Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * AMD SVM support
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   8 *
   9 * Authors:
  10 *   Yaniv Kamay  <yaniv@qumranet.com>
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *
  13 * This work is licensed under the terms of the GNU GPL, version 2.  See
  14 * the COPYING file in the top-level directory.
  15 *
  16 */
  17
  18#define pr_fmt(fmt) "SVM: " fmt
  19
  20#include <linux/kvm_host.h>
  21
  22#include "irq.h"
  23#include "mmu.h"
  24#include "kvm_cache_regs.h"
  25#include "x86.h"
  26#include "cpuid.h"
  27#include "pmu.h"
  28
  29#include <linux/module.h>
  30#include <linux/mod_devicetable.h>
  31#include <linux/kernel.h>
  32#include <linux/vmalloc.h>
  33#include <linux/highmem.h>
  34#include <linux/sched.h>
  35#include <linux/trace_events.h>
  36#include <linux/slab.h>
  37#include <linux/amd-iommu.h>
  38#include <linux/hashtable.h>
  39
  40#include <asm/apic.h>
  41#include <asm/perf_event.h>
  42#include <asm/tlbflush.h>
  43#include <asm/desc.h>
  44#include <asm/debugreg.h>
  45#include <asm/kvm_para.h>
  46#include <asm/irq_remapping.h>
  47
  48#include <asm/virtext.h>
  49#include "trace.h"
  50
  51#define __ex(x) __kvm_handle_fault_on_reboot(x)
  52
  53MODULE_AUTHOR("Qumranet");
  54MODULE_LICENSE("GPL");
  55
  56static const struct x86_cpu_id svm_cpu_id[] = {
  57	X86_FEATURE_MATCH(X86_FEATURE_SVM),
  58	{}
  59};
  60MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
  61
  62#define IOPM_ALLOC_ORDER 2
  63#define MSRPM_ALLOC_ORDER 1
  64
  65#define SEG_TYPE_LDT 2
  66#define SEG_TYPE_BUSY_TSS16 3
  67
  68#define SVM_FEATURE_NPT            (1 <<  0)
  69#define SVM_FEATURE_LBRV           (1 <<  1)
  70#define SVM_FEATURE_SVML           (1 <<  2)
  71#define SVM_FEATURE_NRIP           (1 <<  3)
  72#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  73#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  74#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  75#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  76#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  77
  78#define SVM_AVIC_DOORBELL	0xc001011b
  79
  80#define NESTED_EXIT_HOST	0	/* Exit handled on host level */
  81#define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
  82#define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */
  83
  84#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  85
  86#define TSC_RATIO_RSVD          0xffffff0000000000ULL
  87#define TSC_RATIO_MIN		0x0000000000000001ULL
  88#define TSC_RATIO_MAX		0x000000ffffffffffULL
  89
  90#define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF)
  91
  92/*
  93 * 0xff is broadcast, so the max index allowed for physical APIC ID
  94 * table is 0xfe.  APIC IDs above 0xff are reserved.
  95 */
  96#define AVIC_MAX_PHYSICAL_ID_COUNT	255
  97
  98#define AVIC_UNACCEL_ACCESS_WRITE_MASK		1
  99#define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0
 100#define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF
 101
 102/* AVIC GATAG is encoded using VM and VCPU IDs */
 103#define AVIC_VCPU_ID_BITS		8
 104#define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1)
 105
 106#define AVIC_VM_ID_BITS			24
 107#define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS)
 108#define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1)
 109
 110#define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
 111						(y & AVIC_VCPU_ID_MASK))
 112#define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
 113#define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
 114
 115static bool erratum_383_found __read_mostly;
 116
 117static const u32 host_save_user_msrs[] = {
 118#ifdef CONFIG_X86_64
 119	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
 120	MSR_FS_BASE,
 121#endif
 122	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 123	MSR_TSC_AUX,
 124};
 125
 126#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
 127
 128struct kvm_vcpu;
 129
 130struct nested_state {
 131	struct vmcb *hsave;
 132	u64 hsave_msr;
 133	u64 vm_cr_msr;
 134	u64 vmcb;
 135
 136	/* These are the merged vectors */
 137	u32 *msrpm;
 138
 139	/* gpa pointers to the real vectors */
 140	u64 vmcb_msrpm;
 141	u64 vmcb_iopm;
 142
 143	/* A VMEXIT is required but not yet emulated */
 144	bool exit_required;
 145
 146	/* cache for intercepts of the guest */
 147	u32 intercept_cr;
 148	u32 intercept_dr;
 149	u32 intercept_exceptions;
 150	u64 intercept;
 151
 152	/* Nested Paging related state */
 153	u64 nested_cr3;
 154};
 155
 156#define MSRPM_OFFSETS	16
 157static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 158
 159/*
 160 * Set osvw_len to higher value when updated Revision Guides
 161 * are published and we know what the new status bits are
 162 */
 163static uint64_t osvw_len = 4, osvw_status;
 164
 165struct vcpu_svm {
 166	struct kvm_vcpu vcpu;
 167	struct vmcb *vmcb;
 168	unsigned long vmcb_pa;
 169	struct svm_cpu_data *svm_data;
 170	uint64_t asid_generation;
 171	uint64_t sysenter_esp;
 172	uint64_t sysenter_eip;
 173	uint64_t tsc_aux;
 174
 175	u64 next_rip;
 176
 177	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
 178	struct {
 179		u16 fs;
 180		u16 gs;
 181		u16 ldt;
 182		u64 gs_base;
 183	} host;
 184
 185	u32 *msrpm;
 186
 187	ulong nmi_iret_rip;
 188
 189	struct nested_state nested;
 190
 191	bool nmi_singlestep;
 192
 193	unsigned int3_injected;
 194	unsigned long int3_rip;
 195	u32 apf_reason;
 196
 197	/* cached guest cpuid flags for faster access */
 198	bool nrips_enabled	: 1;
 199
 200	u32 ldr_reg;
 201	struct page *avic_backing_page;
 202	u64 *avic_physical_id_cache;
 203	bool avic_is_running;
 204
 205	/*
 206	 * Per-vcpu list of struct amd_svm_iommu_ir:
 207	 * This is used mainly to store interrupt remapping information used
 208	 * when update the vcpu affinity. This avoids the need to scan for
 209	 * IRTE and try to match ga_tag in the IOMMU driver.
 210	 */
 211	struct list_head ir_list;
 212	spinlock_t ir_list_lock;
 213};
 214
 215/*
 216 * This is a wrapper of struct amd_iommu_ir_data.
 217 */
 218struct amd_svm_iommu_ir {
 219	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
 220	void *data;		/* Storing pointer to struct amd_ir_data */
 221};
 222
 223#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK	(0xFF)
 224#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK		(1 << 31)
 225
 226#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK	(0xFFULL)
 227#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK	(0xFFFFFFFFFFULL << 12)
 228#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK		(1ULL << 62)
 229#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK		(1ULL << 63)
 230
 231static DEFINE_PER_CPU(u64, current_tsc_ratio);
 232#define TSC_RATIO_DEFAULT	0x0100000000ULL
 233
 234#define MSR_INVALID			0xffffffffU
 235
 236static const struct svm_direct_access_msrs {
 237	u32 index;   /* Index of the MSR */
 238	bool always; /* True if intercept is always on */
 239} direct_access_msrs[] = {
 240	{ .index = MSR_STAR,				.always = true  },
 241	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
 242#ifdef CONFIG_X86_64
 243	{ .index = MSR_GS_BASE,				.always = true  },
 244	{ .index = MSR_FS_BASE,				.always = true  },
 245	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
 246	{ .index = MSR_LSTAR,				.always = true  },
 247	{ .index = MSR_CSTAR,				.always = true  },
 248	{ .index = MSR_SYSCALL_MASK,			.always = true  },
 249#endif
 250	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
 251	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
 252	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
 253	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
 254	{ .index = MSR_INVALID,				.always = false },
 255};
 256
 257/* enable NPT for AMD64 and X86 with PAE */
 258#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 259static bool npt_enabled = true;
 260#else
 261static bool npt_enabled;
 262#endif
 263
 264/* allow nested paging (virtualized MMU) for all guests */
 265static int npt = true;
 266module_param(npt, int, S_IRUGO);
 267
 268/* allow nested virtualization in KVM/SVM */
 269static int nested = true;
 270module_param(nested, int, S_IRUGO);
 271
 272/* enable / disable AVIC */
 273static int avic;
 274#ifdef CONFIG_X86_LOCAL_APIC
 275module_param(avic, int, S_IRUGO);
 276#endif
 277
 278/* AVIC VM ID bit masks and lock */
 279static DECLARE_BITMAP(avic_vm_id_bitmap, AVIC_VM_ID_NR);
 280static DEFINE_SPINLOCK(avic_vm_id_lock);
 281
 282static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
 283static void svm_flush_tlb(struct kvm_vcpu *vcpu);
 284static void svm_complete_interrupts(struct vcpu_svm *svm);
 285
 286static int nested_svm_exit_handled(struct vcpu_svm *svm);
 287static int nested_svm_intercept(struct vcpu_svm *svm);
 288static int nested_svm_vmexit(struct vcpu_svm *svm);
 289static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 290				      bool has_error_code, u32 error_code);
 291
 292enum {
 293	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
 294			    pause filter count */
 295	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
 296	VMCB_ASID,	 /* ASID */
 297	VMCB_INTR,	 /* int_ctl, int_vector */
 298	VMCB_NPT,        /* npt_en, nCR3, gPAT */
 299	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
 300	VMCB_DR,         /* DR6, DR7 */
 301	VMCB_DT,         /* GDT, IDT */
 302	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
 303	VMCB_CR2,        /* CR2 only */
 304	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
 305	VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
 306			  * AVIC PHYSICAL_TABLE pointer,
 307			  * AVIC LOGICAL_TABLE pointer
 308			  */
 309	VMCB_DIRTY_MAX,
 310};
 311
 312/* TPR and CR2 are always written before VMRUN */
 313#define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
 314
 315#define VMCB_AVIC_APIC_BAR_MASK		0xFFFFFFFFFF000ULL
 316
 317static inline void mark_all_dirty(struct vmcb *vmcb)
 318{
 319	vmcb->control.clean = 0;
 320}
 321
 322static inline void mark_all_clean(struct vmcb *vmcb)
 323{
 324	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
 325			       & ~VMCB_ALWAYS_DIRTY_MASK;
 326}
 327
 328static inline void mark_dirty(struct vmcb *vmcb, int bit)
 329{
 330	vmcb->control.clean &= ~(1 << bit);
 331}
 332
 333static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
 334{
 335	return container_of(vcpu, struct vcpu_svm, vcpu);
 336}
 337
 338static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
 339{
 340	svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
 341	mark_dirty(svm->vmcb, VMCB_AVIC);
 342}
 343
 344static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
 345{
 346	struct vcpu_svm *svm = to_svm(vcpu);
 347	u64 *entry = svm->avic_physical_id_cache;
 348
 349	if (!entry)
 350		return false;
 351
 352	return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
 353}
 354
 355static void recalc_intercepts(struct vcpu_svm *svm)
 356{
 357	struct vmcb_control_area *c, *h;
 358	struct nested_state *g;
 359
 360	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 361
 362	if (!is_guest_mode(&svm->vcpu))
 363		return;
 364
 365	c = &svm->vmcb->control;
 366	h = &svm->nested.hsave->control;
 367	g = &svm->nested;
 368
 369	c->intercept_cr = h->intercept_cr | g->intercept_cr;
 370	c->intercept_dr = h->intercept_dr | g->intercept_dr;
 371	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
 372	c->intercept = h->intercept | g->intercept;
 373}
 374
 375static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
 376{
 377	if (is_guest_mode(&svm->vcpu))
 378		return svm->nested.hsave;
 379	else
 380		return svm->vmcb;
 381}
 382
 383static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
 384{
 385	struct vmcb *vmcb = get_host_vmcb(svm);
 386
 387	vmcb->control.intercept_cr |= (1U << bit);
 388
 389	recalc_intercepts(svm);
 390}
 391
 392static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
 393{
 394	struct vmcb *vmcb = get_host_vmcb(svm);
 395
 396	vmcb->control.intercept_cr &= ~(1U << bit);
 397
 398	recalc_intercepts(svm);
 399}
 400
 401static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
 402{
 403	struct vmcb *vmcb = get_host_vmcb(svm);
 404
 405	return vmcb->control.intercept_cr & (1U << bit);
 406}
 407
 408static inline void set_dr_intercepts(struct vcpu_svm *svm)
 409{
 410	struct vmcb *vmcb = get_host_vmcb(svm);
 411
 412	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
 413		| (1 << INTERCEPT_DR1_READ)
 414		| (1 << INTERCEPT_DR2_READ)
 415		| (1 << INTERCEPT_DR3_READ)
 416		| (1 << INTERCEPT_DR4_READ)
 417		| (1 << INTERCEPT_DR5_READ)
 418		| (1 << INTERCEPT_DR6_READ)
 419		| (1 << INTERCEPT_DR7_READ)
 420		| (1 << INTERCEPT_DR0_WRITE)
 421		| (1 << INTERCEPT_DR1_WRITE)
 422		| (1 << INTERCEPT_DR2_WRITE)
 423		| (1 << INTERCEPT_DR3_WRITE)
 424		| (1 << INTERCEPT_DR4_WRITE)
 425		| (1 << INTERCEPT_DR5_WRITE)
 426		| (1 << INTERCEPT_DR6_WRITE)
 427		| (1 << INTERCEPT_DR7_WRITE);
 428
 429	recalc_intercepts(svm);
 430}
 431
 432static inline void clr_dr_intercepts(struct vcpu_svm *svm)
 433{
 434	struct vmcb *vmcb = get_host_vmcb(svm);
 435
 436	vmcb->control.intercept_dr = 0;
 437
 438	recalc_intercepts(svm);
 439}
 440
 441static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
 442{
 443	struct vmcb *vmcb = get_host_vmcb(svm);
 444
 445	vmcb->control.intercept_exceptions |= (1U << bit);
 446
 447	recalc_intercepts(svm);
 448}
 449
 450static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
 451{
 452	struct vmcb *vmcb = get_host_vmcb(svm);
 453
 454	vmcb->control.intercept_exceptions &= ~(1U << bit);
 455
 456	recalc_intercepts(svm);
 457}
 458
 459static inline void set_intercept(struct vcpu_svm *svm, int bit)
 460{
 461	struct vmcb *vmcb = get_host_vmcb(svm);
 462
 463	vmcb->control.intercept |= (1ULL << bit);
 464
 465	recalc_intercepts(svm);
 466}
 467
 468static inline void clr_intercept(struct vcpu_svm *svm, int bit)
 469{
 470	struct vmcb *vmcb = get_host_vmcb(svm);
 471
 472	vmcb->control.intercept &= ~(1ULL << bit);
 473
 474	recalc_intercepts(svm);
 475}
 476
 477static inline void enable_gif(struct vcpu_svm *svm)
 478{
 479	svm->vcpu.arch.hflags |= HF_GIF_MASK;
 480}
 481
 482static inline void disable_gif(struct vcpu_svm *svm)
 483{
 484	svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
 485}
 486
 487static inline bool gif_set(struct vcpu_svm *svm)
 488{
 489	return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
 490}
 491
 492static unsigned long iopm_base;
 493
 494struct kvm_ldttss_desc {
 495	u16 limit0;
 496	u16 base0;
 497	unsigned base1:8, type:5, dpl:2, p:1;
 498	unsigned limit1:4, zero0:3, g:1, base2:8;
 499	u32 base3;
 500	u32 zero1;
 501} __attribute__((packed));
 502
 503struct svm_cpu_data {
 504	int cpu;
 505
 506	u64 asid_generation;
 507	u32 max_asid;
 508	u32 next_asid;
 509	struct kvm_ldttss_desc *tss_desc;
 510
 511	struct page *save_area;
 512};
 513
 514static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 515
 516struct svm_init_data {
 517	int cpu;
 518	int r;
 519};
 520
 521static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 522
 523#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 524#define MSRS_RANGE_SIZE 2048
 525#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 526
 527static u32 svm_msrpm_offset(u32 msr)
 528{
 529	u32 offset;
 530	int i;
 531
 532	for (i = 0; i < NUM_MSR_MAPS; i++) {
 533		if (msr < msrpm_ranges[i] ||
 534		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 535			continue;
 536
 537		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 538		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 539
 540		/* Now we have the u8 offset - but need the u32 offset */
 541		return offset / 4;
 542	}
 543
 544	/* MSR not in any range */
 545	return MSR_INVALID;
 546}
 547
 548#define MAX_INST_SIZE 15
 549
 550static inline void clgi(void)
 551{
 552	asm volatile (__ex(SVM_CLGI));
 553}
 554
 555static inline void stgi(void)
 556{
 557	asm volatile (__ex(SVM_STGI));
 558}
 559
 560static inline void invlpga(unsigned long addr, u32 asid)
 561{
 562	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
 563}
 564
 565static int get_npt_level(void)
 566{
 567#ifdef CONFIG_X86_64
 568	return PT64_ROOT_LEVEL;
 569#else
 570	return PT32E_ROOT_LEVEL;
 571#endif
 572}
 573
 574static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 575{
 576	vcpu->arch.efer = efer;
 577	if (!npt_enabled && !(efer & EFER_LMA))
 578		efer &= ~EFER_LME;
 579
 580	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
 581	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 582}
 583
 584static int is_external_interrupt(u32 info)
 585{
 586	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 587	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 588}
 589
 590static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 591{
 592	struct vcpu_svm *svm = to_svm(vcpu);
 593	u32 ret = 0;
 594
 595	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 596		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 597	return ret;
 598}
 599
 600static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 601{
 602	struct vcpu_svm *svm = to_svm(vcpu);
 603
 604	if (mask == 0)
 605		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 606	else
 607		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 608
 609}
 610
 611static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 612{
 613	struct vcpu_svm *svm = to_svm(vcpu);
 614
 615	if (svm->vmcb->control.next_rip != 0) {
 616		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
 617		svm->next_rip = svm->vmcb->control.next_rip;
 618	}
 619
 620	if (!svm->next_rip) {
 621		if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
 622				EMULATE_DONE)
 623			printk(KERN_DEBUG "%s: NOP\n", __func__);
 624		return;
 625	}
 626	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
 627		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
 628		       __func__, kvm_rip_read(vcpu), svm->next_rip);
 629
 630	kvm_rip_write(vcpu, svm->next_rip);
 631	svm_set_interrupt_shadow(vcpu, 0);
 632}
 633
 634static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
 635				bool has_error_code, u32 error_code,
 636				bool reinject)
 637{
 638	struct vcpu_svm *svm = to_svm(vcpu);
 639
 640	/*
 641	 * If we are within a nested VM we'd better #VMEXIT and let the guest
 642	 * handle the exception
 643	 */
 644	if (!reinject &&
 645	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
 646		return;
 647
 648	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
 649		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 650
 651		/*
 652		 * For guest debugging where we have to reinject #BP if some
 653		 * INT3 is guest-owned:
 654		 * Emulate nRIP by moving RIP forward. Will fail if injection
 655		 * raises a fault that is not intercepted. Still better than
 656		 * failing in all cases.
 657		 */
 658		skip_emulated_instruction(&svm->vcpu);
 659		rip = kvm_rip_read(&svm->vcpu);
 660		svm->int3_rip = rip + svm->vmcb->save.cs.base;
 661		svm->int3_injected = rip - old_rip;
 662	}
 663
 664	svm->vmcb->control.event_inj = nr
 665		| SVM_EVTINJ_VALID
 666		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 667		| SVM_EVTINJ_TYPE_EXEPT;
 668	svm->vmcb->control.event_inj_err = error_code;
 669}
 670
 671static void svm_init_erratum_383(void)
 672{
 673	u32 low, high;
 674	int err;
 675	u64 val;
 676
 677	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 678		return;
 679
 680	/* Use _safe variants to not break nested virtualization */
 681	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 682	if (err)
 683		return;
 684
 685	val |= (1ULL << 47);
 686
 687	low  = lower_32_bits(val);
 688	high = upper_32_bits(val);
 689
 690	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 691
 692	erratum_383_found = true;
 693}
 694
 695static void svm_init_osvw(struct kvm_vcpu *vcpu)
 696{
 697	/*
 698	 * Guests should see errata 400 and 415 as fixed (assuming that
 699	 * HLT and IO instructions are intercepted).
