Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
 
 
 
 
 
 
 
 
 
 
   8#include <linux/acpi.h>
 
 
 
 
 
 
   9#include <linux/console.h>
  10#include <linux/cpu.h>
  11#include <linux/crash_dump.h>
  12#include <linux/dma-map-ops.h>
  13#include <linux/efi.h>
  14#include <linux/ima.h>
  15#include <linux/init_ohci1394_dma.h>
  16#include <linux/initrd.h>
  17#include <linux/iscsi_ibft.h>
  18#include <linux/memblock.h>
  19#include <linux/panic_notifier.h>
 
 
  20#include <linux/pci.h>
  21#include <linux/root_dev.h>
  22#include <linux/hugetlb.h>
  23#include <linux/tboot.h>
  24#include <linux/usb/xhci-dbgp.h>
  25#include <linux/static_call.h>
  26#include <linux/swiotlb.h>
  27#include <linux/random.h>
  28
  29#include <uapi/linux/mount.h>
 
 
 
 
 
 
 
 
 
 
 
 
  30
  31#include <xen/xen.h>
 
 
 
 
 
 
 
  32
 
  33#include <asm/apic.h>
 
 
 
 
  34#include <asm/efi.h>
  35#include <asm/numa.h>
 
 
 
 
 
  36#include <asm/bios_ebda.h>
 
 
  37#include <asm/bugs.h>
  38#include <asm/cacheinfo.h>
  39#include <asm/coco.h>
 
  40#include <asm/cpu.h>
  41#include <asm/efi.h>
 
 
  42#include <asm/gart.h>
 
 
 
 
  43#include <asm/hypervisor.h>
  44#include <asm/io_apic.h>
  45#include <asm/kasan.h>
  46#include <asm/kaslr.h>
  47#include <asm/mce.h>
  48#include <asm/memtype.h>
  49#include <asm/mtrr.h>
  50#include <asm/realmode.h>
  51#include <asm/olpc_ofw.h>
  52#include <asm/pci-direct.h>
 
 
 
 
 
 
  53#include <asm/prom.h>
  54#include <asm/proto.h>
  55#include <asm/thermal.h>
  56#include <asm/unwind.h>
  57#include <asm/vsyscall.h>
  58#include <linux/vmalloc.h>
  59
  60/*
  61 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  62 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  63 *
  64 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  65 * represented by pfn_mapped[].
  66 */
  67unsigned long max_low_pfn_mapped;
  68unsigned long max_pfn_mapped;
  69
  70#ifdef CONFIG_DMI
  71RESERVE_BRK(dmi_alloc, 65536);
  72#endif
  73
  74
  75unsigned long _brk_start = (unsigned long)__brk_base;
  76unsigned long _brk_end   = (unsigned long)__brk_base;
  77
  78struct boot_params boot_params;
  79
  80/*
  81 * These are the four main kernel memory regions, we put them into
  82 * the resource tree so that kdump tools and other debugging tools
  83 * recover it:
  84 */
  85
  86static struct resource rodata_resource = {
  87	.name	= "Kernel rodata",
  88	.start	= 0,
  89	.end	= 0,
  90	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  91};
  92
  93static struct resource data_resource = {
  94	.name	= "Kernel data",
  95	.start	= 0,
  96	.end	= 0,
  97	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  98};
  99
 100static struct resource code_resource = {
 101	.name	= "Kernel code",
 102	.start	= 0,
 103	.end	= 0,
 104	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 105};
 106
 107static struct resource bss_resource = {
 108	.name	= "Kernel bss",
 109	.start	= 0,
 110	.end	= 0,
 111	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 112};
 113
 114
 115#ifdef CONFIG_X86_32
 116/* CPU data as detected by the assembly code in head_32.S */
 117struct cpuinfo_x86 new_cpu_data;
 118
 
 
 
 
 
 
 
 
 
 
 
 119struct apm_info apm_info;
 120EXPORT_SYMBOL(apm_info);
 121
 122#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 123	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 124struct ist_info ist_info;
 125EXPORT_SYMBOL(ist_info);
 126#else
 127struct ist_info ist_info;
 128#endif
 129
 130#endif
 131
 132struct cpuinfo_x86 boot_cpu_data __read_mostly;
 133EXPORT_SYMBOL(boot_cpu_data);
 
 
 134
 135#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 136__visible unsigned long mmu_cr4_features __ro_after_init;
 137#else
 138__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 139#endif
 140
 141#ifdef CONFIG_IMA
 142static phys_addr_t ima_kexec_buffer_phys;
 143static size_t ima_kexec_buffer_size;
 144#endif
 145
 146/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 147int bootloader_type, bootloader_version;
 148
 149/*
 150 * Setup options
 151 */
 152struct screen_info screen_info;
 153EXPORT_SYMBOL(screen_info);
 154struct edid_info edid_info;
 155EXPORT_SYMBOL_GPL(edid_info);
 156
 157extern int root_mountflags;
 158
 159unsigned long saved_video_mode;
 160
 161#define RAMDISK_IMAGE_START_MASK	0x07FF
 162#define RAMDISK_PROMPT_FLAG		0x8000
 163#define RAMDISK_LOAD_FLAG		0x4000
 164
 165static char __initdata command_line[COMMAND_LINE_SIZE];
 166#ifdef CONFIG_CMDLINE_BOOL
 167char builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 168bool builtin_cmdline_added __ro_after_init;
 169#endif
 170
 171#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 172struct edd edd;
 173#ifdef CONFIG_EDD_MODULE
 174EXPORT_SYMBOL(edd);
 175#endif
 176/**
 177 * copy_edd() - Copy the BIOS EDD information
 178 *              from boot_params into a safe place.
 179 *
 180 */
 181static inline void __init copy_edd(void)
 182{
 183     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 184	    sizeof(edd.mbr_signature));
 185     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 186     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 187     edd.edd_info_nr = boot_params.eddbuf_entries;
 188}
 189#else
 190static inline void __init copy_edd(void)
 191{
 192}
 193#endif
 194
 195void * __init extend_brk(size_t size, size_t align)
 196{
 197	size_t mask = align - 1;
 198	void *ret;
 199
 200	BUG_ON(_brk_start == 0);
 201	BUG_ON(align & mask);
 202
 203	_brk_end = (_brk_end + mask) & ~mask;
 204	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 205
 206	ret = (void *)_brk_end;
 207	_brk_end += size;
 208
 209	memset(ret, 0, size);
 210
 211	return ret;
 212}
 213
 214#ifdef CONFIG_X86_32
 215static void __init cleanup_highmap(void)
 216{
 217}
 218#endif
 219
 220static void __init reserve_brk(void)
 221{
 222	if (_brk_end > _brk_start)
 223		memblock_reserve(__pa_symbol(_brk_start),
 224				 _brk_end - _brk_start);
 225
 226	/* Mark brk area as locked down and no longer taking any
 227	   new allocations */
 228	_brk_start = 0;
 229}
 230
 
 
 231#ifdef CONFIG_BLK_DEV_INITRD
 232
 233static u64 __init get_ramdisk_image(void)
 234{
 235	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 236
 237	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 238
 239	if (ramdisk_image == 0)
 240		ramdisk_image = phys_initrd_start;
 241
 242	return ramdisk_image;
 243}
 244static u64 __init get_ramdisk_size(void)
 245{
 246	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 247
 248	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 249
 250	if (ramdisk_size == 0)
 251		ramdisk_size = phys_initrd_size;
 252
 253	return ramdisk_size;
 254}
 255
 256static void __init relocate_initrd(void)
 257{
 258	/* Assume only end is not page aligned */
 259	u64 ramdisk_image = get_ramdisk_image();
 260	u64 ramdisk_size  = get_ramdisk_size();
 261	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 262
 263	/* We need to move the initrd down into directly mapped mem */
 264	u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 265						      PFN_PHYS(max_pfn_mapped));
 
 266	if (!relocated_ramdisk)
 267		panic("Cannot find place for new RAMDISK of size %lld\n",
 268		      ramdisk_size);
 269
 
 
 
 270	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 271	initrd_end   = initrd_start + ramdisk_size;
 272	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 273	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 274
 275	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 276
 277	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 278		" [mem %#010llx-%#010llx]\n",
 279		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 280		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 281}
 282
 283static void __init early_reserve_initrd(void)
 284{
 285	/* Assume only end is not page aligned */
 286	u64 ramdisk_image = get_ramdisk_image();
 287	u64 ramdisk_size  = get_ramdisk_size();
 288	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 289
 290	if (!boot_params.hdr.type_of_loader ||
 291	    !ramdisk_image || !ramdisk_size)
 292		return;		/* No initrd provided by bootloader */
 293
 294	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 295}
 296
 297static void __init reserve_initrd(void)
 298{
 299	/* Assume only end is not page aligned */
 300	u64 ramdisk_image = get_ramdisk_image();
 301	u64 ramdisk_size  = get_ramdisk_size();
 302	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 
 303
 304	if (!boot_params.hdr.type_of_loader ||
 305	    !ramdisk_image || !ramdisk_size)
 306		return;		/* No initrd provided by bootloader */
 307
 308	initrd_start = 0;
 309
 
 
 
 
 
