Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
17#include "backref.h"
18#include "compression.h"
19#include "qgroup.h"
20#include "inode-map.h"
21#include "block-group.h"
22#include "space-info.h"
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
36
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
95
96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct btrfs_inode *inode,
98 int inode_only,
99 const loff_t start,
100 const loff_t end,
101 struct btrfs_log_ctx *ctx);
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
142{
143 struct btrfs_fs_info *fs_info = root->fs_info;
144 int ret = 0;
145
146 mutex_lock(&root->log_mutex);
147
148 if (root->log_root) {
149 if (btrfs_need_log_full_commit(trans)) {
150 ret = -EAGAIN;
151 goto out;
152 }
153
154 if (!root->log_start_pid) {
155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 root->log_start_pid = current->pid;
157 } else if (root->log_start_pid != current->pid) {
158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 }
160 } else {
161 mutex_lock(&fs_info->tree_log_mutex);
162 if (!fs_info->log_root_tree)
163 ret = btrfs_init_log_root_tree(trans, fs_info);
164 mutex_unlock(&fs_info->tree_log_mutex);
165 if (ret)
166 goto out;
167
168 ret = btrfs_add_log_tree(trans, root);
169 if (ret)
170 goto out;
171
172 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
174 root->log_start_pid = current->pid;
175 }
176
177 atomic_inc(&root->log_batch);
178 atomic_inc(&root->log_writers);
179 if (ctx) {
180 int index = root->log_transid % 2;
181 list_add_tail(&ctx->list, &root->log_ctxs[index]);
182 ctx->log_transid = root->log_transid;
183 }
184
185out:
186 mutex_unlock(&root->log_mutex);
187 return ret;
188}
189
190/*
191 * returns 0 if there was a log transaction running and we were able
192 * to join, or returns -ENOENT if there were not transactions
193 * in progress
194 */
195static int join_running_log_trans(struct btrfs_root *root)
196{
197 int ret = -ENOENT;
198
199 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
200 return ret;
201
202 mutex_lock(&root->log_mutex);
203 if (root->log_root) {
204 ret = 0;
205 atomic_inc(&root->log_writers);
206 }
207 mutex_unlock(&root->log_mutex);
208 return ret;
209}
210
211/*
212 * This either makes the current running log transaction wait
213 * until you call btrfs_end_log_trans() or it makes any future
214 * log transactions wait until you call btrfs_end_log_trans()
215 */
216void btrfs_pin_log_trans(struct btrfs_root *root)
217{
218 mutex_lock(&root->log_mutex);
219 atomic_inc(&root->log_writers);
220 mutex_unlock(&root->log_mutex);
221}
222
223/*
224 * indicate we're done making changes to the log tree
225 * and wake up anyone waiting to do a sync
226 */
227void btrfs_end_log_trans(struct btrfs_root *root)
228{
229 if (atomic_dec_and_test(&root->log_writers)) {
230 /* atomic_dec_and_test implies a barrier */
231 cond_wake_up_nomb(&root->log_writer_wait);
232 }
233}
234
235static int btrfs_write_tree_block(struct extent_buffer *buf)
236{
237 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
238 buf->start + buf->len - 1);
239}
240
241static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
242{
243 filemap_fdatawait_range(buf->pages[0]->mapping,
244 buf->start, buf->start + buf->len - 1);
245}
246
247/*
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
252 */
253struct walk_control {
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
256 */
257 int free;
258
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
261 */
262 int write;
263
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
266 */
267 int wait;
268
269 /* pin only walk, we record which extents on disk belong to the
270 * log trees
271 */
272 int pin;
273
274 /* what stage of the replay code we're currently in */
275 int stage;
276
277 /*
278 * Ignore any items from the inode currently being processed. Needs
279 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
280 * the LOG_WALK_REPLAY_INODES stage.
281 */
282 bool ignore_cur_inode;
283
284 /* the root we are currently replaying */
285 struct btrfs_root *replay_dest;
286
287 /* the trans handle for the current replay */
288 struct btrfs_trans_handle *trans;
289
290 /* the function that gets used to process blocks we find in the
291 * tree. Note the extent_buffer might not be up to date when it is
292 * passed in, and it must be checked or read if you need the data
293 * inside it
294 */
295 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
296 struct walk_control *wc, u64 gen, int level);
297};
298
299/*
300 * process_func used to pin down extents, write them or wait on them
301 */
302static int process_one_buffer(struct btrfs_root *log,
303 struct extent_buffer *eb,
304 struct walk_control *wc, u64 gen, int level)
305{
306 struct btrfs_fs_info *fs_info = log->fs_info;
307 int ret = 0;
308
309 /*
310 * If this fs is mixed then we need to be able to process the leaves to
311 * pin down any logged extents, so we have to read the block.
312 */
313 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
314 ret = btrfs_read_buffer(eb, gen, level, NULL);
315 if (ret)
316 return ret;
317 }
318
319 if (wc->pin)
320 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
321 eb->len);
322
323 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
324 if (wc->pin && btrfs_header_level(eb) == 0)
325 ret = btrfs_exclude_logged_extents(eb);
326 if (wc->write)
327 btrfs_write_tree_block(eb);
328 if (wc->wait)
329 btrfs_wait_tree_block_writeback(eb);
330 }
331 return ret;
332}
333
334/*
335 * Item overwrite used by replay and tree logging. eb, slot and key all refer
336 * to the src data we are copying out.
337 *
338 * root is the tree we are copying into, and path is a scratch
339 * path for use in this function (it should be released on entry and
340 * will be released on exit).
341 *
342 * If the key is already in the destination tree the existing item is
343 * overwritten. If the existing item isn't big enough, it is extended.
344 * If it is too large, it is truncated.
345 *
346 * If the key isn't in the destination yet, a new item is inserted.
347 */
348static noinline int overwrite_item(struct btrfs_trans_handle *trans,
349 struct btrfs_root *root,
350 struct btrfs_path *path,
351 struct extent_buffer *eb, int slot,
352 struct btrfs_key *key)
353{
354 int ret;
355 u32 item_size;
356 u64 saved_i_size = 0;
357 int save_old_i_size = 0;
358 unsigned long src_ptr;
359 unsigned long dst_ptr;
360 int overwrite_root = 0;
361 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
362
363 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
364 overwrite_root = 1;
365
366 item_size = btrfs_item_size_nr(eb, slot);
367 src_ptr = btrfs_item_ptr_offset(eb, slot);
368
369 /* look for the key in the destination tree */
370 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
371 if (ret < 0)
372 return ret;
373
374 if (ret == 0) {
375 char *src_copy;
376 char *dst_copy;
377 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
378 path->slots[0]);
379 if (dst_size != item_size)
380 goto insert;
381
382 if (item_size == 0) {
383 btrfs_release_path(path);
384 return 0;
385 }
386 dst_copy = kmalloc(item_size, GFP_NOFS);
387 src_copy = kmalloc(item_size, GFP_NOFS);
388 if (!dst_copy || !src_copy) {
389 btrfs_release_path(path);
390 kfree(dst_copy);
391 kfree(src_copy);
392 return -ENOMEM;
393 }
394
395 read_extent_buffer(eb, src_copy, src_ptr, item_size);
396
397 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
398 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
399 item_size);
400 ret = memcmp(dst_copy, src_copy, item_size);
401
402 kfree(dst_copy);
403 kfree(src_copy);
404 /*
405 * they have the same contents, just return, this saves
406 * us from cowing blocks in the destination tree and doing
407 * extra writes that may not have been done by a previous
408 * sync
409 */
410 if (ret == 0) {
411 btrfs_release_path(path);
412 return 0;
413 }
414
415 /*
416 * We need to load the old nbytes into the inode so when we
417 * replay the extents we've logged we get the right nbytes.
418 */
419 if (inode_item) {
420 struct btrfs_inode_item *item;
421 u64 nbytes;
422 u32 mode;
423
424 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
425 struct btrfs_inode_item);
426 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
427 item = btrfs_item_ptr(eb, slot,
428 struct btrfs_inode_item);
429 btrfs_set_inode_nbytes(eb, item, nbytes);
430
431 /*
432 * If this is a directory we need to reset the i_size to
433 * 0 so that we can set it up properly when replaying
434 * the rest of the items in this log.
435 */
436 mode = btrfs_inode_mode(eb, item);
437 if (S_ISDIR(mode))
438 btrfs_set_inode_size(eb, item, 0);
439 }
440 } else if (inode_item) {
441 struct btrfs_inode_item *item;
442 u32 mode;
443
444 /*
445 * New inode, set nbytes to 0 so that the nbytes comes out
446 * properly when we replay the extents.
447 */
448 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
449 btrfs_set_inode_nbytes(eb, item, 0);
450
451 /*
452 * If this is a directory we need to reset the i_size to 0 so
453 * that we can set it up properly when replaying the rest of
454 * the items in this log.
455 */
456 mode = btrfs_inode_mode(eb, item);
457 if (S_ISDIR(mode))
458 btrfs_set_inode_size(eb, item, 0);
459 }
460insert:
461 btrfs_release_path(path);
462 /* try to insert the key into the destination tree */
463 path->skip_release_on_error = 1;
464 ret = btrfs_insert_empty_item(trans, root, path,
465 key, item_size);
466 path->skip_release_on_error = 0;
467
468 /* make sure any existing item is the correct size */
469 if (ret == -EEXIST || ret == -EOVERFLOW) {
470 u32 found_size;
471 found_size = btrfs_item_size_nr(path->nodes[0],
472 path->slots[0]);
473 if (found_size > item_size)
474 btrfs_truncate_item(path, item_size, 1);
475 else if (found_size < item_size)
476 btrfs_extend_item(path, item_size - found_size);
477 } else if (ret) {
478 return ret;
479 }
480 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
481 path->slots[0]);
482
483 /* don't overwrite an existing inode if the generation number
484 * was logged as zero. This is done when the tree logging code
485 * is just logging an inode to make sure it exists after recovery.
486 *
487 * Also, don't overwrite i_size on directories during replay.
488 * log replay inserts and removes directory items based on the
489 * state of the tree found in the subvolume, and i_size is modified
490 * as it goes
491 */
492 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
493 struct btrfs_inode_item *src_item;
494 struct btrfs_inode_item *dst_item;
495
496 src_item = (struct btrfs_inode_item *)src_ptr;
497 dst_item = (struct btrfs_inode_item *)dst_ptr;
498
499 if (btrfs_inode_generation(eb, src_item) == 0) {
500 struct extent_buffer *dst_eb = path->nodes[0];
501 const u64 ino_size = btrfs_inode_size(eb, src_item);
502
503 /*
504 * For regular files an ino_size == 0 is used only when
505 * logging that an inode exists, as part of a directory
506 * fsync, and the inode wasn't fsynced before. In this
507 * case don't set the size of the inode in the fs/subvol
508 * tree, otherwise we would be throwing valid data away.
509 */
510 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
511 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
512 ino_size != 0)
513 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
514 goto no_copy;
515 }
516
517 if (overwrite_root &&
518 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 save_old_i_size = 1;
521 saved_i_size = btrfs_inode_size(path->nodes[0],
522 dst_item);
523 }
524 }
525
526 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 src_ptr, item_size);
528
529 if (save_old_i_size) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
533 }
534
535 /* make sure the generation is filled in */
536 if (key->type == BTRFS_INODE_ITEM_KEY) {
537 struct btrfs_inode_item *dst_item;
538 dst_item = (struct btrfs_inode_item *)dst_ptr;
539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 btrfs_set_inode_generation(path->nodes[0], dst_item,
541 trans->transid);
542 }
543 }
544no_copy:
545 btrfs_mark_buffer_dirty(path->nodes[0]);
546 btrfs_release_path(path);
547 return 0;
548}
549
550/*
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
553 */
554static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 u64 objectid)
556{
557 struct inode *inode;
558
559 inode = btrfs_iget(root->fs_info->sb, objectid, root);
560 if (IS_ERR(inode))
561 inode = NULL;
562 return inode;
563}
564
565/* replays a single extent in 'eb' at 'slot' with 'key' into the
566 * subvolume 'root'. path is released on entry and should be released
567 * on exit.
568 *
569 * extents in the log tree have not been allocated out of the extent
570 * tree yet. So, this completes the allocation, taking a reference
571 * as required if the extent already exists or creating a new extent
572 * if it isn't in the extent allocation tree yet.
573 *
574 * The extent is inserted into the file, dropping any existing extents
575 * from the file that overlap the new one.
576 */
577static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
578 struct btrfs_root *root,
579 struct btrfs_path *path,
580 struct extent_buffer *eb, int slot,
581 struct btrfs_key *key)
582{
583 struct btrfs_fs_info *fs_info = root->fs_info;
584 int found_type;
585 u64 extent_end;
586 u64 start = key->offset;
587 u64 nbytes = 0;
588 struct btrfs_file_extent_item *item;
589 struct inode *inode = NULL;
590 unsigned long size;
591 int ret = 0;
592
593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 found_type = btrfs_file_extent_type(eb, item);
595
596 if (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 nbytes = btrfs_file_extent_num_bytes(eb, item);
599 extent_end = start + nbytes;
600
601 /*
602 * We don't add to the inodes nbytes if we are prealloc or a
603 * hole.
604 */
605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 nbytes = 0;
607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
608 size = btrfs_file_extent_ram_bytes(eb, item);
609 nbytes = btrfs_file_extent_ram_bytes(eb, item);
610 extent_end = ALIGN(start + size,
611 fs_info->sectorsize);
612 } else {
613 ret = 0;
614 goto out;
615 }
616
617 inode = read_one_inode(root, key->objectid);
618 if (!inode) {
619 ret = -EIO;
620 goto out;
621 }
622
623 /*
624 * first check to see if we already have this extent in the
625 * file. This must be done before the btrfs_drop_extents run
626 * so we don't try to drop this extent.
627 */
628 ret = btrfs_lookup_file_extent(trans, root, path,
629 btrfs_ino(BTRFS_I(inode)), start, 0);
630
631 if (ret == 0 &&
632 (found_type == BTRFS_FILE_EXTENT_REG ||
633 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
634 struct btrfs_file_extent_item cmp1;
635 struct btrfs_file_extent_item cmp2;
636 struct btrfs_file_extent_item *existing;
637 struct extent_buffer *leaf;
638
639 leaf = path->nodes[0];
640 existing = btrfs_item_ptr(leaf, path->slots[0],
641 struct btrfs_file_extent_item);
642
643 read_extent_buffer(eb, &cmp1, (unsigned long)item,
644 sizeof(cmp1));
645 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
646 sizeof(cmp2));
647
648 /*
649 * we already have a pointer to this exact extent,
650 * we don't have to do anything
651 */
652 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
653 btrfs_release_path(path);
654 goto out;
655 }
656 }
657 btrfs_release_path(path);
658
659 /* drop any overlapping extents */
660 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
661 if (ret)
662 goto out;
663
664 if (found_type == BTRFS_FILE_EXTENT_REG ||
665 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
666 u64 offset;
667 unsigned long dest_offset;
668 struct btrfs_key ins;
669
670 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
671 btrfs_fs_incompat(fs_info, NO_HOLES))
672 goto update_inode;
673
674 ret = btrfs_insert_empty_item(trans, root, path, key,
675 sizeof(*item));
676 if (ret)
677 goto out;
678 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
679 path->slots[0]);
680 copy_extent_buffer(path->nodes[0], eb, dest_offset,
681 (unsigned long)item, sizeof(*item));
682
683 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
684 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
685 ins.type = BTRFS_EXTENT_ITEM_KEY;
686 offset = key->offset - btrfs_file_extent_offset(eb, item);
687
688 /*
689 * Manually record dirty extent, as here we did a shallow
690 * file extent item copy and skip normal backref update,
691 * but modifying extent tree all by ourselves.
692 * So need to manually record dirty extent for qgroup,
693 * as the owner of the file extent changed from log tree
694 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
695 */
696 ret = btrfs_qgroup_trace_extent(trans,
697 btrfs_file_extent_disk_bytenr(eb, item),
698 btrfs_file_extent_disk_num_bytes(eb, item),
699 GFP_NOFS);
700 if (ret < 0)
701 goto out;
702
703 if (ins.objectid > 0) {
704 struct btrfs_ref ref = { 0 };
705 u64 csum_start;
706 u64 csum_end;
707 LIST_HEAD(ordered_sums);
708
709 /*
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
712 */
713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
714 ins.offset);
715 if (ret == 0) {
716 btrfs_init_generic_ref(&ref,
717 BTRFS_ADD_DELAYED_REF,
718 ins.objectid, ins.offset, 0);
719 btrfs_init_data_ref(&ref,
720 root->root_key.objectid,
721 key->objectid, offset);
722 ret = btrfs_inc_extent_ref(trans, &ref);
723 if (ret)
724 goto out;
725 } else {
726 /*
727 * insert the extent pointer in the extent
728 * allocation tree
729 */
730 ret = btrfs_alloc_logged_file_extent(trans,
731 root->root_key.objectid,
732 key->objectid, offset, &ins);
733 if (ret)
734 goto out;
735 }
736 btrfs_release_path(path);
737
738 if (btrfs_file_extent_compression(eb, item)) {
739 csum_start = ins.objectid;
740 csum_end = csum_start + ins.offset;
741 } else {
742 csum_start = ins.objectid +
743 btrfs_file_extent_offset(eb, item);
744 csum_end = csum_start +
745 btrfs_file_extent_num_bytes(eb, item);
746 }
747
748 ret = btrfs_lookup_csums_range(root->log_root,
749 csum_start, csum_end - 1,
750 &ordered_sums, 0);
751 if (ret)
752 goto out;
753 /*
754 * Now delete all existing cums in the csum root that
755 * cover our range. We do this because we can have an
756 * extent that is completely referenced by one file
757 * extent item and partially referenced by another
758 * file extent item (like after using the clone or
759 * extent_same ioctls). In this case if we end up doing
760 * the replay of the one that partially references the
761 * extent first, and we do not do the csum deletion
762 * below, we can get 2 csum items in the csum tree that
763 * overlap each other. For example, imagine our log has
764 * the two following file extent items:
765 *
766 * key (257 EXTENT_DATA 409600)
767 * extent data disk byte 12845056 nr 102400
768 * extent data offset 20480 nr 20480 ram 102400
769 *
770 * key (257 EXTENT_DATA 819200)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 0 nr 102400 ram 102400
773 *
774 * Where the second one fully references the 100K extent
775 * that starts at disk byte 12845056, and the log tree
776 * has a single csum item that covers the entire range
777 * of the extent:
778 *
779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
780 *
781 * After the first file extent item is replayed, the
782 * csum tree gets the following csum item:
783 *
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 *
786 * Which covers the 20K sub-range starting at offset 20K
787 * of our extent. Now when we replay the second file
788 * extent item, if we do not delete existing csum items
789 * that cover any of its blocks, we end up getting two
790 * csum items in our csum tree that overlap each other:
791 *
792 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
793 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
794 *
795 * Which is a problem, because after this anyone trying
796 * to lookup up for the checksum of any block of our
797 * extent starting at an offset of 40K or higher, will
798 * end up looking at the second csum item only, which
799 * does not contain the checksum for any block starting
800 * at offset 40K or higher of our extent.
801 */
802 while (!list_empty(&ordered_sums)) {
803 struct btrfs_ordered_sum *sums;
804 sums = list_entry(ordered_sums.next,
805 struct btrfs_ordered_sum,
806 list);
807 if (!ret)
808 ret = btrfs_del_csums(trans,
809 fs_info->csum_root,
810 sums->bytenr,
811 sums->len);
812 if (!ret)
813 ret = btrfs_csum_file_blocks(trans,
814 fs_info->csum_root, sums);
815 list_del(&sums->list);
816 kfree(sums);
817 }
818 if (ret)
819 goto out;
820 } else {
821 btrfs_release_path(path);
822 }
823 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
824 /* inline extents are easy, we just overwrite them */
825 ret = overwrite_item(trans, root, path, eb, slot, key);
826 if (ret)
827 goto out;
828 }
829
830 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
831 extent_end - start);
832 if (ret)
833 goto out;
834
835 inode_add_bytes(inode, nbytes);
836update_inode:
837 ret = btrfs_update_inode(trans, root, inode);
838out:
839 if (inode)
840 iput(inode);
841 return ret;
842}
843
844/*
845 * when cleaning up conflicts between the directory names in the
846 * subvolume, directory names in the log and directory names in the
847 * inode back references, we may have to unlink inodes from directories.
848 *
849 * This is a helper function to do the unlink of a specific directory
850 * item
851 */
852static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
853 struct btrfs_root *root,
854 struct btrfs_path *path,
855 struct btrfs_inode *dir,
856 struct btrfs_dir_item *di)
857{
858 struct inode *inode;
859 char *name;
860 int name_len;
861 struct extent_buffer *leaf;
862 struct btrfs_key location;
863 int ret;
864
865 leaf = path->nodes[0];
866
867 btrfs_dir_item_key_to_cpu(leaf, di, &location);
868 name_len = btrfs_dir_name_len(leaf, di);
869 name = kmalloc(name_len, GFP_NOFS);
870 if (!name)
871 return -ENOMEM;
872
873 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
874 btrfs_release_path(path);
875
876 inode = read_one_inode(root, location.objectid);
877 if (!inode) {
878 ret = -EIO;
879 goto out;
880 }
881
882 ret = link_to_fixup_dir(trans, root, path, location.objectid);
883 if (ret)
884 goto out;
885
886 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
887 name_len);
888 if (ret)
889 goto out;
890 else
891 ret = btrfs_run_delayed_items(trans);
892out:
893 kfree(name);
894 iput(inode);
895 return ret;
896}
897
898/*
899 * helper function to see if a given name and sequence number found
900 * in an inode back reference are already in a directory and correctly
901 * point to this inode
902 */
903static noinline int inode_in_dir(struct btrfs_root *root,
904 struct btrfs_path *path,
905 u64 dirid, u64 objectid, u64 index,
906 const char *name, int name_len)
907{
908 struct btrfs_dir_item *di;
909 struct btrfs_key location;
910 int match = 0;
911
912 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
913 index, name, name_len, 0);
914 if (di && !IS_ERR(di)) {
915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
916 if (location.objectid != objectid)
917 goto out;
918 } else
919 goto out;
920 btrfs_release_path(path);
921
922 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
923 if (di && !IS_ERR(di)) {
924 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
925 if (location.objectid != objectid)
926 goto out;
927 } else
928 goto out;
929 match = 1;
930out:
931 btrfs_release_path(path);
932 return match;
933}
934
935/*
936 * helper function to check a log tree for a named back reference in
937 * an inode. This is used to decide if a back reference that is
938 * found in the subvolume conflicts with what we find in the log.
939 *
940 * inode backreferences may have multiple refs in a single item,
941 * during replay we process one reference at a time, and we don't
942 * want to delete valid links to a file from the subvolume if that
943 * link is also in the log.
944 */
945static noinline int backref_in_log(struct btrfs_root *log,
946 struct btrfs_key *key,
947 u64 ref_objectid,
948 const char *name, int namelen)
949{
950 struct btrfs_path *path;
951 int ret;
952
953 path = btrfs_alloc_path();
954 if (!path)
955 return -ENOMEM;
956
957 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
958 if (ret < 0) {
959 goto out;
960 } else if (ret == 1) {
961 ret = 0;
962 goto out;
963 }
964
965 if (key->type == BTRFS_INODE_EXTREF_KEY)
966 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
967 path->slots[0],
968 ref_objectid,
969 name, namelen);
970 else
971 ret = !!btrfs_find_name_in_backref(path->nodes[0],
972 path->slots[0],
973 name, namelen);
974out:
975 btrfs_free_path(path);
976 return ret;
977}
978
979static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 struct btrfs_root *log_root,
983 struct btrfs_inode *dir,
984 struct btrfs_inode *inode,
985 u64 inode_objectid, u64 parent_objectid,
986 u64 ref_index, char *name, int namelen,
987 int *search_done)
988{
989 int ret;
990 char *victim_name;
991 int victim_name_len;
992 struct extent_buffer *leaf;
993 struct btrfs_dir_item *di;
994 struct btrfs_key search_key;
995 struct btrfs_inode_extref *extref;
996
997again:
998 /* Search old style refs */
999 search_key.objectid = inode_objectid;
1000 search_key.type = BTRFS_INODE_REF_KEY;
1001 search_key.offset = parent_objectid;
1002 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1003 if (ret == 0) {
1004 struct btrfs_inode_ref *victim_ref;
1005 unsigned long ptr;
1006 unsigned long ptr_end;
1007
1008 leaf = path->nodes[0];
1009
1010 /* are we trying to overwrite a back ref for the root directory
1011 * if so, just jump out, we're done
1012 */
1013 if (search_key.objectid == search_key.offset)
1014 return 1;
1015
1016 /* check all the names in this back reference to see
1017 * if they are in the log. if so, we allow them to stay
1018 * otherwise they must be unlinked as a conflict
1019 */
1020 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1021 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1022 while (ptr < ptr_end) {
1023 victim_ref = (struct btrfs_inode_ref *)ptr;
1024 victim_name_len = btrfs_inode_ref_name_len(leaf,
1025 victim_ref);
1026 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1027 if (!victim_name)
1028 return -ENOMEM;
1029
1030 read_extent_buffer(leaf, victim_name,
1031 (unsigned long)(victim_ref + 1),
1032 victim_name_len);
1033
1034 ret = backref_in_log(log_root, &search_key,
1035 parent_objectid, victim_name,
1036 victim_name_len);
1037 if (ret < 0) {
1038 kfree(victim_name);
1039 return ret;
1040 } else if (!ret) {
1041 inc_nlink(&inode->vfs_inode);
1042 btrfs_release_path(path);
1043
1044 ret = btrfs_unlink_inode(trans, root, dir, inode,
1045 victim_name, victim_name_len);
1046 kfree(victim_name);
1047 if (ret)
1048 return ret;
1049 ret = btrfs_run_delayed_items(trans);
1050 if (ret)
1051 return ret;
1052 *search_done = 1;
1053 goto again;
1054 }
1055 kfree(victim_name);
1056
1057 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1058 }
1059
1060 /*
1061 * NOTE: we have searched root tree and checked the
1062 * corresponding ref, it does not need to check again.
1063 */
1064 *search_done = 1;
1065 }
1066 btrfs_release_path(path);
1067
1068 /* Same search but for extended refs */
1069 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070 inode_objectid, parent_objectid, 0,
1071 0);
1072 if (!IS_ERR_OR_NULL(extref)) {
1073 u32 item_size;
1074 u32 cur_offset = 0;
1075 unsigned long base;
1076 struct inode *victim_parent;
1077
1078 leaf = path->nodes[0];
1079
1080 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1082
1083 while (cur_offset < item_size) {
1084 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1085
1086 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1087
1088 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089 goto next;
1090
1091 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1092 if (!victim_name)
1093 return -ENOMEM;
1094 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095 victim_name_len);
1096
1097 search_key.objectid = inode_objectid;
1098 search_key.type = BTRFS_INODE_EXTREF_KEY;
1099 search_key.offset = btrfs_extref_hash(parent_objectid,
1100 victim_name,
1101 victim_name_len);
1102 ret = backref_in_log(log_root, &search_key,
1103 parent_objectid, victim_name,
1104 victim_name_len);
1105 if (ret < 0) {
1106 return ret;
1107 } else if (!ret) {
1108 ret = -ENOENT;
1109 victim_parent = read_one_inode(root,
1110 parent_objectid);
1111 if (victim_parent) {
1112 inc_nlink(&inode->vfs_inode);
1113 btrfs_release_path(path);
1114
1115 ret = btrfs_unlink_inode(trans, root,
1116 BTRFS_I(victim_parent),
1117 inode,
1118 victim_name,
1119 victim_name_len);
1120 if (!ret)
1121 ret = btrfs_run_delayed_items(
1122 trans);
1123 }
1124 iput(victim_parent);
1125 kfree(victim_name);
1126 if (ret)
1127 return ret;
1128 *search_done = 1;
1129 goto again;
1130 }
1131 kfree(victim_name);
1132next:
1133 cur_offset += victim_name_len + sizeof(*extref);
1134 }
1135 *search_done = 1;
1136 }
1137 btrfs_release_path(path);
1138
1139 /* look for a conflicting sequence number */
1140 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1141 ref_index, name, namelen, 0);
1142 if (di && !IS_ERR(di)) {
1143 ret = drop_one_dir_item(trans, root, path, dir, di);
1144 if (ret)
1145 return ret;
1146 }
1147 btrfs_release_path(path);
1148
1149 /* look for a conflicting name */
1150 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1151 name, namelen, 0);
1152 if (di && !IS_ERR(di)) {
1153 ret = drop_one_dir_item(trans, root, path, dir, di);
1154 if (ret)
1155 return ret;
1156 }
1157 btrfs_release_path(path);
1158
1159 return 0;
1160}
1161
1162static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1163 u32 *namelen, char **name, u64 *index,
1164 u64 *parent_objectid)
1165{
1166 struct btrfs_inode_extref *extref;
1167
1168 extref = (struct btrfs_inode_extref *)ref_ptr;
1169
1170 *namelen = btrfs_inode_extref_name_len(eb, extref);
1171 *name = kmalloc(*namelen, GFP_NOFS);
1172 if (*name == NULL)
1173 return -ENOMEM;
1174
1175 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1176 *namelen);
1177
1178 if (index)
1179 *index = btrfs_inode_extref_index(eb, extref);
1180 if (parent_objectid)
1181 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1182
1183 return 0;
1184}
1185
1186static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1187 u32 *namelen, char **name, u64 *index)
1188{
1189 struct btrfs_inode_ref *ref;
1190
1191 ref = (struct btrfs_inode_ref *)ref_ptr;
1192
1193 *namelen = btrfs_inode_ref_name_len(eb, ref);
1194 *name = kmalloc(*namelen, GFP_NOFS);
1195 if (*name == NULL)
1196 return -ENOMEM;
1197
1198 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1199
1200 if (index)
1201 *index = btrfs_inode_ref_index(eb, ref);
1202
1203 return 0;
1204}
1205
1206/*
1207 * Take an inode reference item from the log tree and iterate all names from the
1208 * inode reference item in the subvolume tree with the same key (if it exists).
1209 * For any name that is not in the inode reference item from the log tree, do a
1210 * proper unlink of that name (that is, remove its entry from the inode
1211 * reference item and both dir index keys).
1212 */
1213static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1214 struct btrfs_root *root,
1215 struct btrfs_path *path,
1216 struct btrfs_inode *inode,
1217 struct extent_buffer *log_eb,
1218 int log_slot,
1219 struct btrfs_key *key)
1220{
1221 int ret;
1222 unsigned long ref_ptr;
1223 unsigned long ref_end;
1224 struct extent_buffer *eb;
1225
1226again:
1227 btrfs_release_path(path);
1228 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1229 if (ret > 0) {
1230 ret = 0;
1231 goto out;
1232 }
1233 if (ret < 0)
1234 goto out;
1235
1236 eb = path->nodes[0];
1237 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1238 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1239 while (ref_ptr < ref_end) {
1240 char *name = NULL;
1241 int namelen;
1242 u64 parent_id;
1243
1244 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1245 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1246 NULL, &parent_id);
1247 } else {
1248 parent_id = key->offset;
1249 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1250 NULL);
1251 }
1252 if (ret)
1253 goto out;
1254
1255 if (key->type == BTRFS_INODE_EXTREF_KEY)
1256 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1257 parent_id, name,
1258 namelen);
1259 else
1260 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1261 name, namelen);
1262
1263 if (!ret) {
1264 struct inode *dir;
1265
1266 btrfs_release_path(path);
1267 dir = read_one_inode(root, parent_id);
1268 if (!dir) {
1269 ret = -ENOENT;
1270 kfree(name);
1271 goto out;
1272 }
1273 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1274 inode, name, namelen);
1275 kfree(name);
1276 iput(dir);
1277 if (ret)
1278 goto out;
1279 goto again;
1280 }
1281
1282 kfree(name);
1283 ref_ptr += namelen;
1284 if (key->type == BTRFS_INODE_EXTREF_KEY)
1285 ref_ptr += sizeof(struct btrfs_inode_extref);
1286 else
1287 ref_ptr += sizeof(struct btrfs_inode_ref);
1288 }
1289 ret = 0;
1290 out:
1291 btrfs_release_path(path);
1292 return ret;
1293}
1294
1295static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1296 const u8 ref_type, const char *name,
1297 const int namelen)
1298{
1299 struct btrfs_key key;
1300 struct btrfs_path *path;
1301 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1302 int ret;
1303
1304 path = btrfs_alloc_path();
1305 if (!path)
1306 return -ENOMEM;
1307
1308 key.objectid = btrfs_ino(BTRFS_I(inode));
1309 key.type = ref_type;
1310 if (key.type == BTRFS_INODE_REF_KEY)
1311 key.offset = parent_id;
1312 else
1313 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1314
1315 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1316 if (ret < 0)
1317 goto out;
1318 if (ret > 0) {
1319 ret = 0;
1320 goto out;
1321 }
1322 if (key.type == BTRFS_INODE_EXTREF_KEY)
1323 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1324 path->slots[0], parent_id, name, namelen);
1325 else
1326 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327 name, namelen);
1328
1329out:
1330 btrfs_free_path(path);
1331 return ret;
1332}
1333
1334static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335 struct inode *dir, struct inode *inode, const char *name,
1336 int namelen, u64 ref_index)
1337{
1338 struct btrfs_dir_item *dir_item;
1339 struct btrfs_key key;
1340 struct btrfs_path *path;
1341 struct inode *other_inode = NULL;
1342 int ret;
1343
1344 path = btrfs_alloc_path();
1345 if (!path)
1346 return -ENOMEM;
1347
1348 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349 btrfs_ino(BTRFS_I(dir)),
1350 name, namelen, 0);
1351 if (!dir_item) {
1352 btrfs_release_path(path);
1353 goto add_link;
1354 } else if (IS_ERR(dir_item)) {
1355 ret = PTR_ERR(dir_item);
1356 goto out;
1357 }
1358
1359 /*
1360 * Our inode's dentry collides with the dentry of another inode which is
1361 * in the log but not yet processed since it has a higher inode number.
1362 * So delete that other dentry.
1363 */
1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365 btrfs_release_path(path);
1366 other_inode = read_one_inode(root, key.objectid);
1367 if (!other_inode) {
1368 ret = -ENOENT;
1369 goto out;
1370 }
1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372 name, namelen);
1373 if (ret)
1374 goto out;
1375 /*
1376 * If we dropped the link count to 0, bump it so that later the iput()
1377 * on the inode will not free it. We will fixup the link count later.
1378 */
1379 if (other_inode->i_nlink == 0)
1380 inc_nlink(other_inode);
1381
1382 ret = btrfs_run_delayed_items(trans);
1383 if (ret)
1384 goto out;
1385add_link:
1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387 name, namelen, 0, ref_index);
1388out:
1389 iput(other_inode);
1390 btrfs_free_path(path);
1391
1392 return ret;
1393}
1394
1395/*
1396 * replay one inode back reference item found in the log tree.
1397 * eb, slot and key refer to the buffer and key found in the log tree.
1398 * root is the destination we are replaying into, and path is for temp
1399 * use by this function. (it should be released on return).
1400 */
1401static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_root *log,
1404 struct btrfs_path *path,
1405 struct extent_buffer *eb, int slot,
1406 struct btrfs_key *key)
1407{
1408 struct inode *dir = NULL;
1409 struct inode *inode = NULL;
1410 unsigned long ref_ptr;
1411 unsigned long ref_end;
1412 char *name = NULL;
1413 int namelen;
1414 int ret;
1415 int search_done = 0;
1416 int log_ref_ver = 0;
1417 u64 parent_objectid;
1418 u64 inode_objectid;
1419 u64 ref_index = 0;
1420 int ref_struct_size;
1421
1422 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424
1425 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426 struct btrfs_inode_extref *r;
1427
1428 ref_struct_size = sizeof(struct btrfs_inode_extref);
1429 log_ref_ver = 1;
1430 r = (struct btrfs_inode_extref *)ref_ptr;
1431 parent_objectid = btrfs_inode_extref_parent(eb, r);
1432 } else {
1433 ref_struct_size = sizeof(struct btrfs_inode_ref);
1434 parent_objectid = key->offset;
1435 }
1436 inode_objectid = key->objectid;
1437
1438 /*
1439 * it is possible that we didn't log all the parent directories
1440 * for a given inode. If we don't find the dir, just don't
1441 * copy the back ref in. The link count fixup code will take
1442 * care of the rest
1443 */
1444 dir = read_one_inode(root, parent_objectid);
1445 if (!dir) {
1446 ret = -ENOENT;
1447 goto out;
1448 }
1449
1450 inode = read_one_inode(root, inode_objectid);
1451 if (!inode) {
1452 ret = -EIO;
1453 goto out;
1454 }
1455
1456 while (ref_ptr < ref_end) {
1457 if (log_ref_ver) {
1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459 &ref_index, &parent_objectid);
1460 /*
1461 * parent object can change from one array
1462 * item to another.
1463 */
1464 if (!dir)
1465 dir = read_one_inode(root, parent_objectid);
1466 if (!dir) {
1467 ret = -ENOENT;
1468 goto out;
1469 }
1470 } else {
1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472 &ref_index);
1473 }
1474 if (ret)
1475 goto out;
1476
1477 /* if we already have a perfect match, we're done */
1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479 btrfs_ino(BTRFS_I(inode)), ref_index,
1480 name, namelen)) {
1481 /*
1482 * look for a conflicting back reference in the
1483 * metadata. if we find one we have to unlink that name
1484 * of the file before we add our new link. Later on, we
1485 * overwrite any existing back reference, and we don't
1486 * want to create dangling pointers in the directory.
1487 */
1488
1489 if (!search_done) {
1490 ret = __add_inode_ref(trans, root, path, log,
1491 BTRFS_I(dir),
1492 BTRFS_I(inode),
1493 inode_objectid,
1494 parent_objectid,
1495 ref_index, name, namelen,
1496 &search_done);
1497 if (ret) {
1498 if (ret == 1)
1499 ret = 0;
1500 goto out;
1501 }
1502 }
1503
1504 /*
1505 * If a reference item already exists for this inode
1506 * with the same parent and name, but different index,
1507 * drop it and the corresponding directory index entries
1508 * from the parent before adding the new reference item
1509 * and dir index entries, otherwise we would fail with
1510 * -EEXIST returned from btrfs_add_link() below.
1511 */
1512 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513 name, namelen);
1514 if (ret > 0) {
1515 ret = btrfs_unlink_inode(trans, root,
1516 BTRFS_I(dir),
1517 BTRFS_I(inode),
1518 name, namelen);
1519 /*
1520 * If we dropped the link count to 0, bump it so
1521 * that later the iput() on the inode will not
1522 * free it. We will fixup the link count later.
1523 */
1524 if (!ret && inode->i_nlink == 0)
1525 inc_nlink(inode);
1526 }
1527 if (ret < 0)
1528 goto out;
1529
1530 /* insert our name */
1531 ret = add_link(trans, root, dir, inode, name, namelen,
1532 ref_index);
1533 if (ret)
1534 goto out;
1535
1536 btrfs_update_inode(trans, root, inode);
1537 }
1538
1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1540 kfree(name);
1541 name = NULL;
1542 if (log_ref_ver) {
1543 iput(dir);
1544 dir = NULL;
1545 }
1546 }
1547
1548 /*
1549 * Before we overwrite the inode reference item in the subvolume tree
1550 * with the item from the log tree, we must unlink all names from the
1551 * parent directory that are in the subvolume's tree inode reference
1552 * item, otherwise we end up with an inconsistent subvolume tree where
1553 * dir index entries exist for a name but there is no inode reference
1554 * item with the same name.
1555 */
1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557 key);
1558 if (ret)
1559 goto out;
1560
1561 /* finally write the back reference in the inode */
1562 ret = overwrite_item(trans, root, path, eb, slot, key);
1563out:
1564 btrfs_release_path(path);
1565 kfree(name);
1566 iput(dir);
1567 iput(inode);
1568 return ret;
1569}
1570
1571static int insert_orphan_item(struct btrfs_trans_handle *trans,
1572 struct btrfs_root *root, u64 ino)
1573{
1574 int ret;
1575
1576 ret = btrfs_insert_orphan_item(trans, root, ino);
1577 if (ret == -EEXIST)
1578 ret = 0;
1579
1580 return ret;
1581}
1582
1583static int count_inode_extrefs(struct btrfs_root *root,
1584 struct btrfs_inode *inode, struct btrfs_path *path)
1585{
1586 int ret = 0;
1587 int name_len;
1588 unsigned int nlink = 0;
1589 u32 item_size;
1590 u32 cur_offset = 0;
1591 u64 inode_objectid = btrfs_ino(inode);
1592 u64 offset = 0;
1593 unsigned long ptr;
1594 struct btrfs_inode_extref *extref;
1595 struct extent_buffer *leaf;
1596
1597 while (1) {
1598 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1599 &extref, &offset);
1600 if (ret)
1601 break;
1602
1603 leaf = path->nodes[0];
1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1606 cur_offset = 0;
1607
1608 while (cur_offset < item_size) {
1609 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1610 name_len = btrfs_inode_extref_name_len(leaf, extref);
1611
1612 nlink++;
1613
1614 cur_offset += name_len + sizeof(*extref);
1615 }
1616
1617 offset++;
1618 btrfs_release_path(path);
1619 }
1620 btrfs_release_path(path);
1621
1622 if (ret < 0 && ret != -ENOENT)
1623 return ret;
1624 return nlink;
1625}
1626
1627static int count_inode_refs(struct btrfs_root *root,
1628 struct btrfs_inode *inode, struct btrfs_path *path)
1629{
1630 int ret;
1631 struct btrfs_key key;
1632 unsigned int nlink = 0;
1633 unsigned long ptr;
1634 unsigned long ptr_end;
1635 int name_len;
1636 u64 ino = btrfs_ino(inode);
1637
1638 key.objectid = ino;
1639 key.type = BTRFS_INODE_REF_KEY;
1640 key.offset = (u64)-1;
1641
1642 while (1) {
1643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1644 if (ret < 0)
1645 break;
1646 if (ret > 0) {
1647 if (path->slots[0] == 0)
1648 break;
1649 path->slots[0]--;
1650 }
1651process_slot:
1652 btrfs_item_key_to_cpu(path->nodes[0], &key,
1653 path->slots[0]);
1654 if (key.objectid != ino ||
1655 key.type != BTRFS_INODE_REF_KEY)
1656 break;
1657 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1658 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1659 path->slots[0]);
1660 while (ptr < ptr_end) {
1661 struct btrfs_inode_ref *ref;
1662
1663 ref = (struct btrfs_inode_ref *)ptr;
1664 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1665 ref);
1666 ptr = (unsigned long)(ref + 1) + name_len;
1667 nlink++;
1668 }
1669
1670 if (key.offset == 0)
1671 break;
1672 if (path->slots[0] > 0) {
1673 path->slots[0]--;
1674 goto process_slot;
1675 }
1676 key.offset--;
1677 btrfs_release_path(path);
1678 }
1679 btrfs_release_path(path);
1680
1681 return nlink;
1682}
1683
1684/*
1685 * There are a few corners where the link count of the file can't
1686 * be properly maintained during replay. So, instead of adding
1687 * lots of complexity to the log code, we just scan the backrefs
1688 * for any file that has been through replay.
1689 *
1690 * The scan will update the link count on the inode to reflect the
1691 * number of back refs found. If it goes down to zero, the iput
1692 * will free the inode.
