Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/init.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/user.h>
19#include <linux/sched/debug.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/sched/cputime.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/mm.h>
26#include <linux/proc_fs.h>
27#include <linux/tty.h>
28#include <linux/binfmts.h>
29#include <linux/coredump.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include <linux/ptrace.h>
33#include <linux/signal.h>
34#include <linux/signalfd.h>
35#include <linux/ratelimit.h>
36#include <linux/task_work.h>
37#include <linux/capability.h>
38#include <linux/freezer.h>
39#include <linux/pid_namespace.h>
40#include <linux/nsproxy.h>
41#include <linux/user_namespace.h>
42#include <linux/uprobes.h>
43#include <linux/compat.h>
44#include <linux/cn_proc.h>
45#include <linux/compiler.h>
46#include <linux/posix-timers.h>
47#include <linux/cgroup.h>
48#include <linux/audit.h>
49#include <linux/sysctl.h>
50#include <uapi/linux/pidfd.h>
51
52#define CREATE_TRACE_POINTS
53#include <trace/events/signal.h>
54
55#include <asm/param.h>
56#include <linux/uaccess.h>
57#include <asm/unistd.h>
58#include <asm/siginfo.h>
59#include <asm/cacheflush.h>
60#include <asm/syscall.h> /* for syscall_get_* */
61
62#include "time/posix-timers.h"
63
64/*
65 * SLAB caches for signal bits.
66 */
67
68static struct kmem_cache *sigqueue_cachep;
69
70int print_fatal_signals __read_mostly;
71
72static void __user *sig_handler(struct task_struct *t, int sig)
73{
74 return t->sighand->action[sig - 1].sa.sa_handler;
75}
76
77static inline bool sig_handler_ignored(void __user *handler, int sig)
78{
79 /* Is it explicitly or implicitly ignored? */
80 return handler == SIG_IGN ||
81 (handler == SIG_DFL && sig_kernel_ignore(sig));
82}
83
84static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
85{
86 void __user *handler;
87
88 handler = sig_handler(t, sig);
89
90 /* SIGKILL and SIGSTOP may not be sent to the global init */
91 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
92 return true;
93
94 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
95 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
96 return true;
97
98 /* Only allow kernel generated signals to this kthread */
99 if (unlikely((t->flags & PF_KTHREAD) &&
100 (handler == SIG_KTHREAD_KERNEL) && !force))
101 return true;
102
103 return sig_handler_ignored(handler, sig);
104}
105
106static bool sig_ignored(struct task_struct *t, int sig, bool force)
107{
108 /*
109 * Blocked signals are never ignored, since the
110 * signal handler may change by the time it is
111 * unblocked.
112 */
113 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
114 return false;
115
116 /*
117 * Tracers may want to know about even ignored signal unless it
118 * is SIGKILL which can't be reported anyway but can be ignored
119 * by SIGNAL_UNKILLABLE task.
120 */
121 if (t->ptrace && sig != SIGKILL)
122 return false;
123
124 return sig_task_ignored(t, sig, force);
125}
126
127/*
128 * Re-calculate pending state from the set of locally pending
129 * signals, globally pending signals, and blocked signals.
130 */
131static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
132{
133 unsigned long ready;
134 long i;
135
136 switch (_NSIG_WORDS) {
137 default:
138 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
139 ready |= signal->sig[i] &~ blocked->sig[i];
140 break;
141
142 case 4: ready = signal->sig[3] &~ blocked->sig[3];
143 ready |= signal->sig[2] &~ blocked->sig[2];
144 ready |= signal->sig[1] &~ blocked->sig[1];
145 ready |= signal->sig[0] &~ blocked->sig[0];
146 break;
147
148 case 2: ready = signal->sig[1] &~ blocked->sig[1];
149 ready |= signal->sig[0] &~ blocked->sig[0];
150 break;
151
152 case 1: ready = signal->sig[0] &~ blocked->sig[0];
153 }
154 return ready != 0;
155}
156
157#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
158
159static bool recalc_sigpending_tsk(struct task_struct *t)
160{
161 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
162 PENDING(&t->pending, &t->blocked) ||
163 PENDING(&t->signal->shared_pending, &t->blocked) ||
164 cgroup_task_frozen(t)) {
165 set_tsk_thread_flag(t, TIF_SIGPENDING);
166 return true;
167 }
168
169 /*
170 * We must never clear the flag in another thread, or in current
171 * when it's possible the current syscall is returning -ERESTART*.
172 * So we don't clear it here, and only callers who know they should do.
173 */
174 return false;
175}
176
177void recalc_sigpending(void)
178{
179 if (!recalc_sigpending_tsk(current) && !freezing(current))
180 clear_thread_flag(TIF_SIGPENDING);
181
182}
183EXPORT_SYMBOL(recalc_sigpending);
184
185void calculate_sigpending(void)
186{
187 /* Have any signals or users of TIF_SIGPENDING been delayed
188 * until after fork?
189 */
190 spin_lock_irq(¤t->sighand->siglock);
191 set_tsk_thread_flag(current, TIF_SIGPENDING);
192 recalc_sigpending();
193 spin_unlock_irq(¤t->sighand->siglock);
194}
195
196/* Given the mask, find the first available signal that should be serviced. */
197
198#define SYNCHRONOUS_MASK \
199 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
200 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
201
202int next_signal(struct sigpending *pending, sigset_t *mask)
203{
204 unsigned long i, *s, *m, x;
205 int sig = 0;
206
207 s = pending->signal.sig;
208 m = mask->sig;
209
210 /*
211 * Handle the first word specially: it contains the
212 * synchronous signals that need to be dequeued first.
213 */
214 x = *s &~ *m;
215 if (x) {
216 if (x & SYNCHRONOUS_MASK)
217 x &= SYNCHRONOUS_MASK;
218 sig = ffz(~x) + 1;
219 return sig;
220 }
221
222 switch (_NSIG_WORDS) {
223 default:
224 for (i = 1; i < _NSIG_WORDS; ++i) {
225 x = *++s &~ *++m;
226 if (!x)
227 continue;
228 sig = ffz(~x) + i*_NSIG_BPW + 1;
229 break;
230 }
231 break;
232
233 case 2:
234 x = s[1] &~ m[1];
235 if (!x)
236 break;
237 sig = ffz(~x) + _NSIG_BPW + 1;
238 break;
239
240 case 1:
241 /* Nothing to do */
242 break;
243 }
244
245 return sig;
246}
247
248static inline void print_dropped_signal(int sig)
249{
250 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
251
252 if (!print_fatal_signals)
253 return;
254
255 if (!__ratelimit(&ratelimit_state))
256 return;
257
258 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
259 current->comm, current->pid, sig);
260}
261
262/**
263 * task_set_jobctl_pending - set jobctl pending bits
264 * @task: target task
265 * @mask: pending bits to set
266 *
267 * Clear @mask from @task->jobctl. @mask must be subset of
268 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
269 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
270 * cleared. If @task is already being killed or exiting, this function
271 * becomes noop.
272 *
273 * CONTEXT:
274 * Must be called with @task->sighand->siglock held.
275 *
276 * RETURNS:
277 * %true if @mask is set, %false if made noop because @task was dying.
278 */
279bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
280{
281 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
282 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
283 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
284
285 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
286 return false;
287
288 if (mask & JOBCTL_STOP_SIGMASK)
289 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
290
291 task->jobctl |= mask;
292 return true;
293}
294
295/**
296 * task_clear_jobctl_trapping - clear jobctl trapping bit
297 * @task: target task
298 *
299 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
300 * Clear it and wake up the ptracer. Note that we don't need any further
301 * locking. @task->siglock guarantees that @task->parent points to the
302 * ptracer.
303 *
304 * CONTEXT:
305 * Must be called with @task->sighand->siglock held.
306 */
307void task_clear_jobctl_trapping(struct task_struct *task)
308{
309 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
310 task->jobctl &= ~JOBCTL_TRAPPING;
311 smp_mb(); /* advised by wake_up_bit() */
312 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
313 }
314}
315
316/**
317 * task_clear_jobctl_pending - clear jobctl pending bits
318 * @task: target task
319 * @mask: pending bits to clear
320 *
321 * Clear @mask from @task->jobctl. @mask must be subset of
322 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
323 * STOP bits are cleared together.
324 *
325 * If clearing of @mask leaves no stop or trap pending, this function calls
326 * task_clear_jobctl_trapping().
327 *
328 * CONTEXT:
329 * Must be called with @task->sighand->siglock held.
330 */
331void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
332{
333 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
334
335 if (mask & JOBCTL_STOP_PENDING)
336 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
337
338 task->jobctl &= ~mask;
339
340 if (!(task->jobctl & JOBCTL_PENDING_MASK))
341 task_clear_jobctl_trapping(task);
342}
343
344/**
345 * task_participate_group_stop - participate in a group stop
346 * @task: task participating in a group stop
347 *
348 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
349 * Group stop states are cleared and the group stop count is consumed if
350 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
351 * stop, the appropriate `SIGNAL_*` flags are set.
352 *
353 * CONTEXT:
354 * Must be called with @task->sighand->siglock held.
355 *
356 * RETURNS:
357 * %true if group stop completion should be notified to the parent, %false
358 * otherwise.
359 */
360static bool task_participate_group_stop(struct task_struct *task)
361{
362 struct signal_struct *sig = task->signal;
363 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
364
365 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
366
367 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
368
369 if (!consume)
370 return false;
371
372 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
373 sig->group_stop_count--;
374
375 /*
376 * Tell the caller to notify completion iff we are entering into a
377 * fresh group stop. Read comment in do_signal_stop() for details.
378 */
379 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
380 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
381 return true;
382 }
383 return false;
384}
385
386void task_join_group_stop(struct task_struct *task)
387{
388 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
389 struct signal_struct *sig = current->signal;
390
391 if (sig->group_stop_count) {
392 sig->group_stop_count++;
393 mask |= JOBCTL_STOP_CONSUME;
394 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
395 return;
396
397 /* Have the new thread join an on-going signal group stop */
398 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
399}
400
401static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
402 int override_rlimit)
403{
404 struct ucounts *ucounts;
405 long sigpending;
406
407 /*
408 * Protect access to @t credentials. This can go away when all
409 * callers hold rcu read lock.
410 *
411 * NOTE! A pending signal will hold on to the user refcount,
412 * and we get/put the refcount only when the sigpending count
413 * changes from/to zero.
414 */
415 rcu_read_lock();
416 ucounts = task_ucounts(t);
417 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
418 override_rlimit);
419 rcu_read_unlock();
420 if (!sigpending)
421 return NULL;
422
423 if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
424 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
425 print_dropped_signal(sig);
426 return NULL;
427 }
428
429 return ucounts;
430}
431
432static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
433 const unsigned int sigqueue_flags)
434{
435 INIT_LIST_HEAD(&q->list);
436 q->flags = sigqueue_flags;
437 q->ucounts = ucounts;
438}
439
440/*
441 * allocate a new signal queue record
442 * - this may be called without locks if and only if t == current, otherwise an
443 * appropriate lock must be held to stop the target task from exiting
444 */
445static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
446 int override_rlimit)
447{
448 struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
449 struct sigqueue *q;
450
451 if (!ucounts)
452 return NULL;
453
454 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
455 if (!q) {
456 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
457 return NULL;
458 }
459
460 __sigqueue_init(q, ucounts, 0);
461 return q;
462}
463
464static void __sigqueue_free(struct sigqueue *q)
465{
466 if (q->flags & SIGQUEUE_PREALLOC) {
467 posixtimer_sigqueue_putref(q);
468 return;
469 }
470 if (q->ucounts) {
471 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
472 q->ucounts = NULL;
473 }
474 kmem_cache_free(sigqueue_cachep, q);
475}
476
477void flush_sigqueue(struct sigpending *queue)
478{
479 struct sigqueue *q;
480
481 sigemptyset(&queue->signal);
482 while (!list_empty(&queue->list)) {
483 q = list_entry(queue->list.next, struct sigqueue , list);
484 list_del_init(&q->list);
485 __sigqueue_free(q);
486 }
487}
488
489/*
490 * Flush all pending signals for this kthread.
491 */
492void flush_signals(struct task_struct *t)
493{
494 unsigned long flags;
495
496 spin_lock_irqsave(&t->sighand->siglock, flags);
497 clear_tsk_thread_flag(t, TIF_SIGPENDING);
498 flush_sigqueue(&t->pending);
499 flush_sigqueue(&t->signal->shared_pending);
500 spin_unlock_irqrestore(&t->sighand->siglock, flags);
501}
502EXPORT_SYMBOL(flush_signals);
503
504void ignore_signals(struct task_struct *t)
505{
506 int i;
507
508 for (i = 0; i < _NSIG; ++i)
509 t->sighand->action[i].sa.sa_handler = SIG_IGN;
510
511 flush_signals(t);
512}
513
514/*
515 * Flush all handlers for a task.
516 */
517
518void
519flush_signal_handlers(struct task_struct *t, int force_default)
520{
521 int i;
522 struct k_sigaction *ka = &t->sighand->action[0];
523 for (i = _NSIG ; i != 0 ; i--) {
524 if (force_default || ka->sa.sa_handler != SIG_IGN)
525 ka->sa.sa_handler = SIG_DFL;
526 ka->sa.sa_flags = 0;
527#ifdef __ARCH_HAS_SA_RESTORER
528 ka->sa.sa_restorer = NULL;
529#endif
530 sigemptyset(&ka->sa.sa_mask);
531 ka++;
532 }
533}
534
535bool unhandled_signal(struct task_struct *tsk, int sig)
536{
537 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
538 if (is_global_init(tsk))
539 return true;
540
541 if (handler != SIG_IGN && handler != SIG_DFL)
542 return false;
543
544 /* If dying, we handle all new signals by ignoring them */
545 if (fatal_signal_pending(tsk))
546 return false;
547
548 /* if ptraced, let the tracer determine */
549 return !tsk->ptrace;
550}
551
552static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
553 struct sigqueue **timer_sigq)
554{
555 struct sigqueue *q, *first = NULL;
556
557 /*
558 * Collect the siginfo appropriate to this signal. Check if
559 * there is another siginfo for the same signal.
560 */
561 list_for_each_entry(q, &list->list, list) {
562 if (q->info.si_signo == sig) {
563 if (first)
564 goto still_pending;
565 first = q;
566 }
567 }
568
569 sigdelset(&list->signal, sig);
570
571 if (first) {
572still_pending:
573 list_del_init(&first->list);
574 copy_siginfo(info, &first->info);
575
576 /*
577 * posix-timer signals are preallocated and freed when the last
578 * reference count is dropped in posixtimer_deliver_signal() or
579 * immediately on timer deletion when the signal is not pending.
580 * Spare the extra round through __sigqueue_free() which is
581 * ignoring preallocated signals.
582 */
583 if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
584 *timer_sigq = first;
585 else
586 __sigqueue_free(first);
587 } else {
588 /*
589 * Ok, it wasn't in the queue. This must be
590 * a fast-pathed signal or we must have been
591 * out of queue space. So zero out the info.
592 */
593 clear_siginfo(info);
594 info->si_signo = sig;
595 info->si_errno = 0;
596 info->si_code = SI_USER;
597 info->si_pid = 0;
598 info->si_uid = 0;
599 }
600}
601
602static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
603 kernel_siginfo_t *info, struct sigqueue **timer_sigq)
604{
605 int sig = next_signal(pending, mask);
606
607 if (sig)
608 collect_signal(sig, pending, info, timer_sigq);
609 return sig;
610}
611
612/*
613 * Try to dequeue a signal. If a deliverable signal is found fill in the
614 * caller provided siginfo and return the signal number. Otherwise return
615 * 0.
616 */
617int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
618{
619 struct task_struct *tsk = current;
620 struct sigqueue *timer_sigq;
621 int signr;
622
623 lockdep_assert_held(&tsk->sighand->siglock);
624
625again:
626 *type = PIDTYPE_PID;
627 timer_sigq = NULL;
628 signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq);
629 if (!signr) {
630 *type = PIDTYPE_TGID;
631 signr = __dequeue_signal(&tsk->signal->shared_pending,
632 mask, info, &timer_sigq);
633
634 if (unlikely(signr == SIGALRM))
635 posixtimer_rearm_itimer(tsk);
636 }
637
638 recalc_sigpending();
639 if (!signr)
640 return 0;
641
642 if (unlikely(sig_kernel_stop(signr))) {
643 /*
644 * Set a marker that we have dequeued a stop signal. Our
645 * caller might release the siglock and then the pending
646 * stop signal it is about to process is no longer in the
647 * pending bitmasks, but must still be cleared by a SIGCONT
648 * (and overruled by a SIGKILL). So those cases clear this
649 * shared flag after we've set it. Note that this flag may
650 * remain set after the signal we return is ignored or
651 * handled. That doesn't matter because its only purpose
652 * is to alert stop-signal processing code when another
653 * processor has come along and cleared the flag.
654 */
655 current->jobctl |= JOBCTL_STOP_DEQUEUED;
656 }
657
658 if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) {
659 if (!posixtimer_deliver_signal(info, timer_sigq))
660 goto again;
661 }
662
663 return signr;
664}
665EXPORT_SYMBOL_GPL(dequeue_signal);
666
667static int dequeue_synchronous_signal(kernel_siginfo_t *info)
668{
669 struct task_struct *tsk = current;
670 struct sigpending *pending = &tsk->pending;
671 struct sigqueue *q, *sync = NULL;
672
673 /*
674 * Might a synchronous signal be in the queue?
675 */
676 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
677 return 0;
678
679 /*
680 * Return the first synchronous signal in the queue.
681 */
682 list_for_each_entry(q, &pending->list, list) {
683 /* Synchronous signals have a positive si_code */
684 if ((q->info.si_code > SI_USER) &&
685 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
686 sync = q;
687 goto next;
688 }
689 }
690 return 0;
691next:
692 /*
693 * Check if there is another siginfo for the same signal.
694 */
695 list_for_each_entry_continue(q, &pending->list, list) {
696 if (q->info.si_signo == sync->info.si_signo)
697 goto still_pending;
698 }
699
700 sigdelset(&pending->signal, sync->info.si_signo);
701 recalc_sigpending();
702still_pending:
703 list_del_init(&sync->list);
704 copy_siginfo(info, &sync->info);
705 __sigqueue_free(sync);
706 return info->si_signo;
707}
708
709/*
710 * Tell a process that it has a new active signal..
711 *
712 * NOTE! we rely on the previous spin_lock to
713 * lock interrupts for us! We can only be called with
714 * "siglock" held, and the local interrupt must
715 * have been disabled when that got acquired!
716 *
717 * No need to set need_resched since signal event passing
718 * goes through ->blocked
719 */
720void signal_wake_up_state(struct task_struct *t, unsigned int state)
721{
722 lockdep_assert_held(&t->sighand->siglock);
723
724 set_tsk_thread_flag(t, TIF_SIGPENDING);
725
726 /*
727 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
728 * case. We don't check t->state here because there is a race with it
729 * executing another processor and just now entering stopped state.
730 * By using wake_up_state, we ensure the process will wake up and
731 * handle its death signal.
732 */
733 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
734 kick_process(t);
735}
736
737static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q);
738
739static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q)
740{
741 if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER))
742 __sigqueue_free(q);
743 else
744 posixtimer_sig_ignore(tsk, q);
745}
746
747/* Remove signals in mask from the pending set and queue. */
748static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
749{
750 struct sigqueue *q, *n;
751 sigset_t m;
752
753 lockdep_assert_held(&p->sighand->siglock);
754
755 sigandsets(&m, mask, &s->signal);
756 if (sigisemptyset(&m))
757 return;
758
759 sigandnsets(&s->signal, &s->signal, mask);
760 list_for_each_entry_safe(q, n, &s->list, list) {
761 if (sigismember(mask, q->info.si_signo)) {
762 list_del_init(&q->list);
763 sigqueue_free_ignored(p, q);
764 }
765 }
766}
767
768static inline int is_si_special(const struct kernel_siginfo *info)
769{
770 return info <= SEND_SIG_PRIV;
771}
772
773static inline bool si_fromuser(const struct kernel_siginfo *info)
774{
775 return info == SEND_SIG_NOINFO ||
776 (!is_si_special(info) && SI_FROMUSER(info));
777}
778
779/*
780 * called with RCU read lock from check_kill_permission()
781 */
782static bool kill_ok_by_cred(struct task_struct *t)
783{
784 const struct cred *cred = current_cred();
785 const struct cred *tcred = __task_cred(t);
786
787 return uid_eq(cred->euid, tcred->suid) ||
788 uid_eq(cred->euid, tcred->uid) ||
789 uid_eq(cred->uid, tcred->suid) ||
790 uid_eq(cred->uid, tcred->uid) ||
791 ns_capable(tcred->user_ns, CAP_KILL);
792}
793
794/*
795 * Bad permissions for sending the signal
796 * - the caller must hold the RCU read lock
797 */
798static int check_kill_permission(int sig, struct kernel_siginfo *info,
799 struct task_struct *t)
800{
801 struct pid *sid;
802 int error;
803
804 if (!valid_signal(sig))
805 return -EINVAL;
806
807 if (!si_fromuser(info))
808 return 0;
809
810 error = audit_signal_info(sig, t); /* Let audit system see the signal */
811 if (error)
812 return error;
813
814 if (!same_thread_group(current, t) &&
815 !kill_ok_by_cred(t)) {
816 switch (sig) {
817 case SIGCONT:
818 sid = task_session(t);
819 /*
820 * We don't return the error if sid == NULL. The
821 * task was unhashed, the caller must notice this.
822 */
823 if (!sid || sid == task_session(current))
824 break;
825 fallthrough;
826 default:
827 return -EPERM;
828 }
829 }
830
831 return security_task_kill(t, info, sig, NULL);
832}
833
834/**
835 * ptrace_trap_notify - schedule trap to notify ptracer
836 * @t: tracee wanting to notify tracer
837 *
838 * This function schedules sticky ptrace trap which is cleared on the next
839 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
840 * ptracer.
841 *
842 * If @t is running, STOP trap will be taken. If trapped for STOP and
843 * ptracer is listening for events, tracee is woken up so that it can
844 * re-trap for the new event. If trapped otherwise, STOP trap will be
845 * eventually taken without returning to userland after the existing traps
846 * are finished by PTRACE_CONT.
847 *
848 * CONTEXT:
849 * Must be called with @task->sighand->siglock held.
850 */
851static void ptrace_trap_notify(struct task_struct *t)
852{
853 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
854 lockdep_assert_held(&t->sighand->siglock);
855
856 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
857 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
858}
859
860/*
861 * Handle magic process-wide effects of stop/continue signals. Unlike
862 * the signal actions, these happen immediately at signal-generation
863 * time regardless of blocking, ignoring, or handling. This does the
864 * actual continuing for SIGCONT, but not the actual stopping for stop
865 * signals. The process stop is done as a signal action for SIG_DFL.
866 *
867 * Returns true if the signal should be actually delivered, otherwise
868 * it should be dropped.
869 */
870static bool prepare_signal(int sig, struct task_struct *p, bool force)
871{
872 struct signal_struct *signal = p->signal;
873 struct task_struct *t;
874 sigset_t flush;
875
876 if (signal->flags & SIGNAL_GROUP_EXIT) {
877 if (signal->core_state)
878 return sig == SIGKILL;
879 /*
880 * The process is in the middle of dying, drop the signal.
881 */
882 return false;
883 } else if (sig_kernel_stop(sig)) {
884 /*
885 * This is a stop signal. Remove SIGCONT from all queues.
886 */
887 siginitset(&flush, sigmask(SIGCONT));
888 flush_sigqueue_mask(p, &flush, &signal->shared_pending);
889 for_each_thread(p, t)
890 flush_sigqueue_mask(p, &flush, &t->pending);
891 } else if (sig == SIGCONT) {
892 unsigned int why;
893 /*
894 * Remove all stop signals from all queues, wake all threads.
895 */
896 siginitset(&flush, SIG_KERNEL_STOP_MASK);
897 flush_sigqueue_mask(p, &flush, &signal->shared_pending);
898 for_each_thread(p, t) {
899 flush_sigqueue_mask(p, &flush, &t->pending);
900 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
901 if (likely(!(t->ptrace & PT_SEIZED))) {
902 t->jobctl &= ~JOBCTL_STOPPED;
903 wake_up_state(t, __TASK_STOPPED);
904 } else
905 ptrace_trap_notify(t);
906 }
907
908 /*
909 * Notify the parent with CLD_CONTINUED if we were stopped.
910 *
911 * If we were in the middle of a group stop, we pretend it
912 * was already finished, and then continued. Since SIGCHLD
913 * doesn't queue we report only CLD_STOPPED, as if the next
914 * CLD_CONTINUED was dropped.
915 */
916 why = 0;
917 if (signal->flags & SIGNAL_STOP_STOPPED)
918 why |= SIGNAL_CLD_CONTINUED;
919 else if (signal->group_stop_count)
920 why |= SIGNAL_CLD_STOPPED;
921
922 if (why) {
923 /*
924 * The first thread which returns from do_signal_stop()
925 * will take ->siglock, notice SIGNAL_CLD_MASK, and
926 * notify its parent. See get_signal().
927 */
928 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
929 signal->group_stop_count = 0;
930 signal->group_exit_code = 0;
931 }
932 }
933
934 return !sig_ignored(p, sig, force);
935}
936
937/*
938 * Test if P wants to take SIG. After we've checked all threads with this,
939 * it's equivalent to finding no threads not blocking SIG. Any threads not
940 * blocking SIG were ruled out because they are not running and already
941 * have pending signals. Such threads will dequeue from the shared queue
942 * as soon as they're available, so putting the signal on the shared queue
943 * will be equivalent to sending it to one such thread.
944 */
945static inline bool wants_signal(int sig, struct task_struct *p)
946{
947 if (sigismember(&p->blocked, sig))
948 return false;
949
950 if (p->flags & PF_EXITING)
951 return false;
952
953 if (sig == SIGKILL)
954 return true;
955
956 if (task_is_stopped_or_traced(p))
957 return false;
958
959 return task_curr(p) || !task_sigpending(p);
960}
961
962static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
963{
964 struct signal_struct *signal = p->signal;
965 struct task_struct *t;
966
967 /*
968 * Now find a thread we can wake up to take the signal off the queue.
969 *
970 * Try the suggested task first (may or may not be the main thread).
971 */
972 if (wants_signal(sig, p))
973 t = p;
974 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
975 /*
976 * There is just one thread and it does not need to be woken.
977 * It will dequeue unblocked signals before it runs again.
978 */
979 return;
980 else {
981 /*
982 * Otherwise try to find a suitable thread.
983 */
984 t = signal->curr_target;
985 while (!wants_signal(sig, t)) {
986 t = next_thread(t);
987 if (t == signal->curr_target)
988 /*
989 * No thread needs to be woken.
990 * Any eligible threads will see
991 * the signal in the queue soon.
992 */
993 return;
994 }
995 signal->curr_target = t;
996 }
997
998 /*
999 * Found a killable thread. If the signal will be fatal,
1000 * then start taking the whole group down immediately.
1001 */
1002 if (sig_fatal(p, sig) &&
1003 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1004 !sigismember(&t->real_blocked, sig) &&
1005 (sig == SIGKILL || !p->ptrace)) {
1006 /*
1007 * This signal will be fatal to the whole group.
1008 */
1009 if (!sig_kernel_coredump(sig)) {
1010 /*
1011 * Start a group exit and wake everybody up.
1012 * This way we don't have other threads
1013 * running and doing things after a slower
1014 * thread has the fatal signal pending.
1015 */
1016 signal->flags = SIGNAL_GROUP_EXIT;
1017 signal->group_exit_code = sig;
1018 signal->group_stop_count = 0;
1019 __for_each_thread(signal, t) {
1020 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1021 sigaddset(&t->pending.signal, SIGKILL);
1022 signal_wake_up(t, 1);
1023 }
1024 return;
1025 }
1026 }
1027
1028 /*
1029 * The signal is already in the shared-pending queue.
1030 * Tell the chosen thread to wake up and dequeue it.
1031 */
1032 signal_wake_up(t, sig == SIGKILL);
1033 return;
1034}
1035
1036static inline bool legacy_queue(struct sigpending *signals, int sig)
1037{
1038 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1039}
1040
1041static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1042 struct task_struct *t, enum pid_type type, bool force)
1043{
1044 struct sigpending *pending;
1045 struct sigqueue *q;
1046 int override_rlimit;
1047 int ret = 0, result;
1048
1049 lockdep_assert_held(&t->sighand->siglock);
1050
1051 result = TRACE_SIGNAL_IGNORED;
1052 if (!prepare_signal(sig, t, force))
1053 goto ret;
1054
1055 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1056 /*
1057 * Short-circuit ignored signals and support queuing
1058 * exactly one non-rt signal, so that we can get more
1059 * detailed information about the cause of the signal.
1060 */
1061 result = TRACE_SIGNAL_ALREADY_PENDING;
1062 if (legacy_queue(pending, sig))
1063 goto ret;
1064
1065 result = TRACE_SIGNAL_DELIVERED;
1066 /*
1067 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1068 */
1069 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1070 goto out_set;
1071
1072 /*
1073 * Real-time signals must be queued if sent by sigqueue, or
1074 * some other real-time mechanism. It is implementation
1075 * defined whether kill() does so. We attempt to do so, on
1076 * the principle of least surprise, but since kill is not
1077 * allowed to fail with EAGAIN when low on memory we just
1078 * make sure at least one signal gets delivered and don't
1079 * pass on the info struct.
1080 */
1081 if (sig < SIGRTMIN)
1082 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1083 else
1084 override_rlimit = 0;
1085
1086 q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1087
1088 if (q) {
1089 list_add_tail(&q->list, &pending->list);
1090 switch ((unsigned long) info) {
1091 case (unsigned long) SEND_SIG_NOINFO:
1092 clear_siginfo(&q->info);
1093 q->info.si_signo = sig;
1094 q->info.si_errno = 0;
1095 q->info.si_code = SI_USER;
1096 q->info.si_pid = task_tgid_nr_ns(current,
1097 task_active_pid_ns(t));
1098 rcu_read_lock();
1099 q->info.si_uid =
1100 from_kuid_munged(task_cred_xxx(t, user_ns),
1101 current_uid());
1102 rcu_read_unlock();
1103 break;
1104 case (unsigned long) SEND_SIG_PRIV:
1105 clear_siginfo(&q->info);
1106 q->info.si_signo = sig;
1107 q->info.si_errno = 0;
1108 q->info.si_code = SI_KERNEL;
1109 q->info.si_pid = 0;
1110 q->info.si_uid = 0;
1111 break;
1112 default:
1113 copy_siginfo(&q->info, info);
1114 break;
1115 }
1116 } else if (!is_si_special(info) &&
1117 sig >= SIGRTMIN && info->si_code != SI_USER) {
1118 /*
1119 * Queue overflow, abort. We may abort if the
1120 * signal was rt and sent by user using something
1121 * other than kill().
