Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/mm.h>
  26#include <linux/proc_fs.h>
  27#include <linux/tty.h>
  28#include <linux/binfmts.h>
  29#include <linux/coredump.h>
  30#include <linux/security.h>
  31#include <linux/syscalls.h>
  32#include <linux/ptrace.h>
  33#include <linux/signal.h>
  34#include <linux/signalfd.h>
  35#include <linux/ratelimit.h>
  36#include <linux/task_work.h>
  37#include <linux/capability.h>
  38#include <linux/freezer.h>
  39#include <linux/pid_namespace.h>
  40#include <linux/nsproxy.h>
  41#include <linux/user_namespace.h>
  42#include <linux/uprobes.h>
  43#include <linux/compat.h>
  44#include <linux/cn_proc.h>
  45#include <linux/compiler.h>
  46#include <linux/posix-timers.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49#include <linux/sysctl.h>
  50#include <uapi/linux/pidfd.h>
  51
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/signal.h>
  54
  55#include <asm/param.h>
  56#include <linux/uaccess.h>
  57#include <asm/unistd.h>
  58#include <asm/siginfo.h>
  59#include <asm/cacheflush.h>
  60#include <asm/syscall.h>	/* for syscall_get_* */
  61
  62#include "time/posix-timers.h"
  63
  64/*
  65 * SLAB caches for signal bits.
  66 */
  67
  68static struct kmem_cache *sigqueue_cachep;
  69
  70int print_fatal_signals __read_mostly;
  71
  72static void __user *sig_handler(struct task_struct *t, int sig)
  73{
  74	return t->sighand->action[sig - 1].sa.sa_handler;
  75}
  76
  77static inline bool sig_handler_ignored(void __user *handler, int sig)
  78{
  79	/* Is it explicitly or implicitly ignored? */
  80	return handler == SIG_IGN ||
  81	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  82}
  83
  84static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  85{
  86	void __user *handler;
  87
  88	handler = sig_handler(t, sig);
  89
  90	/* SIGKILL and SIGSTOP may not be sent to the global init */
  91	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  92		return true;
  93
  94	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  95	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  96		return true;
  97
  98	/* Only allow kernel generated signals to this kthread */
  99	if (unlikely((t->flags & PF_KTHREAD) &&
 100		     (handler == SIG_KTHREAD_KERNEL) && !force))
 101		return true;
 102
 103	return sig_handler_ignored(handler, sig);
 104}
 105
 106static bool sig_ignored(struct task_struct *t, int sig, bool force)
 107{
 108	/*
 109	 * Blocked signals are never ignored, since the
 110	 * signal handler may change by the time it is
 111	 * unblocked.
 112	 */
 113	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 114		return false;
 
 
 
 115
 116	/*
 117	 * Tracers may want to know about even ignored signal unless it
 118	 * is SIGKILL which can't be reported anyway but can be ignored
 119	 * by SIGNAL_UNKILLABLE task.
 120	 */
 121	if (t->ptrace && sig != SIGKILL)
 122		return false;
 123
 124	return sig_task_ignored(t, sig, force);
 125}
 126
 127/*
 128 * Re-calculate pending state from the set of locally pending
 129 * signals, globally pending signals, and blocked signals.
 130 */
 131static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 132{
 133	unsigned long ready;
 134	long i;
 135
 136	switch (_NSIG_WORDS) {
 137	default:
 138		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 139			ready |= signal->sig[i] &~ blocked->sig[i];
 140		break;
 141
 142	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 143		ready |= signal->sig[2] &~ blocked->sig[2];
 144		ready |= signal->sig[1] &~ blocked->sig[1];
 145		ready |= signal->sig[0] &~ blocked->sig[0];
 146		break;
 147
 148	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 149		ready |= signal->sig[0] &~ blocked->sig[0];
 150		break;
 151
 152	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 153	}
 154	return ready !=	0;
 155}
 156
 157#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 158
 159static bool recalc_sigpending_tsk(struct task_struct *t)
 160{
 161	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 162	    PENDING(&t->pending, &t->blocked) ||
 163	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 164	    cgroup_task_frozen(t)) {
 165		set_tsk_thread_flag(t, TIF_SIGPENDING);
 166		return true;
 167	}
 168
 169	/*
 170	 * We must never clear the flag in another thread, or in current
 171	 * when it's possible the current syscall is returning -ERESTART*.
 172	 * So we don't clear it here, and only callers who know they should do.
 173	 */
 174	return false;
 
 
 
 
 
 
 
 
 
 
 175}
 176
 177void recalc_sigpending(void)
 178{
 179	if (!recalc_sigpending_tsk(current) && !freezing(current))
 180		clear_thread_flag(TIF_SIGPENDING);
 181
 182}
 183EXPORT_SYMBOL(recalc_sigpending);
 184
 185void calculate_sigpending(void)
 186{
 187	/* Have any signals or users of TIF_SIGPENDING been delayed
 188	 * until after fork?
 189	 */
 190	spin_lock_irq(&current->sighand->siglock);
 191	set_tsk_thread_flag(current, TIF_SIGPENDING);
 192	recalc_sigpending();
 193	spin_unlock_irq(&current->sighand->siglock);
 194}
 195
 196/* Given the mask, find the first available signal that should be serviced. */
 197
 198#define SYNCHRONOUS_MASK \
 199	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 200	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 201
 202int next_signal(struct sigpending *pending, sigset_t *mask)
 203{
 204	unsigned long i, *s, *m, x;
 205	int sig = 0;
 206
 207	s = pending->signal.sig;
 208	m = mask->sig;
 209
 210	/*
 211	 * Handle the first word specially: it contains the
 212	 * synchronous signals that need to be dequeued first.
 213	 */
 214	x = *s &~ *m;
 215	if (x) {
 216		if (x & SYNCHRONOUS_MASK)
 217			x &= SYNCHRONOUS_MASK;
 218		sig = ffz(~x) + 1;
 219		return sig;
 220	}
 221
 222	switch (_NSIG_WORDS) {
 223	default:
 224		for (i = 1; i < _NSIG_WORDS; ++i) {
 225			x = *++s &~ *++m;
 226			if (!x)
 227				continue;
 228			sig = ffz(~x) + i*_NSIG_BPW + 1;
 229			break;
 230		}
 231		break;
 232
 233	case 2:
 234		x = s[1] &~ m[1];
 235		if (!x)
 236			break;
 237		sig = ffz(~x) + _NSIG_BPW + 1;
 238		break;
 239
 240	case 1:
 241		/* Nothing to do */
 242		break;
 243	}
 244
 245	return sig;
 246}
 247
 248static inline void print_dropped_signal(int sig)
 249{
 250	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 251
 252	if (!print_fatal_signals)
 253		return;
 254
 255	if (!__ratelimit(&ratelimit_state))
 256		return;
 257
 258	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 259				current->comm, current->pid, sig);
 260}
 261
 262/**
 263 * task_set_jobctl_pending - set jobctl pending bits
 264 * @task: target task
 265 * @mask: pending bits to set
 266 *
 267 * Clear @mask from @task->jobctl.  @mask must be subset of
 268 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 269 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 270 * cleared.  If @task is already being killed or exiting, this function
 271 * becomes noop.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 *
 276 * RETURNS:
 277 * %true if @mask is set, %false if made noop because @task was dying.
 278 */
 279bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 280{
 281	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 282			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 283	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 284
 285	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 286		return false;
 287
 288	if (mask & JOBCTL_STOP_SIGMASK)
 289		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 290
 291	task->jobctl |= mask;
 292	return true;
 293}
 294
 295/**
 296 * task_clear_jobctl_trapping - clear jobctl trapping bit
 297 * @task: target task
 298 *
 299 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 300 * Clear it and wake up the ptracer.  Note that we don't need any further
 301 * locking.  @task->siglock guarantees that @task->parent points to the
 302 * ptracer.
 303 *
 304 * CONTEXT:
 305 * Must be called with @task->sighand->siglock held.
 306 */
 307void task_clear_jobctl_trapping(struct task_struct *task)
 308{
 309	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 310		task->jobctl &= ~JOBCTL_TRAPPING;
 311		smp_mb();	/* advised by wake_up_bit() */
 312		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 313	}
 314}
 315
 316/**
 317 * task_clear_jobctl_pending - clear jobctl pending bits
 318 * @task: target task
 319 * @mask: pending bits to clear
 320 *
 321 * Clear @mask from @task->jobctl.  @mask must be subset of
 322 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 323 * STOP bits are cleared together.
 324 *
 325 * If clearing of @mask leaves no stop or trap pending, this function calls
 326 * task_clear_jobctl_trapping().
 327 *
 328 * CONTEXT:
 329 * Must be called with @task->sighand->siglock held.
 330 */
 331void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 332{
 333	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 334
 335	if (mask & JOBCTL_STOP_PENDING)
 336		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 337
 338	task->jobctl &= ~mask;
 339
 340	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 341		task_clear_jobctl_trapping(task);
 342}
 343
 344/**
 345 * task_participate_group_stop - participate in a group stop
 346 * @task: task participating in a group stop
 347 *
 348 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 349 * Group stop states are cleared and the group stop count is consumed if
 350 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 351 * stop, the appropriate `SIGNAL_*` flags are set.
 352 *
 353 * CONTEXT:
 354 * Must be called with @task->sighand->siglock held.
 355 *
 356 * RETURNS:
 357 * %true if group stop completion should be notified to the parent, %false
 358 * otherwise.
 359 */
 360static bool task_participate_group_stop(struct task_struct *task)
 361{
 362	struct signal_struct *sig = task->signal;
 363	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 364
 365	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 366
 367	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 368
 369	if (!consume)
 370		return false;
 371
 372	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 373		sig->group_stop_count--;
 374
 375	/*
 376	 * Tell the caller to notify completion iff we are entering into a
 377	 * fresh group stop.  Read comment in do_signal_stop() for details.
 378	 */
 379	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 380		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 381		return true;
 382	}
 383	return false;
 384}
 385
 386void task_join_group_stop(struct task_struct *task)
 387{
 388	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 389	struct signal_struct *sig = current->signal;
 390
 391	if (sig->group_stop_count) {
 392		sig->group_stop_count++;
 393		mask |= JOBCTL_STOP_CONSUME;
 394	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 395		return;
 396
 397	/* Have the new thread join an on-going signal group stop */
 398	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 399}
 400
 401static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
 402				       int override_rlimit)
 403{
 404	struct ucounts *ucounts;
 405	long sigpending;
 406
 407	/*
 408	 * Protect access to @t credentials. This can go away when all
 409	 * callers hold rcu read lock.
 410	 *
 411	 * NOTE! A pending signal will hold on to the user refcount,
 412	 * and we get/put the refcount only when the sigpending count
 413	 * changes from/to zero.
 414	 */
 415	rcu_read_lock();
 416	ucounts = task_ucounts(t);
 417	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
 418					    override_rlimit);
 419	rcu_read_unlock();
 420	if (!sigpending)
 421		return NULL;
 422
 423	if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
 424		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 
 
 425		print_dropped_signal(sig);
 426		return NULL;
 427	}
 428
 429	return ucounts;
 430}
 431
 432static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
 433			    const unsigned int sigqueue_flags)
 434{
 435	INIT_LIST_HEAD(&q->list);
 436	q->flags = sigqueue_flags;
 437	q->ucounts = ucounts;
 438}
 439
 440/*
 441 * allocate a new signal queue record
 442 * - this may be called without locks if and only if t == current, otherwise an
 443 *   appropriate lock must be held to stop the target task from exiting
 444 */
 445static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 446				       int override_rlimit)
 447{
 448	struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
 449	struct sigqueue *q;
 450
 451	if (!ucounts)
 452		return NULL;
 453
 454	q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 455	if (!q) {
 456		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 457		return NULL;
 458	}
 459
 460	__sigqueue_init(q, ucounts, 0);
 461	return q;
 462}
 463
 464static void __sigqueue_free(struct sigqueue *q)
 465{
 466	if (q->flags & SIGQUEUE_PREALLOC) {
 467		posixtimer_sigqueue_putref(q);
 468		return;
 469	}
 470	if (q->ucounts) {
 471		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 472		q->ucounts = NULL;
 473	}
 474	kmem_cache_free(sigqueue_cachep, q);
 475}
 476
 477void flush_sigqueue(struct sigpending *queue)
 478{
 479	struct sigqueue *q;
 480
 481	sigemptyset(&queue->signal);
 482	while (!list_empty(&queue->list)) {
 483		q = list_entry(queue->list.next, struct sigqueue , list);
 484		list_del_init(&q->list);
 485		__sigqueue_free(q);
 486	}
 487}
 488
 489/*
 490 * Flush all pending signals for this kthread.
 491 */
 
 
 
 
 
 
 
 492void flush_signals(struct task_struct *t)
 493{
 494	unsigned long flags;
 495
 496	spin_lock_irqsave(&t->sighand->siglock, flags);
 497	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 498	flush_sigqueue(&t->pending);
 499	flush_sigqueue(&t->signal->shared_pending);
 500	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 501}
 502EXPORT_SYMBOL(flush_signals);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503
 504void ignore_signals(struct task_struct *t)
 505{
 506	int i;
 507
 508	for (i = 0; i < _NSIG; ++i)
 509		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 510
 511	flush_signals(t);
 512}
 513
 514/*
 515 * Flush all handlers for a task.
 516 */
 517
 518void
 519flush_signal_handlers(struct task_struct *t, int force_default)
 520{
 521	int i;
 522	struct k_sigaction *ka = &t->sighand->action[0];
 523	for (i = _NSIG ; i != 0 ; i--) {
 524		if (force_default || ka->sa.sa_handler != SIG_IGN)
 525			ka->sa.sa_handler = SIG_DFL;
 526		ka->sa.sa_flags = 0;
 527#ifdef __ARCH_HAS_SA_RESTORER
 528		ka->sa.sa_restorer = NULL;
 529#endif
 530		sigemptyset(&ka->sa.sa_mask);
 531		ka++;
 532	}
 533}
 534
 535bool unhandled_signal(struct task_struct *tsk, int sig)
 536{
 537	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 538	if (is_global_init(tsk))
 539		return true;
 540
 541	if (handler != SIG_IGN && handler != SIG_DFL)
 542		return false;
 543
 544	/* If dying, we handle all new signals by ignoring them */
 545	if (fatal_signal_pending(tsk))
 546		return false;
 547
 548	/* if ptraced, let the tracer determine */
 549	return !tsk->ptrace;
 550}
 551
 552static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 553			   struct sigqueue **timer_sigq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554{
 555	struct sigqueue *q, *first = NULL;
 556
 557	/*
 558	 * Collect the siginfo appropriate to this signal.  Check if
 559	 * there is another siginfo for the same signal.
 560	*/
 561	list_for_each_entry(q, &list->list, list) {
 562		if (q->info.si_signo == sig) {
 563			if (first)
 564				goto still_pending;
 565			first = q;
 566		}
 567	}
 568
 569	sigdelset(&list->signal, sig);
 570
 571	if (first) {
 572still_pending:
 573		list_del_init(&first->list);
 574		copy_siginfo(info, &first->info);
 575
 576		/*
 577		 * posix-timer signals are preallocated and freed when the last
 578		 * reference count is dropped in posixtimer_deliver_signal() or
 579		 * immediately on timer deletion when the signal is not pending.
 580		 * Spare the extra round through __sigqueue_free() which is
 581		 * ignoring preallocated signals.
 582		 */
 583		if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
 584			*timer_sigq = first;
 585		else
 586			__sigqueue_free(first);
 587	} else {
 588		/*
 589		 * Ok, it wasn't in the queue.  This must be
 590		 * a fast-pathed signal or we must have been
 591		 * out of queue space.  So zero out the info.
 592		 */
 593		clear_siginfo(info);
 594		info->si_signo = sig;
 595		info->si_errno = 0;
 596		info->si_code = SI_USER;
 597		info->si_pid = 0;
 598		info->si_uid = 0;
 599	}
 600}
 601
 602static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 603			    kernel_siginfo_t *info, struct sigqueue **timer_sigq)
 604{
 605	int sig = next_signal(pending, mask);
 606
 607	if (sig)
 608		collect_signal(sig, pending, info, timer_sigq);
 
 
 
 
 
 
 
 
 
 
 
 609	return sig;
 610}
 611
 612/*
 613 * Try to dequeue a signal. If a deliverable signal is found fill in the
 614 * caller provided siginfo and return the signal number. Otherwise return
 615 * 0.
 
 616 */
 617int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
 618{
 619	struct task_struct *tsk = current;
 620	struct sigqueue *timer_sigq;
 621	int signr;
 622
 623	lockdep_assert_held(&tsk->sighand->siglock);
 624
 625again:
 626	*type = PIDTYPE_PID;
 627	timer_sigq = NULL;
 628	signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq);
 629	if (!signr) {
 630		*type = PIDTYPE_TGID;
 631		signr = __dequeue_signal(&tsk->signal->shared_pending,
 632					 mask, info, &timer_sigq);
 633
 634		if (unlikely(signr == SIGALRM))
 635			posixtimer_rearm_itimer(tsk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636	}
 637
 638	recalc_sigpending();
 639	if (!signr)
 640		return 0;
 641
 642	if (unlikely(sig_kernel_stop(signr))) {
 643		/*
 644		 * Set a marker that we have dequeued a stop signal.  Our
 645		 * caller might release the siglock and then the pending
 646		 * stop signal it is about to process is no longer in the
 647		 * pending bitmasks, but must still be cleared by a SIGCONT
 648		 * (and overruled by a SIGKILL).  So those cases clear this
 649		 * shared flag after we've set it.  Note that this flag may
 650		 * remain set after the signal we return is ignored or
 651		 * handled.  That doesn't matter because its only purpose
 652		 * is to alert stop-signal processing code when another
 653		 * processor has come along and cleared the flag.
 654		 */
 655		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 656	}
 657
 658	if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) {
 659		if (!posixtimer_deliver_signal(info, timer_sigq))
 660			goto again;
 
 
 
 
 
 
 661	}
 662
 663	return signr;
 664}
 665EXPORT_SYMBOL_GPL(dequeue_signal);
 666
 667static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 668{
 669	struct task_struct *tsk = current;
 670	struct sigpending *pending = &tsk->pending;
 671	struct sigqueue *q, *sync = NULL;
 672
 673	/*
 674	 * Might a synchronous signal be in the queue?
 675	 */
 676	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 677		return 0;
 678
 679	/*
 680	 * Return the first synchronous signal in the queue.
 681	 */
 682	list_for_each_entry(q, &pending->list, list) {
 683		/* Synchronous signals have a positive si_code */
 684		if ((q->info.si_code > SI_USER) &&
 685		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 686			sync = q;
 687			goto next;
 688		}
 689	}
 690	return 0;
 691next:
 692	/*
 693	 * Check if there is another siginfo for the same signal.
 694	 */
 695	list_for_each_entry_continue(q, &pending->list, list) {
 696		if (q->info.si_signo == sync->info.si_signo)
 697			goto still_pending;
 698	}
 699
 700	sigdelset(&pending->signal, sync->info.si_signo);
 701	recalc_sigpending();
 702still_pending:
 703	list_del_init(&sync->list);
 704	copy_siginfo(info, &sync->info);
 705	__sigqueue_free(sync);
 706	return info->si_signo;
 707}
 708
 709/*
 710 * Tell a process that it has a new active signal..
 711 *
 712 * NOTE! we rely on the previous spin_lock to
 713 * lock interrupts for us! We can only be called with
 714 * "siglock" held, and the local interrupt must
 715 * have been disabled when that got acquired!
 716 *
 717 * No need to set need_resched since signal event passing
 718 * goes through ->blocked
 719 */
 720void signal_wake_up_state(struct task_struct *t, unsigned int state)
 721{
 722	lockdep_assert_held(&t->sighand->siglock);
 723
 724	set_tsk_thread_flag(t, TIF_SIGPENDING);
 725
 726	/*
 727	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 728	 * case. We don't check t->state here because there is a race with it
 729	 * executing another processor and just now entering stopped state.
 730	 * By using wake_up_state, we ensure the process will wake up and
 731	 * handle its death signal.
 732	 */
 733	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 
 
 
 734		kick_process(t);
 735}
 736
 737static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q);
 738
 739static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q)
 740{
 741	if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER))
 742		__sigqueue_free(q);
 743	else
 744		posixtimer_sig_ignore(tsk, q);
 745}
 746
 747/* Remove signals in mask from the pending set and queue. */
 748static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
 749{
 750	struct sigqueue *q, *n;
 751	sigset_t m;
 752
 753	lockdep_assert_held(&p->sighand->siglock);
 754
 755	sigandsets(&m, mask, &s->signal);
 756	if (sigisemptyset(&m))
 757		return;
 758
 759	sigandnsets(&s->signal, &s->signal, mask);
 760	list_for_each_entry_safe(q, n, &s->list, list) {
 761		if (sigismember(mask, q->info.si_signo)) {
 762			list_del_init(&q->list);
 763			sigqueue_free_ignored(p, q);
 764		}
 765	}
 
 766}
 
 
 
 
 
 
 
 
 
 767
 768static inline int is_si_special(const struct kernel_siginfo *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769{
 770	return info <= SEND_SIG_PRIV;
 771}
 772
 773static inline bool si_fromuser(const struct kernel_siginfo *info)
 774{
 775	return info == SEND_SIG_NOINFO ||
 776		(!is_si_special(info) && SI_FROMUSER(info));
 777}
 778
 779/*
 780 * called with RCU read lock from check_kill_permission()
 781 */
 782static bool kill_ok_by_cred(struct task_struct *t)
 783{
 784	const struct cred *cred = current_cred();
 785	const struct cred *tcred = __task_cred(t);
 786
 787	return uid_eq(cred->euid, tcred->suid) ||
 788	       uid_eq(cred->euid, tcred->uid) ||
 789	       uid_eq(cred->uid, tcred->suid) ||
 790	       uid_eq(cred->uid, tcred->uid) ||
 791	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 792}
 793
 794/*
 795 * Bad permissions for sending the signal
 796 * - the caller must hold the RCU read lock
 797 */
 798static int check_kill_permission(int sig, struct kernel_siginfo *info,
 799				 struct task_struct *t)
 800{
 801	struct pid *sid;
 802	int error;
 803
 804	if (!valid_signal(sig))
 805		return -EINVAL;
 806
 807	if (!si_fromuser(info))
 808		return 0;
 809
 810	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 811	if (error)
 812		return error;
 813
 814	if (!same_thread_group(current, t) &&
 815	    !kill_ok_by_cred(t)) {
 816		switch (sig) {
 817		case SIGCONT:
 818			sid = task_session(t);
 819			/*
 820			 * We don't return the error if sid == NULL. The
 821			 * task was unhashed, the caller must notice this.
 822			 */
 823			if (!sid || sid == task_session(current))
 824				break;
 825			fallthrough;
 826		default:
 827			return -EPERM;
 828		}
 829	}
 830
 831	return security_task_kill(t, info, sig, NULL);
 832}
 833
 834/**
 835 * ptrace_trap_notify - schedule trap to notify ptracer
 836 * @t: tracee wanting to notify tracer
 837 *
 838 * This function schedules sticky ptrace trap which is cleared on the next
 839 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 840 * ptracer.
 841 *
 842 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 843 * ptracer is listening for events, tracee is woken up so that it can
 844 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 845 * eventually taken without returning to userland after the existing traps
 846 * are finished by PTRACE_CONT.
 847 *
 848 * CONTEXT:
 849 * Must be called with @task->sighand->siglock held.
 850 */
 851static void ptrace_trap_notify(struct task_struct *t)
 852{
 853	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 854	lockdep_assert_held(&t->sighand->siglock);
 855
 856	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 857	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 858}
 859
 860/*
 861 * Handle magic process-wide effects of stop/continue signals. Unlike
 862 * the signal actions, these happen immediately at signal-generation
 863 * time regardless of blocking, ignoring, or handling.  This does the
 864 * actual continuing for SIGCONT, but not the actual stopping for stop
 865 * signals. The process stop is done as a signal action for SIG_DFL.
 866 *
 867 * Returns true if the signal should be actually delivered, otherwise
 868 * it should be dropped.
 869 */
 870static bool prepare_signal(int sig, struct task_struct *p, bool force)
 871{
 872	struct signal_struct *signal = p->signal;
 873	struct task_struct *t;
 874	sigset_t flush;
 875
 876	if (signal->flags & SIGNAL_GROUP_EXIT) {
 877		if (signal->core_state)
 878			return sig == SIGKILL;
 879		/*
 880		 * The process is in the middle of dying, drop the signal.
 881		 */
 882		return false;
 883	} else if (sig_kernel_stop(sig)) {
 884		/*
 885		 * This is a stop signal.  Remove SIGCONT from all queues.
 886		 */
 887		siginitset(&flush, sigmask(SIGCONT));
 888		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
 889		for_each_thread(p, t)
 890			flush_sigqueue_mask(p, &flush, &t->pending);
 
 891	} else if (sig == SIGCONT) {
 892		unsigned int why;
 893		/*
 894		 * Remove all stop signals from all queues, wake all threads.
 895		 */
 896		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 897		flush_sigqueue_mask(p, &flush, &signal->shared_pending);
 898		for_each_thread(p, t) {
 899			flush_sigqueue_mask(p, &flush, &t->pending);
 900			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 901			if (likely(!(t->ptrace & PT_SEIZED))) {
 902				t->jobctl &= ~JOBCTL_STOPPED;
 903				wake_up_state(t, __TASK_STOPPED);
 904			} else
 905				ptrace_trap_notify(t);
 906		}
 907
 908		/*
 909		 * Notify the parent with CLD_CONTINUED if we were stopped.
 910		 *
 911		 * If we were in the middle of a group stop, we pretend it
 912		 * was already finished, and then continued. Since SIGCHLD
 913		 * doesn't queue we report only CLD_STOPPED, as if the next
 914		 * CLD_CONTINUED was dropped.
 915		 */
 916		why = 0;
 917		if (signal->flags & SIGNAL_STOP_STOPPED)
 918			why |= SIGNAL_CLD_CONTINUED;
 919		else if (signal->group_stop_count)
 920			why |= SIGNAL_CLD_STOPPED;
 921
 922		if (why) {
 923			/*
 924			 * The first thread which returns from do_signal_stop()
 925			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 926			 * notify its parent. See get_signal().
 927			 */
 928			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 929			signal->group_stop_count = 0;
 930			signal->group_exit_code = 0;
 931		}
 932	}
 933
 934	return !sig_ignored(p, sig, force);
 935}
 936
 937/*
 938 * Test if P wants to take SIG.  After we've checked all threads with this,
 939 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 940 * blocking SIG were ruled out because they are not running and already
 941 * have pending signals.  Such threads will dequeue from the shared queue
 942 * as soon as they're available, so putting the signal on the shared queue
 943 * will be equivalent to sending it to one such thread.
 944 */
 945static inline bool wants_signal(int sig, struct task_struct *p)
 946{
 947	if (sigismember(&p->blocked, sig))
 948		return false;
 949
 950	if (p->flags & PF_EXITING)
 951		return false;
 952
 953	if (sig == SIGKILL)
 954		return true;
 955
 956	if (task_is_stopped_or_traced(p))
 957		return false;
 958
 959	return task_curr(p) || !task_sigpending(p);
 960}
 961
 962static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 963{
 964	struct signal_struct *signal = p->signal;
 965	struct task_struct *t;
 966
 967	/*
 968	 * Now find a thread we can wake up to take the signal off the queue.
 969	 *
 970	 * Try the suggested task first (may or may not be the main thread).
 