 
 310	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 311			ramdisk_end - 1);
 312
 313	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 314				PFN_DOWN(ramdisk_end))) {
 315		/* All are mapped, easy case */
 316		initrd_start = ramdisk_image + PAGE_OFFSET;
 317		initrd_end = initrd_start + ramdisk_size;
 318		return;
 319	}
 320
 321	relocate_initrd();
 322
 323	memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
 324}
 325
 326#else
 327static void __init early_reserve_initrd(void)
 328{
 329}
 330static void __init reserve_initrd(void)
 331{
 332}
 333#endif /* CONFIG_BLK_DEV_INITRD */
 334
 335static void __init add_early_ima_buffer(u64 phys_addr)
 336{
 337#ifdef CONFIG_IMA
 338	struct ima_setup_data *data;
 339
 340	data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
 341	if (!data) {
 342		pr_warn("setup: failed to memremap ima_setup_data entry\n");
 343		return;
 344	}
 345
 346	if (data->size) {
 347		memblock_reserve(data->addr, data->size);
 348		ima_kexec_buffer_phys = data->addr;
 349		ima_kexec_buffer_size = data->size;
 350	}
 351
 352	early_memunmap(data, sizeof(*data));
 353#else
 354	pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
 355#endif
 356}
 357
 358#if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
 359int __init ima_free_kexec_buffer(void)
 360{
 361	if (!ima_kexec_buffer_size)
 362		return -ENOENT;
 363
 364	memblock_free_late(ima_kexec_buffer_phys,
 365			   ima_kexec_buffer_size);
 366
 367	ima_kexec_buffer_phys = 0;
 368	ima_kexec_buffer_size = 0;
 369
 370	return 0;
 371}
 372
 373int __init ima_get_kexec_buffer(void **addr, size_t *size)
 374{
 375	if (!ima_kexec_buffer_size)
 376		return -ENOENT;
 377
 378	*addr = __va(ima_kexec_buffer_phys);
 379	*size = ima_kexec_buffer_size;
 380
 381	return 0;
 382}
 383#endif
 384
 385static void __init parse_setup_data(void)
 386{
 387	struct setup_data *data;
 388	u64 pa_data, pa_next;
 389
 390	pa_data = boot_params.hdr.setup_data;
 391	while (pa_data) {
 392		u32 data_len, data_type;
 393
 394		data = early_memremap(pa_data, sizeof(*data));
 395		data_len = data->len + sizeof(struct setup_data);
 396		data_type = data->type;
 397		pa_next = data->next;
 398		early_memunmap(data, sizeof(*data));
 399
 400		switch (data_type) {
 401		case SETUP_E820_EXT:
 402			e820__memory_setup_extended(pa_data, data_len);
 403			break;
 404		case SETUP_DTB:
 405			add_dtb(pa_data);
 406			break;
 407		case SETUP_EFI:
 408			parse_efi_setup(pa_data, data_len);
 409			break;
 410		case SETUP_IMA:
 411			add_early_ima_buffer(pa_data);
 412			break;
 413		case SETUP_RNG_SEED:
 414			data = early_memremap(pa_data, data_len);
 415			add_bootloader_randomness(data->data, data->len);
 416			/* Zero seed for forward secrecy. */
 417			memzero_explicit(data->data, data->len);
 418			/* Zero length in case we find ourselves back here by accident. */
 419			memzero_explicit(&data->len, sizeof(data->len));
 420			early_memunmap(data, data_len);
 421			break;
 422		default:
 423			break;
 424		}
 425		pa_data = pa_next;
 426	}
 427}
 428
 429static void __init memblock_x86_reserve_range_setup_data(void)
 430{
 431	struct setup_indirect *indirect;
 432	struct setup_data *data;
 433	u64 pa_data, pa_next;
 434	u32 len;
 435
 436	pa_data = boot_params.hdr.setup_data;
 437	while (pa_data) {
 438		data = early_memremap(pa_data, sizeof(*data));
 439		if (!data) {
 440			pr_warn("setup: failed to memremap setup_data entry\n");
 441			return;
 442		}
 
 443
 444		len = sizeof(*data);
 445		pa_next = data->next;
 
 446
 447		memblock_reserve(pa_data, sizeof(*data) + data->len);
 448
 449		if (data->type == SETUP_INDIRECT) {
 450			len += data->len;
 451			early_memunmap(data, sizeof(*data));
 452			data = early_memremap(pa_data, len);
 453			if (!data) {
 454				pr_warn("setup: failed to memremap indirect setup_data\n");
 455				return;
 456			}
 457
 458			indirect = (struct setup_indirect *)data->data;
 
 
 
 
 
 
 
 
 
 
 
 459
 460			if (indirect->type != SETUP_INDIRECT)
 461				memblock_reserve(indirect->addr, indirect->len);
 462		}
 
 
 
 463
 464		pa_data = pa_next;
 465		early_memunmap(data, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466	}
 
 
 
 
 
 
 
 
 
 
 
 467}
 468
 469static void __init arch_reserve_crashkernel(void)
 470{
 471	unsigned long long crash_base, crash_size, low_size = 0;
 472	char *cmdline = boot_command_line;
 473	bool high = false;
 474	int ret;
 475
 476	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
 477		return;
 478
 479	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
 480				&crash_size, &crash_base,
 481				&low_size, &high);
 482	if (ret)
 483		return;
 
 
 
 
 
 484
 485	if (xen_pv_domain()) {
 486		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 487		return;
 488	}
 489
 490	reserve_crashkernel_generic(cmdline, crash_size, crash_base,
 491				    low_size, high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492}
 
 
 
 
 
 493
 494static struct resource standard_io_resources[] = {
 495	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 496		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 497	{ .name = "pic1", .start = 0x20, .end = 0x21,
 498		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 499	{ .name = "timer0", .start = 0x40, .end = 0x43,
 500		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 501	{ .name = "timer1", .start = 0x50, .end = 0x53,
 502		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 503	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 504		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 505	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 506		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 507	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 508		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 509	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 510		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 511	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 512		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 513	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 514		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 515};
 516
 517void __init reserve_standard_io_resources(void)
 518{
 519	int i;
 520
 521	/* request I/O space for devices used on all i[345]86 PCs */
 522	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 523		request_resource(&ioport_resource, &standard_io_resources[i]);
 524
 525}
 526
 
 
 
 
 
 
 
 
 
 
 527static bool __init snb_gfx_workaround_needed(void)
 528{
 529#ifdef CONFIG_PCI
 530	int i;
 531	u16 vendor, devid;
 532	static const __initconst u16 snb_ids[] = {
 533		0x0102,
 534		0x0112,
 535		0x0122,
 536		0x0106,
 537		0x0116,
 538		0x0126,
 539		0x010a,
 540	};
 541
 542	/* Assume no if something weird is going on with PCI */
 543	if (!early_pci_allowed())
 544		return false;
 545
 546	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 547	if (vendor != 0x8086)
 548		return false;
 549
 550	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 551	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 552		if (devid == snb_ids[i])
 553			return true;
 554#endif
 555
 556	return false;
 557}
 558
 559/*
 560 * Sandy Bridge graphics has trouble with certain ranges, exclude
 561 * them from allocation.
 562 */
 563static void __init trim_snb_memory(void)
 564{
 565	static const __initconst unsigned long bad_pages[] = {
 566		0x20050000,
 567		0x20110000,
 568		0x20130000,
 569		0x20138000,
 570		0x40004000,
 571	};
 572	int i;
 573
 574	if (!snb_gfx_workaround_needed())
 575		return;
 576
 577	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 578
 579	/*
 580	 * SandyBridge integrated graphics devices have a bug that prevents
 581	 * them from accessing certain memory ranges, namely anything below
 582	 * 1M and in the pages listed in bad_pages[] above.
 583	 *
 584	 * To avoid these pages being ever accessed by SNB gfx devices reserve
 585	 * bad_pages that have not already been reserved at boot time.
 586	 * All memory below the 1 MB mark is anyway reserved later during
 587	 * setup_arch(), so there is no need to reserve it here.
 588	 */
 589
 
 590	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 591		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 592			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 593			       bad_pages[i]);
 594	}
 595}
 596
 
 
 
 
 
 
 
 
 
 
 
 
 597static void __init trim_bios_range(void)
 598{
 599	/*
 600	 * A special case is the first 4Kb of memory;
 601	 * This is a BIOS owned area, not kernel ram, but generally
 602	 * not listed as such in the E820 table.
 603	 *
 604	 * This typically reserves additional memory (64KiB by default)
 605	 * since some BIOSes are known to corrupt low memory.  See the
 606	 * Kconfig help text for X86_RESERVE_LOW.
 607	 */
 608	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 609
 610	/*
 611	 * special case: Some BIOSes report the PC BIOS
 612	 * area (640Kb -> 1Mb) as RAM even though it is not.
 613	 * take them out.
 614	 */
 615	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 616
 617	e820__update_table(e820_table);
 618}
 619
 620/* called before trim_bios_range() to spare extra sanitize */
 621static void __init e820_add_kernel_range(void)
 622{
 623	u64 start = __pa_symbol(_text);
 624	u64 size = __pa_symbol(_end) - start;
 625
 626	/*
 627	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 628	 * attempt to fix it by adding the range. We may have a confused BIOS,
 629	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 630	 * exclude kernel range. If we really are running on top non-RAM,
 631	 * we will crash later anyways.
 632	 */
 633	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 634		return;
 635
 636	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 637	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 638	e820__range_add(start, size, E820_TYPE_RAM);
 639}
 640
 641static void __init early_reserve_memory(void)
 
