Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * AMD SVM support
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   8 *
   9 * Authors:
  10 *   Yaniv Kamay  <yaniv@qumranet.com>
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *
  13 * This work is licensed under the terms of the GNU GPL, version 2.  See
  14 * the COPYING file in the top-level directory.
  15 *
  16 */
  17
  18#define pr_fmt(fmt) "SVM: " fmt
  19
  20#include <linux/kvm_host.h>
  21
  22#include "irq.h"
  23#include "mmu.h"
  24#include "kvm_cache_regs.h"
  25#include "x86.h"
  26#include "cpuid.h"
  27#include "pmu.h"
  28
  29#include <linux/module.h>
  30#include <linux/mod_devicetable.h>
  31#include <linux/kernel.h>
  32#include <linux/vmalloc.h>
  33#include <linux/highmem.h>
  34#include <linux/sched.h>
  35#include <linux/trace_events.h>
  36#include <linux/slab.h>
  37#include <linux/amd-iommu.h>
  38#include <linux/hashtable.h>
  39#include <linux/frame.h>
  40#include <linux/psp-sev.h>
  41#include <linux/file.h>
  42#include <linux/pagemap.h>
  43#include <linux/swap.h>
  44
  45#include <asm/apic.h>
  46#include <asm/perf_event.h>
  47#include <asm/tlbflush.h>
  48#include <asm/desc.h>
  49#include <asm/debugreg.h>
  50#include <asm/kvm_para.h>
  51#include <asm/irq_remapping.h>
  52#include <asm/spec-ctrl.h>
  53
  54#include <asm/virtext.h>
  55#include "trace.h"
  56
  57#define __ex(x) __kvm_handle_fault_on_reboot(x)
  58
  59MODULE_AUTHOR("Qumranet");
  60MODULE_LICENSE("GPL");
  61
  62static const struct x86_cpu_id svm_cpu_id[] = {
  63	X86_FEATURE_MATCH(X86_FEATURE_SVM),
  64	{}
  65};
  66MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
  67
  68#define IOPM_ALLOC_ORDER 2
  69#define MSRPM_ALLOC_ORDER 1
  70
  71#define SEG_TYPE_LDT 2
  72#define SEG_TYPE_BUSY_TSS16 3
  73
  74#define SVM_FEATURE_NPT            (1 <<  0)
  75#define SVM_FEATURE_LBRV           (1 <<  1)
  76#define SVM_FEATURE_SVML           (1 <<  2)
  77#define SVM_FEATURE_NRIP           (1 <<  3)
  78#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  79#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  80#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  81#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  82#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  83
  84#define SVM_AVIC_DOORBELL	0xc001011b
  85
  86#define NESTED_EXIT_HOST	0	/* Exit handled on host level */
  87#define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
  88#define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */
  89
  90#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  91
  92#define TSC_RATIO_RSVD          0xffffff0000000000ULL
  93#define TSC_RATIO_MIN		0x0000000000000001ULL
  94#define TSC_RATIO_MAX		0x000000ffffffffffULL
  95
  96#define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF)
  97
  98/*
  99 * 0xff is broadcast, so the max index allowed for physical APIC ID
 100 * table is 0xfe.  APIC IDs above 0xff are reserved.
 101 */
 102#define AVIC_MAX_PHYSICAL_ID_COUNT	255
 103
 104#define AVIC_UNACCEL_ACCESS_WRITE_MASK		1
 105#define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0
 106#define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF
 107
 108/* AVIC GATAG is encoded using VM and VCPU IDs */
 109#define AVIC_VCPU_ID_BITS		8
 110#define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1)
 111
 112#define AVIC_VM_ID_BITS			24
 113#define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS)
 114#define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1)
 115
 116#define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
 117						(y & AVIC_VCPU_ID_MASK))
 118#define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
 119#define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)
 120
 121static bool erratum_383_found __read_mostly;
 122
 123static const u32 host_save_user_msrs[] = {
 124#ifdef CONFIG_X86_64
 125	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
 126	MSR_FS_BASE,
 127#endif
 128	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 129	MSR_TSC_AUX,
 130};
 131
 132#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
 133
 134struct kvm_sev_info {
 135	bool active;		/* SEV enabled guest */
 136	unsigned int asid;	/* ASID used for this guest */
 137	unsigned int handle;	/* SEV firmware handle */
 138	int fd;			/* SEV device fd */
 139	unsigned long pages_locked; /* Number of pages locked */
 140	struct list_head regions_list;  /* List of registered regions */
 141};
 142
 143struct kvm_svm {
 144	struct kvm kvm;
 145
 146	/* Struct members for AVIC */
 147	u32 avic_vm_id;
 148	u32 ldr_mode;
 149	struct page *avic_logical_id_table_page;
 150	struct page *avic_physical_id_table_page;
 151	struct hlist_node hnode;
 152
 153	struct kvm_sev_info sev_info;
 154};
 155
 156struct kvm_vcpu;
 157
 158struct nested_state {
 159	struct vmcb *hsave;
 160	u64 hsave_msr;
 161	u64 vm_cr_msr;
 162	u64 vmcb;
 163
 164	/* These are the merged vectors */
 165	u32 *msrpm;
 166
 167	/* gpa pointers to the real vectors */
 168	u64 vmcb_msrpm;
 169	u64 vmcb_iopm;
 170
 171	/* A VMEXIT is required but not yet emulated */
 172	bool exit_required;
 173
 174	/* cache for intercepts of the guest */
 175	u32 intercept_cr;
 176	u32 intercept_dr;
 177	u32 intercept_exceptions;
 178	u64 intercept;
 179
 180	/* Nested Paging related state */
 181	u64 nested_cr3;
 182};
 183
 184#define MSRPM_OFFSETS	16
 185static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 186
 187/*
 188 * Set osvw_len to higher value when updated Revision Guides
 189 * are published and we know what the new status bits are
 190 */
 191static uint64_t osvw_len = 4, osvw_status;
 192
 193struct vcpu_svm {
 194	struct kvm_vcpu vcpu;
 195	struct vmcb *vmcb;
 196	unsigned long vmcb_pa;
 197	struct svm_cpu_data *svm_data;
 198	uint64_t asid_generation;
 199	uint64_t sysenter_esp;
 200	uint64_t sysenter_eip;
 201	uint64_t tsc_aux;
 202
 203	u64 msr_decfg;
 204
 205	u64 next_rip;
 206
 207	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
 208	struct {
 209		u16 fs;
 210		u16 gs;
 211		u16 ldt;
 212		u64 gs_base;
 213	} host;
 214
 215	u64 spec_ctrl;
 216	/*
 217	 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
 218	 * translated into the appropriate L2_CFG bits on the host to
 219	 * perform speculative control.
 220	 */
 221	u64 virt_spec_ctrl;
 222
 223	u32 *msrpm;
 224
 225	ulong nmi_iret_rip;
 226
 227	struct nested_state nested;
 228
 229	bool nmi_singlestep;
 230	u64 nmi_singlestep_guest_rflags;
 231
 232	unsigned int3_injected;
 233	unsigned long int3_rip;
 234
 235	/* cached guest cpuid flags for faster access */
 236	bool nrips_enabled	: 1;
 237
 238	u32 ldr_reg;
 239	struct page *avic_backing_page;
 240	u64 *avic_physical_id_cache;
 241	bool avic_is_running;
 242
 243	/*
 244	 * Per-vcpu list of struct amd_svm_iommu_ir:
 245	 * This is used mainly to store interrupt remapping information used
 246	 * when update the vcpu affinity. This avoids the need to scan for
 247	 * IRTE and try to match ga_tag in the IOMMU driver.
 248	 */
 249	struct list_head ir_list;
 250	spinlock_t ir_list_lock;
 251
 252	/* which host CPU was used for running this vcpu */
 253	unsigned int last_cpu;
 254};
 255
 256/*
 257 * This is a wrapper of struct amd_iommu_ir_data.
 258 */
 259struct amd_svm_iommu_ir {
 260	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
 261	void *data;		/* Storing pointer to struct amd_ir_data */
 262};
 263
 264#define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK	(0xFF)
 265#define AVIC_LOGICAL_ID_ENTRY_VALID_MASK		(1 << 31)
 266
 267#define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK	(0xFFULL)
 268#define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK	(0xFFFFFFFFFFULL << 12)
 269#define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK		(1ULL << 62)
 270#define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK		(1ULL << 63)
 271
 272static DEFINE_PER_CPU(u64, current_tsc_ratio);
 273#define TSC_RATIO_DEFAULT	0x0100000000ULL
 274
 275#define MSR_INVALID			0xffffffffU
 276
 277static const struct svm_direct_access_msrs {
 278	u32 index;   /* Index of the MSR */
 279	bool always; /* True if intercept is always on */
 280} direct_access_msrs[] = {
 281	{ .index = MSR_STAR,				.always = true  },
 282	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
 283#ifdef CONFIG_X86_64
 284	{ .index = MSR_GS_BASE,				.always = true  },
 285	{ .index = MSR_FS_BASE,				.always = true  },
 286	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
 287	{ .index = MSR_LSTAR,				.always = true  },
 288	{ .index = MSR_CSTAR,				.always = true  },
 289	{ .index = MSR_SYSCALL_MASK,			.always = true  },
 290#endif
 291	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
 292	{ .index = MSR_IA32_PRED_CMD,			.always = false },
 293	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
 294	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
 295	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
 296	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
 297	{ .index = MSR_INVALID,				.always = false },
 298};
 299
 300/* enable NPT for AMD64 and X86 with PAE */
 301#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 302static bool npt_enabled = true;
 303#else
 304static bool npt_enabled;
 305#endif
 306
 307/*
 308 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 309 * pause_filter_count: On processors that support Pause filtering(indicated
 310 *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
 311 *	count value. On VMRUN this value is loaded into an internal counter.
 312 *	Each time a pause instruction is executed, this counter is decremented
 313 *	until it reaches zero at which time a #VMEXIT is generated if pause
 314 *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
 315 *	Intercept Filtering for more details.
 316 *	This also indicate if ple logic enabled.
 317 *
 318 * pause_filter_thresh: In addition, some processor families support advanced
 319 *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
 320 *	the amount of time a guest is allowed to execute in a pause loop.
 321 *	In this mode, a 16-bit pause filter threshold field is added in the
 322 *	VMCB. The threshold value is a cycle count that is used to reset the
 323 *	pause counter. As with simple pause filtering, VMRUN loads the pause
 324 *	count value from VMCB into an internal counter. Then, on each pause
 325 *	instruction the hardware checks the elapsed number of cycles since
 326 *	the most recent pause instruction against the pause filter threshold.
 327 *	If the elapsed cycle count is greater than the pause filter threshold,
 328 *	then the internal pause count is reloaded from the VMCB and execution
 329 *	continues. If the elapsed cycle count is less than the pause filter
 330 *	threshold, then the internal pause count is decremented. If the count
 331 *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
 332 *	triggered. If advanced pause filtering is supported and pause filter
 333 *	threshold field is set to zero, the filter will operate in the simpler,
 334 *	count only mode.
 335 */
 336
 337static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
 338module_param(pause_filter_thresh, ushort, 0444);
 339
 340static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
 341module_param(pause_filter_count, ushort, 0444);
 342
 343/* Default doubles per-vcpu window every exit. */
 344static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 345module_param(pause_filter_count_grow, ushort, 0444);
 346
 347/* Default resets per-vcpu window every exit to pause_filter_count. */
 348static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 349module_param(pause_filter_count_shrink, ushort, 0444);
 350
 351/* Default is to compute the maximum so we can never overflow. */
 352static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
 353module_param(pause_filter_count_max, ushort, 0444);
 354
 355/* allow nested paging (virtualized MMU) for all guests */
 356static int npt = true;
 357module_param(npt, int, S_IRUGO);
 358
 359/* allow nested virtualization in KVM/SVM */
 360static int nested = true;
 361module_param(nested, int, S_IRUGO);
 362
 363/* enable / disable AVIC */
 364static int avic;
 365#ifdef CONFIG_X86_LOCAL_APIC
 366module_param(avic, int, S_IRUGO);
 367#endif
 368
 369/* enable/disable Virtual VMLOAD VMSAVE */
 370static int vls = true;
 371module_param(vls, int, 0444);
 372
 373/* enable/disable Virtual GIF */
 374static int vgif = true;
 375module_param(vgif, int, 0444);
 376
 377/* enable/disable SEV support */
 378static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
 379module_param(sev, int, 0444);
 380
 381static u8 rsm_ins_bytes[] = "\x0f\xaa";
 382
 383static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
 384static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa);
 385static void svm_complete_interrupts(struct vcpu_svm *svm);
 386
 387static int nested_svm_exit_handled(struct vcpu_svm *svm);
 388static int nested_svm_intercept(struct vcpu_svm *svm);
 389static int nested_svm_vmexit(struct vcpu_svm *svm);
 390static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 391				      bool has_error_code, u32 error_code);
 392
 393enum {
 394	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
 395			    pause filter count */
 396	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
 397	VMCB_ASID,	 /* ASID */
 398	VMCB_INTR,	 /* int_ctl, int_vector */
 399	VMCB_NPT,        /* npt_en, nCR3, gPAT */
 400	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
 401	VMCB_DR,         /* DR6, DR7 */
 402	VMCB_DT,         /* GDT, IDT */
 403	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
 404	VMCB_CR2,        /* CR2 only */
 405	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
 406	VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
 407			  * AVIC PHYSICAL_TABLE pointer,
 408			  * AVIC LOGICAL_TABLE pointer
 409			  */
 410	VMCB_DIRTY_MAX,
 411};
 412
 413/* TPR and CR2 are always written before VMRUN */
 414#define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
 415
 416#define VMCB_AVIC_APIC_BAR_MASK		0xFFFFFFFFFF000ULL
 417
 418static unsigned int max_sev_asid;
 419static unsigned int min_sev_asid;
 420static unsigned long *sev_asid_bitmap;
 421#define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT)
 422
 423struct enc_region {
 424	struct list_head list;
 425	unsigned long npages;
 426	struct page **pages;
 427	unsigned long uaddr;
 428	unsigned long size;
 429};
 430
 431
 432static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
 433{
 434	return container_of(kvm, struct kvm_svm, kvm);
 435}
 436
 437static inline bool svm_sev_enabled(void)
 438{
 439	return max_sev_asid;
 440}
 441
 442static inline bool sev_guest(struct kvm *kvm)
 443{
 444	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 445
 446	return sev->active;
 447}
 448
 449static inline int sev_get_asid(struct kvm *kvm)
 450{
 451	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 452
 453	return sev->asid;
 454}
 455
 456static inline void mark_all_dirty(struct vmcb *vmcb)
 457{
 458	vmcb->control.clean = 0;
 459}
 460
 461static inline void mark_all_clean(struct vmcb *vmcb)
 462{
 463	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
 464			       & ~VMCB_ALWAYS_DIRTY_MASK;
 465}
 466
 467static inline void mark_dirty(struct vmcb *vmcb, int bit)
 468{
 469	vmcb->control.clean &= ~(1 << bit);
 470}
 471
 472static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
 473{
 474	return container_of(vcpu, struct vcpu_svm, vcpu);
 475}
 476
 477static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data)
 478{
 479	svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK;
 480	mark_dirty(svm->vmcb, VMCB_AVIC);
 481}
 482
 483static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu)
 484{
 485	struct vcpu_svm *svm = to_svm(vcpu);
 486	u64 *entry = svm->avic_physical_id_cache;
 487
 488	if (!entry)
 489		return false;
 490
 491	return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
 492}
 493
 494static void recalc_intercepts(struct vcpu_svm *svm)
 495{
 496	struct vmcb_control_area *c, *h;
 497	struct nested_state *g;
 498
 499	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 500
 501	if (!is_guest_mode(&svm->vcpu))
 502		return;
 503
 504	c = &svm->vmcb->control;
 505	h = &svm->nested.hsave->control;
 506	g = &svm->nested;
 507
 508	c->intercept_cr = h->intercept_cr | g->intercept_cr;
 509	c->intercept_dr = h->intercept_dr | g->intercept_dr;
 510	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
 511	c->intercept = h->intercept | g->intercept;
 512}
 513
 514static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
 515{
 516	if (is_guest_mode(&svm->vcpu))
 517		return svm->nested.hsave;
 518	else
 519		return svm->vmcb;
 520}
 521
 522static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
 523{
 524	struct vmcb *vmcb = get_host_vmcb(svm);
 525
 526	vmcb->control.intercept_cr |= (1U << bit);
 527
 528	recalc_intercepts(svm);
 529}
 530
 531static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
 532{
 533	struct vmcb *vmcb = get_host_vmcb(svm);
 534
 535	vmcb->control.intercept_cr &= ~(1U << bit);
 536
 537	recalc_intercepts(svm);
 538}
 539
 540static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
 541{
 542	struct vmcb *vmcb = get_host_vmcb(svm);
 543
 544	return vmcb->control.intercept_cr & (1U << bit);
 545}
 546
 547static inline void set_dr_intercepts(struct vcpu_svm *svm)
 548{
 549	struct vmcb *vmcb = get_host_vmcb(svm);
 550
 551	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
 552		| (1 << INTERCEPT_DR1_READ)
 553		| (1 << INTERCEPT_DR2_READ)
 554		| (1 << INTERCEPT_DR3_READ)
 555		| (1 << INTERCEPT_DR4_READ)
 556		| (1 << INTERCEPT_DR5_READ)
 557		| (1 << INTERCEPT_DR6_READ)
 558		| (1 << INTERCEPT_DR7_READ)
 559		| (1 << INTERCEPT_DR0_WRITE)
 560		| (1 << INTERCEPT_DR1_WRITE)
 561		| (1 << INTERCEPT_DR2_WRITE)
 562		| (1 << INTERCEPT_DR3_WRITE)
 563		| (1 << INTERCEPT_DR4_WRITE)
 564		| (1 << INTERCEPT_DR5_WRITE)
 565		| (1 << INTERCEPT_DR6_WRITE)
 566		| (1 << INTERCEPT_DR7_WRITE);
 567
 568	recalc_intercepts(svm);
 569}
 570
 571static inline void clr_dr_intercepts(struct vcpu_svm *svm)
 572{
 573	struct vmcb *vmcb = get_host_vmcb(svm);
 574
 575	vmcb->control.intercept_dr = 0;
 576
 577	recalc_intercepts(svm);
 578}
 579
 580static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
 581{
 582	struct vmcb *vmcb = get_host_vmcb(svm);
 583
 584	vmcb->control.intercept_exceptions |= (1U << bit);
 585
 586	recalc_intercepts(svm);
 587}
 588
 589static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
 590{
 591	struct vmcb *vmcb = get_host_vmcb(svm);
 592
 593	vmcb->control.intercept_exceptions &= ~(1U << bit);
 594
 595	recalc_intercepts(svm);
 596}
 597
 598static inline void set_intercept(struct vcpu_svm *svm, int bit)
 599{
 600	struct vmcb *vmcb = get_host_vmcb(svm);
 601
 602	vmcb->control.intercept |= (1ULL << bit);
 603
 604	recalc_intercepts(svm);
 605}
 606
 607static inline void clr_intercept(struct vcpu_svm *svm, int bit)
 608{
 609	struct vmcb *vmcb = get_host_vmcb(svm);
 610
 611	vmcb->control.intercept &= ~(1ULL << bit);
 612
 613	recalc_intercepts(svm);
 614}
 615
 616static inline bool vgif_enabled(struct vcpu_svm *svm)
 617{
 618	return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK);
 619}
 620
 621static inline void enable_gif(struct vcpu_svm *svm)
 622{
 623	if (vgif_enabled(svm))
 624		svm->vmcb->control.int_ctl |= V_GIF_MASK;
 625	else
 626		svm->vcpu.arch.hflags |= HF_GIF_MASK;
 627}
 628
 629static inline void disable_gif(struct vcpu_svm *svm)
 630{
 631	if (vgif_enabled(svm))
 632		svm->vmcb->control.int_ctl &= ~V_GIF_MASK;
 633	else
 634		svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
 635}
 636
 637static inline bool gif_set(struct vcpu_svm *svm)
 638{
 639	if (vgif_enabled(svm))
 640		return !!(svm->vmcb->control.int_ctl & V_GIF_MASK);
 641	else
 642		return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
 643}
 644
 645static unsigned long iopm_base;
 646
 647struct kvm_ldttss_desc {
 648	u16 limit0;
 649	u16 base0;
 650	unsigned base1:8, type:5, dpl:2, p:1;
 651	unsigned limit1:4, zero0:3, g:1, base2:8;
 652	u32 base3;
 653	u32 zero1;
 654} __attribute__((packed));
 655
 656struct svm_cpu_data {
 657	int cpu;
 658
 659	u64 asid_generation;
 660	u32 max_asid;
 661	u32 next_asid;
 662	u32 min_asid;
 663	struct kvm_ldttss_desc *tss_desc;
 664
 665	struct page *save_area;
 666	struct vmcb *current_vmcb;
 667
 668	/* index = sev_asid, value = vmcb pointer */
 669	struct vmcb **sev_vmcbs;
 670};
 671
 672static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 673
 674struct svm_init_data {
 675	int cpu;
 676	int r;
 677};
 678
 679static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 680
 681#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 682#define MSRS_RANGE_SIZE 2048
 683#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 684
 685static u32 svm_msrpm_offset(u32 msr)
 686{
 687	u32 offset;
 688	int i;
 689
 690	for (i = 0; i < NUM_MSR_MAPS; i++) {
 691		if (msr < msrpm_ranges[i] ||
 692		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 693			continue;
 694
 695		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 696		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 697
 698		/* Now we have the u8 offset - but need the u32 offset */
 699		return offset / 4;
 700	}
 701
 702	/* MSR not in any range */
 703	return MSR_INVALID;
 704}
 705
 706#define MAX_INST_SIZE 15
 707
 708static inline void clgi(void)
 709{
 710	asm volatile (__ex(SVM_CLGI));
 711}
 712
 713static inline void stgi(void)
 714{
 715	asm volatile (__ex(SVM_STGI));
 716}
 717
 718static inline void invlpga(unsigned long addr, u32 asid)
 719{
 720	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
 721}
 722
 723static int get_npt_level(struct kvm_vcpu *vcpu)
 724{
 725#ifdef CONFIG_X86_64
 726	return PT64_ROOT_4LEVEL;
 727#else
 728	return PT32E_ROOT_LEVEL;
 729#endif
 730}
 731
 732static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 733{
 734	vcpu->arch.efer = efer;
 735	if (!npt_enabled && !(efer & EFER_LMA))
 736		efer &= ~EFER_LME;
 737
 738	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
 739	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 740}
 741
 742static int is_external_interrupt(u32 info)
 743{
 744	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 745	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 746}
 747
 748static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 749{
 750	struct vcpu_svm *svm = to_svm(vcpu);
 751	u32 ret = 0;
 752
 753	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 754		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 755	return ret;
 756}
 757
 758static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 759{
 760	struct vcpu_svm *svm = to_svm(vcpu);
 761
 762	if (mask == 0)
 763		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 764	else
 765		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 766
 767}
 768
 769static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 770{
 771	struct vcpu_svm *svm = to_svm(vcpu);
 772
 773	if (svm->vmcb->control.next_rip != 0) {
 774		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
 775		svm->next_rip = svm->vmcb->control.next_rip;
 776	}
 777
 778	if (!svm->next_rip) {
 779		if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
 780				EMULATE_DONE)
 781			printk(KERN_DEBUG "%s: NOP\n", __func__);
 782		return;
 783	}
 784	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
 785		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
 786		       __func__, kvm_rip_read(vcpu), svm->next_rip);
 787
 788	kvm_rip_write(vcpu, svm->next_rip);
 789	svm_set_interrupt_shadow(vcpu, 0);
 790}
 791
 792static void svm_queue_exception(struct kvm_vcpu *vcpu)
 793{
 794	struct vcpu_svm *svm = to_svm(vcpu);
 795	unsigned nr = vcpu->arch.exception.nr;
 796	bool has_error_code = vcpu->arch.exception.has_error_code;
 797	bool reinject = vcpu->arch.exception.injected;
 798	u32 error_code = vcpu->arch.exception.error_code;
 799
 800	/*
 801	 * If we are within a nested VM we'd better #VMEXIT and let the guest
 802	 * handle the exception
 803	 */
 804	if (!reinject &&
 805	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
 806		return;
 807
 808	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
 809		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 810
 811		/*
 812		 * For guest debugging where we have to reinject #BP if some
 813		 * INT3 is guest-owned:
 814		 * Emulate nRIP by moving RIP forward. Will fail if injection
 815		 * raises a fault that is not intercepted. Still better than
 816		 * failing in all cases.
 817		 */
 818		skip_emulated_instruction(&svm->vcpu);
 819		rip = kvm_rip_read(&svm->vcpu);
 820		svm->int3_rip = rip + svm->vmcb->save.cs.base;
 821		svm->int3_injected = rip - old_rip;
 822	}
 823
 824	svm->vmcb->control.event_inj = nr
 825		| SVM_EVTINJ_VALID
 826		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 827		| SVM_EVTINJ_TYPE_EXEPT;
 828	svm->vmcb->control.event_inj_err = error_code;
 829}
 830
 831static void svm_init_erratum_383(void)
 832{
 833	u32 low, high;
 834	int err;
 835	u64 val;
 836
 837	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 838		return;
 839
 840	/* Use _safe variants to not break nested virtualization */
 841	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 842	if (err)
 843		return;
 844
 845	val |= (1ULL << 47);
 846
 847	low  = lower_32_bits(val);
 848	high = upper_32_bits(val);
 849
 850	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 851
 852	erratum_383_found = true;
 853}
 854
 855static void svm_init_osvw(struct kvm_vcpu *vcpu)
 856{
 857	/*
 858	 * Guests should see errata 400 and 415 as fixed (assuming that
 859	 * HLT and IO instructions are intercepted).
 860	 */
 861	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 862	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 863
 864	/*
 865	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
 866	 * all osvw.status bits inside that length, including bit 0 (which is
 867	 * reserved for erratum 298), are valid. However, if host processor's
 868	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
 869	 * be conservative here and therefore we tell the guest that erratum 298
 870	 * is present (because we really don't know).
