Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
17#include "backref.h"
18#include "compression.h"
19#include "qgroup.h"
20#include "inode-map.h"
21#include "block-group.h"
22#include "space-info.h"
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
36
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
95
96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct btrfs_inode *inode,
98 int inode_only,
99 const loff_t start,
100 const loff_t end,
101 struct btrfs_log_ctx *ctx);
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
142{
143 struct btrfs_fs_info *fs_info = root->fs_info;
144 int ret = 0;
145
146 mutex_lock(&root->log_mutex);
147
148 if (root->log_root) {
149 if (btrfs_need_log_full_commit(trans)) {
150 ret = -EAGAIN;
151 goto out;
152 }
153
154 if (!root->log_start_pid) {
155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 root->log_start_pid = current->pid;
157 } else if (root->log_start_pid != current->pid) {
158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 }
160 } else {
161 mutex_lock(&fs_info->tree_log_mutex);
162 if (!fs_info->log_root_tree)
163 ret = btrfs_init_log_root_tree(trans, fs_info);
164 mutex_unlock(&fs_info->tree_log_mutex);
165 if (ret)
166 goto out;
167
168 ret = btrfs_add_log_tree(trans, root);
169 if (ret)
170 goto out;
171
172 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
174 root->log_start_pid = current->pid;
175 }
176
177 atomic_inc(&root->log_batch);
178 atomic_inc(&root->log_writers);
179 if (ctx) {
180 int index = root->log_transid % 2;
181 list_add_tail(&ctx->list, &root->log_ctxs[index]);
182 ctx->log_transid = root->log_transid;
183 }
184
185out:
186 mutex_unlock(&root->log_mutex);
187 return ret;
188}
189
190/*
191 * returns 0 if there was a log transaction running and we were able
192 * to join, or returns -ENOENT if there were not transactions
193 * in progress
194 */
195static int join_running_log_trans(struct btrfs_root *root)
196{
197 int ret = -ENOENT;
198
199 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
200 return ret;
201
202 mutex_lock(&root->log_mutex);
203 if (root->log_root) {
204 ret = 0;
205 atomic_inc(&root->log_writers);
206 }
207 mutex_unlock(&root->log_mutex);
208 return ret;
209}
210
211/*
212 * This either makes the current running log transaction wait
213 * until you call btrfs_end_log_trans() or it makes any future
214 * log transactions wait until you call btrfs_end_log_trans()
215 */
216void btrfs_pin_log_trans(struct btrfs_root *root)
217{
218 mutex_lock(&root->log_mutex);
219 atomic_inc(&root->log_writers);
220 mutex_unlock(&root->log_mutex);
221}
222
223/*
224 * indicate we're done making changes to the log tree
225 * and wake up anyone waiting to do a sync
226 */
227void btrfs_end_log_trans(struct btrfs_root *root)
228{
229 if (atomic_dec_and_test(&root->log_writers)) {
230 /* atomic_dec_and_test implies a barrier */
231 cond_wake_up_nomb(&root->log_writer_wait);
232 }
233}
234
235static int btrfs_write_tree_block(struct extent_buffer *buf)
236{
237 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
238 buf->start + buf->len - 1);
239}
240
241static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
242{
243 filemap_fdatawait_range(buf->pages[0]->mapping,
244 buf->start, buf->start + buf->len - 1);
245}
246
247/*
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
252 */
253struct walk_control {
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
256 */
257 int free;
258
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
261 */
262 int write;
263
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
266 */
267 int wait;
268
269 /* pin only walk, we record which extents on disk belong to the
270 * log trees
271 */
272 int pin;
273
274 /* what stage of the replay code we're currently in */
275 int stage;
276
277 /*
278 * Ignore any items from the inode currently being processed. Needs
279 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
280 * the LOG_WALK_REPLAY_INODES stage.
281 */
282 bool ignore_cur_inode;
283
284 /* the root we are currently replaying */
285 struct btrfs_root *replay_dest;
286
287 /* the trans handle for the current replay */
288 struct btrfs_trans_handle *trans;
289
290 /* the function that gets used to process blocks we find in the
291 * tree. Note the extent_buffer might not be up to date when it is
292 * passed in, and it must be checked or read if you need the data
293 * inside it
294 */
295 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
296 struct walk_control *wc, u64 gen, int level);
297};
298
299/*
300 * process_func used to pin down extents, write them or wait on them
301 */
302static int process_one_buffer(struct btrfs_root *log,
303 struct extent_buffer *eb,
304 struct walk_control *wc, u64 gen, int level)
305{
306 struct btrfs_fs_info *fs_info = log->fs_info;
307 int ret = 0;
308
309 /*
310 * If this fs is mixed then we need to be able to process the leaves to
311 * pin down any logged extents, so we have to read the block.
312 */
313 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
314 ret = btrfs_read_buffer(eb, gen, level, NULL);
315 if (ret)
316 return ret;
317 }
318
319 if (wc->pin)
320 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
321 eb->len);
322
323 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
324 if (wc->pin && btrfs_header_level(eb) == 0)
325 ret = btrfs_exclude_logged_extents(eb);
326 if (wc->write)
327 btrfs_write_tree_block(eb);
328 if (wc->wait)
329 btrfs_wait_tree_block_writeback(eb);
330 }
331 return ret;
332}
333
334/*
335 * Item overwrite used by replay and tree logging. eb, slot and key all refer
336 * to the src data we are copying out.
337 *
338 * root is the tree we are copying into, and path is a scratch
339 * path for use in this function (it should be released on entry and
340 * will be released on exit).
341 *
342 * If the key is already in the destination tree the existing item is
343 * overwritten. If the existing item isn't big enough, it is extended.
344 * If it is too large, it is truncated.
345 *
346 * If the key isn't in the destination yet, a new item is inserted.
347 */
348static noinline int overwrite_item(struct btrfs_trans_handle *trans,
349 struct btrfs_root *root,
350 struct btrfs_path *path,
351 struct extent_buffer *eb, int slot,
352 struct btrfs_key *key)
353{
354 int ret;
355 u32 item_size;
356 u64 saved_i_size = 0;
357 int save_old_i_size = 0;
358 unsigned long src_ptr;
359 unsigned long dst_ptr;
360 int overwrite_root = 0;
361 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
362
363 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
364 overwrite_root = 1;
365
366 item_size = btrfs_item_size_nr(eb, slot);
367 src_ptr = btrfs_item_ptr_offset(eb, slot);
368
369 /* look for the key in the destination tree */
370 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
371 if (ret < 0)
372 return ret;
373
374 if (ret == 0) {
375 char *src_copy;
376 char *dst_copy;
377 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
378 path->slots[0]);
379 if (dst_size != item_size)
380 goto insert;
381
382 if (item_size == 0) {
383 btrfs_release_path(path);
384 return 0;
385 }
386 dst_copy = kmalloc(item_size, GFP_NOFS);
387 src_copy = kmalloc(item_size, GFP_NOFS);
388 if (!dst_copy || !src_copy) {
389 btrfs_release_path(path);
390 kfree(dst_copy);
391 kfree(src_copy);
392 return -ENOMEM;
393 }
394
395 read_extent_buffer(eb, src_copy, src_ptr, item_size);
396
397 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
398 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
399 item_size);
400 ret = memcmp(dst_copy, src_copy, item_size);
401
402 kfree(dst_copy);
403 kfree(src_copy);
404 /*
405 * they have the same contents, just return, this saves
406 * us from cowing blocks in the destination tree and doing
407 * extra writes that may not have been done by a previous
408 * sync
409 */
410 if (ret == 0) {
411 btrfs_release_path(path);
412 return 0;
413 }
414
415 /*
416 * We need to load the old nbytes into the inode so when we
417 * replay the extents we've logged we get the right nbytes.
418 */
419 if (inode_item) {
420 struct btrfs_inode_item *item;
421 u64 nbytes;
422 u32 mode;
423
424 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
425 struct btrfs_inode_item);
426 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
427 item = btrfs_item_ptr(eb, slot,
428 struct btrfs_inode_item);
429 btrfs_set_inode_nbytes(eb, item, nbytes);
430
431 /*
432 * If this is a directory we need to reset the i_size to
433 * 0 so that we can set it up properly when replaying
434 * the rest of the items in this log.
435 */
436 mode = btrfs_inode_mode(eb, item);
437 if (S_ISDIR(mode))
438 btrfs_set_inode_size(eb, item, 0);
439 }
440 } else if (inode_item) {
441 struct btrfs_inode_item *item;
442 u32 mode;
443
444 /*
445 * New inode, set nbytes to 0 so that the nbytes comes out
446 * properly when we replay the extents.
447 */
448 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
449 btrfs_set_inode_nbytes(eb, item, 0);
450
451 /*
452 * If this is a directory we need to reset the i_size to 0 so
453 * that we can set it up properly when replaying the rest of
454 * the items in this log.
455 */
456 mode = btrfs_inode_mode(eb, item);
457 if (S_ISDIR(mode))
458 btrfs_set_inode_size(eb, item, 0);
459 }
460insert:
461 btrfs_release_path(path);
462 /* try to insert the key into the destination tree */
463 path->skip_release_on_error = 1;
464 ret = btrfs_insert_empty_item(trans, root, path,
465 key, item_size);
466 path->skip_release_on_error = 0;
467
468 /* make sure any existing item is the correct size */
469 if (ret == -EEXIST || ret == -EOVERFLOW) {
470 u32 found_size;
471 found_size = btrfs_item_size_nr(path->nodes[0],
472 path->slots[0]);
473 if (found_size > item_size)
474 btrfs_truncate_item(path, item_size, 1);
475 else if (found_size < item_size)
476 btrfs_extend_item(path, item_size - found_size);
477 } else if (ret) {
478 return ret;
479 }
480 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
481 path->slots[0]);
482
483 /* don't overwrite an existing inode if the generation number
484 * was logged as zero. This is done when the tree logging code
485 * is just logging an inode to make sure it exists after recovery.
486 *
487 * Also, don't overwrite i_size on directories during replay.
488 * log replay inserts and removes directory items based on the
489 * state of the tree found in the subvolume, and i_size is modified
490 * as it goes
491 */
492 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
493 struct btrfs_inode_item *src_item;
494 struct btrfs_inode_item *dst_item;
495
496 src_item = (struct btrfs_inode_item *)src_ptr;
497 dst_item = (struct btrfs_inode_item *)dst_ptr;
498
499 if (btrfs_inode_generation(eb, src_item) == 0) {
500 struct extent_buffer *dst_eb = path->nodes[0];
501 const u64 ino_size = btrfs_inode_size(eb, src_item);
502
503 /*
504 * For regular files an ino_size == 0 is used only when
505 * logging that an inode exists, as part of a directory
506 * fsync, and the inode wasn't fsynced before. In this
507 * case don't set the size of the inode in the fs/subvol
508 * tree, otherwise we would be throwing valid data away.
509 */
510 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
511 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
512 ino_size != 0)
513 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
514 goto no_copy;
515 }
516
517 if (overwrite_root &&
518 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 save_old_i_size = 1;
521 saved_i_size = btrfs_inode_size(path->nodes[0],
522 dst_item);
523 }
524 }
525
526 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 src_ptr, item_size);
528
529 if (save_old_i_size) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
533 }
534
535 /* make sure the generation is filled in */
536 if (key->type == BTRFS_INODE_ITEM_KEY) {
537 struct btrfs_inode_item *dst_item;
538 dst_item = (struct btrfs_inode_item *)dst_ptr;
539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 btrfs_set_inode_generation(path->nodes[0], dst_item,
541 trans->transid);
542 }
543 }
544no_copy:
545 btrfs_mark_buffer_dirty(path->nodes[0]);
546 btrfs_release_path(path);
547 return 0;
548}
549
550/*
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
553 */
554static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 u64 objectid)
556{
557 struct inode *inode;
558
559 inode = btrfs_iget(root->fs_info->sb, objectid, root);
560 if (IS_ERR(inode))
561 inode = NULL;
562 return inode;
563}
564
565/* replays a single extent in 'eb' at 'slot' with 'key' into the
566 * subvolume 'root'. path is released on entry and should be released
567 * on exit.
568 *
569 * extents in the log tree have not been allocated out of the extent
570 * tree yet. So, this completes the allocation, taking a reference
571 * as required if the extent already exists or creating a new extent
572 * if it isn't in the extent allocation tree yet.
573 *
574 * The extent is inserted into the file, dropping any existing extents
575 * from the file that overlap the new one.
576 */
577static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
578 struct btrfs_root *root,
579 struct btrfs_path *path,
580 struct extent_buffer *eb, int slot,
581 struct btrfs_key *key)
582{
583 struct btrfs_fs_info *fs_info = root->fs_info;
584 int found_type;
585 u64 extent_end;
586 u64 start = key->offset;
587 u64 nbytes = 0;
588 struct btrfs_file_extent_item *item;
589 struct inode *inode = NULL;
590 unsigned long size;
591 int ret = 0;
592
593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 found_type = btrfs_file_extent_type(eb, item);
595
596 if (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 nbytes = btrfs_file_extent_num_bytes(eb, item);
599 extent_end = start + nbytes;
600
601 /*
602 * We don't add to the inodes nbytes if we are prealloc or a
603 * hole.
604 */
605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 nbytes = 0;
607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
608 size = btrfs_file_extent_ram_bytes(eb, item);
609 nbytes = btrfs_file_extent_ram_bytes(eb, item);
610 extent_end = ALIGN(start + size,
611 fs_info->sectorsize);
612 } else {
613 ret = 0;
614 goto out;
615 }
616
617 inode = read_one_inode(root, key->objectid);
618 if (!inode) {
619 ret = -EIO;
620 goto out;
621 }
622
623 /*
624 * first check to see if we already have this extent in the
625 * file. This must be done before the btrfs_drop_extents run
626 * so we don't try to drop this extent.
627 */
628 ret = btrfs_lookup_file_extent(trans, root, path,
629 btrfs_ino(BTRFS_I(inode)), start, 0);
630
631 if (ret == 0 &&
632 (found_type == BTRFS_FILE_EXTENT_REG ||
633 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
634 struct btrfs_file_extent_item cmp1;
635 struct btrfs_file_extent_item cmp2;
636 struct btrfs_file_extent_item *existing;
637 struct extent_buffer *leaf;
638
639 leaf = path->nodes[0];
640 existing = btrfs_item_ptr(leaf, path->slots[0],
641 struct btrfs_file_extent_item);
642
643 read_extent_buffer(eb, &cmp1, (unsigned long)item,
644 sizeof(cmp1));
645 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
646 sizeof(cmp2));
647
648 /*
649 * we already have a pointer to this exact extent,
650 * we don't have to do anything
651 */
652 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
653 btrfs_release_path(path);
654 goto out;
655 }
656 }
657 btrfs_release_path(path);
658
659 /* drop any overlapping extents */
660 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
661 if (ret)
662 goto out;
663
664 if (found_type == BTRFS_FILE_EXTENT_REG ||
665 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
666 u64 offset;
667 unsigned long dest_offset;
668 struct btrfs_key ins;
669
670 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
671 btrfs_fs_incompat(fs_info, NO_HOLES))
672 goto update_inode;
673
674 ret = btrfs_insert_empty_item(trans, root, path, key,
675 sizeof(*item));
676 if (ret)
677 goto out;
678 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
679 path->slots[0]);
680 copy_extent_buffer(path->nodes[0], eb, dest_offset,
681 (unsigned long)item, sizeof(*item));
682
683 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
684 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
685 ins.type = BTRFS_EXTENT_ITEM_KEY;
686 offset = key->offset - btrfs_file_extent_offset(eb, item);
687
688 /*
689 * Manually record dirty extent, as here we did a shallow
690 * file extent item copy and skip normal backref update,
691 * but modifying extent tree all by ourselves.
692 * So need to manually record dirty extent for qgroup,
693 * as the owner of the file extent changed from log tree
694 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
695 */
696 ret = btrfs_qgroup_trace_extent(trans,
697 btrfs_file_extent_disk_bytenr(eb, item),
698 btrfs_file_extent_disk_num_bytes(eb, item),
699 GFP_NOFS);
700 if (ret < 0)
701 goto out;
702
703 if (ins.objectid > 0) {
704 struct btrfs_ref ref = { 0 };
705 u64 csum_start;
706 u64 csum_end;
707 LIST_HEAD(ordered_sums);
708
709 /*
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
712 */
713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
714 ins.offset);
715 if (ret == 0) {
716 btrfs_init_generic_ref(&ref,
717 BTRFS_ADD_DELAYED_REF,
718 ins.objectid, ins.offset, 0);
719 btrfs_init_data_ref(&ref,
720 root->root_key.objectid,
721 key->objectid, offset);
722 ret = btrfs_inc_extent_ref(trans, &ref);
723 if (ret)
724 goto out;
725 } else {
726 /*
727 * insert the extent pointer in the extent
728 * allocation tree
729 */
730 ret = btrfs_alloc_logged_file_extent(trans,
731 root->root_key.objectid,
732 key->objectid, offset, &ins);
733 if (ret)
734 goto out;
735 }
736 btrfs_release_path(path);
737
738 if (btrfs_file_extent_compression(eb, item)) {
739 csum_start = ins.objectid;
740 csum_end = csum_start + ins.offset;
741 } else {
742 csum_start = ins.objectid +
743 btrfs_file_extent_offset(eb, item);
744 csum_end = csum_start +
745 btrfs_file_extent_num_bytes(eb, item);
746 }
747
748 ret = btrfs_lookup_csums_range(root->log_root,
749 csum_start, csum_end - 1,
750 &ordered_sums, 0);
751 if (ret)
752 goto out;
753 /*
754 * Now delete all existing cums in the csum root that
755 * cover our range. We do this because we can have an
756 * extent that is completely referenced by one file
757 * extent item and partially referenced by another
758 * file extent item (like after using the clone or
759 * extent_same ioctls). In this case if we end up doing
760 * the replay of the one that partially references the
761 * extent first, and we do not do the csum deletion
762 * below, we can get 2 csum items in the csum tree that
763 * overlap each other. For example, imagine our log has
764 * the two following file extent items:
765 *
766 * key (257 EXTENT_DATA 409600)
767 * extent data disk byte 12845056 nr 102400
768 * extent data offset 20480 nr 20480 ram 102400
769 *
770 * key (257 EXTENT_DATA 819200)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 0 nr 102400 ram 102400
773 *
774 * Where the second one fully references the 100K extent
775 * that starts at disk byte 12845056, and the log tree
776 * has a single csum item that covers the entire range
777 * of the extent:
778 *
779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
780 *
781 * After the first file extent item is replayed, the
782 * csum tree gets the following csum item:
783 *
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 *
786 * Which covers the 20K sub-range starting at offset 20K
787 * of our extent. Now when we replay the second file
788 * extent item, if we do not delete existing csum items
789 * that cover any of its blocks, we end up getting two
790 * csum items in our csum tree that overlap each other:
791 *
792 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
793 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
794 *
795 * Which is a problem, because after this anyone trying
796 * to lookup up for the checksum of any block of our
797 * extent starting at an offset of 40K or higher, will
798 * end up looking at the second csum item only, which
799 * does not contain the checksum for any block starting
800 * at offset 40K or higher of our extent.
801 */
802 while (!list_empty(&ordered_sums)) {
803 struct btrfs_ordered_sum *sums;
804 sums = list_entry(ordered_sums.next,
805 struct btrfs_ordered_sum,
806 list);
807 if (!ret)
808 ret = btrfs_del_csums(trans,
809 fs_info->csum_root,
810 sums->bytenr,
811 sums->len);
812 if (!ret)
813 ret = btrfs_csum_file_blocks(trans,
814 fs_info->csum_root, sums);
815 list_del(&sums->list);
816 kfree(sums);
817 }
818 if (ret)
819 goto out;
820 } else {
821 btrfs_release_path(path);
822 }
823 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
824 /* inline extents are easy, we just overwrite them */
825 ret = overwrite_item(trans, root, path, eb, slot, key);
826 if (ret)
827 goto out;
828 }
829
830 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
831 extent_end - start);
832 if (ret)
833 goto out;
834
835 inode_add_bytes(inode, nbytes);
836update_inode:
837 ret = btrfs_update_inode(trans, root, inode);
838out:
839 if (inode)
840 iput(inode);
841 return ret;
842}
843
844/*
845 * when cleaning up conflicts between the directory names in the
846 * subvolume, directory names in the log and directory names in the
847 * inode back references, we may have to unlink inodes from directories.
848 *
849 * This is a helper function to do the unlink of a specific directory
850 * item
851 */
852static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
853 struct btrfs_root *root,
854 struct btrfs_path *path,
855 struct btrfs_inode *dir,
856 struct btrfs_dir_item *di)
857{
858 struct inode *inode;
859 char *name;
860 int name_len;
861 struct extent_buffer *leaf;
862 struct btrfs_key location;
863 int ret;
864
865 leaf = path->nodes[0];
866
867 btrfs_dir_item_key_to_cpu(leaf, di, &location);
868 name_len = btrfs_dir_name_len(leaf, di);
869 name = kmalloc(name_len, GFP_NOFS);
870 if (!name)
871 return -ENOMEM;
872
873 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
874 btrfs_release_path(path);
875
876 inode = read_one_inode(root, location.objectid);
877 if (!inode) {
878 ret = -EIO;
879 goto out;
880 }
881
882 ret = link_to_fixup_dir(trans, root, path, location.objectid);
883 if (ret)
884 goto out;
885
886 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
887 name_len);
888 if (ret)
889 goto out;
890 else
891 ret = btrfs_run_delayed_items(trans);
892out:
893 kfree(name);
894 iput(inode);
895 return ret;
896}
897
898/*
899 * helper function to see if a given name and sequence number found
900 * in an inode back reference are already in a directory and correctly
901 * point to this inode
902 */
903static noinline int inode_in_dir(struct btrfs_root *root,
904 struct btrfs_path *path,
905 u64 dirid, u64 objectid, u64 index,
906 const char *name, int name_len)
907{
908 struct btrfs_dir_item *di;
909 struct btrfs_key location;
910 int match = 0;
911
912 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
913 index, name, name_len, 0);
914 if (di && !IS_ERR(di)) {
915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
916 if (location.objectid != objectid)
917 goto out;
918 } else
919 goto out;
920 btrfs_release_path(path);
921
922 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
923 if (di && !IS_ERR(di)) {
924 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
925 if (location.objectid != objectid)
926 goto out;
927 } else
928 goto out;
929 match = 1;
930out:
931 btrfs_release_path(path);
932 return match;
933}
934
935/*
936 * helper function to check a log tree for a named back reference in
937 * an inode. This is used to decide if a back reference that is
938 * found in the subvolume conflicts with what we find in the log.
939 *
940 * inode backreferences may have multiple refs in a single item,
941 * during replay we process one reference at a time, and we don't
942 * want to delete valid links to a file from the subvolume if that
943 * link is also in the log.
944 */
945static noinline int backref_in_log(struct btrfs_root *log,
946 struct btrfs_key *key,
947 u64 ref_objectid,
948 const char *name, int namelen)
949{
950 struct btrfs_path *path;
951 int ret;
952
953 path = btrfs_alloc_path();
954 if (!path)
955 return -ENOMEM;
956
957 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
958 if (ret < 0) {
959 goto out;
960 } else if (ret == 1) {
961 ret = 0;
962 goto out;
963 }
964
965 if (key->type == BTRFS_INODE_EXTREF_KEY)
966 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
967 path->slots[0],
968 ref_objectid,
969 name, namelen);
970 else
971 ret = !!btrfs_find_name_in_backref(path->nodes[0],
972 path->slots[0],
973 name, namelen);
974out:
975 btrfs_free_path(path);
976 return ret;
977}
978
979static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 struct btrfs_root *log_root,
983 struct btrfs_inode *dir,
984 struct btrfs_inode *inode,
985 u64 inode_objectid, u64 parent_objectid,
986 u64 ref_index, char *name, int namelen,
987 int *search_done)
988{
989 int ret;
990 char *victim_name;
991 int victim_name_len;
992 struct extent_buffer *leaf;
993 struct btrfs_dir_item *di;
994 struct btrfs_key search_key;
995 struct btrfs_inode_extref *extref;
996
997again:
998 /* Search old style refs */
999 search_key.objectid = inode_objectid;
1000 search_key.type = BTRFS_INODE_REF_KEY;
1001 search_key.offset = parent_objectid;
1002 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1003 if (ret == 0) {
1004 struct btrfs_inode_ref *victim_ref;
1005 unsigned long ptr;
1006 unsigned long ptr_end;
1007
1008 leaf = path->nodes[0];
1009
1010 /* are we trying to overwrite a back ref for the root directory
1011 * if so, just jump out, we're done
1012 */
1013 if (search_key.objectid == search_key.offset)
1014 return 1;
1015
1016 /* check all the names in this back reference to see
1017 * if they are in the log. if so, we allow them to stay
1018 * otherwise they must be unlinked as a conflict
1019 */
1020 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1021 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1022 while (ptr < ptr_end) {
1023 victim_ref = (struct btrfs_inode_ref *)ptr;
1024 victim_name_len = btrfs_inode_ref_name_len(leaf,
1025 victim_ref);
1026 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1027 if (!victim_name)
1028 return -ENOMEM;
1029
1030 read_extent_buffer(leaf, victim_name,
1031 (unsigned long)(victim_ref + 1),
1032 victim_name_len);
1033
1034 ret = backref_in_log(log_root, &search_key,
1035 parent_objectid, victim_name,
1036 victim_name_len);
1037 if (ret < 0) {
1038 kfree(victim_name);
1039 return ret;
1040 } else if (!ret) {
1041 inc_nlink(&inode->vfs_inode);
1042 btrfs_release_path(path);
1043
1044 ret = btrfs_unlink_inode(trans, root, dir, inode,
1045 victim_name, victim_name_len);
1046 kfree(victim_name);
1047 if (ret)
1048 return ret;
1049 ret = btrfs_run_delayed_items(trans);
1050 if (ret)
1051 return ret;
1052 *search_done = 1;
1053 goto again;
1054 }
1055 kfree(victim_name);
1056
1057 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1058 }
1059
1060 /*
1061 * NOTE: we have searched root tree and checked the
1062 * corresponding ref, it does not need to check again.
1063 */
1064 *search_done = 1;
1065 }
1066 btrfs_release_path(path);
1067
1068 /* Same search but for extended refs */
1069 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070 inode_objectid, parent_objectid, 0,
1071 0);
1072 if (!IS_ERR_OR_NULL(extref)) {
1073 u32 item_size;
1074 u32 cur_offset = 0;
1075 unsigned long base;
1076 struct inode *victim_parent;
1077
1078 leaf = path->nodes[0];
1079
1080 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1082
1083 while (cur_offset < item_size) {
1084 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1085
1086 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1087
1088 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089 goto next;
1090
1091 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1092 if (!victim_name)
1093 return -ENOMEM;
1094 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095 victim_name_len);
1096
1097 search_key.objectid = inode_objectid;
1098 search_key.type = BTRFS_INODE_EXTREF_KEY;
1099 search_key.offset = btrfs_extref_hash(parent_objectid,
1100 victim_name,
1101 victim_name_len);
1102 ret = backref_in_log(log_root, &search_key,
1103 parent_objectid, victim_name,
1104 victim_name_len);
1105 if (ret < 0) {
1106 return ret;
1107 } else if (!ret) {
1108 ret = -ENOENT;
1109 victim_parent = read_one_inode(root,
1110 parent_objectid);
1111 if (victim_parent) {
1112 inc_nlink(&inode->vfs_inode);
1113 btrfs_release_path(path);
1114
1115 ret = btrfs_unlink_inode(trans, root,
1116 BTRFS_I(victim_parent),
1117 inode,
1118 victim_name,
1119 victim_name_len);
1120 if (!ret)
1121 ret = btrfs_run_delayed_items(
1122 trans);
1123 }
1124 iput(victim_parent);
1125 kfree(victim_name);
1126 if (ret)
1127 return ret;
1128 *search_done = 1;
1129 goto again;
1130 }
1131 kfree(victim_name);
1132next:
1133 cur_offset += victim_name_len + sizeof(*extref);
1134 }
1135 *search_done = 1;
1136 }
1137 btrfs_release_path(path);
1138
1139 /* look for a conflicting sequence number */
1140 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1141 ref_index, name, namelen, 0);
1142 if (di && !IS_ERR(di)) {
1143 ret = drop_one_dir_item(trans, root, path, dir, di);
1144 if (ret)
1145 return ret;
1146 }
1147 btrfs_release_path(path);
1148
1149 /* look for a conflicting name */
1150 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1151 name, namelen, 0);
1152 if (di && !IS_ERR(di)) {
1153 ret = drop_one_dir_item(trans, root, path, dir, di);
1154 if (ret)
1155 return ret;
1156 }
1157 btrfs_release_path(path);
1158
1159 return 0;
1160}
1161
1162static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1163 u32 *namelen, char **name, u64 *index,
1164 u64 *parent_objectid)
1165{
1166 struct btrfs_inode_extref *extref;
1167
1168 extref = (struct btrfs_inode_extref *)ref_ptr;
1169
1170 *namelen = btrfs_inode_extref_name_len(eb, extref);
1171 *name = kmalloc(*namelen, GFP_NOFS);
1172 if (*name == NULL)
1173 return -ENOMEM;
1174
1175 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1176 *namelen);
1177
1178 if (index)
1179 *index = btrfs_inode_extref_index(eb, extref);
1180 if (parent_objectid)
1181 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1182
1183 return 0;
1184}
1185
1186static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1187 u32 *namelen, char **name, u64 *index)
1188{
1189 struct btrfs_inode_ref *ref;
1190
1191 ref = (struct btrfs_inode_ref *)ref_ptr;
1192
1193 *namelen = btrfs_inode_ref_name_len(eb, ref);
1194 *name = kmalloc(*namelen, GFP_NOFS);
1195 if (*name == NULL)
1196 return -ENOMEM;
1197
1198 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1199
1200 if (index)
1201 *index = btrfs_inode_ref_index(eb, ref);
1202
1203 return 0;
1204}
1205
1206/*
1207 * Take an inode reference item from the log tree and iterate all names from the
1208 * inode reference item in the subvolume tree with the same key (if it exists).
1209 * For any name that is not in the inode reference item from the log tree, do a
1210 * proper unlink of that name (that is, remove its entry from the inode
1211 * reference item and both dir index keys).
1212 */
1213static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1214 struct btrfs_root *root,
1215 struct btrfs_path *path,
1216 struct btrfs_inode *inode,
1217 struct extent_buffer *log_eb,
1218 int log_slot,
1219 struct btrfs_key *key)
1220{
1221 int ret;
1222 unsigned long ref_ptr;
1223 unsigned long ref_end;
1224 struct extent_buffer *eb;
1225
1226again:
1227 btrfs_release_path(path);
1228 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1229 if (ret > 0) {
1230 ret = 0;
1231 goto out;
1232 }
1233 if (ret < 0)
1234 goto out;
1235
1236 eb = path->nodes[0];
1237 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1238 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1239 while (ref_ptr < ref_end) {
1240 char *name = NULL;
1241 int namelen;
1242 u64 parent_id;
1243
1244 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1245 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1246 NULL, &parent_id);
1247 } else {
1248 parent_id = key->offset;
1249 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1250 NULL);
1251 }
1252 if (ret)
1253 goto out;
1254
1255 if (key->type == BTRFS_INODE_EXTREF_KEY)
1256 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1257 parent_id, name,
1258 namelen);
1259 else
1260 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1261 name, namelen);
1262
1263 if (!ret) {
1264 struct inode *dir;
1265
1266 btrfs_release_path(path);
1267 dir = read_one_inode(root, parent_id);
1268 if (!dir) {
1269 ret = -ENOENT;
1270 kfree(name);
1271 goto out;
1272 }
1273 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1274 inode, name, namelen);
1275 kfree(name);
1276 iput(dir);
1277 if (ret)
1278 goto out;
1279 goto again;
1280 }
1281
1282 kfree(name);
1283 ref_ptr += namelen;
1284 if (key->type == BTRFS_INODE_EXTREF_KEY)
1285 ref_ptr += sizeof(struct btrfs_inode_extref);
1286 else
1287 ref_ptr += sizeof(struct btrfs_inode_ref);
1288 }
1289 ret = 0;
1290 out:
1291 btrfs_release_path(path);
1292 return ret;
1293}
1294
1295static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1296 const u8 ref_type, const char *name,
1297 const int namelen)
1298{
1299 struct btrfs_key key;
1300 struct btrfs_path *path;
1301 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1302 int ret;
1303
1304 path = btrfs_alloc_path();
1305 if (!path)
1306 return -ENOMEM;
1307
1308 key.objectid = btrfs_ino(BTRFS_I(inode));
1309 key.type = ref_type;
1310 if (key.type == BTRFS_INODE_REF_KEY)
1311 key.offset = parent_id;
1312 else
1313 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1314
1315 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1316 if (ret < 0)
1317 goto out;
1318 if (ret > 0) {
1319 ret = 0;
1320 goto out;
1321 }
1322 if (key.type == BTRFS_INODE_EXTREF_KEY)
1323 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1324 path->slots[0], parent_id, name, namelen);
1325 else
1326 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327 name, namelen);
1328
1329out:
1330 btrfs_free_path(path);
1331 return ret;
1332}
1333
1334static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335 struct inode *dir, struct inode *inode, const char *name,
1336 int namelen, u64 ref_index)
1337{
1338 struct btrfs_dir_item *dir_item;
1339 struct btrfs_key key;
1340 struct btrfs_path *path;
1341 struct inode *other_inode = NULL;
1342 int ret;
1343
1344 path = btrfs_alloc_path();
1345 if (!path)
1346 return -ENOMEM;
1347
1348 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349 btrfs_ino(BTRFS_I(dir)),
1350 name, namelen, 0);
1351 if (!dir_item) {
1352 btrfs_release_path(path);
1353 goto add_link;
1354 } else if (IS_ERR(dir_item)) {
1355 ret = PTR_ERR(dir_item);
1356 goto out;
1357 }
1358
1359 /*
1360 * Our inode's dentry collides with the dentry of another inode which is
1361 * in the log but not yet processed since it has a higher inode number.
1362 * So delete that other dentry.
1363 */
1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365 btrfs_release_path(path);
1366 other_inode = read_one_inode(root, key.objectid);
1367 if (!other_inode) {
1368 ret = -ENOENT;
1369 goto out;
1370 }
1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372 name, namelen);
1373 if (ret)
1374 goto out;
1375 /*
1376 * If we dropped the link count to 0, bump it so that later the iput()
1377 * on the inode will not free it. We will fixup the link count later.
1378 */
1379 if (other_inode->i_nlink == 0)
1380 inc_nlink(other_inode);
1381
1382 ret = btrfs_run_delayed_items(trans);
1383 if (ret)
1384 goto out;
1385add_link:
1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387 name, namelen, 0, ref_index);
1388out:
1389 iput(other_inode);
1390 btrfs_free_path(path);
1391
1392 return ret;
1393}
1394
1395/*
1396 * replay one inode back reference item found in the log tree.
1397 * eb, slot and key refer to the buffer and key found in the log tree.
1398 * root is the destination we are replaying into, and path is for temp
1399 * use by this function. (it should be released on return).
1400 */
1401static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_root *log,
1404 struct btrfs_path *path,
1405 struct extent_buffer *eb, int slot,
1406 struct btrfs_key *key)
1407{
1408 struct inode *dir = NULL;
1409 struct inode *inode = NULL;
1410 unsigned long ref_ptr;
1411 unsigned long ref_end;
1412 char *name = NULL;
1413 int namelen;
1414 int ret;
1415 int search_done = 0;
1416 int log_ref_ver = 0;
1417 u64 parent_objectid;
1418 u64 inode_objectid;
1419 u64 ref_index = 0;
1420 int ref_struct_size;
1421
1422 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424
1425 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426 struct btrfs_inode_extref *r;
1427
1428 ref_struct_size = sizeof(struct btrfs_inode_extref);
1429 log_ref_ver = 1;
1430 r = (struct btrfs_inode_extref *)ref_ptr;
1431 parent_objectid = btrfs_inode_extref_parent(eb, r);
1432 } else {
1433 ref_struct_size = sizeof(struct btrfs_inode_ref);
1434 parent_objectid = key->offset;
1435 }
1436 inode_objectid = key->objectid;
1437
1438 /*
1439 * it is possible that we didn't log all the parent directories
1440 * for a given inode. If we don't find the dir, just don't
1441 * copy the back ref in. The link count fixup code will take
1442 * care of the rest
1443 */
1444 dir = read_one_inode(root, parent_objectid);
1445 if (!dir) {
1446 ret = -ENOENT;
1447 goto out;
1448 }
1449
1450 inode = read_one_inode(root, inode_objectid);
1451 if (!inode) {
1452 ret = -EIO;
1453 goto out;
1454 }
1455
1456 while (ref_ptr < ref_end) {
1457 if (log_ref_ver) {
1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459 &ref_index, &parent_objectid);
1460 /*
1461 * parent object can change from one array
1462 * item to another.
1463 */
1464 if (!dir)
1465 dir = read_one_inode(root, parent_objectid);
1466 if (!dir) {
1467 ret = -ENOENT;
1468 goto out;
1469 }
1470 } else {
1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472 &ref_index);
1473 }
1474 if (ret)
1475 goto out;
1476
1477 /* if we already have a perfect match, we're done */
1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479 btrfs_ino(BTRFS_I(inode)), ref_index,
1480 name, namelen)) {
1481 /*
1482 * look for a conflicting back reference in the
1483 * metadata. if we find one we have to unlink that name
1484 * of the file before we add our new link. Later on, we
1485 * overwrite any existing back reference, and we don't
1486 * want to create dangling pointers in the directory.
1487 */
1488
1489 if (!search_done) {
1490 ret = __add_inode_ref(trans, root, path, log,
1491 BTRFS_I(dir),
1492 BTRFS_I(inode),
1493 inode_objectid,
1494 parent_objectid,
1495 ref_index, name, namelen,
1496 &search_done);
1497 if (ret) {
1498 if (ret == 1)
1499 ret = 0;
1500 goto out;
1501 }
1502 }
1503
1504 /*
1505 * If a reference item already exists for this inode
1506 * with the same parent and name, but different index,
1507 * drop it and the corresponding directory index entries
1508 * from the parent before adding the new reference item
1509 * and dir index entries, otherwise we would fail with
1510 * -EEXIST returned from btrfs_add_link() below.
1511 */
1512 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513 name, namelen);
1514 if (ret > 0) {
1515 ret = btrfs_unlink_inode(trans, root,
1516 BTRFS_I(dir),
1517 BTRFS_I(inode),
1518 name, namelen);
1519 /*
1520 * If we dropped the link count to 0, bump it so
1521 * that later the iput() on the inode will not
1522 * free it. We will fixup the link count later.
1523 */
1524 if (!ret && inode->i_nlink == 0)
1525 inc_nlink(inode);
1526 }
1527 if (ret < 0)
1528 goto out;
1529
1530 /* insert our name */
1531 ret = add_link(trans, root, dir, inode, name, namelen,
1532 ref_index);
1533 if (ret)
1534 goto out;
1535
1536 btrfs_update_inode(trans, root, inode);
1537 }
1538
1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1540 kfree(name);
1541 name = NULL;
1542 if (log_ref_ver) {
1543 iput(dir);
1544 dir = NULL;
1545 }
1546 }
1547
1548 /*
1549 * Before we overwrite the inode reference item in the subvolume tree
1550 * with the item from the log tree, we must unlink all names from the
1551 * parent directory that are in the subvolume's tree inode reference
1552 * item, otherwise we end up with an inconsistent subvolume tree where
1553 * dir index entries exist for a name but there is no inode reference
1554 * item with the same name.
1555 */
1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557 key);
1558 if (ret)
1559 goto out;
1560
1561 /* finally write the back reference in the inode */
1562 ret = overwrite_item(trans, root, path, eb, slot, key);
1563out:
1564 btrfs_release_path(path);
1565 kfree(name);
1566 iput(dir);
1567 iput(inode);
1568 return ret;
1569}
1570
1571static int insert_orphan_item(struct btrfs_trans_handle *trans,
1572 struct btrfs_root *root, u64 ino)
1573{
1574 int ret;
1575
1576 ret = btrfs_insert_orphan_item(trans, root, ino);
1577 if (ret == -EEXIST)
1578 ret = 0;
1579
1580 return ret;
1581}
1582
1583static int count_inode_extrefs(struct btrfs_root *root,
1584 struct btrfs_inode *inode, struct btrfs_path *path)
1585{
1586 int ret = 0;
1587 int name_len;
1588 unsigned int nlink = 0;
1589 u32 item_size;
1590 u32 cur_offset = 0;
1591 u64 inode_objectid = btrfs_ino(inode);
1592 u64 offset = 0;
1593 unsigned long ptr;
1594 struct btrfs_inode_extref *extref;
1595 struct extent_buffer *leaf;
1596
1597 while (1) {
1598 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1599 &extref, &offset);
1600 if (ret)
1601 break;
1602
1603 leaf = path->nodes[0];
1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1606 cur_offset = 0;
1607
1608 while (cur_offset < item_size) {
1609 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1610 name_len = btrfs_inode_extref_name_len(leaf, extref);
1611
1612 nlink++;
1613
1614 cur_offset += name_len + sizeof(*extref);
1615 }
1616
1617 offset++;
1618 btrfs_release_path(path);
1619 }
1620 btrfs_release_path(path);
1621
1622 if (ret < 0 && ret != -ENOENT)
1623 return ret;
1624 return nlink;
1625}
1626
1627static int count_inode_refs(struct btrfs_root *root,
1628 struct btrfs_inode *inode, struct btrfs_path *path)
1629{
1630 int ret;
1631 struct btrfs_key key;
1632 unsigned int nlink = 0;
1633 unsigned long ptr;
1634 unsigned long ptr_end;
1635 int name_len;
1636 u64 ino = btrfs_ino(inode);
1637
1638 key.objectid = ino;
1639 key.type = BTRFS_INODE_REF_KEY;
1640 key.offset = (u64)-1;
1641
1642 while (1) {
1643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1644 if (ret < 0)
1645 break;
1646 if (ret > 0) {
1647 if (path->slots[0] == 0)
1648 break;
1649 path->slots[0]--;
1650 }
1651process_slot:
1652 btrfs_item_key_to_cpu(path->nodes[0], &key,
1653 path->slots[0]);
1654 if (key.objectid != ino ||
1655 key.type != BTRFS_INODE_REF_KEY)
1656 break;
1657 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1658 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1659 path->slots[0]);
1660 while (ptr < ptr_end) {
1661 struct btrfs_inode_ref *ref;
1662
1663 ref = (struct btrfs_inode_ref *)ptr;
1664 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1665 ref);
1666 ptr = (unsigned long)(ref + 1) + name_len;
1667 nlink++;
1668 }
1669
1670 if (key.offset == 0)
1671 break;
1672 if (path->slots[0] > 0) {
1673 path->slots[0]--;
1674 goto process_slot;
1675 }
1676 key.offset--;
1677 btrfs_release_path(path);
1678 }
1679 btrfs_release_path(path);
1680
1681 return nlink;
1682}
1683
1684/*
1685 * There are a few corners where the link count of the file can't
1686 * be properly maintained during replay. So, instead of adding
1687 * lots of complexity to the log code, we just scan the backrefs
1688 * for any file that has been through replay.
1689 *
1690 * The scan will update the link count on the inode to reflect the
1691 * number of back refs found. If it goes down to zero, the iput
1692 * will free the inode.
1693 */
1694static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1695 struct btrfs_root *root,
1696 struct inode *inode)
1697{
1698 struct btrfs_path *path;
1699 int ret;
1700 u64 nlink = 0;
1701 u64 ino = btrfs_ino(BTRFS_I(inode));
1702
1703 path = btrfs_alloc_path();
1704 if (!path)
1705 return -ENOMEM;
1706
1707 ret = count_inode_refs(root, BTRFS_I(inode), path);
1708 if (ret < 0)
1709 goto out;
1710
1711 nlink = ret;
1712
1713 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1714 if (ret < 0)
1715 goto out;
1716
1717 nlink += ret;
1718
1719 ret = 0;
1720
1721 if (nlink != inode->i_nlink) {
1722 set_nlink(inode, nlink);
1723 btrfs_update_inode(trans, root, inode);
1724 }
1725 BTRFS_I(inode)->index_cnt = (u64)-1;
1726
1727 if (inode->i_nlink == 0) {
1728 if (S_ISDIR(inode->i_mode)) {
1729 ret = replay_dir_deletes(trans, root, NULL, path,
1730 ino, 1);
1731 if (ret)
1732 goto out;
1733 }
1734 ret = insert_orphan_item(trans, root, ino);
1735 }
1736
1737out:
1738 btrfs_free_path(path);
1739 return ret;
1740}
1741
1742static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1743 struct btrfs_root *root,
1744 struct btrfs_path *path)
1745{
1746 int ret;
1747 struct btrfs_key key;
1748 struct inode *inode;
1749
1750 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751 key.type = BTRFS_ORPHAN_ITEM_KEY;
1752 key.offset = (u64)-1;
1753 while (1) {
1754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1755 if (ret < 0)
1756 break;
1757
1758 if (ret == 1) {
1759 if (path->slots[0] == 0)
1760 break;
1761 path->slots[0]--;
1762 }
1763
1764 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1765 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1766 key.type != BTRFS_ORPHAN_ITEM_KEY)
1767 break;
1768
1769 ret = btrfs_del_item(trans, root, path);
1770 if (ret)
1771 goto out;
1772
1773 btrfs_release_path(path);
1774 inode = read_one_inode(root, key.offset);
1775 if (!inode)
1776 return -EIO;
1777
1778 ret = fixup_inode_link_count(trans, root, inode);
1779 iput(inode);
1780 if (ret)
1781 goto out;
1782
1783 /*
1784 * fixup on a directory may create new entries,
1785 * make sure we always look for the highset possible
1786 * offset
1787 */
1788 key.offset = (u64)-1;
1789 }
1790 ret = 0;
1791out:
1792 btrfs_release_path(path);
1793 return ret;
1794}
1795
1796
1797/*
1798 * record a given inode in the fixup dir so we can check its link
1799 * count when replay is done. The link count is incremented here
1800 * so the inode won't go away until we check it
1801 */
1802static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 u64 objectid)
1806{
1807 struct btrfs_key key;
1808 int ret = 0;
1809 struct inode *inode;
1810
1811 inode = read_one_inode(root, objectid);
1812 if (!inode)
1813 return -EIO;
1814
1815 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1816 key.type = BTRFS_ORPHAN_ITEM_KEY;
1817 key.offset = objectid;
1818
1819 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1820
1821 btrfs_release_path(path);
1822 if (ret == 0) {
1823 if (!inode->i_nlink)
1824 set_nlink(inode, 1);
1825 else
1826 inc_nlink(inode);
1827 ret = btrfs_update_inode(trans, root, inode);
1828 } else if (ret == -EEXIST) {
1829 ret = 0;
1830 } else {
1831 BUG(); /* Logic Error */
1832 }
1833 iput(inode);
1834
1835 return ret;
1836}
1837
1838/*
1839 * when replaying the log for a directory, we only insert names
1840 * for inodes that actually exist. This means an fsync on a directory
1841 * does not implicitly fsync all the new files in it
1842 */
1843static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1844 struct btrfs_root *root,
1845 u64 dirid, u64 index,
1846 char *name, int name_len,
1847 struct btrfs_key *location)
1848{
1849 struct inode *inode;
1850 struct inode *dir;
1851 int ret;
1852
1853 inode = read_one_inode(root, location->objectid);
1854 if (!inode)
1855 return -ENOENT;
1856
1857 dir = read_one_inode(root, dirid);
1858 if (!dir) {
1859 iput(inode);
1860 return -EIO;
1861 }
1862
1863 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1864 name_len, 1, index);
1865
1866 /* FIXME, put inode into FIXUP list */
1867
1868 iput(inode);
1869 iput(dir);
1870 return ret;
1871}
1872
1873/*
1874 * take a single entry in a log directory item and replay it into
1875 * the subvolume.
1876 *
1877 * if a conflicting item exists in the subdirectory already,
1878 * the inode it points to is unlinked and put into the link count
1879 * fix up tree.
1880 *
1881 * If a name from the log points to a file or directory that does
1882 * not exist in the FS, it is skipped. fsyncs on directories
1883 * do not force down inodes inside that directory, just changes to the
1884 * names or unlinks in a directory.
1885 *
1886 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1887 * non-existing inode) and 1 if the name was replayed.
1888 */
1889static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1890 struct btrfs_root *root,
1891 struct btrfs_path *path,
1892 struct extent_buffer *eb,
1893 struct btrfs_dir_item *di,
1894 struct btrfs_key *key)
1895{
1896 char *name;
1897 int name_len;
1898 struct btrfs_dir_item *dst_di;
1899 struct btrfs_key found_key;
1900 struct btrfs_key log_key;
1901 struct inode *dir;
1902 u8 log_type;
1903 int exists;
1904 int ret = 0;
1905 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1906 bool name_added = false;
1907
1908 dir = read_one_inode(root, key->objectid);
1909 if (!dir)
1910 return -EIO;
1911
1912 name_len = btrfs_dir_name_len(eb, di);
1913 name = kmalloc(name_len, GFP_NOFS);
1914 if (!name) {
1915 ret = -ENOMEM;
1916 goto out;
1917 }
1918
1919 log_type = btrfs_dir_type(eb, di);
1920 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1921 name_len);
1922
1923 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1924 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1925 if (exists == 0)
1926 exists = 1;
1927 else
1928 exists = 0;
1929 btrfs_release_path(path);
1930
1931 if (key->type == BTRFS_DIR_ITEM_KEY) {
1932 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1933 name, name_len, 1);
1934 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1935 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1936 key->objectid,
1937 key->offset, name,
1938 name_len, 1);
1939 } else {
1940 /* Corruption */
1941 ret = -EINVAL;
1942 goto out;
1943 }
1944 if (IS_ERR_OR_NULL(dst_di)) {
1945 /* we need a sequence number to insert, so we only
1946 * do inserts for the BTRFS_DIR_INDEX_KEY types
1947 */
1948 if (key->type != BTRFS_DIR_INDEX_KEY)
1949 goto out;
1950 goto insert;
1951 }
1952
1953 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1954 /* the existing item matches the logged item */
1955 if (found_key.objectid == log_key.objectid &&
1956 found_key.type == log_key.type &&
1957 found_key.offset == log_key.offset &&
1958 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1959 update_size = false;
1960 goto out;
1961 }
1962
1963 /*
1964 * don't drop the conflicting directory entry if the inode
1965 * for the new entry doesn't exist
1966 */
1967 if (!exists)
1968 goto out;
1969
1970 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1971 if (ret)
1972 goto out;
1973
1974 if (key->type == BTRFS_DIR_INDEX_KEY)
1975 goto insert;
1976out:
1977 btrfs_release_path(path);
1978 if (!ret && update_size) {
1979 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1980 ret = btrfs_update_inode(trans, root, dir);
1981 }
1982 kfree(name);
1983 iput(dir);
1984 if (!ret && name_added)
1985 ret = 1;
1986 return ret;
1987
1988insert:
1989 /*
1990 * Check if the inode reference exists in the log for the given name,
1991 * inode and parent inode
1992 */
1993 found_key.objectid = log_key.objectid;
1994 found_key.type = BTRFS_INODE_REF_KEY;
1995 found_key.offset = key->objectid;
1996 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1997 if (ret < 0) {
1998 goto out;
1999 } else if (ret) {
2000 /* The dentry will be added later. */
2001 ret = 0;
2002 update_size = false;
2003 goto out;
2004 }
2005
2006 found_key.objectid = log_key.objectid;
2007 found_key.type = BTRFS_INODE_EXTREF_KEY;
2008 found_key.offset = key->objectid;
2009 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2010 name_len);
2011 if (ret < 0) {
2012 goto out;
2013 } else if (ret) {
2014 /* The dentry will be added later. */
2015 ret = 0;
2016 update_size = false;
2017 goto out;
2018 }
2019 btrfs_release_path(path);
2020 ret = insert_one_name(trans, root, key->objectid, key->offset,
2021 name, name_len, &log_key);
2022 if (ret && ret != -ENOENT && ret != -EEXIST)
2023 goto out;
2024 if (!ret)
2025 name_added = true;
2026 update_size = false;
2027 ret = 0;
2028 goto out;
2029}
2030
2031/*
2032 * find all the names in a directory item and reconcile them into
2033 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2034 * one name in a directory item, but the same code gets used for
2035 * both directory index types
2036 */
2037static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2038 struct btrfs_root *root,
2039 struct btrfs_path *path,
2040 struct extent_buffer *eb, int slot,
2041 struct btrfs_key *key)
2042{
2043 int ret = 0;
2044 u32 item_size = btrfs_item_size_nr(eb, slot);
2045 struct btrfs_dir_item *di;
2046 int name_len;
2047 unsigned long ptr;
2048 unsigned long ptr_end;
2049 struct btrfs_path *fixup_path = NULL;
2050
2051 ptr = btrfs_item_ptr_offset(eb, slot);
2052 ptr_end = ptr + item_size;
2053 while (ptr < ptr_end) {
2054 di = (struct btrfs_dir_item *)ptr;
2055 name_len = btrfs_dir_name_len(eb, di);
2056 ret = replay_one_name(trans, root, path, eb, di, key);
2057 if (ret < 0)
2058 break;
2059 ptr = (unsigned long)(di + 1);
2060 ptr += name_len;
2061
2062 /*
2063 * If this entry refers to a non-directory (directories can not
2064 * have a link count > 1) and it was added in the transaction
2065 * that was not committed, make sure we fixup the link count of
2066 * the inode it the entry points to. Otherwise something like
2067 * the following would result in a directory pointing to an
2068 * inode with a wrong link that does not account for this dir
2069 * entry:
2070 *
2071 * mkdir testdir
2072 * touch testdir/foo
2073 * touch testdir/bar
2074 * sync
2075 *
2076 * ln testdir/bar testdir/bar_link
2077 * ln testdir/foo testdir/foo_link
2078 * xfs_io -c "fsync" testdir/bar
2079 *
2080 * <power failure>
2081 *
2082 * mount fs, log replay happens
2083 *
2084 * File foo would remain with a link count of 1 when it has two
2085 * entries pointing to it in the directory testdir. This would
2086 * make it impossible to ever delete the parent directory has
2087 * it would result in stale dentries that can never be deleted.
