Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * AMD SVM support
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Yaniv Kamay  <yaniv@qumranet.com>
  12 *   Avi Kivity   <avi@qumranet.com>
  13 */
  14
  15#define pr_fmt(fmt) "SVM: " fmt
  16
  17#include <linux/kvm_host.h>
  18
  19#include "irq.h"
  20#include "mmu.h"
  21#include "kvm_cache_regs.h"
  22#include "x86.h"
  23#include "cpuid.h"
  24#include "pmu.h"
  25
  26#include <linux/module.h>
  27#include <linux/mod_devicetable.h>
  28#include <linux/kernel.h>
  29#include <linux/vmalloc.h>
  30#include <linux/highmem.h>
  31#include <linux/sched.h>
  32#include <linux/trace_events.h>
  33#include <linux/slab.h>
  34#include <linux/amd-iommu.h>
  35#include <linux/hashtable.h>
  36#include <linux/frame.h>
  37#include <linux/psp-sev.h>
  38#include <linux/file.h>
  39#include <linux/pagemap.h>
  40#include <linux/swap.h>
  41
  42#include <asm/apic.h>
  43#include <asm/perf_event.h>
  44#include <asm/tlbflush.h>
  45#include <asm/desc.h>
  46#include <asm/debugreg.h>
  47#include <asm/kvm_para.h>
  48#include <asm/irq_remapping.h>
  49#include <asm/spec-ctrl.h>
  50
  51#include <asm/virtext.h>
  52#include "trace.h"
  53
  54#define __ex(x) __kvm_handle_fault_on_reboot(x)
  55
  56MODULE_AUTHOR("Qumranet");
  57MODULE_LICENSE("GPL");
  58
  59static const struct x86_cpu_id svm_cpu_id[] = {
  60	X86_FEATURE_MATCH(X86_FEATURE_SVM),
  61	{}
  62};
  63MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
  64
  65#define IOPM_ALLOC_ORDER 2
  66#define MSRPM_ALLOC_ORDER 1
  67
  68#define SEG_TYPE_LDT 2
  69#define SEG_TYPE_BUSY_TSS16 3
  70
  71#define SVM_FEATURE_LBRV           (1 <<  1)
  72#define SVM_FEATURE_SVML           (1 <<  2)
  73#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  74#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  75#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  76#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  77#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  78
  79#define SVM_AVIC_DOORBELL	0xc001011b
  80
  81#define NESTED_EXIT_HOST	0	/* Exit handled on host level */
  82#define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
  83#define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */
  84
  85#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  86
  87#define TSC_RATIO_RSVD          0xffffff0000000000ULL
  88#define TSC_RATIO_MIN		0x0000000000000001ULL
  89#define TSC_RATIO_MAX		0x000000ffffffffffULL
  90
  91#define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF)
  92
  93/*
  94 * 0xff is broadcast, so the max index allowed for physical APIC ID
  95 * table is 0xfe.  APIC IDs above 0xff are reserved.
  96 */
  97#define AVIC_MAX_PHYSICAL_ID_COUNT	255
  98
  99#define AVIC_UNACCEL_ACCESS_WRITE_MASK		1
 100#define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0
 101#define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF
 102
 103/* AVIC GATAG is encoded using VM and VCPU IDs */
 104#define AVIC_VCPU_ID_BITS		8
 105#define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1)
 106
 107#define AVIC_VM_ID_BITS			24
 108#define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS)
 109#define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1)
 110
 111#define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
 112						(y & AVIC_VCPU_ID_MASK))
 113#define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
 114#define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
 115
 116static bool erratum_383_found __read_mostly;
 117
 118static const u32 host_save_user_msrs[] = {
 119#ifdef CONFIG_X86_64
 120	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
 121	MSR_FS_BASE,
 122#endif
 123	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 124	MSR_TSC_AUX,
 125};
 126
 127#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
 128
 129struct kvm_sev_info {
 130	bool active;		/* SEV enabled guest */
 131	unsigned int asid;	/* ASID used for this guest */
 132	unsigned int handle;	/* SEV firmware handle */
 133	int fd;			/* SEV device fd */
 134	unsigned long pages_locked; /* Number of pages locked */
 135	struct list_head regions_list;  /* List of registered regions */
 136};
 137
 138struct kvm_svm {
 139	struct kvm kvm;
 140
 141	/* Struct members for AVIC */
 142	u32 avic_vm_id;
 143	struct page *avic_logical_id_table_page;
 144	struct page *avic_physical_id_table_page;
 145	struct hlist_node hnode;
 146
 147	struct kvm_sev_info sev_info;
 148};
 149
 150struct kvm_vcpu;
 151
 152struct nested_state {
 153	struct vmcb *hsave;
 154	u64 hsave_msr;
 155	u64 vm_cr_msr;
 156	u64 vmcb;
 157
 158	/* These are the merged vectors */
 159	u32 *msrpm;
 160
 161	/* gpa pointers to the real vectors */
 162	u64 vmcb_msrpm;
 163	u64 vmcb_iopm;
 164
 165	/* A VMEXIT is required but not yet emulated */
 166	bool exit_required;
 167
 168	/* cache for intercepts of the guest */
 169	u32 intercept_cr;
 170	u32 intercept_dr;
 171	u32 intercept_exceptions;
 172	u64 intercept;
 173
 174	/* Nested Paging related state */
 175	u64 nested_cr3;
 176};
 177
 178#define MSRPM_OFFSETS	16
 179static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 180
 181/*
 182 * Set osvw_len to higher value when updated Revision Guides
 183 * are published and we know what the new status bits are
 184 */
 185static uint64_t osvw_len = 4, osvw_status;
 186
 187struct vcpu_svm {
 188	struct kvm_vcpu vcpu;
 189	struct vmcb *vmcb;
 190	unsigned long vmcb_pa;
 191	struct svm_cpu_data *svm_data;
 192	uint64_t asid_generation;
 193	uint64_t sysenter_esp;
 194	uint64_t sysenter_eip;
 195	uint64_t tsc_aux;
 196
 197	u64 msr_decfg;
 198
 199	u64 next_rip;
 200
 201	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
 202	struct {
 203		u16 fs;
 204		u16 gs;
 205		u16 ldt;
 206		u64 gs_base;
 207	} host;
 208
 209	u64 spec_ctrl;
 210	/*
 211	 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
 212	 * translated into the appropriate L2_CFG bits on the host to
 213	 * perform speculative control.
 214	 */
 215	u64 virt_spec_ctrl;
 216
 217	u32 *msrpm;
 218
 219	ulong nmi_iret_rip;
 220
 221	struct nested_state nested;
 222
 223	bool nmi_singlestep;
 224	u64 nmi_singlestep_guest_rflags;
 225
 226	unsigned int3_injected;
 227	unsigned long int3_rip;
 228
 229	/* cached guest cpuid flags for faster access */
 230	bool nrips_enabled	: 1;
 231
 232	u32 ldr_reg;
 233	u32 dfr_reg;
 234	struct page *avic_backing_page;
 235	u64 *avic_physical_id_cache;
 236	bool avic_is_running;
 237
 238	/*
 239	 * Per-vcpu list of struct amd_svm_iommu_ir:
 240	 * This is used mainly to store interrupt remapping information used
 241	 * when update the vcpu affinity. This avoids the need to scan for
 242	 * IRTE and try to match ga_tag in the IOMMU driver.
 243	 */
 244	struct list_head ir_list;
 245	spinlock_t ir_list_lock;
 246
 247	/* which host CPU was used for running this vcpu */
 248	unsigned int last_cpu;
 249};
 250
 251/*
 252 * This is a wrapper of struct amd_iommu_ir_data.
 253 */
 254struct amd_svm_iommu_ir {
 255	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
 256	void *data;		/* Storing pointer to struct amd_ir_data */
 257};
 258
 259#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK	(0xFF)
 260#define AVIC_LOGICAL_ID_ENTRY_VALID_BIT			31
 261#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK		(1 << 31)
 262
 263#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK	(0xFFULL)
 264#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK	(0xFFFFFFFFFFULL << 12)
 265#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK		(1ULL << 62)
 266#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK		(1ULL << 63)
 267
 268static DEFINE_PER_CPU(u64, current_tsc_ratio);
 269#define TSC_RATIO_DEFAULT	0x0100000000ULL
 270
 271#define MSR_INVALID			0xffffffffU
 272
 273static const struct svm_direct_access_msrs {
 274	u32 index;   /* Index of the MSR */
 275	bool always; /* True if intercept is always on */
 276} direct_access_msrs[] = {
 277	{ .index = MSR_STAR,				.always = true  },
 278	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
 279#ifdef CONFIG_X86_64
 280	{ .index = MSR_GS_BASE,				.always = true  },
 281	{ .index = MSR_FS_BASE,				.always = true  },
 282	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
 283	{ .index = MSR_LSTAR,				.always = true  },
 284	{ .index = MSR_CSTAR,				.always = true  },
 285	{ .index = MSR_SYSCALL_MASK,			.always = true  },
 286#endif
 287	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
 288	{ .index = MSR_IA32_PRED_CMD,			.always = false },
 289	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
 290	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
 291	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
 292	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
 293	{ .index = MSR_INVALID,				.always = false },
 294};
 295
 296/* enable NPT for AMD64 and X86 with PAE */
 297#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 298static bool npt_enabled = true;
 299#else
 300static bool npt_enabled;
 301#endif
 302
 303/*
 304 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 305 * pause_filter_count: On processors that support Pause filtering(indicated
 306 *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
 307 *	count value. On VMRUN this value is loaded into an internal counter.
 308 *	Each time a pause instruction is executed, this counter is decremented
 309 *	until it reaches zero at which time a #VMEXIT is generated if pause
 310 *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
 311 *	Intercept Filtering for more details.
 312 *	This also indicate if ple logic enabled.
 313 *
 314 * pause_filter_thresh: In addition, some processor families support advanced
 315 *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
 316 *	the amount of time a guest is allowed to execute in a pause loop.
 317 *	In this mode, a 16-bit pause filter threshold field is added in the
 318 *	VMCB. The threshold value is a cycle count that is used to reset the
 319 *	pause counter. As with simple pause filtering, VMRUN loads the pause
 320 *	count value from VMCB into an internal counter. Then, on each pause
 321 *	instruction the hardware checks the elapsed number of cycles since
 322 *	the most recent pause instruction against the pause filter threshold.
 323 *	If the elapsed cycle count is greater than the pause filter threshold,
 324 *	then the internal pause count is reloaded from the VMCB and execution
 325 *	continues. If the elapsed cycle count is less than the pause filter
 326 *	threshold, then the internal pause count is decremented. If the count
 327 *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
 328 *	triggered. If advanced pause filtering is supported and pause filter
 329 *	threshold field is set to zero, the filter will operate in the simpler,
 330 *	count only mode.
 331 */
 332
 333static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
 334module_param(pause_filter_thresh, ushort, 0444);
 335
 336static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
 337module_param(pause_filter_count, ushort, 0444);
 338
 339/* Default doubles per-vcpu window every exit. */
 340static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 341module_param(pause_filter_count_grow, ushort, 0444);
 342
 343/* Default resets per-vcpu window every exit to pause_filter_count. */
 344static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 345module_param(pause_filter_count_shrink, ushort, 0444);
 346
 347/* Default is to compute the maximum so we can never overflow. */
 348static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
 349module_param(pause_filter_count_max, ushort, 0444);
 350
 351/* allow nested paging (virtualized MMU) for all guests */
 352static int npt = true;
 353module_param(npt, int, S_IRUGO);
 354
 355/* allow nested virtualization in KVM/SVM */
 356static int nested = true;
 357module_param(nested, int, S_IRUGO);
 358
 359/* enable / disable AVIC */
 360static int avic;
 361#ifdef CONFIG_X86_LOCAL_APIC
 362module_param(avic, int, S_IRUGO);
 363#endif
 364
 365/* enable/disable Next RIP Save */
 366static int nrips = true;
 367module_param(nrips, int, 0444);
 368
 369/* enable/disable Virtual VMLOAD VMSAVE */
 370static int vls = true;
 371module_param(vls, int, 0444);
 372
 373/* enable/disable Virtual GIF */
 374static int vgif = true;
 375module_param(vgif, int, 0444);
 376
 377/* enable/disable SEV support */
 378static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
 379module_param(sev, int, 0444);
 380
 381static bool __read_mostly dump_invalid_vmcb = 0;
 382module_param(dump_invalid_vmcb, bool, 0644);
 383
 384static u8 rsm_ins_bytes[] = "\x0f\xaa";
 385
 386static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
 387static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
 388static void svm_complete_interrupts(struct vcpu_svm *svm);
 389
 390static int nested_svm_exit_handled(struct vcpu_svm *svm);
 391static int nested_svm_intercept(struct vcpu_svm *svm);
 392static int nested_svm_vmexit(struct vcpu_svm *svm);
 393static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 394				      bool has_error_code, u32 error_code);
 395
 396enum {
 397	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
 398			    pause filter count */
 399	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
 400	VMCB_ASID,	 /* ASID */
 401	VMCB_INTR,	 /* int_ctl, int_vector */
 402	VMCB_NPT,        /* npt_en, nCR3, gPAT */
 403	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
 404	VMCB_DR,         /* DR6, DR7 */
 405	VMCB_DT,         /* GDT, IDT */
 406	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
 407	VMCB_CR2,        /* CR2 only */
 408	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
 409	VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
 410			  * AVIC PHYSICAL_TABLE pointer,
 411			  * AVIC LOGICAL_TABLE pointer
 412			  */
 413	VMCB_DIRTY_MAX,
 414};
 415
 416/* TPR and CR2 are always written before VMRUN */
 417#define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
 418
 419#define VMCB_AVIC_APIC_BAR_MASK		0xFFFFFFFFFF000ULL
 420
 421static unsigned int max_sev_asid;
 422static unsigned int min_sev_asid;
 423static unsigned long *sev_asid_bitmap;
 424#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
 425
 426struct enc_region {
 427	struct list_head list;
 428	unsigned long npages;
 429	struct page **pages;
 430	unsigned long uaddr;
 431	unsigned long size;
 432};
 433
 434
 435static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
 436{
 437	return container_of(kvm, struct kvm_svm, kvm);
 438}
 439
 440static inline bool svm_sev_enabled(void)
 441{
 442	return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0;
 443}
 444
 445static inline bool sev_guest(struct kvm *kvm)
 446{
 447#ifdef CONFIG_KVM_AMD_SEV
 448	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 449
 450	return sev->active;
 451#else
 452	return false;
 453#endif
 454}
 455
 456static inline int sev_get_asid(struct kvm *kvm)
 457{
 458	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 459
 460	return sev->asid;
 461}
 462
 463static inline void mark_all_dirty(struct vmcb *vmcb)
 464{
 465	vmcb->control.clean = 0;
 466}
 467
 468static inline void mark_all_clean(struct vmcb *vmcb)
 469{
 470	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
 471			       & ~VMCB_ALWAYS_DIRTY_MASK;
 472}
 473
 474static inline void mark_dirty(struct vmcb *vmcb, int bit)
 475{
 476	vmcb->control.clean &= ~(1 << bit);
 477}
 478
 479static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
 480{
 481	return container_of(vcpu, struct vcpu_svm, vcpu);
 482}
 483
 484static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
 485{
 486	svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
 487	mark_dirty(svm->vmcb, VMCB_AVIC);
 488}
 489
 490static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
 491{
 492	struct vcpu_svm *svm = to_svm(vcpu);
 493	u64 *entry = svm->avic_physical_id_cache;
 494
 495	if (!entry)
 496		return false;
 497
 498	return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
 499}
 500
 501static void recalc_intercepts(struct vcpu_svm *svm)
 502{
 503	struct vmcb_control_area *c, *h;
 504	struct nested_state *g;
 505
 506	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 507
 508	if (!is_guest_mode(&svm->vcpu))
 509		return;
 510
 511	c = &svm->vmcb->control;
 512	h = &svm->nested.hsave->control;
 513	g = &svm->nested;
 514
 515	c->intercept_cr = h->intercept_cr | g->intercept_cr;
 516	c->intercept_dr = h->intercept_dr | g->intercept_dr;
 517	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
 518	c->intercept = h->intercept | g->intercept;
 519}
 520
 521static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
 522{
 523	if (is_guest_mode(&svm->vcpu))
 524		return svm->nested.hsave;
 525	else
 526		return svm->vmcb;
 527}
 528
 529static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
 530{
 531	struct vmcb *vmcb = get_host_vmcb(svm);
 532
 533	vmcb->control.intercept_cr |= (1U << bit);
 534
 535	recalc_intercepts(svm);
 536}
 537
 538static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
 539{
 540	struct vmcb *vmcb = get_host_vmcb(svm);
 541
 542	vmcb->control.intercept_cr &= ~(1U << bit);
 543
 544	recalc_intercepts(svm);
 545}
 546
 547static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
 548{
 549	struct vmcb *vmcb = get_host_vmcb(svm);
 550
 551	return vmcb->control.intercept_cr & (1U << bit);
 552}
 553
 554static inline void set_dr_intercepts(struct vcpu_svm *svm)
 555{
 556	struct vmcb *vmcb = get_host_vmcb(svm);
 557
 558	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
 559		| (1 << INTERCEPT_DR1_READ)
 560		| (1 << INTERCEPT_DR2_READ)
 561		| (1 << INTERCEPT_DR3_READ)
 562		| (1 << INTERCEPT_DR4_READ)
 563		| (1 << INTERCEPT_DR5_READ)
 564		| (1 << INTERCEPT_DR6_READ)
 565		| (1 << INTERCEPT_DR7_READ)
 566		| (1 << INTERCEPT_DR0_WRITE)
 567		| (1 << INTERCEPT_DR1_WRITE)
 568		| (1 << INTERCEPT_DR2_WRITE)
 569		| (1 << INTERCEPT_DR3_WRITE)
 570		| (1 << INTERCEPT_DR4_WRITE)
 571		| (1 << INTERCEPT_DR5_WRITE)
 572		| (1 << INTERCEPT_DR6_WRITE)
 573		| (1 << INTERCEPT_DR7_WRITE);
 574
 575	recalc_intercepts(svm);
 576}
 577
 578static inline void clr_dr_intercepts(struct vcpu_svm *svm)
 579{
 580	struct vmcb *vmcb = get_host_vmcb(svm);
 581
 582	vmcb->control.intercept_dr = 0;
 583
 584	recalc_intercepts(svm);
 585}
 586
 587static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
 588{
 589	struct vmcb *vmcb = get_host_vmcb(svm);
 590
 591	vmcb->control.intercept_exceptions |= (1U << bit);
 592
 593	recalc_intercepts(svm);
 594}
 595
 596static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
 597{
 598	struct vmcb *vmcb = get_host_vmcb(svm);
 599
 600	vmcb->control.intercept_exceptions &= ~(1U << bit);
 601
 602	recalc_intercepts(svm);
 603}
 604
 605static inline void set_intercept(struct vcpu_svm *svm, int bit)
 606{
 607	struct vmcb *vmcb = get_host_vmcb(svm);
 608
 609	vmcb->control.intercept |= (1ULL << bit);
 610
 611	recalc_intercepts(svm);
 612}
 613
 614static inline void clr_intercept(struct vcpu_svm *svm, int bit)
 615{
 616	struct vmcb *vmcb = get_host_vmcb(svm);
 617
 618	vmcb->control.intercept &= ~(1ULL << bit);
 619
 620	recalc_intercepts(svm);
 621}
 622
 623static inline bool vgif_enabled(struct vcpu_svm *svm)
 624{
 625	return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
 626}
 627
 628static inline void enable_gif(struct vcpu_svm *svm)
 629{
 630	if (vgif_enabled(svm))
 631		svm->vmcb->control.int_ctl |= V_GIF_MASK;
 632	else
 633		svm->vcpu.arch.hflags |= HF_GIF_MASK;
 634}
 635
 636static inline void disable_gif(struct vcpu_svm *svm)
 637{
 638	if (vgif_enabled(svm))
 639		svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
 640	else
 641		svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
 642}
 643
 644static inline bool gif_set(struct vcpu_svm *svm)
 645{
 646	if (vgif_enabled(svm))
 647		return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
 648	else
 649		return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
 650}
 651
 652static unsigned long iopm_base;
 653
 654struct kvm_ldttss_desc {
 655	u16 limit0;
 656	u16 base0;
 657	unsigned base1:8, type:5, dpl:2, p:1;
 658	unsigned limit1:4, zero0:3, g:1, base2:8;
 659	u32 base3;
 660	u32 zero1;
 661} __attribute__((packed));
 662
 663struct svm_cpu_data {
 664	int cpu;
 665
 666	u64 asid_generation;
 667	u32 max_asid;
 668	u32 next_asid;
 669	u32 min_asid;
 670	struct kvm_ldttss_desc *tss_desc;
 671
 672	struct page *save_area;
 673	struct vmcb *current_vmcb;
 674
 675	/* index = sev_asid, value = vmcb pointer */
 676	struct vmcb **sev_vmcbs;
 677};
 678
 679static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 680
 681static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 682
 683#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 684#define MSRS_RANGE_SIZE 2048
 685#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 686
 687static u32 svm_msrpm_offset(u32 msr)
 688{
 689	u32 offset;
 690	int i;
 691
 692	for (i = 0; i < NUM_MSR_MAPS; i++) {
 693		if (msr < msrpm_ranges[i] ||
 694		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 695			continue;
 696
 697		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 698		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 699
 700		/* Now we have the u8 offset - but need the u32 offset */
 701		return offset / 4;
 702	}
 703
 704	/* MSR not in any range */
 705	return MSR_INVALID;
 706}
 707
 708#define MAX_INST_SIZE 15
 709
 710static inline void clgi(void)
 711{
 712	asm volatile (__ex("clgi"));
 713}
 714
 715static inline void stgi(void)
 716{
 717	asm volatile (__ex("stgi"));
 718}
 719
 720static inline void invlpga(unsigned long addr, u32 asid)
 721{
 722	asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
 723}
 724
 725static int get_npt_level(struct kvm_vcpu *vcpu)
 726{
 727#ifdef CONFIG_X86_64
 728	return PT64_ROOT_4LEVEL;
 729#else
 730	return PT32E_ROOT_LEVEL;
 731#endif
 732}
 733
 734static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 735{
 736	vcpu->arch.efer = efer;
 737
 738	if (!npt_enabled) {
 739		/* Shadow paging assumes NX to be available.  */
 740		efer |= EFER_NX;
 741
 742		if (!(efer & EFER_LMA))
 743			efer &= ~EFER_LME;
 744	}
 745
 746	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
 747	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 748}
 749
 750static int is_external_interrupt(u32 info)
 751{
 752	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 753	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 754}
 755
 756static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 757{
 758	struct vcpu_svm *svm = to_svm(vcpu);
 759	u32 ret = 0;
 760
 761	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 762		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 763	return ret;
 764}
 765
 766static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 767{
 768	struct vcpu_svm *svm = to_svm(vcpu);
 769
 770	if (mask == 0)
 771		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 772	else
 773		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 774
 775}
 776
 777static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
 778{
 779	struct vcpu_svm *svm = to_svm(vcpu);
 780
 781	if (nrips && svm->vmcb->control.next_rip != 0) {
 782		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
 783		svm->next_rip = svm->vmcb->control.next_rip;
 784	}
 785
 786	if (!svm->next_rip) {
 787		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
 788			return 0;
 789	} else {
 790		if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
 791			pr_err("%s: ip 0x%lx next 0x%llx\n",
 792			       __func__, kvm_rip_read(vcpu), svm->next_rip);
 793		kvm_rip_write(vcpu, svm->next_rip);
 794	}
 795	svm_set_interrupt_shadow(vcpu, 0);
 796
 797	return 1;
 798}
 799
 800static void svm_queue_exception(struct kvm_vcpu *vcpu)
 801{
 802	struct vcpu_svm *svm = to_svm(vcpu);
 803	unsigned nr = vcpu->arch.exception.nr;
 804	bool has_error_code = vcpu->arch.exception.has_error_code;
 805	bool reinject = vcpu->arch.exception.injected;
 806	u32 error_code = vcpu->arch.exception.error_code;
 807
 808	/*
 809	 * If we are within a nested VM we'd better #VMEXIT and let the guest
 810	 * handle the exception
 811	 */
 812	if (!reinject &&
 813	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
 814		return;
 815
 816	kvm_deliver_exception_payload(&svm->vcpu);
 817
 818	if (nr == BP_VECTOR && !nrips) {
 819		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 820
 821		/*
 822		 * For guest debugging where we have to reinject #BP if some
 823		 * INT3 is guest-owned:
 824		 * Emulate nRIP by moving RIP forward. Will fail if injection
 825		 * raises a fault that is not intercepted. Still better than
 826		 * failing in all cases.
 827		 */
 828		(void)skip_emulated_instruction(&svm->vcpu);
 829		rip = kvm_rip_read(&svm->vcpu);
 830		svm->int3_rip = rip + svm->vmcb->save.cs.base;
 831		svm->int3_injected = rip - old_rip;
 832	}
 833
 834	svm->vmcb->control.event_inj = nr
 835		| SVM_EVTINJ_VALID
 836		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 837		| SVM_EVTINJ_TYPE_EXEPT;
 838	svm->vmcb->control.event_inj_err = error_code;
 839}
 840
 841static void svm_init_erratum_383(void)
 842{
 843	u32 low, high;
 844	int err;
 845	u64 val;
 846
 847	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 848		return;
 849
 850	/* Use _safe variants to not break nested virtualization */
 851	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 852	if (err)
 853		return;
 854
 855	val |= (1ULL << 47);
 856
 857	low  = lower_32_bits(val);
 858	high = upper_32_bits(val);
 859
 860	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 861
 862	erratum_383_found = true;
 863}
 864
 865static void svm_init_osvw(struct kvm_vcpu *vcpu)
 866{
 867	/*
 868	 * Guests should see errata 400 and 415 as fixed (assuming that
 869	 * HLT and IO instructions are intercepted).
 870	 */
 871	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 872	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 873
 874	/*
 875	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
 876	 * all osvw.status bits inside that length, including bit 0 (which is
 877	 * reserved for erratum 298), are valid. However, if host processor's
 878	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
 879	 * be conservative here and therefore we tell the guest that erratum 298
 880	 * is present (because we really don't know).
