CPU!\n");
705 } else {
706#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
707 printk(KERN_INFO "NX (Execute Disable) protection: active\n");
708#else
709 /* 32bit non-PAE kernel, NX cannot be used */
710 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
711 "cannot be enabled: non-PAE kernel!\n");
712#endif
713 }
714}
715
716/*
717 * Determine if we were loaded by an EFI loader. If so, then we have also been
718 * passed the efi memmap, systab, etc., so we should use these data structures
719 * for initialization. Note, the efi init code path is determined by the
720 * global efi_enabled. This allows the same kernel image to be used on existing
721 * systems (with a traditional BIOS) as well as on EFI systems.
722 */
723/*
724 * setup_arch - architecture-specific boot-time initializations
725 *
726 * Note: On x86_64, fixmaps are ready for use even before this is called.
727 */
728
729void __init setup_arch(char **cmdline_p)
730{
731#ifdef CONFIG_X86_32
732 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
733
734 /*
735 * copy kernel address range established so far and switch
736 * to the proper swapper page table
737 */
738 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
739 initial_page_table + KERNEL_PGD_BOUNDARY,
740 KERNEL_PGD_PTRS);
741
742 load_cr3(swapper_pg_dir);
743 /*
744 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
745 * a cr3 based tlb flush, so the following __flush_tlb_all()
746 * will not flush anything because the CPU quirk which clears
747 * X86_FEATURE_PGE has not been invoked yet. Though due to the
748 * load_cr3() above the TLB has been flushed already. The
749 * quirk is invoked before subsequent calls to __flush_tlb_all()
750 * so proper operation is guaranteed.
751 */
752 __flush_tlb_all();
753#else
754 printk(KERN_INFO "Command line: %s\n", boot_command_line);
755 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
756#endif
757
758#ifdef CONFIG_CMDLINE_BOOL
759#ifdef CONFIG_CMDLINE_OVERRIDE
760 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
761#else
762 if (builtin_cmdline[0]) {
763 /* append boot loader cmdline to builtin */
764 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
765 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
766 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
767 }
768#endif
769 builtin_cmdline_added = true;
770#endif
771
772 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
773 *cmdline_p = command_line;
774
775 /*
776 * If we have OLPC OFW, we might end up relocating the fixmap due to
777 * reserve_top(), so do this before touching the ioremap area.
778 */
779 olpc_ofw_detect();
780
781 idt_setup_early_traps();
782 early_cpu_init();
783 jump_label_init();
784 static_call_init();
785 early_ioremap_init();
786
787 setup_olpc_ofw_pgd();
788
789 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
790 screen_info = boot_params.screen_info;
791 edid_info = boot_params.edid_info;
792#ifdef CONFIG_X86_32
793 apm_info.bios = boot_params.apm_bios_info;
794 ist_info = boot_params.ist_info;
795#endif
796 saved_video_mode = boot_params.hdr.vid_mode;
797 bootloader_type = boot_params.hdr.type_of_loader;
798 if ((bootloader_type >> 4) == 0xe) {
799 bootloader_type &= 0xf;
800 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
801 }
802 bootloader_version = bootloader_type & 0xf;
803 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
804
805#ifdef CONFIG_BLK_DEV_RAM
806 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
807#endif
808#ifdef CONFIG_EFI
809 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
810 EFI32_LOADER_SIGNATURE, 4)) {
811 set_bit(EFI_BOOT, &efi.flags);
812 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
813 EFI64_LOADER_SIGNATURE, 4)) {
814 set_bit(EFI_BOOT, &efi.flags);
815 set_bit(EFI_64BIT, &efi.flags);
816 }
817#endif
818
819 x86_init.oem.arch_setup();
820
821 /*
822 * Do some memory reservations *before* memory is added to memblock, so
823 * memblock allocations won't overwrite it.
824 *
825 * After this point, everything still needed from the boot loader or
826 * firmware or kernel text should be early reserved or marked not RAM in
827 * e820. All other memory is free game.
828 *
829 * This call needs to happen before e820__memory_setup() which calls the
830 * xen_memory_setup() on Xen dom0 which relies on the fact that those
831 * early reservations have happened already.
832 */
833 early_reserve_memory();
834
835 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
836 e820__memory_setup();
837 parse_setup_data();
838
839 copy_edd();
840
841 if (!boot_params.hdr.root_flags)
842 root_mountflags &= ~MS_RDONLY;
843 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
844
845 code_resource.start = __pa_symbol(_text);
846 code_resource.end = __pa_symbol(_etext)-1;
847 rodata_resource.start = __pa_symbol(__start_rodata);
848 rodata_resource.end = __pa_symbol(__end_rodata)-1;
849 data_resource.start = __pa_symbol(_sdata);
850 data_resource.end = __pa_symbol(_edata)-1;
851 bss_resource.start = __pa_symbol(__bss_start);
852 bss_resource.end = __pa_symbol(__bss_stop)-1;
853
854 /*
855 * x86_configure_nx() is called before parse_early_param() to detect
856 * whether hardware doesn't support NX (so that the early EHCI debug
857 * console setup can safely call set_fixmap()).
858 */
859 x86_configure_nx();
860
861 parse_early_param();
862
863 if (efi_enabled(EFI_BOOT))
864 efi_memblock_x86_reserve_range();
865
866#ifdef CONFIG_MEMORY_HOTPLUG
867 /*
868 * Memory used by the kernel cannot be hot-removed because Linux
869 * cannot migrate the kernel pages. When memory hotplug is
870 * enabled, we should prevent memblock from allocating memory
871 * for the kernel.
872 *
873 * ACPI SRAT records all hotpluggable memory ranges. But before
874 * SRAT is parsed, we don't know about it.
875 *
876 * The kernel image is loaded into memory at very early time. We
877 * cannot prevent this anyway. So on NUMA system, we set any
878 * node the kernel resides in as un-hotpluggable.
879 *
880 * Since on modern servers, one node could have double-digit
881 * gigabytes memory, we can assume the memory around the kernel
882 * image is also un-hotpluggable. So before SRAT is parsed, just
883 * allocate memory near the kernel image to try the best to keep
884 * the kernel away from hotpluggable memory.
885 */
886 if (movable_node_is_enabled())
887 memblock_set_bottom_up(true);
888#endif
889
890 x86_report_nx();
891
892 apic_setup_apic_calls();
893
894 if (acpi_mps_check()) {
895#ifdef CONFIG_X86_LOCAL_APIC
896 apic_is_disabled = true;
897#endif
898 setup_clear_cpu_cap(X86_FEATURE_APIC);
899 }
900
901 e820__reserve_setup_data();
902 e820__finish_early_params();
903
904 if (efi_enabled(EFI_BOOT))
905 efi_init();
906
907 reserve_ibft_region();
908 x86_init.resources.dmi_setup();
909
910 /*
911 * VMware detection requires dmi to be available, so this
912 * needs to be done after dmi_setup(), for the boot CPU.
