Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/mm.h>
  26#include <linux/proc_fs.h>
  27#include <linux/tty.h>
  28#include <linux/binfmts.h>
  29#include <linux/coredump.h>
  30#include <linux/security.h>
  31#include <linux/syscalls.h>
  32#include <linux/ptrace.h>
  33#include <linux/signal.h>
  34#include <linux/signalfd.h>
  35#include <linux/ratelimit.h>
  36#include <linux/task_work.h>
  37#include <linux/capability.h>
  38#include <linux/freezer.h>
  39#include <linux/pid_namespace.h>
  40#include <linux/nsproxy.h>
  41#include <linux/user_namespace.h>
  42#include <linux/uprobes.h>
  43#include <linux/compat.h>
  44#include <linux/cn_proc.h>
  45#include <linux/compiler.h>
  46#include <linux/posix-timers.h>
 
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49#include <linux/sysctl.h>
  50#include <uapi/linux/pidfd.h>
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/signal.h>
  54
  55#include <asm/param.h>
  56#include <linux/uaccess.h>
  57#include <asm/unistd.h>
  58#include <asm/siginfo.h>
  59#include <asm/cacheflush.h>
  60#include <asm/syscall.h>	/* for syscall_get_* */
  61
  62#include "time/posix-timers.h"
  63
  64/*
  65 * SLAB caches for signal bits.
  66 */
  67
  68static struct kmem_cache *sigqueue_cachep;
  69
  70int print_fatal_signals __read_mostly;
  71
  72static void __user *sig_handler(struct task_struct *t, int sig)
  73{
  74	return t->sighand->action[sig - 1].sa.sa_handler;
  75}
  76
  77static inline bool sig_handler_ignored(void __user *handler, int sig)
  78{
  79	/* Is it explicitly or implicitly ignored? */
  80	return handler == SIG_IGN ||
  81	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  82}
  83
  84static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  85{
  86	void __user *handler;
  87
  88	handler = sig_handler(t, sig);
  89
  90	/* SIGKILL and SIGSTOP may not be sent to the global init */
  91	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  92		return true;
  93
  94	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  95	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  96		return true;
  97
  98	/* Only allow kernel generated signals to this kthread */
  99	if (unlikely((t->flags & PF_KTHREAD) &&
 100		     (handler == SIG_KTHREAD_KERNEL) && !force))
 101		return true;
 102
 103	return sig_handler_ignored(handler, sig);
 104}
 105
 106static bool sig_ignored(struct task_struct *t, int sig, bool force)
 107{
 108	/*
 109	 * Blocked signals are never ignored, since the
 110	 * signal handler may change by the time it is
 111	 * unblocked.
 112	 */
 113	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 114		return false;
 115
 116	/*
 117	 * Tracers may want to know about even ignored signal unless it
 118	 * is SIGKILL which can't be reported anyway but can be ignored
 119	 * by SIGNAL_UNKILLABLE task.
 120	 */
 121	if (t->ptrace && sig != SIGKILL)
 122		return false;
 123
 124	return sig_task_ignored(t, sig, force);
 125}
 126
 127/*
 128 * Re-calculate pending state from the set of locally pending
 129 * signals, globally pending signals, and blocked signals.
 130 */
 131static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 132{
 133	unsigned long ready;
 134	long i;
 135
 136	switch (_NSIG_WORDS) {
 137	default:
 138		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 139			ready |= signal->sig[i] &~ blocked->sig[i];
 140		break;
 141
 142	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 143		ready |= signal->sig[2] &~ blocked->sig[2];
 144		ready |= signal->sig[1] &~ blocked->sig[1];
 145		ready |= signal->sig[0] &~ blocked->sig[0];
 146		break;
 147
 148	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 149		ready |= signal->sig[0] &~ blocked->sig[0];
 150		break;
 151
 152	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 153	}
 154	return ready !=	0;
 155}
 156
 157#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 158
 159static bool recalc_sigpending_tsk(struct task_struct *t)
 160{
 161	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 162	    PENDING(&t->pending, &t->blocked) ||
 163	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 164	    cgroup_task_frozen(t)) {
 165		set_tsk_thread_flag(t, TIF_SIGPENDING);
 166		return true;
 167	}
 168
 169	/*
 170	 * We must never clear the flag in another thread, or in current
 171	 * when it's possible the current syscall is returning -ERESTART*.
 172	 * So we don't clear it here, and only callers who know they should do.
 173	 */
 174	return false;
 175}
 176
 
 
 
 
 
 
 
 
 
 
 177void recalc_sigpending(void)
 178{
 179	if (!recalc_sigpending_tsk(current) && !freezing(current))
 
 180		clear_thread_flag(TIF_SIGPENDING);
 181
 182}
 183EXPORT_SYMBOL(recalc_sigpending);
 184
 185void calculate_sigpending(void)
 186{
 187	/* Have any signals or users of TIF_SIGPENDING been delayed
 188	 * until after fork?
 189	 */
 190	spin_lock_irq(&current->sighand->siglock);
 191	set_tsk_thread_flag(current, TIF_SIGPENDING);
 192	recalc_sigpending();
 193	spin_unlock_irq(&current->sighand->siglock);
 194}
 195
 196/* Given the mask, find the first available signal that should be serviced. */
 197
 198#define SYNCHRONOUS_MASK \
 199	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 200	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 201
 202int next_signal(struct sigpending *pending, sigset_t *mask)
 203{
 204	unsigned long i, *s, *m, x;
 205	int sig = 0;
 206
 207	s = pending->signal.sig;
 208	m = mask->sig;
 209
 210	/*
 211	 * Handle the first word specially: it contains the
 212	 * synchronous signals that need to be dequeued first.
 213	 */
 214	x = *s &~ *m;
 215	if (x) {
 216		if (x & SYNCHRONOUS_MASK)
 217			x &= SYNCHRONOUS_MASK;
 218		sig = ffz(~x) + 1;
 219		return sig;
 220	}
 221
 222	switch (_NSIG_WORDS) {
 223	default:
 224		for (i = 1; i < _NSIG_WORDS; ++i) {
 225			x = *++s &~ *++m;
 226			if (!x)
 227				continue;
 228			sig = ffz(~x) + i*_NSIG_BPW + 1;
 229			break;
 230		}
 231		break;
 232
 233	case 2:
 234		x = s[1] &~ m[1];
 235		if (!x)
 236			break;
 237		sig = ffz(~x) + _NSIG_BPW + 1;
 238		break;
 239
 240	case 1:
 241		/* Nothing to do */
 242		break;
 243	}
 244
 245	return sig;
 246}
 247
 248static inline void print_dropped_signal(int sig)
 249{
 250	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 251
 252	if (!print_fatal_signals)
 253		return;
 254
 255	if (!__ratelimit(&ratelimit_state))
 256		return;
 257
 258	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 259				current->comm, current->pid, sig);
 260}
 261
 262/**
 263 * task_set_jobctl_pending - set jobctl pending bits
 264 * @task: target task
 265 * @mask: pending bits to set
 266 *
 267 * Clear @mask from @task->jobctl.  @mask must be subset of
 268 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 269 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 270 * cleared.  If @task is already being killed or exiting, this function
 271 * becomes noop.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 *
 276 * RETURNS:
 277 * %true if @mask is set, %false if made noop because @task was dying.
 278 */
 279bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 280{
 281	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 282			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 283	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 284
 285	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 286		return false;
 287
 288	if (mask & JOBCTL_STOP_SIGMASK)
 289		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 290
 291	task->jobctl |= mask;
 292	return true;
 293}
 294
 295/**
 296 * task_clear_jobctl_trapping - clear jobctl trapping bit
 297 * @task: target task
 298 *
 299 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 300 * Clear it and wake up the ptracer.  Note that we don't need any further
 301 * locking.  @task->siglock guarantees that @task->parent points to the
 302 * ptracer.
 303 *
 304 * CONTEXT:
 305 * Must be called with @task->sighand->siglock held.
 306 */
 307void task_clear_jobctl_trapping(struct task_struct *task)
 308{
 309	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 310		task->jobctl &= ~JOBCTL_TRAPPING;
 311		smp_mb();	/* advised by wake_up_bit() */
 312		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 313	}
 314}
 315
 316/**
 317 * task_clear_jobctl_pending - clear jobctl pending bits
 318 * @task: target task
 319 * @mask: pending bits to clear
 320 *
 321 * Clear @mask from @task->jobctl.  @mask must be subset of
 322 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 323 * STOP bits are cleared together.
 324 *
 325 * If clearing of @mask leaves no stop or trap pending, this function calls
 326 * task_clear_jobctl_trapping().
 327 *
 328 * CONTEXT:
 329 * Must be called with @task->sighand->siglock held.
 330 */
 331void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 332{
 333	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 334
 335	if (mask & JOBCTL_STOP_PENDING)
 336		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 337
 338	task->jobctl &= ~mask;
 339
 340	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 341		task_clear_jobctl_trapping(task);
 342}
 343
 344/**
 345 * task_participate_group_stop - participate in a group stop
 346 * @task: task participating in a group stop
 347 *
 348 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 349 * Group stop states are cleared and the group stop count is consumed if
 350 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 351 * stop, the appropriate `SIGNAL_*` flags are set.
 352 *
 353 * CONTEXT:
 354 * Must be called with @task->sighand->siglock held.
 355 *
 356 * RETURNS:
 357 * %true if group stop completion should be notified to the parent, %false
 358 * otherwise.
 359 */
 360static bool task_participate_group_stop(struct task_struct *task)
 361{
 362	struct signal_struct *sig = task->signal;
 363	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 364
 365	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 366
 367	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 368
 369	if (!consume)
 370		return false;
 371
 372	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 373		sig->group_stop_count--;
 374
 375	/*
 376	 * Tell the caller to notify completion iff we are entering into a
 377	 * fresh group stop.  Read comment in do_signal_stop() for details.
 378	 */
 379	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 380		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 381		return true;
 382	}
 383	return false;
 384}
 385
 386void task_join_group_stop(struct task_struct *task)
 387{
 388	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 389	struct signal_struct *sig = current->signal;
 390
 391	if (sig->group_stop_count) {
 392		sig->group_stop_count++;
 393		mask |= JOBCTL_STOP_CONSUME;
 394	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 395		return;
 396
 397	/* Have the new thread join an on-going signal group stop */
 398	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 
 
 
 
 
 
 
 
 399}
 400
 401static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
 402				       int override_rlimit)
 
 
 
 
 
 403{
 404	struct ucounts *ucounts;
 405	long sigpending;
 406
 407	/*
 408	 * Protect access to @t credentials. This can go away when all
 409	 * callers hold rcu read lock.
 410	 *
 411	 * NOTE! A pending signal will hold on to the user refcount,
 412	 * and we get/put the refcount only when the sigpending count
 413	 * changes from/to zero.
 414	 */
 415	rcu_read_lock();
 416	ucounts = task_ucounts(t);
 417	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
 418					    override_rlimit);
 419	rcu_read_unlock();
 420	if (!sigpending)
 421		return NULL;
 422
 423	if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
 424		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 
 
 425		print_dropped_signal(sig);
 426		return NULL;
 427	}
 428
 429	return ucounts;
 430}
 431
 432static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
 433			    const unsigned int sigqueue_flags)
 434{
 435	INIT_LIST_HEAD(&q->list);
 436	q->flags = sigqueue_flags;
 437	q->ucounts = ucounts;
 438}
 439
 440/*
 441 * allocate a new signal queue record
 442 * - this may be called without locks if and only if t == current, otherwise an
 443 *   appropriate lock must be held to stop the target task from exiting
 444 */
 445static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 446				       int override_rlimit)
 447{
 448	struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
 449	struct sigqueue *q;
 450
 451	if (!ucounts)
 452		return NULL;
 453
 454	q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 455	if (!q) {
 456		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 457		return NULL;
 458	}
 459
 460	__sigqueue_init(q, ucounts, 0);
 461	return q;
 462}
 463
 464static void __sigqueue_free(struct sigqueue *q)
 465{
 466	if (q->flags & SIGQUEUE_PREALLOC) {
 467		posixtimer_sigqueue_putref(q);
 468		return;
 469	}
 470	if (q->ucounts) {
 471		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 472		q->ucounts = NULL;
 473	}
 474	kmem_cache_free(sigqueue_cachep, q);
 475}
 476
 477void flush_sigqueue(struct sigpending *queue)
 478{
 479	struct sigqueue *q;
 480
 481	sigemptyset(&queue->signal);
 482	while (!list_empty(&queue->list)) {
 483		q = list_entry(queue->list.next, struct sigqueue , list);
 484		list_del_init(&q->list);
 485		__sigqueue_free(q);
 486	}
 487}
 488
 489/*
 490 * Flush all pending signals for this kthread.
 491 */
 492void flush_signals(struct task_struct *t)
 493{
 494	unsigned long flags;
 495
 496	spin_lock_irqsave(&t->sighand->siglock, flags);
 497	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 498	flush_sigqueue(&t->pending);
 499	flush_sigqueue(&t->signal->shared_pending);
 500	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 501}
 502EXPORT_SYMBOL(flush_signals);
 503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504void ignore_signals(struct task_struct *t)
 505{
 506	int i;
 507
 508	for (i = 0; i < _NSIG; ++i)
 509		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 510
 511	flush_signals(t);
 512}
 513
 514/*
 515 * Flush all handlers for a task.
 516 */
 517
 518void
 519flush_signal_handlers(struct task_struct *t, int force_default)
 520{
 521	int i;
 522	struct k_sigaction *ka = &t->sighand->action[0];
 523	for (i = _NSIG ; i != 0 ; i--) {
 524		if (force_default || ka->sa.sa_handler != SIG_IGN)
 525			ka->sa.sa_handler = SIG_DFL;
 526		ka->sa.sa_flags = 0;
 527#ifdef __ARCH_HAS_SA_RESTORER
 528		ka->sa.sa_restorer = NULL;
 529#endif
 530		sigemptyset(&ka->sa.sa_mask);
 531		ka++;
 532	}
 533}
 534
 535bool unhandled_signal(struct task_struct *tsk, int sig)
 536{
 537	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 538	if (is_global_init(tsk))
 539		return true;
 540
 541	if (handler != SIG_IGN && handler != SIG_DFL)
 542		return false;
 543
 544	/* If dying, we handle all new signals by ignoring them */
 545	if (fatal_signal_pending(tsk))
 546		return false;
 547
 548	/* if ptraced, let the tracer determine */
 549	return !tsk->ptrace;
 550}
 551
 552static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 553			   struct sigqueue **timer_sigq)
 554{
 555	struct sigqueue *q, *first = NULL;
 556
 557	/*
 558	 * Collect the siginfo appropriate to this signal.  Check if
 559	 * there is another siginfo for the same signal.
 560	*/
 561	list_for_each_entry(q, &list->list, list) {
 562		if (q->info.si_signo == sig) {
 563			if (first)
 564				goto still_pending;
 565			first = q;
 566		}
 567	}
 568
 569	sigdelset(&list->signal, sig);
 570
 571	if (first) {
 572still_pending:
 573		list_del_init(&first->list);
 574		copy_siginfo(info, &first->info);
 575
 576		/*
 577		 * posix-timer signals are preallocated and freed when the last
 578		 * reference count is dropped in posixtimer_deliver_signal() or
 579		 * immediately on timer deletion when the signal is not pending.
 580		 * Spare the extra round through __sigqueue_free() which is
 581		 * ignoring preallocated signals.
 582		 */
 583		if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
 584			*timer_sigq = first;
 585		else
 586			__sigqueue_free(first);
 587	} else {
 588		/*
 589		 * Ok, it wasn't in the queue.  This must be
 590		 * a fast-pathed signal or we must have been
 591		 * out of queue space.  So zero out the info.
 592		 */
 593		clear_siginfo(info);
 594		info->si_signo = sig;
 595		info->si_errno = 0;
 596		info->si_code = SI_USER;
 597		info->si_pid = 0;
 598		info->si_uid = 0;
 599	}
 600}
 601
 602static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 603			    kernel_siginfo_t *info, struct sigqueue **timer_sigq)
 604{
 605	int sig = next_signal(pending, mask);
 606
 607	if (sig)
 608		collect_signal(sig, pending, info, timer_sigq);
 609	return sig;
 610}
 611
 612/*
 613 * Try to dequeue a signal. If a deliverable signal is found fill in the
 614 * caller provided siginfo and return the signal number. Otherwise return
 615 * 0.
 
 616 */
 617int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
 618{
 619	struct task_struct *tsk = current;
 620	struct sigqueue *timer_sigq;
 621	int signr;
 622
 623	lockdep_assert_held(&tsk->sighand->siglock);
 624
 625again:
 626	*type = PIDTYPE_PID;
 627	timer_sigq = NULL;
 628	signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq);
 629	if (!signr) {
 630		*type = PIDTYPE_TGID;
 631		signr = __dequeue_signal(&tsk->signal->shared_pending,
 632					 mask, info, &timer_sigq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633
 634		if (unlikely(signr == SIGALRM))
 635			posixtimer_rearm_itimer(tsk);
 
 
 
 
 
 
 636	}
 637
 638	recalc_sigpending();
 639	if (!signr)
 640		return 0;
 641
 642	if (unlikely(sig_kernel_stop(signr))) {
 643		/*
 644		 * Set a marker that we have dequeued a stop signal.  Our
 645		 * caller might release the siglock and then the pending
 646		 * stop signal it is about to process is no longer in the
 647		 * pending bitmasks, but must still be cleared by a SIGCONT
 648		 * (and overruled by a SIGKILL).  So those cases clear this
 649		 * shared flag after we've set it.  Note that this flag may
 650		 * remain set after the signal we return is ignored or
 651		 * handled.  That doesn't matter because its only purpose
 652		 * is to alert stop-signal processing code when another
 653		 * processor has come along and cleared the flag.
 654		 */
 655		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 656	}
 
 
 
 
 
 
 
 
 
 
 
 657
 658	if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) {
 659		if (!posixtimer_deliver_signal(info, timer_sigq))
 660			goto again;
 661	}
 662
 663	return signr;
 664}
 665EXPORT_SYMBOL_GPL(dequeue_signal);
 666
 667static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 668{
 669	struct task_struct *tsk = current;
 670	struct sigpending *pending = &tsk->pending;
 671	struct sigqueue *q, *sync = NULL;
 672
 673	/*
 674	 * Might a synchronous signal be in the queue?
 675	 */
 676	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 677		return 0;
 678
 679	/*
 680	 * Return the first synchronous signal in the queue.
 681	 */
 682	list_for_each_entry(q, &pending->list, list) {
 683		/* Synchronous signals have a positive si_code */
 684		if ((q->info.si_code > SI_USER) &&
 685		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 686			sync = q;
 687			goto next;
 688		}
 689	}
 690	return 0;
 691next:
 692	/*
 693	 * Check if there is another siginfo for the same signal.
 694	 */
 695	list_for_each_entry_continue(q, &pending->list, list) {
 696		if (q->info.si_signo == sync->info.si_signo)
 697			goto still_pending;
 698	}
 699
 700	sigdelset(&pending->signal, sync->info.si_signo);
 701	recalc_sigpending();
 702still_pending:
 703	list_del_init(&sync->list);
 704	copy_siginfo(info, &sync->info);
 705	__sigqueue_free(sync);
 706	return info->si_signo;
 707}
 708
 709/*
 710 * Tell a process that it has a new active signal..
 711 *
 712 * NOTE! we rely on the previous spin_lock to
 713 * lock interrupts for us! We can only be called with
 714 * "siglock" held, and the local interrupt must
 715 * have been disabled when that got acquired!
 716 *
 717 * No need to set need_resched since signal event passing
 718 * goes through ->blocked
 719 */
 720void signal_wake_up_state(struct task_struct *t, unsigned int state)
 721{
 722	lockdep_assert_held(&t->sighand->siglock);
 723
 724	set_tsk_thread_flag(t, TIF_SIGPENDING);
 725
 726	/*
 727	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 728	 * case. We don't check t->state here because there is a race with it
 729	 * executing another processor and just now entering stopped state.
 730	 * By using wake_up_state, we ensure the process will wake up and
 731	 * handle its death signal.
 732	 */
 733	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 734		kick_process(t);
 735}
 736
 737static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q);
 738
 739static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q)
 740{
 741	if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER))
 742		__sigqueue_free(q);
 743	else
 744		posixtimer_sig_ignore(tsk, q);
 745}
 746
 747/* Remove signals in mask from the pending set and queue. */
 748static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
 749{
 750	struct sigqueue *q, *n;
 751	sigset_t m;
 752
 753	lockdep_assert_held(&p->sighand->siglock);
 754
 755	sigandsets(&m, mask, &s->signal);
 756	if (sigisemptyset(&m))
 757		return;
 758
 759	sigandnsets(&s->signal, &s->signal, mask);
 760	list_for_each_entry_safe(q, n, &s->list, list) {
 761		if (sigismember(mask, q->info.si_signo)) {
 762			list_del_init(&q->list);
 763			sigqueue_free_ignored(p, q);
 764		}
 765	}
 766}
 767
 768static inline int is_si_special(const struct kernel_siginfo *info)
 769{
 770	return info <= SEND_SIG_PRIV;
 771}
 772
 773static inline bool si_fromuser(const struct kernel_siginfo *info)
 774{
 775	return info == SEND_SIG_NOINFO ||
 776		(!is_si_special(info) && SI_FROMUSER(info));
 777}
 778
 779/*
 780 * called with RCU read lock from check_kill_permission()
 781 */
 782static bool kill_ok_by_cred(struct task_struct *t)
 783{
 784	const struct cred *cred = current_cred();
 785	const struct cred *tcred = __task_cred(t);
 786
 787	return uid_eq(cred->euid, tcred->suid) ||
 788	       uid_eq(cred->euid, tcred->uid) ||
 789	       uid_eq(cred->uid, tcred->suid) ||
 790	       uid_eq(cred->uid, tcred->uid) ||
 791	       ns_capable(tcred->user_ns, CAP_KILL);
 792}
 793
 794/*
 795 * Bad permissions for sending the signal
 796 * - the caller must hold the RCU read lock
 797 */
 798static int check_kill_permission(int sig, struct kernel_siginfo *info,
 799				 struct task_struct *t)
 800{
 801	struct pid *sid;
 802	int error;
 803
 804	if (!valid_signal(sig))
 805		return -EINVAL;
 806
 807	if (!si_fromuser(info))
 808		return 0;
 809
 810	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 811	if (error)
 812		return error;
 813
 814	if (!same_thread_group(current, t) &&
 815	    !kill_ok_by_cred(t)) {
 816		switch (sig) {
 817		case SIGCONT:
 818			sid = task_session(t);
 819			/*
 820			 * We don't return the error if sid == NULL. The
 821			 * task was unhashed, the caller must notice this.
 822			 */
 823			if (!sid || sid == task_session(current))
 824				break;
 825			fallthrough;
 826		default:
 827			return -EPERM;
 828		}
 829	}
 830
 831	return security_task_kill(t, info, sig, NULL);
 832}
 833
 834/**
 835 * ptrace_trap_notify - schedule trap to notify ptracer
 836 * @t: tracee wanting to notify tracer
 837 *
 838 * This function schedules sticky ptrace trap which is cleared on the next
 839 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 840 * ptracer.
 841 *
 842 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 843 * ptracer is listening for events, tracee is woken up so that it can
 844 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 845 * eventually taken without returning to userland after the existing traps
 846 * are finished by PTRACE_CONT.
 847 *
 848 * CONTEXT:
 849 * Must be called with @task->sighand->siglock held.
 850 */
 851static void ptrace_trap_notify(struct task_struct *t)
 852{
 853	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 854	lockdep_assert_held(&t->sighand->siglock);
 855
 856	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 857	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 858}
 859
 860/*
 861 * Handle magic process-wide effects of stop/continue signals. Unlike
 862 * the signal actions, these happen immediately at signal-generation
 863 * time regardless of blocking, ignoring, or handling.  This does the
 864 * actual continuing for SIGCONT, but not the actual stopping for stop
 865 * signals. The process stop is done as a signal action for SIG_DFL.
 866 *
 867 * Returns true if the signal should be actually delivered, otherwise
 868 * it should be dropped.
 869 */
 870static bool prepare_signal(int sig, struct task_struct *p, bool force)
 871{
 872	struct signal_struct *signal = p->signal;
 873	struct task_struct *t;
 874	sigset_t flush;
 875
 876	if (signal->flags & SIGNAL_GROUP_EXIT) {
 877		if (signal->core_state)
 878			return sig == SIGKILL;
 879		/*
 880		 * The process is in the middle of dying, drop the signal.
 881		 */
 882		return false;
 883	} else if (sig_kernel_stop(sig)) {
 884		/*
 885		 * This is a stop signal.  Remove SIGCONT from all queues.
 886		 */
 887		siginitset(&flush, sigmask(SIGCONT));
 888		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
 889		for_each_thread(p, t)
 890			flush_sigqueue_mask(p, &flush, &t->pending);
 891	} else if (sig == SIGCONT) {
 892		unsigned int why;
 893		/*
 894		 * Remove all stop signals from all queues, wake all threads.
 895		 */
 896		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 897		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
 898		for_each_thread(p, t) {
 899			flush_sigqueue_mask(p, &flush, &t->pending);
 900			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 901			if (likely(!(t->ptrace & PT_SEIZED))) {
 902				t->jobctl &= ~JOBCTL_STOPPED;
 903				wake_up_state(t, __TASK_STOPPED);
 904			} else
 905				ptrace_trap_notify(t);
 906		}
 907
 908		/*
 909		 * Notify the parent with CLD_CONTINUED if we were stopped.
 910		 *
 911		 * If we were in the middle of a group stop, we pretend it
 912		 * was already finished, and then continued. Since SIGCHLD
 913		 * doesn't queue we report only CLD_STOPPED, as if the next
 914		 * CLD_CONTINUED was dropped.
 915		 */
 916		why = 0;
 917		if (signal->flags & SIGNAL_STOP_STOPPED)
 918			why |= SIGNAL_CLD_CONTINUED;
 919		else if (signal->group_stop_count)
 920			why |= SIGNAL_CLD_STOPPED;
 921
 922		if (why) {
 923			/*
 924			 * The first thread which returns from do_signal_stop()
 925			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 926			 * notify its parent. See get_signal().
 927			 */
 928			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 929			signal->group_stop_count = 0;
 930			signal->group_exit_code = 0;
 931		}
 932	}
 933
 934	return !sig_ignored(p, sig, force);
 935}
 936
 937/*
 938 * Test if P wants to take SIG.  After we've checked all threads with this,
 939 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 940 * blocking SIG were ruled out because they are not running and already
 941 * have pending signals.  Such threads will dequeue from the shared queue
 942 * as soon as they're available, so putting the signal on the shared queue
 943 * will be equivalent to sending it to one such thread.
 944 */
 945static inline bool wants_signal(int sig, struct task_struct *p)
 946{
 947	if (sigismember(&p->blocked, sig))
 948		return false;
 949
 950	if (p->flags & PF_EXITING)
 951		return false;
 952
 953	if (sig == SIGKILL)
 954		return true;
 955
 956	if (task_is_stopped_or_traced(p))
 957		return false;
 958
 959	return task_curr(p) || !task_sigpending(p);
 960}
 961
 962static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 963{
 964	struct signal_struct *signal = p->signal;
 965	struct task_struct *t;
 966
 967	/*
 968	 * Now find a thread we can wake up to take the signal off the queue.
 969	 *
 970	 * Try the suggested task first (may or may not be the main thread).
 
 971	 */
 972	if (wants_signal(sig, p))
 973		t = p;
 974	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
 975		/*
 976		 * There is just one thread and it does not need to be woken.
 977		 * It will dequeue unblocked signals before it runs again.
 978		 */
 979		return;
 980	else {
 981		/*
 982		 * Otherwise try to find a suitable thread.
 983		 */
 984		t = signal->curr_target;
 985		while (!wants_signal(sig, t)) {
 986			t = next_thread(t);
 987			if (t == signal->curr_target)
 988				/*
 989				 * No thread needs to be woken.
 990				 * Any eligible threads will see
 991				 * the signal in the queue soon.
 992				 */
 993				return;
 994		}
 995		signal->curr_target = t;
 996	}
 997
 998	/*
 999	 * Found a killable thread.  If the signal will be fatal,
1000	 * then start taking the whole group down immediately.
1001	 */
1002	if (sig_fatal(p, sig) &&
1003	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1004	    !sigismember(&t->real_blocked, sig) &&
1005	    (sig == SIGKILL || !p->ptrace)) {
1006		/*
1007		 * This signal will be fatal to the whole group.
1008		 */
1009		if (!sig_kernel_coredump(sig)) {
1010			/*
1011			 * Start a group exit and wake everybody up.
1012			 * This way we don't have other threads
1013			 * running and doing things after a slower
1014			 * thread has the fatal signal pending.
1015			 */
1016			signal->flags = SIGNAL_GROUP_EXIT;
1017			signal->group_exit_code = sig;
1018			signal->group_stop_count = 0;
1019			__for_each_thread(signal, t) {
 
1020				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1021				sigaddset(&t->pending.signal, SIGKILL);
1022				signal_wake_up(t, 1);
1023			}
1024			return;
1025		}
1026	}
1027
1028	/*
1029	 * The signal is already in the shared-pending queue.
1030	 * Tell the chosen thread to wake up and dequeue it.
1031	 */
1032	signal_wake_up(t, sig == SIGKILL);
1033	return;
1034}
1035
1036static inline bool legacy_queue(struct sigpending *signals, int sig)
1037{
1038	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1039}
1040
1041static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1042				struct task_struct *t, enum pid_type type, bool force)
1043{
1044	struct sigpending *pending;
1045	struct sigqueue *q;
1046	int override_rlimit;
1047	int ret = 0, result;
1048
1049	lockdep_assert_held(&t->sighand->siglock);
1050
1051	result = TRACE_SIGNAL_IGNORED;
1052	if (!prepare_signal(sig, t, force))
1053		goto ret;
1054
1055	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1056	/*
1057	 * Short-circuit ignored signals and support queuing
1058	 * exactly one non-rt signal, so that we can get more
1059	 * detailed information about the cause of the signal.
1060	 */
1061	result = TRACE_SIGNAL_ALREADY_PENDING;
1062	if (legacy_queue(pending, sig))
1063		goto ret;
1064
1065	result = TRACE_SIGNAL_DELIVERED;
1066	/*
1067	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1068	 */
1069	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1070		goto out_set;
1071
1072	/*
1073	 * Real-time signals must be queued if sent by sigqueue, or
1074	 * some other real-time mechanism.  It is implementation
1075	 * defined whether kill() does so.  We attempt to do so, on
1076	 * the principle of least surprise, but since kill is not
1077	 * allowed to fail with EAGAIN when low on memory we just
1078	 * make sure at least one signal gets delivered and don't
1079	 * pass on the info struct.
1080	 */
1081	if (sig < SIGRTMIN)
1082		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1083	else
1084		override_rlimit = 0;
1085
1086	q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1087
1088	if (q) {
1089		list_add_tail(&q->list, &pending->list);
1090		switch ((unsigned long) info) {
1091		case (unsigned long) SEND_SIG_NOINFO:
1092			clear_siginfo(&q->info);
1093			q->info.si_signo = sig;
1094			q->info.si_errno = 0;
1095			q->info.si_code = SI_USER;
1096			q->info.si_pid = task_tgid_nr_ns(current,
1097							task_active_pid_ns(t));
1098			rcu_read_lock();
1099			q->info.si_uid =
1100				from_kuid_munged(task_cred_xxx(t, user_ns),
1101						 current_uid());
1102			rcu_read_unlock();
1103			break;
1104		case (unsigned long) SEND_SIG_PRIV:
1105			clear_siginfo(&q->info);
1106			q->info.si_signo = sig;
1107			q->info.si_errno = 0;
1108			q->info.si_code = SI_KERNEL;
1109			q->info.si_pid = 0;
1110			q->info.si_uid = 0;
1111			break;
1112		default:
1113			copy_siginfo(&q->info, info);
1114			break;
1115		}
1116	} else if (!is_si_special(info) &&
1117		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1118		/*
1119		 * Queue overflow, abort.  We may abort if the
1120		 * signal was rt and sent by user using something
1121		 * other than kill().
1122		 */
1123		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124		ret = -EAGAIN;
1125		goto ret;
1126	} else {
1127		/*
1128		 * This is a silent loss of information.  We still
1129		 * send the signal, but the *info bits are lost.
1130		 */
1131		result = TRACE_SIGNAL_LOSE_INFO;
1132	}
1133
1134out_set:
1135	signalfd_notify(t, sig);
1136	sigaddset(&pending->signal, sig);
1137
1138	/* Let multiprocess signals appear after on-going forks */
1139	if (type > PIDTYPE_TGID) {
1140		struct multiprocess_signals *delayed;
1141		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1142			sigset_t *signal = &delayed->signal;
1143			/* Can't queue both a stop and a continue signal */
1144			if (sig == SIGCONT)
1145				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1146			else if (sig_kernel_stop(sig))
1147				sigdelset(signal, SIGCONT);
1148			sigaddset(signal, sig);
1149		}
1150	}
1151
1152	complete_signal(sig, t, type);
1153ret:
1154	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1155	return ret;
1156}
1157
1158static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1159{
1160	bool ret = false;
1161	switch (siginfo_layout(info->si_signo, info->si_code)) {
1162	case SIL_KILL:
1163	case SIL_CHLD:
1164	case SIL_RT:
1165		ret = true;
1166		break;
1167	case SIL_TIMER:
1168	case SIL_POLL:
1169	case SIL_FAULT:
1170	case SIL_FAULT_TRAPNO:
1171	case SIL_FAULT_MCEERR:
1172	case SIL_FAULT_BNDERR:
1173	case SIL_FAULT_PKUERR:
1174	case SIL_FAULT_PERF_EVENT:
1175	case SIL_SYS:
1176		ret = false;
1177		break;
1178	}
1179	return ret;
1180}
1181
1182int send_signal_locked(int sig, struct kernel_siginfo *info,
1183		       struct task_struct *t, enum pid_type type)
1184{
1185	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1186	bool force = false;
1187
1188	if (info == SEND_SIG_NOINFO) {
1189		/* Force if sent from an ancestor pid namespace */
1190		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1191	} else if (info == SEND_SIG_PRIV) {
1192		/* Don't ignore kernel generated signals */
1193		force = true;
1194	} else if (has_si_pid_and_uid(info)) {
1195		/* SIGKILL and SIGSTOP is special or has ids */
1196		struct user_namespace *t_user_ns;
1197
1198		rcu_read_lock();
1199		t_user_ns = task_cred_xxx(t, user_ns);
1200		if (current_user_ns() != t_user_ns) {
1201			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1202			info->si_uid = from_kuid_munged(t_user_ns, uid);
1203		}
1204		rcu_read_unlock();
1205
1206		/* A kernel generated signal? */
1207		force = (info->si_code == SI_KERNEL);
1208
1209		/* From an ancestor pid namespace? */
1210		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1211			info->si_pid = 0;
1212			force = true;
1213		}
1214	}
1215	return __send_signal_locked(sig, info, t, type, force);
1216}
1217
1218static void print_fatal_signal(int signr)
1219{
1220	struct pt_regs *regs = task_pt_regs(current);
1221	struct file *exe_file;
1222
1223	exe_file = get_task_exe_file(current);
1224	if (exe_file) {
1225		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1226			exe_file, current->comm, signr);
1227		fput(exe_file);
1228	} else {
1229		pr_info("%s: potentially unexpected fatal signal %d.\n",
1230			current->comm, signr);
1231	}
1232
1233#if defined(__i386__) && !defined(__arch_um__)
1234	pr_info("code at %08lx: ", regs->ip);
1235	{
1236		int i;
1237		for (i = 0; i < 16; i++) {
1238			unsigned char insn;
1239
1240			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1241				break;
1242			pr_cont("%02x ", insn);
1243		}
1244	}
1245	pr_cont("\n");
1246#endif
1247	preempt_disable();
1248	show_regs(regs);
1249	preempt_enable();
1250}
1251
1252static int __init setup_print_fatal_signals(char *str)
1253{
1254	get_option (&str, &print_fatal_signals);
1255
1256	return 1;
1257}
1258
1259__setup("print-fatal-signals=", setup_print_fatal_signals);
1260
 
