Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "misc.h"
  12#include "ctree.h"
  13#include "tree-log.h"
  14#include "disk-io.h"
  15#include "locking.h"
  16#include "print-tree.h"
  17#include "backref.h"
  18#include "compression.h"
  19#include "qgroup.h"
  20#include "inode-map.h"
  21#include "block-group.h"
  22#include "space-info.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
  23
  24/* magic values for the inode_only field in btrfs_log_inode:
  25 *
  26 * LOG_INODE_ALL means to log everything
  27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  28 * during log replay
  29 */
  30enum {
  31	LOG_INODE_ALL,
  32	LOG_INODE_EXISTS,
  33	LOG_OTHER_INODE,
  34	LOG_OTHER_INODE_ALL,
  35};
  36
  37/*
  38 * directory trouble cases
  39 *
  40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  41 * log, we must force a full commit before doing an fsync of the directory
  42 * where the unlink was done.
  43 * ---> record transid of last unlink/rename per directory
  44 *
  45 * mkdir foo/some_dir
  46 * normal commit
  47 * rename foo/some_dir foo2/some_dir
  48 * mkdir foo/some_dir
  49 * fsync foo/some_dir/some_file
  50 *
  51 * The fsync above will unlink the original some_dir without recording
  52 * it in its new location (foo2).  After a crash, some_dir will be gone
  53 * unless the fsync of some_file forces a full commit
  54 *
  55 * 2) we must log any new names for any file or dir that is in the fsync
  56 * log. ---> check inode while renaming/linking.
  57 *
  58 * 2a) we must log any new names for any file or dir during rename
  59 * when the directory they are being removed from was logged.
  60 * ---> check inode and old parent dir during rename
  61 *
  62 *  2a is actually the more important variant.  With the extra logging
  63 *  a crash might unlink the old name without recreating the new one
  64 *
  65 * 3) after a crash, we must go through any directories with a link count
  66 * of zero and redo the rm -rf
  67 *
  68 * mkdir f1/foo
  69 * normal commit
  70 * rm -rf f1/foo
  71 * fsync(f1)
  72 *
  73 * The directory f1 was fully removed from the FS, but fsync was never
  74 * called on f1, only its parent dir.  After a crash the rm -rf must
  75 * be replayed.  This must be able to recurse down the entire
  76 * directory tree.  The inode link count fixup code takes care of the
  77 * ugly details.
  78 */
  79
  80/*
  81 * stages for the tree walking.  The first
  82 * stage (0) is to only pin down the blocks we find
  83 * the second stage (1) is to make sure that all the inodes
  84 * we find in the log are created in the subvolume.
  85 *
  86 * The last stage is to deal with directories and links and extents
  87 * and all the other fun semantics
  88 */
  89enum {
  90	LOG_WALK_PIN_ONLY,
  91	LOG_WALK_REPLAY_INODES,
  92	LOG_WALK_REPLAY_DIR_INDEX,
  93	LOG_WALK_REPLAY_ALL,
  94};
  95
  96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
  97			   struct btrfs_root *root, struct btrfs_inode *inode,
  98			   int inode_only,
  99			   const loff_t start,
 100			   const loff_t end,
 101			   struct btrfs_log_ctx *ctx);
 102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 103			     struct btrfs_root *root,
 104			     struct btrfs_path *path, u64 objectid);
 105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 106				       struct btrfs_root *root,
 107				       struct btrfs_root *log,
 108				       struct btrfs_path *path,
 109				       u64 dirid, int del_all);
 
 110
 111/*
 112 * tree logging is a special write ahead log used to make sure that
 113 * fsyncs and O_SYNCs can happen without doing full tree commits.
 114 *
 115 * Full tree commits are expensive because they require commonly
 116 * modified blocks to be recowed, creating many dirty pages in the
 117 * extent tree an 4x-6x higher write load than ext3.
 118 *
 119 * Instead of doing a tree commit on every fsync, we use the
 120 * key ranges and transaction ids to find items for a given file or directory
 121 * that have changed in this transaction.  Those items are copied into
 122 * a special tree (one per subvolume root), that tree is written to disk
 123 * and then the fsync is considered complete.
 124 *
 125 * After a crash, items are copied out of the log-tree back into the
 126 * subvolume tree.  Any file data extents found are recorded in the extent
 127 * allocation tree, and the log-tree freed.
 128 *
 129 * The log tree is read three times, once to pin down all the extents it is
 130 * using in ram and once, once to create all the inodes logged in the tree
 131 * and once to do all the other items.
 132 */
 133
 134/*
 135 * start a sub transaction and setup the log tree
 136 * this increments the log tree writer count to make the people
 137 * syncing the tree wait for us to finish
 138 */
 139static int start_log_trans(struct btrfs_trans_handle *trans,
 140			   struct btrfs_root *root,
 141			   struct btrfs_log_ctx *ctx)
 142{
 143	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 144	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 145
 146	mutex_lock(&root->log_mutex);
 147
 
 148	if (root->log_root) {
 
 
 149		if (btrfs_need_log_full_commit(trans)) {
 150			ret = -EAGAIN;
 151			goto out;
 152		}
 153
 
 
 
 
 
 154		if (!root->log_start_pid) {
 155			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 156			root->log_start_pid = current->pid;
 157		} else if (root->log_start_pid != current->pid) {
 158			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 159		}
 160	} else {
 161		mutex_lock(&fs_info->tree_log_mutex);
 162		if (!fs_info->log_root_tree)
 163			ret = btrfs_init_log_root_tree(trans, fs_info);
 164		mutex_unlock(&fs_info->tree_log_mutex);
 165		if (ret)
 
 
 
 166			goto out;
 
 167
 168		ret = btrfs_add_log_tree(trans, root);
 169		if (ret)
 170			goto out;
 171
 172		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
 173		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 174		root->log_start_pid = current->pid;
 175	}
 176
 177	atomic_inc(&root->log_batch);
 178	atomic_inc(&root->log_writers);
 179	if (ctx) {
 180		int index = root->log_transid % 2;
 181		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 182		ctx->log_transid = root->log_transid;
 183	}
 184
 185out:
 186	mutex_unlock(&root->log_mutex);
 187	return ret;
 188}
 189
 190/*
 191 * returns 0 if there was a log transaction running and we were able
 192 * to join, or returns -ENOENT if there were not transactions
 193 * in progress
 194 */
 195static int join_running_log_trans(struct btrfs_root *root)
 196{
 
 197	int ret = -ENOENT;
 198
 199	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
 200		return ret;
 201
 202	mutex_lock(&root->log_mutex);
 
 203	if (root->log_root) {
 
 
 204		ret = 0;
 
 
 
 
 205		atomic_inc(&root->log_writers);
 206	}
 207	mutex_unlock(&root->log_mutex);
 208	return ret;
 209}
 210
 211/*
 212 * This either makes the current running log transaction wait
 213 * until you call btrfs_end_log_trans() or it makes any future
 214 * log transactions wait until you call btrfs_end_log_trans()
 215 */
 216void btrfs_pin_log_trans(struct btrfs_root *root)
 217{
 218	mutex_lock(&root->log_mutex);
 219	atomic_inc(&root->log_writers);
 220	mutex_unlock(&root->log_mutex);
 221}
 222
 223/*
 224 * indicate we're done making changes to the log tree
 225 * and wake up anyone waiting to do a sync
 226 */
 227void btrfs_end_log_trans(struct btrfs_root *root)
 228{
 229	if (atomic_dec_and_test(&root->log_writers)) {
 230		/* atomic_dec_and_test implies a barrier */
 231		cond_wake_up_nomb(&root->log_writer_wait);
 232	}
 233}
 234
 235static int btrfs_write_tree_block(struct extent_buffer *buf)
 236{
 237	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
 238					buf->start + buf->len - 1);
 239}
 240
 241static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
 242{
 243	filemap_fdatawait_range(buf->pages[0]->mapping,
 244			        buf->start, buf->start + buf->len - 1);
 245}
 246
 247/*
 248 * the walk control struct is used to pass state down the chain when
 249 * processing the log tree.  The stage field tells us which part
 250 * of the log tree processing we are currently doing.  The others
 251 * are state fields used for that specific part
 252 */
 253struct walk_control {
 254	/* should we free the extent on disk when done?  This is used
 255	 * at transaction commit time while freeing a log tree
 256	 */
 257	int free;
 258
 259	/* should we write out the extent buffer?  This is used
 260	 * while flushing the log tree to disk during a sync
 261	 */
 262	int write;
 263
 264	/* should we wait for the extent buffer io to finish?  Also used
 265	 * while flushing the log tree to disk for a sync
 266	 */
 267	int wait;
 268
 269	/* pin only walk, we record which extents on disk belong to the
 270	 * log trees
 271	 */
 272	int pin;
 273
 274	/* what stage of the replay code we're currently in */
 275	int stage;
 276
 277	/*
 278	 * Ignore any items from the inode currently being processed. Needs
 279	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 280	 * the LOG_WALK_REPLAY_INODES stage.
 281	 */
 282	bool ignore_cur_inode;
 283
 284	/* the root we are currently replaying */
 285	struct btrfs_root *replay_dest;
 286
 287	/* the trans handle for the current replay */
 288	struct btrfs_trans_handle *trans;
 289
 290	/* the function that gets used to process blocks we find in the
 291	 * tree.  Note the extent_buffer might not be up to date when it is
 292	 * passed in, and it must be checked or read if you need the data
 293	 * inside it
 294	 */
 295	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 296			    struct walk_control *wc, u64 gen, int level);
 297};
 298
 299/*
 300 * process_func used to pin down extents, write them or wait on them
 301 */
 302static int process_one_buffer(struct btrfs_root *log,
 303			      struct extent_buffer *eb,
 304			      struct walk_control *wc, u64 gen, int level)
 305{
 306	struct btrfs_fs_info *fs_info = log->fs_info;
 307	int ret = 0;
 308
 309	/*
 310	 * If this fs is mixed then we need to be able to process the leaves to
 311	 * pin down any logged extents, so we have to read the block.
 312	 */
 313	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 314		ret = btrfs_read_buffer(eb, gen, level, NULL);
 
 
 
 
 
 315		if (ret)
 316			return ret;
 317	}
 318
 319	if (wc->pin)
 320		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
 321						      eb->len);
 
 322
 323	if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
 324		if (wc->pin && btrfs_header_level(eb) == 0)
 325			ret = btrfs_exclude_logged_extents(eb);
 326		if (wc->write)
 327			btrfs_write_tree_block(eb);
 328		if (wc->wait)
 329			btrfs_wait_tree_block_writeback(eb);
 330	}
 331	return ret;
 332}
 333
 334/*
 335 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 336 * to the src data we are copying out.
 337 *
 338 * root is the tree we are copying into, and path is a scratch
 339 * path for use in this function (it should be released on entry and
 340 * will be released on exit).
 341 *
 342 * If the key is already in the destination tree the existing item is
 343 * overwritten.  If the existing item isn't big enough, it is extended.
 344 * If it is too large, it is truncated.
 345 *
 346 * If the key isn't in the destination yet, a new item is inserted.
 347 */
 348static noinline int overwrite_item(struct btrfs_trans_handle *trans,
 349				   struct btrfs_root *root,
 350				   struct btrfs_path *path,
 351				   struct extent_buffer *eb, int slot,
 352				   struct btrfs_key *key)
 353{
 354	int ret;
 355	u32 item_size;
 356	u64 saved_i_size = 0;
 357	int save_old_i_size = 0;
 358	unsigned long src_ptr;
 359	unsigned long dst_ptr;
 360	int overwrite_root = 0;
 361	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 362
 363	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
 364		overwrite_root = 1;
 
 
 
 
 
 
 365
 366	item_size = btrfs_item_size_nr(eb, slot);
 367	src_ptr = btrfs_item_ptr_offset(eb, slot);
 368
 369	/* look for the key in the destination tree */
 370	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 371	if (ret < 0)
 372		return ret;
 373
 374	if (ret == 0) {
 375		char *src_copy;
 376		char *dst_copy;
 377		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
 378						  path->slots[0]);
 379		if (dst_size != item_size)
 380			goto insert;
 381
 382		if (item_size == 0) {
 383			btrfs_release_path(path);
 384			return 0;
 385		}
 386		dst_copy = kmalloc(item_size, GFP_NOFS);
 387		src_copy = kmalloc(item_size, GFP_NOFS);
 388		if (!dst_copy || !src_copy) {
 389			btrfs_release_path(path);
 390			kfree(dst_copy);
 391			kfree(src_copy);
 392			return -ENOMEM;
 393		}
 394
 395		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 396
 397		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 398		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 399				   item_size);
 400		ret = memcmp(dst_copy, src_copy, item_size);
 401
 402		kfree(dst_copy);
 403		kfree(src_copy);
 404		/*
 405		 * they have the same contents, just return, this saves
 406		 * us from cowing blocks in the destination tree and doing
 407		 * extra writes that may not have been done by a previous
 408		 * sync
 409		 */
 410		if (ret == 0) {
 411			btrfs_release_path(path);
 412			return 0;
 413		}
 414
 415		/*
 416		 * We need to load the old nbytes into the inode so when we
 417		 * replay the extents we've logged we get the right nbytes.
 418		 */
 419		if (inode_item) {
 420			struct btrfs_inode_item *item;
 421			u64 nbytes;
 422			u32 mode;
 423
 424			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 425					      struct btrfs_inode_item);
 426			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 427			item = btrfs_item_ptr(eb, slot,
 428					      struct btrfs_inode_item);
 429			btrfs_set_inode_nbytes(eb, item, nbytes);
 430
 431			/*
 432			 * If this is a directory we need to reset the i_size to
 433			 * 0 so that we can set it up properly when replaying
 434			 * the rest of the items in this log.
 435			 */
 436			mode = btrfs_inode_mode(eb, item);
 437			if (S_ISDIR(mode))
 438				btrfs_set_inode_size(eb, item, 0);
 439		}
 440	} else if (inode_item) {
 441		struct btrfs_inode_item *item;
 442		u32 mode;
 443
 444		/*
 445		 * New inode, set nbytes to 0 so that the nbytes comes out
 446		 * properly when we replay the extents.
 447		 */
 448		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 449		btrfs_set_inode_nbytes(eb, item, 0);
 450
 451		/*
 452		 * If this is a directory we need to reset the i_size to 0 so
 453		 * that we can set it up properly when replaying the rest of
 454		 * the items in this log.
 455		 */
 456		mode = btrfs_inode_mode(eb, item);
 457		if (S_ISDIR(mode))
 458			btrfs_set_inode_size(eb, item, 0);
 459	}
 460insert:
 461	btrfs_release_path(path);
 462	/* try to insert the key into the destination tree */
 463	path->skip_release_on_error = 1;
 464	ret = btrfs_insert_empty_item(trans, root, path,
 465				      key, item_size);
 466	path->skip_release_on_error = 0;
 467
 468	/* make sure any existing item is the correct size */
 469	if (ret == -EEXIST || ret == -EOVERFLOW) {
 470		u32 found_size;
 471		found_size = btrfs_item_size_nr(path->nodes[0],
 472						path->slots[0]);
 473		if (found_size > item_size)
 474			btrfs_truncate_item(path, item_size, 1);
 475		else if (found_size < item_size)
 476			btrfs_extend_item(path, item_size - found_size);
 477	} else if (ret) {
 478		return ret;
 479	}
 480	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 481					path->slots[0]);
 482
 483	/* don't overwrite an existing inode if the generation number
 484	 * was logged as zero.  This is done when the tree logging code
 485	 * is just logging an inode to make sure it exists after recovery.
 486	 *
 487	 * Also, don't overwrite i_size on directories during replay.
 488	 * log replay inserts and removes directory items based on the
 489	 * state of the tree found in the subvolume, and i_size is modified
 490	 * as it goes
 491	 */
 492	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 493		struct btrfs_inode_item *src_item;
 494		struct btrfs_inode_item *dst_item;
 495
 496		src_item = (struct btrfs_inode_item *)src_ptr;
 497		dst_item = (struct btrfs_inode_item *)dst_ptr;
 498
 499		if (btrfs_inode_generation(eb, src_item) == 0) {
 500			struct extent_buffer *dst_eb = path->nodes[0];
 501			const u64 ino_size = btrfs_inode_size(eb, src_item);
 502
 503			/*
 504			 * For regular files an ino_size == 0 is used only when
 505			 * logging that an inode exists, as part of a directory
 506			 * fsync, and the inode wasn't fsynced before. In this
 507			 * case don't set the size of the inode in the fs/subvol
 508			 * tree, otherwise we would be throwing valid data away.
 509			 */
 510			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 511			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 512			    ino_size != 0)
 513				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
 514			goto no_copy;
 515		}
 516
 517		if (overwrite_root &&
 518		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 519		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 520			save_old_i_size = 1;
 521			saved_i_size = btrfs_inode_size(path->nodes[0],
 522							dst_item);
 523		}
 524	}
 525
 526	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 527			   src_ptr, item_size);
 528
 529	if (save_old_i_size) {
 530		struct btrfs_inode_item *dst_item;
 531		dst_item = (struct btrfs_inode_item *)dst_ptr;
 532		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 533	}
 534
 535	/* make sure the generation is filled in */
 536	if (key->type == BTRFS_INODE_ITEM_KEY) {
 537		struct btrfs_inode_item *dst_item;
 538		dst_item = (struct btrfs_inode_item *)dst_ptr;
 539		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 540			btrfs_set_inode_generation(path->nodes[0], dst_item,
 541						   trans->transid);
 542		}
 543	}
 544no_copy:
 545	btrfs_mark_buffer_dirty(path->nodes[0]);
 546	btrfs_release_path(path);
 547	return 0;
 548}
 549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550/*
 551 * simple helper to read an inode off the disk from a given root
 552 * This can only be called for subvolume roots and not for the log
 553 */
 554static noinline struct inode *read_one_inode(struct btrfs_root *root,
 555					     u64 objectid)
 556{
 557	struct inode *inode;
 558
 559	inode = btrfs_iget(root->fs_info->sb, objectid, root);
 560	if (IS_ERR(inode))
 561		inode = NULL;
 562	return inode;
 563}
 564
 565/* replays a single extent in 'eb' at 'slot' with 'key' into the
 566 * subvolume 'root'.  path is released on entry and should be released
 567 * on exit.
 568 *
 569 * extents in the log tree have not been allocated out of the extent
 570 * tree yet.  So, this completes the allocation, taking a reference
 571 * as required if the extent already exists or creating a new extent
 572 * if it isn't in the extent allocation tree yet.
 573 *
 574 * The extent is inserted into the file, dropping any existing extents
 575 * from the file that overlap the new one.
 576 */
 577static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 578				      struct btrfs_root *root,
 579				      struct btrfs_path *path,
 580				      struct extent_buffer *eb, int slot,
 581				      struct btrfs_key *key)
 582{
 