913 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
914 * called before cache_bp_init() for setting up MTRR state.
915 */
916 init_hypervisor_platform();
917
918 tsc_early_init();
919 x86_init.resources.probe_roms();
920
921 /* after parse_early_param, so could debug it */
922 insert_resource(&iomem_resource, &code_resource);
923 insert_resource(&iomem_resource, &rodata_resource);
924 insert_resource(&iomem_resource, &data_resource);
925 insert_resource(&iomem_resource, &bss_resource);
926
927 e820_add_kernel_range();
928 trim_bios_range();
929#ifdef CONFIG_X86_32
930 if (ppro_with_ram_bug()) {
931 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
932 E820_TYPE_RESERVED);
933 e820__update_table(e820_table);
934 printk(KERN_INFO "fixed physical RAM map:\n");
935 e820__print_table("bad_ppro");
936 }
937#else
938 early_gart_iommu_check();
939#endif
940
941 /*
942 * partially used pages are not usable - thus
943 * we are rounding upwards:
944 */
945 max_pfn = e820__end_of_ram_pfn();
946
947 /* update e820 for memory not covered by WB MTRRs */
948 cache_bp_init();
949 if (mtrr_trim_uncached_memory(max_pfn))
950 max_pfn = e820__end_of_ram_pfn();
951
952 max_possible_pfn = max_pfn;
953
954 /*
955 * Define random base addresses for memory sections after max_pfn is
956 * defined and before each memory section base is used.
957 */
958 kernel_randomize_memory();
959
960#ifdef CONFIG_X86_32
961 /* max_low_pfn get updated here */
962 find_low_pfn_range();
963#else
964 check_x2apic();
965
966 /* How many end-of-memory variables you have, grandma! */
967 /* need this before calling reserve_initrd */
968 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
969 max_low_pfn = e820__end_of_low_ram_pfn();
970 else
971 max_low_pfn = max_pfn;
972
973 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
974#endif
975
976 /* Find and reserve MPTABLE area */
977 x86_init.mpparse.find_mptable();
978
979 early_alloc_pgt_buf();
980
981 /*
982 * Need to conclude brk, before e820__memblock_setup()
983 * it could use memblock_find_in_range, could overlap with
984 * brk area.
985 */
986 reserve_brk();
987
988 cleanup_highmap();
989
990 memblock_set_current_limit(ISA_END_ADDRESS);
991 e820__memblock_setup();
992
993 /*
994 * Needs to run after memblock setup because it needs the physical
995 * memory size.
996 */
997 mem_encrypt_setup_arch();
998 cc_random_init();
999
1000 efi_find_mirror();
1001 efi_esrt_init();
1002 efi_mokvar_table_init();
1003
1004 /*
1005 * The EFI specification says that boot service code won't be
1006 * called after ExitBootServices(). This is, in fact, a lie.
1007 */
1008 efi_reserve_boot_services();
1009
1010 /* preallocate 4k for mptable mpc */
1011 e820__memblock_alloc_reserved_mpc_new();
1012
1013#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1014 setup_bios_corruption_check();
1015#endif
1016
1017#ifdef CONFIG_X86_32
1018 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1019 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1020#endif
1021
1022 /*
1023 * Find free memory for the real mode trampoline and place it there. If
1024 * there is not enough free memory under 1M, on EFI-enabled systems
1025 * there will be additional attempt to reclaim the memory for the real
1026 * mode trampoline at efi_free_boot_services().
1027 *
1028 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1029 * are known to corrupt low memory and several hundred kilobytes are not
1030 * worth complex detection what memory gets clobbered. Windows does the
1031 * same thing for very similar reasons.
1032 *
1033 * Moreover, on machines with SandyBridge graphics or in setups that use
1034 * crashkernel the entire 1M is reserved anyway.
1035 *
1036 * Note the host kernel TDX also requires the first 1MB being reserved.
1037 */
1038 x86_platform.realmode_reserve();
1039
1040 init_mem_mapping();
1041
1042 /*
1043 * init_mem_mapping() relies on the early IDT page fault handling.
1044 * Now either enable FRED or install the real page fault handler
1045 * for 64-bit in the IDT.
1046 */
1047 cpu_init_replace_early_idt();
1048
1049 /*
1050 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1051 * with the current CR4 value. This may not be necessary, but
1052 * auditing all the early-boot CR4 manipulation would be needed to
1053 * rule it out.
1054 *
1055 * Mask off features that don't work outside long mode (just
1056 * PCIDE for now).
1057 */
1058 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1059
1060 memblock_set_current_limit(get_max_mapped());
1061
1062 /*
1063 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1064 */
1065
1066#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1067 if (init_ohci1394_dma_early)
1068 init_ohci1394_dma_on_all_controllers();
1069#endif
1070 /* Allocate bigger log buffer */
1071 setup_log_buf(1);
1072
1073 if (efi_enabled(EFI_BOOT)) {
1074 switch (boot_params.secure_boot) {
1075 case efi_secureboot_mode_disabled:
1076 pr_info("Secure boot disabled\n");
1077 break;
1078 case efi_secureboot_mode_enabled:
1079 pr_info("Secure boot enabled\n");
1080 break;
1081 default:
1082 pr_info("Secure boot could not be determined\n");
1083 break;
1084 }
1085 }
1086
1087 reserve_initrd();
1088
1089 acpi_table_upgrade();
1090 /* Look for ACPI tables and reserve memory occupied by them. */
1091 acpi_boot_table_init();
1092
1093 vsmp_init();
1094
1095 io_delay_init();
1096
1097 early_platform_quirks();
1098
1099 /* Some platforms need the APIC registered for NUMA configuration */
1100 early_acpi_boot_init();
1101 x86_init.mpparse.early_parse_smp_cfg();
1102
1103 x86_flattree_get_config();
1104
1105 initmem_init();
1106 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1107
1108 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1109 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1110
1111 /*
1112 * Reserve memory for crash kernel after SRAT is parsed so that it
1113 * won't consume hotpluggable memory.
1114 */
1115 arch_reserve_crashkernel();
1116
1117 if (!early_xdbc_setup_hardware())
1118 early_xdbc_register_console();
1119
1120 x86_init.paging.pagetable_init();
1121
1122 kasan_init();
1123
1124 /*
1125 * Sync back kernel address range.
1126 *
1127 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1128 * this call?