 
 
 
 
 
1261int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1262			enum pid_type type)
1263{
1264	unsigned long flags;
1265	int ret = -ESRCH;
1266
1267	if (lock_task_sighand(p, &flags)) {
1268		ret = send_signal_locked(sig, info, p, type);
1269		unlock_task_sighand(p, &flags);
1270	}
1271
1272	return ret;
1273}
1274
1275enum sig_handler {
1276	HANDLER_CURRENT, /* If reachable use the current handler */
1277	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1278	HANDLER_EXIT,	 /* Only visible as the process exit code */
1279};
1280
1281/*
1282 * Force a signal that the process can't ignore: if necessary
1283 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1284 *
1285 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1286 * since we do not want to have a signal handler that was blocked
1287 * be invoked when user space had explicitly blocked it.
1288 *
1289 * We don't want to have recursive SIGSEGV's etc, for example,
1290 * that is why we also clear SIGNAL_UNKILLABLE.
1291 */
1292static int
1293force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1294	enum sig_handler handler)
1295{
1296	unsigned long int flags;
1297	int ret, blocked, ignored;
1298	struct k_sigaction *action;
1299	int sig = info->si_signo;
1300
1301	spin_lock_irqsave(&t->sighand->siglock, flags);
1302	action = &t->sighand->action[sig-1];
1303	ignored = action->sa.sa_handler == SIG_IGN;
1304	blocked = sigismember(&t->blocked, sig);
1305	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1306		action->sa.sa_handler = SIG_DFL;
1307		if (handler == HANDLER_EXIT)
1308			action->sa.sa_flags |= SA_IMMUTABLE;
1309		if (blocked)
1310			sigdelset(&t->blocked, sig);
 
 
1311	}
1312	/*
1313	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1314	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1315	 */
1316	if (action->sa.sa_handler == SIG_DFL &&
1317	    (!t->ptrace || (handler == HANDLER_EXIT)))
1318		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1319	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1320	/* This can happen if the signal was already pending and blocked */
1321	if (!task_sigpending(t))
1322		signal_wake_up(t, 0);
1323	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1324
1325	return ret;
1326}
1327
1328int force_sig_info(struct kernel_siginfo *info)
1329{
1330	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1331}
1332
1333/*
1334 * Nuke all other threads in the group.
1335 */
1336int zap_other_threads(struct task_struct *p)
1337{
1338	struct task_struct *t;
1339	int count = 0;
1340
1341	p->signal->group_stop_count = 0;
1342
1343	for_other_threads(p, t) {
1344		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1345		count++;
1346
1347		/* Don't bother with already dead threads */
1348		if (t->exit_state)
1349			continue;
1350		sigaddset(&t->pending.signal, SIGKILL);
1351		signal_wake_up(t, 1);
1352	}
1353
1354	return count;
1355}
1356
1357struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1358					   unsigned long *flags)
1359{
1360	struct sighand_struct *sighand;
1361
1362	rcu_read_lock();
1363	for (;;) {
1364		sighand = rcu_dereference(tsk->sighand);
1365		if (unlikely(sighand == NULL))
1366			break;
1367
1368		/*
1369		 * This sighand can be already freed and even reused, but
1370		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1371		 * initializes ->siglock: this slab can't go away, it has
1372		 * the same object type, ->siglock can't be reinitialized.
1373		 *
1374		 * We need to ensure that tsk->sighand is still the same
1375		 * after we take the lock, we can race with de_thread() or
1376		 * __exit_signal(). In the latter case the next iteration
1377		 * must see ->sighand == NULL.
1378		 */
1379		spin_lock_irqsave(&sighand->siglock, *flags);
1380		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1381			break;
1382		spin_unlock_irqrestore(&sighand->siglock, *flags);
1383	}
1384	rcu_read_unlock();
1385
1386	return sighand;
1387}
1388
1389#ifdef CONFIG_LOCKDEP
1390void lockdep_assert_task_sighand_held(struct task_struct *task)
1391{
1392	struct sighand_struct *sighand;
1393
1394	rcu_read_lock();
1395	sighand = rcu_dereference(task->sighand);
1396	if (sighand)
1397		lockdep_assert_held(&sighand->siglock);
1398	else
1399		WARN_ON_ONCE(1);
1400	rcu_read_unlock();
1401}
1402#endif
1403
1404/*
1405 * send signal info to all the members of a thread group or to the
1406 * individual thread if type == PIDTYPE_PID.
1407 */
1408int group_send_sig_info(int sig, struct kernel_siginfo *info,
1409			struct task_struct *p, enum pid_type type)
1410{
1411	int ret;
1412
1413	rcu_read_lock();
1414	ret = check_kill_permission(sig, info, p);
1415	rcu_read_unlock();
1416
1417	if (!ret && sig)
1418		ret = do_send_sig_info(sig, info, p, type);
1419
1420	return ret;
1421}
1422
1423/*
1424 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1425 * control characters do (^C, ^Z etc)
1426 * - the caller must hold at least a readlock on tasklist_lock
1427 */
1428int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1429{
1430	struct task_struct *p = NULL;
1431	int ret = -ESRCH;
1432
 
 
1433	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435		/*
1436		 * If group_send_sig_info() succeeds at least once ret
1437		 * becomes 0 and after that the code below has no effect.
1438		 * Otherwise we return the last err or -ESRCH if this
1439		 * process group is empty.
1440		 */
1441		if (ret)
1442			ret = err;
1443	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1444
1445	return ret;
1446}
1447
1448static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1449				struct pid *pid, enum pid_type type)
1450{
1451	int error = -ESRCH;
1452	struct task_struct *p;
1453
1454	for (;;) {
1455		rcu_read_lock();
1456		p = pid_task(pid, PIDTYPE_PID);
1457		if (p)
1458			error = group_send_sig_info(sig, info, p, type);
1459		rcu_read_unlock();
1460		if (likely(!p || error != -ESRCH))
1461			return error;
 
1462		/*
1463		 * The task was unhashed in between, try again.  If it
1464		 * is dead, pid_task() will return NULL, if we race with
1465		 * de_thread() it will find the new leader.
1466		 */
1467	}
1468}
1469
1470int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471{
1472	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1473}
1474
1475static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1476{
1477	int error;
1478	rcu_read_lock();
1479	error = kill_pid_info(sig, info, find_vpid(pid));
1480	rcu_read_unlock();
1481	return error;
1482}
1483
1484static inline bool kill_as_cred_perm(const struct cred *cred,
1485				     struct task_struct *target)
1486{
1487	const struct cred *pcred = __task_cred(target);
1488
1489	return uid_eq(cred->euid, pcred->suid) ||
1490	       uid_eq(cred->euid, pcred->uid) ||
1491	       uid_eq(cred->uid, pcred->suid) ||
1492	       uid_eq(cred->uid, pcred->uid);
1493}
1494
1495/*
1496 * The usb asyncio usage of siginfo is wrong.  The glibc support
1497 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1498 * AKA after the generic fields:
1499 *	kernel_pid_t	si_pid;
1500 *	kernel_uid32_t	si_uid;
1501 *	sigval_t	si_value;
1502 *
1503 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1504 * after the generic fields is:
1505 *	void __user 	*si_addr;
1506 *
1507 * This is a practical problem when there is a 64bit big endian kernel
1508 * and a 32bit userspace.  As the 32bit address will encoded in the low
1509 * 32bits of the pointer.  Those low 32bits will be stored at higher
1510 * address than appear in a 32 bit pointer.  So userspace will not
1511 * see the address it was expecting for it's completions.
1512 *
1513 * There is nothing in the encoding that can allow
1514 * copy_siginfo_to_user32 to detect this confusion of formats, so
1515 * handle this by requiring the caller of kill_pid_usb_asyncio to
1516 * notice when this situration takes place and to store the 32bit
1517 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1518 * parameter.
1519 */
1520int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1521			 struct pid *pid, const struct cred *cred)
1522{
1523	struct kernel_siginfo info;
1524	struct task_struct *p;
1525	unsigned long flags;
1526	int ret = -EINVAL;
1527
1528	if (!valid_signal(sig))
1529		return ret;
1530
1531	clear_siginfo(&info);
1532	info.si_signo = sig;
1533	info.si_errno = errno;
1534	info.si_code = SI_ASYNCIO;
1535	*((sigval_t *)&info.si_pid) = addr;
1536
 
 
 
1537	rcu_read_lock();
1538	p = pid_task(pid, PIDTYPE_PID);
1539	if (!p) {
1540		ret = -ESRCH;
1541		goto out_unlock;
1542	}
1543	if (!kill_as_cred_perm(cred, p)) {
1544		ret = -EPERM;
1545		goto out_unlock;
1546	}
1547	ret = security_task_kill(p, &info, sig, cred);
1548	if (ret)
1549		goto out_unlock;
1550
1551	if (sig) {
1552		if (lock_task_sighand(p, &flags)) {
1553			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1554			unlock_task_sighand(p, &flags);
1555		} else
1556			ret = -ESRCH;
1557	}
1558out_unlock:
1559	rcu_read_unlock();
1560	return ret;
1561}
1562EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1563
1564/*
1565 * kill_something_info() interprets pid in interesting ways just like kill(2).
1566 *
1567 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1568 * is probably wrong.  Should make it like BSD or SYSV.
1569 */
1570
1571static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1572{
1573	int ret;
1574
1575	if (pid > 0)
1576		return kill_proc_info(sig, info, pid);
 
 
 
 
1577
1578	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1579	if (pid == INT_MIN)
1580		return -ESRCH;
1581
1582	read_lock(&tasklist_lock);
1583	if (pid != -1) {
1584		ret = __kill_pgrp_info(sig, info,
1585				pid ? find_vpid(-pid) : task_pgrp(current));
1586	} else {
1587		int retval = 0, count = 0;
1588		struct task_struct * p;
1589
1590		for_each_process(p) {
1591			if (task_pid_vnr(p) > 1 &&
1592					!same_thread_group(p, current)) {
1593				int err = group_send_sig_info(sig, info, p,
1594							      PIDTYPE_MAX);
1595				++count;
1596				if (err != -EPERM)
1597					retval = err;
1598			}
1599		}
1600		ret = count ? retval : -ESRCH;
1601	}
1602	read_unlock(&tasklist_lock);
1603
1604	return ret;
1605}
1606
1607/*
1608 * These are for backward compatibility with the rest of the kernel source.
1609 */
1610
1611int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1612{
1613	/*
1614	 * Make sure legacy kernel users don't send in bad values
1615	 * (normal paths check this in check_kill_permission).
1616	 */
1617	if (!valid_signal(sig))
1618		return -EINVAL;
1619
1620	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1621}
1622EXPORT_SYMBOL(send_sig_info);
1623
1624#define __si_special(priv) \
1625	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1626
1627int
1628send_sig(int sig, struct task_struct *p, int priv)
1629{
1630	return send_sig_info(sig, __si_special(priv), p);
1631}
1632EXPORT_SYMBOL(send_sig);
1633
1634void force_sig(int sig)
1635{
1636	struct kernel_siginfo info;
1637
1638	clear_siginfo(&info);
1639	info.si_signo = sig;
1640	info.si_errno = 0;
1641	info.si_code = SI_KERNEL;
1642	info.si_pid = 0;
1643	info.si_uid = 0;
1644	force_sig_info(&info);
1645}
1646EXPORT_SYMBOL(force_sig);
1647
1648void force_fatal_sig(int sig)
1649{
1650	struct kernel_siginfo info;
1651
1652	clear_siginfo(&info);
1653	info.si_signo = sig;
1654	info.si_errno = 0;
1655	info.si_code = SI_KERNEL;
1656	info.si_pid = 0;
1657	info.si_uid = 0;
1658	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1659}
1660
1661void force_exit_sig(int sig)
1662{
1663	struct kernel_siginfo info;
1664
1665	clear_siginfo(&info);
1666	info.si_signo = sig;
1667	info.si_errno = 0;
1668	info.si_code = SI_KERNEL;
1669	info.si_pid = 0;
1670	info.si_uid = 0;
1671	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1672}
1673
1674/*
1675 * When things go south during signal handling, we
1676 * will force a SIGSEGV. And if the signal that caused
1677 * the problem was already a SIGSEGV, we'll want to
1678 * make sure we don't even try to deliver the signal..
1679 */
1680void force_sigsegv(int sig)
1681{
1682	if (sig == SIGSEGV)
1683		force_fatal_sig(SIGSEGV);
1684	else
1685		force_sig(SIGSEGV);
 
 
 
 
 
1686}
1687
1688int force_sig_fault_to_task(int sig, int code, void __user *addr,
1689			    struct task_struct *t)
 
 
1690{
1691	struct kernel_siginfo info;
1692
1693	clear_siginfo(&info);
1694	info.si_signo = sig;
1695	info.si_errno = 0;
1696	info.si_code  = code;
1697	info.si_addr  = addr;
1698	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
 
 
 
 
 
 
 
 
1699}
1700
1701int force_sig_fault(int sig, int code, void __user *addr)
 
 
1702{
1703	return force_sig_fault_to_task(sig, code, addr, current);
 
 
1704}
1705
1706int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
 
 
 
1707{
1708	struct kernel_siginfo info;
1709
1710	clear_siginfo(&info);
1711	info.si_signo = sig;
1712	info.si_errno = 0;
1713	info.si_code  = code;
1714	info.si_addr  = addr;
 
 
 
 
 
 
 
 
1715	return send_sig_info(info.si_signo, &info, t);
1716}
1717
1718int force_sig_mceerr(int code, void __user *addr, short lsb)
1719{
1720	struct kernel_siginfo info;
1721
1722	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1723	clear_siginfo(&info);
1724	info.si_signo = SIGBUS;
1725	info.si_errno = 0;
1726	info.si_code = code;
1727	info.si_addr = addr;
1728	info.si_addr_lsb = lsb;
1729	return force_sig_info(&info);
1730}
1731
1732int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1733{
1734	struct kernel_siginfo info;
1735
1736	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1737	clear_siginfo(&info);
1738	info.si_signo = SIGBUS;
1739	info.si_errno = 0;
1740	info.si_code = code;
1741	info.si_addr = addr;
1742	info.si_addr_lsb = lsb;
1743	return send_sig_info(info.si_signo, &info, t);
1744}
1745EXPORT_SYMBOL(send_sig_mceerr);
1746
1747int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1748{
1749	struct kernel_siginfo info;
1750
1751	clear_siginfo(&info);
1752	info.si_signo = SIGSEGV;
1753	info.si_errno = 0;
1754	info.si_code  = SEGV_BNDERR;
1755	info.si_addr  = addr;
1756	info.si_lower = lower;
1757	info.si_upper = upper;
1758	return force_sig_info(&info);
1759}
1760
1761#ifdef SEGV_PKUERR
1762int force_sig_pkuerr(void __user *addr, u32 pkey)
1763{
1764	struct kernel_siginfo info;
1765
1766	clear_siginfo(&info);
1767	info.si_signo = SIGSEGV;
1768	info.si_errno = 0;
1769	info.si_code  = SEGV_PKUERR;
1770	info.si_addr  = addr;
1771	info.si_pkey  = pkey;
1772	return force_sig_info(&info);
1773}
1774#endif
1775
1776int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1777{
1778	struct kernel_siginfo info;
1779
1780	clear_siginfo(&info);
1781	info.si_signo     = SIGTRAP;
1782	info.si_errno     = 0;
1783	info.si_code      = TRAP_PERF;
1784	info.si_addr      = addr;
1785	info.si_perf_data = sig_data;
1786	info.si_perf_type = type;
1787
1788	/*
1789	 * Signals generated by perf events should not terminate the whole
1790	 * process if SIGTRAP is blocked, however, delivering the signal
1791	 * asynchronously is better than not delivering at all. But tell user
1792	 * space if the signal was asynchronous, so it can clearly be
1793	 * distinguished from normal synchronous ones.
1794	 */
1795	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1796				     TRAP_PERF_FLAG_ASYNC :
1797				     0;
1798
1799	return send_sig_info(info.si_signo, &info, current);
1800}
1801
1802/**
1803 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1804 * @syscall: syscall number to send to userland
1805 * @reason: filter-supplied reason code to send to userland (via si_errno)
1806 * @force_coredump: true to trigger a coredump
1807 *
1808 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1809 */
1810int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1811{
1812	struct kernel_siginfo info;
1813
1814	clear_siginfo(&info);
1815	info.si_signo = SIGSYS;
1816	info.si_code = SYS_SECCOMP;
1817	info.si_call_addr = (void __user *)KSTK_EIP(current);
1818	info.si_errno = reason;
1819	info.si_arch = syscall_get_arch(current);
1820	info.si_syscall = syscall;
1821	return force_sig_info_to_task(&info, current,
1822		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1823}
1824
1825/* For the crazy architectures that include trap information in
1826 * the errno field, instead of an actual errno value.
1827 */
1828int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1829{
1830	struct kernel_siginfo info;
1831
1832	clear_siginfo(&info);
1833	info.si_signo = SIGTRAP;
1834	info.si_errno = errno;
1835	info.si_code  = TRAP_HWBKPT;
1836	info.si_addr  = addr;
1837	return force_sig_info(&info);
1838}
1839
1840/* For the rare architectures that include trap information using
1841 * si_trapno.
1842 */
1843int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1844{
1845	struct kernel_siginfo info;
1846
1847	clear_siginfo(&info);
1848	info.si_signo = sig;
1849	info.si_errno = 0;
1850	info.si_code  = code;
1851	info.si_addr  = addr;
1852	info.si_trapno = trapno;
1853	return force_sig_info(&info);
1854}
1855
1856/* For the rare architectures that include trap information using
1857 * si_trapno.
1858 */
1859int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1860			  struct task_struct *t)
1861{
1862	struct kernel_siginfo info;
1863
1864	clear_siginfo(&info);
1865	info.si_signo = sig;
1866	info.si_errno = 0;
1867	info.si_code  = code;
1868	info.si_addr  = addr;
1869	info.si_trapno = trapno;
1870	return send_sig_info(info.si_signo, &info, t);
1871}
1872
1873static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1874{
1875	int ret;
 
1876	read_lock(&tasklist_lock);
1877	ret = __kill_pgrp_info(sig, info, pgrp);
1878	read_unlock(&tasklist_lock);
1879	return ret;
1880}
1881
1882int kill_pgrp(struct pid *pid, int sig, int priv)
1883{
1884	return kill_pgrp_info(sig, __si_special(priv), pid);
1885}
1886EXPORT_SYMBOL(kill_pgrp);
1887
1888int kill_pid(struct pid *pid, int sig, int priv)
1889{
1890	return kill_pid_info(sig, __si_special(priv), pid);
1891}
1892EXPORT_SYMBOL(kill_pid);
1893
1894#ifdef CONFIG_POSIX_TIMERS
1895/*
1896 * These functions handle POSIX timer signals. POSIX timers use
1897 * preallocated sigqueue structs for sending signals.
 
 
 
 
 
1898 */
1899static void __flush_itimer_signals(struct sigpending *pending)
1900{
1901	sigset_t signal, retain;
1902	struct sigqueue *q, *n;
1903
1904	signal = pending->signal;
1905	sigemptyset(&retain);
1906
1907	list_for_each_entry_safe(q, n, &pending->list, list) {
1908		int sig = q->info.si_signo;
1909
1910		if (likely(q->info.si_code != SI_TIMER)) {
1911			sigaddset(&retain, sig);
1912		} else {
1913			sigdelset(&signal, sig);
1914			list_del_init(&q->list);
1915			__sigqueue_free(q);
1916		}
1917	}
1918
1919	sigorsets(&pending->signal, &signal, &retain);
1920}
1921
1922void flush_itimer_signals(void)
1923{
1924	struct task_struct *tsk = current;
1925
1926	guard(spinlock_irqsave)(&tsk->sighand->siglock);
1927	__flush_itimer_signals(&tsk->pending);
1928	__flush_itimer_signals(&tsk->signal->shared_pending);
1929}
1930
1931bool posixtimer_init_sigqueue(struct sigqueue *q)
1932{
1933	struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
1934
1935	if (!ucounts)
1936		return false;
1937	clear_siginfo(&q->info);
1938	__sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
1939	return true;
1940}
1941
1942static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
1943{
1944	struct sigpending *pending;
1945	int sig = q->info.si_signo;
1946
1947	signalfd_notify(t, sig);
1948	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1949	list_add_tail(&q->list, &pending->list);
1950	sigaddset(&pending->signal, sig);
1951	complete_signal(sig, t, type);
1952}
1953
1954/*
1955 * This function is used by POSIX timers to deliver a timer signal.
1956 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1957 * set), the signal must be delivered to the specific thread (queues
1958 * into t->pending).
1959 *
1960 * Where type is not PIDTYPE_PID, signals must be delivered to the
1961 * process. In this case, prefer to deliver to current if it is in
1962 * the same thread group as the target process and its sighand is
1963 * stable, which avoids unnecessarily waking up a potentially idle task.
1964 */
1965static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
1966{
1967	struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
 
1968
1969	if (t && tmr->it_pid_type != PIDTYPE_PID &&
1970	    same_thread_group(t, current) && !current->exit_state)
1971		t = current;
1972	return t;
1973}
1974
1975void posixtimer_send_sigqueue(struct k_itimer *tmr)
1976{
1977	struct sigqueue *q = &tmr->sigq;
1978	int sig = q->info.si_signo;
 
1979	struct task_struct *t;
1980	unsigned long flags;
1981	int result;
1982
1983	guard(rcu)();
1984
1985	t = posixtimer_get_target(tmr);
1986	if (!t)
1987		return;
1988
1989	if (!likely(lock_task_sighand(t, &flags)))
1990		return;
1991
1992	/*
1993	 * Update @tmr::sigqueue_seq for posix timer signals with sighand
1994	 * locked to prevent a race against dequeue_signal().
1995	 */
1996	tmr->it_sigqueue_seq = tmr->it_signal_seq;
1997
1998	/*
1999	 * Set the signal delivery status under sighand lock, so that the
2000	 * ignored signal handling can distinguish between a periodic and a
2001	 * non-periodic timer.
2002	 */
2003	tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING;
2004
2005	if (!prepare_signal(sig, t, false)) {
2006		result = TRACE_SIGNAL_IGNORED;
2007
2008		if (!list_empty(&q->list)) {
2009			/*
2010			 * The signal was ignored and blocked. The timer
2011			 * expiry queued it because blocked signals are
2012			 * queued independent of the ignored state.
2013			 *
2014			 * The unblocking set SIGPENDING, but the signal
2015			 * was not yet dequeued from the pending list.
2016			 * So prepare_signal() sees unblocked and ignored,
2017			 * which ends up here. Leave it queued like a
2018			 * regular signal.
2019			 *
2020			 * The same happens when the task group is exiting
2021			 * and the signal is already queued.
2022			 * prepare_signal() treats SIGNAL_GROUP_EXIT as
2023			 * ignored independent of its queued state. This
2024			 * gets cleaned up in __exit_signal().
2025			 */
2026			goto out;
2027		}
2028
2029		/* Periodic timers with SIG_IGN are queued on the ignored list */
2030		if (tmr->it_sig_periodic) {
2031			/*
2032			 * Already queued means the timer was rearmed after
2033			 * the previous expiry got it on the ignore list.
2034			 * Nothing to do for that case.
2035			 */
2036			if (hlist_unhashed(&tmr->ignored_list)) {
2037				/*
2038				 * Take a signal reference and queue it on
2039				 * the ignored list.
2040				 */
2041				posixtimer_sigqueue_getref(q);
2042				posixtimer_sig_ignore(t, q);
2043			}
2044		} else if (!hlist_unhashed(&tmr->ignored_list)) {
2045			/*
2046			 * Covers the case where a timer was periodic and
2047			 * then the signal was ignored. Later it was rearmed
2048			 * as oneshot timer. The previous signal is invalid
2049			 * now, and this oneshot signal has to be dropped.
2050			 * Remove it from the ignored list and drop the
2051			 * reference count as the signal is not longer
2052			 * queued.
2053			 */
2054			hlist_del_init(&tmr->ignored_list);
2055			posixtimer_putref(tmr);
2056		}
2057		goto out;
2058	}
2059
 
2060	if (unlikely(!list_empty(&q->list))) {
2061		/* This holds a reference count already */
 
 
 
 
 
2062		result = TRACE_SIGNAL_ALREADY_PENDING;
2063		goto out;
2064	}
 
2065
2066	/*
2067	 * If the signal is on the ignore list, it got blocked after it was
2068	 * ignored earlier. But nothing lifted the ignore. Move it back to
2069	 * the pending list to be consistent with the regular signal
2070	 * handling. This already holds a reference count.
2071	 *
2072	 * If it's not on the ignore list acquire a reference count.
2073	 */
2074	if (likely(hlist_unhashed(&tmr->ignored_list)))
2075		posixtimer_sigqueue_getref(q);
2076	else
2077		hlist_del_init(&tmr->ignored_list);
2078
2079	posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
2080	result = TRACE_SIGNAL_DELIVERED;
2081out:
2082	trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
2083	unlock_task_sighand(t, &flags);
 
 
 
2084}
2085
2086static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q)
2087{
2088	struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
2089
2090	/*
2091	 * If the timer is marked deleted already or the signal originates
2092	 * from a non-periodic timer, then just drop the reference
2093	 * count. Otherwise queue it on the ignored list.
2094	 */
2095	if (tmr->it_signal && tmr->it_sig_periodic)
2096		hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers);
2097	else
2098		posixtimer_putref(tmr);
2099}
2100
2101static void posixtimer_sig_unignore(struct task_struct *tsk, int sig)
2102{
2103	struct hlist_head *head = &tsk->signal->ignored_posix_timers;
2104	struct hlist_node *tmp;
2105	struct k_itimer *tmr;
2106
2107	if (likely(hlist_empty(head)))
2108		return;
2109
2110	/*
2111	 * Rearming a timer with sighand lock held is not possible due to
2112	 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
2113	 * let the signal delivery path deal with it whether it needs to be
2114	 * rearmed or not. This cannot be decided here w/o dropping sighand
2115	 * lock and creating a loop retry horror show.
2116	 */
2117	hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) {
2118		struct task_struct *target;
2119
2120		/*
2121		 * tmr::sigq.info.si_signo is immutable, so accessing it
2122		 * without holding tmr::it_lock is safe.
2123		 */
2124		if (tmr->sigq.info.si_signo != sig)
2125			continue;
2126
2127		hlist_del_init(&tmr->ignored_list);
2128
2129		/* This should never happen and leaks a reference count */
2130		if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list)))
2131			continue;
2132
2133		/*
2134		 * Get the target for the signal. If target is a thread and
2135		 * has exited by now, drop the reference count.
2136		 */
2137		guard(rcu)();
2138		target = posixtimer_get_target(tmr);
2139		if (target)
2140			posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type);
2141		else
2142			posixtimer_putref(tmr);
2143	}
2144}
2145#else /* CONFIG_POSIX_TIMERS */
2146static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { }
2147static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { }
2148#endif /* !CONFIG_POSIX_TIMERS */
2149
2150void do_notify_pidfd(struct task_struct *task)
2151{
2152	struct pid *pid = task_pid(task);
2153
2154	WARN_ON(task->exit_state == 0);
2155
2156	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2157			poll_to_key(EPOLLIN | EPOLLRDNORM));
2158}
2159
2160/*
2161 * Let a parent know about the death of a child.
2162 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2163 *
2164 * Returns true if our parent ignored us and so we've switched to
2165 * self-reaping.
2166 */
2167bool do_notify_parent(struct task_struct *tsk, int sig)
2168{
2169	struct kernel_siginfo info;
2170	unsigned long flags;
2171	struct sighand_struct *psig;
2172	bool autoreap = false;
2173	u64 utime, stime;
2174
2175	WARN_ON_ONCE(sig == -1);
2176
2177	/* do_notify_parent_cldstop should have been called instead.  */
2178	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2179
2180	WARN_ON_ONCE(!tsk->ptrace &&
2181	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2182	/*
2183	 * tsk is a group leader and has no threads, wake up the
2184	 * non-PIDFD_THREAD waiters.
2185	 */
2186	if (thread_group_empty(tsk))
2187		do_notify_pidfd(tsk);
2188
2189	if (sig != SIGCHLD) {
2190		/*
2191		 * This is only possible if parent == real_parent.
2192		 * Check if it has changed security domain.
2193		 */
2194		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2195			sig = SIGCHLD;
2196	}
2197
2198	clear_siginfo(&info);
2199	info.si_signo = sig;
2200	info.si_errno = 0;
2201	/*
2202	 * We are under tasklist_lock here so our parent is tied to
2203	 * us and cannot change.
2204	 *
2205	 * task_active_pid_ns will always return the same pid namespace
2206	 * until a task passes through release_task.
2207	 *
2208	 * write_lock() currently calls preempt_disable() which is the
2209	 * same as rcu_read_lock(), but according to Oleg, this is not
2210	 * correct to rely on this
2211	 */
2212	rcu_read_lock();
2213	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2214	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2215				       task_uid(tsk));
2216	rcu_read_unlock();
2217
2218	task_cputime(tsk, &utime, &stime);
2219	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2220	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2221
2222	info.si_status = tsk->exit_code & 0x7f;
2223	if (tsk->exit_code & 0x80)
2224		info.si_code = CLD_DUMPED;
2225	else if (tsk->exit_code & 0x7f)
2226		info.si_code = CLD_KILLED;
2227	else {
2228		info.si_code = CLD_EXITED;
2229		info.si_status = tsk->exit_code >> 8;
2230	}
2231
2232	psig = tsk->parent->sighand;
2233	spin_lock_irqsave(&psig->siglock, flags);
2234	if (!tsk->ptrace && sig == SIGCHLD &&
2235	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2236	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2237		/*
2238		 * We are exiting and our parent doesn't care.  POSIX.1
2239		 * defines special semantics for setting SIGCHLD to SIG_IGN
2240		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2241		 * automatically and not left for our parent's wait4 call.
2242		 * Rather than having the parent do it as a magic kind of
2243		 * signal handler, we just set this to tell do_exit that we
2244		 * can be cleaned up without becoming a zombie.  Note that
2245		 * we still call __wake_up_parent in this case, because a
2246		 * blocked sys_wait4 might now return -ECHILD.
2247		 *
2248		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2249		 * is implementation-defined: we do (if you don't want
2250		 * it, just use SIG_IGN instead).
2251		 */
2252		autoreap = true;
2253		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2254			sig = 0;
2255	}
2256	/*
2257	 * Send with __send_signal as si_pid and si_uid are in the
2258	 * parent's namespaces.
2259	 */
2260	if (valid_signal(sig) && sig)
2261		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2262	__wake_up_parent(tsk, tsk->parent);
2263	spin_unlock_irqrestore(&psig->siglock, flags);
2264
2265	return autoreap;
2266}
2267
2268/**
2269 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2270 * @tsk: task reporting the state change
2271 * @for_ptracer: the notification is for ptracer
2272 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2273 *
2274 * Notify @tsk's parent that the stopped/continued state has changed.  If
2275 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2276 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2277 *
2278 * CONTEXT:
2279 * Must be called with tasklist_lock at least read locked.
2280 */
2281static void do_notify_parent_cldstop(struct task_struct *tsk,
2282				     bool for_ptracer, int why)
2283{
2284	struct kernel_siginfo info;
2285	unsigned long flags;
2286	struct task_struct *parent;
2287	struct sighand_struct *sighand;
2288	u64 utime, stime;
2289
2290	if (for_ptracer) {
2291		parent = tsk->parent;
2292	} else {
2293		tsk = tsk->group_leader;
2294		parent = tsk->real_parent;
2295	}
2296
2297	clear_siginfo(&info);
2298	info.si_signo = SIGCHLD;
2299	info.si_errno = 0;
2300	/*
2301	 * see comment in do_notify_parent() about the following 4 lines
2302	 */
2303	rcu_read_lock();
2304	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2305	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2306	rcu_read_unlock();
2307
2308	task_cputime(tsk, &utime, &stime);
2309	info.si_utime = nsec_to_clock_t(utime);
2310	info.si_stime = nsec_to_clock_t(stime);
2311
2312 	info.si_code = why;
2313 	switch (why) {
2314 	case CLD_CONTINUED:
2315 		info.si_status = SIGCONT;
2316 		break;
2317 	case CLD_STOPPED:
2318 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2319 		break;
2320 	case CLD_TRAPPED:
2321 		info.si_status = tsk->exit_code & 0x7f;
2322 		break;
2323 	default:
2324 		BUG();
2325 	}
2326
2327	sighand = parent->sighand;
2328	spin_lock_irqsave(&sighand->siglock, flags);
2329	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2330	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2331		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2332	/*
2333	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2334	 */
2335	__wake_up_parent(tsk, parent);
2336	spin_unlock_irqrestore(&sighand->siglock, flags);
2337}
2338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339/*
2340 * This must be called with current->sighand->siglock held.
2341 *
2342 * This should be the path for all ptrace stops.
2343 * We always set current->last_siginfo while stopped here.
2344 * That makes it a way to test a stopped process for
2345 * being ptrace-stopped vs being job-control-stopped.
2346 *
2347 * Returns the signal the ptracer requested the code resume
2348 * with.  If the code did not stop because the tracer is gone,
2349 * the stop signal remains unchanged unless clear_code.
2350 */
2351static int ptrace_stop(int exit_code, int why, unsigned long message,
2352		       kernel_siginfo_t *info)
2353	__releases(&current->sighand->siglock)
2354	__acquires(&current->sighand->siglock)
2355{
2356	bool gstop_done = false;
2357
2358	if (arch_ptrace_stop_needed()) {
2359		/*
2360		 * The arch code has something special to do before a
2361		 * ptrace stop.  This is allowed to block, e.g. for faults
2362		 * on user stack pages.  We can't keep the siglock while
2363		 * calling arch_ptrace_stop, so we must release it now.
2364		 * To preserve proper semantics, we must do this before
2365		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2366		 */
2367		spin_unlock_irq(&current->sighand->siglock);
2368		arch_ptrace_stop();
2369		spin_lock_irq(&current->sighand->siglock);
 