 971	 */
 972	if (wants_signal(sig, p))
 973		t = p;
 974	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
 975		/*
 976		 * There is just one thread and it does not need to be woken.
 977		 * It will dequeue unblocked signals before it runs again.
 978		 */
 979		return;
 980	else {
 981		/*
 982		 * Otherwise try to find a suitable thread.
 983		 */
 984		t = signal->curr_target;
 985		while (!wants_signal(sig, t)) {
 986			t = next_thread(t);
 987			if (t == signal->curr_target)
 988				/*
 989				 * No thread needs to be woken.
 990				 * Any eligible threads will see
 991				 * the signal in the queue soon.
 992				 */
 993				return;
 994		}
 995		signal->curr_target = t;
 996	}
 997
 998	/*
 999	 * Found a killable thread.  If the signal will be fatal,
1000	 * then start taking the whole group down immediately.
1001	 */
1002	if (sig_fatal(p, sig) &&
1003	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1004	    !sigismember(&t->real_blocked, sig) &&
1005	    (sig == SIGKILL || !p->ptrace)) {
1006		/*
1007		 * This signal will be fatal to the whole group.
1008		 */
1009		if (!sig_kernel_coredump(sig)) {
1010			/*
1011			 * Start a group exit and wake everybody up.
1012			 * This way we don't have other threads
1013			 * running and doing things after a slower
1014			 * thread has the fatal signal pending.
1015			 */
1016			signal->flags = SIGNAL_GROUP_EXIT;
1017			signal->group_exit_code = sig;
1018			signal->group_stop_count = 0;
1019			__for_each_thread(signal, t) {
 
1020				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1021				sigaddset(&t->pending.signal, SIGKILL);
1022				signal_wake_up(t, 1);
1023			}
1024			return;
1025		}
1026	}
1027
1028	/*
1029	 * The signal is already in the shared-pending queue.
1030	 * Tell the chosen thread to wake up and dequeue it.
1031	 */
1032	signal_wake_up(t, sig == SIGKILL);
1033	return;
1034}
1035
1036static inline bool legacy_queue(struct sigpending *signals, int sig)
1037{
1038	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1039}
1040
1041static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1042				struct task_struct *t, enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043{
1044	struct sigpending *pending;
1045	struct sigqueue *q;
1046	int override_rlimit;
1047	int ret = 0, result;
1048
1049	lockdep_assert_held(&t->sighand->siglock);
1050
1051	result = TRACE_SIGNAL_IGNORED;
1052	if (!prepare_signal(sig, t, force))
 
1053		goto ret;
1054
1055	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1056	/*
1057	 * Short-circuit ignored signals and support queuing
1058	 * exactly one non-rt signal, so that we can get more
1059	 * detailed information about the cause of the signal.
1060	 */
1061	result = TRACE_SIGNAL_ALREADY_PENDING;
1062	if (legacy_queue(pending, sig))
1063		goto ret;
1064
1065	result = TRACE_SIGNAL_DELIVERED;
1066	/*
1067	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1068	 */
1069	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1070		goto out_set;
1071
1072	/*
1073	 * Real-time signals must be queued if sent by sigqueue, or
1074	 * some other real-time mechanism.  It is implementation
1075	 * defined whether kill() does so.  We attempt to do so, on
1076	 * the principle of least surprise, but since kill is not
1077	 * allowed to fail with EAGAIN when low on memory we just
1078	 * make sure at least one signal gets delivered and don't
1079	 * pass on the info struct.
1080	 */
1081	if (sig < SIGRTMIN)
1082		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1083	else
1084		override_rlimit = 0;
1085
1086	q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1087
1088	if (q) {
1089		list_add_tail(&q->list, &pending->list);
1090		switch ((unsigned long) info) {
1091		case (unsigned long) SEND_SIG_NOINFO:
1092			clear_siginfo(&q->info);
1093			q->info.si_signo = sig;
1094			q->info.si_errno = 0;
1095			q->info.si_code = SI_USER;
1096			q->info.si_pid = task_tgid_nr_ns(current,
1097							task_active_pid_ns(t));
1098			rcu_read_lock();
1099			q->info.si_uid =
1100				from_kuid_munged(task_cred_xxx(t, user_ns),
1101						 current_uid());
1102			rcu_read_unlock();
1103			break;
1104		case (unsigned long) SEND_SIG_PRIV:
1105			clear_siginfo(&q->info);
1106			q->info.si_signo = sig;
1107			q->info.si_errno = 0;
1108			q->info.si_code = SI_KERNEL;
1109			q->info.si_pid = 0;
1110			q->info.si_uid = 0;
1111			break;
1112		default:
1113			copy_siginfo(&q->info, info);
 
 
1114			break;
1115		}
1116	} else if (!is_si_special(info) &&
1117		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1118		/*
1119		 * Queue overflow, abort.  We may abort if the
1120		 * signal was rt and sent by user using something
1121		 * other than kill().
1122		 */
1123		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124		ret = -EAGAIN;
1125		goto ret;
1126	} else {
1127		/*
1128		 * This is a silent loss of information.  We still
1129		 * send the signal, but the *info bits are lost.
1130		 */
1131		result = TRACE_SIGNAL_LOSE_INFO;
1132	}
1133
1134out_set:
1135	signalfd_notify(t, sig);
1136	sigaddset(&pending->signal, sig);
1137
1138	/* Let multiprocess signals appear after on-going forks */
1139	if (type > PIDTYPE_TGID) {
1140		struct multiprocess_signals *delayed;
1141		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1142			sigset_t *signal = &delayed->signal;
1143			/* Can't queue both a stop and a continue signal */
1144			if (sig == SIGCONT)
1145				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1146			else if (sig_kernel_stop(sig))
1147				sigdelset(signal, SIGCONT);
1148			sigaddset(signal, sig);
 
 
 
 
 
1149		}
1150	}
1151
1152	complete_signal(sig, t, type);
 
 
 
1153ret:
1154	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1155	return ret;
1156}
1157
1158static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
 
1159{
1160	bool ret = false;
1161	switch (siginfo_layout(info->si_signo, info->si_code)) {
1162	case SIL_KILL:
1163	case SIL_CHLD:
1164	case SIL_RT:
1165		ret = true;
1166		break;
1167	case SIL_TIMER:
1168	case SIL_POLL:
1169	case SIL_FAULT:
1170	case SIL_FAULT_TRAPNO:
1171	case SIL_FAULT_MCEERR:
1172	case SIL_FAULT_BNDERR:
1173	case SIL_FAULT_PKUERR:
1174	case SIL_FAULT_PERF_EVENT:
1175	case SIL_SYS:
1176		ret = false;
1177		break;
1178	}
1179	return ret;
1180}
1181
1182int send_signal_locked(int sig, struct kernel_siginfo *info,
1183		       struct task_struct *t, enum pid_type type)
1184{
1185	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1186	bool force = false;
1187
1188	if (info == SEND_SIG_NOINFO) {
1189		/* Force if sent from an ancestor pid namespace */
1190		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1191	} else if (info == SEND_SIG_PRIV) {
1192		/* Don't ignore kernel generated signals */
1193		force = true;
1194	} else if (has_si_pid_and_uid(info)) {
1195		/* SIGKILL and SIGSTOP is special or has ids */
1196		struct user_namespace *t_user_ns;
1197
1198		rcu_read_lock();
1199		t_user_ns = task_cred_xxx(t, user_ns);
1200		if (current_user_ns() != t_user_ns) {
1201			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1202			info->si_uid = from_kuid_munged(t_user_ns, uid);
1203		}
1204		rcu_read_unlock();
1205
1206		/* A kernel generated signal? */
1207		force = (info->si_code == SI_KERNEL);
1208
1209		/* From an ancestor pid namespace? */
1210		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1211			info->si_pid = 0;
1212			force = true;
1213		}
1214	}
1215	return __send_signal_locked(sig, info, t, type, force);
1216}
1217
1218static void print_fatal_signal(int signr)
1219{
1220	struct pt_regs *regs = task_pt_regs(current);
1221	struct file *exe_file;
1222
1223	exe_file = get_task_exe_file(current);
1224	if (exe_file) {
1225		pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1226			exe_file, current->comm, signr);
1227		fput(exe_file);
1228	} else {
1229		pr_info("%s: potentially unexpected fatal signal %d.\n",
1230			current->comm, signr);
1231	}
1232
1233#if defined(__i386__) && !defined(__arch_um__)
1234	pr_info("code at %08lx: ", regs->ip);
1235	{
1236		int i;
1237		for (i = 0; i < 16; i++) {
1238			unsigned char insn;
1239
1240			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1241				break;
1242			pr_cont("%02x ", insn);
1243		}
1244	}
1245	pr_cont("\n");
1246#endif
 
1247	preempt_disable();
1248	show_regs(regs);
1249	preempt_enable();
1250}
1251
1252static int __init setup_print_fatal_signals(char *str)
1253{
1254	get_option (&str, &print_fatal_signals);
1255
1256	return 1;
1257}
1258
1259__setup("print-fatal-signals=", setup_print_fatal_signals);
1260
1261int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1262			enum pid_type type)
 
 
 
 
 
 
 
 
 
 
 
 
1263{
1264	unsigned long flags;
1265	int ret = -ESRCH;
1266
1267	if (lock_task_sighand(p, &flags)) {
1268		ret = send_signal_locked(sig, info, p, type);
1269		unlock_task_sighand(p, &flags);
1270	}
1271
1272	return ret;
1273}
1274
1275enum sig_handler {
1276	HANDLER_CURRENT, /* If reachable use the current handler */
1277	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1278	HANDLER_EXIT,	 /* Only visible as the process exit code */
1279};
1280
1281/*
1282 * Force a signal that the process can't ignore: if necessary
1283 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1284 *
1285 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1286 * since we do not want to have a signal handler that was blocked
1287 * be invoked when user space had explicitly blocked it.
1288 *
1289 * We don't want to have recursive SIGSEGV's etc, for example,
1290 * that is why we also clear SIGNAL_UNKILLABLE.
1291 */
1292static int
1293force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1294	enum sig_handler handler)
1295{
1296	unsigned long int flags;
1297	int ret, blocked, ignored;
1298	struct k_sigaction *action;
1299	int sig = info->si_signo;
1300
1301	spin_lock_irqsave(&t->sighand->siglock, flags);
1302	action = &t->sighand->action[sig-1];
1303	ignored = action->sa.sa_handler == SIG_IGN;
1304	blocked = sigismember(&t->blocked, sig);
1305	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1306		action->sa.sa_handler = SIG_DFL;
1307		if (handler == HANDLER_EXIT)
1308			action->sa.sa_flags |= SA_IMMUTABLE;
1309		if (blocked)
1310			sigdelset(&t->blocked, sig);
 
 
1311	}
1312	/*
1313	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1314	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1315	 */
1316	if (action->sa.sa_handler == SIG_DFL &&
1317	    (!t->ptrace || (handler == HANDLER_EXIT)))
1318		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1319	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1320	/* This can happen if the signal was already pending and blocked */
1321	if (!task_sigpending(t))
1322		signal_wake_up(t, 0);
1323	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1324
1325	return ret;
1326}
1327
1328int force_sig_info(struct kernel_siginfo *info)
1329{
1330	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1331}
1332
1333/*
1334 * Nuke all other threads in the group.
1335 */
1336int zap_other_threads(struct task_struct *p)
1337{
1338	struct task_struct *t;
1339	int count = 0;
1340
1341	p->signal->group_stop_count = 0;
1342
1343	for_other_threads(p, t) {
1344		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1345		count++;
1346
1347		/* Don't bother with already dead threads */
1348		if (t->exit_state)
1349			continue;
1350		sigaddset(&t->pending.signal, SIGKILL);
1351		signal_wake_up(t, 1);
1352	}
1353
1354	return count;
1355}
1356
1357struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1358					   unsigned long *flags)
1359{
1360	struct sighand_struct *sighand;
1361
1362	rcu_read_lock();
1363	for (;;) {
 
 
1364		sighand = rcu_dereference(tsk->sighand);
1365		if (unlikely(sighand == NULL))
 
 
1366			break;
 
1367
1368		/*
1369		 * This sighand can be already freed and even reused, but
1370		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1371		 * initializes ->siglock: this slab can't go away, it has
1372		 * the same object type, ->siglock can't be reinitialized.
1373		 *
1374		 * We need to ensure that tsk->sighand is still the same
1375		 * after we take the lock, we can race with de_thread() or
1376		 * __exit_signal(). In the latter case the next iteration
1377		 * must see ->sighand == NULL.
1378		 */
1379		spin_lock_irqsave(&sighand->siglock, *flags);
1380		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1381			break;
1382		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1383	}
1384	rcu_read_unlock();
1385
1386	return sighand;
1387}
1388
1389#ifdef CONFIG_LOCKDEP
1390void lockdep_assert_task_sighand_held(struct task_struct *task)
1391{
1392	struct sighand_struct *sighand;
1393
1394	rcu_read_lock();
1395	sighand = rcu_dereference(task->sighand);
1396	if (sighand)
1397		lockdep_assert_held(&sighand->siglock);
1398	else
1399		WARN_ON_ONCE(1);
1400	rcu_read_unlock();
1401}
1402#endif
1403
1404/*
1405 * send signal info to all the members of a thread group or to the
1406 * individual thread if type == PIDTYPE_PID.
1407 */
1408int group_send_sig_info(int sig, struct kernel_siginfo *info,
1409			struct task_struct *p, enum pid_type type)
1410{
1411	int ret;
1412
1413	rcu_read_lock();
1414	ret = check_kill_permission(sig, info, p);
1415	rcu_read_unlock();
1416
1417	if (!ret && sig)
1418		ret = do_send_sig_info(sig, info, p, type);
1419
1420	return ret;
1421}
1422
1423/*
1424 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1425 * control characters do (^C, ^Z etc)
1426 * - the caller must hold at least a readlock on tasklist_lock
1427 */
1428int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1429{
1430	struct task_struct *p = NULL;
1431	int ret = -ESRCH;
1432
 
 
1433	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435		/*
1436		 * If group_send_sig_info() succeeds at least once ret
1437		 * becomes 0 and after that the code below has no effect.
1438		 * Otherwise we return the last err or -ESRCH if this
1439		 * process group is empty.
1440		 */
1441		if (ret)
1442			ret = err;
1443	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1444
1445	return ret;
1446}
1447
1448static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1449				struct pid *pid, enum pid_type type)
1450{
1451	int error = -ESRCH;
1452	struct task_struct *p;
1453
1454	for (;;) {
1455		rcu_read_lock();
1456		p = pid_task(pid, PIDTYPE_PID);
1457		if (p)
1458			error = group_send_sig_info(sig, info, p, type);
1459		rcu_read_unlock();
1460		if (likely(!p || error != -ESRCH))
1461			return error;
1462		/*
1463		 * The task was unhashed in between, try again.  If it
1464		 * is dead, pid_task() will return NULL, if we race with
1465		 * de_thread() it will find the new leader.
1466		 */
1467	}
1468}
1469
1470int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471{
1472	return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1473}
1474
1475static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1476{
1477	int error;
1478	rcu_read_lock();
1479	error = kill_pid_info(sig, info, find_vpid(pid));
1480	rcu_read_unlock();
1481	return error;
1482}
1483
1484static inline bool kill_as_cred_perm(const struct cred *cred,
1485				     struct task_struct *target)
1486{
1487	const struct cred *pcred = __task_cred(target);
1488
1489	return uid_eq(cred->euid, pcred->suid) ||
1490	       uid_eq(cred->euid, pcred->uid) ||
1491	       uid_eq(cred->uid, pcred->suid) ||
1492	       uid_eq(cred->uid, pcred->uid);
1493}
1494
1495/*
1496 * The usb asyncio usage of siginfo is wrong.  The glibc support
1497 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1498 * AKA after the generic fields:
1499 *	kernel_pid_t	si_pid;
1500 *	kernel_uid32_t	si_uid;
1501 *	sigval_t	si_value;
1502 *
1503 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1504 * after the generic fields is:
1505 *	void __user 	*si_addr;
1506 *
1507 * This is a practical problem when there is a 64bit big endian kernel
1508 * and a 32bit userspace.  As the 32bit address will encoded in the low
1509 * 32bits of the pointer.  Those low 32bits will be stored at higher
1510 * address than appear in a 32 bit pointer.  So userspace will not
1511 * see the address it was expecting for it's completions.
1512 *
1513 * There is nothing in the encoding that can allow
1514 * copy_siginfo_to_user32 to detect this confusion of formats, so
1515 * handle this by requiring the caller of kill_pid_usb_asyncio to
1516 * notice when this situration takes place and to store the 32bit
1517 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1518 * parameter.
1519 */
1520int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1521			 struct pid *pid, const struct cred *cred)
1522{
1523	struct kernel_siginfo info;
1524	struct task_struct *p;
1525	unsigned long flags;
1526	int ret = -EINVAL;
1527
1528	if (!valid_signal(sig))
1529		return ret;
1530
1531	clear_siginfo(&info);
1532	info.si_signo = sig;
1533	info.si_errno = errno;
1534	info.si_code = SI_ASYNCIO;
1535	*((sigval_t *)&info.si_pid) = addr;
1536
1537	rcu_read_lock();
1538	p = pid_task(pid, PIDTYPE_PID);
1539	if (!p) {
1540		ret = -ESRCH;
1541		goto out_unlock;
1542	}
1543	if (!kill_as_cred_perm(cred, p)) {
1544		ret = -EPERM;
1545		goto out_unlock;
1546	}
1547	ret = security_task_kill(p, &info, sig, cred);
1548	if (ret)
1549		goto out_unlock;
1550
1551	if (sig) {
1552		if (lock_task_sighand(p, &flags)) {
1553			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1554			unlock_task_sighand(p, &flags);
1555		} else
1556			ret = -ESRCH;
1557	}
1558out_unlock:
1559	rcu_read_unlock();
1560	return ret;
1561}
1562EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1563
1564/*
1565 * kill_something_info() interprets pid in interesting ways just like kill(2).
1566 *
1567 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1568 * is probably wrong.  Should make it like BSD or SYSV.
1569 */
1570
1571static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1572{
1573	int ret;
1574
1575	if (pid > 0)
1576		return kill_proc_info(sig, info, pid);
1577
1578	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1579	if (pid == INT_MIN)
1580		return -ESRCH;
1581
1582	read_lock(&tasklist_lock);
1583	if (pid != -1) {
1584		ret = __kill_pgrp_info(sig, info,
1585				pid ? find_vpid(-pid) : task_pgrp(current));
1586	} else {
1587		int retval = 0, count = 0;
1588		struct task_struct * p;
1589
1590		for_each_process(p) {
1591			if (task_pid_vnr(p) > 1 &&
1592					!same_thread_group(p, current)) {
1593				int err = group_send_sig_info(sig, info, p,
1594							      PIDTYPE_MAX);
1595				++count;
1596				if (err != -EPERM)
1597					retval = err;
1598			}
1599		}
1600		ret = count ? retval : -ESRCH;
1601	}
1602	read_unlock(&tasklist_lock);
1603
1604	return ret;
1605}
1606
1607/*
1608 * These are for backward compatibility with the rest of the kernel source.
1609 */
1610
1611int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1612{
1613	/*
1614	 * Make sure legacy kernel users don't send in bad values
1615	 * (normal paths check this in check_kill_permission).
1616	 */
1617	if (!valid_signal(sig))
1618		return -EINVAL;
1619
1620	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1621}
1622EXPORT_SYMBOL(send_sig_info);
1623
1624#define __si_special(priv) \
1625	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1626
1627int
1628send_sig(int sig, struct task_struct *p, int priv)
1629{
1630	return send_sig_info(sig, __si_special(priv), p);
1631}
1632EXPORT_SYMBOL(send_sig);
1633
1634void force_sig(int sig)
1635{
1636	struct kernel_siginfo info;
1637
1638	clear_siginfo(&info);
1639	info.si_signo = sig;
1640	info.si_errno = 0;
1641	info.si_code = SI_KERNEL;
1642	info.si_pid = 0;
1643	info.si_uid = 0;
1644	force_sig_info(&info);
1645}
1646EXPORT_SYMBOL(force_sig);
1647
1648void force_fatal_sig(int sig)
1649{
1650	struct kernel_siginfo info;
1651
1652	clear_siginfo(&info);
1653	info.si_signo = sig;
1654	info.si_errno = 0;
1655	info.si_code = SI_KERNEL;
1656	info.si_pid = 0;
1657	info.si_uid = 0;
1658	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1659}
1660
1661void force_exit_sig(int sig)
1662{
1663	struct kernel_siginfo info;
1664
1665	clear_siginfo(&info);
1666	info.si_signo = sig;
1667	info.si_errno = 0;
1668	info.si_code = SI_KERNEL;
1669	info.si_pid = 0;
1670	info.si_uid = 0;
1671	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1672}
1673
1674/*
1675 * When things go south during signal handling, we
1676 * will force a SIGSEGV. And if the signal that caused
1677 * the problem was already a SIGSEGV, we'll want to
1678 * make sure we don't even try to deliver the signal..
1679 */
1680void force_sigsegv(int sig)
1681{
1682	if (sig == SIGSEGV)
1683		force_fatal_sig(SIGSEGV);
1684	else
1685		force_sig(SIGSEGV);
1686}
1687
1688int force_sig_fault_to_task(int sig, int code, void __user *addr,
1689			    struct task_struct *t)
1690{
1691	struct kernel_siginfo info;
1692
1693	clear_siginfo(&info);
1694	info.si_signo = sig;
1695	info.si_errno = 0;
1696	info.si_code  = code;
1697	info.si_addr  = addr;
1698	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1699}
1700
1701int force_sig_fault(int sig, int code, void __user *addr)
1702{
1703	return force_sig_fault_to_task(sig, code, addr, current);
1704}
1705
1706int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1707{
1708	struct kernel_siginfo info;
1709
1710	clear_siginfo(&info);
1711	info.si_signo = sig;
1712	info.si_errno = 0;
1713	info.si_code  = code;
1714	info.si_addr  = addr;
1715	return send_sig_info(info.si_signo, &info, t);
1716}
1717
1718int force_sig_mceerr(int code, void __user *addr, short lsb)
1719{
1720	struct kernel_siginfo info;
1721
1722	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1723	clear_siginfo(&info);
1724	info.si_signo = SIGBUS;
1725	info.si_errno = 0;
1726	info.si_code = code;
1727	info.si_addr = addr;
1728	info.si_addr_lsb = lsb;
1729	return force_sig_info(&info);
1730}
1731
1732int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1733{
1734	struct kernel_siginfo info;
1735
1736	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1737	clear_siginfo(&info);
1738	info.si_signo = SIGBUS;
1739	info.si_errno = 0;
1740	info.si_code = code;
1741	info.si_addr = addr;
1742	info.si_addr_lsb = lsb;
1743	return send_sig_info(info.si_signo, &info, t);
1744}
1745EXPORT_SYMBOL(send_sig_mceerr);
1746
1747int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1748{
1749	struct kernel_siginfo info;
1750
1751	clear_siginfo(&info);
1752	info.si_signo = SIGSEGV;
1753	info.si_errno = 0;
1754	info.si_code  = SEGV_BNDERR;
1755	info.si_addr  = addr;
1756	info.si_lower = lower;
1757	info.si_upper = upper;
1758	return force_sig_info(&info);
1759}
1760
1761#ifdef SEGV_PKUERR
1762int force_sig_pkuerr(void __user *addr, u32 pkey)
1763{
1764	struct kernel_siginfo info;
1765
1766	clear_siginfo(&info);
1767	info.si_signo = SIGSEGV;
1768	info.si_errno = 0;
1769	info.si_code  = SEGV_PKUERR;
1770	info.si_addr  = addr;
1771	info.si_pkey  = pkey;
1772	return force_sig_info(&info);
1773}
1774#endif
1775
1776int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1777{
1778	struct kernel_siginfo info;
1779
1780	clear_siginfo(&info);
1781	info.si_signo     = SIGTRAP;
1782	info.si_errno     = 0;
1783	info.si_code      = TRAP_PERF;
1784	info.si_addr      = addr;
1785	info.si_perf_data = sig_data;
1786	info.si_perf_type = type;
1787
1788	/*
1789	 * Signals generated by perf events should not terminate the whole
1790	 * process if SIGTRAP is blocked, however, delivering the signal
1791	 * asynchronously is better than not delivering at all. But tell user
1792	 * space if the signal was asynchronous, so it can clearly be
1793	 * distinguished from normal synchronous ones.
1794	 */
1795	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1796				     TRAP_PERF_FLAG_ASYNC :
1797				     0;
1798
1799	return send_sig_info(info.si_signo, &info, current);
1800}
1801
1802/**
1803 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1804 * @syscall: syscall number to send to userland
1805 * @reason: filter-supplied reason code to send to userland (via si_errno)
1806 * @force_coredump: true to trigger a coredump
1807 *
1808 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1809 */
1810int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1811{
1812	struct kernel_siginfo info;
1813
1814	clear_siginfo(&info);
1815	info.si_signo = SIGSYS;
1816	info.si_code = SYS_SECCOMP;
1817	info.si_call_addr = (void __user *)KSTK_EIP(current);
1818	info.si_errno = reason;
1819	info.si_arch = syscall_get_arch(current);
1820	info.si_syscall = syscall;
1821	return force_sig_info_to_task(&info, current,
1822		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1823}
1824
1825/* For the crazy architectures that include trap information in
1826 * the errno field, instead of an actual errno value.
1827 */
1828int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1829{
1830	struct kernel_siginfo info;
1831
1832	clear_siginfo(&info);
1833	info.si_signo = SIGTRAP;
1834	info.si_errno = errno;
1835	info.si_code  = TRAP_HWBKPT;
1836	info.si_addr  = addr;
1837	return force_sig_info(&info);
1838}
1839
1840/* For the rare architectures that include trap information using
1841 * si_trapno.
1842 */
1843int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1844{
1845	struct kernel_siginfo info;
1846
1847	clear_siginfo(&info);
1848	info.si_signo = sig;
1849	info.si_errno = 0;
1850	info.si_code  = code;
1851	info.si_addr  = addr;
1852	info.si_trapno = trapno;
1853	return force_sig_info(&info);
1854}
1855
1856/* For the rare architectures that include trap information using
1857 * si_trapno.
1858 */
1859int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1860			  struct task_struct *t)
1861{
1862	struct kernel_siginfo info;
1863
1864	clear_siginfo(&info);
1865	info.si_signo = sig;
1866	info.si_errno = 0;
1867	info.si_code  = code;
1868	info.si_addr  = addr;
1869	info.si_trapno = trapno;
1870	return send_sig_info(info.si_signo, &info, t);
1871}
1872
1873static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1874{
1875	int ret;
 
1876	read_lock(&tasklist_lock);
1877	ret = __kill_pgrp_info(sig, info, pgrp);
1878	read_unlock(&tasklist_lock);
1879	return ret;
1880}
1881
1882int kill_pgrp(struct pid *pid, int sig, int priv)
1883{
1884	return kill_pgrp_info(sig, __si_special(priv), pid);
1885}
1886EXPORT_SYMBOL(kill_pgrp);
1887
1888int kill_pid(struct pid *pid, int sig, int priv)
1889{
1890	return kill_pid_info(sig, __si_special(priv), pid);
1891}
1892EXPORT_SYMBOL(kill_pid);
1893
1894#ifdef CONFIG_POSIX_TIMERS
1895/*
1896 * These functions handle POSIX timer signals. POSIX timers use
1897 * preallocated sigqueue structs for sending signals.
 
 
 
 
 
1898 */
1899static void __flush_itimer_signals(struct sigpending *pending)
1900{
1901	sigset_t signal, retain;
1902	struct sigqueue *q, *n;
1903
1904	signal = pending->signal;
1905	sigemptyset(&retain);
1906
1907	list_for_each_entry_safe(q, n, &pending->list, list) {
1908		int sig = q->info.si_signo;
1909
1910		if (likely(q->info.si_code != SI_TIMER)) {
1911			sigaddset(&retain, sig);
1912		} else {
1913			sigdelset(&signal, sig);
1914			list_del_init(&q->list);
1915			__sigqueue_free(q);
1916		}
1917	}
1918
1919	sigorsets(&pending->signal, &signal, &retain);
1920}
1921
1922void flush_itimer_signals(void)
1923{
1924	struct task_struct *tsk = current;
1925
1926	guard(spinlock_irqsave)(&tsk->sighand->siglock);
1927	__flush_itimer_signals(&tsk->pending);
1928	__flush_itimer_signals(&tsk->signal->shared_pending);
1929}
1930
1931bool posixtimer_init_sigqueue(struct sigqueue *q)
1932{
1933	struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
1934
1935	if (!ucounts)
1936		return false;
1937	clear_siginfo(&q->info);
1938	__sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
1939	return true;
1940}
1941
1942static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
1943{
1944	struct sigpending *pending;
1945	int sig = q->info.si_signo;
1946
1947	signalfd_notify(t, sig);
1948	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1949	list_add_tail(&q->list, &pending->list);
1950	sigaddset(&pending->signal, sig);
1951	complete_signal(sig, t, type);
1952}
1953
1954/*
1955 * This function is used by POSIX timers to deliver a timer signal.
1956 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1957 * set), the signal must be delivered to the specific thread (queues
1958 * into t->pending).
1959 *
1960 * Where type is not PIDTYPE_PID, signals must be delivered to the
1961 * process. In this case, prefer to deliver to current if it is in
1962 * the same thread group as the target process and its sighand is
1963 * stable, which avoids unnecessarily waking up a potentially idle task.
1964 */
1965static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
1966{
1967	struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
 
1968
1969	if (t && tmr->it_pid_type != PIDTYPE_PID &&
1970	    same_thread_group(t, current) && !current->exit_state)
1971		t = current;
1972	return t;
1973}
1974
1975void posixtimer_send_sigqueue(struct k_itimer *tmr)
1976{
1977	struct sigqueue *q = &tmr->sigq;
1978	int sig = q->info.si_signo;
1979	struct task_struct *t;
1980	unsigned long flags;
1981	int result;
1982
1983	guard(rcu)();
1984
1985	t = posixtimer_get_target(tmr);
1986	if (!t)
1987		return;
1988
 
1989	if (!likely(lock_task_sighand(t, &flags)))
1990		return;
1991
1992	/*
1993	 * Update @tmr::sigqueue_seq for posix timer signals with sighand
1994	 * locked to prevent a race against dequeue_signal().
1995	 */
1996	tmr->it_sigqueue_seq = tmr->it_signal_seq;
1997
1998	/*
1999	 * Set the signal delivery status under sighand lock, so that the
2000	 * ignored signal handling can distinguish between a periodic and a
2001	 * non-periodic timer.
2002	 */
2003	tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING;
2004
2005	if (!prepare_signal(sig, t, false)) {
2006		result = TRACE_SIGNAL_IGNORED;
2007
2008		if (!list_empty(&q->list)) {
2009			/*
2010			 * The signal was ignored and blocked. The timer
2011			 * expiry queued it because blocked signals are
2012			 * queued independent of the ignored state.
2013			 *
2014			 * The unblocking set SIGPENDING, but the signal
2015			 * was not yet dequeued from the pending list.
2016			 * So prepare_signal() sees unblocked and ignored,
2017			 * which ends up here. Leave it queued like a
2018			 * regular signal.
2019			 *
2020			 * The same happens when the task group is exiting
2021			 * and the signal is already queued.
2022			 * prepare_signal() treats SIGNAL_GROUP_EXIT as
2023			 * ignored independent of its queued state. This
2024			 * gets cleaned up in __exit_signal().
2025			 */
2026			goto out;
2027		}
2028
2029		/* Periodic timers with SIG_IGN are queued on the ignored list */
2030		if (tmr->it_sig_periodic) {
2031			/*
2032			 * Already queued means the timer was rearmed after
2033			 * the previous expiry got it on the ignore list.
2034			 * Nothing to do for that case.
2035			 */
2036			if (hlist_unhashed(&tmr->ignored_list)) {
2037				/*
2038				 * Take a signal reference and queue it on
2039				 * the ignored list.
2040				 */
2041				posixtimer_sigqueue_getref(q);
2042				posixtimer_sig_ignore(t, q);
2043			}
2044		} else if (!hlist_unhashed(&tmr->ignored_list)) {
2045			/*
2046			 * Covers the case where a timer was periodic and
2047			 * then the signal was ignored. Later it was rearmed
2048			 * as oneshot timer. The previous signal is invalid
2049			 * now, and this oneshot signal has to be dropped.
2050			 * Remove it from the ignored list and drop the
2051			 * reference count as the signal is not longer
2052			 * queued.
2053			 */
2054			hlist_del_init(&tmr->ignored_list);
2055			posixtimer_putref(tmr);
2056		}
2057		goto out;
2058	}
2059
 
2060	if (unlikely(!list_empty(&q->list))) {
2061		/* This holds a reference count already */
 
 
 
 
 