 871	 */
 872	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 873		vcpu->arch.osvw.status |= 1;
 874}
 875
 876static int has_svm(void)
 877{
 878	const char *msg;
 879
 880	if (!cpu_has_svm(&msg)) {
 881		printk(KERN_INFO "has_svm: %s\n", msg);
 882		return 0;
 883	}
 884
 885	return 1;
 886}
 887
 888static void svm_hardware_disable(void)
 889{
 890	/* Make sure we clean up behind us */
 891	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
 892		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 893
 894	cpu_svm_disable();
 895
 896	amd_pmu_disable_virt();
 897}
 898
 899static int svm_hardware_enable(void)
 900{
 901
 902	struct svm_cpu_data *sd;
 903	uint64_t efer;
 904	struct desc_struct *gdt;
 905	int me = raw_smp_processor_id();
 906
 907	rdmsrl(MSR_EFER, efer);
 908	if (efer & EFER_SVME)
 909		return -EBUSY;
 910
 911	if (!has_svm()) {
 912		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 913		return -EINVAL;
 914	}
 915	sd = per_cpu(svm_data, me);
 916	if (!sd) {
 917		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 918		return -EINVAL;
 919	}
 920
 921	sd->asid_generation = 1;
 922	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 923	sd->next_asid = sd->max_asid + 1;
 924	sd->min_asid = max_sev_asid + 1;
 925
 926	gdt = get_current_gdt_rw();
 927	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 928
 929	wrmsrl(MSR_EFER, efer | EFER_SVME);
 930
 931	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 932
 933	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 934		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 935		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
 936	}
 937
 938
 939	/*
 940	 * Get OSVW bits.
 941	 *
 942	 * Note that it is possible to have a system with mixed processor
 943	 * revisions and therefore different OSVW bits. If bits are not the same
 944	 * on different processors then choose the worst case (i.e. if erratum
 945	 * is present on one processor and not on another then assume that the
 946	 * erratum is present everywhere).
 947	 */
 948	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 949		uint64_t len, status = 0;
 950		int err;
 951
 952		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 953		if (!err)
 954			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 955						      &err);
 956
 957		if (err)
 958			osvw_status = osvw_len = 0;
 959		else {
 960			if (len < osvw_len)
 961				osvw_len = len;
 962			osvw_status |= status;
 963			osvw_status &= (1ULL << osvw_len) - 1;
 964		}
 965	} else
 966		osvw_status = osvw_len = 0;
 967
 968	svm_init_erratum_383();
 969
 970	amd_pmu_enable_virt();
 971
 972	return 0;
 973}
 974
 975static void svm_cpu_uninit(int cpu)
 976{
 977	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 978
 979	if (!sd)
 980		return;
 981
 982	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 983	kfree(sd->sev_vmcbs);
 984	__free_page(sd->save_area);
 985	kfree(sd);
 986}
 987
 988static int svm_cpu_init(int cpu)
 989{
 990	struct svm_cpu_data *sd;
 991	int r;
 992
 993	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
 994	if (!sd)
 995		return -ENOMEM;
 996	sd->cpu = cpu;
 997	r = -ENOMEM;
 998	sd->save_area = alloc_page(GFP_KERNEL);
 999	if (!sd->save_area)
1000		goto err_1;
1001
1002	if (svm_sev_enabled()) {
1003		r = -ENOMEM;
1004		sd->sev_vmcbs = kmalloc((max_sev_asid + 1) * sizeof(void *), GFP_KERNEL);
1005		if (!sd->sev_vmcbs)
1006			goto err_1;
1007	}
1008
1009	per_cpu(svm_data, cpu) = sd;
1010
1011	return 0;
1012
1013err_1:
1014	kfree(sd);
1015	return r;
1016
1017}
1018
1019static bool valid_msr_intercept(u32 index)
1020{
1021	int i;
1022
1023	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
1024		if (direct_access_msrs[i].index == index)
1025			return true;
1026
1027	return false;
1028}
1029
1030static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr)
1031{
1032	u8 bit_write;
1033	unsigned long tmp;
1034	u32 offset;
1035	u32 *msrpm;
1036
1037	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
1038				      to_svm(vcpu)->msrpm;
1039
1040	offset    = svm_msrpm_offset(msr);
1041	bit_write = 2 * (msr & 0x0f) + 1;
1042	tmp       = msrpm[offset];
1043
1044	BUG_ON(offset == MSR_INVALID);
1045
1046	return !!test_bit(bit_write,  &tmp);
1047}
1048
1049static void set_msr_interception(u32 *msrpm, unsigned msr,
1050				 int read, int write)
1051{
1052	u8 bit_read, bit_write;
1053	unsigned long tmp;
1054	u32 offset;
1055
1056	/*
1057	 * If this warning triggers extend the direct_access_msrs list at the
1058	 * beginning of the file
1059	 */
1060	WARN_ON(!valid_msr_intercept(msr));
1061
1062	offset    = svm_msrpm_offset(msr);
1063	bit_read  = 2 * (msr & 0x0f);
1064	bit_write = 2 * (msr & 0x0f) + 1;
1065	tmp       = msrpm[offset];
1066
1067	BUG_ON(offset == MSR_INVALID);
1068
1069	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
1070	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
1071
1072	msrpm[offset] = tmp;
1073}
1074
1075static void svm_vcpu_init_msrpm(u32 *msrpm)
1076{
1077	int i;
1078
1079	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
1080
1081	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1082		if (!direct_access_msrs[i].always)
1083			continue;
1084
1085		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
1086	}
1087}
1088
1089static void add_msr_offset(u32 offset)
1090{
1091	int i;
1092
1093	for (i = 0; i < MSRPM_OFFSETS; ++i) {
1094
1095		/* Offset already in list? */
1096		if (msrpm_offsets[i] == offset)
1097			return;
1098
1099		/* Slot used by another offset? */
1100		if (msrpm_offsets[i] != MSR_INVALID)
1101			continue;
1102
1103		/* Add offset to list */
1104		msrpm_offsets[i] = offset;
1105
1106		return;
1107	}
1108
1109	/*
1110	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
1111	 * increase MSRPM_OFFSETS in this case.
1112	 */
1113	BUG();
1114}
1115
1116static void init_msrpm_offsets(void)
1117{
1118	int i;
1119
1120	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
1121
1122	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
1123		u32 offset;
1124
1125		offset = svm_msrpm_offset(direct_access_msrs[i].index);
1126		BUG_ON(offset == MSR_INVALID);
1127
1128		add_msr_offset(offset);
1129	}
1130}
1131
1132static void svm_enable_lbrv(struct vcpu_svm *svm)
1133{
1134	u32 *msrpm = svm->msrpm;
1135
1136	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1137	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1138	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1139	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1140	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1141}
1142
1143static void svm_disable_lbrv(struct vcpu_svm *svm)
1144{
1145	u32 *msrpm = svm->msrpm;
1146
1147	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1148	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1149	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1150	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1151	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1152}
1153
1154static void disable_nmi_singlestep(struct vcpu_svm *svm)
1155{
1156	svm->nmi_singlestep = false;
1157
1158	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1159		/* Clear our flags if they were not set by the guest */
1160		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1161			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1162		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1163			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1164	}
1165}
1166
1167/* Note:
1168 * This hash table is used to map VM_ID to a struct kvm_svm,
1169 * when handling AMD IOMMU GALOG notification to schedule in
1170 * a particular vCPU.
1171 */
1172#define SVM_VM_DATA_HASH_BITS	8
1173static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
1174static u32 next_vm_id = 0;
1175static bool next_vm_id_wrapped = 0;
1176static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
1177
1178/* Note:
1179 * This function is called from IOMMU driver to notify
1180 * SVM to schedule in a particular vCPU of a particular VM.
1181 */
1182static int avic_ga_log_notifier(u32 ga_tag)
1183{
1184	unsigned long flags;
1185	struct kvm_svm *kvm_svm;
1186	struct kvm_vcpu *vcpu = NULL;
1187	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
1188	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
1189
1190	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
1191
1192	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1193	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
1194		if (kvm_svm->avic_vm_id != vm_id)
1195			continue;
1196		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
1197		break;
1198	}
1199	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1200
1201	/* Note:
1202	 * At this point, the IOMMU should have already set the pending
1203	 * bit in the vAPIC backing page. So, we just need to schedule
1204	 * in the vcpu.
1205	 */
1206	if (vcpu)
1207		kvm_vcpu_wake_up(vcpu);
1208
1209	return 0;
1210}
1211
1212static __init int sev_hardware_setup(void)
1213{
1214	struct sev_user_data_status *status;
1215	int rc;
1216
1217	/* Maximum number of encrypted guests supported simultaneously */
1218	max_sev_asid = cpuid_ecx(0x8000001F);
1219
1220	if (!max_sev_asid)
1221		return 1;
1222
1223	/* Minimum ASID value that should be used for SEV guest */
1224	min_sev_asid = cpuid_edx(0x8000001F);
1225
1226	/* Initialize SEV ASID bitmap */
1227	sev_asid_bitmap = kcalloc(BITS_TO_LONGS(max_sev_asid),
1228				sizeof(unsigned long), GFP_KERNEL);
1229	if (!sev_asid_bitmap)
1230		return 1;
1231
1232	status = kmalloc(sizeof(*status), GFP_KERNEL);
1233	if (!status)
1234		return 1;
1235
1236	/*
1237	 * Check SEV platform status.
1238	 *
1239	 * PLATFORM_STATUS can be called in any state, if we failed to query
1240	 * the PLATFORM status then either PSP firmware does not support SEV
1241	 * feature or SEV firmware is dead.
1242	 */
1243	rc = sev_platform_status(status, NULL);
1244	if (rc)
1245		goto err;
1246
1247	pr_info("SEV supported\n");
1248
1249err:
1250	kfree(status);
1251	return rc;
1252}
1253
1254static void grow_ple_window(struct kvm_vcpu *vcpu)
1255{
1256	struct vcpu_svm *svm = to_svm(vcpu);
1257	struct vmcb_control_area *control = &svm->vmcb->control;
1258	int old = control->pause_filter_count;
1259
1260	control->pause_filter_count = __grow_ple_window(old,
1261							pause_filter_count,
1262							pause_filter_count_grow,
1263							pause_filter_count_max);
1264
1265	if (control->pause_filter_count != old)
1266		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1267
1268	trace_kvm_ple_window_grow(vcpu->vcpu_id,
1269				  control->pause_filter_count, old);
1270}
1271
1272static void shrink_ple_window(struct kvm_vcpu *vcpu)
1273{
1274	struct vcpu_svm *svm = to_svm(vcpu);
1275	struct vmcb_control_area *control = &svm->vmcb->control;
1276	int old = control->pause_filter_count;
1277
1278	control->pause_filter_count =
1279				__shrink_ple_window(old,
1280						    pause_filter_count,
1281						    pause_filter_count_shrink,
1282						    pause_filter_count);
1283	if (control->pause_filter_count != old)
1284		mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1285
1286	trace_kvm_ple_window_shrink(vcpu->vcpu_id,
1287				    control->pause_filter_count, old);
1288}
1289
1290static __init int svm_hardware_setup(void)
1291{
1292	int cpu;
1293	struct page *iopm_pages;
1294	void *iopm_va;
1295	int r;
1296
1297	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
1298
1299	if (!iopm_pages)
1300		return -ENOMEM;
1301
1302	iopm_va = page_address(iopm_pages);
1303	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
1304	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
1305
1306	init_msrpm_offsets();
1307
1308	if (boot_cpu_has(X86_FEATURE_NX))
1309		kvm_enable_efer_bits(EFER_NX);
1310
1311	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
1312		kvm_enable_efer_bits(EFER_FFXSR);
1313
1314	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1315		kvm_has_tsc_control = true;
1316		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
1317		kvm_tsc_scaling_ratio_frac_bits = 32;
1318	}
1319
1320	/* Check for pause filtering support */
1321	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1322		pause_filter_count = 0;
1323		pause_filter_thresh = 0;
1324	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
1325		pause_filter_thresh = 0;
1326	}
1327
1328	if (nested) {
1329		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
1330		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
1331	}
1332
1333	if (sev) {
1334		if (boot_cpu_has(X86_FEATURE_SEV) &&
1335		    IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
1336			r = sev_hardware_setup();
1337			if (r)
1338				sev = false;
1339		} else {
1340			sev = false;
1341		}
1342	}
1343
1344	for_each_possible_cpu(cpu) {
1345		r = svm_cpu_init(cpu);
1346		if (r)
1347			goto err;
1348	}
1349
1350	if (!boot_cpu_has(X86_FEATURE_NPT))
1351		npt_enabled = false;
1352
1353	if (npt_enabled && !npt) {
1354		printk(KERN_INFO "kvm: Nested Paging disabled\n");
1355		npt_enabled = false;
1356	}
1357
1358	if (npt_enabled) {
1359		printk(KERN_INFO "kvm: Nested Paging enabled\n");
1360		kvm_enable_tdp();
1361	} else
1362		kvm_disable_tdp();
1363
1364	if (avic) {
1365		if (!npt_enabled ||
1366		    !boot_cpu_has(X86_FEATURE_AVIC) ||
1367		    !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
1368			avic = false;
1369		} else {
1370			pr_info("AVIC enabled\n");
1371
1372			amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1373		}
1374	}
1375
1376	if (vls) {
1377		if (!npt_enabled ||
1378		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1379		    !IS_ENABLED(CONFIG_X86_64)) {
1380			vls = false;
1381		} else {
1382			pr_info("Virtual VMLOAD VMSAVE supported\n");
1383		}
1384	}
1385
1386	if (vgif) {
1387		if (!boot_cpu_has(X86_FEATURE_VGIF))
1388			vgif = false;
1389		else
1390			pr_info("Virtual GIF supported\n");
1391	}
1392
1393	return 0;
1394
1395err:
1396	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
1397	iopm_base = 0;
1398	return r;
1399}
1400
1401static __exit void svm_hardware_unsetup(void)
1402{
1403	int cpu;
1404
1405	if (svm_sev_enabled())
1406		kfree(sev_asid_bitmap);
1407
1408	for_each_possible_cpu(cpu)
1409		svm_cpu_uninit(cpu);
1410
1411	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
1412	iopm_base = 0;
1413}
1414
1415static void init_seg(struct vmcb_seg *seg)
1416{
1417	seg->selector = 0;
1418	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1419		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1420	seg->limit = 0xffff;
1421	seg->base = 0;
1422}
1423
1424static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1425{
1426	seg->selector = 0;
1427	seg->attrib = SVM_SELECTOR_P_MASK | type;
1428	seg->limit = 0xffff;
1429	seg->base = 0;
1430}
1431
1432static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1433{
1434	struct vcpu_svm *svm = to_svm(vcpu);
1435
1436	if (is_guest_mode(vcpu))
1437		return svm->nested.hsave->control.tsc_offset;
1438
1439	return vcpu->arch.tsc_offset;
1440}
1441
1442static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1443{
1444	struct vcpu_svm *svm = to_svm(vcpu);
1445	u64 g_tsc_offset = 0;
1446
1447	if (is_guest_mode(vcpu)) {
1448		/* Write L1's TSC offset.  */
1449		g_tsc_offset = svm->vmcb->control.tsc_offset -
1450			       svm->nested.hsave->control.tsc_offset;
1451		svm->nested.hsave->control.tsc_offset = offset;
1452	} else
1453		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1454					   svm->vmcb->control.tsc_offset,
1455					   offset);
1456
1457	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1458
1459	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1460}
1461
1462static void avic_init_vmcb(struct vcpu_svm *svm)
1463{
1464	struct vmcb *vmcb = svm->vmcb;
1465	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
1466	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
1467	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
1468	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
1469
1470	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
1471	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
1472	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
1473	vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
1474	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
1475}
1476
1477static void init_vmcb(struct vcpu_svm *svm)
1478{
1479	struct vmcb_control_area *control = &svm->vmcb->control;
1480	struct vmcb_save_area *save = &svm->vmcb->save;
1481
1482	svm->vcpu.arch.hflags = 0;
1483
1484	set_cr_intercept(svm, INTERCEPT_CR0_READ);
1485	set_cr_intercept(svm, INTERCEPT_CR3_READ);
1486	set_cr_intercept(svm, INTERCEPT_CR4_READ);
1487	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1488	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1489	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1490	if (!kvm_vcpu_apicv_active(&svm->vcpu))
1491		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1492
1493	set_dr_intercepts(svm);
1494
1495	set_exception_intercept(svm, PF_VECTOR);
1496	set_exception_intercept(svm, UD_VECTOR);
1497	set_exception_intercept(svm, MC_VECTOR);
1498	set_exception_intercept(svm, AC_VECTOR);
1499	set_exception_intercept(svm, DB_VECTOR);
1500	/*
1501	 * Guest access to VMware backdoor ports could legitimately
1502	 * trigger #GP because of TSS I/O permission bitmap.
1503	 * We intercept those #GP and allow access to them anyway
1504	 * as VMware does.
1505	 */
1506	if (enable_vmware_backdoor)
1507		set_exception_intercept(svm, GP_VECTOR);
1508
1509	set_intercept(svm, INTERCEPT_INTR);
1510	set_intercept(svm, INTERCEPT_NMI);
1511	set_intercept(svm, INTERCEPT_SMI);
1512	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1513	set_intercept(svm, INTERCEPT_RDPMC);
1514	set_intercept(svm, INTERCEPT_CPUID);
1515	set_intercept(svm, INTERCEPT_INVD);
1516	set_intercept(svm, INTERCEPT_INVLPG);
1517	set_intercept(svm, INTERCEPT_INVLPGA);
1518	set_intercept(svm, INTERCEPT_IOIO_PROT);
1519	set_intercept(svm, INTERCEPT_MSR_PROT);
1520	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1521	set_intercept(svm, INTERCEPT_SHUTDOWN);
1522	set_intercept(svm, INTERCEPT_VMRUN);
1523	set_intercept(svm, INTERCEPT_VMMCALL);
1524	set_intercept(svm, INTERCEPT_VMLOAD);
1525	set_intercept(svm, INTERCEPT_VMSAVE);
1526	set_intercept(svm, INTERCEPT_STGI);
1527	set_intercept(svm, INTERCEPT_CLGI);
1528	set_intercept(svm, INTERCEPT_SKINIT);
1529	set_intercept(svm, INTERCEPT_WBINVD);
1530	set_intercept(svm, INTERCEPT_XSETBV);
1531	set_intercept(svm, INTERCEPT_RSM);
1532
1533	if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1534		set_intercept(svm, INTERCEPT_MONITOR);
1535		set_intercept(svm, INTERCEPT_MWAIT);
1536	}
1537
1538	if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1539		set_intercept(svm, INTERCEPT_HLT);
1540
1541	control->iopm_base_pa = __sme_set(iopm_base);
1542	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1543	control->int_ctl = V_INTR_MASKING_MASK;
1544
1545	init_seg(&save->es);
1546	init_seg(&save->ss);
1547	init_seg(&save->ds);
1548	init_seg(&save->fs);
1549	init_seg(&save->gs);
1550
1551	save->cs.selector = 0xf000;
1552	save->cs.base = 0xffff0000;
1553	/* Executable/Readable Code Segment */
1554	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1555		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1556	save->cs.limit = 0xffff;
1557
1558	save->gdtr.limit = 0xffff;
1559	save->idtr.limit = 0xffff;
1560
1561	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1562	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1563
1564	svm_set_efer(&svm->vcpu, 0);
1565	save->dr6 = 0xffff0ff0;
1566	kvm_set_rflags(&svm->vcpu, 2);
1567	save->rip = 0x0000fff0;
1568	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1569
1570	/*
1571	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1572	 * It also updates the guest-visible cr0 value.
1573	 */
1574	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1575	kvm_mmu_reset_context(&svm->vcpu);
1576
1577	save->cr4 = X86_CR4_PAE;
1578	/* rdx = ?? */
1579
1580	if (npt_enabled) {
1581		/* Setup VMCB for Nested Paging */
1582		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1583		clr_intercept(svm, INTERCEPT_INVLPG);
1584		clr_exception_intercept(svm, PF_VECTOR);
1585		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1586		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1587		save->g_pat = svm->vcpu.arch.pat;
1588		save->cr3 = 0;
1589		save->cr4 = 0;
1590	}
1591	svm->asid_generation = 0;
1592
1593	svm->nested.vmcb = 0;
1594	svm->vcpu.arch.hflags = 0;
1595
1596	if (pause_filter_count) {
1597		control->pause_filter_count = pause_filter_count;
1598		if (pause_filter_thresh)
1599			control->pause_filter_thresh = pause_filter_thresh;
1600		set_intercept(svm, INTERCEPT_PAUSE);
1601	} else {
1602		clr_intercept(svm, INTERCEPT_PAUSE);
1603	}
1604
1605	if (kvm_vcpu_apicv_active(&svm->vcpu))
1606		avic_init_vmcb(svm);
1607
1608	/*
1609	 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1610	 * in VMCB and clear intercepts to avoid #VMEXIT.
1611	 */
1612	if (vls) {
1613		clr_intercept(svm, INTERCEPT_VMLOAD);
1614		clr_intercept(svm, INTERCEPT_VMSAVE);
1615		svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1616	}
1617
1618	if (vgif) {
1619		clr_intercept(svm, INTERCEPT_STGI);
1620		clr_intercept(svm, INTERCEPT_CLGI);
1621		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1622	}
1623
1624	if (sev_guest(svm->vcpu.kvm)) {
1625		svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1626		clr_exception_intercept(svm, UD_VECTOR);
1627	}
1628
1629	mark_all_dirty(svm->vmcb);
1630
1631	enable_gif(svm);
1632
1633}
1634
1635static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
1636				       unsigned int index)
1637{
1638	u64 *avic_physical_id_table;
1639	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
1640
1641	if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
1642		return NULL;
1643
1644	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
1645
1646	return &avic_physical_id_table[index];
1647}
1648
1649/**
1650 * Note:
1651 * AVIC hardware walks the nested page table to check permissions,
1652 * but does not use the SPA address specified in the leaf page
1653 * table entry since it uses  address in the AVIC_BACKING_PAGE pointer
1654 * field of the VMCB. Therefore, we set up the
1655 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
1656 */
1657static int avic_init_access_page(struct kvm_vcpu *vcpu)
1658{
1659	struct kvm *kvm = vcpu->kvm;
1660	int ret;
1661
1662	if (kvm->arch.apic_access_page_done)
1663		return 0;
1664
1665	ret = x86_set_memory_region(kvm,
1666				    APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
1667				    APIC_DEFAULT_PHYS_BASE,
1668				    PAGE_SIZE);
1669	if (ret)
1670		return ret;
1671
1672	kvm->arch.apic_access_page_done = true;
1673	return 0;
1674}
1675
1676static int avic_init_backing_page(struct kvm_vcpu *vcpu)
1677{
1678	int ret;
1679	u64 *entry, new_entry;
1680	int id = vcpu->vcpu_id;
1681	struct vcpu_svm *svm = to_svm(vcpu);
1682
1683	ret = avic_init_access_page(vcpu);
1684	if (ret)
1685		return ret;
1686
1687	if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
1688		return -EINVAL;
1689
1690	if (!svm->vcpu.arch.apic->regs)
1691		return -EINVAL;
1692
1693	svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs);
1694
1695	/* Setting AVIC backing page address in the phy APIC ID table */
1696	entry = avic_get_physical_id_entry(vcpu, id);
1697	if (!entry)
1698		return -EINVAL;
1699
1700	new_entry = READ_ONCE(*entry);
1701	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
1702			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
1703			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
1704	WRITE_ONCE(*entry, new_entry);
1705
1706	svm->avic_physical_id_cache = entry;
1707
1708	return 0;
1709}
1710
1711static void __sev_asid_free(int asid)
1712{
1713	struct svm_cpu_data *sd;
1714	int cpu, pos;
1715
1716	pos = asid - 1;
1717	clear_bit(pos, sev_asid_bitmap);
1718
1719	for_each_possible_cpu(cpu) {
1720		sd = per_cpu(svm_data, cpu);
1721		sd->sev_vmcbs[pos] = NULL;
1722	}
1723}
1724
1725static void sev_asid_free(struct kvm *kvm)
1726{
1727	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1728
1729	__sev_asid_free(sev->asid);
1730}
1731
1732static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
1733{
1734	struct sev_data_decommission *decommission;
1735	struct sev_data_deactivate *data;
1736
1737	if (!handle)
1738		return;
1739
1740	data = kzalloc(sizeof(*data), GFP_KERNEL);
1741	if (!data)
1742		return;
1743
1744	/* deactivate handle */
1745	data->handle = handle;
1746	sev_guest_deactivate(data, NULL);
1747
1748	wbinvd_on_all_cpus();
1749	sev_guest_df_flush(NULL);
1750	kfree(data);
1751
1752	decommission = kzalloc(sizeof(*decommission), GFP_KERNEL);
1753	if (!decommission)
1754		return;
1755
1756	/* decommission handle */
1757	decommission->handle = handle;
1758	sev_guest_decommission(decommission, NULL);
1759
1760	kfree(decommission);
1761}
1762
1763static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
1764				    unsigned long ulen, unsigned long *n,
1765				    int write)
1766{
1767	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1768	unsigned long npages, npinned, size;
1769	unsigned long locked, lock_limit;
1770	struct page **pages;
1771	int first, last;
1772
1773	/* Calculate number of pages. */
1774	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
1775	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
1776	npages = (last - first + 1);
1777
1778	locked = sev->pages_locked + npages;
1779	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1780	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
1781		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
1782		return NULL;
1783	}
1784
1785	/* Avoid using vmalloc for smaller buffers. */
1786	size = npages * sizeof(struct page *);
1787	if (size > PAGE_SIZE)
1788		pages = vmalloc(size);
1789	else
1790		pages = kmalloc(size, GFP_KERNEL);
1791
1792	if (!pages)
1793		return NULL;
1794
1795	/* Pin the user virtual address. */
1796	npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
1797	if (npinned != npages) {
1798		pr_err("SEV: Failure locking %lu pages.\n", npages);
1799		goto err;
1800	}
1801
1802	*n = npages;
1803	sev->pages_locked = locked;
1804
1805	return pages;
1806
1807err:
1808	if (npinned > 0)
1809		release_pages(pages, npinned);
1810
1811	kvfree(pages);
1812	return NULL;
1813}
1814
1815static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
1816			     unsigned long npages)
1817{
1818	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1819
1820	release_pages(pages, npages);
1821	kvfree(pages);
1822	sev->pages_locked -= npages;
1823}
1824
1825static void sev_clflush_pages(struct page *pages[], unsigned long npages)
1826{
1827	uint8_t *page_virtual;
1828	unsigned long i;
1829
1830	if (npages == 0 || pages == NULL)
1831		return;
1832
1833	for (i = 0; i < npages; i++) {
1834		page_virtual = kmap_atomic(pages[i]);
1835		clflush_cache_range(page_virtual, PAGE_SIZE);
1836		kunmap_atomic(page_virtual);
1837	}
1838}
1839
1840static void __unregister_enc_region_locked(struct kvm *kvm,
1841					   struct enc_region *region)
1842{
1843	/*
1844	 * The guest may change the memory encryption attribute from C=0 -> C=1
1845	 * or vice versa for this memory range. Lets make sure caches are
1846	 * flushed to ensure that guest data gets written into memory with
1847	 * correct C-bit.