2088 */
2089 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2090 struct btrfs_key di_key;
2091
2092 if (!fixup_path) {
2093 fixup_path = btrfs_alloc_path();
2094 if (!fixup_path) {
2095 ret = -ENOMEM;
2096 break;
2097 }
2098 }
2099
2100 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2101 ret = link_to_fixup_dir(trans, root, fixup_path,
2102 di_key.objectid);
2103 if (ret)
2104 break;
2105 }
2106 ret = 0;
2107 }
2108 btrfs_free_path(fixup_path);
2109 return ret;
2110}
2111
2112/*
2113 * directory replay has two parts. There are the standard directory
2114 * items in the log copied from the subvolume, and range items
2115 * created in the log while the subvolume was logged.
2116 *
2117 * The range items tell us which parts of the key space the log
2118 * is authoritative for. During replay, if a key in the subvolume
2119 * directory is in a logged range item, but not actually in the log
2120 * that means it was deleted from the directory before the fsync
2121 * and should be removed.
2122 */
2123static noinline int find_dir_range(struct btrfs_root *root,
2124 struct btrfs_path *path,
2125 u64 dirid, int key_type,
2126 u64 *start_ret, u64 *end_ret)
2127{
2128 struct btrfs_key key;
2129 u64 found_end;
2130 struct btrfs_dir_log_item *item;
2131 int ret;
2132 int nritems;
2133
2134 if (*start_ret == (u64)-1)
2135 return 1;
2136
2137 key.objectid = dirid;
2138 key.type = key_type;
2139 key.offset = *start_ret;
2140
2141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2142 if (ret < 0)
2143 goto out;
2144 if (ret > 0) {
2145 if (path->slots[0] == 0)
2146 goto out;
2147 path->slots[0]--;
2148 }
2149 if (ret != 0)
2150 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2151
2152 if (key.type != key_type || key.objectid != dirid) {
2153 ret = 1;
2154 goto next;
2155 }
2156 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2157 struct btrfs_dir_log_item);
2158 found_end = btrfs_dir_log_end(path->nodes[0], item);
2159
2160 if (*start_ret >= key.offset && *start_ret <= found_end) {
2161 ret = 0;
2162 *start_ret = key.offset;
2163 *end_ret = found_end;
2164 goto out;
2165 }
2166 ret = 1;
2167next:
2168 /* check the next slot in the tree to see if it is a valid item */
2169 nritems = btrfs_header_nritems(path->nodes[0]);
2170 path->slots[0]++;
2171 if (path->slots[0] >= nritems) {
2172 ret = btrfs_next_leaf(root, path);
2173 if (ret)
2174 goto out;
2175 }
2176
2177 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2178
2179 if (key.type != key_type || key.objectid != dirid) {
2180 ret = 1;
2181 goto out;
2182 }
2183 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2184 struct btrfs_dir_log_item);
2185 found_end = btrfs_dir_log_end(path->nodes[0], item);
2186 *start_ret = key.offset;
2187 *end_ret = found_end;
2188 ret = 0;
2189out:
2190 btrfs_release_path(path);
2191 return ret;
2192}
2193
2194/*
2195 * this looks for a given directory item in the log. If the directory
2196 * item is not in the log, the item is removed and the inode it points
2197 * to is unlinked
2198 */
2199static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2200 struct btrfs_root *root,
2201 struct btrfs_root *log,
2202 struct btrfs_path *path,
2203 struct btrfs_path *log_path,
2204 struct inode *dir,
2205 struct btrfs_key *dir_key)
2206{
2207 int ret;
2208 struct extent_buffer *eb;
2209 int slot;
2210 u32 item_size;
2211 struct btrfs_dir_item *di;
2212 struct btrfs_dir_item *log_di;
2213 int name_len;
2214 unsigned long ptr;
2215 unsigned long ptr_end;
2216 char *name;
2217 struct inode *inode;
2218 struct btrfs_key location;
2219
2220again:
2221 eb = path->nodes[0];
2222 slot = path->slots[0];
2223 item_size = btrfs_item_size_nr(eb, slot);
2224 ptr = btrfs_item_ptr_offset(eb, slot);
2225 ptr_end = ptr + item_size;
2226 while (ptr < ptr_end) {
2227 di = (struct btrfs_dir_item *)ptr;
2228 name_len = btrfs_dir_name_len(eb, di);
2229 name = kmalloc(name_len, GFP_NOFS);
2230 if (!name) {
2231 ret = -ENOMEM;
2232 goto out;
2233 }
2234 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2235 name_len);
2236 log_di = NULL;
2237 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2238 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2239 dir_key->objectid,
2240 name, name_len, 0);
2241 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2242 log_di = btrfs_lookup_dir_index_item(trans, log,
2243 log_path,
2244 dir_key->objectid,
2245 dir_key->offset,
2246 name, name_len, 0);
2247 }
2248 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2249 btrfs_dir_item_key_to_cpu(eb, di, &location);
2250 btrfs_release_path(path);
2251 btrfs_release_path(log_path);
2252 inode = read_one_inode(root, location.objectid);
2253 if (!inode) {
2254 kfree(name);
2255 return -EIO;
2256 }
2257
2258 ret = link_to_fixup_dir(trans, root,
2259 path, location.objectid);
2260 if (ret) {
2261 kfree(name);
2262 iput(inode);
2263 goto out;
2264 }
2265
2266 inc_nlink(inode);
2267 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2268 BTRFS_I(inode), name, name_len);
2269 if (!ret)
2270 ret = btrfs_run_delayed_items(trans);
2271 kfree(name);
2272 iput(inode);
2273 if (ret)
2274 goto out;
2275
2276 /* there might still be more names under this key
2277 * check and repeat if required
2278 */
2279 ret = btrfs_search_slot(NULL, root, dir_key, path,
2280 0, 0);
2281 if (ret == 0)
2282 goto again;
2283 ret = 0;
2284 goto out;
2285 } else if (IS_ERR(log_di)) {
2286 kfree(name);
2287 return PTR_ERR(log_di);
2288 }
2289 btrfs_release_path(log_path);
2290 kfree(name);
2291
2292 ptr = (unsigned long)(di + 1);
2293 ptr += name_len;
2294 }
2295 ret = 0;
2296out:
2297 btrfs_release_path(path);
2298 btrfs_release_path(log_path);
2299 return ret;
2300}
2301
2302static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2303 struct btrfs_root *root,
2304 struct btrfs_root *log,
2305 struct btrfs_path *path,
2306 const u64 ino)
2307{
2308 struct btrfs_key search_key;
2309 struct btrfs_path *log_path;
2310 int i;
2311 int nritems;
2312 int ret;
2313
2314 log_path = btrfs_alloc_path();
2315 if (!log_path)
2316 return -ENOMEM;
2317
2318 search_key.objectid = ino;
2319 search_key.type = BTRFS_XATTR_ITEM_KEY;
2320 search_key.offset = 0;
2321again:
2322 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2323 if (ret < 0)
2324 goto out;
2325process_leaf:
2326 nritems = btrfs_header_nritems(path->nodes[0]);
2327 for (i = path->slots[0]; i < nritems; i++) {
2328 struct btrfs_key key;
2329 struct btrfs_dir_item *di;
2330 struct btrfs_dir_item *log_di;
2331 u32 total_size;
2332 u32 cur;
2333
2334 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2335 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2336 ret = 0;
2337 goto out;
2338 }
2339
2340 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2341 total_size = btrfs_item_size_nr(path->nodes[0], i);
2342 cur = 0;
2343 while (cur < total_size) {
2344 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2345 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2346 u32 this_len = sizeof(*di) + name_len + data_len;
2347 char *name;
2348
2349 name = kmalloc(name_len, GFP_NOFS);
2350 if (!name) {
2351 ret = -ENOMEM;
2352 goto out;
2353 }
2354 read_extent_buffer(path->nodes[0], name,
2355 (unsigned long)(di + 1), name_len);
2356
2357 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2358 name, name_len, 0);
2359 btrfs_release_path(log_path);
2360 if (!log_di) {
2361 /* Doesn't exist in log tree, so delete it. */
2362 btrfs_release_path(path);
2363 di = btrfs_lookup_xattr(trans, root, path, ino,
2364 name, name_len, -1);
2365 kfree(name);
2366 if (IS_ERR(di)) {
2367 ret = PTR_ERR(di);
2368 goto out;
2369 }
2370 ASSERT(di);
2371 ret = btrfs_delete_one_dir_name(trans, root,
2372 path, di);
2373 if (ret)
2374 goto out;
2375 btrfs_release_path(path);
2376 search_key = key;
2377 goto again;
2378 }
2379 kfree(name);
2380 if (IS_ERR(log_di)) {
2381 ret = PTR_ERR(log_di);
2382 goto out;
2383 }
2384 cur += this_len;
2385 di = (struct btrfs_dir_item *)((char *)di + this_len);
2386 }
2387 }
2388 ret = btrfs_next_leaf(root, path);
2389 if (ret > 0)
2390 ret = 0;
2391 else if (ret == 0)
2392 goto process_leaf;
2393out:
2394 btrfs_free_path(log_path);
2395 btrfs_release_path(path);
2396 return ret;
2397}
2398
2399
2400/*
2401 * deletion replay happens before we copy any new directory items
2402 * out of the log or out of backreferences from inodes. It
2403 * scans the log to find ranges of keys that log is authoritative for,
2404 * and then scans the directory to find items in those ranges that are
2405 * not present in the log.
2406 *
2407 * Anything we don't find in the log is unlinked and removed from the
2408 * directory.
2409 */
2410static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2411 struct btrfs_root *root,
2412 struct btrfs_root *log,
2413 struct btrfs_path *path,
2414 u64 dirid, int del_all)
2415{
2416 u64 range_start;
2417 u64 range_end;
2418 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2419 int ret = 0;
2420 struct btrfs_key dir_key;
2421 struct btrfs_key found_key;
2422 struct btrfs_path *log_path;
2423 struct inode *dir;
2424
2425 dir_key.objectid = dirid;
2426 dir_key.type = BTRFS_DIR_ITEM_KEY;
2427 log_path = btrfs_alloc_path();
2428 if (!log_path)
2429 return -ENOMEM;
2430
2431 dir = read_one_inode(root, dirid);
2432 /* it isn't an error if the inode isn't there, that can happen
2433 * because we replay the deletes before we copy in the inode item
2434 * from the log
2435 */
2436 if (!dir) {
2437 btrfs_free_path(log_path);
2438 return 0;
2439 }
2440again:
2441 range_start = 0;
2442 range_end = 0;
2443 while (1) {
2444 if (del_all)
2445 range_end = (u64)-1;
2446 else {
2447 ret = find_dir_range(log, path, dirid, key_type,
2448 &range_start, &range_end);
2449 if (ret != 0)
2450 break;
2451 }
2452
2453 dir_key.offset = range_start;
2454 while (1) {
2455 int nritems;
2456 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2457 0, 0);
2458 if (ret < 0)
2459 goto out;
2460
2461 nritems = btrfs_header_nritems(path->nodes[0]);
2462 if (path->slots[0] >= nritems) {
2463 ret = btrfs_next_leaf(root, path);
2464 if (ret == 1)
2465 break;
2466 else if (ret < 0)
2467 goto out;
2468 }
2469 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2470 path->slots[0]);
2471 if (found_key.objectid != dirid ||
2472 found_key.type != dir_key.type)
2473 goto next_type;
2474
2475 if (found_key.offset > range_end)
2476 break;
2477
2478 ret = check_item_in_log(trans, root, log, path,
2479 log_path, dir,
2480 &found_key);
2481 if (ret)
2482 goto out;
2483 if (found_key.offset == (u64)-1)
2484 break;
2485 dir_key.offset = found_key.offset + 1;
2486 }
2487 btrfs_release_path(path);
2488 if (range_end == (u64)-1)
2489 break;
2490 range_start = range_end + 1;
2491 }
2492
2493next_type:
2494 ret = 0;
2495 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2496 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2497 dir_key.type = BTRFS_DIR_INDEX_KEY;
2498 btrfs_release_path(path);
2499 goto again;
2500 }
2501out:
2502 btrfs_release_path(path);
2503 btrfs_free_path(log_path);
2504 iput(dir);
2505 return ret;
2506}
2507
2508/*
2509 * the process_func used to replay items from the log tree. This
2510 * gets called in two different stages. The first stage just looks
2511 * for inodes and makes sure they are all copied into the subvolume.
2512 *
2513 * The second stage copies all the other item types from the log into
2514 * the subvolume. The two stage approach is slower, but gets rid of
2515 * lots of complexity around inodes referencing other inodes that exist
2516 * only in the log (references come from either directory items or inode
2517 * back refs).
2518 */
2519static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2520 struct walk_control *wc, u64 gen, int level)
2521{
2522 int nritems;
2523 struct btrfs_path *path;
2524 struct btrfs_root *root = wc->replay_dest;
2525 struct btrfs_key key;
2526 int i;
2527 int ret;
2528
2529 ret = btrfs_read_buffer(eb, gen, level, NULL);
2530 if (ret)
2531 return ret;
2532
2533 level = btrfs_header_level(eb);
2534
2535 if (level != 0)
2536 return 0;
2537
2538 path = btrfs_alloc_path();
2539 if (!path)
2540 return -ENOMEM;
2541
2542 nritems = btrfs_header_nritems(eb);
2543 for (i = 0; i < nritems; i++) {
2544 btrfs_item_key_to_cpu(eb, &key, i);
2545
2546 /* inode keys are done during the first stage */
2547 if (key.type == BTRFS_INODE_ITEM_KEY &&
2548 wc->stage == LOG_WALK_REPLAY_INODES) {
2549 struct btrfs_inode_item *inode_item;
2550 u32 mode;
2551
2552 inode_item = btrfs_item_ptr(eb, i,
2553 struct btrfs_inode_item);
2554 /*
2555 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2556 * and never got linked before the fsync, skip it, as
2557 * replaying it is pointless since it would be deleted
2558 * later. We skip logging tmpfiles, but it's always
2559 * possible we are replaying a log created with a kernel
2560 * that used to log tmpfiles.
2561 */
2562 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2563 wc->ignore_cur_inode = true;
2564 continue;
2565 } else {
2566 wc->ignore_cur_inode = false;
2567 }
2568 ret = replay_xattr_deletes(wc->trans, root, log,
2569 path, key.objectid);
2570 if (ret)
2571 break;
2572 mode = btrfs_inode_mode(eb, inode_item);
2573 if (S_ISDIR(mode)) {
2574 ret = replay_dir_deletes(wc->trans,
2575 root, log, path, key.objectid, 0);
2576 if (ret)
2577 break;
2578 }
2579 ret = overwrite_item(wc->trans, root, path,
2580 eb, i, &key);
2581 if (ret)
2582 break;
2583
2584 /*
2585 * Before replaying extents, truncate the inode to its
2586 * size. We need to do it now and not after log replay
2587 * because before an fsync we can have prealloc extents
2588 * added beyond the inode's i_size. If we did it after,
2589 * through orphan cleanup for example, we would drop
2590 * those prealloc extents just after replaying them.
2591 */
2592 if (S_ISREG(mode)) {
2593 struct inode *inode;
2594 u64 from;
2595
2596 inode = read_one_inode(root, key.objectid);
2597 if (!inode) {
2598 ret = -EIO;
2599 break;
2600 }
2601 from = ALIGN(i_size_read(inode),
2602 root->fs_info->sectorsize);
2603 ret = btrfs_drop_extents(wc->trans, root, inode,
2604 from, (u64)-1, 1);
2605 if (!ret) {
2606 /* Update the inode's nbytes. */
2607 ret = btrfs_update_inode(wc->trans,
2608 root, inode);
2609 }
2610 iput(inode);
2611 if (ret)
2612 break;
2613 }
2614
2615 ret = link_to_fixup_dir(wc->trans, root,
2616 path, key.objectid);
2617 if (ret)
2618 break;
2619 }
2620
2621 if (wc->ignore_cur_inode)
2622 continue;
2623
2624 if (key.type == BTRFS_DIR_INDEX_KEY &&
2625 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2626 ret = replay_one_dir_item(wc->trans, root, path,
2627 eb, i, &key);
2628 if (ret)
2629 break;
2630 }
2631
2632 if (wc->stage < LOG_WALK_REPLAY_ALL)
2633 continue;
2634
2635 /* these keys are simply copied */
2636 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2637 ret = overwrite_item(wc->trans, root, path,
2638 eb, i, &key);
2639 if (ret)
2640 break;
2641 } else if (key.type == BTRFS_INODE_REF_KEY ||
2642 key.type == BTRFS_INODE_EXTREF_KEY) {
2643 ret = add_inode_ref(wc->trans, root, log, path,
2644 eb, i, &key);
2645 if (ret && ret != -ENOENT)
2646 break;
2647 ret = 0;
2648 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2649 ret = replay_one_extent(wc->trans, root, path,
2650 eb, i, &key);
2651 if (ret)
2652 break;
2653 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2654 ret = replay_one_dir_item(wc->trans, root, path,
2655 eb, i, &key);
2656 if (ret)
2657 break;
2658 }
2659 }
2660 btrfs_free_path(path);
2661 return ret;
2662}
2663
2664/*
2665 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2666 */
2667static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2668{
2669 struct btrfs_block_group *cache;
2670
2671 cache = btrfs_lookup_block_group(fs_info, start);
2672 if (!cache) {
2673 btrfs_err(fs_info, "unable to find block group for %llu", start);
2674 return;
2675 }
2676
2677 spin_lock(&cache->space_info->lock);
2678 spin_lock(&cache->lock);
2679 cache->reserved -= fs_info->nodesize;
2680 cache->space_info->bytes_reserved -= fs_info->nodesize;
2681 spin_unlock(&cache->lock);
2682 spin_unlock(&cache->space_info->lock);
2683
2684 btrfs_put_block_group(cache);
2685}
2686
2687static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2688 struct btrfs_root *root,
2689 struct btrfs_path *path, int *level,
2690 struct walk_control *wc)
2691{
2692 struct btrfs_fs_info *fs_info = root->fs_info;
2693 u64 bytenr;
2694 u64 ptr_gen;
2695 struct extent_buffer *next;
2696 struct extent_buffer *cur;
2697 u32 blocksize;
2698 int ret = 0;
2699
2700 while (*level > 0) {
2701 struct btrfs_key first_key;
2702
2703 cur = path->nodes[*level];
2704
2705 WARN_ON(btrfs_header_level(cur) != *level);
2706
2707 if (path->slots[*level] >=
2708 btrfs_header_nritems(cur))
2709 break;
2710
2711 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2712 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2713 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2714 blocksize = fs_info->nodesize;
2715
2716 next = btrfs_find_create_tree_block(fs_info, bytenr);
2717 if (IS_ERR(next))
2718 return PTR_ERR(next);
2719
2720 if (*level == 1) {
2721 ret = wc->process_func(root, next, wc, ptr_gen,
2722 *level - 1);
2723 if (ret) {
2724 free_extent_buffer(next);
2725 return ret;
2726 }
2727
2728 path->slots[*level]++;
2729 if (wc->free) {
2730 ret = btrfs_read_buffer(next, ptr_gen,
2731 *level - 1, &first_key);
2732 if (ret) {
2733 free_extent_buffer(next);
2734 return ret;
2735 }
2736
2737 if (trans) {
2738 btrfs_tree_lock(next);
2739 btrfs_set_lock_blocking_write(next);
2740 btrfs_clean_tree_block(next);
2741 btrfs_wait_tree_block_writeback(next);
2742 btrfs_tree_unlock(next);
2743 ret = btrfs_pin_reserved_extent(trans,
2744 bytenr, blocksize);
2745 if (ret) {
2746 free_extent_buffer(next);
2747 return ret;
2748 }
2749 } else {
2750 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2751 clear_extent_buffer_dirty(next);
2752 unaccount_log_buffer(fs_info, bytenr);
2753 }
2754 }
2755 free_extent_buffer(next);
2756 continue;
2757 }
2758 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2759 if (ret) {
2760 free_extent_buffer(next);
2761 return ret;
2762 }
2763
2764 if (path->nodes[*level-1])
2765 free_extent_buffer(path->nodes[*level-1]);
2766 path->nodes[*level-1] = next;
2767 *level = btrfs_header_level(next);
2768 path->slots[*level] = 0;
2769 cond_resched();
2770 }
2771 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2772
2773 cond_resched();
2774 return 0;
2775}
2776
2777static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2778 struct btrfs_root *root,
2779 struct btrfs_path *path, int *level,
2780 struct walk_control *wc)
2781{
2782 struct btrfs_fs_info *fs_info = root->fs_info;
2783 int i;
2784 int slot;
2785 int ret;
2786
2787 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2788 slot = path->slots[i];
2789 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2790 path->slots[i]++;
2791 *level = i;
2792 WARN_ON(*level == 0);
2793 return 0;
2794 } else {
2795 ret = wc->process_func(root, path->nodes[*level], wc,
2796 btrfs_header_generation(path->nodes[*level]),
2797 *level);
2798 if (ret)
2799 return ret;
2800
2801 if (wc->free) {
2802 struct extent_buffer *next;
2803
2804 next = path->nodes[*level];
2805
2806 if (trans) {
2807 btrfs_tree_lock(next);
2808 btrfs_set_lock_blocking_write(next);
2809 btrfs_clean_tree_block(next);
2810 btrfs_wait_tree_block_writeback(next);
2811 btrfs_tree_unlock(next);
2812 ret = btrfs_pin_reserved_extent(trans,
2813 path->nodes[*level]->start,
2814 path->nodes[*level]->len);
2815 if (ret)
2816 return ret;
2817 } else {
2818 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2819 clear_extent_buffer_dirty(next);
2820
2821 unaccount_log_buffer(fs_info,
2822 path->nodes[*level]->start);
2823 }
2824 }
2825 free_extent_buffer(path->nodes[*level]);
2826 path->nodes[*level] = NULL;
2827 *level = i + 1;
2828 }
2829 }
2830 return 1;
2831}
2832
2833/*
2834 * drop the reference count on the tree rooted at 'snap'. This traverses
2835 * the tree freeing any blocks that have a ref count of zero after being
2836 * decremented.
2837 */
2838static int walk_log_tree(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *log, struct walk_control *wc)
2840{
2841 struct btrfs_fs_info *fs_info = log->fs_info;
2842 int ret = 0;
2843 int wret;
2844 int level;
2845 struct btrfs_path *path;
2846 int orig_level;
2847
2848 path = btrfs_alloc_path();
2849 if (!path)
2850 return -ENOMEM;
2851
2852 level = btrfs_header_level(log->node);
2853 orig_level = level;
2854 path->nodes[level] = log->node;
2855 atomic_inc(&log->node->refs);
2856 path->slots[level] = 0;
2857
2858 while (1) {
2859 wret = walk_down_log_tree(trans, log, path, &level, wc);
2860 if (wret > 0)
2861 break;
2862 if (wret < 0) {
2863 ret = wret;
2864 goto out;
2865 }
2866
2867 wret = walk_up_log_tree(trans, log, path, &level, wc);
2868 if (wret > 0)
2869 break;
2870 if (wret < 0) {
2871 ret = wret;
2872 goto out;
2873 }
2874 }
2875
2876 /* was the root node processed? if not, catch it here */
2877 if (path->nodes[orig_level]) {
2878 ret = wc->process_func(log, path->nodes[orig_level], wc,
2879 btrfs_header_generation(path->nodes[orig_level]),
2880 orig_level);
2881 if (ret)
2882 goto out;
2883 if (wc->free) {
2884 struct extent_buffer *next;
2885
2886 next = path->nodes[orig_level];
2887
2888 if (trans) {
2889 btrfs_tree_lock(next);
2890 btrfs_set_lock_blocking_write(next);
2891 btrfs_clean_tree_block(next);
2892 btrfs_wait_tree_block_writeback(next);
2893 btrfs_tree_unlock(next);
2894 ret = btrfs_pin_reserved_extent(trans,
2895 next->start, next->len);
2896 if (ret)
2897 goto out;
2898 } else {
2899 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2900 clear_extent_buffer_dirty(next);
2901 unaccount_log_buffer(fs_info, next->start);
2902 }
2903 }
2904 }
2905
2906out:
2907 btrfs_free_path(path);
2908 return ret;
2909}
2910
2911/*
2912 * helper function to update the item for a given subvolumes log root
2913 * in the tree of log roots
2914 */
2915static int update_log_root(struct btrfs_trans_handle *trans,
2916 struct btrfs_root *log,
2917 struct btrfs_root_item *root_item)
2918{
2919 struct btrfs_fs_info *fs_info = log->fs_info;
2920 int ret;
2921
2922 if (log->log_transid == 1) {
2923 /* insert root item on the first sync */
2924 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2925 &log->root_key, root_item);
2926 } else {
2927 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2928 &log->root_key, root_item);
2929 }
2930 return ret;
2931}
2932
2933static void wait_log_commit(struct btrfs_root *root, int transid)
2934{
2935 DEFINE_WAIT(wait);
2936 int index = transid % 2;
2937
2938 /*
2939 * we only allow two pending log transactions at a time,
2940 * so we know that if ours is more than 2 older than the
2941 * current transaction, we're done
2942 */
2943 for (;;) {
2944 prepare_to_wait(&root->log_commit_wait[index],
2945 &wait, TASK_UNINTERRUPTIBLE);
2946
2947 if (!(root->log_transid_committed < transid &&
2948 atomic_read(&root->log_commit[index])))
2949 break;
2950
2951 mutex_unlock(&root->log_mutex);
2952 schedule();
2953 mutex_lock(&root->log_mutex);
2954 }
2955 finish_wait(&root->log_commit_wait[index], &wait);
2956}
2957
2958static void wait_for_writer(struct btrfs_root *root)
2959{
2960 DEFINE_WAIT(wait);
2961
2962 for (;;) {
2963 prepare_to_wait(&root->log_writer_wait, &wait,
2964 TASK_UNINTERRUPTIBLE);
2965 if (!atomic_read(&root->log_writers))
2966 break;
2967
2968 mutex_unlock(&root->log_mutex);
2969 schedule();
2970 mutex_lock(&root->log_mutex);
2971 }
2972 finish_wait(&root->log_writer_wait, &wait);
2973}
2974
2975static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2976 struct btrfs_log_ctx *ctx)
2977{
2978 if (!ctx)
2979 return;
2980
2981 mutex_lock(&root->log_mutex);
2982 list_del_init(&ctx->list);
2983 mutex_unlock(&root->log_mutex);
2984}
2985
2986/*
2987 * Invoked in log mutex context, or be sure there is no other task which
2988 * can access the list.
2989 */
2990static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2991 int index, int error)
2992{
2993 struct btrfs_log_ctx *ctx;
2994 struct btrfs_log_ctx *safe;
2995
2996 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2997 list_del_init(&ctx->list);
2998 ctx->log_ret = error;
2999 }
3000
3001 INIT_LIST_HEAD(&root->log_ctxs[index]);
3002}
3003
3004/*
3005 * btrfs_sync_log does sends a given tree log down to the disk and
3006 * updates the super blocks to record it. When this call is done,
3007 * you know that any inodes previously logged are safely on disk only
3008 * if it returns 0.
3009 *
3010 * Any other return value means you need to call btrfs_commit_transaction.
3011 * Some of the edge cases for fsyncing directories that have had unlinks
3012 * or renames done in the past mean that sometimes the only safe
3013 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3014 * that has happened.
3015 */
3016int btrfs_sync_log(struct btrfs_trans_handle *trans,
3017 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3018{
3019 int index1;
3020 int index2;
3021 int mark;
3022 int ret;
3023 struct btrfs_fs_info *fs_info = root->fs_info;
3024 struct btrfs_root *log = root->log_root;
3025 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3026 struct btrfs_root_item new_root_item;
3027 int log_transid = 0;
3028 struct btrfs_log_ctx root_log_ctx;
3029 struct blk_plug plug;
3030
3031 mutex_lock(&root->log_mutex);
3032 log_transid = ctx->log_transid;
3033 if (root->log_transid_committed >= log_transid) {
3034 mutex_unlock(&root->log_mutex);
3035 return ctx->log_ret;
3036 }
3037
3038 index1 = log_transid % 2;
3039 if (atomic_read(&root->log_commit[index1])) {
3040 wait_log_commit(root, log_transid);
3041 mutex_unlock(&root->log_mutex);
3042 return ctx->log_ret;
3043 }
3044 ASSERT(log_transid == root->log_transid);
3045 atomic_set(&root->log_commit[index1], 1);
3046
3047 /* wait for previous tree log sync to complete */
3048 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3049 wait_log_commit(root, log_transid - 1);
3050
3051 while (1) {
3052 int batch = atomic_read(&root->log_batch);
3053 /* when we're on an ssd, just kick the log commit out */
3054 if (!btrfs_test_opt(fs_info, SSD) &&
3055 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3056 mutex_unlock(&root->log_mutex);
3057 schedule_timeout_uninterruptible(1);
3058 mutex_lock(&root->log_mutex);
3059 }
3060 wait_for_writer(root);
3061 if (batch == atomic_read(&root->log_batch))
3062 break;
3063 }
3064
3065 /* bail out if we need to do a full commit */
3066 if (btrfs_need_log_full_commit(trans)) {
3067 ret = -EAGAIN;
3068 mutex_unlock(&root->log_mutex);
3069 goto out;
3070 }
3071
3072 if (log_transid % 2 == 0)
3073 mark = EXTENT_DIRTY;
3074 else
3075 mark = EXTENT_NEW;
3076
3077 /* we start IO on all the marked extents here, but we don't actually
3078 * wait for them until later.
3079 */
3080 blk_start_plug(&plug);
3081 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3082 if (ret) {
3083 blk_finish_plug(&plug);
3084 btrfs_abort_transaction(trans, ret);
3085 btrfs_set_log_full_commit(trans);
3086 mutex_unlock(&root->log_mutex);
3087 goto out;
3088 }
3089
3090 /*
3091 * We _must_ update under the root->log_mutex in order to make sure we
3092 * have a consistent view of the log root we are trying to commit at
3093 * this moment.
3094 *
3095 * We _must_ copy this into a local copy, because we are not holding the
3096 * log_root_tree->log_mutex yet. This is important because when we
3097 * commit the log_root_tree we must have a consistent view of the
3098 * log_root_tree when we update the super block to point at the
3099 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3100 * with the commit and possibly point at the new block which we may not
3101 * have written out.
3102 */
3103 btrfs_set_root_node(&log->root_item, log->node);
3104 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3105
3106 root->log_transid++;
3107 log->log_transid = root->log_transid;
3108 root->log_start_pid = 0;
3109 /*
3110 * IO has been started, blocks of the log tree have WRITTEN flag set
3111 * in their headers. new modifications of the log will be written to
3112 * new positions. so it's safe to allow log writers to go in.
3113 */
3114 mutex_unlock(&root->log_mutex);
3115
3116 btrfs_init_log_ctx(&root_log_ctx, NULL);
3117
3118 mutex_lock(&log_root_tree->log_mutex);
3119
3120 index2 = log_root_tree->log_transid % 2;
3121 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3122 root_log_ctx.log_transid = log_root_tree->log_transid;
3123
3124 /*
3125 * Now we are safe to update the log_root_tree because we're under the
3126 * log_mutex, and we're a current writer so we're holding the commit
3127 * open until we drop the log_mutex.
3128 */
3129 ret = update_log_root(trans, log, &new_root_item);
3130 if (ret) {
3131 if (!list_empty(&root_log_ctx.list))
3132 list_del_init(&root_log_ctx.list);
3133
3134 blk_finish_plug(&plug);
3135 btrfs_set_log_full_commit(trans);
3136
3137 if (ret != -ENOSPC) {
3138 btrfs_abort_transaction(trans, ret);
3139 mutex_unlock(&log_root_tree->log_mutex);
3140 goto out;
3141 }
3142 btrfs_wait_tree_log_extents(log, mark);
3143 mutex_unlock(&log_root_tree->log_mutex);
3144 ret = -EAGAIN;
3145 goto out;
3146 }
3147
3148 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3149 blk_finish_plug(&plug);
3150 list_del_init(&root_log_ctx.list);
3151 mutex_unlock(&log_root_tree->log_mutex);
3152 ret = root_log_ctx.log_ret;
3153 goto out;
3154 }
3155
3156 index2 = root_log_ctx.log_transid % 2;
3157 if (atomic_read(&log_root_tree->log_commit[index2])) {
3158 blk_finish_plug(&plug);
3159 ret = btrfs_wait_tree_log_extents(log, mark);
3160 wait_log_commit(log_root_tree,
3161 root_log_ctx.log_transid);
3162 mutex_unlock(&log_root_tree->log_mutex);
3163 if (!ret)
3164 ret = root_log_ctx.log_ret;
3165 goto out;
3166 }
3167 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3168 atomic_set(&log_root_tree->log_commit[index2], 1);
3169
3170 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3171 wait_log_commit(log_root_tree,
3172 root_log_ctx.log_transid - 1);
3173 }
3174
3175 /*
3176 * now that we've moved on to the tree of log tree roots,
3177 * check the full commit flag again
3178 */
3179 if (btrfs_need_log_full_commit(trans)) {
3180 blk_finish_plug(&plug);
3181 btrfs_wait_tree_log_extents(log, mark);
3182 mutex_unlock(&log_root_tree->log_mutex);
3183 ret = -EAGAIN;
3184 goto out_wake_log_root;
3185 }
3186
3187 ret = btrfs_write_marked_extents(fs_info,
3188 &log_root_tree->dirty_log_pages,
3189 EXTENT_DIRTY | EXTENT_NEW);
3190 blk_finish_plug(&plug);
3191 if (ret) {
3192 btrfs_set_log_full_commit(trans);
3193 btrfs_abort_transaction(trans, ret);
3194 mutex_unlock(&log_root_tree->log_mutex);
3195 goto out_wake_log_root;
3196 }
3197 ret = btrfs_wait_tree_log_extents(log, mark);
3198 if (!ret)
3199 ret = btrfs_wait_tree_log_extents(log_root_tree,
3200 EXTENT_NEW | EXTENT_DIRTY);
3201 if (ret) {
3202 btrfs_set_log_full_commit(trans);
3203 mutex_unlock(&log_root_tree->log_mutex);
3204 goto out_wake_log_root;
3205 }
3206
3207 btrfs_set_super_log_root(fs_info->super_for_commit,
3208 log_root_tree->node->start);
3209 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3210 btrfs_header_level(log_root_tree->node));
3211
3212 log_root_tree->log_transid++;
3213 mutex_unlock(&log_root_tree->log_mutex);
3214
3215 /*
3216 * Nobody else is going to jump in and write the ctree
3217 * super here because the log_commit atomic below is protecting
3218 * us. We must be called with a transaction handle pinning
3219 * the running transaction open, so a full commit can't hop
3220 * in and cause problems either.
3221 */
3222 ret = write_all_supers(fs_info, 1);
3223 if (ret) {
3224 btrfs_set_log_full_commit(trans);
3225 btrfs_abort_transaction(trans, ret);
3226 goto out_wake_log_root;
3227 }
3228
3229 mutex_lock(&root->log_mutex);
3230 if (root->last_log_commit < log_transid)
3231 root->last_log_commit = log_transid;
3232 mutex_unlock(&root->log_mutex);
3233
3234out_wake_log_root:
3235 mutex_lock(&log_root_tree->log_mutex);
3236 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3237
3238 log_root_tree->log_transid_committed++;
3239 atomic_set(&log_root_tree->log_commit[index2], 0);
3240 mutex_unlock(&log_root_tree->log_mutex);
3241
3242 /*
3243 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3244 * all the updates above are seen by the woken threads. It might not be
3245 * necessary, but proving that seems to be hard.
3246 */
3247 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3248out:
3249 mutex_lock(&root->log_mutex);
3250 btrfs_remove_all_log_ctxs(root, index1, ret);
3251 root->log_transid_committed++;
3252 atomic_set(&root->log_commit[index1], 0);
3253 mutex_unlock(&root->log_mutex);
3254
3255 /*
3256 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3257 * all the updates above are seen by the woken threads. It might not be
3258 * necessary, but proving that seems to be hard.
3259 */
3260 cond_wake_up(&root->log_commit_wait[index1]);
3261 return ret;
3262}
3263
3264static void free_log_tree(struct btrfs_trans_handle *trans,
3265 struct btrfs_root *log)
3266{
3267 int ret;
3268 struct walk_control wc = {
3269 .free = 1,
3270 .process_func = process_one_buffer
3271 };
3272
3273 ret = walk_log_tree(trans, log, &wc);
3274 if (ret) {
3275 if (trans)
3276 btrfs_abort_transaction(trans, ret);
3277 else
3278 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3279 }
3280
3281 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3282 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3283 extent_io_tree_release(&log->log_csum_range);
3284 btrfs_put_root(log);
3285}
3286
3287/*
3288 * free all the extents used by the tree log. This should be called
3289 * at commit time of the full transaction
3290 */
3291int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3292{
3293 if (root->log_root) {
3294 free_log_tree(trans, root->log_root);
3295 root->log_root = NULL;
3296 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3297 }
3298 return 0;
3299}
3300
3301int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3302 struct btrfs_fs_info *fs_info)
3303{
3304 if (fs_info->log_root_tree) {
3305 free_log_tree(trans, fs_info->log_root_tree);
3306 fs_info->log_root_tree = NULL;
3307 }
3308 return 0;
3309}
3310
3311/*
3312 * Check if an inode was logged in the current transaction. We can't always rely
3313 * on an inode's logged_trans value, because it's an in-memory only field and
3314 * therefore not persisted. This means that its value is lost if the inode gets
3315 * evicted and loaded again from disk (in which case it has a value of 0, and
3316 * certainly it is smaller then any possible transaction ID), when that happens
3317 * the full_sync flag is set in the inode's runtime flags, so on that case we
3318 * assume eviction happened and ignore the logged_trans value, assuming the
3319 * worst case, that the inode was logged before in the current transaction.
3320 */
3321static bool inode_logged(struct btrfs_trans_handle *trans,
3322 struct btrfs_inode *inode)
3323{
3324 if (inode->logged_trans == trans->transid)
3325 return true;
3326
3327 if (inode->last_trans == trans->transid &&
3328 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3329 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3330 return true;
3331
3332 return false;
3333}
3334
3335/*
3336 * If both a file and directory are logged, and unlinks or renames are
3337 * mixed in, we have a few interesting corners:
3338 *
3339 * create file X in dir Y
3340 * link file X to X.link in dir Y
3341 * fsync file X
3342 * unlink file X but leave X.link
3343 * fsync dir Y
3344 *
3345 * After a crash we would expect only X.link to exist. But file X
3346 * didn't get fsync'd again so the log has back refs for X and X.link.
3347 *
3348 * We solve this by removing directory entries and inode backrefs from the
3349 * log when a file that was logged in the current transaction is
3350 * unlinked. Any later fsync will include the updated log entries, and
3351 * we'll be able to reconstruct the proper directory items from backrefs.
3352 *
3353 * This optimizations allows us to avoid relogging the entire inode
3354 * or the entire directory.
3355 */
3356int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3357 struct btrfs_root *root,
3358 const char *name, int name_len,
3359 struct btrfs_inode *dir, u64 index)
3360{
3361 struct btrfs_root *log;
3362 struct btrfs_dir_item *di;
3363 struct btrfs_path *path;
3364 int ret;
3365 int err = 0;
3366 int bytes_del = 0;
3367 u64 dir_ino = btrfs_ino(dir);
3368
3369 if (!inode_logged(trans, dir))
3370 return 0;
3371
3372 ret = join_running_log_trans(root);
3373 if (ret)
3374 return 0;
3375
3376 mutex_lock(&dir->log_mutex);
3377
3378 log = root->log_root;
3379 path = btrfs_alloc_path();
3380 if (!path) {
3381 err = -ENOMEM;
3382 goto out_unlock;
3383 }
3384
3385 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3386 name, name_len, -1);
3387 if (IS_ERR(di)) {
3388 err = PTR_ERR(di);
3389 goto fail;
3390 }
3391 if (di) {
3392 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3393 bytes_del += name_len;
3394 if (ret) {
3395 err = ret;
3396 goto fail;
3397 }
3398 }
3399 btrfs_release_path(path);
3400 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3401 index, name, name_len, -1);
3402 if (IS_ERR(di)) {
3403 err = PTR_ERR(di);
3404 goto fail;
3405 }
3406 if (di) {
3407 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3408 bytes_del += name_len;
3409 if (ret) {
3410 err = ret;
3411 goto fail;
3412 }
3413 }
3414
3415 /* update the directory size in the log to reflect the names
3416 * we have removed
3417 */
3418 if (bytes_del) {
3419 struct btrfs_key key;
3420
3421 key.objectid = dir_ino;
3422 key.offset = 0;
3423 key.type = BTRFS_INODE_ITEM_KEY;
3424 btrfs_release_path(path);
3425
3426 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3427 if (ret < 0) {
3428 err = ret;
3429 goto fail;
3430 }
3431 if (ret == 0) {
3432 struct btrfs_inode_item *item;
3433 u64 i_size;
3434
3435 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3436 struct btrfs_inode_item);
3437 i_size = btrfs_inode_size(path->nodes[0], item);
3438 if (i_size > bytes_del)
3439 i_size -= bytes_del;
3440 else
3441 i_size = 0;
3442 btrfs_set_inode_size(path->nodes[0], item, i_size);
3443 btrfs_mark_buffer_dirty(path->nodes[0]);
3444 } else
3445 ret = 0;
3446 btrfs_release_path(path);
3447 }
3448fail:
3449 btrfs_free_path(path);
3450out_unlock:
3451 mutex_unlock(&dir->log_mutex);
3452 if (err == -ENOSPC) {
3453 btrfs_set_log_full_commit(trans);
3454 err = 0;
3455 } else if (err < 0 && err != -ENOENT) {
3456 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3457 btrfs_abort_transaction(trans, err);
3458 }
3459
3460 btrfs_end_log_trans(root);
3461
3462 return err;
3463}
3464
3465/* see comments for btrfs_del_dir_entries_in_log */
3466int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3467 struct btrfs_root *root,
3468 const char *name, int name_len,
3469 struct btrfs_inode *inode, u64 dirid)
3470{
3471 struct btrfs_root *log;
3472 u64 index;
3473 int ret;
3474
3475 if (!inode_logged(trans, inode))
3476 return 0;
3477
3478 ret = join_running_log_trans(root);
3479 if (ret)
3480 return 0;
3481 log = root->log_root;
3482 mutex_lock(&inode->log_mutex);
3483
3484 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3485 dirid, &index);
3486 mutex_unlock(&inode->log_mutex);
3487 if (ret == -ENOSPC) {
3488 btrfs_set_log_full_commit(trans);
3489 ret = 0;
3490 } else if (ret < 0 && ret != -ENOENT)
3491 btrfs_abort_transaction(trans, ret);
3492 btrfs_end_log_trans(root);
3493
3494 return ret;
3495}
3496
3497/*
3498 * creates a range item in the log for 'dirid'. first_offset and
3499 * last_offset tell us which parts of the key space the log should
3500 * be considered authoritative for.
3501 */
3502static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3503 struct btrfs_root *log,
3504 struct btrfs_path *path,
3505 int key_type, u64 dirid,
3506 u64 first_offset, u64 last_offset)
3507{
3508 int ret;
3509 struct btrfs_key key;
3510 struct btrfs_dir_log_item *item;
3511
3512 key.objectid = dirid;
3513 key.offset = first_offset;
3514 if (key_type == BTRFS_DIR_ITEM_KEY)
3515 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3516 else
3517 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3518 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3519 if (ret)
3520 return ret;
3521
3522 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3523 struct btrfs_dir_log_item);
3524 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3525 btrfs_mark_buffer_dirty(path->nodes[0]);
3526 btrfs_release_path(path);
3527 return 0;
3528}
3529
3530/*
3531 * log all the items included in the current transaction for a given
3532 * directory. This also creates the range items in the log tree required
3533 * to replay anything deleted before the fsync
3534 */
3535static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *root, struct btrfs_inode *inode,
3537 struct btrfs_path *path,
3538 struct btrfs_path *dst_path, int key_type,
3539 struct btrfs_log_ctx *ctx,
3540 u64 min_offset, u64 *last_offset_ret)
3541{
3542 struct btrfs_key min_key;
3543 struct btrfs_root *log = root->log_root;
3544 struct extent_buffer *src;
3545 int err = 0;
3546 int ret;
3547 int i;
3548 int nritems;
3549 u64 first_offset = min_offset;
3550 u64 last_offset = (u64)-1;
3551 u64 ino = btrfs_ino(inode);
3552
3553 log = root->log_root;
3554
3555 min_key.objectid = ino;
3556 min_key.type = key_type;
3557 min_key.offset = min_offset;
3558
3559 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3560
3561 /*
3562 * we didn't find anything from this transaction, see if there
3563 * is anything at all
3564 */
3565 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3566 min_key.objectid = ino;
3567 min_key.type = key_type;
3568 min_key.offset = (u64)-1;
3569 btrfs_release_path(path);
3570 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3571 if (ret < 0) {
3572 btrfs_release_path(path);
3573 return ret;
3574 }
3575 ret = btrfs_previous_item(root, path, ino, key_type);
3576
3577 /* if ret == 0 there are items for this type,
3578 * create a range to tell us the last key of this type.
3579 * otherwise, there are no items in this directory after
3580 * *min_offset, and we create a range to indicate that.
3581 */
3582 if (ret == 0) {
3583 struct btrfs_key tmp;
3584 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3585 path->slots[0]);
3586 if (key_type == tmp.type)
3587 first_offset = max(min_offset, tmp.offset) + 1;
3588 }
3589 goto done;
3590 }
3591
3592 /* go backward to find any previous key */
3593 ret = btrfs_previous_item(root, path, ino, key_type);
3594 if (ret == 0) {
3595 struct btrfs_key tmp;
3596 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3597 if (key_type == tmp.type) {
3598 first_offset = tmp.offset;
3599 ret = overwrite_item(trans, log, dst_path,
3600 path->nodes[0], path->slots[0],
3601 &tmp);
3602 if (ret) {
3603 err = ret;
3604 goto done;
3605 }
3606 }
3607 }
3608 btrfs_release_path(path);
3609
3610 /*
3611 * Find the first key from this transaction again. See the note for
3612 * log_new_dir_dentries, if we're logging a directory recursively we
3613 * won't be holding its i_mutex, which means we can modify the directory
3614 * while we're logging it. If we remove an entry between our first
3615 * search and this search we'll not find the key again and can just
3616 * bail.
3617 */
3618 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3619 if (ret != 0)
3620 goto done;
3621
3622 /*
3623 * we have a block from this transaction, log every item in it
3624 * from our directory
3625 */
3626 while (1) {
3627 struct btrfs_key tmp;
3628 src = path->nodes[0];
3629 nritems = btrfs_header_nritems(src);
3630 for (i = path->slots[0]; i < nritems; i++) {
3631 struct btrfs_dir_item *di;
3632
3633 btrfs_item_key_to_cpu(src, &min_key, i);
3634
3635 if (min_key.objectid != ino || min_key.type != key_type)
3636 goto done;
3637 ret = overwrite_item(trans, log, dst_path, src, i,
3638 &min_key);
3639 if (ret) {
3640 err = ret;
3641 goto done;
3642 }
3643
3644 /*
3645 * We must make sure that when we log a directory entry,
3646 * the corresponding inode, after log replay, has a
3647 * matching link count. For example:
3648 *
3649 * touch foo
3650 * mkdir mydir
3651 * sync
3652 * ln foo mydir/bar
3653 * xfs_io -c "fsync" mydir
3654 * <crash>
3655 * <mount fs and log replay>
3656 *
3657 * Would result in a fsync log that when replayed, our
3658 * file inode would have a link count of 1, but we get
3659 * two directory entries pointing to the same inode.
3660 * After removing one of the names, it would not be
3661 * possible to remove the other name, which resulted
3662 * always in stale file handle errors, and would not
3663 * be possible to rmdir the parent directory, since
3664 * its i_size could never decrement to the value
3665 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3666 */
3667 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3668 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3669 if (ctx &&
3670 (btrfs_dir_transid(src, di) == trans->transid ||
3671 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3672 tmp.type != BTRFS_ROOT_ITEM_KEY)
3673 ctx->log_new_dentries = true;
3674 }
3675 path->slots[0] = nritems;
3676
3677 /*
3678 * look ahead to the next item and see if it is also
3679 * from this directory and from this transaction
3680 */
3681 ret = btrfs_next_leaf(root, path);
3682 if (ret) {
3683 if (ret == 1)
3684 last_offset = (u64)-1;
3685 else
3686 err = ret;
3687 goto done;
3688 }
3689 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3690 if (tmp.objectid != ino || tmp.type != key_type) {
3691 last_offset = (u64)-1;
3692 goto done;
3693 }
3694 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3695 ret = overwrite_item(trans, log, dst_path,
3696 path->nodes[0], path->slots[0],
3697 &tmp);
3698 if (ret)
3699 err = ret;
3700 else
3701 last_offset = tmp.offset;
3702 goto done;
3703 }
3704 }
3705done:
3706 btrfs_release_path(path);
3707 btrfs_release_path(dst_path);
3708
3709 if (err == 0) {
3710 *last_offset_ret = last_offset;
3711 /*
3712 * insert the log range keys to indicate where the log
3713 * is valid
3714 */
3715 ret = insert_dir_log_key(trans, log, path, key_type,
3716 ino, first_offset, last_offset);
3717 if (ret)
3718 err = ret;
3719 }
3720 return err;
3721}
3722
3723/*
3724 * logging directories is very similar to logging inodes, We find all the items
3725 * from the current transaction and write them to the log.
3726 *
3727 * The recovery code scans the directory in the subvolume, and if it finds a
3728 * key in the range logged that is not present in the log tree, then it means
3729 * that dir entry was unlinked during the transaction.
3730 *
3731 * In order for that scan to work, we must include one key smaller than
3732 * the smallest logged by this transaction and one key larger than the largest
3733 * key logged by this transaction.