1693 */
1694static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1695 struct btrfs_root *root,
1696 struct inode *inode)
1697{
1698 struct btrfs_path *path;
1699 int ret;
1700 u64 nlink = 0;
1701 u64 ino = btrfs_ino(BTRFS_I(inode));
1702
1703 path = btrfs_alloc_path();
1704 if (!path)
1705 return -ENOMEM;
1706
1707 ret = count_inode_refs(root, BTRFS_I(inode), path);
1708 if (ret < 0)
1709 goto out;
1710
1711 nlink = ret;
1712
1713 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1714 if (ret < 0)
1715 goto out;
1716
1717 nlink += ret;
1718
1719 ret = 0;
1720
1721 if (nlink != inode->i_nlink) {
1722 set_nlink(inode, nlink);
1723 btrfs_update_inode(trans, root, inode);
1724 }
1725 BTRFS_I(inode)->index_cnt = (u64)-1;
1726
1727 if (inode->i_nlink == 0) {
1728 if (S_ISDIR(inode->i_mode)) {
1729 ret = replay_dir_deletes(trans, root, NULL, path,
1730 ino, 1);
1731 if (ret)
1732 goto out;
1733 }
1734 ret = insert_orphan_item(trans, root, ino);
1735 }
1736
1737out:
1738 btrfs_free_path(path);
1739 return ret;
1740}
1741
1742static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1743 struct btrfs_root *root,
1744 struct btrfs_path *path)
1745{
1746 int ret;
1747 struct btrfs_key key;
1748 struct inode *inode;
1749
1750 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751 key.type = BTRFS_ORPHAN_ITEM_KEY;
1752 key.offset = (u64)-1;
1753 while (1) {
1754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1755 if (ret < 0)
1756 break;
1757
1758 if (ret == 1) {
1759 if (path->slots[0] == 0)
1760 break;
1761 path->slots[0]--;
1762 }
1763
1764 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1765 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1766 key.type != BTRFS_ORPHAN_ITEM_KEY)
1767 break;
1768
1769 ret = btrfs_del_item(trans, root, path);
1770 if (ret)
1771 goto out;
1772
1773 btrfs_release_path(path);
1774 inode = read_one_inode(root, key.offset);
1775 if (!inode)
1776 return -EIO;
1777
1778 ret = fixup_inode_link_count(trans, root, inode);
1779 iput(inode);
1780 if (ret)
1781 goto out;
1782
1783 /*
1784 * fixup on a directory may create new entries,
1785 * make sure we always look for the highset possible
1786 * offset
1787 */
1788 key.offset = (u64)-1;
1789 }
1790 ret = 0;
1791out:
1792 btrfs_release_path(path);
1793 return ret;
1794}
1795
1796
1797/*
1798 * record a given inode in the fixup dir so we can check its link
1799 * count when replay is done. The link count is incremented here
1800 * so the inode won't go away until we check it
1801 */
1802static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 u64 objectid)
1806{
1807 struct btrfs_key key;
1808 int ret = 0;
1809 struct inode *inode;
1810
1811 inode = read_one_inode(root, objectid);
1812 if (!inode)
1813 return -EIO;
1814
1815 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1816 key.type = BTRFS_ORPHAN_ITEM_KEY;
1817 key.offset = objectid;
1818
1819 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1820
1821 btrfs_release_path(path);
1822 if (ret == 0) {
1823 if (!inode->i_nlink)
1824 set_nlink(inode, 1);
1825 else
1826 inc_nlink(inode);
1827 ret = btrfs_update_inode(trans, root, inode);
1828 } else if (ret == -EEXIST) {
1829 ret = 0;
1830 } else {
1831 BUG(); /* Logic Error */
1832 }
1833 iput(inode);
1834
1835 return ret;
1836}
1837
1838/*
1839 * when replaying the log for a directory, we only insert names
1840 * for inodes that actually exist. This means an fsync on a directory
1841 * does not implicitly fsync all the new files in it
1842 */
1843static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1844 struct btrfs_root *root,
1845 u64 dirid, u64 index,
1846 char *name, int name_len,
1847 struct btrfs_key *location)
1848{
1849 struct inode *inode;
1850 struct inode *dir;
1851 int ret;
1852
1853 inode = read_one_inode(root, location->objectid);
1854 if (!inode)
1855 return -ENOENT;
1856
1857 dir = read_one_inode(root, dirid);
1858 if (!dir) {
1859 iput(inode);
1860 return -EIO;
1861 }
1862
1863 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1864 name_len, 1, index);
1865
1866 /* FIXME, put inode into FIXUP list */
1867
1868 iput(inode);
1869 iput(dir);
1870 return ret;
1871}
1872
1873/*
1874 * take a single entry in a log directory item and replay it into
1875 * the subvolume.
1876 *
1877 * if a conflicting item exists in the subdirectory already,
1878 * the inode it points to is unlinked and put into the link count
1879 * fix up tree.
1880 *
1881 * If a name from the log points to a file or directory that does
1882 * not exist in the FS, it is skipped. fsyncs on directories
1883 * do not force down inodes inside that directory, just changes to the
1884 * names or unlinks in a directory.
1885 *
1886 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1887 * non-existing inode) and 1 if the name was replayed.
1888 */
1889static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1890 struct btrfs_root *root,
1891 struct btrfs_path *path,
1892 struct extent_buffer *eb,
1893 struct btrfs_dir_item *di,
1894 struct btrfs_key *key)
1895{
1896 char *name;
1897 int name_len;
1898 struct btrfs_dir_item *dst_di;
1899 struct btrfs_key found_key;
1900 struct btrfs_key log_key;
1901 struct inode *dir;
1902 u8 log_type;
1903 int exists;
1904 int ret = 0;
1905 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1906 bool name_added = false;
1907
1908 dir = read_one_inode(root, key->objectid);
1909 if (!dir)
1910 return -EIO;
1911
1912 name_len = btrfs_dir_name_len(eb, di);
1913 name = kmalloc(name_len, GFP_NOFS);
1914 if (!name) {
1915 ret = -ENOMEM;
1916 goto out;
1917 }
1918
1919 log_type = btrfs_dir_type(eb, di);
1920 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1921 name_len);
1922
1923 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1924 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1925 if (exists == 0)
1926 exists = 1;
1927 else
1928 exists = 0;
1929 btrfs_release_path(path);
1930
1931 if (key->type == BTRFS_DIR_ITEM_KEY) {
1932 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1933 name, name_len, 1);
1934 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1935 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1936 key->objectid,
1937 key->offset, name,
1938 name_len, 1);
1939 } else {
1940 /* Corruption */
1941 ret = -EINVAL;
1942 goto out;
1943 }
1944 if (IS_ERR_OR_NULL(dst_di)) {
1945 /* we need a sequence number to insert, so we only
1946 * do inserts for the BTRFS_DIR_INDEX_KEY types
1947 */
1948 if (key->type != BTRFS_DIR_INDEX_KEY)
1949 goto out;
1950 goto insert;
1951 }
1952
1953 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1954 /* the existing item matches the logged item */
1955 if (found_key.objectid == log_key.objectid &&
1956 found_key.type == log_key.type &&
1957 found_key.offset == log_key.offset &&
1958 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1959 update_size = false;
1960 goto out;
1961 }
1962
1963 /*
1964 * don't drop the conflicting directory entry if the inode
1965 * for the new entry doesn't exist
1966 */
1967 if (!exists)
1968 goto out;
1969
1970 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1971 if (ret)
1972 goto out;
1973
1974 if (key->type == BTRFS_DIR_INDEX_KEY)
1975 goto insert;
1976out:
1977 btrfs_release_path(path);
1978 if (!ret && update_size) {
1979 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1980 ret = btrfs_update_inode(trans, root, dir);
1981 }
1982 kfree(name);
1983 iput(dir);
1984 if (!ret && name_added)
1985 ret = 1;
1986 return ret;
1987
1988insert:
1989 /*
1990 * Check if the inode reference exists in the log for the given name,
1991 * inode and parent inode
1992 */
1993 found_key.objectid = log_key.objectid;
1994 found_key.type = BTRFS_INODE_REF_KEY;
1995 found_key.offset = key->objectid;
1996 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1997 if (ret < 0) {
1998 goto out;
1999 } else if (ret) {
2000 /* The dentry will be added later. */
2001 ret = 0;
2002 update_size = false;
2003 goto out;
2004 }
2005
2006 found_key.objectid = log_key.objectid;
2007 found_key.type = BTRFS_INODE_EXTREF_KEY;
2008 found_key.offset = key->objectid;
2009 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2010 name_len);
2011 if (ret < 0) {
2012 goto out;
2013 } else if (ret) {
2014 /* The dentry will be added later. */
2015 ret = 0;
2016 update_size = false;
2017 goto out;
2018 }
2019 btrfs_release_path(path);
2020 ret = insert_one_name(trans, root, key->objectid, key->offset,
2021 name, name_len, &log_key);
2022 if (ret && ret != -ENOENT && ret != -EEXIST)
2023 goto out;
2024 if (!ret)
2025 name_added = true;
2026 update_size = false;
2027 ret = 0;
2028 goto out;
2029}
2030
2031/*
2032 * find all the names in a directory item and reconcile them into
2033 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2034 * one name in a directory item, but the same code gets used for
2035 * both directory index types
2036 */
2037static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2038 struct btrfs_root *root,
2039 struct btrfs_path *path,
2040 struct extent_buffer *eb, int slot,
2041 struct btrfs_key *key)
2042{
2043 int ret = 0;
2044 u32 item_size = btrfs_item_size_nr(eb, slot);
2045 struct btrfs_dir_item *di;
2046 int name_len;
2047 unsigned long ptr;
2048 unsigned long ptr_end;
2049 struct btrfs_path *fixup_path = NULL;
2050
2051 ptr = btrfs_item_ptr_offset(eb, slot);
2052 ptr_end = ptr + item_size;
2053 while (ptr < ptr_end) {
2054 di = (struct btrfs_dir_item *)ptr;
2055 name_len = btrfs_dir_name_len(eb, di);
2056 ret = replay_one_name(trans, root, path, eb, di, key);
2057 if (ret < 0)
2058 break;
2059 ptr = (unsigned long)(di + 1);
2060 ptr += name_len;
2061
2062 /*
2063 * If this entry refers to a non-directory (directories can not
2064 * have a link count > 1) and it was added in the transaction
2065 * that was not committed, make sure we fixup the link count of
2066 * the inode it the entry points to. Otherwise something like
2067 * the following would result in a directory pointing to an
2068 * inode with a wrong link that does not account for this dir
2069 * entry:
2070 *
2071 * mkdir testdir
2072 * touch testdir/foo
2073 * touch testdir/bar
2074 * sync
2075 *
2076 * ln testdir/bar testdir/bar_link
2077 * ln testdir/foo testdir/foo_link
2078 * xfs_io -c "fsync" testdir/bar
2079 *
2080 * <power failure>
2081 *
2082 * mount fs, log replay happens
2083 *
2084 * File foo would remain with a link count of 1 when it has two
2085 * entries pointing to it in the directory testdir. This would
2086 * make it impossible to ever delete the parent directory has
2087 * it would result in stale dentries that can never be deleted.
2088 */
2089 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2090 struct btrfs_key di_key;
2091
2092 if (!fixup_path) {
2093 fixup_path = btrfs_alloc_path();
2094 if (!fixup_path) {
2095 ret = -ENOMEM;
2096 break;
2097 }
2098 }
2099
2100 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2101 ret = link_to_fixup_dir(trans, root, fixup_path,
2102 di_key.objectid);
2103 if (ret)
2104 break;
2105 }
2106 ret = 0;
2107 }
2108 btrfs_free_path(fixup_path);
2109 return ret;
2110}
2111
2112/*
2113 * directory replay has two parts. There are the standard directory
2114 * items in the log copied from the subvolume, and range items
2115 * created in the log while the subvolume was logged.
2116 *
2117 * The range items tell us which parts of the key space the log
2118 * is authoritative for. During replay, if a key in the subvolume
2119 * directory is in a logged range item, but not actually in the log
2120 * that means it was deleted from the directory before the fsync
2121 * and should be removed.
2122 */
2123static noinline int find_dir_range(struct btrfs_root *root,
2124 struct btrfs_path *path,
2125 u64 dirid, int key_type,
2126 u64 *start_ret, u64 *end_ret)
2127{
2128 struct btrfs_key key;
2129 u64 found_end;
2130 struct btrfs_dir_log_item *item;
2131 int ret;
2132 int nritems;
2133
2134 if (*start_ret == (u64)-1)
2135 return 1;
2136
2137 key.objectid = dirid;
2138 key.type = key_type;
2139 key.offset = *start_ret;
2140
2141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2142 if (ret < 0)
2143 goto out;
2144 if (ret > 0) {
2145 if (path->slots[0] == 0)
2146 goto out;
2147 path->slots[0]--;
2148 }
2149 if (ret != 0)
2150 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2151
2152 if (key.type != key_type || key.objectid != dirid) {
2153 ret = 1;
2154 goto next;
2155 }
2156 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2157 struct btrfs_dir_log_item);
2158 found_end = btrfs_dir_log_end(path->nodes[0], item);
2159
2160 if (*start_ret >= key.offset && *start_ret <= found_end) {
2161 ret = 0;
2162 *start_ret = key.offset;
2163 *end_ret = found_end;
2164 goto out;
2165 }
2166 ret = 1;
2167next:
2168 /* check the next slot in the tree to see if it is a valid item */
2169 nritems = btrfs_header_nritems(path->nodes[0]);
2170 path->slots[0]++;
2171 if (path->slots[0] >= nritems) {
2172 ret = btrfs_next_leaf(root, path);
2173 if (ret)
2174 goto out;
2175 }
2176
2177 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2178
2179 if (key.type != key_type || key.objectid != dirid) {
2180 ret = 1;
2181 goto out;
2182 }
2183 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2184 struct btrfs_dir_log_item);
2185 found_end = btrfs_dir_log_end(path->nodes[0], item);
2186 *start_ret = key.offset;
2187 *end_ret = found_end;
2188 ret = 0;
2189out:
2190 btrfs_release_path(path);
2191 return ret;
2192}
2193
2194/*
2195 * this looks for a given directory item in the log. If the directory
2196 * item is not in the log, the item is removed and the inode it points
2197 * to is unlinked
2198 */
2199static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2200 struct btrfs_root *root,
2201 struct btrfs_root *log,
2202 struct btrfs_path *path,
2203 struct btrfs_path *log_path,
2204 struct inode *dir,
2205 struct btrfs_key *dir_key)
2206{
2207 int ret;
2208 struct extent_buffer *eb;
2209 int slot;
2210 u32 item_size;
2211 struct btrfs_dir_item *di;
2212 struct btrfs_dir_item *log_di;
2213 int name_len;
2214 unsigned long ptr;
2215 unsigned long ptr_end;
2216 char *name;
2217 struct inode *inode;
2218 struct btrfs_key location;
2219
2220again:
2221 eb = path->nodes[0];
2222 slot = path->slots[0];
2223 item_size = btrfs_item_size_nr(eb, slot);
2224 ptr = btrfs_item_ptr_offset(eb, slot);
2225 ptr_end = ptr + item_size;
2226 while (ptr < ptr_end) {
2227 di = (struct btrfs_dir_item *)ptr;
2228 name_len = btrfs_dir_name_len(eb, di);
2229 name = kmalloc(name_len, GFP_NOFS);
2230 if (!name) {
2231 ret = -ENOMEM;
2232 goto out;
2233 }
2234 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2235 name_len);
2236 log_di = NULL;
2237 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2238 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2239 dir_key->objectid,
2240 name, name_len, 0);
2241 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2242 log_di = btrfs_lookup_dir_index_item(trans, log,
2243 log_path,
2244 dir_key->objectid,
2245 dir_key->offset,
2246 name, name_len, 0);
2247 }
2248 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2249 btrfs_dir_item_key_to_cpu(eb, di, &location);
2250 btrfs_release_path(path);
2251 btrfs_release_path(log_path);
2252 inode = read_one_inode(root, location.objectid);
2253 if (!inode) {
2254 kfree(name);
2255 return -EIO;
2256 }
2257
2258 ret = link_to_fixup_dir(trans, root,
2259 path, location.objectid);
2260 if (ret) {
2261 kfree(name);
2262 iput(inode);
2263 goto out;
2264 }
2265
2266 inc_nlink(inode);
2267 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2268 BTRFS_I(inode), name, name_len);
2269 if (!ret)
2270 ret = btrfs_run_delayed_items(trans);
2271 kfree(name);
2272 iput(inode);
2273 if (ret)
2274 goto out;
2275
2276 /* there might still be more names under this key
2277 * check and repeat if required
2278 */
2279 ret = btrfs_search_slot(NULL, root, dir_key, path,
2280 0, 0);
2281 if (ret == 0)
2282 goto again;
2283 ret = 0;
2284 goto out;
2285 } else if (IS_ERR(log_di)) {
2286 kfree(name);
2287 return PTR_ERR(log_di);
2288 }
2289 btrfs_release_path(log_path);
2290 kfree(name);
2291
2292 ptr = (unsigned long)(di + 1);
2293 ptr += name_len;
2294 }
2295 ret = 0;
2296out:
2297 btrfs_release_path(path);
2298 btrfs_release_path(log_path);
2299 return ret;
2300}
2301
2302static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2303 struct btrfs_root *root,
2304 struct btrfs_root *log,
2305 struct btrfs_path *path,
2306 const u64 ino)
2307{
2308 struct btrfs_key search_key;
2309 struct btrfs_path *log_path;
2310 int i;
2311 int nritems;
2312 int ret;
2313
2314 log_path = btrfs_alloc_path();
2315 if (!log_path)
2316 return -ENOMEM;
2317
2318 search_key.objectid = ino;
2319 search_key.type = BTRFS_XATTR_ITEM_KEY;
2320 search_key.offset = 0;
2321again:
2322 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2323 if (ret < 0)
2324 goto out;
2325process_leaf:
2326 nritems = btrfs_header_nritems(path->nodes[0]);
2327 for (i = path->slots[0]; i < nritems; i++) {
2328 struct btrfs_key key;
2329 struct btrfs_dir_item *di;
2330 struct btrfs_dir_item *log_di;
2331 u32 total_size;
2332 u32 cur;
2333
2334 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2335 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2336 ret = 0;
2337 goto out;
2338 }
2339
2340 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2341 total_size = btrfs_item_size_nr(path->nodes[0], i);
2342 cur = 0;
2343 while (cur < total_size) {
2344 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2345 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2346 u32 this_len = sizeof(*di) + name_len + data_len;
2347 char *name;
2348
2349 name = kmalloc(name_len, GFP_NOFS);
2350 if (!name) {
2351 ret = -ENOMEM;
2352 goto out;
2353 }
2354 read_extent_buffer(path->nodes[0], name,
2355 (unsigned long)(di + 1), name_len);
2356
2357 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2358 name, name_len, 0);
2359 btrfs_release_path(log_path);
2360 if (!log_di) {
2361 /* Doesn't exist in log tree, so delete it. */
2362 btrfs_release_path(path);
2363 di = btrfs_lookup_xattr(trans, root, path, ino,
2364 name, name_len, -1);
2365 kfree(name);
2366 if (IS_ERR(di)) {
2367 ret = PTR_ERR(di);
2368 goto out;
2369 }
2370 ASSERT(di);
2371 ret = btrfs_delete_one_dir_name(trans, root,
2372 path, di);
2373 if (ret)
2374 goto out;
2375 btrfs_release_path(path);
2376 search_key = key;
2377 goto again;
2378 }
2379 kfree(name);
2380 if (IS_ERR(log_di)) {
2381 ret = PTR_ERR(log_di);
2382 goto out;
2383 }
2384 cur += this_len;
2385 di = (struct btrfs_dir_item *)((char *)di + this_len);
2386 }
2387 }
2388 ret = btrfs_next_leaf(root, path);
2389 if (ret > 0)
2390 ret = 0;
2391 else if (ret == 0)
2392 goto process_leaf;
2393out:
2394 btrfs_free_path(log_path);
2395 btrfs_release_path(path);
2396 return ret;
2397}
2398
2399
2400/*
2401 * deletion replay happens before we copy any new directory items
2402 * out of the log or out of backreferences from inodes. It
2403 * scans the log to find ranges of keys that log is authoritative for,
2404 * and then scans the directory to find items in those ranges that are
2405 * not present in the log.
2406 *
2407 * Anything we don't find in the log is unlinked and removed from the
2408 * directory.
2409 */
2410static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2411 struct btrfs_root *root,
2412 struct btrfs_root *log,
2413 struct btrfs_path *path,
2414 u64 dirid, int del_all)
2415{
2416 u64 range_start;
2417 u64 range_end;
2418 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2419 int ret = 0;
2420 struct btrfs_key dir_key;
2421 struct btrfs_key found_key;
2422 struct btrfs_path *log_path;
2423 struct inode *dir;
2424
2425 dir_key.objectid = dirid;
2426 dir_key.type = BTRFS_DIR_ITEM_KEY;
2427 log_path = btrfs_alloc_path();
2428 if (!log_path)
2429 return -ENOMEM;
2430
2431 dir = read_one_inode(root, dirid);
2432 /* it isn't an error if the inode isn't there, that can happen
2433 * because we replay the deletes before we copy in the inode item
2434 * from the log
2435 */
2436 if (!dir) {
2437 btrfs_free_path(log_path);
2438 return 0;
2439 }
2440again:
2441 range_start = 0;
2442 range_end = 0;
2443 while (1) {
2444 if (del_all)
2445 range_end = (u64)-1;
2446 else {
2447 ret = find_dir_range(log, path, dirid, key_type,
2448 &range_start, &range_end);
2449 if (ret != 0)
2450 break;
2451 }
2452
2453 dir_key.offset = range_start;
2454 while (1) {
2455 int nritems;
2456 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2457 0, 0);
2458 if (ret < 0)
2459 goto out;
2460
2461 nritems = btrfs_header_nritems(path->nodes[0]);
2462 if (path->slots[0] >= nritems) {
2463 ret = btrfs_next_leaf(root, path);
2464 if (ret == 1)
2465 break;
2466 else if (ret < 0)
2467 goto out;
2468 }
2469 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2470 path->slots[0]);
2471 if (found_key.objectid != dirid ||
2472 found_key.type != dir_key.type)
2473 goto next_type;
2474
2475 if (found_key.offset > range_end)
2476 break;
2477
2478 ret = check_item_in_log(trans, root, log, path,
2479 log_path, dir,
2480 &found_key);
2481 if (ret)
2482 goto out;
2483 if (found_key.offset == (u64)-1)
2484 break;
2485 dir_key.offset = found_key.offset + 1;
2486 }
2487 btrfs_release_path(path);
2488 if (range_end == (u64)-1)
2489 break;
2490 range_start = range_end + 1;
2491 }
2492
2493next_type:
2494 ret = 0;
2495 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2496 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2497 dir_key.type = BTRFS_DIR_INDEX_KEY;
2498 btrfs_release_path(path);
2499 goto again;
2500 }
2501out:
2502 btrfs_release_path(path);
2503 btrfs_free_path(log_path);
2504 iput(dir);
2505 return ret;
2506}
2507
2508/*
2509 * the process_func used to replay items from the log tree. This
2510 * gets called in two different stages. The first stage just looks
2511 * for inodes and makes sure they are all copied into the subvolume.
2512 *
2513 * The second stage copies all the other item types from the log into
2514 * the subvolume. The two stage approach is slower, but gets rid of
2515 * lots of complexity around inodes referencing other inodes that exist
2516 * only in the log (references come from either directory items or inode
2517 * back refs).
2518 */
2519static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2520 struct walk_control *wc, u64 gen, int level)
2521{
2522 int nritems;
2523 struct btrfs_path *path;
2524 struct btrfs_root *root = wc->replay_dest;
2525 struct btrfs_key key;
2526 int i;
2527 int ret;
2528
2529 ret = btrfs_read_buffer(eb, gen, level, NULL);
2530 if (ret)
2531 return ret;
2532
2533 level = btrfs_header_level(eb);
2534
2535 if (level != 0)
2536 return 0;
2537
2538 path = btrfs_alloc_path();
2539 if (!path)
2540 return -ENOMEM;
2541
2542 nritems = btrfs_header_nritems(eb);
2543 for (i = 0; i < nritems; i++) {
2544 btrfs_item_key_to_cpu(eb, &key, i);
2545
2546 /* inode keys are done during the first stage */
2547 if (key.type == BTRFS_INODE_ITEM_KEY &&
2548 wc->stage == LOG_WALK_REPLAY_INODES) {
2549 struct btrfs_inode_item *inode_item;
2550 u32 mode;
2551
2552 inode_item = btrfs_item_ptr(eb, i,
2553 struct btrfs_inode_item);
2554 /*
2555 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2556 * and never got linked before the fsync, skip it, as
2557 * replaying it is pointless since it would be deleted
2558 * later. We skip logging tmpfiles, but it's always
2559 * possible we are replaying a log created with a kernel
2560 * that used to log tmpfiles.
2561 */
2562 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2563 wc->ignore_cur_inode = true;
2564 continue;
2565 } else {
2566 wc->ignore_cur_inode = false;
2567 }
2568 ret = replay_xattr_deletes(wc->trans, root, log,
2569 path, key.objectid);
2570 if (ret)
2571 break;
2572 mode = btrfs_inode_mode(eb, inode_item);
2573 if (S_ISDIR(mode)) {
2574 ret = replay_dir_deletes(wc->trans,
2575 root, log, path, key.objectid, 0);
2576 if (ret)
2577 break;
2578 }
2579 ret = overwrite_item(wc->trans, root, path,
2580 eb, i, &key);
2581 if (ret)
2582 break;
2583
2584 /*
2585 * Before replaying extents, truncate the inode to its
2586 * size. We need to do it now and not after log replay
2587 * because before an fsync we can have prealloc extents
2588 * added beyond the inode's i_size. If we did it after,
2589 * through orphan cleanup for example, we would drop
2590 * those prealloc extents just after replaying them.
2591 */
2592 if (S_ISREG(mode)) {
2593 struct inode *inode;
2594 u64 from;
2595
2596 inode = read_one_inode(root, key.objectid);
2597 if (!inode) {
2598 ret = -EIO;
2599 break;
2600 }
2601 from = ALIGN(i_size_read(inode),
2602 root->fs_info->sectorsize);
2603 ret = btrfs_drop_extents(wc->trans, root, inode,
2604 from, (u64)-1, 1);
2605 if (!ret) {
2606 /* Update the inode's nbytes. */
2607 ret = btrfs_update_inode(wc->trans,
2608 root, inode);
2609 }
2610 iput(inode);
2611 if (ret)
2612 break;
2613 }
2614
2615 ret = link_to_fixup_dir(wc->trans, root,
2616 path, key.objectid);
2617 if (ret)
2618 break;
2619 }
2620
2621 if (wc->ignore_cur_inode)
2622 continue;
2623
2624 if (key.type == BTRFS_DIR_INDEX_KEY &&
2625 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2626 ret = replay_one_dir_item(wc->trans, root, path,
2627 eb, i, &key);
2628 if (ret)
2629 break;
2630 }
2631
2632 if (wc->stage < LOG_WALK_REPLAY_ALL)
2633 continue;
2634
2635 /* these keys are simply copied */
2636 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2637 ret = overwrite_item(wc->trans, root, path,
2638 eb, i, &key);
2639 if (ret)
2640 break;
2641 } else if (key.type == BTRFS_INODE_REF_KEY ||
2642 key.type == BTRFS_INODE_EXTREF_KEY) {
2643 ret = add_inode_ref(wc->trans, root, log, path,
2644 eb, i, &key);
2645 if (ret && ret != -ENOENT)
2646 break;
2647 ret = 0;
2648 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2649 ret = replay_one_extent(wc->trans, root, path,
2650 eb, i, &key);
2651 if (ret)
2652 break;
2653 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2654 ret = replay_one_dir_item(wc->trans, root, path,
2655 eb, i, &key);
2656 if (ret)
2657 break;
2658 }
2659 }
2660 btrfs_free_path(path);
2661 return ret;
2662}
2663
2664/*
2665 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2666 */
2667static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2668{
2669 struct btrfs_block_group *cache;
2670
2671 cache = btrfs_lookup_block_group(fs_info, start);
2672 if (!cache) {
2673 btrfs_err(fs_info, "unable to find block group for %llu", start);
2674 return;
2675 }
2676
2677 spin_lock(&cache->space_info->lock);
2678 spin_lock(&cache->lock);
2679 cache->reserved -= fs_info->nodesize;
2680 cache->space_info->bytes_reserved -= fs_info->nodesize;
2681 spin_unlock(&cache->lock);
2682 spin_unlock(&cache->space_info->lock);
2683
2684 btrfs_put_block_group(cache);
2685}
2686
2687static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2688 struct btrfs_root *root,
2689 struct btrfs_path *path, int *level,
2690 struct walk_control *wc)
2691{
2692 struct btrfs_fs_info *fs_info = root->fs_info;
2693 u64 bytenr;
2694 u64 ptr_gen;
2695 struct extent_buffer *next;
2696 struct extent_buffer *cur;
2697 u32 blocksize;
2698 int ret = 0;
2699
2700 while (*level > 0) {
2701 struct btrfs_key first_key;
2702
2703 cur = path->nodes[*level];
2704
2705 WARN_ON(btrfs_header_level(cur) != *level);
2706
2707 if (path->slots[*level] >=
2708 btrfs_header_nritems(cur))
2709 break;
2710
2711 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2712 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2713 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2714 blocksize = fs_info->nodesize;
2715
2716 next = btrfs_find_create_tree_block(fs_info, bytenr);
2717 if (IS_ERR(next))
2718 return PTR_ERR(next);
2719
2720 if (*level == 1) {
2721 ret = wc->process_func(root, next, wc, ptr_gen,
2722 *level - 1);
2723 if (ret) {
2724 free_extent_buffer(next);
2725 return ret;
2726 }
2727
2728 path->slots[*level]++;
2729 if (wc->free) {
2730 ret = btrfs_read_buffer(next, ptr_gen,
2731 *level - 1, &first_key);
2732 if (ret) {
2733 free_extent_buffer(next);
2734 return ret;
2735 }
2736
2737 if (trans) {
2738 btrfs_tree_lock(next);
2739 btrfs_set_lock_blocking_write(next);
2740 btrfs_clean_tree_block(next);
2741 btrfs_wait_tree_block_writeback(next);
2742 btrfs_tree_unlock(next);
2743 ret = btrfs_pin_reserved_extent(trans,
2744 bytenr, blocksize);
2745 if (ret) {
2746 free_extent_buffer(next);
2747 return ret;
2748 }
2749 } else {
2750 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2751 clear_extent_buffer_dirty(next);
2752 unaccount_log_buffer(fs_info, bytenr);
2753 }
2754 }
2755 free_extent_buffer(next);
2756 continue;
2757 }
2758 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2759 if (ret) {
2760 free_extent_buffer(next);
2761 return ret;
2762 }
2763
2764 if (path->nodes[*level-1])
2765 free_extent_buffer(path->nodes[*level-1]);
2766 path->nodes[*level-1] = next;
2767 *level = btrfs_header_level(next);
2768 path->slots[*level] = 0;
2769 cond_resched();
2770 }
2771 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2772
2773 cond_resched();
2774 return 0;
2775}
2776
2777static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2778 struct btrfs_root *root,
2779 struct btrfs_path *path, int *level,
2780 struct walk_control *wc)
2781{
2782 struct btrfs_fs_info *fs_info = root->fs_info;
2783 int i;
2784 int slot;
2785 int ret;
2786
2787 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2788 slot = path->slots[i];
2789 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2790 path->slots[i]++;
2791 *level = i;
2792 WARN_ON(*level == 0);
2793 return 0;
2794 } else {
2795 ret = wc->process_func(root, path->nodes[*level], wc,
2796 btrfs_header_generation(path->nodes[*level]),
2797 *level);
2798 if (ret)
2799 return ret;
2800
2801 if (wc->free) {
2802 struct extent_buffer *next;
2803
2804 next = path->nodes[*level];
2805
2806 if (trans) {
2807 btrfs_tree_lock(next);
2808 btrfs_set_lock_blocking_write(next);
2809 btrfs_clean_tree_block(next);
2810 btrfs_wait_tree_block_writeback(next);
2811 btrfs_tree_unlock(next);
2812 ret = btrfs_pin_reserved_extent(trans,
2813 path->nodes[*level]->start,
2814 path->nodes[*level]->len);
2815 if (ret)
2816 return ret;
2817 } else {
2818 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2819 clear_extent_buffer_dirty(next);
2820
2821 unaccount_log_buffer(fs_info,
2822 path->nodes[*level]->start);
2823 }
2824 }
2825 free_extent_buffer(path->nodes[*level]);
2826 path->nodes[*level] = NULL;
2827 *level = i + 1;
2828 }
2829 }
2830 return 1;
2831}
2832
2833/*
2834 * drop the reference count on the tree rooted at 'snap'. This traverses
2835 * the tree freeing any blocks that have a ref count of zero after being
2836 * decremented.
2837 */
2838static int walk_log_tree(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *log, struct walk_control *wc)
2840{
2841 struct btrfs_fs_info *fs_info = log->fs_info;
2842 int ret = 0;
2843 int wret;
2844 int level;
2845 struct btrfs_path *path;
2846 int orig_level;
2847
2848 path = btrfs_alloc_path();
2849 if (!path)
2850 return -ENOMEM;
2851
2852 level = btrfs_header_level(log->node);
2853 orig_level = level;
2854 path->nodes[level] = log->node;
2855 atomic_inc(&log->node->refs);
2856 path->slots[level] = 0;
2857
2858 while (1) {
2859 wret = walk_down_log_tree(trans, log, path, &level, wc);
2860 if (wret > 0)
2861 break;
2862 if (wret < 0) {
2863 ret = wret;
2864 goto out;
2865 }
2866
2867 wret = walk_up_log_tree(trans, log, path, &level, wc);
2868 if (wret > 0)
2869 break;
2870 if (wret < 0) {
2871 ret = wret;
2872 goto out;
2873 }
2874 }
2875
2876 /* was the root node processed? if not, catch it here */
2877 if (path->nodes[orig_level]) {
2878 ret = wc->process_func(log, path->nodes[orig_level], wc,
2879 btrfs_header_generation(path->nodes[orig_level]),
2880 orig_level);
2881 if (ret)
2882 goto out;
2883 if (wc->free) {
2884 struct extent_buffer *next;
2885
2886 next = path->nodes[orig_level];
2887
2888 if (trans) {
2889 btrfs_tree_lock(next);
2890 btrfs_set_lock_blocking_write(next);
2891 btrfs_clean_tree_block(next);
2892 btrfs_wait_tree_block_writeback(next);
2893 btrfs_tree_unlock(next);
2894 ret = btrfs_pin_reserved_extent(trans,
2895 next->start, next->len);
2896 if (ret)
2897 goto out;
2898 } else {
2899 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2900 clear_extent_buffer_dirty(next);
2901 unaccount_log_buffer(fs_info, next->start);
2902 }
2903 }
2904 }
2905
2906out:
2907 btrfs_free_path(path);
2908 return ret;
2909}
2910
2911/*
2912 * helper function to update the item for a given subvolumes log root
2913 * in the tree of log roots
2914 */
2915static int update_log_root(struct btrfs_trans_handle *trans,
2916 struct btrfs_root *log,
2917 struct btrfs_root_item *root_item)
2918{
2919 struct btrfs_fs_info *fs_info = log->fs_info;
2920 int ret;
2921
2922 if (log->log_transid == 1) {
2923 /* insert root item on the first sync */
2924 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2925 &log->root_key, root_item);
2926 } else {
2927 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2928 &log->root_key, root_item);
2929 }
2930 return ret;
2931}
2932
2933static void wait_log_commit(struct btrfs_root *root, int transid)
2934{
2935 DEFINE_WAIT(wait);
2936 int index = transid % 2;
2937
2938 /*
2939 * we only allow two pending log transactions at a time,
2940 * so we know that if ours is more than 2 older than the
2941 * current transaction, we're done
2942 */
2943 for (;;) {
2944 prepare_to_wait(&root->log_commit_wait[index],
2945 &wait, TASK_UNINTERRUPTIBLE);
2946
2947 if (!(root->log_transid_committed < transid &&
2948 atomic_read(&root->log_commit[index])))
2949 break;
2950
2951 mutex_unlock(&root->log_mutex);
2952 schedule();
2953 mutex_lock(&root->log_mutex);
2954 }
2955 finish_wait(&root->log_commit_wait[index], &wait);
2956}
2957
2958static void wait_for_writer(struct btrfs_root *root)
2959{
2960 DEFINE_WAIT(wait);
2961
2962 for (;;) {
2963 prepare_to_wait(&root->log_writer_wait, &wait,
2964 TASK_UNINTERRUPTIBLE);
2965 if (!atomic_read(&root->log_writers))
2966 break;
2967
2968 mutex_unlock(&root->log_mutex);
2969 schedule();
2970 mutex_lock(&root->log_mutex);
2971 }
2972 finish_wait(&root->log_writer_wait, &wait);
2973}
2974
2975static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2976 struct btrfs_log_ctx *ctx)
2977{
2978 if (!ctx)
2979 return;
2980
2981 mutex_lock(&root->log_mutex);
2982 list_del_init(&ctx->list);
2983 mutex_unlock(&root->log_mutex);
2984}
2985
2986/*
2987 * Invoked in log mutex context, or be sure there is no other task which
2988 * can access the list.
2989 */
2990static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2991 int index, int error)
2992{
2993 struct btrfs_log_ctx *ctx;
2994 struct btrfs_log_ctx *safe;
2995
2996 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2997 list_del_init(&ctx->list);
2998 ctx->log_ret = error;
2999 }
3000
3001 INIT_LIST_HEAD(&root->log_ctxs[index]);
3002}
3003
3004/*
3005 * btrfs_sync_log does sends a given tree log down to the disk and
3006 * updates the super blocks to record it. When this call is done,
3007 * you know that any inodes previously logged are safely on disk only
3008 * if it returns 0.
3009 *
3010 * Any other return value means you need to call btrfs_commit_transaction.
3011 * Some of the edge cases for fsyncing directories that have had unlinks
3012 * or renames done in the past mean that sometimes the only safe
3013 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3014 * that has happened.
3015 */
3016int btrfs_sync_log(struct btrfs_trans_handle *trans,
3017 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3018{
3019 int index1;
3020 int index2;
3021 int mark;
3022 int ret;
3023 struct btrfs_fs_info *fs_info = root->fs_info;
3024 struct btrfs_root *log = root->log_root;
3025 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3026 struct btrfs_root_item new_root_item;
3027 int log_transid = 0;
3028 struct btrfs_log_ctx root_log_ctx;
3029 struct blk_plug plug;
3030
3031 mutex_lock(&root->log_mutex);
3032 log_transid = ctx->log_transid;
3033 if (root->log_transid_committed >= log_transid) {
3034 mutex_unlock(&root->log_mutex);
3035 return ctx->log_ret;
3036 }
3037
3038 index1 = log_transid % 2;
3039 if (atomic_read(&root->log_commit[index1])) {
3040 wait_log_commit(root, log_transid);
3041 mutex_unlock(&root->log_mutex);
3042 return ctx->log_ret;
3043 }
3044 ASSERT(log_transid == root->log_transid);
3045 atomic_set(&root->log_commit[index1], 1);
3046
3047 /* wait for previous tree log sync to complete */
3048 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3049 wait_log_commit(root, log_transid - 1);
3050
3051 while (1) {
3052 int batch = atomic_read(&root->log_batch);
3053 /* when we're on an ssd, just kick the log commit out */
3054 if (!btrfs_test_opt(fs_info, SSD) &&
3055 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3056 mutex_unlock(&root->log_mutex);
3057 schedule_timeout_uninterruptible(1);
3058 mutex_lock(&root->log_mutex);
3059 }
3060 wait_for_writer(root);
3061 if (batch == atomic_read(&root->log_batch))
3062 break;
3063 }
3064
3065 /* bail out if we need to do a full commit */
3066 if (btrfs_need_log_full_commit(trans)) {
3067 ret = -EAGAIN;
3068 mutex_unlock(&root->log_mutex);
3069 goto out;
3070 }
3071
3072 if (log_transid % 2 == 0)
3073 mark = EXTENT_DIRTY;
3074 else
3075 mark = EXTENT_NEW;
3076
3077 /* we start IO on all the marked extents here, but we don't actually
3078 * wait for them until later.
3079 */
3080 blk_start_plug(&plug);
3081 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3082 if (ret) {
3083 blk_finish_plug(&plug);
3084 btrfs_abort_transaction(trans, ret);
3085 btrfs_set_log_full_commit(trans);
3086 mutex_unlock(&root->log_mutex);
3087 goto out;
3088 }
3089
3090 /*
3091 * We _must_ update under the root->log_mutex in order to make sure we
3092 * have a consistent view of the log root we are trying to commit at
3093 * this moment.
3094 *
3095 * We _must_ copy this into a local copy, because we are not holding the
3096 * log_root_tree->log_mutex yet. This is important because when we
3097 * commit the log_root_tree we must have a consistent view of the
3098 * log_root_tree when we update the super block to point at the
3099 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3100 * with the commit and possibly point at the new block which we may not
3101 * have written out.
3102 */
3103 btrfs_set_root_node(&log->root_item, log->node);
3104 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3105
3106 root->log_transid++;
3107 log->log_transid = root->log_transid;
3108 root->log_start_pid = 0;
3109 /*
3110 * IO has been started, blocks of the log tree have WRITTEN flag set
3111 * in their headers. new modifications of the log will be written to
3112 * new positions. so it's safe to allow log writers to go in.
3113 */
3114 mutex_unlock(&root->log_mutex);
3115
3116 btrfs_init_log_ctx(&root_log_ctx, NULL);
3117
3118 mutex_lock(&log_root_tree->log_mutex);
3119
3120 index2 = log_root_tree->log_transid % 2;
3121 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3122 root_log_ctx.log_transid = log_root_tree->log_transid;
3123
3124 /*
3125 * Now we are safe to update the log_root_tree because we're under the
3126 * log_mutex, and we're a current writer so we're holding the commit
3127 * open until we drop the log_mutex.
3128 */
3129 ret = update_log_root(trans, log, &new_root_item);
3130 if (ret) {
3131 if (!list_empty(&root_log_ctx.list))
3132 list_del_init(&root_log_ctx.list);
3133
3134 blk_finish_plug(&plug);
3135 btrfs_set_log_full_commit(trans);
3136
3137 if (ret != -ENOSPC) {
3138 btrfs_abort_transaction(trans, ret);
3139 mutex_unlock(&log_root_tree->log_mutex);
3140 goto out;
3141 }
3142 btrfs_wait_tree_log_extents(log, mark);
3143 mutex_unlock(&log_root_tree->log_mutex);
3144 ret = -EAGAIN;
3145 goto out;
3146 }
3147
3148 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3149 blk_finish_plug(&plug);
3150 list_del_init(&root_log_ctx.list);
3151 mutex_unlock(&log_root_tree->log_mutex);
3152 ret = root_log_ctx.log_ret;
3153 goto out;
3154 }
3155
3156 index2 = root_log_ctx.log_transid % 2;
3157 if (atomic_read(&log_root_tree->log_commit[index2])) {
3158 blk_finish_plug(&plug);
3159 ret = btrfs_wait_tree_log_extents(log, mark);
3160 wait_log_commit(log_root_tree,
3161 root_log_ctx.log_transid);
3162 mutex_unlock(&log_root_tree->log_mutex);
3163 if (!ret)
3164 ret = root_log_ctx.log_ret;
3165 goto out;
3166 }
3167 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3168 atomic_set(&log_root_tree->log_commit[index2], 1);
3169
3170 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3171 wait_log_commit(log_root_tree,
3172 root_log_ctx.log_transid - 1);
3173 }
3174
3175 /*
3176 * now that we've moved on to the tree of log tree roots,
3177 * check the full commit flag again
3178 */
3179 if (btrfs_need_log_full_commit(trans)) {
3180 blk_finish_plug(&plug);
3181 btrfs_wait_tree_log_extents(log, mark);
3182 mutex_unlock(&log_root_tree->log_mutex);
3183 ret = -EAGAIN;
3184 goto out_wake_log_root;
3185 }
3186
3187 ret = btrfs_write_marked_extents(fs_info,
3188 &log_root_tree->dirty_log_pages,
3189 EXTENT_DIRTY | EXTENT_NEW);
3190 blk_finish_plug(&plug);
3191 if (ret) {
3192 btrfs_set_log_full_commit(trans);
3193 btrfs_abort_transaction(trans, ret);
3194 mutex_unlock(&log_root_tree->log_mutex);
3195 goto out_wake_log_root;
3196 }
3197 ret = btrfs_wait_tree_log_extents(log, mark);
3198 if (!ret)
3199 ret = btrfs_wait_tree_log_extents(log_root_tree,
3200 EXTENT_NEW | EXTENT_DIRTY);
3201 if (ret) {
3202 btrfs_set_log_full_commit(trans);
3203 mutex_unlock(&log_root_tree->log_mutex);
3204 goto out_wake_log_root;
3205 }
3206
3207 btrfs_set_super_log_root(fs_info->super_for_commit,
3208 log_root_tree->node->start);
3209 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3210 btrfs_header_level(log_root_tree->node));
3211
3212 log_root_tree->log_transid++;
3213 mutex_unlock(&log_root_tree->log_mutex);
3214
3215 /*
3216 * Nobody else is going to jump in and write the ctree
3217 * super here because the log_commit atomic below is protecting
3218 * us. We must be called with a transaction handle pinning
3219 * the running transaction open, so a full commit can't hop
3220 * in and cause problems either.
3221 */
3222 ret = write_all_supers(fs_info, 1);
3223 if (ret) {
3224 btrfs_set_log_full_commit(trans);
3225 btrfs_abort_transaction(trans, ret);
3226 goto out_wake_log_root;
3227 }
3228
3229 mutex_lock(&root->log_mutex);
3230 if (root->last_log_commit < log_transid)
3231 root->last_log_commit = log_transid;
3232 mutex_unlock(&root->log_mutex);
3233
3234out_wake_log_root:
3235 mutex_lock(&log_root_tree->log_mutex);
3236 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3237
3238 log_root_tree->log_transid_committed++;
3239 atomic_set(&log_root_tree->log_commit[index2], 0);
3240 mutex_unlock(&log_root_tree->log_mutex);
3241
3242 /*
3243 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3244 * all the updates above are seen by the woken threads. It might not be
3245 * necessary, but proving that seems to be hard.