1848	 */
1849	sev_clflush_pages(region->pages, region->npages);
1850
1851	sev_unpin_memory(kvm, region->pages, region->npages);
1852	list_del(&region->list);
1853	kfree(region);
1854}
1855
1856static struct kvm *svm_vm_alloc(void)
1857{
1858	struct kvm_svm *kvm_svm = kzalloc(sizeof(struct kvm_svm), GFP_KERNEL);
1859	return &kvm_svm->kvm;
1860}
1861
1862static void svm_vm_free(struct kvm *kvm)
1863{
1864	kfree(to_kvm_svm(kvm));
1865}
1866
1867static void sev_vm_destroy(struct kvm *kvm)
1868{
1869	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1870	struct list_head *head = &sev->regions_list;
1871	struct list_head *pos, *q;
1872
1873	if (!sev_guest(kvm))
1874		return;
1875
1876	mutex_lock(&kvm->lock);
1877
1878	/*
1879	 * if userspace was terminated before unregistering the memory regions
1880	 * then lets unpin all the registered memory.
1881	 */
1882	if (!list_empty(head)) {
1883		list_for_each_safe(pos, q, head) {
1884			__unregister_enc_region_locked(kvm,
1885				list_entry(pos, struct enc_region, list));
1886		}
1887	}
1888
1889	mutex_unlock(&kvm->lock);
1890
1891	sev_unbind_asid(kvm, sev->handle);
1892	sev_asid_free(kvm);
1893}
1894
1895static void avic_vm_destroy(struct kvm *kvm)
1896{
1897	unsigned long flags;
1898	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1899
1900	if (!avic)
1901		return;
1902
1903	if (kvm_svm->avic_logical_id_table_page)
1904		__free_page(kvm_svm->avic_logical_id_table_page);
1905	if (kvm_svm->avic_physical_id_table_page)
1906		__free_page(kvm_svm->avic_physical_id_table_page);
1907
1908	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1909	hash_del(&kvm_svm->hnode);
1910	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1911}
1912
1913static void svm_vm_destroy(struct kvm *kvm)
1914{
1915	avic_vm_destroy(kvm);
1916	sev_vm_destroy(kvm);
1917}
1918
1919static int avic_vm_init(struct kvm *kvm)
1920{
1921	unsigned long flags;
1922	int err = -ENOMEM;
1923	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
1924	struct kvm_svm *k2;
1925	struct page *p_page;
1926	struct page *l_page;
1927	u32 vm_id;
1928
1929	if (!avic)
1930		return 0;
1931
1932	/* Allocating physical APIC ID table (4KB) */
1933	p_page = alloc_page(GFP_KERNEL);
1934	if (!p_page)
1935		goto free_avic;
1936
1937	kvm_svm->avic_physical_id_table_page = p_page;
1938	clear_page(page_address(p_page));
1939
1940	/* Allocating logical APIC ID table (4KB) */
1941	l_page = alloc_page(GFP_KERNEL);
1942	if (!l_page)
1943		goto free_avic;
1944
1945	kvm_svm->avic_logical_id_table_page = l_page;
1946	clear_page(page_address(l_page));
1947
1948	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
1949 again:
1950	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
1951	if (vm_id == 0) { /* id is 1-based, zero is not okay */
1952		next_vm_id_wrapped = 1;
1953		goto again;
1954	}
1955	/* Is it still in use? Only possible if wrapped at least once */
1956	if (next_vm_id_wrapped) {
1957		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
1958			if (k2->avic_vm_id == vm_id)
1959				goto again;
1960		}
1961	}
1962	kvm_svm->avic_vm_id = vm_id;
1963	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
1964	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
1965
1966	return 0;
1967
1968free_avic:
1969	avic_vm_destroy(kvm);
1970	return err;
1971}
1972
1973static inline int
1974avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1975{
1976	int ret = 0;
1977	unsigned long flags;
1978	struct amd_svm_iommu_ir *ir;
1979	struct vcpu_svm *svm = to_svm(vcpu);
1980
1981	if (!kvm_arch_has_assigned_device(vcpu->kvm))
1982		return 0;
1983
1984	/*
1985	 * Here, we go through the per-vcpu ir_list to update all existing
1986	 * interrupt remapping table entry targeting this vcpu.
1987	 */
1988	spin_lock_irqsave(&svm->ir_list_lock, flags);
1989
1990	if (list_empty(&svm->ir_list))
1991		goto out;
1992
1993	list_for_each_entry(ir, &svm->ir_list, node) {
1994		ret = amd_iommu_update_ga(cpu, r, ir->data);
1995		if (ret)
1996			break;
1997	}
1998out:
1999	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
2000	return ret;
2001}
2002
2003static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2004{
2005	u64 entry;
2006	/* ID = 0xff (broadcast), ID > 0xff (reserved) */
2007	int h_physical_id = kvm_cpu_get_apicid(cpu);
2008	struct vcpu_svm *svm = to_svm(vcpu);
2009
2010	if (!kvm_vcpu_apicv_active(vcpu))
2011		return;
2012
2013	if (WARN_ON(h_physical_id >= AVIC_MAX_PHYSICAL_ID_COUNT))
2014		return;
2015
2016	entry = READ_ONCE(*(svm->avic_physical_id_cache));
2017	WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
2018
2019	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
2020	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
2021
2022	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2023	if (svm->avic_is_running)
2024		entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2025
2026	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2027	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
2028					svm->avic_is_running);
2029}
2030
2031static void avic_vcpu_put(struct kvm_vcpu *vcpu)
2032{
2033	u64 entry;
2034	struct vcpu_svm *svm = to_svm(vcpu);
2035
2036	if (!kvm_vcpu_apicv_active(vcpu))
2037		return;
2038
2039	entry = READ_ONCE(*(svm->avic_physical_id_cache));
2040	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
2041		avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
2042
2043	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
2044	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
2045}
2046
2047/**
2048 * This function is called during VCPU halt/unhalt.
2049 */
2050static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
2051{
2052	struct vcpu_svm *svm = to_svm(vcpu);
2053
2054	svm->avic_is_running = is_run;
2055	if (is_run)
2056		avic_vcpu_load(vcpu, vcpu->cpu);
2057	else
2058		avic_vcpu_put(vcpu);
2059}
2060
2061static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
2062{
2063	struct vcpu_svm *svm = to_svm(vcpu);
2064	u32 dummy;
2065	u32 eax = 1;
2066
2067	vcpu->arch.microcode_version = 0x01000065;
2068	svm->spec_ctrl = 0;
2069	svm->virt_spec_ctrl = 0;
2070
2071	if (!init_event) {
2072		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
2073					   MSR_IA32_APICBASE_ENABLE;
2074		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
2075			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
2076	}
2077	init_vmcb(svm);
2078
2079	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true);
2080	kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
2081
2082	if (kvm_vcpu_apicv_active(vcpu) && !init_event)
2083		avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
2084}
2085
2086static int avic_init_vcpu(struct vcpu_svm *svm)
2087{
2088	int ret;
2089
2090	if (!kvm_vcpu_apicv_active(&svm->vcpu))
2091		return 0;
2092
2093	ret = avic_init_backing_page(&svm->vcpu);
2094	if (ret)
2095		return ret;
2096
2097	INIT_LIST_HEAD(&svm->ir_list);
2098	spin_lock_init(&svm->ir_list_lock);
2099
2100	return ret;
2101}
2102
2103static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
2104{
2105	struct vcpu_svm *svm;
2106	struct page *page;
2107	struct page *msrpm_pages;
2108	struct page *hsave_page;
2109	struct page *nested_msrpm_pages;
2110	int err;
2111
2112	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2113	if (!svm) {
2114		err = -ENOMEM;
2115		goto out;
2116	}
2117
2118	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
2119	if (err)
2120		goto free_svm;
2121
2122	err = -ENOMEM;
2123	page = alloc_page(GFP_KERNEL);
2124	if (!page)
2125		goto uninit;
2126
2127	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2128	if (!msrpm_pages)
2129		goto free_page1;
2130
2131	nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
2132	if (!nested_msrpm_pages)
2133		goto free_page2;
2134
2135	hsave_page = alloc_page(GFP_KERNEL);
2136	if (!hsave_page)
2137		goto free_page3;
2138
2139	err = avic_init_vcpu(svm);
2140	if (err)
2141		goto free_page4;
2142
2143	/* We initialize this flag to true to make sure that the is_running
2144	 * bit would be set the first time the vcpu is loaded.
2145	 */
2146	svm->avic_is_running = true;
2147
2148	svm->nested.hsave = page_address(hsave_page);
2149
2150	svm->msrpm = page_address(msrpm_pages);
2151	svm_vcpu_init_msrpm(svm->msrpm);
2152
2153	svm->nested.msrpm = page_address(nested_msrpm_pages);
2154	svm_vcpu_init_msrpm(svm->nested.msrpm);
2155
2156	svm->vmcb = page_address(page);
2157	clear_page(svm->vmcb);
2158	svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT);
2159	svm->asid_generation = 0;
2160	init_vmcb(svm);
2161
2162	svm_init_osvw(&svm->vcpu);
2163
2164	return &svm->vcpu;
2165
2166free_page4:
2167	__free_page(hsave_page);
2168free_page3:
2169	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
2170free_page2:
2171	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
2172free_page1:
2173	__free_page(page);
2174uninit:
2175	kvm_vcpu_uninit(&svm->vcpu);
2176free_svm:
2177	kmem_cache_free(kvm_vcpu_cache, svm);
2178out:
2179	return ERR_PTR(err);
2180}
2181
2182static void svm_free_vcpu(struct kvm_vcpu *vcpu)
2183{
2184	struct vcpu_svm *svm = to_svm(vcpu);
2185
2186	__free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
2187	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
2188	__free_page(virt_to_page(svm->nested.hsave));
2189	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
2190	kvm_vcpu_uninit(vcpu);
2191	kmem_cache_free(kvm_vcpu_cache, svm);
2192	/*
2193	 * The vmcb page can be recycled, causing a false negative in
2194	 * svm_vcpu_load(). So do a full IBPB now.
2195	 */
2196	indirect_branch_prediction_barrier();
2197}
2198
2199static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2200{
2201	struct vcpu_svm *svm = to_svm(vcpu);
2202	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2203	int i;
2204
2205	if (unlikely(cpu != vcpu->cpu)) {
2206		svm->asid_generation = 0;
2207		mark_all_dirty(svm->vmcb);
2208	}
2209
2210#ifdef CONFIG_X86_64
2211	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
2212#endif
2213	savesegment(fs, svm->host.fs);
2214	savesegment(gs, svm->host.gs);
2215	svm->host.ldt = kvm_read_ldt();
2216
2217	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2218		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2219
2220	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
2221		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2222		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
2223			__this_cpu_write(current_tsc_ratio, tsc_ratio);
2224			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
2225		}
2226	}
2227	/* This assumes that the kernel never uses MSR_TSC_AUX */
2228	if (static_cpu_has(X86_FEATURE_RDTSCP))
2229		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2230
2231	if (sd->current_vmcb != svm->vmcb) {
2232		sd->current_vmcb = svm->vmcb;
2233		indirect_branch_prediction_barrier();
2234	}
2235	avic_vcpu_load(vcpu, cpu);
2236}
2237
2238static void svm_vcpu_put(struct kvm_vcpu *vcpu)
2239{
2240	struct vcpu_svm *svm = to_svm(vcpu);
2241	int i;
2242
2243	avic_vcpu_put(vcpu);
2244
2245	++vcpu->stat.host_state_reload;
2246	kvm_load_ldt(svm->host.ldt);
2247#ifdef CONFIG_X86_64
2248	loadsegment(fs, svm->host.fs);
2249	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
2250	load_gs_index(svm->host.gs);
2251#else
2252#ifdef CONFIG_X86_32_LAZY_GS
2253	loadsegment(gs, svm->host.gs);
2254#endif
2255#endif
2256	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
2257		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
2258}
2259
2260static void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
2261{
2262	avic_set_running(vcpu, false);
2263}
2264
2265static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
2266{
2267	avic_set_running(vcpu, true);
2268}
2269
2270static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
2271{
2272	struct vcpu_svm *svm = to_svm(vcpu);
2273	unsigned long rflags = svm->vmcb->save.rflags;
2274
2275	if (svm->nmi_singlestep) {
2276		/* Hide our flags if they were not set by the guest */
2277		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
2278			rflags &= ~X86_EFLAGS_TF;
2279		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
2280			rflags &= ~X86_EFLAGS_RF;
2281	}
2282	return rflags;
2283}
2284
2285static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2286{
2287	if (to_svm(vcpu)->nmi_singlestep)
2288		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2289
2290       /*
2291        * Any change of EFLAGS.VM is accompanied by a reload of SS
2292        * (caused by either a task switch or an inter-privilege IRET),
2293        * so we do not need to update the CPL here.
2294        */
2295	to_svm(vcpu)->vmcb->save.rflags = rflags;
2296}
2297
2298static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2299{
2300	switch (reg) {
2301	case VCPU_EXREG_PDPTR:
2302		BUG_ON(!npt_enabled);
2303		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
2304		break;
2305	default:
2306		BUG();
2307	}
2308}
2309
2310static void svm_set_vintr(struct vcpu_svm *svm)
2311{
2312	set_intercept(svm, INTERCEPT_VINTR);
2313}
2314
2315static void svm_clear_vintr(struct vcpu_svm *svm)
2316{
2317	clr_intercept(svm, INTERCEPT_VINTR);
2318}
2319
2320static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
2321{
2322	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2323
2324	switch (seg) {
2325	case VCPU_SREG_CS: return &save->cs;
2326	case VCPU_SREG_DS: return &save->ds;
2327	case VCPU_SREG_ES: return &save->es;
2328	case VCPU_SREG_FS: return &save->fs;
2329	case VCPU_SREG_GS: return &save->gs;
2330	case VCPU_SREG_SS: return &save->ss;
2331	case VCPU_SREG_TR: return &save->tr;
2332	case VCPU_SREG_LDTR: return &save->ldtr;
2333	}
2334	BUG();
2335	return NULL;
2336}
2337
2338static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2339{
2340	struct vmcb_seg *s = svm_seg(vcpu, seg);
2341
2342	return s->base;
2343}
2344
2345static void svm_get_segment(struct kvm_vcpu *vcpu,
2346			    struct kvm_segment *var, int seg)
2347{
2348	struct vmcb_seg *s = svm_seg(vcpu, seg);
2349
2350	var->base = s->base;
2351	var->limit = s->limit;
2352	var->selector = s->selector;
2353	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
2354	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
2355	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
2356	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
2357	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
2358	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
2359	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
2360
2361	/*
2362	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
2363	 * However, the SVM spec states that the G bit is not observed by the
2364	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
2365	 * So let's synthesize a legal G bit for all segments, this helps
2366	 * running KVM nested. It also helps cross-vendor migration, because
2367	 * Intel's vmentry has a check on the 'G' bit.
2368	 */
2369	var->g = s->limit > 0xfffff;
2370
2371	/*
2372	 * AMD's VMCB does not have an explicit unusable field, so emulate it
2373	 * for cross vendor migration purposes by "not present"
2374	 */
2375	var->unusable = !var->present;
2376
2377	switch (seg) {
2378	case VCPU_SREG_TR:
2379		/*
2380		 * Work around a bug where the busy flag in the tr selector
2381		 * isn't exposed
2382		 */
2383		var->type |= 0x2;
2384		break;
2385	case VCPU_SREG_DS:
2386	case VCPU_SREG_ES:
2387	case VCPU_SREG_FS:
2388	case VCPU_SREG_GS:
2389		/*
2390		 * The accessed bit must always be set in the segment
2391		 * descriptor cache, although it can be cleared in the
2392		 * descriptor, the cached bit always remains at 1. Since
2393		 * Intel has a check on this, set it here to support
2394		 * cross-vendor migration.
2395		 */
2396		if (!var->unusable)
2397			var->type |= 0x1;
2398		break;
2399	case VCPU_SREG_SS:
2400		/*
2401		 * On AMD CPUs sometimes the DB bit in the segment
2402		 * descriptor is left as 1, although the whole segment has
2403		 * been made unusable. Clear it here to pass an Intel VMX
2404		 * entry check when cross vendor migrating.
2405		 */
2406		if (var->unusable)
2407			var->db = 0;
2408		/* This is symmetric with svm_set_segment() */
2409		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
2410		break;
2411	}
2412}
2413
2414static int svm_get_cpl(struct kvm_vcpu *vcpu)
2415{
2416	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
2417
2418	return save->cpl;
2419}
2420
2421static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2422{
2423	struct vcpu_svm *svm = to_svm(vcpu);
2424
2425	dt->size = svm->vmcb->save.idtr.limit;
2426	dt->address = svm->vmcb->save.idtr.base;
2427}
2428
2429static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2430{
2431	struct vcpu_svm *svm = to_svm(vcpu);
2432
2433	svm->vmcb->save.idtr.limit = dt->size;
2434	svm->vmcb->save.idtr.base = dt->address ;
2435	mark_dirty(svm->vmcb, VMCB_DT);
2436}
2437
2438static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2439{
2440	struct vcpu_svm *svm = to_svm(vcpu);
2441
2442	dt->size = svm->vmcb->save.gdtr.limit;
2443	dt->address = svm->vmcb->save.gdtr.base;
2444}
2445
2446static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2447{
2448	struct vcpu_svm *svm = to_svm(vcpu);
2449
2450	svm->vmcb->save.gdtr.limit = dt->size;
2451	svm->vmcb->save.gdtr.base = dt->address ;
2452	mark_dirty(svm->vmcb, VMCB_DT);
2453}
2454
2455static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2456{
2457}
2458
2459static void svm_decache_cr3(struct kvm_vcpu *vcpu)
2460{
2461}
2462
2463static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2464{
2465}
2466
2467static void update_cr0_intercept(struct vcpu_svm *svm)
2468{
2469	ulong gcr0 = svm->vcpu.arch.cr0;
2470	u64 *hcr0 = &svm->vmcb->save.cr0;
2471
2472	*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
2473		| (gcr0 & SVM_CR0_SELECTIVE_MASK);
2474
2475	mark_dirty(svm->vmcb, VMCB_CR);
2476
2477	if (gcr0 == *hcr0) {
2478		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
2479		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2480	} else {
2481		set_cr_intercept(svm, INTERCEPT_CR0_READ);
2482		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
2483	}
2484}
2485
2486static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2487{
2488	struct vcpu_svm *svm = to_svm(vcpu);
2489
2490#ifdef CONFIG_X86_64
2491	if (vcpu->arch.efer & EFER_LME) {
2492		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
2493			vcpu->arch.efer |= EFER_LMA;
2494			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
2495		}
2496
2497		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
2498			vcpu->arch.efer &= ~EFER_LMA;
2499			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
2500		}
2501	}
2502#endif
2503	vcpu->arch.cr0 = cr0;
2504
2505	if (!npt_enabled)
2506		cr0 |= X86_CR0_PG | X86_CR0_WP;
2507
2508	/*
2509	 * re-enable caching here because the QEMU bios
2510	 * does not do it - this results in some delay at
2511	 * reboot
2512	 */
2513	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
2514		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
2515	svm->vmcb->save.cr0 = cr0;
2516	mark_dirty(svm->vmcb, VMCB_CR);
2517	update_cr0_intercept(svm);
2518}
2519
2520static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2521{
2522	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
2523	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
2524
2525	if (cr4 & X86_CR4_VMXE)
2526		return 1;
2527
2528	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
2529		svm_flush_tlb(vcpu, true);
2530
2531	vcpu->arch.cr4 = cr4;
2532	if (!npt_enabled)
2533		cr4 |= X86_CR4_PAE;
2534	cr4 |= host_cr4_mce;
2535	to_svm(vcpu)->vmcb->save.cr4 = cr4;
2536	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
2537	return 0;
2538}
2539
2540static void svm_set_segment(struct kvm_vcpu *vcpu,
2541			    struct kvm_segment *var, int seg)
2542{
2543	struct vcpu_svm *svm = to_svm(vcpu);
2544	struct vmcb_seg *s = svm_seg(vcpu, seg);
2545
2546	s->base = var->base;
2547	s->limit = var->limit;
2548	s->selector = var->selector;
2549	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
2550	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
2551	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
2552	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
2553	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
2554	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
2555	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
2556	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
2557
2558	/*
2559	 * This is always accurate, except if SYSRET returned to a segment
2560	 * with SS.DPL != 3.  Intel does not have this quirk, and always
2561	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
2562	 * would entail passing the CPL to userspace and back.
2563	 */
2564	if (seg == VCPU_SREG_SS)
2565		/* This is symmetric with svm_get_segment() */
2566		svm->vmcb->save.cpl = (var->dpl & 3);
2567
2568	mark_dirty(svm->vmcb, VMCB_SEG);
2569}
2570
2571static void update_bp_intercept(struct kvm_vcpu *vcpu)
2572{
2573	struct vcpu_svm *svm = to_svm(vcpu);
2574
2575	clr_exception_intercept(svm, BP_VECTOR);
2576
2577	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
2578		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2579			set_exception_intercept(svm, BP_VECTOR);
2580	} else
2581		vcpu->guest_debug = 0;
2582}
2583
2584static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
2585{
2586	if (sd->next_asid > sd->max_asid) {
2587		++sd->asid_generation;
2588		sd->next_asid = sd->min_asid;
2589		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2590	}
2591
2592	svm->asid_generation = sd->asid_generation;
2593	svm->vmcb->control.asid = sd->next_asid++;
2594
2595	mark_dirty(svm->vmcb, VMCB_ASID);
2596}
2597
2598static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
2599{
2600	return to_svm(vcpu)->vmcb->save.dr6;
2601}
2602
2603static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
2604{
2605	struct vcpu_svm *svm = to_svm(vcpu);
2606
2607	svm->vmcb->save.dr6 = value;
2608	mark_dirty(svm->vmcb, VMCB_DR);
2609}
2610
2611static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2612{
2613	struct vcpu_svm *svm = to_svm(vcpu);
2614
2615	get_debugreg(vcpu->arch.db[0], 0);
2616	get_debugreg(vcpu->arch.db[1], 1);
2617	get_debugreg(vcpu->arch.db[2], 2);
2618	get_debugreg(vcpu->arch.db[3], 3);
2619	vcpu->arch.dr6 = svm_get_dr6(vcpu);
2620	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2621
2622	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2623	set_dr_intercepts(svm);
2624}
2625
2626static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2627{
2628	struct vcpu_svm *svm = to_svm(vcpu);
2629
2630	svm->vmcb->save.dr7 = value;
2631	mark_dirty(svm->vmcb, VMCB_DR);
2632}
2633
2634static int pf_interception(struct vcpu_svm *svm)
2635{
2636	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2637	u64 error_code = svm->vmcb->control.exit_info_1;
2638
2639	return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
2640			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2641			svm->vmcb->control.insn_bytes : NULL,
2642			svm->vmcb->control.insn_len);
2643}
2644
2645static int npf_interception(struct vcpu_svm *svm)
2646{
2647	u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
2648	u64 error_code = svm->vmcb->control.exit_info_1;
2649
2650	trace_kvm_page_fault(fault_address, error_code);
2651	return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
2652			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2653			svm->vmcb->control.insn_bytes : NULL,
2654			svm->vmcb->control.insn_len);
2655}
2656
2657static int db_interception(struct vcpu_svm *svm)
2658{
2659	struct kvm_run *kvm_run = svm->vcpu.run;
2660
2661	if (!(svm->vcpu.guest_debug &
2662	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2663		!svm->nmi_singlestep) {
2664		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
2665		return 1;
2666	}
2667
2668	if (svm->nmi_singlestep) {
2669		disable_nmi_singlestep(svm);
2670	}
2671
2672	if (svm->vcpu.guest_debug &
2673	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2674		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2675		kvm_run->debug.arch.pc =
2676			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2677		kvm_run->debug.arch.exception = DB_VECTOR;
2678		return 0;
2679	}
2680
2681	return 1;
2682}
2683
2684static int bp_interception(struct vcpu_svm *svm)
2685{
2686	struct kvm_run *kvm_run = svm->vcpu.run;
2687
2688	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2689	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2690	kvm_run->debug.arch.exception = BP_VECTOR;
2691	return 0;
2692}
2693
2694static int ud_interception(struct vcpu_svm *svm)
2695{
2696	return handle_ud(&svm->vcpu);
2697}
2698
2699static int ac_interception(struct vcpu_svm *svm)
2700{
2701	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
2702	return 1;
2703}
2704
2705static int gp_interception(struct vcpu_svm *svm)
2706{
2707	struct kvm_vcpu *vcpu = &svm->vcpu;
2708	u32 error_code = svm->vmcb->control.exit_info_1;
2709	int er;
2710
2711	WARN_ON_ONCE(!enable_vmware_backdoor);
2712
2713	er = emulate_instruction(vcpu,
2714		EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
2715	if (er == EMULATE_USER_EXIT)
2716		return 0;
2717	else if (er != EMULATE_DONE)
2718		kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2719	return 1;
2720}
2721
2722static bool is_erratum_383(void)
2723{
2724	int err, i;
2725	u64 value;
2726
2727	if (!erratum_383_found)
2728		return false;
2729
2730	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2731	if (err)
2732		return false;
2733
2734	/* Bit 62 may or may not be set for this mce */
2735	value &= ~(1ULL << 62);
2736
2737	if (value != 0xb600000000010015ULL)
2738		return false;
2739
2740	/* Clear MCi_STATUS registers */
2741	for (i = 0; i < 6; ++i)
2742		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2743
2744	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2745	if (!err) {
2746		u32 low, high;
2747
2748		value &= ~(1ULL << 2);
2749		low    = lower_32_bits(value);
2750		high   = upper_32_bits(value);
2751
2752		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2753	}
2754
2755	/* Flush tlb to evict multi-match entries */
2756	__flush_tlb_all();
2757
2758	return true;
2759}
2760
2761static void svm_handle_mce(struct vcpu_svm *svm)
2762{
2763	if (is_erratum_383()) {
2764		/*
2765		 * Erratum 383 triggered. Guest state is corrupt so kill the
2766		 * guest.