1122 */
1123 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124 ret = -EAGAIN;
1125 goto ret;
1126 } else {
1127 /*
1128 * This is a silent loss of information. We still
1129 * send the signal, but the *info bits are lost.
1130 */
1131 result = TRACE_SIGNAL_LOSE_INFO;
1132 }
1133
1134out_set:
1135 signalfd_notify(t, sig);
1136 sigaddset(&pending->signal, sig);
1137
1138 /* Let multiprocess signals appear after on-going forks */
1139 if (type > PIDTYPE_TGID) {
1140 struct multiprocess_signals *delayed;
1141 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1142 sigset_t *signal = &delayed->signal;
1143 /* Can't queue both a stop and a continue signal */
1144 if (sig == SIGCONT)
1145 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1146 else if (sig_kernel_stop(sig))
1147 sigdelset(signal, SIGCONT);
1148 sigaddset(signal, sig);
1149 }
1150 }
1151
1152 complete_signal(sig, t, type);
1153ret:
1154 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1155 return ret;
1156}
1157
1158static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1159{
1160 bool ret = false;
1161 switch (siginfo_layout(info->si_signo, info->si_code)) {
1162 case SIL_KILL:
1163 case SIL_CHLD:
1164 case SIL_RT:
1165 ret = true;
1166 break;
1167 case SIL_TIMER:
1168 case SIL_POLL:
1169 case SIL_FAULT:
1170 case SIL_FAULT_TRAPNO:
1171 case SIL_FAULT_MCEERR:
1172 case SIL_FAULT_BNDERR:
1173 case SIL_FAULT_PKUERR:
1174 case SIL_FAULT_PERF_EVENT:
1175 case SIL_SYS:
1176 ret = false;
1177 break;
1178 }
1179 return ret;
1180}
1181
1182int send_signal_locked(int sig, struct kernel_siginfo *info,
1183 struct task_struct *t, enum pid_type type)
1184{
1185 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1186 bool force = false;
1187
1188 if (info == SEND_SIG_NOINFO) {
1189 /* Force if sent from an ancestor pid namespace */
1190 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1191 } else if (info == SEND_SIG_PRIV) {
1192 /* Don't ignore kernel generated signals */
1193 force = true;
1194 } else if (has_si_pid_and_uid(info)) {
1195 /* SIGKILL and SIGSTOP is special or has ids */
1196 struct user_namespace *t_user_ns;
1197
1198 rcu_read_lock();
1199 t_user_ns = task_cred_xxx(t, user_ns);
1200 if (current_user_ns() != t_user_ns) {
1201 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1202 info->si_uid = from_kuid_munged(t_user_ns, uid);
1203 }
1204 rcu_read_unlock();
1205
1206 /* A kernel generated signal? */
1207 force = (info->si_code == SI_KERNEL);
1208
1209 /* From an ancestor pid namespace? */
1210 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1211 info->si_pid = 0;
1212 force = true;
1213 }
1214 }
1215 return __send_signal_locked(sig, info, t, type, force);
1216}
1217
1218static void print_fatal_signal(int signr)
1219{
1220 struct pt_regs *regs = task_pt_regs(current);
1221 struct file *exe_file;
1222
1223 exe_file = get_task_exe_file(current);
1224 if (exe_file) {
1225 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1226 exe_file, current->comm, signr);
1227 fput(exe_file);
1228 } else {
1229 pr_info("%s: potentially unexpected fatal signal %d.\n",
1230 current->comm, signr);
1231 }
1232
1233#if defined(__i386__) && !defined(__arch_um__)
1234 pr_info("code at %08lx: ", regs->ip);
1235 {
1236 int i;
1237 for (i = 0; i < 16; i++) {
1238 unsigned char insn;
1239
1240 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1241 break;
1242 pr_cont("%02x ", insn);
1243 }
1244 }
1245 pr_cont("\n");
1246#endif
1247 preempt_disable();
1248 show_regs(regs);
1249 preempt_enable();
1250}
1251
1252static int __init setup_print_fatal_signals(char *str)
1253{
1254 get_option (&str, &print_fatal_signals);
1255
1256 return 1;
1257}
1258
1259__setup("print-fatal-signals=", setup_print_fatal_signals);
1260
1261int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1262 enum pid_type type)
1263{
1264 unsigned long flags;
1265 int ret = -ESRCH;
1266
1267 if (lock_task_sighand(p, &flags)) {
1268 ret = send_signal_locked(sig, info, p, type);
1269 unlock_task_sighand(p, &flags);
1270 }
1271
1272 return ret;
1273}
1274
1275enum sig_handler {
1276 HANDLER_CURRENT, /* If reachable use the current handler */
1277 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1278 HANDLER_EXIT, /* Only visible as the process exit code */
1279};
1280
1281/*
1282 * Force a signal that the process can't ignore: if necessary
1283 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1284 *
1285 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1286 * since we do not want to have a signal handler that was blocked
1287 * be invoked when user space had explicitly blocked it.
1288 *
1289 * We don't want to have recursive SIGSEGV's etc, for example,
1290 * that is why we also clear SIGNAL_UNKILLABLE.
1291 */
1292static int
1293force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1294 enum sig_handler handler)
1295{
1296 unsigned long int flags;
1297 int ret, blocked, ignored;
1298 struct k_sigaction *action;
1299 int sig = info->si_signo;
1300
1301 spin_lock_irqsave(&t->sighand->siglock, flags);
1302 action = &t->sighand->action[sig-1];
1303 ignored = action->sa.sa_handler == SIG_IGN;
1304 blocked = sigismember(&t->blocked, sig);
1305 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1306 action->sa.sa_handler = SIG_DFL;
1307 if (handler == HANDLER_EXIT)
1308 action->sa.sa_flags |= SA_IMMUTABLE;
1309 if (blocked)
1310 sigdelset(&t->blocked, sig);
1311 }
1312 /*
1313 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1314 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1315 */
1316 if (action->sa.sa_handler == SIG_DFL &&
1317 (!t->ptrace || (handler == HANDLER_EXIT)))
1318 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1319 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1320 /* This can happen if the signal was already pending and blocked */
1321 if (!task_sigpending(t))
1322 signal_wake_up(t, 0);
1323 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1324
1325 return ret;
1326}
1327
1328int force_sig_info(struct kernel_siginfo *info)
1329{
1330 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1331}
1332
1333/*
1334 * Nuke all other threads in the group.
1335 */
1336int zap_other_threads(struct task_struct *p)
1337{
1338 struct task_struct *t;
1339 int count = 0;
1340
1341 p->signal->group_stop_count = 0;
1342
1343 for_other_threads(p, t) {
1344 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1345 count++;
1346
1347 /* Don't bother with already dead threads */
1348 if (t->exit_state)
1349 continue;
1350 sigaddset(&t->pending.signal, SIGKILL);
1351 signal_wake_up(t, 1);
1352 }
1353
1354 return count;
1355}
1356
1357struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1358 unsigned long *flags)
1359{
1360 struct sighand_struct *sighand;
1361
1362 rcu_read_lock();
1363 for (;;) {
1364 sighand = rcu_dereference(tsk->sighand);
1365 if (unlikely(sighand == NULL))
1366 break;
1367
1368 /*
1369 * This sighand can be already freed and even reused, but
1370 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1371 * initializes ->siglock: this slab can't go away, it has
1372 * the same object type, ->siglock can't be reinitialized.
1373 *
1374 * We need to ensure that tsk->sighand is still the same
1375 * after we take the lock, we can race with de_thread() or
1376 * __exit_signal(). In the latter case the next iteration
1377 * must see ->sighand == NULL.
1378 */
1379 spin_lock_irqsave(&sighand->siglock, *flags);
1380 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1381 break;
1382 spin_unlock_irqrestore(&sighand->siglock, *flags);
1383 }
1384 rcu_read_unlock();
1385
1386 return sighand;
1387}
1388
1389#ifdef CONFIG_LOCKDEP
1390void lockdep_assert_task_sighand_held(struct task_struct *task)
1391{
1392 struct sighand_struct *sighand;
1393
1394 rcu_read_lock();
1395 sighand = rcu_dereference(task->sighand);
1396 if (sighand)
1397 lockdep_assert_held(&sighand->siglock);
1398 else
1399 WARN_ON_ONCE(1);
1400 rcu_read_unlock();
1401}
1402#endif
1403
1404/*
1405 * send signal info to all the members of a thread group or to the
1406 * individual thread if type == PIDTYPE_PID.
1407 */
1408int group_send_sig_info(int sig, struct kernel_siginfo *info,
1409 struct task_struct *p, enum pid_type type)
1410{
1411 int ret;
1412
1413 rcu_read_lock();
1414 ret = check_kill_permission(sig, info, p);
1415 rcu_read_unlock();
1416
1417 if (!ret && sig)
1418 ret = do_send_sig_info(sig, info, p, type);
1419
1420 return ret;
1421}
1422
1423/*
1424 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1425 * control characters do (^C, ^Z etc)
1426 * - the caller must hold at least a readlock on tasklist_lock
1427 */
1428int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1429{
1430 struct task_struct *p = NULL;
1431 int ret = -ESRCH;
1432
1433 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435 /*
1436 * If group_send_sig_info() succeeds at least once ret
1437 * becomes 0 and after that the code below has no effect.
1438 * Otherwise we return the last err or -ESRCH if this
1439 * process group is empty.
1440 */
1441 if (ret)
1442 ret = err;
1443 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1444
1445 return ret;
1446}
1447
1448static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1449 struct pid *pid, enum pid_type type)
1450{
1451 int error = -ESRCH;
1452 struct task_struct *p;
1453
1454 for (;;) {
1455 rcu_read_lock();
1456 p = pid_task(pid, PIDTYPE_PID);
1457 if (p)
1458 error = group_send_sig_info(sig, info, p, type);
1459 rcu_read_unlock();
1460 if (likely(!p || error != -ESRCH))
1461 return error;
1462 /*
1463 * The task was unhashed in between, try again. If it
1464 * is dead, pid_task() will return NULL, if we race with
1465 * de_thread() it will find the new leader.
1466 */
1467 }
1468}
1469
1470int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471{
1472 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1473}
1474
1475static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1476{
1477 int error;
1478 rcu_read_lock();
1479 error = kill_pid_info(sig, info, find_vpid(pid));
1480 rcu_read_unlock();
1481 return error;
1482}
1483
1484static inline bool kill_as_cred_perm(const struct cred *cred,
1485 struct task_struct *target)
1486{
1487 const struct cred *pcred = __task_cred(target);
1488
1489 return uid_eq(cred->euid, pcred->suid) ||
1490 uid_eq(cred->euid, pcred->uid) ||
1491 uid_eq(cred->uid, pcred->suid) ||
1492 uid_eq(cred->uid, pcred->uid);
1493}
1494
1495/*
1496 * The usb asyncio usage of siginfo is wrong. The glibc support
1497 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1498 * AKA after the generic fields:
1499 * kernel_pid_t si_pid;
1500 * kernel_uid32_t si_uid;
1501 * sigval_t si_value;
1502 *
1503 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1504 * after the generic fields is:
1505 * void __user *si_addr;
1506 *
1507 * This is a practical problem when there is a 64bit big endian kernel
1508 * and a 32bit userspace. As the 32bit address will encoded in the low
1509 * 32bits of the pointer. Those low 32bits will be stored at higher
1510 * address than appear in a 32 bit pointer. So userspace will not
1511 * see the address it was expecting for it's completions.
1512 *
1513 * There is nothing in the encoding that can allow
1514 * copy_siginfo_to_user32 to detect this confusion of formats, so
1515 * handle this by requiring the caller of kill_pid_usb_asyncio to
1516 * notice when this situration takes place and to store the 32bit
1517 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1518 * parameter.
1519 */
1520int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1521 struct pid *pid, const struct cred *cred)
1522{
1523 struct kernel_siginfo info;
1524 struct task_struct *p;
1525 unsigned long flags;
1526 int ret = -EINVAL;
1527
1528 if (!valid_signal(sig))
1529 return ret;
1530
1531 clear_siginfo(&info);
1532 info.si_signo = sig;
1533 info.si_errno = errno;
1534 info.si_code = SI_ASYNCIO;
1535 *((sigval_t *)&info.si_pid) = addr;
1536
1537 rcu_read_lock();
1538 p = pid_task(pid, PIDTYPE_PID);
1539 if (!p) {
1540 ret = -ESRCH;
1541 goto out_unlock;
1542 }
1543 if (!kill_as_cred_perm(cred, p)) {
1544 ret = -EPERM;
1545 goto out_unlock;
1546 }
1547 ret = security_task_kill(p, &info, sig, cred);
1548 if (ret)
1549 goto out_unlock;
1550
1551 if (sig) {
1552 if (lock_task_sighand(p, &flags)) {
1553 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1554 unlock_task_sighand(p, &flags);
1555 } else
1556 ret = -ESRCH;
1557 }
1558out_unlock:
1559 rcu_read_unlock();
1560 return ret;
1561}
1562EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1563
1564/*
1565 * kill_something_info() interprets pid in interesting ways just like kill(2).
1566 *
1567 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1568 * is probably wrong. Should make it like BSD or SYSV.
1569 */
1570
1571static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1572{
1573 int ret;
1574
1575 if (pid > 0)
1576 return kill_proc_info(sig, info, pid);
1577
1578 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1579 if (pid == INT_MIN)
1580 return -ESRCH;
1581
1582 read_lock(&tasklist_lock);
1583 if (pid != -1) {
1584 ret = __kill_pgrp_info(sig, info,
1585 pid ? find_vpid(-pid) : task_pgrp(current));
1586 } else {
1587 int retval = 0, count = 0;
1588 struct task_struct * p;
1589
1590 for_each_process(p) {
1591 if (task_pid_vnr(p) > 1 &&
1592 !same_thread_group(p, current)) {
1593 int err = group_send_sig_info(sig, info, p,
1594 PIDTYPE_MAX);
1595 ++count;
1596 if (err != -EPERM)
1597 retval = err;
1598 }
1599 }
1600 ret = count ? retval : -ESRCH;
1601 }
1602 read_unlock(&tasklist_lock);
1603
1604 return ret;
1605}
1606
1607/*
1608 * These are for backward compatibility with the rest of the kernel source.
1609 */
1610
1611int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1612{
1613 /*
1614 * Make sure legacy kernel users don't send in bad values
1615 * (normal paths check this in check_kill_permission).
1616 */
1617 if (!valid_signal(sig))
1618 return -EINVAL;
1619
1620 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1621}
1622EXPORT_SYMBOL(send_sig_info);
1623
1624#define __si_special(priv) \
1625 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1626
1627int
1628send_sig(int sig, struct task_struct *p, int priv)
1629{
1630 return send_sig_info(sig, __si_special(priv), p);
1631}
1632EXPORT_SYMBOL(send_sig);
1633
1634void force_sig(int sig)
1635{
1636 struct kernel_siginfo info;
1637
1638 clear_siginfo(&info);
1639 info.si_signo = sig;
1640 info.si_errno = 0;
1641 info.si_code = SI_KERNEL;
1642 info.si_pid = 0;
1643 info.si_uid = 0;
1644 force_sig_info(&info);
1645}
1646EXPORT_SYMBOL(force_sig);
1647
1648void force_fatal_sig(int sig)
1649{
1650 struct kernel_siginfo info;
1651
1652 clear_siginfo(&info);
1653 info.si_signo = sig;
1654 info.si_errno = 0;
1655 info.si_code = SI_KERNEL;
1656 info.si_pid = 0;
1657 info.si_uid = 0;
1658 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1659}
1660
1661void force_exit_sig(int sig)
1662{
1663 struct kernel_siginfo info;
1664
1665 clear_siginfo(&info);
1666 info.si_signo = sig;
1667 info.si_errno = 0;
1668 info.si_code = SI_KERNEL;
1669 info.si_pid = 0;
1670 info.si_uid = 0;
1671 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1672}
1673
1674/*
1675 * When things go south during signal handling, we
1676 * will force a SIGSEGV. And if the signal that caused
1677 * the problem was already a SIGSEGV, we'll want to
1678 * make sure we don't even try to deliver the signal..
1679 */
1680void force_sigsegv(int sig)
1681{
1682 if (sig == SIGSEGV)
1683 force_fatal_sig(SIGSEGV);
1684 else
1685 force_sig(SIGSEGV);
1686}
1687
1688int force_sig_fault_to_task(int sig, int code, void __user *addr,
1689 struct task_struct *t)
1690{
1691 struct kernel_siginfo info;
1692
1693 clear_siginfo(&info);
1694 info.si_signo = sig;
1695 info.si_errno = 0;
1696 info.si_code = code;
1697 info.si_addr = addr;
1698 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1699}
1700
1701int force_sig_fault(int sig, int code, void __user *addr)
1702{
1703 return force_sig_fault_to_task(sig, code, addr, current);
1704}
1705
1706int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1707{
1708 struct kernel_siginfo info;
1709
1710 clear_siginfo(&info);
1711 info.si_signo = sig;
1712 info.si_errno = 0;
1713 info.si_code = code;
1714 info.si_addr = addr;
1715 return send_sig_info(info.si_signo, &info, t);
1716}
1717
1718int force_sig_mceerr(int code, void __user *addr, short lsb)
1719{
1720 struct kernel_siginfo info;
1721
1722 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1723 clear_siginfo(&info);
1724 info.si_signo = SIGBUS;
1725 info.si_errno = 0;
1726 info.si_code = code;
1727 info.si_addr = addr;
1728 info.si_addr_lsb = lsb;
1729 return force_sig_info(&info);
1730}
1731
1732int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1733{
1734 struct kernel_siginfo info;
1735
1736 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1737 clear_siginfo(&info);
1738 info.si_signo = SIGBUS;
1739 info.si_errno = 0;
1740 info.si_code = code;
1741 info.si_addr = addr;
1742 info.si_addr_lsb = lsb;
1743 return send_sig_info(info.si_signo, &info, t);
1744}
1745EXPORT_SYMBOL(send_sig_mceerr);
1746
1747int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1748{
1749 struct kernel_siginfo info;
1750
1751 clear_siginfo(&info);
1752 info.si_signo = SIGSEGV;
1753 info.si_errno = 0;
1754 info.si_code = SEGV_BNDERR;
1755 info.si_addr = addr;
1756 info.si_lower = lower;
1757 info.si_upper = upper;
1758 return force_sig_info(&info);
1759}
1760
1761#ifdef SEGV_PKUERR
1762int force_sig_pkuerr(void __user *addr, u32 pkey)
1763{
1764 struct kernel_siginfo info;
1765
1766 clear_siginfo(&info);
1767 info.si_signo = SIGSEGV;
1768 info.si_errno = 0;
1769 info.si_code = SEGV_PKUERR;
1770 info.si_addr = addr;
1771 info.si_pkey = pkey;
1772 return force_sig_info(&info);
1773}
1774#endif
1775
1776int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1777{
1778 struct kernel_siginfo info;
1779
1780 clear_siginfo(&info);
1781 info.si_signo = SIGTRAP;
1782 info.si_errno = 0;
1783 info.si_code = TRAP_PERF;
1784 info.si_addr = addr;
1785 info.si_perf_data = sig_data;
1786 info.si_perf_type = type;
1787
1788 /*
1789 * Signals generated by perf events should not terminate the whole
1790 * process if SIGTRAP is blocked, however, delivering the signal
1791 * asynchronously is better than not delivering at all. But tell user
1792 * space if the signal was asynchronous, so it can clearly be
1793 * distinguished from normal synchronous ones.
1794 */
1795 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1796 TRAP_PERF_FLAG_ASYNC :
1797 0;
1798
1799 return send_sig_info(info.si_signo, &info, current);
1800}
1801
1802/**
1803 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1804 * @syscall: syscall number to send to userland
1805 * @reason: filter-supplied reason code to send to userland (via si_errno)
1806 * @force_coredump: true to trigger a coredump
1807 *
1808 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1809 */
1810int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1811{
1812 struct kernel_siginfo info;
1813
1814 clear_siginfo(&info);
1815 info.si_signo = SIGSYS;
1816 info.si_code = SYS_SECCOMP;
1817 info.si_call_addr = (void __user *)KSTK_EIP(current);
1818 info.si_errno = reason;
1819 info.si_arch = syscall_get_arch(current);
1820 info.si_syscall = syscall;
1821 return force_sig_info_to_task(&info, current,
1822 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1823}
1824
1825/* For the crazy architectures that include trap information in
1826 * the errno field, instead of an actual errno value.
1827 */
1828int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1829{
1830 struct kernel_siginfo info;
1831
1832 clear_siginfo(&info);
1833 info.si_signo = SIGTRAP;
1834 info.si_errno = errno;
1835 info.si_code = TRAP_HWBKPT;
1836 info.si_addr = addr;
1837 return force_sig_info(&info);
1838}
1839
1840/* For the rare architectures that include trap information using
1841 * si_trapno.
1842 */
1843int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1844{
1845 struct kernel_siginfo info;
1846
1847 clear_siginfo(&info);
1848 info.si_signo = sig;
1849 info.si_errno = 0;
1850 info.si_code = code;
1851 info.si_addr = addr;
1852 info.si_trapno = trapno;
1853 return force_sig_info(&info);
1854}
1855
1856/* For the rare architectures that include trap information using
1857 * si_trapno.
1858 */
1859int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1860 struct task_struct *t)
1861{
1862 struct kernel_siginfo info;
1863
1864 clear_siginfo(&info);
1865 info.si_signo = sig;
1866 info.si_errno = 0;
1867 info.si_code = code;
1868 info.si_addr = addr;
1869 info.si_trapno = trapno;
1870 return send_sig_info(info.si_signo, &info, t);
1871}
1872
1873static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1874{
1875 int ret;
1876 read_lock(&tasklist_lock);
1877 ret = __kill_pgrp_info(sig, info, pgrp);
1878 read_unlock(&tasklist_lock);
1879 return ret;
1880}
1881
1882int kill_pgrp(struct pid *pid, int sig, int priv)
1883{
1884 return kill_pgrp_info(sig, __si_special(priv), pid);
1885}
1886EXPORT_SYMBOL(kill_pgrp);
1887
1888int kill_pid(struct pid *pid, int sig, int priv)
1889{
1890 return kill_pid_info(sig, __si_special(priv), pid);
1891}
1892EXPORT_SYMBOL(kill_pid);
1893
1894#ifdef CONFIG_POSIX_TIMERS
1895/*
1896 * These functions handle POSIX timer signals. POSIX timers use
1897 * preallocated sigqueue structs for sending signals.
1898 */
1899static void __flush_itimer_signals(struct sigpending *pending)
1900{
1901 sigset_t signal, retain;
1902 struct sigqueue *q, *n;
1903
1904 signal = pending->signal;
1905 sigemptyset(&retain);
1906
1907 list_for_each_entry_safe(q, n, &pending->list, list) {
1908 int sig = q->info.si_signo;
1909
1910 if (likely(q->info.si_code != SI_TIMER)) {
1911 sigaddset(&retain, sig);
1912 } else {
1913 sigdelset(&signal, sig);
1914 list_del_init(&q->list);
1915 __sigqueue_free(q);
1916 }
1917 }
1918
1919 sigorsets(&pending->signal, &signal, &retain);
1920}
1921
1922void flush_itimer_signals(void)
1923{
1924 struct task_struct *tsk = current;
1925
1926 guard(spinlock_irqsave)(&tsk->sighand->siglock);
1927 __flush_itimer_signals(&tsk->pending);
1928 __flush_itimer_signals(&tsk->signal->shared_pending);
1929}
1930
1931bool posixtimer_init_sigqueue(struct sigqueue *q)
1932{
1933 struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
1934
1935 if (!ucounts)
1936 return false;
1937 clear_siginfo(&q->info);
1938 __sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
1939 return true;
1940}
1941
1942static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
1943{
1944 struct sigpending *pending;
1945 int sig = q->info.si_signo;
1946
1947 signalfd_notify(t, sig);
1948 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1949 list_add_tail(&q->list, &pending->list);
1950 sigaddset(&pending->signal, sig);
1951 complete_signal(sig, t, type);
1952}
1953
1954/*
1955 * This function is used by POSIX timers to deliver a timer signal.
1956 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1957 * set), the signal must be delivered to the specific thread (queues
1958 * into t->pending).
1959 *
1960 * Where type is not PIDTYPE_PID, signals must be delivered to the
1961 * process. In this case, prefer to deliver to current if it is in
1962 * the same thread group as the target process and its sighand is
1963 * stable, which avoids unnecessarily waking up a potentially idle task.
1964 */
1965static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
1966{
1967 struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
1968
1969 if (t && tmr->it_pid_type != PIDTYPE_PID &&
1970 same_thread_group(t, current) && !current->exit_state)
1971 t = current;
1972 return t;
1973}
1974
1975void posixtimer_send_sigqueue(struct k_itimer *tmr)
1976{
1977 struct sigqueue *q = &tmr->sigq;
1978 int sig = q->info.si_signo;
1979 struct task_struct *t;
1980 unsigned long flags;
1981 int result;
1982
1983 guard(rcu)();
1984
1985 t = posixtimer_get_target(tmr);
1986 if (!t)
1987 return;
1988
1989 if (!likely(lock_task_sighand(t, &flags)))
1990 return;
1991
1992 /*
1993 * Update @tmr::sigqueue_seq for posix timer signals with sighand
1994 * locked to prevent a race against dequeue_signal().
1995 */
1996 tmr->it_sigqueue_seq = tmr->it_signal_seq;
1997
1998 /*
1999 * Set the signal delivery status under sighand lock, so that the
2000 * ignored signal handling can distinguish between a periodic and a
2001 * non-periodic timer.
2002 */
2003 tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING;
2004
2005 if (!prepare_signal(sig, t, false)) {
2006 result = TRACE_SIGNAL_IGNORED;
2007
2008 if (!list_empty(&q->list)) {
2009 /*
2010 * The signal was ignored and blocked. The timer
2011 * expiry queued it because blocked signals are
2012 * queued independent of the ignored state.
2013 *
2014 * The unblocking set SIGPENDING, but the signal
2015 * was not yet dequeued from the pending list.
2016 * So prepare_signal() sees unblocked and ignored,
2017 * which ends up here. Leave it queued like a
2018 * regular signal.
2019 *
2020 * The same happens when the task group is exiting
2021 * and the signal is already queued.
2022 * prepare_signal() treats SIGNAL_GROUP_EXIT as
2023 * ignored independent of its queued state. This
2024 * gets cleaned up in __exit_signal().
2025 */
2026 goto out;
2027 }
2028
2029 /* Periodic timers with SIG_IGN are queued on the ignored list */
2030 if (tmr->it_sig_periodic) {
2031 /*
2032 * Already queued means the timer was rearmed after
2033 * the previous expiry got it on the ignore list.
2034 * Nothing to do for that case.
2035 */
2036 if (hlist_unhashed(&tmr->ignored_list)) {
2037 /*
2038 * Take a signal reference and queue it on
2039 * the ignored list.
2040 */
2041 posixtimer_sigqueue_getref(q);
2042 posixtimer_sig_ignore(t, q);
2043 }
2044 } else if (!hlist_unhashed(&tmr->ignored_list)) {
2045 /*
2046 * Covers the case where a timer was periodic and
2047 * then the signal was ignored. Later it was rearmed
2048 * as oneshot timer. The previous signal is invalid
2049 * now, and this oneshot signal has to be dropped.
2050 * Remove it from the ignored list and drop the
2051 * reference count as the signal is not longer
2052 * queued.
2053 */
2054 hlist_del_init(&tmr->ignored_list);
2055 posixtimer_putref(tmr);
2056 }
2057 goto out;
2058 }
2059
2060 if (unlikely(!list_empty(&q->list))) {
2061 /* This holds a reference count already */
2062 result = TRACE_SIGNAL_ALREADY_PENDING;
2063 goto out;
2064 }
2065
2066 /*
2067 * If the signal is on the ignore list, it got blocked after it was
2068 * ignored earlier. But nothing lifted the ignore. Move it back to
2069 * the pending list to be consistent with the regular signal
2070 * handling. This already holds a reference count.
2071 *
2072 * If it's not on the ignore list acquire a reference count.
2073 */
2074 if (likely(hlist_unhashed(&tmr->ignored_list)))
2075 posixtimer_sigqueue_getref(q);
2076 else
2077 hlist_del_init(&tmr->ignored_list);
2078
2079 posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
2080 result = TRACE_SIGNAL_DELIVERED;
2081out:
2082 trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
2083 unlock_task_sighand(t, &flags);
2084}
2085
2086static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q)
2087{
2088 struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
2089
2090 /*
2091 * If the timer is marked deleted already or the signal originates
2092 * from a non-periodic timer, then just drop the reference
2093 * count. Otherwise queue it on the ignored list.
2094 */
2095 if (tmr->it_signal && tmr->it_sig_periodic)
2096 hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers);
2097 else
2098 posixtimer_putref(tmr);
2099}
2100
2101static void posixtimer_sig_unignore(struct task_struct *tsk, int sig)
2102{
2103 struct hlist_head *head = &tsk->signal->ignored_posix_timers;
2104 struct hlist_node *tmp;
2105 struct k_itimer *tmr;
2106
2107 if (likely(hlist_empty(head)))
2108 return;
2109
2110 /*
2111 * Rearming a timer with sighand lock held is not possible due to
2112 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
2113 * let the signal delivery path deal with it whether it needs to be
2114 * rearmed or not. This cannot be decided here w/o dropping sighand
2115 * lock and creating a loop retry horror show.
2116 */
2117 hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) {
2118 struct task_struct *target;
2119
2120 /*
2121 * tmr::sigq.info.si_signo is immutable, so accessing it
2122 * without holding tmr::it_lock is safe.