3246 */
3247 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3248out:
3249 mutex_lock(&root->log_mutex);
3250 btrfs_remove_all_log_ctxs(root, index1, ret);
3251 root->log_transid_committed++;
3252 atomic_set(&root->log_commit[index1], 0);
3253 mutex_unlock(&root->log_mutex);
3254
3255 /*
3256 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3257 * all the updates above are seen by the woken threads. It might not be
3258 * necessary, but proving that seems to be hard.
3259 */
3260 cond_wake_up(&root->log_commit_wait[index1]);
3261 return ret;
3262}
3263
3264static void free_log_tree(struct btrfs_trans_handle *trans,
3265 struct btrfs_root *log)
3266{
3267 int ret;
3268 struct walk_control wc = {
3269 .free = 1,
3270 .process_func = process_one_buffer
3271 };
3272
3273 ret = walk_log_tree(trans, log, &wc);
3274 if (ret) {
3275 if (trans)
3276 btrfs_abort_transaction(trans, ret);
3277 else
3278 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3279 }
3280
3281 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3282 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3283 extent_io_tree_release(&log->log_csum_range);
3284 btrfs_put_root(log);
3285}
3286
3287/*
3288 * free all the extents used by the tree log. This should be called
3289 * at commit time of the full transaction
3290 */
3291int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3292{
3293 if (root->log_root) {
3294 free_log_tree(trans, root->log_root);
3295 root->log_root = NULL;
3296 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3297 }
3298 return 0;
3299}
3300
3301int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3302 struct btrfs_fs_info *fs_info)
3303{
3304 if (fs_info->log_root_tree) {
3305 free_log_tree(trans, fs_info->log_root_tree);
3306 fs_info->log_root_tree = NULL;
3307 }
3308 return 0;
3309}
3310
3311/*
3312 * Check if an inode was logged in the current transaction. We can't always rely
3313 * on an inode's logged_trans value, because it's an in-memory only field and
3314 * therefore not persisted. This means that its value is lost if the inode gets
3315 * evicted and loaded again from disk (in which case it has a value of 0, and
3316 * certainly it is smaller then any possible transaction ID), when that happens
3317 * the full_sync flag is set in the inode's runtime flags, so on that case we
3318 * assume eviction happened and ignore the logged_trans value, assuming the
3319 * worst case, that the inode was logged before in the current transaction.
3320 */
3321static bool inode_logged(struct btrfs_trans_handle *trans,
3322 struct btrfs_inode *inode)
3323{
3324 if (inode->logged_trans == trans->transid)
3325 return true;
3326
3327 if (inode->last_trans == trans->transid &&
3328 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3329 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3330 return true;
3331
3332 return false;
3333}
3334
3335/*
3336 * If both a file and directory are logged, and unlinks or renames are
3337 * mixed in, we have a few interesting corners:
3338 *
3339 * create file X in dir Y
3340 * link file X to X.link in dir Y
3341 * fsync file X
3342 * unlink file X but leave X.link
3343 * fsync dir Y
3344 *
3345 * After a crash we would expect only X.link to exist. But file X
3346 * didn't get fsync'd again so the log has back refs for X and X.link.
3347 *
3348 * We solve this by removing directory entries and inode backrefs from the
3349 * log when a file that was logged in the current transaction is
3350 * unlinked. Any later fsync will include the updated log entries, and
3351 * we'll be able to reconstruct the proper directory items from backrefs.
3352 *
3353 * This optimizations allows us to avoid relogging the entire inode
3354 * or the entire directory.
3355 */
3356int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3357 struct btrfs_root *root,
3358 const char *name, int name_len,
3359 struct btrfs_inode *dir, u64 index)
3360{
3361 struct btrfs_root *log;
3362 struct btrfs_dir_item *di;
3363 struct btrfs_path *path;
3364 int ret;
3365 int err = 0;
3366 int bytes_del = 0;
3367 u64 dir_ino = btrfs_ino(dir);
3368
3369 if (!inode_logged(trans, dir))
3370 return 0;
3371
3372 ret = join_running_log_trans(root);
3373 if (ret)
3374 return 0;
3375
3376 mutex_lock(&dir->log_mutex);
3377
3378 log = root->log_root;
3379 path = btrfs_alloc_path();
3380 if (!path) {
3381 err = -ENOMEM;
3382 goto out_unlock;
3383 }
3384
3385 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3386 name, name_len, -1);
3387 if (IS_ERR(di)) {
3388 err = PTR_ERR(di);
3389 goto fail;
3390 }
3391 if (di) {
3392 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3393 bytes_del += name_len;
3394 if (ret) {
3395 err = ret;
3396 goto fail;
3397 }
3398 }
3399 btrfs_release_path(path);
3400 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3401 index, name, name_len, -1);
3402 if (IS_ERR(di)) {
3403 err = PTR_ERR(di);
3404 goto fail;
3405 }
3406 if (di) {
3407 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3408 bytes_del += name_len;
3409 if (ret) {
3410 err = ret;
3411 goto fail;
3412 }
3413 }
3414
3415 /* update the directory size in the log to reflect the names
3416 * we have removed
3417 */
3418 if (bytes_del) {
3419 struct btrfs_key key;
3420
3421 key.objectid = dir_ino;
3422 key.offset = 0;
3423 key.type = BTRFS_INODE_ITEM_KEY;
3424 btrfs_release_path(path);
3425
3426 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3427 if (ret < 0) {
3428 err = ret;
3429 goto fail;
3430 }
3431 if (ret == 0) {
3432 struct btrfs_inode_item *item;
3433 u64 i_size;
3434
3435 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3436 struct btrfs_inode_item);
3437 i_size = btrfs_inode_size(path->nodes[0], item);
3438 if (i_size > bytes_del)
3439 i_size -= bytes_del;
3440 else
3441 i_size = 0;
3442 btrfs_set_inode_size(path->nodes[0], item, i_size);
3443 btrfs_mark_buffer_dirty(path->nodes[0]);
3444 } else
3445 ret = 0;
3446 btrfs_release_path(path);
3447 }
3448fail:
3449 btrfs_free_path(path);
3450out_unlock:
3451 mutex_unlock(&dir->log_mutex);
3452 if (err == -ENOSPC) {
3453 btrfs_set_log_full_commit(trans);
3454 err = 0;
3455 } else if (err < 0 && err != -ENOENT) {
3456 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3457 btrfs_abort_transaction(trans, err);
3458 }
3459
3460 btrfs_end_log_trans(root);
3461
3462 return err;
3463}
3464
3465/* see comments for btrfs_del_dir_entries_in_log */
3466int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3467 struct btrfs_root *root,
3468 const char *name, int name_len,
3469 struct btrfs_inode *inode, u64 dirid)
3470{
3471 struct btrfs_root *log;
3472 u64 index;
3473 int ret;
3474
3475 if (!inode_logged(trans, inode))
3476 return 0;
3477
3478 ret = join_running_log_trans(root);
3479 if (ret)
3480 return 0;
3481 log = root->log_root;
3482 mutex_lock(&inode->log_mutex);
3483
3484 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3485 dirid, &index);
3486 mutex_unlock(&inode->log_mutex);
3487 if (ret == -ENOSPC) {
3488 btrfs_set_log_full_commit(trans);
3489 ret = 0;
3490 } else if (ret < 0 && ret != -ENOENT)
3491 btrfs_abort_transaction(trans, ret);
3492 btrfs_end_log_trans(root);
3493
3494 return ret;
3495}
3496
3497/*
3498 * creates a range item in the log for 'dirid'. first_offset and
3499 * last_offset tell us which parts of the key space the log should
3500 * be considered authoritative for.
3501 */
3502static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3503 struct btrfs_root *log,
3504 struct btrfs_path *path,
3505 int key_type, u64 dirid,
3506 u64 first_offset, u64 last_offset)
3507{
3508 int ret;
3509 struct btrfs_key key;
3510 struct btrfs_dir_log_item *item;
3511
3512 key.objectid = dirid;
3513 key.offset = first_offset;
3514 if (key_type == BTRFS_DIR_ITEM_KEY)
3515 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3516 else
3517 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3518 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3519 if (ret)
3520 return ret;
3521
3522 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3523 struct btrfs_dir_log_item);
3524 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3525 btrfs_mark_buffer_dirty(path->nodes[0]);
3526 btrfs_release_path(path);
3527 return 0;
3528}
3529
3530/*
3531 * log all the items included in the current transaction for a given
3532 * directory. This also creates the range items in the log tree required
3533 * to replay anything deleted before the fsync
3534 */
3535static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *root, struct btrfs_inode *inode,
3537 struct btrfs_path *path,
3538 struct btrfs_path *dst_path, int key_type,
3539 struct btrfs_log_ctx *ctx,
3540 u64 min_offset, u64 *last_offset_ret)
3541{
3542 struct btrfs_key min_key;
3543 struct btrfs_root *log = root->log_root;
3544 struct extent_buffer *src;
3545 int err = 0;
3546 int ret;
3547 int i;
3548 int nritems;
3549 u64 first_offset = min_offset;
3550 u64 last_offset = (u64)-1;
3551 u64 ino = btrfs_ino(inode);
3552
3553 log = root->log_root;
3554
3555 min_key.objectid = ino;
3556 min_key.type = key_type;
3557 min_key.offset = min_offset;
3558
3559 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3560
3561 /*
3562 * we didn't find anything from this transaction, see if there
3563 * is anything at all
3564 */
3565 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3566 min_key.objectid = ino;
3567 min_key.type = key_type;
3568 min_key.offset = (u64)-1;
3569 btrfs_release_path(path);
3570 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3571 if (ret < 0) {
3572 btrfs_release_path(path);
3573 return ret;
3574 }
3575 ret = btrfs_previous_item(root, path, ino, key_type);
3576
3577 /* if ret == 0 there are items for this type,
3578 * create a range to tell us the last key of this type.
3579 * otherwise, there are no items in this directory after
3580 * *min_offset, and we create a range to indicate that.
3581 */
3582 if (ret == 0) {
3583 struct btrfs_key tmp;
3584 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3585 path->slots[0]);
3586 if (key_type == tmp.type)
3587 first_offset = max(min_offset, tmp.offset) + 1;
3588 }
3589 goto done;
3590 }
3591
3592 /* go backward to find any previous key */
3593 ret = btrfs_previous_item(root, path, ino, key_type);
3594 if (ret == 0) {
3595 struct btrfs_key tmp;
3596 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3597 if (key_type == tmp.type) {
3598 first_offset = tmp.offset;
3599 ret = overwrite_item(trans, log, dst_path,
3600 path->nodes[0], path->slots[0],
3601 &tmp);
3602 if (ret) {
3603 err = ret;
3604 goto done;
3605 }
3606 }
3607 }
3608 btrfs_release_path(path);
3609
3610 /*
3611 * Find the first key from this transaction again. See the note for
3612 * log_new_dir_dentries, if we're logging a directory recursively we
3613 * won't be holding its i_mutex, which means we can modify the directory
3614 * while we're logging it. If we remove an entry between our first
3615 * search and this search we'll not find the key again and can just
3616 * bail.
3617 */
3618 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3619 if (ret != 0)
3620 goto done;
3621
3622 /*
3623 * we have a block from this transaction, log every item in it
3624 * from our directory
3625 */
3626 while (1) {
3627 struct btrfs_key tmp;
3628 src = path->nodes[0];
3629 nritems = btrfs_header_nritems(src);
3630 for (i = path->slots[0]; i < nritems; i++) {
3631 struct btrfs_dir_item *di;
3632
3633 btrfs_item_key_to_cpu(src, &min_key, i);
3634
3635 if (min_key.objectid != ino || min_key.type != key_type)
3636 goto done;
3637 ret = overwrite_item(trans, log, dst_path, src, i,
3638 &min_key);
3639 if (ret) {
3640 err = ret;
3641 goto done;
3642 }
3643
3644 /*
3645 * We must make sure that when we log a directory entry,
3646 * the corresponding inode, after log replay, has a
3647 * matching link count. For example:
3648 *
3649 * touch foo
3650 * mkdir mydir
3651 * sync
3652 * ln foo mydir/bar
3653 * xfs_io -c "fsync" mydir
3654 * <crash>
3655 * <mount fs and log replay>
3656 *
3657 * Would result in a fsync log that when replayed, our
3658 * file inode would have a link count of 1, but we get
3659 * two directory entries pointing to the same inode.
3660 * After removing one of the names, it would not be
3661 * possible to remove the other name, which resulted
3662 * always in stale file handle errors, and would not
3663 * be possible to rmdir the parent directory, since
3664 * its i_size could never decrement to the value
3665 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3666 */
3667 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3668 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3669 if (ctx &&
3670 (btrfs_dir_transid(src, di) == trans->transid ||
3671 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3672 tmp.type != BTRFS_ROOT_ITEM_KEY)
3673 ctx->log_new_dentries = true;
3674 }
3675 path->slots[0] = nritems;
3676
3677 /*
3678 * look ahead to the next item and see if it is also
3679 * from this directory and from this transaction
3680 */
3681 ret = btrfs_next_leaf(root, path);
3682 if (ret) {
3683 if (ret == 1)
3684 last_offset = (u64)-1;
3685 else
3686 err = ret;
3687 goto done;
3688 }
3689 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3690 if (tmp.objectid != ino || tmp.type != key_type) {
3691 last_offset = (u64)-1;
3692 goto done;
3693 }
3694 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3695 ret = overwrite_item(trans, log, dst_path,
3696 path->nodes[0], path->slots[0],
3697 &tmp);
3698 if (ret)
3699 err = ret;
3700 else
3701 last_offset = tmp.offset;
3702 goto done;
3703 }
3704 }
3705done:
3706 btrfs_release_path(path);
3707 btrfs_release_path(dst_path);
3708
3709 if (err == 0) {
3710 *last_offset_ret = last_offset;
3711 /*
3712 * insert the log range keys to indicate where the log
3713 * is valid
3714 */
3715 ret = insert_dir_log_key(trans, log, path, key_type,
3716 ino, first_offset, last_offset);
3717 if (ret)
3718 err = ret;
3719 }
3720 return err;
3721}
3722
3723/*
3724 * logging directories is very similar to logging inodes, We find all the items
3725 * from the current transaction and write them to the log.
3726 *
3727 * The recovery code scans the directory in the subvolume, and if it finds a
3728 * key in the range logged that is not present in the log tree, then it means
3729 * that dir entry was unlinked during the transaction.
3730 *
3731 * In order for that scan to work, we must include one key smaller than
3732 * the smallest logged by this transaction and one key larger than the largest
3733 * key logged by this transaction.
3734 */
3735static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3736 struct btrfs_root *root, struct btrfs_inode *inode,
3737 struct btrfs_path *path,
3738 struct btrfs_path *dst_path,
3739 struct btrfs_log_ctx *ctx)
3740{
3741 u64 min_key;
3742 u64 max_key;
3743 int ret;
3744 int key_type = BTRFS_DIR_ITEM_KEY;
3745
3746again:
3747 min_key = 0;
3748 max_key = 0;
3749 while (1) {
3750 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3751 ctx, min_key, &max_key);
3752 if (ret)
3753 return ret;
3754 if (max_key == (u64)-1)
3755 break;
3756 min_key = max_key + 1;
3757 }
3758
3759 if (key_type == BTRFS_DIR_ITEM_KEY) {
3760 key_type = BTRFS_DIR_INDEX_KEY;
3761 goto again;
3762 }
3763 return 0;
3764}
3765
3766/*
3767 * a helper function to drop items from the log before we relog an
3768 * inode. max_key_type indicates the highest item type to remove.
3769 * This cannot be run for file data extents because it does not
3770 * free the extents they point to.
3771 */
3772static int drop_objectid_items(struct btrfs_trans_handle *trans,
3773 struct btrfs_root *log,
3774 struct btrfs_path *path,
3775 u64 objectid, int max_key_type)
3776{
3777 int ret;
3778 struct btrfs_key key;
3779 struct btrfs_key found_key;
3780 int start_slot;
3781
3782 key.objectid = objectid;
3783 key.type = max_key_type;
3784 key.offset = (u64)-1;
3785
3786 while (1) {
3787 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3788 BUG_ON(ret == 0); /* Logic error */
3789 if (ret < 0)
3790 break;
3791
3792 if (path->slots[0] == 0)
3793 break;
3794
3795 path->slots[0]--;
3796 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3797 path->slots[0]);
3798
3799 if (found_key.objectid != objectid)
3800 break;
3801
3802 found_key.offset = 0;
3803 found_key.type = 0;
3804 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3805 if (ret < 0)
3806 break;
3807
3808 ret = btrfs_del_items(trans, log, path, start_slot,
3809 path->slots[0] - start_slot + 1);
3810 /*
3811 * If start slot isn't 0 then we don't need to re-search, we've
3812 * found the last guy with the objectid in this tree.
3813 */
3814 if (ret || start_slot != 0)
3815 break;
3816 btrfs_release_path(path);
3817 }
3818 btrfs_release_path(path);
3819 if (ret > 0)
3820 ret = 0;
3821 return ret;
3822}
3823
3824static void fill_inode_item(struct btrfs_trans_handle *trans,
3825 struct extent_buffer *leaf,
3826 struct btrfs_inode_item *item,
3827 struct inode *inode, int log_inode_only,
3828 u64 logged_isize)
3829{
3830 struct btrfs_map_token token;
3831
3832 btrfs_init_map_token(&token, leaf);
3833
3834 if (log_inode_only) {
3835 /* set the generation to zero so the recover code
3836 * can tell the difference between an logging
3837 * just to say 'this inode exists' and a logging
3838 * to say 'update this inode with these values'
3839 */
3840 btrfs_set_token_inode_generation(&token, item, 0);
3841 btrfs_set_token_inode_size(&token, item, logged_isize);
3842 } else {
3843 btrfs_set_token_inode_generation(&token, item,
3844 BTRFS_I(inode)->generation);
3845 btrfs_set_token_inode_size(&token, item, inode->i_size);
3846 }
3847
3848 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3849 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3850 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3851 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3852
3853 btrfs_set_token_timespec_sec(&token, &item->atime,
3854 inode->i_atime.tv_sec);
3855 btrfs_set_token_timespec_nsec(&token, &item->atime,
3856 inode->i_atime.tv_nsec);
3857
3858 btrfs_set_token_timespec_sec(&token, &item->mtime,
3859 inode->i_mtime.tv_sec);
3860 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3861 inode->i_mtime.tv_nsec);
3862
3863 btrfs_set_token_timespec_sec(&token, &item->ctime,
3864 inode->i_ctime.tv_sec);
3865 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3866 inode->i_ctime.tv_nsec);
3867
3868 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3869
3870 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3871 btrfs_set_token_inode_transid(&token, item, trans->transid);
3872 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3873 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3874 btrfs_set_token_inode_block_group(&token, item, 0);
3875}
3876
3877static int log_inode_item(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *log, struct btrfs_path *path,
3879 struct btrfs_inode *inode)
3880{
3881 struct btrfs_inode_item *inode_item;
3882 int ret;
3883
3884 ret = btrfs_insert_empty_item(trans, log, path,
3885 &inode->location, sizeof(*inode_item));
3886 if (ret && ret != -EEXIST)
3887 return ret;
3888 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3889 struct btrfs_inode_item);
3890 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3891 0, 0);
3892 btrfs_release_path(path);
3893 return 0;
3894}
3895
3896static int log_csums(struct btrfs_trans_handle *trans,
3897 struct btrfs_inode *inode,
3898 struct btrfs_root *log_root,
3899 struct btrfs_ordered_sum *sums)
3900{
3901 const u64 lock_end = sums->bytenr + sums->len - 1;
3902 struct extent_state *cached_state = NULL;
3903 int ret;
3904
3905 /*
3906 * If this inode was not used for reflink operations in the current
3907 * transaction with new extents, then do the fast path, no need to
3908 * worry about logging checksum items with overlapping ranges.
3909 */
3910 if (inode->last_reflink_trans < trans->transid)
3911 return btrfs_csum_file_blocks(trans, log_root, sums);
3912
3913 /*
3914 * Serialize logging for checksums. This is to avoid racing with the
3915 * same checksum being logged by another task that is logging another
3916 * file which happens to refer to the same extent as well. Such races
3917 * can leave checksum items in the log with overlapping ranges.
3918 */
3919 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3920 lock_end, &cached_state);
3921 if (ret)
3922 return ret;
3923 /*
3924 * Due to extent cloning, we might have logged a csum item that covers a
3925 * subrange of a cloned extent, and later we can end up logging a csum
3926 * item for a larger subrange of the same extent or the entire range.
3927 * This would leave csum items in the log tree that cover the same range
3928 * and break the searches for checksums in the log tree, resulting in
3929 * some checksums missing in the fs/subvolume tree. So just delete (or
3930 * trim and adjust) any existing csum items in the log for this range.
3931 */
3932 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3933 if (!ret)
3934 ret = btrfs_csum_file_blocks(trans, log_root, sums);
3935
3936 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3937 &cached_state);
3938
3939 return ret;
3940}
3941
3942static noinline int copy_items(struct btrfs_trans_handle *trans,
3943 struct btrfs_inode *inode,
3944 struct btrfs_path *dst_path,
3945 struct btrfs_path *src_path,
3946 int start_slot, int nr, int inode_only,
3947 u64 logged_isize)
3948{
3949 struct btrfs_fs_info *fs_info = trans->fs_info;
3950 unsigned long src_offset;
3951 unsigned long dst_offset;
3952 struct btrfs_root *log = inode->root->log_root;
3953 struct btrfs_file_extent_item *extent;
3954 struct btrfs_inode_item *inode_item;
3955 struct extent_buffer *src = src_path->nodes[0];
3956 int ret;
3957 struct btrfs_key *ins_keys;
3958 u32 *ins_sizes;
3959 char *ins_data;
3960 int i;
3961 struct list_head ordered_sums;
3962 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3963
3964 INIT_LIST_HEAD(&ordered_sums);
3965
3966 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3967 nr * sizeof(u32), GFP_NOFS);
3968 if (!ins_data)
3969 return -ENOMEM;
3970
3971 ins_sizes = (u32 *)ins_data;
3972 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3973
3974 for (i = 0; i < nr; i++) {
3975 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3976 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3977 }
3978 ret = btrfs_insert_empty_items(trans, log, dst_path,
3979 ins_keys, ins_sizes, nr);
3980 if (ret) {
3981 kfree(ins_data);
3982 return ret;
3983 }
3984
3985 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3986 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3987 dst_path->slots[0]);
3988
3989 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3990
3991 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3992 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3993 dst_path->slots[0],
3994 struct btrfs_inode_item);
3995 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3996 &inode->vfs_inode,
3997 inode_only == LOG_INODE_EXISTS,
3998 logged_isize);
3999 } else {
4000 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4001 src_offset, ins_sizes[i]);
4002 }
4003
4004 /* take a reference on file data extents so that truncates
4005 * or deletes of this inode don't have to relog the inode
4006 * again
4007 */
4008 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4009 !skip_csum) {
4010 int found_type;
4011 extent = btrfs_item_ptr(src, start_slot + i,
4012 struct btrfs_file_extent_item);
4013
4014 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4015 continue;
4016
4017 found_type = btrfs_file_extent_type(src, extent);
4018 if (found_type == BTRFS_FILE_EXTENT_REG) {
4019 u64 ds, dl, cs, cl;
4020 ds = btrfs_file_extent_disk_bytenr(src,
4021 extent);
4022 /* ds == 0 is a hole */
4023 if (ds == 0)
4024 continue;
4025
4026 dl = btrfs_file_extent_disk_num_bytes(src,
4027 extent);
4028 cs = btrfs_file_extent_offset(src, extent);
4029 cl = btrfs_file_extent_num_bytes(src,
4030 extent);
4031 if (btrfs_file_extent_compression(src,
4032 extent)) {
4033 cs = 0;
4034 cl = dl;
4035 }
4036
4037 ret = btrfs_lookup_csums_range(
4038 fs_info->csum_root,
4039 ds + cs, ds + cs + cl - 1,
4040 &ordered_sums, 0);
4041 if (ret)
4042 break;
4043 }
4044 }
4045 }
4046
4047 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4048 btrfs_release_path(dst_path);
4049 kfree(ins_data);
4050
4051 /*
4052 * we have to do this after the loop above to avoid changing the
4053 * log tree while trying to change the log tree.
4054 */
4055 while (!list_empty(&ordered_sums)) {
4056 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4057 struct btrfs_ordered_sum,
4058 list);
4059 if (!ret)
4060 ret = log_csums(trans, inode, log, sums);
4061 list_del(&sums->list);
4062 kfree(sums);
4063 }
4064
4065 return ret;
4066}
4067
4068static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4069{
4070 struct extent_map *em1, *em2;
4071
4072 em1 = list_entry(a, struct extent_map, list);
4073 em2 = list_entry(b, struct extent_map, list);
4074
4075 if (em1->start < em2->start)
4076 return -1;
4077 else if (em1->start > em2->start)
4078 return 1;
4079 return 0;
4080}
4081
4082static int log_extent_csums(struct btrfs_trans_handle *trans,
4083 struct btrfs_inode *inode,
4084 struct btrfs_root *log_root,
4085 const struct extent_map *em)
4086{
4087 u64 csum_offset;
4088 u64 csum_len;
4089 LIST_HEAD(ordered_sums);
4090 int ret = 0;
4091
4092 if (inode->flags & BTRFS_INODE_NODATASUM ||
4093 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4094 em->block_start == EXTENT_MAP_HOLE)
4095 return 0;
4096
4097 /* If we're compressed we have to save the entire range of csums. */
4098 if (em->compress_type) {
4099 csum_offset = 0;
4100 csum_len = max(em->block_len, em->orig_block_len);
4101 } else {
4102 csum_offset = em->mod_start - em->start;
4103 csum_len = em->mod_len;
4104 }
4105
4106 /* block start is already adjusted for the file extent offset. */
4107 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4108 em->block_start + csum_offset,
4109 em->block_start + csum_offset +
4110 csum_len - 1, &ordered_sums, 0);
4111 if (ret)
4112 return ret;
4113
4114 while (!list_empty(&ordered_sums)) {
4115 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4116 struct btrfs_ordered_sum,
4117 list);
4118 if (!ret)
4119 ret = log_csums(trans, inode, log_root, sums);
4120 list_del(&sums->list);
4121 kfree(sums);
4122 }
4123
4124 return ret;
4125}
4126
4127static int log_one_extent(struct btrfs_trans_handle *trans,
4128 struct btrfs_inode *inode, struct btrfs_root *root,
4129 const struct extent_map *em,
4130 struct btrfs_path *path,
4131 struct btrfs_log_ctx *ctx)
4132{
4133 struct btrfs_root *log = root->log_root;
4134 struct btrfs_file_extent_item *fi;
4135 struct extent_buffer *leaf;
4136 struct btrfs_map_token token;
4137 struct btrfs_key key;
4138 u64 extent_offset = em->start - em->orig_start;
4139 u64 block_len;
4140 int ret;
4141 int extent_inserted = 0;
4142
4143 ret = log_extent_csums(trans, inode, log, em);
4144 if (ret)
4145 return ret;
4146
4147 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4148 em->start + em->len, NULL, 0, 1,
4149 sizeof(*fi), &extent_inserted);
4150 if (ret)
4151 return ret;
4152
4153 if (!extent_inserted) {
4154 key.objectid = btrfs_ino(inode);
4155 key.type = BTRFS_EXTENT_DATA_KEY;
4156 key.offset = em->start;
4157
4158 ret = btrfs_insert_empty_item(trans, log, path, &key,
4159 sizeof(*fi));
4160 if (ret)
4161 return ret;
4162 }
4163 leaf = path->nodes[0];
4164 btrfs_init_map_token(&token, leaf);
4165 fi = btrfs_item_ptr(leaf, path->slots[0],
4166 struct btrfs_file_extent_item);
4167
4168 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4169 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4170 btrfs_set_token_file_extent_type(&token, fi,
4171 BTRFS_FILE_EXTENT_PREALLOC);
4172 else
4173 btrfs_set_token_file_extent_type(&token, fi,
4174 BTRFS_FILE_EXTENT_REG);
4175
4176 block_len = max(em->block_len, em->orig_block_len);
4177 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4178 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4179 em->block_start);
4180 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4181 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4182 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4183 em->block_start -
4184 extent_offset);
4185 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4186 } else {
4187 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4188 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4189 }
4190
4191 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4192 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4193 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4194 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4195 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4196 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4197 btrfs_mark_buffer_dirty(leaf);
4198
4199 btrfs_release_path(path);
4200
4201 return ret;
4202}
4203
4204/*
4205 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4206 * lose them after doing a fast fsync and replaying the log. We scan the
4207 * subvolume's root instead of iterating the inode's extent map tree because
4208 * otherwise we can log incorrect extent items based on extent map conversion.
4209 * That can happen due to the fact that extent maps are merged when they
4210 * are not in the extent map tree's list of modified extents.
4211 */
4212static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4213 struct btrfs_inode *inode,
4214 struct btrfs_path *path)
4215{
4216 struct btrfs_root *root = inode->root;
4217 struct btrfs_key key;
4218 const u64 i_size = i_size_read(&inode->vfs_inode);
4219 const u64 ino = btrfs_ino(inode);
4220 struct btrfs_path *dst_path = NULL;
4221 bool dropped_extents = false;
4222 u64 truncate_offset = i_size;
4223 struct extent_buffer *leaf;
4224 int slot;
4225 int ins_nr = 0;
4226 int start_slot;
4227 int ret;
4228
4229 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4230 return 0;
4231
4232 key.objectid = ino;
4233 key.type = BTRFS_EXTENT_DATA_KEY;
4234 key.offset = i_size;
4235 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4236 if (ret < 0)
4237 goto out;
4238
4239 /*
4240 * We must check if there is a prealloc extent that starts before the
4241 * i_size and crosses the i_size boundary. This is to ensure later we
4242 * truncate down to the end of that extent and not to the i_size, as
4243 * otherwise we end up losing part of the prealloc extent after a log
4244 * replay and with an implicit hole if there is another prealloc extent
4245 * that starts at an offset beyond i_size.
4246 */
4247 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4248 if (ret < 0)
4249 goto out;
4250
4251 if (ret == 0) {
4252 struct btrfs_file_extent_item *ei;
4253
4254 leaf = path->nodes[0];
4255 slot = path->slots[0];
4256 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4257
4258 if (btrfs_file_extent_type(leaf, ei) ==
4259 BTRFS_FILE_EXTENT_PREALLOC) {
4260 u64 extent_end;
4261
4262 btrfs_item_key_to_cpu(leaf, &key, slot);
4263 extent_end = key.offset +
4264 btrfs_file_extent_num_bytes(leaf, ei);
4265
4266 if (extent_end > i_size)
4267 truncate_offset = extent_end;
4268 }
4269 } else {
4270 ret = 0;
4271 }
4272
4273 while (true) {
4274 leaf = path->nodes[0];
4275 slot = path->slots[0];
4276
4277 if (slot >= btrfs_header_nritems(leaf)) {
4278 if (ins_nr > 0) {
4279 ret = copy_items(trans, inode, dst_path, path,
4280 start_slot, ins_nr, 1, 0);
4281 if (ret < 0)
4282 goto out;
4283 ins_nr = 0;
4284 }
4285 ret = btrfs_next_leaf(root, path);
4286 if (ret < 0)
4287 goto out;
4288 if (ret > 0) {
4289 ret = 0;
4290 break;
4291 }
4292 continue;
4293 }
4294
4295 btrfs_item_key_to_cpu(leaf, &key, slot);
4296 if (key.objectid > ino)
4297 break;
4298 if (WARN_ON_ONCE(key.objectid < ino) ||
4299 key.type < BTRFS_EXTENT_DATA_KEY ||
4300 key.offset < i_size) {
4301 path->slots[0]++;
4302 continue;
4303 }
4304 if (!dropped_extents) {
4305 /*
4306 * Avoid logging extent items logged in past fsync calls
4307 * and leading to duplicate keys in the log tree.
4308 */
4309 do {
4310 ret = btrfs_truncate_inode_items(trans,
4311 root->log_root,
4312 &inode->vfs_inode,
4313 truncate_offset,
4314 BTRFS_EXTENT_DATA_KEY);
4315 } while (ret == -EAGAIN);
4316 if (ret)
4317 goto out;
4318 dropped_extents = true;
4319 }
4320 if (ins_nr == 0)
4321 start_slot = slot;
4322 ins_nr++;
4323 path->slots[0]++;
4324 if (!dst_path) {
4325 dst_path = btrfs_alloc_path();
4326 if (!dst_path) {
4327 ret = -ENOMEM;
4328 goto out;
4329 }
4330 }
4331 }
4332 if (ins_nr > 0)
4333 ret = copy_items(trans, inode, dst_path, path,
4334 start_slot, ins_nr, 1, 0);
4335out:
4336 btrfs_release_path(path);
4337 btrfs_free_path(dst_path);
4338 return ret;
4339}
4340
4341static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4342 struct btrfs_root *root,
4343 struct btrfs_inode *inode,
4344 struct btrfs_path *path,
4345 struct btrfs_log_ctx *ctx,
4346 const u64 start,
4347 const u64 end)
4348{
4349 struct extent_map *em, *n;
4350 struct list_head extents;
4351 struct extent_map_tree *tree = &inode->extent_tree;
4352 u64 test_gen;
4353 int ret = 0;
4354 int num = 0;
4355
4356 INIT_LIST_HEAD(&extents);
4357
4358 write_lock(&tree->lock);
4359 test_gen = root->fs_info->last_trans_committed;
4360
4361 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4362 /*
4363 * Skip extents outside our logging range. It's important to do
4364 * it for correctness because if we don't ignore them, we may
4365 * log them before their ordered extent completes, and therefore
4366 * we could log them without logging their respective checksums
4367 * (the checksum items are added to the csum tree at the very
4368 * end of btrfs_finish_ordered_io()). Also leave such extents
4369 * outside of our range in the list, since we may have another
4370 * ranged fsync in the near future that needs them. If an extent
4371 * outside our range corresponds to a hole, log it to avoid
4372 * leaving gaps between extents (fsck will complain when we are
4373 * not using the NO_HOLES feature).
4374 */
4375 if ((em->start > end || em->start + em->len <= start) &&
4376 em->block_start != EXTENT_MAP_HOLE)
4377 continue;
4378
4379 list_del_init(&em->list);
4380 /*
4381 * Just an arbitrary number, this can be really CPU intensive
4382 * once we start getting a lot of extents, and really once we
4383 * have a bunch of extents we just want to commit since it will
4384 * be faster.
4385 */
4386 if (++num > 32768) {
4387 list_del_init(&tree->modified_extents);
4388 ret = -EFBIG;
4389 goto process;
4390 }
4391
4392 if (em->generation <= test_gen)
4393 continue;
4394
4395 /* We log prealloc extents beyond eof later. */
4396 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4397 em->start >= i_size_read(&inode->vfs_inode))
4398 continue;
4399
4400 /* Need a ref to keep it from getting evicted from cache */
4401 refcount_inc(&em->refs);
4402 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4403 list_add_tail(&em->list, &extents);
4404 num++;
4405 }
4406
4407 list_sort(NULL, &extents, extent_cmp);
4408process:
4409 while (!list_empty(&extents)) {
4410 em = list_entry(extents.next, struct extent_map, list);
4411
4412 list_del_init(&em->list);
4413
4414 /*
4415 * If we had an error we just need to delete everybody from our
4416 * private list.
4417 */
4418 if (ret) {
4419 clear_em_logging(tree, em);
4420 free_extent_map(em);
4421 continue;
4422 }
4423
4424 write_unlock(&tree->lock);
4425
4426 ret = log_one_extent(trans, inode, root, em, path, ctx);
4427 write_lock(&tree->lock);
4428 clear_em_logging(tree, em);
4429 free_extent_map(em);
4430 }
4431 WARN_ON(!list_empty(&extents));
4432 write_unlock(&tree->lock);
4433
4434 btrfs_release_path(path);
4435 if (!ret)
4436 ret = btrfs_log_prealloc_extents(trans, inode, path);
4437
4438 return ret;
4439}
4440
4441static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4442 struct btrfs_path *path, u64 *size_ret)
4443{
4444 struct btrfs_key key;
4445 int ret;
4446
4447 key.objectid = btrfs_ino(inode);
4448 key.type = BTRFS_INODE_ITEM_KEY;
4449 key.offset = 0;
4450
4451 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4452 if (ret < 0) {
4453 return ret;
4454 } else if (ret > 0) {
4455 *size_ret = 0;
4456 } else {
4457 struct btrfs_inode_item *item;
4458
4459 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4460 struct btrfs_inode_item);
4461 *size_ret = btrfs_inode_size(path->nodes[0], item);
4462 /*
4463 * If the in-memory inode's i_size is smaller then the inode
4464 * size stored in the btree, return the inode's i_size, so
4465 * that we get a correct inode size after replaying the log
4466 * when before a power failure we had a shrinking truncate
4467 * followed by addition of a new name (rename / new hard link).
4468 * Otherwise return the inode size from the btree, to avoid
4469 * data loss when replaying a log due to previously doing a
4470 * write that expands the inode's size and logging a new name
4471 * immediately after.
4472 */
4473 if (*size_ret > inode->vfs_inode.i_size)
4474 *size_ret = inode->vfs_inode.i_size;
4475 }
4476
4477 btrfs_release_path(path);
4478 return 0;
4479}
4480
4481/*
4482 * At the moment we always log all xattrs. This is to figure out at log replay
4483 * time which xattrs must have their deletion replayed. If a xattr is missing
4484 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4485 * because if a xattr is deleted, the inode is fsynced and a power failure
4486 * happens, causing the log to be replayed the next time the fs is mounted,
4487 * we want the xattr to not exist anymore (same behaviour as other filesystems
4488 * with a journal, ext3/4, xfs, f2fs, etc).
4489 */
4490static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4491 struct btrfs_root *root,
4492 struct btrfs_inode *inode,
4493 struct btrfs_path *path,
4494 struct btrfs_path *dst_path)
4495{
4496 int ret;
4497 struct btrfs_key key;
4498 const u64 ino = btrfs_ino(inode);
4499 int ins_nr = 0;
4500 int start_slot = 0;
4501
4502 key.objectid = ino;
4503 key.type = BTRFS_XATTR_ITEM_KEY;
4504 key.offset = 0;
4505
4506 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4507 if (ret < 0)
4508 return ret;
4509
4510 while (true) {
4511 int slot = path->slots[0];
4512 struct extent_buffer *leaf = path->nodes[0];
4513 int nritems = btrfs_header_nritems(leaf);
4514
4515 if (slot >= nritems) {
4516 if (ins_nr > 0) {
4517 ret = copy_items(trans, inode, dst_path, path,
4518 start_slot, ins_nr, 1, 0);
4519 if (ret < 0)
4520 return ret;
4521 ins_nr = 0;
4522 }
4523 ret = btrfs_next_leaf(root, path);
4524 if (ret < 0)
4525 return ret;
4526 else if (ret > 0)
4527 break;
4528 continue;
4529 }
4530
4531 btrfs_item_key_to_cpu(leaf, &key, slot);
4532 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4533 break;
4534
4535 if (ins_nr == 0)
4536 start_slot = slot;
4537 ins_nr++;
4538 path->slots[0]++;
4539 cond_resched();
4540 }
4541 if (ins_nr > 0) {
4542 ret = copy_items(trans, inode, dst_path, path,
4543 start_slot, ins_nr, 1, 0);
4544 if (ret < 0)
4545 return ret;
4546 }
4547
4548 return 0;
4549}
4550
4551/*
4552 * When using the NO_HOLES feature if we punched a hole that causes the
4553 * deletion of entire leafs or all the extent items of the first leaf (the one
4554 * that contains the inode item and references) we may end up not processing
4555 * any extents, because there are no leafs with a generation matching the
4556 * current transaction that have extent items for our inode. So we need to find
4557 * if any holes exist and then log them. We also need to log holes after any
4558 * truncate operation that changes the inode's size.
4559 */
4560static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4561 struct btrfs_root *root,
4562 struct btrfs_inode *inode,
4563 struct btrfs_path *path)
4564{
4565 struct btrfs_fs_info *fs_info = root->fs_info;
4566 struct btrfs_key key;
4567 const u64 ino = btrfs_ino(inode);
4568 const u64 i_size = i_size_read(&inode->vfs_inode);
4569 u64 prev_extent_end = 0;
4570 int ret;
4571
4572 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4573 return 0;
4574
4575 key.objectid = ino;
4576 key.type = BTRFS_EXTENT_DATA_KEY;
4577 key.offset = 0;
4578
4579 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4580 if (ret < 0)
4581 return ret;
4582
4583 while (true) {
4584 struct extent_buffer *leaf = path->nodes[0];
4585
4586 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4587 ret = btrfs_next_leaf(root, path);
4588 if (ret < 0)
4589 return ret;
4590 if (ret > 0) {
4591 ret = 0;
4592 break;
4593 }
4594 leaf = path->nodes[0];
4595 }
4596
4597 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4598 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4599 break;
4600
4601 /* We have a hole, log it. */
4602 if (prev_extent_end < key.offset) {
4603 const u64 hole_len = key.offset - prev_extent_end;
4604
4605 /*
4606 * Release the path to avoid deadlocks with other code
4607 * paths that search the root while holding locks on
4608 * leafs from the log root.
4609 */
4610 btrfs_release_path(path);
4611 ret = btrfs_insert_file_extent(trans, root->log_root,
4612 ino, prev_extent_end, 0,
4613 0, hole_len, 0, hole_len,
4614 0, 0, 0);
4615 if (ret < 0)
4616 return ret;
4617
4618 /*
4619 * Search for the same key again in the root. Since it's
4620 * an extent item and we are holding the inode lock, the
4621 * key must still exist. If it doesn't just emit warning
4622 * and return an error to fall back to a transaction
4623 * commit.
4624 */
4625 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4626 if (ret < 0)
4627 return ret;
4628 if (WARN_ON(ret > 0))
4629 return -ENOENT;
4630 leaf = path->nodes[0];
4631 }
4632
4633 prev_extent_end = btrfs_file_extent_end(path);
4634 path->slots[0]++;
4635 cond_resched();
4636 }
4637
4638 if (prev_extent_end < i_size) {
4639 u64 hole_len;
4640
4641 btrfs_release_path(path);
4642 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4643 ret = btrfs_insert_file_extent(trans, root->log_root,
4644 ino, prev_extent_end, 0, 0,
4645 hole_len, 0, hole_len,
4646 0, 0, 0);
4647 if (ret < 0)
4648 return ret;
4649 }
4650
4651 return 0;
4652}
4653
4654/*
4655 * When we are logging a new inode X, check if it doesn't have a reference that
4656 * matches the reference from some other inode Y created in a past transaction
4657 * and that was renamed in the current transaction. If we don't do this, then at
4658 * log replay time we can lose inode Y (and all its files if it's a directory):
4659 *
4660 * mkdir /mnt/x
4661 * echo "hello world" > /mnt/x/foobar
4662 * sync
4663 * mv /mnt/x /mnt/y
4664 * mkdir /mnt/x # or touch /mnt/x
4665 * xfs_io -c fsync /mnt/x
4666 * <power fail>
4667 * mount fs, trigger log replay
4668 *
4669 * After the log replay procedure, we would lose the first directory and all its
4670 * files (file foobar).
4671 * For the case where inode Y is not a directory we simply end up losing it:
4672 *
4673 * echo "123" > /mnt/foo
4674 * sync
4675 * mv /mnt/foo /mnt/bar
4676 * echo "abc" > /mnt/foo
4677 * xfs_io -c fsync /mnt/foo
4678 * <power fail>
4679 *
4680 * We also need this for cases where a snapshot entry is replaced by some other
4681 * entry (file or directory) otherwise we end up with an unreplayable log due to
4682 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4683 * if it were a regular entry:
4684 *
4685 * mkdir /mnt/x
4686 * btrfs subvolume snapshot /mnt /mnt/x/snap
4687 * btrfs subvolume delete /mnt/x/snap
4688 * rmdir /mnt/x
4689 * mkdir /mnt/x
4690 * fsync /mnt/x or fsync some new file inside it
4691 * <power fail>
4692 *
4693 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4694 * the same transaction.