 
2370	}
2371
2372	/*
2373	 * After this point ptrace_signal_wake_up or signal_wake_up
2374	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2375	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2376	 * signals here to prevent ptrace_stop sleeping in schedule.
2377	 */
2378	if (!current->ptrace || __fatal_signal_pending(current))
2379		return exit_code;
2380
2381	set_special_state(TASK_TRACED);
2382	current->jobctl |= JOBCTL_TRACED;
2383
2384	/*
2385	 * We're committing to trapping.  TRACED should be visible before
2386	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2387	 * Also, transition to TRACED and updates to ->jobctl should be
2388	 * atomic with respect to siglock and should be done after the arch
2389	 * hook as siglock is released and regrabbed across it.
2390	 *
2391	 *     TRACER				    TRACEE
2392	 *
2393	 *     ptrace_attach()
2394	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2395	 *     do_wait()
2396	 *       set_current_state()                smp_wmb();
2397	 *       ptrace_do_wait()
2398	 *         wait_task_stopped()
2399	 *           task_stopped_code()
2400	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2401	 */
2402	smp_wmb();
2403
2404	current->ptrace_message = message;
2405	current->last_siginfo = info;
2406	current->exit_code = exit_code;
2407
2408	/*
2409	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2410	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2411	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2412	 * could be clear now.  We act as if SIGCONT is received after
2413	 * TASK_TRACED is entered - ignore it.
2414	 */
2415	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2416		gstop_done = task_participate_group_stop(current);
2417
2418	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2419	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2420	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2421		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2422
2423	/* entering a trap, clear TRAPPING */
2424	task_clear_jobctl_trapping(current);
2425
2426	spin_unlock_irq(&current->sighand->siglock);
2427	read_lock(&tasklist_lock);
2428	/*
2429	 * Notify parents of the stop.
2430	 *
2431	 * While ptraced, there are two parents - the ptracer and
2432	 * the real_parent of the group_leader.  The ptracer should
2433	 * know about every stop while the real parent is only
2434	 * interested in the completion of group stop.  The states
2435	 * for the two don't interact with each other.  Notify
2436	 * separately unless they're gonna be duplicates.
2437	 */
2438	if (current->ptrace)
2439		do_notify_parent_cldstop(current, true, why);
2440	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2441		do_notify_parent_cldstop(current, false, why);
2442
2443	/*
2444	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2445	 * One a PREEMPTION kernel this can result in preemption requirement
2446	 * which will be fulfilled after read_unlock() and the ptracer will be
2447	 * put on the CPU.
2448	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2449	 * this task wait in schedule(). If this task gets preempted then it
2450	 * remains enqueued on the runqueue. The ptracer will observe this and
2451	 * then sleep for a delay of one HZ tick. In the meantime this task
2452	 * gets scheduled, enters schedule() and will wait for the ptracer.
2453	 *
2454	 * This preemption point is not bad from a correctness point of
2455	 * view but extends the runtime by one HZ tick time due to the
2456	 * ptracer's sleep.  The preempt-disable section ensures that there
2457	 * will be no preemption between unlock and schedule() and so
2458	 * improving the performance since the ptracer will observe that
2459	 * the tracee is scheduled out once it gets on the CPU.
2460	 *
2461	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2462	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2463	 * before unlocking tasklist_lock so there is no benefit in doing this.
2464	 *
2465	 * In fact disabling preemption is harmful on PREEMPT_RT because
2466	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2467	 * with preemption disabled due to the 'sleeping' spinlock
2468	 * substitution of RT.
2469	 */
2470	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2471		preempt_disable();
2472	read_unlock(&tasklist_lock);
2473	cgroup_enter_frozen();
2474	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2475		preempt_enable_no_resched();
2476	schedule();
2477	cgroup_leave_frozen(true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2478
2479	/*
2480	 * We are back.  Now reacquire the siglock before touching
2481	 * last_siginfo, so that we are sure to have synchronized with
2482	 * any signal-sending on another CPU that wants to examine it.
2483	 */
2484	spin_lock_irq(&current->sighand->siglock);
2485	exit_code = current->exit_code;
2486	current->last_siginfo = NULL;
2487	current->ptrace_message = 0;
2488	current->exit_code = 0;
2489
2490	/* LISTENING can be set only during STOP traps, clear it */
2491	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2492
2493	/*
2494	 * Queued signals ignored us while we were stopped for tracing.
2495	 * So check for any that we should take before resuming user mode.
2496	 * This sets TIF_SIGPENDING, but never clears it.
2497	 */
2498	recalc_sigpending_tsk(current);
2499	return exit_code;
2500}
2501
2502static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2503{
2504	kernel_siginfo_t info;
2505
2506	clear_siginfo(&info);
2507	info.si_signo = signr;
2508	info.si_code = exit_code;
2509	info.si_pid = task_pid_vnr(current);
2510	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2511
2512	/* Let the debugger run.  */
2513	return ptrace_stop(exit_code, why, message, &info);
2514}
2515
2516int ptrace_notify(int exit_code, unsigned long message)
2517{
2518	int signr;
2519
2520	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2521	if (unlikely(task_work_pending(current)))
2522		task_work_run();
2523
2524	spin_lock_irq(&current->sighand->siglock);
2525	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2526	spin_unlock_irq(&current->sighand->siglock);
2527	return signr;
2528}
2529
2530/**
2531 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2532 * @signr: signr causing group stop if initiating
2533 *
2534 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2535 * and participate in it.  If already set, participate in the existing
2536 * group stop.  If participated in a group stop (and thus slept), %true is
2537 * returned with siglock released.
2538 *
2539 * If ptraced, this function doesn't handle stop itself.  Instead,
2540 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2541 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2542 * places afterwards.
2543 *
2544 * CONTEXT:
2545 * Must be called with @current->sighand->siglock held, which is released
2546 * on %true return.
2547 *
2548 * RETURNS:
2549 * %false if group stop is already cancelled or ptrace trap is scheduled.
2550 * %true if participated in group stop.
2551 */
2552static bool do_signal_stop(int signr)
2553	__releases(&current->sighand->siglock)
2554{
2555	struct signal_struct *sig = current->signal;
2556
2557	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2558		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2559		struct task_struct *t;
2560
2561		/* signr will be recorded in task->jobctl for retries */
2562		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2563
2564		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2565		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2566		    unlikely(sig->group_exec_task))
2567			return false;
2568		/*
2569		 * There is no group stop already in progress.  We must
2570		 * initiate one now.
2571		 *
2572		 * While ptraced, a task may be resumed while group stop is
2573		 * still in effect and then receive a stop signal and
2574		 * initiate another group stop.  This deviates from the
2575		 * usual behavior as two consecutive stop signals can't
2576		 * cause two group stops when !ptraced.  That is why we
2577		 * also check !task_is_stopped(t) below.
2578		 *
2579		 * The condition can be distinguished by testing whether
2580		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2581		 * group_exit_code in such case.
2582		 *
2583		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2584		 * an intervening stop signal is required to cause two
2585		 * continued events regardless of ptrace.
2586		 */
2587		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2588			sig->group_exit_code = signr;
2589
2590		sig->group_stop_count = 0;
 
2591		if (task_set_jobctl_pending(current, signr | gstop))
2592			sig->group_stop_count++;
2593
2594		for_other_threads(current, t) {
 
2595			/*
2596			 * Setting state to TASK_STOPPED for a group
2597			 * stop is always done with the siglock held,
2598			 * so this check has no races.
2599			 */
2600			if (!task_is_stopped(t) &&
2601			    task_set_jobctl_pending(t, signr | gstop)) {
2602				sig->group_stop_count++;
2603				if (likely(!(t->ptrace & PT_SEIZED)))
2604					signal_wake_up(t, 0);
2605				else
2606					ptrace_trap_notify(t);
2607			}
2608		}
2609	}
2610
2611	if (likely(!current->ptrace)) {
2612		int notify = 0;
2613
2614		/*
2615		 * If there are no other threads in the group, or if there
2616		 * is a group stop in progress and we are the last to stop,
2617		 * report to the parent.
2618		 */
2619		if (task_participate_group_stop(current))
2620			notify = CLD_STOPPED;
2621
2622		current->jobctl |= JOBCTL_STOPPED;
2623		set_special_state(TASK_STOPPED);
2624		spin_unlock_irq(&current->sighand->siglock);
2625
2626		/*
2627		 * Notify the parent of the group stop completion.  Because
2628		 * we're not holding either the siglock or tasklist_lock
2629		 * here, ptracer may attach inbetween; however, this is for
2630		 * group stop and should always be delivered to the real
2631		 * parent of the group leader.  The new ptracer will get
2632		 * its notification when this task transitions into
2633		 * TASK_TRACED.
2634		 */
2635		if (notify) {
2636			read_lock(&tasklist_lock);
2637			do_notify_parent_cldstop(current, false, notify);
2638			read_unlock(&tasklist_lock);
2639		}
2640
2641		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2642		cgroup_enter_frozen();
2643		schedule();
2644		return true;
2645	} else {
2646		/*
2647		 * While ptraced, group stop is handled by STOP trap.
2648		 * Schedule it and let the caller deal with it.
2649		 */
2650		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2651		return false;
2652	}
2653}
2654
2655/**
2656 * do_jobctl_trap - take care of ptrace jobctl traps
2657 *
2658 * When PT_SEIZED, it's used for both group stop and explicit
2659 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2660 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2661 * the stop signal; otherwise, %SIGTRAP.
2662 *
2663 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2664 * number as exit_code and no siginfo.
2665 *
2666 * CONTEXT:
2667 * Must be called with @current->sighand->siglock held, which may be
2668 * released and re-acquired before returning with intervening sleep.
2669 */
2670static void do_jobctl_trap(void)
2671{
2672	struct signal_struct *signal = current->signal;
2673	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2674
2675	if (current->ptrace & PT_SEIZED) {
2676		if (!signal->group_stop_count &&
2677		    !(signal->flags & SIGNAL_STOP_STOPPED))
2678			signr = SIGTRAP;
2679		WARN_ON_ONCE(!signr);
2680		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2681				 CLD_STOPPED, 0);
2682	} else {
2683		WARN_ON_ONCE(!signr);
2684		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2685	}
2686}
2687
2688/**
2689 * do_freezer_trap - handle the freezer jobctl trap
2690 *
2691 * Puts the task into frozen state, if only the task is not about to quit.
2692 * In this case it drops JOBCTL_TRAP_FREEZE.
2693 *
2694 * CONTEXT:
2695 * Must be called with @current->sighand->siglock held,
2696 * which is always released before returning.
2697 */
2698static void do_freezer_trap(void)
2699	__releases(&current->sighand->siglock)
2700{
2701	/*
2702	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2703	 * let's make another loop to give it a chance to be handled.
2704	 * In any case, we'll return back.
2705	 */
2706	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2707	     JOBCTL_TRAP_FREEZE) {
2708		spin_unlock_irq(&current->sighand->siglock);
2709		return;
2710	}
2711
2712	/*
2713	 * Now we're sure that there is no pending fatal signal and no
2714	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2715	 * immediately (if there is a non-fatal signal pending), and
2716	 * put the task into sleep.
2717	 */
2718	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2719	clear_thread_flag(TIF_SIGPENDING);
2720	spin_unlock_irq(&current->sighand->siglock);
2721	cgroup_enter_frozen();
2722	schedule();
2723
2724	/*
2725	 * We could've been woken by task_work, run it to clear
2726	 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2727	 */
2728	clear_notify_signal();
2729	if (unlikely(task_work_pending(current)))
2730		task_work_run();
2731}
2732
2733static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2734{
2735	/*
2736	 * We do not check sig_kernel_stop(signr) but set this marker
2737	 * unconditionally because we do not know whether debugger will
2738	 * change signr. This flag has no meaning unless we are going
2739	 * to stop after return from ptrace_stop(). In this case it will
2740	 * be checked in do_signal_stop(), we should only stop if it was
2741	 * not cleared by SIGCONT while we were sleeping. See also the
2742	 * comment in dequeue_signal().
2743	 */
2744	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2745	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2746
2747	/* We're back.  Did the debugger cancel the sig?  */
 
2748	if (signr == 0)
2749		return signr;
2750
 
 
2751	/*
2752	 * Update the siginfo structure if the signal has
2753	 * changed.  If the debugger wanted something
2754	 * specific in the siginfo structure then it should
2755	 * have updated *info via PTRACE_SETSIGINFO.
2756	 */
2757	if (signr != info->si_signo) {
2758		clear_siginfo(info);
2759		info->si_signo = signr;
2760		info->si_errno = 0;
2761		info->si_code = SI_USER;
2762		rcu_read_lock();
2763		info->si_pid = task_pid_vnr(current->parent);
2764		info->si_uid = from_kuid_munged(current_user_ns(),
2765						task_uid(current->parent));
2766		rcu_read_unlock();
2767	}
2768
2769	/* If the (new) signal is now blocked, requeue it.  */
2770	if (sigismember(&current->blocked, signr) ||
2771	    fatal_signal_pending(current)) {
2772		send_signal_locked(signr, info, current, type);
2773		signr = 0;
2774	}
2775
2776	return signr;
2777}
2778
2779static void hide_si_addr_tag_bits(struct ksignal *ksig)
2780{
2781	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2782	case SIL_FAULT:
2783	case SIL_FAULT_TRAPNO:
2784	case SIL_FAULT_MCEERR:
2785	case SIL_FAULT_BNDERR:
2786	case SIL_FAULT_PKUERR:
2787	case SIL_FAULT_PERF_EVENT:
2788		ksig->info.si_addr = arch_untagged_si_addr(
2789			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2790		break;
2791	case SIL_KILL:
2792	case SIL_TIMER:
2793	case SIL_POLL:
2794	case SIL_CHLD:
2795	case SIL_RT:
2796	case SIL_SYS:
2797		break;
2798	}
2799}
2800
2801bool get_signal(struct ksignal *ksig)
2802{
2803	struct sighand_struct *sighand = current->sighand;
2804	struct signal_struct *signal = current->signal;
2805	int signr;
2806
2807	clear_notify_signal();
2808	if (unlikely(task_work_pending(current)))
2809		task_work_run();
2810
2811	if (!task_sigpending(current))
2812		return false;
2813
2814	if (unlikely(uprobe_deny_signal()))
2815		return false;
2816
2817	/*
2818	 * Do this once, we can't return to user-mode if freezing() == T.
2819	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2820	 * thus do not need another check after return.
2821	 */
2822	try_to_freeze();
2823
2824relock:
2825	spin_lock_irq(&sighand->siglock);
2826
2827	/*
2828	 * Every stopped thread goes here after wakeup. Check to see if
2829	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2830	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2831	 */
2832	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2833		int why;
2834
2835		if (signal->flags & SIGNAL_CLD_CONTINUED)
2836			why = CLD_CONTINUED;
2837		else
2838			why = CLD_STOPPED;
2839
2840		signal->flags &= ~SIGNAL_CLD_MASK;
2841
2842		spin_unlock_irq(&sighand->siglock);
2843
2844		/*
2845		 * Notify the parent that we're continuing.  This event is
2846		 * always per-process and doesn't make whole lot of sense
2847		 * for ptracers, who shouldn't consume the state via
2848		 * wait(2) either, but, for backward compatibility, notify
2849		 * the ptracer of the group leader too unless it's gonna be
2850		 * a duplicate.
2851		 */
2852		read_lock(&tasklist_lock);
2853		do_notify_parent_cldstop(current, false, why);
2854
2855		if (ptrace_reparented(current->group_leader))
2856			do_notify_parent_cldstop(current->group_leader,
2857						true, why);
2858		read_unlock(&tasklist_lock);
2859
2860		goto relock;
2861	}
2862
 
 
 
 
 
 
 
 
 
 
2863	for (;;) {
2864		struct k_sigaction *ka;
2865		enum pid_type type;
2866
2867		/* Has this task already been marked for death? */
2868		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2869		     signal->group_exec_task) {
2870			signr = SIGKILL;
2871			sigdelset(&current->pending.signal, SIGKILL);
2872			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2873					     &sighand->action[SIGKILL-1]);
2874			recalc_sigpending();
2875			/*
2876			 * implies do_group_exit() or return to PF_USER_WORKER,
2877			 * no need to initialize ksig->info/etc.
2878			 */
2879			goto fatal;
2880		}
2881
2882		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2883		    do_signal_stop(0))
2884			goto relock;
2885
2886		if (unlikely(current->jobctl &
2887			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2888			if (current->jobctl & JOBCTL_TRAP_MASK) {
2889				do_jobctl_trap();
2890				spin_unlock_irq(&sighand->siglock);
2891			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2892				do_freezer_trap();
2893
2894			goto relock;
2895		}
2896
2897		/*
2898		 * If the task is leaving the frozen state, let's update
2899		 * cgroup counters and reset the frozen bit.
2900		 */
2901		if (unlikely(cgroup_task_frozen(current))) {
2902			spin_unlock_irq(&sighand->siglock);
2903			cgroup_leave_frozen(false);
2904			goto relock;
2905		}
2906
2907		/*
2908		 * Signals generated by the execution of an instruction
2909		 * need to be delivered before any other pending signals
2910		 * so that the instruction pointer in the signal stack
2911		 * frame points to the faulting instruction.
2912		 */
2913		type = PIDTYPE_PID;
2914		signr = dequeue_synchronous_signal(&ksig->info);
2915		if (!signr)
2916			signr = dequeue_signal(&current->blocked, &ksig->info, &type);
2917
2918		if (!signr)
2919			break; /* will return 0 */
2920
2921		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2922		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2923			signr = ptrace_signal(signr, &ksig->info, type);
2924			if (!signr)
2925				continue;
2926		}
2927
2928		ka = &sighand->action[signr-1];
2929
2930		/* Trace actually delivered signals. */
2931		trace_signal_deliver(signr, &ksig->info, ka);
2932
2933		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2934			continue;
2935		if (ka->sa.sa_handler != SIG_DFL) {
2936			/* Run the handler.  */
2937			ksig->ka = *ka;
2938
2939			if (ka->sa.sa_flags & SA_ONESHOT)
2940				ka->sa.sa_handler = SIG_DFL;
2941
2942			break; /* will return non-zero "signr" value */
2943		}
2944
2945		/*
2946		 * Now we are doing the default action for this signal.
2947		 */
2948		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2949			continue;
2950
2951		/*
2952		 * Global init gets no signals it doesn't want.
2953		 * Container-init gets no signals it doesn't want from same
2954		 * container.
2955		 *
2956		 * Note that if global/container-init sees a sig_kernel_only()
2957		 * signal here, the signal must have been generated internally
2958		 * or must have come from an ancestor namespace. In either
2959		 * case, the signal cannot be dropped.
2960		 */
2961		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2962				!sig_kernel_only(signr))
2963			continue;
2964
2965		if (sig_kernel_stop(signr)) {
2966			/*
2967			 * The default action is to stop all threads in
2968			 * the thread group.  The job control signals
2969			 * do nothing in an orphaned pgrp, but SIGSTOP
2970			 * always works.  Note that siglock needs to be
2971			 * dropped during the call to is_orphaned_pgrp()
2972			 * because of lock ordering with tasklist_lock.
2973			 * This allows an intervening SIGCONT to be posted.
2974			 * We need to check for that and bail out if necessary.
2975			 */
2976			if (signr != SIGSTOP) {
2977				spin_unlock_irq(&sighand->siglock);
2978
2979				/* signals can be posted during this window */
2980
2981				if (is_current_pgrp_orphaned())
2982					goto relock;
2983
2984				spin_lock_irq(&sighand->siglock);
2985			}
2986
2987			if (likely(do_signal_stop(signr))) {
2988				/* It released the siglock.  */
2989				goto relock;
2990			}
2991
2992			/*
2993			 * We didn't actually stop, due to a race
2994			 * with SIGCONT or something like that.
2995			 */
2996			continue;
2997		}
2998
2999	fatal:
3000		spin_unlock_irq(&sighand->siglock);
3001		if (unlikely(cgroup_task_frozen(current)))
3002			cgroup_leave_frozen(true);
3003
3004		/*
3005		 * Anything else is fatal, maybe with a core dump.
3006		 */
3007		current->flags |= PF_SIGNALED;
3008
3009		if (sig_kernel_coredump(signr)) {
3010			if (print_fatal_signals)
3011				print_fatal_signal(signr);
3012			proc_coredump_connector(current);
3013			/*
3014			 * If it was able to dump core, this kills all
3015			 * other threads in the group and synchronizes with
3016			 * their demise.  If we lost the race with another
3017			 * thread getting here, it set group_exit_code
3018			 * first and our do_group_exit call below will use
3019			 * that value and ignore the one we pass it.
3020			 */
3021			do_coredump(&ksig->info);
3022		}
3023
3024		/*
3025		 * PF_USER_WORKER threads will catch and exit on fatal signals
3026		 * themselves. They have cleanup that must be performed, so we
3027		 * cannot call do_exit() on their behalf. Note that ksig won't
3028		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
3029		 */
3030		if (current->flags & PF_USER_WORKER)
3031			goto out;
3032
3033		/*
3034		 * Death signals, no core dump.
3035		 */
3036		do_group_exit(signr);
3037		/* NOTREACHED */
3038	}
3039	spin_unlock_irq(&sighand->siglock);
3040
3041	ksig->sig = signr;
3042
3043	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
3044		hide_si_addr_tag_bits(ksig);
3045out:
3046	return signr > 0;
3047}
3048
3049/**
3050 * signal_delivered - called after signal delivery to update blocked signals
3051 * @ksig:		kernel signal struct
3052 * @stepping:		nonzero if debugger single-step or block-step in use
3053 *
3054 * This function should be called when a signal has successfully been
3055 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
3056 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
3057 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
3058 */
3059static void signal_delivered(struct ksignal *ksig, int stepping)
3060{
3061	sigset_t blocked;
3062
3063	/* A signal was successfully delivered, and the
3064	   saved sigmask was stored on the signal frame,
3065	   and will be restored by sigreturn.  So we can
3066	   simply clear the restore sigmask flag.  */
3067	clear_restore_sigmask();
3068
3069	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
3070	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
3071		sigaddset(&blocked, ksig->sig);
3072	set_current_blocked(&blocked);
3073	if (current->sas_ss_flags & SS_AUTODISARM)
3074		sas_ss_reset(current);
3075	if (stepping)
3076		ptrace_notify(SIGTRAP, 0);
3077}
3078
3079void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
3080{
3081	if (failed)
3082		force_sigsegv(ksig->sig);
3083	else
3084		signal_delivered(ksig, stepping);
3085}
3086
3087/*
3088 * It could be that complete_signal() picked us to notify about the
3089 * group-wide signal. Other threads should be notified now to take
3090 * the shared signals in @which since we will not.
3091 */
3092static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
3093{
3094	sigset_t retarget;
3095	struct task_struct *t;
3096
3097	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
3098	if (sigisemptyset(&retarget))
3099		return;
3100
3101	for_other_threads(tsk, t) {
 
3102		if (t->flags & PF_EXITING)
3103			continue;
3104
3105		if (!has_pending_signals(&retarget, &t->blocked))
3106			continue;
3107		/* Remove the signals this thread can handle. */
3108		sigandsets(&retarget, &retarget, &t->blocked);
3109
3110		if (!task_sigpending(t))
3111			signal_wake_up(t, 0);
3112
3113		if (sigisemptyset(&retarget))
3114			break;
3115	}
3116}
3117
3118void exit_signals(struct task_struct *tsk)
3119{
3120	int group_stop = 0;
3121	sigset_t unblocked;
3122
3123	/*
3124	 * @tsk is about to have PF_EXITING set - lock out users which
3125	 * expect stable threadgroup.
3126	 */
3127	cgroup_threadgroup_change_begin(tsk);
3128
3129	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3130		sched_mm_cid_exit_signals(tsk);
3131		tsk->flags |= PF_EXITING;
3132		cgroup_threadgroup_change_end(tsk);
3133		return;
3134	}
3135
3136	spin_lock_irq(&tsk->sighand->siglock);
3137	/*
3138	 * From now this task is not visible for group-wide signals,
3139	 * see wants_signal(), do_signal_stop().
3140	 */
3141	sched_mm_cid_exit_signals(tsk);
3142	tsk->flags |= PF_EXITING;
3143
3144	cgroup_threadgroup_change_end(tsk);
3145
3146	if (!task_sigpending(tsk))
3147		goto out;
3148
3149	unblocked = tsk->blocked;
3150	signotset(&unblocked);
3151	retarget_shared_pending(tsk, &unblocked);
3152
3153	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3154	    task_participate_group_stop(tsk))
3155		group_stop = CLD_STOPPED;
3156out:
3157	spin_unlock_irq(&tsk->sighand->siglock);
3158
3159	/*
3160	 * If group stop has completed, deliver the notification.  This
3161	 * should always go to the real parent of the group leader.
3162	 */
3163	if (unlikely(group_stop)) {
3164		read_lock(&tasklist_lock);
3165		do_notify_parent_cldstop(tsk, false, group_stop);
3166		read_unlock(&tasklist_lock);
3167	}
3168}
3169
3170/*
3171 * System call entry points.
3172 */
3173
3174/**
3175 *  sys_restart_syscall - restart a system call
3176 */
3177SYSCALL_DEFINE0(restart_syscall)
3178{
3179	struct restart_block *restart = &current->restart_block;
3180	return restart->fn(restart);
3181}
3182
3183long do_no_restart_syscall(struct restart_block *param)
3184{
3185	return -EINTR;
3186}
3187
3188static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3189{
3190	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3191		sigset_t newblocked;
3192		/* A set of now blocked but previously unblocked signals. */
3193		sigandnsets(&newblocked, newset, &current->blocked);
3194		retarget_shared_pending(tsk, &newblocked);
3195	}
3196	tsk->blocked = *newset;
3197	recalc_sigpending();
3198}
3199
3200/**
3201 * set_current_blocked - change current->blocked mask
3202 * @newset: new mask
3203 *
3204 * It is wrong to change ->blocked directly, this helper should be used
3205 * to ensure the process can't miss a shared signal we are going to block.
3206 */
3207void set_current_blocked(sigset_t *newset)
3208{
3209	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3210	__set_current_blocked(newset);
3211}
3212
3213void __set_current_blocked(const sigset_t *newset)
3214{
3215	struct task_struct *tsk = current;
3216
3217	/*
3218	 * In case the signal mask hasn't changed, there is nothing we need
3219	 * to do. The current->blocked shouldn't be modified by other task.
3220	 */
3221	if (sigequalsets(&tsk->blocked, newset))
3222		return;
3223
3224	spin_lock_irq(&tsk->sighand->siglock);
3225	__set_task_blocked(tsk, newset);
3226	spin_unlock_irq(&tsk->sighand->siglock);
3227}
3228
3229/*
3230 * This is also useful for kernel threads that want to temporarily
3231 * (or permanently) block certain signals.
3232 *
3233 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3234 * interface happily blocks "unblockable" signals like SIGKILL
3235 * and friends.
3236 */
3237int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3238{
3239	struct task_struct *tsk = current;
3240	sigset_t newset;
3241
3242	/* Lockless, only current can change ->blocked, never from irq */
3243	if (oldset)
3244		*oldset = tsk->blocked;
3245
3246	switch (how) {
3247	case SIG_BLOCK:
3248		sigorsets(&newset, &tsk->blocked, set);
3249		break;
3250	case SIG_UNBLOCK:
3251		sigandnsets(&newset, &tsk->blocked, set);
3252		break;
3253	case SIG_SETMASK:
3254		newset = *set;
3255		break;
3256	default:
3257		return -EINVAL;
3258	}
3259
3260	__set_current_blocked(&newset);
3261	return 0;
3262}
3263EXPORT_SYMBOL(sigprocmask);
3264
3265/*
3266 * The api helps set app-provided sigmasks.
3267 *
3268 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3269 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3270 *
3271 * Note that it does set_restore_sigmask() in advance, so it must be always
3272 * paired with restore_saved_sigmask_unless() before return from syscall.
3273 */
3274int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3275{
3276	sigset_t kmask;
3277
3278	if (!umask)
3279		return 0;
3280	if (sigsetsize != sizeof(sigset_t))
3281		return -EINVAL;
3282	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3283		return -EFAULT;
3284
3285	set_restore_sigmask();
3286	current->saved_sigmask = current->blocked;
3287	set_current_blocked(&kmask);
3288
3289	return 0;
3290}
3291
3292#ifdef CONFIG_COMPAT
3293int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3294			    size_t sigsetsize)
3295{
3296	sigset_t kmask;
3297
3298	if (!umask)
3299		return 0;
3300	if (sigsetsize != sizeof(compat_sigset_t))
3301		return -EINVAL;
3302	if (get_compat_sigset(&kmask, umask))
3303		return -EFAULT;
3304
3305	set_restore_sigmask();
3306	current->saved_sigmask = current->blocked;
3307	set_current_blocked(&kmask);
3308
3309	return 0;
3310}
3311#endif
3312
3313/**
3314 *  sys_rt_sigprocmask - change the list of currently blocked signals
3315 *  @how: whether to add, remove, or set signals
3316 *  @nset: stores pending signals
3317 *  @oset: previous value of signal mask if non-null
3318 *  @sigsetsize: size of sigset_t type
3319 */
3320SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3321		sigset_t __user *, oset, size_t, sigsetsize)
3322{
3323	sigset_t old_set, new_set;
3324	int error;
3325
3326	/* XXX: Don't preclude handling different sized sigset_t's.  */
3327	if (sigsetsize != sizeof(sigset_t))
3328		return -EINVAL;
3329
3330	old_set = current->blocked;
3331
3332	if (nset) {
3333		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3334			return -EFAULT;
3335		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3336
3337		error = sigprocmask(how, &new_set, NULL);
3338		if (error)
3339			return error;
3340	}
3341
3342	if (oset) {
3343		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3344			return -EFAULT;
3345	}
3346
3347	return 0;
3348}
3349
3350#ifdef CONFIG_COMPAT
3351COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3352		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3353{
3354	sigset_t old_set = current->blocked;
3355
3356	/* XXX: Don't preclude handling different sized sigset_t's.  */
3357	if (sigsetsize != sizeof(sigset_t))
3358		return -EINVAL;
3359
3360	if (nset) {
3361		sigset_t new_set;
3362		int error;
3363		if (get_compat_sigset(&new_set, nset))
3364			return -EFAULT;
3365		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3366
3367		error = sigprocmask(how, &new_set, NULL);
3368		if (error)
3369			return error;
3370	}
3371	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3372}
3373#endif
3374
3375static void do_sigpending(sigset_t *set)
3376{
3377	spin_lock_irq(&current->sighand->siglock);
3378	sigorsets(set, &current->pending.signal,
3379		  &current->signal->shared_pending.signal);
3380	spin_unlock_irq(&current->sighand->siglock);
3381
3382	/* Outside the lock because only this thread touches it.  */
3383	sigandsets(set, &current->blocked, set);
3384}
3385
3386/**
3387 *  sys_rt_sigpending - examine a pending signal that has been raised
3388 *			while blocked
3389 *  @uset: stores pending signals
3390 *  @sigsetsize: size of sigset_t type or larger
3391 */
3392SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3393{
3394	sigset_t set;
3395
3396	if (sigsetsize > sizeof(*uset))
3397		return -EINVAL;
3398
3399	do_sigpending(&set);
3400
3401	if (copy_to_user(uset, &set, sigsetsize))
3402		return -EFAULT;
3403
3404	return 0;
3405}
3406
3407#ifdef CONFIG_COMPAT
3408COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3409		compat_size_t, sigsetsize)
3410{
3411	sigset_t set;
3412
3413	if (sigsetsize > sizeof(*uset))
3414		return -EINVAL;
3415
3416	do_sigpending(&set);
3417
3418	return put_compat_sigset(uset, &set, sigsetsize);
3419}
3420#endif
3421
3422static const struct {
3423	unsigned char limit, layout;
3424} sig_sicodes[] = {
3425	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3426	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3427	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3428	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3429	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3430#if defined(SIGEMT)
3431	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3432#endif
3433	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3434	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3435	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3436};
3437
3438static bool known_siginfo_layout(unsigned sig, int si_code)
3439{
3440	if (si_code == SI_KERNEL)
3441		return true;
3442	else if ((si_code > SI_USER)) {
3443		if (sig_specific_sicodes(sig)) {
3444			if (si_code <= sig_sicodes[sig].limit)
3445				return true;
3446		}
3447		else if (si_code <= NSIGPOLL)
3448			return true;
3449	}
3450	else if (si_code >= SI_DETHREAD)
3451		return true;
3452	else if (si_code == SI_ASYNCNL)
3453		return true;
3454	return false;
3455}
3456
3457enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3458{
3459	enum siginfo_layout layout = SIL_KILL;
3460	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3461		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3462		    (si_code <= sig_sicodes[sig].limit)) {
3463			layout = sig_sicodes[sig].layout;
3464			/* Handle the exceptions */
3465			if ((sig == SIGBUS) &&
3466			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3467				layout = SIL_FAULT_MCEERR;
3468			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3469				layout = SIL_FAULT_BNDERR;
3470#ifdef SEGV_PKUERR
3471			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3472				layout = SIL_FAULT_PKUERR;
3473#endif
3474			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3475				layout = SIL_FAULT_PERF_EVENT;
3476			else if (IS_ENABLED(CONFIG_SPARC) &&
3477				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3478				layout = SIL_FAULT_TRAPNO;
3479			else if (IS_ENABLED(CONFIG_ALPHA) &&
3480				 ((sig == SIGFPE) ||
3481				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3482				layout = SIL_FAULT_TRAPNO;
3483		}
3484		else if (si_code <= NSIGPOLL)
3485			layout = SIL_POLL;
3486	} else {
3487		if (si_code == SI_TIMER)
3488			layout = SIL_TIMER;
3489		else if (si_code == SI_SIGIO)
3490			layout = SIL_POLL;
3491		else if (si_code < 0)
3492			layout = SIL_RT;
3493	}
3494	return layout;
3495}
3496
3497static inline char __user *si_expansion(const siginfo_t __user *info)
3498{
3499	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3500}
3501
3502int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3503{
3504	char __user *expansion = si_expansion(to);
3505	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3506		return -EFAULT;
3507	if (clear_user(expansion, SI_EXPANSION_SIZE))
3508		return -EFAULT;
3509	return 0;
3510}
3511
3512static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3513				       const siginfo_t __user *from)
3514{
3515	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3516		char __user *expansion = si_expansion(from);
3517		char buf[SI_EXPANSION_SIZE];
3518		int i;
3519		/*
3520		 * An unknown si_code might need more than
3521		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3522		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3523		 * will return this data to userspace exactly.
3524		 */
3525		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3526			return -EFAULT;
3527		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3528			if (buf[i] != 0)
3529				return -E2BIG;
3530		}
3531	}
3532	return 0;
3533}
3534
3535static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3536				    const siginfo_t __user *from)
3537{
3538	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3539		return -EFAULT;
3540	to->si_signo = signo;
3541	return post_copy_siginfo_from_user(to, from);
3542}
3543
3544int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3545{
3546	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3547		return -EFAULT;
3548	return post_copy_siginfo_from_user(to, from);
3549}
3550
3551#ifdef CONFIG_COMPAT
3552/**
3553 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3554 * @to: compat siginfo destination
3555 * @from: kernel siginfo source
3556 *
3557 * Note: This function does not work properly for the SIGCHLD on x32, but
3558 * fortunately it doesn't have to.  The only valid callers for this function are
3559 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3560 * The latter does not care because SIGCHLD will never cause a coredump.
3561 */
3562void copy_siginfo_to_external32(struct compat_siginfo *to,
3563		const struct kernel_siginfo *from)
3564{
3565	memset(to, 0, sizeof(*to));
 