2123 */
2124 if (tmr->sigq.info.si_signo != sig)
2125 continue;
2126
2127 hlist_del_init(&tmr->ignored_list);
2128
2129 /* This should never happen and leaks a reference count */
2130 if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list)))
2131 continue;
2132
2133 /*
2134 * Get the target for the signal. If target is a thread and
2135 * has exited by now, drop the reference count.
2136 */
2137 guard(rcu)();
2138 target = posixtimer_get_target(tmr);
2139 if (target)
2140 posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type);
2141 else
2142 posixtimer_putref(tmr);
2143 }
2144}
2145#else /* CONFIG_POSIX_TIMERS */
2146static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { }
2147static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { }
2148#endif /* !CONFIG_POSIX_TIMERS */
2149
2150void do_notify_pidfd(struct task_struct *task)
2151{
2152 struct pid *pid = task_pid(task);
2153
2154 WARN_ON(task->exit_state == 0);
2155
2156 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2157 poll_to_key(EPOLLIN | EPOLLRDNORM));
2158}
2159
2160/*
2161 * Let a parent know about the death of a child.
2162 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2163 *
2164 * Returns true if our parent ignored us and so we've switched to
2165 * self-reaping.
2166 */
2167bool do_notify_parent(struct task_struct *tsk, int sig)
2168{
2169 struct kernel_siginfo info;
2170 unsigned long flags;
2171 struct sighand_struct *psig;
2172 bool autoreap = false;
2173 u64 utime, stime;
2174
2175 WARN_ON_ONCE(sig == -1);
2176
2177 /* do_notify_parent_cldstop should have been called instead. */
2178 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2179
2180 WARN_ON_ONCE(!tsk->ptrace &&
2181 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2182 /*
2183 * tsk is a group leader and has no threads, wake up the
2184 * non-PIDFD_THREAD waiters.
2185 */
2186 if (thread_group_empty(tsk))
2187 do_notify_pidfd(tsk);
2188
2189 if (sig != SIGCHLD) {
2190 /*
2191 * This is only possible if parent == real_parent.
2192 * Check if it has changed security domain.
2193 */
2194 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2195 sig = SIGCHLD;
2196 }
2197
2198 clear_siginfo(&info);
2199 info.si_signo = sig;
2200 info.si_errno = 0;
2201 /*
2202 * We are under tasklist_lock here so our parent is tied to
2203 * us and cannot change.
2204 *
2205 * task_active_pid_ns will always return the same pid namespace
2206 * until a task passes through release_task.
2207 *
2208 * write_lock() currently calls preempt_disable() which is the
2209 * same as rcu_read_lock(), but according to Oleg, this is not
2210 * correct to rely on this
2211 */
2212 rcu_read_lock();
2213 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2214 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2215 task_uid(tsk));
2216 rcu_read_unlock();
2217
2218 task_cputime(tsk, &utime, &stime);
2219 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2220 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2221
2222 info.si_status = tsk->exit_code & 0x7f;
2223 if (tsk->exit_code & 0x80)
2224 info.si_code = CLD_DUMPED;
2225 else if (tsk->exit_code & 0x7f)
2226 info.si_code = CLD_KILLED;
2227 else {
2228 info.si_code = CLD_EXITED;
2229 info.si_status = tsk->exit_code >> 8;
2230 }
2231
2232 psig = tsk->parent->sighand;
2233 spin_lock_irqsave(&psig->siglock, flags);
2234 if (!tsk->ptrace && sig == SIGCHLD &&
2235 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2236 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2237 /*
2238 * We are exiting and our parent doesn't care. POSIX.1
2239 * defines special semantics for setting SIGCHLD to SIG_IGN
2240 * or setting the SA_NOCLDWAIT flag: we should be reaped
2241 * automatically and not left for our parent's wait4 call.
2242 * Rather than having the parent do it as a magic kind of
2243 * signal handler, we just set this to tell do_exit that we
2244 * can be cleaned up without becoming a zombie. Note that
2245 * we still call __wake_up_parent in this case, because a
2246 * blocked sys_wait4 might now return -ECHILD.
2247 *
2248 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2249 * is implementation-defined: we do (if you don't want
2250 * it, just use SIG_IGN instead).
2251 */
2252 autoreap = true;
2253 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2254 sig = 0;
2255 }
2256 /*
2257 * Send with __send_signal as si_pid and si_uid are in the
2258 * parent's namespaces.
2259 */
2260 if (valid_signal(sig) && sig)
2261 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2262 __wake_up_parent(tsk, tsk->parent);
2263 spin_unlock_irqrestore(&psig->siglock, flags);
2264
2265 return autoreap;
2266}
2267
2268/**
2269 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2270 * @tsk: task reporting the state change
2271 * @for_ptracer: the notification is for ptracer
2272 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2273 *
2274 * Notify @tsk's parent that the stopped/continued state has changed. If
2275 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2276 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2277 *
2278 * CONTEXT:
2279 * Must be called with tasklist_lock at least read locked.
2280 */
2281static void do_notify_parent_cldstop(struct task_struct *tsk,
2282 bool for_ptracer, int why)
2283{
2284 struct kernel_siginfo info;
2285 unsigned long flags;
2286 struct task_struct *parent;
2287 struct sighand_struct *sighand;
2288 u64 utime, stime;
2289
2290 if (for_ptracer) {
2291 parent = tsk->parent;
2292 } else {
2293 tsk = tsk->group_leader;
2294 parent = tsk->real_parent;
2295 }
2296
2297 clear_siginfo(&info);
2298 info.si_signo = SIGCHLD;
2299 info.si_errno = 0;
2300 /*
2301 * see comment in do_notify_parent() about the following 4 lines
2302 */
2303 rcu_read_lock();
2304 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2305 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2306 rcu_read_unlock();
2307
2308 task_cputime(tsk, &utime, &stime);
2309 info.si_utime = nsec_to_clock_t(utime);
2310 info.si_stime = nsec_to_clock_t(stime);
2311
2312 info.si_code = why;
2313 switch (why) {
2314 case CLD_CONTINUED:
2315 info.si_status = SIGCONT;
2316 break;
2317 case CLD_STOPPED:
2318 info.si_status = tsk->signal->group_exit_code & 0x7f;
2319 break;
2320 case CLD_TRAPPED:
2321 info.si_status = tsk->exit_code & 0x7f;
2322 break;
2323 default:
2324 BUG();
2325 }
2326
2327 sighand = parent->sighand;
2328 spin_lock_irqsave(&sighand->siglock, flags);
2329 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2330 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2331 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2332 /*
2333 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2334 */
2335 __wake_up_parent(tsk, parent);
2336 spin_unlock_irqrestore(&sighand->siglock, flags);
2337}
2338
2339/*
2340 * This must be called with current->sighand->siglock held.
2341 *
2342 * This should be the path for all ptrace stops.
2343 * We always set current->last_siginfo while stopped here.
2344 * That makes it a way to test a stopped process for
2345 * being ptrace-stopped vs being job-control-stopped.
2346 *
2347 * Returns the signal the ptracer requested the code resume
2348 * with. If the code did not stop because the tracer is gone,
2349 * the stop signal remains unchanged unless clear_code.
2350 */
2351static int ptrace_stop(int exit_code, int why, unsigned long message,
2352 kernel_siginfo_t *info)
2353 __releases(¤t->sighand->siglock)
2354 __acquires(¤t->sighand->siglock)
2355{
2356 bool gstop_done = false;
2357
2358 if (arch_ptrace_stop_needed()) {
2359 /*
2360 * The arch code has something special to do before a
2361 * ptrace stop. This is allowed to block, e.g. for faults
2362 * on user stack pages. We can't keep the siglock while
2363 * calling arch_ptrace_stop, so we must release it now.
2364 * To preserve proper semantics, we must do this before
2365 * any signal bookkeeping like checking group_stop_count.
2366 */
2367 spin_unlock_irq(¤t->sighand->siglock);
2368 arch_ptrace_stop();
2369 spin_lock_irq(¤t->sighand->siglock);
2370 }
2371
2372 /*
2373 * After this point ptrace_signal_wake_up or signal_wake_up
2374 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2375 * signal comes in. Handle previous ptrace_unlinks and fatal
2376 * signals here to prevent ptrace_stop sleeping in schedule.
2377 */
2378 if (!current->ptrace || __fatal_signal_pending(current))
2379 return exit_code;
2380
2381 set_special_state(TASK_TRACED);
2382 current->jobctl |= JOBCTL_TRACED;
2383
2384 /*
2385 * We're committing to trapping. TRACED should be visible before
2386 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2387 * Also, transition to TRACED and updates to ->jobctl should be
2388 * atomic with respect to siglock and should be done after the arch
2389 * hook as siglock is released and regrabbed across it.
2390 *
2391 * TRACER TRACEE
2392 *
2393 * ptrace_attach()
2394 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2395 * do_wait()
2396 * set_current_state() smp_wmb();
2397 * ptrace_do_wait()
2398 * wait_task_stopped()
2399 * task_stopped_code()
2400 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2401 */
2402 smp_wmb();
2403
2404 current->ptrace_message = message;
2405 current->last_siginfo = info;
2406 current->exit_code = exit_code;
2407
2408 /*
2409 * If @why is CLD_STOPPED, we're trapping to participate in a group
2410 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2411 * across siglock relocks since INTERRUPT was scheduled, PENDING
2412 * could be clear now. We act as if SIGCONT is received after
2413 * TASK_TRACED is entered - ignore it.
2414 */
2415 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2416 gstop_done = task_participate_group_stop(current);
2417
2418 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2419 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2420 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2421 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2422
2423 /* entering a trap, clear TRAPPING */
2424 task_clear_jobctl_trapping(current);
2425
2426 spin_unlock_irq(¤t->sighand->siglock);
2427 read_lock(&tasklist_lock);
2428 /*
2429 * Notify parents of the stop.
2430 *
2431 * While ptraced, there are two parents - the ptracer and
2432 * the real_parent of the group_leader. The ptracer should
2433 * know about every stop while the real parent is only
2434 * interested in the completion of group stop. The states
2435 * for the two don't interact with each other. Notify
2436 * separately unless they're gonna be duplicates.
2437 */
2438 if (current->ptrace)
2439 do_notify_parent_cldstop(current, true, why);
2440 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2441 do_notify_parent_cldstop(current, false, why);
2442
2443 /*
2444 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2445 * One a PREEMPTION kernel this can result in preemption requirement
2446 * which will be fulfilled after read_unlock() and the ptracer will be
2447 * put on the CPU.
2448 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2449 * this task wait in schedule(). If this task gets preempted then it
2450 * remains enqueued on the runqueue. The ptracer will observe this and
2451 * then sleep for a delay of one HZ tick. In the meantime this task
2452 * gets scheduled, enters schedule() and will wait for the ptracer.
2453 *
2454 * This preemption point is not bad from a correctness point of
2455 * view but extends the runtime by one HZ tick time due to the
2456 * ptracer's sleep. The preempt-disable section ensures that there
2457 * will be no preemption between unlock and schedule() and so
2458 * improving the performance since the ptracer will observe that
2459 * the tracee is scheduled out once it gets on the CPU.
2460 *
2461 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2462 * Therefore the task can be preempted after do_notify_parent_cldstop()
2463 * before unlocking tasklist_lock so there is no benefit in doing this.
2464 *
2465 * In fact disabling preemption is harmful on PREEMPT_RT because
2466 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2467 * with preemption disabled due to the 'sleeping' spinlock
2468 * substitution of RT.
2469 */
2470 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2471 preempt_disable();
2472 read_unlock(&tasklist_lock);
2473 cgroup_enter_frozen();
2474 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2475 preempt_enable_no_resched();
2476 schedule();
2477 cgroup_leave_frozen(true);
2478
2479 /*
2480 * We are back. Now reacquire the siglock before touching
2481 * last_siginfo, so that we are sure to have synchronized with
2482 * any signal-sending on another CPU that wants to examine it.
2483 */
2484 spin_lock_irq(¤t->sighand->siglock);
2485 exit_code = current->exit_code;
2486 current->last_siginfo = NULL;
2487 current->ptrace_message = 0;
2488 current->exit_code = 0;
2489
2490 /* LISTENING can be set only during STOP traps, clear it */
2491 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2492
2493 /*
2494 * Queued signals ignored us while we were stopped for tracing.
2495 * So check for any that we should take before resuming user mode.
2496 * This sets TIF_SIGPENDING, but never clears it.
2497 */
2498 recalc_sigpending_tsk(current);
2499 return exit_code;
2500}
2501
2502static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2503{
2504 kernel_siginfo_t info;
2505
2506 clear_siginfo(&info);
2507 info.si_signo = signr;
2508 info.si_code = exit_code;
2509 info.si_pid = task_pid_vnr(current);
2510 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2511
2512 /* Let the debugger run. */
2513 return ptrace_stop(exit_code, why, message, &info);
2514}
2515
2516int ptrace_notify(int exit_code, unsigned long message)
2517{
2518 int signr;
2519
2520 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2521 if (unlikely(task_work_pending(current)))
2522 task_work_run();
2523
2524 spin_lock_irq(¤t->sighand->siglock);
2525 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2526 spin_unlock_irq(¤t->sighand->siglock);
2527 return signr;
2528}
2529
2530/**
2531 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2532 * @signr: signr causing group stop if initiating
2533 *
2534 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2535 * and participate in it. If already set, participate in the existing
2536 * group stop. If participated in a group stop (and thus slept), %true is
2537 * returned with siglock released.
2538 *
2539 * If ptraced, this function doesn't handle stop itself. Instead,
2540 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2541 * untouched. The caller must ensure that INTERRUPT trap handling takes
2542 * places afterwards.
2543 *
2544 * CONTEXT:
2545 * Must be called with @current->sighand->siglock held, which is released
2546 * on %true return.
2547 *
2548 * RETURNS:
2549 * %false if group stop is already cancelled or ptrace trap is scheduled.
2550 * %true if participated in group stop.
2551 */
2552static bool do_signal_stop(int signr)
2553 __releases(¤t->sighand->siglock)
2554{
2555 struct signal_struct *sig = current->signal;
2556
2557 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2558 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2559 struct task_struct *t;
2560
2561 /* signr will be recorded in task->jobctl for retries */
2562 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2563
2564 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2565 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2566 unlikely(sig->group_exec_task))
2567 return false;
2568 /*
2569 * There is no group stop already in progress. We must
2570 * initiate one now.
2571 *
2572 * While ptraced, a task may be resumed while group stop is
2573 * still in effect and then receive a stop signal and
2574 * initiate another group stop. This deviates from the
2575 * usual behavior as two consecutive stop signals can't
2576 * cause two group stops when !ptraced. That is why we
2577 * also check !task_is_stopped(t) below.
2578 *
2579 * The condition can be distinguished by testing whether
2580 * SIGNAL_STOP_STOPPED is already set. Don't generate
2581 * group_exit_code in such case.
2582 *
2583 * This is not necessary for SIGNAL_STOP_CONTINUED because
2584 * an intervening stop signal is required to cause two
2585 * continued events regardless of ptrace.
2586 */
2587 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2588 sig->group_exit_code = signr;
2589
2590 sig->group_stop_count = 0;
2591 if (task_set_jobctl_pending(current, signr | gstop))
2592 sig->group_stop_count++;
2593
2594 for_other_threads(current, t) {
2595 /*
2596 * Setting state to TASK_STOPPED for a group
2597 * stop is always done with the siglock held,
2598 * so this check has no races.
2599 */
2600 if (!task_is_stopped(t) &&
2601 task_set_jobctl_pending(t, signr | gstop)) {
2602 sig->group_stop_count++;
2603 if (likely(!(t->ptrace & PT_SEIZED)))
2604 signal_wake_up(t, 0);
2605 else
2606 ptrace_trap_notify(t);
2607 }
2608 }
2609 }
2610
2611 if (likely(!current->ptrace)) {
2612 int notify = 0;
2613
2614 /*
2615 * If there are no other threads in the group, or if there
2616 * is a group stop in progress and we are the last to stop,
2617 * report to the parent.
2618 */
2619 if (task_participate_group_stop(current))
2620 notify = CLD_STOPPED;
2621
2622 current->jobctl |= JOBCTL_STOPPED;
2623 set_special_state(TASK_STOPPED);
2624 spin_unlock_irq(¤t->sighand->siglock);
2625
2626 /*
2627 * Notify the parent of the group stop completion. Because
2628 * we're not holding either the siglock or tasklist_lock
2629 * here, ptracer may attach inbetween; however, this is for
2630 * group stop and should always be delivered to the real
2631 * parent of the group leader. The new ptracer will get
2632 * its notification when this task transitions into
2633 * TASK_TRACED.
2634 */
2635 if (notify) {
2636 read_lock(&tasklist_lock);
2637 do_notify_parent_cldstop(current, false, notify);
2638 read_unlock(&tasklist_lock);
2639 }
2640
2641 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2642 cgroup_enter_frozen();
2643 schedule();
2644 return true;
2645 } else {
2646 /*
2647 * While ptraced, group stop is handled by STOP trap.
2648 * Schedule it and let the caller deal with it.
2649 */
2650 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2651 return false;
2652 }
2653}
2654
2655/**
2656 * do_jobctl_trap - take care of ptrace jobctl traps
2657 *
2658 * When PT_SEIZED, it's used for both group stop and explicit
2659 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2660 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2661 * the stop signal; otherwise, %SIGTRAP.
2662 *
2663 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2664 * number as exit_code and no siginfo.
2665 *
2666 * CONTEXT:
2667 * Must be called with @current->sighand->siglock held, which may be
2668 * released and re-acquired before returning with intervening sleep.
2669 */
2670static void do_jobctl_trap(void)
2671{
2672 struct signal_struct *signal = current->signal;
2673 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2674
2675 if (current->ptrace & PT_SEIZED) {
2676 if (!signal->group_stop_count &&
2677 !(signal->flags & SIGNAL_STOP_STOPPED))
2678 signr = SIGTRAP;
2679 WARN_ON_ONCE(!signr);
2680 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2681 CLD_STOPPED, 0);
2682 } else {
2683 WARN_ON_ONCE(!signr);
2684 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2685 }
2686}
2687
2688/**
2689 * do_freezer_trap - handle the freezer jobctl trap
2690 *
2691 * Puts the task into frozen state, if only the task is not about to quit.
2692 * In this case it drops JOBCTL_TRAP_FREEZE.
2693 *
2694 * CONTEXT:
2695 * Must be called with @current->sighand->siglock held,
2696 * which is always released before returning.
2697 */
2698static void do_freezer_trap(void)
2699 __releases(¤t->sighand->siglock)
2700{
2701 /*
2702 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2703 * let's make another loop to give it a chance to be handled.
2704 * In any case, we'll return back.
2705 */
2706 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2707 JOBCTL_TRAP_FREEZE) {
2708 spin_unlock_irq(¤t->sighand->siglock);
2709 return;
2710 }
2711
2712 /*
2713 * Now we're sure that there is no pending fatal signal and no
2714 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2715 * immediately (if there is a non-fatal signal pending), and
2716 * put the task into sleep.
2717 */
2718 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2719 clear_thread_flag(TIF_SIGPENDING);
2720 spin_unlock_irq(¤t->sighand->siglock);
2721 cgroup_enter_frozen();
2722 schedule();
2723
2724 /*
2725 * We could've been woken by task_work, run it to clear
2726 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2727 */
2728 clear_notify_signal();
2729 if (unlikely(task_work_pending(current)))
2730 task_work_run();
2731}
2732
2733static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2734{
2735 /*
2736 * We do not check sig_kernel_stop(signr) but set this marker
2737 * unconditionally because we do not know whether debugger will
2738 * change signr. This flag has no meaning unless we are going
2739 * to stop after return from ptrace_stop(). In this case it will
2740 * be checked in do_signal_stop(), we should only stop if it was
2741 * not cleared by SIGCONT while we were sleeping. See also the
2742 * comment in dequeue_signal().
2743 */
2744 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2745 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2746
2747 /* We're back. Did the debugger cancel the sig? */
2748 if (signr == 0)
2749 return signr;
2750
2751 /*
2752 * Update the siginfo structure if the signal has
2753 * changed. If the debugger wanted something
2754 * specific in the siginfo structure then it should
2755 * have updated *info via PTRACE_SETSIGINFO.
2756 */
2757 if (signr != info->si_signo) {
2758 clear_siginfo(info);
2759 info->si_signo = signr;
2760 info->si_errno = 0;
2761 info->si_code = SI_USER;
2762 rcu_read_lock();
2763 info->si_pid = task_pid_vnr(current->parent);
2764 info->si_uid = from_kuid_munged(current_user_ns(),
2765 task_uid(current->parent));
2766 rcu_read_unlock();
2767 }
2768
2769 /* If the (new) signal is now blocked, requeue it. */
2770 if (sigismember(¤t->blocked, signr) ||
2771 fatal_signal_pending(current)) {
2772 send_signal_locked(signr, info, current, type);
2773 signr = 0;
2774 }
2775
2776 return signr;
2777}
2778
2779static void hide_si_addr_tag_bits(struct ksignal *ksig)
2780{
2781 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2782 case SIL_FAULT:
2783 case SIL_FAULT_TRAPNO:
2784 case SIL_FAULT_MCEERR:
2785 case SIL_FAULT_BNDERR:
2786 case SIL_FAULT_PKUERR:
2787 case SIL_FAULT_PERF_EVENT:
2788 ksig->info.si_addr = arch_untagged_si_addr(
2789 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2790 break;
2791 case SIL_KILL:
2792 case SIL_TIMER:
2793 case SIL_POLL:
2794 case SIL_CHLD:
2795 case SIL_RT:
2796 case SIL_SYS:
2797 break;
2798 }
2799}
2800
2801bool get_signal(struct ksignal *ksig)
2802{
2803 struct sighand_struct *sighand = current->sighand;
2804 struct signal_struct *signal = current->signal;
2805 int signr;
2806
2807 clear_notify_signal();
2808 if (unlikely(task_work_pending(current)))
2809 task_work_run();
2810
2811 if (!task_sigpending(current))
2812 return false;
2813
2814 if (unlikely(uprobe_deny_signal()))
2815 return false;
2816
2817 /*
2818 * Do this once, we can't return to user-mode if freezing() == T.
2819 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2820 * thus do not need another check after return.
2821 */
2822 try_to_freeze();
2823
2824relock:
2825 spin_lock_irq(&sighand->siglock);
2826
2827 /*
2828 * Every stopped thread goes here after wakeup. Check to see if
2829 * we should notify the parent, prepare_signal(SIGCONT) encodes
2830 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2831 */
2832 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2833 int why;
2834
2835 if (signal->flags & SIGNAL_CLD_CONTINUED)
2836 why = CLD_CONTINUED;
2837 else
2838 why = CLD_STOPPED;
2839
2840 signal->flags &= ~SIGNAL_CLD_MASK;
2841
2842 spin_unlock_irq(&sighand->siglock);
2843
2844 /*
2845 * Notify the parent that we're continuing. This event is
2846 * always per-process and doesn't make whole lot of sense
2847 * for ptracers, who shouldn't consume the state via
2848 * wait(2) either, but, for backward compatibility, notify
2849 * the ptracer of the group leader too unless it's gonna be
2850 * a duplicate.
2851 */
2852 read_lock(&tasklist_lock);
2853 do_notify_parent_cldstop(current, false, why);
2854
2855 if (ptrace_reparented(current->group_leader))
2856 do_notify_parent_cldstop(current->group_leader,
2857 true, why);
2858 read_unlock(&tasklist_lock);
2859
2860 goto relock;
2861 }
2862
2863 for (;;) {
2864 struct k_sigaction *ka;
2865 enum pid_type type;
2866
2867 /* Has this task already been marked for death? */
2868 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2869 signal->group_exec_task) {
2870 signr = SIGKILL;
2871 sigdelset(¤t->pending.signal, SIGKILL);
2872 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2873 &sighand->action[SIGKILL-1]);
2874 recalc_sigpending();
2875 /*
2876 * implies do_group_exit() or return to PF_USER_WORKER,
2877 * no need to initialize ksig->info/etc.
2878 */
2879 goto fatal;
2880 }
2881
2882 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2883 do_signal_stop(0))
2884 goto relock;
2885
2886 if (unlikely(current->jobctl &
2887 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2888 if (current->jobctl & JOBCTL_TRAP_MASK) {
2889 do_jobctl_trap();
2890 spin_unlock_irq(&sighand->siglock);
2891 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2892 do_freezer_trap();
2893
2894 goto relock;
2895 }
2896
2897 /*
2898 * If the task is leaving the frozen state, let's update
2899 * cgroup counters and reset the frozen bit.
2900 */
2901 if (unlikely(cgroup_task_frozen(current))) {
2902 spin_unlock_irq(&sighand->siglock);
2903 cgroup_leave_frozen(false);
2904 goto relock;
2905 }
2906
2907 /*
2908 * Signals generated by the execution of an instruction
2909 * need to be delivered before any other pending signals
2910 * so that the instruction pointer in the signal stack
2911 * frame points to the faulting instruction.
2912 */
2913 type = PIDTYPE_PID;
2914 signr = dequeue_synchronous_signal(&ksig->info);
2915 if (!signr)
2916 signr = dequeue_signal(¤t->blocked, &ksig->info, &type);
2917
2918 if (!signr)
2919 break; /* will return 0 */
2920
2921 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2922 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2923 signr = ptrace_signal(signr, &ksig->info, type);
2924 if (!signr)
2925 continue;
2926 }
2927
2928 ka = &sighand->action[signr-1];
2929
2930 /* Trace actually delivered signals. */
2931 trace_signal_deliver(signr, &ksig->info, ka);
2932
2933 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2934 continue;
2935 if (ka->sa.sa_handler != SIG_DFL) {
2936 /* Run the handler. */
2937 ksig->ka = *ka;
2938
2939 if (ka->sa.sa_flags & SA_ONESHOT)
2940 ka->sa.sa_handler = SIG_DFL;
2941
2942 break; /* will return non-zero "signr" value */
2943 }
2944
2945 /*
2946 * Now we are doing the default action for this signal.
2947 */
2948 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2949 continue;
2950
2951 /*
2952 * Global init gets no signals it doesn't want.
2953 * Container-init gets no signals it doesn't want from same
2954 * container.
2955 *
2956 * Note that if global/container-init sees a sig_kernel_only()
2957 * signal here, the signal must have been generated internally
2958 * or must have come from an ancestor namespace. In either
2959 * case, the signal cannot be dropped.
2960 */
2961 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2962 !sig_kernel_only(signr))
2963 continue;
2964
2965 if (sig_kernel_stop(signr)) {
2966 /*
2967 * The default action is to stop all threads in
2968 * the thread group. The job control signals
2969 * do nothing in an orphaned pgrp, but SIGSTOP
2970 * always works. Note that siglock needs to be
2971 * dropped during the call to is_orphaned_pgrp()
2972 * because of lock ordering with tasklist_lock.
2973 * This allows an intervening SIGCONT to be posted.
2974 * We need to check for that and bail out if necessary.
2975 */
2976 if (signr != SIGSTOP) {
2977 spin_unlock_irq(&sighand->siglock);
2978
2979 /* signals can be posted during this window */
2980
2981 if (is_current_pgrp_orphaned())
2982 goto relock;
2983
2984 spin_lock_irq(&sighand->siglock);
2985 }
2986
2987 if (likely(do_signal_stop(signr))) {
2988 /* It released the siglock. */
2989 goto relock;
2990 }
2991
2992 /*
2993 * We didn't actually stop, due to a race
2994 * with SIGCONT or something like that.
2995 */
2996 continue;
2997 }
2998
2999 fatal:
3000 spin_unlock_irq(&sighand->siglock);
3001 if (unlikely(cgroup_task_frozen(current)))
3002 cgroup_leave_frozen(true);
3003
3004 /*
3005 * Anything else is fatal, maybe with a core dump.
3006 */
3007 current->flags |= PF_SIGNALED;
3008
3009 if (sig_kernel_coredump(signr)) {
3010 if (print_fatal_signals)
3011 print_fatal_signal(signr);
3012 proc_coredump_connector(current);
3013 /*
3014 * If it was able to dump core, this kills all
3015 * other threads in the group and synchronizes with
3016 * their demise. If we lost the race with another
3017 * thread getting here, it set group_exit_code
3018 * first and our do_group_exit call below will use
3019 * that value and ignore the one we pass it.
3020 */
3021 do_coredump(&ksig->info);
3022 }
3023
3024 /*
3025 * PF_USER_WORKER threads will catch and exit on fatal signals
3026 * themselves. They have cleanup that must be performed, so we
3027 * cannot call do_exit() on their behalf. Note that ksig won't
3028 * be properly initialized, PF_USER_WORKER's shouldn't use it.
3029 */
3030 if (current->flags & PF_USER_WORKER)
3031 goto out;
3032
3033 /*
3034 * Death signals, no core dump.
3035 */
3036 do_group_exit(signr);
3037 /* NOTREACHED */
3038 }
3039 spin_unlock_irq(&sighand->siglock);
3040
3041 ksig->sig = signr;
3042
3043 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
3044 hide_si_addr_tag_bits(ksig);
3045out:
3046 return signr > 0;
3047}
3048
3049/**
3050 * signal_delivered - called after signal delivery to update blocked signals
3051 * @ksig: kernel signal struct
3052 * @stepping: nonzero if debugger single-step or block-step in use
3053 *
3054 * This function should be called when a signal has successfully been
3055 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
3056 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
3057 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
3058 */
3059static void signal_delivered(struct ksignal *ksig, int stepping)
3060{
3061 sigset_t blocked;
3062
3063 /* A signal was successfully delivered, and the
3064 saved sigmask was stored on the signal frame,
3065 and will be restored by sigreturn. So we can
3066 simply clear the restore sigmask flag. */
3067 clear_restore_sigmask();
3068
3069 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
3070 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
3071 sigaddset(&blocked, ksig->sig);
3072 set_current_blocked(&blocked);
3073 if (current->sas_ss_flags & SS_AUTODISARM)
3074 sas_ss_reset(current);
3075 if (stepping)
3076 ptrace_notify(SIGTRAP, 0);
3077}
3078
3079void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
3080{
3081 if (failed)
3082 force_sigsegv(ksig->sig);
3083 else
3084 signal_delivered(ksig, stepping);
3085}
3086
3087/*
3088 * It could be that complete_signal() picked us to notify about the
3089 * group-wide signal. Other threads should be notified now to take
3090 * the shared signals in @which since we will not.
