Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/signal.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 *
9 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
10 * Changes to use preallocated sigqueue structures
11 * to allow signals to be sent reliably.
12 */
13
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/init.h>
17#include <linux/sched/mm.h>
18#include <linux/sched/user.h>
19#include <linux/sched/debug.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/sched/cputime.h>
23#include <linux/file.h>
24#include <linux/fs.h>
25#include <linux/mm.h>
26#include <linux/proc_fs.h>
27#include <linux/tty.h>
28#include <linux/binfmts.h>
29#include <linux/coredump.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
32#include <linux/ptrace.h>
33#include <linux/signal.h>
34#include <linux/signalfd.h>
35#include <linux/ratelimit.h>
36#include <linux/task_work.h>
37#include <linux/capability.h>
38#include <linux/freezer.h>
39#include <linux/pid_namespace.h>
40#include <linux/nsproxy.h>
41#include <linux/user_namespace.h>
42#include <linux/uprobes.h>
43#include <linux/compat.h>
44#include <linux/cn_proc.h>
45#include <linux/compiler.h>
46#include <linux/posix-timers.h>
47#include <linux/cgroup.h>
48#include <linux/audit.h>
49#include <linux/sysctl.h>
50#include <uapi/linux/pidfd.h>
51
52#define CREATE_TRACE_POINTS
53#include <trace/events/signal.h>
54
55#include <asm/param.h>
56#include <linux/uaccess.h>
57#include <asm/unistd.h>
58#include <asm/siginfo.h>
59#include <asm/cacheflush.h>
60#include <asm/syscall.h> /* for syscall_get_* */
61
62#include "time/posix-timers.h"
63
64/*
65 * SLAB caches for signal bits.
66 */
67
68static struct kmem_cache *sigqueue_cachep;
69
70int print_fatal_signals __read_mostly;
71
72static void __user *sig_handler(struct task_struct *t, int sig)
73{
74 return t->sighand->action[sig - 1].sa.sa_handler;
75}
76
77static inline bool sig_handler_ignored(void __user *handler, int sig)
78{
79 /* Is it explicitly or implicitly ignored? */
80 return handler == SIG_IGN ||
81 (handler == SIG_DFL && sig_kernel_ignore(sig));
82}
83
84static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
85{
86 void __user *handler;
87
88 handler = sig_handler(t, sig);
89
90 /* SIGKILL and SIGSTOP may not be sent to the global init */
91 if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
92 return true;
93
94 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
95 handler == SIG_DFL && !(force && sig_kernel_only(sig)))
96 return true;
97
98 /* Only allow kernel generated signals to this kthread */
99 if (unlikely((t->flags & PF_KTHREAD) &&
100 (handler == SIG_KTHREAD_KERNEL) && !force))
101 return true;
102
103 return sig_handler_ignored(handler, sig);
104}
105
106static bool sig_ignored(struct task_struct *t, int sig, bool force)
107{
108 /*
109 * Blocked signals are never ignored, since the
110 * signal handler may change by the time it is
111 * unblocked.
112 */
113 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
114 return false;
115
116 /*
117 * Tracers may want to know about even ignored signal unless it
118 * is SIGKILL which can't be reported anyway but can be ignored
119 * by SIGNAL_UNKILLABLE task.
120 */
121 if (t->ptrace && sig != SIGKILL)
122 return false;
123
124 return sig_task_ignored(t, sig, force);
125}
126
127/*
128 * Re-calculate pending state from the set of locally pending
129 * signals, globally pending signals, and blocked signals.
130 */
131static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
132{
133 unsigned long ready;
134 long i;
135
136 switch (_NSIG_WORDS) {
137 default:
138 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
139 ready |= signal->sig[i] &~ blocked->sig[i];
140 break;
141
142 case 4: ready = signal->sig[3] &~ blocked->sig[3];
143 ready |= signal->sig[2] &~ blocked->sig[2];
144 ready |= signal->sig[1] &~ blocked->sig[1];
145 ready |= signal->sig[0] &~ blocked->sig[0];
146 break;
147
148 case 2: ready = signal->sig[1] &~ blocked->sig[1];
149 ready |= signal->sig[0] &~ blocked->sig[0];
150 break;
151
152 case 1: ready = signal->sig[0] &~ blocked->sig[0];
153 }
154 return ready != 0;
155}
156
157#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
158
159static bool recalc_sigpending_tsk(struct task_struct *t)
160{
161 if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
162 PENDING(&t->pending, &t->blocked) ||
163 PENDING(&t->signal->shared_pending, &t->blocked) ||
164 cgroup_task_frozen(t)) {
165 set_tsk_thread_flag(t, TIF_SIGPENDING);
166 return true;
167 }
168
169 /*
170 * We must never clear the flag in another thread, or in current
171 * when it's possible the current syscall is returning -ERESTART*.
172 * So we don't clear it here, and only callers who know they should do.
173 */
174 return false;
175}
176
177void recalc_sigpending(void)
178{
179 if (!recalc_sigpending_tsk(current) && !freezing(current))
180 clear_thread_flag(TIF_SIGPENDING);
181
182}
183EXPORT_SYMBOL(recalc_sigpending);
184
185void calculate_sigpending(void)
186{
187 /* Have any signals or users of TIF_SIGPENDING been delayed
188 * until after fork?
189 */
190 spin_lock_irq(¤t->sighand->siglock);
191 set_tsk_thread_flag(current, TIF_SIGPENDING);
192 recalc_sigpending();
193 spin_unlock_irq(¤t->sighand->siglock);
194}
195
196/* Given the mask, find the first available signal that should be serviced. */
197
198#define SYNCHRONOUS_MASK \
199 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
200 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
201
202int next_signal(struct sigpending *pending, sigset_t *mask)
203{
204 unsigned long i, *s, *m, x;
205 int sig = 0;
206
207 s = pending->signal.sig;
208 m = mask->sig;
209
210 /*
211 * Handle the first word specially: it contains the
212 * synchronous signals that need to be dequeued first.
213 */
214 x = *s &~ *m;
215 if (x) {
216 if (x & SYNCHRONOUS_MASK)
217 x &= SYNCHRONOUS_MASK;
218 sig = ffz(~x) + 1;
219 return sig;
220 }
221
222 switch (_NSIG_WORDS) {
223 default:
224 for (i = 1; i < _NSIG_WORDS; ++i) {
225 x = *++s &~ *++m;
226 if (!x)
227 continue;
228 sig = ffz(~x) + i*_NSIG_BPW + 1;
229 break;
230 }
231 break;
232
233 case 2:
234 x = s[1] &~ m[1];
235 if (!x)
236 break;
237 sig = ffz(~x) + _NSIG_BPW + 1;
238 break;
239
240 case 1:
241 /* Nothing to do */
242 break;
243 }
244
245 return sig;
246}
247
248static inline void print_dropped_signal(int sig)
249{
250 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
251
252 if (!print_fatal_signals)
253 return;
254
255 if (!__ratelimit(&ratelimit_state))
256 return;
257
258 pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
259 current->comm, current->pid, sig);
260}
261
262/**
263 * task_set_jobctl_pending - set jobctl pending bits
264 * @task: target task
265 * @mask: pending bits to set
266 *
267 * Clear @mask from @task->jobctl. @mask must be subset of
268 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
269 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
270 * cleared. If @task is already being killed or exiting, this function
271 * becomes noop.
272 *
273 * CONTEXT:
274 * Must be called with @task->sighand->siglock held.
275 *
276 * RETURNS:
277 * %true if @mask is set, %false if made noop because @task was dying.
278 */
279bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
280{
281 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
282 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
283 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
284
285 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
286 return false;
287
288 if (mask & JOBCTL_STOP_SIGMASK)
289 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
290
291 task->jobctl |= mask;
292 return true;
293}
294
295/**
296 * task_clear_jobctl_trapping - clear jobctl trapping bit
297 * @task: target task
298 *
299 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
300 * Clear it and wake up the ptracer. Note that we don't need any further
301 * locking. @task->siglock guarantees that @task->parent points to the
302 * ptracer.
303 *
304 * CONTEXT:
305 * Must be called with @task->sighand->siglock held.
306 */
307void task_clear_jobctl_trapping(struct task_struct *task)
308{
309 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
310 task->jobctl &= ~JOBCTL_TRAPPING;
311 smp_mb(); /* advised by wake_up_bit() */
312 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
313 }
314}
315
316/**
317 * task_clear_jobctl_pending - clear jobctl pending bits
318 * @task: target task
319 * @mask: pending bits to clear
320 *
321 * Clear @mask from @task->jobctl. @mask must be subset of
322 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
323 * STOP bits are cleared together.
324 *
325 * If clearing of @mask leaves no stop or trap pending, this function calls
326 * task_clear_jobctl_trapping().
327 *
328 * CONTEXT:
329 * Must be called with @task->sighand->siglock held.
330 */
331void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
332{
333 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
334
335 if (mask & JOBCTL_STOP_PENDING)
336 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
337
338 task->jobctl &= ~mask;
339
340 if (!(task->jobctl & JOBCTL_PENDING_MASK))
341 task_clear_jobctl_trapping(task);
342}
343
344/**
345 * task_participate_group_stop - participate in a group stop
346 * @task: task participating in a group stop
347 *
348 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
349 * Group stop states are cleared and the group stop count is consumed if
350 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
351 * stop, the appropriate `SIGNAL_*` flags are set.
352 *
353 * CONTEXT:
354 * Must be called with @task->sighand->siglock held.
355 *
356 * RETURNS:
357 * %true if group stop completion should be notified to the parent, %false
358 * otherwise.
359 */
360static bool task_participate_group_stop(struct task_struct *task)
361{
362 struct signal_struct *sig = task->signal;
363 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
364
365 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
366
367 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
368
369 if (!consume)
370 return false;
371
372 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
373 sig->group_stop_count--;
374
375 /*
376 * Tell the caller to notify completion iff we are entering into a
377 * fresh group stop. Read comment in do_signal_stop() for details.
378 */
379 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
380 signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
381 return true;
382 }
383 return false;
384}
385
386void task_join_group_stop(struct task_struct *task)
387{
388 unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
389 struct signal_struct *sig = current->signal;
390
391 if (sig->group_stop_count) {
392 sig->group_stop_count++;
393 mask |= JOBCTL_STOP_CONSUME;
394 } else if (!(sig->flags & SIGNAL_STOP_STOPPED))
395 return;
396
397 /* Have the new thread join an on-going signal group stop */
398 task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
399}
400
401static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
402 int override_rlimit)
403{
404 struct ucounts *ucounts;
405 long sigpending;
406
407 /*
408 * Protect access to @t credentials. This can go away when all
409 * callers hold rcu read lock.
410 *
411 * NOTE! A pending signal will hold on to the user refcount,
412 * and we get/put the refcount only when the sigpending count
413 * changes from/to zero.
414 */
415 rcu_read_lock();
416 ucounts = task_ucounts(t);
417 sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
418 override_rlimit);
419 rcu_read_unlock();
420 if (!sigpending)
421 return NULL;
422
423 if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
424 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
425 print_dropped_signal(sig);
426 return NULL;
427 }
428
429 return ucounts;
430}
431
432static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
433 const unsigned int sigqueue_flags)
434{
435 INIT_LIST_HEAD(&q->list);
436 q->flags = sigqueue_flags;
437 q->ucounts = ucounts;
438}
439
440/*
441 * allocate a new signal queue record
442 * - this may be called without locks if and only if t == current, otherwise an
443 * appropriate lock must be held to stop the target task from exiting
444 */
445static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
446 int override_rlimit)
447{
448 struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
449 struct sigqueue *q;
450
451 if (!ucounts)
452 return NULL;
453
454 q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
455 if (!q) {
456 dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
457 return NULL;
458 }
459
460 __sigqueue_init(q, ucounts, 0);
461 return q;
462}
463
464static void __sigqueue_free(struct sigqueue *q)
465{
466 if (q->flags & SIGQUEUE_PREALLOC) {
467 posixtimer_sigqueue_putref(q);
468 return;
469 }
470 if (q->ucounts) {
471 dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
472 q->ucounts = NULL;
473 }
474 kmem_cache_free(sigqueue_cachep, q);
475}
476
477void flush_sigqueue(struct sigpending *queue)
478{
479 struct sigqueue *q;
480
481 sigemptyset(&queue->signal);
482 while (!list_empty(&queue->list)) {
483 q = list_entry(queue->list.next, struct sigqueue , list);
484 list_del_init(&q->list);
485 __sigqueue_free(q);
486 }
487}
488
489/*
490 * Flush all pending signals for this kthread.
491 */
492void flush_signals(struct task_struct *t)
493{
494 unsigned long flags;
495
496 spin_lock_irqsave(&t->sighand->siglock, flags);
497 clear_tsk_thread_flag(t, TIF_SIGPENDING);
498 flush_sigqueue(&t->pending);
499 flush_sigqueue(&t->signal->shared_pending);
500 spin_unlock_irqrestore(&t->sighand->siglock, flags);
501}
502EXPORT_SYMBOL(flush_signals);
503
504void ignore_signals(struct task_struct *t)
505{
506 int i;
507
508 for (i = 0; i < _NSIG; ++i)
509 t->sighand->action[i].sa.sa_handler = SIG_IGN;
510
511 flush_signals(t);
512}
513
514/*
515 * Flush all handlers for a task.
516 */
517
518void
519flush_signal_handlers(struct task_struct *t, int force_default)
520{
521 int i;
522 struct k_sigaction *ka = &t->sighand->action[0];
523 for (i = _NSIG ; i != 0 ; i--) {
524 if (force_default || ka->sa.sa_handler != SIG_IGN)
525 ka->sa.sa_handler = SIG_DFL;
526 ka->sa.sa_flags = 0;
527#ifdef __ARCH_HAS_SA_RESTORER
528 ka->sa.sa_restorer = NULL;
529#endif
530 sigemptyset(&ka->sa.sa_mask);
531 ka++;
532 }
533}
534
535bool unhandled_signal(struct task_struct *tsk, int sig)
536{
537 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
538 if (is_global_init(tsk))
539 return true;
540
541 if (handler != SIG_IGN && handler != SIG_DFL)
542 return false;
543
544 /* If dying, we handle all new signals by ignoring them */
545 if (fatal_signal_pending(tsk))
546 return false;
547
548 /* if ptraced, let the tracer determine */
549 return !tsk->ptrace;
550}
551
552static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
553 struct sigqueue **timer_sigq)
554{
555 struct sigqueue *q, *first = NULL;
556
557 /*
558 * Collect the siginfo appropriate to this signal. Check if
559 * there is another siginfo for the same signal.
560 */
561 list_for_each_entry(q, &list->list, list) {
562 if (q->info.si_signo == sig) {
563 if (first)
564 goto still_pending;
565 first = q;
566 }
567 }
568
569 sigdelset(&list->signal, sig);
570
571 if (first) {
572still_pending:
573 list_del_init(&first->list);
574 copy_siginfo(info, &first->info);
575
576 /*
577 * posix-timer signals are preallocated and freed when the last
578 * reference count is dropped in posixtimer_deliver_signal() or
579 * immediately on timer deletion when the signal is not pending.
580 * Spare the extra round through __sigqueue_free() which is
581 * ignoring preallocated signals.
582 */
583 if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
584 *timer_sigq = first;
585 else
586 __sigqueue_free(first);
587 } else {
588 /*
589 * Ok, it wasn't in the queue. This must be
590 * a fast-pathed signal or we must have been
591 * out of queue space. So zero out the info.
592 */
593 clear_siginfo(info);
594 info->si_signo = sig;
595 info->si_errno = 0;
596 info->si_code = SI_USER;
597 info->si_pid = 0;
598 info->si_uid = 0;
599 }
600}
601
602static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
603 kernel_siginfo_t *info, struct sigqueue **timer_sigq)
604{
605 int sig = next_signal(pending, mask);
606
607 if (sig)
608 collect_signal(sig, pending, info, timer_sigq);
609 return sig;
610}
611
612/*
613 * Try to dequeue a signal. If a deliverable signal is found fill in the
614 * caller provided siginfo and return the signal number. Otherwise return
615 * 0.
616 */
617int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
618{
619 struct task_struct *tsk = current;
620 struct sigqueue *timer_sigq;
621 int signr;
622
623 lockdep_assert_held(&tsk->sighand->siglock);
624
625again:
626 *type = PIDTYPE_PID;
627 timer_sigq = NULL;
628 signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq);
629 if (!signr) {
630 *type = PIDTYPE_TGID;
631 signr = __dequeue_signal(&tsk->signal->shared_pending,
632 mask, info, &timer_sigq);
633
634 if (unlikely(signr == SIGALRM))
635 posixtimer_rearm_itimer(tsk);
636 }
637
638 recalc_sigpending();
639 if (!signr)
640 return 0;
641
642 if (unlikely(sig_kernel_stop(signr))) {
643 /*
644 * Set a marker that we have dequeued a stop signal. Our
645 * caller might release the siglock and then the pending
646 * stop signal it is about to process is no longer in the
647 * pending bitmasks, but must still be cleared by a SIGCONT
648 * (and overruled by a SIGKILL). So those cases clear this
649 * shared flag after we've set it. Note that this flag may
650 * remain set after the signal we return is ignored or
651 * handled. That doesn't matter because its only purpose
652 * is to alert stop-signal processing code when another
653 * processor has come along and cleared the flag.
654 */
655 current->jobctl |= JOBCTL_STOP_DEQUEUED;
656 }
657
658 if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) {
659 if (!posixtimer_deliver_signal(info, timer_sigq))
660 goto again;
661 }
662
663 return signr;
664}
665EXPORT_SYMBOL_GPL(dequeue_signal);
666
667static int dequeue_synchronous_signal(kernel_siginfo_t *info)
668{
669 struct task_struct *tsk = current;
670 struct sigpending *pending = &tsk->pending;
671 struct sigqueue *q, *sync = NULL;
672
673 /*
674 * Might a synchronous signal be in the queue?
675 */
676 if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
677 return 0;
678
679 /*
680 * Return the first synchronous signal in the queue.
681 */
682 list_for_each_entry(q, &pending->list, list) {
683 /* Synchronous signals have a positive si_code */
684 if ((q->info.si_code > SI_USER) &&
685 (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
686 sync = q;
687 goto next;
688 }
689 }
690 return 0;
691next:
692 /*
693 * Check if there is another siginfo for the same signal.
694 */
695 list_for_each_entry_continue(q, &pending->list, list) {
696 if (q->info.si_signo == sync->info.si_signo)
697 goto still_pending;
698 }
699
700 sigdelset(&pending->signal, sync->info.si_signo);
701 recalc_sigpending();
702still_pending:
703 list_del_init(&sync->list);
704 copy_siginfo(info, &sync->info);
705 __sigqueue_free(sync);
706 return info->si_signo;
707}
708
709/*
710 * Tell a process that it has a new active signal..
711 *
712 * NOTE! we rely on the previous spin_lock to
713 * lock interrupts for us! We can only be called with
714 * "siglock" held, and the local interrupt must
715 * have been disabled when that got acquired!
716 *
717 * No need to set need_resched since signal event passing
718 * goes through ->blocked
719 */
720void signal_wake_up_state(struct task_struct *t, unsigned int state)
721{
722 lockdep_assert_held(&t->sighand->siglock);
723
724 set_tsk_thread_flag(t, TIF_SIGPENDING);
725
726 /*
727 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
728 * case. We don't check t->state here because there is a race with it
729 * executing another processor and just now entering stopped state.
730 * By using wake_up_state, we ensure the process will wake up and
731 * handle its death signal.
732 */
733 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
734 kick_process(t);
735}
736
737static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q);
738
739static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q)
740{
741 if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER))
742 __sigqueue_free(q);
743 else
744 posixtimer_sig_ignore(tsk, q);
745}
746
747/* Remove signals in mask from the pending set and queue. */
748static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
749{
750 struct sigqueue *q, *n;
751 sigset_t m;
752
753 lockdep_assert_held(&p->sighand->siglock);
754
755 sigandsets(&m, mask, &s->signal);
756 if (sigisemptyset(&m))
757 return;
758
759 sigandnsets(&s->signal, &s->signal, mask);
760 list_for_each_entry_safe(q, n, &s->list, list) {
761 if (sigismember(mask, q->info.si_signo)) {
762 list_del_init(&q->list);
763 sigqueue_free_ignored(p, q);
764 }
765 }
766}
767
768static inline int is_si_special(const struct kernel_siginfo *info)
769{
770 return info <= SEND_SIG_PRIV;
771}
772
773static inline bool si_fromuser(const struct kernel_siginfo *info)
774{
775 return info == SEND_SIG_NOINFO ||
776 (!is_si_special(info) && SI_FROMUSER(info));
777}
778
779/*
780 * called with RCU read lock from check_kill_permission()
781 */
782static bool kill_ok_by_cred(struct task_struct *t)
783{
784 const struct cred *cred = current_cred();
785 const struct cred *tcred = __task_cred(t);
786
787 return uid_eq(cred->euid, tcred->suid) ||
788 uid_eq(cred->euid, tcred->uid) ||
789 uid_eq(cred->uid, tcred->suid) ||
790 uid_eq(cred->uid, tcred->uid) ||
791 ns_capable(tcred->user_ns, CAP_KILL);
792}
793
794/*
795 * Bad permissions for sending the signal
796 * - the caller must hold the RCU read lock
797 */
798static int check_kill_permission(int sig, struct kernel_siginfo *info,
799 struct task_struct *t)
800{
801 struct pid *sid;
802 int error;
803
804 if (!valid_signal(sig))
805 return -EINVAL;
806
807 if (!si_fromuser(info))
808 return 0;
809
810 error = audit_signal_info(sig, t); /* Let audit system see the signal */
811 if (error)
812 return error;
813
814 if (!same_thread_group(current, t) &&
815 !kill_ok_by_cred(t)) {
816 switch (sig) {
817 case SIGCONT:
818 sid = task_session(t);
819 /*
820 * We don't return the error if sid == NULL. The
821 * task was unhashed, the caller must notice this.
822 */
823 if (!sid || sid == task_session(current))
824 break;
825 fallthrough;
826 default:
827 return -EPERM;
828 }
829 }
830
831 return security_task_kill(t, info, sig, NULL);
832}
833
834/**
835 * ptrace_trap_notify - schedule trap to notify ptracer
836 * @t: tracee wanting to notify tracer
837 *
838 * This function schedules sticky ptrace trap which is cleared on the next
839 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
840 * ptracer.
841 *
842 * If @t is running, STOP trap will be taken. If trapped for STOP and
843 * ptracer is listening for events, tracee is woken up so that it can
844 * re-trap for the new event. If trapped otherwise, STOP trap will be
845 * eventually taken without returning to userland after the existing traps
846 * are finished by PTRACE_CONT.
847 *
848 * CONTEXT:
849 * Must be called with @task->sighand->siglock held.
850 */
851static void ptrace_trap_notify(struct task_struct *t)
852{
853 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
854 lockdep_assert_held(&t->sighand->siglock);
855
856 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
857 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
858}
859
860/*
861 * Handle magic process-wide effects of stop/continue signals. Unlike
862 * the signal actions, these happen immediately at signal-generation
863 * time regardless of blocking, ignoring, or handling. This does the
864 * actual continuing for SIGCONT, but not the actual stopping for stop
865 * signals. The process stop is done as a signal action for SIG_DFL.
866 *
867 * Returns true if the signal should be actually delivered, otherwise
868 * it should be dropped.
869 */
870static bool prepare_signal(int sig, struct task_struct *p, bool force)
871{
872 struct signal_struct *signal = p->signal;
873 struct task_struct *t;
874 sigset_t flush;
875
876 if (signal->flags & SIGNAL_GROUP_EXIT) {
877 if (signal->core_state)
878 return sig == SIGKILL;
879 /*
880 * The process is in the middle of dying, drop the signal.
881 */
882 return false;
883 } else if (sig_kernel_stop(sig)) {
884 /*
885 * This is a stop signal. Remove SIGCONT from all queues.
886 */
887 siginitset(&flush, sigmask(SIGCONT));
888 flush_sigqueue_mask(p, &flush, &signal->shared_pending);
889 for_each_thread(p, t)
890 flush_sigqueue_mask(p, &flush, &t->pending);
891 } else if (sig == SIGCONT) {
892 unsigned int why;
893 /*
894 * Remove all stop signals from all queues, wake all threads.
895 */
896 siginitset(&flush, SIG_KERNEL_STOP_MASK);
897 flush_sigqueue_mask(p, &flush, &signal->shared_pending);
898 for_each_thread(p, t) {
899 flush_sigqueue_mask(p, &flush, &t->pending);
900 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
901 if (likely(!(t->ptrace & PT_SEIZED))) {
902 t->jobctl &= ~JOBCTL_STOPPED;
903 wake_up_state(t, __TASK_STOPPED);
904 } else
905 ptrace_trap_notify(t);
906 }
907
908 /*
909 * Notify the parent with CLD_CONTINUED if we were stopped.
910 *
911 * If we were in the middle of a group stop, we pretend it
912 * was already finished, and then continued. Since SIGCHLD
913 * doesn't queue we report only CLD_STOPPED, as if the next
914 * CLD_CONTINUED was dropped.
915 */
916 why = 0;
917 if (signal->flags & SIGNAL_STOP_STOPPED)
918 why |= SIGNAL_CLD_CONTINUED;
919 else if (signal->group_stop_count)
920 why |= SIGNAL_CLD_STOPPED;
921
922 if (why) {
923 /*
924 * The first thread which returns from do_signal_stop()
925 * will take ->siglock, notice SIGNAL_CLD_MASK, and
926 * notify its parent. See get_signal().
927 */
928 signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
929 signal->group_stop_count = 0;
930 signal->group_exit_code = 0;
931 }
932 }
933
934 return !sig_ignored(p, sig, force);
935}
936
937/*
938 * Test if P wants to take SIG. After we've checked all threads with this,
939 * it's equivalent to finding no threads not blocking SIG. Any threads not
940 * blocking SIG were ruled out because they are not running and already
941 * have pending signals. Such threads will dequeue from the shared queue
942 * as soon as they're available, so putting the signal on the shared queue
943 * will be equivalent to sending it to one such thread.
944 */
945static inline bool wants_signal(int sig, struct task_struct *p)
946{
947 if (sigismember(&p->blocked, sig))
948 return false;
949
950 if (p->flags & PF_EXITING)
951 return false;
952
953 if (sig == SIGKILL)
954 return true;
955
956 if (task_is_stopped_or_traced(p))
957 return false;
958
959 return task_curr(p) || !task_sigpending(p);
960}
961
962static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
963{
964 struct signal_struct *signal = p->signal;
965 struct task_struct *t;
966
967 /*
968 * Now find a thread we can wake up to take the signal off the queue.
969 *
970 * Try the suggested task first (may or may not be the main thread).
971 */
972 if (wants_signal(sig, p))
973 t = p;
974 else if ((type == PIDTYPE_PID) || thread_group_empty(p))
975 /*
976 * There is just one thread and it does not need to be woken.
977 * It will dequeue unblocked signals before it runs again.
978 */
979 return;
980 else {
981 /*
982 * Otherwise try to find a suitable thread.
983 */
984 t = signal->curr_target;
985 while (!wants_signal(sig, t)) {
986 t = next_thread(t);
987 if (t == signal->curr_target)
988 /*
989 * No thread needs to be woken.
990 * Any eligible threads will see
991 * the signal in the queue soon.
992 */
993 return;
994 }
995 signal->curr_target = t;
996 }
997
998 /*
999 * Found a killable thread. If the signal will be fatal,
1000 * then start taking the whole group down immediately.
1001 */
1002 if (sig_fatal(p, sig) &&
1003 (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1004 !sigismember(&t->real_blocked, sig) &&
1005 (sig == SIGKILL || !p->ptrace)) {
1006 /*
1007 * This signal will be fatal to the whole group.
1008 */
1009 if (!sig_kernel_coredump(sig)) {
1010 /*
1011 * Start a group exit and wake everybody up.
1012 * This way we don't have other threads
1013 * running and doing things after a slower
1014 * thread has the fatal signal pending.
1015 */
1016 signal->flags = SIGNAL_GROUP_EXIT;
1017 signal->group_exit_code = sig;
1018 signal->group_stop_count = 0;
1019 __for_each_thread(signal, t) {
1020 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1021 sigaddset(&t->pending.signal, SIGKILL);
1022 signal_wake_up(t, 1);
1023 }
1024 return;
1025 }
1026 }
1027
1028 /*
1029 * The signal is already in the shared-pending queue.
1030 * Tell the chosen thread to wake up and dequeue it.
1031 */
1032 signal_wake_up(t, sig == SIGKILL);
1033 return;
1034}
1035
1036static inline bool legacy_queue(struct sigpending *signals, int sig)
1037{
1038 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1039}
1040
1041static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1042 struct task_struct *t, enum pid_type type, bool force)
1043{
1044 struct sigpending *pending;
1045 struct sigqueue *q;
1046 int override_rlimit;
1047 int ret = 0, result;
1048
1049 lockdep_assert_held(&t->sighand->siglock);
1050
1051 result = TRACE_SIGNAL_IGNORED;
1052 if (!prepare_signal(sig, t, force))
1053 goto ret;
1054
1055 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1056 /*
1057 * Short-circuit ignored signals and support queuing
1058 * exactly one non-rt signal, so that we can get more
1059 * detailed information about the cause of the signal.
1060 */
1061 result = TRACE_SIGNAL_ALREADY_PENDING;
1062 if (legacy_queue(pending, sig))
1063 goto ret;
1064
1065 result = TRACE_SIGNAL_DELIVERED;
1066 /*
1067 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1068 */
1069 if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1070 goto out_set;
1071
1072 /*
1073 * Real-time signals must be queued if sent by sigqueue, or
1074 * some other real-time mechanism. It is implementation
1075 * defined whether kill() does so. We attempt to do so, on
1076 * the principle of least surprise, but since kill is not
1077 * allowed to fail with EAGAIN when low on memory we just
1078 * make sure at least one signal gets delivered and don't
1079 * pass on the info struct.
1080 */
1081 if (sig < SIGRTMIN)
1082 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1083 else
1084 override_rlimit = 0;
1085
1086 q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1087
1088 if (q) {
1089 list_add_tail(&q->list, &pending->list);
1090 switch ((unsigned long) info) {
1091 case (unsigned long) SEND_SIG_NOINFO:
1092 clear_siginfo(&q->info);
1093 q->info.si_signo = sig;
1094 q->info.si_errno = 0;
1095 q->info.si_code = SI_USER;
1096 q->info.si_pid = task_tgid_nr_ns(current,
1097 task_active_pid_ns(t));
1098 rcu_read_lock();
1099 q->info.si_uid =
1100 from_kuid_munged(task_cred_xxx(t, user_ns),
1101 current_uid());
1102 rcu_read_unlock();
1103 break;
1104 case (unsigned long) SEND_SIG_PRIV:
1105 clear_siginfo(&q->info);
1106 q->info.si_signo = sig;
1107 q->info.si_errno = 0;
1108 q->info.si_code = SI_KERNEL;
1109 q->info.si_pid = 0;
1110 q->info.si_uid = 0;
1111 break;
1112 default:
1113 copy_siginfo(&q->info, info);
1114 break;
1115 }
1116 } else if (!is_si_special(info) &&
1117 sig >= SIGRTMIN && info->si_code != SI_USER) {
1118 /*
1119 * Queue overflow, abort. We may abort if the
1120 * signal was rt and sent by user using something
1121 * other than kill().
1122 */
1123 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1124 ret = -EAGAIN;
1125 goto ret;
1126 } else {
1127 /*
1128 * This is a silent loss of information. We still
1129 * send the signal, but the *info bits are lost.