2062		result = TRACE_SIGNAL_ALREADY_PENDING;
2063		goto out;
2064	}
 
2065
2066	/*
2067	 * If the signal is on the ignore list, it got blocked after it was
2068	 * ignored earlier. But nothing lifted the ignore. Move it back to
2069	 * the pending list to be consistent with the regular signal
2070	 * handling. This already holds a reference count.
2071	 *
2072	 * If it's not on the ignore list acquire a reference count.
2073	 */
2074	if (likely(hlist_unhashed(&tmr->ignored_list)))
2075		posixtimer_sigqueue_getref(q);
2076	else
2077		hlist_del_init(&tmr->ignored_list);
2078
2079	posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
2080	result = TRACE_SIGNAL_DELIVERED;
2081out:
2082	trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
2083	unlock_task_sighand(t, &flags);
2084}
2085
2086static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q)
2087{
2088	struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
2089
2090	/*
2091	 * If the timer is marked deleted already or the signal originates
2092	 * from a non-periodic timer, then just drop the reference
2093	 * count. Otherwise queue it on the ignored list.
2094	 */
2095	if (tmr->it_signal && tmr->it_sig_periodic)
2096		hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers);
2097	else
2098		posixtimer_putref(tmr);
2099}
2100
2101static void posixtimer_sig_unignore(struct task_struct *tsk, int sig)
2102{
2103	struct hlist_head *head = &tsk->signal->ignored_posix_timers;
2104	struct hlist_node *tmp;
2105	struct k_itimer *tmr;
2106
2107	if (likely(hlist_empty(head)))
2108		return;
2109
2110	/*
2111	 * Rearming a timer with sighand lock held is not possible due to
2112	 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
2113	 * let the signal delivery path deal with it whether it needs to be
2114	 * rearmed or not. This cannot be decided here w/o dropping sighand
2115	 * lock and creating a loop retry horror show.
2116	 */
2117	hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) {
2118		struct task_struct *target;
2119
2120		/*
2121		 * tmr::sigq.info.si_signo is immutable, so accessing it
2122		 * without holding tmr::it_lock is safe.
2123		 */
2124		if (tmr->sigq.info.si_signo != sig)
2125			continue;
2126
2127		hlist_del_init(&tmr->ignored_list);
2128
2129		/* This should never happen and leaks a reference count */
2130		if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list)))
2131			continue;
2132
2133		/*
2134		 * Get the target for the signal. If target is a thread and
2135		 * has exited by now, drop the reference count.
2136		 */
2137		guard(rcu)();
2138		target = posixtimer_get_target(tmr);
2139		if (target)
2140			posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type);
2141		else
2142			posixtimer_putref(tmr);
2143	}
2144}
2145#else /* CONFIG_POSIX_TIMERS */
2146static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { }
2147static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { }
2148#endif /* !CONFIG_POSIX_TIMERS */
2149
2150void do_notify_pidfd(struct task_struct *task)
2151{
2152	struct pid *pid = task_pid(task);
2153
2154	WARN_ON(task->exit_state == 0);
2155
2156	__wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2157			poll_to_key(EPOLLIN | EPOLLRDNORM));
2158}
2159
2160/*
2161 * Let a parent know about the death of a child.
2162 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2163 *
2164 * Returns true if our parent ignored us and so we've switched to
2165 * self-reaping.
2166 */
2167bool do_notify_parent(struct task_struct *tsk, int sig)
2168{
2169	struct kernel_siginfo info;
2170	unsigned long flags;
2171	struct sighand_struct *psig;
2172	bool autoreap = false;
2173	u64 utime, stime;
2174
2175	WARN_ON_ONCE(sig == -1);
2176
2177	/* do_notify_parent_cldstop should have been called instead.  */
2178	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2179
2180	WARN_ON_ONCE(!tsk->ptrace &&
2181	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2182	/*
2183	 * tsk is a group leader and has no threads, wake up the
2184	 * non-PIDFD_THREAD waiters.
2185	 */
2186	if (thread_group_empty(tsk))
2187		do_notify_pidfd(tsk);
2188
2189	if (sig != SIGCHLD) {
2190		/*
2191		 * This is only possible if parent == real_parent.
2192		 * Check if it has changed security domain.
2193		 */
2194		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2195			sig = SIGCHLD;
2196	}
2197
2198	clear_siginfo(&info);
2199	info.si_signo = sig;
2200	info.si_errno = 0;
2201	/*
2202	 * We are under tasklist_lock here so our parent is tied to
2203	 * us and cannot change.
2204	 *
2205	 * task_active_pid_ns will always return the same pid namespace
2206	 * until a task passes through release_task.
2207	 *
2208	 * write_lock() currently calls preempt_disable() which is the
2209	 * same as rcu_read_lock(), but according to Oleg, this is not
2210	 * correct to rely on this
2211	 */
2212	rcu_read_lock();
2213	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2214	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2215				       task_uid(tsk));
2216	rcu_read_unlock();
2217
2218	task_cputime(tsk, &utime, &stime);
2219	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2220	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2221
2222	info.si_status = tsk->exit_code & 0x7f;
2223	if (tsk->exit_code & 0x80)
2224		info.si_code = CLD_DUMPED;
2225	else if (tsk->exit_code & 0x7f)
2226		info.si_code = CLD_KILLED;
2227	else {
2228		info.si_code = CLD_EXITED;
2229		info.si_status = tsk->exit_code >> 8;
2230	}
2231
2232	psig = tsk->parent->sighand;
2233	spin_lock_irqsave(&psig->siglock, flags);
2234	if (!tsk->ptrace && sig == SIGCHLD &&
2235	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2236	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2237		/*
2238		 * We are exiting and our parent doesn't care.  POSIX.1
2239		 * defines special semantics for setting SIGCHLD to SIG_IGN
2240		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2241		 * automatically and not left for our parent's wait4 call.
2242		 * Rather than having the parent do it as a magic kind of
2243		 * signal handler, we just set this to tell do_exit that we
2244		 * can be cleaned up without becoming a zombie.  Note that
2245		 * we still call __wake_up_parent in this case, because a
2246		 * blocked sys_wait4 might now return -ECHILD.
2247		 *
2248		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2249		 * is implementation-defined: we do (if you don't want
2250		 * it, just use SIG_IGN instead).
2251		 */
2252		autoreap = true;
2253		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2254			sig = 0;
2255	}
2256	/*
2257	 * Send with __send_signal as si_pid and si_uid are in the
2258	 * parent's namespaces.
2259	 */
2260	if (valid_signal(sig) && sig)
2261		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2262	__wake_up_parent(tsk, tsk->parent);
2263	spin_unlock_irqrestore(&psig->siglock, flags);
2264
2265	return autoreap;
2266}
2267
2268/**
2269 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2270 * @tsk: task reporting the state change
2271 * @for_ptracer: the notification is for ptracer
2272 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2273 *
2274 * Notify @tsk's parent that the stopped/continued state has changed.  If
2275 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2276 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2277 *
2278 * CONTEXT:
2279 * Must be called with tasklist_lock at least read locked.
2280 */
2281static void do_notify_parent_cldstop(struct task_struct *tsk,
2282				     bool for_ptracer, int why)
2283{
2284	struct kernel_siginfo info;
2285	unsigned long flags;
2286	struct task_struct *parent;
2287	struct sighand_struct *sighand;
2288	u64 utime, stime;
2289
2290	if (for_ptracer) {
2291		parent = tsk->parent;
2292	} else {
2293		tsk = tsk->group_leader;
2294		parent = tsk->real_parent;
2295	}
2296
2297	clear_siginfo(&info);
2298	info.si_signo = SIGCHLD;
2299	info.si_errno = 0;
2300	/*
2301	 * see comment in do_notify_parent() about the following 4 lines
2302	 */
2303	rcu_read_lock();
2304	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2305	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2306	rcu_read_unlock();
2307
2308	task_cputime(tsk, &utime, &stime);
2309	info.si_utime = nsec_to_clock_t(utime);
2310	info.si_stime = nsec_to_clock_t(stime);
2311
2312 	info.si_code = why;
2313 	switch (why) {
2314 	case CLD_CONTINUED:
2315 		info.si_status = SIGCONT;
2316 		break;
2317 	case CLD_STOPPED:
2318 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2319 		break;
2320 	case CLD_TRAPPED:
2321 		info.si_status = tsk->exit_code & 0x7f;
2322 		break;
2323 	default:
2324 		BUG();
2325 	}
2326
2327	sighand = parent->sighand;
2328	spin_lock_irqsave(&sighand->siglock, flags);
2329	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2330	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2331		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2332	/*
2333	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2334	 */
2335	__wake_up_parent(tsk, parent);
2336	spin_unlock_irqrestore(&sighand->siglock, flags);
2337}
2338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339/*
2340 * This must be called with current->sighand->siglock held.
2341 *
2342 * This should be the path for all ptrace stops.
2343 * We always set current->last_siginfo while stopped here.
2344 * That makes it a way to test a stopped process for
2345 * being ptrace-stopped vs being job-control-stopped.
2346 *
2347 * Returns the signal the ptracer requested the code resume
2348 * with.  If the code did not stop because the tracer is gone,
2349 * the stop signal remains unchanged unless clear_code.
2350 */
2351static int ptrace_stop(int exit_code, int why, unsigned long message,
2352		       kernel_siginfo_t *info)
2353	__releases(&current->sighand->siglock)
2354	__acquires(&current->sighand->siglock)
2355{
2356	bool gstop_done = false;
2357
2358	if (arch_ptrace_stop_needed()) {
2359		/*
2360		 * The arch code has something special to do before a
2361		 * ptrace stop.  This is allowed to block, e.g. for faults
2362		 * on user stack pages.  We can't keep the siglock while
2363		 * calling arch_ptrace_stop, so we must release it now.
2364		 * To preserve proper semantics, we must do this before
2365		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2366		 */
2367		spin_unlock_irq(&current->sighand->siglock);
2368		arch_ptrace_stop();
2369		spin_lock_irq(&current->sighand->siglock);
 
 
2370	}
2371
2372	/*
2373	 * After this point ptrace_signal_wake_up or signal_wake_up
2374	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2375	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2376	 * signals here to prevent ptrace_stop sleeping in schedule.
2377	 */
2378	if (!current->ptrace || __fatal_signal_pending(current))
2379		return exit_code;
2380
2381	set_special_state(TASK_TRACED);
2382	current->jobctl |= JOBCTL_TRACED;
2383
2384	/*
2385	 * We're committing to trapping.  TRACED should be visible before
2386	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2387	 * Also, transition to TRACED and updates to ->jobctl should be
2388	 * atomic with respect to siglock and should be done after the arch
2389	 * hook as siglock is released and regrabbed across it.
2390	 *
2391	 *     TRACER				    TRACEE
2392	 *
2393	 *     ptrace_attach()
2394	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2395	 *     do_wait()
2396	 *       set_current_state()                smp_wmb();
2397	 *       ptrace_do_wait()
2398	 *         wait_task_stopped()
2399	 *           task_stopped_code()
2400	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2401	 */
2402	smp_wmb();
2403
2404	current->ptrace_message = message;
2405	current->last_siginfo = info;
2406	current->exit_code = exit_code;
2407
2408	/*
2409	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2410	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2411	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2412	 * could be clear now.  We act as if SIGCONT is received after
2413	 * TASK_TRACED is entered - ignore it.
2414	 */
2415	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2416		gstop_done = task_participate_group_stop(current);
2417
2418	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2419	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2420	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2421		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2422
2423	/* entering a trap, clear TRAPPING */
2424	task_clear_jobctl_trapping(current);
2425
2426	spin_unlock_irq(&current->sighand->siglock);
2427	read_lock(&tasklist_lock);
2428	/*
2429	 * Notify parents of the stop.
2430	 *
2431	 * While ptraced, there are two parents - the ptracer and
2432	 * the real_parent of the group_leader.  The ptracer should
2433	 * know about every stop while the real parent is only
2434	 * interested in the completion of group stop.  The states
2435	 * for the two don't interact with each other.  Notify
2436	 * separately unless they're gonna be duplicates.
2437	 */
2438	if (current->ptrace)
2439		do_notify_parent_cldstop(current, true, why);
2440	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2441		do_notify_parent_cldstop(current, false, why);
2442
2443	/*
2444	 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2445	 * One a PREEMPTION kernel this can result in preemption requirement
2446	 * which will be fulfilled after read_unlock() and the ptracer will be
2447	 * put on the CPU.
2448	 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2449	 * this task wait in schedule(). If this task gets preempted then it
2450	 * remains enqueued on the runqueue. The ptracer will observe this and
2451	 * then sleep for a delay of one HZ tick. In the meantime this task
2452	 * gets scheduled, enters schedule() and will wait for the ptracer.
2453	 *
2454	 * This preemption point is not bad from a correctness point of
2455	 * view but extends the runtime by one HZ tick time due to the
2456	 * ptracer's sleep.  The preempt-disable section ensures that there
2457	 * will be no preemption between unlock and schedule() and so
2458	 * improving the performance since the ptracer will observe that
2459	 * the tracee is scheduled out once it gets on the CPU.
2460	 *
2461	 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2462	 * Therefore the task can be preempted after do_notify_parent_cldstop()
2463	 * before unlocking tasklist_lock so there is no benefit in doing this.
2464	 *
2465	 * In fact disabling preemption is harmful on PREEMPT_RT because
2466	 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2467	 * with preemption disabled due to the 'sleeping' spinlock
2468	 * substitution of RT.
2469	 */
2470	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2471		preempt_disable();
2472	read_unlock(&tasklist_lock);
2473	cgroup_enter_frozen();
2474	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2475		preempt_enable_no_resched();
2476	schedule();
2477	cgroup_leave_frozen(true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2478
2479	/*
2480	 * We are back.  Now reacquire the siglock before touching
2481	 * last_siginfo, so that we are sure to have synchronized with
2482	 * any signal-sending on another CPU that wants to examine it.
2483	 */
2484	spin_lock_irq(&current->sighand->siglock);
2485	exit_code = current->exit_code;
2486	current->last_siginfo = NULL;
2487	current->ptrace_message = 0;
2488	current->exit_code = 0;
2489
2490	/* LISTENING can be set only during STOP traps, clear it */
2491	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2492
2493	/*
2494	 * Queued signals ignored us while we were stopped for tracing.
2495	 * So check for any that we should take before resuming user mode.
2496	 * This sets TIF_SIGPENDING, but never clears it.
2497	 */
2498	recalc_sigpending_tsk(current);
2499	return exit_code;
2500}
2501
2502static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2503{
2504	kernel_siginfo_t info;
2505
2506	clear_siginfo(&info);
2507	info.si_signo = signr;
2508	info.si_code = exit_code;
2509	info.si_pid = task_pid_vnr(current);
2510	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2511
2512	/* Let the debugger run.  */
2513	return ptrace_stop(exit_code, why, message, &info);
2514}
2515
2516int ptrace_notify(int exit_code, unsigned long message)
2517{
2518	int signr;
2519
2520	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2521	if (unlikely(task_work_pending(current)))
2522		task_work_run();
2523
2524	spin_lock_irq(&current->sighand->siglock);
2525	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2526	spin_unlock_irq(&current->sighand->siglock);
2527	return signr;
2528}
2529
2530/**
2531 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2532 * @signr: signr causing group stop if initiating
2533 *
2534 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2535 * and participate in it.  If already set, participate in the existing
2536 * group stop.  If participated in a group stop (and thus slept), %true is
2537 * returned with siglock released.
2538 *
2539 * If ptraced, this function doesn't handle stop itself.  Instead,
2540 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2541 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2542 * places afterwards.
2543 *
2544 * CONTEXT:
2545 * Must be called with @current->sighand->siglock held, which is released
2546 * on %true return.
2547 *
2548 * RETURNS:
2549 * %false if group stop is already cancelled or ptrace trap is scheduled.
2550 * %true if participated in group stop.
2551 */
2552static bool do_signal_stop(int signr)
2553	__releases(&current->sighand->siglock)
2554{
2555	struct signal_struct *sig = current->signal;
2556
2557	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2558		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2559		struct task_struct *t;
2560
2561		/* signr will be recorded in task->jobctl for retries */
2562		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2563
2564		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2565		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2566		    unlikely(sig->group_exec_task))
2567			return false;
2568		/*
2569		 * There is no group stop already in progress.  We must
2570		 * initiate one now.
2571		 *
2572		 * While ptraced, a task may be resumed while group stop is
2573		 * still in effect and then receive a stop signal and
2574		 * initiate another group stop.  This deviates from the
2575		 * usual behavior as two consecutive stop signals can't
2576		 * cause two group stops when !ptraced.  That is why we
2577		 * also check !task_is_stopped(t) below.
2578		 *
2579		 * The condition can be distinguished by testing whether
2580		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2581		 * group_exit_code in such case.
2582		 *
2583		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2584		 * an intervening stop signal is required to cause two
2585		 * continued events regardless of ptrace.
2586		 */
2587		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2588			sig->group_exit_code = signr;
2589
2590		sig->group_stop_count = 0;
 
2591		if (task_set_jobctl_pending(current, signr | gstop))
2592			sig->group_stop_count++;
2593
2594		for_other_threads(current, t) {
 
2595			/*
2596			 * Setting state to TASK_STOPPED for a group
2597			 * stop is always done with the siglock held,
2598			 * so this check has no races.
2599			 */
2600			if (!task_is_stopped(t) &&
2601			    task_set_jobctl_pending(t, signr | gstop)) {
2602				sig->group_stop_count++;
2603				if (likely(!(t->ptrace & PT_SEIZED)))
2604					signal_wake_up(t, 0);
2605				else
2606					ptrace_trap_notify(t);
2607			}
2608		}
2609	}
2610
2611	if (likely(!current->ptrace)) {
2612		int notify = 0;
2613
2614		/*
2615		 * If there are no other threads in the group, or if there
2616		 * is a group stop in progress and we are the last to stop,
2617		 * report to the parent.
2618		 */
2619		if (task_participate_group_stop(current))
2620			notify = CLD_STOPPED;
2621
2622		current->jobctl |= JOBCTL_STOPPED;
2623		set_special_state(TASK_STOPPED);
2624		spin_unlock_irq(&current->sighand->siglock);
2625
2626		/*
2627		 * Notify the parent of the group stop completion.  Because
2628		 * we're not holding either the siglock or tasklist_lock
2629		 * here, ptracer may attach inbetween; however, this is for
2630		 * group stop and should always be delivered to the real
2631		 * parent of the group leader.  The new ptracer will get
2632		 * its notification when this task transitions into
2633		 * TASK_TRACED.
2634		 */
2635		if (notify) {
2636			read_lock(&tasklist_lock);
2637			do_notify_parent_cldstop(current, false, notify);
2638			read_unlock(&tasklist_lock);
2639		}
2640
2641		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2642		cgroup_enter_frozen();
2643		schedule();
2644		return true;
2645	} else {
2646		/*
2647		 * While ptraced, group stop is handled by STOP trap.
2648		 * Schedule it and let the caller deal with it.
2649		 */
2650		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2651		return false;
2652	}
2653}
2654
2655/**
2656 * do_jobctl_trap - take care of ptrace jobctl traps
2657 *
2658 * When PT_SEIZED, it's used for both group stop and explicit
2659 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2660 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2661 * the stop signal; otherwise, %SIGTRAP.
2662 *
2663 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2664 * number as exit_code and no siginfo.
2665 *
2666 * CONTEXT:
2667 * Must be called with @current->sighand->siglock held, which may be
2668 * released and re-acquired before returning with intervening sleep.
2669 */
2670static void do_jobctl_trap(void)
2671{
2672	struct signal_struct *signal = current->signal;
2673	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2674
2675	if (current->ptrace & PT_SEIZED) {
2676		if (!signal->group_stop_count &&
2677		    !(signal->flags & SIGNAL_STOP_STOPPED))
2678			signr = SIGTRAP;
2679		WARN_ON_ONCE(!signr);
2680		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2681				 CLD_STOPPED, 0);
2682	} else {
2683		WARN_ON_ONCE(!signr);
2684		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2685	}
2686}
2687
2688/**
2689 * do_freezer_trap - handle the freezer jobctl trap
2690 *
2691 * Puts the task into frozen state, if only the task is not about to quit.
2692 * In this case it drops JOBCTL_TRAP_FREEZE.
2693 *
2694 * CONTEXT:
2695 * Must be called with @current->sighand->siglock held,
2696 * which is always released before returning.
2697 */
2698static void do_freezer_trap(void)
2699	__releases(&current->sighand->siglock)
2700{
2701	/*
2702	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2703	 * let's make another loop to give it a chance to be handled.
2704	 * In any case, we'll return back.
2705	 */
2706	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2707	     JOBCTL_TRAP_FREEZE) {
2708		spin_unlock_irq(&current->sighand->siglock);
2709		return;
2710	}
2711
2712	/*
2713	 * Now we're sure that there is no pending fatal signal and no
2714	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2715	 * immediately (if there is a non-fatal signal pending), and
2716	 * put the task into sleep.
2717	 */
2718	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2719	clear_thread_flag(TIF_SIGPENDING);
2720	spin_unlock_irq(&current->sighand->siglock);
2721	cgroup_enter_frozen();
2722	schedule();
2723
2724	/*
2725	 * We could've been woken by task_work, run it to clear
2726	 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2727	 */
2728	clear_notify_signal();
2729	if (unlikely(task_work_pending(current)))
2730		task_work_run();
2731}
2732
2733static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2734{
 
2735	/*
2736	 * We do not check sig_kernel_stop(signr) but set this marker
2737	 * unconditionally because we do not know whether debugger will
2738	 * change signr. This flag has no meaning unless we are going
2739	 * to stop after return from ptrace_stop(). In this case it will
2740	 * be checked in do_signal_stop(), we should only stop if it was
2741	 * not cleared by SIGCONT while we were sleeping. See also the
2742	 * comment in dequeue_signal().
2743	 */
2744	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2745	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2746
2747	/* We're back.  Did the debugger cancel the sig?  */
 
2748	if (signr == 0)
2749		return signr;
2750
 
 
2751	/*
2752	 * Update the siginfo structure if the signal has
2753	 * changed.  If the debugger wanted something
2754	 * specific in the siginfo structure then it should
2755	 * have updated *info via PTRACE_SETSIGINFO.
2756	 */
2757	if (signr != info->si_signo) {
2758		clear_siginfo(info);
2759		info->si_signo = signr;
2760		info->si_errno = 0;
2761		info->si_code = SI_USER;
2762		rcu_read_lock();
2763		info->si_pid = task_pid_vnr(current->parent);
2764		info->si_uid = from_kuid_munged(current_user_ns(),
2765						task_uid(current->parent));
2766		rcu_read_unlock();
2767	}
2768
2769	/* If the (new) signal is now blocked, requeue it.  */
2770	if (sigismember(&current->blocked, signr) ||
2771	    fatal_signal_pending(current)) {
2772		send_signal_locked(signr, info, current, type);
2773		signr = 0;
2774	}
2775
2776	return signr;
2777}
2778
2779static void hide_si_addr_tag_bits(struct ksignal *ksig)
2780{
2781	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2782	case SIL_FAULT:
2783	case SIL_FAULT_TRAPNO:
2784	case SIL_FAULT_MCEERR:
2785	case SIL_FAULT_BNDERR:
2786	case SIL_FAULT_PKUERR:
2787	case SIL_FAULT_PERF_EVENT:
2788		ksig->info.si_addr = arch_untagged_si_addr(
2789			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2790		break;
2791	case SIL_KILL:
2792	case SIL_TIMER:
2793	case SIL_POLL:
2794	case SIL_CHLD:
2795	case SIL_RT:
2796	case SIL_SYS:
2797		break;
2798	}
2799}
2800
2801bool get_signal(struct ksignal *ksig)
2802{
2803	struct sighand_struct *sighand = current->sighand;
2804	struct signal_struct *signal = current->signal;
2805	int signr;
2806
2807	clear_notify_signal();
2808	if (unlikely(task_work_pending(current)))
2809		task_work_run();
2810
2811	if (!task_sigpending(current))
2812		return false;
2813
2814	if (unlikely(uprobe_deny_signal()))
2815		return false;
2816
 
2817	/*
2818	 * Do this once, we can't return to user-mode if freezing() == T.
2819	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2820	 * thus do not need another check after return.
 
2821	 */
2822	try_to_freeze();
2823
2824relock:
2825	spin_lock_irq(&sighand->siglock);
2826
2827	/*
2828	 * Every stopped thread goes here after wakeup. Check to see if
2829	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2830	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2831	 */
2832	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2833		int why;
2834
2835		if (signal->flags & SIGNAL_CLD_CONTINUED)
2836			why = CLD_CONTINUED;
2837		else
2838			why = CLD_STOPPED;
2839
2840		signal->flags &= ~SIGNAL_CLD_MASK;
2841
2842		spin_unlock_irq(&sighand->siglock);
2843
2844		/*
2845		 * Notify the parent that we're continuing.  This event is
2846		 * always per-process and doesn't make whole lot of sense
2847		 * for ptracers, who shouldn't consume the state via
2848		 * wait(2) either, but, for backward compatibility, notify
2849		 * the ptracer of the group leader too unless it's gonna be
2850		 * a duplicate.
2851		 */
2852		read_lock(&tasklist_lock);
2853		do_notify_parent_cldstop(current, false, why);
2854
2855		if (ptrace_reparented(current->group_leader))
2856			do_notify_parent_cldstop(current->group_leader,
2857						true, why);
2858		read_unlock(&tasklist_lock);
2859
2860		goto relock;
2861	}
2862
2863	for (;;) {
2864		struct k_sigaction *ka;
2865		enum pid_type type;
2866
2867		/* Has this task already been marked for death? */
2868		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2869		     signal->group_exec_task) {
2870			signr = SIGKILL;
2871			sigdelset(&current->pending.signal, SIGKILL);
2872			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2873					     &sighand->action[SIGKILL-1]);
2874			recalc_sigpending();
2875			/*
2876			 * implies do_group_exit() or return to PF_USER_WORKER,
2877			 * no need to initialize ksig->info/etc.
2878			 */
2879			goto fatal;
2880		}
2881
2882		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2883		    do_signal_stop(0))
2884			goto relock;
2885
2886		if (unlikely(current->jobctl &
2887			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2888			if (current->jobctl & JOBCTL_TRAP_MASK) {
2889				do_jobctl_trap();
2890				spin_unlock_irq(&sighand->siglock);
2891			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2892				do_freezer_trap();
2893
2894			goto relock;
2895		}
2896
2897		/*
2898		 * If the task is leaving the frozen state, let's update
2899		 * cgroup counters and reset the frozen bit.
2900		 */
2901		if (unlikely(cgroup_task_frozen(current))) {
2902			spin_unlock_irq(&sighand->siglock);
2903			cgroup_leave_frozen(false);
2904			goto relock;
2905		}
2906
2907		/*
2908		 * Signals generated by the execution of an instruction
2909		 * need to be delivered before any other pending signals
2910		 * so that the instruction pointer in the signal stack
2911		 * frame points to the faulting instruction.
2912		 */
2913		type = PIDTYPE_PID;
2914		signr = dequeue_synchronous_signal(&ksig->info);
2915		if (!signr)
2916			signr = dequeue_signal(&current->blocked, &ksig->info, &type);
2917
2918		if (!signr)
2919			break; /* will return 0 */
2920
2921		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2922		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2923			signr = ptrace_signal(signr, &ksig->info, type);
2924			if (!signr)
2925				continue;
2926		}
2927
2928		ka = &sighand->action[signr-1];
2929
2930		/* Trace actually delivered signals. */
2931		trace_signal_deliver(signr, &ksig->info, ka);
2932
2933		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2934			continue;
2935		if (ka->sa.sa_handler != SIG_DFL) {
2936			/* Run the handler.  */
2937			ksig->ka = *ka;
2938
2939			if (ka->sa.sa_flags & SA_ONESHOT)
2940				ka->sa.sa_handler = SIG_DFL;
2941
2942			break; /* will return non-zero "signr" value */
2943		}
2944
2945		/*
2946		 * Now we are doing the default action for this signal.
2947		 */
2948		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2949			continue;
2950
2951		/*
2952		 * Global init gets no signals it doesn't want.
2953		 * Container-init gets no signals it doesn't want from same
2954		 * container.
2955		 *
2956		 * Note that if global/container-init sees a sig_kernel_only()
2957		 * signal here, the signal must have been generated internally
2958		 * or must have come from an ancestor namespace. In either
2959		 * case, the signal cannot be dropped.
2960		 */
2961		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2962				!sig_kernel_only(signr))
2963			continue;
2964
2965		if (sig_kernel_stop(signr)) {
2966			/*
2967			 * The default action is to stop all threads in
2968			 * the thread group.  The job control signals
2969			 * do nothing in an orphaned pgrp, but SIGSTOP
2970			 * always works.  Note that siglock needs to be
2971			 * dropped during the call to is_orphaned_pgrp()
2972			 * because of lock ordering with tasklist_lock.
2973			 * This allows an intervening SIGCONT to be posted.
2974			 * We need to check for that and bail out if necessary.
2975			 */
2976			if (signr != SIGSTOP) {
2977				spin_unlock_irq(&sighand->siglock);
2978
2979				/* signals can be posted during this window */
2980
2981				if (is_current_pgrp_orphaned())
2982					goto relock;
2983
2984				spin_lock_irq(&sighand->siglock);
2985			}
2986
2987			if (likely(do_signal_stop(signr))) {
2988				/* It released the siglock.  */
2989				goto relock;
2990			}
2991
2992			/*
2993			 * We didn't actually stop, due to a race
2994			 * with SIGCONT or something like that.
2995			 */
2996			continue;
2997		}
2998
2999	fatal:
3000		spin_unlock_irq(&sighand->siglock);
3001		if (unlikely(cgroup_task_frozen(current)))
3002			cgroup_leave_frozen(true);
3003
3004		/*
3005		 * Anything else is fatal, maybe with a core dump.
3006		 */
3007		current->flags |= PF_SIGNALED;
3008
3009		if (sig_kernel_coredump(signr)) {
3010			if (print_fatal_signals)
3011				print_fatal_signal(signr);
3012			proc_coredump_connector(current);
3013			/*
3014			 * If it was able to dump core, this kills all
3015			 * other threads in the group and synchronizes with
3016			 * their demise.  If we lost the race with another
3017			 * thread getting here, it set group_exit_code
3018			 * first and our do_group_exit call below will use
3019			 * that value and ignore the one we pass it.
3020			 */
3021			do_coredump(&ksig->info);
3022		}
3023
3024		/*
3025		 * PF_USER_WORKER threads will catch and exit on fatal signals
3026		 * themselves. They have cleanup that must be performed, so we
3027		 * cannot call do_exit() on their behalf. Note that ksig won't
3028		 * be properly initialized, PF_USER_WORKER's shouldn't use it.
3029		 */
3030		if (current->flags & PF_USER_WORKER)
3031			goto out;
3032
3033		/*
3034		 * Death signals, no core dump.
3035		 */
3036		do_group_exit(signr);
3037		/* NOTREACHED */
3038	}
3039	spin_unlock_irq(&sighand->siglock);
3040
3041	ksig->sig = signr;
3042
3043	if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
3044		hide_si_addr_tag_bits(ksig);
3045out:
3046	return signr > 0;
3047}
3048
3049/**
3050 * signal_delivered - called after signal delivery to update blocked signals
3051 * @ksig:		kernel signal struct
 
 
 
3052 * @stepping:		nonzero if debugger single-step or block-step in use
3053 *
3054 * This function should be called when a signal has successfully been
3055 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
3056 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
3057 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
3058 */
3059static void signal_delivered(struct ksignal *ksig, int stepping)
 
3060{
3061	sigset_t blocked;
3062
3063	/* A signal was successfully delivered, and the
3064	   saved sigmask was stored on the signal frame,
3065	   and will be restored by sigreturn.  So we can
3066	   simply clear the restore sigmask flag.  */
3067	clear_restore_sigmask();
3068
3069	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
3070	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
3071		sigaddset(&blocked, ksig->sig);
3072	set_current_blocked(&blocked);
3073	if (current->sas_ss_flags & SS_AUTODISARM)
3074		sas_ss_reset(current);
3075	if (stepping)
3076		ptrace_notify(SIGTRAP, 0);
3077}
3078
3079void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
3080{
3081	if (failed)
3082		force_sigsegv(ksig->sig);
3083	else
3084		signal_delivered(ksig, stepping);
3085}
3086
3087/*
3088 * It could be that complete_signal() picked us to notify about the
3089 * group-wide signal. Other threads should be notified now to take
3090 * the shared signals in @which since we will not.
3091 */
3092static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
3093{
3094	sigset_t retarget;
3095	struct task_struct *t;
3096
3097	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
3098	if (sigisemptyset(&retarget))
3099		return;
3100
3101	for_other_threads(tsk, t) {
 