1129 */
1130 sync_initial_page_table();
1131
1132 tboot_probe();
1133
1134 map_vsyscall();
1135
1136 x86_32_probe_apic();
1137
1138 early_quirks();
1139
1140 topology_apply_cmdline_limits_early();
1141
1142 /*
1143 * Parse SMP configuration. Try ACPI first and then the platform
1144 * specific parser.
1145 */
1146 acpi_boot_init();
1147 x86_init.mpparse.parse_smp_cfg();
1148
1149 /* Last opportunity to detect and map the local APIC */
1150 init_apic_mappings();
1151
1152 topology_init_possible_cpus();
1153
1154 init_cpu_to_node();
1155 init_gi_nodes();
1156
1157 io_apic_init_mappings();
1158
1159 x86_init.hyper.guest_late_init();
1160
1161 e820__reserve_resources();
1162 e820__register_nosave_regions(max_pfn);
1163
1164 x86_init.resources.reserve_resources();
1165
1166 e820__setup_pci_gap();
1167
1168#ifdef CONFIG_VT
1169#if defined(CONFIG_VGA_CONSOLE)
1170 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1171 vgacon_register_screen(&screen_info);
1172#endif
1173#endif
1174 x86_init.oem.banner();
1175
1176 x86_init.timers.wallclock_init();
1177
1178 /*
1179 * This needs to run before setup_local_APIC() which soft-disables the
1180 * local APIC temporarily and that masks the thermal LVT interrupt,
1181 * leading to softlockups on machines which have configured SMI
1182 * interrupt delivery.
1183 */
1184 therm_lvt_init();
1185
1186 mcheck_init();
1187
1188 register_refined_jiffies(CLOCK_TICK_RATE);
1189
1190#ifdef CONFIG_EFI
1191 if (efi_enabled(EFI_BOOT))
1192 efi_apply_memmap_quirks();
1193#endif
1194
1195 unwind_init();
1196}
1197
1198#ifdef CONFIG_X86_32
1199
1200static struct resource video_ram_resource = {
1201 .name = "Video RAM area",
1202 .start = 0xa0000,
1203 .end = 0xbffff,
1204 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1205};
1206
1207void __init i386_reserve_resources(void)
1208{
1209 request_resource(&iomem_resource, &video_ram_resource);
1210 reserve_standard_io_resources();
1211}
1212
1213#endif /* CONFIG_X86_32 */
1214
1215static struct notifier_block kernel_offset_notifier = {
1216 .notifier_call = dump_kernel_offset
1217};
1218
1219static int __init register_kernel_offset_dumper(void)
1220{
1221 atomic_notifier_chain_register(&panic_notifier_list,
1222 &kernel_offset_notifier);
1223 return 0;
1224}
1225__initcall(register_kernel_offset_dumper);
1226
1227#ifdef CONFIG_HOTPLUG_CPU
1228bool arch_cpu_is_hotpluggable(int cpu)
1229{
1230 return cpu > 0;
1231}
1232#endif /* CONFIG_HOTPLUG_CPU */
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20/*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24#include <linux/sched.h>
25#include <linux/mm.h>
26#include <linux/mmzone.h>
27#include <linux/screen_info.h>
28#include <linux/ioport.h>
29#include <linux/acpi.h>
30#include <linux/sfi.h>
31#include <linux/apm_bios.h>
32#include <linux/initrd.h>
33#include <linux/bootmem.h>
34#include <linux/memblock.h>
35#include <linux/seq_file.h>
36#include <linux/console.h>
37#include <linux/root_dev.h>
38#include <linux/highmem.h>
39#include <linux/module.h>
40#include <linux/efi.h>
41#include <linux/init.h>
42#include <linux/edd.h>
43#include <linux/iscsi_ibft.h>
44#include <linux/nodemask.h>
45#include <linux/kexec.h>
46#include <linux/dmi.h>
47#include <linux/pfn.h>
48#include <linux/pci.h>
49#include <asm/pci-direct.h>
50#include <linux/init_ohci1394_dma.h>
51#include <linux/kvm_para.h>
52#include <linux/dma-contiguous.h>
53
54#include <linux/errno.h>
55#include <linux/kernel.h>
56#include <linux/stddef.h>
57#include <linux/unistd.h>
58#include <linux/ptrace.h>
59#include <linux/user.h>
60#include <linux/delay.h>
61
62#include <linux/kallsyms.h>
63#include <linux/cpufreq.h>
64#include <linux/dma-mapping.h>
65#include <linux/ctype.h>
66#include <linux/uaccess.h>
67
68#include <linux/percpu.h>
69#include <linux/crash_dump.h>
70#include <linux/tboot.h>
71#include <linux/jiffies.h>
72
73#include <video/edid.h>
74
75#include <asm/mtrr.h>
76#include <asm/apic.h>
77#include <asm/realmode.h>
78#include <asm/e820.h>
79#include <asm/mpspec.h>
80#include <asm/setup.h>
81#include <asm/efi.h>
82#include <asm/timer.h>
83#include <asm/i8259.h>
84#include <asm/sections.h>
85#include <asm/io_apic.h>
86#include <asm/ist.h>
87#include <asm/setup_arch.h>
88#include <asm/bios_ebda.h>
89#include <asm/cacheflush.h>
90#include <asm/processor.h>
91#include <asm/bugs.h>
92
93#include <asm/vsyscall.h>
94#include <asm/cpu.h>
95#include <asm/desc.h>
96#include <asm/dma.h>
97#include <asm/iommu.h>
98#include <asm/gart.h>
99#include <asm/mmu_context.h>
100#include <asm/proto.h>
101
102#include <asm/paravirt.h>
103#include <asm/hypervisor.h>
104#include <asm/olpc_ofw.h>
105
106#include <asm/percpu.h>
107#include <asm/topology.h>
108#include <asm/apicdef.h>
109#include <asm/amd_nb.h>
110#include <asm/mce.h>
111#include <asm/alternative.h>
112#include <asm/prom.h>
113
114/*
115 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
116 * max_pfn_mapped: highest direct mapped pfn over 4GB
117 *
118 * The direct mapping only covers E820_RAM regions, so the ranges and gaps are
119 * represented by pfn_mapped
120 */
121unsigned long max_low_pfn_mapped;
122unsigned long max_pfn_mapped;
123
124#ifdef CONFIG_DMI
125RESERVE_BRK(dmi_alloc, 65536);
126#endif
127
128
129static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
130unsigned long _brk_end = (unsigned long)__brk_base;
131
132#ifdef CONFIG_X86_64
133int default_cpu_present_to_apicid(int mps_cpu)
134{
135 return __default_cpu_present_to_apicid(mps_cpu);
136}
137
138int default_check_phys_apicid_present(int phys_apicid)
139{
140 return __default_check_phys_apicid_present(phys_apicid);
141}
142#endif
143
144struct boot_params boot_params;
145
146/*
147 * Machine setup..