 583	struct btrfs_fs_info *fs_info = root->fs_info;
 584	int found_type;
 585	u64 extent_end;
 586	u64 start = key->offset;
 587	u64 nbytes = 0;
 588	struct btrfs_file_extent_item *item;
 589	struct inode *inode = NULL;
 590	unsigned long size;
 591	int ret = 0;
 592
 593	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 594	found_type = btrfs_file_extent_type(eb, item);
 595
 596	if (found_type == BTRFS_FILE_EXTENT_REG ||
 597	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 598		nbytes = btrfs_file_extent_num_bytes(eb, item);
 599		extent_end = start + nbytes;
 600
 601		/*
 602		 * We don't add to the inodes nbytes if we are prealloc or a
 603		 * hole.
 604		 */
 605		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 606			nbytes = 0;
 607	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 608		size = btrfs_file_extent_ram_bytes(eb, item);
 609		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 610		extent_end = ALIGN(start + size,
 611				   fs_info->sectorsize);
 612	} else {
 613		ret = 0;
 614		goto out;
 615	}
 616
 617	inode = read_one_inode(root, key->objectid);
 618	if (!inode) {
 619		ret = -EIO;
 620		goto out;
 621	}
 622
 623	/*
 624	 * first check to see if we already have this extent in the
 625	 * file.  This must be done before the btrfs_drop_extents run
 626	 * so we don't try to drop this extent.
 627	 */
 628	ret = btrfs_lookup_file_extent(trans, root, path,
 629			btrfs_ino(BTRFS_I(inode)), start, 0);
 630
 631	if (ret == 0 &&
 632	    (found_type == BTRFS_FILE_EXTENT_REG ||
 633	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 634		struct btrfs_file_extent_item cmp1;
 635		struct btrfs_file_extent_item cmp2;
 636		struct btrfs_file_extent_item *existing;
 637		struct extent_buffer *leaf;
 638
 639		leaf = path->nodes[0];
 640		existing = btrfs_item_ptr(leaf, path->slots[0],
 641					  struct btrfs_file_extent_item);
 642
 643		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 644				   sizeof(cmp1));
 645		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 646				   sizeof(cmp2));
 647
 648		/*
 649		 * we already have a pointer to this exact extent,
 650		 * we don't have to do anything
 651		 */
 652		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 653			btrfs_release_path(path);
 654			goto out;
 655		}
 656	}
 657	btrfs_release_path(path);
 658
 659	/* drop any overlapping extents */
 660	ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
 
 
 
 661	if (ret)
 662		goto out;
 663
 664	if (found_type == BTRFS_FILE_EXTENT_REG ||
 665	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 666		u64 offset;
 667		unsigned long dest_offset;
 668		struct btrfs_key ins;
 669
 670		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 671		    btrfs_fs_incompat(fs_info, NO_HOLES))
 672			goto update_inode;
 673
 674		ret = btrfs_insert_empty_item(trans, root, path, key,
 675					      sizeof(*item));
 676		if (ret)
 677			goto out;
 678		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 679						    path->slots[0]);
 680		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 681				(unsigned long)item,  sizeof(*item));
 682
 683		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 684		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 685		ins.type = BTRFS_EXTENT_ITEM_KEY;
 686		offset = key->offset - btrfs_file_extent_offset(eb, item);
 687
 688		/*
 689		 * Manually record dirty extent, as here we did a shallow
 690		 * file extent item copy and skip normal backref update,
 691		 * but modifying extent tree all by ourselves.
 692		 * So need to manually record dirty extent for qgroup,
 693		 * as the owner of the file extent changed from log tree
 694		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 695		 */
 696		ret = btrfs_qgroup_trace_extent(trans,
 697				btrfs_file_extent_disk_bytenr(eb, item),
 698				btrfs_file_extent_disk_num_bytes(eb, item),
 699				GFP_NOFS);
 700		if (ret < 0)
 701			goto out;
 702
 703		if (ins.objectid > 0) {
 704			struct btrfs_ref ref = { 0 };
 705			u64 csum_start;
 706			u64 csum_end;
 707			LIST_HEAD(ordered_sums);
 708
 709			/*
 710			 * is this extent already allocated in the extent
 711			 * allocation tree?  If so, just add a reference
 712			 */
 713			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 714						ins.offset);
 715			if (ret == 0) {
 
 
 716				btrfs_init_generic_ref(&ref,
 717						BTRFS_ADD_DELAYED_REF,
 718						ins.objectid, ins.offset, 0);
 
 719				btrfs_init_data_ref(&ref,
 720						root->root_key.objectid,
 721						key->objectid, offset);
 722				ret = btrfs_inc_extent_ref(trans, &ref);
 723				if (ret)
 724					goto out;
 725			} else {
 726				/*
 727				 * insert the extent pointer in the extent
 728				 * allocation tree
 729				 */
 730				ret = btrfs_alloc_logged_file_extent(trans,
 731						root->root_key.objectid,
 732						key->objectid, offset, &ins);
 733				if (ret)
 734					goto out;
 735			}
 736			btrfs_release_path(path);
 737
 738			if (btrfs_file_extent_compression(eb, item)) {
 739				csum_start = ins.objectid;
 740				csum_end = csum_start + ins.offset;
 741			} else {
 742				csum_start = ins.objectid +
 743					btrfs_file_extent_offset(eb, item);
 744				csum_end = csum_start +
 745					btrfs_file_extent_num_bytes(eb, item);
 746			}
 747
 748			ret = btrfs_lookup_csums_range(root->log_root,
 749						csum_start, csum_end - 1,
 750						&ordered_sums, 0);
 751			if (ret)
 752				goto out;
 753			/*
 754			 * Now delete all existing cums in the csum root that
 755			 * cover our range. We do this because we can have an
 756			 * extent that is completely referenced by one file
 757			 * extent item and partially referenced by another
 758			 * file extent item (like after using the clone or
 759			 * extent_same ioctls). In this case if we end up doing
 760			 * the replay of the one that partially references the
 761			 * extent first, and we do not do the csum deletion
 762			 * below, we can get 2 csum items in the csum tree that
 763			 * overlap each other. For example, imagine our log has
 764			 * the two following file extent items:
 765			 *
 766			 * key (257 EXTENT_DATA 409600)
 767			 *     extent data disk byte 12845056 nr 102400
 768			 *     extent data offset 20480 nr 20480 ram 102400
 769			 *
 770			 * key (257 EXTENT_DATA 819200)
 771			 *     extent data disk byte 12845056 nr 102400
 772			 *     extent data offset 0 nr 102400 ram 102400
 773			 *
 774			 * Where the second one fully references the 100K extent
 775			 * that starts at disk byte 12845056, and the log tree
 776			 * has a single csum item that covers the entire range
 777			 * of the extent:
 778			 *
 779			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 780			 *
 781			 * After the first file extent item is replayed, the
 782			 * csum tree gets the following csum item:
 783			 *
 784			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 785			 *
 786			 * Which covers the 20K sub-range starting at offset 20K
 787			 * of our extent. Now when we replay the second file
 788			 * extent item, if we do not delete existing csum items
 789			 * that cover any of its blocks, we end up getting two
 790			 * csum items in our csum tree that overlap each other:
 791			 *
 792			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 793			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 794			 *
 795			 * Which is a problem, because after this anyone trying
 796			 * to lookup up for the checksum of any block of our
 797			 * extent starting at an offset of 40K or higher, will
 798			 * end up looking at the second csum item only, which
 799			 * does not contain the checksum for any block starting
 800			 * at offset 40K or higher of our extent.
 801			 */
 802			while (!list_empty(&ordered_sums)) {
 803				struct btrfs_ordered_sum *sums;
 
 
 804				sums = list_entry(ordered_sums.next,
 805						struct btrfs_ordered_sum,
 806						list);
 
 
 807				if (!ret)
 808					ret = btrfs_del_csums(trans,
 809							      fs_info->csum_root,
 810							      sums->bytenr,
 811							      sums->len);
 812				if (!ret)
 813					ret = btrfs_csum_file_blocks(trans,
 814						fs_info->csum_root, sums);
 
 815				list_del(&sums->list);
 816				kfree(sums);
 817			}
 818			if (ret)
 819				goto out;
 820		} else {
 821			btrfs_release_path(path);
 822		}
 823	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 824		/* inline extents are easy, we just overwrite them */
 825		ret = overwrite_item(trans, root, path, eb, slot, key);
 826		if (ret)
 827			goto out;
 828	}
 829
 830	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
 831						extent_end - start);
 832	if (ret)
 833		goto out;
 834
 835	inode_add_bytes(inode, nbytes);
 836update_inode:
 837	ret = btrfs_update_inode(trans, root, inode);
 
 838out:
 839	if (inode)
 840		iput(inode);
 841	return ret;
 842}
 843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844/*
 845 * when cleaning up conflicts between the directory names in the
 846 * subvolume, directory names in the log and directory names in the
 847 * inode back references, we may have to unlink inodes from directories.
 848 *
 849 * This is a helper function to do the unlink of a specific directory
 850 * item
 851 */
 852static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 853				      struct btrfs_root *root,
 854				      struct btrfs_path *path,
 855				      struct btrfs_inode *dir,
 856				      struct btrfs_dir_item *di)
 857{
 
 858	struct inode *inode;
 859	char *name;
 860	int name_len;
 861	struct extent_buffer *leaf;
 862	struct btrfs_key location;
 863	int ret;
 864
 865	leaf = path->nodes[0];
 866
 867	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 868	name_len = btrfs_dir_name_len(leaf, di);
 869	name = kmalloc(name_len, GFP_NOFS);
 870	if (!name)
 871		return -ENOMEM;
 872
 873	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
 874	btrfs_release_path(path);
 875
 876	inode = read_one_inode(root, location.objectid);
 877	if (!inode) {
 878		ret = -EIO;
 879		goto out;
 880	}
 881
 882	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 883	if (ret)
 884		goto out;
 885
 886	ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
 887			name_len);
 888	if (ret)
 889		goto out;
 890	else
 891		ret = btrfs_run_delayed_items(trans);
 892out:
 893	kfree(name);
 894	iput(inode);
 895	return ret;
 896}
 897
 898/*
 899 * helper function to see if a given name and sequence number found
 900 * in an inode back reference are already in a directory and correctly
 901 * point to this inode
 
 
 902 */
 903static noinline int inode_in_dir(struct btrfs_root *root,
 904				 struct btrfs_path *path,
 905				 u64 dirid, u64 objectid, u64 index,
 906				 const char *name, int name_len)
 907{
 908	struct btrfs_dir_item *di;
 909	struct btrfs_key location;
 910	int match = 0;
 911
 912	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 913					 index, name, name_len, 0);
 914	if (di && !IS_ERR(di)) {
 
 
 
 915		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 916		if (location.objectid != objectid)
 917			goto out;
 918	} else
 919		goto out;
 920	btrfs_release_path(path);
 921
 922	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
 923	if (di && !IS_ERR(di)) {
 924		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 925		if (location.objectid != objectid)
 926			goto out;
 927	} else
 928		goto out;
 929	match = 1;
 
 
 
 
 930out:
 931	btrfs_release_path(path);
 932	return match;
 933}
 934
 935/*
 936 * helper function to check a log tree for a named back reference in
 937 * an inode.  This is used to decide if a back reference that is
 938 * found in the subvolume conflicts with what we find in the log.
 939 *
 940 * inode backreferences may have multiple refs in a single item,
 941 * during replay we process one reference at a time, and we don't
 942 * want to delete valid links to a file from the subvolume if that
 943 * link is also in the log.
 944 */
 945static noinline int backref_in_log(struct btrfs_root *log,
 946				   struct btrfs_key *key,
 947				   u64 ref_objectid,
 948				   const char *name, int namelen)
 949{
 950	struct btrfs_path *path;
 951	int ret;
 952
 953	path = btrfs_alloc_path();
 954	if (!path)
 955		return -ENOMEM;
 956
 957	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
 958	if (ret < 0) {
 959		goto out;
 960	} else if (ret == 1) {
 961		ret = 0;
 962		goto out;
 963	}
 964
 965	if (key->type == BTRFS_INODE_EXTREF_KEY)
 966		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
 967						       path->slots[0],
 968						       ref_objectid,
 969						       name, namelen);
 970	else
 971		ret = !!btrfs_find_name_in_backref(path->nodes[0],
 972						   path->slots[0],
 973						   name, namelen);
 974out:
 975	btrfs_free_path(path);
 976	return ret;
 977}
 978
 979static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
 980				  struct btrfs_root *root,
 981				  struct btrfs_path *path,
 982				  struct btrfs_root *log_root,
 983				  struct btrfs_inode *dir,
 984				  struct btrfs_inode *inode,
 985				  u64 inode_objectid, u64 parent_objectid,
 986				  u64 ref_index, char *name, int namelen,
 987				  int *search_done)
 988{
 989	int ret;
 990	char *victim_name;
 991	int victim_name_len;
 992	struct extent_buffer *leaf;
 993	struct btrfs_dir_item *di;
 994	struct btrfs_key search_key;
 995	struct btrfs_inode_extref *extref;
 996
 997again:
 998	/* Search old style refs */
 999	search_key.objectid = inode_objectid;
1000	search_key.type = BTRFS_INODE_REF_KEY;
1001	search_key.offset = parent_objectid;
1002	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1003	if (ret == 0) {
1004		struct btrfs_inode_ref *victim_ref;
1005		unsigned long ptr;
1006		unsigned long ptr_end;
1007
1008		leaf = path->nodes[0];
1009
1010		/* are we trying to overwrite a back ref for the root directory
1011		 * if so, just jump out, we're done
1012		 */
1013		if (search_key.objectid == search_key.offset)
1014			return 1;
1015
1016		/* check all the names in this back reference to see
1017		 * if they are in the log.  if so, we allow them to stay
1018		 * otherwise they must be unlinked as a conflict
1019		 */
1020		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1021		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1022		while (ptr < ptr_end) {
 