3091 */
3092static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
3093{
3094 sigset_t retarget;
3095 struct task_struct *t;
3096
3097 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
3098 if (sigisemptyset(&retarget))
3099 return;
3100
3101 for_other_threads(tsk, t) {
3102 if (t->flags & PF_EXITING)
3103 continue;
3104
3105 if (!has_pending_signals(&retarget, &t->blocked))
3106 continue;
3107 /* Remove the signals this thread can handle. */
3108 sigandsets(&retarget, &retarget, &t->blocked);
3109
3110 if (!task_sigpending(t))
3111 signal_wake_up(t, 0);
3112
3113 if (sigisemptyset(&retarget))
3114 break;
3115 }
3116}
3117
3118void exit_signals(struct task_struct *tsk)
3119{
3120 int group_stop = 0;
3121 sigset_t unblocked;
3122
3123 /*
3124 * @tsk is about to have PF_EXITING set - lock out users which
3125 * expect stable threadgroup.
3126 */
3127 cgroup_threadgroup_change_begin(tsk);
3128
3129 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3130 sched_mm_cid_exit_signals(tsk);
3131 tsk->flags |= PF_EXITING;
3132 cgroup_threadgroup_change_end(tsk);
3133 return;
3134 }
3135
3136 spin_lock_irq(&tsk->sighand->siglock);
3137 /*
3138 * From now this task is not visible for group-wide signals,
3139 * see wants_signal(), do_signal_stop().
3140 */
3141 sched_mm_cid_exit_signals(tsk);
3142 tsk->flags |= PF_EXITING;
3143
3144 cgroup_threadgroup_change_end(tsk);
3145
3146 if (!task_sigpending(tsk))
3147 goto out;
3148
3149 unblocked = tsk->blocked;
3150 signotset(&unblocked);
3151 retarget_shared_pending(tsk, &unblocked);
3152
3153 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3154 task_participate_group_stop(tsk))
3155 group_stop = CLD_STOPPED;
3156out:
3157 spin_unlock_irq(&tsk->sighand->siglock);
3158
3159 /*
3160 * If group stop has completed, deliver the notification. This
3161 * should always go to the real parent of the group leader.
3162 */
3163 if (unlikely(group_stop)) {
3164 read_lock(&tasklist_lock);
3165 do_notify_parent_cldstop(tsk, false, group_stop);
3166 read_unlock(&tasklist_lock);
3167 }
3168}
3169
3170/*
3171 * System call entry points.
3172 */
3173
3174/**
3175 * sys_restart_syscall - restart a system call
3176 */
3177SYSCALL_DEFINE0(restart_syscall)
3178{
3179 struct restart_block *restart = ¤t->restart_block;
3180 return restart->fn(restart);
3181}
3182
3183long do_no_restart_syscall(struct restart_block *param)
3184{
3185 return -EINTR;
3186}
3187
3188static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3189{
3190 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3191 sigset_t newblocked;
3192 /* A set of now blocked but previously unblocked signals. */
3193 sigandnsets(&newblocked, newset, ¤t->blocked);
3194 retarget_shared_pending(tsk, &newblocked);
3195 }
3196 tsk->blocked = *newset;
3197 recalc_sigpending();
3198}
3199
3200/**
3201 * set_current_blocked - change current->blocked mask
3202 * @newset: new mask
3203 *
3204 * It is wrong to change ->blocked directly, this helper should be used
3205 * to ensure the process can't miss a shared signal we are going to block.
3206 */
3207void set_current_blocked(sigset_t *newset)
3208{
3209 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3210 __set_current_blocked(newset);
3211}
3212
3213void __set_current_blocked(const sigset_t *newset)
3214{
3215 struct task_struct *tsk = current;
3216
3217 /*
3218 * In case the signal mask hasn't changed, there is nothing we need
3219 * to do. The current->blocked shouldn't be modified by other task.
3220 */
3221 if (sigequalsets(&tsk->blocked, newset))
3222 return;
3223
3224 spin_lock_irq(&tsk->sighand->siglock);
3225 __set_task_blocked(tsk, newset);
3226 spin_unlock_irq(&tsk->sighand->siglock);
3227}
3228
3229/*
3230 * This is also useful for kernel threads that want to temporarily
3231 * (or permanently) block certain signals.
3232 *
3233 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3234 * interface happily blocks "unblockable" signals like SIGKILL
3235 * and friends.
3236 */
3237int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3238{
3239 struct task_struct *tsk = current;
3240 sigset_t newset;
3241
3242 /* Lockless, only current can change ->blocked, never from irq */
3243 if (oldset)
3244 *oldset = tsk->blocked;
3245
3246 switch (how) {
3247 case SIG_BLOCK:
3248 sigorsets(&newset, &tsk->blocked, set);
3249 break;
3250 case SIG_UNBLOCK:
3251 sigandnsets(&newset, &tsk->blocked, set);
3252 break;
3253 case SIG_SETMASK:
3254 newset = *set;
3255 break;
3256 default:
3257 return -EINVAL;
3258 }
3259
3260 __set_current_blocked(&newset);
3261 return 0;
3262}
3263EXPORT_SYMBOL(sigprocmask);
3264
3265/*
3266 * The api helps set app-provided sigmasks.
3267 *
3268 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3269 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3270 *
3271 * Note that it does set_restore_sigmask() in advance, so it must be always
3272 * paired with restore_saved_sigmask_unless() before return from syscall.
3273 */
3274int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3275{
3276 sigset_t kmask;
3277
3278 if (!umask)
3279 return 0;
3280 if (sigsetsize != sizeof(sigset_t))
3281 return -EINVAL;
3282 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3283 return -EFAULT;
3284
3285 set_restore_sigmask();
3286 current->saved_sigmask = current->blocked;
3287 set_current_blocked(&kmask);
3288
3289 return 0;
3290}
3291
3292#ifdef CONFIG_COMPAT
3293int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3294 size_t sigsetsize)
3295{
3296 sigset_t kmask;
3297
3298 if (!umask)
3299 return 0;
3300 if (sigsetsize != sizeof(compat_sigset_t))
3301 return -EINVAL;
3302 if (get_compat_sigset(&kmask, umask))
3303 return -EFAULT;
3304
3305 set_restore_sigmask();
3306 current->saved_sigmask = current->blocked;
3307 set_current_blocked(&kmask);
3308
3309 return 0;
3310}
3311#endif
3312
3313/**
3314 * sys_rt_sigprocmask - change the list of currently blocked signals
3315 * @how: whether to add, remove, or set signals
3316 * @nset: stores pending signals
3317 * @oset: previous value of signal mask if non-null
3318 * @sigsetsize: size of sigset_t type
3319 */
3320SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3321 sigset_t __user *, oset, size_t, sigsetsize)
3322{
3323 sigset_t old_set, new_set;
3324 int error;
3325
3326 /* XXX: Don't preclude handling different sized sigset_t's. */
3327 if (sigsetsize != sizeof(sigset_t))
3328 return -EINVAL;
3329
3330 old_set = current->blocked;
3331
3332 if (nset) {
3333 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3334 return -EFAULT;
3335 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3336
3337 error = sigprocmask(how, &new_set, NULL);
3338 if (error)
3339 return error;
3340 }
3341
3342 if (oset) {
3343 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3344 return -EFAULT;
3345 }
3346
3347 return 0;
3348}
3349
3350#ifdef CONFIG_COMPAT
3351COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3352 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3353{
3354 sigset_t old_set = current->blocked;
3355
3356 /* XXX: Don't preclude handling different sized sigset_t's. */
3357 if (sigsetsize != sizeof(sigset_t))
3358 return -EINVAL;
3359
3360 if (nset) {
3361 sigset_t new_set;
3362 int error;
3363 if (get_compat_sigset(&new_set, nset))
3364 return -EFAULT;
3365 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3366
3367 error = sigprocmask(how, &new_set, NULL);
3368 if (error)
3369 return error;
3370 }
3371 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3372}
3373#endif
3374
3375static void do_sigpending(sigset_t *set)
3376{
3377 spin_lock_irq(¤t->sighand->siglock);
3378 sigorsets(set, ¤t->pending.signal,
3379 ¤t->signal->shared_pending.signal);
3380 spin_unlock_irq(¤t->sighand->siglock);
3381
3382 /* Outside the lock because only this thread touches it. */
3383 sigandsets(set, ¤t->blocked, set);
3384}
3385
3386/**
3387 * sys_rt_sigpending - examine a pending signal that has been raised
3388 * while blocked
3389 * @uset: stores pending signals
3390 * @sigsetsize: size of sigset_t type or larger
3391 */
3392SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3393{
3394 sigset_t set;
3395
3396 if (sigsetsize > sizeof(*uset))
3397 return -EINVAL;
3398
3399 do_sigpending(&set);
3400
3401 if (copy_to_user(uset, &set, sigsetsize))
3402 return -EFAULT;
3403
3404 return 0;
3405}
3406
3407#ifdef CONFIG_COMPAT
3408COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3409 compat_size_t, sigsetsize)
3410{
3411 sigset_t set;
3412
3413 if (sigsetsize > sizeof(*uset))
3414 return -EINVAL;
3415
3416 do_sigpending(&set);
3417
3418 return put_compat_sigset(uset, &set, sigsetsize);
3419}
3420#endif
3421
3422static const struct {
3423 unsigned char limit, layout;
3424} sig_sicodes[] = {
3425 [SIGILL] = { NSIGILL, SIL_FAULT },
3426 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3427 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3428 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3429 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3430#if defined(SIGEMT)
3431 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3432#endif
3433 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3434 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3435 [SIGSYS] = { NSIGSYS, SIL_SYS },
3436};
3437
3438static bool known_siginfo_layout(unsigned sig, int si_code)
3439{
3440 if (si_code == SI_KERNEL)
3441 return true;
3442 else if ((si_code > SI_USER)) {
3443 if (sig_specific_sicodes(sig)) {
3444 if (si_code <= sig_sicodes[sig].limit)
3445 return true;
3446 }
3447 else if (si_code <= NSIGPOLL)
3448 return true;
3449 }
3450 else if (si_code >= SI_DETHREAD)
3451 return true;
3452 else if (si_code == SI_ASYNCNL)
3453 return true;
3454 return false;
3455}
3456
3457enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3458{
3459 enum siginfo_layout layout = SIL_KILL;
3460 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3461 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3462 (si_code <= sig_sicodes[sig].limit)) {
3463 layout = sig_sicodes[sig].layout;
3464 /* Handle the exceptions */
3465 if ((sig == SIGBUS) &&
3466 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3467 layout = SIL_FAULT_MCEERR;
3468 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3469 layout = SIL_FAULT_BNDERR;
3470#ifdef SEGV_PKUERR
3471 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3472 layout = SIL_FAULT_PKUERR;
3473#endif
3474 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3475 layout = SIL_FAULT_PERF_EVENT;
3476 else if (IS_ENABLED(CONFIG_SPARC) &&
3477 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3478 layout = SIL_FAULT_TRAPNO;
3479 else if (IS_ENABLED(CONFIG_ALPHA) &&
3480 ((sig == SIGFPE) ||
3481 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3482 layout = SIL_FAULT_TRAPNO;
3483 }
3484 else if (si_code <= NSIGPOLL)
3485 layout = SIL_POLL;
3486 } else {
3487 if (si_code == SI_TIMER)
3488 layout = SIL_TIMER;
3489 else if (si_code == SI_SIGIO)
3490 layout = SIL_POLL;
3491 else if (si_code < 0)
3492 layout = SIL_RT;
3493 }
3494 return layout;
3495}
3496
3497static inline char __user *si_expansion(const siginfo_t __user *info)
3498{
3499 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3500}
3501
3502int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3503{
3504 char __user *expansion = si_expansion(to);
3505 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3506 return -EFAULT;
3507 if (clear_user(expansion, SI_EXPANSION_SIZE))
3508 return -EFAULT;
3509 return 0;
3510}
3511
3512static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3513 const siginfo_t __user *from)
3514{
3515 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3516 char __user *expansion = si_expansion(from);
3517 char buf[SI_EXPANSION_SIZE];
3518 int i;
3519 /*
3520 * An unknown si_code might need more than
3521 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3522 * extra bytes are 0. This guarantees copy_siginfo_to_user
3523 * will return this data to userspace exactly.
3524 */
3525 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3526 return -EFAULT;
3527 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3528 if (buf[i] != 0)
3529 return -E2BIG;
3530 }
3531 }
3532 return 0;
3533}
3534
3535static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3536 const siginfo_t __user *from)
3537{
3538 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3539 return -EFAULT;
3540 to->si_signo = signo;
3541 return post_copy_siginfo_from_user(to, from);
3542}
3543
3544int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3545{
3546 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3547 return -EFAULT;
3548 return post_copy_siginfo_from_user(to, from);
3549}
3550
3551#ifdef CONFIG_COMPAT
3552/**
3553 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3554 * @to: compat siginfo destination
3555 * @from: kernel siginfo source
3556 *
3557 * Note: This function does not work properly for the SIGCHLD on x32, but
3558 * fortunately it doesn't have to. The only valid callers for this function are
3559 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3560 * The latter does not care because SIGCHLD will never cause a coredump.
3561 */
3562void copy_siginfo_to_external32(struct compat_siginfo *to,
3563 const struct kernel_siginfo *from)
3564{
3565 memset(to, 0, sizeof(*to));
3566
3567 to->si_signo = from->si_signo;
3568 to->si_errno = from->si_errno;
3569 to->si_code = from->si_code;
3570 switch(siginfo_layout(from->si_signo, from->si_code)) {
3571 case SIL_KILL:
3572 to->si_pid = from->si_pid;
3573 to->si_uid = from->si_uid;
3574 break;
3575 case SIL_TIMER:
3576 to->si_tid = from->si_tid;
3577 to->si_overrun = from->si_overrun;
3578 to->si_int = from->si_int;
3579 break;
3580 case SIL_POLL:
3581 to->si_band = from->si_band;
3582 to->si_fd = from->si_fd;
3583 break;
3584 case SIL_FAULT:
3585 to->si_addr = ptr_to_compat(from->si_addr);
3586 break;
3587 case SIL_FAULT_TRAPNO:
3588 to->si_addr = ptr_to_compat(from->si_addr);
3589 to->si_trapno = from->si_trapno;
3590 break;
3591 case SIL_FAULT_MCEERR:
3592 to->si_addr = ptr_to_compat(from->si_addr);
3593 to->si_addr_lsb = from->si_addr_lsb;
3594 break;
3595 case SIL_FAULT_BNDERR:
3596 to->si_addr = ptr_to_compat(from->si_addr);
3597 to->si_lower = ptr_to_compat(from->si_lower);
3598 to->si_upper = ptr_to_compat(from->si_upper);
3599 break;
3600 case SIL_FAULT_PKUERR:
3601 to->si_addr = ptr_to_compat(from->si_addr);
3602 to->si_pkey = from->si_pkey;
3603 break;
3604 case SIL_FAULT_PERF_EVENT:
3605 to->si_addr = ptr_to_compat(from->si_addr);
3606 to->si_perf_data = from->si_perf_data;
3607 to->si_perf_type = from->si_perf_type;
3608 to->si_perf_flags = from->si_perf_flags;
3609 break;
3610 case SIL_CHLD:
3611 to->si_pid = from->si_pid;
3612 to->si_uid = from->si_uid;
3613 to->si_status = from->si_status;
3614 to->si_utime = from->si_utime;
3615 to->si_stime = from->si_stime;
3616 break;
3617 case SIL_RT:
3618 to->si_pid = from->si_pid;
3619 to->si_uid = from->si_uid;
3620 to->si_int = from->si_int;
3621 break;
3622 case SIL_SYS:
3623 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3624 to->si_syscall = from->si_syscall;
3625 to->si_arch = from->si_arch;
3626 break;
3627 }
3628}
3629
3630int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3631 const struct kernel_siginfo *from)
3632{
3633 struct compat_siginfo new;
3634
3635 copy_siginfo_to_external32(&new, from);
3636 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3637 return -EFAULT;
3638 return 0;
3639}
3640
3641static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3642 const struct compat_siginfo *from)
3643{
3644 clear_siginfo(to);
3645 to->si_signo = from->si_signo;
3646 to->si_errno = from->si_errno;
3647 to->si_code = from->si_code;
3648 switch(siginfo_layout(from->si_signo, from->si_code)) {
3649 case SIL_KILL:
3650 to->si_pid = from->si_pid;
3651 to->si_uid = from->si_uid;
3652 break;
3653 case SIL_TIMER:
3654 to->si_tid = from->si_tid;
3655 to->si_overrun = from->si_overrun;
3656 to->si_int = from->si_int;
3657 break;
3658 case SIL_POLL:
3659 to->si_band = from->si_band;
3660 to->si_fd = from->si_fd;
3661 break;
3662 case SIL_FAULT:
3663 to->si_addr = compat_ptr(from->si_addr);
3664 break;
3665 case SIL_FAULT_TRAPNO:
3666 to->si_addr = compat_ptr(from->si_addr);
3667 to->si_trapno = from->si_trapno;
3668 break;
3669 case SIL_FAULT_MCEERR:
3670 to->si_addr = compat_ptr(from->si_addr);
3671 to->si_addr_lsb = from->si_addr_lsb;
3672 break;
3673 case SIL_FAULT_BNDERR:
3674 to->si_addr = compat_ptr(from->si_addr);
3675 to->si_lower = compat_ptr(from->si_lower);
3676 to->si_upper = compat_ptr(from->si_upper);
3677 break;
3678 case SIL_FAULT_PKUERR:
3679 to->si_addr = compat_ptr(from->si_addr);
3680 to->si_pkey = from->si_pkey;
3681 break;
3682 case SIL_FAULT_PERF_EVENT:
3683 to->si_addr = compat_ptr(from->si_addr);
3684 to->si_perf_data = from->si_perf_data;
3685 to->si_perf_type = from->si_perf_type;
3686 to->si_perf_flags = from->si_perf_flags;
3687 break;
3688 case SIL_CHLD:
3689 to->si_pid = from->si_pid;
3690 to->si_uid = from->si_uid;
3691 to->si_status = from->si_status;
3692#ifdef CONFIG_X86_X32_ABI
3693 if (in_x32_syscall()) {
3694 to->si_utime = from->_sifields._sigchld_x32._utime;
3695 to->si_stime = from->_sifields._sigchld_x32._stime;
3696 } else
3697#endif
3698 {
3699 to->si_utime = from->si_utime;
3700 to->si_stime = from->si_stime;
3701 }
3702 break;
3703 case SIL_RT:
3704 to->si_pid = from->si_pid;
3705 to->si_uid = from->si_uid;
3706 to->si_int = from->si_int;
3707 break;
3708 case SIL_SYS:
3709 to->si_call_addr = compat_ptr(from->si_call_addr);
3710 to->si_syscall = from->si_syscall;
3711 to->si_arch = from->si_arch;
3712 break;
3713 }
3714 return 0;
3715}
3716
3717static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3718 const struct compat_siginfo __user *ufrom)
3719{
3720 struct compat_siginfo from;
3721
3722 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3723 return -EFAULT;
3724
3725 from.si_signo = signo;
3726 return post_copy_siginfo_from_user32(to, &from);
3727}
3728
3729int copy_siginfo_from_user32(struct kernel_siginfo *to,
3730 const struct compat_siginfo __user *ufrom)
3731{
3732 struct compat_siginfo from;
3733
3734 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3735 return -EFAULT;
3736
3737 return post_copy_siginfo_from_user32(to, &from);
3738}
3739#endif /* CONFIG_COMPAT */
3740
3741/**
3742 * do_sigtimedwait - wait for queued signals specified in @which
3743 * @which: queued signals to wait for
3744 * @info: if non-null, the signal's siginfo is returned here
3745 * @ts: upper bound on process time suspension
3746 */
3747static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3748 const struct timespec64 *ts)
3749{
3750 ktime_t *to = NULL, timeout = KTIME_MAX;
3751 struct task_struct *tsk = current;
3752 sigset_t mask = *which;
3753 enum pid_type type;
3754 int sig, ret = 0;
3755
3756 if (ts) {
3757 if (!timespec64_valid(ts))
3758 return -EINVAL;
3759 timeout = timespec64_to_ktime(*ts);
3760 to = &timeout;
3761 }
3762
3763 /*
3764 * Invert the set of allowed signals to get those we want to block.
3765 */
3766 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3767 signotset(&mask);
3768
3769 spin_lock_irq(&tsk->sighand->siglock);
3770 sig = dequeue_signal(&mask, info, &type);
3771 if (!sig && timeout) {
3772 /*
3773 * None ready, temporarily unblock those we're interested
3774 * while we are sleeping in so that we'll be awakened when
3775 * they arrive. Unblocking is always fine, we can avoid
3776 * set_current_blocked().
3777 */
3778 tsk->real_blocked = tsk->blocked;
3779 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3780 recalc_sigpending();
3781 spin_unlock_irq(&tsk->sighand->siglock);
3782
3783 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3784 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3785 HRTIMER_MODE_REL);
3786 spin_lock_irq(&tsk->sighand->siglock);
3787 __set_task_blocked(tsk, &tsk->real_blocked);
3788 sigemptyset(&tsk->real_blocked);
3789 sig = dequeue_signal(&mask, info, &type);
3790 }
3791 spin_unlock_irq(&tsk->sighand->siglock);
3792
3793 if (sig)
3794 return sig;
3795 return ret ? -EINTR : -EAGAIN;
3796}
3797
3798/**
3799 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3800 * in @uthese
3801 * @uthese: queued signals to wait for
3802 * @uinfo: if non-null, the signal's siginfo is returned here
3803 * @uts: upper bound on process time suspension
3804 * @sigsetsize: size of sigset_t type
3805 */
3806SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3807 siginfo_t __user *, uinfo,
3808 const struct __kernel_timespec __user *, uts,
3809 size_t, sigsetsize)
3810{
3811 sigset_t these;
3812 struct timespec64 ts;
3813 kernel_siginfo_t info;
3814 int ret;
3815
3816 /* XXX: Don't preclude handling different sized sigset_t's. */
3817 if (sigsetsize != sizeof(sigset_t))
3818 return -EINVAL;
3819
3820 if (copy_from_user(&these, uthese, sizeof(these)))
3821 return -EFAULT;
3822
3823 if (uts) {
3824 if (get_timespec64(&ts, uts))
3825 return -EFAULT;
3826 }
3827
3828 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3829
3830 if (ret > 0 && uinfo) {
3831 if (copy_siginfo_to_user(uinfo, &info))
3832 ret = -EFAULT;
3833 }
3834
3835 return ret;
3836}
3837
3838#ifdef CONFIG_COMPAT_32BIT_TIME
3839SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3840 siginfo_t __user *, uinfo,
3841 const struct old_timespec32 __user *, uts,
3842 size_t, sigsetsize)
3843{
3844 sigset_t these;
3845 struct timespec64 ts;
3846 kernel_siginfo_t info;
3847 int ret;
3848
3849 if (sigsetsize != sizeof(sigset_t))
3850 return -EINVAL;
3851
3852 if (copy_from_user(&these, uthese, sizeof(these)))
3853 return -EFAULT;
3854
3855 if (uts) {
3856 if (get_old_timespec32(&ts, uts))
3857 return -EFAULT;
3858 }
3859
3860 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3861
3862 if (ret > 0 && uinfo) {
3863 if (copy_siginfo_to_user(uinfo, &info))
3864 ret = -EFAULT;
3865 }
3866
3867 return ret;
3868}
3869#endif
3870
3871#ifdef CONFIG_COMPAT
3872COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3873 struct compat_siginfo __user *, uinfo,
3874 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3875{
3876 sigset_t s;
3877 struct timespec64 t;
3878 kernel_siginfo_t info;
3879 long ret;
3880
3881 if (sigsetsize != sizeof(sigset_t))
3882 return -EINVAL;
3883
3884 if (get_compat_sigset(&s, uthese))
3885 return -EFAULT;
3886
3887 if (uts) {
3888 if (get_timespec64(&t, uts))
3889 return -EFAULT;
3890 }
3891
3892 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3893
3894 if (ret > 0 && uinfo) {
3895 if (copy_siginfo_to_user32(uinfo, &info))
3896 ret = -EFAULT;
3897 }
3898
3899 return ret;
3900}
3901
3902#ifdef CONFIG_COMPAT_32BIT_TIME
3903COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3904 struct compat_siginfo __user *, uinfo,
3905 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3906{
3907 sigset_t s;
3908 struct timespec64 t;
3909 kernel_siginfo_t info;
3910 long ret;
3911
3912 if (sigsetsize != sizeof(sigset_t))
3913 return -EINVAL;
3914
3915 if (get_compat_sigset(&s, uthese))
3916 return -EFAULT;
3917
3918 if (uts) {
3919 if (get_old_timespec32(&t, uts))
3920 return -EFAULT;
3921 }
3922
3923 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3924
3925 if (ret > 0 && uinfo) {
3926 if (copy_siginfo_to_user32(uinfo, &info))
3927 ret = -EFAULT;
3928 }
3929
3930 return ret;
3931}
3932#endif
3933#endif
3934
3935static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3936 enum pid_type type)
3937{
3938 clear_siginfo(info);
3939 info->si_signo = sig;
3940 info->si_errno = 0;
3941 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3942 info->si_pid = task_tgid_vnr(current);
3943 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3944}
3945
3946/**
3947 * sys_kill - send a signal to a process
3948 * @pid: the PID of the process
3949 * @sig: signal to be sent
3950 */
3951SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3952{
3953 struct kernel_siginfo info;
3954
3955 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3956
3957 return kill_something_info(sig, &info, pid);
3958}
3959
3960/*
3961 * Verify that the signaler and signalee either are in the same pid namespace
3962 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3963 * namespace.
3964 */
3965static bool access_pidfd_pidns(struct pid *pid)
3966{
3967 struct pid_namespace *active = task_active_pid_ns(current);
3968 struct pid_namespace *p = ns_of_pid(pid);
3969
3970 for (;;) {
3971 if (!p)
3972 return false;
3973 if (p == active)
3974 break;
3975 p = p->parent;
3976 }
3977
3978 return true;
3979}
3980
3981static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3982 siginfo_t __user *info)
3983{
3984#ifdef CONFIG_COMPAT
3985 /*
3986 * Avoid hooking up compat syscalls and instead handle necessary
3987 * conversions here. Note, this is a stop-gap measure and should not be
3988 * considered a generic solution.
3989 */
3990 if (in_compat_syscall())
3991 return copy_siginfo_from_user32(
3992 kinfo, (struct compat_siginfo __user *)info);
3993#endif
3994 return copy_siginfo_from_user(kinfo, info);
3995}
3996
3997static struct pid *pidfd_to_pid(const struct file *file)
3998{
3999 struct pid *pid;
4000
4001 pid = pidfd_pid(file);
4002 if (!IS_ERR(pid))
4003 return pid;
4004
4005 return tgid_pidfd_to_pid(file);
4006}
4007
4008#define PIDFD_SEND_SIGNAL_FLAGS \
4009 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
4010 PIDFD_SIGNAL_PROCESS_GROUP)
4011
4012/**
4013 * sys_pidfd_send_signal - Signal a process through a pidfd
4014 * @pidfd: file descriptor of the process
4015 * @sig: signal to send
4016 * @info: signal info
4017 * @flags: future flags
4018 *
4019 * Send the signal to the thread group or to the individual thread depending
4020 * on PIDFD_THREAD.
4021 * In the future extension to @flags may be used to override the default scope
4022 * of @pidfd.
4023 *
4024 * Return: 0 on success, negative errno on failure
4025 */
4026SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
4027 siginfo_t __user *, info, unsigned int, flags)
4028{
4029 int ret;
4030 struct pid *pid;
4031 kernel_siginfo_t kinfo;
4032 enum pid_type type;
4033
4034 /* Enforce flags be set to 0 until we add an extension. */
4035 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
4036 return -EINVAL;
4037
4038 /* Ensure that only a single signal scope determining flag is set. */
4039 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
4040 return -EINVAL;
4041
4042 CLASS(fd, f)(pidfd);
4043 if (fd_empty(f))
4044 return -EBADF;
4045
4046 /* Is this a pidfd? */
4047 pid = pidfd_to_pid(fd_file(f));
4048 if (IS_ERR(pid))
4049 return PTR_ERR(pid);
4050
4051 if (!access_pidfd_pidns(pid))
4052 return -EINVAL;
4053
4054 switch (flags) {
4055 case 0:
4056 /* Infer scope from the type of pidfd. */
4057 if (fd_file(f)->f_flags & PIDFD_THREAD)
4058 type = PIDTYPE_PID;
4059 else
4060 type = PIDTYPE_TGID;
4061 break;
4062 case PIDFD_SIGNAL_THREAD:
4063 type = PIDTYPE_PID;
4064 break;
4065 case PIDFD_SIGNAL_THREAD_GROUP:
4066 type = PIDTYPE_TGID;
4067 break;
4068 case PIDFD_SIGNAL_PROCESS_GROUP:
4069 type = PIDTYPE_PGID;
4070 break;
4071 }
4072
4073 if (info) {
4074 ret = copy_siginfo_from_user_any(&kinfo, info);
4075 if (unlikely(ret))
4076 return ret;
4077
4078 if (unlikely(sig != kinfo.si_signo))
4079 return -EINVAL;
4080
4081 /* Only allow sending arbitrary signals to yourself. */
4082 if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
4083 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
4084 return -EPERM;
4085 } else {
4086 prepare_kill_siginfo(sig, &kinfo, type);
4087 }
4088
4089 if (type == PIDTYPE_PGID)
4090 return kill_pgrp_info(sig, &kinfo, pid);
4091 else
4092 return kill_pid_info_type(sig, &kinfo, pid, type);
4093}
4094
4095static int
4096do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4097{
4098 struct task_struct *p;
4099 int error = -ESRCH;
4100
4101 rcu_read_lock();
4102 p = find_task_by_vpid(pid);
4103 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4104 error = check_kill_permission(sig, info, p);
4105 /*
4106 * The null signal is a permissions and process existence
4107 * probe. No signal is actually delivered.
4108 */
4109 if (!error && sig) {
4110 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4111 /*
4112 * If lock_task_sighand() failed we pretend the task
4113 * dies after receiving the signal. The window is tiny,
4114 * and the signal is private anyway.
