Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/mm.h>
  26#include <linux/proc_fs.h>
  27#include <linux/tty.h>
  28#include <linux/binfmts.h>
  29#include <linux/coredump.h>
  30#include <linux/security.h>
  31#include <linux/syscalls.h>
  32#include <linux/ptrace.h>
  33#include <linux/signal.h>
  34#include <linux/signalfd.h>
  35#include <linux/ratelimit.h>
  36#include <linux/task_work.h>
  37#include <linux/capability.h>
  38#include <linux/freezer.h>
  39#include <linux/pid_namespace.h>
  40#include <linux/nsproxy.h>
  41#include <linux/user_namespace.h>
  42#include <linux/uprobes.h>
  43#include <linux/compat.h>
  44#include <linux/cn_proc.h>
  45#include <linux/compiler.h>
  46#include <linux/posix-timers.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49#include <linux/sysctl.h>
  50#include <uapi/linux/pidfd.h>
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/signal.h>
  54
  55#include <asm/param.h>
  56#include <linux/uaccess.h>
  57#include <asm/unistd.h>
  58#include <asm/siginfo.h>
  59#include <asm/cacheflush.h>
  60#include <asm/syscall.h>	/* for syscall_get_* */
  61
  62#include "time/posix-timers.h"
  63
  64/*
  65 * SLAB caches for signal bits.
  66 */
  67
  68static struct kmem_cache *sigqueue_cachep;
  69
  70int print_fatal_signals __read_mostly;
  71
  72static void __user *sig_handler(struct task_struct *t, int sig)
  73{
  74	return t->sighand->action[sig - 1].sa.sa_handler;
  75}
  76
  77static inline bool sig_handler_ignored(void __user *handler, int sig)
  78{
  79	/* Is it explicitly or implicitly ignored? */
  80	return handler == SIG_IGN ||
  81	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  82}
  83
  84static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  85{
  86	void __user *handler;
  87
  88	handler = sig_handler(t, sig);
  89
  90	/* SIGKILL and SIGSTOP may not be sent to the global init */
  91	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  92		return true;
  93
  94	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  95	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  96		return true;
  97
  98	/* Only allow kernel generated signals to this kthread */
  99	if (unlikely((t->flags & PF_KTHREAD) &&
 100		     (handler == SIG_KTHREAD_KERNEL) && !force))
 101		return true;
 102
 103	return sig_handler_ignored(handler, sig);
 104}
 105
 106static bool sig_ignored(struct task_struct *t, int sig, bool force)
 107{
 108	/*
 109	 * Blocked signals are never ignored, since the
 110	 * signal handler may change by the time it is
 111	 * unblocked.
 112	 */
 113	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 114		return false;
 115
 116	/*
 117	 * Tracers may want to know about even ignored signal unless it
 118	 * is SIGKILL which can't be reported anyway but can be ignored
 119	 * by SIGNAL_UNKILLABLE task.
 120	 */
 121	if (t->ptrace && sig != SIGKILL)
 122		return false;
 123
 124	return sig_task_ignored(t, sig, force);
 125}
 126
 127/*
 128 * Re-calculate pending state from the set of locally pending
 129 * signals, globally pending signals, and blocked signals.
 130 */
 131static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 132{
 133	unsigned long ready;
 134	long i;
 135
 136	switch (_NSIG_WORDS) {
 137	default:
 138		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 139			ready |= signal->sig[i] &~ blocked->sig[i];
 140		break;
 141
 142	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 143		ready |= signal->sig[2] &~ blocked->sig[2];
 144		ready |= signal->sig[1] &~ blocked->sig[1];
 145		ready |= signal->sig[0] &~ blocked->sig[0];
 146		break;
 147
 148	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 149		ready |= signal->sig[0] &~ blocked->sig[0];
 150		break;
 151
 152	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 153	}
 154	return ready !=	0;
 155}
 156
 157#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 158
 159static bool recalc_sigpending_tsk(struct task_struct *t)
 160{
 161	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 162	    PENDING(&t->pending, &t->blocked) ||
 163	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 164	    cgroup_task_frozen(t)) {
 165		set_tsk_thread_flag(t, TIF_SIGPENDING);
 166		return true;
 167	}
 168
 169	/*
 170	 * We must never clear the flag in another thread, or in current
 171	 * when it's possible the current syscall is returning -ERESTART*.
 172	 * So we don't clear it here, and only callers who know they should do.
 173	 */
 174	return false;
 175}
 176
 177void recalc_sigpending(void)
 178{
 179	if (!recalc_sigpending_tsk(current) && !freezing(current))
 180		clear_thread_flag(TIF_SIGPENDING);
 181
 182}
 183EXPORT_SYMBOL(recalc_sigpending);
 184
 185void calculate_sigpending(void)
 186{
 187	/* Have any signals or users of TIF_SIGPENDING been delayed
 188	 * until after fork?
 189	 */
 190	spin_lock_irq(&current->sighand->siglock);
 191	set_tsk_thread_flag(current, TIF_SIGPENDING);
 192	recalc_sigpending();
 193	spin_unlock_irq(&current->sighand->siglock);
 194}
 195
 196/* Given the mask, find the first available signal that should be serviced. */
 197
 198#define SYNCHRONOUS_MASK \
 199	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 200	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 201
 202int next_signal(struct sigpending *pending, sigset_t *mask)
 203{
 204	unsigned long i, *s, *m, x;
 205	int sig = 0;
 206
 207	s = pending->signal.sig;
 208	m = mask->sig;
 209
 210	/*
 211	 * Handle the first word specially: it contains the
 212	 * synchronous signals that need to be dequeued first.
 213	 */
 214	x = *s &~ *m;
 215	if (x) {
 216		if (x & SYNCHRONOUS_MASK)
 217			x &= SYNCHRONOUS_MASK;
 218		sig = ffz(~x) + 1;
 219		return sig;
 220	}
 221
 222	switch (_NSIG_WORDS) {
 223	default:
 224		for (i = 1; i < _NSIG_WORDS; ++i) {
 225			x = *++s &~ *++m;
 226			if (!x)
 227				continue;
 228			sig = ffz(~x) + i*_NSIG_BPW + 1;
 229			break;
 230		}
 231		break;
 232
 233	case 2:
 234		x = s[1] &~ m[1];
 235		if (!x)
 236			break;
 237		sig = ffz(~x) + _NSIG_BPW + 1;
 238		break;
 239
 240	case 1:
 241		/* Nothing to do */
 242		break;
 243	}
 244
 245	return sig;
 246}
 247
 248static inline void print_dropped_signal(int sig)
 249{
 250	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 251
 252	if (!print_fatal_signals)
 253		return;
 254
 255	if (!__ratelimit(&ratelimit_state))
 256		return;
 257
 258	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 259				current->comm, current->pid, sig);
 260}
 261
 262/**
 263 * task_set_jobctl_pending - set jobctl pending bits
 264 * @task: target task
 265 * @mask: pending bits to set
 266 *
 267 * Clear @mask from @task->jobctl.  @mask must be subset of
 268 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 269 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 270 * cleared.  If @task is already being killed or exiting, this function
 271 * becomes noop.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 *
 276 * RETURNS:
 277 * %true if @mask is set, %false if made noop because @task was dying.
 278 */
 279bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 280{
 281	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 282			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 283	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 284
 285	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 286		return false;
 287
 288	if (mask & JOBCTL_STOP_SIGMASK)
 289		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 290
 291	task->jobctl |= mask;
 292	return true;
 293}
 294
 295/**
 296 * task_clear_jobctl_trapping - clear jobctl trapping bit
 297 * @task: target task
 298 *
 299 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 300 * Clear it and wake up the ptracer.  Note that we don't need any further
 301 * locking.  @task->siglock guarantees that @task->parent points to the
 302 * ptracer.
 303 *
 304 * CONTEXT:
 305 * Must be called with @task->sighand->siglock held.
 306 */
 307void task_clear_jobctl_trapping(struct task_struct *task)
 308{
 309	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 310		task->jobctl &= ~JOBCTL_TRAPPING;
 311		smp_mb();	/* advised by wake_up_bit() */
 312		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 313	}
 314}
 315
 316/**
 317 * task_clear_jobctl_pending - clear jobctl pending bits
 318 * @task: target task
 319 * @mask: pending bits to clear
 320 *
 321 * Clear @mask from @task->jobctl.  @mask must be subset of
 322 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 323 * STOP bits are cleared together.
 324 *
 325 * If clearing of @mask leaves no stop or trap pending, this function calls
 326 * task_clear_jobctl_trapping().
 327 *
 328 * CONTEXT:
 329 * Must be called with @task->sighand->siglock held.
 330 */
 331void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 332{
 333	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 334
 335	if (mask & JOBCTL_STOP_PENDING)
 336		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 337
 338	task->jobctl &= ~mask;
 339
 340	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 341		task_clear_jobctl_trapping(task);
 342}
 343
 344/**
 345 * task_participate_group_stop - participate in a group stop
 346 * @task: task participating in a group stop
 347 *
 348 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 349 * Group stop states are cleared and the group stop count is consumed if
 350 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 351 * stop, the appropriate `SIGNAL_*` flags are set.
 352 *
 353 * CONTEXT:
 354 * Must be called with @task->sighand->siglock held.
 355 *
 356 * RETURNS:
 357 * %true if group stop completion should be notified to the parent, %false
 358 * otherwise.
 359 */
 360static bool task_participate_group_stop(struct task_struct *task)
 361{
 362	struct signal_struct *sig = task->signal;
 363	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 364
 365	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 366
 367	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 368
 369	if (!consume)
 370		return false;
 371
 372	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 373		sig->group_stop_count--;
 374
 375	/*
 376	 * Tell the caller to notify completion iff we are entering into a
 377	 * fresh group stop.  Read comment in do_signal_stop() for details.
 378	 */
 379	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 380		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 381		return true;
 382	}
 383	return false;
 384}
 385
 386void task_join_group_stop(struct task_struct *task)
 387{
 388	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 389	struct signal_struct *sig = current->signal;
 390
 391	if (sig->group_stop_count) {
 392		sig->group_stop_count++;
 393		mask |= JOBCTL_STOP_CONSUME;
 394	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 395		return;
 396
 397	/* Have the new thread join an on-going signal group stop */
 398	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 399}
 400
 401static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
 402				       int override_rlimit)
 
 
 
 
 
 
 403{
 
 404	struct ucounts *ucounts;
 405	long sigpending;
 406
 407	/*
 408	 * Protect access to @t credentials. This can go away when all
 409	 * callers hold rcu read lock.
 410	 *
 411	 * NOTE! A pending signal will hold on to the user refcount,
 412	 * and we get/put the refcount only when the sigpending count
 413	 * changes from/to zero.
 414	 */
 415	rcu_read_lock();
 416	ucounts = task_ucounts(t);
 417	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
 418					    override_rlimit);
 419	rcu_read_unlock();
 420	if (!sigpending)
 421		return NULL;
 422
 423	if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
 424		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 425		print_dropped_signal(sig);
 426		return NULL;
 427	}
 428
 429	return ucounts;
 430}
 431
 432static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
 433			    const unsigned int sigqueue_flags)
 434{
 435	INIT_LIST_HEAD(&q->list);
 436	q->flags = sigqueue_flags;
 437	q->ucounts = ucounts;
 438}
 439
 440/*
 441 * allocate a new signal queue record
 442 * - this may be called without locks if and only if t == current, otherwise an
 443 *   appropriate lock must be held to stop the target task from exiting
 444 */
 445static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 446				       int override_rlimit)
 447{
 448	struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
 449	struct sigqueue *q;
 450
 451	if (!ucounts)
 452		return NULL;
 453
 454	q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 455	if (!q) {
 456		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 457		return NULL;
 
 
 
 458	}
 459
 460	__sigqueue_init(q, ucounts, 0);
 461	return q;
 462}
 463
 464static void __sigqueue_free(struct sigqueue *q)
 465{
 466	if (q->flags & SIGQUEUE_PREALLOC) {
 467		posixtimer_sigqueue_putref(q);
 468		return;
 469	}
 470	if (q->ucounts) {
 471		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 472		q->ucounts = NULL;
 473	}
 474	kmem_cache_free(sigqueue_cachep, q);
 475}
 476
 477void flush_sigqueue(struct sigpending *queue)
 478{
 479	struct sigqueue *q;
 480
 481	sigemptyset(&queue->signal);
 482	while (!list_empty(&queue->list)) {
 483		q = list_entry(queue->list.next, struct sigqueue , list);
 484		list_del_init(&q->list);
 485		__sigqueue_free(q);
 486	}
 487}
 488
 489/*
 490 * Flush all pending signals for this kthread.
 491 */
 492void flush_signals(struct task_struct *t)
 493{
 494	unsigned long flags;
 495
 496	spin_lock_irqsave(&t->sighand->siglock, flags);
 497	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 498	flush_sigqueue(&t->pending);
 499	flush_sigqueue(&t->signal->shared_pending);
 500	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 501}
 502EXPORT_SYMBOL(flush_signals);
 503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504void ignore_signals(struct task_struct *t)
 505{
 506	int i;
 507
 508	for (i = 0; i < _NSIG; ++i)
 509		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 510
 511	flush_signals(t);
 512}
 513
 514/*
 515 * Flush all handlers for a task.
 516 */
 517
 518void
 519flush_signal_handlers(struct task_struct *t, int force_default)
 520{
 521	int i;
 522	struct k_sigaction *ka = &t->sighand->action[0];
 523	for (i = _NSIG ; i != 0 ; i--) {
 524		if (force_default || ka->sa.sa_handler != SIG_IGN)
 525			ka->sa.sa_handler = SIG_DFL;
 526		ka->sa.sa_flags = 0;
 527#ifdef __ARCH_HAS_SA_RESTORER
 528		ka->sa.sa_restorer = NULL;
 529#endif
 530		sigemptyset(&ka->sa.sa_mask);
 531		ka++;
 532	}
 533}
 534
 535bool unhandled_signal(struct task_struct *tsk, int sig)
 536{
 537	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 538	if (is_global_init(tsk))
 539		return true;
 540
 541	if (handler != SIG_IGN && handler != SIG_DFL)
 542		return false;
 543
 544	/* If dying, we handle all new signals by ignoring them */
 545	if (fatal_signal_pending(tsk))
 546		return false;
 547
 548	/* if ptraced, let the tracer determine */
 549	return !tsk->ptrace;
 550}
 551
 552static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 553			   struct sigqueue **timer_sigq)
 554{
 555	struct sigqueue *q, *first = NULL;
 556
 557	/*
 558	 * Collect the siginfo appropriate to this signal.  Check if
 559	 * there is another siginfo for the same signal.
 560	*/
 561	list_for_each_entry(q, &list->list, list) {
 562		if (q->info.si_signo == sig) {
 563			if (first)
 564				goto still_pending;
 565			first = q;
 566		}
 567	}
 568
 569	sigdelset(&list->signal, sig);
 570
 571	if (first) {
 572still_pending:
 573		list_del_init(&first->list);
 574		copy_siginfo(info, &first->info);
 575
 576		/*
 577		 * posix-timer signals are preallocated and freed when the last
 578		 * reference count is dropped in posixtimer_deliver_signal() or
 579		 * immediately on timer deletion when the signal is not pending.
 580		 * Spare the extra round through __sigqueue_free() which is
 581		 * ignoring preallocated signals.
 582		 */
 583		if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
 584			*timer_sigq = first;
 585		else
 586			__sigqueue_free(first);
 587	} else {
 588		/*
 589		 * Ok, it wasn't in the queue.  This must be
 590		 * a fast-pathed signal or we must have been
 591		 * out of queue space.  So zero out the info.
 592		 */
 593		clear_siginfo(info);
 594		info->si_signo = sig;
 595		info->si_errno = 0;
 596		info->si_code = SI_USER;
 597		info->si_pid = 0;
 598		info->si_uid = 0;
 599	}
 600}
 601
 602static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 603			    kernel_siginfo_t *info, struct sigqueue **timer_sigq)
 604{
 605	int sig = next_signal(pending, mask);
 606
 607	if (sig)
 608		collect_signal(sig, pending, info, timer_sigq);
 609	return sig;
 610}
 611
 612/*
 613 * Try to dequeue a signal. If a deliverable signal is found fill in the
 614 * caller provided siginfo and return the signal number. Otherwise return
 615 * 0.
 
 616 */
 617int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
 
 618{
 619	struct task_struct *tsk = current;
 620	struct sigqueue *timer_sigq;
 621	int signr;
 622
 623	lockdep_assert_held(&tsk->sighand->siglock);
 624
 625again:
 626	*type = PIDTYPE_PID;
 627	timer_sigq = NULL;
 628	signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq);
 629	if (!signr) {
 630		*type = PIDTYPE_TGID;
 631		signr = __dequeue_signal(&tsk->signal->shared_pending,
 632					 mask, info, &timer_sigq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633
 634		if (unlikely(signr == SIGALRM))
 635			posixtimer_rearm_itimer(tsk);
 
 
 
 
 
 
 636	}
 637
 638	recalc_sigpending();
 639	if (!signr)
 640		return 0;
 641
 642	if (unlikely(sig_kernel_stop(signr))) {
 643		/*
 644		 * Set a marker that we have dequeued a stop signal.  Our
 645		 * caller might release the siglock and then the pending
 646		 * stop signal it is about to process is no longer in the
 647		 * pending bitmasks, but must still be cleared by a SIGCONT
 648		 * (and overruled by a SIGKILL).  So those cases clear this
 649		 * shared flag after we've set it.  Note that this flag may
 650		 * remain set after the signal we return is ignored or
 651		 * handled.  That doesn't matter because its only purpose
 652		 * is to alert stop-signal processing code when another
 653		 * processor has come along and cleared the flag.
 654		 */
 655		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 656	}
 
 
 
 
 
 
 
 
 
 
 
 657
 658	if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) {
 659		if (!posixtimer_deliver_signal(info, timer_sigq))
 660			goto again;
 661	}
 662
 663	return signr;
 664}
 665EXPORT_SYMBOL_GPL(dequeue_signal);
 666
 667static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 668{
 669	struct task_struct *tsk = current;
 670	struct sigpending *pending = &tsk->pending;
 671	struct sigqueue *q, *sync = NULL;
 672
 673	/*
 674	 * Might a synchronous signal be in the queue?
 675	 */
 676	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 677		return 0;
 678
 679	/*
 680	 * Return the first synchronous signal in the queue.
 681	 */
 682	list_for_each_entry(q, &pending->list, list) {
 683		/* Synchronous signals have a positive si_code */
 684		if ((q->info.si_code > SI_USER) &&
 685		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 686			sync = q;
 687			goto next;
 688		}
 689	}
 690	return 0;
 691next:
 692	/*
 693	 * Check if there is another siginfo for the same signal.
 694	 */
 695	list_for_each_entry_continue(q, &pending->list, list) {
 696		if (q->info.si_signo == sync->info.si_signo)
 697			goto still_pending;
 698	}
 699
 700	sigdelset(&pending->signal, sync->info.si_signo);
 701	recalc_sigpending();
 702still_pending:
 703	list_del_init(&sync->list);
 704	copy_siginfo(info, &sync->info);
 705	__sigqueue_free(sync);
 706	return info->si_signo;
 707}
 708
 709/*
 710 * Tell a process that it has a new active signal..
 711 *
 712 * NOTE! we rely on the previous spin_lock to
 713 * lock interrupts for us! We can only be called with
 714 * "siglock" held, and the local interrupt must
 715 * have been disabled when that got acquired!
 716 *
 717 * No need to set need_resched since signal event passing
 718 * goes through ->blocked
 719 */
 720void signal_wake_up_state(struct task_struct *t, unsigned int state)
 721{
 722	lockdep_assert_held(&t->sighand->siglock);
 723
 724	set_tsk_thread_flag(t, TIF_SIGPENDING);
 725
 726	/*
 727	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 728	 * case. We don't check t->state here because there is a race with it
 729	 * executing another processor and just now entering stopped state.
 730	 * By using wake_up_state, we ensure the process will wake up and
 731	 * handle its death signal.
 732	 */
 733	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 734		kick_process(t);
 735}
 736
 737static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q);
 738
 739static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q)
 740{
 741	if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER))
 742		__sigqueue_free(q);
 743	else
 744		posixtimer_sig_ignore(tsk, q);
 745}
 746
 747/* Remove signals in mask from the pending set and queue. */
 748static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
 749{
 750	struct sigqueue *q, *n;
 751	sigset_t m;
 752
 753	lockdep_assert_held(&p->sighand->siglock);
 754
 755	sigandsets(&m, mask, &s->signal);
 756	if (sigisemptyset(&m))
 757		return;
 758
 759	sigandnsets(&s->signal, &s->signal, mask);
 760	list_for_each_entry_safe(q, n, &s->list, list) {
 761		if (sigismember(mask, q->info.si_signo)) {
 762			list_del_init(&q->list);
 763			sigqueue_free_ignored(p, q);
 764		}
 765	}
 766}
 767
 768static inline int is_si_special(const struct kernel_siginfo *info)
 769{
 770	return info <= SEND_SIG_PRIV;
 771}
 772
 773static inline bool si_fromuser(const struct kernel_siginfo *info)
 774{
 775	return info == SEND_SIG_NOINFO ||
 776		(!is_si_special(info) && SI_FROMUSER(info));
 777}
 778
 779/*
 780 * called with RCU read lock from check_kill_permission()
 781 */
 782static bool kill_ok_by_cred(struct task_struct *t)
 783{
 784	const struct cred *cred = current_cred();
 785	const struct cred *tcred = __task_cred(t);
 786
 787	return uid_eq(cred->euid, tcred->suid) ||
 788	       uid_eq(cred->euid, tcred->uid) ||
 789	       uid_eq(cred->uid, tcred->suid) ||
 790	       uid_eq(cred->uid, tcred->uid) ||
 791	       ns_capable(tcred->user_ns, CAP_KILL);
 792}
 793
 794/*
 795 * Bad permissions for sending the signal
 796 * - the caller must hold the RCU read lock
 797 */
 798static int check_kill_permission(int sig, struct kernel_siginfo *info,
 799				 struct task_struct *t)
 800{
 801	struct pid *sid;
 802	int error;
 803
 804	if (!valid_signal(sig))
 805		return -EINVAL;
 806
 807	if (!si_fromuser(info))
 808		return 0;
 809
 810	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 811	if (error)
 812		return error;
 813
 814	if (!same_thread_group(current, t) &&
 815	    !kill_ok_by_cred(t)) {
 816		switch (sig) {
 817		case SIGCONT:
 818			sid = task_session(t);
 819			/*
 820			 * We don't return the error if sid == NULL. The
 821			 * task was unhashed, the caller must notice this.
 822			 */
 823			if (!sid || sid == task_session(current))
 824				break;
 825			fallthrough;
 826		default:
 827			return -EPERM;
 828		}
 829	}
 830
 831	return security_task_kill(t, info, sig, NULL);
 832}
 833
 834/**
 835 * ptrace_trap_notify - schedule trap to notify ptracer
 836 * @t: tracee wanting to notify tracer
 837 *
 838 * This function schedules sticky ptrace trap which is cleared on the next
 839 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 840 * ptracer.
 841 *
 842 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 843 * ptracer is listening for events, tracee is woken up so that it can
 844 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 845 * eventually taken without returning to userland after the existing traps
 846 * are finished by PTRACE_CONT.
 847 *
 848 * CONTEXT:
 849 * Must be called with @task->sighand->siglock held.
 850 */
 851static void ptrace_trap_notify(struct task_struct *t)
 852{
 853	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 854	lockdep_assert_held(&t->sighand->siglock);
 855
 856	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 857	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 858}
 859
 860/*
 861 * Handle magic process-wide effects of stop/continue signals. Unlike
 862 * the signal actions, these happen immediately at signal-generation
 863 * time regardless of blocking, ignoring, or handling.  This does the
 864 * actual continuing for SIGCONT, but not the actual stopping for stop
 865 * signals. The process stop is done as a signal action for SIG_DFL.
 866 *
 867 * Returns true if the signal should be actually delivered, otherwise
 868 * it should be dropped.
 869 */
 870static bool prepare_signal(int sig, struct task_struct *p, bool force)
 871{
 872	struct signal_struct *signal = p->signal;
 873	struct task_struct *t;
 874	sigset_t flush;
 875
 876	if (signal->flags & SIGNAL_GROUP_EXIT) {
 877		if (signal->core_state)
 878			return sig == SIGKILL;
 879		/*
 880		 * The process is in the middle of dying, drop the signal.
 881		 */
 882		return false;
 883	} else if (sig_kernel_stop(sig)) {
 884		/*
 885		 * This is a stop signal.  Remove SIGCONT from all queues.
 886		 */
 887		siginitset(&flush, sigmask(SIGCONT));
 888		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
 889		for_each_thread(p, t)
 890			flush_sigqueue_mask(p, &flush, &t->pending);
 891	} else if (sig == SIGCONT) {
 892		unsigned int why;
 893		/*
 894		 * Remove all stop signals from all queues, wake all threads.
 895		 */
 896		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 897		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
 898		for_each_thread(p, t) {
 899			flush_sigqueue_mask(p, &flush, &t->pending);
 900			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 901			if (likely(!(t->ptrace & PT_SEIZED))) {
 902				t->jobctl &= ~JOBCTL_STOPPED;
 903				wake_up_state(t, __TASK_STOPPED);
 904			} else
 905				ptrace_trap_notify(t);
 906		}
 907
 908		/*
 909		 * Notify the parent with CLD_CONTINUED if we were stopped.
 910		 *
 911		 * If we were in the middle of a group stop, we pretend it
 912		 * was already finished, and then continued. Since SIGCHLD
 913		 * doesn't queue we report only CLD_STOPPED, as if the next
 914		 * CLD_CONTINUED was dropped.
 915		 */
 916		why = 0;
 917		if (signal->flags & SIGNAL_STOP_STOPPED)
 918			why |= SIGNAL_CLD_CONTINUED;
 919		else if (signal->group_stop_count)
 920			why |= SIGNAL_CLD_STOPPED;
 921
 922		if (why) {
 923			/*
 924			 * The first thread which returns from do_signal_stop()
 925			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 926			 * notify its parent. See get_signal().
 927			 */
 928			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 929			signal->group_stop_count = 0;
 930			signal->group_exit_code = 0;
 931		}
 932	}
 933
 934	return !sig_ignored(p, sig, force);
 935}
 936
 937/*
 938 * Test if P wants to take SIG.  After we've checked all threads with this,
 939 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 940 * blocking SIG were ruled out because they are not running and already
 941 * have pending signals.  Such threads will dequeue from the shared queue
 942 * as soon as they're available, so putting the signal on the shared queue
 943 * will be equivalent to sending it to one such thread.
 944 */
 945static inline bool wants_signal(int sig, struct task_struct *p)
 946{
 947	if (sigismember(&p->blocked, sig))
 948		return false;
 949
 950	if (p->flags & PF_EXITING)
 951		return false;
 952
 953	if (sig == SIGKILL)
 954		return true;
 955
 956	if (task_is_stopped_or_traced(p))
 957		return false;
 958
 959	return task_curr(p) || !task_sigpending(p);
 960}
 961
 962static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 963{
 964	struct signal_struct *signal = p->signal;
 965	struct task_struct *t;
 966
 967	/*
 968	 * Now find a thread we can wake up to take the signal off the queue.
 969	 *
 970	 * Try the suggested task first (may or may not be the main thread).
 971	 */
 972	if (wants_signal(sig, p))
 973		t = p;
 974	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
 975		/*
 976		 * There is just one thread and it does not need to be woken.
 977		 * It will dequeue unblocked signals before it runs again.
 978		 */
 979		return;
 980	else {
 981		/*
 982		 * Otherwise try to find a suitable thread.
 983		 */
 984		t = signal->curr_target;
 985		while (!wants_signal(sig, t)) {
 986			t = next_thread(t);
 987			if (t == signal->curr_target)
 988				/*
 989				 * No thread needs to be woken.
 990				 * Any eligible threads will see
 991				 * the signal in the queue soon.
 992				 */
 993				return;
 994		}
 995		signal->curr_target = t;
 996	}
 997
 998	/*
 999	 * Found a killable thread.  If the signal will be fatal,
1000	 * then start taking the whole group down immediately.
1001	 */
1002	if (sig_fatal(p, sig) &&
1003	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1004	    !sigismember(&t->real_blocked, sig) &&
1005	    (sig == SIGKILL || !p->ptrace)) {
1006		/*
1007		 * This signal will be fatal to the whole group.
1008		 */
1009		if (!sig_kernel_coredump(sig)) {
1010			/*
1011			 * Start a group exit and wake everybody up.
1012			 * This way we don't have other threads
1013			 * running and doing things after a slower
1014			 * thread has the fatal signal pending.
1015			 */
1016			signal->flags = SIGNAL_GROUP_EXIT;
1017			signal->group_exit_code = sig;
1018			signal->group_stop_count = 0;
1019			__for_each_thread(signal, t) {
1020				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1021				sigaddset(&t->pending.signal, SIGKILL);
1022				signal_wake_up(t, 1);
1023			}
1024			return;
1025		}
1026	}
1027
1028	/*
1029	 * The signal is already in the shared-pending queue.
1030	 * Tell the chosen thread to wake up and dequeue it.
1031	 */
1032	signal_wake_up(t, sig == SIGKILL);
1033	return;
1034}
1035
1036static inline bool legacy_queue(struct sigpending *signals, int sig)
1037{
1038	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1039}
1040
1041static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1042				struct task_struct *t, enum pid_type type, bool force)
1043{
1044	struct sigpending *pending;
1045	struct sigqueue *q;
1046	int override_rlimit;
1047	int ret = 0, result;
1048
1049	lockdep_assert_held(&t->sighand->siglock);
1050
1051	result = TRACE_SIGNAL_IGNORED;
1052	if (!prepare_signal(sig, t, force))
1053		goto ret;
1054
1055	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1056	/*
1057	 * Short-circuit ignored signals and support queuing
1058	 * exactly one non-rt signal, so that we can get more
1059	 * detailed information about the cause of the signal.
1060	 */
1061	result = TRACE_SIGNAL_ALREADY_PENDING;
1062	if (legacy_queue(pending, sig))
1063		goto ret;
1064
1065	result = TRACE_SIGNAL_DELIVERED;
1066	/*
1067	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1068	 */
1069	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1070		goto out_set;
1071
1072	/*
1073	 * Real-time signals must be queued if sent by sigqueue, or
1074	 * some other real-time mechanism.  It is implementation
1075	 * defined whether kill() does so.  We attempt to do so, on
1076	 * the principle of least surprise, but since kill is not
1077	 * allowed to fail with EAGAIN when low on memory we just
1078	 * make sure at least one signal gets delivered and don't
1079	 * pass on the info struct.
1080	 */
1081	if (sig < SIGRTMIN)
1082		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1083	else
1084		override_rlimit = 0;
1085
1086	q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1087
1088	if (q) {
1089		list_add_tail(&q->list, &pending->list);
1090		switch ((unsigned long) info) {
1091		case (unsigned long) SEND_SIG_NOINFO:
1092			clear_siginfo(&q->info);
1093			q->info.si_signo = sig;
1094			q->info.si_errno = 0;
1095			q->info.si_code = SI_USER;
1096			q->info.si_pid = task_tgid_nr_ns(current,
1097							task_active_pid_ns(t));
1098			rcu_read_lock();
1099			q->info.si_uid =
1100				from_kuid_munged(task_cred_xxx(t, user_ns),
1101						 current_uid());
1102			rcu_read_unlock();
1103			break;
1104		case (unsigned long) SEND_SIG_PRIV:
1105			clear_siginfo(&q->info);
1106			q->info.si_signo = sig;
1107			q->info.si_errno = 0;
1108			q->info.si_code = SI_KERNEL;
1109			q->info.si_pid = 0;
1110			q->info.si_uid = 0;
1111			break;
1112		default:
1113			copy_siginfo(&q->info, info);
1114			break;
1115		}
1116	} else if (!is_si_special(info) &&
1117		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1118		/*
1119		 * Queue overflow, abort.  We may abort if the
1120		 * signal was rt and sent by user using something
1121		 * other than kill().
1122		 */
1123		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124		ret = -EAGAIN;
1125		goto ret;
1126	} else {
1127		/*
1128		 * This is a silent loss of information.  We still
1129		 * send the signal, but the *info bits are lost.
1130		 */
1131		result = TRACE_SIGNAL_LOSE_INFO;
1132	}
1133
1134out_set:
1135	signalfd_notify(t, sig);
1136	sigaddset(&pending->signal, sig);
1137
1138	/* Let multiprocess signals appear after on-going forks */
1139	if (type > PIDTYPE_TGID) {
1140		struct multiprocess_signals *delayed;
1141		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1142			sigset_t *signal = &delayed->signal;
1143			/* Can't queue both a stop and a continue signal */
1144			if (sig == SIGCONT)
1145				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1146			else if (sig_kernel_stop(sig))
1147				sigdelset(signal, SIGCONT);
1148			sigaddset(signal, sig);
1149		}
1150	}
1151
1152	complete_signal(sig, t, type);
1153ret:
1154	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1155	return ret;
1156}
1157
1158static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1159{
1160	bool ret = false;
1161	switch (siginfo_layout(info->si_signo, info->si_code)) {
1162	case SIL_KILL:
1163	case SIL_CHLD:
1164	case SIL_RT:
1165		ret = true;
1166		break;
1167	case SIL_TIMER:
1168	case SIL_POLL:
1169	case SIL_FAULT:
1170	case SIL_FAULT_TRAPNO:
1171	case SIL_FAULT_MCEERR:
1172	case SIL_FAULT_BNDERR:
1173	case SIL_FAULT_PKUERR:
1174	case SIL_FAULT_PERF_EVENT:
1175	case SIL_SYS:
1176		ret = false;
1177		break;
1178	}
1179	return ret;
1180}
1181
1182int send_signal_locked(int sig, struct kernel_siginfo *info,
1183		       struct task_struct *t, enum pid_type type)
1184{
1185	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1186	bool force = false;
1187
1188	if (info == SEND_SIG_NOINFO) {
1189		/* Force if sent from an ancestor pid namespace */
1190		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1191	} else if (info == SEND_SIG_PRIV) {
1192		/* Don't ignore kernel generated signals */
1193		force = true;
1194	} else if (has_si_pid_and_uid(info)) {
1195		/* SIGKILL and SIGSTOP is special or has ids */
1196		struct user_namespace *t_user_ns;
1197
1198		rcu_read_lock();
1199		t_user_ns = task_cred_xxx(t, user_ns);
1200		if (current_user_ns() != t_user_ns) {
1201			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1202			info->si_uid = from_kuid_munged(t_user_ns, uid);
1203		}
1204		rcu_read_unlock();
1205
1206		/* A kernel generated signal? */
1207		force = (info->si_code == SI_KERNEL);
1208
1209		/* From an ancestor pid namespace? */
1210		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1211			info->si_pid = 0;
1212			force = true;
1213		}
1214	}
1215	return __send_signal_locked(sig, info, t, type, force);
1216}
1217
1218static void print_fatal_signal(int signr)
1219{
1220	struct pt_regs *regs = task_pt_regs(current);
1221	struct file *exe_file;
1222
1223	exe_file = get_task_exe_file(current);
1224	if (exe_file) {
1225		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1226			exe_file, current->comm, signr);
1227		fput(exe_file);
1228	} else {
1229		pr_info("%s: potentially unexpected fatal signal %d.\n",
1230			current->comm, signr);
1231	}
1232
1233#if defined(__i386__) && !defined(__arch_um__)
1234	pr_info("code at %08lx: ", regs->ip);
1235	{
1236		int i;
1237		for (i = 0; i < 16; i++) {
1238			unsigned char insn;
1239
1240			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1241				break;
1242			pr_cont("%02x ", insn);
1243		}
1244	}
1245	pr_cont("\n");
1246#endif
1247	preempt_disable();
1248	show_regs(regs);
1249	preempt_enable();
1250}
1251
1252static int __init setup_print_fatal_signals(char *str)
1253{
1254	get_option (&str, &print_fatal_signals);
1255
1256	return 1;
1257}
1258
1259__setup("print-fatal-signals=", setup_print_fatal_signals);
1260
1261int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1262			enum pid_type type)
1263{
1264	unsigned long flags;
1265	int ret = -ESRCH;
1266
1267	if (lock_task_sighand(p, &flags)) {
1268		ret = send_signal_locked(sig, info, p, type);
1269		unlock_task_sighand(p, &flags);
1270	}
1271
1272	return ret;
1273}
1274
1275enum sig_handler {
1276	HANDLER_CURRENT, /* If reachable use the current handler */
1277	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1278	HANDLER_EXIT,	 /* Only visible as the process exit code */
1279};
1280
1281/*
1282 * Force a signal that the process can't ignore: if necessary
1283 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1284 *
1285 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1286 * since we do not want to have a signal handler that was blocked
1287 * be invoked when user space had explicitly blocked it.
1288 *
1289 * We don't want to have recursive SIGSEGV's etc, for example,
1290 * that is why we also clear SIGNAL_UNKILLABLE.
1291 */
1292static int
1293force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1294	enum sig_handler handler)
1295{
1296	unsigned long int flags;
1297	int ret, blocked, ignored;
1298	struct k_sigaction *action;
1299	int sig = info->si_signo;
1300
1301	spin_lock_irqsave(&t->sighand->siglock, flags);
1302	action = &t->sighand->action[sig-1];
1303	ignored = action->sa.sa_handler == SIG_IGN;
1304	blocked = sigismember(&t->blocked, sig);
1305	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1306		action->sa.sa_handler = SIG_DFL;
1307		if (handler == HANDLER_EXIT)
1308			action->sa.sa_flags |= SA_IMMUTABLE;
1309		if (blocked)
1310			sigdelset(&t->blocked, sig);
1311	}
1312	/*
1313	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1314	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1315	 */
1316	if (action->sa.sa_handler == SIG_DFL &&
1317	    (!t->ptrace || (handler == HANDLER_EXIT)))
1318		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1319	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1320	/* This can happen if the signal was already pending and blocked */
1321	if (!task_sigpending(t))
1322		signal_wake_up(t, 0);
1323	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1324
1325	return ret;
1326}
1327
1328int force_sig_info(struct kernel_siginfo *info)
1329{
1330	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1331}
1332
1333/*
1334 * Nuke all other threads in the group.
1335 */
1336int zap_other_threads(struct task_struct *p)
1337{
1338	struct task_struct *t;
1339	int count = 0;
1340
1341	p->signal->group_stop_count = 0;
1342
1343	for_other_threads(p, t) {
1344		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1345		count++;
 