148 */
149static struct resource data_resource = {
150 .name = "Kernel data",
151 .start = 0,
152 .end = 0,
153 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
154};
155
156static struct resource code_resource = {
157 .name = "Kernel code",
158 .start = 0,
159 .end = 0,
160 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
161};
162
163static struct resource bss_resource = {
164 .name = "Kernel bss",
165 .start = 0,
166 .end = 0,
167 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
168};
169
170
171#ifdef CONFIG_X86_32
172/* cpu data as detected by the assembly code in head.S */
173struct cpuinfo_x86 new_cpu_data = {
174 .wp_works_ok = -1,
175};
176/* common cpu data for all cpus */
177struct cpuinfo_x86 boot_cpu_data __read_mostly = {
178 .wp_works_ok = -1,
179};
180EXPORT_SYMBOL(boot_cpu_data);
181
182unsigned int def_to_bigsmp;
183
184/* for MCA, but anyone else can use it if they want */
185unsigned int machine_id;
186unsigned int machine_submodel_id;
187unsigned int BIOS_revision;
188
189struct apm_info apm_info;
190EXPORT_SYMBOL(apm_info);
191
192#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
193 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
194struct ist_info ist_info;
195EXPORT_SYMBOL(ist_info);
196#else
197struct ist_info ist_info;
198#endif
199
200#else
201struct cpuinfo_x86 boot_cpu_data __read_mostly = {
202 .x86_phys_bits = MAX_PHYSMEM_BITS,
203};
204EXPORT_SYMBOL(boot_cpu_data);
205#endif
206
207
208#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
209__visible unsigned long mmu_cr4_features;
210#else
211__visible unsigned long mmu_cr4_features = X86_CR4_PAE;
212#endif
213
214/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
215int bootloader_type, bootloader_version;
216
217/*
218 * Setup options
219 */
220struct screen_info screen_info;
221EXPORT_SYMBOL(screen_info);
222struct edid_info edid_info;
223EXPORT_SYMBOL_GPL(edid_info);
224
225extern int root_mountflags;
226
227unsigned long saved_video_mode;
228
229#define RAMDISK_IMAGE_START_MASK 0x07FF
230#define RAMDISK_PROMPT_FLAG 0x8000
231#define RAMDISK_LOAD_FLAG 0x4000
232
233static char __initdata command_line[COMMAND_LINE_SIZE];
234#ifdef CONFIG_CMDLINE_BOOL
235static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
236#endif
237
238#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
239struct edd edd;
240#ifdef CONFIG_EDD_MODULE
241EXPORT_SYMBOL(edd);
242#endif
243/**
244 * copy_edd() - Copy the BIOS EDD information
245 * from boot_params into a safe place.
246 *
247 */
248static inline void __init copy_edd(void)
249{
250 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
251 sizeof(edd.mbr_signature));
252 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
253 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
254 edd.edd_info_nr = boot_params.eddbuf_entries;
255}
256#else
257static inline void __init copy_edd(void)
258{
259}
260#endif
261
262void * __init extend_brk(size_t size, size_t align)
263{
264 size_t mask = align - 1;
265 void *ret;
266
267 BUG_ON(_brk_start == 0);
268 BUG_ON(align & mask);
269
270 _brk_end = (_brk_end + mask) & ~mask;
271 BUG_ON((char *)(_brk_end + size) > __brk_limit);
272
273 ret = (void *)_brk_end;
274 _brk_end += size;
275
276 memset(ret, 0, size);
277
278 return ret;
279}
280
281#ifdef CONFIG_X86_32
282static void __init cleanup_highmap(void)
283{
284}
285#endif
286
287static void __init reserve_brk(void)
288{
289 if (_brk_end > _brk_start)
290 memblock_reserve(__pa_symbol(_brk_start),
291 _brk_end - _brk_start);
292
293 /* Mark brk area as locked down and no longer taking any
294 new allocations */
295 _brk_start = 0;
296}
297
298u64 relocated_ramdisk;
299
300#ifdef CONFIG_BLK_DEV_INITRD
301
302static u64 __init get_ramdisk_image(void)
303{
304 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
305
306 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
307
308 return ramdisk_image;
309}
310static u64 __init get_ramdisk_size(void)
311{
312 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
313
314 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
315
316 return ramdisk_size;
317}
318
319#define MAX_MAP_CHUNK (NR_FIX_BTMAPS << PAGE_SHIFT)
320static void __init relocate_initrd(void)
321{
322 /* Assume only end is not page aligned */
323 u64 ramdisk_image = get_ramdisk_image();
324 u64 ramdisk_size = get_ramdisk_size();
325 u64 area_size = PAGE_ALIGN(ramdisk_size);
326 unsigned long slop, clen, mapaddr;
327 char *p, *q;
328
329 /* We need to move the initrd down into directly mapped mem */
330 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
331 area_size, PAGE_SIZE);
332
333 if (!relocated_ramdisk)
334 panic("Cannot find place for new RAMDISK of size %lld\n",
335 ramdisk_size);
336
337 /* Note: this includes all the mem currently occupied by
338 the initrd, we rely on that fact to keep the data intact. */
339 memblock_reserve(relocated_ramdisk, area_size);
340 initrd_start = relocated_ramdisk + PAGE_OFFSET;
341 initrd_end = initrd_start + ramdisk_size;
342 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
343 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
344
345 q = (char *)initrd_start;
346
347 /* Copy the initrd */
348 while (ramdisk_size) {
349 slop = ramdisk_image & ~PAGE_MASK;
350 clen = ramdisk_size;
351 if (clen > MAX_MAP_CHUNK-slop)
352 clen = MAX_MAP_CHUNK-slop;