3734 */
3735static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3736 struct btrfs_root *root, struct btrfs_inode *inode,
3737 struct btrfs_path *path,
3738 struct btrfs_path *dst_path,
3739 struct btrfs_log_ctx *ctx)
3740{
3741 u64 min_key;
3742 u64 max_key;
3743 int ret;
3744 int key_type = BTRFS_DIR_ITEM_KEY;
3745
3746again:
3747 min_key = 0;
3748 max_key = 0;
3749 while (1) {
3750 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3751 ctx, min_key, &max_key);
3752 if (ret)
3753 return ret;
3754 if (max_key == (u64)-1)
3755 break;
3756 min_key = max_key + 1;
3757 }
3758
3759 if (key_type == BTRFS_DIR_ITEM_KEY) {
3760 key_type = BTRFS_DIR_INDEX_KEY;
3761 goto again;
3762 }
3763 return 0;
3764}
3765
3766/*
3767 * a helper function to drop items from the log before we relog an
3768 * inode. max_key_type indicates the highest item type to remove.
3769 * This cannot be run for file data extents because it does not
3770 * free the extents they point to.
3771 */
3772static int drop_objectid_items(struct btrfs_trans_handle *trans,
3773 struct btrfs_root *log,
3774 struct btrfs_path *path,
3775 u64 objectid, int max_key_type)
3776{
3777 int ret;
3778 struct btrfs_key key;
3779 struct btrfs_key found_key;
3780 int start_slot;
3781
3782 key.objectid = objectid;
3783 key.type = max_key_type;
3784 key.offset = (u64)-1;
3785
3786 while (1) {
3787 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3788 BUG_ON(ret == 0); /* Logic error */
3789 if (ret < 0)
3790 break;
3791
3792 if (path->slots[0] == 0)
3793 break;
3794
3795 path->slots[0]--;
3796 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3797 path->slots[0]);
3798
3799 if (found_key.objectid != objectid)
3800 break;
3801
3802 found_key.offset = 0;
3803 found_key.type = 0;
3804 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3805 if (ret < 0)
3806 break;
3807
3808 ret = btrfs_del_items(trans, log, path, start_slot,
3809 path->slots[0] - start_slot + 1);
3810 /*
3811 * If start slot isn't 0 then we don't need to re-search, we've
3812 * found the last guy with the objectid in this tree.
3813 */
3814 if (ret || start_slot != 0)
3815 break;
3816 btrfs_release_path(path);
3817 }
3818 btrfs_release_path(path);
3819 if (ret > 0)
3820 ret = 0;
3821 return ret;
3822}
3823
3824static void fill_inode_item(struct btrfs_trans_handle *trans,
3825 struct extent_buffer *leaf,
3826 struct btrfs_inode_item *item,
3827 struct inode *inode, int log_inode_only,
3828 u64 logged_isize)
3829{
3830 struct btrfs_map_token token;
3831
3832 btrfs_init_map_token(&token, leaf);
3833
3834 if (log_inode_only) {
3835 /* set the generation to zero so the recover code
3836 * can tell the difference between an logging
3837 * just to say 'this inode exists' and a logging
3838 * to say 'update this inode with these values'
3839 */
3840 btrfs_set_token_inode_generation(&token, item, 0);
3841 btrfs_set_token_inode_size(&token, item, logged_isize);
3842 } else {
3843 btrfs_set_token_inode_generation(&token, item,
3844 BTRFS_I(inode)->generation);
3845 btrfs_set_token_inode_size(&token, item, inode->i_size);
3846 }
3847
3848 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3849 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3850 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3851 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3852
3853 btrfs_set_token_timespec_sec(&token, &item->atime,
3854 inode->i_atime.tv_sec);
3855 btrfs_set_token_timespec_nsec(&token, &item->atime,
3856 inode->i_atime.tv_nsec);
3857
3858 btrfs_set_token_timespec_sec(&token, &item->mtime,
3859 inode->i_mtime.tv_sec);
3860 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3861 inode->i_mtime.tv_nsec);
3862
3863 btrfs_set_token_timespec_sec(&token, &item->ctime,
3864 inode->i_ctime.tv_sec);
3865 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3866 inode->i_ctime.tv_nsec);
3867
3868 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3869
3870 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3871 btrfs_set_token_inode_transid(&token, item, trans->transid);
3872 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3873 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3874 btrfs_set_token_inode_block_group(&token, item, 0);
3875}
3876
3877static int log_inode_item(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *log, struct btrfs_path *path,
3879 struct btrfs_inode *inode)
3880{
3881 struct btrfs_inode_item *inode_item;
3882 int ret;
3883
3884 ret = btrfs_insert_empty_item(trans, log, path,
3885 &inode->location, sizeof(*inode_item));
3886 if (ret && ret != -EEXIST)
3887 return ret;
3888 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3889 struct btrfs_inode_item);
3890 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3891 0, 0);
3892 btrfs_release_path(path);
3893 return 0;
3894}
3895
3896static int log_csums(struct btrfs_trans_handle *trans,
3897 struct btrfs_inode *inode,
3898 struct btrfs_root *log_root,
3899 struct btrfs_ordered_sum *sums)
3900{
3901 const u64 lock_end = sums->bytenr + sums->len - 1;
3902 struct extent_state *cached_state = NULL;
3903 int ret;
3904
3905 /*
3906 * If this inode was not used for reflink operations in the current
3907 * transaction with new extents, then do the fast path, no need to
3908 * worry about logging checksum items with overlapping ranges.
3909 */
3910 if (inode->last_reflink_trans < trans->transid)
3911 return btrfs_csum_file_blocks(trans, log_root, sums);
3912
3913 /*
3914 * Serialize logging for checksums. This is to avoid racing with the
3915 * same checksum being logged by another task that is logging another
3916 * file which happens to refer to the same extent as well. Such races
3917 * can leave checksum items in the log with overlapping ranges.
3918 */
3919 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3920 lock_end, &cached_state);
3921 if (ret)
3922 return ret;
3923 /*
3924 * Due to extent cloning, we might have logged a csum item that covers a
3925 * subrange of a cloned extent, and later we can end up logging a csum
3926 * item for a larger subrange of the same extent or the entire range.
3927 * This would leave csum items in the log tree that cover the same range
3928 * and break the searches for checksums in the log tree, resulting in
3929 * some checksums missing in the fs/subvolume tree. So just delete (or
3930 * trim and adjust) any existing csum items in the log for this range.
3931 */
3932 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3933 if (!ret)
3934 ret = btrfs_csum_file_blocks(trans, log_root, sums);
3935
3936 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3937 &cached_state);
3938
3939 return ret;
3940}
3941
3942static noinline int copy_items(struct btrfs_trans_handle *trans,
3943 struct btrfs_inode *inode,
3944 struct btrfs_path *dst_path,
3945 struct btrfs_path *src_path,
3946 int start_slot, int nr, int inode_only,
3947 u64 logged_isize)
3948{
3949 struct btrfs_fs_info *fs_info = trans->fs_info;
3950 unsigned long src_offset;
3951 unsigned long dst_offset;
3952 struct btrfs_root *log = inode->root->log_root;
3953 struct btrfs_file_extent_item *extent;
3954 struct btrfs_inode_item *inode_item;
3955 struct extent_buffer *src = src_path->nodes[0];
3956 int ret;
3957 struct btrfs_key *ins_keys;
3958 u32 *ins_sizes;
3959 char *ins_data;
3960 int i;
3961 struct list_head ordered_sums;
3962 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3963
3964 INIT_LIST_HEAD(&ordered_sums);
3965
3966 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3967 nr * sizeof(u32), GFP_NOFS);
3968 if (!ins_data)
3969 return -ENOMEM;
3970
3971 ins_sizes = (u32 *)ins_data;
3972 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3973
3974 for (i = 0; i < nr; i++) {
3975 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3976 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3977 }
3978 ret = btrfs_insert_empty_items(trans, log, dst_path,
3979 ins_keys, ins_sizes, nr);
3980 if (ret) {
3981 kfree(ins_data);
3982 return ret;
3983 }
3984
3985 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3986 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3987 dst_path->slots[0]);
3988
3989 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3990
3991 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3992 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3993 dst_path->slots[0],
3994 struct btrfs_inode_item);
3995 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3996 &inode->vfs_inode,
3997 inode_only == LOG_INODE_EXISTS,
3998 logged_isize);
3999 } else {
4000 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4001 src_offset, ins_sizes[i]);
4002 }
4003
4004 /* take a reference on file data extents so that truncates
4005 * or deletes of this inode don't have to relog the inode
4006 * again
4007 */
4008 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4009 !skip_csum) {
4010 int found_type;
4011 extent = btrfs_item_ptr(src, start_slot + i,
4012 struct btrfs_file_extent_item);
4013
4014 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4015 continue;
4016
4017 found_type = btrfs_file_extent_type(src, extent);
4018 if (found_type == BTRFS_FILE_EXTENT_REG) {
4019 u64 ds, dl, cs, cl;
4020 ds = btrfs_file_extent_disk_bytenr(src,
4021 extent);
4022 /* ds == 0 is a hole */
4023 if (ds == 0)
4024 continue;
4025
4026 dl = btrfs_file_extent_disk_num_bytes(src,
4027 extent);
4028 cs = btrfs_file_extent_offset(src, extent);
4029 cl = btrfs_file_extent_num_bytes(src,
4030 extent);
4031 if (btrfs_file_extent_compression(src,
4032 extent)) {
4033 cs = 0;
4034 cl = dl;
4035 }
4036
4037 ret = btrfs_lookup_csums_range(
4038 fs_info->csum_root,
4039 ds + cs, ds + cs + cl - 1,
4040 &ordered_sums, 0);
4041 if (ret)
4042 break;
4043 }
4044 }
4045 }
4046
4047 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4048 btrfs_release_path(dst_path);
4049 kfree(ins_data);
4050
4051 /*
4052 * we have to do this after the loop above to avoid changing the
4053 * log tree while trying to change the log tree.
4054 */
4055 while (!list_empty(&ordered_sums)) {
4056 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4057 struct btrfs_ordered_sum,
4058 list);
4059 if (!ret)
4060 ret = log_csums(trans, inode, log, sums);
4061 list_del(&sums->list);
4062 kfree(sums);
4063 }
4064
4065 return ret;
4066}
4067
4068static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4069{
4070 struct extent_map *em1, *em2;
4071
4072 em1 = list_entry(a, struct extent_map, list);
4073 em2 = list_entry(b, struct extent_map, list);
4074
4075 if (em1->start < em2->start)
4076 return -1;
4077 else if (em1->start > em2->start)
4078 return 1;
4079 return 0;
4080}
4081
4082static int log_extent_csums(struct btrfs_trans_handle *trans,
4083 struct btrfs_inode *inode,
4084 struct btrfs_root *log_root,
4085 const struct extent_map *em)
4086{
4087 u64 csum_offset;
4088 u64 csum_len;
4089 LIST_HEAD(ordered_sums);
4090 int ret = 0;
4091
4092 if (inode->flags & BTRFS_INODE_NODATASUM ||
4093 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4094 em->block_start == EXTENT_MAP_HOLE)
4095 return 0;
4096
4097 /* If we're compressed we have to save the entire range of csums. */
4098 if (em->compress_type) {
4099 csum_offset = 0;
4100 csum_len = max(em->block_len, em->orig_block_len);
4101 } else {
4102 csum_offset = em->mod_start - em->start;
4103 csum_len = em->mod_len;
4104 }
4105
4106 /* block start is already adjusted for the file extent offset. */
4107 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4108 em->block_start + csum_offset,
4109 em->block_start + csum_offset +
4110 csum_len - 1, &ordered_sums, 0);
4111 if (ret)
4112 return ret;
4113
4114 while (!list_empty(&ordered_sums)) {
4115 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4116 struct btrfs_ordered_sum,
4117 list);
4118 if (!ret)
4119 ret = log_csums(trans, inode, log_root, sums);
4120 list_del(&sums->list);
4121 kfree(sums);
4122 }
4123
4124 return ret;
4125}
4126
4127static int log_one_extent(struct btrfs_trans_handle *trans,
4128 struct btrfs_inode *inode, struct btrfs_root *root,
4129 const struct extent_map *em,
4130 struct btrfs_path *path,
4131 struct btrfs_log_ctx *ctx)
4132{
4133 struct btrfs_root *log = root->log_root;
4134 struct btrfs_file_extent_item *fi;
4135 struct extent_buffer *leaf;
4136 struct btrfs_map_token token;
4137 struct btrfs_key key;
4138 u64 extent_offset = em->start - em->orig_start;
4139 u64 block_len;
4140 int ret;
4141 int extent_inserted = 0;
4142
4143 ret = log_extent_csums(trans, inode, log, em);
4144 if (ret)
4145 return ret;
4146
4147 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4148 em->start + em->len, NULL, 0, 1,
4149 sizeof(*fi), &extent_inserted);
4150 if (ret)
4151 return ret;
4152
4153 if (!extent_inserted) {
4154 key.objectid = btrfs_ino(inode);
4155 key.type = BTRFS_EXTENT_DATA_KEY;
4156 key.offset = em->start;
4157
4158 ret = btrfs_insert_empty_item(trans, log, path, &key,
4159 sizeof(*fi));
4160 if (ret)
4161 return ret;
4162 }
4163 leaf = path->nodes[0];
4164 btrfs_init_map_token(&token, leaf);
4165 fi = btrfs_item_ptr(leaf, path->slots[0],
4166 struct btrfs_file_extent_item);
4167
4168 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4169 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4170 btrfs_set_token_file_extent_type(&token, fi,
4171 BTRFS_FILE_EXTENT_PREALLOC);
4172 else
4173 btrfs_set_token_file_extent_type(&token, fi,
4174 BTRFS_FILE_EXTENT_REG);
4175
4176 block_len = max(em->block_len, em->orig_block_len);
4177 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4178 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4179 em->block_start);
4180 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4181 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4182 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4183 em->block_start -
4184 extent_offset);
4185 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4186 } else {
4187 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4188 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4189 }
4190
4191 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4192 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4193 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4194 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4195 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4196 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4197 btrfs_mark_buffer_dirty(leaf);
4198
4199 btrfs_release_path(path);
4200
4201 return ret;
4202}
4203
4204/*
4205 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4206 * lose them after doing a fast fsync and replaying the log. We scan the
4207 * subvolume's root instead of iterating the inode's extent map tree because
4208 * otherwise we can log incorrect extent items based on extent map conversion.
4209 * That can happen due to the fact that extent maps are merged when they
4210 * are not in the extent map tree's list of modified extents.
4211 */
4212static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4213 struct btrfs_inode *inode,
4214 struct btrfs_path *path)
4215{
4216 struct btrfs_root *root = inode->root;
4217 struct btrfs_key key;
4218 const u64 i_size = i_size_read(&inode->vfs_inode);
4219 const u64 ino = btrfs_ino(inode);
4220 struct btrfs_path *dst_path = NULL;
4221 bool dropped_extents = false;
4222 u64 truncate_offset = i_size;
4223 struct extent_buffer *leaf;
4224 int slot;
4225 int ins_nr = 0;
4226 int start_slot;
4227 int ret;
4228
4229 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4230 return 0;
4231
4232 key.objectid = ino;
4233 key.type = BTRFS_EXTENT_DATA_KEY;
4234 key.offset = i_size;
4235 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4236 if (ret < 0)
4237 goto out;
4238
4239 /*
4240 * We must check if there is a prealloc extent that starts before the
4241 * i_size and crosses the i_size boundary. This is to ensure later we
4242 * truncate down to the end of that extent and not to the i_size, as
4243 * otherwise we end up losing part of the prealloc extent after a log
4244 * replay and with an implicit hole if there is another prealloc extent
4245 * that starts at an offset beyond i_size.
4246 */
4247 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4248 if (ret < 0)
4249 goto out;
4250
4251 if (ret == 0) {
4252 struct btrfs_file_extent_item *ei;
4253
4254 leaf = path->nodes[0];
4255 slot = path->slots[0];
4256 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4257
4258 if (btrfs_file_extent_type(leaf, ei) ==
4259 BTRFS_FILE_EXTENT_PREALLOC) {
4260 u64 extent_end;
4261
4262 btrfs_item_key_to_cpu(leaf, &key, slot);
4263 extent_end = key.offset +
4264 btrfs_file_extent_num_bytes(leaf, ei);
4265
4266 if (extent_end > i_size)
4267 truncate_offset = extent_end;
4268 }
4269 } else {
4270 ret = 0;
4271 }
4272
4273 while (true) {
4274 leaf = path->nodes[0];
4275 slot = path->slots[0];
4276
4277 if (slot >= btrfs_header_nritems(leaf)) {
4278 if (ins_nr > 0) {
4279 ret = copy_items(trans, inode, dst_path, path,
4280 start_slot, ins_nr, 1, 0);
4281 if (ret < 0)
4282 goto out;
4283 ins_nr = 0;
4284 }
4285 ret = btrfs_next_leaf(root, path);
4286 if (ret < 0)
4287 goto out;
4288 if (ret > 0) {
4289 ret = 0;
4290 break;
4291 }
4292 continue;
4293 }
4294
4295 btrfs_item_key_to_cpu(leaf, &key, slot);
4296 if (key.objectid > ino)
4297 break;
4298 if (WARN_ON_ONCE(key.objectid < ino) ||
4299 key.type < BTRFS_EXTENT_DATA_KEY ||
4300 key.offset < i_size) {
4301 path->slots[0]++;
4302 continue;
4303 }
4304 if (!dropped_extents) {
4305 /*
4306 * Avoid logging extent items logged in past fsync calls
4307 * and leading to duplicate keys in the log tree.
4308 */
4309 do {
4310 ret = btrfs_truncate_inode_items(trans,
4311 root->log_root,
4312 &inode->vfs_inode,
4313 truncate_offset,
4314 BTRFS_EXTENT_DATA_KEY);
4315 } while (ret == -EAGAIN);
4316 if (ret)
4317 goto out;
4318 dropped_extents = true;
4319 }
4320 if (ins_nr == 0)
4321 start_slot = slot;
4322 ins_nr++;
4323 path->slots[0]++;
4324 if (!dst_path) {
4325 dst_path = btrfs_alloc_path();
4326 if (!dst_path) {
4327 ret = -ENOMEM;
4328 goto out;
4329 }
4330 }
4331 }
4332 if (ins_nr > 0)
4333 ret = copy_items(trans, inode, dst_path, path,
4334 start_slot, ins_nr, 1, 0);
4335out:
4336 btrfs_release_path(path);
4337 btrfs_free_path(dst_path);
4338 return ret;
4339}
4340
4341static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4342 struct btrfs_root *root,
4343 struct btrfs_inode *inode,
4344 struct btrfs_path *path,
4345 struct btrfs_log_ctx *ctx,
4346 const u64 start,
4347 const u64 end)
4348{
4349 struct extent_map *em, *n;
4350 struct list_head extents;
4351 struct extent_map_tree *tree = &inode->extent_tree;
4352 u64 test_gen;
4353 int ret = 0;
4354 int num = 0;
4355
4356 INIT_LIST_HEAD(&extents);
4357
4358 write_lock(&tree->lock);
4359 test_gen = root->fs_info->last_trans_committed;
4360
4361 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4362 /*
4363 * Skip extents outside our logging range. It's important to do
4364 * it for correctness because if we don't ignore them, we may
4365 * log them before their ordered extent completes, and therefore
4366 * we could log them without logging their respective checksums
4367 * (the checksum items are added to the csum tree at the very
4368 * end of btrfs_finish_ordered_io()). Also leave such extents
4369 * outside of our range in the list, since we may have another
4370 * ranged fsync in the near future that needs them. If an extent
4371 * outside our range corresponds to a hole, log it to avoid
4372 * leaving gaps between extents (fsck will complain when we are
4373 * not using the NO_HOLES feature).
4374 */
4375 if ((em->start > end || em->start + em->len <= start) &&
4376 em->block_start != EXTENT_MAP_HOLE)
4377 continue;
4378
4379 list_del_init(&em->list);
4380 /*
4381 * Just an arbitrary number, this can be really CPU intensive
4382 * once we start getting a lot of extents, and really once we
4383 * have a bunch of extents we just want to commit since it will
4384 * be faster.
4385 */
4386 if (++num > 32768) {
4387 list_del_init(&tree->modified_extents);
4388 ret = -EFBIG;
4389 goto process;
4390 }
4391
4392 if (em->generation <= test_gen)
4393 continue;
4394
4395 /* We log prealloc extents beyond eof later. */
4396 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4397 em->start >= i_size_read(&inode->vfs_inode))
4398 continue;
4399
4400 /* Need a ref to keep it from getting evicted from cache */
4401 refcount_inc(&em->refs);
4402 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4403 list_add_tail(&em->list, &extents);
4404 num++;
4405 }
4406
4407 list_sort(NULL, &extents, extent_cmp);
4408process:
4409 while (!list_empty(&extents)) {
4410 em = list_entry(extents.next, struct extent_map, list);
4411
4412 list_del_init(&em->list);
4413
4414 /*
4415 * If we had an error we just need to delete everybody from our
4416 * private list.
4417 */
4418 if (ret) {
4419 clear_em_logging(tree, em);
4420 free_extent_map(em);
4421 continue;
4422 }
4423
4424 write_unlock(&tree->lock);
4425
4426 ret = log_one_extent(trans, inode, root, em, path, ctx);
4427 write_lock(&tree->lock);
4428 clear_em_logging(tree, em);
4429 free_extent_map(em);
4430 }
4431 WARN_ON(!list_empty(&extents));
4432 write_unlock(&tree->lock);
4433
4434 btrfs_release_path(path);
4435 if (!ret)
4436 ret = btrfs_log_prealloc_extents(trans, inode, path);
4437
4438 return ret;
4439}
4440
4441static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4442 struct btrfs_path *path, u64 *size_ret)
4443{
4444 struct btrfs_key key;
4445 int ret;
4446
4447 key.objectid = btrfs_ino(inode);
4448 key.type = BTRFS_INODE_ITEM_KEY;
4449 key.offset = 0;
4450
4451 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4452 if (ret < 0) {
4453 return ret;
4454 } else if (ret > 0) {
4455 *size_ret = 0;
4456 } else {
4457 struct btrfs_inode_item *item;
4458
4459 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4460 struct btrfs_inode_item);
4461 *size_ret = btrfs_inode_size(path->nodes[0], item);
4462 /*
4463 * If the in-memory inode's i_size is smaller then the inode
4464 * size stored in the btree, return the inode's i_size, so
4465 * that we get a correct inode size after replaying the log
4466 * when before a power failure we had a shrinking truncate
4467 * followed by addition of a new name (rename / new hard link).
4468 * Otherwise return the inode size from the btree, to avoid
4469 * data loss when replaying a log due to previously doing a
4470 * write that expands the inode's size and logging a new name
4471 * immediately after.
4472 */
4473 if (*size_ret > inode->vfs_inode.i_size)
4474 *size_ret = inode->vfs_inode.i_size;
4475 }
4476
4477 btrfs_release_path(path);
4478 return 0;
4479}
4480
4481/*
4482 * At the moment we always log all xattrs. This is to figure out at log replay
4483 * time which xattrs must have their deletion replayed. If a xattr is missing
4484 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4485 * because if a xattr is deleted, the inode is fsynced and a power failure
4486 * happens, causing the log to be replayed the next time the fs is mounted,
4487 * we want the xattr to not exist anymore (same behaviour as other filesystems
4488 * with a journal, ext3/4, xfs, f2fs, etc).
4489 */
4490static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4491 struct btrfs_root *root,
4492 struct btrfs_inode *inode,
4493 struct btrfs_path *path,
4494 struct btrfs_path *dst_path)
4495{
4496 int ret;
4497 struct btrfs_key key;
4498 const u64 ino = btrfs_ino(inode);
4499 int ins_nr = 0;
4500 int start_slot = 0;
4501
4502 key.objectid = ino;
4503 key.type = BTRFS_XATTR_ITEM_KEY;
4504 key.offset = 0;
4505
4506 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4507 if (ret < 0)
4508 return ret;
4509
4510 while (true) {
4511 int slot = path->slots[0];
4512 struct extent_buffer *leaf = path->nodes[0];
4513 int nritems = btrfs_header_nritems(leaf);
4514
4515 if (slot >= nritems) {
4516 if (ins_nr > 0) {
4517 ret = copy_items(trans, inode, dst_path, path,
4518 start_slot, ins_nr, 1, 0);
4519 if (ret < 0)
4520 return ret;
4521 ins_nr = 0;
4522 }
4523 ret = btrfs_next_leaf(root, path);
4524 if (ret < 0)
4525 return ret;
4526 else if (ret > 0)
4527 break;
4528 continue;
4529 }
4530
4531 btrfs_item_key_to_cpu(leaf, &key, slot);
4532 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4533 break;
4534
4535 if (ins_nr == 0)
4536 start_slot = slot;
4537 ins_nr++;
4538 path->slots[0]++;
4539 cond_resched();
4540 }
4541 if (ins_nr > 0) {
4542 ret = copy_items(trans, inode, dst_path, path,
4543 start_slot, ins_nr, 1, 0);
4544 if (ret < 0)
4545 return ret;
4546 }
4547
4548 return 0;
4549}
4550
4551/*
4552 * When using the NO_HOLES feature if we punched a hole that causes the
4553 * deletion of entire leafs or all the extent items of the first leaf (the one
4554 * that contains the inode item and references) we may end up not processing
4555 * any extents, because there are no leafs with a generation matching the
4556 * current transaction that have extent items for our inode. So we need to find
4557 * if any holes exist and then log them. We also need to log holes after any
4558 * truncate operation that changes the inode's size.
4559 */
4560static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4561 struct btrfs_root *root,
4562 struct btrfs_inode *inode,
4563 struct btrfs_path *path)
4564{
4565 struct btrfs_fs_info *fs_info = root->fs_info;
4566 struct btrfs_key key;
4567 const u64 ino = btrfs_ino(inode);
4568 const u64 i_size = i_size_read(&inode->vfs_inode);
4569 u64 prev_extent_end = 0;
4570 int ret;
4571
4572 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4573 return 0;
4574
4575 key.objectid = ino;
4576 key.type = BTRFS_EXTENT_DATA_KEY;
4577 key.offset = 0;
4578
4579 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4580 if (ret < 0)
4581 return ret;
4582
4583 while (true) {
4584 struct extent_buffer *leaf = path->nodes[0];
4585
4586 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4587 ret = btrfs_next_leaf(root, path);
4588 if (ret < 0)
4589 return ret;
4590 if (ret > 0) {
4591 ret = 0;
4592 break;
4593 }
4594 leaf = path->nodes[0];
4595 }
4596
4597 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4598 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4599 break;
4600
4601 /* We have a hole, log it. */
4602 if (prev_extent_end < key.offset) {
4603 const u64 hole_len = key.offset - prev_extent_end;
4604
4605 /*
4606 * Release the path to avoid deadlocks with other code
4607 * paths that search the root while holding locks on
4608 * leafs from the log root.
4609 */
4610 btrfs_release_path(path);
4611 ret = btrfs_insert_file_extent(trans, root->log_root,
4612 ino, prev_extent_end, 0,
4613 0, hole_len, 0, hole_len,
4614 0, 0, 0);
4615 if (ret < 0)
4616 return ret;
4617
4618 /*
4619 * Search for the same key again in the root. Since it's
4620 * an extent item and we are holding the inode lock, the
4621 * key must still exist. If it doesn't just emit warning
4622 * and return an error to fall back to a transaction
4623 * commit.
4624 */
4625 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4626 if (ret < 0)
4627 return ret;
4628 if (WARN_ON(ret > 0))
4629 return -ENOENT;
4630 leaf = path->nodes[0];
4631 }
4632
4633 prev_extent_end = btrfs_file_extent_end(path);
4634 path->slots[0]++;
4635 cond_resched();
4636 }
4637
4638 if (prev_extent_end < i_size) {
4639 u64 hole_len;
4640
4641 btrfs_release_path(path);
4642 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4643 ret = btrfs_insert_file_extent(trans, root->log_root,
4644 ino, prev_extent_end, 0, 0,
4645 hole_len, 0, hole_len,
4646 0, 0, 0);
4647 if (ret < 0)
4648 return ret;
4649 }
4650
4651 return 0;
4652}
4653
4654/*
4655 * When we are logging a new inode X, check if it doesn't have a reference that
4656 * matches the reference from some other inode Y created in a past transaction
4657 * and that was renamed in the current transaction. If we don't do this, then at
4658 * log replay time we can lose inode Y (and all its files if it's a directory):
4659 *
4660 * mkdir /mnt/x
4661 * echo "hello world" > /mnt/x/foobar
4662 * sync
4663 * mv /mnt/x /mnt/y
4664 * mkdir /mnt/x # or touch /mnt/x
4665 * xfs_io -c fsync /mnt/x
4666 * <power fail>
4667 * mount fs, trigger log replay
4668 *
4669 * After the log replay procedure, we would lose the first directory and all its
4670 * files (file foobar).
4671 * For the case where inode Y is not a directory we simply end up losing it:
4672 *
4673 * echo "123" > /mnt/foo
4674 * sync
4675 * mv /mnt/foo /mnt/bar
4676 * echo "abc" > /mnt/foo
4677 * xfs_io -c fsync /mnt/foo
4678 * <power fail>
4679 *
4680 * We also need this for cases where a snapshot entry is replaced by some other
4681 * entry (file or directory) otherwise we end up with an unreplayable log due to
4682 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4683 * if it were a regular entry:
4684 *
4685 * mkdir /mnt/x
4686 * btrfs subvolume snapshot /mnt /mnt/x/snap
4687 * btrfs subvolume delete /mnt/x/snap
4688 * rmdir /mnt/x
4689 * mkdir /mnt/x
4690 * fsync /mnt/x or fsync some new file inside it
4691 * <power fail>
4692 *
4693 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4694 * the same transaction.
4695 */
4696static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4697 const int slot,
4698 const struct btrfs_key *key,
4699 struct btrfs_inode *inode,
4700 u64 *other_ino, u64 *other_parent)
4701{
4702 int ret;
4703 struct btrfs_path *search_path;
4704 char *name = NULL;
4705 u32 name_len = 0;
4706 u32 item_size = btrfs_item_size_nr(eb, slot);
4707 u32 cur_offset = 0;
4708 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4709
4710 search_path = btrfs_alloc_path();
4711 if (!search_path)
4712 return -ENOMEM;
4713 search_path->search_commit_root = 1;
4714 search_path->skip_locking = 1;
4715
4716 while (cur_offset < item_size) {
4717 u64 parent;
4718 u32 this_name_len;
4719 u32 this_len;
4720 unsigned long name_ptr;
4721 struct btrfs_dir_item *di;
4722
4723 if (key->type == BTRFS_INODE_REF_KEY) {
4724 struct btrfs_inode_ref *iref;
4725
4726 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4727 parent = key->offset;
4728 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4729 name_ptr = (unsigned long)(iref + 1);
4730 this_len = sizeof(*iref) + this_name_len;
4731 } else {
4732 struct btrfs_inode_extref *extref;
4733
4734 extref = (struct btrfs_inode_extref *)(ptr +
4735 cur_offset);
4736 parent = btrfs_inode_extref_parent(eb, extref);
4737 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4738 name_ptr = (unsigned long)&extref->name;
4739 this_len = sizeof(*extref) + this_name_len;
4740 }
4741
4742 if (this_name_len > name_len) {
4743 char *new_name;
4744
4745 new_name = krealloc(name, this_name_len, GFP_NOFS);
4746 if (!new_name) {
4747 ret = -ENOMEM;
4748 goto out;
4749 }
4750 name_len = this_name_len;
4751 name = new_name;
4752 }
4753
4754 read_extent_buffer(eb, name, name_ptr, this_name_len);
4755 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4756 parent, name, this_name_len, 0);
4757 if (di && !IS_ERR(di)) {
4758 struct btrfs_key di_key;
4759
4760 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4761 di, &di_key);
4762 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4763 if (di_key.objectid != key->objectid) {
4764 ret = 1;
4765 *other_ino = di_key.objectid;
4766 *other_parent = parent;
4767 } else {
4768 ret = 0;
4769 }
4770 } else {
4771 ret = -EAGAIN;
4772 }
4773 goto out;
4774 } else if (IS_ERR(di)) {
4775 ret = PTR_ERR(di);
4776 goto out;
4777 }
4778 btrfs_release_path(search_path);
4779
4780 cur_offset += this_len;
4781 }
4782 ret = 0;
4783out:
4784 btrfs_free_path(search_path);
4785 kfree(name);
4786 return ret;
4787}
4788
4789struct btrfs_ino_list {
4790 u64 ino;
4791 u64 parent;
4792 struct list_head list;
4793};
4794
4795static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4796 struct btrfs_root *root,
4797 struct btrfs_path *path,
4798 struct btrfs_log_ctx *ctx,
4799 u64 ino, u64 parent)
4800{
4801 struct btrfs_ino_list *ino_elem;
4802 LIST_HEAD(inode_list);
4803 int ret = 0;
4804
4805 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4806 if (!ino_elem)
4807 return -ENOMEM;
4808 ino_elem->ino = ino;
4809 ino_elem->parent = parent;
4810 list_add_tail(&ino_elem->list, &inode_list);
4811
4812 while (!list_empty(&inode_list)) {
4813 struct btrfs_fs_info *fs_info = root->fs_info;
4814 struct btrfs_key key;
4815 struct inode *inode;
4816
4817 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4818 list);
4819 ino = ino_elem->ino;
4820 parent = ino_elem->parent;
4821 list_del(&ino_elem->list);
4822 kfree(ino_elem);
4823 if (ret)
4824 continue;
4825
4826 btrfs_release_path(path);
4827
4828 inode = btrfs_iget(fs_info->sb, ino, root);
4829 /*
4830 * If the other inode that had a conflicting dir entry was
4831 * deleted in the current transaction, we need to log its parent
4832 * directory.
4833 */
4834 if (IS_ERR(inode)) {
4835 ret = PTR_ERR(inode);
4836 if (ret == -ENOENT) {
4837 inode = btrfs_iget(fs_info->sb, parent, root);
4838 if (IS_ERR(inode)) {
4839 ret = PTR_ERR(inode);
4840 } else {
4841 ret = btrfs_log_inode(trans, root,
4842 BTRFS_I(inode),
4843 LOG_OTHER_INODE_ALL,
4844 0, LLONG_MAX, ctx);
4845 btrfs_add_delayed_iput(inode);
4846 }
4847 }
4848 continue;
4849 }
4850 /*
4851 * If the inode was already logged skip it - otherwise we can
4852 * hit an infinite loop. Example:
4853 *
4854 * From the commit root (previous transaction) we have the
4855 * following inodes:
4856 *
4857 * inode 257 a directory
4858 * inode 258 with references "zz" and "zz_link" on inode 257
4859 * inode 259 with reference "a" on inode 257
4860 *
4861 * And in the current (uncommitted) transaction we have:
4862 *
4863 * inode 257 a directory, unchanged
4864 * inode 258 with references "a" and "a2" on inode 257
4865 * inode 259 with reference "zz_link" on inode 257
4866 * inode 261 with reference "zz" on inode 257
4867 *
4868 * When logging inode 261 the following infinite loop could
4869 * happen if we don't skip already logged inodes:
4870 *
4871 * - we detect inode 258 as a conflicting inode, with inode 261
4872 * on reference "zz", and log it;
4873 *
4874 * - we detect inode 259 as a conflicting inode, with inode 258
4875 * on reference "a", and log it;
4876 *
4877 * - we detect inode 258 as a conflicting inode, with inode 259
4878 * on reference "zz_link", and log it - again! After this we
4879 * repeat the above steps forever.
4880 */
4881 spin_lock(&BTRFS_I(inode)->lock);
4882 /*
4883 * Check the inode's logged_trans only instead of
4884 * btrfs_inode_in_log(). This is because the last_log_commit of
4885 * the inode is not updated when we only log that it exists and
4886 * and it has the full sync bit set (see btrfs_log_inode()).
4887 */
4888 if (BTRFS_I(inode)->logged_trans == trans->transid) {
4889 spin_unlock(&BTRFS_I(inode)->lock);
4890 btrfs_add_delayed_iput(inode);
4891 continue;
4892 }
4893 spin_unlock(&BTRFS_I(inode)->lock);
4894 /*
4895 * We are safe logging the other inode without acquiring its
4896 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4897 * are safe against concurrent renames of the other inode as
4898 * well because during a rename we pin the log and update the
4899 * log with the new name before we unpin it.
4900 */
4901 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4902 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4903 if (ret) {
4904 btrfs_add_delayed_iput(inode);
4905 continue;
4906 }
4907
4908 key.objectid = ino;
4909 key.type = BTRFS_INODE_REF_KEY;
4910 key.offset = 0;
4911 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4912 if (ret < 0) {
4913 btrfs_add_delayed_iput(inode);
4914 continue;
4915 }
4916
4917 while (true) {
4918 struct extent_buffer *leaf = path->nodes[0];
4919 int slot = path->slots[0];
4920 u64 other_ino = 0;
4921 u64 other_parent = 0;
4922
4923 if (slot >= btrfs_header_nritems(leaf)) {
4924 ret = btrfs_next_leaf(root, path);
4925 if (ret < 0) {
4926 break;
4927 } else if (ret > 0) {
4928 ret = 0;
4929 break;
4930 }
4931 continue;
4932 }
4933
4934 btrfs_item_key_to_cpu(leaf, &key, slot);
4935 if (key.objectid != ino ||
4936 (key.type != BTRFS_INODE_REF_KEY &&
4937 key.type != BTRFS_INODE_EXTREF_KEY)) {
4938 ret = 0;
4939 break;
4940 }
4941
4942 ret = btrfs_check_ref_name_override(leaf, slot, &key,
4943 BTRFS_I(inode), &other_ino,
4944 &other_parent);
4945 if (ret < 0)
4946 break;
4947 if (ret > 0) {
4948 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4949 if (!ino_elem) {
4950 ret = -ENOMEM;
4951 break;
4952 }
4953 ino_elem->ino = other_ino;
4954 ino_elem->parent = other_parent;
4955 list_add_tail(&ino_elem->list, &inode_list);
4956 ret = 0;
4957 }
4958 path->slots[0]++;
4959 }
4960 btrfs_add_delayed_iput(inode);
4961 }
4962
4963 return ret;
4964}
4965
4966static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
4967 struct btrfs_inode *inode,
4968 struct btrfs_key *min_key,
4969 const struct btrfs_key *max_key,
4970 struct btrfs_path *path,
4971 struct btrfs_path *dst_path,
4972 const u64 logged_isize,
4973 const bool recursive_logging,
4974 const int inode_only,
4975 struct btrfs_log_ctx *ctx,
4976 bool *need_log_inode_item)
4977{
4978 struct btrfs_root *root = inode->root;
4979 int ins_start_slot = 0;
4980 int ins_nr = 0;
4981 int ret;
4982
4983 while (1) {
4984 ret = btrfs_search_forward(root, min_key, path, trans->transid);
4985 if (ret < 0)
4986 return ret;
4987 if (ret > 0) {
4988 ret = 0;
4989 break;
4990 }
4991again:
4992 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
4993 if (min_key->objectid != max_key->objectid)
4994 break;
4995 if (min_key->type > max_key->type)
4996 break;
4997
4998 if (min_key->type == BTRFS_INODE_ITEM_KEY)
4999 *need_log_inode_item = false;
5000
5001 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5002 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5003 inode->generation == trans->transid &&
5004 !recursive_logging) {
5005 u64 other_ino = 0;
5006 u64 other_parent = 0;
5007
5008 ret = btrfs_check_ref_name_override(path->nodes[0],
5009 path->slots[0], min_key, inode,
5010 &other_ino, &other_parent);
5011 if (ret < 0) {
5012 return ret;
5013 } else if (ret > 0 && ctx &&
5014 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5015 if (ins_nr > 0) {
5016 ins_nr++;
5017 } else {
5018 ins_nr = 1;
5019 ins_start_slot = path->slots[0];
5020 }
5021 ret = copy_items(trans, inode, dst_path, path,
5022 ins_start_slot, ins_nr,
5023 inode_only, logged_isize);
5024 if (ret < 0)
5025 return ret;
5026 ins_nr = 0;
5027
5028 ret = log_conflicting_inodes(trans, root, path,
5029 ctx, other_ino, other_parent);
5030 if (ret)
5031 return ret;
5032 btrfs_release_path(path);
5033 goto next_key;
5034 }
5035 }
5036
5037 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5038 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5039 if (ins_nr == 0)
5040 goto next_slot;
5041 ret = copy_items(trans, inode, dst_path, path,
5042 ins_start_slot,
5043 ins_nr, inode_only, logged_isize);
5044 if (ret < 0)
5045 return ret;
5046 ins_nr = 0;
5047 goto next_slot;
5048 }
5049
5050 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5051 ins_nr++;
5052 goto next_slot;
5053 } else if (!ins_nr) {
5054 ins_start_slot = path->slots[0];
5055 ins_nr = 1;
5056 goto next_slot;
5057 }
5058
5059 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5060 ins_nr, inode_only, logged_isize);
5061 if (ret < 0)
5062 return ret;
5063 ins_nr = 1;
5064 ins_start_slot = path->slots[0];
5065next_slot:
5066 path->slots[0]++;
5067 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5068 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5069 path->slots[0]);
5070 goto again;
5071 }
5072 if (ins_nr) {
5073 ret = copy_items(trans, inode, dst_path, path,
5074 ins_start_slot, ins_nr, inode_only,
5075 logged_isize);
5076 if (ret < 0)
5077 return ret;
5078 ins_nr = 0;
5079 }
5080 btrfs_release_path(path);
5081next_key:
5082 if (min_key->offset < (u64)-1) {
5083 min_key->offset++;
5084 } else if (min_key->type < max_key->type) {
5085 min_key->type++;
5086 min_key->offset = 0;
5087 } else {
5088 break;
5089 }
5090 }
5091 if (ins_nr)
5092 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5093 ins_nr, inode_only, logged_isize);
5094
5095 return ret;
5096}
5097
5098/* log a single inode in the tree log.
5099 * At least one parent directory for this inode must exist in the tree
5100 * or be logged already.
5101 *
5102 * Any items from this inode changed by the current transaction are copied
5103 * to the log tree. An extra reference is taken on any extents in this
5104 * file, allowing us to avoid a whole pile of corner cases around logging
5105 * blocks that have been removed from the tree.
5106 *
5107 * See LOG_INODE_ALL and related defines for a description of what inode_only
5108 * does.
5109 *
5110 * This handles both files and directories.
5111 */
5112static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5113 struct btrfs_root *root, struct btrfs_inode *inode,
5114 int inode_only,
5115 const loff_t start,
5116 const loff_t end,
5117 struct btrfs_log_ctx *ctx)
5118{
5119 struct btrfs_path *path;
5120 struct btrfs_path *dst_path;
5121 struct btrfs_key min_key;
5122 struct btrfs_key max_key;
5123 struct btrfs_root *log = root->log_root;
5124 int err = 0;
5125 int ret = 0;
5126 bool fast_search = false;
5127 u64 ino = btrfs_ino(inode);
5128 struct extent_map_tree *em_tree = &inode->extent_tree;
5129 u64 logged_isize = 0;
5130 bool need_log_inode_item = true;
5131 bool xattrs_logged = false;
5132 bool recursive_logging = false;
5133
5134 path = btrfs_alloc_path();
5135 if (!path)
5136 return -ENOMEM;
5137 dst_path = btrfs_alloc_path();
5138 if (!dst_path) {
5139 btrfs_free_path(path);
5140 return -ENOMEM;
5141 }
5142
5143 min_key.objectid = ino;
5144 min_key.type = BTRFS_INODE_ITEM_KEY;
5145 min_key.offset = 0;
5146
5147 max_key.objectid = ino;
5148
5149
5150 /* today the code can only do partial logging of directories */
5151 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5152 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5153 &inode->runtime_flags) &&
5154 inode_only >= LOG_INODE_EXISTS))
5155 max_key.type = BTRFS_XATTR_ITEM_KEY;
5156 else
5157 max_key.type = (u8)-1;
5158 max_key.offset = (u64)-1;
5159
5160 /*
5161 * Only run delayed items if we are a directory. We want to make sure
5162 * all directory indexes hit the fs/subvolume tree so we can find them
5163 * and figure out which index ranges have to be logged.
5164 *
5165 * Otherwise commit the delayed inode only if the full sync flag is set,
5166 * as we want to make sure an up to date version is in the subvolume
5167 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5168 * it to the log tree. For a non full sync, we always log the inode item
5169 * based on the in-memory struct btrfs_inode which is always up to date.
5170 */
5171 if (S_ISDIR(inode->vfs_inode.i_mode))
5172 ret = btrfs_commit_inode_delayed_items(trans, inode);
5173 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5174 ret = btrfs_commit_inode_delayed_inode(inode);
5175
5176 if (ret) {
5177 btrfs_free_path(path);
5178 btrfs_free_path(dst_path);
5179 return ret;
5180 }
5181
5182 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5183 recursive_logging = true;
5184 if (inode_only == LOG_OTHER_INODE)
5185 inode_only = LOG_INODE_EXISTS;
5186 else
5187 inode_only = LOG_INODE_ALL;
5188 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5189 } else {
5190 mutex_lock(&inode->log_mutex);
5191 }
5192
5193 /*
5194 * a brute force approach to making sure we get the most uptodate
5195 * copies of everything.
5196 */
5197 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5198 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5199
5200 if (inode_only == LOG_INODE_EXISTS)
5201 max_key_type = BTRFS_XATTR_ITEM_KEY;
5202 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5203 } else {
5204 if (inode_only == LOG_INODE_EXISTS) {
5205 /*
5206 * Make sure the new inode item we write to the log has
5207 * the same isize as the current one (if it exists).
5208 * This is necessary to prevent data loss after log
5209 * replay, and also to prevent doing a wrong expanding
5210 * truncate - for e.g. create file, write 4K into offset
5211 * 0, fsync, write 4K into offset 4096, add hard link,
5212 * fsync some other file (to sync log), power fail - if
5213 * we use the inode's current i_size, after log replay
5214 * we get a 8Kb file, with the last 4Kb extent as a hole
5215 * (zeroes), as if an expanding truncate happened,
5216 * instead of getting a file of 4Kb only.
5217 */
5218 err = logged_inode_size(log, inode, path, &logged_isize);
5219 if (err)
5220 goto out_unlock;
5221 }
5222 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5223 &inode->runtime_flags)) {
5224 if (inode_only == LOG_INODE_EXISTS) {
5225 max_key.type = BTRFS_XATTR_ITEM_KEY;
5226 ret = drop_objectid_items(trans, log, path, ino,
5227 max_key.type);
5228 } else {
5229 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5230 &inode->runtime_flags);
5231 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5232 &inode->runtime_flags);
5233 while(1) {
5234 ret = btrfs_truncate_inode_items(trans,
5235 log, &inode->vfs_inode, 0, 0);
5236 if (ret != -EAGAIN)
5237 break;
5238 }
5239 }
5240 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5241 &inode->runtime_flags) ||
5242 inode_only == LOG_INODE_EXISTS) {
5243 if (inode_only == LOG_INODE_ALL)
5244 fast_search = true;
5245 max_key.type = BTRFS_XATTR_ITEM_KEY;
5246 ret = drop_objectid_items(trans, log, path, ino,
5247 max_key.type);
5248 } else {
5249 if (inode_only == LOG_INODE_ALL)
5250 fast_search = true;
5251 goto log_extents;
5252 }
5253
5254 }
5255 if (ret) {
5256 err = ret;
5257 goto out_unlock;
5258 }
5259
5260 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5261 path, dst_path, logged_isize,
5262 recursive_logging, inode_only, ctx,
5263 &need_log_inode_item);
5264 if (err)
5265 goto out_unlock;
5266
5267 btrfs_release_path(path);
5268 btrfs_release_path(dst_path);
5269 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5270 if (err)
5271 goto out_unlock;
5272 xattrs_logged = true;
5273 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5274 btrfs_release_path(path);
5275 btrfs_release_path(dst_path);
5276 err = btrfs_log_holes(trans, root, inode, path);
5277 if (err)
5278 goto out_unlock;
5279 }
5280log_extents:
5281 btrfs_release_path(path);
5282 btrfs_release_path(dst_path);
5283 if (need_log_inode_item) {
5284 err = log_inode_item(trans, log, dst_path, inode);
5285 if (!err && !xattrs_logged) {
5286 err = btrfs_log_all_xattrs(trans, root, inode, path,
5287 dst_path);
5288 btrfs_release_path(path);
5289 }
5290 if (err)
5291 goto out_unlock;
5292 }
5293 if (fast_search) {
5294 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5295 ctx, start, end);
5296 if (ret) {
5297 err = ret;
5298 goto out_unlock;
5299 }
5300 } else if (inode_only == LOG_INODE_ALL) {
5301 struct extent_map *em, *n;
5302
5303 write_lock(&em_tree->lock);
5304 /*
5305 * We can't just remove every em if we're called for a ranged
5306 * fsync - that is, one that doesn't cover the whole possible
5307 * file range (0 to LLONG_MAX). This is because we can have
5308 * em's that fall outside the range we're logging and therefore
5309 * their ordered operations haven't completed yet
5310 * (btrfs_finish_ordered_io() not invoked yet). This means we
5311 * didn't get their respective file extent item in the fs/subvol
5312 * tree yet, and need to let the next fast fsync (one which
5313 * consults the list of modified extent maps) find the em so
5314 * that it logs a matching file extent item and waits for the
5315 * respective ordered operation to complete (if it's still
5316 * running).
5317 *
5318 * Removing every em outside the range we're logging would make
5319 * the next fast fsync not log their matching file extent items,
5320 * therefore making us lose data after a log replay.
5321 */
5322 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5323 list) {
5324 const u64 mod_end = em->mod_start + em->mod_len - 1;
5325
5326 if (em->mod_start >= start && mod_end <= end)
5327 list_del_init(&em->list);
5328 }
5329 write_unlock(&em_tree->lock);
5330 }
5331
5332 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5333 ret = log_directory_changes(trans, root, inode, path, dst_path,
5334 ctx);
5335 if (ret) {
5336 err = ret;
5337 goto out_unlock;
5338 }
5339 }
5340
5341 /*
5342 * Don't update last_log_commit if we logged that an inode exists after
5343 * it was loaded to memory (full_sync bit set).
5344 * This is to prevent data loss when we do a write to the inode, then
5345 * the inode gets evicted after all delalloc was flushed, then we log
5346 * it exists (due to a rename for example) and then fsync it. This last
5347 * fsync would do nothing (not logging the extents previously written).
5348 */
5349 spin_lock(&inode->lock);
5350 inode->logged_trans = trans->transid;
5351 if (inode_only != LOG_INODE_EXISTS ||
5352 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5353 inode->last_log_commit = inode->last_sub_trans;
5354 spin_unlock(&inode->lock);
5355out_unlock:
5356 mutex_unlock(&inode->log_mutex);
5357
5358 btrfs_free_path(path);
5359 btrfs_free_path(dst_path);
5360 return err;
5361}
5362
5363/*
5364 * Check if we must fallback to a transaction commit when logging an inode.
5365 * This must be called after logging the inode and is used only in the context
5366 * when fsyncing an inode requires the need to log some other inode - in which
5367 * case we can't lock the i_mutex of each other inode we need to log as that
5368 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5369 * log inodes up or down in the hierarchy) or rename operations for example. So
5370 * we take the log_mutex of the inode after we have logged it and then check for
5371 * its last_unlink_trans value - this is safe because any task setting
5372 * last_unlink_trans must take the log_mutex and it must do this before it does
5373 * the actual unlink operation, so if we do this check before a concurrent task
5374 * sets last_unlink_trans it means we've logged a consistent version/state of
5375 * all the inode items, otherwise we are not sure and must do a transaction
5376 * commit (the concurrent task might have only updated last_unlink_trans before
5377 * we logged the inode or it might have also done the unlink).
5378 */
5379static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5380 struct btrfs_inode *inode)
5381{
5382 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5383 bool ret = false;
5384
5385 mutex_lock(&inode->log_mutex);
5386 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5387 /*
5388 * Make sure any commits to the log are forced to be full
5389 * commits.