 881	 */
 882	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 883		vcpu->arch.osvw.status |= 1;
 884}
 885
 886static int has_svm(void)
 887{
 888	const char *msg;
 889
 890	if (!cpu_has_svm(&msg)) {
 891		printk(KERN_INFO "has_svm: %s\n", msg);
 892		return 0;
 893	}
 894
 895	return 1;
 896}
 897
 898static void svm_hardware_disable(void)
 899{
 900	/* Make sure we clean up behind us */
 901	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
 902		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 903
 904	cpu_svm_disable();
 905
 906	amd_pmu_disable_virt();
 907}
 908
 909static int svm_hardware_enable(void)
 910{
 911
 912	struct svm_cpu_data *sd;
 913	uint64_t efer;
 914	struct desc_struct *gdt;
 915	int me = raw_smp_processor_id();
 916
 917	rdmsrl(MSR_EFER, efer);
 918	if (efer & EFER_SVME)
 919		return -EBUSY;
 920
 921	if (!has_svm()) {
 922		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 923		return -EINVAL;
 924	}
 925	sd = per_cpu(svm_data, me);
 926	if (!sd) {
 927		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 928		return -EINVAL;
 929	}
 930
 931	sd->asid_generation = 1;
 932	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 933	sd->next_asid = sd->max_asid + 1;
 934	sd->min_asid = max_sev_asid + 1;
 935
 936	gdt = get_current_gdt_rw();
 937	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 938
 939	wrmsrl(MSR_EFER, efer | EFER_SVME);
 940
 941	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 942
 943	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 944		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 945		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
 946	}
 947
 948
 949	/*
 950	 * Get OSVW bits.
 951	 *
 952	 * Note that it is possible to have a system with mixed processor
 953	 * revisions and therefore different OSVW bits. If bits are not the same
 954	 * on different processors then choose the worst case (i.e. if erratum
 955	 * is present on one processor and not on another then assume that the
 956	 * erratum is present everywhere).
 957	 */
 958	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 959		uint64_t len, status = 0;
 960		int err;
 961
 962		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 963		if (!err)
 964			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 965						      &err);
 966
 967		if (err)
 968			osvw_status = osvw_len = 0;
 969		else {
 970			if (len < osvw_len)
 971				osvw_len = len;
 972			osvw_status |= status;
 973			osvw_status &= (1ULL << osvw_len) - 1;
 974		}
 975	} else
 976		osvw_status = osvw_len = 0;
 977
 978	svm_init_erratum_383();
 979
 980	amd_pmu_enable_virt();
 981
 982	return 0;
 983}
 984
 985static void svm_cpu_uninit(int cpu)
 986{
 987	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 988
 989	if (!sd)
 990		return;
 991
 992	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 993	kfree(sd->sev_vmcbs);
 994	__free_page(sd->save_area);
 995	kfree(sd);
 996}
 997
 998static int svm_cpu_init(int cpu)
 999{
1000	struct svm_cpu_data *sd;
1001	int r;
1002
1003	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
1004	if (!sd)
1005		return -ENOMEM;
1006	sd->cpu = cpu;
1007	r = -ENOMEM;
1008	sd->save_area = alloc_page(GFP_KERNEL);
1009	if (!sd->save_area)
1010		goto err_1;
1011
1012	if (svm_sev_enabled()) {
1013		r = -ENOMEM;
1014		sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
1015					      sizeof(void *),
1016					      GFP_KERNEL);
1017		if (!sd->sev_vmcbs)
1018			goto err_1;
1019	}
1020
1021	per_cpu(svm_data, cpu) = sd;
1022
1023	return 0;
1024
1025err_1:
1026	kfree(sd);
1027	return r;
1028
1029}
1030
1031static bool valid_msr_intercept(u32 index)
1032{
1033	int i;
1034
1035	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1036		if (direct_access_msrs[i].index == index)
1037			return true;
1038
1039	return false;
1040}
1041
1042static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1043{
1044	u8 bit_write;
1045	unsigned long tmp;
1046	u32 offset;
1047	u32 *msrpm;
1048
1049	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1050				      to_svm(vcpu)->msrpm;
1051
1052	offset    = svm_msrpm_offset(msr);
1053	bit_write = 2 * (msr & 0x0f) + 1;
1054	tmp       = msrpm[offset];
1055
1056	BUG_ON(offset == MSR_INVALID);
1057
1058	return !!test_bit(bit_write,  &tmp);
1059}
1060
1061static void set_msr_interception(u32 *msrpm, unsigned msr,
1062				 int read, int write)
1063{
1064	u8 bit_read, bit_write;
1065	unsigned long tmp;
1066	u32 offset;
1067
1068	/*
1069	 * If this warning triggers extend the direct_access_msrs list at the
1070	 * beginning of the file
1071	 */
1072	WARN_ON(!valid_msr_intercept(msr));
1073
1074	offset    = svm_msrpm_offset(msr);
1075	bit_read  = 2 * (msr & 0x0f);
1076	bit_write = 2 * (msr & 0x0f) + 1;
1077	tmp       = msrpm[offset];
1078
1079	BUG_ON(offset == MSR_INVALID);
1080
1081	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1082	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1083
1084	msrpm[offset] = tmp;
1085}
1086
1087static void svm_vcpu_init_msrpm(u32 *msrpm)
1088{
1089	int i;
1090
1091	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1092
1093	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1094		if (!direct_access_msrs[i].always)
1095			continue;
1096
1097		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1098	}
1099}
1100
1101static void add_msr_offset(u32 offset)
1102{
1103	int i;
1104
1105	for (i = 0; i < MSRPM_OFFSETS; ++i) {
1106
1107		/* Offset already in list? */
1108		if (msrpm_offsets[i] == offset)
1109			return;
1110
1111		/* Slot used by another offset? */
1112		if (msrpm_offsets[i] != MSR_INVALID)
1113			continue;
1114
1115		/* Add offset to list */
1116		msrpm_offsets[i] = offset;
1117
1118		return;
1119	}
1120
1121	/*
1122	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1123	 * increase MSRPM_OFFSETS in this case.
1124	 */
1125	BUG();
1126}
1127
1128static void init_msrpm_offsets(void)
1129{
1130	int i;
1131
1132	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1133
1134	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1135		u32 offset;
1136
1137		offset = svm_msrpm_offset(direct_access_msrs[i].index);
1138		BUG_ON(offset == MSR_INVALID);
1139
1140		add_msr_offset(offset);
1141	}
1142}
1143
1144static void svm_enable_lbrv(struct vcpu_svm *svm)
1145{
1146	u32 *msrpm = svm->msrpm;
1147
1148	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1149	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1150	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1151	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1152	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1153}
1154
1155static void svm_disable_lbrv(struct vcpu_svm *svm)
1156{
1157	u32 *msrpm = svm->msrpm;
1158
1159	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1160	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1161	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1162	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1163	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1164}
1165
1166static void disable_nmi_singlestep(struct vcpu_svm *svm)
1167{
1168	svm->nmi_singlestep = false;
1169
1170	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1171		/* Clear our flags if they were not set by the guest */
1172		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1173			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1174		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1175			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1176	}
1177}
1178
1179/* Note:
1180 * This hash table is used to map VM_ID to a struct kvm_svm,
1181 * when handling AMD IOMMU GALOG notification to schedule in
1182 * a particular vCPU.
1183 */
1184#define SVM_VM_DATA_HASH_BITS	8
1185static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1186static u32 next_vm_id = 0;
1187static bool next_vm_id_wrapped = 0;
1188static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1189
1190/* Note:
1191 * This function is called from IOMMU driver to notify
1192 * SVM to schedule in a particular vCPU of a particular VM.
1193 */
1194static int avic_ga_log_notifier(u32 ga_tag)
1195{
1196	unsigned long flags;
1197	struct kvm_svm *kvm_svm;
1198	struct kvm_vcpu *vcpu = NULL;
1199	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1200	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1201
1202	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1203
1204	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1205	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1206		if (kvm_svm->avic_vm_id != vm_id)
1207			continue;
1208		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1209		break;
1210	}
1211	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1212
1213	/* Note:
1214	 * At this point, the IOMMU should have already set the pending
1215	 * bit in the vAPIC backing page. So, we just need to schedule
1216	 * in the vcpu.
1217	 */
1218	if (vcpu)
1219		kvm_vcpu_wake_up(vcpu);
1220
1221	return 0;
1222}
1223
1224static __init int sev_hardware_setup(void)
1225{
1226	struct sev_user_data_status *status;
1227	int rc;
1228
1229	/* Maximum number of encrypted guests supported simultaneously */
1230	max_sev_asid = cpuid_ecx(0x8000001F);
1231
1232	if (!max_sev_asid)
1233		return 1;
1234
1235	/* Minimum ASID value that should be used for SEV guest */
1236	min_sev_asid = cpuid_edx(0x8000001F);
1237
1238	/* Initialize SEV ASID bitmap */
1239	sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL);
1240	if (!sev_asid_bitmap)
1241		return 1;
1242
1243	status = kmalloc(sizeof(*status), GFP_KERNEL);
1244	if (!status)
1245		return 1;
1246
1247	/*
1248	 * Check SEV platform status.
1249	 *
1250	 * PLATFORM_STATUS can be called in any state, if we failed to query
1251	 * the PLATFORM status then either PSP firmware does not support SEV
1252	 * feature or SEV firmware is dead.
1253	 */
1254	rc = sev_platform_status(status, NULL);
1255	if (rc)
1256		goto err;
1257
1258	pr_info("SEV supported\n");
1259
1260err:
1261	kfree(status);
1262	return rc;
1263}
1264
1265static void grow_ple_window(struct kvm_vcpu *vcpu)
1266{
1267	struct vcpu_svm *svm = to_svm(vcpu);
1268	struct vmcb_control_area *control = &svm->vmcb->control;
1269	int old = control->pause_filter_count;
1270
1271	control->pause_filter_count = __grow_ple_window(old,
1272							pause_filter_count,
1273							pause_filter_count_grow,
1274							pause_filter_count_max);
1275
1276	if (control->pause_filter_count != old) {
1277		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1278		trace_kvm_ple_window_update(vcpu->vcpu_id,
1279					    control->pause_filter_count, old);
1280	}
1281}
1282
1283static void shrink_ple_window(struct kvm_vcpu *vcpu)
1284{
1285	struct vcpu_svm *svm = to_svm(vcpu);
1286	struct vmcb_control_area *control = &svm->vmcb->control;
1287	int old = control->pause_filter_count;
1288
1289	control->pause_filter_count =
1290				__shrink_ple_window(old,
1291						    pause_filter_count,
1292						    pause_filter_count_shrink,
1293						    pause_filter_count);
1294	if (control->pause_filter_count != old) {
1295		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1296		trace_kvm_ple_window_update(vcpu->vcpu_id,
1297					    control->pause_filter_count, old);
1298	}
1299}
1300
1301static __init int svm_hardware_setup(void)
1302{
1303	int cpu;
1304	struct page *iopm_pages;
1305	void *iopm_va;
1306	int r;
1307
1308	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1309
1310	if (!iopm_pages)
1311		return -ENOMEM;
1312
1313	iopm_va = page_address(iopm_pages);
1314	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1315	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1316
1317	init_msrpm_offsets();
1318
1319	if (boot_cpu_has(X86_FEATURE_NX))
1320		kvm_enable_efer_bits(EFER_NX);
1321
1322	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1323		kvm_enable_efer_bits(EFER_FFXSR);
1324
1325	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1326		kvm_has_tsc_control = true;
1327		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1328		kvm_tsc_scaling_ratio_frac_bits = 32;
1329	}
1330
1331	/* Check for pause filtering support */
1332	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1333		pause_filter_count = 0;
1334		pause_filter_thresh = 0;
1335	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1336		pause_filter_thresh = 0;
1337	}
1338
1339	if (nested) {
1340		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1341		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1342	}
1343
1344	if (sev) {
1345		if (boot_cpu_has(X86_FEATURE_SEV) &&
1346		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1347			r = sev_hardware_setup();
1348			if (r)
1349				sev = false;
1350		} else {
1351			sev = false;
1352		}
1353	}
1354
1355	for_each_possible_cpu(cpu) {
1356		r = svm_cpu_init(cpu);
1357		if (r)
1358			goto err;
1359	}
1360
1361	if (!boot_cpu_has(X86_FEATURE_NPT))
1362		npt_enabled = false;
1363
1364	if (npt_enabled && !npt) {
1365		printk(KERN_INFO "kvm: Nested Paging disabled\n");
1366		npt_enabled = false;
1367	}
1368
1369	if (npt_enabled) {
1370		printk(KERN_INFO "kvm: Nested Paging enabled\n");
1371		kvm_enable_tdp();
1372	} else
1373		kvm_disable_tdp();
1374
1375	if (nrips) {
1376		if (!boot_cpu_has(X86_FEATURE_NRIPS))
1377			nrips = false;
1378	}
1379
1380	if (avic) {
1381		if (!npt_enabled ||
1382		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1383		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1384			avic = false;
1385		} else {
1386			pr_info("AVIC enabled\n");
1387
1388			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1389		}
1390	}
1391
1392	if (vls) {
1393		if (!npt_enabled ||
1394		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1395		    !IS_ENABLED(CONFIG_X86_64)) {
1396			vls = false;
1397		} else {
1398			pr_info("Virtual VMLOAD VMSAVE supported\n");
1399		}
1400	}
1401
1402	if (vgif) {
1403		if (!boot_cpu_has(X86_FEATURE_VGIF))
1404			vgif = false;
1405		else
1406			pr_info("Virtual GIF supported\n");
1407	}
1408
1409	return 0;
1410
1411err:
1412	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1413	iopm_base = 0;
1414	return r;
1415}
1416
1417static __exit void svm_hardware_unsetup(void)
1418{
1419	int cpu;
1420
1421	if (svm_sev_enabled())
1422		bitmap_free(sev_asid_bitmap);
1423
1424	for_each_possible_cpu(cpu)
1425		svm_cpu_uninit(cpu);
1426
1427	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1428	iopm_base = 0;
1429}
1430
1431static void init_seg(struct vmcb_seg *seg)
1432{
1433	seg->selector = 0;
1434	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1435		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1436	seg->limit = 0xffff;
1437	seg->base = 0;
1438}
1439
1440static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1441{
1442	seg->selector = 0;
1443	seg->attrib = SVM_SELECTOR_P_MASK | type;
1444	seg->limit = 0xffff;
1445	seg->base = 0;
1446}
1447
1448static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1449{
1450	struct vcpu_svm *svm = to_svm(vcpu);
1451
1452	if (is_guest_mode(vcpu))
1453		return svm->nested.hsave->control.tsc_offset;
1454
1455	return vcpu->arch.tsc_offset;
1456}
1457
1458static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1459{
1460	struct vcpu_svm *svm = to_svm(vcpu);
1461	u64 g_tsc_offset = 0;
1462
1463	if (is_guest_mode(vcpu)) {
1464		/* Write L1's TSC offset.  */
1465		g_tsc_offset = svm->vmcb->control.tsc_offset -
1466			       svm->nested.hsave->control.tsc_offset;
1467		svm->nested.hsave->control.tsc_offset = offset;
1468	}
1469
1470	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1471				   svm->vmcb->control.tsc_offset - g_tsc_offset,
1472				   offset);
1473
1474	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1475
1476	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1477	return svm->vmcb->control.tsc_offset;
1478}
1479
1480static void avic_init_vmcb(struct vcpu_svm *svm)
1481{
1482	struct vmcb *vmcb = svm->vmcb;
1483	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1484	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1485	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1486	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1487
1488	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1489	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1490	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1491	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1492	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1493}
1494
1495static void init_vmcb(struct vcpu_svm *svm)
1496{
1497	struct vmcb_control_area *control = &svm->vmcb->control;
1498	struct vmcb_save_area *save = &svm->vmcb->save;
1499
1500	svm->vcpu.arch.hflags = 0;
1501
1502	set_cr_intercept(svm, INTERCEPT_CR0_READ);
1503	set_cr_intercept(svm, INTERCEPT_CR3_READ);
1504	set_cr_intercept(svm, INTERCEPT_CR4_READ);
1505	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1506	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1507	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1508	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1509		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1510
1511	set_dr_intercepts(svm);
1512
1513	set_exception_intercept(svm, PF_VECTOR);
1514	set_exception_intercept(svm, UD_VECTOR);
1515	set_exception_intercept(svm, MC_VECTOR);
1516	set_exception_intercept(svm, AC_VECTOR);
1517	set_exception_intercept(svm, DB_VECTOR);
1518	/*
1519	 * Guest access to VMware backdoor ports could legitimately
1520	 * trigger #GP because of TSS I/O permission bitmap.
1521	 * We intercept those #GP and allow access to them anyway
1522	 * as VMware does.
1523	 */
1524	if (enable_vmware_backdoor)
1525		set_exception_intercept(svm, GP_VECTOR);
1526
1527	set_intercept(svm, INTERCEPT_INTR);
1528	set_intercept(svm, INTERCEPT_NMI);
1529	set_intercept(svm, INTERCEPT_SMI);
1530	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1531	set_intercept(svm, INTERCEPT_RDPMC);
1532	set_intercept(svm, INTERCEPT_CPUID);
1533	set_intercept(svm, INTERCEPT_INVD);
1534	set_intercept(svm, INTERCEPT_INVLPG);
1535	set_intercept(svm, INTERCEPT_INVLPGA);
1536	set_intercept(svm, INTERCEPT_IOIO_PROT);
1537	set_intercept(svm, INTERCEPT_MSR_PROT);
1538	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1539	set_intercept(svm, INTERCEPT_SHUTDOWN);
1540	set_intercept(svm, INTERCEPT_VMRUN);
1541	set_intercept(svm, INTERCEPT_VMMCALL);
1542	set_intercept(svm, INTERCEPT_VMLOAD);
1543	set_intercept(svm, INTERCEPT_VMSAVE);
1544	set_intercept(svm, INTERCEPT_STGI);
1545	set_intercept(svm, INTERCEPT_CLGI);
1546	set_intercept(svm, INTERCEPT_SKINIT);
1547	set_intercept(svm, INTERCEPT_WBINVD);
1548	set_intercept(svm, INTERCEPT_XSETBV);
1549	set_intercept(svm, INTERCEPT_RDPRU);
1550	set_intercept(svm, INTERCEPT_RSM);
1551
1552	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1553		set_intercept(svm, INTERCEPT_MONITOR);
1554		set_intercept(svm, INTERCEPT_MWAIT);
1555	}
1556
1557	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1558		set_intercept(svm, INTERCEPT_HLT);
1559
1560	control->iopm_base_pa = __sme_set(iopm_base);
1561	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1562	control->int_ctl = V_INTR_MASKING_MASK;
1563
1564	init_seg(&save->es);
1565	init_seg(&save->ss);
1566	init_seg(&save->ds);
1567	init_seg(&save->fs);
1568	init_seg(&save->gs);
1569
1570	save->cs.selector = 0xf000;
1571	save->cs.base = 0xffff0000;
1572	/* Executable/Readable Code Segment */
1573	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1574		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1575	save->cs.limit = 0xffff;
1576
1577	save->gdtr.limit = 0xffff;
1578	save->idtr.limit = 0xffff;
1579
1580	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1581	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1582
1583	svm_set_efer(&svm->vcpu, 0);
1584	save->dr6 = 0xffff0ff0;
1585	kvm_set_rflags(&svm->vcpu, 2);
1586	save->rip = 0x0000fff0;
1587	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1588
1589	/*
1590	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1591	 * It also updates the guest-visible cr0 value.
1592	 */
1593	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1594	kvm_mmu_reset_context(&svm->vcpu);
1595
1596	save->cr4 = X86_CR4_PAE;
1597	/* rdx = ?? */
1598
1599	if (npt_enabled) {
1600		/* Setup VMCB for Nested Paging */
1601		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1602		clr_intercept(svm, INTERCEPT_INVLPG);
1603		clr_exception_intercept(svm, PF_VECTOR);
1604		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1605		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1606		save->g_pat = svm->vcpu.arch.pat;
1607		save->cr3 = 0;
1608		save->cr4 = 0;
1609	}
1610	svm->asid_generation = 0;
1611
1612	svm->nested.vmcb = 0;
1613	svm->vcpu.arch.hflags = 0;
1614
1615	if (pause_filter_count) {
1616		control->pause_filter_count = pause_filter_count;
1617		if (pause_filter_thresh)
1618			control->pause_filter_thresh = pause_filter_thresh;
1619		set_intercept(svm, INTERCEPT_PAUSE);
1620	} else {
1621		clr_intercept(svm, INTERCEPT_PAUSE);
1622	}
1623
1624	if (kvm_vcpu_apicv_active(&svm->vcpu))
1625		avic_init_vmcb(svm);
1626
1627	/*
1628	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1629	 * in VMCB and clear intercepts to avoid #VMEXIT.
1630	 */
1631	if (vls) {
1632		clr_intercept(svm, INTERCEPT_VMLOAD);
1633		clr_intercept(svm, INTERCEPT_VMSAVE);
1634		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1635	}
1636
1637	if (vgif) {
1638		clr_intercept(svm, INTERCEPT_STGI);
1639		clr_intercept(svm, INTERCEPT_CLGI);
1640		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1641	}
1642
1643	if (sev_guest(svm->vcpu.kvm)) {
1644		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1645		clr_exception_intercept(svm, UD_VECTOR);
1646	}
1647
1648	mark_all_dirty(svm->vmcb);
1649
1650	enable_gif(svm);
1651
1652}
1653
1654static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1655				       unsigned int index)
1656{
1657	u64 *avic_physical_id_table;
1658	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1659
1660	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1661		return NULL;
1662
1663	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1664
1665	return &avic_physical_id_table[index];
1666}
1667
1668/**
1669 * Note:
1670 * AVIC hardware walks the nested page table to check permissions,
1671 * but does not use the SPA address specified in the leaf page
1672 * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1673 * field of the VMCB. Therefore, we set up the
1674 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1675 */
1676static int avic_init_access_page(struct kvm_vcpu *vcpu)
1677{
1678	struct kvm *kvm = vcpu->kvm;
1679	int ret = 0;
1680
1681	mutex_lock(&kvm->slots_lock);
1682	if (kvm->arch.apic_access_page_done)
1683		goto out;
1684
1685	ret = __x86_set_memory_region(kvm,
1686				      APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1687				      APIC_DEFAULT_PHYS_BASE,
1688				      PAGE_SIZE);
1689	if (ret)
1690		goto out;
1691
1692	kvm->arch.apic_access_page_done = true;
1693out:
1694	mutex_unlock(&kvm->slots_lock);
1695	return ret;
1696}
1697
1698static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1699{
1700	int ret;
1701	u64 *entry, new_entry;
1702	int id = vcpu->vcpu_id;
1703	struct vcpu_svm *svm = to_svm(vcpu);
1704
1705	ret = avic_init_access_page(vcpu);
1706	if (ret)
1707		return ret;
1708
1709	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1710		return -EINVAL;
1711
1712	if (!svm->vcpu.arch.apic->regs)
1713		return -EINVAL;
1714
1715	svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1716
1717	/* Setting AVIC backing page address in the phy APIC ID table */
1718	entry = avic_get_physical_id_entry(vcpu, id);
1719	if (!entry)
1720		return -EINVAL;
1721
1722	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1723			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1724			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1725	WRITE_ONCE(*entry, new_entry);
1726
1727	svm->avic_physical_id_cache = entry;
1728
1729	return 0;
1730}
1731
1732static void __sev_asid_free(int asid)
1733{
1734	struct svm_cpu_data *sd;
1735	int cpu, pos;
1736
1737	pos = asid - 1;
1738	clear_bit(pos, sev_asid_bitmap);
1739
1740	for_each_possible_cpu(cpu) {
1741		sd = per_cpu(svm_data, cpu);
1742		sd->sev_vmcbs[pos] = NULL;
1743	}
1744}
1745
1746static void sev_asid_free(struct kvm *kvm)
1747{
1748	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1749
1750	__sev_asid_free(sev->asid);
1751}
1752
1753static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1754{
1755	struct sev_data_decommission *decommission;
1756	struct sev_data_deactivate *data;
1757
1758	if (!handle)
1759		return;
1760
1761	data = kzalloc(sizeof(*data), GFP_KERNEL);
1762	if (!data)
1763		return;
1764
1765	/* deactivate handle */
1766	data->handle = handle;
1767	sev_guest_deactivate(data, NULL);
1768
1769	wbinvd_on_all_cpus();
1770	sev_guest_df_flush(NULL);
1771	kfree(data);
1772
1773	decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1774	if (!decommission)
1775		return;
1776
1777	/* decommission handle */
1778	decommission->handle = handle;
1779	sev_guest_decommission(decommission, NULL);
1780
1781	kfree(decommission);
1782}
1783
1784static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1785				    unsigned long ulen, unsigned long *n,
1786				    int write)
1787{
1788	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1789	unsigned long npages, npinned, size;
1790	unsigned long locked, lock_limit;
1791	struct page **pages;
1792	unsigned long first, last;
1793
1794	if (ulen == 0 || uaddr + ulen < uaddr)
1795		return NULL;
1796
1797	/* Calculate number of pages. */
1798	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1799	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1800	npages = (last - first + 1);
1801
1802	locked = sev->pages_locked + npages;
1803	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1804	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1805		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1806		return NULL;
1807	}
1808
1809	/* Avoid using vmalloc for smaller buffers. */
1810	size = npages * sizeof(struct page *);
1811	if (size > PAGE_SIZE)
1812		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1813				  PAGE_KERNEL);
1814	else
1815		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
1816
1817	if (!pages)
1818		return NULL;
1819
1820	/* Pin the user virtual address. */
1821	npinned = get_user_pages_fast(uaddr, npages, FOLL_WRITE, pages);
1822	if (npinned != npages) {
1823		pr_err("SEV: Failure locking %lu pages.\n", npages);
1824		goto err;
1825	}
1826
1827	*n = npages;
1828	sev->pages_locked = locked;
1829
1830	return pages;
1831
1832err:
1833	if (npinned > 0)
1834		release_pages(pages, npinned);
1835
1836	kvfree(pages);
1837	return NULL;
1838}
1839
1840static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1841			     unsigned long npages)
1842{
1843	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1844
1845	release_pages(pages, npages);
1846	kvfree(pages);
1847	sev->pages_locked -= npages;
1848}
1849
1850static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1851{
1852	uint8_t *page_virtual;
1853	unsigned long i;
1854
1855	if (npages == 0 || pages == NULL)
1856		return;
1857
1858	for (i = 0; i < npages; i++) {
1859		page_virtual = kmap_atomic(pages[i]);
1860		clflush_cache_range(page_virtual, PAGE_SIZE);
1861		kunmap_atomic(page_virtual);
1862	}
1863}
1864
1865static void __unregister_enc_region_locked(struct kvm *kvm,
1866					   struct enc_region *region)
1867{
1868	/*
1869	 * The guest may change the memory encryption attribute from C=0 -> C=1
1870	 * or vice versa for this memory range. Lets make sure caches are
1871	 * flushed to ensure that guest data gets written into memory with
1872	 * correct C-bit.