3566
3567	to->si_signo = from->si_signo;
3568	to->si_errno = from->si_errno;
3569	to->si_code  = from->si_code;
3570	switch(siginfo_layout(from->si_signo, from->si_code)) {
3571	case SIL_KILL:
3572		to->si_pid = from->si_pid;
3573		to->si_uid = from->si_uid;
3574		break;
3575	case SIL_TIMER:
3576		to->si_tid     = from->si_tid;
3577		to->si_overrun = from->si_overrun;
3578		to->si_int     = from->si_int;
3579		break;
3580	case SIL_POLL:
3581		to->si_band = from->si_band;
3582		to->si_fd   = from->si_fd;
3583		break;
3584	case SIL_FAULT:
3585		to->si_addr = ptr_to_compat(from->si_addr);
3586		break;
3587	case SIL_FAULT_TRAPNO:
3588		to->si_addr = ptr_to_compat(from->si_addr);
3589		to->si_trapno = from->si_trapno;
3590		break;
3591	case SIL_FAULT_MCEERR:
3592		to->si_addr = ptr_to_compat(from->si_addr);
3593		to->si_addr_lsb = from->si_addr_lsb;
 
 
 
3594		break;
3595	case SIL_FAULT_BNDERR:
3596		to->si_addr = ptr_to_compat(from->si_addr);
3597		to->si_lower = ptr_to_compat(from->si_lower);
3598		to->si_upper = ptr_to_compat(from->si_upper);
 
 
 
3599		break;
3600	case SIL_FAULT_PKUERR:
3601		to->si_addr = ptr_to_compat(from->si_addr);
3602		to->si_pkey = from->si_pkey;
3603		break;
3604	case SIL_FAULT_PERF_EVENT:
3605		to->si_addr = ptr_to_compat(from->si_addr);
3606		to->si_perf_data = from->si_perf_data;
3607		to->si_perf_type = from->si_perf_type;
3608		to->si_perf_flags = from->si_perf_flags;
3609		break;
3610	case SIL_CHLD:
3611		to->si_pid = from->si_pid;
3612		to->si_uid = from->si_uid;
3613		to->si_status = from->si_status;
3614		to->si_utime = from->si_utime;
3615		to->si_stime = from->si_stime;
 
 
 
 
 
 
 
 
3616		break;
3617	case SIL_RT:
3618		to->si_pid = from->si_pid;
3619		to->si_uid = from->si_uid;
3620		to->si_int = from->si_int;
3621		break;
3622	case SIL_SYS:
3623		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3624		to->si_syscall   = from->si_syscall;
3625		to->si_arch      = from->si_arch;
3626		break;
3627	}
3628}
3629
3630int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3631			   const struct kernel_siginfo *from)
3632{
3633	struct compat_siginfo new;
3634
3635	copy_siginfo_to_external32(&new, from);
3636	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3637		return -EFAULT;
 
3638	return 0;
3639}
3640
3641static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3642					 const struct compat_siginfo *from)
3643{
3644	clear_siginfo(to);
3645	to->si_signo = from->si_signo;
3646	to->si_errno = from->si_errno;
3647	to->si_code  = from->si_code;
3648	switch(siginfo_layout(from->si_signo, from->si_code)) {
3649	case SIL_KILL:
3650		to->si_pid = from->si_pid;
3651		to->si_uid = from->si_uid;
3652		break;
3653	case SIL_TIMER:
3654		to->si_tid     = from->si_tid;
3655		to->si_overrun = from->si_overrun;
3656		to->si_int     = from->si_int;
3657		break;
3658	case SIL_POLL:
3659		to->si_band = from->si_band;
3660		to->si_fd   = from->si_fd;
3661		break;
3662	case SIL_FAULT:
3663		to->si_addr = compat_ptr(from->si_addr);
3664		break;
3665	case SIL_FAULT_TRAPNO:
3666		to->si_addr = compat_ptr(from->si_addr);
3667		to->si_trapno = from->si_trapno;
 
3668		break;
3669	case SIL_FAULT_MCEERR:
3670		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3671		to->si_addr_lsb = from->si_addr_lsb;
3672		break;
3673	case SIL_FAULT_BNDERR:
3674		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3675		to->si_lower = compat_ptr(from->si_lower);
3676		to->si_upper = compat_ptr(from->si_upper);
3677		break;
3678	case SIL_FAULT_PKUERR:
3679		to->si_addr = compat_ptr(from->si_addr);
 
 
 
3680		to->si_pkey = from->si_pkey;
3681		break;
3682	case SIL_FAULT_PERF_EVENT:
3683		to->si_addr = compat_ptr(from->si_addr);
3684		to->si_perf_data = from->si_perf_data;
3685		to->si_perf_type = from->si_perf_type;
3686		to->si_perf_flags = from->si_perf_flags;
3687		break;
3688	case SIL_CHLD:
3689		to->si_pid    = from->si_pid;
3690		to->si_uid    = from->si_uid;
3691		to->si_status = from->si_status;
3692#ifdef CONFIG_X86_X32_ABI
3693		if (in_x32_syscall()) {
3694			to->si_utime = from->_sifields._sigchld_x32._utime;
3695			to->si_stime = from->_sifields._sigchld_x32._stime;
3696		} else
3697#endif
3698		{
3699			to->si_utime = from->si_utime;
3700			to->si_stime = from->si_stime;
3701		}
3702		break;
3703	case SIL_RT:
3704		to->si_pid = from->si_pid;
3705		to->si_uid = from->si_uid;
3706		to->si_int = from->si_int;
3707		break;
3708	case SIL_SYS:
3709		to->si_call_addr = compat_ptr(from->si_call_addr);
3710		to->si_syscall   = from->si_syscall;
3711		to->si_arch      = from->si_arch;
3712		break;
3713	}
3714	return 0;
3715}
3716
3717static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3718				      const struct compat_siginfo __user *ufrom)
3719{
3720	struct compat_siginfo from;
3721
3722	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3723		return -EFAULT;
3724
3725	from.si_signo = signo;
3726	return post_copy_siginfo_from_user32(to, &from);
3727}
3728
3729int copy_siginfo_from_user32(struct kernel_siginfo *to,
3730			     const struct compat_siginfo __user *ufrom)
3731{
3732	struct compat_siginfo from;
3733
3734	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3735		return -EFAULT;
3736
3737	return post_copy_siginfo_from_user32(to, &from);
3738}
3739#endif /* CONFIG_COMPAT */
3740
3741/**
3742 *  do_sigtimedwait - wait for queued signals specified in @which
3743 *  @which: queued signals to wait for
3744 *  @info: if non-null, the signal's siginfo is returned here
3745 *  @ts: upper bound on process time suspension
3746 */
3747static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3748		    const struct timespec64 *ts)
3749{
3750	ktime_t *to = NULL, timeout = KTIME_MAX;
3751	struct task_struct *tsk = current;
3752	sigset_t mask = *which;
3753	enum pid_type type;
3754	int sig, ret = 0;
3755
3756	if (ts) {
3757		if (!timespec64_valid(ts))
3758			return -EINVAL;
3759		timeout = timespec64_to_ktime(*ts);
3760		to = &timeout;
3761	}
3762
3763	/*
3764	 * Invert the set of allowed signals to get those we want to block.
3765	 */
3766	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3767	signotset(&mask);
3768
3769	spin_lock_irq(&tsk->sighand->siglock);
3770	sig = dequeue_signal(&mask, info, &type);
3771	if (!sig && timeout) {
3772		/*
3773		 * None ready, temporarily unblock those we're interested
3774		 * while we are sleeping in so that we'll be awakened when
3775		 * they arrive. Unblocking is always fine, we can avoid
3776		 * set_current_blocked().
3777		 */
3778		tsk->real_blocked = tsk->blocked;
3779		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3780		recalc_sigpending();
3781		spin_unlock_irq(&tsk->sighand->siglock);
3782
3783		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3784		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3785					       HRTIMER_MODE_REL);
3786		spin_lock_irq(&tsk->sighand->siglock);
3787		__set_task_blocked(tsk, &tsk->real_blocked);
3788		sigemptyset(&tsk->real_blocked);
3789		sig = dequeue_signal(&mask, info, &type);
3790	}
3791	spin_unlock_irq(&tsk->sighand->siglock);
3792
3793	if (sig)
3794		return sig;
3795	return ret ? -EINTR : -EAGAIN;
3796}
3797
3798/**
3799 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3800 *			in @uthese
3801 *  @uthese: queued signals to wait for
3802 *  @uinfo: if non-null, the signal's siginfo is returned here
3803 *  @uts: upper bound on process time suspension
3804 *  @sigsetsize: size of sigset_t type
3805 */
3806SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3807		siginfo_t __user *, uinfo,
3808		const struct __kernel_timespec __user *, uts,
3809		size_t, sigsetsize)
3810{
3811	sigset_t these;
3812	struct timespec64 ts;
3813	kernel_siginfo_t info;
3814	int ret;
3815
3816	/* XXX: Don't preclude handling different sized sigset_t's.  */
3817	if (sigsetsize != sizeof(sigset_t))
3818		return -EINVAL;
3819
3820	if (copy_from_user(&these, uthese, sizeof(these)))
3821		return -EFAULT;
3822
3823	if (uts) {
3824		if (get_timespec64(&ts, uts))
3825			return -EFAULT;
3826	}
3827
3828	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3829
3830	if (ret > 0 && uinfo) {
3831		if (copy_siginfo_to_user(uinfo, &info))
3832			ret = -EFAULT;
3833	}
3834
3835	return ret;
3836}
3837
3838#ifdef CONFIG_COMPAT_32BIT_TIME
3839SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3840		siginfo_t __user *, uinfo,
3841		const struct old_timespec32 __user *, uts,
3842		size_t, sigsetsize)
3843{
3844	sigset_t these;
3845	struct timespec64 ts;
3846	kernel_siginfo_t info;
3847	int ret;
3848
3849	if (sigsetsize != sizeof(sigset_t))
3850		return -EINVAL;
3851
3852	if (copy_from_user(&these, uthese, sizeof(these)))
3853		return -EFAULT;
3854
3855	if (uts) {
3856		if (get_old_timespec32(&ts, uts))
3857			return -EFAULT;
3858	}
3859
3860	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3861
3862	if (ret > 0 && uinfo) {
3863		if (copy_siginfo_to_user(uinfo, &info))
3864			ret = -EFAULT;
3865	}
3866
3867	return ret;
3868}
3869#endif
3870
3871#ifdef CONFIG_COMPAT
3872COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3873		struct compat_siginfo __user *, uinfo,
3874		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3875{
3876	sigset_t s;
3877	struct timespec64 t;
3878	kernel_siginfo_t info;
3879	long ret;
3880
3881	if (sigsetsize != sizeof(sigset_t))
3882		return -EINVAL;
3883
3884	if (get_compat_sigset(&s, uthese))
3885		return -EFAULT;
3886
3887	if (uts) {
3888		if (get_timespec64(&t, uts))
3889			return -EFAULT;
3890	}
3891
3892	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3893
3894	if (ret > 0 && uinfo) {
3895		if (copy_siginfo_to_user32(uinfo, &info))
3896			ret = -EFAULT;
3897	}
3898
3899	return ret;
3900}
3901
3902#ifdef CONFIG_COMPAT_32BIT_TIME
3903COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3904		struct compat_siginfo __user *, uinfo,
3905		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3906{
3907	sigset_t s;
3908	struct timespec64 t;
3909	kernel_siginfo_t info;
3910	long ret;
3911
3912	if (sigsetsize != sizeof(sigset_t))
3913		return -EINVAL;
3914
3915	if (get_compat_sigset(&s, uthese))
3916		return -EFAULT;
3917
3918	if (uts) {
3919		if (get_old_timespec32(&t, uts))
3920			return -EFAULT;
3921	}
3922
3923	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3924
3925	if (ret > 0 && uinfo) {
3926		if (copy_siginfo_to_user32(uinfo, &info))
3927			ret = -EFAULT;
3928	}
3929
3930	return ret;
3931}
3932#endif
3933#endif
3934
3935static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3936				 enum pid_type type)
3937{
3938	clear_siginfo(info);
3939	info->si_signo = sig;
3940	info->si_errno = 0;
3941	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3942	info->si_pid = task_tgid_vnr(current);
3943	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3944}
3945
3946/**
3947 *  sys_kill - send a signal to a process
3948 *  @pid: the PID of the process
3949 *  @sig: signal to be sent
3950 */
3951SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3952{
3953	struct kernel_siginfo info;
3954
3955	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3956
3957	return kill_something_info(sig, &info, pid);
3958}
3959
3960/*
3961 * Verify that the signaler and signalee either are in the same pid namespace
3962 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3963 * namespace.
3964 */
3965static bool access_pidfd_pidns(struct pid *pid)
3966{
3967	struct pid_namespace *active = task_active_pid_ns(current);
3968	struct pid_namespace *p = ns_of_pid(pid);
3969
3970	for (;;) {
3971		if (!p)
3972			return false;
3973		if (p == active)
3974			break;
3975		p = p->parent;
3976	}
3977
3978	return true;
3979}
3980
3981static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3982		siginfo_t __user *info)
3983{
3984#ifdef CONFIG_COMPAT
3985	/*
3986	 * Avoid hooking up compat syscalls and instead handle necessary
3987	 * conversions here. Note, this is a stop-gap measure and should not be
3988	 * considered a generic solution.
3989	 */
3990	if (in_compat_syscall())
3991		return copy_siginfo_from_user32(
3992			kinfo, (struct compat_siginfo __user *)info);
3993#endif
3994	return copy_siginfo_from_user(kinfo, info);
3995}
3996
3997static struct pid *pidfd_to_pid(const struct file *file)
3998{
3999	struct pid *pid;
4000
4001	pid = pidfd_pid(file);
4002	if (!IS_ERR(pid))
4003		return pid;
4004
4005	return tgid_pidfd_to_pid(file);
4006}
4007
4008#define PIDFD_SEND_SIGNAL_FLAGS                            \
4009	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
4010	 PIDFD_SIGNAL_PROCESS_GROUP)
4011
4012/**
4013 * sys_pidfd_send_signal - Signal a process through a pidfd
4014 * @pidfd:  file descriptor of the process
4015 * @sig:    signal to send
4016 * @info:   signal info
4017 * @flags:  future flags
4018 *
4019 * Send the signal to the thread group or to the individual thread depending
4020 * on PIDFD_THREAD.
4021 * In the future extension to @flags may be used to override the default scope
4022 * of @pidfd.
 
 
 
 
4023 *
4024 * Return: 0 on success, negative errno on failure
4025 */
4026SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
4027		siginfo_t __user *, info, unsigned int, flags)
4028{
4029	int ret;
 
4030	struct pid *pid;
4031	kernel_siginfo_t kinfo;
4032	enum pid_type type;
4033
4034	/* Enforce flags be set to 0 until we add an extension. */
4035	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
4036		return -EINVAL;
4037
4038	/* Ensure that only a single signal scope determining flag is set. */
4039	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
4040		return -EINVAL;
4041
4042	CLASS(fd, f)(pidfd);
4043	if (fd_empty(f))
4044		return -EBADF;
4045
4046	/* Is this a pidfd? */
4047	pid = pidfd_to_pid(fd_file(f));
4048	if (IS_ERR(pid))
4049		return PTR_ERR(pid);
 
 
4050
 
4051	if (!access_pidfd_pidns(pid))
4052		return -EINVAL;
4053
4054	switch (flags) {
4055	case 0:
4056		/* Infer scope from the type of pidfd. */
4057		if (fd_file(f)->f_flags & PIDFD_THREAD)
4058			type = PIDTYPE_PID;
4059		else
4060			type = PIDTYPE_TGID;
4061		break;
4062	case PIDFD_SIGNAL_THREAD:
4063		type = PIDTYPE_PID;
4064		break;
4065	case PIDFD_SIGNAL_THREAD_GROUP:
4066		type = PIDTYPE_TGID;
4067		break;
4068	case PIDFD_SIGNAL_PROCESS_GROUP:
4069		type = PIDTYPE_PGID;
4070		break;
4071	}
4072
4073	if (info) {
4074		ret = copy_siginfo_from_user_any(&kinfo, info);
4075		if (unlikely(ret))
4076			return ret;
4077
 
4078		if (unlikely(sig != kinfo.si_signo))
4079			return -EINVAL;
4080
4081		/* Only allow sending arbitrary signals to yourself. */
4082		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
 
4083		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
4084			return -EPERM;
4085	} else {
4086		prepare_kill_siginfo(sig, &kinfo, type);
4087	}
4088
4089	if (type == PIDTYPE_PGID)
4090		return kill_pgrp_info(sig, &kinfo, pid);
4091	else
4092		return kill_pid_info_type(sig, &kinfo, pid, type);
 
4093}
4094
4095static int
4096do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4097{
4098	struct task_struct *p;
4099	int error = -ESRCH;
4100
4101	rcu_read_lock();
4102	p = find_task_by_vpid(pid);
4103	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4104		error = check_kill_permission(sig, info, p);
4105		/*
4106		 * The null signal is a permissions and process existence
4107		 * probe.  No signal is actually delivered.
4108		 */
4109		if (!error && sig) {
4110			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4111			/*
4112			 * If lock_task_sighand() failed we pretend the task
4113			 * dies after receiving the signal. The window is tiny,
4114			 * and the signal is private anyway.
4115			 */
4116			if (unlikely(error == -ESRCH))
4117				error = 0;
4118		}
4119	}
4120	rcu_read_unlock();
4121
4122	return error;
4123}
4124
4125static int do_tkill(pid_t tgid, pid_t pid, int sig)
4126{
4127	struct kernel_siginfo info;
4128
4129	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
 
 
 
 
 
4130
4131	return do_send_specific(tgid, pid, sig, &info);
4132}
4133
4134/**
4135 *  sys_tgkill - send signal to one specific thread
4136 *  @tgid: the thread group ID of the thread
4137 *  @pid: the PID of the thread
4138 *  @sig: signal to be sent
4139 *
4140 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4141 *  exists but it's not belonging to the target process anymore. This
4142 *  method solves the problem of threads exiting and PIDs getting reused.
4143 */
4144SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4145{
4146	/* This is only valid for single tasks */
4147	if (pid <= 0 || tgid <= 0)
4148		return -EINVAL;
4149
4150	return do_tkill(tgid, pid, sig);
4151}
4152
4153/**
4154 *  sys_tkill - send signal to one specific task
4155 *  @pid: the PID of the task
4156 *  @sig: signal to be sent
4157 *
4158 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4159 */
4160SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4161{
4162	/* This is only valid for single tasks */
4163	if (pid <= 0)
4164		return -EINVAL;
4165
4166	return do_tkill(0, pid, sig);
4167}
4168
4169static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4170{
4171	/* Not even root can pretend to send signals from the kernel.
4172	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4173	 */
4174	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4175	    (task_pid_vnr(current) != pid))
4176		return -EPERM;
4177
4178	/* POSIX.1b doesn't mention process groups.  */
4179	return kill_proc_info(sig, info, pid);
4180}
4181
4182/**
4183 *  sys_rt_sigqueueinfo - send signal information to a signal
4184 *  @pid: the PID of the thread
4185 *  @sig: signal to be sent
4186 *  @uinfo: signal info to be sent
4187 */
4188SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4189		siginfo_t __user *, uinfo)
4190{
4191	kernel_siginfo_t info;
4192	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4193	if (unlikely(ret))
4194		return ret;
4195	return do_rt_sigqueueinfo(pid, sig, &info);
4196}
4197
4198#ifdef CONFIG_COMPAT
4199COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4200			compat_pid_t, pid,
4201			int, sig,
4202			struct compat_siginfo __user *, uinfo)
4203{
4204	kernel_siginfo_t info;
4205	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4206	if (unlikely(ret))
4207		return ret;
4208	return do_rt_sigqueueinfo(pid, sig, &info);
4209}
4210#endif
4211
4212static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4213{
4214	/* This is only valid for single tasks */
4215	if (pid <= 0 || tgid <= 0)
4216		return -EINVAL;
4217
4218	/* Not even root can pretend to send signals from the kernel.
4219	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4220	 */
4221	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4222	    (task_pid_vnr(current) != pid))
4223		return -EPERM;
4224
4225	return do_send_specific(tgid, pid, sig, info);
4226}
4227
4228SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4229		siginfo_t __user *, uinfo)
4230{
4231	kernel_siginfo_t info;
4232	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4233	if (unlikely(ret))
4234		return ret;
4235	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4236}
4237
4238#ifdef CONFIG_COMPAT
4239COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4240			compat_pid_t, tgid,
4241			compat_pid_t, pid,
4242			int, sig,
4243			struct compat_siginfo __user *, uinfo)
4244{
4245	kernel_siginfo_t info;
4246	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4247	if (unlikely(ret))
4248		return ret;
4249	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4250}
4251#endif
4252
4253/*
4254 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4255 */
4256void kernel_sigaction(int sig, __sighandler_t action)
4257{
4258	spin_lock_irq(&current->sighand->siglock);
4259	current->sighand->action[sig - 1].sa.sa_handler = action;
4260	if (action == SIG_IGN) {
4261		sigset_t mask;
4262
4263		sigemptyset(&mask);
4264		sigaddset(&mask, sig);
4265
4266		flush_sigqueue_mask(current, &mask, &current->signal->shared_pending);
4267		flush_sigqueue_mask(current, &mask, &current->pending);
4268		recalc_sigpending();
4269	}
4270	spin_unlock_irq(&current->sighand->siglock);
4271}
4272EXPORT_SYMBOL(kernel_sigaction);
4273
4274void __weak sigaction_compat_abi(struct k_sigaction *act,
4275		struct k_sigaction *oact)
4276{
4277}
4278
4279int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4280{
4281	struct task_struct *p = current, *t;
4282	struct k_sigaction *k;
4283	sigset_t mask;
4284
4285	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4286		return -EINVAL;
4287
4288	k = &p->sighand->action[sig-1];
4289
4290	spin_lock_irq(&p->sighand->siglock);
4291	if (k->sa.sa_flags & SA_IMMUTABLE) {
4292		spin_unlock_irq(&p->sighand->siglock);
4293		return -EINVAL;
4294	}
4295	if (oact)
4296		*oact = *k;
4297
4298	/*
4299	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4300	 * e.g. by having an architecture use the bit in their uapi.
4301	 */
4302	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4303
4304	/*
4305	 * Clear unknown flag bits in order to allow userspace to detect missing
4306	 * support for flag bits and to allow the kernel to use non-uapi bits
4307	 * internally.
4308	 */
4309	if (act)
4310		act->sa.sa_flags &= UAPI_SA_FLAGS;
4311	if (oact)
4312		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4313
4314	sigaction_compat_abi(act, oact);
4315
4316	if (act) {
4317		bool was_ignored = k->sa.sa_handler == SIG_IGN;
4318
4319		sigdelsetmask(&act->sa.sa_mask,
4320			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4321		*k = *act;
4322		/*
4323		 * POSIX 3.3.1.3:
4324		 *  "Setting a signal action to SIG_IGN for a signal that is
4325		 *   pending shall cause the pending signal to be discarded,
4326		 *   whether or not it is blocked."
4327		 *
4328		 *  "Setting a signal action to SIG_DFL for a signal that is
4329		 *   pending and whose default action is to ignore the signal
4330		 *   (for example, SIGCHLD), shall cause the pending signal to
4331		 *   be discarded, whether or not it is blocked"
4332		 */
4333		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4334			sigemptyset(&mask);
4335			sigaddset(&mask, sig);
4336			flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
4337			for_each_thread(p, t)
4338				flush_sigqueue_mask(p, &mask, &t->pending);
4339		} else if (was_ignored) {
4340			posixtimer_sig_unignore(p, sig);
4341		}
4342	}
4343
4344	spin_unlock_irq(&p->sighand->siglock);
4345	return 0;
4346}
4347
4348#ifdef CONFIG_DYNAMIC_SIGFRAME
4349static inline void sigaltstack_lock(void)
4350	__acquires(&current->sighand->siglock)
4351{
4352	spin_lock_irq(&current->sighand->siglock);
4353}
4354
4355static inline void sigaltstack_unlock(void)
4356	__releases(&current->sighand->siglock)
4357{
4358	spin_unlock_irq(&current->sighand->siglock);
4359}
4360#else
4361static inline void sigaltstack_lock(void) { }
4362static inline void sigaltstack_unlock(void) { }
4363#endif
4364
4365static int
4366do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4367		size_t min_ss_size)
4368{
4369	struct task_struct *t = current;
4370	int ret = 0;
4371
4372	if (oss) {
4373		memset(oss, 0, sizeof(stack_t));
4374		oss->ss_sp = (void __user *) t->sas_ss_sp;
4375		oss->ss_size = t->sas_ss_size;
4376		oss->ss_flags = sas_ss_flags(sp) |
4377			(current->sas_ss_flags & SS_FLAG_BITS);
4378	}
4379
4380	if (ss) {
4381		void __user *ss_sp = ss->ss_sp;
4382		size_t ss_size = ss->ss_size;
4383		unsigned ss_flags = ss->ss_flags;
4384		int ss_mode;
4385
4386		if (unlikely(on_sig_stack(sp)))
4387			return -EPERM;
4388
4389		ss_mode = ss_flags & ~SS_FLAG_BITS;
4390		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4391				ss_mode != 0))
4392			return -EINVAL;
4393
4394		/*
4395		 * Return before taking any locks if no actual
4396		 * sigaltstack changes were requested.
4397		 */
4398		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4399		    t->sas_ss_size == ss_size &&
4400		    t->sas_ss_flags == ss_flags)
4401			return 0;
4402
4403		sigaltstack_lock();
4404		if (ss_mode == SS_DISABLE) {
4405			ss_size = 0;
4406			ss_sp = NULL;
4407		} else {
4408			if (unlikely(ss_size < min_ss_size))
4409				ret = -ENOMEM;
4410			if (!sigaltstack_size_valid(ss_size))
4411				ret = -ENOMEM;
4412		}
4413		if (!ret) {
4414			t->sas_ss_sp = (unsigned long) ss_sp;
4415			t->sas_ss_size = ss_size;
4416			t->sas_ss_flags = ss_flags;
4417		}
4418		sigaltstack_unlock();
 
 
 
4419	}
4420	return ret;
4421}
4422
4423SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4424{
4425	stack_t new, old;
4426	int err;
4427	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4428		return -EFAULT;
4429	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4430			      current_user_stack_pointer(),
4431			      MINSIGSTKSZ);
4432	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4433		err = -EFAULT;
4434	return err;
4435}
4436
4437int restore_altstack(const stack_t __user *uss)
4438{
4439	stack_t new;
4440	if (copy_from_user(&new, uss, sizeof(stack_t)))
4441		return -EFAULT;
4442	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4443			     MINSIGSTKSZ);
4444	/* squash all but EFAULT for now */
4445	return 0;
4446}
4447
4448int __save_altstack(stack_t __user *uss, unsigned long sp)
4449{
4450	struct task_struct *t = current;
4451	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4452		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4453		__put_user(t->sas_ss_size, &uss->ss_size);
4454	return err;
 
 
 
 
4455}
4456
4457#ifdef CONFIG_COMPAT
4458static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4459				 compat_stack_t __user *uoss_ptr)
4460{
4461	stack_t uss, uoss;
4462	int ret;
4463
4464	if (uss_ptr) {
4465		compat_stack_t uss32;
4466		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4467			return -EFAULT;
4468		uss.ss_sp = compat_ptr(uss32.ss_sp);
4469		uss.ss_flags = uss32.ss_flags;
4470		uss.ss_size = uss32.ss_size;
4471	}
4472	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4473			     compat_user_stack_pointer(),
4474			     COMPAT_MINSIGSTKSZ);
4475	if (ret >= 0 && uoss_ptr)  {
4476		compat_stack_t old;
4477		memset(&old, 0, sizeof(old));
4478		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4479		old.ss_flags = uoss.ss_flags;
4480		old.ss_size = uoss.ss_size;
4481		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4482			ret = -EFAULT;
4483	}
4484	return ret;
4485}
4486
4487COMPAT_SYSCALL_DEFINE2(sigaltstack,
4488			const compat_stack_t __user *, uss_ptr,
4489			compat_stack_t __user *, uoss_ptr)
4490{
4491	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4492}
4493
4494int compat_restore_altstack(const compat_stack_t __user *uss)
4495{
4496	int err = do_compat_sigaltstack(uss, NULL);
4497	/* squash all but -EFAULT for now */
4498	return err == -EFAULT ? err : 0;
4499}
4500
4501int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4502{
4503	int err;
4504	struct task_struct *t = current;
4505	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4506			 &uss->ss_sp) |
4507		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4508		__put_user(t->sas_ss_size, &uss->ss_size);
4509	return err;
 
 
 