5390 */
5391 btrfs_set_log_full_commit(trans);
5392 ret = true;
5393 }
5394 mutex_unlock(&inode->log_mutex);
5395
5396 return ret;
5397}
5398
5399/*
5400 * follow the dentry parent pointers up the chain and see if any
5401 * of the directories in it require a full commit before they can
5402 * be logged. Returns zero if nothing special needs to be done or 1 if
5403 * a full commit is required.
5404 */
5405static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5406 struct btrfs_inode *inode,
5407 struct dentry *parent,
5408 struct super_block *sb,
5409 u64 last_committed)
5410{
5411 int ret = 0;
5412 struct dentry *old_parent = NULL;
5413
5414 /*
5415 * for regular files, if its inode is already on disk, we don't
5416 * have to worry about the parents at all. This is because
5417 * we can use the last_unlink_trans field to record renames
5418 * and other fun in this file.
5419 */
5420 if (S_ISREG(inode->vfs_inode.i_mode) &&
5421 inode->generation <= last_committed &&
5422 inode->last_unlink_trans <= last_committed)
5423 goto out;
5424
5425 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5426 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5427 goto out;
5428 inode = BTRFS_I(d_inode(parent));
5429 }
5430
5431 while (1) {
5432 if (btrfs_must_commit_transaction(trans, inode)) {
5433 ret = 1;
5434 break;
5435 }
5436
5437 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5438 break;
5439
5440 if (IS_ROOT(parent)) {
5441 inode = BTRFS_I(d_inode(parent));
5442 if (btrfs_must_commit_transaction(trans, inode))
5443 ret = 1;
5444 break;
5445 }
5446
5447 parent = dget_parent(parent);
5448 dput(old_parent);
5449 old_parent = parent;
5450 inode = BTRFS_I(d_inode(parent));
5451
5452 }
5453 dput(old_parent);
5454out:
5455 return ret;
5456}
5457
5458struct btrfs_dir_list {
5459 u64 ino;
5460 struct list_head list;
5461};
5462
5463/*
5464 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5465 * details about the why it is needed.
5466 * This is a recursive operation - if an existing dentry corresponds to a
5467 * directory, that directory's new entries are logged too (same behaviour as
5468 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5469 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5470 * complains about the following circular lock dependency / possible deadlock:
5471 *
5472 * CPU0 CPU1
5473 * ---- ----
5474 * lock(&type->i_mutex_dir_key#3/2);
5475 * lock(sb_internal#2);
5476 * lock(&type->i_mutex_dir_key#3/2);
5477 * lock(&sb->s_type->i_mutex_key#14);
5478 *
5479 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5480 * sb_start_intwrite() in btrfs_start_transaction().
5481 * Not locking i_mutex of the inodes is still safe because:
5482 *
5483 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5484 * that while logging the inode new references (names) are added or removed
5485 * from the inode, leaving the logged inode item with a link count that does
5486 * not match the number of logged inode reference items. This is fine because
5487 * at log replay time we compute the real number of links and correct the
5488 * link count in the inode item (see replay_one_buffer() and
5489 * link_to_fixup_dir());
5490 *
5491 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5492 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5493 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5494 * has a size that doesn't match the sum of the lengths of all the logged
5495 * names. This does not result in a problem because if a dir_item key is
5496 * logged but its matching dir_index key is not logged, at log replay time we
5497 * don't use it to replay the respective name (see replay_one_name()). On the
5498 * other hand if only the dir_index key ends up being logged, the respective
5499 * name is added to the fs/subvol tree with both the dir_item and dir_index
5500 * keys created (see replay_one_name()).
5501 * The directory's inode item with a wrong i_size is not a problem as well,
5502 * since we don't use it at log replay time to set the i_size in the inode
5503 * item of the fs/subvol tree (see overwrite_item()).
5504 */
5505static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5506 struct btrfs_root *root,
5507 struct btrfs_inode *start_inode,
5508 struct btrfs_log_ctx *ctx)
5509{
5510 struct btrfs_fs_info *fs_info = root->fs_info;
5511 struct btrfs_root *log = root->log_root;
5512 struct btrfs_path *path;
5513 LIST_HEAD(dir_list);
5514 struct btrfs_dir_list *dir_elem;
5515 int ret = 0;
5516
5517 path = btrfs_alloc_path();
5518 if (!path)
5519 return -ENOMEM;
5520
5521 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5522 if (!dir_elem) {
5523 btrfs_free_path(path);
5524 return -ENOMEM;
5525 }
5526 dir_elem->ino = btrfs_ino(start_inode);
5527 list_add_tail(&dir_elem->list, &dir_list);
5528
5529 while (!list_empty(&dir_list)) {
5530 struct extent_buffer *leaf;
5531 struct btrfs_key min_key;
5532 int nritems;
5533 int i;
5534
5535 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5536 list);
5537 if (ret)
5538 goto next_dir_inode;
5539
5540 min_key.objectid = dir_elem->ino;
5541 min_key.type = BTRFS_DIR_ITEM_KEY;
5542 min_key.offset = 0;
5543again:
5544 btrfs_release_path(path);
5545 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5546 if (ret < 0) {
5547 goto next_dir_inode;
5548 } else if (ret > 0) {
5549 ret = 0;
5550 goto next_dir_inode;
5551 }
5552
5553process_leaf:
5554 leaf = path->nodes[0];
5555 nritems = btrfs_header_nritems(leaf);
5556 for (i = path->slots[0]; i < nritems; i++) {
5557 struct btrfs_dir_item *di;
5558 struct btrfs_key di_key;
5559 struct inode *di_inode;
5560 struct btrfs_dir_list *new_dir_elem;
5561 int log_mode = LOG_INODE_EXISTS;
5562 int type;
5563
5564 btrfs_item_key_to_cpu(leaf, &min_key, i);
5565 if (min_key.objectid != dir_elem->ino ||
5566 min_key.type != BTRFS_DIR_ITEM_KEY)
5567 goto next_dir_inode;
5568
5569 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5570 type = btrfs_dir_type(leaf, di);
5571 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5572 type != BTRFS_FT_DIR)
5573 continue;
5574 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5575 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5576 continue;
5577
5578 btrfs_release_path(path);
5579 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5580 if (IS_ERR(di_inode)) {
5581 ret = PTR_ERR(di_inode);
5582 goto next_dir_inode;
5583 }
5584
5585 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5586 btrfs_add_delayed_iput(di_inode);
5587 break;
5588 }
5589
5590 ctx->log_new_dentries = false;
5591 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5592 log_mode = LOG_INODE_ALL;
5593 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5594 log_mode, 0, LLONG_MAX, ctx);
5595 if (!ret &&
5596 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5597 ret = 1;
5598 btrfs_add_delayed_iput(di_inode);
5599 if (ret)
5600 goto next_dir_inode;
5601 if (ctx->log_new_dentries) {
5602 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5603 GFP_NOFS);
5604 if (!new_dir_elem) {
5605 ret = -ENOMEM;
5606 goto next_dir_inode;
5607 }
5608 new_dir_elem->ino = di_key.objectid;
5609 list_add_tail(&new_dir_elem->list, &dir_list);
5610 }
5611 break;
5612 }
5613 if (i == nritems) {
5614 ret = btrfs_next_leaf(log, path);
5615 if (ret < 0) {
5616 goto next_dir_inode;
5617 } else if (ret > 0) {
5618 ret = 0;
5619 goto next_dir_inode;
5620 }
5621 goto process_leaf;
5622 }
5623 if (min_key.offset < (u64)-1) {
5624 min_key.offset++;
5625 goto again;
5626 }
5627next_dir_inode:
5628 list_del(&dir_elem->list);
5629 kfree(dir_elem);
5630 }
5631
5632 btrfs_free_path(path);
5633 return ret;
5634}
5635
5636static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5637 struct btrfs_inode *inode,
5638 struct btrfs_log_ctx *ctx)
5639{
5640 struct btrfs_fs_info *fs_info = trans->fs_info;
5641 int ret;
5642 struct btrfs_path *path;
5643 struct btrfs_key key;
5644 struct btrfs_root *root = inode->root;
5645 const u64 ino = btrfs_ino(inode);
5646
5647 path = btrfs_alloc_path();
5648 if (!path)
5649 return -ENOMEM;
5650 path->skip_locking = 1;
5651 path->search_commit_root = 1;
5652
5653 key.objectid = ino;
5654 key.type = BTRFS_INODE_REF_KEY;
5655 key.offset = 0;
5656 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5657 if (ret < 0)
5658 goto out;
5659
5660 while (true) {
5661 struct extent_buffer *leaf = path->nodes[0];
5662 int slot = path->slots[0];
5663 u32 cur_offset = 0;
5664 u32 item_size;
5665 unsigned long ptr;
5666
5667 if (slot >= btrfs_header_nritems(leaf)) {
5668 ret = btrfs_next_leaf(root, path);
5669 if (ret < 0)
5670 goto out;
5671 else if (ret > 0)
5672 break;
5673 continue;
5674 }
5675
5676 btrfs_item_key_to_cpu(leaf, &key, slot);
5677 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5678 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5679 break;
5680
5681 item_size = btrfs_item_size_nr(leaf, slot);
5682 ptr = btrfs_item_ptr_offset(leaf, slot);
5683 while (cur_offset < item_size) {
5684 struct btrfs_key inode_key;
5685 struct inode *dir_inode;
5686
5687 inode_key.type = BTRFS_INODE_ITEM_KEY;
5688 inode_key.offset = 0;
5689
5690 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5691 struct btrfs_inode_extref *extref;
5692
5693 extref = (struct btrfs_inode_extref *)
5694 (ptr + cur_offset);
5695 inode_key.objectid = btrfs_inode_extref_parent(
5696 leaf, extref);
5697 cur_offset += sizeof(*extref);
5698 cur_offset += btrfs_inode_extref_name_len(leaf,
5699 extref);
5700 } else {
5701 inode_key.objectid = key.offset;
5702 cur_offset = item_size;
5703 }
5704
5705 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5706 root);
5707 /*
5708 * If the parent inode was deleted, return an error to
5709 * fallback to a transaction commit. This is to prevent
5710 * getting an inode that was moved from one parent A to
5711 * a parent B, got its former parent A deleted and then
5712 * it got fsync'ed, from existing at both parents after
5713 * a log replay (and the old parent still existing).
5714 * Example:
5715 *
5716 * mkdir /mnt/A
5717 * mkdir /mnt/B
5718 * touch /mnt/B/bar
5719 * sync
5720 * mv /mnt/B/bar /mnt/A/bar
5721 * mv -T /mnt/A /mnt/B
5722 * fsync /mnt/B/bar
5723 * <power fail>
5724 *
5725 * If we ignore the old parent B which got deleted,
5726 * after a log replay we would have file bar linked
5727 * at both parents and the old parent B would still
5728 * exist.
5729 */
5730 if (IS_ERR(dir_inode)) {
5731 ret = PTR_ERR(dir_inode);
5732 goto out;
5733 }
5734
5735 if (ctx)
5736 ctx->log_new_dentries = false;
5737 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5738 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5739 if (!ret &&
5740 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5741 ret = 1;
5742 if (!ret && ctx && ctx->log_new_dentries)
5743 ret = log_new_dir_dentries(trans, root,
5744 BTRFS_I(dir_inode), ctx);
5745 btrfs_add_delayed_iput(dir_inode);
5746 if (ret)
5747 goto out;
5748 }
5749 path->slots[0]++;
5750 }
5751 ret = 0;
5752out:
5753 btrfs_free_path(path);
5754 return ret;
5755}
5756
5757static int log_new_ancestors(struct btrfs_trans_handle *trans,
5758 struct btrfs_root *root,
5759 struct btrfs_path *path,
5760 struct btrfs_log_ctx *ctx)
5761{
5762 struct btrfs_key found_key;
5763
5764 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5765
5766 while (true) {
5767 struct btrfs_fs_info *fs_info = root->fs_info;
5768 const u64 last_committed = fs_info->last_trans_committed;
5769 struct extent_buffer *leaf = path->nodes[0];
5770 int slot = path->slots[0];
5771 struct btrfs_key search_key;
5772 struct inode *inode;
5773 u64 ino;
5774 int ret = 0;
5775
5776 btrfs_release_path(path);
5777
5778 ino = found_key.offset;
5779
5780 search_key.objectid = found_key.offset;
5781 search_key.type = BTRFS_INODE_ITEM_KEY;
5782 search_key.offset = 0;
5783 inode = btrfs_iget(fs_info->sb, ino, root);
5784 if (IS_ERR(inode))
5785 return PTR_ERR(inode);
5786
5787 if (BTRFS_I(inode)->generation > last_committed)
5788 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5789 LOG_INODE_EXISTS,
5790 0, LLONG_MAX, ctx);
5791 btrfs_add_delayed_iput(inode);
5792 if (ret)
5793 return ret;
5794
5795 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5796 break;
5797
5798 search_key.type = BTRFS_INODE_REF_KEY;
5799 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5800 if (ret < 0)
5801 return ret;
5802
5803 leaf = path->nodes[0];
5804 slot = path->slots[0];
5805 if (slot >= btrfs_header_nritems(leaf)) {
5806 ret = btrfs_next_leaf(root, path);
5807 if (ret < 0)
5808 return ret;
5809 else if (ret > 0)
5810 return -ENOENT;
5811 leaf = path->nodes[0];
5812 slot = path->slots[0];
5813 }
5814
5815 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5816 if (found_key.objectid != search_key.objectid ||
5817 found_key.type != BTRFS_INODE_REF_KEY)
5818 return -ENOENT;
5819 }
5820 return 0;
5821}
5822
5823static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5824 struct btrfs_inode *inode,
5825 struct dentry *parent,
5826 struct btrfs_log_ctx *ctx)
5827{
5828 struct btrfs_root *root = inode->root;
5829 struct btrfs_fs_info *fs_info = root->fs_info;
5830 struct dentry *old_parent = NULL;
5831 struct super_block *sb = inode->vfs_inode.i_sb;
5832 int ret = 0;
5833
5834 while (true) {
5835 if (!parent || d_really_is_negative(parent) ||
5836 sb != parent->d_sb)
5837 break;
5838
5839 inode = BTRFS_I(d_inode(parent));
5840 if (root != inode->root)
5841 break;
5842
5843 if (inode->generation > fs_info->last_trans_committed) {
5844 ret = btrfs_log_inode(trans, root, inode,
5845 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5846 if (ret)
5847 break;
5848 }
5849 if (IS_ROOT(parent))
5850 break;
5851
5852 parent = dget_parent(parent);
5853 dput(old_parent);
5854 old_parent = parent;
5855 }
5856 dput(old_parent);
5857
5858 return ret;
5859}
5860
5861static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5862 struct btrfs_inode *inode,
5863 struct dentry *parent,
5864 struct btrfs_log_ctx *ctx)
5865{
5866 struct btrfs_root *root = inode->root;
5867 const u64 ino = btrfs_ino(inode);
5868 struct btrfs_path *path;
5869 struct btrfs_key search_key;
5870 int ret;
5871
5872 /*
5873 * For a single hard link case, go through a fast path that does not
5874 * need to iterate the fs/subvolume tree.
5875 */
5876 if (inode->vfs_inode.i_nlink < 2)
5877 return log_new_ancestors_fast(trans, inode, parent, ctx);
5878
5879 path = btrfs_alloc_path();
5880 if (!path)
5881 return -ENOMEM;
5882
5883 search_key.objectid = ino;
5884 search_key.type = BTRFS_INODE_REF_KEY;
5885 search_key.offset = 0;
5886again:
5887 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5888 if (ret < 0)
5889 goto out;
5890 if (ret == 0)
5891 path->slots[0]++;
5892
5893 while (true) {
5894 struct extent_buffer *leaf = path->nodes[0];
5895 int slot = path->slots[0];
5896 struct btrfs_key found_key;
5897
5898 if (slot >= btrfs_header_nritems(leaf)) {
5899 ret = btrfs_next_leaf(root, path);
5900 if (ret < 0)
5901 goto out;
5902 else if (ret > 0)
5903 break;
5904 continue;
5905 }
5906
5907 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5908 if (found_key.objectid != ino ||
5909 found_key.type > BTRFS_INODE_EXTREF_KEY)
5910 break;
5911
5912 /*
5913 * Don't deal with extended references because they are rare
5914 * cases and too complex to deal with (we would need to keep
5915 * track of which subitem we are processing for each item in
5916 * this loop, etc). So just return some error to fallback to
5917 * a transaction commit.
5918 */
5919 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5920 ret = -EMLINK;
5921 goto out;
5922 }
5923
5924 /*
5925 * Logging ancestors needs to do more searches on the fs/subvol
5926 * tree, so it releases the path as needed to avoid deadlocks.
5927 * Keep track of the last inode ref key and resume from that key
5928 * after logging all new ancestors for the current hard link.
5929 */
5930 memcpy(&search_key, &found_key, sizeof(search_key));
5931
5932 ret = log_new_ancestors(trans, root, path, ctx);
5933 if (ret)
5934 goto out;
5935 btrfs_release_path(path);
5936 goto again;
5937 }
5938 ret = 0;
5939out:
5940 btrfs_free_path(path);
5941 return ret;
5942}
5943
5944/*
5945 * helper function around btrfs_log_inode to make sure newly created
5946 * parent directories also end up in the log. A minimal inode and backref
5947 * only logging is done of any parent directories that are older than
5948 * the last committed transaction
5949 */
5950static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5951 struct btrfs_inode *inode,
5952 struct dentry *parent,
5953 const loff_t start,
5954 const loff_t end,
5955 int inode_only,
5956 struct btrfs_log_ctx *ctx)
5957{
5958 struct btrfs_root *root = inode->root;
5959 struct btrfs_fs_info *fs_info = root->fs_info;
5960 struct super_block *sb;
5961 int ret = 0;
5962 u64 last_committed = fs_info->last_trans_committed;
5963 bool log_dentries = false;
5964
5965 sb = inode->vfs_inode.i_sb;
5966
5967 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5968 ret = 1;
5969 goto end_no_trans;
5970 }
5971
5972 /*
5973 * The prev transaction commit doesn't complete, we need do
5974 * full commit by ourselves.
5975 */
5976 if (fs_info->last_trans_log_full_commit >
5977 fs_info->last_trans_committed) {
5978 ret = 1;
5979 goto end_no_trans;
5980 }
5981
5982 if (btrfs_root_refs(&root->root_item) == 0) {
5983 ret = 1;
5984 goto end_no_trans;
5985 }
5986
5987 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5988 last_committed);
5989 if (ret)
5990 goto end_no_trans;
5991
5992 /*
5993 * Skip already logged inodes or inodes corresponding to tmpfiles
5994 * (since logging them is pointless, a link count of 0 means they
5995 * will never be accessible).
5996 */
5997 if (btrfs_inode_in_log(inode, trans->transid) ||
5998 inode->vfs_inode.i_nlink == 0) {
5999 ret = BTRFS_NO_LOG_SYNC;
6000 goto end_no_trans;
6001 }
6002
6003 ret = start_log_trans(trans, root, ctx);
6004 if (ret)
6005 goto end_no_trans;
6006
6007 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6008 if (ret)
6009 goto end_trans;
6010
6011 /*
6012 * for regular files, if its inode is already on disk, we don't
6013 * have to worry about the parents at all. This is because
6014 * we can use the last_unlink_trans field to record renames
6015 * and other fun in this file.
6016 */
6017 if (S_ISREG(inode->vfs_inode.i_mode) &&
6018 inode->generation <= last_committed &&
6019 inode->last_unlink_trans <= last_committed) {
6020 ret = 0;
6021 goto end_trans;
6022 }
6023
6024 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6025 log_dentries = true;
6026
6027 /*
6028 * On unlink we must make sure all our current and old parent directory
6029 * inodes are fully logged. This is to prevent leaving dangling
6030 * directory index entries in directories that were our parents but are
6031 * not anymore. Not doing this results in old parent directory being
6032 * impossible to delete after log replay (rmdir will always fail with
6033 * error -ENOTEMPTY).
6034 *
6035 * Example 1:
6036 *
6037 * mkdir testdir
6038 * touch testdir/foo
6039 * ln testdir/foo testdir/bar
6040 * sync
6041 * unlink testdir/bar
6042 * xfs_io -c fsync testdir/foo
6043 * <power failure>
6044 * mount fs, triggers log replay
6045 *
6046 * If we don't log the parent directory (testdir), after log replay the
6047 * directory still has an entry pointing to the file inode using the bar
6048 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6049 * the file inode has a link count of 1.
6050 *
6051 * Example 2:
6052 *
6053 * mkdir testdir
6054 * touch foo
6055 * ln foo testdir/foo2
6056 * ln foo testdir/foo3
6057 * sync
6058 * unlink testdir/foo3
6059 * xfs_io -c fsync foo
6060 * <power failure>
6061 * mount fs, triggers log replay
6062 *
6063 * Similar as the first example, after log replay the parent directory
6064 * testdir still has an entry pointing to the inode file with name foo3
6065 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6066 * and has a link count of 2.
6067 */
6068 if (inode->last_unlink_trans > last_committed) {
6069 ret = btrfs_log_all_parents(trans, inode, ctx);
6070 if (ret)
6071 goto end_trans;
6072 }
6073
6074 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6075 if (ret)
6076 goto end_trans;
6077
6078 if (log_dentries)
6079 ret = log_new_dir_dentries(trans, root, inode, ctx);
6080 else
6081 ret = 0;
6082end_trans:
6083 if (ret < 0) {
6084 btrfs_set_log_full_commit(trans);
6085 ret = 1;
6086 }
6087
6088 if (ret)
6089 btrfs_remove_log_ctx(root, ctx);
6090 btrfs_end_log_trans(root);
6091end_no_trans:
6092 return ret;
6093}
6094
6095/*
6096 * it is not safe to log dentry if the chunk root has added new
6097 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6098 * If this returns 1, you must commit the transaction to safely get your
6099 * data on disk.
6100 */
6101int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6102 struct dentry *dentry,
6103 const loff_t start,
6104 const loff_t end,
6105 struct btrfs_log_ctx *ctx)
6106{
6107 struct dentry *parent = dget_parent(dentry);
6108 int ret;
6109
6110 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6111 start, end, LOG_INODE_ALL, ctx);
6112 dput(parent);
6113
6114 return ret;
6115}
6116
6117/*
6118 * should be called during mount to recover any replay any log trees
6119 * from the FS
6120 */
6121int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6122{
6123 int ret;
6124 struct btrfs_path *path;
6125 struct btrfs_trans_handle *trans;
6126 struct btrfs_key key;
6127 struct btrfs_key found_key;
6128 struct btrfs_root *log;
6129 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6130 struct walk_control wc = {
6131 .process_func = process_one_buffer,
6132 .stage = LOG_WALK_PIN_ONLY,
6133 };
6134
6135 path = btrfs_alloc_path();
6136 if (!path)
6137 return -ENOMEM;
6138
6139 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6140
6141 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6142 if (IS_ERR(trans)) {
6143 ret = PTR_ERR(trans);
6144 goto error;
6145 }
6146
6147 wc.trans = trans;
6148 wc.pin = 1;
6149
6150 ret = walk_log_tree(trans, log_root_tree, &wc);
6151 if (ret) {
6152 btrfs_handle_fs_error(fs_info, ret,
6153 "Failed to pin buffers while recovering log root tree.");
6154 goto error;
6155 }
6156
6157again:
6158 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6159 key.offset = (u64)-1;
6160 key.type = BTRFS_ROOT_ITEM_KEY;
6161
6162 while (1) {
6163 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6164
6165 if (ret < 0) {
6166 btrfs_handle_fs_error(fs_info, ret,
6167 "Couldn't find tree log root.");
6168 goto error;
6169 }
6170 if (ret > 0) {
6171 if (path->slots[0] == 0)
6172 break;
6173 path->slots[0]--;
6174 }
6175 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6176 path->slots[0]);
6177 btrfs_release_path(path);
6178 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6179 break;
6180
6181 log = btrfs_read_tree_root(log_root_tree, &found_key);
6182 if (IS_ERR(log)) {
6183 ret = PTR_ERR(log);
6184 btrfs_handle_fs_error(fs_info, ret,
6185 "Couldn't read tree log root.");
6186 goto error;
6187 }
6188
6189 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6190 true);
6191 if (IS_ERR(wc.replay_dest)) {
6192 ret = PTR_ERR(wc.replay_dest);
6193
6194 /*
6195 * We didn't find the subvol, likely because it was
6196 * deleted. This is ok, simply skip this log and go to
6197 * the next one.
6198 *
6199 * We need to exclude the root because we can't have
6200 * other log replays overwriting this log as we'll read
6201 * it back in a few more times. This will keep our
6202 * block from being modified, and we'll just bail for
6203 * each subsequent pass.
6204 */
6205 if (ret == -ENOENT)
6206 ret = btrfs_pin_extent_for_log_replay(trans,
6207 log->node->start,
6208 log->node->len);
6209 btrfs_put_root(log);
6210
6211 if (!ret)
6212 goto next;
6213 btrfs_handle_fs_error(fs_info, ret,
6214 "Couldn't read target root for tree log recovery.");
6215 goto error;
6216 }
6217
6218 wc.replay_dest->log_root = log;
6219 btrfs_record_root_in_trans(trans, wc.replay_dest);
6220 ret = walk_log_tree(trans, log, &wc);
6221
6222 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6223 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6224 path);
6225 }
6226
6227 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6228 struct btrfs_root *root = wc.replay_dest;
6229
6230 btrfs_release_path(path);
6231
6232 /*
6233 * We have just replayed everything, and the highest
6234 * objectid of fs roots probably has changed in case
6235 * some inode_item's got replayed.
6236 *
6237 * root->objectid_mutex is not acquired as log replay
6238 * could only happen during mount.
6239 */
6240 ret = btrfs_find_highest_objectid(root,
6241 &root->highest_objectid);
6242 }
6243
6244 wc.replay_dest->log_root = NULL;
6245 btrfs_put_root(wc.replay_dest);
6246 btrfs_put_root(log);
6247
6248 if (ret)
6249 goto error;
6250next:
6251 if (found_key.offset == 0)
6252 break;
6253 key.offset = found_key.offset - 1;
6254 }
6255 btrfs_release_path(path);
6256
6257 /* step one is to pin it all, step two is to replay just inodes */
6258 if (wc.pin) {
6259 wc.pin = 0;
6260 wc.process_func = replay_one_buffer;
6261 wc.stage = LOG_WALK_REPLAY_INODES;
6262 goto again;
6263 }
6264 /* step three is to replay everything */
6265 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6266 wc.stage++;
6267 goto again;
6268 }
6269
6270 btrfs_free_path(path);
6271
6272 /* step 4: commit the transaction, which also unpins the blocks */
6273 ret = btrfs_commit_transaction(trans);
6274 if (ret)
6275 return ret;
6276
6277 log_root_tree->log_root = NULL;
6278 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6279 btrfs_put_root(log_root_tree);
6280
6281 return 0;
6282error:
6283 if (wc.trans)
6284 btrfs_end_transaction(wc.trans);
6285 btrfs_free_path(path);
6286 return ret;
6287}
6288
6289/*
6290 * there are some corner cases where we want to force a full
6291 * commit instead of allowing a directory to be logged.
6292 *
6293 * They revolve around files there were unlinked from the directory, and
6294 * this function updates the parent directory so that a full commit is
6295 * properly done if it is fsync'd later after the unlinks are done.
6296 *
6297 * Must be called before the unlink operations (updates to the subvolume tree,
6298 * inodes, etc) are done.
6299 */
6300void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6301 struct btrfs_inode *dir, struct btrfs_inode *inode,
6302 int for_rename)
6303{
6304 /*
6305 * when we're logging a file, if it hasn't been renamed
6306 * or unlinked, and its inode is fully committed on disk,
6307 * we don't have to worry about walking up the directory chain
6308 * to log its parents.
6309 *
6310 * So, we use the last_unlink_trans field to put this transid
6311 * into the file. When the file is logged we check it and
6312 * don't log the parents if the file is fully on disk.
6313 */
6314 mutex_lock(&inode->log_mutex);
6315 inode->last_unlink_trans = trans->transid;
6316 mutex_unlock(&inode->log_mutex);
6317
6318 /*
6319 * if this directory was already logged any new
6320 * names for this file/dir will get recorded
6321 */
6322 if (dir->logged_trans == trans->transid)
6323 return;
6324
6325 /*
6326 * if the inode we're about to unlink was logged,
6327 * the log will be properly updated for any new names
6328 */
6329 if (inode->logged_trans == trans->transid)
6330 return;
6331
6332 /*
6333 * when renaming files across directories, if the directory
6334 * there we're unlinking from gets fsync'd later on, there's
6335 * no way to find the destination directory later and fsync it
6336 * properly. So, we have to be conservative and force commits
6337 * so the new name gets discovered.
6338 */
6339 if (for_rename)
6340 goto record;
6341
6342 /* we can safely do the unlink without any special recording */
6343 return;
6344
6345record:
6346 mutex_lock(&dir->log_mutex);
6347 dir->last_unlink_trans = trans->transid;
6348 mutex_unlock(&dir->log_mutex);
6349}
6350
6351/*
6352 * Make sure that if someone attempts to fsync the parent directory of a deleted
6353 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6354 * that after replaying the log tree of the parent directory's root we will not
6355 * see the snapshot anymore and at log replay time we will not see any log tree
6356 * corresponding to the deleted snapshot's root, which could lead to replaying
6357 * it after replaying the log tree of the parent directory (which would replay
6358 * the snapshot delete operation).
6359 *
6360 * Must be called before the actual snapshot destroy operation (updates to the
6361 * parent root and tree of tree roots trees, etc) are done.
6362 */
6363void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6364 struct btrfs_inode *dir)
6365{
6366 mutex_lock(&dir->log_mutex);
6367 dir->last_unlink_trans = trans->transid;
6368 mutex_unlock(&dir->log_mutex);
6369}
6370
6371/*
6372 * Call this after adding a new name for a file and it will properly
6373 * update the log to reflect the new name.
6374 *
6375 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6376 * true (because it's not used).
6377 *
6378 * Return value depends on whether @sync_log is true or false.
6379 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6380 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6381 * otherwise.
6382 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6383 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6384 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6385 * committed (without attempting to sync the log).
6386 */
6387int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6388 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6389 struct dentry *parent,
6390 bool sync_log, struct btrfs_log_ctx *ctx)
6391{
6392 struct btrfs_fs_info *fs_info = trans->fs_info;
6393 int ret;
6394
6395 /*
6396 * this will force the logging code to walk the dentry chain
6397 * up for the file
6398 */
6399 if (!S_ISDIR(inode->vfs_inode.i_mode))
6400 inode->last_unlink_trans = trans->transid;
6401
6402 /*
6403 * if this inode hasn't been logged and directory we're renaming it
6404 * from hasn't been logged, we don't need to log it
6405 */
6406 if (inode->logged_trans <= fs_info->last_trans_committed &&
6407 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6408 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6409 BTRFS_DONT_NEED_LOG_SYNC;
6410
6411 if (sync_log) {
6412 struct btrfs_log_ctx ctx2;
6413
6414 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6415 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6416 LOG_INODE_EXISTS, &ctx2);
6417 if (ret == BTRFS_NO_LOG_SYNC)
6418 return BTRFS_DONT_NEED_TRANS_COMMIT;
6419 else if (ret)
6420 return BTRFS_NEED_TRANS_COMMIT;
6421
6422 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6423 if (ret)
6424 return BTRFS_NEED_TRANS_COMMIT;
6425 return BTRFS_DONT_NEED_TRANS_COMMIT;
6426 }
6427
6428 ASSERT(ctx);
6429 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6430 LOG_INODE_EXISTS, ctx);
6431 if (ret == BTRFS_NO_LOG_SYNC)
6432 return BTRFS_DONT_NEED_LOG_SYNC;
6433 else if (ret)
6434 return BTRFS_NEED_TRANS_COMMIT;
6435
6436 return BTRFS_NEED_LOG_SYNC;
6437}
6438
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "backref.h"
17#include "compression.h"
18#include "qgroup.h"
19#include "block-group.h"
20#include "space-info.h"
21#include "inode-item.h"
22#include "fs.h"
23#include "accessors.h"
24#include "extent-tree.h"
25#include "root-tree.h"
26#include "dir-item.h"
27#include "file-item.h"
28#include "file.h"
29#include "orphan.h"
30#include "tree-checker.h"
31
32#define MAX_CONFLICT_INODES 10
33
34/* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40enum {
41 LOG_INODE_ALL,
42 LOG_INODE_EXISTS,
43};
44
45/*
46 * directory trouble cases
47 *
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
52 *
53 * mkdir foo/some_dir
54 * normal commit
55 * rename foo/some_dir foo2/some_dir
56 * mkdir foo/some_dir
57 * fsync foo/some_dir/some_file
58 *
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
62 *
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
65 *
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
69 *
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
72 *
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
75 *
76 * mkdir f1/foo
77 * normal commit
78 * rm -rf f1/foo
79 * fsync(f1)
80 *
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
85 * ugly details.
86 */
87
88/*
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
93 *
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
96 */
97enum {
98 LOG_WALK_PIN_ONLY,
99 LOG_WALK_REPLAY_INODES,
100 LOG_WALK_REPLAY_DIR_INDEX,
101 LOG_WALK_REPLAY_ALL,
102};
103
104static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 struct btrfs_inode *inode,
106 int inode_only,
107 struct btrfs_log_ctx *ctx);
108static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_path *path, u64 objectid);
111static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root,
113 struct btrfs_root *log,
114 struct btrfs_path *path,
115 u64 dirid, int del_all);
116static void wait_log_commit(struct btrfs_root *root, int transid);
117
118/*
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
121 *
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
125 *
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
131 *
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
135 *
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
139 */
140
141/*
142 * start a sub transaction and setup the log tree
143 * this increments the log tree writer count to make the people
144 * syncing the tree wait for us to finish
145 */
146static int start_log_trans(struct btrfs_trans_handle *trans,
147 struct btrfs_root *root,
148 struct btrfs_log_ctx *ctx)
149{
150 struct btrfs_fs_info *fs_info = root->fs_info;
151 struct btrfs_root *tree_root = fs_info->tree_root;
152 const bool zoned = btrfs_is_zoned(fs_info);
153 int ret = 0;
154 bool created = false;
155
156 /*
157 * First check if the log root tree was already created. If not, create
158 * it before locking the root's log_mutex, just to keep lockdep happy.
159 */
160 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
161 mutex_lock(&tree_root->log_mutex);
162 if (!fs_info->log_root_tree) {
163 ret = btrfs_init_log_root_tree(trans, fs_info);
164 if (!ret) {
165 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
166 created = true;
167 }
168 }
169 mutex_unlock(&tree_root->log_mutex);
170 if (ret)
171 return ret;
172 }
173
174 mutex_lock(&root->log_mutex);
175
176again:
177 if (root->log_root) {
178 int index = (root->log_transid + 1) % 2;
179
180 if (btrfs_need_log_full_commit(trans)) {
181 ret = BTRFS_LOG_FORCE_COMMIT;
182 goto out;
183 }
184
185 if (zoned && atomic_read(&root->log_commit[index])) {
186 wait_log_commit(root, root->log_transid - 1);
187 goto again;
188 }
189
190 if (!root->log_start_pid) {
191 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
192 root->log_start_pid = current->pid;
193 } else if (root->log_start_pid != current->pid) {
194 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
195 }
196 } else {
197 /*
198 * This means fs_info->log_root_tree was already created
199 * for some other FS trees. Do the full commit not to mix
200 * nodes from multiple log transactions to do sequential
201 * writing.
202 */
203 if (zoned && !created) {
204 ret = BTRFS_LOG_FORCE_COMMIT;
205 goto out;
206 }
207
208 ret = btrfs_add_log_tree(trans, root);
209 if (ret)
210 goto out;
211
212 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
213 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 root->log_start_pid = current->pid;
215 }
216
217 atomic_inc(&root->log_writers);
218 if (!ctx->logging_new_name) {
219 int index = root->log_transid % 2;
220 list_add_tail(&ctx->list, &root->log_ctxs[index]);
221 ctx->log_transid = root->log_transid;
222 }
223
224out:
225 mutex_unlock(&root->log_mutex);
226 return ret;
227}
228
229/*
230 * returns 0 if there was a log transaction running and we were able
231 * to join, or returns -ENOENT if there were not transactions
232 * in progress
233 */
234static int join_running_log_trans(struct btrfs_root *root)
235{
236 const bool zoned = btrfs_is_zoned(root->fs_info);
237 int ret = -ENOENT;
238
239 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
240 return ret;
241
242 mutex_lock(&root->log_mutex);
243again:
244 if (root->log_root) {
245 int index = (root->log_transid + 1) % 2;
246
247 ret = 0;
248 if (zoned && atomic_read(&root->log_commit[index])) {
249 wait_log_commit(root, root->log_transid - 1);
250 goto again;
251 }
252 atomic_inc(&root->log_writers);
253 }
254 mutex_unlock(&root->log_mutex);
255 return ret;
256}
257
258/*
259 * This either makes the current running log transaction wait
260 * until you call btrfs_end_log_trans() or it makes any future
261 * log transactions wait until you call btrfs_end_log_trans()
262 */
263void btrfs_pin_log_trans(struct btrfs_root *root)
264{
265 atomic_inc(&root->log_writers);
266}
267
268/*
269 * indicate we're done making changes to the log tree
270 * and wake up anyone waiting to do a sync
271 */
272void btrfs_end_log_trans(struct btrfs_root *root)
273{
274 if (atomic_dec_and_test(&root->log_writers)) {
275 /* atomic_dec_and_test implies a barrier */
276 cond_wake_up_nomb(&root->log_writer_wait);
277 }
278}
279
280/*
281 * the walk control struct is used to pass state down the chain when
282 * processing the log tree. The stage field tells us which part
283 * of the log tree processing we are currently doing. The others
284 * are state fields used for that specific part
285 */
286struct walk_control {
287 /* should we free the extent on disk when done? This is used
288 * at transaction commit time while freeing a log tree
289 */
290 int free;
291
292 /* pin only walk, we record which extents on disk belong to the
293 * log trees
294 */
295 int pin;
296
297 /* what stage of the replay code we're currently in */
298 int stage;
299
300 /*
301 * Ignore any items from the inode currently being processed. Needs
302 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
303 * the LOG_WALK_REPLAY_INODES stage.
304 */
305 bool ignore_cur_inode;
306
307 /* the root we are currently replaying */
308 struct btrfs_root *replay_dest;
309
310 /* the trans handle for the current replay */
311 struct btrfs_trans_handle *trans;
312
313 /* the function that gets used to process blocks we find in the
314 * tree. Note the extent_buffer might not be up to date when it is
315 * passed in, and it must be checked or read if you need the data
316 * inside it
317 */
318 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
319 struct walk_control *wc, u64 gen, int level);
320};
321
322/*
323 * process_func used to pin down extents, write them or wait on them
324 */
325static int process_one_buffer(struct btrfs_root *log,
326 struct extent_buffer *eb,
327 struct walk_control *wc, u64 gen, int level)
328{
329 struct btrfs_fs_info *fs_info = log->fs_info;
330 int ret = 0;
331
332 /*
333 * If this fs is mixed then we need to be able to process the leaves to
334 * pin down any logged extents, so we have to read the block.
335 */
336 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
337 struct btrfs_tree_parent_check check = {
338 .level = level,
339 .transid = gen
340 };
341
342 ret = btrfs_read_extent_buffer(eb, &check);
343 if (ret)
344 return ret;
345 }
346
347 if (wc->pin) {
348 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
349 if (ret)
350 return ret;
351
352 if (btrfs_buffer_uptodate(eb, gen, 0) &&
353 btrfs_header_level(eb) == 0)
354 ret = btrfs_exclude_logged_extents(eb);
355 }
356 return ret;
357}
358
359/*
360 * Item overwrite used by replay and tree logging. eb, slot and key all refer
361 * to the src data we are copying out.
362 *
363 * root is the tree we are copying into, and path is a scratch
364 * path for use in this function (it should be released on entry and
365 * will be released on exit).
366 *
367 * If the key is already in the destination tree the existing item is
368 * overwritten. If the existing item isn't big enough, it is extended.
369 * If it is too large, it is truncated.
370 *
371 * If the key isn't in the destination yet, a new item is inserted.
372 */
373static int overwrite_item(struct btrfs_trans_handle *trans,
374 struct btrfs_root *root,
375 struct btrfs_path *path,
376 struct extent_buffer *eb, int slot,
377 struct btrfs_key *key)
378{
379 int ret;
380 u32 item_size;
381 u64 saved_i_size = 0;
382 int save_old_i_size = 0;
383 unsigned long src_ptr;
384 unsigned long dst_ptr;
385 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
386
387 /*
388 * This is only used during log replay, so the root is always from a
389 * fs/subvolume tree. In case we ever need to support a log root, then
390 * we'll have to clone the leaf in the path, release the path and use
391 * the leaf before writing into the log tree. See the comments at
392 * copy_items() for more details.
393 */
394 ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
395
396 item_size = btrfs_item_size(eb, slot);
397 src_ptr = btrfs_item_ptr_offset(eb, slot);
398
399 /* Look for the key in the destination tree. */
400 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
401 if (ret < 0)
402 return ret;
403
404 if (ret == 0) {
405 char *src_copy;
406 char *dst_copy;
407 u32 dst_size = btrfs_item_size(path->nodes[0],
408 path->slots[0]);
409 if (dst_size != item_size)
410 goto insert;
411
412 if (item_size == 0) {
413 btrfs_release_path(path);
414 return 0;
415 }
416 dst_copy = kmalloc(item_size, GFP_NOFS);
417 src_copy = kmalloc(item_size, GFP_NOFS);
418 if (!dst_copy || !src_copy) {
419 btrfs_release_path(path);
420 kfree(dst_copy);
421 kfree(src_copy);
422 return -ENOMEM;
423 }
424
425 read_extent_buffer(eb, src_copy, src_ptr, item_size);
426
427 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
428 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
429 item_size);
430 ret = memcmp(dst_copy, src_copy, item_size);
431
432 kfree(dst_copy);
433 kfree(src_copy);
434 /*
435 * they have the same contents, just return, this saves
436 * us from cowing blocks in the destination tree and doing
437 * extra writes that may not have been done by a previous
438 * sync
439 */
440 if (ret == 0) {
441 btrfs_release_path(path);
442 return 0;
443 }
444
445 /*
446 * We need to load the old nbytes into the inode so when we
447 * replay the extents we've logged we get the right nbytes.
448 */
449 if (inode_item) {
450 struct btrfs_inode_item *item;
451 u64 nbytes;
452 u32 mode;
453
454 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
455 struct btrfs_inode_item);
456 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
457 item = btrfs_item_ptr(eb, slot,
458 struct btrfs_inode_item);
459 btrfs_set_inode_nbytes(eb, item, nbytes);
460
461 /*
462 * If this is a directory we need to reset the i_size to
463 * 0 so that we can set it up properly when replaying
464 * the rest of the items in this log.
465 */
466 mode = btrfs_inode_mode(eb, item);
467 if (S_ISDIR(mode))
468 btrfs_set_inode_size(eb, item, 0);
469 }
470 } else if (inode_item) {
471 struct btrfs_inode_item *item;
472 u32 mode;
473
474 /*
475 * New inode, set nbytes to 0 so that the nbytes comes out
476 * properly when we replay the extents.
477 */
478 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
479 btrfs_set_inode_nbytes(eb, item, 0);
480
481 /*
482 * If this is a directory we need to reset the i_size to 0 so
483 * that we can set it up properly when replaying the rest of
484 * the items in this log.
485 */
486 mode = btrfs_inode_mode(eb, item);
487 if (S_ISDIR(mode))
488 btrfs_set_inode_size(eb, item, 0);
489 }
490insert:
491 btrfs_release_path(path);
492 /* try to insert the key into the destination tree */
493 path->skip_release_on_error = 1;
494 ret = btrfs_insert_empty_item(trans, root, path,
495 key, item_size);
496 path->skip_release_on_error = 0;
497
498 /* make sure any existing item is the correct size */
499 if (ret == -EEXIST || ret == -EOVERFLOW) {
500 u32 found_size;
501 found_size = btrfs_item_size(path->nodes[0],
502 path->slots[0]);
503 if (found_size > item_size)
504 btrfs_truncate_item(trans, path, item_size, 1);
505 else if (found_size < item_size)
506 btrfs_extend_item(trans, path, item_size - found_size);
507 } else if (ret) {
508 return ret;
509 }
510 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
511 path->slots[0]);
512
513 /* don't overwrite an existing inode if the generation number
514 * was logged as zero. This is done when the tree logging code
515 * is just logging an inode to make sure it exists after recovery.
516 *
517 * Also, don't overwrite i_size on directories during replay.
518 * log replay inserts and removes directory items based on the
519 * state of the tree found in the subvolume, and i_size is modified
520 * as it goes
521 */
522 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
523 struct btrfs_inode_item *src_item;
524 struct btrfs_inode_item *dst_item;
525
526 src_item = (struct btrfs_inode_item *)src_ptr;
527 dst_item = (struct btrfs_inode_item *)dst_ptr;
528
529 if (btrfs_inode_generation(eb, src_item) == 0) {
530 struct extent_buffer *dst_eb = path->nodes[0];
531 const u64 ino_size = btrfs_inode_size(eb, src_item);
532
533 /*
534 * For regular files an ino_size == 0 is used only when
535 * logging that an inode exists, as part of a directory
536 * fsync, and the inode wasn't fsynced before. In this
537 * case don't set the size of the inode in the fs/subvol
538 * tree, otherwise we would be throwing valid data away.
539 */
540 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
541 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
542 ino_size != 0)
543 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
544 goto no_copy;
545 }
546
547 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
548 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
549 save_old_i_size = 1;
550 saved_i_size = btrfs_inode_size(path->nodes[0],
551 dst_item);
552 }
553 }
554
555 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
556 src_ptr, item_size);
557
558 if (save_old_i_size) {
559 struct btrfs_inode_item *dst_item;
560 dst_item = (struct btrfs_inode_item *)dst_ptr;
561 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
562 }
563
564 /* make sure the generation is filled in */
565 if (key->type == BTRFS_INODE_ITEM_KEY) {
566 struct btrfs_inode_item *dst_item;
567 dst_item = (struct btrfs_inode_item *)dst_ptr;
568 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
569 btrfs_set_inode_generation(path->nodes[0], dst_item,
570 trans->transid);
571 }
572 }
573no_copy:
574 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
575 btrfs_release_path(path);
576 return 0;
577}
578
579static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
580 struct fscrypt_str *name)
581{
582 char *buf;
583
584 buf = kmalloc(len, GFP_NOFS);
585 if (!buf)
586 return -ENOMEM;
587
588 read_extent_buffer(eb, buf, (unsigned long)start, len);
589 name->name = buf;
590 name->len = len;
591 return 0;
592}
593
594/*
595 * simple helper to read an inode off the disk from a given root
596 * This can only be called for subvolume roots and not for the log
597 */
598static noinline struct inode *read_one_inode(struct btrfs_root *root,
599 u64 objectid)
600{
601 struct inode *inode;
602
603 inode = btrfs_iget(root->fs_info->sb, objectid, root);
604 if (IS_ERR(inode))
605 inode = NULL;
606 return inode;
607}
608
609/* replays a single extent in 'eb' at 'slot' with 'key' into the
610 * subvolume 'root'. path is released on entry and should be released
611 * on exit.
612 *
613 * extents in the log tree have not been allocated out of the extent
614 * tree yet. So, this completes the allocation, taking a reference
615 * as required if the extent already exists or creating a new extent
616 * if it isn't in the extent allocation tree yet.
617 *
618 * The extent is inserted into the file, dropping any existing extents
619 * from the file that overlap the new one.
620 */
621static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
622 struct btrfs_root *root,
623 struct btrfs_path *path,
624 struct extent_buffer *eb, int slot,
625 struct btrfs_key *key)
626{
627 struct btrfs_drop_extents_args drop_args = { 0 };
628 struct btrfs_fs_info *fs_info = root->fs_info;
629 int found_type;
630 u64 extent_end;
631 u64 start = key->offset;
632 u64 nbytes = 0;
633 struct btrfs_file_extent_item *item;
634 struct inode *inode = NULL;
635 unsigned long size;
636 int ret = 0;
637
638 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
639 found_type = btrfs_file_extent_type(eb, item);
640
641 if (found_type == BTRFS_FILE_EXTENT_REG ||
642 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
643 nbytes = btrfs_file_extent_num_bytes(eb, item);
644 extent_end = start + nbytes;
645
646 /*
647 * We don't add to the inodes nbytes if we are prealloc or a
648 * hole.
649 */
650 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
651 nbytes = 0;
652 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
653 size = btrfs_file_extent_ram_bytes(eb, item);
654 nbytes = btrfs_file_extent_ram_bytes(eb, item);
655 extent_end = ALIGN(start + size,
656 fs_info->sectorsize);
657 } else {
658 ret = 0;
659 goto out;
660 }
661
662 inode = read_one_inode(root, key->objectid);
663 if (!inode) {
664 ret = -EIO;
665 goto out;
666 }
667
668 /*
669 * first check to see if we already have this extent in the
670 * file. This must be done before the btrfs_drop_extents run
671 * so we don't try to drop this extent.
672 */
673 ret = btrfs_lookup_file_extent(trans, root, path,
674 btrfs_ino(BTRFS_I(inode)), start, 0);
675
676 if (ret == 0 &&
677 (found_type == BTRFS_FILE_EXTENT_REG ||
678 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
679 struct btrfs_file_extent_item cmp1;
680 struct btrfs_file_extent_item cmp2;
681 struct btrfs_file_extent_item *existing;
682 struct extent_buffer *leaf;
683
684 leaf = path->nodes[0];
685 existing = btrfs_item_ptr(leaf, path->slots[0],
686 struct btrfs_file_extent_item);
687
688 read_extent_buffer(eb, &cmp1, (unsigned long)item,
689 sizeof(cmp1));
690 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
691 sizeof(cmp2));
692
693 /*
694 * we already have a pointer to this exact extent,
695 * we don't have to do anything
696 */
697 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
698 btrfs_release_path(path);
699 goto out;
700 }
701 }
702 btrfs_release_path(path);
703
704 /* drop any overlapping extents */
705 drop_args.start = start;
706 drop_args.end = extent_end;
707 drop_args.drop_cache = true;
708 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
709 if (ret)
710 goto out;
711
712 if (found_type == BTRFS_FILE_EXTENT_REG ||
713 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
714 u64 offset;
715 unsigned long dest_offset;
716 struct btrfs_key ins;
717
718 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
719 btrfs_fs_incompat(fs_info, NO_HOLES))
720 goto update_inode;
721
722 ret = btrfs_insert_empty_item(trans, root, path, key,
723 sizeof(*item));
724 if (ret)
725 goto out;
726 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
727 path->slots[0]);
728 copy_extent_buffer(path->nodes[0], eb, dest_offset,
729 (unsigned long)item, sizeof(*item));
730
731 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
732 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
733 ins.type = BTRFS_EXTENT_ITEM_KEY;
734 offset = key->offset - btrfs_file_extent_offset(eb, item);
735
736 /*
737 * Manually record dirty extent, as here we did a shallow
738 * file extent item copy and skip normal backref update,
739 * but modifying extent tree all by ourselves.