1873	 */
1874	sev_clflush_pages(region->pages, region->npages);
1875
1876	sev_unpin_memory(kvm, region->pages, region->npages);
1877	list_del(&region->list);
1878	kfree(region);
1879}
1880
1881static struct kvm *svm_vm_alloc(void)
1882{
1883	struct kvm_svm *kvm_svm = __vmalloc(sizeof(struct kvm_svm),
1884					    GFP_KERNEL_ACCOUNT | __GFP_ZERO,
1885					    PAGE_KERNEL);
1886	return &kvm_svm->kvm;
1887}
1888
1889static void svm_vm_free(struct kvm *kvm)
1890{
1891	vfree(to_kvm_svm(kvm));
1892}
1893
1894static void sev_vm_destroy(struct kvm *kvm)
1895{
1896	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1897	struct list_head *head = &sev->regions_list;
1898	struct list_head *pos, *q;
1899
1900	if (!sev_guest(kvm))
1901		return;
1902
1903	mutex_lock(&kvm->lock);
1904
1905	/*
1906	 * if userspace was terminated before unregistering the memory regions
1907	 * then lets unpin all the registered memory.
1908	 */
1909	if (!list_empty(head)) {
1910		list_for_each_safe(pos, q, head) {
1911			__unregister_enc_region_locked(kvm,
1912				list_entry(pos, struct enc_region, list));
1913		}
1914	}
1915
1916	mutex_unlock(&kvm->lock);
1917
1918	sev_unbind_asid(kvm, sev->handle);
1919	sev_asid_free(kvm);
1920}
1921
1922static void avic_vm_destroy(struct kvm *kvm)
1923{
1924	unsigned long flags;
1925	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1926
1927	if (!avic)
1928		return;
1929
1930	if (kvm_svm->avic_logical_id_table_page)
1931		__free_page(kvm_svm->avic_logical_id_table_page);
1932	if (kvm_svm->avic_physical_id_table_page)
1933		__free_page(kvm_svm->avic_physical_id_table_page);
1934
1935	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1936	hash_del(&kvm_svm->hnode);
1937	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1938}
1939
1940static void svm_vm_destroy(struct kvm *kvm)
1941{
1942	avic_vm_destroy(kvm);
1943	sev_vm_destroy(kvm);
1944}
1945
1946static int avic_vm_init(struct kvm *kvm)
1947{
1948	unsigned long flags;
1949	int err = -ENOMEM;
1950	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1951	struct kvm_svm *k2;
1952	struct page *p_page;
1953	struct page *l_page;
1954	u32 vm_id;
1955
1956	if (!avic)
1957		return 0;
1958
1959	/* Allocating physical APIC ID table (4KB) */
1960	p_page = alloc_page(GFP_KERNEL_ACCOUNT);
1961	if (!p_page)
1962		goto free_avic;
1963
1964	kvm_svm->avic_physical_id_table_page = p_page;
1965	clear_page(page_address(p_page));
1966
1967	/* Allocating logical APIC ID table (4KB) */
1968	l_page = alloc_page(GFP_KERNEL_ACCOUNT);
1969	if (!l_page)
1970		goto free_avic;
1971
1972	kvm_svm->avic_logical_id_table_page = l_page;
1973	clear_page(page_address(l_page));
1974
1975	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1976 again:
1977	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1978	if (vm_id == 0) { /* id is 1-based, zero is not okay */
1979		next_vm_id_wrapped = 1;
1980		goto again;
1981	}
1982	/* Is it still in use? Only possible if wrapped at least once */
1983	if (next_vm_id_wrapped) {
1984		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1985			if (k2->avic_vm_id == vm_id)
1986				goto again;
1987		}
1988	}
1989	kvm_svm->avic_vm_id = vm_id;
1990	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1991	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1992
1993	return 0;
1994
1995free_avic:
1996	avic_vm_destroy(kvm);
1997	return err;
1998}
1999
2000static inline int
2001avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
2002{
2003	int ret = 0;
2004	unsigned long flags;
2005	struct amd_svm_iommu_ir *ir;
2006	struct vcpu_svm *svm = to_svm(vcpu);
2007
2008	if (!kvm_arch_has_assigned_device(vcpu->kvm))
2009		return 0;
2010
2011	/*
2012	 * Here, we go through the per-vcpu ir_list to update all existing
2013	 * interrupt remapping table entry targeting this vcpu.
2014	 */
2015	spin_lock_irqsave(&svm->ir_list_lock, flags);
2016
2017	if (list_empty(&svm->ir_list))
2018		goto out;
2019
2020	list_for_each_entry(ir, &svm->ir_list, node) {
2021		ret = amd_iommu_update_ga(cpu, r, ir->data);
2022		if (ret)
2023			break;
2024	}
2025out:
2026	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2027	return ret;
2028}
2029
2030static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2031{
2032	u64 entry;
2033	/* ID = 0xff (broadcast), ID > 0xff (reserved) */
2034	int h_physical_id = kvm_cpu_get_apicid(cpu);
2035	struct vcpu_svm *svm = to_svm(vcpu);
2036
2037	if (!kvm_vcpu_apicv_active(vcpu))
2038		return;
2039
2040	/*
2041	 * Since the host physical APIC id is 8 bits,
2042	 * we can support host APIC ID upto 255.
2043	 */
2044	if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
2045		return;
2046
2047	entry = READ_ONCE(*(svm->avic_physical_id_cache));
2048	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2049
2050	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2051	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2052
2053	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2054	if (svm->avic_is_running)
2055		entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2056
2057	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2058	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2059					svm->avic_is_running);
2060}
2061
2062static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2063{
2064	u64 entry;
2065	struct vcpu_svm *svm = to_svm(vcpu);
2066
2067	if (!kvm_vcpu_apicv_active(vcpu))
2068		return;
2069
2070	entry = READ_ONCE(*(svm->avic_physical_id_cache));
2071	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2072		avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2073
2074	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2075	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2076}
2077
2078/**
2079 * This function is called during VCPU halt/unhalt.
2080 */
2081static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2082{
2083	struct vcpu_svm *svm = to_svm(vcpu);
2084
2085	svm->avic_is_running = is_run;
2086	if (is_run)
2087		avic_vcpu_load(vcpu, vcpu->cpu);
2088	else
2089		avic_vcpu_put(vcpu);
2090}
2091
2092static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2093{
2094	struct vcpu_svm *svm = to_svm(vcpu);
2095	u32 dummy;
2096	u32 eax = 1;
2097
2098	vcpu->arch.microcode_version = 0x01000065;
2099	svm->spec_ctrl = 0;
2100	svm->virt_spec_ctrl = 0;
2101
2102	if (!init_event) {
2103		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2104					   MSR_IA32_APICBASE_ENABLE;
2105		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2106			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2107	}
2108	init_vmcb(svm);
2109
2110	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2111	kvm_rdx_write(vcpu, eax);
2112
2113	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2114		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2115}
2116
2117static int avic_init_vcpu(struct vcpu_svm *svm)
2118{
2119	int ret;
2120
2121	if (!kvm_vcpu_apicv_active(&svm->vcpu))
2122		return 0;
2123
2124	ret = avic_init_backing_page(&svm->vcpu);
2125	if (ret)
2126		return ret;
2127
2128	INIT_LIST_HEAD(&svm->ir_list);
2129	spin_lock_init(&svm->ir_list_lock);
2130	svm->dfr_reg = APIC_DFR_FLAT;
2131
2132	return ret;
2133}
2134
2135static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2136{
2137	struct vcpu_svm *svm;
2138	struct page *page;
2139	struct page *msrpm_pages;
2140	struct page *hsave_page;
2141	struct page *nested_msrpm_pages;
2142	int err;
2143
2144	BUILD_BUG_ON_MSG(offsetof(struct vcpu_svm, vcpu) != 0,
2145		"struct kvm_vcpu must be at offset 0 for arch usercopy region");
2146
2147	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
2148	if (!svm) {
2149		err = -ENOMEM;
2150		goto out;
2151	}
2152
2153	svm->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
2154						     GFP_KERNEL_ACCOUNT);
2155	if (!svm->vcpu.arch.user_fpu) {
2156		printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
2157		err = -ENOMEM;
2158		goto free_partial_svm;
2159	}
2160
2161	svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
2162						     GFP_KERNEL_ACCOUNT);
2163	if (!svm->vcpu.arch.guest_fpu) {
2164		printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
2165		err = -ENOMEM;
2166		goto free_user_fpu;
2167	}
2168
2169	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2170	if (err)
2171		goto free_svm;
2172
2173	err = -ENOMEM;
2174	page = alloc_page(GFP_KERNEL_ACCOUNT);
2175	if (!page)
2176		goto uninit;
2177
2178	msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2179	if (!msrpm_pages)
2180		goto free_page1;
2181
2182	nested_msrpm_pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
2183	if (!nested_msrpm_pages)
2184		goto free_page2;
2185
2186	hsave_page = alloc_page(GFP_KERNEL_ACCOUNT);
2187	if (!hsave_page)
2188		goto free_page3;
2189
2190	err = avic_init_vcpu(svm);
2191	if (err)
2192		goto free_page4;
2193
2194	/* We initialize this flag to true to make sure that the is_running
2195	 * bit would be set the first time the vcpu is loaded.
2196	 */
2197	svm->avic_is_running = true;
2198
2199	svm->nested.hsave = page_address(hsave_page);
2200
2201	svm->msrpm = page_address(msrpm_pages);
2202	svm_vcpu_init_msrpm(svm->msrpm);
2203
2204	svm->nested.msrpm = page_address(nested_msrpm_pages);
2205	svm_vcpu_init_msrpm(svm->nested.msrpm);
2206
2207	svm->vmcb = page_address(page);
2208	clear_page(svm->vmcb);
2209	svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2210	svm->asid_generation = 0;
2211	init_vmcb(svm);
2212
2213	svm_init_osvw(&svm->vcpu);
2214
2215	return &svm->vcpu;
2216
2217free_page4:
2218	__free_page(hsave_page);
2219free_page3:
2220	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2221free_page2:
2222	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2223free_page1:
2224	__free_page(page);
2225uninit:
2226	kvm_vcpu_uninit(&svm->vcpu);
2227free_svm:
2228	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2229free_user_fpu:
2230	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2231free_partial_svm:
2232	kmem_cache_free(kvm_vcpu_cache, svm);
2233out:
2234	return ERR_PTR(err);
2235}
2236
2237static void svm_clear_current_vmcb(struct vmcb *vmcb)
2238{
2239	int i;
2240
2241	for_each_online_cpu(i)
2242		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
2243}
2244
2245static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2246{
2247	struct vcpu_svm *svm = to_svm(vcpu);
2248
2249	/*
2250	 * The vmcb page can be recycled, causing a false negative in
2251	 * svm_vcpu_load(). So, ensure that no logical CPU has this
2252	 * vmcb page recorded as its current vmcb.
2253	 */
2254	svm_clear_current_vmcb(svm->vmcb);
2255
2256	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2257	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2258	__free_page(virt_to_page(svm->nested.hsave));
2259	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2260	kvm_vcpu_uninit(vcpu);
2261	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.user_fpu);
2262	kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
2263	kmem_cache_free(kvm_vcpu_cache, svm);
2264}
2265
2266static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2267{
2268	struct vcpu_svm *svm = to_svm(vcpu);
2269	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2270	int i;
2271
2272	if (unlikely(cpu != vcpu->cpu)) {
2273		svm->asid_generation = 0;
2274		mark_all_dirty(svm->vmcb);
2275	}
2276
2277#ifdef CONFIG_X86_64
2278	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2279#endif
2280	savesegment(fs, svm->host.fs);
2281	savesegment(gs, svm->host.gs);
2282	svm->host.ldt = kvm_read_ldt();
2283
2284	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2285		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2286
2287	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2288		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2289		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2290			__this_cpu_write(current_tsc_ratio, tsc_ratio);
2291			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2292		}
2293	}
2294	/* This assumes that the kernel never uses MSR_TSC_AUX */
2295	if (static_cpu_has(X86_FEATURE_RDTSCP))
2296		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2297
2298	if (sd->current_vmcb != svm->vmcb) {
2299		sd->current_vmcb = svm->vmcb;
2300		indirect_branch_prediction_barrier();
2301	}
2302	avic_vcpu_load(vcpu, cpu);
2303}
2304
2305static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2306{
2307	struct vcpu_svm *svm = to_svm(vcpu);
2308	int i;
2309
2310	avic_vcpu_put(vcpu);
2311
2312	++vcpu->stat.host_state_reload;
2313	kvm_load_ldt(svm->host.ldt);
2314#ifdef CONFIG_X86_64
2315	loadsegment(fs, svm->host.fs);
2316	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2317	load_gs_index(svm->host.gs);
2318#else
2319#ifdef CONFIG_X86_32_LAZY_GS
2320	loadsegment(gs, svm->host.gs);
2321#endif
2322#endif
2323	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2324		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2325}
2326
2327static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2328{
2329	avic_set_running(vcpu, false);
2330}
2331
2332static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2333{
2334	avic_set_running(vcpu, true);
2335}
2336
2337static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2338{
2339	struct vcpu_svm *svm = to_svm(vcpu);
2340	unsigned long rflags = svm->vmcb->save.rflags;
2341
2342	if (svm->nmi_singlestep) {
2343		/* Hide our flags if they were not set by the guest */
2344		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2345			rflags &= ~X86_EFLAGS_TF;
2346		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2347			rflags &= ~X86_EFLAGS_RF;
2348	}
2349	return rflags;
2350}
2351
2352static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2353{
2354	if (to_svm(vcpu)->nmi_singlestep)
2355		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2356
2357       /*
2358        * Any change of EFLAGS.VM is accompanied by a reload of SS
2359        * (caused by either a task switch or an inter-privilege IRET),
2360        * so we do not need to update the CPL here.
2361        */
2362	to_svm(vcpu)->vmcb->save.rflags = rflags;
2363}
2364
2365static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2366{
2367	switch (reg) {
2368	case VCPU_EXREG_PDPTR:
2369		BUG_ON(!npt_enabled);
2370		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2371		break;
2372	default:
2373		BUG();
2374	}
2375}
2376
2377static void svm_set_vintr(struct vcpu_svm *svm)
2378{
2379	set_intercept(svm, INTERCEPT_VINTR);
2380}
2381
2382static void svm_clear_vintr(struct vcpu_svm *svm)
2383{
2384	clr_intercept(svm, INTERCEPT_VINTR);
2385}
2386
2387static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2388{
2389	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2390
2391	switch (seg) {
2392	case VCPU_SREG_CS: return &save->cs;
2393	case VCPU_SREG_DS: return &save->ds;
2394	case VCPU_SREG_ES: return &save->es;
2395	case VCPU_SREG_FS: return &save->fs;
2396	case VCPU_SREG_GS: return &save->gs;
2397	case VCPU_SREG_SS: return &save->ss;
2398	case VCPU_SREG_TR: return &save->tr;
2399	case VCPU_SREG_LDTR: return &save->ldtr;
2400	}
2401	BUG();
2402	return NULL;
2403}
2404
2405static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2406{
2407	struct vmcb_seg *s = svm_seg(vcpu, seg);
2408
2409	return s->base;
2410}
2411
2412static void svm_get_segment(struct kvm_vcpu *vcpu,
2413			    struct kvm_segment *var, int seg)
2414{
2415	struct vmcb_seg *s = svm_seg(vcpu, seg);
2416
2417	var->base = s->base;
2418	var->limit = s->limit;
2419	var->selector = s->selector;
2420	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2421	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2422	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2423	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2424	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2425	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2426	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2427
2428	/*
2429	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2430	 * However, the SVM spec states that the G bit is not observed by the
2431	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2432	 * So let's synthesize a legal G bit for all segments, this helps
2433	 * running KVM nested. It also helps cross-vendor migration, because
2434	 * Intel's vmentry has a check on the 'G' bit.
2435	 */
2436	var->g = s->limit > 0xfffff;
2437
2438	/*
2439	 * AMD's VMCB does not have an explicit unusable field, so emulate it
2440	 * for cross vendor migration purposes by "not present"
2441	 */
2442	var->unusable = !var->present;
2443
2444	switch (seg) {
2445	case VCPU_SREG_TR:
2446		/*
2447		 * Work around a bug where the busy flag in the tr selector
2448		 * isn't exposed
2449		 */
2450		var->type |= 0x2;
2451		break;
2452	case VCPU_SREG_DS:
2453	case VCPU_SREG_ES:
2454	case VCPU_SREG_FS:
2455	case VCPU_SREG_GS:
2456		/*
2457		 * The accessed bit must always be set in the segment
2458		 * descriptor cache, although it can be cleared in the
2459		 * descriptor, the cached bit always remains at 1. Since
2460		 * Intel has a check on this, set it here to support
2461		 * cross-vendor migration.
2462		 */
2463		if (!var->unusable)
2464			var->type |= 0x1;
2465		break;
2466	case VCPU_SREG_SS:
2467		/*
2468		 * On AMD CPUs sometimes the DB bit in the segment
2469		 * descriptor is left as 1, although the whole segment has
2470		 * been made unusable. Clear it here to pass an Intel VMX
2471		 * entry check when cross vendor migrating.
2472		 */
2473		if (var->unusable)
2474			var->db = 0;
2475		/* This is symmetric with svm_set_segment() */
2476		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2477		break;
2478	}
2479}
2480
2481static int svm_get_cpl(struct kvm_vcpu *vcpu)
2482{
2483	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2484
2485	return save->cpl;
2486}
2487
2488static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2489{
2490	struct vcpu_svm *svm = to_svm(vcpu);
2491
2492	dt->size = svm->vmcb->save.idtr.limit;
2493	dt->address = svm->vmcb->save.idtr.base;
2494}
2495
2496static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2497{
2498	struct vcpu_svm *svm = to_svm(vcpu);
2499
2500	svm->vmcb->save.idtr.limit = dt->size;
2501	svm->vmcb->save.idtr.base = dt->address ;
2502	mark_dirty(svm->vmcb, VMCB_DT);
2503}
2504
2505static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2506{
2507	struct vcpu_svm *svm = to_svm(vcpu);
2508
2509	dt->size = svm->vmcb->save.gdtr.limit;
2510	dt->address = svm->vmcb->save.gdtr.base;
2511}
2512
2513static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2514{
2515	struct vcpu_svm *svm = to_svm(vcpu);
2516
2517	svm->vmcb->save.gdtr.limit = dt->size;
2518	svm->vmcb->save.gdtr.base = dt->address ;
2519	mark_dirty(svm->vmcb, VMCB_DT);
2520}
2521
2522static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2523{
2524}
2525
2526static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2527{
2528}
2529
2530static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2531{
2532}
2533
2534static void update_cr0_intercept(struct vcpu_svm *svm)
2535{
2536	ulong gcr0 = svm->vcpu.arch.cr0;
2537	u64 *hcr0 = &svm->vmcb->save.cr0;
2538
2539	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2540		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
2541
2542	mark_dirty(svm->vmcb, VMCB_CR);
2543
2544	if (gcr0 == *hcr0) {
2545		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2546		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2547	} else {
2548		set_cr_intercept(svm, INTERCEPT_CR0_READ);
2549		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2550	}
2551}
2552
2553static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2554{
2555	struct vcpu_svm *svm = to_svm(vcpu);
2556
2557#ifdef CONFIG_X86_64
2558	if (vcpu->arch.efer & EFER_LME) {
2559		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2560			vcpu->arch.efer |= EFER_LMA;
2561			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2562		}
2563
2564		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2565			vcpu->arch.efer &= ~EFER_LMA;
2566			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2567		}
2568	}
2569#endif
2570	vcpu->arch.cr0 = cr0;
2571
2572	if (!npt_enabled)
2573		cr0 |= X86_CR0_PG | X86_CR0_WP;
2574
2575	/*
2576	 * re-enable caching here because the QEMU bios
2577	 * does not do it - this results in some delay at
2578	 * reboot
2579	 */
2580	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2581		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2582	svm->vmcb->save.cr0 = cr0;
2583	mark_dirty(svm->vmcb, VMCB_CR);
2584	update_cr0_intercept(svm);
2585}
2586
2587static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2588{
2589	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2590	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2591
2592	if (cr4 & X86_CR4_VMXE)
2593		return 1;
2594
2595	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2596		svm_flush_tlb(vcpu, true);
2597
2598	vcpu->arch.cr4 = cr4;
2599	if (!npt_enabled)
2600		cr4 |= X86_CR4_PAE;
2601	cr4 |= host_cr4_mce;
2602	to_svm(vcpu)->vmcb->save.cr4 = cr4;
2603	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2604	return 0;
2605}
2606
2607static void svm_set_segment(struct kvm_vcpu *vcpu,
2608			    struct kvm_segment *var, int seg)
2609{
2610	struct vcpu_svm *svm = to_svm(vcpu);
2611	struct vmcb_seg *s = svm_seg(vcpu, seg);
2612
2613	s->base = var->base;
2614	s->limit = var->limit;
2615	s->selector = var->selector;
2616	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2617	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2618	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2619	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2620	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2621	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2622	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2623	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2624
2625	/*
2626	 * This is always accurate, except if SYSRET returned to a segment
2627	 * with SS.DPL != 3.  Intel does not have this quirk, and always
2628	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2629	 * would entail passing the CPL to userspace and back.
2630	 */
2631	if (seg == VCPU_SREG_SS)
2632		/* This is symmetric with svm_get_segment() */
2633		svm->vmcb->save.cpl = (var->dpl & 3);
2634
2635	mark_dirty(svm->vmcb, VMCB_SEG);
2636}
2637
2638static void update_bp_intercept(struct kvm_vcpu *vcpu)
2639{
2640	struct vcpu_svm *svm = to_svm(vcpu);
2641
2642	clr_exception_intercept(svm, BP_VECTOR);
2643
2644	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2645		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2646			set_exception_intercept(svm, BP_VECTOR);
2647	} else
2648		vcpu->guest_debug = 0;
2649}
2650
2651static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2652{
2653	if (sd->next_asid > sd->max_asid) {
2654		++sd->asid_generation;
2655		sd->next_asid = sd->min_asid;
2656		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2657	}
2658
2659	svm->asid_generation = sd->asid_generation;
2660	svm->vmcb->control.asid = sd->next_asid++;
2661
2662	mark_dirty(svm->vmcb, VMCB_ASID);
2663}
2664
2665static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2666{
2667	return to_svm(vcpu)->vmcb->save.dr6;
2668}
2669
2670static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2671{
2672	struct vcpu_svm *svm = to_svm(vcpu);
2673
2674	svm->vmcb->save.dr6 = value;
2675	mark_dirty(svm->vmcb, VMCB_DR);
2676}
2677
2678static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2679{
2680	struct vcpu_svm *svm = to_svm(vcpu);
2681
2682	get_debugreg(vcpu->arch.db[0], 0);
2683	get_debugreg(vcpu->arch.db[1], 1);
2684	get_debugreg(vcpu->arch.db[2], 2);
2685	get_debugreg(vcpu->arch.db[3], 3);
2686	vcpu->arch.dr6 = svm_get_dr6(vcpu);
2687	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2688
2689	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2690	set_dr_intercepts(svm);
2691}
2692
2693static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2694{
2695	struct vcpu_svm *svm = to_svm(vcpu);
2696
2697	svm->vmcb->save.dr7 = value;
2698	mark_dirty(svm->vmcb, VMCB_DR);
2699}
2700
2701static int pf_interception(struct vcpu_svm *svm)
2702{
2703	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2704	u64 error_code = svm->vmcb->control.exit_info_1;
2705
2706	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2707			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2708			svm->vmcb->control.insn_bytes : NULL,
2709			svm->vmcb->control.insn_len);
2710}
2711
2712static int npf_interception(struct vcpu_svm *svm)
2713{
2714	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2715	u64 error_code = svm->vmcb->control.exit_info_1;
2716
2717	trace_kvm_page_fault(fault_address, error_code);
2718	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2719			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2720			svm->vmcb->control.insn_bytes : NULL,
2721			svm->vmcb->control.insn_len);
2722}
2723
2724static int db_interception(struct vcpu_svm *svm)
2725{
2726	struct kvm_run *kvm_run = svm->vcpu.run;
2727	struct kvm_vcpu *vcpu = &svm->vcpu;
2728
2729	if (!(svm->vcpu.guest_debug &
2730	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2731		!svm->nmi_singlestep) {
2732		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2733		return 1;
2734	}
2735
2736	if (svm->nmi_singlestep) {
2737		disable_nmi_singlestep(svm);
2738		/* Make sure we check for pending NMIs upon entry */
2739		kvm_make_request(KVM_REQ_EVENT, vcpu);
2740	}
2741
2742	if (svm->vcpu.guest_debug &
2743	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2744		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2745		kvm_run->debug.arch.pc =
2746			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2747		kvm_run->debug.arch.exception = DB_VECTOR;
2748		return 0;
2749	}
2750
2751	return 1;
2752}
2753
2754static int bp_interception(struct vcpu_svm *svm)
2755{
2756	struct kvm_run *kvm_run = svm->vcpu.run;
2757
2758	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2759	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2760	kvm_run->debug.arch.exception = BP_VECTOR;
2761	return 0;
2762}
2763
2764static int ud_interception(struct vcpu_svm *svm)
2765{
2766	return handle_ud(&svm->vcpu);
2767}
2768
2769static int ac_interception(struct vcpu_svm *svm)
2770{
2771	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2772	return 1;
2773}
2774
2775static int gp_interception(struct vcpu_svm *svm)
2776{
2777	struct kvm_vcpu *vcpu = &svm->vcpu;
2778	u32 error_code = svm->vmcb->control.exit_info_1;
2779
2780	WARN_ON_ONCE(!enable_vmware_backdoor);
2781
2782	/*
2783	 * VMware backdoor emulation on #GP interception only handles IN{S},
2784	 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
2785	 */
2786	if (error_code) {
2787		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2788		return 1;
2789	}
2790	return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
2791}
2792
2793static bool is_erratum_383(void)
2794{
2795	int err, i;
2796	u64 value;
2797
2798	if (!erratum_383_found)
2799		return false;
2800
2801	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2802	if (err)
2803		return false;
2804
2805	/* Bit 62 may or may not be set for this mce */
2806	value &= ~(1ULL << 62);
2807
2808	if (value != 0xb600000000010015ULL)
2809		return false;
2810
2811	/* Clear MCi_STATUS registers */
2812	for (i = 0; i < 6; ++i)
2813		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2814
2815	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2816	if (!err) {
2817		u32 low, high;
2818
2819		value &= ~(1ULL << 2);
2820		low    = lower_32_bits(value);
2821		high   = upper_32_bits(value);
2822
2823		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2824	}
2825
2826	/* Flush tlb to evict multi-match entries */
2827	__flush_tlb_all();
2828
2829	return true;
2830}
2831
2832static void svm_handle_mce(struct vcpu_svm *svm)
2833{
2834	if (is_erratum_383()) {
2835		/*
2836		 * Erratum 383 triggered. Guest state is corrupt so kill the
2837		 * guest.