 
1346
1347		/* Don't bother with already dead threads */
1348		if (t->exit_state)
1349			continue;
1350		sigaddset(&t->pending.signal, SIGKILL);
1351		signal_wake_up(t, 1);
1352	}
1353
1354	return count;
1355}
1356
1357struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1358					   unsigned long *flags)
1359{
1360	struct sighand_struct *sighand;
1361
1362	rcu_read_lock();
1363	for (;;) {
1364		sighand = rcu_dereference(tsk->sighand);
1365		if (unlikely(sighand == NULL))
1366			break;
1367
1368		/*
1369		 * This sighand can be already freed and even reused, but
1370		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1371		 * initializes ->siglock: this slab can't go away, it has
1372		 * the same object type, ->siglock can't be reinitialized.
1373		 *
1374		 * We need to ensure that tsk->sighand is still the same
1375		 * after we take the lock, we can race with de_thread() or
1376		 * __exit_signal(). In the latter case the next iteration
1377		 * must see ->sighand == NULL.
1378		 */
1379		spin_lock_irqsave(&sighand->siglock, *flags);
1380		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1381			break;
1382		spin_unlock_irqrestore(&sighand->siglock, *flags);
1383	}
1384	rcu_read_unlock();
1385
1386	return sighand;
1387}
1388
1389#ifdef CONFIG_LOCKDEP
1390void lockdep_assert_task_sighand_held(struct task_struct *task)
1391{
1392	struct sighand_struct *sighand;
1393
1394	rcu_read_lock();
1395	sighand = rcu_dereference(task->sighand);
1396	if (sighand)
1397		lockdep_assert_held(&sighand->siglock);
1398	else
1399		WARN_ON_ONCE(1);
1400	rcu_read_unlock();
1401}
1402#endif
1403
1404/*
1405 * send signal info to all the members of a thread group or to the
1406 * individual thread if type == PIDTYPE_PID.
1407 */
1408int group_send_sig_info(int sig, struct kernel_siginfo *info,
1409			struct task_struct *p, enum pid_type type)
1410{
1411	int ret;
1412
1413	rcu_read_lock();
1414	ret = check_kill_permission(sig, info, p);
1415	rcu_read_unlock();
1416
1417	if (!ret && sig)
1418		ret = do_send_sig_info(sig, info, p, type);
1419
1420	return ret;
1421}
1422
1423/*
1424 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1425 * control characters do (^C, ^Z etc)
1426 * - the caller must hold at least a readlock on tasklist_lock
1427 */
1428int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1429{
1430	struct task_struct *p = NULL;
1431	int ret = -ESRCH;
1432
1433	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435		/*
1436		 * If group_send_sig_info() succeeds at least once ret
1437		 * becomes 0 and after that the code below has no effect.
1438		 * Otherwise we return the last err or -ESRCH if this
1439		 * process group is empty.
1440		 */
1441		if (ret)
1442			ret = err;
1443	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1444
1445	return ret;
1446}
1447
1448static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1449				struct pid *pid, enum pid_type type)
1450{
1451	int error = -ESRCH;
1452	struct task_struct *p;
1453
1454	for (;;) {
1455		rcu_read_lock();
1456		p = pid_task(pid, PIDTYPE_PID);
1457		if (p)
1458			error = group_send_sig_info(sig, info, p, type);
1459		rcu_read_unlock();
1460		if (likely(!p || error != -ESRCH))
1461			return error;
1462		/*
1463		 * The task was unhashed in between, try again.  If it
1464		 * is dead, pid_task() will return NULL, if we race with
1465		 * de_thread() it will find the new leader.
1466		 */
1467	}
1468}
1469
1470int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471{
1472	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1473}
1474
1475static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1476{
1477	int error;
1478	rcu_read_lock();
1479	error = kill_pid_info(sig, info, find_vpid(pid));
1480	rcu_read_unlock();
1481	return error;
1482}
1483
1484static inline bool kill_as_cred_perm(const struct cred *cred,
1485				     struct task_struct *target)
1486{
1487	const struct cred *pcred = __task_cred(target);
1488
1489	return uid_eq(cred->euid, pcred->suid) ||
1490	       uid_eq(cred->euid, pcred->uid) ||
1491	       uid_eq(cred->uid, pcred->suid) ||
1492	       uid_eq(cred->uid, pcred->uid);
1493}
1494
1495/*
1496 * The usb asyncio usage of siginfo is wrong.  The glibc support
1497 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1498 * AKA after the generic fields:
1499 *	kernel_pid_t	si_pid;
1500 *	kernel_uid32_t	si_uid;
1501 *	sigval_t	si_value;
1502 *
1503 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1504 * after the generic fields is:
1505 *	void __user 	*si_addr;
1506 *
1507 * This is a practical problem when there is a 64bit big endian kernel
1508 * and a 32bit userspace.  As the 32bit address will encoded in the low
1509 * 32bits of the pointer.  Those low 32bits will be stored at higher
1510 * address than appear in a 32 bit pointer.  So userspace will not
1511 * see the address it was expecting for it's completions.
1512 *
1513 * There is nothing in the encoding that can allow
1514 * copy_siginfo_to_user32 to detect this confusion of formats, so
1515 * handle this by requiring the caller of kill_pid_usb_asyncio to
1516 * notice when this situration takes place and to store the 32bit
1517 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1518 * parameter.
1519 */
1520int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1521			 struct pid *pid, const struct cred *cred)
1522{
1523	struct kernel_siginfo info;
1524	struct task_struct *p;
1525	unsigned long flags;
1526	int ret = -EINVAL;
1527
1528	if (!valid_signal(sig))
1529		return ret;
1530
1531	clear_siginfo(&info);
1532	info.si_signo = sig;
1533	info.si_errno = errno;
1534	info.si_code = SI_ASYNCIO;
1535	*((sigval_t *)&info.si_pid) = addr;
1536
1537	rcu_read_lock();
1538	p = pid_task(pid, PIDTYPE_PID);
1539	if (!p) {
1540		ret = -ESRCH;
1541		goto out_unlock;
1542	}
1543	if (!kill_as_cred_perm(cred, p)) {
1544		ret = -EPERM;
1545		goto out_unlock;
1546	}
1547	ret = security_task_kill(p, &info, sig, cred);
1548	if (ret)
1549		goto out_unlock;
1550
1551	if (sig) {
1552		if (lock_task_sighand(p, &flags)) {
1553			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1554			unlock_task_sighand(p, &flags);
1555		} else
1556			ret = -ESRCH;
1557	}
1558out_unlock:
1559	rcu_read_unlock();
1560	return ret;
1561}
1562EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1563
1564/*
1565 * kill_something_info() interprets pid in interesting ways just like kill(2).
1566 *
1567 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1568 * is probably wrong.  Should make it like BSD or SYSV.
1569 */
1570
1571static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1572{
1573	int ret;
1574
1575	if (pid > 0)
1576		return kill_proc_info(sig, info, pid);
1577
1578	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1579	if (pid == INT_MIN)
1580		return -ESRCH;
1581
1582	read_lock(&tasklist_lock);
1583	if (pid != -1) {
1584		ret = __kill_pgrp_info(sig, info,
1585				pid ? find_vpid(-pid) : task_pgrp(current));
1586	} else {
1587		int retval = 0, count = 0;
1588		struct task_struct * p;
1589
1590		for_each_process(p) {
1591			if (task_pid_vnr(p) > 1 &&
1592					!same_thread_group(p, current)) {
1593				int err = group_send_sig_info(sig, info, p,
1594							      PIDTYPE_MAX);
1595				++count;
1596				if (err != -EPERM)
1597					retval = err;
1598			}
1599		}
1600		ret = count ? retval : -ESRCH;
1601	}
1602	read_unlock(&tasklist_lock);
1603
1604	return ret;
1605}
1606
1607/*
1608 * These are for backward compatibility with the rest of the kernel source.
1609 */
1610
1611int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1612{
1613	/*
1614	 * Make sure legacy kernel users don't send in bad values
1615	 * (normal paths check this in check_kill_permission).
1616	 */
1617	if (!valid_signal(sig))
1618		return -EINVAL;
1619
1620	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1621}
1622EXPORT_SYMBOL(send_sig_info);
1623
1624#define __si_special(priv) \
1625	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1626
1627int
1628send_sig(int sig, struct task_struct *p, int priv)
1629{
1630	return send_sig_info(sig, __si_special(priv), p);
1631}
1632EXPORT_SYMBOL(send_sig);
1633
1634void force_sig(int sig)
1635{
1636	struct kernel_siginfo info;
1637
1638	clear_siginfo(&info);
1639	info.si_signo = sig;
1640	info.si_errno = 0;
1641	info.si_code = SI_KERNEL;
1642	info.si_pid = 0;
1643	info.si_uid = 0;
1644	force_sig_info(&info);
1645}
1646EXPORT_SYMBOL(force_sig);
1647
1648void force_fatal_sig(int sig)
1649{
1650	struct kernel_siginfo info;
1651
1652	clear_siginfo(&info);
1653	info.si_signo = sig;
1654	info.si_errno = 0;
1655	info.si_code = SI_KERNEL;
1656	info.si_pid = 0;
1657	info.si_uid = 0;
1658	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1659}
1660
1661void force_exit_sig(int sig)
1662{
1663	struct kernel_siginfo info;
1664
1665	clear_siginfo(&info);
1666	info.si_signo = sig;
1667	info.si_errno = 0;
1668	info.si_code = SI_KERNEL;
1669	info.si_pid = 0;
1670	info.si_uid = 0;
1671	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1672}
1673
1674/*
1675 * When things go south during signal handling, we
1676 * will force a SIGSEGV. And if the signal that caused
1677 * the problem was already a SIGSEGV, we'll want to
1678 * make sure we don't even try to deliver the signal..
1679 */
1680void force_sigsegv(int sig)
1681{
1682	if (sig == SIGSEGV)
1683		force_fatal_sig(SIGSEGV);
1684	else
1685		force_sig(SIGSEGV);
1686}
1687
1688int force_sig_fault_to_task(int sig, int code, void __user *addr,
1689			    struct task_struct *t)
1690{
1691	struct kernel_siginfo info;
1692
1693	clear_siginfo(&info);
1694	info.si_signo = sig;
1695	info.si_errno = 0;
1696	info.si_code  = code;
1697	info.si_addr  = addr;
1698	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1699}
1700
1701int force_sig_fault(int sig, int code, void __user *addr)
1702{
1703	return force_sig_fault_to_task(sig, code, addr, current);
1704}
1705
1706int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1707{
1708	struct kernel_siginfo info;
1709
1710	clear_siginfo(&info);
1711	info.si_signo = sig;
1712	info.si_errno = 0;
1713	info.si_code  = code;
1714	info.si_addr  = addr;
1715	return send_sig_info(info.si_signo, &info, t);
1716}
1717
1718int force_sig_mceerr(int code, void __user *addr, short lsb)
1719{
1720	struct kernel_siginfo info;
1721
1722	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1723	clear_siginfo(&info);
1724	info.si_signo = SIGBUS;
1725	info.si_errno = 0;
1726	info.si_code = code;
1727	info.si_addr = addr;
1728	info.si_addr_lsb = lsb;
1729	return force_sig_info(&info);
1730}
1731
1732int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1733{
1734	struct kernel_siginfo info;
1735
1736	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1737	clear_siginfo(&info);
1738	info.si_signo = SIGBUS;
1739	info.si_errno = 0;
1740	info.si_code = code;
1741	info.si_addr = addr;
1742	info.si_addr_lsb = lsb;
1743	return send_sig_info(info.si_signo, &info, t);
1744}
1745EXPORT_SYMBOL(send_sig_mceerr);
1746
1747int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1748{
1749	struct kernel_siginfo info;
1750
1751	clear_siginfo(&info);
1752	info.si_signo = SIGSEGV;
1753	info.si_errno = 0;
1754	info.si_code  = SEGV_BNDERR;
1755	info.si_addr  = addr;
1756	info.si_lower = lower;
1757	info.si_upper = upper;
1758	return force_sig_info(&info);
1759}
1760
1761#ifdef SEGV_PKUERR
1762int force_sig_pkuerr(void __user *addr, u32 pkey)
1763{
1764	struct kernel_siginfo info;
1765
1766	clear_siginfo(&info);
1767	info.si_signo = SIGSEGV;
1768	info.si_errno = 0;
1769	info.si_code  = SEGV_PKUERR;
1770	info.si_addr  = addr;
1771	info.si_pkey  = pkey;
1772	return force_sig_info(&info);
1773}
1774#endif
1775
1776int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1777{
1778	struct kernel_siginfo info;
1779
1780	clear_siginfo(&info);
1781	info.si_signo     = SIGTRAP;
1782	info.si_errno     = 0;
1783	info.si_code      = TRAP_PERF;
1784	info.si_addr      = addr;
1785	info.si_perf_data = sig_data;
1786	info.si_perf_type = type;
1787
1788	/*
1789	 * Signals generated by perf events should not terminate the whole
1790	 * process if SIGTRAP is blocked, however, delivering the signal
1791	 * asynchronously is better than not delivering at all. But tell user
1792	 * space if the signal was asynchronous, so it can clearly be
1793	 * distinguished from normal synchronous ones.
1794	 */
1795	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1796				     TRAP_PERF_FLAG_ASYNC :
1797				     0;
1798
1799	return send_sig_info(info.si_signo, &info, current);
1800}
1801
1802/**
1803 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1804 * @syscall: syscall number to send to userland
1805 * @reason: filter-supplied reason code to send to userland (via si_errno)
1806 * @force_coredump: true to trigger a coredump
1807 *
1808 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1809 */
1810int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1811{
1812	struct kernel_siginfo info;
1813
1814	clear_siginfo(&info);
1815	info.si_signo = SIGSYS;
1816	info.si_code = SYS_SECCOMP;
1817	info.si_call_addr = (void __user *)KSTK_EIP(current);
1818	info.si_errno = reason;
1819	info.si_arch = syscall_get_arch(current);
1820	info.si_syscall = syscall;
1821	return force_sig_info_to_task(&info, current,
1822		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1823}
1824
1825/* For the crazy architectures that include trap information in
1826 * the errno field, instead of an actual errno value.
1827 */
1828int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1829{
1830	struct kernel_siginfo info;
1831
1832	clear_siginfo(&info);
1833	info.si_signo = SIGTRAP;
1834	info.si_errno = errno;
1835	info.si_code  = TRAP_HWBKPT;
1836	info.si_addr  = addr;
1837	return force_sig_info(&info);
1838}
1839
1840/* For the rare architectures that include trap information using
1841 * si_trapno.
1842 */
1843int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1844{
1845	struct kernel_siginfo info;
1846
1847	clear_siginfo(&info);
1848	info.si_signo = sig;
1849	info.si_errno = 0;
1850	info.si_code  = code;
1851	info.si_addr  = addr;
1852	info.si_trapno = trapno;
1853	return force_sig_info(&info);
1854}
1855
1856/* For the rare architectures that include trap information using
1857 * si_trapno.
1858 */
1859int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1860			  struct task_struct *t)
1861{
1862	struct kernel_siginfo info;
1863
1864	clear_siginfo(&info);
1865	info.si_signo = sig;
1866	info.si_errno = 0;
1867	info.si_code  = code;
1868	info.si_addr  = addr;
1869	info.si_trapno = trapno;
1870	return send_sig_info(info.si_signo, &info, t);
1871}
1872
1873static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1874{
1875	int ret;
1876	read_lock(&tasklist_lock);
1877	ret = __kill_pgrp_info(sig, info, pgrp);
1878	read_unlock(&tasklist_lock);
1879	return ret;
1880}
1881
1882int kill_pgrp(struct pid *pid, int sig, int priv)
1883{
1884	return kill_pgrp_info(sig, __si_special(priv), pid);
1885}
1886EXPORT_SYMBOL(kill_pgrp);
1887
1888int kill_pid(struct pid *pid, int sig, int priv)
1889{
1890	return kill_pid_info(sig, __si_special(priv), pid);
1891}
1892EXPORT_SYMBOL(kill_pid);
1893
1894#ifdef CONFIG_POSIX_TIMERS
1895/*
1896 * These functions handle POSIX timer signals. POSIX timers use
1897 * preallocated sigqueue structs for sending signals.
 
 
 
 
 
1898 */
1899static void __flush_itimer_signals(struct sigpending *pending)
1900{
1901	sigset_t signal, retain;
1902	struct sigqueue *q, *n;
1903
1904	signal = pending->signal;
1905	sigemptyset(&retain);
1906
1907	list_for_each_entry_safe(q, n, &pending->list, list) {
1908		int sig = q->info.si_signo;
1909
1910		if (likely(q->info.si_code != SI_TIMER)) {
1911			sigaddset(&retain, sig);
1912		} else {
1913			sigdelset(&signal, sig);
1914			list_del_init(&q->list);
1915			__sigqueue_free(q);
1916		}
1917	}
1918
1919	sigorsets(&pending->signal, &signal, &retain);
1920}
1921
1922void flush_itimer_signals(void)
1923{
1924	struct task_struct *tsk = current;
1925
1926	guard(spinlock_irqsave)(&tsk->sighand->siglock);
1927	__flush_itimer_signals(&tsk->pending);
1928	__flush_itimer_signals(&tsk->signal->shared_pending);
1929}
1930
1931bool posixtimer_init_sigqueue(struct sigqueue *q)
1932{
1933	struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
1934
1935	if (!ucounts)
1936		return false;
1937	clear_siginfo(&q->info);
1938	__sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
1939	return true;
1940}
1941
1942static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
1943{
1944	struct sigpending *pending;
1945	int sig = q->info.si_signo;
1946
1947	signalfd_notify(t, sig);
1948	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1949	list_add_tail(&q->list, &pending->list);
1950	sigaddset(&pending->signal, sig);
1951	complete_signal(sig, t, type);
1952}
1953
1954/*
1955 * This function is used by POSIX timers to deliver a timer signal.
1956 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1957 * set), the signal must be delivered to the specific thread (queues
1958 * into t->pending).
1959 *
1960 * Where type is not PIDTYPE_PID, signals must be delivered to the
1961 * process. In this case, prefer to deliver to current if it is in
1962 * the same thread group as the target process and its sighand is
1963 * stable, which avoids unnecessarily waking up a potentially idle task.
1964 */
1965static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
1966{
1967	struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
 
1968
1969	if (t && tmr->it_pid_type != PIDTYPE_PID &&
1970	    same_thread_group(t, current) && !current->exit_state)
1971		t = current;
1972	return t;
1973}
1974
1975void posixtimer_send_sigqueue(struct k_itimer *tmr)
1976{
1977	struct sigqueue *q = &tmr->sigq;
1978	int sig = q->info.si_signo;
 
1979	struct task_struct *t;
1980	unsigned long flags;
1981	int result;
1982
1983	guard(rcu)();
1984
1985	t = posixtimer_get_target(tmr);
1986	if (!t)
1987		return;
1988
1989	if (!likely(lock_task_sighand(t, &flags)))
1990		return;
1991
1992	/*
1993	 * Update @tmr::sigqueue_seq for posix timer signals with sighand
1994	 * locked to prevent a race against dequeue_signal().
1995	 */
1996	tmr->it_sigqueue_seq = tmr->it_signal_seq;
1997
1998	/*
1999	 * Set the signal delivery status under sighand lock, so that the
2000	 * ignored signal handling can distinguish between a periodic and a
2001	 * non-periodic timer.
 
 
 
 
 
 
2002	 */
2003	tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING;
2004
2005	if (!prepare_signal(sig, t, false)) {
2006		result = TRACE_SIGNAL_IGNORED;
2007
2008		if (!list_empty(&q->list)) {
2009			/*
2010			 * The signal was ignored and blocked. The timer
2011			 * expiry queued it because blocked signals are
2012			 * queued independent of the ignored state.
2013			 *
2014			 * The unblocking set SIGPENDING, but the signal
2015			 * was not yet dequeued from the pending list.
2016			 * So prepare_signal() sees unblocked and ignored,
2017			 * which ends up here. Leave it queued like a
2018			 * regular signal.
2019			 *
2020			 * The same happens when the task group is exiting
2021			 * and the signal is already queued.
2022			 * prepare_signal() treats SIGNAL_GROUP_EXIT as
2023			 * ignored independent of its queued state. This
2024			 * gets cleaned up in __exit_signal().
2025			 */
2026			goto out;
2027		}
2028
2029		/* Periodic timers with SIG_IGN are queued on the ignored list */
2030		if (tmr->it_sig_periodic) {
2031			/*
2032			 * Already queued means the timer was rearmed after
2033			 * the previous expiry got it on the ignore list.
2034			 * Nothing to do for that case.
2035			 */
2036			if (hlist_unhashed(&tmr->ignored_list)) {
2037				/*
2038				 * Take a signal reference and queue it on
2039				 * the ignored list.
2040				 */
2041				posixtimer_sigqueue_getref(q);
2042				posixtimer_sig_ignore(t, q);
2043			}
2044		} else if (!hlist_unhashed(&tmr->ignored_list)) {
2045			/*
2046			 * Covers the case where a timer was periodic and
2047			 * then the signal was ignored. Later it was rearmed
2048			 * as oneshot timer. The previous signal is invalid
2049			 * now, and this oneshot signal has to be dropped.
2050			 * Remove it from the ignored list and drop the
2051			 * reference count as the signal is not longer
2052			 * queued.
2053			 */
2054			hlist_del_init(&tmr->ignored_list);
2055			posixtimer_putref(tmr);
2056		}
2057		goto out;
2058	}
2059
 
2060	if (unlikely(!list_empty(&q->list))) {
2061		/* This holds a reference count already */
 
 
 
 
 
2062		result = TRACE_SIGNAL_ALREADY_PENDING;
2063		goto out;
2064	}
 
2065
2066	/*
2067	 * If the signal is on the ignore list, it got blocked after it was
2068	 * ignored earlier. But nothing lifted the ignore. Move it back to
2069	 * the pending list to be consistent with the regular signal
2070	 * handling. This already holds a reference count.
2071	 *
2072	 * If it's not on the ignore list acquire a reference count.
2073	 */
2074	if (likely(hlist_unhashed(&tmr->ignored_list)))
2075		posixtimer_sigqueue_getref(q);
2076	else
2077		hlist_del_init(&tmr->ignored_list);
2078
2079	posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
2080	result = TRACE_SIGNAL_DELIVERED;
2081out:
2082	trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
2083	unlock_task_sighand(t, &flags);
 
 
 