 
4510}
4511#endif
4512
4513#ifdef __ARCH_WANT_SYS_SIGPENDING
4514
4515/**
4516 *  sys_sigpending - examine pending signals
4517 *  @uset: where mask of pending signal is returned
4518 */
4519SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4520{
4521	sigset_t set;
4522
4523	if (sizeof(old_sigset_t) > sizeof(*uset))
4524		return -EINVAL;
4525
4526	do_sigpending(&set);
4527
4528	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4529		return -EFAULT;
4530
4531	return 0;
4532}
4533
4534#ifdef CONFIG_COMPAT
4535COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4536{
4537	sigset_t set;
4538
4539	do_sigpending(&set);
4540
4541	return put_user(set.sig[0], set32);
4542}
4543#endif
4544
4545#endif
4546
4547#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4548/**
4549 *  sys_sigprocmask - examine and change blocked signals
4550 *  @how: whether to add, remove, or set signals
4551 *  @nset: signals to add or remove (if non-null)
4552 *  @oset: previous value of signal mask if non-null
4553 *
4554 * Some platforms have their own version with special arguments;
4555 * others support only sys_rt_sigprocmask.
4556 */
4557
4558SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4559		old_sigset_t __user *, oset)
4560{
4561	old_sigset_t old_set, new_set;
4562	sigset_t new_blocked;
4563
4564	old_set = current->blocked.sig[0];
4565
4566	if (nset) {
4567		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4568			return -EFAULT;
4569
4570		new_blocked = current->blocked;
4571
4572		switch (how) {
4573		case SIG_BLOCK:
4574			sigaddsetmask(&new_blocked, new_set);
4575			break;
4576		case SIG_UNBLOCK:
4577			sigdelsetmask(&new_blocked, new_set);
4578			break;
4579		case SIG_SETMASK:
4580			new_blocked.sig[0] = new_set;
4581			break;
4582		default:
4583			return -EINVAL;
4584		}
4585
4586		set_current_blocked(&new_blocked);
4587	}
4588
4589	if (oset) {
4590		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4591			return -EFAULT;
4592	}
4593
4594	return 0;
4595}
4596#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4597
4598#ifndef CONFIG_ODD_RT_SIGACTION
4599/**
4600 *  sys_rt_sigaction - alter an action taken by a process
4601 *  @sig: signal to be sent
4602 *  @act: new sigaction
4603 *  @oact: used to save the previous sigaction
4604 *  @sigsetsize: size of sigset_t type
4605 */
4606SYSCALL_DEFINE4(rt_sigaction, int, sig,
4607		const struct sigaction __user *, act,
4608		struct sigaction __user *, oact,
4609		size_t, sigsetsize)
4610{
4611	struct k_sigaction new_sa, old_sa;
4612	int ret;
4613
4614	/* XXX: Don't preclude handling different sized sigset_t's.  */
4615	if (sigsetsize != sizeof(sigset_t))
4616		return -EINVAL;
4617
4618	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4619		return -EFAULT;
4620
4621	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4622	if (ret)
4623		return ret;
4624
4625	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4626		return -EFAULT;
4627
4628	return 0;
4629}
4630#ifdef CONFIG_COMPAT
4631COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4632		const struct compat_sigaction __user *, act,
4633		struct compat_sigaction __user *, oact,
4634		compat_size_t, sigsetsize)
4635{
4636	struct k_sigaction new_ka, old_ka;
4637#ifdef __ARCH_HAS_SA_RESTORER
4638	compat_uptr_t restorer;
4639#endif
4640	int ret;
4641
4642	/* XXX: Don't preclude handling different sized sigset_t's.  */
4643	if (sigsetsize != sizeof(compat_sigset_t))
4644		return -EINVAL;
4645
4646	if (act) {
4647		compat_uptr_t handler;
4648		ret = get_user(handler, &act->sa_handler);
4649		new_ka.sa.sa_handler = compat_ptr(handler);
4650#ifdef __ARCH_HAS_SA_RESTORER
4651		ret |= get_user(restorer, &act->sa_restorer);
4652		new_ka.sa.sa_restorer = compat_ptr(restorer);
4653#endif
4654		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4655		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4656		if (ret)
4657			return -EFAULT;
4658	}
4659
4660	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4661	if (!ret && oact) {
4662		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4663			       &oact->sa_handler);
4664		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4665					 sizeof(oact->sa_mask));
4666		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4667#ifdef __ARCH_HAS_SA_RESTORER
4668		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4669				&oact->sa_restorer);
4670#endif
4671	}
4672	return ret;
4673}
4674#endif
4675#endif /* !CONFIG_ODD_RT_SIGACTION */
4676
4677#ifdef CONFIG_OLD_SIGACTION
4678SYSCALL_DEFINE3(sigaction, int, sig,
4679		const struct old_sigaction __user *, act,
4680	        struct old_sigaction __user *, oact)
4681{
4682	struct k_sigaction new_ka, old_ka;
4683	int ret;
4684
4685	if (act) {
4686		old_sigset_t mask;
4687		if (!access_ok(act, sizeof(*act)) ||
4688		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4689		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4690		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4691		    __get_user(mask, &act->sa_mask))
4692			return -EFAULT;
4693#ifdef __ARCH_HAS_KA_RESTORER
4694		new_ka.ka_restorer = NULL;
4695#endif
4696		siginitset(&new_ka.sa.sa_mask, mask);
4697	}
4698
4699	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4700
4701	if (!ret && oact) {
4702		if (!access_ok(oact, sizeof(*oact)) ||
4703		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4704		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4705		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4706		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4707			return -EFAULT;
4708	}
4709
4710	return ret;
4711}
4712#endif
4713#ifdef CONFIG_COMPAT_OLD_SIGACTION
4714COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4715		const struct compat_old_sigaction __user *, act,
4716	        struct compat_old_sigaction __user *, oact)
4717{
4718	struct k_sigaction new_ka, old_ka;
4719	int ret;
4720	compat_old_sigset_t mask;
4721	compat_uptr_t handler, restorer;
4722
4723	if (act) {
4724		if (!access_ok(act, sizeof(*act)) ||
4725		    __get_user(handler, &act->sa_handler) ||
4726		    __get_user(restorer, &act->sa_restorer) ||
4727		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4728		    __get_user(mask, &act->sa_mask))
4729			return -EFAULT;
4730
4731#ifdef __ARCH_HAS_KA_RESTORER
4732		new_ka.ka_restorer = NULL;
4733#endif
4734		new_ka.sa.sa_handler = compat_ptr(handler);
4735		new_ka.sa.sa_restorer = compat_ptr(restorer);
4736		siginitset(&new_ka.sa.sa_mask, mask);
4737	}
4738
4739	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4740
4741	if (!ret && oact) {
4742		if (!access_ok(oact, sizeof(*oact)) ||
4743		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4744			       &oact->sa_handler) ||
4745		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4746			       &oact->sa_restorer) ||
4747		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4748		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4749			return -EFAULT;
4750	}
4751	return ret;
4752}
4753#endif
4754
4755#ifdef CONFIG_SGETMASK_SYSCALL
4756
4757/*
4758 * For backwards compatibility.  Functionality superseded by sigprocmask.
4759 */
4760SYSCALL_DEFINE0(sgetmask)
4761{
4762	/* SMP safe */
4763	return current->blocked.sig[0];
4764}
4765
4766SYSCALL_DEFINE1(ssetmask, int, newmask)
4767{
4768	int old = current->blocked.sig[0];
4769	sigset_t newset;
4770
4771	siginitset(&newset, newmask);
4772	set_current_blocked(&newset);
4773
4774	return old;
4775}
4776#endif /* CONFIG_SGETMASK_SYSCALL */
4777
4778#ifdef __ARCH_WANT_SYS_SIGNAL
4779/*
4780 * For backwards compatibility.  Functionality superseded by sigaction.
4781 */
4782SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4783{
4784	struct k_sigaction new_sa, old_sa;
4785	int ret;
4786
4787	new_sa.sa.sa_handler = handler;
4788	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4789	sigemptyset(&new_sa.sa.sa_mask);
4790
4791	ret = do_sigaction(sig, &new_sa, &old_sa);
4792
4793	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4794}
4795#endif /* __ARCH_WANT_SYS_SIGNAL */
4796
4797#ifdef __ARCH_WANT_SYS_PAUSE
4798
4799SYSCALL_DEFINE0(pause)
4800{
4801	while (!signal_pending(current)) {
4802		__set_current_state(TASK_INTERRUPTIBLE);
4803		schedule();
4804	}
4805	return -ERESTARTNOHAND;
4806}
4807
4808#endif
4809
4810static int sigsuspend(sigset_t *set)
4811{
4812	current->saved_sigmask = current->blocked;
4813	set_current_blocked(set);
4814
4815	while (!signal_pending(current)) {
4816		__set_current_state(TASK_INTERRUPTIBLE);
4817		schedule();
4818	}
4819	set_restore_sigmask();
4820	return -ERESTARTNOHAND;
4821}
4822
4823/**
4824 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4825 *	@unewset value until a signal is received
4826 *  @unewset: new signal mask value
4827 *  @sigsetsize: size of sigset_t type
4828 */
4829SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4830{
4831	sigset_t newset;
4832
4833	/* XXX: Don't preclude handling different sized sigset_t's.  */
4834	if (sigsetsize != sizeof(sigset_t))
4835		return -EINVAL;
4836
4837	if (copy_from_user(&newset, unewset, sizeof(newset)))
4838		return -EFAULT;
4839	return sigsuspend(&newset);
4840}
4841 
4842#ifdef CONFIG_COMPAT
4843COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4844{
4845	sigset_t newset;
4846
4847	/* XXX: Don't preclude handling different sized sigset_t's.  */
4848	if (sigsetsize != sizeof(sigset_t))
4849		return -EINVAL;
4850
4851	if (get_compat_sigset(&newset, unewset))
4852		return -EFAULT;
4853	return sigsuspend(&newset);
4854}
4855#endif
4856
4857#ifdef CONFIG_OLD_SIGSUSPEND
4858SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4859{
4860	sigset_t blocked;
4861	siginitset(&blocked, mask);
4862	return sigsuspend(&blocked);
4863}
4864#endif
4865#ifdef CONFIG_OLD_SIGSUSPEND3
4866SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4867{
4868	sigset_t blocked;
4869	siginitset(&blocked, mask);
4870	return sigsuspend(&blocked);
4871}
4872#endif
4873
4874__weak const char *arch_vma_name(struct vm_area_struct *vma)
4875{
4876	return NULL;
4877}
4878
4879static inline void siginfo_buildtime_checks(void)
4880{
4881	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4882
4883	/* Verify the offsets in the two siginfos match */
4884#define CHECK_OFFSET(field) \
4885	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4886
4887	/* kill */
4888	CHECK_OFFSET(si_pid);
4889	CHECK_OFFSET(si_uid);
4890
4891	/* timer */
4892	CHECK_OFFSET(si_tid);
4893	CHECK_OFFSET(si_overrun);
4894	CHECK_OFFSET(si_value);
4895
4896	/* rt */
4897	CHECK_OFFSET(si_pid);
4898	CHECK_OFFSET(si_uid);
4899	CHECK_OFFSET(si_value);
4900
4901	/* sigchld */
4902	CHECK_OFFSET(si_pid);
4903	CHECK_OFFSET(si_uid);
4904	CHECK_OFFSET(si_status);
4905	CHECK_OFFSET(si_utime);
4906	CHECK_OFFSET(si_stime);
4907
4908	/* sigfault */
4909	CHECK_OFFSET(si_addr);
4910	CHECK_OFFSET(si_trapno);
4911	CHECK_OFFSET(si_addr_lsb);
4912	CHECK_OFFSET(si_lower);
4913	CHECK_OFFSET(si_upper);
4914	CHECK_OFFSET(si_pkey);
4915	CHECK_OFFSET(si_perf_data);
4916	CHECK_OFFSET(si_perf_type);
4917	CHECK_OFFSET(si_perf_flags);
4918
4919	/* sigpoll */
4920	CHECK_OFFSET(si_band);
4921	CHECK_OFFSET(si_fd);
4922
4923	/* sigsys */
4924	CHECK_OFFSET(si_call_addr);
4925	CHECK_OFFSET(si_syscall);
4926	CHECK_OFFSET(si_arch);
4927#undef CHECK_OFFSET
4928
4929	/* usb asyncio */
4930	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4931		     offsetof(struct siginfo, si_addr));
4932	if (sizeof(int) == sizeof(void __user *)) {
4933		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4934			     sizeof(void __user *));
4935	} else {
4936		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4937			      sizeof_field(struct siginfo, si_uid)) !=
4938			     sizeof(void __user *));
4939		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4940			     offsetof(struct siginfo, si_uid));
4941	}
4942#ifdef CONFIG_COMPAT
4943	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4944		     offsetof(struct compat_siginfo, si_addr));
4945	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4946		     sizeof(compat_uptr_t));
4947	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4948		     sizeof_field(struct siginfo, si_pid));
4949#endif
4950}
4951
4952#if defined(CONFIG_SYSCTL)
4953static struct ctl_table signal_debug_table[] = {
4954#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4955	{
4956		.procname	= "exception-trace",
4957		.data		= &show_unhandled_signals,
4958		.maxlen		= sizeof(int),
4959		.mode		= 0644,
4960		.proc_handler	= proc_dointvec
4961	},
4962#endif
4963};
4964
4965static int __init init_signal_sysctls(void)
4966{
4967	register_sysctl_init("debug", signal_debug_table);
4968	return 0;
4969}
4970early_initcall(init_signal_sysctls);
4971#endif /* CONFIG_SYSCTL */
4972
4973void __init signals_init(void)
4974{
4975	siginfo_buildtime_checks();
4976
4977	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4978}
4979
4980#ifdef CONFIG_KGDB_KDB
4981#include <linux/kdb.h>
4982/*
4983 * kdb_send_sig - Allows kdb to send signals without exposing
4984 * signal internals.  This function checks if the required locks are
4985 * available before calling the main signal code, to avoid kdb
4986 * deadlocks.
4987 */
4988void kdb_send_sig(struct task_struct *t, int sig)
4989{
4990	static struct task_struct *kdb_prev_t;
4991	int new_t, ret;
4992	if (!spin_trylock(&t->sighand->siglock)) {
4993		kdb_printf("Can't do kill command now.\n"
4994			   "The sigmask lock is held somewhere else in "
4995			   "kernel, try again later\n");
4996		return;
4997	}
4998	new_t = kdb_prev_t != t;
4999	kdb_prev_t = t;
5000	if (!task_is_running(t) && new_t) {
5001		spin_unlock(&t->sighand->siglock);
5002		kdb_printf("Process is not RUNNING, sending a signal from "
5003			   "kdb risks deadlock\n"
5004			   "on the run queue locks. "
5005			   "The signal has _not_ been sent.\n"
5006			   "Reissue the kill command if you want to risk "
5007			   "the deadlock.\n");
5008		return;
5009	}
5010	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
5011	spin_unlock(&t->sighand->siglock);
5012	if (ret)
5013		kdb_printf("Fail to deliver Signal %d to process %d.\n",
5014			   sig, t->pid);
5015	else
5016		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
5017}
5018#endif	/* CONFIG_KGDB_KDB */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
 
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/livepatch.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
 
 
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/signal.h>
  52
  53#include <asm/param.h>
  54#include <linux/uaccess.h>
  55#include <asm/unistd.h>
  56#include <asm/siginfo.h>
  57#include <asm/cacheflush.h>
 
 
 
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 185	    !klp_patch_pending(current))
 186		clear_thread_flag(TIF_SIGPENDING);
 187
 188}
 189EXPORT_SYMBOL(recalc_sigpending);
 190
 191void calculate_sigpending(void)
 192{
 193	/* Have any signals or users of TIF_SIGPENDING been delayed
 194	 * until after fork?
 195	 */
 196	spin_lock_irq(&current->sighand->siglock);
 197	set_tsk_thread_flag(current, TIF_SIGPENDING);
 198	recalc_sigpending();
 199	spin_unlock_irq(&current->sighand->siglock);
 200}
 201
 202/* Given the mask, find the first available signal that should be serviced. */
 203
 204#define SYNCHRONOUS_MASK \
 205	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 206	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 207
 208int next_signal(struct sigpending *pending, sigset_t *mask)
 209{
 210	unsigned long i, *s, *m, x;
 211	int sig = 0;
 212
 213	s = pending->signal.sig;
 214	m = mask->sig;
 215
 216	/*
 217	 * Handle the first word specially: it contains the
 218	 * synchronous signals that need to be dequeued first.
 219	 */
 220	x = *s &~ *m;
 221	if (x) {
 222		if (x & SYNCHRONOUS_MASK)
 223			x &= SYNCHRONOUS_MASK;
 224		sig = ffz(~x) + 1;
 225		return sig;
 226	}
 227
 228	switch (_NSIG_WORDS) {
 229	default:
 230		for (i = 1; i < _NSIG_WORDS; ++i) {
 231			x = *++s &~ *++m;
 232			if (!x)
 233				continue;
 234			sig = ffz(~x) + i*_NSIG_BPW + 1;
 235			break;
 236		}
 237		break;
 238
 239	case 2:
 240		x = s[1] &~ m[1];
 241		if (!x)
 242			break;
 243		sig = ffz(~x) + _NSIG_BPW + 1;
 244		break;
 245
 246	case 1:
 247		/* Nothing to do */
 248		break;
 249	}
 250
 251	return sig;
 252}
 253
 254static inline void print_dropped_signal(int sig)
 255{
 256	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 257
 258	if (!print_fatal_signals)
 259		return;
 260
 261	if (!__ratelimit(&ratelimit_state))
 262		return;
 263
 264	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 265				current->comm, current->pid, sig);
 266}
 267
 268/**
 269 * task_set_jobctl_pending - set jobctl pending bits
 270 * @task: target task
 271 * @mask: pending bits to set
 272 *
 273 * Clear @mask from @task->jobctl.  @mask must be subset of
 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 275 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 276 * cleared.  If @task is already being killed or exiting, this function
 277 * becomes noop.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 *
 282 * RETURNS:
 283 * %true if @mask is set, %false if made noop because @task was dying.
 284 */
 285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 286{
 287	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 288			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 289	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 290
 291	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 292		return false;
 293
 294	if (mask & JOBCTL_STOP_SIGMASK)
 295		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 296
 297	task->jobctl |= mask;
 298	return true;
 299}
 300
 301/**
 302 * task_clear_jobctl_trapping - clear jobctl trapping bit
 303 * @task: target task
 304 *
 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 306 * Clear it and wake up the ptracer.  Note that we don't need any further
 307 * locking.  @task->siglock guarantees that @task->parent points to the
 308 * ptracer.
 309 *
 310 * CONTEXT:
 311 * Must be called with @task->sighand->siglock held.
 312 */
 313void task_clear_jobctl_trapping(struct task_struct *task)
 314{
 315	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 316		task->jobctl &= ~JOBCTL_TRAPPING;
 317		smp_mb();	/* advised by wake_up_bit() */
 318		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 319	}
 320}
 321
 322/**
 323 * task_clear_jobctl_pending - clear jobctl pending bits
 324 * @task: target task
 325 * @mask: pending bits to clear
 326 *
 327 * Clear @mask from @task->jobctl.  @mask must be subset of
 328 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 329 * STOP bits are cleared together.
 330 *
 331 * If clearing of @mask leaves no stop or trap pending, this function calls
 332 * task_clear_jobctl_trapping().
 333 *
 334 * CONTEXT:
 335 * Must be called with @task->sighand->siglock held.
 336 */
 337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 338{
 339	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 340
 341	if (mask & JOBCTL_STOP_PENDING)
 342		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 343
 344	task->jobctl &= ~mask;
 345
 346	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 347		task_clear_jobctl_trapping(task);
 348}
 349
 350/**
 351 * task_participate_group_stop - participate in a group stop
 352 * @task: task participating in a group stop
 353 *
 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 355 * Group stop states are cleared and the group stop count is consumed if
 356 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 357 * stop, the appropriate `SIGNAL_*` flags are set.
 358 *
 359 * CONTEXT:
 360 * Must be called with @task->sighand->siglock held.
 361 *
 362 * RETURNS:
 363 * %true if group stop completion should be notified to the parent, %false
 364 * otherwise.
 365 */
 366static bool task_participate_group_stop(struct task_struct *task)
 367{
 368	struct signal_struct *sig = task->signal;
 369	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 370
 371	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 372
 373	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 374
 375	if (!consume)
 376		return false;
 377
 378	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 379		sig->group_stop_count--;
 380
 381	/*
 382	 * Tell the caller to notify completion iff we are entering into a
 383	 * fresh group stop.  Read comment in do_signal_stop() for details.
 384	 */
 385	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 386		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 387		return true;
 388	}
 389	return false;
 390}
 391
 392void task_join_group_stop(struct task_struct *task)
 393{
 
 
 
 
 
 
 
 
 
 394	/* Have the new thread join an on-going signal group stop */
 395	unsigned long jobctl = current->jobctl;
 396	if (jobctl & JOBCTL_STOP_PENDING) {
 397		struct signal_struct *sig = current->signal;
 398		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
 399		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 400		if (task_set_jobctl_pending(task, signr | gstop)) {
 401			sig->group_stop_count++;
 402		}
 403	}
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 413{
 414	struct sigqueue *q = NULL;
 415	struct user_struct *user;
 416
 417	/*
 418	 * Protect access to @t credentials. This can go away when all
 419	 * callers hold rcu read lock.
 
 
 
 
 420	 */
 421	rcu_read_lock();
 422	user = get_uid(__task_cred(t)->user);
 423	atomic_inc(&user->sigpending);
 
 424	rcu_read_unlock();
 
 
 425
 426	if (override_rlimit ||
 427	    atomic_read(&user->sigpending) <=
 428			task_rlimit(t, RLIMIT_SIGPENDING)) {
 429		q = kmem_cache_alloc(sigqueue_cachep, flags);
 430	} else {
 431		print_dropped_signal(sig);
 
 432	}
 433
 434	if (unlikely(q == NULL)) {
 435		atomic_dec(&user->sigpending);
 436		free_uid(user);
 437	} else {
 438		INIT_LIST_HEAD(&q->list);
 439		q->flags = 0;
 440		q->user = user;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441	}
 442
 
 443	return q;
 444}
 445
 446static void __sigqueue_free(struct sigqueue *q)
 447{
 448	if (q->flags & SIGQUEUE_PREALLOC)
 
 449		return;
 450	atomic_dec(&q->user->sigpending);
 451	free_uid(q->user);
 
 
 
 452	kmem_cache_free(sigqueue_cachep, q);
 453}
 454
 455void flush_sigqueue(struct sigpending *queue)
 456{
 457	struct sigqueue *q;
 458
 459	sigemptyset(&queue->signal);
 460	while (!list_empty(&queue->list)) {
 461		q = list_entry(queue->list.next, struct sigqueue , list);
 462		list_del_init(&q->list);
 463		__sigqueue_free(q);
 464	}
 465}
 466
 467/*
 468 * Flush all pending signals for this kthread.
 469 */
 470void flush_signals(struct task_struct *t)
 471{
 472	unsigned long flags;
 473
 474	spin_lock_irqsave(&t->sighand->siglock, flags);
 475	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 476	flush_sigqueue(&t->pending);
 477	flush_sigqueue(&t->signal->shared_pending);
 478	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 479}
 480EXPORT_SYMBOL(flush_signals);
 481
 482#ifdef CONFIG_POSIX_TIMERS
 483static void __flush_itimer_signals(struct sigpending *pending)
 484{
 485	sigset_t signal, retain;
 486	struct sigqueue *q, *n;
 487
 488	signal = pending->signal;
 489	sigemptyset(&retain);
 490
 491	list_for_each_entry_safe(q, n, &pending->list, list) {
 492		int sig = q->info.si_signo;
 493
 494		if (likely(q->info.si_code != SI_TIMER)) {
 495			sigaddset(&retain, sig);
 496		} else {
 497			sigdelset(&signal, sig);
 498			list_del_init(&q->list);
 499			__sigqueue_free(q);
 500		}
 501	}
 502
 503	sigorsets(&pending->signal, &signal, &retain);
 504}
 505
 506void flush_itimer_signals(void)
 507{
 508	struct task_struct *tsk = current;
 509	unsigned long flags;
 510
 511	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 512	__flush_itimer_signals(&tsk->pending);
 513	__flush_itimer_signals(&tsk->signal->shared_pending);
 514	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 515}
 516#endif
 517
 518void ignore_signals(struct task_struct *t)
 519{
 520	int i;
 521
 522	for (i = 0; i < _NSIG; ++i)
 523		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 524
 525	flush_signals(t);
 526}
 527
 528/*
 529 * Flush all handlers for a task.
 530 */
 531
 532void
 533flush_signal_handlers(struct task_struct *t, int force_default)
 534{
 535	int i;
 536	struct k_sigaction *ka = &t->sighand->action[0];
 537	for (i = _NSIG ; i != 0 ; i--) {
 538		if (force_default || ka->sa.sa_handler != SIG_IGN)
 539			ka->sa.sa_handler = SIG_DFL;
 540		ka->sa.sa_flags = 0;
 541#ifdef __ARCH_HAS_SA_RESTORER
 542		ka->sa.sa_restorer = NULL;
 543#endif
 544		sigemptyset(&ka->sa.sa_mask);
 545		ka++;
 546	}
 547}
 548
 549bool unhandled_signal(struct task_struct *tsk, int sig)
 550{
 551	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 552	if (is_global_init(tsk))
 553		return true;
 554
 555	if (handler != SIG_IGN && handler != SIG_DFL)
 556		return false;
 557
 
 
 
 
 558	/* if ptraced, let the tracer determine */
 559	return !tsk->ptrace;
 560}
 561
 562static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 563			   bool *resched_timer)
 564{
 565	struct sigqueue *q, *first = NULL;
 566
 567	/*
 568	 * Collect the siginfo appropriate to this signal.  Check if
 569	 * there is another siginfo for the same signal.
 570	*/
 571	list_for_each_entry(q, &list->list, list) {
 572		if (q->info.si_signo == sig) {
 573			if (first)
 574				goto still_pending;
 575			first = q;
 576		}
 577	}
 578
 579	sigdelset(&list->signal, sig);
 580
 581	if (first) {
 582still_pending:
 583		list_del_init(&first->list);
 584		copy_siginfo(info, &first->info);
 585
 586		*resched_timer =
 587			(first->flags & SIGQUEUE_PREALLOC) &&
 588			(info->si_code == SI_TIMER) &&
 589			(info->si_sys_private);
 590
 591		__sigqueue_free(first);
 
 
 
 
 
 592	} else {
 593		/*
 594		 * Ok, it wasn't in the queue.  This must be
 595		 * a fast-pathed signal or we must have been
 596		 * out of queue space.  So zero out the info.
 597		 */
 598		clear_siginfo(info);
 599		info->si_signo = sig;
 600		info->si_errno = 0;
 601		info->si_code = SI_USER;
 602		info->si_pid = 0;
 603		info->si_uid = 0;
 604	}
 605}
 606
 607static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 608			kernel_siginfo_t *info, bool *resched_timer)
 609{
 610	int sig = next_signal(pending, mask);
 611
 612	if (sig)
 613		collect_signal(sig, pending, info, resched_timer);
 614	return sig;
 615}
 616
 617/*
 618 * Dequeue a signal and return the element to the caller, which is
 619 * expected to free it.
 620 *
 621 * All callers have to hold the siglock.
 622 */
 623int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 624{
 625	bool resched_timer = false;
 
 626	int signr;
 627
 628	/* We only dequeue private signals from ourselves, we don't let
 629	 * signalfd steal them
 630	 */
 631	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 
 
 632	if (!signr) {
 
 633		signr = __dequeue_signal(&tsk->signal->shared_pending,
 634					 mask, info, &resched_timer);
 635#ifdef CONFIG_POSIX_TIMERS
 636		/*
 637		 * itimer signal ?
 638		 *
 639		 * itimers are process shared and we restart periodic
 640		 * itimers in the signal delivery path to prevent DoS
 641		 * attacks in the high resolution timer case. This is
 642		 * compliant with the old way of self-restarting
 643		 * itimers, as the SIGALRM is a legacy signal and only
 644		 * queued once. Changing the restart behaviour to
 645		 * restart the timer in the signal dequeue path is
 646		 * reducing the timer noise on heavy loaded !highres
 647		 * systems too.
 648		 */
 649		if (unlikely(signr == SIGALRM)) {
 650			struct hrtimer *tmr = &tsk->signal->real_timer;
 651
 652			if (!hrtimer_is_queued(tmr) &&
 653			    tsk->signal->it_real_incr != 0) {
 654				hrtimer_forward(tmr, tmr->base->get_time(),
 655						tsk->signal->it_real_incr);
 656				hrtimer_restart(tmr);
 657			}
 658		}
 659#endif
 660	}
 661
 662	recalc_sigpending();
 663	if (!signr)
 664		return 0;
 665
 666	if (unlikely(sig_kernel_stop(signr))) {
 667		/*
 668		 * Set a marker that we have dequeued a stop signal.  Our
 669		 * caller might release the siglock and then the pending
 670		 * stop signal it is about to process is no longer in the
 671		 * pending bitmasks, but must still be cleared by a SIGCONT
 672		 * (and overruled by a SIGKILL).  So those cases clear this
 673		 * shared flag after we've set it.  Note that this flag may
 674		 * remain set after the signal we return is ignored or
 675		 * handled.  That doesn't matter because its only purpose
 676		 * is to alert stop-signal processing code when another
 677		 * processor has come along and cleared the flag.
 678		 */
 679		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 680	}
 681#ifdef CONFIG_POSIX_TIMERS
 682	if (resched_timer) {
 683		/*
 684		 * Release the siglock to ensure proper locking order
 685		 * of timer locks outside of siglocks.  Note, we leave
 686		 * irqs disabled here, since the posix-timers code is
 687		 * about to disable them again anyway.
 688		 */
 689		spin_unlock(&tsk->sighand->siglock);
 690		posixtimer_rearm(info);
 691		spin_lock(&tsk->sighand->siglock);
 692
 693		/* Don't expose the si_sys_private value to userspace */
 694		info->si_sys_private = 0;
 
 695	}
 696#endif
 697	return signr;
 698}
 699EXPORT_SYMBOL_GPL(dequeue_signal);
 700
 701static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 702{
 703	struct task_struct *tsk = current;
 704	struct sigpending *pending = &tsk->pending;
 705	struct sigqueue *q, *sync = NULL;
 706
 707	/*
 708	 * Might a synchronous signal be in the queue?
 709	 */
 710	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 711		return 0;
 712
 713	/*
 714	 * Return the first synchronous signal in the queue.
 715	 */
 716	list_for_each_entry(q, &pending->list, list) {
 717		/* Synchronous signals have a postive si_code */
 718		if ((q->info.si_code > SI_USER) &&
 719		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 720			sync = q;
 721			goto next;
 722		}
 723	}
 724	return 0;
 725next:
 726	/*
 727	 * Check if there is another siginfo for the same signal.
 728	 */
 729	list_for_each_entry_continue(q, &pending->list, list) {
 730		if (q->info.si_signo == sync->info.si_signo)
 731			goto still_pending;
 732	}
 733
 734	sigdelset(&pending->signal, sync->info.si_signo);
 735	recalc_sigpending();
 736still_pending:
 737	list_del_init(&sync->list);
 738	copy_siginfo(info, &sync->info);
 739	__sigqueue_free(sync);
 740	return info->si_signo;
 741}
 742
 743/*
 744 * Tell a process that it has a new active signal..
 745 *
 746 * NOTE! we rely on the previous spin_lock to
 747 * lock interrupts for us! We can only be called with
 748 * "siglock" held, and the local interrupt must
 749 * have been disabled when that got acquired!
 750 *
 751 * No need to set need_resched since signal event passing
 752 * goes through ->blocked
 753 */
 754void signal_wake_up_state(struct task_struct *t, unsigned int state)
 755{
 
 
 756	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 757	/*
 758	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 759	 * case. We don't check t->state here because there is a race with it
 760	 * executing another processor and just now entering stopped state.
 761	 * By using wake_up_state, we ensure the process will wake up and
 762	 * handle its death signal.
 763	 */
 764	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 765		kick_process(t);
 766}
 767
 768/*
 769 * Remove signals in mask from the pending set and queue.
 770 * Returns 1 if any signals were found.
 771 *
 772 * All callers must be holding the siglock.
 773 */
 774static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 
 
 
 
 
 775{
 776	struct sigqueue *q, *n;
 777	sigset_t m;
 778
 
 
 779	sigandsets(&m, mask, &s->signal);
 780	if (sigisemptyset(&m))
 781		return;
 782
 783	sigandnsets(&s->signal, &s->signal, mask);
 784	list_for_each_entry_safe(q, n, &s->list, list) {
 785		if (sigismember(mask, q->info.si_signo)) {
 786			list_del_init(&q->list);
 787			__sigqueue_free(q);
 788		}
 789	}
 790}
 791
 792static inline int is_si_special(const struct kernel_siginfo *info)
 793{
 794	return info <= SEND_SIG_PRIV;
 795}
 796
 797static inline bool si_fromuser(const struct kernel_siginfo *info)
 798{
 799	return info == SEND_SIG_NOINFO ||
 800		(!is_si_special(info) && SI_FROMUSER(info));
 801}
 802
 803/*
 804 * called with RCU read lock from check_kill_permission()
 805 */
 806static bool kill_ok_by_cred(struct task_struct *t)
 807{
 808	const struct cred *cred = current_cred();
 809	const struct cred *tcred = __task_cred(t);
 810
 811	return uid_eq(cred->euid, tcred->suid) ||
 812	       uid_eq(cred->euid, tcred->uid) ||
 813	       uid_eq(cred->uid, tcred->suid) ||
 814	       uid_eq(cred->uid, tcred->uid) ||
 815	       ns_capable(tcred->user_ns, CAP_KILL);
 816}
 817
 818/*
 819 * Bad permissions for sending the signal
 820 * - the caller must hold the RCU read lock
 821 */
 822static int check_kill_permission(int sig, struct kernel_siginfo *info,
 823				 struct task_struct *t)
 824{
 825	struct pid *sid;
 826	int error;
 827
 828	if (!valid_signal(sig))
 829		return -EINVAL;
 830
 831	if (!si_fromuser(info))
 832		return 0;
 833
 834	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 835	if (error)
 836		return error;
 837
 838	if (!same_thread_group(current, t) &&
 839	    !kill_ok_by_cred(t)) {
 840		switch (sig) {
 841		case SIGCONT:
 842			sid = task_session(t);
 843			/*
 844			 * We don't return the error if sid == NULL. The
 845			 * task was unhashed, the caller must notice this.
 846			 */
 847			if (!sid || sid == task_session(current))
 848				break;
 849			/* fall through */
 850		default:
 851			return -EPERM;
 852		}
 853	}
 854
 855	return security_task_kill(t, info, sig, NULL);
 856}
 857
 858/**
 859 * ptrace_trap_notify - schedule trap to notify ptracer
 860 * @t: tracee wanting to notify tracer
 861 *
 862 * This function schedules sticky ptrace trap which is cleared on the next
 863 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 864 * ptracer.
 865 *
 866 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 867 * ptracer is listening for events, tracee is woken up so that it can
 868 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 869 * eventually taken without returning to userland after the existing traps
 870 * are finished by PTRACE_CONT.
 871 *
 872 * CONTEXT:
 873 * Must be called with @task->sighand->siglock held.
 874 */
 875static void ptrace_trap_notify(struct task_struct *t)
 876{
 877	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 878	assert_spin_locked(&t->sighand->siglock);
 879
 880	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 881	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 882}
 883
 884/*
 885 * Handle magic process-wide effects of stop/continue signals. Unlike
 886 * the signal actions, these happen immediately at signal-generation
 887 * time regardless of blocking, ignoring, or handling.  This does the
 888 * actual continuing for SIGCONT, but not the actual stopping for stop
 889 * signals. The process stop is done as a signal action for SIG_DFL.
 890 *
 891 * Returns true if the signal should be actually delivered, otherwise
 892 * it should be dropped.
 893 */
 894static bool prepare_signal(int sig, struct task_struct *p, bool force)
 895{
 896	struct signal_struct *signal = p->signal;
 897	struct task_struct *t;
 898	sigset_t flush;
 899
 900	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 901		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 902			return sig == SIGKILL;
 903		/*
 904		 * The process is in the middle of dying, nothing to do.
 905		 */
 
 906	} else if (sig_kernel_stop(sig)) {
 907		/*
 908		 * This is a stop signal.  Remove SIGCONT from all queues.
 909		 */
 910		siginitset(&flush, sigmask(SIGCONT));
 911		flush_sigqueue_mask(&flush, &signal->shared_pending);
 912		for_each_thread(p, t)
 913			flush_sigqueue_mask(&flush, &t->pending);
 914	} else if (sig == SIGCONT) {
 915		unsigned int why;
 916		/*
 917		 * Remove all stop signals from all queues, wake all threads.
 918		 */
 919		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 920		flush_sigqueue_mask(&flush, &signal->shared_pending);
 921		for_each_thread(p, t) {
 922			flush_sigqueue_mask(&flush, &t->pending);
 923			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 924			if (likely(!(t->ptrace & PT_SEIZED)))
 