 
1023			victim_ref = (struct btrfs_inode_ref *)ptr;
1024			victim_name_len = btrfs_inode_ref_name_len(leaf,
1025								   victim_ref);
1026			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1027			if (!victim_name)
1028				return -ENOMEM;
1029
1030			read_extent_buffer(leaf, victim_name,
1031					   (unsigned long)(victim_ref + 1),
1032					   victim_name_len);
1033
1034			ret = backref_in_log(log_root, &search_key,
1035					     parent_objectid, victim_name,
1036					     victim_name_len);
1037			if (ret < 0) {
1038				kfree(victim_name);
1039				return ret;
1040			} else if (!ret) {
1041				inc_nlink(&inode->vfs_inode);
1042				btrfs_release_path(path);
1043
1044				ret = btrfs_unlink_inode(trans, root, dir, inode,
1045						victim_name, victim_name_len);
1046				kfree(victim_name);
1047				if (ret)
1048					return ret;
1049				ret = btrfs_run_delayed_items(trans);
1050				if (ret)
1051					return ret;
1052				*search_done = 1;
1053				goto again;
1054			}
1055			kfree(victim_name);
1056
1057			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1058		}
1059
1060		/*
1061		 * NOTE: we have searched root tree and checked the
1062		 * corresponding ref, it does not need to check again.
1063		 */
1064		*search_done = 1;
1065	}
1066	btrfs_release_path(path);
1067
1068	/* Same search but for extended refs */
1069	extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070					   inode_objectid, parent_objectid, 0,
1071					   0);
1072	if (!IS_ERR_OR_NULL(extref)) {
 
 
1073		u32 item_size;
1074		u32 cur_offset = 0;
1075		unsigned long base;
1076		struct inode *victim_parent;
1077
1078		leaf = path->nodes[0];
1079
1080		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1082
1083		while (cur_offset < item_size) {
1084			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1085
1086			victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1087
1088			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089				goto next;
1090
1091			victim_name = kmalloc(victim_name_len, GFP_NOFS);
1092			if (!victim_name)
1093				return -ENOMEM;
1094			read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095					   victim_name_len);
1096
1097			search_key.objectid = inode_objectid;
1098			search_key.type = BTRFS_INODE_EXTREF_KEY;
1099			search_key.offset = btrfs_extref_hash(parent_objectid,
1100							      victim_name,
1101							      victim_name_len);
1102			ret = backref_in_log(log_root, &search_key,
1103					     parent_objectid, victim_name,
1104					     victim_name_len);
1105			if (ret < 0) {
 
1106				return ret;
1107			} else if (!ret) {
1108				ret = -ENOENT;
1109				victim_parent = read_one_inode(root,
1110						parent_objectid);
1111				if (victim_parent) {
1112					inc_nlink(&inode->vfs_inode);
1113					btrfs_release_path(path);
1114
1115					ret = btrfs_unlink_inode(trans, root,
1116							BTRFS_I(victim_parent),
1117							inode,
1118							victim_name,
1119							victim_name_len);
1120					if (!ret)
1121						ret = btrfs_run_delayed_items(
1122								  trans);
1123				}
1124				iput(victim_parent);
1125				kfree(victim_name);
1126				if (ret)
1127					return ret;
1128				*search_done = 1;
1129				goto again;
1130			}
1131			kfree(victim_name);
1132next:
1133			cur_offset += victim_name_len + sizeof(*extref);
1134		}
1135		*search_done = 1;
1136	}
1137	btrfs_release_path(path);
1138
1139	/* look for a conflicting sequence number */
1140	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1141					 ref_index, name, namelen, 0);
1142	if (di && !IS_ERR(di)) {
1143		ret = drop_one_dir_item(trans, root, path, dir, di);
 
 
1144		if (ret)
1145			return ret;
1146	}
1147	btrfs_release_path(path);
1148
1149	/* look for a conflicting name */
1150	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1151				   name, namelen, 0);
1152	if (di && !IS_ERR(di)) {
1153		ret = drop_one_dir_item(trans, root, path, dir, di);
 
1154		if (ret)
1155			return ret;
1156	}
1157	btrfs_release_path(path);
1158
1159	return 0;
1160}
1161
1162static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1163			     u32 *namelen, char **name, u64 *index,
1164			     u64 *parent_objectid)
1165{
1166	struct btrfs_inode_extref *extref;
 
1167
1168	extref = (struct btrfs_inode_extref *)ref_ptr;
1169
1170	*namelen = btrfs_inode_extref_name_len(eb, extref);
1171	*name = kmalloc(*namelen, GFP_NOFS);
1172	if (*name == NULL)
1173		return -ENOMEM;
1174
1175	read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1176			   *namelen);
1177
1178	if (index)
1179		*index = btrfs_inode_extref_index(eb, extref);
1180	if (parent_objectid)
1181		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1182
1183	return 0;
1184}
1185
1186static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1187			  u32 *namelen, char **name, u64 *index)
1188{
1189	struct btrfs_inode_ref *ref;
 
1190
1191	ref = (struct btrfs_inode_ref *)ref_ptr;
1192
1193	*namelen = btrfs_inode_ref_name_len(eb, ref);
1194	*name = kmalloc(*namelen, GFP_NOFS);
1195	if (*name == NULL)
1196		return -ENOMEM;
1197
1198	read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1199
1200	if (index)
1201		*index = btrfs_inode_ref_index(eb, ref);
1202
1203	return 0;
1204}
1205
1206/*
1207 * Take an inode reference item from the log tree and iterate all names from the
1208 * inode reference item in the subvolume tree with the same key (if it exists).
1209 * For any name that is not in the inode reference item from the log tree, do a
1210 * proper unlink of that name (that is, remove its entry from the inode
1211 * reference item and both dir index keys).
1212 */
1213static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1214				 struct btrfs_root *root,
1215				 struct btrfs_path *path,
1216				 struct btrfs_inode *inode,
1217				 struct extent_buffer *log_eb,
1218				 int log_slot,
1219				 struct btrfs_key *key)
1220{
1221	int ret;
1222	unsigned long ref_ptr;
1223	unsigned long ref_end;
1224	struct extent_buffer *eb;
1225
1226again:
1227	btrfs_release_path(path);
1228	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1229	if (ret > 0) {
1230		ret = 0;
1231		goto out;
1232	}
1233	if (ret < 0)
1234		goto out;
1235
1236	eb = path->nodes[0];
1237	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1238	ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1239	while (ref_ptr < ref_end) {
1240		char *name = NULL;
1241		int namelen;
1242		u64 parent_id;
1243
1244		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1245			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1246						NULL, &parent_id);
1247		} else {
1248			parent_id = key->offset;
1249			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1250					     NULL);
1251		}
1252		if (ret)
1253			goto out;
1254
1255		if (key->type == BTRFS_INODE_EXTREF_KEY)
1256			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1257							       parent_id, name,
1258							       namelen);
1259		else
1260			ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1261							   name, namelen);
1262
1263		if (!ret) {
1264			struct inode *dir;
1265
1266			btrfs_release_path(path);
1267			dir = read_one_inode(root, parent_id);
1268			if (!dir) {
1269				ret = -ENOENT;
1270				kfree(name);
1271				goto out;
1272			}
1273			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1274						 inode, name, namelen);
1275			kfree(name);
1276			iput(dir);
1277			if (ret)
1278				goto out;
1279			goto again;
1280		}
1281
1282		kfree(name);
1283		ref_ptr += namelen;
1284		if (key->type == BTRFS_INODE_EXTREF_KEY)
1285			ref_ptr += sizeof(struct btrfs_inode_extref);
1286		else
1287			ref_ptr += sizeof(struct btrfs_inode_ref);
1288	}
1289	ret = 0;
1290 out:
1291	btrfs_release_path(path);
1292	return ret;
1293}
1294
1295static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1296				  const u8 ref_type, const char *name,
1297				  const int namelen)
1298{
1299	struct btrfs_key key;
1300	struct btrfs_path *path;
1301	const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1302	int ret;
1303
1304	path = btrfs_alloc_path();
1305	if (!path)
1306		return -ENOMEM;
1307
1308	key.objectid = btrfs_ino(BTRFS_I(inode));
1309	key.type = ref_type;
1310	if (key.type == BTRFS_INODE_REF_KEY)
1311		key.offset = parent_id;
1312	else
1313		key.offset = btrfs_extref_hash(parent_id, name, namelen);
1314
1315	ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1316	if (ret < 0)
1317		goto out;
1318	if (ret > 0) {
1319		ret = 0;
1320		goto out;
1321	}
1322	if (key.type == BTRFS_INODE_EXTREF_KEY)
1323		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1324				path->slots[0], parent_id, name, namelen);
1325	else
1326		ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327						   name, namelen);
1328
1329out:
1330	btrfs_free_path(path);
1331	return ret;
1332}
1333
1334static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335		    struct inode *dir, struct inode *inode, const char *name,
1336		    int namelen, u64 ref_index)
1337{
1338	struct btrfs_dir_item *dir_item;
1339	struct btrfs_key key;
1340	struct btrfs_path *path;
1341	struct inode *other_inode = NULL;
1342	int ret;
1343
1344	path = btrfs_alloc_path();
1345	if (!path)
1346		return -ENOMEM;
1347
1348	dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349					 btrfs_ino(BTRFS_I(dir)),
1350					 name, namelen, 0);
1351	if (!dir_item) {
1352		btrfs_release_path(path);
1353		goto add_link;
1354	} else if (IS_ERR(dir_item)) {
1355		ret = PTR_ERR(dir_item);
1356		goto out;
1357	}
1358
1359	/*
1360	 * Our inode's dentry collides with the dentry of another inode which is
1361	 * in the log but not yet processed since it has a higher inode number.
1362	 * So delete that other dentry.
1363	 */
1364	btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365	btrfs_release_path(path);
1366	other_inode = read_one_inode(root, key.objectid);
1367	if (!other_inode) {
1368		ret = -ENOENT;
1369		goto out;
1370	}
1371	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372				 name, namelen);
1373	if (ret)
1374		goto out;
1375	/*
1376	 * If we dropped the link count to 0, bump it so that later the iput()
1377	 * on the inode will not free it. We will fixup the link count later.
1378	 */
1379	if (other_inode->i_nlink == 0)
1380		inc_nlink(other_inode);
1381
1382	ret = btrfs_run_delayed_items(trans);
1383	if (ret)
1384		goto out;
1385add_link:
1386	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387			     name, namelen, 0, ref_index);
1388out:
1389	iput(other_inode);
1390	btrfs_free_path(path);
1391
1392	return ret;
1393}
1394
1395/*
1396 * replay one inode back reference item found in the log tree.
1397 * eb, slot and key refer to the buffer and key found in the log tree.
1398 * root is the destination we are replaying into, and path is for temp
1399 * use by this function.  (it should be released on return).
1400 */
1401static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402				  struct btrfs_root *root,
1403				  struct btrfs_root *log,
1404				  struct btrfs_path *path,
1405				  struct extent_buffer *eb, int slot,
1406				  struct btrfs_key *key)
1407{
1408	struct inode *dir = NULL;
1409	struct inode *inode = NULL;
1410	unsigned long ref_ptr;
1411	unsigned long ref_end;
1412	char *name = NULL;
1413	int namelen;
1414	int ret;
1415	int search_done = 0;
1416	int log_ref_ver = 0;
1417	u64 parent_objectid;
1418	u64 inode_objectid;
1419	u64 ref_index = 0;
1420	int ref_struct_size;
1421
1422	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424
1425	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426		struct btrfs_inode_extref *r;
1427
1428		ref_struct_size = sizeof(struct btrfs_inode_extref);
1429		log_ref_ver = 1;
1430		r = (struct btrfs_inode_extref *)ref_ptr;
1431		parent_objectid = btrfs_inode_extref_parent(eb, r);
1432	} else {
1433		ref_struct_size = sizeof(struct btrfs_inode_ref);
1434		parent_objectid = key->offset;
1435	}
1436	inode_objectid = key->objectid;
1437
1438	/*
1439	 * it is possible that we didn't log all the parent directories
1440	 * for a given inode.  If we don't find the dir, just don't
1441	 * copy the back ref in.  The link count fixup code will take
1442	 * care of the rest
1443	 */
1444	dir = read_one_inode(root, parent_objectid);
1445	if (!dir) {
1446		ret = -ENOENT;
1447		goto out;
1448	}
1449
1450	inode = read_one_inode(root, inode_objectid);
1451	if (!inode) {
1452		ret = -EIO;
1453		goto out;
1454	}
1455
1456	while (ref_ptr < ref_end) {
1457		if (log_ref_ver) {
1458			ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459						&ref_index, &parent_objectid);
1460			/*
1461			 * parent object can change from one array
1462			 * item to another.
1463			 */
1464			if (!dir)
1465				dir = read_one_inode(root, parent_objectid);
1466			if (!dir) {
1467				ret = -ENOENT;
1468				goto out;
1469			}
1470		} else {
1471			ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472					     &ref_index);
1473		}
1474		if (ret)
1475			goto out;
1476
1477		/* if we already have a perfect match, we're done */
1478		if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479					btrfs_ino(BTRFS_I(inode)), ref_index,
1480					name, namelen)) {
 
1481			/*
1482			 * look for a conflicting back reference in the
1483			 * metadata. if we find one we have to unlink that name
1484			 * of the file before we add our new link.  Later on, we
1485			 * overwrite any existing back reference, and we don't
1486			 * want to create dangling pointers in the directory.
1487			 */
1488
1489			if (!search_done) {
1490				ret = __add_inode_ref(trans, root, path, log,
1491						      BTRFS_I(dir),
1492						      BTRFS_I(inode),
1493						      inode_objectid,
1494						      parent_objectid,
1495						      ref_index, name, namelen,
1496						      &search_done);
1497				if (ret) {
1498					if (ret == 1)
1499						ret = 0;
1500					goto out;
1501				}
1502			}
1503
1504			/*
1505			 * If a reference item already exists for this inode
1506			 * with the same parent and name, but different index,
1507			 * drop it and the corresponding directory index entries
1508			 * from the parent before adding the new reference item
1509			 * and dir index entries, otherwise we would fail with
1510			 * -EEXIST returned from btrfs_add_link() below.
1511			 */
1512			ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513						     name, namelen);
1514			if (ret > 0) {
1515				ret = btrfs_unlink_inode(trans, root,
1516							 BTRFS_I(dir),
1517							 BTRFS_I(inode),
1518							 name, namelen);
1519				/*
1520				 * If we dropped the link count to 0, bump it so
1521				 * that later the iput() on the inode will not
1522				 * free it. We will fixup the link count later.
1523				 */
1524				if (!ret && inode->i_nlink == 0)
1525					inc_nlink(inode);
1526			}
1527			if (ret < 0)
1528				goto out;
 
1529
1530			/* insert our name */
1531			ret = add_link(trans, root, dir, inode, name, namelen,
1532				       ref_index);
1533			if (ret)
1534				goto out;
1535
1536			btrfs_update_inode(trans, root, inode);
 
 
1537		}
 
1538
1539		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1540		kfree(name);
1541		name = NULL;
1542		if (log_ref_ver) {
1543			iput(dir);
1544			dir = NULL;
1545		}
1546	}
1547
1548	/*
1549	 * Before we overwrite the inode reference item in the subvolume tree
1550	 * with the item from the log tree, we must unlink all names from the
1551	 * parent directory that are in the subvolume's tree inode reference
1552	 * item, otherwise we end up with an inconsistent subvolume tree where
1553	 * dir index entries exist for a name but there is no inode reference
1554	 * item with the same name.
1555	 */
1556	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557				    key);
1558	if (ret)
1559		goto out;
1560
1561	/* finally write the back reference in the inode */
1562	ret = overwrite_item(trans, root, path, eb, slot, key);
1563out:
1564	btrfs_release_path(path);
1565	kfree(name);
1566	iput(dir);
1567	iput(inode);
1568	return ret;
1569}
1570
1571static int insert_orphan_item(struct btrfs_trans_handle *trans,
1572			      struct btrfs_root *root, u64 ino)
1573{
1574	int ret;
1575
1576	ret = btrfs_insert_orphan_item(trans, root, ino);
1577	if (ret == -EEXIST)
1578		ret = 0;
1579
1580	return ret;
1581}
1582
1583static int count_inode_extrefs(struct btrfs_root *root,
1584		struct btrfs_inode *inode, struct btrfs_path *path)
1585{
1586	int ret = 0;
1587	int name_len;
1588	unsigned int nlink = 0;
1589	u32 item_size;
1590	u32 cur_offset = 0;
1591	u64 inode_objectid = btrfs_ino(inode);
1592	u64 offset = 0;
1593	unsigned long ptr;
1594	struct btrfs_inode_extref *extref;
1595	struct extent_buffer *leaf;
1596
1597	while (1) {
1598		ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1599					    &extref, &offset);
1600		if (ret)
1601			break;
1602
1603		leaf = path->nodes[0];
1604		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1606		cur_offset = 0;
1607
1608		while (cur_offset < item_size) {
1609			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1610			name_len = btrfs_inode_extref_name_len(leaf, extref);
1611
1612			nlink++;
1613
1614			cur_offset += name_len + sizeof(*extref);
1615		}
1616
1617		offset++;
1618		btrfs_release_path(path);
1619	}
1620	btrfs_release_path(path);
1621
1622	if (ret < 0 && ret != -ENOENT)
1623		return ret;
1624	return nlink;
1625}
1626
1627static int count_inode_refs(struct btrfs_root *root,
1628			struct btrfs_inode *inode, struct btrfs_path *path)
1629{
1630	int ret;
1631	struct btrfs_key key;
1632	unsigned int nlink = 0;
1633	unsigned long ptr;
1634	unsigned long ptr_end;
1635	int name_len;
1636	u64 ino = btrfs_ino(inode);
1637
1638	key.objectid = ino;
1639	key.type = BTRFS_INODE_REF_KEY;
1640	key.offset = (u64)-1;
1641
1642	while (1) {
1643		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1644		if (ret < 0)
1645			break;
1646		if (ret > 0) {
1647			if (path->slots[0] == 0)
1648				break;
1649			path->slots[0]--;
1650		}
1651process_slot:
1652		btrfs_item_key_to_cpu(path->nodes[0], &key,
1653				      path->slots[0]);
1654		if (key.objectid != ino ||
1655		    key.type != BTRFS_INODE_REF_KEY)
1656			break;
1657		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1658		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1659						   path->slots[0]);
1660		while (ptr < ptr_end) {
1661			struct btrfs_inode_ref *ref;
1662
1663			ref = (struct btrfs_inode_ref *)ptr;
1664			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1665							    ref);
1666			ptr = (unsigned long)(ref + 1) + name_len;
1667			nlink++;
1668		}
1669
1670		if (key.offset == 0)
1671			break;
1672		if (path->slots[0] > 0) {
1673			path->slots[0]--;
1674			goto process_slot;
1675		}
1676		key.offset--;
1677		btrfs_release_path(path);
1678	}
1679	btrfs_release_path(path);
1680
1681	return nlink;
1682}
1683
1684/*
1685 * There are a few corners where the link count of the file can't
1686 * be properly maintained during replay.  So, instead of adding
1687 * lots of complexity to the log code, we just scan the backrefs
1688 * for any file that has been through replay.
1689 *
1690 * The scan will update the link count on the inode to reflect the
1691 * number of back refs found.  If it goes down to zero, the iput
1692 * will free the inode.
1693 */
1694static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1695					   struct btrfs_root *root,
1696					   struct inode *inode)
1697{
 