4115 */
4116 if (unlikely(error == -ESRCH))
4117 error = 0;
4118 }
4119 }
4120 rcu_read_unlock();
4121
4122 return error;
4123}
4124
4125static int do_tkill(pid_t tgid, pid_t pid, int sig)
4126{
4127 struct kernel_siginfo info;
4128
4129 prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4130
4131 return do_send_specific(tgid, pid, sig, &info);
4132}
4133
4134/**
4135 * sys_tgkill - send signal to one specific thread
4136 * @tgid: the thread group ID of the thread
4137 * @pid: the PID of the thread
4138 * @sig: signal to be sent
4139 *
4140 * This syscall also checks the @tgid and returns -ESRCH even if the PID
4141 * exists but it's not belonging to the target process anymore. This
4142 * method solves the problem of threads exiting and PIDs getting reused.
4143 */
4144SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4145{
4146 /* This is only valid for single tasks */
4147 if (pid <= 0 || tgid <= 0)
4148 return -EINVAL;
4149
4150 return do_tkill(tgid, pid, sig);
4151}
4152
4153/**
4154 * sys_tkill - send signal to one specific task
4155 * @pid: the PID of the task
4156 * @sig: signal to be sent
4157 *
4158 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4159 */
4160SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4161{
4162 /* This is only valid for single tasks */
4163 if (pid <= 0)
4164 return -EINVAL;
4165
4166 return do_tkill(0, pid, sig);
4167}
4168
4169static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4170{
4171 /* Not even root can pretend to send signals from the kernel.
4172 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4173 */
4174 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4175 (task_pid_vnr(current) != pid))
4176 return -EPERM;
4177
4178 /* POSIX.1b doesn't mention process groups. */
4179 return kill_proc_info(sig, info, pid);
4180}
4181
4182/**
4183 * sys_rt_sigqueueinfo - send signal information to a signal
4184 * @pid: the PID of the thread
4185 * @sig: signal to be sent
4186 * @uinfo: signal info to be sent
4187 */
4188SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4189 siginfo_t __user *, uinfo)
4190{
4191 kernel_siginfo_t info;
4192 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4193 if (unlikely(ret))
4194 return ret;
4195 return do_rt_sigqueueinfo(pid, sig, &info);
4196}
4197
4198#ifdef CONFIG_COMPAT
4199COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4200 compat_pid_t, pid,
4201 int, sig,
4202 struct compat_siginfo __user *, uinfo)
4203{
4204 kernel_siginfo_t info;
4205 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4206 if (unlikely(ret))
4207 return ret;
4208 return do_rt_sigqueueinfo(pid, sig, &info);
4209}
4210#endif
4211
4212static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4213{
4214 /* This is only valid for single tasks */
4215 if (pid <= 0 || tgid <= 0)
4216 return -EINVAL;
4217
4218 /* Not even root can pretend to send signals from the kernel.
4219 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4220 */
4221 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4222 (task_pid_vnr(current) != pid))
4223 return -EPERM;
4224
4225 return do_send_specific(tgid, pid, sig, info);
4226}
4227
4228SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4229 siginfo_t __user *, uinfo)
4230{
4231 kernel_siginfo_t info;
4232 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4233 if (unlikely(ret))
4234 return ret;
4235 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4236}
4237
4238#ifdef CONFIG_COMPAT
4239COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4240 compat_pid_t, tgid,
4241 compat_pid_t, pid,
4242 int, sig,
4243 struct compat_siginfo __user *, uinfo)
4244{
4245 kernel_siginfo_t info;
4246 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4247 if (unlikely(ret))
4248 return ret;
4249 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4250}
4251#endif
4252
4253/*
4254 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4255 */
4256void kernel_sigaction(int sig, __sighandler_t action)
4257{
4258 spin_lock_irq(¤t->sighand->siglock);
4259 current->sighand->action[sig - 1].sa.sa_handler = action;
4260 if (action == SIG_IGN) {
4261 sigset_t mask;
4262
4263 sigemptyset(&mask);
4264 sigaddset(&mask, sig);
4265
4266 flush_sigqueue_mask(current, &mask, ¤t->signal->shared_pending);
4267 flush_sigqueue_mask(current, &mask, ¤t->pending);
4268 recalc_sigpending();
4269 }
4270 spin_unlock_irq(¤t->sighand->siglock);
4271}
4272EXPORT_SYMBOL(kernel_sigaction);
4273
4274void __weak sigaction_compat_abi(struct k_sigaction *act,
4275 struct k_sigaction *oact)
4276{
4277}
4278
4279int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4280{
4281 struct task_struct *p = current, *t;
4282 struct k_sigaction *k;
4283 sigset_t mask;
4284
4285 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4286 return -EINVAL;
4287
4288 k = &p->sighand->action[sig-1];
4289
4290 spin_lock_irq(&p->sighand->siglock);
4291 if (k->sa.sa_flags & SA_IMMUTABLE) {
4292 spin_unlock_irq(&p->sighand->siglock);
4293 return -EINVAL;
4294 }
4295 if (oact)
4296 *oact = *k;
4297
4298 /*
4299 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4300 * e.g. by having an architecture use the bit in their uapi.
4301 */
4302 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4303
4304 /*
4305 * Clear unknown flag bits in order to allow userspace to detect missing
4306 * support for flag bits and to allow the kernel to use non-uapi bits
4307 * internally.
4308 */
4309 if (act)
4310 act->sa.sa_flags &= UAPI_SA_FLAGS;
4311 if (oact)
4312 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4313
4314 sigaction_compat_abi(act, oact);
4315
4316 if (act) {
4317 bool was_ignored = k->sa.sa_handler == SIG_IGN;
4318
4319 sigdelsetmask(&act->sa.sa_mask,
4320 sigmask(SIGKILL) | sigmask(SIGSTOP));
4321 *k = *act;
4322 /*
4323 * POSIX 3.3.1.3:
4324 * "Setting a signal action to SIG_IGN for a signal that is
4325 * pending shall cause the pending signal to be discarded,
4326 * whether or not it is blocked."
4327 *
4328 * "Setting a signal action to SIG_DFL for a signal that is
4329 * pending and whose default action is to ignore the signal
4330 * (for example, SIGCHLD), shall cause the pending signal to
4331 * be discarded, whether or not it is blocked"
4332 */
4333 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4334 sigemptyset(&mask);
4335 sigaddset(&mask, sig);
4336 flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
4337 for_each_thread(p, t)
4338 flush_sigqueue_mask(p, &mask, &t->pending);
4339 } else if (was_ignored) {
4340 posixtimer_sig_unignore(p, sig);
4341 }
4342 }
4343
4344 spin_unlock_irq(&p->sighand->siglock);
4345 return 0;
4346}
4347
4348#ifdef CONFIG_DYNAMIC_SIGFRAME
4349static inline void sigaltstack_lock(void)
4350 __acquires(¤t->sighand->siglock)
4351{
4352 spin_lock_irq(¤t->sighand->siglock);
4353}
4354
4355static inline void sigaltstack_unlock(void)
4356 __releases(¤t->sighand->siglock)
4357{
4358 spin_unlock_irq(¤t->sighand->siglock);
4359}
4360#else
4361static inline void sigaltstack_lock(void) { }
4362static inline void sigaltstack_unlock(void) { }
4363#endif
4364
4365static int
4366do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4367 size_t min_ss_size)
4368{
4369 struct task_struct *t = current;
4370 int ret = 0;
4371
4372 if (oss) {
4373 memset(oss, 0, sizeof(stack_t));
4374 oss->ss_sp = (void __user *) t->sas_ss_sp;
4375 oss->ss_size = t->sas_ss_size;
4376 oss->ss_flags = sas_ss_flags(sp) |
4377 (current->sas_ss_flags & SS_FLAG_BITS);
4378 }
4379
4380 if (ss) {
4381 void __user *ss_sp = ss->ss_sp;
4382 size_t ss_size = ss->ss_size;
4383 unsigned ss_flags = ss->ss_flags;
4384 int ss_mode;
4385
4386 if (unlikely(on_sig_stack(sp)))
4387 return -EPERM;
4388
4389 ss_mode = ss_flags & ~SS_FLAG_BITS;
4390 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4391 ss_mode != 0))
4392 return -EINVAL;
4393
4394 /*
4395 * Return before taking any locks if no actual
4396 * sigaltstack changes were requested.
4397 */
4398 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4399 t->sas_ss_size == ss_size &&
4400 t->sas_ss_flags == ss_flags)
4401 return 0;
4402
4403 sigaltstack_lock();
4404 if (ss_mode == SS_DISABLE) {
4405 ss_size = 0;
4406 ss_sp = NULL;
4407 } else {
4408 if (unlikely(ss_size < min_ss_size))
4409 ret = -ENOMEM;
4410 if (!sigaltstack_size_valid(ss_size))
4411 ret = -ENOMEM;
4412 }
4413 if (!ret) {
4414 t->sas_ss_sp = (unsigned long) ss_sp;
4415 t->sas_ss_size = ss_size;
4416 t->sas_ss_flags = ss_flags;
4417 }
4418 sigaltstack_unlock();
4419 }
4420 return ret;
4421}
4422
4423SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4424{
4425 stack_t new, old;
4426 int err;
4427 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4428 return -EFAULT;
4429 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4430 current_user_stack_pointer(),
4431 MINSIGSTKSZ);
4432 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4433 err = -EFAULT;
4434 return err;
4435}
4436
4437int restore_altstack(const stack_t __user *uss)
4438{
4439 stack_t new;
4440 if (copy_from_user(&new, uss, sizeof(stack_t)))
4441 return -EFAULT;
4442 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4443 MINSIGSTKSZ);
4444 /* squash all but EFAULT for now */
4445 return 0;
4446}
4447
4448int __save_altstack(stack_t __user *uss, unsigned long sp)
4449{
4450 struct task_struct *t = current;
4451 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4452 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4453 __put_user(t->sas_ss_size, &uss->ss_size);
4454 return err;
4455}
4456
4457#ifdef CONFIG_COMPAT
4458static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4459 compat_stack_t __user *uoss_ptr)
4460{
4461 stack_t uss, uoss;
4462 int ret;
4463
4464 if (uss_ptr) {
4465 compat_stack_t uss32;
4466 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4467 return -EFAULT;
4468 uss.ss_sp = compat_ptr(uss32.ss_sp);
4469 uss.ss_flags = uss32.ss_flags;
4470 uss.ss_size = uss32.ss_size;
4471 }
4472 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4473 compat_user_stack_pointer(),
4474 COMPAT_MINSIGSTKSZ);
4475 if (ret >= 0 && uoss_ptr) {
4476 compat_stack_t old;
4477 memset(&old, 0, sizeof(old));
4478 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4479 old.ss_flags = uoss.ss_flags;
4480 old.ss_size = uoss.ss_size;
4481 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4482 ret = -EFAULT;
4483 }
4484 return ret;
4485}
4486
4487COMPAT_SYSCALL_DEFINE2(sigaltstack,
4488 const compat_stack_t __user *, uss_ptr,
4489 compat_stack_t __user *, uoss_ptr)
4490{
4491 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4492}
4493
4494int compat_restore_altstack(const compat_stack_t __user *uss)
4495{
4496 int err = do_compat_sigaltstack(uss, NULL);
4497 /* squash all but -EFAULT for now */
4498 return err == -EFAULT ? err : 0;
4499}
4500
4501int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4502{
4503 int err;
4504 struct task_struct *t = current;
4505 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4506 &uss->ss_sp) |
4507 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4508 __put_user(t->sas_ss_size, &uss->ss_size);
4509 return err;
4510}
4511#endif
4512
4513#ifdef __ARCH_WANT_SYS_SIGPENDING
4514
4515/**
4516 * sys_sigpending - examine pending signals
4517 * @uset: where mask of pending signal is returned
4518 */
4519SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4520{
4521 sigset_t set;
4522
4523 if (sizeof(old_sigset_t) > sizeof(*uset))
4524 return -EINVAL;
4525
4526 do_sigpending(&set);
4527
4528 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4529 return -EFAULT;
4530
4531 return 0;
4532}
4533
4534#ifdef CONFIG_COMPAT
4535COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4536{
4537 sigset_t set;
4538
4539 do_sigpending(&set);
4540
4541 return put_user(set.sig[0], set32);
4542}
4543#endif
4544
4545#endif
4546
4547#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4548/**
4549 * sys_sigprocmask - examine and change blocked signals
4550 * @how: whether to add, remove, or set signals
4551 * @nset: signals to add or remove (if non-null)
4552 * @oset: previous value of signal mask if non-null
4553 *
4554 * Some platforms have their own version with special arguments;
4555 * others support only sys_rt_sigprocmask.
4556 */
4557
4558SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4559 old_sigset_t __user *, oset)
4560{
4561 old_sigset_t old_set, new_set;
4562 sigset_t new_blocked;
4563
4564 old_set = current->blocked.sig[0];
4565
4566 if (nset) {
4567 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4568 return -EFAULT;
4569
4570 new_blocked = current->blocked;
4571
4572 switch (how) {
4573 case SIG_BLOCK:
4574 sigaddsetmask(&new_blocked, new_set);
4575 break;
4576 case SIG_UNBLOCK:
4577 sigdelsetmask(&new_blocked, new_set);
4578 break;
4579 case SIG_SETMASK:
4580 new_blocked.sig[0] = new_set;
4581 break;
4582 default:
4583 return -EINVAL;
4584 }
4585
4586 set_current_blocked(&new_blocked);
4587 }
4588
4589 if (oset) {
4590 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4591 return -EFAULT;
4592 }
4593
4594 return 0;
4595}
4596#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4597
4598#ifndef CONFIG_ODD_RT_SIGACTION
4599/**
4600 * sys_rt_sigaction - alter an action taken by a process
4601 * @sig: signal to be sent
4602 * @act: new sigaction
4603 * @oact: used to save the previous sigaction
4604 * @sigsetsize: size of sigset_t type
4605 */
4606SYSCALL_DEFINE4(rt_sigaction, int, sig,
4607 const struct sigaction __user *, act,
4608 struct sigaction __user *, oact,
4609 size_t, sigsetsize)
4610{
4611 struct k_sigaction new_sa, old_sa;
4612 int ret;
4613
4614 /* XXX: Don't preclude handling different sized sigset_t's. */
4615 if (sigsetsize != sizeof(sigset_t))
4616 return -EINVAL;
4617
4618 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4619 return -EFAULT;
4620
4621 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4622 if (ret)
4623 return ret;
4624
4625 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4626 return -EFAULT;
4627
4628 return 0;
4629}
4630#ifdef CONFIG_COMPAT
4631COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4632 const struct compat_sigaction __user *, act,
4633 struct compat_sigaction __user *, oact,
4634 compat_size_t, sigsetsize)
4635{
4636 struct k_sigaction new_ka, old_ka;
4637#ifdef __ARCH_HAS_SA_RESTORER
4638 compat_uptr_t restorer;
4639#endif
4640 int ret;
4641
4642 /* XXX: Don't preclude handling different sized sigset_t's. */
4643 if (sigsetsize != sizeof(compat_sigset_t))
4644 return -EINVAL;
4645
4646 if (act) {
4647 compat_uptr_t handler;
4648 ret = get_user(handler, &act->sa_handler);
4649 new_ka.sa.sa_handler = compat_ptr(handler);
4650#ifdef __ARCH_HAS_SA_RESTORER
4651 ret |= get_user(restorer, &act->sa_restorer);
4652 new_ka.sa.sa_restorer = compat_ptr(restorer);
4653#endif
4654 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4655 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4656 if (ret)
4657 return -EFAULT;
4658 }
4659
4660 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4661 if (!ret && oact) {
4662 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4663 &oact->sa_handler);
4664 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4665 sizeof(oact->sa_mask));
4666 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4667#ifdef __ARCH_HAS_SA_RESTORER
4668 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4669 &oact->sa_restorer);
4670#endif
4671 }
4672 return ret;
4673}
4674#endif
4675#endif /* !CONFIG_ODD_RT_SIGACTION */
4676
4677#ifdef CONFIG_OLD_SIGACTION
4678SYSCALL_DEFINE3(sigaction, int, sig,
4679 const struct old_sigaction __user *, act,
4680 struct old_sigaction __user *, oact)
4681{
4682 struct k_sigaction new_ka, old_ka;
4683 int ret;
4684
4685 if (act) {
4686 old_sigset_t mask;
4687 if (!access_ok(act, sizeof(*act)) ||
4688 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4689 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4690 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4691 __get_user(mask, &act->sa_mask))
4692 return -EFAULT;
4693#ifdef __ARCH_HAS_KA_RESTORER
4694 new_ka.ka_restorer = NULL;
4695#endif
4696 siginitset(&new_ka.sa.sa_mask, mask);
4697 }
4698
4699 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4700
4701 if (!ret && oact) {
4702 if (!access_ok(oact, sizeof(*oact)) ||
4703 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4704 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4705 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4706 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4707 return -EFAULT;
4708 }
4709
4710 return ret;
4711}
4712#endif
4713#ifdef CONFIG_COMPAT_OLD_SIGACTION
4714COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4715 const struct compat_old_sigaction __user *, act,
4716 struct compat_old_sigaction __user *, oact)
4717{
4718 struct k_sigaction new_ka, old_ka;
4719 int ret;
4720 compat_old_sigset_t mask;
4721 compat_uptr_t handler, restorer;
4722
4723 if (act) {
4724 if (!access_ok(act, sizeof(*act)) ||
4725 __get_user(handler, &act->sa_handler) ||
4726 __get_user(restorer, &act->sa_restorer) ||
4727 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4728 __get_user(mask, &act->sa_mask))
4729 return -EFAULT;
4730
4731#ifdef __ARCH_HAS_KA_RESTORER
4732 new_ka.ka_restorer = NULL;
4733#endif
4734 new_ka.sa.sa_handler = compat_ptr(handler);
4735 new_ka.sa.sa_restorer = compat_ptr(restorer);
4736 siginitset(&new_ka.sa.sa_mask, mask);
4737 }
4738
4739 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4740
4741 if (!ret && oact) {
4742 if (!access_ok(oact, sizeof(*oact)) ||
4743 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4744 &oact->sa_handler) ||
4745 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4746 &oact->sa_restorer) ||
4747 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4748 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4749 return -EFAULT;
4750 }
4751 return ret;
4752}
4753#endif
4754
4755#ifdef CONFIG_SGETMASK_SYSCALL
4756
4757/*
4758 * For backwards compatibility. Functionality superseded by sigprocmask.
4759 */
4760SYSCALL_DEFINE0(sgetmask)
4761{
4762 /* SMP safe */
4763 return current->blocked.sig[0];
4764}
4765
4766SYSCALL_DEFINE1(ssetmask, int, newmask)
4767{
4768 int old = current->blocked.sig[0];
4769 sigset_t newset;
4770
4771 siginitset(&newset, newmask);
4772 set_current_blocked(&newset);
4773
4774 return old;
4775}
4776#endif /* CONFIG_SGETMASK_SYSCALL */
4777
4778#ifdef __ARCH_WANT_SYS_SIGNAL
4779/*
4780 * For backwards compatibility. Functionality superseded by sigaction.
4781 */
4782SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4783{
4784 struct k_sigaction new_sa, old_sa;
4785 int ret;
4786
4787 new_sa.sa.sa_handler = handler;
4788 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4789 sigemptyset(&new_sa.sa.sa_mask);
4790
4791 ret = do_sigaction(sig, &new_sa, &old_sa);
4792
4793 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4794}
4795#endif /* __ARCH_WANT_SYS_SIGNAL */
4796
4797#ifdef __ARCH_WANT_SYS_PAUSE
4798
4799SYSCALL_DEFINE0(pause)
4800{
4801 while (!signal_pending(current)) {
4802 __set_current_state(TASK_INTERRUPTIBLE);
4803 schedule();
4804 }
4805 return -ERESTARTNOHAND;
4806}
4807
4808#endif
4809
4810static int sigsuspend(sigset_t *set)
4811{
4812 current->saved_sigmask = current->blocked;
4813 set_current_blocked(set);
4814
4815 while (!signal_pending(current)) {
4816 __set_current_state(TASK_INTERRUPTIBLE);
4817 schedule();
4818 }
4819 set_restore_sigmask();
4820 return -ERESTARTNOHAND;
4821}
4822
4823/**
4824 * sys_rt_sigsuspend - replace the signal mask for a value with the
4825 * @unewset value until a signal is received
4826 * @unewset: new signal mask value
4827 * @sigsetsize: size of sigset_t type
4828 */
4829SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4830{
4831 sigset_t newset;
4832
4833 /* XXX: Don't preclude handling different sized sigset_t's. */
4834 if (sigsetsize != sizeof(sigset_t))
4835 return -EINVAL;
4836
4837 if (copy_from_user(&newset, unewset, sizeof(newset)))
4838 return -EFAULT;
4839 return sigsuspend(&newset);
4840}
4841
4842#ifdef CONFIG_COMPAT
4843COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4844{
4845 sigset_t newset;
4846
4847 /* XXX: Don't preclude handling different sized sigset_t's. */
4848 if (sigsetsize != sizeof(sigset_t))
4849 return -EINVAL;
4850
4851 if (get_compat_sigset(&newset, unewset))
4852 return -EFAULT;
4853 return sigsuspend(&newset);
4854}
4855#endif
4856
4857#ifdef CONFIG_OLD_SIGSUSPEND
4858SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4859{
4860 sigset_t blocked;
4861 siginitset(&blocked, mask);
4862 return sigsuspend(&blocked);
4863}
4864#endif
4865#ifdef CONFIG_OLD_SIGSUSPEND3
4866SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4867{
4868 sigset_t blocked;
4869 siginitset(&blocked, mask);
4870 return sigsuspend(&blocked);
4871}
4872#endif
4873
4874__weak const char *arch_vma_name(struct vm_area_struct *vma)
4875{
4876 return NULL;
4877}
4878
4879static inline void siginfo_buildtime_checks(void)
4880{
4881 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4882
4883 /* Verify the offsets in the two siginfos match */
4884#define CHECK_OFFSET(field) \
4885 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4886
4887 /* kill */
4888 CHECK_OFFSET(si_pid);
4889 CHECK_OFFSET(si_uid);
4890
4891 /* timer */
4892 CHECK_OFFSET(si_tid);
4893 CHECK_OFFSET(si_overrun);
4894 CHECK_OFFSET(si_value);
4895
4896 /* rt */
4897 CHECK_OFFSET(si_pid);
4898 CHECK_OFFSET(si_uid);
4899 CHECK_OFFSET(si_value);
4900
4901 /* sigchld */
4902 CHECK_OFFSET(si_pid);
4903 CHECK_OFFSET(si_uid);
4904 CHECK_OFFSET(si_status);
4905 CHECK_OFFSET(si_utime);
4906 CHECK_OFFSET(si_stime);
4907
4908 /* sigfault */
4909 CHECK_OFFSET(si_addr);
4910 CHECK_OFFSET(si_trapno);
4911 CHECK_OFFSET(si_addr_lsb);
4912 CHECK_OFFSET(si_lower);
4913 CHECK_OFFSET(si_upper);
4914 CHECK_OFFSET(si_pkey);
4915 CHECK_OFFSET(si_perf_data);
4916 CHECK_OFFSET(si_perf_type);
4917 CHECK_OFFSET(si_perf_flags);
4918
4919 /* sigpoll */
4920 CHECK_OFFSET(si_band);
4921 CHECK_OFFSET(si_fd);
4922
4923 /* sigsys */
4924 CHECK_OFFSET(si_call_addr);
4925 CHECK_OFFSET(si_syscall);
4926 CHECK_OFFSET(si_arch);
4927#undef CHECK_OFFSET
4928
4929 /* usb asyncio */
4930 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4931 offsetof(struct siginfo, si_addr));
4932 if (sizeof(int) == sizeof(void __user *)) {
4933 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4934 sizeof(void __user *));
4935 } else {
4936 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4937 sizeof_field(struct siginfo, si_uid)) !=
4938 sizeof(void __user *));
4939 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4940 offsetof(struct siginfo, si_uid));
4941 }
4942#ifdef CONFIG_COMPAT
4943 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4944 offsetof(struct compat_siginfo, si_addr));
4945 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4946 sizeof(compat_uptr_t));
4947 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4948 sizeof_field(struct siginfo, si_pid));
4949#endif
4950}
4951
4952#if defined(CONFIG_SYSCTL)
4953static struct ctl_table signal_debug_table[] = {
4954#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4955 {
4956 .procname = "exception-trace",
4957 .data = &show_unhandled_signals,
4958 .maxlen = sizeof(int),
4959 .mode = 0644,
4960 .proc_handler = proc_dointvec
4961 },
4962#endif
4963};
4964
4965static int __init init_signal_sysctls(void)
4966{
4967 register_sysctl_init("debug", signal_debug_table);
4968 return 0;
4969}
4970early_initcall(init_signal_sysctls);
4971#endif /* CONFIG_SYSCTL */
4972
4973void __init signals_init(void)
4974{
4975 siginfo_buildtime_checks();
4976
4977 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4978}
4979
4980#ifdef CONFIG_KGDB_KDB
4981#include <linux/kdb.h>
4982/*
4983 * kdb_send_sig - Allows kdb to send signals without exposing
4984 * signal internals. This function checks if the required locks are
4985 * available before calling the main signal code, to avoid kdb
4986 * deadlocks.
4987 */
4988void kdb_send_sig(struct task_struct *t, int sig)
4989{
4990 static struct task_struct *kdb_prev_t;
4991 int new_t, ret;
4992 if (!spin_trylock(&t->sighand->siglock)) {
4993 kdb_printf("Can't do kill command now.\n"
4994 "The sigmask lock is held somewhere else in "
4995 "kernel, try again later\n");
4996 return;
4997 }
4998 new_t = kdb_prev_t != t;
4999 kdb_prev_t = t;
5000 if (!task_is_running(t) && new_t) {
5001 spin_unlock(&t->sighand->siglock);
5002 kdb_printf("Process is not RUNNING, sending a signal from "
5003 "kdb risks deadlock\n"
5004 "on the run queue locks. "
5005 "The signal has _not_ been sent.\n"
5006 "Reissue the kill command if you want to risk "
5007 "the deadlock.\n");
5008 return;
5009 }
5010 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
5011 spin_unlock(&t->sighand->siglock);
5012 if (ret)
5013 kdb_printf("Fail to deliver Signal %d to process %d.\n",
5014 sig, t->pid);
5015 else
5016 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
5017}
5018#endif /* CONFIG_KGDB_KDB */
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/module.h>
15#include <linux/init.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/tty.h>
19#include <linux/binfmts.h>
20#include <linux/security.h>
21#include <linux/syscalls.h>
22#include <linux/ptrace.h>
23#include <linux/signal.h>
24#include <linux/signalfd.h>
25#include <linux/ratelimit.h>
26#include <linux/tracehook.h>
27#include <linux/capability.h>
28#include <linux/freezer.h>
29#include <linux/pid_namespace.h>
30#include <linux/nsproxy.h>
31#define CREATE_TRACE_POINTS
32#include <trace/events/signal.h>
33
34#include <asm/param.h>
35#include <asm/uaccess.h>
36#include <asm/unistd.h>
37#include <asm/siginfo.h>
38#include "audit.h" /* audit_signal_info() */
39
40/*
41 * SLAB caches for signal bits.
42 */
43
44static struct kmem_cache *sigqueue_cachep;
45
46int print_fatal_signals __read_mostly;
47
48static void __user *sig_handler(struct task_struct *t, int sig)
49{
50 return t->sighand->action[sig - 1].sa.sa_handler;
51}
52
53static int sig_handler_ignored(void __user *handler, int sig)
54{
55 /* Is it explicitly or implicitly ignored? */
56 return handler == SIG_IGN ||
57 (handler == SIG_DFL && sig_kernel_ignore(sig));
58}
59
60static int sig_task_ignored(struct task_struct *t, int sig,
61 int from_ancestor_ns)
62{
63 void __user *handler;
64
65 handler = sig_handler(t, sig);
66
67 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
68 handler == SIG_DFL && !from_ancestor_ns)
69 return 1;
70
71 return sig_handler_ignored(handler, sig);
72}
73
74static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns)
75{
76 /*
77 * Blocked signals are never ignored, since the
78 * signal handler may change by the time it is
79 * unblocked.
80 */
81 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
82 return 0;
83
84 if (!sig_task_ignored(t, sig, from_ancestor_ns))
85 return 0;
86
87 /*
88 * Tracers may want to know about even ignored signals.
89 */
90 return !t->ptrace;
91}
92
93/*
94 * Re-calculate pending state from the set of locally pending
95 * signals, globally pending signals, and blocked signals.
96 */
97static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
98{
99 unsigned long ready;
100 long i;
101
102 switch (_NSIG_WORDS) {
103 default:
104 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
105 ready |= signal->sig[i] &~ blocked->sig[i];
106 break;
107
108 case 4: ready = signal->sig[3] &~ blocked->sig[3];
109 ready |= signal->sig[2] &~ blocked->sig[2];
110 ready |= signal->sig[1] &~ blocked->sig[1];
111 ready |= signal->sig[0] &~ blocked->sig[0];
112 break;
113
114 case 2: ready = signal->sig[1] &~ blocked->sig[1];
115 ready |= signal->sig[0] &~ blocked->sig[0];
116 break;
117
118 case 1: ready = signal->sig[0] &~ blocked->sig[0];
119 }
120 return ready != 0;
121}
122
123#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
124
125static int recalc_sigpending_tsk(struct task_struct *t)
126{
127 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
128 PENDING(&t->pending, &t->blocked) ||
129 PENDING(&t->signal->shared_pending, &t->blocked)) {
130 set_tsk_thread_flag(t, TIF_SIGPENDING);
131 return 1;
132 }
133 /*
134 * We must never clear the flag in another thread, or in current
135 * when it's possible the current syscall is returning -ERESTART*.
136 * So we don't clear it here, and only callers who know they should do.
137 */
138 return 0;
139}
140
141/*
142 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
143 * This is superfluous when called on current, the wakeup is a harmless no-op.