 
 642{
 643	/*
 644	 * Reserve the memory occupied by the kernel between _text and
 645	 * __end_of_kernel_reserve symbols. Any kernel sections after the
 646	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
 647	 * separate memblock_reserve() or they will be discarded.
 648	 */
 649	memblock_reserve(__pa_symbol(_text),
 650			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 651
 652	/*
 653	 * The first 4Kb of memory is a BIOS owned area, but generally it is
 654	 * not listed as such in the E820 table.
 655	 *
 656	 * Reserve the first 64K of memory since some BIOSes are known to
 657	 * corrupt low memory. After the real mode trampoline is allocated the
 658	 * rest of the memory below 640k is reserved.
 659	 *
 660	 * In addition, make sure page 0 is always reserved because on
 661	 * systems with L1TF its contents can be leaked to user processes.
 662	 */
 663	memblock_reserve(0, SZ_64K);
 664
 665	early_reserve_initrd();
 666
 667	memblock_x86_reserve_range_setup_data();
 
 668
 669	reserve_bios_regions();
 670	trim_snb_memory();
 
 
 
 
 671}
 672
 
 
 
 
 
 
 
 673/*
 674 * Dump out kernel offset information on panic.
 675 */
 676static int
 677dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 678{
 679	if (kaslr_enabled()) {
 680		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 681			 kaslr_offset(),
 682			 __START_KERNEL,
 683			 __START_KERNEL_map,
 684			 MODULES_VADDR-1);
 685	} else {
 686		pr_emerg("Kernel Offset: disabled\n");
 687	}
 688
 689	return 0;
 690}
 691
 692void x86_configure_nx(void)
 693{
 694	if (boot_cpu_has(X86_FEATURE_NX))
 695		__supported_pte_mask |= _PAGE_NX;
 696	else
 697		__supported_pte_mask &= ~_PAGE_NX;
 698}
 699
 700static void __init x86_report_nx(void)
 701{
 702	if (!boot_cpu_has(X86_FEATURE_NX)) {
 703		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
 704		       "missing in CPU!\n");
 705	} else {
 706#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 707		printk(KERN_INFO "NX (Execute Disable) protection: active\n");
 708#else
 709		/* 32bit non-PAE kernel, NX cannot be used */
 710		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
 711		       "cannot be enabled: non-PAE kernel!\n");
 712#endif
 713	}
 714}
 715
 716/*
 717 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 718 * passed the efi memmap, systab, etc., so we should use these data structures
 719 * for initialization.  Note, the efi init code path is determined by the
 720 * global efi_enabled. This allows the same kernel image to be used on existing
 721 * systems (with a traditional BIOS) as well as on EFI systems.
 722 */
 723/*
 724 * setup_arch - architecture-specific boot-time initializations
 725 *
 726 * Note: On x86_64, fixmaps are ready for use even before this is called.
 727 */
 728
 729void __init setup_arch(char **cmdline_p)
 730{
 
 
 
 
 
 
 
 
 
 
 
 731#ifdef CONFIG_X86_32
 732	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 733
 734	/*
 735	 * copy kernel address range established so far and switch
 736	 * to the proper swapper page table
 737	 */
 738	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 739			initial_page_table + KERNEL_PGD_BOUNDARY,
 740			KERNEL_PGD_PTRS);
 741
 742	load_cr3(swapper_pg_dir);
 743	/*
 744	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 745	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 746	 * will not flush anything because the CPU quirk which clears
 747	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 748	 * load_cr3() above the TLB has been flushed already. The
 749	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 750	 * so proper operation is guaranteed.
 751	 */
 752	__flush_tlb_all();
 753#else
 754	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 755	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 756#endif
 757
 758#ifdef CONFIG_CMDLINE_BOOL
 759#ifdef CONFIG_CMDLINE_OVERRIDE
 760	strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 761#else
 762	if (builtin_cmdline[0]) {
 763		/* append boot loader cmdline to builtin */
 764		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 765		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 766		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 767	}
 768#endif
 769	builtin_cmdline_added = true;
 770#endif
 771
 772	strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 773	*cmdline_p = command_line;
 774
 775	/*
 776	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 777	 * reserve_top(), so do this before touching the ioremap area.
 778	 */
 779	olpc_ofw_detect();
 780
 781	idt_setup_early_traps();
 782	early_cpu_init();
 783	jump_label_init();
 784	static_call_init();
 785	early_ioremap_init();
 786
 787	setup_olpc_ofw_pgd();
 788
 789	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 790	screen_info = boot_params.screen_info;
 791	edid_info = boot_params.edid_info;
 792#ifdef CONFIG_X86_32
 793	apm_info.bios = boot_params.apm_bios_info;
 794	ist_info = boot_params.ist_info;
 795#endif
 796	saved_video_mode = boot_params.hdr.vid_mode;
 797	bootloader_type = boot_params.hdr.type_of_loader;
 798	if ((bootloader_type >> 4) == 0xe) {
 799		bootloader_type &= 0xf;
 800		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 801	}
 802	bootloader_version  = bootloader_type & 0xf;
 803	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 804
 805#ifdef CONFIG_BLK_DEV_RAM
 806	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 
 
 807#endif
 808#ifdef CONFIG_EFI
 809	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 810		     EFI32_LOADER_SIGNATURE, 4)) {
 811		set_bit(EFI_BOOT, &efi.flags);
 812	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 813		     EFI64_LOADER_SIGNATURE, 4)) {
 814		set_bit(EFI_BOOT, &efi.flags);
 815		set_bit(EFI_64BIT, &efi.flags);
 816	}
 817#endif
 818
 819	x86_init.oem.arch_setup();
 820
 821	/*
 822	 * Do some memory reservations *before* memory is added to memblock, so
 823	 * memblock allocations won't overwrite it.
 824	 *
 825	 * After this point, everything still needed from the boot loader or
 826	 * firmware or kernel text should be early reserved or marked not RAM in
 827	 * e820. All other memory is free game.
 828	 *
 829	 * This call needs to happen before e820__memory_setup() which calls the
 830	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
 831	 * early reservations have happened already.
 832	 */
 833	early_reserve_memory();
 834
 835	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 836	e820__memory_setup();
 837	parse_setup_data();
 838
 839	copy_edd();
 840
 841	if (!boot_params.hdr.root_flags)
 842		root_mountflags &= ~MS_RDONLY;
 843	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
 
 
 
 
 
 844
 845	code_resource.start = __pa_symbol(_text);
 846	code_resource.end = __pa_symbol(_etext)-1;
 847	rodata_resource.start = __pa_symbol(__start_rodata);
 848	rodata_resource.end = __pa_symbol(__end_rodata)-1;
 849	data_resource.start = __pa_symbol(_sdata);
 850	data_resource.end = __pa_symbol(_edata)-1;
 851	bss_resource.start = __pa_symbol(__bss_start);
 852	bss_resource.end = __pa_symbol(__bss_stop)-1;
 853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854	/*
 855	 * x86_configure_nx() is called before parse_early_param() to detect
 856	 * whether hardware doesn't support NX (so that the early EHCI debug
 857	 * console setup can safely call set_fixmap()).
 
 
 858	 */
 859	x86_configure_nx();
 860
 861	parse_early_param();
 862
 863	if (efi_enabled(EFI_BOOT))
 864		efi_memblock_x86_reserve_range();
 865
 866#ifdef CONFIG_MEMORY_HOTPLUG
 867	/*
 868	 * Memory used by the kernel cannot be hot-removed because Linux
 869	 * cannot migrate the kernel pages. When memory hotplug is
 870	 * enabled, we should prevent memblock from allocating memory
 871	 * for the kernel.
 872	 *
 873	 * ACPI SRAT records all hotpluggable memory ranges. But before
 874	 * SRAT is parsed, we don't know about it.
 875	 *
 876	 * The kernel image is loaded into memory at very early time. We
 877	 * cannot prevent this anyway. So on NUMA system, we set any
 878	 * node the kernel resides in as un-hotpluggable.
 879	 *
 880	 * Since on modern servers, one node could have double-digit
 881	 * gigabytes memory, we can assume the memory around the kernel
 882	 * image is also un-hotpluggable. So before SRAT is parsed, just
 883	 * allocate memory near the kernel image to try the best to keep
 884	 * the kernel away from hotpluggable memory.
 885	 */
 886	if (movable_node_is_enabled())
 887		memblock_set_bottom_up(true);
 888#endif
 889
 890	x86_report_nx();
 891
 892	apic_setup_apic_calls();
 
 893
 894	if (acpi_mps_check()) {
 895#ifdef CONFIG_X86_LOCAL_APIC
 896		apic_is_disabled = true;
 897#endif
 898		setup_clear_cpu_cap(X86_FEATURE_APIC);
 899	}
 900
 
 
 
 
 
 901	e820__reserve_setup_data();
 902	e820__finish_early_params();
 903
 904	if (efi_enabled(EFI_BOOT))
 905		efi_init();
 906
 907	reserve_ibft_region();
 908	x86_init.resources.dmi_setup();
 