353 mapaddr = ramdisk_image & PAGE_MASK;
354 p = early_memremap(mapaddr, clen+slop);
355 memcpy(q, p+slop, clen);
356 early_iounmap(p, clen+slop);
357 q += clen;
358 ramdisk_image += clen;
359 ramdisk_size -= clen;
360 }
361
362 ramdisk_image = get_ramdisk_image();
363 ramdisk_size = get_ramdisk_size();
364 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
365 " [mem %#010llx-%#010llx]\n",
366 ramdisk_image, ramdisk_image + ramdisk_size - 1,
367 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
368}
369
370static void __init early_reserve_initrd(void)
371{
372 /* Assume only end is not page aligned */
373 u64 ramdisk_image = get_ramdisk_image();
374 u64 ramdisk_size = get_ramdisk_size();
375 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
376
377 if (!boot_params.hdr.type_of_loader ||
378 !ramdisk_image || !ramdisk_size)
379 return; /* No initrd provided by bootloader */
380
381 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
382}
383static void __init reserve_initrd(void)
384{
385 /* Assume only end is not page aligned */
386 u64 ramdisk_image = get_ramdisk_image();
387 u64 ramdisk_size = get_ramdisk_size();
388 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
389 u64 mapped_size;
390
391 if (!boot_params.hdr.type_of_loader ||
392 !ramdisk_image || !ramdisk_size)
393 return; /* No initrd provided by bootloader */
394
395 initrd_start = 0;
396
397 mapped_size = memblock_mem_size(max_pfn_mapped);
398 if (ramdisk_size >= (mapped_size>>1))
399 panic("initrd too large to handle, "
400 "disabling initrd (%lld needed, %lld available)\n",
401 ramdisk_size, mapped_size>>1);
402
403 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
404 ramdisk_end - 1);
405
406 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
407 PFN_DOWN(ramdisk_end))) {
408 /* All are mapped, easy case */
409 initrd_start = ramdisk_image + PAGE_OFFSET;
410 initrd_end = initrd_start + ramdisk_size;
411 return;
412 }
413
414 relocate_initrd();
415
416 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
417}
418#else
419static void __init early_reserve_initrd(void)
420{
421}
422static void __init reserve_initrd(void)
423{
424}
425#endif /* CONFIG_BLK_DEV_INITRD */
426
427static void __init parse_setup_data(void)
428{
429 struct setup_data *data;
430 u64 pa_data, pa_next;
431
432 pa_data = boot_params.hdr.setup_data;
433 while (pa_data) {
434 u32 data_len, map_len, data_type;
435
436 map_len = max(PAGE_SIZE - (pa_data & ~PAGE_MASK),
437 (u64)sizeof(struct setup_data));
438 data = early_memremap(pa_data, map_len);
439 data_len = data->len + sizeof(struct setup_data);
440 data_type = data->type;
441 pa_next = data->next;
442 early_iounmap(data, map_len);
443
444 switch (data_type) {
445 case SETUP_E820_EXT:
446 parse_e820_ext(pa_data, data_len);
447 break;
448 case SETUP_DTB:
449 add_dtb(pa_data);
450 break;
451 case SETUP_EFI:
452 parse_efi_setup(pa_data, data_len);
453 break;
454 default:
455 break;
456 }
457 pa_data = pa_next;
458 }
459}
460
461static void __init e820_reserve_setup_data(void)
462{
463 struct setup_data *data;
464 u64 pa_data;
465 int found = 0;
466
467 pa_data = boot_params.hdr.setup_data;
468 while (pa_data) {
469 data = early_memremap(pa_data, sizeof(*data));
470 e820_update_range(pa_data, sizeof(*data)+data->len,
471 E820_RAM, E820_RESERVED_KERN);
472 found = 1;
473 pa_data = data->next;
474 early_iounmap(data, sizeof(*data));
475 }
476 if (!found)
477 return;
478
479 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
480 memcpy(&e820_saved, &e820, sizeof(struct e820map));
481 printk(KERN_INFO "extended physical RAM map:\n");
482 e820_print_map("reserve setup_data");
483}
484
485static void __init memblock_x86_reserve_range_setup_data(void)
486{
487 struct setup_data *data;
488 u64 pa_data;
489
490 pa_data = boot_params.hdr.setup_data;
491 while (pa_data) {
492 data = early_memremap(pa_data, sizeof(*data));
493 memblock_reserve(pa_data, sizeof(*data) + data->len);
494 pa_data = data->next;
495 early_iounmap(data, sizeof(*data));
496 }
497}
498
499/*
500 * --------- Crashkernel reservation ------------------------------
501 */
502
503#ifdef CONFIG_KEXEC
504
505/*
506 * Keep the crash kernel below this limit. On 32 bits earlier kernels
507 * would limit the kernel to the low 512 MiB due to mapping restrictions.
508 * On 64bit, old kexec-tools need to under 896MiB.
509 */
510#ifdef CONFIG_X86_32
511# define CRASH_KERNEL_ADDR_LOW_MAX (512 << 20)
512# define CRASH_KERNEL_ADDR_HIGH_MAX (512 << 20)
513#else
514# define CRASH_KERNEL_ADDR_LOW_MAX (896UL<<20)
515# define CRASH_KERNEL_ADDR_HIGH_MAX MAXMEM
516#endif
517
518static void __init reserve_crashkernel_low(void)
519{
520#ifdef CONFIG_X86_64
521 const unsigned long long alignment = 16<<20; /* 16M */
522 unsigned long long low_base = 0, low_size = 0;
523 unsigned long total_low_mem;
524 unsigned long long base;
525 bool auto_set = false;
526 int ret;
527
528 total_low_mem = memblock_mem_size(1UL<<(32-PAGE_SHIFT));
529 /* crashkernel=Y,low */
530 ret = parse_crashkernel_low(boot_command_line, total_low_mem,
531 &low_size, &base);
532 if (ret != 0) {
533 /*
534 * two parts from lib/swiotlb.c:
535 * swiotlb size: user specified with swiotlb= or default.
536 * swiotlb overflow buffer: now is hardcoded to 32k.
537 * We round it to 8M for other buffers that
538 * may need to stay low too.