1698	struct btrfs_path *path;
1699	int ret;
1700	u64 nlink = 0;
1701	u64 ino = btrfs_ino(BTRFS_I(inode));
1702
1703	path = btrfs_alloc_path();
1704	if (!path)
1705		return -ENOMEM;
1706
1707	ret = count_inode_refs(root, BTRFS_I(inode), path);
1708	if (ret < 0)
1709		goto out;
1710
1711	nlink = ret;
1712
1713	ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1714	if (ret < 0)
1715		goto out;
1716
1717	nlink += ret;
1718
1719	ret = 0;
1720
1721	if (nlink != inode->i_nlink) {
1722		set_nlink(inode, nlink);
1723		btrfs_update_inode(trans, root, inode);
 
 
1724	}
1725	BTRFS_I(inode)->index_cnt = (u64)-1;
1726
1727	if (inode->i_nlink == 0) {
1728		if (S_ISDIR(inode->i_mode)) {
1729			ret = replay_dir_deletes(trans, root, NULL, path,
1730						 ino, 1);
1731			if (ret)
1732				goto out;
1733		}
1734		ret = insert_orphan_item(trans, root, ino);
 
 
1735	}
1736
1737out:
1738	btrfs_free_path(path);
1739	return ret;
1740}
1741
1742static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1743					    struct btrfs_root *root,
1744					    struct btrfs_path *path)
1745{
1746	int ret;
1747	struct btrfs_key key;
1748	struct inode *inode;
1749
1750	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751	key.type = BTRFS_ORPHAN_ITEM_KEY;
1752	key.offset = (u64)-1;
1753	while (1) {
1754		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1755		if (ret < 0)
1756			break;
1757
1758		if (ret == 1) {
 
1759			if (path->slots[0] == 0)
1760				break;
1761			path->slots[0]--;
1762		}
1763
1764		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1765		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1766		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1767			break;
1768
1769		ret = btrfs_del_item(trans, root, path);
1770		if (ret)
1771			goto out;
1772
1773		btrfs_release_path(path);
1774		inode = read_one_inode(root, key.offset);
1775		if (!inode)
1776			return -EIO;
 
 
1777
1778		ret = fixup_inode_link_count(trans, root, inode);
1779		iput(inode);
1780		if (ret)
1781			goto out;
1782
1783		/*
1784		 * fixup on a directory may create new entries,
1785		 * make sure we always look for the highset possible
1786		 * offset
1787		 */
1788		key.offset = (u64)-1;
1789	}
1790	ret = 0;
1791out:
1792	btrfs_release_path(path);
1793	return ret;
1794}
1795
1796
1797/*
1798 * record a given inode in the fixup dir so we can check its link
1799 * count when replay is done.  The link count is incremented here
1800 * so the inode won't go away until we check it
1801 */
1802static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1803				      struct btrfs_root *root,
1804				      struct btrfs_path *path,
1805				      u64 objectid)
1806{
1807	struct btrfs_key key;
1808	int ret = 0;
1809	struct inode *inode;
1810
1811	inode = read_one_inode(root, objectid);
1812	if (!inode)
1813		return -EIO;
1814
1815	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1816	key.type = BTRFS_ORPHAN_ITEM_KEY;
1817	key.offset = objectid;
1818
1819	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1820
1821	btrfs_release_path(path);
1822	if (ret == 0) {
1823		if (!inode->i_nlink)
1824			set_nlink(inode, 1);
1825		else
1826			inc_nlink(inode);
1827		ret = btrfs_update_inode(trans, root, inode);
1828	} else if (ret == -EEXIST) {
1829		ret = 0;
1830	} else {
1831		BUG(); /* Logic Error */
1832	}
1833	iput(inode);
1834
1835	return ret;
1836}
1837
1838/*
1839 * when replaying the log for a directory, we only insert names
1840 * for inodes that actually exist.  This means an fsync on a directory
1841 * does not implicitly fsync all the new files in it
1842 */
1843static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1844				    struct btrfs_root *root,
1845				    u64 dirid, u64 index,
1846				    char *name, int name_len,
1847				    struct btrfs_key *location)
1848{
1849	struct inode *inode;
1850	struct inode *dir;
1851	int ret;
1852
1853	inode = read_one_inode(root, location->objectid);
1854	if (!inode)
1855		return -ENOENT;
1856
1857	dir = read_one_inode(root, dirid);
1858	if (!dir) {
1859		iput(inode);
1860		return -EIO;
1861	}
1862
1863	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1864			name_len, 1, index);
1865
1866	/* FIXME, put inode into FIXUP list */
1867
1868	iput(inode);
1869	iput(dir);
1870	return ret;
1871}
1872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873/*
1874 * take a single entry in a log directory item and replay it into
1875 * the subvolume.
1876 *
1877 * if a conflicting item exists in the subdirectory already,
1878 * the inode it points to is unlinked and put into the link count
1879 * fix up tree.
1880 *
1881 * If a name from the log points to a file or directory that does
1882 * not exist in the FS, it is skipped.  fsyncs on directories
1883 * do not force down inodes inside that directory, just changes to the
1884 * names or unlinks in a directory.
1885 *
1886 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1887 * non-existing inode) and 1 if the name was replayed.
1888 */
1889static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1890				    struct btrfs_root *root,
1891				    struct btrfs_path *path,
1892				    struct extent_buffer *eb,
1893				    struct btrfs_dir_item *di,
1894				    struct btrfs_key *key)
1895{
1896	char *name;
1897	int name_len;
1898	struct btrfs_dir_item *dst_di;
1899	struct btrfs_key found_key;
 
1900	struct btrfs_key log_key;
 
1901	struct inode *dir;
1902	u8 log_type;
1903	int exists;
1904	int ret = 0;
1905	bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1906	bool name_added = false;
1907
1908	dir = read_one_inode(root, key->objectid);
1909	if (!dir)
1910		return -EIO;
1911
1912	name_len = btrfs_dir_name_len(eb, di);
1913	name = kmalloc(name_len, GFP_NOFS);
1914	if (!name) {
1915		ret = -ENOMEM;
1916		goto out;
1917	}
1918
1919	log_type = btrfs_dir_type(eb, di);
1920	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1921		   name_len);
1922
 
1923	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1924	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1925	if (exists == 0)
1926		exists = 1;
1927	else
1928		exists = 0;
1929	btrfs_release_path(path);
1930
1931	if (key->type == BTRFS_DIR_ITEM_KEY) {
1932		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1933				       name, name_len, 1);
1934	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1935		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1936						     key->objectid,
1937						     key->offset, name,
1938						     name_len, 1);
1939	} else {
1940		/* Corruption */
1941		ret = -EINVAL;
1942		goto out;
1943	}
1944	if (IS_ERR_OR_NULL(dst_di)) {
1945		/* we need a sequence number to insert, so we only
1946		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1947		 */
1948		if (key->type != BTRFS_DIR_INDEX_KEY)
 
 
 
 
 
 
 
1949			goto out;
1950		goto insert;
1951	}
1952
1953	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1954	/* the existing item matches the logged item */
1955	if (found_key.objectid == log_key.objectid &&
1956	    found_key.type == log_key.type &&
1957	    found_key.offset == log_key.offset &&
1958	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1959		update_size = false;
1960		goto out;
 
 
 
 
 
 
 
1961	}
1962
1963	/*
1964	 * don't drop the conflicting directory entry if the inode
1965	 * for the new entry doesn't exist
1966	 */
1967	if (!exists)
1968		goto out;
1969
1970	ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1971	if (ret)
 
1972		goto out;
1973
1974	if (key->type == BTRFS_DIR_INDEX_KEY)
1975		goto insert;
1976out:
1977	btrfs_release_path(path);
1978	if (!ret && update_size) {
1979		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1980		ret = btrfs_update_inode(trans, root, dir);
1981	}
1982	kfree(name);
1983	iput(dir);
1984	if (!ret && name_added)
1985		ret = 1;
1986	return ret;
1987
1988insert:
1989	/*
1990	 * Check if the inode reference exists in the log for the given name,
1991	 * inode and parent inode
1992	 */
1993	found_key.objectid = log_key.objectid;
1994	found_key.type = BTRFS_INODE_REF_KEY;
1995	found_key.offset = key->objectid;
1996	ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1997	if (ret < 0) {
1998	        goto out;
1999	} else if (ret) {
2000	        /* The dentry will be added later. */
2001	        ret = 0;
2002	        update_size = false;
2003	        goto out;
2004	}
2005
2006	found_key.objectid = log_key.objectid;
2007	found_key.type = BTRFS_INODE_EXTREF_KEY;
2008	found_key.offset = key->objectid;
2009	ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2010			     name_len);
2011	if (ret < 0) {
2012		goto out;
2013	} else if (ret) {
2014		/* The dentry will be added later. */
2015		ret = 0;
2016		update_size = false;
2017		goto out;
2018	}
2019	btrfs_release_path(path);
2020	ret = insert_one_name(trans, root, key->objectid, key->offset,
2021			      name, name_len, &log_key);
2022	if (ret && ret != -ENOENT && ret != -EEXIST)
2023		goto out;
2024	if (!ret)
2025		name_added = true;
2026	update_size = false;
2027	ret = 0;
2028	goto out;
 
 
 
 
 
 
 
 
 
 
2029}
2030
2031/*
2032 * find all the names in a directory item and reconcile them into
2033 * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
2034 * one name in a directory item, but the same code gets used for
2035 * both directory index types
2036 */
2037static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2038					struct btrfs_root *root,
2039					struct btrfs_path *path,
2040					struct extent_buffer *eb, int slot,
2041					struct btrfs_key *key)
2042{
2043	int ret = 0;
2044	u32 item_size = btrfs_item_size_nr(eb, slot);
2045	struct btrfs_dir_item *di;
2046	int name_len;
2047	unsigned long ptr;
2048	unsigned long ptr_end;
2049	struct btrfs_path *fixup_path = NULL;
2050
2051	ptr = btrfs_item_ptr_offset(eb, slot);
2052	ptr_end = ptr + item_size;
2053	while (ptr < ptr_end) {
2054		di = (struct btrfs_dir_item *)ptr;
2055		name_len = btrfs_dir_name_len(eb, di);
2056		ret = replay_one_name(trans, root, path, eb, di, key);
2057		if (ret < 0)
2058			break;
2059		ptr = (unsigned long)(di + 1);
2060		ptr += name_len;
2061
2062		/*
2063		 * If this entry refers to a non-directory (directories can not
2064		 * have a link count > 1) and it was added in the transaction
2065		 * that was not committed, make sure we fixup the link count of
2066		 * the inode it the entry points to. Otherwise something like
2067		 * the following would result in a directory pointing to an
2068		 * inode with a wrong link that does not account for this dir
2069		 * entry:
2070		 *
2071		 * mkdir testdir
2072		 * touch testdir/foo
2073		 * touch testdir/bar
2074		 * sync
2075		 *
2076		 * ln testdir/bar testdir/bar_link
2077		 * ln testdir/foo testdir/foo_link
2078		 * xfs_io -c "fsync" testdir/bar
2079		 *
2080		 * <power failure>
2081		 *
2082		 * mount fs, log replay happens
2083		 *
2084		 * File foo would remain with a link count of 1 when it has two
2085		 * entries pointing to it in the directory testdir. This would
2086		 * make it impossible to ever delete the parent directory has
2087		 * it would result in stale dentries that can never be deleted.
2088		 */
2089		if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2090			struct btrfs_key di_key;
2091
2092			if (!fixup_path) {
2093				fixup_path = btrfs_alloc_path();
2094				if (!fixup_path) {
2095					ret = -ENOMEM;
2096					break;
2097				}
2098			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2099
2100			btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2101			ret = link_to_fixup_dir(trans, root, fixup_path,
2102						di_key.objectid);
2103			if (ret)
2104				break;
2105		}
2106		ret = 0;
2107	}
2108	btrfs_free_path(fixup_path);
2109	return ret;
2110}
2111
2112/*
2113 * directory replay has two parts.  There are the standard directory
2114 * items in the log copied from the subvolume, and range items
2115 * created in the log while the subvolume was logged.
2116 *
2117 * The range items tell us which parts of the key space the log
2118 * is authoritative for.  During replay, if a key in the subvolume
2119 * directory is in a logged range item, but not actually in the log
2120 * that means it was deleted from the directory before the fsync
2121 * and should be removed.
2122 */
2123static noinline int find_dir_range(struct btrfs_root *root,
2124				   struct btrfs_path *path,
2125				   u64 dirid, int key_type,
2126				   u64 *start_ret, u64 *end_ret)
2127{
2128	struct btrfs_key key;
2129	u64 found_end;
2130	struct btrfs_dir_log_item *item;
2131	int ret;
2132	int nritems;
2133
2134	if (*start_ret == (u64)-1)
2135		return 1;
2136
2137	key.objectid = dirid;
2138	key.type = key_type;
2139	key.offset = *start_ret;
2140
2141	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2142	if (ret < 0)
2143		goto out;
2144	if (ret > 0) {
2145		if (path->slots[0] == 0)
2146			goto out;
2147		path->slots[0]--;
2148	}
2149	if (ret != 0)
2150		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2151
2152	if (key.type != key_type || key.objectid != dirid) {
2153		ret = 1;
2154		goto next;
2155	}
2156	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2157			      struct btrfs_dir_log_item);
2158	found_end = btrfs_dir_log_end(path->nodes[0], item);
2159
2160	if (*start_ret >= key.offset && *start_ret <= found_end) {
2161		ret = 0;
2162		*start_ret = key.offset;
2163		*end_ret = found_end;
2164		goto out;
2165	}
2166	ret = 1;
2167next:
2168	/* check the next slot in the tree to see if it is a valid item */
2169	nritems = btrfs_header_nritems(path->nodes[0]);
2170	path->slots[0]++;
2171	if (path->slots[0] >= nritems) {
2172		ret = btrfs_next_leaf(root, path);
2173		if (ret)
2174			goto out;
2175	}
2176
2177	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2178
2179	if (key.type != key_type || key.objectid != dirid) {
2180		ret = 1;
2181		goto out;
2182	}
2183	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2184			      struct btrfs_dir_log_item);
2185	found_end = btrfs_dir_log_end(path->nodes[0], item);
2186	*start_ret = key.offset;
2187	*end_ret = found_end;
2188	ret = 0;
2189out:
2190	btrfs_release_path(path);
2191	return ret;
2192}
2193
2194/*
2195 * this looks for a given directory item in the log.  If the directory
2196 * item is not in the log, the item is removed and the inode it points
2197 * to is unlinked
2198 */
2199static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2200				      struct btrfs_root *root,
2201				      struct btrfs_root *log,
2202				      struct btrfs_path *path,
2203				      struct btrfs_path *log_path,
2204				      struct inode *dir,
2205				      struct btrfs_key *dir_key)
2206{
 