 909
 910	/*
 911	 * VMware detection requires dmi to be available, so this
 912	 * needs to be done after dmi_setup(), for the boot CPU.
 913	 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
 914	 * called before cache_bp_init() for setting up MTRR state.
 915	 */
 916	init_hypervisor_platform();
 917
 918	tsc_early_init();
 919	x86_init.resources.probe_roms();
 920
 921	/* after parse_early_param, so could debug it */
 922	insert_resource(&iomem_resource, &code_resource);
 923	insert_resource(&iomem_resource, &rodata_resource);
 924	insert_resource(&iomem_resource, &data_resource);
 925	insert_resource(&iomem_resource, &bss_resource);
 926
 927	e820_add_kernel_range();
 928	trim_bios_range();
 929#ifdef CONFIG_X86_32
 930	if (ppro_with_ram_bug()) {
 931		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
 932				  E820_TYPE_RESERVED);
 933		e820__update_table(e820_table);
 934		printk(KERN_INFO "fixed physical RAM map:\n");
 935		e820__print_table("bad_ppro");
 936	}
 937#else
 938	early_gart_iommu_check();
 939#endif
 940
 941	/*
 942	 * partially used pages are not usable - thus
 943	 * we are rounding upwards:
 944	 */
 945	max_pfn = e820__end_of_ram_pfn();
 946
 947	/* update e820 for memory not covered by WB MTRRs */
 948	cache_bp_init();
 949	if (mtrr_trim_uncached_memory(max_pfn))
 950		max_pfn = e820__end_of_ram_pfn();
 951
 952	max_possible_pfn = max_pfn;
 953
 954	/*
 
 
 
 
 
 
 
 955	 * Define random base addresses for memory sections after max_pfn is
 956	 * defined and before each memory section base is used.
 957	 */
 958	kernel_randomize_memory();
 959
 960#ifdef CONFIG_X86_32
 961	/* max_low_pfn get updated here */
 962	find_low_pfn_range();
 963#else
 964	check_x2apic();
 965
 966	/* How many end-of-memory variables you have, grandma! */
 967	/* need this before calling reserve_initrd */
 968	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
 969		max_low_pfn = e820__end_of_low_ram_pfn();
 970	else
 971		max_low_pfn = max_pfn;
 972
 973	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 974#endif
 975
 976	/* Find and reserve MPTABLE area */
 977	x86_init.mpparse.find_mptable();
 
 
 
 
 978
 979	early_alloc_pgt_buf();
 980
 981	/*
 982	 * Need to conclude brk, before e820__memblock_setup()
 983	 * it could use memblock_find_in_range, could overlap with
 984	 * brk area.
 985	 */
 986	reserve_brk();
 987
 988	cleanup_highmap();
 989
 990	memblock_set_current_limit(ISA_END_ADDRESS);
 991	e820__memblock_setup();
 992
 993	/*
 994	 * Needs to run after memblock setup because it needs the physical
 995	 * memory size.
 996	 */
 997	mem_encrypt_setup_arch();
 998	cc_random_init();
 999
1000	efi_find_mirror();
1001	efi_esrt_init();
1002	efi_mokvar_table_init();
1003
1004	/*
1005	 * The EFI specification says that boot service code won't be
1006	 * called after ExitBootServices(). This is, in fact, a lie.
1007	 */
1008	efi_reserve_boot_services();
 
 
 
 
 
 
1009
1010	/* preallocate 4k for mptable mpc */
1011	e820__memblock_alloc_reserved_mpc_new();
1012
1013#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1014	setup_bios_corruption_check();
1015#endif
1016
1017#ifdef CONFIG_X86_32
1018	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1019			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1020#endif
1021
1022	/*
1023	 * Find free memory for the real mode trampoline and place it there. If
1024	 * there is not enough free memory under 1M, on EFI-enabled systems
1025	 * there will be additional attempt to reclaim the memory for the real
1026	 * mode trampoline at efi_free_boot_services().
1027	 *
1028	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1029	 * are known to corrupt low memory and several hundred kilobytes are not
1030	 * worth complex detection what memory gets clobbered. Windows does the
1031	 * same thing for very similar reasons.
1032	 *
1033	 * Moreover, on machines with SandyBridge graphics or in setups that use
1034	 * crashkernel the entire 1M is reserved anyway.
1035	 *
1036	 * Note the host kernel TDX also requires the first 1MB being reserved.
1037	 */
1038	x86_platform.realmode_reserve();
1039
1040	init_mem_mapping();
1041
1042	/*
1043	 * init_mem_mapping() relies on the early IDT page fault handling.
1044	 * Now either enable FRED or install the real page fault handler
1045	 * for 64-bit in the IDT.
1046	 */
1047	cpu_init_replace_early_idt();
1048
1049	/*
1050	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1051	 * with the current CR4 value.  This may not be necessary, but
1052	 * auditing all the early-boot CR4 manipulation would be needed to
1053	 * rule it out.
1054	 *
1055	 * Mask off features that don't work outside long mode (just
1056	 * PCIDE for now).
1057	 */
1058	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1059
1060	memblock_set_current_limit(get_max_mapped());
1061
1062	/*
1063	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1064	 */
1065
1066#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1067	if (init_ohci1394_dma_early)
1068		init_ohci1394_dma_on_all_controllers();
1069#endif
1070	/* Allocate bigger log buffer */
1071	setup_log_buf(1);
1072
1073	if (efi_enabled(EFI_BOOT)) {
1074		switch (boot_params.secure_boot) {
1075		case efi_secureboot_mode_disabled:
1076			pr_info("Secure boot disabled\n");
1077			break;
1078		case efi_secureboot_mode_enabled:
1079			pr_info("Secure boot enabled\n");
1080			break;
1081		default:
1082			pr_info("Secure boot could not be determined\n");
1083			break;
1084		}
1085	}
1086
1087	reserve_initrd();
1088
1089	acpi_table_upgrade();
1090	/* Look for ACPI tables and reserve memory occupied by them. */
1091	acpi_boot_table_init();
1092
1093	vsmp_init();
1094
1095	io_delay_init();
1096
1097	early_platform_quirks();
1098
1099	/* Some platforms need the APIC registered for NUMA configuration */
1100	early_acpi_boot_init();
1101	x86_init.mpparse.early_parse_smp_cfg();
 
1102
1103	x86_flattree_get_config();
1104
1105	initmem_init();
1106	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1107
1108	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1109		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1110
1111	/*
1112	 * Reserve memory for crash kernel after SRAT is parsed so that it
1113	 * won't consume hotpluggable memory.
1114	 */
1115	arch_reserve_crashkernel();
 
 
 
 
 
 
1116
 
1117	if (!early_xdbc_setup_hardware())
1118		early_xdbc_register_console();
1119
1120	x86_init.paging.pagetable_init();
1121
1122	kasan_init();
1123
1124	/*
1125	 * Sync back kernel address range.
1126	 *
1127	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1128	 * this call?
1129	 */
1130	sync_initial_page_table();
1131
1132	tboot_probe();
1133
1134	map_vsyscall();
1135
1136	x86_32_probe_apic();
1137
1138	early_quirks();
1139
1140	topology_apply_cmdline_limits_early();
1141
1142	/*
1143	 * Parse SMP configuration. Try ACPI first and then the platform
1144	 * specific parser.
1145	 */
1146	acpi_boot_init();
1147	x86_init.mpparse.parse_smp_cfg();
 
 
 
 
 
 
1148
1149	/* Last opportunity to detect and map the local APIC */
 
 
 
1150	init_apic_mappings();
1151
1152	topology_init_possible_cpus();
1153
1154	init_cpu_to_node();
1155	init_gi_nodes();
1156
1157	io_apic_init_mappings();
1158
1159	x86_init.hyper.guest_late_init();
1160
1161	e820__reserve_resources();
1162	e820__register_nosave_regions(max_pfn);
1163
1164	x86_init.resources.reserve_resources();
1165
1166	e820__setup_pci_gap();
1167
1168#ifdef CONFIG_VT
1169#if defined(CONFIG_VGA_CONSOLE)
1170	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1171		vgacon_register_screen(&screen_info);
 
 
1172#endif
1173#endif
1174	x86_init.oem.banner();
1175
1176	x86_init.timers.wallclock_init();
1177
1178	/*
1179	 * This needs to run before setup_local_APIC() which soft-disables the
1180	 * local APIC temporarily and that masks the thermal LVT interrupt,
1181	 * leading to softlockups on machines which have configured SMI
1182	 * interrupt delivery.
1183	 */
1184	therm_lvt_init();
1185
1186	mcheck_init();
1187
 
 
1188	register_refined_jiffies(CLOCK_TICK_RATE);
1189
1190#ifdef CONFIG_EFI
1191	if (efi_enabled(EFI_BOOT))
1192		efi_apply_memmap_quirks();
1193#endif
1194
1195	unwind_init();
1196}
1197
1198#ifdef CONFIG_X86_32
1199
1200static struct resource video_ram_resource = {
1201	.name	= "Video RAM area",
1202	.start	= 0xa0000,
1203	.end	= 0xbffff,
1204	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1205};
1206
1207void __init i386_reserve_resources(void)
1208{
1209	request_resource(&iomem_resource, &video_ram_resource);
1210	reserve_standard_io_resources();
1211}
1212
1213#endif /* CONFIG_X86_32 */
1214
1215static struct notifier_block kernel_offset_notifier = {
1216	.notifier_call = dump_kernel_offset
1217};
1218
1219static int __init register_kernel_offset_dumper(void)
1220{
1221	atomic_notifier_chain_register(&panic_notifier_list,
1222					&kernel_offset_notifier);
1223	return 0;
1224}
1225__initcall(register_kernel_offset_dumper);
1226
1227#ifdef CONFIG_HOTPLUG_CPU
1228bool arch_cpu_is_hotpluggable(int cpu)
1229{
1230	return cpu > 0;
 
 
 
1231}
1232#endif /* CONFIG_HOTPLUG_CPU */
v4.17
 
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *	David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/root_dev.h>
  38#include <linux/highmem.h>
  39#include <linux/export.h>
  40#include <linux/efi.h>
  41#include <linux/init.h>
  42#include <linux/edd.h>
 