4695 */
4696static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4697 const int slot,
4698 const struct btrfs_key *key,
4699 struct btrfs_inode *inode,
4700 u64 *other_ino, u64 *other_parent)
4701{
4702 int ret;
4703 struct btrfs_path *search_path;
4704 char *name = NULL;
4705 u32 name_len = 0;
4706 u32 item_size = btrfs_item_size_nr(eb, slot);
4707 u32 cur_offset = 0;
4708 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4709
4710 search_path = btrfs_alloc_path();
4711 if (!search_path)
4712 return -ENOMEM;
4713 search_path->search_commit_root = 1;
4714 search_path->skip_locking = 1;
4715
4716 while (cur_offset < item_size) {
4717 u64 parent;
4718 u32 this_name_len;
4719 u32 this_len;
4720 unsigned long name_ptr;
4721 struct btrfs_dir_item *di;
4722
4723 if (key->type == BTRFS_INODE_REF_KEY) {
4724 struct btrfs_inode_ref *iref;
4725
4726 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4727 parent = key->offset;
4728 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4729 name_ptr = (unsigned long)(iref + 1);
4730 this_len = sizeof(*iref) + this_name_len;
4731 } else {
4732 struct btrfs_inode_extref *extref;
4733
4734 extref = (struct btrfs_inode_extref *)(ptr +
4735 cur_offset);
4736 parent = btrfs_inode_extref_parent(eb, extref);
4737 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4738 name_ptr = (unsigned long)&extref->name;
4739 this_len = sizeof(*extref) + this_name_len;
4740 }
4741
4742 if (this_name_len > name_len) {
4743 char *new_name;
4744
4745 new_name = krealloc(name, this_name_len, GFP_NOFS);
4746 if (!new_name) {
4747 ret = -ENOMEM;
4748 goto out;
4749 }
4750 name_len = this_name_len;
4751 name = new_name;
4752 }
4753
4754 read_extent_buffer(eb, name, name_ptr, this_name_len);
4755 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4756 parent, name, this_name_len, 0);
4757 if (di && !IS_ERR(di)) {
4758 struct btrfs_key di_key;
4759
4760 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4761 di, &di_key);
4762 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4763 if (di_key.objectid != key->objectid) {
4764 ret = 1;
4765 *other_ino = di_key.objectid;
4766 *other_parent = parent;
4767 } else {
4768 ret = 0;
4769 }
4770 } else {
4771 ret = -EAGAIN;
4772 }
4773 goto out;
4774 } else if (IS_ERR(di)) {
4775 ret = PTR_ERR(di);
4776 goto out;
4777 }
4778 btrfs_release_path(search_path);
4779
4780 cur_offset += this_len;
4781 }
4782 ret = 0;
4783out:
4784 btrfs_free_path(search_path);
4785 kfree(name);
4786 return ret;
4787}
4788
4789struct btrfs_ino_list {
4790 u64 ino;
4791 u64 parent;
4792 struct list_head list;
4793};
4794
4795static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4796 struct btrfs_root *root,
4797 struct btrfs_path *path,
4798 struct btrfs_log_ctx *ctx,
4799 u64 ino, u64 parent)
4800{
4801 struct btrfs_ino_list *ino_elem;
4802 LIST_HEAD(inode_list);
4803 int ret = 0;
4804
4805 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4806 if (!ino_elem)
4807 return -ENOMEM;
4808 ino_elem->ino = ino;
4809 ino_elem->parent = parent;
4810 list_add_tail(&ino_elem->list, &inode_list);
4811
4812 while (!list_empty(&inode_list)) {
4813 struct btrfs_fs_info *fs_info = root->fs_info;
4814 struct btrfs_key key;
4815 struct inode *inode;
4816
4817 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4818 list);
4819 ino = ino_elem->ino;
4820 parent = ino_elem->parent;
4821 list_del(&ino_elem->list);
4822 kfree(ino_elem);
4823 if (ret)
4824 continue;
4825
4826 btrfs_release_path(path);
4827
4828 inode = btrfs_iget(fs_info->sb, ino, root);
4829 /*
4830 * If the other inode that had a conflicting dir entry was
4831 * deleted in the current transaction, we need to log its parent
4832 * directory.
4833 */
4834 if (IS_ERR(inode)) {
4835 ret = PTR_ERR(inode);
4836 if (ret == -ENOENT) {
4837 inode = btrfs_iget(fs_info->sb, parent, root);
4838 if (IS_ERR(inode)) {
4839 ret = PTR_ERR(inode);
4840 } else {
4841 ret = btrfs_log_inode(trans, root,
4842 BTRFS_I(inode),
4843 LOG_OTHER_INODE_ALL,
4844 0, LLONG_MAX, ctx);
4845 btrfs_add_delayed_iput(inode);
4846 }
4847 }
4848 continue;
4849 }
4850 /*
4851 * If the inode was already logged skip it - otherwise we can
4852 * hit an infinite loop. Example:
4853 *
4854 * From the commit root (previous transaction) we have the
4855 * following inodes:
4856 *
4857 * inode 257 a directory
4858 * inode 258 with references "zz" and "zz_link" on inode 257
4859 * inode 259 with reference "a" on inode 257
4860 *
4861 * And in the current (uncommitted) transaction we have:
4862 *
4863 * inode 257 a directory, unchanged
4864 * inode 258 with references "a" and "a2" on inode 257
4865 * inode 259 with reference "zz_link" on inode 257
4866 * inode 261 with reference "zz" on inode 257
4867 *
4868 * When logging inode 261 the following infinite loop could
4869 * happen if we don't skip already logged inodes:
4870 *
4871 * - we detect inode 258 as a conflicting inode, with inode 261
4872 * on reference "zz", and log it;
4873 *
4874 * - we detect inode 259 as a conflicting inode, with inode 258
4875 * on reference "a", and log it;
4876 *
4877 * - we detect inode 258 as a conflicting inode, with inode 259
4878 * on reference "zz_link", and log it - again! After this we
4879 * repeat the above steps forever.
4880 */
4881 spin_lock(&BTRFS_I(inode)->lock);
4882 /*
4883 * Check the inode's logged_trans only instead of
4884 * btrfs_inode_in_log(). This is because the last_log_commit of
4885 * the inode is not updated when we only log that it exists and
4886 * and it has the full sync bit set (see btrfs_log_inode()).
4887 */
4888 if (BTRFS_I(inode)->logged_trans == trans->transid) {
4889 spin_unlock(&BTRFS_I(inode)->lock);
4890 btrfs_add_delayed_iput(inode);
4891 continue;
4892 }
4893 spin_unlock(&BTRFS_I(inode)->lock);
4894 /*
4895 * We are safe logging the other inode without acquiring its
4896 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4897 * are safe against concurrent renames of the other inode as
4898 * well because during a rename we pin the log and update the
4899 * log with the new name before we unpin it.
4900 */
4901 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4902 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4903 if (ret) {
4904 btrfs_add_delayed_iput(inode);
4905 continue;
4906 }
4907
4908 key.objectid = ino;
4909 key.type = BTRFS_INODE_REF_KEY;
4910 key.offset = 0;
4911 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4912 if (ret < 0) {
4913 btrfs_add_delayed_iput(inode);
4914 continue;
4915 }
4916
4917 while (true) {
4918 struct extent_buffer *leaf = path->nodes[0];
4919 int slot = path->slots[0];
4920 u64 other_ino = 0;
4921 u64 other_parent = 0;
4922
4923 if (slot >= btrfs_header_nritems(leaf)) {
4924 ret = btrfs_next_leaf(root, path);
4925 if (ret < 0) {
4926 break;
4927 } else if (ret > 0) {
4928 ret = 0;
4929 break;
4930 }
4931 continue;
4932 }
4933
4934 btrfs_item_key_to_cpu(leaf, &key, slot);
4935 if (key.objectid != ino ||
4936 (key.type != BTRFS_INODE_REF_KEY &&
4937 key.type != BTRFS_INODE_EXTREF_KEY)) {
4938 ret = 0;
4939 break;
4940 }
4941
4942 ret = btrfs_check_ref_name_override(leaf, slot, &key,
4943 BTRFS_I(inode), &other_ino,
4944 &other_parent);
4945 if (ret < 0)
4946 break;
4947 if (ret > 0) {
4948 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4949 if (!ino_elem) {
4950 ret = -ENOMEM;
4951 break;
4952 }
4953 ino_elem->ino = other_ino;
4954 ino_elem->parent = other_parent;
4955 list_add_tail(&ino_elem->list, &inode_list);
4956 ret = 0;
4957 }
4958 path->slots[0]++;
4959 }
4960 btrfs_add_delayed_iput(inode);
4961 }
4962
4963 return ret;
4964}
4965
4966static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
4967 struct btrfs_inode *inode,
4968 struct btrfs_key *min_key,
4969 const struct btrfs_key *max_key,
4970 struct btrfs_path *path,
4971 struct btrfs_path *dst_path,
4972 const u64 logged_isize,
4973 const bool recursive_logging,
4974 const int inode_only,
4975 struct btrfs_log_ctx *ctx,
4976 bool *need_log_inode_item)
4977{
4978 struct btrfs_root *root = inode->root;
4979 int ins_start_slot = 0;
4980 int ins_nr = 0;
4981 int ret;
4982
4983 while (1) {
4984 ret = btrfs_search_forward(root, min_key, path, trans->transid);
4985 if (ret < 0)
4986 return ret;
4987 if (ret > 0) {
4988 ret = 0;
4989 break;
4990 }
4991again:
4992 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
4993 if (min_key->objectid != max_key->objectid)
4994 break;
4995 if (min_key->type > max_key->type)
4996 break;
4997
4998 if (min_key->type == BTRFS_INODE_ITEM_KEY)
4999 *need_log_inode_item = false;
5000
5001 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5002 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5003 inode->generation == trans->transid &&
5004 !recursive_logging) {
5005 u64 other_ino = 0;
5006 u64 other_parent = 0;
5007
5008 ret = btrfs_check_ref_name_override(path->nodes[0],
5009 path->slots[0], min_key, inode,
5010 &other_ino, &other_parent);
5011 if (ret < 0) {
5012 return ret;
5013 } else if (ret > 0 && ctx &&
5014 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5015 if (ins_nr > 0) {
5016 ins_nr++;
5017 } else {
5018 ins_nr = 1;
5019 ins_start_slot = path->slots[0];
5020 }
5021 ret = copy_items(trans, inode, dst_path, path,
5022 ins_start_slot, ins_nr,
5023 inode_only, logged_isize);
5024 if (ret < 0)
5025 return ret;
5026 ins_nr = 0;
5027
5028 ret = log_conflicting_inodes(trans, root, path,
5029 ctx, other_ino, other_parent);
5030 if (ret)
5031 return ret;
5032 btrfs_release_path(path);
5033 goto next_key;
5034 }
5035 }
5036
5037 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5038 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5039 if (ins_nr == 0)
5040 goto next_slot;
5041 ret = copy_items(trans, inode, dst_path, path,
5042 ins_start_slot,
5043 ins_nr, inode_only, logged_isize);
5044 if (ret < 0)
5045 return ret;
5046 ins_nr = 0;
5047 goto next_slot;
5048 }
5049
5050 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5051 ins_nr++;
5052 goto next_slot;
5053 } else if (!ins_nr) {
5054 ins_start_slot = path->slots[0];
5055 ins_nr = 1;
5056 goto next_slot;
5057 }
5058
5059 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5060 ins_nr, inode_only, logged_isize);
5061 if (ret < 0)
5062 return ret;
5063 ins_nr = 1;
5064 ins_start_slot = path->slots[0];
5065next_slot:
5066 path->slots[0]++;
5067 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5068 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5069 path->slots[0]);
5070 goto again;
5071 }
5072 if (ins_nr) {
5073 ret = copy_items(trans, inode, dst_path, path,
5074 ins_start_slot, ins_nr, inode_only,
5075 logged_isize);
5076 if (ret < 0)
5077 return ret;
5078 ins_nr = 0;
5079 }
5080 btrfs_release_path(path);
5081next_key:
5082 if (min_key->offset < (u64)-1) {
5083 min_key->offset++;
5084 } else if (min_key->type < max_key->type) {
5085 min_key->type++;
5086 min_key->offset = 0;
5087 } else {
5088 break;
5089 }
5090 }
5091 if (ins_nr)
5092 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5093 ins_nr, inode_only, logged_isize);
5094
5095 return ret;
5096}
5097
5098/* log a single inode in the tree log.
5099 * At least one parent directory for this inode must exist in the tree
5100 * or be logged already.
5101 *
5102 * Any items from this inode changed by the current transaction are copied
5103 * to the log tree. An extra reference is taken on any extents in this
5104 * file, allowing us to avoid a whole pile of corner cases around logging
5105 * blocks that have been removed from the tree.
5106 *
5107 * See LOG_INODE_ALL and related defines for a description of what inode_only
5108 * does.
5109 *
5110 * This handles both files and directories.
5111 */
5112static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5113 struct btrfs_root *root, struct btrfs_inode *inode,
5114 int inode_only,
5115 const loff_t start,
5116 const loff_t end,
5117 struct btrfs_log_ctx *ctx)
5118{
5119 struct btrfs_path *path;
5120 struct btrfs_path *dst_path;
5121 struct btrfs_key min_key;
5122 struct btrfs_key max_key;
5123 struct btrfs_root *log = root->log_root;
5124 int err = 0;
5125 int ret = 0;
5126 bool fast_search = false;
5127 u64 ino = btrfs_ino(inode);
5128 struct extent_map_tree *em_tree = &inode->extent_tree;
5129 u64 logged_isize = 0;
5130 bool need_log_inode_item = true;
5131 bool xattrs_logged = false;
5132 bool recursive_logging = false;
5133
5134 path = btrfs_alloc_path();
5135 if (!path)
5136 return -ENOMEM;
5137 dst_path = btrfs_alloc_path();
5138 if (!dst_path) {
5139 btrfs_free_path(path);
5140 return -ENOMEM;
5141 }
5142
5143 min_key.objectid = ino;
5144 min_key.type = BTRFS_INODE_ITEM_KEY;
5145 min_key.offset = 0;
5146
5147 max_key.objectid = ino;
5148
5149
5150 /* today the code can only do partial logging of directories */
5151 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5152 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5153 &inode->runtime_flags) &&
5154 inode_only >= LOG_INODE_EXISTS))
5155 max_key.type = BTRFS_XATTR_ITEM_KEY;
5156 else
5157 max_key.type = (u8)-1;
5158 max_key.offset = (u64)-1;
5159
5160 /*
5161 * Only run delayed items if we are a directory. We want to make sure
5162 * all directory indexes hit the fs/subvolume tree so we can find them
5163 * and figure out which index ranges have to be logged.
5164 *
5165 * Otherwise commit the delayed inode only if the full sync flag is set,
5166 * as we want to make sure an up to date version is in the subvolume
5167 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5168 * it to the log tree. For a non full sync, we always log the inode item
5169 * based on the in-memory struct btrfs_inode which is always up to date.
5170 */
5171 if (S_ISDIR(inode->vfs_inode.i_mode))
5172 ret = btrfs_commit_inode_delayed_items(trans, inode);
5173 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5174 ret = btrfs_commit_inode_delayed_inode(inode);
5175
5176 if (ret) {
5177 btrfs_free_path(path);
5178 btrfs_free_path(dst_path);
5179 return ret;
5180 }
5181
5182 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5183 recursive_logging = true;
5184 if (inode_only == LOG_OTHER_INODE)
5185 inode_only = LOG_INODE_EXISTS;
5186 else
5187 inode_only = LOG_INODE_ALL;
5188 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5189 } else {
5190 mutex_lock(&inode->log_mutex);
5191 }
5192
5193 /*
5194 * a brute force approach to making sure we get the most uptodate
5195 * copies of everything.
5196 */
5197 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5198 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5199
5200 if (inode_only == LOG_INODE_EXISTS)
5201 max_key_type = BTRFS_XATTR_ITEM_KEY;
5202 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5203 } else {
5204 if (inode_only == LOG_INODE_EXISTS) {
5205 /*
5206 * Make sure the new inode item we write to the log has
5207 * the same isize as the current one (if it exists).
5208 * This is necessary to prevent data loss after log
5209 * replay, and also to prevent doing a wrong expanding
5210 * truncate - for e.g. create file, write 4K into offset
5211 * 0, fsync, write 4K into offset 4096, add hard link,
5212 * fsync some other file (to sync log), power fail - if
5213 * we use the inode's current i_size, after log replay
5214 * we get a 8Kb file, with the last 4Kb extent as a hole
5215 * (zeroes), as if an expanding truncate happened,
5216 * instead of getting a file of 4Kb only.
5217 */
5218 err = logged_inode_size(log, inode, path, &logged_isize);
5219 if (err)
5220 goto out_unlock;
5221 }
5222 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5223 &inode->runtime_flags)) {
5224 if (inode_only == LOG_INODE_EXISTS) {
5225 max_key.type = BTRFS_XATTR_ITEM_KEY;
5226 ret = drop_objectid_items(trans, log, path, ino,
5227 max_key.type);
5228 } else {
5229 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5230 &inode->runtime_flags);
5231 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5232 &inode->runtime_flags);
5233 while(1) {
5234 ret = btrfs_truncate_inode_items(trans,
5235 log, &inode->vfs_inode, 0, 0);
5236 if (ret != -EAGAIN)
5237 break;
5238 }
5239 }
5240 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5241 &inode->runtime_flags) ||
5242 inode_only == LOG_INODE_EXISTS) {
5243 if (inode_only == LOG_INODE_ALL)
5244 fast_search = true;
5245 max_key.type = BTRFS_XATTR_ITEM_KEY;
5246 ret = drop_objectid_items(trans, log, path, ino,
5247 max_key.type);
5248 } else {
5249 if (inode_only == LOG_INODE_ALL)
5250 fast_search = true;
5251 goto log_extents;
5252 }
5253
5254 }
5255 if (ret) {
5256 err = ret;
5257 goto out_unlock;
5258 }
5259
5260 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5261 path, dst_path, logged_isize,
5262 recursive_logging, inode_only, ctx,
5263 &need_log_inode_item);
5264 if (err)
5265 goto out_unlock;
5266
5267 btrfs_release_path(path);
5268 btrfs_release_path(dst_path);
5269 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5270 if (err)
5271 goto out_unlock;
5272 xattrs_logged = true;
5273 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5274 btrfs_release_path(path);
5275 btrfs_release_path(dst_path);
5276 err = btrfs_log_holes(trans, root, inode, path);
5277 if (err)
5278 goto out_unlock;
5279 }
5280log_extents:
5281 btrfs_release_path(path);
5282 btrfs_release_path(dst_path);
5283 if (need_log_inode_item) {
5284 err = log_inode_item(trans, log, dst_path, inode);
5285 if (!err && !xattrs_logged) {
5286 err = btrfs_log_all_xattrs(trans, root, inode, path,
5287 dst_path);
5288 btrfs_release_path(path);
5289 }
5290 if (err)
5291 goto out_unlock;
5292 }
5293 if (fast_search) {
5294 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5295 ctx, start, end);
5296 if (ret) {
5297 err = ret;
5298 goto out_unlock;
5299 }
5300 } else if (inode_only == LOG_INODE_ALL) {
5301 struct extent_map *em, *n;
5302
5303 write_lock(&em_tree->lock);
5304 /*
5305 * We can't just remove every em if we're called for a ranged
5306 * fsync - that is, one that doesn't cover the whole possible
5307 * file range (0 to LLONG_MAX). This is because we can have
5308 * em's that fall outside the range we're logging and therefore
5309 * their ordered operations haven't completed yet
5310 * (btrfs_finish_ordered_io() not invoked yet). This means we
5311 * didn't get their respective file extent item in the fs/subvol
5312 * tree yet, and need to let the next fast fsync (one which
5313 * consults the list of modified extent maps) find the em so
5314 * that it logs a matching file extent item and waits for the
5315 * respective ordered operation to complete (if it's still
5316 * running).
5317 *
5318 * Removing every em outside the range we're logging would make
5319 * the next fast fsync not log their matching file extent items,
5320 * therefore making us lose data after a log replay.
5321 */
5322 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5323 list) {
5324 const u64 mod_end = em->mod_start + em->mod_len - 1;
5325
5326 if (em->mod_start >= start && mod_end <= end)
5327 list_del_init(&em->list);
5328 }
5329 write_unlock(&em_tree->lock);
5330 }
5331
5332 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5333 ret = log_directory_changes(trans, root, inode, path, dst_path,
5334 ctx);
5335 if (ret) {
5336 err = ret;
5337 goto out_unlock;
5338 }
5339 }
5340
5341 /*
5342 * Don't update last_log_commit if we logged that an inode exists after
5343 * it was loaded to memory (full_sync bit set).
5344 * This is to prevent data loss when we do a write to the inode, then
5345 * the inode gets evicted after all delalloc was flushed, then we log
5346 * it exists (due to a rename for example) and then fsync it. This last
5347 * fsync would do nothing (not logging the extents previously written).
5348 */
5349 spin_lock(&inode->lock);
5350 inode->logged_trans = trans->transid;
5351 if (inode_only != LOG_INODE_EXISTS ||
5352 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5353 inode->last_log_commit = inode->last_sub_trans;
5354 spin_unlock(&inode->lock);
5355out_unlock:
5356 mutex_unlock(&inode->log_mutex);
5357
5358 btrfs_free_path(path);
5359 btrfs_free_path(dst_path);
5360 return err;
5361}
5362
5363/*
5364 * Check if we must fallback to a transaction commit when logging an inode.
5365 * This must be called after logging the inode and is used only in the context
5366 * when fsyncing an inode requires the need to log some other inode - in which
5367 * case we can't lock the i_mutex of each other inode we need to log as that
5368 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5369 * log inodes up or down in the hierarchy) or rename operations for example. So
5370 * we take the log_mutex of the inode after we have logged it and then check for
5371 * its last_unlink_trans value - this is safe because any task setting
5372 * last_unlink_trans must take the log_mutex and it must do this before it does
5373 * the actual unlink operation, so if we do this check before a concurrent task
5374 * sets last_unlink_trans it means we've logged a consistent version/state of
5375 * all the inode items, otherwise we are not sure and must do a transaction
5376 * commit (the concurrent task might have only updated last_unlink_trans before
5377 * we logged the inode or it might have also done the unlink).
5378 */
5379static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5380 struct btrfs_inode *inode)
5381{
5382 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5383 bool ret = false;
5384
5385 mutex_lock(&inode->log_mutex);
5386 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5387 /*
5388 * Make sure any commits to the log are forced to be full
5389 * commits.
5390 */
5391 btrfs_set_log_full_commit(trans);
5392 ret = true;
5393 }
5394 mutex_unlock(&inode->log_mutex);
5395
5396 return ret;
5397}
5398
5399/*
5400 * follow the dentry parent pointers up the chain and see if any
5401 * of the directories in it require a full commit before they can
5402 * be logged. Returns zero if nothing special needs to be done or 1 if
5403 * a full commit is required.
5404 */
5405static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5406 struct btrfs_inode *inode,
5407 struct dentry *parent,
5408 struct super_block *sb,
5409 u64 last_committed)
5410{
5411 int ret = 0;
5412 struct dentry *old_parent = NULL;
5413
5414 /*
5415 * for regular files, if its inode is already on disk, we don't
5416 * have to worry about the parents at all. This is because
5417 * we can use the last_unlink_trans field to record renames
5418 * and other fun in this file.
5419 */
5420 if (S_ISREG(inode->vfs_inode.i_mode) &&
5421 inode->generation <= last_committed &&
5422 inode->last_unlink_trans <= last_committed)
5423 goto out;
5424
5425 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5426 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5427 goto out;
5428 inode = BTRFS_I(d_inode(parent));
5429 }
5430
5431 while (1) {
5432 if (btrfs_must_commit_transaction(trans, inode)) {
5433 ret = 1;
5434 break;
5435 }
5436
5437 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5438 break;
5439
5440 if (IS_ROOT(parent)) {
5441 inode = BTRFS_I(d_inode(parent));
5442 if (btrfs_must_commit_transaction(trans, inode))
5443 ret = 1;
5444 break;
5445 }
5446
5447 parent = dget_parent(parent);
5448 dput(old_parent);
5449 old_parent = parent;
5450 inode = BTRFS_I(d_inode(parent));
5451
5452 }
5453 dput(old_parent);
5454out:
5455 return ret;
5456}
5457
5458struct btrfs_dir_list {
5459 u64 ino;
5460 struct list_head list;
5461};
5462
5463/*
5464 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5465 * details about the why it is needed.
5466 * This is a recursive operation - if an existing dentry corresponds to a
5467 * directory, that directory's new entries are logged too (same behaviour as
5468 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5469 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5470 * complains about the following circular lock dependency / possible deadlock:
5471 *
5472 * CPU0 CPU1
5473 * ---- ----
5474 * lock(&type->i_mutex_dir_key#3/2);
5475 * lock(sb_internal#2);
5476 * lock(&type->i_mutex_dir_key#3/2);
5477 * lock(&sb->s_type->i_mutex_key#14);
5478 *
5479 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5480 * sb_start_intwrite() in btrfs_start_transaction().
5481 * Not locking i_mutex of the inodes is still safe because:
5482 *
5483 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5484 * that while logging the inode new references (names) are added or removed
5485 * from the inode, leaving the logged inode item with a link count that does
5486 * not match the number of logged inode reference items. This is fine because
5487 * at log replay time we compute the real number of links and correct the
5488 * link count in the inode item (see replay_one_buffer() and
5489 * link_to_fixup_dir());
5490 *
5491 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5492 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5493 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5494 * has a size that doesn't match the sum of the lengths of all the logged
5495 * names. This does not result in a problem because if a dir_item key is
5496 * logged but its matching dir_index key is not logged, at log replay time we
5497 * don't use it to replay the respective name (see replay_one_name()). On the
5498 * other hand if only the dir_index key ends up being logged, the respective
5499 * name is added to the fs/subvol tree with both the dir_item and dir_index
5500 * keys created (see replay_one_name()).
5501 * The directory's inode item with a wrong i_size is not a problem as well,
5502 * since we don't use it at log replay time to set the i_size in the inode
5503 * item of the fs/subvol tree (see overwrite_item()).
5504 */
5505static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5506 struct btrfs_root *root,
5507 struct btrfs_inode *start_inode,
5508 struct btrfs_log_ctx *ctx)
5509{
5510 struct btrfs_fs_info *fs_info = root->fs_info;
5511 struct btrfs_root *log = root->log_root;
5512 struct btrfs_path *path;
5513 LIST_HEAD(dir_list);
5514 struct btrfs_dir_list *dir_elem;
5515 int ret = 0;
5516
5517 path = btrfs_alloc_path();
5518 if (!path)
5519 return -ENOMEM;
5520
5521 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5522 if (!dir_elem) {
5523 btrfs_free_path(path);
5524 return -ENOMEM;
5525 }
5526 dir_elem->ino = btrfs_ino(start_inode);
5527 list_add_tail(&dir_elem->list, &dir_list);
5528
5529 while (!list_empty(&dir_list)) {
5530 struct extent_buffer *leaf;
5531 struct btrfs_key min_key;
5532 int nritems;
5533 int i;
5534
5535 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5536 list);
5537 if (ret)
5538 goto next_dir_inode;
5539
5540 min_key.objectid = dir_elem->ino;
5541 min_key.type = BTRFS_DIR_ITEM_KEY;
5542 min_key.offset = 0;
5543again:
5544 btrfs_release_path(path);
5545 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5546 if (ret < 0) {
5547 goto next_dir_inode;
5548 } else if (ret > 0) {
5549 ret = 0;
5550 goto next_dir_inode;
5551 }
5552
5553process_leaf:
5554 leaf = path->nodes[0];
5555 nritems = btrfs_header_nritems(leaf);
5556 for (i = path->slots[0]; i < nritems; i++) {
5557 struct btrfs_dir_item *di;
5558 struct btrfs_key di_key;
5559 struct inode *di_inode;
5560 struct btrfs_dir_list *new_dir_elem;
5561 int log_mode = LOG_INODE_EXISTS;
5562 int type;
5563
5564 btrfs_item_key_to_cpu(leaf, &min_key, i);
5565 if (min_key.objectid != dir_elem->ino ||
5566 min_key.type != BTRFS_DIR_ITEM_KEY)
5567 goto next_dir_inode;
5568
5569 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5570 type = btrfs_dir_type(leaf, di);
5571 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5572 type != BTRFS_FT_DIR)
5573 continue;
5574 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5575 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5576 continue;
5577
5578 btrfs_release_path(path);
5579 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5580 if (IS_ERR(di_inode)) {
5581 ret = PTR_ERR(di_inode);
5582 goto next_dir_inode;
5583 }
5584
5585 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5586 btrfs_add_delayed_iput(di_inode);
5587 break;
5588 }
5589
5590 ctx->log_new_dentries = false;
5591 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5592 log_mode = LOG_INODE_ALL;
5593 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5594 log_mode, 0, LLONG_MAX, ctx);
5595 if (!ret &&
5596 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5597 ret = 1;
5598 btrfs_add_delayed_iput(di_inode);
5599 if (ret)
5600 goto next_dir_inode;
5601 if (ctx->log_new_dentries) {
5602 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5603 GFP_NOFS);
5604 if (!new_dir_elem) {
5605 ret = -ENOMEM;
5606 goto next_dir_inode;
5607 }
5608 new_dir_elem->ino = di_key.objectid;
5609 list_add_tail(&new_dir_elem->list, &dir_list);
5610 }
5611 break;
5612 }
5613 if (i == nritems) {
5614 ret = btrfs_next_leaf(log, path);
5615 if (ret < 0) {
5616 goto next_dir_inode;
5617 } else if (ret > 0) {
5618 ret = 0;
5619 goto next_dir_inode;
5620 }
5621 goto process_leaf;
5622 }
5623 if (min_key.offset < (u64)-1) {
5624 min_key.offset++;
5625 goto again;
5626 }
5627next_dir_inode:
5628 list_del(&dir_elem->list);
5629 kfree(dir_elem);
5630 }
5631
5632 btrfs_free_path(path);
5633 return ret;
5634}
5635
5636static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5637 struct btrfs_inode *inode,
5638 struct btrfs_log_ctx *ctx)
5639{
5640 struct btrfs_fs_info *fs_info = trans->fs_info;
5641 int ret;
5642 struct btrfs_path *path;
5643 struct btrfs_key key;
5644 struct btrfs_root *root = inode->root;
5645 const u64 ino = btrfs_ino(inode);
5646
5647 path = btrfs_alloc_path();
5648 if (!path)
5649 return -ENOMEM;
5650 path->skip_locking = 1;
5651 path->search_commit_root = 1;
5652
5653 key.objectid = ino;
5654 key.type = BTRFS_INODE_REF_KEY;
5655 key.offset = 0;
5656 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5657 if (ret < 0)
5658 goto out;
5659
5660 while (true) {
5661 struct extent_buffer *leaf = path->nodes[0];
5662 int slot = path->slots[0];
5663 u32 cur_offset = 0;
5664 u32 item_size;
5665 unsigned long ptr;
5666
5667 if (slot >= btrfs_header_nritems(leaf)) {
5668 ret = btrfs_next_leaf(root, path);
5669 if (ret < 0)
5670 goto out;
5671 else if (ret > 0)
5672 break;
5673 continue;
5674 }
5675
5676 btrfs_item_key_to_cpu(leaf, &key, slot);
5677 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5678 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5679 break;
5680
5681 item_size = btrfs_item_size_nr(leaf, slot);
5682 ptr = btrfs_item_ptr_offset(leaf, slot);
5683 while (cur_offset < item_size) {
5684 struct btrfs_key inode_key;
5685 struct inode *dir_inode;
5686
5687 inode_key.type = BTRFS_INODE_ITEM_KEY;
5688 inode_key.offset = 0;
5689
5690 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5691 struct btrfs_inode_extref *extref;
5692
5693 extref = (struct btrfs_inode_extref *)
5694 (ptr + cur_offset);
5695 inode_key.objectid = btrfs_inode_extref_parent(
5696 leaf, extref);
5697 cur_offset += sizeof(*extref);
5698 cur_offset += btrfs_inode_extref_name_len(leaf,
5699 extref);
5700 } else {
5701 inode_key.objectid = key.offset;
5702 cur_offset = item_size;
5703 }
5704
5705 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5706 root);
5707 /*
5708 * If the parent inode was deleted, return an error to
5709 * fallback to a transaction commit. This is to prevent
5710 * getting an inode that was moved from one parent A to
5711 * a parent B, got its former parent A deleted and then
5712 * it got fsync'ed, from existing at both parents after
5713 * a log replay (and the old parent still existing).
5714 * Example:
5715 *
5716 * mkdir /mnt/A
5717 * mkdir /mnt/B
5718 * touch /mnt/B/bar
5719 * sync
5720 * mv /mnt/B/bar /mnt/A/bar
5721 * mv -T /mnt/A /mnt/B
5722 * fsync /mnt/B/bar
5723 * <power fail>
5724 *
5725 * If we ignore the old parent B which got deleted,
5726 * after a log replay we would have file bar linked
5727 * at both parents and the old parent B would still
5728 * exist.
5729 */
5730 if (IS_ERR(dir_inode)) {
5731 ret = PTR_ERR(dir_inode);
5732 goto out;
5733 }
5734
5735 if (ctx)
5736 ctx->log_new_dentries = false;
5737 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5738 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5739 if (!ret &&
5740 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5741 ret = 1;
5742 if (!ret && ctx && ctx->log_new_dentries)
5743 ret = log_new_dir_dentries(trans, root,
5744 BTRFS_I(dir_inode), ctx);
5745 btrfs_add_delayed_iput(dir_inode);
5746 if (ret)
5747 goto out;
5748 }
5749 path->slots[0]++;
5750 }
5751 ret = 0;
5752out:
5753 btrfs_free_path(path);
5754 return ret;
5755}
5756
5757static int log_new_ancestors(struct btrfs_trans_handle *trans,
5758 struct btrfs_root *root,
5759 struct btrfs_path *path,
5760 struct btrfs_log_ctx *ctx)
5761{
5762 struct btrfs_key found_key;
5763
5764 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5765
5766 while (true) {
5767 struct btrfs_fs_info *fs_info = root->fs_info;
5768 const u64 last_committed = fs_info->last_trans_committed;
5769 struct extent_buffer *leaf = path->nodes[0];
5770 int slot = path->slots[0];
5771 struct btrfs_key search_key;
5772 struct inode *inode;
5773 u64 ino;
5774 int ret = 0;
5775
5776 btrfs_release_path(path);
5777
5778 ino = found_key.offset;
5779
5780 search_key.objectid = found_key.offset;
5781 search_key.type = BTRFS_INODE_ITEM_KEY;
5782 search_key.offset = 0;
5783 inode = btrfs_iget(fs_info->sb, ino, root);
5784 if (IS_ERR(inode))
5785 return PTR_ERR(inode);
5786
5787 if (BTRFS_I(inode)->generation > last_committed)
5788 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5789 LOG_INODE_EXISTS,
5790 0, LLONG_MAX, ctx);
5791 btrfs_add_delayed_iput(inode);
5792 if (ret)
5793 return ret;
5794
5795 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5796 break;
5797
5798 search_key.type = BTRFS_INODE_REF_KEY;
5799 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5800 if (ret < 0)
5801 return ret;
5802
5803 leaf = path->nodes[0];
5804 slot = path->slots[0];
5805 if (slot >= btrfs_header_nritems(leaf)) {
5806 ret = btrfs_next_leaf(root, path);
5807 if (ret < 0)
5808 return ret;
5809 else if (ret > 0)
5810 return -ENOENT;
5811 leaf = path->nodes[0];
5812 slot = path->slots[0];
5813 }
5814
5815 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5816 if (found_key.objectid != search_key.objectid ||
5817 found_key.type != BTRFS_INODE_REF_KEY)
5818 return -ENOENT;
5819 }
5820 return 0;
5821}
5822
5823static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5824 struct btrfs_inode *inode,
5825 struct dentry *parent,
5826 struct btrfs_log_ctx *ctx)
5827{
5828 struct btrfs_root *root = inode->root;
5829 struct btrfs_fs_info *fs_info = root->fs_info;
5830 struct dentry *old_parent = NULL;
5831 struct super_block *sb = inode->vfs_inode.i_sb;
5832 int ret = 0;
5833
5834 while (true) {
5835 if (!parent || d_really_is_negative(parent) ||
5836 sb != parent->d_sb)
5837 break;
5838
5839 inode = BTRFS_I(d_inode(parent));
5840 if (root != inode->root)
5841 break;
5842
5843 if (inode->generation > fs_info->last_trans_committed) {
5844 ret = btrfs_log_inode(trans, root, inode,
5845 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5846 if (ret)
5847 break;
5848 }
5849 if (IS_ROOT(parent))
5850 break;
5851
5852 parent = dget_parent(parent);
5853 dput(old_parent);
5854 old_parent = parent;
5855 }
5856 dput(old_parent);
5857
5858 return ret;
5859}
5860
5861static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5862 struct btrfs_inode *inode,
5863 struct dentry *parent,
5864 struct btrfs_log_ctx *ctx)
5865{
5866 struct btrfs_root *root = inode->root;
5867 const u64 ino = btrfs_ino(inode);
5868 struct btrfs_path *path;
5869 struct btrfs_key search_key;
5870 int ret;
5871
5872 /*
5873 * For a single hard link case, go through a fast path that does not
5874 * need to iterate the fs/subvolume tree.
5875 */
5876 if (inode->vfs_inode.i_nlink < 2)
5877 return log_new_ancestors_fast(trans, inode, parent, ctx);
5878
5879 path = btrfs_alloc_path();
5880 if (!path)
5881 return -ENOMEM;
5882
5883 search_key.objectid = ino;
5884 search_key.type = BTRFS_INODE_REF_KEY;
5885 search_key.offset = 0;
5886again:
5887 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5888 if (ret < 0)
5889 goto out;
5890 if (ret == 0)
5891 path->slots[0]++;
5892
5893 while (true) {
5894 struct extent_buffer *leaf = path->nodes[0];
5895 int slot = path->slots[0];
5896 struct btrfs_key found_key;
5897
5898 if (slot >= btrfs_header_nritems(leaf)) {
5899 ret = btrfs_next_leaf(root, path);
5900 if (ret < 0)
5901 goto out;
5902 else if (ret > 0)
5903 break;
5904 continue;
5905 }
5906
5907 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5908 if (found_key.objectid != ino ||
5909 found_key.type > BTRFS_INODE_EXTREF_KEY)
5910 break;
5911
5912 /*
5913 * Don't deal with extended references because they are rare
5914 * cases and too complex to deal with (we would need to keep
5915 * track of which subitem we are processing for each item in
5916 * this loop, etc). So just return some error to fallback to
5917 * a transaction commit.
5918 */
5919 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5920 ret = -EMLINK;
5921 goto out;
5922 }
5923
5924 /*
5925 * Logging ancestors needs to do more searches on the fs/subvol
5926 * tree, so it releases the path as needed to avoid deadlocks.
5927 * Keep track of the last inode ref key and resume from that key
5928 * after logging all new ancestors for the current hard link.
5929 */
5930 memcpy(&search_key, &found_key, sizeof(search_key));
5931
5932 ret = log_new_ancestors(trans, root, path, ctx);
5933 if (ret)
5934 goto out;
5935 btrfs_release_path(path);
5936 goto again;
5937 }
5938 ret = 0;
5939out:
5940 btrfs_free_path(path);
5941 return ret;
5942}
5943
5944/*
5945 * helper function around btrfs_log_inode to make sure newly created
5946 * parent directories also end up in the log. A minimal inode and backref
5947 * only logging is done of any parent directories that are older than
5948 * the last committed transaction
5949 */
5950static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5951 struct btrfs_inode *inode,
5952 struct dentry *parent,
5953 const loff_t start,
5954 const loff_t end,
5955 int inode_only,
5956 struct btrfs_log_ctx *ctx)
5957{
5958 struct btrfs_root *root = inode->root;
5959 struct btrfs_fs_info *fs_info = root->fs_info;
5960 struct super_block *sb;
5961 int ret = 0;
5962 u64 last_committed = fs_info->last_trans_committed;
5963 bool log_dentries = false;
5964
5965 sb = inode->vfs_inode.i_sb;
5966
5967 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5968 ret = 1;
5969 goto end_no_trans;
5970 }
5971
5972 /*
5973 * The prev transaction commit doesn't complete, we need do
5974 * full commit by ourselves.
5975 */
5976 if (fs_info->last_trans_log_full_commit >
5977 fs_info->last_trans_committed) {
5978 ret = 1;
5979 goto end_no_trans;
5980 }
5981
5982 if (btrfs_root_refs(&root->root_item) == 0) {
5983 ret = 1;
5984 goto end_no_trans;
5985 }
5986
5987 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5988 last_committed);
5989 if (ret)
5990 goto end_no_trans;
5991
5992 /*
5993 * Skip already logged inodes or inodes corresponding to tmpfiles
5994 * (since logging them is pointless, a link count of 0 means they
5995 * will never be accessible).
5996 */
5997 if (btrfs_inode_in_log(inode, trans->transid) ||
5998 inode->vfs_inode.i_nlink == 0) {
5999 ret = BTRFS_NO_LOG_SYNC;
6000 goto end_no_trans;
6001 }
6002
6003 ret = start_log_trans(trans, root, ctx);
6004 if (ret)
6005 goto end_no_trans;
6006
6007 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6008 if (ret)
6009 goto end_trans;
6010
6011 /*
6012 * for regular files, if its inode is already on disk, we don't
6013 * have to worry about the parents at all. This is because
6014 * we can use the last_unlink_trans field to record renames
6015 * and other fun in this file.
6016 */
6017 if (S_ISREG(inode->vfs_inode.i_mode) &&
6018 inode->generation <= last_committed &&
6019 inode->last_unlink_trans <= last_committed) {
6020 ret = 0;
6021 goto end_trans;
6022 }
6023
6024 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6025 log_dentries = true;
6026
6027 /*
6028 * On unlink we must make sure all our current and old parent directory
6029 * inodes are fully logged. This is to prevent leaving dangling
6030 * directory index entries in directories that were our parents but are
6031 * not anymore. Not doing this results in old parent directory being
6032 * impossible to delete after log replay (rmdir will always fail with
6033 * error -ENOTEMPTY).
6034 *
6035 * Example 1:
6036 *
6037 * mkdir testdir
6038 * touch testdir/foo
6039 * ln testdir/foo testdir/bar
6040 * sync
6041 * unlink testdir/bar
6042 * xfs_io -c fsync testdir/foo
6043 * <power failure>
6044 * mount fs, triggers log replay
6045 *
6046 * If we don't log the parent directory (testdir), after log replay the
6047 * directory still has an entry pointing to the file inode using the bar
6048 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6049 * the file inode has a link count of 1.
6050 *
6051 * Example 2:
6052 *
6053 * mkdir testdir
6054 * touch foo
6055 * ln foo testdir/foo2
6056 * ln foo testdir/foo3
6057 * sync
6058 * unlink testdir/foo3
6059 * xfs_io -c fsync foo
6060 * <power failure>
6061 * mount fs, triggers log replay
6062 *
6063 * Similar as the first example, after log replay the parent directory
6064 * testdir still has an entry pointing to the inode file with name foo3
6065 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6066 * and has a link count of 2.
6067 */
6068 if (inode->last_unlink_trans > last_committed) {
6069 ret = btrfs_log_all_parents(trans, inode, ctx);
6070 if (ret)
6071 goto end_trans;
6072 }
6073
6074 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6075 if (ret)
6076 goto end_trans;
6077
6078 if (log_dentries)
6079 ret = log_new_dir_dentries(trans, root, inode, ctx);
6080 else
6081 ret = 0;
6082end_trans:
6083 if (ret < 0) {
6084 btrfs_set_log_full_commit(trans);
6085 ret = 1;
6086 }
6087
6088 if (ret)
6089 btrfs_remove_log_ctx(root, ctx);
6090 btrfs_end_log_trans(root);
6091end_no_trans:
6092 return ret;
6093}
6094
6095/*
6096 * it is not safe to log dentry if the chunk root has added new
6097 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6098 * If this returns 1, you must commit the transaction to safely get your
6099 * data on disk.