2084}
2085
2086static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q)
2087{
2088	struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
2089
2090	/*
2091	 * If the timer is marked deleted already or the signal originates
2092	 * from a non-periodic timer, then just drop the reference
2093	 * count. Otherwise queue it on the ignored list.
2094	 */
2095	if (tmr->it_signal && tmr->it_sig_periodic)
2096		hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers);
2097	else
2098		posixtimer_putref(tmr);
2099}
2100
2101static void posixtimer_sig_unignore(struct task_struct *tsk, int sig)
2102{
2103	struct hlist_head *head = &tsk->signal->ignored_posix_timers;
2104	struct hlist_node *tmp;
2105	struct k_itimer *tmr;
2106
2107	if (likely(hlist_empty(head)))
2108		return;
2109
2110	/*
2111	 * Rearming a timer with sighand lock held is not possible due to
2112	 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
2113	 * let the signal delivery path deal with it whether it needs to be
2114	 * rearmed or not. This cannot be decided here w/o dropping sighand
2115	 * lock and creating a loop retry horror show.
2116	 */
2117	hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) {
2118		struct task_struct *target;
2119
2120		/*
2121		 * tmr::sigq.info.si_signo is immutable, so accessing it
2122		 * without holding tmr::it_lock is safe.
2123		 */
2124		if (tmr->sigq.info.si_signo != sig)
2125			continue;
2126
2127		hlist_del_init(&tmr->ignored_list);
2128
2129		/* This should never happen and leaks a reference count */
2130		if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list)))
2131			continue;
2132
2133		/*
2134		 * Get the target for the signal. If target is a thread and
2135		 * has exited by now, drop the reference count.
2136		 */
2137		guard(rcu)();
2138		target = posixtimer_get_target(tmr);
2139		if (target)
2140			posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type);
2141		else
2142			posixtimer_putref(tmr);
2143	}
2144}
2145#else /* CONFIG_POSIX_TIMERS */
2146static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { }
2147static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { }
2148#endif /* !CONFIG_POSIX_TIMERS */
2149
2150void do_notify_pidfd(struct task_struct *task)
2151{
2152	struct pid *pid = task_pid(task);
2153
2154	WARN_ON(task->exit_state == 0);
2155
2156	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2157			poll_to_key(EPOLLIN | EPOLLRDNORM));
2158}
2159
2160/*
2161 * Let a parent know about the death of a child.
2162 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2163 *
2164 * Returns true if our parent ignored us and so we've switched to
2165 * self-reaping.
2166 */
2167bool do_notify_parent(struct task_struct *tsk, int sig)
2168{
2169	struct kernel_siginfo info;
2170	unsigned long flags;
2171	struct sighand_struct *psig;
2172	bool autoreap = false;
2173	u64 utime, stime;
2174
2175	WARN_ON_ONCE(sig == -1);
2176
2177	/* do_notify_parent_cldstop should have been called instead.  */
2178	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2179
2180	WARN_ON_ONCE(!tsk->ptrace &&
2181	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2182	/*
2183	 * tsk is a group leader and has no threads, wake up the
2184	 * non-PIDFD_THREAD waiters.
2185	 */
2186	if (thread_group_empty(tsk))
2187		do_notify_pidfd(tsk);
2188
2189	if (sig != SIGCHLD) {
2190		/*
2191		 * This is only possible if parent == real_parent.
2192		 * Check if it has changed security domain.
2193		 */
2194		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2195			sig = SIGCHLD;
2196	}
2197
2198	clear_siginfo(&info);
2199	info.si_signo = sig;
2200	info.si_errno = 0;
2201	/*
2202	 * We are under tasklist_lock here so our parent is tied to
2203	 * us and cannot change.
2204	 *
2205	 * task_active_pid_ns will always return the same pid namespace
2206	 * until a task passes through release_task.
2207	 *
2208	 * write_lock() currently calls preempt_disable() which is the
2209	 * same as rcu_read_lock(), but according to Oleg, this is not
2210	 * correct to rely on this
2211	 */
2212	rcu_read_lock();
2213	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2214	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2215				       task_uid(tsk));
2216	rcu_read_unlock();
2217
2218	task_cputime(tsk, &utime, &stime);
2219	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2220	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2221
2222	info.si_status = tsk->exit_code & 0x7f;
2223	if (tsk->exit_code & 0x80)
2224		info.si_code = CLD_DUMPED;
2225	else if (tsk->exit_code & 0x7f)
2226		info.si_code = CLD_KILLED;
2227	else {
2228		info.si_code = CLD_EXITED;
2229		info.si_status = tsk->exit_code >> 8;
2230	}
2231
2232	psig = tsk->parent->sighand;
2233	spin_lock_irqsave(&psig->siglock, flags);
2234	if (!tsk->ptrace && sig == SIGCHLD &&
2235	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2236	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2237		/*
2238		 * We are exiting and our parent doesn't care.  POSIX.1
2239		 * defines special semantics for setting SIGCHLD to SIG_IGN
2240		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2241		 * automatically and not left for our parent's wait4 call.
2242		 * Rather than having the parent do it as a magic kind of
2243		 * signal handler, we just set this to tell do_exit that we
2244		 * can be cleaned up without becoming a zombie.  Note that
2245		 * we still call __wake_up_parent in this case, because a
2246		 * blocked sys_wait4 might now return -ECHILD.
2247		 *
2248		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2249		 * is implementation-defined: we do (if you don't want
2250		 * it, just use SIG_IGN instead).
2251		 */
2252		autoreap = true;
2253		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2254			sig = 0;
2255	}
2256	/*
2257	 * Send with __send_signal as si_pid and si_uid are in the
2258	 * parent's namespaces.
2259	 */
2260	if (valid_signal(sig) && sig)
2261		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2262	__wake_up_parent(tsk, tsk->parent);
2263	spin_unlock_irqrestore(&psig->siglock, flags);
2264
2265	return autoreap;
2266}
2267
2268/**
2269 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2270 * @tsk: task reporting the state change
2271 * @for_ptracer: the notification is for ptracer
2272 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2273 *
2274 * Notify @tsk's parent that the stopped/continued state has changed.  If
2275 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2276 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2277 *
2278 * CONTEXT:
2279 * Must be called with tasklist_lock at least read locked.
2280 */
2281static void do_notify_parent_cldstop(struct task_struct *tsk,
2282				     bool for_ptracer, int why)
2283{
2284	struct kernel_siginfo info;
2285	unsigned long flags;
2286	struct task_struct *parent;
2287	struct sighand_struct *sighand;
2288	u64 utime, stime;
2289
2290	if (for_ptracer) {
2291		parent = tsk->parent;
2292	} else {
2293		tsk = tsk->group_leader;
2294		parent = tsk->real_parent;
2295	}
2296
2297	clear_siginfo(&info);
2298	info.si_signo = SIGCHLD;
2299	info.si_errno = 0;
2300	/*
2301	 * see comment in do_notify_parent() about the following 4 lines
2302	 */
2303	rcu_read_lock();
2304	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2305	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2306	rcu_read_unlock();
2307
2308	task_cputime(tsk, &utime, &stime);
2309	info.si_utime = nsec_to_clock_t(utime);
2310	info.si_stime = nsec_to_clock_t(stime);
2311
2312 	info.si_code = why;
2313 	switch (why) {
2314 	case CLD_CONTINUED:
2315 		info.si_status = SIGCONT;
2316 		break;
2317 	case CLD_STOPPED:
2318 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2319 		break;
2320 	case CLD_TRAPPED:
2321 		info.si_status = tsk->exit_code & 0x7f;
2322 		break;
2323 	default:
2324 		BUG();
2325 	}
2326
2327	sighand = parent->sighand;
2328	spin_lock_irqsave(&sighand->siglock, flags);
2329	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2330	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2331		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2332	/*
2333	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2334	 */
2335	__wake_up_parent(tsk, parent);
2336	spin_unlock_irqrestore(&sighand->siglock, flags);
2337}
2338
2339/*
2340 * This must be called with current->sighand->siglock held.
2341 *
2342 * This should be the path for all ptrace stops.
2343 * We always set current->last_siginfo while stopped here.
2344 * That makes it a way to test a stopped process for
2345 * being ptrace-stopped vs being job-control-stopped.
2346 *
2347 * Returns the signal the ptracer requested the code resume
2348 * with.  If the code did not stop because the tracer is gone,
2349 * the stop signal remains unchanged unless clear_code.
2350 */
2351static int ptrace_stop(int exit_code, int why, unsigned long message,
2352		       kernel_siginfo_t *info)
2353	__releases(&current->sighand->siglock)
2354	__acquires(&current->sighand->siglock)
2355{
2356	bool gstop_done = false;
2357
2358	if (arch_ptrace_stop_needed()) {
2359		/*
2360		 * The arch code has something special to do before a
2361		 * ptrace stop.  This is allowed to block, e.g. for faults
2362		 * on user stack pages.  We can't keep the siglock while
2363		 * calling arch_ptrace_stop, so we must release it now.
2364		 * To preserve proper semantics, we must do this before
2365		 * any signal bookkeeping like checking group_stop_count.
2366		 */
2367		spin_unlock_irq(&current->sighand->siglock);
2368		arch_ptrace_stop();
2369		spin_lock_irq(&current->sighand->siglock);
2370	}
2371
2372	/*
2373	 * After this point ptrace_signal_wake_up or signal_wake_up
2374	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2375	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2376	 * signals here to prevent ptrace_stop sleeping in schedule.
2377	 */
2378	if (!current->ptrace || __fatal_signal_pending(current))
2379		return exit_code;
2380
2381	set_special_state(TASK_TRACED);
2382	current->jobctl |= JOBCTL_TRACED;
2383
2384	/*
2385	 * We're committing to trapping.  TRACED should be visible before
2386	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2387	 * Also, transition to TRACED and updates to ->jobctl should be
2388	 * atomic with respect to siglock and should be done after the arch
2389	 * hook as siglock is released and regrabbed across it.
2390	 *
2391	 *     TRACER				    TRACEE
2392	 *
2393	 *     ptrace_attach()
2394	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2395	 *     do_wait()
2396	 *       set_current_state()                smp_wmb();
2397	 *       ptrace_do_wait()
2398	 *         wait_task_stopped()
2399	 *           task_stopped_code()
2400	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2401	 */
2402	smp_wmb();
2403
2404	current->ptrace_message = message;
2405	current->last_siginfo = info;
2406	current->exit_code = exit_code;
2407
2408	/*
2409	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2410	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2411	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2412	 * could be clear now.  We act as if SIGCONT is received after
2413	 * TASK_TRACED is entered - ignore it.
2414	 */
2415	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2416		gstop_done = task_participate_group_stop(current);
2417
2418	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2419	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2420	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2421		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2422
2423	/* entering a trap, clear TRAPPING */
2424	task_clear_jobctl_trapping(current);
2425
2426	spin_unlock_irq(&current->sighand->siglock);
2427	read_lock(&tasklist_lock);
2428	/*
2429	 * Notify parents of the stop.
2430	 *
2431	 * While ptraced, there are two parents - the ptracer and
2432	 * the real_parent of the group_leader.  The ptracer should
2433	 * know about every stop while the real parent is only
2434	 * interested in the completion of group stop.  The states
2435	 * for the two don't interact with each other.  Notify
2436	 * separately unless they're gonna be duplicates.
2437	 */
2438	if (current->ptrace)
2439		do_notify_parent_cldstop(current, true, why);
2440	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2441		do_notify_parent_cldstop(current, false, why);
2442
2443	/*
2444	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2445	 * One a PREEMPTION kernel this can result in preemption requirement
2446	 * which will be fulfilled after read_unlock() and the ptracer will be
2447	 * put on the CPU.
2448	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2449	 * this task wait in schedule(). If this task gets preempted then it
2450	 * remains enqueued on the runqueue. The ptracer will observe this and
2451	 * then sleep for a delay of one HZ tick. In the meantime this task
2452	 * gets scheduled, enters schedule() and will wait for the ptracer.
2453	 *
2454	 * This preemption point is not bad from a correctness point of
2455	 * view but extends the runtime by one HZ tick time due to the
2456	 * ptracer's sleep.  The preempt-disable section ensures that there
2457	 * will be no preemption between unlock and schedule() and so
2458	 * improving the performance since the ptracer will observe that
2459	 * the tracee is scheduled out once it gets on the CPU.
2460	 *
2461	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2462	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2463	 * before unlocking tasklist_lock so there is no benefit in doing this.
2464	 *
2465	 * In fact disabling preemption is harmful on PREEMPT_RT because
2466	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2467	 * with preemption disabled due to the 'sleeping' spinlock
2468	 * substitution of RT.
2469	 */
2470	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2471		preempt_disable();
2472	read_unlock(&tasklist_lock);
2473	cgroup_enter_frozen();
2474	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2475		preempt_enable_no_resched();
2476	schedule();
2477	cgroup_leave_frozen(true);
2478
2479	/*
2480	 * We are back.  Now reacquire the siglock before touching
2481	 * last_siginfo, so that we are sure to have synchronized with
2482	 * any signal-sending on another CPU that wants to examine it.
2483	 */
2484	spin_lock_irq(&current->sighand->siglock);
2485	exit_code = current->exit_code;
2486	current->last_siginfo = NULL;
2487	current->ptrace_message = 0;
2488	current->exit_code = 0;
2489
2490	/* LISTENING can be set only during STOP traps, clear it */
2491	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2492
2493	/*
2494	 * Queued signals ignored us while we were stopped for tracing.
2495	 * So check for any that we should take before resuming user mode.
2496	 * This sets TIF_SIGPENDING, but never clears it.
2497	 */
2498	recalc_sigpending_tsk(current);
2499	return exit_code;
2500}
2501
2502static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2503{
2504	kernel_siginfo_t info;
2505
2506	clear_siginfo(&info);
2507	info.si_signo = signr;
2508	info.si_code = exit_code;
2509	info.si_pid = task_pid_vnr(current);
2510	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2511
2512	/* Let the debugger run.  */
2513	return ptrace_stop(exit_code, why, message, &info);
2514}
2515
2516int ptrace_notify(int exit_code, unsigned long message)
2517{
2518	int signr;
2519
2520	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2521	if (unlikely(task_work_pending(current)))
2522		task_work_run();
2523
2524	spin_lock_irq(&current->sighand->siglock);
2525	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2526	spin_unlock_irq(&current->sighand->siglock);
2527	return signr;
2528}
2529
2530/**
2531 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2532 * @signr: signr causing group stop if initiating
2533 *
2534 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2535 * and participate in it.  If already set, participate in the existing
2536 * group stop.  If participated in a group stop (and thus slept), %true is
2537 * returned with siglock released.
2538 *
2539 * If ptraced, this function doesn't handle stop itself.  Instead,
2540 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2541 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2542 * places afterwards.
2543 *
2544 * CONTEXT:
2545 * Must be called with @current->sighand->siglock held, which is released
2546 * on %true return.
2547 *
2548 * RETURNS:
2549 * %false if group stop is already cancelled or ptrace trap is scheduled.
2550 * %true if participated in group stop.
2551 */
2552static bool do_signal_stop(int signr)
2553	__releases(&current->sighand->siglock)
2554{
2555	struct signal_struct *sig = current->signal;
2556
2557	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2558		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2559		struct task_struct *t;
2560
2561		/* signr will be recorded in task->jobctl for retries */
2562		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2563
2564		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2565		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2566		    unlikely(sig->group_exec_task))
2567			return false;
2568		/*
2569		 * There is no group stop already in progress.  We must
2570		 * initiate one now.
2571		 *
2572		 * While ptraced, a task may be resumed while group stop is
2573		 * still in effect and then receive a stop signal and
2574		 * initiate another group stop.  This deviates from the
2575		 * usual behavior as two consecutive stop signals can't
2576		 * cause two group stops when !ptraced.  That is why we
2577		 * also check !task_is_stopped(t) below.
2578		 *
2579		 * The condition can be distinguished by testing whether
2580		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2581		 * group_exit_code in such case.
2582		 *
2583		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2584		 * an intervening stop signal is required to cause two
2585		 * continued events regardless of ptrace.
2586		 */
2587		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2588			sig->group_exit_code = signr;
2589
2590		sig->group_stop_count = 0;
2591		if (task_set_jobctl_pending(current, signr | gstop))
2592			sig->group_stop_count++;
2593
2594		for_other_threads(current, t) {
2595			/*
2596			 * Setting state to TASK_STOPPED for a group
2597			 * stop is always done with the siglock held,
2598			 * so this check has no races.
2599			 */
2600			if (!task_is_stopped(t) &&
2601			    task_set_jobctl_pending(t, signr | gstop)) {
2602				sig->group_stop_count++;
2603				if (likely(!(t->ptrace & PT_SEIZED)))
2604					signal_wake_up(t, 0);
2605				else
2606					ptrace_trap_notify(t);
2607			}
2608		}
2609	}
2610
2611	if (likely(!current->ptrace)) {
2612		int notify = 0;
2613
2614		/*
2615		 * If there are no other threads in the group, or if there
2616		 * is a group stop in progress and we are the last to stop,
2617		 * report to the parent.
2618		 */
2619		if (task_participate_group_stop(current))
2620			notify = CLD_STOPPED;
2621
2622		current->jobctl |= JOBCTL_STOPPED;
2623		set_special_state(TASK_STOPPED);
2624		spin_unlock_irq(&current->sighand->siglock);
2625
2626		/*
2627		 * Notify the parent of the group stop completion.  Because
2628		 * we're not holding either the siglock or tasklist_lock
2629		 * here, ptracer may attach inbetween; however, this is for
2630		 * group stop and should always be delivered to the real
2631		 * parent of the group leader.  The new ptracer will get
2632		 * its notification when this task transitions into
2633		 * TASK_TRACED.
2634		 */
2635		if (notify) {
2636			read_lock(&tasklist_lock);
2637			do_notify_parent_cldstop(current, false, notify);
2638			read_unlock(&tasklist_lock);
2639		}
2640
2641		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2642		cgroup_enter_frozen();
2643		schedule();
2644		return true;
2645	} else {
2646		/*
2647		 * While ptraced, group stop is handled by STOP trap.
2648		 * Schedule it and let the caller deal with it.
2649		 */
2650		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2651		return false;
2652	}
2653}
2654
2655/**
2656 * do_jobctl_trap - take care of ptrace jobctl traps
2657 *
2658 * When PT_SEIZED, it's used for both group stop and explicit
2659 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2660 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2661 * the stop signal; otherwise, %SIGTRAP.
2662 *
2663 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2664 * number as exit_code and no siginfo.
2665 *
2666 * CONTEXT:
2667 * Must be called with @current->sighand->siglock held, which may be
2668 * released and re-acquired before returning with intervening sleep.
2669 */
2670static void do_jobctl_trap(void)
2671{
2672	struct signal_struct *signal = current->signal;
2673	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2674
2675	if (current->ptrace & PT_SEIZED) {
2676		if (!signal->group_stop_count &&
2677		    !(signal->flags & SIGNAL_STOP_STOPPED))
2678			signr = SIGTRAP;
2679		WARN_ON_ONCE(!signr);
2680		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2681				 CLD_STOPPED, 0);
2682	} else {
2683		WARN_ON_ONCE(!signr);
2684		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2685	}
2686}
2687
2688/**
2689 * do_freezer_trap - handle the freezer jobctl trap
2690 *
2691 * Puts the task into frozen state, if only the task is not about to quit.
2692 * In this case it drops JOBCTL_TRAP_FREEZE.
2693 *
2694 * CONTEXT:
2695 * Must be called with @current->sighand->siglock held,
2696 * which is always released before returning.
2697 */
2698static void do_freezer_trap(void)
2699	__releases(&current->sighand->siglock)
2700{
2701	/*
2702	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2703	 * let's make another loop to give it a chance to be handled.
2704	 * In any case, we'll return back.
2705	 */
2706	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2707	     JOBCTL_TRAP_FREEZE) {
2708		spin_unlock_irq(&current->sighand->siglock);
2709		return;
2710	}
2711
2712	/*
2713	 * Now we're sure that there is no pending fatal signal and no
2714	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2715	 * immediately (if there is a non-fatal signal pending), and
2716	 * put the task into sleep.
2717	 */
2718	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2719	clear_thread_flag(TIF_SIGPENDING);
2720	spin_unlock_irq(&current->sighand->siglock);
2721	cgroup_enter_frozen();
2722	schedule();
2723
2724	/*
2725	 * We could've been woken by task_work, run it to clear
2726	 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2727	 */
2728	clear_notify_signal();
2729	if (unlikely(task_work_pending(current)))
2730		task_work_run();
2731}
2732
2733static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2734{
2735	/*
2736	 * We do not check sig_kernel_stop(signr) but set this marker
2737	 * unconditionally because we do not know whether debugger will
2738	 * change signr. This flag has no meaning unless we are going
2739	 * to stop after return from ptrace_stop(). In this case it will
2740	 * be checked in do_signal_stop(), we should only stop if it was
2741	 * not cleared by SIGCONT while we were sleeping. See also the
2742	 * comment in dequeue_signal().
2743	 */
2744	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2745	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2746
2747	/* We're back.  Did the debugger cancel the sig?  */
2748	if (signr == 0)
2749		return signr;
2750
2751	/*
2752	 * Update the siginfo structure if the signal has
2753	 * changed.  If the debugger wanted something
2754	 * specific in the siginfo structure then it should
2755	 * have updated *info via PTRACE_SETSIGINFO.
2756	 */
2757	if (signr != info->si_signo) {
2758		clear_siginfo(info);
2759		info->si_signo = signr;
2760		info->si_errno = 0;
2761		info->si_code = SI_USER;
2762		rcu_read_lock();
2763		info->si_pid = task_pid_vnr(current->parent);
2764		info->si_uid = from_kuid_munged(current_user_ns(),
2765						task_uid(current->parent));
2766		rcu_read_unlock();
2767	}
2768
2769	/* If the (new) signal is now blocked, requeue it.  */
2770	if (sigismember(&current->blocked, signr) ||
2771	    fatal_signal_pending(current)) {
2772		send_signal_locked(signr, info, current, type);
2773		signr = 0;
2774	}
2775
2776	return signr;
2777}
2778
2779static void hide_si_addr_tag_bits(struct ksignal *ksig)
2780{
2781	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2782	case SIL_FAULT:
2783	case SIL_FAULT_TRAPNO:
2784	case SIL_FAULT_MCEERR:
2785	case SIL_FAULT_BNDERR:
2786	case SIL_FAULT_PKUERR:
2787	case SIL_FAULT_PERF_EVENT:
2788		ksig->info.si_addr = arch_untagged_si_addr(
2789			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2790		break;
2791	case SIL_KILL:
2792	case SIL_TIMER:
2793	case SIL_POLL:
2794	case SIL_CHLD:
2795	case SIL_RT:
2796	case SIL_SYS:
2797		break;
2798	}
2799}
2800
2801bool get_signal(struct ksignal *ksig)
2802{
2803	struct sighand_struct *sighand = current->sighand;
2804	struct signal_struct *signal = current->signal;
2805	int signr;
2806
2807	clear_notify_signal();
2808	if (unlikely(task_work_pending(current)))
2809		task_work_run();
2810
2811	if (!task_sigpending(current))
2812		return false;
2813
2814	if (unlikely(uprobe_deny_signal()))
2815		return false;
2816
2817	/*
2818	 * Do this once, we can't return to user-mode if freezing() == T.
2819	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2820	 * thus do not need another check after return.
2821	 */
2822	try_to_freeze();
2823
2824relock:
2825	spin_lock_irq(&sighand->siglock);
2826
2827	/*
2828	 * Every stopped thread goes here after wakeup. Check to see if
2829	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2830	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2831	 */
2832	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2833		int why;
2834
2835		if (signal->flags & SIGNAL_CLD_CONTINUED)
2836			why = CLD_CONTINUED;
2837		else
2838			why = CLD_STOPPED;
2839
2840		signal->flags &= ~SIGNAL_CLD_MASK;
2841
2842		spin_unlock_irq(&sighand->siglock);
2843
2844		/*
2845		 * Notify the parent that we're continuing.  This event is
2846		 * always per-process and doesn't make whole lot of sense
2847		 * for ptracers, who shouldn't consume the state via
2848		 * wait(2) either, but, for backward compatibility, notify
2849		 * the ptracer of the group leader too unless it's gonna be
2850		 * a duplicate.
2851		 */
2852		read_lock(&tasklist_lock);
2853		do_notify_parent_cldstop(current, false, why);
2854
2855		if (ptrace_reparented(current->group_leader))
2856			do_notify_parent_cldstop(current->group_leader,
2857						true, why);
2858		read_unlock(&tasklist_lock);
2859
2860		goto relock;
2861	}
2862
2863	for (;;) {
2864		struct k_sigaction *ka;
2865		enum pid_type type;
2866
2867		/* Has this task already been marked for death? */
2868		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2869		     signal->group_exec_task) {
2870			signr = SIGKILL;
2871			sigdelset(&current->pending.signal, SIGKILL);
2872			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2873					     &sighand->action[SIGKILL-1]);
2874			recalc_sigpending();
2875			/*
2876			 * implies do_group_exit() or return to PF_USER_WORKER,
2877			 * no need to initialize ksig->info/etc.
2878			 */
2879			goto fatal;
2880		}
2881
2882		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2883		    do_signal_stop(0))
2884			goto relock;
2885
2886		if (unlikely(current->jobctl &
2887			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2888			if (current->jobctl & JOBCTL_TRAP_MASK) {
2889				do_jobctl_trap();
2890				spin_unlock_irq(&sighand->siglock);
2891			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2892				do_freezer_trap();
2893
2894			goto relock;
2895		}
2896
2897		/*
2898		 * If the task is leaving the frozen state, let's update
2899		 * cgroup counters and reset the frozen bit.
2900		 */
2901		if (unlikely(cgroup_task_frozen(current))) {
2902			spin_unlock_irq(&sighand->siglock);
2903			cgroup_leave_frozen(false);
2904			goto relock;
2905		}
2906
2907		/*
2908		 * Signals generated by the execution of an instruction
2909		 * need to be delivered before any other pending signals
2910		 * so that the instruction pointer in the signal stack
2911		 * frame points to the faulting instruction.
2912		 */
2913		type = PIDTYPE_PID;
2914		signr = dequeue_synchronous_signal(&ksig->info);
2915		if (!signr)
2916			signr = dequeue_signal(&current->blocked, &ksig->info, &type);
 
2917
2918		if (!signr)
2919			break; /* will return 0 */
2920
2921		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2922		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2923			signr = ptrace_signal(signr, &ksig->info, type);
2924			if (!signr)
2925				continue;
2926		}
2927
2928		ka = &sighand->action[signr-1];
2929
2930		/* Trace actually delivered signals. */
2931		trace_signal_deliver(signr, &ksig->info, ka);
2932
2933		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2934			continue;
2935		if (ka->sa.sa_handler != SIG_DFL) {
2936			/* Run the handler.  */
2937			ksig->ka = *ka;
2938
2939			if (ka->sa.sa_flags & SA_ONESHOT)
2940				ka->sa.sa_handler = SIG_DFL;
2941
2942			break; /* will return non-zero "signr" value */
2943		}
2944
2945		/*
2946		 * Now we are doing the default action for this signal.
2947		 */
2948		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2949			continue;
2950
2951		/*
2952		 * Global init gets no signals it doesn't want.
2953		 * Container-init gets no signals it doesn't want from same
2954		 * container.
2955		 *
2956		 * Note that if global/container-init sees a sig_kernel_only()
2957		 * signal here, the signal must have been generated internally
2958		 * or must have come from an ancestor namespace. In either
2959		 * case, the signal cannot be dropped.
2960		 */
2961		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2962				!sig_kernel_only(signr))
2963			continue;
2964
2965		if (sig_kernel_stop(signr)) {
2966			/*
2967			 * The default action is to stop all threads in
2968			 * the thread group.  The job control signals
2969			 * do nothing in an orphaned pgrp, but SIGSTOP
2970			 * always works.  Note that siglock needs to be
2971			 * dropped during the call to is_orphaned_pgrp()
2972			 * because of lock ordering with tasklist_lock.
2973			 * This allows an intervening SIGCONT to be posted.
2974			 * We need to check for that and bail out if necessary.
2975			 */
2976			if (signr != SIGSTOP) {
2977				spin_unlock_irq(&sighand->siglock);
2978
2979				/* signals can be posted during this window */
2980
2981				if (is_current_pgrp_orphaned())
2982					goto relock;
2983
2984				spin_lock_irq(&sighand->siglock);
2985			}
2986
2987			if (likely(do_signal_stop(signr))) {
2988				/* It released the siglock.  */
2989				goto relock;
2990			}
2991
2992			/*
2993			 * We didn't actually stop, due to a race
2994			 * with SIGCONT or something like that.
2995			 */
2996			continue;
2997		}
2998
2999	fatal:
3000		spin_unlock_irq(&sighand->siglock);
3001		if (unlikely(cgroup_task_frozen(current)))
3002			cgroup_leave_frozen(true);
3003
3004		/*
3005		 * Anything else is fatal, maybe with a core dump.
3006		 */
3007		current->flags |= PF_SIGNALED;
3008
3009		if (sig_kernel_coredump(signr)) {
3010			if (print_fatal_signals)
3011				print_fatal_signal(signr);
3012			proc_coredump_connector(current);
3013			/*
3014			 * If it was able to dump core, this kills all
3015			 * other threads in the group and synchronizes with
3016			 * their demise.  If we lost the race with another
3017			 * thread getting here, it set group_exit_code
3018			 * first and our do_group_exit call below will use
3019			 * that value and ignore the one we pass it.
3020			 */
3021			do_coredump(&ksig->info);
3022		}
3023
3024		/*
3025		 * PF_USER_WORKER threads will catch and exit on fatal signals
3026		 * themselves. They have cleanup that must be performed, so we
3027		 * cannot call do_exit() on their behalf. Note that ksig won't
3028		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
3029		 */
3030		if (current->flags & PF_USER_WORKER)
3031			goto out;
3032
3033		/*
3034		 * Death signals, no core dump.
3035		 */
3036		do_group_exit(signr);
3037		/* NOTREACHED */
3038	}
3039	spin_unlock_irq(&sighand->siglock);
3040
3041	ksig->sig = signr;
3042
3043	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
3044		hide_si_addr_tag_bits(ksig);
3045out:
3046	return signr > 0;
3047}
3048
3049/**
3050 * signal_delivered - called after signal delivery to update blocked signals
3051 * @ksig:		kernel signal struct
3052 * @stepping:		nonzero if debugger single-step or block-step in use
3053 *
3054 * This function should be called when a signal has successfully been
3055 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
3056 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
3057 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
3058 */
3059static void signal_delivered(struct ksignal *ksig, int stepping)
3060{
3061	sigset_t blocked;
3062
3063	/* A signal was successfully delivered, and the
3064	   saved sigmask was stored on the signal frame,
3065	   and will be restored by sigreturn.  So we can
3066	   simply clear the restore sigmask flag.  */
3067	clear_restore_sigmask();
3068
3069	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
3070	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
3071		sigaddset(&blocked, ksig->sig);
3072	set_current_blocked(&blocked);
3073	if (current->sas_ss_flags & SS_AUTODISARM)
3074		sas_ss_reset(current);
3075	if (stepping)
3076		ptrace_notify(SIGTRAP, 0);
3077}
3078
3079void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
3080{
3081	if (failed)
3082		force_sigsegv(ksig->sig);
3083	else
3084		signal_delivered(ksig, stepping);
3085}
3086
3087/*
3088 * It could be that complete_signal() picked us to notify about the
3089 * group-wide signal. Other threads should be notified now to take
3090 * the shared signals in @which since we will not.
3091 */
3092static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
3093{
3094	sigset_t retarget;
3095	struct task_struct *t;
3096
3097	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
3098	if (sigisemptyset(&retarget))
3099		return;
3100
3101	for_other_threads(tsk, t) {
3102		if (t->flags & PF_EXITING)
3103			continue;
3104
3105		if (!has_pending_signals(&retarget, &t->blocked))
3106			continue;
3107		/* Remove the signals this thread can handle. */
3108		sigandsets(&retarget, &retarget, &t->blocked);
3109
3110		if (!task_sigpending(t))
3111			signal_wake_up(t, 0);
3112
3113		if (sigisemptyset(&retarget))
3114			break;
3115	}
3116}
3117
3118void exit_signals(struct task_struct *tsk)
3119{
3120	int group_stop = 0;
3121	sigset_t unblocked;
3122
3123	/*
3124	 * @tsk is about to have PF_EXITING set - lock out users which
3125	 * expect stable threadgroup.
3126	 */
3127	cgroup_threadgroup_change_begin(tsk);
3128
3129	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3130		sched_mm_cid_exit_signals(tsk);
3131		tsk->flags |= PF_EXITING;
3132		cgroup_threadgroup_change_end(tsk);
3133		return;
3134	}
3135
3136	spin_lock_irq(&tsk->sighand->siglock);
3137	/*
3138	 * From now this task is not visible for group-wide signals,
3139	 * see wants_signal(), do_signal_stop().
3140	 */
3141	sched_mm_cid_exit_signals(tsk);
3142	tsk->flags |= PF_EXITING;
3143
3144	cgroup_threadgroup_change_end(tsk);
3145
3146	if (!task_sigpending(tsk))
3147		goto out;
3148
3149	unblocked = tsk->blocked;
3150	signotset(&unblocked);
3151	retarget_shared_pending(tsk, &unblocked);
3152
3153	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3154	    task_participate_group_stop(tsk))
3155		group_stop = CLD_STOPPED;
3156out:
3157	spin_unlock_irq(&tsk->sighand->siglock);
3158
3159	/*
3160	 * If group stop has completed, deliver the notification.  This
3161	 * should always go to the real parent of the group leader.
3162	 */
3163	if (unlikely(group_stop)) {
3164		read_lock(&tasklist_lock);
3165		do_notify_parent_cldstop(tsk, false, group_stop);
3166		read_unlock(&tasklist_lock);
3167	}
3168}
3169
3170/*
3171 * System call entry points.
3172 */
3173
3174/**
3175 *  sys_restart_syscall - restart a system call
3176 */
3177SYSCALL_DEFINE0(restart_syscall)
3178{
3179	struct restart_block *restart = &current->restart_block;
3180	return restart->fn(restart);
3181}
3182
3183long do_no_restart_syscall(struct restart_block *param)
3184{
3185	return -EINTR;
3186}
3187
3188static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3189{
3190	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3191		sigset_t newblocked;
3192		/* A set of now blocked but previously unblocked signals. */
3193		sigandnsets(&newblocked, newset, &current->blocked);
3194		retarget_shared_pending(tsk, &newblocked);
3195	}
3196	tsk->blocked = *newset;
3197	recalc_sigpending();
3198}
3199
3200/**
3201 * set_current_blocked - change current->blocked mask
3202 * @newset: new mask
3203 *
3204 * It is wrong to change ->blocked directly, this helper should be used
3205 * to ensure the process can't miss a shared signal we are going to block.
3206 */
3207void set_current_blocked(sigset_t *newset)
3208{
3209	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3210	__set_current_blocked(newset);
3211}
3212
3213void __set_current_blocked(const sigset_t *newset)
3214{
3215	struct task_struct *tsk = current;
3216
3217	/*
3218	 * In case the signal mask hasn't changed, there is nothing we need
3219	 * to do. The current->blocked shouldn't be modified by other task.
3220	 */
3221	if (sigequalsets(&tsk->blocked, newset))
3222		return;
3223
3224	spin_lock_irq(&tsk->sighand->siglock);
3225	__set_task_blocked(tsk, newset);
3226	spin_unlock_irq(&tsk->sighand->siglock);
3227}
3228
3229/*
3230 * This is also useful for kernel threads that want to temporarily
3231 * (or permanently) block certain signals.
3232 *
3233 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3234 * interface happily blocks "unblockable" signals like SIGKILL
3235 * and friends.
3236 */
3237int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3238{
3239	struct task_struct *tsk = current;
3240	sigset_t newset;
3241
3242	/* Lockless, only current can change ->blocked, never from irq */
3243	if (oldset)
3244		*oldset = tsk->blocked;
3245
3246	switch (how) {
3247	case SIG_BLOCK:
3248		sigorsets(&newset, &tsk->blocked, set);
3249		break;
3250	case SIG_UNBLOCK:
3251		sigandnsets(&newset, &tsk->blocked, set);
3252		break;
3253	case SIG_SETMASK:
3254		newset = *set;
3255		break;
3256	default:
3257		return -EINVAL;
3258	}
3259
3260	__set_current_blocked(&newset);
3261	return 0;
3262}
3263EXPORT_SYMBOL(sigprocmask);
3264
3265/*
3266 * The api helps set app-provided sigmasks.
3267 *
3268 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3269 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3270 *
3271 * Note that it does set_restore_sigmask() in advance, so it must be always
3272 * paired with restore_saved_sigmask_unless() before return from syscall.
3273 */
3274int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3275{
3276	sigset_t kmask;
3277
3278	if (!umask)
3279		return 0;
3280	if (sigsetsize != sizeof(sigset_t))
3281		return -EINVAL;
3282	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3283		return -EFAULT;
3284
3285	set_restore_sigmask();
3286	current->saved_sigmask = current->blocked;
3287	set_current_blocked(&kmask);
3288
3289	return 0;
3290}
3291
3292#ifdef CONFIG_COMPAT
3293int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3294			    size_t sigsetsize)
3295{
3296	sigset_t kmask;
3297
3298	if (!umask)
3299		return 0;
3300	if (sigsetsize != sizeof(compat_sigset_t))
3301		return -EINVAL;
3302	if (get_compat_sigset(&kmask, umask))
3303		return -EFAULT;
3304
3305	set_restore_sigmask();
3306	current->saved_sigmask = current->blocked;
3307	set_current_blocked(&kmask);
3308
3309	return 0;
3310}
3311#endif
3312
3313/**
3314 *  sys_rt_sigprocmask - change the list of currently blocked signals
3315 *  @how: whether to add, remove, or set signals
3316 *  @nset: stores pending signals
3317 *  @oset: previous value of signal mask if non-null
3318 *  @sigsetsize: size of sigset_t type
3319 */
3320SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3321		sigset_t __user *, oset, size_t, sigsetsize)
3322{
3323	sigset_t old_set, new_set;
3324	int error;
3325
3326	/* XXX: Don't preclude handling different sized sigset_t's.  */
3327	if (sigsetsize != sizeof(sigset_t))
3328		return -EINVAL;
3329
3330	old_set = current->blocked;
3331
3332	if (nset) {
3333		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3334			return -EFAULT;
3335		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3336
3337		error = sigprocmask(how, &new_set, NULL);
3338		if (error)
3339			return error;
3340	}
3341
3342	if (oset) {
3343		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3344			return -EFAULT;
3345	}
3346
3347	return 0;
3348}
3349
3350#ifdef CONFIG_COMPAT
3351COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3352		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3353{
3354	sigset_t old_set = current->blocked;
3355
3356	/* XXX: Don't preclude handling different sized sigset_t's.  */
3357	if (sigsetsize != sizeof(sigset_t))
3358		return -EINVAL;
3359
3360	if (nset) {
3361		sigset_t new_set;
3362		int error;
3363		if (get_compat_sigset(&new_set, nset))
3364			return -EFAULT;
3365		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3366
3367		error = sigprocmask(how, &new_set, NULL);
3368		if (error)
3369			return error;
3370	}
3371	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3372}
3373#endif
3374
3375static void do_sigpending(sigset_t *set)
3376{
3377	spin_lock_irq(&current->sighand->siglock);
3378	sigorsets(set, &current->pending.signal,
3379		  &current->signal->shared_pending.signal);
3380	spin_unlock_irq(&current->sighand->siglock);
3381
3382	/* Outside the lock because only this thread touches it.  */
3383	sigandsets(set, &current->blocked, set);
3384}
3385
3386/**
3387 *  sys_rt_sigpending - examine a pending signal that has been raised
3388 *			while blocked
3389 *  @uset: stores pending signals
3390 *  @sigsetsize: size of sigset_t type or larger
3391 */
3392SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3393{
3394	sigset_t set;
3395
3396	if (sigsetsize > sizeof(*uset))
3397		return -EINVAL;
3398
3399	do_sigpending(&set);
3400
3401	if (copy_to_user(uset, &set, sigsetsize))
3402		return -EFAULT;
3403
3404	return 0;
3405}
3406
3407#ifdef CONFIG_COMPAT
3408COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3409		compat_size_t, sigsetsize)
3410{
3411	sigset_t set;
3412
3413	if (sigsetsize > sizeof(*uset))
3414		return -EINVAL;
3415
3416	do_sigpending(&set);
3417
3418	return put_compat_sigset(uset, &set, sigsetsize);
3419}
3420#endif
3421
3422static const struct {
3423	unsigned char limit, layout;
3424} sig_sicodes[] = {
3425	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3426	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3427	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3428	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3429	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3430#if defined(SIGEMT)
3431	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3432#endif
3433	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3434	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3435	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3436};
3437
3438static bool known_siginfo_layout(unsigned sig, int si_code)
3439{
3440	if (si_code == SI_KERNEL)
3441		return true;
3442	else if ((si_code > SI_USER)) {
3443		if (sig_specific_sicodes(sig)) {
3444			if (si_code <= sig_sicodes[sig].limit)
3445				return true;
3446		}
3447		else if (si_code <= NSIGPOLL)
3448			return true;
3449	}
3450	else if (si_code >= SI_DETHREAD)
3451		return true;
3452	else if (si_code == SI_ASYNCNL)
3453		return true;
3454	return false;
3455}
3456
3457enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3458{
3459	enum siginfo_layout layout = SIL_KILL;
3460	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3461		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3462		    (si_code <= sig_sicodes[sig].limit)) {
3463			layout = sig_sicodes[sig].layout;
3464			/* Handle the exceptions */
3465			if ((sig == SIGBUS) &&
3466			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3467				layout = SIL_FAULT_MCEERR;
3468			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3469				layout = SIL_FAULT_BNDERR;
3470#ifdef SEGV_PKUERR
3471			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3472				layout = SIL_FAULT_PKUERR;
3473#endif
3474			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3475				layout = SIL_FAULT_PERF_EVENT;
3476			else if (IS_ENABLED(CONFIG_SPARC) &&
3477				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3478				layout = SIL_FAULT_TRAPNO;
3479			else if (IS_ENABLED(CONFIG_ALPHA) &&
3480				 ((sig == SIGFPE) ||
3481				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3482				layout = SIL_FAULT_TRAPNO;
3483		}
3484		else if (si_code <= NSIGPOLL)
3485			layout = SIL_POLL;
3486	} else {
3487		if (si_code == SI_TIMER)
3488			layout = SIL_TIMER;
3489		else if (si_code == SI_SIGIO)
3490			layout = SIL_POLL;
3491		else if (si_code < 0)
3492			layout = SIL_RT;
3493	}
3494	return layout;
3495}
3496
3497static inline char __user *si_expansion(const siginfo_t __user *info)
3498{
3499	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3500}
3501
3502int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3503{
3504	char __user *expansion = si_expansion(to);
3505	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3506		return -EFAULT;
3507	if (clear_user(expansion, SI_EXPANSION_SIZE))
3508		return -EFAULT;
3509	return 0;
3510}
3511
3512static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3513				       const siginfo_t __user *from)
3514{
3515	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3516		char __user *expansion = si_expansion(from);
3517		char buf[SI_EXPANSION_SIZE];
3518		int i;
3519		/*
3520		 * An unknown si_code might need more than
3521		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3522		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3523		 * will return this data to userspace exactly.
3524		 */
3525		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3526			return -EFAULT;
3527		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3528			if (buf[i] != 0)
3529				return -E2BIG;
3530		}
3531	}
3532	return 0;
3533}
3534
3535static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3536				    const siginfo_t __user *from)
3537{
3538	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3539		return -EFAULT;
3540	to->si_signo = signo;
3541	return post_copy_siginfo_from_user(to, from);
3542}
3543
3544int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3545{
3546	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3547		return -EFAULT;
3548	return post_copy_siginfo_from_user(to, from);
3549}
3550
3551#ifdef CONFIG_COMPAT
3552/**
3553 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3554 * @to: compat siginfo destination
3555 * @from: kernel siginfo source
3556 *
3557 * Note: This function does not work properly for the SIGCHLD on x32, but
3558 * fortunately it doesn't have to.  The only valid callers for this function are
3559 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3560 * The latter does not care because SIGCHLD will never cause a coredump.
3561 */
3562void copy_siginfo_to_external32(struct compat_siginfo *to,
3563		const struct kernel_siginfo *from)
3564{
3565	memset(to, 0, sizeof(*to));
3566
3567	to->si_signo = from->si_signo;
3568	to->si_errno = from->si_errno;
3569	to->si_code  = from->si_code;
3570	switch(siginfo_layout(from->si_signo, from->si_code)) {
3571	case SIL_KILL:
3572		to->si_pid = from->si_pid;
3573		to->si_uid = from->si_uid;
3574		break;
3575	case SIL_TIMER:
3576		to->si_tid     = from->si_tid;
3577		to->si_overrun = from->si_overrun;
3578		to->si_int     = from->si_int;
3579		break;
3580	case SIL_POLL:
3581		to->si_band = from->si_band;
3582		to->si_fd   = from->si_fd;
3583		break;
3584	case SIL_FAULT:
3585		to->si_addr = ptr_to_compat(from->si_addr);
3586		break;
3587	case SIL_FAULT_TRAPNO:
3588		to->si_addr = ptr_to_compat(from->si_addr);
3589		to->si_trapno = from->si_trapno;
3590		break;
3591	case SIL_FAULT_MCEERR:
3592		to->si_addr = ptr_to_compat(from->si_addr);
3593		to->si_addr_lsb = from->si_addr_lsb;
3594		break;
3595	case SIL_FAULT_BNDERR:
3596		to->si_addr = ptr_to_compat(from->si_addr);
3597		to->si_lower = ptr_to_compat(from->si_lower);
3598		to->si_upper = ptr_to_compat(from->si_upper);
3599		break;
3600	case SIL_FAULT_PKUERR:
3601		to->si_addr = ptr_to_compat(from->si_addr);
3602		to->si_pkey = from->si_pkey;
3603		break;
3604	case SIL_FAULT_PERF_EVENT:
3605		to->si_addr = ptr_to_compat(from->si_addr);
3606		to->si_perf_data = from->si_perf_data;
3607		to->si_perf_type = from->si_perf_type;
3608		to->si_perf_flags = from->si_perf_flags;
3609		break;
3610	case SIL_CHLD:
3611		to->si_pid = from->si_pid;
3612		to->si_uid = from->si_uid;
3613		to->si_status = from->si_status;
3614		to->si_utime = from->si_utime;
3615		to->si_stime = from->si_stime;
3616		break;
3617	case SIL_RT:
3618		to->si_pid = from->si_pid;
3619		to->si_uid = from->si_uid;
3620		to->si_int = from->si_int;
3621		break;
3622	case SIL_SYS:
3623		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3624		to->si_syscall   = from->si_syscall;
3625		to->si_arch      = from->si_arch;
3626		break;
3627	}
3628}
3629
3630int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3631			   const struct kernel_siginfo *from)
3632{
3633	struct compat_siginfo new;
3634
3635	copy_siginfo_to_external32(&new, from);
3636	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3637		return -EFAULT;
3638	return 0;
3639}
3640
3641static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3642					 const struct compat_siginfo *from)
3643{
3644	clear_siginfo(to);
3645	to->si_signo = from->si_signo;
3646	to->si_errno = from->si_errno;
3647	to->si_code  = from->si_code;
3648	switch(siginfo_layout(from->si_signo, from->si_code)) {
3649	case SIL_KILL:
3650		to->si_pid = from->si_pid;
3651		to->si_uid = from->si_uid;
3652		break;
3653	case SIL_TIMER:
3654		to->si_tid     = from->si_tid;
3655		to->si_overrun = from->si_overrun;
3656		to->si_int     = from->si_int;
3657		break;
3658	case SIL_POLL:
3659		to->si_band = from->si_band;
3660		to->si_fd   = from->si_fd;
3661		break;
3662	case SIL_FAULT:
3663		to->si_addr = compat_ptr(from->si_addr);
3664		break;
3665	case SIL_FAULT_TRAPNO:
3666		to->si_addr = compat_ptr(from->si_addr);
3667		to->si_trapno = from->si_trapno;
3668		break;
3669	case SIL_FAULT_MCEERR:
3670		to->si_addr = compat_ptr(from->si_addr);
3671		to->si_addr_lsb = from->si_addr_lsb;
3672		break;
3673	case SIL_FAULT_BNDERR:
3674		to->si_addr = compat_ptr(from->si_addr);
3675		to->si_lower = compat_ptr(from->si_lower);
3676		to->si_upper = compat_ptr(from->si_upper);
3677		break;
3678	case SIL_FAULT_PKUERR:
3679		to->si_addr = compat_ptr(from->si_addr);
3680		to->si_pkey = from->si_pkey;
3681		break;
3682	case SIL_FAULT_PERF_EVENT:
3683		to->si_addr = compat_ptr(from->si_addr);
3684		to->si_perf_data = from->si_perf_data;
3685		to->si_perf_type = from->si_perf_type;
3686		to->si_perf_flags = from->si_perf_flags;
3687		break;
3688	case SIL_CHLD:
3689		to->si_pid    = from->si_pid;
3690		to->si_uid    = from->si_uid;
3691		to->si_status = from->si_status;
3692#ifdef CONFIG_X86_X32_ABI
3693		if (in_x32_syscall()) {
3694			to->si_utime = from->_sifields._sigchld_x32._utime;
3695			to->si_stime = from->_sifields._sigchld_x32._stime;
3696		} else
3697#endif
3698		{
3699			to->si_utime = from->si_utime;
3700			to->si_stime = from->si_stime;
3701		}
3702		break;
3703	case SIL_RT:
3704		to->si_pid = from->si_pid;
3705		to->si_uid = from->si_uid;
3706		to->si_int = from->si_int;
3707		break;
3708	case SIL_SYS:
3709		to->si_call_addr = compat_ptr(from->si_call_addr);
3710		to->si_syscall   = from->si_syscall;
3711		to->si_arch      = from->si_arch;
3712		break;
3713	}
3714	return 0;
3715}
3716
3717static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3718				      const struct compat_siginfo __user *ufrom)
3719{
3720	struct compat_siginfo from;
3721
3722	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3723		return -EFAULT;
3724
3725	from.si_signo = signo;
3726	return post_copy_siginfo_from_user32(to, &from);
3727}
3728
3729int copy_siginfo_from_user32(struct kernel_siginfo *to,
3730			     const struct compat_siginfo __user *ufrom)
3731{
3732	struct compat_siginfo from;
3733
3734	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3735		return -EFAULT;
3736
3737	return post_copy_siginfo_from_user32(to, &from);
3738}
3739#endif /* CONFIG_COMPAT */
3740
3741/**
3742 *  do_sigtimedwait - wait for queued signals specified in @which
3743 *  @which: queued signals to wait for
3744 *  @info: if non-null, the signal's siginfo is returned here
3745 *  @ts: upper bound on process time suspension
3746 */
3747static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3748		    const struct timespec64 *ts)
3749{
3750	ktime_t *to = NULL, timeout = KTIME_MAX;
3751	struct task_struct *tsk = current;
3752	sigset_t mask = *which;
3753	enum pid_type type;
3754	int sig, ret = 0;
3755
3756	if (ts) {
3757		if (!timespec64_valid(ts))
3758			return -EINVAL;
3759		timeout = timespec64_to_ktime(*ts);
3760		to = &timeout;
3761	}
3762
3763	/*
3764	 * Invert the set of allowed signals to get those we want to block.
3765	 */
3766	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3767	signotset(&mask);
3768
3769	spin_lock_irq(&tsk->sighand->siglock);
3770	sig = dequeue_signal(&mask, info, &type);
3771	if (!sig && timeout) {
3772		/*
3773		 * None ready, temporarily unblock those we're interested
3774		 * while we are sleeping in so that we'll be awakened when
3775		 * they arrive. Unblocking is always fine, we can avoid
3776		 * set_current_blocked().
3777		 */
3778		tsk->real_blocked = tsk->blocked;
3779		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3780		recalc_sigpending();
3781		spin_unlock_irq(&tsk->sighand->siglock);
3782
3783		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3784		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3785					       HRTIMER_MODE_REL);
3786		spin_lock_irq(&tsk->sighand->siglock);
3787		__set_task_blocked(tsk, &tsk->real_blocked);
3788		sigemptyset(&tsk->real_blocked);
3789		sig = dequeue_signal(&mask, info, &type);
3790	}
3791	spin_unlock_irq(&tsk->sighand->siglock);
3792
3793	if (sig)
3794		return sig;
3795	return ret ? -EINTR : -EAGAIN;
3796}
3797
3798/**
3799 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3800 *			in @uthese
3801 *  @uthese: queued signals to wait for
3802 *  @uinfo: if non-null, the signal's siginfo is returned here
3803 *  @uts: upper bound on process time suspension
3804 *  @sigsetsize: size of sigset_t type
3805 */
3806SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3807		siginfo_t __user *, uinfo,
3808		const struct __kernel_timespec __user *, uts,
3809		size_t, sigsetsize)
3810{
3811	sigset_t these;
3812	struct timespec64 ts;
3813	kernel_siginfo_t info;
3814	int ret;
3815
3816	/* XXX: Don't preclude handling different sized sigset_t's.  */
3817	if (sigsetsize != sizeof(sigset_t))
3818		return -EINVAL;
3819
3820	if (copy_from_user(&these, uthese, sizeof(these)))
3821		return -EFAULT;
3822
3823	if (uts) {
3824		if (get_timespec64(&ts, uts))
3825			return -EFAULT;
3826	}
3827
3828	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3829
3830	if (ret > 0 && uinfo) {
3831		if (copy_siginfo_to_user(uinfo, &info))
3832			ret = -EFAULT;
3833	}
3834
3835	return ret;
3836}
3837
3838#ifdef CONFIG_COMPAT_32BIT_TIME
3839SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3840		siginfo_t __user *, uinfo,
3841		const struct old_timespec32 __user *, uts,
3842		size_t, sigsetsize)
3843{
3844	sigset_t these;
3845	struct timespec64 ts;
3846	kernel_siginfo_t info;
3847	int ret;
3848
3849	if (sigsetsize != sizeof(sigset_t))
3850		return -EINVAL;
3851
3852	if (copy_from_user(&these, uthese, sizeof(these)))
3853		return -EFAULT;
3854
3855	if (uts) {
3856		if (get_old_timespec32(&ts, uts))
3857			return -EFAULT;
3858	}
3859
3860	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3861
3862	if (ret > 0 && uinfo) {
3863		if (copy_siginfo_to_user(uinfo, &info))
3864			ret = -EFAULT;
3865	}
3866
3867	return ret;
3868}
3869#endif
3870
3871#ifdef CONFIG_COMPAT
3872COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3873		struct compat_siginfo __user *, uinfo,
3874		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3875{
3876	sigset_t s;
3877	struct timespec64 t;
3878	kernel_siginfo_t info;
3879	long ret;
3880
3881	if (sigsetsize != sizeof(sigset_t))
3882		return -EINVAL;
3883
3884	if (get_compat_sigset(&s, uthese))
3885		return -EFAULT;
3886
3887	if (uts) {
3888		if (get_timespec64(&t, uts))
3889			return -EFAULT;
3890	}
3891
3892	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3893
3894	if (ret > 0 && uinfo) {
3895		if (copy_siginfo_to_user32(uinfo, &info))
3896			ret = -EFAULT;
3897	}
3898
3899	return ret;
3900}
3901
3902#ifdef CONFIG_COMPAT_32BIT_TIME
3903COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3904		struct compat_siginfo __user *, uinfo,
3905		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3906{
3907	sigset_t s;
3908	struct timespec64 t;
3909	kernel_siginfo_t info;
3910	long ret;
3911
3912	if (sigsetsize != sizeof(sigset_t))
3913		return -EINVAL;
3914
3915	if (get_compat_sigset(&s, uthese))
3916		return -EFAULT;
3917
3918	if (uts) {
3919		if (get_old_timespec32(&t, uts))
3920			return -EFAULT;
3921	}
3922
3923	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3924
3925	if (ret > 0 && uinfo) {
3926		if (copy_siginfo_to_user32(uinfo, &info))
3927			ret = -EFAULT;
3928	}
3929
3930	return ret;
3931}
3932#endif
3933#endif
3934
3935static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3936				 enum pid_type type)
3937{
3938	clear_siginfo(info);
3939	info->si_signo = sig;
3940	info->si_errno = 0;
3941	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3942	info->si_pid = task_tgid_vnr(current);
3943	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3944}
3945
3946/**
3947 *  sys_kill - send a signal to a process
3948 *  @pid: the PID of the process
3949 *  @sig: signal to be sent
3950 */
3951SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3952{
3953	struct kernel_siginfo info;
3954
3955	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3956
3957	return kill_something_info(sig, &info, pid);
3958}
3959
3960/*
3961 * Verify that the signaler and signalee either are in the same pid namespace
3962 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3963 * namespace.
3964 */
3965static bool access_pidfd_pidns(struct pid *pid)
3966{
3967	struct pid_namespace *active = task_active_pid_ns(current);
3968	struct pid_namespace *p = ns_of_pid(pid);
3969
3970	for (;;) {
3971		if (!p)
3972			return false;
3973		if (p == active)
3974			break;
3975		p = p->parent;
3976	}
3977
3978	return true;
3979}
3980
3981static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3982		siginfo_t __user *info)
3983{
3984#ifdef CONFIG_COMPAT
3985	/*
3986	 * Avoid hooking up compat syscalls and instead handle necessary
3987	 * conversions here. Note, this is a stop-gap measure and should not be
3988	 * considered a generic solution.
3989	 */
3990	if (in_compat_syscall())
3991		return copy_siginfo_from_user32(
3992			kinfo, (struct compat_siginfo __user *)info);
3993#endif
3994	return copy_siginfo_from_user(kinfo, info);
3995}
3996
3997static struct pid *pidfd_to_pid(const struct file *file)
3998{
3999	struct pid *pid;
4000
4001	pid = pidfd_pid(file);
4002	if (!IS_ERR(pid))
4003		return pid;
4004
4005	return tgid_pidfd_to_pid(file);
4006}
4007
4008#define PIDFD_SEND_SIGNAL_FLAGS                            \
4009	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
4010	 PIDFD_SIGNAL_PROCESS_GROUP)
4011
4012/**
4013 * sys_pidfd_send_signal - Signal a process through a pidfd
4014 * @pidfd:  file descriptor of the process
4015 * @sig:    signal to send
4016 * @info:   signal info
4017 * @flags:  future flags
4018 *
4019 * Send the signal to the thread group or to the individual thread depending
4020 * on PIDFD_THREAD.
4021 * In the future extension to @flags may be used to override the default scope
4022 * of @pidfd.
4023 *
4024 * Return: 0 on success, negative errno on failure
4025 */
4026SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
4027		siginfo_t __user *, info, unsigned int, flags)
4028{
4029	int ret;
 