  43#include <linux/iscsi_ibft.h>
  44#include <linux/nodemask.h>
  45#include <linux/kexec.h>
  46#include <linux/dmi.h>
  47#include <linux/pfn.h>
  48#include <linux/pci.h>
  49#include <asm/pci-direct.h>
  50#include <linux/init_ohci1394_dma.h>
  51#include <linux/kvm_para.h>
  52#include <linux/dma-contiguous.h>
  53#include <xen/xen.h>
 
 
  54
  55#include <linux/errno.h>
  56#include <linux/kernel.h>
  57#include <linux/stddef.h>
  58#include <linux/unistd.h>
  59#include <linux/ptrace.h>
  60#include <linux/user.h>
  61#include <linux/delay.h>
  62
  63#include <linux/kallsyms.h>
  64#include <linux/cpufreq.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/ctype.h>
  67#include <linux/uaccess.h>
  68
  69#include <linux/percpu.h>
  70#include <linux/crash_dump.h>
  71#include <linux/tboot.h>
  72#include <linux/jiffies.h>
  73#include <linux/mem_encrypt.h>
  74
  75#include <linux/usb/xhci-dbgp.h>
  76#include <video/edid.h>
  77
  78#include <asm/mtrr.h>
  79#include <asm/apic.h>
  80#include <asm/realmode.h>
  81#include <asm/e820/api.h>
  82#include <asm/mpspec.h>
  83#include <asm/setup.h>
  84#include <asm/efi.h>
  85#include <asm/timer.h>
  86#include <asm/i8259.h>
  87#include <asm/sections.h>
  88#include <asm/io_apic.h>
  89#include <asm/ist.h>
  90#include <asm/setup_arch.h>
  91#include <asm/bios_ebda.h>
  92#include <asm/cacheflush.h>
  93#include <asm/processor.h>
  94#include <asm/bugs.h>
  95#include <asm/kasan.h>
  96
  97#include <asm/vsyscall.h>
  98#include <asm/cpu.h>
  99#include <asm/desc.h>
 100#include <asm/dma.h>
 101#include <asm/iommu.h>
 102#include <asm/gart.h>
 103#include <asm/mmu_context.h>
 104#include <asm/proto.h>
 105
 106#include <asm/paravirt.h>
 107#include <asm/hypervisor.h>
 
 
 
 
 
 
 
 108#include <asm/olpc_ofw.h>
 109
 110#include <asm/percpu.h>
 111#include <asm/topology.h>
 112#include <asm/apicdef.h>
 113#include <asm/amd_nb.h>
 114#include <asm/mce.h>
 115#include <asm/alternative.h>
 116#include <asm/prom.h>
 117#include <asm/microcode.h>
 118#include <asm/kaslr.h>
 119#include <asm/unwind.h>
 
 
 120
 121/*
 122 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 123 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 124 *
 125 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
 126 * represented by pfn_mapped
 127 */
 128unsigned long max_low_pfn_mapped;
 129unsigned long max_pfn_mapped;
 130
 131#ifdef CONFIG_DMI
 132RESERVE_BRK(dmi_alloc, 65536);
 133#endif
 134
 135
 136static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 137unsigned long _brk_end = (unsigned long)__brk_base;
 138
 139struct boot_params boot_params;
 140
 141/*
 142 * Machine setup..
 
 
 143 */
 
 
 
 
 
 
 
 
 144static struct resource data_resource = {
 145	.name	= "Kernel data",
 146	.start	= 0,
 147	.end	= 0,
 148	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 149};
 150
 151static struct resource code_resource = {
 152	.name	= "Kernel code",
 153	.start	= 0,
 154	.end	= 0,
 155	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 156};
 157
 158static struct resource bss_resource = {
 159	.name	= "Kernel bss",
 160	.start	= 0,
 161	.end	= 0,
 162	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 163};
 164
 165
 166#ifdef CONFIG_X86_32
 167/* cpu data as detected by the assembly code in head_32.S */
 168struct cpuinfo_x86 new_cpu_data;
 169
 170/* common cpu data for all cpus */
 171struct cpuinfo_x86 boot_cpu_data __read_mostly;
 172EXPORT_SYMBOL(boot_cpu_data);
 173
 174unsigned int def_to_bigsmp;
 175
 176/* for MCA, but anyone else can use it if they want */
 177unsigned int machine_id;
 178unsigned int machine_submodel_id;
 179unsigned int BIOS_revision;
 180
 181struct apm_info apm_info;
 182EXPORT_SYMBOL(apm_info);
 183
 184#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 185	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 186struct ist_info ist_info;
 187EXPORT_SYMBOL(ist_info);
 188#else
 189struct ist_info ist_info;
 190#endif
 191
 192#else
 
 193struct cpuinfo_x86 boot_cpu_data __read_mostly;
 194EXPORT_SYMBOL(boot_cpu_data);
 195#endif
 196
 197
 198#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 199__visible unsigned long mmu_cr4_features __ro_after_init;
 200#else
 201__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 202#endif
 203
 
 
 
 
 
 204/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 205int bootloader_type, bootloader_version;
 206
 207/*
 208 * Setup options
 209 */
 210struct screen_info screen_info;
 211EXPORT_SYMBOL(screen_info);
 212struct edid_info edid_info;
 213EXPORT_SYMBOL_GPL(edid_info);
 214
 215extern int root_mountflags;
 216
 217unsigned long saved_video_mode;
 218
 219#define RAMDISK_IMAGE_START_MASK	0x07FF
 220#define RAMDISK_PROMPT_FLAG		0x8000
 221#define RAMDISK_LOAD_FLAG		0x4000
 222
 223static char __initdata command_line[COMMAND_LINE_SIZE];
 224#ifdef CONFIG_CMDLINE_BOOL
 225static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 
 226#endif
 227
 228#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 229struct edd edd;
 230#ifdef CONFIG_EDD_MODULE
 231EXPORT_SYMBOL(edd);
 232#endif
 233/**
 234 * copy_edd() - Copy the BIOS EDD information
 235 *              from boot_params into a safe place.
 236 *
 237 */
 238static inline void __init copy_edd(void)
 239{
 240     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 241	    sizeof(edd.mbr_signature));
 242     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 243     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 244     edd.edd_info_nr = boot_params.eddbuf_entries;
 245}
 246#else
 247static inline void __init copy_edd(void)
 248{
 249}
 250#endif
 251
 252void * __init extend_brk(size_t size, size_t align)
 253{
 254	size_t mask = align - 1;
 255	void *ret;
 256
 257	BUG_ON(_brk_start == 0);
 258	BUG_ON(align & mask);
 259
 260	_brk_end = (_brk_end + mask) & ~mask;
 261	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 262
 263	ret = (void *)_brk_end;
 264	_brk_end += size;
 265
 266	memset(ret, 0, size);
 267
 268	return ret;
 269}
 270
 271#ifdef CONFIG_X86_32
 272static void __init cleanup_highmap(void)
 273{
 274}
 275#endif
 276
 277static void __init reserve_brk(void)
 278{
 279	if (_brk_end > _brk_start)
 280		memblock_reserve(__pa_symbol(_brk_start),
 281				 _brk_end - _brk_start);
 282
 283	/* Mark brk area as locked down and no longer taking any
 284	   new allocations */
 285	_brk_start = 0;
 286}
 287
 288u64 relocated_ramdisk;
 289
 290#ifdef CONFIG_BLK_DEV_INITRD
 291
 292static u64 __init get_ramdisk_image(void)
 293{
 294	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 295
 296	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 297
 
 
 
 298	return ramdisk_image;
 299}
 300static u64 __init get_ramdisk_size(void)
 301{
 302	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 303
 304	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 305
 
 
 
 306	return ramdisk_size;
 307}
 308
 309static void __init relocate_initrd(void)
 310{
 311	/* Assume only end is not page aligned */
 312	u64 ramdisk_image = get_ramdisk_image();
 313	u64 ramdisk_size  = get_ramdisk_size();
 314	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 315
 316	/* We need to move the initrd down into directly mapped mem */
 317	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 318						   area_size, PAGE_SIZE);
 319
 320	if (!relocated_ramdisk)
 321		panic("Cannot find place for new RAMDISK of size %lld\n",
 322		      ramdisk_size);
 323
 324	/* Note: this includes all the mem currently occupied by
 325	   the initrd, we rely on that fact to keep the data intact. */
 326	memblock_reserve(relocated_ramdisk, area_size);
 327	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 328	initrd_end   = initrd_start + ramdisk_size;
 329	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 330	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 331
 332	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 333
 334	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 335		" [mem %#010llx-%#010llx]\n",
 336		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 337		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 338}
 339
 340static void __init early_reserve_initrd(void)
 341{
 342	/* Assume only end is not page aligned */
 343	u64 ramdisk_image = get_ramdisk_image();
 344	u64 ramdisk_size  = get_ramdisk_size();
 345	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 346
 347	if (!boot_params.hdr.type_of_loader ||
 348	    !ramdisk_image || !ramdisk_size)
 349		return;		/* No initrd provided by bootloader */
 350
 351	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 352}
 