1130 */
1131 result = TRACE_SIGNAL_LOSE_INFO;
1132 }
1133
1134out_set:
1135 signalfd_notify(t, sig);
1136 sigaddset(&pending->signal, sig);
1137
1138 /* Let multiprocess signals appear after on-going forks */
1139 if (type > PIDTYPE_TGID) {
1140 struct multiprocess_signals *delayed;
1141 hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1142 sigset_t *signal = &delayed->signal;
1143 /* Can't queue both a stop and a continue signal */
1144 if (sig == SIGCONT)
1145 sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1146 else if (sig_kernel_stop(sig))
1147 sigdelset(signal, SIGCONT);
1148 sigaddset(signal, sig);
1149 }
1150 }
1151
1152 complete_signal(sig, t, type);
1153ret:
1154 trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1155 return ret;
1156}
1157
1158static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1159{
1160 bool ret = false;
1161 switch (siginfo_layout(info->si_signo, info->si_code)) {
1162 case SIL_KILL:
1163 case SIL_CHLD:
1164 case SIL_RT:
1165 ret = true;
1166 break;
1167 case SIL_TIMER:
1168 case SIL_POLL:
1169 case SIL_FAULT:
1170 case SIL_FAULT_TRAPNO:
1171 case SIL_FAULT_MCEERR:
1172 case SIL_FAULT_BNDERR:
1173 case SIL_FAULT_PKUERR:
1174 case SIL_FAULT_PERF_EVENT:
1175 case SIL_SYS:
1176 ret = false;
1177 break;
1178 }
1179 return ret;
1180}
1181
1182int send_signal_locked(int sig, struct kernel_siginfo *info,
1183 struct task_struct *t, enum pid_type type)
1184{
1185 /* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1186 bool force = false;
1187
1188 if (info == SEND_SIG_NOINFO) {
1189 /* Force if sent from an ancestor pid namespace */
1190 force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1191 } else if (info == SEND_SIG_PRIV) {
1192 /* Don't ignore kernel generated signals */
1193 force = true;
1194 } else if (has_si_pid_and_uid(info)) {
1195 /* SIGKILL and SIGSTOP is special or has ids */
1196 struct user_namespace *t_user_ns;
1197
1198 rcu_read_lock();
1199 t_user_ns = task_cred_xxx(t, user_ns);
1200 if (current_user_ns() != t_user_ns) {
1201 kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1202 info->si_uid = from_kuid_munged(t_user_ns, uid);
1203 }
1204 rcu_read_unlock();
1205
1206 /* A kernel generated signal? */
1207 force = (info->si_code == SI_KERNEL);
1208
1209 /* From an ancestor pid namespace? */
1210 if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1211 info->si_pid = 0;
1212 force = true;
1213 }
1214 }
1215 return __send_signal_locked(sig, info, t, type, force);
1216}
1217
1218static void print_fatal_signal(int signr)
1219{
1220 struct pt_regs *regs = task_pt_regs(current);
1221 struct file *exe_file;
1222
1223 exe_file = get_task_exe_file(current);
1224 if (exe_file) {
1225 pr_info("%pD: %s: potentially unexpected fatal signal %d.\n",
1226 exe_file, current->comm, signr);
1227 fput(exe_file);
1228 } else {
1229 pr_info("%s: potentially unexpected fatal signal %d.\n",
1230 current->comm, signr);
1231 }
1232
1233#if defined(__i386__) && !defined(__arch_um__)
1234 pr_info("code at %08lx: ", regs->ip);
1235 {
1236 int i;
1237 for (i = 0; i < 16; i++) {
1238 unsigned char insn;
1239
1240 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1241 break;
1242 pr_cont("%02x ", insn);
1243 }
1244 }
1245 pr_cont("\n");
1246#endif
1247 preempt_disable();
1248 show_regs(regs);
1249 preempt_enable();
1250}
1251
1252static int __init setup_print_fatal_signals(char *str)
1253{
1254 get_option (&str, &print_fatal_signals);
1255
1256 return 1;
1257}
1258
1259__setup("print-fatal-signals=", setup_print_fatal_signals);
1260
1261int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1262 enum pid_type type)
1263{
1264 unsigned long flags;
1265 int ret = -ESRCH;
1266
1267 if (lock_task_sighand(p, &flags)) {
1268 ret = send_signal_locked(sig, info, p, type);
1269 unlock_task_sighand(p, &flags);
1270 }
1271
1272 return ret;
1273}
1274
1275enum sig_handler {
1276 HANDLER_CURRENT, /* If reachable use the current handler */
1277 HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1278 HANDLER_EXIT, /* Only visible as the process exit code */
1279};
1280
1281/*
1282 * Force a signal that the process can't ignore: if necessary
1283 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1284 *
1285 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1286 * since we do not want to have a signal handler that was blocked
1287 * be invoked when user space had explicitly blocked it.
1288 *
1289 * We don't want to have recursive SIGSEGV's etc, for example,
1290 * that is why we also clear SIGNAL_UNKILLABLE.
1291 */
1292static int
1293force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1294 enum sig_handler handler)
1295{
1296 unsigned long int flags;
1297 int ret, blocked, ignored;
1298 struct k_sigaction *action;
1299 int sig = info->si_signo;
1300
1301 spin_lock_irqsave(&t->sighand->siglock, flags);
1302 action = &t->sighand->action[sig-1];
1303 ignored = action->sa.sa_handler == SIG_IGN;
1304 blocked = sigismember(&t->blocked, sig);
1305 if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1306 action->sa.sa_handler = SIG_DFL;
1307 if (handler == HANDLER_EXIT)
1308 action->sa.sa_flags |= SA_IMMUTABLE;
1309 if (blocked)
1310 sigdelset(&t->blocked, sig);
1311 }
1312 /*
1313 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1314 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1315 */
1316 if (action->sa.sa_handler == SIG_DFL &&
1317 (!t->ptrace || (handler == HANDLER_EXIT)))
1318 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1319 ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1320 /* This can happen if the signal was already pending and blocked */
1321 if (!task_sigpending(t))
1322 signal_wake_up(t, 0);
1323 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1324
1325 return ret;
1326}
1327
1328int force_sig_info(struct kernel_siginfo *info)
1329{
1330 return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1331}
1332
1333/*
1334 * Nuke all other threads in the group.
1335 */
1336int zap_other_threads(struct task_struct *p)
1337{
1338 struct task_struct *t;
1339 int count = 0;
1340
1341 p->signal->group_stop_count = 0;
1342
1343 for_other_threads(p, t) {
1344 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1345 count++;
1346
1347 /* Don't bother with already dead threads */
1348 if (t->exit_state)
1349 continue;
1350 sigaddset(&t->pending.signal, SIGKILL);
1351 signal_wake_up(t, 1);
1352 }
1353
1354 return count;
1355}
1356
1357struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1358 unsigned long *flags)
1359{
1360 struct sighand_struct *sighand;
1361
1362 rcu_read_lock();
1363 for (;;) {
1364 sighand = rcu_dereference(tsk->sighand);
1365 if (unlikely(sighand == NULL))
1366 break;
1367
1368 /*
1369 * This sighand can be already freed and even reused, but
1370 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1371 * initializes ->siglock: this slab can't go away, it has
1372 * the same object type, ->siglock can't be reinitialized.
1373 *
1374 * We need to ensure that tsk->sighand is still the same
1375 * after we take the lock, we can race with de_thread() or
1376 * __exit_signal(). In the latter case the next iteration
1377 * must see ->sighand == NULL.
1378 */
1379 spin_lock_irqsave(&sighand->siglock, *flags);
1380 if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1381 break;
1382 spin_unlock_irqrestore(&sighand->siglock, *flags);
1383 }
1384 rcu_read_unlock();
1385
1386 return sighand;
1387}
1388
1389#ifdef CONFIG_LOCKDEP
1390void lockdep_assert_task_sighand_held(struct task_struct *task)
1391{
1392 struct sighand_struct *sighand;
1393
1394 rcu_read_lock();
1395 sighand = rcu_dereference(task->sighand);
1396 if (sighand)
1397 lockdep_assert_held(&sighand->siglock);
1398 else
1399 WARN_ON_ONCE(1);
1400 rcu_read_unlock();
1401}
1402#endif
1403
1404/*
1405 * send signal info to all the members of a thread group or to the
1406 * individual thread if type == PIDTYPE_PID.
1407 */
1408int group_send_sig_info(int sig, struct kernel_siginfo *info,
1409 struct task_struct *p, enum pid_type type)
1410{
1411 int ret;
1412
1413 rcu_read_lock();
1414 ret = check_kill_permission(sig, info, p);
1415 rcu_read_unlock();
1416
1417 if (!ret && sig)
1418 ret = do_send_sig_info(sig, info, p, type);
1419
1420 return ret;
1421}
1422
1423/*
1424 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1425 * control characters do (^C, ^Z etc)
1426 * - the caller must hold at least a readlock on tasklist_lock
1427 */
1428int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1429{
1430 struct task_struct *p = NULL;
1431 int ret = -ESRCH;
1432
1433 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434 int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435 /*
1436 * If group_send_sig_info() succeeds at least once ret
1437 * becomes 0 and after that the code below has no effect.
1438 * Otherwise we return the last err or -ESRCH if this
1439 * process group is empty.
1440 */
1441 if (ret)
1442 ret = err;
1443 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1444
1445 return ret;
1446}
1447
1448static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
1449 struct pid *pid, enum pid_type type)
1450{
1451 int error = -ESRCH;
1452 struct task_struct *p;
1453
1454 for (;;) {
1455 rcu_read_lock();
1456 p = pid_task(pid, PIDTYPE_PID);
1457 if (p)
1458 error = group_send_sig_info(sig, info, p, type);
1459 rcu_read_unlock();
1460 if (likely(!p || error != -ESRCH))
1461 return error;
1462 /*
1463 * The task was unhashed in between, try again. If it
1464 * is dead, pid_task() will return NULL, if we race with
1465 * de_thread() it will find the new leader.
1466 */
1467 }
1468}
1469
1470int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1471{
1472 return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
1473}
1474
1475static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1476{
1477 int error;
1478 rcu_read_lock();
1479 error = kill_pid_info(sig, info, find_vpid(pid));
1480 rcu_read_unlock();
1481 return error;
1482}
1483
1484static inline bool kill_as_cred_perm(const struct cred *cred,
1485 struct task_struct *target)
1486{
1487 const struct cred *pcred = __task_cred(target);
1488
1489 return uid_eq(cred->euid, pcred->suid) ||
1490 uid_eq(cred->euid, pcred->uid) ||
1491 uid_eq(cred->uid, pcred->suid) ||
1492 uid_eq(cred->uid, pcred->uid);
1493}
1494
1495/*
1496 * The usb asyncio usage of siginfo is wrong. The glibc support
1497 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1498 * AKA after the generic fields:
1499 * kernel_pid_t si_pid;
1500 * kernel_uid32_t si_uid;
1501 * sigval_t si_value;
1502 *
1503 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1504 * after the generic fields is:
1505 * void __user *si_addr;
1506 *
1507 * This is a practical problem when there is a 64bit big endian kernel
1508 * and a 32bit userspace. As the 32bit address will encoded in the low
1509 * 32bits of the pointer. Those low 32bits will be stored at higher
1510 * address than appear in a 32 bit pointer. So userspace will not
1511 * see the address it was expecting for it's completions.
1512 *
1513 * There is nothing in the encoding that can allow
1514 * copy_siginfo_to_user32 to detect this confusion of formats, so
1515 * handle this by requiring the caller of kill_pid_usb_asyncio to
1516 * notice when this situration takes place and to store the 32bit
1517 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1518 * parameter.
1519 */
1520int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1521 struct pid *pid, const struct cred *cred)
1522{
1523 struct kernel_siginfo info;
1524 struct task_struct *p;
1525 unsigned long flags;
1526 int ret = -EINVAL;
1527
1528 if (!valid_signal(sig))
1529 return ret;
1530
1531 clear_siginfo(&info);
1532 info.si_signo = sig;
1533 info.si_errno = errno;
1534 info.si_code = SI_ASYNCIO;
1535 *((sigval_t *)&info.si_pid) = addr;
1536
1537 rcu_read_lock();
1538 p = pid_task(pid, PIDTYPE_PID);
1539 if (!p) {
1540 ret = -ESRCH;
1541 goto out_unlock;
1542 }
1543 if (!kill_as_cred_perm(cred, p)) {
1544 ret = -EPERM;
1545 goto out_unlock;
1546 }
1547 ret = security_task_kill(p, &info, sig, cred);
1548 if (ret)
1549 goto out_unlock;
1550
1551 if (sig) {
1552 if (lock_task_sighand(p, &flags)) {
1553 ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1554 unlock_task_sighand(p, &flags);
1555 } else
1556 ret = -ESRCH;
1557 }
1558out_unlock:
1559 rcu_read_unlock();
1560 return ret;
1561}
1562EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1563
1564/*
1565 * kill_something_info() interprets pid in interesting ways just like kill(2).
1566 *
1567 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1568 * is probably wrong. Should make it like BSD or SYSV.
1569 */
1570
1571static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1572{
1573 int ret;
1574
1575 if (pid > 0)
1576 return kill_proc_info(sig, info, pid);
1577
1578 /* -INT_MIN is undefined. Exclude this case to avoid a UBSAN warning */
1579 if (pid == INT_MIN)
1580 return -ESRCH;
1581
1582 read_lock(&tasklist_lock);
1583 if (pid != -1) {
1584 ret = __kill_pgrp_info(sig, info,
1585 pid ? find_vpid(-pid) : task_pgrp(current));
1586 } else {
1587 int retval = 0, count = 0;
1588 struct task_struct * p;
1589
1590 for_each_process(p) {
1591 if (task_pid_vnr(p) > 1 &&
1592 !same_thread_group(p, current)) {
1593 int err = group_send_sig_info(sig, info, p,
1594 PIDTYPE_MAX);
1595 ++count;
1596 if (err != -EPERM)
1597 retval = err;
1598 }
1599 }
1600 ret = count ? retval : -ESRCH;
1601 }
1602 read_unlock(&tasklist_lock);
1603
1604 return ret;
1605}
1606
1607/*
1608 * These are for backward compatibility with the rest of the kernel source.
1609 */
1610
1611int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1612{
1613 /*
1614 * Make sure legacy kernel users don't send in bad values
1615 * (normal paths check this in check_kill_permission).
1616 */
1617 if (!valid_signal(sig))
1618 return -EINVAL;
1619
1620 return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1621}
1622EXPORT_SYMBOL(send_sig_info);
1623
1624#define __si_special(priv) \
1625 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1626
1627int
1628send_sig(int sig, struct task_struct *p, int priv)
1629{
1630 return send_sig_info(sig, __si_special(priv), p);
1631}
1632EXPORT_SYMBOL(send_sig);
1633
1634void force_sig(int sig)
1635{
1636 struct kernel_siginfo info;
1637
1638 clear_siginfo(&info);
1639 info.si_signo = sig;
1640 info.si_errno = 0;
1641 info.si_code = SI_KERNEL;
1642 info.si_pid = 0;
1643 info.si_uid = 0;
1644 force_sig_info(&info);
1645}
1646EXPORT_SYMBOL(force_sig);
1647
1648void force_fatal_sig(int sig)
1649{
1650 struct kernel_siginfo info;
1651
1652 clear_siginfo(&info);
1653 info.si_signo = sig;
1654 info.si_errno = 0;
1655 info.si_code = SI_KERNEL;
1656 info.si_pid = 0;
1657 info.si_uid = 0;
1658 force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1659}
1660
1661void force_exit_sig(int sig)
1662{
1663 struct kernel_siginfo info;
1664
1665 clear_siginfo(&info);
1666 info.si_signo = sig;
1667 info.si_errno = 0;
1668 info.si_code = SI_KERNEL;
1669 info.si_pid = 0;
1670 info.si_uid = 0;
1671 force_sig_info_to_task(&info, current, HANDLER_EXIT);
1672}
1673
1674/*
1675 * When things go south during signal handling, we
1676 * will force a SIGSEGV. And if the signal that caused
1677 * the problem was already a SIGSEGV, we'll want to
1678 * make sure we don't even try to deliver the signal..
1679 */
1680void force_sigsegv(int sig)
1681{
1682 if (sig == SIGSEGV)
1683 force_fatal_sig(SIGSEGV);
1684 else
1685 force_sig(SIGSEGV);
1686}
1687
1688int force_sig_fault_to_task(int sig, int code, void __user *addr,
1689 struct task_struct *t)
1690{
1691 struct kernel_siginfo info;
1692
1693 clear_siginfo(&info);
1694 info.si_signo = sig;
1695 info.si_errno = 0;
1696 info.si_code = code;
1697 info.si_addr = addr;
1698 return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1699}
1700
1701int force_sig_fault(int sig, int code, void __user *addr)
1702{
1703 return force_sig_fault_to_task(sig, code, addr, current);
1704}
1705
1706int send_sig_fault(int sig, int code, void __user *addr, struct task_struct *t)
1707{
1708 struct kernel_siginfo info;
1709
1710 clear_siginfo(&info);
1711 info.si_signo = sig;
1712 info.si_errno = 0;
1713 info.si_code = code;
1714 info.si_addr = addr;
1715 return send_sig_info(info.si_signo, &info, t);
1716}
1717
1718int force_sig_mceerr(int code, void __user *addr, short lsb)
1719{
1720 struct kernel_siginfo info;
1721
1722 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1723 clear_siginfo(&info);
1724 info.si_signo = SIGBUS;
1725 info.si_errno = 0;
1726 info.si_code = code;
1727 info.si_addr = addr;
1728 info.si_addr_lsb = lsb;
1729 return force_sig_info(&info);
1730}
1731
1732int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1733{
1734 struct kernel_siginfo info;
1735
1736 WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1737 clear_siginfo(&info);
1738 info.si_signo = SIGBUS;
1739 info.si_errno = 0;
1740 info.si_code = code;
1741 info.si_addr = addr;
1742 info.si_addr_lsb = lsb;
1743 return send_sig_info(info.si_signo, &info, t);
1744}
1745EXPORT_SYMBOL(send_sig_mceerr);
1746
1747int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1748{
1749 struct kernel_siginfo info;
1750
1751 clear_siginfo(&info);
1752 info.si_signo = SIGSEGV;
1753 info.si_errno = 0;
1754 info.si_code = SEGV_BNDERR;
1755 info.si_addr = addr;
1756 info.si_lower = lower;
1757 info.si_upper = upper;
1758 return force_sig_info(&info);
1759}
1760
1761#ifdef SEGV_PKUERR
1762int force_sig_pkuerr(void __user *addr, u32 pkey)
1763{
1764 struct kernel_siginfo info;
1765
1766 clear_siginfo(&info);
1767 info.si_signo = SIGSEGV;
1768 info.si_errno = 0;
1769 info.si_code = SEGV_PKUERR;
1770 info.si_addr = addr;
1771 info.si_pkey = pkey;
1772 return force_sig_info(&info);
1773}
1774#endif
1775
1776int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1777{
1778 struct kernel_siginfo info;
1779
1780 clear_siginfo(&info);
1781 info.si_signo = SIGTRAP;
1782 info.si_errno = 0;
1783 info.si_code = TRAP_PERF;
1784 info.si_addr = addr;
1785 info.si_perf_data = sig_data;
1786 info.si_perf_type = type;
1787
1788 /*
1789 * Signals generated by perf events should not terminate the whole
1790 * process if SIGTRAP is blocked, however, delivering the signal
1791 * asynchronously is better than not delivering at all. But tell user
1792 * space if the signal was asynchronous, so it can clearly be
1793 * distinguished from normal synchronous ones.
1794 */
1795 info.si_perf_flags = sigismember(¤t->blocked, info.si_signo) ?
1796 TRAP_PERF_FLAG_ASYNC :
1797 0;
1798
1799 return send_sig_info(info.si_signo, &info, current);
1800}
1801
1802/**
1803 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1804 * @syscall: syscall number to send to userland
1805 * @reason: filter-supplied reason code to send to userland (via si_errno)
1806 * @force_coredump: true to trigger a coredump
1807 *
1808 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1809 */
1810int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1811{
1812 struct kernel_siginfo info;
1813
1814 clear_siginfo(&info);
1815 info.si_signo = SIGSYS;
1816 info.si_code = SYS_SECCOMP;
1817 info.si_call_addr = (void __user *)KSTK_EIP(current);
1818 info.si_errno = reason;
1819 info.si_arch = syscall_get_arch(current);
1820 info.si_syscall = syscall;
1821 return force_sig_info_to_task(&info, current,
1822 force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1823}
1824
1825/* For the crazy architectures that include trap information in
1826 * the errno field, instead of an actual errno value.
1827 */
1828int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1829{
1830 struct kernel_siginfo info;
1831
1832 clear_siginfo(&info);
1833 info.si_signo = SIGTRAP;
1834 info.si_errno = errno;
1835 info.si_code = TRAP_HWBKPT;
1836 info.si_addr = addr;
1837 return force_sig_info(&info);
1838}
1839
1840/* For the rare architectures that include trap information using
1841 * si_trapno.
1842 */
1843int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1844{
1845 struct kernel_siginfo info;
1846
1847 clear_siginfo(&info);
1848 info.si_signo = sig;
1849 info.si_errno = 0;
1850 info.si_code = code;
1851 info.si_addr = addr;
1852 info.si_trapno = trapno;
1853 return force_sig_info(&info);
1854}
1855
1856/* For the rare architectures that include trap information using
1857 * si_trapno.
1858 */
1859int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1860 struct task_struct *t)
1861{
1862 struct kernel_siginfo info;
1863
1864 clear_siginfo(&info);
1865 info.si_signo = sig;
1866 info.si_errno = 0;
1867 info.si_code = code;
1868 info.si_addr = addr;
1869 info.si_trapno = trapno;
1870 return send_sig_info(info.si_signo, &info, t);
1871}
1872
1873static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1874{
1875 int ret;
1876 read_lock(&tasklist_lock);
1877 ret = __kill_pgrp_info(sig, info, pgrp);
1878 read_unlock(&tasklist_lock);
1879 return ret;
1880}
1881
1882int kill_pgrp(struct pid *pid, int sig, int priv)
1883{
1884 return kill_pgrp_info(sig, __si_special(priv), pid);
1885}
1886EXPORT_SYMBOL(kill_pgrp);
1887
1888int kill_pid(struct pid *pid, int sig, int priv)
1889{
1890 return kill_pid_info(sig, __si_special(priv), pid);
1891}
1892EXPORT_SYMBOL(kill_pid);
1893
1894#ifdef CONFIG_POSIX_TIMERS
1895/*
1896 * These functions handle POSIX timer signals. POSIX timers use
1897 * preallocated sigqueue structs for sending signals.
1898 */
1899static void __flush_itimer_signals(struct sigpending *pending)
1900{
1901 sigset_t signal, retain;
1902 struct sigqueue *q, *n;
1903
1904 signal = pending->signal;
1905 sigemptyset(&retain);
1906
1907 list_for_each_entry_safe(q, n, &pending->list, list) {
1908 int sig = q->info.si_signo;
1909
1910 if (likely(q->info.si_code != SI_TIMER)) {
1911 sigaddset(&retain, sig);
1912 } else {
1913 sigdelset(&signal, sig);
1914 list_del_init(&q->list);
1915 __sigqueue_free(q);
1916 }
1917 }
1918
1919 sigorsets(&pending->signal, &signal, &retain);
1920}
1921
1922void flush_itimer_signals(void)
1923{
1924 struct task_struct *tsk = current;
1925
1926 guard(spinlock_irqsave)(&tsk->sighand->siglock);
1927 __flush_itimer_signals(&tsk->pending);
1928 __flush_itimer_signals(&tsk->signal->shared_pending);
1929}
1930
1931bool posixtimer_init_sigqueue(struct sigqueue *q)
1932{
1933 struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
1934
1935 if (!ucounts)
1936 return false;
1937 clear_siginfo(&q->info);
1938 __sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
1939 return true;
1940}
1941
1942static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
1943{
1944 struct sigpending *pending;
1945 int sig = q->info.si_signo;
1946
1947 signalfd_notify(t, sig);
1948 pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1949 list_add_tail(&q->list, &pending->list);
1950 sigaddset(&pending->signal, sig);
1951 complete_signal(sig, t, type);
1952}
1953
1954/*
1955 * This function is used by POSIX timers to deliver a timer signal.
1956 * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
1957 * set), the signal must be delivered to the specific thread (queues
1958 * into t->pending).
1959 *
1960 * Where type is not PIDTYPE_PID, signals must be delivered to the
1961 * process. In this case, prefer to deliver to current if it is in
1962 * the same thread group as the target process and its sighand is
1963 * stable, which avoids unnecessarily waking up a potentially idle task.
1964 */
1965static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
1966{
1967 struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
1968
1969 if (t && tmr->it_pid_type != PIDTYPE_PID &&
1970 same_thread_group(t, current) && !current->exit_state)
1971 t = current;
1972 return t;
1973}
1974
1975void posixtimer_send_sigqueue(struct k_itimer *tmr)
1976{
1977 struct sigqueue *q = &tmr->sigq;
1978 int sig = q->info.si_signo;
1979 struct task_struct *t;
1980 unsigned long flags;
1981 int result;
1982
1983 guard(rcu)();
1984
1985 t = posixtimer_get_target(tmr);
1986 if (!t)
1987 return;
1988
1989 if (!likely(lock_task_sighand(t, &flags)))
1990 return;
1991
1992 /*
1993 * Update @tmr::sigqueue_seq for posix timer signals with sighand
1994 * locked to prevent a race against dequeue_signal().
1995 */
1996 tmr->it_sigqueue_seq = tmr->it_signal_seq;
1997
1998 /*
1999 * Set the signal delivery status under sighand lock, so that the
2000 * ignored signal handling can distinguish between a periodic and a
2001 * non-periodic timer.
2002 */
2003 tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING;
2004
2005 if (!prepare_signal(sig, t, false)) {
2006 result = TRACE_SIGNAL_IGNORED;
2007
2008 if (!list_empty(&q->list)) {
2009 /*
2010 * The signal was ignored and blocked. The timer
2011 * expiry queued it because blocked signals are
2012 * queued independent of the ignored state.
2013 *
2014 * The unblocking set SIGPENDING, but the signal
2015 * was not yet dequeued from the pending list.
2016 * So prepare_signal() sees unblocked and ignored,
2017 * which ends up here. Leave it queued like a
2018 * regular signal.
2019 *
2020 * The same happens when the task group is exiting
2021 * and the signal is already queued.
2022 * prepare_signal() treats SIGNAL_GROUP_EXIT as
2023 * ignored independent of its queued state. This
2024 * gets cleaned up in __exit_signal().
2025 */
2026 goto out;
2027 }
2028
2029 /* Periodic timers with SIG_IGN are queued on the ignored list */
2030 if (tmr->it_sig_periodic) {
2031 /*
2032 * Already queued means the timer was rearmed after
2033 * the previous expiry got it on the ignore list.
2034 * Nothing to do for that case.
2035 */
2036 if (hlist_unhashed(&tmr->ignored_list)) {
2037 /*
2038 * Take a signal reference and queue it on
2039 * the ignored list.
2040 */
2041 posixtimer_sigqueue_getref(q);
2042 posixtimer_sig_ignore(t, q);
2043 }
2044 } else if (!hlist_unhashed(&tmr->ignored_list)) {
2045 /*
2046 * Covers the case where a timer was periodic and
2047 * then the signal was ignored. Later it was rearmed
2048 * as oneshot timer. The previous signal is invalid
2049 * now, and this oneshot signal has to be dropped.
2050 * Remove it from the ignored list and drop the
2051 * reference count as the signal is not longer
2052 * queued.
2053 */
2054 hlist_del_init(&tmr->ignored_list);
2055 posixtimer_putref(tmr);
2056 }
2057 goto out;
2058 }
2059
2060 if (unlikely(!list_empty(&q->list))) {
2061 /* This holds a reference count already */
2062 result = TRACE_SIGNAL_ALREADY_PENDING;
2063 goto out;
2064 }
2065
2066 /*
2067 * If the signal is on the ignore list, it got blocked after it was
2068 * ignored earlier. But nothing lifted the ignore. Move it back to
2069 * the pending list to be consistent with the regular signal
2070 * handling. This already holds a reference count.
2071 *
2072 * If it's not on the ignore list acquire a reference count.
2073 */
2074 if (likely(hlist_unhashed(&tmr->ignored_list)))
2075 posixtimer_sigqueue_getref(q);
2076 else
2077 hlist_del_init(&tmr->ignored_list);
2078
2079 posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
2080 result = TRACE_SIGNAL_DELIVERED;
2081out:
2082 trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
2083 unlock_task_sighand(t, &flags);
2084}
2085
2086static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q)
2087{
2088 struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
2089
2090 /*
2091 * If the timer is marked deleted already or the signal originates
2092 * from a non-periodic timer, then just drop the reference
2093 * count. Otherwise queue it on the ignored list.
2094 */
2095 if (tmr->it_signal && tmr->it_sig_periodic)
2096 hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers);
2097 else
2098 posixtimer_putref(tmr);
2099}
2100
2101static void posixtimer_sig_unignore(struct task_struct *tsk, int sig)
2102{
2103 struct hlist_head *head = &tsk->signal->ignored_posix_timers;
2104 struct hlist_node *tmp;
2105 struct k_itimer *tmr;
2106
2107 if (likely(hlist_empty(head)))
2108 return;
2109
2110 /*
2111 * Rearming a timer with sighand lock held is not possible due to
2112 * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
2113 * let the signal delivery path deal with it whether it needs to be
2114 * rearmed or not. This cannot be decided here w/o dropping sighand
2115 * lock and creating a loop retry horror show.
2116 */
2117 hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) {
2118 struct task_struct *target;
2119
2120 /*
2121 * tmr::sigq.info.si_signo is immutable, so accessing it
2122 * without holding tmr::it_lock is safe.
2123 */
2124 if (tmr->sigq.info.si_signo != sig)
2125 continue;
2126
2127 hlist_del_init(&tmr->ignored_list);
2128
2129 /* This should never happen and leaks a reference count */
2130 if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list)))
2131 continue;
2132
2133 /*
2134 * Get the target for the signal. If target is a thread and
2135 * has exited by now, drop the reference count.
2136 */
2137 guard(rcu)();
2138 target = posixtimer_get_target(tmr);
2139 if (target)
2140 posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type);
2141 else
2142 posixtimer_putref(tmr);
2143 }
2144}
2145#else /* CONFIG_POSIX_TIMERS */
2146static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { }
2147static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { }
2148#endif /* !CONFIG_POSIX_TIMERS */
2149
2150void do_notify_pidfd(struct task_struct *task)
2151{
2152 struct pid *pid = task_pid(task);
2153
2154 WARN_ON(task->exit_state == 0);
2155
2156 __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
2157 poll_to_key(EPOLLIN | EPOLLRDNORM));
2158}
2159
2160/*
2161 * Let a parent know about the death of a child.
2162 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2163 *
2164 * Returns true if our parent ignored us and so we've switched to
2165 * self-reaping.
2166 */
2167bool do_notify_parent(struct task_struct *tsk, int sig)
2168{
2169 struct kernel_siginfo info;
2170 unsigned long flags;
2171 struct sighand_struct *psig;
2172 bool autoreap = false;
2173 u64 utime, stime;
2174
2175 WARN_ON_ONCE(sig == -1);
2176
2177 /* do_notify_parent_cldstop should have been called instead. */
2178 WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2179
2180 WARN_ON_ONCE(!tsk->ptrace &&
2181 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2182 /*
2183 * tsk is a group leader and has no threads, wake up the
2184 * non-PIDFD_THREAD waiters.
2185 */
2186 if (thread_group_empty(tsk))
2187 do_notify_pidfd(tsk);
2188
2189 if (sig != SIGCHLD) {
2190 /*
2191 * This is only possible if parent == real_parent.
2192 * Check if it has changed security domain.
2193 */
2194 if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2195 sig = SIGCHLD;
2196 }
2197
2198 clear_siginfo(&info);
2199 info.si_signo = sig;
2200 info.si_errno = 0;
2201 /*
2202 * We are under tasklist_lock here so our parent is tied to
2203 * us and cannot change.
2204 *
2205 * task_active_pid_ns will always return the same pid namespace
2206 * until a task passes through release_task.
2207 *
2208 * write_lock() currently calls preempt_disable() which is the
2209 * same as rcu_read_lock(), but according to Oleg, this is not
2210 * correct to rely on this
2211 */
2212 rcu_read_lock();
2213 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2214 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2215 task_uid(tsk));
2216 rcu_read_unlock();
2217
2218 task_cputime(tsk, &utime, &stime);
2219 info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2220 info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2221
2222 info.si_status = tsk->exit_code & 0x7f;
2223 if (tsk->exit_code & 0x80)
2224 info.si_code = CLD_DUMPED;
2225 else if (tsk->exit_code & 0x7f)
2226 info.si_code = CLD_KILLED;
2227 else {
2228 info.si_code = CLD_EXITED;
2229 info.si_status = tsk->exit_code >> 8;
2230 }
2231
2232 psig = tsk->parent->sighand;
2233 spin_lock_irqsave(&psig->siglock, flags);
2234 if (!tsk->ptrace && sig == SIGCHLD &&
2235 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2236 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2237 /*
2238 * We are exiting and our parent doesn't care. POSIX.1
2239 * defines special semantics for setting SIGCHLD to SIG_IGN
2240 * or setting the SA_NOCLDWAIT flag: we should be reaped
2241 * automatically and not left for our parent's wait4 call.