 925				wake_up_state(t, __TASK_STOPPED);
 926			else
 927				ptrace_trap_notify(t);
 928		}
 929
 930		/*
 931		 * Notify the parent with CLD_CONTINUED if we were stopped.
 932		 *
 933		 * If we were in the middle of a group stop, we pretend it
 934		 * was already finished, and then continued. Since SIGCHLD
 935		 * doesn't queue we report only CLD_STOPPED, as if the next
 936		 * CLD_CONTINUED was dropped.
 937		 */
 938		why = 0;
 939		if (signal->flags & SIGNAL_STOP_STOPPED)
 940			why |= SIGNAL_CLD_CONTINUED;
 941		else if (signal->group_stop_count)
 942			why |= SIGNAL_CLD_STOPPED;
 943
 944		if (why) {
 945			/*
 946			 * The first thread which returns from do_signal_stop()
 947			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 948			 * notify its parent. See get_signal().
 949			 */
 950			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 951			signal->group_stop_count = 0;
 952			signal->group_exit_code = 0;
 953		}
 954	}
 955
 956	return !sig_ignored(p, sig, force);
 957}
 958
 959/*
 960 * Test if P wants to take SIG.  After we've checked all threads with this,
 961 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 962 * blocking SIG were ruled out because they are not running and already
 963 * have pending signals.  Such threads will dequeue from the shared queue
 964 * as soon as they're available, so putting the signal on the shared queue
 965 * will be equivalent to sending it to one such thread.
 966 */
 967static inline bool wants_signal(int sig, struct task_struct *p)
 968{
 969	if (sigismember(&p->blocked, sig))
 970		return false;
 971
 972	if (p->flags & PF_EXITING)
 973		return false;
 974
 975	if (sig == SIGKILL)
 976		return true;
 977
 978	if (task_is_stopped_or_traced(p))
 979		return false;
 980
 981	return task_curr(p) || !signal_pending(p);
 982}
 983
 984static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 985{
 986	struct signal_struct *signal = p->signal;
 987	struct task_struct *t;
 988
 989	/*
 990	 * Now find a thread we can wake up to take the signal off the queue.
 991	 *
 992	 * If the main thread wants the signal, it gets first crack.
 993	 * Probably the least surprising to the average bear.
 994	 */
 995	if (wants_signal(sig, p))
 996		t = p;
 997	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
 998		/*
 999		 * There is just one thread and it does not need to be woken.
1000		 * It will dequeue unblocked signals before it runs again.
1001		 */
1002		return;
1003	else {
1004		/*
1005		 * Otherwise try to find a suitable thread.
1006		 */
1007		t = signal->curr_target;
1008		while (!wants_signal(sig, t)) {
1009			t = next_thread(t);
1010			if (t == signal->curr_target)
1011				/*
1012				 * No thread needs to be woken.
1013				 * Any eligible threads will see
1014				 * the signal in the queue soon.
1015				 */
1016				return;
1017		}
1018		signal->curr_target = t;
1019	}
1020
1021	/*
1022	 * Found a killable thread.  If the signal will be fatal,
1023	 * then start taking the whole group down immediately.
1024	 */
1025	if (sig_fatal(p, sig) &&
1026	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027	    !sigismember(&t->real_blocked, sig) &&
1028	    (sig == SIGKILL || !p->ptrace)) {
1029		/*
1030		 * This signal will be fatal to the whole group.
1031		 */
1032		if (!sig_kernel_coredump(sig)) {
1033			/*
1034			 * Start a group exit and wake everybody up.
1035			 * This way we don't have other threads
1036			 * running and doing things after a slower
1037			 * thread has the fatal signal pending.
1038			 */
1039			signal->flags = SIGNAL_GROUP_EXIT;
1040			signal->group_exit_code = sig;
1041			signal->group_stop_count = 0;
1042			t = p;
1043			do {
1044				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045				sigaddset(&t->pending.signal, SIGKILL);
1046				signal_wake_up(t, 1);
1047			} while_each_thread(p, t);
1048			return;
1049		}
1050	}
1051
1052	/*
1053	 * The signal is already in the shared-pending queue.
1054	 * Tell the chosen thread to wake up and dequeue it.
1055	 */
1056	signal_wake_up(t, sig == SIGKILL);
1057	return;
1058}
1059
1060static inline bool legacy_queue(struct sigpending *signals, int sig)
1061{
1062	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063}
1064
1065static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066			enum pid_type type, bool force)
1067{
1068	struct sigpending *pending;
1069	struct sigqueue *q;
1070	int override_rlimit;
1071	int ret = 0, result;
1072
1073	assert_spin_locked(&t->sighand->siglock);
1074
1075	result = TRACE_SIGNAL_IGNORED;
1076	if (!prepare_signal(sig, t, force))
1077		goto ret;
1078
1079	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080	/*
1081	 * Short-circuit ignored signals and support queuing
1082	 * exactly one non-rt signal, so that we can get more
1083	 * detailed information about the cause of the signal.
1084	 */
1085	result = TRACE_SIGNAL_ALREADY_PENDING;
1086	if (legacy_queue(pending, sig))
1087		goto ret;
1088
1089	result = TRACE_SIGNAL_DELIVERED;
1090	/*
1091	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1092	 */
1093	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094		goto out_set;
1095
1096	/*
1097	 * Real-time signals must be queued if sent by sigqueue, or
1098	 * some other real-time mechanism.  It is implementation
1099	 * defined whether kill() does so.  We attempt to do so, on
1100	 * the principle of least surprise, but since kill is not
1101	 * allowed to fail with EAGAIN when low on memory we just
1102	 * make sure at least one signal gets delivered and don't
1103	 * pass on the info struct.
1104	 */
1105	if (sig < SIGRTMIN)
1106		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107	else
1108		override_rlimit = 0;
1109
1110	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
 
1111	if (q) {
1112		list_add_tail(&q->list, &pending->list);
1113		switch ((unsigned long) info) {
1114		case (unsigned long) SEND_SIG_NOINFO:
1115			clear_siginfo(&q->info);
1116			q->info.si_signo = sig;
1117			q->info.si_errno = 0;
1118			q->info.si_code = SI_USER;
1119			q->info.si_pid = task_tgid_nr_ns(current,
1120							task_active_pid_ns(t));
1121			rcu_read_lock();
1122			q->info.si_uid =
1123				from_kuid_munged(task_cred_xxx(t, user_ns),
1124						 current_uid());
1125			rcu_read_unlock();
1126			break;
1127		case (unsigned long) SEND_SIG_PRIV:
1128			clear_siginfo(&q->info);
1129			q->info.si_signo = sig;
1130			q->info.si_errno = 0;
1131			q->info.si_code = SI_KERNEL;
1132			q->info.si_pid = 0;
1133			q->info.si_uid = 0;
1134			break;
1135		default:
1136			copy_siginfo(&q->info, info);
1137			break;
1138		}
1139	} else if (!is_si_special(info) &&
1140		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1141		/*
1142		 * Queue overflow, abort.  We may abort if the
1143		 * signal was rt and sent by user using something
1144		 * other than kill().
1145		 */
1146		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147		ret = -EAGAIN;
1148		goto ret;
1149	} else {
1150		/*
1151		 * This is a silent loss of information.  We still
1152		 * send the signal, but the *info bits are lost.
1153		 */
1154		result = TRACE_SIGNAL_LOSE_INFO;
1155	}
1156
1157out_set:
1158	signalfd_notify(t, sig);
1159	sigaddset(&pending->signal, sig);
1160
1161	/* Let multiprocess signals appear after on-going forks */
1162	if (type > PIDTYPE_TGID) {
1163		struct multiprocess_signals *delayed;
1164		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165			sigset_t *signal = &delayed->signal;
1166			/* Can't queue both a stop and a continue signal */
1167			if (sig == SIGCONT)
1168				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169			else if (sig_kernel_stop(sig))
1170				sigdelset(signal, SIGCONT);
1171			sigaddset(signal, sig);
1172		}
1173	}
1174
1175	complete_signal(sig, t, type);
1176ret:
1177	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178	return ret;
1179}
1180
1181static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1182{
1183	bool ret = false;
1184	switch (siginfo_layout(info->si_signo, info->si_code)) {
1185	case SIL_KILL:
1186	case SIL_CHLD:
1187	case SIL_RT:
1188		ret = true;
1189		break;
1190	case SIL_TIMER:
1191	case SIL_POLL:
1192	case SIL_FAULT:
 
1193	case SIL_FAULT_MCEERR:
1194	case SIL_FAULT_BNDERR:
1195	case SIL_FAULT_PKUERR:
 
1196	case SIL_SYS:
1197		ret = false;
1198		break;
1199	}
1200	return ret;
1201}
1202
1203static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204			enum pid_type type)
1205{
1206	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207	bool force = false;
1208
1209	if (info == SEND_SIG_NOINFO) {
1210		/* Force if sent from an ancestor pid namespace */
1211		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212	} else if (info == SEND_SIG_PRIV) {
1213		/* Don't ignore kernel generated signals */
1214		force = true;
1215	} else if (has_si_pid_and_uid(info)) {
1216		/* SIGKILL and SIGSTOP is special or has ids */
1217		struct user_namespace *t_user_ns;
1218
1219		rcu_read_lock();
1220		t_user_ns = task_cred_xxx(t, user_ns);
1221		if (current_user_ns() != t_user_ns) {
1222			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223			info->si_uid = from_kuid_munged(t_user_ns, uid);
1224		}
1225		rcu_read_unlock();
1226
1227		/* A kernel generated signal? */
1228		force = (info->si_code == SI_KERNEL);
1229
1230		/* From an ancestor pid namespace? */
1231		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232			info->si_pid = 0;
1233			force = true;
1234		}
1235	}
1236	return __send_signal(sig, info, t, type, force);
1237}
1238
1239static void print_fatal_signal(int signr)
1240{
1241	struct pt_regs *regs = signal_pt_regs();
1242	pr_info("potentially unexpected fatal signal %d.\n", signr);
 
 
 
 
 
 
 
 
 
 
1243
1244#if defined(__i386__) && !defined(__arch_um__)
1245	pr_info("code at %08lx: ", regs->ip);
1246	{
1247		int i;
1248		for (i = 0; i < 16; i++) {
1249			unsigned char insn;
1250
1251			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252				break;
1253			pr_cont("%02x ", insn);
1254		}
1255	}
1256	pr_cont("\n");
1257#endif
1258	preempt_disable();
1259	show_regs(regs);
1260	preempt_enable();
1261}
1262
1263static int __init setup_print_fatal_signals(char *str)
1264{
1265	get_option (&str, &print_fatal_signals);
1266
1267	return 1;
1268}
1269
1270__setup("print-fatal-signals=", setup_print_fatal_signals);
1271
1272int
1273__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1274{
1275	return send_signal(sig, info, p, PIDTYPE_TGID);
1276}
1277
1278int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279			enum pid_type type)
1280{
1281	unsigned long flags;
1282	int ret = -ESRCH;
1283
1284	if (lock_task_sighand(p, &flags)) {
1285		ret = send_signal(sig, info, p, type);
1286		unlock_task_sighand(p, &flags);
1287	}
1288
1289	return ret;
1290}
1291
 
 
 
 
 
 
1292/*
1293 * Force a signal that the process can't ignore: if necessary
1294 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295 *
1296 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297 * since we do not want to have a signal handler that was blocked
1298 * be invoked when user space had explicitly blocked it.
1299 *
1300 * We don't want to have recursive SIGSEGV's etc, for example,
1301 * that is why we also clear SIGNAL_UNKILLABLE.
1302 */
1303static int
1304force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
 
1305{
1306	unsigned long int flags;
1307	int ret, blocked, ignored;
1308	struct k_sigaction *action;
1309	int sig = info->si_signo;
1310
1311	spin_lock_irqsave(&t->sighand->siglock, flags);
1312	action = &t->sighand->action[sig-1];
1313	ignored = action->sa.sa_handler == SIG_IGN;
1314	blocked = sigismember(&t->blocked, sig);
1315	if (blocked || ignored) {
1316		action->sa.sa_handler = SIG_DFL;
1317		if (blocked) {
 
 
1318			sigdelset(&t->blocked, sig);
1319			recalc_sigpending_and_wake(t);
1320		}
1321	}
1322	/*
1323	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324	 * debugging to leave init killable.
1325	 */
1326	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
 
1327		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328	ret = send_signal(sig, info, t, PIDTYPE_PID);
 
 
 
1329	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330
1331	return ret;
1332}
1333
1334int force_sig_info(struct kernel_siginfo *info)
1335{
1336	return force_sig_info_to_task(info, current);
1337}
1338
1339/*
1340 * Nuke all other threads in the group.
1341 */
1342int zap_other_threads(struct task_struct *p)
1343{
1344	struct task_struct *t = p;
1345	int count = 0;
1346
1347	p->signal->group_stop_count = 0;
1348
1349	while_each_thread(p, t) {
1350		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351		count++;
1352
1353		/* Don't bother with already dead threads */
1354		if (t->exit_state)
1355			continue;
1356		sigaddset(&t->pending.signal, SIGKILL);
1357		signal_wake_up(t, 1);
1358	}
1359
1360	return count;
1361}
1362
1363struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364					   unsigned long *flags)
1365{
1366	struct sighand_struct *sighand;
1367
1368	rcu_read_lock();
1369	for (;;) {
1370		sighand = rcu_dereference(tsk->sighand);
1371		if (unlikely(sighand == NULL))
1372			break;
1373
1374		/*
1375		 * This sighand can be already freed and even reused, but
1376		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377		 * initializes ->siglock: this slab can't go away, it has
1378		 * the same object type, ->siglock can't be reinitialized.
1379		 *
1380		 * We need to ensure that tsk->sighand is still the same
1381		 * after we take the lock, we can race with de_thread() or
1382		 * __exit_signal(). In the latter case the next iteration
1383		 * must see ->sighand == NULL.
1384		 */
1385		spin_lock_irqsave(&sighand->siglock, *flags);
1386		if (likely(sighand == tsk->sighand))
1387			break;
1388		spin_unlock_irqrestore(&sighand->siglock, *flags);
1389	}
1390	rcu_read_unlock();
1391
1392	return sighand;
1393}
1394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395/*
1396 * send signal info to all the members of a group
 
1397 */
1398int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399			struct task_struct *p, enum pid_type type)
1400{
1401	int ret;
1402
1403	rcu_read_lock();
1404	ret = check_kill_permission(sig, info, p);
1405	rcu_read_unlock();
1406
1407	if (!ret && sig)
1408		ret = do_send_sig_info(sig, info, p, type);
1409
1410	return ret;
1411}
1412
1413/*
1414 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415 * control characters do (^C, ^Z etc)
1416 * - the caller must hold at least a readlock on tasklist_lock
1417 */
1418int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419{
1420	struct task_struct *p = NULL;
1421	int retval, success;
1422
1423	success = 0;
1424	retval = -ESRCH;
1425	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427		success |= !err;
1428		retval = err;
 
 
 
 
 
 
1429	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430	return success ? 0 : retval;
 
1431}
1432
1433int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
 
1434{
1435	int error = -ESRCH;
1436	struct task_struct *p;
1437
1438	for (;;) {
1439		rcu_read_lock();
1440		p = pid_task(pid, PIDTYPE_PID);
1441		if (p)
1442			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443		rcu_read_unlock();
1444		if (likely(!p || error != -ESRCH))
1445			return error;
1446
1447		/*
1448		 * The task was unhashed in between, try again.  If it
1449		 * is dead, pid_task() will return NULL, if we race with
1450		 * de_thread() it will find the new leader.
1451		 */
1452	}
1453}
1454
 
 
 
 
 
1455static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456{
1457	int error;
1458	rcu_read_lock();
1459	error = kill_pid_info(sig, info, find_vpid(pid));
1460	rcu_read_unlock();
1461	return error;
1462}
1463
1464static inline bool kill_as_cred_perm(const struct cred *cred,
1465				     struct task_struct *target)
1466{
1467	const struct cred *pcred = __task_cred(target);
1468
1469	return uid_eq(cred->euid, pcred->suid) ||
1470	       uid_eq(cred->euid, pcred->uid) ||
1471	       uid_eq(cred->uid, pcred->suid) ||
1472	       uid_eq(cred->uid, pcred->uid);
1473}
1474
1475/*
1476 * The usb asyncio usage of siginfo is wrong.  The glibc support
1477 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478 * AKA after the generic fields:
1479 *	kernel_pid_t	si_pid;
1480 *	kernel_uid32_t	si_uid;
1481 *	sigval_t	si_value;
1482 *
1483 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484 * after the generic fields is:
1485 *	void __user 	*si_addr;
1486 *
1487 * This is a practical problem when there is a 64bit big endian kernel
1488 * and a 32bit userspace.  As the 32bit address will encoded in the low
1489 * 32bits of the pointer.  Those low 32bits will be stored at higher
1490 * address than appear in a 32 bit pointer.  So userspace will not
1491 * see the address it was expecting for it's completions.
1492 *
1493 * There is nothing in the encoding that can allow
1494 * copy_siginfo_to_user32 to detect this confusion of formats, so
1495 * handle this by requiring the caller of kill_pid_usb_asyncio to
1496 * notice when this situration takes place and to store the 32bit
1497 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498 * parameter.
1499 */
1500int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501			 struct pid *pid, const struct cred *cred)
1502{
1503	struct kernel_siginfo info;
1504	struct task_struct *p;
1505	unsigned long flags;
1506	int ret = -EINVAL;
1507
 
 
 
1508	clear_siginfo(&info);
1509	info.si_signo = sig;
1510	info.si_errno = errno;
1511	info.si_code = SI_ASYNCIO;
1512	*((sigval_t *)&info.si_pid) = addr;
1513
1514	if (!valid_signal(sig))
1515		return ret;
1516
1517	rcu_read_lock();
1518	p = pid_task(pid, PIDTYPE_PID);
1519	if (!p) {
1520		ret = -ESRCH;
1521		goto out_unlock;
1522	}
1523	if (!kill_as_cred_perm(cred, p)) {
1524		ret = -EPERM;
1525		goto out_unlock;
1526	}
1527	ret = security_task_kill(p, &info, sig, cred);
1528	if (ret)
1529		goto out_unlock;
1530
1531	if (sig) {
1532		if (lock_task_sighand(p, &flags)) {
1533			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534			unlock_task_sighand(p, &flags);
1535		} else
1536			ret = -ESRCH;
1537	}
1538out_unlock:
1539	rcu_read_unlock();
1540	return ret;
1541}
1542EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543
1544/*
1545 * kill_something_info() interprets pid in interesting ways just like kill(2).
1546 *
1547 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548 * is probably wrong.  Should make it like BSD or SYSV.
1549 */
1550
1551static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552{
1553	int ret;
1554
1555	if (pid > 0) {
1556		rcu_read_lock();
1557		ret = kill_pid_info(sig, info, find_vpid(pid));
1558		rcu_read_unlock();
1559		return ret;
1560	}
1561
1562	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1563	if (pid == INT_MIN)
1564		return -ESRCH;
1565
1566	read_lock(&tasklist_lock);
1567	if (pid != -1) {
1568		ret = __kill_pgrp_info(sig, info,
1569				pid ? find_vpid(-pid) : task_pgrp(current));
1570	} else {
1571		int retval = 0, count = 0;
1572		struct task_struct * p;
1573
1574		for_each_process(p) {
1575			if (task_pid_vnr(p) > 1 &&
1576					!same_thread_group(p, current)) {
1577				int err = group_send_sig_info(sig, info, p,
1578							      PIDTYPE_MAX);
1579				++count;
1580				if (err != -EPERM)
1581					retval = err;
1582			}
1583		}
1584		ret = count ? retval : -ESRCH;
1585	}
1586	read_unlock(&tasklist_lock);
1587
1588	return ret;
1589}
1590
1591/*
1592 * These are for backward compatibility with the rest of the kernel source.
1593 */
1594
1595int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596{
1597	/*
1598	 * Make sure legacy kernel users don't send in bad values
1599	 * (normal paths check this in check_kill_permission).
1600	 */
1601	if (!valid_signal(sig))
1602		return -EINVAL;
1603
1604	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605}
1606EXPORT_SYMBOL(send_sig_info);
1607
1608#define __si_special(priv) \
1609	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610
1611int
1612send_sig(int sig, struct task_struct *p, int priv)
1613{
1614	return send_sig_info(sig, __si_special(priv), p);
1615}
1616EXPORT_SYMBOL(send_sig);
1617
1618void force_sig(int sig)
1619{
1620	struct kernel_siginfo info;
1621
1622	clear_siginfo(&info);
1623	info.si_signo = sig;
1624	info.si_errno = 0;
1625	info.si_code = SI_KERNEL;
1626	info.si_pid = 0;
1627	info.si_uid = 0;
1628	force_sig_info(&info);
1629}
1630EXPORT_SYMBOL(force_sig);
1631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632/*
1633 * When things go south during signal handling, we
1634 * will force a SIGSEGV. And if the signal that caused
1635 * the problem was already a SIGSEGV, we'll want to
1636 * make sure we don't even try to deliver the signal..
1637 */
1638void force_sigsegv(int sig)
1639{
1640	struct task_struct *p = current;
1641
1642	if (sig == SIGSEGV) {
1643		unsigned long flags;
1644		spin_lock_irqsave(&p->sighand->siglock, flags);
1645		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647	}
1648	force_sig(SIGSEGV);
1649}
1650
1651int force_sig_fault_to_task(int sig, int code, void __user *addr
1652	___ARCH_SI_TRAPNO(int trapno)
1653	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654	, struct task_struct *t)
1655{
1656	struct kernel_siginfo info;
1657
1658	clear_siginfo(&info);
1659	info.si_signo = sig;
1660	info.si_errno = 0;
1661	info.si_code  = code;
1662	info.si_addr  = addr;
1663#ifdef __ARCH_SI_TRAPNO
1664	info.si_trapno = trapno;
1665#endif
1666#ifdef __ia64__
1667	info.si_imm = imm;
1668	info.si_flags = flags;
1669	info.si_isr = isr;
1670#endif
1671	return force_sig_info_to_task(&info, t);
1672}
1673
1674int force_sig_fault(int sig, int code, void __user *addr
1675	___ARCH_SI_TRAPNO(int trapno)
1676	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677{
1678	return force_sig_fault_to_task(sig, code, addr
1679				       ___ARCH_SI_TRAPNO(trapno)
1680				       ___ARCH_SI_IA64(imm, flags, isr), current);
1681}
1682
1683int send_sig_fault(int sig, int code, void __user *addr
1684	___ARCH_SI_TRAPNO(int trapno)
1685	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686	, struct task_struct *t)
1687{
1688	struct kernel_siginfo info;
1689
1690	clear_siginfo(&info);
1691	info.si_signo = sig;
1692	info.si_errno = 0;
1693	info.si_code  = code;
1694	info.si_addr  = addr;
1695#ifdef __ARCH_SI_TRAPNO
1696	info.si_trapno = trapno;
1697#endif
1698#ifdef __ia64__
1699	info.si_imm = imm;
1700	info.si_flags = flags;
1701	info.si_isr = isr;
1702#endif
1703	return send_sig_info(info.si_signo, &info, t);
1704}
1705
1706int force_sig_mceerr(int code, void __user *addr, short lsb)
1707{
1708	struct kernel_siginfo info;
1709
1710	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711	clear_siginfo(&info);
1712	info.si_signo = SIGBUS;
1713	info.si_errno = 0;
1714	info.si_code = code;
1715	info.si_addr = addr;
1716	info.si_addr_lsb = lsb;
1717	return force_sig_info(&info);
1718}
1719
1720int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721{
1722	struct kernel_siginfo info;
1723
1724	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725	clear_siginfo(&info);
1726	info.si_signo = SIGBUS;
1727	info.si_errno = 0;
1728	info.si_code = code;
1729	info.si_addr = addr;
1730	info.si_addr_lsb = lsb;
1731	return send_sig_info(info.si_signo, &info, t);
1732}
1733EXPORT_SYMBOL(send_sig_mceerr);
1734
1735int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736{
1737	struct kernel_siginfo info;
1738
1739	clear_siginfo(&info);
1740	info.si_signo = SIGSEGV;
1741	info.si_errno = 0;
1742	info.si_code  = SEGV_BNDERR;
1743	info.si_addr  = addr;
1744	info.si_lower = lower;
1745	info.si_upper = upper;
1746	return force_sig_info(&info);
1747}
1748
1749#ifdef SEGV_PKUERR
1750int force_sig_pkuerr(void __user *addr, u32 pkey)
1751{
1752	struct kernel_siginfo info;
1753
1754	clear_siginfo(&info);
1755	info.si_signo = SIGSEGV;
1756	info.si_errno = 0;
1757	info.si_code  = SEGV_PKUERR;
1758	info.si_addr  = addr;
1759	info.si_pkey  = pkey;
1760	return force_sig_info(&info);
1761}
1762#endif
1763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764/* For the crazy architectures that include trap information in
1765 * the errno field, instead of an actual errno value.
1766 */
1767int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768{
1769	struct kernel_siginfo info;
1770
1771	clear_siginfo(&info);
1772	info.si_signo = SIGTRAP;
1773	info.si_errno = errno;
1774	info.si_code  = TRAP_HWBKPT;
1775	info.si_addr  = addr;
1776	return force_sig_info(&info);
1777}
1778
1779int kill_pgrp(struct pid *pid, int sig, int priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1780{
1781	int ret;
1782
1783	read_lock(&tasklist_lock);
1784	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785	read_unlock(&tasklist_lock);
 
 
1786
1787	return ret;
 
 
1788}
1789EXPORT_SYMBOL(kill_pgrp);
1790
1791int kill_pid(struct pid *pid, int sig, int priv)
1792{
1793	return kill_pid_info(sig, __si_special(priv), pid);
1794}
1795EXPORT_SYMBOL(kill_pid);
1796
 
1797/*
1798 * These functions support sending signals using preallocated sigqueue
1799 * structures.  This is needed "because realtime applications cannot
1800 * afford to lose notifications of asynchronous events, like timer
1801 * expirations or I/O completions".  In the case of POSIX Timers
1802 * we allocate the sigqueue structure from the timer_create.  If this
1803 * allocation fails we are able to report the failure to the application
1804 * with an EAGAIN error.
1805 */
1806struct sigqueue *sigqueue_alloc(void)
1807{
1808	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
 
1809
1810	if (q)
1811		q->flags |= SIGQUEUE_PREALLOC;
 
 
 
1812
1813	return q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814}
1815
1816void sigqueue_free(struct sigqueue *q)
1817{
1818	unsigned long flags;
1819	spinlock_t *lock = &current->sighand->siglock;
 
 
 
 
 
 
 
1820
1821	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822	/*
1823	 * We must hold ->siglock while testing q->list
1824	 * to serialize with collect_signal() or with
1825	 * __exit_signal()->flush_sigqueue().
1826	 */
1827	spin_lock_irqsave(lock, flags);
1828	q->flags &= ~SIGQUEUE_PREALLOC;
1829	/*
1830	 * If it is queued it will be freed when dequeued,
1831	 * like the "regular" sigqueue.
1832	 */
1833	if (!list_empty(&q->list))
1834		q = NULL;
1835	spin_unlock_irqrestore(lock, flags);
1836
1837	if (q)
1838		__sigqueue_free(q);
 
 
1839}
1840
1841int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842{
 
1843	int sig = q->info.si_signo;
1844	struct sigpending *pending;
1845	struct task_struct *t;
1846	unsigned long flags;
1847	int ret, result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848
1849	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
 
 
 
 
 
1850
1851	ret = -1;
1852	rcu_read_lock();
1853	t = pid_task(pid, type);
1854	if (!t || !likely(lock_task_sighand(t, &flags)))
1855		goto ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856
1857	ret = 1; /* the signal is ignored */
1858	result = TRACE_SIGNAL_IGNORED;
1859	if (!prepare_signal(sig, t, false))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1860		goto out;
 
1861
1862	ret = 0;
1863	if (unlikely(!list_empty(&q->list))) {
1864		/*
1865		 * If an SI_TIMER entry is already queue just increment
1866		 * the overrun count.
1867		 */
1868		BUG_ON(q->info.si_code != SI_TIMER);
1869		q->info.si_overrun++;
1870		result = TRACE_SIGNAL_ALREADY_PENDING;
1871		goto out;
1872	}
1873	q->info.si_overrun = 0;
1874
1875	signalfd_notify(t, sig);
1876	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877	list_add_tail(&q->list, &pending->list);
1878	sigaddset(&pending->signal, sig);
1879	complete_signal(sig, t, type);
 
 
 
 
 
 
 
 
 
1880	result = TRACE_SIGNAL_DELIVERED;
1881out:
1882	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883	unlock_task_sighand(t, &flags);
1884ret:
1885	rcu_read_unlock();
1886	return ret;
1887}
1888
1889static void do_notify_pidfd(struct task_struct *task)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890{
1891	struct pid *pid;
1892
1893	WARN_ON(task->exit_state == 0);
1894	pid = task_pid(task);
1895	wake_up_all(&pid->wait_pidfd);
 
1896}
1897
1898/*
1899 * Let a parent know about the death of a child.
1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901 *
1902 * Returns true if our parent ignored us and so we've switched to
1903 * self-reaping.
1904 */
1905bool do_notify_parent(struct task_struct *tsk, int sig)
1906{
1907	struct kernel_siginfo info;
1908	unsigned long flags;
1909	struct sighand_struct *psig;
1910	bool autoreap = false;
1911	u64 utime, stime;
1912
1913	BUG_ON(sig == -1);
1914
1915 	/* do_notify_parent_cldstop should have been called instead.  */
1916 	BUG_ON(task_is_stopped_or_traced(tsk));
1917
1918	BUG_ON(!tsk->ptrace &&
1919	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920
1921	/* Wake up all pidfd waiters */
1922	do_notify_pidfd(tsk);
 
 
 
1923
1924	if (sig != SIGCHLD) {
1925		/*
1926		 * This is only possible if parent == real_parent.
1927		 * Check if it has changed security domain.
1928		 */
1929		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930			sig = SIGCHLD;
1931	}
1932
1933	clear_siginfo(&info);
1934	info.si_signo = sig;
1935	info.si_errno = 0;
1936	/*
1937	 * We are under tasklist_lock here so our parent is tied to
1938	 * us and cannot change.
1939	 *
1940	 * task_active_pid_ns will always return the same pid namespace
1941	 * until a task passes through release_task.
1942	 *
1943	 * write_lock() currently calls preempt_disable() which is the
1944	 * same as rcu_read_lock(), but according to Oleg, this is not
1945	 * correct to rely on this
1946	 */
1947	rcu_read_lock();
1948	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950				       task_uid(tsk));
1951	rcu_read_unlock();
1952
1953	task_cputime(tsk, &utime, &stime);
1954	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956
1957	info.si_status = tsk->exit_code & 0x7f;
1958	if (tsk->exit_code & 0x80)
1959		info.si_code = CLD_DUMPED;
1960	else if (tsk->exit_code & 0x7f)
1961		info.si_code = CLD_KILLED;
1962	else {
1963		info.si_code = CLD_EXITED;
1964		info.si_status = tsk->exit_code >> 8;
1965	}
1966
1967	psig = tsk->parent->sighand;
1968	spin_lock_irqsave(&psig->siglock, flags);
1969	if (!tsk->ptrace && sig == SIGCHLD &&
1970	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972		/*
1973		 * We are exiting and our parent doesn't care.  POSIX.1
1974		 * defines special semantics for setting SIGCHLD to SIG_IGN
1975		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976		 * automatically and not left for our parent's wait4 call.
1977		 * Rather than having the parent do it as a magic kind of
1978		 * signal handler, we just set this to tell do_exit that we
1979		 * can be cleaned up without becoming a zombie.  Note that
1980		 * we still call __wake_up_parent in this case, because a
1981		 * blocked sys_wait4 might now return -ECHILD.
1982		 *
1983		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984		 * is implementation-defined: we do (if you don't want
1985		 * it, just use SIG_IGN instead).
1986		 */
1987		autoreap = true;
1988		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989			sig = 0;
1990	}
 
 
 
 
1991	if (valid_signal(sig) && sig)
1992		__group_send_sig_info(sig, &info, tsk->parent);
1993	__wake_up_parent(tsk, tsk->parent);
1994	spin_unlock_irqrestore(&psig->siglock, flags);
1995
1996	return autoreap;
1997}
1998
1999/**
2000 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001 * @tsk: task reporting the state change
2002 * @for_ptracer: the notification is for ptracer
2003 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004 *
2005 * Notify @tsk's parent that the stopped/continued state has changed.  If
2006 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008 *
2009 * CONTEXT:
2010 * Must be called with tasklist_lock at least read locked.
2011 */
2012static void do_notify_parent_cldstop(struct task_struct *tsk,
2013				     bool for_ptracer, int why)
2014{
2015	struct kernel_siginfo info;
2016	unsigned long flags;
2017	struct task_struct *parent;
2018	struct sighand_struct *sighand;
2019	u64 utime, stime;
2020
2021	if (for_ptracer) {
2022		parent = tsk->parent;
2023	} else {
2024		tsk = tsk->group_leader;
2025		parent = tsk->real_parent;
2026	}
2027
2028	clear_siginfo(&info);
2029	info.si_signo = SIGCHLD;
2030	info.si_errno = 0;
2031	/*
2032	 * see comment in do_notify_parent() about the following 4 lines
2033	 */
2034	rcu_read_lock();
2035	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037	rcu_read_unlock();
2038
2039	task_cputime(tsk, &utime, &stime);
2040	info.si_utime = nsec_to_clock_t(utime);
2041	info.si_stime = nsec_to_clock_t(stime);
2042
2043 	info.si_code = why;
2044 	switch (why) {
2045 	case CLD_CONTINUED:
2046 		info.si_status = SIGCONT;
2047 		break;
2048 	case CLD_STOPPED:
2049 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2050 		break;
2051 	case CLD_TRAPPED:
2052 		info.si_status = tsk->exit_code & 0x7f;
2053 		break;
2054 	default:
2055 		BUG();
2056 	}
2057
2058	sighand = parent->sighand;
2059	spin_lock_irqsave(&sighand->siglock, flags);
2060	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062		__group_send_sig_info(SIGCHLD, &info, parent);
2063	/*
2064	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065	 */
2066	__wake_up_parent(tsk, parent);
2067	spin_unlock_irqrestore(&sighand->siglock, flags);
2068}
2069
2070static inline bool may_ptrace_stop(void)
2071{
2072	if (!likely(current->ptrace))
2073		return false;
2074	/*
2075	 * Are we in the middle of do_coredump?
2076	 * If so and our tracer is also part of the coredump stopping
2077	 * is a deadlock situation, and pointless because our tracer
2078	 * is dead so don't allow us to stop.
2079	 * If SIGKILL was already sent before the caller unlocked
2080	 * ->siglock we must see ->core_state != NULL. Otherwise it
2081	 * is safe to enter schedule().
2082	 *
2083	 * This is almost outdated, a task with the pending SIGKILL can't
2084	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085	 * after SIGKILL was already dequeued.
2086	 */
2087	if (unlikely(current->mm->core_state) &&
2088	    unlikely(current->mm == current->parent->mm))
2089		return false;
2090
2091	return true;
2092}
2093
2094/*
2095 * Return non-zero if there is a SIGKILL that should be waking us up.
2096 * Called with the siglock held.
2097 */
2098static bool sigkill_pending(struct task_struct *tsk)
2099{
2100	return sigismember(&tsk->pending.signal, SIGKILL) ||
2101	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102}
2103
2104/*
2105 * This must be called with current->sighand->siglock held.
2106 *
2107 * This should be the path for all ptrace stops.
2108 * We always set current->last_siginfo while stopped here.
2109 * That makes it a way to test a stopped process for
2110 * being ptrace-stopped vs being job-control-stopped.
2111 *
2112 * If we actually decide not to stop at all because the tracer
2113 * is gone, we keep current->exit_code unless clear_code.
 