4030	struct pid *pid;
4031	kernel_siginfo_t kinfo;
4032	enum pid_type type;
4033
4034	/* Enforce flags be set to 0 until we add an extension. */
4035	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
4036		return -EINVAL;
4037
4038	/* Ensure that only a single signal scope determining flag is set. */
4039	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
4040		return -EINVAL;
4041
4042	CLASS(fd, f)(pidfd);
4043	if (fd_empty(f))
4044		return -EBADF;
4045
4046	/* Is this a pidfd? */
4047	pid = pidfd_to_pid(fd_file(f));
4048	if (IS_ERR(pid))
4049		return PTR_ERR(pid);
 
 
4050
 
4051	if (!access_pidfd_pidns(pid))
4052		return -EINVAL;
4053
4054	switch (flags) {
4055	case 0:
4056		/* Infer scope from the type of pidfd. */
4057		if (fd_file(f)->f_flags & PIDFD_THREAD)
4058			type = PIDTYPE_PID;
4059		else
4060			type = PIDTYPE_TGID;
4061		break;
4062	case PIDFD_SIGNAL_THREAD:
4063		type = PIDTYPE_PID;
4064		break;
4065	case PIDFD_SIGNAL_THREAD_GROUP:
4066		type = PIDTYPE_TGID;
4067		break;
4068	case PIDFD_SIGNAL_PROCESS_GROUP:
4069		type = PIDTYPE_PGID;
4070		break;
4071	}
4072
4073	if (info) {
4074		ret = copy_siginfo_from_user_any(&kinfo, info);
4075		if (unlikely(ret))
4076			return ret;
4077
 
4078		if (unlikely(sig != kinfo.si_signo))
4079			return -EINVAL;
4080
4081		/* Only allow sending arbitrary signals to yourself. */
 
4082		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
4083		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
4084			return -EPERM;
4085	} else {
4086		prepare_kill_siginfo(sig, &kinfo, type);
4087	}
4088
4089	if (type == PIDTYPE_PGID)
4090		return kill_pgrp_info(sig, &kinfo, pid);
4091	else
4092		return kill_pid_info_type(sig, &kinfo, pid, type);
 
 
 
4093}
4094
4095static int
4096do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4097{
4098	struct task_struct *p;
4099	int error = -ESRCH;
4100
4101	rcu_read_lock();
4102	p = find_task_by_vpid(pid);
4103	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4104		error = check_kill_permission(sig, info, p);
4105		/*
4106		 * The null signal is a permissions and process existence
4107		 * probe.  No signal is actually delivered.
4108		 */
4109		if (!error && sig) {
4110			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4111			/*
4112			 * If lock_task_sighand() failed we pretend the task
4113			 * dies after receiving the signal. The window is tiny,
4114			 * and the signal is private anyway.
4115			 */
4116			if (unlikely(error == -ESRCH))
4117				error = 0;
4118		}
4119	}
4120	rcu_read_unlock();
4121
4122	return error;
4123}
4124
4125static int do_tkill(pid_t tgid, pid_t pid, int sig)
4126{
4127	struct kernel_siginfo info;
4128
4129	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4130
4131	return do_send_specific(tgid, pid, sig, &info);
4132}
4133
4134/**
4135 *  sys_tgkill - send signal to one specific thread
4136 *  @tgid: the thread group ID of the thread
4137 *  @pid: the PID of the thread
4138 *  @sig: signal to be sent
4139 *
4140 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4141 *  exists but it's not belonging to the target process anymore. This
4142 *  method solves the problem of threads exiting and PIDs getting reused.
4143 */
4144SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4145{
4146	/* This is only valid for single tasks */
4147	if (pid <= 0 || tgid <= 0)
4148		return -EINVAL;
4149
4150	return do_tkill(tgid, pid, sig);
4151}
4152
4153/**
4154 *  sys_tkill - send signal to one specific task
4155 *  @pid: the PID of the task
4156 *  @sig: signal to be sent
4157 *
4158 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4159 */
4160SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4161{
4162	/* This is only valid for single tasks */
4163	if (pid <= 0)
4164		return -EINVAL;
4165
4166	return do_tkill(0, pid, sig);
4167}
4168
4169static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4170{
4171	/* Not even root can pretend to send signals from the kernel.
4172	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4173	 */
4174	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4175	    (task_pid_vnr(current) != pid))
4176		return -EPERM;
4177
4178	/* POSIX.1b doesn't mention process groups.  */
4179	return kill_proc_info(sig, info, pid);
4180}
4181
4182/**
4183 *  sys_rt_sigqueueinfo - send signal information to a signal
4184 *  @pid: the PID of the thread
4185 *  @sig: signal to be sent
4186 *  @uinfo: signal info to be sent
4187 */
4188SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4189		siginfo_t __user *, uinfo)
4190{
4191	kernel_siginfo_t info;
4192	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4193	if (unlikely(ret))
4194		return ret;
4195	return do_rt_sigqueueinfo(pid, sig, &info);
4196}
4197
4198#ifdef CONFIG_COMPAT
4199COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4200			compat_pid_t, pid,
4201			int, sig,
4202			struct compat_siginfo __user *, uinfo)
4203{
4204	kernel_siginfo_t info;
4205	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4206	if (unlikely(ret))
4207		return ret;
4208	return do_rt_sigqueueinfo(pid, sig, &info);
4209}
4210#endif
4211
4212static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4213{
4214	/* This is only valid for single tasks */
4215	if (pid <= 0 || tgid <= 0)
4216		return -EINVAL;
4217
4218	/* Not even root can pretend to send signals from the kernel.
4219	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4220	 */
4221	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4222	    (task_pid_vnr(current) != pid))
4223		return -EPERM;
4224
4225	return do_send_specific(tgid, pid, sig, info);
4226}
4227
4228SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4229		siginfo_t __user *, uinfo)
4230{
4231	kernel_siginfo_t info;
4232	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4233	if (unlikely(ret))
4234		return ret;
4235	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4236}
4237
4238#ifdef CONFIG_COMPAT
4239COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4240			compat_pid_t, tgid,
4241			compat_pid_t, pid,
4242			int, sig,
4243			struct compat_siginfo __user *, uinfo)
4244{
4245	kernel_siginfo_t info;
4246	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4247	if (unlikely(ret))
4248		return ret;
4249	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4250}
4251#endif
4252
4253/*
4254 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4255 */
4256void kernel_sigaction(int sig, __sighandler_t action)
4257{
4258	spin_lock_irq(&current->sighand->siglock);
4259	current->sighand->action[sig - 1].sa.sa_handler = action;
4260	if (action == SIG_IGN) {
4261		sigset_t mask;
4262
4263		sigemptyset(&mask);
4264		sigaddset(&mask, sig);
4265
4266		flush_sigqueue_mask(current, &mask, &current->signal->shared_pending);
4267		flush_sigqueue_mask(current, &mask, &current->pending);
4268		recalc_sigpending();
4269	}
4270	spin_unlock_irq(&current->sighand->siglock);
4271}
4272EXPORT_SYMBOL(kernel_sigaction);
4273
4274void __weak sigaction_compat_abi(struct k_sigaction *act,
4275		struct k_sigaction *oact)
4276{
4277}
4278
4279int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4280{
4281	struct task_struct *p = current, *t;
4282	struct k_sigaction *k;
4283	sigset_t mask;
4284
4285	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4286		return -EINVAL;
4287
4288	k = &p->sighand->action[sig-1];
4289
4290	spin_lock_irq(&p->sighand->siglock);
4291	if (k->sa.sa_flags & SA_IMMUTABLE) {
4292		spin_unlock_irq(&p->sighand->siglock);
4293		return -EINVAL;
4294	}
4295	if (oact)
4296		*oact = *k;
4297
4298	/*
4299	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4300	 * e.g. by having an architecture use the bit in their uapi.
4301	 */
4302	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4303
4304	/*
4305	 * Clear unknown flag bits in order to allow userspace to detect missing
4306	 * support for flag bits and to allow the kernel to use non-uapi bits
4307	 * internally.
4308	 */
4309	if (act)
4310		act->sa.sa_flags &= UAPI_SA_FLAGS;
4311	if (oact)
4312		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4313
4314	sigaction_compat_abi(act, oact);
4315
4316	if (act) {
4317		bool was_ignored = k->sa.sa_handler == SIG_IGN;
4318
4319		sigdelsetmask(&act->sa.sa_mask,
4320			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4321		*k = *act;
4322		/*
4323		 * POSIX 3.3.1.3:
4324		 *  "Setting a signal action to SIG_IGN for a signal that is
4325		 *   pending shall cause the pending signal to be discarded,
4326		 *   whether or not it is blocked."
4327		 *
4328		 *  "Setting a signal action to SIG_DFL for a signal that is
4329		 *   pending and whose default action is to ignore the signal
4330		 *   (for example, SIGCHLD), shall cause the pending signal to
4331		 *   be discarded, whether or not it is blocked"
4332		 */
4333		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4334			sigemptyset(&mask);
4335			sigaddset(&mask, sig);
4336			flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
4337			for_each_thread(p, t)
4338				flush_sigqueue_mask(p, &mask, &t->pending);
4339		} else if (was_ignored) {
4340			posixtimer_sig_unignore(p, sig);
4341		}
4342	}
4343
4344	spin_unlock_irq(&p->sighand->siglock);
4345	return 0;
4346}
4347
4348#ifdef CONFIG_DYNAMIC_SIGFRAME
4349static inline void sigaltstack_lock(void)
4350	__acquires(&current->sighand->siglock)
4351{
4352	spin_lock_irq(&current->sighand->siglock);
4353}
4354
4355static inline void sigaltstack_unlock(void)
4356	__releases(&current->sighand->siglock)
4357{
4358	spin_unlock_irq(&current->sighand->siglock);
4359}
4360#else
4361static inline void sigaltstack_lock(void) { }
4362static inline void sigaltstack_unlock(void) { }
4363#endif
4364
4365static int
4366do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4367		size_t min_ss_size)
4368{
4369	struct task_struct *t = current;
4370	int ret = 0;
4371
4372	if (oss) {
4373		memset(oss, 0, sizeof(stack_t));
4374		oss->ss_sp = (void __user *) t->sas_ss_sp;
4375		oss->ss_size = t->sas_ss_size;
4376		oss->ss_flags = sas_ss_flags(sp) |
4377			(current->sas_ss_flags & SS_FLAG_BITS);
4378	}
4379
4380	if (ss) {
4381		void __user *ss_sp = ss->ss_sp;
4382		size_t ss_size = ss->ss_size;
4383		unsigned ss_flags = ss->ss_flags;
4384		int ss_mode;
4385
4386		if (unlikely(on_sig_stack(sp)))
4387			return -EPERM;
4388
4389		ss_mode = ss_flags & ~SS_FLAG_BITS;
4390		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4391				ss_mode != 0))
4392			return -EINVAL;
4393
4394		/*
4395		 * Return before taking any locks if no actual
4396		 * sigaltstack changes were requested.
4397		 */
4398		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4399		    t->sas_ss_size == ss_size &&
4400		    t->sas_ss_flags == ss_flags)
4401			return 0;
4402
4403		sigaltstack_lock();
4404		if (ss_mode == SS_DISABLE) {
4405			ss_size = 0;
4406			ss_sp = NULL;
4407		} else {
4408			if (unlikely(ss_size < min_ss_size))
4409				ret = -ENOMEM;
4410			if (!sigaltstack_size_valid(ss_size))
4411				ret = -ENOMEM;
4412		}
4413		if (!ret) {
4414			t->sas_ss_sp = (unsigned long) ss_sp;
4415			t->sas_ss_size = ss_size;
4416			t->sas_ss_flags = ss_flags;
4417		}
4418		sigaltstack_unlock();
4419	}
4420	return ret;
4421}
4422
4423SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4424{
4425	stack_t new, old;
4426	int err;
4427	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4428		return -EFAULT;
4429	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4430			      current_user_stack_pointer(),
4431			      MINSIGSTKSZ);
4432	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4433		err = -EFAULT;
4434	return err;
4435}
4436
4437int restore_altstack(const stack_t __user *uss)
4438{
4439	stack_t new;
4440	if (copy_from_user(&new, uss, sizeof(stack_t)))
4441		return -EFAULT;
4442	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4443			     MINSIGSTKSZ);
4444	/* squash all but EFAULT for now */
4445	return 0;
4446}
4447
4448int __save_altstack(stack_t __user *uss, unsigned long sp)
4449{
4450	struct task_struct *t = current;
4451	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4452		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4453		__put_user(t->sas_ss_size, &uss->ss_size);
4454	return err;
4455}
4456
4457#ifdef CONFIG_COMPAT
4458static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4459				 compat_stack_t __user *uoss_ptr)
4460{
4461	stack_t uss, uoss;
4462	int ret;
4463
4464	if (uss_ptr) {
4465		compat_stack_t uss32;
4466		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4467			return -EFAULT;
4468		uss.ss_sp = compat_ptr(uss32.ss_sp);
4469		uss.ss_flags = uss32.ss_flags;
4470		uss.ss_size = uss32.ss_size;
4471	}
4472	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4473			     compat_user_stack_pointer(),
4474			     COMPAT_MINSIGSTKSZ);
4475	if (ret >= 0 && uoss_ptr)  {
4476		compat_stack_t old;
4477		memset(&old, 0, sizeof(old));
4478		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4479		old.ss_flags = uoss.ss_flags;
4480		old.ss_size = uoss.ss_size;
4481		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4482			ret = -EFAULT;
4483	}
4484	return ret;
4485}
4486
4487COMPAT_SYSCALL_DEFINE2(sigaltstack,
4488			const compat_stack_t __user *, uss_ptr,
4489			compat_stack_t __user *, uoss_ptr)
4490{
4491	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4492}
4493
4494int compat_restore_altstack(const compat_stack_t __user *uss)
4495{
4496	int err = do_compat_sigaltstack(uss, NULL);
4497	/* squash all but -EFAULT for now */
4498	return err == -EFAULT ? err : 0;
4499}
4500
4501int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4502{
4503	int err;
4504	struct task_struct *t = current;
4505	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4506			 &uss->ss_sp) |
4507		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4508		__put_user(t->sas_ss_size, &uss->ss_size);
4509	return err;
4510}
4511#endif
4512
4513#ifdef __ARCH_WANT_SYS_SIGPENDING
4514
4515/**
4516 *  sys_sigpending - examine pending signals
4517 *  @uset: where mask of pending signal is returned
4518 */
4519SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4520{
4521	sigset_t set;
4522
4523	if (sizeof(old_sigset_t) > sizeof(*uset))
4524		return -EINVAL;
4525
4526	do_sigpending(&set);
4527
4528	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4529		return -EFAULT;
4530
4531	return 0;
4532}
4533
4534#ifdef CONFIG_COMPAT
4535COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4536{
4537	sigset_t set;
4538
4539	do_sigpending(&set);
4540
4541	return put_user(set.sig[0], set32);
4542}
4543#endif
4544
4545#endif
4546
4547#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4548/**
4549 *  sys_sigprocmask - examine and change blocked signals
4550 *  @how: whether to add, remove, or set signals
4551 *  @nset: signals to add or remove (if non-null)
4552 *  @oset: previous value of signal mask if non-null
4553 *
4554 * Some platforms have their own version with special arguments;
4555 * others support only sys_rt_sigprocmask.
4556 */
4557
4558SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4559		old_sigset_t __user *, oset)
4560{
4561	old_sigset_t old_set, new_set;
4562	sigset_t new_blocked;
4563
4564	old_set = current->blocked.sig[0];
4565
4566	if (nset) {
4567		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4568			return -EFAULT;
4569
4570		new_blocked = current->blocked;
4571
4572		switch (how) {
4573		case SIG_BLOCK:
4574			sigaddsetmask(&new_blocked, new_set);
4575			break;
4576		case SIG_UNBLOCK:
4577			sigdelsetmask(&new_blocked, new_set);
4578			break;
4579		case SIG_SETMASK:
4580			new_blocked.sig[0] = new_set;
4581			break;
4582		default:
4583			return -EINVAL;
4584		}
4585
4586		set_current_blocked(&new_blocked);
4587	}
4588
4589	if (oset) {
4590		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4591			return -EFAULT;
4592	}
4593
4594	return 0;
4595}
4596#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4597
4598#ifndef CONFIG_ODD_RT_SIGACTION
4599/**
4600 *  sys_rt_sigaction - alter an action taken by a process
4601 *  @sig: signal to be sent
4602 *  @act: new sigaction
4603 *  @oact: used to save the previous sigaction
4604 *  @sigsetsize: size of sigset_t type
4605 */
4606SYSCALL_DEFINE4(rt_sigaction, int, sig,
4607		const struct sigaction __user *, act,
4608		struct sigaction __user *, oact,
4609		size_t, sigsetsize)
4610{
4611	struct k_sigaction new_sa, old_sa;
4612	int ret;
4613
4614	/* XXX: Don't preclude handling different sized sigset_t's.  */
4615	if (sigsetsize != sizeof(sigset_t))
4616		return -EINVAL;
4617
4618	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4619		return -EFAULT;
4620
4621	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4622	if (ret)
4623		return ret;
4624
4625	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4626		return -EFAULT;
4627
4628	return 0;
4629}
4630#ifdef CONFIG_COMPAT
4631COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4632		const struct compat_sigaction __user *, act,
4633		struct compat_sigaction __user *, oact,
4634		compat_size_t, sigsetsize)
4635{
4636	struct k_sigaction new_ka, old_ka;
4637#ifdef __ARCH_HAS_SA_RESTORER
4638	compat_uptr_t restorer;
4639#endif
4640	int ret;
4641
4642	/* XXX: Don't preclude handling different sized sigset_t's.  */
4643	if (sigsetsize != sizeof(compat_sigset_t))
4644		return -EINVAL;
4645
4646	if (act) {
4647		compat_uptr_t handler;
4648		ret = get_user(handler, &act->sa_handler);
4649		new_ka.sa.sa_handler = compat_ptr(handler);
4650#ifdef __ARCH_HAS_SA_RESTORER
4651		ret |= get_user(restorer, &act->sa_restorer);
4652		new_ka.sa.sa_restorer = compat_ptr(restorer);
4653#endif
4654		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4655		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4656		if (ret)
4657			return -EFAULT;
4658	}
4659
4660	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4661	if (!ret && oact) {
4662		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4663			       &oact->sa_handler);
4664		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4665					 sizeof(oact->sa_mask));
4666		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4667#ifdef __ARCH_HAS_SA_RESTORER
4668		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4669				&oact->sa_restorer);
4670#endif
4671	}
4672	return ret;
4673}
4674#endif
4675#endif /* !CONFIG_ODD_RT_SIGACTION */
4676
4677#ifdef CONFIG_OLD_SIGACTION
4678SYSCALL_DEFINE3(sigaction, int, sig,
4679		const struct old_sigaction __user *, act,
4680	        struct old_sigaction __user *, oact)
4681{
4682	struct k_sigaction new_ka, old_ka;
4683	int ret;
4684
4685	if (act) {
4686		old_sigset_t mask;
4687		if (!access_ok(act, sizeof(*act)) ||
4688		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4689		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4690		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4691		    __get_user(mask, &act->sa_mask))
4692			return -EFAULT;
4693#ifdef __ARCH_HAS_KA_RESTORER
4694		new_ka.ka_restorer = NULL;
4695#endif
4696		siginitset(&new_ka.sa.sa_mask, mask);
4697	}
4698
4699	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4700
4701	if (!ret && oact) {
4702		if (!access_ok(oact, sizeof(*oact)) ||
4703		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4704		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4705		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4706		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4707			return -EFAULT;
4708	}
4709
4710	return ret;
4711}
4712#endif
4713#ifdef CONFIG_COMPAT_OLD_SIGACTION
4714COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4715		const struct compat_old_sigaction __user *, act,
4716	        struct compat_old_sigaction __user *, oact)
4717{
4718	struct k_sigaction new_ka, old_ka;
4719	int ret;
4720	compat_old_sigset_t mask;
4721	compat_uptr_t handler, restorer;
4722
4723	if (act) {
4724		if (!access_ok(act, sizeof(*act)) ||
4725		    __get_user(handler, &act->sa_handler) ||
4726		    __get_user(restorer, &act->sa_restorer) ||
4727		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4728		    __get_user(mask, &act->sa_mask))
4729			return -EFAULT;
4730
4731#ifdef __ARCH_HAS_KA_RESTORER
4732		new_ka.ka_restorer = NULL;
4733#endif
4734		new_ka.sa.sa_handler = compat_ptr(handler);
4735		new_ka.sa.sa_restorer = compat_ptr(restorer);
4736		siginitset(&new_ka.sa.sa_mask, mask);
4737	}
4738
4739	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4740
4741	if (!ret && oact) {
4742		if (!access_ok(oact, sizeof(*oact)) ||
4743		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4744			       &oact->sa_handler) ||
4745		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4746			       &oact->sa_restorer) ||
4747		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4748		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4749			return -EFAULT;
4750	}
4751	return ret;
4752}
4753#endif
4754
4755#ifdef CONFIG_SGETMASK_SYSCALL
4756
4757/*
4758 * For backwards compatibility.  Functionality superseded by sigprocmask.
4759 */
4760SYSCALL_DEFINE0(sgetmask)
4761{
4762	/* SMP safe */
4763	return current->blocked.sig[0];
4764}
4765
4766SYSCALL_DEFINE1(ssetmask, int, newmask)
4767{
4768	int old = current->blocked.sig[0];
4769	sigset_t newset;
4770
4771	siginitset(&newset, newmask);
4772	set_current_blocked(&newset);
4773
4774	return old;
4775}
4776#endif /* CONFIG_SGETMASK_SYSCALL */
4777
4778#ifdef __ARCH_WANT_SYS_SIGNAL
4779/*
4780 * For backwards compatibility.  Functionality superseded by sigaction.
4781 */
4782SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4783{
4784	struct k_sigaction new_sa, old_sa;
4785	int ret;
4786
4787	new_sa.sa.sa_handler = handler;
4788	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4789	sigemptyset(&new_sa.sa.sa_mask);
4790
4791	ret = do_sigaction(sig, &new_sa, &old_sa);
4792
4793	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4794}
4795#endif /* __ARCH_WANT_SYS_SIGNAL */
4796
4797#ifdef __ARCH_WANT_SYS_PAUSE
4798
4799SYSCALL_DEFINE0(pause)
4800{
4801	while (!signal_pending(current)) {
4802		__set_current_state(TASK_INTERRUPTIBLE);
4803		schedule();
4804	}
4805	return -ERESTARTNOHAND;
4806}
4807
4808#endif
4809
4810static int sigsuspend(sigset_t *set)
4811{
4812	current->saved_sigmask = current->blocked;
4813	set_current_blocked(set);
4814
4815	while (!signal_pending(current)) {
4816		__set_current_state(TASK_INTERRUPTIBLE);
4817		schedule();
4818	}
4819	set_restore_sigmask();
4820	return -ERESTARTNOHAND;
4821}
4822
4823/**
4824 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4825 *	@unewset value until a signal is received
4826 *  @unewset: new signal mask value
4827 *  @sigsetsize: size of sigset_t type
4828 */
4829SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4830{
4831	sigset_t newset;
4832
4833	/* XXX: Don't preclude handling different sized sigset_t's.  */
4834	if (sigsetsize != sizeof(sigset_t))
4835		return -EINVAL;
4836
4837	if (copy_from_user(&newset, unewset, sizeof(newset)))
4838		return -EFAULT;
4839	return sigsuspend(&newset);
4840}
4841 
4842#ifdef CONFIG_COMPAT
4843COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4844{
4845	sigset_t newset;
4846
4847	/* XXX: Don't preclude handling different sized sigset_t's.  */
4848	if (sigsetsize != sizeof(sigset_t))
4849		return -EINVAL;
4850
4851	if (get_compat_sigset(&newset, unewset))
4852		return -EFAULT;
4853	return sigsuspend(&newset);
4854}
4855#endif
4856
4857#ifdef CONFIG_OLD_SIGSUSPEND
4858SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4859{
4860	sigset_t blocked;
4861	siginitset(&blocked, mask);
4862	return sigsuspend(&blocked);
4863}
4864#endif
4865#ifdef CONFIG_OLD_SIGSUSPEND3
4866SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4867{
4868	sigset_t blocked;
4869	siginitset(&blocked, mask);
4870	return sigsuspend(&blocked);
4871}
4872#endif
4873
4874__weak const char *arch_vma_name(struct vm_area_struct *vma)
4875{
4876	return NULL;
4877}
4878
4879static inline void siginfo_buildtime_checks(void)
4880{
4881	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4882
4883	/* Verify the offsets in the two siginfos match */
4884#define CHECK_OFFSET(field) \
4885	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4886
4887	/* kill */
4888	CHECK_OFFSET(si_pid);
4889	CHECK_OFFSET(si_uid);
4890
4891	/* timer */
4892	CHECK_OFFSET(si_tid);
4893	CHECK_OFFSET(si_overrun);
4894	CHECK_OFFSET(si_value);
4895
4896	/* rt */
4897	CHECK_OFFSET(si_pid);
4898	CHECK_OFFSET(si_uid);
4899	CHECK_OFFSET(si_value);
4900
4901	/* sigchld */
4902	CHECK_OFFSET(si_pid);
4903	CHECK_OFFSET(si_uid);
4904	CHECK_OFFSET(si_status);
4905	CHECK_OFFSET(si_utime);
4906	CHECK_OFFSET(si_stime);
4907
4908	/* sigfault */
4909	CHECK_OFFSET(si_addr);
4910	CHECK_OFFSET(si_trapno);
4911	CHECK_OFFSET(si_addr_lsb);
4912	CHECK_OFFSET(si_lower);
4913	CHECK_OFFSET(si_upper);
4914	CHECK_OFFSET(si_pkey);
4915	CHECK_OFFSET(si_perf_data);
4916	CHECK_OFFSET(si_perf_type);
4917	CHECK_OFFSET(si_perf_flags);
4918
4919	/* sigpoll */
4920	CHECK_OFFSET(si_band);
4921	CHECK_OFFSET(si_fd);
4922
4923	/* sigsys */
4924	CHECK_OFFSET(si_call_addr);
4925	CHECK_OFFSET(si_syscall);
4926	CHECK_OFFSET(si_arch);
4927#undef CHECK_OFFSET
4928
4929	/* usb asyncio */
4930	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4931		     offsetof(struct siginfo, si_addr));
4932	if (sizeof(int) == sizeof(void __user *)) {
4933		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4934			     sizeof(void __user *));
4935	} else {
4936		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4937			      sizeof_field(struct siginfo, si_uid)) !=
4938			     sizeof(void __user *));
4939		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4940			     offsetof(struct siginfo, si_uid));
4941	}
4942#ifdef CONFIG_COMPAT
4943	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4944		     offsetof(struct compat_siginfo, si_addr));
4945	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4946		     sizeof(compat_uptr_t));
4947	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4948		     sizeof_field(struct siginfo, si_pid));
4949#endif
4950}
4951
4952#if defined(CONFIG_SYSCTL)
4953static struct ctl_table signal_debug_table[] = {
4954#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4955	{
4956		.procname	= "exception-trace",
4957		.data		= &show_unhandled_signals,
4958		.maxlen		= sizeof(int),
4959		.mode		= 0644,
4960		.proc_handler	= proc_dointvec
4961	},
4962#endif
 