6100 */
6101int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6102 struct dentry *dentry,
6103 const loff_t start,
6104 const loff_t end,
6105 struct btrfs_log_ctx *ctx)
6106{
6107 struct dentry *parent = dget_parent(dentry);
6108 int ret;
6109
6110 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6111 start, end, LOG_INODE_ALL, ctx);
6112 dput(parent);
6113
6114 return ret;
6115}
6116
6117/*
6118 * should be called during mount to recover any replay any log trees
6119 * from the FS
6120 */
6121int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6122{
6123 int ret;
6124 struct btrfs_path *path;
6125 struct btrfs_trans_handle *trans;
6126 struct btrfs_key key;
6127 struct btrfs_key found_key;
6128 struct btrfs_root *log;
6129 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6130 struct walk_control wc = {
6131 .process_func = process_one_buffer,
6132 .stage = LOG_WALK_PIN_ONLY,
6133 };
6134
6135 path = btrfs_alloc_path();
6136 if (!path)
6137 return -ENOMEM;
6138
6139 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6140
6141 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6142 if (IS_ERR(trans)) {
6143 ret = PTR_ERR(trans);
6144 goto error;
6145 }
6146
6147 wc.trans = trans;
6148 wc.pin = 1;
6149
6150 ret = walk_log_tree(trans, log_root_tree, &wc);
6151 if (ret) {
6152 btrfs_handle_fs_error(fs_info, ret,
6153 "Failed to pin buffers while recovering log root tree.");
6154 goto error;
6155 }
6156
6157again:
6158 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6159 key.offset = (u64)-1;
6160 key.type = BTRFS_ROOT_ITEM_KEY;
6161
6162 while (1) {
6163 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6164
6165 if (ret < 0) {
6166 btrfs_handle_fs_error(fs_info, ret,
6167 "Couldn't find tree log root.");
6168 goto error;
6169 }
6170 if (ret > 0) {
6171 if (path->slots[0] == 0)
6172 break;
6173 path->slots[0]--;
6174 }
6175 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6176 path->slots[0]);
6177 btrfs_release_path(path);
6178 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6179 break;
6180
6181 log = btrfs_read_tree_root(log_root_tree, &found_key);
6182 if (IS_ERR(log)) {
6183 ret = PTR_ERR(log);
6184 btrfs_handle_fs_error(fs_info, ret,
6185 "Couldn't read tree log root.");
6186 goto error;
6187 }
6188
6189 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6190 true);
6191 if (IS_ERR(wc.replay_dest)) {
6192 ret = PTR_ERR(wc.replay_dest);
6193
6194 /*
6195 * We didn't find the subvol, likely because it was
6196 * deleted. This is ok, simply skip this log and go to
6197 * the next one.
6198 *
6199 * We need to exclude the root because we can't have
6200 * other log replays overwriting this log as we'll read
6201 * it back in a few more times. This will keep our
6202 * block from being modified, and we'll just bail for
6203 * each subsequent pass.
6204 */
6205 if (ret == -ENOENT)
6206 ret = btrfs_pin_extent_for_log_replay(trans,
6207 log->node->start,
6208 log->node->len);
6209 btrfs_put_root(log);
6210
6211 if (!ret)
6212 goto next;
6213 btrfs_handle_fs_error(fs_info, ret,
6214 "Couldn't read target root for tree log recovery.");
6215 goto error;
6216 }
6217
6218 wc.replay_dest->log_root = log;
6219 btrfs_record_root_in_trans(trans, wc.replay_dest);
6220 ret = walk_log_tree(trans, log, &wc);
6221
6222 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6223 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6224 path);
6225 }
6226
6227 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6228 struct btrfs_root *root = wc.replay_dest;
6229
6230 btrfs_release_path(path);
6231
6232 /*
6233 * We have just replayed everything, and the highest
6234 * objectid of fs roots probably has changed in case
6235 * some inode_item's got replayed.
6236 *
6237 * root->objectid_mutex is not acquired as log replay
6238 * could only happen during mount.
6239 */
6240 ret = btrfs_find_highest_objectid(root,
6241 &root->highest_objectid);
6242 }
6243
6244 wc.replay_dest->log_root = NULL;
6245 btrfs_put_root(wc.replay_dest);
6246 btrfs_put_root(log);
6247
6248 if (ret)
6249 goto error;
6250next:
6251 if (found_key.offset == 0)
6252 break;
6253 key.offset = found_key.offset - 1;
6254 }
6255 btrfs_release_path(path);
6256
6257 /* step one is to pin it all, step two is to replay just inodes */
6258 if (wc.pin) {
6259 wc.pin = 0;
6260 wc.process_func = replay_one_buffer;
6261 wc.stage = LOG_WALK_REPLAY_INODES;
6262 goto again;
6263 }
6264 /* step three is to replay everything */
6265 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6266 wc.stage++;
6267 goto again;
6268 }
6269
6270 btrfs_free_path(path);
6271
6272 /* step 4: commit the transaction, which also unpins the blocks */
6273 ret = btrfs_commit_transaction(trans);
6274 if (ret)
6275 return ret;
6276
6277 log_root_tree->log_root = NULL;
6278 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6279 btrfs_put_root(log_root_tree);
6280
6281 return 0;
6282error:
6283 if (wc.trans)
6284 btrfs_end_transaction(wc.trans);
6285 btrfs_free_path(path);
6286 return ret;
6287}
6288
6289/*
6290 * there are some corner cases where we want to force a full
6291 * commit instead of allowing a directory to be logged.
6292 *
6293 * They revolve around files there were unlinked from the directory, and
6294 * this function updates the parent directory so that a full commit is
6295 * properly done if it is fsync'd later after the unlinks are done.
6296 *
6297 * Must be called before the unlink operations (updates to the subvolume tree,
6298 * inodes, etc) are done.
6299 */
6300void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6301 struct btrfs_inode *dir, struct btrfs_inode *inode,
6302 int for_rename)
6303{
6304 /*
6305 * when we're logging a file, if it hasn't been renamed
6306 * or unlinked, and its inode is fully committed on disk,
6307 * we don't have to worry about walking up the directory chain
6308 * to log its parents.
6309 *
6310 * So, we use the last_unlink_trans field to put this transid
6311 * into the file. When the file is logged we check it and
6312 * don't log the parents if the file is fully on disk.
6313 */
6314 mutex_lock(&inode->log_mutex);
6315 inode->last_unlink_trans = trans->transid;
6316 mutex_unlock(&inode->log_mutex);
6317
6318 /*
6319 * if this directory was already logged any new
6320 * names for this file/dir will get recorded
6321 */
6322 if (dir->logged_trans == trans->transid)
6323 return;
6324
6325 /*
6326 * if the inode we're about to unlink was logged,
6327 * the log will be properly updated for any new names
6328 */
6329 if (inode->logged_trans == trans->transid)
6330 return;
6331
6332 /*
6333 * when renaming files across directories, if the directory
6334 * there we're unlinking from gets fsync'd later on, there's
6335 * no way to find the destination directory later and fsync it
6336 * properly. So, we have to be conservative and force commits
6337 * so the new name gets discovered.
6338 */
6339 if (for_rename)
6340 goto record;
6341
6342 /* we can safely do the unlink without any special recording */
6343 return;
6344
6345record:
6346 mutex_lock(&dir->log_mutex);
6347 dir->last_unlink_trans = trans->transid;
6348 mutex_unlock(&dir->log_mutex);
6349}
6350
6351/*
6352 * Make sure that if someone attempts to fsync the parent directory of a deleted
6353 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6354 * that after replaying the log tree of the parent directory's root we will not
6355 * see the snapshot anymore and at log replay time we will not see any log tree
6356 * corresponding to the deleted snapshot's root, which could lead to replaying
6357 * it after replaying the log tree of the parent directory (which would replay
6358 * the snapshot delete operation).
6359 *
6360 * Must be called before the actual snapshot destroy operation (updates to the
6361 * parent root and tree of tree roots trees, etc) are done.
6362 */
6363void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6364 struct btrfs_inode *dir)
6365{
6366 mutex_lock(&dir->log_mutex);
6367 dir->last_unlink_trans = trans->transid;
6368 mutex_unlock(&dir->log_mutex);
6369}
6370
6371/*
6372 * Call this after adding a new name for a file and it will properly
6373 * update the log to reflect the new name.
6374 *
6375 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6376 * true (because it's not used).
6377 *
6378 * Return value depends on whether @sync_log is true or false.
6379 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6380 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6381 * otherwise.
6382 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6383 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6384 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6385 * committed (without attempting to sync the log).
6386 */
6387int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6388 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6389 struct dentry *parent,
6390 bool sync_log, struct btrfs_log_ctx *ctx)
6391{
6392 struct btrfs_fs_info *fs_info = trans->fs_info;
6393 int ret;
6394
6395 /*
6396 * this will force the logging code to walk the dentry chain
6397 * up for the file
6398 */
6399 if (!S_ISDIR(inode->vfs_inode.i_mode))
6400 inode->last_unlink_trans = trans->transid;
6401
6402 /*
6403 * if this inode hasn't been logged and directory we're renaming it
6404 * from hasn't been logged, we don't need to log it
6405 */
6406 if (inode->logged_trans <= fs_info->last_trans_committed &&
6407 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6408 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6409 BTRFS_DONT_NEED_LOG_SYNC;
6410
6411 if (sync_log) {
6412 struct btrfs_log_ctx ctx2;
6413
6414 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6415 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6416 LOG_INODE_EXISTS, &ctx2);
6417 if (ret == BTRFS_NO_LOG_SYNC)
6418 return BTRFS_DONT_NEED_TRANS_COMMIT;
6419 else if (ret)
6420 return BTRFS_NEED_TRANS_COMMIT;
6421
6422 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6423 if (ret)
6424 return BTRFS_NEED_TRANS_COMMIT;
6425 return BTRFS_DONT_NEED_TRANS_COMMIT;
6426 }
6427
6428 ASSERT(ctx);
6429 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6430 LOG_INODE_EXISTS, ctx);
6431 if (ret == BTRFS_NO_LOG_SYNC)
6432 return BTRFS_DONT_NEED_LOG_SYNC;
6433 else if (ret)
6434 return BTRFS_NEED_TRANS_COMMIT;
6435
6436 return BTRFS_NEED_LOG_SYNC;
6437}
6438
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include <linux/slab.h>
21#include <linux/blkdev.h>
22#include <linux/list_sort.h>
23#include "tree-log.h"
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
27#include "backref.h"
28#include "hash.h"
29#include "compression.h"
30
31/* magic values for the inode_only field in btrfs_log_inode:
32 *
33 * LOG_INODE_ALL means to log everything
34 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 * during log replay
36 */
37#define LOG_INODE_ALL 0
38#define LOG_INODE_EXISTS 1
39
40/*
41 * directory trouble cases
42 *
43 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
44 * log, we must force a full commit before doing an fsync of the directory
45 * where the unlink was done.
46 * ---> record transid of last unlink/rename per directory
47 *
48 * mkdir foo/some_dir
49 * normal commit
50 * rename foo/some_dir foo2/some_dir
51 * mkdir foo/some_dir
52 * fsync foo/some_dir/some_file
53 *
54 * The fsync above will unlink the original some_dir without recording
55 * it in its new location (foo2). After a crash, some_dir will be gone
56 * unless the fsync of some_file forces a full commit
57 *
58 * 2) we must log any new names for any file or dir that is in the fsync
59 * log. ---> check inode while renaming/linking.
60 *
61 * 2a) we must log any new names for any file or dir during rename
62 * when the directory they are being removed from was logged.
63 * ---> check inode and old parent dir during rename
64 *
65 * 2a is actually the more important variant. With the extra logging
66 * a crash might unlink the old name without recreating the new one
67 *
68 * 3) after a crash, we must go through any directories with a link count
69 * of zero and redo the rm -rf
70 *
71 * mkdir f1/foo
72 * normal commit
73 * rm -rf f1/foo
74 * fsync(f1)
75 *
76 * The directory f1 was fully removed from the FS, but fsync was never
77 * called on f1, only its parent dir. After a crash the rm -rf must
78 * be replayed. This must be able to recurse down the entire
79 * directory tree. The inode link count fixup code takes care of the
80 * ugly details.
81 */
82
83/*
84 * stages for the tree walking. The first
85 * stage (0) is to only pin down the blocks we find
86 * the second stage (1) is to make sure that all the inodes
87 * we find in the log are created in the subvolume.
88 *
89 * The last stage is to deal with directories and links and extents
90 * and all the other fun semantics
91 */
92#define LOG_WALK_PIN_ONLY 0
93#define LOG_WALK_REPLAY_INODES 1
94#define LOG_WALK_REPLAY_DIR_INDEX 2
95#define LOG_WALK_REPLAY_ALL 3
96
97static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode,
99 int inode_only,
100 const loff_t start,
101 const loff_t end,
102 struct btrfs_log_ctx *ctx);
103static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_path *path, u64 objectid);
106static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root,
108 struct btrfs_root *log,
109 struct btrfs_path *path,
110 u64 dirid, int del_all);
111
112/*
113 * tree logging is a special write ahead log used to make sure that
114 * fsyncs and O_SYNCs can happen without doing full tree commits.
115 *
116 * Full tree commits are expensive because they require commonly
117 * modified blocks to be recowed, creating many dirty pages in the
118 * extent tree an 4x-6x higher write load than ext3.
119 *
120 * Instead of doing a tree commit on every fsync, we use the
121 * key ranges and transaction ids to find items for a given file or directory
122 * that have changed in this transaction. Those items are copied into
123 * a special tree (one per subvolume root), that tree is written to disk
124 * and then the fsync is considered complete.
125 *
126 * After a crash, items are copied out of the log-tree back into the
127 * subvolume tree. Any file data extents found are recorded in the extent
128 * allocation tree, and the log-tree freed.
129 *
130 * The log tree is read three times, once to pin down all the extents it is
131 * using in ram and once, once to create all the inodes logged in the tree
132 * and once to do all the other items.
133 */
134
135/*
136 * start a sub transaction and setup the log tree
137 * this increments the log tree writer count to make the people
138 * syncing the tree wait for us to finish
139 */
140static int start_log_trans(struct btrfs_trans_handle *trans,
141 struct btrfs_root *root,
142 struct btrfs_log_ctx *ctx)
143{
144 int ret = 0;
145
146 mutex_lock(&root->log_mutex);
147
148 if (root->log_root) {
149 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
150 ret = -EAGAIN;
151 goto out;
152 }
153
154 if (!root->log_start_pid) {
155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 root->log_start_pid = current->pid;
157 } else if (root->log_start_pid != current->pid) {
158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 }
160 } else {
161 mutex_lock(&root->fs_info->tree_log_mutex);
162 if (!root->fs_info->log_root_tree)
163 ret = btrfs_init_log_root_tree(trans, root->fs_info);
164 mutex_unlock(&root->fs_info->tree_log_mutex);
165 if (ret)
166 goto out;
167
168 ret = btrfs_add_log_tree(trans, root);
169 if (ret)
170 goto out;
171
172 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
173 root->log_start_pid = current->pid;
174 }
175
176 atomic_inc(&root->log_batch);
177 atomic_inc(&root->log_writers);
178 if (ctx) {
179 int index = root->log_transid % 2;
180 list_add_tail(&ctx->list, &root->log_ctxs[index]);
181 ctx->log_transid = root->log_transid;
182 }
183
184out:
185 mutex_unlock(&root->log_mutex);
186 return ret;
187}
188
189/*
190 * returns 0 if there was a log transaction running and we were able
191 * to join, or returns -ENOENT if there were not transactions
192 * in progress
193 */
194static int join_running_log_trans(struct btrfs_root *root)
195{
196 int ret = -ENOENT;
197
198 smp_mb();
199 if (!root->log_root)
200 return -ENOENT;
201
202 mutex_lock(&root->log_mutex);
203 if (root->log_root) {
204 ret = 0;
205 atomic_inc(&root->log_writers);
206 }
207 mutex_unlock(&root->log_mutex);
208 return ret;
209}
210
211/*
212 * This either makes the current running log transaction wait
213 * until you call btrfs_end_log_trans() or it makes any future
214 * log transactions wait until you call btrfs_end_log_trans()
215 */
216int btrfs_pin_log_trans(struct btrfs_root *root)
217{
218 int ret = -ENOENT;
219
220 mutex_lock(&root->log_mutex);
221 atomic_inc(&root->log_writers);
222 mutex_unlock(&root->log_mutex);
223 return ret;
224}
225
226/*
227 * indicate we're done making changes to the log tree
228 * and wake up anyone waiting to do a sync
229 */
230void btrfs_end_log_trans(struct btrfs_root *root)
231{
232 if (atomic_dec_and_test(&root->log_writers)) {
233 /*
234 * Implicit memory barrier after atomic_dec_and_test
235 */
236 if (waitqueue_active(&root->log_writer_wait))
237 wake_up(&root->log_writer_wait);
238 }
239}
240
241
242/*
243 * the walk control struct is used to pass state down the chain when
244 * processing the log tree. The stage field tells us which part
245 * of the log tree processing we are currently doing. The others
246 * are state fields used for that specific part
247 */
248struct walk_control {
249 /* should we free the extent on disk when done? This is used
250 * at transaction commit time while freeing a log tree
251 */
252 int free;
253
254 /* should we write out the extent buffer? This is used
255 * while flushing the log tree to disk during a sync
256 */
257 int write;
258
259 /* should we wait for the extent buffer io to finish? Also used
260 * while flushing the log tree to disk for a sync
261 */
262 int wait;
263
264 /* pin only walk, we record which extents on disk belong to the
265 * log trees
266 */
267 int pin;
268
269 /* what stage of the replay code we're currently in */
270 int stage;
271
272 /* the root we are currently replaying */
273 struct btrfs_root *replay_dest;
274
275 /* the trans handle for the current replay */
276 struct btrfs_trans_handle *trans;
277
278 /* the function that gets used to process blocks we find in the
279 * tree. Note the extent_buffer might not be up to date when it is
280 * passed in, and it must be checked or read if you need the data
281 * inside it
282 */
283 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
284 struct walk_control *wc, u64 gen);
285};
286
287/*
288 * process_func used to pin down extents, write them or wait on them
289 */
290static int process_one_buffer(struct btrfs_root *log,
291 struct extent_buffer *eb,
292 struct walk_control *wc, u64 gen)
293{
294 int ret = 0;
295
296 /*
297 * If this fs is mixed then we need to be able to process the leaves to
298 * pin down any logged extents, so we have to read the block.
299 */
300 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
301 ret = btrfs_read_buffer(eb, gen);
302 if (ret)
303 return ret;
304 }
305
306 if (wc->pin)
307 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
308 eb->start, eb->len);
309
310 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
311 if (wc->pin && btrfs_header_level(eb) == 0)
312 ret = btrfs_exclude_logged_extents(log, eb);
313 if (wc->write)
314 btrfs_write_tree_block(eb);
315 if (wc->wait)
316 btrfs_wait_tree_block_writeback(eb);
317 }
318 return ret;
319}
320
321/*
322 * Item overwrite used by replay and tree logging. eb, slot and key all refer
323 * to the src data we are copying out.
324 *
325 * root is the tree we are copying into, and path is a scratch
326 * path for use in this function (it should be released on entry and
327 * will be released on exit).
328 *
329 * If the key is already in the destination tree the existing item is
330 * overwritten. If the existing item isn't big enough, it is extended.
331 * If it is too large, it is truncated.
332 *
333 * If the key isn't in the destination yet, a new item is inserted.
334 */
335static noinline int overwrite_item(struct btrfs_trans_handle *trans,
336 struct btrfs_root *root,
337 struct btrfs_path *path,
338 struct extent_buffer *eb, int slot,
339 struct btrfs_key *key)
340{
341 int ret;
342 u32 item_size;
343 u64 saved_i_size = 0;
344 int save_old_i_size = 0;
345 unsigned long src_ptr;
346 unsigned long dst_ptr;
347 int overwrite_root = 0;
348 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
349
350 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
351 overwrite_root = 1;
352
353 item_size = btrfs_item_size_nr(eb, slot);
354 src_ptr = btrfs_item_ptr_offset(eb, slot);
355
356 /* look for the key in the destination tree */
357 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
358 if (ret < 0)
359 return ret;
360
361 if (ret == 0) {
362 char *src_copy;
363 char *dst_copy;
364 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
365 path->slots[0]);
366 if (dst_size != item_size)
367 goto insert;
368
369 if (item_size == 0) {
370 btrfs_release_path(path);
371 return 0;
372 }
373 dst_copy = kmalloc(item_size, GFP_NOFS);
374 src_copy = kmalloc(item_size, GFP_NOFS);
375 if (!dst_copy || !src_copy) {
376 btrfs_release_path(path);
377 kfree(dst_copy);
378 kfree(src_copy);
379 return -ENOMEM;
380 }
381
382 read_extent_buffer(eb, src_copy, src_ptr, item_size);
383
384 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
385 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
386 item_size);
387 ret = memcmp(dst_copy, src_copy, item_size);
388
389 kfree(dst_copy);
390 kfree(src_copy);
391 /*
392 * they have the same contents, just return, this saves
393 * us from cowing blocks in the destination tree and doing
394 * extra writes that may not have been done by a previous
395 * sync
396 */
397 if (ret == 0) {
398 btrfs_release_path(path);
399 return 0;
400 }
401
402 /*
403 * We need to load the old nbytes into the inode so when we
404 * replay the extents we've logged we get the right nbytes.
405 */
406 if (inode_item) {
407 struct btrfs_inode_item *item;
408 u64 nbytes;
409 u32 mode;
410
411 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
412 struct btrfs_inode_item);
413 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
414 item = btrfs_item_ptr(eb, slot,
415 struct btrfs_inode_item);
416 btrfs_set_inode_nbytes(eb, item, nbytes);
417
418 /*
419 * If this is a directory we need to reset the i_size to
420 * 0 so that we can set it up properly when replaying
421 * the rest of the items in this log.
422 */
423 mode = btrfs_inode_mode(eb, item);
424 if (S_ISDIR(mode))
425 btrfs_set_inode_size(eb, item, 0);
426 }
427 } else if (inode_item) {
428 struct btrfs_inode_item *item;
429 u32 mode;
430
431 /*
432 * New inode, set nbytes to 0 so that the nbytes comes out
433 * properly when we replay the extents.
434 */
435 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
436 btrfs_set_inode_nbytes(eb, item, 0);
437
438 /*
439 * If this is a directory we need to reset the i_size to 0 so
440 * that we can set it up properly when replaying the rest of
441 * the items in this log.
442 */
443 mode = btrfs_inode_mode(eb, item);
444 if (S_ISDIR(mode))
445 btrfs_set_inode_size(eb, item, 0);
446 }
447insert:
448 btrfs_release_path(path);
449 /* try to insert the key into the destination tree */
450 path->skip_release_on_error = 1;
451 ret = btrfs_insert_empty_item(trans, root, path,
452 key, item_size);
453 path->skip_release_on_error = 0;
454
455 /* make sure any existing item is the correct size */
456 if (ret == -EEXIST || ret == -EOVERFLOW) {
457 u32 found_size;
458 found_size = btrfs_item_size_nr(path->nodes[0],
459 path->slots[0]);
460 if (found_size > item_size)
461 btrfs_truncate_item(root, path, item_size, 1);
462 else if (found_size < item_size)
463 btrfs_extend_item(root, path,
464 item_size - found_size);
465 } else if (ret) {
466 return ret;
467 }
468 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
469 path->slots[0]);
470
471 /* don't overwrite an existing inode if the generation number
472 * was logged as zero. This is done when the tree logging code
473 * is just logging an inode to make sure it exists after recovery.
474 *
475 * Also, don't overwrite i_size on directories during replay.
476 * log replay inserts and removes directory items based on the
477 * state of the tree found in the subvolume, and i_size is modified
478 * as it goes
479 */
480 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
481 struct btrfs_inode_item *src_item;
482 struct btrfs_inode_item *dst_item;
483
484 src_item = (struct btrfs_inode_item *)src_ptr;
485 dst_item = (struct btrfs_inode_item *)dst_ptr;
486
487 if (btrfs_inode_generation(eb, src_item) == 0) {
488 struct extent_buffer *dst_eb = path->nodes[0];
489 const u64 ino_size = btrfs_inode_size(eb, src_item);
490
491 /*
492 * For regular files an ino_size == 0 is used only when
493 * logging that an inode exists, as part of a directory
494 * fsync, and the inode wasn't fsynced before. In this
495 * case don't set the size of the inode in the fs/subvol
496 * tree, otherwise we would be throwing valid data away.
497 */
498 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
499 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
500 ino_size != 0) {
501 struct btrfs_map_token token;
502
503 btrfs_init_map_token(&token);
504 btrfs_set_token_inode_size(dst_eb, dst_item,
505 ino_size, &token);
506 }
507 goto no_copy;
508 }
509
510 if (overwrite_root &&
511 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
512 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
513 save_old_i_size = 1;
514 saved_i_size = btrfs_inode_size(path->nodes[0],
515 dst_item);
516 }
517 }
518
519 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
520 src_ptr, item_size);
521
522 if (save_old_i_size) {
523 struct btrfs_inode_item *dst_item;
524 dst_item = (struct btrfs_inode_item *)dst_ptr;
525 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
526 }
527
528 /* make sure the generation is filled in */
529 if (key->type == BTRFS_INODE_ITEM_KEY) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
533 btrfs_set_inode_generation(path->nodes[0], dst_item,
534 trans->transid);
535 }
536 }
537no_copy:
538 btrfs_mark_buffer_dirty(path->nodes[0]);
539 btrfs_release_path(path);
540 return 0;
541}
542
543/*
544 * simple helper to read an inode off the disk from a given root
545 * This can only be called for subvolume roots and not for the log
546 */
547static noinline struct inode *read_one_inode(struct btrfs_root *root,
548 u64 objectid)
549{
550 struct btrfs_key key;
551 struct inode *inode;
552
553 key.objectid = objectid;
554 key.type = BTRFS_INODE_ITEM_KEY;
555 key.offset = 0;
556 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
557 if (IS_ERR(inode)) {
558 inode = NULL;
559 } else if (is_bad_inode(inode)) {
560 iput(inode);
561 inode = NULL;
562 }
563 return inode;
564}
565
566/* replays a single extent in 'eb' at 'slot' with 'key' into the
567 * subvolume 'root'. path is released on entry and should be released
568 * on exit.
569 *
570 * extents in the log tree have not been allocated out of the extent
571 * tree yet. So, this completes the allocation, taking a reference
572 * as required if the extent already exists or creating a new extent
573 * if it isn't in the extent allocation tree yet.
574 *
575 * The extent is inserted into the file, dropping any existing extents
576 * from the file that overlap the new one.
577 */
578static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
579 struct btrfs_root *root,
580 struct btrfs_path *path,
581 struct extent_buffer *eb, int slot,
582 struct btrfs_key *key)
583{
584 int found_type;
585 u64 extent_end;
586 u64 start = key->offset;
587 u64 nbytes = 0;
588 struct btrfs_file_extent_item *item;
589 struct inode *inode = NULL;
590 unsigned long size;
591 int ret = 0;
592
593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 found_type = btrfs_file_extent_type(eb, item);
595
596 if (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 nbytes = btrfs_file_extent_num_bytes(eb, item);
599 extent_end = start + nbytes;
600
601 /*
602 * We don't add to the inodes nbytes if we are prealloc or a
603 * hole.
604 */
605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 nbytes = 0;
607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
608 size = btrfs_file_extent_inline_len(eb, slot, item);
609 nbytes = btrfs_file_extent_ram_bytes(eb, item);
610 extent_end = ALIGN(start + size, root->sectorsize);
611 } else {
612 ret = 0;
613 goto out;
614 }
615
616 inode = read_one_inode(root, key->objectid);
617 if (!inode) {
618 ret = -EIO;
619 goto out;
620 }
621
622 /*
623 * first check to see if we already have this extent in the
624 * file. This must be done before the btrfs_drop_extents run
625 * so we don't try to drop this extent.
626 */
627 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
628 start, 0);
629
630 if (ret == 0 &&
631 (found_type == BTRFS_FILE_EXTENT_REG ||
632 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
633 struct btrfs_file_extent_item cmp1;
634 struct btrfs_file_extent_item cmp2;
635 struct btrfs_file_extent_item *existing;
636 struct extent_buffer *leaf;
637
638 leaf = path->nodes[0];
639 existing = btrfs_item_ptr(leaf, path->slots[0],
640 struct btrfs_file_extent_item);
641
642 read_extent_buffer(eb, &cmp1, (unsigned long)item,
643 sizeof(cmp1));
644 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
645 sizeof(cmp2));
646
647 /*
648 * we already have a pointer to this exact extent,
649 * we don't have to do anything
650 */
651 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
652 btrfs_release_path(path);
653 goto out;
654 }
655 }
656 btrfs_release_path(path);
657
658 /* drop any overlapping extents */
659 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
660 if (ret)
661 goto out;
662
663 if (found_type == BTRFS_FILE_EXTENT_REG ||
664 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
665 u64 offset;
666 unsigned long dest_offset;
667 struct btrfs_key ins;
668
669 ret = btrfs_insert_empty_item(trans, root, path, key,
670 sizeof(*item));
671 if (ret)
672 goto out;
673 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 path->slots[0]);
675 copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 (unsigned long)item, sizeof(*item));
677
678 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 ins.type = BTRFS_EXTENT_ITEM_KEY;
681 offset = key->offset - btrfs_file_extent_offset(eb, item);
682
683 if (ins.objectid > 0) {
684 u64 csum_start;
685 u64 csum_end;
686 LIST_HEAD(ordered_sums);
687 /*
688 * is this extent already allocated in the extent
689 * allocation tree? If so, just add a reference
690 */
691 ret = btrfs_lookup_data_extent(root, ins.objectid,
692 ins.offset);
693 if (ret == 0) {
694 ret = btrfs_inc_extent_ref(trans, root,
695 ins.objectid, ins.offset,
696 0, root->root_key.objectid,
697 key->objectid, offset);
698 if (ret)
699 goto out;
700 } else {
701 /*
702 * insert the extent pointer in the extent
703 * allocation tree
704 */
705 ret = btrfs_alloc_logged_file_extent(trans,
706 root, root->root_key.objectid,
707 key->objectid, offset, &ins);
708 if (ret)
709 goto out;
710 }
711 btrfs_release_path(path);
712
713 if (btrfs_file_extent_compression(eb, item)) {
714 csum_start = ins.objectid;
715 csum_end = csum_start + ins.offset;
716 } else {
717 csum_start = ins.objectid +
718 btrfs_file_extent_offset(eb, item);
719 csum_end = csum_start +
720 btrfs_file_extent_num_bytes(eb, item);
721 }
722
723 ret = btrfs_lookup_csums_range(root->log_root,
724 csum_start, csum_end - 1,
725 &ordered_sums, 0);
726 if (ret)
727 goto out;
728 /*
729 * Now delete all existing cums in the csum root that
730 * cover our range. We do this because we can have an
731 * extent that is completely referenced by one file
732 * extent item and partially referenced by another
733 * file extent item (like after using the clone or
734 * extent_same ioctls). In this case if we end up doing
735 * the replay of the one that partially references the
736 * extent first, and we do not do the csum deletion
737 * below, we can get 2 csum items in the csum tree that
738 * overlap each other. For example, imagine our log has
739 * the two following file extent items:
740 *
741 * key (257 EXTENT_DATA 409600)
742 * extent data disk byte 12845056 nr 102400
743 * extent data offset 20480 nr 20480 ram 102400
744 *
745 * key (257 EXTENT_DATA 819200)
746 * extent data disk byte 12845056 nr 102400
747 * extent data offset 0 nr 102400 ram 102400
748 *
749 * Where the second one fully references the 100K extent
750 * that starts at disk byte 12845056, and the log tree
751 * has a single csum item that covers the entire range
752 * of the extent:
753 *
754 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
755 *
756 * After the first file extent item is replayed, the
757 * csum tree gets the following csum item:
758 *
759 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
760 *
761 * Which covers the 20K sub-range starting at offset 20K
762 * of our extent. Now when we replay the second file
763 * extent item, if we do not delete existing csum items
764 * that cover any of its blocks, we end up getting two
765 * csum items in our csum tree that overlap each other:
766 *
767 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
769 *
770 * Which is a problem, because after this anyone trying
771 * to lookup up for the checksum of any block of our
772 * extent starting at an offset of 40K or higher, will
773 * end up looking at the second csum item only, which
774 * does not contain the checksum for any block starting
775 * at offset 40K or higher of our extent.
776 */
777 while (!list_empty(&ordered_sums)) {
778 struct btrfs_ordered_sum *sums;
779 sums = list_entry(ordered_sums.next,
780 struct btrfs_ordered_sum,
781 list);
782 if (!ret)
783 ret = btrfs_del_csums(trans,
784 root->fs_info->csum_root,
785 sums->bytenr,
786 sums->len);
787 if (!ret)
788 ret = btrfs_csum_file_blocks(trans,
789 root->fs_info->csum_root,
790 sums);
791 list_del(&sums->list);
792 kfree(sums);
793 }
794 if (ret)
795 goto out;
796 } else {
797 btrfs_release_path(path);
798 }
799 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
800 /* inline extents are easy, we just overwrite them */
801 ret = overwrite_item(trans, root, path, eb, slot, key);
802 if (ret)
803 goto out;
804 }
805
806 inode_add_bytes(inode, nbytes);
807 ret = btrfs_update_inode(trans, root, inode);
808out:
809 if (inode)
810 iput(inode);
811 return ret;
812}
813
814/*
815 * when cleaning up conflicts between the directory names in the
816 * subvolume, directory names in the log and directory names in the
817 * inode back references, we may have to unlink inodes from directories.
818 *
819 * This is a helper function to do the unlink of a specific directory
820 * item
821 */
822static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
823 struct btrfs_root *root,
824 struct btrfs_path *path,
825 struct inode *dir,
826 struct btrfs_dir_item *di)
827{
828 struct inode *inode;
829 char *name;
830 int name_len;
831 struct extent_buffer *leaf;
832 struct btrfs_key location;
833 int ret;
834
835 leaf = path->nodes[0];
836
837 btrfs_dir_item_key_to_cpu(leaf, di, &location);
838 name_len = btrfs_dir_name_len(leaf, di);
839 name = kmalloc(name_len, GFP_NOFS);
840 if (!name)
841 return -ENOMEM;
842
843 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
844 btrfs_release_path(path);
845
846 inode = read_one_inode(root, location.objectid);
847 if (!inode) {
848 ret = -EIO;
849 goto out;
850 }
851
852 ret = link_to_fixup_dir(trans, root, path, location.objectid);
853 if (ret)
854 goto out;
855
856 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
857 if (ret)
858 goto out;
859 else
860 ret = btrfs_run_delayed_items(trans, root);
861out:
862 kfree(name);
863 iput(inode);
864 return ret;
865}
866
867/*
868 * helper function to see if a given name and sequence number found
869 * in an inode back reference are already in a directory and correctly
870 * point to this inode
871 */
872static noinline int inode_in_dir(struct btrfs_root *root,
873 struct btrfs_path *path,
874 u64 dirid, u64 objectid, u64 index,
875 const char *name, int name_len)
876{
877 struct btrfs_dir_item *di;
878 struct btrfs_key location;
879 int match = 0;
880
881 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
882 index, name, name_len, 0);
883 if (di && !IS_ERR(di)) {
884 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
885 if (location.objectid != objectid)
886 goto out;
887 } else
888 goto out;
889 btrfs_release_path(path);
890
891 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
892 if (di && !IS_ERR(di)) {
893 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
894 if (location.objectid != objectid)
895 goto out;
896 } else
897 goto out;
898 match = 1;
899out:
900 btrfs_release_path(path);
901 return match;
902}
903
904/*
905 * helper function to check a log tree for a named back reference in
906 * an inode. This is used to decide if a back reference that is
907 * found in the subvolume conflicts with what we find in the log.
908 *
909 * inode backreferences may have multiple refs in a single item,
910 * during replay we process one reference at a time, and we don't
911 * want to delete valid links to a file from the subvolume if that
912 * link is also in the log.
913 */
914static noinline int backref_in_log(struct btrfs_root *log,
915 struct btrfs_key *key,
916 u64 ref_objectid,
917 const char *name, int namelen)
918{
919 struct btrfs_path *path;
920 struct btrfs_inode_ref *ref;
921 unsigned long ptr;
922 unsigned long ptr_end;
923 unsigned long name_ptr;
924 int found_name_len;
925 int item_size;
926 int ret;
927 int match = 0;
928
929 path = btrfs_alloc_path();
930 if (!path)
931 return -ENOMEM;
932
933 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
934 if (ret != 0)
935 goto out;
936
937 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
938
939 if (key->type == BTRFS_INODE_EXTREF_KEY) {
940 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
941 name, namelen, NULL))
942 match = 1;
943
944 goto out;
945 }
946
947 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
948 ptr_end = ptr + item_size;
949 while (ptr < ptr_end) {
950 ref = (struct btrfs_inode_ref *)ptr;
951 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
952 if (found_name_len == namelen) {
953 name_ptr = (unsigned long)(ref + 1);
954 ret = memcmp_extent_buffer(path->nodes[0], name,
955 name_ptr, namelen);
956 if (ret == 0) {
957 match = 1;
958 goto out;
959 }
960 }
961 ptr = (unsigned long)(ref + 1) + found_name_len;
962 }
963out:
964 btrfs_free_path(path);
965 return match;
966}
967
968static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
969 struct btrfs_root *root,
970 struct btrfs_path *path,
971 struct btrfs_root *log_root,
972 struct inode *dir, struct inode *inode,
973 struct extent_buffer *eb,
974 u64 inode_objectid, u64 parent_objectid,
975 u64 ref_index, char *name, int namelen,
976 int *search_done)
977{
978 int ret;
979 char *victim_name;
980 int victim_name_len;
981 struct extent_buffer *leaf;
982 struct btrfs_dir_item *di;
983 struct btrfs_key search_key;
984 struct btrfs_inode_extref *extref;
985
986again:
987 /* Search old style refs */
988 search_key.objectid = inode_objectid;
989 search_key.type = BTRFS_INODE_REF_KEY;
990 search_key.offset = parent_objectid;
991 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
992 if (ret == 0) {
993 struct btrfs_inode_ref *victim_ref;
994 unsigned long ptr;
995 unsigned long ptr_end;
996
997 leaf = path->nodes[0];
998
999 /* are we trying to overwrite a back ref for the root directory
1000 * if so, just jump out, we're done
1001 */
1002 if (search_key.objectid == search_key.offset)
1003 return 1;
1004
1005 /* check all the names in this back reference to see
1006 * if they are in the log. if so, we allow them to stay
1007 * otherwise they must be unlinked as a conflict
1008 */
1009 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1010 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1011 while (ptr < ptr_end) {
1012 victim_ref = (struct btrfs_inode_ref *)ptr;
1013 victim_name_len = btrfs_inode_ref_name_len(leaf,
1014 victim_ref);
1015 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1016 if (!victim_name)
1017 return -ENOMEM;
1018
1019 read_extent_buffer(leaf, victim_name,
1020 (unsigned long)(victim_ref + 1),
1021 victim_name_len);
1022
1023 if (!backref_in_log(log_root, &search_key,
1024 parent_objectid,
1025 victim_name,
1026 victim_name_len)) {
1027 inc_nlink(inode);
1028 btrfs_release_path(path);
1029
1030 ret = btrfs_unlink_inode(trans, root, dir,
1031 inode, victim_name,
1032 victim_name_len);
1033 kfree(victim_name);
1034 if (ret)
1035 return ret;
1036 ret = btrfs_run_delayed_items(trans, root);
1037 if (ret)
1038 return ret;
1039 *search_done = 1;
1040 goto again;
1041 }
1042 kfree(victim_name);
1043
1044 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1045 }
1046
1047 /*
1048 * NOTE: we have searched root tree and checked the
1049 * corresponding ref, it does not need to check again.
1050 */
1051 *search_done = 1;
1052 }
1053 btrfs_release_path(path);
1054
1055 /* Same search but for extended refs */
1056 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1057 inode_objectid, parent_objectid, 0,
1058 0);
1059 if (!IS_ERR_OR_NULL(extref)) {
1060 u32 item_size;
1061 u32 cur_offset = 0;
1062 unsigned long base;
1063 struct inode *victim_parent;
1064
1065 leaf = path->nodes[0];
1066
1067 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1068 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1069
1070 while (cur_offset < item_size) {
1071 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1072
1073 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1074
1075 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1076 goto next;
1077
1078 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1079 if (!victim_name)
1080 return -ENOMEM;
1081 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1082 victim_name_len);
1083
1084 search_key.objectid = inode_objectid;
1085 search_key.type = BTRFS_INODE_EXTREF_KEY;
1086 search_key.offset = btrfs_extref_hash(parent_objectid,
1087 victim_name,
1088 victim_name_len);
1089 ret = 0;
1090 if (!backref_in_log(log_root, &search_key,
1091 parent_objectid, victim_name,
1092 victim_name_len)) {
1093 ret = -ENOENT;
1094 victim_parent = read_one_inode(root,
1095 parent_objectid);
1096 if (victim_parent) {
1097 inc_nlink(inode);
1098 btrfs_release_path(path);
1099
1100 ret = btrfs_unlink_inode(trans, root,
1101 victim_parent,
1102 inode,
1103 victim_name,
1104 victim_name_len);
1105 if (!ret)
1106 ret = btrfs_run_delayed_items(
1107 trans, root);
1108 }
1109 iput(victim_parent);
1110 kfree(victim_name);
1111 if (ret)
1112 return ret;
1113 *search_done = 1;
1114 goto again;
1115 }
1116 kfree(victim_name);
1117 if (ret)
1118 return ret;
1119next:
1120 cur_offset += victim_name_len + sizeof(*extref);
1121 }
1122 *search_done = 1;
1123 }
1124 btrfs_release_path(path);
1125
1126 /* look for a conflicting sequence number */
1127 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1128 ref_index, name, namelen, 0);
1129 if (di && !IS_ERR(di)) {
1130 ret = drop_one_dir_item(trans, root, path, dir, di);
1131 if (ret)
1132 return ret;
1133 }
1134 btrfs_release_path(path);
1135
1136 /* look for a conflicing name */
1137 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1138 name, namelen, 0);
1139 if (di && !IS_ERR(di)) {
1140 ret = drop_one_dir_item(trans, root, path, dir, di);
1141 if (ret)
1142 return ret;
1143 }
1144 btrfs_release_path(path);
1145
1146 return 0;
1147}
1148
1149static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1150 u32 *namelen, char **name, u64 *index,
1151 u64 *parent_objectid)
1152{
1153 struct btrfs_inode_extref *extref;
1154
1155 extref = (struct btrfs_inode_extref *)ref_ptr;
1156
1157 *namelen = btrfs_inode_extref_name_len(eb, extref);
1158 *name = kmalloc(*namelen, GFP_NOFS);
1159 if (*name == NULL)
1160 return -ENOMEM;
1161
1162 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1163 *namelen);
1164
1165 *index = btrfs_inode_extref_index(eb, extref);
1166 if (parent_objectid)
1167 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1168
1169 return 0;
1170}
1171
1172static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1173 u32 *namelen, char **name, u64 *index)
1174{
1175 struct btrfs_inode_ref *ref;
1176
1177 ref = (struct btrfs_inode_ref *)ref_ptr;
1178
1179 *namelen = btrfs_inode_ref_name_len(eb, ref);
1180 *name = kmalloc(*namelen, GFP_NOFS);
1181 if (*name == NULL)
1182 return -ENOMEM;
1183
1184 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1185
1186 *index = btrfs_inode_ref_index(eb, ref);
1187
1188 return 0;
1189}
1190
1191/*
1192 * replay one inode back reference item found in the log tree.
1193 * eb, slot and key refer to the buffer and key found in the log tree.
1194 * root is the destination we are replaying into, and path is for temp
1195 * use by this function. (it should be released on return).
1196 */
1197static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1198 struct btrfs_root *root,
1199 struct btrfs_root *log,
1200 struct btrfs_path *path,
1201 struct extent_buffer *eb, int slot,
1202 struct btrfs_key *key)
1203{
1204 struct inode *dir = NULL;
1205 struct inode *inode = NULL;
1206 unsigned long ref_ptr;
1207 unsigned long ref_end;
1208 char *name = NULL;
1209 int namelen;
1210 int ret;
1211 int search_done = 0;
1212 int log_ref_ver = 0;
1213 u64 parent_objectid;
1214 u64 inode_objectid;
1215 u64 ref_index = 0;
1216 int ref_struct_size;
1217
1218 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1219 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1220
1221 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1222 struct btrfs_inode_extref *r;
1223
1224 ref_struct_size = sizeof(struct btrfs_inode_extref);
1225 log_ref_ver = 1;
1226 r = (struct btrfs_inode_extref *)ref_ptr;
1227 parent_objectid = btrfs_inode_extref_parent(eb, r);
1228 } else {
1229 ref_struct_size = sizeof(struct btrfs_inode_ref);
1230 parent_objectid = key->offset;
1231 }
1232 inode_objectid = key->objectid;
1233
1234 /*
1235 * it is possible that we didn't log all the parent directories
1236 * for a given inode. If we don't find the dir, just don't
1237 * copy the back ref in. The link count fixup code will take
1238 * care of the rest
1239 */
1240 dir = read_one_inode(root, parent_objectid);
1241 if (!dir) {
1242 ret = -ENOENT;
1243 goto out;
1244 }
1245
1246 inode = read_one_inode(root, inode_objectid);
1247 if (!inode) {
1248 ret = -EIO;
1249 goto out;
1250 }
1251
1252 while (ref_ptr < ref_end) {
1253 if (log_ref_ver) {
1254 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1255 &ref_index, &parent_objectid);
1256 /*
1257 * parent object can change from one array
1258 * item to another.