539 */
540 low_size = swiotlb_size_or_default() + (8UL<<20);
541 auto_set = true;
542 } else {
543 /* passed with crashkernel=0,low ? */
544 if (!low_size)
545 return;
546 }
547
548 low_base = memblock_find_in_range(low_size, (1ULL<<32),
549 low_size, alignment);
550
551 if (!low_base) {
552 if (!auto_set)
553 pr_info("crashkernel low reservation failed - No suitable area found.\n");
554
555 return;
556 }
557
558 memblock_reserve(low_base, low_size);
559 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
560 (unsigned long)(low_size >> 20),
561 (unsigned long)(low_base >> 20),
562 (unsigned long)(total_low_mem >> 20));
563 crashk_low_res.start = low_base;
564 crashk_low_res.end = low_base + low_size - 1;
565 insert_resource(&iomem_resource, &crashk_low_res);
566#endif
567}
568
569static void __init reserve_crashkernel(void)
570{
571 const unsigned long long alignment = 16<<20; /* 16M */
572 unsigned long long total_mem;
573 unsigned long long crash_size, crash_base;
574 bool high = false;
575 int ret;
576
577 total_mem = memblock_phys_mem_size();
578
579 /* crashkernel=XM */
580 ret = parse_crashkernel(boot_command_line, total_mem,
581 &crash_size, &crash_base);
582 if (ret != 0 || crash_size <= 0) {
583 /* crashkernel=X,high */
584 ret = parse_crashkernel_high(boot_command_line, total_mem,
585 &crash_size, &crash_base);
586 if (ret != 0 || crash_size <= 0)
587 return;
588 high = true;
589 }
590
591 /* 0 means: find the address automatically */
592 if (crash_base <= 0) {
593 /*
594 * kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
595 */
596 crash_base = memblock_find_in_range(alignment,
597 high ? CRASH_KERNEL_ADDR_HIGH_MAX :
598 CRASH_KERNEL_ADDR_LOW_MAX,
599 crash_size, alignment);
600
601 if (!crash_base) {
602 pr_info("crashkernel reservation failed - No suitable area found.\n");
603 return;
604 }
605
606 } else {
607 unsigned long long start;
608
609 start = memblock_find_in_range(crash_base,
610 crash_base + crash_size, crash_size, 1<<20);
611 if (start != crash_base) {
612 pr_info("crashkernel reservation failed - memory is in use.\n");
613 return;
614 }
615 }
616 memblock_reserve(crash_base, crash_size);
617
618 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
619 "for crashkernel (System RAM: %ldMB)\n",
620 (unsigned long)(crash_size >> 20),
621 (unsigned long)(crash_base >> 20),
622 (unsigned long)(total_mem >> 20));
623
624 crashk_res.start = crash_base;
625 crashk_res.end = crash_base + crash_size - 1;
626 insert_resource(&iomem_resource, &crashk_res);
627
628 if (crash_base >= (1ULL<<32))
629 reserve_crashkernel_low();
630}
631#else
632static void __init reserve_crashkernel(void)
633{
634}
635#endif
636
637static struct resource standard_io_resources[] = {
638 { .name = "dma1", .start = 0x00, .end = 0x1f,
639 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
640 { .name = "pic1", .start = 0x20, .end = 0x21,
641 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
642 { .name = "timer0", .start = 0x40, .end = 0x43,
643 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
644 { .name = "timer1", .start = 0x50, .end = 0x53,
645 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
646 { .name = "keyboard", .start = 0x60, .end = 0x60,
647 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
648 { .name = "keyboard", .start = 0x64, .end = 0x64,
649 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
650 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
651 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
652 { .name = "pic2", .start = 0xa0, .end = 0xa1,
653 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
654 { .name = "dma2", .start = 0xc0, .end = 0xdf,
655 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
656 { .name = "fpu", .start = 0xf0, .end = 0xff,
657 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
658};
659
660void __init reserve_standard_io_resources(void)
661{
662 int i;
663
664 /* request I/O space for devices used on all i[345]86 PCs */
665 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
666 request_resource(&ioport_resource, &standard_io_resources[i]);
667
668}
669
670static __init void reserve_ibft_region(void)
671{
672 unsigned long addr, size = 0;
673
674 addr = find_ibft_region(&size);
675
676 if (size)
677 memblock_reserve(addr, size);
678}
679
680static bool __init snb_gfx_workaround_needed(void)
681{
682#ifdef CONFIG_PCI
683 int i;
684 u16 vendor, devid;
685 static const __initconst u16 snb_ids[] = {
686 0x0102,
687 0x0112,
688 0x0122,
689 0x0106,
690 0x0116,
691 0x0126,
692 0x010a,
693 };
694
695 /* Assume no if something weird is going on with PCI */
696 if (!early_pci_allowed())
697 return false;
698
699 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
700 if (vendor != 0x8086)
701 return false;
702
703 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
704 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
705 if (devid == snb_ids[i])
706 return true;
707#endif
708
709 return false;
710}
711
712/*
713 * Sandy Bridge graphics has trouble with certain ranges, exclude
714 * them from allocation.
715 */
716static void __init trim_snb_memory(void)
717{
718 static const __initconst unsigned long bad_pages[] = {
719 0x20050000,
720 0x20110000,
721 0x20130000,
722 0x20138000,
723 0x40004000,
724 };
725 int i;
726
727 if (!snb_gfx_workaround_needed())
728 return;
729
730 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
731
732 /*
733 * Reserve all memory below the 1 MB mark that has not
734 * already been reserved.
735 */
736 memblock_reserve(0, 1<<20);
737
738 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
739 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
740 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
741 bad_pages[i]);
742 }
743}
744
745/*
746 * Here we put platform-specific memory range workarounds, i.e.
747 * memory known to be corrupt or otherwise in need to be reserved on
748 * specific platforms.
749 *
750 * If this gets used more widely it could use a real dispatch mechanism.
751 */
752static void __init trim_platform_memory_ranges(void)
753{
754 trim_snb_memory();
755}
756
757static void __init trim_bios_range(void)
758{
759 /*
760 * A special case is the first 4Kb of memory;
761 * This is a BIOS owned area, not kernel ram, but generally
762 * not listed as such in the E820 table.
763 *
764 * This typically reserves additional memory (64KiB by default)
765 * since some BIOSes are known to corrupt low memory. See the
766 * Kconfig help text for X86_RESERVE_LOW.
767 */
768 e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED);
769
770 /*
771 * special case: Some BIOSen report the PC BIOS
772 * area (640->1Mb) as ram even though it is not.
773 * take them out.
774 */
775 e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
776
777 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
778}
779
780/* called before trim_bios_range() to spare extra sanitize */
781static void __init e820_add_kernel_range(void)
782{
783 u64 start = __pa_symbol(_text);
784 u64 size = __pa_symbol(_end) - start;
785
786 /*
787 * Complain if .text .data and .bss are not marked as E820_RAM and
788 * attempt to fix it by adding the range. We may have a confused BIOS,
789 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
790 * exclude kernel range. If we really are running on top non-RAM,
791 * we will crash later anyways.
792 */
793 if (e820_all_mapped(start, start + size, E820_RAM))
794 return;
795
796 pr_warn(".text .data .bss are not marked as E820_RAM!\n");
797 e820_remove_range(start, size, E820_RAM, 0);
798 e820_add_region(start, size, E820_RAM);
799}
800
801static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
802
803static int __init parse_reservelow(char *p)
804{
805 unsigned long long size;
806
807 if (!p)
808 return -EINVAL;
809
810 size = memparse(p, &p);
811
812 if (size < 4096)
813 size = 4096;
814
815 if (size > 640*1024)
816 size = 640*1024;
817
818 reserve_low = size;
819
820 return 0;
821}
822
823early_param("reservelow", parse_reservelow);
824
825static void __init trim_low_memory_range(void)
826{
827 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
828}
829
830/*
831 * Dump out kernel offset information on panic.