4963};
4964
4965static int __init init_signal_sysctls(void)
4966{
4967	register_sysctl_init("debug", signal_debug_table);
4968	return 0;
4969}
4970early_initcall(init_signal_sysctls);
4971#endif /* CONFIG_SYSCTL */
4972
4973void __init signals_init(void)
4974{
4975	siginfo_buildtime_checks();
4976
4977	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4978}
4979
4980#ifdef CONFIG_KGDB_KDB
4981#include <linux/kdb.h>
4982/*
4983 * kdb_send_sig - Allows kdb to send signals without exposing
4984 * signal internals.  This function checks if the required locks are
4985 * available before calling the main signal code, to avoid kdb
4986 * deadlocks.
4987 */
4988void kdb_send_sig(struct task_struct *t, int sig)
4989{
4990	static struct task_struct *kdb_prev_t;
4991	int new_t, ret;
4992	if (!spin_trylock(&t->sighand->siglock)) {
4993		kdb_printf("Can't do kill command now.\n"
4994			   "The sigmask lock is held somewhere else in "
4995			   "kernel, try again later\n");
4996		return;
4997	}
4998	new_t = kdb_prev_t != t;
4999	kdb_prev_t = t;
5000	if (!task_is_running(t) && new_t) {
5001		spin_unlock(&t->sighand->siglock);
5002		kdb_printf("Process is not RUNNING, sending a signal from "
5003			   "kdb risks deadlock\n"
5004			   "on the run queue locks. "
5005			   "The signal has _not_ been sent.\n"
5006			   "Reissue the kill command if you want to risk "
5007			   "the deadlock.\n");
5008		return;
5009	}
5010	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
5011	spin_unlock(&t->sighand->siglock);
5012	if (ret)
5013		kdb_printf("Fail to deliver Signal %d to process %d.\n",
5014			   sig, t->pid);
5015	else
5016		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
5017}
5018#endif	/* CONFIG_KGDB_KDB */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/mm.h>
  26#include <linux/proc_fs.h>
  27#include <linux/tty.h>
  28#include <linux/binfmts.h>
  29#include <linux/coredump.h>
  30#include <linux/security.h>
  31#include <linux/syscalls.h>
  32#include <linux/ptrace.h>
  33#include <linux/signal.h>
  34#include <linux/signalfd.h>
  35#include <linux/ratelimit.h>
  36#include <linux/task_work.h>
  37#include <linux/capability.h>
  38#include <linux/freezer.h>
  39#include <linux/pid_namespace.h>
  40#include <linux/nsproxy.h>
  41#include <linux/user_namespace.h>
  42#include <linux/uprobes.h>
  43#include <linux/compat.h>
  44#include <linux/cn_proc.h>
  45#include <linux/compiler.h>
  46#include <linux/posix-timers.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49#include <linux/sysctl.h>
  50#include <uapi/linux/pidfd.h>
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/signal.h>
  54
  55#include <asm/param.h>
  56#include <linux/uaccess.h>
  57#include <asm/unistd.h>
  58#include <asm/siginfo.h>
  59#include <asm/cacheflush.h>
  60#include <asm/syscall.h>	/* for syscall_get_* */
  61
 
 
  62/*
  63 * SLAB caches for signal bits.
  64 */
  65
  66static struct kmem_cache *sigqueue_cachep;
  67
  68int print_fatal_signals __read_mostly;
  69
  70static void __user *sig_handler(struct task_struct *t, int sig)
  71{
  72	return t->sighand->action[sig - 1].sa.sa_handler;
  73}
  74
  75static inline bool sig_handler_ignored(void __user *handler, int sig)
  76{
  77	/* Is it explicitly or implicitly ignored? */
  78	return handler == SIG_IGN ||
  79	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  80}
  81
  82static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  83{
  84	void __user *handler;
  85
  86	handler = sig_handler(t, sig);
  87
  88	/* SIGKILL and SIGSTOP may not be sent to the global init */
  89	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  90		return true;
  91
  92	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  93	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  94		return true;
  95
  96	/* Only allow kernel generated signals to this kthread */
  97	if (unlikely((t->flags & PF_KTHREAD) &&
  98		     (handler == SIG_KTHREAD_KERNEL) && !force))
  99		return true;
 100
 101	return sig_handler_ignored(handler, sig);
 102}
 103
 104static bool sig_ignored(struct task_struct *t, int sig, bool force)
 105{
 106	/*
 107	 * Blocked signals are never ignored, since the
 108	 * signal handler may change by the time it is
 109	 * unblocked.
 110	 */
 111	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 112		return false;
 113
 114	/*
 115	 * Tracers may want to know about even ignored signal unless it
 116	 * is SIGKILL which can't be reported anyway but can be ignored
 117	 * by SIGNAL_UNKILLABLE task.
 118	 */
 119	if (t->ptrace && sig != SIGKILL)
 120		return false;
 121
 122	return sig_task_ignored(t, sig, force);
 123}
 124
 125/*
 126 * Re-calculate pending state from the set of locally pending
 127 * signals, globally pending signals, and blocked signals.
 128 */
 129static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 130{
 131	unsigned long ready;
 132	long i;
 133
 134	switch (_NSIG_WORDS) {
 135	default:
 136		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 137			ready |= signal->sig[i] &~ blocked->sig[i];
 138		break;
 139
 140	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 141		ready |= signal->sig[2] &~ blocked->sig[2];
 142		ready |= signal->sig[1] &~ blocked->sig[1];
 143		ready |= signal->sig[0] &~ blocked->sig[0];
 144		break;
 145
 146	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 147		ready |= signal->sig[0] &~ blocked->sig[0];
 148		break;
 149
 150	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 151	}
 152	return ready !=	0;
 153}
 154
 155#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 156
 157static bool recalc_sigpending_tsk(struct task_struct *t)
 158{
 159	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 160	    PENDING(&t->pending, &t->blocked) ||
 161	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 162	    cgroup_task_frozen(t)) {
 163		set_tsk_thread_flag(t, TIF_SIGPENDING);
 164		return true;
 165	}
 166
 167	/*
 168	 * We must never clear the flag in another thread, or in current
 169	 * when it's possible the current syscall is returning -ERESTART*.
 170	 * So we don't clear it here, and only callers who know they should do.
 171	 */
 172	return false;
 173}
 174
 175void recalc_sigpending(void)
 176{
 177	if (!recalc_sigpending_tsk(current) && !freezing(current))
 178		clear_thread_flag(TIF_SIGPENDING);
 179
 180}
 181EXPORT_SYMBOL(recalc_sigpending);
 182
 183void calculate_sigpending(void)
 184{
 185	/* Have any signals or users of TIF_SIGPENDING been delayed
 186	 * until after fork?
 187	 */
 188	spin_lock_irq(&current->sighand->siglock);
 189	set_tsk_thread_flag(current, TIF_SIGPENDING);
 190	recalc_sigpending();
 191	spin_unlock_irq(&current->sighand->siglock);
 192}
 193
 194/* Given the mask, find the first available signal that should be serviced. */
 195
 196#define SYNCHRONOUS_MASK \
 197	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 198	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 199
 200int next_signal(struct sigpending *pending, sigset_t *mask)
 201{
 202	unsigned long i, *s, *m, x;
 203	int sig = 0;
 204
 205	s = pending->signal.sig;
 206	m = mask->sig;
 207
 208	/*
 209	 * Handle the first word specially: it contains the
 210	 * synchronous signals that need to be dequeued first.
 211	 */
 212	x = *s &~ *m;
 213	if (x) {
 214		if (x & SYNCHRONOUS_MASK)
 215			x &= SYNCHRONOUS_MASK;
 216		sig = ffz(~x) + 1;
 217		return sig;
 218	}
 219
 220	switch (_NSIG_WORDS) {
 221	default:
 222		for (i = 1; i < _NSIG_WORDS; ++i) {
 223			x = *++s &~ *++m;
 224			if (!x)
 225				continue;
 226			sig = ffz(~x) + i*_NSIG_BPW + 1;
 227			break;
 228		}
 229		break;
 230
 231	case 2:
 232		x = s[1] &~ m[1];
 233		if (!x)
 234			break;
 235		sig = ffz(~x) + _NSIG_BPW + 1;
 236		break;
 237
 238	case 1:
 239		/* Nothing to do */
 240		break;
 241	}
 242
 243	return sig;
 244}
 245
 246static inline void print_dropped_signal(int sig)
 247{
 248	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 249
 250	if (!print_fatal_signals)
 251		return;
 252
 253	if (!__ratelimit(&ratelimit_state))
 254		return;
 255
 256	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 257				current->comm, current->pid, sig);
 258}
 259
 260/**
 261 * task_set_jobctl_pending - set jobctl pending bits
 262 * @task: target task
 263 * @mask: pending bits to set
 264 *
 265 * Clear @mask from @task->jobctl.  @mask must be subset of
 266 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 267 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 268 * cleared.  If @task is already being killed or exiting, this function
 269 * becomes noop.
 270 *
 271 * CONTEXT:
 272 * Must be called with @task->sighand->siglock held.
 273 *
 274 * RETURNS:
 275 * %true if @mask is set, %false if made noop because @task was dying.
 276 */
 277bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 278{
 279	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 280			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 281	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 282
 283	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 284		return false;
 285
 286	if (mask & JOBCTL_STOP_SIGMASK)
 287		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 288
 289	task->jobctl |= mask;
 290	return true;
 291}
 292
 293/**
 294 * task_clear_jobctl_trapping - clear jobctl trapping bit
 295 * @task: target task
 296 *
 297 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 298 * Clear it and wake up the ptracer.  Note that we don't need any further
 299 * locking.  @task->siglock guarantees that @task->parent points to the
 300 * ptracer.
 301 *
 302 * CONTEXT:
 303 * Must be called with @task->sighand->siglock held.
 304 */
 305void task_clear_jobctl_trapping(struct task_struct *task)
 306{
 307	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 308		task->jobctl &= ~JOBCTL_TRAPPING;
 309		smp_mb();	/* advised by wake_up_bit() */
 310		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 311	}
 312}
 313
 314/**
 315 * task_clear_jobctl_pending - clear jobctl pending bits
 316 * @task: target task
 317 * @mask: pending bits to clear
 318 *
 319 * Clear @mask from @task->jobctl.  @mask must be subset of
 320 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 321 * STOP bits are cleared together.
 322 *
 323 * If clearing of @mask leaves no stop or trap pending, this function calls
 324 * task_clear_jobctl_trapping().
 325 *
 326 * CONTEXT:
 327 * Must be called with @task->sighand->siglock held.
 328 */
 329void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 330{
 331	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 332
 333	if (mask & JOBCTL_STOP_PENDING)
 334		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 335
 336	task->jobctl &= ~mask;
 337
 338	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 339		task_clear_jobctl_trapping(task);
 340}
 341
 342/**
 343 * task_participate_group_stop - participate in a group stop
 344 * @task: task participating in a group stop
 345 *
 346 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 347 * Group stop states are cleared and the group stop count is consumed if
 348 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 349 * stop, the appropriate `SIGNAL_*` flags are set.
 350 *
 351 * CONTEXT:
 352 * Must be called with @task->sighand->siglock held.
 353 *
 354 * RETURNS:
 355 * %true if group stop completion should be notified to the parent, %false
 356 * otherwise.
 357 */
 358static bool task_participate_group_stop(struct task_struct *task)
 359{
 360	struct signal_struct *sig = task->signal;
 361	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 362
 363	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 364
 365	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 366
 367	if (!consume)
 368		return false;
 369
 370	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 371		sig->group_stop_count--;
 372
 373	/*
 374	 * Tell the caller to notify completion iff we are entering into a
 375	 * fresh group stop.  Read comment in do_signal_stop() for details.
 376	 */
 377	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 378		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 379		return true;
 380	}
 381	return false;
 382}
 383
 384void task_join_group_stop(struct task_struct *task)
 385{
 386	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 387	struct signal_struct *sig = current->signal;
 388
 389	if (sig->group_stop_count) {
 390		sig->group_stop_count++;
 391		mask |= JOBCTL_STOP_CONSUME;
 392	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 393		return;
 394
 395	/* Have the new thread join an on-going signal group stop */
 396	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 397}
 398
 399/*
 400 * allocate a new signal queue record
 401 * - this may be called without locks if and only if t == current, otherwise an
 402 *   appropriate lock must be held to stop the target task from exiting
 403 */
 404static struct sigqueue *
 405__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 406		 int override_rlimit, const unsigned int sigqueue_flags)
 407{
 408	struct sigqueue *q = NULL;
 409	struct ucounts *ucounts;
 410	long sigpending;
 411
 412	/*
 413	 * Protect access to @t credentials. This can go away when all
 414	 * callers hold rcu read lock.
 415	 *
 416	 * NOTE! A pending signal will hold on to the user refcount,
 417	 * and we get/put the refcount only when the sigpending count
 418	 * changes from/to zero.
 419	 */
 420	rcu_read_lock();
 421	ucounts = task_ucounts(t);
 422	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 423	rcu_read_unlock();
 424	if (!sigpending)
 425		return NULL;
 426
 427	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 428		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 429	} else {
 430		print_dropped_signal(sig);
 
 431	}
 432
 433	if (unlikely(q == NULL)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 435	} else {
 436		INIT_LIST_HEAD(&q->list);
 437		q->flags = sigqueue_flags;
 438		q->ucounts = ucounts;
 439	}
 
 
 440	return q;
 441}
 442
 443static void __sigqueue_free(struct sigqueue *q)
 444{
 445	if (q->flags & SIGQUEUE_PREALLOC)
 
 446		return;
 
 447	if (q->ucounts) {
 448		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 449		q->ucounts = NULL;
 450	}
 451	kmem_cache_free(sigqueue_cachep, q);
 452}
 453
 454void flush_sigqueue(struct sigpending *queue)
 455{
 456	struct sigqueue *q;
 457
 458	sigemptyset(&queue->signal);
 459	while (!list_empty(&queue->list)) {
 460		q = list_entry(queue->list.next, struct sigqueue , list);
 461		list_del_init(&q->list);
 462		__sigqueue_free(q);
 463	}
 464}
 465
 466/*
 467 * Flush all pending signals for this kthread.
 468 */
 469void flush_signals(struct task_struct *t)
 470{
 471	unsigned long flags;
 472
 473	spin_lock_irqsave(&t->sighand->siglock, flags);
 474	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 475	flush_sigqueue(&t->pending);
 476	flush_sigqueue(&t->signal->shared_pending);
 477	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 478}
 479EXPORT_SYMBOL(flush_signals);
 480
 481#ifdef CONFIG_POSIX_TIMERS
 482static void __flush_itimer_signals(struct sigpending *pending)
 483{
 484	sigset_t signal, retain;
 485	struct sigqueue *q, *n;
 486
 487	signal = pending->signal;
 488	sigemptyset(&retain);
 489
 490	list_for_each_entry_safe(q, n, &pending->list, list) {
 491		int sig = q->info.si_signo;
 492
 493		if (likely(q->info.si_code != SI_TIMER)) {
 494			sigaddset(&retain, sig);
 495		} else {
 496			sigdelset(&signal, sig);
 497			list_del_init(&q->list);
 498			__sigqueue_free(q);
 499		}
 500	}
 501
 502	sigorsets(&pending->signal, &signal, &retain);
 503}
 504
 505void flush_itimer_signals(void)
 506{
 507	struct task_struct *tsk = current;
 508	unsigned long flags;
 509
 510	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 511	__flush_itimer_signals(&tsk->pending);
 512	__flush_itimer_signals(&tsk->signal->shared_pending);
 513	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 514}
 515#endif
 516
 517void ignore_signals(struct task_struct *t)
 518{
 519	int i;
 520
 521	for (i = 0; i < _NSIG; ++i)
 522		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 523
 524	flush_signals(t);
 525}
 526
 527/*
 528 * Flush all handlers for a task.
 529 */
 530
 531void
 532flush_signal_handlers(struct task_struct *t, int force_default)
 533{
 534	int i;
 535	struct k_sigaction *ka = &t->sighand->action[0];
 536	for (i = _NSIG ; i != 0 ; i--) {
 537		if (force_default || ka->sa.sa_handler != SIG_IGN)
 538			ka->sa.sa_handler = SIG_DFL;
 539		ka->sa.sa_flags = 0;
 540#ifdef __ARCH_HAS_SA_RESTORER
 541		ka->sa.sa_restorer = NULL;
 542#endif
 543		sigemptyset(&ka->sa.sa_mask);
 544		ka++;
 545	}
 546}
 547
 548bool unhandled_signal(struct task_struct *tsk, int sig)
 549{
 550	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 551	if (is_global_init(tsk))
 552		return true;
 553
 554	if (handler != SIG_IGN && handler != SIG_DFL)
 555		return false;
 556
 557	/* If dying, we handle all new signals by ignoring them */
 558	if (fatal_signal_pending(tsk))
 559		return false;
 560
 561	/* if ptraced, let the tracer determine */
 562	return !tsk->ptrace;
 563}
 564
 565static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 566			   bool *resched_timer)
 567{
 568	struct sigqueue *q, *first = NULL;
 569
 570	/*
 571	 * Collect the siginfo appropriate to this signal.  Check if
 572	 * there is another siginfo for the same signal.
 573	*/
 574	list_for_each_entry(q, &list->list, list) {
 575		if (q->info.si_signo == sig) {
 576			if (first)
 577				goto still_pending;
 578			first = q;
 579		}
 580	}
 581
 582	sigdelset(&list->signal, sig);
 583
 584	if (first) {
 585still_pending:
 586		list_del_init(&first->list);
 587		copy_siginfo(info, &first->info);
 588
 589		*resched_timer =
 590			(first->flags & SIGQUEUE_PREALLOC) &&
 591			(info->si_code == SI_TIMER) &&
 592			(info->si_sys_private);
 593
 594		__sigqueue_free(first);
 
 
 
 
 
 595	} else {
 596		/*
 597		 * Ok, it wasn't in the queue.  This must be
 598		 * a fast-pathed signal or we must have been
 599		 * out of queue space.  So zero out the info.
 600		 */
 601		clear_siginfo(info);
 602		info->si_signo = sig;
 603		info->si_errno = 0;
 604		info->si_code = SI_USER;
 605		info->si_pid = 0;
 606		info->si_uid = 0;
 607	}
 608}
 609
 610static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 611			kernel_siginfo_t *info, bool *resched_timer)
 612{
 613	int sig = next_signal(pending, mask);
 614
 615	if (sig)
 616		collect_signal(sig, pending, info, resched_timer);
 617	return sig;
 618}
 619
 620/*
 621 * Dequeue a signal and return the element to the caller, which is
 622 * expected to free it.
 623 *
 624 * All callers have to hold the siglock.
 625 */
 626int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 627		   kernel_siginfo_t *info, enum pid_type *type)
 628{
 629	bool resched_timer = false;
 
 630	int signr;
 631
 632	/* We only dequeue private signals from ourselves, we don't let
 633	 * signalfd steal them
 634	 */
 635	*type = PIDTYPE_PID;
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 
 637	if (!signr) {
 638		*type = PIDTYPE_TGID;
 639		signr = __dequeue_signal(&tsk->signal->shared_pending,
 640					 mask, info, &resched_timer);
 641#ifdef CONFIG_POSIX_TIMERS
 642		/*
 643		 * itimer signal ?
 644		 *
 645		 * itimers are process shared and we restart periodic
 646		 * itimers in the signal delivery path to prevent DoS
 647		 * attacks in the high resolution timer case. This is
 648		 * compliant with the old way of self-restarting
 649		 * itimers, as the SIGALRM is a legacy signal and only
 650		 * queued once. Changing the restart behaviour to
 651		 * restart the timer in the signal dequeue path is
 652		 * reducing the timer noise on heavy loaded !highres
 653		 * systems too.
 654		 */
 655		if (unlikely(signr == SIGALRM)) {
 656			struct hrtimer *tmr = &tsk->signal->real_timer;
 657
 658			if (!hrtimer_is_queued(tmr) &&
 659			    tsk->signal->it_real_incr != 0) {
 660				hrtimer_forward(tmr, tmr->base->get_time(),
 661						tsk->signal->it_real_incr);
 662				hrtimer_restart(tmr);
 663			}
 664		}
 665#endif
 666	}
 667
 668	recalc_sigpending();
 669	if (!signr)
 670		return 0;
 671
 672	if (unlikely(sig_kernel_stop(signr))) {
 673		/*
 674		 * Set a marker that we have dequeued a stop signal.  Our
 675		 * caller might release the siglock and then the pending
 676		 * stop signal it is about to process is no longer in the
 677		 * pending bitmasks, but must still be cleared by a SIGCONT
 678		 * (and overruled by a SIGKILL).  So those cases clear this
 679		 * shared flag after we've set it.  Note that this flag may
 680		 * remain set after the signal we return is ignored or
 681		 * handled.  That doesn't matter because its only purpose
 682		 * is to alert stop-signal processing code when another
 683		 * processor has come along and cleared the flag.
 684		 */
 685		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 686	}
 687#ifdef CONFIG_POSIX_TIMERS
 688	if (resched_timer) {
 689		/*
 690		 * Release the siglock to ensure proper locking order
 691		 * of timer locks outside of siglocks.  Note, we leave
 692		 * irqs disabled here, since the posix-timers code is
 693		 * about to disable them again anyway.
 694		 */
 695		spin_unlock(&tsk->sighand->siglock);
 696		posixtimer_rearm(info);
 697		spin_lock(&tsk->sighand->siglock);
 698
 699		/* Don't expose the si_sys_private value to userspace */
 700		info->si_sys_private = 0;
 
 701	}
 702#endif
 703	return signr;
 704}
 705EXPORT_SYMBOL_GPL(dequeue_signal);
 706
 707static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 708{
 709	struct task_struct *tsk = current;
 710	struct sigpending *pending = &tsk->pending;
 711	struct sigqueue *q, *sync = NULL;
 712
 713	/*
 714	 * Might a synchronous signal be in the queue?
 715	 */
 716	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 717		return 0;
 718
 719	/*
 720	 * Return the first synchronous signal in the queue.
 721	 */
 722	list_for_each_entry(q, &pending->list, list) {
 723		/* Synchronous signals have a positive si_code */
 724		if ((q->info.si_code > SI_USER) &&
 725		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 726			sync = q;
 727			goto next;
 728		}
 729	}
 730	return 0;
 731next:
 732	/*
 733	 * Check if there is another siginfo for the same signal.
 734	 */
 735	list_for_each_entry_continue(q, &pending->list, list) {
 736		if (q->info.si_signo == sync->info.si_signo)
 737			goto still_pending;
 738	}
 739
 740	sigdelset(&pending->signal, sync->info.si_signo);
 741	recalc_sigpending();
 742still_pending:
 743	list_del_init(&sync->list);
 744	copy_siginfo(info, &sync->info);
 745	__sigqueue_free(sync);
 746	return info->si_signo;
 747}
 748
 749/*
 750 * Tell a process that it has a new active signal..
 751 *
 752 * NOTE! we rely on the previous spin_lock to
 753 * lock interrupts for us! We can only be called with
 754 * "siglock" held, and the local interrupt must
 755 * have been disabled when that got acquired!
 756 *
 757 * No need to set need_resched since signal event passing
 758 * goes through ->blocked
 759 */
 760void signal_wake_up_state(struct task_struct *t, unsigned int state)
 761{
 762	lockdep_assert_held(&t->sighand->siglock);
 763
 764	set_tsk_thread_flag(t, TIF_SIGPENDING);
 765
 766	/*
 767	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 768	 * case. We don't check t->state here because there is a race with it
 769	 * executing another processor and just now entering stopped state.
 770	 * By using wake_up_state, we ensure the process will wake up and
 771	 * handle its death signal.
 772	 */
 773	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 774		kick_process(t);
 775}
 776
 777/*
 778 * Remove signals in mask from the pending set and queue.
 779 * Returns 1 if any signals were found.
 780 *
 781 * All callers must be holding the siglock.
 782 */
 783static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 
 
 
 