 353static void __init reserve_initrd(void)
 354{
 355	/* Assume only end is not page aligned */
 356	u64 ramdisk_image = get_ramdisk_image();
 357	u64 ramdisk_size  = get_ramdisk_size();
 358	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 359	u64 mapped_size;
 360
 361	if (!boot_params.hdr.type_of_loader ||
 362	    !ramdisk_image || !ramdisk_size)
 363		return;		/* No initrd provided by bootloader */
 364
 365	initrd_start = 0;
 366
 367	mapped_size = memblock_mem_size(max_pfn_mapped);
 368	if (ramdisk_size >= (mapped_size>>1))
 369		panic("initrd too large to handle, "
 370		       "disabling initrd (%lld needed, %lld available)\n",
 371		       ramdisk_size, mapped_size>>1);
 372
 373	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 374			ramdisk_end - 1);
 375
 376	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 377				PFN_DOWN(ramdisk_end))) {
 378		/* All are mapped, easy case */
 379		initrd_start = ramdisk_image + PAGE_OFFSET;
 380		initrd_end = initrd_start + ramdisk_size;
 381		return;
 382	}
 383
 384	relocate_initrd();
 385
 386	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 387}
 388
 389#else
 390static void __init early_reserve_initrd(void)
 391{
 392}
 393static void __init reserve_initrd(void)
 394{
 395}
 396#endif /* CONFIG_BLK_DEV_INITRD */
 397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398static void __init parse_setup_data(void)
 399{
 400	struct setup_data *data;
 401	u64 pa_data, pa_next;
 402
 403	pa_data = boot_params.hdr.setup_data;
 404	while (pa_data) {
 405		u32 data_len, data_type;
 406
 407		data = early_memremap(pa_data, sizeof(*data));
 408		data_len = data->len + sizeof(struct setup_data);
 409		data_type = data->type;
 410		pa_next = data->next;
 411		early_memunmap(data, sizeof(*data));
 412
 413		switch (data_type) {
 414		case SETUP_E820_EXT:
 415			e820__memory_setup_extended(pa_data, data_len);
 416			break;
 417		case SETUP_DTB:
 418			add_dtb(pa_data);
 419			break;
 420		case SETUP_EFI:
 421			parse_efi_setup(pa_data, data_len);
 422			break;
 
 
 
 
 
 
 
 
 
 
 
 
 423		default:
 424			break;
 425		}
 426		pa_data = pa_next;
 427	}
 428}
 429
 430static void __init memblock_x86_reserve_range_setup_data(void)
 431{
 
 432	struct setup_data *data;
 433	u64 pa_data;
 
 434
 435	pa_data = boot_params.hdr.setup_data;
 436	while (pa_data) {
 437		data = early_memremap(pa_data, sizeof(*data));
 438		memblock_reserve(pa_data, sizeof(*data) + data->len);
 439		pa_data = data->next;
 440		early_memunmap(data, sizeof(*data));
 441	}
 442}
 443
 444/*
 445 * --------- Crashkernel reservation ------------------------------
 446 */
 447
 448#ifdef CONFIG_KEXEC_CORE
 449
 450/* 16M alignment for crash kernel regions */
 451#define CRASH_ALIGN		(16 << 20)
 
 
 
 
 
 
 452
 453/*
 454 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 455 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 456 * On 64bit, old kexec-tools need to under 896MiB.
 457 */
 458#ifdef CONFIG_X86_32
 459# define CRASH_ADDR_LOW_MAX	(512 << 20)
 460# define CRASH_ADDR_HIGH_MAX	(512 << 20)
 461#else
 462# define CRASH_ADDR_LOW_MAX	(896UL << 20)
 463# define CRASH_ADDR_HIGH_MAX	MAXMEM
 464#endif
 465
 466static int __init reserve_crashkernel_low(void)
 467{
 468#ifdef CONFIG_X86_64
 469	unsigned long long base, low_base = 0, low_size = 0;
 470	unsigned long total_low_mem;
 471	int ret;
 472
 473	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 474
 475	/* crashkernel=Y,low */
 476	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 477	if (ret) {
 478		/*
 479		 * two parts from lib/swiotlb.c:
 480		 * -swiotlb size: user-specified with swiotlb= or default.
 481		 *
 482		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 483		 * to 8M for other buffers that may need to stay low too. Also
 484		 * make sure we allocate enough extra low memory so that we
 485		 * don't run out of DMA buffers for 32-bit devices.
 486		 */
 487		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 488	} else {
 489		/* passed with crashkernel=0,low ? */
 490		if (!low_size)
 491			return 0;
 492	}
 493
 494	low_base = memblock_find_in_range(0, 1ULL << 32, low_size, CRASH_ALIGN);
 495	if (!low_base) {
 496		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 497		       (unsigned long)(low_size >> 20));
 498		return -ENOMEM;
 499	}
 500
 501	ret = memblock_reserve(low_base, low_size);
 502	if (ret) {
 503		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 504		return ret;
 505	}
 506
 507	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 508		(unsigned long)(low_size >> 20),
 509		(unsigned long)(low_base >> 20),
 510		(unsigned long)(total_low_mem >> 20));
 511
 512	crashk_low_res.start = low_base;
 513	crashk_low_res.end   = low_base + low_size - 1;
 514	insert_resource(&iomem_resource, &crashk_low_res);
 515#endif
 516	return 0;
 517}
 518
 519static void __init reserve_crashkernel(void)
 520{
 521	unsigned long long crash_size, crash_base, total_mem;
 
 522	bool high = false;
 523	int ret;
 524
 525	total_mem = memblock_phys_mem_size();
 
 526
 527	/* crashkernel=XM */
 528	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 529	if (ret != 0 || crash_size <= 0) {
 530		/* crashkernel=X,high */
 531		ret = parse_crashkernel_high(boot_command_line, total_mem,
 532					     &crash_size, &crash_base);
 533		if (ret != 0 || crash_size <= 0)
 534			return;
 535		high = true;
 536	}
 537
 538	if (xen_pv_domain()) {
 539		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 540		return;
 541	}
 542
 543	/* 0 means: find the address automatically */
 544	if (crash_base <= 0) {
 545		/*
 546		 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 547		 * as old kexec-tools loads bzImage below that, unless
 548		 * "crashkernel=size[KMG],high" is specified.
 549		 */
 550		crash_base = memblock_find_in_range(CRASH_ALIGN,
 551						    high ? CRASH_ADDR_HIGH_MAX
 552							 : CRASH_ADDR_LOW_MAX,
 553						    crash_size, CRASH_ALIGN);
 554		if (!crash_base) {
 555			pr_info("crashkernel reservation failed - No suitable area found.\n");
 556			return;
 557		}
 558
 559	} else {
 560		unsigned long long start;
 561
 562		start = memblock_find_in_range(crash_base,
 563					       crash_base + crash_size,
 564					       crash_size, 1 << 20);
 565		if (start != crash_base) {
 566			pr_info("crashkernel reservation failed - memory is in use.\n");
 567			return;
 568		}
 569	}
 570	ret = memblock_reserve(crash_base, crash_size);
 571	if (ret) {
 572		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 573		return;
 574	}
 575
 576	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 577		memblock_free(crash_base, crash_size);
 578		return;
 579	}
 580
 581	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 582		(unsigned long)(crash_size >> 20),
 583		(unsigned long)(crash_base >> 20),
 584		(unsigned long)(total_mem >> 20));
 585
 586	crashk_res.start = crash_base;
 587	crashk_res.end   = crash_base + crash_size - 1;
 588	insert_resource(&iomem_resource, &crashk_res);
 589}
 590#else
 591static void __init reserve_crashkernel(void)
 592{
 593}
 594#endif
 595
 596static struct resource standard_io_resources[] = {
 597	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 598		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 599	{ .name = "pic1", .start = 0x20, .end = 0x21,
 600		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 601	{ .name = "timer0", .start = 0x40, .end = 0x43,
 602		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 603	{ .name = "timer1", .start = 0x50, .end = 0x53,
 604		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 605	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 606		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 607	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 608		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 609	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 610		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 611	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 612		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 613	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 614		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 615	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 616		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 617};
 618
 619void __init reserve_standard_io_resources(void)
 620{
 621	int i;
 622
 623	/* request I/O space for devices used on all i[345]86 PCs */
 624	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 625		request_resource(&ioport_resource, &standard_io_resources[i]);
 626
 627}
 628
 629static __init void reserve_ibft_region(void)
 630{
 631	unsigned long addr, size = 0;
 632
 633	addr = find_ibft_region(&size);
 634
 635	if (size)
 636		memblock_reserve(addr, size);
 637}
 638
 639static bool __init snb_gfx_workaround_needed(void)
 640{
 641#ifdef CONFIG_PCI
 642	int i;
 643	u16 vendor, devid;
 644	static const __initconst u16 snb_ids[] = {
 645		0x0102,
 646		0x0112,
 647		0x0122,
 648		0x0106,
 649		0x0116,
 650		0x0126,
 651		0x010a,
 652	};
 653
 654	/* Assume no if something weird is going on with PCI */
 655	if (!early_pci_allowed())
 656		return false;
 657
 658	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 659	if (vendor != 0x8086)
 660		return false;
 661
 662	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 663	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 664		if (devid == snb_ids[i])
 665			return true;
 666#endif
 667
 668	return false;
 669}
 670
 671/*
 672 * Sandy Bridge graphics has trouble with certain ranges, exclude
 673 * them from allocation.
 674 */
 675static void __init trim_snb_memory(void)
 676{
 677	static const __initconst unsigned long bad_pages[] = {
 678		0x20050000,
 679		0x20110000,
 680		0x20130000,
 681		0x20138000,
 682		0x40004000,
 683	};
 684	int i;
 685
 686	if (!snb_gfx_workaround_needed())
 687		return;
 688
 689	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 690
 691	/*
 692	 * Reserve all memory below the 1 MB mark that has not
 693	 * already been reserved.
 