2767		 */
2768		pr_err("KVM: Guest triggered AMD Erratum 383\n");
2769
2770		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
2771
2772		return;
2773	}
2774
2775	/*
2776	 * On an #MC intercept the MCE handler is not called automatically in
2777	 * the host. So do it by hand here.
2778	 */
2779	asm volatile (
2780		"int $0x12\n");
2781	/* not sure if we ever come back to this point */
2782
2783	return;
2784}
2785
2786static int mc_interception(struct vcpu_svm *svm)
2787{
2788	return 1;
2789}
2790
2791static int shutdown_interception(struct vcpu_svm *svm)
2792{
2793	struct kvm_run *kvm_run = svm->vcpu.run;
2794
2795	/*
2796	 * VMCB is undefined after a SHUTDOWN intercept
2797	 * so reinitialize it.
2798	 */
2799	clear_page(svm->vmcb);
2800	init_vmcb(svm);
2801
2802	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2803	return 0;
2804}
2805
2806static int io_interception(struct vcpu_svm *svm)
2807{
2808	struct kvm_vcpu *vcpu = &svm->vcpu;
2809	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2810	int size, in, string;
2811	unsigned port;
2812
2813	++svm->vcpu.stat.io_exits;
2814	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2815	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2816	if (string)
2817		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
2818
2819	port = io_info >> 16;
2820	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2821	svm->next_rip = svm->vmcb->control.exit_info_2;
2822
2823	return kvm_fast_pio(&svm->vcpu, size, port, in);
2824}
2825
2826static int nmi_interception(struct vcpu_svm *svm)
2827{
2828	return 1;
2829}
2830
2831static int intr_interception(struct vcpu_svm *svm)
2832{
2833	++svm->vcpu.stat.irq_exits;
2834	return 1;
2835}
2836
2837static int nop_on_interception(struct vcpu_svm *svm)
2838{
2839	return 1;
2840}
2841
2842static int halt_interception(struct vcpu_svm *svm)
2843{
2844	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
2845	return kvm_emulate_halt(&svm->vcpu);
2846}
2847
2848static int vmmcall_interception(struct vcpu_svm *svm)
2849{
2850	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2851	return kvm_emulate_hypercall(&svm->vcpu);
2852}
2853
2854static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
2855{
2856	struct vcpu_svm *svm = to_svm(vcpu);
2857
2858	return svm->nested.nested_cr3;
2859}
2860
2861static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
2862{
2863	struct vcpu_svm *svm = to_svm(vcpu);
2864	u64 cr3 = svm->nested.nested_cr3;
2865	u64 pdpte;
2866	int ret;
2867
2868	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte,
2869				       offset_in_page(cr3) + index * 8, 8);
2870	if (ret)
2871		return 0;
2872	return pdpte;
2873}
2874
2875static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
2876				   unsigned long root)
2877{
2878	struct vcpu_svm *svm = to_svm(vcpu);
2879
2880	svm->vmcb->control.nested_cr3 = __sme_set(root);
2881	mark_dirty(svm->vmcb, VMCB_NPT);
2882	svm_flush_tlb(vcpu, true);
2883}
2884
2885static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
2886				       struct x86_exception *fault)
2887{
2888	struct vcpu_svm *svm = to_svm(vcpu);
2889
2890	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
2891		/*
2892		 * TODO: track the cause of the nested page fault, and
2893		 * correctly fill in the high bits of exit_info_1.
2894		 */
2895		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
2896		svm->vmcb->control.exit_code_hi = 0;
2897		svm->vmcb->control.exit_info_1 = (1ULL << 32);
2898		svm->vmcb->control.exit_info_2 = fault->address;
2899	}
2900
2901	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
2902	svm->vmcb->control.exit_info_1 |= fault->error_code;
2903
2904	/*
2905	 * The present bit is always zero for page structure faults on real
2906	 * hardware.
2907	 */
2908	if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2909		svm->vmcb->control.exit_info_1 &= ~1;
2910
2911	nested_svm_vmexit(svm);
2912}
2913
2914static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2915{
2916	WARN_ON(mmu_is_nested(vcpu));
2917	kvm_init_shadow_mmu(vcpu);
2918	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2919	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2920	vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2921	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2922	vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu);
2923	reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
2924	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2925}
2926
2927static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2928{
2929	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2930}
2931
2932static int nested_svm_check_permissions(struct vcpu_svm *svm)
2933{
2934	if (!(svm->vcpu.arch.efer & EFER_SVME) ||
2935	    !is_paging(&svm->vcpu)) {
2936		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2937		return 1;
2938	}
2939
2940	if (svm->vmcb->save.cpl) {
2941		kvm_inject_gp(&svm->vcpu, 0);
2942		return 1;
2943	}
2944
2945	return 0;
2946}
2947
2948static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2949				      bool has_error_code, u32 error_code)
2950{
2951	int vmexit;
2952
2953	if (!is_guest_mode(&svm->vcpu))
2954		return 0;
2955
2956	vmexit = nested_svm_intercept(svm);
2957	if (vmexit != NESTED_EXIT_DONE)
2958		return 0;
2959
2960	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2961	svm->vmcb->control.exit_code_hi = 0;
2962	svm->vmcb->control.exit_info_1 = error_code;
2963
2964	/*
2965	 * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception.
2966	 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2967	 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be
2968	 * written only when inject_pending_event runs (DR6 would written here
2969	 * too).  This should be conditional on a new capability---if the
2970	 * capability is disabled, kvm_multiple_exception would write the
2971	 * ancillary information to CR2 or DR6, for backwards ABI-compatibility.
2972	 */
2973	if (svm->vcpu.arch.exception.nested_apf)
2974		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token;
2975	else
2976		svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2977
2978	svm->nested.exit_required = true;
2979	return vmexit;
2980}
2981
2982/* This function returns true if it is save to enable the irq window */
2983static inline bool nested_svm_intr(struct vcpu_svm *svm)
2984{
2985	if (!is_guest_mode(&svm->vcpu))
2986		return true;
2987
2988	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2989		return true;
2990
2991	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2992		return false;
2993
2994	/*
2995	 * if vmexit was already requested (by intercepted exception
2996	 * for instance) do not overwrite it with "external interrupt"
2997	 * vmexit.
2998	 */
2999	if (svm->nested.exit_required)
3000		return false;
3001
3002	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
3003	svm->vmcb->control.exit_info_1 = 0;
3004	svm->vmcb->control.exit_info_2 = 0;
3005
3006	if (svm->nested.intercept & 1ULL) {
3007		/*
3008		 * The #vmexit can't be emulated here directly because this
3009		 * code path runs with irqs and preemption disabled. A
3010		 * #vmexit emulation might sleep. Only signal request for
3011		 * the #vmexit here.
3012		 */
3013		svm->nested.exit_required = true;
3014		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
3015		return false;
3016	}
3017
3018	return true;
3019}
3020
3021/* This function returns true if it is save to enable the nmi window */
3022static inline bool nested_svm_nmi(struct vcpu_svm *svm)
3023{
3024	if (!is_guest_mode(&svm->vcpu))
3025		return true;
3026
3027	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
3028		return true;
3029
3030	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
3031	svm->nested.exit_required = true;
3032
3033	return false;
3034}
3035
3036static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
3037{
3038	struct page *page;
3039
3040	might_sleep();
3041
3042	page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
3043	if (is_error_page(page))
3044		goto error;
3045
3046	*_page = page;
3047
3048	return kmap(page);
3049
3050error:
3051	kvm_inject_gp(&svm->vcpu, 0);
3052
3053	return NULL;
3054}
3055
3056static void nested_svm_unmap(struct page *page)
3057{
3058	kunmap(page);
3059	kvm_release_page_dirty(page);
3060}
3061
3062static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
3063{
3064	unsigned port, size, iopm_len;
3065	u16 val, mask;
3066	u8 start_bit;
3067	u64 gpa;
3068
3069	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
3070		return NESTED_EXIT_HOST;
3071
3072	port = svm->vmcb->control.exit_info_1 >> 16;
3073	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
3074		SVM_IOIO_SIZE_SHIFT;
3075	gpa  = svm->nested.vmcb_iopm + (port / 8);
3076	start_bit = port % 8;
3077	iopm_len = (start_bit + size > 8) ? 2 : 1;
3078	mask = (0xf >> (4 - size)) << start_bit;
3079	val = 0;
3080
3081	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
3082		return NESTED_EXIT_DONE;
3083
3084	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3085}
3086
3087static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
3088{
3089	u32 offset, msr, value;
3090	int write, mask;
3091
3092	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3093		return NESTED_EXIT_HOST;
3094
3095	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3096	offset = svm_msrpm_offset(msr);
3097	write  = svm->vmcb->control.exit_info_1 & 1;
3098	mask   = 1 << ((2 * (msr & 0xf)) + write);
3099
3100	if (offset == MSR_INVALID)
3101		return NESTED_EXIT_DONE;
3102
3103	/* Offset is in 32 bit units but need in 8 bit units */
3104	offset *= 4;
3105
3106	if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
3107		return NESTED_EXIT_DONE;
3108
3109	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
3110}
3111
3112/* DB exceptions for our internal use must not cause vmexit */
3113static int nested_svm_intercept_db(struct vcpu_svm *svm)
3114{
3115	unsigned long dr6;
3116
3117	/* if we're not singlestepping, it's not ours */
3118	if (!svm->nmi_singlestep)
3119		return NESTED_EXIT_DONE;
3120
3121	/* if it's not a singlestep exception, it's not ours */
3122	if (kvm_get_dr(&svm->vcpu, 6, &dr6))
3123		return NESTED_EXIT_DONE;
3124	if (!(dr6 & DR6_BS))
3125		return NESTED_EXIT_DONE;
3126
3127	/* if the guest is singlestepping, it should get the vmexit */
3128	if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) {
3129		disable_nmi_singlestep(svm);
3130		return NESTED_EXIT_DONE;
3131	}
3132
3133	/* it's ours, the nested hypervisor must not see this one */
3134	return NESTED_EXIT_HOST;
3135}
3136
3137static int nested_svm_exit_special(struct vcpu_svm *svm)
3138{
3139	u32 exit_code = svm->vmcb->control.exit_code;
3140
3141	switch (exit_code) {
3142	case SVM_EXIT_INTR:
3143	case SVM_EXIT_NMI:
3144	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
3145		return NESTED_EXIT_HOST;
3146	case SVM_EXIT_NPF:
3147		/* For now we are always handling NPFs when using them */
3148		if (npt_enabled)
3149			return NESTED_EXIT_HOST;
3150		break;
3151	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
3152		/* When we're shadowing, trap PFs, but not async PF */
3153		if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0)
3154			return NESTED_EXIT_HOST;
3155		break;
3156	default:
3157		break;
3158	}
3159
3160	return NESTED_EXIT_CONTINUE;
3161}
3162
3163/*
3164 * If this function returns true, this #vmexit was already handled
3165 */
3166static int nested_svm_intercept(struct vcpu_svm *svm)
3167{
3168	u32 exit_code = svm->vmcb->control.exit_code;
3169	int vmexit = NESTED_EXIT_HOST;
3170
3171	switch (exit_code) {
3172	case SVM_EXIT_MSR:
3173		vmexit = nested_svm_exit_handled_msr(svm);
3174		break;
3175	case SVM_EXIT_IOIO:
3176		vmexit = nested_svm_intercept_ioio(svm);
3177		break;
3178	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
3179		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
3180		if (svm->nested.intercept_cr & bit)
3181			vmexit = NESTED_EXIT_DONE;
3182		break;
3183	}
3184	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
3185		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
3186		if (svm->nested.intercept_dr & bit)
3187			vmexit = NESTED_EXIT_DONE;
3188		break;
3189	}
3190	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
3191		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
3192		if (svm->nested.intercept_exceptions & excp_bits) {
3193			if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR)
3194				vmexit = nested_svm_intercept_db(svm);
3195			else
3196				vmexit = NESTED_EXIT_DONE;
3197		}
3198		/* async page fault always cause vmexit */
3199		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
3200			 svm->vcpu.arch.exception.nested_apf != 0)
3201			vmexit = NESTED_EXIT_DONE;
3202		break;
3203	}
3204	case SVM_EXIT_ERR: {
3205		vmexit = NESTED_EXIT_DONE;
3206		break;
3207	}
3208	default: {
3209		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
3210		if (svm->nested.intercept & exit_bits)
3211			vmexit = NESTED_EXIT_DONE;
3212	}
3213	}
3214
3215	return vmexit;
3216}
3217
3218static int nested_svm_exit_handled(struct vcpu_svm *svm)
3219{
3220	int vmexit;
3221
3222	vmexit = nested_svm_intercept(svm);
3223
3224	if (vmexit == NESTED_EXIT_DONE)
3225		nested_svm_vmexit(svm);
3226
3227	return vmexit;
3228}
3229
3230static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
3231{
3232	struct vmcb_control_area *dst  = &dst_vmcb->control;
3233	struct vmcb_control_area *from = &from_vmcb->control;
3234
3235	dst->intercept_cr         = from->intercept_cr;
3236	dst->intercept_dr         = from->intercept_dr;
3237	dst->intercept_exceptions = from->intercept_exceptions;
3238	dst->intercept            = from->intercept;
3239	dst->iopm_base_pa         = from->iopm_base_pa;
3240	dst->msrpm_base_pa        = from->msrpm_base_pa;
3241	dst->tsc_offset           = from->tsc_offset;
3242	dst->asid                 = from->asid;
3243	dst->tlb_ctl              = from->tlb_ctl;
3244	dst->int_ctl              = from->int_ctl;
3245	dst->int_vector           = from->int_vector;
3246	dst->int_state            = from->int_state;
3247	dst->exit_code            = from->exit_code;
3248	dst->exit_code_hi         = from->exit_code_hi;
3249	dst->exit_info_1          = from->exit_info_1;
3250	dst->exit_info_2          = from->exit_info_2;
3251	dst->exit_int_info        = from->exit_int_info;
3252	dst->exit_int_info_err    = from->exit_int_info_err;
3253	dst->nested_ctl           = from->nested_ctl;
3254	dst->event_inj            = from->event_inj;
3255	dst->event_inj_err        = from->event_inj_err;
3256	dst->nested_cr3           = from->nested_cr3;
3257	dst->virt_ext              = from->virt_ext;
3258}
3259
3260static int nested_svm_vmexit(struct vcpu_svm *svm)
3261{
3262	struct vmcb *nested_vmcb;
3263	struct vmcb *hsave = svm->nested.hsave;
3264	struct vmcb *vmcb = svm->vmcb;
3265	struct page *page;
3266
3267	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
3268				       vmcb->control.exit_info_1,
3269				       vmcb->control.exit_info_2,
3270				       vmcb->control.exit_int_info,
3271				       vmcb->control.exit_int_info_err,
3272				       KVM_ISA_SVM);
3273
3274	nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
3275	if (!nested_vmcb)
3276		return 1;
3277
3278	/* Exit Guest-Mode */
3279	leave_guest_mode(&svm->vcpu);
3280	svm->nested.vmcb = 0;
3281
3282	/* Give the current vmcb to the guest */
3283	disable_gif(svm);
3284
3285	nested_vmcb->save.es     = vmcb->save.es;
3286	nested_vmcb->save.cs     = vmcb->save.cs;
3287	nested_vmcb->save.ss     = vmcb->save.ss;
3288	nested_vmcb->save.ds     = vmcb->save.ds;
3289	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
3290	nested_vmcb->save.idtr   = vmcb->save.idtr;
3291	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
3292	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
3293	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
3294	nested_vmcb->save.cr2    = vmcb->save.cr2;
3295	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
3296	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
3297	nested_vmcb->save.rip    = vmcb->save.rip;
3298	nested_vmcb->save.rsp    = vmcb->save.rsp;
3299	nested_vmcb->save.rax    = vmcb->save.rax;
3300	nested_vmcb->save.dr7    = vmcb->save.dr7;
3301	nested_vmcb->save.dr6    = vmcb->save.dr6;
3302	nested_vmcb->save.cpl    = vmcb->save.cpl;
3303
3304	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
3305	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
3306	nested_vmcb->control.int_state         = vmcb->control.int_state;
3307	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
3308	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
3309	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
3310	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
3311	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
3312	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
3313
3314	if (svm->nrips_enabled)
3315		nested_vmcb->control.next_rip  = vmcb->control.next_rip;
3316
3317	/*
3318	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
3319	 * to make sure that we do not lose injected events. So check event_inj
3320	 * here and copy it to exit_int_info if it is valid.
3321	 * Exit_int_info and event_inj can't be both valid because the case
3322	 * below only happens on a VMRUN instruction intercept which has
3323	 * no valid exit_int_info set.
3324	 */
3325	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
3326		struct vmcb_control_area *nc = &nested_vmcb->control;
3327
3328		nc->exit_int_info     = vmcb->control.event_inj;
3329		nc->exit_int_info_err = vmcb->control.event_inj_err;
3330	}
3331
3332	nested_vmcb->control.tlb_ctl           = 0;
3333	nested_vmcb->control.event_inj         = 0;
3334	nested_vmcb->control.event_inj_err     = 0;
3335
3336	/* We always set V_INTR_MASKING and remember the old value in hflags */
3337	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
3338		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3339
3340	/* Restore the original control entries */
3341	copy_vmcb_control_area(vmcb, hsave);
3342
3343	svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset;
3344	kvm_clear_exception_queue(&svm->vcpu);
3345	kvm_clear_interrupt_queue(&svm->vcpu);
3346
3347	svm->nested.nested_cr3 = 0;
3348
3349	/* Restore selected save entries */
3350	svm->vmcb->save.es = hsave->save.es;
3351	svm->vmcb->save.cs = hsave->save.cs;
3352	svm->vmcb->save.ss = hsave->save.ss;
3353	svm->vmcb->save.ds = hsave->save.ds;
3354	svm->vmcb->save.gdtr = hsave->save.gdtr;
3355	svm->vmcb->save.idtr = hsave->save.idtr;
3356	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
3357	svm_set_efer(&svm->vcpu, hsave->save.efer);
3358	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
3359	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
3360	if (npt_enabled) {
3361		svm->vmcb->save.cr3 = hsave->save.cr3;
3362		svm->vcpu.arch.cr3 = hsave->save.cr3;
3363	} else {
3364		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
3365	}
3366	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
3367	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
3368	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
3369	svm->vmcb->save.dr7 = 0;
3370	svm->vmcb->save.cpl = 0;
3371	svm->vmcb->control.exit_int_info = 0;
3372
3373	mark_all_dirty(svm->vmcb);
3374
3375	nested_svm_unmap(page);
3376
3377	nested_svm_uninit_mmu_context(&svm->vcpu);
3378	kvm_mmu_reset_context(&svm->vcpu);
3379	kvm_mmu_load(&svm->vcpu);
3380
3381	return 0;
3382}
3383
3384static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
3385{
3386	/*
3387	 * This function merges the msr permission bitmaps of kvm and the
3388	 * nested vmcb. It is optimized in that it only merges the parts where
3389	 * the kvm msr permission bitmap may contain zero bits
3390	 */
3391	int i;
3392
3393	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
3394		return true;
3395
3396	for (i = 0; i < MSRPM_OFFSETS; i++) {
3397		u32 value, p;
3398		u64 offset;
3399
3400		if (msrpm_offsets[i] == 0xffffffff)
3401			break;
3402
3403		p      = msrpm_offsets[i];
3404		offset = svm->nested.vmcb_msrpm + (p * 4);
3405
3406		if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
3407			return false;
3408
3409		svm->nested.msrpm[p] = svm->msrpm[p] | value;
3410	}
3411
3412	svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm));
3413
3414	return true;
3415}
3416
3417static bool nested_vmcb_checks(struct vmcb *vmcb)
3418{
3419	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
3420		return false;
3421
3422	if (vmcb->control.asid == 0)
3423		return false;
3424
3425	if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) &&
3426	    !npt_enabled)
3427		return false;
3428
3429	return true;
3430}
3431
3432static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
3433				 struct vmcb *nested_vmcb, struct page *page)
3434{
3435	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
3436		svm->vcpu.arch.hflags |= HF_HIF_MASK;
3437	else
3438		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
3439
3440	if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) {
3441		kvm_mmu_unload(&svm->vcpu);
3442		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
3443		nested_svm_init_mmu_context(&svm->vcpu);
3444	}
3445
3446	/* Load the nested guest state */
3447	svm->vmcb->save.es = nested_vmcb->save.es;
3448	svm->vmcb->save.cs = nested_vmcb->save.cs;
3449	svm->vmcb->save.ss = nested_vmcb->save.ss;
3450	svm->vmcb->save.ds = nested_vmcb->save.ds;
3451	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
3452	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
3453	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
3454	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
3455	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
3456	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
3457	if (npt_enabled) {
3458		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
3459		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
3460	} else
3461		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
3462
3463	/* Guest paging mode is active - reset mmu */
3464	kvm_mmu_reset_context(&svm->vcpu);
3465
3466	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
3467	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
3468	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
3469	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
3470
3471	/* In case we don't even reach vcpu_run, the fields are not updated */
3472	svm->vmcb->save.rax = nested_vmcb->save.rax;
3473	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
3474	svm->vmcb->save.rip = nested_vmcb->save.rip;
3475	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
3476	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
3477	svm->vmcb->save.cpl = nested_vmcb->save.cpl;
3478
3479	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
3480	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
3481
3482	/* cache intercepts */
3483	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
3484	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
3485	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
3486	svm->nested.intercept            = nested_vmcb->control.intercept;
3487
3488	svm_flush_tlb(&svm->vcpu, true);
3489	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
3490	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
3491		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
3492	else
3493		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
3494
3495	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
3496		/* We only want the cr8 intercept bits of the guest */
3497		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
3498		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3499	}
3500
3501	/* We don't want to see VMMCALLs from a nested guest */
3502	clr_intercept(svm, INTERCEPT_VMMCALL);
3503
3504	svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset;
3505	svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset;
3506
3507	svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext;
3508	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
3509	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
3510	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
3511	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
3512
3513	nested_svm_unmap(page);
3514
3515	/* Enter Guest-Mode */
3516	enter_guest_mode(&svm->vcpu);
3517
3518	/*
3519	 * Merge guest and host intercepts - must be called  with vcpu in
3520	 * guest-mode to take affect here
3521	 */
3522	recalc_intercepts(svm);
3523
3524	svm->nested.vmcb = vmcb_gpa;
3525
3526	enable_gif(svm);
3527
3528	mark_all_dirty(svm->vmcb);
3529}
3530
3531static bool nested_svm_vmrun(struct vcpu_svm *svm)
3532{
3533	struct vmcb *nested_vmcb;
3534	struct vmcb *hsave = svm->nested.hsave;
3535	struct vmcb *vmcb = svm->vmcb;
3536	struct page *page;
3537	u64 vmcb_gpa;
3538
3539	vmcb_gpa = svm->vmcb->save.rax;
3540
3541	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3542	if (!nested_vmcb)
3543		return false;
3544
3545	if (!nested_vmcb_checks(nested_vmcb)) {
3546		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
3547		nested_vmcb->control.exit_code_hi = 0;
3548		nested_vmcb->control.exit_info_1  = 0;
3549		nested_vmcb->control.exit_info_2  = 0;
3550
3551		nested_svm_unmap(page);
3552
3553		return false;
3554	}
3555
3556	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
3557			       nested_vmcb->save.rip,
3558			       nested_vmcb->control.int_ctl,
3559			       nested_vmcb->control.event_inj,
3560			       nested_vmcb->control.nested_ctl);
3561
3562	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
3563				    nested_vmcb->control.intercept_cr >> 16,
3564				    nested_vmcb->control.intercept_exceptions,
3565				    nested_vmcb->control.intercept);
3566
3567	/* Clear internal status */
3568	kvm_clear_exception_queue(&svm->vcpu);
3569	kvm_clear_interrupt_queue(&svm->vcpu);
3570
3571	/*
3572	 * Save the old vmcb, so we don't need to pick what we save, but can
3573	 * restore everything when a VMEXIT occurs
3574	 */
3575	hsave->save.es     = vmcb->save.es;
3576	hsave->save.cs     = vmcb->save.cs;
3577	hsave->save.ss     = vmcb->save.ss;
3578	hsave->save.ds     = vmcb->save.ds;
3579	hsave->save.gdtr   = vmcb->save.gdtr;
3580	hsave->save.idtr   = vmcb->save.idtr;
3581	hsave->save.efer   = svm->vcpu.arch.efer;
3582	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
3583	hsave->save.cr4    = svm->vcpu.arch.cr4;
3584	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
3585	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
3586	hsave->save.rsp    = vmcb->save.rsp;
3587	hsave->save.rax    = vmcb->save.rax;
3588	if (npt_enabled)
3589		hsave->save.cr3    = vmcb->save.cr3;
3590	else
3591		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
3592
3593	copy_vmcb_control_area(hsave, vmcb);
3594
3595	enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page);
3596
3597	return true;
3598}
3599
3600static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
3601{
3602	to_vmcb->save.fs = from_vmcb->save.fs;
3603	to_vmcb->save.gs = from_vmcb->save.gs;
3604	to_vmcb->save.tr = from_vmcb->save.tr;
3605	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
3606	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
3607	to_vmcb->save.star = from_vmcb->save.star;
3608	to_vmcb->save.lstar = from_vmcb->save.lstar;
3609	to_vmcb->save.cstar = from_vmcb->save.cstar;
3610	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
3611	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
3612	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
3613	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
3614}
3615
3616static int vmload_interception(struct vcpu_svm *svm)
3617{
3618	struct vmcb *nested_vmcb;
3619	struct page *page;
3620	int ret;
3621
3622	if (nested_svm_check_permissions(svm))
3623		return 1;
3624
3625	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3626	if (!nested_vmcb)
3627		return 1;
3628
3629	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3630	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3631
3632	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
3633	nested_svm_unmap(page);
3634
3635	return ret;
3636}
3637
3638static int vmsave_interception(struct vcpu_svm *svm)
3639{
3640	struct vmcb *nested_vmcb;
3641	struct page *page;
3642	int ret;
3643
3644	if (nested_svm_check_permissions(svm))
3645		return 1;
3646
3647	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
3648	if (!nested_vmcb)
3649		return 1;
3650
3651	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3652	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3653
3654	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
3655	nested_svm_unmap(page);
3656
3657	return ret;
3658}
3659
3660static int vmrun_interception(struct vcpu_svm *svm)
3661{
3662	if (nested_svm_check_permissions(svm))
3663		return 1;
3664
3665	/* Save rip after vmrun instruction */
3666	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
3667
3668	if (!nested_svm_vmrun(svm))
3669		return 1;
3670
3671	if (!nested_svm_vmrun_msrpm(svm))
3672		goto failed;
3673
3674	return 1;
3675
3676failed:
3677
3678	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
3679	svm->vmcb->control.exit_code_hi = 0;
3680	svm->vmcb->control.exit_info_1  = 0;
3681	svm->vmcb->control.exit_info_2  = 0;
3682
3683	nested_svm_vmexit(svm);
3684
3685	return 1;
3686}
3687
3688static int stgi_interception(struct vcpu_svm *svm)
3689{
3690	int ret;
3691
3692	if (nested_svm_check_permissions(svm))
3693		return 1;
3694
3695	/*
3696	 * If VGIF is enabled, the STGI intercept is only added to
3697	 * detect the opening of the SMI/NMI window; remove it now.