2207	int ret;
2208	struct extent_buffer *eb;
2209	int slot;
2210	u32 item_size;
2211	struct btrfs_dir_item *di;
2212	struct btrfs_dir_item *log_di;
2213	int name_len;
2214	unsigned long ptr;
2215	unsigned long ptr_end;
2216	char *name;
2217	struct inode *inode;
2218	struct btrfs_key location;
2219
2220again:
 
 
 
 
 
 
 
2221	eb = path->nodes[0];
2222	slot = path->slots[0];
2223	item_size = btrfs_item_size_nr(eb, slot);
2224	ptr = btrfs_item_ptr_offset(eb, slot);
2225	ptr_end = ptr + item_size;
2226	while (ptr < ptr_end) {
2227		di = (struct btrfs_dir_item *)ptr;
2228		name_len = btrfs_dir_name_len(eb, di);
2229		name = kmalloc(name_len, GFP_NOFS);
2230		if (!name) {
2231			ret = -ENOMEM;
2232			goto out;
2233		}
2234		read_extent_buffer(eb, name, (unsigned long)(di + 1),
2235				  name_len);
2236		log_di = NULL;
2237		if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2238			log_di = btrfs_lookup_dir_item(trans, log, log_path,
2239						       dir_key->objectid,
2240						       name, name_len, 0);
2241		} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2242			log_di = btrfs_lookup_dir_index_item(trans, log,
2243						     log_path,
2244						     dir_key->objectid,
2245						     dir_key->offset,
2246						     name, name_len, 0);
2247		}
2248		if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2249			btrfs_dir_item_key_to_cpu(eb, di, &location);
2250			btrfs_release_path(path);
2251			btrfs_release_path(log_path);
2252			inode = read_one_inode(root, location.objectid);
2253			if (!inode) {
2254				kfree(name);
2255				return -EIO;
2256			}
2257
2258			ret = link_to_fixup_dir(trans, root,
2259						path, location.objectid);
2260			if (ret) {
2261				kfree(name);
2262				iput(inode);
2263				goto out;
2264			}
2265
2266			inc_nlink(inode);
2267			ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2268					BTRFS_I(inode), name, name_len);
2269			if (!ret)
2270				ret = btrfs_run_delayed_items(trans);
2271			kfree(name);
2272			iput(inode);
2273			if (ret)
2274				goto out;
2275
2276			/* there might still be more names under this key
2277			 * check and repeat if required
2278			 */
2279			ret = btrfs_search_slot(NULL, root, dir_key, path,
2280						0, 0);
2281			if (ret == 0)
2282				goto again;
 
2283			ret = 0;
2284			goto out;
2285		} else if (IS_ERR(log_di)) {
2286			kfree(name);
2287			return PTR_ERR(log_di);
2288		}
2289		btrfs_release_path(log_path);
2290		kfree(name);
2291
2292		ptr = (unsigned long)(di + 1);
2293		ptr += name_len;
 
 
 
 
 
2294	}
2295	ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
2296out:
2297	btrfs_release_path(path);
2298	btrfs_release_path(log_path);
 
 
2299	return ret;
2300}
2301
2302static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2303			      struct btrfs_root *root,
2304			      struct btrfs_root *log,
2305			      struct btrfs_path *path,
2306			      const u64 ino)
2307{
2308	struct btrfs_key search_key;
2309	struct btrfs_path *log_path;
2310	int i;
2311	int nritems;
2312	int ret;
2313
2314	log_path = btrfs_alloc_path();
2315	if (!log_path)
2316		return -ENOMEM;
2317
2318	search_key.objectid = ino;
2319	search_key.type = BTRFS_XATTR_ITEM_KEY;
2320	search_key.offset = 0;
2321again:
2322	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2323	if (ret < 0)
2324		goto out;
2325process_leaf:
2326	nritems = btrfs_header_nritems(path->nodes[0]);
2327	for (i = path->slots[0]; i < nritems; i++) {
2328		struct btrfs_key key;
2329		struct btrfs_dir_item *di;
2330		struct btrfs_dir_item *log_di;
2331		u32 total_size;
2332		u32 cur;
2333
2334		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2335		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2336			ret = 0;
2337			goto out;
2338		}
2339
2340		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2341		total_size = btrfs_item_size_nr(path->nodes[0], i);
2342		cur = 0;
2343		while (cur < total_size) {
2344			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2345			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2346			u32 this_len = sizeof(*di) + name_len + data_len;
2347			char *name;
2348
2349			name = kmalloc(name_len, GFP_NOFS);
2350			if (!name) {
2351				ret = -ENOMEM;
2352				goto out;
2353			}
2354			read_extent_buffer(path->nodes[0], name,
2355					   (unsigned long)(di + 1), name_len);
2356
2357			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2358						    name, name_len, 0);
2359			btrfs_release_path(log_path);
2360			if (!log_di) {
2361				/* Doesn't exist in log tree, so delete it. */
2362				btrfs_release_path(path);
2363				di = btrfs_lookup_xattr(trans, root, path, ino,
2364							name, name_len, -1);
2365				kfree(name);
2366				if (IS_ERR(di)) {
2367					ret = PTR_ERR(di);
2368					goto out;
2369				}
2370				ASSERT(di);
2371				ret = btrfs_delete_one_dir_name(trans, root,
2372								path, di);
2373				if (ret)
2374					goto out;
2375				btrfs_release_path(path);
2376				search_key = key;
2377				goto again;
2378			}
2379			kfree(name);
2380			if (IS_ERR(log_di)) {
2381				ret = PTR_ERR(log_di);
2382				goto out;
2383			}
2384			cur += this_len;
2385			di = (struct btrfs_dir_item *)((char *)di + this_len);
2386		}
2387	}
2388	ret = btrfs_next_leaf(root, path);
2389	if (ret > 0)
2390		ret = 0;
2391	else if (ret == 0)
2392		goto process_leaf;
2393out:
2394	btrfs_free_path(log_path);
2395	btrfs_release_path(path);
2396	return ret;
2397}
2398
2399
2400/*
2401 * deletion replay happens before we copy any new directory items
2402 * out of the log or out of backreferences from inodes.  It
2403 * scans the log to find ranges of keys that log is authoritative for,
2404 * and then scans the directory to find items in those ranges that are
2405 * not present in the log.
2406 *
2407 * Anything we don't find in the log is unlinked and removed from the
2408 * directory.
2409 */
2410static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2411				       struct btrfs_root *root,
2412				       struct btrfs_root *log,
2413				       struct btrfs_path *path,
2414				       u64 dirid, int del_all)
2415{
2416	u64 range_start;
2417	u64 range_end;
2418	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2419	int ret = 0;
2420	struct btrfs_key dir_key;
2421	struct btrfs_key found_key;
2422	struct btrfs_path *log_path;
2423	struct inode *dir;
2424
2425	dir_key.objectid = dirid;
2426	dir_key.type = BTRFS_DIR_ITEM_KEY;
2427	log_path = btrfs_alloc_path();
2428	if (!log_path)
2429		return -ENOMEM;
2430
2431	dir = read_one_inode(root, dirid);
2432	/* it isn't an error if the inode isn't there, that can happen
2433	 * because we replay the deletes before we copy in the inode item
2434	 * from the log
2435	 */
2436	if (!dir) {
2437		btrfs_free_path(log_path);
2438		return 0;
2439	}
2440again:
2441	range_start = 0;
2442	range_end = 0;
2443	while (1) {
2444		if (del_all)
2445			range_end = (u64)-1;
2446		else {
2447			ret = find_dir_range(log, path, dirid, key_type,
2448					     &range_start, &range_end);
2449			if (ret != 0)
 
 
2450				break;
2451		}
2452
2453		dir_key.offset = range_start;
2454		while (1) {
2455			int nritems;
2456			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2457						0, 0);
2458			if (ret < 0)
2459				goto out;
2460
2461			nritems = btrfs_header_nritems(path->nodes[0]);
2462			if (path->slots[0] >= nritems) {
2463				ret = btrfs_next_leaf(root, path);
2464				if (ret == 1)
2465					break;
2466				else if (ret < 0)
2467					goto out;
2468			}
2469			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2470					      path->slots[0]);
2471			if (found_key.objectid != dirid ||
2472			    found_key.type != dir_key.type)
2473				goto next_type;
 
 
2474
2475			if (found_key.offset > range_end)
2476				break;
2477
2478			ret = check_item_in_log(trans, root, log, path,
2479						log_path, dir,
2480						&found_key);
2481			if (ret)
2482				goto out;
2483			if (found_key.offset == (u64)-1)
2484				break;
2485			dir_key.offset = found_key.offset + 1;
2486		}
2487		btrfs_release_path(path);
2488		if (range_end == (u64)-1)
2489			break;
2490		range_start = range_end + 1;
2491	}
2492
2493next_type:
2494	ret = 0;
2495	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2496		key_type = BTRFS_DIR_LOG_INDEX_KEY;
2497		dir_key.type = BTRFS_DIR_INDEX_KEY;
2498		btrfs_release_path(path);
2499		goto again;
2500	}
2501out:
2502	btrfs_release_path(path);
2503	btrfs_free_path(log_path);
2504	iput(dir);
2505	return ret;
2506}
2507
2508/*
2509 * the process_func used to replay items from the log tree.  This
2510 * gets called in two different stages.  The first stage just looks
2511 * for inodes and makes sure they are all copied into the subvolume.
2512 *
2513 * The second stage copies all the other item types from the log into
2514 * the subvolume.  The two stage approach is slower, but gets rid of
2515 * lots of complexity around inodes referencing other inodes that exist
2516 * only in the log (references come from either directory items or inode
2517 * back refs).
2518 */
2519static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2520			     struct walk_control *wc, u64 gen, int level)
2521{
2522	int nritems;
 
 
 
 
2523	struct btrfs_path *path;
2524	struct btrfs_root *root = wc->replay_dest;
2525	struct btrfs_key key;
2526	int i;
2527	int ret;
2528
2529	ret = btrfs_read_buffer(eb, gen, level, NULL);
2530	if (ret)
2531		return ret;
2532
2533	level = btrfs_header_level(eb);
2534
2535	if (level != 0)
2536		return 0;
2537
2538	path = btrfs_alloc_path();
2539	if (!path)
2540		return -ENOMEM;
2541
2542	nritems = btrfs_header_nritems(eb);
2543	for (i = 0; i < nritems; i++) {
2544		btrfs_item_key_to_cpu(eb, &key, i);
2545
2546		/* inode keys are done during the first stage */
2547		if (key.type == BTRFS_INODE_ITEM_KEY &&
2548		    wc->stage == LOG_WALK_REPLAY_INODES) {
2549			struct btrfs_inode_item *inode_item;
2550			u32 mode;
2551
2552			inode_item = btrfs_item_ptr(eb, i,
2553					    struct btrfs_inode_item);
2554			/*
2555			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2556			 * and never got linked before the fsync, skip it, as
2557			 * replaying it is pointless since it would be deleted
2558			 * later. We skip logging tmpfiles, but it's always
2559			 * possible we are replaying a log created with a kernel
2560			 * that used to log tmpfiles.
2561			 */
2562			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2563				wc->ignore_cur_inode = true;
2564				continue;
2565			} else {
2566				wc->ignore_cur_inode = false;
2567			}
2568			ret = replay_xattr_deletes(wc->trans, root, log,
2569						   path, key.objectid);
2570			if (ret)
2571				break;
2572			mode = btrfs_inode_mode(eb, inode_item);
2573			if (S_ISDIR(mode)) {
2574				ret = replay_dir_deletes(wc->trans,
2575					 root, log, path, key.objectid, 0);
2576				if (ret)
2577					break;
2578			}
2579			ret = overwrite_item(wc->trans, root, path,
2580					     eb, i, &key);
2581			if (ret)
2582				break;
2583
2584			/*
2585			 * Before replaying extents, truncate the inode to its
2586			 * size. We need to do it now and not after log replay
2587			 * because before an fsync we can have prealloc extents
2588			 * added beyond the inode's i_size. If we did it after,
2589			 * through orphan cleanup for example, we would drop
2590			 * those prealloc extents just after replaying them.
2591			 */
2592			if (S_ISREG(mode)) {
 
2593				struct inode *inode;
2594				u64 from;
2595
2596				inode = read_one_inode(root, key.objectid);
2597				if (!inode) {
2598					ret = -EIO;
2599					break;
2600				}
2601				from = ALIGN(i_size_read(inode),
2602					     root->fs_info->sectorsize);
2603				ret = btrfs_drop_extents(wc->trans, root, inode,
2604							 from, (u64)-1, 1);
 
 
 
 
2605				if (!ret) {
 
 
2606					/* Update the inode's nbytes. */
2607					ret = btrfs_update_inode(wc->trans,
2608								 root, inode);
2609				}
2610				iput(inode);
2611				if (ret)
2612					break;
2613			}
2614
2615			ret = link_to_fixup_dir(wc->trans, root,
2616						path, key.objectid);
2617			if (ret)
2618				break;
2619		}
2620
2621		if (wc->ignore_cur_inode)
2622			continue;
2623
2624		if (key.type == BTRFS_DIR_INDEX_KEY &&
2625		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2626			ret = replay_one_dir_item(wc->trans, root, path,
2627						  eb, i, &key);
2628			if (ret)
2629				break;
2630		}
2631
2632		if (wc->stage < LOG_WALK_REPLAY_ALL)
2633			continue;
2634
2635		/* these keys are simply copied */
2636		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2637			ret = overwrite_item(wc->trans, root, path,
2638					     eb, i, &key);
2639			if (ret)
2640				break;
2641		} else if (key.type == BTRFS_INODE_REF_KEY ||
2642			   key.type == BTRFS_INODE_EXTREF_KEY) {
2643			ret = add_inode_ref(wc->trans, root, log, path,
2644					    eb, i, &key);
2645			if (ret && ret != -ENOENT)
2646				break;
2647			ret = 0;
2648		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2649			ret = replay_one_extent(wc->trans, root, path,
2650						eb, i, &key);
2651			if (ret)
2652				break;
2653		} else if (key.type == BTRFS_DIR_ITEM_KEY) {
2654			ret = replay_one_dir_item(wc->trans, root, path,
2655						  eb, i, &key);
2656			if (ret)
2657				break;
2658		}
 
 
 
 
 
 
2659	}
2660	btrfs_free_path(path);
2661	return ret;
2662}
2663
2664/*
2665 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2666 */
2667static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2668{
2669	struct btrfs_block_group *cache;
2670
2671	cache = btrfs_lookup_block_group(fs_info, start);
2672	if (!cache) {
2673		btrfs_err(fs_info, "unable to find block group for %llu", start);
2674		return;
2675	}
2676
2677	spin_lock(&cache->space_info->lock);
2678	spin_lock(&cache->lock);
2679	cache->reserved -= fs_info->nodesize;
2680	cache->space_info->bytes_reserved -= fs_info->nodesize;
2681	spin_unlock(&cache->lock);
2682	spin_unlock(&cache->space_info->lock);
2683
2684	btrfs_put_block_group(cache);
2685}
2686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2687static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2688				   struct btrfs_root *root,
2689				   struct btrfs_path *path, int *level,
2690				   struct walk_control *wc)
2691{
2692	struct btrfs_fs_info *fs_info = root->fs_info;
2693	u64 bytenr;
2694	u64 ptr_gen;
2695	struct extent_buffer *next;
2696	struct extent_buffer *cur;
2697	u32 blocksize;
2698	int ret = 0;
2699
2700	while (*level > 0) {
2701		struct btrfs_key first_key;
2702
2703		cur = path->nodes[*level];
2704
2705		WARN_ON(btrfs_header_level(cur) != *level);
2706
2707		if (path->slots[*level] >=
2708		    btrfs_header_nritems(cur))
2709			break;
2710
2711		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2712		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2713		btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2714		blocksize = fs_info->nodesize;
2715
2716		next = btrfs_find_create_tree_block(fs_info, bytenr);
 
 
 