144 */
145void recalc_sigpending_and_wake(struct task_struct *t)
146{
147 if (recalc_sigpending_tsk(t))
148 signal_wake_up(t, 0);
149}
150
151void recalc_sigpending(void)
152{
153 if (!recalc_sigpending_tsk(current) && !freezing(current))
154 clear_thread_flag(TIF_SIGPENDING);
155
156}
157
158/* Given the mask, find the first available signal that should be serviced. */
159
160#define SYNCHRONOUS_MASK \
161 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
162 sigmask(SIGTRAP) | sigmask(SIGFPE))
163
164int next_signal(struct sigpending *pending, sigset_t *mask)
165{
166 unsigned long i, *s, *m, x;
167 int sig = 0;
168
169 s = pending->signal.sig;
170 m = mask->sig;
171
172 /*
173 * Handle the first word specially: it contains the
174 * synchronous signals that need to be dequeued first.
175 */
176 x = *s &~ *m;
177 if (x) {
178 if (x & SYNCHRONOUS_MASK)
179 x &= SYNCHRONOUS_MASK;
180 sig = ffz(~x) + 1;
181 return sig;
182 }
183
184 switch (_NSIG_WORDS) {
185 default:
186 for (i = 1; i < _NSIG_WORDS; ++i) {
187 x = *++s &~ *++m;
188 if (!x)
189 continue;
190 sig = ffz(~x) + i*_NSIG_BPW + 1;
191 break;
192 }
193 break;
194
195 case 2:
196 x = s[1] &~ m[1];
197 if (!x)
198 break;
199 sig = ffz(~x) + _NSIG_BPW + 1;
200 break;
201
202 case 1:
203 /* Nothing to do */
204 break;
205 }
206
207 return sig;
208}
209
210static inline void print_dropped_signal(int sig)
211{
212 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
213
214 if (!print_fatal_signals)
215 return;
216
217 if (!__ratelimit(&ratelimit_state))
218 return;
219
220 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
221 current->comm, current->pid, sig);
222}
223
224/**
225 * task_set_jobctl_pending - set jobctl pending bits
226 * @task: target task
227 * @mask: pending bits to set
228 *
229 * Clear @mask from @task->jobctl. @mask must be subset of
230 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
231 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
232 * cleared. If @task is already being killed or exiting, this function
233 * becomes noop.
234 *
235 * CONTEXT:
236 * Must be called with @task->sighand->siglock held.
237 *
238 * RETURNS:
239 * %true if @mask is set, %false if made noop because @task was dying.
240 */
241bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
242{
243 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
244 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
245 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
246
247 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
248 return false;
249
250 if (mask & JOBCTL_STOP_SIGMASK)
251 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
252
253 task->jobctl |= mask;
254 return true;
255}
256
257/**
258 * task_clear_jobctl_trapping - clear jobctl trapping bit
259 * @task: target task
260 *
261 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
262 * Clear it and wake up the ptracer. Note that we don't need any further
263 * locking. @task->siglock guarantees that @task->parent points to the
264 * ptracer.
265 *
266 * CONTEXT:
267 * Must be called with @task->sighand->siglock held.
268 */
269void task_clear_jobctl_trapping(struct task_struct *task)
270{
271 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
272 task->jobctl &= ~JOBCTL_TRAPPING;
273 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
274 }
275}
276
277/**
278 * task_clear_jobctl_pending - clear jobctl pending bits
279 * @task: target task
280 * @mask: pending bits to clear
281 *
282 * Clear @mask from @task->jobctl. @mask must be subset of
283 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
284 * STOP bits are cleared together.
285 *
286 * If clearing of @mask leaves no stop or trap pending, this function calls
287 * task_clear_jobctl_trapping().
288 *
289 * CONTEXT:
290 * Must be called with @task->sighand->siglock held.
291 */
292void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
293{
294 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
295
296 if (mask & JOBCTL_STOP_PENDING)
297 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
298
299 task->jobctl &= ~mask;
300
301 if (!(task->jobctl & JOBCTL_PENDING_MASK))
302 task_clear_jobctl_trapping(task);
303}
304
305/**
306 * task_participate_group_stop - participate in a group stop
307 * @task: task participating in a group stop
308 *
309 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
310 * Group stop states are cleared and the group stop count is consumed if
311 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
312 * stop, the appropriate %SIGNAL_* flags are set.
313 *
314 * CONTEXT:
315 * Must be called with @task->sighand->siglock held.
316 *
317 * RETURNS:
318 * %true if group stop completion should be notified to the parent, %false
319 * otherwise.
320 */
321static bool task_participate_group_stop(struct task_struct *task)
322{
323 struct signal_struct *sig = task->signal;
324 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
325
326 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
327
328 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
329
330 if (!consume)
331 return false;
332
333 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
334 sig->group_stop_count--;
335
336 /*
337 * Tell the caller to notify completion iff we are entering into a
338 * fresh group stop. Read comment in do_signal_stop() for details.
339 */
340 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
341 sig->flags = SIGNAL_STOP_STOPPED;
342 return true;
343 }
344 return false;
345}
346
347/*
348 * allocate a new signal queue record
349 * - this may be called without locks if and only if t == current, otherwise an
350 * appropriate lock must be held to stop the target task from exiting
351 */
352static struct sigqueue *
353__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
354{
355 struct sigqueue *q = NULL;
356 struct user_struct *user;
357
358 /*
359 * Protect access to @t credentials. This can go away when all
360 * callers hold rcu read lock.
361 */
362 rcu_read_lock();
363 user = get_uid(__task_cred(t)->user);
364 atomic_inc(&user->sigpending);
365 rcu_read_unlock();
366
367 if (override_rlimit ||
368 atomic_read(&user->sigpending) <=
369 task_rlimit(t, RLIMIT_SIGPENDING)) {
370 q = kmem_cache_alloc(sigqueue_cachep, flags);
371 } else {
372 print_dropped_signal(sig);
373 }
374
375 if (unlikely(q == NULL)) {
376 atomic_dec(&user->sigpending);
377 free_uid(user);
378 } else {
379 INIT_LIST_HEAD(&q->list);
380 q->flags = 0;
381 q->user = user;
382 }
383
384 return q;
385}
386
387static void __sigqueue_free(struct sigqueue *q)
388{
389 if (q->flags & SIGQUEUE_PREALLOC)
390 return;
391 atomic_dec(&q->user->sigpending);
392 free_uid(q->user);
393 kmem_cache_free(sigqueue_cachep, q);
394}
395
396void flush_sigqueue(struct sigpending *queue)
397{
398 struct sigqueue *q;
399
400 sigemptyset(&queue->signal);
401 while (!list_empty(&queue->list)) {
402 q = list_entry(queue->list.next, struct sigqueue , list);
403 list_del_init(&q->list);
404 __sigqueue_free(q);
405 }
406}
407
408/*
409 * Flush all pending signals for a task.
410 */
411void __flush_signals(struct task_struct *t)
412{
413 clear_tsk_thread_flag(t, TIF_SIGPENDING);
414 flush_sigqueue(&t->pending);
415 flush_sigqueue(&t->signal->shared_pending);
416}
417
418void flush_signals(struct task_struct *t)
419{
420 unsigned long flags;
421
422 spin_lock_irqsave(&t->sighand->siglock, flags);
423 __flush_signals(t);
424 spin_unlock_irqrestore(&t->sighand->siglock, flags);
425}
426
427static void __flush_itimer_signals(struct sigpending *pending)
428{
429 sigset_t signal, retain;
430 struct sigqueue *q, *n;
431
432 signal = pending->signal;
433 sigemptyset(&retain);
434
435 list_for_each_entry_safe(q, n, &pending->list, list) {
436 int sig = q->info.si_signo;
437
438 if (likely(q->info.si_code != SI_TIMER)) {
439 sigaddset(&retain, sig);
440 } else {
441 sigdelset(&signal, sig);
442 list_del_init(&q->list);
443 __sigqueue_free(q);
444 }
445 }
446
447 sigorsets(&pending->signal, &signal, &retain);
448}
449
450void flush_itimer_signals(void)
451{
452 struct task_struct *tsk = current;
453 unsigned long flags;
454
455 spin_lock_irqsave(&tsk->sighand->siglock, flags);
456 __flush_itimer_signals(&tsk->pending);
457 __flush_itimer_signals(&tsk->signal->shared_pending);
458 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
459}
460
461void ignore_signals(struct task_struct *t)
462{
463 int i;
464
465 for (i = 0; i < _NSIG; ++i)
466 t->sighand->action[i].sa.sa_handler = SIG_IGN;
467
468 flush_signals(t);
469}
470
471/*
472 * Flush all handlers for a task.
473 */
474
475void
476flush_signal_handlers(struct task_struct *t, int force_default)
477{
478 int i;
479 struct k_sigaction *ka = &t->sighand->action[0];
480 for (i = _NSIG ; i != 0 ; i--) {
481 if (force_default || ka->sa.sa_handler != SIG_IGN)
482 ka->sa.sa_handler = SIG_DFL;
483 ka->sa.sa_flags = 0;
484 sigemptyset(&ka->sa.sa_mask);
485 ka++;
486 }
487}
488
489int unhandled_signal(struct task_struct *tsk, int sig)
490{
491 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
492 if (is_global_init(tsk))
493 return 1;
494 if (handler != SIG_IGN && handler != SIG_DFL)
495 return 0;
496 /* if ptraced, let the tracer determine */
497 return !tsk->ptrace;
498}
499
500/*
501 * Notify the system that a driver wants to block all signals for this
502 * process, and wants to be notified if any signals at all were to be
503 * sent/acted upon. If the notifier routine returns non-zero, then the
504 * signal will be acted upon after all. If the notifier routine returns 0,
505 * then then signal will be blocked. Only one block per process is
506 * allowed. priv is a pointer to private data that the notifier routine
507 * can use to determine if the signal should be blocked or not.
508 */
509void
510block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
511{
512 unsigned long flags;
513
514 spin_lock_irqsave(¤t->sighand->siglock, flags);
515 current->notifier_mask = mask;
516 current->notifier_data = priv;
517 current->notifier = notifier;
518 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
519}
520
521/* Notify the system that blocking has ended. */
522
523void
524unblock_all_signals(void)
525{
526 unsigned long flags;
527
528 spin_lock_irqsave(¤t->sighand->siglock, flags);
529 current->notifier = NULL;
530 current->notifier_data = NULL;
531 recalc_sigpending();
532 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
533}
534
535static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
536{
537 struct sigqueue *q, *first = NULL;
538
539 /*
540 * Collect the siginfo appropriate to this signal. Check if
541 * there is another siginfo for the same signal.
542 */
543 list_for_each_entry(q, &list->list, list) {
544 if (q->info.si_signo == sig) {
545 if (first)
546 goto still_pending;
547 first = q;
548 }
549 }
550
551 sigdelset(&list->signal, sig);
552
553 if (first) {
554still_pending:
555 list_del_init(&first->list);
556 copy_siginfo(info, &first->info);
557 __sigqueue_free(first);
558 } else {
559 /*
560 * Ok, it wasn't in the queue. This must be
561 * a fast-pathed signal or we must have been
562 * out of queue space. So zero out the info.
563 */
564 info->si_signo = sig;
565 info->si_errno = 0;
566 info->si_code = SI_USER;
567 info->si_pid = 0;
568 info->si_uid = 0;
569 }
570}
571
572static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
573 siginfo_t *info)
574{
575 int sig = next_signal(pending, mask);
576
577 if (sig) {
578 if (current->notifier) {
579 if (sigismember(current->notifier_mask, sig)) {
580 if (!(current->notifier)(current->notifier_data)) {
581 clear_thread_flag(TIF_SIGPENDING);
582 return 0;
583 }
584 }
585 }
586
587 collect_signal(sig, pending, info);
588 }
589
590 return sig;
591}
592
593/*
594 * Dequeue a signal and return the element to the caller, which is
595 * expected to free it.
596 *
597 * All callers have to hold the siglock.
598 */
599int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
600{
601 int signr;
602
603 /* We only dequeue private signals from ourselves, we don't let
604 * signalfd steal them
605 */
606 signr = __dequeue_signal(&tsk->pending, mask, info);
607 if (!signr) {
608 signr = __dequeue_signal(&tsk->signal->shared_pending,
609 mask, info);
610 /*
611 * itimer signal ?
612 *
613 * itimers are process shared and we restart periodic
614 * itimers in the signal delivery path to prevent DoS
615 * attacks in the high resolution timer case. This is
616 * compliant with the old way of self-restarting
617 * itimers, as the SIGALRM is a legacy signal and only
618 * queued once. Changing the restart behaviour to
619 * restart the timer in the signal dequeue path is
620 * reducing the timer noise on heavy loaded !highres
621 * systems too.
622 */
623 if (unlikely(signr == SIGALRM)) {
624 struct hrtimer *tmr = &tsk->signal->real_timer;
625
626 if (!hrtimer_is_queued(tmr) &&
627 tsk->signal->it_real_incr.tv64 != 0) {
628 hrtimer_forward(tmr, tmr->base->get_time(),
629 tsk->signal->it_real_incr);
630 hrtimer_restart(tmr);
631 }
632 }
633 }
634
635 recalc_sigpending();
636 if (!signr)
637 return 0;
638
639 if (unlikely(sig_kernel_stop(signr))) {
640 /*
641 * Set a marker that we have dequeued a stop signal. Our
642 * caller might release the siglock and then the pending
643 * stop signal it is about to process is no longer in the
644 * pending bitmasks, but must still be cleared by a SIGCONT
645 * (and overruled by a SIGKILL). So those cases clear this
646 * shared flag after we've set it. Note that this flag may
647 * remain set after the signal we return is ignored or
648 * handled. That doesn't matter because its only purpose
649 * is to alert stop-signal processing code when another
650 * processor has come along and cleared the flag.
651 */
652 current->jobctl |= JOBCTL_STOP_DEQUEUED;
653 }
654 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
655 /*
656 * Release the siglock to ensure proper locking order
657 * of timer locks outside of siglocks. Note, we leave
658 * irqs disabled here, since the posix-timers code is
659 * about to disable them again anyway.
660 */
661 spin_unlock(&tsk->sighand->siglock);
662 do_schedule_next_timer(info);
663 spin_lock(&tsk->sighand->siglock);
664 }
665 return signr;
666}
667
668/*
669 * Tell a process that it has a new active signal..
670 *
671 * NOTE! we rely on the previous spin_lock to
672 * lock interrupts for us! We can only be called with
673 * "siglock" held, and the local interrupt must
674 * have been disabled when that got acquired!
675 *
676 * No need to set need_resched since signal event passing
677 * goes through ->blocked
678 */
679void signal_wake_up(struct task_struct *t, int resume)
680{
681 unsigned int mask;
682
683 set_tsk_thread_flag(t, TIF_SIGPENDING);
684
685 /*
686 * For SIGKILL, we want to wake it up in the stopped/traced/killable
687 * case. We don't check t->state here because there is a race with it
688 * executing another processor and just now entering stopped state.
689 * By using wake_up_state, we ensure the process will wake up and
690 * handle its death signal.
691 */
692 mask = TASK_INTERRUPTIBLE;
693 if (resume)
694 mask |= TASK_WAKEKILL;
695 if (!wake_up_state(t, mask))
696 kick_process(t);
697}
698
699/*
700 * Remove signals in mask from the pending set and queue.
701 * Returns 1 if any signals were found.
702 *
703 * All callers must be holding the siglock.
704 *
705 * This version takes a sigset mask and looks at all signals,
706 * not just those in the first mask word.
707 */
708static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
709{
710 struct sigqueue *q, *n;
711 sigset_t m;
712
713 sigandsets(&m, mask, &s->signal);
714 if (sigisemptyset(&m))
715 return 0;
716
717 sigandnsets(&s->signal, &s->signal, mask);
718 list_for_each_entry_safe(q, n, &s->list, list) {
719 if (sigismember(mask, q->info.si_signo)) {
720 list_del_init(&q->list);
721 __sigqueue_free(q);
722 }
723 }
724 return 1;
725}
726/*
727 * Remove signals in mask from the pending set and queue.
728 * Returns 1 if any signals were found.
729 *
730 * All callers must be holding the siglock.
731 */
732static int rm_from_queue(unsigned long mask, struct sigpending *s)
733{
734 struct sigqueue *q, *n;
735
736 if (!sigtestsetmask(&s->signal, mask))
737 return 0;
738
739 sigdelsetmask(&s->signal, mask);
740 list_for_each_entry_safe(q, n, &s->list, list) {
741 if (q->info.si_signo < SIGRTMIN &&
742 (mask & sigmask(q->info.si_signo))) {
743 list_del_init(&q->list);
744 __sigqueue_free(q);
745 }
746 }
747 return 1;
748}
749
750static inline int is_si_special(const struct siginfo *info)
751{
752 return info <= SEND_SIG_FORCED;
753}
754
755static inline bool si_fromuser(const struct siginfo *info)
756{
757 return info == SEND_SIG_NOINFO ||
758 (!is_si_special(info) && SI_FROMUSER(info));
759}
760
761/*
762 * called with RCU read lock from check_kill_permission()
763 */
764static int kill_ok_by_cred(struct task_struct *t)
765{
766 const struct cred *cred = current_cred();
767 const struct cred *tcred = __task_cred(t);
768
769 if (cred->user->user_ns == tcred->user->user_ns &&
770 (cred->euid == tcred->suid ||
771 cred->euid == tcred->uid ||
772 cred->uid == tcred->suid ||
773 cred->uid == tcred->uid))
774 return 1;
775
776 if (ns_capable(tcred->user->user_ns, CAP_KILL))
777 return 1;
778
779 return 0;
780}
781
782/*
783 * Bad permissions for sending the signal
784 * - the caller must hold the RCU read lock
785 */
786static int check_kill_permission(int sig, struct siginfo *info,
787 struct task_struct *t)
788{
789 struct pid *sid;
790 int error;
791
792 if (!valid_signal(sig))
793 return -EINVAL;
794
795 if (!si_fromuser(info))
796 return 0;
797
798 error = audit_signal_info(sig, t); /* Let audit system see the signal */
799 if (error)
800 return error;
801
802 if (!same_thread_group(current, t) &&
803 !kill_ok_by_cred(t)) {
804 switch (sig) {
805 case SIGCONT:
806 sid = task_session(t);
807 /*
808 * We don't return the error if sid == NULL. The
809 * task was unhashed, the caller must notice this.
810 */
811 if (!sid || sid == task_session(current))
812 break;
813 default:
814 return -EPERM;
815 }
816 }
817
818 return security_task_kill(t, info, sig, 0);
819}
820
821/**
822 * ptrace_trap_notify - schedule trap to notify ptracer
823 * @t: tracee wanting to notify tracer
824 *
825 * This function schedules sticky ptrace trap which is cleared on the next
826 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
827 * ptracer.
828 *
829 * If @t is running, STOP trap will be taken. If trapped for STOP and
830 * ptracer is listening for events, tracee is woken up so that it can
831 * re-trap for the new event. If trapped otherwise, STOP trap will be
832 * eventually taken without returning to userland after the existing traps
833 * are finished by PTRACE_CONT.
834 *
835 * CONTEXT:
836 * Must be called with @task->sighand->siglock held.
837 */
838static void ptrace_trap_notify(struct task_struct *t)
839{
840 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
841 assert_spin_locked(&t->sighand->siglock);
842
843 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
844 signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
845}
846
847/*
848 * Handle magic process-wide effects of stop/continue signals. Unlike
849 * the signal actions, these happen immediately at signal-generation
850 * time regardless of blocking, ignoring, or handling. This does the
851 * actual continuing for SIGCONT, but not the actual stopping for stop
852 * signals. The process stop is done as a signal action for SIG_DFL.
853 *
854 * Returns true if the signal should be actually delivered, otherwise
855 * it should be dropped.
856 */
857static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns)
858{
859 struct signal_struct *signal = p->signal;
860 struct task_struct *t;
861
862 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
863 /*
864 * The process is in the middle of dying, nothing to do.
865 */
866 } else if (sig_kernel_stop(sig)) {
867 /*
868 * This is a stop signal. Remove SIGCONT from all queues.
869 */
870 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
871 t = p;
872 do {
873 rm_from_queue(sigmask(SIGCONT), &t->pending);
874 } while_each_thread(p, t);
875 } else if (sig == SIGCONT) {
876 unsigned int why;
877 /*
878 * Remove all stop signals from all queues, wake all threads.
879 */
880 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
881 t = p;
882 do {
883 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
884 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
885 if (likely(!(t->ptrace & PT_SEIZED)))
886 wake_up_state(t, __TASK_STOPPED);
887 else
888 ptrace_trap_notify(t);
889 } while_each_thread(p, t);
890
891 /*
892 * Notify the parent with CLD_CONTINUED if we were stopped.
893 *
894 * If we were in the middle of a group stop, we pretend it
895 * was already finished, and then continued. Since SIGCHLD
896 * doesn't queue we report only CLD_STOPPED, as if the next
897 * CLD_CONTINUED was dropped.
898 */
899 why = 0;
900 if (signal->flags & SIGNAL_STOP_STOPPED)
901 why |= SIGNAL_CLD_CONTINUED;
902 else if (signal->group_stop_count)
903 why |= SIGNAL_CLD_STOPPED;
904
905 if (why) {
906 /*
907 * The first thread which returns from do_signal_stop()
908 * will take ->siglock, notice SIGNAL_CLD_MASK, and
909 * notify its parent. See get_signal_to_deliver().
910 */
911 signal->flags = why | SIGNAL_STOP_CONTINUED;
912 signal->group_stop_count = 0;
913 signal->group_exit_code = 0;
914 }
915 }
916
917 return !sig_ignored(p, sig, from_ancestor_ns);
918}
919
920/*
921 * Test if P wants to take SIG. After we've checked all threads with this,
922 * it's equivalent to finding no threads not blocking SIG. Any threads not
923 * blocking SIG were ruled out because they are not running and already
924 * have pending signals. Such threads will dequeue from the shared queue
925 * as soon as they're available, so putting the signal on the shared queue
926 * will be equivalent to sending it to one such thread.
927 */
928static inline int wants_signal(int sig, struct task_struct *p)
929{
930 if (sigismember(&p->blocked, sig))
931 return 0;
932 if (p->flags & PF_EXITING)
933 return 0;
934 if (sig == SIGKILL)
935 return 1;
936 if (task_is_stopped_or_traced(p))
937 return 0;
938 return task_curr(p) || !signal_pending(p);
939}
940
941static void complete_signal(int sig, struct task_struct *p, int group)
942{
943 struct signal_struct *signal = p->signal;
944 struct task_struct *t;
945
946 /*
947 * Now find a thread we can wake up to take the signal off the queue.
948 *
949 * If the main thread wants the signal, it gets first crack.
950 * Probably the least surprising to the average bear.
951 */
952 if (wants_signal(sig, p))
953 t = p;
954 else if (!group || thread_group_empty(p))
955 /*
956 * There is just one thread and it does not need to be woken.
957 * It will dequeue unblocked signals before it runs again.
958 */
959 return;
960 else {
961 /*
962 * Otherwise try to find a suitable thread.
963 */
964 t = signal->curr_target;
965 while (!wants_signal(sig, t)) {
966 t = next_thread(t);
967 if (t == signal->curr_target)
968 /*
969 * No thread needs to be woken.
970 * Any eligible threads will see
971 * the signal in the queue soon.
972 */
973 return;
974 }
975 signal->curr_target = t;
976 }
977
978 /*
979 * Found a killable thread. If the signal will be fatal,
980 * then start taking the whole group down immediately.
981 */
982 if (sig_fatal(p, sig) &&
983 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
984 !sigismember(&t->real_blocked, sig) &&
985 (sig == SIGKILL || !t->ptrace)) {
986 /*
987 * This signal will be fatal to the whole group.
988 */
989 if (!sig_kernel_coredump(sig)) {
990 /*
991 * Start a group exit and wake everybody up.
992 * This way we don't have other threads
993 * running and doing things after a slower
994 * thread has the fatal signal pending.
995 */
996 signal->flags = SIGNAL_GROUP_EXIT;
997 signal->group_exit_code = sig;
998 signal->group_stop_count = 0;
999 t = p;
1000 do {
1001 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1002 sigaddset(&t->pending.signal, SIGKILL);
1003 signal_wake_up(t, 1);
1004 } while_each_thread(p, t);
1005 return;
1006 }
1007 }
1008
1009 /*
1010 * The signal is already in the shared-pending queue.
1011 * Tell the chosen thread to wake up and dequeue it.
1012 */
1013 signal_wake_up(t, sig == SIGKILL);
1014 return;
1015}
1016
1017static inline int legacy_queue(struct sigpending *signals, int sig)
1018{
1019 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1020}
1021
1022static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1023 int group, int from_ancestor_ns)
1024{
1025 struct sigpending *pending;
1026 struct sigqueue *q;
1027 int override_rlimit;
1028
1029 trace_signal_generate(sig, info, t);
1030
1031 assert_spin_locked(&t->sighand->siglock);
1032
1033 if (!prepare_signal(sig, t, from_ancestor_ns))
1034 return 0;
1035
1036 pending = group ? &t->signal->shared_pending : &t->pending;
1037 /*
1038 * Short-circuit ignored signals and support queuing
1039 * exactly one non-rt signal, so that we can get more
1040 * detailed information about the cause of the signal.
1041 */
1042 if (legacy_queue(pending, sig))
1043 return 0;
1044 /*
1045 * fast-pathed signals for kernel-internal things like SIGSTOP
1046 * or SIGKILL.
1047 */
1048 if (info == SEND_SIG_FORCED)
1049 goto out_set;
1050
1051 /*
1052 * Real-time signals must be queued if sent by sigqueue, or
1053 * some other real-time mechanism. It is implementation
1054 * defined whether kill() does so. We attempt to do so, on
1055 * the principle of least surprise, but since kill is not
1056 * allowed to fail with EAGAIN when low on memory we just
1057 * make sure at least one signal gets delivered and don't
1058 * pass on the info struct.
1059 */
1060 if (sig < SIGRTMIN)
1061 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1062 else
1063 override_rlimit = 0;
1064
1065 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1066 override_rlimit);
1067 if (q) {
1068 list_add_tail(&q->list, &pending->list);
1069 switch ((unsigned long) info) {
1070 case (unsigned long) SEND_SIG_NOINFO:
1071 q->info.si_signo = sig;
1072 q->info.si_errno = 0;
1073 q->info.si_code = SI_USER;
1074 q->info.si_pid = task_tgid_nr_ns(current,
1075 task_active_pid_ns(t));
1076 q->info.si_uid = current_uid();
1077 break;
1078 case (unsigned long) SEND_SIG_PRIV:
1079 q->info.si_signo = sig;
1080 q->info.si_errno = 0;
1081 q->info.si_code = SI_KERNEL;
1082 q->info.si_pid = 0;
1083 q->info.si_uid = 0;
1084 break;
1085 default:
1086 copy_siginfo(&q->info, info);
1087 if (from_ancestor_ns)
1088 q->info.si_pid = 0;
1089 break;
1090 }
1091 } else if (!is_si_special(info)) {
1092 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1093 /*
1094 * Queue overflow, abort. We may abort if the
1095 * signal was rt and sent by user using something
1096 * other than kill().
1097 */
1098 trace_signal_overflow_fail(sig, group, info);
1099 return -EAGAIN;
1100 } else {
1101 /*
1102 * This is a silent loss of information. We still
1103 * send the signal, but the *info bits are lost.
1104 */
1105 trace_signal_lose_info(sig, group, info);
1106 }
1107 }
1108
1109out_set:
1110 signalfd_notify(t, sig);
1111 sigaddset(&pending->signal, sig);
1112 complete_signal(sig, t, group);
1113 return 0;
1114}
1115
1116static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1117 int group)
1118{
1119 int from_ancestor_ns = 0;
1120
1121#ifdef CONFIG_PID_NS
1122 from_ancestor_ns = si_fromuser(info) &&
1123 !task_pid_nr_ns(current, task_active_pid_ns(t));
1124#endif
1125
1126 return __send_signal(sig, info, t, group, from_ancestor_ns);
1127}
1128
1129static void print_fatal_signal(struct pt_regs *regs, int signr)
1130{
1131 printk("%s/%d: potentially unexpected fatal signal %d.\n",
1132 current->comm, task_pid_nr(current), signr);
1133
1134#if defined(__i386__) && !defined(__arch_um__)
1135 printk("code at %08lx: ", regs->ip);
1136 {
1137 int i;
1138 for (i = 0; i < 16; i++) {
1139 unsigned char insn;
1140
1141 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1142 break;
1143 printk("%02x ", insn);
1144 }
1145 }
1146#endif
1147 printk("\n");
1148 preempt_disable();
1149 show_regs(regs);
1150 preempt_enable();
1151}
1152
1153static int __init setup_print_fatal_signals(char *str)
1154{
1155 get_option (&str, &print_fatal_signals);
1156
1157 return 1;
1158}
1159
1160__setup("print-fatal-signals=", setup_print_fatal_signals);
1161
1162int
1163__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1164{
1165 return send_signal(sig, info, p, 1);
1166}
1167
1168static int
1169specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1170{
1171 return send_signal(sig, info, t, 0);
1172}
1173
1174int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1175 bool group)
1176{
1177 unsigned long flags;
1178 int ret = -ESRCH;
1179
1180 if (lock_task_sighand(p, &flags)) {
1181 ret = send_signal(sig, info, p, group);
1182 unlock_task_sighand(p, &flags);
1183 }
1184
1185 return ret;
1186}
1187
1188/*
1189 * Force a signal that the process can't ignore: if necessary
1190 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1191 *
1192 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1193 * since we do not want to have a signal handler that was blocked
1194 * be invoked when user space had explicitly blocked it.
1195 *
1196 * We don't want to have recursive SIGSEGV's etc, for example,
1197 * that is why we also clear SIGNAL_UNKILLABLE.
1198 */
1199int
1200force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1201{
1202 unsigned long int flags;
1203 int ret, blocked, ignored;
1204 struct k_sigaction *action;
1205
1206 spin_lock_irqsave(&t->sighand->siglock, flags);
1207 action = &t->sighand->action[sig-1];
1208 ignored = action->sa.sa_handler == SIG_IGN;
1209 blocked = sigismember(&t->blocked, sig);
1210 if (blocked || ignored) {
1211 action->sa.sa_handler = SIG_DFL;
1212 if (blocked) {
1213 sigdelset(&t->blocked, sig);
1214 recalc_sigpending_and_wake(t);
1215 }
1216 }
1217 if (action->sa.sa_handler == SIG_DFL)
1218 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1219 ret = specific_send_sig_info(sig, info, t);
1220 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1221
1222 return ret;
1223}
1224
1225/*
1226 * Nuke all other threads in the group.