3698	 */
3699	if (vgif_enabled(svm))
3700		clr_intercept(svm, INTERCEPT_STGI);
3701
3702	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3703	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3704	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3705
3706	enable_gif(svm);
3707
3708	return ret;
3709}
3710
3711static int clgi_interception(struct vcpu_svm *svm)
3712{
3713	int ret;
3714
3715	if (nested_svm_check_permissions(svm))
3716		return 1;
3717
3718	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3719	ret = kvm_skip_emulated_instruction(&svm->vcpu);
3720
3721	disable_gif(svm);
3722
3723	/* After a CLGI no interrupts should come */
3724	if (!kvm_vcpu_apicv_active(&svm->vcpu)) {
3725		svm_clear_vintr(svm);
3726		svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3727		mark_dirty(svm->vmcb, VMCB_INTR);
3728	}
3729
3730	return ret;
3731}
3732
3733static int invlpga_interception(struct vcpu_svm *svm)
3734{
3735	struct kvm_vcpu *vcpu = &svm->vcpu;
3736
3737	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
3738			  kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3739
3740	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
3741	kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3742
3743	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3744	return kvm_skip_emulated_instruction(&svm->vcpu);
3745}
3746
3747static int skinit_interception(struct vcpu_svm *svm)
3748{
3749	trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
3750
3751	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3752	return 1;
3753}
3754
3755static int wbinvd_interception(struct vcpu_svm *svm)
3756{
3757	return kvm_emulate_wbinvd(&svm->vcpu);
3758}
3759
3760static int xsetbv_interception(struct vcpu_svm *svm)
3761{
3762	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
3763	u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3764
3765	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
3766		svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
3767		return kvm_skip_emulated_instruction(&svm->vcpu);
3768	}
3769
3770	return 1;
3771}
3772
3773static int task_switch_interception(struct vcpu_svm *svm)
3774{
3775	u16 tss_selector;
3776	int reason;
3777	int int_type = svm->vmcb->control.exit_int_info &
3778		SVM_EXITINTINFO_TYPE_MASK;
3779	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
3780	uint32_t type =
3781		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
3782	uint32_t idt_v =
3783		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
3784	bool has_error_code = false;
3785	u32 error_code = 0;
3786
3787	tss_selector = (u16)svm->vmcb->control.exit_info_1;
3788
3789	if (svm->vmcb->control.exit_info_2 &
3790	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
3791		reason = TASK_SWITCH_IRET;
3792	else if (svm->vmcb->control.exit_info_2 &
3793		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
3794		reason = TASK_SWITCH_JMP;
3795	else if (idt_v)
3796		reason = TASK_SWITCH_GATE;
3797	else
3798		reason = TASK_SWITCH_CALL;
3799
3800	if (reason == TASK_SWITCH_GATE) {
3801		switch (type) {
3802		case SVM_EXITINTINFO_TYPE_NMI:
3803			svm->vcpu.arch.nmi_injected = false;
3804			break;
3805		case SVM_EXITINTINFO_TYPE_EXEPT:
3806			if (svm->vmcb->control.exit_info_2 &
3807			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
3808				has_error_code = true;
3809				error_code =
3810					(u32)svm->vmcb->control.exit_info_2;
3811			}
3812			kvm_clear_exception_queue(&svm->vcpu);
3813			break;
3814		case SVM_EXITINTINFO_TYPE_INTR:
3815			kvm_clear_interrupt_queue(&svm->vcpu);
3816			break;
3817		default:
3818			break;
3819		}
3820	}
3821
3822	if (reason != TASK_SWITCH_GATE ||
3823	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
3824	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
3825	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
3826		skip_emulated_instruction(&svm->vcpu);
3827
3828	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
3829		int_vec = -1;
3830
3831	if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
3832				has_error_code, error_code) == EMULATE_FAIL) {
3833		svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3834		svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3835		svm->vcpu.run->internal.ndata = 0;
3836		return 0;
3837	}
3838	return 1;
3839}
3840
3841static int cpuid_interception(struct vcpu_svm *svm)
3842{
3843	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3844	return kvm_emulate_cpuid(&svm->vcpu);
3845}
3846
3847static int iret_interception(struct vcpu_svm *svm)
3848{
3849	++svm->vcpu.stat.nmi_window_exits;
3850	clr_intercept(svm, INTERCEPT_IRET);
3851	svm->vcpu.arch.hflags |= HF_IRET_MASK;
3852	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
3853	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3854	return 1;
3855}
3856
3857static int invlpg_interception(struct vcpu_svm *svm)
3858{
3859	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3860		return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3861
3862	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
3863	return kvm_skip_emulated_instruction(&svm->vcpu);
3864}
3865
3866static int emulate_on_interception(struct vcpu_svm *svm)
3867{
3868	return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
3869}
3870
3871static int rsm_interception(struct vcpu_svm *svm)
3872{
3873	return x86_emulate_instruction(&svm->vcpu, 0, 0,
3874				       rsm_ins_bytes, 2) == EMULATE_DONE;
3875}
3876
3877static int rdpmc_interception(struct vcpu_svm *svm)
3878{
3879	int err;
3880
3881	if (!static_cpu_has(X86_FEATURE_NRIPS))
3882		return emulate_on_interception(svm);
3883
3884	err = kvm_rdpmc(&svm->vcpu);
3885	return kvm_complete_insn_gp(&svm->vcpu, err);
3886}
3887
3888static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
3889					    unsigned long val)
3890{
3891	unsigned long cr0 = svm->vcpu.arch.cr0;
3892	bool ret = false;
3893	u64 intercept;
3894
3895	intercept = svm->nested.intercept;
3896
3897	if (!is_guest_mode(&svm->vcpu) ||
3898	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
3899		return false;
3900
3901	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
3902	val &= ~SVM_CR0_SELECTIVE_MASK;
3903
3904	if (cr0 ^ val) {
3905		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3906		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
3907	}
3908
3909	return ret;
3910}
3911
3912#define CR_VALID (1ULL << 63)
3913
3914static int cr_interception(struct vcpu_svm *svm)
3915{
3916	int reg, cr;
3917	unsigned long val;
3918	int err;
3919
3920	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
3921		return emulate_on_interception(svm);
3922
3923	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
3924		return emulate_on_interception(svm);
3925
3926	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3927	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
3928		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
3929	else
3930		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
3931
3932	err = 0;
3933	if (cr >= 16) { /* mov to cr */
3934		cr -= 16;
3935		val = kvm_register_read(&svm->vcpu, reg);
3936		switch (cr) {
3937		case 0:
3938			if (!check_selective_cr0_intercepted(svm, val))
3939				err = kvm_set_cr0(&svm->vcpu, val);
3940			else
3941				return 1;
3942
3943			break;
3944		case 3:
3945			err = kvm_set_cr3(&svm->vcpu, val);
3946			break;
3947		case 4:
3948			err = kvm_set_cr4(&svm->vcpu, val);
3949			break;
3950		case 8:
3951			err = kvm_set_cr8(&svm->vcpu, val);
3952			break;
3953		default:
3954			WARN(1, "unhandled write to CR%d", cr);
3955			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3956			return 1;
3957		}
3958	} else { /* mov from cr */
3959		switch (cr) {
3960		case 0:
3961			val = kvm_read_cr0(&svm->vcpu);
3962			break;
3963		case 2:
3964			val = svm->vcpu.arch.cr2;
3965			break;
3966		case 3:
3967			val = kvm_read_cr3(&svm->vcpu);
3968			break;
3969		case 4:
3970			val = kvm_read_cr4(&svm->vcpu);
3971			break;
3972		case 8:
3973			val = kvm_get_cr8(&svm->vcpu);
3974			break;
3975		default:
3976			WARN(1, "unhandled read from CR%d", cr);
3977			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3978			return 1;
3979		}
3980		kvm_register_write(&svm->vcpu, reg, val);
3981	}
3982	return kvm_complete_insn_gp(&svm->vcpu, err);
3983}
3984
3985static int dr_interception(struct vcpu_svm *svm)
3986{
3987	int reg, dr;
3988	unsigned long val;
3989
3990	if (svm->vcpu.guest_debug == 0) {
3991		/*
3992		 * No more DR vmexits; force a reload of the debug registers
3993		 * and reenter on this instruction.  The next vmexit will
3994		 * retrieve the full state of the debug registers.
3995		 */
3996		clr_dr_intercepts(svm);
3997		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3998		return 1;
3999	}
4000
4001	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
4002		return emulate_on_interception(svm);
4003
4004	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
4005	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
4006
4007	if (dr >= 16) { /* mov to DRn */
4008		if (!kvm_require_dr(&svm->vcpu, dr - 16))
4009			return 1;
4010		val = kvm_register_read(&svm->vcpu, reg);
4011		kvm_set_dr(&svm->vcpu, dr - 16, val);
4012	} else {
4013		if (!kvm_require_dr(&svm->vcpu, dr))
4014			return 1;
4015		kvm_get_dr(&svm->vcpu, dr, &val);
4016		kvm_register_write(&svm->vcpu, reg, val);
4017	}
4018
4019	return kvm_skip_emulated_instruction(&svm->vcpu);
4020}
4021
4022static int cr8_write_interception(struct vcpu_svm *svm)
4023{
4024	struct kvm_run *kvm_run = svm->vcpu.run;
4025	int r;
4026
4027	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
4028	/* instruction emulation calls kvm_set_cr8() */
4029	r = cr_interception(svm);
4030	if (lapic_in_kernel(&svm->vcpu))
4031		return r;
4032	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
4033		return r;
4034	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
4035	return 0;
4036}
4037
4038static int svm_get_msr_feature(struct kvm_msr_entry *msr)
4039{
4040	msr->data = 0;
4041
4042	switch (msr->index) {
4043	case MSR_F10H_DECFG:
4044		if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
4045			msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
4046		break;
4047	default:
4048		return 1;
4049	}
4050
4051	return 0;
4052}
4053
4054static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4055{
4056	struct vcpu_svm *svm = to_svm(vcpu);
4057
4058	switch (msr_info->index) {
4059	case MSR_STAR:
4060		msr_info->data = svm->vmcb->save.star;
4061		break;
4062#ifdef CONFIG_X86_64
4063	case MSR_LSTAR:
4064		msr_info->data = svm->vmcb->save.lstar;
4065		break;
4066	case MSR_CSTAR:
4067		msr_info->data = svm->vmcb->save.cstar;
4068		break;
4069	case MSR_KERNEL_GS_BASE:
4070		msr_info->data = svm->vmcb->save.kernel_gs_base;
4071		break;
4072	case MSR_SYSCALL_MASK:
4073		msr_info->data = svm->vmcb->save.sfmask;
4074		break;
4075#endif
4076	case MSR_IA32_SYSENTER_CS:
4077		msr_info->data = svm->vmcb->save.sysenter_cs;
4078		break;
4079	case MSR_IA32_SYSENTER_EIP:
4080		msr_info->data = svm->sysenter_eip;
4081		break;
4082	case MSR_IA32_SYSENTER_ESP:
4083		msr_info->data = svm->sysenter_esp;
4084		break;
4085	case MSR_TSC_AUX:
4086		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4087			return 1;
4088		msr_info->data = svm->tsc_aux;
4089		break;
4090	/*
4091	 * Nobody will change the following 5 values in the VMCB so we can
4092	 * safely return them on rdmsr. They will always be 0 until LBRV is
4093	 * implemented.
4094	 */
4095	case MSR_IA32_DEBUGCTLMSR:
4096		msr_info->data = svm->vmcb->save.dbgctl;
4097		break;
4098	case MSR_IA32_LASTBRANCHFROMIP:
4099		msr_info->data = svm->vmcb->save.br_from;
4100		break;
4101	case MSR_IA32_LASTBRANCHTOIP:
4102		msr_info->data = svm->vmcb->save.br_to;
4103		break;
4104	case MSR_IA32_LASTINTFROMIP:
4105		msr_info->data = svm->vmcb->save.last_excp_from;
4106		break;
4107	case MSR_IA32_LASTINTTOIP:
4108		msr_info->data = svm->vmcb->save.last_excp_to;
4109		break;
4110	case MSR_VM_HSAVE_PA:
4111		msr_info->data = svm->nested.hsave_msr;
4112		break;
4113	case MSR_VM_CR:
4114		msr_info->data = svm->nested.vm_cr_msr;
4115		break;
4116	case MSR_IA32_SPEC_CTRL:
4117		if (!msr_info->host_initiated &&
4118		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
4119			return 1;
4120
4121		msr_info->data = svm->spec_ctrl;
4122		break;
4123	case MSR_AMD64_VIRT_SPEC_CTRL:
4124		if (!msr_info->host_initiated &&
4125		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4126			return 1;
4127
4128		msr_info->data = svm->virt_spec_ctrl;
4129		break;
4130	case MSR_F15H_IC_CFG: {
4131
4132		int family, model;
4133
4134		family = guest_cpuid_family(vcpu);
4135		model  = guest_cpuid_model(vcpu);
4136
4137		if (family < 0 || model < 0)
4138			return kvm_get_msr_common(vcpu, msr_info);
4139
4140		msr_info->data = 0;
4141
4142		if (family == 0x15 &&
4143		    (model >= 0x2 && model < 0x20))
4144			msr_info->data = 0x1E;
4145		}
4146		break;
4147	case MSR_F10H_DECFG:
4148		msr_info->data = svm->msr_decfg;
4149		break;
4150	default:
4151		return kvm_get_msr_common(vcpu, msr_info);
4152	}
4153	return 0;
4154}
4155
4156static int rdmsr_interception(struct vcpu_svm *svm)
4157{
4158	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4159	struct msr_data msr_info;
4160
4161	msr_info.index = ecx;
4162	msr_info.host_initiated = false;
4163	if (svm_get_msr(&svm->vcpu, &msr_info)) {
4164		trace_kvm_msr_read_ex(ecx);
4165		kvm_inject_gp(&svm->vcpu, 0);
4166		return 1;
4167	} else {
4168		trace_kvm_msr_read(ecx, msr_info.data);
4169
4170		kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
4171				   msr_info.data & 0xffffffff);
4172		kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
4173				   msr_info.data >> 32);
4174		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4175		return kvm_skip_emulated_instruction(&svm->vcpu);
4176	}
4177}
4178
4179static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
4180{
4181	struct vcpu_svm *svm = to_svm(vcpu);
4182	int svm_dis, chg_mask;
4183
4184	if (data & ~SVM_VM_CR_VALID_MASK)
4185		return 1;
4186
4187	chg_mask = SVM_VM_CR_VALID_MASK;
4188
4189	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
4190		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
4191
4192	svm->nested.vm_cr_msr &= ~chg_mask;
4193	svm->nested.vm_cr_msr |= (data & chg_mask);
4194
4195	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
4196
4197	/* check for svm_disable while efer.svme is set */
4198	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
4199		return 1;
4200
4201	return 0;
4202}
4203
4204static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
4205{
4206	struct vcpu_svm *svm = to_svm(vcpu);
4207
4208	u32 ecx = msr->index;
4209	u64 data = msr->data;
4210	switch (ecx) {
4211	case MSR_IA32_CR_PAT:
4212		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
4213			return 1;
4214		vcpu->arch.pat = data;
4215		svm->vmcb->save.g_pat = data;
4216		mark_dirty(svm->vmcb, VMCB_NPT);
4217		break;
4218	case MSR_IA32_SPEC_CTRL:
4219		if (!msr->host_initiated &&
4220		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS))
4221			return 1;
4222
4223		/* The STIBP bit doesn't fault even if it's not advertised */
4224		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP))
4225			return 1;
4226
4227		svm->spec_ctrl = data;
4228
4229		if (!data)
4230			break;
4231
4232		/*
4233		 * For non-nested:
4234		 * When it's written (to non-zero) for the first time, pass
4235		 * it through.
4236		 *
4237		 * For nested:
4238		 * The handling of the MSR bitmap for L2 guests is done in
4239		 * nested_svm_vmrun_msrpm.
4240		 * We update the L1 MSR bit as well since it will end up
4241		 * touching the MSR anyway now.
4242		 */
4243		set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
4244		break;
4245	case MSR_IA32_PRED_CMD:
4246		if (!msr->host_initiated &&
4247		    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
4248			return 1;
4249
4250		if (data & ~PRED_CMD_IBPB)
4251			return 1;
4252
4253		if (!data)
4254			break;
4255
4256		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
4257		if (is_guest_mode(vcpu))
4258			break;
4259		set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
4260		break;
4261	case MSR_AMD64_VIRT_SPEC_CTRL:
4262		if (!msr->host_initiated &&
4263		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
4264			return 1;
4265
4266		if (data & ~SPEC_CTRL_SSBD)
4267			return 1;
4268
4269		svm->virt_spec_ctrl = data;
4270		break;
4271	case MSR_STAR:
4272		svm->vmcb->save.star = data;
4273		break;
4274#ifdef CONFIG_X86_64
4275	case MSR_LSTAR:
4276		svm->vmcb->save.lstar = data;
4277		break;
4278	case MSR_CSTAR:
4279		svm->vmcb->save.cstar = data;
4280		break;
4281	case MSR_KERNEL_GS_BASE:
4282		svm->vmcb->save.kernel_gs_base = data;
4283		break;
4284	case MSR_SYSCALL_MASK:
4285		svm->vmcb->save.sfmask = data;
4286		break;
4287#endif
4288	case MSR_IA32_SYSENTER_CS:
4289		svm->vmcb->save.sysenter_cs = data;
4290		break;
4291	case MSR_IA32_SYSENTER_EIP:
4292		svm->sysenter_eip = data;
4293		svm->vmcb->save.sysenter_eip = data;
4294		break;
4295	case MSR_IA32_SYSENTER_ESP:
4296		svm->sysenter_esp = data;
4297		svm->vmcb->save.sysenter_esp = data;
4298		break;
4299	case MSR_TSC_AUX:
4300		if (!boot_cpu_has(X86_FEATURE_RDTSCP))
4301			return 1;
4302
4303		/*
4304		 * This is rare, so we update the MSR here instead of using
4305		 * direct_access_msrs.  Doing that would require a rdmsr in
4306		 * svm_vcpu_put.
4307		 */
4308		svm->tsc_aux = data;
4309		wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
4310		break;
4311	case MSR_IA32_DEBUGCTLMSR:
4312		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
4313			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
4314				    __func__, data);
4315			break;
4316		}
4317		if (data & DEBUGCTL_RESERVED_BITS)
4318			return 1;
4319
4320		svm->vmcb->save.dbgctl = data;
4321		mark_dirty(svm->vmcb, VMCB_LBR);
4322		if (data & (1ULL<<0))
4323			svm_enable_lbrv(svm);
4324		else
4325			svm_disable_lbrv(svm);
4326		break;
4327	case MSR_VM_HSAVE_PA:
4328		svm->nested.hsave_msr = data;
4329		break;
4330	case MSR_VM_CR:
4331		return svm_set_vm_cr(vcpu, data);
4332	case MSR_VM_IGNNE:
4333		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
4334		break;
4335	case MSR_F10H_DECFG: {
4336		struct kvm_msr_entry msr_entry;
4337
4338		msr_entry.index = msr->index;
4339		if (svm_get_msr_feature(&msr_entry))
4340			return 1;
4341
4342		/* Check the supported bits */
4343		if (data & ~msr_entry.data)
4344			return 1;
4345
4346		/* Don't allow the guest to change a bit, #GP */
4347		if (!msr->host_initiated && (data ^ msr_entry.data))
4348			return 1;
4349
4350		svm->msr_decfg = data;
4351		break;
4352	}
4353	case MSR_IA32_APICBASE:
4354		if (kvm_vcpu_apicv_active(vcpu))
4355			avic_update_vapic_bar(to_svm(vcpu), data);
4356		/* Follow through */
4357	default:
4358		return kvm_set_msr_common(vcpu, msr);
4359	}
4360	return 0;
4361}
4362
4363static int wrmsr_interception(struct vcpu_svm *svm)
4364{
4365	struct msr_data msr;
4366	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
4367	u64 data = kvm_read_edx_eax(&svm->vcpu);
4368
4369	msr.data = data;
4370	msr.index = ecx;
4371	msr.host_initiated = false;
4372
4373	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
4374	if (kvm_set_msr(&svm->vcpu, &msr)) {
4375		trace_kvm_msr_write_ex(ecx, data);
4376		kvm_inject_gp(&svm->vcpu, 0);
4377		return 1;
4378	} else {
4379		trace_kvm_msr_write(ecx, data);
4380		return kvm_skip_emulated_instruction(&svm->vcpu);
4381	}
4382}
4383
4384static int msr_interception(struct vcpu_svm *svm)
4385{
4386	if (svm->vmcb->control.exit_info_1)
4387		return wrmsr_interception(svm);
4388	else
4389		return rdmsr_interception(svm);
4390}
4391
4392static int interrupt_window_interception(struct vcpu_svm *svm)
4393{
4394	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
4395	svm_clear_vintr(svm);
4396	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
4397	mark_dirty(svm->vmcb, VMCB_INTR);
4398	++svm->vcpu.stat.irq_window_exits;
4399	return 1;
4400}
4401
4402static int pause_interception(struct vcpu_svm *svm)
4403{
4404	struct kvm_vcpu *vcpu = &svm->vcpu;
4405	bool in_kernel = (svm_get_cpl(vcpu) == 0);
4406
4407	if (pause_filter_thresh)
4408		grow_ple_window(vcpu);
4409
4410	kvm_vcpu_on_spin(vcpu, in_kernel);
4411	return 1;
4412}
4413
4414static int nop_interception(struct vcpu_svm *svm)
4415{
4416	return kvm_skip_emulated_instruction(&(svm->vcpu));
4417}
4418
4419static int monitor_interception(struct vcpu_svm *svm)
4420{
4421	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
4422	return nop_interception(svm);
4423}
4424
4425static int mwait_interception(struct vcpu_svm *svm)
4426{
4427	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
4428	return nop_interception(svm);
4429}
4430
4431enum avic_ipi_failure_cause {
4432	AVIC_IPI_FAILURE_INVALID_INT_TYPE,
4433	AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
4434	AVIC_IPI_FAILURE_INVALID_TARGET,
4435	AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
4436};
4437
4438static int avic_incomplete_ipi_interception(struct vcpu_svm *svm)
4439{
4440	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
4441	u32 icrl = svm->vmcb->control.exit_info_1;
4442	u32 id = svm->vmcb->control.exit_info_2 >> 32;
4443	u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
4444	struct kvm_lapic *apic = svm->vcpu.arch.apic;
4445
4446	trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index);
4447
4448	switch (id) {
4449	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
4450		/*
4451		 * AVIC hardware handles the generation of
4452		 * IPIs when the specified Message Type is Fixed
4453		 * (also known as fixed delivery mode) and
4454		 * the Trigger Mode is edge-triggered. The hardware
4455		 * also supports self and broadcast delivery modes
4456		 * specified via the Destination Shorthand(DSH)
4457		 * field of the ICRL. Logical and physical APIC ID
4458		 * formats are supported. All other IPI types cause
4459		 * a #VMEXIT, which needs to emulated.
4460		 */
4461		kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
4462		kvm_lapic_reg_write(apic, APIC_ICR, icrl);
4463		break;
4464	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: {
4465		int i;
4466		struct kvm_vcpu *vcpu;
4467		struct kvm *kvm = svm->vcpu.kvm;
4468		struct kvm_lapic *apic = svm->vcpu.arch.apic;
4469
4470		/*
4471		 * At this point, we expect that the AVIC HW has already
4472		 * set the appropriate IRR bits on the valid target
4473		 * vcpus. So, we just need to kick the appropriate vcpu.
4474		 */
4475		kvm_for_each_vcpu(i, vcpu, kvm) {
4476			bool m = kvm_apic_match_dest(vcpu, apic,
4477						     icrl & KVM_APIC_SHORT_MASK,
4478						     GET_APIC_DEST_FIELD(icrh),
4479						     icrl & KVM_APIC_DEST_MASK);
4480
4481			if (m && !avic_vcpu_is_running(vcpu))
4482				kvm_vcpu_wake_up(vcpu);
4483		}
4484		break;
4485	}
4486	case AVIC_IPI_FAILURE_INVALID_TARGET:
4487		break;
4488	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
4489		WARN_ONCE(1, "Invalid backing page\n");
4490		break;
4491	default:
4492		pr_err("Unknown IPI interception\n");
4493	}
4494
4495	return 1;
4496}
4497
4498static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
4499{
4500	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4501	int index;
4502	u32 *logical_apic_id_table;
4503	int dlid = GET_APIC_LOGICAL_ID(ldr);
4504
4505	if (!dlid)
4506		return NULL;
4507
4508	if (flat) { /* flat */
4509		index = ffs(dlid) - 1;
4510		if (index > 7)
4511			return NULL;
4512	} else { /* cluster */
4513		int cluster = (dlid & 0xf0) >> 4;
4514		int apic = ffs(dlid & 0x0f) - 1;
4515
4516		if ((apic < 0) || (apic > 7) ||
4517		    (cluster >= 0xf))
4518			return NULL;
4519		index = (cluster << 2) + apic;
4520	}
4521
4522	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
4523
4524	return &logical_apic_id_table[index];
4525}
4526
4527static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr,
4528			  bool valid)
4529{
4530	bool flat;
4531	u32 *entry, new_entry;
4532
4533	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
4534	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
4535	if (!entry)
4536		return -EINVAL;
4537
4538	new_entry = READ_ONCE(*entry);
4539	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
4540	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
4541	if (valid)
4542		new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4543	else
4544		new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
4545	WRITE_ONCE(*entry, new_entry);
4546
4547	return 0;
4548}
4549
4550static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
4551{
4552	int ret;
4553	struct vcpu_svm *svm = to_svm(vcpu);
4554	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
4555
4556	if (!ldr)
4557		return 1;
4558
4559	ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true);
4560	if (ret && svm->ldr_reg) {
4561		avic_ldr_write(vcpu, 0, svm->ldr_reg, false);
4562		svm->ldr_reg = 0;
4563	} else {
4564		svm->ldr_reg = ldr;
4565	}
4566	return ret;
4567}
4568
4569static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
4570{
4571	u64 *old, *new;
4572	struct vcpu_svm *svm = to_svm(vcpu);
4573	u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID);
4574	u32 id = (apic_id_reg >> 24) & 0xff;
4575
4576	if (vcpu->vcpu_id == id)
4577		return 0;
4578
4579	old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
4580	new = avic_get_physical_id_entry(vcpu, id);
4581	if (!new || !old)
4582		return 1;
4583
4584	/* We need to move physical_id_entry to new offset */
4585	*new = *old;
4586	*old = 0ULL;
4587	to_svm(vcpu)->avic_physical_id_cache = new;
4588
4589	/*
4590	 * Also update the guest physical APIC ID in the logical
4591	 * APIC ID table entry if already setup the LDR.