 
 
 
 
 
 694	 */
 695	memblock_reserve(0, 1<<20);
 696	
 697	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 698		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 699			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 700			       bad_pages[i]);
 701	}
 702}
 703
 704/*
 705 * Here we put platform-specific memory range workarounds, i.e.
 706 * memory known to be corrupt or otherwise in need to be reserved on
 707 * specific platforms.
 708 *
 709 * If this gets used more widely it could use a real dispatch mechanism.
 710 */
 711static void __init trim_platform_memory_ranges(void)
 712{
 713	trim_snb_memory();
 714}
 715
 716static void __init trim_bios_range(void)
 717{
 718	/*
 719	 * A special case is the first 4Kb of memory;
 720	 * This is a BIOS owned area, not kernel ram, but generally
 721	 * not listed as such in the E820 table.
 722	 *
 723	 * This typically reserves additional memory (64KiB by default)
 724	 * since some BIOSes are known to corrupt low memory.  See the
 725	 * Kconfig help text for X86_RESERVE_LOW.
 726	 */
 727	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 728
 729	/*
 730	 * special case: Some BIOSen report the PC BIOS
 731	 * area (640->1Mb) as ram even though it is not.
 732	 * take them out.
 733	 */
 734	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 735
 736	e820__update_table(e820_table);
 737}
 738
 739/* called before trim_bios_range() to spare extra sanitize */
 740static void __init e820_add_kernel_range(void)
 741{
 742	u64 start = __pa_symbol(_text);
 743	u64 size = __pa_symbol(_end) - start;
 744
 745	/*
 746	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 747	 * attempt to fix it by adding the range. We may have a confused BIOS,
 748	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 749	 * exclude kernel range. If we really are running on top non-RAM,
 750	 * we will crash later anyways.
 751	 */
 752	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 753		return;
 754
 755	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 756	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 757	e820__range_add(start, size, E820_TYPE_RAM);
 758}
 759
 760static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 761
 762static int __init parse_reservelow(char *p)
 763{
 764	unsigned long long size;
 
 
 
 
 
 
 
 765
 766	if (!p)
 767		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 768
 769	size = memparse(p, &p);
 770
 771	if (size < 4096)
 772		size = 4096;
 773
 774	if (size > 640*1024)
 775		size = 640*1024;
 776
 777	reserve_low = size;
 778
 779	return 0;
 780}
 781
 782early_param("reservelow", parse_reservelow);
 783
 784static void __init trim_low_memory_range(void)
 785{
 786	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 787}
 788	
 789/*
 790 * Dump out kernel offset information on panic.
 791 */
 792static int
 793dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 794{
 795	if (kaslr_enabled()) {
 796		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 797			 kaslr_offset(),
 798			 __START_KERNEL,
 799			 __START_KERNEL_map,
 800			 MODULES_VADDR-1);
 801	} else {
 802		pr_emerg("Kernel Offset: disabled\n");
 803	}
 804
 805	return 0;
 806}
 807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808/*
 809 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 810 * passed the efi memmap, systab, etc., so we should use these data structures
 811 * for initialization.  Note, the efi init code path is determined by the
 812 * global efi_enabled. This allows the same kernel image to be used on existing
 813 * systems (with a traditional BIOS) as well as on EFI systems.
 814 */
 815/*
 816 * setup_arch - architecture-specific boot-time initializations
 817 *
 818 * Note: On x86_64, fixmaps are ready for use even before this is called.
 819 */
 820
 821void __init setup_arch(char **cmdline_p)
 822{
 823	memblock_reserve(__pa_symbol(_text),
 824			 (unsigned long)__bss_stop - (unsigned long)_text);
 825
 826	early_reserve_initrd();
 827
 828	/*
 829	 * At this point everything still needed from the boot loader
 830	 * or BIOS or kernel text should be early reserved or marked not
 831	 * RAM in e820. All other memory is free game.
 832	 */
 833
 834#ifdef CONFIG_X86_32
 835	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 836
 837	/*
 838	 * copy kernel address range established so far and switch
 839	 * to the proper swapper page table
 840	 */
 841	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 842			initial_page_table + KERNEL_PGD_BOUNDARY,
 843			KERNEL_PGD_PTRS);
 844
 845	load_cr3(swapper_pg_dir);
 846	/*
 847	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 848	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 849	 * will not flush anything because the cpu quirk which clears
 850	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 851	 * load_cr3() above the TLB has been flushed already. The
 852	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 853	 * so proper operation is guaranteed.
 854	 */
 855	__flush_tlb_all();
 856#else
 857	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 858	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 859#endif
 860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861	/*
 862	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 863	 * reserve_top(), so do this before touching the ioremap area.
 864	 */
 865	olpc_ofw_detect();
 866
 867	idt_setup_early_traps();
 868	early_cpu_init();
 
 
 869	early_ioremap_init();
 870
 871	setup_olpc_ofw_pgd();
 872
 873	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 874	screen_info = boot_params.screen_info;
 875	edid_info = boot_params.edid_info;
 876#ifdef CONFIG_X86_32
 877	apm_info.bios = boot_params.apm_bios_info;
 878	ist_info = boot_params.ist_info;
 879#endif
 880	saved_video_mode = boot_params.hdr.vid_mode;
 881	bootloader_type = boot_params.hdr.type_of_loader;
 882	if ((bootloader_type >> 4) == 0xe) {
 883		bootloader_type &= 0xf;
 884		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 885	}
 886	bootloader_version  = bootloader_type & 0xf;
 887	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 888
 889#ifdef CONFIG_BLK_DEV_RAM
 890	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 891	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 892	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 893#endif
 894#ifdef CONFIG_EFI
 895	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 896		     EFI32_LOADER_SIGNATURE, 4)) {
 897		set_bit(EFI_BOOT, &efi.flags);
 898	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 899		     EFI64_LOADER_SIGNATURE, 4)) {
 900		set_bit(EFI_BOOT, &efi.flags);
 901		set_bit(EFI_64BIT, &efi.flags);
 902	}
 903#endif
 904
 905	x86_init.oem.arch_setup();
 906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 908	e820__memory_setup();
 909	parse_setup_data();
 910
 911	copy_edd();
 912
 913	if (!boot_params.hdr.root_flags)
 914		root_mountflags &= ~MS_RDONLY;
 915	init_mm.start_code = (unsigned long) _text;
 916	init_mm.end_code = (unsigned long) _etext;
 917	init_mm.end_data = (unsigned long) _edata;
 918	init_mm.brk = _brk_end;
 919
 920	mpx_mm_init(&init_mm);
 921
 922	code_resource.start = __pa_symbol(_text);
 923	code_resource.end = __pa_symbol(_etext)-1;
 924	data_resource.start = __pa_symbol(_etext);
 
 
 925	data_resource.end = __pa_symbol(_edata)-1;
 926	bss_resource.start = __pa_symbol(__bss_start);
 927	bss_resource.end = __pa_symbol(__bss_stop)-1;
 928
 929#ifdef CONFIG_CMDLINE_BOOL
 930#ifdef CONFIG_CMDLINE_OVERRIDE
 931	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 932#else
 933	if (builtin_cmdline[0]) {
 934		/* append boot loader cmdline to builtin */
 935		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 936		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 937		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 938	}
 939#endif
 940#endif
 941
 942	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 943	*cmdline_p = command_line;
 944
 945	/*
 946	 * x86_configure_nx() is called before parse_early_param() to detect
 947	 * whether hardware doesn't support NX (so that the early EHCI debug
 948	 * console setup can safely call set_fixmap()). It may then be called
 949	 * again from within noexec_setup() during parsing early parameters
 950	 * to honor the respective command line option.
 951	 */
 952	x86_configure_nx();
 953
 954	parse_early_param();
 955
 956	if (efi_enabled(EFI_BOOT))
 957		efi_memblock_x86_reserve_range();
 
 958#ifdef CONFIG_MEMORY_HOTPLUG
 959	/*
 960	 * Memory used by the kernel cannot be hot-removed because Linux
 961	 * cannot migrate the kernel pages. When memory hotplug is
 962	 * enabled, we should prevent memblock from allocating memory
 963	 * for the kernel.
 964	 *
 965	 * ACPI SRAT records all hotpluggable memory ranges. But before
 966	 * SRAT is parsed, we don't know about it.
 967	 *
 968	 * The kernel image is loaded into memory at very early time. We
 969	 * cannot prevent this anyway. So on NUMA system, we set any
 970	 * node the kernel resides in as un-hotpluggable.
 971	 *
 972	 * Since on modern servers, one node could have double-digit
 973	 * gigabytes memory, we can assume the memory around the kernel
 974	 * image is also un-hotpluggable. So before SRAT is parsed, just
 975	 * allocate memory near the kernel image to try the best to keep
 976	 * the kernel away from hotpluggable memory.
 977	 */
 978	if (movable_node_is_enabled())
 979		memblock_set_bottom_up(true);
 980#endif
 981
 982	x86_report_nx();
 983
 984	/* after early param, so could get panic from serial */
 985	memblock_x86_reserve_range_setup_data();
 986
 987	if (acpi_mps_check()) {
 988#ifdef CONFIG_X86_LOCAL_APIC
 989		disable_apic = 1;
 990#endif
 991		setup_clear_cpu_cap(X86_FEATURE_APIC);
 992	}
 993
 994#ifdef CONFIG_PCI
 995	if (pci_early_dump_regs)
 996		early_dump_pci_devices();
 997#endif
 998
 999	e820__reserve_setup_data();
1000	e820__finish_early_params();
1001
1002	if (efi_enabled(EFI_BOOT))
1003		efi_init();
1004
1005	dmi_scan_machine();
1006	dmi_memdev_walk();
1007	dmi_set_dump_stack_arch_desc();
1008
1009	/*
1010	 * VMware detection requires dmi to be available, so this
1011	 * needs to be done after dmi_scan_machine(), for the boot CPU.
 