2838		 */
2839		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2840
2841		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2842
2843		return;
2844	}
2845
2846	/*
2847	 * On an #MC intercept the MCE handler is not called automatically in
2848	 * the host. So do it by hand here.
2849	 */
2850	asm volatile (
2851		"int $0x12\n");
2852	/* not sure if we ever come back to this point */
2853
2854	return;
2855}
2856
2857static int mc_interception(struct vcpu_svm *svm)
2858{
2859	return 1;
2860}
2861
2862static int shutdown_interception(struct vcpu_svm *svm)
2863{
2864	struct kvm_run *kvm_run = svm->vcpu.run;
2865
2866	/*
2867	 * VMCB is undefined after a SHUTDOWN intercept
2868	 * so reinitialize it.
2869	 */
2870	clear_page(svm->vmcb);
2871	init_vmcb(svm);
2872
2873	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2874	return 0;
2875}
2876
2877static int io_interception(struct vcpu_svm *svm)
2878{
2879	struct kvm_vcpu *vcpu = &svm->vcpu;
2880	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2881	int size, in, string;
2882	unsigned port;
2883
2884	++svm->vcpu.stat.io_exits;
2885	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2886	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2887	if (string)
2888		return kvm_emulate_instruction(vcpu, 0);
2889
2890	port = io_info >> 16;
2891	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2892	svm->next_rip = svm->vmcb->control.exit_info_2;
2893
2894	return kvm_fast_pio(&svm->vcpu, size, port, in);
2895}
2896
2897static int nmi_interception(struct vcpu_svm *svm)
2898{
2899	return 1;
2900}
2901
2902static int intr_interception(struct vcpu_svm *svm)
2903{
2904	++svm->vcpu.stat.irq_exits;
2905	return 1;
2906}
2907
2908static int nop_on_interception(struct vcpu_svm *svm)
2909{
2910	return 1;
2911}
2912
2913static int halt_interception(struct vcpu_svm *svm)
2914{
2915	return kvm_emulate_halt(&svm->vcpu);
2916}
2917
2918static int vmmcall_interception(struct vcpu_svm *svm)
2919{
2920	return kvm_emulate_hypercall(&svm->vcpu);
2921}
2922
2923static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2924{
2925	struct vcpu_svm *svm = to_svm(vcpu);
2926
2927	return svm->nested.nested_cr3;
2928}
2929
2930static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2931{
2932	struct vcpu_svm *svm = to_svm(vcpu);
2933	u64 cr3 = svm->nested.nested_cr3;
2934	u64 pdpte;
2935	int ret;
2936
2937	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2938				       offset_in_page(cr3) + index * 8, 8);
2939	if (ret)
2940		return 0;
2941	return pdpte;
2942}
2943
2944static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2945				   unsigned long root)
2946{
2947	struct vcpu_svm *svm = to_svm(vcpu);
2948
2949	svm->vmcb->control.nested_cr3 = __sme_set(root);
2950	mark_dirty(svm->vmcb, VMCB_NPT);
2951}
2952
2953static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2954				       struct x86_exception *fault)
2955{
2956	struct vcpu_svm *svm = to_svm(vcpu);
2957
2958	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2959		/*
2960		 * TODO: track the cause of the nested page fault, and
2961		 * correctly fill in the high bits of exit_info_1.
2962		 */
2963		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2964		svm->vmcb->control.exit_code_hi = 0;
2965		svm->vmcb->control.exit_info_1 = (1ULL << 32);
2966		svm->vmcb->control.exit_info_2 = fault->address;
2967	}
2968
2969	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2970	svm->vmcb->control.exit_info_1 |= fault->error_code;
2971
2972	/*
2973	 * The present bit is always zero for page structure faults on real
2974	 * hardware.
2975	 */
2976	if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2977		svm->vmcb->control.exit_info_1 &= ~1;
2978
2979	nested_svm_vmexit(svm);
2980}
2981
2982static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2983{
2984	WARN_ON(mmu_is_nested(vcpu));
2985
2986	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
2987	kvm_init_shadow_mmu(vcpu);
2988	vcpu->arch.mmu->set_cr3           = nested_svm_set_tdp_cr3;
2989	vcpu->arch.mmu->get_cr3           = nested_svm_get_tdp_cr3;
2990	vcpu->arch.mmu->get_pdptr         = nested_svm_get_tdp_pdptr;
2991	vcpu->arch.mmu->inject_page_fault = nested_svm_inject_npf_exit;
2992	vcpu->arch.mmu->shadow_root_level = get_npt_level(vcpu);
2993	reset_shadow_zero_bits_mask(vcpu, vcpu->arch.mmu);
2994	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2995}
2996
2997static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2998{
2999	vcpu->arch.mmu = &vcpu->arch.root_mmu;
3000	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
3001}
3002
3003static int nested_svm_check_permissions(struct vcpu_svm *svm)
3004{
3005	if (!(svm->vcpu.arch.efer & EFER_SVME) ||
3006	    !is_paging(&svm->vcpu)) {
3007		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3008		return 1;
3009	}
3010
3011	if (svm->vmcb->save.cpl) {
3012		kvm_inject_gp(&svm->vcpu, 0);
3013		return 1;
3014	}
3015
3016	return 0;
3017}
3018
3019static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
3020				      bool has_error_code, u32 error_code)
3021{
3022	int vmexit;
3023
3024	if (!is_guest_mode(&svm->vcpu))
3025		return 0;
3026
3027	vmexit = nested_svm_intercept(svm);
3028	if (vmexit != NESTED_EXIT_DONE)
3029		return 0;
3030
3031	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
3032	svm->vmcb->control.exit_code_hi = 0;
3033	svm->vmcb->control.exit_info_1 = error_code;
3034
3035	/*
3036	 * EXITINFO2 is undefined for all exception intercepts other
3037	 * than #PF.
3038	 */
3039	if (svm->vcpu.arch.exception.nested_apf)
3040		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
3041	else if (svm->vcpu.arch.exception.has_payload)
3042		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.exception.payload;
3043	else
3044		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
3045
3046	svm->nested.exit_required = true;
3047	return vmexit;
3048}
3049
3050/* This function returns true if it is save to enable the irq window */
3051static inline bool nested_svm_intr(struct vcpu_svm *svm)
3052{
3053	if (!is_guest_mode(&svm->vcpu))
3054		return true;
3055
3056	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3057		return true;
3058
3059	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
3060		return false;
3061
3062	/*
3063	 * if vmexit was already requested (by intercepted exception
3064	 * for instance) do not overwrite it with "external interrupt"
3065	 * vmexit.
3066	 */
3067	if (svm->nested.exit_required)
3068		return false;
3069
3070	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3071	svm->vmcb->control.exit_info_1 = 0;
3072	svm->vmcb->control.exit_info_2 = 0;
3073
3074	if (svm->nested.intercept & 1ULL) {
3075		/*
3076		 * The #vmexit can't be emulated here directly because this
3077		 * code path runs with irqs and preemption disabled. A
3078		 * #vmexit emulation might sleep. Only signal request for
3079		 * the #vmexit here.
3080		 */
3081		svm->nested.exit_required = true;
3082		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3083		return false;
3084	}
3085
3086	return true;
3087}
3088
3089/* This function returns true if it is save to enable the nmi window */
3090static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3091{
3092	if (!is_guest_mode(&svm->vcpu))
3093		return true;
3094
3095	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3096		return true;
3097
3098	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3099	svm->nested.exit_required = true;
3100
3101	return false;
3102}
3103
3104static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3105{
3106	unsigned port, size, iopm_len;
3107	u16 val, mask;
3108	u8 start_bit;
3109	u64 gpa;
3110
3111	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3112		return NESTED_EXIT_HOST;
3113
3114	port = svm->vmcb->control.exit_info_1 >> 16;
3115	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3116		SVM_IOIO_SIZE_SHIFT;
3117	gpa  = svm->nested.vmcb_iopm + (port / 8);
3118	start_bit = port % 8;
3119	iopm_len = (start_bit + size > 8) ? 2 : 1;
3120	mask = (0xf >> (4 - size)) << start_bit;
3121	val = 0;
3122
3123	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3124		return NESTED_EXIT_DONE;
3125
3126	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3127}
3128
3129static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3130{
3131	u32 offset, msr, value;
3132	int write, mask;
3133
3134	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3135		return NESTED_EXIT_HOST;
3136
3137	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3138	offset = svm_msrpm_offset(msr);
3139	write  = svm->vmcb->control.exit_info_1 & 1;
3140	mask   = 1 << ((2 * (msr & 0xf)) + write);
3141
3142	if (offset == MSR_INVALID)
3143		return NESTED_EXIT_DONE;
3144
3145	/* Offset is in 32 bit units but need in 8 bit units */
3146	offset *= 4;
3147
3148	if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3149		return NESTED_EXIT_DONE;
3150
3151	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3152}
3153
3154/* DB exceptions for our internal use must not cause vmexit */
3155static int nested_svm_intercept_db(struct vcpu_svm *svm)
3156{
3157	unsigned long dr6;
3158
3159	/* if we're not singlestepping, it's not ours */
3160	if (!svm->nmi_singlestep)
3161		return NESTED_EXIT_DONE;
3162
3163	/* if it's not a singlestep exception, it's not ours */
3164	if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3165		return NESTED_EXIT_DONE;
3166	if (!(dr6 & DR6_BS))
3167		return NESTED_EXIT_DONE;
3168
3169	/* if the guest is singlestepping, it should get the vmexit */
3170	if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3171		disable_nmi_singlestep(svm);
3172		return NESTED_EXIT_DONE;
3173	}
3174
3175	/* it's ours, the nested hypervisor must not see this one */
3176	return NESTED_EXIT_HOST;
3177}
3178
3179static int nested_svm_exit_special(struct vcpu_svm *svm)
3180{
3181	u32 exit_code = svm->vmcb->control.exit_code;
3182
3183	switch (exit_code) {
3184	case SVM_EXIT_INTR:
3185	case SVM_EXIT_NMI:
3186	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3187		return NESTED_EXIT_HOST;
3188	case SVM_EXIT_NPF:
3189		/* For now we are always handling NPFs when using them */
3190		if (npt_enabled)
3191			return NESTED_EXIT_HOST;
3192		break;
3193	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3194		/* When we're shadowing, trap PFs, but not async PF */
3195		if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3196			return NESTED_EXIT_HOST;
3197		break;
3198	default:
3199		break;
3200	}
3201
3202	return NESTED_EXIT_CONTINUE;
3203}
3204
3205/*
3206 * If this function returns true, this #vmexit was already handled
3207 */
3208static int nested_svm_intercept(struct vcpu_svm *svm)
3209{
3210	u32 exit_code = svm->vmcb->control.exit_code;
3211	int vmexit = NESTED_EXIT_HOST;
3212
3213	switch (exit_code) {
3214	case SVM_EXIT_MSR:
3215		vmexit = nested_svm_exit_handled_msr(svm);
3216		break;
3217	case SVM_EXIT_IOIO:
3218		vmexit = nested_svm_intercept_ioio(svm);
3219		break;
3220	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3221		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3222		if (svm->nested.intercept_cr & bit)
3223			vmexit = NESTED_EXIT_DONE;
3224		break;
3225	}
3226	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3227		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3228		if (svm->nested.intercept_dr & bit)
3229			vmexit = NESTED_EXIT_DONE;
3230		break;
3231	}
3232	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3233		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3234		if (svm->nested.intercept_exceptions & excp_bits) {
3235			if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3236				vmexit = nested_svm_intercept_db(svm);
3237			else
3238				vmexit = NESTED_EXIT_DONE;
3239		}
3240		/* async page fault always cause vmexit */
3241		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3242			 svm->vcpu.arch.exception.nested_apf != 0)
3243			vmexit = NESTED_EXIT_DONE;
3244		break;
3245	}
3246	case SVM_EXIT_ERR: {
3247		vmexit = NESTED_EXIT_DONE;
3248		break;
3249	}
3250	default: {
3251		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3252		if (svm->nested.intercept & exit_bits)
3253			vmexit = NESTED_EXIT_DONE;
3254	}
3255	}
3256
3257	return vmexit;
3258}
3259
3260static int nested_svm_exit_handled(struct vcpu_svm *svm)
3261{
3262	int vmexit;
3263
3264	vmexit = nested_svm_intercept(svm);
3265
3266	if (vmexit == NESTED_EXIT_DONE)
3267		nested_svm_vmexit(svm);
3268
3269	return vmexit;
3270}
3271
3272static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3273{
3274	struct vmcb_control_area *dst  = &dst_vmcb->control;
3275	struct vmcb_control_area *from = &from_vmcb->control;
3276
3277	dst->intercept_cr         = from->intercept_cr;
3278	dst->intercept_dr         = from->intercept_dr;
3279	dst->intercept_exceptions = from->intercept_exceptions;
3280	dst->intercept            = from->intercept;
3281	dst->iopm_base_pa         = from->iopm_base_pa;
3282	dst->msrpm_base_pa        = from->msrpm_base_pa;
3283	dst->tsc_offset           = from->tsc_offset;
3284	dst->asid                 = from->asid;
3285	dst->tlb_ctl              = from->tlb_ctl;
3286	dst->int_ctl              = from->int_ctl;
3287	dst->int_vector           = from->int_vector;
3288	dst->int_state            = from->int_state;
3289	dst->exit_code            = from->exit_code;
3290	dst->exit_code_hi         = from->exit_code_hi;
3291	dst->exit_info_1          = from->exit_info_1;
3292	dst->exit_info_2          = from->exit_info_2;
3293	dst->exit_int_info        = from->exit_int_info;
3294	dst->exit_int_info_err    = from->exit_int_info_err;
3295	dst->nested_ctl           = from->nested_ctl;
3296	dst->event_inj            = from->event_inj;
3297	dst->event_inj_err        = from->event_inj_err;
3298	dst->nested_cr3           = from->nested_cr3;
3299	dst->virt_ext              = from->virt_ext;
3300	dst->pause_filter_count   = from->pause_filter_count;
3301	dst->pause_filter_thresh  = from->pause_filter_thresh;
3302}
3303
3304static int nested_svm_vmexit(struct vcpu_svm *svm)
3305{
3306	int rc;
3307	struct vmcb *nested_vmcb;
3308	struct vmcb *hsave = svm->nested.hsave;
3309	struct vmcb *vmcb = svm->vmcb;
3310	struct kvm_host_map map;
3311
3312	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3313				       vmcb->control.exit_info_1,
3314				       vmcb->control.exit_info_2,
3315				       vmcb->control.exit_int_info,
3316				       vmcb->control.exit_int_info_err,
3317				       KVM_ISA_SVM);
3318
3319	rc = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->nested.vmcb), &map);
3320	if (rc) {
3321		if (rc == -EINVAL)
3322			kvm_inject_gp(&svm->vcpu, 0);
3323		return 1;
3324	}
3325
3326	nested_vmcb = map.hva;
3327
3328	/* Exit Guest-Mode */
3329	leave_guest_mode(&svm->vcpu);
3330	svm->nested.vmcb = 0;
3331
3332	/* Give the current vmcb to the guest */
3333	disable_gif(svm);
3334
3335	nested_vmcb->save.es     = vmcb->save.es;
3336	nested_vmcb->save.cs     = vmcb->save.cs;
3337	nested_vmcb->save.ss     = vmcb->save.ss;
3338	nested_vmcb->save.ds     = vmcb->save.ds;
3339	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3340	nested_vmcb->save.idtr   = vmcb->save.idtr;
3341	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3342	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3343	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3344	nested_vmcb->save.cr2    = vmcb->save.cr2;
3345	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3346	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3347	nested_vmcb->save.rip    = vmcb->save.rip;
3348	nested_vmcb->save.rsp    = vmcb->save.rsp;
3349	nested_vmcb->save.rax    = vmcb->save.rax;
3350	nested_vmcb->save.dr7    = vmcb->save.dr7;
3351	nested_vmcb->save.dr6    = vmcb->save.dr6;
3352	nested_vmcb->save.cpl    = vmcb->save.cpl;
3353
3354	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3355	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3356	nested_vmcb->control.int_state         = vmcb->control.int_state;
3357	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3358	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3359	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3360	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3361	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3362	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3363
3364	if (svm->nrips_enabled)
3365		nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3366
3367	/*
3368	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3369	 * to make sure that we do not lose injected events. So check event_inj
3370	 * here and copy it to exit_int_info if it is valid.
3371	 * Exit_int_info and event_inj can't be both valid because the case
3372	 * below only happens on a VMRUN instruction intercept which has
3373	 * no valid exit_int_info set.
3374	 */
3375	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3376		struct vmcb_control_area *nc = &nested_vmcb->control;
3377
3378		nc->exit_int_info     = vmcb->control.event_inj;
3379		nc->exit_int_info_err = vmcb->control.event_inj_err;
3380	}
3381
3382	nested_vmcb->control.tlb_ctl           = 0;
3383	nested_vmcb->control.event_inj         = 0;
3384	nested_vmcb->control.event_inj_err     = 0;
3385
3386	nested_vmcb->control.pause_filter_count =
3387		svm->vmcb->control.pause_filter_count;
3388	nested_vmcb->control.pause_filter_thresh =
3389		svm->vmcb->control.pause_filter_thresh;
3390
3391	/* We always set V_INTR_MASKING and remember the old value in hflags */
3392	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3393		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3394
3395	/* Restore the original control entries */
3396	copy_vmcb_control_area(vmcb, hsave);
3397
3398	svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3399	kvm_clear_exception_queue(&svm->vcpu);
3400	kvm_clear_interrupt_queue(&svm->vcpu);
3401
3402	svm->nested.nested_cr3 = 0;
3403
3404	/* Restore selected save entries */
3405	svm->vmcb->save.es = hsave->save.es;
3406	svm->vmcb->save.cs = hsave->save.cs;
3407	svm->vmcb->save.ss = hsave->save.ss;
3408	svm->vmcb->save.ds = hsave->save.ds;
3409	svm->vmcb->save.gdtr = hsave->save.gdtr;
3410	svm->vmcb->save.idtr = hsave->save.idtr;
3411	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3412	svm_set_efer(&svm->vcpu, hsave->save.efer);
3413	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3414	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3415	if (npt_enabled) {
3416		svm->vmcb->save.cr3 = hsave->save.cr3;
3417		svm->vcpu.arch.cr3 = hsave->save.cr3;
3418	} else {
3419		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3420	}
3421	kvm_rax_write(&svm->vcpu, hsave->save.rax);
3422	kvm_rsp_write(&svm->vcpu, hsave->save.rsp);
3423	kvm_rip_write(&svm->vcpu, hsave->save.rip);
3424	svm->vmcb->save.dr7 = 0;
3425	svm->vmcb->save.cpl = 0;
3426	svm->vmcb->control.exit_int_info = 0;
3427
3428	mark_all_dirty(svm->vmcb);
3429
3430	kvm_vcpu_unmap(&svm->vcpu, &map, true);
3431
3432	nested_svm_uninit_mmu_context(&svm->vcpu);
3433	kvm_mmu_reset_context(&svm->vcpu);
3434	kvm_mmu_load(&svm->vcpu);
3435
3436	/*
3437	 * Drop what we picked up for L2 via svm_complete_interrupts() so it
3438	 * doesn't end up in L1.
3439	 */
3440	svm->vcpu.arch.nmi_injected = false;
3441	kvm_clear_exception_queue(&svm->vcpu);
3442	kvm_clear_interrupt_queue(&svm->vcpu);
3443
3444	return 0;
3445}
3446
3447static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3448{
3449	/*
3450	 * This function merges the msr permission bitmaps of kvm and the
3451	 * nested vmcb. It is optimized in that it only merges the parts where
3452	 * the kvm msr permission bitmap may contain zero bits
3453	 */
3454	int i;
3455
3456	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3457		return true;
3458
3459	for (i = 0; i < MSRPM_OFFSETS; i++) {
3460		u32 value, p;
3461		u64 offset;
3462
3463		if (msrpm_offsets[i] == 0xffffffff)
3464			break;
3465
3466		p      = msrpm_offsets[i];
3467		offset = svm->nested.vmcb_msrpm + (p * 4);
3468
3469		if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3470			return false;
3471
3472		svm->nested.msrpm[p] = svm->msrpm[p] | value;
3473	}
3474
3475	svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3476
3477	return true;
3478}
3479
3480static bool nested_vmcb_checks(struct vmcb *vmcb)
3481{
3482	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3483		return false;
3484
3485	if (vmcb->control.asid == 0)
3486		return false;
3487
3488	if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3489	    !npt_enabled)
3490		return false;
3491
3492	return true;
3493}
3494
3495static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3496				 struct vmcb *nested_vmcb, struct kvm_host_map *map)
3497{
3498	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3499		svm->vcpu.arch.hflags |= HF_HIF_MASK;
3500	else
3501		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3502
3503	if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3504		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3505		nested_svm_init_mmu_context(&svm->vcpu);
3506	}
3507
3508	/* Load the nested guest state */
3509	svm->vmcb->save.es = nested_vmcb->save.es;
3510	svm->vmcb->save.cs = nested_vmcb->save.cs;
3511	svm->vmcb->save.ss = nested_vmcb->save.ss;
3512	svm->vmcb->save.ds = nested_vmcb->save.ds;
3513	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3514	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3515	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3516	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3517	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3518	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3519	if (npt_enabled) {
3520		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3521		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3522	} else
3523		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3524
3525	/* Guest paging mode is active - reset mmu */
3526	kvm_mmu_reset_context(&svm->vcpu);
3527
3528	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3529	kvm_rax_write(&svm->vcpu, nested_vmcb->save.rax);
3530	kvm_rsp_write(&svm->vcpu, nested_vmcb->save.rsp);
3531	kvm_rip_write(&svm->vcpu, nested_vmcb->save.rip);
3532
3533	/* In case we don't even reach vcpu_run, the fields are not updated */
3534	svm->vmcb->save.rax = nested_vmcb->save.rax;
3535	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3536	svm->vmcb->save.rip = nested_vmcb->save.rip;
3537	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3538	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3539	svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3540
3541	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3542	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3543
3544	/* cache intercepts */
3545	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3546	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3547	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3548	svm->nested.intercept            = nested_vmcb->control.intercept;
3549
3550	svm_flush_tlb(&svm->vcpu, true);
3551	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3552	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3553		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3554	else
3555		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3556
3557	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3558		/* We only want the cr8 intercept bits of the guest */
3559		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3560		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3561	}
3562
3563	/* We don't want to see VMMCALLs from a nested guest */
3564	clr_intercept(svm, INTERCEPT_VMMCALL);
3565
3566	svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3567	svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3568
3569	svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3570	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3571	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3572	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3573	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3574
3575	svm->vmcb->control.pause_filter_count =
3576		nested_vmcb->control.pause_filter_count;
3577	svm->vmcb->control.pause_filter_thresh =
3578		nested_vmcb->control.pause_filter_thresh;
3579
3580	kvm_vcpu_unmap(&svm->vcpu, map, true);
3581
3582	/* Enter Guest-Mode */
3583	enter_guest_mode(&svm->vcpu);
3584
3585	/*
3586	 * Merge guest and host intercepts - must be called  with vcpu in
3587	 * guest-mode to take affect here
3588	 */
3589	recalc_intercepts(svm);
3590
3591	svm->nested.vmcb = vmcb_gpa;
3592
3593	enable_gif(svm);
3594
3595	mark_all_dirty(svm->vmcb);
3596}
3597
3598static int nested_svm_vmrun(struct vcpu_svm *svm)
3599{
3600	int ret;
3601	struct vmcb *nested_vmcb;
3602	struct vmcb *hsave = svm->nested.hsave;
3603	struct vmcb *vmcb = svm->vmcb;
3604	struct kvm_host_map map;
3605	u64 vmcb_gpa;
3606
3607	vmcb_gpa = svm->vmcb->save.rax;
3608
3609	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb_gpa), &map);
3610	if (ret == -EINVAL) {
3611		kvm_inject_gp(&svm->vcpu, 0);
3612		return 1;
3613	} else if (ret) {
3614		return kvm_skip_emulated_instruction(&svm->vcpu);
3615	}
3616
3617	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3618
3619	nested_vmcb = map.hva;
3620
3621	if (!nested_vmcb_checks(nested_vmcb)) {
3622		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3623		nested_vmcb->control.exit_code_hi = 0;
3624		nested_vmcb->control.exit_info_1  = 0;
3625		nested_vmcb->control.exit_info_2  = 0;
3626
3627		kvm_vcpu_unmap(&svm->vcpu, &map, true);
3628
3629		return ret;
3630	}
3631
3632	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3633			       nested_vmcb->save.rip,
3634			       nested_vmcb->control.int_ctl,
3635			       nested_vmcb->control.event_inj,
3636			       nested_vmcb->control.nested_ctl);
3637
3638	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3639				    nested_vmcb->control.intercept_cr >> 16,
3640				    nested_vmcb->control.intercept_exceptions,
3641				    nested_vmcb->control.intercept);
3642
3643	/* Clear internal status */
3644	kvm_clear_exception_queue(&svm->vcpu);
3645	kvm_clear_interrupt_queue(&svm->vcpu);
3646
3647	/*
3648	 * Save the old vmcb, so we don't need to pick what we save, but can
3649	 * restore everything when a VMEXIT occurs
3650	 */
3651	hsave->save.es     = vmcb->save.es;
3652	hsave->save.cs     = vmcb->save.cs;
3653	hsave->save.ss     = vmcb->save.ss;
3654	hsave->save.ds     = vmcb->save.ds;
3655	hsave->save.gdtr   = vmcb->save.gdtr;
3656	hsave->save.idtr   = vmcb->save.idtr;
3657	hsave->save.efer   = svm->vcpu.arch.efer;
3658	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3659	hsave->save.cr4    = svm->vcpu.arch.cr4;
3660	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3661	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3662	hsave->save.rsp    = vmcb->save.rsp;
3663	hsave->save.rax    = vmcb->save.rax;
3664	if (npt_enabled)
3665		hsave->save.cr3    = vmcb->save.cr3;
3666	else
3667		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3668
3669	copy_vmcb_control_area(hsave, vmcb);
3670
3671	enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, &map);
3672
3673	if (!nested_svm_vmrun_msrpm(svm)) {
3674		svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3675		svm->vmcb->control.exit_code_hi = 0;
3676		svm->vmcb->control.exit_info_1  = 0;
3677		svm->vmcb->control.exit_info_2  = 0;
3678
3679		nested_svm_vmexit(svm);
3680	}
3681
3682	return ret;
3683}
3684
3685static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3686{
3687	to_vmcb->save.fs = from_vmcb->save.fs;
3688	to_vmcb->save.gs = from_vmcb->save.gs;
3689	to_vmcb->save.tr = from_vmcb->save.tr;
3690	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3691	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3692	to_vmcb->save.star = from_vmcb->save.star;
3693	to_vmcb->save.lstar = from_vmcb->save.lstar;
3694	to_vmcb->save.cstar = from_vmcb->save.cstar;
3695	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3696	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3697	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3698	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3699}
3700
3701static int vmload_interception(struct vcpu_svm *svm)
3702{
3703	struct vmcb *nested_vmcb;
3704	struct kvm_host_map map;
3705	int ret;
3706
3707	if (nested_svm_check_permissions(svm))
3708		return 1;
3709
3710	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3711	if (ret) {
3712		if (ret == -EINVAL)
3713			kvm_inject_gp(&svm->vcpu, 0);
3714		return 1;
3715	}
3716
3717	nested_vmcb = map.hva;
3718
3719	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3720
3721	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3722	kvm_vcpu_unmap(&svm->vcpu, &map, true);
3723
3724	return ret;
3725}
3726
3727static int vmsave_interception(struct vcpu_svm *svm)
3728{
3729	struct vmcb *nested_vmcb;
3730	struct kvm_host_map map;
3731	int ret;
3732
3733	if (nested_svm_check_permissions(svm))
3734		return 1;
3735
3736	ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
3737	if (ret) {
3738		if (ret == -EINVAL)
3739			kvm_inject_gp(&svm->vcpu, 0);
3740		return 1;
3741	}
3742
3743	nested_vmcb = map.hva;
3744
3745	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3746
3747	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3748	kvm_vcpu_unmap(&svm->vcpu, &map, true);
3749
3750	return ret;
3751}
3752
3753static int vmrun_interception(struct vcpu_svm *svm)
3754{
3755	if (nested_svm_check_permissions(svm))
3756		return 1;
3757
3758	return nested_svm_vmrun(svm);
3759}
3760
3761static int stgi_interception(struct vcpu_svm *svm)
3762{
3763	int ret;
3764
3765	if (nested_svm_check_permissions(svm))
3766		return 1;
3767
3768	/*
3769	 * If VGIF is enabled, the STGI intercept is only added to
3770	 * detect the opening of the SMI/NMI window; remove it now.