832 */
833static int
834dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
835{
836 pr_emerg("Kernel Offset: 0x%lx from 0x%lx "
837 "(relocation range: 0x%lx-0x%lx)\n",
838 (unsigned long)&_text - __START_KERNEL, __START_KERNEL,
839 __START_KERNEL_map, MODULES_VADDR-1);
840
841 return 0;
842}
843
844/*
845 * Determine if we were loaded by an EFI loader. If so, then we have also been
846 * passed the efi memmap, systab, etc., so we should use these data structures
847 * for initialization. Note, the efi init code path is determined by the
848 * global efi_enabled. This allows the same kernel image to be used on existing
849 * systems (with a traditional BIOS) as well as on EFI systems.
850 */
851/*
852 * setup_arch - architecture-specific boot-time initializations
853 *
854 * Note: On x86_64, fixmaps are ready for use even before this is called.
855 */
856
857void __init setup_arch(char **cmdline_p)
858{
859 memblock_reserve(__pa_symbol(_text),
860 (unsigned long)__bss_stop - (unsigned long)_text);
861
862 early_reserve_initrd();
863
864 /*
865 * At this point everything still needed from the boot loader
866 * or BIOS or kernel text should be early reserved or marked not
867 * RAM in e820. All other memory is free game.
868 */
869
870#ifdef CONFIG_X86_32
871 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
872
873 /*
874 * copy kernel address range established so far and switch
875 * to the proper swapper page table
876 */
877 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
878 initial_page_table + KERNEL_PGD_BOUNDARY,
879 KERNEL_PGD_PTRS);
880
881 load_cr3(swapper_pg_dir);
882 __flush_tlb_all();
883#else
884 printk(KERN_INFO "Command line: %s\n", boot_command_line);
885#endif
886
887 /*
888 * If we have OLPC OFW, we might end up relocating the fixmap due to
889 * reserve_top(), so do this before touching the ioremap area.
890 */
891 olpc_ofw_detect();
892
893 early_trap_init();
894 early_cpu_init();
895 early_ioremap_init();
896
897 setup_olpc_ofw_pgd();
898
899 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
900 screen_info = boot_params.screen_info;
901 edid_info = boot_params.edid_info;
902#ifdef CONFIG_X86_32
903 apm_info.bios = boot_params.apm_bios_info;
904 ist_info = boot_params.ist_info;
905 if (boot_params.sys_desc_table.length != 0) {
906 machine_id = boot_params.sys_desc_table.table[0];
907 machine_submodel_id = boot_params.sys_desc_table.table[1];
908 BIOS_revision = boot_params.sys_desc_table.table[2];
909 }
910#endif
911 saved_video_mode = boot_params.hdr.vid_mode;
912 bootloader_type = boot_params.hdr.type_of_loader;
913 if ((bootloader_type >> 4) == 0xe) {
914 bootloader_type &= 0xf;
915 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
916 }
917 bootloader_version = bootloader_type & 0xf;
918 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
919
920#ifdef CONFIG_BLK_DEV_RAM
921 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
922 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
923 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
924#endif
925#ifdef CONFIG_EFI
926 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
927 "EL32", 4)) {
928 set_bit(EFI_BOOT, &efi.flags);
929 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
930 "EL64", 4)) {
931 set_bit(EFI_BOOT, &efi.flags);
932 set_bit(EFI_64BIT, &efi.flags);
933 }
934
935 if (efi_enabled(EFI_BOOT))
936 efi_memblock_x86_reserve_range();
937#endif
938
939 x86_init.oem.arch_setup();
940
941 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
942 setup_memory_map();
943 parse_setup_data();
944
945 copy_edd();
946
947 if (!boot_params.hdr.root_flags)
948 root_mountflags &= ~MS_RDONLY;
949 init_mm.start_code = (unsigned long) _text;
950 init_mm.end_code = (unsigned long) _etext;
951 init_mm.end_data = (unsigned long) _edata;
952 init_mm.brk = _brk_end;
953
954 code_resource.start = __pa_symbol(_text);
955 code_resource.end = __pa_symbol(_etext)-1;
956 data_resource.start = __pa_symbol(_etext);
957 data_resource.end = __pa_symbol(_edata)-1;
958 bss_resource.start = __pa_symbol(__bss_start);
959 bss_resource.end = __pa_symbol(__bss_stop)-1;
960
961#ifdef CONFIG_CMDLINE_BOOL
962#ifdef CONFIG_CMDLINE_OVERRIDE
963 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
964#else
965 if (builtin_cmdline[0]) {
966 /* append boot loader cmdline to builtin */
967 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
968 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
969 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
970 }
971#endif
972#endif
973
974 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
975 *cmdline_p = command_line;
976
977 /*
978 * x86_configure_nx() is called before parse_early_param() to detect
979 * whether hardware doesn't support NX (so that the early EHCI debug
980 * console setup can safely call set_fixmap()). It may then be called
981 * again from within noexec_setup() during parsing early parameters
982 * to honor the respective command line option.
983 */
984 x86_configure_nx();
985
986 parse_early_param();
987
988 x86_report_nx();
989
990 /* after early param, so could get panic from serial */
991 memblock_x86_reserve_range_setup_data();
992
993 if (acpi_mps_check()) {
994#ifdef CONFIG_X86_LOCAL_APIC
995 disable_apic = 1;
996#endif
997 setup_clear_cpu_cap(X86_FEATURE_APIC);
998 }
999
1000#ifdef CONFIG_PCI
1001 if (pci_early_dump_regs)
1002 early_dump_pci_devices();
1003#endif
1004
1005 /* update the e820_saved too */
1006 e820_reserve_setup_data();
1007 finish_e820_parsing();
1008
1009 if (efi_enabled(EFI_BOOT))
1010 efi_init();
1011
1012 dmi_scan_machine();
1013 dmi_memdev_walk();
1014 dmi_set_dump_stack_arch_desc();
1015
1016 /*
1017 * VMware detection requires dmi to be available, so this
1018 * needs to be done after dmi_scan_machine, for the BP.