740 * So need to manually record dirty extent for qgroup,
741 * as the owner of the file extent changed from log tree
742 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
743 */
744 ret = btrfs_qgroup_trace_extent(trans,
745 btrfs_file_extent_disk_bytenr(eb, item),
746 btrfs_file_extent_disk_num_bytes(eb, item));
747 if (ret < 0)
748 goto out;
749
750 if (ins.objectid > 0) {
751 struct btrfs_ref ref = { 0 };
752 u64 csum_start;
753 u64 csum_end;
754 LIST_HEAD(ordered_sums);
755
756 /*
757 * is this extent already allocated in the extent
758 * allocation tree? If so, just add a reference
759 */
760 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
761 ins.offset);
762 if (ret < 0) {
763 goto out;
764 } else if (ret == 0) {
765 btrfs_init_generic_ref(&ref,
766 BTRFS_ADD_DELAYED_REF,
767 ins.objectid, ins.offset, 0,
768 root->root_key.objectid);
769 btrfs_init_data_ref(&ref,
770 root->root_key.objectid,
771 key->objectid, offset, 0, false);
772 ret = btrfs_inc_extent_ref(trans, &ref);
773 if (ret)
774 goto out;
775 } else {
776 /*
777 * insert the extent pointer in the extent
778 * allocation tree
779 */
780 ret = btrfs_alloc_logged_file_extent(trans,
781 root->root_key.objectid,
782 key->objectid, offset, &ins);
783 if (ret)
784 goto out;
785 }
786 btrfs_release_path(path);
787
788 if (btrfs_file_extent_compression(eb, item)) {
789 csum_start = ins.objectid;
790 csum_end = csum_start + ins.offset;
791 } else {
792 csum_start = ins.objectid +
793 btrfs_file_extent_offset(eb, item);
794 csum_end = csum_start +
795 btrfs_file_extent_num_bytes(eb, item);
796 }
797
798 ret = btrfs_lookup_csums_list(root->log_root,
799 csum_start, csum_end - 1,
800 &ordered_sums, 0, false);
801 if (ret)
802 goto out;
803 /*
804 * Now delete all existing cums in the csum root that
805 * cover our range. We do this because we can have an
806 * extent that is completely referenced by one file
807 * extent item and partially referenced by another
808 * file extent item (like after using the clone or
809 * extent_same ioctls). In this case if we end up doing
810 * the replay of the one that partially references the
811 * extent first, and we do not do the csum deletion
812 * below, we can get 2 csum items in the csum tree that
813 * overlap each other. For example, imagine our log has
814 * the two following file extent items:
815 *
816 * key (257 EXTENT_DATA 409600)
817 * extent data disk byte 12845056 nr 102400
818 * extent data offset 20480 nr 20480 ram 102400
819 *
820 * key (257 EXTENT_DATA 819200)
821 * extent data disk byte 12845056 nr 102400
822 * extent data offset 0 nr 102400 ram 102400
823 *
824 * Where the second one fully references the 100K extent
825 * that starts at disk byte 12845056, and the log tree
826 * has a single csum item that covers the entire range
827 * of the extent:
828 *
829 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
830 *
831 * After the first file extent item is replayed, the
832 * csum tree gets the following csum item:
833 *
834 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
835 *
836 * Which covers the 20K sub-range starting at offset 20K
837 * of our extent. Now when we replay the second file
838 * extent item, if we do not delete existing csum items
839 * that cover any of its blocks, we end up getting two
840 * csum items in our csum tree that overlap each other:
841 *
842 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
843 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
844 *
845 * Which is a problem, because after this anyone trying
846 * to lookup up for the checksum of any block of our
847 * extent starting at an offset of 40K or higher, will
848 * end up looking at the second csum item only, which
849 * does not contain the checksum for any block starting
850 * at offset 40K or higher of our extent.
851 */
852 while (!list_empty(&ordered_sums)) {
853 struct btrfs_ordered_sum *sums;
854 struct btrfs_root *csum_root;
855
856 sums = list_entry(ordered_sums.next,
857 struct btrfs_ordered_sum,
858 list);
859 csum_root = btrfs_csum_root(fs_info,
860 sums->logical);
861 if (!ret)
862 ret = btrfs_del_csums(trans, csum_root,
863 sums->logical,
864 sums->len);
865 if (!ret)
866 ret = btrfs_csum_file_blocks(trans,
867 csum_root,
868 sums);
869 list_del(&sums->list);
870 kfree(sums);
871 }
872 if (ret)
873 goto out;
874 } else {
875 btrfs_release_path(path);
876 }
877 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
878 /* inline extents are easy, we just overwrite them */
879 ret = overwrite_item(trans, root, path, eb, slot, key);
880 if (ret)
881 goto out;
882 }
883
884 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
885 extent_end - start);
886 if (ret)
887 goto out;
888
889update_inode:
890 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
891 ret = btrfs_update_inode(trans, BTRFS_I(inode));
892out:
893 iput(inode);
894 return ret;
895}
896
897static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
898 struct btrfs_inode *dir,
899 struct btrfs_inode *inode,
900 const struct fscrypt_str *name)
901{
902 int ret;
903
904 ret = btrfs_unlink_inode(trans, dir, inode, name);
905 if (ret)
906 return ret;
907 /*
908 * Whenever we need to check if a name exists or not, we check the
909 * fs/subvolume tree. So after an unlink we must run delayed items, so
910 * that future checks for a name during log replay see that the name
911 * does not exists anymore.
912 */
913 return btrfs_run_delayed_items(trans);
914}
915
916/*
917 * when cleaning up conflicts between the directory names in the
918 * subvolume, directory names in the log and directory names in the
919 * inode back references, we may have to unlink inodes from directories.
920 *
921 * This is a helper function to do the unlink of a specific directory
922 * item
923 */
924static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
925 struct btrfs_path *path,
926 struct btrfs_inode *dir,
927 struct btrfs_dir_item *di)
928{
929 struct btrfs_root *root = dir->root;
930 struct inode *inode;
931 struct fscrypt_str name;
932 struct extent_buffer *leaf;
933 struct btrfs_key location;
934 int ret;
935
936 leaf = path->nodes[0];
937
938 btrfs_dir_item_key_to_cpu(leaf, di, &location);
939 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
940 if (ret)
941 return -ENOMEM;
942
943 btrfs_release_path(path);
944
945 inode = read_one_inode(root, location.objectid);
946 if (!inode) {
947 ret = -EIO;
948 goto out;
949 }
950
951 ret = link_to_fixup_dir(trans, root, path, location.objectid);
952 if (ret)
953 goto out;
954
955 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
956out:
957 kfree(name.name);
958 iput(inode);
959 return ret;
960}
961
962/*
963 * See if a given name and sequence number found in an inode back reference are
964 * already in a directory and correctly point to this inode.
965 *
966 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
967 * exists.
968 */
969static noinline int inode_in_dir(struct btrfs_root *root,
970 struct btrfs_path *path,
971 u64 dirid, u64 objectid, u64 index,
972 struct fscrypt_str *name)
973{
974 struct btrfs_dir_item *di;
975 struct btrfs_key location;
976 int ret = 0;
977
978 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
979 index, name, 0);
980 if (IS_ERR(di)) {
981 ret = PTR_ERR(di);
982 goto out;
983 } else if (di) {
984 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
985 if (location.objectid != objectid)
986 goto out;
987 } else {
988 goto out;
989 }
990
991 btrfs_release_path(path);
992 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
993 if (IS_ERR(di)) {
994 ret = PTR_ERR(di);
995 goto out;
996 } else if (di) {
997 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
998 if (location.objectid == objectid)
999 ret = 1;
1000 }
1001out:
1002 btrfs_release_path(path);
1003 return ret;
1004}
1005
1006/*
1007 * helper function to check a log tree for a named back reference in
1008 * an inode. This is used to decide if a back reference that is
1009 * found in the subvolume conflicts with what we find in the log.
1010 *
1011 * inode backreferences may have multiple refs in a single item,
1012 * during replay we process one reference at a time, and we don't
1013 * want to delete valid links to a file from the subvolume if that
1014 * link is also in the log.
1015 */
1016static noinline int backref_in_log(struct btrfs_root *log,
1017 struct btrfs_key *key,
1018 u64 ref_objectid,
1019 const struct fscrypt_str *name)
1020{
1021 struct btrfs_path *path;
1022 int ret;
1023
1024 path = btrfs_alloc_path();
1025 if (!path)
1026 return -ENOMEM;
1027
1028 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1029 if (ret < 0) {
1030 goto out;
1031 } else if (ret == 1) {
1032 ret = 0;
1033 goto out;
1034 }
1035
1036 if (key->type == BTRFS_INODE_EXTREF_KEY)
1037 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1038 path->slots[0],
1039 ref_objectid, name);
1040 else
1041 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1042 path->slots[0], name);
1043out:
1044 btrfs_free_path(path);
1045 return ret;
1046}
1047
1048static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1049 struct btrfs_root *root,
1050 struct btrfs_path *path,
1051 struct btrfs_root *log_root,
1052 struct btrfs_inode *dir,
1053 struct btrfs_inode *inode,
1054 u64 inode_objectid, u64 parent_objectid,
1055 u64 ref_index, struct fscrypt_str *name)
1056{
1057 int ret;
1058 struct extent_buffer *leaf;
1059 struct btrfs_dir_item *di;
1060 struct btrfs_key search_key;
1061 struct btrfs_inode_extref *extref;
1062
1063again:
1064 /* Search old style refs */
1065 search_key.objectid = inode_objectid;
1066 search_key.type = BTRFS_INODE_REF_KEY;
1067 search_key.offset = parent_objectid;
1068 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1069 if (ret == 0) {
1070 struct btrfs_inode_ref *victim_ref;
1071 unsigned long ptr;
1072 unsigned long ptr_end;
1073
1074 leaf = path->nodes[0];
1075
1076 /* are we trying to overwrite a back ref for the root directory
1077 * if so, just jump out, we're done
1078 */
1079 if (search_key.objectid == search_key.offset)
1080 return 1;
1081
1082 /* check all the names in this back reference to see
1083 * if they are in the log. if so, we allow them to stay
1084 * otherwise they must be unlinked as a conflict
1085 */
1086 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1087 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1088 while (ptr < ptr_end) {
1089 struct fscrypt_str victim_name;
1090
1091 victim_ref = (struct btrfs_inode_ref *)ptr;
1092 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1093 btrfs_inode_ref_name_len(leaf, victim_ref),
1094 &victim_name);
1095 if (ret)
1096 return ret;
1097
1098 ret = backref_in_log(log_root, &search_key,
1099 parent_objectid, &victim_name);
1100 if (ret < 0) {
1101 kfree(victim_name.name);
1102 return ret;
1103 } else if (!ret) {
1104 inc_nlink(&inode->vfs_inode);
1105 btrfs_release_path(path);
1106
1107 ret = unlink_inode_for_log_replay(trans, dir, inode,
1108 &victim_name);
1109 kfree(victim_name.name);
1110 if (ret)
1111 return ret;
1112 goto again;
1113 }
1114 kfree(victim_name.name);
1115
1116 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1117 }
1118 }
1119 btrfs_release_path(path);
1120
1121 /* Same search but for extended refs */
1122 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1123 inode_objectid, parent_objectid, 0,
1124 0);
1125 if (IS_ERR(extref)) {
1126 return PTR_ERR(extref);
1127 } else if (extref) {
1128 u32 item_size;
1129 u32 cur_offset = 0;
1130 unsigned long base;
1131 struct inode *victim_parent;
1132
1133 leaf = path->nodes[0];
1134
1135 item_size = btrfs_item_size(leaf, path->slots[0]);
1136 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1137
1138 while (cur_offset < item_size) {
1139 struct fscrypt_str victim_name;
1140
1141 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1142
1143 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1144 goto next;
1145
1146 ret = read_alloc_one_name(leaf, &extref->name,
1147 btrfs_inode_extref_name_len(leaf, extref),
1148 &victim_name);
1149 if (ret)
1150 return ret;
1151
1152 search_key.objectid = inode_objectid;
1153 search_key.type = BTRFS_INODE_EXTREF_KEY;
1154 search_key.offset = btrfs_extref_hash(parent_objectid,
1155 victim_name.name,
1156 victim_name.len);
1157 ret = backref_in_log(log_root, &search_key,
1158 parent_objectid, &victim_name);
1159 if (ret < 0) {
1160 kfree(victim_name.name);
1161 return ret;
1162 } else if (!ret) {
1163 ret = -ENOENT;
1164 victim_parent = read_one_inode(root,
1165 parent_objectid);
1166 if (victim_parent) {
1167 inc_nlink(&inode->vfs_inode);
1168 btrfs_release_path(path);
1169
1170 ret = unlink_inode_for_log_replay(trans,
1171 BTRFS_I(victim_parent),
1172 inode, &victim_name);
1173 }
1174 iput(victim_parent);
1175 kfree(victim_name.name);
1176 if (ret)
1177 return ret;
1178 goto again;
1179 }
1180 kfree(victim_name.name);
1181next:
1182 cur_offset += victim_name.len + sizeof(*extref);
1183 }
1184 }
1185 btrfs_release_path(path);
1186
1187 /* look for a conflicting sequence number */
1188 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1189 ref_index, name, 0);
1190 if (IS_ERR(di)) {
1191 return PTR_ERR(di);
1192 } else if (di) {
1193 ret = drop_one_dir_item(trans, path, dir, di);
1194 if (ret)
1195 return ret;
1196 }
1197 btrfs_release_path(path);
1198
1199 /* look for a conflicting name */
1200 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1201 if (IS_ERR(di)) {
1202 return PTR_ERR(di);
1203 } else if (di) {
1204 ret = drop_one_dir_item(trans, path, dir, di);
1205 if (ret)
1206 return ret;
1207 }
1208 btrfs_release_path(path);
1209
1210 return 0;
1211}
1212
1213static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1214 struct fscrypt_str *name, u64 *index,
1215 u64 *parent_objectid)
1216{
1217 struct btrfs_inode_extref *extref;
1218 int ret;
1219
1220 extref = (struct btrfs_inode_extref *)ref_ptr;
1221
1222 ret = read_alloc_one_name(eb, &extref->name,
1223 btrfs_inode_extref_name_len(eb, extref), name);
1224 if (ret)
1225 return ret;
1226
1227 if (index)
1228 *index = btrfs_inode_extref_index(eb, extref);
1229 if (parent_objectid)
1230 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1231
1232 return 0;
1233}
1234
1235static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1236 struct fscrypt_str *name, u64 *index)
1237{
1238 struct btrfs_inode_ref *ref;
1239 int ret;
1240
1241 ref = (struct btrfs_inode_ref *)ref_ptr;
1242
1243 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1244 name);
1245 if (ret)
1246 return ret;
1247
1248 if (index)
1249 *index = btrfs_inode_ref_index(eb, ref);
1250
1251 return 0;
1252}
1253
1254/*
1255 * Take an inode reference item from the log tree and iterate all names from the
1256 * inode reference item in the subvolume tree with the same key (if it exists).
1257 * For any name that is not in the inode reference item from the log tree, do a
1258 * proper unlink of that name (that is, remove its entry from the inode
1259 * reference item and both dir index keys).
1260 */
1261static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
1264 struct btrfs_inode *inode,
1265 struct extent_buffer *log_eb,
1266 int log_slot,
1267 struct btrfs_key *key)
1268{
1269 int ret;
1270 unsigned long ref_ptr;
1271 unsigned long ref_end;
1272 struct extent_buffer *eb;
1273
1274again:
1275 btrfs_release_path(path);
1276 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1277 if (ret > 0) {
1278 ret = 0;
1279 goto out;
1280 }
1281 if (ret < 0)
1282 goto out;
1283
1284 eb = path->nodes[0];
1285 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1286 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1287 while (ref_ptr < ref_end) {
1288 struct fscrypt_str name;
1289 u64 parent_id;
1290
1291 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1292 ret = extref_get_fields(eb, ref_ptr, &name,
1293 NULL, &parent_id);
1294 } else {
1295 parent_id = key->offset;
1296 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1297 }
1298 if (ret)
1299 goto out;
1300
1301 if (key->type == BTRFS_INODE_EXTREF_KEY)
1302 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1303 parent_id, &name);
1304 else
1305 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1306
1307 if (!ret) {
1308 struct inode *dir;
1309
1310 btrfs_release_path(path);
1311 dir = read_one_inode(root, parent_id);
1312 if (!dir) {
1313 ret = -ENOENT;
1314 kfree(name.name);
1315 goto out;
1316 }
1317 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1318 inode, &name);
1319 kfree(name.name);
1320 iput(dir);
1321 if (ret)
1322 goto out;
1323 goto again;
1324 }
1325
1326 kfree(name.name);
1327 ref_ptr += name.len;
1328 if (key->type == BTRFS_INODE_EXTREF_KEY)
1329 ref_ptr += sizeof(struct btrfs_inode_extref);
1330 else
1331 ref_ptr += sizeof(struct btrfs_inode_ref);
1332 }
1333 ret = 0;
1334 out:
1335 btrfs_release_path(path);
1336 return ret;
1337}
1338
1339/*
1340 * replay one inode back reference item found in the log tree.
1341 * eb, slot and key refer to the buffer and key found in the log tree.
1342 * root is the destination we are replaying into, and path is for temp
1343 * use by this function. (it should be released on return).
1344 */
1345static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1346 struct btrfs_root *root,
1347 struct btrfs_root *log,
1348 struct btrfs_path *path,
1349 struct extent_buffer *eb, int slot,
1350 struct btrfs_key *key)
1351{
1352 struct inode *dir = NULL;
1353 struct inode *inode = NULL;
1354 unsigned long ref_ptr;
1355 unsigned long ref_end;
1356 struct fscrypt_str name;
1357 int ret;
1358 int log_ref_ver = 0;
1359 u64 parent_objectid;
1360 u64 inode_objectid;
1361 u64 ref_index = 0;
1362 int ref_struct_size;
1363
1364 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1365 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1366
1367 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1368 struct btrfs_inode_extref *r;
1369
1370 ref_struct_size = sizeof(struct btrfs_inode_extref);
1371 log_ref_ver = 1;
1372 r = (struct btrfs_inode_extref *)ref_ptr;
1373 parent_objectid = btrfs_inode_extref_parent(eb, r);
1374 } else {
1375 ref_struct_size = sizeof(struct btrfs_inode_ref);
1376 parent_objectid = key->offset;
1377 }
1378 inode_objectid = key->objectid;
1379
1380 /*
1381 * it is possible that we didn't log all the parent directories
1382 * for a given inode. If we don't find the dir, just don't
1383 * copy the back ref in. The link count fixup code will take
1384 * care of the rest
1385 */
1386 dir = read_one_inode(root, parent_objectid);
1387 if (!dir) {
1388 ret = -ENOENT;
1389 goto out;
1390 }
1391
1392 inode = read_one_inode(root, inode_objectid);
1393 if (!inode) {
1394 ret = -EIO;
1395 goto out;
1396 }
1397
1398 while (ref_ptr < ref_end) {
1399 if (log_ref_ver) {
1400 ret = extref_get_fields(eb, ref_ptr, &name,
1401 &ref_index, &parent_objectid);
1402 /*
1403 * parent object can change from one array
1404 * item to another.
1405 */
1406 if (!dir)
1407 dir = read_one_inode(root, parent_objectid);
1408 if (!dir) {
1409 ret = -ENOENT;
1410 goto out;
1411 }
1412 } else {
1413 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1414 }
1415 if (ret)
1416 goto out;
1417
1418 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1419 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1420 if (ret < 0) {
1421 goto out;
1422 } else if (ret == 0) {
1423 /*
1424 * look for a conflicting back reference in the
1425 * metadata. if we find one we have to unlink that name
1426 * of the file before we add our new link. Later on, we
1427 * overwrite any existing back reference, and we don't
1428 * want to create dangling pointers in the directory.
1429 */
1430 ret = __add_inode_ref(trans, root, path, log,
1431 BTRFS_I(dir), BTRFS_I(inode),
1432 inode_objectid, parent_objectid,
1433 ref_index, &name);
1434 if (ret) {
1435 if (ret == 1)
1436 ret = 0;
1437 goto out;
1438 }
1439
1440 /* insert our name */
1441 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1442 &name, 0, ref_index);
1443 if (ret)
1444 goto out;
1445
1446 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1447 if (ret)
1448 goto out;
1449 }
1450 /* Else, ret == 1, we already have a perfect match, we're done. */
1451
1452 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1453 kfree(name.name);
1454 name.name = NULL;
1455 if (log_ref_ver) {
1456 iput(dir);
1457 dir = NULL;
1458 }
1459 }
1460
1461 /*
1462 * Before we overwrite the inode reference item in the subvolume tree
1463 * with the item from the log tree, we must unlink all names from the
1464 * parent directory that are in the subvolume's tree inode reference
1465 * item, otherwise we end up with an inconsistent subvolume tree where
1466 * dir index entries exist for a name but there is no inode reference
1467 * item with the same name.
1468 */
1469 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1470 key);
1471 if (ret)
1472 goto out;
1473
1474 /* finally write the back reference in the inode */
1475 ret = overwrite_item(trans, root, path, eb, slot, key);
1476out:
1477 btrfs_release_path(path);
1478 kfree(name.name);
1479 iput(dir);
1480 iput(inode);
1481 return ret;
1482}
1483
1484static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1485{
1486 int ret = 0;
1487 int name_len;
1488 unsigned int nlink = 0;
1489 u32 item_size;
1490 u32 cur_offset = 0;
1491 u64 inode_objectid = btrfs_ino(inode);
1492 u64 offset = 0;
1493 unsigned long ptr;
1494 struct btrfs_inode_extref *extref;
1495 struct extent_buffer *leaf;
1496
1497 while (1) {
1498 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1499 path, &extref, &offset);
1500 if (ret)
1501 break;
1502
1503 leaf = path->nodes[0];
1504 item_size = btrfs_item_size(leaf, path->slots[0]);
1505 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1506 cur_offset = 0;
1507
1508 while (cur_offset < item_size) {
1509 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1510 name_len = btrfs_inode_extref_name_len(leaf, extref);
1511
1512 nlink++;
1513
1514 cur_offset += name_len + sizeof(*extref);
1515 }
1516
1517 offset++;
1518 btrfs_release_path(path);
1519 }
1520 btrfs_release_path(path);
1521
1522 if (ret < 0 && ret != -ENOENT)
1523 return ret;
1524 return nlink;
1525}
1526
1527static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1528{
1529 int ret;
1530 struct btrfs_key key;
1531 unsigned int nlink = 0;
1532 unsigned long ptr;
1533 unsigned long ptr_end;
1534 int name_len;
1535 u64 ino = btrfs_ino(inode);
1536
1537 key.objectid = ino;
1538 key.type = BTRFS_INODE_REF_KEY;
1539 key.offset = (u64)-1;
1540
1541 while (1) {
1542 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1543 if (ret < 0)
1544 break;
1545 if (ret > 0) {
1546 if (path->slots[0] == 0)
1547 break;
1548 path->slots[0]--;
1549 }
1550process_slot:
1551 btrfs_item_key_to_cpu(path->nodes[0], &key,
1552 path->slots[0]);
1553 if (key.objectid != ino ||
1554 key.type != BTRFS_INODE_REF_KEY)
1555 break;
1556 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1557 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1558 path->slots[0]);
1559 while (ptr < ptr_end) {
1560 struct btrfs_inode_ref *ref;
1561
1562 ref = (struct btrfs_inode_ref *)ptr;
1563 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1564 ref);
1565 ptr = (unsigned long)(ref + 1) + name_len;
1566 nlink++;
1567 }
1568
1569 if (key.offset == 0)
1570 break;
1571 if (path->slots[0] > 0) {
1572 path->slots[0]--;
1573 goto process_slot;
1574 }
1575 key.offset--;
1576 btrfs_release_path(path);
1577 }
1578 btrfs_release_path(path);
1579
1580 return nlink;
1581}
1582
1583/*
1584 * There are a few corners where the link count of the file can't
1585 * be properly maintained during replay. So, instead of adding
1586 * lots of complexity to the log code, we just scan the backrefs
1587 * for any file that has been through replay.
1588 *
1589 * The scan will update the link count on the inode to reflect the
1590 * number of back refs found. If it goes down to zero, the iput
1591 * will free the inode.
1592 */
1593static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1594 struct inode *inode)
1595{
1596 struct btrfs_root *root = BTRFS_I(inode)->root;
1597 struct btrfs_path *path;
1598 int ret;
1599 u64 nlink = 0;
1600 u64 ino = btrfs_ino(BTRFS_I(inode));
1601
1602 path = btrfs_alloc_path();
1603 if (!path)
1604 return -ENOMEM;
1605
1606 ret = count_inode_refs(BTRFS_I(inode), path);
1607 if (ret < 0)
1608 goto out;
1609
1610 nlink = ret;
1611
1612 ret = count_inode_extrefs(BTRFS_I(inode), path);
1613 if (ret < 0)
1614 goto out;
1615
1616 nlink += ret;
1617
1618 ret = 0;
1619
1620 if (nlink != inode->i_nlink) {
1621 set_nlink(inode, nlink);
1622 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1623 if (ret)
1624 goto out;
1625 }
1626 BTRFS_I(inode)->index_cnt = (u64)-1;
1627
1628 if (inode->i_nlink == 0) {
1629 if (S_ISDIR(inode->i_mode)) {
1630 ret = replay_dir_deletes(trans, root, NULL, path,
1631 ino, 1);
1632 if (ret)
1633 goto out;
1634 }
1635 ret = btrfs_insert_orphan_item(trans, root, ino);
1636 if (ret == -EEXIST)
1637 ret = 0;
1638 }
1639
1640out:
1641 btrfs_free_path(path);
1642 return ret;
1643}
1644
1645static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1646 struct btrfs_root *root,
1647 struct btrfs_path *path)
1648{
1649 int ret;
1650 struct btrfs_key key;
1651 struct inode *inode;
1652
1653 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1654 key.type = BTRFS_ORPHAN_ITEM_KEY;
1655 key.offset = (u64)-1;
1656 while (1) {
1657 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1658 if (ret < 0)
1659 break;
1660
1661 if (ret == 1) {
1662 ret = 0;
1663 if (path->slots[0] == 0)
1664 break;
1665 path->slots[0]--;
1666 }
1667
1668 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1669 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1670 key.type != BTRFS_ORPHAN_ITEM_KEY)
1671 break;
1672
1673 ret = btrfs_del_item(trans, root, path);
1674 if (ret)
1675 break;
1676
1677 btrfs_release_path(path);
1678 inode = read_one_inode(root, key.offset);
1679 if (!inode) {
1680 ret = -EIO;
1681 break;
1682 }
1683
1684 ret = fixup_inode_link_count(trans, inode);
1685 iput(inode);
1686 if (ret)
1687 break;
1688
1689 /*
1690 * fixup on a directory may create new entries,
1691 * make sure we always look for the highset possible
1692 * offset
1693 */
1694 key.offset = (u64)-1;
1695 }
1696 btrfs_release_path(path);
1697 return ret;
1698}
1699
1700
1701/*
1702 * record a given inode in the fixup dir so we can check its link
1703 * count when replay is done. The link count is incremented here
1704 * so the inode won't go away until we check it
1705 */
1706static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1707 struct btrfs_root *root,
1708 struct btrfs_path *path,
1709 u64 objectid)
1710{
1711 struct btrfs_key key;
1712 int ret = 0;
1713 struct inode *inode;
1714
1715 inode = read_one_inode(root, objectid);
1716 if (!inode)
1717 return -EIO;
1718
1719 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1720 key.type = BTRFS_ORPHAN_ITEM_KEY;
1721 key.offset = objectid;
1722
1723 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1724
1725 btrfs_release_path(path);
1726 if (ret == 0) {
1727 if (!inode->i_nlink)
1728 set_nlink(inode, 1);
1729 else
1730 inc_nlink(inode);
1731 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1732 } else if (ret == -EEXIST) {
1733 ret = 0;
1734 }
1735 iput(inode);
1736
1737 return ret;
1738}
1739
1740/*
1741 * when replaying the log for a directory, we only insert names
1742 * for inodes that actually exist. This means an fsync on a directory
1743 * does not implicitly fsync all the new files in it
1744 */
1745static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1746 struct btrfs_root *root,
1747 u64 dirid, u64 index,
1748 const struct fscrypt_str *name,
1749 struct btrfs_key *location)
1750{
1751 struct inode *inode;
1752 struct inode *dir;
1753 int ret;
1754
1755 inode = read_one_inode(root, location->objectid);
1756 if (!inode)
1757 return -ENOENT;
1758
1759 dir = read_one_inode(root, dirid);
1760 if (!dir) {
1761 iput(inode);
1762 return -EIO;
1763 }
1764
1765 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1766 1, index);
1767
1768 /* FIXME, put inode into FIXUP list */
1769
1770 iput(inode);
1771 iput(dir);
1772 return ret;
1773}
1774
1775static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1776 struct btrfs_inode *dir,
1777 struct btrfs_path *path,
1778 struct btrfs_dir_item *dst_di,
1779 const struct btrfs_key *log_key,
1780 u8 log_flags,
1781 bool exists)
1782{
1783 struct btrfs_key found_key;
1784
1785 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1786 /* The existing dentry points to the same inode, don't delete it. */
1787 if (found_key.objectid == log_key->objectid &&
1788 found_key.type == log_key->type &&
1789 found_key.offset == log_key->offset &&
1790 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1791 return 1;
1792
1793 /*
1794 * Don't drop the conflicting directory entry if the inode for the new
1795 * entry doesn't exist.
1796 */
1797 if (!exists)
1798 return 0;
1799
1800 return drop_one_dir_item(trans, path, dir, dst_di);
1801}
1802
1803/*
1804 * take a single entry in a log directory item and replay it into
1805 * the subvolume.
1806 *
1807 * if a conflicting item exists in the subdirectory already,
1808 * the inode it points to is unlinked and put into the link count
1809 * fix up tree.
1810 *
1811 * If a name from the log points to a file or directory that does
1812 * not exist in the FS, it is skipped. fsyncs on directories
1813 * do not force down inodes inside that directory, just changes to the
1814 * names or unlinks in a directory.
1815 *
1816 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1817 * non-existing inode) and 1 if the name was replayed.
1818 */
1819static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 struct extent_buffer *eb,
1823 struct btrfs_dir_item *di,
1824 struct btrfs_key *key)
1825{
1826 struct fscrypt_str name;
1827 struct btrfs_dir_item *dir_dst_di;
1828 struct btrfs_dir_item *index_dst_di;
1829 bool dir_dst_matches = false;
1830 bool index_dst_matches = false;
1831 struct btrfs_key log_key;
1832 struct btrfs_key search_key;
1833 struct inode *dir;
1834 u8 log_flags;
1835 bool exists;
1836 int ret;
1837 bool update_size = true;
1838 bool name_added = false;
1839
1840 dir = read_one_inode(root, key->objectid);
1841 if (!dir)
1842 return -EIO;
1843
1844 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1845 if (ret)
1846 goto out;
1847
1848 log_flags = btrfs_dir_flags(eb, di);
1849 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1850 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1851 btrfs_release_path(path);
1852 if (ret < 0)
1853 goto out;
1854 exists = (ret == 0);
1855 ret = 0;
1856
1857 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1858 &name, 1);
1859 if (IS_ERR(dir_dst_di)) {
1860 ret = PTR_ERR(dir_dst_di);
1861 goto out;
1862 } else if (dir_dst_di) {
1863 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1864 dir_dst_di, &log_key,
1865 log_flags, exists);
1866 if (ret < 0)
1867 goto out;
1868 dir_dst_matches = (ret == 1);
1869 }
1870
1871 btrfs_release_path(path);
1872
1873 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1874 key->objectid, key->offset,
1875 &name, 1);
1876 if (IS_ERR(index_dst_di)) {
1877 ret = PTR_ERR(index_dst_di);
1878 goto out;
1879 } else if (index_dst_di) {
1880 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1881 index_dst_di, &log_key,
1882 log_flags, exists);
1883 if (ret < 0)
1884 goto out;
1885 index_dst_matches = (ret == 1);
1886 }
1887
1888 btrfs_release_path(path);
1889
1890 if (dir_dst_matches && index_dst_matches) {
1891 ret = 0;
1892 update_size = false;
1893 goto out;
1894 }
1895
1896 /*
1897 * Check if the inode reference exists in the log for the given name,
1898 * inode and parent inode
1899 */
1900 search_key.objectid = log_key.objectid;
1901 search_key.type = BTRFS_INODE_REF_KEY;
1902 search_key.offset = key->objectid;
1903 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1904 if (ret < 0) {
1905 goto out;
1906 } else if (ret) {
1907 /* The dentry will be added later. */
1908 ret = 0;
1909 update_size = false;
1910 goto out;
1911 }
1912
1913 search_key.objectid = log_key.objectid;
1914 search_key.type = BTRFS_INODE_EXTREF_KEY;
1915 search_key.offset = key->objectid;
1916 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1917 if (ret < 0) {
1918 goto out;
1919 } else if (ret) {
1920 /* The dentry will be added later. */
1921 ret = 0;
1922 update_size = false;
1923 goto out;
1924 }
1925 btrfs_release_path(path);
1926 ret = insert_one_name(trans, root, key->objectid, key->offset,
1927 &name, &log_key);
1928 if (ret && ret != -ENOENT && ret != -EEXIST)
1929 goto out;
1930 if (!ret)
1931 name_added = true;
1932 update_size = false;
1933 ret = 0;
1934
1935out:
1936 if (!ret && update_size) {
1937 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1938 ret = btrfs_update_inode(trans, BTRFS_I(dir));
1939 }
1940 kfree(name.name);
1941 iput(dir);
1942 if (!ret && name_added)
1943 ret = 1;
1944 return ret;
1945}
1946
1947/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1948static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1949 struct btrfs_root *root,
1950 struct btrfs_path *path,
1951 struct extent_buffer *eb, int slot,
1952 struct btrfs_key *key)
1953{
1954 int ret;
1955 struct btrfs_dir_item *di;
1956
1957 /* We only log dir index keys, which only contain a single dir item. */
1958 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1959
1960 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1961 ret = replay_one_name(trans, root, path, eb, di, key);
1962 if (ret < 0)
1963 return ret;
1964
1965 /*
1966 * If this entry refers to a non-directory (directories can not have a
1967 * link count > 1) and it was added in the transaction that was not
1968 * committed, make sure we fixup the link count of the inode the entry
1969 * points to. Otherwise something like the following would result in a
1970 * directory pointing to an inode with a wrong link that does not account
1971 * for this dir entry:
1972 *
1973 * mkdir testdir
1974 * touch testdir/foo
1975 * touch testdir/bar
1976 * sync
1977 *
1978 * ln testdir/bar testdir/bar_link
1979 * ln testdir/foo testdir/foo_link
1980 * xfs_io -c "fsync" testdir/bar
1981 *
1982 * <power failure>
1983 *
1984 * mount fs, log replay happens
1985 *
1986 * File foo would remain with a link count of 1 when it has two entries
1987 * pointing to it in the directory testdir. This would make it impossible
1988 * to ever delete the parent directory has it would result in stale
1989 * dentries that can never be deleted.
1990 */
1991 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1992 struct btrfs_path *fixup_path;
1993 struct btrfs_key di_key;
1994
1995 fixup_path = btrfs_alloc_path();
1996 if (!fixup_path)
1997 return -ENOMEM;
1998
1999 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2000 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2001 btrfs_free_path(fixup_path);
2002 }
2003
2004 return ret;
2005}
2006
2007/*
2008 * directory replay has two parts. There are the standard directory
2009 * items in the log copied from the subvolume, and range items
2010 * created in the log while the subvolume was logged.
2011 *
2012 * The range items tell us which parts of the key space the log
2013 * is authoritative for. During replay, if a key in the subvolume
2014 * directory is in a logged range item, but not actually in the log
2015 * that means it was deleted from the directory before the fsync
2016 * and should be removed.
2017 */
2018static noinline int find_dir_range(struct btrfs_root *root,
2019 struct btrfs_path *path,
2020 u64 dirid,
2021 u64 *start_ret, u64 *end_ret)
2022{
2023 struct btrfs_key key;
2024 u64 found_end;
2025 struct btrfs_dir_log_item *item;
2026 int ret;
2027 int nritems;
2028
2029 if (*start_ret == (u64)-1)
2030 return 1;
2031
2032 key.objectid = dirid;
2033 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2034 key.offset = *start_ret;
2035
2036 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2037 if (ret < 0)
2038 goto out;
2039 if (ret > 0) {
2040 if (path->slots[0] == 0)
2041 goto out;
2042 path->slots[0]--;
2043 }
2044 if (ret != 0)
2045 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2046
2047 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2048 ret = 1;
2049 goto next;
2050 }
2051 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2052 struct btrfs_dir_log_item);
2053 found_end = btrfs_dir_log_end(path->nodes[0], item);
2054
2055 if (*start_ret >= key.offset && *start_ret <= found_end) {
2056 ret = 0;
2057 *start_ret = key.offset;
2058 *end_ret = found_end;
2059 goto out;
2060 }
2061 ret = 1;
2062next:
2063 /* check the next slot in the tree to see if it is a valid item */
2064 nritems = btrfs_header_nritems(path->nodes[0]);
2065 path->slots[0]++;
2066 if (path->slots[0] >= nritems) {
2067 ret = btrfs_next_leaf(root, path);
2068 if (ret)
2069 goto out;
2070 }
2071
2072 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2073
2074 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2075 ret = 1;
2076 goto out;
2077 }
2078 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2079 struct btrfs_dir_log_item);
2080 found_end = btrfs_dir_log_end(path->nodes[0], item);
2081 *start_ret = key.offset;
2082 *end_ret = found_end;
2083 ret = 0;
2084out:
2085 btrfs_release_path(path);
2086 return ret;
2087}
2088
2089/*
2090 * this looks for a given directory item in the log. If the directory
2091 * item is not in the log, the item is removed and the inode it points
2092 * to is unlinked
2093 */
2094static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2095 struct btrfs_root *log,
2096 struct btrfs_path *path,
2097 struct btrfs_path *log_path,
2098 struct inode *dir,
2099 struct btrfs_key *dir_key)
2100{
2101 struct btrfs_root *root = BTRFS_I(dir)->root;
2102 int ret;
2103 struct extent_buffer *eb;
2104 int slot;
2105 struct btrfs_dir_item *di;
2106 struct fscrypt_str name;
2107 struct inode *inode = NULL;
2108 struct btrfs_key location;
2109
2110 /*
2111 * Currently we only log dir index keys. Even if we replay a log created
2112 * by an older kernel that logged both dir index and dir item keys, all
2113 * we need to do is process the dir index keys, we (and our caller) can
2114 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2115 */
2116 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2117
2118 eb = path->nodes[0];
2119 slot = path->slots[0];
2120 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2121 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2122 if (ret)
2123 goto out;
2124
2125 if (log) {
2126 struct btrfs_dir_item *log_di;
2127
2128 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2129 dir_key->objectid,
2130 dir_key->offset, &name, 0);
2131 if (IS_ERR(log_di)) {
2132 ret = PTR_ERR(log_di);
2133 goto out;
2134 } else if (log_di) {
2135 /* The dentry exists in the log, we have nothing to do. */
2136 ret = 0;
2137 goto out;
2138 }
2139 }
2140
2141 btrfs_dir_item_key_to_cpu(eb, di, &location);
2142 btrfs_release_path(path);
2143 btrfs_release_path(log_path);
2144 inode = read_one_inode(root, location.objectid);
2145 if (!inode) {
2146 ret = -EIO;
2147 goto out;
2148 }
2149
2150 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2151 if (ret)
2152 goto out;
2153
2154 inc_nlink(inode);
2155 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2156 &name);
2157 /*
2158 * Unlike dir item keys, dir index keys can only have one name (entry) in
2159 * them, as there are no key collisions since each key has a unique offset
2160 * (an index number), so we're done.
2161 */
2162out:
2163 btrfs_release_path(path);
2164 btrfs_release_path(log_path);
2165 kfree(name.name);
2166 iput(inode);
2167 return ret;
2168}
2169
2170static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root,
2172 struct btrfs_root *log,
2173 struct btrfs_path *path,
2174 const u64 ino)
2175{
2176 struct btrfs_key search_key;
2177 struct btrfs_path *log_path;
2178 int i;
2179 int nritems;
2180 int ret;
2181
2182 log_path = btrfs_alloc_path();
2183 if (!log_path)
2184 return -ENOMEM;
2185
2186 search_key.objectid = ino;
2187 search_key.type = BTRFS_XATTR_ITEM_KEY;
2188 search_key.offset = 0;
2189again:
2190 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2191 if (ret < 0)
2192 goto out;
2193process_leaf:
2194 nritems = btrfs_header_nritems(path->nodes[0]);
2195 for (i = path->slots[0]; i < nritems; i++) {
2196 struct btrfs_key key;
2197 struct btrfs_dir_item *di;
2198 struct btrfs_dir_item *log_di;
2199 u32 total_size;
2200 u32 cur;
2201
2202 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2203 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2204 ret = 0;
2205 goto out;
2206 }
2207
2208 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2209 total_size = btrfs_item_size(path->nodes[0], i);
2210 cur = 0;
2211 while (cur < total_size) {
2212 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2213 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2214 u32 this_len = sizeof(*di) + name_len + data_len;
2215 char *name;
2216
2217 name = kmalloc(name_len, GFP_NOFS);
2218 if (!name) {
2219 ret = -ENOMEM;
2220 goto out;
2221 }
2222 read_extent_buffer(path->nodes[0], name,
2223 (unsigned long)(di + 1), name_len);
2224
2225 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2226 name, name_len, 0);
2227 btrfs_release_path(log_path);
2228 if (!log_di) {
2229 /* Doesn't exist in log tree, so delete it. */
2230 btrfs_release_path(path);
2231 di = btrfs_lookup_xattr(trans, root, path, ino,
2232 name, name_len, -1);
2233 kfree(name);
2234 if (IS_ERR(di)) {
2235 ret = PTR_ERR(di);
2236 goto out;
2237 }
2238 ASSERT(di);
2239 ret = btrfs_delete_one_dir_name(trans, root,
2240 path, di);
2241 if (ret)
2242 goto out;
2243 btrfs_release_path(path);
2244 search_key = key;
2245 goto again;
2246 }
2247 kfree(name);
2248 if (IS_ERR(log_di)) {
2249 ret = PTR_ERR(log_di);
2250 goto out;
2251 }
2252 cur += this_len;
2253 di = (struct btrfs_dir_item *)((char *)di + this_len);
2254 }
2255 }
2256 ret = btrfs_next_leaf(root, path);
2257 if (ret > 0)
2258 ret = 0;
2259 else if (ret == 0)
2260 goto process_leaf;
2261out:
2262 btrfs_free_path(log_path);
2263 btrfs_release_path(path);
2264 return ret;
2265}
2266
2267
2268/*
2269 * deletion replay happens before we copy any new directory items
2270 * out of the log or out of backreferences from inodes. It
2271 * scans the log to find ranges of keys that log is authoritative for,
2272 * and then scans the directory to find items in those ranges that are
2273 * not present in the log.
2274 *
2275 * Anything we don't find in the log is unlinked and removed from the
2276 * directory.
2277 */
2278static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2279 struct btrfs_root *root,
2280 struct btrfs_root *log,
2281 struct btrfs_path *path,
2282 u64 dirid, int del_all)
2283{
2284 u64 range_start;
2285 u64 range_end;
2286 int ret = 0;
2287 struct btrfs_key dir_key;
2288 struct btrfs_key found_key;
2289 struct btrfs_path *log_path;
2290 struct inode *dir;
2291
2292 dir_key.objectid = dirid;
2293 dir_key.type = BTRFS_DIR_INDEX_KEY;
2294 log_path = btrfs_alloc_path();
2295 if (!log_path)
2296 return -ENOMEM;
2297
2298 dir = read_one_inode(root, dirid);
2299 /* it isn't an error if the inode isn't there, that can happen
2300 * because we replay the deletes before we copy in the inode item
2301 * from the log
2302 */
2303 if (!dir) {
2304 btrfs_free_path(log_path);
2305 return 0;
2306 }
2307
2308 range_start = 0;
2309 range_end = 0;
2310 while (1) {
2311 if (del_all)
2312 range_end = (u64)-1;
2313 else {
2314 ret = find_dir_range(log, path, dirid,
2315 &range_start, &range_end);
2316 if (ret < 0)
2317 goto out;
2318 else if (ret > 0)
2319 break;
2320 }
2321
2322 dir_key.offset = range_start;
2323 while (1) {
2324 int nritems;
2325 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2326 0, 0);
2327 if (ret < 0)
2328 goto out;
2329
2330 nritems = btrfs_header_nritems(path->nodes[0]);
2331 if (path->slots[0] >= nritems) {
2332 ret = btrfs_next_leaf(root, path);
2333 if (ret == 1)
2334 break;
2335 else if (ret < 0)
2336 goto out;
2337 }
2338 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2339 path->slots[0]);
2340 if (found_key.objectid != dirid ||
2341 found_key.type != dir_key.type) {
2342 ret = 0;
2343 goto out;
2344 }
2345
2346 if (found_key.offset > range_end)
2347 break;
2348
2349 ret = check_item_in_log(trans, log, path,
2350 log_path, dir,
2351 &found_key);
2352 if (ret)
2353 goto out;
2354 if (found_key.offset == (u64)-1)
2355 break;
2356 dir_key.offset = found_key.offset + 1;
2357 }
2358 btrfs_release_path(path);
2359 if (range_end == (u64)-1)
2360 break;
2361 range_start = range_end + 1;
2362 }
2363 ret = 0;
2364out:
2365 btrfs_release_path(path);
2366 btrfs_free_path(log_path);
2367 iput(dir);
2368 return ret;
2369}
2370
2371/*
2372 * the process_func used to replay items from the log tree. This
2373 * gets called in two different stages. The first stage just looks
2374 * for inodes and makes sure they are all copied into the subvolume.
2375 *
2376 * The second stage copies all the other item types from the log into
2377 * the subvolume. The two stage approach is slower, but gets rid of
2378 * lots of complexity around inodes referencing other inodes that exist
2379 * only in the log (references come from either directory items or inode
2380 * back refs).
2381 */
2382static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2383 struct walk_control *wc, u64 gen, int level)
2384{
2385 int nritems;
2386 struct btrfs_tree_parent_check check = {
2387 .transid = gen,
2388 .level = level
2389 };
2390 struct btrfs_path *path;
2391 struct btrfs_root *root = wc->replay_dest;
2392 struct btrfs_key key;
2393 int i;
2394 int ret;
2395
2396 ret = btrfs_read_extent_buffer(eb, &check);
2397 if (ret)
2398 return ret;
2399
2400 level = btrfs_header_level(eb);
2401
2402 if (level != 0)
2403 return 0;
2404
2405 path = btrfs_alloc_path();
2406 if (!path)
2407 return -ENOMEM;
2408
2409 nritems = btrfs_header_nritems(eb);
2410 for (i = 0; i < nritems; i++) {
2411 btrfs_item_key_to_cpu(eb, &key, i);
2412
2413 /* inode keys are done during the first stage */
2414 if (key.type == BTRFS_INODE_ITEM_KEY &&
2415 wc->stage == LOG_WALK_REPLAY_INODES) {
2416 struct btrfs_inode_item *inode_item;
2417 u32 mode;
2418
2419 inode_item = btrfs_item_ptr(eb, i,
2420 struct btrfs_inode_item);
2421 /*
2422 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2423 * and never got linked before the fsync, skip it, as
2424 * replaying it is pointless since it would be deleted
2425 * later. We skip logging tmpfiles, but it's always
2426 * possible we are replaying a log created with a kernel
2427 * that used to log tmpfiles.
2428 */
2429 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2430 wc->ignore_cur_inode = true;
2431 continue;
2432 } else {
2433 wc->ignore_cur_inode = false;
2434 }
2435 ret = replay_xattr_deletes(wc->trans, root, log,
2436 path, key.objectid);
2437 if (ret)
2438 break;
2439 mode = btrfs_inode_mode(eb, inode_item);
2440 if (S_ISDIR(mode)) {
2441 ret = replay_dir_deletes(wc->trans,
2442 root, log, path, key.objectid, 0);
2443 if (ret)
2444 break;
2445 }
2446 ret = overwrite_item(wc->trans, root, path,
2447 eb, i, &key);
2448 if (ret)
2449 break;
2450
2451 /*
2452 * Before replaying extents, truncate the inode to its
2453 * size. We need to do it now and not after log replay
2454 * because before an fsync we can have prealloc extents
2455 * added beyond the inode's i_size. If we did it after,
2456 * through orphan cleanup for example, we would drop
2457 * those prealloc extents just after replaying them.
2458 */
2459 if (S_ISREG(mode)) {
2460 struct btrfs_drop_extents_args drop_args = { 0 };
2461 struct inode *inode;
2462 u64 from;
2463
2464 inode = read_one_inode(root, key.objectid);
2465 if (!inode) {
2466 ret = -EIO;
2467 break;
2468 }
2469 from = ALIGN(i_size_read(inode),
2470 root->fs_info->sectorsize);
2471 drop_args.start = from;
2472 drop_args.end = (u64)-1;
2473 drop_args.drop_cache = true;
2474 ret = btrfs_drop_extents(wc->trans, root,
2475 BTRFS_I(inode),
2476 &drop_args);
2477 if (!ret) {
2478 inode_sub_bytes(inode,
2479 drop_args.bytes_found);
2480 /* Update the inode's nbytes. */
2481 ret = btrfs_update_inode(wc->trans,
2482 BTRFS_I(inode));
2483 }
2484 iput(inode);
2485 if (ret)
2486 break;
2487 }
2488
2489 ret = link_to_fixup_dir(wc->trans, root,
2490 path, key.objectid);
2491 if (ret)
2492 break;
2493 }
2494
2495 if (wc->ignore_cur_inode)
2496 continue;
2497
2498 if (key.type == BTRFS_DIR_INDEX_KEY &&
2499 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2500 ret = replay_one_dir_item(wc->trans, root, path,
2501 eb, i, &key);
2502 if (ret)
2503 break;
2504 }
2505
2506 if (wc->stage < LOG_WALK_REPLAY_ALL)
2507 continue;
2508
2509 /* these keys are simply copied */
2510 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2511 ret = overwrite_item(wc->trans, root, path,
2512 eb, i, &key);
2513 if (ret)
2514 break;
2515 } else if (key.type == BTRFS_INODE_REF_KEY ||
2516 key.type == BTRFS_INODE_EXTREF_KEY) {
2517 ret = add_inode_ref(wc->trans, root, log, path,
2518 eb, i, &key);
2519 if (ret && ret != -ENOENT)
2520 break;
2521 ret = 0;
2522 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2523 ret = replay_one_extent(wc->trans, root, path,
2524 eb, i, &key);
2525 if (ret)
2526 break;
2527 }
2528 /*
2529 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2530 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2531 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2532 * older kernel with such keys, ignore them.