 
2717		if (IS_ERR(next))
2718			return PTR_ERR(next);
2719
2720		if (*level == 1) {
2721			ret = wc->process_func(root, next, wc, ptr_gen,
2722					       *level - 1);
2723			if (ret) {
2724				free_extent_buffer(next);
2725				return ret;
2726			}
2727
2728			path->slots[*level]++;
2729			if (wc->free) {
2730				ret = btrfs_read_buffer(next, ptr_gen,
2731							*level - 1, &first_key);
2732				if (ret) {
2733					free_extent_buffer(next);
2734					return ret;
2735				}
2736
2737				if (trans) {
2738					btrfs_tree_lock(next);
2739					btrfs_set_lock_blocking_write(next);
2740					btrfs_clean_tree_block(next);
2741					btrfs_wait_tree_block_writeback(next);
2742					btrfs_tree_unlock(next);
2743					ret = btrfs_pin_reserved_extent(trans,
2744							bytenr, blocksize);
2745					if (ret) {
2746						free_extent_buffer(next);
2747						return ret;
2748					}
2749				} else {
2750					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2751						clear_extent_buffer_dirty(next);
2752					unaccount_log_buffer(fs_info, bytenr);
2753				}
2754			}
2755			free_extent_buffer(next);
2756			continue;
2757		}
2758		ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2759		if (ret) {
2760			free_extent_buffer(next);
2761			return ret;
2762		}
2763
2764		if (path->nodes[*level-1])
2765			free_extent_buffer(path->nodes[*level-1]);
2766		path->nodes[*level-1] = next;
2767		*level = btrfs_header_level(next);
2768		path->slots[*level] = 0;
2769		cond_resched();
2770	}
2771	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2772
2773	cond_resched();
2774	return 0;
2775}
2776
2777static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2778				 struct btrfs_root *root,
2779				 struct btrfs_path *path, int *level,
2780				 struct walk_control *wc)
2781{
2782	struct btrfs_fs_info *fs_info = root->fs_info;
2783	int i;
2784	int slot;
2785	int ret;
2786
2787	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2788		slot = path->slots[i];
2789		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2790			path->slots[i]++;
2791			*level = i;
2792			WARN_ON(*level == 0);
2793			return 0;
2794		} else {
2795			ret = wc->process_func(root, path->nodes[*level], wc,
2796				 btrfs_header_generation(path->nodes[*level]),
2797				 *level);
2798			if (ret)
2799				return ret;
2800
2801			if (wc->free) {
2802				struct extent_buffer *next;
2803
2804				next = path->nodes[*level];
2805
2806				if (trans) {
2807					btrfs_tree_lock(next);
2808					btrfs_set_lock_blocking_write(next);
2809					btrfs_clean_tree_block(next);
2810					btrfs_wait_tree_block_writeback(next);
2811					btrfs_tree_unlock(next);
2812					ret = btrfs_pin_reserved_extent(trans,
2813						     path->nodes[*level]->start,
2814						     path->nodes[*level]->len);
2815					if (ret)
2816						return ret;
2817				} else {
2818					if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2819						clear_extent_buffer_dirty(next);
2820
2821					unaccount_log_buffer(fs_info,
2822						path->nodes[*level]->start);
2823				}
2824			}
2825			free_extent_buffer(path->nodes[*level]);
2826			path->nodes[*level] = NULL;
2827			*level = i + 1;
2828		}
2829	}
2830	return 1;
2831}
2832
2833/*
2834 * drop the reference count on the tree rooted at 'snap'.  This traverses
2835 * the tree freeing any blocks that have a ref count of zero after being
2836 * decremented.
2837 */
2838static int walk_log_tree(struct btrfs_trans_handle *trans,
2839			 struct btrfs_root *log, struct walk_control *wc)
2840{
2841	struct btrfs_fs_info *fs_info = log->fs_info;
2842	int ret = 0;
2843	int wret;
2844	int level;
2845	struct btrfs_path *path;
2846	int orig_level;
2847
2848	path = btrfs_alloc_path();
2849	if (!path)
2850		return -ENOMEM;
2851
2852	level = btrfs_header_level(log->node);
2853	orig_level = level;
2854	path->nodes[level] = log->node;
2855	atomic_inc(&log->node->refs);
2856	path->slots[level] = 0;
2857
2858	while (1) {
2859		wret = walk_down_log_tree(trans, log, path, &level, wc);
2860		if (wret > 0)
2861			break;
2862		if (wret < 0) {
2863			ret = wret;
2864			goto out;
2865		}
2866
2867		wret = walk_up_log_tree(trans, log, path, &level, wc);
2868		if (wret > 0)
2869			break;
2870		if (wret < 0) {
2871			ret = wret;
2872			goto out;
2873		}
2874	}
2875
2876	/* was the root node processed? if not, catch it here */
2877	if (path->nodes[orig_level]) {
2878		ret = wc->process_func(log, path->nodes[orig_level], wc,
2879			 btrfs_header_generation(path->nodes[orig_level]),
2880			 orig_level);
2881		if (ret)
2882			goto out;
2883		if (wc->free) {
2884			struct extent_buffer *next;
2885
2886			next = path->nodes[orig_level];
2887
2888			if (trans) {
2889				btrfs_tree_lock(next);
2890				btrfs_set_lock_blocking_write(next);
2891				btrfs_clean_tree_block(next);
2892				btrfs_wait_tree_block_writeback(next);
2893				btrfs_tree_unlock(next);
2894				ret = btrfs_pin_reserved_extent(trans,
2895						next->start, next->len);
2896				if (ret)
2897					goto out;
2898			} else {
2899				if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2900					clear_extent_buffer_dirty(next);
2901				unaccount_log_buffer(fs_info, next->start);
2902			}
2903		}
2904	}
2905
2906out:
2907	btrfs_free_path(path);
2908	return ret;
2909}
2910
2911/*
2912 * helper function to update the item for a given subvolumes log root
2913 * in the tree of log roots
2914 */
2915static int update_log_root(struct btrfs_trans_handle *trans,
2916			   struct btrfs_root *log,
2917			   struct btrfs_root_item *root_item)
2918{
2919	struct btrfs_fs_info *fs_info = log->fs_info;
2920	int ret;
2921
2922	if (log->log_transid == 1) {
2923		/* insert root item on the first sync */
2924		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2925				&log->root_key, root_item);
2926	} else {
2927		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2928				&log->root_key, root_item);
2929	}
2930	return ret;
2931}
2932
2933static void wait_log_commit(struct btrfs_root *root, int transid)
2934{
2935	DEFINE_WAIT(wait);
2936	int index = transid % 2;
2937
2938	/*
2939	 * we only allow two pending log transactions at a time,
2940	 * so we know that if ours is more than 2 older than the
2941	 * current transaction, we're done
2942	 */
2943	for (;;) {
2944		prepare_to_wait(&root->log_commit_wait[index],
2945				&wait, TASK_UNINTERRUPTIBLE);
2946
2947		if (!(root->log_transid_committed < transid &&
2948		      atomic_read(&root->log_commit[index])))
2949			break;
2950
2951		mutex_unlock(&root->log_mutex);
2952		schedule();
2953		mutex_lock(&root->log_mutex);
2954	}
2955	finish_wait(&root->log_commit_wait[index], &wait);
2956}
2957
2958static void wait_for_writer(struct btrfs_root *root)
2959{
2960	DEFINE_WAIT(wait);
2961
2962	for (;;) {
2963		prepare_to_wait(&root->log_writer_wait, &wait,
2964				TASK_UNINTERRUPTIBLE);
2965		if (!atomic_read(&root->log_writers))
2966			break;
2967
2968		mutex_unlock(&root->log_mutex);
2969		schedule();
2970		mutex_lock(&root->log_mutex);
2971	}
2972	finish_wait(&root->log_writer_wait, &wait);
2973}
2974
2975static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2976					struct btrfs_log_ctx *ctx)
2977{
2978	if (!ctx)
2979		return;
2980
2981	mutex_lock(&root->log_mutex);
2982	list_del_init(&ctx->list);
2983	mutex_unlock(&root->log_mutex);
2984}
2985
2986/* 
2987 * Invoked in log mutex context, or be sure there is no other task which
2988 * can access the list.
2989 */
2990static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2991					     int index, int error)
2992{
2993	struct btrfs_log_ctx *ctx;
2994	struct btrfs_log_ctx *safe;
2995
2996	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2997		list_del_init(&ctx->list);
2998		ctx->log_ret = error;
2999	}
3000
3001	INIT_LIST_HEAD(&root->log_ctxs[index]);
3002}
3003
3004/*
3005 * btrfs_sync_log does sends a given tree log down to the disk and
3006 * updates the super blocks to record it.  When this call is done,
3007 * you know that any inodes previously logged are safely on disk only
3008 * if it returns 0.
3009 *
3010 * Any other return value means you need to call btrfs_commit_transaction.
3011 * Some of the edge cases for fsyncing directories that have had unlinks
3012 * or renames done in the past mean that sometimes the only safe
3013 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
3014 * that has happened.
3015 */
3016int btrfs_sync_log(struct btrfs_trans_handle *trans,
3017		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3018{
3019	int index1;
3020	int index2;
3021	int mark;
3022	int ret;
3023	struct btrfs_fs_info *fs_info = root->fs_info;
3024	struct btrfs_root *log = root->log_root;
3025	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3026	struct btrfs_root_item new_root_item;
3027	int log_transid = 0;
3028	struct btrfs_log_ctx root_log_ctx;
3029	struct blk_plug plug;
 
 
3030
3031	mutex_lock(&root->log_mutex);
3032	log_transid = ctx->log_transid;
3033	if (root->log_transid_committed >= log_transid) {
3034		mutex_unlock(&root->log_mutex);
3035		return ctx->log_ret;
3036	}
3037
3038	index1 = log_transid % 2;
3039	if (atomic_read(&root->log_commit[index1])) {
3040		wait_log_commit(root, log_transid);
3041		mutex_unlock(&root->log_mutex);
3042		return ctx->log_ret;
3043	}
3044	ASSERT(log_transid == root->log_transid);
3045	atomic_set(&root->log_commit[index1], 1);
3046
3047	/* wait for previous tree log sync to complete */
3048	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3049		wait_log_commit(root, log_transid - 1);
3050
3051	while (1) {
3052		int batch = atomic_read(&root->log_batch);
3053		/* when we're on an ssd, just kick the log commit out */
3054		if (!btrfs_test_opt(fs_info, SSD) &&
3055		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3056			mutex_unlock(&root->log_mutex);
3057			schedule_timeout_uninterruptible(1);
3058			mutex_lock(&root->log_mutex);
3059		}
3060		wait_for_writer(root);
3061		if (batch == atomic_read(&root->log_batch))
3062			break;
3063	}
3064
3065	/* bail out if we need to do a full commit */
3066	if (btrfs_need_log_full_commit(trans)) {
3067		ret = -EAGAIN;
3068		mutex_unlock(&root->log_mutex);
3069		goto out;
3070	}
3071
3072	if (log_transid % 2 == 0)
3073		mark = EXTENT_DIRTY;
3074	else
3075		mark = EXTENT_NEW;
3076
3077	/* we start IO on  all the marked extents here, but we don't actually
3078	 * wait for them until later.
3079	 */
3080	blk_start_plug(&plug);
3081	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
 
 
 
 
 
 
 
 
 
 
 
3082	if (ret) {
3083		blk_finish_plug(&plug);
3084		btrfs_abort_transaction(trans, ret);
3085		btrfs_set_log_full_commit(trans);
3086		mutex_unlock(&root->log_mutex);
3087		goto out;
3088	}
3089
3090	/*
3091	 * We _must_ update under the root->log_mutex in order to make sure we
3092	 * have a consistent view of the log root we are trying to commit at
3093	 * this moment.
3094	 *
3095	 * We _must_ copy this into a local copy, because we are not holding the
3096	 * log_root_tree->log_mutex yet.  This is important because when we
3097	 * commit the log_root_tree we must have a consistent view of the
3098	 * log_root_tree when we update the super block to point at the
3099	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
3100	 * with the commit and possibly point at the new block which we may not
3101	 * have written out.
3102	 */
3103	btrfs_set_root_node(&log->root_item, log->node);
3104	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3105
3106	root->log_transid++;
3107	log->log_transid = root->log_transid;
3108	root->log_start_pid = 0;
3109	/*
3110	 * IO has been started, blocks of the log tree have WRITTEN flag set
3111	 * in their headers. new modifications of the log will be written to
3112	 * new positions. so it's safe to allow log writers to go in.
3113	 */
3114	mutex_unlock(&root->log_mutex);
3115
 
 
 
 
 
 
 
 
 
 
 
 
 
3116	btrfs_init_log_ctx(&root_log_ctx, NULL);
3117
3118	mutex_lock(&log_root_tree->log_mutex);
3119
3120	index2 = log_root_tree->log_transid % 2;
3121	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3122	root_log_ctx.log_transid = log_root_tree->log_transid;
3123
3124	/*
3125	 * Now we are safe to update the log_root_tree because we're under the
3126	 * log_mutex, and we're a current writer so we're holding the commit
3127	 * open until we drop the log_mutex.
3128	 */
3129	ret = update_log_root(trans, log, &new_root_item);
3130	if (ret) {
3131		if (!list_empty(&root_log_ctx.list))
3132			list_del_init(&root_log_ctx.list);
3133
3134		blk_finish_plug(&plug);
3135		btrfs_set_log_full_commit(trans);
3136
3137		if (ret != -ENOSPC) {
3138			btrfs_abort_transaction(trans, ret);
3139			mutex_unlock(&log_root_tree->log_mutex);
3140			goto out;
3141		}
3142		btrfs_wait_tree_log_extents(log, mark);
3143		mutex_unlock(&log_root_tree->log_mutex);
3144		ret = -EAGAIN;
3145		goto out;
3146	}
3147
3148	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3149		blk_finish_plug(&plug);
3150		list_del_init(&root_log_ctx.list);
3151		mutex_unlock(&log_root_tree->log_mutex);
3152		ret = root_log_ctx.log_ret;
3153		goto out;
3154	}
3155
3156	index2 = root_log_ctx.log_transid % 2;
3157	if (atomic_read(&log_root_tree->log_commit[index2])) {
3158		blk_finish_plug(&plug);
3159		ret = btrfs_wait_tree_log_extents(log, mark);
3160		wait_log_commit(log_root_tree,
3161				root_log_ctx.log_transid);
3162		mutex_unlock(&log_root_tree->log_mutex);
3163		if (!ret)
3164			ret = root_log_ctx.log_ret;
3165		goto out;
3166	}
3167	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3168	atomic_set(&log_root_tree->log_commit[index2], 1);
3169
3170	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3171		wait_log_commit(log_root_tree,
3172				root_log_ctx.log_transid - 1);
3173	}
3174
3175	/*
3176	 * now that we've moved on to the tree of log tree roots,
3177	 * check the full commit flag again
3178	 */
3179	if (btrfs_need_log_full_commit(trans)) {
3180		blk_finish_plug(&plug);
3181		btrfs_wait_tree_log_extents(log, mark);
3182		mutex_unlock(&log_root_tree->log_mutex);
3183		ret = -EAGAIN;
3184		goto out_wake_log_root;
3185	}
3186
3187	ret = btrfs_write_marked_extents(fs_info,
3188					 &log_root_tree->dirty_log_pages,
3189					 EXTENT_DIRTY | EXTENT_NEW);
3190	blk_finish_plug(&plug);
3191	if (ret) {
 
 
 
 
 
 
 
 
 
 
3192		btrfs_set_log_full_commit(trans);
3193		btrfs_abort_transaction(trans, ret);
3194		mutex_unlock(&log_root_tree->log_mutex);
3195		goto out_wake_log_root;
3196	}
3197	ret = btrfs_wait_tree_log_extents(log, mark);
3198	if (!ret)
3199		ret = btrfs_wait_tree_log_extents(log_root_tree,
3200						  EXTENT_NEW | EXTENT_DIRTY);
3201	if (ret) {
3202		btrfs_set_log_full_commit(trans);
3203		mutex_unlock(&log_root_tree->log_mutex);
3204		goto out_wake_log_root;
3205	}
3206
3207	btrfs_set_super_log_root(fs_info->super_for_commit,
3208				 log_root_tree->node->start);
3209	btrfs_set_super_log_root_level(fs_info->super_for_commit,
3210				       btrfs_header_level(log_root_tree->node));
3211
3212	log_root_tree->log_transid++;
3213	mutex_unlock(&log_root_tree->log_mutex);
3214
3215	/*
3216	 * Nobody else is going to jump in and write the ctree
3217	 * super here because the log_commit atomic below is protecting
3218	 * us.  We must be called with a transaction handle pinning
3219	 * the running transaction open, so a full commit can't hop
3220	 * in and cause problems either.
 