3771	 */
3772	if (vgif_enabled(svm))
3773		clr_intercept(svm, INTERCEPT_STGI);
3774
3775	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3776	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3777
3778	enable_gif(svm);
3779
3780	return ret;
3781}
3782
3783static int clgi_interception(struct vcpu_svm *svm)
3784{
3785	int ret;
3786
3787	if (nested_svm_check_permissions(svm))
3788		return 1;
3789
3790	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3791
3792	disable_gif(svm);
3793
3794	/* After a CLGI no interrupts should come */
3795	if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3796		svm_clear_vintr(svm);
3797		svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3798		mark_dirty(svm->vmcb, VMCB_INTR);
3799	}
3800
3801	return ret;
3802}
3803
3804static int invlpga_interception(struct vcpu_svm *svm)
3805{
3806	struct kvm_vcpu *vcpu = &svm->vcpu;
3807
3808	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
3809			  kvm_rax_read(&svm->vcpu));
3810
3811	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3812	kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
3813
3814	return kvm_skip_emulated_instruction(&svm->vcpu);
3815}
3816
3817static int skinit_interception(struct vcpu_svm *svm)
3818{
3819	trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
3820
3821	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3822	return 1;
3823}
3824
3825static int wbinvd_interception(struct vcpu_svm *svm)
3826{
3827	return kvm_emulate_wbinvd(&svm->vcpu);
3828}
3829
3830static int xsetbv_interception(struct vcpu_svm *svm)
3831{
3832	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3833	u32 index = kvm_rcx_read(&svm->vcpu);
3834
3835	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3836		return kvm_skip_emulated_instruction(&svm->vcpu);
3837	}
3838
3839	return 1;
3840}
3841
3842static int rdpru_interception(struct vcpu_svm *svm)
3843{
3844	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3845	return 1;
3846}
3847
3848static int task_switch_interception(struct vcpu_svm *svm)
3849{
3850	u16 tss_selector;
3851	int reason;
3852	int int_type = svm->vmcb->control.exit_int_info &
3853		SVM_EXITINTINFO_TYPE_MASK;
3854	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3855	uint32_t type =
3856		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3857	uint32_t idt_v =
3858		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3859	bool has_error_code = false;
3860	u32 error_code = 0;
3861
3862	tss_selector = (u16)svm->vmcb->control.exit_info_1;
3863
3864	if (svm->vmcb->control.exit_info_2 &
3865	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3866		reason = TASK_SWITCH_IRET;
3867	else if (svm->vmcb->control.exit_info_2 &
3868		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3869		reason = TASK_SWITCH_JMP;
3870	else if (idt_v)
3871		reason = TASK_SWITCH_GATE;
3872	else
3873		reason = TASK_SWITCH_CALL;
3874
3875	if (reason == TASK_SWITCH_GATE) {
3876		switch (type) {
3877		case SVM_EXITINTINFO_TYPE_NMI:
3878			svm->vcpu.arch.nmi_injected = false;
3879			break;
3880		case SVM_EXITINTINFO_TYPE_EXEPT:
3881			if (svm->vmcb->control.exit_info_2 &
3882			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3883				has_error_code = true;
3884				error_code =
3885					(u32)svm->vmcb->control.exit_info_2;
3886			}
3887			kvm_clear_exception_queue(&svm->vcpu);
3888			break;
3889		case SVM_EXITINTINFO_TYPE_INTR:
3890			kvm_clear_interrupt_queue(&svm->vcpu);
3891			break;
3892		default:
3893			break;
3894		}
3895	}
3896
3897	if (reason != TASK_SWITCH_GATE ||
3898	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3899	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3900	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
3901		if (!skip_emulated_instruction(&svm->vcpu))
3902			return 0;
3903	}
3904
3905	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3906		int_vec = -1;
3907
3908	return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3909			       has_error_code, error_code);
3910}
3911
3912static int cpuid_interception(struct vcpu_svm *svm)
3913{
3914	return kvm_emulate_cpuid(&svm->vcpu);
3915}
3916
3917static int iret_interception(struct vcpu_svm *svm)
3918{
3919	++svm->vcpu.stat.nmi_window_exits;
3920	clr_intercept(svm, INTERCEPT_IRET);
3921	svm->vcpu.arch.hflags |= HF_IRET_MASK;
3922	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3923	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3924	return 1;
3925}
3926
3927static int invlpg_interception(struct vcpu_svm *svm)
3928{
3929	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3930		return kvm_emulate_instruction(&svm->vcpu, 0);
3931
3932	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3933	return kvm_skip_emulated_instruction(&svm->vcpu);
3934}
3935
3936static int emulate_on_interception(struct vcpu_svm *svm)
3937{
3938	return kvm_emulate_instruction(&svm->vcpu, 0);
3939}
3940
3941static int rsm_interception(struct vcpu_svm *svm)
3942{
3943	return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
3944}
3945
3946static int rdpmc_interception(struct vcpu_svm *svm)
3947{
3948	int err;
3949
3950	if (!nrips)
3951		return emulate_on_interception(svm);
3952
3953	err = kvm_rdpmc(&svm->vcpu);
3954	return kvm_complete_insn_gp(&svm->vcpu, err);
3955}
3956
3957static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3958					    unsigned long val)
3959{
3960	unsigned long cr0 = svm->vcpu.arch.cr0;
3961	bool ret = false;
3962	u64 intercept;
3963
3964	intercept = svm->nested.intercept;
3965
3966	if (!is_guest_mode(&svm->vcpu) ||
3967	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3968		return false;
3969
3970	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3971	val &= ~SVM_CR0_SELECTIVE_MASK;
3972
3973	if (cr0 ^ val) {
3974		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3975		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3976	}
3977
3978	return ret;
3979}
3980
3981#define CR_VALID (1ULL << 63)
3982
3983static int cr_interception(struct vcpu_svm *svm)
3984{
3985	int reg, cr;
3986	unsigned long val;
3987	int err;
3988
3989	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3990		return emulate_on_interception(svm);
3991
3992	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3993		return emulate_on_interception(svm);
3994
3995	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3996	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3997		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3998	else
3999		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
4000
4001	err = 0;
4002	if (cr >= 16) { /* mov to cr */
4003		cr -= 16;
4004		val = kvm_register_read(&svm->vcpu, reg);
4005		switch (cr) {
4006		case 0:
4007			if (!check_selective_cr0_intercepted(svm, val))
4008				err = kvm_set_cr0(&svm->vcpu, val);
4009			else
4010				return 1;
4011
4012			break;
4013		case 3:
4014			err = kvm_set_cr3(&svm->vcpu, val);
4015			break;
4016		case 4:
4017			err = kvm_set_cr4(&svm->vcpu, val);
4018			break;
4019		case 8:
4020			err = kvm_set_cr8(&svm->vcpu, val);
4021			break;
4022		default:
4023			WARN(1, "unhandled write to CR%d", cr);
4024			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4025			return 1;
4026		}
4027	} else { /* mov from cr */
4028		switch (cr) {
4029		case 0:
4030			val = kvm_read_cr0(&svm->vcpu);
4031			break;
4032		case 2:
4033			val = svm->vcpu.arch.cr2;
4034			break;
4035		case 3:
4036			val = kvm_read_cr3(&svm->vcpu);
4037			break;
4038		case 4:
4039			val = kvm_read_cr4(&svm->vcpu);
4040			break;
4041		case 8:
4042			val = kvm_get_cr8(&svm->vcpu);
4043			break;
4044		default:
4045			WARN(1, "unhandled read from CR%d", cr);
4046			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
4047			return 1;
4048		}
4049		kvm_register_write(&svm->vcpu, reg, val);
4050	}
4051	return kvm_complete_insn_gp(&svm->vcpu, err);
4052}
4053
4054static int dr_interception(struct vcpu_svm *svm)
4055{
4056	int reg, dr;
4057	unsigned long val;
4058
4059	if (svm->vcpu.guest_debug == 0) {
4060		/*
4061		 * No more DR vmexits; force a reload of the debug registers
4062		 * and reenter on this instruction.  The next vmexit will
4063		 * retrieve the full state of the debug registers.
4064		 */
4065		clr_dr_intercepts(svm);
4066		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4067		return 1;
4068	}
4069
4070	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4071		return emulate_on_interception(svm);
4072
4073	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4074	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4075
4076	if (dr >= 16) { /* mov to DRn */
4077		if (!kvm_require_dr(&svm->vcpu, dr - 16))
4078			return 1;
4079		val = kvm_register_read(&svm->vcpu, reg);
4080		kvm_set_dr(&svm->vcpu, dr - 16, val);
4081	} else {
4082		if (!kvm_require_dr(&svm->vcpu, dr))
4083			return 1;
4084		kvm_get_dr(&svm->vcpu, dr, &val);
4085		kvm_register_write(&svm->vcpu, reg, val);
4086	}
4087
4088	return kvm_skip_emulated_instruction(&svm->vcpu);
4089}
4090
4091static int cr8_write_interception(struct vcpu_svm *svm)
4092{
4093	struct kvm_run *kvm_run = svm->vcpu.run;
4094	int r;
4095
4096	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4097	/* instruction emulation calls kvm_set_cr8() */
4098	r = cr_interception(svm);
4099	if (lapic_in_kernel(&svm->vcpu))
4100		return r;
4101	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4102		return r;
4103	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4104	return 0;
4105}
4106
4107static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4108{
4109	msr->data = 0;
4110
4111	switch (msr->index) {
4112	case MSR_F10H_DECFG:
4113		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4114			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4115		break;
4116	default:
4117		return 1;
4118	}
4119
4120	return 0;
4121}
4122
4123static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4124{
4125	struct vcpu_svm *svm = to_svm(vcpu);
4126
4127	switch (msr_info->index) {
4128	case MSR_STAR:
4129		msr_info->data = svm->vmcb->save.star;
4130		break;
4131#ifdef CONFIG_X86_64
4132	case MSR_LSTAR:
4133		msr_info->data = svm->vmcb->save.lstar;
4134		break;
4135	case MSR_CSTAR:
4136		msr_info->data = svm->vmcb->save.cstar;
4137		break;
4138	case MSR_KERNEL_GS_BASE:
4139		msr_info->data = svm->vmcb->save.kernel_gs_base;
4140		break;
4141	case MSR_SYSCALL_MASK:
4142		msr_info->data = svm->vmcb->save.sfmask;
4143		break;
4144#endif
4145	case MSR_IA32_SYSENTER_CS:
4146		msr_info->data = svm->vmcb->save.sysenter_cs;
4147		break;
4148	case MSR_IA32_SYSENTER_EIP:
4149		msr_info->data = svm->sysenter_eip;
4150		break;
4151	case MSR_IA32_SYSENTER_ESP:
4152		msr_info->data = svm->sysenter_esp;
4153		break;
4154	case MSR_TSC_AUX:
4155		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4156			return 1;
4157		msr_info->data = svm->tsc_aux;
4158		break;
4159	/*
4160	 * Nobody will change the following 5 values in the VMCB so we can
4161	 * safely return them on rdmsr. They will always be 0 until LBRV is
4162	 * implemented.
4163	 */
4164	case MSR_IA32_DEBUGCTLMSR:
4165		msr_info->data = svm->vmcb->save.dbgctl;
4166		break;
4167	case MSR_IA32_LASTBRANCHFROMIP:
4168		msr_info->data = svm->vmcb->save.br_from;
4169		break;
4170	case MSR_IA32_LASTBRANCHTOIP:
4171		msr_info->data = svm->vmcb->save.br_to;
4172		break;
4173	case MSR_IA32_LASTINTFROMIP:
4174		msr_info->data = svm->vmcb->save.last_excp_from;
4175		break;
4176	case MSR_IA32_LASTINTTOIP:
4177		msr_info->data = svm->vmcb->save.last_excp_to;
4178		break;
4179	case MSR_VM_HSAVE_PA:
4180		msr_info->data = svm->nested.hsave_msr;
4181		break;
4182	case MSR_VM_CR:
4183		msr_info->data = svm->nested.vm_cr_msr;
4184		break;
4185	case MSR_IA32_SPEC_CTRL:
4186		if (!msr_info->host_initiated &&
4187		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4188		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4189			return 1;
4190
4191		msr_info->data = svm->spec_ctrl;
4192		break;
4193	case MSR_AMD64_VIRT_SPEC_CTRL:
4194		if (!msr_info->host_initiated &&
4195		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4196			return 1;
4197
4198		msr_info->data = svm->virt_spec_ctrl;
4199		break;
4200	case MSR_F15H_IC_CFG: {
4201
4202		int family, model;
4203
4204		family = guest_cpuid_family(vcpu);
4205		model  = guest_cpuid_model(vcpu);
4206
4207		if (family < 0 || model < 0)
4208			return kvm_get_msr_common(vcpu, msr_info);
4209
4210		msr_info->data = 0;
4211
4212		if (family == 0x15 &&
4213		    (model >= 0x2 && model < 0x20))
4214			msr_info->data = 0x1E;
4215		}
4216		break;
4217	case MSR_F10H_DECFG:
4218		msr_info->data = svm->msr_decfg;
4219		break;
4220	default:
4221		return kvm_get_msr_common(vcpu, msr_info);
4222	}
4223	return 0;
4224}
4225
4226static int rdmsr_interception(struct vcpu_svm *svm)
4227{
4228	return kvm_emulate_rdmsr(&svm->vcpu);
4229}
4230
4231static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4232{
4233	struct vcpu_svm *svm = to_svm(vcpu);
4234	int svm_dis, chg_mask;
4235
4236	if (data & ~SVM_VM_CR_VALID_MASK)
4237		return 1;
4238
4239	chg_mask = SVM_VM_CR_VALID_MASK;
4240
4241	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4242		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4243
4244	svm->nested.vm_cr_msr &= ~chg_mask;
4245	svm->nested.vm_cr_msr |= (data & chg_mask);
4246
4247	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4248
4249	/* check for svm_disable while efer.svme is set */
4250	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4251		return 1;
4252
4253	return 0;
4254}
4255
4256static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4257{
4258	struct vcpu_svm *svm = to_svm(vcpu);
4259
4260	u32 ecx = msr->index;
4261	u64 data = msr->data;
4262	switch (ecx) {
4263	case MSR_IA32_CR_PAT:
4264		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4265			return 1;
4266		vcpu->arch.pat = data;
4267		svm->vmcb->save.g_pat = data;
4268		mark_dirty(svm->vmcb, VMCB_NPT);
4269		break;
4270	case MSR_IA32_SPEC_CTRL:
4271		if (!msr->host_initiated &&
4272		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
4273		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
4274			return 1;
4275
4276		/* The STIBP bit doesn't fault even if it's not advertised */
4277		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
4278			return 1;
4279
4280		svm->spec_ctrl = data;
4281
4282		if (!data)
4283			break;
4284
4285		/*
4286		 * For non-nested:
4287		 * When it's written (to non-zero) for the first time, pass
4288		 * it through.
4289		 *
4290		 * For nested:
4291		 * The handling of the MSR bitmap for L2 guests is done in
4292		 * nested_svm_vmrun_msrpm.
4293		 * We update the L1 MSR bit as well since it will end up
4294		 * touching the MSR anyway now.
4295		 */
4296		set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4297		break;
4298	case MSR_IA32_PRED_CMD:
4299		if (!msr->host_initiated &&
4300		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4301			return 1;
4302
4303		if (data & ~PRED_CMD_IBPB)
4304			return 1;
4305
4306		if (!data)
4307			break;
4308
4309		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4310		if (is_guest_mode(vcpu))
4311			break;
4312		set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4313		break;
4314	case MSR_AMD64_VIRT_SPEC_CTRL:
4315		if (!msr->host_initiated &&
4316		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4317			return 1;
4318
4319		if (data & ~SPEC_CTRL_SSBD)
4320			return 1;
4321
4322		svm->virt_spec_ctrl = data;
4323		break;
4324	case MSR_STAR:
4325		svm->vmcb->save.star = data;
4326		break;
4327#ifdef CONFIG_X86_64
4328	case MSR_LSTAR:
4329		svm->vmcb->save.lstar = data;
4330		break;
4331	case MSR_CSTAR:
4332		svm->vmcb->save.cstar = data;
4333		break;
4334	case MSR_KERNEL_GS_BASE:
4335		svm->vmcb->save.kernel_gs_base = data;
4336		break;
4337	case MSR_SYSCALL_MASK:
4338		svm->vmcb->save.sfmask = data;
4339		break;
4340#endif
4341	case MSR_IA32_SYSENTER_CS:
4342		svm->vmcb->save.sysenter_cs = data;
4343		break;
4344	case MSR_IA32_SYSENTER_EIP:
4345		svm->sysenter_eip = data;
4346		svm->vmcb->save.sysenter_eip = data;
4347		break;
4348	case MSR_IA32_SYSENTER_ESP:
4349		svm->sysenter_esp = data;
4350		svm->vmcb->save.sysenter_esp = data;
4351		break;
4352	case MSR_TSC_AUX:
4353		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4354			return 1;
4355
4356		/*
4357		 * This is rare, so we update the MSR here instead of using
4358		 * direct_access_msrs.  Doing that would require a rdmsr in
4359		 * svm_vcpu_put.
4360		 */
4361		svm->tsc_aux = data;
4362		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4363		break;
4364	case MSR_IA32_DEBUGCTLMSR:
4365		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4366			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4367				    __func__, data);
4368			break;
4369		}
4370		if (data & DEBUGCTL_RESERVED_BITS)
4371			return 1;
4372
4373		svm->vmcb->save.dbgctl = data;
4374		mark_dirty(svm->vmcb, VMCB_LBR);
4375		if (data & (1ULL<<0))
4376			svm_enable_lbrv(svm);
4377		else
4378			svm_disable_lbrv(svm);
4379		break;
4380	case MSR_VM_HSAVE_PA:
4381		svm->nested.hsave_msr = data;
4382		break;
4383	case MSR_VM_CR:
4384		return svm_set_vm_cr(vcpu, data);
4385	case MSR_VM_IGNNE:
4386		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4387		break;
4388	case MSR_F10H_DECFG: {
4389		struct kvm_msr_entry msr_entry;
4390
4391		msr_entry.index = msr->index;
4392		if (svm_get_msr_feature(&msr_entry))
4393			return 1;
4394
4395		/* Check the supported bits */
4396		if (data & ~msr_entry.data)
4397			return 1;
4398
4399		/* Don't allow the guest to change a bit, #GP */
4400		if (!msr->host_initiated && (data ^ msr_entry.data))
4401			return 1;
4402
4403		svm->msr_decfg = data;
4404		break;
4405	}
4406	case MSR_IA32_APICBASE:
4407		if (kvm_vcpu_apicv_active(vcpu))
4408			avic_update_vapic_bar(to_svm(vcpu), data);
4409		/* Fall through */
4410	default:
4411		return kvm_set_msr_common(vcpu, msr);
4412	}
4413	return 0;
4414}
4415
4416static int wrmsr_interception(struct vcpu_svm *svm)
4417{
4418	return kvm_emulate_wrmsr(&svm->vcpu);
4419}
4420
4421static int msr_interception(struct vcpu_svm *svm)
4422{
4423	if (svm->vmcb->control.exit_info_1)
4424		return wrmsr_interception(svm);
4425	else
4426		return rdmsr_interception(svm);
4427}
4428
4429static int interrupt_window_interception(struct vcpu_svm *svm)
4430{
4431	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4432	svm_clear_vintr(svm);
4433	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4434	mark_dirty(svm->vmcb, VMCB_INTR);
4435	++svm->vcpu.stat.irq_window_exits;
4436	return 1;
4437}
4438
4439static int pause_interception(struct vcpu_svm *svm)
4440{
4441	struct kvm_vcpu *vcpu = &svm->vcpu;
4442	bool in_kernel = (svm_get_cpl(vcpu) == 0);
4443
4444	if (pause_filter_thresh)
4445		grow_ple_window(vcpu);
4446
4447	kvm_vcpu_on_spin(vcpu, in_kernel);
4448	return 1;
4449}
4450
4451static int nop_interception(struct vcpu_svm *svm)
4452{
4453	return kvm_skip_emulated_instruction(&(svm->vcpu));
4454}
4455
4456static int monitor_interception(struct vcpu_svm *svm)
4457{
4458	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4459	return nop_interception(svm);
4460}
4461
4462static int mwait_interception(struct vcpu_svm *svm)
4463{
4464	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4465	return nop_interception(svm);
4466}
4467
4468enum avic_ipi_failure_cause {
4469	AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4470	AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4471	AVIC_IPI_FAILURE_INVALID_TARGET,
4472	AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4473};
4474
4475static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4476{
4477	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4478	u32 icrl = svm->vmcb->control.exit_info_1;
4479	u32 id = svm->vmcb->control.exit_info_2 >> 32;
4480	u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4481	struct kvm_lapic *apic = svm->vcpu.arch.apic;
4482
4483	trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4484
4485	switch (id) {
4486	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4487		/*
4488		 * AVIC hardware handles the generation of
4489		 * IPIs when the specified Message Type is Fixed
4490		 * (also known as fixed delivery mode) and
4491		 * the Trigger Mode is edge-triggered. The hardware
4492		 * also supports self and broadcast delivery modes
4493		 * specified via the Destination Shorthand(DSH)
4494		 * field of the ICRL. Logical and physical APIC ID
4495		 * formats are supported. All other IPI types cause
4496		 * a #VMEXIT, which needs to emulated.
4497		 */
4498		kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4499		kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4500		break;
4501	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4502		int i;
4503		struct kvm_vcpu *vcpu;
4504		struct kvm *kvm = svm->vcpu.kvm;
4505		struct kvm_lapic *apic = svm->vcpu.arch.apic;
4506
4507		/*
4508		 * At this point, we expect that the AVIC HW has already
4509		 * set the appropriate IRR bits on the valid target
4510		 * vcpus. So, we just need to kick the appropriate vcpu.
4511		 */
4512		kvm_for_each_vcpu(i, vcpu, kvm) {
4513			bool m = kvm_apic_match_dest(vcpu, apic,
4514						     icrl & KVM_APIC_SHORT_MASK,
4515						     GET_APIC_DEST_FIELD(icrh),
4516						     icrl & KVM_APIC_DEST_MASK);
4517
4518			if (m && !avic_vcpu_is_running(vcpu))
4519				kvm_vcpu_wake_up(vcpu);
4520		}
4521		break;
4522	}
4523	case AVIC_IPI_FAILURE_INVALID_TARGET:
4524		WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
4525			  index, svm->vcpu.vcpu_id, icrh, icrl);
4526		break;
4527	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4528		WARN_ONCE(1, "Invalid backing page\n");
4529		break;
4530	default:
4531		pr_err("Unknown IPI interception\n");
4532	}
4533
4534	return 1;
4535}
4536
4537static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4538{
4539	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4540	int index;
4541	u32 *logical_apic_id_table;
4542	int dlid = GET_APIC_LOGICAL_ID(ldr);
4543
4544	if (!dlid)
4545		return NULL;
4546
4547	if (flat) { /* flat */
4548		index = ffs(dlid) - 1;
4549		if (index > 7)
4550			return NULL;
4551	} else { /* cluster */
4552		int cluster = (dlid & 0xf0) >> 4;
4553		int apic = ffs(dlid & 0x0f) - 1;
4554
4555		if ((apic < 0) || (apic > 7) ||
4556		    (cluster >= 0xf))
4557			return NULL;
4558		index = (cluster << 2) + apic;
4559	}
4560
4561	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4562
4563	return &logical_apic_id_table[index];
4564}
4565
4566static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
4567{
4568	bool flat;
4569	u32 *entry, new_entry;
4570
4571	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4572	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4573	if (!entry)
4574		return -EINVAL;
4575
4576	new_entry = READ_ONCE(*entry);
4577	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4578	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4579	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4580	WRITE_ONCE(*entry, new_entry);
4581
4582	return 0;
4583}
4584
4585static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
4586{
4587	struct vcpu_svm *svm = to_svm(vcpu);
4588	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
4589	u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
4590
4591	if (entry)
4592		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
4593}
4594
4595static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4596{
4597	int ret = 0;
4598	struct vcpu_svm *svm = to_svm(vcpu);
4599	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4600	u32 id = kvm_xapic_id(vcpu->arch.apic);
4601
4602	if (ldr == svm->ldr_reg)
4603		return 0;
4604
4605	avic_invalidate_logical_id_entry(vcpu);
4606
4607	if (ldr)
4608		ret = avic_ldr_write(vcpu, id, ldr);
4609
4610	if (!ret)
4611		svm->ldr_reg = ldr;
4612
4613	return ret;
4614}
4615
4616static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4617{
4618	u64 *old, *new;
4619	struct vcpu_svm *svm = to_svm(vcpu);
4620	u32 id = kvm_xapic_id(vcpu->arch.apic);
4621
4622	if (vcpu->vcpu_id == id)
4623		return 0;
4624
4625	old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4626	new = avic_get_physical_id_entry(vcpu, id);
4627	if (!new || !old)
4628		return 1;
4629
4630	/* We need to move physical_id_entry to new offset */
4631	*new = *old;
4632	*old = 0ULL;
4633	to_svm(vcpu)->avic_physical_id_cache = new;
4634
4635	/*
4636	 * Also update the guest physical APIC ID in the logical
4637	 * APIC ID table entry if already setup the LDR.