2242 * Rather than having the parent do it as a magic kind of
2243 * signal handler, we just set this to tell do_exit that we
2244 * can be cleaned up without becoming a zombie. Note that
2245 * we still call __wake_up_parent in this case, because a
2246 * blocked sys_wait4 might now return -ECHILD.
2247 *
2248 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2249 * is implementation-defined: we do (if you don't want
2250 * it, just use SIG_IGN instead).
2251 */
2252 autoreap = true;
2253 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2254 sig = 0;
2255 }
2256 /*
2257 * Send with __send_signal as si_pid and si_uid are in the
2258 * parent's namespaces.
2259 */
2260 if (valid_signal(sig) && sig)
2261 __send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2262 __wake_up_parent(tsk, tsk->parent);
2263 spin_unlock_irqrestore(&psig->siglock, flags);
2264
2265 return autoreap;
2266}
2267
2268/**
2269 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2270 * @tsk: task reporting the state change
2271 * @for_ptracer: the notification is for ptracer
2272 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2273 *
2274 * Notify @tsk's parent that the stopped/continued state has changed. If
2275 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2276 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2277 *
2278 * CONTEXT:
2279 * Must be called with tasklist_lock at least read locked.
2280 */
2281static void do_notify_parent_cldstop(struct task_struct *tsk,
2282 bool for_ptracer, int why)
2283{
2284 struct kernel_siginfo info;
2285 unsigned long flags;
2286 struct task_struct *parent;
2287 struct sighand_struct *sighand;
2288 u64 utime, stime;
2289
2290 if (for_ptracer) {
2291 parent = tsk->parent;
2292 } else {
2293 tsk = tsk->group_leader;
2294 parent = tsk->real_parent;
2295 }
2296
2297 clear_siginfo(&info);
2298 info.si_signo = SIGCHLD;
2299 info.si_errno = 0;
2300 /*
2301 * see comment in do_notify_parent() about the following 4 lines
2302 */
2303 rcu_read_lock();
2304 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2305 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2306 rcu_read_unlock();
2307
2308 task_cputime(tsk, &utime, &stime);
2309 info.si_utime = nsec_to_clock_t(utime);
2310 info.si_stime = nsec_to_clock_t(stime);
2311
2312 info.si_code = why;
2313 switch (why) {
2314 case CLD_CONTINUED:
2315 info.si_status = SIGCONT;
2316 break;
2317 case CLD_STOPPED:
2318 info.si_status = tsk->signal->group_exit_code & 0x7f;
2319 break;
2320 case CLD_TRAPPED:
2321 info.si_status = tsk->exit_code & 0x7f;
2322 break;
2323 default:
2324 BUG();
2325 }
2326
2327 sighand = parent->sighand;
2328 spin_lock_irqsave(&sighand->siglock, flags);
2329 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2330 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2331 send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2332 /*
2333 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2334 */
2335 __wake_up_parent(tsk, parent);
2336 spin_unlock_irqrestore(&sighand->siglock, flags);
2337}
2338
2339/*
2340 * This must be called with current->sighand->siglock held.
2341 *
2342 * This should be the path for all ptrace stops.
2343 * We always set current->last_siginfo while stopped here.
2344 * That makes it a way to test a stopped process for
2345 * being ptrace-stopped vs being job-control-stopped.
2346 *
2347 * Returns the signal the ptracer requested the code resume
2348 * with. If the code did not stop because the tracer is gone,
2349 * the stop signal remains unchanged unless clear_code.
2350 */
2351static int ptrace_stop(int exit_code, int why, unsigned long message,
2352 kernel_siginfo_t *info)
2353 __releases(¤t->sighand->siglock)
2354 __acquires(¤t->sighand->siglock)
2355{
2356 bool gstop_done = false;
2357
2358 if (arch_ptrace_stop_needed()) {
2359 /*
2360 * The arch code has something special to do before a
2361 * ptrace stop. This is allowed to block, e.g. for faults
2362 * on user stack pages. We can't keep the siglock while
2363 * calling arch_ptrace_stop, so we must release it now.
2364 * To preserve proper semantics, we must do this before
2365 * any signal bookkeeping like checking group_stop_count.
2366 */
2367 spin_unlock_irq(¤t->sighand->siglock);
2368 arch_ptrace_stop();
2369 spin_lock_irq(¤t->sighand->siglock);
2370 }
2371
2372 /*
2373 * After this point ptrace_signal_wake_up or signal_wake_up
2374 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2375 * signal comes in. Handle previous ptrace_unlinks and fatal
2376 * signals here to prevent ptrace_stop sleeping in schedule.
2377 */
2378 if (!current->ptrace || __fatal_signal_pending(current))
2379 return exit_code;
2380
2381 set_special_state(TASK_TRACED);
2382 current->jobctl |= JOBCTL_TRACED;
2383
2384 /*
2385 * We're committing to trapping. TRACED should be visible before
2386 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2387 * Also, transition to TRACED and updates to ->jobctl should be
2388 * atomic with respect to siglock and should be done after the arch
2389 * hook as siglock is released and regrabbed across it.
2390 *
2391 * TRACER TRACEE
2392 *
2393 * ptrace_attach()
2394 * [L] wait_on_bit(JOBCTL_TRAPPING) [S] set_special_state(TRACED)
2395 * do_wait()
2396 * set_current_state() smp_wmb();
2397 * ptrace_do_wait()
2398 * wait_task_stopped()
2399 * task_stopped_code()
2400 * [L] task_is_traced() [S] task_clear_jobctl_trapping();
2401 */
2402 smp_wmb();
2403
2404 current->ptrace_message = message;
2405 current->last_siginfo = info;
2406 current->exit_code = exit_code;
2407
2408 /*
2409 * If @why is CLD_STOPPED, we're trapping to participate in a group
2410 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
2411 * across siglock relocks since INTERRUPT was scheduled, PENDING
2412 * could be clear now. We act as if SIGCONT is received after
2413 * TASK_TRACED is entered - ignore it.
2414 */
2415 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2416 gstop_done = task_participate_group_stop(current);
2417
2418 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2419 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2420 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2421 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2422
2423 /* entering a trap, clear TRAPPING */
2424 task_clear_jobctl_trapping(current);
2425
2426 spin_unlock_irq(¤t->sighand->siglock);
2427 read_lock(&tasklist_lock);
2428 /*
2429 * Notify parents of the stop.
2430 *
2431 * While ptraced, there are two parents - the ptracer and
2432 * the real_parent of the group_leader. The ptracer should
2433 * know about every stop while the real parent is only
2434 * interested in the completion of group stop. The states
2435 * for the two don't interact with each other. Notify
2436 * separately unless they're gonna be duplicates.
2437 */
2438 if (current->ptrace)
2439 do_notify_parent_cldstop(current, true, why);
2440 if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2441 do_notify_parent_cldstop(current, false, why);
2442
2443 /*
2444 * The previous do_notify_parent_cldstop() invocation woke ptracer.
2445 * One a PREEMPTION kernel this can result in preemption requirement
2446 * which will be fulfilled after read_unlock() and the ptracer will be
2447 * put on the CPU.
2448 * The ptracer is in wait_task_inactive(, __TASK_TRACED) waiting for
2449 * this task wait in schedule(). If this task gets preempted then it
2450 * remains enqueued on the runqueue. The ptracer will observe this and
2451 * then sleep for a delay of one HZ tick. In the meantime this task
2452 * gets scheduled, enters schedule() and will wait for the ptracer.
2453 *
2454 * This preemption point is not bad from a correctness point of
2455 * view but extends the runtime by one HZ tick time due to the
2456 * ptracer's sleep. The preempt-disable section ensures that there
2457 * will be no preemption between unlock and schedule() and so
2458 * improving the performance since the ptracer will observe that
2459 * the tracee is scheduled out once it gets on the CPU.
2460 *
2461 * On PREEMPT_RT locking tasklist_lock does not disable preemption.
2462 * Therefore the task can be preempted after do_notify_parent_cldstop()
2463 * before unlocking tasklist_lock so there is no benefit in doing this.
2464 *
2465 * In fact disabling preemption is harmful on PREEMPT_RT because
2466 * the spinlock_t in cgroup_enter_frozen() must not be acquired
2467 * with preemption disabled due to the 'sleeping' spinlock
2468 * substitution of RT.
2469 */
2470 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2471 preempt_disable();
2472 read_unlock(&tasklist_lock);
2473 cgroup_enter_frozen();
2474 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
2475 preempt_enable_no_resched();
2476 schedule();
2477 cgroup_leave_frozen(true);
2478
2479 /*
2480 * We are back. Now reacquire the siglock before touching
2481 * last_siginfo, so that we are sure to have synchronized with
2482 * any signal-sending on another CPU that wants to examine it.
2483 */
2484 spin_lock_irq(¤t->sighand->siglock);
2485 exit_code = current->exit_code;
2486 current->last_siginfo = NULL;
2487 current->ptrace_message = 0;
2488 current->exit_code = 0;
2489
2490 /* LISTENING can be set only during STOP traps, clear it */
2491 current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2492
2493 /*
2494 * Queued signals ignored us while we were stopped for tracing.
2495 * So check for any that we should take before resuming user mode.
2496 * This sets TIF_SIGPENDING, but never clears it.
2497 */
2498 recalc_sigpending_tsk(current);
2499 return exit_code;
2500}
2501
2502static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2503{
2504 kernel_siginfo_t info;
2505
2506 clear_siginfo(&info);
2507 info.si_signo = signr;
2508 info.si_code = exit_code;
2509 info.si_pid = task_pid_vnr(current);
2510 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2511
2512 /* Let the debugger run. */
2513 return ptrace_stop(exit_code, why, message, &info);
2514}
2515
2516int ptrace_notify(int exit_code, unsigned long message)
2517{
2518 int signr;
2519
2520 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2521 if (unlikely(task_work_pending(current)))
2522 task_work_run();
2523
2524 spin_lock_irq(¤t->sighand->siglock);
2525 signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2526 spin_unlock_irq(¤t->sighand->siglock);
2527 return signr;
2528}
2529
2530/**
2531 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2532 * @signr: signr causing group stop if initiating
2533 *
2534 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2535 * and participate in it. If already set, participate in the existing
2536 * group stop. If participated in a group stop (and thus slept), %true is
2537 * returned with siglock released.
2538 *
2539 * If ptraced, this function doesn't handle stop itself. Instead,
2540 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2541 * untouched. The caller must ensure that INTERRUPT trap handling takes
2542 * places afterwards.
2543 *
2544 * CONTEXT:
2545 * Must be called with @current->sighand->siglock held, which is released
2546 * on %true return.
2547 *
2548 * RETURNS:
2549 * %false if group stop is already cancelled or ptrace trap is scheduled.
2550 * %true if participated in group stop.
2551 */
2552static bool do_signal_stop(int signr)
2553 __releases(¤t->sighand->siglock)
2554{
2555 struct signal_struct *sig = current->signal;
2556
2557 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2558 unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2559 struct task_struct *t;
2560
2561 /* signr will be recorded in task->jobctl for retries */
2562 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2563
2564 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2565 unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2566 unlikely(sig->group_exec_task))
2567 return false;
2568 /*
2569 * There is no group stop already in progress. We must
2570 * initiate one now.
2571 *
2572 * While ptraced, a task may be resumed while group stop is
2573 * still in effect and then receive a stop signal and
2574 * initiate another group stop. This deviates from the
2575 * usual behavior as two consecutive stop signals can't
2576 * cause two group stops when !ptraced. That is why we
2577 * also check !task_is_stopped(t) below.
2578 *
2579 * The condition can be distinguished by testing whether
2580 * SIGNAL_STOP_STOPPED is already set. Don't generate
2581 * group_exit_code in such case.
2582 *
2583 * This is not necessary for SIGNAL_STOP_CONTINUED because
2584 * an intervening stop signal is required to cause two
2585 * continued events regardless of ptrace.
2586 */
2587 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2588 sig->group_exit_code = signr;
2589
2590 sig->group_stop_count = 0;
2591 if (task_set_jobctl_pending(current, signr | gstop))
2592 sig->group_stop_count++;
2593
2594 for_other_threads(current, t) {
2595 /*
2596 * Setting state to TASK_STOPPED for a group
2597 * stop is always done with the siglock held,
2598 * so this check has no races.
2599 */
2600 if (!task_is_stopped(t) &&
2601 task_set_jobctl_pending(t, signr | gstop)) {
2602 sig->group_stop_count++;
2603 if (likely(!(t->ptrace & PT_SEIZED)))
2604 signal_wake_up(t, 0);
2605 else
2606 ptrace_trap_notify(t);
2607 }
2608 }
2609 }
2610
2611 if (likely(!current->ptrace)) {
2612 int notify = 0;
2613
2614 /*
2615 * If there are no other threads in the group, or if there
2616 * is a group stop in progress and we are the last to stop,
2617 * report to the parent.
2618 */
2619 if (task_participate_group_stop(current))
2620 notify = CLD_STOPPED;
2621
2622 current->jobctl |= JOBCTL_STOPPED;
2623 set_special_state(TASK_STOPPED);
2624 spin_unlock_irq(¤t->sighand->siglock);
2625
2626 /*
2627 * Notify the parent of the group stop completion. Because
2628 * we're not holding either the siglock or tasklist_lock
2629 * here, ptracer may attach inbetween; however, this is for
2630 * group stop and should always be delivered to the real
2631 * parent of the group leader. The new ptracer will get
2632 * its notification when this task transitions into
2633 * TASK_TRACED.
2634 */
2635 if (notify) {
2636 read_lock(&tasklist_lock);
2637 do_notify_parent_cldstop(current, false, notify);
2638 read_unlock(&tasklist_lock);
2639 }
2640
2641 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2642 cgroup_enter_frozen();
2643 schedule();
2644 return true;
2645 } else {
2646 /*
2647 * While ptraced, group stop is handled by STOP trap.
2648 * Schedule it and let the caller deal with it.
2649 */
2650 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2651 return false;
2652 }
2653}
2654
2655/**
2656 * do_jobctl_trap - take care of ptrace jobctl traps
2657 *
2658 * When PT_SEIZED, it's used for both group stop and explicit
2659 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2660 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2661 * the stop signal; otherwise, %SIGTRAP.
2662 *
2663 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2664 * number as exit_code and no siginfo.
2665 *
2666 * CONTEXT:
2667 * Must be called with @current->sighand->siglock held, which may be
2668 * released and re-acquired before returning with intervening sleep.
2669 */
2670static void do_jobctl_trap(void)
2671{
2672 struct signal_struct *signal = current->signal;
2673 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2674
2675 if (current->ptrace & PT_SEIZED) {
2676 if (!signal->group_stop_count &&
2677 !(signal->flags & SIGNAL_STOP_STOPPED))
2678 signr = SIGTRAP;
2679 WARN_ON_ONCE(!signr);
2680 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2681 CLD_STOPPED, 0);
2682 } else {
2683 WARN_ON_ONCE(!signr);
2684 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2685 }
2686}
2687
2688/**
2689 * do_freezer_trap - handle the freezer jobctl trap
2690 *
2691 * Puts the task into frozen state, if only the task is not about to quit.
2692 * In this case it drops JOBCTL_TRAP_FREEZE.
2693 *
2694 * CONTEXT:
2695 * Must be called with @current->sighand->siglock held,
2696 * which is always released before returning.
2697 */
2698static void do_freezer_trap(void)
2699 __releases(¤t->sighand->siglock)
2700{
2701 /*
2702 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2703 * let's make another loop to give it a chance to be handled.
2704 * In any case, we'll return back.
2705 */
2706 if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2707 JOBCTL_TRAP_FREEZE) {
2708 spin_unlock_irq(¤t->sighand->siglock);
2709 return;
2710 }
2711
2712 /*
2713 * Now we're sure that there is no pending fatal signal and no
2714 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2715 * immediately (if there is a non-fatal signal pending), and
2716 * put the task into sleep.
2717 */
2718 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2719 clear_thread_flag(TIF_SIGPENDING);
2720 spin_unlock_irq(¤t->sighand->siglock);
2721 cgroup_enter_frozen();
2722 schedule();
2723
2724 /*
2725 * We could've been woken by task_work, run it to clear
2726 * TIF_NOTIFY_SIGNAL. The caller will retry if necessary.
2727 */
2728 clear_notify_signal();
2729 if (unlikely(task_work_pending(current)))
2730 task_work_run();
2731}
2732
2733static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2734{
2735 /*
2736 * We do not check sig_kernel_stop(signr) but set this marker
2737 * unconditionally because we do not know whether debugger will
2738 * change signr. This flag has no meaning unless we are going
2739 * to stop after return from ptrace_stop(). In this case it will
2740 * be checked in do_signal_stop(), we should only stop if it was
2741 * not cleared by SIGCONT while we were sleeping. See also the
2742 * comment in dequeue_signal().
2743 */
2744 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2745 signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2746
2747 /* We're back. Did the debugger cancel the sig? */
2748 if (signr == 0)
2749 return signr;
2750
2751 /*
2752 * Update the siginfo structure if the signal has
2753 * changed. If the debugger wanted something
2754 * specific in the siginfo structure then it should
2755 * have updated *info via PTRACE_SETSIGINFO.
2756 */
2757 if (signr != info->si_signo) {
2758 clear_siginfo(info);
2759 info->si_signo = signr;
2760 info->si_errno = 0;
2761 info->si_code = SI_USER;
2762 rcu_read_lock();
2763 info->si_pid = task_pid_vnr(current->parent);
2764 info->si_uid = from_kuid_munged(current_user_ns(),
2765 task_uid(current->parent));
2766 rcu_read_unlock();
2767 }
2768
2769 /* If the (new) signal is now blocked, requeue it. */
2770 if (sigismember(¤t->blocked, signr) ||
2771 fatal_signal_pending(current)) {
2772 send_signal_locked(signr, info, current, type);
2773 signr = 0;
2774 }
2775
2776 return signr;
2777}
2778
2779static void hide_si_addr_tag_bits(struct ksignal *ksig)
2780{
2781 switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2782 case SIL_FAULT:
2783 case SIL_FAULT_TRAPNO:
2784 case SIL_FAULT_MCEERR:
2785 case SIL_FAULT_BNDERR:
2786 case SIL_FAULT_PKUERR:
2787 case SIL_FAULT_PERF_EVENT:
2788 ksig->info.si_addr = arch_untagged_si_addr(
2789 ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2790 break;
2791 case SIL_KILL:
2792 case SIL_TIMER:
2793 case SIL_POLL:
2794 case SIL_CHLD:
2795 case SIL_RT:
2796 case SIL_SYS:
2797 break;
2798 }
2799}
2800
2801bool get_signal(struct ksignal *ksig)
2802{
2803 struct sighand_struct *sighand = current->sighand;
2804 struct signal_struct *signal = current->signal;
2805 int signr;
2806
2807 clear_notify_signal();
2808 if (unlikely(task_work_pending(current)))
2809 task_work_run();
2810
2811 if (!task_sigpending(current))
2812 return false;
2813
2814 if (unlikely(uprobe_deny_signal()))
2815 return false;
2816
2817 /*
2818 * Do this once, we can't return to user-mode if freezing() == T.
2819 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2820 * thus do not need another check after return.
2821 */
2822 try_to_freeze();
2823
2824relock:
2825 spin_lock_irq(&sighand->siglock);
2826
2827 /*
2828 * Every stopped thread goes here after wakeup. Check to see if
2829 * we should notify the parent, prepare_signal(SIGCONT) encodes
2830 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2831 */
2832 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2833 int why;
2834
2835 if (signal->flags & SIGNAL_CLD_CONTINUED)
2836 why = CLD_CONTINUED;
2837 else
2838 why = CLD_STOPPED;
2839
2840 signal->flags &= ~SIGNAL_CLD_MASK;
2841
2842 spin_unlock_irq(&sighand->siglock);
2843
2844 /*
2845 * Notify the parent that we're continuing. This event is
2846 * always per-process and doesn't make whole lot of sense
2847 * for ptracers, who shouldn't consume the state via
2848 * wait(2) either, but, for backward compatibility, notify
2849 * the ptracer of the group leader too unless it's gonna be
2850 * a duplicate.
2851 */
2852 read_lock(&tasklist_lock);
2853 do_notify_parent_cldstop(current, false, why);
2854
2855 if (ptrace_reparented(current->group_leader))
2856 do_notify_parent_cldstop(current->group_leader,
2857 true, why);
2858 read_unlock(&tasklist_lock);
2859
2860 goto relock;
2861 }
2862
2863 for (;;) {
2864 struct k_sigaction *ka;
2865 enum pid_type type;
2866
2867 /* Has this task already been marked for death? */
2868 if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2869 signal->group_exec_task) {
2870 signr = SIGKILL;
2871 sigdelset(¤t->pending.signal, SIGKILL);
2872 trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2873 &sighand->action[SIGKILL-1]);
2874 recalc_sigpending();
2875 /*
2876 * implies do_group_exit() or return to PF_USER_WORKER,
2877 * no need to initialize ksig->info/etc.
2878 */
2879 goto fatal;
2880 }
2881
2882 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2883 do_signal_stop(0))
2884 goto relock;
2885
2886 if (unlikely(current->jobctl &
2887 (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2888 if (current->jobctl & JOBCTL_TRAP_MASK) {
2889 do_jobctl_trap();
2890 spin_unlock_irq(&sighand->siglock);
2891 } else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2892 do_freezer_trap();
2893
2894 goto relock;
2895 }
2896
2897 /*
2898 * If the task is leaving the frozen state, let's update
2899 * cgroup counters and reset the frozen bit.
2900 */
2901 if (unlikely(cgroup_task_frozen(current))) {
2902 spin_unlock_irq(&sighand->siglock);
2903 cgroup_leave_frozen(false);
2904 goto relock;
2905 }
2906
2907 /*
2908 * Signals generated by the execution of an instruction
2909 * need to be delivered before any other pending signals
2910 * so that the instruction pointer in the signal stack
2911 * frame points to the faulting instruction.
2912 */
2913 type = PIDTYPE_PID;
2914 signr = dequeue_synchronous_signal(&ksig->info);
2915 if (!signr)
2916 signr = dequeue_signal(¤t->blocked, &ksig->info, &type);
2917
2918 if (!signr)
2919 break; /* will return 0 */
2920
2921 if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2922 !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2923 signr = ptrace_signal(signr, &ksig->info, type);
2924 if (!signr)
2925 continue;
2926 }
2927
2928 ka = &sighand->action[signr-1];
2929
2930 /* Trace actually delivered signals. */
2931 trace_signal_deliver(signr, &ksig->info, ka);
2932
2933 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2934 continue;
2935 if (ka->sa.sa_handler != SIG_DFL) {
2936 /* Run the handler. */
2937 ksig->ka = *ka;
2938
2939 if (ka->sa.sa_flags & SA_ONESHOT)
2940 ka->sa.sa_handler = SIG_DFL;
2941
2942 break; /* will return non-zero "signr" value */
2943 }
2944
2945 /*
2946 * Now we are doing the default action for this signal.
2947 */
2948 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2949 continue;
2950
2951 /*
2952 * Global init gets no signals it doesn't want.
2953 * Container-init gets no signals it doesn't want from same
2954 * container.
2955 *
2956 * Note that if global/container-init sees a sig_kernel_only()
2957 * signal here, the signal must have been generated internally
2958 * or must have come from an ancestor namespace. In either
2959 * case, the signal cannot be dropped.
2960 */
2961 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2962 !sig_kernel_only(signr))
2963 continue;
2964
2965 if (sig_kernel_stop(signr)) {
2966 /*
2967 * The default action is to stop all threads in
2968 * the thread group. The job control signals
2969 * do nothing in an orphaned pgrp, but SIGSTOP
2970 * always works. Note that siglock needs to be
2971 * dropped during the call to is_orphaned_pgrp()
2972 * because of lock ordering with tasklist_lock.
2973 * This allows an intervening SIGCONT to be posted.
2974 * We need to check for that and bail out if necessary.
2975 */
2976 if (signr != SIGSTOP) {
2977 spin_unlock_irq(&sighand->siglock);
2978
2979 /* signals can be posted during this window */
2980
2981 if (is_current_pgrp_orphaned())
2982 goto relock;
2983
2984 spin_lock_irq(&sighand->siglock);
2985 }
2986
2987 if (likely(do_signal_stop(signr))) {
2988 /* It released the siglock. */
2989 goto relock;
2990 }
2991
2992 /*
2993 * We didn't actually stop, due to a race
2994 * with SIGCONT or something like that.
2995 */
2996 continue;
2997 }
2998
2999 fatal:
3000 spin_unlock_irq(&sighand->siglock);
3001 if (unlikely(cgroup_task_frozen(current)))
3002 cgroup_leave_frozen(true);
3003
3004 /*
3005 * Anything else is fatal, maybe with a core dump.
3006 */
3007 current->flags |= PF_SIGNALED;
3008
3009 if (sig_kernel_coredump(signr)) {
3010 if (print_fatal_signals)
3011 print_fatal_signal(signr);
3012 proc_coredump_connector(current);
3013 /*
3014 * If it was able to dump core, this kills all
3015 * other threads in the group and synchronizes with
3016 * their demise. If we lost the race with another
3017 * thread getting here, it set group_exit_code
3018 * first and our do_group_exit call below will use
3019 * that value and ignore the one we pass it.
3020 */
3021 do_coredump(&ksig->info);
3022 }
3023
3024 /*
3025 * PF_USER_WORKER threads will catch and exit on fatal signals
3026 * themselves. They have cleanup that must be performed, so we
3027 * cannot call do_exit() on their behalf. Note that ksig won't
3028 * be properly initialized, PF_USER_WORKER's shouldn't use it.
3029 */
3030 if (current->flags & PF_USER_WORKER)
3031 goto out;
3032
3033 /*
3034 * Death signals, no core dump.
3035 */
3036 do_group_exit(signr);
3037 /* NOTREACHED */
3038 }
3039 spin_unlock_irq(&sighand->siglock);
3040
3041 ksig->sig = signr;
3042
3043 if (signr && !(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
3044 hide_si_addr_tag_bits(ksig);
3045out:
3046 return signr > 0;
3047}
3048
3049/**
3050 * signal_delivered - called after signal delivery to update blocked signals
3051 * @ksig: kernel signal struct
3052 * @stepping: nonzero if debugger single-step or block-step in use
3053 *
3054 * This function should be called when a signal has successfully been
3055 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
3056 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
3057 * is set in @ksig->ka.sa.sa_flags. Tracing is notified.
3058 */
3059static void signal_delivered(struct ksignal *ksig, int stepping)
3060{
3061 sigset_t blocked;
3062
3063 /* A signal was successfully delivered, and the
3064 saved sigmask was stored on the signal frame,
3065 and will be restored by sigreturn. So we can
3066 simply clear the restore sigmask flag. */
3067 clear_restore_sigmask();
3068
3069 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask);
3070 if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
3071 sigaddset(&blocked, ksig->sig);
3072 set_current_blocked(&blocked);
3073 if (current->sas_ss_flags & SS_AUTODISARM)
3074 sas_ss_reset(current);
3075 if (stepping)
3076 ptrace_notify(SIGTRAP, 0);
3077}
3078
3079void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
3080{
3081 if (failed)
3082 force_sigsegv(ksig->sig);
3083 else
3084 signal_delivered(ksig, stepping);
3085}
3086
3087/*
3088 * It could be that complete_signal() picked us to notify about the
3089 * group-wide signal. Other threads should be notified now to take
3090 * the shared signals in @which since we will not.
3091 */
3092static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
3093{
3094 sigset_t retarget;
3095 struct task_struct *t;
3096
3097 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
3098 if (sigisemptyset(&retarget))
3099 return;
3100
3101 for_other_threads(tsk, t) {
3102 if (t->flags & PF_EXITING)
3103 continue;
3104
3105 if (!has_pending_signals(&retarget, &t->blocked))
3106 continue;
3107 /* Remove the signals this thread can handle. */
3108 sigandsets(&retarget, &retarget, &t->blocked);
3109
3110 if (!task_sigpending(t))
3111 signal_wake_up(t, 0);
3112
3113 if (sigisemptyset(&retarget))
3114 break;
3115 }
3116}
3117
3118void exit_signals(struct task_struct *tsk)
3119{
3120 int group_stop = 0;
3121 sigset_t unblocked;
3122
3123 /*
3124 * @tsk is about to have PF_EXITING set - lock out users which
3125 * expect stable threadgroup.
3126 */
3127 cgroup_threadgroup_change_begin(tsk);
3128
3129 if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
3130 sched_mm_cid_exit_signals(tsk);
3131 tsk->flags |= PF_EXITING;
3132 cgroup_threadgroup_change_end(tsk);
3133 return;
3134 }
3135
3136 spin_lock_irq(&tsk->sighand->siglock);
3137 /*
3138 * From now this task is not visible for group-wide signals,
3139 * see wants_signal(), do_signal_stop().
3140 */
3141 sched_mm_cid_exit_signals(tsk);
3142 tsk->flags |= PF_EXITING;
3143
3144 cgroup_threadgroup_change_end(tsk);
3145
3146 if (!task_sigpending(tsk))
3147 goto out;
3148
3149 unblocked = tsk->blocked;
3150 signotset(&unblocked);
3151 retarget_shared_pending(tsk, &unblocked);
3152
3153 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
3154 task_participate_group_stop(tsk))
3155 group_stop = CLD_STOPPED;
3156out:
3157 spin_unlock_irq(&tsk->sighand->siglock);
3158
3159 /*
3160 * If group stop has completed, deliver the notification. This
3161 * should always go to the real parent of the group leader.
3162 */
3163 if (unlikely(group_stop)) {
3164 read_lock(&tasklist_lock);
3165 do_notify_parent_cldstop(tsk, false, group_stop);
3166 read_unlock(&tasklist_lock);
3167 }
3168}
3169
3170/*
3171 * System call entry points.
3172 */
3173
3174/**
3175 * sys_restart_syscall - restart a system call
3176 */
3177SYSCALL_DEFINE0(restart_syscall)
3178{
3179 struct restart_block *restart = ¤t->restart_block;
3180 return restart->fn(restart);
3181}
3182
3183long do_no_restart_syscall(struct restart_block *param)
3184{
3185 return -EINTR;
3186}
3187
3188static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3189{
3190 if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3191 sigset_t newblocked;
3192 /* A set of now blocked but previously unblocked signals. */
3193 sigandnsets(&newblocked, newset, ¤t->blocked);
3194 retarget_shared_pending(tsk, &newblocked);
3195 }
3196 tsk->blocked = *newset;
3197 recalc_sigpending();
3198}
3199
3200/**
3201 * set_current_blocked - change current->blocked mask
3202 * @newset: new mask
3203 *
3204 * It is wrong to change ->blocked directly, this helper should be used
3205 * to ensure the process can't miss a shared signal we are going to block.
3206 */
3207void set_current_blocked(sigset_t *newset)
3208{
3209 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3210 __set_current_blocked(newset);
3211}
3212
3213void __set_current_blocked(const sigset_t *newset)
3214{
3215 struct task_struct *tsk = current;
3216
3217 /*
3218 * In case the signal mask hasn't changed, there is nothing we need
3219 * to do. The current->blocked shouldn't be modified by other task.
3220 */
3221 if (sigequalsets(&tsk->blocked, newset))
3222 return;
3223
3224 spin_lock_irq(&tsk->sighand->siglock);
3225 __set_task_blocked(tsk, newset);
3226 spin_unlock_irq(&tsk->sighand->siglock);
3227}
3228
3229/*
3230 * This is also useful for kernel threads that want to temporarily
3231 * (or permanently) block certain signals.
3232 *
3233 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3234 * interface happily blocks "unblockable" signals like SIGKILL
3235 * and friends.