 700	 */
 701	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 702	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 703
 704	/*
 705	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
 706	 * all osvw.status bits inside that length, including bit 0 (which is
 707	 * reserved for erratum 298), are valid. However, if host processor's
 708	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
 709	 * be conservative here and therefore we tell the guest that erratum 298
 710	 * is present (because we really don't know).
 711	 */
 712	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 713		vcpu->arch.osvw.status |= 1;
 714}
 715
 716static int has_svm(void)
 717{
 718	const char *msg;
 719
 720	if (!cpu_has_svm(&msg)) {
 721		printk(KERN_INFO "has_svm: %s\n", msg);
 722		return 0;
 723	}
 724
 725	return 1;
 726}
 727
 728static void svm_hardware_disable(void)
 729{
 730	/* Make sure we clean up behind us */
 731	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
 732		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 733
 734	cpu_svm_disable();
 735
 736	amd_pmu_disable_virt();
 737}
 738
 739static int svm_hardware_enable(void)
 740{
 741
 742	struct svm_cpu_data *sd;
 743	uint64_t efer;
 744	struct desc_ptr gdt_descr;
 745	struct desc_struct *gdt;
 746	int me = raw_smp_processor_id();
 747
 748	rdmsrl(MSR_EFER, efer);
 749	if (efer & EFER_SVME)
 750		return -EBUSY;
 751
 752	if (!has_svm()) {
 753		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 754		return -EINVAL;
 755	}
 756	sd = per_cpu(svm_data, me);
 757	if (!sd) {
 758		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 759		return -EINVAL;
 760	}
 761
 762	sd->asid_generation = 1;
 763	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 764	sd->next_asid = sd->max_asid + 1;
 765
 766	native_store_gdt(&gdt_descr);
 767	gdt = (struct desc_struct *)gdt_descr.address;
 768	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 769
 770	wrmsrl(MSR_EFER, efer | EFER_SVME);
 771
 772	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 773
 774	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 775		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 776		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
 777	}
 778
 779
 780	/*
 781	 * Get OSVW bits.
 782	 *
 783	 * Note that it is possible to have a system with mixed processor
 784	 * revisions and therefore different OSVW bits. If bits are not the same
 785	 * on different processors then choose the worst case (i.e. if erratum
 786	 * is present on one processor and not on another then assume that the
 787	 * erratum is present everywhere).
 788	 */
 789	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 790		uint64_t len, status = 0;
 791		int err;
 792
 793		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 794		if (!err)
 795			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 796						      &err);
 797
 798		if (err)
 799			osvw_status = osvw_len = 0;
 800		else {
 801			if (len < osvw_len)
 802				osvw_len = len;
 803			osvw_status |= status;
 804			osvw_status &= (1ULL << osvw_len) - 1;
 805		}
 806	} else
 807		osvw_status = osvw_len = 0;
 808
 809	svm_init_erratum_383();
 810
 811	amd_pmu_enable_virt();
 812
 813	return 0;
 814}
 815
 816static void svm_cpu_uninit(int cpu)
 817{
 818	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 819
 820	if (!sd)
 821		return;
 822
 823	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 824	__free_page(sd->save_area);
 825	kfree(sd);
 826}
 827
 828static int svm_cpu_init(int cpu)
 829{
 830	struct svm_cpu_data *sd;
 831	int r;
 832
 833	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
 834	if (!sd)
 835		return -ENOMEM;
 836	sd->cpu = cpu;
 837	sd->save_area = alloc_page(GFP_KERNEL);
 838	r = -ENOMEM;
 839	if (!sd->save_area)
 840		goto err_1;
 841
 842	per_cpu(svm_data, cpu) = sd;
 843
 844	return 0;
 845
 846err_1:
 847	kfree(sd);
 848	return r;
 849
 850}
 851
 852static bool valid_msr_intercept(u32 index)
 853{
 854	int i;
 855
 856	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
 857		if (direct_access_msrs[i].index == index)
 858			return true;
 859
 860	return false;
 861}
 862
 863static void set_msr_interception(u32 *msrpm, unsigned msr,
 864				 int read, int write)
 865{
 866	u8 bit_read, bit_write;
 867	unsigned long tmp;
 868	u32 offset;
 869
 870	/*
 871	 * If this warning triggers extend the direct_access_msrs list at the
 872	 * beginning of the file
 873	 */
 874	WARN_ON(!valid_msr_intercept(msr));
 875
 876	offset    = svm_msrpm_offset(msr);
 877	bit_read  = 2 * (msr & 0x0f);
 878	bit_write = 2 * (msr & 0x0f) + 1;
 879	tmp       = msrpm[offset];
 880
 881	BUG_ON(offset == MSR_INVALID);
 882
 883	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
 884	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
 885
 886	msrpm[offset] = tmp;
 887}
 888
 889static void svm_vcpu_init_msrpm(u32 *msrpm)
 890{
 891	int i;
 892
 893	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
 894
 895	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 896		if (!direct_access_msrs[i].always)
 897			continue;
 898
 899		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
 900	}
 901}
 902
 903static void add_msr_offset(u32 offset)
 904{
 905	int i;
 906
 907	for (i = 0; i < MSRPM_OFFSETS; ++i) {
 908
 909		/* Offset already in list? */
 910		if (msrpm_offsets[i] == offset)
 911			return;
 912
 913		/* Slot used by another offset? */
 914		if (msrpm_offsets[i] != MSR_INVALID)
 915			continue;
 916
 917		/* Add offset to list */
 918		msrpm_offsets[i] = offset;
 919
 920		return;
 921	}
 922
 923	/*
 924	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
 925	 * increase MSRPM_OFFSETS in this case.
 926	 */
 927	BUG();
 928}
 929
 930static void init_msrpm_offsets(void)
 931{
 932	int i;
 933
 934	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
 935
 936	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 937		u32 offset;
 938
 939		offset = svm_msrpm_offset(direct_access_msrs[i].index);
 940		BUG_ON(offset == MSR_INVALID);
 941
 942		add_msr_offset(offset);
 943	}
 944}
 945
 946static void svm_enable_lbrv(struct vcpu_svm *svm)
 947{
 948	u32 *msrpm = svm->msrpm;
 949
 950	svm->vmcb->control.lbr_ctl = 1;
 951	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
 952	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
 953	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
 954	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
 955}
 956
 957static void svm_disable_lbrv(struct vcpu_svm *svm)
 958{
 959	u32 *msrpm = svm->msrpm;
 960
 961	svm->vmcb->control.lbr_ctl = 0;
 962	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
 963	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
 964	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
 965	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
 966}
 967
 968/* Note:
 969 * This hash table is used to map VM_ID to a struct kvm_arch,
 970 * when handling AMD IOMMU GALOG notification to schedule in
 971 * a particular vCPU.
 972 */
 973#define SVM_VM_DATA_HASH_BITS	8
 974DECLARE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
 975static spinlock_t svm_vm_data_hash_lock;
 976
 977/* Note:
 978 * This function is called from IOMMU driver to notify
 979 * SVM to schedule in a particular vCPU of a particular VM.
 980 */
 981static int avic_ga_log_notifier(u32 ga_tag)
 982{
 983	unsigned long flags;
 984	struct kvm_arch *ka = NULL;
 985	struct kvm_vcpu *vcpu = NULL;
 986	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
 987	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
 988
 989	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
 990
 991	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
 992	hash_for_each_possible(svm_vm_data_hash, ka, hnode, vm_id) {
 993		struct kvm *kvm = container_of(ka, struct kvm, arch);
 994		struct kvm_arch *vm_data = &kvm->arch;
 995
 996		if (vm_data->avic_vm_id != vm_id)
 997			continue;
 998		vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
 999		break;
1000	}
1001	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1002
1003	if (!vcpu)
1004		return 0;
1005
1006	/* Note:
1007	 * At this point, the IOMMU should have already set the pending
1008	 * bit in the vAPIC backing page. So, we just need to schedule
1009	 * in the vcpu.
1010	 */
1011	if (vcpu->mode == OUTSIDE_GUEST_MODE)
1012		kvm_vcpu_wake_up(vcpu);
1013
1014	return 0;
1015}
1016
1017static __init int svm_hardware_setup(void)
1018{
1019	int cpu;
1020	struct page *iopm_pages;
1021	void *iopm_va;
1022	int r;
1023
1024	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1025
1026	if (!iopm_pages)
1027		return -ENOMEM;
1028
1029	iopm_va = page_address(iopm_pages);
1030	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1031	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1032
1033	init_msrpm_offsets();
1034
1035	if (boot_cpu_has(X86_FEATURE_NX))
1036		kvm_enable_efer_bits(EFER_NX);
1037
1038	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1039		kvm_enable_efer_bits(EFER_FFXSR);
1040
1041	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1042		kvm_has_tsc_control = true;
1043		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1044		kvm_tsc_scaling_ratio_frac_bits = 32;
1045	}
1046
1047	if (nested) {
1048		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1049		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1050	}
1051
1052	for_each_possible_cpu(cpu) {
1053		r = svm_cpu_init(cpu);
1054		if (r)
1055			goto err;
1056	}
1057
1058	if (!boot_cpu_has(X86_FEATURE_NPT))
1059		npt_enabled = false;
1060
1061	if (npt_enabled && !npt) {
1062		printk(KERN_INFO "kvm: Nested Paging disabled\n");
1063		npt_enabled = false;
1064	}
1065
1066	if (npt_enabled) {
1067		printk(KERN_INFO "kvm: Nested Paging enabled\n");
1068		kvm_enable_tdp();
1069	} else
1070		kvm_disable_tdp();
1071
1072	if (avic) {
1073		if (!npt_enabled ||
1074		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1075		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1076			avic = false;
1077		} else {
1078			pr_info("AVIC enabled\n");
1079
1080			hash_init(svm_vm_data_hash);
1081			spin_lock_init(&svm_vm_data_hash_lock);
1082			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1083		}
1084	}
1085
1086	return 0;
1087
1088err:
1089	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1090	iopm_base = 0;
1091	return r;
1092}
1093
1094static __exit void svm_hardware_unsetup(void)
1095{
1096	int cpu;
1097
1098	for_each_possible_cpu(cpu)
1099		svm_cpu_uninit(cpu);
1100
1101	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1102	iopm_base = 0;
1103}
1104
1105static void init_seg(struct vmcb_seg *seg)
1106{
1107	seg->selector = 0;
1108	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1109		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1110	seg->limit = 0xffff;
1111	seg->base = 0;
1112}
1113
1114static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1115{
1116	seg->selector = 0;
1117	seg->attrib = SVM_SELECTOR_P_MASK | type;
1118	seg->limit = 0xffff;
1119	seg->base = 0;
1120}
1121
1122static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1123{
1124	struct vcpu_svm *svm = to_svm(vcpu);
1125	u64 g_tsc_offset = 0;
1126
1127	if (is_guest_mode(vcpu)) {
1128		g_tsc_offset = svm->vmcb->control.tsc_offset -
1129			       svm->nested.hsave->control.tsc_offset;
1130		svm->nested.hsave->control.tsc_offset = offset;
1131	} else
1132		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1133					   svm->vmcb->control.tsc_offset,
1134					   offset);
1135
1136	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1137
1138	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1139}
1140
1141static void avic_init_vmcb(struct vcpu_svm *svm)
1142{
1143	struct vmcb *vmcb = svm->vmcb;
1144	struct kvm_arch *vm_data = &svm->vcpu.kvm->arch;
1145	phys_addr_t bpa = page_to_phys(svm->avic_backing_page);
1146	phys_addr_t lpa = page_to_phys(vm_data->avic_logical_id_table_page);
1147	phys_addr_t ppa = page_to_phys(vm_data->avic_physical_id_table_page);
1148
1149	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1150	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1151	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1152	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1153	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1154	svm->vcpu.arch.apicv_active = true;
1155}
1156
1157static void init_vmcb(struct vcpu_svm *svm)
1158{
1159	struct vmcb_control_area *control = &svm->vmcb->control;
1160	struct vmcb_save_area *save = &svm->vmcb->save;
1161
1162	svm->vcpu.fpu_active = 1;
1163	svm->vcpu.arch.hflags = 0;
1164
1165	set_cr_intercept(svm, INTERCEPT_CR0_READ);
1166	set_cr_intercept(svm, INTERCEPT_CR3_READ);
1167	set_cr_intercept(svm, INTERCEPT_CR4_READ);
1168	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1169	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1170	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1171	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1172		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1173
1174	set_dr_intercepts(svm);
1175
1176	set_exception_intercept(svm, PF_VECTOR);
1177	set_exception_intercept(svm, UD_VECTOR);
1178	set_exception_intercept(svm, MC_VECTOR);
1179	set_exception_intercept(svm, AC_VECTOR);
1180	set_exception_intercept(svm, DB_VECTOR);
1181
1182	set_intercept(svm, INTERCEPT_INTR);
1183	set_intercept(svm, INTERCEPT_NMI);
1184	set_intercept(svm, INTERCEPT_SMI);
1185	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1186	set_intercept(svm, INTERCEPT_RDPMC);
1187	set_intercept(svm, INTERCEPT_CPUID);
1188	set_intercept(svm, INTERCEPT_INVD);
1189	set_intercept(svm, INTERCEPT_HLT);
1190	set_intercept(svm, INTERCEPT_INVLPG);
1191	set_intercept(svm, INTERCEPT_INVLPGA);
1192	set_intercept(svm, INTERCEPT_IOIO_PROT);
1193	set_intercept(svm, INTERCEPT_MSR_PROT);
1194	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1195	set_intercept(svm, INTERCEPT_SHUTDOWN);
1196	set_intercept(svm, INTERCEPT_VMRUN);
1197	set_intercept(svm, INTERCEPT_VMMCALL);
1198	set_intercept(svm, INTERCEPT_VMLOAD);
1199	set_intercept(svm, INTERCEPT_VMSAVE);
1200	set_intercept(svm, INTERCEPT_STGI);
1201	set_intercept(svm, INTERCEPT_CLGI);
1202	set_intercept(svm, INTERCEPT_SKINIT);
1203	set_intercept(svm, INTERCEPT_WBINVD);
1204	set_intercept(svm, INTERCEPT_MONITOR);
1205	set_intercept(svm, INTERCEPT_MWAIT);
1206	set_intercept(svm, INTERCEPT_XSETBV);
1207
1208	control->iopm_base_pa = iopm_base;
1209	control->msrpm_base_pa = __pa(svm->msrpm);
1210	control->int_ctl = V_INTR_MASKING_MASK;
1211
1212	init_seg(&save->es);
1213	init_seg(&save->ss);
1214	init_seg(&save->ds);
1215	init_seg(&save->fs);
1216	init_seg(&save->gs);
1217
1218	save->cs.selector = 0xf000;
1219	save->cs.base = 0xffff0000;
1220	/* Executable/Readable Code Segment */
1221	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1222		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1223	save->cs.limit = 0xffff;
1224
1225	save->gdtr.limit = 0xffff;
1226	save->idtr.limit = 0xffff;
1227
1228	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1229	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1230
1231	svm_set_efer(&svm->vcpu, 0);
1232	save->dr6 = 0xffff0ff0;
1233	kvm_set_rflags(&svm->vcpu, 2);
1234	save->rip = 0x0000fff0;
1235	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1236
1237	/*
1238	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1239	 * It also updates the guest-visible cr0 value.
1240	 */
1241	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1242	kvm_mmu_reset_context(&svm->vcpu);
1243
1244	save->cr4 = X86_CR4_PAE;
1245	/* rdx = ?? */
1246
1247	if (npt_enabled) {
1248		/* Setup VMCB for Nested Paging */
1249		control->nested_ctl = 1;
1250		clr_intercept(svm, INTERCEPT_INVLPG);
1251		clr_exception_intercept(svm, PF_VECTOR);
1252		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1253		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1254		save->g_pat = svm->vcpu.arch.pat;
1255		save->cr3 = 0;
1256		save->cr4 = 0;
1257	}
1258	svm->asid_generation = 0;
1259
1260	svm->nested.vmcb = 0;
1261	svm->vcpu.arch.hflags = 0;
1262
1263	if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1264		control->pause_filter_count = 3000;
1265		set_intercept(svm, INTERCEPT_PAUSE);
1266	}
1267
1268	if (avic)
1269		avic_init_vmcb(svm);
1270
1271	mark_all_dirty(svm->vmcb);
1272
1273	enable_gif(svm);
1274
1275}
1276
1277static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, int index)
1278{
1279	u64 *avic_physical_id_table;
1280	struct kvm_arch *vm_data = &vcpu->kvm->arch;
1281
1282	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1283		return NULL;
1284
1285	avic_physical_id_table = page_address(vm_data->avic_physical_id_table_page);
1286
1287	return &avic_physical_id_table[index];
1288}
1289
1290/**
1291 * Note:
1292 * AVIC hardware walks the nested page table to check permissions,
1293 * but does not use the SPA address specified in the leaf page
1294 * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1295 * field of the VMCB. Therefore, we set up the
1296 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1297 */
1298static int avic_init_access_page(struct kvm_vcpu *vcpu)
1299{
1300	struct kvm *kvm = vcpu->kvm;
1301	int ret;
1302
1303	if (kvm->arch.apic_access_page_done)
1304		return 0;
1305
1306	ret = x86_set_memory_region(kvm,
1307				    APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1308				    APIC_DEFAULT_PHYS_BASE,
1309				    PAGE_SIZE);
1310	if (ret)
1311		return ret;
1312
1313	kvm->arch.apic_access_page_done = true;
1314	return 0;
1315}
1316
1317static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1318{
1319	int ret;
1320	u64 *entry, new_entry;
1321	int id = vcpu->vcpu_id;
1322	struct vcpu_svm *svm = to_svm(vcpu);
1323
1324	ret = avic_init_access_page(vcpu);
1325	if (ret)
1326		return ret;
1327
1328	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1329		return -EINVAL;
1330
1331	if (!svm->vcpu.arch.apic->regs)
1332		return -EINVAL;
1333
1334	svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1335
1336	/* Setting AVIC backing page address in the phy APIC ID table */
1337	entry = avic_get_physical_id_entry(vcpu, id);
1338	if (!entry)
1339		return -EINVAL;
1340
1341	new_entry = READ_ONCE(*entry);
1342	new_entry = (page_to_phys(svm->avic_backing_page) &
1343		     AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1344		     AVIC_PHYSICAL_ID_ENTRY_VALID_MASK;
1345	WRITE_ONCE(*entry, new_entry);
1346
1347	svm->avic_physical_id_cache = entry;
1348
1349	return 0;
1350}
1351
1352static inline int avic_get_next_vm_id(void)
1353{
1354	int id;
1355
1356	spin_lock(&avic_vm_id_lock);
1357
1358	/* AVIC VM ID is one-based. */
1359	id = find_next_zero_bit(avic_vm_id_bitmap, AVIC_VM_ID_NR, 1);
1360	if (id <= AVIC_VM_ID_MASK)
1361		__set_bit(id, avic_vm_id_bitmap);
1362	else
1363		id = -EAGAIN;
1364
1365	spin_unlock(&avic_vm_id_lock);
1366	return id;
1367}
1368
1369static inline int avic_free_vm_id(int id)
1370{
1371	if (id <= 0 || id > AVIC_VM_ID_MASK)
1372		return -EINVAL;
1373
1374	spin_lock(&avic_vm_id_lock);
1375	__clear_bit(id, avic_vm_id_bitmap);
1376	spin_unlock(&avic_vm_id_lock);
1377	return 0;
1378}
1379
1380static void avic_vm_destroy(struct kvm *kvm)
1381{
1382	unsigned long flags;
1383	struct kvm_arch *vm_data = &kvm->arch;
1384
1385	avic_free_vm_id(vm_data->avic_vm_id);
1386
1387	if (vm_data->avic_logical_id_table_page)
1388		__free_page(vm_data->avic_logical_id_table_page);
1389	if (vm_data->avic_physical_id_table_page)
1390		__free_page(vm_data->avic_physical_id_table_page);
1391
1392	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1393	hash_del(&vm_data->hnode);
1394	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1395}
1396
1397static int avic_vm_init(struct kvm *kvm)
1398{
1399	unsigned long flags;
1400	int vm_id, err = -ENOMEM;
1401	struct kvm_arch *vm_data = &kvm->arch;
1402	struct page *p_page;
1403	struct page *l_page;
1404
1405	if (!avic)
1406		return 0;
1407
1408	vm_id = avic_get_next_vm_id();
1409	if (vm_id < 0)
1410		return vm_id;
1411	vm_data->avic_vm_id = (u32)vm_id;
1412
1413	/* Allocating physical APIC ID table (4KB) */
1414	p_page = alloc_page(GFP_KERNEL);
1415	if (!p_page)
1416		goto free_avic;
1417
1418	vm_data->avic_physical_id_table_page = p_page;
1419	clear_page(page_address(p_page));
1420
1421	/* Allocating logical APIC ID table (4KB) */
1422	l_page = alloc_page(GFP_KERNEL);
1423	if (!l_page)
1424		goto free_avic;
1425
1426	vm_data->avic_logical_id_table_page = l_page;
1427	clear_page(page_address(l_page));
1428
1429	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1430	hash_add(svm_vm_data_hash, &vm_data->hnode, vm_data->avic_vm_id);
1431	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1432
1433	return 0;
1434
1435free_avic:
1436	avic_vm_destroy(kvm);
1437	return err;
1438}
1439
1440static inline int
1441avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1442{
1443	int ret = 0;
1444	unsigned long flags;
1445	struct amd_svm_iommu_ir *ir;
1446	struct vcpu_svm *svm = to_svm(vcpu);
1447
1448	if (!kvm_arch_has_assigned_device(vcpu->kvm))
1449		return 0;
1450
1451	/*
1452	 * Here, we go through the per-vcpu ir_list to update all existing
1453	 * interrupt remapping table entry targeting this vcpu.