4638	 */
4639	if (svm->ldr_reg)
4640		avic_handle_ldr_update(vcpu);
4641
4642	return 0;
4643}
4644
4645static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4646{
4647	struct vcpu_svm *svm = to_svm(vcpu);
4648	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4649
4650	if (svm->dfr_reg == dfr)
4651		return;
4652
4653	avic_invalidate_logical_id_entry(vcpu);
4654	svm->dfr_reg = dfr;
4655}
4656
4657static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4658{
4659	struct kvm_lapic *apic = svm->vcpu.arch.apic;
4660	u32 offset = svm->vmcb->control.exit_info_1 &
4661				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4662
4663	switch (offset) {
4664	case APIC_ID:
4665		if (avic_handle_apic_id_update(&svm->vcpu))
4666			return 0;
4667		break;
4668	case APIC_LDR:
4669		if (avic_handle_ldr_update(&svm->vcpu))
4670			return 0;
4671		break;
4672	case APIC_DFR:
4673		avic_handle_dfr_update(&svm->vcpu);
4674		break;
4675	default:
4676		break;
4677	}
4678
4679	kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4680
4681	return 1;
4682}
4683
4684static bool is_avic_unaccelerated_access_trap(u32 offset)
4685{
4686	bool ret = false;
4687
4688	switch (offset) {
4689	case APIC_ID:
4690	case APIC_EOI:
4691	case APIC_RRR:
4692	case APIC_LDR:
4693	case APIC_DFR:
4694	case APIC_SPIV:
4695	case APIC_ESR:
4696	case APIC_ICR:
4697	case APIC_LVTT:
4698	case APIC_LVTTHMR:
4699	case APIC_LVTPC:
4700	case APIC_LVT0:
4701	case APIC_LVT1:
4702	case APIC_LVTERR:
4703	case APIC_TMICT:
4704	case APIC_TDCR:
4705		ret = true;
4706		break;
4707	default:
4708		break;
4709	}
4710	return ret;
4711}
4712
4713static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4714{
4715	int ret = 0;
4716	u32 offset = svm->vmcb->control.exit_info_1 &
4717		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4718	u32 vector = svm->vmcb->control.exit_info_2 &
4719		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4720	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4721		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
4722	bool trap = is_avic_unaccelerated_access_trap(offset);
4723
4724	trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4725					    trap, write, vector);
4726	if (trap) {
4727		/* Handling Trap */
4728		WARN_ONCE(!write, "svm: Handling trap read.\n");
4729		ret = avic_unaccel_trap_write(svm);
4730	} else {
4731		/* Handling Fault */
4732		ret = kvm_emulate_instruction(&svm->vcpu, 0);
4733	}
4734
4735	return ret;
4736}
4737
4738static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4739	[SVM_EXIT_READ_CR0]			= cr_interception,
4740	[SVM_EXIT_READ_CR3]			= cr_interception,
4741	[SVM_EXIT_READ_CR4]			= cr_interception,
4742	[SVM_EXIT_READ_CR8]			= cr_interception,
4743	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
4744	[SVM_EXIT_WRITE_CR0]			= cr_interception,
4745	[SVM_EXIT_WRITE_CR3]			= cr_interception,
4746	[SVM_EXIT_WRITE_CR4]			= cr_interception,
4747	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
4748	[SVM_EXIT_READ_DR0]			= dr_interception,
4749	[SVM_EXIT_READ_DR1]			= dr_interception,
4750	[SVM_EXIT_READ_DR2]			= dr_interception,
4751	[SVM_EXIT_READ_DR3]			= dr_interception,
4752	[SVM_EXIT_READ_DR4]			= dr_interception,
4753	[SVM_EXIT_READ_DR5]			= dr_interception,
4754	[SVM_EXIT_READ_DR6]			= dr_interception,
4755	[SVM_EXIT_READ_DR7]			= dr_interception,
4756	[SVM_EXIT_WRITE_DR0]			= dr_interception,
4757	[SVM_EXIT_WRITE_DR1]			= dr_interception,
4758	[SVM_EXIT_WRITE_DR2]			= dr_interception,
4759	[SVM_EXIT_WRITE_DR3]			= dr_interception,
4760	[SVM_EXIT_WRITE_DR4]			= dr_interception,
4761	[SVM_EXIT_WRITE_DR5]			= dr_interception,
4762	[SVM_EXIT_WRITE_DR6]			= dr_interception,
4763	[SVM_EXIT_WRITE_DR7]			= dr_interception,
4764	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
4765	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
4766	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
4767	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
4768	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
4769	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
4770	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
4771	[SVM_EXIT_INTR]				= intr_interception,
4772	[SVM_EXIT_NMI]				= nmi_interception,
4773	[SVM_EXIT_SMI]				= nop_on_interception,
4774	[SVM_EXIT_INIT]				= nop_on_interception,
4775	[SVM_EXIT_VINTR]			= interrupt_window_interception,
4776	[SVM_EXIT_RDPMC]			= rdpmc_interception,
4777	[SVM_EXIT_CPUID]			= cpuid_interception,
4778	[SVM_EXIT_IRET]                         = iret_interception,
4779	[SVM_EXIT_INVD]                         = emulate_on_interception,
4780	[SVM_EXIT_PAUSE]			= pause_interception,
4781	[SVM_EXIT_HLT]				= halt_interception,
4782	[SVM_EXIT_INVLPG]			= invlpg_interception,
4783	[SVM_EXIT_INVLPGA]			= invlpga_interception,
4784	[SVM_EXIT_IOIO]				= io_interception,
4785	[SVM_EXIT_MSR]				= msr_interception,
4786	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
4787	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
4788	[SVM_EXIT_VMRUN]			= vmrun_interception,
4789	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
4790	[SVM_EXIT_VMLOAD]			= vmload_interception,
4791	[SVM_EXIT_VMSAVE]			= vmsave_interception,
4792	[SVM_EXIT_STGI]				= stgi_interception,
4793	[SVM_EXIT_CLGI]				= clgi_interception,
4794	[SVM_EXIT_SKINIT]			= skinit_interception,
4795	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
4796	[SVM_EXIT_MONITOR]			= monitor_interception,
4797	[SVM_EXIT_MWAIT]			= mwait_interception,
4798	[SVM_EXIT_XSETBV]			= xsetbv_interception,
4799	[SVM_EXIT_RDPRU]			= rdpru_interception,
4800	[SVM_EXIT_NPF]				= npf_interception,
4801	[SVM_EXIT_RSM]                          = rsm_interception,
4802	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
4803	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
4804};
4805
4806static void dump_vmcb(struct kvm_vcpu *vcpu)
4807{
4808	struct vcpu_svm *svm = to_svm(vcpu);
4809	struct vmcb_control_area *control = &svm->vmcb->control;
4810	struct vmcb_save_area *save = &svm->vmcb->save;
4811
4812	if (!dump_invalid_vmcb) {
4813		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
4814		return;
4815	}
4816
4817	pr_err("VMCB Control Area:\n");
4818	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4819	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4820	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4821	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4822	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4823	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4824	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4825	pr_err("%-20s%d\n", "pause filter threshold:",
4826	       control->pause_filter_thresh);
4827	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4828	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4829	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4830	pr_err("%-20s%d\n", "asid:", control->asid);
4831	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4832	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4833	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4834	pr_err("%-20s%08x\n", "int_state:", control->int_state);
4835	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4836	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4837	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4838	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4839	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4840	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4841	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4842	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4843	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4844	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4845	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4846	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4847	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4848	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4849	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4850	pr_err("VMCB State Save Area:\n");
4851	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4852	       "es:",
4853	       save->es.selector, save->es.attrib,
4854	       save->es.limit, save->es.base);
4855	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4856	       "cs:",
4857	       save->cs.selector, save->cs.attrib,
4858	       save->cs.limit, save->cs.base);
4859	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4860	       "ss:",
4861	       save->ss.selector, save->ss.attrib,
4862	       save->ss.limit, save->ss.base);
4863	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4864	       "ds:",
4865	       save->ds.selector, save->ds.attrib,
4866	       save->ds.limit, save->ds.base);
4867	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4868	       "fs:",
4869	       save->fs.selector, save->fs.attrib,
4870	       save->fs.limit, save->fs.base);
4871	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4872	       "gs:",
4873	       save->gs.selector, save->gs.attrib,
4874	       save->gs.limit, save->gs.base);
4875	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4876	       "gdtr:",
4877	       save->gdtr.selector, save->gdtr.attrib,
4878	       save->gdtr.limit, save->gdtr.base);
4879	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4880	       "ldtr:",
4881	       save->ldtr.selector, save->ldtr.attrib,
4882	       save->ldtr.limit, save->ldtr.base);
4883	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4884	       "idtr:",
4885	       save->idtr.selector, save->idtr.attrib,
4886	       save->idtr.limit, save->idtr.base);
4887	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4888	       "tr:",
4889	       save->tr.selector, save->tr.attrib,
4890	       save->tr.limit, save->tr.base);
4891	pr_err("cpl:            %d                efer:         %016llx\n",
4892		save->cpl, save->efer);
4893	pr_err("%-15s %016llx %-13s %016llx\n",
4894	       "cr0:", save->cr0, "cr2:", save->cr2);
4895	pr_err("%-15s %016llx %-13s %016llx\n",
4896	       "cr3:", save->cr3, "cr4:", save->cr4);
4897	pr_err("%-15s %016llx %-13s %016llx\n",
4898	       "dr6:", save->dr6, "dr7:", save->dr7);
4899	pr_err("%-15s %016llx %-13s %016llx\n",
4900	       "rip:", save->rip, "rflags:", save->rflags);
4901	pr_err("%-15s %016llx %-13s %016llx\n",
4902	       "rsp:", save->rsp, "rax:", save->rax);
4903	pr_err("%-15s %016llx %-13s %016llx\n",
4904	       "star:", save->star, "lstar:", save->lstar);
4905	pr_err("%-15s %016llx %-13s %016llx\n",
4906	       "cstar:", save->cstar, "sfmask:", save->sfmask);
4907	pr_err("%-15s %016llx %-13s %016llx\n",
4908	       "kernel_gs_base:", save->kernel_gs_base,
4909	       "sysenter_cs:", save->sysenter_cs);
4910	pr_err("%-15s %016llx %-13s %016llx\n",
4911	       "sysenter_esp:", save->sysenter_esp,
4912	       "sysenter_eip:", save->sysenter_eip);
4913	pr_err("%-15s %016llx %-13s %016llx\n",
4914	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4915	pr_err("%-15s %016llx %-13s %016llx\n",
4916	       "br_from:", save->br_from, "br_to:", save->br_to);
4917	pr_err("%-15s %016llx %-13s %016llx\n",
4918	       "excp_from:", save->last_excp_from,
4919	       "excp_to:", save->last_excp_to);
4920}
4921
4922static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4923{
4924	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4925
4926	*info1 = control->exit_info_1;
4927	*info2 = control->exit_info_2;
4928}
4929
4930static int handle_exit(struct kvm_vcpu *vcpu)
4931{
4932	struct vcpu_svm *svm = to_svm(vcpu);
4933	struct kvm_run *kvm_run = vcpu->run;
4934	u32 exit_code = svm->vmcb->control.exit_code;
4935
4936	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4937
4938	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4939		vcpu->arch.cr0 = svm->vmcb->save.cr0;
4940	if (npt_enabled)
4941		vcpu->arch.cr3 = svm->vmcb->save.cr3;
4942
4943	if (unlikely(svm->nested.exit_required)) {
4944		nested_svm_vmexit(svm);
4945		svm->nested.exit_required = false;
4946
4947		return 1;
4948	}
4949
4950	if (is_guest_mode(vcpu)) {
4951		int vmexit;
4952
4953		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4954					svm->vmcb->control.exit_info_1,
4955					svm->vmcb->control.exit_info_2,
4956					svm->vmcb->control.exit_int_info,
4957					svm->vmcb->control.exit_int_info_err,
4958					KVM_ISA_SVM);
4959
4960		vmexit = nested_svm_exit_special(svm);
4961
4962		if (vmexit == NESTED_EXIT_CONTINUE)
4963			vmexit = nested_svm_exit_handled(svm);
4964
4965		if (vmexit == NESTED_EXIT_DONE)
4966			return 1;
4967	}
4968
4969	svm_complete_interrupts(svm);
4970
4971	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4972		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4973		kvm_run->fail_entry.hardware_entry_failure_reason
4974			= svm->vmcb->control.exit_code;
4975		dump_vmcb(vcpu);
4976		return 0;
4977	}
4978
4979	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4980	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4981	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4982	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4983		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4984		       "exit_code 0x%x\n",
4985		       __func__, svm->vmcb->control.exit_int_info,
4986		       exit_code);
4987
4988	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4989	    || !svm_exit_handlers[exit_code]) {
4990		vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
4991		dump_vmcb(vcpu);
4992		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4993		vcpu->run->internal.suberror =
4994			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
4995		vcpu->run->internal.ndata = 1;
4996		vcpu->run->internal.data[0] = exit_code;
4997		return 0;
4998	}
4999
5000	return svm_exit_handlers[exit_code](svm);
5001}
5002
5003static void reload_tss(struct kvm_vcpu *vcpu)
5004{
5005	int cpu = raw_smp_processor_id();
5006
5007	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5008	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
5009	load_TR_desc();
5010}
5011
5012static void pre_sev_run(struct vcpu_svm *svm, int cpu)
5013{
5014	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5015	int asid = sev_get_asid(svm->vcpu.kvm);
5016
5017	/* Assign the asid allocated with this SEV guest */
5018	svm->vmcb->control.asid = asid;
5019
5020	/*
5021	 * Flush guest TLB:
5022	 *
5023	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
5024	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
5025	 */
5026	if (sd->sev_vmcbs[asid] == svm->vmcb &&
5027	    svm->last_cpu == cpu)
5028		return;
5029
5030	svm->last_cpu = cpu;
5031	sd->sev_vmcbs[asid] = svm->vmcb;
5032	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5033	mark_dirty(svm->vmcb, VMCB_ASID);
5034}
5035
5036static void pre_svm_run(struct vcpu_svm *svm)
5037{
5038	int cpu = raw_smp_processor_id();
5039
5040	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
5041
5042	if (sev_guest(svm->vcpu.kvm))
5043		return pre_sev_run(svm, cpu);
5044
5045	/* FIXME: handle wraparound of asid_generation */
5046	if (svm->asid_generation != sd->asid_generation)
5047		new_asid(svm, sd);
5048}
5049
5050static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5051{
5052	struct vcpu_svm *svm = to_svm(vcpu);
5053
5054	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5055	vcpu->arch.hflags |= HF_NMI_MASK;
5056	set_intercept(svm, INTERCEPT_IRET);
5057	++vcpu->stat.nmi_injections;
5058}
5059
5060static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5061{
5062	struct vmcb_control_area *control;
5063
5064	/* The following fields are ignored when AVIC is enabled */
5065	control = &svm->vmcb->control;
5066	control->int_vector = irq;
5067	control->int_ctl &= ~V_INTR_PRIO_MASK;
5068	control->int_ctl |= V_IRQ_MASK |
5069		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5070	mark_dirty(svm->vmcb, VMCB_INTR);
5071}
5072
5073static void svm_set_irq(struct kvm_vcpu *vcpu)
5074{
5075	struct vcpu_svm *svm = to_svm(vcpu);
5076
5077	BUG_ON(!(gif_set(svm)));
5078
5079	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5080	++vcpu->stat.irq_injections;
5081
5082	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5083		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5084}
5085
5086static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5087{
5088	return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5089}
5090
5091static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5092{
5093	struct vcpu_svm *svm = to_svm(vcpu);
5094
5095	if (svm_nested_virtualize_tpr(vcpu) ||
5096	    kvm_vcpu_apicv_active(vcpu))
5097		return;
5098
5099	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5100
5101	if (irr == -1)
5102		return;
5103
5104	if (tpr >= irr)
5105		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5106}
5107
5108static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5109{
5110	return;
5111}
5112
5113static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5114{
5115	return avic && irqchip_split(vcpu->kvm);
5116}
5117
5118static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5119{
5120}
5121
5122static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5123{
5124}
5125
5126/* Note: Currently only used by Hyper-V. */
5127static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5128{
5129	struct vcpu_svm *svm = to_svm(vcpu);
5130	struct vmcb *vmcb = svm->vmcb;
5131
5132	if (kvm_vcpu_apicv_active(vcpu))
5133		vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
5134	else
5135		vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5136	mark_dirty(vmcb, VMCB_AVIC);
5137}
5138
5139static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5140{
5141	return;
5142}
5143
5144static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5145{
5146	kvm_lapic_set_irr(vec, vcpu->arch.apic);
5147	smp_mb__after_atomic();
5148
5149	if (avic_vcpu_is_running(vcpu)) {
5150		int cpuid = vcpu->cpu;
5151
5152		if (cpuid != get_cpu())
5153			wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
5154		put_cpu();
5155	} else
5156		kvm_vcpu_wake_up(vcpu);
5157}
5158
5159static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
5160{
5161	return false;
5162}
5163
5164static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5165{
5166	unsigned long flags;
5167	struct amd_svm_iommu_ir *cur;
5168
5169	spin_lock_irqsave(&svm->ir_list_lock, flags);
5170	list_for_each_entry(cur, &svm->ir_list, node) {
5171		if (cur->data != pi->ir_data)
5172			continue;
5173		list_del(&cur->node);
5174		kfree(cur);
5175		break;
5176	}
5177	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5178}
5179
5180static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5181{
5182	int ret = 0;
5183	unsigned long flags;
5184	struct amd_svm_iommu_ir *ir;
5185
5186	/**
5187	 * In some cases, the existing irte is updaed and re-set,
5188	 * so we need to check here if it's already been * added
5189	 * to the ir_list.
5190	 */
5191	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5192		struct kvm *kvm = svm->vcpu.kvm;
5193		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5194		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5195		struct vcpu_svm *prev_svm;
5196
5197		if (!prev_vcpu) {
5198			ret = -EINVAL;
5199			goto out;
5200		}
5201
5202		prev_svm = to_svm(prev_vcpu);
5203		svm_ir_list_del(prev_svm, pi);
5204	}
5205
5206	/**
5207	 * Allocating new amd_iommu_pi_data, which will get
5208	 * add to the per-vcpu ir_list.
5209	 */
5210	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
5211	if (!ir) {
5212		ret = -ENOMEM;
5213		goto out;
5214	}
5215	ir->data = pi->ir_data;
5216
5217	spin_lock_irqsave(&svm->ir_list_lock, flags);
5218	list_add(&ir->node, &svm->ir_list);
5219	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5220out:
5221	return ret;
5222}
5223
5224/**
5225 * Note:
5226 * The HW cannot support posting multicast/broadcast
5227 * interrupts to a vCPU. So, we still use legacy interrupt
5228 * remapping for these kind of interrupts.
5229 *
5230 * For lowest-priority interrupts, we only support
5231 * those with single CPU as the destination, e.g. user
5232 * configures the interrupts via /proc/irq or uses
5233 * irqbalance to make the interrupts single-CPU.
5234 */
5235static int
5236get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5237		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5238{
5239	struct kvm_lapic_irq irq;
5240	struct kvm_vcpu *vcpu = NULL;
5241
5242	kvm_set_msi_irq(kvm, e, &irq);
5243
5244	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
5245	    !kvm_irq_is_postable(&irq)) {
5246		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5247			 __func__, irq.vector);
5248		return -1;
5249	}
5250
5251	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5252		 irq.vector);
5253	*svm = to_svm(vcpu);
5254	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5255	vcpu_info->vector = irq.vector;
5256
5257	return 0;
5258}
5259
5260/*
5261 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5262 *
5263 * @kvm: kvm
5264 * @host_irq: host irq of the interrupt
5265 * @guest_irq: gsi of the interrupt
5266 * @set: set or unset PI
5267 * returns 0 on success, < 0 on failure
5268 */
5269static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5270			      uint32_t guest_irq, bool set)
5271{
5272	struct kvm_kernel_irq_routing_entry *e;
5273	struct kvm_irq_routing_table *irq_rt;
5274	int idx, ret = -EINVAL;
5275
5276	if (!kvm_arch_has_assigned_device(kvm) ||
5277	    !irq_remapping_cap(IRQ_POSTING_CAP))
5278		return 0;
5279
5280	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5281		 __func__, host_irq, guest_irq, set);
5282
5283	idx = srcu_read_lock(&kvm->irq_srcu);
5284	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5285	WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5286
5287	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5288		struct vcpu_data vcpu_info;
5289		struct vcpu_svm *svm = NULL;
5290
5291		if (e->type != KVM_IRQ_ROUTING_MSI)
5292			continue;
5293
5294		/**
5295		 * Here, we setup with legacy mode in the following cases:
5296		 * 1. When cannot target interrupt to a specific vcpu.
5297		 * 2. Unsetting posted interrupt.
5298		 * 3. APIC virtialization is disabled for the vcpu.
5299		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
5300		 */
5301		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5302		    kvm_vcpu_apicv_active(&svm->vcpu)) {
5303			struct amd_iommu_pi_data pi;
5304
5305			/* Try to enable guest_mode in IRTE */
5306			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5307					    AVIC_HPA_MASK);
5308			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5309						     svm->vcpu.vcpu_id);
5310			pi.is_guest_mode = true;
5311			pi.vcpu_data = &vcpu_info;
5312			ret = irq_set_vcpu_affinity(host_irq, &pi);
5313
5314			/**
5315			 * Here, we successfully setting up vcpu affinity in
5316			 * IOMMU guest mode. Now, we need to store the posted
5317			 * interrupt information in a per-vcpu ir_list so that
5318			 * we can reference to them directly when we update vcpu
5319			 * scheduling information in IOMMU irte.
5320			 */
5321			if (!ret && pi.is_guest_mode)
5322				svm_ir_list_add(svm, &pi);
5323		} else {
5324			/* Use legacy mode in IRTE */
5325			struct amd_iommu_pi_data pi;
5326
5327			/**
5328			 * Here, pi is used to:
5329			 * - Tell IOMMU to use legacy mode for this interrupt.
5330			 * - Retrieve ga_tag of prior interrupt remapping data.
5331			 */
5332			pi.is_guest_mode = false;
5333			ret = irq_set_vcpu_affinity(host_irq, &pi);
5334
5335			/**
5336			 * Check if the posted interrupt was previously
5337			 * setup with the guest_mode by checking if the ga_tag
5338			 * was cached. If so, we need to clean up the per-vcpu
5339			 * ir_list.
5340			 */
5341			if (!ret && pi.prev_ga_tag) {
5342				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5343				struct kvm_vcpu *vcpu;
5344
5345				vcpu = kvm_get_vcpu_by_id(kvm, id);
5346				if (vcpu)
5347					svm_ir_list_del(to_svm(vcpu), &pi);
5348			}
5349		}
5350
5351		if (!ret && svm) {
5352			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5353						 e->gsi, vcpu_info.vector,
5354						 vcpu_info.pi_desc_addr, set);
5355		}
5356
5357		if (ret < 0) {
5358			pr_err("%s: failed to update PI IRTE\n", __func__);
5359			goto out;
5360		}
5361	}
5362
5363	ret = 0;
5364out:
5365	srcu_read_unlock(&kvm->irq_srcu, idx);
5366	return ret;
5367}
5368
5369static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5370{
5371	struct vcpu_svm *svm = to_svm(vcpu);
5372	struct vmcb *vmcb = svm->vmcb;
5373	int ret;
5374	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5375	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5376	ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5377
5378	return ret;
5379}
5380
5381static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5382{
5383	struct vcpu_svm *svm = to_svm(vcpu);
5384
5385	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5386}
5387
5388static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5389{
5390	struct vcpu_svm *svm = to_svm(vcpu);
5391
5392	if (masked) {
5393		svm->vcpu.arch.hflags |= HF_NMI_MASK;
5394		set_intercept(svm, INTERCEPT_IRET);
5395	} else {
5396		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5397		clr_intercept(svm, INTERCEPT_IRET);
5398	}
5399}
5400
5401static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5402{
5403	struct vcpu_svm *svm = to_svm(vcpu);
5404	struct vmcb *vmcb = svm->vmcb;
5405	int ret;
5406
5407	if (!gif_set(svm) ||
5408	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5409		return 0;
5410
5411	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5412
5413	if (is_guest_mode(vcpu))
5414		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5415
5416	return ret;
5417}
5418
5419static void enable_irq_window(struct kvm_vcpu *vcpu)
5420{
5421	struct vcpu_svm *svm = to_svm(vcpu);
5422
5423	if (kvm_vcpu_apicv_active(vcpu))
5424		return;
5425
5426	/*
5427	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5428	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5429	 * get that intercept, this function will be called again though and
5430	 * we'll get the vintr intercept. However, if the vGIF feature is
5431	 * enabled, the STGI interception will not occur. Enable the irq
5432	 * window under the assumption that the hardware will set the GIF.
5433	 */
5434	if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5435		svm_set_vintr(svm);
5436		svm_inject_irq(svm, 0x0);
5437	}
5438}
5439
5440static void enable_nmi_window(struct kvm_vcpu *vcpu)
5441{
5442	struct vcpu_svm *svm = to_svm(vcpu);
5443
5444	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5445	    == HF_NMI_MASK)
5446		return; /* IRET will cause a vm exit */
5447
5448	if (!gif_set(svm)) {
5449		if (vgif_enabled(svm))
5450			set_intercept(svm, INTERCEPT_STGI);
5451		return; /* STGI will cause a vm exit */
5452	}
5453
5454	if (svm->nested.exit_required)
5455		return; /* we're not going to run the guest yet */
5456
5457	/*
5458	 * Something prevents NMI from been injected. Single step over possible
5459	 * problem (IRET or exception injection or interrupt shadow)
5460	 */
5461	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5462	svm->nmi_singlestep = true;
5463	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5464}
5465
5466static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5467{
5468	return 0;
5469}
5470
5471static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5472{
5473	return 0;
5474}
5475
5476static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5477{
5478	struct vcpu_svm *svm = to_svm(vcpu);
5479
5480	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5481		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5482	else
5483		svm->asid_generation--;
5484}
5485
5486static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
5487{
5488	struct vcpu_svm *svm = to_svm(vcpu);
5489
5490	invlpga(gva, svm->vmcb->control.asid);
5491}
5492
5493static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5494{
5495}
5496
5497static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5498{
5499	struct vcpu_svm *svm = to_svm(vcpu);
5500
5501	if (svm_nested_virtualize_tpr(vcpu))
5502		return;
5503
5504	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5505		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5506		kvm_set_cr8(vcpu, cr8);
5507	}
5508}
5509
5510static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5511{
5512	struct vcpu_svm *svm = to_svm(vcpu);
5513	u64 cr8;
5514
5515	if (svm_nested_virtualize_tpr(vcpu) ||
5516	    kvm_vcpu_apicv_active(vcpu))
5517		return;
5518
5519	cr8 = kvm_get_cr8(vcpu);
5520	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5521	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5522}
5523
5524static void svm_complete_interrupts(struct vcpu_svm *svm)
5525{
5526	u8 vector;
5527	int type;
5528	u32 exitintinfo = svm->vmcb->control.exit_int_info;
5529	unsigned int3_injected = svm->int3_injected;
5530
5531	svm->int3_injected = 0;
5532
5533	/*
5534	 * If we've made progress since setting HF_IRET_MASK, we've
5535	 * executed an IRET and can allow NMI injection.