3236 */
3237int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3238{
3239 struct task_struct *tsk = current;
3240 sigset_t newset;
3241
3242 /* Lockless, only current can change ->blocked, never from irq */
3243 if (oldset)
3244 *oldset = tsk->blocked;
3245
3246 switch (how) {
3247 case SIG_BLOCK:
3248 sigorsets(&newset, &tsk->blocked, set);
3249 break;
3250 case SIG_UNBLOCK:
3251 sigandnsets(&newset, &tsk->blocked, set);
3252 break;
3253 case SIG_SETMASK:
3254 newset = *set;
3255 break;
3256 default:
3257 return -EINVAL;
3258 }
3259
3260 __set_current_blocked(&newset);
3261 return 0;
3262}
3263EXPORT_SYMBOL(sigprocmask);
3264
3265/*
3266 * The api helps set app-provided sigmasks.
3267 *
3268 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3269 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3270 *
3271 * Note that it does set_restore_sigmask() in advance, so it must be always
3272 * paired with restore_saved_sigmask_unless() before return from syscall.
3273 */
3274int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3275{
3276 sigset_t kmask;
3277
3278 if (!umask)
3279 return 0;
3280 if (sigsetsize != sizeof(sigset_t))
3281 return -EINVAL;
3282 if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3283 return -EFAULT;
3284
3285 set_restore_sigmask();
3286 current->saved_sigmask = current->blocked;
3287 set_current_blocked(&kmask);
3288
3289 return 0;
3290}
3291
3292#ifdef CONFIG_COMPAT
3293int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3294 size_t sigsetsize)
3295{
3296 sigset_t kmask;
3297
3298 if (!umask)
3299 return 0;
3300 if (sigsetsize != sizeof(compat_sigset_t))
3301 return -EINVAL;
3302 if (get_compat_sigset(&kmask, umask))
3303 return -EFAULT;
3304
3305 set_restore_sigmask();
3306 current->saved_sigmask = current->blocked;
3307 set_current_blocked(&kmask);
3308
3309 return 0;
3310}
3311#endif
3312
3313/**
3314 * sys_rt_sigprocmask - change the list of currently blocked signals
3315 * @how: whether to add, remove, or set signals
3316 * @nset: stores pending signals
3317 * @oset: previous value of signal mask if non-null
3318 * @sigsetsize: size of sigset_t type
3319 */
3320SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3321 sigset_t __user *, oset, size_t, sigsetsize)
3322{
3323 sigset_t old_set, new_set;
3324 int error;
3325
3326 /* XXX: Don't preclude handling different sized sigset_t's. */
3327 if (sigsetsize != sizeof(sigset_t))
3328 return -EINVAL;
3329
3330 old_set = current->blocked;
3331
3332 if (nset) {
3333 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3334 return -EFAULT;
3335 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3336
3337 error = sigprocmask(how, &new_set, NULL);
3338 if (error)
3339 return error;
3340 }
3341
3342 if (oset) {
3343 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3344 return -EFAULT;
3345 }
3346
3347 return 0;
3348}
3349
3350#ifdef CONFIG_COMPAT
3351COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3352 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3353{
3354 sigset_t old_set = current->blocked;
3355
3356 /* XXX: Don't preclude handling different sized sigset_t's. */
3357 if (sigsetsize != sizeof(sigset_t))
3358 return -EINVAL;
3359
3360 if (nset) {
3361 sigset_t new_set;
3362 int error;
3363 if (get_compat_sigset(&new_set, nset))
3364 return -EFAULT;
3365 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3366
3367 error = sigprocmask(how, &new_set, NULL);
3368 if (error)
3369 return error;
3370 }
3371 return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3372}
3373#endif
3374
3375static void do_sigpending(sigset_t *set)
3376{
3377 spin_lock_irq(¤t->sighand->siglock);
3378 sigorsets(set, ¤t->pending.signal,
3379 ¤t->signal->shared_pending.signal);
3380 spin_unlock_irq(¤t->sighand->siglock);
3381
3382 /* Outside the lock because only this thread touches it. */
3383 sigandsets(set, ¤t->blocked, set);
3384}
3385
3386/**
3387 * sys_rt_sigpending - examine a pending signal that has been raised
3388 * while blocked
3389 * @uset: stores pending signals
3390 * @sigsetsize: size of sigset_t type or larger
3391 */
3392SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3393{
3394 sigset_t set;
3395
3396 if (sigsetsize > sizeof(*uset))
3397 return -EINVAL;
3398
3399 do_sigpending(&set);
3400
3401 if (copy_to_user(uset, &set, sigsetsize))
3402 return -EFAULT;
3403
3404 return 0;
3405}
3406
3407#ifdef CONFIG_COMPAT
3408COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3409 compat_size_t, sigsetsize)
3410{
3411 sigset_t set;
3412
3413 if (sigsetsize > sizeof(*uset))
3414 return -EINVAL;
3415
3416 do_sigpending(&set);
3417
3418 return put_compat_sigset(uset, &set, sigsetsize);
3419}
3420#endif
3421
3422static const struct {
3423 unsigned char limit, layout;
3424} sig_sicodes[] = {
3425 [SIGILL] = { NSIGILL, SIL_FAULT },
3426 [SIGFPE] = { NSIGFPE, SIL_FAULT },
3427 [SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3428 [SIGBUS] = { NSIGBUS, SIL_FAULT },
3429 [SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3430#if defined(SIGEMT)
3431 [SIGEMT] = { NSIGEMT, SIL_FAULT },
3432#endif
3433 [SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3434 [SIGPOLL] = { NSIGPOLL, SIL_POLL },
3435 [SIGSYS] = { NSIGSYS, SIL_SYS },
3436};
3437
3438static bool known_siginfo_layout(unsigned sig, int si_code)
3439{
3440 if (si_code == SI_KERNEL)
3441 return true;
3442 else if ((si_code > SI_USER)) {
3443 if (sig_specific_sicodes(sig)) {
3444 if (si_code <= sig_sicodes[sig].limit)
3445 return true;
3446 }
3447 else if (si_code <= NSIGPOLL)
3448 return true;
3449 }
3450 else if (si_code >= SI_DETHREAD)
3451 return true;
3452 else if (si_code == SI_ASYNCNL)
3453 return true;
3454 return false;
3455}
3456
3457enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3458{
3459 enum siginfo_layout layout = SIL_KILL;
3460 if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3461 if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3462 (si_code <= sig_sicodes[sig].limit)) {
3463 layout = sig_sicodes[sig].layout;
3464 /* Handle the exceptions */
3465 if ((sig == SIGBUS) &&
3466 (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3467 layout = SIL_FAULT_MCEERR;
3468 else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3469 layout = SIL_FAULT_BNDERR;
3470#ifdef SEGV_PKUERR
3471 else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3472 layout = SIL_FAULT_PKUERR;
3473#endif
3474 else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3475 layout = SIL_FAULT_PERF_EVENT;
3476 else if (IS_ENABLED(CONFIG_SPARC) &&
3477 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3478 layout = SIL_FAULT_TRAPNO;
3479 else if (IS_ENABLED(CONFIG_ALPHA) &&
3480 ((sig == SIGFPE) ||
3481 ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3482 layout = SIL_FAULT_TRAPNO;
3483 }
3484 else if (si_code <= NSIGPOLL)
3485 layout = SIL_POLL;
3486 } else {
3487 if (si_code == SI_TIMER)
3488 layout = SIL_TIMER;
3489 else if (si_code == SI_SIGIO)
3490 layout = SIL_POLL;
3491 else if (si_code < 0)
3492 layout = SIL_RT;
3493 }
3494 return layout;
3495}
3496
3497static inline char __user *si_expansion(const siginfo_t __user *info)
3498{
3499 return ((char __user *)info) + sizeof(struct kernel_siginfo);
3500}
3501
3502int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3503{
3504 char __user *expansion = si_expansion(to);
3505 if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3506 return -EFAULT;
3507 if (clear_user(expansion, SI_EXPANSION_SIZE))
3508 return -EFAULT;
3509 return 0;
3510}
3511
3512static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3513 const siginfo_t __user *from)
3514{
3515 if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3516 char __user *expansion = si_expansion(from);
3517 char buf[SI_EXPANSION_SIZE];
3518 int i;
3519 /*
3520 * An unknown si_code might need more than
3521 * sizeof(struct kernel_siginfo) bytes. Verify all of the
3522 * extra bytes are 0. This guarantees copy_siginfo_to_user
3523 * will return this data to userspace exactly.
3524 */
3525 if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3526 return -EFAULT;
3527 for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3528 if (buf[i] != 0)
3529 return -E2BIG;
3530 }
3531 }
3532 return 0;
3533}
3534
3535static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3536 const siginfo_t __user *from)
3537{
3538 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3539 return -EFAULT;
3540 to->si_signo = signo;
3541 return post_copy_siginfo_from_user(to, from);
3542}
3543
3544int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3545{
3546 if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3547 return -EFAULT;
3548 return post_copy_siginfo_from_user(to, from);
3549}
3550
3551#ifdef CONFIG_COMPAT
3552/**
3553 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3554 * @to: compat siginfo destination
3555 * @from: kernel siginfo source
3556 *
3557 * Note: This function does not work properly for the SIGCHLD on x32, but
3558 * fortunately it doesn't have to. The only valid callers for this function are
3559 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3560 * The latter does not care because SIGCHLD will never cause a coredump.
3561 */
3562void copy_siginfo_to_external32(struct compat_siginfo *to,
3563 const struct kernel_siginfo *from)
3564{
3565 memset(to, 0, sizeof(*to));
3566
3567 to->si_signo = from->si_signo;
3568 to->si_errno = from->si_errno;
3569 to->si_code = from->si_code;
3570 switch(siginfo_layout(from->si_signo, from->si_code)) {
3571 case SIL_KILL:
3572 to->si_pid = from->si_pid;
3573 to->si_uid = from->si_uid;
3574 break;
3575 case SIL_TIMER:
3576 to->si_tid = from->si_tid;
3577 to->si_overrun = from->si_overrun;
3578 to->si_int = from->si_int;
3579 break;
3580 case SIL_POLL:
3581 to->si_band = from->si_band;
3582 to->si_fd = from->si_fd;
3583 break;
3584 case SIL_FAULT:
3585 to->si_addr = ptr_to_compat(from->si_addr);
3586 break;
3587 case SIL_FAULT_TRAPNO:
3588 to->si_addr = ptr_to_compat(from->si_addr);
3589 to->si_trapno = from->si_trapno;
3590 break;
3591 case SIL_FAULT_MCEERR:
3592 to->si_addr = ptr_to_compat(from->si_addr);
3593 to->si_addr_lsb = from->si_addr_lsb;
3594 break;
3595 case SIL_FAULT_BNDERR:
3596 to->si_addr = ptr_to_compat(from->si_addr);
3597 to->si_lower = ptr_to_compat(from->si_lower);
3598 to->si_upper = ptr_to_compat(from->si_upper);
3599 break;
3600 case SIL_FAULT_PKUERR:
3601 to->si_addr = ptr_to_compat(from->si_addr);
3602 to->si_pkey = from->si_pkey;
3603 break;
3604 case SIL_FAULT_PERF_EVENT:
3605 to->si_addr = ptr_to_compat(from->si_addr);
3606 to->si_perf_data = from->si_perf_data;
3607 to->si_perf_type = from->si_perf_type;
3608 to->si_perf_flags = from->si_perf_flags;
3609 break;
3610 case SIL_CHLD:
3611 to->si_pid = from->si_pid;
3612 to->si_uid = from->si_uid;
3613 to->si_status = from->si_status;
3614 to->si_utime = from->si_utime;
3615 to->si_stime = from->si_stime;
3616 break;
3617 case SIL_RT:
3618 to->si_pid = from->si_pid;
3619 to->si_uid = from->si_uid;
3620 to->si_int = from->si_int;
3621 break;
3622 case SIL_SYS:
3623 to->si_call_addr = ptr_to_compat(from->si_call_addr);
3624 to->si_syscall = from->si_syscall;
3625 to->si_arch = from->si_arch;
3626 break;
3627 }
3628}
3629
3630int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3631 const struct kernel_siginfo *from)
3632{
3633 struct compat_siginfo new;
3634
3635 copy_siginfo_to_external32(&new, from);
3636 if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3637 return -EFAULT;
3638 return 0;
3639}
3640
3641static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3642 const struct compat_siginfo *from)
3643{
3644 clear_siginfo(to);
3645 to->si_signo = from->si_signo;
3646 to->si_errno = from->si_errno;
3647 to->si_code = from->si_code;
3648 switch(siginfo_layout(from->si_signo, from->si_code)) {
3649 case SIL_KILL:
3650 to->si_pid = from->si_pid;
3651 to->si_uid = from->si_uid;
3652 break;
3653 case SIL_TIMER:
3654 to->si_tid = from->si_tid;
3655 to->si_overrun = from->si_overrun;
3656 to->si_int = from->si_int;
3657 break;
3658 case SIL_POLL:
3659 to->si_band = from->si_band;
3660 to->si_fd = from->si_fd;
3661 break;
3662 case SIL_FAULT:
3663 to->si_addr = compat_ptr(from->si_addr);
3664 break;
3665 case SIL_FAULT_TRAPNO:
3666 to->si_addr = compat_ptr(from->si_addr);
3667 to->si_trapno = from->si_trapno;
3668 break;
3669 case SIL_FAULT_MCEERR:
3670 to->si_addr = compat_ptr(from->si_addr);
3671 to->si_addr_lsb = from->si_addr_lsb;
3672 break;
3673 case SIL_FAULT_BNDERR:
3674 to->si_addr = compat_ptr(from->si_addr);
3675 to->si_lower = compat_ptr(from->si_lower);
3676 to->si_upper = compat_ptr(from->si_upper);
3677 break;
3678 case SIL_FAULT_PKUERR:
3679 to->si_addr = compat_ptr(from->si_addr);
3680 to->si_pkey = from->si_pkey;
3681 break;
3682 case SIL_FAULT_PERF_EVENT:
3683 to->si_addr = compat_ptr(from->si_addr);
3684 to->si_perf_data = from->si_perf_data;
3685 to->si_perf_type = from->si_perf_type;
3686 to->si_perf_flags = from->si_perf_flags;
3687 break;
3688 case SIL_CHLD:
3689 to->si_pid = from->si_pid;
3690 to->si_uid = from->si_uid;
3691 to->si_status = from->si_status;
3692#ifdef CONFIG_X86_X32_ABI
3693 if (in_x32_syscall()) {
3694 to->si_utime = from->_sifields._sigchld_x32._utime;
3695 to->si_stime = from->_sifields._sigchld_x32._stime;
3696 } else
3697#endif
3698 {
3699 to->si_utime = from->si_utime;
3700 to->si_stime = from->si_stime;
3701 }
3702 break;
3703 case SIL_RT:
3704 to->si_pid = from->si_pid;
3705 to->si_uid = from->si_uid;
3706 to->si_int = from->si_int;
3707 break;
3708 case SIL_SYS:
3709 to->si_call_addr = compat_ptr(from->si_call_addr);
3710 to->si_syscall = from->si_syscall;
3711 to->si_arch = from->si_arch;
3712 break;
3713 }
3714 return 0;
3715}
3716
3717static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3718 const struct compat_siginfo __user *ufrom)
3719{
3720 struct compat_siginfo from;
3721
3722 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3723 return -EFAULT;
3724
3725 from.si_signo = signo;
3726 return post_copy_siginfo_from_user32(to, &from);
3727}
3728
3729int copy_siginfo_from_user32(struct kernel_siginfo *to,
3730 const struct compat_siginfo __user *ufrom)
3731{
3732 struct compat_siginfo from;
3733
3734 if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3735 return -EFAULT;
3736
3737 return post_copy_siginfo_from_user32(to, &from);
3738}
3739#endif /* CONFIG_COMPAT */
3740
3741/**
3742 * do_sigtimedwait - wait for queued signals specified in @which
3743 * @which: queued signals to wait for
3744 * @info: if non-null, the signal's siginfo is returned here
3745 * @ts: upper bound on process time suspension
3746 */
3747static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3748 const struct timespec64 *ts)
3749{
3750 ktime_t *to = NULL, timeout = KTIME_MAX;
3751 struct task_struct *tsk = current;
3752 sigset_t mask = *which;
3753 enum pid_type type;
3754 int sig, ret = 0;
3755
3756 if (ts) {
3757 if (!timespec64_valid(ts))
3758 return -EINVAL;
3759 timeout = timespec64_to_ktime(*ts);
3760 to = &timeout;
3761 }
3762
3763 /*
3764 * Invert the set of allowed signals to get those we want to block.
3765 */
3766 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3767 signotset(&mask);
3768
3769 spin_lock_irq(&tsk->sighand->siglock);
3770 sig = dequeue_signal(&mask, info, &type);
3771 if (!sig && timeout) {
3772 /*
3773 * None ready, temporarily unblock those we're interested
3774 * while we are sleeping in so that we'll be awakened when
3775 * they arrive. Unblocking is always fine, we can avoid
3776 * set_current_blocked().
3777 */
3778 tsk->real_blocked = tsk->blocked;
3779 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3780 recalc_sigpending();
3781 spin_unlock_irq(&tsk->sighand->siglock);
3782
3783 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3784 ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3785 HRTIMER_MODE_REL);
3786 spin_lock_irq(&tsk->sighand->siglock);
3787 __set_task_blocked(tsk, &tsk->real_blocked);
3788 sigemptyset(&tsk->real_blocked);
3789 sig = dequeue_signal(&mask, info, &type);
3790 }
3791 spin_unlock_irq(&tsk->sighand->siglock);
3792
3793 if (sig)
3794 return sig;
3795 return ret ? -EINTR : -EAGAIN;
3796}
3797
3798/**
3799 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
3800 * in @uthese
3801 * @uthese: queued signals to wait for
3802 * @uinfo: if non-null, the signal's siginfo is returned here
3803 * @uts: upper bound on process time suspension
3804 * @sigsetsize: size of sigset_t type
3805 */
3806SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3807 siginfo_t __user *, uinfo,
3808 const struct __kernel_timespec __user *, uts,
3809 size_t, sigsetsize)
3810{
3811 sigset_t these;
3812 struct timespec64 ts;
3813 kernel_siginfo_t info;
3814 int ret;
3815
3816 /* XXX: Don't preclude handling different sized sigset_t's. */
3817 if (sigsetsize != sizeof(sigset_t))
3818 return -EINVAL;
3819
3820 if (copy_from_user(&these, uthese, sizeof(these)))
3821 return -EFAULT;
3822
3823 if (uts) {
3824 if (get_timespec64(&ts, uts))
3825 return -EFAULT;
3826 }
3827
3828 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3829
3830 if (ret > 0 && uinfo) {
3831 if (copy_siginfo_to_user(uinfo, &info))
3832 ret = -EFAULT;
3833 }
3834
3835 return ret;
3836}
3837
3838#ifdef CONFIG_COMPAT_32BIT_TIME
3839SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3840 siginfo_t __user *, uinfo,
3841 const struct old_timespec32 __user *, uts,
3842 size_t, sigsetsize)
3843{
3844 sigset_t these;
3845 struct timespec64 ts;
3846 kernel_siginfo_t info;
3847 int ret;
3848
3849 if (sigsetsize != sizeof(sigset_t))
3850 return -EINVAL;
3851
3852 if (copy_from_user(&these, uthese, sizeof(these)))
3853 return -EFAULT;
3854
3855 if (uts) {
3856 if (get_old_timespec32(&ts, uts))
3857 return -EFAULT;
3858 }
3859
3860 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3861
3862 if (ret > 0 && uinfo) {
3863 if (copy_siginfo_to_user(uinfo, &info))
3864 ret = -EFAULT;
3865 }
3866
3867 return ret;
3868}
3869#endif
3870
3871#ifdef CONFIG_COMPAT
3872COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3873 struct compat_siginfo __user *, uinfo,
3874 struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3875{
3876 sigset_t s;
3877 struct timespec64 t;
3878 kernel_siginfo_t info;
3879 long ret;
3880
3881 if (sigsetsize != sizeof(sigset_t))
3882 return -EINVAL;
3883
3884 if (get_compat_sigset(&s, uthese))
3885 return -EFAULT;
3886
3887 if (uts) {
3888 if (get_timespec64(&t, uts))
3889 return -EFAULT;
3890 }
3891
3892 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3893
3894 if (ret > 0 && uinfo) {
3895 if (copy_siginfo_to_user32(uinfo, &info))
3896 ret = -EFAULT;
3897 }
3898
3899 return ret;
3900}
3901
3902#ifdef CONFIG_COMPAT_32BIT_TIME
3903COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3904 struct compat_siginfo __user *, uinfo,
3905 struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3906{
3907 sigset_t s;
3908 struct timespec64 t;
3909 kernel_siginfo_t info;
3910 long ret;
3911
3912 if (sigsetsize != sizeof(sigset_t))
3913 return -EINVAL;
3914
3915 if (get_compat_sigset(&s, uthese))
3916 return -EFAULT;
3917
3918 if (uts) {
3919 if (get_old_timespec32(&t, uts))
3920 return -EFAULT;
3921 }
3922
3923 ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3924
3925 if (ret > 0 && uinfo) {
3926 if (copy_siginfo_to_user32(uinfo, &info))
3927 ret = -EFAULT;
3928 }
3929
3930 return ret;
3931}
3932#endif
3933#endif
3934
3935static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
3936 enum pid_type type)
3937{
3938 clear_siginfo(info);
3939 info->si_signo = sig;
3940 info->si_errno = 0;
3941 info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
3942 info->si_pid = task_tgid_vnr(current);
3943 info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3944}
3945
3946/**
3947 * sys_kill - send a signal to a process
3948 * @pid: the PID of the process
3949 * @sig: signal to be sent
3950 */
3951SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3952{
3953 struct kernel_siginfo info;
3954
3955 prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
3956
3957 return kill_something_info(sig, &info, pid);
3958}
3959
3960/*
3961 * Verify that the signaler and signalee either are in the same pid namespace
3962 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3963 * namespace.
3964 */
3965static bool access_pidfd_pidns(struct pid *pid)
3966{
3967 struct pid_namespace *active = task_active_pid_ns(current);
3968 struct pid_namespace *p = ns_of_pid(pid);
3969
3970 for (;;) {
3971 if (!p)
3972 return false;
3973 if (p == active)
3974 break;
3975 p = p->parent;
3976 }
3977
3978 return true;
3979}
3980
3981static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3982 siginfo_t __user *info)
3983{
3984#ifdef CONFIG_COMPAT
3985 /*
3986 * Avoid hooking up compat syscalls and instead handle necessary
3987 * conversions here. Note, this is a stop-gap measure and should not be
3988 * considered a generic solution.
3989 */
3990 if (in_compat_syscall())
3991 return copy_siginfo_from_user32(
3992 kinfo, (struct compat_siginfo __user *)info);
3993#endif
3994 return copy_siginfo_from_user(kinfo, info);
3995}
3996
3997static struct pid *pidfd_to_pid(const struct file *file)
3998{
3999 struct pid *pid;
4000
4001 pid = pidfd_pid(file);
4002 if (!IS_ERR(pid))
4003 return pid;
4004
4005 return tgid_pidfd_to_pid(file);
4006}
4007
4008#define PIDFD_SEND_SIGNAL_FLAGS \
4009 (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
4010 PIDFD_SIGNAL_PROCESS_GROUP)
4011
4012/**
4013 * sys_pidfd_send_signal - Signal a process through a pidfd
4014 * @pidfd: file descriptor of the process
4015 * @sig: signal to send
4016 * @info: signal info
4017 * @flags: future flags
4018 *
4019 * Send the signal to the thread group or to the individual thread depending
4020 * on PIDFD_THREAD.
4021 * In the future extension to @flags may be used to override the default scope
4022 * of @pidfd.
4023 *
4024 * Return: 0 on success, negative errno on failure
4025 */
4026SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
4027 siginfo_t __user *, info, unsigned int, flags)
4028{
4029 int ret;
4030 struct pid *pid;
4031 kernel_siginfo_t kinfo;
4032 enum pid_type type;
4033
4034 /* Enforce flags be set to 0 until we add an extension. */
4035 if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
4036 return -EINVAL;
4037
4038 /* Ensure that only a single signal scope determining flag is set. */
4039 if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
4040 return -EINVAL;
4041
4042 CLASS(fd, f)(pidfd);
4043 if (fd_empty(f))
4044 return -EBADF;
4045
4046 /* Is this a pidfd? */
4047 pid = pidfd_to_pid(fd_file(f));
4048 if (IS_ERR(pid))
4049 return PTR_ERR(pid);
4050
4051 if (!access_pidfd_pidns(pid))
4052 return -EINVAL;
4053
4054 switch (flags) {
4055 case 0:
4056 /* Infer scope from the type of pidfd. */
4057 if (fd_file(f)->f_flags & PIDFD_THREAD)
4058 type = PIDTYPE_PID;
4059 else
4060 type = PIDTYPE_TGID;
4061 break;
4062 case PIDFD_SIGNAL_THREAD:
4063 type = PIDTYPE_PID;
4064 break;
4065 case PIDFD_SIGNAL_THREAD_GROUP:
4066 type = PIDTYPE_TGID;
4067 break;
4068 case PIDFD_SIGNAL_PROCESS_GROUP:
4069 type = PIDTYPE_PGID;
4070 break;
4071 }
4072
4073 if (info) {
4074 ret = copy_siginfo_from_user_any(&kinfo, info);
4075 if (unlikely(ret))
4076 return ret;
4077
4078 if (unlikely(sig != kinfo.si_signo))
4079 return -EINVAL;
4080
4081 /* Only allow sending arbitrary signals to yourself. */
4082 if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
4083 (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
4084 return -EPERM;
4085 } else {
4086 prepare_kill_siginfo(sig, &kinfo, type);
4087 }
4088
4089 if (type == PIDTYPE_PGID)
4090 return kill_pgrp_info(sig, &kinfo, pid);
4091 else
4092 return kill_pid_info_type(sig, &kinfo, pid, type);
4093}
4094
4095static int
4096do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
4097{
4098 struct task_struct *p;
4099 int error = -ESRCH;
4100
4101 rcu_read_lock();
4102 p = find_task_by_vpid(pid);
4103 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
4104 error = check_kill_permission(sig, info, p);
4105 /*
4106 * The null signal is a permissions and process existence
4107 * probe. No signal is actually delivered.
4108 */
4109 if (!error && sig) {
4110 error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
4111 /*
4112 * If lock_task_sighand() failed we pretend the task
4113 * dies after receiving the signal. The window is tiny,
4114 * and the signal is private anyway.
4115 */
4116 if (unlikely(error == -ESRCH))
4117 error = 0;
4118 }
4119 }
4120 rcu_read_unlock();
4121
4122 return error;
4123}
4124
4125static int do_tkill(pid_t tgid, pid_t pid, int sig)
4126{
4127 struct kernel_siginfo info;
4128
4129 prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
4130
4131 return do_send_specific(tgid, pid, sig, &info);
4132}
4133
4134/**
4135 * sys_tgkill - send signal to one specific thread
4136 * @tgid: the thread group ID of the thread
4137 * @pid: the PID of the thread
4138 * @sig: signal to be sent
4139 *
4140 * This syscall also checks the @tgid and returns -ESRCH even if the PID
4141 * exists but it's not belonging to the target process anymore. This
4142 * method solves the problem of threads exiting and PIDs getting reused.
4143 */
4144SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
4145{
4146 /* This is only valid for single tasks */
4147 if (pid <= 0 || tgid <= 0)
4148 return -EINVAL;
4149
4150 return do_tkill(tgid, pid, sig);
4151}
4152
4153/**
4154 * sys_tkill - send signal to one specific task
4155 * @pid: the PID of the task
4156 * @sig: signal to be sent
4157 *
4158 * Send a signal to only one task, even if it's a CLONE_THREAD task.
4159 */
4160SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
4161{
4162 /* This is only valid for single tasks */
4163 if (pid <= 0)
4164 return -EINVAL;
4165
4166 return do_tkill(0, pid, sig);
4167}
4168
4169static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
4170{
4171 /* Not even root can pretend to send signals from the kernel.
4172 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4173 */
4174 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4175 (task_pid_vnr(current) != pid))
4176 return -EPERM;
4177
4178 /* POSIX.1b doesn't mention process groups. */
4179 return kill_proc_info(sig, info, pid);
4180}
4181
4182/**
4183 * sys_rt_sigqueueinfo - send signal information to a signal
4184 * @pid: the PID of the thread
4185 * @sig: signal to be sent
4186 * @uinfo: signal info to be sent
4187 */
4188SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
4189 siginfo_t __user *, uinfo)
4190{
4191 kernel_siginfo_t info;
4192 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4193 if (unlikely(ret))
4194 return ret;
4195 return do_rt_sigqueueinfo(pid, sig, &info);
4196}
4197
4198#ifdef CONFIG_COMPAT
4199COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4200 compat_pid_t, pid,
4201 int, sig,
4202 struct compat_siginfo __user *, uinfo)
4203{
4204 kernel_siginfo_t info;
4205 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4206 if (unlikely(ret))
4207 return ret;
4208 return do_rt_sigqueueinfo(pid, sig, &info);
4209}
4210#endif
4211
4212static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4213{
4214 /* This is only valid for single tasks */
4215 if (pid <= 0 || tgid <= 0)
4216 return -EINVAL;
4217
4218 /* Not even root can pretend to send signals from the kernel.
4219 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4220 */
4221 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4222 (task_pid_vnr(current) != pid))
4223 return -EPERM;
4224
4225 return do_send_specific(tgid, pid, sig, info);
4226}
4227
4228SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4229 siginfo_t __user *, uinfo)
4230{
4231 kernel_siginfo_t info;
4232 int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4233 if (unlikely(ret))
4234 return ret;
4235 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4236}
4237
4238#ifdef CONFIG_COMPAT
4239COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4240 compat_pid_t, tgid,
4241 compat_pid_t, pid,
4242 int, sig,
4243 struct compat_siginfo __user *, uinfo)
4244{
4245 kernel_siginfo_t info;
4246 int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4247 if (unlikely(ret))
4248 return ret;
4249 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4250}
4251#endif
4252
4253/*
4254 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4255 */
4256void kernel_sigaction(int sig, __sighandler_t action)
4257{
4258 spin_lock_irq(¤t->sighand->siglock);
4259 current->sighand->action[sig - 1].sa.sa_handler = action;
4260 if (action == SIG_IGN) {
4261 sigset_t mask;
4262
4263 sigemptyset(&mask);
4264 sigaddset(&mask, sig);
4265
4266 flush_sigqueue_mask(current, &mask, ¤t->signal->shared_pending);
4267 flush_sigqueue_mask(current, &mask, ¤t->pending);
4268 recalc_sigpending();
4269 }
4270 spin_unlock_irq(¤t->sighand->siglock);
4271}
4272EXPORT_SYMBOL(kernel_sigaction);
4273
4274void __weak sigaction_compat_abi(struct k_sigaction *act,
4275 struct k_sigaction *oact)
4276{
4277}
4278
4279int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4280{
4281 struct task_struct *p = current, *t;
4282 struct k_sigaction *k;
4283 sigset_t mask;
4284
4285 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4286 return -EINVAL;
4287
4288 k = &p->sighand->action[sig-1];
4289
4290 spin_lock_irq(&p->sighand->siglock);
4291 if (k->sa.sa_flags & SA_IMMUTABLE) {
4292 spin_unlock_irq(&p->sighand->siglock);
4293 return -EINVAL;
4294 }
4295 if (oact)
4296 *oact = *k;
4297
4298 /*
4299 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4300 * e.g. by having an architecture use the bit in their uapi.
4301 */
4302 BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4303
4304 /*
4305 * Clear unknown flag bits in order to allow userspace to detect missing
4306 * support for flag bits and to allow the kernel to use non-uapi bits
4307 * internally.
4308 */
4309 if (act)
4310 act->sa.sa_flags &= UAPI_SA_FLAGS;
4311 if (oact)
4312 oact->sa.sa_flags &= UAPI_SA_FLAGS;
4313
4314 sigaction_compat_abi(act, oact);
4315
4316 if (act) {
4317 bool was_ignored = k->sa.sa_handler == SIG_IGN;
4318
4319 sigdelsetmask(&act->sa.sa_mask,
4320 sigmask(SIGKILL) | sigmask(SIGSTOP));
4321 *k = *act;
4322 /*
4323 * POSIX 3.3.1.3:
4324 * "Setting a signal action to SIG_IGN for a signal that is
4325 * pending shall cause the pending signal to be discarded,
4326 * whether or not it is blocked."