1259 */
1260 if (!dir)
1261 dir = read_one_inode(root, parent_objectid);
1262 if (!dir) {
1263 ret = -ENOENT;
1264 goto out;
1265 }
1266 } else {
1267 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1268 &ref_index);
1269 }
1270 if (ret)
1271 goto out;
1272
1273 /* if we already have a perfect match, we're done */
1274 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1275 ref_index, name, namelen)) {
1276 /*
1277 * look for a conflicting back reference in the
1278 * metadata. if we find one we have to unlink that name
1279 * of the file before we add our new link. Later on, we
1280 * overwrite any existing back reference, and we don't
1281 * want to create dangling pointers in the directory.
1282 */
1283
1284 if (!search_done) {
1285 ret = __add_inode_ref(trans, root, path, log,
1286 dir, inode, eb,
1287 inode_objectid,
1288 parent_objectid,
1289 ref_index, name, namelen,
1290 &search_done);
1291 if (ret) {
1292 if (ret == 1)
1293 ret = 0;
1294 goto out;
1295 }
1296 }
1297
1298 /* insert our name */
1299 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1300 0, ref_index);
1301 if (ret)
1302 goto out;
1303
1304 btrfs_update_inode(trans, root, inode);
1305 }
1306
1307 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1308 kfree(name);
1309 name = NULL;
1310 if (log_ref_ver) {
1311 iput(dir);
1312 dir = NULL;
1313 }
1314 }
1315
1316 /* finally write the back reference in the inode */
1317 ret = overwrite_item(trans, root, path, eb, slot, key);
1318out:
1319 btrfs_release_path(path);
1320 kfree(name);
1321 iput(dir);
1322 iput(inode);
1323 return ret;
1324}
1325
1326static int insert_orphan_item(struct btrfs_trans_handle *trans,
1327 struct btrfs_root *root, u64 ino)
1328{
1329 int ret;
1330
1331 ret = btrfs_insert_orphan_item(trans, root, ino);
1332 if (ret == -EEXIST)
1333 ret = 0;
1334
1335 return ret;
1336}
1337
1338static int count_inode_extrefs(struct btrfs_root *root,
1339 struct inode *inode, struct btrfs_path *path)
1340{
1341 int ret = 0;
1342 int name_len;
1343 unsigned int nlink = 0;
1344 u32 item_size;
1345 u32 cur_offset = 0;
1346 u64 inode_objectid = btrfs_ino(inode);
1347 u64 offset = 0;
1348 unsigned long ptr;
1349 struct btrfs_inode_extref *extref;
1350 struct extent_buffer *leaf;
1351
1352 while (1) {
1353 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1354 &extref, &offset);
1355 if (ret)
1356 break;
1357
1358 leaf = path->nodes[0];
1359 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1360 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1361 cur_offset = 0;
1362
1363 while (cur_offset < item_size) {
1364 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1365 name_len = btrfs_inode_extref_name_len(leaf, extref);
1366
1367 nlink++;
1368
1369 cur_offset += name_len + sizeof(*extref);
1370 }
1371
1372 offset++;
1373 btrfs_release_path(path);
1374 }
1375 btrfs_release_path(path);
1376
1377 if (ret < 0 && ret != -ENOENT)
1378 return ret;
1379 return nlink;
1380}
1381
1382static int count_inode_refs(struct btrfs_root *root,
1383 struct inode *inode, struct btrfs_path *path)
1384{
1385 int ret;
1386 struct btrfs_key key;
1387 unsigned int nlink = 0;
1388 unsigned long ptr;
1389 unsigned long ptr_end;
1390 int name_len;
1391 u64 ino = btrfs_ino(inode);
1392
1393 key.objectid = ino;
1394 key.type = BTRFS_INODE_REF_KEY;
1395 key.offset = (u64)-1;
1396
1397 while (1) {
1398 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1399 if (ret < 0)
1400 break;
1401 if (ret > 0) {
1402 if (path->slots[0] == 0)
1403 break;
1404 path->slots[0]--;
1405 }
1406process_slot:
1407 btrfs_item_key_to_cpu(path->nodes[0], &key,
1408 path->slots[0]);
1409 if (key.objectid != ino ||
1410 key.type != BTRFS_INODE_REF_KEY)
1411 break;
1412 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1413 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1414 path->slots[0]);
1415 while (ptr < ptr_end) {
1416 struct btrfs_inode_ref *ref;
1417
1418 ref = (struct btrfs_inode_ref *)ptr;
1419 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1420 ref);
1421 ptr = (unsigned long)(ref + 1) + name_len;
1422 nlink++;
1423 }
1424
1425 if (key.offset == 0)
1426 break;
1427 if (path->slots[0] > 0) {
1428 path->slots[0]--;
1429 goto process_slot;
1430 }
1431 key.offset--;
1432 btrfs_release_path(path);
1433 }
1434 btrfs_release_path(path);
1435
1436 return nlink;
1437}
1438
1439/*
1440 * There are a few corners where the link count of the file can't
1441 * be properly maintained during replay. So, instead of adding
1442 * lots of complexity to the log code, we just scan the backrefs
1443 * for any file that has been through replay.
1444 *
1445 * The scan will update the link count on the inode to reflect the
1446 * number of back refs found. If it goes down to zero, the iput
1447 * will free the inode.
1448 */
1449static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root,
1451 struct inode *inode)
1452{
1453 struct btrfs_path *path;
1454 int ret;
1455 u64 nlink = 0;
1456 u64 ino = btrfs_ino(inode);
1457
1458 path = btrfs_alloc_path();
1459 if (!path)
1460 return -ENOMEM;
1461
1462 ret = count_inode_refs(root, inode, path);
1463 if (ret < 0)
1464 goto out;
1465
1466 nlink = ret;
1467
1468 ret = count_inode_extrefs(root, inode, path);
1469 if (ret < 0)
1470 goto out;
1471
1472 nlink += ret;
1473
1474 ret = 0;
1475
1476 if (nlink != inode->i_nlink) {
1477 set_nlink(inode, nlink);
1478 btrfs_update_inode(trans, root, inode);
1479 }
1480 BTRFS_I(inode)->index_cnt = (u64)-1;
1481
1482 if (inode->i_nlink == 0) {
1483 if (S_ISDIR(inode->i_mode)) {
1484 ret = replay_dir_deletes(trans, root, NULL, path,
1485 ino, 1);
1486 if (ret)
1487 goto out;
1488 }
1489 ret = insert_orphan_item(trans, root, ino);
1490 }
1491
1492out:
1493 btrfs_free_path(path);
1494 return ret;
1495}
1496
1497static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1498 struct btrfs_root *root,
1499 struct btrfs_path *path)
1500{
1501 int ret;
1502 struct btrfs_key key;
1503 struct inode *inode;
1504
1505 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1506 key.type = BTRFS_ORPHAN_ITEM_KEY;
1507 key.offset = (u64)-1;
1508 while (1) {
1509 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1510 if (ret < 0)
1511 break;
1512
1513 if (ret == 1) {
1514 if (path->slots[0] == 0)
1515 break;
1516 path->slots[0]--;
1517 }
1518
1519 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1520 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1521 key.type != BTRFS_ORPHAN_ITEM_KEY)
1522 break;
1523
1524 ret = btrfs_del_item(trans, root, path);
1525 if (ret)
1526 goto out;
1527
1528 btrfs_release_path(path);
1529 inode = read_one_inode(root, key.offset);
1530 if (!inode)
1531 return -EIO;
1532
1533 ret = fixup_inode_link_count(trans, root, inode);
1534 iput(inode);
1535 if (ret)
1536 goto out;
1537
1538 /*
1539 * fixup on a directory may create new entries,
1540 * make sure we always look for the highset possible
1541 * offset
1542 */
1543 key.offset = (u64)-1;
1544 }
1545 ret = 0;
1546out:
1547 btrfs_release_path(path);
1548 return ret;
1549}
1550
1551
1552/*
1553 * record a given inode in the fixup dir so we can check its link
1554 * count when replay is done. The link count is incremented here
1555 * so the inode won't go away until we check it
1556 */
1557static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1558 struct btrfs_root *root,
1559 struct btrfs_path *path,
1560 u64 objectid)
1561{
1562 struct btrfs_key key;
1563 int ret = 0;
1564 struct inode *inode;
1565
1566 inode = read_one_inode(root, objectid);
1567 if (!inode)
1568 return -EIO;
1569
1570 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1571 key.type = BTRFS_ORPHAN_ITEM_KEY;
1572 key.offset = objectid;
1573
1574 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1575
1576 btrfs_release_path(path);
1577 if (ret == 0) {
1578 if (!inode->i_nlink)
1579 set_nlink(inode, 1);
1580 else
1581 inc_nlink(inode);
1582 ret = btrfs_update_inode(trans, root, inode);
1583 } else if (ret == -EEXIST) {
1584 ret = 0;
1585 } else {
1586 BUG(); /* Logic Error */
1587 }
1588 iput(inode);
1589
1590 return ret;
1591}
1592
1593/*
1594 * when replaying the log for a directory, we only insert names
1595 * for inodes that actually exist. This means an fsync on a directory
1596 * does not implicitly fsync all the new files in it
1597 */
1598static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1599 struct btrfs_root *root,
1600 u64 dirid, u64 index,
1601 char *name, int name_len,
1602 struct btrfs_key *location)
1603{
1604 struct inode *inode;
1605 struct inode *dir;
1606 int ret;
1607
1608 inode = read_one_inode(root, location->objectid);
1609 if (!inode)
1610 return -ENOENT;
1611
1612 dir = read_one_inode(root, dirid);
1613 if (!dir) {
1614 iput(inode);
1615 return -EIO;
1616 }
1617
1618 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1619
1620 /* FIXME, put inode into FIXUP list */
1621
1622 iput(inode);
1623 iput(dir);
1624 return ret;
1625}
1626
1627/*
1628 * Return true if an inode reference exists in the log for the given name,
1629 * inode and parent inode.
1630 */
1631static bool name_in_log_ref(struct btrfs_root *log_root,
1632 const char *name, const int name_len,
1633 const u64 dirid, const u64 ino)
1634{
1635 struct btrfs_key search_key;
1636
1637 search_key.objectid = ino;
1638 search_key.type = BTRFS_INODE_REF_KEY;
1639 search_key.offset = dirid;
1640 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1641 return true;
1642
1643 search_key.type = BTRFS_INODE_EXTREF_KEY;
1644 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1645 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1646 return true;
1647
1648 return false;
1649}
1650
1651/*
1652 * take a single entry in a log directory item and replay it into
1653 * the subvolume.
1654 *
1655 * if a conflicting item exists in the subdirectory already,
1656 * the inode it points to is unlinked and put into the link count
1657 * fix up tree.
1658 *
1659 * If a name from the log points to a file or directory that does
1660 * not exist in the FS, it is skipped. fsyncs on directories
1661 * do not force down inodes inside that directory, just changes to the
1662 * names or unlinks in a directory.
1663 *
1664 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1665 * non-existing inode) and 1 if the name was replayed.
1666 */
1667static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1668 struct btrfs_root *root,
1669 struct btrfs_path *path,
1670 struct extent_buffer *eb,
1671 struct btrfs_dir_item *di,
1672 struct btrfs_key *key)
1673{
1674 char *name;
1675 int name_len;
1676 struct btrfs_dir_item *dst_di;
1677 struct btrfs_key found_key;
1678 struct btrfs_key log_key;
1679 struct inode *dir;
1680 u8 log_type;
1681 int exists;
1682 int ret = 0;
1683 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1684 bool name_added = false;
1685
1686 dir = read_one_inode(root, key->objectid);
1687 if (!dir)
1688 return -EIO;
1689
1690 name_len = btrfs_dir_name_len(eb, di);
1691 name = kmalloc(name_len, GFP_NOFS);
1692 if (!name) {
1693 ret = -ENOMEM;
1694 goto out;
1695 }
1696
1697 log_type = btrfs_dir_type(eb, di);
1698 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1699 name_len);
1700
1701 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1702 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1703 if (exists == 0)
1704 exists = 1;
1705 else
1706 exists = 0;
1707 btrfs_release_path(path);
1708
1709 if (key->type == BTRFS_DIR_ITEM_KEY) {
1710 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1711 name, name_len, 1);
1712 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1713 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1714 key->objectid,
1715 key->offset, name,
1716 name_len, 1);
1717 } else {
1718 /* Corruption */
1719 ret = -EINVAL;
1720 goto out;
1721 }
1722 if (IS_ERR_OR_NULL(dst_di)) {
1723 /* we need a sequence number to insert, so we only
1724 * do inserts for the BTRFS_DIR_INDEX_KEY types
1725 */
1726 if (key->type != BTRFS_DIR_INDEX_KEY)
1727 goto out;
1728 goto insert;
1729 }
1730
1731 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1732 /* the existing item matches the logged item */
1733 if (found_key.objectid == log_key.objectid &&
1734 found_key.type == log_key.type &&
1735 found_key.offset == log_key.offset &&
1736 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1737 update_size = false;
1738 goto out;
1739 }
1740
1741 /*
1742 * don't drop the conflicting directory entry if the inode
1743 * for the new entry doesn't exist
1744 */
1745 if (!exists)
1746 goto out;
1747
1748 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1749 if (ret)
1750 goto out;
1751
1752 if (key->type == BTRFS_DIR_INDEX_KEY)
1753 goto insert;
1754out:
1755 btrfs_release_path(path);
1756 if (!ret && update_size) {
1757 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1758 ret = btrfs_update_inode(trans, root, dir);
1759 }
1760 kfree(name);
1761 iput(dir);
1762 if (!ret && name_added)
1763 ret = 1;
1764 return ret;
1765
1766insert:
1767 if (name_in_log_ref(root->log_root, name, name_len,
1768 key->objectid, log_key.objectid)) {
1769 /* The dentry will be added later. */
1770 ret = 0;
1771 update_size = false;
1772 goto out;
1773 }
1774 btrfs_release_path(path);
1775 ret = insert_one_name(trans, root, key->objectid, key->offset,
1776 name, name_len, &log_key);
1777 if (ret && ret != -ENOENT && ret != -EEXIST)
1778 goto out;
1779 if (!ret)
1780 name_added = true;
1781 update_size = false;
1782 ret = 0;
1783 goto out;
1784}
1785
1786/*
1787 * find all the names in a directory item and reconcile them into
1788 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1789 * one name in a directory item, but the same code gets used for
1790 * both directory index types
1791 */
1792static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1793 struct btrfs_root *root,
1794 struct btrfs_path *path,
1795 struct extent_buffer *eb, int slot,
1796 struct btrfs_key *key)
1797{
1798 int ret = 0;
1799 u32 item_size = btrfs_item_size_nr(eb, slot);
1800 struct btrfs_dir_item *di;
1801 int name_len;
1802 unsigned long ptr;
1803 unsigned long ptr_end;
1804 struct btrfs_path *fixup_path = NULL;
1805
1806 ptr = btrfs_item_ptr_offset(eb, slot);
1807 ptr_end = ptr + item_size;
1808 while (ptr < ptr_end) {
1809 di = (struct btrfs_dir_item *)ptr;
1810 if (verify_dir_item(root, eb, di))
1811 return -EIO;
1812 name_len = btrfs_dir_name_len(eb, di);
1813 ret = replay_one_name(trans, root, path, eb, di, key);
1814 if (ret < 0)
1815 break;
1816 ptr = (unsigned long)(di + 1);
1817 ptr += name_len;
1818
1819 /*
1820 * If this entry refers to a non-directory (directories can not
1821 * have a link count > 1) and it was added in the transaction
1822 * that was not committed, make sure we fixup the link count of
1823 * the inode it the entry points to. Otherwise something like
1824 * the following would result in a directory pointing to an
1825 * inode with a wrong link that does not account for this dir
1826 * entry:
1827 *
1828 * mkdir testdir
1829 * touch testdir/foo
1830 * touch testdir/bar
1831 * sync
1832 *
1833 * ln testdir/bar testdir/bar_link
1834 * ln testdir/foo testdir/foo_link
1835 * xfs_io -c "fsync" testdir/bar
1836 *
1837 * <power failure>
1838 *
1839 * mount fs, log replay happens
1840 *
1841 * File foo would remain with a link count of 1 when it has two
1842 * entries pointing to it in the directory testdir. This would
1843 * make it impossible to ever delete the parent directory has
1844 * it would result in stale dentries that can never be deleted.
1845 */
1846 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1847 struct btrfs_key di_key;
1848
1849 if (!fixup_path) {
1850 fixup_path = btrfs_alloc_path();
1851 if (!fixup_path) {
1852 ret = -ENOMEM;
1853 break;
1854 }
1855 }
1856
1857 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1858 ret = link_to_fixup_dir(trans, root, fixup_path,
1859 di_key.objectid);
1860 if (ret)
1861 break;
1862 }
1863 ret = 0;
1864 }
1865 btrfs_free_path(fixup_path);
1866 return ret;
1867}
1868
1869/*
1870 * directory replay has two parts. There are the standard directory
1871 * items in the log copied from the subvolume, and range items
1872 * created in the log while the subvolume was logged.
1873 *
1874 * The range items tell us which parts of the key space the log
1875 * is authoritative for. During replay, if a key in the subvolume
1876 * directory is in a logged range item, but not actually in the log
1877 * that means it was deleted from the directory before the fsync
1878 * and should be removed.
1879 */
1880static noinline int find_dir_range(struct btrfs_root *root,
1881 struct btrfs_path *path,
1882 u64 dirid, int key_type,
1883 u64 *start_ret, u64 *end_ret)
1884{
1885 struct btrfs_key key;
1886 u64 found_end;
1887 struct btrfs_dir_log_item *item;
1888 int ret;
1889 int nritems;
1890
1891 if (*start_ret == (u64)-1)
1892 return 1;
1893
1894 key.objectid = dirid;
1895 key.type = key_type;
1896 key.offset = *start_ret;
1897
1898 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1899 if (ret < 0)
1900 goto out;
1901 if (ret > 0) {
1902 if (path->slots[0] == 0)
1903 goto out;
1904 path->slots[0]--;
1905 }
1906 if (ret != 0)
1907 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1908
1909 if (key.type != key_type || key.objectid != dirid) {
1910 ret = 1;
1911 goto next;
1912 }
1913 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1914 struct btrfs_dir_log_item);
1915 found_end = btrfs_dir_log_end(path->nodes[0], item);
1916
1917 if (*start_ret >= key.offset && *start_ret <= found_end) {
1918 ret = 0;
1919 *start_ret = key.offset;
1920 *end_ret = found_end;
1921 goto out;
1922 }
1923 ret = 1;
1924next:
1925 /* check the next slot in the tree to see if it is a valid item */
1926 nritems = btrfs_header_nritems(path->nodes[0]);
1927 if (path->slots[0] >= nritems) {
1928 ret = btrfs_next_leaf(root, path);
1929 if (ret)
1930 goto out;
1931 } else {
1932 path->slots[0]++;
1933 }
1934
1935 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1936
1937 if (key.type != key_type || key.objectid != dirid) {
1938 ret = 1;
1939 goto out;
1940 }
1941 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1942 struct btrfs_dir_log_item);
1943 found_end = btrfs_dir_log_end(path->nodes[0], item);
1944 *start_ret = key.offset;
1945 *end_ret = found_end;
1946 ret = 0;
1947out:
1948 btrfs_release_path(path);
1949 return ret;
1950}
1951
1952/*
1953 * this looks for a given directory item in the log. If the directory
1954 * item is not in the log, the item is removed and the inode it points
1955 * to is unlinked
1956 */
1957static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1958 struct btrfs_root *root,
1959 struct btrfs_root *log,
1960 struct btrfs_path *path,
1961 struct btrfs_path *log_path,
1962 struct inode *dir,
1963 struct btrfs_key *dir_key)
1964{
1965 int ret;
1966 struct extent_buffer *eb;
1967 int slot;
1968 u32 item_size;
1969 struct btrfs_dir_item *di;
1970 struct btrfs_dir_item *log_di;
1971 int name_len;
1972 unsigned long ptr;
1973 unsigned long ptr_end;
1974 char *name;
1975 struct inode *inode;
1976 struct btrfs_key location;
1977
1978again:
1979 eb = path->nodes[0];
1980 slot = path->slots[0];
1981 item_size = btrfs_item_size_nr(eb, slot);
1982 ptr = btrfs_item_ptr_offset(eb, slot);
1983 ptr_end = ptr + item_size;
1984 while (ptr < ptr_end) {
1985 di = (struct btrfs_dir_item *)ptr;
1986 if (verify_dir_item(root, eb, di)) {
1987 ret = -EIO;
1988 goto out;
1989 }
1990
1991 name_len = btrfs_dir_name_len(eb, di);
1992 name = kmalloc(name_len, GFP_NOFS);
1993 if (!name) {
1994 ret = -ENOMEM;
1995 goto out;
1996 }
1997 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1998 name_len);
1999 log_di = NULL;
2000 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2001 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2002 dir_key->objectid,
2003 name, name_len, 0);
2004 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2005 log_di = btrfs_lookup_dir_index_item(trans, log,
2006 log_path,
2007 dir_key->objectid,
2008 dir_key->offset,
2009 name, name_len, 0);
2010 }
2011 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2012 btrfs_dir_item_key_to_cpu(eb, di, &location);
2013 btrfs_release_path(path);
2014 btrfs_release_path(log_path);
2015 inode = read_one_inode(root, location.objectid);
2016 if (!inode) {
2017 kfree(name);
2018 return -EIO;
2019 }
2020
2021 ret = link_to_fixup_dir(trans, root,
2022 path, location.objectid);
2023 if (ret) {
2024 kfree(name);
2025 iput(inode);
2026 goto out;
2027 }
2028
2029 inc_nlink(inode);
2030 ret = btrfs_unlink_inode(trans, root, dir, inode,
2031 name, name_len);
2032 if (!ret)
2033 ret = btrfs_run_delayed_items(trans, root);
2034 kfree(name);
2035 iput(inode);
2036 if (ret)
2037 goto out;
2038
2039 /* there might still be more names under this key
2040 * check and repeat if required
2041 */
2042 ret = btrfs_search_slot(NULL, root, dir_key, path,
2043 0, 0);
2044 if (ret == 0)
2045 goto again;
2046 ret = 0;
2047 goto out;
2048 } else if (IS_ERR(log_di)) {
2049 kfree(name);
2050 return PTR_ERR(log_di);
2051 }
2052 btrfs_release_path(log_path);
2053 kfree(name);
2054
2055 ptr = (unsigned long)(di + 1);
2056 ptr += name_len;
2057 }
2058 ret = 0;
2059out:
2060 btrfs_release_path(path);
2061 btrfs_release_path(log_path);
2062 return ret;
2063}
2064
2065static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2066 struct btrfs_root *root,
2067 struct btrfs_root *log,
2068 struct btrfs_path *path,
2069 const u64 ino)
2070{
2071 struct btrfs_key search_key;
2072 struct btrfs_path *log_path;
2073 int i;
2074 int nritems;
2075 int ret;
2076
2077 log_path = btrfs_alloc_path();
2078 if (!log_path)
2079 return -ENOMEM;
2080
2081 search_key.objectid = ino;
2082 search_key.type = BTRFS_XATTR_ITEM_KEY;
2083 search_key.offset = 0;
2084again:
2085 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2086 if (ret < 0)
2087 goto out;
2088process_leaf:
2089 nritems = btrfs_header_nritems(path->nodes[0]);
2090 for (i = path->slots[0]; i < nritems; i++) {
2091 struct btrfs_key key;
2092 struct btrfs_dir_item *di;
2093 struct btrfs_dir_item *log_di;
2094 u32 total_size;
2095 u32 cur;
2096
2097 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2098 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2099 ret = 0;
2100 goto out;
2101 }
2102
2103 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2104 total_size = btrfs_item_size_nr(path->nodes[0], i);
2105 cur = 0;
2106 while (cur < total_size) {
2107 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2108 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2109 u32 this_len = sizeof(*di) + name_len + data_len;
2110 char *name;
2111
2112 name = kmalloc(name_len, GFP_NOFS);
2113 if (!name) {
2114 ret = -ENOMEM;
2115 goto out;
2116 }
2117 read_extent_buffer(path->nodes[0], name,
2118 (unsigned long)(di + 1), name_len);
2119
2120 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2121 name, name_len, 0);
2122 btrfs_release_path(log_path);
2123 if (!log_di) {
2124 /* Doesn't exist in log tree, so delete it. */
2125 btrfs_release_path(path);
2126 di = btrfs_lookup_xattr(trans, root, path, ino,
2127 name, name_len, -1);
2128 kfree(name);
2129 if (IS_ERR(di)) {
2130 ret = PTR_ERR(di);
2131 goto out;
2132 }
2133 ASSERT(di);
2134 ret = btrfs_delete_one_dir_name(trans, root,
2135 path, di);
2136 if (ret)
2137 goto out;
2138 btrfs_release_path(path);
2139 search_key = key;
2140 goto again;
2141 }
2142 kfree(name);
2143 if (IS_ERR(log_di)) {
2144 ret = PTR_ERR(log_di);
2145 goto out;
2146 }
2147 cur += this_len;
2148 di = (struct btrfs_dir_item *)((char *)di + this_len);
2149 }
2150 }
2151 ret = btrfs_next_leaf(root, path);
2152 if (ret > 0)
2153 ret = 0;
2154 else if (ret == 0)
2155 goto process_leaf;
2156out:
2157 btrfs_free_path(log_path);
2158 btrfs_release_path(path);
2159 return ret;
2160}
2161
2162
2163/*
2164 * deletion replay happens before we copy any new directory items
2165 * out of the log or out of backreferences from inodes. It
2166 * scans the log to find ranges of keys that log is authoritative for,
2167 * and then scans the directory to find items in those ranges that are
2168 * not present in the log.
2169 *
2170 * Anything we don't find in the log is unlinked and removed from the
2171 * directory.
2172 */
2173static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2174 struct btrfs_root *root,
2175 struct btrfs_root *log,
2176 struct btrfs_path *path,
2177 u64 dirid, int del_all)
2178{
2179 u64 range_start;
2180 u64 range_end;
2181 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2182 int ret = 0;
2183 struct btrfs_key dir_key;
2184 struct btrfs_key found_key;
2185 struct btrfs_path *log_path;
2186 struct inode *dir;
2187
2188 dir_key.objectid = dirid;
2189 dir_key.type = BTRFS_DIR_ITEM_KEY;
2190 log_path = btrfs_alloc_path();
2191 if (!log_path)
2192 return -ENOMEM;
2193
2194 dir = read_one_inode(root, dirid);
2195 /* it isn't an error if the inode isn't there, that can happen
2196 * because we replay the deletes before we copy in the inode item
2197 * from the log
2198 */
2199 if (!dir) {
2200 btrfs_free_path(log_path);
2201 return 0;
2202 }
2203again:
2204 range_start = 0;
2205 range_end = 0;
2206 while (1) {
2207 if (del_all)
2208 range_end = (u64)-1;
2209 else {
2210 ret = find_dir_range(log, path, dirid, key_type,
2211 &range_start, &range_end);
2212 if (ret != 0)
2213 break;
2214 }
2215
2216 dir_key.offset = range_start;
2217 while (1) {
2218 int nritems;
2219 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2220 0, 0);
2221 if (ret < 0)
2222 goto out;
2223
2224 nritems = btrfs_header_nritems(path->nodes[0]);
2225 if (path->slots[0] >= nritems) {
2226 ret = btrfs_next_leaf(root, path);
2227 if (ret)
2228 break;
2229 }
2230 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2231 path->slots[0]);
2232 if (found_key.objectid != dirid ||
2233 found_key.type != dir_key.type)
2234 goto next_type;
2235
2236 if (found_key.offset > range_end)
2237 break;
2238
2239 ret = check_item_in_log(trans, root, log, path,
2240 log_path, dir,
2241 &found_key);
2242 if (ret)
2243 goto out;
2244 if (found_key.offset == (u64)-1)
2245 break;
2246 dir_key.offset = found_key.offset + 1;
2247 }
2248 btrfs_release_path(path);
2249 if (range_end == (u64)-1)
2250 break;
2251 range_start = range_end + 1;
2252 }
2253
2254next_type:
2255 ret = 0;
2256 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2257 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2258 dir_key.type = BTRFS_DIR_INDEX_KEY;
2259 btrfs_release_path(path);
2260 goto again;
2261 }
2262out:
2263 btrfs_release_path(path);
2264 btrfs_free_path(log_path);
2265 iput(dir);
2266 return ret;
2267}
2268
2269/*
2270 * the process_func used to replay items from the log tree. This
2271 * gets called in two different stages. The first stage just looks
2272 * for inodes and makes sure they are all copied into the subvolume.
2273 *
2274 * The second stage copies all the other item types from the log into
2275 * the subvolume. The two stage approach is slower, but gets rid of
2276 * lots of complexity around inodes referencing other inodes that exist
2277 * only in the log (references come from either directory items or inode
2278 * back refs).
2279 */
2280static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2281 struct walk_control *wc, u64 gen)
2282{
2283 int nritems;
2284 struct btrfs_path *path;
2285 struct btrfs_root *root = wc->replay_dest;
2286 struct btrfs_key key;
2287 int level;
2288 int i;
2289 int ret;
2290
2291 ret = btrfs_read_buffer(eb, gen);
2292 if (ret)
2293 return ret;
2294
2295 level = btrfs_header_level(eb);
2296
2297 if (level != 0)
2298 return 0;
2299
2300 path = btrfs_alloc_path();
2301 if (!path)
2302 return -ENOMEM;
2303
2304 nritems = btrfs_header_nritems(eb);
2305 for (i = 0; i < nritems; i++) {
2306 btrfs_item_key_to_cpu(eb, &key, i);
2307
2308 /* inode keys are done during the first stage */
2309 if (key.type == BTRFS_INODE_ITEM_KEY &&
2310 wc->stage == LOG_WALK_REPLAY_INODES) {
2311 struct btrfs_inode_item *inode_item;
2312 u32 mode;
2313
2314 inode_item = btrfs_item_ptr(eb, i,
2315 struct btrfs_inode_item);
2316 ret = replay_xattr_deletes(wc->trans, root, log,
2317 path, key.objectid);
2318 if (ret)
2319 break;
2320 mode = btrfs_inode_mode(eb, inode_item);
2321 if (S_ISDIR(mode)) {
2322 ret = replay_dir_deletes(wc->trans,
2323 root, log, path, key.objectid, 0);
2324 if (ret)
2325 break;
2326 }
2327 ret = overwrite_item(wc->trans, root, path,
2328 eb, i, &key);
2329 if (ret)
2330 break;
2331
2332 /* for regular files, make sure corresponding
2333 * orhpan item exist. extents past the new EOF
2334 * will be truncated later by orphan cleanup.
2335 */
2336 if (S_ISREG(mode)) {
2337 ret = insert_orphan_item(wc->trans, root,
2338 key.objectid);
2339 if (ret)
2340 break;
2341 }
2342
2343 ret = link_to_fixup_dir(wc->trans, root,
2344 path, key.objectid);
2345 if (ret)
2346 break;
2347 }
2348
2349 if (key.type == BTRFS_DIR_INDEX_KEY &&
2350 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2351 ret = replay_one_dir_item(wc->trans, root, path,
2352 eb, i, &key);
2353 if (ret)
2354 break;
2355 }
2356
2357 if (wc->stage < LOG_WALK_REPLAY_ALL)
2358 continue;
2359
2360 /* these keys are simply copied */
2361 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2362 ret = overwrite_item(wc->trans, root, path,
2363 eb, i, &key);
2364 if (ret)
2365 break;
2366 } else if (key.type == BTRFS_INODE_REF_KEY ||
2367 key.type == BTRFS_INODE_EXTREF_KEY) {
2368 ret = add_inode_ref(wc->trans, root, log, path,
2369 eb, i, &key);
2370 if (ret && ret != -ENOENT)
2371 break;
2372 ret = 0;
2373 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2374 ret = replay_one_extent(wc->trans, root, path,
2375 eb, i, &key);
2376 if (ret)
2377 break;
2378 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2379 ret = replay_one_dir_item(wc->trans, root, path,
2380 eb, i, &key);
2381 if (ret)
2382 break;
2383 }
2384 }
2385 btrfs_free_path(path);
2386 return ret;
2387}
2388
2389static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2390 struct btrfs_root *root,
2391 struct btrfs_path *path, int *level,
2392 struct walk_control *wc)
2393{
2394 u64 root_owner;
2395 u64 bytenr;
2396 u64 ptr_gen;
2397 struct extent_buffer *next;
2398 struct extent_buffer *cur;
2399 struct extent_buffer *parent;
2400 u32 blocksize;
2401 int ret = 0;
2402
2403 WARN_ON(*level < 0);
2404 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2405
2406 while (*level > 0) {
2407 WARN_ON(*level < 0);
2408 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2409 cur = path->nodes[*level];
2410
2411 WARN_ON(btrfs_header_level(cur) != *level);
2412
2413 if (path->slots[*level] >=
2414 btrfs_header_nritems(cur))
2415 break;
2416
2417 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2418 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2419 blocksize = root->nodesize;
2420
2421 parent = path->nodes[*level];
2422 root_owner = btrfs_header_owner(parent);
2423
2424 next = btrfs_find_create_tree_block(root, bytenr);
2425 if (!next)
2426 return -ENOMEM;
2427
2428 if (*level == 1) {
2429 ret = wc->process_func(root, next, wc, ptr_gen);
2430 if (ret) {
2431 free_extent_buffer(next);
2432 return ret;
2433 }
2434
2435 path->slots[*level]++;
2436 if (wc->free) {
2437 ret = btrfs_read_buffer(next, ptr_gen);
2438 if (ret) {
2439 free_extent_buffer(next);
2440 return ret;
2441 }
2442
2443 if (trans) {
2444 btrfs_tree_lock(next);
2445 btrfs_set_lock_blocking(next);
2446 clean_tree_block(trans, root->fs_info,
2447 next);
2448 btrfs_wait_tree_block_writeback(next);
2449 btrfs_tree_unlock(next);
2450 }
2451
2452 WARN_ON(root_owner !=
2453 BTRFS_TREE_LOG_OBJECTID);
2454 ret = btrfs_free_and_pin_reserved_extent(root,
2455 bytenr, blocksize);
2456 if (ret) {
2457 free_extent_buffer(next);
2458 return ret;
2459 }
2460 }
2461 free_extent_buffer(next);
2462 continue;
2463 }
2464 ret = btrfs_read_buffer(next, ptr_gen);
2465 if (ret) {
2466 free_extent_buffer(next);
2467 return ret;
2468 }
2469
2470 WARN_ON(*level <= 0);
2471 if (path->nodes[*level-1])
2472 free_extent_buffer(path->nodes[*level-1]);
2473 path->nodes[*level-1] = next;
2474 *level = btrfs_header_level(next);
2475 path->slots[*level] = 0;
2476 cond_resched();
2477 }
2478 WARN_ON(*level < 0);
2479 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2480
2481 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2482
2483 cond_resched();
2484 return 0;
2485}
2486
2487static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2488 struct btrfs_root *root,
2489 struct btrfs_path *path, int *level,
2490 struct walk_control *wc)
2491{
2492 u64 root_owner;
2493 int i;
2494 int slot;
2495 int ret;
2496
2497 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2498 slot = path->slots[i];
2499 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2500 path->slots[i]++;
2501 *level = i;
2502 WARN_ON(*level == 0);
2503 return 0;
2504 } else {
2505 struct extent_buffer *parent;
2506 if (path->nodes[*level] == root->node)
2507 parent = path->nodes[*level];
2508 else
2509 parent = path->nodes[*level + 1];
2510
2511 root_owner = btrfs_header_owner(parent);
2512 ret = wc->process_func(root, path->nodes[*level], wc,
2513 btrfs_header_generation(path->nodes[*level]));
2514 if (ret)
2515 return ret;
2516
2517 if (wc->free) {
2518 struct extent_buffer *next;
2519
2520 next = path->nodes[*level];
2521
2522 if (trans) {
2523 btrfs_tree_lock(next);
2524 btrfs_set_lock_blocking(next);
2525 clean_tree_block(trans, root->fs_info,
2526 next);
2527 btrfs_wait_tree_block_writeback(next);
2528 btrfs_tree_unlock(next);
2529 }
2530
2531 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2532 ret = btrfs_free_and_pin_reserved_extent(root,
2533 path->nodes[*level]->start,
2534 path->nodes[*level]->len);
2535 if (ret)
2536 return ret;
2537 }
2538 free_extent_buffer(path->nodes[*level]);
2539 path->nodes[*level] = NULL;
2540 *level = i + 1;
2541 }
2542 }
2543 return 1;
2544}
2545
2546/*
2547 * drop the reference count on the tree rooted at 'snap'. This traverses
2548 * the tree freeing any blocks that have a ref count of zero after being
2549 * decremented.
2550 */
2551static int walk_log_tree(struct btrfs_trans_handle *trans,
2552 struct btrfs_root *log, struct walk_control *wc)
2553{
2554 int ret = 0;
2555 int wret;
2556 int level;
2557 struct btrfs_path *path;
2558 int orig_level;
2559
2560 path = btrfs_alloc_path();
2561 if (!path)
2562 return -ENOMEM;
2563
2564 level = btrfs_header_level(log->node);
2565 orig_level = level;
2566 path->nodes[level] = log->node;
2567 extent_buffer_get(log->node);
2568 path->slots[level] = 0;
2569
2570 while (1) {
2571 wret = walk_down_log_tree(trans, log, path, &level, wc);
2572 if (wret > 0)
2573 break;
2574 if (wret < 0) {
2575 ret = wret;
2576 goto out;
2577 }
2578
2579 wret = walk_up_log_tree(trans, log, path, &level, wc);
2580 if (wret > 0)
2581 break;
2582 if (wret < 0) {
2583 ret = wret;
2584 goto out;
2585 }
2586 }
2587
2588 /* was the root node processed? if not, catch it here */
2589 if (path->nodes[orig_level]) {
2590 ret = wc->process_func(log, path->nodes[orig_level], wc,
2591 btrfs_header_generation(path->nodes[orig_level]));
2592 if (ret)
2593 goto out;
2594 if (wc->free) {
2595 struct extent_buffer *next;
2596
2597 next = path->nodes[orig_level];
2598
2599 if (trans) {
2600 btrfs_tree_lock(next);
2601 btrfs_set_lock_blocking(next);
2602 clean_tree_block(trans, log->fs_info, next);
2603 btrfs_wait_tree_block_writeback(next);
2604 btrfs_tree_unlock(next);
2605 }
2606
2607 WARN_ON(log->root_key.objectid !=
2608 BTRFS_TREE_LOG_OBJECTID);
2609 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2610 next->len);
2611 if (ret)
2612 goto out;
2613 }
2614 }
2615
2616out:
2617 btrfs_free_path(path);
2618 return ret;
2619}
2620
2621/*
2622 * helper function to update the item for a given subvolumes log root
2623 * in the tree of log roots
2624 */
2625static int update_log_root(struct btrfs_trans_handle *trans,
2626 struct btrfs_root *log)
2627{
2628 int ret;
2629
2630 if (log->log_transid == 1) {
2631 /* insert root item on the first sync */
2632 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2633 &log->root_key, &log->root_item);
2634 } else {
2635 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2636 &log->root_key, &log->root_item);
2637 }
2638 return ret;
2639}
2640
2641static void wait_log_commit(struct btrfs_root *root, int transid)
2642{
2643 DEFINE_WAIT(wait);
2644 int index = transid % 2;
2645
2646 /*
2647 * we only allow two pending log transactions at a time,
2648 * so we know that if ours is more than 2 older than the
2649 * current transaction, we're done
2650 */
2651 do {
2652 prepare_to_wait(&root->log_commit_wait[index],
2653 &wait, TASK_UNINTERRUPTIBLE);
2654 mutex_unlock(&root->log_mutex);
2655
2656 if (root->log_transid_committed < transid &&
2657 atomic_read(&root->log_commit[index]))
2658 schedule();
2659
2660 finish_wait(&root->log_commit_wait[index], &wait);
2661 mutex_lock(&root->log_mutex);
2662 } while (root->log_transid_committed < transid &&
2663 atomic_read(&root->log_commit[index]));
2664}
2665
2666static void wait_for_writer(struct btrfs_root *root)
2667{
2668 DEFINE_WAIT(wait);
2669
2670 while (atomic_read(&root->log_writers)) {
2671 prepare_to_wait(&root->log_writer_wait,
2672 &wait, TASK_UNINTERRUPTIBLE);
2673 mutex_unlock(&root->log_mutex);
2674 if (atomic_read(&root->log_writers))
2675 schedule();
2676 finish_wait(&root->log_writer_wait, &wait);
2677 mutex_lock(&root->log_mutex);
2678 }
2679}
2680
2681static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2682 struct btrfs_log_ctx *ctx)
2683{
2684 if (!ctx)
2685 return;
2686
2687 mutex_lock(&root->log_mutex);
2688 list_del_init(&ctx->list);
2689 mutex_unlock(&root->log_mutex);
2690}
2691
2692/*
2693 * Invoked in log mutex context, or be sure there is no other task which
2694 * can access the list.
2695 */
2696static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2697 int index, int error)
2698{
2699 struct btrfs_log_ctx *ctx;
2700
2701 if (!error) {
2702 INIT_LIST_HEAD(&root->log_ctxs[index]);
2703 return;
2704 }
2705
2706 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2707 ctx->log_ret = error;
2708
2709 INIT_LIST_HEAD(&root->log_ctxs[index]);
2710}
2711
2712/*
2713 * btrfs_sync_log does sends a given tree log down to the disk and
2714 * updates the super blocks to record it. When this call is done,
2715 * you know that any inodes previously logged are safely on disk only
2716 * if it returns 0.
2717 *
2718 * Any other return value means you need to call btrfs_commit_transaction.
2719 * Some of the edge cases for fsyncing directories that have had unlinks
2720 * or renames done in the past mean that sometimes the only safe
2721 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2722 * that has happened.
2723 */
2724int btrfs_sync_log(struct btrfs_trans_handle *trans,
2725 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2726{
2727 int index1;
2728 int index2;
2729 int mark;
2730 int ret;
2731 struct btrfs_root *log = root->log_root;
2732 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2733 int log_transid = 0;
2734 struct btrfs_log_ctx root_log_ctx;
2735 struct blk_plug plug;
2736
2737 mutex_lock(&root->log_mutex);
2738 log_transid = ctx->log_transid;
2739 if (root->log_transid_committed >= log_transid) {
2740 mutex_unlock(&root->log_mutex);
2741 return ctx->log_ret;
2742 }
2743
2744 index1 = log_transid % 2;
2745 if (atomic_read(&root->log_commit[index1])) {
2746 wait_log_commit(root, log_transid);
2747 mutex_unlock(&root->log_mutex);
2748 return ctx->log_ret;
2749 }
2750 ASSERT(log_transid == root->log_transid);
2751 atomic_set(&root->log_commit[index1], 1);
2752
2753 /* wait for previous tree log sync to complete */
2754 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2755 wait_log_commit(root, log_transid - 1);
2756
2757 while (1) {
2758 int batch = atomic_read(&root->log_batch);
2759 /* when we're on an ssd, just kick the log commit out */
2760 if (!btrfs_test_opt(root, SSD) &&
2761 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2762 mutex_unlock(&root->log_mutex);
2763 schedule_timeout_uninterruptible(1);
2764 mutex_lock(&root->log_mutex);
2765 }
2766 wait_for_writer(root);
2767 if (batch == atomic_read(&root->log_batch))
2768 break;
2769 }
2770
2771 /* bail out if we need to do a full commit */
2772 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2773 ret = -EAGAIN;
2774 btrfs_free_logged_extents(log, log_transid);
2775 mutex_unlock(&root->log_mutex);
2776 goto out;
2777 }
2778
2779 if (log_transid % 2 == 0)
2780 mark = EXTENT_DIRTY;
2781 else
2782 mark = EXTENT_NEW;
2783
2784 /* we start IO on all the marked extents here, but we don't actually
2785 * wait for them until later.
2786 */
2787 blk_start_plug(&plug);
2788 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2789 if (ret) {
2790 blk_finish_plug(&plug);
2791 btrfs_abort_transaction(trans, root, ret);
2792 btrfs_free_logged_extents(log, log_transid);
2793 btrfs_set_log_full_commit(root->fs_info, trans);
2794 mutex_unlock(&root->log_mutex);
2795 goto out;
2796 }
2797
2798 btrfs_set_root_node(&log->root_item, log->node);
2799
2800 root->log_transid++;
2801 log->log_transid = root->log_transid;
2802 root->log_start_pid = 0;
2803 /*
2804 * IO has been started, blocks of the log tree have WRITTEN flag set
2805 * in their headers. new modifications of the log will be written to
2806 * new positions. so it's safe to allow log writers to go in.