1454	 */
1455	spin_lock_irqsave(&svm->ir_list_lock, flags);
1456
1457	if (list_empty(&svm->ir_list))
1458		goto out;
1459
1460	list_for_each_entry(ir, &svm->ir_list, node) {
1461		ret = amd_iommu_update_ga(cpu, r, ir->data);
1462		if (ret)
1463			break;
1464	}
1465out:
1466	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1467	return ret;
1468}
1469
1470static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1471{
1472	u64 entry;
1473	/* ID = 0xff (broadcast), ID > 0xff (reserved) */
1474	int h_physical_id = kvm_cpu_get_apicid(cpu);
1475	struct vcpu_svm *svm = to_svm(vcpu);
1476
1477	if (!kvm_vcpu_apicv_active(vcpu))
1478		return;
1479
1480	if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
1481		return;
1482
1483	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1484	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
1485
1486	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1487	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
1488
1489	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1490	if (svm->avic_is_running)
1491		entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1492
1493	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1494	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
1495					svm->avic_is_running);
1496}
1497
1498static void avic_vcpu_put(struct kvm_vcpu *vcpu)
1499{
1500	u64 entry;
1501	struct vcpu_svm *svm = to_svm(vcpu);
1502
1503	if (!kvm_vcpu_apicv_active(vcpu))
1504		return;
1505
1506	entry = READ_ONCE(*(svm->avic_physical_id_cache));
1507	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
1508		avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
1509
1510	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1511	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
1512}
1513
1514/**
1515 * This function is called during VCPU halt/unhalt.
1516 */
1517static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
1518{
1519	struct vcpu_svm *svm = to_svm(vcpu);
1520
1521	svm->avic_is_running = is_run;
1522	if (is_run)
1523		avic_vcpu_load(vcpu, vcpu->cpu);
1524	else
1525		avic_vcpu_put(vcpu);
1526}
1527
1528static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1529{
1530	struct vcpu_svm *svm = to_svm(vcpu);
1531	u32 dummy;
1532	u32 eax = 1;
1533
1534	if (!init_event) {
1535		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1536					   MSR_IA32_APICBASE_ENABLE;
1537		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1538			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1539	}
1540	init_vmcb(svm);
1541
1542	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1543	kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1544
1545	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1546		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1547}
1548
1549static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1550{
1551	struct vcpu_svm *svm;
1552	struct page *page;
1553	struct page *msrpm_pages;
1554	struct page *hsave_page;
1555	struct page *nested_msrpm_pages;
1556	int err;
1557
1558	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1559	if (!svm) {
1560		err = -ENOMEM;
1561		goto out;
1562	}
1563
1564	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1565	if (err)
1566		goto free_svm;
1567
1568	err = -ENOMEM;
1569	page = alloc_page(GFP_KERNEL);
1570	if (!page)
1571		goto uninit;
1572
1573	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1574	if (!msrpm_pages)
1575		goto free_page1;
1576
1577	nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1578	if (!nested_msrpm_pages)
1579		goto free_page2;
1580
1581	hsave_page = alloc_page(GFP_KERNEL);
1582	if (!hsave_page)
1583		goto free_page3;
1584
1585	if (avic) {
1586		err = avic_init_backing_page(&svm->vcpu);
1587		if (err)
1588			goto free_page4;
1589
1590		INIT_LIST_HEAD(&svm->ir_list);
1591		spin_lock_init(&svm->ir_list_lock);
1592	}
1593
1594	/* We initialize this flag to true to make sure that the is_running
1595	 * bit would be set the first time the vcpu is loaded.
1596	 */
1597	svm->avic_is_running = true;
1598
1599	svm->nested.hsave = page_address(hsave_page);
1600
1601	svm->msrpm = page_address(msrpm_pages);
1602	svm_vcpu_init_msrpm(svm->msrpm);
1603
1604	svm->nested.msrpm = page_address(nested_msrpm_pages);
1605	svm_vcpu_init_msrpm(svm->nested.msrpm);
1606
1607	svm->vmcb = page_address(page);
1608	clear_page(svm->vmcb);
1609	svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1610	svm->asid_generation = 0;
1611	init_vmcb(svm);
1612
1613	svm_init_osvw(&svm->vcpu);
1614
1615	return &svm->vcpu;
1616
1617free_page4:
1618	__free_page(hsave_page);
1619free_page3:
1620	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1621free_page2:
1622	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1623free_page1:
1624	__free_page(page);
1625uninit:
1626	kvm_vcpu_uninit(&svm->vcpu);
1627free_svm:
1628	kmem_cache_free(kvm_vcpu_cache, svm);
1629out:
1630	return ERR_PTR(err);
1631}
1632
1633static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1634{
1635	struct vcpu_svm *svm = to_svm(vcpu);
1636
1637	__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1638	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1639	__free_page(virt_to_page(svm->nested.hsave));
1640	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1641	kvm_vcpu_uninit(vcpu);
1642	kmem_cache_free(kvm_vcpu_cache, svm);
1643}
1644
1645static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1646{
1647	struct vcpu_svm *svm = to_svm(vcpu);
1648	int i;
1649
1650	if (unlikely(cpu != vcpu->cpu)) {
1651		svm->asid_generation = 0;
1652		mark_all_dirty(svm->vmcb);
1653	}
1654
1655#ifdef CONFIG_X86_64
1656	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1657#endif
1658	savesegment(fs, svm->host.fs);
1659	savesegment(gs, svm->host.gs);
1660	svm->host.ldt = kvm_read_ldt();
1661
1662	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1663		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1664
1665	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1666		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1667		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1668			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1669			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1670		}
1671	}
1672	/* This assumes that the kernel never uses MSR_TSC_AUX */
1673	if (static_cpu_has(X86_FEATURE_RDTSCP))
1674		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1675
1676	avic_vcpu_load(vcpu, cpu);
1677}
1678
1679static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1680{
1681	struct vcpu_svm *svm = to_svm(vcpu);
1682	int i;
1683
1684	avic_vcpu_put(vcpu);
1685
1686	++vcpu->stat.host_state_reload;
1687	kvm_load_ldt(svm->host.ldt);
1688#ifdef CONFIG_X86_64
1689	loadsegment(fs, svm->host.fs);
1690	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1691	load_gs_index(svm->host.gs);
1692#else
1693#ifdef CONFIG_X86_32_LAZY_GS
1694	loadsegment(gs, svm->host.gs);
1695#endif
1696#endif
1697	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1698		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1699}
1700
1701static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1702{
1703	avic_set_running(vcpu, false);
1704}
1705
1706static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1707{
1708	avic_set_running(vcpu, true);
1709}
1710
1711static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1712{
1713	return to_svm(vcpu)->vmcb->save.rflags;
1714}
1715
1716static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1717{
1718       /*
1719        * Any change of EFLAGS.VM is accompanied by a reload of SS
1720        * (caused by either a task switch or an inter-privilege IRET),
1721        * so we do not need to update the CPL here.
1722        */
1723	to_svm(vcpu)->vmcb->save.rflags = rflags;
1724}
1725
1726static u32 svm_get_pkru(struct kvm_vcpu *vcpu)
1727{
1728	return 0;
1729}
1730
1731static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1732{
1733	switch (reg) {
1734	case VCPU_EXREG_PDPTR:
1735		BUG_ON(!npt_enabled);
1736		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1737		break;
1738	default:
1739		BUG();
1740	}
1741}
1742
1743static void svm_set_vintr(struct vcpu_svm *svm)
1744{
1745	set_intercept(svm, INTERCEPT_VINTR);
1746}
1747
1748static void svm_clear_vintr(struct vcpu_svm *svm)
1749{
1750	clr_intercept(svm, INTERCEPT_VINTR);
1751}
1752
1753static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1754{
1755	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1756
1757	switch (seg) {
1758	case VCPU_SREG_CS: return &save->cs;
1759	case VCPU_SREG_DS: return &save->ds;
1760	case VCPU_SREG_ES: return &save->es;
1761	case VCPU_SREG_FS: return &save->fs;
1762	case VCPU_SREG_GS: return &save->gs;
1763	case VCPU_SREG_SS: return &save->ss;
1764	case VCPU_SREG_TR: return &save->tr;
1765	case VCPU_SREG_LDTR: return &save->ldtr;
1766	}
1767	BUG();
1768	return NULL;
1769}
1770
1771static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1772{
1773	struct vmcb_seg *s = svm_seg(vcpu, seg);
1774
1775	return s->base;
1776}
1777
1778static void svm_get_segment(struct kvm_vcpu *vcpu,
1779			    struct kvm_segment *var, int seg)
1780{
1781	struct vmcb_seg *s = svm_seg(vcpu, seg);
1782
1783	var->base = s->base;
1784	var->limit = s->limit;
1785	var->selector = s->selector;
1786	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1787	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1788	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1789	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1790	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1791	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1792	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1793
1794	/*
1795	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1796	 * However, the SVM spec states that the G bit is not observed by the
1797	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1798	 * So let's synthesize a legal G bit for all segments, this helps
1799	 * running KVM nested. It also helps cross-vendor migration, because
1800	 * Intel's vmentry has a check on the 'G' bit.
1801	 */
1802	var->g = s->limit > 0xfffff;
1803
1804	/*
1805	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1806	 * for cross vendor migration purposes by "not present"
1807	 */
1808	var->unusable = !var->present || (var->type == 0);
1809
1810	switch (seg) {
1811	case VCPU_SREG_TR:
1812		/*
1813		 * Work around a bug where the busy flag in the tr selector
1814		 * isn't exposed
1815		 */
1816		var->type |= 0x2;
1817		break;
1818	case VCPU_SREG_DS:
1819	case VCPU_SREG_ES:
1820	case VCPU_SREG_FS:
1821	case VCPU_SREG_GS:
1822		/*
1823		 * The accessed bit must always be set in the segment
1824		 * descriptor cache, although it can be cleared in the
1825		 * descriptor, the cached bit always remains at 1. Since
1826		 * Intel has a check on this, set it here to support
1827		 * cross-vendor migration.
1828		 */
1829		if (!var->unusable)
1830			var->type |= 0x1;
1831		break;
1832	case VCPU_SREG_SS:
1833		/*
1834		 * On AMD CPUs sometimes the DB bit in the segment
1835		 * descriptor is left as 1, although the whole segment has
1836		 * been made unusable. Clear it here to pass an Intel VMX
1837		 * entry check when cross vendor migrating.
1838		 */
1839		if (var->unusable)
1840			var->db = 0;
1841		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1842		break;
1843	}
1844}
1845
1846static int svm_get_cpl(struct kvm_vcpu *vcpu)
1847{
1848	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1849
1850	return save->cpl;
1851}
1852
1853static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1854{
1855	struct vcpu_svm *svm = to_svm(vcpu);
1856
1857	dt->size = svm->vmcb->save.idtr.limit;
1858	dt->address = svm->vmcb->save.idtr.base;
1859}
1860
1861static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1862{
1863	struct vcpu_svm *svm = to_svm(vcpu);
1864
1865	svm->vmcb->save.idtr.limit = dt->size;
1866	svm->vmcb->save.idtr.base = dt->address ;
1867	mark_dirty(svm->vmcb, VMCB_DT);
1868}
1869
1870static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1871{
1872	struct vcpu_svm *svm = to_svm(vcpu);
1873
1874	dt->size = svm->vmcb->save.gdtr.limit;
1875	dt->address = svm->vmcb->save.gdtr.base;
1876}
1877
1878static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1879{
1880	struct vcpu_svm *svm = to_svm(vcpu);
1881
1882	svm->vmcb->save.gdtr.limit = dt->size;
1883	svm->vmcb->save.gdtr.base = dt->address ;
1884	mark_dirty(svm->vmcb, VMCB_DT);
1885}
1886
1887static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1888{
1889}
1890
1891static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1892{
1893}
1894
1895static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1896{
1897}
1898
1899static void update_cr0_intercept(struct vcpu_svm *svm)
1900{
1901	ulong gcr0 = svm->vcpu.arch.cr0;
1902	u64 *hcr0 = &svm->vmcb->save.cr0;
1903
1904	if (!svm->vcpu.fpu_active)
1905		*hcr0 |= SVM_CR0_SELECTIVE_MASK;
1906	else
1907		*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1908			| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1909
1910	mark_dirty(svm->vmcb, VMCB_CR);
1911
1912	if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1913		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1914		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1915	} else {
1916		set_cr_intercept(svm, INTERCEPT_CR0_READ);
1917		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1918	}
1919}
1920
1921static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1922{
1923	struct vcpu_svm *svm = to_svm(vcpu);
1924
1925#ifdef CONFIG_X86_64
1926	if (vcpu->arch.efer & EFER_LME) {
1927		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1928			vcpu->arch.efer |= EFER_LMA;
1929			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1930		}
1931
1932		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1933			vcpu->arch.efer &= ~EFER_LMA;
1934			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1935		}
1936	}
1937#endif
1938	vcpu->arch.cr0 = cr0;
1939
1940	if (!npt_enabled)
1941		cr0 |= X86_CR0_PG | X86_CR0_WP;
1942
1943	if (!vcpu->fpu_active)
1944		cr0 |= X86_CR0_TS;
1945	/*
1946	 * re-enable caching here because the QEMU bios
1947	 * does not do it - this results in some delay at
1948	 * reboot
1949	 */
1950	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1951		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1952	svm->vmcb->save.cr0 = cr0;
1953	mark_dirty(svm->vmcb, VMCB_CR);
1954	update_cr0_intercept(svm);
1955}
1956
1957static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1958{
1959	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1960	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1961
1962	if (cr4 & X86_CR4_VMXE)
1963		return 1;
1964
1965	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1966		svm_flush_tlb(vcpu);
1967
1968	vcpu->arch.cr4 = cr4;
1969	if (!npt_enabled)
1970		cr4 |= X86_CR4_PAE;
1971	cr4 |= host_cr4_mce;
1972	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1973	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1974	return 0;
1975}
1976
1977static void svm_set_segment(struct kvm_vcpu *vcpu,
1978			    struct kvm_segment *var, int seg)
1979{
1980	struct vcpu_svm *svm = to_svm(vcpu);
1981	struct vmcb_seg *s = svm_seg(vcpu, seg);
1982
1983	s->base = var->base;
1984	s->limit = var->limit;
1985	s->selector = var->selector;
1986	if (var->unusable)
1987		s->attrib = 0;
1988	else {
1989		s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1990		s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1991		s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1992		s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1993		s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1994		s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1995		s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1996		s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1997	}
1998
1999	/*
2000	 * This is always accurate, except if SYSRET returned to a segment
2001	 * with SS.DPL != 3.  Intel does not have this quirk, and always
2002	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2003	 * would entail passing the CPL to userspace and back.