4327 *
4328 * "Setting a signal action to SIG_DFL for a signal that is
4329 * pending and whose default action is to ignore the signal
4330 * (for example, SIGCHLD), shall cause the pending signal to
4331 * be discarded, whether or not it is blocked"
4332 */
4333 if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4334 sigemptyset(&mask);
4335 sigaddset(&mask, sig);
4336 flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
4337 for_each_thread(p, t)
4338 flush_sigqueue_mask(p, &mask, &t->pending);
4339 } else if (was_ignored) {
4340 posixtimer_sig_unignore(p, sig);
4341 }
4342 }
4343
4344 spin_unlock_irq(&p->sighand->siglock);
4345 return 0;
4346}
4347
4348#ifdef CONFIG_DYNAMIC_SIGFRAME
4349static inline void sigaltstack_lock(void)
4350 __acquires(¤t->sighand->siglock)
4351{
4352 spin_lock_irq(¤t->sighand->siglock);
4353}
4354
4355static inline void sigaltstack_unlock(void)
4356 __releases(¤t->sighand->siglock)
4357{
4358 spin_unlock_irq(¤t->sighand->siglock);
4359}
4360#else
4361static inline void sigaltstack_lock(void) { }
4362static inline void sigaltstack_unlock(void) { }
4363#endif
4364
4365static int
4366do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4367 size_t min_ss_size)
4368{
4369 struct task_struct *t = current;
4370 int ret = 0;
4371
4372 if (oss) {
4373 memset(oss, 0, sizeof(stack_t));
4374 oss->ss_sp = (void __user *) t->sas_ss_sp;
4375 oss->ss_size = t->sas_ss_size;
4376 oss->ss_flags = sas_ss_flags(sp) |
4377 (current->sas_ss_flags & SS_FLAG_BITS);
4378 }
4379
4380 if (ss) {
4381 void __user *ss_sp = ss->ss_sp;
4382 size_t ss_size = ss->ss_size;
4383 unsigned ss_flags = ss->ss_flags;
4384 int ss_mode;
4385
4386 if (unlikely(on_sig_stack(sp)))
4387 return -EPERM;
4388
4389 ss_mode = ss_flags & ~SS_FLAG_BITS;
4390 if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4391 ss_mode != 0))
4392 return -EINVAL;
4393
4394 /*
4395 * Return before taking any locks if no actual
4396 * sigaltstack changes were requested.
4397 */
4398 if (t->sas_ss_sp == (unsigned long)ss_sp &&
4399 t->sas_ss_size == ss_size &&
4400 t->sas_ss_flags == ss_flags)
4401 return 0;
4402
4403 sigaltstack_lock();
4404 if (ss_mode == SS_DISABLE) {
4405 ss_size = 0;
4406 ss_sp = NULL;
4407 } else {
4408 if (unlikely(ss_size < min_ss_size))
4409 ret = -ENOMEM;
4410 if (!sigaltstack_size_valid(ss_size))
4411 ret = -ENOMEM;
4412 }
4413 if (!ret) {
4414 t->sas_ss_sp = (unsigned long) ss_sp;
4415 t->sas_ss_size = ss_size;
4416 t->sas_ss_flags = ss_flags;
4417 }
4418 sigaltstack_unlock();
4419 }
4420 return ret;
4421}
4422
4423SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4424{
4425 stack_t new, old;
4426 int err;
4427 if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4428 return -EFAULT;
4429 err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4430 current_user_stack_pointer(),
4431 MINSIGSTKSZ);
4432 if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4433 err = -EFAULT;
4434 return err;
4435}
4436
4437int restore_altstack(const stack_t __user *uss)
4438{
4439 stack_t new;
4440 if (copy_from_user(&new, uss, sizeof(stack_t)))
4441 return -EFAULT;
4442 (void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4443 MINSIGSTKSZ);
4444 /* squash all but EFAULT for now */
4445 return 0;
4446}
4447
4448int __save_altstack(stack_t __user *uss, unsigned long sp)
4449{
4450 struct task_struct *t = current;
4451 int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4452 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4453 __put_user(t->sas_ss_size, &uss->ss_size);
4454 return err;
4455}
4456
4457#ifdef CONFIG_COMPAT
4458static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4459 compat_stack_t __user *uoss_ptr)
4460{
4461 stack_t uss, uoss;
4462 int ret;
4463
4464 if (uss_ptr) {
4465 compat_stack_t uss32;
4466 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4467 return -EFAULT;
4468 uss.ss_sp = compat_ptr(uss32.ss_sp);
4469 uss.ss_flags = uss32.ss_flags;
4470 uss.ss_size = uss32.ss_size;
4471 }
4472 ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4473 compat_user_stack_pointer(),
4474 COMPAT_MINSIGSTKSZ);
4475 if (ret >= 0 && uoss_ptr) {
4476 compat_stack_t old;
4477 memset(&old, 0, sizeof(old));
4478 old.ss_sp = ptr_to_compat(uoss.ss_sp);
4479 old.ss_flags = uoss.ss_flags;
4480 old.ss_size = uoss.ss_size;
4481 if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4482 ret = -EFAULT;
4483 }
4484 return ret;
4485}
4486
4487COMPAT_SYSCALL_DEFINE2(sigaltstack,
4488 const compat_stack_t __user *, uss_ptr,
4489 compat_stack_t __user *, uoss_ptr)
4490{
4491 return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4492}
4493
4494int compat_restore_altstack(const compat_stack_t __user *uss)
4495{
4496 int err = do_compat_sigaltstack(uss, NULL);
4497 /* squash all but -EFAULT for now */
4498 return err == -EFAULT ? err : 0;
4499}
4500
4501int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4502{
4503 int err;
4504 struct task_struct *t = current;
4505 err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4506 &uss->ss_sp) |
4507 __put_user(t->sas_ss_flags, &uss->ss_flags) |
4508 __put_user(t->sas_ss_size, &uss->ss_size);
4509 return err;
4510}
4511#endif
4512
4513#ifdef __ARCH_WANT_SYS_SIGPENDING
4514
4515/**
4516 * sys_sigpending - examine pending signals
4517 * @uset: where mask of pending signal is returned
4518 */
4519SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4520{
4521 sigset_t set;
4522
4523 if (sizeof(old_sigset_t) > sizeof(*uset))
4524 return -EINVAL;
4525
4526 do_sigpending(&set);
4527
4528 if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4529 return -EFAULT;
4530
4531 return 0;
4532}
4533
4534#ifdef CONFIG_COMPAT
4535COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4536{
4537 sigset_t set;
4538
4539 do_sigpending(&set);
4540
4541 return put_user(set.sig[0], set32);
4542}
4543#endif
4544
4545#endif
4546
4547#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4548/**
4549 * sys_sigprocmask - examine and change blocked signals
4550 * @how: whether to add, remove, or set signals
4551 * @nset: signals to add or remove (if non-null)
4552 * @oset: previous value of signal mask if non-null
4553 *
4554 * Some platforms have their own version with special arguments;
4555 * others support only sys_rt_sigprocmask.
4556 */
4557
4558SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4559 old_sigset_t __user *, oset)
4560{
4561 old_sigset_t old_set, new_set;
4562 sigset_t new_blocked;
4563
4564 old_set = current->blocked.sig[0];
4565
4566 if (nset) {
4567 if (copy_from_user(&new_set, nset, sizeof(*nset)))
4568 return -EFAULT;
4569
4570 new_blocked = current->blocked;
4571
4572 switch (how) {
4573 case SIG_BLOCK:
4574 sigaddsetmask(&new_blocked, new_set);
4575 break;
4576 case SIG_UNBLOCK:
4577 sigdelsetmask(&new_blocked, new_set);
4578 break;
4579 case SIG_SETMASK:
4580 new_blocked.sig[0] = new_set;
4581 break;
4582 default:
4583 return -EINVAL;
4584 }
4585
4586 set_current_blocked(&new_blocked);
4587 }
4588
4589 if (oset) {
4590 if (copy_to_user(oset, &old_set, sizeof(*oset)))
4591 return -EFAULT;
4592 }
4593
4594 return 0;
4595}
4596#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4597
4598#ifndef CONFIG_ODD_RT_SIGACTION
4599/**
4600 * sys_rt_sigaction - alter an action taken by a process
4601 * @sig: signal to be sent
4602 * @act: new sigaction
4603 * @oact: used to save the previous sigaction
4604 * @sigsetsize: size of sigset_t type
4605 */
4606SYSCALL_DEFINE4(rt_sigaction, int, sig,
4607 const struct sigaction __user *, act,
4608 struct sigaction __user *, oact,
4609 size_t, sigsetsize)
4610{
4611 struct k_sigaction new_sa, old_sa;
4612 int ret;
4613
4614 /* XXX: Don't preclude handling different sized sigset_t's. */
4615 if (sigsetsize != sizeof(sigset_t))
4616 return -EINVAL;
4617
4618 if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4619 return -EFAULT;
4620
4621 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4622 if (ret)
4623 return ret;
4624
4625 if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4626 return -EFAULT;
4627
4628 return 0;
4629}
4630#ifdef CONFIG_COMPAT
4631COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4632 const struct compat_sigaction __user *, act,
4633 struct compat_sigaction __user *, oact,
4634 compat_size_t, sigsetsize)
4635{
4636 struct k_sigaction new_ka, old_ka;
4637#ifdef __ARCH_HAS_SA_RESTORER
4638 compat_uptr_t restorer;
4639#endif
4640 int ret;
4641
4642 /* XXX: Don't preclude handling different sized sigset_t's. */
4643 if (sigsetsize != sizeof(compat_sigset_t))
4644 return -EINVAL;
4645
4646 if (act) {
4647 compat_uptr_t handler;
4648 ret = get_user(handler, &act->sa_handler);
4649 new_ka.sa.sa_handler = compat_ptr(handler);
4650#ifdef __ARCH_HAS_SA_RESTORER
4651 ret |= get_user(restorer, &act->sa_restorer);
4652 new_ka.sa.sa_restorer = compat_ptr(restorer);
4653#endif
4654 ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4655 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4656 if (ret)
4657 return -EFAULT;
4658 }
4659
4660 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4661 if (!ret && oact) {
4662 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
4663 &oact->sa_handler);
4664 ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4665 sizeof(oact->sa_mask));
4666 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4667#ifdef __ARCH_HAS_SA_RESTORER
4668 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4669 &oact->sa_restorer);
4670#endif
4671 }
4672 return ret;
4673}
4674#endif
4675#endif /* !CONFIG_ODD_RT_SIGACTION */
4676
4677#ifdef CONFIG_OLD_SIGACTION
4678SYSCALL_DEFINE3(sigaction, int, sig,
4679 const struct old_sigaction __user *, act,
4680 struct old_sigaction __user *, oact)
4681{
4682 struct k_sigaction new_ka, old_ka;
4683 int ret;
4684
4685 if (act) {
4686 old_sigset_t mask;
4687 if (!access_ok(act, sizeof(*act)) ||
4688 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4689 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4690 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4691 __get_user(mask, &act->sa_mask))
4692 return -EFAULT;
4693#ifdef __ARCH_HAS_KA_RESTORER
4694 new_ka.ka_restorer = NULL;
4695#endif
4696 siginitset(&new_ka.sa.sa_mask, mask);
4697 }
4698
4699 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4700
4701 if (!ret && oact) {
4702 if (!access_ok(oact, sizeof(*oact)) ||
4703 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4704 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4705 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4706 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4707 return -EFAULT;
4708 }
4709
4710 return ret;
4711}
4712#endif
4713#ifdef CONFIG_COMPAT_OLD_SIGACTION
4714COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4715 const struct compat_old_sigaction __user *, act,
4716 struct compat_old_sigaction __user *, oact)
4717{
4718 struct k_sigaction new_ka, old_ka;
4719 int ret;
4720 compat_old_sigset_t mask;
4721 compat_uptr_t handler, restorer;
4722
4723 if (act) {
4724 if (!access_ok(act, sizeof(*act)) ||
4725 __get_user(handler, &act->sa_handler) ||
4726 __get_user(restorer, &act->sa_restorer) ||
4727 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4728 __get_user(mask, &act->sa_mask))
4729 return -EFAULT;
4730
4731#ifdef __ARCH_HAS_KA_RESTORER
4732 new_ka.ka_restorer = NULL;
4733#endif
4734 new_ka.sa.sa_handler = compat_ptr(handler);
4735 new_ka.sa.sa_restorer = compat_ptr(restorer);
4736 siginitset(&new_ka.sa.sa_mask, mask);
4737 }
4738
4739 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4740
4741 if (!ret && oact) {
4742 if (!access_ok(oact, sizeof(*oact)) ||
4743 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4744 &oact->sa_handler) ||
4745 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4746 &oact->sa_restorer) ||
4747 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4748 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4749 return -EFAULT;
4750 }
4751 return ret;
4752}
4753#endif
4754
4755#ifdef CONFIG_SGETMASK_SYSCALL
4756
4757/*
4758 * For backwards compatibility. Functionality superseded by sigprocmask.
4759 */
4760SYSCALL_DEFINE0(sgetmask)
4761{
4762 /* SMP safe */
4763 return current->blocked.sig[0];
4764}
4765
4766SYSCALL_DEFINE1(ssetmask, int, newmask)
4767{
4768 int old = current->blocked.sig[0];
4769 sigset_t newset;
4770
4771 siginitset(&newset, newmask);
4772 set_current_blocked(&newset);
4773
4774 return old;
4775}
4776#endif /* CONFIG_SGETMASK_SYSCALL */
4777
4778#ifdef __ARCH_WANT_SYS_SIGNAL
4779/*
4780 * For backwards compatibility. Functionality superseded by sigaction.
4781 */
4782SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4783{
4784 struct k_sigaction new_sa, old_sa;
4785 int ret;
4786
4787 new_sa.sa.sa_handler = handler;
4788 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4789 sigemptyset(&new_sa.sa.sa_mask);
4790
4791 ret = do_sigaction(sig, &new_sa, &old_sa);
4792
4793 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4794}
4795#endif /* __ARCH_WANT_SYS_SIGNAL */
4796
4797#ifdef __ARCH_WANT_SYS_PAUSE
4798
4799SYSCALL_DEFINE0(pause)
4800{
4801 while (!signal_pending(current)) {
4802 __set_current_state(TASK_INTERRUPTIBLE);
4803 schedule();
4804 }
4805 return -ERESTARTNOHAND;
4806}
4807
4808#endif
4809
4810static int sigsuspend(sigset_t *set)
4811{
4812 current->saved_sigmask = current->blocked;
4813 set_current_blocked(set);
4814
4815 while (!signal_pending(current)) {
4816 __set_current_state(TASK_INTERRUPTIBLE);
4817 schedule();
4818 }
4819 set_restore_sigmask();
4820 return -ERESTARTNOHAND;
4821}
4822
4823/**
4824 * sys_rt_sigsuspend - replace the signal mask for a value with the
4825 * @unewset value until a signal is received
4826 * @unewset: new signal mask value
4827 * @sigsetsize: size of sigset_t type
4828 */
4829SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4830{
4831 sigset_t newset;
4832
4833 /* XXX: Don't preclude handling different sized sigset_t's. */
4834 if (sigsetsize != sizeof(sigset_t))
4835 return -EINVAL;
4836
4837 if (copy_from_user(&newset, unewset, sizeof(newset)))
4838 return -EFAULT;
4839 return sigsuspend(&newset);
4840}
4841
4842#ifdef CONFIG_COMPAT
4843COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4844{
4845 sigset_t newset;
4846
4847 /* XXX: Don't preclude handling different sized sigset_t's. */
4848 if (sigsetsize != sizeof(sigset_t))
4849 return -EINVAL;
4850
4851 if (get_compat_sigset(&newset, unewset))
4852 return -EFAULT;
4853 return sigsuspend(&newset);
4854}
4855#endif
4856
4857#ifdef CONFIG_OLD_SIGSUSPEND
4858SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4859{
4860 sigset_t blocked;
4861 siginitset(&blocked, mask);
4862 return sigsuspend(&blocked);
4863}
4864#endif
4865#ifdef CONFIG_OLD_SIGSUSPEND3
4866SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4867{
4868 sigset_t blocked;
4869 siginitset(&blocked, mask);
4870 return sigsuspend(&blocked);
4871}
4872#endif
4873
4874__weak const char *arch_vma_name(struct vm_area_struct *vma)
4875{
4876 return NULL;
4877}
4878
4879static inline void siginfo_buildtime_checks(void)
4880{
4881 BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4882
4883 /* Verify the offsets in the two siginfos match */
4884#define CHECK_OFFSET(field) \
4885 BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4886
4887 /* kill */
4888 CHECK_OFFSET(si_pid);
4889 CHECK_OFFSET(si_uid);
4890
4891 /* timer */
4892 CHECK_OFFSET(si_tid);
4893 CHECK_OFFSET(si_overrun);
4894 CHECK_OFFSET(si_value);
4895
4896 /* rt */
4897 CHECK_OFFSET(si_pid);
4898 CHECK_OFFSET(si_uid);
4899 CHECK_OFFSET(si_value);
4900
4901 /* sigchld */
4902 CHECK_OFFSET(si_pid);
4903 CHECK_OFFSET(si_uid);
4904 CHECK_OFFSET(si_status);
4905 CHECK_OFFSET(si_utime);
4906 CHECK_OFFSET(si_stime);
4907
4908 /* sigfault */
4909 CHECK_OFFSET(si_addr);
4910 CHECK_OFFSET(si_trapno);
4911 CHECK_OFFSET(si_addr_lsb);
4912 CHECK_OFFSET(si_lower);
4913 CHECK_OFFSET(si_upper);
4914 CHECK_OFFSET(si_pkey);
4915 CHECK_OFFSET(si_perf_data);
4916 CHECK_OFFSET(si_perf_type);
4917 CHECK_OFFSET(si_perf_flags);
4918
4919 /* sigpoll */
4920 CHECK_OFFSET(si_band);
4921 CHECK_OFFSET(si_fd);
4922
4923 /* sigsys */
4924 CHECK_OFFSET(si_call_addr);
4925 CHECK_OFFSET(si_syscall);
4926 CHECK_OFFSET(si_arch);
4927#undef CHECK_OFFSET
4928
4929 /* usb asyncio */
4930 BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4931 offsetof(struct siginfo, si_addr));
4932 if (sizeof(int) == sizeof(void __user *)) {
4933 BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4934 sizeof(void __user *));
4935 } else {
4936 BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4937 sizeof_field(struct siginfo, si_uid)) !=
4938 sizeof(void __user *));
4939 BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4940 offsetof(struct siginfo, si_uid));
4941 }
4942#ifdef CONFIG_COMPAT
4943 BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4944 offsetof(struct compat_siginfo, si_addr));
4945 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4946 sizeof(compat_uptr_t));
4947 BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4948 sizeof_field(struct siginfo, si_pid));
4949#endif
4950}
4951
4952#if defined(CONFIG_SYSCTL)
4953static struct ctl_table signal_debug_table[] = {
4954#ifdef CONFIG_SYSCTL_EXCEPTION_TRACE
4955 {
4956 .procname = "exception-trace",
4957 .data = &show_unhandled_signals,
4958 .maxlen = sizeof(int),
4959 .mode = 0644,
4960 .proc_handler = proc_dointvec
4961 },
4962#endif
4963};
4964
4965static int __init init_signal_sysctls(void)
4966{
4967 register_sysctl_init("debug", signal_debug_table);
4968 return 0;
4969}
4970early_initcall(init_signal_sysctls);
4971#endif /* CONFIG_SYSCTL */
4972
4973void __init signals_init(void)
4974{
4975 siginfo_buildtime_checks();
4976
4977 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4978}
4979
4980#ifdef CONFIG_KGDB_KDB
4981#include <linux/kdb.h>
4982/*
4983 * kdb_send_sig - Allows kdb to send signals without exposing
4984 * signal internals. This function checks if the required locks are
4985 * available before calling the main signal code, to avoid kdb
4986 * deadlocks.
4987 */
4988void kdb_send_sig(struct task_struct *t, int sig)
4989{
4990 static struct task_struct *kdb_prev_t;
4991 int new_t, ret;
4992 if (!spin_trylock(&t->sighand->siglock)) {
4993 kdb_printf("Can't do kill command now.\n"
4994 "The sigmask lock is held somewhere else in "
4995 "kernel, try again later\n");
4996 return;
4997 }
4998 new_t = kdb_prev_t != t;
4999 kdb_prev_t = t;
5000 if (!task_is_running(t) && new_t) {
5001 spin_unlock(&t->sighand->siglock);
5002 kdb_printf("Process is not RUNNING, sending a signal from "
5003 "kdb risks deadlock\n"
5004 "on the run queue locks. "
5005 "The signal has _not_ been sent.\n"
5006 "Reissue the kill command if you want to risk "
5007 "the deadlock.\n");
5008 return;
5009 }
5010 ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
5011 spin_unlock(&t->sighand->siglock);
5012 if (ret)
5013 kdb_printf("Fail to deliver Signal %d to process %d.\n",
5014 sig, t->pid);
5015 else
5016 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
5017}
5018#endif /* CONFIG_KGDB_KDB */
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/export.h>
15#include <linux/init.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/tty.h>
19#include <linux/binfmts.h>
20#include <linux/coredump.h>
21#include <linux/security.h>
22#include <linux/syscalls.h>
23#include <linux/ptrace.h>
24#include <linux/signal.h>
25#include <linux/signalfd.h>
26#include <linux/ratelimit.h>
27#include <linux/tracehook.h>
28#include <linux/capability.h>
29#include <linux/freezer.h>
30#include <linux/pid_namespace.h>
31#include <linux/nsproxy.h>
32#include <linux/user_namespace.h>
33#include <linux/uprobes.h>
34#include <linux/compat.h>
35#include <linux/cn_proc.h>
36#include <linux/compiler.h>
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/signal.h>
40
41#include <asm/param.h>
42#include <asm/uaccess.h>
43#include <asm/unistd.h>
44#include <asm/siginfo.h>
45#include <asm/cacheflush.h>
46#include "audit.h" /* audit_signal_info() */
47
48/*
49 * SLAB caches for signal bits.
50 */
51
52static struct kmem_cache *sigqueue_cachep;
53
54int print_fatal_signals __read_mostly;
55
56static void __user *sig_handler(struct task_struct *t, int sig)
57{
58 return t->sighand->action[sig - 1].sa.sa_handler;
59}
60
61static int sig_handler_ignored(void __user *handler, int sig)
62{
63 /* Is it explicitly or implicitly ignored? */
64 return handler == SIG_IGN ||
65 (handler == SIG_DFL && sig_kernel_ignore(sig));
66}
67
68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69{
70 void __user *handler;
71
72 handler = sig_handler(t, sig);
73
74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75 handler == SIG_DFL && !force)
76 return 1;
77
78 return sig_handler_ignored(handler, sig);
79}
80
81static int sig_ignored(struct task_struct *t, int sig, bool force)
82{
83 /*
84 * Blocked signals are never ignored, since the
85 * signal handler may change by the time it is
86 * unblocked.
87 */
88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89 return 0;
90
91 if (!sig_task_ignored(t, sig, force))
92 return 0;
93
94 /*
95 * Tracers may want to know about even ignored signals.
96 */
97 return !t->ptrace;
98}
99
100/*
101 * Re-calculate pending state from the set of locally pending
102 * signals, globally pending signals, and blocked signals.
103 */
104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
105{
106 unsigned long ready;
107 long i;
108
109 switch (_NSIG_WORDS) {
110 default:
111 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
112 ready |= signal->sig[i] &~ blocked->sig[i];
113 break;
114
115 case 4: ready = signal->sig[3] &~ blocked->sig[3];
116 ready |= signal->sig[2] &~ blocked->sig[2];
117 ready |= signal->sig[1] &~ blocked->sig[1];
118 ready |= signal->sig[0] &~ blocked->sig[0];
119 break;
120
121 case 2: ready = signal->sig[1] &~ blocked->sig[1];
122 ready |= signal->sig[0] &~ blocked->sig[0];
123 break;
124
125 case 1: ready = signal->sig[0] &~ blocked->sig[0];
126 }
127 return ready != 0;
128}
129
130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
131
132static int recalc_sigpending_tsk(struct task_struct *t)
133{
134 if ((t->jobctl & JOBCTL_PENDING_MASK) ||
135 PENDING(&t->pending, &t->blocked) ||
136 PENDING(&t->signal->shared_pending, &t->blocked)) {
137 set_tsk_thread_flag(t, TIF_SIGPENDING);
138 return 1;
139 }
140 /*
141 * We must never clear the flag in another thread, or in current
142 * when it's possible the current syscall is returning -ERESTART*.
143 * So we don't clear it here, and only callers who know they should do.
144 */
145 return 0;
146}
147
148/*
149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
150 * This is superfluous when called on current, the wakeup is a harmless no-op.
151 */
152void recalc_sigpending_and_wake(struct task_struct *t)
153{
154 if (recalc_sigpending_tsk(t))
155 signal_wake_up(t, 0);
156}
157
158void recalc_sigpending(void)
159{
160 if (!recalc_sigpending_tsk(current) && !freezing(current))
161 clear_thread_flag(TIF_SIGPENDING);
162
163}
164
165/* Given the mask, find the first available signal that should be serviced. */
166
167#define SYNCHRONOUS_MASK \
168 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
169 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
170
171int next_signal(struct sigpending *pending, sigset_t *mask)
172{
173 unsigned long i, *s, *m, x;
174 int sig = 0;
175
176 s = pending->signal.sig;
177 m = mask->sig;
178
179 /*
180 * Handle the first word specially: it contains the
181 * synchronous signals that need to be dequeued first.
182 */
183 x = *s &~ *m;
184 if (x) {
185 if (x & SYNCHRONOUS_MASK)
186 x &= SYNCHRONOUS_MASK;
187 sig = ffz(~x) + 1;
188 return sig;
189 }
190
191 switch (_NSIG_WORDS) {
192 default:
193 for (i = 1; i < _NSIG_WORDS; ++i) {
194 x = *++s &~ *++m;
195 if (!x)
196 continue;
197 sig = ffz(~x) + i*_NSIG_BPW + 1;
198 break;
199 }
200 break;
201
202 case 2:
203 x = s[1] &~ m[1];
204 if (!x)
205 break;
206 sig = ffz(~x) + _NSIG_BPW + 1;
207 break;
208
209 case 1:
210 /* Nothing to do */
211 break;
212 }
213
214 return sig;
215}
216
217static inline void print_dropped_signal(int sig)
218{
219 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
220
221 if (!print_fatal_signals)
222 return;
223
224 if (!__ratelimit(&ratelimit_state))
225 return;
226
227 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
228 current->comm, current->pid, sig);
229}
230
231/**
232 * task_set_jobctl_pending - set jobctl pending bits
233 * @task: target task
234 * @mask: pending bits to set
235 *
236 * Clear @mask from @task->jobctl. @mask must be subset of
237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
238 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
239 * cleared. If @task is already being killed or exiting, this function
240 * becomes noop.
241 *
242 * CONTEXT:
243 * Must be called with @task->sighand->siglock held.
244 *
245 * RETURNS:
246 * %true if @mask is set, %false if made noop because @task was dying.
247 */
248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
249{
250 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
251 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
252 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
253
254 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
255 return false;
256
257 if (mask & JOBCTL_STOP_SIGMASK)
258 task->jobctl &= ~JOBCTL_STOP_SIGMASK;
259
260 task->jobctl |= mask;
261 return true;
262}
263
264/**
265 * task_clear_jobctl_trapping - clear jobctl trapping bit
266 * @task: target task
267 *
268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
269 * Clear it and wake up the ptracer. Note that we don't need any further
270 * locking. @task->siglock guarantees that @task->parent points to the
271 * ptracer.
272 *
273 * CONTEXT:
274 * Must be called with @task->sighand->siglock held.
275 */
276void task_clear_jobctl_trapping(struct task_struct *task)
277{
278 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
279 task->jobctl &= ~JOBCTL_TRAPPING;
280 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
281 }
282}
283
284/**
285 * task_clear_jobctl_pending - clear jobctl pending bits
286 * @task: target task
287 * @mask: pending bits to clear
288 *
289 * Clear @mask from @task->jobctl. @mask must be subset of
290 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
291 * STOP bits are cleared together.
292 *
293 * If clearing of @mask leaves no stop or trap pending, this function calls
294 * task_clear_jobctl_trapping().
295 *
296 * CONTEXT:
297 * Must be called with @task->sighand->siglock held.
298 */
299void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
300{
301 BUG_ON(mask & ~JOBCTL_PENDING_MASK);
302
303 if (mask & JOBCTL_STOP_PENDING)
304 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
305
306 task->jobctl &= ~mask;
307
308 if (!(task->jobctl & JOBCTL_PENDING_MASK))
309 task_clear_jobctl_trapping(task);
310}
311
312/**
313 * task_participate_group_stop - participate in a group stop
314 * @task: task participating in a group stop
315 *
316 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
317 * Group stop states are cleared and the group stop count is consumed if
318 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
319 * stop, the appropriate %SIGNAL_* flags are set.
320 *
321 * CONTEXT:
322 * Must be called with @task->sighand->siglock held.
323 *
324 * RETURNS:
325 * %true if group stop completion should be notified to the parent, %false
326 * otherwise.
327 */
328static bool task_participate_group_stop(struct task_struct *task)
329{
330 struct signal_struct *sig = task->signal;
331 bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
332
333 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
334
335 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
336
337 if (!consume)
338 return false;
339
340 if (!WARN_ON_ONCE(sig->group_stop_count == 0))
341 sig->group_stop_count--;
342
343 /*
344 * Tell the caller to notify completion iff we are entering into a
345 * fresh group stop. Read comment in do_signal_stop() for details.
346 */
347 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
348 sig->flags = SIGNAL_STOP_STOPPED;
349 return true;
350 }
351 return false;
352}
353
354/*
355 * allocate a new signal queue record
356 * - this may be called without locks if and only if t == current, otherwise an
357 * appropriate lock must be held to stop the target task from exiting
358 */
359static struct sigqueue *
360__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
361{
362 struct sigqueue *q = NULL;
363 struct user_struct *user;
364
365 /*
366 * Protect access to @t credentials. This can go away when all
367 * callers hold rcu read lock.
368 */
369 rcu_read_lock();
370 user = get_uid(__task_cred(t)->user);
371 atomic_inc(&user->sigpending);
372 rcu_read_unlock();
373
374 if (override_rlimit ||
375 atomic_read(&user->sigpending) <=
376 task_rlimit(t, RLIMIT_SIGPENDING)) {
377 q = kmem_cache_alloc(sigqueue_cachep, flags);
378 } else {
379 print_dropped_signal(sig);
380 }
381
382 if (unlikely(q == NULL)) {
383 atomic_dec(&user->sigpending);
384 free_uid(user);
385 } else {
386 INIT_LIST_HEAD(&q->list);
387 q->flags = 0;
388 q->user = user;
389 }
390
391 return q;
392}
393
394static void __sigqueue_free(struct sigqueue *q)
395{
396 if (q->flags & SIGQUEUE_PREALLOC)
397 return;
398 atomic_dec(&q->user->sigpending);
399 free_uid(q->user);
400 kmem_cache_free(sigqueue_cachep, q);
401}
402
403void flush_sigqueue(struct sigpending *queue)
404{
405 struct sigqueue *q;
406
407 sigemptyset(&queue->signal);
408 while (!list_empty(&queue->list)) {
409 q = list_entry(queue->list.next, struct sigqueue , list);
410 list_del_init(&q->list);
411 __sigqueue_free(q);
412 }
413}
414
415/*
416 * Flush all pending signals for a task.