 
1012	 */
1013	init_hypervisor_platform();
1014
 
1015	x86_init.resources.probe_roms();
1016
1017	/* after parse_early_param, so could debug it */
1018	insert_resource(&iomem_resource, &code_resource);
 
1019	insert_resource(&iomem_resource, &data_resource);
1020	insert_resource(&iomem_resource, &bss_resource);
1021
1022	e820_add_kernel_range();
1023	trim_bios_range();
1024#ifdef CONFIG_X86_32
1025	if (ppro_with_ram_bug()) {
1026		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
1027				  E820_TYPE_RESERVED);
1028		e820__update_table(e820_table);
1029		printk(KERN_INFO "fixed physical RAM map:\n");
1030		e820__print_table("bad_ppro");
1031	}
1032#else
1033	early_gart_iommu_check();
1034#endif
1035
1036	/*
1037	 * partially used pages are not usable - thus
1038	 * we are rounding upwards:
1039	 */
1040	max_pfn = e820__end_of_ram_pfn();
1041
1042	/* update e820 for memory not covered by WB MTRRs */
1043	mtrr_bp_init();
1044	if (mtrr_trim_uncached_memory(max_pfn))
1045		max_pfn = e820__end_of_ram_pfn();
1046
1047	max_possible_pfn = max_pfn;
1048
1049	/*
1050	 * This call is required when the CPU does not support PAT. If
1051	 * mtrr_bp_init() invoked it already via pat_init() the call has no
1052	 * effect.
1053	 */
1054	init_cache_modes();
1055
1056	/*
1057	 * Define random base addresses for memory sections after max_pfn is
1058	 * defined and before each memory section base is used.
1059	 */
1060	kernel_randomize_memory();
1061
1062#ifdef CONFIG_X86_32
1063	/* max_low_pfn get updated here */
1064	find_low_pfn_range();
1065#else
1066	check_x2apic();
1067
1068	/* How many end-of-memory variables you have, grandma! */
1069	/* need this before calling reserve_initrd */
1070	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1071		max_low_pfn = e820__end_of_low_ram_pfn();
1072	else
1073		max_low_pfn = max_pfn;
1074
1075	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1076#endif
1077
1078	/*
1079	 * Find and reserve possible boot-time SMP configuration:
1080	 */
1081	find_smp_config();
1082
1083	reserve_ibft_region();
1084
1085	early_alloc_pgt_buf();
1086
1087	/*
1088	 * Need to conclude brk, before e820__memblock_setup()
1089	 *  it could use memblock_find_in_range, could overlap with
1090	 *  brk area.
1091	 */
1092	reserve_brk();
1093
1094	cleanup_highmap();
1095
1096	memblock_set_current_limit(ISA_END_ADDRESS);
1097	e820__memblock_setup();
1098
1099	reserve_bios_regions();
 
 
 
 
 
 
 
 
 
1100
1101	if (efi_enabled(EFI_MEMMAP)) {
1102		efi_fake_memmap();
1103		efi_find_mirror();
1104		efi_esrt_init();
1105
1106		/*
1107		 * The EFI specification says that boot service code won't be
1108		 * called after ExitBootServices(). This is, in fact, a lie.
1109		 */
1110		efi_reserve_boot_services();
1111	}
1112
1113	/* preallocate 4k for mptable mpc */
1114	e820__memblock_alloc_reserved_mpc_new();
1115
1116#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1117	setup_bios_corruption_check();
1118#endif
1119
1120#ifdef CONFIG_X86_32
1121	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1122			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1123#endif
1124
1125	reserve_real_mode();
1126
1127	trim_platform_memory_ranges();
1128	trim_low_memory_range();
 
 
 
 
 
 
 
 
 
 
 
 
 
1129
1130	init_mem_mapping();
1131
1132	idt_setup_early_pf();
 
 
 
 
 
1133
1134	/*
1135	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1136	 * with the current CR4 value.  This may not be necessary, but
1137	 * auditing all the early-boot CR4 manipulation would be needed to
1138	 * rule it out.
1139	 *
1140	 * Mask off features that don't work outside long mode (just
1141	 * PCIDE for now).
1142	 */
1143	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1144
1145	memblock_set_current_limit(get_max_mapped());
1146
1147	/*
1148	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1149	 */
1150
1151#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1152	if (init_ohci1394_dma_early)
1153		init_ohci1394_dma_on_all_controllers();
1154#endif
1155	/* Allocate bigger log buffer */
1156	setup_log_buf(1);
1157
1158	if (efi_enabled(EFI_BOOT)) {
1159		switch (boot_params.secure_boot) {
1160		case efi_secureboot_mode_disabled:
1161			pr_info("Secure boot disabled\n");
1162			break;
1163		case efi_secureboot_mode_enabled:
1164			pr_info("Secure boot enabled\n");
1165			break;
1166		default:
1167			pr_info("Secure boot could not be determined\n");
1168			break;
1169		}
1170	}
1171
1172	reserve_initrd();
1173
1174	acpi_table_upgrade();
 
 
1175
1176	vsmp_init();
1177
1178	io_delay_init();
1179
1180	early_platform_quirks();
1181
1182	/*
1183	 * Parse the ACPI tables for possible boot-time SMP configuration.
1184	 */
1185	acpi_boot_table_init();
1186
1187	early_acpi_boot_init();
1188
1189	initmem_init();
1190	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1191
 
 
 
1192	/*
1193	 * Reserve memory for crash kernel after SRAT is parsed so that it
1194	 * won't consume hotpluggable memory.
1195	 */
1196	reserve_crashkernel();
1197
1198	memblock_find_dma_reserve();
1199
1200#ifdef CONFIG_KVM_GUEST
1201	kvmclock_init();
1202#endif
1203
1204	tsc_early_delay_calibrate();
1205	if (!early_xdbc_setup_hardware())
1206		early_xdbc_register_console();
1207
1208	x86_init.paging.pagetable_init();
1209
1210	kasan_init();
1211
1212	/*
1213	 * Sync back kernel address range.
1214	 *
1215	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1216	 * this call?
1217	 */
1218	sync_initial_page_table();
1219
1220	tboot_probe();
1221
1222	map_vsyscall();
1223
1224	generic_apic_probe();
1225
1226	early_quirks();
1227
 
 
1228	/*
1229	 * Read APIC and some other early information from ACPI tables.
 
1230	 */
1231	acpi_boot_init();
1232	sfi_init();
1233	x86_dtb_init();
1234
1235	/*
1236	 * get boot-time SMP configuration:
1237	 */
1238	get_smp_config();
1239
1240	/*
1241	 * Systems w/o ACPI and mptables might not have it mapped the local
1242	 * APIC yet, but prefill_possible_map() might need to access it.
1243	 */
1244	init_apic_mappings();
1245
1246	prefill_possible_map();
1247
1248	init_cpu_to_node();
 
1249
1250	io_apic_init_mappings();
1251
1252	x86_init.hyper.guest_late_init();
1253
1254	e820__reserve_resources();
1255	e820__register_nosave_regions(max_low_pfn);
1256
1257	x86_init.resources.reserve_resources();
1258
1259	e820__setup_pci_gap();
1260
1261#ifdef CONFIG_VT
1262#if defined(CONFIG_VGA_CONSOLE)
1263	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1264		conswitchp = &vga_con;
1265#elif defined(CONFIG_DUMMY_CONSOLE)
1266	conswitchp = &dummy_con;
1267#endif
1268#endif
1269	x86_init.oem.banner();
1270
1271	x86_init.timers.wallclock_init();
1272
 
 
 
 
 
 
 
 
1273	mcheck_init();
1274
1275	arch_init_ideal_nops();
1276
1277	register_refined_jiffies(CLOCK_TICK_RATE);
1278
1279#ifdef CONFIG_EFI
1280	if (efi_enabled(EFI_BOOT))
1281		efi_apply_memmap_quirks();
1282#endif
1283
1284	unwind_init();
1285}
1286
1287#ifdef CONFIG_X86_32
1288
1289static struct resource video_ram_resource = {
1290	.name	= "Video RAM area",
1291	.start	= 0xa0000,
1292	.end	= 0xbffff,
1293	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1294};
1295
1296void __init i386_reserve_resources(void)
1297{
1298	request_resource(&iomem_resource, &video_ram_resource);
1299	reserve_standard_io_resources();
1300}
1301
1302#endif /* CONFIG_X86_32 */
1303
1304static struct notifier_block kernel_offset_notifier = {
1305	.notifier_call = dump_kernel_offset
1306};
1307
1308static int __init register_kernel_offset_dumper(void)
1309{
1310	atomic_notifier_chain_register(&panic_notifier_list,
1311					&kernel_offset_notifier);
1312	return 0;
1313}
1314__initcall(register_kernel_offset_dumper);
1315
1316void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
 
1317{
1318	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1319		return;
1320
1321	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1322}