2004	 */
2005	if (seg == VCPU_SREG_SS)
2006		svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2007
2008	mark_dirty(svm->vmcb, VMCB_SEG);
2009}
2010
2011static void update_bp_intercept(struct kvm_vcpu *vcpu)
2012{
2013	struct vcpu_svm *svm = to_svm(vcpu);
2014
2015	clr_exception_intercept(svm, BP_VECTOR);
2016
2017	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2018		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2019			set_exception_intercept(svm, BP_VECTOR);
2020	} else
2021		vcpu->guest_debug = 0;
2022}
2023
2024static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2025{
2026	if (sd->next_asid > sd->max_asid) {
2027		++sd->asid_generation;
2028		sd->next_asid = 1;
2029		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2030	}
2031
2032	svm->asid_generation = sd->asid_generation;
2033	svm->vmcb->control.asid = sd->next_asid++;
2034
2035	mark_dirty(svm->vmcb, VMCB_ASID);
2036}
2037
2038static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2039{
2040	return to_svm(vcpu)->vmcb->save.dr6;
2041}
2042
2043static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2044{
2045	struct vcpu_svm *svm = to_svm(vcpu);
2046
2047	svm->vmcb->save.dr6 = value;
2048	mark_dirty(svm->vmcb, VMCB_DR);
2049}
2050
2051static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2052{
2053	struct vcpu_svm *svm = to_svm(vcpu);
2054
2055	get_debugreg(vcpu->arch.db[0], 0);
2056	get_debugreg(vcpu->arch.db[1], 1);
2057	get_debugreg(vcpu->arch.db[2], 2);
2058	get_debugreg(vcpu->arch.db[3], 3);
2059	vcpu->arch.dr6 = svm_get_dr6(vcpu);
2060	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2061
2062	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2063	set_dr_intercepts(svm);
2064}
2065
2066static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2067{
2068	struct vcpu_svm *svm = to_svm(vcpu);
2069
2070	svm->vmcb->save.dr7 = value;
2071	mark_dirty(svm->vmcb, VMCB_DR);
2072}
2073
2074static int pf_interception(struct vcpu_svm *svm)
2075{
2076	u64 fault_address = svm->vmcb->control.exit_info_2;
2077	u64 error_code;
2078	int r = 1;
2079
2080	switch (svm->apf_reason) {
2081	default:
2082		error_code = svm->vmcb->control.exit_info_1;
2083
2084		trace_kvm_page_fault(fault_address, error_code);
2085		if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
2086			kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
2087		r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2088			svm->vmcb->control.insn_bytes,
2089			svm->vmcb->control.insn_len);
2090		break;
2091	case KVM_PV_REASON_PAGE_NOT_PRESENT:
2092		svm->apf_reason = 0;
2093		local_irq_disable();
2094		kvm_async_pf_task_wait(fault_address);
2095		local_irq_enable();
2096		break;
2097	case KVM_PV_REASON_PAGE_READY:
2098		svm->apf_reason = 0;
2099		local_irq_disable();
2100		kvm_async_pf_task_wake(fault_address);
2101		local_irq_enable();
2102		break;
2103	}
2104	return r;
2105}
2106
2107static int db_interception(struct vcpu_svm *svm)
2108{
2109	struct kvm_run *kvm_run = svm->vcpu.run;
2110
2111	if (!(svm->vcpu.guest_debug &
2112	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2113		!svm->nmi_singlestep) {
2114		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2115		return 1;
2116	}
2117
2118	if (svm->nmi_singlestep) {
2119		svm->nmi_singlestep = false;
2120		if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
2121			svm->vmcb->save.rflags &=
2122				~(X86_EFLAGS_TF | X86_EFLAGS_RF);
2123	}
2124
2125	if (svm->vcpu.guest_debug &
2126	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2127		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2128		kvm_run->debug.arch.pc =
2129			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2130		kvm_run->debug.arch.exception = DB_VECTOR;
2131		return 0;
2132	}
2133
2134	return 1;
2135}
2136
2137static int bp_interception(struct vcpu_svm *svm)
2138{
2139	struct kvm_run *kvm_run = svm->vcpu.run;
2140
2141	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2142	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2143	kvm_run->debug.arch.exception = BP_VECTOR;
2144	return 0;
2145}
2146
2147static int ud_interception(struct vcpu_svm *svm)
2148{
2149	int er;
2150
2151	er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
2152	if (er != EMULATE_DONE)
2153		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2154	return 1;
2155}
2156
2157static int ac_interception(struct vcpu_svm *svm)
2158{
2159	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2160	return 1;
2161}
2162
2163static void svm_fpu_activate(struct kvm_vcpu *vcpu)
2164{
2165	struct vcpu_svm *svm = to_svm(vcpu);
2166
2167	clr_exception_intercept(svm, NM_VECTOR);
2168
2169	svm->vcpu.fpu_active = 1;
2170	update_cr0_intercept(svm);
2171}
2172
2173static int nm_interception(struct vcpu_svm *svm)
2174{
2175	svm_fpu_activate(&svm->vcpu);
2176	return 1;
2177}
2178
2179static bool is_erratum_383(void)
2180{
2181	int err, i;
2182	u64 value;
2183
2184	if (!erratum_383_found)
2185		return false;
2186
2187	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2188	if (err)
2189		return false;
2190
2191	/* Bit 62 may or may not be set for this mce */
2192	value &= ~(1ULL << 62);
2193
2194	if (value != 0xb600000000010015ULL)
2195		return false;
2196
2197	/* Clear MCi_STATUS registers */
2198	for (i = 0; i < 6; ++i)
2199		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2200
2201	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2202	if (!err) {
2203		u32 low, high;
2204
2205		value &= ~(1ULL << 2);
2206		low    = lower_32_bits(value);
2207		high   = upper_32_bits(value);
2208
2209		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2210	}
2211
2212	/* Flush tlb to evict multi-match entries */
2213	__flush_tlb_all();
2214
2215	return true;
2216}
2217
2218static void svm_handle_mce(struct vcpu_svm *svm)
2219{
2220	if (is_erratum_383()) {
2221		/*
2222		 * Erratum 383 triggered. Guest state is corrupt so kill the
2223		 * guest.
2224		 */
2225		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2226
2227		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2228
2229		return;
2230	}
2231
2232	/*
2233	 * On an #MC intercept the MCE handler is not called automatically in
2234	 * the host. So do it by hand here.
2235	 */
2236	asm volatile (
2237		"int $0x12\n");
2238	/* not sure if we ever come back to this point */
2239
2240	return;
2241}
2242
2243static int mc_interception(struct vcpu_svm *svm)
2244{
2245	return 1;
2246}
2247
2248static int shutdown_interception(struct vcpu_svm *svm)
2249{
2250	struct kvm_run *kvm_run = svm->vcpu.run;
2251
2252	/*
2253	 * VMCB is undefined after a SHUTDOWN intercept
2254	 * so reinitialize it.
2255	 */
2256	clear_page(svm->vmcb);
2257	init_vmcb(svm);
2258
2259	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2260	return 0;
2261}
2262
2263static int io_interception(struct vcpu_svm *svm)
2264{
2265	struct kvm_vcpu *vcpu = &svm->vcpu;
2266	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2267	int size, in, string;
2268	unsigned port;
2269
2270	++svm->vcpu.stat.io_exits;
2271	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2272	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2273	if (string)
2274		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2275
2276	port = io_info >> 16;
2277	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2278	svm->next_rip = svm->vmcb->control.exit_info_2;
2279	skip_emulated_instruction(&svm->vcpu);
2280
2281	return in ? kvm_fast_pio_in(vcpu, size, port)
2282		  : kvm_fast_pio_out(vcpu, size, port);
2283}
2284
2285static int nmi_interception(struct vcpu_svm *svm)
2286{
2287	return 1;
2288}
2289
2290static int intr_interception(struct vcpu_svm *svm)
2291{
2292	++svm->vcpu.stat.irq_exits;
2293	return 1;
2294}
2295
2296static int nop_on_interception(struct vcpu_svm *svm)
2297{
2298	return 1;
2299}
2300
2301static int halt_interception(struct vcpu_svm *svm)
2302{
2303	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2304	return kvm_emulate_halt(&svm->vcpu);
2305}
2306
2307static int vmmcall_interception(struct vcpu_svm *svm)
2308{
2309	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2310	return kvm_emulate_hypercall(&svm->vcpu);
2311}
2312
2313static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2314{
2315	struct vcpu_svm *svm = to_svm(vcpu);
2316
2317	return svm->nested.nested_cr3;
2318}
2319
2320static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2321{
2322	struct vcpu_svm *svm = to_svm(vcpu);
2323	u64 cr3 = svm->nested.nested_cr3;
2324	u64 pdpte;
2325	int ret;
2326
2327	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
2328				       offset_in_page(cr3) + index * 8, 8);
2329	if (ret)
2330		return 0;
2331	return pdpte;
2332}
2333
2334static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2335				   unsigned long root)
2336{
2337	struct vcpu_svm *svm = to_svm(vcpu);
2338
2339	svm->vmcb->control.nested_cr3 = root;
2340	mark_dirty(svm->vmcb, VMCB_NPT);
2341	svm_flush_tlb(vcpu);
2342}
2343
2344static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2345				       struct x86_exception *fault)
2346{
2347	struct vcpu_svm *svm = to_svm(vcpu);
2348
2349	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2350		/*
2351		 * TODO: track the cause of the nested page fault, and
2352		 * correctly fill in the high bits of exit_info_1.
2353		 */
2354		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2355		svm->vmcb->control.exit_code_hi = 0;
2356		svm->vmcb->control.exit_info_1 = (1ULL << 32);
2357		svm->vmcb->control.exit_info_2 = fault->address;
2358	}
2359
2360	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2361	svm->vmcb->control.exit_info_1 |= fault->error_code;
2362
2363	/*
2364	 * The present bit is always zero for page structure faults on real
2365	 * hardware.
2366	 */
2367	if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2368		svm->vmcb->control.exit_info_1 &= ~1;
2369
2370	nested_svm_vmexit(svm);
2371}
2372
2373static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2374{
2375	WARN_ON(mmu_is_nested(vcpu));
2376	kvm_init_shadow_mmu(vcpu);
2377	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2378	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2379	vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2380	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2381	vcpu->arch.mmu.shadow_root_level = get_npt_level();
2382	reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2383	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2384}
2385
2386static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2387{
2388	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2389}
2390
2391static int nested_svm_check_permissions(struct vcpu_svm *svm)
2392{
2393	if (!(svm->vcpu.arch.efer & EFER_SVME)
2394	    || !is_paging(&svm->vcpu)) {
2395		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2396		return 1;
2397	}
2398
2399	if (svm->vmcb->save.cpl) {
2400		kvm_inject_gp(&svm->vcpu, 0);
2401		return 1;
2402	}
2403
2404       return 0;
2405}
2406
2407static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2408				      bool has_error_code, u32 error_code)
2409{
2410	int vmexit;
2411
2412	if (!is_guest_mode(&svm->vcpu))
2413		return 0;
2414
2415	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2416	svm->vmcb->control.exit_code_hi = 0;
2417	svm->vmcb->control.exit_info_1 = error_code;
2418	svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2419
2420	vmexit = nested_svm_intercept(svm);
2421	if (vmexit == NESTED_EXIT_DONE)
2422		svm->nested.exit_required = true;
2423
2424	return vmexit;
2425}
2426
2427/* This function returns true if it is save to enable the irq window */
2428static inline bool nested_svm_intr(struct vcpu_svm *svm)
2429{
2430	if (!is_guest_mode(&svm->vcpu))
2431		return true;
2432
2433	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2434		return true;
2435
2436	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2437		return false;
2438
2439	/*
2440	 * if vmexit was already requested (by intercepted exception
2441	 * for instance) do not overwrite it with "external interrupt"
2442	 * vmexit.
2443	 */
2444	if (svm->nested.exit_required)
2445		return false;
2446
2447	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2448	svm->vmcb->control.exit_info_1 = 0;
2449	svm->vmcb->control.exit_info_2 = 0;
2450
2451	if (svm->nested.intercept & 1ULL) {
2452		/*
2453		 * The #vmexit can't be emulated here directly because this
2454		 * code path runs with irqs and preemption disabled. A
2455		 * #vmexit emulation might sleep. Only signal request for
2456		 * the #vmexit here.
2457		 */
2458		svm->nested.exit_required = true;
2459		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2460		return false;
2461	}
2462
2463	return true;
2464}
2465
2466/* This function returns true if it is save to enable the nmi window */
2467static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2468{
2469	if (!is_guest_mode(&svm->vcpu))
2470		return true;
2471
2472	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2473		return true;
2474
2475	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2476	svm->nested.exit_required = true;
2477
2478	return false;
2479}
2480
2481static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2482{
2483	struct page *page;
2484
2485	might_sleep();
2486
2487	page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2488	if (is_error_page(page))
2489		goto error;
2490
2491	*_page = page;
2492
2493	return kmap(page);
2494
2495error:
2496	kvm_inject_gp(&svm->vcpu, 0);
2497
2498	return NULL;
2499}
2500
2501static void nested_svm_unmap(struct page *page)
2502{
2503	kunmap(page);
2504	kvm_release_page_dirty(page);
2505}
2506
2507static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2508{
2509	unsigned port, size, iopm_len;
2510	u16 val, mask;
2511	u8 start_bit;
2512	u64 gpa;
2513
2514	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2515		return NESTED_EXIT_HOST;
2516
2517	port = svm->vmcb->control.exit_info_1 >> 16;
2518	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2519		SVM_IOIO_SIZE_SHIFT;
2520	gpa  = svm->nested.vmcb_iopm + (port / 8);
2521	start_bit = port % 8;
2522	iopm_len = (start_bit + size > 8) ? 2 : 1;
2523	mask = (0xf >> (4 - size)) << start_bit;
2524	val = 0;
2525
2526	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2527		return NESTED_EXIT_DONE;
2528
2529	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2530}
2531
2532static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2533{
2534	u32 offset, msr, value;
2535	int write, mask;
2536
2537	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2538		return NESTED_EXIT_HOST;
2539
2540	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2541	offset = svm_msrpm_offset(msr);
2542	write  = svm->vmcb->control.exit_info_1 & 1;
2543	mask   = 1 << ((2 * (msr & 0xf)) + write);
2544
2545	if (offset == MSR_INVALID)
2546		return NESTED_EXIT_DONE;
2547
2548	/* Offset is in 32 bit units but need in 8 bit units */
2549	offset *= 4;
2550
2551	if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2552		return NESTED_EXIT_DONE;
2553
2554	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2555}
2556
2557static int nested_svm_exit_special(struct vcpu_svm *svm)
2558{
2559	u32 exit_code = svm->vmcb->control.exit_code;
2560
2561	switch (exit_code) {
2562	case SVM_EXIT_INTR:
2563	case SVM_EXIT_NMI:
2564	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2565		return NESTED_EXIT_HOST;
2566	case SVM_EXIT_NPF:
2567		/* For now we are always handling NPFs when using them */
2568		if (npt_enabled)
2569			return NESTED_EXIT_HOST;
2570		break;
2571	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2572		/* When we're shadowing, trap PFs, but not async PF */
2573		if (!npt_enabled && svm->apf_reason == 0)
2574			return NESTED_EXIT_HOST;
2575		break;
2576	case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2577		nm_interception(svm);
2578		break;
2579	default:
2580		break;
2581	}
2582
2583	return NESTED_EXIT_CONTINUE;
2584}
2585
2586/*
2587 * If this function returns true, this #vmexit was already handled
2588 */
2589static int nested_svm_intercept(struct vcpu_svm *svm)
2590{
2591	u32 exit_code = svm->vmcb->control.exit_code;
2592	int vmexit = NESTED_EXIT_HOST;
2593
2594	switch (exit_code) {
2595	case SVM_EXIT_MSR:
2596		vmexit = nested_svm_exit_handled_msr(svm);
2597		break;
2598	case SVM_EXIT_IOIO:
2599		vmexit = nested_svm_intercept_ioio(svm);
2600		break;
2601	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2602		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2603		if (svm->nested.intercept_cr & bit)
2604			vmexit = NESTED_EXIT_DONE;
2605		break;
2606	}
2607	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2608		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2609		if (svm->nested.intercept_dr & bit)
2610			vmexit = NESTED_EXIT_DONE;
2611		break;
2612	}
2613	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2614		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2615		if (svm->nested.intercept_exceptions & excp_bits)
2616			vmexit = NESTED_EXIT_DONE;
2617		/* async page fault always cause vmexit */
2618		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2619			 svm->apf_reason != 0)
2620			vmexit = NESTED_EXIT_DONE;
2621		break;
2622	}
2623	case SVM_EXIT_ERR: {
2624		vmexit = NESTED_EXIT_DONE;
2625		break;
2626	}
2627	default: {
2628		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2629		if (svm->nested.intercept & exit_bits)
2630			vmexit = NESTED_EXIT_DONE;
2631	}
2632	}
2633
2634	return vmexit;
2635}
2636
2637static int nested_svm_exit_handled(struct vcpu_svm *svm)
2638{
2639	int vmexit;
2640
2641	vmexit = nested_svm_intercept(svm);
2642
2643	if (vmexit == NESTED_EXIT_DONE)
2644		nested_svm_vmexit(svm);
2645
2646	return vmexit;
2647}
2648
2649static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2650{
2651	struct vmcb_control_area *dst  = &dst_vmcb->control;
2652	struct vmcb_control_area *from = &from_vmcb->control;
2653
2654	dst->intercept_cr         = from->intercept_cr;
2655	dst->intercept_dr         = from->intercept_dr;
2656	dst->intercept_exceptions = from->intercept_exceptions;
2657	dst->intercept            = from->intercept;
2658	dst->iopm_base_pa         = from->iopm_base_pa;
2659	dst->msrpm_base_pa        = from->msrpm_base_pa;
2660	dst->tsc_offset           = from->tsc_offset;
2661	dst->asid                 = from->asid;
2662	dst->tlb_ctl              = from->tlb_ctl;
2663	dst->int_ctl              = from->int_ctl;
2664	dst->int_vector           = from->int_vector;
2665	dst->int_state            = from->int_state;
2666	dst->exit_code            = from->exit_code;
2667	dst->exit_code_hi         = from->exit_code_hi;
2668	dst->exit_info_1          = from->exit_info_1;
2669	dst->exit_info_2          = from->exit_info_2;
2670	dst->exit_int_info        = from->exit_int_info;
2671	dst->exit_int_info_err    = from->exit_int_info_err;
2672	dst->nested_ctl           = from->nested_ctl;
2673	dst->event_inj            = from->event_inj;
2674	dst->event_inj_err        = from->event_inj_err;
2675	dst->nested_cr3           = from->nested_cr3;
2676	dst->lbr_ctl              = from->lbr_ctl;
2677}
2678
2679static int nested_svm_vmexit(struct vcpu_svm *svm)
2680{
2681	struct vmcb *nested_vmcb;
2682	struct vmcb *hsave = svm->nested.hsave;
2683	struct vmcb *vmcb = svm->vmcb;
2684	struct page *page;
2685
2686	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2687				       vmcb->control.exit_info_1,
2688				       vmcb->control.exit_info_2,
2689				       vmcb->control.exit_int_info,
2690				       vmcb->control.exit_int_info_err,
2691				       KVM_ISA_SVM);
2692
2693	nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2694	if (!nested_vmcb)
2695		return 1;
2696
2697	/* Exit Guest-Mode */
2698	leave_guest_mode(&svm->vcpu);
2699	svm->nested.vmcb = 0;
2700
2701	/* Give the current vmcb to the guest */
2702	disable_gif(svm);
2703
2704	nested_vmcb->save.es     = vmcb->save.es;
2705	nested_vmcb->save.cs     = vmcb->save.cs;
2706	nested_vmcb->save.ss     = vmcb->save.ss;
2707	nested_vmcb->save.ds     = vmcb->save.ds;
2708	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2709	nested_vmcb->save.idtr   = vmcb->save.idtr;
2710	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2711	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2712	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2713	nested_vmcb->save.cr2    = vmcb->save.cr2;
2714	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2715	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2716	nested_vmcb->save.rip    = vmcb->save.rip;
2717	nested_vmcb->save.rsp    = vmcb->save.rsp;
2718	nested_vmcb->save.rax    = vmcb->save.rax;
2719	nested_vmcb->save.dr7    = vmcb->save.dr7;
2720	nested_vmcb->save.dr6    = vmcb->save.dr6;
2721	nested_vmcb->save.cpl    = vmcb->save.cpl;
2722
2723	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2724	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2725	nested_vmcb->control.int_state         = vmcb->control.int_state;
2726	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2727	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2728	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2729	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2730	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2731	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2732
2733	if (svm->nrips_enabled)
2734		nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2735
2736	/*
2737	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2738	 * to make sure that we do not lose injected events. So check event_inj
2739	 * here and copy it to exit_int_info if it is valid.
2740	 * Exit_int_info and event_inj can't be both valid because the case
2741	 * below only happens on a VMRUN instruction intercept which has
2742	 * no valid exit_int_info set.