3102		if (t->flags & PF_EXITING)
3103			continue;
3104
3105		if (!has_pending_signals(&retarget, &t->blocked))
3106			continue;
3107		/* Remove the signals this thread can handle. */
3108		sigandsets(&retarget, &retarget, &t->blocked);
3109
3110		if (!task_sigpending(t))
3111			signal_wake_up(t, 0);
3112
3113		if (sigisemptyset(&retarget))
3114			break;
3115	}
3116}
3117
3118void exit_signals(struct task_struct *tsk)
3119{
3120	int group_stop = 0;
3121	sigset_t unblocked;
3122
3123	/*
3124	 * @tsk is about to have PF_EXITING set - lock out users which
3125	 * expect stable threadgroup.
3126	 */
3127	cgroup_threadgroup_change_begin(tsk);
3128
3129	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3130		sched_mm_cid_exit_signals(tsk);
3131		tsk->flags |= PF_EXITING;
3132		cgroup_threadgroup_change_end(tsk);
3133		return;
3134	}
3135
3136	spin_lock_irq(&tsk->sighand->siglock);
3137	/*
3138	 * From now this task is not visible for group-wide signals,
3139	 * see wants_signal(), do_signal_stop().
3140	 */
3141	sched_mm_cid_exit_signals(tsk);
3142	tsk->flags |= PF_EXITING;
3143
3144	cgroup_threadgroup_change_end(tsk);
3145
3146	if (!task_sigpending(tsk))
3147		goto out;
3148
3149	unblocked = tsk->blocked;
3150	signotset(&unblocked);
3151	retarget_shared_pending(tsk, &unblocked);
3152
3153	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3154	    task_participate_group_stop(tsk))
3155		group_stop = CLD_STOPPED;
3156out:
3157	spin_unlock_irq(&tsk->sighand->siglock);
3158
3159	/*
3160	 * If group stop has completed, deliver the notification.  This
3161	 * should always go to the real parent of the group leader.
3162	 */
3163	if (unlikely(group_stop)) {
3164		read_lock(&tasklist_lock);
3165		do_notify_parent_cldstop(tsk, false, group_stop);
3166		read_unlock(&tasklist_lock);
3167	}
3168}
3169
 
 
 
 
 
 
 
 
 
 
 
3170/*
3171 * System call entry points.
3172 */
3173
3174/**
3175 *  sys_restart_syscall - restart a system call
3176 */
3177SYSCALL_DEFINE0(restart_syscall)
3178{
3179	struct restart_block *restart = &current->restart_block;
3180	return restart->fn(restart);
3181}
3182
3183long do_no_restart_syscall(struct restart_block *param)
3184{
3185	return -EINTR;
3186}
3187
3188static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3189{
3190	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3191		sigset_t newblocked;
3192		/* A set of now blocked but previously unblocked signals. */
3193		sigandnsets(&newblocked, newset, &current->blocked);
3194		retarget_shared_pending(tsk, &newblocked);
3195	}
3196	tsk->blocked = *newset;
3197	recalc_sigpending();
3198}
3199
3200/**
3201 * set_current_blocked - change current->blocked mask
3202 * @newset: new mask
3203 *
3204 * It is wrong to change ->blocked directly, this helper should be used
3205 * to ensure the process can't miss a shared signal we are going to block.
3206 */
3207void set_current_blocked(sigset_t *newset)
3208{
 
3209	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3210	__set_current_blocked(newset);
 
 
3211}
3212
3213void __set_current_blocked(const sigset_t *newset)
3214{
3215	struct task_struct *tsk = current;
3216
3217	/*
3218	 * In case the signal mask hasn't changed, there is nothing we need
3219	 * to do. The current->blocked shouldn't be modified by other task.
3220	 */
3221	if (sigequalsets(&tsk->blocked, newset))
3222		return;
3223
3224	spin_lock_irq(&tsk->sighand->siglock);
3225	__set_task_blocked(tsk, newset);
3226	spin_unlock_irq(&tsk->sighand->siglock);
3227}
3228
3229/*
3230 * This is also useful for kernel threads that want to temporarily
3231 * (or permanently) block certain signals.
3232 *
3233 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3234 * interface happily blocks "unblockable" signals like SIGKILL
3235 * and friends.
3236 */
3237int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3238{
3239	struct task_struct *tsk = current;
3240	sigset_t newset;
3241
3242	/* Lockless, only current can change ->blocked, never from irq */
3243	if (oldset)
3244		*oldset = tsk->blocked;
3245
3246	switch (how) {
3247	case SIG_BLOCK:
3248		sigorsets(&newset, &tsk->blocked, set);
3249		break;
3250	case SIG_UNBLOCK:
3251		sigandnsets(&newset, &tsk->blocked, set);
3252		break;
3253	case SIG_SETMASK:
3254		newset = *set;
3255		break;
3256	default:
3257		return -EINVAL;
3258	}
3259
3260	__set_current_blocked(&newset);
3261	return 0;
3262}
3263EXPORT_SYMBOL(sigprocmask);
3264
3265/*
3266 * The api helps set app-provided sigmasks.
3267 *
3268 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3269 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3270 *
3271 * Note that it does set_restore_sigmask() in advance, so it must be always
3272 * paired with restore_saved_sigmask_unless() before return from syscall.
3273 */
3274int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3275{
3276	sigset_t kmask;
3277
3278	if (!umask)
3279		return 0;
3280	if (sigsetsize != sizeof(sigset_t))
3281		return -EINVAL;
3282	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3283		return -EFAULT;
3284
3285	set_restore_sigmask();
3286	current->saved_sigmask = current->blocked;
3287	set_current_blocked(&kmask);
3288
3289	return 0;
3290}
3291
3292#ifdef CONFIG_COMPAT
3293int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3294			    size_t sigsetsize)
3295{
3296	sigset_t kmask;
3297
3298	if (!umask)
3299		return 0;
3300	if (sigsetsize != sizeof(compat_sigset_t))
3301		return -EINVAL;
3302	if (get_compat_sigset(&kmask, umask))
3303		return -EFAULT;
3304
3305	set_restore_sigmask();
3306	current->saved_sigmask = current->blocked;
3307	set_current_blocked(&kmask);
3308
3309	return 0;
3310}
3311#endif
3312
3313/**
3314 *  sys_rt_sigprocmask - change the list of currently blocked signals
3315 *  @how: whether to add, remove, or set signals
3316 *  @nset: stores pending signals
3317 *  @oset: previous value of signal mask if non-null
3318 *  @sigsetsize: size of sigset_t type
3319 */
3320SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3321		sigset_t __user *, oset, size_t, sigsetsize)
3322{
3323	sigset_t old_set, new_set;
3324	int error;
3325
3326	/* XXX: Don't preclude handling different sized sigset_t's.  */
3327	if (sigsetsize != sizeof(sigset_t))
3328		return -EINVAL;
3329
3330	old_set = current->blocked;
3331
3332	if (nset) {
3333		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3334			return -EFAULT;
3335		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3336
3337		error = sigprocmask(how, &new_set, NULL);
3338		if (error)
3339			return error;
3340	}
3341
3342	if (oset) {
3343		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3344			return -EFAULT;
3345	}
3346
3347	return 0;
3348}
3349
3350#ifdef CONFIG_COMPAT
3351COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3352		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3353{
3354	sigset_t old_set = current->blocked;
 
3355
3356	/* XXX: Don't preclude handling different sized sigset_t's.  */
3357	if (sigsetsize != sizeof(sigset_t))
3358		return -EINVAL;
3359
3360	if (nset) {
3361		sigset_t new_set;
3362		int error;
3363		if (get_compat_sigset(&new_set, nset))
3364			return -EFAULT;
3365		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3366
3367		error = sigprocmask(how, &new_set, NULL);
3368		if (error)
3369			return error;
3370	}
3371	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3372}
3373#endif
3374
3375static void do_sigpending(sigset_t *set)
3376{
3377	spin_lock_irq(&current->sighand->siglock);
3378	sigorsets(set, &current->pending.signal,
3379		  &current->signal->shared_pending.signal);
3380	spin_unlock_irq(&current->sighand->siglock);
3381
3382	/* Outside the lock because only this thread touches it.  */
3383	sigandsets(set, &current->blocked, set);
 
 
 
 
 
 
 
3384}
3385
3386/**
3387 *  sys_rt_sigpending - examine a pending signal that has been raised
3388 *			while blocked
3389 *  @uset: stores pending signals
3390 *  @sigsetsize: size of sigset_t type or larger
3391 */
3392SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3393{
3394	sigset_t set;
3395
3396	if (sigsetsize > sizeof(*uset))
3397		return -EINVAL;
3398
3399	do_sigpending(&set);
3400
3401	if (copy_to_user(uset, &set, sigsetsize))
3402		return -EFAULT;
3403
3404	return 0;
3405}
3406
3407#ifdef CONFIG_COMPAT
3408COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3409		compat_size_t, sigsetsize)
3410{
3411	sigset_t set;
3412
3413	if (sigsetsize > sizeof(*uset))
3414		return -EINVAL;
3415
3416	do_sigpending(&set);
3417
3418	return put_compat_sigset(uset, &set, sigsetsize);
3419}
3420#endif
3421
3422static const struct {
3423	unsigned char limit, layout;
3424} sig_sicodes[] = {
3425	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3426	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3427	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3428	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3429	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3430#if defined(SIGEMT)
3431	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3432#endif
3433	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3434	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3435	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3436};
3437
3438static bool known_siginfo_layout(unsigned sig, int si_code)
3439{
3440	if (si_code == SI_KERNEL)
3441		return true;
3442	else if ((si_code > SI_USER)) {
3443		if (sig_specific_sicodes(sig)) {
3444			if (si_code <= sig_sicodes[sig].limit)
3445				return true;
3446		}
3447		else if (si_code <= NSIGPOLL)
3448			return true;
3449	}
3450	else if (si_code >= SI_DETHREAD)
3451		return true;
3452	else if (si_code == SI_ASYNCNL)
3453		return true;
3454	return false;
3455}
3456
3457enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3458{
3459	enum siginfo_layout layout = SIL_KILL;
3460	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3461		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3462		    (si_code <= sig_sicodes[sig].limit)) {
3463			layout = sig_sicodes[sig].layout;
3464			/* Handle the exceptions */
3465			if ((sig == SIGBUS) &&
3466			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3467				layout = SIL_FAULT_MCEERR;
3468			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3469				layout = SIL_FAULT_BNDERR;
3470#ifdef SEGV_PKUERR
3471			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3472				layout = SIL_FAULT_PKUERR;
3473#endif
3474			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3475				layout = SIL_FAULT_PERF_EVENT;
3476			else if (IS_ENABLED(CONFIG_SPARC) &&
3477				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3478				layout = SIL_FAULT_TRAPNO;
3479			else if (IS_ENABLED(CONFIG_ALPHA) &&
3480				 ((sig == SIGFPE) ||
3481				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3482				layout = SIL_FAULT_TRAPNO;
3483		}
3484		else if (si_code <= NSIGPOLL)
3485			layout = SIL_POLL;
3486	} else {
3487		if (si_code == SI_TIMER)
3488			layout = SIL_TIMER;
3489		else if (si_code == SI_SIGIO)
3490			layout = SIL_POLL;
3491		else if (si_code < 0)
3492			layout = SIL_RT;
3493	}
3494	return layout;
3495}
3496
3497static inline char __user *si_expansion(const siginfo_t __user *info)
3498{
3499	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3500}
3501
3502int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3503{
3504	char __user *expansion = si_expansion(to);
3505	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3506		return -EFAULT;
3507	if (clear_user(expansion, SI_EXPANSION_SIZE))
3508		return -EFAULT;
3509	return 0;
3510}
3511
3512static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3513				       const siginfo_t __user *from)
3514{
3515	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3516		char __user *expansion = si_expansion(from);
3517		char buf[SI_EXPANSION_SIZE];
3518		int i;
3519		/*
3520		 * An unknown si_code might need more than
3521		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3522		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3523		 * will return this data to userspace exactly.
3524		 */
3525		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3526			return -EFAULT;
3527		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3528			if (buf[i] != 0)
3529				return -E2BIG;
3530		}
3531	}
3532	return 0;
3533}
3534
3535static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3536				    const siginfo_t __user *from)
3537{
3538	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3539		return -EFAULT;
3540	to->si_signo = signo;
3541	return post_copy_siginfo_from_user(to, from);
3542}
3543
3544int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3545{
3546	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3547		return -EFAULT;
3548	return post_copy_siginfo_from_user(to, from);
3549}
3550
3551#ifdef CONFIG_COMPAT
3552/**
3553 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3554 * @to: compat siginfo destination
3555 * @from: kernel siginfo source
3556 *
3557 * Note: This function does not work properly for the SIGCHLD on x32, but
3558 * fortunately it doesn't have to.  The only valid callers for this function are
3559 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3560 * The latter does not care because SIGCHLD will never cause a coredump.
3561 */
3562void copy_siginfo_to_external32(struct compat_siginfo *to,
3563		const struct kernel_siginfo *from)
3564{
3565	memset(to, 0, sizeof(*to));
3566
3567	to->si_signo = from->si_signo;
3568	to->si_errno = from->si_errno;
3569	to->si_code  = from->si_code;
3570	switch(siginfo_layout(from->si_signo, from->si_code)) {
3571	case SIL_KILL:
3572		to->si_pid = from->si_pid;
3573		to->si_uid = from->si_uid;
3574		break;
3575	case SIL_TIMER:
3576		to->si_tid     = from->si_tid;
3577		to->si_overrun = from->si_overrun;
3578		to->si_int     = from->si_int;
3579		break;
3580	case SIL_POLL:
3581		to->si_band = from->si_band;
3582		to->si_fd   = from->si_fd;
3583		break;
3584	case SIL_FAULT:
3585		to->si_addr = ptr_to_compat(from->si_addr);
3586		break;
3587	case SIL_FAULT_TRAPNO:
3588		to->si_addr = ptr_to_compat(from->si_addr);
3589		to->si_trapno = from->si_trapno;
3590		break;
3591	case SIL_FAULT_MCEERR:
3592		to->si_addr = ptr_to_compat(from->si_addr);
3593		to->si_addr_lsb = from->si_addr_lsb;
3594		break;
3595	case SIL_FAULT_BNDERR:
3596		to->si_addr = ptr_to_compat(from->si_addr);
3597		to->si_lower = ptr_to_compat(from->si_lower);
3598		to->si_upper = ptr_to_compat(from->si_upper);
3599		break;
3600	case SIL_FAULT_PKUERR:
3601		to->si_addr = ptr_to_compat(from->si_addr);
3602		to->si_pkey = from->si_pkey;
3603		break;
3604	case SIL_FAULT_PERF_EVENT:
3605		to->si_addr = ptr_to_compat(from->si_addr);
3606		to->si_perf_data = from->si_perf_data;
3607		to->si_perf_type = from->si_perf_type;
3608		to->si_perf_flags = from->si_perf_flags;
3609		break;
3610	case SIL_CHLD:
3611		to->si_pid = from->si_pid;
3612		to->si_uid = from->si_uid;
3613		to->si_status = from->si_status;
3614		to->si_utime = from->si_utime;
3615		to->si_stime = from->si_stime;
3616		break;
3617	case SIL_RT:
3618		to->si_pid = from->si_pid;
3619		to->si_uid = from->si_uid;
3620		to->si_int = from->si_int;
3621		break;
3622	case SIL_SYS:
3623		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3624		to->si_syscall   = from->si_syscall;
3625		to->si_arch      = from->si_arch;
3626		break;
3627	}
 
3628}
3629
3630int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3631			   const struct kernel_siginfo *from)
3632{
3633	struct compat_siginfo new;
3634
3635	copy_siginfo_to_external32(&new, from);
3636	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3637		return -EFAULT;
3638	return 0;
3639}
3640
3641static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3642					 const struct compat_siginfo *from)
3643{
3644	clear_siginfo(to);
3645	to->si_signo = from->si_signo;
3646	to->si_errno = from->si_errno;
3647	to->si_code  = from->si_code;
3648	switch(siginfo_layout(from->si_signo, from->si_code)) {
3649	case SIL_KILL:
3650		to->si_pid = from->si_pid;
3651		to->si_uid = from->si_uid;
3652		break;
3653	case SIL_TIMER:
3654		to->si_tid     = from->si_tid;
3655		to->si_overrun = from->si_overrun;
3656		to->si_int     = from->si_int;
3657		break;
3658	case SIL_POLL:
3659		to->si_band = from->si_band;
3660		to->si_fd   = from->si_fd;
3661		break;
3662	case SIL_FAULT:
3663		to->si_addr = compat_ptr(from->si_addr);
3664		break;
3665	case SIL_FAULT_TRAPNO:
3666		to->si_addr = compat_ptr(from->si_addr);
3667		to->si_trapno = from->si_trapno;
3668		break;
3669	case SIL_FAULT_MCEERR:
3670		to->si_addr = compat_ptr(from->si_addr);
3671		to->si_addr_lsb = from->si_addr_lsb;
3672		break;
3673	case SIL_FAULT_BNDERR:
3674		to->si_addr = compat_ptr(from->si_addr);
3675		to->si_lower = compat_ptr(from->si_lower);
3676		to->si_upper = compat_ptr(from->si_upper);
3677		break;
3678	case SIL_FAULT_PKUERR:
3679		to->si_addr = compat_ptr(from->si_addr);
3680		to->si_pkey = from->si_pkey;
3681		break;
3682	case SIL_FAULT_PERF_EVENT:
3683		to->si_addr = compat_ptr(from->si_addr);
3684		to->si_perf_data = from->si_perf_data;
3685		to->si_perf_type = from->si_perf_type;
3686		to->si_perf_flags = from->si_perf_flags;
3687		break;
3688	case SIL_CHLD:
3689		to->si_pid    = from->si_pid;
3690		to->si_uid    = from->si_uid;
3691		to->si_status = from->si_status;
3692#ifdef CONFIG_X86_X32_ABI
3693		if (in_x32_syscall()) {
3694			to->si_utime = from->_sifields._sigchld_x32._utime;
3695			to->si_stime = from->_sifields._sigchld_x32._stime;
3696		} else
3697#endif
3698		{
3699			to->si_utime = from->si_utime;
3700			to->si_stime = from->si_stime;
3701		}
3702		break;
3703	case SIL_RT:
3704		to->si_pid = from->si_pid;
3705		to->si_uid = from->si_uid;
3706		to->si_int = from->si_int;
3707		break;
3708	case SIL_SYS:
3709		to->si_call_addr = compat_ptr(from->si_call_addr);
3710		to->si_syscall   = from->si_syscall;
3711		to->si_arch      = from->si_arch;
3712		break;
3713	}
3714	return 0;
3715}
3716
3717static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3718				      const struct compat_siginfo __user *ufrom)
3719{
3720	struct compat_siginfo from;
3721
3722	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3723		return -EFAULT;
3724
3725	from.si_signo = signo;
3726	return post_copy_siginfo_from_user32(to, &from);
3727}
3728
3729int copy_siginfo_from_user32(struct kernel_siginfo *to,
3730			     const struct compat_siginfo __user *ufrom)
3731{
3732	struct compat_siginfo from;
3733
3734	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3735		return -EFAULT;
3736
3737	return post_copy_siginfo_from_user32(to, &from);
3738}
3739#endif /* CONFIG_COMPAT */
3740
3741/**
3742 *  do_sigtimedwait - wait for queued signals specified in @which
3743 *  @which: queued signals to wait for
3744 *  @info: if non-null, the signal's siginfo is returned here
3745 *  @ts: upper bound on process time suspension
3746 */
3747static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3748		    const struct timespec64 *ts)
3749{
3750	ktime_t *to = NULL, timeout = KTIME_MAX;
3751	struct task_struct *tsk = current;
 
3752	sigset_t mask = *which;
3753	enum pid_type type;
3754	int sig, ret = 0;
3755
3756	if (ts) {
3757		if (!timespec64_valid(ts))
3758			return -EINVAL;
3759		timeout = timespec64_to_ktime(*ts);
3760		to = &timeout;
 
 
 
 
 
3761	}
3762
3763	/*
3764	 * Invert the set of allowed signals to get those we want to block.
3765	 */
3766	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3767	signotset(&mask);
3768
3769	spin_lock_irq(&tsk->sighand->siglock);
3770	sig = dequeue_signal(&mask, info, &type);
3771	if (!sig && timeout) {
3772		/*
3773		 * None ready, temporarily unblock those we're interested
3774		 * while we are sleeping in so that we'll be awakened when
3775		 * they arrive. Unblocking is always fine, we can avoid
3776		 * set_current_blocked().
3777		 */
3778		tsk->real_blocked = tsk->blocked;
3779		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3780		recalc_sigpending();
3781		spin_unlock_irq(&tsk->sighand->siglock);
3782
3783		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3784		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3785					       HRTIMER_MODE_REL);
3786		spin_lock_irq(&tsk->sighand->siglock);
3787		__set_task_blocked(tsk, &tsk->real_blocked);
3788		sigemptyset(&tsk->real_blocked);
3789		sig = dequeue_signal(&mask, info, &type);
3790	}
3791	spin_unlock_irq(&tsk->sighand->siglock);
3792
3793	if (sig)
3794		return sig;
3795	return ret ? -EINTR : -EAGAIN;
3796}
3797
3798/**
3799 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3800 *			in @uthese
3801 *  @uthese: queued signals to wait for
3802 *  @uinfo: if non-null, the signal's siginfo is returned here
3803 *  @uts: upper bound on process time suspension
3804 *  @sigsetsize: size of sigset_t type
3805 */
3806SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3807		siginfo_t __user *, uinfo,
3808		const struct __kernel_timespec __user *, uts,
3809		size_t, sigsetsize)
3810{
3811	sigset_t these;
3812	struct timespec64 ts;
3813	kernel_siginfo_t info;
3814	int ret;
3815
3816	/* XXX: Don't preclude handling different sized sigset_t's.  */
3817	if (sigsetsize != sizeof(sigset_t))
3818		return -EINVAL;
3819
3820	if (copy_from_user(&these, uthese, sizeof(these)))
3821		return -EFAULT;
3822
3823	if (uts) {
3824		if (get_timespec64(&ts, uts))
3825			return -EFAULT;
3826	}
3827
3828	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3829
3830	if (ret > 0 && uinfo) {
3831		if (copy_siginfo_to_user(uinfo, &info))
3832			ret = -EFAULT;
3833	}
3834
3835	return ret;
3836}
3837
3838#ifdef CONFIG_COMPAT_32BIT_TIME
3839SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3840		siginfo_t __user *, uinfo,
3841		const struct old_timespec32 __user *, uts,
3842		size_t, sigsetsize)
3843{
3844	sigset_t these;
3845	struct timespec64 ts;
3846	kernel_siginfo_t info;
3847	int ret;
3848
3849	if (sigsetsize != sizeof(sigset_t))
3850		return -EINVAL;
3851
3852	if (copy_from_user(&these, uthese, sizeof(these)))
3853		return -EFAULT;
3854
3855	if (uts) {
3856		if (get_old_timespec32(&ts, uts))
3857			return -EFAULT;
3858	}
3859
3860	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3861
3862	if (ret > 0 && uinfo) {
3863		if (copy_siginfo_to_user(uinfo, &info))
3864			ret = -EFAULT;
3865	}
3866
3867	return ret;
3868}
3869#endif
3870
3871#ifdef CONFIG_COMPAT
3872COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3873		struct compat_siginfo __user *, uinfo,
3874		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3875{
3876	sigset_t s;
3877	struct timespec64 t;
3878	kernel_siginfo_t info;
3879	long ret;
3880
3881	if (sigsetsize != sizeof(sigset_t))
3882		return -EINVAL;
3883
3884	if (get_compat_sigset(&s, uthese))
3885		return -EFAULT;
3886
3887	if (uts) {
3888		if (get_timespec64(&t, uts))
3889			return -EFAULT;
3890	}
3891
3892	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3893
3894	if (ret > 0 && uinfo) {
3895		if (copy_siginfo_to_user32(uinfo, &info))
3896			ret = -EFAULT;
3897	}
3898
3899	return ret;
3900}
3901
3902#ifdef CONFIG_COMPAT_32BIT_TIME
3903COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3904		struct compat_siginfo __user *, uinfo,
3905		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3906{
3907	sigset_t s;
3908	struct timespec64 t;
3909	kernel_siginfo_t info;
3910	long ret;
3911
3912	if (sigsetsize != sizeof(sigset_t))
3913		return -EINVAL;
3914
3915	if (get_compat_sigset(&s, uthese))
3916		return -EFAULT;
3917
3918	if (uts) {
3919		if (get_old_timespec32(&t, uts))
3920			return -EFAULT;
3921	}
3922
3923	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3924
3925	if (ret > 0 && uinfo) {
3926		if (copy_siginfo_to_user32(uinfo, &info))
3927			ret = -EFAULT;
3928	}
3929
3930	return ret;
3931}
3932#endif
3933#endif
3934
3935static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3936				 enum pid_type type)
3937{
3938	clear_siginfo(info);
3939	info->si_signo = sig;
3940	info->si_errno = 0;
3941	info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3942	info->si_pid = task_tgid_vnr(current);
3943	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3944}
3945
3946/**
3947 *  sys_kill - send a signal to a process
3948 *  @pid: the PID of the process
3949 *  @sig: signal to be sent
3950 */
3951SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3952{
3953	struct kernel_siginfo info;
3954
3955	prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
 
 
 
 
3956
3957	return kill_something_info(sig, &info, pid);
3958}
3959
3960/*
3961 * Verify that the signaler and signalee either are in the same pid namespace
3962 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3963 * namespace.
3964 */
3965static bool access_pidfd_pidns(struct pid *pid)
3966{
3967	struct pid_namespace *active = task_active_pid_ns(current);
3968	struct pid_namespace *p = ns_of_pid(pid);
3969
3970	for (;;) {
3971		if (!p)
3972			return false;
3973		if (p == active)
3974			break;
3975		p = p->parent;
3976	}
3977
3978	return true;
3979}
3980
3981static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3982		siginfo_t __user *info)
3983{
3984#ifdef CONFIG_COMPAT
3985	/*
3986	 * Avoid hooking up compat syscalls and instead handle necessary
3987	 * conversions here. Note, this is a stop-gap measure and should not be
3988	 * considered a generic solution.
3989	 */
3990	if (in_compat_syscall())
3991		return copy_siginfo_from_user32(
3992			kinfo, (struct compat_siginfo __user *)info);
3993#endif
3994	return copy_siginfo_from_user(kinfo, info);
3995}
3996
3997static struct pid *pidfd_to_pid(const struct file *file)
3998{
3999	struct pid *pid;
4000
4001	pid = pidfd_pid(file);
4002	if (!IS_ERR(pid))
4003		return pid;
4004
4005	return tgid_pidfd_to_pid(file);
4006}
4007
4008#define PIDFD_SEND_SIGNAL_FLAGS                            \
4009	(PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
4010	 PIDFD_SIGNAL_PROCESS_GROUP)
4011
4012/**
4013 * sys_pidfd_send_signal - Signal a process through a pidfd
4014 * @pidfd:  file descriptor of the process
4015 * @sig:    signal to send
4016 * @info:   signal info
4017 * @flags:  future flags
4018 *
4019 * Send the signal to the thread group or to the individual thread depending
4020 * on PIDFD_THREAD.
4021 * In the future extension to @flags may be used to override the default scope
4022 * of @pidfd.
4023 *
4024 * Return: 0 on success, negative errno on failure
4025 */
4026SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
4027		siginfo_t __user *, info, unsigned int, flags)
4028{
4029	int ret;
4030	struct pid *pid;
4031	kernel_siginfo_t kinfo;
4032	enum pid_type type;
4033
4034	/* Enforce flags be set to 0 until we add an extension. */
4035	if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
4036		return -EINVAL;
4037
4038	/* Ensure that only a single signal scope determining flag is set. */
4039	if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
4040		return -EINVAL;
4041
4042	CLASS(fd, f)(pidfd);
4043	if (fd_empty(f))
4044		return -EBADF;
4045
4046	/* Is this a pidfd? */
4047	pid = pidfd_to_pid(fd_file(f));
4048	if (IS_ERR(pid))
4049		return PTR_ERR(pid);
4050
4051	if (!access_pidfd_pidns(pid))
4052		return -EINVAL;
4053
4054	switch (flags) {
4055	case 0:
4056		/* Infer scope from the type of pidfd. */
4057		if (fd_file(f)->f_flags & PIDFD_THREAD)
4058			type = PIDTYPE_PID;
4059		else
4060			type = PIDTYPE_TGID;
4061		break;
4062	case PIDFD_SIGNAL_THREAD:
4063		type = PIDTYPE_PID;
4064		break;
4065	case PIDFD_SIGNAL_THREAD_GROUP:
4066		type = PIDTYPE_TGID;
4067		break;
4068	case PIDFD_SIGNAL_PROCESS_GROUP:
4069		type = PIDTYPE_PGID;
4070		break;
4071	}
4072
4073	if (info) {
4074		ret = copy_siginfo_from_user_any(&kinfo, info);
4075		if (unlikely(ret))
4076			return ret;
4077
4078		if (unlikely(sig != kinfo.si_signo))
4079			return -EINVAL;
4080
4081		/* Only allow sending arbitrary signals to yourself. */
4082		if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
4083		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
4084			return -EPERM;
4085	} else {
4086		prepare_kill_siginfo(sig, &kinfo, type);
4087	}
4088
4089	if (type == PIDTYPE_PGID)
4090		return kill_pgrp_info(sig, &kinfo, pid);
4091	else
4092		return kill_pid_info_type(sig, &kinfo, pid, type);
4093}
4094
4095static int
4096do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4097{
4098	struct task_struct *p;
4099	int error = -ESRCH;
4100
4101	rcu_read_lock();
4102	p = find_task_by_vpid(pid);
4103	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4104		error = check_kill_permission(sig, info, p);
4105		/*
4106		 * The null signal is a permissions and process existence
4107		 * probe.  No signal is actually delivered.
4108		 */
4109		if (!error && sig) {
4110			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4111			/*
4112			 * If lock_task_sighand() failed we pretend the task
4113			 * dies after receiving the signal. The window is tiny,
4114			 * and the signal is private anyway.
4115			 */
4116			if (unlikely(error == -ESRCH))
4117				error = 0;
4118		}
4119	}
4120	rcu_read_unlock();
4121
4122	return error;
4123}
4124
4125static int do_tkill(pid_t tgid, pid_t pid, int sig)
4126{
4127	struct kernel_siginfo info;
4128
4129	prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
 
 
 
 
4130
4131	return do_send_specific(tgid, pid, sig, &info);
4132}
4133
4134/**
4135 *  sys_tgkill - send signal to one specific thread
4136 *  @tgid: the thread group ID of the thread
4137 *  @pid: the PID of the thread
4138 *  @sig: signal to be sent
4139 *
4140 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
4141 *  exists but it's not belonging to the target process anymore. This
4142 *  method solves the problem of threads exiting and PIDs getting reused.
4143 */
4144SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4145{
4146	/* This is only valid for single tasks */
4147	if (pid <= 0 || tgid <= 0)
4148		return -EINVAL;
4149
4150	return do_tkill(tgid, pid, sig);
4151}
4152
4153/**
4154 *  sys_tkill - send signal to one specific task
4155 *  @pid: the PID of the task
4156 *  @sig: signal to be sent
4157 *
4158 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
4159 */
4160SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4161{
4162	/* This is only valid for single tasks */
4163	if (pid <= 0)
4164		return -EINVAL;
4165
4166	return do_tkill(0, pid, sig);
4167}
4168
4169static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4170{
4171	/* Not even root can pretend to send signals from the kernel.
4172	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4173	 */
4174	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4175	    (task_pid_vnr(current) != pid))
4176		return -EPERM;
4177
4178	/* POSIX.1b doesn't mention process groups.  */
4179	return kill_proc_info(sig, info, pid);
4180}
4181
4182/**
4183 *  sys_rt_sigqueueinfo - send signal information to a signal
4184 *  @pid: the PID of the thread
4185 *  @sig: signal to be sent
4186 *  @uinfo: signal info to be sent
4187 */
4188SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4189		siginfo_t __user *, uinfo)
4190{
4191	kernel_siginfo_t info;
4192	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4193	if (unlikely(ret))
4194		return ret;
4195	return do_rt_sigqueueinfo(pid, sig, &info);
4196}
4197
4198#ifdef CONFIG_COMPAT
4199COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4200			compat_pid_t, pid,
4201			int, sig,
4202			struct compat_siginfo __user *, uinfo)
4203{
4204	kernel_siginfo_t info;
4205	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4206	if (unlikely(ret))
4207		return ret;
4208	return do_rt_sigqueueinfo(pid, sig, &info);
 