4592	 */
4593	if (svm->ldr_reg)
4594		avic_handle_ldr_update(vcpu);
4595
4596	return 0;
4597}
4598
4599static int avic_handle_dfr_update(struct kvm_vcpu *vcpu)
4600{
4601	struct vcpu_svm *svm = to_svm(vcpu);
4602	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
4603	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
4604	u32 mod = (dfr >> 28) & 0xf;
4605
4606	/*
4607	 * We assume that all local APICs are using the same type.
4608	 * If this changes, we need to flush the AVIC logical
4609	 * APID id table.
4610	 */
4611	if (kvm_svm->ldr_mode == mod)
4612		return 0;
4613
4614	clear_page(page_address(kvm_svm->avic_logical_id_table_page));
4615	kvm_svm->ldr_mode = mod;
4616
4617	if (svm->ldr_reg)
4618		avic_handle_ldr_update(vcpu);
4619	return 0;
4620}
4621
4622static int avic_unaccel_trap_write(struct vcpu_svm *svm)
4623{
4624	struct kvm_lapic *apic = svm->vcpu.arch.apic;
4625	u32 offset = svm->vmcb->control.exit_info_1 &
4626				AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4627
4628	switch (offset) {
4629	case APIC_ID:
4630		if (avic_handle_apic_id_update(&svm->vcpu))
4631			return 0;
4632		break;
4633	case APIC_LDR:
4634		if (avic_handle_ldr_update(&svm->vcpu))
4635			return 0;
4636		break;
4637	case APIC_DFR:
4638		avic_handle_dfr_update(&svm->vcpu);
4639		break;
4640	default:
4641		break;
4642	}
4643
4644	kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
4645
4646	return 1;
4647}
4648
4649static bool is_avic_unaccelerated_access_trap(u32 offset)
4650{
4651	bool ret = false;
4652
4653	switch (offset) {
4654	case APIC_ID:
4655	case APIC_EOI:
4656	case APIC_RRR:
4657	case APIC_LDR:
4658	case APIC_DFR:
4659	case APIC_SPIV:
4660	case APIC_ESR:
4661	case APIC_ICR:
4662	case APIC_LVTT:
4663	case APIC_LVTTHMR:
4664	case APIC_LVTPC:
4665	case APIC_LVT0:
4666	case APIC_LVT1:
4667	case APIC_LVTERR:
4668	case APIC_TMICT:
4669	case APIC_TDCR:
4670		ret = true;
4671		break;
4672	default:
4673		break;
4674	}
4675	return ret;
4676}
4677
4678static int avic_unaccelerated_access_interception(struct vcpu_svm *svm)
4679{
4680	int ret = 0;
4681	u32 offset = svm->vmcb->control.exit_info_1 &
4682		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
4683	u32 vector = svm->vmcb->control.exit_info_2 &
4684		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
4685	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
4686		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
4687	bool trap = is_avic_unaccelerated_access_trap(offset);
4688
4689	trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset,
4690					    trap, write, vector);
4691	if (trap) {
4692		/* Handling Trap */
4693		WARN_ONCE(!write, "svm: Handling trap read.\n");
4694		ret = avic_unaccel_trap_write(svm);
4695	} else {
4696		/* Handling Fault */
4697		ret = (emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE);
4698	}
4699
4700	return ret;
4701}
4702
4703static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
4704	[SVM_EXIT_READ_CR0]			= cr_interception,
4705	[SVM_EXIT_READ_CR3]			= cr_interception,
4706	[SVM_EXIT_READ_CR4]			= cr_interception,
4707	[SVM_EXIT_READ_CR8]			= cr_interception,
4708	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
4709	[SVM_EXIT_WRITE_CR0]			= cr_interception,
4710	[SVM_EXIT_WRITE_CR3]			= cr_interception,
4711	[SVM_EXIT_WRITE_CR4]			= cr_interception,
4712	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
4713	[SVM_EXIT_READ_DR0]			= dr_interception,
4714	[SVM_EXIT_READ_DR1]			= dr_interception,
4715	[SVM_EXIT_READ_DR2]			= dr_interception,
4716	[SVM_EXIT_READ_DR3]			= dr_interception,
4717	[SVM_EXIT_READ_DR4]			= dr_interception,
4718	[SVM_EXIT_READ_DR5]			= dr_interception,
4719	[SVM_EXIT_READ_DR6]			= dr_interception,
4720	[SVM_EXIT_READ_DR7]			= dr_interception,
4721	[SVM_EXIT_WRITE_DR0]			= dr_interception,
4722	[SVM_EXIT_WRITE_DR1]			= dr_interception,
4723	[SVM_EXIT_WRITE_DR2]			= dr_interception,
4724	[SVM_EXIT_WRITE_DR3]			= dr_interception,
4725	[SVM_EXIT_WRITE_DR4]			= dr_interception,
4726	[SVM_EXIT_WRITE_DR5]			= dr_interception,
4727	[SVM_EXIT_WRITE_DR6]			= dr_interception,
4728	[SVM_EXIT_WRITE_DR7]			= dr_interception,
4729	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
4730	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
4731	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
4732	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
4733	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
4734	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
4735	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
4736	[SVM_EXIT_INTR]				= intr_interception,
4737	[SVM_EXIT_NMI]				= nmi_interception,
4738	[SVM_EXIT_SMI]				= nop_on_interception,
4739	[SVM_EXIT_INIT]				= nop_on_interception,
4740	[SVM_EXIT_VINTR]			= interrupt_window_interception,
4741	[SVM_EXIT_RDPMC]			= rdpmc_interception,
4742	[SVM_EXIT_CPUID]			= cpuid_interception,
4743	[SVM_EXIT_IRET]                         = iret_interception,
4744	[SVM_EXIT_INVD]                         = emulate_on_interception,
4745	[SVM_EXIT_PAUSE]			= pause_interception,
4746	[SVM_EXIT_HLT]				= halt_interception,
4747	[SVM_EXIT_INVLPG]			= invlpg_interception,
4748	[SVM_EXIT_INVLPGA]			= invlpga_interception,
4749	[SVM_EXIT_IOIO]				= io_interception,
4750	[SVM_EXIT_MSR]				= msr_interception,
4751	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
4752	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
4753	[SVM_EXIT_VMRUN]			= vmrun_interception,
4754	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
4755	[SVM_EXIT_VMLOAD]			= vmload_interception,
4756	[SVM_EXIT_VMSAVE]			= vmsave_interception,
4757	[SVM_EXIT_STGI]				= stgi_interception,
4758	[SVM_EXIT_CLGI]				= clgi_interception,
4759	[SVM_EXIT_SKINIT]			= skinit_interception,
4760	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
4761	[SVM_EXIT_MONITOR]			= monitor_interception,
4762	[SVM_EXIT_MWAIT]			= mwait_interception,
4763	[SVM_EXIT_XSETBV]			= xsetbv_interception,
4764	[SVM_EXIT_NPF]				= npf_interception,
4765	[SVM_EXIT_RSM]                          = rsm_interception,
4766	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
4767	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
4768};
4769
4770static void dump_vmcb(struct kvm_vcpu *vcpu)
4771{
4772	struct vcpu_svm *svm = to_svm(vcpu);
4773	struct vmcb_control_area *control = &svm->vmcb->control;
4774	struct vmcb_save_area *save = &svm->vmcb->save;
4775
4776	pr_err("VMCB Control Area:\n");
4777	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
4778	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
4779	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
4780	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
4781	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
4782	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
4783	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
4784	pr_err("%-20s%d\n", "pause filter threshold:",
4785	       control->pause_filter_thresh);
4786	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
4787	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
4788	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
4789	pr_err("%-20s%d\n", "asid:", control->asid);
4790	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
4791	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
4792	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
4793	pr_err("%-20s%08x\n", "int_state:", control->int_state);
4794	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
4795	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
4796	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
4797	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
4798	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
4799	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
4800	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
4801	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
4802	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
4803	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
4804	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
4805	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
4806	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
4807	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
4808	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
4809	pr_err("VMCB State Save Area:\n");
4810	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4811	       "es:",
4812	       save->es.selector, save->es.attrib,
4813	       save->es.limit, save->es.base);
4814	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4815	       "cs:",
4816	       save->cs.selector, save->cs.attrib,
4817	       save->cs.limit, save->cs.base);
4818	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4819	       "ss:",
4820	       save->ss.selector, save->ss.attrib,
4821	       save->ss.limit, save->ss.base);
4822	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4823	       "ds:",
4824	       save->ds.selector, save->ds.attrib,
4825	       save->ds.limit, save->ds.base);
4826	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4827	       "fs:",
4828	       save->fs.selector, save->fs.attrib,
4829	       save->fs.limit, save->fs.base);
4830	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4831	       "gs:",
4832	       save->gs.selector, save->gs.attrib,
4833	       save->gs.limit, save->gs.base);
4834	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4835	       "gdtr:",
4836	       save->gdtr.selector, save->gdtr.attrib,
4837	       save->gdtr.limit, save->gdtr.base);
4838	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4839	       "ldtr:",
4840	       save->ldtr.selector, save->ldtr.attrib,
4841	       save->ldtr.limit, save->ldtr.base);
4842	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4843	       "idtr:",
4844	       save->idtr.selector, save->idtr.attrib,
4845	       save->idtr.limit, save->idtr.base);
4846	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
4847	       "tr:",
4848	       save->tr.selector, save->tr.attrib,
4849	       save->tr.limit, save->tr.base);
4850	pr_err("cpl:            %d                efer:         %016llx\n",
4851		save->cpl, save->efer);
4852	pr_err("%-15s %016llx %-13s %016llx\n",
4853	       "cr0:", save->cr0, "cr2:", save->cr2);
4854	pr_err("%-15s %016llx %-13s %016llx\n",
4855	       "cr3:", save->cr3, "cr4:", save->cr4);
4856	pr_err("%-15s %016llx %-13s %016llx\n",
4857	       "dr6:", save->dr6, "dr7:", save->dr7);
4858	pr_err("%-15s %016llx %-13s %016llx\n",
4859	       "rip:", save->rip, "rflags:", save->rflags);
4860	pr_err("%-15s %016llx %-13s %016llx\n",
4861	       "rsp:", save->rsp, "rax:", save->rax);
4862	pr_err("%-15s %016llx %-13s %016llx\n",
4863	       "star:", save->star, "lstar:", save->lstar);
4864	pr_err("%-15s %016llx %-13s %016llx\n",
4865	       "cstar:", save->cstar, "sfmask:", save->sfmask);
4866	pr_err("%-15s %016llx %-13s %016llx\n",
4867	       "kernel_gs_base:", save->kernel_gs_base,
4868	       "sysenter_cs:", save->sysenter_cs);
4869	pr_err("%-15s %016llx %-13s %016llx\n",
4870	       "sysenter_esp:", save->sysenter_esp,
4871	       "sysenter_eip:", save->sysenter_eip);
4872	pr_err("%-15s %016llx %-13s %016llx\n",
4873	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
4874	pr_err("%-15s %016llx %-13s %016llx\n",
4875	       "br_from:", save->br_from, "br_to:", save->br_to);
4876	pr_err("%-15s %016llx %-13s %016llx\n",
4877	       "excp_from:", save->last_excp_from,
4878	       "excp_to:", save->last_excp_to);
4879}
4880
4881static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
4882{
4883	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
4884
4885	*info1 = control->exit_info_1;
4886	*info2 = control->exit_info_2;
4887}
4888
4889static int handle_exit(struct kvm_vcpu *vcpu)
4890{
4891	struct vcpu_svm *svm = to_svm(vcpu);
4892	struct kvm_run *kvm_run = vcpu->run;
4893	u32 exit_code = svm->vmcb->control.exit_code;
4894
4895	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
4896
4897	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
4898		vcpu->arch.cr0 = svm->vmcb->save.cr0;
4899	if (npt_enabled)
4900		vcpu->arch.cr3 = svm->vmcb->save.cr3;
4901
4902	if (unlikely(svm->nested.exit_required)) {
4903		nested_svm_vmexit(svm);
4904		svm->nested.exit_required = false;
4905
4906		return 1;
4907	}
4908
4909	if (is_guest_mode(vcpu)) {
4910		int vmexit;
4911
4912		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
4913					svm->vmcb->control.exit_info_1,
4914					svm->vmcb->control.exit_info_2,
4915					svm->vmcb->control.exit_int_info,
4916					svm->vmcb->control.exit_int_info_err,
4917					KVM_ISA_SVM);
4918
4919		vmexit = nested_svm_exit_special(svm);
4920
4921		if (vmexit == NESTED_EXIT_CONTINUE)
4922			vmexit = nested_svm_exit_handled(svm);
4923
4924		if (vmexit == NESTED_EXIT_DONE)
4925			return 1;
4926	}
4927
4928	svm_complete_interrupts(svm);
4929
4930	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
4931		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4932		kvm_run->fail_entry.hardware_entry_failure_reason
4933			= svm->vmcb->control.exit_code;
4934		pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
4935		dump_vmcb(vcpu);
4936		return 0;
4937	}
4938
4939	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
4940	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
4941	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
4942	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
4943		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
4944		       "exit_code 0x%x\n",
4945		       __func__, svm->vmcb->control.exit_int_info,
4946		       exit_code);
4947
4948	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
4949	    || !svm_exit_handlers[exit_code]) {
4950		WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
4951		kvm_queue_exception(vcpu, UD_VECTOR);
4952		return 1;
4953	}
4954
4955	return svm_exit_handlers[exit_code](svm);
4956}
4957
4958static void reload_tss(struct kvm_vcpu *vcpu)
4959{
4960	int cpu = raw_smp_processor_id();
4961
4962	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4963	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
4964	load_TR_desc();
4965}
4966
4967static void pre_sev_run(struct vcpu_svm *svm, int cpu)
4968{
4969	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4970	int asid = sev_get_asid(svm->vcpu.kvm);
4971
4972	/* Assign the asid allocated with this SEV guest */
4973	svm->vmcb->control.asid = asid;
4974
4975	/*
4976	 * Flush guest TLB:
4977	 *
4978	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
4979	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
4980	 */
4981	if (sd->sev_vmcbs[asid] == svm->vmcb &&
4982	    svm->last_cpu == cpu)
4983		return;
4984
4985	svm->last_cpu = cpu;
4986	sd->sev_vmcbs[asid] = svm->vmcb;
4987	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
4988	mark_dirty(svm->vmcb, VMCB_ASID);
4989}
4990
4991static void pre_svm_run(struct vcpu_svm *svm)
4992{
4993	int cpu = raw_smp_processor_id();
4994
4995	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
4996
4997	if (sev_guest(svm->vcpu.kvm))
4998		return pre_sev_run(svm, cpu);
4999
5000	/* FIXME: handle wraparound of asid_generation */
5001	if (svm->asid_generation != sd->asid_generation)
5002		new_asid(svm, sd);
5003}
5004
5005static void svm_inject_nmi(struct kvm_vcpu *vcpu)
5006{
5007	struct vcpu_svm *svm = to_svm(vcpu);
5008
5009	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
5010	vcpu->arch.hflags |= HF_NMI_MASK;
5011	set_intercept(svm, INTERCEPT_IRET);
5012	++vcpu->stat.nmi_injections;
5013}
5014
5015static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
5016{
5017	struct vmcb_control_area *control;
5018
5019	/* The following fields are ignored when AVIC is enabled */
5020	control = &svm->vmcb->control;
5021	control->int_vector = irq;
5022	control->int_ctl &= ~V_INTR_PRIO_MASK;
5023	control->int_ctl |= V_IRQ_MASK |
5024		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
5025	mark_dirty(svm->vmcb, VMCB_INTR);
5026}
5027
5028static void svm_set_irq(struct kvm_vcpu *vcpu)
5029{
5030	struct vcpu_svm *svm = to_svm(vcpu);
5031
5032	BUG_ON(!(gif_set(svm)));
5033
5034	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
5035	++vcpu->stat.irq_injections;
5036
5037	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
5038		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
5039}
5040
5041static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu)
5042{
5043	return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK);
5044}
5045
5046static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5047{
5048	struct vcpu_svm *svm = to_svm(vcpu);
5049
5050	if (svm_nested_virtualize_tpr(vcpu) ||
5051	    kvm_vcpu_apicv_active(vcpu))
5052		return;
5053
5054	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5055
5056	if (irr == -1)
5057		return;
5058
5059	if (tpr >= irr)
5060		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
5061}
5062
5063static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
5064{
5065	return;
5066}
5067
5068static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu)
5069{
5070	return avic && irqchip_split(vcpu->kvm);
5071}
5072
5073static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
5074{
5075}
5076
5077static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5078{
5079}
5080
5081/* Note: Currently only used by Hyper-V. */
5082static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5083{
5084	struct vcpu_svm *svm = to_svm(vcpu);
5085	struct vmcb *vmcb = svm->vmcb;
5086
5087	if (!kvm_vcpu_apicv_active(&svm->vcpu))
5088		return;
5089
5090	vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
5091	mark_dirty(vmcb, VMCB_INTR);
5092}
5093
5094static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
5095{
5096	return;
5097}
5098
5099static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
5100{
5101	kvm_lapic_set_irr(vec, vcpu->arch.apic);
5102	smp_mb__after_atomic();
5103
5104	if (avic_vcpu_is_running(vcpu))
5105		wrmsrl(SVM_AVIC_DOORBELL,
5106		       kvm_cpu_get_apicid(vcpu->cpu));
5107	else
5108		kvm_vcpu_wake_up(vcpu);
5109}
5110
5111static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5112{
5113	unsigned long flags;
5114	struct amd_svm_iommu_ir *cur;
5115
5116	spin_lock_irqsave(&svm->ir_list_lock, flags);
5117	list_for_each_entry(cur, &svm->ir_list, node) {
5118		if (cur->data != pi->ir_data)
5119			continue;
5120		list_del(&cur->node);
5121		kfree(cur);
5122		break;
5123	}
5124	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5125}
5126
5127static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
5128{
5129	int ret = 0;
5130	unsigned long flags;
5131	struct amd_svm_iommu_ir *ir;
5132
5133	/**
5134	 * In some cases, the existing irte is updaed and re-set,
5135	 * so we need to check here if it's already been * added
5136	 * to the ir_list.
5137	 */
5138	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
5139		struct kvm *kvm = svm->vcpu.kvm;
5140		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
5141		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
5142		struct vcpu_svm *prev_svm;
5143
5144		if (!prev_vcpu) {
5145			ret = -EINVAL;
5146			goto out;
5147		}
5148
5149		prev_svm = to_svm(prev_vcpu);
5150		svm_ir_list_del(prev_svm, pi);
5151	}
5152
5153	/**
5154	 * Allocating new amd_iommu_pi_data, which will get
5155	 * add to the per-vcpu ir_list.
5156	 */
5157	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL);
5158	if (!ir) {
5159		ret = -ENOMEM;
5160		goto out;
5161	}
5162	ir->data = pi->ir_data;
5163
5164	spin_lock_irqsave(&svm->ir_list_lock, flags);
5165	list_add(&ir->node, &svm->ir_list);
5166	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
5167out:
5168	return ret;
5169}
5170
5171/**
5172 * Note:
5173 * The HW cannot support posting multicast/broadcast
5174 * interrupts to a vCPU. So, we still use legacy interrupt
5175 * remapping for these kind of interrupts.
5176 *
5177 * For lowest-priority interrupts, we only support
5178 * those with single CPU as the destination, e.g. user
5179 * configures the interrupts via /proc/irq or uses
5180 * irqbalance to make the interrupts single-CPU.
5181 */
5182static int
5183get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
5184		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
5185{
5186	struct kvm_lapic_irq irq;
5187	struct kvm_vcpu *vcpu = NULL;
5188
5189	kvm_set_msi_irq(kvm, e, &irq);
5190
5191	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
5192		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
5193			 __func__, irq.vector);
5194		return -1;
5195	}
5196
5197	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
5198		 irq.vector);
5199	*svm = to_svm(vcpu);
5200	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
5201	vcpu_info->vector = irq.vector;
5202
5203	return 0;
5204}
5205
5206/*
5207 * svm_update_pi_irte - set IRTE for Posted-Interrupts
5208 *
5209 * @kvm: kvm
5210 * @host_irq: host irq of the interrupt
5211 * @guest_irq: gsi of the interrupt
5212 * @set: set or unset PI
5213 * returns 0 on success, < 0 on failure
5214 */
5215static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
5216			      uint32_t guest_irq, bool set)
5217{
5218	struct kvm_kernel_irq_routing_entry *e;
5219	struct kvm_irq_routing_table *irq_rt;
5220	int idx, ret = -EINVAL;
5221
5222	if (!kvm_arch_has_assigned_device(kvm) ||
5223	    !irq_remapping_cap(IRQ_POSTING_CAP))
5224		return 0;
5225
5226	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
5227		 __func__, host_irq, guest_irq, set);
5228
5229	idx = srcu_read_lock(&kvm->irq_srcu);
5230	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
5231	WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
5232
5233	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
5234		struct vcpu_data vcpu_info;
5235		struct vcpu_svm *svm = NULL;
5236
5237		if (e->type != KVM_IRQ_ROUTING_MSI)
5238			continue;
5239
5240		/**
5241		 * Here, we setup with legacy mode in the following cases:
5242		 * 1. When cannot target interrupt to a specific vcpu.
5243		 * 2. Unsetting posted interrupt.
5244		 * 3. APIC virtialization is disabled for the vcpu.
5245		 */
5246		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
5247		    kvm_vcpu_apicv_active(&svm->vcpu)) {
5248			struct amd_iommu_pi_data pi;
5249
5250			/* Try to enable guest_mode in IRTE */
5251			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
5252					    AVIC_HPA_MASK);
5253			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
5254						     svm->vcpu.vcpu_id);
5255			pi.is_guest_mode = true;
5256			pi.vcpu_data = &vcpu_info;
5257			ret = irq_set_vcpu_affinity(host_irq, &pi);
5258
5259			/**
5260			 * Here, we successfully setting up vcpu affinity in
5261			 * IOMMU guest mode. Now, we need to store the posted
5262			 * interrupt information in a per-vcpu ir_list so that
5263			 * we can reference to them directly when we update vcpu
5264			 * scheduling information in IOMMU irte.
5265			 */
5266			if (!ret && pi.is_guest_mode)
5267				svm_ir_list_add(svm, &pi);
5268		} else {
5269			/* Use legacy mode in IRTE */
5270			struct amd_iommu_pi_data pi;
5271
5272			/**
5273			 * Here, pi is used to:
5274			 * - Tell IOMMU to use legacy mode for this interrupt.
5275			 * - Retrieve ga_tag of prior interrupt remapping data.
5276			 */
5277			pi.is_guest_mode = false;
5278			ret = irq_set_vcpu_affinity(host_irq, &pi);
5279
5280			/**
5281			 * Check if the posted interrupt was previously
5282			 * setup with the guest_mode by checking if the ga_tag
5283			 * was cached. If so, we need to clean up the per-vcpu
5284			 * ir_list.
5285			 */
5286			if (!ret && pi.prev_ga_tag) {
5287				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
5288				struct kvm_vcpu *vcpu;
5289
5290				vcpu = kvm_get_vcpu_by_id(kvm, id);
5291				if (vcpu)
5292					svm_ir_list_del(to_svm(vcpu), &pi);
5293			}
5294		}
5295
5296		if (!ret && svm) {
5297			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
5298						 e->gsi, vcpu_info.vector,
5299						 vcpu_info.pi_desc_addr, set);
5300		}
5301
5302		if (ret < 0) {
5303			pr_err("%s: failed to update PI IRTE\n", __func__);
5304			goto out;
5305		}
5306	}
5307
5308	ret = 0;
5309out:
5310	srcu_read_unlock(&kvm->irq_srcu, idx);
5311	return ret;
5312}
5313
5314static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
5315{
5316	struct vcpu_svm *svm = to_svm(vcpu);
5317	struct vmcb *vmcb = svm->vmcb;
5318	int ret;
5319	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
5320	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
5321	ret = ret && gif_set(svm) && nested_svm_nmi(svm);
5322
5323	return ret;
5324}
5325
5326static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
5327{
5328	struct vcpu_svm *svm = to_svm(vcpu);
5329
5330	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
5331}
5332
5333static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5334{
5335	struct vcpu_svm *svm = to_svm(vcpu);
5336
5337	if (masked) {
5338		svm->vcpu.arch.hflags |= HF_NMI_MASK;
5339		set_intercept(svm, INTERCEPT_IRET);
5340	} else {
5341		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
5342		clr_intercept(svm, INTERCEPT_IRET);
5343	}
5344}
5345
5346static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
5347{
5348	struct vcpu_svm *svm = to_svm(vcpu);
5349	struct vmcb *vmcb = svm->vmcb;
5350	int ret;
5351
5352	if (!gif_set(svm) ||
5353	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
5354		return 0;
5355
5356	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
5357
5358	if (is_guest_mode(vcpu))
5359		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
5360
5361	return ret;
5362}
5363
5364static void enable_irq_window(struct kvm_vcpu *vcpu)
5365{
5366	struct vcpu_svm *svm = to_svm(vcpu);
5367
5368	if (kvm_vcpu_apicv_active(vcpu))
5369		return;
5370
5371	/*
5372	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
5373	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
5374	 * get that intercept, this function will be called again though and
5375	 * we'll get the vintr intercept. However, if the vGIF feature is
5376	 * enabled, the STGI interception will not occur. Enable the irq
5377	 * window under the assumption that the hardware will set the GIF.