2743	 */
2744	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2745		struct vmcb_control_area *nc = &nested_vmcb->control;
2746
2747		nc->exit_int_info     = vmcb->control.event_inj;
2748		nc->exit_int_info_err = vmcb->control.event_inj_err;
2749	}
2750
2751	nested_vmcb->control.tlb_ctl           = 0;
2752	nested_vmcb->control.event_inj         = 0;
2753	nested_vmcb->control.event_inj_err     = 0;
2754
2755	/* We always set V_INTR_MASKING and remember the old value in hflags */
2756	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2757		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2758
2759	/* Restore the original control entries */
2760	copy_vmcb_control_area(vmcb, hsave);
2761
2762	kvm_clear_exception_queue(&svm->vcpu);
2763	kvm_clear_interrupt_queue(&svm->vcpu);
2764
2765	svm->nested.nested_cr3 = 0;
2766
2767	/* Restore selected save entries */
2768	svm->vmcb->save.es = hsave->save.es;
2769	svm->vmcb->save.cs = hsave->save.cs;
2770	svm->vmcb->save.ss = hsave->save.ss;
2771	svm->vmcb->save.ds = hsave->save.ds;
2772	svm->vmcb->save.gdtr = hsave->save.gdtr;
2773	svm->vmcb->save.idtr = hsave->save.idtr;
2774	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2775	svm_set_efer(&svm->vcpu, hsave->save.efer);
2776	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2777	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2778	if (npt_enabled) {
2779		svm->vmcb->save.cr3 = hsave->save.cr3;
2780		svm->vcpu.arch.cr3 = hsave->save.cr3;
2781	} else {
2782		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2783	}
2784	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2785	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2786	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2787	svm->vmcb->save.dr7 = 0;
2788	svm->vmcb->save.cpl = 0;
2789	svm->vmcb->control.exit_int_info = 0;
2790
2791	mark_all_dirty(svm->vmcb);
2792
2793	nested_svm_unmap(page);
2794
2795	nested_svm_uninit_mmu_context(&svm->vcpu);
2796	kvm_mmu_reset_context(&svm->vcpu);
2797	kvm_mmu_load(&svm->vcpu);
2798
2799	return 0;
2800}
2801
2802static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2803{
2804	/*
2805	 * This function merges the msr permission bitmaps of kvm and the
2806	 * nested vmcb. It is optimized in that it only merges the parts where
2807	 * the kvm msr permission bitmap may contain zero bits
2808	 */
2809	int i;
2810
2811	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2812		return true;
2813
2814	for (i = 0; i < MSRPM_OFFSETS; i++) {
2815		u32 value, p;
2816		u64 offset;
2817
2818		if (msrpm_offsets[i] == 0xffffffff)
2819			break;
2820
2821		p      = msrpm_offsets[i];
2822		offset = svm->nested.vmcb_msrpm + (p * 4);
2823
2824		if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2825			return false;
2826
2827		svm->nested.msrpm[p] = svm->msrpm[p] | value;
2828	}
2829
2830	svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2831
2832	return true;
2833}
2834
2835static bool nested_vmcb_checks(struct vmcb *vmcb)
2836{
2837	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2838		return false;
2839
2840	if (vmcb->control.asid == 0)
2841		return false;
2842
2843	if (vmcb->control.nested_ctl && !npt_enabled)
2844		return false;
2845
2846	return true;
2847}
2848
2849static bool nested_svm_vmrun(struct vcpu_svm *svm)
2850{
2851	struct vmcb *nested_vmcb;
2852	struct vmcb *hsave = svm->nested.hsave;
2853	struct vmcb *vmcb = svm->vmcb;
2854	struct page *page;
2855	u64 vmcb_gpa;
2856
2857	vmcb_gpa = svm->vmcb->save.rax;
2858
2859	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2860	if (!nested_vmcb)
2861		return false;
2862
2863	if (!nested_vmcb_checks(nested_vmcb)) {
2864		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2865		nested_vmcb->control.exit_code_hi = 0;
2866		nested_vmcb->control.exit_info_1  = 0;
2867		nested_vmcb->control.exit_info_2  = 0;
2868
2869		nested_svm_unmap(page);
2870
2871		return false;
2872	}
2873
2874	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2875			       nested_vmcb->save.rip,
2876			       nested_vmcb->control.int_ctl,
2877			       nested_vmcb->control.event_inj,
2878			       nested_vmcb->control.nested_ctl);
2879
2880	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2881				    nested_vmcb->control.intercept_cr >> 16,
2882				    nested_vmcb->control.intercept_exceptions,
2883				    nested_vmcb->control.intercept);
2884
2885	/* Clear internal status */
2886	kvm_clear_exception_queue(&svm->vcpu);
2887	kvm_clear_interrupt_queue(&svm->vcpu);
2888
2889	/*
2890	 * Save the old vmcb, so we don't need to pick what we save, but can
2891	 * restore everything when a VMEXIT occurs
2892	 */
2893	hsave->save.es     = vmcb->save.es;
2894	hsave->save.cs     = vmcb->save.cs;
2895	hsave->save.ss     = vmcb->save.ss;
2896	hsave->save.ds     = vmcb->save.ds;
2897	hsave->save.gdtr   = vmcb->save.gdtr;
2898	hsave->save.idtr   = vmcb->save.idtr;
2899	hsave->save.efer   = svm->vcpu.arch.efer;
2900	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2901	hsave->save.cr4    = svm->vcpu.arch.cr4;
2902	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2903	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2904	hsave->save.rsp    = vmcb->save.rsp;
2905	hsave->save.rax    = vmcb->save.rax;
2906	if (npt_enabled)
2907		hsave->save.cr3    = vmcb->save.cr3;
2908	else
2909		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2910
2911	copy_vmcb_control_area(hsave, vmcb);
2912
2913	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2914		svm->vcpu.arch.hflags |= HF_HIF_MASK;
2915	else
2916		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2917
2918	if (nested_vmcb->control.nested_ctl) {
2919		kvm_mmu_unload(&svm->vcpu);
2920		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2921		nested_svm_init_mmu_context(&svm->vcpu);
2922	}
2923
2924	/* Load the nested guest state */
2925	svm->vmcb->save.es = nested_vmcb->save.es;
2926	svm->vmcb->save.cs = nested_vmcb->save.cs;
2927	svm->vmcb->save.ss = nested_vmcb->save.ss;
2928	svm->vmcb->save.ds = nested_vmcb->save.ds;
2929	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2930	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2931	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2932	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2933	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2934	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2935	if (npt_enabled) {
2936		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2937		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2938	} else
2939		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2940
2941	/* Guest paging mode is active - reset mmu */
2942	kvm_mmu_reset_context(&svm->vcpu);
2943
2944	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2945	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2946	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2947	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2948
2949	/* In case we don't even reach vcpu_run, the fields are not updated */
2950	svm->vmcb->save.rax = nested_vmcb->save.rax;
2951	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2952	svm->vmcb->save.rip = nested_vmcb->save.rip;
2953	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2954	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2955	svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2956
2957	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2958	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2959
2960	/* cache intercepts */
2961	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2962	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2963	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2964	svm->nested.intercept            = nested_vmcb->control.intercept;
2965
2966	svm_flush_tlb(&svm->vcpu);
2967	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2968	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2969		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2970	else
2971		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2972
2973	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2974		/* We only want the cr8 intercept bits of the guest */
2975		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2976		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2977	}
2978
2979	/* We don't want to see VMMCALLs from a nested guest */
2980	clr_intercept(svm, INTERCEPT_VMMCALL);
2981
2982	svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2983	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2984	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2985	svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2986	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2987	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2988
2989	nested_svm_unmap(page);
2990
2991	/* Enter Guest-Mode */
2992	enter_guest_mode(&svm->vcpu);
2993
2994	/*
2995	 * Merge guest and host intercepts - must be called  with vcpu in
2996	 * guest-mode to take affect here
2997	 */
2998	recalc_intercepts(svm);
2999
3000	svm->nested.vmcb = vmcb_gpa;
3001
3002	enable_gif(svm);
3003
3004	mark_all_dirty(svm->vmcb);
3005
3006	return true;
3007}
3008
3009static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3010{
3011	to_vmcb->save.fs = from_vmcb->save.fs;
3012	to_vmcb->save.gs = from_vmcb->save.gs;
3013	to_vmcb->save.tr = from_vmcb->save.tr;
3014	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3015	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3016	to_vmcb->save.star = from_vmcb->save.star;
3017	to_vmcb->save.lstar = from_vmcb->save.lstar;
3018	to_vmcb->save.cstar = from_vmcb->save.cstar;
3019	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3020	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3021	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3022	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3023}
3024
3025static int vmload_interception(struct vcpu_svm *svm)
3026{
3027	struct vmcb *nested_vmcb;
3028	struct page *page;
3029
3030	if (nested_svm_check_permissions(svm))
3031		return 1;
3032
3033	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3034	if (!nested_vmcb)
3035		return 1;
3036
3037	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3038	skip_emulated_instruction(&svm->vcpu);
3039
3040	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3041	nested_svm_unmap(page);
3042
3043	return 1;
3044}
3045
3046static int vmsave_interception(struct vcpu_svm *svm)
3047{
3048	struct vmcb *nested_vmcb;
3049	struct page *page;
3050
3051	if (nested_svm_check_permissions(svm))
3052		return 1;
3053
3054	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3055	if (!nested_vmcb)
3056		return 1;
3057
3058	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3059	skip_emulated_instruction(&svm->vcpu);
3060
3061	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3062	nested_svm_unmap(page);
3063
3064	return 1;
3065}
3066
3067static int vmrun_interception(struct vcpu_svm *svm)
3068{
3069	if (nested_svm_check_permissions(svm))
3070		return 1;
3071
3072	/* Save rip after vmrun instruction */
3073	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3074
3075	if (!nested_svm_vmrun(svm))
3076		return 1;
3077
3078	if (!nested_svm_vmrun_msrpm(svm))
3079		goto failed;
3080
3081	return 1;
3082
3083failed:
3084
3085	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3086	svm->vmcb->control.exit_code_hi = 0;
3087	svm->vmcb->control.exit_info_1  = 0;
3088	svm->vmcb->control.exit_info_2  = 0;
3089
3090	nested_svm_vmexit(svm);
3091
3092	return 1;
3093}
3094
3095static int stgi_interception(struct vcpu_svm *svm)
3096{
3097	if (nested_svm_check_permissions(svm))
3098		return 1;
3099
3100	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3101	skip_emulated_instruction(&svm->vcpu);
3102	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3103
3104	enable_gif(svm);
3105
3106	return 1;
3107}
3108
3109static int clgi_interception(struct vcpu_svm *svm)
3110{
3111	if (nested_svm_check_permissions(svm))
3112		return 1;
3113
3114	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3115	skip_emulated_instruction(&svm->vcpu);
3116
3117	disable_gif(svm);
3118
3119	/* After a CLGI no interrupts should come */
3120	if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3121		svm_clear_vintr(svm);
3122		svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3123		mark_dirty(svm->vmcb, VMCB_INTR);
3124	}
3125
3126	return 1;
3127}
3128
3129static int invlpga_interception(struct vcpu_svm *svm)
3130{
3131	struct kvm_vcpu *vcpu = &svm->vcpu;
3132
3133	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3134			  kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3135
3136	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3137	kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3138
3139	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3140	skip_emulated_instruction(&svm->vcpu);
3141	return 1;
3142}
3143
3144static int skinit_interception(struct vcpu_svm *svm)
3145{
3146	trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3147
3148	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3149	return 1;
3150}
3151
3152static int wbinvd_interception(struct vcpu_svm *svm)
3153{
3154	return kvm_emulate_wbinvd(&svm->vcpu);
3155}
3156
3157static int xsetbv_interception(struct vcpu_svm *svm)
3158{
3159	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3160	u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3161
3162	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3163		svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3164		skip_emulated_instruction(&svm->vcpu);
3165	}
3166
3167	return 1;
3168}
3169
3170static int task_switch_interception(struct vcpu_svm *svm)
3171{
3172	u16 tss_selector;
3173	int reason;
3174	int int_type = svm->vmcb->control.exit_int_info &
3175		SVM_EXITINTINFO_TYPE_MASK;
3176	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3177	uint32_t type =
3178		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3179	uint32_t idt_v =
3180		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3181	bool has_error_code = false;
3182	u32 error_code = 0;
3183
3184	tss_selector = (u16)svm->vmcb->control.exit_info_1;
3185
3186	if (svm->vmcb->control.exit_info_2 &
3187	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3188		reason = TASK_SWITCH_IRET;
3189	else if (svm->vmcb->control.exit_info_2 &
3190		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3191		reason = TASK_SWITCH_JMP;
3192	else if (idt_v)
3193		reason = TASK_SWITCH_GATE;
3194	else
3195		reason = TASK_SWITCH_CALL;
3196
3197	if (reason == TASK_SWITCH_GATE) {
3198		switch (type) {
3199		case SVM_EXITINTINFO_TYPE_NMI:
3200			svm->vcpu.arch.nmi_injected = false;
3201			break;
3202		case SVM_EXITINTINFO_TYPE_EXEPT:
3203			if (svm->vmcb->control.exit_info_2 &
3204			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3205				has_error_code = true;
3206				error_code =
3207					(u32)svm->vmcb->control.exit_info_2;
3208			}
3209			kvm_clear_exception_queue(&svm->vcpu);
3210			break;
3211		case SVM_EXITINTINFO_TYPE_INTR:
3212			kvm_clear_interrupt_queue(&svm->vcpu);
3213			break;
3214		default:
3215			break;
3216		}
3217	}
3218
3219	if (reason != TASK_SWITCH_GATE ||
3220	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3221	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3222	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3223		skip_emulated_instruction(&svm->vcpu);
3224
3225	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3226		int_vec = -1;
3227
3228	if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3229				has_error_code, error_code) == EMULATE_FAIL) {
3230		svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3231		svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3232		svm->vcpu.run->internal.ndata = 0;
3233		return 0;
3234	}
3235	return 1;
3236}
3237
3238static int cpuid_interception(struct vcpu_svm *svm)
3239{
3240	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3241	return kvm_emulate_cpuid(&svm->vcpu);
3242}
3243
3244static int iret_interception(struct vcpu_svm *svm)
3245{
3246	++svm->vcpu.stat.nmi_window_exits;
3247	clr_intercept(svm, INTERCEPT_IRET);
3248	svm->vcpu.arch.hflags |= HF_IRET_MASK;
3249	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3250	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3251	return 1;
3252}
3253
3254static int invlpg_interception(struct vcpu_svm *svm)
3255{
3256	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3257		return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3258
3259	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3260	skip_emulated_instruction(&svm->vcpu);
3261	return 1;
3262}
3263
3264static int emulate_on_interception(struct vcpu_svm *svm)
3265{
3266	return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3267}
3268
3269static int rdpmc_interception(struct vcpu_svm *svm)
3270{
3271	int err;
3272
3273	if (!static_cpu_has(X86_FEATURE_NRIPS))
3274		return emulate_on_interception(svm);
3275
3276	err = kvm_rdpmc(&svm->vcpu);
3277	return kvm_complete_insn_gp(&svm->vcpu, err);
3278}
3279
3280static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3281					    unsigned long val)
3282{
3283	unsigned long cr0 = svm->vcpu.arch.cr0;
3284	bool ret = false;
3285	u64 intercept;
3286
3287	intercept = svm->nested.intercept;
3288
3289	if (!is_guest_mode(&svm->vcpu) ||
3290	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3291		return false;
3292
3293	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3294	val &= ~SVM_CR0_SELECTIVE_MASK;
3295
3296	if (cr0 ^ val) {
3297		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3298		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3299	}
3300
3301	return ret;
3302}
3303
3304#define CR_VALID (1ULL << 63)
3305
3306static int cr_interception(struct vcpu_svm *svm)
3307{
3308	int reg, cr;
3309	unsigned long val;
3310	int err;
3311
3312	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3313		return emulate_on_interception(svm);
3314
3315	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3316		return emulate_on_interception(svm);
3317
3318	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3319	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3320		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3321	else
3322		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3323
3324	err = 0;
3325	if (cr >= 16) { /* mov to cr */
3326		cr -= 16;
3327		val = kvm_register_read(&svm->vcpu, reg);
3328		switch (cr) {
3329		case 0:
3330			if (!check_selective_cr0_intercepted(svm, val))
3331				err = kvm_set_cr0(&svm->vcpu, val);
3332			else
3333				return 1;
3334
3335			break;
3336		case 3:
3337			err = kvm_set_cr3(&svm->vcpu, val);
3338			break;
3339		case 4:
3340			err = kvm_set_cr4(&svm->vcpu, val);
3341			break;
3342		case 8:
3343			err = kvm_set_cr8(&svm->vcpu, val);
3344			break;
3345		default:
3346			WARN(1, "unhandled write to CR%d", cr);
3347			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3348			return 1;
3349		}
3350	} else { /* mov from cr */
3351		switch (cr) {
3352		case 0:
3353			val = kvm_read_cr0(&svm->vcpu);
3354			break;
3355		case 2:
3356			val = svm->vcpu.arch.cr2;
3357			break;
3358		case 3:
3359			val = kvm_read_cr3(&svm->vcpu);
3360			break;
3361		case 4:
3362			val = kvm_read_cr4(&svm->vcpu);
3363			break;
3364		case 8:
3365			val = kvm_get_cr8(&svm->vcpu);
3366			break;
3367		default:
3368			WARN(1, "unhandled read from CR%d", cr);
3369			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3370			return 1;
3371		}
3372		kvm_register_write(&svm->vcpu, reg, val);
3373	}
3374	return kvm_complete_insn_gp(&svm->vcpu, err);
3375}
3376
3377static int dr_interception(struct vcpu_svm *svm)
3378{
3379	int reg, dr;
3380	unsigned long val;
3381
3382	if (svm->vcpu.guest_debug == 0) {
3383		/*
3384		 * No more DR vmexits; force a reload of the debug registers
3385		 * and reenter on this instruction.  The next vmexit will
3386		 * retrieve the full state of the debug registers.
3387		 */
3388		clr_dr_intercepts(svm);
3389		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3390		return 1;
3391	}
3392
3393	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3394		return emulate_on_interception(svm);
3395
3396	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3397	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3398
3399	if (dr >= 16) { /* mov to DRn */
3400		if (!kvm_require_dr(&svm->vcpu, dr - 16))
3401			return 1;
3402		val = kvm_register_read(&svm->vcpu, reg);
3403		kvm_set_dr(&svm->vcpu, dr - 16, val);
3404	} else {
3405		if (!kvm_require_dr(&svm->vcpu, dr))
3406			return 1;
3407		kvm_get_dr(&svm->vcpu, dr, &val);
3408		kvm_register_write(&svm->vcpu, reg, val);
3409	}
3410
3411	skip_emulated_instruction(&svm->vcpu);
3412
3413	return 1;
3414}
3415
3416static int cr8_write_interception(struct vcpu_svm *svm)
3417{
3418	struct kvm_run *kvm_run = svm->vcpu.run;
3419	int r;
3420
3421	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3422	/* instruction emulation calls kvm_set_cr8() */
3423	r = cr_interception(svm);
3424	if (lapic_in_kernel(&svm->vcpu))
3425		return r;
3426	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3427		return r;
3428	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3429	return 0;
3430}
3431
3432static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3433{
3434	struct vcpu_svm *svm = to_svm(vcpu);
3435
3436	switch (msr_info->index) {
3437	case MSR_IA32_TSC: {
3438		msr_info->data = svm->vmcb->control.tsc_offset +
3439			kvm_scale_tsc(vcpu, rdtsc());
3440
3441		break;
3442	}
3443	case MSR_STAR:
3444		msr_info->data = svm->vmcb->save.star;
3445		break;
3446#ifdef CONFIG_X86_64
3447	case MSR_LSTAR:
3448		msr_info->data = svm->vmcb->save.lstar;
3449		break;
3450	case MSR_CSTAR:
3451		msr_info->data = svm->vmcb->save.cstar;
3452		break;
3453	case MSR_KERNEL_GS_BASE:
3454		msr_info->data = svm->vmcb->save.kernel_gs_base;
3455		break;
3456	case MSR_SYSCALL_MASK:
3457		msr_info->data = svm->vmcb->save.sfmask;
3458		break;
3459#endif
3460	case MSR_IA32_SYSENTER_CS:
3461		msr_info->data = svm->vmcb->save.sysenter_cs;
3462		break;
3463	case MSR_IA32_SYSENTER_EIP:
3464		msr_info->data = svm->sysenter_eip;
3465		break;
3466	case MSR_IA32_SYSENTER_ESP:
3467		msr_info->data = svm->sysenter_esp;
3468		break;
3469	case MSR_TSC_AUX:
3470		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3471			return 1;
3472		msr_info->data = svm->tsc_aux;
3473		break;
3474	/*
3475	 * Nobody will change the following 5 values in the VMCB so we can
3476	 * safely return them on rdmsr. They will always be 0 until LBRV is
3477	 * implemented.