417 */
418void __flush_signals(struct task_struct *t)
419{
420 clear_tsk_thread_flag(t, TIF_SIGPENDING);
421 flush_sigqueue(&t->pending);
422 flush_sigqueue(&t->signal->shared_pending);
423}
424
425void flush_signals(struct task_struct *t)
426{
427 unsigned long flags;
428
429 spin_lock_irqsave(&t->sighand->siglock, flags);
430 __flush_signals(t);
431 spin_unlock_irqrestore(&t->sighand->siglock, flags);
432}
433
434static void __flush_itimer_signals(struct sigpending *pending)
435{
436 sigset_t signal, retain;
437 struct sigqueue *q, *n;
438
439 signal = pending->signal;
440 sigemptyset(&retain);
441
442 list_for_each_entry_safe(q, n, &pending->list, list) {
443 int sig = q->info.si_signo;
444
445 if (likely(q->info.si_code != SI_TIMER)) {
446 sigaddset(&retain, sig);
447 } else {
448 sigdelset(&signal, sig);
449 list_del_init(&q->list);
450 __sigqueue_free(q);
451 }
452 }
453
454 sigorsets(&pending->signal, &signal, &retain);
455}
456
457void flush_itimer_signals(void)
458{
459 struct task_struct *tsk = current;
460 unsigned long flags;
461
462 spin_lock_irqsave(&tsk->sighand->siglock, flags);
463 __flush_itimer_signals(&tsk->pending);
464 __flush_itimer_signals(&tsk->signal->shared_pending);
465 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
466}
467
468void ignore_signals(struct task_struct *t)
469{
470 int i;
471
472 for (i = 0; i < _NSIG; ++i)
473 t->sighand->action[i].sa.sa_handler = SIG_IGN;
474
475 flush_signals(t);
476}
477
478/*
479 * Flush all handlers for a task.
480 */
481
482void
483flush_signal_handlers(struct task_struct *t, int force_default)
484{
485 int i;
486 struct k_sigaction *ka = &t->sighand->action[0];
487 for (i = _NSIG ; i != 0 ; i--) {
488 if (force_default || ka->sa.sa_handler != SIG_IGN)
489 ka->sa.sa_handler = SIG_DFL;
490 ka->sa.sa_flags = 0;
491#ifdef __ARCH_HAS_SA_RESTORER
492 ka->sa.sa_restorer = NULL;
493#endif
494 sigemptyset(&ka->sa.sa_mask);
495 ka++;
496 }
497}
498
499int unhandled_signal(struct task_struct *tsk, int sig)
500{
501 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
502 if (is_global_init(tsk))
503 return 1;
504 if (handler != SIG_IGN && handler != SIG_DFL)
505 return 0;
506 /* if ptraced, let the tracer determine */
507 return !tsk->ptrace;
508}
509
510/*
511 * Notify the system that a driver wants to block all signals for this
512 * process, and wants to be notified if any signals at all were to be
513 * sent/acted upon. If the notifier routine returns non-zero, then the
514 * signal will be acted upon after all. If the notifier routine returns 0,
515 * then then signal will be blocked. Only one block per process is
516 * allowed. priv is a pointer to private data that the notifier routine
517 * can use to determine if the signal should be blocked or not.
518 */
519void
520block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
521{
522 unsigned long flags;
523
524 spin_lock_irqsave(¤t->sighand->siglock, flags);
525 current->notifier_mask = mask;
526 current->notifier_data = priv;
527 current->notifier = notifier;
528 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
529}
530
531/* Notify the system that blocking has ended. */
532
533void
534unblock_all_signals(void)
535{
536 unsigned long flags;
537
538 spin_lock_irqsave(¤t->sighand->siglock, flags);
539 current->notifier = NULL;
540 current->notifier_data = NULL;
541 recalc_sigpending();
542 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
543}
544
545static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
546{
547 struct sigqueue *q, *first = NULL;
548
549 /*
550 * Collect the siginfo appropriate to this signal. Check if
551 * there is another siginfo for the same signal.
552 */
553 list_for_each_entry(q, &list->list, list) {
554 if (q->info.si_signo == sig) {
555 if (first)
556 goto still_pending;
557 first = q;
558 }
559 }
560
561 sigdelset(&list->signal, sig);
562
563 if (first) {
564still_pending:
565 list_del_init(&first->list);
566 copy_siginfo(info, &first->info);
567 __sigqueue_free(first);
568 } else {
569 /*
570 * Ok, it wasn't in the queue. This must be
571 * a fast-pathed signal or we must have been
572 * out of queue space. So zero out the info.
573 */
574 info->si_signo = sig;
575 info->si_errno = 0;
576 info->si_code = SI_USER;
577 info->si_pid = 0;
578 info->si_uid = 0;
579 }
580}
581
582static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
583 siginfo_t *info)
584{
585 int sig = next_signal(pending, mask);
586
587 if (sig) {
588 if (current->notifier) {
589 if (sigismember(current->notifier_mask, sig)) {
590 if (!(current->notifier)(current->notifier_data)) {
591 clear_thread_flag(TIF_SIGPENDING);
592 return 0;
593 }
594 }
595 }
596
597 collect_signal(sig, pending, info);
598 }
599
600 return sig;
601}
602
603/*
604 * Dequeue a signal and return the element to the caller, which is
605 * expected to free it.
606 *
607 * All callers have to hold the siglock.
608 */
609int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
610{
611 int signr;
612
613 /* We only dequeue private signals from ourselves, we don't let
614 * signalfd steal them
615 */
616 signr = __dequeue_signal(&tsk->pending, mask, info);
617 if (!signr) {
618 signr = __dequeue_signal(&tsk->signal->shared_pending,
619 mask, info);
620 /*
621 * itimer signal ?
622 *
623 * itimers are process shared and we restart periodic
624 * itimers in the signal delivery path to prevent DoS
625 * attacks in the high resolution timer case. This is
626 * compliant with the old way of self-restarting
627 * itimers, as the SIGALRM is a legacy signal and only
628 * queued once. Changing the restart behaviour to
629 * restart the timer in the signal dequeue path is
630 * reducing the timer noise on heavy loaded !highres
631 * systems too.
632 */
633 if (unlikely(signr == SIGALRM)) {
634 struct hrtimer *tmr = &tsk->signal->real_timer;
635
636 if (!hrtimer_is_queued(tmr) &&
637 tsk->signal->it_real_incr.tv64 != 0) {
638 hrtimer_forward(tmr, tmr->base->get_time(),
639 tsk->signal->it_real_incr);
640 hrtimer_restart(tmr);
641 }
642 }
643 }
644
645 recalc_sigpending();
646 if (!signr)
647 return 0;
648
649 if (unlikely(sig_kernel_stop(signr))) {
650 /*
651 * Set a marker that we have dequeued a stop signal. Our
652 * caller might release the siglock and then the pending
653 * stop signal it is about to process is no longer in the
654 * pending bitmasks, but must still be cleared by a SIGCONT
655 * (and overruled by a SIGKILL). So those cases clear this
656 * shared flag after we've set it. Note that this flag may
657 * remain set after the signal we return is ignored or
658 * handled. That doesn't matter because its only purpose
659 * is to alert stop-signal processing code when another
660 * processor has come along and cleared the flag.
661 */
662 current->jobctl |= JOBCTL_STOP_DEQUEUED;
663 }
664 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
665 /*
666 * Release the siglock to ensure proper locking order
667 * of timer locks outside of siglocks. Note, we leave
668 * irqs disabled here, since the posix-timers code is
669 * about to disable them again anyway.
670 */
671 spin_unlock(&tsk->sighand->siglock);
672 do_schedule_next_timer(info);
673 spin_lock(&tsk->sighand->siglock);
674 }
675 return signr;
676}
677
678/*
679 * Tell a process that it has a new active signal..
680 *
681 * NOTE! we rely on the previous spin_lock to
682 * lock interrupts for us! We can only be called with
683 * "siglock" held, and the local interrupt must
684 * have been disabled when that got acquired!
685 *
686 * No need to set need_resched since signal event passing
687 * goes through ->blocked
688 */
689void signal_wake_up_state(struct task_struct *t, unsigned int state)
690{
691 set_tsk_thread_flag(t, TIF_SIGPENDING);
692 /*
693 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
694 * case. We don't check t->state here because there is a race with it
695 * executing another processor and just now entering stopped state.
696 * By using wake_up_state, we ensure the process will wake up and
697 * handle its death signal.
698 */
699 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
700 kick_process(t);
701}
702
703/*
704 * Remove signals in mask from the pending set and queue.
705 * Returns 1 if any signals were found.
706 *
707 * All callers must be holding the siglock.
708 *
709 * This version takes a sigset mask and looks at all signals,
710 * not just those in the first mask word.
711 */
712static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
713{
714 struct sigqueue *q, *n;
715 sigset_t m;
716
717 sigandsets(&m, mask, &s->signal);
718 if (sigisemptyset(&m))
719 return 0;
720
721 sigandnsets(&s->signal, &s->signal, mask);
722 list_for_each_entry_safe(q, n, &s->list, list) {
723 if (sigismember(mask, q->info.si_signo)) {
724 list_del_init(&q->list);
725 __sigqueue_free(q);
726 }
727 }
728 return 1;
729}
730/*
731 * Remove signals in mask from the pending set and queue.
732 * Returns 1 if any signals were found.
733 *
734 * All callers must be holding the siglock.
735 */
736static int rm_from_queue(unsigned long mask, struct sigpending *s)
737{
738 struct sigqueue *q, *n;
739
740 if (!sigtestsetmask(&s->signal, mask))
741 return 0;
742
743 sigdelsetmask(&s->signal, mask);
744 list_for_each_entry_safe(q, n, &s->list, list) {
745 if (q->info.si_signo < SIGRTMIN &&
746 (mask & sigmask(q->info.si_signo))) {
747 list_del_init(&q->list);
748 __sigqueue_free(q);
749 }
750 }
751 return 1;
752}
753
754static inline int is_si_special(const struct siginfo *info)
755{
756 return info <= SEND_SIG_FORCED;
757}
758
759static inline bool si_fromuser(const struct siginfo *info)
760{
761 return info == SEND_SIG_NOINFO ||
762 (!is_si_special(info) && SI_FROMUSER(info));
763}
764
765/*
766 * called with RCU read lock from check_kill_permission()
767 */
768static int kill_ok_by_cred(struct task_struct *t)
769{
770 const struct cred *cred = current_cred();
771 const struct cred *tcred = __task_cred(t);
772
773 if (uid_eq(cred->euid, tcred->suid) ||
774 uid_eq(cred->euid, tcred->uid) ||
775 uid_eq(cred->uid, tcred->suid) ||
776 uid_eq(cred->uid, tcred->uid))
777 return 1;
778
779 if (ns_capable(tcred->user_ns, CAP_KILL))
780 return 1;
781
782 return 0;
783}
784
785/*
786 * Bad permissions for sending the signal
787 * - the caller must hold the RCU read lock
788 */
789static int check_kill_permission(int sig, struct siginfo *info,
790 struct task_struct *t)
791{
792 struct pid *sid;
793 int error;
794
795 if (!valid_signal(sig))
796 return -EINVAL;
797
798 if (!si_fromuser(info))
799 return 0;
800
801 error = audit_signal_info(sig, t); /* Let audit system see the signal */
802 if (error)
803 return error;
804
805 if (!same_thread_group(current, t) &&
806 !kill_ok_by_cred(t)) {
807 switch (sig) {
808 case SIGCONT:
809 sid = task_session(t);
810 /*
811 * We don't return the error if sid == NULL. The
812 * task was unhashed, the caller must notice this.
813 */
814 if (!sid || sid == task_session(current))
815 break;
816 default:
817 return -EPERM;
818 }
819 }
820
821 return security_task_kill(t, info, sig, 0);
822}
823
824/**
825 * ptrace_trap_notify - schedule trap to notify ptracer
826 * @t: tracee wanting to notify tracer
827 *
828 * This function schedules sticky ptrace trap which is cleared on the next
829 * TRAP_STOP to notify ptracer of an event. @t must have been seized by
830 * ptracer.
831 *
832 * If @t is running, STOP trap will be taken. If trapped for STOP and
833 * ptracer is listening for events, tracee is woken up so that it can
834 * re-trap for the new event. If trapped otherwise, STOP trap will be
835 * eventually taken without returning to userland after the existing traps
836 * are finished by PTRACE_CONT.
837 *
838 * CONTEXT:
839 * Must be called with @task->sighand->siglock held.
840 */
841static void ptrace_trap_notify(struct task_struct *t)
842{
843 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
844 assert_spin_locked(&t->sighand->siglock);
845
846 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
847 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
848}
849
850/*
851 * Handle magic process-wide effects of stop/continue signals. Unlike
852 * the signal actions, these happen immediately at signal-generation
853 * time regardless of blocking, ignoring, or handling. This does the
854 * actual continuing for SIGCONT, but not the actual stopping for stop
855 * signals. The process stop is done as a signal action for SIG_DFL.
856 *
857 * Returns true if the signal should be actually delivered, otherwise
858 * it should be dropped.
859 */
860static bool prepare_signal(int sig, struct task_struct *p, bool force)
861{
862 struct signal_struct *signal = p->signal;
863 struct task_struct *t;
864
865 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
866 if (signal->flags & SIGNAL_GROUP_COREDUMP)
867 return sig == SIGKILL;
868 /*
869 * The process is in the middle of dying, nothing to do.
870 */
871 } else if (sig_kernel_stop(sig)) {
872 /*
873 * This is a stop signal. Remove SIGCONT from all queues.
874 */
875 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
876 t = p;
877 do {
878 rm_from_queue(sigmask(SIGCONT), &t->pending);
879 } while_each_thread(p, t);
880 } else if (sig == SIGCONT) {
881 unsigned int why;
882 /*
883 * Remove all stop signals from all queues, wake all threads.
884 */
885 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
886 t = p;
887 do {
888 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
889 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
890 if (likely(!(t->ptrace & PT_SEIZED)))
891 wake_up_state(t, __TASK_STOPPED);
892 else
893 ptrace_trap_notify(t);
894 } while_each_thread(p, t);
895
896 /*
897 * Notify the parent with CLD_CONTINUED if we were stopped.
898 *
899 * If we were in the middle of a group stop, we pretend it
900 * was already finished, and then continued. Since SIGCHLD
901 * doesn't queue we report only CLD_STOPPED, as if the next
902 * CLD_CONTINUED was dropped.
903 */
904 why = 0;
905 if (signal->flags & SIGNAL_STOP_STOPPED)
906 why |= SIGNAL_CLD_CONTINUED;
907 else if (signal->group_stop_count)
908 why |= SIGNAL_CLD_STOPPED;
909
910 if (why) {
911 /*
912 * The first thread which returns from do_signal_stop()
913 * will take ->siglock, notice SIGNAL_CLD_MASK, and
914 * notify its parent. See get_signal_to_deliver().
915 */
916 signal->flags = why | SIGNAL_STOP_CONTINUED;
917 signal->group_stop_count = 0;
918 signal->group_exit_code = 0;
919 }
920 }
921
922 return !sig_ignored(p, sig, force);
923}
924
925/*
926 * Test if P wants to take SIG. After we've checked all threads with this,
927 * it's equivalent to finding no threads not blocking SIG. Any threads not
928 * blocking SIG were ruled out because they are not running and already
929 * have pending signals. Such threads will dequeue from the shared queue
930 * as soon as they're available, so putting the signal on the shared queue
931 * will be equivalent to sending it to one such thread.
932 */
933static inline int wants_signal(int sig, struct task_struct *p)
934{
935 if (sigismember(&p->blocked, sig))
936 return 0;
937 if (p->flags & PF_EXITING)
938 return 0;
939 if (sig == SIGKILL)
940 return 1;
941 if (task_is_stopped_or_traced(p))
942 return 0;
943 return task_curr(p) || !signal_pending(p);
944}
945
946static void complete_signal(int sig, struct task_struct *p, int group)
947{
948 struct signal_struct *signal = p->signal;
949 struct task_struct *t;
950
951 /*
952 * Now find a thread we can wake up to take the signal off the queue.
953 *
954 * If the main thread wants the signal, it gets first crack.
955 * Probably the least surprising to the average bear.
956 */
957 if (wants_signal(sig, p))
958 t = p;
959 else if (!group || thread_group_empty(p))
960 /*
961 * There is just one thread and it does not need to be woken.
962 * It will dequeue unblocked signals before it runs again.
963 */
964 return;
965 else {
966 /*
967 * Otherwise try to find a suitable thread.
968 */
969 t = signal->curr_target;
970 while (!wants_signal(sig, t)) {
971 t = next_thread(t);
972 if (t == signal->curr_target)
973 /*
974 * No thread needs to be woken.
975 * Any eligible threads will see
976 * the signal in the queue soon.
977 */
978 return;
979 }
980 signal->curr_target = t;
981 }
982
983 /*
984 * Found a killable thread. If the signal will be fatal,
985 * then start taking the whole group down immediately.
986 */
987 if (sig_fatal(p, sig) &&
988 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
989 !sigismember(&t->real_blocked, sig) &&
990 (sig == SIGKILL || !t->ptrace)) {
991 /*
992 * This signal will be fatal to the whole group.
993 */
994 if (!sig_kernel_coredump(sig)) {
995 /*
996 * Start a group exit and wake everybody up.
997 * This way we don't have other threads
998 * running and doing things after a slower
999 * thread has the fatal signal pending.
1000 */
1001 signal->flags = SIGNAL_GROUP_EXIT;
1002 signal->group_exit_code = sig;
1003 signal->group_stop_count = 0;
1004 t = p;
1005 do {
1006 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1007 sigaddset(&t->pending.signal, SIGKILL);
1008 signal_wake_up(t, 1);
1009 } while_each_thread(p, t);
1010 return;
1011 }
1012 }
1013
1014 /*
1015 * The signal is already in the shared-pending queue.
1016 * Tell the chosen thread to wake up and dequeue it.
1017 */
1018 signal_wake_up(t, sig == SIGKILL);
1019 return;
1020}
1021
1022static inline int legacy_queue(struct sigpending *signals, int sig)
1023{
1024 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1025}
1026
1027#ifdef CONFIG_USER_NS
1028static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1029{
1030 if (current_user_ns() == task_cred_xxx(t, user_ns))
1031 return;
1032
1033 if (SI_FROMKERNEL(info))
1034 return;
1035
1036 rcu_read_lock();
1037 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1038 make_kuid(current_user_ns(), info->si_uid));
1039 rcu_read_unlock();
1040}
1041#else
1042static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1043{
1044 return;
1045}
1046#endif
1047
1048static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1049 int group, int from_ancestor_ns)
1050{
1051 struct sigpending *pending;
1052 struct sigqueue *q;
1053 int override_rlimit;
1054 int ret = 0, result;
1055
1056 assert_spin_locked(&t->sighand->siglock);
1057
1058 result = TRACE_SIGNAL_IGNORED;
1059 if (!prepare_signal(sig, t,
1060 from_ancestor_ns || (info == SEND_SIG_FORCED)))
1061 goto ret;
1062
1063 pending = group ? &t->signal->shared_pending : &t->pending;
1064 /*
1065 * Short-circuit ignored signals and support queuing
1066 * exactly one non-rt signal, so that we can get more
1067 * detailed information about the cause of the signal.
1068 */
1069 result = TRACE_SIGNAL_ALREADY_PENDING;
1070 if (legacy_queue(pending, sig))
1071 goto ret;
1072
1073 result = TRACE_SIGNAL_DELIVERED;
1074 /*
1075 * fast-pathed signals for kernel-internal things like SIGSTOP
1076 * or SIGKILL.
1077 */
1078 if (info == SEND_SIG_FORCED)
1079 goto out_set;
1080
1081 /*
1082 * Real-time signals must be queued if sent by sigqueue, or
1083 * some other real-time mechanism. It is implementation
1084 * defined whether kill() does so. We attempt to do so, on
1085 * the principle of least surprise, but since kill is not
1086 * allowed to fail with EAGAIN when low on memory we just
1087 * make sure at least one signal gets delivered and don't
1088 * pass on the info struct.
1089 */
1090 if (sig < SIGRTMIN)
1091 override_rlimit = (is_si_special(info) || info->si_code >= 0);
1092 else
1093 override_rlimit = 0;
1094
1095 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1096 override_rlimit);
1097 if (q) {
1098 list_add_tail(&q->list, &pending->list);
1099 switch ((unsigned long) info) {
1100 case (unsigned long) SEND_SIG_NOINFO:
1101 q->info.si_signo = sig;
1102 q->info.si_errno = 0;
1103 q->info.si_code = SI_USER;
1104 q->info.si_pid = task_tgid_nr_ns(current,
1105 task_active_pid_ns(t));
1106 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1107 break;
1108 case (unsigned long) SEND_SIG_PRIV:
1109 q->info.si_signo = sig;
1110 q->info.si_errno = 0;
1111 q->info.si_code = SI_KERNEL;
1112 q->info.si_pid = 0;
1113 q->info.si_uid = 0;
1114 break;
1115 default:
1116 copy_siginfo(&q->info, info);
1117 if (from_ancestor_ns)
1118 q->info.si_pid = 0;
1119 break;
1120 }
1121
1122 userns_fixup_signal_uid(&q->info, t);
1123
1124 } else if (!is_si_special(info)) {
1125 if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1126 /*
1127 * Queue overflow, abort. We may abort if the
1128 * signal was rt and sent by user using something
1129 * other than kill().
1130 */
1131 result = TRACE_SIGNAL_OVERFLOW_FAIL;
1132 ret = -EAGAIN;
1133 goto ret;
1134 } else {
1135 /*
1136 * This is a silent loss of information. We still
1137 * send the signal, but the *info bits are lost.
1138 */
1139 result = TRACE_SIGNAL_LOSE_INFO;
1140 }
1141 }
1142
1143out_set:
1144 signalfd_notify(t, sig);
1145 sigaddset(&pending->signal, sig);
1146 complete_signal(sig, t, group);
1147ret:
1148 trace_signal_generate(sig, info, t, group, result);
1149 return ret;
1150}
1151
1152static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1153 int group)
1154{
1155 int from_ancestor_ns = 0;
1156
1157#ifdef CONFIG_PID_NS
1158 from_ancestor_ns = si_fromuser(info) &&
1159 !task_pid_nr_ns(current, task_active_pid_ns(t));
1160#endif
1161
1162 return __send_signal(sig, info, t, group, from_ancestor_ns);
1163}
1164
1165static void print_fatal_signal(int signr)
1166{
1167 struct pt_regs *regs = signal_pt_regs();
1168 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1169
1170#if defined(__i386__) && !defined(__arch_um__)
1171 printk(KERN_INFO "code at %08lx: ", regs->ip);
1172 {
1173 int i;
1174 for (i = 0; i < 16; i++) {
1175 unsigned char insn;
1176
1177 if (get_user(insn, (unsigned char *)(regs->ip + i)))
1178 break;
1179 printk(KERN_CONT "%02x ", insn);
1180 }
1181 }
1182 printk(KERN_CONT "\n");
1183#endif
1184 preempt_disable();
1185 show_regs(regs);
1186 preempt_enable();
1187}
1188
1189static int __init setup_print_fatal_signals(char *str)
1190{
1191 get_option (&str, &print_fatal_signals);
1192
1193 return 1;
1194}
1195
1196__setup("print-fatal-signals=", setup_print_fatal_signals);
1197
1198int
1199__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1200{
1201 return send_signal(sig, info, p, 1);
1202}
1203
1204static int
1205specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1206{
1207 return send_signal(sig, info, t, 0);
1208}
1209
1210int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1211 bool group)
1212{
1213 unsigned long flags;
1214 int ret = -ESRCH;
1215
1216 if (lock_task_sighand(p, &flags)) {
1217 ret = send_signal(sig, info, p, group);
1218 unlock_task_sighand(p, &flags);
1219 }
1220
1221 return ret;
1222}
1223
1224/*
1225 * Force a signal that the process can't ignore: if necessary
1226 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1227 *
1228 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1229 * since we do not want to have a signal handler that was blocked
1230 * be invoked when user space had explicitly blocked it.
1231 *
1232 * We don't want to have recursive SIGSEGV's etc, for example,
1233 * that is why we also clear SIGNAL_UNKILLABLE.
1234 */
1235int
1236force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1237{
1238 unsigned long int flags;
1239 int ret, blocked, ignored;
1240 struct k_sigaction *action;
1241
1242 spin_lock_irqsave(&t->sighand->siglock, flags);
1243 action = &t->sighand->action[sig-1];
1244 ignored = action->sa.sa_handler == SIG_IGN;
1245 blocked = sigismember(&t->blocked, sig);
1246 if (blocked || ignored) {
1247 action->sa.sa_handler = SIG_DFL;
1248 if (blocked) {
1249 sigdelset(&t->blocked, sig);
1250 recalc_sigpending_and_wake(t);
1251 }
1252 }
1253 if (action->sa.sa_handler == SIG_DFL)
1254 t->signal->flags &= ~SIGNAL_UNKILLABLE;
1255 ret = specific_send_sig_info(sig, info, t);
1256 spin_unlock_irqrestore(&t->sighand->siglock, flags);
1257
1258 return ret;
1259}
1260
1261/*
1262 * Nuke all other threads in the group.
1263 */
1264int zap_other_threads(struct task_struct *p)
1265{
1266 struct task_struct *t = p;
1267 int count = 0;
1268
1269 p->signal->group_stop_count = 0;
1270
1271 while_each_thread(p, t) {
1272 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1273 count++;
1274
1275 /* Don't bother with already dead threads */
1276 if (t->exit_state)
1277 continue;
1278 sigaddset(&t->pending.signal, SIGKILL);
1279 signal_wake_up(t, 1);
1280 }
1281
1282 return count;
1283}
1284
1285struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1286 unsigned long *flags)
1287{
1288 struct sighand_struct *sighand;
1289
1290 for (;;) {
1291 local_irq_save(*flags);
1292 rcu_read_lock();
1293 sighand = rcu_dereference(tsk->sighand);
1294 if (unlikely(sighand == NULL)) {
1295 rcu_read_unlock();
1296 local_irq_restore(*flags);
1297 break;
1298 }
1299
1300 spin_lock(&sighand->siglock);
1301 if (likely(sighand == tsk->sighand)) {
1302 rcu_read_unlock();
1303 break;
1304 }
1305 spin_unlock(&sighand->siglock);
1306 rcu_read_unlock();
1307 local_irq_restore(*flags);
1308 }
1309
1310 return sighand;
1311}
1312
1313/*
1314 * send signal info to all the members of a group
1315 */
1316int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1317{
1318 int ret;
1319
1320 rcu_read_lock();
1321 ret = check_kill_permission(sig, info, p);
1322 rcu_read_unlock();
1323
1324 if (!ret && sig)
1325 ret = do_send_sig_info(sig, info, p, true);
1326
1327 return ret;
1328}
1329
1330/*
1331 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1332 * control characters do (^C, ^Z etc)
1333 * - the caller must hold at least a readlock on tasklist_lock
1334 */
1335int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1336{
1337 struct task_struct *p = NULL;
1338 int retval, success;
1339
1340 success = 0;
1341 retval = -ESRCH;
1342 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1343 int err = group_send_sig_info(sig, info, p);
1344 success |= !err;
1345 retval = err;
1346 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1347 return success ? 0 : retval;
1348}
1349
1350int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1351{
1352 int error = -ESRCH;
1353 struct task_struct *p;
1354
1355 rcu_read_lock();
1356retry:
1357 p = pid_task(pid, PIDTYPE_PID);
1358 if (p) {
1359 error = group_send_sig_info(sig, info, p);
1360 if (unlikely(error == -ESRCH))
1361 /*
1362 * The task was unhashed in between, try again.
1363 * If it is dead, pid_task() will return NULL,
1364 * if we race with de_thread() it will find the
1365 * new leader.
1366 */
1367 goto retry;
1368 }
1369 rcu_read_unlock();
1370
1371 return error;
1372}
1373
1374int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376 int error;
1377 rcu_read_lock();
1378 error = kill_pid_info(sig, info, find_vpid(pid));
1379 rcu_read_unlock();
1380 return error;
1381}
1382
1383static int kill_as_cred_perm(const struct cred *cred,
1384 struct task_struct *target)
1385{
1386 const struct cred *pcred = __task_cred(target);
1387 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1388 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid))
1389 return 0;
1390 return 1;
1391}
1392
1393/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1394int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1395 const struct cred *cred, u32 secid)
1396{
1397 int ret = -EINVAL;
1398 struct task_struct *p;
1399 unsigned long flags;
1400
1401 if (!valid_signal(sig))
1402 return ret;
1403
1404 rcu_read_lock();
1405 p = pid_task(pid, PIDTYPE_PID);
1406 if (!p) {
1407 ret = -ESRCH;
1408 goto out_unlock;
1409 }
1410 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1411 ret = -EPERM;
1412 goto out_unlock;
1413 }
1414 ret = security_task_kill(p, info, sig, secid);
1415 if (ret)
1416 goto out_unlock;
1417
1418 if (sig) {
1419 if (lock_task_sighand(p, &flags)) {
1420 ret = __send_signal(sig, info, p, 1, 0);
1421 unlock_task_sighand(p, &flags);
1422 } else
1423 ret = -ESRCH;
1424 }
1425out_unlock:
1426 rcu_read_unlock();
1427 return ret;
1428}
1429EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1430
1431/*
1432 * kill_something_info() interprets pid in interesting ways just like kill(2).
1433 *
1434 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1435 * is probably wrong. Should make it like BSD or SYSV.
1436 */
1437
1438static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1439{
1440 int ret;
1441
1442 if (pid > 0) {
1443 rcu_read_lock();
1444 ret = kill_pid_info(sig, info, find_vpid(pid));
1445 rcu_read_unlock();
1446 return ret;
1447 }
1448
1449 read_lock(&tasklist_lock);
1450 if (pid != -1) {
1451 ret = __kill_pgrp_info(sig, info,
1452 pid ? find_vpid(-pid) : task_pgrp(current));
1453 } else {
1454 int retval = 0, count = 0;
1455 struct task_struct * p;
1456
1457 for_each_process(p) {
1458 if (task_pid_vnr(p) > 1 &&
1459 !same_thread_group(p, current)) {
1460 int err = group_send_sig_info(sig, info, p);
1461 ++count;
1462 if (err != -EPERM)
1463 retval = err;
1464 }
1465 }
1466 ret = count ? retval : -ESRCH;
1467 }
1468 read_unlock(&tasklist_lock);
1469
1470 return ret;
1471}
1472
1473/*
1474 * These are for backward compatibility with the rest of the kernel source.
1475 */
1476
1477int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1478{
1479 /*
1480 * Make sure legacy kernel users don't send in bad values
1481 * (normal paths check this in check_kill_permission).
1482 */
1483 if (!valid_signal(sig))
1484 return -EINVAL;
1485
1486 return do_send_sig_info(sig, info, p, false);
1487}
1488
1489#define __si_special(priv) \
1490 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1491
1492int
1493send_sig(int sig, struct task_struct *p, int priv)
1494{
1495 return send_sig_info(sig, __si_special(priv), p);
1496}
1497
1498void
1499force_sig(int sig, struct task_struct *p)
1500{
1501 force_sig_info(sig, SEND_SIG_PRIV, p);
1502}
1503
1504/*
1505 * When things go south during signal handling, we
1506 * will force a SIGSEGV. And if the signal that caused
1507 * the problem was already a SIGSEGV, we'll want to
1508 * make sure we don't even try to deliver the signal..
1509 */
1510int
1511force_sigsegv(int sig, struct task_struct *p)
1512{
1513 if (sig == SIGSEGV) {
1514 unsigned long flags;
1515 spin_lock_irqsave(&p->sighand->siglock, flags);
1516 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1517 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1518 }
1519 force_sig(SIGSEGV, p);
1520 return 0;
1521}
1522
1523int kill_pgrp(struct pid *pid, int sig, int priv)
1524{
1525 int ret;
1526
1527 read_lock(&tasklist_lock);
1528 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1529 read_unlock(&tasklist_lock);
1530
1531 return ret;
1532}
1533EXPORT_SYMBOL(kill_pgrp);
1534
1535int kill_pid(struct pid *pid, int sig, int priv)
1536{
1537 return kill_pid_info(sig, __si_special(priv), pid);
1538}
1539EXPORT_SYMBOL(kill_pid);
1540
1541/*
1542 * These functions support sending signals using preallocated sigqueue
1543 * structures. This is needed "because realtime applications cannot
1544 * afford to lose notifications of asynchronous events, like timer
1545 * expirations or I/O completions". In the case of POSIX Timers
1546 * we allocate the sigqueue structure from the timer_create. If this
1547 * allocation fails we are able to report the failure to the application
1548 * with an EAGAIN error.
1549 */
1550struct sigqueue *sigqueue_alloc(void)
1551{
1552 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1553
1554 if (q)
1555 q->flags |= SIGQUEUE_PREALLOC;
1556
1557 return q;
1558}
1559
1560void sigqueue_free(struct sigqueue *q)
1561{
1562 unsigned long flags;
1563 spinlock_t *lock = ¤t->sighand->siglock;
1564
1565 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1566 /*
1567 * We must hold ->siglock while testing q->list
1568 * to serialize with collect_signal() or with
1569 * __exit_signal()->flush_sigqueue().