2533 */
2534 }
2535 btrfs_free_path(path);
2536 return ret;
2537}
2538
2539/*
2540 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2541 */
2542static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2543{
2544 struct btrfs_block_group *cache;
2545
2546 cache = btrfs_lookup_block_group(fs_info, start);
2547 if (!cache) {
2548 btrfs_err(fs_info, "unable to find block group for %llu", start);
2549 return;
2550 }
2551
2552 spin_lock(&cache->space_info->lock);
2553 spin_lock(&cache->lock);
2554 cache->reserved -= fs_info->nodesize;
2555 cache->space_info->bytes_reserved -= fs_info->nodesize;
2556 spin_unlock(&cache->lock);
2557 spin_unlock(&cache->space_info->lock);
2558
2559 btrfs_put_block_group(cache);
2560}
2561
2562static int clean_log_buffer(struct btrfs_trans_handle *trans,
2563 struct extent_buffer *eb)
2564{
2565 int ret;
2566
2567 btrfs_tree_lock(eb);
2568 btrfs_clear_buffer_dirty(trans, eb);
2569 wait_on_extent_buffer_writeback(eb);
2570 btrfs_tree_unlock(eb);
2571
2572 if (trans) {
2573 ret = btrfs_pin_reserved_extent(trans, eb);
2574 if (ret)
2575 return ret;
2576 } else {
2577 unaccount_log_buffer(eb->fs_info, eb->start);
2578 }
2579
2580 return 0;
2581}
2582
2583static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2584 struct btrfs_root *root,
2585 struct btrfs_path *path, int *level,
2586 struct walk_control *wc)
2587{
2588 struct btrfs_fs_info *fs_info = root->fs_info;
2589 u64 bytenr;
2590 u64 ptr_gen;
2591 struct extent_buffer *next;
2592 struct extent_buffer *cur;
2593 int ret = 0;
2594
2595 while (*level > 0) {
2596 struct btrfs_tree_parent_check check = { 0 };
2597
2598 cur = path->nodes[*level];
2599
2600 WARN_ON(btrfs_header_level(cur) != *level);
2601
2602 if (path->slots[*level] >=
2603 btrfs_header_nritems(cur))
2604 break;
2605
2606 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2607 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2608 check.transid = ptr_gen;
2609 check.level = *level - 1;
2610 check.has_first_key = true;
2611 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2612
2613 next = btrfs_find_create_tree_block(fs_info, bytenr,
2614 btrfs_header_owner(cur),
2615 *level - 1);
2616 if (IS_ERR(next))
2617 return PTR_ERR(next);
2618
2619 if (*level == 1) {
2620 ret = wc->process_func(root, next, wc, ptr_gen,
2621 *level - 1);
2622 if (ret) {
2623 free_extent_buffer(next);
2624 return ret;
2625 }
2626
2627 path->slots[*level]++;
2628 if (wc->free) {
2629 ret = btrfs_read_extent_buffer(next, &check);
2630 if (ret) {
2631 free_extent_buffer(next);
2632 return ret;
2633 }
2634
2635 ret = clean_log_buffer(trans, next);
2636 if (ret) {
2637 free_extent_buffer(next);
2638 return ret;
2639 }
2640 }
2641 free_extent_buffer(next);
2642 continue;
2643 }
2644 ret = btrfs_read_extent_buffer(next, &check);
2645 if (ret) {
2646 free_extent_buffer(next);
2647 return ret;
2648 }
2649
2650 if (path->nodes[*level-1])
2651 free_extent_buffer(path->nodes[*level-1]);
2652 path->nodes[*level-1] = next;
2653 *level = btrfs_header_level(next);
2654 path->slots[*level] = 0;
2655 cond_resched();
2656 }
2657 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2658
2659 cond_resched();
2660 return 0;
2661}
2662
2663static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2664 struct btrfs_root *root,
2665 struct btrfs_path *path, int *level,
2666 struct walk_control *wc)
2667{
2668 int i;
2669 int slot;
2670 int ret;
2671
2672 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2673 slot = path->slots[i];
2674 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2675 path->slots[i]++;
2676 *level = i;
2677 WARN_ON(*level == 0);
2678 return 0;
2679 } else {
2680 ret = wc->process_func(root, path->nodes[*level], wc,
2681 btrfs_header_generation(path->nodes[*level]),
2682 *level);
2683 if (ret)
2684 return ret;
2685
2686 if (wc->free) {
2687 ret = clean_log_buffer(trans, path->nodes[*level]);
2688 if (ret)
2689 return ret;
2690 }
2691 free_extent_buffer(path->nodes[*level]);
2692 path->nodes[*level] = NULL;
2693 *level = i + 1;
2694 }
2695 }
2696 return 1;
2697}
2698
2699/*
2700 * drop the reference count on the tree rooted at 'snap'. This traverses
2701 * the tree freeing any blocks that have a ref count of zero after being
2702 * decremented.
2703 */
2704static int walk_log_tree(struct btrfs_trans_handle *trans,
2705 struct btrfs_root *log, struct walk_control *wc)
2706{
2707 int ret = 0;
2708 int wret;
2709 int level;
2710 struct btrfs_path *path;
2711 int orig_level;
2712
2713 path = btrfs_alloc_path();
2714 if (!path)
2715 return -ENOMEM;
2716
2717 level = btrfs_header_level(log->node);
2718 orig_level = level;
2719 path->nodes[level] = log->node;
2720 atomic_inc(&log->node->refs);
2721 path->slots[level] = 0;
2722
2723 while (1) {
2724 wret = walk_down_log_tree(trans, log, path, &level, wc);
2725 if (wret > 0)
2726 break;
2727 if (wret < 0) {
2728 ret = wret;
2729 goto out;
2730 }
2731
2732 wret = walk_up_log_tree(trans, log, path, &level, wc);
2733 if (wret > 0)
2734 break;
2735 if (wret < 0) {
2736 ret = wret;
2737 goto out;
2738 }
2739 }
2740
2741 /* was the root node processed? if not, catch it here */
2742 if (path->nodes[orig_level]) {
2743 ret = wc->process_func(log, path->nodes[orig_level], wc,
2744 btrfs_header_generation(path->nodes[orig_level]),
2745 orig_level);
2746 if (ret)
2747 goto out;
2748 if (wc->free)
2749 ret = clean_log_buffer(trans, path->nodes[orig_level]);
2750 }
2751
2752out:
2753 btrfs_free_path(path);
2754 return ret;
2755}
2756
2757/*
2758 * helper function to update the item for a given subvolumes log root
2759 * in the tree of log roots
2760 */
2761static int update_log_root(struct btrfs_trans_handle *trans,
2762 struct btrfs_root *log,
2763 struct btrfs_root_item *root_item)
2764{
2765 struct btrfs_fs_info *fs_info = log->fs_info;
2766 int ret;
2767
2768 if (log->log_transid == 1) {
2769 /* insert root item on the first sync */
2770 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2771 &log->root_key, root_item);
2772 } else {
2773 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2774 &log->root_key, root_item);
2775 }
2776 return ret;
2777}
2778
2779static void wait_log_commit(struct btrfs_root *root, int transid)
2780{
2781 DEFINE_WAIT(wait);
2782 int index = transid % 2;
2783
2784 /*
2785 * we only allow two pending log transactions at a time,
2786 * so we know that if ours is more than 2 older than the
2787 * current transaction, we're done
2788 */
2789 for (;;) {
2790 prepare_to_wait(&root->log_commit_wait[index],
2791 &wait, TASK_UNINTERRUPTIBLE);
2792
2793 if (!(root->log_transid_committed < transid &&
2794 atomic_read(&root->log_commit[index])))
2795 break;
2796
2797 mutex_unlock(&root->log_mutex);
2798 schedule();
2799 mutex_lock(&root->log_mutex);
2800 }
2801 finish_wait(&root->log_commit_wait[index], &wait);
2802}
2803
2804static void wait_for_writer(struct btrfs_root *root)
2805{
2806 DEFINE_WAIT(wait);
2807
2808 for (;;) {
2809 prepare_to_wait(&root->log_writer_wait, &wait,
2810 TASK_UNINTERRUPTIBLE);
2811 if (!atomic_read(&root->log_writers))
2812 break;
2813
2814 mutex_unlock(&root->log_mutex);
2815 schedule();
2816 mutex_lock(&root->log_mutex);
2817 }
2818 finish_wait(&root->log_writer_wait, &wait);
2819}
2820
2821void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct inode *inode)
2822{
2823 ctx->log_ret = 0;
2824 ctx->log_transid = 0;
2825 ctx->log_new_dentries = false;
2826 ctx->logging_new_name = false;
2827 ctx->logging_new_delayed_dentries = false;
2828 ctx->logged_before = false;
2829 ctx->inode = inode;
2830 INIT_LIST_HEAD(&ctx->list);
2831 INIT_LIST_HEAD(&ctx->ordered_extents);
2832 INIT_LIST_HEAD(&ctx->conflict_inodes);
2833 ctx->num_conflict_inodes = 0;
2834 ctx->logging_conflict_inodes = false;
2835 ctx->scratch_eb = NULL;
2836}
2837
2838void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2839{
2840 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
2841
2842 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2843 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2844 return;
2845
2846 /*
2847 * Don't care about allocation failure. This is just for optimization,
2848 * if we fail to allocate here, we will try again later if needed.
2849 */
2850 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2851}
2852
2853void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2854{
2855 struct btrfs_ordered_extent *ordered;
2856 struct btrfs_ordered_extent *tmp;
2857
2858 ASSERT(inode_is_locked(ctx->inode));
2859
2860 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2861 list_del_init(&ordered->log_list);
2862 btrfs_put_ordered_extent(ordered);
2863 }
2864}
2865
2866
2867static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2868 struct btrfs_log_ctx *ctx)
2869{
2870 mutex_lock(&root->log_mutex);
2871 list_del_init(&ctx->list);
2872 mutex_unlock(&root->log_mutex);
2873}
2874
2875/*
2876 * Invoked in log mutex context, or be sure there is no other task which
2877 * can access the list.
2878 */
2879static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2880 int index, int error)
2881{
2882 struct btrfs_log_ctx *ctx;
2883 struct btrfs_log_ctx *safe;
2884
2885 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2886 list_del_init(&ctx->list);
2887 ctx->log_ret = error;
2888 }
2889}
2890
2891/*
2892 * Sends a given tree log down to the disk and updates the super blocks to
2893 * record it. When this call is done, you know that any inodes previously
2894 * logged are safely on disk only if it returns 0.
2895 *
2896 * Any other return value means you need to call btrfs_commit_transaction.
2897 * Some of the edge cases for fsyncing directories that have had unlinks
2898 * or renames done in the past mean that sometimes the only safe
2899 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2900 * that has happened.
2901 */
2902int btrfs_sync_log(struct btrfs_trans_handle *trans,
2903 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2904{
2905 int index1;
2906 int index2;
2907 int mark;
2908 int ret;
2909 struct btrfs_fs_info *fs_info = root->fs_info;
2910 struct btrfs_root *log = root->log_root;
2911 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2912 struct btrfs_root_item new_root_item;
2913 int log_transid = 0;
2914 struct btrfs_log_ctx root_log_ctx;
2915 struct blk_plug plug;
2916 u64 log_root_start;
2917 u64 log_root_level;
2918
2919 mutex_lock(&root->log_mutex);
2920 log_transid = ctx->log_transid;
2921 if (root->log_transid_committed >= log_transid) {
2922 mutex_unlock(&root->log_mutex);
2923 return ctx->log_ret;
2924 }
2925
2926 index1 = log_transid % 2;
2927 if (atomic_read(&root->log_commit[index1])) {
2928 wait_log_commit(root, log_transid);
2929 mutex_unlock(&root->log_mutex);
2930 return ctx->log_ret;
2931 }
2932 ASSERT(log_transid == root->log_transid);
2933 atomic_set(&root->log_commit[index1], 1);
2934
2935 /* wait for previous tree log sync to complete */
2936 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2937 wait_log_commit(root, log_transid - 1);
2938
2939 while (1) {
2940 int batch = atomic_read(&root->log_batch);
2941 /* when we're on an ssd, just kick the log commit out */
2942 if (!btrfs_test_opt(fs_info, SSD) &&
2943 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2944 mutex_unlock(&root->log_mutex);
2945 schedule_timeout_uninterruptible(1);
2946 mutex_lock(&root->log_mutex);
2947 }
2948 wait_for_writer(root);
2949 if (batch == atomic_read(&root->log_batch))
2950 break;
2951 }
2952
2953 /* bail out if we need to do a full commit */
2954 if (btrfs_need_log_full_commit(trans)) {
2955 ret = BTRFS_LOG_FORCE_COMMIT;
2956 mutex_unlock(&root->log_mutex);
2957 goto out;
2958 }
2959
2960 if (log_transid % 2 == 0)
2961 mark = EXTENT_DIRTY;
2962 else
2963 mark = EXTENT_NEW;
2964
2965 /* we start IO on all the marked extents here, but we don't actually
2966 * wait for them until later.
2967 */
2968 blk_start_plug(&plug);
2969 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2970 /*
2971 * -EAGAIN happens when someone, e.g., a concurrent transaction
2972 * commit, writes a dirty extent in this tree-log commit. This
2973 * concurrent write will create a hole writing out the extents,
2974 * and we cannot proceed on a zoned filesystem, requiring
2975 * sequential writing. While we can bail out to a full commit
2976 * here, but we can continue hoping the concurrent writing fills
2977 * the hole.
2978 */
2979 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2980 ret = 0;
2981 if (ret) {
2982 blk_finish_plug(&plug);
2983 btrfs_set_log_full_commit(trans);
2984 mutex_unlock(&root->log_mutex);
2985 goto out;
2986 }
2987
2988 /*
2989 * We _must_ update under the root->log_mutex in order to make sure we
2990 * have a consistent view of the log root we are trying to commit at
2991 * this moment.
2992 *
2993 * We _must_ copy this into a local copy, because we are not holding the
2994 * log_root_tree->log_mutex yet. This is important because when we
2995 * commit the log_root_tree we must have a consistent view of the
2996 * log_root_tree when we update the super block to point at the
2997 * log_root_tree bytenr. If we update the log_root_tree here we'll race
2998 * with the commit and possibly point at the new block which we may not
2999 * have written out.
3000 */
3001 btrfs_set_root_node(&log->root_item, log->node);
3002 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3003
3004 btrfs_set_root_log_transid(root, root->log_transid + 1);
3005 log->log_transid = root->log_transid;
3006 root->log_start_pid = 0;
3007 /*
3008 * IO has been started, blocks of the log tree have WRITTEN flag set
3009 * in their headers. new modifications of the log will be written to
3010 * new positions. so it's safe to allow log writers to go in.
3011 */
3012 mutex_unlock(&root->log_mutex);
3013
3014 if (btrfs_is_zoned(fs_info)) {
3015 mutex_lock(&fs_info->tree_root->log_mutex);
3016 if (!log_root_tree->node) {
3017 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3018 if (ret) {
3019 mutex_unlock(&fs_info->tree_root->log_mutex);
3020 blk_finish_plug(&plug);
3021 goto out;
3022 }
3023 }
3024 mutex_unlock(&fs_info->tree_root->log_mutex);
3025 }
3026
3027 btrfs_init_log_ctx(&root_log_ctx, NULL);
3028
3029 mutex_lock(&log_root_tree->log_mutex);
3030
3031 index2 = log_root_tree->log_transid % 2;
3032 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3033 root_log_ctx.log_transid = log_root_tree->log_transid;
3034
3035 /*
3036 * Now we are safe to update the log_root_tree because we're under the
3037 * log_mutex, and we're a current writer so we're holding the commit
3038 * open until we drop the log_mutex.
3039 */
3040 ret = update_log_root(trans, log, &new_root_item);
3041 if (ret) {
3042 list_del_init(&root_log_ctx.list);
3043 blk_finish_plug(&plug);
3044 btrfs_set_log_full_commit(trans);
3045 if (ret != -ENOSPC)
3046 btrfs_err(fs_info,
3047 "failed to update log for root %llu ret %d",
3048 root->root_key.objectid, ret);
3049 btrfs_wait_tree_log_extents(log, mark);
3050 mutex_unlock(&log_root_tree->log_mutex);
3051 goto out;
3052 }
3053
3054 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3055 blk_finish_plug(&plug);
3056 list_del_init(&root_log_ctx.list);
3057 mutex_unlock(&log_root_tree->log_mutex);
3058 ret = root_log_ctx.log_ret;
3059 goto out;
3060 }
3061
3062 if (atomic_read(&log_root_tree->log_commit[index2])) {
3063 blk_finish_plug(&plug);
3064 ret = btrfs_wait_tree_log_extents(log, mark);
3065 wait_log_commit(log_root_tree,
3066 root_log_ctx.log_transid);
3067 mutex_unlock(&log_root_tree->log_mutex);
3068 if (!ret)
3069 ret = root_log_ctx.log_ret;
3070 goto out;
3071 }
3072 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3073 atomic_set(&log_root_tree->log_commit[index2], 1);
3074
3075 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3076 wait_log_commit(log_root_tree,
3077 root_log_ctx.log_transid - 1);
3078 }
3079
3080 /*
3081 * now that we've moved on to the tree of log tree roots,
3082 * check the full commit flag again
3083 */
3084 if (btrfs_need_log_full_commit(trans)) {
3085 blk_finish_plug(&plug);
3086 btrfs_wait_tree_log_extents(log, mark);
3087 mutex_unlock(&log_root_tree->log_mutex);
3088 ret = BTRFS_LOG_FORCE_COMMIT;
3089 goto out_wake_log_root;
3090 }
3091
3092 ret = btrfs_write_marked_extents(fs_info,
3093 &log_root_tree->dirty_log_pages,
3094 EXTENT_DIRTY | EXTENT_NEW);
3095 blk_finish_plug(&plug);
3096 /*
3097 * As described above, -EAGAIN indicates a hole in the extents. We
3098 * cannot wait for these write outs since the waiting cause a
3099 * deadlock. Bail out to the full commit instead.
3100 */
3101 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3102 btrfs_set_log_full_commit(trans);
3103 btrfs_wait_tree_log_extents(log, mark);
3104 mutex_unlock(&log_root_tree->log_mutex);
3105 goto out_wake_log_root;
3106 } else if (ret) {
3107 btrfs_set_log_full_commit(trans);
3108 mutex_unlock(&log_root_tree->log_mutex);
3109 goto out_wake_log_root;
3110 }
3111 ret = btrfs_wait_tree_log_extents(log, mark);
3112 if (!ret)
3113 ret = btrfs_wait_tree_log_extents(log_root_tree,
3114 EXTENT_NEW | EXTENT_DIRTY);
3115 if (ret) {
3116 btrfs_set_log_full_commit(trans);
3117 mutex_unlock(&log_root_tree->log_mutex);
3118 goto out_wake_log_root;
3119 }
3120
3121 log_root_start = log_root_tree->node->start;
3122 log_root_level = btrfs_header_level(log_root_tree->node);
3123 log_root_tree->log_transid++;
3124 mutex_unlock(&log_root_tree->log_mutex);
3125
3126 /*
3127 * Here we are guaranteed that nobody is going to write the superblock
3128 * for the current transaction before us and that neither we do write
3129 * our superblock before the previous transaction finishes its commit
3130 * and writes its superblock, because:
3131 *
3132 * 1) We are holding a handle on the current transaction, so no body
3133 * can commit it until we release the handle;
3134 *
3135 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3136 * if the previous transaction is still committing, and hasn't yet
3137 * written its superblock, we wait for it to do it, because a
3138 * transaction commit acquires the tree_log_mutex when the commit
3139 * begins and releases it only after writing its superblock.
3140 */
3141 mutex_lock(&fs_info->tree_log_mutex);
3142
3143 /*
3144 * The previous transaction writeout phase could have failed, and thus
3145 * marked the fs in an error state. We must not commit here, as we
3146 * could have updated our generation in the super_for_commit and
3147 * writing the super here would result in transid mismatches. If there
3148 * is an error here just bail.
3149 */
3150 if (BTRFS_FS_ERROR(fs_info)) {
3151 ret = -EIO;
3152 btrfs_set_log_full_commit(trans);
3153 btrfs_abort_transaction(trans, ret);
3154 mutex_unlock(&fs_info->tree_log_mutex);
3155 goto out_wake_log_root;
3156 }
3157
3158 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3159 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3160 ret = write_all_supers(fs_info, 1);
3161 mutex_unlock(&fs_info->tree_log_mutex);
3162 if (ret) {
3163 btrfs_set_log_full_commit(trans);
3164 btrfs_abort_transaction(trans, ret);
3165 goto out_wake_log_root;
3166 }
3167
3168 /*
3169 * We know there can only be one task here, since we have not yet set
3170 * root->log_commit[index1] to 0 and any task attempting to sync the
3171 * log must wait for the previous log transaction to commit if it's
3172 * still in progress or wait for the current log transaction commit if
3173 * someone else already started it. We use <= and not < because the
3174 * first log transaction has an ID of 0.
3175 */
3176 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3177 btrfs_set_root_last_log_commit(root, log_transid);
3178
3179out_wake_log_root:
3180 mutex_lock(&log_root_tree->log_mutex);
3181 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3182
3183 log_root_tree->log_transid_committed++;
3184 atomic_set(&log_root_tree->log_commit[index2], 0);
3185 mutex_unlock(&log_root_tree->log_mutex);
3186
3187 /*
3188 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3189 * all the updates above are seen by the woken threads. It might not be
3190 * necessary, but proving that seems to be hard.
3191 */
3192 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3193out:
3194 mutex_lock(&root->log_mutex);
3195 btrfs_remove_all_log_ctxs(root, index1, ret);
3196 root->log_transid_committed++;
3197 atomic_set(&root->log_commit[index1], 0);
3198 mutex_unlock(&root->log_mutex);
3199
3200 /*
3201 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3202 * all the updates above are seen by the woken threads. It might not be
3203 * necessary, but proving that seems to be hard.
3204 */
3205 cond_wake_up(&root->log_commit_wait[index1]);
3206 return ret;
3207}
3208
3209static void free_log_tree(struct btrfs_trans_handle *trans,
3210 struct btrfs_root *log)
3211{
3212 int ret;
3213 struct walk_control wc = {
3214 .free = 1,
3215 .process_func = process_one_buffer
3216 };
3217
3218 if (log->node) {
3219 ret = walk_log_tree(trans, log, &wc);
3220 if (ret) {
3221 /*
3222 * We weren't able to traverse the entire log tree, the
3223 * typical scenario is getting an -EIO when reading an
3224 * extent buffer of the tree, due to a previous writeback
3225 * failure of it.
3226 */
3227 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3228 &log->fs_info->fs_state);
3229
3230 /*
3231 * Some extent buffers of the log tree may still be dirty
3232 * and not yet written back to storage, because we may
3233 * have updates to a log tree without syncing a log tree,
3234 * such as during rename and link operations. So flush
3235 * them out and wait for their writeback to complete, so
3236 * that we properly cleanup their state and pages.
3237 */
3238 btrfs_write_marked_extents(log->fs_info,
3239 &log->dirty_log_pages,
3240 EXTENT_DIRTY | EXTENT_NEW);
3241 btrfs_wait_tree_log_extents(log,
3242 EXTENT_DIRTY | EXTENT_NEW);
3243
3244 if (trans)
3245 btrfs_abort_transaction(trans, ret);
3246 else
3247 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3248 }
3249 }
3250
3251 extent_io_tree_release(&log->dirty_log_pages);
3252 extent_io_tree_release(&log->log_csum_range);
3253
3254 btrfs_put_root(log);
3255}
3256
3257/*
3258 * free all the extents used by the tree log. This should be called
3259 * at commit time of the full transaction
3260 */
3261int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3262{
3263 if (root->log_root) {
3264 free_log_tree(trans, root->log_root);
3265 root->log_root = NULL;
3266 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3267 }
3268 return 0;
3269}
3270
3271int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3272 struct btrfs_fs_info *fs_info)
3273{
3274 if (fs_info->log_root_tree) {
3275 free_log_tree(trans, fs_info->log_root_tree);
3276 fs_info->log_root_tree = NULL;
3277 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3278 }
3279 return 0;
3280}
3281
3282/*
3283 * Check if an inode was logged in the current transaction. This correctly deals
3284 * with the case where the inode was logged but has a logged_trans of 0, which
3285 * happens if the inode is evicted and loaded again, as logged_trans is an in
3286 * memory only field (not persisted).
3287 *
3288 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3289 * and < 0 on error.
3290 */
3291static int inode_logged(const struct btrfs_trans_handle *trans,
3292 struct btrfs_inode *inode,
3293 struct btrfs_path *path_in)
3294{
3295 struct btrfs_path *path = path_in;
3296 struct btrfs_key key;
3297 int ret;
3298
3299 if (inode->logged_trans == trans->transid)
3300 return 1;
3301
3302 /*
3303 * If logged_trans is not 0, then we know the inode logged was not logged
3304 * in this transaction, so we can return false right away.
3305 */
3306 if (inode->logged_trans > 0)
3307 return 0;
3308
3309 /*
3310 * If no log tree was created for this root in this transaction, then
3311 * the inode can not have been logged in this transaction. In that case
3312 * set logged_trans to anything greater than 0 and less than the current
3313 * transaction's ID, to avoid the search below in a future call in case
3314 * a log tree gets created after this.
3315 */
3316 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3317 inode->logged_trans = trans->transid - 1;
3318 return 0;
3319 }
3320
3321 /*
3322 * We have a log tree and the inode's logged_trans is 0. We can't tell
3323 * for sure if the inode was logged before in this transaction by looking
3324 * only at logged_trans. We could be pessimistic and assume it was, but
3325 * that can lead to unnecessarily logging an inode during rename and link
3326 * operations, and then further updating the log in followup rename and
3327 * link operations, specially if it's a directory, which adds latency
3328 * visible to applications doing a series of rename or link operations.
3329 *
3330 * A logged_trans of 0 here can mean several things:
3331 *
3332 * 1) The inode was never logged since the filesystem was mounted, and may
3333 * or may have not been evicted and loaded again;
3334 *
3335 * 2) The inode was logged in a previous transaction, then evicted and
3336 * then loaded again;
3337 *
3338 * 3) The inode was logged in the current transaction, then evicted and
3339 * then loaded again.
3340 *
3341 * For cases 1) and 2) we don't want to return true, but we need to detect
3342 * case 3) and return true. So we do a search in the log root for the inode
3343 * item.
3344 */
3345 key.objectid = btrfs_ino(inode);
3346 key.type = BTRFS_INODE_ITEM_KEY;
3347 key.offset = 0;
3348
3349 if (!path) {
3350 path = btrfs_alloc_path();
3351 if (!path)
3352 return -ENOMEM;
3353 }
3354
3355 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3356
3357 if (path_in)
3358 btrfs_release_path(path);
3359 else
3360 btrfs_free_path(path);
3361
3362 /*
3363 * Logging an inode always results in logging its inode item. So if we
3364 * did not find the item we know the inode was not logged for sure.
3365 */
3366 if (ret < 0) {
3367 return ret;
3368 } else if (ret > 0) {
3369 /*
3370 * Set logged_trans to a value greater than 0 and less then the
3371 * current transaction to avoid doing the search in future calls.
3372 */
3373 inode->logged_trans = trans->transid - 1;
3374 return 0;
3375 }
3376
3377 /*
3378 * The inode was previously logged and then evicted, set logged_trans to
3379 * the current transacion's ID, to avoid future tree searches as long as
3380 * the inode is not evicted again.
3381 */
3382 inode->logged_trans = trans->transid;
3383
3384 /*
3385 * If it's a directory, then we must set last_dir_index_offset to the
3386 * maximum possible value, so that the next attempt to log the inode does
3387 * not skip checking if dir index keys found in modified subvolume tree
3388 * leaves have been logged before, otherwise it would result in attempts
3389 * to insert duplicate dir index keys in the log tree. This must be done
3390 * because last_dir_index_offset is an in-memory only field, not persisted
3391 * in the inode item or any other on-disk structure, so its value is lost
3392 * once the inode is evicted.
3393 */
3394 if (S_ISDIR(inode->vfs_inode.i_mode))
3395 inode->last_dir_index_offset = (u64)-1;
3396
3397 return 1;
3398}
3399
3400/*
3401 * Delete a directory entry from the log if it exists.
3402 *
3403 * Returns < 0 on error
3404 * 1 if the entry does not exists
3405 * 0 if the entry existed and was successfully deleted
3406 */
3407static int del_logged_dentry(struct btrfs_trans_handle *trans,
3408 struct btrfs_root *log,
3409 struct btrfs_path *path,
3410 u64 dir_ino,
3411 const struct fscrypt_str *name,
3412 u64 index)
3413{
3414 struct btrfs_dir_item *di;
3415
3416 /*
3417 * We only log dir index items of a directory, so we don't need to look
3418 * for dir item keys.
3419 */
3420 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3421 index, name, -1);
3422 if (IS_ERR(di))
3423 return PTR_ERR(di);
3424 else if (!di)
3425 return 1;
3426
3427 /*
3428 * We do not need to update the size field of the directory's
3429 * inode item because on log replay we update the field to reflect
3430 * all existing entries in the directory (see overwrite_item()).
3431 */
3432 return btrfs_delete_one_dir_name(trans, log, path, di);
3433}
3434
3435/*
3436 * If both a file and directory are logged, and unlinks or renames are
3437 * mixed in, we have a few interesting corners:
3438 *
3439 * create file X in dir Y
3440 * link file X to X.link in dir Y
3441 * fsync file X
3442 * unlink file X but leave X.link
3443 * fsync dir Y
3444 *
3445 * After a crash we would expect only X.link to exist. But file X
3446 * didn't get fsync'd again so the log has back refs for X and X.link.
3447 *
3448 * We solve this by removing directory entries and inode backrefs from the
3449 * log when a file that was logged in the current transaction is
3450 * unlinked. Any later fsync will include the updated log entries, and
3451 * we'll be able to reconstruct the proper directory items from backrefs.
3452 *
3453 * This optimizations allows us to avoid relogging the entire inode
3454 * or the entire directory.
3455 */
3456void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3457 struct btrfs_root *root,
3458 const struct fscrypt_str *name,
3459 struct btrfs_inode *dir, u64 index)
3460{
3461 struct btrfs_path *path;
3462 int ret;
3463
3464 ret = inode_logged(trans, dir, NULL);
3465 if (ret == 0)
3466 return;
3467 else if (ret < 0) {
3468 btrfs_set_log_full_commit(trans);
3469 return;
3470 }
3471
3472 ret = join_running_log_trans(root);
3473 if (ret)
3474 return;
3475
3476 mutex_lock(&dir->log_mutex);
3477
3478 path = btrfs_alloc_path();
3479 if (!path) {
3480 ret = -ENOMEM;
3481 goto out_unlock;
3482 }
3483
3484 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3485 name, index);
3486 btrfs_free_path(path);
3487out_unlock:
3488 mutex_unlock(&dir->log_mutex);
3489 if (ret < 0)
3490 btrfs_set_log_full_commit(trans);
3491 btrfs_end_log_trans(root);
3492}
3493
3494/* see comments for btrfs_del_dir_entries_in_log */
3495void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3496 struct btrfs_root *root,
3497 const struct fscrypt_str *name,
3498 struct btrfs_inode *inode, u64 dirid)
3499{
3500 struct btrfs_root *log;
3501 u64 index;
3502 int ret;
3503
3504 ret = inode_logged(trans, inode, NULL);
3505 if (ret == 0)
3506 return;
3507 else if (ret < 0) {
3508 btrfs_set_log_full_commit(trans);
3509 return;
3510 }
3511
3512 ret = join_running_log_trans(root);
3513 if (ret)
3514 return;
3515 log = root->log_root;
3516 mutex_lock(&inode->log_mutex);
3517
3518 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3519 dirid, &index);
3520 mutex_unlock(&inode->log_mutex);
3521 if (ret < 0 && ret != -ENOENT)
3522 btrfs_set_log_full_commit(trans);
3523 btrfs_end_log_trans(root);
3524}
3525
3526/*
3527 * creates a range item in the log for 'dirid'. first_offset and
3528 * last_offset tell us which parts of the key space the log should
3529 * be considered authoritative for.
3530 */
3531static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3532 struct btrfs_root *log,
3533 struct btrfs_path *path,
3534 u64 dirid,
3535 u64 first_offset, u64 last_offset)
3536{
3537 int ret;
3538 struct btrfs_key key;
3539 struct btrfs_dir_log_item *item;
3540
3541 key.objectid = dirid;
3542 key.offset = first_offset;
3543 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3544 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3545 /*
3546 * -EEXIST is fine and can happen sporadically when we are logging a
3547 * directory and have concurrent insertions in the subvolume's tree for
3548 * items from other inodes and that result in pushing off some dir items
3549 * from one leaf to another in order to accommodate for the new items.
3550 * This results in logging the same dir index range key.
3551 */
3552 if (ret && ret != -EEXIST)
3553 return ret;
3554
3555 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3556 struct btrfs_dir_log_item);
3557 if (ret == -EEXIST) {
3558 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3559
3560 /*
3561 * btrfs_del_dir_entries_in_log() might have been called during
3562 * an unlink between the initial insertion of this key and the
3563 * current update, or we might be logging a single entry deletion
3564 * during a rename, so set the new last_offset to the max value.
3565 */
3566 last_offset = max(last_offset, curr_end);
3567 }
3568 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3569 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3570 btrfs_release_path(path);
3571 return 0;
3572}
3573
3574static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3575 struct btrfs_inode *inode,
3576 struct extent_buffer *src,
3577 struct btrfs_path *dst_path,
3578 int start_slot,
3579 int count)
3580{
3581 struct btrfs_root *log = inode->root->log_root;
3582 char *ins_data = NULL;
3583 struct btrfs_item_batch batch;
3584 struct extent_buffer *dst;
3585 unsigned long src_offset;
3586 unsigned long dst_offset;
3587 u64 last_index;
3588 struct btrfs_key key;
3589 u32 item_size;
3590 int ret;
3591 int i;
3592
3593 ASSERT(count > 0);
3594 batch.nr = count;
3595
3596 if (count == 1) {
3597 btrfs_item_key_to_cpu(src, &key, start_slot);
3598 item_size = btrfs_item_size(src, start_slot);
3599 batch.keys = &key;
3600 batch.data_sizes = &item_size;
3601 batch.total_data_size = item_size;
3602 } else {
3603 struct btrfs_key *ins_keys;
3604 u32 *ins_sizes;
3605
3606 ins_data = kmalloc(count * sizeof(u32) +
3607 count * sizeof(struct btrfs_key), GFP_NOFS);
3608 if (!ins_data)
3609 return -ENOMEM;
3610
3611 ins_sizes = (u32 *)ins_data;
3612 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3613 batch.keys = ins_keys;
3614 batch.data_sizes = ins_sizes;
3615 batch.total_data_size = 0;
3616
3617 for (i = 0; i < count; i++) {
3618 const int slot = start_slot + i;
3619
3620 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3621 ins_sizes[i] = btrfs_item_size(src, slot);
3622 batch.total_data_size += ins_sizes[i];
3623 }
3624 }
3625
3626 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3627 if (ret)
3628 goto out;
3629
3630 dst = dst_path->nodes[0];
3631 /*
3632 * Copy all the items in bulk, in a single copy operation. Item data is
3633 * organized such that it's placed at the end of a leaf and from right
3634 * to left. For example, the data for the second item ends at an offset
3635 * that matches the offset where the data for the first item starts, the
3636 * data for the third item ends at an offset that matches the offset
3637 * where the data of the second items starts, and so on.
3638 * Therefore our source and destination start offsets for copy match the
3639 * offsets of the last items (highest slots).
3640 */
3641 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3642 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3643 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3644 btrfs_release_path(dst_path);
3645
3646 last_index = batch.keys[count - 1].offset;
3647 ASSERT(last_index > inode->last_dir_index_offset);
3648
3649 /*
3650 * If for some unexpected reason the last item's index is not greater
3651 * than the last index we logged, warn and force a transaction commit.
3652 */
3653 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3654 ret = BTRFS_LOG_FORCE_COMMIT;
3655 else
3656 inode->last_dir_index_offset = last_index;
3657
3658 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3659 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3660out:
3661 kfree(ins_data);
3662
3663 return ret;
3664}
3665
3666static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3667{
3668 const int slot = path->slots[0];
3669
3670 if (ctx->scratch_eb) {
3671 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3672 } else {
3673 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3674 if (!ctx->scratch_eb)
3675 return -ENOMEM;
3676 }
3677
3678 btrfs_release_path(path);
3679 path->nodes[0] = ctx->scratch_eb;
3680 path->slots[0] = slot;
3681 /*
3682 * Add extra ref to scratch eb so that it is not freed when callers
3683 * release the path, so we can reuse it later if needed.
3684 */
3685 atomic_inc(&ctx->scratch_eb->refs);
3686
3687 return 0;
3688}
3689
3690static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3691 struct btrfs_inode *inode,
3692 struct btrfs_path *path,
3693 struct btrfs_path *dst_path,
3694 struct btrfs_log_ctx *ctx,
3695 u64 *last_old_dentry_offset)
3696{
3697 struct btrfs_root *log = inode->root->log_root;
3698 struct extent_buffer *src;
3699 const int nritems = btrfs_header_nritems(path->nodes[0]);
3700 const u64 ino = btrfs_ino(inode);
3701 bool last_found = false;
3702 int batch_start = 0;
3703 int batch_size = 0;
3704 int ret;
3705
3706 /*
3707 * We need to clone the leaf, release the read lock on it, and use the
3708 * clone before modifying the log tree. See the comment at copy_items()
3709 * about why we need to do this.
3710 */
3711 ret = clone_leaf(path, ctx);
3712 if (ret < 0)
3713 return ret;
3714
3715 src = path->nodes[0];
3716
3717 for (int i = path->slots[0]; i < nritems; i++) {
3718 struct btrfs_dir_item *di;
3719 struct btrfs_key key;
3720 int ret;
3721
3722 btrfs_item_key_to_cpu(src, &key, i);
3723
3724 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3725 last_found = true;
3726 break;
3727 }
3728
3729 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3730
3731 /*
3732 * Skip ranges of items that consist only of dir item keys created
3733 * in past transactions. However if we find a gap, we must log a
3734 * dir index range item for that gap, so that index keys in that
3735 * gap are deleted during log replay.
3736 */
3737 if (btrfs_dir_transid(src, di) < trans->transid) {
3738 if (key.offset > *last_old_dentry_offset + 1) {
3739 ret = insert_dir_log_key(trans, log, dst_path,
3740 ino, *last_old_dentry_offset + 1,
3741 key.offset - 1);
3742 if (ret < 0)
3743 return ret;
3744 }
3745
3746 *last_old_dentry_offset = key.offset;
3747 continue;
3748 }
3749
3750 /* If we logged this dir index item before, we can skip it. */
3751 if (key.offset <= inode->last_dir_index_offset)
3752 continue;
3753
3754 /*
3755 * We must make sure that when we log a directory entry, the
3756 * corresponding inode, after log replay, has a matching link
3757 * count. For example:
3758 *
3759 * touch foo
3760 * mkdir mydir
3761 * sync
3762 * ln foo mydir/bar
3763 * xfs_io -c "fsync" mydir
3764 * <crash>
3765 * <mount fs and log replay>
3766 *
3767 * Would result in a fsync log that when replayed, our file inode
3768 * would have a link count of 1, but we get two directory entries
3769 * pointing to the same inode. After removing one of the names,
3770 * it would not be possible to remove the other name, which
3771 * resulted always in stale file handle errors, and would not be
3772 * possible to rmdir the parent directory, since its i_size could
3773 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3774 * resulting in -ENOTEMPTY errors.
3775 */
3776 if (!ctx->log_new_dentries) {
3777 struct btrfs_key di_key;
3778
3779 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3780 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3781 ctx->log_new_dentries = true;
3782 }
3783
3784 if (batch_size == 0)
3785 batch_start = i;
3786 batch_size++;
3787 }
3788
3789 if (batch_size > 0) {
3790 int ret;
3791
3792 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3793 batch_start, batch_size);
3794 if (ret < 0)
3795 return ret;
3796 }
3797
3798 return last_found ? 1 : 0;
3799}
3800
3801/*
3802 * log all the items included in the current transaction for a given
3803 * directory. This also creates the range items in the log tree required
3804 * to replay anything deleted before the fsync
3805 */
3806static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3807 struct btrfs_inode *inode,
3808 struct btrfs_path *path,
3809 struct btrfs_path *dst_path,
3810 struct btrfs_log_ctx *ctx,
3811 u64 min_offset, u64 *last_offset_ret)
3812{
3813 struct btrfs_key min_key;
3814 struct btrfs_root *root = inode->root;
3815 struct btrfs_root *log = root->log_root;
3816 int ret;
3817 u64 last_old_dentry_offset = min_offset - 1;
3818 u64 last_offset = (u64)-1;
3819 u64 ino = btrfs_ino(inode);
3820
3821 min_key.objectid = ino;
3822 min_key.type = BTRFS_DIR_INDEX_KEY;
3823 min_key.offset = min_offset;
3824
3825 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3826
3827 /*
3828 * we didn't find anything from this transaction, see if there
3829 * is anything at all
3830 */
3831 if (ret != 0 || min_key.objectid != ino ||
3832 min_key.type != BTRFS_DIR_INDEX_KEY) {
3833 min_key.objectid = ino;
3834 min_key.type = BTRFS_DIR_INDEX_KEY;
3835 min_key.offset = (u64)-1;
3836 btrfs_release_path(path);
3837 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3838 if (ret < 0) {
3839 btrfs_release_path(path);
3840 return ret;
3841 }
3842 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3843
3844 /* if ret == 0 there are items for this type,
3845 * create a range to tell us the last key of this type.
3846 * otherwise, there are no items in this directory after
3847 * *min_offset, and we create a range to indicate that.
3848 */
3849 if (ret == 0) {
3850 struct btrfs_key tmp;
3851
3852 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3853 path->slots[0]);
3854 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3855 last_old_dentry_offset = tmp.offset;
3856 } else if (ret > 0) {
3857 ret = 0;
3858 }
3859
3860 goto done;
3861 }
3862
3863 /* go backward to find any previous key */
3864 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3865 if (ret == 0) {
3866 struct btrfs_key tmp;
3867
3868 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3869 /*
3870 * The dir index key before the first one we found that needs to
3871 * be logged might be in a previous leaf, and there might be a
3872 * gap between these keys, meaning that we had deletions that
3873 * happened. So the key range item we log (key type
3874 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3875 * previous key's offset plus 1, so that those deletes are replayed.
3876 */
3877 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3878 last_old_dentry_offset = tmp.offset;
3879 } else if (ret < 0) {
3880 goto done;
3881 }
3882
3883 btrfs_release_path(path);
3884
3885 /*
3886 * Find the first key from this transaction again or the one we were at
3887 * in the loop below in case we had to reschedule. We may be logging the
3888 * directory without holding its VFS lock, which happen when logging new
3889 * dentries (through log_new_dir_dentries()) or in some cases when we
3890 * need to log the parent directory of an inode. This means a dir index
3891 * key might be deleted from the inode's root, and therefore we may not
3892 * find it anymore. If we can't find it, just move to the next key. We
3893 * can not bail out and ignore, because if we do that we will simply
3894 * not log dir index keys that come after the one that was just deleted
3895 * and we can end up logging a dir index range that ends at (u64)-1
3896 * (@last_offset is initialized to that), resulting in removing dir
3897 * entries we should not remove at log replay time.
3898 */
3899search:
3900 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3901 if (ret > 0) {
3902 ret = btrfs_next_item(root, path);
3903 if (ret > 0) {
3904 /* There are no more keys in the inode's root. */
3905 ret = 0;
3906 goto done;
3907 }
3908 }
3909 if (ret < 0)
3910 goto done;
3911
3912 /*
3913 * we have a block from this transaction, log every item in it
3914 * from our directory
3915 */
3916 while (1) {
3917 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3918 &last_old_dentry_offset);
3919 if (ret != 0) {
3920 if (ret > 0)
3921 ret = 0;
3922 goto done;
3923 }
3924 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3925
3926 /*
3927 * look ahead to the next item and see if it is also
3928 * from this directory and from this transaction
3929 */
3930 ret = btrfs_next_leaf(root, path);
3931 if (ret) {
3932 if (ret == 1) {
3933 last_offset = (u64)-1;
3934 ret = 0;
3935 }
3936 goto done;
3937 }
3938 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3939 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3940 last_offset = (u64)-1;
3941 goto done;
3942 }
3943 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3944 /*
3945 * The next leaf was not changed in the current transaction
3946 * and has at least one dir index key.
3947 * We check for the next key because there might have been
3948 * one or more deletions between the last key we logged and
3949 * that next key. So the key range item we log (key type
3950 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3951 * offset minus 1, so that those deletes are replayed.
3952 */
3953 last_offset = min_key.offset - 1;
3954 goto done;
3955 }
3956 if (need_resched()) {
3957 btrfs_release_path(path);
3958 cond_resched();
3959 goto search;
3960 }
3961 }
3962done:
3963 btrfs_release_path(path);
3964 btrfs_release_path(dst_path);
3965
3966 if (ret == 0) {
3967 *last_offset_ret = last_offset;
3968 /*
3969 * In case the leaf was changed in the current transaction but
3970 * all its dir items are from a past transaction, the last item
3971 * in the leaf is a dir item and there's no gap between that last
3972 * dir item and the first one on the next leaf (which did not
3973 * change in the current transaction), then we don't need to log
3974 * a range, last_old_dentry_offset is == to last_offset.
3975 */
3976 ASSERT(last_old_dentry_offset <= last_offset);
3977 if (last_old_dentry_offset < last_offset)
3978 ret = insert_dir_log_key(trans, log, path, ino,
3979 last_old_dentry_offset + 1,
3980 last_offset);
3981 }
3982
3983 return ret;
3984}
3985
3986/*
3987 * If the inode was logged before and it was evicted, then its
3988 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3989 * key offset. If that's the case, search for it and update the inode. This
3990 * is to avoid lookups in the log tree every time we try to insert a dir index
3991 * key from a leaf changed in the current transaction, and to allow us to always
3992 * do batch insertions of dir index keys.
3993 */
3994static int update_last_dir_index_offset(struct btrfs_inode *inode,
3995 struct btrfs_path *path,
3996 const struct btrfs_log_ctx *ctx)
3997{
3998 const u64 ino = btrfs_ino(inode);
3999 struct btrfs_key key;
4000 int ret;
4001
4002 lockdep_assert_held(&inode->log_mutex);
4003
4004 if (inode->last_dir_index_offset != (u64)-1)
4005 return 0;
4006
4007 if (!ctx->logged_before) {
4008 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4009 return 0;
4010 }
4011
4012 key.objectid = ino;
4013 key.type = BTRFS_DIR_INDEX_KEY;
4014 key.offset = (u64)-1;
4015
4016 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4017 /*
4018 * An error happened or we actually have an index key with an offset
4019 * value of (u64)-1. Bail out, we're done.
4020 */
4021 if (ret <= 0)
4022 goto out;
4023
4024 ret = 0;
4025 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4026
4027 /*
4028 * No dir index items, bail out and leave last_dir_index_offset with
4029 * the value right before the first valid index value.
4030 */
4031 if (path->slots[0] == 0)
4032 goto out;
4033
4034 /*
4035 * btrfs_search_slot() left us at one slot beyond the slot with the last
4036 * index key, or beyond the last key of the directory that is not an
4037 * index key. If we have an index key before, set last_dir_index_offset
4038 * to its offset value, otherwise leave it with a value right before the
4039 * first valid index value, as it means we have an empty directory.
4040 */
4041 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4042 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4043 inode->last_dir_index_offset = key.offset;
4044
4045out:
4046 btrfs_release_path(path);
4047
4048 return ret;
4049}
4050
4051/*
4052 * logging directories is very similar to logging inodes, We find all the items
4053 * from the current transaction and write them to the log.
4054 *
4055 * The recovery code scans the directory in the subvolume, and if it finds a
4056 * key in the range logged that is not present in the log tree, then it means
4057 * that dir entry was unlinked during the transaction.
4058 *
4059 * In order for that scan to work, we must include one key smaller than
4060 * the smallest logged by this transaction and one key larger than the largest
4061 * key logged by this transaction.
4062 */
4063static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4064 struct btrfs_inode *inode,
4065 struct btrfs_path *path,
4066 struct btrfs_path *dst_path,
4067 struct btrfs_log_ctx *ctx)
4068{
4069 u64 min_key;
4070 u64 max_key;
4071 int ret;
4072
4073 ret = update_last_dir_index_offset(inode, path, ctx);
4074 if (ret)
4075 return ret;
4076
4077 min_key = BTRFS_DIR_START_INDEX;
4078 max_key = 0;
4079
4080 while (1) {
4081 ret = log_dir_items(trans, inode, path, dst_path,
4082 ctx, min_key, &max_key);
4083 if (ret)
4084 return ret;
4085 if (max_key == (u64)-1)
4086 break;
4087 min_key = max_key + 1;
4088 }
4089
4090 return 0;
4091}
4092
4093/*
4094 * a helper function to drop items from the log before we relog an
4095 * inode. max_key_type indicates the highest item type to remove.
4096 * This cannot be run for file data extents because it does not
4097 * free the extents they point to.
4098 */
4099static int drop_inode_items(struct btrfs_trans_handle *trans,
4100 struct btrfs_root *log,
4101 struct btrfs_path *path,
4102 struct btrfs_inode *inode,
4103 int max_key_type)
4104{
4105 int ret;
4106 struct btrfs_key key;
4107 struct btrfs_key found_key;
4108 int start_slot;
4109
4110 key.objectid = btrfs_ino(inode);
4111 key.type = max_key_type;
4112 key.offset = (u64)-1;
4113
4114 while (1) {
4115 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4116 if (ret < 0) {
4117 break;
4118 } else if (ret > 0) {
4119 if (path->slots[0] == 0)
4120 break;
4121 path->slots[0]--;
4122 }
4123
4124 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4125 path->slots[0]);
4126
4127 if (found_key.objectid != key.objectid)
4128 break;
4129
4130 found_key.offset = 0;
4131 found_key.type = 0;
4132 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4133 if (ret < 0)
4134 break;
4135
4136 ret = btrfs_del_items(trans, log, path, start_slot,
4137 path->slots[0] - start_slot + 1);
4138 /*
4139 * If start slot isn't 0 then we don't need to re-search, we've
4140 * found the last guy with the objectid in this tree.
4141 */
4142 if (ret || start_slot != 0)
4143 break;
4144 btrfs_release_path(path);
4145 }
4146 btrfs_release_path(path);
4147 if (ret > 0)
4148 ret = 0;
4149 return ret;
4150}
4151
4152static int truncate_inode_items(struct btrfs_trans_handle *trans,
4153 struct btrfs_root *log_root,
4154 struct btrfs_inode *inode,
4155 u64 new_size, u32 min_type)
4156{
4157 struct btrfs_truncate_control control = {
4158 .new_size = new_size,
4159 .ino = btrfs_ino(inode),
4160 .min_type = min_type,
4161 .skip_ref_updates = true,
4162 };
4163
4164 return btrfs_truncate_inode_items(trans, log_root, &control);
4165}
4166
4167static void fill_inode_item(struct btrfs_trans_handle *trans,
4168 struct extent_buffer *leaf,
4169 struct btrfs_inode_item *item,
4170 struct inode *inode, int log_inode_only,
4171 u64 logged_isize)
4172{
4173 struct btrfs_map_token token;
4174 u64 flags;
4175
4176 btrfs_init_map_token(&token, leaf);
4177
4178 if (log_inode_only) {
4179 /* set the generation to zero so the recover code
4180 * can tell the difference between an logging
4181 * just to say 'this inode exists' and a logging
4182 * to say 'update this inode with these values'
4183 */
4184 btrfs_set_token_inode_generation(&token, item, 0);
4185 btrfs_set_token_inode_size(&token, item, logged_isize);
4186 } else {
4187 btrfs_set_token_inode_generation(&token, item,
4188 BTRFS_I(inode)->generation);
4189 btrfs_set_token_inode_size(&token, item, inode->i_size);
4190 }
4191
4192 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4193 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4194 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4195 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4196
4197 btrfs_set_token_timespec_sec(&token, &item->atime,
4198 inode_get_atime_sec(inode));
4199 btrfs_set_token_timespec_nsec(&token, &item->atime,
4200 inode_get_atime_nsec(inode));
4201
4202 btrfs_set_token_timespec_sec(&token, &item->mtime,
4203 inode_get_mtime_sec(inode));
4204 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4205 inode_get_mtime_nsec(inode));
4206
4207 btrfs_set_token_timespec_sec(&token, &item->ctime,
4208 inode_get_ctime_sec(inode));
4209 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4210 inode_get_ctime_nsec(inode));
4211
4212 /*
4213 * We do not need to set the nbytes field, in fact during a fast fsync
4214 * its value may not even be correct, since a fast fsync does not wait
4215 * for ordered extent completion, which is where we update nbytes, it
4216 * only waits for writeback to complete. During log replay as we find
4217 * file extent items and replay them, we adjust the nbytes field of the
4218 * inode item in subvolume tree as needed (see overwrite_item()).
4219 */
4220
4221 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4222 btrfs_set_token_inode_transid(&token, item, trans->transid);
4223 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4224 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4225 BTRFS_I(inode)->ro_flags);
4226 btrfs_set_token_inode_flags(&token, item, flags);
4227 btrfs_set_token_inode_block_group(&token, item, 0);
4228}
4229
4230static int log_inode_item(struct btrfs_trans_handle *trans,
4231 struct btrfs_root *log, struct btrfs_path *path,
4232 struct btrfs_inode *inode, bool inode_item_dropped)
4233{
4234 struct btrfs_inode_item *inode_item;
4235 int ret;
4236
4237 /*
4238 * If we are doing a fast fsync and the inode was logged before in the
4239 * current transaction, then we know the inode was previously logged and
4240 * it exists in the log tree. For performance reasons, in this case use
4241 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4242 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4243 * contention in case there are concurrent fsyncs for other inodes of the
4244 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4245 * already exists can also result in unnecessarily splitting a leaf.
4246 */
4247 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4248 ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4249 ASSERT(ret <= 0);
4250 if (ret > 0)
4251 ret = -ENOENT;
4252 } else {
4253 /*
4254 * This means it is the first fsync in the current transaction,
4255 * so the inode item is not in the log and we need to insert it.