5378	 */
5379	if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) {
5380		svm_set_vintr(svm);
5381		svm_inject_irq(svm, 0x0);
5382	}
5383}
5384
5385static void enable_nmi_window(struct kvm_vcpu *vcpu)
5386{
5387	struct vcpu_svm *svm = to_svm(vcpu);
5388
5389	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
5390	    == HF_NMI_MASK)
5391		return; /* IRET will cause a vm exit */
5392
5393	if (!gif_set(svm)) {
5394		if (vgif_enabled(svm))
5395			set_intercept(svm, INTERCEPT_STGI);
5396		return; /* STGI will cause a vm exit */
5397	}
5398
5399	if (svm->nested.exit_required)
5400		return; /* we're not going to run the guest yet */
5401
5402	/*
5403	 * Something prevents NMI from been injected. Single step over possible
5404	 * problem (IRET or exception injection or interrupt shadow)
5405	 */
5406	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
5407	svm->nmi_singlestep = true;
5408	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
5409}
5410
5411static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
5412{
5413	return 0;
5414}
5415
5416static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5417{
5418	return 0;
5419}
5420
5421static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
5422{
5423	struct vcpu_svm *svm = to_svm(vcpu);
5424
5425	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
5426		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
5427	else
5428		svm->asid_generation--;
5429}
5430
5431static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
5432{
5433}
5434
5435static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
5436{
5437	struct vcpu_svm *svm = to_svm(vcpu);
5438
5439	if (svm_nested_virtualize_tpr(vcpu))
5440		return;
5441
5442	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
5443		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
5444		kvm_set_cr8(vcpu, cr8);
5445	}
5446}
5447
5448static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
5449{
5450	struct vcpu_svm *svm = to_svm(vcpu);
5451	u64 cr8;
5452
5453	if (svm_nested_virtualize_tpr(vcpu) ||
5454	    kvm_vcpu_apicv_active(vcpu))
5455		return;
5456
5457	cr8 = kvm_get_cr8(vcpu);
5458	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
5459	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
5460}
5461
5462static void svm_complete_interrupts(struct vcpu_svm *svm)
5463{
5464	u8 vector;
5465	int type;
5466	u32 exitintinfo = svm->vmcb->control.exit_int_info;
5467	unsigned int3_injected = svm->int3_injected;
5468
5469	svm->int3_injected = 0;
5470
5471	/*
5472	 * If we've made progress since setting HF_IRET_MASK, we've
5473	 * executed an IRET and can allow NMI injection.
5474	 */
5475	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
5476	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
5477		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
5478		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5479	}
5480
5481	svm->vcpu.arch.nmi_injected = false;
5482	kvm_clear_exception_queue(&svm->vcpu);
5483	kvm_clear_interrupt_queue(&svm->vcpu);
5484
5485	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
5486		return;
5487
5488	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
5489
5490	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
5491	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
5492
5493	switch (type) {
5494	case SVM_EXITINTINFO_TYPE_NMI:
5495		svm->vcpu.arch.nmi_injected = true;
5496		break;
5497	case SVM_EXITINTINFO_TYPE_EXEPT:
5498		/*
5499		 * In case of software exceptions, do not reinject the vector,
5500		 * but re-execute the instruction instead. Rewind RIP first
5501		 * if we emulated INT3 before.
5502		 */
5503		if (kvm_exception_is_soft(vector)) {
5504			if (vector == BP_VECTOR && int3_injected &&
5505			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
5506				kvm_rip_write(&svm->vcpu,
5507					      kvm_rip_read(&svm->vcpu) -
5508					      int3_injected);
5509			break;
5510		}
5511		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
5512			u32 err = svm->vmcb->control.exit_int_info_err;
5513			kvm_requeue_exception_e(&svm->vcpu, vector, err);
5514
5515		} else
5516			kvm_requeue_exception(&svm->vcpu, vector);
5517		break;
5518	case SVM_EXITINTINFO_TYPE_INTR:
5519		kvm_queue_interrupt(&svm->vcpu, vector, false);
5520		break;
5521	default:
5522		break;
5523	}
5524}
5525
5526static void svm_cancel_injection(struct kvm_vcpu *vcpu)
5527{
5528	struct vcpu_svm *svm = to_svm(vcpu);
5529	struct vmcb_control_area *control = &svm->vmcb->control;
5530
5531	control->exit_int_info = control->event_inj;
5532	control->exit_int_info_err = control->event_inj_err;
5533	control->event_inj = 0;
5534	svm_complete_interrupts(svm);
5535}
5536
5537static void svm_vcpu_run(struct kvm_vcpu *vcpu)
5538{
5539	struct vcpu_svm *svm = to_svm(vcpu);
5540
5541	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
5542	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
5543	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
5544
5545	/*
5546	 * A vmexit emulation is required before the vcpu can be executed
5547	 * again.
5548	 */
5549	if (unlikely(svm->nested.exit_required))
5550		return;
5551
5552	/*
5553	 * Disable singlestep if we're injecting an interrupt/exception.
5554	 * We don't want our modified rflags to be pushed on the stack where
5555	 * we might not be able to easily reset them if we disabled NMI
5556	 * singlestep later.
5557	 */
5558	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
5559		/*
5560		 * Event injection happens before external interrupts cause a
5561		 * vmexit and interrupts are disabled here, so smp_send_reschedule
5562		 * is enough to force an immediate vmexit.
5563		 */
5564		disable_nmi_singlestep(svm);
5565		smp_send_reschedule(vcpu->cpu);
5566	}
5567
5568	pre_svm_run(svm);
5569
5570	sync_lapic_to_cr8(vcpu);
5571
5572	svm->vmcb->save.cr2 = vcpu->arch.cr2;
5573
5574	clgi();
5575
5576	local_irq_enable();
5577
5578	/*
5579	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
5580	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
5581	 * is no need to worry about the conditional branch over the wrmsr
5582	 * being speculatively taken.
5583	 */
5584	x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
5585
5586	asm volatile (
5587		"push %%" _ASM_BP "; \n\t"
5588		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
5589		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
5590		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
5591		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
5592		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
5593		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
5594#ifdef CONFIG_X86_64
5595		"mov %c[r8](%[svm]),  %%r8  \n\t"
5596		"mov %c[r9](%[svm]),  %%r9  \n\t"
5597		"mov %c[r10](%[svm]), %%r10 \n\t"
5598		"mov %c[r11](%[svm]), %%r11 \n\t"
5599		"mov %c[r12](%[svm]), %%r12 \n\t"
5600		"mov %c[r13](%[svm]), %%r13 \n\t"
5601		"mov %c[r14](%[svm]), %%r14 \n\t"
5602		"mov %c[r15](%[svm]), %%r15 \n\t"
5603#endif
5604
5605		/* Enter guest mode */
5606		"push %%" _ASM_AX " \n\t"
5607		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
5608		__ex(SVM_VMLOAD) "\n\t"
5609		__ex(SVM_VMRUN) "\n\t"
5610		__ex(SVM_VMSAVE) "\n\t"
5611		"pop %%" _ASM_AX " \n\t"
5612
5613		/* Save guest registers, load host registers */
5614		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
5615		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
5616		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
5617		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
5618		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
5619		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
5620#ifdef CONFIG_X86_64
5621		"mov %%r8,  %c[r8](%[svm]) \n\t"
5622		"mov %%r9,  %c[r9](%[svm]) \n\t"
5623		"mov %%r10, %c[r10](%[svm]) \n\t"
5624		"mov %%r11, %c[r11](%[svm]) \n\t"
5625		"mov %%r12, %c[r12](%[svm]) \n\t"
5626		"mov %%r13, %c[r13](%[svm]) \n\t"
5627		"mov %%r14, %c[r14](%[svm]) \n\t"
5628		"mov %%r15, %c[r15](%[svm]) \n\t"
5629#endif
5630		/*
5631		* Clear host registers marked as clobbered to prevent
5632		* speculative use.
5633		*/
5634		"xor %%" _ASM_BX ", %%" _ASM_BX " \n\t"
5635		"xor %%" _ASM_CX ", %%" _ASM_CX " \n\t"
5636		"xor %%" _ASM_DX ", %%" _ASM_DX " \n\t"
5637		"xor %%" _ASM_SI ", %%" _ASM_SI " \n\t"
5638		"xor %%" _ASM_DI ", %%" _ASM_DI " \n\t"
5639#ifdef CONFIG_X86_64
5640		"xor %%r8, %%r8 \n\t"
5641		"xor %%r9, %%r9 \n\t"
5642		"xor %%r10, %%r10 \n\t"
5643		"xor %%r11, %%r11 \n\t"
5644		"xor %%r12, %%r12 \n\t"
5645		"xor %%r13, %%r13 \n\t"
5646		"xor %%r14, %%r14 \n\t"
5647		"xor %%r15, %%r15 \n\t"
5648#endif
5649		"pop %%" _ASM_BP
5650		:
5651		: [svm]"a"(svm),
5652		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
5653		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
5654		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
5655		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
5656		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
5657		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
5658		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
5659#ifdef CONFIG_X86_64
5660		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
5661		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
5662		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
5663		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
5664		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
5665		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
5666		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
5667		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
5668#endif
5669		: "cc", "memory"
5670#ifdef CONFIG_X86_64
5671		, "rbx", "rcx", "rdx", "rsi", "rdi"
5672		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
5673#else
5674		, "ebx", "ecx", "edx", "esi", "edi"
5675#endif
5676		);
5677
5678	/* Eliminate branch target predictions from guest mode */
5679	vmexit_fill_RSB();
5680
5681#ifdef CONFIG_X86_64
5682	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
5683#else
5684	loadsegment(fs, svm->host.fs);
5685#ifndef CONFIG_X86_32_LAZY_GS
5686	loadsegment(gs, svm->host.gs);
5687#endif
5688#endif
5689
5690	/*
5691	 * We do not use IBRS in the kernel. If this vCPU has used the
5692	 * SPEC_CTRL MSR it may have left it on; save the value and
5693	 * turn it off. This is much more efficient than blindly adding
5694	 * it to the atomic save/restore list. Especially as the former
5695	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
5696	 *
5697	 * For non-nested case:
5698	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
5699	 * save it.
5700	 *
5701	 * For nested case:
5702	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
5703	 * save it.
5704	 */
5705	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
5706		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
5707
5708	x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
5709
5710	reload_tss(vcpu);
5711
5712	local_irq_disable();
5713
5714	vcpu->arch.cr2 = svm->vmcb->save.cr2;
5715	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
5716	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
5717	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
5718
5719	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5720		kvm_before_interrupt(&svm->vcpu);
5721
5722	stgi();
5723
5724	/* Any pending NMI will happen here */
5725
5726	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
5727		kvm_after_interrupt(&svm->vcpu);
5728
5729	sync_cr8_to_lapic(vcpu);
5730
5731	svm->next_rip = 0;
5732
5733	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
5734
5735	/* if exit due to PF check for async PF */
5736	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
5737		svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
5738
5739	if (npt_enabled) {
5740		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
5741		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
5742	}
5743
5744	/*
5745	 * We need to handle MC intercepts here before the vcpu has a chance to
5746	 * change the physical cpu
5747	 */
5748	if (unlikely(svm->vmcb->control.exit_code ==
5749		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
5750		svm_handle_mce(svm);
5751
5752	mark_all_clean(svm->vmcb);
5753}
5754STACK_FRAME_NON_STANDARD(svm_vcpu_run);
5755
5756static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5757{
5758	struct vcpu_svm *svm = to_svm(vcpu);
5759
5760	svm->vmcb->save.cr3 = __sme_set(root);
5761	mark_dirty(svm->vmcb, VMCB_CR);
5762	svm_flush_tlb(vcpu, true);
5763}
5764
5765static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
5766{
5767	struct vcpu_svm *svm = to_svm(vcpu);
5768
5769	svm->vmcb->control.nested_cr3 = __sme_set(root);
5770	mark_dirty(svm->vmcb, VMCB_NPT);
5771
5772	/* Also sync guest cr3 here in case we live migrate */
5773	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
5774	mark_dirty(svm->vmcb, VMCB_CR);
5775
5776	svm_flush_tlb(vcpu, true);
5777}
5778
5779static int is_disabled(void)
5780{
5781	u64 vm_cr;
5782
5783	rdmsrl(MSR_VM_CR, vm_cr);
5784	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
5785		return 1;
5786
5787	return 0;
5788}
5789
5790static void
5791svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5792{
5793	/*
5794	 * Patch in the VMMCALL instruction:
5795	 */
5796	hypercall[0] = 0x0f;
5797	hypercall[1] = 0x01;
5798	hypercall[2] = 0xd9;
5799}
5800
5801static void svm_check_processor_compat(void *rtn)
5802{
5803	*(int *)rtn = 0;
5804}
5805
5806static bool svm_cpu_has_accelerated_tpr(void)
5807{
5808	return false;
5809}
5810
5811static bool svm_has_emulated_msr(int index)
5812{
5813	return true;
5814}
5815
5816static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
5817{
5818	return 0;
5819}
5820
5821static void svm_cpuid_update(struct kvm_vcpu *vcpu)
5822{
5823	struct vcpu_svm *svm = to_svm(vcpu);
5824
5825	/* Update nrips enabled cache */
5826	svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
5827
5828	if (!kvm_vcpu_apicv_active(vcpu))
5829		return;
5830
5831	guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC);
5832}
5833
5834static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
5835{
5836	switch (func) {
5837	case 0x1:
5838		if (avic)
5839			entry->ecx &= ~bit(X86_FEATURE_X2APIC);
5840		break;
5841	case 0x80000001:
5842		if (nested)
5843			entry->ecx |= (1 << 2); /* Set SVM bit */
5844		break;
5845	case 0x8000000A:
5846		entry->eax = 1; /* SVM revision 1 */
5847		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
5848				   ASID emulation to nested SVM */
5849		entry->ecx = 0; /* Reserved */
5850		entry->edx = 0; /* Per default do not support any
5851				   additional features */
5852
5853		/* Support next_rip if host supports it */
5854		if (boot_cpu_has(X86_FEATURE_NRIPS))
5855			entry->edx |= SVM_FEATURE_NRIP;
5856
5857		/* Support NPT for the guest if enabled */
5858		if (npt_enabled)
5859			entry->edx |= SVM_FEATURE_NPT;
5860
5861		break;
5862	case 0x8000001F:
5863		/* Support memory encryption cpuid if host supports it */
5864		if (boot_cpu_has(X86_FEATURE_SEV))
5865			cpuid(0x8000001f, &entry->eax, &entry->ebx,
5866				&entry->ecx, &entry->edx);
5867
5868	}
5869}
5870
5871static int svm_get_lpage_level(void)
5872{
5873	return PT_PDPE_LEVEL;
5874}
5875
5876static bool svm_rdtscp_supported(void)
5877{
5878	return boot_cpu_has(X86_FEATURE_RDTSCP);
5879}
5880
5881static bool svm_invpcid_supported(void)
5882{
5883	return false;
5884}
5885
5886static bool svm_mpx_supported(void)
5887{
5888	return false;
5889}
5890
5891static bool svm_xsaves_supported(void)
5892{
5893	return false;
5894}
5895
5896static bool svm_umip_emulated(void)
5897{
5898	return false;
5899}
5900
5901static bool svm_has_wbinvd_exit(void)
5902{
5903	return true;
5904}
5905
5906#define PRE_EX(exit)  { .exit_code = (exit), \
5907			.stage = X86_ICPT_PRE_EXCEPT, }
5908#define POST_EX(exit) { .exit_code = (exit), \
5909			.stage = X86_ICPT_POST_EXCEPT, }
5910#define POST_MEM(exit) { .exit_code = (exit), \
5911			.stage = X86_ICPT_POST_MEMACCESS, }
5912
5913static const struct __x86_intercept {
5914	u32 exit_code;
5915	enum x86_intercept_stage stage;
5916} x86_intercept_map[] = {
5917	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
5918	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
5919	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
5920	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
5921	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
5922	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
5923	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
5924	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
5925	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
5926	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
5927	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
5928	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
5929	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
5930	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
5931	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
5932	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
5933	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
5934	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
5935	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
5936	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
5937	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
5938	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
5939	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
5940	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
5941	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
5942	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
5943	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
5944	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
5945	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
5946	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
5947	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
5948	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
5949	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
5950	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
5951	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
5952	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
5953	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
5954	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
5955	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
5956	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
5957	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
5958	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
5959	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
5960	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
5961	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
5962	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
5963};
5964
5965#undef PRE_EX
5966#undef POST_EX
5967#undef POST_MEM
5968
5969static int svm_check_intercept(struct kvm_vcpu *vcpu,
5970			       struct x86_instruction_info *info,
5971			       enum x86_intercept_stage stage)
5972{
5973	struct vcpu_svm *svm = to_svm(vcpu);
5974	int vmexit, ret = X86EMUL_CONTINUE;
5975	struct __x86_intercept icpt_info;
5976	struct vmcb *vmcb = svm->vmcb;
5977
5978	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
5979		goto out;
5980
5981	icpt_info = x86_intercept_map[info->intercept];
5982
5983	if (stage != icpt_info.stage)
5984		goto out;
5985
5986	switch (icpt_info.exit_code) {
5987	case SVM_EXIT_READ_CR0:
5988		if (info->intercept == x86_intercept_cr_read)
5989			icpt_info.exit_code += info->modrm_reg;
5990		break;
5991	case SVM_EXIT_WRITE_CR0: {
5992		unsigned long cr0, val;
5993		u64 intercept;
5994
5995		if (info->intercept == x86_intercept_cr_write)
5996			icpt_info.exit_code += info->modrm_reg;
5997
5998		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
5999		    info->intercept == x86_intercept_clts)
6000			break;
6001
6002		intercept = svm->nested.intercept;
6003
6004		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
6005			break;
6006
6007		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
6008		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
6009
6010		if (info->intercept == x86_intercept_lmsw) {
6011			cr0 &= 0xfUL;
6012			val &= 0xfUL;
6013			/* lmsw can't clear PE - catch this here */
6014			if (cr0 & X86_CR0_PE)
6015				val |= X86_CR0_PE;
6016		}
6017
6018		if (cr0 ^ val)
6019			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
6020
6021		break;
6022	}
6023	case SVM_EXIT_READ_DR0:
6024	case SVM_EXIT_WRITE_DR0:
6025		icpt_info.exit_code += info->modrm_reg;
6026		break;
6027	case SVM_EXIT_MSR:
6028		if (info->intercept == x86_intercept_wrmsr)
6029			vmcb->control.exit_info_1 = 1;
6030		else
6031			vmcb->control.exit_info_1 = 0;
6032		break;
6033	case SVM_EXIT_PAUSE:
6034		/*
6035		 * We get this for NOP only, but pause
6036		 * is rep not, check this here
6037		 */
6038		if (info->rep_prefix != REPE_PREFIX)
6039			goto out;
6040		break;
6041	case SVM_EXIT_IOIO: {
6042		u64 exit_info;
6043		u32 bytes;
6044
6045		if (info->intercept == x86_intercept_in ||
6046		    info->intercept == x86_intercept_ins) {
6047			exit_info = ((info->src_val & 0xffff) << 16) |
6048				SVM_IOIO_TYPE_MASK;
6049			bytes = info->dst_bytes;
6050		} else {
6051			exit_info = (info->dst_val & 0xffff) << 16;
6052			bytes = info->src_bytes;
6053		}
6054
6055		if (info->intercept == x86_intercept_outs ||
6056		    info->intercept == x86_intercept_ins)
6057			exit_info |= SVM_IOIO_STR_MASK;
6058
6059		if (info->rep_prefix)
6060			exit_info |= SVM_IOIO_REP_MASK;
6061
6062		bytes = min(bytes, 4u);
6063
6064		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
6065
6066		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
6067
6068		vmcb->control.exit_info_1 = exit_info;
6069		vmcb->control.exit_info_2 = info->next_rip;
6070
6071		break;
6072	}
6073	default:
6074		break;
6075	}
6076
6077	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
6078	if (static_cpu_has(X86_FEATURE_NRIPS))
6079		vmcb->control.next_rip  = info->next_rip;
6080	vmcb->control.exit_code = icpt_info.exit_code;
6081	vmexit = nested_svm_exit_handled(svm);
6082
6083	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
6084					   : X86EMUL_CONTINUE;
6085
6086out:
6087	return ret;
6088}
6089
6090static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
6091{
6092	local_irq_enable();
6093	/*
6094	 * We must have an instruction with interrupts enabled, so
6095	 * the timer interrupt isn't delayed by the interrupt shadow.
6096	 */
6097	asm("nop");
6098	local_irq_disable();
6099}
6100
6101static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
6102{
6103	if (pause_filter_thresh)
6104		shrink_ple_window(vcpu);
6105}
6106
6107static inline void avic_post_state_restore(struct kvm_vcpu *vcpu)
6108{
6109	if (avic_handle_apic_id_update(vcpu) != 0)
6110		return;
6111	if (avic_handle_dfr_update(vcpu) != 0)
6112		return;
6113	avic_handle_ldr_update(vcpu);
6114}
6115
6116static void svm_setup_mce(struct kvm_vcpu *vcpu)
6117{
6118	/* [63:9] are reserved. */
6119	vcpu->arch.mcg_cap &= 0x1ff;
6120}
6121
6122static int svm_smi_allowed(struct kvm_vcpu *vcpu)
6123{
6124	struct vcpu_svm *svm = to_svm(vcpu);
6125
6126	/* Per APM Vol.2 15.22.2 "Response to SMI" */
6127	if (!gif_set(svm))
6128		return 0;
6129
6130	if (is_guest_mode(&svm->vcpu) &&
6131	    svm->nested.intercept & (1ULL << INTERCEPT_SMI)) {
6132		/* TODO: Might need to set exit_info_1 and exit_info_2 here */
6133		svm->vmcb->control.exit_code = SVM_EXIT_SMI;
6134		svm->nested.exit_required = true;
6135		return 0;
6136	}
6137
6138	return 1;
6139}
6140
6141static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
6142{
6143	struct vcpu_svm *svm = to_svm(vcpu);
6144	int ret;
6145
6146	if (is_guest_mode(vcpu)) {
6147		/* FED8h - SVM Guest */
6148		put_smstate(u64, smstate, 0x7ed8, 1);
6149		/* FEE0h - SVM Guest VMCB Physical Address */
6150		put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb);
6151
6152		svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
6153		svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
6154		svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
6155
6156		ret = nested_svm_vmexit(svm);
6157		if (ret)
6158			return ret;
6159	}
6160	return 0;
6161}
6162
6163static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
6164{
6165	struct vcpu_svm *svm = to_svm(vcpu);
6166	struct vmcb *nested_vmcb;
6167	struct page *page;
6168	struct {
6169		u64 guest;
6170		u64 vmcb;
6171	} svm_state_save;
6172	int ret;
6173
6174	ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save,
6175				  sizeof(svm_state_save));
6176	if (ret)
6177		return ret;
6178
6179	if (svm_state_save.guest) {
6180		vcpu->arch.hflags &= ~HF_SMM_MASK;
6181		nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page);
6182		if (nested_vmcb)
6183			enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page);
6184		else
6185			ret = 1;
6186		vcpu->arch.hflags |= HF_SMM_MASK;
6187	}
6188	return ret;
6189}
6190
6191static int enable_smi_window(struct kvm_vcpu *vcpu)
6192{
6193	struct vcpu_svm *svm = to_svm(vcpu);
6194
6195	if (!gif_set(svm)) {
6196		if (vgif_enabled(svm))
6197			set_intercept(svm, INTERCEPT_STGI);
6198		/* STGI will cause a vm exit */
6199		return 1;
6200	}
6201	return 0;
6202}
6203
6204static int sev_asid_new(void)
6205{
6206	int pos;
6207
6208	/*
6209	 * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid.