 
 
 
4209}
4210#endif
4211
4212static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4213{
4214	/* This is only valid for single tasks */
4215	if (pid <= 0 || tgid <= 0)
4216		return -EINVAL;
4217
4218	/* Not even root can pretend to send signals from the kernel.
4219	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4220	 */
4221	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4222	    (task_pid_vnr(current) != pid))
 
4223		return -EPERM;
 
 
4224
4225	return do_send_specific(tgid, pid, sig, info);
4226}
4227
4228SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4229		siginfo_t __user *, uinfo)
4230{
4231	kernel_siginfo_t info;
4232	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4233	if (unlikely(ret))
4234		return ret;
4235	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4236}
4237
4238#ifdef CONFIG_COMPAT
4239COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4240			compat_pid_t, tgid,
4241			compat_pid_t, pid,
4242			int, sig,
4243			struct compat_siginfo __user *, uinfo)
4244{
4245	kernel_siginfo_t info;
4246	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4247	if (unlikely(ret))
4248		return ret;
4249	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4250}
4251#endif
4252
4253/*
4254 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4255 */
4256void kernel_sigaction(int sig, __sighandler_t action)
4257{
4258	spin_lock_irq(&current->sighand->siglock);
4259	current->sighand->action[sig - 1].sa.sa_handler = action;
4260	if (action == SIG_IGN) {
4261		sigset_t mask;
4262
4263		sigemptyset(&mask);
4264		sigaddset(&mask, sig);
4265
4266		flush_sigqueue_mask(current, &mask, &current->signal->shared_pending);
4267		flush_sigqueue_mask(current, &mask, &current->pending);
4268		recalc_sigpending();
4269	}
4270	spin_unlock_irq(&current->sighand->siglock);
4271}
4272EXPORT_SYMBOL(kernel_sigaction);
4273
4274void __weak sigaction_compat_abi(struct k_sigaction *act,
4275		struct k_sigaction *oact)
4276{
4277}
4278
4279int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4280{
4281	struct task_struct *p = current, *t;
4282	struct k_sigaction *k;
4283	sigset_t mask;
4284
4285	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4286		return -EINVAL;
4287
4288	k = &p->sighand->action[sig-1];
4289
4290	spin_lock_irq(&p->sighand->siglock);
4291	if (k->sa.sa_flags & SA_IMMUTABLE) {
4292		spin_unlock_irq(&p->sighand->siglock);
4293		return -EINVAL;
4294	}
4295	if (oact)
4296		*oact = *k;
4297
4298	/*
4299	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4300	 * e.g. by having an architecture use the bit in their uapi.
4301	 */
4302	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4303
4304	/*
4305	 * Clear unknown flag bits in order to allow userspace to detect missing
4306	 * support for flag bits and to allow the kernel to use non-uapi bits
4307	 * internally.
4308	 */
4309	if (act)
4310		act->sa.sa_flags &= UAPI_SA_FLAGS;
4311	if (oact)
4312		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4313
4314	sigaction_compat_abi(act, oact);
4315
4316	if (act) {
4317		bool was_ignored = k->sa.sa_handler == SIG_IGN;
4318
4319		sigdelsetmask(&act->sa.sa_mask,
4320			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4321		*k = *act;
4322		/*
4323		 * POSIX 3.3.1.3:
4324		 *  "Setting a signal action to SIG_IGN for a signal that is
4325		 *   pending shall cause the pending signal to be discarded,
4326		 *   whether or not it is blocked."
4327		 *
4328		 *  "Setting a signal action to SIG_DFL for a signal that is
4329		 *   pending and whose default action is to ignore the signal
4330		 *   (for example, SIGCHLD), shall cause the pending signal to
4331		 *   be discarded, whether or not it is blocked"
4332		 */
4333		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4334			sigemptyset(&mask);
4335			sigaddset(&mask, sig);
4336			flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
4337			for_each_thread(p, t)
4338				flush_sigqueue_mask(p, &mask, &t->pending);
4339		} else if (was_ignored) {
4340			posixtimer_sig_unignore(p, sig);
4341		}
4342	}
4343
4344	spin_unlock_irq(&p->sighand->siglock);
4345	return 0;
4346}
4347
4348#ifdef CONFIG_DYNAMIC_SIGFRAME
4349static inline void sigaltstack_lock(void)
4350	__acquires(&current->sighand->siglock)
4351{
4352	spin_lock_irq(&current->sighand->siglock);
4353}
4354
4355static inline void sigaltstack_unlock(void)
4356	__releases(&current->sighand->siglock)
4357{
4358	spin_unlock_irq(&current->sighand->siglock);
 
4359}
4360#else
4361static inline void sigaltstack_lock(void) { }
4362static inline void sigaltstack_unlock(void) { }
4363#endif
4364
4365static int
4366do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4367		size_t min_ss_size)
4368{
4369	struct task_struct *t = current;
4370	int ret = 0;
4371
4372	if (oss) {
4373		memset(oss, 0, sizeof(stack_t));
4374		oss->ss_sp = (void __user *) t->sas_ss_sp;
4375		oss->ss_size = t->sas_ss_size;
4376		oss->ss_flags = sas_ss_flags(sp) |
4377			(current->sas_ss_flags & SS_FLAG_BITS);
4378	}
4379
4380	if (ss) {
4381		void __user *ss_sp = ss->ss_sp;
4382		size_t ss_size = ss->ss_size;
4383		unsigned ss_flags = ss->ss_flags;
4384		int ss_mode;
4385
4386		if (unlikely(on_sig_stack(sp)))
4387			return -EPERM;
 
 
 
 
 
 
4388
4389		ss_mode = ss_flags & ~SS_FLAG_BITS;
4390		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4391				ss_mode != 0))
4392			return -EINVAL;
4393
 
4394		/*
4395		 * Return before taking any locks if no actual
4396		 * sigaltstack changes were requested.
 
 
 
4397		 */
4398		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4399		    t->sas_ss_size == ss_size &&
4400		    t->sas_ss_flags == ss_flags)
4401			return 0;
4402
4403		sigaltstack_lock();
4404		if (ss_mode == SS_DISABLE) {
4405			ss_size = 0;
4406			ss_sp = NULL;
4407		} else {
4408			if (unlikely(ss_size < min_ss_size))
4409				ret = -ENOMEM;
4410			if (!sigaltstack_size_valid(ss_size))
4411				ret = -ENOMEM;
4412		}
4413		if (!ret) {
4414			t->sas_ss_sp = (unsigned long) ss_sp;
4415			t->sas_ss_size = ss_size;
4416			t->sas_ss_flags = ss_flags;
4417		}
4418		sigaltstack_unlock();
4419	}
4420	return ret;
4421}
4422
4423SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4424{
4425	stack_t new, old;
4426	int err;
4427	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4428		return -EFAULT;
4429	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4430			      current_user_stack_pointer(),
4431			      MINSIGSTKSZ);
4432	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4433		err = -EFAULT;
4434	return err;
4435}
4436
4437int restore_altstack(const stack_t __user *uss)
4438{
4439	stack_t new;
4440	if (copy_from_user(&new, uss, sizeof(stack_t)))
4441		return -EFAULT;
4442	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4443			     MINSIGSTKSZ);
4444	/* squash all but EFAULT for now */
4445	return 0;
4446}
4447
4448int __save_altstack(stack_t __user *uss, unsigned long sp)
4449{
4450	struct task_struct *t = current;
4451	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4452		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4453		__put_user(t->sas_ss_size, &uss->ss_size);
4454	return err;
4455}
4456
4457#ifdef CONFIG_COMPAT
4458static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4459				 compat_stack_t __user *uoss_ptr)
4460{
4461	stack_t uss, uoss;
4462	int ret;
4463
4464	if (uss_ptr) {
4465		compat_stack_t uss32;
4466		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4467			return -EFAULT;
4468		uss.ss_sp = compat_ptr(uss32.ss_sp);
4469		uss.ss_flags = uss32.ss_flags;
4470		uss.ss_size = uss32.ss_size;
4471	}
4472	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4473			     compat_user_stack_pointer(),
4474			     COMPAT_MINSIGSTKSZ);
4475	if (ret >= 0 && uoss_ptr)  {
4476		compat_stack_t old;
4477		memset(&old, 0, sizeof(old));
4478		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4479		old.ss_flags = uoss.ss_flags;
4480		old.ss_size = uoss.ss_size;
4481		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4482			ret = -EFAULT;
4483	}
4484	return ret;
4485}
4486
4487COMPAT_SYSCALL_DEFINE2(sigaltstack,
4488			const compat_stack_t __user *, uss_ptr,
4489			compat_stack_t __user *, uoss_ptr)
4490{
4491	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4492}
4493
4494int compat_restore_altstack(const compat_stack_t __user *uss)
4495{
4496	int err = do_compat_sigaltstack(uss, NULL);
4497	/* squash all but -EFAULT for now */
4498	return err == -EFAULT ? err : 0;
4499}
4500
4501int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4502{
4503	int err;
4504	struct task_struct *t = current;
4505	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4506			 &uss->ss_sp) |
4507		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4508		__put_user(t->sas_ss_size, &uss->ss_size);
4509	return err;
4510}
4511#endif
4512
4513#ifdef __ARCH_WANT_SYS_SIGPENDING
4514
4515/**
4516 *  sys_sigpending - examine pending signals
4517 *  @uset: where mask of pending signal is returned
4518 */
4519SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4520{
4521	sigset_t set;
4522
4523	if (sizeof(old_sigset_t) > sizeof(*uset))
4524		return -EINVAL;
4525
4526	do_sigpending(&set);
4527
4528	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4529		return -EFAULT;
4530
4531	return 0;
4532}
4533
4534#ifdef CONFIG_COMPAT
4535COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4536{
4537	sigset_t set;
4538
4539	do_sigpending(&set);
4540
4541	return put_user(set.sig[0], set32);
4542}
4543#endif
4544
4545#endif
4546
4547#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4548/**
4549 *  sys_sigprocmask - examine and change blocked signals
4550 *  @how: whether to add, remove, or set signals
4551 *  @nset: signals to add or remove (if non-null)
4552 *  @oset: previous value of signal mask if non-null
4553 *
4554 * Some platforms have their own version with special arguments;
4555 * others support only sys_rt_sigprocmask.
4556 */
4557
4558SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4559		old_sigset_t __user *, oset)
4560{
4561	old_sigset_t old_set, new_set;
4562	sigset_t new_blocked;
4563
4564	old_set = current->blocked.sig[0];
4565
4566	if (nset) {
4567		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4568			return -EFAULT;
 
4569
4570		new_blocked = current->blocked;
4571
4572		switch (how) {
4573		case SIG_BLOCK:
4574			sigaddsetmask(&new_blocked, new_set);
4575			break;
4576		case SIG_UNBLOCK:
4577			sigdelsetmask(&new_blocked, new_set);
4578			break;
4579		case SIG_SETMASK:
4580			new_blocked.sig[0] = new_set;
4581			break;
4582		default:
4583			return -EINVAL;
4584		}
4585
4586		set_current_blocked(&new_blocked);
4587	}
4588
4589	if (oset) {
4590		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4591			return -EFAULT;
4592	}
4593
4594	return 0;
4595}
4596#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4597
4598#ifndef CONFIG_ODD_RT_SIGACTION
4599/**
4600 *  sys_rt_sigaction - alter an action taken by a process
4601 *  @sig: signal to be sent
4602 *  @act: new sigaction
4603 *  @oact: used to save the previous sigaction
4604 *  @sigsetsize: size of sigset_t type
4605 */
4606SYSCALL_DEFINE4(rt_sigaction, int, sig,
4607		const struct sigaction __user *, act,
4608		struct sigaction __user *, oact,
4609		size_t, sigsetsize)
4610{
4611	struct k_sigaction new_sa, old_sa;
4612	int ret;
4613
4614	/* XXX: Don't preclude handling different sized sigset_t's.  */
4615	if (sigsetsize != sizeof(sigset_t))
4616		return -EINVAL;
4617
4618	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4619		return -EFAULT;
4620
4621	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4622	if (ret)
4623		return ret;
4624
4625	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4626		return -EFAULT;
4627
4628	return 0;
4629}
4630#ifdef CONFIG_COMPAT
4631COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4632		const struct compat_sigaction __user *, act,
4633		struct compat_sigaction __user *, oact,
4634		compat_size_t, sigsetsize)
4635{
4636	struct k_sigaction new_ka, old_ka;
4637#ifdef __ARCH_HAS_SA_RESTORER
4638	compat_uptr_t restorer;
4639#endif
4640	int ret;
4641
4642	/* XXX: Don't preclude handling different sized sigset_t's.  */
4643	if (sigsetsize != sizeof(compat_sigset_t))
4644		return -EINVAL;
4645
4646	if (act) {
4647		compat_uptr_t handler;
4648		ret = get_user(handler, &act->sa_handler);
4649		new_ka.sa.sa_handler = compat_ptr(handler);
4650#ifdef __ARCH_HAS_SA_RESTORER
4651		ret |= get_user(restorer, &act->sa_restorer);
4652		new_ka.sa.sa_restorer = compat_ptr(restorer);
4653#endif
4654		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4655		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4656		if (ret)
4657			return -EFAULT;
4658	}
4659
4660	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4661	if (!ret && oact) {
4662		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4663			       &oact->sa_handler);
4664		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4665					 sizeof(oact->sa_mask));
4666		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4667#ifdef __ARCH_HAS_SA_RESTORER
4668		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4669				&oact->sa_restorer);
4670#endif
4671	}
4672	return ret;
4673}
4674#endif
4675#endif /* !CONFIG_ODD_RT_SIGACTION */
4676
4677#ifdef CONFIG_OLD_SIGACTION
4678SYSCALL_DEFINE3(sigaction, int, sig,
4679		const struct old_sigaction __user *, act,
4680	        struct old_sigaction __user *, oact)
4681{
4682	struct k_sigaction new_ka, old_ka;
4683	int ret;
4684
4685	if (act) {
4686		old_sigset_t mask;
4687		if (!access_ok(act, sizeof(*act)) ||
4688		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4689		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4690		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4691		    __get_user(mask, &act->sa_mask))
4692			return -EFAULT;
4693#ifdef __ARCH_HAS_KA_RESTORER
4694		new_ka.ka_restorer = NULL;
4695#endif
4696		siginitset(&new_ka.sa.sa_mask, mask);
4697	}
4698
4699	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4700
4701	if (!ret && oact) {
4702		if (!access_ok(oact, sizeof(*oact)) ||
4703		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4704		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4705		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4706		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4707			return -EFAULT;
4708	}
4709
4710	return ret;
4711}
4712#endif
4713#ifdef CONFIG_COMPAT_OLD_SIGACTION
4714COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4715		const struct compat_old_sigaction __user *, act,
4716	        struct compat_old_sigaction __user *, oact)
4717{
4718	struct k_sigaction new_ka, old_ka;
4719	int ret;
4720	compat_old_sigset_t mask;
4721	compat_uptr_t handler, restorer;
4722
4723	if (act) {
4724		if (!access_ok(act, sizeof(*act)) ||
4725		    __get_user(handler, &act->sa_handler) ||
4726		    __get_user(restorer, &act->sa_restorer) ||
4727		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4728		    __get_user(mask, &act->sa_mask))
4729			return -EFAULT;
4730
4731#ifdef __ARCH_HAS_KA_RESTORER
4732		new_ka.ka_restorer = NULL;
4733#endif
4734		new_ka.sa.sa_handler = compat_ptr(handler);
4735		new_ka.sa.sa_restorer = compat_ptr(restorer);
4736		siginitset(&new_ka.sa.sa_mask, mask);
4737	}
4738
4739	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4740
4741	if (!ret && oact) {
4742		if (!access_ok(oact, sizeof(*oact)) ||
4743		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4744			       &oact->sa_handler) ||
4745		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4746			       &oact->sa_restorer) ||
4747		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4748		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4749			return -EFAULT;
4750	}
 
4751	return ret;
4752}
4753#endif
4754
4755#ifdef CONFIG_SGETMASK_SYSCALL
4756
4757/*
4758 * For backwards compatibility.  Functionality superseded by sigprocmask.
4759 */
4760SYSCALL_DEFINE0(sgetmask)
4761{
4762	/* SMP safe */
4763	return current->blocked.sig[0];
4764}
4765
4766SYSCALL_DEFINE1(ssetmask, int, newmask)
4767{
4768	int old = current->blocked.sig[0];
4769	sigset_t newset;
4770
4771	siginitset(&newset, newmask);
4772	set_current_blocked(&newset);
4773
4774	return old;
4775}
4776#endif /* CONFIG_SGETMASK_SYSCALL */
4777
4778#ifdef __ARCH_WANT_SYS_SIGNAL
4779/*
4780 * For backwards compatibility.  Functionality superseded by sigaction.
4781 */
4782SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4783{
4784	struct k_sigaction new_sa, old_sa;
4785	int ret;
4786
4787	new_sa.sa.sa_handler = handler;
4788	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4789	sigemptyset(&new_sa.sa.sa_mask);
4790
4791	ret = do_sigaction(sig, &new_sa, &old_sa);
4792
4793	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4794}
4795#endif /* __ARCH_WANT_SYS_SIGNAL */
4796
4797#ifdef __ARCH_WANT_SYS_PAUSE
4798
4799SYSCALL_DEFINE0(pause)
4800{
4801	while (!signal_pending(current)) {
4802		__set_current_state(TASK_INTERRUPTIBLE);
4803		schedule();
4804	}
4805	return -ERESTARTNOHAND;
4806}
4807
4808#endif
4809
4810static int sigsuspend(sigset_t *set)
4811{
4812	current->saved_sigmask = current->blocked;
4813	set_current_blocked(set);
4814
4815	while (!signal_pending(current)) {
4816		__set_current_state(TASK_INTERRUPTIBLE);
4817		schedule();
4818	}
4819	set_restore_sigmask();
4820	return -ERESTARTNOHAND;
4821}
4822
 
4823/**
4824 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4825 *	@unewset value until a signal is received
4826 *  @unewset: new signal mask value
4827 *  @sigsetsize: size of sigset_t type
4828 */
4829SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4830{
4831	sigset_t newset;
4832
4833	/* XXX: Don't preclude handling different sized sigset_t's.  */
4834	if (sigsetsize != sizeof(sigset_t))
4835		return -EINVAL;
4836
4837	if (copy_from_user(&newset, unewset, sizeof(newset)))
4838		return -EFAULT;
4839	return sigsuspend(&newset);
4840}
4841 
4842#ifdef CONFIG_COMPAT
4843COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4844{
4845	sigset_t newset;
4846
4847	/* XXX: Don't preclude handling different sized sigset_t's.  */
4848	if (sigsetsize != sizeof(sigset_t))
4849		return -EINVAL;
4850
4851	if (get_compat_sigset(&newset, unewset))
4852		return -EFAULT;
4853	return sigsuspend(&newset);
4854}
4855#endif
4856
4857#ifdef CONFIG_OLD_SIGSUSPEND
4858SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4859{
4860	sigset_t blocked;
4861	siginitset(&blocked, mask);
4862	return sigsuspend(&blocked);
4863}
4864#endif
4865#ifdef CONFIG_OLD_SIGSUSPEND3
4866SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4867{
4868	sigset_t blocked;
4869	siginitset(&blocked, mask);
4870	return sigsuspend(&blocked);
4871}
4872#endif
4873
4874__weak const char *arch_vma_name(struct vm_area_struct *vma)
4875{
4876	return NULL;
4877}
4878
4879static inline void siginfo_buildtime_checks(void)
4880{
4881	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4882
4883	/* Verify the offsets in the two siginfos match */
4884#define CHECK_OFFSET(field) \
4885	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4886
4887	/* kill */
4888	CHECK_OFFSET(si_pid);
4889	CHECK_OFFSET(si_uid);
4890
4891	/* timer */
4892	CHECK_OFFSET(si_tid);
4893	CHECK_OFFSET(si_overrun);
4894	CHECK_OFFSET(si_value);
4895
4896	/* rt */
4897	CHECK_OFFSET(si_pid);
4898	CHECK_OFFSET(si_uid);
4899	CHECK_OFFSET(si_value);
4900
4901	/* sigchld */
4902	CHECK_OFFSET(si_pid);
4903	CHECK_OFFSET(si_uid);
4904	CHECK_OFFSET(si_status);
4905	CHECK_OFFSET(si_utime);
4906	CHECK_OFFSET(si_stime);
4907
4908	/* sigfault */
4909	CHECK_OFFSET(si_addr);
4910	CHECK_OFFSET(si_trapno);
4911	CHECK_OFFSET(si_addr_lsb);
4912	CHECK_OFFSET(si_lower);
4913	CHECK_OFFSET(si_upper);
4914	CHECK_OFFSET(si_pkey);
4915	CHECK_OFFSET(si_perf_data);
4916	CHECK_OFFSET(si_perf_type);
4917	CHECK_OFFSET(si_perf_flags);
4918
4919	/* sigpoll */
4920	CHECK_OFFSET(si_band);
4921	CHECK_OFFSET(si_fd);
4922
4923	/* sigsys */
4924	CHECK_OFFSET(si_call_addr);
4925	CHECK_OFFSET(si_syscall);
4926	CHECK_OFFSET(si_arch);
4927#undef CHECK_OFFSET
4928
4929	/* usb asyncio */
4930	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4931		     offsetof(struct siginfo, si_addr));
4932	if (sizeof(int) == sizeof(void __user *)) {
4933		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4934			     sizeof(void __user *));
4935	} else {
4936		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4937			      sizeof_field(struct siginfo, si_uid)) !=
4938			     sizeof(void __user *));
4939		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4940			     offsetof(struct siginfo, si_uid));
4941	}
4942#ifdef CONFIG_COMPAT
4943	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4944		     offsetof(struct compat_siginfo, si_addr));
4945	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4946		     sizeof(compat_uptr_t));
4947	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4948		     sizeof_field(struct siginfo, si_pid));
4949#endif
4950}
4951
4952#if defined(CONFIG_SYSCTL)
4953static struct ctl_table signal_debug_table[] = {
4954#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4955	{
4956		.procname	= "exception-trace",
4957		.data		= &show_unhandled_signals,
4958		.maxlen		= sizeof(int),
4959		.mode		= 0644,
4960		.proc_handler	= proc_dointvec
4961	},
4962#endif
4963};
4964
4965static int __init init_signal_sysctls(void)
4966{
4967	register_sysctl_init("debug", signal_debug_table);
4968	return 0;
4969}
4970early_initcall(init_signal_sysctls);
4971#endif /* CONFIG_SYSCTL */
4972
4973void __init signals_init(void)
4974{
4975	siginfo_buildtime_checks();
4976
4977	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4978}
4979
4980#ifdef CONFIG_KGDB_KDB
4981#include <linux/kdb.h>
4982/*
4983 * kdb_send_sig - Allows kdb to send signals without exposing
4984 * signal internals.  This function checks if the required locks are
4985 * available before calling the main signal code, to avoid kdb
4986 * deadlocks.
4987 */
4988void kdb_send_sig(struct task_struct *t, int sig)
 
4989{
4990	static struct task_struct *kdb_prev_t;
4991	int new_t, ret;
4992	if (!spin_trylock(&t->sighand->siglock)) {
4993		kdb_printf("Can't do kill command now.\n"
4994			   "The sigmask lock is held somewhere else in "
4995			   "kernel, try again later\n");
4996		return;
4997	}
 
4998	new_t = kdb_prev_t != t;
4999	kdb_prev_t = t;
5000	if (!task_is_running(t) && new_t) {
5001		spin_unlock(&t->sighand->siglock);
5002		kdb_printf("Process is not RUNNING, sending a signal from "
5003			   "kdb risks deadlock\n"
5004			   "on the run queue locks. "
5005			   "The signal has _not_ been sent.\n"
5006			   "Reissue the kill command if you want to risk "
5007			   "the deadlock.\n");
5008		return;
5009	}
5010	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
5011	spin_unlock(&t->sighand->siglock);
5012	if (ret)
5013		kdb_printf("Fail to deliver Signal %d to process %d.\n",
5014			   sig, t->pid);
5015	else
5016		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
5017}
5018#endif	/* CONFIG_KGDB_KDB */
v3.5.6
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
 
 
 
 
 
 
  17#include <linux/fs.h>
 
 
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
 
  20#include <linux/security.h>
  21#include <linux/syscalls.h>
  22#include <linux/ptrace.h>
  23#include <linux/signal.h>
  24#include <linux/signalfd.h>
  25#include <linux/ratelimit.h>
  26#include <linux/tracehook.h>
  27#include <linux/capability.h>
  28#include <linux/freezer.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/nsproxy.h>
  31#include <linux/user_namespace.h>
  32#include <linux/uprobes.h>
 
 
 
 
 
 
 
 
 
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/signal.h>
  35
  36#include <asm/param.h>
  37#include <asm/uaccess.h>
  38#include <asm/unistd.h>
  39#include <asm/siginfo.h>
  40#include <asm/cacheflush.h>
  41#include "audit.h"	/* audit_signal_info() */
 
 
  42
  43/*
  44 * SLAB caches for signal bits.
  45 */
  46
  47static struct kmem_cache *sigqueue_cachep;
  48
  49int print_fatal_signals __read_mostly;
  50
  51static void __user *sig_handler(struct task_struct *t, int sig)
  52{
  53	return t->sighand->action[sig - 1].sa.sa_handler;
  54}
  55
  56static int sig_handler_ignored(void __user *handler, int sig)
  57{
  58	/* Is it explicitly or implicitly ignored? */
  59	return handler == SIG_IGN ||
  60		(handler == SIG_DFL && sig_kernel_ignore(sig));
  61}
  62
  63static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  64{
  65	void __user *handler;
  66
  67	handler = sig_handler(t, sig);
  68
 
 
 
 
  69	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  70			handler == SIG_DFL && !force)
  71		return 1;
 
 
 
 
 
  72
  73	return sig_handler_ignored(handler, sig);
  74}
  75
  76static int sig_ignored(struct task_struct *t, int sig, bool force)
  77{
  78	/*
  79	 * Blocked signals are never ignored, since the
  80	 * signal handler may change by the time it is
  81	 * unblocked.
  82	 */
  83	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  84		return 0;
  85
  86	if (!sig_task_ignored(t, sig, force))
  87		return 0;
  88
  89	/*
  90	 * Tracers may want to know about even ignored signals.
 
 
  91	 */
  92	return !t->ptrace;
 
 
 
  93}
  94
  95/*
  96 * Re-calculate pending state from the set of locally pending
  97 * signals, globally pending signals, and blocked signals.
  98 */
  99static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 100{
 101	unsigned long ready;
 102	long i;
 103
 104	switch (_NSIG_WORDS) {
 105	default:
 106		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 107			ready |= signal->sig[i] &~ blocked->sig[i];
 108		break;
 109
 110	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 111		ready |= signal->sig[2] &~ blocked->sig[2];
 112		ready |= signal->sig[1] &~ blocked->sig[1];
 113		ready |= signal->sig[0] &~ blocked->sig[0];
 114		break;
 115
 116	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 117		ready |= signal->sig[0] &~ blocked->sig[0];
 118		break;
 119
 120	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 121	}
 122	return ready !=	0;
 123}
 124
 125#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 126
 127static int recalc_sigpending_tsk(struct task_struct *t)
 128{
 129	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 130	    PENDING(&t->pending, &t->blocked) ||
 131	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 132		set_tsk_thread_flag(t, TIF_SIGPENDING);
 133		return 1;
 134	}
 
 135	/*
 136	 * We must never clear the flag in another thread, or in current
 137	 * when it's possible the current syscall is returning -ERESTART*.
 138	 * So we don't clear it here, and only callers who know they should do.
 139	 */
 140	return 0;
 141}
 142
 143/*
 144 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 145 * This is superfluous when called on current, the wakeup is a harmless no-op.
 146 */
 147void recalc_sigpending_and_wake(struct task_struct *t)
 148{
 149	if (recalc_sigpending_tsk(t))
 150		signal_wake_up(t, 0);
 151}
 152
 153void recalc_sigpending(void)
 154{
 155	if (!recalc_sigpending_tsk(current) && !freezing(current))
 156		clear_thread_flag(TIF_SIGPENDING);
 157
 158}
 
 
 
 
 
 
 
 
 
 
 
 
 159
 160/* Given the mask, find the first available signal that should be serviced. */
 161
 162#define SYNCHRONOUS_MASK \
 163	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 164	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 165
 166int next_signal(struct sigpending *pending, sigset_t *mask)
 167{
 168	unsigned long i, *s, *m, x;
 169	int sig = 0;
 170
 171	s = pending->signal.sig;
 172	m = mask->sig;
 173
 174	/*
 175	 * Handle the first word specially: it contains the
 176	 * synchronous signals that need to be dequeued first.
 177	 */
 178	x = *s &~ *m;
 179	if (x) {
 180		if (x & SYNCHRONOUS_MASK)
 181			x &= SYNCHRONOUS_MASK;
 182		sig = ffz(~x) + 1;
 183		return sig;
 184	}
 185
 186	switch (_NSIG_WORDS) {
 187	default:
 188		for (i = 1; i < _NSIG_WORDS; ++i) {
 189			x = *++s &~ *++m;
 190			if (!x)
 191				continue;
 192			sig = ffz(~x) + i*_NSIG_BPW + 1;
 193			break;
 194		}
 195		break;
 196
 197	case 2:
 198		x = s[1] &~ m[1];
 199		if (!x)
 200			break;
 201		sig = ffz(~x) + _NSIG_BPW + 1;
 202		break;
 203
 204	case 1:
 205		/* Nothing to do */
 206		break;
 207	}
 208
 209	return sig;
 210}
 211
 212static inline void print_dropped_signal(int sig)
 213{
 214	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 215
 216	if (!print_fatal_signals)
 217		return;
 218
 219	if (!__ratelimit(&ratelimit_state))
 220		return;
 221
 222	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 223				current->comm, current->pid, sig);
 224}
 225
 226/**
 227 * task_set_jobctl_pending - set jobctl pending bits
 228 * @task: target task
 229 * @mask: pending bits to set
 230 *
 231 * Clear @mask from @task->jobctl.  @mask must be subset of
 232 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 233 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 234 * cleared.  If @task is already being killed or exiting, this function
 235 * becomes noop.
 236 *
 237 * CONTEXT:
 238 * Must be called with @task->sighand->siglock held.
 239 *
 240 * RETURNS:
 241 * %true if @mask is set, %false if made noop because @task was dying.
 242 */
 243bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 244{
 245	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 246			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 247	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 248
 249	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 250		return false;
 251
 252	if (mask & JOBCTL_STOP_SIGMASK)
 253		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 254
 255	task->jobctl |= mask;
 256	return true;
 257}
 258
 259/**
 260 * task_clear_jobctl_trapping - clear jobctl trapping bit
 261 * @task: target task
 262 *
 263 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 264 * Clear it and wake up the ptracer.  Note that we don't need any further
 265 * locking.  @task->siglock guarantees that @task->parent points to the
 266 * ptracer.
 267 *
 268 * CONTEXT:
 269 * Must be called with @task->sighand->siglock held.
 270 */
 271void task_clear_jobctl_trapping(struct task_struct *task)
 272{
 273	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 274		task->jobctl &= ~JOBCTL_TRAPPING;
 
 275		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 276	}
 277}
 278
 279/**
 280 * task_clear_jobctl_pending - clear jobctl pending bits
 281 * @task: target task
 282 * @mask: pending bits to clear
 283 *
 284 * Clear @mask from @task->jobctl.  @mask must be subset of
 285 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 286 * STOP bits are cleared together.
 287 *
 288 * If clearing of @mask leaves no stop or trap pending, this function calls
 289 * task_clear_jobctl_trapping().
 290 *
 291 * CONTEXT:
 292 * Must be called with @task->sighand->siglock held.
 293 */
 294void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 295{
 296	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 297
 298	if (mask & JOBCTL_STOP_PENDING)
 299		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 300
 301	task->jobctl &= ~mask;
 302
 303	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 304		task_clear_jobctl_trapping(task);
 305}
 306
 307/**
 308 * task_participate_group_stop - participate in a group stop
 309 * @task: task participating in a group stop
 310 *
 311 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 312 * Group stop states are cleared and the group stop count is consumed if
 313 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 314 * stop, the appropriate %SIGNAL_* flags are set.
 315 *
 316 * CONTEXT:
 317 * Must be called with @task->sighand->siglock held.
 318 *
 319 * RETURNS:
 320 * %true if group stop completion should be notified to the parent, %false
 321 * otherwise.
 322 */
 323static bool task_participate_group_stop(struct task_struct *task)
 324{
 325	struct signal_struct *sig = task->signal;
 326	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 327
 328	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 329
 330	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 331
 332	if (!consume)
 333		return false;
 334
 335	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 336		sig->group_stop_count--;
 337
 338	/*
 339	 * Tell the caller to notify completion iff we are entering into a
 340	 * fresh group stop.  Read comment in do_signal_stop() for details.
 341	 */
 342	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 343		sig->flags = SIGNAL_STOP_STOPPED;
 344		return true;
 345	}
 346	return false;
 347}
 348
 349/*
 350 * allocate a new signal queue record
 351 * - this may be called without locks if and only if t == current, otherwise an
 352 *   appropriate lock must be held to stop the target task from exiting
 353 */
 354static struct sigqueue *
 355__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 
 
 
 
 
 
 
 
 
 356{
 357	struct sigqueue *q = NULL;
 358	struct user_struct *user;
 359
 360	/*
 361	 * Protect access to @t credentials. This can go away when all
 362	 * callers hold rcu read lock.
 