5536	 */
5537	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5538	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5539		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5540		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5541	}
5542
5543	svm->vcpu.arch.nmi_injected = false;
5544	kvm_clear_exception_queue(&svm->vcpu);
5545	kvm_clear_interrupt_queue(&svm->vcpu);
5546
5547	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5548		return;
5549
5550	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5551
5552	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5553	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5554
5555	switch (type) {
5556	case SVM_EXITINTINFO_TYPE_NMI:
5557		svm->vcpu.arch.nmi_injected = true;
5558		break;
5559	case SVM_EXITINTINFO_TYPE_EXEPT:
5560		/*
5561		 * In case of software exceptions, do not reinject the vector,
5562		 * but re-execute the instruction instead. Rewind RIP first
5563		 * if we emulated INT3 before.
5564		 */
5565		if (kvm_exception_is_soft(vector)) {
5566			if (vector == BP_VECTOR && int3_injected &&
5567			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5568				kvm_rip_write(&svm->vcpu,
5569					      kvm_rip_read(&svm->vcpu) -
5570					      int3_injected);
5571			break;
5572		}
5573		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5574			u32 err = svm->vmcb->control.exit_int_info_err;
5575			kvm_requeue_exception_e(&svm->vcpu, vector, err);
5576
5577		} else
5578			kvm_requeue_exception(&svm->vcpu, vector);
5579		break;
5580	case SVM_EXITINTINFO_TYPE_INTR:
5581		kvm_queue_interrupt(&svm->vcpu, vector, false);
5582		break;
5583	default:
5584		break;
5585	}
5586}
5587
5588static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5589{
5590	struct vcpu_svm *svm = to_svm(vcpu);
5591	struct vmcb_control_area *control = &svm->vmcb->control;
5592
5593	control->exit_int_info = control->event_inj;
5594	control->exit_int_info_err = control->event_inj_err;
5595	control->event_inj = 0;
5596	svm_complete_interrupts(svm);
5597}
5598
5599static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5600{
5601	struct vcpu_svm *svm = to_svm(vcpu);
5602
5603	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5604	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5605	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5606
5607	/*
5608	 * A vmexit emulation is required before the vcpu can be executed
5609	 * again.
5610	 */
5611	if (unlikely(svm->nested.exit_required))
5612		return;
5613
5614	/*
5615	 * Disable singlestep if we're injecting an interrupt/exception.
5616	 * We don't want our modified rflags to be pushed on the stack where
5617	 * we might not be able to easily reset them if we disabled NMI
5618	 * singlestep later.
5619	 */
5620	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5621		/*
5622		 * Event injection happens before external interrupts cause a
5623		 * vmexit and interrupts are disabled here, so smp_send_reschedule
5624		 * is enough to force an immediate vmexit.
5625		 */
5626		disable_nmi_singlestep(svm);
5627		smp_send_reschedule(vcpu->cpu);
5628	}
5629
5630	pre_svm_run(svm);
5631
5632	sync_lapic_to_cr8(vcpu);
5633
5634	svm->vmcb->save.cr2 = vcpu->arch.cr2;
5635
5636	clgi();
5637	kvm_load_guest_xcr0(vcpu);
5638
5639	if (lapic_in_kernel(vcpu) &&
5640		vcpu->arch.apic->lapic_timer.timer_advance_ns)
5641		kvm_wait_lapic_expire(vcpu);
5642
5643	/*
5644	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5645	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5646	 * is no need to worry about the conditional branch over the wrmsr
5647	 * being speculatively taken.
5648	 */
5649	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5650
5651	local_irq_enable();
5652
5653	asm volatile (
5654		"push %%" _ASM_BP "; \n\t"
5655		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5656		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5657		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5658		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5659		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5660		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5661#ifdef CONFIG_X86_64
5662		"mov %c[r8](%[svm]),  %%r8  \n\t"
5663		"mov %c[r9](%[svm]),  %%r9  \n\t"
5664		"mov %c[r10](%[svm]), %%r10 \n\t"
5665		"mov %c[r11](%[svm]), %%r11 \n\t"
5666		"mov %c[r12](%[svm]), %%r12 \n\t"
5667		"mov %c[r13](%[svm]), %%r13 \n\t"
5668		"mov %c[r14](%[svm]), %%r14 \n\t"
5669		"mov %c[r15](%[svm]), %%r15 \n\t"
5670#endif
5671
5672		/* Enter guest mode */
5673		"push %%" _ASM_AX " \n\t"
5674		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5675		__ex("vmload %%" _ASM_AX) "\n\t"
5676		__ex("vmrun %%" _ASM_AX) "\n\t"
5677		__ex("vmsave %%" _ASM_AX) "\n\t"
5678		"pop %%" _ASM_AX " \n\t"
5679
5680		/* Save guest registers, load host registers */
5681		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5682		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5683		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5684		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5685		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5686		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5687#ifdef CONFIG_X86_64
5688		"mov %%r8,  %c[r8](%[svm]) \n\t"
5689		"mov %%r9,  %c[r9](%[svm]) \n\t"
5690		"mov %%r10, %c[r10](%[svm]) \n\t"
5691		"mov %%r11, %c[r11](%[svm]) \n\t"
5692		"mov %%r12, %c[r12](%[svm]) \n\t"
5693		"mov %%r13, %c[r13](%[svm]) \n\t"
5694		"mov %%r14, %c[r14](%[svm]) \n\t"
5695		"mov %%r15, %c[r15](%[svm]) \n\t"
5696		/*
5697		* Clear host registers marked as clobbered to prevent
5698		* speculative use.
5699		*/
5700		"xor %%r8d, %%r8d \n\t"
5701		"xor %%r9d, %%r9d \n\t"
5702		"xor %%r10d, %%r10d \n\t"
5703		"xor %%r11d, %%r11d \n\t"
5704		"xor %%r12d, %%r12d \n\t"
5705		"xor %%r13d, %%r13d \n\t"
5706		"xor %%r14d, %%r14d \n\t"
5707		"xor %%r15d, %%r15d \n\t"
5708#endif
5709		"xor %%ebx, %%ebx \n\t"
5710		"xor %%ecx, %%ecx \n\t"
5711		"xor %%edx, %%edx \n\t"
5712		"xor %%esi, %%esi \n\t"
5713		"xor %%edi, %%edi \n\t"
5714		"pop %%" _ASM_BP
5715		:
5716		: [svm]"a"(svm),
5717		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5718		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5719		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5720		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5721		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5722		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5723		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5724#ifdef CONFIG_X86_64
5725		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5726		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5727		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5728		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5729		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5730		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5731		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5732		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5733#endif
5734		: "cc", "memory"
5735#ifdef CONFIG_X86_64
5736		, "rbx", "rcx", "rdx", "rsi", "rdi"
5737		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5738#else
5739		, "ebx", "ecx", "edx", "esi", "edi"
5740#endif
5741		);
5742
5743	/* Eliminate branch target predictions from guest mode */
5744	vmexit_fill_RSB();
5745
5746#ifdef CONFIG_X86_64
5747	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5748#else
5749	loadsegment(fs, svm->host.fs);
5750#ifndef CONFIG_X86_32_LAZY_GS
5751	loadsegment(gs, svm->host.gs);
5752#endif
5753#endif
5754
5755	/*
5756	 * We do not use IBRS in the kernel. If this vCPU has used the
5757	 * SPEC_CTRL MSR it may have left it on; save the value and
5758	 * turn it off. This is much more efficient than blindly adding
5759	 * it to the atomic save/restore list. Especially as the former
5760	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5761	 *
5762	 * For non-nested case:
5763	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5764	 * save it.
5765	 *
5766	 * For nested case:
5767	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5768	 * save it.
5769	 */
5770	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5771		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5772
5773	reload_tss(vcpu);
5774
5775	local_irq_disable();
5776
5777	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5778
5779	vcpu->arch.cr2 = svm->vmcb->save.cr2;
5780	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5781	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5782	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5783
5784	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5785		kvm_before_interrupt(&svm->vcpu);
5786
5787	kvm_put_guest_xcr0(vcpu);
5788	stgi();
5789
5790	/* Any pending NMI will happen here */
5791
5792	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5793		kvm_after_interrupt(&svm->vcpu);
5794
5795	sync_cr8_to_lapic(vcpu);
5796
5797	svm->next_rip = 0;
5798
5799	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5800
5801	/* if exit due to PF check for async PF */
5802	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5803		svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5804
5805	if (npt_enabled) {
5806		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5807		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5808	}
5809
5810	/*
5811	 * We need to handle MC intercepts here before the vcpu has a chance to
5812	 * change the physical cpu
5813	 */
5814	if (unlikely(svm->vmcb->control.exit_code ==
5815		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
5816		svm_handle_mce(svm);
5817
5818	mark_all_clean(svm->vmcb);
5819}
5820STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5821
5822static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5823{
5824	struct vcpu_svm *svm = to_svm(vcpu);
5825
5826	svm->vmcb->save.cr3 = __sme_set(root);
5827	mark_dirty(svm->vmcb, VMCB_CR);
5828}
5829
5830static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5831{
5832	struct vcpu_svm *svm = to_svm(vcpu);
5833
5834	svm->vmcb->control.nested_cr3 = __sme_set(root);
5835	mark_dirty(svm->vmcb, VMCB_NPT);
5836
5837	/* Also sync guest cr3 here in case we live migrate */
5838	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5839	mark_dirty(svm->vmcb, VMCB_CR);
5840}
5841
5842static int is_disabled(void)
5843{
5844	u64 vm_cr;
5845
5846	rdmsrl(MSR_VM_CR, vm_cr);
5847	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5848		return 1;
5849
5850	return 0;
5851}
5852
5853static void
5854svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5855{
5856	/*
5857	 * Patch in the VMMCALL instruction:
5858	 */
5859	hypercall[0] = 0x0f;
5860	hypercall[1] = 0x01;
5861	hypercall[2] = 0xd9;
5862}
5863
5864static int __init svm_check_processor_compat(void)
5865{
5866	return 0;
5867}
5868
5869static bool svm_cpu_has_accelerated_tpr(void)
5870{
5871	return false;
5872}
5873
5874static bool svm_has_emulated_msr(int index)
5875{
5876	switch (index) {
5877	case MSR_IA32_MCG_EXT_CTL:
5878	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
5879		return false;
5880	default:
5881		break;
5882	}
5883
5884	return true;
5885}
5886
5887static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5888{
5889	return 0;
5890}
5891
5892static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5893{
5894	struct vcpu_svm *svm = to_svm(vcpu);
5895
5896	/* Update nrips enabled cache */
5897	svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5898
5899	if (!kvm_vcpu_apicv_active(vcpu))
5900		return;
5901
5902	guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5903}
5904
5905#define F(x) bit(X86_FEATURE_##x)
5906
5907static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5908{
5909	switch (func) {
5910	case 0x1:
5911		if (avic)
5912			entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5913		break;
5914	case 0x80000001:
5915		if (nested)
5916			entry->ecx |= (1 << 2); /* Set SVM bit */
5917		break;
5918	case 0x80000008:
5919		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5920		     boot_cpu_has(X86_FEATURE_AMD_SSBD))
5921			entry->ebx |= F(VIRT_SSBD);
5922		break;
5923	case 0x8000000A:
5924		entry->eax = 1; /* SVM revision 1 */
5925		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5926				   ASID emulation to nested SVM */
5927		entry->ecx = 0; /* Reserved */
5928		entry->edx = 0; /* Per default do not support any
5929				   additional features */
5930
5931		/* Support next_rip if host supports it */
5932		if (boot_cpu_has(X86_FEATURE_NRIPS))
5933			entry->edx |= F(NRIPS);
5934
5935		/* Support NPT for the guest if enabled */
5936		if (npt_enabled)
5937			entry->edx |= F(NPT);
5938
5939		break;
5940	case 0x8000001F:
5941		/* Support memory encryption cpuid if host supports it */
5942		if (boot_cpu_has(X86_FEATURE_SEV))
5943			cpuid(0x8000001f, &entry->eax, &entry->ebx,
5944				&entry->ecx, &entry->edx);
5945
5946	}
5947}
5948
5949static int svm_get_lpage_level(void)
5950{
5951	return PT_PDPE_LEVEL;
5952}
5953
5954static bool svm_rdtscp_supported(void)
5955{
5956	return boot_cpu_has(X86_FEATURE_RDTSCP);
5957}
5958
5959static bool svm_invpcid_supported(void)
5960{
5961	return false;
5962}
5963
5964static bool svm_mpx_supported(void)
5965{
5966	return false;
5967}
5968
5969static bool svm_xsaves_supported(void)
5970{
5971	return false;
5972}
5973
5974static bool svm_umip_emulated(void)
5975{
5976	return false;
5977}
5978
5979static bool svm_pt_supported(void)
5980{
5981	return false;
5982}
5983
5984static bool svm_has_wbinvd_exit(void)
5985{
5986	return true;
5987}
5988
5989#define PRE_EX(exit)  { .exit_code = (exit), \
5990			.stage = X86_ICPT_PRE_EXCEPT, }
5991#define POST_EX(exit) { .exit_code = (exit), \
5992			.stage = X86_ICPT_POST_EXCEPT, }
5993#define POST_MEM(exit) { .exit_code = (exit), \
5994			.stage = X86_ICPT_POST_MEMACCESS, }
5995
5996static const struct __x86_intercept {
5997	u32 exit_code;
5998	enum x86_intercept_stage stage;
5999} x86_intercept_map[] = {
6000	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
6001	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
6002	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
6003	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
6004	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
6005	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
6006	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
6007	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
6008	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
6009	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
6010	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
6011	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
6012	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
6013	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
6014	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
6015	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
6016	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
6017	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
6018	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
6019	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
6020	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
6021	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
6022	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
6023	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
6024	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
6025	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
6026	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
6027	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
6028	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
6029	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
6030	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
6031	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
6032	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
6033	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
6034	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
6035	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
6036	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
6037	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
6038	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
6039	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
6040	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
6041	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
6042	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
6043	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
6044	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
6045	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
6046	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
6047};
6048
6049#undef PRE_EX
6050#undef POST_EX
6051#undef POST_MEM
6052
6053static int svm_check_intercept(struct kvm_vcpu *vcpu,
6054			       struct x86_instruction_info *info,
6055			       enum x86_intercept_stage stage)
6056{
6057	struct vcpu_svm *svm = to_svm(vcpu);
6058	int vmexit, ret = X86EMUL_CONTINUE;
6059	struct __x86_intercept icpt_info;
6060	struct vmcb *vmcb = svm->vmcb;
6061
6062	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
6063		goto out;
6064
6065	icpt_info = x86_intercept_map[info->intercept];
6066
6067	if (stage != icpt_info.stage)
6068		goto out;
6069
6070	switch (icpt_info.exit_code) {
6071	case SVM_EXIT_READ_CR0:
6072		if (info->intercept == x86_intercept_cr_read)
6073			icpt_info.exit_code += info->modrm_reg;
6074		break;
6075	case SVM_EXIT_WRITE_CR0: {
6076		unsigned long cr0, val;
6077		u64 intercept;
6078
6079		if (info->intercept == x86_intercept_cr_write)
6080			icpt_info.exit_code += info->modrm_reg;
6081
6082		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
6083		    info->intercept == x86_intercept_clts)
6084			break;
6085
6086		intercept = svm->nested.intercept;
6087
6088		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6089			break;
6090
6091		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6092		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6093
6094		if (info->intercept == x86_intercept_lmsw) {
6095			cr0 &= 0xfUL;
6096			val &= 0xfUL;
6097			/* lmsw can't clear PE - catch this here */
6098			if (cr0 & X86_CR0_PE)
6099				val |= X86_CR0_PE;
6100		}
6101
6102		if (cr0 ^ val)
6103			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6104
6105		break;
6106	}
6107	case SVM_EXIT_READ_DR0:
6108	case SVM_EXIT_WRITE_DR0:
6109		icpt_info.exit_code += info->modrm_reg;
6110		break;
6111	case SVM_EXIT_MSR:
6112		if (info->intercept == x86_intercept_wrmsr)
6113			vmcb->control.exit_info_1 = 1;
6114		else
6115			vmcb->control.exit_info_1 = 0;
6116		break;
6117	case SVM_EXIT_PAUSE:
6118		/*
6119		 * We get this for NOP only, but pause
6120		 * is rep not, check this here
6121		 */
6122		if (info->rep_prefix != REPE_PREFIX)
6123			goto out;
6124		break;
6125	case SVM_EXIT_IOIO: {
6126		u64 exit_info;
6127		u32 bytes;
6128
6129		if (info->intercept == x86_intercept_in ||
6130		    info->intercept == x86_intercept_ins) {
6131			exit_info = ((info->src_val & 0xffff) << 16) |
6132				SVM_IOIO_TYPE_MASK;
6133			bytes = info->dst_bytes;
6134		} else {
6135			exit_info = (info->dst_val & 0xffff) << 16;
6136			bytes = info->src_bytes;
6137		}
6138
6139		if (info->intercept == x86_intercept_outs ||
6140		    info->intercept == x86_intercept_ins)
6141			exit_info |= SVM_IOIO_STR_MASK;
6142
6143		if (info->rep_prefix)
6144			exit_info |= SVM_IOIO_REP_MASK;
6145
6146		bytes = min(bytes, 4u);
6147
6148		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6149
6150		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6151
6152		vmcb->control.exit_info_1 = exit_info;
6153		vmcb->control.exit_info_2 = info->next_rip;
6154
6155		break;
6156	}
6157	default:
6158		break;
6159	}
6160
6161	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6162	if (static_cpu_has(X86_FEATURE_NRIPS))
6163		vmcb->control.next_rip  = info->next_rip;
6164	vmcb->control.exit_code = icpt_info.exit_code;
6165	vmexit = nested_svm_exit_handled(svm);
6166
6167	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6168					   : X86EMUL_CONTINUE;
6169
6170out:
6171	return ret;
6172}
6173
6174static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6175{
6176
6177}
6178
6179static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6180{
6181	if (pause_filter_thresh)
6182		shrink_ple_window(vcpu);
6183}
6184
6185static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6186{
6187	if (avic_handle_apic_id_update(vcpu) != 0)
6188		return;
6189	avic_handle_dfr_update(vcpu);
6190	avic_handle_ldr_update(vcpu);
6191}
6192
6193static void svm_setup_mce(struct kvm_vcpu *vcpu)
6194{
6195	/* [63:9] are reserved. */
6196	vcpu->arch.mcg_cap &= 0x1ff;
6197}
6198
6199static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6200{
6201	struct vcpu_svm *svm = to_svm(vcpu);
6202
6203	/* Per APM Vol.2 15.22.2 "Response to SMI" */
6204	if (!gif_set(svm))
6205		return 0;
6206
6207	if (is_guest_mode(&svm->vcpu) &&
6208	    svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6209		/* TODO: Might need to set exit_info_1 and exit_info_2 here */
6210		svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6211		svm->nested.exit_required = true;
6212		return 0;
6213	}
6214
6215	return 1;
6216}
6217
6218static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6219{
6220	struct vcpu_svm *svm = to_svm(vcpu);
6221	int ret;
6222
6223	if (is_guest_mode(vcpu)) {
6224		/* FED8h - SVM Guest */
6225		put_smstate(u64, smstate, 0x7ed8, 1);
6226		/* FEE0h - SVM Guest VMCB Physical Address */
6227		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6228
6229		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6230		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6231		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6232
6233		ret = nested_svm_vmexit(svm);
6234		if (ret)
6235			return ret;
6236	}
6237	return 0;
6238}
6239
6240static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
6241{
6242	struct vcpu_svm *svm = to_svm(vcpu);
6243	struct vmcb *nested_vmcb;
6244	struct kvm_host_map map;
6245	u64 guest;
6246	u64 vmcb;
6247
6248	guest = GET_SMSTATE(u64, smstate, 0x7ed8);
6249	vmcb = GET_SMSTATE(u64, smstate, 0x7ee0);
6250
6251	if (guest) {
6252		if (kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(vmcb), &map) == -EINVAL)
6253			return 1;
6254		nested_vmcb = map.hva;
6255		enter_svm_guest_mode(svm, vmcb, nested_vmcb, &map);
6256	}
6257	return 0;
6258}
6259
6260static int enable_smi_window(struct kvm_vcpu *vcpu)
6261{
6262	struct vcpu_svm *svm = to_svm(vcpu);
6263
6264	if (!gif_set(svm)) {
6265		if (vgif_enabled(svm))
6266			set_intercept(svm, INTERCEPT_STGI);
6267		/* STGI will cause a vm exit */
6268		return 1;
6269	}
6270	return 0;
6271}
6272
6273static int sev_asid_new(void)
6274{
6275	int pos;
6276
6277	/*
6278	 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6279	 */
6280	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6281	if (pos >= max_sev_asid)
6282		return -EBUSY;
6283
6284	set_bit(pos, sev_asid_bitmap);
6285	return pos + 1;
6286}
6287
6288static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6289{
6290	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6291	int asid, ret;
6292
6293	ret = -EBUSY;
6294	if (unlikely(sev->active))
6295		return ret;
6296
6297	asid = sev_asid_new();
6298	if (asid < 0)
6299		return ret;
6300
6301	ret = sev_platform_init(&argp->error);
6302	if (ret)
6303		goto e_free;
6304
6305	sev->active = true;
6306	sev->asid = asid;
6307	INIT_LIST_HEAD(&sev->regions_list);
6308
6309	return 0;
6310
6311e_free:
6312	__sev_asid_free(asid);
6313	return ret;
6314}
6315
6316static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6317{
6318	struct sev_data_activate *data;
6319	int asid = sev_get_asid(kvm);
6320	int ret;
6321
6322	wbinvd_on_all_cpus();
6323
6324	ret = sev_guest_df_flush(error);
6325	if (ret)
6326		return ret;
6327
6328	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6329	if (!data)
6330		return -ENOMEM;
6331
6332	/* activate ASID on the given handle */
6333	data->handle = handle;
6334	data->asid   = asid;
6335	ret = sev_guest_activate(data, error);
6336	kfree(data);
6337
6338	return ret;
6339}
6340
6341static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6342{
6343	struct fd f;
6344	int ret;
6345
6346	f = fdget(fd);
6347	if (!f.file)
6348		return -EBADF;
6349
6350	ret = sev_issue_cmd_external_user(f.file, id, data, error);
6351
6352	fdput(f);
6353	return ret;
6354}
6355
6356static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6357{
6358	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6359
6360	return __sev_issue_cmd(sev->fd, id, data, error);
6361}
6362
6363static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6364{
6365	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6366	struct sev_data_launch_start *start;
6367	struct kvm_sev_launch_start params;
6368	void *dh_blob, *session_blob;
6369	int *error = &argp->error;
6370	int ret;
6371
6372	if (!sev_guest(kvm))
6373		return -ENOTTY;
6374
6375	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6376		return -EFAULT;
6377
6378	start = kzalloc(sizeof(*start), GFP_KERNEL_ACCOUNT);
6379	if (!start)
6380		return -ENOMEM;
6381
6382	dh_blob = NULL;
6383	if (params.dh_uaddr) {
6384		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6385		if (IS_ERR(dh_blob)) {
6386			ret = PTR_ERR(dh_blob);
6387			goto e_free;
6388		}
6389
6390		start->dh_cert_address = __sme_set(__pa(dh_blob));
6391		start->dh_cert_len = params.dh_len;
6392	}
6393
6394	session_blob = NULL;
6395	if (params.session_uaddr) {
6396		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6397		if (IS_ERR(session_blob)) {
6398			ret = PTR_ERR(session_blob);
6399			goto e_free_dh;
6400		}
6401
6402		start->session_address = __sme_set(__pa(session_blob));
6403		start->session_len = params.session_len;
6404	}
6405
6406	start->handle = params.handle;
6407	start->policy = params.policy;
6408
6409	/* create memory encryption context */
6410	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6411	if (ret)
6412		goto e_free_session;
6413
6414	/* Bind ASID to this guest */
6415	ret = sev_bind_asid(kvm, start->handle, error);
6416	if (ret)
6417		goto e_free_session;
6418
6419	/* return handle to userspace */
6420	params.handle = start->handle;
6421	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6422		sev_unbind_asid(kvm, start->handle);
6423		ret = -EFAULT;
6424		goto e_free_session;
6425	}
6426
6427	sev->handle = start->handle;
6428	sev->fd = argp->sev_fd;
6429
6430e_free_session:
6431	kfree(session_blob);
6432e_free_dh:
6433	kfree(dh_blob);
6434e_free:
6435	kfree(start);
6436	return ret;
6437}
6438
6439static unsigned long get_num_contig_pages(unsigned long idx,
6440				struct page **inpages, unsigned long npages)
6441{
6442	unsigned long paddr, next_paddr;
6443	unsigned long i = idx + 1, pages = 1;
6444
6445	/* find the number of contiguous pages starting from idx */
6446	paddr = __sme_page_pa(inpages[idx]);
6447	while (i < npages) {
6448		next_paddr = __sme_page_pa(inpages[i++]);
6449		if ((paddr + PAGE_SIZE) == next_paddr) {
6450			pages++;
6451			paddr = next_paddr;
6452			continue;
6453		}
6454		break;
6455	}
6456
6457	return pages;
6458}
6459
6460static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6461{
6462	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
6463	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6464	struct kvm_sev_launch_update_data params;
6465	struct sev_data_launch_update_data *data;
6466	struct page **inpages;
6467	int ret;
6468
6469	if (!sev_guest(kvm))
6470		return -ENOTTY;
6471
6472	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6473		return -EFAULT;
6474
6475	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6476	if (!data)
6477		return -ENOMEM;
6478
6479	vaddr = params.uaddr;
6480	size = params.len;
6481	vaddr_end = vaddr + size;
6482
6483	/* Lock the user memory. */
6484	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6485	if (!inpages) {
6486		ret = -ENOMEM;
6487		goto e_free;
6488	}
6489
6490	/*
6491	 * The LAUNCH_UPDATE command will perform in-place encryption of the
6492	 * memory content (i.e it will write the same memory region with C=1).