2807 */
2808 mutex_unlock(&root->log_mutex);
2809
2810 btrfs_init_log_ctx(&root_log_ctx);
2811
2812 mutex_lock(&log_root_tree->log_mutex);
2813 atomic_inc(&log_root_tree->log_batch);
2814 atomic_inc(&log_root_tree->log_writers);
2815
2816 index2 = log_root_tree->log_transid % 2;
2817 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2818 root_log_ctx.log_transid = log_root_tree->log_transid;
2819
2820 mutex_unlock(&log_root_tree->log_mutex);
2821
2822 ret = update_log_root(trans, log);
2823
2824 mutex_lock(&log_root_tree->log_mutex);
2825 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2826 /*
2827 * Implicit memory barrier after atomic_dec_and_test
2828 */
2829 if (waitqueue_active(&log_root_tree->log_writer_wait))
2830 wake_up(&log_root_tree->log_writer_wait);
2831 }
2832
2833 if (ret) {
2834 if (!list_empty(&root_log_ctx.list))
2835 list_del_init(&root_log_ctx.list);
2836
2837 blk_finish_plug(&plug);
2838 btrfs_set_log_full_commit(root->fs_info, trans);
2839
2840 if (ret != -ENOSPC) {
2841 btrfs_abort_transaction(trans, root, ret);
2842 mutex_unlock(&log_root_tree->log_mutex);
2843 goto out;
2844 }
2845 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2846 btrfs_free_logged_extents(log, log_transid);
2847 mutex_unlock(&log_root_tree->log_mutex);
2848 ret = -EAGAIN;
2849 goto out;
2850 }
2851
2852 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2853 blk_finish_plug(&plug);
2854 mutex_unlock(&log_root_tree->log_mutex);
2855 ret = root_log_ctx.log_ret;
2856 goto out;
2857 }
2858
2859 index2 = root_log_ctx.log_transid % 2;
2860 if (atomic_read(&log_root_tree->log_commit[index2])) {
2861 blk_finish_plug(&plug);
2862 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2863 mark);
2864 btrfs_wait_logged_extents(trans, log, log_transid);
2865 wait_log_commit(log_root_tree,
2866 root_log_ctx.log_transid);
2867 mutex_unlock(&log_root_tree->log_mutex);
2868 if (!ret)
2869 ret = root_log_ctx.log_ret;
2870 goto out;
2871 }
2872 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2873 atomic_set(&log_root_tree->log_commit[index2], 1);
2874
2875 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2876 wait_log_commit(log_root_tree,
2877 root_log_ctx.log_transid - 1);
2878 }
2879
2880 wait_for_writer(log_root_tree);
2881
2882 /*
2883 * now that we've moved on to the tree of log tree roots,
2884 * check the full commit flag again
2885 */
2886 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2887 blk_finish_plug(&plug);
2888 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2889 btrfs_free_logged_extents(log, log_transid);
2890 mutex_unlock(&log_root_tree->log_mutex);
2891 ret = -EAGAIN;
2892 goto out_wake_log_root;
2893 }
2894
2895 ret = btrfs_write_marked_extents(log_root_tree,
2896 &log_root_tree->dirty_log_pages,
2897 EXTENT_DIRTY | EXTENT_NEW);
2898 blk_finish_plug(&plug);
2899 if (ret) {
2900 btrfs_set_log_full_commit(root->fs_info, trans);
2901 btrfs_abort_transaction(trans, root, ret);
2902 btrfs_free_logged_extents(log, log_transid);
2903 mutex_unlock(&log_root_tree->log_mutex);
2904 goto out_wake_log_root;
2905 }
2906 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2907 if (!ret)
2908 ret = btrfs_wait_marked_extents(log_root_tree,
2909 &log_root_tree->dirty_log_pages,
2910 EXTENT_NEW | EXTENT_DIRTY);
2911 if (ret) {
2912 btrfs_set_log_full_commit(root->fs_info, trans);
2913 btrfs_free_logged_extents(log, log_transid);
2914 mutex_unlock(&log_root_tree->log_mutex);
2915 goto out_wake_log_root;
2916 }
2917 btrfs_wait_logged_extents(trans, log, log_transid);
2918
2919 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2920 log_root_tree->node->start);
2921 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2922 btrfs_header_level(log_root_tree->node));
2923
2924 log_root_tree->log_transid++;
2925 mutex_unlock(&log_root_tree->log_mutex);
2926
2927 /*
2928 * nobody else is going to jump in and write the the ctree
2929 * super here because the log_commit atomic below is protecting
2930 * us. We must be called with a transaction handle pinning
2931 * the running transaction open, so a full commit can't hop
2932 * in and cause problems either.
2933 */
2934 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2935 if (ret) {
2936 btrfs_set_log_full_commit(root->fs_info, trans);
2937 btrfs_abort_transaction(trans, root, ret);
2938 goto out_wake_log_root;
2939 }
2940
2941 mutex_lock(&root->log_mutex);
2942 if (root->last_log_commit < log_transid)
2943 root->last_log_commit = log_transid;
2944 mutex_unlock(&root->log_mutex);
2945
2946out_wake_log_root:
2947 /*
2948 * We needn't get log_mutex here because we are sure all
2949 * the other tasks are blocked.
2950 */
2951 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2952
2953 mutex_lock(&log_root_tree->log_mutex);
2954 log_root_tree->log_transid_committed++;
2955 atomic_set(&log_root_tree->log_commit[index2], 0);
2956 mutex_unlock(&log_root_tree->log_mutex);
2957
2958 /*
2959 * The barrier before waitqueue_active is implied by mutex_unlock
2960 */
2961 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2962 wake_up(&log_root_tree->log_commit_wait[index2]);
2963out:
2964 /* See above. */
2965 btrfs_remove_all_log_ctxs(root, index1, ret);
2966
2967 mutex_lock(&root->log_mutex);
2968 root->log_transid_committed++;
2969 atomic_set(&root->log_commit[index1], 0);
2970 mutex_unlock(&root->log_mutex);
2971
2972 /*
2973 * The barrier before waitqueue_active is implied by mutex_unlock
2974 */
2975 if (waitqueue_active(&root->log_commit_wait[index1]))
2976 wake_up(&root->log_commit_wait[index1]);
2977 return ret;
2978}
2979
2980static void free_log_tree(struct btrfs_trans_handle *trans,
2981 struct btrfs_root *log)
2982{
2983 int ret;
2984 u64 start;
2985 u64 end;
2986 struct walk_control wc = {
2987 .free = 1,
2988 .process_func = process_one_buffer
2989 };
2990
2991 ret = walk_log_tree(trans, log, &wc);
2992 /* I don't think this can happen but just in case */
2993 if (ret)
2994 btrfs_abort_transaction(trans, log, ret);
2995
2996 while (1) {
2997 ret = find_first_extent_bit(&log->dirty_log_pages,
2998 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2999 NULL);
3000 if (ret)
3001 break;
3002
3003 clear_extent_bits(&log->dirty_log_pages, start, end,
3004 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
3005 }
3006
3007 /*
3008 * We may have short-circuited the log tree with the full commit logic
3009 * and left ordered extents on our list, so clear these out to keep us
3010 * from leaking inodes and memory.
3011 */
3012 btrfs_free_logged_extents(log, 0);
3013 btrfs_free_logged_extents(log, 1);
3014
3015 free_extent_buffer(log->node);
3016 kfree(log);
3017}
3018
3019/*
3020 * free all the extents used by the tree log. This should be called
3021 * at commit time of the full transaction
3022 */
3023int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3024{
3025 if (root->log_root) {
3026 free_log_tree(trans, root->log_root);
3027 root->log_root = NULL;
3028 }
3029 return 0;
3030}
3031
3032int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3033 struct btrfs_fs_info *fs_info)
3034{
3035 if (fs_info->log_root_tree) {
3036 free_log_tree(trans, fs_info->log_root_tree);
3037 fs_info->log_root_tree = NULL;
3038 }
3039 return 0;
3040}
3041
3042/*
3043 * If both a file and directory are logged, and unlinks or renames are
3044 * mixed in, we have a few interesting corners:
3045 *
3046 * create file X in dir Y
3047 * link file X to X.link in dir Y
3048 * fsync file X
3049 * unlink file X but leave X.link
3050 * fsync dir Y
3051 *
3052 * After a crash we would expect only X.link to exist. But file X
3053 * didn't get fsync'd again so the log has back refs for X and X.link.
3054 *
3055 * We solve this by removing directory entries and inode backrefs from the
3056 * log when a file that was logged in the current transaction is
3057 * unlinked. Any later fsync will include the updated log entries, and
3058 * we'll be able to reconstruct the proper directory items from backrefs.
3059 *
3060 * This optimizations allows us to avoid relogging the entire inode
3061 * or the entire directory.
3062 */
3063int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3064 struct btrfs_root *root,
3065 const char *name, int name_len,
3066 struct inode *dir, u64 index)
3067{
3068 struct btrfs_root *log;
3069 struct btrfs_dir_item *di;
3070 struct btrfs_path *path;
3071 int ret;
3072 int err = 0;
3073 int bytes_del = 0;
3074 u64 dir_ino = btrfs_ino(dir);
3075
3076 if (BTRFS_I(dir)->logged_trans < trans->transid)
3077 return 0;
3078
3079 ret = join_running_log_trans(root);
3080 if (ret)
3081 return 0;
3082
3083 mutex_lock(&BTRFS_I(dir)->log_mutex);
3084
3085 log = root->log_root;
3086 path = btrfs_alloc_path();
3087 if (!path) {
3088 err = -ENOMEM;
3089 goto out_unlock;
3090 }
3091
3092 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3093 name, name_len, -1);
3094 if (IS_ERR(di)) {
3095 err = PTR_ERR(di);
3096 goto fail;
3097 }
3098 if (di) {
3099 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3100 bytes_del += name_len;
3101 if (ret) {
3102 err = ret;
3103 goto fail;
3104 }
3105 }
3106 btrfs_release_path(path);
3107 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3108 index, name, name_len, -1);
3109 if (IS_ERR(di)) {
3110 err = PTR_ERR(di);
3111 goto fail;
3112 }
3113 if (di) {
3114 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3115 bytes_del += name_len;
3116 if (ret) {
3117 err = ret;
3118 goto fail;
3119 }
3120 }
3121
3122 /* update the directory size in the log to reflect the names
3123 * we have removed
3124 */
3125 if (bytes_del) {
3126 struct btrfs_key key;
3127
3128 key.objectid = dir_ino;
3129 key.offset = 0;
3130 key.type = BTRFS_INODE_ITEM_KEY;
3131 btrfs_release_path(path);
3132
3133 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3134 if (ret < 0) {
3135 err = ret;
3136 goto fail;
3137 }
3138 if (ret == 0) {
3139 struct btrfs_inode_item *item;
3140 u64 i_size;
3141
3142 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3143 struct btrfs_inode_item);
3144 i_size = btrfs_inode_size(path->nodes[0], item);
3145 if (i_size > bytes_del)
3146 i_size -= bytes_del;
3147 else
3148 i_size = 0;
3149 btrfs_set_inode_size(path->nodes[0], item, i_size);
3150 btrfs_mark_buffer_dirty(path->nodes[0]);
3151 } else
3152 ret = 0;
3153 btrfs_release_path(path);
3154 }
3155fail:
3156 btrfs_free_path(path);
3157out_unlock:
3158 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3159 if (ret == -ENOSPC) {
3160 btrfs_set_log_full_commit(root->fs_info, trans);
3161 ret = 0;
3162 } else if (ret < 0)
3163 btrfs_abort_transaction(trans, root, ret);
3164
3165 btrfs_end_log_trans(root);
3166
3167 return err;
3168}
3169
3170/* see comments for btrfs_del_dir_entries_in_log */
3171int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3172 struct btrfs_root *root,
3173 const char *name, int name_len,
3174 struct inode *inode, u64 dirid)
3175{
3176 struct btrfs_root *log;
3177 u64 index;
3178 int ret;
3179
3180 if (BTRFS_I(inode)->logged_trans < trans->transid)
3181 return 0;
3182
3183 ret = join_running_log_trans(root);
3184 if (ret)
3185 return 0;
3186 log = root->log_root;
3187 mutex_lock(&BTRFS_I(inode)->log_mutex);
3188
3189 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3190 dirid, &index);
3191 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3192 if (ret == -ENOSPC) {
3193 btrfs_set_log_full_commit(root->fs_info, trans);
3194 ret = 0;
3195 } else if (ret < 0 && ret != -ENOENT)
3196 btrfs_abort_transaction(trans, root, ret);
3197 btrfs_end_log_trans(root);
3198
3199 return ret;
3200}
3201
3202/*
3203 * creates a range item in the log for 'dirid'. first_offset and
3204 * last_offset tell us which parts of the key space the log should
3205 * be considered authoritative for.
3206 */
3207static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3208 struct btrfs_root *log,
3209 struct btrfs_path *path,
3210 int key_type, u64 dirid,
3211 u64 first_offset, u64 last_offset)
3212{
3213 int ret;
3214 struct btrfs_key key;
3215 struct btrfs_dir_log_item *item;
3216
3217 key.objectid = dirid;
3218 key.offset = first_offset;
3219 if (key_type == BTRFS_DIR_ITEM_KEY)
3220 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3221 else
3222 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3223 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3224 if (ret)
3225 return ret;
3226
3227 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3228 struct btrfs_dir_log_item);
3229 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3230 btrfs_mark_buffer_dirty(path->nodes[0]);
3231 btrfs_release_path(path);
3232 return 0;
3233}
3234
3235/*
3236 * log all the items included in the current transaction for a given
3237 * directory. This also creates the range items in the log tree required
3238 * to replay anything deleted before the fsync
3239 */
3240static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3241 struct btrfs_root *root, struct inode *inode,
3242 struct btrfs_path *path,
3243 struct btrfs_path *dst_path, int key_type,
3244 struct btrfs_log_ctx *ctx,
3245 u64 min_offset, u64 *last_offset_ret)
3246{
3247 struct btrfs_key min_key;
3248 struct btrfs_root *log = root->log_root;
3249 struct extent_buffer *src;
3250 int err = 0;
3251 int ret;
3252 int i;
3253 int nritems;
3254 u64 first_offset = min_offset;
3255 u64 last_offset = (u64)-1;
3256 u64 ino = btrfs_ino(inode);
3257
3258 log = root->log_root;
3259
3260 min_key.objectid = ino;
3261 min_key.type = key_type;
3262 min_key.offset = min_offset;
3263
3264 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3265
3266 /*
3267 * we didn't find anything from this transaction, see if there
3268 * is anything at all
3269 */
3270 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3271 min_key.objectid = ino;
3272 min_key.type = key_type;
3273 min_key.offset = (u64)-1;
3274 btrfs_release_path(path);
3275 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3276 if (ret < 0) {
3277 btrfs_release_path(path);
3278 return ret;
3279 }
3280 ret = btrfs_previous_item(root, path, ino, key_type);
3281
3282 /* if ret == 0 there are items for this type,
3283 * create a range to tell us the last key of this type.
3284 * otherwise, there are no items in this directory after
3285 * *min_offset, and we create a range to indicate that.
3286 */
3287 if (ret == 0) {
3288 struct btrfs_key tmp;
3289 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3290 path->slots[0]);
3291 if (key_type == tmp.type)
3292 first_offset = max(min_offset, tmp.offset) + 1;
3293 }
3294 goto done;
3295 }
3296
3297 /* go backward to find any previous key */
3298 ret = btrfs_previous_item(root, path, ino, key_type);
3299 if (ret == 0) {
3300 struct btrfs_key tmp;
3301 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3302 if (key_type == tmp.type) {
3303 first_offset = tmp.offset;
3304 ret = overwrite_item(trans, log, dst_path,
3305 path->nodes[0], path->slots[0],
3306 &tmp);
3307 if (ret) {
3308 err = ret;
3309 goto done;
3310 }
3311 }
3312 }
3313 btrfs_release_path(path);
3314
3315 /* find the first key from this transaction again */
3316 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3317 if (WARN_ON(ret != 0))
3318 goto done;
3319
3320 /*
3321 * we have a block from this transaction, log every item in it
3322 * from our directory
3323 */
3324 while (1) {
3325 struct btrfs_key tmp;
3326 src = path->nodes[0];
3327 nritems = btrfs_header_nritems(src);
3328 for (i = path->slots[0]; i < nritems; i++) {
3329 struct btrfs_dir_item *di;
3330
3331 btrfs_item_key_to_cpu(src, &min_key, i);
3332
3333 if (min_key.objectid != ino || min_key.type != key_type)
3334 goto done;
3335 ret = overwrite_item(trans, log, dst_path, src, i,
3336 &min_key);
3337 if (ret) {
3338 err = ret;
3339 goto done;
3340 }
3341
3342 /*
3343 * We must make sure that when we log a directory entry,
3344 * the corresponding inode, after log replay, has a
3345 * matching link count. For example:
3346 *
3347 * touch foo
3348 * mkdir mydir
3349 * sync
3350 * ln foo mydir/bar
3351 * xfs_io -c "fsync" mydir
3352 * <crash>
3353 * <mount fs and log replay>
3354 *
3355 * Would result in a fsync log that when replayed, our
3356 * file inode would have a link count of 1, but we get
3357 * two directory entries pointing to the same inode.
3358 * After removing one of the names, it would not be
3359 * possible to remove the other name, which resulted
3360 * always in stale file handle errors, and would not
3361 * be possible to rmdir the parent directory, since
3362 * its i_size could never decrement to the value
3363 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3364 */
3365 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3366 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3367 if (ctx &&
3368 (btrfs_dir_transid(src, di) == trans->transid ||
3369 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3370 tmp.type != BTRFS_ROOT_ITEM_KEY)
3371 ctx->log_new_dentries = true;
3372 }
3373 path->slots[0] = nritems;
3374
3375 /*
3376 * look ahead to the next item and see if it is also
3377 * from this directory and from this transaction
3378 */
3379 ret = btrfs_next_leaf(root, path);
3380 if (ret == 1) {
3381 last_offset = (u64)-1;
3382 goto done;
3383 }
3384 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3385 if (tmp.objectid != ino || tmp.type != key_type) {
3386 last_offset = (u64)-1;
3387 goto done;
3388 }
3389 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3390 ret = overwrite_item(trans, log, dst_path,
3391 path->nodes[0], path->slots[0],
3392 &tmp);
3393 if (ret)
3394 err = ret;
3395 else
3396 last_offset = tmp.offset;
3397 goto done;
3398 }
3399 }
3400done:
3401 btrfs_release_path(path);
3402 btrfs_release_path(dst_path);
3403
3404 if (err == 0) {
3405 *last_offset_ret = last_offset;
3406 /*
3407 * insert the log range keys to indicate where the log
3408 * is valid
3409 */
3410 ret = insert_dir_log_key(trans, log, path, key_type,
3411 ino, first_offset, last_offset);
3412 if (ret)
3413 err = ret;
3414 }
3415 return err;
3416}
3417
3418/*
3419 * logging directories is very similar to logging inodes, We find all the items
3420 * from the current transaction and write them to the log.
3421 *
3422 * The recovery code scans the directory in the subvolume, and if it finds a
3423 * key in the range logged that is not present in the log tree, then it means
3424 * that dir entry was unlinked during the transaction.
3425 *
3426 * In order for that scan to work, we must include one key smaller than
3427 * the smallest logged by this transaction and one key larger than the largest
3428 * key logged by this transaction.
3429 */
3430static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3431 struct btrfs_root *root, struct inode *inode,
3432 struct btrfs_path *path,
3433 struct btrfs_path *dst_path,
3434 struct btrfs_log_ctx *ctx)
3435{
3436 u64 min_key;
3437 u64 max_key;
3438 int ret;
3439 int key_type = BTRFS_DIR_ITEM_KEY;
3440
3441again:
3442 min_key = 0;
3443 max_key = 0;
3444 while (1) {
3445 ret = log_dir_items(trans, root, inode, path,
3446 dst_path, key_type, ctx, min_key,
3447 &max_key);
3448 if (ret)
3449 return ret;
3450 if (max_key == (u64)-1)
3451 break;
3452 min_key = max_key + 1;
3453 }
3454
3455 if (key_type == BTRFS_DIR_ITEM_KEY) {
3456 key_type = BTRFS_DIR_INDEX_KEY;
3457 goto again;
3458 }
3459 return 0;
3460}
3461
3462/*
3463 * a helper function to drop items from the log before we relog an
3464 * inode. max_key_type indicates the highest item type to remove.
3465 * This cannot be run for file data extents because it does not
3466 * free the extents they point to.
3467 */
3468static int drop_objectid_items(struct btrfs_trans_handle *trans,
3469 struct btrfs_root *log,
3470 struct btrfs_path *path,
3471 u64 objectid, int max_key_type)
3472{
3473 int ret;
3474 struct btrfs_key key;
3475 struct btrfs_key found_key;
3476 int start_slot;
3477
3478 key.objectid = objectid;
3479 key.type = max_key_type;
3480 key.offset = (u64)-1;
3481
3482 while (1) {
3483 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3484 BUG_ON(ret == 0); /* Logic error */
3485 if (ret < 0)
3486 break;
3487
3488 if (path->slots[0] == 0)
3489 break;
3490
3491 path->slots[0]--;
3492 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3493 path->slots[0]);
3494
3495 if (found_key.objectid != objectid)
3496 break;
3497
3498 found_key.offset = 0;
3499 found_key.type = 0;
3500 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3501 &start_slot);
3502
3503 ret = btrfs_del_items(trans, log, path, start_slot,
3504 path->slots[0] - start_slot + 1);
3505 /*
3506 * If start slot isn't 0 then we don't need to re-search, we've
3507 * found the last guy with the objectid in this tree.
3508 */
3509 if (ret || start_slot != 0)
3510 break;
3511 btrfs_release_path(path);
3512 }
3513 btrfs_release_path(path);
3514 if (ret > 0)
3515 ret = 0;
3516 return ret;
3517}
3518
3519static void fill_inode_item(struct btrfs_trans_handle *trans,
3520 struct extent_buffer *leaf,
3521 struct btrfs_inode_item *item,
3522 struct inode *inode, int log_inode_only,
3523 u64 logged_isize)
3524{
3525 struct btrfs_map_token token;
3526
3527 btrfs_init_map_token(&token);
3528
3529 if (log_inode_only) {
3530 /* set the generation to zero so the recover code
3531 * can tell the difference between an logging
3532 * just to say 'this inode exists' and a logging
3533 * to say 'update this inode with these values'
3534 */
3535 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3536 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3537 } else {
3538 btrfs_set_token_inode_generation(leaf, item,
3539 BTRFS_I(inode)->generation,
3540 &token);
3541 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3542 }
3543
3544 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3545 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3546 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3547 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3548
3549 btrfs_set_token_timespec_sec(leaf, &item->atime,
3550 inode->i_atime.tv_sec, &token);
3551 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3552 inode->i_atime.tv_nsec, &token);
3553
3554 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3555 inode->i_mtime.tv_sec, &token);
3556 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3557 inode->i_mtime.tv_nsec, &token);
3558
3559 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3560 inode->i_ctime.tv_sec, &token);
3561 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3562 inode->i_ctime.tv_nsec, &token);
3563
3564 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3565 &token);
3566
3567 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3568 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3569 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3570 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3571 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3572}
3573
3574static int log_inode_item(struct btrfs_trans_handle *trans,
3575 struct btrfs_root *log, struct btrfs_path *path,
3576 struct inode *inode)
3577{
3578 struct btrfs_inode_item *inode_item;
3579 int ret;
3580
3581 ret = btrfs_insert_empty_item(trans, log, path,
3582 &BTRFS_I(inode)->location,
3583 sizeof(*inode_item));
3584 if (ret && ret != -EEXIST)
3585 return ret;
3586 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3587 struct btrfs_inode_item);
3588 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3589 btrfs_release_path(path);
3590 return 0;
3591}
3592
3593static noinline int copy_items(struct btrfs_trans_handle *trans,
3594 struct inode *inode,
3595 struct btrfs_path *dst_path,
3596 struct btrfs_path *src_path, u64 *last_extent,
3597 int start_slot, int nr, int inode_only,
3598 u64 logged_isize)
3599{
3600 unsigned long src_offset;
3601 unsigned long dst_offset;
3602 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3603 struct btrfs_file_extent_item *extent;
3604 struct btrfs_inode_item *inode_item;
3605 struct extent_buffer *src = src_path->nodes[0];
3606 struct btrfs_key first_key, last_key, key;
3607 int ret;
3608 struct btrfs_key *ins_keys;
3609 u32 *ins_sizes;
3610 char *ins_data;
3611 int i;
3612 struct list_head ordered_sums;
3613 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3614 bool has_extents = false;
3615 bool need_find_last_extent = true;
3616 bool done = false;
3617
3618 INIT_LIST_HEAD(&ordered_sums);
3619
3620 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3621 nr * sizeof(u32), GFP_NOFS);
3622 if (!ins_data)
3623 return -ENOMEM;
3624
3625 first_key.objectid = (u64)-1;
3626
3627 ins_sizes = (u32 *)ins_data;
3628 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3629
3630 for (i = 0; i < nr; i++) {
3631 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3632 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3633 }
3634 ret = btrfs_insert_empty_items(trans, log, dst_path,
3635 ins_keys, ins_sizes, nr);
3636 if (ret) {
3637 kfree(ins_data);
3638 return ret;
3639 }
3640
3641 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3642 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3643 dst_path->slots[0]);
3644
3645 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3646
3647 if ((i == (nr - 1)))
3648 last_key = ins_keys[i];
3649
3650 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3651 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3652 dst_path->slots[0],
3653 struct btrfs_inode_item);
3654 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3655 inode, inode_only == LOG_INODE_EXISTS,
3656 logged_isize);
3657 } else {
3658 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3659 src_offset, ins_sizes[i]);
3660 }
3661
3662 /*
3663 * We set need_find_last_extent here in case we know we were
3664 * processing other items and then walk into the first extent in
3665 * the inode. If we don't hit an extent then nothing changes,
3666 * we'll do the last search the next time around.
3667 */
3668 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3669 has_extents = true;
3670 if (first_key.objectid == (u64)-1)
3671 first_key = ins_keys[i];
3672 } else {
3673 need_find_last_extent = false;
3674 }
3675
3676 /* take a reference on file data extents so that truncates
3677 * or deletes of this inode don't have to relog the inode
3678 * again
3679 */
3680 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3681 !skip_csum) {
3682 int found_type;
3683 extent = btrfs_item_ptr(src, start_slot + i,
3684 struct btrfs_file_extent_item);
3685
3686 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3687 continue;
3688
3689 found_type = btrfs_file_extent_type(src, extent);
3690 if (found_type == BTRFS_FILE_EXTENT_REG) {
3691 u64 ds, dl, cs, cl;
3692 ds = btrfs_file_extent_disk_bytenr(src,
3693 extent);
3694 /* ds == 0 is a hole */
3695 if (ds == 0)
3696 continue;
3697
3698 dl = btrfs_file_extent_disk_num_bytes(src,
3699 extent);
3700 cs = btrfs_file_extent_offset(src, extent);
3701 cl = btrfs_file_extent_num_bytes(src,
3702 extent);
3703 if (btrfs_file_extent_compression(src,
3704 extent)) {
3705 cs = 0;
3706 cl = dl;
3707 }
3708
3709 ret = btrfs_lookup_csums_range(
3710 log->fs_info->csum_root,
3711 ds + cs, ds + cs + cl - 1,
3712 &ordered_sums, 0);
3713 if (ret) {
3714 btrfs_release_path(dst_path);
3715 kfree(ins_data);
3716 return ret;
3717 }
3718 }
3719 }
3720 }
3721
3722 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3723 btrfs_release_path(dst_path);
3724 kfree(ins_data);
3725
3726 /*
3727 * we have to do this after the loop above to avoid changing the
3728 * log tree while trying to change the log tree.
3729 */
3730 ret = 0;
3731 while (!list_empty(&ordered_sums)) {
3732 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3733 struct btrfs_ordered_sum,
3734 list);
3735 if (!ret)
3736 ret = btrfs_csum_file_blocks(trans, log, sums);
3737 list_del(&sums->list);
3738 kfree(sums);
3739 }
3740
3741 if (!has_extents)
3742 return ret;
3743
3744 if (need_find_last_extent && *last_extent == first_key.offset) {
3745 /*
3746 * We don't have any leafs between our current one and the one
3747 * we processed before that can have file extent items for our
3748 * inode (and have a generation number smaller than our current
3749 * transaction id).
3750 */
3751 need_find_last_extent = false;
3752 }
3753
3754 /*
3755 * Because we use btrfs_search_forward we could skip leaves that were
3756 * not modified and then assume *last_extent is valid when it really
3757 * isn't. So back up to the previous leaf and read the end of the last
3758 * extent before we go and fill in holes.
3759 */
3760 if (need_find_last_extent) {
3761 u64 len;
3762
3763 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3764 if (ret < 0)
3765 return ret;
3766 if (ret)
3767 goto fill_holes;
3768 if (src_path->slots[0])
3769 src_path->slots[0]--;
3770 src = src_path->nodes[0];
3771 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3772 if (key.objectid != btrfs_ino(inode) ||
3773 key.type != BTRFS_EXTENT_DATA_KEY)
3774 goto fill_holes;
3775 extent = btrfs_item_ptr(src, src_path->slots[0],
3776 struct btrfs_file_extent_item);
3777 if (btrfs_file_extent_type(src, extent) ==
3778 BTRFS_FILE_EXTENT_INLINE) {
3779 len = btrfs_file_extent_inline_len(src,
3780 src_path->slots[0],
3781 extent);
3782 *last_extent = ALIGN(key.offset + len,
3783 log->sectorsize);
3784 } else {
3785 len = btrfs_file_extent_num_bytes(src, extent);
3786 *last_extent = key.offset + len;
3787 }
3788 }
3789fill_holes:
3790 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3791 * things could have happened
3792 *
3793 * 1) A merge could have happened, so we could currently be on a leaf
3794 * that holds what we were copying in the first place.
3795 * 2) A split could have happened, and now not all of the items we want
3796 * are on the same leaf.
3797 *
3798 * So we need to adjust how we search for holes, we need to drop the
3799 * path and re-search for the first extent key we found, and then walk
3800 * forward until we hit the last one we copied.
3801 */
3802 if (need_find_last_extent) {
3803 /* btrfs_prev_leaf could return 1 without releasing the path */
3804 btrfs_release_path(src_path);
3805 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3806 src_path, 0, 0);
3807 if (ret < 0)
3808 return ret;
3809 ASSERT(ret == 0);
3810 src = src_path->nodes[0];
3811 i = src_path->slots[0];
3812 } else {
3813 i = start_slot;
3814 }
3815
3816 /*
3817 * Ok so here we need to go through and fill in any holes we may have
3818 * to make sure that holes are punched for those areas in case they had
3819 * extents previously.
3820 */
3821 while (!done) {
3822 u64 offset, len;
3823 u64 extent_end;
3824
3825 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3826 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3827 if (ret < 0)
3828 return ret;
3829 ASSERT(ret == 0);
3830 src = src_path->nodes[0];
3831 i = 0;
3832 }
3833
3834 btrfs_item_key_to_cpu(src, &key, i);
3835 if (!btrfs_comp_cpu_keys(&key, &last_key))
3836 done = true;
3837 if (key.objectid != btrfs_ino(inode) ||
3838 key.type != BTRFS_EXTENT_DATA_KEY) {
3839 i++;
3840 continue;
3841 }
3842 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3843 if (btrfs_file_extent_type(src, extent) ==
3844 BTRFS_FILE_EXTENT_INLINE) {
3845 len = btrfs_file_extent_inline_len(src, i, extent);
3846 extent_end = ALIGN(key.offset + len, log->sectorsize);
3847 } else {
3848 len = btrfs_file_extent_num_bytes(src, extent);
3849 extent_end = key.offset + len;
3850 }
3851 i++;
3852
3853 if (*last_extent == key.offset) {
3854 *last_extent = extent_end;
3855 continue;
3856 }
3857 offset = *last_extent;
3858 len = key.offset - *last_extent;
3859 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3860 offset, 0, 0, len, 0, len, 0,
3861 0, 0);
3862 if (ret)
3863 break;
3864 *last_extent = extent_end;
3865 }
3866 /*
3867 * Need to let the callers know we dropped the path so they should
3868 * re-search.
3869 */
3870 if (!ret && need_find_last_extent)
3871 ret = 1;
3872 return ret;
3873}
3874
3875static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3876{
3877 struct extent_map *em1, *em2;
3878
3879 em1 = list_entry(a, struct extent_map, list);
3880 em2 = list_entry(b, struct extent_map, list);
3881
3882 if (em1->start < em2->start)
3883 return -1;
3884 else if (em1->start > em2->start)
3885 return 1;
3886 return 0;
3887}
3888
3889static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3890 struct inode *inode,
3891 struct btrfs_root *root,
3892 const struct extent_map *em,
3893 const struct list_head *logged_list,
3894 bool *ordered_io_error)
3895{
3896 struct btrfs_ordered_extent *ordered;
3897 struct btrfs_root *log = root->log_root;
3898 u64 mod_start = em->mod_start;
3899 u64 mod_len = em->mod_len;
3900 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3901 u64 csum_offset;
3902 u64 csum_len;
3903 LIST_HEAD(ordered_sums);
3904 int ret = 0;
3905
3906 *ordered_io_error = false;
3907
3908 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3909 em->block_start == EXTENT_MAP_HOLE)
3910 return 0;
3911
3912 /*
3913 * Wait far any ordered extent that covers our extent map. If it
3914 * finishes without an error, first check and see if our csums are on
3915 * our outstanding ordered extents.
3916 */
3917 list_for_each_entry(ordered, logged_list, log_list) {
3918 struct btrfs_ordered_sum *sum;
3919
3920 if (!mod_len)
3921 break;
3922
3923 if (ordered->file_offset + ordered->len <= mod_start ||
3924 mod_start + mod_len <= ordered->file_offset)
3925 continue;
3926
3927 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3928 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3929 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3930 const u64 start = ordered->file_offset;
3931 const u64 end = ordered->file_offset + ordered->len - 1;
3932
3933 WARN_ON(ordered->inode != inode);
3934 filemap_fdatawrite_range(inode->i_mapping, start, end);
3935 }
3936
3937 wait_event(ordered->wait,
3938 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3939 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3940
3941 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3942 /*
3943 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3944 * i_mapping flags, so that the next fsync won't get
3945 * an outdated io error too.
3946 */
3947 btrfs_inode_check_errors(inode);
3948 *ordered_io_error = true;
3949 break;
3950 }
3951 /*
3952 * We are going to copy all the csums on this ordered extent, so
3953 * go ahead and adjust mod_start and mod_len in case this
3954 * ordered extent has already been logged.
3955 */
3956 if (ordered->file_offset > mod_start) {
3957 if (ordered->file_offset + ordered->len >=
3958 mod_start + mod_len)
3959 mod_len = ordered->file_offset - mod_start;
3960 /*
3961 * If we have this case
3962 *
3963 * |--------- logged extent ---------|
3964 * |----- ordered extent ----|
3965 *
3966 * Just don't mess with mod_start and mod_len, we'll
3967 * just end up logging more csums than we need and it
3968 * will be ok.
3969 */
3970 } else {
3971 if (ordered->file_offset + ordered->len <
3972 mod_start + mod_len) {
3973 mod_len = (mod_start + mod_len) -
3974 (ordered->file_offset + ordered->len);
3975 mod_start = ordered->file_offset +
3976 ordered->len;
3977 } else {
3978 mod_len = 0;
3979 }
3980 }
3981
3982 if (skip_csum)
3983 continue;
3984
3985 /*
3986 * To keep us from looping for the above case of an ordered
3987 * extent that falls inside of the logged extent.
3988 */
3989 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3990 &ordered->flags))
3991 continue;
3992
3993 list_for_each_entry(sum, &ordered->list, list) {
3994 ret = btrfs_csum_file_blocks(trans, log, sum);
3995 if (ret)
3996 break;
3997 }
3998 }
3999
4000 if (*ordered_io_error || !mod_len || ret || skip_csum)
4001 return ret;
4002
4003 if (em->compress_type) {
4004 csum_offset = 0;
4005 csum_len = max(em->block_len, em->orig_block_len);
4006 } else {
4007 csum_offset = mod_start - em->start;
4008 csum_len = mod_len;
4009 }
4010
4011 /* block start is already adjusted for the file extent offset. */
4012 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4013 em->block_start + csum_offset,
4014 em->block_start + csum_offset +
4015 csum_len - 1, &ordered_sums, 0);
4016 if (ret)
4017 return ret;
4018
4019 while (!list_empty(&ordered_sums)) {
4020 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4021 struct btrfs_ordered_sum,
4022 list);
4023 if (!ret)
4024 ret = btrfs_csum_file_blocks(trans, log, sums);
4025 list_del(&sums->list);
4026 kfree(sums);
4027 }
4028
4029 return ret;
4030}
4031
4032static int log_one_extent(struct btrfs_trans_handle *trans,
4033 struct inode *inode, struct btrfs_root *root,
4034 const struct extent_map *em,
4035 struct btrfs_path *path,
4036 const struct list_head *logged_list,
4037 struct btrfs_log_ctx *ctx)
4038{
4039 struct btrfs_root *log = root->log_root;
4040 struct btrfs_file_extent_item *fi;
4041 struct extent_buffer *leaf;
4042 struct btrfs_map_token token;
4043 struct btrfs_key key;
4044 u64 extent_offset = em->start - em->orig_start;
4045 u64 block_len;
4046 int ret;
4047 int extent_inserted = 0;
4048 bool ordered_io_err = false;
4049
4050 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4051 &ordered_io_err);
4052 if (ret)
4053 return ret;
4054
4055 if (ordered_io_err) {
4056 ctx->io_err = -EIO;
4057 return 0;
4058 }
4059
4060 btrfs_init_map_token(&token);
4061
4062 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4063 em->start + em->len, NULL, 0, 1,
4064 sizeof(*fi), &extent_inserted);
4065 if (ret)
4066 return ret;
4067
4068 if (!extent_inserted) {
4069 key.objectid = btrfs_ino(inode);
4070 key.type = BTRFS_EXTENT_DATA_KEY;
4071 key.offset = em->start;
4072
4073 ret = btrfs_insert_empty_item(trans, log, path, &key,
4074 sizeof(*fi));
4075 if (ret)
4076 return ret;
4077 }
4078 leaf = path->nodes[0];
4079 fi = btrfs_item_ptr(leaf, path->slots[0],
4080 struct btrfs_file_extent_item);
4081
4082 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4083 &token);
4084 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4085 btrfs_set_token_file_extent_type(leaf, fi,
4086 BTRFS_FILE_EXTENT_PREALLOC,
4087 &token);
4088 else
4089 btrfs_set_token_file_extent_type(leaf, fi,
4090 BTRFS_FILE_EXTENT_REG,
4091 &token);
4092
4093 block_len = max(em->block_len, em->orig_block_len);
4094 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4095 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4096 em->block_start,
4097 &token);
4098 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4099 &token);
4100 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4101 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4102 em->block_start -
4103 extent_offset, &token);
4104 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4105 &token);
4106 } else {
4107 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4108 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4109 &token);
4110 }
4111
4112 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4113 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4114 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4115 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4116 &token);
4117 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4118 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4119 btrfs_mark_buffer_dirty(leaf);
4120
4121 btrfs_release_path(path);
4122
4123 return ret;
4124}
4125
4126static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4127 struct btrfs_root *root,
4128 struct inode *inode,
4129 struct btrfs_path *path,
4130 struct list_head *logged_list,
4131 struct btrfs_log_ctx *ctx,
4132 const u64 start,
4133 const u64 end)
4134{
4135 struct extent_map *em, *n;
4136 struct list_head extents;
4137 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4138 u64 test_gen;
4139 int ret = 0;
4140 int num = 0;
4141
4142 INIT_LIST_HEAD(&extents);
4143
4144 write_lock(&tree->lock);
4145 test_gen = root->fs_info->last_trans_committed;
4146
4147 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4148 list_del_init(&em->list);
4149
4150 /*
4151 * Just an arbitrary number, this can be really CPU intensive
4152 * once we start getting a lot of extents, and really once we
4153 * have a bunch of extents we just want to commit since it will
4154 * be faster.
4155 */
4156 if (++num > 32768) {
4157 list_del_init(&tree->modified_extents);
4158 ret = -EFBIG;
4159 goto process;
4160 }
4161
4162 if (em->generation <= test_gen)
4163 continue;
4164 /* Need a ref to keep it from getting evicted from cache */
4165 atomic_inc(&em->refs);
4166 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4167 list_add_tail(&em->list, &extents);
4168 num++;
4169 }
4170
4171 list_sort(NULL, &extents, extent_cmp);
4172 /*
4173 * Collect any new ordered extents within the range. This is to
4174 * prevent logging file extent items without waiting for the disk
4175 * location they point to being written. We do this only to deal
4176 * with races against concurrent lockless direct IO writes.
4177 */
4178 btrfs_get_logged_extents(inode, logged_list, start, end);
4179process:
4180 while (!list_empty(&extents)) {
4181 em = list_entry(extents.next, struct extent_map, list);
4182
4183 list_del_init(&em->list);
4184
4185 /*
4186 * If we had an error we just need to delete everybody from our
4187 * private list.
4188 */
4189 if (ret) {
4190 clear_em_logging(tree, em);
4191 free_extent_map(em);
4192 continue;
4193 }
4194
4195 write_unlock(&tree->lock);
4196
4197 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4198 ctx);
4199 write_lock(&tree->lock);
4200 clear_em_logging(tree, em);
4201 free_extent_map(em);
4202 }
4203 WARN_ON(!list_empty(&extents));
4204 write_unlock(&tree->lock);
4205
4206 btrfs_release_path(path);
4207 return ret;
4208}
4209
4210static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4211 struct btrfs_path *path, u64 *size_ret)
4212{
4213 struct btrfs_key key;
4214 int ret;
4215
4216 key.objectid = btrfs_ino(inode);
4217 key.type = BTRFS_INODE_ITEM_KEY;
4218 key.offset = 0;
4219
4220 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4221 if (ret < 0) {
4222 return ret;
4223 } else if (ret > 0) {
4224 *size_ret = 0;
4225 } else {
4226 struct btrfs_inode_item *item;
4227
4228 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4229 struct btrfs_inode_item);
4230 *size_ret = btrfs_inode_size(path->nodes[0], item);
4231 }
4232
4233 btrfs_release_path(path);
4234 return 0;
4235}
4236
4237/*
4238 * At the moment we always log all xattrs. This is to figure out at log replay
4239 * time which xattrs must have their deletion replayed. If a xattr is missing
4240 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4241 * because if a xattr is deleted, the inode is fsynced and a power failure
4242 * happens, causing the log to be replayed the next time the fs is mounted,
4243 * we want the xattr to not exist anymore (same behaviour as other filesystems
4244 * with a journal, ext3/4, xfs, f2fs, etc).
4245 */
4246static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4247 struct btrfs_root *root,
4248 struct inode *inode,
4249 struct btrfs_path *path,
4250 struct btrfs_path *dst_path)
4251{
4252 int ret;
4253 struct btrfs_key key;
4254 const u64 ino = btrfs_ino(inode);
4255 int ins_nr = 0;
4256 int start_slot = 0;
4257
4258 key.objectid = ino;
4259 key.type = BTRFS_XATTR_ITEM_KEY;
4260 key.offset = 0;
4261
4262 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4263 if (ret < 0)
4264 return ret;
4265
4266 while (true) {
4267 int slot = path->slots[0];
4268 struct extent_buffer *leaf = path->nodes[0];
4269 int nritems = btrfs_header_nritems(leaf);
4270
4271 if (slot >= nritems) {
4272 if (ins_nr > 0) {
4273 u64 last_extent = 0;
4274
4275 ret = copy_items(trans, inode, dst_path, path,
4276 &last_extent, start_slot,
4277 ins_nr, 1, 0);
4278 /* can't be 1, extent items aren't processed */
4279 ASSERT(ret <= 0);
4280 if (ret < 0)
4281 return ret;
4282 ins_nr = 0;
4283 }
4284 ret = btrfs_next_leaf(root, path);
4285 if (ret < 0)
4286 return ret;
4287 else if (ret > 0)
4288 break;
4289 continue;
4290 }
4291
4292 btrfs_item_key_to_cpu(leaf, &key, slot);
4293 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4294 break;
4295
4296 if (ins_nr == 0)
4297 start_slot = slot;
4298 ins_nr++;
4299 path->slots[0]++;
4300 cond_resched();
4301 }
4302 if (ins_nr > 0) {
4303 u64 last_extent = 0;
4304
4305 ret = copy_items(trans, inode, dst_path, path,
4306 &last_extent, start_slot,
4307 ins_nr, 1, 0);
4308 /* can't be 1, extent items aren't processed */
4309 ASSERT(ret <= 0);
4310 if (ret < 0)
4311 return ret;
4312 }
4313
4314 return 0;
4315}
4316
4317/*
4318 * If the no holes feature is enabled we need to make sure any hole between the
4319 * last extent and the i_size of our inode is explicitly marked in the log. This
4320 * is to make sure that doing something like:
4321 *
4322 * 1) create file with 128Kb of data
4323 * 2) truncate file to 64Kb
4324 * 3) truncate file to 256Kb
4325 * 4) fsync file
4326 * 5) <crash/power failure>
4327 * 6) mount fs and trigger log replay
4328 *
4329 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4330 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4331 * file correspond to a hole. The presence of explicit holes in a log tree is
4332 * what guarantees that log replay will remove/adjust file extent items in the
4333 * fs/subvol tree.