1019 */
1020 init_hypervisor_platform();
1021
1022 x86_init.resources.probe_roms();
1023
1024 /* after parse_early_param, so could debug it */
1025 insert_resource(&iomem_resource, &code_resource);
1026 insert_resource(&iomem_resource, &data_resource);
1027 insert_resource(&iomem_resource, &bss_resource);
1028
1029 e820_add_kernel_range();
1030 trim_bios_range();
1031#ifdef CONFIG_X86_32
1032 if (ppro_with_ram_bug()) {
1033 e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
1034 E820_RESERVED);
1035 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
1036 printk(KERN_INFO "fixed physical RAM map:\n");
1037 e820_print_map("bad_ppro");
1038 }
1039#else
1040 early_gart_iommu_check();
1041#endif
1042
1043 /*
1044 * partially used pages are not usable - thus
1045 * we are rounding upwards:
1046 */
1047 max_pfn = e820_end_of_ram_pfn();
1048
1049 /* update e820 for memory not covered by WB MTRRs */
1050 mtrr_bp_init();
1051 if (mtrr_trim_uncached_memory(max_pfn))
1052 max_pfn = e820_end_of_ram_pfn();
1053
1054#ifdef CONFIG_X86_32
1055 /* max_low_pfn get updated here */
1056 find_low_pfn_range();
1057#else
1058 check_x2apic();
1059
1060 /* How many end-of-memory variables you have, grandma! */
1061 /* need this before calling reserve_initrd */
1062 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1063 max_low_pfn = e820_end_of_low_ram_pfn();
1064 else
1065 max_low_pfn = max_pfn;
1066
1067 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1068#endif
1069
1070 /*
1071 * Find and reserve possible boot-time SMP configuration:
1072 */
1073 find_smp_config();
1074
1075 reserve_ibft_region();
1076
1077 early_alloc_pgt_buf();
1078
1079 /*
1080 * Need to conclude brk, before memblock_x86_fill()
1081 * it could use memblock_find_in_range, could overlap with
1082 * brk area.
1083 */
1084 reserve_brk();
1085
1086 cleanup_highmap();
1087
1088 memblock_set_current_limit(ISA_END_ADDRESS);
1089 memblock_x86_fill();
1090
1091 /*
1092 * The EFI specification says that boot service code won't be called
1093 * after ExitBootServices(). This is, in fact, a lie.
1094 */
1095 if (efi_enabled(EFI_MEMMAP))
1096 efi_reserve_boot_services();
1097
1098 /* preallocate 4k for mptable mpc */
1099 early_reserve_e820_mpc_new();
1100
1101#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1102 setup_bios_corruption_check();
1103#endif
1104
1105#ifdef CONFIG_X86_32
1106 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1107 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1108#endif
1109
1110 reserve_real_mode();
1111
1112 trim_platform_memory_ranges();
1113 trim_low_memory_range();
1114
1115 init_mem_mapping();
1116
1117 early_trap_pf_init();
1118
1119 setup_real_mode();
1120
1121 memblock_set_current_limit(get_max_mapped());
1122 dma_contiguous_reserve(0);
1123
1124 /*
1125 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1126 */
1127
1128#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1129 if (init_ohci1394_dma_early)
1130 init_ohci1394_dma_on_all_controllers();
1131#endif
1132 /* Allocate bigger log buffer */
1133 setup_log_buf(1);
1134
1135 reserve_initrd();
1136
1137#if defined(CONFIG_ACPI) && defined(CONFIG_BLK_DEV_INITRD)
1138 acpi_initrd_override((void *)initrd_start, initrd_end - initrd_start);
1139#endif
1140
1141 vsmp_init();
1142
1143 io_delay_init();
1144
1145 /*
1146 * Parse the ACPI tables for possible boot-time SMP configuration.
1147 */
1148 acpi_boot_table_init();
1149
1150 early_acpi_boot_init();
1151
1152 initmem_init();
1153
1154 /*
1155 * Reserve memory for crash kernel after SRAT is parsed so that it
1156 * won't consume hotpluggable memory.
1157 */
1158 reserve_crashkernel();
1159
1160 memblock_find_dma_reserve();
1161
1162#ifdef CONFIG_KVM_GUEST
1163 kvmclock_init();
1164#endif
1165
1166 x86_init.paging.pagetable_init();
1167
1168 if (boot_cpu_data.cpuid_level >= 0) {
1169 /* A CPU has %cr4 if and only if it has CPUID */
1170 mmu_cr4_features = read_cr4();
1171 if (trampoline_cr4_features)
1172 *trampoline_cr4_features = mmu_cr4_features;
1173 }
1174
1175#ifdef CONFIG_X86_32
1176 /* sync back kernel address range */
1177 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1178 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1179 KERNEL_PGD_PTRS);
1180#endif
1181
1182 tboot_probe();
1183
1184#ifdef CONFIG_X86_64
1185 map_vsyscall();
1186#endif
1187
1188 generic_apic_probe();
1189
1190 early_quirks();
1191
1192 /*
1193 * Read APIC and some other early information from ACPI tables.
1194 */
1195 acpi_boot_init();
1196 sfi_init();
1197 x86_dtb_init();
1198
1199 /*
1200 * get boot-time SMP configuration:
1201 */
1202 if (smp_found_config)
1203 get_smp_config();
1204
1205 prefill_possible_map();
1206
1207 init_cpu_to_node();
1208
1209 init_apic_mappings();
1210 if (x86_io_apic_ops.init)
1211 x86_io_apic_ops.init();
1212
1213 kvm_guest_init();
1214
1215 e820_reserve_resources();
1216 e820_mark_nosave_regions(max_low_pfn);
1217
1218 x86_init.resources.reserve_resources();
1219
1220 e820_setup_gap();
1221
1222#ifdef CONFIG_VT
1223#if defined(CONFIG_VGA_CONSOLE)
1224 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1225 conswitchp = &vga_con;
1226#elif defined(CONFIG_DUMMY_CONSOLE)
1227 conswitchp = &dummy_con;
1228#endif
1229#endif
1230 x86_init.oem.banner();
1231
1232 x86_init.timers.wallclock_init();
1233
1234 mcheck_init();
1235
1236 arch_init_ideal_nops();
1237
1238 register_refined_jiffies(CLOCK_TICK_RATE);
1239
1240#ifdef CONFIG_EFI
1241 if (efi_enabled(EFI_BOOT))
1242 efi_apply_memmap_quirks();
1243#endif
1244}
1245
1246#ifdef CONFIG_X86_32
1247
1248static struct resource video_ram_resource = {
1249 .name = "Video RAM area",
1250 .start = 0xa0000,
1251 .end = 0xbffff,
1252 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1253};
1254
1255void __init i386_reserve_resources(void)
1256{
1257 request_resource(&iomem_resource, &video_ram_resource);
1258 reserve_standard_io_resources();
1259}
1260
1261#endif /* CONFIG_X86_32 */
1262
1263static struct notifier_block kernel_offset_notifier = {
1264 .notifier_call = dump_kernel_offset
1265};
1266
1267static int __init register_kernel_offset_dumper(void)
1268{
1269 atomic_notifier_chain_register(&panic_notifier_list,
1270 &kernel_offset_notifier);
1271 return 0;
1272}
1273__initcall(register_kernel_offset_dumper);