 
 
 
 363	 */
 364	rcu_read_lock();
 365	user = get_uid(__task_cred(t)->user);
 366	atomic_inc(&user->sigpending);
 
 367	rcu_read_unlock();
 
 
 368
 369	if (override_rlimit ||
 370	    atomic_read(&user->sigpending) <=
 371			task_rlimit(t, RLIMIT_SIGPENDING)) {
 372		q = kmem_cache_alloc(sigqueue_cachep, flags);
 373	} else {
 374		print_dropped_signal(sig);
 
 375	}
 376
 377	if (unlikely(q == NULL)) {
 378		atomic_dec(&user->sigpending);
 379		free_uid(user);
 380	} else {
 381		INIT_LIST_HEAD(&q->list);
 382		q->flags = 0;
 383		q->user = user;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384	}
 385
 
 386	return q;
 387}
 388
 389static void __sigqueue_free(struct sigqueue *q)
 390{
 391	if (q->flags & SIGQUEUE_PREALLOC)
 
 392		return;
 393	atomic_dec(&q->user->sigpending);
 394	free_uid(q->user);
 
 
 
 395	kmem_cache_free(sigqueue_cachep, q);
 396}
 397
 398void flush_sigqueue(struct sigpending *queue)
 399{
 400	struct sigqueue *q;
 401
 402	sigemptyset(&queue->signal);
 403	while (!list_empty(&queue->list)) {
 404		q = list_entry(queue->list.next, struct sigqueue , list);
 405		list_del_init(&q->list);
 406		__sigqueue_free(q);
 407	}
 408}
 409
 410/*
 411 * Flush all pending signals for a task.
 412 */
 413void __flush_signals(struct task_struct *t)
 414{
 415	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 416	flush_sigqueue(&t->pending);
 417	flush_sigqueue(&t->signal->shared_pending);
 418}
 419
 420void flush_signals(struct task_struct *t)
 421{
 422	unsigned long flags;
 423
 424	spin_lock_irqsave(&t->sighand->siglock, flags);
 425	__flush_signals(t);
 
 
 426	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 427}
 428
 429static void __flush_itimer_signals(struct sigpending *pending)
 430{
 431	sigset_t signal, retain;
 432	struct sigqueue *q, *n;
 433
 434	signal = pending->signal;
 435	sigemptyset(&retain);
 436
 437	list_for_each_entry_safe(q, n, &pending->list, list) {
 438		int sig = q->info.si_signo;
 439
 440		if (likely(q->info.si_code != SI_TIMER)) {
 441			sigaddset(&retain, sig);
 442		} else {
 443			sigdelset(&signal, sig);
 444			list_del_init(&q->list);
 445			__sigqueue_free(q);
 446		}
 447	}
 448
 449	sigorsets(&pending->signal, &signal, &retain);
 450}
 451
 452void flush_itimer_signals(void)
 453{
 454	struct task_struct *tsk = current;
 455	unsigned long flags;
 456
 457	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 458	__flush_itimer_signals(&tsk->pending);
 459	__flush_itimer_signals(&tsk->signal->shared_pending);
 460	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 461}
 462
 463void ignore_signals(struct task_struct *t)
 464{
 465	int i;
 466
 467	for (i = 0; i < _NSIG; ++i)
 468		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 469
 470	flush_signals(t);
 471}
 472
 473/*
 474 * Flush all handlers for a task.
 475 */
 476
 477void
 478flush_signal_handlers(struct task_struct *t, int force_default)
 479{
 480	int i;
 481	struct k_sigaction *ka = &t->sighand->action[0];
 482	for (i = _NSIG ; i != 0 ; i--) {
 483		if (force_default || ka->sa.sa_handler != SIG_IGN)
 484			ka->sa.sa_handler = SIG_DFL;
 485		ka->sa.sa_flags = 0;
 
 
 
 486		sigemptyset(&ka->sa.sa_mask);
 487		ka++;
 488	}
 489}
 490
 491int unhandled_signal(struct task_struct *tsk, int sig)
 492{
 493	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 494	if (is_global_init(tsk))
 495		return 1;
 
 496	if (handler != SIG_IGN && handler != SIG_DFL)
 497		return 0;
 
 
 
 
 
 498	/* if ptraced, let the tracer determine */
 499	return !tsk->ptrace;
 500}
 501
 502/*
 503 * Notify the system that a driver wants to block all signals for this
 504 * process, and wants to be notified if any signals at all were to be
 505 * sent/acted upon.  If the notifier routine returns non-zero, then the
 506 * signal will be acted upon after all.  If the notifier routine returns 0,
 507 * then then signal will be blocked.  Only one block per process is
 508 * allowed.  priv is a pointer to private data that the notifier routine
 509 * can use to determine if the signal should be blocked or not.
 510 */
 511void
 512block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 513{
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&current->sighand->siglock, flags);
 517	current->notifier_mask = mask;
 518	current->notifier_data = priv;
 519	current->notifier = notifier;
 520	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 521}
 522
 523/* Notify the system that blocking has ended. */
 524
 525void
 526unblock_all_signals(void)
 527{
 528	unsigned long flags;
 529
 530	spin_lock_irqsave(&current->sighand->siglock, flags);
 531	current->notifier = NULL;
 532	current->notifier_data = NULL;
 533	recalc_sigpending();
 534	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 535}
 536
 537static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 538{
 539	struct sigqueue *q, *first = NULL;
 540
 541	/*
 542	 * Collect the siginfo appropriate to this signal.  Check if
 543	 * there is another siginfo for the same signal.
 544	*/
 545	list_for_each_entry(q, &list->list, list) {
 546		if (q->info.si_signo == sig) {
 547			if (first)
 548				goto still_pending;
 549			first = q;
 550		}
 551	}
 552
 553	sigdelset(&list->signal, sig);
 554
 555	if (first) {
 556still_pending:
 557		list_del_init(&first->list);
 558		copy_siginfo(info, &first->info);
 559		__sigqueue_free(first);
 
 
 
 
 
 
 
 
 
 
 
 560	} else {
 561		/*
 562		 * Ok, it wasn't in the queue.  This must be
 563		 * a fast-pathed signal or we must have been
 564		 * out of queue space.  So zero out the info.
 565		 */
 
 566		info->si_signo = sig;
 567		info->si_errno = 0;
 568		info->si_code = SI_USER;
 569		info->si_pid = 0;
 570		info->si_uid = 0;
 571	}
 572}
 573
 574static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 575			siginfo_t *info)
 576{
 577	int sig = next_signal(pending, mask);
 578
 579	if (sig) {
 580		if (current->notifier) {
 581			if (sigismember(current->notifier_mask, sig)) {
 582				if (!(current->notifier)(current->notifier_data)) {
 583					clear_thread_flag(TIF_SIGPENDING);
 584					return 0;
 585				}
 586			}
 587		}
 588
 589		collect_signal(sig, pending, info);
 590	}
 591
 592	return sig;
 593}
 594
 595/*
 596 * Dequeue a signal and return the element to the caller, which is
 597 * expected to free it.
 598 *
 599 * All callers have to hold the siglock.
 600 */
 601int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 602{
 
 
 603	int signr;
 604
 605	/* We only dequeue private signals from ourselves, we don't let
 606	 * signalfd steal them
 607	 */
 608	signr = __dequeue_signal(&tsk->pending, mask, info);
 
 
 609	if (!signr) {
 
 610		signr = __dequeue_signal(&tsk->signal->shared_pending,
 611					 mask, info);
 612		/*
 613		 * itimer signal ?
 614		 *
 615		 * itimers are process shared and we restart periodic
 616		 * itimers in the signal delivery path to prevent DoS
 617		 * attacks in the high resolution timer case. This is
 618		 * compliant with the old way of self-restarting
 619		 * itimers, as the SIGALRM is a legacy signal and only
 620		 * queued once. Changing the restart behaviour to
 621		 * restart the timer in the signal dequeue path is
 622		 * reducing the timer noise on heavy loaded !highres
 623		 * systems too.
 624		 */
 625		if (unlikely(signr == SIGALRM)) {
 626			struct hrtimer *tmr = &tsk->signal->real_timer;
 627
 628			if (!hrtimer_is_queued(tmr) &&
 629			    tsk->signal->it_real_incr.tv64 != 0) {
 630				hrtimer_forward(tmr, tmr->base->get_time(),
 631						tsk->signal->it_real_incr);
 632				hrtimer_restart(tmr);
 633			}
 634		}
 635	}
 636
 637	recalc_sigpending();
 638	if (!signr)
 639		return 0;
 640
 641	if (unlikely(sig_kernel_stop(signr))) {
 642		/*
 643		 * Set a marker that we have dequeued a stop signal.  Our
 644		 * caller might release the siglock and then the pending
 645		 * stop signal it is about to process is no longer in the
 646		 * pending bitmasks, but must still be cleared by a SIGCONT
 647		 * (and overruled by a SIGKILL).  So those cases clear this
 648		 * shared flag after we've set it.  Note that this flag may
 649		 * remain set after the signal we return is ignored or
 650		 * handled.  That doesn't matter because its only purpose
 651		 * is to alert stop-signal processing code when another
 652		 * processor has come along and cleared the flag.
 653		 */
 654		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 655	}
 656	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 657		/*
 658		 * Release the siglock to ensure proper locking order
 659		 * of timer locks outside of siglocks.  Note, we leave
 660		 * irqs disabled here, since the posix-timers code is
 661		 * about to disable them again anyway.
 662		 */
 663		spin_unlock(&tsk->sighand->siglock);
 664		do_schedule_next_timer(info);
 665		spin_lock(&tsk->sighand->siglock);
 666	}
 
 667	return signr;
 668}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669
 670/*
 671 * Tell a process that it has a new active signal..
 672 *
 673 * NOTE! we rely on the previous spin_lock to
 674 * lock interrupts for us! We can only be called with
 675 * "siglock" held, and the local interrupt must
 676 * have been disabled when that got acquired!
 677 *
 678 * No need to set need_resched since signal event passing
 679 * goes through ->blocked
 680 */
 681void signal_wake_up(struct task_struct *t, int resume)
 682{
 683	unsigned int mask;
 684
 685	set_tsk_thread_flag(t, TIF_SIGPENDING);
 686
 687	/*
 688	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
 689	 * case. We don't check t->state here because there is a race with it
 690	 * executing another processor and just now entering stopped state.
 691	 * By using wake_up_state, we ensure the process will wake up and
 692	 * handle its death signal.
 693	 */
 694	mask = TASK_INTERRUPTIBLE;
 695	if (resume)
 696		mask |= TASK_WAKEKILL;
 697	if (!wake_up_state(t, mask))
 698		kick_process(t);
 699}
 700
 701/*
 702 * Remove signals in mask from the pending set and queue.
 703 * Returns 1 if any signals were found.
 704 *
 705 * All callers must be holding the siglock.
 706 *
 707 * This version takes a sigset mask and looks at all signals,
 708 * not just those in the first mask word.
 709 */
 710static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 
 
 711{
 712	struct sigqueue *q, *n;
 713	sigset_t m;
 714
 
 
 715	sigandsets(&m, mask, &s->signal);
 716	if (sigisemptyset(&m))
 717		return 0;
 718
 719	sigandnsets(&s->signal, &s->signal, mask);
 720	list_for_each_entry_safe(q, n, &s->list, list) {
 721		if (sigismember(mask, q->info.si_signo)) {
 722			list_del_init(&q->list);
 723			__sigqueue_free(q);
 724		}
 725	}
 726	return 1;
 727}
 728/*
 729 * Remove signals in mask from the pending set and queue.
 730 * Returns 1 if any signals were found.
 731 *
 732 * All callers must be holding the siglock.
 733 */
 734static int rm_from_queue(unsigned long mask, struct sigpending *s)
 735{
 736	struct sigqueue *q, *n;
 737
 738	if (!sigtestsetmask(&s->signal, mask))
 739		return 0;
 740
 741	sigdelsetmask(&s->signal, mask);
 742	list_for_each_entry_safe(q, n, &s->list, list) {
 743		if (q->info.si_signo < SIGRTMIN &&
 744		    (mask & sigmask(q->info.si_signo))) {
 745			list_del_init(&q->list);
 746			__sigqueue_free(q);
 747		}
 748	}
 749	return 1;
 750}
 751
 752static inline int is_si_special(const struct siginfo *info)
 753{
 754	return info <= SEND_SIG_FORCED;
 755}
 756
 757static inline bool si_fromuser(const struct siginfo *info)
 758{
 759	return info == SEND_SIG_NOINFO ||
 760		(!is_si_special(info) && SI_FROMUSER(info));
 761}
 762
 763/*
 764 * called with RCU read lock from check_kill_permission()
 765 */
 766static int kill_ok_by_cred(struct task_struct *t)
 767{
 768	const struct cred *cred = current_cred();
 769	const struct cred *tcred = __task_cred(t);
 770
 771	if (uid_eq(cred->euid, tcred->suid) ||
 772	    uid_eq(cred->euid, tcred->uid)  ||
 773	    uid_eq(cred->uid,  tcred->suid) ||
 774	    uid_eq(cred->uid,  tcred->uid))
 775		return 1;
 776
 777	if (ns_capable(tcred->user_ns, CAP_KILL))
 778		return 1;
 779
 780	return 0;
 781}
 782
 783/*
 784 * Bad permissions for sending the signal
 785 * - the caller must hold the RCU read lock
 786 */
 787static int check_kill_permission(int sig, struct siginfo *info,
 788				 struct task_struct *t)
 789{
 790	struct pid *sid;
 791	int error;
 792
 793	if (!valid_signal(sig))
 794		return -EINVAL;
 795
 796	if (!si_fromuser(info))
 797		return 0;
 798
 799	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 800	if (error)
 801		return error;
 802
 803	if (!same_thread_group(current, t) &&
 804	    !kill_ok_by_cred(t)) {
 805		switch (sig) {
 806		case SIGCONT:
 807			sid = task_session(t);
 808			/*
 809			 * We don't return the error if sid == NULL. The
 810			 * task was unhashed, the caller must notice this.
 811			 */
 812			if (!sid || sid == task_session(current))
 813				break;
 
 814		default:
 815			return -EPERM;
 816		}
 817	}
 818
 819	return security_task_kill(t, info, sig, 0);
 820}
 821
 822/**
 823 * ptrace_trap_notify - schedule trap to notify ptracer
 824 * @t: tracee wanting to notify tracer
 825 *
 826 * This function schedules sticky ptrace trap which is cleared on the next
 827 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 828 * ptracer.
 829 *
 830 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 831 * ptracer is listening for events, tracee is woken up so that it can
 832 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 833 * eventually taken without returning to userland after the existing traps
 834 * are finished by PTRACE_CONT.
 835 *
 836 * CONTEXT:
 837 * Must be called with @task->sighand->siglock held.
 838 */
 839static void ptrace_trap_notify(struct task_struct *t)
 840{
 841	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 842	assert_spin_locked(&t->sighand->siglock);
 843
 844	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 845	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 846}
 847
 848/*
 849 * Handle magic process-wide effects of stop/continue signals. Unlike
 850 * the signal actions, these happen immediately at signal-generation
 851 * time regardless of blocking, ignoring, or handling.  This does the
 852 * actual continuing for SIGCONT, but not the actual stopping for stop
 853 * signals. The process stop is done as a signal action for SIG_DFL.
 854 *
 855 * Returns true if the signal should be actually delivered, otherwise
 856 * it should be dropped.
 857 */
 858static int prepare_signal(int sig, struct task_struct *p, bool force)
 859{
 860	struct signal_struct *signal = p->signal;
 861	struct task_struct *t;
 
 862
 863	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
 
 
 864		/*
 865		 * The process is in the middle of dying, nothing to do.
 866		 */
 
 867	} else if (sig_kernel_stop(sig)) {
 868		/*
 869		 * This is a stop signal.  Remove SIGCONT from all queues.
 870		 */
 871		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 872		t = p;
 873		do {
 874			rm_from_queue(sigmask(SIGCONT), &t->pending);
 875		} while_each_thread(p, t);
 876	} else if (sig == SIGCONT) {
 877		unsigned int why;
 878		/*
 879		 * Remove all stop signals from all queues, wake all threads.
 880		 */
 881		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 882		t = p;
 883		do {
 
 884			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 885			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 886			if (likely(!(t->ptrace & PT_SEIZED)))
 887				wake_up_state(t, __TASK_STOPPED);
 888			else
 889				ptrace_trap_notify(t);
 890		} while_each_thread(p, t);
 891
 892		/*
 893		 * Notify the parent with CLD_CONTINUED if we were stopped.
 894		 *
 895		 * If we were in the middle of a group stop, we pretend it
 896		 * was already finished, and then continued. Since SIGCHLD
 897		 * doesn't queue we report only CLD_STOPPED, as if the next
 898		 * CLD_CONTINUED was dropped.
 899		 */
 900		why = 0;
 901		if (signal->flags & SIGNAL_STOP_STOPPED)
 902			why |= SIGNAL_CLD_CONTINUED;
 903		else if (signal->group_stop_count)
 904			why |= SIGNAL_CLD_STOPPED;
 905
 906		if (why) {
 907			/*
 908			 * The first thread which returns from do_signal_stop()
 909			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 910			 * notify its parent. See get_signal_to_deliver().
 911			 */
 912			signal->flags = why | SIGNAL_STOP_CONTINUED;
 913			signal->group_stop_count = 0;
 914			signal->group_exit_code = 0;
 915		}
 916	}
 917
 918	return !sig_ignored(p, sig, force);
 919}
 920
 921/*
 922 * Test if P wants to take SIG.  After we've checked all threads with this,
 923 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 924 * blocking SIG were ruled out because they are not running and already
 925 * have pending signals.  Such threads will dequeue from the shared queue
 926 * as soon as they're available, so putting the signal on the shared queue
 927 * will be equivalent to sending it to one such thread.
 928 */
 929static inline int wants_signal(int sig, struct task_struct *p)
 930{
 931	if (sigismember(&p->blocked, sig))
 932		return 0;
 
 933	if (p->flags & PF_EXITING)
 934		return 0;
 
 935	if (sig == SIGKILL)
 936		return 1;
 
 937	if (task_is_stopped_or_traced(p))
 938		return 0;
 939	return task_curr(p) || !signal_pending(p);
 
 940}
 941
 942static void complete_signal(int sig, struct task_struct *p, int group)
 943{
 944	struct signal_struct *signal = p->signal;
 945	struct task_struct *t;
 946
 947	/*
 948	 * Now find a thread we can wake up to take the signal off the queue.
 949	 *
 950	 * If the main thread wants the signal, it gets first crack.
 951	 * Probably the least surprising to the average bear.
 952	 */
 953	if (wants_signal(sig, p))
 954		t = p;
 955	else if (!group || thread_group_empty(p))
 956		/*
 957		 * There is just one thread and it does not need to be woken.
 958		 * It will dequeue unblocked signals before it runs again.
 959		 */
 960		return;
 961	else {
 962		/*
 963		 * Otherwise try to find a suitable thread.
 964		 */
 965		t = signal->curr_target;
 966		while (!wants_signal(sig, t)) {
 967			t = next_thread(t);
 968			if (t == signal->curr_target)
 969				/*
 970				 * No thread needs to be woken.
 971				 * Any eligible threads will see
 972				 * the signal in the queue soon.
 973				 */
 974				return;
 975		}
 976		signal->curr_target = t;
 977	}
 978
 979	/*
 980	 * Found a killable thread.  If the signal will be fatal,
 981	 * then start taking the whole group down immediately.
 982	 */
 983	if (sig_fatal(p, sig) &&
 984	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 985	    !sigismember(&t->real_blocked, sig) &&
 986	    (sig == SIGKILL || !t->ptrace)) {
 987		/*
 988		 * This signal will be fatal to the whole group.
 989		 */
 990		if (!sig_kernel_coredump(sig)) {
 991			/*
 992			 * Start a group exit and wake everybody up.
 993			 * This way we don't have other threads
 994			 * running and doing things after a slower
 995			 * thread has the fatal signal pending.
 996			 */
 997			signal->flags = SIGNAL_GROUP_EXIT;
 998			signal->group_exit_code = sig;
 999			signal->group_stop_count = 0;
1000			t = p;
1001			do {
1002				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003				sigaddset(&t->pending.signal, SIGKILL);
1004				signal_wake_up(t, 1);
1005			} while_each_thread(p, t);
1006			return;
1007		}
1008	}
1009
1010	/*
1011	 * The signal is already in the shared-pending queue.
1012	 * Tell the chosen thread to wake up and dequeue it.
1013	 */
1014	signal_wake_up(t, sig == SIGKILL);
1015	return;
1016}
1017
1018static inline int legacy_queue(struct sigpending *signals, int sig)
1019{
1020	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021}
1022
1023#ifdef CONFIG_USER_NS
1024static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1025{
1026	if (current_user_ns() == task_cred_xxx(t, user_ns))
1027		return;
1028
1029	if (SI_FROMKERNEL(info))
1030		return;
1031
1032	rcu_read_lock();
1033	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1034					make_kuid(current_user_ns(), info->si_uid));
1035	rcu_read_unlock();
1036}
1037#else
1038static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1039{
1040	return;
1041}
1042#endif
1043
1044static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1045			int group, int from_ancestor_ns)
1046{
1047	struct sigpending *pending;
1048	struct sigqueue *q;
1049	int override_rlimit;
1050	int ret = 0, result;
1051
1052	assert_spin_locked(&t->sighand->siglock);
1053
1054	result = TRACE_SIGNAL_IGNORED;
1055	if (!prepare_signal(sig, t,
1056			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1057		goto ret;
1058
1059	pending = group ? &t->signal->shared_pending : &t->pending;
1060	/*
1061	 * Short-circuit ignored signals and support queuing
1062	 * exactly one non-rt signal, so that we can get more
1063	 * detailed information about the cause of the signal.
1064	 */
1065	result = TRACE_SIGNAL_ALREADY_PENDING;
1066	if (legacy_queue(pending, sig))
1067		goto ret;
1068
1069	result = TRACE_SIGNAL_DELIVERED;
1070	/*
1071	 * fast-pathed signals for kernel-internal things like SIGSTOP
1072	 * or SIGKILL.
1073	 */
1074	if (info == SEND_SIG_FORCED)
1075		goto out_set;
1076
1077	/*
1078	 * Real-time signals must be queued if sent by sigqueue, or
1079	 * some other real-time mechanism.  It is implementation
1080	 * defined whether kill() does so.  We attempt to do so, on
1081	 * the principle of least surprise, but since kill is not
1082	 * allowed to fail with EAGAIN when low on memory we just
1083	 * make sure at least one signal gets delivered and don't
1084	 * pass on the info struct.
1085	 */
1086	if (sig < SIGRTMIN)
1087		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1088	else
1089		override_rlimit = 0;
1090
1091	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1092		override_rlimit);
1093	if (q) {
1094		list_add_tail(&q->list, &pending->list);
1095		switch ((unsigned long) info) {
1096		case (unsigned long) SEND_SIG_NOINFO:
 
1097			q->info.si_signo = sig;
1098			q->info.si_errno = 0;
1099			q->info.si_code = SI_USER;
1100			q->info.si_pid = task_tgid_nr_ns(current,
1101							task_active_pid_ns(t));
1102			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1103			break;
1104		case (unsigned long) SEND_SIG_PRIV:
 
1105			q->info.si_signo = sig;
1106			q->info.si_errno = 0;
1107			q->info.si_code = SI_KERNEL;
1108			q->info.si_pid = 0;
1109			q->info.si_uid = 0;
1110			break;
1111		default:
1112			copy_siginfo(&q->info, info);
1113			if (from_ancestor_ns)
1114				q->info.si_pid = 0;
1115			break;
1116		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117
1118		userns_fixup_signal_uid(&q->info, t);
 
 
1119
1120	} else if (!is_si_special(info)) {
1121		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1122			/*
1123			 * Queue overflow, abort.  We may abort if the
1124			 * signal was rt and sent by user using something
1125			 * other than kill().
1126			 */
1127			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1128			ret = -EAGAIN;
1129			goto ret;
1130		} else {
1131			/*
1132			 * This is a silent loss of information.  We still
1133			 * send the signal, but the *info bits are lost.
1134			 */
1135			result = TRACE_SIGNAL_LOSE_INFO;
1136		}
1137	}
1138
1139out_set:
1140	signalfd_notify(t, sig);
1141	sigaddset(&pending->signal, sig);
1142	complete_signal(sig, t, group);
1143ret:
1144	trace_signal_generate(sig, info, t, group, result);
1145	return ret;
1146}
1147
1148static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149			int group)
1150{
1151	int from_ancestor_ns = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152
1153#ifdef CONFIG_PID_NS
1154	from_ancestor_ns = si_fromuser(info) &&
1155			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1156#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157
1158	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
1159}
1160
1161static void print_fatal_signal(struct pt_regs *regs, int signr)
1162{
1163	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1164		current->comm, task_pid_nr(current), signr);
 
 
 
 
 
 
 
 
 
 
1165
1166#if defined(__i386__) && !defined(__arch_um__)
1167	printk("code at %08lx: ", regs->ip);
1168	{
1169		int i;
1170		for (i = 0; i < 16; i++) {
1171			unsigned char insn;
1172
1173			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174				break;
1175			printk("%02x ", insn);
1176		}
1177	}
 
1178#endif
1179	printk("\n");
1180	preempt_disable();
1181	show_regs(regs);
1182	preempt_enable();
1183}
1184
1185static int __init setup_print_fatal_signals(char *str)
1186{
1187	get_option (&str, &print_fatal_signals);
1188
1189	return 1;
1190}
1191
1192__setup("print-fatal-signals=", setup_print_fatal_signals);
1193
1194int
1195__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196{
1197	return send_signal(sig, info, p, 1);
1198}
1199
1200static int
1201specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1202{
1203	return send_signal(sig, info, t, 0);
1204}
1205
1206int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207			bool group)
1208{
1209	unsigned long flags;
1210	int ret = -ESRCH;
1211
1212	if (lock_task_sighand(p, &flags)) {
1213		ret = send_signal(sig, info, p, group);
1214		unlock_task_sighand(p, &flags);
1215	}
1216
1217	return ret;
1218}
1219
 
 
 
 
 
 
1220/*
1221 * Force a signal that the process can't ignore: if necessary
1222 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1223 *
1224 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225 * since we do not want to have a signal handler that was blocked
1226 * be invoked when user space had explicitly blocked it.
1227 *
1228 * We don't want to have recursive SIGSEGV's etc, for example,
1229 * that is why we also clear SIGNAL_UNKILLABLE.
1230 */
1231int
1232force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
 
1233{
1234	unsigned long int flags;
1235	int ret, blocked, ignored;
1236	struct k_sigaction *action;
 
1237
1238	spin_lock_irqsave(&t->sighand->siglock, flags);
1239	action = &t->sighand->action[sig-1];
1240	ignored = action->sa.sa_handler == SIG_IGN;
1241	blocked = sigismember(&t->blocked, sig);
1242	if (blocked || ignored) {
1243		action->sa.sa_handler = SIG_DFL;
1244		if (blocked) {
 
 
1245			sigdelset(&t->blocked, sig);
1246			recalc_sigpending_and_wake(t);
1247		}
1248	}
1249	if (action->sa.sa_handler == SIG_DFL)
 
 
 
 
 
1250		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251	ret = specific_send_sig_info(sig, info, t);
 
 
 
1252	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1253
1254	return ret;
1255}
1256
 
 
 
 
 
1257/*
1258 * Nuke all other threads in the group.
1259 */
1260int zap_other_threads(struct task_struct *p)
1261{
1262	struct task_struct *t = p;
1263	int count = 0;
1264
1265	p->signal->group_stop_count = 0;
1266
1267	while_each_thread(p, t) {
1268		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269		count++;
1270
1271		/* Don't bother with already dead threads */
1272		if (t->exit_state)
1273			continue;
1274		sigaddset(&t->pending.signal, SIGKILL);
1275		signal_wake_up(t, 1);
1276	}
1277
1278	return count;
1279}
1280
1281struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282					   unsigned long *flags)
1283{
1284	struct sighand_struct *sighand;
1285
 
1286	for (;;) {
1287		local_irq_save(*flags);
1288		rcu_read_lock();
1289		sighand = rcu_dereference(tsk->sighand);
1290		if (unlikely(sighand == NULL)) {
1291			rcu_read_unlock();
1292			local_irq_restore(*flags);
1293			break;
1294		}
1295
1296		spin_lock(&sighand->siglock);
1297		if (likely(sighand == tsk->sighand)) {
1298			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
1299			break;
1300		}
1301		spin_unlock(&sighand->siglock);
1302		rcu_read_unlock();
1303		local_irq_restore(*flags);
1304	}
 