3478	 */
3479	case MSR_IA32_DEBUGCTLMSR:
3480		msr_info->data = svm->vmcb->save.dbgctl;
3481		break;
3482	case MSR_IA32_LASTBRANCHFROMIP:
3483		msr_info->data = svm->vmcb->save.br_from;
3484		break;
3485	case MSR_IA32_LASTBRANCHTOIP:
3486		msr_info->data = svm->vmcb->save.br_to;
3487		break;
3488	case MSR_IA32_LASTINTFROMIP:
3489		msr_info->data = svm->vmcb->save.last_excp_from;
3490		break;
3491	case MSR_IA32_LASTINTTOIP:
3492		msr_info->data = svm->vmcb->save.last_excp_to;
3493		break;
3494	case MSR_VM_HSAVE_PA:
3495		msr_info->data = svm->nested.hsave_msr;
3496		break;
3497	case MSR_VM_CR:
3498		msr_info->data = svm->nested.vm_cr_msr;
3499		break;
3500	case MSR_IA32_UCODE_REV:
3501		msr_info->data = 0x01000065;
3502		break;
3503	case MSR_F15H_IC_CFG: {
3504
3505		int family, model;
3506
3507		family = guest_cpuid_family(vcpu);
3508		model  = guest_cpuid_model(vcpu);
3509
3510		if (family < 0 || model < 0)
3511			return kvm_get_msr_common(vcpu, msr_info);
3512
3513		msr_info->data = 0;
3514
3515		if (family == 0x15 &&
3516		    (model >= 0x2 && model < 0x20))
3517			msr_info->data = 0x1E;
3518		}
3519		break;
3520	default:
3521		return kvm_get_msr_common(vcpu, msr_info);
3522	}
3523	return 0;
3524}
3525
3526static int rdmsr_interception(struct vcpu_svm *svm)
3527{
3528	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3529	struct msr_data msr_info;
3530
3531	msr_info.index = ecx;
3532	msr_info.host_initiated = false;
3533	if (svm_get_msr(&svm->vcpu, &msr_info)) {
3534		trace_kvm_msr_read_ex(ecx);
3535		kvm_inject_gp(&svm->vcpu, 0);
3536	} else {
3537		trace_kvm_msr_read(ecx, msr_info.data);
3538
3539		kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3540				   msr_info.data & 0xffffffff);
3541		kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3542				   msr_info.data >> 32);
3543		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3544		skip_emulated_instruction(&svm->vcpu);
3545	}
3546	return 1;
3547}
3548
3549static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3550{
3551	struct vcpu_svm *svm = to_svm(vcpu);
3552	int svm_dis, chg_mask;
3553
3554	if (data & ~SVM_VM_CR_VALID_MASK)
3555		return 1;
3556
3557	chg_mask = SVM_VM_CR_VALID_MASK;
3558
3559	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3560		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3561
3562	svm->nested.vm_cr_msr &= ~chg_mask;
3563	svm->nested.vm_cr_msr |= (data & chg_mask);
3564
3565	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3566
3567	/* check for svm_disable while efer.svme is set */
3568	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3569		return 1;
3570
3571	return 0;
3572}
3573
3574static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3575{
3576	struct vcpu_svm *svm = to_svm(vcpu);
3577
3578	u32 ecx = msr->index;
3579	u64 data = msr->data;
3580	switch (ecx) {
3581	case MSR_IA32_TSC:
3582		kvm_write_tsc(vcpu, msr);
3583		break;
3584	case MSR_STAR:
3585		svm->vmcb->save.star = data;
3586		break;
3587#ifdef CONFIG_X86_64
3588	case MSR_LSTAR:
3589		svm->vmcb->save.lstar = data;
3590		break;
3591	case MSR_CSTAR:
3592		svm->vmcb->save.cstar = data;
3593		break;
3594	case MSR_KERNEL_GS_BASE:
3595		svm->vmcb->save.kernel_gs_base = data;
3596		break;
3597	case MSR_SYSCALL_MASK:
3598		svm->vmcb->save.sfmask = data;
3599		break;
3600#endif
3601	case MSR_IA32_SYSENTER_CS:
3602		svm->vmcb->save.sysenter_cs = data;
3603		break;
3604	case MSR_IA32_SYSENTER_EIP:
3605		svm->sysenter_eip = data;
3606		svm->vmcb->save.sysenter_eip = data;
3607		break;
3608	case MSR_IA32_SYSENTER_ESP:
3609		svm->sysenter_esp = data;
3610		svm->vmcb->save.sysenter_esp = data;
3611		break;
3612	case MSR_TSC_AUX:
3613		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
3614			return 1;
3615
3616		/*
3617		 * This is rare, so we update the MSR here instead of using
3618		 * direct_access_msrs.  Doing that would require a rdmsr in
3619		 * svm_vcpu_put.
3620		 */
3621		svm->tsc_aux = data;
3622		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
3623		break;
3624	case MSR_IA32_DEBUGCTLMSR:
3625		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3626			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3627				    __func__, data);
3628			break;
3629		}
3630		if (data & DEBUGCTL_RESERVED_BITS)
3631			return 1;
3632
3633		svm->vmcb->save.dbgctl = data;
3634		mark_dirty(svm->vmcb, VMCB_LBR);
3635		if (data & (1ULL<<0))
3636			svm_enable_lbrv(svm);
3637		else
3638			svm_disable_lbrv(svm);
3639		break;
3640	case MSR_VM_HSAVE_PA:
3641		svm->nested.hsave_msr = data;
3642		break;
3643	case MSR_VM_CR:
3644		return svm_set_vm_cr(vcpu, data);
3645	case MSR_VM_IGNNE:
3646		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3647		break;
3648	case MSR_IA32_APICBASE:
3649		if (kvm_vcpu_apicv_active(vcpu))
3650			avic_update_vapic_bar(to_svm(vcpu), data);
3651		/* Follow through */
3652	default:
3653		return kvm_set_msr_common(vcpu, msr);
3654	}
3655	return 0;
3656}
3657
3658static int wrmsr_interception(struct vcpu_svm *svm)
3659{
3660	struct msr_data msr;
3661	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3662	u64 data = kvm_read_edx_eax(&svm->vcpu);
3663
3664	msr.data = data;
3665	msr.index = ecx;
3666	msr.host_initiated = false;
3667
3668	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3669	if (kvm_set_msr(&svm->vcpu, &msr)) {
3670		trace_kvm_msr_write_ex(ecx, data);
3671		kvm_inject_gp(&svm->vcpu, 0);
3672	} else {
3673		trace_kvm_msr_write(ecx, data);
3674		skip_emulated_instruction(&svm->vcpu);
3675	}
3676	return 1;
3677}
3678
3679static int msr_interception(struct vcpu_svm *svm)
3680{
3681	if (svm->vmcb->control.exit_info_1)
3682		return wrmsr_interception(svm);
3683	else
3684		return rdmsr_interception(svm);
3685}
3686
3687static int interrupt_window_interception(struct vcpu_svm *svm)
3688{
3689	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3690	svm_clear_vintr(svm);
3691	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3692	mark_dirty(svm->vmcb, VMCB_INTR);
3693	++svm->vcpu.stat.irq_window_exits;
3694	return 1;
3695}
3696
3697static int pause_interception(struct vcpu_svm *svm)
3698{
3699	kvm_vcpu_on_spin(&(svm->vcpu));
3700	return 1;
3701}
3702
3703static int nop_interception(struct vcpu_svm *svm)
3704{
3705	skip_emulated_instruction(&(svm->vcpu));
3706	return 1;
3707}
3708
3709static int monitor_interception(struct vcpu_svm *svm)
3710{
3711	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3712	return nop_interception(svm);
3713}
3714
3715static int mwait_interception(struct vcpu_svm *svm)
3716{
3717	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3718	return nop_interception(svm);
3719}
3720
3721enum avic_ipi_failure_cause {
3722	AVIC_IPI_FAILURE_INVALID_INT_TYPE,
3723	AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
3724	AVIC_IPI_FAILURE_INVALID_TARGET,
3725	AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
3726};
3727
3728static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
3729{
3730	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
3731	u32 icrl = svm->vmcb->control.exit_info_1;
3732	u32 id = svm->vmcb->control.exit_info_2 >> 32;
3733	u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
3734	struct kvm_lapic *apic = svm->vcpu.arch.apic;
3735
3736	trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
3737
3738	switch (id) {
3739	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
3740		/*
3741		 * AVIC hardware handles the generation of
3742		 * IPIs when the specified Message Type is Fixed
3743		 * (also known as fixed delivery mode) and
3744		 * the Trigger Mode is edge-triggered. The hardware
3745		 * also supports self and broadcast delivery modes
3746		 * specified via the Destination Shorthand(DSH)
3747		 * field of the ICRL. Logical and physical APIC ID
3748		 * formats are supported. All other IPI types cause
3749		 * a #VMEXIT, which needs to emulated.
3750		 */
3751		kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
3752		kvm_lapic_reg_write(apic, APIC_ICR, icrl);
3753		break;
3754	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
3755		int i;
3756		struct kvm_vcpu *vcpu;
3757		struct kvm *kvm = svm->vcpu.kvm;
3758		struct kvm_lapic *apic = svm->vcpu.arch.apic;
3759
3760		/*
3761		 * At this point, we expect that the AVIC HW has already
3762		 * set the appropriate IRR bits on the valid target
3763		 * vcpus. So, we just need to kick the appropriate vcpu.
3764		 */
3765		kvm_for_each_vcpu(i, vcpu, kvm) {
3766			bool m = kvm_apic_match_dest(vcpu, apic,
3767						     icrl & KVM_APIC_SHORT_MASK,
3768						     GET_APIC_DEST_FIELD(icrh),
3769						     icrl & KVM_APIC_DEST_MASK);
3770
3771			if (m && !avic_vcpu_is_running(vcpu))
3772				kvm_vcpu_wake_up(vcpu);
3773		}
3774		break;
3775	}
3776	case AVIC_IPI_FAILURE_INVALID_TARGET:
3777		break;
3778	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
3779		WARN_ONCE(1, "Invalid backing page\n");
3780		break;
3781	default:
3782		pr_err("Unknown IPI interception\n");
3783	}
3784
3785	return 1;
3786}
3787
3788static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
3789{
3790	struct kvm_arch *vm_data = &vcpu->kvm->arch;
3791	int index;
3792	u32 *logical_apic_id_table;
3793	int dlid = GET_APIC_LOGICAL_ID(ldr);
3794
3795	if (!dlid)
3796		return NULL;
3797
3798	if (flat) { /* flat */
3799		index = ffs(dlid) - 1;
3800		if (index > 7)
3801			return NULL;
3802	} else { /* cluster */
3803		int cluster = (dlid & 0xf0) >> 4;
3804		int apic = ffs(dlid & 0x0f) - 1;
3805
3806		if ((apic < 0) || (apic > 7) ||
3807		    (cluster >= 0xf))
3808			return NULL;
3809		index = (cluster << 2) + apic;
3810	}
3811
3812	logical_apic_id_table = (u32 *) page_address(vm_data->avic_logical_id_table_page);
3813
3814	return &logical_apic_id_table[index];
3815}
3816
3817static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
3818			  bool valid)
3819{
3820	bool flat;
3821	u32 *entry, new_entry;
3822
3823	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
3824	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
3825	if (!entry)
3826		return -EINVAL;
3827
3828	new_entry = READ_ONCE(*entry);
3829	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
3830	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
3831	if (valid)
3832		new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3833	else
3834		new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
3835	WRITE_ONCE(*entry, new_entry);
3836
3837	return 0;
3838}
3839
3840static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
3841{
3842	int ret;
3843	struct vcpu_svm *svm = to_svm(vcpu);
3844	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
3845
3846	if (!ldr)
3847		return 1;
3848
3849	ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
3850	if (ret && svm->ldr_reg) {
3851		avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
3852		svm->ldr_reg = 0;
3853	} else {
3854		svm->ldr_reg = ldr;
3855	}
3856	return ret;
3857}
3858
3859static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
3860{
3861	u64 *old, *new;
3862	struct vcpu_svm *svm = to_svm(vcpu);
3863	u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
3864	u32 id = (apic_id_reg >> 24) & 0xff;
3865
3866	if (vcpu->vcpu_id == id)
3867		return 0;
3868
3869	old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
3870	new = avic_get_physical_id_entry(vcpu, id);
3871	if (!new || !old)
3872		return 1;
3873
3874	/* We need to move physical_id_entry to new offset */
3875	*new = *old;
3876	*old = 0ULL;
3877	to_svm(vcpu)->avic_physical_id_cache = new;
3878
3879	/*
3880	 * Also update the guest physical APIC ID in the logical
3881	 * APIC ID table entry if already setup the LDR.
3882	 */
3883	if (svm->ldr_reg)
3884		avic_handle_ldr_update(vcpu);
3885
3886	return 0;
3887}
3888
3889static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
3890{
3891	struct vcpu_svm *svm = to_svm(vcpu);
3892	struct kvm_arch *vm_data = &vcpu->kvm->arch;
3893	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
3894	u32 mod = (dfr >> 28) & 0xf;
3895
3896	/*
3897	 * We assume that all local APICs are using the same type.
3898	 * If this changes, we need to flush the AVIC logical
3899	 * APID id table.
3900	 */
3901	if (vm_data->ldr_mode == mod)
3902		return 0;
3903
3904	clear_page(page_address(vm_data->avic_logical_id_table_page));
3905	vm_data->ldr_mode = mod;
3906
3907	if (svm->ldr_reg)
3908		avic_handle_ldr_update(vcpu);
3909	return 0;
3910}
3911
3912static int avic_unaccel_trap_write(struct vcpu_svm *svm)
3913{
3914	struct kvm_lapic *apic = svm->vcpu.arch.apic;
3915	u32 offset = svm->vmcb->control.exit_info_1 &
3916				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3917
3918	switch (offset) {
3919	case APIC_ID:
3920		if (avic_handle_apic_id_update(&svm->vcpu))
3921			return 0;
3922		break;
3923	case APIC_LDR:
3924		if (avic_handle_ldr_update(&svm->vcpu))
3925			return 0;
3926		break;
3927	case APIC_DFR:
3928		avic_handle_dfr_update(&svm->vcpu);
3929		break;
3930	default:
3931		break;
3932	}
3933
3934	kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
3935
3936	return 1;
3937}
3938
3939static bool is_avic_unaccelerated_access_trap(u32 offset)
3940{
3941	bool ret = false;
3942
3943	switch (offset) {
3944	case APIC_ID:
3945	case APIC_EOI:
3946	case APIC_RRR:
3947	case APIC_LDR:
3948	case APIC_DFR:
3949	case APIC_SPIV:
3950	case APIC_ESR:
3951	case APIC_ICR:
3952	case APIC_LVTT:
3953	case APIC_LVTTHMR:
3954	case APIC_LVTPC:
3955	case APIC_LVT0:
3956	case APIC_LVT1:
3957	case APIC_LVTERR:
3958	case APIC_TMICT:
3959	case APIC_TDCR:
3960		ret = true;
3961		break;
3962	default:
3963		break;
3964	}
3965	return ret;
3966}
3967
3968static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
3969{
3970	int ret = 0;
3971	u32 offset = svm->vmcb->control.exit_info_1 &
3972		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
3973	u32 vector = svm->vmcb->control.exit_info_2 &
3974		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
3975	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
3976		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
3977	bool trap = is_avic_unaccelerated_access_trap(offset);
3978
3979	trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
3980					    trap, write, vector);
3981	if (trap) {
3982		/* Handling Trap */
3983		WARN_ONCE(!write, "svm: Handling trap read.\n");
3984		ret = avic_unaccel_trap_write(svm);
3985	} else {
3986		/* Handling Fault */
3987		ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
3988	}
3989
3990	return ret;
3991}
3992
3993static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3994	[SVM_EXIT_READ_CR0]			= cr_interception,
3995	[SVM_EXIT_READ_CR3]			= cr_interception,
3996	[SVM_EXIT_READ_CR4]			= cr_interception,
3997	[SVM_EXIT_READ_CR8]			= cr_interception,
3998	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3999	[SVM_EXIT_WRITE_CR0]			= cr_interception,
4000	[SVM_EXIT_WRITE_CR3]			= cr_interception,
4001	[SVM_EXIT_WRITE_CR4]			= cr_interception,
4002	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
4003	[SVM_EXIT_READ_DR0]			= dr_interception,
4004	[SVM_EXIT_READ_DR1]			= dr_interception,
4005	[SVM_EXIT_READ_DR2]			= dr_interception,
4006	[SVM_EXIT_READ_DR3]			= dr_interception,
4007	[SVM_EXIT_READ_DR4]			= dr_interception,
4008	[SVM_EXIT_READ_DR5]			= dr_interception,
4009	[SVM_EXIT_READ_DR6]			= dr_interception,
4010	[SVM_EXIT_READ_DR7]			= dr_interception,
4011	[SVM_EXIT_WRITE_DR0]			= dr_interception,
4012	[SVM_EXIT_WRITE_DR1]			= dr_interception,
4013	[SVM_EXIT_WRITE_DR2]			= dr_interception,
4014	[SVM_EXIT_WRITE_DR3]			= dr_interception,
4015	[SVM_EXIT_WRITE_DR4]			= dr_interception,
4016	[SVM_EXIT_WRITE_DR5]			= dr_interception,
4017	[SVM_EXIT_WRITE_DR6]			= dr_interception,
4018	[SVM_EXIT_WRITE_DR7]			= dr_interception,
4019	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
4020	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
4021	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
4022	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
4023	[SVM_EXIT_EXCP_BASE + NM_VECTOR]	= nm_interception,
4024	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
4025	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
4026	[SVM_EXIT_INTR]				= intr_interception,
4027	[SVM_EXIT_NMI]				= nmi_interception,
4028	[SVM_EXIT_SMI]				= nop_on_interception,
4029	[SVM_EXIT_INIT]				= nop_on_interception,
4030	[SVM_EXIT_VINTR]			= interrupt_window_interception,
4031	[SVM_EXIT_RDPMC]			= rdpmc_interception,
4032	[SVM_EXIT_CPUID]			= cpuid_interception,
4033	[SVM_EXIT_IRET]                         = iret_interception,
4034	[SVM_EXIT_INVD]                         = emulate_on_interception,
4035	[SVM_EXIT_PAUSE]			= pause_interception,
4036	[SVM_EXIT_HLT]				= halt_interception,
4037	[SVM_EXIT_INVLPG]			= invlpg_interception,
4038	[SVM_EXIT_INVLPGA]			= invlpga_interception,
4039	[SVM_EXIT_IOIO]				= io_interception,
4040	[SVM_EXIT_MSR]				= msr_interception,
4041	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
4042	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
4043	[SVM_EXIT_VMRUN]			= vmrun_interception,
4044	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
4045	[SVM_EXIT_VMLOAD]			= vmload_interception,
4046	[SVM_EXIT_VMSAVE]			= vmsave_interception,
4047	[SVM_EXIT_STGI]				= stgi_interception,
4048	[SVM_EXIT_CLGI]				= clgi_interception,
4049	[SVM_EXIT_SKINIT]			= skinit_interception,
4050	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
4051	[SVM_EXIT_MONITOR]			= monitor_interception,
4052	[SVM_EXIT_MWAIT]			= mwait_interception,
4053	[SVM_EXIT_XSETBV]			= xsetbv_interception,
4054	[SVM_EXIT_NPF]				= pf_interception,
4055	[SVM_EXIT_RSM]                          = emulate_on_interception,
4056	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
4057	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
4058};
4059
4060static void dump_vmcb(struct kvm_vcpu *vcpu)
4061{
4062	struct vcpu_svm *svm = to_svm(vcpu);
4063	struct vmcb_control_area *control = &svm->vmcb->control;
4064	struct vmcb_save_area *save = &svm->vmcb->save;
4065
4066	pr_err("VMCB Control Area:\n");
4067	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4068	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4069	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4070	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4071	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4072	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4073	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4074	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4075	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4076	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4077	pr_err("%-20s%d\n", "asid:", control->asid);
4078	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4079	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4080	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4081	pr_err("%-20s%08x\n", "int_state:", control->int_state);
4082	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4083	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4084	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4085	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4086	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4087	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4088	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4089	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4090	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4091	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4092	pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
4093	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4094	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4095	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4096	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4097	pr_err("VMCB State Save Area:\n");
4098	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4099	       "es:",
4100	       save->es.selector, save->es.attrib,