 
 784{
 785	struct sigqueue *q, *n;
 786	sigset_t m;
 787
 
 
 788	sigandsets(&m, mask, &s->signal);
 789	if (sigisemptyset(&m))
 790		return;
 791
 792	sigandnsets(&s->signal, &s->signal, mask);
 793	list_for_each_entry_safe(q, n, &s->list, list) {
 794		if (sigismember(mask, q->info.si_signo)) {
 795			list_del_init(&q->list);
 796			__sigqueue_free(q);
 797		}
 798	}
 799}
 800
 801static inline int is_si_special(const struct kernel_siginfo *info)
 802{
 803	return info <= SEND_SIG_PRIV;
 804}
 805
 806static inline bool si_fromuser(const struct kernel_siginfo *info)
 807{
 808	return info == SEND_SIG_NOINFO ||
 809		(!is_si_special(info) && SI_FROMUSER(info));
 810}
 811
 812/*
 813 * called with RCU read lock from check_kill_permission()
 814 */
 815static bool kill_ok_by_cred(struct task_struct *t)
 816{
 817	const struct cred *cred = current_cred();
 818	const struct cred *tcred = __task_cred(t);
 819
 820	return uid_eq(cred->euid, tcred->suid) ||
 821	       uid_eq(cred->euid, tcred->uid) ||
 822	       uid_eq(cred->uid, tcred->suid) ||
 823	       uid_eq(cred->uid, tcred->uid) ||
 824	       ns_capable(tcred->user_ns, CAP_KILL);
 825}
 826
 827/*
 828 * Bad permissions for sending the signal
 829 * - the caller must hold the RCU read lock
 830 */
 831static int check_kill_permission(int sig, struct kernel_siginfo *info,
 832				 struct task_struct *t)
 833{
 834	struct pid *sid;
 835	int error;
 836
 837	if (!valid_signal(sig))
 838		return -EINVAL;
 839
 840	if (!si_fromuser(info))
 841		return 0;
 842
 843	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 844	if (error)
 845		return error;
 846
 847	if (!same_thread_group(current, t) &&
 848	    !kill_ok_by_cred(t)) {
 849		switch (sig) {
 850		case SIGCONT:
 851			sid = task_session(t);
 852			/*
 853			 * We don't return the error if sid == NULL. The
 854			 * task was unhashed, the caller must notice this.
 855			 */
 856			if (!sid || sid == task_session(current))
 857				break;
 858			fallthrough;
 859		default:
 860			return -EPERM;
 861		}
 862	}
 863
 864	return security_task_kill(t, info, sig, NULL);
 865}
 866
 867/**
 868 * ptrace_trap_notify - schedule trap to notify ptracer
 869 * @t: tracee wanting to notify tracer
 870 *
 871 * This function schedules sticky ptrace trap which is cleared on the next
 872 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 873 * ptracer.
 874 *
 875 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 876 * ptracer is listening for events, tracee is woken up so that it can
 877 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 878 * eventually taken without returning to userland after the existing traps
 879 * are finished by PTRACE_CONT.
 880 *
 881 * CONTEXT:
 882 * Must be called with @task->sighand->siglock held.
 883 */
 884static void ptrace_trap_notify(struct task_struct *t)
 885{
 886	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 887	lockdep_assert_held(&t->sighand->siglock);
 888
 889	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 890	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 891}
 892
 893/*
 894 * Handle magic process-wide effects of stop/continue signals. Unlike
 895 * the signal actions, these happen immediately at signal-generation
 896 * time regardless of blocking, ignoring, or handling.  This does the
 897 * actual continuing for SIGCONT, but not the actual stopping for stop
 898 * signals. The process stop is done as a signal action for SIG_DFL.
 899 *
 900 * Returns true if the signal should be actually delivered, otherwise
 901 * it should be dropped.
 902 */
 903static bool prepare_signal(int sig, struct task_struct *p, bool force)
 904{
 905	struct signal_struct *signal = p->signal;
 906	struct task_struct *t;
 907	sigset_t flush;
 908
 909	if (signal->flags & SIGNAL_GROUP_EXIT) {
 910		if (signal->core_state)
 911			return sig == SIGKILL;
 912		/*
 913		 * The process is in the middle of dying, drop the signal.
 914		 */
 915		return false;
 916	} else if (sig_kernel_stop(sig)) {
 917		/*
 918		 * This is a stop signal.  Remove SIGCONT from all queues.
 919		 */
 920		siginitset(&flush, sigmask(SIGCONT));
 921		flush_sigqueue_mask(&flush, &signal->shared_pending);
 922		for_each_thread(p, t)
 923			flush_sigqueue_mask(&flush, &t->pending);
 924	} else if (sig == SIGCONT) {
 925		unsigned int why;
 926		/*
 927		 * Remove all stop signals from all queues, wake all threads.
 928		 */
 929		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 930		flush_sigqueue_mask(&flush, &signal->shared_pending);
 931		for_each_thread(p, t) {
 932			flush_sigqueue_mask(&flush, &t->pending);
 933			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 934			if (likely(!(t->ptrace & PT_SEIZED))) {
 935				t->jobctl &= ~JOBCTL_STOPPED;
 936				wake_up_state(t, __TASK_STOPPED);
 937			} else
 938				ptrace_trap_notify(t);
 939		}
 940
 941		/*
 942		 * Notify the parent with CLD_CONTINUED if we were stopped.
 943		 *
 944		 * If we were in the middle of a group stop, we pretend it
 945		 * was already finished, and then continued. Since SIGCHLD
 946		 * doesn't queue we report only CLD_STOPPED, as if the next
 947		 * CLD_CONTINUED was dropped.
 948		 */
 949		why = 0;
 950		if (signal->flags & SIGNAL_STOP_STOPPED)
 951			why |= SIGNAL_CLD_CONTINUED;
 952		else if (signal->group_stop_count)
 953			why |= SIGNAL_CLD_STOPPED;
 954
 955		if (why) {
 956			/*
 957			 * The first thread which returns from do_signal_stop()
 958			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 959			 * notify its parent. See get_signal().
 960			 */
 961			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 962			signal->group_stop_count = 0;
 963			signal->group_exit_code = 0;
 964		}
 965	}
 966
 967	return !sig_ignored(p, sig, force);
 968}
 969
 970/*
 971 * Test if P wants to take SIG.  After we've checked all threads with this,
 972 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 973 * blocking SIG were ruled out because they are not running and already
 974 * have pending signals.  Such threads will dequeue from the shared queue
 975 * as soon as they're available, so putting the signal on the shared queue
 976 * will be equivalent to sending it to one such thread.
 977 */
 978static inline bool wants_signal(int sig, struct task_struct *p)
 979{
 980	if (sigismember(&p->blocked, sig))
 981		return false;
 982
 983	if (p->flags & PF_EXITING)
 984		return false;
 985
 986	if (sig == SIGKILL)
 987		return true;
 988
 989	if (task_is_stopped_or_traced(p))
 990		return false;
 991
 992	return task_curr(p) || !task_sigpending(p);
 993}
 994
 995static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 996{
 997	struct signal_struct *signal = p->signal;
 998	struct task_struct *t;
 999
1000	/*
1001	 * Now find a thread we can wake up to take the signal off the queue.
1002	 *
1003	 * Try the suggested task first (may or may not be the main thread).
1004	 */
1005	if (wants_signal(sig, p))
1006		t = p;
1007	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1008		/*
1009		 * There is just one thread and it does not need to be woken.
1010		 * It will dequeue unblocked signals before it runs again.
1011		 */
1012		return;
1013	else {
1014		/*
1015		 * Otherwise try to find a suitable thread.
1016		 */
1017		t = signal->curr_target;
1018		while (!wants_signal(sig, t)) {
1019			t = next_thread(t);
1020			if (t == signal->curr_target)
1021				/*
1022				 * No thread needs to be woken.
1023				 * Any eligible threads will see
1024				 * the signal in the queue soon.
1025				 */
1026				return;
1027		}
1028		signal->curr_target = t;
1029	}
1030
1031	/*
1032	 * Found a killable thread.  If the signal will be fatal,
1033	 * then start taking the whole group down immediately.
1034	 */
1035	if (sig_fatal(p, sig) &&
1036	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1037	    !sigismember(&t->real_blocked, sig) &&
1038	    (sig == SIGKILL || !p->ptrace)) {
1039		/*
1040		 * This signal will be fatal to the whole group.
1041		 */
1042		if (!sig_kernel_coredump(sig)) {
1043			/*
1044			 * Start a group exit and wake everybody up.
1045			 * This way we don't have other threads
1046			 * running and doing things after a slower
1047			 * thread has the fatal signal pending.
1048			 */
1049			signal->flags = SIGNAL_GROUP_EXIT;
1050			signal->group_exit_code = sig;
1051			signal->group_stop_count = 0;
1052			__for_each_thread(signal, t) {
1053				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1054				sigaddset(&t->pending.signal, SIGKILL);
1055				signal_wake_up(t, 1);
1056			}
1057			return;
1058		}
1059	}
1060
1061	/*
1062	 * The signal is already in the shared-pending queue.
1063	 * Tell the chosen thread to wake up and dequeue it.
1064	 */
1065	signal_wake_up(t, sig == SIGKILL);
1066	return;
1067}
1068
1069static inline bool legacy_queue(struct sigpending *signals, int sig)
1070{
1071	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1072}
1073
1074static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1075				struct task_struct *t, enum pid_type type, bool force)
1076{
1077	struct sigpending *pending;
1078	struct sigqueue *q;
1079	int override_rlimit;
1080	int ret = 0, result;
1081
1082	lockdep_assert_held(&t->sighand->siglock);
1083
1084	result = TRACE_SIGNAL_IGNORED;
1085	if (!prepare_signal(sig, t, force))
1086		goto ret;
1087
1088	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1089	/*
1090	 * Short-circuit ignored signals and support queuing
1091	 * exactly one non-rt signal, so that we can get more
1092	 * detailed information about the cause of the signal.
1093	 */
1094	result = TRACE_SIGNAL_ALREADY_PENDING;
1095	if (legacy_queue(pending, sig))
1096		goto ret;
1097
1098	result = TRACE_SIGNAL_DELIVERED;
1099	/*
1100	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1101	 */
1102	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1103		goto out_set;
1104
1105	/*
1106	 * Real-time signals must be queued if sent by sigqueue, or
1107	 * some other real-time mechanism.  It is implementation
1108	 * defined whether kill() does so.  We attempt to do so, on
1109	 * the principle of least surprise, but since kill is not
1110	 * allowed to fail with EAGAIN when low on memory we just
1111	 * make sure at least one signal gets delivered and don't
1112	 * pass on the info struct.
1113	 */
1114	if (sig < SIGRTMIN)
1115		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1116	else
1117		override_rlimit = 0;
1118
1119	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1120
1121	if (q) {
1122		list_add_tail(&q->list, &pending->list);
1123		switch ((unsigned long) info) {
1124		case (unsigned long) SEND_SIG_NOINFO:
1125			clear_siginfo(&q->info);
1126			q->info.si_signo = sig;
1127			q->info.si_errno = 0;
1128			q->info.si_code = SI_USER;
1129			q->info.si_pid = task_tgid_nr_ns(current,
1130							task_active_pid_ns(t));
1131			rcu_read_lock();
1132			q->info.si_uid =
1133				from_kuid_munged(task_cred_xxx(t, user_ns),
1134						 current_uid());
1135			rcu_read_unlock();
1136			break;
1137		case (unsigned long) SEND_SIG_PRIV:
1138			clear_siginfo(&q->info);
1139			q->info.si_signo = sig;
1140			q->info.si_errno = 0;
1141			q->info.si_code = SI_KERNEL;
1142			q->info.si_pid = 0;
1143			q->info.si_uid = 0;
1144			break;
1145		default:
1146			copy_siginfo(&q->info, info);
1147			break;
1148		}
1149	} else if (!is_si_special(info) &&
1150		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1151		/*
1152		 * Queue overflow, abort.  We may abort if the
1153		 * signal was rt and sent by user using something
1154		 * other than kill().
1155		 */
1156		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1157		ret = -EAGAIN;
1158		goto ret;
1159	} else {
1160		/*
1161		 * This is a silent loss of information.  We still
1162		 * send the signal, but the *info bits are lost.
1163		 */
1164		result = TRACE_SIGNAL_LOSE_INFO;
1165	}
1166
1167out_set:
1168	signalfd_notify(t, sig);
1169	sigaddset(&pending->signal, sig);
1170
1171	/* Let multiprocess signals appear after on-going forks */
1172	if (type > PIDTYPE_TGID) {
1173		struct multiprocess_signals *delayed;
1174		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1175			sigset_t *signal = &delayed->signal;
1176			/* Can't queue both a stop and a continue signal */
1177			if (sig == SIGCONT)
1178				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1179			else if (sig_kernel_stop(sig))
1180				sigdelset(signal, SIGCONT);
1181			sigaddset(signal, sig);
1182		}
1183	}
1184
1185	complete_signal(sig, t, type);
1186ret:
1187	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1188	return ret;
1189}
1190
1191static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1192{
1193	bool ret = false;
1194	switch (siginfo_layout(info->si_signo, info->si_code)) {
1195	case SIL_KILL:
1196	case SIL_CHLD:
1197	case SIL_RT:
1198		ret = true;
1199		break;
1200	case SIL_TIMER:
1201	case SIL_POLL:
1202	case SIL_FAULT:
1203	case SIL_FAULT_TRAPNO:
1204	case SIL_FAULT_MCEERR:
1205	case SIL_FAULT_BNDERR:
1206	case SIL_FAULT_PKUERR:
1207	case SIL_FAULT_PERF_EVENT:
1208	case SIL_SYS:
1209		ret = false;
1210		break;
1211	}
1212	return ret;
1213}
1214
1215int send_signal_locked(int sig, struct kernel_siginfo *info,
1216		       struct task_struct *t, enum pid_type type)
1217{
1218	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1219	bool force = false;
1220
1221	if (info == SEND_SIG_NOINFO) {
1222		/* Force if sent from an ancestor pid namespace */
1223		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1224	} else if (info == SEND_SIG_PRIV) {
1225		/* Don't ignore kernel generated signals */
1226		force = true;
1227	} else if (has_si_pid_and_uid(info)) {
1228		/* SIGKILL and SIGSTOP is special or has ids */
1229		struct user_namespace *t_user_ns;
1230
1231		rcu_read_lock();
1232		t_user_ns = task_cred_xxx(t, user_ns);
1233		if (current_user_ns() != t_user_ns) {
1234			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1235			info->si_uid = from_kuid_munged(t_user_ns, uid);
1236		}
1237		rcu_read_unlock();
1238
1239		/* A kernel generated signal? */
1240		force = (info->si_code == SI_KERNEL);
1241
1242		/* From an ancestor pid namespace? */
1243		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1244			info->si_pid = 0;
1245			force = true;
1246		}
1247	}
1248	return __send_signal_locked(sig, info, t, type, force);
1249}
1250
1251static void print_fatal_signal(int signr)
1252{
1253	struct pt_regs *regs = task_pt_regs(current);
1254	struct file *exe_file;
1255
1256	exe_file = get_task_exe_file(current);
1257	if (exe_file) {
1258		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1259			exe_file, current->comm, signr);
1260		fput(exe_file);
1261	} else {
1262		pr_info("%s: potentially unexpected fatal signal %d.\n",
1263			current->comm, signr);
1264	}
1265
1266#if defined(__i386__) && !defined(__arch_um__)
1267	pr_info("code at %08lx: ", regs->ip);
1268	{
1269		int i;
1270		for (i = 0; i < 16; i++) {
1271			unsigned char insn;
1272
1273			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1274				break;
1275			pr_cont("%02x ", insn);
1276		}
1277	}
1278	pr_cont("\n");
1279#endif
1280	preempt_disable();
1281	show_regs(regs);
1282	preempt_enable();
1283}
1284
1285static int __init setup_print_fatal_signals(char *str)
1286{
1287	get_option (&str, &print_fatal_signals);
1288
1289	return 1;
1290}
1291
1292__setup("print-fatal-signals=", setup_print_fatal_signals);
1293
1294int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1295			enum pid_type type)
1296{
1297	unsigned long flags;
1298	int ret = -ESRCH;
1299
1300	if (lock_task_sighand(p, &flags)) {
1301		ret = send_signal_locked(sig, info, p, type);
1302		unlock_task_sighand(p, &flags);
1303	}
1304
1305	return ret;
1306}
1307
1308enum sig_handler {
1309	HANDLER_CURRENT, /* If reachable use the current handler */
1310	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1311	HANDLER_EXIT,	 /* Only visible as the process exit code */
1312};
1313
1314/*
1315 * Force a signal that the process can't ignore: if necessary
1316 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1317 *
1318 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1319 * since we do not want to have a signal handler that was blocked
1320 * be invoked when user space had explicitly blocked it.
1321 *
1322 * We don't want to have recursive SIGSEGV's etc, for example,
1323 * that is why we also clear SIGNAL_UNKILLABLE.
1324 */
1325static int
1326force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1327	enum sig_handler handler)
1328{
1329	unsigned long int flags;
1330	int ret, blocked, ignored;
1331	struct k_sigaction *action;
1332	int sig = info->si_signo;
1333
1334	spin_lock_irqsave(&t->sighand->siglock, flags);
1335	action = &t->sighand->action[sig-1];
1336	ignored = action->sa.sa_handler == SIG_IGN;
1337	blocked = sigismember(&t->blocked, sig);
1338	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1339		action->sa.sa_handler = SIG_DFL;
1340		if (handler == HANDLER_EXIT)
1341			action->sa.sa_flags |= SA_IMMUTABLE;
1342		if (blocked)
1343			sigdelset(&t->blocked, sig);
1344	}
1345	/*
1346	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1347	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1348	 */
1349	if (action->sa.sa_handler == SIG_DFL &&
1350	    (!t->ptrace || (handler == HANDLER_EXIT)))
1351		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1352	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1353	/* This can happen if the signal was already pending and blocked */
1354	if (!task_sigpending(t))
1355		signal_wake_up(t, 0);
1356	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1357
1358	return ret;
1359}
1360
1361int force_sig_info(struct kernel_siginfo *info)
1362{
1363	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1364}
1365
1366/*
1367 * Nuke all other threads in the group.
1368 */
1369int zap_other_threads(struct task_struct *p)
1370{
1371	struct task_struct *t;
1372	int count = 0;
1373
1374	p->signal->group_stop_count = 0;
1375
1376	for_other_threads(p, t) {
1377		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1378		/* Don't require de_thread to wait for the vhost_worker */
1379		if ((t->flags & (PF_IO_WORKER | PF_USER_WORKER)) != PF_USER_WORKER)
1380			count++;
1381
1382		/* Don't bother with already dead threads */
1383		if (t->exit_state)
1384			continue;
1385		sigaddset(&t->pending.signal, SIGKILL);
1386		signal_wake_up(t, 1);
1387	}
1388
1389	return count;
1390}
1391
1392struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1393					   unsigned long *flags)
1394{
1395	struct sighand_struct *sighand;
1396
1397	rcu_read_lock();
1398	for (;;) {
1399		sighand = rcu_dereference(tsk->sighand);
1400		if (unlikely(sighand == NULL))
1401			break;
1402
1403		/*
1404		 * This sighand can be already freed and even reused, but
1405		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1406		 * initializes ->siglock: this slab can't go away, it has
1407		 * the same object type, ->siglock can't be reinitialized.
1408		 *
1409		 * We need to ensure that tsk->sighand is still the same
1410		 * after we take the lock, we can race with de_thread() or
1411		 * __exit_signal(). In the latter case the next iteration
1412		 * must see ->sighand == NULL.
1413		 */
1414		spin_lock_irqsave(&sighand->siglock, *flags);
1415		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1416			break;
1417		spin_unlock_irqrestore(&sighand->siglock, *flags);
1418	}
1419	rcu_read_unlock();
1420
1421	return sighand;
1422}
1423
1424#ifdef CONFIG_LOCKDEP
1425void lockdep_assert_task_sighand_held(struct task_struct *task)
1426{
1427	struct sighand_struct *sighand;
1428
1429	rcu_read_lock();
1430	sighand = rcu_dereference(task->sighand);
1431	if (sighand)
1432		lockdep_assert_held(&sighand->siglock);
1433	else
1434		WARN_ON_ONCE(1);
1435	rcu_read_unlock();
1436}
1437#endif
1438
1439/*
1440 * send signal info to all the members of a thread group or to the
1441 * individual thread if type == PIDTYPE_PID.
1442 */
1443int group_send_sig_info(int sig, struct kernel_siginfo *info,
1444			struct task_struct *p, enum pid_type type)
1445{
1446	int ret;
1447
1448	rcu_read_lock();
1449	ret = check_kill_permission(sig, info, p);
1450	rcu_read_unlock();
1451
1452	if (!ret && sig)
1453		ret = do_send_sig_info(sig, info, p, type);
1454
1455	return ret;
1456}
1457
1458/*
1459 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1460 * control characters do (^C, ^Z etc)
1461 * - the caller must hold at least a readlock on tasklist_lock
1462 */
1463int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1464{
1465	struct task_struct *p = NULL;
1466	int ret = -ESRCH;
1467
1468	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1469		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1470		/*
1471		 * If group_send_sig_info() succeeds at least once ret
1472		 * becomes 0 and after that the code below has no effect.
1473		 * Otherwise we return the last err or -ESRCH if this
1474		 * process group is empty.
1475		 */
1476		if (ret)
1477			ret = err;
1478	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1479
1480	return ret;
1481}
1482
1483static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1484				struct pid *pid, enum pid_type type)
1485{
1486	int error = -ESRCH;
1487	struct task_struct *p;
1488
1489	for (;;) {
1490		rcu_read_lock();
1491		p = pid_task(pid, PIDTYPE_PID);
1492		if (p)
1493			error = group_send_sig_info(sig, info, p, type);
1494		rcu_read_unlock();
1495		if (likely(!p || error != -ESRCH))
1496			return error;
1497		/*
1498		 * The task was unhashed in between, try again.  If it
1499		 * is dead, pid_task() will return NULL, if we race with
1500		 * de_thread() it will find the new leader.
1501		 */
1502	}
1503}
1504
1505int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1506{
1507	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1508}
1509
1510static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1511{
1512	int error;
1513	rcu_read_lock();
1514	error = kill_pid_info(sig, info, find_vpid(pid));
1515	rcu_read_unlock();
1516	return error;
1517}
1518
1519static inline bool kill_as_cred_perm(const struct cred *cred,
1520				     struct task_struct *target)
1521{
1522	const struct cred *pcred = __task_cred(target);
1523
1524	return uid_eq(cred->euid, pcred->suid) ||
1525	       uid_eq(cred->euid, pcred->uid) ||
1526	       uid_eq(cred->uid, pcred->suid) ||
1527	       uid_eq(cred->uid, pcred->uid);
1528}
1529
1530/*
1531 * The usb asyncio usage of siginfo is wrong.  The glibc support
1532 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1533 * AKA after the generic fields:
1534 *	kernel_pid_t	si_pid;
1535 *	kernel_uid32_t	si_uid;
1536 *	sigval_t	si_value;
1537 *
1538 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1539 * after the generic fields is:
1540 *	void __user 	*si_addr;
1541 *
1542 * This is a practical problem when there is a 64bit big endian kernel
1543 * and a 32bit userspace.  As the 32bit address will encoded in the low
1544 * 32bits of the pointer.  Those low 32bits will be stored at higher
1545 * address than appear in a 32 bit pointer.  So userspace will not
1546 * see the address it was expecting for it's completions.
1547 *
1548 * There is nothing in the encoding that can allow
1549 * copy_siginfo_to_user32 to detect this confusion of formats, so
1550 * handle this by requiring the caller of kill_pid_usb_asyncio to
1551 * notice when this situration takes place and to store the 32bit
1552 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1553 * parameter.
1554 */
1555int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1556			 struct pid *pid, const struct cred *cred)
1557{
1558	struct kernel_siginfo info;
1559	struct task_struct *p;
1560	unsigned long flags;
1561	int ret = -EINVAL;
1562
1563	if (!valid_signal(sig))
1564		return ret;
1565
1566	clear_siginfo(&info);
1567	info.si_signo = sig;
1568	info.si_errno = errno;
1569	info.si_code = SI_ASYNCIO;
1570	*((sigval_t *)&info.si_pid) = addr;
1571
1572	rcu_read_lock();
1573	p = pid_task(pid, PIDTYPE_PID);
1574	if (!p) {
1575		ret = -ESRCH;
1576		goto out_unlock;
1577	}
1578	if (!kill_as_cred_perm(cred, p)) {
1579		ret = -EPERM;
1580		goto out_unlock;
1581	}
1582	ret = security_task_kill(p, &info, sig, cred);
1583	if (ret)
1584		goto out_unlock;
1585
1586	if (sig) {
1587		if (lock_task_sighand(p, &flags)) {
1588			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1589			unlock_task_sighand(p, &flags);
1590		} else
1591			ret = -ESRCH;
1592	}
1593out_unlock:
1594	rcu_read_unlock();
1595	return ret;
1596}
1597EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1598
1599/*
1600 * kill_something_info() interprets pid in interesting ways just like kill(2).
1601 *
1602 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1603 * is probably wrong.  Should make it like BSD or SYSV.
1604 */
1605
1606static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1607{
1608	int ret;
1609
1610	if (pid > 0)
1611		return kill_proc_info(sig, info, pid);
1612
1613	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1614	if (pid == INT_MIN)
1615		return -ESRCH;
1616
1617	read_lock(&tasklist_lock);
1618	if (pid != -1) {
1619		ret = __kill_pgrp_info(sig, info,
1620				pid ? find_vpid(-pid) : task_pgrp(current));
1621	} else {
1622		int retval = 0, count = 0;
1623		struct task_struct * p;
1624
1625		for_each_process(p) {
1626			if (task_pid_vnr(p) > 1 &&
1627					!same_thread_group(p, current)) {
1628				int err = group_send_sig_info(sig, info, p,
1629							      PIDTYPE_MAX);
1630				++count;
1631				if (err != -EPERM)
1632					retval = err;
1633			}
1634		}
1635		ret = count ? retval : -ESRCH;
1636	}
1637	read_unlock(&tasklist_lock);
1638
1639	return ret;
1640}
1641
1642/*
1643 * These are for backward compatibility with the rest of the kernel source.
1644 */
1645
1646int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1647{
1648	/*
1649	 * Make sure legacy kernel users don't send in bad values
1650	 * (normal paths check this in check_kill_permission).
1651	 */
1652	if (!valid_signal(sig))
1653		return -EINVAL;
1654
1655	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1656}
1657EXPORT_SYMBOL(send_sig_info);
1658
1659#define __si_special(priv) \
1660	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1661
1662int
1663send_sig(int sig, struct task_struct *p, int priv)
1664{
1665	return send_sig_info(sig, __si_special(priv), p);
1666}
1667EXPORT_SYMBOL(send_sig);
1668
1669void force_sig(int sig)
1670{
1671	struct kernel_siginfo info;
1672
1673	clear_siginfo(&info);
1674	info.si_signo = sig;
1675	info.si_errno = 0;
1676	info.si_code = SI_KERNEL;
1677	info.si_pid = 0;
1678	info.si_uid = 0;
1679	force_sig_info(&info);
1680}
1681EXPORT_SYMBOL(force_sig);
1682
1683void force_fatal_sig(int sig)
1684{
1685	struct kernel_siginfo info;
1686
1687	clear_siginfo(&info);
1688	info.si_signo = sig;
1689	info.si_errno = 0;
1690	info.si_code = SI_KERNEL;
1691	info.si_pid = 0;
1692	info.si_uid = 0;
1693	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1694}
1695
1696void force_exit_sig(int sig)
1697{
1698	struct kernel_siginfo info;
1699
1700	clear_siginfo(&info);
1701	info.si_signo = sig;
1702	info.si_errno = 0;
1703	info.si_code = SI_KERNEL;
1704	info.si_pid = 0;
1705	info.si_uid = 0;
1706	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1707}
1708
1709/*
1710 * When things go south during signal handling, we
1711 * will force a SIGSEGV. And if the signal that caused
1712 * the problem was already a SIGSEGV, we'll want to
1713 * make sure we don't even try to deliver the signal..
1714 */
1715void force_sigsegv(int sig)
1716{
1717	if (sig == SIGSEGV)
1718		force_fatal_sig(SIGSEGV);
1719	else
1720		force_sig(SIGSEGV);
1721}
1722
1723int force_sig_fault_to_task(int sig, int code, void __user *addr,
1724			    struct task_struct *t)
1725{
1726	struct kernel_siginfo info;
1727
1728	clear_siginfo(&info);
1729	info.si_signo = sig;
1730	info.si_errno = 0;
1731	info.si_code  = code;
1732	info.si_addr  = addr;
1733	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1734}
1735
1736int force_sig_fault(int sig, int code, void __user *addr)
1737{
1738	return force_sig_fault_to_task(sig, code, addr, current);
1739}
1740
1741int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1742{
1743	struct kernel_siginfo info;
1744
1745	clear_siginfo(&info);
1746	info.si_signo = sig;
1747	info.si_errno = 0;
1748	info.si_code  = code;
1749	info.si_addr  = addr;
1750	return send_sig_info(info.si_signo, &info, t);
1751}
1752
1753int force_sig_mceerr(int code, void __user *addr, short lsb)
1754{
1755	struct kernel_siginfo info;
1756
1757	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1758	clear_siginfo(&info);
1759	info.si_signo = SIGBUS;
1760	info.si_errno = 0;
1761	info.si_code = code;
1762	info.si_addr = addr;
1763	info.si_addr_lsb = lsb;
1764	return force_sig_info(&info);
1765}
1766
1767int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1768{
1769	struct kernel_siginfo info;
1770
1771	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1772	clear_siginfo(&info);
1773	info.si_signo = SIGBUS;
1774	info.si_errno = 0;
1775	info.si_code = code;
1776	info.si_addr = addr;
1777	info.si_addr_lsb = lsb;
1778	return send_sig_info(info.si_signo, &info, t);
1779}
1780EXPORT_SYMBOL(send_sig_mceerr);
1781
1782int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1783{
1784	struct kernel_siginfo info;
1785
1786	clear_siginfo(&info);
1787	info.si_signo = SIGSEGV;
1788	info.si_errno = 0;
1789	info.si_code  = SEGV_BNDERR;
1790	info.si_addr  = addr;
1791	info.si_lower = lower;
1792	info.si_upper = upper;
1793	return force_sig_info(&info);
1794}
1795
1796#ifdef SEGV_PKUERR
1797int force_sig_pkuerr(void __user *addr, u32 pkey)
1798{
1799	struct kernel_siginfo info;
1800
1801	clear_siginfo(&info);
1802	info.si_signo = SIGSEGV;
1803	info.si_errno = 0;
1804	info.si_code  = SEGV_PKUERR;
1805	info.si_addr  = addr;
1806	info.si_pkey  = pkey;
1807	return force_sig_info(&info);
1808}
1809#endif
1810
1811int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1812{
1813	struct kernel_siginfo info;
1814
1815	clear_siginfo(&info);
1816	info.si_signo     = SIGTRAP;
1817	info.si_errno     = 0;
1818	info.si_code      = TRAP_PERF;
1819	info.si_addr      = addr;
1820	info.si_perf_data = sig_data;
1821	info.si_perf_type = type;
1822
1823	/*
1824	 * Signals generated by perf events should not terminate the whole
1825	 * process if SIGTRAP is blocked, however, delivering the signal
1826	 * asynchronously is better than not delivering at all. But tell user
1827	 * space if the signal was asynchronous, so it can clearly be
1828	 * distinguished from normal synchronous ones.
1829	 */
1830	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1831				     TRAP_PERF_FLAG_ASYNC :
1832				     0;
1833
1834	return send_sig_info(info.si_signo, &info, current);
1835}
1836
1837/**
1838 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1839 * @syscall: syscall number to send to userland
1840 * @reason: filter-supplied reason code to send to userland (via si_errno)
1841 * @force_coredump: true to trigger a coredump
1842 *
1843 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1844 */
1845int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1846{
1847	struct kernel_siginfo info;
1848
1849	clear_siginfo(&info);
1850	info.si_signo = SIGSYS;
1851	info.si_code = SYS_SECCOMP;
1852	info.si_call_addr = (void __user *)KSTK_EIP(current);
1853	info.si_errno = reason;
1854	info.si_arch = syscall_get_arch(current);
1855	info.si_syscall = syscall;
1856	return force_sig_info_to_task(&info, current,
1857		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1858}
1859
1860/* For the crazy architectures that include trap information in
1861 * the errno field, instead of an actual errno value.
1862 */
1863int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1864{
1865	struct kernel_siginfo info;
1866
1867	clear_siginfo(&info);
1868	info.si_signo = SIGTRAP;
1869	info.si_errno = errno;
1870	info.si_code  = TRAP_HWBKPT;
1871	info.si_addr  = addr;
1872	return force_sig_info(&info);
1873}
1874
1875/* For the rare architectures that include trap information using
1876 * si_trapno.
1877 */
1878int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1879{
1880	struct kernel_siginfo info;
1881
1882	clear_siginfo(&info);
1883	info.si_signo = sig;
1884	info.si_errno = 0;
1885	info.si_code  = code;
1886	info.si_addr  = addr;
1887	info.si_trapno = trapno;
1888	return force_sig_info(&info);
1889}
1890
1891/* For the rare architectures that include trap information using
1892 * si_trapno.
1893 */
1894int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1895			  struct task_struct *t)
1896{
1897	struct kernel_siginfo info;
1898
1899	clear_siginfo(&info);
1900	info.si_signo = sig;
1901	info.si_errno = 0;
1902	info.si_code  = code;
1903	info.si_addr  = addr;
1904	info.si_trapno = trapno;
1905	return send_sig_info(info.si_signo, &info, t);
1906}
1907
1908static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1909{
1910	int ret;
1911	read_lock(&tasklist_lock);
1912	ret = __kill_pgrp_info(sig, info, pgrp);
1913	read_unlock(&tasklist_lock);
1914	return ret;
1915}
1916
1917int kill_pgrp(struct pid *pid, int sig, int priv)
1918{
1919	return kill_pgrp_info(sig, __si_special(priv), pid);
1920}
1921EXPORT_SYMBOL(kill_pgrp);
1922
1923int kill_pid(struct pid *pid, int sig, int priv)
1924{
1925	return kill_pid_info(sig, __si_special(priv), pid);
1926}
1927EXPORT_SYMBOL(kill_pid);
1928
 
1929/*
1930 * These functions support sending signals using preallocated sigqueue
1931 * structures.  This is needed "because realtime applications cannot
1932 * afford to lose notifications of asynchronous events, like timer
1933 * expirations or I/O completions".  In the case of POSIX Timers
1934 * we allocate the sigqueue structure from the timer_create.  If this
1935 * allocation fails we are able to report the failure to the application
1936 * with an EAGAIN error.
1937 */
1938struct sigqueue *sigqueue_alloc(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939{
1940	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
1941}
1942
1943void sigqueue_free(struct sigqueue *q)
1944{
1945	unsigned long flags;
1946	spinlock_t *lock = &current->sighand->siglock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947
1948	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1949	/*
1950	 * We must hold ->siglock while testing q->list
1951	 * to serialize with collect_signal() or with
1952	 * __exit_signal()->flush_sigqueue().
1953	 */
1954	spin_lock_irqsave(lock, flags);
1955	q->flags &= ~SIGQUEUE_PREALLOC;
1956	/*
1957	 * If it is queued it will be freed when dequeued,
1958	 * like the "regular" sigqueue.
1959	 */
1960	if (!list_empty(&q->list))
1961		q = NULL;
1962	spin_unlock_irqrestore(lock, flags);
1963
1964	if (q)
1965		__sigqueue_free(q);
 
 
1966}
1967
1968int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1969{
 
1970	int sig = q->info.si_signo;
1971	struct sigpending *pending;
1972	struct task_struct *t;
1973	unsigned long flags;
1974	int ret, result;
 
 
 
 
 
 
1975
1976	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
 
1977
1978	ret = -1;
1979	rcu_read_lock();
 
 
 
1980
1981	/*
1982	 * This function is used by POSIX timers to deliver a timer signal.
1983	 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1984	 * set), the signal must be delivered to the specific thread (queues
1985	 * into t->pending).
1986	 *
1987	 * Where type is not PIDTYPE_PID, signals must be delivered to the
1988	 * process. In this case, prefer to deliver to current if it is in
1989	 * the same thread group as the target process, which avoids
1990	 * unnecessarily waking up a potentially idle task.
1991	 */
1992	t = pid_task(pid, type);
1993	if (!t)
1994		goto ret;
1995	if (type != PIDTYPE_PID && same_thread_group(t, current))
1996		t = current;
1997	if (!likely(lock_task_sighand(t, &flags)))
1998		goto ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1999
2000	ret = 1; /* the signal is ignored */
2001	result = TRACE_SIGNAL_IGNORED;
2002	if (!prepare_signal(sig, t, false))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003		goto out;
 
2004
2005	ret = 0;
2006	if (unlikely(!list_empty(&q->list))) {
2007		/*
2008		 * If an SI_TIMER entry is already queue just increment
2009		 * the overrun count.
2010		 */
2011		BUG_ON(q->info.si_code != SI_TIMER);
2012		q->info.si_overrun++;
2013		result = TRACE_SIGNAL_ALREADY_PENDING;
2014		goto out;
2015	}
2016	q->info.si_overrun = 0;
2017
2018	signalfd_notify(t, sig);
2019	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
2020	list_add_tail(&q->list, &pending->list);
2021	sigaddset(&pending->signal, sig);
2022	complete_signal(sig, t, type);
 
 
 
 
 
 
 
 
 
2023	result = TRACE_SIGNAL_DELIVERED;
2024out:
2025	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2026	unlock_task_sighand(t, &flags);
2027ret:
2028	rcu_read_unlock();
2029	return ret;
2030}
2031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2032void do_notify_pidfd(struct task_struct *task)
2033{
2034	struct pid *pid = task_pid(task);
2035
2036	WARN_ON(task->exit_state == 0);
2037
2038	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2039			poll_to_key(EPOLLIN | EPOLLRDNORM));
2040}
2041
2042/*
2043 * Let a parent know about the death of a child.
2044 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2045 *
2046 * Returns true if our parent ignored us and so we've switched to
2047 * self-reaping.
2048 */
2049bool do_notify_parent(struct task_struct *tsk, int sig)
2050{
2051	struct kernel_siginfo info;
2052	unsigned long flags;
2053	struct sighand_struct *psig;
2054	bool autoreap = false;
2055	u64 utime, stime;
2056
2057	WARN_ON_ONCE(sig == -1);
2058
2059	/* do_notify_parent_cldstop should have been called instead.  */
2060	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2061
2062	WARN_ON_ONCE(!tsk->ptrace &&
2063	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2064	/*
2065	 * tsk is a group leader and has no threads, wake up the
2066	 * non-PIDFD_THREAD waiters.
2067	 */
2068	if (thread_group_empty(tsk))
2069		do_notify_pidfd(tsk);
2070
2071	if (sig != SIGCHLD) {
2072		/*
2073		 * This is only possible if parent == real_parent.
2074		 * Check if it has changed security domain.
2075		 */
2076		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2077			sig = SIGCHLD;
2078	}
2079
2080	clear_siginfo(&info);
2081	info.si_signo = sig;
2082	info.si_errno = 0;
2083	/*
2084	 * We are under tasklist_lock here so our parent is tied to
2085	 * us and cannot change.
2086	 *
2087	 * task_active_pid_ns will always return the same pid namespace
2088	 * until a task passes through release_task.
2089	 *
2090	 * write_lock() currently calls preempt_disable() which is the
2091	 * same as rcu_read_lock(), but according to Oleg, this is not
2092	 * correct to rely on this
2093	 */
2094	rcu_read_lock();
2095	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2096	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2097				       task_uid(tsk));
2098	rcu_read_unlock();
2099
2100	task_cputime(tsk, &utime, &stime);
2101	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2102	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2103
2104	info.si_status = tsk->exit_code & 0x7f;
2105	if (tsk->exit_code & 0x80)
2106		info.si_code = CLD_DUMPED;
2107	else if (tsk->exit_code & 0x7f)
2108		info.si_code = CLD_KILLED;
2109	else {
2110		info.si_code = CLD_EXITED;
2111		info.si_status = tsk->exit_code >> 8;
2112	}
2113
2114	psig = tsk->parent->sighand;
2115	spin_lock_irqsave(&psig->siglock, flags);
2116	if (!tsk->ptrace && sig == SIGCHLD &&
2117	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2118	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2119		/*
2120		 * We are exiting and our parent doesn't care.  POSIX.1
2121		 * defines special semantics for setting SIGCHLD to SIG_IGN
2122		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2123		 * automatically and not left for our parent's wait4 call.
2124		 * Rather than having the parent do it as a magic kind of
2125		 * signal handler, we just set this to tell do_exit that we
2126		 * can be cleaned up without becoming a zombie.  Note that
2127		 * we still call __wake_up_parent in this case, because a
2128		 * blocked sys_wait4 might now return -ECHILD.
2129		 *
2130		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2131		 * is implementation-defined: we do (if you don't want
2132		 * it, just use SIG_IGN instead).
2133		 */
2134		autoreap = true;
2135		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2136			sig = 0;
2137	}
2138	/*
2139	 * Send with __send_signal as si_pid and si_uid are in the
2140	 * parent's namespaces.
2141	 */
2142	if (valid_signal(sig) && sig)
2143		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2144	__wake_up_parent(tsk, tsk->parent);
2145	spin_unlock_irqrestore(&psig->siglock, flags);
2146
2147	return autoreap;
2148}
2149
2150/**
2151 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2152 * @tsk: task reporting the state change
2153 * @for_ptracer: the notification is for ptracer
2154 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2155 *
2156 * Notify @tsk's parent that the stopped/continued state has changed.  If
2157 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2158 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2159 *
2160 * CONTEXT:
2161 * Must be called with tasklist_lock at least read locked.
2162 */
2163static void do_notify_parent_cldstop(struct task_struct *tsk,
2164				     bool for_ptracer, int why)
2165{
2166	struct kernel_siginfo info;
2167	unsigned long flags;
2168	struct task_struct *parent;
2169	struct sighand_struct *sighand;
2170	u64 utime, stime;
2171
2172	if (for_ptracer) {
2173		parent = tsk->parent;
2174	} else {
2175		tsk = tsk->group_leader;
2176		parent = tsk->real_parent;
2177	}
2178
2179	clear_siginfo(&info);
2180	info.si_signo = SIGCHLD;
2181	info.si_errno = 0;
2182	/*
2183	 * see comment in do_notify_parent() about the following 4 lines
2184	 */
2185	rcu_read_lock();
2186	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2187	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2188	rcu_read_unlock();
2189
2190	task_cputime(tsk, &utime, &stime);
2191	info.si_utime = nsec_to_clock_t(utime);
2192	info.si_stime = nsec_to_clock_t(stime);
2193
2194 	info.si_code = why;
2195 	switch (why) {
2196 	case CLD_CONTINUED:
2197 		info.si_status = SIGCONT;
2198 		break;
2199 	case CLD_STOPPED:
2200 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2201 		break;
2202 	case CLD_TRAPPED:
2203 		info.si_status = tsk->exit_code & 0x7f;
2204 		break;
2205 	default:
2206 		BUG();
2207 	}
2208
2209	sighand = parent->sighand;
2210	spin_lock_irqsave(&sighand->siglock, flags);
2211	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2212	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2213		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2214	/*
2215	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2216	 */
2217	__wake_up_parent(tsk, parent);
2218	spin_unlock_irqrestore(&sighand->siglock, flags);
2219}
2220
2221/*
2222 * This must be called with current->sighand->siglock held.
2223 *
2224 * This should be the path for all ptrace stops.
2225 * We always set current->last_siginfo while stopped here.
2226 * That makes it a way to test a stopped process for
2227 * being ptrace-stopped vs being job-control-stopped.
2228 *
2229 * Returns the signal the ptracer requested the code resume
2230 * with.  If the code did not stop because the tracer is gone,
2231 * the stop signal remains unchanged unless clear_code.
2232 */
2233static int ptrace_stop(int exit_code, int why, unsigned long message,
2234		       kernel_siginfo_t *info)
2235	__releases(&current->sighand->siglock)
2236	__acquires(&current->sighand->siglock)
2237{
2238	bool gstop_done = false;
2239
2240	if (arch_ptrace_stop_needed()) {
2241		/*
2242		 * The arch code has something special to do before a
2243		 * ptrace stop.  This is allowed to block, e.g. for faults
2244		 * on user stack pages.  We can't keep the siglock while
2245		 * calling arch_ptrace_stop, so we must release it now.
2246		 * To preserve proper semantics, we must do this before
2247		 * any signal bookkeeping like checking group_stop_count.
2248		 */
2249		spin_unlock_irq(&current->sighand->siglock);
2250		arch_ptrace_stop();
2251		spin_lock_irq(&current->sighand->siglock);
2252	}
2253
2254	/*
2255	 * After this point ptrace_signal_wake_up or signal_wake_up
2256	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2257	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2258	 * signals here to prevent ptrace_stop sleeping in schedule.
2259	 */
2260	if (!current->ptrace || __fatal_signal_pending(current))
2261		return exit_code;
2262
2263	set_special_state(TASK_TRACED);
2264	current->jobctl |= JOBCTL_TRACED;
2265
2266	/*
2267	 * We're committing to trapping.  TRACED should be visible before
2268	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2269	 * Also, transition to TRACED and updates to ->jobctl should be
2270	 * atomic with respect to siglock and should be done after the arch
2271	 * hook as siglock is released and regrabbed across it.
2272	 *
2273	 *     TRACER				    TRACEE
2274	 *
2275	 *     ptrace_attach()
2276	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2277	 *     do_wait()
2278	 *       set_current_state()                smp_wmb();
2279	 *       ptrace_do_wait()
2280	 *         wait_task_stopped()
2281	 *           task_stopped_code()
2282	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2283	 */
2284	smp_wmb();
2285
2286	current->ptrace_message = message;
2287	current->last_siginfo = info;
2288	current->exit_code = exit_code;
2289
2290	/*
2291	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2292	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2293	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2294	 * could be clear now.  We act as if SIGCONT is received after
2295	 * TASK_TRACED is entered - ignore it.
2296	 */
2297	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2298		gstop_done = task_participate_group_stop(current);
2299
2300	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2301	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2302	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2303		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2304
2305	/* entering a trap, clear TRAPPING */
2306	task_clear_jobctl_trapping(current);
2307
2308	spin_unlock_irq(&current->sighand->siglock);
2309	read_lock(&tasklist_lock);
2310	/*
2311	 * Notify parents of the stop.
2312	 *
2313	 * While ptraced, there are two parents - the ptracer and
2314	 * the real_parent of the group_leader.  The ptracer should
2315	 * know about every stop while the real parent is only
2316	 * interested in the completion of group stop.  The states
2317	 * for the two don't interact with each other.  Notify
2318	 * separately unless they're gonna be duplicates.
2319	 */
2320	if (current->ptrace)
2321		do_notify_parent_cldstop(current, true, why);
2322	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2323		do_notify_parent_cldstop(current, false, why);
2324
2325	/*
2326	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2327	 * One a PREEMPTION kernel this can result in preemption requirement
2328	 * which will be fulfilled after read_unlock() and the ptracer will be
2329	 * put on the CPU.
2330	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2331	 * this task wait in schedule(). If this task gets preempted then it
2332	 * remains enqueued on the runqueue. The ptracer will observe this and
2333	 * then sleep for a delay of one HZ tick. In the meantime this task
2334	 * gets scheduled, enters schedule() and will wait for the ptracer.
2335	 *
2336	 * This preemption point is not bad from a correctness point of
2337	 * view but extends the runtime by one HZ tick time due to the
2338	 * ptracer's sleep.  The preempt-disable section ensures that there
2339	 * will be no preemption between unlock and schedule() and so
2340	 * improving the performance since the ptracer will observe that
2341	 * the tracee is scheduled out once it gets on the CPU.
2342	 *
2343	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2344	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2345	 * before unlocking tasklist_lock so there is no benefit in doing this.
2346	 *
2347	 * In fact disabling preemption is harmful on PREEMPT_RT because
2348	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2349	 * with preemption disabled due to the 'sleeping' spinlock
2350	 * substitution of RT.
2351	 */
2352	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2353		preempt_disable();
2354	read_unlock(&tasklist_lock);
2355	cgroup_enter_frozen();
2356	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2357		preempt_enable_no_resched();
2358	schedule();
2359	cgroup_leave_frozen(true);
2360
2361	/*
2362	 * We are back.  Now reacquire the siglock before touching
2363	 * last_siginfo, so that we are sure to have synchronized with
2364	 * any signal-sending on another CPU that wants to examine it.
2365	 */
2366	spin_lock_irq(&current->sighand->siglock);
2367	exit_code = current->exit_code;
2368	current->last_siginfo = NULL;
2369	current->ptrace_message = 0;
2370	current->exit_code = 0;
2371
2372	/* LISTENING can be set only during STOP traps, clear it */
2373	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2374
2375	/*
2376	 * Queued signals ignored us while we were stopped for tracing.
2377	 * So check for any that we should take before resuming user mode.
2378	 * This sets TIF_SIGPENDING, but never clears it.
2379	 */
2380	recalc_sigpending_tsk(current);
2381	return exit_code;
2382}
2383
2384static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2385{
2386	kernel_siginfo_t info;
2387
2388	clear_siginfo(&info);
2389	info.si_signo = signr;
2390	info.si_code = exit_code;
2391	info.si_pid = task_pid_vnr(current);
2392	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2393
2394	/* Let the debugger run.  */
2395	return ptrace_stop(exit_code, why, message, &info);
2396}
2397
2398int ptrace_notify(int exit_code, unsigned long message)
2399{
2400	int signr;
2401
2402	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2403	if (unlikely(task_work_pending(current)))
2404		task_work_run();
2405
2406	spin_lock_irq(&current->sighand->siglock);
2407	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2408	spin_unlock_irq(&current->sighand->siglock);
2409	return signr;
2410}
2411
2412/**
2413 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2414 * @signr: signr causing group stop if initiating
2415 *
2416 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2417 * and participate in it.  If already set, participate in the existing
2418 * group stop.  If participated in a group stop (and thus slept), %true is
2419 * returned with siglock released.
2420 *
2421 * If ptraced, this function doesn't handle stop itself.  Instead,
2422 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2423 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2424 * places afterwards.
2425 *
2426 * CONTEXT:
2427 * Must be called with @current->sighand->siglock held, which is released
2428 * on %true return.
2429 *
2430 * RETURNS:
2431 * %false if group stop is already cancelled or ptrace trap is scheduled.
2432 * %true if participated in group stop.
2433 */
2434static bool do_signal_stop(int signr)
2435	__releases(&current->sighand->siglock)
2436{
2437	struct signal_struct *sig = current->signal;
2438
2439	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2440		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2441		struct task_struct *t;
2442
2443		/* signr will be recorded in task->jobctl for retries */
2444		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2445
2446		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2447		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2448		    unlikely(sig->group_exec_task))
2449			return false;
2450		/*
2451		 * There is no group stop already in progress.  We must
2452		 * initiate one now.
2453		 *
2454		 * While ptraced, a task may be resumed while group stop is
2455		 * still in effect and then receive a stop signal and
2456		 * initiate another group stop.  This deviates from the
2457		 * usual behavior as two consecutive stop signals can't
2458		 * cause two group stops when !ptraced.  That is why we
2459		 * also check !task_is_stopped(t) below.
2460		 *
2461		 * The condition can be distinguished by testing whether
2462		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2463		 * group_exit_code in such case.
2464		 *
2465		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2466		 * an intervening stop signal is required to cause two
2467		 * continued events regardless of ptrace.
2468		 */
2469		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2470			sig->group_exit_code = signr;
2471
2472		sig->group_stop_count = 0;
2473		if (task_set_jobctl_pending(current, signr | gstop))
2474			sig->group_stop_count++;
2475
2476		for_other_threads(current, t) {
2477			/*
2478			 * Setting state to TASK_STOPPED for a group
2479			 * stop is always done with the siglock held,
2480			 * so this check has no races.
2481			 */
2482			if (!task_is_stopped(t) &&
2483			    task_set_jobctl_pending(t, signr | gstop)) {
2484				sig->group_stop_count++;
2485				if (likely(!(t->ptrace & PT_SEIZED)))
2486					signal_wake_up(t, 0);
2487				else
2488					ptrace_trap_notify(t);
2489			}
2490		}
2491	}
2492
2493	if (likely(!current->ptrace)) {
2494		int notify = 0;
2495
2496		/*
2497		 * If there are no other threads in the group, or if there
2498		 * is a group stop in progress and we are the last to stop,
2499		 * report to the parent.
2500		 */
2501		if (task_participate_group_stop(current))
2502			notify = CLD_STOPPED;
2503
2504		current->jobctl |= JOBCTL_STOPPED;
2505		set_special_state(TASK_STOPPED);
2506		spin_unlock_irq(&current->sighand->siglock);
2507
2508		/*
2509		 * Notify the parent of the group stop completion.  Because
2510		 * we're not holding either the siglock or tasklist_lock
2511		 * here, ptracer may attach inbetween; however, this is for
2512		 * group stop and should always be delivered to the real
2513		 * parent of the group leader.  The new ptracer will get
2514		 * its notification when this task transitions into
2515		 * TASK_TRACED.
2516		 */
2517		if (notify) {
2518			read_lock(&tasklist_lock);
2519			do_notify_parent_cldstop(current, false, notify);
2520			read_unlock(&tasklist_lock);
2521		}
2522
2523		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2524		cgroup_enter_frozen();
2525		schedule();
2526		return true;
2527	} else {
2528		/*
2529		 * While ptraced, group stop is handled by STOP trap.
2530		 * Schedule it and let the caller deal with it.
2531		 */
2532		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2533		return false;
2534	}
2535}
2536
2537/**
2538 * do_jobctl_trap - take care of ptrace jobctl traps
2539 *
2540 * When PT_SEIZED, it's used for both group stop and explicit
2541 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2542 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2543 * the stop signal; otherwise, %SIGTRAP.
2544 *
2545 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2546 * number as exit_code and no siginfo.
2547 *
2548 * CONTEXT:
2549 * Must be called with @current->sighand->siglock held, which may be
2550 * released and re-acquired before returning with intervening sleep.
2551 */
2552static void do_jobctl_trap(void)
2553{
2554	struct signal_struct *signal = current->signal;
2555	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2556
2557	if (current->ptrace & PT_SEIZED) {
2558		if (!signal->group_stop_count &&
2559		    !(signal->flags & SIGNAL_STOP_STOPPED))
2560			signr = SIGTRAP;
2561		WARN_ON_ONCE(!signr);
2562		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2563				 CLD_STOPPED, 0);
2564	} else {
2565		WARN_ON_ONCE(!signr);
2566		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2567	}
2568}
2569
2570/**
2571 * do_freezer_trap - handle the freezer jobctl trap
2572 *
2573 * Puts the task into frozen state, if only the task is not about to quit.
2574 * In this case it drops JOBCTL_TRAP_FREEZE.
2575 *
2576 * CONTEXT:
2577 * Must be called with @current->sighand->siglock held,
2578 * which is always released before returning.
2579 */
2580static void do_freezer_trap(void)
2581	__releases(&current->sighand->siglock)
2582{
2583	/*
2584	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2585	 * let's make another loop to give it a chance to be handled.
2586	 * In any case, we'll return back.
2587	 */
2588	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2589	     JOBCTL_TRAP_FREEZE) {
2590		spin_unlock_irq(&current->sighand->siglock);
2591		return;
2592	}
2593
2594	/*
2595	 * Now we're sure that there is no pending fatal signal and no
2596	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2597	 * immediately (if there is a non-fatal signal pending), and
2598	 * put the task into sleep.
2599	 */
2600	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2601	clear_thread_flag(TIF_SIGPENDING);
2602	spin_unlock_irq(&current->sighand->siglock);
2603	cgroup_enter_frozen();
2604	schedule();
 