2114 */
2115static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
 
2116	__releases(&current->sighand->siglock)
2117	__acquires(&current->sighand->siglock)
2118{
2119	bool gstop_done = false;
2120
2121	if (arch_ptrace_stop_needed(exit_code, info)) {
2122		/*
2123		 * The arch code has something special to do before a
2124		 * ptrace stop.  This is allowed to block, e.g. for faults
2125		 * on user stack pages.  We can't keep the siglock while
2126		 * calling arch_ptrace_stop, so we must release it now.
2127		 * To preserve proper semantics, we must do this before
2128		 * any signal bookkeeping like checking group_stop_count.
2129		 * Meanwhile, a SIGKILL could come in before we retake the
2130		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2131		 * So after regaining the lock, we must check for SIGKILL.
2132		 */
2133		spin_unlock_irq(&current->sighand->siglock);
2134		arch_ptrace_stop(exit_code, info);
2135		spin_lock_irq(&current->sighand->siglock);
2136		if (sigkill_pending(current))
2137			return;
2138	}
2139
 
 
 
 
 
 
 
 
 
2140	set_special_state(TASK_TRACED);
 
2141
2142	/*
2143	 * We're committing to trapping.  TRACED should be visible before
2144	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145	 * Also, transition to TRACED and updates to ->jobctl should be
2146	 * atomic with respect to siglock and should be done after the arch
2147	 * hook as siglock is released and regrabbed across it.
2148	 *
2149	 *     TRACER				    TRACEE
2150	 *
2151	 *     ptrace_attach()
2152	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2153	 *     do_wait()
2154	 *       set_current_state()                smp_wmb();
2155	 *       ptrace_do_wait()
2156	 *         wait_task_stopped()
2157	 *           task_stopped_code()
2158	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2159	 */
2160	smp_wmb();
2161
 
2162	current->last_siginfo = info;
2163	current->exit_code = exit_code;
2164
2165	/*
2166	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2168	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169	 * could be clear now.  We act as if SIGCONT is received after
2170	 * TASK_TRACED is entered - ignore it.
2171	 */
2172	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173		gstop_done = task_participate_group_stop(current);
2174
2175	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180	/* entering a trap, clear TRAPPING */
2181	task_clear_jobctl_trapping(current);
2182
2183	spin_unlock_irq(&current->sighand->siglock);
2184	read_lock(&tasklist_lock);
2185	if (may_ptrace_stop()) {
2186		/*
2187		 * Notify parents of the stop.
2188		 *
2189		 * While ptraced, there are two parents - the ptracer and
2190		 * the real_parent of the group_leader.  The ptracer should
2191		 * know about every stop while the real parent is only
2192		 * interested in the completion of group stop.  The states
2193		 * for the two don't interact with each other.  Notify
2194		 * separately unless they're gonna be duplicates.
2195		 */
2196		do_notify_parent_cldstop(current, true, why);
2197		if (gstop_done && ptrace_reparented(current))
2198			do_notify_parent_cldstop(current, false, why);
2199
2200		/*
2201		 * Don't want to allow preemption here, because
2202		 * sys_ptrace() needs this task to be inactive.
2203		 *
2204		 * XXX: implement read_unlock_no_resched().
2205		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2206		preempt_disable();
2207		read_unlock(&tasklist_lock);
2208		cgroup_enter_frozen();
 
2209		preempt_enable_no_resched();
2210		freezable_schedule();
2211		cgroup_leave_frozen(true);
2212	} else {
2213		/*
2214		 * By the time we got the lock, our tracer went away.
2215		 * Don't drop the lock yet, another tracer may come.
2216		 *
2217		 * If @gstop_done, the ptracer went away between group stop
2218		 * completion and here.  During detach, it would have set
2219		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221		 * the real parent of the group stop completion is enough.
2222		 */
2223		if (gstop_done)
2224			do_notify_parent_cldstop(current, false, why);
2225
2226		/* tasklist protects us from ptrace_freeze_traced() */
2227		__set_current_state(TASK_RUNNING);
2228		if (clear_code)
2229			current->exit_code = 0;
2230		read_unlock(&tasklist_lock);
2231	}
2232
2233	/*
2234	 * We are back.  Now reacquire the siglock before touching
2235	 * last_siginfo, so that we are sure to have synchronized with
2236	 * any signal-sending on another CPU that wants to examine it.
2237	 */
2238	spin_lock_irq(&current->sighand->siglock);
 
2239	current->last_siginfo = NULL;
 
 
2240
2241	/* LISTENING can be set only during STOP traps, clear it */
2242	current->jobctl &= ~JOBCTL_LISTENING;
2243
2244	/*
2245	 * Queued signals ignored us while we were stopped for tracing.
2246	 * So check for any that we should take before resuming user mode.
2247	 * This sets TIF_SIGPENDING, but never clears it.
2248	 */
2249	recalc_sigpending_tsk(current);
 
2250}
2251
2252static void ptrace_do_notify(int signr, int exit_code, int why)
2253{
2254	kernel_siginfo_t info;
2255
2256	clear_siginfo(&info);
2257	info.si_signo = signr;
2258	info.si_code = exit_code;
2259	info.si_pid = task_pid_vnr(current);
2260	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262	/* Let the debugger run.  */
2263	ptrace_stop(exit_code, why, 1, &info);
2264}
2265
2266void ptrace_notify(int exit_code)
2267{
 
 
2268	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269	if (unlikely(current->task_works))
2270		task_work_run();
2271
2272	spin_lock_irq(&current->sighand->siglock);
2273	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274	spin_unlock_irq(&current->sighand->siglock);
 
2275}
2276
2277/**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it.  If already set, participate in the existing
2283 * group stop.  If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself.  Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299static bool do_signal_stop(int signr)
2300	__releases(&current->sighand->siglock)
2301{
2302	struct signal_struct *sig = current->signal;
2303
2304	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306		struct task_struct *t;
2307
2308		/* signr will be recorded in task->jobctl for retries */
2309		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312		    unlikely(signal_group_exit(sig)))
 
2313			return false;
2314		/*
2315		 * There is no group stop already in progress.  We must
2316		 * initiate one now.
2317		 *
2318		 * While ptraced, a task may be resumed while group stop is
2319		 * still in effect and then receive a stop signal and
2320		 * initiate another group stop.  This deviates from the
2321		 * usual behavior as two consecutive stop signals can't
2322		 * cause two group stops when !ptraced.  That is why we
2323		 * also check !task_is_stopped(t) below.
2324		 *
2325		 * The condition can be distinguished by testing whether
2326		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2327		 * group_exit_code in such case.
2328		 *
2329		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330		 * an intervening stop signal is required to cause two
2331		 * continued events regardless of ptrace.
2332		 */
2333		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334			sig->group_exit_code = signr;
2335
2336		sig->group_stop_count = 0;
2337
2338		if (task_set_jobctl_pending(current, signr | gstop))
2339			sig->group_stop_count++;
2340
2341		t = current;
2342		while_each_thread(current, t) {
2343			/*
2344			 * Setting state to TASK_STOPPED for a group
2345			 * stop is always done with the siglock held,
2346			 * so this check has no races.
2347			 */
2348			if (!task_is_stopped(t) &&
2349			    task_set_jobctl_pending(t, signr | gstop)) {
2350				sig->group_stop_count++;
2351				if (likely(!(t->ptrace & PT_SEIZED)))
2352					signal_wake_up(t, 0);
2353				else
2354					ptrace_trap_notify(t);
2355			}
2356		}
2357	}
2358
2359	if (likely(!current->ptrace)) {
2360		int notify = 0;
2361
2362		/*
2363		 * If there are no other threads in the group, or if there
2364		 * is a group stop in progress and we are the last to stop,
2365		 * report to the parent.
2366		 */
2367		if (task_participate_group_stop(current))
2368			notify = CLD_STOPPED;
2369
 
2370		set_special_state(TASK_STOPPED);
2371		spin_unlock_irq(&current->sighand->siglock);
2372
2373		/*
2374		 * Notify the parent of the group stop completion.  Because
2375		 * we're not holding either the siglock or tasklist_lock
2376		 * here, ptracer may attach inbetween; however, this is for
2377		 * group stop and should always be delivered to the real
2378		 * parent of the group leader.  The new ptracer will get
2379		 * its notification when this task transitions into
2380		 * TASK_TRACED.
2381		 */
2382		if (notify) {
2383			read_lock(&tasklist_lock);
2384			do_notify_parent_cldstop(current, false, notify);
2385			read_unlock(&tasklist_lock);
2386		}
2387
2388		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2389		cgroup_enter_frozen();
2390		freezable_schedule();
2391		return true;
2392	} else {
2393		/*
2394		 * While ptraced, group stop is handled by STOP trap.
2395		 * Schedule it and let the caller deal with it.
2396		 */
2397		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398		return false;
2399	}
2400}
2401
2402/**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417static void do_jobctl_trap(void)
2418{
2419	struct signal_struct *signal = current->signal;
2420	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422	if (current->ptrace & PT_SEIZED) {
2423		if (!signal->group_stop_count &&
2424		    !(signal->flags & SIGNAL_STOP_STOPPED))
2425			signr = SIGTRAP;
2426		WARN_ON_ONCE(!signr);
2427		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428				 CLD_STOPPED);
2429	} else {
2430		WARN_ON_ONCE(!signr);
2431		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432		current->exit_code = 0;
2433	}
2434}
2435
2436/**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446static void do_freezer_trap(void)
2447	__releases(&current->sighand->siglock)
2448{
2449	/*
2450	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451	 * let's make another loop to give it a chance to be handled.
2452	 * In any case, we'll return back.
2453	 */
2454	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455	     JOBCTL_TRAP_FREEZE) {
2456		spin_unlock_irq(&current->sighand->siglock);
2457		return;
2458	}
2459
2460	/*
2461	 * Now we're sure that there is no pending fatal signal and no
2462	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463	 * immediately (if there is a non-fatal signal pending), and
2464	 * put the task into sleep.
2465	 */
2466	__set_current_state(TASK_INTERRUPTIBLE);
2467	clear_thread_flag(TIF_SIGPENDING);
2468	spin_unlock_irq(&current->sighand->siglock);
2469	cgroup_enter_frozen();
2470	freezable_schedule();
 
 
 
 
 
 
 
 
2471}
2472
2473static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474{
2475	/*
2476	 * We do not check sig_kernel_stop(signr) but set this marker
2477	 * unconditionally because we do not know whether debugger will
2478	 * change signr. This flag has no meaning unless we are going
2479	 * to stop after return from ptrace_stop(). In this case it will
2480	 * be checked in do_signal_stop(), we should only stop if it was
2481	 * not cleared by SIGCONT while we were sleeping. See also the
2482	 * comment in dequeue_signal().
2483	 */
2484	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487	/* We're back.  Did the debugger cancel the sig?  */
2488	signr = current->exit_code;
2489	if (signr == 0)
2490		return signr;
2491
2492	current->exit_code = 0;
2493
2494	/*
2495	 * Update the siginfo structure if the signal has
2496	 * changed.  If the debugger wanted something
2497	 * specific in the siginfo structure then it should
2498	 * have updated *info via PTRACE_SETSIGINFO.
2499	 */
2500	if (signr != info->si_signo) {
2501		clear_siginfo(info);
2502		info->si_signo = signr;
2503		info->si_errno = 0;
2504		info->si_code = SI_USER;
2505		rcu_read_lock();
2506		info->si_pid = task_pid_vnr(current->parent);
2507		info->si_uid = from_kuid_munged(current_user_ns(),
2508						task_uid(current->parent));
2509		rcu_read_unlock();
2510	}
2511
2512	/* If the (new) signal is now blocked, requeue it.  */
2513	if (sigismember(&current->blocked, signr)) {
2514		send_signal(signr, info, current, PIDTYPE_PID);
 
2515		signr = 0;
2516	}
2517
2518	return signr;
2519}
2520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2521bool get_signal(struct ksignal *ksig)
2522{
2523	struct sighand_struct *sighand = current->sighand;
2524	struct signal_struct *signal = current->signal;
2525	int signr;
2526
2527	if (unlikely(current->task_works))
 
2528		task_work_run();
2529
 
 
 
2530	if (unlikely(uprobe_deny_signal()))
2531		return false;
2532
2533	/*
2534	 * Do this once, we can't return to user-mode if freezing() == T.
2535	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536	 * thus do not need another check after return.
2537	 */
2538	try_to_freeze();
2539
2540relock:
2541	spin_lock_irq(&sighand->siglock);
 
2542	/*
2543	 * Every stopped thread goes here after wakeup. Check to see if
2544	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546	 */
2547	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548		int why;
2549
2550		if (signal->flags & SIGNAL_CLD_CONTINUED)
2551			why = CLD_CONTINUED;
2552		else
2553			why = CLD_STOPPED;
2554
2555		signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557		spin_unlock_irq(&sighand->siglock);
2558
2559		/*
2560		 * Notify the parent that we're continuing.  This event is
2561		 * always per-process and doesn't make whole lot of sense
2562		 * for ptracers, who shouldn't consume the state via
2563		 * wait(2) either, but, for backward compatibility, notify
2564		 * the ptracer of the group leader too unless it's gonna be
2565		 * a duplicate.
2566		 */
2567		read_lock(&tasklist_lock);
2568		do_notify_parent_cldstop(current, false, why);
2569
2570		if (ptrace_reparented(current->group_leader))
2571			do_notify_parent_cldstop(current->group_leader,
2572						true, why);
2573		read_unlock(&tasklist_lock);
2574
2575		goto relock;
2576	}
2577
2578	/* Has this task already been marked for death? */
2579	if (signal_group_exit(signal)) {
2580		ksig->info.si_signo = signr = SIGKILL;
2581		sigdelset(&current->pending.signal, SIGKILL);
2582		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583				&sighand->action[SIGKILL - 1]);
2584		recalc_sigpending();
2585		goto fatal;
2586	}
2587
2588	for (;;) {
2589		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590
2591		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592		    do_signal_stop(0))
2593			goto relock;
2594
2595		if (unlikely(current->jobctl &
2596			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597			if (current->jobctl & JOBCTL_TRAP_MASK) {
2598				do_jobctl_trap();
2599				spin_unlock_irq(&sighand->siglock);
2600			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601				do_freezer_trap();
2602
2603			goto relock;
2604		}
2605
2606		/*
2607		 * If the task is leaving the frozen state, let's update
2608		 * cgroup counters and reset the frozen bit.
2609		 */
2610		if (unlikely(cgroup_task_frozen(current))) {
2611			spin_unlock_irq(&sighand->siglock);
2612			cgroup_leave_frozen(false);
2613			goto relock;
2614		}
2615
2616		/*
2617		 * Signals generated by the execution of an instruction
2618		 * need to be delivered before any other pending signals
2619		 * so that the instruction pointer in the signal stack
2620		 * frame points to the faulting instruction.
2621		 */
 
2622		signr = dequeue_synchronous_signal(&ksig->info);
2623		if (!signr)
2624			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2625
2626		if (!signr)
2627			break; /* will return 0 */
2628
2629		if (unlikely(current->ptrace) && signr != SIGKILL) {
2630			signr = ptrace_signal(signr, &ksig->info);
 
2631			if (!signr)
2632				continue;
2633		}
2634
2635		ka = &sighand->action[signr-1];
2636
2637		/* Trace actually delivered signals. */
2638		trace_signal_deliver(signr, &ksig->info, ka);
2639
2640		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2641			continue;
2642		if (ka->sa.sa_handler != SIG_DFL) {
2643			/* Run the handler.  */
2644			ksig->ka = *ka;
2645
2646			if (ka->sa.sa_flags & SA_ONESHOT)
2647				ka->sa.sa_handler = SIG_DFL;
2648
2649			break; /* will return non-zero "signr" value */
2650		}
2651
2652		/*
2653		 * Now we are doing the default action for this signal.
2654		 */
2655		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656			continue;
2657
2658		/*
2659		 * Global init gets no signals it doesn't want.
2660		 * Container-init gets no signals it doesn't want from same
2661		 * container.
2662		 *
2663		 * Note that if global/container-init sees a sig_kernel_only()
2664		 * signal here, the signal must have been generated internally
2665		 * or must have come from an ancestor namespace. In either
2666		 * case, the signal cannot be dropped.
2667		 */
2668		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669				!sig_kernel_only(signr))
2670			continue;
2671
2672		if (sig_kernel_stop(signr)) {
2673			/*
2674			 * The default action is to stop all threads in
2675			 * the thread group.  The job control signals
2676			 * do nothing in an orphaned pgrp, but SIGSTOP
2677			 * always works.  Note that siglock needs to be
2678			 * dropped during the call to is_orphaned_pgrp()
2679			 * because of lock ordering with tasklist_lock.
2680			 * This allows an intervening SIGCONT to be posted.
2681			 * We need to check for that and bail out if necessary.
2682			 */
2683			if (signr != SIGSTOP) {
2684				spin_unlock_irq(&sighand->siglock);
2685
2686				/* signals can be posted during this window */
2687
2688				if (is_current_pgrp_orphaned())
2689					goto relock;
2690
2691				spin_lock_irq(&sighand->siglock);
2692			}
2693
2694			if (likely(do_signal_stop(ksig->info.si_signo))) {
2695				/* It released the siglock.  */
2696				goto relock;
2697			}
2698
2699			/*
2700			 * We didn't actually stop, due to a race
2701			 * with SIGCONT or something like that.
2702			 */
2703			continue;
2704		}
2705
2706	fatal:
2707		spin_unlock_irq(&sighand->siglock);
2708		if (unlikely(cgroup_task_frozen(current)))
2709			cgroup_leave_frozen(true);
2710
2711		/*
2712		 * Anything else is fatal, maybe with a core dump.
2713		 */
2714		current->flags |= PF_SIGNALED;
2715
2716		if (sig_kernel_coredump(signr)) {
2717			if (print_fatal_signals)
2718				print_fatal_signal(ksig->info.si_signo);
2719			proc_coredump_connector(current);
2720			/*
2721			 * If it was able to dump core, this kills all
2722			 * other threads in the group and synchronizes with
2723			 * their demise.  If we lost the race with another
2724			 * thread getting here, it set group_exit_code
2725			 * first and our do_group_exit call below will use
2726			 * that value and ignore the one we pass it.
2727			 */
2728			do_coredump(&ksig->info);
2729		}
2730
2731		/*
 
 
 
 
 
 
 
 
 
2732		 * Death signals, no core dump.
2733		 */
2734		do_group_exit(ksig->info.si_signo);
2735		/* NOTREACHED */
2736	}
2737	spin_unlock_irq(&sighand->siglock);
2738
2739	ksig->sig = signr;
2740	return ksig->sig > 0;
 
 
 
 
2741}
2742
2743/**
2744 * signal_delivered - 
2745 * @ksig:		kernel signal struct
2746 * @stepping:		nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2752 */
2753static void signal_delivered(struct ksignal *ksig, int stepping)
2754{
2755	sigset_t blocked;
2756
2757	/* A signal was successfully delivered, and the
2758	   saved sigmask was stored on the signal frame,
2759	   and will be restored by sigreturn.  So we can
2760	   simply clear the restore sigmask flag.  */
2761	clear_restore_sigmask();
2762
2763	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2764	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765		sigaddset(&blocked, ksig->sig);
2766	set_current_blocked(&blocked);
2767	tracehook_signal_handler(stepping);
 
 
 
2768}
2769
2770void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771{
2772	if (failed)
2773		force_sigsegv(ksig->sig);
2774	else
2775		signal_delivered(ksig, stepping);
2776}
2777
2778/*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784{
2785	sigset_t retarget;
2786	struct task_struct *t;
2787
2788	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789	if (sigisemptyset(&retarget))
2790		return;
2791
2792	t = tsk;
2793	while_each_thread(tsk, t) {
2794		if (t->flags & PF_EXITING)
2795			continue;
2796
2797		if (!has_pending_signals(&retarget, &t->blocked))
2798			continue;
2799		/* Remove the signals this thread can handle. */
2800		sigandsets(&retarget, &retarget, &t->blocked);
2801
2802		if (!signal_pending(t))
2803			signal_wake_up(t, 0);
2804
2805		if (sigisemptyset(&retarget))
2806			break;
2807	}
2808}
2809
2810void exit_signals(struct task_struct *tsk)
2811{
2812	int group_stop = 0;
2813	sigset_t unblocked;
2814
2815	/*
2816	 * @tsk is about to have PF_EXITING set - lock out users which
2817	 * expect stable threadgroup.
2818	 */
2819	cgroup_threadgroup_change_begin(tsk);
2820
2821	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
 
2822		tsk->flags |= PF_EXITING;
2823		cgroup_threadgroup_change_end(tsk);
2824		return;
2825	}
2826
2827	spin_lock_irq(&tsk->sighand->siglock);
2828	/*
2829	 * From now this task is not visible for group-wide signals,
2830	 * see wants_signal(), do_signal_stop().
2831	 */
 
2832	tsk->flags |= PF_EXITING;
2833
2834	cgroup_threadgroup_change_end(tsk);
2835
2836	if (!signal_pending(tsk))
2837		goto out;
2838
2839	unblocked = tsk->blocked;
2840	signotset(&unblocked);
2841	retarget_shared_pending(tsk, &unblocked);
2842
2843	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844	    task_participate_group_stop(tsk))
2845		group_stop = CLD_STOPPED;
2846out:
2847	spin_unlock_irq(&tsk->sighand->siglock);
2848
2849	/*
2850	 * If group stop has completed, deliver the notification.  This
2851	 * should always go to the real parent of the group leader.
2852	 */
2853	if (unlikely(group_stop)) {
2854		read_lock(&tasklist_lock);
2855		do_notify_parent_cldstop(tsk, false, group_stop);
2856		read_unlock(&tasklist_lock);
2857	}
2858}
2859
2860/*
2861 * System call entry points.
2862 */
2863
2864/**
2865 *  sys_restart_syscall - restart a system call
2866 */
2867SYSCALL_DEFINE0(restart_syscall)
2868{
2869	struct restart_block *restart = &current->restart_block;
2870	return restart->fn(restart);
2871}
2872
2873long do_no_restart_syscall(struct restart_block *param)
2874{
2875	return -EINTR;
2876}
2877
2878static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879{
2880	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881		sigset_t newblocked;
2882		/* A set of now blocked but previously unblocked signals. */
2883		sigandnsets(&newblocked, newset, &current->blocked);
2884		retarget_shared_pending(tsk, &newblocked);
2885	}
2886	tsk->blocked = *newset;
2887	recalc_sigpending();
2888}
2889
2890/**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897void set_current_blocked(sigset_t *newset)
2898{
2899	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900	__set_current_blocked(newset);
2901}
2902
2903void __set_current_blocked(const sigset_t *newset)
2904{
2905	struct task_struct *tsk = current;
2906
2907	/*
2908	 * In case the signal mask hasn't changed, there is nothing we need
2909	 * to do. The current->blocked shouldn't be modified by other task.
2910	 */
2911	if (sigequalsets(&tsk->blocked, newset))
2912		return;
2913
2914	spin_lock_irq(&tsk->sighand->siglock);
2915	__set_task_blocked(tsk, newset);
2916	spin_unlock_irq(&tsk->sighand->siglock);
2917}
2918
2919/*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928{
2929	struct task_struct *tsk = current;
2930	sigset_t newset;
2931
2932	/* Lockless, only current can change ->blocked, never from irq */
2933	if (oldset)
2934		*oldset = tsk->blocked;
2935
2936	switch (how) {
2937	case SIG_BLOCK:
2938		sigorsets(&newset, &tsk->blocked, set);
2939		break;
2940	case SIG_UNBLOCK:
2941		sigandnsets(&newset, &tsk->blocked, set);
2942		break;
2943	case SIG_SETMASK:
2944		newset = *set;
2945		break;
2946	default:
2947		return -EINVAL;
2948	}
2949
2950	__set_current_blocked(&newset);
2951	return 0;
2952}
2953EXPORT_SYMBOL(sigprocmask);
2954
2955/*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965{
2966	sigset_t kmask;
2967
2968	if (!umask)
2969		return 0;
2970	if (sigsetsize != sizeof(sigset_t))
2971		return -EINVAL;
2972	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973		return -EFAULT;
2974
2975	set_restore_sigmask();
2976	current->saved_sigmask = current->blocked;
2977	set_current_blocked(&kmask);
2978
2979	return 0;
2980}
2981
2982#ifdef CONFIG_COMPAT
2983int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984			    size_t sigsetsize)
2985{
2986	sigset_t kmask;
2987
2988	if (!umask)
2989		return 0;
2990	if (sigsetsize != sizeof(compat_sigset_t))
2991		return -EINVAL;
2992	if (get_compat_sigset(&kmask, umask))
2993		return -EFAULT;
2994
2995	set_restore_sigmask();
2996	current->saved_sigmask = current->blocked;
2997	set_current_blocked(&kmask);
2998
2999	return 0;
3000}
3001#endif
3002
3003/**
3004 *  sys_rt_sigprocmask - change the list of currently blocked signals
3005 *  @how: whether to add, remove, or set signals
3006 *  @nset: stores pending signals
3007 *  @oset: previous value of signal mask if non-null
3008 *  @sigsetsize: size of sigset_t type
3009 */
3010SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011		sigset_t __user *, oset, size_t, sigsetsize)
3012{
3013	sigset_t old_set, new_set;
3014	int error;
3015
3016	/* XXX: Don't preclude handling different sized sigset_t's.  */
3017	if (sigsetsize != sizeof(sigset_t))
3018		return -EINVAL;
3019
3020	old_set = current->blocked;
3021
3022	if (nset) {
3023		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024			return -EFAULT;
3025		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027		error = sigprocmask(how, &new_set, NULL);
3028		if (error)
3029			return error;
3030	}
3031
3032	if (oset) {
3033		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034			return -EFAULT;
3035	}
3036
3037	return 0;
3038}
3039
3040#ifdef CONFIG_COMPAT
3041COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043{
3044	sigset_t old_set = current->blocked;
3045
3046	/* XXX: Don't preclude handling different sized sigset_t's.  */
3047	if (sigsetsize != sizeof(sigset_t))
3048		return -EINVAL;
3049
3050	if (nset) {
3051		sigset_t new_set;
3052		int error;
3053		if (get_compat_sigset(&new_set, nset))
3054			return -EFAULT;
3055		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057		error = sigprocmask(how, &new_set, NULL);
3058		if (error)
3059			return error;
3060	}
3061	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3062}
3063#endif
3064
3065static void do_sigpending(sigset_t *set)
3066{
3067	spin_lock_irq(&current->sighand->siglock);
3068	sigorsets(set, &current->pending.signal,
3069		  &current->signal->shared_pending.signal);
3070	spin_unlock_irq(&current->sighand->siglock);
3071
3072	/* Outside the lock because only this thread touches it.  */
3073	sigandsets(set, &current->blocked, set);
3074}
3075
3076/**
3077 *  sys_rt_sigpending - examine a pending signal that has been raised
3078 *			while blocked
3079 *  @uset: stores pending signals
3080 *  @sigsetsize: size of sigset_t type or larger
3081 */
3082SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083{
3084	sigset_t set;
3085
3086	if (sigsetsize > sizeof(*uset))
3087		return -EINVAL;
3088
3089	do_sigpending(&set);
3090
3091	if (copy_to_user(uset, &set, sigsetsize))
3092		return -EFAULT;
3093
3094	return 0;
3095}
3096
3097#ifdef CONFIG_COMPAT
3098COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099		compat_size_t, sigsetsize)
3100{
3101	sigset_t set;
3102
3103	if (sigsetsize > sizeof(*uset))
3104		return -EINVAL;
3105
3106	do_sigpending(&set);
3107
3108	return put_compat_sigset(uset, &set, sigsetsize);
3109}
3110#endif
3111
3112static const struct {
3113	unsigned char limit, layout;
3114} sig_sicodes[] = {
3115	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3116	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3117	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3119	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120#if defined(SIGEMT)
3121	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3122#endif
3123	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3126};
3127
3128static bool known_siginfo_layout(unsigned sig, int si_code)
3129{
3130	if (si_code == SI_KERNEL)
3131		return true;
3132	else if ((si_code > SI_USER)) {
3133		if (sig_specific_sicodes(sig)) {
3134			if (si_code <= sig_sicodes[sig].limit)
3135				return true;
3136		}
3137		else if (si_code <= NSIGPOLL)
3138			return true;
3139	}
3140	else if (si_code >= SI_DETHREAD)
3141		return true;
3142	else if (si_code == SI_ASYNCNL)
3143		return true;
3144	return false;
3145}
3146
3147enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148{
3149	enum siginfo_layout layout = SIL_KILL;
3150	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152		    (si_code <= sig_sicodes[sig].limit)) {
3153			layout = sig_sicodes[sig].layout;
3154			/* Handle the exceptions */
3155			if ((sig == SIGBUS) &&
3156			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157				layout = SIL_FAULT_MCEERR;
3158			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159				layout = SIL_FAULT_BNDERR;
3160#ifdef SEGV_PKUERR
3161			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162				layout = SIL_FAULT_PKUERR;
3163#endif
 
 
 
 
 
 
 
 
 
3164		}
3165		else if (si_code <= NSIGPOLL)
3166			layout = SIL_POLL;
3167	} else {
3168		if (si_code == SI_TIMER)
3169			layout = SIL_TIMER;
3170		else if (si_code == SI_SIGIO)
3171			layout = SIL_POLL;
3172		else if (si_code < 0)
3173			layout = SIL_RT;
3174	}
3175	return layout;
3176}
3177
3178static inline char __user *si_expansion(const siginfo_t __user *info)
3179{
3180	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181}
3182
3183int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184{
3185	char __user *expansion = si_expansion(to);
3186	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187		return -EFAULT;
3188	if (clear_user(expansion, SI_EXPANSION_SIZE))
3189		return -EFAULT;
3190	return 0;
3191}
3192
3193static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194				       const siginfo_t __user *from)
3195{
3196	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197		char __user *expansion = si_expansion(from);
3198		char buf[SI_EXPANSION_SIZE];
3199		int i;
3200		/*
3201		 * An unknown si_code might need more than
3202		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3203		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3204		 * will return this data to userspace exactly.
3205		 */
3206		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207			return -EFAULT;
3208		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209			if (buf[i] != 0)
3210				return -E2BIG;
3211		}
3212	}
3213	return 0;
3214}
3215
3216static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217				    const siginfo_t __user *from)
3218{
3219	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220		return -EFAULT;
3221	to->si_signo = signo;
3222	return post_copy_siginfo_from_user(to, from);
3223}
3224
3225int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226{
3227	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228		return -EFAULT;
3229	return post_copy_siginfo_from_user(to, from);
3230}
3231
3232#ifdef CONFIG_COMPAT
3233int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234			   const struct kernel_siginfo *from)
3235#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236{
3237	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238}
3239int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240			     const struct kernel_siginfo *from, bool x32_ABI)
3241#endif
 
 
 
3242{
3243	struct compat_siginfo new;
3244	memset(&new, 0, sizeof(new));
3245
3246	new.si_signo = from->si_signo;
3247	new.si_errno = from->si_errno;
3248	new.si_code  = from->si_code;
3249	switch(siginfo_layout(from->si_signo, from->si_code)) {
3250	case SIL_KILL:
3251		new.si_pid = from->si_pid;
3252		new.si_uid = from->si_uid;
3253		break;
3254	case SIL_TIMER:
3255		new.si_tid     = from->si_tid;
3256		new.si_overrun = from->si_overrun;
3257		new.si_int     = from->si_int;
3258		break;
3259	case SIL_POLL:
3260		new.si_band = from->si_band;
3261		new.si_fd   = from->si_fd;
3262		break;
3263	case SIL_FAULT:
3264		new.si_addr = ptr_to_compat(from->si_addr);
3265#ifdef __ARCH_SI_TRAPNO
3266		new.si_trapno = from->si_trapno;
3267#endif
 
3268		break;
3269	case SIL_FAULT_MCEERR:
3270		new.si_addr = ptr_to_compat(from->si_addr);
3271#ifdef __ARCH_SI_TRAPNO
3272		new.si_trapno = from->si_trapno;
3273#endif
3274		new.si_addr_lsb = from->si_addr_lsb;
3275		break;
3276	case SIL_FAULT_BNDERR:
3277		new.si_addr = ptr_to_compat(from->si_addr);
3278#ifdef __ARCH_SI_TRAPNO
3279		new.si_trapno = from->si_trapno;
3280#endif
3281		new.si_lower = ptr_to_compat(from->si_lower);
3282		new.si_upper = ptr_to_compat(from->si_upper);
3283		break;
3284	case SIL_FAULT_PKUERR:
3285		new.si_addr = ptr_to_compat(from->si_addr);
3286#ifdef __ARCH_SI_TRAPNO
3287		new.si_trapno = from->si_trapno;
3288#endif
3289		new.si_pkey = from->si_pkey;
 
 
 
3290		break;
3291	case SIL_CHLD:
3292		new.si_pid    = from->si_pid;
3293		new.si_uid    = from->si_uid;
3294		new.si_status = from->si_status;
3295#ifdef CONFIG_X86_X32_ABI
3296		if (x32_ABI) {
3297			new._sifields._sigchld_x32._utime = from->si_utime;
3298			new._sifields._sigchld_x32._stime = from->si_stime;
3299		} else
3300#endif
3301		{
3302			new.si_utime = from->si_utime;
3303			new.si_stime = from->si_stime;
3304		}
3305		break;
3306	case SIL_RT:
3307		new.si_pid = from->si_pid;
3308		new.si_uid = from->si_uid;
3309		new.si_int = from->si_int;
3310		break;
3311	case SIL_SYS:
3312		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313		new.si_syscall   = from->si_syscall;
3314		new.si_arch      = from->si_arch;
3315		break;
3316	}
 
3317
 
 
 
 
 
 
3318	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319		return -EFAULT;
3320
3321	return 0;
3322}
3323
3324static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325					 const struct compat_siginfo *from)
3326{
3327	clear_siginfo(to);
3328	to->si_signo = from->si_signo;
3329	to->si_errno = from->si_errno;
3330	to->si_code  = from->si_code;
3331	switch(siginfo_layout(from->si_signo, from->si_code)) {
3332	case SIL_KILL:
3333		to->si_pid = from->si_pid;
3334		to->si_uid = from->si_uid;
3335		break;
3336	case SIL_TIMER:
3337		to->si_tid     = from->si_tid;
3338		to->si_overrun = from->si_overrun;
3339		to->si_int     = from->si_int;
3340		break;
3341	case SIL_POLL:
3342		to->si_band = from->si_band;
3343		to->si_fd   = from->si_fd;
3344		break;
3345	case SIL_FAULT:
3346		to->si_addr = compat_ptr(from->si_addr);
3347#ifdef __ARCH_SI_TRAPNO
 
 
3348		to->si_trapno = from->si_trapno;
3349#endif
3350		break;
3351	case SIL_FAULT_MCEERR:
3352		to->si_addr = compat_ptr(from->si_addr);
3353#ifdef __ARCH_SI_TRAPNO
3354		to->si_trapno = from->si_trapno;
3355#endif
3356		to->si_addr_lsb = from->si_addr_lsb;
3357		break;
3358	case SIL_FAULT_BNDERR:
3359		to->si_addr = compat_ptr(from->si_addr);
3360#ifdef __ARCH_SI_TRAPNO
3361		to->si_trapno = from->si_trapno;
3362#endif
3363		to->si_lower = compat_ptr(from->si_lower);
3364		to->si_upper = compat_ptr(from->si_upper);
3365		break;
3366	case SIL_FAULT_PKUERR:
3367		to->si_addr = compat_ptr(from->si_addr);
3368#ifdef __ARCH_SI_TRAPNO
3369		to->si_trapno = from->si_trapno;
3370#endif
3371		to->si_pkey = from->si_pkey;
3372		break;
 
 
 
 
 