4101	       save->es.limit, save->es.base);
4102	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4103	       "cs:",
4104	       save->cs.selector, save->cs.attrib,
4105	       save->cs.limit, save->cs.base);
4106	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4107	       "ss:",
4108	       save->ss.selector, save->ss.attrib,
4109	       save->ss.limit, save->ss.base);
4110	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4111	       "ds:",
4112	       save->ds.selector, save->ds.attrib,
4113	       save->ds.limit, save->ds.base);
4114	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4115	       "fs:",
4116	       save->fs.selector, save->fs.attrib,
4117	       save->fs.limit, save->fs.base);
4118	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4119	       "gs:",
4120	       save->gs.selector, save->gs.attrib,
4121	       save->gs.limit, save->gs.base);
4122	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4123	       "gdtr:",
4124	       save->gdtr.selector, save->gdtr.attrib,
4125	       save->gdtr.limit, save->gdtr.base);
4126	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4127	       "ldtr:",
4128	       save->ldtr.selector, save->ldtr.attrib,
4129	       save->ldtr.limit, save->ldtr.base);
4130	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4131	       "idtr:",
4132	       save->idtr.selector, save->idtr.attrib,
4133	       save->idtr.limit, save->idtr.base);
4134	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4135	       "tr:",
4136	       save->tr.selector, save->tr.attrib,
4137	       save->tr.limit, save->tr.base);
4138	pr_err("cpl:            %d                efer:         %016llx\n",
4139		save->cpl, save->efer);
4140	pr_err("%-15s %016llx %-13s %016llx\n",
4141	       "cr0:", save->cr0, "cr2:", save->cr2);
4142	pr_err("%-15s %016llx %-13s %016llx\n",
4143	       "cr3:", save->cr3, "cr4:", save->cr4);
4144	pr_err("%-15s %016llx %-13s %016llx\n",
4145	       "dr6:", save->dr6, "dr7:", save->dr7);
4146	pr_err("%-15s %016llx %-13s %016llx\n",
4147	       "rip:", save->rip, "rflags:", save->rflags);
4148	pr_err("%-15s %016llx %-13s %016llx\n",
4149	       "rsp:", save->rsp, "rax:", save->rax);
4150	pr_err("%-15s %016llx %-13s %016llx\n",
4151	       "star:", save->star, "lstar:", save->lstar);
4152	pr_err("%-15s %016llx %-13s %016llx\n",
4153	       "cstar:", save->cstar, "sfmask:", save->sfmask);
4154	pr_err("%-15s %016llx %-13s %016llx\n",
4155	       "kernel_gs_base:", save->kernel_gs_base,
4156	       "sysenter_cs:", save->sysenter_cs);
4157	pr_err("%-15s %016llx %-13s %016llx\n",
4158	       "sysenter_esp:", save->sysenter_esp,
4159	       "sysenter_eip:", save->sysenter_eip);
4160	pr_err("%-15s %016llx %-13s %016llx\n",
4161	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4162	pr_err("%-15s %016llx %-13s %016llx\n",
4163	       "br_from:", save->br_from, "br_to:", save->br_to);
4164	pr_err("%-15s %016llx %-13s %016llx\n",
4165	       "excp_from:", save->last_excp_from,
4166	       "excp_to:", save->last_excp_to);
4167}
4168
4169static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4170{
4171	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4172
4173	*info1 = control->exit_info_1;
4174	*info2 = control->exit_info_2;
4175}
4176
4177static int handle_exit(struct kvm_vcpu *vcpu)
4178{
4179	struct vcpu_svm *svm = to_svm(vcpu);
4180	struct kvm_run *kvm_run = vcpu->run;
4181	u32 exit_code = svm->vmcb->control.exit_code;
4182
4183	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4184
4185	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4186		vcpu->arch.cr0 = svm->vmcb->save.cr0;
4187	if (npt_enabled)
4188		vcpu->arch.cr3 = svm->vmcb->save.cr3;
4189
4190	if (unlikely(svm->nested.exit_required)) {
4191		nested_svm_vmexit(svm);
4192		svm->nested.exit_required = false;
4193
4194		return 1;
4195	}
4196
4197	if (is_guest_mode(vcpu)) {
4198		int vmexit;
4199
4200		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4201					svm->vmcb->control.exit_info_1,
4202					svm->vmcb->control.exit_info_2,
4203					svm->vmcb->control.exit_int_info,
4204					svm->vmcb->control.exit_int_info_err,
4205					KVM_ISA_SVM);
4206
4207		vmexit = nested_svm_exit_special(svm);
4208
4209		if (vmexit == NESTED_EXIT_CONTINUE)
4210			vmexit = nested_svm_exit_handled(svm);
4211
4212		if (vmexit == NESTED_EXIT_DONE)
4213			return 1;
4214	}
4215
4216	svm_complete_interrupts(svm);
4217
4218	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4219		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4220		kvm_run->fail_entry.hardware_entry_failure_reason
4221			= svm->vmcb->control.exit_code;
4222		pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4223		dump_vmcb(vcpu);
4224		return 0;
4225	}
4226
4227	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4228	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4229	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4230	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4231		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4232		       "exit_code 0x%x\n",
4233		       __func__, svm->vmcb->control.exit_int_info,
4234		       exit_code);
4235
4236	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4237	    || !svm_exit_handlers[exit_code]) {
4238		WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4239		kvm_queue_exception(vcpu, UD_VECTOR);
4240		return 1;
4241	}
4242
4243	return svm_exit_handlers[exit_code](svm);
4244}
4245
4246static void reload_tss(struct kvm_vcpu *vcpu)
4247{
4248	int cpu = raw_smp_processor_id();
4249
4250	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4251	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4252	load_TR_desc();
4253}
4254
4255static void pre_svm_run(struct vcpu_svm *svm)
4256{
4257	int cpu = raw_smp_processor_id();
4258
4259	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4260
4261	/* FIXME: handle wraparound of asid_generation */
4262	if (svm->asid_generation != sd->asid_generation)
4263		new_asid(svm, sd);
4264}
4265
4266static void svm_inject_nmi(struct kvm_vcpu *vcpu)
4267{
4268	struct vcpu_svm *svm = to_svm(vcpu);
4269
4270	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
4271	vcpu->arch.hflags |= HF_NMI_MASK;
4272	set_intercept(svm, INTERCEPT_IRET);
4273	++vcpu->stat.nmi_injections;
4274}
4275
4276static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
4277{
4278	struct vmcb_control_area *control;
4279
4280	/* The following fields are ignored when AVIC is enabled */
4281	control = &svm->vmcb->control;
4282	control->int_vector = irq;
4283	control->int_ctl &= ~V_INTR_PRIO_MASK;
4284	control->int_ctl |= V_IRQ_MASK |
4285		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
4286	mark_dirty(svm->vmcb, VMCB_INTR);
4287}
4288
4289static void svm_set_irq(struct kvm_vcpu *vcpu)
4290{
4291	struct vcpu_svm *svm = to_svm(vcpu);
4292
4293	BUG_ON(!(gif_set(svm)));
4294
4295	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
4296	++vcpu->stat.irq_injections;
4297
4298	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
4299		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
4300}
4301
4302static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
4303{
4304	return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
4305}
4306
4307static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
4308{
4309	struct vcpu_svm *svm = to_svm(vcpu);
4310
4311	if (svm_nested_virtualize_tpr(vcpu) ||
4312	    kvm_vcpu_apicv_active(vcpu))
4313		return;
4314
4315	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4316
4317	if (irr == -1)
4318		return;
4319
4320	if (tpr >= irr)
4321		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
4322}
4323
4324static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
4325{
4326	return;
4327}
4328
4329static bool svm_get_enable_apicv(void)
4330{
4331	return avic;
4332}
4333
4334static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
4335{
4336}
4337
4338static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
4339{
4340}
4341
4342/* Note: Currently only used by Hyper-V. */
4343static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4344{
4345	struct vcpu_svm *svm = to_svm(vcpu);
4346	struct vmcb *vmcb = svm->vmcb;
4347
4348	if (!avic)
4349		return;
4350
4351	vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
4352	mark_dirty(vmcb, VMCB_INTR);
4353}
4354
4355static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
4356{
4357	return;
4358}
4359
4360static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4361{
4362	return;
4363}
4364
4365static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
4366{
4367	kvm_lapic_set_irr(vec, vcpu->arch.apic);
4368	smp_mb__after_atomic();
4369
4370	if (avic_vcpu_is_running(vcpu))
4371		wrmsrl(SVM_AVIC_DOORBELL,
4372		       kvm_cpu_get_apicid(vcpu->cpu));
4373	else
4374		kvm_vcpu_wake_up(vcpu);
4375}
4376
4377static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4378{
4379	unsigned long flags;
4380	struct amd_svm_iommu_ir *cur;
4381
4382	spin_lock_irqsave(&svm->ir_list_lock, flags);
4383	list_for_each_entry(cur, &svm->ir_list, node) {
4384		if (cur->data != pi->ir_data)
4385			continue;
4386		list_del(&cur->node);
4387		kfree(cur);
4388		break;
4389	}
4390	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4391}
4392
4393static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
4394{
4395	int ret = 0;
4396	unsigned long flags;
4397	struct amd_svm_iommu_ir *ir;
4398
4399	/**
4400	 * In some cases, the existing irte is updaed and re-set,
4401	 * so we need to check here if it's already been * added
4402	 * to the ir_list.
4403	 */
4404	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
4405		struct kvm *kvm = svm->vcpu.kvm;
4406		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
4407		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
4408		struct vcpu_svm *prev_svm;
4409
4410		if (!prev_vcpu) {
4411			ret = -EINVAL;
4412			goto out;
4413		}
4414
4415		prev_svm = to_svm(prev_vcpu);
4416		svm_ir_list_del(prev_svm, pi);
4417	}
4418
4419	/**
4420	 * Allocating new amd_iommu_pi_data, which will get
4421	 * add to the per-vcpu ir_list.
4422	 */
4423	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
4424	if (!ir) {
4425		ret = -ENOMEM;
4426		goto out;
4427	}
4428	ir->data = pi->ir_data;
4429
4430	spin_lock_irqsave(&svm->ir_list_lock, flags);
4431	list_add(&ir->node, &svm->ir_list);
4432	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
4433out:
4434	return ret;
4435}
4436
4437/**
4438 * Note:
4439 * The HW cannot support posting multicast/broadcast
4440 * interrupts to a vCPU. So, we still use legacy interrupt
4441 * remapping for these kind of interrupts.
4442 *
4443 * For lowest-priority interrupts, we only support
4444 * those with single CPU as the destination, e.g. user
4445 * configures the interrupts via /proc/irq or uses
4446 * irqbalance to make the interrupts single-CPU.
4447 */
4448static int
4449get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
4450		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
4451{
4452	struct kvm_lapic_irq irq;
4453	struct kvm_vcpu *vcpu = NULL;
4454
4455	kvm_set_msi_irq(kvm, e, &irq);
4456
4457	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
4458		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
4459			 __func__, irq.vector);
4460		return -1;
4461	}
4462
4463	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
4464		 irq.vector);
4465	*svm = to_svm(vcpu);
4466	vcpu_info->pi_desc_addr = page_to_phys((*svm)->avic_backing_page);
4467	vcpu_info->vector = irq.vector;
4468
4469	return 0;
4470}
4471
4472/*
4473 * svm_update_pi_irte - set IRTE for Posted-Interrupts
4474 *
4475 * @kvm: kvm
4476 * @host_irq: host irq of the interrupt
4477 * @guest_irq: gsi of the interrupt
4478 * @set: set or unset PI
4479 * returns 0 on success, < 0 on failure
4480 */
4481static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
4482			      uint32_t guest_irq, bool set)
4483{
4484	struct kvm_kernel_irq_routing_entry *e;
4485	struct kvm_irq_routing_table *irq_rt;
4486	int idx, ret = -EINVAL;
4487
4488	if (!kvm_arch_has_assigned_device(kvm) ||
4489	    !irq_remapping_cap(IRQ_POSTING_CAP))
4490		return 0;
4491
4492	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
4493		 __func__, host_irq, guest_irq, set);
4494
4495	idx = srcu_read_lock(&kvm->irq_srcu);
4496	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
4497	WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
4498
4499	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
4500		struct vcpu_data vcpu_info;
4501		struct vcpu_svm *svm = NULL;
4502
4503		if (e->type != KVM_IRQ_ROUTING_MSI)
4504			continue;
4505
4506		/**
4507		 * Here, we setup with legacy mode in the following cases:
4508		 * 1. When cannot target interrupt to a specific vcpu.
4509		 * 2. Unsetting posted interrupt.
4510		 * 3. APIC virtialization is disabled for the vcpu.
4511		 */
4512		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
4513		    kvm_vcpu_apicv_active(&svm->vcpu)) {
4514			struct amd_iommu_pi_data pi;
4515
4516			/* Try to enable guest_mode in IRTE */
4517			pi.base = page_to_phys(svm->avic_backing_page) & AVIC_HPA_MASK;
4518			pi.ga_tag = AVIC_GATAG(kvm->arch.avic_vm_id,
4519						     svm->vcpu.vcpu_id);
4520			pi.is_guest_mode = true;
4521			pi.vcpu_data = &vcpu_info;
4522			ret = irq_set_vcpu_affinity(host_irq, &pi);
4523
4524			/**
4525			 * Here, we successfully setting up vcpu affinity in
4526			 * IOMMU guest mode. Now, we need to store the posted
4527			 * interrupt information in a per-vcpu ir_list so that
4528			 * we can reference to them directly when we update vcpu
4529			 * scheduling information in IOMMU irte.
4530			 */
4531			if (!ret && pi.is_guest_mode)
4532				svm_ir_list_add(svm, &pi);
4533		} else {
4534			/* Use legacy mode in IRTE */
4535			struct amd_iommu_pi_data pi;
4536
4537			/**
4538			 * Here, pi is used to:
4539			 * - Tell IOMMU to use legacy mode for this interrupt.
4540			 * - Retrieve ga_tag of prior interrupt remapping data.
4541			 */
4542			pi.is_guest_mode = false;
4543			ret = irq_set_vcpu_affinity(host_irq, &pi);
4544
4545			/**
4546			 * Check if the posted interrupt was previously
4547			 * setup with the guest_mode by checking if the ga_tag
4548			 * was cached. If so, we need to clean up the per-vcpu
4549			 * ir_list.
4550			 */
4551			if (!ret && pi.prev_ga_tag) {
4552				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
4553				struct kvm_vcpu *vcpu;
4554
4555				vcpu = kvm_get_vcpu_by_id(kvm, id);
4556				if (vcpu)
4557					svm_ir_list_del(to_svm(vcpu), &pi);
4558			}
4559		}
4560
4561		if (!ret && svm) {
4562			trace_kvm_pi_irte_update(svm->vcpu.vcpu_id,
4563						 host_irq, e->gsi,
4564						 vcpu_info.vector,
4565						 vcpu_info.pi_desc_addr, set);
4566		}
4567
4568		if (ret < 0) {
4569			pr_err("%s: failed to update PI IRTE\n", __func__);
4570			goto out;
4571		}
4572	}
4573
4574	ret = 0;
4575out:
4576	srcu_read_unlock(&kvm->irq_srcu, idx);
4577	return ret;
4578}
4579
4580static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
4581{
4582	struct vcpu_svm *svm = to_svm(vcpu);
4583	struct vmcb *vmcb = svm->vmcb;
4584	int ret;
4585	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
4586	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
4587	ret = ret && gif_set(svm) && nested_svm_nmi(svm);
4588
4589	return ret;
4590}
4591
4592static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
4593{
4594	struct vcpu_svm *svm = to_svm(vcpu);
4595
4596	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
4597}
4598
4599static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4600{
4601	struct vcpu_svm *svm = to_svm(vcpu);
4602
4603	if (masked) {
4604		svm->vcpu.arch.hflags |= HF_NMI_MASK;
4605		set_intercept(svm, INTERCEPT_IRET);
4606	} else {
4607		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
4608		clr_intercept(svm, INTERCEPT_IRET);
4609	}
4610}
4611
4612static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
4613{
4614	struct vcpu_svm *svm = to_svm(vcpu);
4615	struct vmcb *vmcb = svm->vmcb;
4616	int ret;
4617
4618	if (!gif_set(svm) ||
4619	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
4620		return 0;
4621
4622	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
4623
4624	if (is_guest_mode(vcpu))
4625		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
4626
4627	return ret;
4628}
4629
4630static void enable_irq_window(struct kvm_vcpu *vcpu)
4631{
4632	struct vcpu_svm *svm = to_svm(vcpu);
4633
4634	if (kvm_vcpu_apicv_active(vcpu))
4635		return;
4636
4637	/*
4638	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
4639	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
4640	 * get that intercept, this function will be called again though and
4641	 * we'll get the vintr intercept.
4642	 */
4643	if (gif_set(svm) && nested_svm_intr(svm)) {
4644		svm_set_vintr(svm);
4645		svm_inject_irq(svm, 0x0);
4646	}
4647}
4648
4649static void enable_nmi_window(struct kvm_vcpu *vcpu)
4650{
4651	struct vcpu_svm *svm = to_svm(vcpu);
4652
4653	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
4654	    == HF_NMI_MASK)
4655		return; /* IRET will cause a vm exit */
4656
4657	/*
4658	 * Something prevents NMI from been injected. Single step over possible
4659	 * problem (IRET or exception injection or interrupt shadow)
4660	 */
4661	svm->nmi_singlestep = true;
4662	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
4663}
4664
4665static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
4666{
4667	return 0;
4668}
4669
4670static void svm_flush_tlb(struct kvm_vcpu *vcpu)
4671{
4672	struct vcpu_svm *svm = to_svm(vcpu);
4673
4674	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
4675		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4676	else
4677		svm->asid_generation--;
4678}
4679
4680static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
4681{
4682}
4683
4684static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
4685{
4686	struct vcpu_svm *svm = to_svm(vcpu);
4687
4688	if (svm_nested_virtualize_tpr(vcpu))
4689		return;
4690
4691	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
4692		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
4693		kvm_set_cr8(vcpu, cr8);
4694	}
4695}
4696
4697static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
4698{
4699	struct vcpu_svm *svm = to_svm(vcpu);
4700	u64 cr8;
4701
4702	if (svm_nested_virtualize_tpr(vcpu) ||
4703	    kvm_vcpu_apicv_active(vcpu))
4704		return;
4705
4706	cr8 = kvm_get_cr8(vcpu);
4707	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
4708	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
4709}
4710
4711static void svm_complete_interrupts(struct vcpu_svm *svm)
4712{
4713	u8 vector;
4714	int type;
4715	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4716	unsigned int3_injected = svm->int3_injected;
4717
4718	svm->int3_injected = 0;
4719
4720	/*
4721	 * If we've made progress since setting HF_IRET_MASK, we've
4722	 * executed an IRET and can allow NMI injection.
4723	 */
4724	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
4725	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
4726		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
4727		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4728	}
4729
4730	svm->vcpu.arch.nmi_injected = false;
4731	kvm_clear_exception_queue(&svm->vcpu);
4732	kvm_clear_interrupt_queue(&svm->vcpu);
4733
4734	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4735		return;
4736
4737	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4738
4739	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4740	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4741
4742	switch (type) {
4743	case SVM_EXITINTINFO_TYPE_NMI:
4744		svm->vcpu.arch.nmi_injected = true;
4745		break;
4746	case SVM_EXITINTINFO_TYPE_EXEPT:
4747		/*
4748		 * In case of software exceptions, do not reinject the vector,
4749		 * but re-execute the instruction instead. Rewind RIP first
4750		 * if we emulated INT3 before.