6210	 */
6211	pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1);
6212	if (pos >= max_sev_asid)
6213		return -EBUSY;
6214
6215	set_bit(pos, sev_asid_bitmap);
6216	return pos + 1;
6217}
6218
6219static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
6220{
6221	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6222	int asid, ret;
6223
6224	ret = -EBUSY;
6225	asid = sev_asid_new();
6226	if (asid < 0)
6227		return ret;
6228
6229	ret = sev_platform_init(&argp->error);
6230	if (ret)
6231		goto e_free;
6232
6233	sev->active = true;
6234	sev->asid = asid;
6235	INIT_LIST_HEAD(&sev->regions_list);
6236
6237	return 0;
6238
6239e_free:
6240	__sev_asid_free(asid);
6241	return ret;
6242}
6243
6244static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
6245{
6246	struct sev_data_activate *data;
6247	int asid = sev_get_asid(kvm);
6248	int ret;
6249
6250	wbinvd_on_all_cpus();
6251
6252	ret = sev_guest_df_flush(error);
6253	if (ret)
6254		return ret;
6255
6256	data = kzalloc(sizeof(*data), GFP_KERNEL);
6257	if (!data)
6258		return -ENOMEM;
6259
6260	/* activate ASID on the given handle */
6261	data->handle = handle;
6262	data->asid   = asid;
6263	ret = sev_guest_activate(data, error);
6264	kfree(data);
6265
6266	return ret;
6267}
6268
6269static int __sev_issue_cmd(int fd, int id, void *data, int *error)
6270{
6271	struct fd f;
6272	int ret;
6273
6274	f = fdget(fd);
6275	if (!f.file)
6276		return -EBADF;
6277
6278	ret = sev_issue_cmd_external_user(f.file, id, data, error);
6279
6280	fdput(f);
6281	return ret;
6282}
6283
6284static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
6285{
6286	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6287
6288	return __sev_issue_cmd(sev->fd, id, data, error);
6289}
6290
6291static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
6292{
6293	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6294	struct sev_data_launch_start *start;
6295	struct kvm_sev_launch_start params;
6296	void *dh_blob, *session_blob;
6297	int *error = &argp->error;
6298	int ret;
6299
6300	if (!sev_guest(kvm))
6301		return -ENOTTY;
6302
6303	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6304		return -EFAULT;
6305
6306	start = kzalloc(sizeof(*start), GFP_KERNEL);
6307	if (!start)
6308		return -ENOMEM;
6309
6310	dh_blob = NULL;
6311	if (params.dh_uaddr) {
6312		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
6313		if (IS_ERR(dh_blob)) {
6314			ret = PTR_ERR(dh_blob);
6315			goto e_free;
6316		}
6317
6318		start->dh_cert_address = __sme_set(__pa(dh_blob));
6319		start->dh_cert_len = params.dh_len;
6320	}
6321
6322	session_blob = NULL;
6323	if (params.session_uaddr) {
6324		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
6325		if (IS_ERR(session_blob)) {
6326			ret = PTR_ERR(session_blob);
6327			goto e_free_dh;
6328		}
6329
6330		start->session_address = __sme_set(__pa(session_blob));
6331		start->session_len = params.session_len;
6332	}
6333
6334	start->handle = params.handle;
6335	start->policy = params.policy;
6336
6337	/* create memory encryption context */
6338	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error);
6339	if (ret)
6340		goto e_free_session;
6341
6342	/* Bind ASID to this guest */
6343	ret = sev_bind_asid(kvm, start->handle, error);
6344	if (ret)
6345		goto e_free_session;
6346
6347	/* return handle to userspace */
6348	params.handle = start->handle;
6349	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
6350		sev_unbind_asid(kvm, start->handle);
6351		ret = -EFAULT;
6352		goto e_free_session;
6353	}
6354
6355	sev->handle = start->handle;
6356	sev->fd = argp->sev_fd;
6357
6358e_free_session:
6359	kfree(session_blob);
6360e_free_dh:
6361	kfree(dh_blob);
6362e_free:
6363	kfree(start);
6364	return ret;
6365}
6366
6367static int get_num_contig_pages(int idx, struct page **inpages,
6368				unsigned long npages)
6369{
6370	unsigned long paddr, next_paddr;
6371	int i = idx + 1, pages = 1;
6372
6373	/* find the number of contiguous pages starting from idx */
6374	paddr = __sme_page_pa(inpages[idx]);
6375	while (i < npages) {
6376		next_paddr = __sme_page_pa(inpages[i++]);
6377		if ((paddr + PAGE_SIZE) == next_paddr) {
6378			pages++;
6379			paddr = next_paddr;
6380			continue;
6381		}
6382		break;
6383	}
6384
6385	return pages;
6386}
6387
6388static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
6389{
6390	unsigned long vaddr, vaddr_end, next_vaddr, npages, size;
6391	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6392	struct kvm_sev_launch_update_data params;
6393	struct sev_data_launch_update_data *data;
6394	struct page **inpages;
6395	int i, ret, pages;
6396
6397	if (!sev_guest(kvm))
6398		return -ENOTTY;
6399
6400	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6401		return -EFAULT;
6402
6403	data = kzalloc(sizeof(*data), GFP_KERNEL);
6404	if (!data)
6405		return -ENOMEM;
6406
6407	vaddr = params.uaddr;
6408	size = params.len;
6409	vaddr_end = vaddr + size;
6410
6411	/* Lock the user memory. */
6412	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
6413	if (!inpages) {
6414		ret = -ENOMEM;
6415		goto e_free;
6416	}
6417
6418	/*
6419	 * The LAUNCH_UPDATE command will perform in-place encryption of the
6420	 * memory content (i.e it will write the same memory region with C=1).
6421	 * It's possible that the cache may contain the data with C=0, i.e.,
6422	 * unencrypted so invalidate it first.
6423	 */
6424	sev_clflush_pages(inpages, npages);
6425
6426	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
6427		int offset, len;
6428
6429		/*
6430		 * If the user buffer is not page-aligned, calculate the offset
6431		 * within the page.
6432		 */
6433		offset = vaddr & (PAGE_SIZE - 1);
6434
6435		/* Calculate the number of pages that can be encrypted in one go. */
6436		pages = get_num_contig_pages(i, inpages, npages);
6437
6438		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
6439
6440		data->handle = sev->handle;
6441		data->len = len;
6442		data->address = __sme_page_pa(inpages[i]) + offset;
6443		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error);
6444		if (ret)
6445			goto e_unpin;
6446
6447		size -= len;
6448		next_vaddr = vaddr + len;
6449	}
6450
6451e_unpin:
6452	/* content of memory is updated, mark pages dirty */
6453	for (i = 0; i < npages; i++) {
6454		set_page_dirty_lock(inpages[i]);
6455		mark_page_accessed(inpages[i]);
6456	}
6457	/* unlock the user pages */
6458	sev_unpin_memory(kvm, inpages, npages);
6459e_free:
6460	kfree(data);
6461	return ret;
6462}
6463
6464static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
6465{
6466	void __user *measure = (void __user *)(uintptr_t)argp->data;
6467	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6468	struct sev_data_launch_measure *data;
6469	struct kvm_sev_launch_measure params;
6470	void __user *p = NULL;
6471	void *blob = NULL;
6472	int ret;
6473
6474	if (!sev_guest(kvm))
6475		return -ENOTTY;
6476
6477	if (copy_from_user(&params, measure, sizeof(params)))
6478		return -EFAULT;
6479
6480	data = kzalloc(sizeof(*data), GFP_KERNEL);
6481	if (!data)
6482		return -ENOMEM;
6483
6484	/* User wants to query the blob length */
6485	if (!params.len)
6486		goto cmd;
6487
6488	p = (void __user *)(uintptr_t)params.uaddr;
6489	if (p) {
6490		if (params.len > SEV_FW_BLOB_MAX_SIZE) {
6491			ret = -EINVAL;
6492			goto e_free;
6493		}
6494
6495		ret = -ENOMEM;
6496		blob = kmalloc(params.len, GFP_KERNEL);
6497		if (!blob)
6498			goto e_free;
6499
6500		data->address = __psp_pa(blob);
6501		data->len = params.len;
6502	}
6503
6504cmd:
6505	data->handle = sev->handle;
6506	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error);
6507
6508	/*
6509	 * If we query the session length, FW responded with expected data.
6510	 */
6511	if (!params.len)
6512		goto done;
6513
6514	if (ret)
6515		goto e_free_blob;
6516
6517	if (blob) {
6518		if (copy_to_user(p, blob, params.len))
6519			ret = -EFAULT;
6520	}
6521
6522done:
6523	params.len = data->len;
6524	if (copy_to_user(measure, &params, sizeof(params)))
6525		ret = -EFAULT;
6526e_free_blob:
6527	kfree(blob);
6528e_free:
6529	kfree(data);
6530	return ret;
6531}
6532
6533static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
6534{
6535	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6536	struct sev_data_launch_finish *data;
6537	int ret;
6538
6539	if (!sev_guest(kvm))
6540		return -ENOTTY;
6541
6542	data = kzalloc(sizeof(*data), GFP_KERNEL);
6543	if (!data)
6544		return -ENOMEM;
6545
6546	data->handle = sev->handle;
6547	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error);
6548
6549	kfree(data);
6550	return ret;
6551}
6552
6553static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
6554{
6555	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6556	struct kvm_sev_guest_status params;
6557	struct sev_data_guest_status *data;
6558	int ret;
6559
6560	if (!sev_guest(kvm))
6561		return -ENOTTY;
6562
6563	data = kzalloc(sizeof(*data), GFP_KERNEL);
6564	if (!data)
6565		return -ENOMEM;
6566
6567	data->handle = sev->handle;
6568	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error);
6569	if (ret)
6570		goto e_free;
6571
6572	params.policy = data->policy;
6573	params.state = data->state;
6574	params.handle = data->handle;
6575
6576	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
6577		ret = -EFAULT;
6578e_free:
6579	kfree(data);
6580	return ret;
6581}
6582
6583static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
6584			       unsigned long dst, int size,
6585			       int *error, bool enc)
6586{
6587	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6588	struct sev_data_dbg *data;
6589	int ret;
6590
6591	data = kzalloc(sizeof(*data), GFP_KERNEL);
6592	if (!data)
6593		return -ENOMEM;
6594
6595	data->handle = sev->handle;
6596	data->dst_addr = dst;
6597	data->src_addr = src;
6598	data->len = size;
6599
6600	ret = sev_issue_cmd(kvm,
6601			    enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
6602			    data, error);
6603	kfree(data);
6604	return ret;
6605}
6606
6607static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
6608			     unsigned long dst_paddr, int sz, int *err)
6609{
6610	int offset;
6611
6612	/*
6613	 * Its safe to read more than we are asked, caller should ensure that
6614	 * destination has enough space.
6615	 */
6616	src_paddr = round_down(src_paddr, 16);
6617	offset = src_paddr & 15;
6618	sz = round_up(sz + offset, 16);
6619
6620	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
6621}
6622
6623static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
6624				  unsigned long __user dst_uaddr,
6625				  unsigned long dst_paddr,
6626				  int size, int *err)
6627{
6628	struct page *tpage = NULL;
6629	int ret, offset;
6630
6631	/* if inputs are not 16-byte then use intermediate buffer */
6632	if (!IS_ALIGNED(dst_paddr, 16) ||
6633	    !IS_ALIGNED(paddr,     16) ||
6634	    !IS_ALIGNED(size,      16)) {
6635		tpage = (void *)alloc_page(GFP_KERNEL);
6636		if (!tpage)
6637			return -ENOMEM;
6638
6639		dst_paddr = __sme_page_pa(tpage);
6640	}
6641
6642	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
6643	if (ret)
6644		goto e_free;
6645
6646	if (tpage) {
6647		offset = paddr & 15;
6648		if (copy_to_user((void __user *)(uintptr_t)dst_uaddr,
6649				 page_address(tpage) + offset, size))
6650			ret = -EFAULT;
6651	}
6652
6653e_free:
6654	if (tpage)
6655		__free_page(tpage);
6656
6657	return ret;
6658}
6659
6660static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
6661				  unsigned long __user vaddr,
6662				  unsigned long dst_paddr,
6663				  unsigned long __user dst_vaddr,
6664				  int size, int *error)
6665{
6666	struct page *src_tpage = NULL;
6667	struct page *dst_tpage = NULL;
6668	int ret, len = size;
6669
6670	/* If source buffer is not aligned then use an intermediate buffer */
6671	if (!IS_ALIGNED(vaddr, 16)) {
6672		src_tpage = alloc_page(GFP_KERNEL);
6673		if (!src_tpage)
6674			return -ENOMEM;
6675
6676		if (copy_from_user(page_address(src_tpage),
6677				(void __user *)(uintptr_t)vaddr, size)) {
6678			__free_page(src_tpage);
6679			return -EFAULT;
6680		}
6681
6682		paddr = __sme_page_pa(src_tpage);
6683	}
6684
6685	/*
6686	 *  If destination buffer or length is not aligned then do read-modify-write:
6687	 *   - decrypt destination in an intermediate buffer
6688	 *   - copy the source buffer in an intermediate buffer
6689	 *   - use the intermediate buffer as source buffer
6690	 */
6691	if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
6692		int dst_offset;
6693
6694		dst_tpage = alloc_page(GFP_KERNEL);
6695		if (!dst_tpage) {
6696			ret = -ENOMEM;
6697			goto e_free;
6698		}
6699
6700		ret = __sev_dbg_decrypt(kvm, dst_paddr,
6701					__sme_page_pa(dst_tpage), size, error);
6702		if (ret)
6703			goto e_free;
6704
6705		/*
6706		 *  If source is kernel buffer then use memcpy() otherwise
6707		 *  copy_from_user().
6708		 */
6709		dst_offset = dst_paddr & 15;
6710
6711		if (src_tpage)
6712			memcpy(page_address(dst_tpage) + dst_offset,
6713			       page_address(src_tpage), size);
6714		else {
6715			if (copy_from_user(page_address(dst_tpage) + dst_offset,
6716					   (void __user *)(uintptr_t)vaddr, size)) {
6717				ret = -EFAULT;
6718				goto e_free;
6719			}
6720		}
6721
6722		paddr = __sme_page_pa(dst_tpage);
6723		dst_paddr = round_down(dst_paddr, 16);
6724		len = round_up(size, 16);
6725	}
6726
6727	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
6728
6729e_free:
6730	if (src_tpage)
6731		__free_page(src_tpage);
6732	if (dst_tpage)
6733		__free_page(dst_tpage);
6734	return ret;
6735}
6736
6737static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
6738{
6739	unsigned long vaddr, vaddr_end, next_vaddr;
6740	unsigned long dst_vaddr, dst_vaddr_end;
6741	struct page **src_p, **dst_p;
6742	struct kvm_sev_dbg debug;
6743	unsigned long n;
6744	int ret, size;
6745
6746	if (!sev_guest(kvm))
6747		return -ENOTTY;
6748
6749	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
6750		return -EFAULT;
6751
6752	vaddr = debug.src_uaddr;
6753	size = debug.len;
6754	vaddr_end = vaddr + size;
6755	dst_vaddr = debug.dst_uaddr;
6756	dst_vaddr_end = dst_vaddr + size;
6757
6758	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
6759		int len, s_off, d_off;
6760
6761		/* lock userspace source and destination page */
6762		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
6763		if (!src_p)
6764			return -EFAULT;
6765
6766		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
6767		if (!dst_p) {
6768			sev_unpin_memory(kvm, src_p, n);
6769			return -EFAULT;
6770		}
6771
6772		/*
6773		 * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the
6774		 * memory content (i.e it will write the same memory region with C=1).
6775		 * It's possible that the cache may contain the data with C=0, i.e.,
6776		 * unencrypted so invalidate it first.
6777		 */
6778		sev_clflush_pages(src_p, 1);
6779		sev_clflush_pages(dst_p, 1);
6780
6781		/*
6782		 * Since user buffer may not be page aligned, calculate the
6783		 * offset within the page.
6784		 */
6785		s_off = vaddr & ~PAGE_MASK;
6786		d_off = dst_vaddr & ~PAGE_MASK;
6787		len = min_t(size_t, (PAGE_SIZE - s_off), size);
6788
6789		if (dec)
6790			ret = __sev_dbg_decrypt_user(kvm,
6791						     __sme_page_pa(src_p[0]) + s_off,
6792						     dst_vaddr,
6793						     __sme_page_pa(dst_p[0]) + d_off,
6794						     len, &argp->error);
6795		else
6796			ret = __sev_dbg_encrypt_user(kvm,
6797						     __sme_page_pa(src_p[0]) + s_off,
6798						     vaddr,
6799						     __sme_page_pa(dst_p[0]) + d_off,
6800						     dst_vaddr,
6801						     len, &argp->error);
6802
6803		sev_unpin_memory(kvm, src_p, 1);
6804		sev_unpin_memory(kvm, dst_p, 1);
6805
6806		if (ret)
6807			goto err;
6808
6809		next_vaddr = vaddr + len;
6810		dst_vaddr = dst_vaddr + len;
6811		size -= len;
6812	}
6813err:
6814	return ret;
6815}
6816
6817static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
6818{
6819	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6820	struct sev_data_launch_secret *data;
6821	struct kvm_sev_launch_secret params;
6822	struct page **pages;
6823	void *blob, *hdr;
6824	unsigned long n;
6825	int ret, offset;
6826
6827	if (!sev_guest(kvm))
6828		return -ENOTTY;
6829
6830	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
6831		return -EFAULT;
6832
6833	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
6834	if (!pages)
6835		return -ENOMEM;
6836
6837	/*
6838	 * The secret must be copied into contiguous memory region, lets verify
6839	 * that userspace memory pages are contiguous before we issue command.
6840	 */
6841	if (get_num_contig_pages(0, pages, n) != n) {
6842		ret = -EINVAL;
6843		goto e_unpin_memory;
6844	}
6845
6846	ret = -ENOMEM;
6847	data = kzalloc(sizeof(*data), GFP_KERNEL);
6848	if (!data)
6849		goto e_unpin_memory;
6850
6851	offset = params.guest_uaddr & (PAGE_SIZE - 1);
6852	data->guest_address = __sme_page_pa(pages[0]) + offset;
6853	data->guest_len = params.guest_len;
6854
6855	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
6856	if (IS_ERR(blob)) {
6857		ret = PTR_ERR(blob);
6858		goto e_free;
6859	}
6860
6861	data->trans_address = __psp_pa(blob);
6862	data->trans_len = params.trans_len;
6863
6864	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
6865	if (IS_ERR(hdr)) {
6866		ret = PTR_ERR(hdr);
6867		goto e_free_blob;
6868	}
6869	data->hdr_address = __psp_pa(hdr);
6870	data->hdr_len = params.hdr_len;
6871
6872	data->handle = sev->handle;
6873	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error);
6874
6875	kfree(hdr);
6876
6877e_free_blob:
6878	kfree(blob);
6879e_free:
6880	kfree(data);
6881e_unpin_memory:
6882	sev_unpin_memory(kvm, pages, n);
6883	return ret;
6884}
6885
6886static int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
6887{
6888	struct kvm_sev_cmd sev_cmd;
6889	int r;
6890
6891	if (!svm_sev_enabled())
6892		return -ENOTTY;
6893
6894	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
6895		return -EFAULT;
6896
6897	mutex_lock(&kvm->lock);
6898
6899	switch (sev_cmd.id) {
6900	case KVM_SEV_INIT:
6901		r = sev_guest_init(kvm, &sev_cmd);
6902		break;
6903	case KVM_SEV_LAUNCH_START:
6904		r = sev_launch_start(kvm, &sev_cmd);
6905		break;
6906	case KVM_SEV_LAUNCH_UPDATE_DATA:
6907		r = sev_launch_update_data(kvm, &sev_cmd);
6908		break;
6909	case KVM_SEV_LAUNCH_MEASURE:
6910		r = sev_launch_measure(kvm, &sev_cmd);
6911		break;
6912	case KVM_SEV_LAUNCH_FINISH:
6913		r = sev_launch_finish(kvm, &sev_cmd);
6914		break;
6915	case KVM_SEV_GUEST_STATUS:
6916		r = sev_guest_status(kvm, &sev_cmd);
6917		break;
6918	case KVM_SEV_DBG_DECRYPT:
6919		r = sev_dbg_crypt(kvm, &sev_cmd, true);
6920		break;
6921	case KVM_SEV_DBG_ENCRYPT:
6922		r = sev_dbg_crypt(kvm, &sev_cmd, false);
6923		break;
6924	case KVM_SEV_LAUNCH_SECRET:
6925		r = sev_launch_secret(kvm, &sev_cmd);
6926		break;
6927	default:
6928		r = -EINVAL;
6929		goto out;
6930	}
6931
6932	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
6933		r = -EFAULT;
6934
6935out:
6936	mutex_unlock(&kvm->lock);
6937	return r;
6938}
6939
6940static int svm_register_enc_region(struct kvm *kvm,
6941				   struct kvm_enc_region *range)
6942{
6943	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6944	struct enc_region *region;
6945	int ret = 0;
6946
6947	if (!sev_guest(kvm))
6948		return -ENOTTY;
6949
6950	region = kzalloc(sizeof(*region), GFP_KERNEL);
6951	if (!region)
6952		return -ENOMEM;
6953
6954	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
6955	if (!region->pages) {
6956		ret = -ENOMEM;
6957		goto e_free;
6958	}
6959
6960	/*
6961	 * The guest may change the memory encryption attribute from C=0 -> C=1
6962	 * or vice versa for this memory range. Lets make sure caches are
6963	 * flushed to ensure that guest data gets written into memory with
6964	 * correct C-bit.
6965	 */
6966	sev_clflush_pages(region->pages, region->npages);
6967
6968	region->uaddr = range->addr;
6969	region->size = range->size;
6970
6971	mutex_lock(&kvm->lock);
6972	list_add_tail(&region->list, &sev->regions_list);
6973	mutex_unlock(&kvm->lock);
6974
6975	return ret;
6976
6977e_free:
6978	kfree(region);
6979	return ret;
6980}
6981
6982static struct enc_region *
6983find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
6984{
6985	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
6986	struct list_head *head = &sev->regions_list;
6987	struct enc_region *i;
6988
6989	list_for_each_entry(i, head, list) {
6990		if (i->uaddr == range->addr &&
6991		    i->size == range->size)
6992			return i;
6993	}
6994
6995	return NULL;
6996}
6997
6998
6999static int svm_unregister_enc_region(struct kvm *kvm,
7000				     struct kvm_enc_region *range)
7001{
7002	struct enc_region *region;
7003	int ret;
7004
7005	mutex_lock(&kvm->lock);
7006
7007	if (!sev_guest(kvm)) {
7008		ret = -ENOTTY;
7009		goto failed;
7010	}
7011
7012	region = find_enc_region(kvm, range);
7013	if (!region) {
7014		ret = -EINVAL;
7015		goto failed;
7016	}
7017
7018	__unregister_enc_region_locked(kvm, region);
7019
7020	mutex_unlock(&kvm->lock);
7021	return 0;
7022
7023failed:
7024	mutex_unlock(&kvm->lock);
7025	return ret;
7026}
7027
7028static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
7029	.cpu_has_kvm_support = has_svm,
7030	.disabled_by_bios = is_disabled,
7031	.hardware_setup = svm_hardware_setup,
7032	.hardware_unsetup = svm_hardware_unsetup,
7033	.check_processor_compatibility = svm_check_processor_compat,
7034	.hardware_enable = svm_hardware_enable,
7035	.hardware_disable = svm_hardware_disable,
7036	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
7037	.has_emulated_msr = svm_has_emulated_msr,
7038
7039	.vcpu_create = svm_create_vcpu,
7040	.vcpu_free = svm_free_vcpu,
7041	.vcpu_reset = svm_vcpu_reset,
7042
7043	.vm_alloc = svm_vm_alloc,
7044	.vm_free = svm_vm_free,
7045	.vm_init = avic_vm_init,
7046	.vm_destroy = svm_vm_destroy,
7047
7048	.prepare_guest_switch = svm_prepare_guest_switch,
7049	.vcpu_load = svm_vcpu_load,
7050	.vcpu_put = svm_vcpu_put,
7051	.vcpu_blocking = svm_vcpu_blocking,
7052	.vcpu_unblocking = svm_vcpu_unblocking,
7053
7054	.update_bp_intercept = update_bp_intercept,
7055	.get_msr_feature = svm_get_msr_feature,
7056	.get_msr = svm_get_msr,
7057	.set_msr = svm_set_msr,
7058	.get_segment_base = svm_get_segment_base,
7059	.get_segment = svm_get_segment,
7060	.set_segment = svm_set_segment,
7061	.get_cpl = svm_get_cpl,
7062	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
7063	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
7064	.decache_cr3 = svm_decache_cr3,
7065	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
7066	.set_cr0 = svm_set_cr0,
7067	.set_cr3 = svm_set_cr3,
7068	.set_cr4 = svm_set_cr4,
7069	.set_efer = svm_set_efer,
7070	.get_idt = svm_get_idt,
7071	.set_idt = svm_set_idt,
7072	.get_gdt = svm_get_gdt,
7073	.set_gdt = svm_set_gdt,
7074	.get_dr6 = svm_get_dr6,
7075	.set_dr6 = svm_set_dr6,
7076	.set_dr7 = svm_set_dr7,
7077	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
7078	.cache_reg = svm_cache_reg,
7079	.get_rflags = svm_get_rflags,
7080	.set_rflags = svm_set_rflags,
7081
7082	.tlb_flush = svm_flush_tlb,
7083
7084	.run = svm_vcpu_run,
7085	.handle_exit = handle_exit,
7086	.skip_emulated_instruction = skip_emulated_instruction,
7087	.set_interrupt_shadow = svm_set_interrupt_shadow,
7088	.get_interrupt_shadow = svm_get_interrupt_shadow,
7089	.patch_hypercall = svm_patch_hypercall,
7090	.set_irq = svm_set_irq,
7091	.set_nmi = svm_inject_nmi,
7092	.queue_exception = svm_queue_exception,
7093	.cancel_injection = svm_cancel_injection,
7094	.interrupt_allowed = svm_interrupt_allowed,
7095	.nmi_allowed = svm_nmi_allowed,
7096	.get_nmi_mask = svm_get_nmi_mask,
7097	.set_nmi_mask = svm_set_nmi_mask,
7098	.enable_nmi_window = enable_nmi_window,
7099	.enable_irq_window = enable_irq_window,
7100	.update_cr8_intercept = update_cr8_intercept,
7101	.set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
7102	.get_enable_apicv = svm_get_enable_apicv,
7103	.refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
7104	.load_eoi_exitmap = svm_load_eoi_exitmap,
7105	.hwapic_irr_update = svm_hwapic_irr_update,
7106	.hwapic_isr_update = svm_hwapic_isr_update,
7107	.sync_pir_to_irr = kvm_lapic_find_highest_irr,
7108	.apicv_post_state_restore = avic_post_state_restore,
7109
7110	.set_tss_addr = svm_set_tss_addr,
7111	.set_identity_map_addr = svm_set_identity_map_addr,
7112	.get_tdp_level = get_npt_level,
7113	.get_mt_mask = svm_get_mt_mask,
7114
7115	.get_exit_info = svm_get_exit_info,
7116
7117	.get_lpage_level = svm_get_lpage_level,
7118
7119	.cpuid_update = svm_cpuid_update,
7120
7121	.rdtscp_supported = svm_rdtscp_supported,
7122	.invpcid_supported = svm_invpcid_supported,
7123	.mpx_supported = svm_mpx_supported,
7124	.xsaves_supported = svm_xsaves_supported,
7125	.umip_emulated = svm_umip_emulated,
7126
7127	.set_supported_cpuid = svm_set_supported_cpuid,
7128
7129	.has_wbinvd_exit = svm_has_wbinvd_exit,
7130
7131	.read_l1_tsc_offset = svm_read_l1_tsc_offset,
7132	.write_tsc_offset = svm_write_tsc_offset,
7133
7134	.set_tdp_cr3 = set_tdp_cr3,
7135
7136	.check_intercept = svm_check_intercept,
7137	.handle_external_intr = svm_handle_external_intr,
7138
7139	.sched_in = svm_sched_in,
7140
7141	.pmu_ops = &amd_pmu_ops,
7142	.deliver_posted_interrupt = svm_deliver_avic_intr,
7143	.update_pi_irte = svm_update_pi_irte,
7144	.setup_mce = svm_setup_mce,
7145
7146	.smi_allowed = svm_smi_allowed,
7147	.pre_enter_smm = svm_pre_enter_smm,
7148	.pre_leave_smm = svm_pre_leave_smm,
7149	.enable_smi_window = enable_smi_window,
7150
7151	.mem_enc_op = svm_mem_enc_op,
7152	.mem_enc_reg_region = svm_register_enc_region,
7153	.mem_enc_unreg_region = svm_unregister_enc_region,
7154};
7155
7156static int __init svm_init(void)
7157{
7158	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
7159			__alignof__(struct vcpu_svm), THIS_MODULE);
7160}
7161
7162static void __exit svm_exit(void)
7163{
7164	kvm_exit();
7165}
7166
7167module_init(svm_init)
7168module_exit(svm_exit)