4256 * We can never get -EEXIST because we are only called for a fast
4257 * fsync and in case an inode eviction happens after the inode was
4258 * logged before in the current transaction, when we load again
4259 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4260 * flags and set ->logged_trans to 0.
4261 */
4262 ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4263 sizeof(*inode_item));
4264 ASSERT(ret != -EEXIST);
4265 }
4266 if (ret)
4267 return ret;
4268 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4269 struct btrfs_inode_item);
4270 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4271 0, 0);
4272 btrfs_release_path(path);
4273 return 0;
4274}
4275
4276static int log_csums(struct btrfs_trans_handle *trans,
4277 struct btrfs_inode *inode,
4278 struct btrfs_root *log_root,
4279 struct btrfs_ordered_sum *sums)
4280{
4281 const u64 lock_end = sums->logical + sums->len - 1;
4282 struct extent_state *cached_state = NULL;
4283 int ret;
4284
4285 /*
4286 * If this inode was not used for reflink operations in the current
4287 * transaction with new extents, then do the fast path, no need to
4288 * worry about logging checksum items with overlapping ranges.
4289 */
4290 if (inode->last_reflink_trans < trans->transid)
4291 return btrfs_csum_file_blocks(trans, log_root, sums);
4292
4293 /*
4294 * Serialize logging for checksums. This is to avoid racing with the
4295 * same checksum being logged by another task that is logging another
4296 * file which happens to refer to the same extent as well. Such races
4297 * can leave checksum items in the log with overlapping ranges.
4298 */
4299 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4300 &cached_state);
4301 if (ret)
4302 return ret;
4303 /*
4304 * Due to extent cloning, we might have logged a csum item that covers a
4305 * subrange of a cloned extent, and later we can end up logging a csum
4306 * item for a larger subrange of the same extent or the entire range.
4307 * This would leave csum items in the log tree that cover the same range
4308 * and break the searches for checksums in the log tree, resulting in
4309 * some checksums missing in the fs/subvolume tree. So just delete (or
4310 * trim and adjust) any existing csum items in the log for this range.
4311 */
4312 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4313 if (!ret)
4314 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4315
4316 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4317 &cached_state);
4318
4319 return ret;
4320}
4321
4322static noinline int copy_items(struct btrfs_trans_handle *trans,
4323 struct btrfs_inode *inode,
4324 struct btrfs_path *dst_path,
4325 struct btrfs_path *src_path,
4326 int start_slot, int nr, int inode_only,
4327 u64 logged_isize, struct btrfs_log_ctx *ctx)
4328{
4329 struct btrfs_root *log = inode->root->log_root;
4330 struct btrfs_file_extent_item *extent;
4331 struct extent_buffer *src;
4332 int ret;
4333 struct btrfs_key *ins_keys;
4334 u32 *ins_sizes;
4335 struct btrfs_item_batch batch;
4336 char *ins_data;
4337 int dst_index;
4338 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4339 const u64 i_size = i_size_read(&inode->vfs_inode);
4340
4341 /*
4342 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4343 * use the clone. This is because otherwise we would be changing the log
4344 * tree, to insert items from the subvolume tree or insert csum items,
4345 * while holding a read lock on a leaf from the subvolume tree, which
4346 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4347 *
4348 * 1) Modifying the log tree triggers an extent buffer allocation while
4349 * holding a write lock on a parent extent buffer from the log tree.
4350 * Allocating the pages for an extent buffer, or the extent buffer
4351 * struct, can trigger inode eviction and finally the inode eviction
4352 * will trigger a release/remove of a delayed node, which requires
4353 * taking the delayed node's mutex;
4354 *
4355 * 2) Allocating a metadata extent for a log tree can trigger the async
4356 * reclaim thread and make us wait for it to release enough space and
4357 * unblock our reservation ticket. The reclaim thread can start
4358 * flushing delayed items, and that in turn results in the need to
4359 * lock delayed node mutexes and in the need to write lock extent
4360 * buffers of a subvolume tree - all this while holding a write lock
4361 * on the parent extent buffer in the log tree.
4362 *
4363 * So one task in scenario 1) running in parallel with another task in
4364 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4365 * node mutex while having a read lock on a leaf from the subvolume,
4366 * while the other is holding the delayed node's mutex and wants to
4367 * write lock the same subvolume leaf for flushing delayed items.
4368 */
4369 ret = clone_leaf(src_path, ctx);
4370 if (ret < 0)
4371 return ret;
4372
4373 src = src_path->nodes[0];
4374
4375 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4376 nr * sizeof(u32), GFP_NOFS);
4377 if (!ins_data)
4378 return -ENOMEM;
4379
4380 ins_sizes = (u32 *)ins_data;
4381 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4382 batch.keys = ins_keys;
4383 batch.data_sizes = ins_sizes;
4384 batch.total_data_size = 0;
4385 batch.nr = 0;
4386
4387 dst_index = 0;
4388 for (int i = 0; i < nr; i++) {
4389 const int src_slot = start_slot + i;
4390 struct btrfs_root *csum_root;
4391 struct btrfs_ordered_sum *sums;
4392 struct btrfs_ordered_sum *sums_next;
4393 LIST_HEAD(ordered_sums);
4394 u64 disk_bytenr;
4395 u64 disk_num_bytes;
4396 u64 extent_offset;
4397 u64 extent_num_bytes;
4398 bool is_old_extent;
4399
4400 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4401
4402 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4403 goto add_to_batch;
4404
4405 extent = btrfs_item_ptr(src, src_slot,
4406 struct btrfs_file_extent_item);
4407
4408 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4409 trans->transid);
4410
4411 /*
4412 * Don't copy extents from past generations. That would make us
4413 * log a lot more metadata for common cases like doing only a
4414 * few random writes into a file and then fsync it for the first
4415 * time or after the full sync flag is set on the inode. We can
4416 * get leaves full of extent items, most of which are from past
4417 * generations, so we can skip them - as long as the inode has
4418 * not been the target of a reflink operation in this transaction,
4419 * as in that case it might have had file extent items with old
4420 * generations copied into it. We also must always log prealloc
4421 * extents that start at or beyond eof, otherwise we would lose
4422 * them on log replay.
4423 */
4424 if (is_old_extent &&
4425 ins_keys[dst_index].offset < i_size &&
4426 inode->last_reflink_trans < trans->transid)
4427 continue;
4428
4429 if (skip_csum)
4430 goto add_to_batch;
4431
4432 /* Only regular extents have checksums. */
4433 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4434 goto add_to_batch;
4435
4436 /*
4437 * If it's an extent created in a past transaction, then its
4438 * checksums are already accessible from the committed csum tree,
4439 * no need to log them.
4440 */
4441 if (is_old_extent)
4442 goto add_to_batch;
4443
4444 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4445 /* If it's an explicit hole, there are no checksums. */
4446 if (disk_bytenr == 0)
4447 goto add_to_batch;
4448
4449 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4450
4451 if (btrfs_file_extent_compression(src, extent)) {
4452 extent_offset = 0;
4453 extent_num_bytes = disk_num_bytes;
4454 } else {
4455 extent_offset = btrfs_file_extent_offset(src, extent);
4456 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4457 }
4458
4459 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4460 disk_bytenr += extent_offset;
4461 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4462 disk_bytenr + extent_num_bytes - 1,
4463 &ordered_sums, 0, false);
4464 if (ret)
4465 goto out;
4466
4467 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4468 if (!ret)
4469 ret = log_csums(trans, inode, log, sums);
4470 list_del(&sums->list);
4471 kfree(sums);
4472 }
4473 if (ret)
4474 goto out;
4475
4476add_to_batch:
4477 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4478 batch.total_data_size += ins_sizes[dst_index];
4479 batch.nr++;
4480 dst_index++;
4481 }
4482
4483 /*
4484 * We have a leaf full of old extent items that don't need to be logged,
4485 * so we don't need to do anything.
4486 */
4487 if (batch.nr == 0)
4488 goto out;
4489
4490 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4491 if (ret)
4492 goto out;
4493
4494 dst_index = 0;
4495 for (int i = 0; i < nr; i++) {
4496 const int src_slot = start_slot + i;
4497 const int dst_slot = dst_path->slots[0] + dst_index;
4498 struct btrfs_key key;
4499 unsigned long src_offset;
4500 unsigned long dst_offset;
4501
4502 /*
4503 * We're done, all the remaining items in the source leaf
4504 * correspond to old file extent items.
4505 */
4506 if (dst_index >= batch.nr)
4507 break;
4508
4509 btrfs_item_key_to_cpu(src, &key, src_slot);
4510
4511 if (key.type != BTRFS_EXTENT_DATA_KEY)
4512 goto copy_item;
4513
4514 extent = btrfs_item_ptr(src, src_slot,
4515 struct btrfs_file_extent_item);
4516
4517 /* See the comment in the previous loop, same logic. */
4518 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4519 key.offset < i_size &&
4520 inode->last_reflink_trans < trans->transid)
4521 continue;
4522
4523copy_item:
4524 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4525 src_offset = btrfs_item_ptr_offset(src, src_slot);
4526
4527 if (key.type == BTRFS_INODE_ITEM_KEY) {
4528 struct btrfs_inode_item *inode_item;
4529
4530 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4531 struct btrfs_inode_item);
4532 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4533 &inode->vfs_inode,
4534 inode_only == LOG_INODE_EXISTS,
4535 logged_isize);
4536 } else {
4537 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4538 src_offset, ins_sizes[dst_index]);
4539 }
4540
4541 dst_index++;
4542 }
4543
4544 btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4545 btrfs_release_path(dst_path);
4546out:
4547 kfree(ins_data);
4548
4549 return ret;
4550}
4551
4552static int extent_cmp(void *priv, const struct list_head *a,
4553 const struct list_head *b)
4554{
4555 const struct extent_map *em1, *em2;
4556
4557 em1 = list_entry(a, struct extent_map, list);
4558 em2 = list_entry(b, struct extent_map, list);
4559
4560 if (em1->start < em2->start)
4561 return -1;
4562 else if (em1->start > em2->start)
4563 return 1;
4564 return 0;
4565}
4566
4567static int log_extent_csums(struct btrfs_trans_handle *trans,
4568 struct btrfs_inode *inode,
4569 struct btrfs_root *log_root,
4570 const struct extent_map *em,
4571 struct btrfs_log_ctx *ctx)
4572{
4573 struct btrfs_ordered_extent *ordered;
4574 struct btrfs_root *csum_root;
4575 u64 csum_offset;
4576 u64 csum_len;
4577 u64 mod_start = em->mod_start;
4578 u64 mod_len = em->mod_len;
4579 LIST_HEAD(ordered_sums);
4580 int ret = 0;
4581
4582 if (inode->flags & BTRFS_INODE_NODATASUM ||
4583 (em->flags & EXTENT_FLAG_PREALLOC) ||
4584 em->block_start == EXTENT_MAP_HOLE)
4585 return 0;
4586
4587 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4588 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4589 const u64 mod_end = mod_start + mod_len;
4590 struct btrfs_ordered_sum *sums;
4591
4592 if (mod_len == 0)
4593 break;
4594
4595 if (ordered_end <= mod_start)
4596 continue;
4597 if (mod_end <= ordered->file_offset)
4598 break;
4599
4600 /*
4601 * We are going to copy all the csums on this ordered extent, so
4602 * go ahead and adjust mod_start and mod_len in case this ordered
4603 * extent has already been logged.
4604 */
4605 if (ordered->file_offset > mod_start) {
4606 if (ordered_end >= mod_end)
4607 mod_len = ordered->file_offset - mod_start;
4608 /*
4609 * If we have this case
4610 *
4611 * |--------- logged extent ---------|
4612 * |----- ordered extent ----|
4613 *
4614 * Just don't mess with mod_start and mod_len, we'll
4615 * just end up logging more csums than we need and it
4616 * will be ok.
4617 */
4618 } else {
4619 if (ordered_end < mod_end) {
4620 mod_len = mod_end - ordered_end;
4621 mod_start = ordered_end;
4622 } else {
4623 mod_len = 0;
4624 }
4625 }
4626
4627 /*
4628 * To keep us from looping for the above case of an ordered
4629 * extent that falls inside of the logged extent.
4630 */
4631 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4632 continue;
4633
4634 list_for_each_entry(sums, &ordered->list, list) {
4635 ret = log_csums(trans, inode, log_root, sums);
4636 if (ret)
4637 return ret;
4638 }
4639 }
4640
4641 /* We're done, found all csums in the ordered extents. */
4642 if (mod_len == 0)
4643 return 0;
4644
4645 /* If we're compressed we have to save the entire range of csums. */
4646 if (extent_map_is_compressed(em)) {
4647 csum_offset = 0;
4648 csum_len = max(em->block_len, em->orig_block_len);
4649 } else {
4650 csum_offset = mod_start - em->start;
4651 csum_len = mod_len;
4652 }
4653
4654 /* block start is already adjusted for the file extent offset. */
4655 csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4656 ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4657 em->block_start + csum_offset +
4658 csum_len - 1, &ordered_sums, 0, false);
4659 if (ret)
4660 return ret;
4661
4662 while (!list_empty(&ordered_sums)) {
4663 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4664 struct btrfs_ordered_sum,
4665 list);
4666 if (!ret)
4667 ret = log_csums(trans, inode, log_root, sums);
4668 list_del(&sums->list);
4669 kfree(sums);
4670 }
4671
4672 return ret;
4673}
4674
4675static int log_one_extent(struct btrfs_trans_handle *trans,
4676 struct btrfs_inode *inode,
4677 const struct extent_map *em,
4678 struct btrfs_path *path,
4679 struct btrfs_log_ctx *ctx)
4680{
4681 struct btrfs_drop_extents_args drop_args = { 0 };
4682 struct btrfs_root *log = inode->root->log_root;
4683 struct btrfs_file_extent_item fi = { 0 };
4684 struct extent_buffer *leaf;
4685 struct btrfs_key key;
4686 enum btrfs_compression_type compress_type;
4687 u64 extent_offset = em->start - em->orig_start;
4688 u64 block_len;
4689 int ret;
4690
4691 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4692 if (em->flags & EXTENT_FLAG_PREALLOC)
4693 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4694 else
4695 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4696
4697 block_len = max(em->block_len, em->orig_block_len);
4698 compress_type = extent_map_compression(em);
4699 if (compress_type != BTRFS_COMPRESS_NONE) {
4700 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4701 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4702 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4703 btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4704 extent_offset);
4705 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4706 }
4707
4708 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4709 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4710 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4711 btrfs_set_stack_file_extent_compression(&fi, compress_type);
4712
4713 ret = log_extent_csums(trans, inode, log, em, ctx);
4714 if (ret)
4715 return ret;
4716
4717 /*
4718 * If this is the first time we are logging the inode in the current
4719 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4720 * because it does a deletion search, which always acquires write locks
4721 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4722 * but also adds significant contention in a log tree, since log trees
4723 * are small, with a root at level 2 or 3 at most, due to their short
4724 * life span.
4725 */
4726 if (ctx->logged_before) {
4727 drop_args.path = path;
4728 drop_args.start = em->start;
4729 drop_args.end = em->start + em->len;
4730 drop_args.replace_extent = true;
4731 drop_args.extent_item_size = sizeof(fi);
4732 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4733 if (ret)
4734 return ret;
4735 }
4736
4737 if (!drop_args.extent_inserted) {
4738 key.objectid = btrfs_ino(inode);
4739 key.type = BTRFS_EXTENT_DATA_KEY;
4740 key.offset = em->start;
4741
4742 ret = btrfs_insert_empty_item(trans, log, path, &key,
4743 sizeof(fi));
4744 if (ret)
4745 return ret;
4746 }
4747 leaf = path->nodes[0];
4748 write_extent_buffer(leaf, &fi,
4749 btrfs_item_ptr_offset(leaf, path->slots[0]),
4750 sizeof(fi));
4751 btrfs_mark_buffer_dirty(trans, leaf);
4752
4753 btrfs_release_path(path);
4754
4755 return ret;
4756}
4757
4758/*
4759 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4760 * lose them after doing a full/fast fsync and replaying the log. We scan the
4761 * subvolume's root instead of iterating the inode's extent map tree because
4762 * otherwise we can log incorrect extent items based on extent map conversion.
4763 * That can happen due to the fact that extent maps are merged when they
4764 * are not in the extent map tree's list of modified extents.
4765 */
4766static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4767 struct btrfs_inode *inode,
4768 struct btrfs_path *path,
4769 struct btrfs_log_ctx *ctx)
4770{
4771 struct btrfs_root *root = inode->root;
4772 struct btrfs_key key;
4773 const u64 i_size = i_size_read(&inode->vfs_inode);
4774 const u64 ino = btrfs_ino(inode);
4775 struct btrfs_path *dst_path = NULL;
4776 bool dropped_extents = false;
4777 u64 truncate_offset = i_size;
4778 struct extent_buffer *leaf;
4779 int slot;
4780 int ins_nr = 0;
4781 int start_slot = 0;
4782 int ret;
4783
4784 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4785 return 0;
4786
4787 key.objectid = ino;
4788 key.type = BTRFS_EXTENT_DATA_KEY;
4789 key.offset = i_size;
4790 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4791 if (ret < 0)
4792 goto out;
4793
4794 /*
4795 * We must check if there is a prealloc extent that starts before the
4796 * i_size and crosses the i_size boundary. This is to ensure later we
4797 * truncate down to the end of that extent and not to the i_size, as
4798 * otherwise we end up losing part of the prealloc extent after a log
4799 * replay and with an implicit hole if there is another prealloc extent
4800 * that starts at an offset beyond i_size.
4801 */
4802 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4803 if (ret < 0)
4804 goto out;
4805
4806 if (ret == 0) {
4807 struct btrfs_file_extent_item *ei;
4808
4809 leaf = path->nodes[0];
4810 slot = path->slots[0];
4811 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4812
4813 if (btrfs_file_extent_type(leaf, ei) ==
4814 BTRFS_FILE_EXTENT_PREALLOC) {
4815 u64 extent_end;
4816
4817 btrfs_item_key_to_cpu(leaf, &key, slot);
4818 extent_end = key.offset +
4819 btrfs_file_extent_num_bytes(leaf, ei);
4820
4821 if (extent_end > i_size)
4822 truncate_offset = extent_end;
4823 }
4824 } else {
4825 ret = 0;
4826 }
4827
4828 while (true) {
4829 leaf = path->nodes[0];
4830 slot = path->slots[0];
4831
4832 if (slot >= btrfs_header_nritems(leaf)) {
4833 if (ins_nr > 0) {
4834 ret = copy_items(trans, inode, dst_path, path,
4835 start_slot, ins_nr, 1, 0, ctx);
4836 if (ret < 0)
4837 goto out;
4838 ins_nr = 0;
4839 }
4840 ret = btrfs_next_leaf(root, path);
4841 if (ret < 0)
4842 goto out;
4843 if (ret > 0) {
4844 ret = 0;
4845 break;
4846 }
4847 continue;
4848 }
4849
4850 btrfs_item_key_to_cpu(leaf, &key, slot);
4851 if (key.objectid > ino)
4852 break;
4853 if (WARN_ON_ONCE(key.objectid < ino) ||
4854 key.type < BTRFS_EXTENT_DATA_KEY ||
4855 key.offset < i_size) {
4856 path->slots[0]++;
4857 continue;
4858 }
4859 if (!dropped_extents) {
4860 /*
4861 * Avoid logging extent items logged in past fsync calls
4862 * and leading to duplicate keys in the log tree.
4863 */
4864 ret = truncate_inode_items(trans, root->log_root, inode,
4865 truncate_offset,
4866 BTRFS_EXTENT_DATA_KEY);
4867 if (ret)
4868 goto out;
4869 dropped_extents = true;
4870 }
4871 if (ins_nr == 0)
4872 start_slot = slot;
4873 ins_nr++;
4874 path->slots[0]++;
4875 if (!dst_path) {
4876 dst_path = btrfs_alloc_path();
4877 if (!dst_path) {
4878 ret = -ENOMEM;
4879 goto out;
4880 }
4881 }
4882 }
4883 if (ins_nr > 0)
4884 ret = copy_items(trans, inode, dst_path, path,
4885 start_slot, ins_nr, 1, 0, ctx);
4886out:
4887 btrfs_release_path(path);
4888 btrfs_free_path(dst_path);
4889 return ret;
4890}
4891
4892static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4893 struct btrfs_inode *inode,
4894 struct btrfs_path *path,
4895 struct btrfs_log_ctx *ctx)
4896{
4897 struct btrfs_ordered_extent *ordered;
4898 struct btrfs_ordered_extent *tmp;
4899 struct extent_map *em, *n;
4900 LIST_HEAD(extents);
4901 struct extent_map_tree *tree = &inode->extent_tree;
4902 int ret = 0;
4903 int num = 0;
4904
4905 write_lock(&tree->lock);
4906
4907 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4908 list_del_init(&em->list);
4909 /*
4910 * Just an arbitrary number, this can be really CPU intensive
4911 * once we start getting a lot of extents, and really once we
4912 * have a bunch of extents we just want to commit since it will
4913 * be faster.
4914 */
4915 if (++num > 32768) {
4916 list_del_init(&tree->modified_extents);
4917 ret = -EFBIG;
4918 goto process;
4919 }
4920
4921 if (em->generation < trans->transid)
4922 continue;
4923
4924 /* We log prealloc extents beyond eof later. */
4925 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4926 em->start >= i_size_read(&inode->vfs_inode))
4927 continue;
4928
4929 /* Need a ref to keep it from getting evicted from cache */
4930 refcount_inc(&em->refs);
4931 em->flags |= EXTENT_FLAG_LOGGING;
4932 list_add_tail(&em->list, &extents);
4933 num++;
4934 }
4935
4936 list_sort(NULL, &extents, extent_cmp);
4937process:
4938 while (!list_empty(&extents)) {
4939 em = list_entry(extents.next, struct extent_map, list);
4940
4941 list_del_init(&em->list);
4942
4943 /*
4944 * If we had an error we just need to delete everybody from our
4945 * private list.
4946 */
4947 if (ret) {
4948 clear_em_logging(tree, em);
4949 free_extent_map(em);
4950 continue;
4951 }
4952
4953 write_unlock(&tree->lock);
4954
4955 ret = log_one_extent(trans, inode, em, path, ctx);
4956 write_lock(&tree->lock);
4957 clear_em_logging(tree, em);
4958 free_extent_map(em);
4959 }
4960 WARN_ON(!list_empty(&extents));
4961 write_unlock(&tree->lock);
4962
4963 if (!ret)
4964 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4965 if (ret)
4966 return ret;
4967
4968 /*
4969 * We have logged all extents successfully, now make sure the commit of
4970 * the current transaction waits for the ordered extents to complete
4971 * before it commits and wipes out the log trees, otherwise we would
4972 * lose data if an ordered extents completes after the transaction
4973 * commits and a power failure happens after the transaction commit.
4974 */
4975 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4976 list_del_init(&ordered->log_list);
4977 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4978
4979 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4980 spin_lock_irq(&inode->ordered_tree_lock);
4981 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4982 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4983 atomic_inc(&trans->transaction->pending_ordered);
4984 }
4985 spin_unlock_irq(&inode->ordered_tree_lock);
4986 }
4987 btrfs_put_ordered_extent(ordered);
4988 }
4989
4990 return 0;
4991}
4992
4993static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4994 struct btrfs_path *path, u64 *size_ret)
4995{
4996 struct btrfs_key key;
4997 int ret;
4998
4999 key.objectid = btrfs_ino(inode);
5000 key.type = BTRFS_INODE_ITEM_KEY;
5001 key.offset = 0;
5002
5003 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5004 if (ret < 0) {
5005 return ret;
5006 } else if (ret > 0) {
5007 *size_ret = 0;
5008 } else {
5009 struct btrfs_inode_item *item;
5010
5011 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5012 struct btrfs_inode_item);
5013 *size_ret = btrfs_inode_size(path->nodes[0], item);
5014 /*
5015 * If the in-memory inode's i_size is smaller then the inode
5016 * size stored in the btree, return the inode's i_size, so
5017 * that we get a correct inode size after replaying the log
5018 * when before a power failure we had a shrinking truncate
5019 * followed by addition of a new name (rename / new hard link).
5020 * Otherwise return the inode size from the btree, to avoid
5021 * data loss when replaying a log due to previously doing a
5022 * write that expands the inode's size and logging a new name
5023 * immediately after.
5024 */
5025 if (*size_ret > inode->vfs_inode.i_size)
5026 *size_ret = inode->vfs_inode.i_size;
5027 }
5028
5029 btrfs_release_path(path);
5030 return 0;
5031}
5032
5033/*
5034 * At the moment we always log all xattrs. This is to figure out at log replay
5035 * time which xattrs must have their deletion replayed. If a xattr is missing
5036 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5037 * because if a xattr is deleted, the inode is fsynced and a power failure
5038 * happens, causing the log to be replayed the next time the fs is mounted,
5039 * we want the xattr to not exist anymore (same behaviour as other filesystems
5040 * with a journal, ext3/4, xfs, f2fs, etc).
5041 */
5042static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5043 struct btrfs_inode *inode,
5044 struct btrfs_path *path,
5045 struct btrfs_path *dst_path,
5046 struct btrfs_log_ctx *ctx)
5047{
5048 struct btrfs_root *root = inode->root;
5049 int ret;
5050 struct btrfs_key key;
5051 const u64 ino = btrfs_ino(inode);
5052 int ins_nr = 0;
5053 int start_slot = 0;
5054 bool found_xattrs = false;
5055
5056 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5057 return 0;
5058
5059 key.objectid = ino;
5060 key.type = BTRFS_XATTR_ITEM_KEY;
5061 key.offset = 0;
5062
5063 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5064 if (ret < 0)
5065 return ret;
5066
5067 while (true) {
5068 int slot = path->slots[0];
5069 struct extent_buffer *leaf = path->nodes[0];
5070 int nritems = btrfs_header_nritems(leaf);
5071
5072 if (slot >= nritems) {
5073 if (ins_nr > 0) {
5074 ret = copy_items(trans, inode, dst_path, path,
5075 start_slot, ins_nr, 1, 0, ctx);
5076 if (ret < 0)
5077 return ret;
5078 ins_nr = 0;
5079 }
5080 ret = btrfs_next_leaf(root, path);
5081 if (ret < 0)
5082 return ret;
5083 else if (ret > 0)
5084 break;
5085 continue;
5086 }
5087
5088 btrfs_item_key_to_cpu(leaf, &key, slot);
5089 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5090 break;
5091
5092 if (ins_nr == 0)
5093 start_slot = slot;
5094 ins_nr++;
5095 path->slots[0]++;
5096 found_xattrs = true;
5097 cond_resched();
5098 }
5099 if (ins_nr > 0) {
5100 ret = copy_items(trans, inode, dst_path, path,
5101 start_slot, ins_nr, 1, 0, ctx);
5102 if (ret < 0)
5103 return ret;
5104 }
5105
5106 if (!found_xattrs)
5107 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5108
5109 return 0;
5110}
5111
5112/*
5113 * When using the NO_HOLES feature if we punched a hole that causes the
5114 * deletion of entire leafs or all the extent items of the first leaf (the one
5115 * that contains the inode item and references) we may end up not processing
5116 * any extents, because there are no leafs with a generation matching the
5117 * current transaction that have extent items for our inode. So we need to find
5118 * if any holes exist and then log them. We also need to log holes after any
5119 * truncate operation that changes the inode's size.
5120 */
5121static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5122 struct btrfs_inode *inode,
5123 struct btrfs_path *path)
5124{
5125 struct btrfs_root *root = inode->root;
5126 struct btrfs_fs_info *fs_info = root->fs_info;
5127 struct btrfs_key key;
5128 const u64 ino = btrfs_ino(inode);
5129 const u64 i_size = i_size_read(&inode->vfs_inode);
5130 u64 prev_extent_end = 0;
5131 int ret;
5132
5133 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5134 return 0;
5135
5136 key.objectid = ino;
5137 key.type = BTRFS_EXTENT_DATA_KEY;
5138 key.offset = 0;
5139
5140 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5141 if (ret < 0)
5142 return ret;
5143
5144 while (true) {
5145 struct extent_buffer *leaf = path->nodes[0];
5146
5147 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5148 ret = btrfs_next_leaf(root, path);
5149 if (ret < 0)
5150 return ret;
5151 if (ret > 0) {
5152 ret = 0;
5153 break;
5154 }
5155 leaf = path->nodes[0];
5156 }
5157
5158 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5159 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5160 break;
5161
5162 /* We have a hole, log it. */
5163 if (prev_extent_end < key.offset) {
5164 const u64 hole_len = key.offset - prev_extent_end;
5165
5166 /*
5167 * Release the path to avoid deadlocks with other code
5168 * paths that search the root while holding locks on
5169 * leafs from the log root.
5170 */
5171 btrfs_release_path(path);
5172 ret = btrfs_insert_hole_extent(trans, root->log_root,
5173 ino, prev_extent_end,
5174 hole_len);
5175 if (ret < 0)
5176 return ret;
5177
5178 /*
5179 * Search for the same key again in the root. Since it's
5180 * an extent item and we are holding the inode lock, the
5181 * key must still exist. If it doesn't just emit warning
5182 * and return an error to fall back to a transaction
5183 * commit.
5184 */
5185 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5186 if (ret < 0)
5187 return ret;
5188 if (WARN_ON(ret > 0))
5189 return -ENOENT;
5190 leaf = path->nodes[0];
5191 }
5192
5193 prev_extent_end = btrfs_file_extent_end(path);
5194 path->slots[0]++;
5195 cond_resched();
5196 }
5197
5198 if (prev_extent_end < i_size) {
5199 u64 hole_len;
5200
5201 btrfs_release_path(path);
5202 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5203 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5204 prev_extent_end, hole_len);
5205 if (ret < 0)
5206 return ret;
5207 }
5208
5209 return 0;
5210}
5211
5212/*
5213 * When we are logging a new inode X, check if it doesn't have a reference that
5214 * matches the reference from some other inode Y created in a past transaction
5215 * and that was renamed in the current transaction. If we don't do this, then at
5216 * log replay time we can lose inode Y (and all its files if it's a directory):
5217 *
5218 * mkdir /mnt/x
5219 * echo "hello world" > /mnt/x/foobar
5220 * sync
5221 * mv /mnt/x /mnt/y
5222 * mkdir /mnt/x # or touch /mnt/x
5223 * xfs_io -c fsync /mnt/x
5224 * <power fail>
5225 * mount fs, trigger log replay
5226 *
5227 * After the log replay procedure, we would lose the first directory and all its
5228 * files (file foobar).
5229 * For the case where inode Y is not a directory we simply end up losing it:
5230 *
5231 * echo "123" > /mnt/foo
5232 * sync
5233 * mv /mnt/foo /mnt/bar
5234 * echo "abc" > /mnt/foo
5235 * xfs_io -c fsync /mnt/foo
5236 * <power fail>
5237 *
5238 * We also need this for cases where a snapshot entry is replaced by some other
5239 * entry (file or directory) otherwise we end up with an unreplayable log due to
5240 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5241 * if it were a regular entry:
5242 *
5243 * mkdir /mnt/x
5244 * btrfs subvolume snapshot /mnt /mnt/x/snap
5245 * btrfs subvolume delete /mnt/x/snap
5246 * rmdir /mnt/x
5247 * mkdir /mnt/x
5248 * fsync /mnt/x or fsync some new file inside it
5249 * <power fail>
5250 *
5251 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5252 * the same transaction.
5253 */
5254static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5255 const int slot,
5256 const struct btrfs_key *key,
5257 struct btrfs_inode *inode,
5258 u64 *other_ino, u64 *other_parent)
5259{
5260 int ret;
5261 struct btrfs_path *search_path;
5262 char *name = NULL;
5263 u32 name_len = 0;
5264 u32 item_size = btrfs_item_size(eb, slot);
5265 u32 cur_offset = 0;
5266 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5267
5268 search_path = btrfs_alloc_path();
5269 if (!search_path)
5270 return -ENOMEM;
5271 search_path->search_commit_root = 1;
5272 search_path->skip_locking = 1;
5273
5274 while (cur_offset < item_size) {
5275 u64 parent;
5276 u32 this_name_len;
5277 u32 this_len;
5278 unsigned long name_ptr;
5279 struct btrfs_dir_item *di;
5280 struct fscrypt_str name_str;
5281
5282 if (key->type == BTRFS_INODE_REF_KEY) {
5283 struct btrfs_inode_ref *iref;
5284
5285 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5286 parent = key->offset;
5287 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5288 name_ptr = (unsigned long)(iref + 1);
5289 this_len = sizeof(*iref) + this_name_len;
5290 } else {
5291 struct btrfs_inode_extref *extref;
5292
5293 extref = (struct btrfs_inode_extref *)(ptr +
5294 cur_offset);
5295 parent = btrfs_inode_extref_parent(eb, extref);
5296 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5297 name_ptr = (unsigned long)&extref->name;
5298 this_len = sizeof(*extref) + this_name_len;
5299 }
5300
5301 if (this_name_len > name_len) {
5302 char *new_name;
5303
5304 new_name = krealloc(name, this_name_len, GFP_NOFS);
5305 if (!new_name) {
5306 ret = -ENOMEM;
5307 goto out;
5308 }
5309 name_len = this_name_len;
5310 name = new_name;
5311 }
5312
5313 read_extent_buffer(eb, name, name_ptr, this_name_len);
5314
5315 name_str.name = name;
5316 name_str.len = this_name_len;
5317 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5318 parent, &name_str, 0);
5319 if (di && !IS_ERR(di)) {
5320 struct btrfs_key di_key;
5321
5322 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5323 di, &di_key);
5324 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5325 if (di_key.objectid != key->objectid) {
5326 ret = 1;
5327 *other_ino = di_key.objectid;
5328 *other_parent = parent;
5329 } else {
5330 ret = 0;
5331 }
5332 } else {
5333 ret = -EAGAIN;
5334 }
5335 goto out;
5336 } else if (IS_ERR(di)) {
5337 ret = PTR_ERR(di);
5338 goto out;
5339 }
5340 btrfs_release_path(search_path);
5341
5342 cur_offset += this_len;
5343 }
5344 ret = 0;
5345out:
5346 btrfs_free_path(search_path);
5347 kfree(name);
5348 return ret;
5349}
5350
5351/*
5352 * Check if we need to log an inode. This is used in contexts where while
5353 * logging an inode we need to log another inode (either that it exists or in
5354 * full mode). This is used instead of btrfs_inode_in_log() because the later
5355 * requires the inode to be in the log and have the log transaction committed,
5356 * while here we do not care if the log transaction was already committed - our
5357 * caller will commit the log later - and we want to avoid logging an inode
5358 * multiple times when multiple tasks have joined the same log transaction.
5359 */
5360static bool need_log_inode(const struct btrfs_trans_handle *trans,
5361 struct btrfs_inode *inode)
5362{
5363 /*
5364 * If a directory was not modified, no dentries added or removed, we can
5365 * and should avoid logging it.
5366 */
5367 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5368 return false;
5369
5370 /*
5371 * If this inode does not have new/updated/deleted xattrs since the last
5372 * time it was logged and is flagged as logged in the current transaction,
5373 * we can skip logging it. As for new/deleted names, those are updated in
5374 * the log by link/unlink/rename operations.
5375 * In case the inode was logged and then evicted and reloaded, its
5376 * logged_trans will be 0, in which case we have to fully log it since
5377 * logged_trans is a transient field, not persisted.
5378 */
5379 if (inode_logged(trans, inode, NULL) == 1 &&
5380 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5381 return false;
5382
5383 return true;
5384}
5385
5386struct btrfs_dir_list {
5387 u64 ino;
5388 struct list_head list;
5389};
5390
5391/*
5392 * Log the inodes of the new dentries of a directory.
5393 * See process_dir_items_leaf() for details about why it is needed.
5394 * This is a recursive operation - if an existing dentry corresponds to a
5395 * directory, that directory's new entries are logged too (same behaviour as
5396 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5397 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5398 * complains about the following circular lock dependency / possible deadlock:
5399 *
5400 * CPU0 CPU1
5401 * ---- ----
5402 * lock(&type->i_mutex_dir_key#3/2);
5403 * lock(sb_internal#2);
5404 * lock(&type->i_mutex_dir_key#3/2);
5405 * lock(&sb->s_type->i_mutex_key#14);
5406 *
5407 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5408 * sb_start_intwrite() in btrfs_start_transaction().
5409 * Not acquiring the VFS lock of the inodes is still safe because:
5410 *
5411 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5412 * that while logging the inode new references (names) are added or removed
5413 * from the inode, leaving the logged inode item with a link count that does
5414 * not match the number of logged inode reference items. This is fine because
5415 * at log replay time we compute the real number of links and correct the
5416 * link count in the inode item (see replay_one_buffer() and
5417 * link_to_fixup_dir());
5418 *
5419 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5420 * while logging the inode's items new index items (key type
5421 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5422 * has a size that doesn't match the sum of the lengths of all the logged
5423 * names - this is ok, not a problem, because at log replay time we set the
5424 * directory's i_size to the correct value (see replay_one_name() and
5425 * overwrite_item()).
5426 */
5427static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5428 struct btrfs_inode *start_inode,
5429 struct btrfs_log_ctx *ctx)
5430{
5431 struct btrfs_root *root = start_inode->root;
5432 struct btrfs_fs_info *fs_info = root->fs_info;
5433 struct btrfs_path *path;
5434 LIST_HEAD(dir_list);
5435 struct btrfs_dir_list *dir_elem;
5436 u64 ino = btrfs_ino(start_inode);
5437 struct btrfs_inode *curr_inode = start_inode;
5438 int ret = 0;
5439
5440 /*
5441 * If we are logging a new name, as part of a link or rename operation,
5442 * don't bother logging new dentries, as we just want to log the names
5443 * of an inode and that any new parents exist.
5444 */
5445 if (ctx->logging_new_name)
5446 return 0;
5447
5448 path = btrfs_alloc_path();
5449 if (!path)
5450 return -ENOMEM;
5451
5452 /* Pairs with btrfs_add_delayed_iput below. */
5453 ihold(&curr_inode->vfs_inode);
5454
5455 while (true) {
5456 struct inode *vfs_inode;
5457 struct btrfs_key key;
5458 struct btrfs_key found_key;
5459 u64 next_index;
5460 bool continue_curr_inode = true;
5461 int iter_ret;
5462
5463 key.objectid = ino;
5464 key.type = BTRFS_DIR_INDEX_KEY;
5465 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5466 next_index = key.offset;
5467again:
5468 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5469 struct extent_buffer *leaf = path->nodes[0];
5470 struct btrfs_dir_item *di;
5471 struct btrfs_key di_key;
5472 struct inode *di_inode;
5473 int log_mode = LOG_INODE_EXISTS;
5474 int type;
5475
5476 if (found_key.objectid != ino ||
5477 found_key.type != BTRFS_DIR_INDEX_KEY) {
5478 continue_curr_inode = false;
5479 break;
5480 }
5481
5482 next_index = found_key.offset + 1;
5483
5484 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5485 type = btrfs_dir_ftype(leaf, di);
5486 if (btrfs_dir_transid(leaf, di) < trans->transid)
5487 continue;
5488 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5489 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5490 continue;
5491
5492 btrfs_release_path(path);
5493 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5494 if (IS_ERR(di_inode)) {
5495 ret = PTR_ERR(di_inode);
5496 goto out;
5497 }
5498
5499 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5500 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5501 break;
5502 }
5503
5504 ctx->log_new_dentries = false;
5505 if (type == BTRFS_FT_DIR)
5506 log_mode = LOG_INODE_ALL;
5507 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5508 log_mode, ctx);
5509 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5510 if (ret)
5511 goto out;
5512 if (ctx->log_new_dentries) {
5513 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5514 if (!dir_elem) {
5515 ret = -ENOMEM;
5516 goto out;
5517 }
5518 dir_elem->ino = di_key.objectid;
5519 list_add_tail(&dir_elem->list, &dir_list);
5520 }
5521 break;
5522 }
5523
5524 btrfs_release_path(path);
5525
5526 if (iter_ret < 0) {
5527 ret = iter_ret;
5528 goto out;
5529 } else if (iter_ret > 0) {
5530 continue_curr_inode = false;
5531 } else {
5532 key = found_key;
5533 }
5534
5535 if (continue_curr_inode && key.offset < (u64)-1) {
5536 key.offset++;
5537 goto again;
5538 }
5539
5540 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5541
5542 if (list_empty(&dir_list))
5543 break;
5544
5545 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5546 ino = dir_elem->ino;
5547 list_del(&dir_elem->list);
5548 kfree(dir_elem);
5549
5550 btrfs_add_delayed_iput(curr_inode);
5551 curr_inode = NULL;
5552
5553 vfs_inode = btrfs_iget(fs_info->sb, ino, root);
5554 if (IS_ERR(vfs_inode)) {
5555 ret = PTR_ERR(vfs_inode);
5556 break;
5557 }
5558 curr_inode = BTRFS_I(vfs_inode);
5559 }
5560out:
5561 btrfs_free_path(path);
5562 if (curr_inode)
5563 btrfs_add_delayed_iput(curr_inode);
5564
5565 if (ret) {
5566 struct btrfs_dir_list *next;
5567
5568 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5569 kfree(dir_elem);
5570 }
5571
5572 return ret;
5573}
5574
5575struct btrfs_ino_list {
5576 u64 ino;
5577 u64 parent;
5578 struct list_head list;
5579};
5580
5581static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5582{
5583 struct btrfs_ino_list *curr;
5584 struct btrfs_ino_list *next;
5585
5586 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5587 list_del(&curr->list);
5588 kfree(curr);
5589 }
5590}
5591
5592static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5593 struct btrfs_path *path)
5594{
5595 struct btrfs_key key;
5596 int ret;
5597
5598 key.objectid = ino;
5599 key.type = BTRFS_INODE_ITEM_KEY;
5600 key.offset = 0;
5601
5602 path->search_commit_root = 1;
5603 path->skip_locking = 1;
5604
5605 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5606 if (WARN_ON_ONCE(ret > 0)) {
5607 /*
5608 * We have previously found the inode through the commit root
5609 * so this should not happen. If it does, just error out and
5610 * fallback to a transaction commit.
5611 */
5612 ret = -ENOENT;
5613 } else if (ret == 0) {
5614 struct btrfs_inode_item *item;
5615
5616 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5617 struct btrfs_inode_item);
5618 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5619 ret = 1;
5620 }
5621
5622 btrfs_release_path(path);
5623 path->search_commit_root = 0;
5624 path->skip_locking = 0;
5625
5626 return ret;
5627}
5628
5629static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5630 struct btrfs_root *root,
5631 struct btrfs_path *path,
5632 u64 ino, u64 parent,
5633 struct btrfs_log_ctx *ctx)
5634{
5635 struct btrfs_ino_list *ino_elem;
5636 struct inode *inode;
5637
5638 /*
5639 * It's rare to have a lot of conflicting inodes, in practice it is not
5640 * common to have more than 1 or 2. We don't want to collect too many,
5641 * as we could end up logging too many inodes (even if only in
5642 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5643 * commits.
5644 */
5645 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5646 return BTRFS_LOG_FORCE_COMMIT;
5647
5648 inode = btrfs_iget(root->fs_info->sb, ino, root);
5649 /*
5650 * If the other inode that had a conflicting dir entry was deleted in
5651 * the current transaction then we either:
5652 *
5653 * 1) Log the parent directory (later after adding it to the list) if
5654 * the inode is a directory. This is because it may be a deleted
5655 * subvolume/snapshot or it may be a regular directory that had
5656 * deleted subvolumes/snapshots (or subdirectories that had them),
5657 * and at the moment we can't deal with dropping subvolumes/snapshots
5658 * during log replay. So we just log the parent, which will result in
5659 * a fallback to a transaction commit if we are dealing with those
5660 * cases (last_unlink_trans will match the current transaction);
5661 *
5662 * 2) Do nothing if it's not a directory. During log replay we simply
5663 * unlink the conflicting dentry from the parent directory and then
5664 * add the dentry for our inode. Like this we can avoid logging the
5665 * parent directory (and maybe fallback to a transaction commit in
5666 * case it has a last_unlink_trans == trans->transid, due to moving
5667 * some inode from it to some other directory).
5668 */
5669 if (IS_ERR(inode)) {
5670 int ret = PTR_ERR(inode);
5671
5672 if (ret != -ENOENT)
5673 return ret;
5674
5675 ret = conflicting_inode_is_dir(root, ino, path);
5676 /* Not a directory or we got an error. */
5677 if (ret <= 0)
5678 return ret;
5679
5680 /* Conflicting inode is a directory, so we'll log its parent. */
5681 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5682 if (!ino_elem)
5683 return -ENOMEM;
5684 ino_elem->ino = ino;
5685 ino_elem->parent = parent;
5686 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5687 ctx->num_conflict_inodes++;
5688
5689 return 0;
5690 }
5691
5692 /*
5693 * If the inode was already logged skip it - otherwise we can hit an
5694 * infinite loop. Example:
5695 *
5696 * From the commit root (previous transaction) we have the following
5697 * inodes:
5698 *
5699 * inode 257 a directory
5700 * inode 258 with references "zz" and "zz_link" on inode 257
5701 * inode 259 with reference "a" on inode 257
5702 *
5703 * And in the current (uncommitted) transaction we have:
5704 *
5705 * inode 257 a directory, unchanged
5706 * inode 258 with references "a" and "a2" on inode 257
5707 * inode 259 with reference "zz_link" on inode 257
5708 * inode 261 with reference "zz" on inode 257
5709 *
5710 * When logging inode 261 the following infinite loop could
5711 * happen if we don't skip already logged inodes:
5712 *
5713 * - we detect inode 258 as a conflicting inode, with inode 261
5714 * on reference "zz", and log it;
5715 *
5716 * - we detect inode 259 as a conflicting inode, with inode 258
5717 * on reference "a", and log it;
5718 *
5719 * - we detect inode 258 as a conflicting inode, with inode 259
5720 * on reference "zz_link", and log it - again! After this we
5721 * repeat the above steps forever.
5722 *
5723 * Here we can use need_log_inode() because we only need to log the
5724 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5725 * so that the log ends up with the new name and without the old name.
5726 */
5727 if (!need_log_inode(trans, BTRFS_I(inode))) {
5728 btrfs_add_delayed_iput(BTRFS_I(inode));
5729 return 0;
5730 }
5731
5732 btrfs_add_delayed_iput(BTRFS_I(inode));
5733
5734 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5735 if (!ino_elem)
5736 return -ENOMEM;
5737 ino_elem->ino = ino;
5738 ino_elem->parent = parent;
5739 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5740 ctx->num_conflict_inodes++;
5741
5742 return 0;
5743}
5744
5745static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5746 struct btrfs_root *root,
5747 struct btrfs_log_ctx *ctx)
5748{
5749 struct btrfs_fs_info *fs_info = root->fs_info;
5750 int ret = 0;
5751
5752 /*
5753 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5754 * otherwise we could have unbounded recursion of btrfs_log_inode()
5755 * calls. This check guarantees we can have only 1 level of recursion.
5756 */
5757 if (ctx->logging_conflict_inodes)
5758 return 0;
5759
5760 ctx->logging_conflict_inodes = true;
5761
5762 /*
5763 * New conflicting inodes may be found and added to the list while we
5764 * are logging a conflicting inode, so keep iterating while the list is
5765 * not empty.
5766 */
5767 while (!list_empty(&ctx->conflict_inodes)) {
5768 struct btrfs_ino_list *curr;
5769 struct inode *inode;
5770 u64 ino;
5771 u64 parent;
5772
5773 curr = list_first_entry(&ctx->conflict_inodes,
5774 struct btrfs_ino_list, list);
5775 ino = curr->ino;
5776 parent = curr->parent;
5777 list_del(&curr->list);
5778 kfree(curr);
5779
5780 inode = btrfs_iget(fs_info->sb, ino, root);
5781 /*
5782 * If the other inode that had a conflicting dir entry was
5783 * deleted in the current transaction, we need to log its parent
5784 * directory. See the comment at add_conflicting_inode().
5785 */
5786 if (IS_ERR(inode)) {
5787 ret = PTR_ERR(inode);
5788 if (ret != -ENOENT)
5789 break;
5790
5791 inode = btrfs_iget(fs_info->sb, parent, root);
5792 if (IS_ERR(inode)) {
5793 ret = PTR_ERR(inode);
5794 break;
5795 }
5796
5797 /*
5798 * Always log the directory, we cannot make this
5799 * conditional on need_log_inode() because the directory
5800 * might have been logged in LOG_INODE_EXISTS mode or
5801 * the dir index of the conflicting inode is not in a
5802 * dir index key range logged for the directory. So we
5803 * must make sure the deletion is recorded.
5804 */
5805 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5806 LOG_INODE_ALL, ctx);
5807 btrfs_add_delayed_iput(BTRFS_I(inode));
5808 if (ret)
5809 break;
5810 continue;
5811 }
5812
5813 /*
5814 * Here we can use need_log_inode() because we only need to log
5815 * the inode in LOG_INODE_EXISTS mode and rename operations
5816 * update the log, so that the log ends up with the new name and
5817 * without the old name.
5818 *
5819 * We did this check at add_conflicting_inode(), but here we do
5820 * it again because if some other task logged the inode after
5821 * that, we can avoid doing it again.
5822 */
5823 if (!need_log_inode(trans, BTRFS_I(inode))) {
5824 btrfs_add_delayed_iput(BTRFS_I(inode));
5825 continue;
5826 }
5827
5828 /*
5829 * We are safe logging the other inode without acquiring its
5830 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5831 * are safe against concurrent renames of the other inode as
5832 * well because during a rename we pin the log and update the
5833 * log with the new name before we unpin it.
5834 */
5835 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5836 btrfs_add_delayed_iput(BTRFS_I(inode));
5837 if (ret)
5838 break;
5839 }
5840
5841 ctx->logging_conflict_inodes = false;
5842 if (ret)
5843 free_conflicting_inodes(ctx);
5844
5845 return ret;
5846}
5847
5848static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5849 struct btrfs_inode *inode,
5850 struct btrfs_key *min_key,
5851 const struct btrfs_key *max_key,
5852 struct btrfs_path *path,
5853 struct btrfs_path *dst_path,
5854 const u64 logged_isize,
5855 const int inode_only,
5856 struct btrfs_log_ctx *ctx,
5857 bool *need_log_inode_item)
5858{
5859 const u64 i_size = i_size_read(&inode->vfs_inode);
5860 struct btrfs_root *root = inode->root;
5861 int ins_start_slot = 0;
5862 int ins_nr = 0;
5863 int ret;
5864
5865 while (1) {
5866 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5867 if (ret < 0)
5868 return ret;
5869 if (ret > 0) {
5870 ret = 0;
5871 break;
5872 }
5873again:
5874 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5875 if (min_key->objectid != max_key->objectid)
5876 break;
5877 if (min_key->type > max_key->type)
5878 break;
5879
5880 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5881 *need_log_inode_item = false;
5882 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5883 min_key->offset >= i_size) {
5884 /*
5885 * Extents at and beyond eof are logged with
5886 * btrfs_log_prealloc_extents().
5887 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5888 * and no keys greater than that, so bail out.