4751		 */
4752		if (kvm_exception_is_soft(vector)) {
4753			if (vector == BP_VECTOR && int3_injected &&
4754			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
4755				kvm_rip_write(&svm->vcpu,
4756					      kvm_rip_read(&svm->vcpu) -
4757					      int3_injected);
4758			break;
4759		}
4760		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4761			u32 err = svm->vmcb->control.exit_int_info_err;
4762			kvm_requeue_exception_e(&svm->vcpu, vector, err);
4763
4764		} else
4765			kvm_requeue_exception(&svm->vcpu, vector);
4766		break;
4767	case SVM_EXITINTINFO_TYPE_INTR:
4768		kvm_queue_interrupt(&svm->vcpu, vector, false);
4769		break;
4770	default:
4771		break;
4772	}
4773}
4774
4775static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4776{
4777	struct vcpu_svm *svm = to_svm(vcpu);
4778	struct vmcb_control_area *control = &svm->vmcb->control;
4779
4780	control->exit_int_info = control->event_inj;
4781	control->exit_int_info_err = control->event_inj_err;
4782	control->event_inj = 0;
4783	svm_complete_interrupts(svm);
4784}
4785
4786static void svm_vcpu_run(struct kvm_vcpu *vcpu)
4787{
4788	struct vcpu_svm *svm = to_svm(vcpu);
4789
4790	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4791	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4792	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4793
4794	/*
4795	 * A vmexit emulation is required before the vcpu can be executed
4796	 * again.
4797	 */
4798	if (unlikely(svm->nested.exit_required))
4799		return;
4800
4801	pre_svm_run(svm);
4802
4803	sync_lapic_to_cr8(vcpu);
4804
4805	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4806
4807	clgi();
4808
4809	local_irq_enable();
4810
4811	asm volatile (
4812		"push %%" _ASM_BP "; \n\t"
4813		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
4814		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
4815		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
4816		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
4817		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
4818		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
4819#ifdef CONFIG_X86_64
4820		"mov %c[r8](%[svm]),  %%r8  \n\t"
4821		"mov %c[r9](%[svm]),  %%r9  \n\t"
4822		"mov %c[r10](%[svm]), %%r10 \n\t"
4823		"mov %c[r11](%[svm]), %%r11 \n\t"
4824		"mov %c[r12](%[svm]), %%r12 \n\t"
4825		"mov %c[r13](%[svm]), %%r13 \n\t"
4826		"mov %c[r14](%[svm]), %%r14 \n\t"
4827		"mov %c[r15](%[svm]), %%r15 \n\t"
4828#endif
4829
4830		/* Enter guest mode */
4831		"push %%" _ASM_AX " \n\t"
4832		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
4833		__ex(SVM_VMLOAD) "\n\t"
4834		__ex(SVM_VMRUN) "\n\t"
4835		__ex(SVM_VMSAVE) "\n\t"
4836		"pop %%" _ASM_AX " \n\t"
4837
4838		/* Save guest registers, load host registers */
4839		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
4840		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
4841		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
4842		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
4843		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
4844		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
4845#ifdef CONFIG_X86_64
4846		"mov %%r8,  %c[r8](%[svm]) \n\t"
4847		"mov %%r9,  %c[r9](%[svm]) \n\t"
4848		"mov %%r10, %c[r10](%[svm]) \n\t"
4849		"mov %%r11, %c[r11](%[svm]) \n\t"
4850		"mov %%r12, %c[r12](%[svm]) \n\t"
4851		"mov %%r13, %c[r13](%[svm]) \n\t"
4852		"mov %%r14, %c[r14](%[svm]) \n\t"
4853		"mov %%r15, %c[r15](%[svm]) \n\t"
4854#endif
4855		"pop %%" _ASM_BP
4856		:
4857		: [svm]"a"(svm),
4858		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
4859		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
4860		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
4861		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
4862		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
4863		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
4864		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
4865#ifdef CONFIG_X86_64
4866		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
4867		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
4868		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
4869		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
4870		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
4871		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
4872		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
4873		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
4874#endif
4875		: "cc", "memory"
4876#ifdef CONFIG_X86_64
4877		, "rbx", "rcx", "rdx", "rsi", "rdi"
4878		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
4879#else
4880		, "ebx", "ecx", "edx", "esi", "edi"
4881#endif
4882		);
4883
4884#ifdef CONFIG_X86_64
4885	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
4886#else
4887	loadsegment(fs, svm->host.fs);
4888#ifndef CONFIG_X86_32_LAZY_GS
4889	loadsegment(gs, svm->host.gs);
4890#endif
4891#endif
4892
4893	reload_tss(vcpu);
4894
4895	local_irq_disable();
4896
4897	vcpu->arch.cr2 = svm->vmcb->save.cr2;
4898	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4899	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4900	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4901
4902	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4903		kvm_before_handle_nmi(&svm->vcpu);
4904
4905	stgi();
4906
4907	/* Any pending NMI will happen here */
4908
4909	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4910		kvm_after_handle_nmi(&svm->vcpu);
4911
4912	sync_cr8_to_lapic(vcpu);
4913
4914	svm->next_rip = 0;
4915
4916	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4917
4918	/* if exit due to PF check for async PF */
4919	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4920		svm->apf_reason = kvm_read_and_reset_pf_reason();
4921
4922	if (npt_enabled) {
4923		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4924		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4925	}
4926
4927	/*
4928	 * We need to handle MC intercepts here before the vcpu has a chance to
4929	 * change the physical cpu
4930	 */
4931	if (unlikely(svm->vmcb->control.exit_code ==
4932		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4933		svm_handle_mce(svm);
4934
4935	mark_all_clean(svm->vmcb);
4936}
4937
4938static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4939{
4940	struct vcpu_svm *svm = to_svm(vcpu);
4941
4942	svm->vmcb->save.cr3 = root;
4943	mark_dirty(svm->vmcb, VMCB_CR);
4944	svm_flush_tlb(vcpu);
4945}
4946
4947static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4948{
4949	struct vcpu_svm *svm = to_svm(vcpu);
4950
4951	svm->vmcb->control.nested_cr3 = root;
4952	mark_dirty(svm->vmcb, VMCB_NPT);
4953
4954	/* Also sync guest cr3 here in case we live migrate */
4955	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4956	mark_dirty(svm->vmcb, VMCB_CR);
4957
4958	svm_flush_tlb(vcpu);
4959}
4960
4961static int is_disabled(void)
4962{
4963	u64 vm_cr;
4964
4965	rdmsrl(MSR_VM_CR, vm_cr);
4966	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4967		return 1;
4968
4969	return 0;
4970}
4971
4972static void
4973svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4974{
4975	/*
4976	 * Patch in the VMMCALL instruction:
4977	 */
4978	hypercall[0] = 0x0f;
4979	hypercall[1] = 0x01;
4980	hypercall[2] = 0xd9;
4981}
4982
4983static void svm_check_processor_compat(void *rtn)
4984{
4985	*(int *)rtn = 0;
4986}
4987
4988static bool svm_cpu_has_accelerated_tpr(void)
4989{
4990	return false;
4991}
4992
4993static bool svm_has_high_real_mode_segbase(void)
4994{
4995	return true;
4996}
4997
4998static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4999{
5000	return 0;
5001}
5002
5003static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5004{
5005	struct vcpu_svm *svm = to_svm(vcpu);
5006	struct kvm_cpuid_entry2 *entry;
5007
5008	/* Update nrips enabled cache */
5009	svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
5010
5011	if (!kvm_vcpu_apicv_active(vcpu))
5012		return;
5013
5014	entry = kvm_find_cpuid_entry(vcpu, 1, 0);
5015	if (entry)
5016		entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5017}
5018
5019static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5020{
5021	switch (func) {
5022	case 0x1:
5023		if (avic)
5024			entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5025		break;
5026	case 0x80000001:
5027		if (nested)
5028			entry->ecx |= (1 << 2); /* Set SVM bit */
5029		break;
5030	case 0x8000000A:
5031		entry->eax = 1; /* SVM revision 1 */
5032		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5033				   ASID emulation to nested SVM */
5034		entry->ecx = 0; /* Reserved */
5035		entry->edx = 0; /* Per default do not support any
5036				   additional features */
5037
5038		/* Support next_rip if host supports it */
5039		if (boot_cpu_has(X86_FEATURE_NRIPS))
5040			entry->edx |= SVM_FEATURE_NRIP;
5041
5042		/* Support NPT for the guest if enabled */
5043		if (npt_enabled)
5044			entry->edx |= SVM_FEATURE_NPT;
5045
5046		break;
5047	}
5048}
5049
5050static int svm_get_lpage_level(void)
5051{
5052	return PT_PDPE_LEVEL;
5053}
5054
5055static bool svm_rdtscp_supported(void)
5056{
5057	return boot_cpu_has(X86_FEATURE_RDTSCP);
5058}
5059
5060static bool svm_invpcid_supported(void)
5061{
5062	return false;
5063}
5064
5065static bool svm_mpx_supported(void)
5066{
5067	return false;
5068}
5069
5070static bool svm_xsaves_supported(void)
5071{
5072	return false;
5073}
5074
5075static bool svm_has_wbinvd_exit(void)
5076{
5077	return true;
5078}
5079
5080static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
5081{
5082	struct vcpu_svm *svm = to_svm(vcpu);
5083
5084	set_exception_intercept(svm, NM_VECTOR);
5085	update_cr0_intercept(svm);
5086}
5087
5088#define PRE_EX(exit)  { .exit_code = (exit), \
5089			.stage = X86_ICPT_PRE_EXCEPT, }
5090#define POST_EX(exit) { .exit_code = (exit), \
5091			.stage = X86_ICPT_POST_EXCEPT, }
5092#define POST_MEM(exit) { .exit_code = (exit), \
5093			.stage = X86_ICPT_POST_MEMACCESS, }
5094
5095static const struct __x86_intercept {
5096	u32 exit_code;
5097	enum x86_intercept_stage stage;
5098} x86_intercept_map[] = {
5099	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
5100	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
5101	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
5102	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
5103	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
5104	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
5105	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
5106	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
5107	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
5108	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
5109	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
5110	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
5111	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
5112	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
5113	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
5114	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
5115	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
5116	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
5117	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
5118	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
5119	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
5120	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
5121	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
5122	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
5123	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
5124	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
5125	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
5126	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
5127	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
5128	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
5129	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
5130	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
5131	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
5132	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
5133	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
5134	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
5135	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
5136	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
5137	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
5138	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
5139	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
5140	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
5141	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
5142	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
5143	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
5144	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
5145};
5146
5147#undef PRE_EX
5148#undef POST_EX
5149#undef POST_MEM
5150
5151static int svm_check_intercept(struct kvm_vcpu *vcpu,
5152			       struct x86_instruction_info *info,
5153			       enum x86_intercept_stage stage)
5154{
5155	struct vcpu_svm *svm = to_svm(vcpu);
5156	int vmexit, ret = X86EMUL_CONTINUE;
5157	struct __x86_intercept icpt_info;
5158	struct vmcb *vmcb = svm->vmcb;
5159
5160	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5161		goto out;
5162
5163	icpt_info = x86_intercept_map[info->intercept];
5164
5165	if (stage != icpt_info.stage)
5166		goto out;
5167
5168	switch (icpt_info.exit_code) {
5169	case SVM_EXIT_READ_CR0:
5170		if (info->intercept == x86_intercept_cr_read)
5171			icpt_info.exit_code += info->modrm_reg;
5172		break;
5173	case SVM_EXIT_WRITE_CR0: {
5174		unsigned long cr0, val;
5175		u64 intercept;
5176
5177		if (info->intercept == x86_intercept_cr_write)
5178			icpt_info.exit_code += info->modrm_reg;
5179
5180		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5181		    info->intercept == x86_intercept_clts)
5182			break;
5183
5184		intercept = svm->nested.intercept;
5185
5186		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
5187			break;
5188
5189		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
5190		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
5191
5192		if (info->intercept == x86_intercept_lmsw) {
5193			cr0 &= 0xfUL;
5194			val &= 0xfUL;
5195			/* lmsw can't clear PE - catch this here */
5196			if (cr0 & X86_CR0_PE)
5197				val |= X86_CR0_PE;
5198		}
5199
5200		if (cr0 ^ val)
5201			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
5202
5203		break;
5204	}
5205	case SVM_EXIT_READ_DR0:
5206	case SVM_EXIT_WRITE_DR0:
5207		icpt_info.exit_code += info->modrm_reg;
5208		break;
5209	case SVM_EXIT_MSR:
5210		if (info->intercept == x86_intercept_wrmsr)
5211			vmcb->control.exit_info_1 = 1;
5212		else
5213			vmcb->control.exit_info_1 = 0;
5214		break;
5215	case SVM_EXIT_PAUSE:
5216		/*
5217		 * We get this for NOP only, but pause
5218		 * is rep not, check this here
5219		 */
5220		if (info->rep_prefix != REPE_PREFIX)
5221			goto out;
5222	case SVM_EXIT_IOIO: {
5223		u64 exit_info;
5224		u32 bytes;
5225
5226		if (info->intercept == x86_intercept_in ||
5227		    info->intercept == x86_intercept_ins) {
5228			exit_info = ((info->src_val & 0xffff) << 16) |
5229				SVM_IOIO_TYPE_MASK;
5230			bytes = info->dst_bytes;
5231		} else {
5232			exit_info = (info->dst_val & 0xffff) << 16;
5233			bytes = info->src_bytes;
5234		}
5235
5236		if (info->intercept == x86_intercept_outs ||
5237		    info->intercept == x86_intercept_ins)
5238			exit_info |= SVM_IOIO_STR_MASK;
5239
5240		if (info->rep_prefix)
5241			exit_info |= SVM_IOIO_REP_MASK;
5242
5243		bytes = min(bytes, 4u);
5244
5245		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
5246
5247		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
5248
5249		vmcb->control.exit_info_1 = exit_info;
5250		vmcb->control.exit_info_2 = info->next_rip;
5251
5252		break;
5253	}
5254	default:
5255		break;
5256	}
5257
5258	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
5259	if (static_cpu_has(X86_FEATURE_NRIPS))
5260		vmcb->control.next_rip  = info->next_rip;
5261	vmcb->control.exit_code = icpt_info.exit_code;
5262	vmexit = nested_svm_exit_handled(svm);
5263
5264	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
5265					   : X86EMUL_CONTINUE;
5266
5267out:
5268	return ret;
5269}
5270
5271static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
5272{
5273	local_irq_enable();
5274	/*
5275	 * We must have an instruction with interrupts enabled, so
5276	 * the timer interrupt isn't delayed by the interrupt shadow.
5277	 */
5278	asm("nop");
5279	local_irq_disable();
5280}
5281
5282static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
5283{
5284}
5285
5286static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
5287{
5288	if (avic_handle_apic_id_update(vcpu) != 0)
5289		return;
5290	if (avic_handle_dfr_update(vcpu) != 0)
5291		return;
5292	avic_handle_ldr_update(vcpu);
5293}
5294
5295static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
5296	.cpu_has_kvm_support = has_svm,
5297	.disabled_by_bios = is_disabled,
5298	.hardware_setup = svm_hardware_setup,
5299	.hardware_unsetup = svm_hardware_unsetup,
5300	.check_processor_compatibility = svm_check_processor_compat,
5301	.hardware_enable = svm_hardware_enable,
5302	.hardware_disable = svm_hardware_disable,
5303	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
5304	.cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
5305
5306	.vcpu_create = svm_create_vcpu,
5307	.vcpu_free = svm_free_vcpu,
5308	.vcpu_reset = svm_vcpu_reset,
5309
5310	.vm_init = avic_vm_init,
5311	.vm_destroy = avic_vm_destroy,
5312
5313	.prepare_guest_switch = svm_prepare_guest_switch,
5314	.vcpu_load = svm_vcpu_load,
5315	.vcpu_put = svm_vcpu_put,
5316	.vcpu_blocking = svm_vcpu_blocking,
5317	.vcpu_unblocking = svm_vcpu_unblocking,
5318
5319	.update_bp_intercept = update_bp_intercept,
5320	.get_msr = svm_get_msr,
5321	.set_msr = svm_set_msr,
5322	.get_segment_base = svm_get_segment_base,
5323	.get_segment = svm_get_segment,
5324	.set_segment = svm_set_segment,
5325	.get_cpl = svm_get_cpl,
5326	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
5327	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
5328	.decache_cr3 = svm_decache_cr3,
5329	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
5330	.set_cr0 = svm_set_cr0,
5331	.set_cr3 = svm_set_cr3,
5332	.set_cr4 = svm_set_cr4,
5333	.set_efer = svm_set_efer,
5334	.get_idt = svm_get_idt,
5335	.set_idt = svm_set_idt,
5336	.get_gdt = svm_get_gdt,
5337	.set_gdt = svm_set_gdt,
5338	.get_dr6 = svm_get_dr6,
5339	.set_dr6 = svm_set_dr6,
5340	.set_dr7 = svm_set_dr7,
5341	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
5342	.cache_reg = svm_cache_reg,
5343	.get_rflags = svm_get_rflags,
5344	.set_rflags = svm_set_rflags,
5345
5346	.get_pkru = svm_get_pkru,
5347
5348	.fpu_activate = svm_fpu_activate,
5349	.fpu_deactivate = svm_fpu_deactivate,
5350
5351	.tlb_flush = svm_flush_tlb,
5352
5353	.run = svm_vcpu_run,
5354	.handle_exit = handle_exit,
5355	.skip_emulated_instruction = skip_emulated_instruction,
5356	.set_interrupt_shadow = svm_set_interrupt_shadow,
5357	.get_interrupt_shadow = svm_get_interrupt_shadow,
5358	.patch_hypercall = svm_patch_hypercall,
5359	.set_irq = svm_set_irq,
5360	.set_nmi = svm_inject_nmi,
5361	.queue_exception = svm_queue_exception,
5362	.cancel_injection = svm_cancel_injection,
5363	.interrupt_allowed = svm_interrupt_allowed,
5364	.nmi_allowed = svm_nmi_allowed,
5365	.get_nmi_mask = svm_get_nmi_mask,
5366	.set_nmi_mask = svm_set_nmi_mask,
5367	.enable_nmi_window = enable_nmi_window,
5368	.enable_irq_window = enable_irq_window,
5369	.update_cr8_intercept = update_cr8_intercept,
5370	.set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
5371	.get_enable_apicv = svm_get_enable_apicv,
5372	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
5373	.load_eoi_exitmap = svm_load_eoi_exitmap,
5374	.sync_pir_to_irr = svm_sync_pir_to_irr,
5375	.hwapic_irr_update = svm_hwapic_irr_update,
5376	.hwapic_isr_update = svm_hwapic_isr_update,
5377	.apicv_post_state_restore = avic_post_state_restore,
5378
5379	.set_tss_addr = svm_set_tss_addr,
5380	.get_tdp_level = get_npt_level,
5381	.get_mt_mask = svm_get_mt_mask,
5382
5383	.get_exit_info = svm_get_exit_info,
5384
5385	.get_lpage_level = svm_get_lpage_level,
5386
5387	.cpuid_update = svm_cpuid_update,
5388
5389	.rdtscp_supported = svm_rdtscp_supported,
5390	.invpcid_supported = svm_invpcid_supported,
5391	.mpx_supported = svm_mpx_supported,
5392	.xsaves_supported = svm_xsaves_supported,
5393
5394	.set_supported_cpuid = svm_set_supported_cpuid,
5395
5396	.has_wbinvd_exit = svm_has_wbinvd_exit,
5397
5398	.write_tsc_offset = svm_write_tsc_offset,
5399
5400	.set_tdp_cr3 = set_tdp_cr3,
5401
5402	.check_intercept = svm_check_intercept,
5403	.handle_external_intr = svm_handle_external_intr,
5404
5405	.sched_in = svm_sched_in,
5406
5407	.pmu_ops = &amd_pmu_ops,
5408	.deliver_posted_interrupt = svm_deliver_avic_intr,
5409	.update_pi_irte = svm_update_pi_irte,
5410};
5411
5412static int __init svm_init(void)
5413{
5414	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
5415			__alignof__(struct vcpu_svm), THIS_MODULE);
5416}
5417
5418static void __exit svm_exit(void)
5419{
5420	kvm_exit();
5421}
5422
5423module_init(svm_init)
5424module_exit(svm_exit)