1227 */
1228int zap_other_threads(struct task_struct *p)
1229{
1230 struct task_struct *t = p;
1231 int count = 0;
1232
1233 p->signal->group_stop_count = 0;
1234
1235 while_each_thread(p, t) {
1236 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1237 count++;
1238
1239 /* Don't bother with already dead threads */
1240 if (t->exit_state)
1241 continue;
1242 sigaddset(&t->pending.signal, SIGKILL);
1243 signal_wake_up(t, 1);
1244 }
1245
1246 return count;
1247}
1248
1249struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1250 unsigned long *flags)
1251{
1252 struct sighand_struct *sighand;
1253
1254 for (;;) {
1255 local_irq_save(*flags);
1256 rcu_read_lock();
1257 sighand = rcu_dereference(tsk->sighand);
1258 if (unlikely(sighand == NULL)) {
1259 rcu_read_unlock();
1260 local_irq_restore(*flags);
1261 break;
1262 }
1263
1264 spin_lock(&sighand->siglock);
1265 if (likely(sighand == tsk->sighand)) {
1266 rcu_read_unlock();
1267 break;
1268 }
1269 spin_unlock(&sighand->siglock);
1270 rcu_read_unlock();
1271 local_irq_restore(*flags);
1272 }
1273
1274 return sighand;
1275}
1276
1277/*
1278 * send signal info to all the members of a group
1279 */
1280int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1281{
1282 int ret;
1283
1284 rcu_read_lock();
1285 ret = check_kill_permission(sig, info, p);
1286 rcu_read_unlock();
1287
1288 if (!ret && sig)
1289 ret = do_send_sig_info(sig, info, p, true);
1290
1291 return ret;
1292}
1293
1294/*
1295 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1296 * control characters do (^C, ^Z etc)
1297 * - the caller must hold at least a readlock on tasklist_lock
1298 */
1299int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1300{
1301 struct task_struct *p = NULL;
1302 int retval, success;
1303
1304 success = 0;
1305 retval = -ESRCH;
1306 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1307 int err = group_send_sig_info(sig, info, p);
1308 success |= !err;
1309 retval = err;
1310 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1311 return success ? 0 : retval;
1312}
1313
1314int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1315{
1316 int error = -ESRCH;
1317 struct task_struct *p;
1318
1319 rcu_read_lock();
1320retry:
1321 p = pid_task(pid, PIDTYPE_PID);
1322 if (p) {
1323 error = group_send_sig_info(sig, info, p);
1324 if (unlikely(error == -ESRCH))
1325 /*
1326 * The task was unhashed in between, try again.
1327 * If it is dead, pid_task() will return NULL,
1328 * if we race with de_thread() it will find the
1329 * new leader.
1330 */
1331 goto retry;
1332 }
1333 rcu_read_unlock();
1334
1335 return error;
1336}
1337
1338int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1339{
1340 int error;
1341 rcu_read_lock();
1342 error = kill_pid_info(sig, info, find_vpid(pid));
1343 rcu_read_unlock();
1344 return error;
1345}
1346
1347/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1348int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1349 uid_t uid, uid_t euid, u32 secid)
1350{
1351 int ret = -EINVAL;
1352 struct task_struct *p;
1353 const struct cred *pcred;
1354 unsigned long flags;
1355
1356 if (!valid_signal(sig))
1357 return ret;
1358
1359 rcu_read_lock();
1360 p = pid_task(pid, PIDTYPE_PID);
1361 if (!p) {
1362 ret = -ESRCH;
1363 goto out_unlock;
1364 }
1365 pcred = __task_cred(p);
1366 if (si_fromuser(info) &&
1367 euid != pcred->suid && euid != pcred->uid &&
1368 uid != pcred->suid && uid != pcred->uid) {
1369 ret = -EPERM;
1370 goto out_unlock;
1371 }
1372 ret = security_task_kill(p, info, sig, secid);
1373 if (ret)
1374 goto out_unlock;
1375
1376 if (sig) {
1377 if (lock_task_sighand(p, &flags)) {
1378 ret = __send_signal(sig, info, p, 1, 0);
1379 unlock_task_sighand(p, &flags);
1380 } else
1381 ret = -ESRCH;
1382 }
1383out_unlock:
1384 rcu_read_unlock();
1385 return ret;
1386}
1387EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1388
1389/*
1390 * kill_something_info() interprets pid in interesting ways just like kill(2).
1391 *
1392 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1393 * is probably wrong. Should make it like BSD or SYSV.
1394 */
1395
1396static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1397{
1398 int ret;
1399
1400 if (pid > 0) {
1401 rcu_read_lock();
1402 ret = kill_pid_info(sig, info, find_vpid(pid));
1403 rcu_read_unlock();
1404 return ret;
1405 }
1406
1407 read_lock(&tasklist_lock);
1408 if (pid != -1) {
1409 ret = __kill_pgrp_info(sig, info,
1410 pid ? find_vpid(-pid) : task_pgrp(current));
1411 } else {
1412 int retval = 0, count = 0;
1413 struct task_struct * p;
1414
1415 for_each_process(p) {
1416 if (task_pid_vnr(p) > 1 &&
1417 !same_thread_group(p, current)) {
1418 int err = group_send_sig_info(sig, info, p);
1419 ++count;
1420 if (err != -EPERM)
1421 retval = err;
1422 }
1423 }
1424 ret = count ? retval : -ESRCH;
1425 }
1426 read_unlock(&tasklist_lock);
1427
1428 return ret;
1429}
1430
1431/*
1432 * These are for backward compatibility with the rest of the kernel source.
1433 */
1434
1435int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1436{
1437 /*
1438 * Make sure legacy kernel users don't send in bad values
1439 * (normal paths check this in check_kill_permission).
1440 */
1441 if (!valid_signal(sig))
1442 return -EINVAL;
1443
1444 return do_send_sig_info(sig, info, p, false);
1445}
1446
1447#define __si_special(priv) \
1448 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1449
1450int
1451send_sig(int sig, struct task_struct *p, int priv)
1452{
1453 return send_sig_info(sig, __si_special(priv), p);
1454}
1455
1456void
1457force_sig(int sig, struct task_struct *p)
1458{
1459 force_sig_info(sig, SEND_SIG_PRIV, p);
1460}
1461
1462/*
1463 * When things go south during signal handling, we
1464 * will force a SIGSEGV. And if the signal that caused
1465 * the problem was already a SIGSEGV, we'll want to
1466 * make sure we don't even try to deliver the signal..
1467 */
1468int
1469force_sigsegv(int sig, struct task_struct *p)
1470{
1471 if (sig == SIGSEGV) {
1472 unsigned long flags;
1473 spin_lock_irqsave(&p->sighand->siglock, flags);
1474 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1475 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1476 }
1477 force_sig(SIGSEGV, p);
1478 return 0;
1479}
1480
1481int kill_pgrp(struct pid *pid, int sig, int priv)
1482{
1483 int ret;
1484
1485 read_lock(&tasklist_lock);
1486 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1487 read_unlock(&tasklist_lock);
1488
1489 return ret;
1490}
1491EXPORT_SYMBOL(kill_pgrp);
1492
1493int kill_pid(struct pid *pid, int sig, int priv)
1494{
1495 return kill_pid_info(sig, __si_special(priv), pid);
1496}
1497EXPORT_SYMBOL(kill_pid);
1498
1499/*
1500 * These functions support sending signals using preallocated sigqueue
1501 * structures. This is needed "because realtime applications cannot
1502 * afford to lose notifications of asynchronous events, like timer
1503 * expirations or I/O completions". In the case of POSIX Timers
1504 * we allocate the sigqueue structure from the timer_create. If this
1505 * allocation fails we are able to report the failure to the application
1506 * with an EAGAIN error.
1507 */
1508struct sigqueue *sigqueue_alloc(void)
1509{
1510 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1511
1512 if (q)
1513 q->flags |= SIGQUEUE_PREALLOC;
1514
1515 return q;
1516}
1517
1518void sigqueue_free(struct sigqueue *q)
1519{
1520 unsigned long flags;
1521 spinlock_t *lock = ¤t->sighand->siglock;
1522
1523 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1524 /*
1525 * We must hold ->siglock while testing q->list
1526 * to serialize with collect_signal() or with
1527 * __exit_signal()->flush_sigqueue().
1528 */
1529 spin_lock_irqsave(lock, flags);
1530 q->flags &= ~SIGQUEUE_PREALLOC;
1531 /*
1532 * If it is queued it will be freed when dequeued,
1533 * like the "regular" sigqueue.
1534 */
1535 if (!list_empty(&q->list))
1536 q = NULL;
1537 spin_unlock_irqrestore(lock, flags);
1538
1539 if (q)
1540 __sigqueue_free(q);
1541}
1542
1543int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1544{
1545 int sig = q->info.si_signo;
1546 struct sigpending *pending;
1547 unsigned long flags;
1548 int ret;
1549
1550 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1551
1552 ret = -1;
1553 if (!likely(lock_task_sighand(t, &flags)))
1554 goto ret;
1555
1556 ret = 1; /* the signal is ignored */
1557 if (!prepare_signal(sig, t, 0))
1558 goto out;
1559
1560 ret = 0;
1561 if (unlikely(!list_empty(&q->list))) {
1562 /*
1563 * If an SI_TIMER entry is already queue just increment
1564 * the overrun count.
1565 */
1566 BUG_ON(q->info.si_code != SI_TIMER);
1567 q->info.si_overrun++;
1568 goto out;
1569 }
1570 q->info.si_overrun = 0;
1571
1572 signalfd_notify(t, sig);
1573 pending = group ? &t->signal->shared_pending : &t->pending;
1574 list_add_tail(&q->list, &pending->list);
1575 sigaddset(&pending->signal, sig);
1576 complete_signal(sig, t, group);
1577out:
1578 unlock_task_sighand(t, &flags);
1579ret:
1580 return ret;
1581}
1582
1583/*
1584 * Let a parent know about the death of a child.
1585 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1586 *
1587 * Returns true if our parent ignored us and so we've switched to
1588 * self-reaping.
1589 */
1590bool do_notify_parent(struct task_struct *tsk, int sig)
1591{
1592 struct siginfo info;
1593 unsigned long flags;
1594 struct sighand_struct *psig;
1595 bool autoreap = false;
1596
1597 BUG_ON(sig == -1);
1598
1599 /* do_notify_parent_cldstop should have been called instead. */
1600 BUG_ON(task_is_stopped_or_traced(tsk));
1601
1602 BUG_ON(!tsk->ptrace &&
1603 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1604
1605 info.si_signo = sig;
1606 info.si_errno = 0;
1607 /*
1608 * we are under tasklist_lock here so our parent is tied to
1609 * us and cannot exit and release its namespace.
1610 *
1611 * the only it can is to switch its nsproxy with sys_unshare,
1612 * bu uncharing pid namespaces is not allowed, so we'll always
1613 * see relevant namespace
1614 *
1615 * write_lock() currently calls preempt_disable() which is the
1616 * same as rcu_read_lock(), but according to Oleg, this is not
1617 * correct to rely on this
1618 */
1619 rcu_read_lock();
1620 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1621 info.si_uid = __task_cred(tsk)->uid;
1622 rcu_read_unlock();
1623
1624 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime,
1625 tsk->signal->utime));
1626 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime,
1627 tsk->signal->stime));
1628
1629 info.si_status = tsk->exit_code & 0x7f;
1630 if (tsk->exit_code & 0x80)
1631 info.si_code = CLD_DUMPED;
1632 else if (tsk->exit_code & 0x7f)
1633 info.si_code = CLD_KILLED;
1634 else {
1635 info.si_code = CLD_EXITED;
1636 info.si_status = tsk->exit_code >> 8;
1637 }
1638
1639 psig = tsk->parent->sighand;
1640 spin_lock_irqsave(&psig->siglock, flags);
1641 if (!tsk->ptrace && sig == SIGCHLD &&
1642 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1643 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1644 /*
1645 * We are exiting and our parent doesn't care. POSIX.1
1646 * defines special semantics for setting SIGCHLD to SIG_IGN
1647 * or setting the SA_NOCLDWAIT flag: we should be reaped
1648 * automatically and not left for our parent's wait4 call.
1649 * Rather than having the parent do it as a magic kind of
1650 * signal handler, we just set this to tell do_exit that we
1651 * can be cleaned up without becoming a zombie. Note that
1652 * we still call __wake_up_parent in this case, because a
1653 * blocked sys_wait4 might now return -ECHILD.
1654 *
1655 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1656 * is implementation-defined: we do (if you don't want
1657 * it, just use SIG_IGN instead).
1658 */
1659 autoreap = true;
1660 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1661 sig = 0;
1662 }
1663 if (valid_signal(sig) && sig)
1664 __group_send_sig_info(sig, &info, tsk->parent);
1665 __wake_up_parent(tsk, tsk->parent);
1666 spin_unlock_irqrestore(&psig->siglock, flags);
1667
1668 return autoreap;
1669}
1670
1671/**
1672 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1673 * @tsk: task reporting the state change
1674 * @for_ptracer: the notification is for ptracer
1675 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1676 *
1677 * Notify @tsk's parent that the stopped/continued state has changed. If
1678 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1679 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1680 *
1681 * CONTEXT:
1682 * Must be called with tasklist_lock at least read locked.
1683 */
1684static void do_notify_parent_cldstop(struct task_struct *tsk,
1685 bool for_ptracer, int why)
1686{
1687 struct siginfo info;
1688 unsigned long flags;
1689 struct task_struct *parent;
1690 struct sighand_struct *sighand;
1691
1692 if (for_ptracer) {
1693 parent = tsk->parent;
1694 } else {
1695 tsk = tsk->group_leader;
1696 parent = tsk->real_parent;
1697 }
1698
1699 info.si_signo = SIGCHLD;
1700 info.si_errno = 0;
1701 /*
1702 * see comment in do_notify_parent() about the following 4 lines
1703 */
1704 rcu_read_lock();
1705 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1706 info.si_uid = __task_cred(tsk)->uid;
1707 rcu_read_unlock();
1708
1709 info.si_utime = cputime_to_clock_t(tsk->utime);
1710 info.si_stime = cputime_to_clock_t(tsk->stime);
1711
1712 info.si_code = why;
1713 switch (why) {
1714 case CLD_CONTINUED:
1715 info.si_status = SIGCONT;
1716 break;
1717 case CLD_STOPPED:
1718 info.si_status = tsk->signal->group_exit_code & 0x7f;
1719 break;
1720 case CLD_TRAPPED:
1721 info.si_status = tsk->exit_code & 0x7f;
1722 break;
1723 default:
1724 BUG();
1725 }
1726
1727 sighand = parent->sighand;
1728 spin_lock_irqsave(&sighand->siglock, flags);
1729 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1730 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1731 __group_send_sig_info(SIGCHLD, &info, parent);
1732 /*
1733 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1734 */
1735 __wake_up_parent(tsk, parent);
1736 spin_unlock_irqrestore(&sighand->siglock, flags);
1737}
1738
1739static inline int may_ptrace_stop(void)
1740{
1741 if (!likely(current->ptrace))
1742 return 0;
1743 /*
1744 * Are we in the middle of do_coredump?
1745 * If so and our tracer is also part of the coredump stopping
1746 * is a deadlock situation, and pointless because our tracer
1747 * is dead so don't allow us to stop.
1748 * If SIGKILL was already sent before the caller unlocked
1749 * ->siglock we must see ->core_state != NULL. Otherwise it
1750 * is safe to enter schedule().
1751 */
1752 if (unlikely(current->mm->core_state) &&
1753 unlikely(current->mm == current->parent->mm))
1754 return 0;
1755
1756 return 1;
1757}
1758
1759/*
1760 * Return non-zero if there is a SIGKILL that should be waking us up.
1761 * Called with the siglock held.
1762 */
1763static int sigkill_pending(struct task_struct *tsk)
1764{
1765 return sigismember(&tsk->pending.signal, SIGKILL) ||
1766 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1767}
1768
1769/*
1770 * This must be called with current->sighand->siglock held.
1771 *
1772 * This should be the path for all ptrace stops.
1773 * We always set current->last_siginfo while stopped here.
1774 * That makes it a way to test a stopped process for
1775 * being ptrace-stopped vs being job-control-stopped.
1776 *
1777 * If we actually decide not to stop at all because the tracer
1778 * is gone, we keep current->exit_code unless clear_code.
1779 */
1780static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1781 __releases(¤t->sighand->siglock)
1782 __acquires(¤t->sighand->siglock)
1783{
1784 bool gstop_done = false;
1785
1786 if (arch_ptrace_stop_needed(exit_code, info)) {
1787 /*
1788 * The arch code has something special to do before a
1789 * ptrace stop. This is allowed to block, e.g. for faults
1790 * on user stack pages. We can't keep the siglock while
1791 * calling arch_ptrace_stop, so we must release it now.
1792 * To preserve proper semantics, we must do this before
1793 * any signal bookkeeping like checking group_stop_count.
1794 * Meanwhile, a SIGKILL could come in before we retake the
1795 * siglock. That must prevent us from sleeping in TASK_TRACED.
1796 * So after regaining the lock, we must check for SIGKILL.
1797 */
1798 spin_unlock_irq(¤t->sighand->siglock);
1799 arch_ptrace_stop(exit_code, info);
1800 spin_lock_irq(¤t->sighand->siglock);
1801 if (sigkill_pending(current))
1802 return;
1803 }
1804
1805 /*
1806 * We're committing to trapping. TRACED should be visible before
1807 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1808 * Also, transition to TRACED and updates to ->jobctl should be
1809 * atomic with respect to siglock and should be done after the arch
1810 * hook as siglock is released and regrabbed across it.
1811 */
1812 set_current_state(TASK_TRACED);
1813
1814 current->last_siginfo = info;
1815 current->exit_code = exit_code;
1816
1817 /*
1818 * If @why is CLD_STOPPED, we're trapping to participate in a group
1819 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1820 * across siglock relocks since INTERRUPT was scheduled, PENDING
1821 * could be clear now. We act as if SIGCONT is received after
1822 * TASK_TRACED is entered - ignore it.
1823 */
1824 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1825 gstop_done = task_participate_group_stop(current);
1826
1827 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1828 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1829 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1830 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1831
1832 /* entering a trap, clear TRAPPING */
1833 task_clear_jobctl_trapping(current);
1834
1835 spin_unlock_irq(¤t->sighand->siglock);
1836 read_lock(&tasklist_lock);
1837 if (may_ptrace_stop()) {
1838 /*
1839 * Notify parents of the stop.
1840 *
1841 * While ptraced, there are two parents - the ptracer and
1842 * the real_parent of the group_leader. The ptracer should
1843 * know about every stop while the real parent is only
1844 * interested in the completion of group stop. The states
1845 * for the two don't interact with each other. Notify
1846 * separately unless they're gonna be duplicates.
1847 */
1848 do_notify_parent_cldstop(current, true, why);
1849 if (gstop_done && ptrace_reparented(current))
1850 do_notify_parent_cldstop(current, false, why);
1851
1852 /*
1853 * Don't want to allow preemption here, because
1854 * sys_ptrace() needs this task to be inactive.
1855 *
1856 * XXX: implement read_unlock_no_resched().
1857 */
1858 preempt_disable();
1859 read_unlock(&tasklist_lock);
1860 preempt_enable_no_resched();
1861 schedule();
1862 } else {
1863 /*
1864 * By the time we got the lock, our tracer went away.
1865 * Don't drop the lock yet, another tracer may come.
1866 *
1867 * If @gstop_done, the ptracer went away between group stop
1868 * completion and here. During detach, it would have set
1869 * JOBCTL_STOP_PENDING on us and we'll re-enter
1870 * TASK_STOPPED in do_signal_stop() on return, so notifying
1871 * the real parent of the group stop completion is enough.
1872 */
1873 if (gstop_done)
1874 do_notify_parent_cldstop(current, false, why);
1875
1876 __set_current_state(TASK_RUNNING);
1877 if (clear_code)
1878 current->exit_code = 0;
1879 read_unlock(&tasklist_lock);
1880 }
1881
1882 /*
1883 * While in TASK_TRACED, we were considered "frozen enough".
1884 * Now that we woke up, it's crucial if we're supposed to be
1885 * frozen that we freeze now before running anything substantial.
1886 */
1887 try_to_freeze();
1888
1889 /*
1890 * We are back. Now reacquire the siglock before touching
1891 * last_siginfo, so that we are sure to have synchronized with
1892 * any signal-sending on another CPU that wants to examine it.
1893 */
1894 spin_lock_irq(¤t->sighand->siglock);
1895 current->last_siginfo = NULL;
1896
1897 /* LISTENING can be set only during STOP traps, clear it */
1898 current->jobctl &= ~JOBCTL_LISTENING;
1899
1900 /*
1901 * Queued signals ignored us while we were stopped for tracing.
1902 * So check for any that we should take before resuming user mode.
1903 * This sets TIF_SIGPENDING, but never clears it.
1904 */
1905 recalc_sigpending_tsk(current);
1906}
1907
1908static void ptrace_do_notify(int signr, int exit_code, int why)
1909{
1910 siginfo_t info;
1911
1912 memset(&info, 0, sizeof info);
1913 info.si_signo = signr;
1914 info.si_code = exit_code;
1915 info.si_pid = task_pid_vnr(current);
1916 info.si_uid = current_uid();
1917
1918 /* Let the debugger run. */
1919 ptrace_stop(exit_code, why, 1, &info);
1920}
1921
1922void ptrace_notify(int exit_code)
1923{
1924 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1925
1926 spin_lock_irq(¤t->sighand->siglock);
1927 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1928 spin_unlock_irq(¤t->sighand->siglock);
1929}
1930
1931/**
1932 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1933 * @signr: signr causing group stop if initiating
1934 *
1935 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1936 * and participate in it. If already set, participate in the existing
1937 * group stop. If participated in a group stop (and thus slept), %true is
1938 * returned with siglock released.
1939 *
1940 * If ptraced, this function doesn't handle stop itself. Instead,
1941 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1942 * untouched. The caller must ensure that INTERRUPT trap handling takes
1943 * places afterwards.
1944 *
1945 * CONTEXT:
1946 * Must be called with @current->sighand->siglock held, which is released
1947 * on %true return.
1948 *
1949 * RETURNS:
1950 * %false if group stop is already cancelled or ptrace trap is scheduled.
1951 * %true if participated in group stop.
1952 */
1953static bool do_signal_stop(int signr)
1954 __releases(¤t->sighand->siglock)
1955{
1956 struct signal_struct *sig = current->signal;
1957
1958 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1959 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1960 struct task_struct *t;
1961
1962 /* signr will be recorded in task->jobctl for retries */
1963 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1964
1965 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1966 unlikely(signal_group_exit(sig)))
1967 return false;
1968 /*
1969 * There is no group stop already in progress. We must
1970 * initiate one now.
1971 *
1972 * While ptraced, a task may be resumed while group stop is
1973 * still in effect and then receive a stop signal and
1974 * initiate another group stop. This deviates from the
1975 * usual behavior as two consecutive stop signals can't
1976 * cause two group stops when !ptraced. That is why we
1977 * also check !task_is_stopped(t) below.
1978 *
1979 * The condition can be distinguished by testing whether
1980 * SIGNAL_STOP_STOPPED is already set. Don't generate
1981 * group_exit_code in such case.
1982 *
1983 * This is not necessary for SIGNAL_STOP_CONTINUED because
1984 * an intervening stop signal is required to cause two
1985 * continued events regardless of ptrace.
1986 */
1987 if (!(sig->flags & SIGNAL_STOP_STOPPED))
1988 sig->group_exit_code = signr;
1989 else
1990 WARN_ON_ONCE(!current->ptrace);
1991
1992 sig->group_stop_count = 0;
1993
1994 if (task_set_jobctl_pending(current, signr | gstop))
1995 sig->group_stop_count++;
1996
1997 for (t = next_thread(current); t != current;
1998 t = next_thread(t)) {
1999 /*
2000 * Setting state to TASK_STOPPED for a group
2001 * stop is always done with the siglock held,
2002 * so this check has no races.
2003 */
2004 if (!task_is_stopped(t) &&
2005 task_set_jobctl_pending(t, signr | gstop)) {
2006 sig->group_stop_count++;
2007 if (likely(!(t->ptrace & PT_SEIZED)))
2008 signal_wake_up(t, 0);
2009 else
2010 ptrace_trap_notify(t);
2011 }
2012 }
2013 }
2014
2015 if (likely(!current->ptrace)) {
2016 int notify = 0;
2017
2018 /*
2019 * If there are no other threads in the group, or if there
2020 * is a group stop in progress and we are the last to stop,
2021 * report to the parent.
2022 */
2023 if (task_participate_group_stop(current))
2024 notify = CLD_STOPPED;
2025
2026 __set_current_state(TASK_STOPPED);
2027 spin_unlock_irq(¤t->sighand->siglock);
2028
2029 /*
2030 * Notify the parent of the group stop completion. Because
2031 * we're not holding either the siglock or tasklist_lock
2032 * here, ptracer may attach inbetween; however, this is for
2033 * group stop and should always be delivered to the real
2034 * parent of the group leader. The new ptracer will get
2035 * its notification when this task transitions into
2036 * TASK_TRACED.
2037 */
2038 if (notify) {
2039 read_lock(&tasklist_lock);
2040 do_notify_parent_cldstop(current, false, notify);
2041 read_unlock(&tasklist_lock);
2042 }
2043
2044 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2045 schedule();
2046 return true;
2047 } else {
2048 /*
2049 * While ptraced, group stop is handled by STOP trap.
2050 * Schedule it and let the caller deal with it.
2051 */
2052 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2053 return false;
2054 }
2055}
2056
2057/**
2058 * do_jobctl_trap - take care of ptrace jobctl traps
2059 *
2060 * When PT_SEIZED, it's used for both group stop and explicit
2061 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2062 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2063 * the stop signal; otherwise, %SIGTRAP.
2064 *
2065 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2066 * number as exit_code and no siginfo.
2067 *
2068 * CONTEXT:
2069 * Must be called with @current->sighand->siglock held, which may be
2070 * released and re-acquired before returning with intervening sleep.
2071 */
2072static void do_jobctl_trap(void)
2073{
2074 struct signal_struct *signal = current->signal;
2075 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2076
2077 if (current->ptrace & PT_SEIZED) {
2078 if (!signal->group_stop_count &&
2079 !(signal->flags & SIGNAL_STOP_STOPPED))
2080 signr = SIGTRAP;
2081 WARN_ON_ONCE(!signr);
2082 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2083 CLD_STOPPED);
2084 } else {
2085 WARN_ON_ONCE(!signr);
2086 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2087 current->exit_code = 0;
2088 }
2089}
2090
2091static int ptrace_signal(int signr, siginfo_t *info,
2092 struct pt_regs *regs, void *cookie)
2093{
2094 ptrace_signal_deliver(regs, cookie);
2095 /*
2096 * We do not check sig_kernel_stop(signr) but set this marker
2097 * unconditionally because we do not know whether debugger will
2098 * change signr. This flag has no meaning unless we are going
2099 * to stop after return from ptrace_stop(). In this case it will
2100 * be checked in do_signal_stop(), we should only stop if it was
2101 * not cleared by SIGCONT while we were sleeping. See also the
2102 * comment in dequeue_signal().
2103 */
2104 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2105 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2106
2107 /* We're back. Did the debugger cancel the sig? */
2108 signr = current->exit_code;
2109 if (signr == 0)
2110 return signr;
2111
2112 current->exit_code = 0;
2113
2114 /*
2115 * Update the siginfo structure if the signal has
2116 * changed. If the debugger wanted something
2117 * specific in the siginfo structure then it should
2118 * have updated *info via PTRACE_SETSIGINFO.
2119 */
2120 if (signr != info->si_signo) {
2121 info->si_signo = signr;
2122 info->si_errno = 0;
2123 info->si_code = SI_USER;
2124 info->si_pid = task_pid_vnr(current->parent);
2125 info->si_uid = task_uid(current->parent);
2126 }
2127
2128 /* If the (new) signal is now blocked, requeue it. */
2129 if (sigismember(¤t->blocked, signr)) {
2130 specific_send_sig_info(signr, info, current);
2131 signr = 0;
2132 }
2133
2134 return signr;
2135}
2136
2137int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2138 struct pt_regs *regs, void *cookie)
2139{
2140 struct sighand_struct *sighand = current->sighand;
2141 struct signal_struct *signal = current->signal;
2142 int signr;
2143
2144relock:
2145 /*
2146 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2147 * While in TASK_STOPPED, we were considered "frozen enough".
2148 * Now that we woke up, it's crucial if we're supposed to be
2149 * frozen that we freeze now before running anything substantial.
2150 */
2151 try_to_freeze();
2152
2153 spin_lock_irq(&sighand->siglock);
2154 /*
2155 * Every stopped thread goes here after wakeup. Check to see if
2156 * we should notify the parent, prepare_signal(SIGCONT) encodes
2157 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2158 */
2159 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2160 int why;
2161
2162 if (signal->flags & SIGNAL_CLD_CONTINUED)
2163 why = CLD_CONTINUED;
2164 else
2165 why = CLD_STOPPED;
2166
2167 signal->flags &= ~SIGNAL_CLD_MASK;
2168
2169 spin_unlock_irq(&sighand->siglock);
2170
2171 /*
2172 * Notify the parent that we're continuing. This event is
2173 * always per-process and doesn't make whole lot of sense
2174 * for ptracers, who shouldn't consume the state via
2175 * wait(2) either, but, for backward compatibility, notify
2176 * the ptracer of the group leader too unless it's gonna be
2177 * a duplicate.