1305
1306	return sighand;
1307}
1308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309/*
1310 * send signal info to all the members of a group
 
1311 */
1312int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1313{
1314	int ret;
1315
1316	rcu_read_lock();
1317	ret = check_kill_permission(sig, info, p);
1318	rcu_read_unlock();
1319
1320	if (!ret && sig)
1321		ret = do_send_sig_info(sig, info, p, true);
1322
1323	return ret;
1324}
1325
1326/*
1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328 * control characters do (^C, ^Z etc)
1329 * - the caller must hold at least a readlock on tasklist_lock
1330 */
1331int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1332{
1333	struct task_struct *p = NULL;
1334	int retval, success;
1335
1336	success = 0;
1337	retval = -ESRCH;
1338	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339		int err = group_send_sig_info(sig, info, p);
1340		success |= !err;
1341		retval = err;
 
 
 
 
 
 
1342	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343	return success ? 0 : retval;
 
1344}
1345
1346int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
 
1347{
1348	int error = -ESRCH;
1349	struct task_struct *p;
1350
1351	rcu_read_lock();
1352retry:
1353	p = pid_task(pid, PIDTYPE_PID);
1354	if (p) {
1355		error = group_send_sig_info(sig, info, p);
1356		if (unlikely(error == -ESRCH))
1357			/*
1358			 * The task was unhashed in between, try again.
1359			 * If it is dead, pid_task() will return NULL,
1360			 * if we race with de_thread() it will find the
1361			 * new leader.
1362			 */
1363			goto retry;
1364	}
1365	rcu_read_unlock();
1366
1367	return error;
 
 
1368}
1369
1370int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1371{
1372	int error;
1373	rcu_read_lock();
1374	error = kill_pid_info(sig, info, find_vpid(pid));
1375	rcu_read_unlock();
1376	return error;
1377}
1378
1379static int kill_as_cred_perm(const struct cred *cred,
1380			     struct task_struct *target)
1381{
1382	const struct cred *pcred = __task_cred(target);
1383	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1384	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1385		return 0;
1386	return 1;
 
1387}
1388
1389/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1390int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1391			 const struct cred *cred, u32 secid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392{
1393	int ret = -EINVAL;
1394	struct task_struct *p;
1395	unsigned long flags;
 
1396
1397	if (!valid_signal(sig))
1398		return ret;
1399
 
 
 
 
 
 
1400	rcu_read_lock();
1401	p = pid_task(pid, PIDTYPE_PID);
1402	if (!p) {
1403		ret = -ESRCH;
1404		goto out_unlock;
1405	}
1406	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1407		ret = -EPERM;
1408		goto out_unlock;
1409	}
1410	ret = security_task_kill(p, info, sig, secid);
1411	if (ret)
1412		goto out_unlock;
1413
1414	if (sig) {
1415		if (lock_task_sighand(p, &flags)) {
1416			ret = __send_signal(sig, info, p, 1, 0);
1417			unlock_task_sighand(p, &flags);
1418		} else
1419			ret = -ESRCH;
1420	}
1421out_unlock:
1422	rcu_read_unlock();
1423	return ret;
1424}
1425EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1426
1427/*
1428 * kill_something_info() interprets pid in interesting ways just like kill(2).
1429 *
1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1431 * is probably wrong.  Should make it like BSD or SYSV.
1432 */
1433
1434static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1435{
1436	int ret;
1437
1438	if (pid > 0) {
1439		rcu_read_lock();
1440		ret = kill_pid_info(sig, info, find_vpid(pid));
1441		rcu_read_unlock();
1442		return ret;
1443	}
1444
1445	read_lock(&tasklist_lock);
1446	if (pid != -1) {
1447		ret = __kill_pgrp_info(sig, info,
1448				pid ? find_vpid(-pid) : task_pgrp(current));
1449	} else {
1450		int retval = 0, count = 0;
1451		struct task_struct * p;
1452
1453		for_each_process(p) {
1454			if (task_pid_vnr(p) > 1 &&
1455					!same_thread_group(p, current)) {
1456				int err = group_send_sig_info(sig, info, p);
 
1457				++count;
1458				if (err != -EPERM)
1459					retval = err;
1460			}
1461		}
1462		ret = count ? retval : -ESRCH;
1463	}
1464	read_unlock(&tasklist_lock);
1465
1466	return ret;
1467}
1468
1469/*
1470 * These are for backward compatibility with the rest of the kernel source.
1471 */
1472
1473int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1474{
1475	/*
1476	 * Make sure legacy kernel users don't send in bad values
1477	 * (normal paths check this in check_kill_permission).
1478	 */
1479	if (!valid_signal(sig))
1480		return -EINVAL;
1481
1482	return do_send_sig_info(sig, info, p, false);
1483}
 
1484
1485#define __si_special(priv) \
1486	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1487
1488int
1489send_sig(int sig, struct task_struct *p, int priv)
1490{
1491	return send_sig_info(sig, __si_special(priv), p);
1492}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493
1494void
1495force_sig(int sig, struct task_struct *p)
 
 
 
 
 
 
 
 
1496{
1497	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1498}
1499
1500/*
1501 * When things go south during signal handling, we
1502 * will force a SIGSEGV. And if the signal that caused
1503 * the problem was already a SIGSEGV, we'll want to
1504 * make sure we don't even try to deliver the signal..
1505 */
1506int
1507force_sigsegv(int sig, struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508{
1509	if (sig == SIGSEGV) {
1510		unsigned long flags;
1511		spin_lock_irqsave(&p->sighand->siglock, flags);
1512		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1513		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1514	}
1515	force_sig(SIGSEGV, p);
1516	return 0;
 
1517}
1518
1519int kill_pgrp(struct pid *pid, int sig, int priv)
1520{
1521	int ret;
1522
1523	read_lock(&tasklist_lock);
1524	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1525	read_unlock(&tasklist_lock);
 
 
1526
1527	return ret;
 
 
1528}
1529EXPORT_SYMBOL(kill_pgrp);
1530
1531int kill_pid(struct pid *pid, int sig, int priv)
1532{
1533	return kill_pid_info(sig, __si_special(priv), pid);
1534}
1535EXPORT_SYMBOL(kill_pid);
1536
 
1537/*
1538 * These functions support sending signals using preallocated sigqueue
1539 * structures.  This is needed "because realtime applications cannot
1540 * afford to lose notifications of asynchronous events, like timer
1541 * expirations or I/O completions".  In the case of POSIX Timers
1542 * we allocate the sigqueue structure from the timer_create.  If this
1543 * allocation fails we are able to report the failure to the application
1544 * with an EAGAIN error.
1545 */
1546struct sigqueue *sigqueue_alloc(void)
1547{
1548	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
 
1549
1550	if (q)
1551		q->flags |= SIGQUEUE_PREALLOC;
1552
1553	return q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1554}
1555
1556void sigqueue_free(struct sigqueue *q)
1557{
1558	unsigned long flags;
1559	spinlock_t *lock = &current->sighand->siglock;
 
 
 
 
 
 
 
1560
1561	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1562	/*
1563	 * We must hold ->siglock while testing q->list
1564	 * to serialize with collect_signal() or with
1565	 * __exit_signal()->flush_sigqueue().
1566	 */
1567	spin_lock_irqsave(lock, flags);
1568	q->flags &= ~SIGQUEUE_PREALLOC;
1569	/*
1570	 * If it is queued it will be freed when dequeued,
1571	 * like the "regular" sigqueue.
1572	 */
1573	if (!list_empty(&q->list))
1574		q = NULL;
1575	spin_unlock_irqrestore(lock, flags);
1576
1577	if (q)
1578		__sigqueue_free(q);
 
 
1579}
1580
1581int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1582{
 
1583	int sig = q->info.si_signo;
1584	struct sigpending *pending;
1585	unsigned long flags;
1586	int ret, result;
 
 
1587
1588	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
 
 
1589
1590	ret = -1;
1591	if (!likely(lock_task_sighand(t, &flags)))
1592		goto ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593
1594	ret = 1; /* the signal is ignored */
1595	result = TRACE_SIGNAL_IGNORED;
1596	if (!prepare_signal(sig, t, false))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597		goto out;
 
1598
1599	ret = 0;
1600	if (unlikely(!list_empty(&q->list))) {
1601		/*
1602		 * If an SI_TIMER entry is already queue just increment
1603		 * the overrun count.
1604		 */
1605		BUG_ON(q->info.si_code != SI_TIMER);
1606		q->info.si_overrun++;
1607		result = TRACE_SIGNAL_ALREADY_PENDING;
1608		goto out;
1609	}
1610	q->info.si_overrun = 0;
1611
1612	signalfd_notify(t, sig);
1613	pending = group ? &t->signal->shared_pending : &t->pending;
1614	list_add_tail(&q->list, &pending->list);
1615	sigaddset(&pending->signal, sig);
1616	complete_signal(sig, t, group);
 
 
 
 
 
 
 
 
 
1617	result = TRACE_SIGNAL_DELIVERED;
1618out:
1619	trace_signal_generate(sig, &q->info, t, group, result);
1620	unlock_task_sighand(t, &flags);
1621ret:
1622	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623}
1624
1625/*
1626 * Let a parent know about the death of a child.
1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1628 *
1629 * Returns true if our parent ignored us and so we've switched to
1630 * self-reaping.
1631 */
1632bool do_notify_parent(struct task_struct *tsk, int sig)
1633{
1634	struct siginfo info;
1635	unsigned long flags;
1636	struct sighand_struct *psig;
1637	bool autoreap = false;
 
1638
1639	BUG_ON(sig == -1);
1640
1641 	/* do_notify_parent_cldstop should have been called instead.  */
1642 	BUG_ON(task_is_stopped_or_traced(tsk));
1643
1644	BUG_ON(!tsk->ptrace &&
1645	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
 
 
 
 
 
 
1646
1647	if (sig != SIGCHLD) {
1648		/*
1649		 * This is only possible if parent == real_parent.
1650		 * Check if it has changed security domain.
1651		 */
1652		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1653			sig = SIGCHLD;
1654	}
1655
 
1656	info.si_signo = sig;
1657	info.si_errno = 0;
1658	/*
1659	 * We are under tasklist_lock here so our parent is tied to
1660	 * us and cannot change.
1661	 *
1662	 * task_active_pid_ns will always return the same pid namespace
1663	 * until a task passes through release_task.
1664	 *
1665	 * write_lock() currently calls preempt_disable() which is the
1666	 * same as rcu_read_lock(), but according to Oleg, this is not
1667	 * correct to rely on this
1668	 */
1669	rcu_read_lock();
1670	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1671	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672				       task_uid(tsk));
1673	rcu_read_unlock();
1674
1675	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1676	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
 
1677
1678	info.si_status = tsk->exit_code & 0x7f;
1679	if (tsk->exit_code & 0x80)
1680		info.si_code = CLD_DUMPED;
1681	else if (tsk->exit_code & 0x7f)
1682		info.si_code = CLD_KILLED;
1683	else {
1684		info.si_code = CLD_EXITED;
1685		info.si_status = tsk->exit_code >> 8;
1686	}
1687
1688	psig = tsk->parent->sighand;
1689	spin_lock_irqsave(&psig->siglock, flags);
1690	if (!tsk->ptrace && sig == SIGCHLD &&
1691	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1692	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1693		/*
1694		 * We are exiting and our parent doesn't care.  POSIX.1
1695		 * defines special semantics for setting SIGCHLD to SIG_IGN
1696		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1697		 * automatically and not left for our parent's wait4 call.
1698		 * Rather than having the parent do it as a magic kind of
1699		 * signal handler, we just set this to tell do_exit that we
1700		 * can be cleaned up without becoming a zombie.  Note that
1701		 * we still call __wake_up_parent in this case, because a
1702		 * blocked sys_wait4 might now return -ECHILD.
1703		 *
1704		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1705		 * is implementation-defined: we do (if you don't want
1706		 * it, just use SIG_IGN instead).
1707		 */
1708		autoreap = true;
1709		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1710			sig = 0;
1711	}
 
 
 
 
1712	if (valid_signal(sig) && sig)
1713		__group_send_sig_info(sig, &info, tsk->parent);
1714	__wake_up_parent(tsk, tsk->parent);
1715	spin_unlock_irqrestore(&psig->siglock, flags);
1716
1717	return autoreap;
1718}
1719
1720/**
1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1722 * @tsk: task reporting the state change
1723 * @for_ptracer: the notification is for ptracer
1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1725 *
1726 * Notify @tsk's parent that the stopped/continued state has changed.  If
1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1729 *
1730 * CONTEXT:
1731 * Must be called with tasklist_lock at least read locked.
1732 */
1733static void do_notify_parent_cldstop(struct task_struct *tsk,
1734				     bool for_ptracer, int why)
1735{
1736	struct siginfo info;
1737	unsigned long flags;
1738	struct task_struct *parent;
1739	struct sighand_struct *sighand;
 
1740
1741	if (for_ptracer) {
1742		parent = tsk->parent;
1743	} else {
1744		tsk = tsk->group_leader;
1745		parent = tsk->real_parent;
1746	}
1747
 
1748	info.si_signo = SIGCHLD;
1749	info.si_errno = 0;
1750	/*
1751	 * see comment in do_notify_parent() about the following 4 lines
1752	 */
1753	rcu_read_lock();
1754	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1755	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756	rcu_read_unlock();
1757
1758	info.si_utime = cputime_to_clock_t(tsk->utime);
1759	info.si_stime = cputime_to_clock_t(tsk->stime);
 
1760
1761 	info.si_code = why;
1762 	switch (why) {
1763 	case CLD_CONTINUED:
1764 		info.si_status = SIGCONT;
1765 		break;
1766 	case CLD_STOPPED:
1767 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1768 		break;
1769 	case CLD_TRAPPED:
1770 		info.si_status = tsk->exit_code & 0x7f;
1771 		break;
1772 	default:
1773 		BUG();
1774 	}
1775
1776	sighand = parent->sighand;
1777	spin_lock_irqsave(&sighand->siglock, flags);
1778	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780		__group_send_sig_info(SIGCHLD, &info, parent);
1781	/*
1782	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1783	 */
1784	__wake_up_parent(tsk, parent);
1785	spin_unlock_irqrestore(&sighand->siglock, flags);
1786}
1787
1788static inline int may_ptrace_stop(void)
1789{
1790	if (!likely(current->ptrace))
1791		return 0;
1792	/*
1793	 * Are we in the middle of do_coredump?
1794	 * If so and our tracer is also part of the coredump stopping
1795	 * is a deadlock situation, and pointless because our tracer
1796	 * is dead so don't allow us to stop.
1797	 * If SIGKILL was already sent before the caller unlocked
1798	 * ->siglock we must see ->core_state != NULL. Otherwise it
1799	 * is safe to enter schedule().
1800	 */
1801	if (unlikely(current->mm->core_state) &&
1802	    unlikely(current->mm == current->parent->mm))
1803		return 0;
1804
1805	return 1;
1806}
1807
1808/*
1809 * Return non-zero if there is a SIGKILL that should be waking us up.
1810 * Called with the siglock held.
1811 */
1812static int sigkill_pending(struct task_struct *tsk)
1813{
1814	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1815		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1816}
1817
1818/*
1819 * This must be called with current->sighand->siglock held.
1820 *
1821 * This should be the path for all ptrace stops.
1822 * We always set current->last_siginfo while stopped here.
1823 * That makes it a way to test a stopped process for
1824 * being ptrace-stopped vs being job-control-stopped.
1825 *
1826 * If we actually decide not to stop at all because the tracer
1827 * is gone, we keep current->exit_code unless clear_code.
 
1828 */
1829static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
 
1830	__releases(&current->sighand->siglock)
1831	__acquires(&current->sighand->siglock)
1832{
1833	bool gstop_done = false;
1834
1835	if (arch_ptrace_stop_needed(exit_code, info)) {
1836		/*
1837		 * The arch code has something special to do before a
1838		 * ptrace stop.  This is allowed to block, e.g. for faults
1839		 * on user stack pages.  We can't keep the siglock while
1840		 * calling arch_ptrace_stop, so we must release it now.
1841		 * To preserve proper semantics, we must do this before
1842		 * any signal bookkeeping like checking group_stop_count.
1843		 * Meanwhile, a SIGKILL could come in before we retake the
1844		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1845		 * So after regaining the lock, we must check for SIGKILL.
1846		 */
1847		spin_unlock_irq(&current->sighand->siglock);
1848		arch_ptrace_stop(exit_code, info);
1849		spin_lock_irq(&current->sighand->siglock);
1850		if (sigkill_pending(current))
1851			return;
1852	}
1853
1854	/*
 
 
 
 
 
 
 
 
 
 
 
 
1855	 * We're committing to trapping.  TRACED should be visible before
1856	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1857	 * Also, transition to TRACED and updates to ->jobctl should be
1858	 * atomic with respect to siglock and should be done after the arch
1859	 * hook as siglock is released and regrabbed across it.
 
 
 
 
 
 
 
 
 
 
 
1860	 */
1861	set_current_state(TASK_TRACED);
1862
 
1863	current->last_siginfo = info;
1864	current->exit_code = exit_code;
1865
1866	/*
1867	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1868	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1869	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1870	 * could be clear now.  We act as if SIGCONT is received after
1871	 * TASK_TRACED is entered - ignore it.
1872	 */
1873	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1874		gstop_done = task_participate_group_stop(current);
1875
1876	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1877	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1878	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1879		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1880
1881	/* entering a trap, clear TRAPPING */
1882	task_clear_jobctl_trapping(current);
1883
1884	spin_unlock_irq(&current->sighand->siglock);
1885	read_lock(&tasklist_lock);
1886	if (may_ptrace_stop()) {
1887		/*
1888		 * Notify parents of the stop.
1889		 *
1890		 * While ptraced, there are two parents - the ptracer and
1891		 * the real_parent of the group_leader.  The ptracer should
1892		 * know about every stop while the real parent is only
1893		 * interested in the completion of group stop.  The states
1894		 * for the two don't interact with each other.  Notify
1895		 * separately unless they're gonna be duplicates.
1896		 */
1897		do_notify_parent_cldstop(current, true, why);
1898		if (gstop_done && ptrace_reparented(current))
1899			do_notify_parent_cldstop(current, false, why);
1900
1901		/*
1902		 * Don't want to allow preemption here, because
1903		 * sys_ptrace() needs this task to be inactive.
1904		 *
1905		 * XXX: implement read_unlock_no_resched().
1906		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1907		preempt_disable();
1908		read_unlock(&tasklist_lock);
 
 
1909		preempt_enable_no_resched();
1910		schedule();
1911	} else {
1912		/*
1913		 * By the time we got the lock, our tracer went away.
1914		 * Don't drop the lock yet, another tracer may come.
1915		 *
1916		 * If @gstop_done, the ptracer went away between group stop
1917		 * completion and here.  During detach, it would have set
1918		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1919		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1920		 * the real parent of the group stop completion is enough.
1921		 */
1922		if (gstop_done)
1923			do_notify_parent_cldstop(current, false, why);
1924
1925		__set_current_state(TASK_RUNNING);
1926		if (clear_code)
1927			current->exit_code = 0;
1928		read_unlock(&tasklist_lock);
1929	}
1930
1931	/*
1932	 * While in TASK_TRACED, we were considered "frozen enough".
1933	 * Now that we woke up, it's crucial if we're supposed to be
1934	 * frozen that we freeze now before running anything substantial.
1935	 */
1936	try_to_freeze();
1937
1938	/*
1939	 * We are back.  Now reacquire the siglock before touching
1940	 * last_siginfo, so that we are sure to have synchronized with
1941	 * any signal-sending on another CPU that wants to examine it.
1942	 */
1943	spin_lock_irq(&current->sighand->siglock);
 
1944	current->last_siginfo = NULL;
 
 
1945
1946	/* LISTENING can be set only during STOP traps, clear it */
1947	current->jobctl &= ~JOBCTL_LISTENING;
1948
1949	/*
1950	 * Queued signals ignored us while we were stopped for tracing.
1951	 * So check for any that we should take before resuming user mode.
1952	 * This sets TIF_SIGPENDING, but never clears it.
1953	 */
1954	recalc_sigpending_tsk(current);
 
1955}
1956
1957static void ptrace_do_notify(int signr, int exit_code, int why)
1958{
1959	siginfo_t info;
1960
1961	memset(&info, 0, sizeof info);
1962	info.si_signo = signr;
1963	info.si_code = exit_code;
1964	info.si_pid = task_pid_vnr(current);
1965	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1966
1967	/* Let the debugger run.  */
1968	ptrace_stop(exit_code, why, 1, &info);
1969}
1970
1971void ptrace_notify(int exit_code)
1972{
 
 
1973	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
 
 
1974
1975	spin_lock_irq(&current->sighand->siglock);
1976	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1977	spin_unlock_irq(&current->sighand->siglock);
 
1978}
1979
1980/**
1981 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1982 * @signr: signr causing group stop if initiating
1983 *
1984 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1985 * and participate in it.  If already set, participate in the existing
1986 * group stop.  If participated in a group stop (and thus slept), %true is
1987 * returned with siglock released.
1988 *
1989 * If ptraced, this function doesn't handle stop itself.  Instead,
1990 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1991 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1992 * places afterwards.
1993 *
1994 * CONTEXT:
1995 * Must be called with @current->sighand->siglock held, which is released
1996 * on %true return.
1997 *
1998 * RETURNS:
1999 * %false if group stop is already cancelled or ptrace trap is scheduled.
2000 * %true if participated in group stop.
2001 */
2002static bool do_signal_stop(int signr)
2003	__releases(&current->sighand->siglock)
2004{
2005	struct signal_struct *sig = current->signal;
2006
2007	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2008		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2009		struct task_struct *t;
2010
2011		/* signr will be recorded in task->jobctl for retries */
2012		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2013
2014		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2015		    unlikely(signal_group_exit(sig)))
 
2016			return false;
2017		/*
2018		 * There is no group stop already in progress.  We must
2019		 * initiate one now.
2020		 *
2021		 * While ptraced, a task may be resumed while group stop is
2022		 * still in effect and then receive a stop signal and
2023		 * initiate another group stop.  This deviates from the
2024		 * usual behavior as two consecutive stop signals can't
2025		 * cause two group stops when !ptraced.  That is why we
2026		 * also check !task_is_stopped(t) below.
2027		 *
2028		 * The condition can be distinguished by testing whether
2029		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2030		 * group_exit_code in such case.
2031		 *
2032		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2033		 * an intervening stop signal is required to cause two
2034		 * continued events regardless of ptrace.
2035		 */
2036		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2037			sig->group_exit_code = signr;
2038
2039		sig->group_stop_count = 0;
2040
2041		if (task_set_jobctl_pending(current, signr | gstop))
2042			sig->group_stop_count++;
2043
2044		for (t = next_thread(current); t != current;
2045		     t = next_thread(t)) {
2046			/*
2047			 * Setting state to TASK_STOPPED for a group
2048			 * stop is always done with the siglock held,
2049			 * so this check has no races.
2050			 */
2051			if (!task_is_stopped(t) &&
2052			    task_set_jobctl_pending(t, signr | gstop)) {
2053				sig->group_stop_count++;
2054				if (likely(!(t->ptrace & PT_SEIZED)))
2055					signal_wake_up(t, 0);
2056				else
2057					ptrace_trap_notify(t);
2058			}
2059		}
2060	}
2061
2062	if (likely(!current->ptrace)) {
2063		int notify = 0;
2064
2065		/*
2066		 * If there are no other threads in the group, or if there
2067		 * is a group stop in progress and we are the last to stop,
2068		 * report to the parent.
2069		 */
2070		if (task_participate_group_stop(current))
2071			notify = CLD_STOPPED;
2072
2073		__set_current_state(TASK_STOPPED);
 
2074		spin_unlock_irq(&current->sighand->siglock);
2075
2076		/*
2077		 * Notify the parent of the group stop completion.  Because
2078		 * we're not holding either the siglock or tasklist_lock
2079		 * here, ptracer may attach inbetween; however, this is for
2080		 * group stop and should always be delivered to the real
2081		 * parent of the group leader.  The new ptracer will get
2082		 * its notification when this task transitions into
2083		 * TASK_TRACED.
2084		 */
2085		if (notify) {
2086			read_lock(&tasklist_lock);
2087			do_notify_parent_cldstop(current, false, notify);
2088			read_unlock(&tasklist_lock);
2089		}
2090
2091		/* Now we don't run again until woken by SIGCONT or SIGKILL */
 
2092		schedule();
2093		return true;
2094	} else {
2095		/*
2096		 * While ptraced, group stop is handled by STOP trap.
2097		 * Schedule it and let the caller deal with it.
2098		 */
2099		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2100		return false;
2101	}
2102}
2103
2104/**
2105 * do_jobctl_trap - take care of ptrace jobctl traps
2106 *
2107 * When PT_SEIZED, it's used for both group stop and explicit
2108 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2109 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2110 * the stop signal; otherwise, %SIGTRAP.
2111 *
2112 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2113 * number as exit_code and no siginfo.
2114 *
2115 * CONTEXT:
2116 * Must be called with @current->sighand->siglock held, which may be
2117 * released and re-acquired before returning with intervening sleep.
2118 */
2119static void do_jobctl_trap(void)
2120{
2121	struct signal_struct *signal = current->signal;
2122	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2123
2124	if (current->ptrace & PT_SEIZED) {
2125		if (!signal->group_stop_count &&
2126		    !(signal->flags & SIGNAL_STOP_STOPPED))
2127			signr = SIGTRAP;
2128		WARN_ON_ONCE(!signr);
2129		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2130				 CLD_STOPPED);
2131	} else {
2132		WARN_ON_ONCE(!signr);
2133		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2134		current->exit_code = 0;
2135	}
2136}
2137
2138static int ptrace_signal(int signr, siginfo_t *info,
2139			 struct pt_regs *regs, void *cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2140{
2141	ptrace_signal_deliver(regs, cookie);
2142	/*
2143	 * We do not check sig_kernel_stop(signr) but set this marker
2144	 * unconditionally because we do not know whether debugger will
2145	 * change signr. This flag has no meaning unless we are going
2146	 * to stop after return from ptrace_stop(). In this case it will
2147	 * be checked in do_signal_stop(), we should only stop if it was
2148	 * not cleared by SIGCONT while we were sleeping. See also the
2149	 * comment in dequeue_signal().
2150	 */
2151	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2152	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2153
2154	/* We're back.  Did the debugger cancel the sig?  */
2155	signr = current->exit_code;
2156	if (signr == 0)
2157		return signr;
2158
2159	current->exit_code = 0;
2160
2161	/*
2162	 * Update the siginfo structure if the signal has
2163	 * changed.  If the debugger wanted something
2164	 * specific in the siginfo structure then it should
2165	 * have updated *info via PTRACE_SETSIGINFO.
2166	 */
2167	if (signr != info->si_signo) {
 
2168		info->si_signo = signr;
2169		info->si_errno = 0;
2170		info->si_code = SI_USER;
2171		rcu_read_lock();
2172		info->si_pid = task_pid_vnr(current->parent);
2173		info->si_uid = from_kuid_munged(current_user_ns(),
2174						task_uid(current->parent));
2175		rcu_read_unlock();
2176	}
2177
2178	/* If the (new) signal is now blocked, requeue it.  */
2179	if (sigismember(&current->blocked, signr)) {
2180		specific_send_sig_info(signr, info, current);
 
2181		signr = 0;
2182	}
2183
2184	return signr;
2185}
2186
2187int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2188			  struct pt_regs *regs, void *cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189{
2190	struct sighand_struct *sighand = current->sighand;
2191	struct signal_struct *signal = current->signal;
2192	int signr;
2193
 
 
 
 
 
 
 
2194	if (unlikely(uprobe_deny_signal()))
2195		return 0;
2196
2197relock:
2198	/*
2199	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2200	 * While in TASK_STOPPED, we were considered "frozen enough".
2201	 * Now that we woke up, it's crucial if we're supposed to be
2202	 * frozen that we freeze now before running anything substantial.
2203	 */
2204	try_to_freeze();
2205
 
2206	spin_lock_irq(&sighand->siglock);
 
2207	/*
2208	 * Every stopped thread goes here after wakeup. Check to see if
2209	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2210	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2211	 */
2212	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2213		int why;
2214
2215		if (signal->flags & SIGNAL_CLD_CONTINUED)
2216			why = CLD_CONTINUED;
2217		else
2218			why = CLD_STOPPED;
2219
2220		signal->flags &= ~SIGNAL_CLD_MASK;
2221
2222		spin_unlock_irq(&sighand->siglock);
2223
2224		/*
2225		 * Notify the parent that we're continuing.  This event is
2226		 * always per-process and doesn't make whole lot of sense
2227		 * for ptracers, who shouldn't consume the state via
2228		 * wait(2) either, but, for backward compatibility, notify
2229		 * the ptracer of the group leader too unless it's gonna be
2230		 * a duplicate.
2231		 */
2232		read_lock(&tasklist_lock);
2233		do_notify_parent_cldstop(current, false, why);
2234
2235		if (ptrace_reparented(current->group_leader))
2236			do_notify_parent_cldstop(current->group_leader,
2237						true, why);
2238		read_unlock(&tasklist_lock);
2239
2240		goto relock;
2241	}
2242
2243	for (;;) {
2244		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2245
2246		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2247		    do_signal_stop(0))
2248			goto relock;
2249
2250		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2251			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2252			spin_unlock_irq(&sighand->siglock);
 
2253			goto relock;
2254		}
2255
2256		signr = dequeue_signal(current, &current->blocked, info);
 
 
 
 
 
 
 
 
 
2257
2258		if (!signr)
2259			break; /* will return 0 */
2260
2261		if (unlikely(current->ptrace) && signr != SIGKILL) {
2262			signr = ptrace_signal(signr, info,
2263					      regs, cookie);
2264			if (!signr)
2265				continue;
2266		}
2267
2268		ka = &sighand->action[signr-1];
2269
2270		/* Trace actually delivered signals. */
2271		trace_signal_deliver(signr, info, ka);
2272
2273		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2274			continue;
2275		if (ka->sa.sa_handler != SIG_DFL) {
2276			/* Run the handler.  */
2277			*return_ka = *ka;
2278
2279			if (ka->sa.sa_flags & SA_ONESHOT)
2280				ka->sa.sa_handler = SIG_DFL;
2281
2282			break; /* will return non-zero "signr" value */
2283		}
2284
2285		/*
2286		 * Now we are doing the default action for this signal.
2287		 */
2288		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2289			continue;
2290
2291		/*
2292		 * Global init gets no signals it doesn't want.
2293		 * Container-init gets no signals it doesn't want from same
2294		 * container.
2295		 *
2296		 * Note that if global/container-init sees a sig_kernel_only()
2297		 * signal here, the signal must have been generated internally
2298		 * or must have come from an ancestor namespace. In either
2299		 * case, the signal cannot be dropped.
2300		 */
2301		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2302				!sig_kernel_only(signr))
2303			continue;
2304
2305		if (sig_kernel_stop(signr)) {
2306			/*
2307			 * The default action is to stop all threads in
2308			 * the thread group.  The job control signals
2309			 * do nothing in an orphaned pgrp, but SIGSTOP
2310			 * always works.  Note that siglock needs to be
2311			 * dropped during the call to is_orphaned_pgrp()
2312			 * because of lock ordering with tasklist_lock.
2313			 * This allows an intervening SIGCONT to be posted.
2314			 * We need to check for that and bail out if necessary.
2315			 */
2316			if (signr != SIGSTOP) {
2317				spin_unlock_irq(&sighand->siglock);
2318
2319				/* signals can be posted during this window */
2320
2321				if (is_current_pgrp_orphaned())
2322					goto relock;
2323
2324				spin_lock_irq(&sighand->siglock);
2325			}
2326
2327			if (likely(do_signal_stop(info->si_signo))) {
2328				/* It released the siglock.  */
2329				goto relock;
2330			}
2331
2332			/*
2333			 * We didn't actually stop, due to a race
2334			 * with SIGCONT or something like that.
2335			 */
2336			continue;
2337		}
2338
 