5889 */
5890 break;
5891 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5892 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5893 (inode->generation == trans->transid ||
5894 ctx->logging_conflict_inodes)) {
5895 u64 other_ino = 0;
5896 u64 other_parent = 0;
5897
5898 ret = btrfs_check_ref_name_override(path->nodes[0],
5899 path->slots[0], min_key, inode,
5900 &other_ino, &other_parent);
5901 if (ret < 0) {
5902 return ret;
5903 } else if (ret > 0 &&
5904 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5905 if (ins_nr > 0) {
5906 ins_nr++;
5907 } else {
5908 ins_nr = 1;
5909 ins_start_slot = path->slots[0];
5910 }
5911 ret = copy_items(trans, inode, dst_path, path,
5912 ins_start_slot, ins_nr,
5913 inode_only, logged_isize, ctx);
5914 if (ret < 0)
5915 return ret;
5916 ins_nr = 0;
5917
5918 btrfs_release_path(path);
5919 ret = add_conflicting_inode(trans, root, path,
5920 other_ino,
5921 other_parent, ctx);
5922 if (ret)
5923 return ret;
5924 goto next_key;
5925 }
5926 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5927 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5928 if (ins_nr == 0)
5929 goto next_slot;
5930 ret = copy_items(trans, inode, dst_path, path,
5931 ins_start_slot,
5932 ins_nr, inode_only, logged_isize, ctx);
5933 if (ret < 0)
5934 return ret;
5935 ins_nr = 0;
5936 goto next_slot;
5937 }
5938
5939 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5940 ins_nr++;
5941 goto next_slot;
5942 } else if (!ins_nr) {
5943 ins_start_slot = path->slots[0];
5944 ins_nr = 1;
5945 goto next_slot;
5946 }
5947
5948 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5949 ins_nr, inode_only, logged_isize, ctx);
5950 if (ret < 0)
5951 return ret;
5952 ins_nr = 1;
5953 ins_start_slot = path->slots[0];
5954next_slot:
5955 path->slots[0]++;
5956 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5957 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5958 path->slots[0]);
5959 goto again;
5960 }
5961 if (ins_nr) {
5962 ret = copy_items(trans, inode, dst_path, path,
5963 ins_start_slot, ins_nr, inode_only,
5964 logged_isize, ctx);
5965 if (ret < 0)
5966 return ret;
5967 ins_nr = 0;
5968 }
5969 btrfs_release_path(path);
5970next_key:
5971 if (min_key->offset < (u64)-1) {
5972 min_key->offset++;
5973 } else if (min_key->type < max_key->type) {
5974 min_key->type++;
5975 min_key->offset = 0;
5976 } else {
5977 break;
5978 }
5979
5980 /*
5981 * We may process many leaves full of items for our inode, so
5982 * avoid monopolizing a cpu for too long by rescheduling while
5983 * not holding locks on any tree.
5984 */
5985 cond_resched();
5986 }
5987 if (ins_nr) {
5988 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5989 ins_nr, inode_only, logged_isize, ctx);
5990 if (ret)
5991 return ret;
5992 }
5993
5994 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5995 /*
5996 * Release the path because otherwise we might attempt to double
5997 * lock the same leaf with btrfs_log_prealloc_extents() below.
5998 */
5999 btrfs_release_path(path);
6000 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6001 }
6002
6003 return ret;
6004}
6005
6006static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6007 struct btrfs_root *log,
6008 struct btrfs_path *path,
6009 const struct btrfs_item_batch *batch,
6010 const struct btrfs_delayed_item *first_item)
6011{
6012 const struct btrfs_delayed_item *curr = first_item;
6013 int ret;
6014
6015 ret = btrfs_insert_empty_items(trans, log, path, batch);
6016 if (ret)
6017 return ret;
6018
6019 for (int i = 0; i < batch->nr; i++) {
6020 char *data_ptr;
6021
6022 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6023 write_extent_buffer(path->nodes[0], &curr->data,
6024 (unsigned long)data_ptr, curr->data_len);
6025 curr = list_next_entry(curr, log_list);
6026 path->slots[0]++;
6027 }
6028
6029 btrfs_release_path(path);
6030
6031 return 0;
6032}
6033
6034static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6035 struct btrfs_inode *inode,
6036 struct btrfs_path *path,
6037 const struct list_head *delayed_ins_list,
6038 struct btrfs_log_ctx *ctx)
6039{
6040 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6041 const int max_batch_size = 195;
6042 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6043 const u64 ino = btrfs_ino(inode);
6044 struct btrfs_root *log = inode->root->log_root;
6045 struct btrfs_item_batch batch = {
6046 .nr = 0,
6047 .total_data_size = 0,
6048 };
6049 const struct btrfs_delayed_item *first = NULL;
6050 const struct btrfs_delayed_item *curr;
6051 char *ins_data;
6052 struct btrfs_key *ins_keys;
6053 u32 *ins_sizes;
6054 u64 curr_batch_size = 0;
6055 int batch_idx = 0;
6056 int ret;
6057
6058 /* We are adding dir index items to the log tree. */
6059 lockdep_assert_held(&inode->log_mutex);
6060
6061 /*
6062 * We collect delayed items before copying index keys from the subvolume
6063 * to the log tree. However just after we collected them, they may have
6064 * been flushed (all of them or just some of them), and therefore we
6065 * could have copied them from the subvolume tree to the log tree.
6066 * So find the first delayed item that was not yet logged (they are
6067 * sorted by index number).
6068 */
6069 list_for_each_entry(curr, delayed_ins_list, log_list) {
6070 if (curr->index > inode->last_dir_index_offset) {
6071 first = curr;
6072 break;
6073 }
6074 }
6075
6076 /* Empty list or all delayed items were already logged. */
6077 if (!first)
6078 return 0;
6079
6080 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6081 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6082 if (!ins_data)
6083 return -ENOMEM;
6084 ins_sizes = (u32 *)ins_data;
6085 batch.data_sizes = ins_sizes;
6086 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6087 batch.keys = ins_keys;
6088
6089 curr = first;
6090 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6091 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6092
6093 if (curr_batch_size + curr_size > leaf_data_size ||
6094 batch.nr == max_batch_size) {
6095 ret = insert_delayed_items_batch(trans, log, path,
6096 &batch, first);
6097 if (ret)
6098 goto out;
6099 batch_idx = 0;
6100 batch.nr = 0;
6101 batch.total_data_size = 0;
6102 curr_batch_size = 0;
6103 first = curr;
6104 }
6105
6106 ins_sizes[batch_idx] = curr->data_len;
6107 ins_keys[batch_idx].objectid = ino;
6108 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6109 ins_keys[batch_idx].offset = curr->index;
6110 curr_batch_size += curr_size;
6111 batch.total_data_size += curr->data_len;
6112 batch.nr++;
6113 batch_idx++;
6114 curr = list_next_entry(curr, log_list);
6115 }
6116
6117 ASSERT(batch.nr >= 1);
6118 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6119
6120 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6121 log_list);
6122 inode->last_dir_index_offset = curr->index;
6123out:
6124 kfree(ins_data);
6125
6126 return ret;
6127}
6128
6129static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6130 struct btrfs_inode *inode,
6131 struct btrfs_path *path,
6132 const struct list_head *delayed_del_list,
6133 struct btrfs_log_ctx *ctx)
6134{
6135 const u64 ino = btrfs_ino(inode);
6136 const struct btrfs_delayed_item *curr;
6137
6138 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6139 log_list);
6140
6141 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6142 u64 first_dir_index = curr->index;
6143 u64 last_dir_index;
6144 const struct btrfs_delayed_item *next;
6145 int ret;
6146
6147 /*
6148 * Find a range of consecutive dir index items to delete. Like
6149 * this we log a single dir range item spanning several contiguous
6150 * dir items instead of logging one range item per dir index item.
6151 */
6152 next = list_next_entry(curr, log_list);
6153 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6154 if (next->index != curr->index + 1)
6155 break;
6156 curr = next;
6157 next = list_next_entry(next, log_list);
6158 }
6159
6160 last_dir_index = curr->index;
6161 ASSERT(last_dir_index >= first_dir_index);
6162
6163 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6164 ino, first_dir_index, last_dir_index);
6165 if (ret)
6166 return ret;
6167 curr = list_next_entry(curr, log_list);
6168 }
6169
6170 return 0;
6171}
6172
6173static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6174 struct btrfs_inode *inode,
6175 struct btrfs_path *path,
6176 struct btrfs_log_ctx *ctx,
6177 const struct list_head *delayed_del_list,
6178 const struct btrfs_delayed_item *first,
6179 const struct btrfs_delayed_item **last_ret)
6180{
6181 const struct btrfs_delayed_item *next;
6182 struct extent_buffer *leaf = path->nodes[0];
6183 const int last_slot = btrfs_header_nritems(leaf) - 1;
6184 int slot = path->slots[0] + 1;
6185 const u64 ino = btrfs_ino(inode);
6186
6187 next = list_next_entry(first, log_list);
6188
6189 while (slot < last_slot &&
6190 !list_entry_is_head(next, delayed_del_list, log_list)) {
6191 struct btrfs_key key;
6192
6193 btrfs_item_key_to_cpu(leaf, &key, slot);
6194 if (key.objectid != ino ||
6195 key.type != BTRFS_DIR_INDEX_KEY ||
6196 key.offset != next->index)
6197 break;
6198
6199 slot++;
6200 *last_ret = next;
6201 next = list_next_entry(next, log_list);
6202 }
6203
6204 return btrfs_del_items(trans, inode->root->log_root, path,
6205 path->slots[0], slot - path->slots[0]);
6206}
6207
6208static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6209 struct btrfs_inode *inode,
6210 struct btrfs_path *path,
6211 const struct list_head *delayed_del_list,
6212 struct btrfs_log_ctx *ctx)
6213{
6214 struct btrfs_root *log = inode->root->log_root;
6215 const struct btrfs_delayed_item *curr;
6216 u64 last_range_start = 0;
6217 u64 last_range_end = 0;
6218 struct btrfs_key key;
6219
6220 key.objectid = btrfs_ino(inode);
6221 key.type = BTRFS_DIR_INDEX_KEY;
6222 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6223 log_list);
6224
6225 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6226 const struct btrfs_delayed_item *last = curr;
6227 u64 first_dir_index = curr->index;
6228 u64 last_dir_index;
6229 bool deleted_items = false;
6230 int ret;
6231
6232 key.offset = curr->index;
6233 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6234 if (ret < 0) {
6235 return ret;
6236 } else if (ret == 0) {
6237 ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6238 delayed_del_list, curr,
6239 &last);
6240 if (ret)
6241 return ret;
6242 deleted_items = true;
6243 }
6244
6245 btrfs_release_path(path);
6246
6247 /*
6248 * If we deleted items from the leaf, it means we have a range
6249 * item logging their range, so no need to add one or update an
6250 * existing one. Otherwise we have to log a dir range item.
6251 */
6252 if (deleted_items)
6253 goto next_batch;
6254
6255 last_dir_index = last->index;
6256 ASSERT(last_dir_index >= first_dir_index);
6257 /*
6258 * If this range starts right after where the previous one ends,
6259 * then we want to reuse the previous range item and change its
6260 * end offset to the end of this range. This is just to minimize
6261 * leaf space usage, by avoiding adding a new range item.
6262 */
6263 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6264 first_dir_index = last_range_start;
6265
6266 ret = insert_dir_log_key(trans, log, path, key.objectid,
6267 first_dir_index, last_dir_index);
6268 if (ret)
6269 return ret;
6270
6271 last_range_start = first_dir_index;
6272 last_range_end = last_dir_index;
6273next_batch:
6274 curr = list_next_entry(last, log_list);
6275 }
6276
6277 return 0;
6278}
6279
6280static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6281 struct btrfs_inode *inode,
6282 struct btrfs_path *path,
6283 const struct list_head *delayed_del_list,
6284 struct btrfs_log_ctx *ctx)
6285{
6286 /*
6287 * We are deleting dir index items from the log tree or adding range
6288 * items to it.
6289 */
6290 lockdep_assert_held(&inode->log_mutex);
6291
6292 if (list_empty(delayed_del_list))
6293 return 0;
6294
6295 if (ctx->logged_before)
6296 return log_delayed_deletions_incremental(trans, inode, path,
6297 delayed_del_list, ctx);
6298
6299 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6300 ctx);
6301}
6302
6303/*
6304 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6305 * items instead of the subvolume tree.
6306 */
6307static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6308 struct btrfs_inode *inode,
6309 const struct list_head *delayed_ins_list,
6310 struct btrfs_log_ctx *ctx)
6311{
6312 const bool orig_log_new_dentries = ctx->log_new_dentries;
6313 struct btrfs_fs_info *fs_info = trans->fs_info;
6314 struct btrfs_delayed_item *item;
6315 int ret = 0;
6316
6317 /*
6318 * No need for the log mutex, plus to avoid potential deadlocks or
6319 * lockdep annotations due to nesting of delayed inode mutexes and log
6320 * mutexes.
6321 */
6322 lockdep_assert_not_held(&inode->log_mutex);
6323
6324 ASSERT(!ctx->logging_new_delayed_dentries);
6325 ctx->logging_new_delayed_dentries = true;
6326
6327 list_for_each_entry(item, delayed_ins_list, log_list) {
6328 struct btrfs_dir_item *dir_item;
6329 struct inode *di_inode;
6330 struct btrfs_key key;
6331 int log_mode = LOG_INODE_EXISTS;
6332
6333 dir_item = (struct btrfs_dir_item *)item->data;
6334 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6335
6336 if (key.type == BTRFS_ROOT_ITEM_KEY)
6337 continue;
6338
6339 di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6340 if (IS_ERR(di_inode)) {
6341 ret = PTR_ERR(di_inode);
6342 break;
6343 }
6344
6345 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6346 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6347 continue;
6348 }
6349
6350 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6351 log_mode = LOG_INODE_ALL;
6352
6353 ctx->log_new_dentries = false;
6354 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6355
6356 if (!ret && ctx->log_new_dentries)
6357 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6358
6359 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6360
6361 if (ret)
6362 break;
6363 }
6364
6365 ctx->log_new_dentries = orig_log_new_dentries;
6366 ctx->logging_new_delayed_dentries = false;
6367
6368 return ret;
6369}
6370
6371/* log a single inode in the tree log.
6372 * At least one parent directory for this inode must exist in the tree
6373 * or be logged already.
6374 *
6375 * Any items from this inode changed by the current transaction are copied
6376 * to the log tree. An extra reference is taken on any extents in this
6377 * file, allowing us to avoid a whole pile of corner cases around logging
6378 * blocks that have been removed from the tree.
6379 *
6380 * See LOG_INODE_ALL and related defines for a description of what inode_only
6381 * does.
6382 *
6383 * This handles both files and directories.
6384 */
6385static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6386 struct btrfs_inode *inode,
6387 int inode_only,
6388 struct btrfs_log_ctx *ctx)
6389{
6390 struct btrfs_path *path;
6391 struct btrfs_path *dst_path;
6392 struct btrfs_key min_key;
6393 struct btrfs_key max_key;
6394 struct btrfs_root *log = inode->root->log_root;
6395 int ret;
6396 bool fast_search = false;
6397 u64 ino = btrfs_ino(inode);
6398 struct extent_map_tree *em_tree = &inode->extent_tree;
6399 u64 logged_isize = 0;
6400 bool need_log_inode_item = true;
6401 bool xattrs_logged = false;
6402 bool inode_item_dropped = true;
6403 bool full_dir_logging = false;
6404 LIST_HEAD(delayed_ins_list);
6405 LIST_HEAD(delayed_del_list);
6406
6407 path = btrfs_alloc_path();
6408 if (!path)
6409 return -ENOMEM;
6410 dst_path = btrfs_alloc_path();
6411 if (!dst_path) {
6412 btrfs_free_path(path);
6413 return -ENOMEM;
6414 }
6415
6416 min_key.objectid = ino;
6417 min_key.type = BTRFS_INODE_ITEM_KEY;
6418 min_key.offset = 0;
6419
6420 max_key.objectid = ino;
6421
6422
6423 /* today the code can only do partial logging of directories */
6424 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6425 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6426 &inode->runtime_flags) &&
6427 inode_only >= LOG_INODE_EXISTS))
6428 max_key.type = BTRFS_XATTR_ITEM_KEY;
6429 else
6430 max_key.type = (u8)-1;
6431 max_key.offset = (u64)-1;
6432
6433 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6434 full_dir_logging = true;
6435
6436 /*
6437 * If we are logging a directory while we are logging dentries of the
6438 * delayed items of some other inode, then we need to flush the delayed
6439 * items of this directory and not log the delayed items directly. This
6440 * is to prevent more than one level of recursion into btrfs_log_inode()
6441 * by having something like this:
6442 *
6443 * $ mkdir -p a/b/c/d/e/f/g/h/...
6444 * $ xfs_io -c "fsync" a
6445 *
6446 * Where all directories in the path did not exist before and are
6447 * created in the current transaction.
6448 * So in such a case we directly log the delayed items of the main
6449 * directory ("a") without flushing them first, while for each of its
6450 * subdirectories we flush their delayed items before logging them.
6451 * This prevents a potential unbounded recursion like this:
6452 *
6453 * btrfs_log_inode()
6454 * log_new_delayed_dentries()
6455 * btrfs_log_inode()
6456 * log_new_delayed_dentries()
6457 * btrfs_log_inode()
6458 * log_new_delayed_dentries()
6459 * (...)
6460 *
6461 * We have thresholds for the maximum number of delayed items to have in
6462 * memory, and once they are hit, the items are flushed asynchronously.
6463 * However the limit is quite high, so lets prevent deep levels of
6464 * recursion to happen by limiting the maximum depth to be 1.
6465 */
6466 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6467 ret = btrfs_commit_inode_delayed_items(trans, inode);
6468 if (ret)
6469 goto out;
6470 }
6471
6472 mutex_lock(&inode->log_mutex);
6473
6474 /*
6475 * For symlinks, we must always log their content, which is stored in an
6476 * inline extent, otherwise we could end up with an empty symlink after
6477 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6478 * one attempts to create an empty symlink).
6479 * We don't need to worry about flushing delalloc, because when we create
6480 * the inline extent when the symlink is created (we never have delalloc
6481 * for symlinks).
6482 */
6483 if (S_ISLNK(inode->vfs_inode.i_mode))
6484 inode_only = LOG_INODE_ALL;
6485
6486 /*
6487 * Before logging the inode item, cache the value returned by
6488 * inode_logged(), because after that we have the need to figure out if
6489 * the inode was previously logged in this transaction.
6490 */
6491 ret = inode_logged(trans, inode, path);
6492 if (ret < 0)
6493 goto out_unlock;
6494 ctx->logged_before = (ret == 1);
6495 ret = 0;
6496
6497 /*
6498 * This is for cases where logging a directory could result in losing a
6499 * a file after replaying the log. For example, if we move a file from a
6500 * directory A to a directory B, then fsync directory A, we have no way
6501 * to known the file was moved from A to B, so logging just A would
6502 * result in losing the file after a log replay.
6503 */
6504 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6505 ret = BTRFS_LOG_FORCE_COMMIT;
6506 goto out_unlock;
6507 }
6508
6509 /*
6510 * a brute force approach to making sure we get the most uptodate
6511 * copies of everything.
6512 */
6513 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6514 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6515 if (ctx->logged_before)
6516 ret = drop_inode_items(trans, log, path, inode,
6517 BTRFS_XATTR_ITEM_KEY);
6518 } else {
6519 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6520 /*
6521 * Make sure the new inode item we write to the log has
6522 * the same isize as the current one (if it exists).
6523 * This is necessary to prevent data loss after log
6524 * replay, and also to prevent doing a wrong expanding
6525 * truncate - for e.g. create file, write 4K into offset
6526 * 0, fsync, write 4K into offset 4096, add hard link,
6527 * fsync some other file (to sync log), power fail - if
6528 * we use the inode's current i_size, after log replay
6529 * we get a 8Kb file, with the last 4Kb extent as a hole
6530 * (zeroes), as if an expanding truncate happened,
6531 * instead of getting a file of 4Kb only.
6532 */
6533 ret = logged_inode_size(log, inode, path, &logged_isize);
6534 if (ret)
6535 goto out_unlock;
6536 }
6537 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6538 &inode->runtime_flags)) {
6539 if (inode_only == LOG_INODE_EXISTS) {
6540 max_key.type = BTRFS_XATTR_ITEM_KEY;
6541 if (ctx->logged_before)
6542 ret = drop_inode_items(trans, log, path,
6543 inode, max_key.type);
6544 } else {
6545 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6546 &inode->runtime_flags);
6547 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6548 &inode->runtime_flags);
6549 if (ctx->logged_before)
6550 ret = truncate_inode_items(trans, log,
6551 inode, 0, 0);
6552 }
6553 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6554 &inode->runtime_flags) ||
6555 inode_only == LOG_INODE_EXISTS) {
6556 if (inode_only == LOG_INODE_ALL)
6557 fast_search = true;
6558 max_key.type = BTRFS_XATTR_ITEM_KEY;
6559 if (ctx->logged_before)
6560 ret = drop_inode_items(trans, log, path, inode,
6561 max_key.type);
6562 } else {
6563 if (inode_only == LOG_INODE_ALL)
6564 fast_search = true;
6565 inode_item_dropped = false;
6566 goto log_extents;
6567 }
6568
6569 }
6570 if (ret)
6571 goto out_unlock;
6572
6573 /*
6574 * If we are logging a directory in full mode, collect the delayed items
6575 * before iterating the subvolume tree, so that we don't miss any new
6576 * dir index items in case they get flushed while or right after we are
6577 * iterating the subvolume tree.
6578 */
6579 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6580 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6581 &delayed_del_list);
6582
6583 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6584 path, dst_path, logged_isize,
6585 inode_only, ctx,
6586 &need_log_inode_item);
6587 if (ret)
6588 goto out_unlock;
6589
6590 btrfs_release_path(path);
6591 btrfs_release_path(dst_path);
6592 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6593 if (ret)
6594 goto out_unlock;
6595 xattrs_logged = true;
6596 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6597 btrfs_release_path(path);
6598 btrfs_release_path(dst_path);
6599 ret = btrfs_log_holes(trans, inode, path);
6600 if (ret)
6601 goto out_unlock;
6602 }
6603log_extents:
6604 btrfs_release_path(path);
6605 btrfs_release_path(dst_path);
6606 if (need_log_inode_item) {
6607 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6608 if (ret)
6609 goto out_unlock;
6610 /*
6611 * If we are doing a fast fsync and the inode was logged before
6612 * in this transaction, we don't need to log the xattrs because
6613 * they were logged before. If xattrs were added, changed or
6614 * deleted since the last time we logged the inode, then we have
6615 * already logged them because the inode had the runtime flag
6616 * BTRFS_INODE_COPY_EVERYTHING set.
6617 */
6618 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6619 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6620 if (ret)
6621 goto out_unlock;
6622 btrfs_release_path(path);
6623 }
6624 }
6625 if (fast_search) {
6626 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6627 if (ret)
6628 goto out_unlock;
6629 } else if (inode_only == LOG_INODE_ALL) {
6630 struct extent_map *em, *n;
6631
6632 write_lock(&em_tree->lock);
6633 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6634 list_del_init(&em->list);
6635 write_unlock(&em_tree->lock);
6636 }
6637
6638 if (full_dir_logging) {
6639 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6640 if (ret)
6641 goto out_unlock;
6642 ret = log_delayed_insertion_items(trans, inode, path,
6643 &delayed_ins_list, ctx);
6644 if (ret)
6645 goto out_unlock;
6646 ret = log_delayed_deletion_items(trans, inode, path,
6647 &delayed_del_list, ctx);
6648 if (ret)
6649 goto out_unlock;
6650 }
6651
6652 spin_lock(&inode->lock);
6653 inode->logged_trans = trans->transid;
6654 /*
6655 * Don't update last_log_commit if we logged that an inode exists.
6656 * We do this for three reasons:
6657 *
6658 * 1) We might have had buffered writes to this inode that were
6659 * flushed and had their ordered extents completed in this
6660 * transaction, but we did not previously log the inode with
6661 * LOG_INODE_ALL. Later the inode was evicted and after that
6662 * it was loaded again and this LOG_INODE_EXISTS log operation
6663 * happened. We must make sure that if an explicit fsync against
6664 * the inode is performed later, it logs the new extents, an
6665 * updated inode item, etc, and syncs the log. The same logic
6666 * applies to direct IO writes instead of buffered writes.
6667 *
6668 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6669 * is logged with an i_size of 0 or whatever value was logged
6670 * before. If later the i_size of the inode is increased by a
6671 * truncate operation, the log is synced through an fsync of
6672 * some other inode and then finally an explicit fsync against
6673 * this inode is made, we must make sure this fsync logs the
6674 * inode with the new i_size, the hole between old i_size and
6675 * the new i_size, and syncs the log.
6676 *
6677 * 3) If we are logging that an ancestor inode exists as part of
6678 * logging a new name from a link or rename operation, don't update
6679 * its last_log_commit - otherwise if an explicit fsync is made
6680 * against an ancestor, the fsync considers the inode in the log
6681 * and doesn't sync the log, resulting in the ancestor missing after
6682 * a power failure unless the log was synced as part of an fsync
6683 * against any other unrelated inode.
6684 */
6685 if (inode_only != LOG_INODE_EXISTS)
6686 inode->last_log_commit = inode->last_sub_trans;
6687 spin_unlock(&inode->lock);
6688
6689 /*
6690 * Reset the last_reflink_trans so that the next fsync does not need to
6691 * go through the slower path when logging extents and their checksums.
6692 */
6693 if (inode_only == LOG_INODE_ALL)
6694 inode->last_reflink_trans = 0;
6695
6696out_unlock:
6697 mutex_unlock(&inode->log_mutex);
6698out:
6699 btrfs_free_path(path);
6700 btrfs_free_path(dst_path);
6701
6702 if (ret)
6703 free_conflicting_inodes(ctx);
6704 else
6705 ret = log_conflicting_inodes(trans, inode->root, ctx);
6706
6707 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6708 if (!ret)
6709 ret = log_new_delayed_dentries(trans, inode,
6710 &delayed_ins_list, ctx);
6711
6712 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6713 &delayed_del_list);
6714 }
6715
6716 return ret;
6717}
6718
6719static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6720 struct btrfs_inode *inode,
6721 struct btrfs_log_ctx *ctx)
6722{
6723 struct btrfs_fs_info *fs_info = trans->fs_info;
6724 int ret;
6725 struct btrfs_path *path;
6726 struct btrfs_key key;
6727 struct btrfs_root *root = inode->root;
6728 const u64 ino = btrfs_ino(inode);
6729
6730 path = btrfs_alloc_path();
6731 if (!path)
6732 return -ENOMEM;
6733 path->skip_locking = 1;
6734 path->search_commit_root = 1;
6735
6736 key.objectid = ino;
6737 key.type = BTRFS_INODE_REF_KEY;
6738 key.offset = 0;
6739 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6740 if (ret < 0)
6741 goto out;
6742
6743 while (true) {
6744 struct extent_buffer *leaf = path->nodes[0];
6745 int slot = path->slots[0];
6746 u32 cur_offset = 0;
6747 u32 item_size;
6748 unsigned long ptr;
6749
6750 if (slot >= btrfs_header_nritems(leaf)) {
6751 ret = btrfs_next_leaf(root, path);
6752 if (ret < 0)
6753 goto out;
6754 else if (ret > 0)
6755 break;
6756 continue;
6757 }
6758
6759 btrfs_item_key_to_cpu(leaf, &key, slot);
6760 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6761 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6762 break;
6763
6764 item_size = btrfs_item_size(leaf, slot);
6765 ptr = btrfs_item_ptr_offset(leaf, slot);
6766 while (cur_offset < item_size) {
6767 struct btrfs_key inode_key;
6768 struct inode *dir_inode;
6769
6770 inode_key.type = BTRFS_INODE_ITEM_KEY;
6771 inode_key.offset = 0;
6772
6773 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6774 struct btrfs_inode_extref *extref;
6775
6776 extref = (struct btrfs_inode_extref *)
6777 (ptr + cur_offset);
6778 inode_key.objectid = btrfs_inode_extref_parent(
6779 leaf, extref);
6780 cur_offset += sizeof(*extref);
6781 cur_offset += btrfs_inode_extref_name_len(leaf,
6782 extref);
6783 } else {
6784 inode_key.objectid = key.offset;
6785 cur_offset = item_size;
6786 }
6787
6788 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6789 root);
6790 /*
6791 * If the parent inode was deleted, return an error to
6792 * fallback to a transaction commit. This is to prevent
6793 * getting an inode that was moved from one parent A to
6794 * a parent B, got its former parent A deleted and then
6795 * it got fsync'ed, from existing at both parents after
6796 * a log replay (and the old parent still existing).
6797 * Example:
6798 *
6799 * mkdir /mnt/A
6800 * mkdir /mnt/B
6801 * touch /mnt/B/bar
6802 * sync
6803 * mv /mnt/B/bar /mnt/A/bar
6804 * mv -T /mnt/A /mnt/B
6805 * fsync /mnt/B/bar
6806 * <power fail>
6807 *
6808 * If we ignore the old parent B which got deleted,
6809 * after a log replay we would have file bar linked
6810 * at both parents and the old parent B would still
6811 * exist.
6812 */
6813 if (IS_ERR(dir_inode)) {
6814 ret = PTR_ERR(dir_inode);
6815 goto out;
6816 }
6817
6818 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6819 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6820 continue;
6821 }
6822
6823 ctx->log_new_dentries = false;
6824 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6825 LOG_INODE_ALL, ctx);
6826 if (!ret && ctx->log_new_dentries)
6827 ret = log_new_dir_dentries(trans,
6828 BTRFS_I(dir_inode), ctx);
6829 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6830 if (ret)
6831 goto out;
6832 }
6833 path->slots[0]++;
6834 }
6835 ret = 0;
6836out:
6837 btrfs_free_path(path);
6838 return ret;
6839}
6840
6841static int log_new_ancestors(struct btrfs_trans_handle *trans,
6842 struct btrfs_root *root,
6843 struct btrfs_path *path,
6844 struct btrfs_log_ctx *ctx)
6845{
6846 struct btrfs_key found_key;
6847
6848 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6849
6850 while (true) {
6851 struct btrfs_fs_info *fs_info = root->fs_info;
6852 struct extent_buffer *leaf;
6853 int slot;
6854 struct btrfs_key search_key;
6855 struct inode *inode;
6856 u64 ino;
6857 int ret = 0;
6858
6859 btrfs_release_path(path);
6860
6861 ino = found_key.offset;
6862
6863 search_key.objectid = found_key.offset;
6864 search_key.type = BTRFS_INODE_ITEM_KEY;
6865 search_key.offset = 0;
6866 inode = btrfs_iget(fs_info->sb, ino, root);
6867 if (IS_ERR(inode))
6868 return PTR_ERR(inode);
6869
6870 if (BTRFS_I(inode)->generation >= trans->transid &&
6871 need_log_inode(trans, BTRFS_I(inode)))
6872 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6873 LOG_INODE_EXISTS, ctx);
6874 btrfs_add_delayed_iput(BTRFS_I(inode));
6875 if (ret)
6876 return ret;
6877
6878 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6879 break;
6880
6881 search_key.type = BTRFS_INODE_REF_KEY;
6882 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6883 if (ret < 0)
6884 return ret;
6885
6886 leaf = path->nodes[0];
6887 slot = path->slots[0];
6888 if (slot >= btrfs_header_nritems(leaf)) {
6889 ret = btrfs_next_leaf(root, path);
6890 if (ret < 0)
6891 return ret;
6892 else if (ret > 0)
6893 return -ENOENT;
6894 leaf = path->nodes[0];
6895 slot = path->slots[0];
6896 }
6897
6898 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6899 if (found_key.objectid != search_key.objectid ||
6900 found_key.type != BTRFS_INODE_REF_KEY)
6901 return -ENOENT;
6902 }
6903 return 0;
6904}
6905
6906static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6907 struct btrfs_inode *inode,
6908 struct dentry *parent,
6909 struct btrfs_log_ctx *ctx)
6910{
6911 struct btrfs_root *root = inode->root;
6912 struct dentry *old_parent = NULL;
6913 struct super_block *sb = inode->vfs_inode.i_sb;
6914 int ret = 0;
6915
6916 while (true) {
6917 if (!parent || d_really_is_negative(parent) ||
6918 sb != parent->d_sb)
6919 break;
6920
6921 inode = BTRFS_I(d_inode(parent));
6922 if (root != inode->root)
6923 break;
6924
6925 if (inode->generation >= trans->transid &&
6926 need_log_inode(trans, inode)) {
6927 ret = btrfs_log_inode(trans, inode,
6928 LOG_INODE_EXISTS, ctx);
6929 if (ret)
6930 break;
6931 }
6932 if (IS_ROOT(parent))
6933 break;
6934
6935 parent = dget_parent(parent);
6936 dput(old_parent);
6937 old_parent = parent;
6938 }
6939 dput(old_parent);
6940
6941 return ret;
6942}
6943
6944static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6945 struct btrfs_inode *inode,
6946 struct dentry *parent,
6947 struct btrfs_log_ctx *ctx)
6948{
6949 struct btrfs_root *root = inode->root;
6950 const u64 ino = btrfs_ino(inode);
6951 struct btrfs_path *path;
6952 struct btrfs_key search_key;
6953 int ret;
6954
6955 /*
6956 * For a single hard link case, go through a fast path that does not
6957 * need to iterate the fs/subvolume tree.
6958 */
6959 if (inode->vfs_inode.i_nlink < 2)
6960 return log_new_ancestors_fast(trans, inode, parent, ctx);
6961
6962 path = btrfs_alloc_path();
6963 if (!path)
6964 return -ENOMEM;
6965
6966 search_key.objectid = ino;
6967 search_key.type = BTRFS_INODE_REF_KEY;
6968 search_key.offset = 0;
6969again:
6970 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6971 if (ret < 0)
6972 goto out;
6973 if (ret == 0)
6974 path->slots[0]++;
6975
6976 while (true) {
6977 struct extent_buffer *leaf = path->nodes[0];
6978 int slot = path->slots[0];
6979 struct btrfs_key found_key;
6980
6981 if (slot >= btrfs_header_nritems(leaf)) {
6982 ret = btrfs_next_leaf(root, path);
6983 if (ret < 0)
6984 goto out;
6985 else if (ret > 0)
6986 break;
6987 continue;
6988 }
6989
6990 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6991 if (found_key.objectid != ino ||
6992 found_key.type > BTRFS_INODE_EXTREF_KEY)
6993 break;
6994
6995 /*
6996 * Don't deal with extended references because they are rare
6997 * cases and too complex to deal with (we would need to keep
6998 * track of which subitem we are processing for each item in
6999 * this loop, etc). So just return some error to fallback to
7000 * a transaction commit.
7001 */
7002 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7003 ret = -EMLINK;
7004 goto out;
7005 }
7006
7007 /*
7008 * Logging ancestors needs to do more searches on the fs/subvol
7009 * tree, so it releases the path as needed to avoid deadlocks.
7010 * Keep track of the last inode ref key and resume from that key
7011 * after logging all new ancestors for the current hard link.
7012 */
7013 memcpy(&search_key, &found_key, sizeof(search_key));
7014
7015 ret = log_new_ancestors(trans, root, path, ctx);
7016 if (ret)
7017 goto out;
7018 btrfs_release_path(path);
7019 goto again;
7020 }
7021 ret = 0;
7022out:
7023 btrfs_free_path(path);
7024 return ret;
7025}
7026
7027/*
7028 * helper function around btrfs_log_inode to make sure newly created
7029 * parent directories also end up in the log. A minimal inode and backref
7030 * only logging is done of any parent directories that are older than
7031 * the last committed transaction
7032 */
7033static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7034 struct btrfs_inode *inode,
7035 struct dentry *parent,
7036 int inode_only,
7037 struct btrfs_log_ctx *ctx)
7038{
7039 struct btrfs_root *root = inode->root;
7040 struct btrfs_fs_info *fs_info = root->fs_info;
7041 int ret = 0;
7042 bool log_dentries = false;
7043
7044 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7045 ret = BTRFS_LOG_FORCE_COMMIT;
7046 goto end_no_trans;
7047 }
7048
7049 if (btrfs_root_refs(&root->root_item) == 0) {
7050 ret = BTRFS_LOG_FORCE_COMMIT;
7051 goto end_no_trans;
7052 }
7053
7054 /*
7055 * Skip already logged inodes or inodes corresponding to tmpfiles
7056 * (since logging them is pointless, a link count of 0 means they
7057 * will never be accessible).
7058 */
7059 if ((btrfs_inode_in_log(inode, trans->transid) &&
7060 list_empty(&ctx->ordered_extents)) ||
7061 inode->vfs_inode.i_nlink == 0) {
7062 ret = BTRFS_NO_LOG_SYNC;
7063 goto end_no_trans;
7064 }
7065
7066 ret = start_log_trans(trans, root, ctx);
7067 if (ret)
7068 goto end_no_trans;
7069
7070 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7071 if (ret)
7072 goto end_trans;
7073
7074 /*
7075 * for regular files, if its inode is already on disk, we don't
7076 * have to worry about the parents at all. This is because
7077 * we can use the last_unlink_trans field to record renames
7078 * and other fun in this file.
7079 */
7080 if (S_ISREG(inode->vfs_inode.i_mode) &&
7081 inode->generation < trans->transid &&
7082 inode->last_unlink_trans < trans->transid) {
7083 ret = 0;
7084 goto end_trans;
7085 }
7086
7087 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7088 log_dentries = true;
7089
7090 /*
7091 * On unlink we must make sure all our current and old parent directory
7092 * inodes are fully logged. This is to prevent leaving dangling
7093 * directory index entries in directories that were our parents but are
7094 * not anymore. Not doing this results in old parent directory being
7095 * impossible to delete after log replay (rmdir will always fail with
7096 * error -ENOTEMPTY).
7097 *
7098 * Example 1:
7099 *
7100 * mkdir testdir
7101 * touch testdir/foo
7102 * ln testdir/foo testdir/bar
7103 * sync
7104 * unlink testdir/bar
7105 * xfs_io -c fsync testdir/foo
7106 * <power failure>
7107 * mount fs, triggers log replay
7108 *
7109 * If we don't log the parent directory (testdir), after log replay the
7110 * directory still has an entry pointing to the file inode using the bar
7111 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7112 * the file inode has a link count of 1.
7113 *
7114 * Example 2:
7115 *
7116 * mkdir testdir
7117 * touch foo
7118 * ln foo testdir/foo2
7119 * ln foo testdir/foo3
7120 * sync
7121 * unlink testdir/foo3
7122 * xfs_io -c fsync foo
7123 * <power failure>
7124 * mount fs, triggers log replay
7125 *
7126 * Similar as the first example, after log replay the parent directory
7127 * testdir still has an entry pointing to the inode file with name foo3
7128 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7129 * and has a link count of 2.
7130 */
7131 if (inode->last_unlink_trans >= trans->transid) {
7132 ret = btrfs_log_all_parents(trans, inode, ctx);
7133 if (ret)
7134 goto end_trans;
7135 }
7136
7137 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7138 if (ret)
7139 goto end_trans;
7140
7141 if (log_dentries)
7142 ret = log_new_dir_dentries(trans, inode, ctx);
7143 else
7144 ret = 0;
7145end_trans:
7146 if (ret < 0) {
7147 btrfs_set_log_full_commit(trans);
7148 ret = BTRFS_LOG_FORCE_COMMIT;
7149 }
7150
7151 if (ret)
7152 btrfs_remove_log_ctx(root, ctx);
7153 btrfs_end_log_trans(root);
7154end_no_trans:
7155 return ret;
7156}
7157
7158/*
7159 * it is not safe to log dentry if the chunk root has added new
7160 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7161 * If this returns 1, you must commit the transaction to safely get your
7162 * data on disk.
7163 */
7164int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7165 struct dentry *dentry,
7166 struct btrfs_log_ctx *ctx)
7167{
7168 struct dentry *parent = dget_parent(dentry);
7169 int ret;
7170
7171 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7172 LOG_INODE_ALL, ctx);
7173 dput(parent);
7174
7175 return ret;
7176}
7177
7178/*
7179 * should be called during mount to recover any replay any log trees
7180 * from the FS
7181 */
7182int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7183{
7184 int ret;
7185 struct btrfs_path *path;
7186 struct btrfs_trans_handle *trans;
7187 struct btrfs_key key;
7188 struct btrfs_key found_key;
7189 struct btrfs_root *log;
7190 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7191 struct walk_control wc = {
7192 .process_func = process_one_buffer,
7193 .stage = LOG_WALK_PIN_ONLY,
7194 };
7195
7196 path = btrfs_alloc_path();
7197 if (!path)
7198 return -ENOMEM;
7199
7200 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7201
7202 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7203 if (IS_ERR(trans)) {
7204 ret = PTR_ERR(trans);
7205 goto error;
7206 }
7207
7208 wc.trans = trans;
7209 wc.pin = 1;
7210
7211 ret = walk_log_tree(trans, log_root_tree, &wc);
7212 if (ret) {
7213 btrfs_abort_transaction(trans, ret);
7214 goto error;
7215 }
7216
7217again:
7218 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7219 key.offset = (u64)-1;
7220 key.type = BTRFS_ROOT_ITEM_KEY;
7221
7222 while (1) {
7223 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7224
7225 if (ret < 0) {
7226 btrfs_abort_transaction(trans, ret);
7227 goto error;
7228 }
7229 if (ret > 0) {
7230 if (path->slots[0] == 0)
7231 break;
7232 path->slots[0]--;
7233 }
7234 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7235 path->slots[0]);
7236 btrfs_release_path(path);
7237 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7238 break;
7239
7240 log = btrfs_read_tree_root(log_root_tree, &found_key);
7241 if (IS_ERR(log)) {
7242 ret = PTR_ERR(log);
7243 btrfs_abort_transaction(trans, ret);
7244 goto error;
7245 }
7246
7247 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7248 true);
7249 if (IS_ERR(wc.replay_dest)) {
7250 ret = PTR_ERR(wc.replay_dest);
7251
7252 /*
7253 * We didn't find the subvol, likely because it was
7254 * deleted. This is ok, simply skip this log and go to
7255 * the next one.
7256 *
7257 * We need to exclude the root because we can't have
7258 * other log replays overwriting this log as we'll read
7259 * it back in a few more times. This will keep our
7260 * block from being modified, and we'll just bail for
7261 * each subsequent pass.
7262 */
7263 if (ret == -ENOENT)
7264 ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7265 btrfs_put_root(log);
7266
7267 if (!ret)
7268 goto next;
7269 btrfs_abort_transaction(trans, ret);
7270 goto error;
7271 }
7272
7273 wc.replay_dest->log_root = log;
7274 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7275 if (ret)
7276 /* The loop needs to continue due to the root refs */
7277 btrfs_abort_transaction(trans, ret);
7278 else
7279 ret = walk_log_tree(trans, log, &wc);
7280
7281 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7282 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7283 path);
7284 if (ret)
7285 btrfs_abort_transaction(trans, ret);
7286 }
7287
7288 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7289 struct btrfs_root *root = wc.replay_dest;
7290
7291 btrfs_release_path(path);
7292
7293 /*
7294 * We have just replayed everything, and the highest
7295 * objectid of fs roots probably has changed in case
7296 * some inode_item's got replayed.
7297 *
7298 * root->objectid_mutex is not acquired as log replay
7299 * could only happen during mount.
7300 */
7301 ret = btrfs_init_root_free_objectid(root);
7302 if (ret)
7303 btrfs_abort_transaction(trans, ret);
7304 }
7305
7306 wc.replay_dest->log_root = NULL;
7307 btrfs_put_root(wc.replay_dest);
7308 btrfs_put_root(log);
7309
7310 if (ret)
7311 goto error;
7312next:
7313 if (found_key.offset == 0)
7314 break;
7315 key.offset = found_key.offset - 1;
7316 }
7317 btrfs_release_path(path);
7318
7319 /* step one is to pin it all, step two is to replay just inodes */
7320 if (wc.pin) {
7321 wc.pin = 0;
7322 wc.process_func = replay_one_buffer;
7323 wc.stage = LOG_WALK_REPLAY_INODES;
7324 goto again;
7325 }
7326 /* step three is to replay everything */
7327 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7328 wc.stage++;
7329 goto again;
7330 }
7331
7332 btrfs_free_path(path);
7333
7334 /* step 4: commit the transaction, which also unpins the blocks */
7335 ret = btrfs_commit_transaction(trans);
7336 if (ret)
7337 return ret;
7338
7339 log_root_tree->log_root = NULL;
7340 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7341 btrfs_put_root(log_root_tree);
7342
7343 return 0;
7344error:
7345 if (wc.trans)
7346 btrfs_end_transaction(wc.trans);
7347 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7348 btrfs_free_path(path);
7349 return ret;
7350}
7351
7352/*
7353 * there are some corner cases where we want to force a full
7354 * commit instead of allowing a directory to be logged.
7355 *
7356 * They revolve around files there were unlinked from the directory, and
7357 * this function updates the parent directory so that a full commit is
7358 * properly done if it is fsync'd later after the unlinks are done.
7359 *
7360 * Must be called before the unlink operations (updates to the subvolume tree,
7361 * inodes, etc) are done.
7362 */
7363void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7364 struct btrfs_inode *dir, struct btrfs_inode *inode,
7365 bool for_rename)
7366{
7367 /*
7368 * when we're logging a file, if it hasn't been renamed
7369 * or unlinked, and its inode is fully committed on disk,
7370 * we don't have to worry about walking up the directory chain
7371 * to log its parents.
7372 *
7373 * So, we use the last_unlink_trans field to put this transid
7374 * into the file. When the file is logged we check it and
7375 * don't log the parents if the file is fully on disk.
7376 */
7377 mutex_lock(&inode->log_mutex);
7378 inode->last_unlink_trans = trans->transid;
7379 mutex_unlock(&inode->log_mutex);
7380
7381 if (!for_rename)
7382 return;
7383
7384 /*
7385 * If this directory was already logged, any new names will be logged
7386 * with btrfs_log_new_name() and old names will be deleted from the log
7387 * tree with btrfs_del_dir_entries_in_log() or with
7388 * btrfs_del_inode_ref_in_log().
7389 */
7390 if (inode_logged(trans, dir, NULL) == 1)
7391 return;
7392
7393 /*
7394 * If the inode we're about to unlink was logged before, the log will be
7395 * properly updated with the new name with btrfs_log_new_name() and the
7396 * old name removed with btrfs_del_dir_entries_in_log() or with
7397 * btrfs_del_inode_ref_in_log().
7398 */
7399 if (inode_logged(trans, inode, NULL) == 1)
7400 return;
7401
7402 /*
7403 * when renaming files across directories, if the directory
7404 * there we're unlinking from gets fsync'd later on, there's
7405 * no way to find the destination directory later and fsync it
7406 * properly. So, we have to be conservative and force commits
7407 * so the new name gets discovered.
7408 */
7409 mutex_lock(&dir->log_mutex);
7410 dir->last_unlink_trans = trans->transid;
7411 mutex_unlock(&dir->log_mutex);
7412}
7413
7414/*
7415 * Make sure that if someone attempts to fsync the parent directory of a deleted
7416 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7417 * that after replaying the log tree of the parent directory's root we will not
7418 * see the snapshot anymore and at log replay time we will not see any log tree
7419 * corresponding to the deleted snapshot's root, which could lead to replaying
7420 * it after replaying the log tree of the parent directory (which would replay
7421 * the snapshot delete operation).
7422 *
7423 * Must be called before the actual snapshot destroy operation (updates to the
7424 * parent root and tree of tree roots trees, etc) are done.
7425 */
7426void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7427 struct btrfs_inode *dir)
7428{
7429 mutex_lock(&dir->log_mutex);
7430 dir->last_unlink_trans = trans->transid;
7431 mutex_unlock(&dir->log_mutex);
7432}
7433
7434/*
7435 * Update the log after adding a new name for an inode.
7436 *
7437 * @trans: Transaction handle.
7438 * @old_dentry: The dentry associated with the old name and the old
7439 * parent directory.
7440 * @old_dir: The inode of the previous parent directory for the case
7441 * of a rename. For a link operation, it must be NULL.
7442 * @old_dir_index: The index number associated with the old name, meaningful
7443 * only for rename operations (when @old_dir is not NULL).
7444 * Ignored for link operations.
7445 * @parent: The dentry associated with the directory under which the
7446 * new name is located.
7447 *
7448 * Call this after adding a new name for an inode, as a result of a link or
7449 * rename operation, and it will properly update the log to reflect the new name.
7450 */
7451void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7452 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7453 u64 old_dir_index, struct dentry *parent)
7454{
7455 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7456 struct btrfs_root *root = inode->root;
7457 struct btrfs_log_ctx ctx;
7458 bool log_pinned = false;
7459 int ret;
7460
7461 /*
7462 * this will force the logging code to walk the dentry chain
7463 * up for the file
7464 */
7465 if (!S_ISDIR(inode->vfs_inode.i_mode))
7466 inode->last_unlink_trans = trans->transid;
7467
7468 /*
7469 * if this inode hasn't been logged and directory we're renaming it
7470 * from hasn't been logged, we don't need to log it
7471 */
7472 ret = inode_logged(trans, inode, NULL);
7473 if (ret < 0) {
7474 goto out;
7475 } else if (ret == 0) {
7476 if (!old_dir)
7477 return;
7478 /*
7479 * If the inode was not logged and we are doing a rename (old_dir is not
7480 * NULL), check if old_dir was logged - if it was not we can return and
7481 * do nothing.
7482 */
7483 ret = inode_logged(trans, old_dir, NULL);
7484 if (ret < 0)
7485 goto out;
7486 else if (ret == 0)
7487 return;
7488 }
7489 ret = 0;
7490
7491 /*
7492 * If we are doing a rename (old_dir is not NULL) from a directory that
7493 * was previously logged, make sure that on log replay we get the old
7494 * dir entry deleted. This is needed because we will also log the new
7495 * name of the renamed inode, so we need to make sure that after log
7496 * replay we don't end up with both the new and old dir entries existing.
7497 */
7498 if (old_dir && old_dir->logged_trans == trans->transid) {
7499 struct btrfs_root *log = old_dir->root->log_root;
7500 struct btrfs_path *path;
7501 struct fscrypt_name fname;
7502
7503 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7504
7505 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7506 &old_dentry->d_name, 0, &fname);
7507 if (ret)
7508 goto out;
7509 /*
7510 * We have two inodes to update in the log, the old directory and
7511 * the inode that got renamed, so we must pin the log to prevent
7512 * anyone from syncing the log until we have updated both inodes
7513 * in the log.
7514 */
7515 ret = join_running_log_trans(root);
7516 /*
7517 * At least one of the inodes was logged before, so this should
7518 * not fail, but if it does, it's not serious, just bail out and
7519 * mark the log for a full commit.
7520 */
7521 if (WARN_ON_ONCE(ret < 0)) {
7522 fscrypt_free_filename(&fname);
7523 goto out;
7524 }
7525
7526 log_pinned = true;
7527
7528 path = btrfs_alloc_path();
7529 if (!path) {
7530 ret = -ENOMEM;
7531 fscrypt_free_filename(&fname);
7532 goto out;
7533 }
7534
7535 /*
7536 * Other concurrent task might be logging the old directory,
7537 * as it can be triggered when logging other inode that had or
7538 * still has a dentry in the old directory. We lock the old
7539 * directory's log_mutex to ensure the deletion of the old
7540 * name is persisted, because during directory logging we
7541 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7542 * the old name's dir index item is in the delayed items, so
7543 * it could be missed by an in progress directory logging.
7544 */
7545 mutex_lock(&old_dir->log_mutex);
7546 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7547 &fname.disk_name, old_dir_index);
7548 if (ret > 0) {
7549 /*
7550 * The dentry does not exist in the log, so record its
7551 * deletion.
7552 */
7553 btrfs_release_path(path);
7554 ret = insert_dir_log_key(trans, log, path,
7555 btrfs_ino(old_dir),
7556 old_dir_index, old_dir_index);
7557 }
7558 mutex_unlock(&old_dir->log_mutex);
7559
7560 btrfs_free_path(path);
7561 fscrypt_free_filename(&fname);
7562 if (ret < 0)
7563 goto out;
7564 }
7565
7566 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7567 ctx.logging_new_name = true;
7568 btrfs_init_log_ctx_scratch_eb(&ctx);
7569 /*
7570 * We don't care about the return value. If we fail to log the new name
7571 * then we know the next attempt to sync the log will fallback to a full
7572 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7573 * we don't need to worry about getting a log committed that has an
7574 * inconsistent state after a rename operation.
7575 */
7576 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7577 free_extent_buffer(ctx.scratch_eb);
7578 ASSERT(list_empty(&ctx.conflict_inodes));
7579out:
7580 /*
7581 * If an error happened mark the log for a full commit because it's not
7582 * consistent and up to date or we couldn't find out if one of the
7583 * inodes was logged before in this transaction. Do it before unpinning
7584 * the log, to avoid any races with someone else trying to commit it.
7585 */
7586 if (ret < 0)
7587 btrfs_set_log_full_commit(trans);
7588 if (log_pinned)
7589 btrfs_end_log_trans(root);
7590}
7591