 
 
 
 
 
 
 
3221	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3222	ret = write_all_supers(fs_info, 1);
 
3223	if (ret) {
3224		btrfs_set_log_full_commit(trans);
3225		btrfs_abort_transaction(trans, ret);
3226		goto out_wake_log_root;
3227	}
3228
3229	mutex_lock(&root->log_mutex);
3230	if (root->last_log_commit < log_transid)
3231		root->last_log_commit = log_transid;
3232	mutex_unlock(&root->log_mutex);
 
 
 
 
 
 
3233
3234out_wake_log_root:
3235	mutex_lock(&log_root_tree->log_mutex);
3236	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3237
3238	log_root_tree->log_transid_committed++;
3239	atomic_set(&log_root_tree->log_commit[index2], 0);
3240	mutex_unlock(&log_root_tree->log_mutex);
3241
3242	/*
3243	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3244	 * all the updates above are seen by the woken threads. It might not be
3245	 * necessary, but proving that seems to be hard.
3246	 */
3247	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3248out:
3249	mutex_lock(&root->log_mutex);
3250	btrfs_remove_all_log_ctxs(root, index1, ret);
3251	root->log_transid_committed++;
3252	atomic_set(&root->log_commit[index1], 0);
3253	mutex_unlock(&root->log_mutex);
3254
3255	/*
3256	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3257	 * all the updates above are seen by the woken threads. It might not be
3258	 * necessary, but proving that seems to be hard.
3259	 */
3260	cond_wake_up(&root->log_commit_wait[index1]);
3261	return ret;
3262}
3263
3264static void free_log_tree(struct btrfs_trans_handle *trans,
3265			  struct btrfs_root *log)
3266{
3267	int ret;
3268	struct walk_control wc = {
3269		.free = 1,
3270		.process_func = process_one_buffer
3271	};
3272
3273	ret = walk_log_tree(trans, log, &wc);
3274	if (ret) {
3275		if (trans)
3276			btrfs_abort_transaction(trans, ret);
3277		else
3278			btrfs_handle_fs_error(log->fs_info, ret, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3279	}
3280
3281	clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3282			  EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3283	extent_io_tree_release(&log->log_csum_range);
 
3284	btrfs_put_root(log);
3285}
3286
3287/*
3288 * free all the extents used by the tree log.  This should be called
3289 * at commit time of the full transaction
3290 */
3291int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3292{
3293	if (root->log_root) {
3294		free_log_tree(trans, root->log_root);
3295		root->log_root = NULL;
3296		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3297	}
3298	return 0;
3299}
3300
3301int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3302			     struct btrfs_fs_info *fs_info)
3303{
3304	if (fs_info->log_root_tree) {
3305		free_log_tree(trans, fs_info->log_root_tree);
3306		fs_info->log_root_tree = NULL;
 
3307	}
3308	return 0;
3309}
3310
3311/*
3312 * Check if an inode was logged in the current transaction. We can't always rely
3313 * on an inode's logged_trans value, because it's an in-memory only field and
3314 * therefore not persisted. This means that its value is lost if the inode gets
3315 * evicted and loaded again from disk (in which case it has a value of 0, and
3316 * certainly it is smaller then any possible transaction ID), when that happens
3317 * the full_sync flag is set in the inode's runtime flags, so on that case we
3318 * assume eviction happened and ignore the logged_trans value, assuming the
3319 * worst case, that the inode was logged before in the current transaction.
3320 */
3321static bool inode_logged(struct btrfs_trans_handle *trans,
3322			 struct btrfs_inode *inode)
3323{
 
 
 
 
3324	if (inode->logged_trans == trans->transid)
3325		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3326
3327	if (inode->last_trans == trans->transid &&
3328	    test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3329	    !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3330		return true;
 
 
 
 
 
 
3331
3332	return false;
 
 
 
 
 
3333}
3334
3335/*
3336 * If both a file and directory are logged, and unlinks or renames are
3337 * mixed in, we have a few interesting corners:
3338 *
3339 * create file X in dir Y
3340 * link file X to X.link in dir Y
3341 * fsync file X
3342 * unlink file X but leave X.link
3343 * fsync dir Y
3344 *
3345 * After a crash we would expect only X.link to exist.  But file X
3346 * didn't get fsync'd again so the log has back refs for X and X.link.
3347 *
3348 * We solve this by removing directory entries and inode backrefs from the
3349 * log when a file that was logged in the current transaction is
3350 * unlinked.  Any later fsync will include the updated log entries, and
3351 * we'll be able to reconstruct the proper directory items from backrefs.
3352 *
3353 * This optimizations allows us to avoid relogging the entire inode
3354 * or the entire directory.
3355 */
3356int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3357				 struct btrfs_root *root,
3358				 const char *name, int name_len,
3359				 struct btrfs_inode *dir, u64 index)
3360{
3361	struct btrfs_root *log;
3362	struct btrfs_dir_item *di;
3363	struct btrfs_path *path;
3364	int ret;
3365	int err = 0;
3366	int bytes_del = 0;
3367	u64 dir_ino = btrfs_ino(dir);
3368
3369	if (!inode_logged(trans, dir))
3370		return 0;
 
 
 
 
 
3371
3372	ret = join_running_log_trans(root);
3373	if (ret)
3374		return 0;
3375
3376	mutex_lock(&dir->log_mutex);
3377
3378	log = root->log_root;
3379	path = btrfs_alloc_path();
3380	if (!path) {
3381		err = -ENOMEM;
3382		goto out_unlock;
3383	}
3384
3385	di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3386				   name, name_len, -1);
3387	if (IS_ERR(di)) {
3388		err = PTR_ERR(di);
3389		goto fail;
3390	}
3391	if (di) {
3392		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3393		bytes_del += name_len;
3394		if (ret) {
3395			err = ret;
3396			goto fail;
3397		}
3398	}
3399	btrfs_release_path(path);
3400	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3401					 index, name, name_len, -1);
3402	if (IS_ERR(di)) {
3403		err = PTR_ERR(di);
3404		goto fail;
3405	}
3406	if (di) {
3407		ret = btrfs_delete_one_dir_name(trans, log, path, di);
3408		bytes_del += name_len;
3409		if (ret) {
3410			err = ret;
3411			goto fail;
3412		}
3413	}
3414
3415	/* update the directory size in the log to reflect the names
3416	 * we have removed
3417	 */
3418	if (bytes_del) {
3419		struct btrfs_key key;
3420
3421		key.objectid = dir_ino;
3422		key.offset = 0;
3423		key.type = BTRFS_INODE_ITEM_KEY;
3424		btrfs_release_path(path);
3425
3426		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3427		if (ret < 0) {
3428			err = ret;
3429			goto fail;
3430		}
3431		if (ret == 0) {
3432			struct btrfs_inode_item *item;
3433			u64 i_size;
3434
3435			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3436					      struct btrfs_inode_item);
3437			i_size = btrfs_inode_size(path->nodes[0], item);
3438			if (i_size > bytes_del)
3439				i_size -= bytes_del;
3440			else
3441				i_size = 0;
3442			btrfs_set_inode_size(path->nodes[0], item, i_size);
3443			btrfs_mark_buffer_dirty(path->nodes[0]);
3444		} else
3445			ret = 0;
3446		btrfs_release_path(path);
3447	}
3448fail:
3449	btrfs_free_path(path);
3450out_unlock:
3451	mutex_unlock(&dir->log_mutex);
3452	if (err == -ENOSPC) {
3453		btrfs_set_log_full_commit(trans);
3454		err = 0;
3455	} else if (err < 0 && err != -ENOENT) {
3456		/* ENOENT can be returned if the entry hasn't been fsynced yet */
3457		btrfs_abort_transaction(trans, err);
3458	}
3459
3460	btrfs_end_log_trans(root);
3461
3462	return err;
3463}
3464
3465/* see comments for btrfs_del_dir_entries_in_log */
3466int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3467			       struct btrfs_root *root,
3468			       const char *name, int name_len,
3469			       struct btrfs_inode *inode, u64 dirid)
3470{
3471	struct btrfs_root *log;
3472	u64 index;
3473	int ret;
3474
3475	if (!inode_logged(trans, inode))
3476		return 0;
 
 
 
 
 
3477
3478	ret = join_running_log_trans(root);
3479	if (ret)
3480		return 0;
3481	log = root->log_root;
3482	mutex_lock(&inode->log_mutex);
3483
3484	ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3485				  dirid, &index);
3486	mutex_unlock(&inode->log_mutex);
3487	if (ret == -ENOSPC) {
3488		btrfs_set_log_full_commit(trans);
3489		ret = 0;
3490	} else if (ret < 0 && ret != -ENOENT)
3491		btrfs_abort_transaction(trans, ret);
3492	btrfs_end_log_trans(root);
3493
3494	return ret;
3495}
3496
3497/*
3498 * creates a range item in the log for 'dirid'.  first_offset and
3499 * last_offset tell us which parts of the key space the log should
3500 * be considered authoritative for.
3501 */
3502static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3503				       struct btrfs_root *log,
3504				       struct btrfs_path *path,
3505				       int key_type, u64 dirid,
3506				       u64 first_offset, u64 last_offset)
3507{
3508	int ret;
3509	struct btrfs_key key;
3510	struct btrfs_dir_log_item *item;
3511
3512	key.objectid = dirid;
3513	key.offset = first_offset;
3514	if (key_type == BTRFS_DIR_ITEM_KEY)
3515		key.type = BTRFS_DIR_LOG_ITEM_KEY;
3516	else
3517		key.type = BTRFS_DIR_LOG_INDEX_KEY;
3518	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3519	if (ret)
 
 
 
 
 
 
 
3520		return ret;
3521
3522	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3523			      struct btrfs_dir_log_item);
 
 
 
 
 
 
 
 
 
 
 
3524	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3525	btrfs_mark_buffer_dirty(path->nodes[0]);
3526	btrfs_release_path(path);
3527	return 0;
3528}
3529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3530/*
3531 * log all the items included in the current transaction for a given
3532 * directory.  This also creates the range items in the log tree required
3533 * to replay anything deleted before the fsync
3534 */
3535static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3536			  struct btrfs_root *root, struct btrfs_inode *inode,
3537			  struct btrfs_path *path,
3538			  struct btrfs_path *dst_path, int key_type,
3539			  struct btrfs_log_ctx *ctx,
3540			  u64 min_offset, u64 *last_offset_ret)
3541{
3542	struct btrfs_key min_key;
 
3543	struct btrfs_root *log = root->log_root;
3544	struct extent_buffer *src;
3545	int err = 0;
3546	int ret;
3547	int i;
3548	int nritems;
3549	u64 first_offset = min_offset;
3550	u64 last_offset = (u64)-1;
3551	u64 ino = btrfs_ino(inode);
3552
3553	log = root->log_root;
3554
3555	min_key.objectid = ino;
3556	min_key.type = key_type;
3557	min_key.offset = min_offset;
3558
3559	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3560
3561	/*
3562	 * we didn't find anything from this transaction, see if there
3563	 * is anything at all
3564	 */
3565	if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
 
3566		min_key.objectid = ino;
3567		min_key.type = key_type;
3568		min_key.offset = (u64)-1;
3569		btrfs_release_path(path);
3570		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3571		if (ret < 0) {
3572			btrfs_release_path(path);
3573			return ret;
3574		}
3575		ret = btrfs_previous_item(root, path, ino, key_type);
3576
3577		/* if ret == 0 there are items for this type,
3578		 * create a range to tell us the last key of this type.
3579		 * otherwise, there are no items in this directory after
3580		 * *min_offset, and we create a range to indicate that.
3581		 */
3582		if (ret == 0) {
3583			struct btrfs_key tmp;
 
3584			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3585					      path->slots[0]);
3586			if (key_type == tmp.type)
3587				first_offset = max(min_offset, tmp.offset) + 1;
 
 
3588		}
 
3589		goto done;
3590	}
3591
3592	/* go backward to find any previous key */
3593	ret = btrfs_previous_item(root, path, ino, key_type);
3594	if (ret == 0) {
3595		struct btrfs_key tmp;
 
3596		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3597		if (key_type == tmp.type) {
3598			first_offset = tmp.offset;
3599			ret = overwrite_item(trans, log, dst_path,
3600					     path->nodes[0], path->slots[0],
3601					     &tmp);
3602			if (ret) {
3603				err = ret;
3604				goto done;
3605			}
3606		}
 
 
3607	}
 
3608	btrfs_release_path(path);
3609
3610	/*
3611	 * Find the first key from this transaction again.  See the note for
3612	 * log_new_dir_dentries, if we're logging a directory recursively we
3613	 * won't be holding its i_mutex, which means we can modify the directory
3614	 * while we're logging it.  If we remove an entry between our first
3615	 * search and this search we'll not find the key again and can just
3616	 * bail.
 
 
 
 
 
 
3617	 */
 
3618	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3619	if (ret != 0)
 
 
 
 
 
 
 
 
3620		goto done;
3621
3622	/*
3623	 * we have a block from this transaction, log every item in it
3624	 * from our directory
3625	 */
3626	while (1) {
3627		struct btrfs_key tmp;
3628		src = path->nodes[0];
3629		nritems = btrfs_header_nritems(src);
3630		for (i = path->slots[0]; i < nritems; i++) {
3631			struct btrfs_dir_item *di;
3632
3633			btrfs_item_key_to_cpu(src, &min_key, i);
3634
3635			if (min_key.objectid != ino || min_key.type != key_type)
3636				goto done;
3637			ret = overwrite_item(trans, log, dst_path, src, i,
3638					     &min_key);
3639			if (ret) {
3640				err = ret;
3641				goto done;
3642			}
3643
3644			/*
3645			 * We must make sure that when we log a directory entry,
3646			 * the corresponding inode, after log replay, has a
3647			 * matching link count. For example:
3648			 *
3649			 * touch foo
3650			 * mkdir mydir
3651			 * sync
3652			 * ln foo mydir/bar
3653			 * xfs_io -c "fsync" mydir
3654			 * <crash>
3655			 * <mount fs and log replay>
3656			 *
3657			 * Would result in a fsync log that when replayed, our
3658			 * file inode would have a link count of 1, but we get
3659			 * two directory entries pointing to the same inode.
3660			 * After removing one of the names, it would not be
3661			 * possible to remove the other name, which resulted
3662			 * always in stale file handle errors, and would not
3663			 * be possible to rmdir the parent directory, since
3664			 * its i_size could never decrement to the value
3665			 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3666			 */
3667			di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3668			btrfs_dir_item_key_to_cpu(src, di, &tmp);
3669			if (ctx &&
3670			    (btrfs_dir_transid(src, di) == trans->transid ||
3671			     btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3672			    tmp.type != BTRFS_ROOT_ITEM_KEY)
3673				ctx->log_new_dentries = true;
3674		}
3675		path->slots[0] = nritems;
3676
3677		/*
3678		 * look ahead to the next item and see if it is also
3679		 * from this directory and from this transaction
3680		 */
3681		ret = btrfs_next_leaf(root, path);
3682		if (ret) {
3683			if (ret == 1)
3684				last_offset = (u64)-1;
3685			else
3686				err = ret;
3687			goto done;
3688		}
3689		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3690		if (tmp.objectid != ino || tmp.type != key_type) {
3691			last_offset = (u64)-1;
3692			goto done;
3693		}
3694		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3695			ret = overwrite_item(trans, log, dst_path,
3696					     path->nodes[0], path->slots[0],
3697					     &tmp);
3698			if (ret)
3699				err = ret;
3700			else
3701				last_offset = tmp.offset;
 
 
 
3702			goto done;
3703		}
 
 
 
 
 
3704	}
3705done:
3706	btrfs_release_path(path);
3707	btrfs_release_path(dst_path);
3708
3709	if (err == 0) {
3710		*last_offset_ret = last_offset;
3711		/*
3712		 * insert the log range keys to indicate where the log
3713		 * is valid
 
 
 
 
3714		 */
3715		ret = insert_dir_log_key(trans, log, path, key_type,
3716					 ino, first_offset, last_offset);
3717		if (ret)
3718			err = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3719	}
3720	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3721}
3722
3723/*
3724 * logging directories is very similar to logging inodes, We find all the items
3725 * from the current transaction and write them to the log.
3726 *
3727 * The recovery code scans the directory in the subvolume, and if it finds a
3728 * key in the range logged that is not present in the log tree, then it means
3729 * that dir entry was unlinked during the transaction.
3730 *
3731 * In order for that scan to work, we must include one key smaller than
3732 * the smallest logged by this transaction and one key larger than the largest
3733 * key logged by this transaction.
3734 */
3735static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3736			  struct btrfs_root *root, struct btrfs_inode *inode,
3737			  struct btrfs_path *path,
3738			  struct btrfs_path *dst_path,
3739			  struct btrfs_log_ctx *ctx)
3740{
3741	u64 min_key;
3742	u64 max_key;
3743	int ret;
3744	int key_type = BTRFS_DIR_ITEM_KEY;
3745
3746again:
3747	min_key = 0;
 
 
 
3748	max_key = 0;
 