 
3373	case SIL_CHLD:
3374		to->si_pid    = from->si_pid;
3375		to->si_uid    = from->si_uid;
3376		to->si_status = from->si_status;
3377#ifdef CONFIG_X86_X32_ABI
3378		if (in_x32_syscall()) {
3379			to->si_utime = from->_sifields._sigchld_x32._utime;
3380			to->si_stime = from->_sifields._sigchld_x32._stime;
3381		} else
3382#endif
3383		{
3384			to->si_utime = from->si_utime;
3385			to->si_stime = from->si_stime;
3386		}
3387		break;
3388	case SIL_RT:
3389		to->si_pid = from->si_pid;
3390		to->si_uid = from->si_uid;
3391		to->si_int = from->si_int;
3392		break;
3393	case SIL_SYS:
3394		to->si_call_addr = compat_ptr(from->si_call_addr);
3395		to->si_syscall   = from->si_syscall;
3396		to->si_arch      = from->si_arch;
3397		break;
3398	}
3399	return 0;
3400}
3401
3402static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403				      const struct compat_siginfo __user *ufrom)
3404{
3405	struct compat_siginfo from;
3406
3407	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408		return -EFAULT;
3409
3410	from.si_signo = signo;
3411	return post_copy_siginfo_from_user32(to, &from);
3412}
3413
3414int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415			     const struct compat_siginfo __user *ufrom)
3416{
3417	struct compat_siginfo from;
3418
3419	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420		return -EFAULT;
3421
3422	return post_copy_siginfo_from_user32(to, &from);
3423}
3424#endif /* CONFIG_COMPAT */
3425
3426/**
3427 *  do_sigtimedwait - wait for queued signals specified in @which
3428 *  @which: queued signals to wait for
3429 *  @info: if non-null, the signal's siginfo is returned here
3430 *  @ts: upper bound on process time suspension
3431 */
3432static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433		    const struct timespec64 *ts)
3434{
3435	ktime_t *to = NULL, timeout = KTIME_MAX;
3436	struct task_struct *tsk = current;
3437	sigset_t mask = *which;
 
3438	int sig, ret = 0;
3439
3440	if (ts) {
3441		if (!timespec64_valid(ts))
3442			return -EINVAL;
3443		timeout = timespec64_to_ktime(*ts);
3444		to = &timeout;
3445	}
3446
3447	/*
3448	 * Invert the set of allowed signals to get those we want to block.
3449	 */
3450	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451	signotset(&mask);
3452
3453	spin_lock_irq(&tsk->sighand->siglock);
3454	sig = dequeue_signal(tsk, &mask, info);
3455	if (!sig && timeout) {
3456		/*
3457		 * None ready, temporarily unblock those we're interested
3458		 * while we are sleeping in so that we'll be awakened when
3459		 * they arrive. Unblocking is always fine, we can avoid
3460		 * set_current_blocked().
3461		 */
3462		tsk->real_blocked = tsk->blocked;
3463		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464		recalc_sigpending();
3465		spin_unlock_irq(&tsk->sighand->siglock);
3466
3467		__set_current_state(TASK_INTERRUPTIBLE);
3468		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469							 HRTIMER_MODE_REL);
3470		spin_lock_irq(&tsk->sighand->siglock);
3471		__set_task_blocked(tsk, &tsk->real_blocked);
3472		sigemptyset(&tsk->real_blocked);
3473		sig = dequeue_signal(tsk, &mask, info);
3474	}
3475	spin_unlock_irq(&tsk->sighand->siglock);
3476
3477	if (sig)
3478		return sig;
3479	return ret ? -EINTR : -EAGAIN;
3480}
3481
3482/**
3483 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 *			in @uthese
3485 *  @uthese: queued signals to wait for
3486 *  @uinfo: if non-null, the signal's siginfo is returned here
3487 *  @uts: upper bound on process time suspension
3488 *  @sigsetsize: size of sigset_t type
3489 */
3490SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491		siginfo_t __user *, uinfo,
3492		const struct __kernel_timespec __user *, uts,
3493		size_t, sigsetsize)
3494{
3495	sigset_t these;
3496	struct timespec64 ts;
3497	kernel_siginfo_t info;
3498	int ret;
3499
3500	/* XXX: Don't preclude handling different sized sigset_t's.  */
3501	if (sigsetsize != sizeof(sigset_t))
3502		return -EINVAL;
3503
3504	if (copy_from_user(&these, uthese, sizeof(these)))
3505		return -EFAULT;
3506
3507	if (uts) {
3508		if (get_timespec64(&ts, uts))
3509			return -EFAULT;
3510	}
3511
3512	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514	if (ret > 0 && uinfo) {
3515		if (copy_siginfo_to_user(uinfo, &info))
3516			ret = -EFAULT;
3517	}
3518
3519	return ret;
3520}
3521
3522#ifdef CONFIG_COMPAT_32BIT_TIME
3523SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524		siginfo_t __user *, uinfo,
3525		const struct old_timespec32 __user *, uts,
3526		size_t, sigsetsize)
3527{
3528	sigset_t these;
3529	struct timespec64 ts;
3530	kernel_siginfo_t info;
3531	int ret;
3532
3533	if (sigsetsize != sizeof(sigset_t))
3534		return -EINVAL;
3535
3536	if (copy_from_user(&these, uthese, sizeof(these)))
3537		return -EFAULT;
3538
3539	if (uts) {
3540		if (get_old_timespec32(&ts, uts))
3541			return -EFAULT;
3542	}
3543
3544	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546	if (ret > 0 && uinfo) {
3547		if (copy_siginfo_to_user(uinfo, &info))
3548			ret = -EFAULT;
3549	}
3550
3551	return ret;
3552}
3553#endif
3554
3555#ifdef CONFIG_COMPAT
3556COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557		struct compat_siginfo __user *, uinfo,
3558		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559{
3560	sigset_t s;
3561	struct timespec64 t;
3562	kernel_siginfo_t info;
3563	long ret;
3564
3565	if (sigsetsize != sizeof(sigset_t))
3566		return -EINVAL;
3567
3568	if (get_compat_sigset(&s, uthese))
3569		return -EFAULT;
3570
3571	if (uts) {
3572		if (get_timespec64(&t, uts))
3573			return -EFAULT;
3574	}
3575
3576	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578	if (ret > 0 && uinfo) {
3579		if (copy_siginfo_to_user32(uinfo, &info))
3580			ret = -EFAULT;
3581	}
3582
3583	return ret;
3584}
3585
3586#ifdef CONFIG_COMPAT_32BIT_TIME
3587COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588		struct compat_siginfo __user *, uinfo,
3589		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590{
3591	sigset_t s;
3592	struct timespec64 t;
3593	kernel_siginfo_t info;
3594	long ret;
3595
3596	if (sigsetsize != sizeof(sigset_t))
3597		return -EINVAL;
3598
3599	if (get_compat_sigset(&s, uthese))
3600		return -EFAULT;
3601
3602	if (uts) {
3603		if (get_old_timespec32(&t, uts))
3604			return -EFAULT;
3605	}
3606
3607	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609	if (ret > 0 && uinfo) {
3610		if (copy_siginfo_to_user32(uinfo, &info))
3611			ret = -EFAULT;
3612	}
3613
3614	return ret;
3615}
3616#endif
3617#endif
3618
3619static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
 
3620{
3621	clear_siginfo(info);
3622	info->si_signo = sig;
3623	info->si_errno = 0;
3624	info->si_code = SI_USER;
3625	info->si_pid = task_tgid_vnr(current);
3626	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627}
3628
3629/**
3630 *  sys_kill - send a signal to a process
3631 *  @pid: the PID of the process
3632 *  @sig: signal to be sent
3633 */
3634SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635{
3636	struct kernel_siginfo info;
3637
3638	prepare_kill_siginfo(sig, &info);
3639
3640	return kill_something_info(sig, &info, pid);
3641}
3642
3643/*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648static bool access_pidfd_pidns(struct pid *pid)
3649{
3650	struct pid_namespace *active = task_active_pid_ns(current);
3651	struct pid_namespace *p = ns_of_pid(pid);
3652
3653	for (;;) {
3654		if (!p)
3655			return false;
3656		if (p == active)
3657			break;
3658		p = p->parent;
3659	}
3660
3661	return true;
3662}
3663
3664static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
 
3665{
3666#ifdef CONFIG_COMPAT
3667	/*
3668	 * Avoid hooking up compat syscalls and instead handle necessary
3669	 * conversions here. Note, this is a stop-gap measure and should not be
3670	 * considered a generic solution.
3671	 */
3672	if (in_compat_syscall())
3673		return copy_siginfo_from_user32(
3674			kinfo, (struct compat_siginfo __user *)info);
3675#endif
3676	return copy_siginfo_from_user(kinfo, info);
3677}
3678
3679static struct pid *pidfd_to_pid(const struct file *file)
3680{
3681	struct pid *pid;
3682
3683	pid = pidfd_pid(file);
3684	if (!IS_ERR(pid))
3685		return pid;
3686
3687	return tgid_pidfd_to_pid(file);
3688}
3689
 
 
 
 
3690/**
3691 * sys_pidfd_send_signal - Signal a process through a pidfd
3692 * @pidfd:  file descriptor of the process
3693 * @sig:    signal to send
3694 * @info:   signal info
3695 * @flags:  future flags
3696 *
3697 * The syscall currently only signals via PIDTYPE_PID which covers
3698 * kill(<positive-pid>, <signal>. It does not signal threads or process
3699 * groups.
3700 * In order to extend the syscall to threads and process groups the @flags
3701 * argument should be used. In essence, the @flags argument will determine
3702 * what is signaled and not the file descriptor itself. Put in other words,
3703 * grouping is a property of the flags argument not a property of the file
3704 * descriptor.
3705 *
3706 * Return: 0 on success, negative errno on failure
3707 */
3708SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709		siginfo_t __user *, info, unsigned int, flags)
3710{
3711	int ret;
3712	struct fd f;
3713	struct pid *pid;
3714	kernel_siginfo_t kinfo;
 
3715
3716	/* Enforce flags be set to 0 until we add an extension. */
3717	if (flags)
 
 
 
 
3718		return -EINVAL;
3719
3720	f = fdget(pidfd);
3721	if (!f.file)
3722		return -EBADF;
3723
3724	/* Is this a pidfd? */
3725	pid = pidfd_to_pid(f.file);
3726	if (IS_ERR(pid)) {
3727		ret = PTR_ERR(pid);
3728		goto err;
3729	}
3730
3731	ret = -EINVAL;
3732	if (!access_pidfd_pidns(pid))
3733		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3734
3735	if (info) {
3736		ret = copy_siginfo_from_user_any(&kinfo, info);
3737		if (unlikely(ret))
3738			goto err;
3739
3740		ret = -EINVAL;
3741		if (unlikely(sig != kinfo.si_signo))
3742			goto err;
3743
3744		/* Only allow sending arbitrary signals to yourself. */
3745		ret = -EPERM;
3746		if ((task_pid(current) != pid) &&
3747		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748			goto err;
3749	} else {
3750		prepare_kill_siginfo(sig, &kinfo);
3751	}
3752
3753	ret = kill_pid_info(sig, &kinfo, pid);
3754
3755err:
3756	fdput(f);
3757	return ret;
3758}
3759
3760static int
3761do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762{
3763	struct task_struct *p;
3764	int error = -ESRCH;
3765
3766	rcu_read_lock();
3767	p = find_task_by_vpid(pid);
3768	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769		error = check_kill_permission(sig, info, p);
3770		/*
3771		 * The null signal is a permissions and process existence
3772		 * probe.  No signal is actually delivered.
3773		 */
3774		if (!error && sig) {
3775			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776			/*
3777			 * If lock_task_sighand() failed we pretend the task
3778			 * dies after receiving the signal. The window is tiny,
3779			 * and the signal is private anyway.
3780			 */
3781			if (unlikely(error == -ESRCH))
3782				error = 0;
3783		}
3784	}
3785	rcu_read_unlock();
3786
3787	return error;
3788}
3789
3790static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791{
3792	struct kernel_siginfo info;
3793
3794	clear_siginfo(&info);
3795	info.si_signo = sig;
3796	info.si_errno = 0;
3797	info.si_code = SI_TKILL;
3798	info.si_pid = task_tgid_vnr(current);
3799	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800
3801	return do_send_specific(tgid, pid, sig, &info);
3802}
3803
3804/**
3805 *  sys_tgkill - send signal to one specific thread
3806 *  @tgid: the thread group ID of the thread
3807 *  @pid: the PID of the thread
3808 *  @sig: signal to be sent
3809 *
3810 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3811 *  exists but it's not belonging to the target process anymore. This
3812 *  method solves the problem of threads exiting and PIDs getting reused.
3813 */
3814SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815{
3816	/* This is only valid for single tasks */
3817	if (pid <= 0 || tgid <= 0)
3818		return -EINVAL;
3819
3820	return do_tkill(tgid, pid, sig);
3821}
3822
3823/**
3824 *  sys_tkill - send signal to one specific task
3825 *  @pid: the PID of the task
3826 *  @sig: signal to be sent
3827 *
3828 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3829 */
3830SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831{
3832	/* This is only valid for single tasks */
3833	if (pid <= 0)
3834		return -EINVAL;
3835
3836	return do_tkill(0, pid, sig);
3837}
3838
3839static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840{
3841	/* Not even root can pretend to send signals from the kernel.
3842	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843	 */
3844	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845	    (task_pid_vnr(current) != pid))
3846		return -EPERM;
3847
3848	/* POSIX.1b doesn't mention process groups.  */
3849	return kill_proc_info(sig, info, pid);
3850}
3851
3852/**
3853 *  sys_rt_sigqueueinfo - send signal information to a signal
3854 *  @pid: the PID of the thread
3855 *  @sig: signal to be sent
3856 *  @uinfo: signal info to be sent
3857 */
3858SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859		siginfo_t __user *, uinfo)
3860{
3861	kernel_siginfo_t info;
3862	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863	if (unlikely(ret))
3864		return ret;
3865	return do_rt_sigqueueinfo(pid, sig, &info);
3866}
3867
3868#ifdef CONFIG_COMPAT
3869COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870			compat_pid_t, pid,
3871			int, sig,
3872			struct compat_siginfo __user *, uinfo)
3873{
3874	kernel_siginfo_t info;
3875	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876	if (unlikely(ret))
3877		return ret;
3878	return do_rt_sigqueueinfo(pid, sig, &info);
3879}
3880#endif
3881
3882static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883{
3884	/* This is only valid for single tasks */
3885	if (pid <= 0 || tgid <= 0)
3886		return -EINVAL;
3887
3888	/* Not even root can pretend to send signals from the kernel.
3889	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890	 */
3891	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892	    (task_pid_vnr(current) != pid))
3893		return -EPERM;
3894
3895	return do_send_specific(tgid, pid, sig, info);
3896}
3897
3898SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899		siginfo_t __user *, uinfo)
3900{
3901	kernel_siginfo_t info;
3902	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903	if (unlikely(ret))
3904		return ret;
3905	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906}
3907
3908#ifdef CONFIG_COMPAT
3909COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910			compat_pid_t, tgid,
3911			compat_pid_t, pid,
3912			int, sig,
3913			struct compat_siginfo __user *, uinfo)
3914{
3915	kernel_siginfo_t info;
3916	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917	if (unlikely(ret))
3918		return ret;
3919	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920}
3921#endif
3922
3923/*
3924 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925 */
3926void kernel_sigaction(int sig, __sighandler_t action)
3927{
3928	spin_lock_irq(&current->sighand->siglock);
3929	current->sighand->action[sig - 1].sa.sa_handler = action;
3930	if (action == SIG_IGN) {
3931		sigset_t mask;
3932
3933		sigemptyset(&mask);
3934		sigaddset(&mask, sig);
3935
3936		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3937		flush_sigqueue_mask(&mask, &current->pending);
3938		recalc_sigpending();
3939	}
3940	spin_unlock_irq(&current->sighand->siglock);
3941}
3942EXPORT_SYMBOL(kernel_sigaction);
3943
3944void __weak sigaction_compat_abi(struct k_sigaction *act,
3945		struct k_sigaction *oact)
3946{
3947}
3948
3949int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950{
3951	struct task_struct *p = current, *t;
3952	struct k_sigaction *k;
3953	sigset_t mask;
3954
3955	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956		return -EINVAL;
3957
3958	k = &p->sighand->action[sig-1];
3959
3960	spin_lock_irq(&p->sighand->siglock);
 
 
 
 
3961	if (oact)
3962		*oact = *k;
3963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3964	sigaction_compat_abi(act, oact);
3965
3966	if (act) {
 
 
3967		sigdelsetmask(&act->sa.sa_mask,
3968			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3969		*k = *act;
3970		/*
3971		 * POSIX 3.3.1.3:
3972		 *  "Setting a signal action to SIG_IGN for a signal that is
3973		 *   pending shall cause the pending signal to be discarded,
3974		 *   whether or not it is blocked."
3975		 *
3976		 *  "Setting a signal action to SIG_DFL for a signal that is
3977		 *   pending and whose default action is to ignore the signal
3978		 *   (for example, SIGCHLD), shall cause the pending signal to
3979		 *   be discarded, whether or not it is blocked"
3980		 */
3981		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982			sigemptyset(&mask);
3983			sigaddset(&mask, sig);
3984			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985			for_each_thread(p, t)
3986				flush_sigqueue_mask(&mask, &t->pending);
 
 
3987		}
3988	}
3989
3990	spin_unlock_irq(&p->sighand->siglock);
3991	return 0;
3992}
3993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3994static int
3995do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996		size_t min_ss_size)
3997{
3998	struct task_struct *t = current;
 
3999
4000	if (oss) {
4001		memset(oss, 0, sizeof(stack_t));
4002		oss->ss_sp = (void __user *) t->sas_ss_sp;
4003		oss->ss_size = t->sas_ss_size;
4004		oss->ss_flags = sas_ss_flags(sp) |
4005			(current->sas_ss_flags & SS_FLAG_BITS);
4006	}
4007
4008	if (ss) {
4009		void __user *ss_sp = ss->ss_sp;
4010		size_t ss_size = ss->ss_size;
4011		unsigned ss_flags = ss->ss_flags;
4012		int ss_mode;
4013
4014		if (unlikely(on_sig_stack(sp)))
4015			return -EPERM;
4016
4017		ss_mode = ss_flags & ~SS_FLAG_BITS;
4018		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019				ss_mode != 0))
4020			return -EINVAL;
4021
 
 
 
 
 
 
 
 
 
 
4022		if (ss_mode == SS_DISABLE) {
4023			ss_size = 0;
4024			ss_sp = NULL;
4025		} else {
4026			if (unlikely(ss_size < min_ss_size))
4027				return -ENOMEM;
 
 
 
 
 
 
 
4028		}
4029
4030		t->sas_ss_sp = (unsigned long) ss_sp;
4031		t->sas_ss_size = ss_size;
4032		t->sas_ss_flags = ss_flags;
4033	}
4034	return 0;
4035}
4036
4037SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038{
4039	stack_t new, old;
4040	int err;
4041	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042		return -EFAULT;
4043	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044			      current_user_stack_pointer(),
4045			      MINSIGSTKSZ);
4046	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047		err = -EFAULT;
4048	return err;
4049}
4050
4051int restore_altstack(const stack_t __user *uss)
4052{
4053	stack_t new;
4054	if (copy_from_user(&new, uss, sizeof(stack_t)))
4055		return -EFAULT;
4056	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057			     MINSIGSTKSZ);
4058	/* squash all but EFAULT for now */
4059	return 0;
4060}
4061
4062int __save_altstack(stack_t __user *uss, unsigned long sp)
4063{
4064	struct task_struct *t = current;
4065	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4067		__put_user(t->sas_ss_size, &uss->ss_size);
4068	if (err)
4069		return err;
4070	if (t->sas_ss_flags & SS_AUTODISARM)
4071		sas_ss_reset(t);
4072	return 0;
4073}
4074
4075#ifdef CONFIG_COMPAT
4076static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077				 compat_stack_t __user *uoss_ptr)
4078{
4079	stack_t uss, uoss;
4080	int ret;
4081
4082	if (uss_ptr) {
4083		compat_stack_t uss32;
4084		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085			return -EFAULT;
4086		uss.ss_sp = compat_ptr(uss32.ss_sp);
4087		uss.ss_flags = uss32.ss_flags;
4088		uss.ss_size = uss32.ss_size;
4089	}
4090	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091			     compat_user_stack_pointer(),
4092			     COMPAT_MINSIGSTKSZ);
4093	if (ret >= 0 && uoss_ptr)  {
4094		compat_stack_t old;
4095		memset(&old, 0, sizeof(old));
4096		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097		old.ss_flags = uoss.ss_flags;
4098		old.ss_size = uoss.ss_size;
4099		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100			ret = -EFAULT;
4101	}
4102	return ret;
4103}
4104
4105COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106			const compat_stack_t __user *, uss_ptr,
4107			compat_stack_t __user *, uoss_ptr)
4108{
4109	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110}
4111
4112int compat_restore_altstack(const compat_stack_t __user *uss)
4113{
4114	int err = do_compat_sigaltstack(uss, NULL);
4115	/* squash all but -EFAULT for now */
4116	return err == -EFAULT ? err : 0;
4117}
4118
4119int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120{
4121	int err;
4122	struct task_struct *t = current;
4123	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124			 &uss->ss_sp) |
4125		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4126		__put_user(t->sas_ss_size, &uss->ss_size);
4127	if (err)
4128		return err;
4129	if (t->sas_ss_flags & SS_AUTODISARM)
4130		sas_ss_reset(t);
4131	return 0;
4132}
4133#endif
4134
4135#ifdef __ARCH_WANT_SYS_SIGPENDING
4136
4137/**
4138 *  sys_sigpending - examine pending signals
4139 *  @uset: where mask of pending signal is returned
4140 */
4141SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142{
4143	sigset_t set;
4144
4145	if (sizeof(old_sigset_t) > sizeof(*uset))
4146		return -EINVAL;
4147
4148	do_sigpending(&set);
4149
4150	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151		return -EFAULT;
4152
4153	return 0;
4154}
4155
4156#ifdef CONFIG_COMPAT
4157COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158{
4159	sigset_t set;
4160
4161	do_sigpending(&set);
4162
4163	return put_user(set.sig[0], set32);
4164}
4165#endif
4166
4167#endif
4168
4169#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170/**
4171 *  sys_sigprocmask - examine and change blocked signals
4172 *  @how: whether to add, remove, or set signals
4173 *  @nset: signals to add or remove (if non-null)
4174 *  @oset: previous value of signal mask if non-null
4175 *
4176 * Some platforms have their own version with special arguments;
4177 * others support only sys_rt_sigprocmask.
4178 */
4179
4180SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181		old_sigset_t __user *, oset)
4182{
4183	old_sigset_t old_set, new_set;
4184	sigset_t new_blocked;
4185
4186	old_set = current->blocked.sig[0];
4187
4188	if (nset) {
4189		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190			return -EFAULT;
4191
4192		new_blocked = current->blocked;
4193
4194		switch (how) {
4195		case SIG_BLOCK:
4196			sigaddsetmask(&new_blocked, new_set);
4197			break;
4198		case SIG_UNBLOCK:
4199			sigdelsetmask(&new_blocked, new_set);
4200			break;
4201		case SIG_SETMASK:
4202			new_blocked.sig[0] = new_set;
4203			break;
4204		default:
4205			return -EINVAL;
4206		}
4207
4208		set_current_blocked(&new_blocked);
4209	}
4210
4211	if (oset) {
4212		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213			return -EFAULT;
4214	}
4215
4216	return 0;
4217}
4218#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219
4220#ifndef CONFIG_ODD_RT_SIGACTION
4221/**
4222 *  sys_rt_sigaction - alter an action taken by a process
4223 *  @sig: signal to be sent
4224 *  @act: new sigaction
4225 *  @oact: used to save the previous sigaction
4226 *  @sigsetsize: size of sigset_t type
4227 */
4228SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229		const struct sigaction __user *, act,
4230		struct sigaction __user *, oact,
4231		size_t, sigsetsize)
4232{
4233	struct k_sigaction new_sa, old_sa;
4234	int ret;
4235
4236	/* XXX: Don't preclude handling different sized sigset_t's.  */
4237	if (sigsetsize != sizeof(sigset_t))
4238		return -EINVAL;
4239
4240	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241		return -EFAULT;
4242
4243	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244	if (ret)
4245		return ret;
4246
4247	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248		return -EFAULT;
4249
4250	return 0;
4251}
4252#ifdef CONFIG_COMPAT
4253COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254		const struct compat_sigaction __user *, act,
4255		struct compat_sigaction __user *, oact,
4256		compat_size_t, sigsetsize)
4257{
4258	struct k_sigaction new_ka, old_ka;
4259#ifdef __ARCH_HAS_SA_RESTORER
4260	compat_uptr_t restorer;
4261#endif
4262	int ret;
4263
4264	/* XXX: Don't preclude handling different sized sigset_t's.  */
4265	if (sigsetsize != sizeof(compat_sigset_t))
4266		return -EINVAL;
4267
4268	if (act) {
4269		compat_uptr_t handler;
4270		ret = get_user(handler, &act->sa_handler);
4271		new_ka.sa.sa_handler = compat_ptr(handler);
4272#ifdef __ARCH_HAS_SA_RESTORER
4273		ret |= get_user(restorer, &act->sa_restorer);
4274		new_ka.sa.sa_restorer = compat_ptr(restorer);
4275#endif
4276		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278		if (ret)
4279			return -EFAULT;
4280	}
4281
4282	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283	if (!ret && oact) {
4284		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4285			       &oact->sa_handler);
4286		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287					 sizeof(oact->sa_mask));
4288		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289#ifdef __ARCH_HAS_SA_RESTORER
4290		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291				&oact->sa_restorer);
4292#endif
4293	}
4294	return ret;
4295}
4296#endif
4297#endif /* !CONFIG_ODD_RT_SIGACTION */
4298
4299#ifdef CONFIG_OLD_SIGACTION
4300SYSCALL_DEFINE3(sigaction, int, sig,
4301		const struct old_sigaction __user *, act,
4302	        struct old_sigaction __user *, oact)
4303{
4304	struct k_sigaction new_ka, old_ka;
4305	int ret;
4306
4307	if (act) {
4308		old_sigset_t mask;
4309		if (!access_ok(act, sizeof(*act)) ||
4310		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313		    __get_user(mask, &act->sa_mask))
4314			return -EFAULT;
4315#ifdef __ARCH_HAS_KA_RESTORER
4316		new_ka.ka_restorer = NULL;
4317#endif
4318		siginitset(&new_ka.sa.sa_mask, mask);
4319	}
4320
4321	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322
4323	if (!ret && oact) {
4324		if (!access_ok(oact, sizeof(*oact)) ||
4325		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329			return -EFAULT;
4330	}
4331
4332	return ret;
4333}
4334#endif
4335#ifdef CONFIG_COMPAT_OLD_SIGACTION
4336COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337		const struct compat_old_sigaction __user *, act,
4338	        struct compat_old_sigaction __user *, oact)
4339{
4340	struct k_sigaction new_ka, old_ka;
4341	int ret;
4342	compat_old_sigset_t mask;
4343	compat_uptr_t handler, restorer;
4344
4345	if (act) {
4346		if (!access_ok(act, sizeof(*act)) ||
4347		    __get_user(handler, &act->sa_handler) ||
4348		    __get_user(restorer, &act->sa_restorer) ||
4349		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350		    __get_user(mask, &act->sa_mask))
4351			return -EFAULT;
4352
4353#ifdef __ARCH_HAS_KA_RESTORER
4354		new_ka.ka_restorer = NULL;
4355#endif
4356		new_ka.sa.sa_handler = compat_ptr(handler);
4357		new_ka.sa.sa_restorer = compat_ptr(restorer);
4358		siginitset(&new_ka.sa.sa_mask, mask);
4359	}
4360
4361	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362
4363	if (!ret && oact) {
4364		if (!access_ok(oact, sizeof(*oact)) ||
4365		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366			       &oact->sa_handler) ||
4367		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368			       &oact->sa_restorer) ||
4369		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371			return -EFAULT;
4372	}
4373	return ret;
4374}
4375#endif
4376
4377#ifdef CONFIG_SGETMASK_SYSCALL
4378
4379/*
4380 * For backwards compatibility.  Functionality superseded by sigprocmask.
4381 */
4382SYSCALL_DEFINE0(sgetmask)
4383{
4384	/* SMP safe */
4385	return current->blocked.sig[0];
4386}
4387
4388SYSCALL_DEFINE1(ssetmask, int, newmask)
4389{
4390	int old = current->blocked.sig[0];
4391	sigset_t newset;
4392
4393	siginitset(&newset, newmask);
4394	set_current_blocked(&newset);
4395
4396	return old;
4397}
4398#endif /* CONFIG_SGETMASK_SYSCALL */
4399
4400#ifdef __ARCH_WANT_SYS_SIGNAL
4401/*
4402 * For backwards compatibility.  Functionality superseded by sigaction.
4403 */
4404SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405{
4406	struct k_sigaction new_sa, old_sa;
4407	int ret;
4408
4409	new_sa.sa.sa_handler = handler;
4410	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411	sigemptyset(&new_sa.sa.sa_mask);
4412
4413	ret = do_sigaction(sig, &new_sa, &old_sa);
4414
4415	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416}
4417#endif /* __ARCH_WANT_SYS_SIGNAL */
4418
4419#ifdef __ARCH_WANT_SYS_PAUSE
4420
4421SYSCALL_DEFINE0(pause)
4422{
4423	while (!signal_pending(current)) {
4424		__set_current_state(TASK_INTERRUPTIBLE);
4425		schedule();
4426	}
4427	return -ERESTARTNOHAND;
4428}
4429
4430#endif
4431
4432static int sigsuspend(sigset_t *set)
4433{
4434	current->saved_sigmask = current->blocked;
4435	set_current_blocked(set);
4436
4437	while (!signal_pending(current)) {
4438		__set_current_state(TASK_INTERRUPTIBLE);
4439		schedule();
4440	}
4441	set_restore_sigmask();
4442	return -ERESTARTNOHAND;
4443}
4444
4445/**
4446 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4447 *	@unewset value until a signal is received
4448 *  @unewset: new signal mask value
4449 *  @sigsetsize: size of sigset_t type
4450 */
4451SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452{
4453	sigset_t newset;
4454
4455	/* XXX: Don't preclude handling different sized sigset_t's.  */
4456	if (sigsetsize != sizeof(sigset_t))
4457		return -EINVAL;
4458
4459	if (copy_from_user(&newset, unewset, sizeof(newset)))
4460		return -EFAULT;
4461	return sigsuspend(&newset);
4462}
4463 
4464#ifdef CONFIG_COMPAT
4465COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466{
4467	sigset_t newset;
4468
4469	/* XXX: Don't preclude handling different sized sigset_t's.  */
4470	if (sigsetsize != sizeof(sigset_t))
4471		return -EINVAL;
4472
4473	if (get_compat_sigset(&newset, unewset))
4474		return -EFAULT;
4475	return sigsuspend(&newset);
4476}
4477#endif
4478
4479#ifdef CONFIG_OLD_SIGSUSPEND
4480SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481{
4482	sigset_t blocked;
4483	siginitset(&blocked, mask);
4484	return sigsuspend(&blocked);
4485}
4486#endif
4487#ifdef CONFIG_OLD_SIGSUSPEND3
4488SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489{
4490	sigset_t blocked;
4491	siginitset(&blocked, mask);
4492	return sigsuspend(&blocked);
4493}
4494#endif
4495
4496__weak const char *arch_vma_name(struct vm_area_struct *vma)
4497{
4498	return NULL;
4499}
4500
4501static inline void siginfo_buildtime_checks(void)
4502{
4503	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504
4505	/* Verify the offsets in the two siginfos match */
4506#define CHECK_OFFSET(field) \
4507	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508
4509	/* kill */
4510	CHECK_OFFSET(si_pid);
4511	CHECK_OFFSET(si_uid);
4512
4513	/* timer */
4514	CHECK_OFFSET(si_tid);
4515	CHECK_OFFSET(si_overrun);
4516	CHECK_OFFSET(si_value);
4517
4518	/* rt */
4519	CHECK_OFFSET(si_pid);
4520	CHECK_OFFSET(si_uid);
4521	CHECK_OFFSET(si_value);
4522
4523	/* sigchld */
4524	CHECK_OFFSET(si_pid);
4525	CHECK_OFFSET(si_uid);
4526	CHECK_OFFSET(si_status);
4527	CHECK_OFFSET(si_utime);
4528	CHECK_OFFSET(si_stime);
4529
4530	/* sigfault */
4531	CHECK_OFFSET(si_addr);
 
4532	CHECK_OFFSET(si_addr_lsb);
4533	CHECK_OFFSET(si_lower);
4534	CHECK_OFFSET(si_upper);
4535	CHECK_OFFSET(si_pkey);
 
 
 
4536
4537	/* sigpoll */
4538	CHECK_OFFSET(si_band);
4539	CHECK_OFFSET(si_fd);
4540
4541	/* sigsys */
4542	CHECK_OFFSET(si_call_addr);
4543	CHECK_OFFSET(si_syscall);
4544	CHECK_OFFSET(si_arch);
4545#undef CHECK_OFFSET
4546
4547	/* usb asyncio */
4548	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549		     offsetof(struct siginfo, si_addr));
4550	if (sizeof(int) == sizeof(void __user *)) {
4551		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552			     sizeof(void __user *));
4553	} else {
4554		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555			      sizeof_field(struct siginfo, si_uid)) !=
4556			     sizeof(void __user *));
4557		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558			     offsetof(struct siginfo, si_uid));
4559	}
4560#ifdef CONFIG_COMPAT
4561	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562		     offsetof(struct compat_siginfo, si_addr));
4563	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564		     sizeof(compat_uptr_t));
4565	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566		     sizeof_field(struct siginfo, si_pid));
4567#endif
4568}
4569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4570void __init signals_init(void)
4571{
4572	siginfo_buildtime_checks();
4573
4574	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575}
4576
4577#ifdef CONFIG_KGDB_KDB
4578#include <linux/kdb.h>
4579/*
4580 * kdb_send_sig - Allows kdb to send signals without exposing
4581 * signal internals.  This function checks if the required locks are
4582 * available before calling the main signal code, to avoid kdb
4583 * deadlocks.
4584 */
4585void kdb_send_sig(struct task_struct *t, int sig)
4586{
4587	static struct task_struct *kdb_prev_t;
4588	int new_t, ret;
4589	if (!spin_trylock(&t->sighand->siglock)) {
4590		kdb_printf("Can't do kill command now.\n"
4591			   "The sigmask lock is held somewhere else in "
4592			   "kernel, try again later\n");
4593		return;
4594	}
4595	new_t = kdb_prev_t != t;
4596	kdb_prev_t = t;
4597	if (t->state != TASK_RUNNING && new_t) {
4598		spin_unlock(&t->sighand->siglock);
4599		kdb_printf("Process is not RUNNING, sending a signal from "
4600			   "kdb risks deadlock\n"
4601			   "on the run queue locks. "
4602			   "The signal has _not_ been sent.\n"
4603			   "Reissue the kill command if you want to risk "
4604			   "the deadlock.\n");
4605		return;
4606	}
4607	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608	spin_unlock(&t->sighand->siglock);
4609	if (ret)
4610		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611			   sig, t->pid);
4612	else
4613		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614}
4615#endif	/* CONFIG_KGDB_KDB */