 
 
 
 
 
 
 
2605}
2606
2607static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2608{
2609	/*
2610	 * We do not check sig_kernel_stop(signr) but set this marker
2611	 * unconditionally because we do not know whether debugger will
2612	 * change signr. This flag has no meaning unless we are going
2613	 * to stop after return from ptrace_stop(). In this case it will
2614	 * be checked in do_signal_stop(), we should only stop if it was
2615	 * not cleared by SIGCONT while we were sleeping. See also the
2616	 * comment in dequeue_signal().
2617	 */
2618	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2619	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2620
2621	/* We're back.  Did the debugger cancel the sig?  */
2622	if (signr == 0)
2623		return signr;
2624
2625	/*
2626	 * Update the siginfo structure if the signal has
2627	 * changed.  If the debugger wanted something
2628	 * specific in the siginfo structure then it should
2629	 * have updated *info via PTRACE_SETSIGINFO.
2630	 */
2631	if (signr != info->si_signo) {
2632		clear_siginfo(info);
2633		info->si_signo = signr;
2634		info->si_errno = 0;
2635		info->si_code = SI_USER;
2636		rcu_read_lock();
2637		info->si_pid = task_pid_vnr(current->parent);
2638		info->si_uid = from_kuid_munged(current_user_ns(),
2639						task_uid(current->parent));
2640		rcu_read_unlock();
2641	}
2642
2643	/* If the (new) signal is now blocked, requeue it.  */
2644	if (sigismember(&current->blocked, signr) ||
2645	    fatal_signal_pending(current)) {
2646		send_signal_locked(signr, info, current, type);
2647		signr = 0;
2648	}
2649
2650	return signr;
2651}
2652
2653static void hide_si_addr_tag_bits(struct ksignal *ksig)
2654{
2655	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2656	case SIL_FAULT:
2657	case SIL_FAULT_TRAPNO:
2658	case SIL_FAULT_MCEERR:
2659	case SIL_FAULT_BNDERR:
2660	case SIL_FAULT_PKUERR:
2661	case SIL_FAULT_PERF_EVENT:
2662		ksig->info.si_addr = arch_untagged_si_addr(
2663			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2664		break;
2665	case SIL_KILL:
2666	case SIL_TIMER:
2667	case SIL_POLL:
2668	case SIL_CHLD:
2669	case SIL_RT:
2670	case SIL_SYS:
2671		break;
2672	}
2673}
2674
2675bool get_signal(struct ksignal *ksig)
2676{
2677	struct sighand_struct *sighand = current->sighand;
2678	struct signal_struct *signal = current->signal;
2679	int signr;
2680
2681	clear_notify_signal();
2682	if (unlikely(task_work_pending(current)))
2683		task_work_run();
2684
2685	if (!task_sigpending(current))
2686		return false;
2687
2688	if (unlikely(uprobe_deny_signal()))
2689		return false;
2690
2691	/*
2692	 * Do this once, we can't return to user-mode if freezing() == T.
2693	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2694	 * thus do not need another check after return.
2695	 */
2696	try_to_freeze();
2697
2698relock:
2699	spin_lock_irq(&sighand->siglock);
2700
2701	/*
2702	 * Every stopped thread goes here after wakeup. Check to see if
2703	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2704	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2705	 */
2706	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2707		int why;
2708
2709		if (signal->flags & SIGNAL_CLD_CONTINUED)
2710			why = CLD_CONTINUED;
2711		else
2712			why = CLD_STOPPED;
2713
2714		signal->flags &= ~SIGNAL_CLD_MASK;
2715
2716		spin_unlock_irq(&sighand->siglock);
2717
2718		/*
2719		 * Notify the parent that we're continuing.  This event is
2720		 * always per-process and doesn't make whole lot of sense
2721		 * for ptracers, who shouldn't consume the state via
2722		 * wait(2) either, but, for backward compatibility, notify
2723		 * the ptracer of the group leader too unless it's gonna be
2724		 * a duplicate.
2725		 */
2726		read_lock(&tasklist_lock);
2727		do_notify_parent_cldstop(current, false, why);
2728
2729		if (ptrace_reparented(current->group_leader))
2730			do_notify_parent_cldstop(current->group_leader,
2731						true, why);
2732		read_unlock(&tasklist_lock);
2733
2734		goto relock;
2735	}
2736
2737	for (;;) {
2738		struct k_sigaction *ka;
2739		enum pid_type type;
2740
2741		/* Has this task already been marked for death? */
2742		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2743		     signal->group_exec_task) {
2744			signr = SIGKILL;
2745			sigdelset(&current->pending.signal, SIGKILL);
2746			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2747					     &sighand->action[SIGKILL-1]);
2748			recalc_sigpending();
2749			/*
2750			 * implies do_group_exit() or return to PF_USER_WORKER,
2751			 * no need to initialize ksig->info/etc.
2752			 */
2753			goto fatal;
2754		}
2755
2756		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2757		    do_signal_stop(0))
2758			goto relock;
2759
2760		if (unlikely(current->jobctl &
2761			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2762			if (current->jobctl & JOBCTL_TRAP_MASK) {
2763				do_jobctl_trap();
2764				spin_unlock_irq(&sighand->siglock);
2765			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2766				do_freezer_trap();
2767
2768			goto relock;
2769		}
2770
2771		/*
2772		 * If the task is leaving the frozen state, let's update
2773		 * cgroup counters and reset the frozen bit.
2774		 */
2775		if (unlikely(cgroup_task_frozen(current))) {
2776			spin_unlock_irq(&sighand->siglock);
2777			cgroup_leave_frozen(false);
2778			goto relock;
2779		}
2780
2781		/*
2782		 * Signals generated by the execution of an instruction
2783		 * need to be delivered before any other pending signals
2784		 * so that the instruction pointer in the signal stack
2785		 * frame points to the faulting instruction.
2786		 */
2787		type = PIDTYPE_PID;
2788		signr = dequeue_synchronous_signal(&ksig->info);
2789		if (!signr)
2790			signr = dequeue_signal(current, &current->blocked,
2791					       &ksig->info, &type);
2792
2793		if (!signr)
2794			break; /* will return 0 */
2795
2796		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2797		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2798			signr = ptrace_signal(signr, &ksig->info, type);
2799			if (!signr)
2800				continue;
2801		}
2802
2803		ka = &sighand->action[signr-1];
2804
2805		/* Trace actually delivered signals. */
2806		trace_signal_deliver(signr, &ksig->info, ka);
2807
2808		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2809			continue;
2810		if (ka->sa.sa_handler != SIG_DFL) {
2811			/* Run the handler.  */
2812			ksig->ka = *ka;
2813
2814			if (ka->sa.sa_flags & SA_ONESHOT)
2815				ka->sa.sa_handler = SIG_DFL;
2816
2817			break; /* will return non-zero "signr" value */
2818		}
2819
2820		/*
2821		 * Now we are doing the default action for this signal.
2822		 */
2823		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2824			continue;
2825
2826		/*
2827		 * Global init gets no signals it doesn't want.
2828		 * Container-init gets no signals it doesn't want from same
2829		 * container.
2830		 *
2831		 * Note that if global/container-init sees a sig_kernel_only()
2832		 * signal here, the signal must have been generated internally
2833		 * or must have come from an ancestor namespace. In either
2834		 * case, the signal cannot be dropped.
2835		 */
2836		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2837				!sig_kernel_only(signr))
2838			continue;
2839
2840		if (sig_kernel_stop(signr)) {
2841			/*
2842			 * The default action is to stop all threads in
2843			 * the thread group.  The job control signals
2844			 * do nothing in an orphaned pgrp, but SIGSTOP
2845			 * always works.  Note that siglock needs to be
2846			 * dropped during the call to is_orphaned_pgrp()
2847			 * because of lock ordering with tasklist_lock.
2848			 * This allows an intervening SIGCONT to be posted.
2849			 * We need to check for that and bail out if necessary.
2850			 */
2851			if (signr != SIGSTOP) {
2852				spin_unlock_irq(&sighand->siglock);
2853
2854				/* signals can be posted during this window */
2855
2856				if (is_current_pgrp_orphaned())
2857					goto relock;
2858
2859				spin_lock_irq(&sighand->siglock);
2860			}
2861
2862			if (likely(do_signal_stop(signr))) {
2863				/* It released the siglock.  */
2864				goto relock;
2865			}
2866
2867			/*
2868			 * We didn't actually stop, due to a race
2869			 * with SIGCONT or something like that.
2870			 */
2871			continue;
2872		}
2873
2874	fatal:
2875		spin_unlock_irq(&sighand->siglock);
2876		if (unlikely(cgroup_task_frozen(current)))
2877			cgroup_leave_frozen(true);
2878
2879		/*
2880		 * Anything else is fatal, maybe with a core dump.
2881		 */
2882		current->flags |= PF_SIGNALED;
2883
2884		if (sig_kernel_coredump(signr)) {
2885			if (print_fatal_signals)
2886				print_fatal_signal(signr);
2887			proc_coredump_connector(current);
2888			/*
2889			 * If it was able to dump core, this kills all
2890			 * other threads in the group and synchronizes with
2891			 * their demise.  If we lost the race with another
2892			 * thread getting here, it set group_exit_code
2893			 * first and our do_group_exit call below will use
2894			 * that value and ignore the one we pass it.
2895			 */
2896			do_coredump(&ksig->info);
2897		}
2898
2899		/*
2900		 * PF_USER_WORKER threads will catch and exit on fatal signals
2901		 * themselves. They have cleanup that must be performed, so we
2902		 * cannot call do_exit() on their behalf. Note that ksig won't
2903		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
2904		 */
2905		if (current->flags & PF_USER_WORKER)
2906			goto out;
2907
2908		/*
2909		 * Death signals, no core dump.
2910		 */
2911		do_group_exit(signr);
2912		/* NOTREACHED */
2913	}
2914	spin_unlock_irq(&sighand->siglock);
2915
2916	ksig->sig = signr;
2917
2918	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2919		hide_si_addr_tag_bits(ksig);
2920out:
2921	return signr > 0;
2922}
2923
2924/**
2925 * signal_delivered - called after signal delivery to update blocked signals
2926 * @ksig:		kernel signal struct
2927 * @stepping:		nonzero if debugger single-step or block-step in use
2928 *
2929 * This function should be called when a signal has successfully been
2930 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2931 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2932 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2933 */
2934static void signal_delivered(struct ksignal *ksig, int stepping)
2935{
2936	sigset_t blocked;
2937
2938	/* A signal was successfully delivered, and the
2939	   saved sigmask was stored on the signal frame,
2940	   and will be restored by sigreturn.  So we can
2941	   simply clear the restore sigmask flag.  */
2942	clear_restore_sigmask();
2943
2944	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2945	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2946		sigaddset(&blocked, ksig->sig);
2947	set_current_blocked(&blocked);
2948	if (current->sas_ss_flags & SS_AUTODISARM)
2949		sas_ss_reset(current);
2950	if (stepping)
2951		ptrace_notify(SIGTRAP, 0);
2952}
2953
2954void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2955{
2956	if (failed)
2957		force_sigsegv(ksig->sig);
2958	else
2959		signal_delivered(ksig, stepping);
2960}
2961
2962/*
2963 * It could be that complete_signal() picked us to notify about the
2964 * group-wide signal. Other threads should be notified now to take
2965 * the shared signals in @which since we will not.
2966 */
2967static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2968{
2969	sigset_t retarget;
2970	struct task_struct *t;
2971
2972	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2973	if (sigisemptyset(&retarget))
2974		return;
2975
2976	for_other_threads(tsk, t) {
2977		if (t->flags & PF_EXITING)
2978			continue;
2979
2980		if (!has_pending_signals(&retarget, &t->blocked))
2981			continue;
2982		/* Remove the signals this thread can handle. */
2983		sigandsets(&retarget, &retarget, &t->blocked);
2984
2985		if (!task_sigpending(t))
2986			signal_wake_up(t, 0);
2987
2988		if (sigisemptyset(&retarget))
2989			break;
2990	}
2991}
2992
2993void exit_signals(struct task_struct *tsk)
2994{
2995	int group_stop = 0;
2996	sigset_t unblocked;
2997
2998	/*
2999	 * @tsk is about to have PF_EXITING set - lock out users which
3000	 * expect stable threadgroup.
3001	 */
3002	cgroup_threadgroup_change_begin(tsk);
3003
3004	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3005		sched_mm_cid_exit_signals(tsk);
3006		tsk->flags |= PF_EXITING;
3007		cgroup_threadgroup_change_end(tsk);
3008		return;
3009	}
3010
3011	spin_lock_irq(&tsk->sighand->siglock);
3012	/*
3013	 * From now this task is not visible for group-wide signals,
3014	 * see wants_signal(), do_signal_stop().
3015	 */
3016	sched_mm_cid_exit_signals(tsk);
3017	tsk->flags |= PF_EXITING;
3018
3019	cgroup_threadgroup_change_end(tsk);
3020
3021	if (!task_sigpending(tsk))
3022		goto out;
3023
3024	unblocked = tsk->blocked;
3025	signotset(&unblocked);
3026	retarget_shared_pending(tsk, &unblocked);
3027
3028	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3029	    task_participate_group_stop(tsk))
3030		group_stop = CLD_STOPPED;
3031out:
3032	spin_unlock_irq(&tsk->sighand->siglock);
3033
3034	/*
3035	 * If group stop has completed, deliver the notification.  This
3036	 * should always go to the real parent of the group leader.
3037	 */
3038	if (unlikely(group_stop)) {
3039		read_lock(&tasklist_lock);
3040		do_notify_parent_cldstop(tsk, false, group_stop);
3041		read_unlock(&tasklist_lock);
3042	}
3043}
3044
3045/*
3046 * System call entry points.
3047 */
3048
3049/**
3050 *  sys_restart_syscall - restart a system call
3051 */
3052SYSCALL_DEFINE0(restart_syscall)
3053{
3054	struct restart_block *restart = &current->restart_block;
3055	return restart->fn(restart);
3056}
3057
3058long do_no_restart_syscall(struct restart_block *param)
3059{
3060	return -EINTR;
3061}
3062
3063static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3064{
3065	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3066		sigset_t newblocked;
3067		/* A set of now blocked but previously unblocked signals. */
3068		sigandnsets(&newblocked, newset, &current->blocked);
3069		retarget_shared_pending(tsk, &newblocked);
3070	}
3071	tsk->blocked = *newset;
3072	recalc_sigpending();
3073}
3074
3075/**
3076 * set_current_blocked - change current->blocked mask
3077 * @newset: new mask
3078 *
3079 * It is wrong to change ->blocked directly, this helper should be used
3080 * to ensure the process can't miss a shared signal we are going to block.
3081 */
3082void set_current_blocked(sigset_t *newset)
3083{
3084	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3085	__set_current_blocked(newset);
3086}
3087
3088void __set_current_blocked(const sigset_t *newset)
3089{
3090	struct task_struct *tsk = current;
3091
3092	/*
3093	 * In case the signal mask hasn't changed, there is nothing we need
3094	 * to do. The current->blocked shouldn't be modified by other task.
3095	 */
3096	if (sigequalsets(&tsk->blocked, newset))
3097		return;
3098
3099	spin_lock_irq(&tsk->sighand->siglock);
3100	__set_task_blocked(tsk, newset);
3101	spin_unlock_irq(&tsk->sighand->siglock);
3102}
3103
3104/*
3105 * This is also useful for kernel threads that want to temporarily
3106 * (or permanently) block certain signals.
3107 *
3108 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3109 * interface happily blocks "unblockable" signals like SIGKILL
3110 * and friends.
3111 */
3112int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3113{
3114	struct task_struct *tsk = current;
3115	sigset_t newset;
3116
3117	/* Lockless, only current can change ->blocked, never from irq */
3118	if (oldset)
3119		*oldset = tsk->blocked;
3120
3121	switch (how) {
3122	case SIG_BLOCK:
3123		sigorsets(&newset, &tsk->blocked, set);
3124		break;
3125	case SIG_UNBLOCK:
3126		sigandnsets(&newset, &tsk->blocked, set);
3127		break;
3128	case SIG_SETMASK:
3129		newset = *set;
3130		break;
3131	default:
3132		return -EINVAL;
3133	}
3134
3135	__set_current_blocked(&newset);
3136	return 0;
3137}
3138EXPORT_SYMBOL(sigprocmask);
3139
3140/*
3141 * The api helps set app-provided sigmasks.
3142 *
3143 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3144 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3145 *
3146 * Note that it does set_restore_sigmask() in advance, so it must be always
3147 * paired with restore_saved_sigmask_unless() before return from syscall.
3148 */
3149int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3150{
3151	sigset_t kmask;
3152
3153	if (!umask)
3154		return 0;
3155	if (sigsetsize != sizeof(sigset_t))
3156		return -EINVAL;
3157	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3158		return -EFAULT;
3159
3160	set_restore_sigmask();
3161	current->saved_sigmask = current->blocked;
3162	set_current_blocked(&kmask);
3163
3164	return 0;
3165}
3166
3167#ifdef CONFIG_COMPAT
3168int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3169			    size_t sigsetsize)
3170{
3171	sigset_t kmask;
3172
3173	if (!umask)
3174		return 0;
3175	if (sigsetsize != sizeof(compat_sigset_t))
3176		return -EINVAL;
3177	if (get_compat_sigset(&kmask, umask))
3178		return -EFAULT;
3179
3180	set_restore_sigmask();
3181	current->saved_sigmask = current->blocked;
3182	set_current_blocked(&kmask);
3183
3184	return 0;
3185}
3186#endif
3187
3188/**
3189 *  sys_rt_sigprocmask - change the list of currently blocked signals
3190 *  @how: whether to add, remove, or set signals
3191 *  @nset: stores pending signals
3192 *  @oset: previous value of signal mask if non-null
3193 *  @sigsetsize: size of sigset_t type
3194 */
3195SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3196		sigset_t __user *, oset, size_t, sigsetsize)
3197{
3198	sigset_t old_set, new_set;
3199	int error;
3200
3201	/* XXX: Don't preclude handling different sized sigset_t's.  */
3202	if (sigsetsize != sizeof(sigset_t))
3203		return -EINVAL;
3204
3205	old_set = current->blocked;
3206
3207	if (nset) {
3208		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3209			return -EFAULT;
3210		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3211
3212		error = sigprocmask(how, &new_set, NULL);
3213		if (error)
3214			return error;
3215	}
3216
3217	if (oset) {
3218		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3219			return -EFAULT;
3220	}
3221
3222	return 0;
3223}
3224
3225#ifdef CONFIG_COMPAT
3226COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3227		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3228{
3229	sigset_t old_set = current->blocked;
3230
3231	/* XXX: Don't preclude handling different sized sigset_t's.  */
3232	if (sigsetsize != sizeof(sigset_t))
3233		return -EINVAL;
3234
3235	if (nset) {
3236		sigset_t new_set;
3237		int error;
3238		if (get_compat_sigset(&new_set, nset))
3239			return -EFAULT;
3240		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3241
3242		error = sigprocmask(how, &new_set, NULL);
3243		if (error)
3244			return error;
3245	}
3246	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3247}
3248#endif
3249
3250static void do_sigpending(sigset_t *set)
3251{
3252	spin_lock_irq(&current->sighand->siglock);
3253	sigorsets(set, &current->pending.signal,
3254		  &current->signal->shared_pending.signal);
3255	spin_unlock_irq(&current->sighand->siglock);
3256
3257	/* Outside the lock because only this thread touches it.  */
3258	sigandsets(set, &current->blocked, set);
3259}
3260
3261/**
3262 *  sys_rt_sigpending - examine a pending signal that has been raised
3263 *			while blocked
3264 *  @uset: stores pending signals
3265 *  @sigsetsize: size of sigset_t type or larger
3266 */
3267SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3268{
3269	sigset_t set;
3270
3271	if (sigsetsize > sizeof(*uset))
3272		return -EINVAL;
3273
3274	do_sigpending(&set);
3275
3276	if (copy_to_user(uset, &set, sigsetsize))
3277		return -EFAULT;
3278
3279	return 0;
3280}
3281
3282#ifdef CONFIG_COMPAT
3283COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3284		compat_size_t, sigsetsize)
3285{
3286	sigset_t set;
3287
3288	if (sigsetsize > sizeof(*uset))
3289		return -EINVAL;
3290
3291	do_sigpending(&set);
3292
3293	return put_compat_sigset(uset, &set, sigsetsize);
3294}
3295#endif
3296
3297static const struct {
3298	unsigned char limit, layout;
3299} sig_sicodes[] = {
3300	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3301	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3302	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3303	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3304	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3305#if defined(SIGEMT)
3306	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3307#endif
3308	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3309	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3310	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3311};
3312
3313static bool known_siginfo_layout(unsigned sig, int si_code)
3314{
3315	if (si_code == SI_KERNEL)
3316		return true;
3317	else if ((si_code > SI_USER)) {
3318		if (sig_specific_sicodes(sig)) {
3319			if (si_code <= sig_sicodes[sig].limit)
3320				return true;
3321		}
3322		else if (si_code <= NSIGPOLL)
3323			return true;
3324	}
3325	else if (si_code >= SI_DETHREAD)
3326		return true;
3327	else if (si_code == SI_ASYNCNL)
3328		return true;
3329	return false;
3330}
3331
3332enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3333{
3334	enum siginfo_layout layout = SIL_KILL;
3335	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3336		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3337		    (si_code <= sig_sicodes[sig].limit)) {
3338			layout = sig_sicodes[sig].layout;
3339			/* Handle the exceptions */
3340			if ((sig == SIGBUS) &&
3341			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3342				layout = SIL_FAULT_MCEERR;
3343			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3344				layout = SIL_FAULT_BNDERR;
3345#ifdef SEGV_PKUERR
3346			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3347				layout = SIL_FAULT_PKUERR;
3348#endif
3349			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3350				layout = SIL_FAULT_PERF_EVENT;
3351			else if (IS_ENABLED(CONFIG_SPARC) &&
3352				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3353				layout = SIL_FAULT_TRAPNO;
3354			else if (IS_ENABLED(CONFIG_ALPHA) &&
3355				 ((sig == SIGFPE) ||
3356				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3357				layout = SIL_FAULT_TRAPNO;
3358		}
3359		else if (si_code <= NSIGPOLL)
3360			layout = SIL_POLL;
3361	} else {
3362		if (si_code == SI_TIMER)
3363			layout = SIL_TIMER;
3364		else if (si_code == SI_SIGIO)
3365			layout = SIL_POLL;
3366		else if (si_code < 0)
3367			layout = SIL_RT;
3368	}
3369	return layout;
3370}
3371
3372static inline char __user *si_expansion(const siginfo_t __user *info)
3373{
3374	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3375}
3376
3377int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3378{
3379	char __user *expansion = si_expansion(to);
3380	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3381		return -EFAULT;
3382	if (clear_user(expansion, SI_EXPANSION_SIZE))
3383		return -EFAULT;
3384	return 0;
3385}
3386
3387static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3388				       const siginfo_t __user *from)
3389{
3390	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3391		char __user *expansion = si_expansion(from);
3392		char buf[SI_EXPANSION_SIZE];
3393		int i;
3394		/*
3395		 * An unknown si_code might need more than
3396		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3397		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3398		 * will return this data to userspace exactly.
3399		 */
3400		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3401			return -EFAULT;
3402		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3403			if (buf[i] != 0)
3404				return -E2BIG;
3405		}
3406	}
3407	return 0;
3408}
3409
3410static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3411				    const siginfo_t __user *from)
3412{
3413	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3414		return -EFAULT;
3415	to->si_signo = signo;
3416	return post_copy_siginfo_from_user(to, from);
3417}
3418
3419int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3420{
3421	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3422		return -EFAULT;
3423	return post_copy_siginfo_from_user(to, from);
3424}
3425
3426#ifdef CONFIG_COMPAT
3427/**
3428 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3429 * @to: compat siginfo destination
3430 * @from: kernel siginfo source
3431 *
3432 * Note: This function does not work properly for the SIGCHLD on x32, but
3433 * fortunately it doesn't have to.  The only valid callers for this function are
3434 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3435 * The latter does not care because SIGCHLD will never cause a coredump.
3436 */
3437void copy_siginfo_to_external32(struct compat_siginfo *to,
3438		const struct kernel_siginfo *from)
3439{
3440	memset(to, 0, sizeof(*to));
3441
3442	to->si_signo = from->si_signo;
3443	to->si_errno = from->si_errno;
3444	to->si_code  = from->si_code;
3445	switch(siginfo_layout(from->si_signo, from->si_code)) {
3446	case SIL_KILL:
3447		to->si_pid = from->si_pid;
3448		to->si_uid = from->si_uid;
3449		break;
3450	case SIL_TIMER:
3451		to->si_tid     = from->si_tid;
3452		to->si_overrun = from->si_overrun;
3453		to->si_int     = from->si_int;
3454		break;
3455	case SIL_POLL:
3456		to->si_band = from->si_band;
3457		to->si_fd   = from->si_fd;
3458		break;
3459	case SIL_FAULT:
3460		to->si_addr = ptr_to_compat(from->si_addr);
3461		break;
3462	case SIL_FAULT_TRAPNO:
3463		to->si_addr = ptr_to_compat(from->si_addr);
3464		to->si_trapno = from->si_trapno;
3465		break;
3466	case SIL_FAULT_MCEERR:
3467		to->si_addr = ptr_to_compat(from->si_addr);
3468		to->si_addr_lsb = from->si_addr_lsb;
3469		break;
3470	case SIL_FAULT_BNDERR:
3471		to->si_addr = ptr_to_compat(from->si_addr);
3472		to->si_lower = ptr_to_compat(from->si_lower);
3473		to->si_upper = ptr_to_compat(from->si_upper);
3474		break;
3475	case SIL_FAULT_PKUERR:
3476		to->si_addr = ptr_to_compat(from->si_addr);
3477		to->si_pkey = from->si_pkey;
3478		break;
3479	case SIL_FAULT_PERF_EVENT:
3480		to->si_addr = ptr_to_compat(from->si_addr);
3481		to->si_perf_data = from->si_perf_data;
3482		to->si_perf_type = from->si_perf_type;
3483		to->si_perf_flags = from->si_perf_flags;
3484		break;
3485	case SIL_CHLD:
3486		to->si_pid = from->si_pid;
3487		to->si_uid = from->si_uid;
3488		to->si_status = from->si_status;
3489		to->si_utime = from->si_utime;
3490		to->si_stime = from->si_stime;
3491		break;
3492	case SIL_RT:
3493		to->si_pid = from->si_pid;
3494		to->si_uid = from->si_uid;
3495		to->si_int = from->si_int;
3496		break;
3497	case SIL_SYS:
3498		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3499		to->si_syscall   = from->si_syscall;
3500		to->si_arch      = from->si_arch;
3501		break;
3502	}
3503}
3504
3505int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3506			   const struct kernel_siginfo *from)
3507{
3508	struct compat_siginfo new;
3509
3510	copy_siginfo_to_external32(&new, from);
3511	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3512		return -EFAULT;
3513	return 0;
3514}
3515
3516static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3517					 const struct compat_siginfo *from)
3518{
3519	clear_siginfo(to);
3520	to->si_signo = from->si_signo;
3521	to->si_errno = from->si_errno;
3522	to->si_code  = from->si_code;
3523	switch(siginfo_layout(from->si_signo, from->si_code)) {
3524	case SIL_KILL:
3525		to->si_pid = from->si_pid;
3526		to->si_uid = from->si_uid;
3527		break;
3528	case SIL_TIMER:
3529		to->si_tid     = from->si_tid;
3530		to->si_overrun = from->si_overrun;
3531		to->si_int     = from->si_int;
3532		break;
3533	case SIL_POLL:
3534		to->si_band = from->si_band;
3535		to->si_fd   = from->si_fd;
3536		break;
3537	case SIL_FAULT:
3538		to->si_addr = compat_ptr(from->si_addr);
3539		break;
3540	case SIL_FAULT_TRAPNO:
3541		to->si_addr = compat_ptr(from->si_addr);
3542		to->si_trapno = from->si_trapno;
3543		break;
3544	case SIL_FAULT_MCEERR:
3545		to->si_addr = compat_ptr(from->si_addr);
3546		to->si_addr_lsb = from->si_addr_lsb;
3547		break;
3548	case SIL_FAULT_BNDERR:
3549		to->si_addr = compat_ptr(from->si_addr);
3550		to->si_lower = compat_ptr(from->si_lower);
3551		to->si_upper = compat_ptr(from->si_upper);
3552		break;
3553	case SIL_FAULT_PKUERR:
3554		to->si_addr = compat_ptr(from->si_addr);
3555		to->si_pkey = from->si_pkey;
3556		break;
3557	case SIL_FAULT_PERF_EVENT:
3558		to->si_addr = compat_ptr(from->si_addr);
3559		to->si_perf_data = from->si_perf_data;
3560		to->si_perf_type = from->si_perf_type;
3561		to->si_perf_flags = from->si_perf_flags;
3562		break;
3563	case SIL_CHLD:
3564		to->si_pid    = from->si_pid;
3565		to->si_uid    = from->si_uid;
3566		to->si_status = from->si_status;
3567#ifdef CONFIG_X86_X32_ABI
3568		if (in_x32_syscall()) {
3569			to->si_utime = from->_sifields._sigchld_x32._utime;
3570			to->si_stime = from->_sifields._sigchld_x32._stime;
3571		} else
3572#endif
3573		{
3574			to->si_utime = from->si_utime;
3575			to->si_stime = from->si_stime;
3576		}
3577		break;
3578	case SIL_RT:
3579		to->si_pid = from->si_pid;
3580		to->si_uid = from->si_uid;
3581		to->si_int = from->si_int;
3582		break;
3583	case SIL_SYS:
3584		to->si_call_addr = compat_ptr(from->si_call_addr);
3585		to->si_syscall   = from->si_syscall;
3586		to->si_arch      = from->si_arch;
3587		break;
3588	}
3589	return 0;
3590}
3591
3592static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3593				      const struct compat_siginfo __user *ufrom)
3594{
3595	struct compat_siginfo from;
3596
3597	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3598		return -EFAULT;
3599
3600	from.si_signo = signo;
3601	return post_copy_siginfo_from_user32(to, &from);
3602}
3603
3604int copy_siginfo_from_user32(struct kernel_siginfo *to,
3605			     const struct compat_siginfo __user *ufrom)
3606{
3607	struct compat_siginfo from;
3608
3609	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3610		return -EFAULT;
3611
3612	return post_copy_siginfo_from_user32(to, &from);
3613}
3614#endif /* CONFIG_COMPAT */
3615
3616/**
3617 *  do_sigtimedwait - wait for queued signals specified in @which
3618 *  @which: queued signals to wait for
3619 *  @info: if non-null, the signal's siginfo is returned here
3620 *  @ts: upper bound on process time suspension
3621 */
3622static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3623		    const struct timespec64 *ts)
3624{
3625	ktime_t *to = NULL, timeout = KTIME_MAX;
3626	struct task_struct *tsk = current;
3627	sigset_t mask = *which;
3628	enum pid_type type;
3629	int sig, ret = 0;
3630
3631	if (ts) {
3632		if (!timespec64_valid(ts))
3633			return -EINVAL;
3634		timeout = timespec64_to_ktime(*ts);
3635		to = &timeout;
3636	}
3637
3638	/*
3639	 * Invert the set of allowed signals to get those we want to block.
3640	 */
3641	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3642	signotset(&mask);
3643
3644	spin_lock_irq(&tsk->sighand->siglock);
3645	sig = dequeue_signal(tsk, &mask, info, &type);
3646	if (!sig && timeout) {
3647		/*
3648		 * None ready, temporarily unblock those we're interested
3649		 * while we are sleeping in so that we'll be awakened when
3650		 * they arrive. Unblocking is always fine, we can avoid
3651		 * set_current_blocked().
3652		 */
3653		tsk->real_blocked = tsk->blocked;
3654		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3655		recalc_sigpending();
3656		spin_unlock_irq(&tsk->sighand->siglock);
3657
3658		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3659		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3660					       HRTIMER_MODE_REL);
3661		spin_lock_irq(&tsk->sighand->siglock);
3662		__set_task_blocked(tsk, &tsk->real_blocked);
3663		sigemptyset(&tsk->real_blocked);
3664		sig = dequeue_signal(tsk, &mask, info, &type);
3665	}
3666	spin_unlock_irq(&tsk->sighand->siglock);
3667
3668	if (sig)
3669		return sig;
3670	return ret ? -EINTR : -EAGAIN;
3671}
3672
3673/**
3674 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3675 *			in @uthese
3676 *  @uthese: queued signals to wait for
3677 *  @uinfo: if non-null, the signal's siginfo is returned here
3678 *  @uts: upper bound on process time suspension
3679 *  @sigsetsize: size of sigset_t type
3680 */
3681SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3682		siginfo_t __user *, uinfo,
3683		const struct __kernel_timespec __user *, uts,
3684		size_t, sigsetsize)
3685{
3686	sigset_t these;
3687	struct timespec64 ts;
3688	kernel_siginfo_t info;
3689	int ret;
3690
3691	/* XXX: Don't preclude handling different sized sigset_t's.  */
3692	if (sigsetsize != sizeof(sigset_t))
3693		return -EINVAL;
3694
3695	if (copy_from_user(&these, uthese, sizeof(these)))
3696		return -EFAULT;
3697
3698	if (uts) {
3699		if (get_timespec64(&ts, uts))
3700			return -EFAULT;
3701	}
3702
3703	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3704
3705	if (ret > 0 && uinfo) {
3706		if (copy_siginfo_to_user(uinfo, &info))
3707			ret = -EFAULT;
3708	}
3709
3710	return ret;
3711}
3712
3713#ifdef CONFIG_COMPAT_32BIT_TIME
3714SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3715		siginfo_t __user *, uinfo,
3716		const struct old_timespec32 __user *, uts,
3717		size_t, sigsetsize)
3718{
3719	sigset_t these;
3720	struct timespec64 ts;
3721	kernel_siginfo_t info;
3722	int ret;
3723
3724	if (sigsetsize != sizeof(sigset_t))
3725		return -EINVAL;
3726
3727	if (copy_from_user(&these, uthese, sizeof(these)))
3728		return -EFAULT;
3729
3730	if (uts) {
3731		if (get_old_timespec32(&ts, uts))
3732			return -EFAULT;
3733	}
3734
3735	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3736
3737	if (ret > 0 && uinfo) {
3738		if (copy_siginfo_to_user(uinfo, &info))
3739			ret = -EFAULT;
3740	}
3741
3742	return ret;
3743}
3744#endif
3745
3746#ifdef CONFIG_COMPAT
3747COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3748		struct compat_siginfo __user *, uinfo,
3749		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3750{
3751	sigset_t s;
3752	struct timespec64 t;
3753	kernel_siginfo_t info;
3754	long ret;
3755
3756	if (sigsetsize != sizeof(sigset_t))
3757		return -EINVAL;
3758
3759	if (get_compat_sigset(&s, uthese))
3760		return -EFAULT;
3761
3762	if (uts) {
3763		if (get_timespec64(&t, uts))
3764			return -EFAULT;
3765	}
3766
3767	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3768
3769	if (ret > 0 && uinfo) {
3770		if (copy_siginfo_to_user32(uinfo, &info))
3771			ret = -EFAULT;
3772	}
3773
3774	return ret;
3775}
3776
3777#ifdef CONFIG_COMPAT_32BIT_TIME
3778COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3779		struct compat_siginfo __user *, uinfo,
3780		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3781{
3782	sigset_t s;
3783	struct timespec64 t;
3784	kernel_siginfo_t info;
3785	long ret;
3786
3787	if (sigsetsize != sizeof(sigset_t))
3788		return -EINVAL;
3789
3790	if (get_compat_sigset(&s, uthese))
3791		return -EFAULT;
3792
3793	if (uts) {
3794		if (get_old_timespec32(&t, uts))
3795			return -EFAULT;
3796	}
3797
3798	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3799
3800	if (ret > 0 && uinfo) {
3801		if (copy_siginfo_to_user32(uinfo, &info))
3802			ret = -EFAULT;
3803	}
3804
3805	return ret;
3806}
3807#endif
3808#endif
3809
3810static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3811				 enum pid_type type)
3812{
3813	clear_siginfo(info);
3814	info->si_signo = sig;
3815	info->si_errno = 0;
3816	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3817	info->si_pid = task_tgid_vnr(current);
3818	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3819}
3820
3821/**
3822 *  sys_kill - send a signal to a process
3823 *  @pid: the PID of the process
3824 *  @sig: signal to be sent
3825 */
3826SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3827{
3828	struct kernel_siginfo info;
3829
3830	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3831
3832	return kill_something_info(sig, &info, pid);
3833}
3834
3835/*
3836 * Verify that the signaler and signalee either are in the same pid namespace
3837 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3838 * namespace.
3839 */
3840static bool access_pidfd_pidns(struct pid *pid)
3841{
3842	struct pid_namespace *active = task_active_pid_ns(current);
3843	struct pid_namespace *p = ns_of_pid(pid);
3844
3845	for (;;) {
3846		if (!p)
3847			return false;
3848		if (p == active)
3849			break;
3850		p = p->parent;
3851	}
3852
3853	return true;
3854}
3855
3856static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3857		siginfo_t __user *info)
3858{
3859#ifdef CONFIG_COMPAT
3860	/*
3861	 * Avoid hooking up compat syscalls and instead handle necessary
3862	 * conversions here. Note, this is a stop-gap measure and should not be
3863	 * considered a generic solution.
3864	 */
3865	if (in_compat_syscall())
3866		return copy_siginfo_from_user32(
3867			kinfo, (struct compat_siginfo __user *)info);
3868#endif
3869	return copy_siginfo_from_user(kinfo, info);
3870}
3871
3872static struct pid *pidfd_to_pid(const struct file *file)
3873{
3874	struct pid *pid;
3875
3876	pid = pidfd_pid(file);
3877	if (!IS_ERR(pid))
3878		return pid;
3879
3880	return tgid_pidfd_to_pid(file);
3881}
3882
3883#define PIDFD_SEND_SIGNAL_FLAGS                            \
3884	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
3885	 PIDFD_SIGNAL_PROCESS_GROUP)
3886
3887/**
3888 * sys_pidfd_send_signal - Signal a process through a pidfd
3889 * @pidfd:  file descriptor of the process
3890 * @sig:    signal to send
3891 * @info:   signal info
3892 * @flags:  future flags
3893 *
3894 * Send the signal to the thread group or to the individual thread depending
3895 * on PIDFD_THREAD.
3896 * In the future extension to @flags may be used to override the default scope
3897 * of @pidfd.
3898 *
3899 * Return: 0 on success, negative errno on failure
3900 */
3901SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3902		siginfo_t __user *, info, unsigned int, flags)
3903{
3904	int ret;
3905	struct fd f;
3906	struct pid *pid;
3907	kernel_siginfo_t kinfo;
3908	enum pid_type type;
3909
3910	/* Enforce flags be set to 0 until we add an extension. */
3911	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
3912		return -EINVAL;
3913
3914	/* Ensure that only a single signal scope determining flag is set. */
3915	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
3916		return -EINVAL;
3917
3918	f = fdget(pidfd);
3919	if (!f.file)
3920		return -EBADF;
3921
3922	/* Is this a pidfd? */
3923	pid = pidfd_to_pid(f.file);
3924	if (IS_ERR(pid)) {
3925		ret = PTR_ERR(pid);
3926		goto err;
3927	}
3928
3929	ret = -EINVAL;
3930	if (!access_pidfd_pidns(pid))
3931		goto err;
3932
3933	switch (flags) {
3934	case 0:
3935		/* Infer scope from the type of pidfd. */
3936		if (f.file->f_flags & PIDFD_THREAD)
3937			type = PIDTYPE_PID;
3938		else
3939			type = PIDTYPE_TGID;
3940		break;
3941	case PIDFD_SIGNAL_THREAD:
3942		type = PIDTYPE_PID;
3943		break;
3944	case PIDFD_SIGNAL_THREAD_GROUP:
3945		type = PIDTYPE_TGID;
3946		break;
3947	case PIDFD_SIGNAL_PROCESS_GROUP:
3948		type = PIDTYPE_PGID;
3949		break;
3950	}
3951
3952	if (info) {
3953		ret = copy_siginfo_from_user_any(&kinfo, info);
3954		if (unlikely(ret))
3955			goto err;
3956
3957		ret = -EINVAL;
3958		if (unlikely(sig != kinfo.si_signo))
3959			goto err;
3960
3961		/* Only allow sending arbitrary signals to yourself. */
3962		ret = -EPERM;
3963		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
3964		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3965			goto err;
3966	} else {
3967		prepare_kill_siginfo(sig, &kinfo, type);
3968	}
3969
3970	if (type == PIDTYPE_PGID)
3971		ret = kill_pgrp_info(sig, &kinfo, pid);
3972	else
3973		ret = kill_pid_info_type(sig, &kinfo, pid, type);
3974err:
3975	fdput(f);
3976	return ret;
3977}
3978
3979static int
3980do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3981{
3982	struct task_struct *p;
3983	int error = -ESRCH;
3984
3985	rcu_read_lock();
3986	p = find_task_by_vpid(pid);
3987	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3988		error = check_kill_permission(sig, info, p);
3989		/*
3990		 * The null signal is a permissions and process existence
3991		 * probe.  No signal is actually delivered.
3992		 */
3993		if (!error && sig) {
3994			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3995			/*
3996			 * If lock_task_sighand() failed we pretend the task
3997			 * dies after receiving the signal. The window is tiny,
3998			 * and the signal is private anyway.
3999			 */
4000			if (unlikely(error == -ESRCH))
4001				error = 0;
4002		}
4003	}
4004	rcu_read_unlock();
4005
4006	return error;
4007}
4008
4009static int do_tkill(pid_t tgid, pid_t pid, int sig)
4010{
4011	struct kernel_siginfo info;
4012
4013	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4014
4015	return do_send_specific(tgid, pid, sig, &info);
4016}
4017
4018/**
4019 *  sys_tgkill - send signal to one specific thread
4020 *  @tgid: the thread group ID of the thread
4021 *  @pid: the PID of the thread
4022 *  @sig: signal to be sent
4023 *
4024 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4025 *  exists but it's not belonging to the target process anymore. This
4026 *  method solves the problem of threads exiting and PIDs getting reused.
4027 */
4028SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4029{
4030	/* This is only valid for single tasks */
4031	if (pid <= 0 || tgid <= 0)
4032		return -EINVAL;
4033
4034	return do_tkill(tgid, pid, sig);
4035}
4036
4037/**
4038 *  sys_tkill - send signal to one specific task
4039 *  @pid: the PID of the task
4040 *  @sig: signal to be sent
4041 *
4042 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4043 */
4044SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4045{
4046	/* This is only valid for single tasks */
4047	if (pid <= 0)
4048		return -EINVAL;
4049
4050	return do_tkill(0, pid, sig);
4051}
4052
4053static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4054{
4055	/* Not even root can pretend to send signals from the kernel.
4056	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4057	 */
4058	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4059	    (task_pid_vnr(current) != pid))
4060		return -EPERM;
4061
4062	/* POSIX.1b doesn't mention process groups.  */
4063	return kill_proc_info(sig, info, pid);
4064}
4065
4066/**
4067 *  sys_rt_sigqueueinfo - send signal information to a signal
4068 *  @pid: the PID of the thread
4069 *  @sig: signal to be sent
4070 *  @uinfo: signal info to be sent
4071 */
4072SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4073		siginfo_t __user *, uinfo)
4074{
4075	kernel_siginfo_t info;
4076	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4077	if (unlikely(ret))
4078		return ret;
4079	return do_rt_sigqueueinfo(pid, sig, &info);
4080}
4081
4082#ifdef CONFIG_COMPAT
4083COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4084			compat_pid_t, pid,
4085			int, sig,
4086			struct compat_siginfo __user *, uinfo)
4087{
4088	kernel_siginfo_t info;
4089	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4090	if (unlikely(ret))
4091		return ret;
4092	return do_rt_sigqueueinfo(pid, sig, &info);
4093}
4094#endif
4095
4096static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4097{
4098	/* This is only valid for single tasks */
4099	if (pid <= 0 || tgid <= 0)
4100		return -EINVAL;
4101
4102	/* Not even root can pretend to send signals from the kernel.
4103	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4104	 */
4105	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4106	    (task_pid_vnr(current) != pid))
4107		return -EPERM;
4108
4109	return do_send_specific(tgid, pid, sig, info);
4110}
4111
4112SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4113		siginfo_t __user *, uinfo)
4114{
4115	kernel_siginfo_t info;
4116	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4117	if (unlikely(ret))
4118		return ret;
4119	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4120}
4121
4122#ifdef CONFIG_COMPAT
4123COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4124			compat_pid_t, tgid,
4125			compat_pid_t, pid,
4126			int, sig,
4127			struct compat_siginfo __user *, uinfo)
4128{
4129	kernel_siginfo_t info;
4130	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4131	if (unlikely(ret))
4132		return ret;
4133	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4134}
4135#endif
4136
4137/*
4138 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4139 */
4140void kernel_sigaction(int sig, __sighandler_t action)
4141{
4142	spin_lock_irq(&current->sighand->siglock);
4143	current->sighand->action[sig - 1].sa.sa_handler = action;
4144	if (action == SIG_IGN) {
4145		sigset_t mask;
4146
4147		sigemptyset(&mask);
4148		sigaddset(&mask, sig);
4149
4150		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4151		flush_sigqueue_mask(&mask, &current->pending);
4152		recalc_sigpending();
4153	}
4154	spin_unlock_irq(&current->sighand->siglock);
4155}
4156EXPORT_SYMBOL(kernel_sigaction);
4157
4158void __weak sigaction_compat_abi(struct k_sigaction *act,
4159		struct k_sigaction *oact)
4160{
4161}
4162
4163int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4164{
4165	struct task_struct *p = current, *t;
4166	struct k_sigaction *k;
4167	sigset_t mask;
4168
4169	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4170		return -EINVAL;
4171
4172	k = &p->sighand->action[sig-1];
4173
4174	spin_lock_irq(&p->sighand->siglock);
4175	if (k->sa.sa_flags & SA_IMMUTABLE) {
4176		spin_unlock_irq(&p->sighand->siglock);
4177		return -EINVAL;
4178	}
4179	if (oact)
4180		*oact = *k;
4181
4182	/*
4183	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4184	 * e.g. by having an architecture use the bit in their uapi.
4185	 */
4186	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4187
4188	/*
4189	 * Clear unknown flag bits in order to allow userspace to detect missing
4190	 * support for flag bits and to allow the kernel to use non-uapi bits
4191	 * internally.
4192	 */
4193	if (act)
4194		act->sa.sa_flags &= UAPI_SA_FLAGS;
4195	if (oact)
4196		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4197
4198	sigaction_compat_abi(act, oact);
4199
4200	if (act) {
 