6493	 * It's possible that the cache may contain the data with C=0, i.e.,
6494	 * unencrypted so invalidate it first.
6495	 */
6496	sev_clflush_pages(inpages, npages);
6497
6498	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6499		int offset, len;
6500
6501		/*
6502		 * If the user buffer is not page-aligned, calculate the offset
6503		 * within the page.
6504		 */
6505		offset = vaddr & (PAGE_SIZE - 1);
6506
6507		/* Calculate the number of pages that can be encrypted in one go. */
6508		pages = get_num_contig_pages(i, inpages, npages);
6509
6510		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6511
6512		data->handle = sev->handle;
6513		data->len = len;
6514		data->address = __sme_page_pa(inpages[i]) + offset;
6515		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6516		if (ret)
6517			goto e_unpin;
6518
6519		size -= len;
6520		next_vaddr = vaddr + len;
6521	}
6522
6523e_unpin:
6524	/* content of memory is updated, mark pages dirty */
6525	for (i = 0; i < npages; i++) {
6526		set_page_dirty_lock(inpages[i]);
6527		mark_page_accessed(inpages[i]);
6528	}
6529	/* unlock the user pages */
6530	sev_unpin_memory(kvm, inpages, npages);
6531e_free:
6532	kfree(data);
6533	return ret;
6534}
6535
6536static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6537{
6538	void __user *measure = (void __user *)(uintptr_t)argp->data;
6539	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6540	struct sev_data_launch_measure *data;
6541	struct kvm_sev_launch_measure params;
6542	void __user *p = NULL;
6543	void *blob = NULL;
6544	int ret;
6545
6546	if (!sev_guest(kvm))
6547		return -ENOTTY;
6548
6549	if (copy_from_user(&params, measure, sizeof(params)))
6550		return -EFAULT;
6551
6552	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6553	if (!data)
6554		return -ENOMEM;
6555
6556	/* User wants to query the blob length */
6557	if (!params.len)
6558		goto cmd;
6559
6560	p = (void __user *)(uintptr_t)params.uaddr;
6561	if (p) {
6562		if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6563			ret = -EINVAL;
6564			goto e_free;
6565		}
6566
6567		ret = -ENOMEM;
6568		blob = kmalloc(params.len, GFP_KERNEL);
6569		if (!blob)
6570			goto e_free;
6571
6572		data->address = __psp_pa(blob);
6573		data->len = params.len;
6574	}
6575
6576cmd:
6577	data->handle = sev->handle;
6578	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6579
6580	/*
6581	 * If we query the session length, FW responded with expected data.
6582	 */
6583	if (!params.len)
6584		goto done;
6585
6586	if (ret)
6587		goto e_free_blob;
6588
6589	if (blob) {
6590		if (copy_to_user(p, blob, params.len))
6591			ret = -EFAULT;
6592	}
6593
6594done:
6595	params.len = data->len;
6596	if (copy_to_user(measure, &params, sizeof(params)))
6597		ret = -EFAULT;
6598e_free_blob:
6599	kfree(blob);
6600e_free:
6601	kfree(data);
6602	return ret;
6603}
6604
6605static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6606{
6607	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6608	struct sev_data_launch_finish *data;
6609	int ret;
6610
6611	if (!sev_guest(kvm))
6612		return -ENOTTY;
6613
6614	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6615	if (!data)
6616		return -ENOMEM;
6617
6618	data->handle = sev->handle;
6619	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6620
6621	kfree(data);
6622	return ret;
6623}
6624
6625static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6626{
6627	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6628	struct kvm_sev_guest_status params;
6629	struct sev_data_guest_status *data;
6630	int ret;
6631
6632	if (!sev_guest(kvm))
6633		return -ENOTTY;
6634
6635	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6636	if (!data)
6637		return -ENOMEM;
6638
6639	data->handle = sev->handle;
6640	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6641	if (ret)
6642		goto e_free;
6643
6644	params.policy = data->policy;
6645	params.state = data->state;
6646	params.handle = data->handle;
6647
6648	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6649		ret = -EFAULT;
6650e_free:
6651	kfree(data);
6652	return ret;
6653}
6654
6655static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6656			       unsigned long dst, int size,
6657			       int *error, bool enc)
6658{
6659	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6660	struct sev_data_dbg *data;
6661	int ret;
6662
6663	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6664	if (!data)
6665		return -ENOMEM;
6666
6667	data->handle = sev->handle;
6668	data->dst_addr = dst;
6669	data->src_addr = src;
6670	data->len = size;
6671
6672	ret = sev_issue_cmd(kvm,
6673			    enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6674			    data, error);
6675	kfree(data);
6676	return ret;
6677}
6678
6679static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6680			     unsigned long dst_paddr, int sz, int *err)
6681{
6682	int offset;
6683
6684	/*
6685	 * Its safe to read more than we are asked, caller should ensure that
6686	 * destination has enough space.
6687	 */
6688	src_paddr = round_down(src_paddr, 16);
6689	offset = src_paddr & 15;
6690	sz = round_up(sz + offset, 16);
6691
6692	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6693}
6694
6695static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6696				  unsigned long __user dst_uaddr,
6697				  unsigned long dst_paddr,
6698				  int size, int *err)
6699{
6700	struct page *tpage = NULL;
6701	int ret, offset;
6702
6703	/* if inputs are not 16-byte then use intermediate buffer */
6704	if (!IS_ALIGNED(dst_paddr, 16) ||
6705	    !IS_ALIGNED(paddr,     16) ||
6706	    !IS_ALIGNED(size,      16)) {
6707		tpage = (void *)alloc_page(GFP_KERNEL);
6708		if (!tpage)
6709			return -ENOMEM;
6710
6711		dst_paddr = __sme_page_pa(tpage);
6712	}
6713
6714	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6715	if (ret)
6716		goto e_free;
6717
6718	if (tpage) {
6719		offset = paddr & 15;
6720		if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6721				 page_address(tpage) + offset, size))
6722			ret = -EFAULT;
6723	}
6724
6725e_free:
6726	if (tpage)
6727		__free_page(tpage);
6728
6729	return ret;
6730}
6731
6732static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6733				  unsigned long __user vaddr,
6734				  unsigned long dst_paddr,
6735				  unsigned long __user dst_vaddr,
6736				  int size, int *error)
6737{
6738	struct page *src_tpage = NULL;
6739	struct page *dst_tpage = NULL;
6740	int ret, len = size;
6741
6742	/* If source buffer is not aligned then use an intermediate buffer */
6743	if (!IS_ALIGNED(vaddr, 16)) {
6744		src_tpage = alloc_page(GFP_KERNEL);
6745		if (!src_tpage)
6746			return -ENOMEM;
6747
6748		if (copy_from_user(page_address(src_tpage),
6749				(void __user *)(uintptr_t)vaddr, size)) {
6750			__free_page(src_tpage);
6751			return -EFAULT;
6752		}
6753
6754		paddr = __sme_page_pa(src_tpage);
6755	}
6756
6757	/*
6758	 *  If destination buffer or length is not aligned then do read-modify-write:
6759	 *   - decrypt destination in an intermediate buffer
6760	 *   - copy the source buffer in an intermediate buffer
6761	 *   - use the intermediate buffer as source buffer
6762	 */
6763	if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6764		int dst_offset;
6765
6766		dst_tpage = alloc_page(GFP_KERNEL);
6767		if (!dst_tpage) {
6768			ret = -ENOMEM;
6769			goto e_free;
6770		}
6771
6772		ret = __sev_dbg_decrypt(kvm, dst_paddr,
6773					__sme_page_pa(dst_tpage), size, error);
6774		if (ret)
6775			goto e_free;
6776
6777		/*
6778		 *  If source is kernel buffer then use memcpy() otherwise
6779		 *  copy_from_user().
6780		 */
6781		dst_offset = dst_paddr & 15;
6782
6783		if (src_tpage)
6784			memcpy(page_address(dst_tpage) + dst_offset,
6785			       page_address(src_tpage), size);
6786		else {
6787			if (copy_from_user(page_address(dst_tpage) + dst_offset,
6788					   (void __user *)(uintptr_t)vaddr, size)) {
6789				ret = -EFAULT;
6790				goto e_free;
6791			}
6792		}
6793
6794		paddr = __sme_page_pa(dst_tpage);
6795		dst_paddr = round_down(dst_paddr, 16);
6796		len = round_up(size, 16);
6797	}
6798
6799	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6800
6801e_free:
6802	if (src_tpage)
6803		__free_page(src_tpage);
6804	if (dst_tpage)
6805		__free_page(dst_tpage);
6806	return ret;
6807}
6808
6809static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6810{
6811	unsigned long vaddr, vaddr_end, next_vaddr;
6812	unsigned long dst_vaddr;
6813	struct page **src_p, **dst_p;
6814	struct kvm_sev_dbg debug;
6815	unsigned long n;
6816	unsigned int size;
6817	int ret;
6818
6819	if (!sev_guest(kvm))
6820		return -ENOTTY;
6821
6822	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6823		return -EFAULT;
6824
6825	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
6826		return -EINVAL;
6827	if (!debug.dst_uaddr)
6828		return -EINVAL;
6829
6830	vaddr = debug.src_uaddr;
6831	size = debug.len;
6832	vaddr_end = vaddr + size;
6833	dst_vaddr = debug.dst_uaddr;
6834
6835	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6836		int len, s_off, d_off;
6837
6838		/* lock userspace source and destination page */
6839		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6840		if (!src_p)
6841			return -EFAULT;
6842
6843		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6844		if (!dst_p) {
6845			sev_unpin_memory(kvm, src_p, n);
6846			return -EFAULT;
6847		}
6848
6849		/*
6850		 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6851		 * memory content (i.e it will write the same memory region with C=1).
6852		 * It's possible that the cache may contain the data with C=0, i.e.,
6853		 * unencrypted so invalidate it first.
6854		 */
6855		sev_clflush_pages(src_p, 1);
6856		sev_clflush_pages(dst_p, 1);
6857
6858		/*
6859		 * Since user buffer may not be page aligned, calculate the
6860		 * offset within the page.
6861		 */
6862		s_off = vaddr & ~PAGE_MASK;
6863		d_off = dst_vaddr & ~PAGE_MASK;
6864		len = min_t(size_t, (PAGE_SIZE - s_off), size);
6865
6866		if (dec)
6867			ret = __sev_dbg_decrypt_user(kvm,
6868						     __sme_page_pa(src_p[0]) + s_off,
6869						     dst_vaddr,
6870						     __sme_page_pa(dst_p[0]) + d_off,
6871						     len, &argp->error);
6872		else
6873			ret = __sev_dbg_encrypt_user(kvm,
6874						     __sme_page_pa(src_p[0]) + s_off,
6875						     vaddr,
6876						     __sme_page_pa(dst_p[0]) + d_off,
6877						     dst_vaddr,
6878						     len, &argp->error);
6879
6880		sev_unpin_memory(kvm, src_p, n);
6881		sev_unpin_memory(kvm, dst_p, n);
6882
6883		if (ret)
6884			goto err;
6885
6886		next_vaddr = vaddr + len;
6887		dst_vaddr = dst_vaddr + len;
6888		size -= len;
6889	}
6890err:
6891	return ret;
6892}
6893
6894static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6895{
6896	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6897	struct sev_data_launch_secret *data;
6898	struct kvm_sev_launch_secret params;
6899	struct page **pages;
6900	void *blob, *hdr;
6901	unsigned long n;
6902	int ret, offset;
6903
6904	if (!sev_guest(kvm))
6905		return -ENOTTY;
6906
6907	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6908		return -EFAULT;
6909
6910	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6911	if (!pages)
6912		return -ENOMEM;
6913
6914	/*
6915	 * The secret must be copied into contiguous memory region, lets verify
6916	 * that userspace memory pages are contiguous before we issue command.
6917	 */
6918	if (get_num_contig_pages(0, pages, n) != n) {
6919		ret = -EINVAL;
6920		goto e_unpin_memory;
6921	}
6922
6923	ret = -ENOMEM;
6924	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
6925	if (!data)
6926		goto e_unpin_memory;
6927
6928	offset = params.guest_uaddr & (PAGE_SIZE - 1);
6929	data->guest_address = __sme_page_pa(pages[0]) + offset;
6930	data->guest_len = params.guest_len;
6931
6932	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6933	if (IS_ERR(blob)) {
6934		ret = PTR_ERR(blob);
6935		goto e_free;
6936	}
6937
6938	data->trans_address = __psp_pa(blob);
6939	data->trans_len = params.trans_len;
6940
6941	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6942	if (IS_ERR(hdr)) {
6943		ret = PTR_ERR(hdr);
6944		goto e_free_blob;
6945	}
6946	data->hdr_address = __psp_pa(hdr);
6947	data->hdr_len = params.hdr_len;
6948
6949	data->handle = sev->handle;
6950	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6951
6952	kfree(hdr);
6953
6954e_free_blob:
6955	kfree(blob);
6956e_free:
6957	kfree(data);
6958e_unpin_memory:
6959	sev_unpin_memory(kvm, pages, n);
6960	return ret;
6961}
6962
6963static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6964{
6965	struct kvm_sev_cmd sev_cmd;
6966	int r;
6967
6968	if (!svm_sev_enabled())
6969		return -ENOTTY;
6970
6971	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6972		return -EFAULT;
6973
6974	mutex_lock(&kvm->lock);
6975
6976	switch (sev_cmd.id) {
6977	case KVM_SEV_INIT:
6978		r = sev_guest_init(kvm, &sev_cmd);
6979		break;
6980	case KVM_SEV_LAUNCH_START:
6981		r = sev_launch_start(kvm, &sev_cmd);
6982		break;
6983	case KVM_SEV_LAUNCH_UPDATE_DATA:
6984		r = sev_launch_update_data(kvm, &sev_cmd);
6985		break;
6986	case KVM_SEV_LAUNCH_MEASURE:
6987		r = sev_launch_measure(kvm, &sev_cmd);
6988		break;
6989	case KVM_SEV_LAUNCH_FINISH:
6990		r = sev_launch_finish(kvm, &sev_cmd);
6991		break;
6992	case KVM_SEV_GUEST_STATUS:
6993		r = sev_guest_status(kvm, &sev_cmd);
6994		break;
6995	case KVM_SEV_DBG_DECRYPT:
6996		r = sev_dbg_crypt(kvm, &sev_cmd, true);
6997		break;
6998	case KVM_SEV_DBG_ENCRYPT:
6999		r = sev_dbg_crypt(kvm, &sev_cmd, false);
7000		break;
7001	case KVM_SEV_LAUNCH_SECRET:
7002		r = sev_launch_secret(kvm, &sev_cmd);
7003		break;
7004	default:
7005		r = -EINVAL;
7006		goto out;
7007	}
7008
7009	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
7010		r = -EFAULT;
7011
7012out:
7013	mutex_unlock(&kvm->lock);
7014	return r;
7015}
7016
7017static int svm_register_enc_region(struct kvm *kvm,
7018				   struct kvm_enc_region *range)
7019{
7020	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7021	struct enc_region *region;
7022	int ret = 0;
7023
7024	if (!sev_guest(kvm))
7025		return -ENOTTY;
7026
7027	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
7028		return -EINVAL;
7029
7030	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
7031	if (!region)
7032		return -ENOMEM;
7033
7034	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
7035	if (!region->pages) {
7036		ret = -ENOMEM;
7037		goto e_free;
7038	}
7039
7040	/*
7041	 * The guest may change the memory encryption attribute from C=0 -> C=1
7042	 * or vice versa for this memory range. Lets make sure caches are
7043	 * flushed to ensure that guest data gets written into memory with
7044	 * correct C-bit.
7045	 */
7046	sev_clflush_pages(region->pages, region->npages);
7047
7048	region->uaddr = range->addr;
7049	region->size = range->size;
7050
7051	mutex_lock(&kvm->lock);
7052	list_add_tail(&region->list, &sev->regions_list);
7053	mutex_unlock(&kvm->lock);
7054
7055	return ret;
7056
7057e_free:
7058	kfree(region);
7059	return ret;
7060}
7061
7062static struct enc_region *
7063find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
7064{
7065	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
7066	struct list_head *head = &sev->regions_list;
7067	struct enc_region *i;
7068
7069	list_for_each_entry(i, head, list) {
7070		if (i->uaddr == range->addr &&
7071		    i->size == range->size)
7072			return i;
7073	}
7074
7075	return NULL;
7076}
7077
7078
7079static int svm_unregister_enc_region(struct kvm *kvm,
7080				     struct kvm_enc_region *range)
7081{
7082	struct enc_region *region;
7083	int ret;
7084
7085	mutex_lock(&kvm->lock);
7086
7087	if (!sev_guest(kvm)) {
7088		ret = -ENOTTY;
7089		goto failed;
7090	}
7091
7092	region = find_enc_region(kvm, range);
7093	if (!region) {
7094		ret = -EINVAL;
7095		goto failed;
7096	}
7097
7098	__unregister_enc_region_locked(kvm, region);
7099
7100	mutex_unlock(&kvm->lock);
7101	return 0;
7102
7103failed:
7104	mutex_unlock(&kvm->lock);
7105	return ret;
7106}
7107
7108static bool svm_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7109{
7110	unsigned long cr4 = kvm_read_cr4(vcpu);
7111	bool smep = cr4 & X86_CR4_SMEP;
7112	bool smap = cr4 & X86_CR4_SMAP;
7113	bool is_user = svm_get_cpl(vcpu) == 3;
7114
7115	/*
7116	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
7117	 *
7118	 * Errata:
7119	 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
7120	 * possible that CPU microcode implementing DecodeAssist will fail
7121	 * to read bytes of instruction which caused #NPF. In this case,
7122	 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
7123	 * return 0 instead of the correct guest instruction bytes.
7124	 *
7125	 * This happens because CPU microcode reading instruction bytes
7126	 * uses a special opcode which attempts to read data using CPL=0
7127	 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
7128	 * fault, it gives up and returns no instruction bytes.
7129	 *
7130	 * Detection:
7131	 * We reach here in case CPU supports DecodeAssist, raised #NPF and
7132	 * returned 0 in GuestIntrBytes field of the VMCB.
7133	 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
7134	 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
7135	 * in case vCPU CPL==3 (Because otherwise guest would have triggered
7136	 * a SMEP fault instead of #NPF).
7137	 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
7138	 * As most guests enable SMAP if they have also enabled SMEP, use above
7139	 * logic in order to attempt minimize false-positive of detecting errata
7140	 * while still preserving all cases semantic correctness.
7141	 *
7142	 * Workaround:
7143	 * To determine what instruction the guest was executing, the hypervisor
7144	 * will have to decode the instruction at the instruction pointer.
7145	 *
7146	 * In non SEV guest, hypervisor will be able to read the guest
7147	 * memory to decode the instruction pointer when insn_len is zero
7148	 * so we return true to indicate that decoding is possible.
7149	 *
7150	 * But in the SEV guest, the guest memory is encrypted with the
7151	 * guest specific key and hypervisor will not be able to decode the
7152	 * instruction pointer so we will not able to workaround it. Lets
7153	 * print the error and request to kill the guest.
7154	 */
7155	if (smap && (!smep || is_user)) {
7156		if (!sev_guest(vcpu->kvm))
7157			return true;
7158
7159		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
7160		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7161	}
7162
7163	return false;
7164}
7165
7166static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7167{
7168	struct vcpu_svm *svm = to_svm(vcpu);
7169
7170	/*
7171	 * TODO: Last condition latch INIT signals on vCPU when
7172	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
7173	 * To properly emulate the INIT intercept, SVM should implement
7174	 * kvm_x86_ops->check_nested_events() and call nested_svm_vmexit()
7175	 * there if an INIT signal is pending.
7176	 */
7177	return !gif_set(svm) ||
7178		   (svm->vmcb->control.intercept & (1ULL << INTERCEPT_INIT));
7179}
7180
7181static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7182	.cpu_has_kvm_support = has_svm,
7183	.disabled_by_bios = is_disabled,
7184	.hardware_setup = svm_hardware_setup,
7185	.hardware_unsetup = svm_hardware_unsetup,
7186	.check_processor_compatibility = svm_check_processor_compat,
7187	.hardware_enable = svm_hardware_enable,
7188	.hardware_disable = svm_hardware_disable,
7189	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7190	.has_emulated_msr = svm_has_emulated_msr,
7191
7192	.vcpu_create = svm_create_vcpu,
7193	.vcpu_free = svm_free_vcpu,
7194	.vcpu_reset = svm_vcpu_reset,
7195
7196	.vm_alloc = svm_vm_alloc,
7197	.vm_free = svm_vm_free,
7198	.vm_init = avic_vm_init,
7199	.vm_destroy = svm_vm_destroy,
7200
7201	.prepare_guest_switch = svm_prepare_guest_switch,
7202	.vcpu_load = svm_vcpu_load,
7203	.vcpu_put = svm_vcpu_put,
7204	.vcpu_blocking = svm_vcpu_blocking,
7205	.vcpu_unblocking = svm_vcpu_unblocking,
7206
7207	.update_bp_intercept = update_bp_intercept,
7208	.get_msr_feature = svm_get_msr_feature,
7209	.get_msr = svm_get_msr,
7210	.set_msr = svm_set_msr,
7211	.get_segment_base = svm_get_segment_base,
7212	.get_segment = svm_get_segment,
7213	.set_segment = svm_set_segment,
7214	.get_cpl = svm_get_cpl,
7215	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7216	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7217	.decache_cr3 = svm_decache_cr3,
7218	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7219	.set_cr0 = svm_set_cr0,
7220	.set_cr3 = svm_set_cr3,
7221	.set_cr4 = svm_set_cr4,
7222	.set_efer = svm_set_efer,
7223	.get_idt = svm_get_idt,
7224	.set_idt = svm_set_idt,
7225	.get_gdt = svm_get_gdt,
7226	.set_gdt = svm_set_gdt,
7227	.get_dr6 = svm_get_dr6,
7228	.set_dr6 = svm_set_dr6,
7229	.set_dr7 = svm_set_dr7,
7230	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7231	.cache_reg = svm_cache_reg,
7232	.get_rflags = svm_get_rflags,
7233	.set_rflags = svm_set_rflags,
7234
7235	.tlb_flush = svm_flush_tlb,
7236	.tlb_flush_gva = svm_flush_tlb_gva,
7237
7238	.run = svm_vcpu_run,
7239	.handle_exit = handle_exit,
7240	.skip_emulated_instruction = skip_emulated_instruction,
7241	.set_interrupt_shadow = svm_set_interrupt_shadow,
7242	.get_interrupt_shadow = svm_get_interrupt_shadow,
7243	.patch_hypercall = svm_patch_hypercall,
7244	.set_irq = svm_set_irq,
7245	.set_nmi = svm_inject_nmi,
7246	.queue_exception = svm_queue_exception,
7247	.cancel_injection = svm_cancel_injection,
7248	.interrupt_allowed = svm_interrupt_allowed,
7249	.nmi_allowed = svm_nmi_allowed,
7250	.get_nmi_mask = svm_get_nmi_mask,
7251	.set_nmi_mask = svm_set_nmi_mask,
7252	.enable_nmi_window = enable_nmi_window,
7253	.enable_irq_window = enable_irq_window,
7254	.update_cr8_intercept = update_cr8_intercept,
7255	.set_virtual_apic_mode = svm_set_virtual_apic_mode,
7256	.get_enable_apicv = svm_get_enable_apicv,
7257	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7258	.load_eoi_exitmap = svm_load_eoi_exitmap,
7259	.hwapic_irr_update = svm_hwapic_irr_update,
7260	.hwapic_isr_update = svm_hwapic_isr_update,
7261	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
7262	.apicv_post_state_restore = avic_post_state_restore,
7263
7264	.set_tss_addr = svm_set_tss_addr,
7265	.set_identity_map_addr = svm_set_identity_map_addr,
7266	.get_tdp_level = get_npt_level,
7267	.get_mt_mask = svm_get_mt_mask,
7268
7269	.get_exit_info = svm_get_exit_info,
7270
7271	.get_lpage_level = svm_get_lpage_level,
7272
7273	.cpuid_update = svm_cpuid_update,
7274
7275	.rdtscp_supported = svm_rdtscp_supported,
7276	.invpcid_supported = svm_invpcid_supported,
7277	.mpx_supported = svm_mpx_supported,
7278	.xsaves_supported = svm_xsaves_supported,
7279	.umip_emulated = svm_umip_emulated,
7280	.pt_supported = svm_pt_supported,
7281
7282	.set_supported_cpuid = svm_set_supported_cpuid,
7283
7284	.has_wbinvd_exit = svm_has_wbinvd_exit,
7285
7286	.read_l1_tsc_offset = svm_read_l1_tsc_offset,
7287	.write_l1_tsc_offset = svm_write_l1_tsc_offset,
7288
7289	.set_tdp_cr3 = set_tdp_cr3,
7290
7291	.check_intercept = svm_check_intercept,
7292	.handle_exit_irqoff = svm_handle_exit_irqoff,
7293
7294	.request_immediate_exit = __kvm_request_immediate_exit,
7295
7296	.sched_in = svm_sched_in,
7297
7298	.pmu_ops = &amd_pmu_ops,
7299	.deliver_posted_interrupt = svm_deliver_avic_intr,
7300	.dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
7301	.update_pi_irte = svm_update_pi_irte,
7302	.setup_mce = svm_setup_mce,
7303
7304	.smi_allowed = svm_smi_allowed,
7305	.pre_enter_smm = svm_pre_enter_smm,
7306	.pre_leave_smm = svm_pre_leave_smm,
7307	.enable_smi_window = enable_smi_window,
7308
7309	.mem_enc_op = svm_mem_enc_op,
7310	.mem_enc_reg_region = svm_register_enc_region,
7311	.mem_enc_unreg_region = svm_unregister_enc_region,
7312
7313	.nested_enable_evmcs = NULL,
7314	.nested_get_evmcs_version = NULL,
7315
7316	.need_emulation_on_page_fault = svm_need_emulation_on_page_fault,
7317
7318	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
7319};
7320
7321static int __init svm_init(void)
7322{
7323	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7324			__alignof__(struct vcpu_svm), THIS_MODULE);
7325}
7326
7327static void __exit svm_exit(void)
7328{
7329	kvm_exit();
7330}
7331
7332module_init(svm_init)
7333module_exit(svm_exit)