4334 *
4335 * Here we do not need to care about holes between extents, that is already done
4336 * by copy_items(). We also only need to do this in the full sync path, where we
4337 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4338 * lookup the list of modified extent maps and if any represents a hole, we
4339 * insert a corresponding extent representing a hole in the log tree.
4340 */
4341static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4342 struct btrfs_root *root,
4343 struct inode *inode,
4344 struct btrfs_path *path)
4345{
4346 int ret;
4347 struct btrfs_key key;
4348 u64 hole_start;
4349 u64 hole_size;
4350 struct extent_buffer *leaf;
4351 struct btrfs_root *log = root->log_root;
4352 const u64 ino = btrfs_ino(inode);
4353 const u64 i_size = i_size_read(inode);
4354
4355 if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4356 return 0;
4357
4358 key.objectid = ino;
4359 key.type = BTRFS_EXTENT_DATA_KEY;
4360 key.offset = (u64)-1;
4361
4362 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4363 ASSERT(ret != 0);
4364 if (ret < 0)
4365 return ret;
4366
4367 ASSERT(path->slots[0] > 0);
4368 path->slots[0]--;
4369 leaf = path->nodes[0];
4370 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4371
4372 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4373 /* inode does not have any extents */
4374 hole_start = 0;
4375 hole_size = i_size;
4376 } else {
4377 struct btrfs_file_extent_item *extent;
4378 u64 len;
4379
4380 /*
4381 * If there's an extent beyond i_size, an explicit hole was
4382 * already inserted by copy_items().
4383 */
4384 if (key.offset >= i_size)
4385 return 0;
4386
4387 extent = btrfs_item_ptr(leaf, path->slots[0],
4388 struct btrfs_file_extent_item);
4389
4390 if (btrfs_file_extent_type(leaf, extent) ==
4391 BTRFS_FILE_EXTENT_INLINE) {
4392 len = btrfs_file_extent_inline_len(leaf,
4393 path->slots[0],
4394 extent);
4395 ASSERT(len == i_size);
4396 return 0;
4397 }
4398
4399 len = btrfs_file_extent_num_bytes(leaf, extent);
4400 /* Last extent goes beyond i_size, no need to log a hole. */
4401 if (key.offset + len > i_size)
4402 return 0;
4403 hole_start = key.offset + len;
4404 hole_size = i_size - hole_start;
4405 }
4406 btrfs_release_path(path);
4407
4408 /* Last extent ends at i_size. */
4409 if (hole_size == 0)
4410 return 0;
4411
4412 hole_size = ALIGN(hole_size, root->sectorsize);
4413 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4414 hole_size, 0, hole_size, 0, 0, 0);
4415 return ret;
4416}
4417
4418/*
4419 * When we are logging a new inode X, check if it doesn't have a reference that
4420 * matches the reference from some other inode Y created in a past transaction
4421 * and that was renamed in the current transaction. If we don't do this, then at
4422 * log replay time we can lose inode Y (and all its files if it's a directory):
4423 *
4424 * mkdir /mnt/x
4425 * echo "hello world" > /mnt/x/foobar
4426 * sync
4427 * mv /mnt/x /mnt/y
4428 * mkdir /mnt/x # or touch /mnt/x
4429 * xfs_io -c fsync /mnt/x
4430 * <power fail>
4431 * mount fs, trigger log replay
4432 *
4433 * After the log replay procedure, we would lose the first directory and all its
4434 * files (file foobar).
4435 * For the case where inode Y is not a directory we simply end up losing it:
4436 *
4437 * echo "123" > /mnt/foo
4438 * sync
4439 * mv /mnt/foo /mnt/bar
4440 * echo "abc" > /mnt/foo
4441 * xfs_io -c fsync /mnt/foo
4442 * <power fail>
4443 *
4444 * We also need this for cases where a snapshot entry is replaced by some other
4445 * entry (file or directory) otherwise we end up with an unreplayable log due to
4446 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4447 * if it were a regular entry:
4448 *
4449 * mkdir /mnt/x
4450 * btrfs subvolume snapshot /mnt /mnt/x/snap
4451 * btrfs subvolume delete /mnt/x/snap
4452 * rmdir /mnt/x
4453 * mkdir /mnt/x
4454 * fsync /mnt/x or fsync some new file inside it
4455 * <power fail>
4456 *
4457 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4458 * the same transaction.
4459 */
4460static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4461 const int slot,
4462 const struct btrfs_key *key,
4463 struct inode *inode)
4464{
4465 int ret;
4466 struct btrfs_path *search_path;
4467 char *name = NULL;
4468 u32 name_len = 0;
4469 u32 item_size = btrfs_item_size_nr(eb, slot);
4470 u32 cur_offset = 0;
4471 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4472
4473 search_path = btrfs_alloc_path();
4474 if (!search_path)
4475 return -ENOMEM;
4476 search_path->search_commit_root = 1;
4477 search_path->skip_locking = 1;
4478
4479 while (cur_offset < item_size) {
4480 u64 parent;
4481 u32 this_name_len;
4482 u32 this_len;
4483 unsigned long name_ptr;
4484 struct btrfs_dir_item *di;
4485
4486 if (key->type == BTRFS_INODE_REF_KEY) {
4487 struct btrfs_inode_ref *iref;
4488
4489 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4490 parent = key->offset;
4491 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4492 name_ptr = (unsigned long)(iref + 1);
4493 this_len = sizeof(*iref) + this_name_len;
4494 } else {
4495 struct btrfs_inode_extref *extref;
4496
4497 extref = (struct btrfs_inode_extref *)(ptr +
4498 cur_offset);
4499 parent = btrfs_inode_extref_parent(eb, extref);
4500 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4501 name_ptr = (unsigned long)&extref->name;
4502 this_len = sizeof(*extref) + this_name_len;
4503 }
4504
4505 if (this_name_len > name_len) {
4506 char *new_name;
4507
4508 new_name = krealloc(name, this_name_len, GFP_NOFS);
4509 if (!new_name) {
4510 ret = -ENOMEM;
4511 goto out;
4512 }
4513 name_len = this_name_len;
4514 name = new_name;
4515 }
4516
4517 read_extent_buffer(eb, name, name_ptr, this_name_len);
4518 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4519 search_path, parent,
4520 name, this_name_len, 0);
4521 if (di && !IS_ERR(di)) {
4522 ret = 1;
4523 goto out;
4524 } else if (IS_ERR(di)) {
4525 ret = PTR_ERR(di);
4526 goto out;
4527 }
4528 btrfs_release_path(search_path);
4529
4530 cur_offset += this_len;
4531 }
4532 ret = 0;
4533out:
4534 btrfs_free_path(search_path);
4535 kfree(name);
4536 return ret;
4537}
4538
4539/* log a single inode in the tree log.
4540 * At least one parent directory for this inode must exist in the tree
4541 * or be logged already.
4542 *
4543 * Any items from this inode changed by the current transaction are copied
4544 * to the log tree. An extra reference is taken on any extents in this
4545 * file, allowing us to avoid a whole pile of corner cases around logging
4546 * blocks that have been removed from the tree.
4547 *
4548 * See LOG_INODE_ALL and related defines for a description of what inode_only
4549 * does.
4550 *
4551 * This handles both files and directories.
4552 */
4553static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4554 struct btrfs_root *root, struct inode *inode,
4555 int inode_only,
4556 const loff_t start,
4557 const loff_t end,
4558 struct btrfs_log_ctx *ctx)
4559{
4560 struct btrfs_path *path;
4561 struct btrfs_path *dst_path;
4562 struct btrfs_key min_key;
4563 struct btrfs_key max_key;
4564 struct btrfs_root *log = root->log_root;
4565 struct extent_buffer *src = NULL;
4566 LIST_HEAD(logged_list);
4567 u64 last_extent = 0;
4568 int err = 0;
4569 int ret;
4570 int nritems;
4571 int ins_start_slot = 0;
4572 int ins_nr;
4573 bool fast_search = false;
4574 u64 ino = btrfs_ino(inode);
4575 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4576 u64 logged_isize = 0;
4577 bool need_log_inode_item = true;
4578
4579 path = btrfs_alloc_path();
4580 if (!path)
4581 return -ENOMEM;
4582 dst_path = btrfs_alloc_path();
4583 if (!dst_path) {
4584 btrfs_free_path(path);
4585 return -ENOMEM;
4586 }
4587
4588 min_key.objectid = ino;
4589 min_key.type = BTRFS_INODE_ITEM_KEY;
4590 min_key.offset = 0;
4591
4592 max_key.objectid = ino;
4593
4594
4595 /* today the code can only do partial logging of directories */
4596 if (S_ISDIR(inode->i_mode) ||
4597 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4598 &BTRFS_I(inode)->runtime_flags) &&
4599 inode_only == LOG_INODE_EXISTS))
4600 max_key.type = BTRFS_XATTR_ITEM_KEY;
4601 else
4602 max_key.type = (u8)-1;
4603 max_key.offset = (u64)-1;
4604
4605 /*
4606 * Only run delayed items if we are a dir or a new file.
4607 * Otherwise commit the delayed inode only, which is needed in
4608 * order for the log replay code to mark inodes for link count
4609 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4610 */
4611 if (S_ISDIR(inode->i_mode) ||
4612 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4613 ret = btrfs_commit_inode_delayed_items(trans, inode);
4614 else
4615 ret = btrfs_commit_inode_delayed_inode(inode);
4616
4617 if (ret) {
4618 btrfs_free_path(path);
4619 btrfs_free_path(dst_path);
4620 return ret;
4621 }
4622
4623 mutex_lock(&BTRFS_I(inode)->log_mutex);
4624
4625 /*
4626 * Collect ordered extents only if we are logging data. This is to
4627 * ensure a subsequent request to log this inode in LOG_INODE_ALL mode
4628 * will process the ordered extents if they still exists at the time,
4629 * because when we collect them we test and set for the flag
4630 * BTRFS_ORDERED_LOGGED to prevent multiple log requests to process the
4631 * same ordered extents. The consequence for the LOG_INODE_ALL log mode
4632 * not processing the ordered extents is that we end up logging the
4633 * corresponding file extent items, based on the extent maps in the
4634 * inode's extent_map_tree's modified_list, without logging the
4635 * respective checksums (since the may still be only attached to the
4636 * ordered extents and have not been inserted in the csum tree by
4637 * btrfs_finish_ordered_io() yet).
4638 */
4639 if (inode_only == LOG_INODE_ALL)
4640 btrfs_get_logged_extents(inode, &logged_list, start, end);
4641
4642 /*
4643 * a brute force approach to making sure we get the most uptodate
4644 * copies of everything.
4645 */
4646 if (S_ISDIR(inode->i_mode)) {
4647 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4648
4649 if (inode_only == LOG_INODE_EXISTS)
4650 max_key_type = BTRFS_XATTR_ITEM_KEY;
4651 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4652 } else {
4653 if (inode_only == LOG_INODE_EXISTS) {
4654 /*
4655 * Make sure the new inode item we write to the log has
4656 * the same isize as the current one (if it exists).
4657 * This is necessary to prevent data loss after log
4658 * replay, and also to prevent doing a wrong expanding
4659 * truncate - for e.g. create file, write 4K into offset
4660 * 0, fsync, write 4K into offset 4096, add hard link,
4661 * fsync some other file (to sync log), power fail - if
4662 * we use the inode's current i_size, after log replay
4663 * we get a 8Kb file, with the last 4Kb extent as a hole
4664 * (zeroes), as if an expanding truncate happened,
4665 * instead of getting a file of 4Kb only.
4666 */
4667 err = logged_inode_size(log, inode, path,
4668 &logged_isize);
4669 if (err)
4670 goto out_unlock;
4671 }
4672 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4673 &BTRFS_I(inode)->runtime_flags)) {
4674 if (inode_only == LOG_INODE_EXISTS) {
4675 max_key.type = BTRFS_XATTR_ITEM_KEY;
4676 ret = drop_objectid_items(trans, log, path, ino,
4677 max_key.type);
4678 } else {
4679 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4680 &BTRFS_I(inode)->runtime_flags);
4681 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4682 &BTRFS_I(inode)->runtime_flags);
4683 while(1) {
4684 ret = btrfs_truncate_inode_items(trans,
4685 log, inode, 0, 0);
4686 if (ret != -EAGAIN)
4687 break;
4688 }
4689 }
4690 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4691 &BTRFS_I(inode)->runtime_flags) ||
4692 inode_only == LOG_INODE_EXISTS) {
4693 if (inode_only == LOG_INODE_ALL)
4694 fast_search = true;
4695 max_key.type = BTRFS_XATTR_ITEM_KEY;
4696 ret = drop_objectid_items(trans, log, path, ino,
4697 max_key.type);
4698 } else {
4699 if (inode_only == LOG_INODE_ALL)
4700 fast_search = true;
4701 goto log_extents;
4702 }
4703
4704 }
4705 if (ret) {
4706 err = ret;
4707 goto out_unlock;
4708 }
4709
4710 while (1) {
4711 ins_nr = 0;
4712 ret = btrfs_search_forward(root, &min_key,
4713 path, trans->transid);
4714 if (ret != 0)
4715 break;
4716again:
4717 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4718 if (min_key.objectid != ino)
4719 break;
4720 if (min_key.type > max_key.type)
4721 break;
4722
4723 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4724 need_log_inode_item = false;
4725
4726 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4727 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4728 BTRFS_I(inode)->generation == trans->transid) {
4729 ret = btrfs_check_ref_name_override(path->nodes[0],
4730 path->slots[0],
4731 &min_key, inode);
4732 if (ret < 0) {
4733 err = ret;
4734 goto out_unlock;
4735 } else if (ret > 0) {
4736 err = 1;
4737 btrfs_set_log_full_commit(root->fs_info, trans);
4738 goto out_unlock;
4739 }
4740 }
4741
4742 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4743 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4744 if (ins_nr == 0)
4745 goto next_slot;
4746 ret = copy_items(trans, inode, dst_path, path,
4747 &last_extent, ins_start_slot,
4748 ins_nr, inode_only, logged_isize);
4749 if (ret < 0) {
4750 err = ret;
4751 goto out_unlock;
4752 }
4753 ins_nr = 0;
4754 if (ret) {
4755 btrfs_release_path(path);
4756 continue;
4757 }
4758 goto next_slot;
4759 }
4760
4761 src = path->nodes[0];
4762 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4763 ins_nr++;
4764 goto next_slot;
4765 } else if (!ins_nr) {
4766 ins_start_slot = path->slots[0];
4767 ins_nr = 1;
4768 goto next_slot;
4769 }
4770
4771 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4772 ins_start_slot, ins_nr, inode_only,
4773 logged_isize);
4774 if (ret < 0) {
4775 err = ret;
4776 goto out_unlock;
4777 }
4778 if (ret) {
4779 ins_nr = 0;
4780 btrfs_release_path(path);
4781 continue;
4782 }
4783 ins_nr = 1;
4784 ins_start_slot = path->slots[0];
4785next_slot:
4786
4787 nritems = btrfs_header_nritems(path->nodes[0]);
4788 path->slots[0]++;
4789 if (path->slots[0] < nritems) {
4790 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4791 path->slots[0]);
4792 goto again;
4793 }
4794 if (ins_nr) {
4795 ret = copy_items(trans, inode, dst_path, path,
4796 &last_extent, ins_start_slot,
4797 ins_nr, inode_only, logged_isize);
4798 if (ret < 0) {
4799 err = ret;
4800 goto out_unlock;
4801 }
4802 ret = 0;
4803 ins_nr = 0;
4804 }
4805 btrfs_release_path(path);
4806
4807 if (min_key.offset < (u64)-1) {
4808 min_key.offset++;
4809 } else if (min_key.type < max_key.type) {
4810 min_key.type++;
4811 min_key.offset = 0;
4812 } else {
4813 break;
4814 }
4815 }
4816 if (ins_nr) {
4817 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4818 ins_start_slot, ins_nr, inode_only,
4819 logged_isize);
4820 if (ret < 0) {
4821 err = ret;
4822 goto out_unlock;
4823 }
4824 ret = 0;
4825 ins_nr = 0;
4826 }
4827
4828 btrfs_release_path(path);
4829 btrfs_release_path(dst_path);
4830 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4831 if (err)
4832 goto out_unlock;
4833 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4834 btrfs_release_path(path);
4835 btrfs_release_path(dst_path);
4836 err = btrfs_log_trailing_hole(trans, root, inode, path);
4837 if (err)
4838 goto out_unlock;
4839 }
4840log_extents:
4841 btrfs_release_path(path);
4842 btrfs_release_path(dst_path);
4843 if (need_log_inode_item) {
4844 err = log_inode_item(trans, log, dst_path, inode);
4845 if (err)
4846 goto out_unlock;
4847 }
4848 if (fast_search) {
4849 /*
4850 * Some ordered extents started by fsync might have completed
4851 * before we collected the ordered extents in logged_list, which
4852 * means they're gone, not in our logged_list nor in the inode's
4853 * ordered tree. We want the application/user space to know an
4854 * error happened while attempting to persist file data so that
4855 * it can take proper action. If such error happened, we leave
4856 * without writing to the log tree and the fsync must report the
4857 * file data write error and not commit the current transaction.
4858 */
4859 err = btrfs_inode_check_errors(inode);
4860 if (err) {
4861 ctx->io_err = err;
4862 goto out_unlock;
4863 }
4864 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4865 &logged_list, ctx, start, end);
4866 if (ret) {
4867 err = ret;
4868 goto out_unlock;
4869 }
4870 } else if (inode_only == LOG_INODE_ALL) {
4871 struct extent_map *em, *n;
4872
4873 write_lock(&em_tree->lock);
4874 /*
4875 * We can't just remove every em if we're called for a ranged
4876 * fsync - that is, one that doesn't cover the whole possible
4877 * file range (0 to LLONG_MAX). This is because we can have
4878 * em's that fall outside the range we're logging and therefore
4879 * their ordered operations haven't completed yet
4880 * (btrfs_finish_ordered_io() not invoked yet). This means we
4881 * didn't get their respective file extent item in the fs/subvol
4882 * tree yet, and need to let the next fast fsync (one which
4883 * consults the list of modified extent maps) find the em so
4884 * that it logs a matching file extent item and waits for the
4885 * respective ordered operation to complete (if it's still
4886 * running).
4887 *
4888 * Removing every em outside the range we're logging would make
4889 * the next fast fsync not log their matching file extent items,
4890 * therefore making us lose data after a log replay.
4891 */
4892 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4893 list) {
4894 const u64 mod_end = em->mod_start + em->mod_len - 1;
4895
4896 if (em->mod_start >= start && mod_end <= end)
4897 list_del_init(&em->list);
4898 }
4899 write_unlock(&em_tree->lock);
4900 }
4901
4902 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4903 ret = log_directory_changes(trans, root, inode, path, dst_path,
4904 ctx);
4905 if (ret) {
4906 err = ret;
4907 goto out_unlock;
4908 }
4909 }
4910
4911 spin_lock(&BTRFS_I(inode)->lock);
4912 BTRFS_I(inode)->logged_trans = trans->transid;
4913 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4914 spin_unlock(&BTRFS_I(inode)->lock);
4915out_unlock:
4916 if (unlikely(err))
4917 btrfs_put_logged_extents(&logged_list);
4918 else
4919 btrfs_submit_logged_extents(&logged_list, log);
4920 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4921
4922 btrfs_free_path(path);
4923 btrfs_free_path(dst_path);
4924 return err;
4925}
4926
4927/*
4928 * Check if we must fallback to a transaction commit when logging an inode.
4929 * This must be called after logging the inode and is used only in the context
4930 * when fsyncing an inode requires the need to log some other inode - in which
4931 * case we can't lock the i_mutex of each other inode we need to log as that
4932 * can lead to deadlocks with concurrent fsync against other inodes (as we can
4933 * log inodes up or down in the hierarchy) or rename operations for example. So
4934 * we take the log_mutex of the inode after we have logged it and then check for
4935 * its last_unlink_trans value - this is safe because any task setting
4936 * last_unlink_trans must take the log_mutex and it must do this before it does
4937 * the actual unlink operation, so if we do this check before a concurrent task
4938 * sets last_unlink_trans it means we've logged a consistent version/state of
4939 * all the inode items, otherwise we are not sure and must do a transaction
4940 * commit (the concurrent task migth have only updated last_unlink_trans before
4941 * we logged the inode or it might have also done the unlink).
4942 */
4943static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
4944 struct inode *inode)
4945{
4946 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4947 bool ret = false;
4948
4949 mutex_lock(&BTRFS_I(inode)->log_mutex);
4950 if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
4951 /*
4952 * Make sure any commits to the log are forced to be full
4953 * commits.
4954 */
4955 btrfs_set_log_full_commit(fs_info, trans);
4956 ret = true;
4957 }
4958 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4959
4960 return ret;
4961}
4962
4963/*
4964 * follow the dentry parent pointers up the chain and see if any
4965 * of the directories in it require a full commit before they can
4966 * be logged. Returns zero if nothing special needs to be done or 1 if
4967 * a full commit is required.
4968 */
4969static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4970 struct inode *inode,
4971 struct dentry *parent,
4972 struct super_block *sb,
4973 u64 last_committed)
4974{
4975 int ret = 0;
4976 struct dentry *old_parent = NULL;
4977 struct inode *orig_inode = inode;
4978
4979 /*
4980 * for regular files, if its inode is already on disk, we don't
4981 * have to worry about the parents at all. This is because
4982 * we can use the last_unlink_trans field to record renames
4983 * and other fun in this file.
4984 */
4985 if (S_ISREG(inode->i_mode) &&
4986 BTRFS_I(inode)->generation <= last_committed &&
4987 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4988 goto out;
4989
4990 if (!S_ISDIR(inode->i_mode)) {
4991 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4992 goto out;
4993 inode = d_inode(parent);
4994 }
4995
4996 while (1) {
4997 /*
4998 * If we are logging a directory then we start with our inode,
4999 * not our parents inode, so we need to skipp setting the
5000 * logged_trans so that further down in the log code we don't
5001 * think this inode has already been logged.
5002 */
5003 if (inode != orig_inode)
5004 BTRFS_I(inode)->logged_trans = trans->transid;
5005 smp_mb();
5006
5007 if (btrfs_must_commit_transaction(trans, inode)) {
5008 ret = 1;
5009 break;
5010 }
5011
5012 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5013 break;
5014
5015 if (IS_ROOT(parent))
5016 break;
5017
5018 parent = dget_parent(parent);
5019 dput(old_parent);
5020 old_parent = parent;
5021 inode = d_inode(parent);
5022
5023 }
5024 dput(old_parent);
5025out:
5026 return ret;
5027}
5028
5029struct btrfs_dir_list {
5030 u64 ino;
5031 struct list_head list;
5032};
5033
5034/*
5035 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5036 * details about the why it is needed.
5037 * This is a recursive operation - if an existing dentry corresponds to a
5038 * directory, that directory's new entries are logged too (same behaviour as
5039 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5040 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5041 * complains about the following circular lock dependency / possible deadlock:
5042 *
5043 * CPU0 CPU1
5044 * ---- ----
5045 * lock(&type->i_mutex_dir_key#3/2);
5046 * lock(sb_internal#2);
5047 * lock(&type->i_mutex_dir_key#3/2);
5048 * lock(&sb->s_type->i_mutex_key#14);
5049 *
5050 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5051 * sb_start_intwrite() in btrfs_start_transaction().
5052 * Not locking i_mutex of the inodes is still safe because:
5053 *
5054 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5055 * that while logging the inode new references (names) are added or removed
5056 * from the inode, leaving the logged inode item with a link count that does
5057 * not match the number of logged inode reference items. This is fine because
5058 * at log replay time we compute the real number of links and correct the
5059 * link count in the inode item (see replay_one_buffer() and
5060 * link_to_fixup_dir());
5061 *
5062 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5063 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5064 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5065 * has a size that doesn't match the sum of the lengths of all the logged
5066 * names. This does not result in a problem because if a dir_item key is
5067 * logged but its matching dir_index key is not logged, at log replay time we
5068 * don't use it to replay the respective name (see replay_one_name()). On the
5069 * other hand if only the dir_index key ends up being logged, the respective
5070 * name is added to the fs/subvol tree with both the dir_item and dir_index
5071 * keys created (see replay_one_name()).
5072 * The directory's inode item with a wrong i_size is not a problem as well,
5073 * since we don't use it at log replay time to set the i_size in the inode
5074 * item of the fs/subvol tree (see overwrite_item()).
5075 */
5076static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5077 struct btrfs_root *root,
5078 struct inode *start_inode,
5079 struct btrfs_log_ctx *ctx)
5080{
5081 struct btrfs_root *log = root->log_root;
5082 struct btrfs_path *path;
5083 LIST_HEAD(dir_list);
5084 struct btrfs_dir_list *dir_elem;
5085 int ret = 0;
5086
5087 path = btrfs_alloc_path();
5088 if (!path)
5089 return -ENOMEM;
5090
5091 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5092 if (!dir_elem) {
5093 btrfs_free_path(path);
5094 return -ENOMEM;
5095 }
5096 dir_elem->ino = btrfs_ino(start_inode);
5097 list_add_tail(&dir_elem->list, &dir_list);
5098
5099 while (!list_empty(&dir_list)) {
5100 struct extent_buffer *leaf;
5101 struct btrfs_key min_key;
5102 int nritems;
5103 int i;
5104
5105 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5106 list);
5107 if (ret)
5108 goto next_dir_inode;
5109
5110 min_key.objectid = dir_elem->ino;
5111 min_key.type = BTRFS_DIR_ITEM_KEY;
5112 min_key.offset = 0;
5113again:
5114 btrfs_release_path(path);
5115 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5116 if (ret < 0) {
5117 goto next_dir_inode;
5118 } else if (ret > 0) {
5119 ret = 0;
5120 goto next_dir_inode;
5121 }
5122
5123process_leaf:
5124 leaf = path->nodes[0];
5125 nritems = btrfs_header_nritems(leaf);
5126 for (i = path->slots[0]; i < nritems; i++) {
5127 struct btrfs_dir_item *di;
5128 struct btrfs_key di_key;
5129 struct inode *di_inode;
5130 struct btrfs_dir_list *new_dir_elem;
5131 int log_mode = LOG_INODE_EXISTS;
5132 int type;
5133
5134 btrfs_item_key_to_cpu(leaf, &min_key, i);
5135 if (min_key.objectid != dir_elem->ino ||
5136 min_key.type != BTRFS_DIR_ITEM_KEY)
5137 goto next_dir_inode;
5138
5139 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5140 type = btrfs_dir_type(leaf, di);
5141 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5142 type != BTRFS_FT_DIR)
5143 continue;
5144 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5145 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5146 continue;
5147
5148 di_inode = btrfs_iget(root->fs_info->sb, &di_key,
5149 root, NULL);
5150 if (IS_ERR(di_inode)) {
5151 ret = PTR_ERR(di_inode);
5152 goto next_dir_inode;
5153 }
5154
5155 if (btrfs_inode_in_log(di_inode, trans->transid)) {
5156 iput(di_inode);
5157 continue;
5158 }
5159
5160 ctx->log_new_dentries = false;
5161 if (type == BTRFS_FT_DIR)
5162 log_mode = LOG_INODE_ALL;
5163 btrfs_release_path(path);
5164 ret = btrfs_log_inode(trans, root, di_inode,
5165 log_mode, 0, LLONG_MAX, ctx);
5166 if (!ret &&
5167 btrfs_must_commit_transaction(trans, di_inode))
5168 ret = 1;
5169 iput(di_inode);
5170 if (ret)
5171 goto next_dir_inode;
5172 if (ctx->log_new_dentries) {
5173 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5174 GFP_NOFS);
5175 if (!new_dir_elem) {
5176 ret = -ENOMEM;
5177 goto next_dir_inode;
5178 }
5179 new_dir_elem->ino = di_key.objectid;
5180 list_add_tail(&new_dir_elem->list, &dir_list);
5181 }
5182 break;
5183 }
5184 if (i == nritems) {
5185 ret = btrfs_next_leaf(log, path);
5186 if (ret < 0) {
5187 goto next_dir_inode;
5188 } else if (ret > 0) {
5189 ret = 0;
5190 goto next_dir_inode;
5191 }
5192 goto process_leaf;
5193 }
5194 if (min_key.offset < (u64)-1) {
5195 min_key.offset++;
5196 goto again;
5197 }
5198next_dir_inode:
5199 list_del(&dir_elem->list);
5200 kfree(dir_elem);
5201 }
5202
5203 btrfs_free_path(path);
5204 return ret;
5205}
5206
5207static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5208 struct inode *inode,
5209 struct btrfs_log_ctx *ctx)
5210{
5211 int ret;
5212 struct btrfs_path *path;
5213 struct btrfs_key key;
5214 struct btrfs_root *root = BTRFS_I(inode)->root;
5215 const u64 ino = btrfs_ino(inode);
5216
5217 path = btrfs_alloc_path();
5218 if (!path)
5219 return -ENOMEM;
5220 path->skip_locking = 1;
5221 path->search_commit_root = 1;
5222
5223 key.objectid = ino;
5224 key.type = BTRFS_INODE_REF_KEY;
5225 key.offset = 0;
5226 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5227 if (ret < 0)
5228 goto out;
5229
5230 while (true) {
5231 struct extent_buffer *leaf = path->nodes[0];
5232 int slot = path->slots[0];
5233 u32 cur_offset = 0;
5234 u32 item_size;
5235 unsigned long ptr;
5236
5237 if (slot >= btrfs_header_nritems(leaf)) {
5238 ret = btrfs_next_leaf(root, path);
5239 if (ret < 0)
5240 goto out;
5241 else if (ret > 0)
5242 break;
5243 continue;
5244 }
5245
5246 btrfs_item_key_to_cpu(leaf, &key, slot);
5247 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5248 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5249 break;
5250
5251 item_size = btrfs_item_size_nr(leaf, slot);
5252 ptr = btrfs_item_ptr_offset(leaf, slot);
5253 while (cur_offset < item_size) {
5254 struct btrfs_key inode_key;
5255 struct inode *dir_inode;
5256
5257 inode_key.type = BTRFS_INODE_ITEM_KEY;
5258 inode_key.offset = 0;
5259
5260 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5261 struct btrfs_inode_extref *extref;
5262
5263 extref = (struct btrfs_inode_extref *)
5264 (ptr + cur_offset);
5265 inode_key.objectid = btrfs_inode_extref_parent(
5266 leaf, extref);
5267 cur_offset += sizeof(*extref);
5268 cur_offset += btrfs_inode_extref_name_len(leaf,
5269 extref);
5270 } else {
5271 inode_key.objectid = key.offset;
5272 cur_offset = item_size;
5273 }
5274
5275 dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5276 root, NULL);
5277 /* If parent inode was deleted, skip it. */
5278 if (IS_ERR(dir_inode))
5279 continue;
5280
5281 ret = btrfs_log_inode(trans, root, dir_inode,
5282 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5283 if (!ret &&
5284 btrfs_must_commit_transaction(trans, dir_inode))
5285 ret = 1;
5286 iput(dir_inode);
5287 if (ret)
5288 goto out;
5289 }
5290 path->slots[0]++;
5291 }
5292 ret = 0;
5293out:
5294 btrfs_free_path(path);
5295 return ret;
5296}
5297
5298/*
5299 * helper function around btrfs_log_inode to make sure newly created
5300 * parent directories also end up in the log. A minimal inode and backref
5301 * only logging is done of any parent directories that are older than
5302 * the last committed transaction
5303 */
5304static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5305 struct btrfs_root *root, struct inode *inode,
5306 struct dentry *parent,
5307 const loff_t start,
5308 const loff_t end,
5309 int exists_only,
5310 struct btrfs_log_ctx *ctx)
5311{
5312 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5313 struct super_block *sb;
5314 struct dentry *old_parent = NULL;
5315 int ret = 0;
5316 u64 last_committed = root->fs_info->last_trans_committed;
5317 bool log_dentries = false;
5318 struct inode *orig_inode = inode;
5319
5320 sb = inode->i_sb;
5321
5322 if (btrfs_test_opt(root, NOTREELOG)) {
5323 ret = 1;
5324 goto end_no_trans;
5325 }
5326
5327 /*
5328 * The prev transaction commit doesn't complete, we need do
5329 * full commit by ourselves.
5330 */
5331 if (root->fs_info->last_trans_log_full_commit >
5332 root->fs_info->last_trans_committed) {
5333 ret = 1;
5334 goto end_no_trans;
5335 }
5336
5337 if (root != BTRFS_I(inode)->root ||
5338 btrfs_root_refs(&root->root_item) == 0) {
5339 ret = 1;
5340 goto end_no_trans;
5341 }
5342
5343 ret = check_parent_dirs_for_sync(trans, inode, parent,
5344 sb, last_committed);
5345 if (ret)
5346 goto end_no_trans;
5347
5348 if (btrfs_inode_in_log(inode, trans->transid)) {
5349 ret = BTRFS_NO_LOG_SYNC;
5350 goto end_no_trans;
5351 }
5352
5353 ret = start_log_trans(trans, root, ctx);
5354 if (ret)
5355 goto end_no_trans;
5356
5357 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5358 if (ret)
5359 goto end_trans;
5360
5361 /*
5362 * for regular files, if its inode is already on disk, we don't
5363 * have to worry about the parents at all. This is because
5364 * we can use the last_unlink_trans field to record renames
5365 * and other fun in this file.
5366 */
5367 if (S_ISREG(inode->i_mode) &&
5368 BTRFS_I(inode)->generation <= last_committed &&
5369 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5370 ret = 0;
5371 goto end_trans;
5372 }
5373
5374 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5375 log_dentries = true;
5376
5377 /*
5378 * On unlink we must make sure all our current and old parent directores
5379 * inodes are fully logged. This is to prevent leaving dangling
5380 * directory index entries in directories that were our parents but are
5381 * not anymore. Not doing this results in old parent directory being
5382 * impossible to delete after log replay (rmdir will always fail with
5383 * error -ENOTEMPTY).
5384 *
5385 * Example 1:
5386 *
5387 * mkdir testdir
5388 * touch testdir/foo
5389 * ln testdir/foo testdir/bar
5390 * sync
5391 * unlink testdir/bar
5392 * xfs_io -c fsync testdir/foo
5393 * <power failure>
5394 * mount fs, triggers log replay
5395 *
5396 * If we don't log the parent directory (testdir), after log replay the
5397 * directory still has an entry pointing to the file inode using the bar
5398 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5399 * the file inode has a link count of 1.
5400 *
5401 * Example 2:
5402 *
5403 * mkdir testdir
5404 * touch foo
5405 * ln foo testdir/foo2
5406 * ln foo testdir/foo3
5407 * sync
5408 * unlink testdir/foo3
5409 * xfs_io -c fsync foo
5410 * <power failure>
5411 * mount fs, triggers log replay
5412 *
5413 * Similar as the first example, after log replay the parent directory
5414 * testdir still has an entry pointing to the inode file with name foo3
5415 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5416 * and has a link count of 2.
5417 */
5418 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5419 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5420 if (ret)
5421 goto end_trans;
5422 }
5423
5424 while (1) {
5425 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5426 break;
5427
5428 inode = d_inode(parent);
5429 if (root != BTRFS_I(inode)->root)
5430 break;
5431
5432 if (BTRFS_I(inode)->generation > last_committed) {
5433 ret = btrfs_log_inode(trans, root, inode,
5434 LOG_INODE_EXISTS,
5435 0, LLONG_MAX, ctx);
5436 if (ret)
5437 goto end_trans;
5438 }
5439 if (IS_ROOT(parent))
5440 break;
5441
5442 parent = dget_parent(parent);
5443 dput(old_parent);
5444 old_parent = parent;
5445 }
5446 if (log_dentries)
5447 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5448 else
5449 ret = 0;
5450end_trans:
5451 dput(old_parent);
5452 if (ret < 0) {
5453 btrfs_set_log_full_commit(root->fs_info, trans);
5454 ret = 1;
5455 }
5456
5457 if (ret)
5458 btrfs_remove_log_ctx(root, ctx);
5459 btrfs_end_log_trans(root);
5460end_no_trans:
5461 return ret;
5462}
5463
5464/*
5465 * it is not safe to log dentry if the chunk root has added new
5466 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5467 * If this returns 1, you must commit the transaction to safely get your
5468 * data on disk.
5469 */
5470int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5471 struct btrfs_root *root, struct dentry *dentry,
5472 const loff_t start,
5473 const loff_t end,
5474 struct btrfs_log_ctx *ctx)
5475{
5476 struct dentry *parent = dget_parent(dentry);
5477 int ret;
5478
5479 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5480 start, end, 0, ctx);
5481 dput(parent);
5482
5483 return ret;
5484}
5485
5486/*
5487 * should be called during mount to recover any replay any log trees
5488 * from the FS
5489 */
5490int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5491{
5492 int ret;
5493 struct btrfs_path *path;
5494 struct btrfs_trans_handle *trans;
5495 struct btrfs_key key;
5496 struct btrfs_key found_key;
5497 struct btrfs_key tmp_key;
5498 struct btrfs_root *log;
5499 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5500 struct walk_control wc = {
5501 .process_func = process_one_buffer,
5502 .stage = 0,
5503 };
5504
5505 path = btrfs_alloc_path();
5506 if (!path)
5507 return -ENOMEM;
5508
5509 fs_info->log_root_recovering = 1;
5510
5511 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5512 if (IS_ERR(trans)) {
5513 ret = PTR_ERR(trans);
5514 goto error;
5515 }
5516
5517 wc.trans = trans;
5518 wc.pin = 1;
5519
5520 ret = walk_log_tree(trans, log_root_tree, &wc);
5521 if (ret) {
5522 btrfs_std_error(fs_info, ret, "Failed to pin buffers while "
5523 "recovering log root tree.");
5524 goto error;
5525 }
5526
5527again:
5528 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5529 key.offset = (u64)-1;
5530 key.type = BTRFS_ROOT_ITEM_KEY;
5531
5532 while (1) {
5533 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5534
5535 if (ret < 0) {
5536 btrfs_std_error(fs_info, ret,
5537 "Couldn't find tree log root.");
5538 goto error;
5539 }
5540 if (ret > 0) {
5541 if (path->slots[0] == 0)
5542 break;
5543 path->slots[0]--;
5544 }
5545 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5546 path->slots[0]);
5547 btrfs_release_path(path);
5548 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5549 break;
5550
5551 log = btrfs_read_fs_root(log_root_tree, &found_key);
5552 if (IS_ERR(log)) {
5553 ret = PTR_ERR(log);
5554 btrfs_std_error(fs_info, ret,
5555 "Couldn't read tree log root.");
5556 goto error;
5557 }
5558
5559 tmp_key.objectid = found_key.offset;
5560 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5561 tmp_key.offset = (u64)-1;
5562
5563 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5564 if (IS_ERR(wc.replay_dest)) {
5565 ret = PTR_ERR(wc.replay_dest);
5566 free_extent_buffer(log->node);
5567 free_extent_buffer(log->commit_root);
5568 kfree(log);
5569 btrfs_std_error(fs_info, ret, "Couldn't read target root "
5570 "for tree log recovery.");
5571 goto error;
5572 }
5573
5574 wc.replay_dest->log_root = log;
5575 btrfs_record_root_in_trans(trans, wc.replay_dest);
5576 ret = walk_log_tree(trans, log, &wc);
5577
5578 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5579 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5580 path);
5581 }
5582
5583 key.offset = found_key.offset - 1;
5584 wc.replay_dest->log_root = NULL;
5585 free_extent_buffer(log->node);
5586 free_extent_buffer(log->commit_root);
5587 kfree(log);
5588
5589 if (ret)
5590 goto error;
5591
5592 if (found_key.offset == 0)
5593 break;
5594 }
5595 btrfs_release_path(path);
5596
5597 /* step one is to pin it all, step two is to replay just inodes */
5598 if (wc.pin) {
5599 wc.pin = 0;
5600 wc.process_func = replay_one_buffer;
5601 wc.stage = LOG_WALK_REPLAY_INODES;
5602 goto again;
5603 }
5604 /* step three is to replay everything */
5605 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5606 wc.stage++;
5607 goto again;
5608 }
5609
5610 btrfs_free_path(path);
5611
5612 /* step 4: commit the transaction, which also unpins the blocks */
5613 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5614 if (ret)
5615 return ret;
5616
5617 free_extent_buffer(log_root_tree->node);
5618 log_root_tree->log_root = NULL;
5619 fs_info->log_root_recovering = 0;
5620 kfree(log_root_tree);
5621
5622 return 0;
5623error:
5624 if (wc.trans)
5625 btrfs_end_transaction(wc.trans, fs_info->tree_root);
5626 btrfs_free_path(path);
5627 return ret;
5628}
5629
5630/*
5631 * there are some corner cases where we want to force a full
5632 * commit instead of allowing a directory to be logged.
5633 *
5634 * They revolve around files there were unlinked from the directory, and
5635 * this function updates the parent directory so that a full commit is
5636 * properly done if it is fsync'd later after the unlinks are done.
5637 *
5638 * Must be called before the unlink operations (updates to the subvolume tree,
5639 * inodes, etc) are done.
5640 */
5641void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5642 struct inode *dir, struct inode *inode,
5643 int for_rename)
5644{
5645 /*
5646 * when we're logging a file, if it hasn't been renamed
5647 * or unlinked, and its inode is fully committed on disk,
5648 * we don't have to worry about walking up the directory chain
5649 * to log its parents.
5650 *
5651 * So, we use the last_unlink_trans field to put this transid
5652 * into the file. When the file is logged we check it and
5653 * don't log the parents if the file is fully on disk.
5654 */
5655 if (S_ISREG(inode->i_mode)) {
5656 mutex_lock(&BTRFS_I(inode)->log_mutex);
5657 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5658 mutex_unlock(&BTRFS_I(inode)->log_mutex);
5659 }
5660
5661 /*
5662 * if this directory was already logged any new
5663 * names for this file/dir will get recorded
5664 */
5665 smp_mb();
5666 if (BTRFS_I(dir)->logged_trans == trans->transid)
5667 return;
5668
5669 /*
5670 * if the inode we're about to unlink was logged,
5671 * the log will be properly updated for any new names
5672 */
5673 if (BTRFS_I(inode)->logged_trans == trans->transid)
5674 return;
5675
5676 /*
5677 * when renaming files across directories, if the directory
5678 * there we're unlinking from gets fsync'd later on, there's
5679 * no way to find the destination directory later and fsync it
5680 * properly. So, we have to be conservative and force commits
5681 * so the new name gets discovered.
5682 */
5683 if (for_rename)
5684 goto record;
5685
5686 /* we can safely do the unlink without any special recording */
5687 return;
5688
5689record:
5690 mutex_lock(&BTRFS_I(dir)->log_mutex);
5691 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5692 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5693}
5694
5695/*
5696 * Make sure that if someone attempts to fsync the parent directory of a deleted
5697 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5698 * that after replaying the log tree of the parent directory's root we will not
5699 * see the snapshot anymore and at log replay time we will not see any log tree
5700 * corresponding to the deleted snapshot's root, which could lead to replaying
5701 * it after replaying the log tree of the parent directory (which would replay
5702 * the snapshot delete operation).
5703 *
5704 * Must be called before the actual snapshot destroy operation (updates to the
5705 * parent root and tree of tree roots trees, etc) are done.
5706 */
5707void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5708 struct inode *dir)
5709{
5710 mutex_lock(&BTRFS_I(dir)->log_mutex);
5711 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5712 mutex_unlock(&BTRFS_I(dir)->log_mutex);
5713}
5714
5715/*
5716 * Call this after adding a new name for a file and it will properly
5717 * update the log to reflect the new name.
5718 *
5719 * It will return zero if all goes well, and it will return 1 if a
5720 * full transaction commit is required.
5721 */
5722int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5723 struct inode *inode, struct inode *old_dir,
5724 struct dentry *parent)
5725{
5726 struct btrfs_root * root = BTRFS_I(inode)->root;
5727
5728 /*
5729 * this will force the logging code to walk the dentry chain
5730 * up for the file
5731 */
5732 if (S_ISREG(inode->i_mode))
5733 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5734
5735 /*
5736 * if this inode hasn't been logged and directory we're renaming it
5737 * from hasn't been logged, we don't need to log it
5738 */
5739 if (BTRFS_I(inode)->logged_trans <=
5740 root->fs_info->last_trans_committed &&
5741 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5742 root->fs_info->last_trans_committed))
5743 return 0;
5744
5745 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5746 LLONG_MAX, 1, NULL);
5747}
5748