1570 */
1571 spin_lock_irqsave(lock, flags);
1572 q->flags &= ~SIGQUEUE_PREALLOC;
1573 /*
1574 * If it is queued it will be freed when dequeued,
1575 * like the "regular" sigqueue.
1576 */
1577 if (!list_empty(&q->list))
1578 q = NULL;
1579 spin_unlock_irqrestore(lock, flags);
1580
1581 if (q)
1582 __sigqueue_free(q);
1583}
1584
1585int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1586{
1587 int sig = q->info.si_signo;
1588 struct sigpending *pending;
1589 unsigned long flags;
1590 int ret, result;
1591
1592 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1593
1594 ret = -1;
1595 if (!likely(lock_task_sighand(t, &flags)))
1596 goto ret;
1597
1598 ret = 1; /* the signal is ignored */
1599 result = TRACE_SIGNAL_IGNORED;
1600 if (!prepare_signal(sig, t, false))
1601 goto out;
1602
1603 ret = 0;
1604 if (unlikely(!list_empty(&q->list))) {
1605 /*
1606 * If an SI_TIMER entry is already queue just increment
1607 * the overrun count.
1608 */
1609 BUG_ON(q->info.si_code != SI_TIMER);
1610 q->info.si_overrun++;
1611 result = TRACE_SIGNAL_ALREADY_PENDING;
1612 goto out;
1613 }
1614 q->info.si_overrun = 0;
1615
1616 signalfd_notify(t, sig);
1617 pending = group ? &t->signal->shared_pending : &t->pending;
1618 list_add_tail(&q->list, &pending->list);
1619 sigaddset(&pending->signal, sig);
1620 complete_signal(sig, t, group);
1621 result = TRACE_SIGNAL_DELIVERED;
1622out:
1623 trace_signal_generate(sig, &q->info, t, group, result);
1624 unlock_task_sighand(t, &flags);
1625ret:
1626 return ret;
1627}
1628
1629/*
1630 * Let a parent know about the death of a child.
1631 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1632 *
1633 * Returns true if our parent ignored us and so we've switched to
1634 * self-reaping.
1635 */
1636bool do_notify_parent(struct task_struct *tsk, int sig)
1637{
1638 struct siginfo info;
1639 unsigned long flags;
1640 struct sighand_struct *psig;
1641 bool autoreap = false;
1642 cputime_t utime, stime;
1643
1644 BUG_ON(sig == -1);
1645
1646 /* do_notify_parent_cldstop should have been called instead. */
1647 BUG_ON(task_is_stopped_or_traced(tsk));
1648
1649 BUG_ON(!tsk->ptrace &&
1650 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1651
1652 if (sig != SIGCHLD) {
1653 /*
1654 * This is only possible if parent == real_parent.
1655 * Check if it has changed security domain.
1656 */
1657 if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1658 sig = SIGCHLD;
1659 }
1660
1661 info.si_signo = sig;
1662 info.si_errno = 0;
1663 /*
1664 * We are under tasklist_lock here so our parent is tied to
1665 * us and cannot change.
1666 *
1667 * task_active_pid_ns will always return the same pid namespace
1668 * until a task passes through release_task.
1669 *
1670 * write_lock() currently calls preempt_disable() which is the
1671 * same as rcu_read_lock(), but according to Oleg, this is not
1672 * correct to rely on this
1673 */
1674 rcu_read_lock();
1675 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1676 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1677 task_uid(tsk));
1678 rcu_read_unlock();
1679
1680 task_cputime(tsk, &utime, &stime);
1681 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1682 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1683
1684 info.si_status = tsk->exit_code & 0x7f;
1685 if (tsk->exit_code & 0x80)
1686 info.si_code = CLD_DUMPED;
1687 else if (tsk->exit_code & 0x7f)
1688 info.si_code = CLD_KILLED;
1689 else {
1690 info.si_code = CLD_EXITED;
1691 info.si_status = tsk->exit_code >> 8;
1692 }
1693
1694 psig = tsk->parent->sighand;
1695 spin_lock_irqsave(&psig->siglock, flags);
1696 if (!tsk->ptrace && sig == SIGCHLD &&
1697 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1698 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1699 /*
1700 * We are exiting and our parent doesn't care. POSIX.1
1701 * defines special semantics for setting SIGCHLD to SIG_IGN
1702 * or setting the SA_NOCLDWAIT flag: we should be reaped
1703 * automatically and not left for our parent's wait4 call.
1704 * Rather than having the parent do it as a magic kind of
1705 * signal handler, we just set this to tell do_exit that we
1706 * can be cleaned up without becoming a zombie. Note that
1707 * we still call __wake_up_parent in this case, because a
1708 * blocked sys_wait4 might now return -ECHILD.
1709 *
1710 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1711 * is implementation-defined: we do (if you don't want
1712 * it, just use SIG_IGN instead).
1713 */
1714 autoreap = true;
1715 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1716 sig = 0;
1717 }
1718 if (valid_signal(sig) && sig)
1719 __group_send_sig_info(sig, &info, tsk->parent);
1720 __wake_up_parent(tsk, tsk->parent);
1721 spin_unlock_irqrestore(&psig->siglock, flags);
1722
1723 return autoreap;
1724}
1725
1726/**
1727 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1728 * @tsk: task reporting the state change
1729 * @for_ptracer: the notification is for ptracer
1730 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1731 *
1732 * Notify @tsk's parent that the stopped/continued state has changed. If
1733 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1734 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1735 *
1736 * CONTEXT:
1737 * Must be called with tasklist_lock at least read locked.
1738 */
1739static void do_notify_parent_cldstop(struct task_struct *tsk,
1740 bool for_ptracer, int why)
1741{
1742 struct siginfo info;
1743 unsigned long flags;
1744 struct task_struct *parent;
1745 struct sighand_struct *sighand;
1746 cputime_t utime, stime;
1747
1748 if (for_ptracer) {
1749 parent = tsk->parent;
1750 } else {
1751 tsk = tsk->group_leader;
1752 parent = tsk->real_parent;
1753 }
1754
1755 info.si_signo = SIGCHLD;
1756 info.si_errno = 0;
1757 /*
1758 * see comment in do_notify_parent() about the following 4 lines
1759 */
1760 rcu_read_lock();
1761 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1762 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1763 rcu_read_unlock();
1764
1765 task_cputime(tsk, &utime, &stime);
1766 info.si_utime = cputime_to_clock_t(utime);
1767 info.si_stime = cputime_to_clock_t(stime);
1768
1769 info.si_code = why;
1770 switch (why) {
1771 case CLD_CONTINUED:
1772 info.si_status = SIGCONT;
1773 break;
1774 case CLD_STOPPED:
1775 info.si_status = tsk->signal->group_exit_code & 0x7f;
1776 break;
1777 case CLD_TRAPPED:
1778 info.si_status = tsk->exit_code & 0x7f;
1779 break;
1780 default:
1781 BUG();
1782 }
1783
1784 sighand = parent->sighand;
1785 spin_lock_irqsave(&sighand->siglock, flags);
1786 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1787 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1788 __group_send_sig_info(SIGCHLD, &info, parent);
1789 /*
1790 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1791 */
1792 __wake_up_parent(tsk, parent);
1793 spin_unlock_irqrestore(&sighand->siglock, flags);
1794}
1795
1796static inline int may_ptrace_stop(void)
1797{
1798 if (!likely(current->ptrace))
1799 return 0;
1800 /*
1801 * Are we in the middle of do_coredump?
1802 * If so and our tracer is also part of the coredump stopping
1803 * is a deadlock situation, and pointless because our tracer
1804 * is dead so don't allow us to stop.
1805 * If SIGKILL was already sent before the caller unlocked
1806 * ->siglock we must see ->core_state != NULL. Otherwise it
1807 * is safe to enter schedule().
1808 *
1809 * This is almost outdated, a task with the pending SIGKILL can't
1810 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1811 * after SIGKILL was already dequeued.
1812 */
1813 if (unlikely(current->mm->core_state) &&
1814 unlikely(current->mm == current->parent->mm))
1815 return 0;
1816
1817 return 1;
1818}
1819
1820/*
1821 * Return non-zero if there is a SIGKILL that should be waking us up.
1822 * Called with the siglock held.
1823 */
1824static int sigkill_pending(struct task_struct *tsk)
1825{
1826 return sigismember(&tsk->pending.signal, SIGKILL) ||
1827 sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1828}
1829
1830/*
1831 * This must be called with current->sighand->siglock held.
1832 *
1833 * This should be the path for all ptrace stops.
1834 * We always set current->last_siginfo while stopped here.
1835 * That makes it a way to test a stopped process for
1836 * being ptrace-stopped vs being job-control-stopped.
1837 *
1838 * If we actually decide not to stop at all because the tracer
1839 * is gone, we keep current->exit_code unless clear_code.
1840 */
1841static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1842 __releases(¤t->sighand->siglock)
1843 __acquires(¤t->sighand->siglock)
1844{
1845 bool gstop_done = false;
1846
1847 if (arch_ptrace_stop_needed(exit_code, info)) {
1848 /*
1849 * The arch code has something special to do before a
1850 * ptrace stop. This is allowed to block, e.g. for faults
1851 * on user stack pages. We can't keep the siglock while
1852 * calling arch_ptrace_stop, so we must release it now.
1853 * To preserve proper semantics, we must do this before
1854 * any signal bookkeeping like checking group_stop_count.
1855 * Meanwhile, a SIGKILL could come in before we retake the
1856 * siglock. That must prevent us from sleeping in TASK_TRACED.
1857 * So after regaining the lock, we must check for SIGKILL.
1858 */
1859 spin_unlock_irq(¤t->sighand->siglock);
1860 arch_ptrace_stop(exit_code, info);
1861 spin_lock_irq(¤t->sighand->siglock);
1862 if (sigkill_pending(current))
1863 return;
1864 }
1865
1866 /*
1867 * We're committing to trapping. TRACED should be visible before
1868 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1869 * Also, transition to TRACED and updates to ->jobctl should be
1870 * atomic with respect to siglock and should be done after the arch
1871 * hook as siglock is released and regrabbed across it.
1872 */
1873 set_current_state(TASK_TRACED);
1874
1875 current->last_siginfo = info;
1876 current->exit_code = exit_code;
1877
1878 /*
1879 * If @why is CLD_STOPPED, we're trapping to participate in a group
1880 * stop. Do the bookkeeping. Note that if SIGCONT was delievered
1881 * across siglock relocks since INTERRUPT was scheduled, PENDING
1882 * could be clear now. We act as if SIGCONT is received after
1883 * TASK_TRACED is entered - ignore it.
1884 */
1885 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1886 gstop_done = task_participate_group_stop(current);
1887
1888 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1889 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1890 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1891 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1892
1893 /* entering a trap, clear TRAPPING */
1894 task_clear_jobctl_trapping(current);
1895
1896 spin_unlock_irq(¤t->sighand->siglock);
1897 read_lock(&tasklist_lock);
1898 if (may_ptrace_stop()) {
1899 /*
1900 * Notify parents of the stop.
1901 *
1902 * While ptraced, there are two parents - the ptracer and
1903 * the real_parent of the group_leader. The ptracer should
1904 * know about every stop while the real parent is only
1905 * interested in the completion of group stop. The states
1906 * for the two don't interact with each other. Notify
1907 * separately unless they're gonna be duplicates.
1908 */
1909 do_notify_parent_cldstop(current, true, why);
1910 if (gstop_done && ptrace_reparented(current))
1911 do_notify_parent_cldstop(current, false, why);
1912
1913 /*
1914 * Don't want to allow preemption here, because
1915 * sys_ptrace() needs this task to be inactive.
1916 *
1917 * XXX: implement read_unlock_no_resched().
1918 */
1919 preempt_disable();
1920 read_unlock(&tasklist_lock);
1921 preempt_enable_no_resched();
1922 freezable_schedule();
1923 } else {
1924 /*
1925 * By the time we got the lock, our tracer went away.
1926 * Don't drop the lock yet, another tracer may come.
1927 *
1928 * If @gstop_done, the ptracer went away between group stop
1929 * completion and here. During detach, it would have set
1930 * JOBCTL_STOP_PENDING on us and we'll re-enter
1931 * TASK_STOPPED in do_signal_stop() on return, so notifying
1932 * the real parent of the group stop completion is enough.
1933 */
1934 if (gstop_done)
1935 do_notify_parent_cldstop(current, false, why);
1936
1937 /* tasklist protects us from ptrace_freeze_traced() */
1938 __set_current_state(TASK_RUNNING);
1939 if (clear_code)
1940 current->exit_code = 0;
1941 read_unlock(&tasklist_lock);
1942 }
1943
1944 /*
1945 * We are back. Now reacquire the siglock before touching
1946 * last_siginfo, so that we are sure to have synchronized with
1947 * any signal-sending on another CPU that wants to examine it.
1948 */
1949 spin_lock_irq(¤t->sighand->siglock);
1950 current->last_siginfo = NULL;
1951
1952 /* LISTENING can be set only during STOP traps, clear it */
1953 current->jobctl &= ~JOBCTL_LISTENING;
1954
1955 /*
1956 * Queued signals ignored us while we were stopped for tracing.
1957 * So check for any that we should take before resuming user mode.
1958 * This sets TIF_SIGPENDING, but never clears it.
1959 */
1960 recalc_sigpending_tsk(current);
1961}
1962
1963static void ptrace_do_notify(int signr, int exit_code, int why)
1964{
1965 siginfo_t info;
1966
1967 memset(&info, 0, sizeof info);
1968 info.si_signo = signr;
1969 info.si_code = exit_code;
1970 info.si_pid = task_pid_vnr(current);
1971 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1972
1973 /* Let the debugger run. */
1974 ptrace_stop(exit_code, why, 1, &info);
1975}
1976
1977void ptrace_notify(int exit_code)
1978{
1979 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1980 if (unlikely(current->task_works))
1981 task_work_run();
1982
1983 spin_lock_irq(¤t->sighand->siglock);
1984 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1985 spin_unlock_irq(¤t->sighand->siglock);
1986}
1987
1988/**
1989 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1990 * @signr: signr causing group stop if initiating
1991 *
1992 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1993 * and participate in it. If already set, participate in the existing
1994 * group stop. If participated in a group stop (and thus slept), %true is
1995 * returned with siglock released.
1996 *
1997 * If ptraced, this function doesn't handle stop itself. Instead,
1998 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1999 * untouched. The caller must ensure that INTERRUPT trap handling takes
2000 * places afterwards.
2001 *
2002 * CONTEXT:
2003 * Must be called with @current->sighand->siglock held, which is released
2004 * on %true return.
2005 *
2006 * RETURNS:
2007 * %false if group stop is already cancelled or ptrace trap is scheduled.
2008 * %true if participated in group stop.
2009 */
2010static bool do_signal_stop(int signr)
2011 __releases(¤t->sighand->siglock)
2012{
2013 struct signal_struct *sig = current->signal;
2014
2015 if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2016 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2017 struct task_struct *t;
2018
2019 /* signr will be recorded in task->jobctl for retries */
2020 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2021
2022 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2023 unlikely(signal_group_exit(sig)))
2024 return false;
2025 /*
2026 * There is no group stop already in progress. We must
2027 * initiate one now.
2028 *
2029 * While ptraced, a task may be resumed while group stop is
2030 * still in effect and then receive a stop signal and
2031 * initiate another group stop. This deviates from the
2032 * usual behavior as two consecutive stop signals can't
2033 * cause two group stops when !ptraced. That is why we
2034 * also check !task_is_stopped(t) below.
2035 *
2036 * The condition can be distinguished by testing whether
2037 * SIGNAL_STOP_STOPPED is already set. Don't generate
2038 * group_exit_code in such case.
2039 *
2040 * This is not necessary for SIGNAL_STOP_CONTINUED because
2041 * an intervening stop signal is required to cause two
2042 * continued events regardless of ptrace.
2043 */
2044 if (!(sig->flags & SIGNAL_STOP_STOPPED))
2045 sig->group_exit_code = signr;
2046
2047 sig->group_stop_count = 0;
2048
2049 if (task_set_jobctl_pending(current, signr | gstop))
2050 sig->group_stop_count++;
2051
2052 t = current;
2053 while_each_thread(current, t) {
2054 /*
2055 * Setting state to TASK_STOPPED for a group
2056 * stop is always done with the siglock held,
2057 * so this check has no races.
2058 */
2059 if (!task_is_stopped(t) &&
2060 task_set_jobctl_pending(t, signr | gstop)) {
2061 sig->group_stop_count++;
2062 if (likely(!(t->ptrace & PT_SEIZED)))
2063 signal_wake_up(t, 0);
2064 else
2065 ptrace_trap_notify(t);
2066 }
2067 }
2068 }
2069
2070 if (likely(!current->ptrace)) {
2071 int notify = 0;
2072
2073 /*
2074 * If there are no other threads in the group, or if there
2075 * is a group stop in progress and we are the last to stop,
2076 * report to the parent.
2077 */
2078 if (task_participate_group_stop(current))
2079 notify = CLD_STOPPED;
2080
2081 __set_current_state(TASK_STOPPED);
2082 spin_unlock_irq(¤t->sighand->siglock);
2083
2084 /*
2085 * Notify the parent of the group stop completion. Because
2086 * we're not holding either the siglock or tasklist_lock
2087 * here, ptracer may attach inbetween; however, this is for
2088 * group stop and should always be delivered to the real
2089 * parent of the group leader. The new ptracer will get
2090 * its notification when this task transitions into
2091 * TASK_TRACED.
2092 */
2093 if (notify) {
2094 read_lock(&tasklist_lock);
2095 do_notify_parent_cldstop(current, false, notify);
2096 read_unlock(&tasklist_lock);
2097 }
2098
2099 /* Now we don't run again until woken by SIGCONT or SIGKILL */
2100 freezable_schedule();
2101 return true;
2102 } else {
2103 /*
2104 * While ptraced, group stop is handled by STOP trap.
2105 * Schedule it and let the caller deal with it.
2106 */
2107 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2108 return false;
2109 }
2110}
2111
2112/**
2113 * do_jobctl_trap - take care of ptrace jobctl traps
2114 *
2115 * When PT_SEIZED, it's used for both group stop and explicit
2116 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
2117 * accompanying siginfo. If stopped, lower eight bits of exit_code contain
2118 * the stop signal; otherwise, %SIGTRAP.
2119 *
2120 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2121 * number as exit_code and no siginfo.
2122 *
2123 * CONTEXT:
2124 * Must be called with @current->sighand->siglock held, which may be
2125 * released and re-acquired before returning with intervening sleep.
2126 */
2127static void do_jobctl_trap(void)
2128{
2129 struct signal_struct *signal = current->signal;
2130 int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2131
2132 if (current->ptrace & PT_SEIZED) {
2133 if (!signal->group_stop_count &&
2134 !(signal->flags & SIGNAL_STOP_STOPPED))
2135 signr = SIGTRAP;
2136 WARN_ON_ONCE(!signr);
2137 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2138 CLD_STOPPED);
2139 } else {
2140 WARN_ON_ONCE(!signr);
2141 ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2142 current->exit_code = 0;
2143 }
2144}
2145
2146static int ptrace_signal(int signr, siginfo_t *info)
2147{
2148 ptrace_signal_deliver();
2149 /*
2150 * We do not check sig_kernel_stop(signr) but set this marker
2151 * unconditionally because we do not know whether debugger will
2152 * change signr. This flag has no meaning unless we are going
2153 * to stop after return from ptrace_stop(). In this case it will
2154 * be checked in do_signal_stop(), we should only stop if it was
2155 * not cleared by SIGCONT while we were sleeping. See also the
2156 * comment in dequeue_signal().
2157 */
2158 current->jobctl |= JOBCTL_STOP_DEQUEUED;
2159 ptrace_stop(signr, CLD_TRAPPED, 0, info);
2160
2161 /* We're back. Did the debugger cancel the sig? */
2162 signr = current->exit_code;
2163 if (signr == 0)
2164 return signr;
2165
2166 current->exit_code = 0;
2167
2168 /*
2169 * Update the siginfo structure if the signal has
2170 * changed. If the debugger wanted something
2171 * specific in the siginfo structure then it should
2172 * have updated *info via PTRACE_SETSIGINFO.
2173 */
2174 if (signr != info->si_signo) {
2175 info->si_signo = signr;
2176 info->si_errno = 0;
2177 info->si_code = SI_USER;
2178 rcu_read_lock();
2179 info->si_pid = task_pid_vnr(current->parent);
2180 info->si_uid = from_kuid_munged(current_user_ns(),
2181 task_uid(current->parent));
2182 rcu_read_unlock();
2183 }
2184
2185 /* If the (new) signal is now blocked, requeue it. */
2186 if (sigismember(¤t->blocked, signr)) {
2187 specific_send_sig_info(signr, info, current);
2188 signr = 0;
2189 }
2190
2191 return signr;
2192}
2193
2194int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2195 struct pt_regs *regs, void *cookie)
2196{
2197 struct sighand_struct *sighand = current->sighand;
2198 struct signal_struct *signal = current->signal;
2199 int signr;
2200
2201 if (unlikely(current->task_works))
2202 task_work_run();
2203
2204 if (unlikely(uprobe_deny_signal()))
2205 return 0;
2206
2207 /*
2208 * Do this once, we can't return to user-mode if freezing() == T.
2209 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2210 * thus do not need another check after return.
2211 */
2212 try_to_freeze();
2213
2214relock:
2215 spin_lock_irq(&sighand->siglock);
2216 /*
2217 * Every stopped thread goes here after wakeup. Check to see if
2218 * we should notify the parent, prepare_signal(SIGCONT) encodes
2219 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2220 */
2221 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2222 int why;
2223
2224 if (signal->flags & SIGNAL_CLD_CONTINUED)
2225 why = CLD_CONTINUED;
2226 else
2227 why = CLD_STOPPED;
2228
2229 signal->flags &= ~SIGNAL_CLD_MASK;
2230
2231 spin_unlock_irq(&sighand->siglock);
2232
2233 /*
2234 * Notify the parent that we're continuing. This event is
2235 * always per-process and doesn't make whole lot of sense
2236 * for ptracers, who shouldn't consume the state via
2237 * wait(2) either, but, for backward compatibility, notify
2238 * the ptracer of the group leader too unless it's gonna be
2239 * a duplicate.
2240 */
2241 read_lock(&tasklist_lock);
2242 do_notify_parent_cldstop(current, false, why);
2243
2244 if (ptrace_reparented(current->group_leader))
2245 do_notify_parent_cldstop(current->group_leader,
2246 true, why);
2247 read_unlock(&tasklist_lock);
2248
2249 goto relock;
2250 }
2251
2252 for (;;) {
2253 struct k_sigaction *ka;
2254
2255 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2256 do_signal_stop(0))
2257 goto relock;
2258
2259 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2260 do_jobctl_trap();
2261 spin_unlock_irq(&sighand->siglock);
2262 goto relock;
2263 }
2264
2265 signr = dequeue_signal(current, ¤t->blocked, info);
2266
2267 if (!signr)
2268 break; /* will return 0 */
2269
2270 if (unlikely(current->ptrace) && signr != SIGKILL) {
2271 signr = ptrace_signal(signr, info);
2272 if (!signr)
2273 continue;
2274 }
2275
2276 ka = &sighand->action[signr-1];
2277
2278 /* Trace actually delivered signals. */
2279 trace_signal_deliver(signr, info, ka);
2280
2281 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
2282 continue;
2283 if (ka->sa.sa_handler != SIG_DFL) {
2284 /* Run the handler. */
2285 *return_ka = *ka;
2286
2287 if (ka->sa.sa_flags & SA_ONESHOT)
2288 ka->sa.sa_handler = SIG_DFL;
2289
2290 break; /* will return non-zero "signr" value */
2291 }
2292
2293 /*
2294 * Now we are doing the default action for this signal.
2295 */
2296 if (sig_kernel_ignore(signr)) /* Default is nothing. */
2297 continue;
2298
2299 /*
2300 * Global init gets no signals it doesn't want.
2301 * Container-init gets no signals it doesn't want from same
2302 * container.
2303 *
2304 * Note that if global/container-init sees a sig_kernel_only()
2305 * signal here, the signal must have been generated internally
2306 * or must have come from an ancestor namespace. In either
2307 * case, the signal cannot be dropped.
2308 */
2309 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2310 !sig_kernel_only(signr))
2311 continue;
2312
2313 if (sig_kernel_stop(signr)) {
2314 /*
2315 * The default action is to stop all threads in
2316 * the thread group. The job control signals
2317 * do nothing in an orphaned pgrp, but SIGSTOP
2318 * always works. Note that siglock needs to be
2319 * dropped during the call to is_orphaned_pgrp()
2320 * because of lock ordering with tasklist_lock.
2321 * This allows an intervening SIGCONT to be posted.
2322 * We need to check for that and bail out if necessary.
2323 */
2324 if (signr != SIGSTOP) {
2325 spin_unlock_irq(&sighand->siglock);
2326
2327 /* signals can be posted during this window */
2328
2329 if (is_current_pgrp_orphaned())
2330 goto relock;
2331
2332 spin_lock_irq(&sighand->siglock);
2333 }
2334
2335 if (likely(do_signal_stop(info->si_signo))) {
2336 /* It released the siglock. */
2337 goto relock;
2338 }
2339
2340 /*
2341 * We didn't actually stop, due to a race
2342 * with SIGCONT or something like that.
2343 */
2344 continue;
2345 }
2346
2347 spin_unlock_irq(&sighand->siglock);
2348
2349 /*
2350 * Anything else is fatal, maybe with a core dump.
2351 */
2352 current->flags |= PF_SIGNALED;
2353
2354 if (sig_kernel_coredump(signr)) {
2355 if (print_fatal_signals)
2356 print_fatal_signal(info->si_signo);
2357 proc_coredump_connector(current);
2358 /*
2359 * If it was able to dump core, this kills all
2360 * other threads in the group and synchronizes with
2361 * their demise. If we lost the race with another
2362 * thread getting here, it set group_exit_code
2363 * first and our do_group_exit call below will use
2364 * that value and ignore the one we pass it.
2365 */
2366 do_coredump(info);
2367 }
2368
2369 /*
2370 * Death signals, no core dump.
2371 */
2372 do_group_exit(info->si_signo);
2373 /* NOTREACHED */
2374 }
2375 spin_unlock_irq(&sighand->siglock);
2376 return signr;
2377}
2378
2379/**
2380 * signal_delivered -
2381 * @sig: number of signal being delivered
2382 * @info: siginfo_t of signal being delivered
2383 * @ka: sigaction setting that chose the handler
2384 * @regs: user register state
2385 * @stepping: nonzero if debugger single-step or block-step in use
2386 *
2387 * This function should be called when a signal has successfully been
2388 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2389 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2390 * is set in @ka->sa.sa_flags. Tracing is notified.
2391 */
2392void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2393 struct pt_regs *regs, int stepping)
2394{
2395 sigset_t blocked;
2396
2397 /* A signal was successfully delivered, and the
2398 saved sigmask was stored on the signal frame,
2399 and will be restored by sigreturn. So we can
2400 simply clear the restore sigmask flag. */
2401 clear_restore_sigmask();
2402
2403 sigorsets(&blocked, ¤t->blocked, &ka->sa.sa_mask);
2404 if (!(ka->sa.sa_flags & SA_NODEFER))
2405 sigaddset(&blocked, sig);
2406 set_current_blocked(&blocked);
2407 tracehook_signal_handler(sig, info, ka, regs, stepping);
2408}
2409
2410void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2411{
2412 if (failed)
2413 force_sigsegv(ksig->sig, current);
2414 else
2415 signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2416 signal_pt_regs(), stepping);
2417}
2418
2419/*
2420 * It could be that complete_signal() picked us to notify about the
2421 * group-wide signal. Other threads should be notified now to take
2422 * the shared signals in @which since we will not.
2423 */
2424static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2425{
2426 sigset_t retarget;
2427 struct task_struct *t;
2428
2429 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2430 if (sigisemptyset(&retarget))
2431 return;
2432
2433 t = tsk;
2434 while_each_thread(tsk, t) {
2435 if (t->flags & PF_EXITING)
2436 continue;
2437
2438 if (!has_pending_signals(&retarget, &t->blocked))
2439 continue;
2440 /* Remove the signals this thread can handle. */
2441 sigandsets(&retarget, &retarget, &t->blocked);
2442
2443 if (!signal_pending(t))
2444 signal_wake_up(t, 0);
2445
2446 if (sigisemptyset(&retarget))
2447 break;
2448 }
2449}
2450
2451void exit_signals(struct task_struct *tsk)
2452{
2453 int group_stop = 0;
2454 sigset_t unblocked;
2455
2456 /*
2457 * @tsk is about to have PF_EXITING set - lock out users which
2458 * expect stable threadgroup.
2459 */
2460 threadgroup_change_begin(tsk);
2461
2462 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2463 tsk->flags |= PF_EXITING;
2464 threadgroup_change_end(tsk);
2465 return;
2466 }
2467
2468 spin_lock_irq(&tsk->sighand->siglock);
2469 /*
2470 * From now this task is not visible for group-wide signals,
2471 * see wants_signal(), do_signal_stop().
2472 */
2473 tsk->flags |= PF_EXITING;
2474
2475 threadgroup_change_end(tsk);
2476
2477 if (!signal_pending(tsk))
2478 goto out;
2479
2480 unblocked = tsk->blocked;
2481 signotset(&unblocked);
2482 retarget_shared_pending(tsk, &unblocked);
2483
2484 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2485 task_participate_group_stop(tsk))
2486 group_stop = CLD_STOPPED;
2487out:
2488 spin_unlock_irq(&tsk->sighand->siglock);
2489
2490 /*
2491 * If group stop has completed, deliver the notification. This
2492 * should always go to the real parent of the group leader.
2493 */
2494 if (unlikely(group_stop)) {
2495 read_lock(&tasklist_lock);
2496 do_notify_parent_cldstop(tsk, false, group_stop);
2497 read_unlock(&tasklist_lock);
2498 }
2499}
2500
2501EXPORT_SYMBOL(recalc_sigpending);
2502EXPORT_SYMBOL_GPL(dequeue_signal);
2503EXPORT_SYMBOL(flush_signals);
2504EXPORT_SYMBOL(force_sig);
2505EXPORT_SYMBOL(send_sig);
2506EXPORT_SYMBOL(send_sig_info);
2507EXPORT_SYMBOL(sigprocmask);
2508EXPORT_SYMBOL(block_all_signals);
2509EXPORT_SYMBOL(unblock_all_signals);
2510
2511
2512/*
2513 * System call entry points.
2514 */
2515
2516/**
2517 * sys_restart_syscall - restart a system call
2518 */
2519SYSCALL_DEFINE0(restart_syscall)
2520{
2521 struct restart_block *restart = ¤t_thread_info()->restart_block;
2522 return restart->fn(restart);
2523}
2524
2525long do_no_restart_syscall(struct restart_block *param)
2526{
2527 return -EINTR;
2528}
2529
2530static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2531{
2532 if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2533 sigset_t newblocked;
2534 /* A set of now blocked but previously unblocked signals. */
2535 sigandnsets(&newblocked, newset, ¤t->blocked);
2536 retarget_shared_pending(tsk, &newblocked);
2537 }
2538 tsk->blocked = *newset;
2539 recalc_sigpending();
2540}
2541
2542/**
2543 * set_current_blocked - change current->blocked mask
2544 * @newset: new mask
2545 *
2546 * It is wrong to change ->blocked directly, this helper should be used
2547 * to ensure the process can't miss a shared signal we are going to block.
2548 */
2549void set_current_blocked(sigset_t *newset)
2550{
2551 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2552 __set_current_blocked(newset);
2553}
2554
2555void __set_current_blocked(const sigset_t *newset)
2556{
2557 struct task_struct *tsk = current;
2558
2559 spin_lock_irq(&tsk->sighand->siglock);
2560 __set_task_blocked(tsk, newset);
2561 spin_unlock_irq(&tsk->sighand->siglock);
2562}
2563
2564/*
2565 * This is also useful for kernel threads that want to temporarily
2566 * (or permanently) block certain signals.
2567 *
2568 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2569 * interface happily blocks "unblockable" signals like SIGKILL
2570 * and friends.