 
4201		sigdelsetmask(&act->sa.sa_mask,
4202			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4203		*k = *act;
4204		/*
4205		 * POSIX 3.3.1.3:
4206		 *  "Setting a signal action to SIG_IGN for a signal that is
4207		 *   pending shall cause the pending signal to be discarded,
4208		 *   whether or not it is blocked."
4209		 *
4210		 *  "Setting a signal action to SIG_DFL for a signal that is
4211		 *   pending and whose default action is to ignore the signal
4212		 *   (for example, SIGCHLD), shall cause the pending signal to
4213		 *   be discarded, whether or not it is blocked"
4214		 */
4215		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4216			sigemptyset(&mask);
4217			sigaddset(&mask, sig);
4218			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4219			for_each_thread(p, t)
4220				flush_sigqueue_mask(&mask, &t->pending);
 
 
4221		}
4222	}
4223
4224	spin_unlock_irq(&p->sighand->siglock);
4225	return 0;
4226}
4227
4228#ifdef CONFIG_DYNAMIC_SIGFRAME
4229static inline void sigaltstack_lock(void)
4230	__acquires(&current->sighand->siglock)
4231{
4232	spin_lock_irq(&current->sighand->siglock);
4233}
4234
4235static inline void sigaltstack_unlock(void)
4236	__releases(&current->sighand->siglock)
4237{
4238	spin_unlock_irq(&current->sighand->siglock);
4239}
4240#else
4241static inline void sigaltstack_lock(void) { }
4242static inline void sigaltstack_unlock(void) { }
4243#endif
4244
4245static int
4246do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4247		size_t min_ss_size)
4248{
4249	struct task_struct *t = current;
4250	int ret = 0;
4251
4252	if (oss) {
4253		memset(oss, 0, sizeof(stack_t));
4254		oss->ss_sp = (void __user *) t->sas_ss_sp;
4255		oss->ss_size = t->sas_ss_size;
4256		oss->ss_flags = sas_ss_flags(sp) |
4257			(current->sas_ss_flags & SS_FLAG_BITS);
4258	}
4259
4260	if (ss) {
4261		void __user *ss_sp = ss->ss_sp;
4262		size_t ss_size = ss->ss_size;
4263		unsigned ss_flags = ss->ss_flags;
4264		int ss_mode;
4265
4266		if (unlikely(on_sig_stack(sp)))
4267			return -EPERM;
4268
4269		ss_mode = ss_flags & ~SS_FLAG_BITS;
4270		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4271				ss_mode != 0))
4272			return -EINVAL;
4273
4274		/*
4275		 * Return before taking any locks if no actual
4276		 * sigaltstack changes were requested.
4277		 */
4278		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4279		    t->sas_ss_size == ss_size &&
4280		    t->sas_ss_flags == ss_flags)
4281			return 0;
4282
4283		sigaltstack_lock();
4284		if (ss_mode == SS_DISABLE) {
4285			ss_size = 0;
4286			ss_sp = NULL;
4287		} else {
4288			if (unlikely(ss_size < min_ss_size))
4289				ret = -ENOMEM;
4290			if (!sigaltstack_size_valid(ss_size))
4291				ret = -ENOMEM;
4292		}
4293		if (!ret) {
4294			t->sas_ss_sp = (unsigned long) ss_sp;
4295			t->sas_ss_size = ss_size;
4296			t->sas_ss_flags = ss_flags;
4297		}
4298		sigaltstack_unlock();
4299	}
4300	return ret;
4301}
4302
4303SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4304{
4305	stack_t new, old;
4306	int err;
4307	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4308		return -EFAULT;
4309	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4310			      current_user_stack_pointer(),
4311			      MINSIGSTKSZ);
4312	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4313		err = -EFAULT;
4314	return err;
4315}
4316
4317int restore_altstack(const stack_t __user *uss)
4318{
4319	stack_t new;
4320	if (copy_from_user(&new, uss, sizeof(stack_t)))
4321		return -EFAULT;
4322	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4323			     MINSIGSTKSZ);
4324	/* squash all but EFAULT for now */
4325	return 0;
4326}
4327
4328int __save_altstack(stack_t __user *uss, unsigned long sp)
4329{
4330	struct task_struct *t = current;
4331	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4332		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4333		__put_user(t->sas_ss_size, &uss->ss_size);
4334	return err;
4335}
4336
4337#ifdef CONFIG_COMPAT
4338static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4339				 compat_stack_t __user *uoss_ptr)
4340{
4341	stack_t uss, uoss;
4342	int ret;
4343
4344	if (uss_ptr) {
4345		compat_stack_t uss32;
4346		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4347			return -EFAULT;
4348		uss.ss_sp = compat_ptr(uss32.ss_sp);
4349		uss.ss_flags = uss32.ss_flags;
4350		uss.ss_size = uss32.ss_size;
4351	}
4352	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4353			     compat_user_stack_pointer(),
4354			     COMPAT_MINSIGSTKSZ);
4355	if (ret >= 0 && uoss_ptr)  {
4356		compat_stack_t old;
4357		memset(&old, 0, sizeof(old));
4358		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4359		old.ss_flags = uoss.ss_flags;
4360		old.ss_size = uoss.ss_size;
4361		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4362			ret = -EFAULT;
4363	}
4364	return ret;
4365}
4366
4367COMPAT_SYSCALL_DEFINE2(sigaltstack,
4368			const compat_stack_t __user *, uss_ptr,
4369			compat_stack_t __user *, uoss_ptr)
4370{
4371	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4372}
4373
4374int compat_restore_altstack(const compat_stack_t __user *uss)
4375{
4376	int err = do_compat_sigaltstack(uss, NULL);
4377	/* squash all but -EFAULT for now */
4378	return err == -EFAULT ? err : 0;
4379}
4380
4381int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4382{
4383	int err;
4384	struct task_struct *t = current;
4385	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4386			 &uss->ss_sp) |
4387		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4388		__put_user(t->sas_ss_size, &uss->ss_size);
4389	return err;
4390}
4391#endif
4392
4393#ifdef __ARCH_WANT_SYS_SIGPENDING
4394
4395/**
4396 *  sys_sigpending - examine pending signals
4397 *  @uset: where mask of pending signal is returned
4398 */
4399SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4400{
4401	sigset_t set;
4402
4403	if (sizeof(old_sigset_t) > sizeof(*uset))
4404		return -EINVAL;
4405
4406	do_sigpending(&set);
4407
4408	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4409		return -EFAULT;
4410
4411	return 0;
4412}
4413
4414#ifdef CONFIG_COMPAT
4415COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4416{
4417	sigset_t set;
4418
4419	do_sigpending(&set);
4420
4421	return put_user(set.sig[0], set32);
4422}
4423#endif
4424
4425#endif
4426
4427#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4428/**
4429 *  sys_sigprocmask - examine and change blocked signals
4430 *  @how: whether to add, remove, or set signals
4431 *  @nset: signals to add or remove (if non-null)
4432 *  @oset: previous value of signal mask if non-null
4433 *
4434 * Some platforms have their own version with special arguments;
4435 * others support only sys_rt_sigprocmask.
4436 */
4437
4438SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4439		old_sigset_t __user *, oset)
4440{
4441	old_sigset_t old_set, new_set;
4442	sigset_t new_blocked;
4443
4444	old_set = current->blocked.sig[0];
4445
4446	if (nset) {
4447		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4448			return -EFAULT;
4449
4450		new_blocked = current->blocked;
4451
4452		switch (how) {
4453		case SIG_BLOCK:
4454			sigaddsetmask(&new_blocked, new_set);
4455			break;
4456		case SIG_UNBLOCK:
4457			sigdelsetmask(&new_blocked, new_set);
4458			break;
4459		case SIG_SETMASK:
4460			new_blocked.sig[0] = new_set;
4461			break;
4462		default:
4463			return -EINVAL;
4464		}
4465
4466		set_current_blocked(&new_blocked);
4467	}
4468
4469	if (oset) {
4470		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4471			return -EFAULT;
4472	}
4473
4474	return 0;
4475}
4476#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4477
4478#ifndef CONFIG_ODD_RT_SIGACTION
4479/**
4480 *  sys_rt_sigaction - alter an action taken by a process
4481 *  @sig: signal to be sent
4482 *  @act: new sigaction
4483 *  @oact: used to save the previous sigaction
4484 *  @sigsetsize: size of sigset_t type
4485 */
4486SYSCALL_DEFINE4(rt_sigaction, int, sig,
4487		const struct sigaction __user *, act,
4488		struct sigaction __user *, oact,
4489		size_t, sigsetsize)
4490{
4491	struct k_sigaction new_sa, old_sa;
4492	int ret;
4493
4494	/* XXX: Don't preclude handling different sized sigset_t's.  */
4495	if (sigsetsize != sizeof(sigset_t))
4496		return -EINVAL;
4497
4498	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4499		return -EFAULT;
4500
4501	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4502	if (ret)
4503		return ret;
4504
4505	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4506		return -EFAULT;
4507
4508	return 0;
4509}
4510#ifdef CONFIG_COMPAT
4511COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4512		const struct compat_sigaction __user *, act,
4513		struct compat_sigaction __user *, oact,
4514		compat_size_t, sigsetsize)
4515{
4516	struct k_sigaction new_ka, old_ka;
4517#ifdef __ARCH_HAS_SA_RESTORER
4518	compat_uptr_t restorer;
4519#endif
4520	int ret;
4521
4522	/* XXX: Don't preclude handling different sized sigset_t's.  */
4523	if (sigsetsize != sizeof(compat_sigset_t))
4524		return -EINVAL;
4525
4526	if (act) {
4527		compat_uptr_t handler;
4528		ret = get_user(handler, &act->sa_handler);
4529		new_ka.sa.sa_handler = compat_ptr(handler);
4530#ifdef __ARCH_HAS_SA_RESTORER
4531		ret |= get_user(restorer, &act->sa_restorer);
4532		new_ka.sa.sa_restorer = compat_ptr(restorer);
4533#endif
4534		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4535		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4536		if (ret)
4537			return -EFAULT;
4538	}
4539
4540	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4541	if (!ret && oact) {
4542		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4543			       &oact->sa_handler);
4544		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4545					 sizeof(oact->sa_mask));
4546		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4547#ifdef __ARCH_HAS_SA_RESTORER
4548		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4549				&oact->sa_restorer);
4550#endif
4551	}
4552	return ret;
4553}
4554#endif
4555#endif /* !CONFIG_ODD_RT_SIGACTION */
4556
4557#ifdef CONFIG_OLD_SIGACTION
4558SYSCALL_DEFINE3(sigaction, int, sig,
4559		const struct old_sigaction __user *, act,
4560	        struct old_sigaction __user *, oact)
4561{
4562	struct k_sigaction new_ka, old_ka;
4563	int ret;
4564
4565	if (act) {
4566		old_sigset_t mask;
4567		if (!access_ok(act, sizeof(*act)) ||
4568		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4569		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4570		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4571		    __get_user(mask, &act->sa_mask))
4572			return -EFAULT;
4573#ifdef __ARCH_HAS_KA_RESTORER
4574		new_ka.ka_restorer = NULL;
4575#endif
4576		siginitset(&new_ka.sa.sa_mask, mask);
4577	}
4578
4579	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4580
4581	if (!ret && oact) {
4582		if (!access_ok(oact, sizeof(*oact)) ||
4583		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4584		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4585		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4586		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4587			return -EFAULT;
4588	}
4589
4590	return ret;
4591}
4592#endif
4593#ifdef CONFIG_COMPAT_OLD_SIGACTION
4594COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4595		const struct compat_old_sigaction __user *, act,
4596	        struct compat_old_sigaction __user *, oact)
4597{
4598	struct k_sigaction new_ka, old_ka;
4599	int ret;
4600	compat_old_sigset_t mask;
4601	compat_uptr_t handler, restorer;
4602
4603	if (act) {
4604		if (!access_ok(act, sizeof(*act)) ||
4605		    __get_user(handler, &act->sa_handler) ||
4606		    __get_user(restorer, &act->sa_restorer) ||
4607		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4608		    __get_user(mask, &act->sa_mask))
4609			return -EFAULT;
4610
4611#ifdef __ARCH_HAS_KA_RESTORER
4612		new_ka.ka_restorer = NULL;
4613#endif
4614		new_ka.sa.sa_handler = compat_ptr(handler);
4615		new_ka.sa.sa_restorer = compat_ptr(restorer);
4616		siginitset(&new_ka.sa.sa_mask, mask);
4617	}
4618
4619	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4620
4621	if (!ret && oact) {
4622		if (!access_ok(oact, sizeof(*oact)) ||
4623		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4624			       &oact->sa_handler) ||
4625		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4626			       &oact->sa_restorer) ||
4627		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4628		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4629			return -EFAULT;
4630	}
4631	return ret;
4632}
4633#endif
4634
4635#ifdef CONFIG_SGETMASK_SYSCALL
4636
4637/*
4638 * For backwards compatibility.  Functionality superseded by sigprocmask.
4639 */
4640SYSCALL_DEFINE0(sgetmask)
4641{
4642	/* SMP safe */
4643	return current->blocked.sig[0];
4644}
4645
4646SYSCALL_DEFINE1(ssetmask, int, newmask)
4647{
4648	int old = current->blocked.sig[0];
4649	sigset_t newset;
4650
4651	siginitset(&newset, newmask);
4652	set_current_blocked(&newset);
4653
4654	return old;
4655}
4656#endif /* CONFIG_SGETMASK_SYSCALL */
4657
4658#ifdef __ARCH_WANT_SYS_SIGNAL
4659/*
4660 * For backwards compatibility.  Functionality superseded by sigaction.
4661 */
4662SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4663{
4664	struct k_sigaction new_sa, old_sa;
4665	int ret;
4666
4667	new_sa.sa.sa_handler = handler;
4668	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4669	sigemptyset(&new_sa.sa.sa_mask);
4670
4671	ret = do_sigaction(sig, &new_sa, &old_sa);
4672
4673	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4674}
4675#endif /* __ARCH_WANT_SYS_SIGNAL */
4676
4677#ifdef __ARCH_WANT_SYS_PAUSE
4678
4679SYSCALL_DEFINE0(pause)
4680{
4681	while (!signal_pending(current)) {
4682		__set_current_state(TASK_INTERRUPTIBLE);
4683		schedule();
4684	}
4685	return -ERESTARTNOHAND;
4686}
4687
4688#endif
4689
4690static int sigsuspend(sigset_t *set)
4691{
4692	current->saved_sigmask = current->blocked;
4693	set_current_blocked(set);
4694
4695	while (!signal_pending(current)) {
4696		__set_current_state(TASK_INTERRUPTIBLE);
4697		schedule();
4698	}
4699	set_restore_sigmask();
4700	return -ERESTARTNOHAND;
4701}
4702
4703/**
4704 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4705 *	@unewset value until a signal is received
4706 *  @unewset: new signal mask value
4707 *  @sigsetsize: size of sigset_t type
4708 */
4709SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4710{
4711	sigset_t newset;
4712
4713	/* XXX: Don't preclude handling different sized sigset_t's.  */
4714	if (sigsetsize != sizeof(sigset_t))
4715		return -EINVAL;
4716
4717	if (copy_from_user(&newset, unewset, sizeof(newset)))
4718		return -EFAULT;
4719	return sigsuspend(&newset);
4720}
4721 
4722#ifdef CONFIG_COMPAT
4723COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4724{
4725	sigset_t newset;
4726
4727	/* XXX: Don't preclude handling different sized sigset_t's.  */
4728	if (sigsetsize != sizeof(sigset_t))
4729		return -EINVAL;
4730
4731	if (get_compat_sigset(&newset, unewset))
4732		return -EFAULT;
4733	return sigsuspend(&newset);
4734}
4735#endif
4736
4737#ifdef CONFIG_OLD_SIGSUSPEND
4738SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4739{
4740	sigset_t blocked;
4741	siginitset(&blocked, mask);
4742	return sigsuspend(&blocked);
4743}
4744#endif
4745#ifdef CONFIG_OLD_SIGSUSPEND3
4746SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4747{
4748	sigset_t blocked;
4749	siginitset(&blocked, mask);
4750	return sigsuspend(&blocked);
4751}
4752#endif
4753
4754__weak const char *arch_vma_name(struct vm_area_struct *vma)
4755{
4756	return NULL;
4757}
4758
4759static inline void siginfo_buildtime_checks(void)
4760{
4761	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4762
4763	/* Verify the offsets in the two siginfos match */
4764#define CHECK_OFFSET(field) \
4765	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4766
4767	/* kill */
4768	CHECK_OFFSET(si_pid);
4769	CHECK_OFFSET(si_uid);
4770
4771	/* timer */
4772	CHECK_OFFSET(si_tid);
4773	CHECK_OFFSET(si_overrun);
4774	CHECK_OFFSET(si_value);
4775
4776	/* rt */
4777	CHECK_OFFSET(si_pid);
4778	CHECK_OFFSET(si_uid);
4779	CHECK_OFFSET(si_value);
4780
4781	/* sigchld */
4782	CHECK_OFFSET(si_pid);
4783	CHECK_OFFSET(si_uid);
4784	CHECK_OFFSET(si_status);
4785	CHECK_OFFSET(si_utime);
4786	CHECK_OFFSET(si_stime);
4787
4788	/* sigfault */
4789	CHECK_OFFSET(si_addr);
4790	CHECK_OFFSET(si_trapno);
4791	CHECK_OFFSET(si_addr_lsb);
4792	CHECK_OFFSET(si_lower);
4793	CHECK_OFFSET(si_upper);
4794	CHECK_OFFSET(si_pkey);
4795	CHECK_OFFSET(si_perf_data);
4796	CHECK_OFFSET(si_perf_type);
4797	CHECK_OFFSET(si_perf_flags);
4798
4799	/* sigpoll */
4800	CHECK_OFFSET(si_band);
4801	CHECK_OFFSET(si_fd);
4802
4803	/* sigsys */
4804	CHECK_OFFSET(si_call_addr);
4805	CHECK_OFFSET(si_syscall);
4806	CHECK_OFFSET(si_arch);
4807#undef CHECK_OFFSET
4808
4809	/* usb asyncio */
4810	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4811		     offsetof(struct siginfo, si_addr));
4812	if (sizeof(int) == sizeof(void __user *)) {
4813		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4814			     sizeof(void __user *));
4815	} else {
4816		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4817			      sizeof_field(struct siginfo, si_uid)) !=
4818			     sizeof(void __user *));
4819		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4820			     offsetof(struct siginfo, si_uid));
4821	}
4822#ifdef CONFIG_COMPAT
4823	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4824		     offsetof(struct compat_siginfo, si_addr));
4825	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4826		     sizeof(compat_uptr_t));
4827	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4828		     sizeof_field(struct siginfo, si_pid));
4829#endif
4830}
4831
4832#if defined(CONFIG_SYSCTL)
4833static struct ctl_table signal_debug_table[] = {
4834#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4835	{
4836		.procname	= "exception-trace",
4837		.data		= &show_unhandled_signals,
4838		.maxlen		= sizeof(int),
4839		.mode		= 0644,
4840		.proc_handler	= proc_dointvec
4841	},
4842#endif
4843	{ }
4844};
4845
4846static int __init init_signal_sysctls(void)
4847{
4848	register_sysctl_init("debug", signal_debug_table);
4849	return 0;
4850}
4851early_initcall(init_signal_sysctls);
4852#endif /* CONFIG_SYSCTL */
4853
4854void __init signals_init(void)
4855{
4856	siginfo_buildtime_checks();
4857
4858	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4859}
4860
4861#ifdef CONFIG_KGDB_KDB
4862#include <linux/kdb.h>
4863/*
4864 * kdb_send_sig - Allows kdb to send signals without exposing
4865 * signal internals.  This function checks if the required locks are
4866 * available before calling the main signal code, to avoid kdb
4867 * deadlocks.
4868 */
4869void kdb_send_sig(struct task_struct *t, int sig)
4870{
4871	static struct task_struct *kdb_prev_t;
4872	int new_t, ret;
4873	if (!spin_trylock(&t->sighand->siglock)) {
4874		kdb_printf("Can't do kill command now.\n"
4875			   "The sigmask lock is held somewhere else in "
4876			   "kernel, try again later\n");
4877		return;
4878	}
4879	new_t = kdb_prev_t != t;
4880	kdb_prev_t = t;
4881	if (!task_is_running(t) && new_t) {
4882		spin_unlock(&t->sighand->siglock);
4883		kdb_printf("Process is not RUNNING, sending a signal from "
4884			   "kdb risks deadlock\n"
4885			   "on the run queue locks. "
4886			   "The signal has _not_ been sent.\n"
4887			   "Reissue the kill command if you want to risk "
4888			   "the deadlock.\n");
4889		return;
4890	}
4891	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4892	spin_unlock(&t->sighand->siglock);
4893	if (ret)
4894		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4895			   sig, t->pid);
4896	else
4897		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4898}
4899#endif	/* CONFIG_KGDB_KDB */