2178 */
2179 read_lock(&tasklist_lock);
2180 do_notify_parent_cldstop(current, false, why);
2181
2182 if (ptrace_reparented(current->group_leader))
2183 do_notify_parent_cldstop(current->group_leader,
2184 true, why);
2185 read_unlock(&tasklist_lock);
2186
2187 goto relock;
2188 }
2189
2190 for (;;) {
2191 struct k_sigaction *ka;
2192
2193 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2194 do_signal_stop(0))
2195 goto relock;
2196
2197 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2198 do_jobctl_trap();
2199 spin_unlock_irq(&sighand->siglock);
2200 goto relock;
2201 }
2202
2203 signr = dequeue_signal(current, ¤t->blocked, info);
2204
2205 if (!signr)
2206 break; /* will return 0 */
2207
2208 if (unlikely(current->ptrace) && signr != SIGKILL) {
2209 signr = ptrace_signal(signr, info,
2210 regs, cookie);
2211 if (!signr)
2212 continue;
2213 }
2214
2215 ka = &sighand->action[signr-1];
2216
2217 /* Trace actually delivered signals. */
2218 trace_signal_deliver(signr, info, ka);
2219
2220 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2221 continue;
2222 if (ka->sa.sa_handler != SIG_DFL) {
2223 /* Run the handler. */
2224 *return_ka = *ka;
2225
2226 if (ka->sa.sa_flags & SA_ONESHOT)
2227 ka->sa.sa_handler = SIG_DFL;
2228
2229 break; /* will return non-zero "signr" value */
2230 }
2231
2232 /*
2233 * Now we are doing the default action for this signal.
2234 */
2235 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2236 continue;
2237
2238 /*
2239 * Global init gets no signals it doesn't want.
2240 * Container-init gets no signals it doesn't want from same
2241 * container.
2242 *
2243 * Note that if global/container-init sees a sig_kernel_only()
2244 * signal here, the signal must have been generated internally
2245 * or must have come from an ancestor namespace. In either
2246 * case, the signal cannot be dropped.
2247 */
2248 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2249 !sig_kernel_only(signr))
2250 continue;
2251
2252 if (sig_kernel_stop(signr)) {
2253 /*
2254 * The default action is to stop all threads in
2255 * the thread group. The job control signals
2256 * do nothing in an orphaned pgrp, but SIGSTOP
2257 * always works. Note that siglock needs to be
2258 * dropped during the call to is_orphaned_pgrp()
2259 * because of lock ordering with tasklist_lock.
2260 * This allows an intervening SIGCONT to be posted.
2261 * We need to check for that and bail out if necessary.
2262 */
2263 if (signr != SIGSTOP) {
2264 spin_unlock_irq(&sighand->siglock);
2265
2266 /* signals can be posted during this window */
2267
2268 if (is_current_pgrp_orphaned())
2269 goto relock;
2270
2271 spin_lock_irq(&sighand->siglock);
2272 }
2273
2274 if (likely(do_signal_stop(info->si_signo))) {
2275 /* It released the siglock. */
2276 goto relock;
2277 }
2278
2279 /*
2280 * We didn't actually stop, due to a race
2281 * with SIGCONT or something like that.
2282 */
2283 continue;
2284 }
2285
2286 spin_unlock_irq(&sighand->siglock);
2287
2288 /*
2289 * Anything else is fatal, maybe with a core dump.
2290 */
2291 current->flags |= PF_SIGNALED;
2292
2293 if (sig_kernel_coredump(signr)) {
2294 if (print_fatal_signals)
2295 print_fatal_signal(regs, info->si_signo);
2296 /*
2297 * If it was able to dump core, this kills all
2298 * other threads in the group and synchronizes with
2299 * their demise. If we lost the race with another
2300 * thread getting here, it set group_exit_code
2301 * first and our do_group_exit call below will use
2302 * that value and ignore the one we pass it.
2303 */
2304 do_coredump(info->si_signo, info->si_signo, regs);
2305 }
2306
2307 /*
2308 * Death signals, no core dump.
2309 */
2310 do_group_exit(info->si_signo);
2311 /* NOTREACHED */
2312 }
2313 spin_unlock_irq(&sighand->siglock);
2314 return signr;
2315}
2316
2317/*
2318 * It could be that complete_signal() picked us to notify about the
2319 * group-wide signal. Other threads should be notified now to take
2320 * the shared signals in @which since we will not.
2321 */
2322static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2323{
2324 sigset_t retarget;
2325 struct task_struct *t;
2326
2327 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2328 if (sigisemptyset(&retarget))
2329 return;
2330
2331 t = tsk;
2332 while_each_thread(tsk, t) {
2333 if (t->flags & PF_EXITING)
2334 continue;
2335
2336 if (!has_pending_signals(&retarget, &t->blocked))
2337 continue;
2338 /* Remove the signals this thread can handle. */
2339 sigandsets(&retarget, &retarget, &t->blocked);
2340
2341 if (!signal_pending(t))
2342 signal_wake_up(t, 0);
2343
2344 if (sigisemptyset(&retarget))
2345 break;
2346 }
2347}
2348
2349void exit_signals(struct task_struct *tsk)
2350{
2351 int group_stop = 0;
2352 sigset_t unblocked;
2353
2354 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2355 tsk->flags |= PF_EXITING;
2356 return;
2357 }
2358
2359 spin_lock_irq(&tsk->sighand->siglock);
2360 /*
2361 * From now this task is not visible for group-wide signals,
2362 * see wants_signal(), do_signal_stop().
2363 */
2364 tsk->flags |= PF_EXITING;
2365 if (!signal_pending(tsk))
2366 goto out;
2367
2368 unblocked = tsk->blocked;
2369 signotset(&unblocked);
2370 retarget_shared_pending(tsk, &unblocked);
2371
2372 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2373 task_participate_group_stop(tsk))
2374 group_stop = CLD_STOPPED;
2375out:
2376 spin_unlock_irq(&tsk->sighand->siglock);
2377
2378 /*
2379 * If group stop has completed, deliver the notification. This
2380 * should always go to the real parent of the group leader.
2381 */
2382 if (unlikely(group_stop)) {
2383 read_lock(&tasklist_lock);
2384 do_notify_parent_cldstop(tsk, false, group_stop);
2385 read_unlock(&tasklist_lock);
2386 }
2387}
2388
2389EXPORT_SYMBOL(recalc_sigpending);
2390EXPORT_SYMBOL_GPL(dequeue_signal);
2391EXPORT_SYMBOL(flush_signals);
2392EXPORT_SYMBOL(force_sig);
2393EXPORT_SYMBOL(send_sig);
2394EXPORT_SYMBOL(send_sig_info);
2395EXPORT_SYMBOL(sigprocmask);
2396EXPORT_SYMBOL(block_all_signals);
2397EXPORT_SYMBOL(unblock_all_signals);
2398
2399
2400/*
2401 * System call entry points.
2402 */
2403
2404/**
2405 * sys_restart_syscall - restart a system call
2406 */
2407SYSCALL_DEFINE0(restart_syscall)
2408{
2409 struct restart_block *restart = ¤t_thread_info()->restart_block;
2410 return restart->fn(restart);
2411}
2412
2413long do_no_restart_syscall(struct restart_block *param)
2414{
2415 return -EINTR;
2416}
2417
2418static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2419{
2420 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2421 sigset_t newblocked;
2422 /* A set of now blocked but previously unblocked signals. */
2423 sigandnsets(&newblocked, newset, ¤t->blocked);
2424 retarget_shared_pending(tsk, &newblocked);
2425 }
2426 tsk->blocked = *newset;
2427 recalc_sigpending();
2428}
2429
2430/**
2431 * set_current_blocked - change current->blocked mask
2432 * @newset: new mask
2433 *
2434 * It is wrong to change ->blocked directly, this helper should be used
2435 * to ensure the process can't miss a shared signal we are going to block.
2436 */
2437void set_current_blocked(const sigset_t *newset)
2438{
2439 struct task_struct *tsk = current;
2440
2441 spin_lock_irq(&tsk->sighand->siglock);
2442 __set_task_blocked(tsk, newset);
2443 spin_unlock_irq(&tsk->sighand->siglock);
2444}
2445
2446/*
2447 * This is also useful for kernel threads that want to temporarily
2448 * (or permanently) block certain signals.
2449 *
2450 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2451 * interface happily blocks "unblockable" signals like SIGKILL
2452 * and friends.
2453 */
2454int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2455{
2456 struct task_struct *tsk = current;
2457 sigset_t newset;
2458
2459 /* Lockless, only current can change ->blocked, never from irq */
2460 if (oldset)
2461 *oldset = tsk->blocked;
2462
2463 switch (how) {
2464 case SIG_BLOCK:
2465 sigorsets(&newset, &tsk->blocked, set);
2466 break;
2467 case SIG_UNBLOCK:
2468 sigandnsets(&newset, &tsk->blocked, set);
2469 break;
2470 case SIG_SETMASK:
2471 newset = *set;
2472 break;
2473 default:
2474 return -EINVAL;
2475 }
2476
2477 set_current_blocked(&newset);
2478 return 0;
2479}
2480
2481/**
2482 * sys_rt_sigprocmask - change the list of currently blocked signals
2483 * @how: whether to add, remove, or set signals
2484 * @nset: stores pending signals
2485 * @oset: previous value of signal mask if non-null
2486 * @sigsetsize: size of sigset_t type
2487 */
2488SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2489 sigset_t __user *, oset, size_t, sigsetsize)
2490{
2491 sigset_t old_set, new_set;
2492 int error;
2493
2494 /* XXX: Don't preclude handling different sized sigset_t's. */
2495 if (sigsetsize != sizeof(sigset_t))
2496 return -EINVAL;
2497
2498 old_set = current->blocked;
2499
2500 if (nset) {
2501 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2502 return -EFAULT;
2503 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2504
2505 error = sigprocmask(how, &new_set, NULL);
2506 if (error)
2507 return error;
2508 }
2509
2510 if (oset) {
2511 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2512 return -EFAULT;
2513 }
2514
2515 return 0;
2516}
2517
2518long do_sigpending(void __user *set, unsigned long sigsetsize)
2519{
2520 long error = -EINVAL;
2521 sigset_t pending;
2522
2523 if (sigsetsize > sizeof(sigset_t))
2524 goto out;
2525
2526 spin_lock_irq(¤t->sighand->siglock);
2527 sigorsets(&pending, ¤t->pending.signal,
2528 ¤t->signal->shared_pending.signal);
2529 spin_unlock_irq(¤t->sighand->siglock);
2530
2531 /* Outside the lock because only this thread touches it. */
2532 sigandsets(&pending, ¤t->blocked, &pending);
2533
2534 error = -EFAULT;
2535 if (!copy_to_user(set, &pending, sigsetsize))
2536 error = 0;
2537
2538out:
2539 return error;
2540}
2541
2542/**
2543 * sys_rt_sigpending - examine a pending signal that has been raised
2544 * while blocked
2545 * @set: stores pending signals
2546 * @sigsetsize: size of sigset_t type or larger
2547 */
2548SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2549{
2550 return do_sigpending(set, sigsetsize);
2551}
2552
2553#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2554
2555int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2556{
2557 int err;
2558
2559 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2560 return -EFAULT;
2561 if (from->si_code < 0)
2562 return __copy_to_user(to, from, sizeof(siginfo_t))
2563 ? -EFAULT : 0;
2564 /*
2565 * If you change siginfo_t structure, please be sure
2566 * this code is fixed accordingly.
2567 * Please remember to update the signalfd_copyinfo() function
2568 * inside fs/signalfd.c too, in case siginfo_t changes.
2569 * It should never copy any pad contained in the structure
2570 * to avoid security leaks, but must copy the generic
2571 * 3 ints plus the relevant union member.
2572 */
2573 err = __put_user(from->si_signo, &to->si_signo);
2574 err |= __put_user(from->si_errno, &to->si_errno);
2575 err |= __put_user((short)from->si_code, &to->si_code);
2576 switch (from->si_code & __SI_MASK) {
2577 case __SI_KILL:
2578 err |= __put_user(from->si_pid, &to->si_pid);
2579 err |= __put_user(from->si_uid, &to->si_uid);
2580 break;
2581 case __SI_TIMER:
2582 err |= __put_user(from->si_tid, &to->si_tid);
2583 err |= __put_user(from->si_overrun, &to->si_overrun);
2584 err |= __put_user(from->si_ptr, &to->si_ptr);
2585 break;
2586 case __SI_POLL:
2587 err |= __put_user(from->si_band, &to->si_band);
2588 err |= __put_user(from->si_fd, &to->si_fd);
2589 break;
2590 case __SI_FAULT:
2591 err |= __put_user(from->si_addr, &to->si_addr);
2592#ifdef __ARCH_SI_TRAPNO
2593 err |= __put_user(from->si_trapno, &to->si_trapno);
2594#endif
2595#ifdef BUS_MCEERR_AO
2596 /*
2597 * Other callers might not initialize the si_lsb field,
2598 * so check explicitly for the right codes here.
2599 */
2600 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2601 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2602#endif
2603 break;
2604 case __SI_CHLD:
2605 err |= __put_user(from->si_pid, &to->si_pid);
2606 err |= __put_user(from->si_uid, &to->si_uid);
2607 err |= __put_user(from->si_status, &to->si_status);
2608 err |= __put_user(from->si_utime, &to->si_utime);
2609 err |= __put_user(from->si_stime, &to->si_stime);
2610 break;
2611 case __SI_RT: /* This is not generated by the kernel as of now. */
2612 case __SI_MESGQ: /* But this is */
2613 err |= __put_user(from->si_pid, &to->si_pid);
2614 err |= __put_user(from->si_uid, &to->si_uid);
2615 err |= __put_user(from->si_ptr, &to->si_ptr);
2616 break;
2617 default: /* this is just in case for now ... */
2618 err |= __put_user(from->si_pid, &to->si_pid);
2619 err |= __put_user(from->si_uid, &to->si_uid);
2620 break;
2621 }
2622 return err;
2623}
2624
2625#endif
2626
2627/**
2628 * do_sigtimedwait - wait for queued signals specified in @which
2629 * @which: queued signals to wait for
2630 * @info: if non-null, the signal's siginfo is returned here
2631 * @ts: upper bound on process time suspension
2632 */
2633int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2634 const struct timespec *ts)
2635{
2636 struct task_struct *tsk = current;
2637 long timeout = MAX_SCHEDULE_TIMEOUT;
2638 sigset_t mask = *which;
2639 int sig;
2640
2641 if (ts) {
2642 if (!timespec_valid(ts))
2643 return -EINVAL;
2644 timeout = timespec_to_jiffies(ts);
2645 /*
2646 * We can be close to the next tick, add another one
2647 * to ensure we will wait at least the time asked for.
2648 */
2649 if (ts->tv_sec || ts->tv_nsec)
2650 timeout++;
2651 }
2652
2653 /*
2654 * Invert the set of allowed signals to get those we want to block.
2655 */
2656 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2657 signotset(&mask);
2658
2659 spin_lock_irq(&tsk->sighand->siglock);
2660 sig = dequeue_signal(tsk, &mask, info);
2661 if (!sig && timeout) {
2662 /*
2663 * None ready, temporarily unblock those we're interested
2664 * while we are sleeping in so that we'll be awakened when
2665 * they arrive. Unblocking is always fine, we can avoid
2666 * set_current_blocked().
2667 */
2668 tsk->real_blocked = tsk->blocked;
2669 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2670 recalc_sigpending();
2671 spin_unlock_irq(&tsk->sighand->siglock);
2672
2673 timeout = schedule_timeout_interruptible(timeout);
2674
2675 spin_lock_irq(&tsk->sighand->siglock);
2676 __set_task_blocked(tsk, &tsk->real_blocked);
2677 siginitset(&tsk->real_blocked, 0);
2678 sig = dequeue_signal(tsk, &mask, info);
2679 }
2680 spin_unlock_irq(&tsk->sighand->siglock);
2681
2682 if (sig)
2683 return sig;
2684 return timeout ? -EINTR : -EAGAIN;
2685}
2686
2687/**
2688 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2689 * in @uthese
2690 * @uthese: queued signals to wait for
2691 * @uinfo: if non-null, the signal's siginfo is returned here
2692 * @uts: upper bound on process time suspension
2693 * @sigsetsize: size of sigset_t type
2694 */
2695SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2696 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2697 size_t, sigsetsize)
2698{
2699 sigset_t these;
2700 struct timespec ts;
2701 siginfo_t info;
2702 int ret;
2703
2704 /* XXX: Don't preclude handling different sized sigset_t's. */
2705 if (sigsetsize != sizeof(sigset_t))
2706 return -EINVAL;
2707
2708 if (copy_from_user(&these, uthese, sizeof(these)))
2709 return -EFAULT;
2710
2711 if (uts) {
2712 if (copy_from_user(&ts, uts, sizeof(ts)))
2713 return -EFAULT;
2714 }
2715
2716 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2717
2718 if (ret > 0 && uinfo) {
2719 if (copy_siginfo_to_user(uinfo, &info))
2720 ret = -EFAULT;
2721 }
2722
2723 return ret;
2724}
2725
2726/**
2727 * sys_kill - send a signal to a process
2728 * @pid: the PID of the process
2729 * @sig: signal to be sent
2730 */
2731SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2732{
2733 struct siginfo info;
2734
2735 info.si_signo = sig;
2736 info.si_errno = 0;
2737 info.si_code = SI_USER;
2738 info.si_pid = task_tgid_vnr(current);
2739 info.si_uid = current_uid();
2740
2741 return kill_something_info(sig, &info, pid);
2742}
2743
2744static int
2745do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2746{
2747 struct task_struct *p;
2748 int error = -ESRCH;
2749
2750 rcu_read_lock();
2751 p = find_task_by_vpid(pid);
2752 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2753 error = check_kill_permission(sig, info, p);
2754 /*
2755 * The null signal is a permissions and process existence
2756 * probe. No signal is actually delivered.
2757 */
2758 if (!error && sig) {
2759 error = do_send_sig_info(sig, info, p, false);
2760 /*
2761 * If lock_task_sighand() failed we pretend the task
2762 * dies after receiving the signal. The window is tiny,
2763 * and the signal is private anyway.
2764 */
2765 if (unlikely(error == -ESRCH))
2766 error = 0;
2767 }
2768 }
2769 rcu_read_unlock();
2770
2771 return error;
2772}
2773
2774static int do_tkill(pid_t tgid, pid_t pid, int sig)
2775{
2776 struct siginfo info;
2777
2778 info.si_signo = sig;
2779 info.si_errno = 0;
2780 info.si_code = SI_TKILL;
2781 info.si_pid = task_tgid_vnr(current);
2782 info.si_uid = current_uid();
2783
2784 return do_send_specific(tgid, pid, sig, &info);
2785}
2786
2787/**
2788 * sys_tgkill - send signal to one specific thread
2789 * @tgid: the thread group ID of the thread
2790 * @pid: the PID of the thread
2791 * @sig: signal to be sent
2792 *
2793 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2794 * exists but it's not belonging to the target process anymore. This
2795 * method solves the problem of threads exiting and PIDs getting reused.
2796 */
2797SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2798{
2799 /* This is only valid for single tasks */
2800 if (pid <= 0 || tgid <= 0)
2801 return -EINVAL;
2802
2803 return do_tkill(tgid, pid, sig);
2804}
2805
2806/**
2807 * sys_tkill - send signal to one specific task
2808 * @pid: the PID of the task
2809 * @sig: signal to be sent
2810 *
2811 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2812 */
2813SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2814{
2815 /* This is only valid for single tasks */
2816 if (pid <= 0)
2817 return -EINVAL;
2818
2819 return do_tkill(0, pid, sig);
2820}
2821
2822/**
2823 * sys_rt_sigqueueinfo - send signal information to a signal
2824 * @pid: the PID of the thread
2825 * @sig: signal to be sent
2826 * @uinfo: signal info to be sent
2827 */
2828SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2829 siginfo_t __user *, uinfo)
2830{
2831 siginfo_t info;
2832
2833 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2834 return -EFAULT;
2835
2836 /* Not even root can pretend to send signals from the kernel.
2837 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2838 */
2839 if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2840 /* We used to allow any < 0 si_code */
2841 WARN_ON_ONCE(info.si_code < 0);
2842 return -EPERM;
2843 }
2844 info.si_signo = sig;
2845
2846 /* POSIX.1b doesn't mention process groups. */
2847 return kill_proc_info(sig, &info, pid);
2848}
2849
2850long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2851{
2852 /* This is only valid for single tasks */
2853 if (pid <= 0 || tgid <= 0)
2854 return -EINVAL;
2855
2856 /* Not even root can pretend to send signals from the kernel.
2857 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2858 */
2859 if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2860 /* We used to allow any < 0 si_code */
2861 WARN_ON_ONCE(info->si_code < 0);
2862 return -EPERM;
2863 }
2864 info->si_signo = sig;
2865
2866 return do_send_specific(tgid, pid, sig, info);
2867}
2868
2869SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2870 siginfo_t __user *, uinfo)
2871{
2872 siginfo_t info;
2873
2874 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2875 return -EFAULT;
2876
2877 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
2878}
2879
2880int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2881{
2882 struct task_struct *t = current;
2883 struct k_sigaction *k;
2884 sigset_t mask;
2885
2886 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2887 return -EINVAL;
2888
2889 k = &t->sighand->action[sig-1];
2890
2891 spin_lock_irq(¤t->sighand->siglock);
2892 if (oact)
2893 *oact = *k;
2894
2895 if (act) {
2896 sigdelsetmask(&act->sa.sa_mask,
2897 sigmask(SIGKILL) | sigmask(SIGSTOP));
2898 *k = *act;
2899 /*
2900 * POSIX 3.3.1.3:
2901 * "Setting a signal action to SIG_IGN for a signal that is
2902 * pending shall cause the pending signal to be discarded,
2903 * whether or not it is blocked."
2904 *
2905 * "Setting a signal action to SIG_DFL for a signal that is
2906 * pending and whose default action is to ignore the signal
2907 * (for example, SIGCHLD), shall cause the pending signal to
2908 * be discarded, whether or not it is blocked"
2909 */
2910 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
2911 sigemptyset(&mask);
2912 sigaddset(&mask, sig);
2913 rm_from_queue_full(&mask, &t->signal->shared_pending);
2914 do {
2915 rm_from_queue_full(&mask, &t->pending);
2916 t = next_thread(t);
2917 } while (t != current);
2918 }
2919 }
2920
2921 spin_unlock_irq(¤t->sighand->siglock);
2922 return 0;
2923}
2924
2925int
2926do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2927{
2928 stack_t oss;
2929 int error;
2930
2931 oss.ss_sp = (void __user *) current->sas_ss_sp;
2932 oss.ss_size = current->sas_ss_size;
2933 oss.ss_flags = sas_ss_flags(sp);
2934
2935 if (uss) {
2936 void __user *ss_sp;
2937 size_t ss_size;
2938 int ss_flags;
2939
2940 error = -EFAULT;
2941 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
2942 goto out;
2943 error = __get_user(ss_sp, &uss->ss_sp) |
2944 __get_user(ss_flags, &uss->ss_flags) |
2945 __get_user(ss_size, &uss->ss_size);
2946 if (error)
2947 goto out;
2948
2949 error = -EPERM;
2950 if (on_sig_stack(sp))
2951 goto out;
2952
2953 error = -EINVAL;
2954 /*
2955 * Note - this code used to test ss_flags incorrectly:
2956 * old code may have been written using ss_flags==0
2957 * to mean ss_flags==SS_ONSTACK (as this was the only
2958 * way that worked) - this fix preserves that older
2959 * mechanism.
2960 */
2961 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2962 goto out;
2963
2964 if (ss_flags == SS_DISABLE) {
2965 ss_size = 0;
2966 ss_sp = NULL;
2967 } else {
2968 error = -ENOMEM;
2969 if (ss_size < MINSIGSTKSZ)
2970 goto out;
2971 }
2972
2973 current->sas_ss_sp = (unsigned long) ss_sp;
2974 current->sas_ss_size = ss_size;
2975 }
2976
2977 error = 0;
2978 if (uoss) {
2979 error = -EFAULT;
2980 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
2981 goto out;
2982 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
2983 __put_user(oss.ss_size, &uoss->ss_size) |
2984 __put_user(oss.ss_flags, &uoss->ss_flags);
2985 }
2986
2987out:
2988 return error;
2989}
2990
2991#ifdef __ARCH_WANT_SYS_SIGPENDING
2992
2993/**
2994 * sys_sigpending - examine pending signals
2995 * @set: where mask of pending signal is returned
2996 */
2997SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
2998{
2999 return do_sigpending(set, sizeof(*set));
3000}
3001
3002#endif
3003
3004#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3005/**
3006 * sys_sigprocmask - examine and change blocked signals
3007 * @how: whether to add, remove, or set signals
3008 * @nset: signals to add or remove (if non-null)
3009 * @oset: previous value of signal mask if non-null
3010 *
3011 * Some platforms have their own version with special arguments;
3012 * others support only sys_rt_sigprocmask.
3013 */
3014
3015SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3016 old_sigset_t __user *, oset)
3017{
3018 old_sigset_t old_set, new_set;
3019 sigset_t new_blocked;
3020
3021 old_set = current->blocked.sig[0];
3022
3023 if (nset) {
3024 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3025 return -EFAULT;
3026 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3027
3028 new_blocked = current->blocked;
3029
3030 switch (how) {
3031 case SIG_BLOCK:
3032 sigaddsetmask(&new_blocked, new_set);
3033 break;
3034 case SIG_UNBLOCK:
3035 sigdelsetmask(&new_blocked, new_set);
3036 break;
3037 case SIG_SETMASK:
3038 new_blocked.sig[0] = new_set;
3039 break;
3040 default:
3041 return -EINVAL;
3042 }
3043
3044 set_current_blocked(&new_blocked);
3045 }
3046
3047 if (oset) {
3048 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3049 return -EFAULT;
3050 }
3051
3052 return 0;
3053}
3054#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3055
3056#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3057/**
3058 * sys_rt_sigaction - alter an action taken by a process
3059 * @sig: signal to be sent
3060 * @act: new sigaction
3061 * @oact: used to save the previous sigaction
3062 * @sigsetsize: size of sigset_t type
3063 */
3064SYSCALL_DEFINE4(rt_sigaction, int, sig,
3065 const struct sigaction __user *, act,
3066 struct sigaction __user *, oact,
3067 size_t, sigsetsize)
3068{
3069 struct k_sigaction new_sa, old_sa;
3070 int ret = -EINVAL;
3071
3072 /* XXX: Don't preclude handling different sized sigset_t's. */
3073 if (sigsetsize != sizeof(sigset_t))
3074 goto out;
3075
3076 if (act) {
3077 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3078 return -EFAULT;
3079 }
3080
3081 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3082
3083 if (!ret && oact) {
3084 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3085 return -EFAULT;
3086 }
3087out:
3088 return ret;
3089}
3090#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3091
3092#ifdef __ARCH_WANT_SYS_SGETMASK
3093
3094/*
3095 * For backwards compatibility. Functionality superseded by sigprocmask.
3096 */
3097SYSCALL_DEFINE0(sgetmask)
3098{
3099 /* SMP safe */
3100 return current->blocked.sig[0];
3101}
3102
3103SYSCALL_DEFINE1(ssetmask, int, newmask)
3104{
3105 int old = current->blocked.sig[0];
3106 sigset_t newset;
3107
3108 siginitset(&newset, newmask & ~(sigmask(SIGKILL) | sigmask(SIGSTOP)));
3109 set_current_blocked(&newset);
3110
3111 return old;
3112}
3113#endif /* __ARCH_WANT_SGETMASK */
3114
3115#ifdef __ARCH_WANT_SYS_SIGNAL
3116/*
3117 * For backwards compatibility. Functionality superseded by sigaction.
3118 */
3119SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3120{
3121 struct k_sigaction new_sa, old_sa;
3122 int ret;
3123
3124 new_sa.sa.sa_handler = handler;
3125 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3126 sigemptyset(&new_sa.sa.sa_mask);
3127
3128 ret = do_sigaction(sig, &new_sa, &old_sa);
3129
3130 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3131}
3132#endif /* __ARCH_WANT_SYS_SIGNAL */
3133
3134#ifdef __ARCH_WANT_SYS_PAUSE
3135
3136SYSCALL_DEFINE0(pause)
3137{
3138 while (!signal_pending(current)) {
3139 current->state = TASK_INTERRUPTIBLE;
3140 schedule();
3141 }
3142 return -ERESTARTNOHAND;
3143}
3144
3145#endif
3146
3147#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3148/**
3149 * sys_rt_sigsuspend - replace the signal mask for a value with the
3150 * @unewset value until a signal is received
3151 * @unewset: new signal mask value
3152 * @sigsetsize: size of sigset_t type
3153 */
3154SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3155{
3156 sigset_t newset;
3157
3158 /* XXX: Don't preclude handling different sized sigset_t's. */
3159 if (sigsetsize != sizeof(sigset_t))
3160 return -EINVAL;
3161
3162 if (copy_from_user(&newset, unewset, sizeof(newset)))
3163 return -EFAULT;
3164 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
3165
3166 current->saved_sigmask = current->blocked;
3167 set_current_blocked(&newset);
3168
3169 current->state = TASK_INTERRUPTIBLE;
3170 schedule();
3171 set_restore_sigmask();
3172 return -ERESTARTNOHAND;
3173}
3174#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
3175
3176__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3177{
3178 return NULL;
3179}
3180
3181void __init signals_init(void)
3182{
3183 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3184}
3185
3186#ifdef CONFIG_KGDB_KDB
3187#include <linux/kdb.h>
3188/*
3189 * kdb_send_sig_info - Allows kdb to send signals without exposing
3190 * signal internals. This function checks if the required locks are
3191 * available before calling the main signal code, to avoid kdb
3192 * deadlocks.
3193 */
3194void
3195kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3196{
3197 static struct task_struct *kdb_prev_t;
3198 int sig, new_t;
3199 if (!spin_trylock(&t->sighand->siglock)) {
3200 kdb_printf("Can't do kill command now.\n"
3201 "The sigmask lock is held somewhere else in "
3202 "kernel, try again later\n");
3203 return;
3204 }
3205 spin_unlock(&t->sighand->siglock);
3206 new_t = kdb_prev_t != t;
3207 kdb_prev_t = t;
3208 if (t->state != TASK_RUNNING && new_t) {
3209 kdb_printf("Process is not RUNNING, sending a signal from "
3210 "kdb risks deadlock\n"
3211 "on the run queue locks. "
3212 "The signal has _not_ been sent.\n"
3213 "Reissue the kill command if you want to risk "
3214 "the deadlock.\n");
3215 return;
3216 }
3217 sig = info->si_signo;
3218 if (send_sig_info(sig, info, t))
3219 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3220 sig, t->pid);
3221 else
3222 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3223}
3224#endif /* CONFIG_KGDB_KDB */