2339		spin_unlock_irq(&sighand->siglock);
 
 
2340
2341		/*
2342		 * Anything else is fatal, maybe with a core dump.
2343		 */
2344		current->flags |= PF_SIGNALED;
2345
2346		if (sig_kernel_coredump(signr)) {
2347			if (print_fatal_signals)
2348				print_fatal_signal(regs, info->si_signo);
 
2349			/*
2350			 * If it was able to dump core, this kills all
2351			 * other threads in the group and synchronizes with
2352			 * their demise.  If we lost the race with another
2353			 * thread getting here, it set group_exit_code
2354			 * first and our do_group_exit call below will use
2355			 * that value and ignore the one we pass it.
2356			 */
2357			do_coredump(info->si_signo, info->si_signo, regs);
2358		}
2359
2360		/*
 
 
 
 
 
 
 
 
 
2361		 * Death signals, no core dump.
2362		 */
2363		do_group_exit(info->si_signo);
2364		/* NOTREACHED */
2365	}
2366	spin_unlock_irq(&sighand->siglock);
2367	return signr;
 
 
 
 
 
 
2368}
2369
2370/**
2371 * signal_delivered - 
2372 * @sig:		number of signal being delivered
2373 * @info:		siginfo_t of signal being delivered
2374 * @ka:			sigaction setting that chose the handler
2375 * @regs:		user register state
2376 * @stepping:		nonzero if debugger single-step or block-step in use
2377 *
2378 * This function should be called when a signal has succesfully been
2379 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2380 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2381 * is set in @ka->sa.sa_flags.  Tracing is notified.
2382 */
2383void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2384			struct pt_regs *regs, int stepping)
2385{
2386	sigset_t blocked;
2387
2388	/* A signal was successfully delivered, and the
2389	   saved sigmask was stored on the signal frame,
2390	   and will be restored by sigreturn.  So we can
2391	   simply clear the restore sigmask flag.  */
2392	clear_restore_sigmask();
2393
2394	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2395	if (!(ka->sa.sa_flags & SA_NODEFER))
2396		sigaddset(&blocked, sig);
2397	set_current_blocked(&blocked);
2398	tracehook_signal_handler(sig, info, ka, regs, stepping);
 
 
 
 
 
 
 
 
 
 
 
2399}
2400
2401/*
2402 * It could be that complete_signal() picked us to notify about the
2403 * group-wide signal. Other threads should be notified now to take
2404 * the shared signals in @which since we will not.
2405 */
2406static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2407{
2408	sigset_t retarget;
2409	struct task_struct *t;
2410
2411	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2412	if (sigisemptyset(&retarget))
2413		return;
2414
2415	t = tsk;
2416	while_each_thread(tsk, t) {
2417		if (t->flags & PF_EXITING)
2418			continue;
2419
2420		if (!has_pending_signals(&retarget, &t->blocked))
2421			continue;
2422		/* Remove the signals this thread can handle. */
2423		sigandsets(&retarget, &retarget, &t->blocked);
2424
2425		if (!signal_pending(t))
2426			signal_wake_up(t, 0);
2427
2428		if (sigisemptyset(&retarget))
2429			break;
2430	}
2431}
2432
2433void exit_signals(struct task_struct *tsk)
2434{
2435	int group_stop = 0;
2436	sigset_t unblocked;
2437
2438	/*
2439	 * @tsk is about to have PF_EXITING set - lock out users which
2440	 * expect stable threadgroup.
2441	 */
2442	threadgroup_change_begin(tsk);
2443
2444	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
 
2445		tsk->flags |= PF_EXITING;
2446		threadgroup_change_end(tsk);
2447		return;
2448	}
2449
2450	spin_lock_irq(&tsk->sighand->siglock);
2451	/*
2452	 * From now this task is not visible for group-wide signals,
2453	 * see wants_signal(), do_signal_stop().
2454	 */
 
2455	tsk->flags |= PF_EXITING;
2456
2457	threadgroup_change_end(tsk);
2458
2459	if (!signal_pending(tsk))
2460		goto out;
2461
2462	unblocked = tsk->blocked;
2463	signotset(&unblocked);
2464	retarget_shared_pending(tsk, &unblocked);
2465
2466	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2467	    task_participate_group_stop(tsk))
2468		group_stop = CLD_STOPPED;
2469out:
2470	spin_unlock_irq(&tsk->sighand->siglock);
2471
2472	/*
2473	 * If group stop has completed, deliver the notification.  This
2474	 * should always go to the real parent of the group leader.
2475	 */
2476	if (unlikely(group_stop)) {
2477		read_lock(&tasklist_lock);
2478		do_notify_parent_cldstop(tsk, false, group_stop);
2479		read_unlock(&tasklist_lock);
2480	}
2481}
2482
2483EXPORT_SYMBOL(recalc_sigpending);
2484EXPORT_SYMBOL_GPL(dequeue_signal);
2485EXPORT_SYMBOL(flush_signals);
2486EXPORT_SYMBOL(force_sig);
2487EXPORT_SYMBOL(send_sig);
2488EXPORT_SYMBOL(send_sig_info);
2489EXPORT_SYMBOL(sigprocmask);
2490EXPORT_SYMBOL(block_all_signals);
2491EXPORT_SYMBOL(unblock_all_signals);
2492
2493
2494/*
2495 * System call entry points.
2496 */
2497
2498/**
2499 *  sys_restart_syscall - restart a system call
2500 */
2501SYSCALL_DEFINE0(restart_syscall)
2502{
2503	struct restart_block *restart = &current_thread_info()->restart_block;
2504	return restart->fn(restart);
2505}
2506
2507long do_no_restart_syscall(struct restart_block *param)
2508{
2509	return -EINTR;
2510}
2511
2512static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2513{
2514	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2515		sigset_t newblocked;
2516		/* A set of now blocked but previously unblocked signals. */
2517		sigandnsets(&newblocked, newset, &current->blocked);
2518		retarget_shared_pending(tsk, &newblocked);
2519	}
2520	tsk->blocked = *newset;
2521	recalc_sigpending();
2522}
2523
2524/**
2525 * set_current_blocked - change current->blocked mask
2526 * @newset: new mask
2527 *
2528 * It is wrong to change ->blocked directly, this helper should be used
2529 * to ensure the process can't miss a shared signal we are going to block.
2530 */
2531void set_current_blocked(sigset_t *newset)
2532{
2533	struct task_struct *tsk = current;
2534	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2535	spin_lock_irq(&tsk->sighand->siglock);
2536	__set_task_blocked(tsk, newset);
2537	spin_unlock_irq(&tsk->sighand->siglock);
2538}
2539
2540void __set_current_blocked(const sigset_t *newset)
2541{
2542	struct task_struct *tsk = current;
2543
 
 
 
 
 
 
 
2544	spin_lock_irq(&tsk->sighand->siglock);
2545	__set_task_blocked(tsk, newset);
2546	spin_unlock_irq(&tsk->sighand->siglock);
2547}
2548
2549/*
2550 * This is also useful for kernel threads that want to temporarily
2551 * (or permanently) block certain signals.
2552 *
2553 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2554 * interface happily blocks "unblockable" signals like SIGKILL
2555 * and friends.
2556 */
2557int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2558{
2559	struct task_struct *tsk = current;
2560	sigset_t newset;
2561
2562	/* Lockless, only current can change ->blocked, never from irq */
2563	if (oldset)
2564		*oldset = tsk->blocked;
2565
2566	switch (how) {
2567	case SIG_BLOCK:
2568		sigorsets(&newset, &tsk->blocked, set);
2569		break;
2570	case SIG_UNBLOCK:
2571		sigandnsets(&newset, &tsk->blocked, set);
2572		break;
2573	case SIG_SETMASK:
2574		newset = *set;
2575		break;
2576	default:
2577		return -EINVAL;
2578	}
2579
2580	__set_current_blocked(&newset);
2581	return 0;
2582}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583
2584/**
2585 *  sys_rt_sigprocmask - change the list of currently blocked signals
2586 *  @how: whether to add, remove, or set signals
2587 *  @nset: stores pending signals
2588 *  @oset: previous value of signal mask if non-null
2589 *  @sigsetsize: size of sigset_t type
2590 */
2591SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2592		sigset_t __user *, oset, size_t, sigsetsize)
2593{
2594	sigset_t old_set, new_set;
2595	int error;
2596
2597	/* XXX: Don't preclude handling different sized sigset_t's.  */
2598	if (sigsetsize != sizeof(sigset_t))
2599		return -EINVAL;
2600
2601	old_set = current->blocked;
2602
2603	if (nset) {
2604		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2605			return -EFAULT;
2606		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2607
2608		error = sigprocmask(how, &new_set, NULL);
2609		if (error)
2610			return error;
2611	}
2612
2613	if (oset) {
2614		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2615			return -EFAULT;
2616	}
2617
2618	return 0;
2619}
2620
2621long do_sigpending(void __user *set, unsigned long sigsetsize)
 
 
2622{
2623	long error = -EINVAL;
2624	sigset_t pending;
2625
2626	if (sigsetsize > sizeof(sigset_t))
2627		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2628
 
 
2629	spin_lock_irq(&current->sighand->siglock);
2630	sigorsets(&pending, &current->pending.signal,
2631		  &current->signal->shared_pending.signal);
2632	spin_unlock_irq(&current->sighand->siglock);
2633
2634	/* Outside the lock because only this thread touches it.  */
2635	sigandsets(&pending, &current->blocked, &pending);
2636
2637	error = -EFAULT;
2638	if (!copy_to_user(set, &pending, sigsetsize))
2639		error = 0;
2640
2641out:
2642	return error;
2643}
2644
2645/**
2646 *  sys_rt_sigpending - examine a pending signal that has been raised
2647 *			while blocked
2648 *  @set: stores pending signals
2649 *  @sigsetsize: size of sigset_t type or larger
2650 */
2651SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
2652{
2653	return do_sigpending(set, sigsetsize);
 
 
 
 
 
 
 
 
 
 
2654}
2655
2656#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 
 
 
 
 
 
 
 
 
2657
2658int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2659{
2660	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661
2662	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 
 
2663		return -EFAULT;
2664	if (from->si_code < 0)
2665		return __copy_to_user(to, from, sizeof(siginfo_t))
2666			? -EFAULT : 0;
2667	/*
2668	 * If you change siginfo_t structure, please be sure
2669	 * this code is fixed accordingly.
2670	 * Please remember to update the signalfd_copyinfo() function
2671	 * inside fs/signalfd.c too, in case siginfo_t changes.
2672	 * It should never copy any pad contained in the structure
2673	 * to avoid security leaks, but must copy the generic
2674	 * 3 ints plus the relevant union member.
2675	 */
2676	err = __put_user(from->si_signo, &to->si_signo);
2677	err |= __put_user(from->si_errno, &to->si_errno);
2678	err |= __put_user((short)from->si_code, &to->si_code);
2679	switch (from->si_code & __SI_MASK) {
2680	case __SI_KILL:
2681		err |= __put_user(from->si_pid, &to->si_pid);
2682		err |= __put_user(from->si_uid, &to->si_uid);
2683		break;
2684	case __SI_TIMER:
2685		 err |= __put_user(from->si_tid, &to->si_tid);
2686		 err |= __put_user(from->si_overrun, &to->si_overrun);
2687		 err |= __put_user(from->si_ptr, &to->si_ptr);
2688		break;
2689	case __SI_POLL:
2690		err |= __put_user(from->si_band, &to->si_band);
2691		err |= __put_user(from->si_fd, &to->si_fd);
2692		break;
2693	case __SI_FAULT:
2694		err |= __put_user(from->si_addr, &to->si_addr);
2695#ifdef __ARCH_SI_TRAPNO
2696		err |= __put_user(from->si_trapno, &to->si_trapno);
2697#endif
2698#ifdef BUS_MCEERR_AO
2699		/*
2700		 * Other callers might not initialize the si_lsb field,
2701		 * so check explicitly for the right codes here.
2702		 */
2703		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2704			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2705#endif
2706		break;
2707	case __SI_CHLD:
2708		err |= __put_user(from->si_pid, &to->si_pid);
2709		err |= __put_user(from->si_uid, &to->si_uid);
2710		err |= __put_user(from->si_status, &to->si_status);
2711		err |= __put_user(from->si_utime, &to->si_utime);
2712		err |= __put_user(from->si_stime, &to->si_stime);
2713		break;
2714	case __SI_RT: /* This is not generated by the kernel as of now. */
2715	case __SI_MESGQ: /* But this is */
2716		err |= __put_user(from->si_pid, &to->si_pid);
2717		err |= __put_user(from->si_uid, &to->si_uid);
2718		err |= __put_user(from->si_ptr, &to->si_ptr);
2719		break;
2720#ifdef __ARCH_SIGSYS
2721	case __SI_SYS:
2722		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2723		err |= __put_user(from->si_syscall, &to->si_syscall);
2724		err |= __put_user(from->si_arch, &to->si_arch);
2725		break;
2726#endif
2727	default: /* this is just in case for now ... */
2728		err |= __put_user(from->si_pid, &to->si_pid);
2729		err |= __put_user(from->si_uid, &to->si_uid);
 
 
 
 
 
 
 
 
 
 
 
 
2730		break;
2731	}
2732	return err;
2733}
2734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2735#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2736
2737/**
2738 *  do_sigtimedwait - wait for queued signals specified in @which
2739 *  @which: queued signals to wait for
2740 *  @info: if non-null, the signal's siginfo is returned here
2741 *  @ts: upper bound on process time suspension
2742 */
2743int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2744			const struct timespec *ts)
2745{
 
2746	struct task_struct *tsk = current;
2747	long timeout = MAX_SCHEDULE_TIMEOUT;
2748	sigset_t mask = *which;
2749	int sig;
 
2750
2751	if (ts) {
2752		if (!timespec_valid(ts))
2753			return -EINVAL;
2754		timeout = timespec_to_jiffies(ts);
2755		/*
2756		 * We can be close to the next tick, add another one
2757		 * to ensure we will wait at least the time asked for.
2758		 */
2759		if (ts->tv_sec || ts->tv_nsec)
2760			timeout++;
2761	}
2762
2763	/*
2764	 * Invert the set of allowed signals to get those we want to block.
2765	 */
2766	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2767	signotset(&mask);
2768
2769	spin_lock_irq(&tsk->sighand->siglock);
2770	sig = dequeue_signal(tsk, &mask, info);
2771	if (!sig && timeout) {
2772		/*
2773		 * None ready, temporarily unblock those we're interested
2774		 * while we are sleeping in so that we'll be awakened when
2775		 * they arrive. Unblocking is always fine, we can avoid
2776		 * set_current_blocked().
2777		 */
2778		tsk->real_blocked = tsk->blocked;
2779		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2780		recalc_sigpending();
2781		spin_unlock_irq(&tsk->sighand->siglock);
2782
2783		timeout = schedule_timeout_interruptible(timeout);
2784
 
2785		spin_lock_irq(&tsk->sighand->siglock);
2786		__set_task_blocked(tsk, &tsk->real_blocked);
2787		siginitset(&tsk->real_blocked, 0);
2788		sig = dequeue_signal(tsk, &mask, info);
2789	}
2790	spin_unlock_irq(&tsk->sighand->siglock);
2791
2792	if (sig)
2793		return sig;
2794	return timeout ? -EINTR : -EAGAIN;
2795}
2796
2797/**
2798 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2799 *			in @uthese
2800 *  @uthese: queued signals to wait for
2801 *  @uinfo: if non-null, the signal's siginfo is returned here
2802 *  @uts: upper bound on process time suspension
2803 *  @sigsetsize: size of sigset_t type
2804 */
2805SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2806		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
2807		size_t, sigsetsize)
2808{
2809	sigset_t these;
2810	struct timespec ts;
2811	siginfo_t info;
2812	int ret;
2813
2814	/* XXX: Don't preclude handling different sized sigset_t's.  */
2815	if (sigsetsize != sizeof(sigset_t))
2816		return -EINVAL;
2817
2818	if (copy_from_user(&these, uthese, sizeof(these)))
2819		return -EFAULT;
2820
2821	if (uts) {
2822		if (copy_from_user(&ts, uts, sizeof(ts)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2823			return -EFAULT;
2824	}
2825
2826	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2827
2828	if (ret > 0 && uinfo) {
2829		if (copy_siginfo_to_user(uinfo, &info))
2830			ret = -EFAULT;
2831	}
2832
2833	return ret;
2834}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2835
2836/**
2837 *  sys_kill - send a signal to a process
2838 *  @pid: the PID of the process
2839 *  @sig: signal to be sent
2840 */
2841SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2842{
2843	struct siginfo info;
2844
2845	info.si_signo = sig;
2846	info.si_errno = 0;
2847	info.si_code = SI_USER;
2848	info.si_pid = task_tgid_vnr(current);
2849	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2850
2851	return kill_something_info(sig, &info, pid);
2852}
2853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854static int
2855do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2856{
2857	struct task_struct *p;
2858	int error = -ESRCH;
2859
2860	rcu_read_lock();
2861	p = find_task_by_vpid(pid);
2862	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2863		error = check_kill_permission(sig, info, p);
2864		/*
2865		 * The null signal is a permissions and process existence
2866		 * probe.  No signal is actually delivered.
2867		 */
2868		if (!error && sig) {
2869			error = do_send_sig_info(sig, info, p, false);
2870			/*
2871			 * If lock_task_sighand() failed we pretend the task
2872			 * dies after receiving the signal. The window is tiny,
2873			 * and the signal is private anyway.
2874			 */
2875			if (unlikely(error == -ESRCH))
2876				error = 0;
2877		}
2878	}
2879	rcu_read_unlock();
2880
2881	return error;
2882}
2883
2884static int do_tkill(pid_t tgid, pid_t pid, int sig)
2885{
2886	struct siginfo info;
2887
2888	info.si_signo = sig;
2889	info.si_errno = 0;
2890	info.si_code = SI_TKILL;
2891	info.si_pid = task_tgid_vnr(current);
2892	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2893
2894	return do_send_specific(tgid, pid, sig, &info);
2895}
2896
2897/**
2898 *  sys_tgkill - send signal to one specific thread
2899 *  @tgid: the thread group ID of the thread
2900 *  @pid: the PID of the thread
2901 *  @sig: signal to be sent
2902 *
2903 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2904 *  exists but it's not belonging to the target process anymore. This
2905 *  method solves the problem of threads exiting and PIDs getting reused.
2906 */
2907SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2908{
2909	/* This is only valid for single tasks */
2910	if (pid <= 0 || tgid <= 0)
2911		return -EINVAL;
2912
2913	return do_tkill(tgid, pid, sig);
2914}
2915
2916/**
2917 *  sys_tkill - send signal to one specific task
2918 *  @pid: the PID of the task
2919 *  @sig: signal to be sent
2920 *
2921 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2922 */
2923SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2924{
2925	/* This is only valid for single tasks */
2926	if (pid <= 0)
2927		return -EINVAL;
2928
2929	return do_tkill(0, pid, sig);
2930}
2931
 
 
 
 
 
 
 
 
 
 
 
 
 
2932/**
2933 *  sys_rt_sigqueueinfo - send signal information to a signal
2934 *  @pid: the PID of the thread
2935 *  @sig: signal to be sent
2936 *  @uinfo: signal info to be sent
2937 */
2938SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2939		siginfo_t __user *, uinfo)
2940{
2941	siginfo_t info;
 
 
 
 
 
2942
2943	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2944		return -EFAULT;
2945
2946	/* Not even root can pretend to send signals from the kernel.
2947	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2948	 */
2949	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2950		/* We used to allow any < 0 si_code */
2951		WARN_ON_ONCE(info.si_code < 0);
2952		return -EPERM;
2953	}
2954	info.si_signo = sig;
2955
2956	/* POSIX.1b doesn't mention process groups.  */
2957	return kill_proc_info(sig, &info, pid);
2958}
 
2959
2960long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2961{
2962	/* This is only valid for single tasks */
2963	if (pid <= 0 || tgid <= 0)
2964		return -EINVAL;
2965
2966	/* Not even root can pretend to send signals from the kernel.
2967	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2968	 */
2969	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2970		/* We used to allow any < 0 si_code */
2971		WARN_ON_ONCE(info->si_code < 0);
2972		return -EPERM;
2973	}
2974	info->si_signo = sig;
2975
2976	return do_send_specific(tgid, pid, sig, info);
2977}
2978
2979SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2980		siginfo_t __user *, uinfo)
2981{
2982	siginfo_t info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2983
2984	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2985		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2986
2987	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
 
 
2988}
2989
2990int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2991{
2992	struct task_struct *t = current;
2993	struct k_sigaction *k;
2994	sigset_t mask;
2995
2996	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2997		return -EINVAL;
2998
2999	k = &t->sighand->action[sig-1];
3000
3001	spin_lock_irq(&current->sighand->siglock);
 
 
 
 
3002	if (oact)
3003		*oact = *k;
3004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3005	if (act) {
 
 
3006		sigdelsetmask(&act->sa.sa_mask,
3007			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3008		*k = *act;
3009		/*
3010		 * POSIX 3.3.1.3:
3011		 *  "Setting a signal action to SIG_IGN for a signal that is
3012		 *   pending shall cause the pending signal to be discarded,
3013		 *   whether or not it is blocked."
3014		 *
3015		 *  "Setting a signal action to SIG_DFL for a signal that is
3016		 *   pending and whose default action is to ignore the signal
3017		 *   (for example, SIGCHLD), shall cause the pending signal to
3018		 *   be discarded, whether or not it is blocked"
3019		 */
3020		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3021			sigemptyset(&mask);
3022			sigaddset(&mask, sig);
3023			rm_from_queue_full(&mask, &t->signal->shared_pending);
3024			do {
3025				rm_from_queue_full(&mask, &t->pending);
3026				t = next_thread(t);
3027			} while (t != current);
3028		}
3029	}
3030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3031	spin_unlock_irq(&current->sighand->siglock);
3032	return 0;
3033}
 
 
 
 
3034
3035int 
3036do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 
3037{
3038	stack_t oss;
3039	int error;
3040
3041	oss.ss_sp = (void __user *) current->sas_ss_sp;
3042	oss.ss_size = current->sas_ss_size;
3043	oss.ss_flags = sas_ss_flags(sp);
3044
3045	if (uss) {
3046		void __user *ss_sp;
3047		size_t ss_size;
3048		int ss_flags;
 
 
 
 
 
3049
3050		error = -EFAULT;
3051		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3052			goto out;
3053		error = __get_user(ss_sp, &uss->ss_sp) |
3054			__get_user(ss_flags, &uss->ss_flags) |
3055			__get_user(ss_size, &uss->ss_size);
3056		if (error)
3057			goto out;
3058
3059		error = -EPERM;
3060		if (on_sig_stack(sp))
3061			goto out;
 
3062
3063		error = -EINVAL;
3064		/*
3065		 * Note - this code used to test ss_flags incorrectly:
3066		 *  	  old code may have been written using ss_flags==0
3067		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3068		 *	  way that worked) - this fix preserves that older
3069		 *	  mechanism.
3070		 */
3071		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3072			goto out;
 
 
3073
3074		if (ss_flags == SS_DISABLE) {
 
3075			ss_size = 0;
3076			ss_sp = NULL;
3077		} else {
3078			error = -ENOMEM;
3079			if (ss_size < MINSIGSTKSZ)
3080				goto out;
 
 
 
 
 
 
3081		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3082
3083		current->sas_ss_sp = (unsigned long) ss_sp;
3084		current->sas_ss_size = ss_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3085	}
 
 
3086
3087	error = 0;
3088	if (uoss) {
3089		error = -EFAULT;
3090		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3091			goto out;
3092		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3093			__put_user(oss.ss_size, &uoss->ss_size) |
3094			__put_user(oss.ss_flags, &uoss->ss_flags);
3095	}
 
 
 
 
3096
3097out:
3098	return error;
 
 
 
 
 
 
 
3099}
 
3100
3101#ifdef __ARCH_WANT_SYS_SIGPENDING
3102
3103/**
3104 *  sys_sigpending - examine pending signals
3105 *  @set: where mask of pending signal is returned
3106 */
3107SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3108{
3109	return do_sigpending(set, sizeof(*set));
 
 
 
 
 
 
 
 
 
 
3110}
3111
 
 
 
 
 
 
 
 
 
 
 
3112#endif
3113
3114#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3115/**
3116 *  sys_sigprocmask - examine and change blocked signals
3117 *  @how: whether to add, remove, or set signals
3118 *  @nset: signals to add or remove (if non-null)
3119 *  @oset: previous value of signal mask if non-null
3120 *
3121 * Some platforms have their own version with special arguments;
3122 * others support only sys_rt_sigprocmask.
3123 */
3124
3125SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3126		old_sigset_t __user *, oset)
3127{
3128	old_sigset_t old_set, new_set;
3129	sigset_t new_blocked;
3130
3131	old_set = current->blocked.sig[0];
3132
3133	if (nset) {
3134		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3135			return -EFAULT;
3136		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3137
3138		new_blocked = current->blocked;
3139
3140		switch (how) {
3141		case SIG_BLOCK:
3142			sigaddsetmask(&new_blocked, new_set);
3143			break;
3144		case SIG_UNBLOCK:
3145			sigdelsetmask(&new_blocked, new_set);
3146			break;
3147		case SIG_SETMASK:
3148			new_blocked.sig[0] = new_set;
3149			break;
3150		default:
3151			return -EINVAL;
3152		}
3153
3154		__set_current_blocked(&new_blocked);
3155	}
3156
3157	if (oset) {
3158		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3159			return -EFAULT;
3160	}
3161
3162	return 0;
3163}
3164#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3165
3166#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3167/**
3168 *  sys_rt_sigaction - alter an action taken by a process
3169 *  @sig: signal to be sent
3170 *  @act: new sigaction
3171 *  @oact: used to save the previous sigaction
3172 *  @sigsetsize: size of sigset_t type
3173 */
3174SYSCALL_DEFINE4(rt_sigaction, int, sig,
3175		const struct sigaction __user *, act,
3176		struct sigaction __user *, oact,
3177		size_t, sigsetsize)
3178{
3179	struct k_sigaction new_sa, old_sa;
3180	int ret = -EINVAL;
3181
3182	/* XXX: Don't preclude handling different sized sigset_t's.  */
3183	if (sigsetsize != sizeof(sigset_t))
3184		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3185
3186	if (act) {
3187		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
 
 
 
 
3188			return -EFAULT;
 
 
 
 
 
 
 
3189	}
3190
3191	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3192
3193	if (!ret && oact) {
3194		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
 
 
 
 
 
 
3195			return -EFAULT;
3196	}
3197out:
3198	return ret;
3199}
3200#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3201
3202#ifdef __ARCH_WANT_SYS_SGETMASK
3203
3204/*
3205 * For backwards compatibility.  Functionality superseded by sigprocmask.
3206 */
3207SYSCALL_DEFINE0(sgetmask)
3208{
3209	/* SMP safe */
3210	return current->blocked.sig[0];
3211}
3212
3213SYSCALL_DEFINE1(ssetmask, int, newmask)
3214{
3215	int old = current->blocked.sig[0];
3216	sigset_t newset;
3217
 
3218	set_current_blocked(&newset);
3219
3220	return old;
3221}
3222#endif /* __ARCH_WANT_SGETMASK */
3223
3224#ifdef __ARCH_WANT_SYS_SIGNAL
3225/*
3226 * For backwards compatibility.  Functionality superseded by sigaction.
3227 */
3228SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3229{
3230	struct k_sigaction new_sa, old_sa;
3231	int ret;
3232
3233	new_sa.sa.sa_handler = handler;
3234	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3235	sigemptyset(&new_sa.sa.sa_mask);
3236
3237	ret = do_sigaction(sig, &new_sa, &old_sa);
3238
3239	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3240}
3241#endif /* __ARCH_WANT_SYS_SIGNAL */
3242
3243#ifdef __ARCH_WANT_SYS_PAUSE
3244
3245SYSCALL_DEFINE0(pause)
3246{
3247	while (!signal_pending(current)) {
3248		current->state = TASK_INTERRUPTIBLE;
3249		schedule();
3250	}
3251	return -ERESTARTNOHAND;
3252}
3253
3254#endif
3255
3256int sigsuspend(sigset_t *set)
3257{
3258	current->saved_sigmask = current->blocked;
3259	set_current_blocked(set);
3260
3261	current->state = TASK_INTERRUPTIBLE;
3262	schedule();
 
 
3263	set_restore_sigmask();
3264	return -ERESTARTNOHAND;
3265}
3266
3267#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3268/**
3269 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3270 *	@unewset value until a signal is received
3271 *  @unewset: new signal mask value
3272 *  @sigsetsize: size of sigset_t type
3273 */
3274SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3275{
3276	sigset_t newset;
3277
3278	/* XXX: Don't preclude handling different sized sigset_t's.  */
3279	if (sigsetsize != sizeof(sigset_t))
3280		return -EINVAL;
3281
3282	if (copy_from_user(&newset, unewset, sizeof(newset)))
3283		return -EFAULT;
3284	return sigsuspend(&newset);
3285}
3286#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287
3288__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
3289{
3290	return NULL;
3291}
3292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293void __init signals_init(void)
3294{
3295	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
 
 
3296}
3297
3298#ifdef CONFIG_KGDB_KDB
3299#include <linux/kdb.h>
3300/*
3301 * kdb_send_sig_info - Allows kdb to send signals without exposing
3302 * signal internals.  This function checks if the required locks are
3303 * available before calling the main signal code, to avoid kdb
3304 * deadlocks.
3305 */
3306void
3307kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3308{
3309	static struct task_struct *kdb_prev_t;
3310	int sig, new_t;
3311	if (!spin_trylock(&t->sighand->siglock)) {
3312		kdb_printf("Can't do kill command now.\n"
3313			   "The sigmask lock is held somewhere else in "
3314			   "kernel, try again later\n");
3315		return;
3316	}
3317	spin_unlock(&t->sighand->siglock);
3318	new_t = kdb_prev_t != t;
3319	kdb_prev_t = t;
3320	if (t->state != TASK_RUNNING && new_t) {
 
3321		kdb_printf("Process is not RUNNING, sending a signal from "
3322			   "kdb risks deadlock\n"
3323			   "on the run queue locks. "
3324			   "The signal has _not_ been sent.\n"
3325			   "Reissue the kill command if you want to risk "
3326			   "the deadlock.\n");
3327		return;
3328	}
3329	sig = info->si_signo;
3330	if (send_sig_info(sig, info, t))
 
3331		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3332			   sig, t->pid);
3333	else
3334		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3335}
3336#endif	/* CONFIG_KGDB_KDB */