2571 */
2572int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2573{
2574 struct task_struct *tsk = current;
2575 sigset_t newset;
2576
2577 /* Lockless, only current can change ->blocked, never from irq */
2578 if (oldset)
2579 *oldset = tsk->blocked;
2580
2581 switch (how) {
2582 case SIG_BLOCK:
2583 sigorsets(&newset, &tsk->blocked, set);
2584 break;
2585 case SIG_UNBLOCK:
2586 sigandnsets(&newset, &tsk->blocked, set);
2587 break;
2588 case SIG_SETMASK:
2589 newset = *set;
2590 break;
2591 default:
2592 return -EINVAL;
2593 }
2594
2595 __set_current_blocked(&newset);
2596 return 0;
2597}
2598
2599/**
2600 * sys_rt_sigprocmask - change the list of currently blocked signals
2601 * @how: whether to add, remove, or set signals
2602 * @nset: stores pending signals
2603 * @oset: previous value of signal mask if non-null
2604 * @sigsetsize: size of sigset_t type
2605 */
2606SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2607 sigset_t __user *, oset, size_t, sigsetsize)
2608{
2609 sigset_t old_set, new_set;
2610 int error;
2611
2612 /* XXX: Don't preclude handling different sized sigset_t's. */
2613 if (sigsetsize != sizeof(sigset_t))
2614 return -EINVAL;
2615
2616 old_set = current->blocked;
2617
2618 if (nset) {
2619 if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2620 return -EFAULT;
2621 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2622
2623 error = sigprocmask(how, &new_set, NULL);
2624 if (error)
2625 return error;
2626 }
2627
2628 if (oset) {
2629 if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2630 return -EFAULT;
2631 }
2632
2633 return 0;
2634}
2635
2636#ifdef CONFIG_COMPAT
2637COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2638 compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2639{
2640#ifdef __BIG_ENDIAN
2641 sigset_t old_set = current->blocked;
2642
2643 /* XXX: Don't preclude handling different sized sigset_t's. */
2644 if (sigsetsize != sizeof(sigset_t))
2645 return -EINVAL;
2646
2647 if (nset) {
2648 compat_sigset_t new32;
2649 sigset_t new_set;
2650 int error;
2651 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2652 return -EFAULT;
2653
2654 sigset_from_compat(&new_set, &new32);
2655 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2656
2657 error = sigprocmask(how, &new_set, NULL);
2658 if (error)
2659 return error;
2660 }
2661 if (oset) {
2662 compat_sigset_t old32;
2663 sigset_to_compat(&old32, &old_set);
2664 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2665 return -EFAULT;
2666 }
2667 return 0;
2668#else
2669 return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2670 (sigset_t __user *)oset, sigsetsize);
2671#endif
2672}
2673#endif
2674
2675static int do_sigpending(void *set, unsigned long sigsetsize)
2676{
2677 if (sigsetsize > sizeof(sigset_t))
2678 return -EINVAL;
2679
2680 spin_lock_irq(¤t->sighand->siglock);
2681 sigorsets(set, ¤t->pending.signal,
2682 ¤t->signal->shared_pending.signal);
2683 spin_unlock_irq(¤t->sighand->siglock);
2684
2685 /* Outside the lock because only this thread touches it. */
2686 sigandsets(set, ¤t->blocked, set);
2687 return 0;
2688}
2689
2690/**
2691 * sys_rt_sigpending - examine a pending signal that has been raised
2692 * while blocked
2693 * @uset: stores pending signals
2694 * @sigsetsize: size of sigset_t type or larger
2695 */
2696SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2697{
2698 sigset_t set;
2699 int err = do_sigpending(&set, sigsetsize);
2700 if (!err && copy_to_user(uset, &set, sigsetsize))
2701 err = -EFAULT;
2702 return err;
2703}
2704
2705#ifdef CONFIG_COMPAT
2706COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2707 compat_size_t, sigsetsize)
2708{
2709#ifdef __BIG_ENDIAN
2710 sigset_t set;
2711 int err = do_sigpending(&set, sigsetsize);
2712 if (!err) {
2713 compat_sigset_t set32;
2714 sigset_to_compat(&set32, &set);
2715 /* we can get here only if sigsetsize <= sizeof(set) */
2716 if (copy_to_user(uset, &set32, sigsetsize))
2717 err = -EFAULT;
2718 }
2719 return err;
2720#else
2721 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2722#endif
2723}
2724#endif
2725
2726#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2727
2728int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2729{
2730 int err;
2731
2732 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2733 return -EFAULT;
2734 if (from->si_code < 0)
2735 return __copy_to_user(to, from, sizeof(siginfo_t))
2736 ? -EFAULT : 0;
2737 /*
2738 * If you change siginfo_t structure, please be sure
2739 * this code is fixed accordingly.
2740 * Please remember to update the signalfd_copyinfo() function
2741 * inside fs/signalfd.c too, in case siginfo_t changes.
2742 * It should never copy any pad contained in the structure
2743 * to avoid security leaks, but must copy the generic
2744 * 3 ints plus the relevant union member.
2745 */
2746 err = __put_user(from->si_signo, &to->si_signo);
2747 err |= __put_user(from->si_errno, &to->si_errno);
2748 err |= __put_user((short)from->si_code, &to->si_code);
2749 switch (from->si_code & __SI_MASK) {
2750 case __SI_KILL:
2751 err |= __put_user(from->si_pid, &to->si_pid);
2752 err |= __put_user(from->si_uid, &to->si_uid);
2753 break;
2754 case __SI_TIMER:
2755 err |= __put_user(from->si_tid, &to->si_tid);
2756 err |= __put_user(from->si_overrun, &to->si_overrun);
2757 err |= __put_user(from->si_ptr, &to->si_ptr);
2758 break;
2759 case __SI_POLL:
2760 err |= __put_user(from->si_band, &to->si_band);
2761 err |= __put_user(from->si_fd, &to->si_fd);
2762 break;
2763 case __SI_FAULT:
2764 err |= __put_user(from->si_addr, &to->si_addr);
2765#ifdef __ARCH_SI_TRAPNO
2766 err |= __put_user(from->si_trapno, &to->si_trapno);
2767#endif
2768#ifdef BUS_MCEERR_AO
2769 /*
2770 * Other callers might not initialize the si_lsb field,
2771 * so check explicitly for the right codes here.
2772 */
2773 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2774 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2775#endif
2776 break;
2777 case __SI_CHLD:
2778 err |= __put_user(from->si_pid, &to->si_pid);
2779 err |= __put_user(from->si_uid, &to->si_uid);
2780 err |= __put_user(from->si_status, &to->si_status);
2781 err |= __put_user(from->si_utime, &to->si_utime);
2782 err |= __put_user(from->si_stime, &to->si_stime);
2783 break;
2784 case __SI_RT: /* This is not generated by the kernel as of now. */
2785 case __SI_MESGQ: /* But this is */
2786 err |= __put_user(from->si_pid, &to->si_pid);
2787 err |= __put_user(from->si_uid, &to->si_uid);
2788 err |= __put_user(from->si_ptr, &to->si_ptr);
2789 break;
2790#ifdef __ARCH_SIGSYS
2791 case __SI_SYS:
2792 err |= __put_user(from->si_call_addr, &to->si_call_addr);
2793 err |= __put_user(from->si_syscall, &to->si_syscall);
2794 err |= __put_user(from->si_arch, &to->si_arch);
2795 break;
2796#endif
2797 default: /* this is just in case for now ... */
2798 err |= __put_user(from->si_pid, &to->si_pid);
2799 err |= __put_user(from->si_uid, &to->si_uid);
2800 break;
2801 }
2802 return err;
2803}
2804
2805#endif
2806
2807/**
2808 * do_sigtimedwait - wait for queued signals specified in @which
2809 * @which: queued signals to wait for
2810 * @info: if non-null, the signal's siginfo is returned here
2811 * @ts: upper bound on process time suspension
2812 */
2813int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2814 const struct timespec *ts)
2815{
2816 struct task_struct *tsk = current;
2817 long timeout = MAX_SCHEDULE_TIMEOUT;
2818 sigset_t mask = *which;
2819 int sig;
2820
2821 if (ts) {
2822 if (!timespec_valid(ts))
2823 return -EINVAL;
2824 timeout = timespec_to_jiffies(ts);
2825 /*
2826 * We can be close to the next tick, add another one
2827 * to ensure we will wait at least the time asked for.
2828 */
2829 if (ts->tv_sec || ts->tv_nsec)
2830 timeout++;
2831 }
2832
2833 /*
2834 * Invert the set of allowed signals to get those we want to block.
2835 */
2836 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2837 signotset(&mask);
2838
2839 spin_lock_irq(&tsk->sighand->siglock);
2840 sig = dequeue_signal(tsk, &mask, info);
2841 if (!sig && timeout) {
2842 /*
2843 * None ready, temporarily unblock those we're interested
2844 * while we are sleeping in so that we'll be awakened when
2845 * they arrive. Unblocking is always fine, we can avoid
2846 * set_current_blocked().
2847 */
2848 tsk->real_blocked = tsk->blocked;
2849 sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2850 recalc_sigpending();
2851 spin_unlock_irq(&tsk->sighand->siglock);
2852
2853 timeout = freezable_schedule_timeout_interruptible(timeout);
2854
2855 spin_lock_irq(&tsk->sighand->siglock);
2856 __set_task_blocked(tsk, &tsk->real_blocked);
2857 siginitset(&tsk->real_blocked, 0);
2858 sig = dequeue_signal(tsk, &mask, info);
2859 }
2860 spin_unlock_irq(&tsk->sighand->siglock);
2861
2862 if (sig)
2863 return sig;
2864 return timeout ? -EINTR : -EAGAIN;
2865}
2866
2867/**
2868 * sys_rt_sigtimedwait - synchronously wait for queued signals specified
2869 * in @uthese
2870 * @uthese: queued signals to wait for
2871 * @uinfo: if non-null, the signal's siginfo is returned here
2872 * @uts: upper bound on process time suspension
2873 * @sigsetsize: size of sigset_t type
2874 */
2875SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2876 siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2877 size_t, sigsetsize)
2878{
2879 sigset_t these;
2880 struct timespec ts;
2881 siginfo_t info;
2882 int ret;
2883
2884 /* XXX: Don't preclude handling different sized sigset_t's. */
2885 if (sigsetsize != sizeof(sigset_t))
2886 return -EINVAL;
2887
2888 if (copy_from_user(&these, uthese, sizeof(these)))
2889 return -EFAULT;
2890
2891 if (uts) {
2892 if (copy_from_user(&ts, uts, sizeof(ts)))
2893 return -EFAULT;
2894 }
2895
2896 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2897
2898 if (ret > 0 && uinfo) {
2899 if (copy_siginfo_to_user(uinfo, &info))
2900 ret = -EFAULT;
2901 }
2902
2903 return ret;
2904}
2905
2906/**
2907 * sys_kill - send a signal to a process
2908 * @pid: the PID of the process
2909 * @sig: signal to be sent
2910 */
2911SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2912{
2913 struct siginfo info;
2914
2915 info.si_signo = sig;
2916 info.si_errno = 0;
2917 info.si_code = SI_USER;
2918 info.si_pid = task_tgid_vnr(current);
2919 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2920
2921 return kill_something_info(sig, &info, pid);
2922}
2923
2924static int
2925do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2926{
2927 struct task_struct *p;
2928 int error = -ESRCH;
2929
2930 rcu_read_lock();
2931 p = find_task_by_vpid(pid);
2932 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2933 error = check_kill_permission(sig, info, p);
2934 /*
2935 * The null signal is a permissions and process existence
2936 * probe. No signal is actually delivered.
2937 */
2938 if (!error && sig) {
2939 error = do_send_sig_info(sig, info, p, false);
2940 /*
2941 * If lock_task_sighand() failed we pretend the task
2942 * dies after receiving the signal. The window is tiny,
2943 * and the signal is private anyway.
2944 */
2945 if (unlikely(error == -ESRCH))
2946 error = 0;
2947 }
2948 }
2949 rcu_read_unlock();
2950
2951 return error;
2952}
2953
2954static int do_tkill(pid_t tgid, pid_t pid, int sig)
2955{
2956 struct siginfo info = {};
2957
2958 info.si_signo = sig;
2959 info.si_errno = 0;
2960 info.si_code = SI_TKILL;
2961 info.si_pid = task_tgid_vnr(current);
2962 info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2963
2964 return do_send_specific(tgid, pid, sig, &info);
2965}
2966
2967/**
2968 * sys_tgkill - send signal to one specific thread
2969 * @tgid: the thread group ID of the thread
2970 * @pid: the PID of the thread
2971 * @sig: signal to be sent
2972 *
2973 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2974 * exists but it's not belonging to the target process anymore. This
2975 * method solves the problem of threads exiting and PIDs getting reused.
2976 */
2977SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2978{
2979 /* This is only valid for single tasks */
2980 if (pid <= 0 || tgid <= 0)
2981 return -EINVAL;
2982
2983 return do_tkill(tgid, pid, sig);
2984}
2985
2986/**
2987 * sys_tkill - send signal to one specific task
2988 * @pid: the PID of the task
2989 * @sig: signal to be sent
2990 *
2991 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2992 */
2993SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2994{
2995 /* This is only valid for single tasks */
2996 if (pid <= 0)
2997 return -EINVAL;
2998
2999 return do_tkill(0, pid, sig);
3000}
3001
3002static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3003{
3004 /* Not even root can pretend to send signals from the kernel.
3005 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3006 */
3007 if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3008 (task_pid_vnr(current) != pid)) {
3009 /* We used to allow any < 0 si_code */
3010 WARN_ON_ONCE(info->si_code < 0);
3011 return -EPERM;
3012 }
3013 info->si_signo = sig;
3014
3015 /* POSIX.1b doesn't mention process groups. */
3016 return kill_proc_info(sig, info, pid);
3017}
3018
3019/**
3020 * sys_rt_sigqueueinfo - send signal information to a signal
3021 * @pid: the PID of the thread
3022 * @sig: signal to be sent
3023 * @uinfo: signal info to be sent
3024 */
3025SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3026 siginfo_t __user *, uinfo)
3027{
3028 siginfo_t info;
3029 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3030 return -EFAULT;
3031 return do_rt_sigqueueinfo(pid, sig, &info);
3032}
3033
3034#ifdef CONFIG_COMPAT
3035COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3036 compat_pid_t, pid,
3037 int, sig,
3038 struct compat_siginfo __user *, uinfo)
3039{
3040 siginfo_t info;
3041 int ret = copy_siginfo_from_user32(&info, uinfo);
3042 if (unlikely(ret))
3043 return ret;
3044 return do_rt_sigqueueinfo(pid, sig, &info);
3045}
3046#endif
3047
3048static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3049{
3050 /* This is only valid for single tasks */
3051 if (pid <= 0 || tgid <= 0)
3052 return -EINVAL;
3053
3054 /* Not even root can pretend to send signals from the kernel.
3055 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3056 */
3057 if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3058 (task_pid_vnr(current) != pid)) {
3059 /* We used to allow any < 0 si_code */
3060 WARN_ON_ONCE(info->si_code < 0);
3061 return -EPERM;
3062 }
3063 info->si_signo = sig;
3064
3065 return do_send_specific(tgid, pid, sig, info);
3066}
3067
3068SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3069 siginfo_t __user *, uinfo)
3070{
3071 siginfo_t info;
3072
3073 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3074 return -EFAULT;
3075
3076 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3077}
3078
3079#ifdef CONFIG_COMPAT
3080COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3081 compat_pid_t, tgid,
3082 compat_pid_t, pid,
3083 int, sig,
3084 struct compat_siginfo __user *, uinfo)
3085{
3086 siginfo_t info;
3087
3088 if (copy_siginfo_from_user32(&info, uinfo))
3089 return -EFAULT;
3090 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3091}
3092#endif
3093
3094int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3095{
3096 struct task_struct *t = current;
3097 struct k_sigaction *k;
3098 sigset_t mask;
3099
3100 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3101 return -EINVAL;
3102
3103 k = &t->sighand->action[sig-1];
3104
3105 spin_lock_irq(¤t->sighand->siglock);
3106 if (oact)
3107 *oact = *k;
3108
3109 if (act) {
3110 sigdelsetmask(&act->sa.sa_mask,
3111 sigmask(SIGKILL) | sigmask(SIGSTOP));
3112 *k = *act;
3113 /*
3114 * POSIX 3.3.1.3:
3115 * "Setting a signal action to SIG_IGN for a signal that is
3116 * pending shall cause the pending signal to be discarded,
3117 * whether or not it is blocked."
3118 *
3119 * "Setting a signal action to SIG_DFL for a signal that is
3120 * pending and whose default action is to ignore the signal
3121 * (for example, SIGCHLD), shall cause the pending signal to
3122 * be discarded, whether or not it is blocked"
3123 */
3124 if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3125 sigemptyset(&mask);
3126 sigaddset(&mask, sig);
3127 rm_from_queue_full(&mask, &t->signal->shared_pending);
3128 do {
3129 rm_from_queue_full(&mask, &t->pending);
3130 } while_each_thread(current, t);
3131 }
3132 }
3133
3134 spin_unlock_irq(¤t->sighand->siglock);
3135 return 0;
3136}
3137
3138static int
3139do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3140{
3141 stack_t oss;
3142 int error;
3143
3144 oss.ss_sp = (void __user *) current->sas_ss_sp;
3145 oss.ss_size = current->sas_ss_size;
3146 oss.ss_flags = sas_ss_flags(sp);
3147
3148 if (uss) {
3149 void __user *ss_sp;
3150 size_t ss_size;
3151 int ss_flags;
3152
3153 error = -EFAULT;
3154 if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3155 goto out;
3156 error = __get_user(ss_sp, &uss->ss_sp) |
3157 __get_user(ss_flags, &uss->ss_flags) |
3158 __get_user(ss_size, &uss->ss_size);
3159 if (error)
3160 goto out;
3161
3162 error = -EPERM;
3163 if (on_sig_stack(sp))
3164 goto out;
3165
3166 error = -EINVAL;
3167 /*
3168 * Note - this code used to test ss_flags incorrectly:
3169 * old code may have been written using ss_flags==0
3170 * to mean ss_flags==SS_ONSTACK (as this was the only
3171 * way that worked) - this fix preserves that older
3172 * mechanism.
3173 */
3174 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3175 goto out;
3176
3177 if (ss_flags == SS_DISABLE) {
3178 ss_size = 0;
3179 ss_sp = NULL;
3180 } else {
3181 error = -ENOMEM;
3182 if (ss_size < MINSIGSTKSZ)
3183 goto out;
3184 }
3185
3186 current->sas_ss_sp = (unsigned long) ss_sp;
3187 current->sas_ss_size = ss_size;
3188 }
3189
3190 error = 0;
3191 if (uoss) {
3192 error = -EFAULT;
3193 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3194 goto out;
3195 error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3196 __put_user(oss.ss_size, &uoss->ss_size) |
3197 __put_user(oss.ss_flags, &uoss->ss_flags);
3198 }
3199
3200out:
3201 return error;
3202}
3203SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3204{
3205 return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3206}
3207
3208int restore_altstack(const stack_t __user *uss)
3209{
3210 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3211 /* squash all but EFAULT for now */
3212 return err == -EFAULT ? err : 0;
3213}
3214
3215int __save_altstack(stack_t __user *uss, unsigned long sp)
3216{
3217 struct task_struct *t = current;
3218 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3219 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3220 __put_user(t->sas_ss_size, &uss->ss_size);
3221}
3222
3223#ifdef CONFIG_COMPAT
3224COMPAT_SYSCALL_DEFINE2(sigaltstack,
3225 const compat_stack_t __user *, uss_ptr,
3226 compat_stack_t __user *, uoss_ptr)
3227{
3228 stack_t uss, uoss;
3229 int ret;
3230 mm_segment_t seg;
3231
3232 if (uss_ptr) {
3233 compat_stack_t uss32;
3234
3235 memset(&uss, 0, sizeof(stack_t));
3236 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3237 return -EFAULT;
3238 uss.ss_sp = compat_ptr(uss32.ss_sp);
3239 uss.ss_flags = uss32.ss_flags;
3240 uss.ss_size = uss32.ss_size;
3241 }
3242 seg = get_fs();
3243 set_fs(KERNEL_DS);
3244 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3245 (stack_t __force __user *) &uoss,
3246 compat_user_stack_pointer());
3247 set_fs(seg);
3248 if (ret >= 0 && uoss_ptr) {
3249 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3250 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3251 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3252 __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3253 ret = -EFAULT;
3254 }
3255 return ret;
3256}
3257
3258int compat_restore_altstack(const compat_stack_t __user *uss)
3259{
3260 int err = compat_sys_sigaltstack(uss, NULL);
3261 /* squash all but -EFAULT for now */
3262 return err == -EFAULT ? err : 0;
3263}
3264
3265int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3266{
3267 struct task_struct *t = current;
3268 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3269 __put_user(sas_ss_flags(sp), &uss->ss_flags) |
3270 __put_user(t->sas_ss_size, &uss->ss_size);
3271}
3272#endif
3273
3274#ifdef __ARCH_WANT_SYS_SIGPENDING
3275
3276/**
3277 * sys_sigpending - examine pending signals
3278 * @set: where mask of pending signal is returned
3279 */
3280SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3281{
3282 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3283}
3284
3285#endif
3286
3287#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3288/**
3289 * sys_sigprocmask - examine and change blocked signals
3290 * @how: whether to add, remove, or set signals
3291 * @nset: signals to add or remove (if non-null)
3292 * @oset: previous value of signal mask if non-null
3293 *
3294 * Some platforms have their own version with special arguments;
3295 * others support only sys_rt_sigprocmask.
3296 */
3297
3298SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3299 old_sigset_t __user *, oset)
3300{
3301 old_sigset_t old_set, new_set;
3302 sigset_t new_blocked;
3303
3304 old_set = current->blocked.sig[0];
3305
3306 if (nset) {
3307 if (copy_from_user(&new_set, nset, sizeof(*nset)))
3308 return -EFAULT;
3309
3310 new_blocked = current->blocked;
3311
3312 switch (how) {
3313 case SIG_BLOCK:
3314 sigaddsetmask(&new_blocked, new_set);
3315 break;
3316 case SIG_UNBLOCK:
3317 sigdelsetmask(&new_blocked, new_set);
3318 break;
3319 case SIG_SETMASK:
3320 new_blocked.sig[0] = new_set;
3321 break;
3322 default:
3323 return -EINVAL;
3324 }
3325
3326 set_current_blocked(&new_blocked);
3327 }
3328
3329 if (oset) {
3330 if (copy_to_user(oset, &old_set, sizeof(*oset)))
3331 return -EFAULT;
3332 }
3333
3334 return 0;
3335}
3336#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3337
3338#ifndef CONFIG_ODD_RT_SIGACTION
3339/**
3340 * sys_rt_sigaction - alter an action taken by a process
3341 * @sig: signal to be sent
3342 * @act: new sigaction
3343 * @oact: used to save the previous sigaction
3344 * @sigsetsize: size of sigset_t type
3345 */
3346SYSCALL_DEFINE4(rt_sigaction, int, sig,
3347 const struct sigaction __user *, act,
3348 struct sigaction __user *, oact,
3349 size_t, sigsetsize)
3350{
3351 struct k_sigaction new_sa, old_sa;
3352 int ret = -EINVAL;
3353
3354 /* XXX: Don't preclude handling different sized sigset_t's. */
3355 if (sigsetsize != sizeof(sigset_t))
3356 goto out;
3357
3358 if (act) {
3359 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3360 return -EFAULT;
3361 }
3362
3363 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3364
3365 if (!ret && oact) {
3366 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3367 return -EFAULT;
3368 }
3369out:
3370 return ret;
3371}
3372#ifdef CONFIG_COMPAT
3373COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3374 const struct compat_sigaction __user *, act,
3375 struct compat_sigaction __user *, oact,
3376 compat_size_t, sigsetsize)
3377{
3378 struct k_sigaction new_ka, old_ka;
3379 compat_sigset_t mask;
3380#ifdef __ARCH_HAS_SA_RESTORER
3381 compat_uptr_t restorer;
3382#endif
3383 int ret;
3384
3385 /* XXX: Don't preclude handling different sized sigset_t's. */
3386 if (sigsetsize != sizeof(compat_sigset_t))
3387 return -EINVAL;
3388
3389 if (act) {
3390 compat_uptr_t handler;
3391 ret = get_user(handler, &act->sa_handler);
3392 new_ka.sa.sa_handler = compat_ptr(handler);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394 ret |= get_user(restorer, &act->sa_restorer);
3395 new_ka.sa.sa_restorer = compat_ptr(restorer);
3396#endif
3397 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3398 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3399 if (ret)
3400 return -EFAULT;
3401 sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3402 }
3403
3404 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3405 if (!ret && oact) {
3406 sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3407 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3408 &oact->sa_handler);
3409 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3410 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3411#ifdef __ARCH_HAS_SA_RESTORER
3412 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3413 &oact->sa_restorer);
3414#endif
3415 }
3416 return ret;
3417}
3418#endif
3419#endif /* !CONFIG_ODD_RT_SIGACTION */
3420
3421#ifdef CONFIG_OLD_SIGACTION
3422SYSCALL_DEFINE3(sigaction, int, sig,
3423 const struct old_sigaction __user *, act,
3424 struct old_sigaction __user *, oact)
3425{
3426 struct k_sigaction new_ka, old_ka;
3427 int ret;
3428
3429 if (act) {
3430 old_sigset_t mask;
3431 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3432 __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3433 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3434 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3435 __get_user(mask, &act->sa_mask))
3436 return -EFAULT;
3437#ifdef __ARCH_HAS_KA_RESTORER
3438 new_ka.ka_restorer = NULL;
3439#endif
3440 siginitset(&new_ka.sa.sa_mask, mask);
3441 }
3442
3443 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3444
3445 if (!ret && oact) {
3446 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3447 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3448 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3449 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3450 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3451 return -EFAULT;
3452 }
3453
3454 return ret;
3455}
3456#endif
3457#ifdef CONFIG_COMPAT_OLD_SIGACTION
3458COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3459 const struct compat_old_sigaction __user *, act,
3460 struct compat_old_sigaction __user *, oact)
3461{
3462 struct k_sigaction new_ka, old_ka;
3463 int ret;
3464 compat_old_sigset_t mask;
3465 compat_uptr_t handler, restorer;
3466
3467 if (act) {
3468 if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3469 __get_user(handler, &act->sa_handler) ||
3470 __get_user(restorer, &act->sa_restorer) ||
3471 __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3472 __get_user(mask, &act->sa_mask))
3473 return -EFAULT;
3474
3475#ifdef __ARCH_HAS_KA_RESTORER
3476 new_ka.ka_restorer = NULL;
3477#endif
3478 new_ka.sa.sa_handler = compat_ptr(handler);
3479 new_ka.sa.sa_restorer = compat_ptr(restorer);
3480 siginitset(&new_ka.sa.sa_mask, mask);
3481 }
3482
3483 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3484
3485 if (!ret && oact) {
3486 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3487 __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3488 &oact->sa_handler) ||
3489 __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3490 &oact->sa_restorer) ||
3491 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3492 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3493 return -EFAULT;
3494 }
3495 return ret;
3496}
3497#endif
3498
3499#ifdef __ARCH_WANT_SYS_SGETMASK
3500
3501/*
3502 * For backwards compatibility. Functionality superseded by sigprocmask.
3503 */
3504SYSCALL_DEFINE0(sgetmask)
3505{
3506 /* SMP safe */
3507 return current->blocked.sig[0];
3508}
3509
3510SYSCALL_DEFINE1(ssetmask, int, newmask)
3511{
3512 int old = current->blocked.sig[0];
3513 sigset_t newset;
3514
3515 siginitset(&newset, newmask);
3516 set_current_blocked(&newset);
3517
3518 return old;
3519}
3520#endif /* __ARCH_WANT_SGETMASK */
3521
3522#ifdef __ARCH_WANT_SYS_SIGNAL
3523/*
3524 * For backwards compatibility. Functionality superseded by sigaction.
3525 */
3526SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3527{
3528 struct k_sigaction new_sa, old_sa;
3529 int ret;
3530
3531 new_sa.sa.sa_handler = handler;
3532 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3533 sigemptyset(&new_sa.sa.sa_mask);
3534
3535 ret = do_sigaction(sig, &new_sa, &old_sa);
3536
3537 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3538}
3539#endif /* __ARCH_WANT_SYS_SIGNAL */
3540
3541#ifdef __ARCH_WANT_SYS_PAUSE
3542
3543SYSCALL_DEFINE0(pause)
3544{
3545 while (!signal_pending(current)) {
3546 current->state = TASK_INTERRUPTIBLE;
3547 schedule();
3548 }
3549 return -ERESTARTNOHAND;
3550}
3551
3552#endif
3553
3554int sigsuspend(sigset_t *set)
3555{
3556 current->saved_sigmask = current->blocked;
3557 set_current_blocked(set);
3558
3559 current->state = TASK_INTERRUPTIBLE;
3560 schedule();
3561 set_restore_sigmask();
3562 return -ERESTARTNOHAND;
3563}
3564
3565/**
3566 * sys_rt_sigsuspend - replace the signal mask for a value with the
3567 * @unewset value until a signal is received
3568 * @unewset: new signal mask value
3569 * @sigsetsize: size of sigset_t type
3570 */
3571SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3572{
3573 sigset_t newset;
3574
3575 /* XXX: Don't preclude handling different sized sigset_t's. */
3576 if (sigsetsize != sizeof(sigset_t))
3577 return -EINVAL;
3578
3579 if (copy_from_user(&newset, unewset, sizeof(newset)))
3580 return -EFAULT;
3581 return sigsuspend(&newset);
3582}
3583
3584#ifdef CONFIG_COMPAT
3585COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3586{
3587#ifdef __BIG_ENDIAN
3588 sigset_t newset;
3589 compat_sigset_t newset32;
3590
3591 /* XXX: Don't preclude handling different sized sigset_t's. */
3592 if (sigsetsize != sizeof(sigset_t))
3593 return -EINVAL;
3594
3595 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3596 return -EFAULT;
3597 sigset_from_compat(&newset, &newset32);
3598 return sigsuspend(&newset);
3599#else
3600 /* on little-endian bitmaps don't care about granularity */
3601 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3602#endif
3603}
3604#endif
3605
3606#ifdef CONFIG_OLD_SIGSUSPEND
3607SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3608{
3609 sigset_t blocked;
3610 siginitset(&blocked, mask);
3611 return sigsuspend(&blocked);
3612}
3613#endif
3614#ifdef CONFIG_OLD_SIGSUSPEND3
3615SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3616{
3617 sigset_t blocked;
3618 siginitset(&blocked, mask);
3619 return sigsuspend(&blocked);
3620}
3621#endif
3622
3623__weak const char *arch_vma_name(struct vm_area_struct *vma)
3624{
3625 return NULL;
3626}
3627
3628void __init signals_init(void)
3629{
3630 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3631}
3632
3633#ifdef CONFIG_KGDB_KDB
3634#include <linux/kdb.h>
3635/*
3636 * kdb_send_sig_info - Allows kdb to send signals without exposing
3637 * signal internals. This function checks if the required locks are
3638 * available before calling the main signal code, to avoid kdb
3639 * deadlocks.
3640 */
3641void
3642kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3643{
3644 static struct task_struct *kdb_prev_t;
3645 int sig, new_t;
3646 if (!spin_trylock(&t->sighand->siglock)) {
3647 kdb_printf("Can't do kill command now.\n"
3648 "The sigmask lock is held somewhere else in "
3649 "kernel, try again later\n");
3650 return;
3651 }
3652 spin_unlock(&t->sighand->siglock);
3653 new_t = kdb_prev_t != t;
3654 kdb_prev_t = t;
3655 if (t->state != TASK_RUNNING && new_t) {
3656 kdb_printf("Process is not RUNNING, sending a signal from "
3657 "kdb risks deadlock\n"
3658 "on the run queue locks. "
3659 "The signal has _not_ been sent.\n"
3660 "Reissue the kill command if you want to risk "
3661 "the deadlock.\n");
3662 return;
3663 }
3664 sig = info->si_signo;
3665 if (send_sig_info(sig, info, t))
3666 kdb_printf("Fail to deliver Signal %d to process %d.\n",
3667 sig, t->pid);
3668 else
3669 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3670}
3671#endif /* CONFIG_KGDB_KDB */