3749	while (1) {
3750		ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3751				ctx, min_key, &max_key);
3752		if (ret)
3753			return ret;
3754		if (max_key == (u64)-1)
3755			break;
3756		min_key = max_key + 1;
3757	}
3758
3759	if (key_type == BTRFS_DIR_ITEM_KEY) {
3760		key_type = BTRFS_DIR_INDEX_KEY;
3761		goto again;
3762	}
3763	return 0;
3764}
3765
3766/*
3767 * a helper function to drop items from the log before we relog an
3768 * inode.  max_key_type indicates the highest item type to remove.
3769 * This cannot be run for file data extents because it does not
3770 * free the extents they point to.
3771 */
3772static int drop_objectid_items(struct btrfs_trans_handle *trans,
3773				  struct btrfs_root *log,
3774				  struct btrfs_path *path,
3775				  u64 objectid, int max_key_type)
 
3776{
3777	int ret;
3778	struct btrfs_key key;
3779	struct btrfs_key found_key;
3780	int start_slot;
3781
3782	key.objectid = objectid;
3783	key.type = max_key_type;
3784	key.offset = (u64)-1;
3785
3786	while (1) {
3787		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3788		BUG_ON(ret == 0); /* Logic error */
3789		if (ret < 0)
3790			break;
3791
3792		if (path->slots[0] == 0)
3793			break;
 
 
 
 
 
3794
3795		path->slots[0]--;
3796		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3797				      path->slots[0]);
3798
3799		if (found_key.objectid != objectid)
3800			break;
3801
3802		found_key.offset = 0;
3803		found_key.type = 0;
3804		ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3805		if (ret < 0)
3806			break;
3807
3808		ret = btrfs_del_items(trans, log, path, start_slot,
3809				      path->slots[0] - start_slot + 1);
3810		/*
3811		 * If start slot isn't 0 then we don't need to re-search, we've
3812		 * found the last guy with the objectid in this tree.
3813		 */
3814		if (ret || start_slot != 0)
3815			break;
3816		btrfs_release_path(path);
3817	}
3818	btrfs_release_path(path);
3819	if (ret > 0)
3820		ret = 0;
3821	return ret;
3822}
3823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3824static void fill_inode_item(struct btrfs_trans_handle *trans,
3825			    struct extent_buffer *leaf,
3826			    struct btrfs_inode_item *item,
3827			    struct inode *inode, int log_inode_only,
3828			    u64 logged_isize)
3829{
3830	struct btrfs_map_token token;
 
3831
3832	btrfs_init_map_token(&token, leaf);
3833
3834	if (log_inode_only) {
3835		/* set the generation to zero so the recover code
3836		 * can tell the difference between an logging
3837		 * just to say 'this inode exists' and a logging
3838		 * to say 'update this inode with these values'
3839		 */
3840		btrfs_set_token_inode_generation(&token, item, 0);
3841		btrfs_set_token_inode_size(&token, item, logged_isize);
3842	} else {
3843		btrfs_set_token_inode_generation(&token, item,
3844						 BTRFS_I(inode)->generation);
3845		btrfs_set_token_inode_size(&token, item, inode->i_size);
3846	}
3847
3848	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3849	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3850	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3851	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3852
3853	btrfs_set_token_timespec_sec(&token, &item->atime,
3854				     inode->i_atime.tv_sec);
3855	btrfs_set_token_timespec_nsec(&token, &item->atime,
3856				      inode->i_atime.tv_nsec);
3857
3858	btrfs_set_token_timespec_sec(&token, &item->mtime,
3859				     inode->i_mtime.tv_sec);
3860	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3861				      inode->i_mtime.tv_nsec);
3862
3863	btrfs_set_token_timespec_sec(&token, &item->ctime,
3864				     inode->i_ctime.tv_sec);
3865	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3866				      inode->i_ctime.tv_nsec);
3867
3868	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
 
 
 
 
 
 
 
3869
3870	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3871	btrfs_set_token_inode_transid(&token, item, trans->transid);
3872	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3873	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
 
 
3874	btrfs_set_token_inode_block_group(&token, item, 0);
3875}
3876
3877static int log_inode_item(struct btrfs_trans_handle *trans,
3878			  struct btrfs_root *log, struct btrfs_path *path,
3879			  struct btrfs_inode *inode)
3880{
3881	struct btrfs_inode_item *inode_item;
3882	int ret;
3883
3884	ret = btrfs_insert_empty_item(trans, log, path,
3885				      &inode->location, sizeof(*inode_item));
3886	if (ret && ret != -EEXIST)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3887		return ret;
3888	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3889				    struct btrfs_inode_item);
3890	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3891			0, 0);
3892	btrfs_release_path(path);
3893	return 0;
3894}
3895
3896static int log_csums(struct btrfs_trans_handle *trans,
3897		     struct btrfs_inode *inode,
3898		     struct btrfs_root *log_root,
3899		     struct btrfs_ordered_sum *sums)
3900{
3901	const u64 lock_end = sums->bytenr + sums->len - 1;
3902	struct extent_state *cached_state = NULL;
3903	int ret;
3904
3905	/*
3906	 * If this inode was not used for reflink operations in the current
3907	 * transaction with new extents, then do the fast path, no need to
3908	 * worry about logging checksum items with overlapping ranges.
3909	 */
3910	if (inode->last_reflink_trans < trans->transid)
3911		return btrfs_csum_file_blocks(trans, log_root, sums);
3912
3913	/*
3914	 * Serialize logging for checksums. This is to avoid racing with the
3915	 * same checksum being logged by another task that is logging another
3916	 * file which happens to refer to the same extent as well. Such races
3917	 * can leave checksum items in the log with overlapping ranges.
3918	 */
3919	ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3920			       lock_end, &cached_state);
3921	if (ret)
3922		return ret;
3923	/*
3924	 * Due to extent cloning, we might have logged a csum item that covers a
3925	 * subrange of a cloned extent, and later we can end up logging a csum
3926	 * item for a larger subrange of the same extent or the entire range.
3927	 * This would leave csum items in the log tree that cover the same range
3928	 * and break the searches for checksums in the log tree, resulting in
3929	 * some checksums missing in the fs/subvolume tree. So just delete (or
3930	 * trim and adjust) any existing csum items in the log for this range.
3931	 */
3932	ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3933	if (!ret)
3934		ret = btrfs_csum_file_blocks(trans, log_root, sums);
3935
3936	unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3937			     &cached_state);
3938
3939	return ret;
3940}
3941
3942static noinline int copy_items(struct btrfs_trans_handle *trans,
3943			       struct btrfs_inode *inode,
3944			       struct btrfs_path *dst_path,
3945			       struct btrfs_path *src_path,
3946			       int start_slot, int nr, int inode_only,
3947			       u64 logged_isize)
3948{
3949	struct btrfs_fs_info *fs_info = trans->fs_info;
3950	unsigned long src_offset;
3951	unsigned long dst_offset;
3952	struct btrfs_root *log = inode->root->log_root;
3953	struct btrfs_file_extent_item *extent;
3954	struct btrfs_inode_item *inode_item;
3955	struct extent_buffer *src = src_path->nodes[0];
3956	int ret;
3957	struct btrfs_key *ins_keys;
3958	u32 *ins_sizes;
 
3959	char *ins_data;
3960	int i;
3961	struct list_head ordered_sums;
3962	int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
 
3963
3964	INIT_LIST_HEAD(&ordered_sums);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3965
3966	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3967			   nr * sizeof(u32), GFP_NOFS);
3968	if (!ins_data)
3969		return -ENOMEM;
3970
3971	ins_sizes = (u32 *)ins_data;
3972	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
 
 
 
 
3973
 
3974	for (i = 0; i < nr; i++) {
3975		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3976		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3977	}
3978	ret = btrfs_insert_empty_items(trans, log, dst_path,
3979				       ins_keys, ins_sizes, nr);
3980	if (ret) {
3981		kfree(ins_data);
3982		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3983	}
3984
3985	for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3986		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3987						   dst_path->slots[0]);
3988
3989		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3990
3991		if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3992			inode_item = btrfs_item_ptr(dst_path->nodes[0],
3993						    dst_path->slots[0],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3994						    struct btrfs_inode_item);
3995			fill_inode_item(trans, dst_path->nodes[0], inode_item,
3996					&inode->vfs_inode,
3997					inode_only == LOG_INODE_EXISTS,
3998					logged_isize);
3999		} else {
4000			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4001					   src_offset, ins_sizes[i]);
4002		}
4003
4004		/* take a reference on file data extents so that truncates
4005		 * or deletes of this inode don't have to relog the inode
4006		 * again
4007		 */
4008		if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4009		    !skip_csum) {
4010			int found_type;
4011			extent = btrfs_item_ptr(src, start_slot + i,
4012						struct btrfs_file_extent_item);
4013
4014			if (btrfs_file_extent_generation(src, extent) < trans->transid)
4015				continue;
4016
4017			found_type = btrfs_file_extent_type(src, extent);
4018			if (found_type == BTRFS_FILE_EXTENT_REG) {
4019				u64 ds, dl, cs, cl;
4020				ds = btrfs_file_extent_disk_bytenr(src,
4021								extent);
4022				/* ds == 0 is a hole */
4023				if (ds == 0)
4024					continue;
4025
4026				dl = btrfs_file_extent_disk_num_bytes(src,
4027								extent);
4028				cs = btrfs_file_extent_offset(src, extent);
4029				cl = btrfs_file_extent_num_bytes(src,
4030								extent);
4031				if (btrfs_file_extent_compression(src,
4032								  extent)) {
4033					cs = 0;
4034					cl = dl;
4035				}
4036
4037				ret = btrfs_lookup_csums_range(
4038						fs_info->csum_root,
4039						ds + cs, ds + cs + cl - 1,
4040						&ordered_sums, 0);
4041				if (ret)
4042					break;
4043			}
4044		}
4045	}
4046
4047	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4048	btrfs_release_path(dst_path);
 
4049	kfree(ins_data);
4050
4051	/*
4052	 * we have to do this after the loop above to avoid changing the
4053	 * log tree while trying to change the log tree.
4054	 */
4055	while (!list_empty(&ordered_sums)) {
4056		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4057						   struct btrfs_ordered_sum,
4058						   list);
4059		if (!ret)
4060			ret = log_csums(trans, inode, log, sums);
4061		list_del(&sums->list);
4062		kfree(sums);
4063	}
4064
4065	return ret;
4066}
4067
4068static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
 
4069{
4070	struct extent_map *em1, *em2;
4071
4072	em1 = list_entry(a, struct extent_map, list);
4073	em2 = list_entry(b, struct extent_map, list);
4074
4075	if (em1->start < em2->start)
4076		return -1;
4077	else if (em1->start > em2->start)
4078		return 1;
4079	return 0;
4080}
4081
4082static int log_extent_csums(struct btrfs_trans_handle *trans,
4083			    struct btrfs_inode *inode,
4084			    struct btrfs_root *log_root,
4085			    const struct extent_map *em)
 
4086{
 
 
4087	u64 csum_offset;
4088	u64 csum_len;
 
 
4089	LIST_HEAD(ordered_sums);
4090	int ret = 0;
4091
4092	if (inode->flags & BTRFS_INODE_NODATASUM ||
4093	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4094	    em->block_start == EXTENT_MAP_HOLE)
4095		return 0;
4096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4097	/* If we're compressed we have to save the entire range of csums. */
4098	if (em->compress_type) {
4099		csum_offset = 0;
4100		csum_len = max(em->block_len, em->orig_block_len);
4101	} else {
4102		csum_offset = em->mod_start - em->start;
4103		csum_len = em->mod_len;
4104	}
4105
4106	/* block start is already adjusted for the file extent offset. */
4107	ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4108				       em->block_start + csum_offset,
4109				       em->block_start + csum_offset +
4110				       csum_len - 1, &ordered_sums, 0);
4111	if (ret)
4112		return ret;
4113
4114	while (!list_empty(&ordered_sums)) {
4115		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4116						   struct btrfs_ordered_sum,
4117						   list);
4118		if (!ret)
4119			ret = log_csums(trans, inode, log_root, sums);
4120		list_del(&sums->list);
4121		kfree(sums);
4122	}
4123
4124	return ret;
4125}
4126
4127static int log_one_extent(struct btrfs_trans_handle *trans,
4128			  struct btrfs_inode *inode, struct btrfs_root *root,
4129			  const struct extent_map *em,
4130			  struct btrfs_path *path,
4131			  struct btrfs_log_ctx *ctx)
4132{
4133	struct btrfs_root *log = root->log_root;
4134	struct btrfs_file_extent_item *fi;
 
4135	struct extent_buffer *leaf;
4136	struct btrfs_map_token token;
4137	struct btrfs_key key;
 
4138	u64 extent_offset = em->start - em->orig_start;
4139	u64 block_len;
4140	int ret;
4141	int extent_inserted = 0;
4142
4143	ret = log_extent_csums(trans, inode, log, em);
4144	if (ret)
4145		return ret;
 
 
4146
4147	ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4148				   em->start + em->len, NULL, 0, 1,
4149				   sizeof(*fi), &extent_inserted);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4150	if (ret)
4151		return ret;
4152
4153	if (!extent_inserted) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4154		key.objectid = btrfs_ino(inode);
4155		key.type = BTRFS_EXTENT_DATA_KEY;
4156		key.offset = em->start;
4157
4158		ret = btrfs_insert_empty_item(trans, log, path, &key,
4159					      sizeof(*fi));
4160		if (ret)
4161			return ret;
4162	}
4163	leaf = path->nodes[0];
4164	btrfs_init_map_token(&token, leaf);
4165	fi = btrfs_item_ptr(leaf, path->slots[0],
4166			    struct btrfs_file_extent_item);
4167
4168	btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4169	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4170		btrfs_set_token_file_extent_type(&token, fi,
4171						 BTRFS_FILE_EXTENT_PREALLOC);
4172	else
4173		btrfs_set_token_file_extent_type(&token, fi,
4174						 BTRFS_FILE_EXTENT_REG);
4175
4176	block_len = max(em->block_len, em->orig_block_len);
4177	if (em->compress_type != BTRFS_COMPRESS_NONE) {
4178		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4179							em->block_start);
4180		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4181	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4182		btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4183							em->block_start -
4184							extent_offset);
4185		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4186	} else {
4187		btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4188		btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4189	}
4190
4191	btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4192	btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4193	btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4194	btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4195	btrfs_set_token_file_extent_encryption(&token, fi, 0);
4196	btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4197	btrfs_mark_buffer_dirty(leaf);
4198
4199	btrfs_release_path(path);
4200
4201	return ret;
4202}
4203
4204/*
4205 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4206 * lose them after doing a fast fsync and replaying the log. We scan the
4207 * subvolume's root instead of iterating the inode's extent map tree because
4208 * otherwise we can log incorrect extent items based on extent map conversion.
4209 * That can happen due to the fact that extent maps are merged when they
4210 * are not in the extent map tree's list of modified extents.
4211 */
4212static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4213				      struct btrfs_inode *inode,
4214				      struct btrfs_path *path)
4215{
4216	struct btrfs_root *root = inode->root;
4217	struct btrfs_key key;
4218	const u64 i_size = i_size_read(&inode->vfs_inode);
4219	const u64 ino = btrfs_ino(inode);
4220	struct btrfs_path *dst_path = NULL;
4221	bool dropped_extents = false;
4222	u64 truncate_offset = i_size;
4223	struct extent_buffer *leaf;
4224	int slot;
4225	int ins_nr = 0;
4226	int start_slot;
4227	int ret;
4228
4229	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4230		return 0;
4231
4232	key.objectid = ino;
4233	key.type = BTRFS_EXTENT_DATA_KEY;
4234	key.offset = i_size;
4235	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4236	if (ret < 0)
4237		goto out;
4238
4239	/*
4240	 * We must check if there is a prealloc extent that starts before the
4241	 * i_size and crosses the i_size boundary. This is to ensure later we
4242	 * truncate down to the end of that extent and not to the i_size, as
4243	 * otherwise we end up losing part of the prealloc extent after a log
4244	 * replay and with an implicit hole if there is another prealloc extent
4245	 * that starts at an offset beyond i_size.
4246	 */
4247	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4248	if (ret < 0)
4249		goto out;
4250
4251	if (ret == 0) {
4252		struct btrfs_file_extent_item *ei;
4253
4254		leaf = path->nodes[0];
4255		slot = path->slots[0];
4256		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4257
4258		if (btrfs_file_extent_type(leaf, ei) ==
4259		    BTRFS_FILE_EXTENT_PREALLOC) {
4260			u64 extent_end;
4261
4262			btrfs_item_key_to_cpu(leaf, &key, slot);
4263			extent_end = key.offset +
4264				btrfs_file_extent_num_bytes(leaf, ei);
4265
4266			if (extent_end > i_size)
4267				truncate_offset = extent_end;
4268		}
4269	} else {
4270		ret = 0;
4271	}
4272
4273	while (true) {
4274		leaf = path->nodes[0];
4275		slot = path->slots[0];
4276
4277		if (slot >= btrfs_header_nritems(leaf)) {
4278			if (ins_nr > 0) {
4279				ret = copy_items(trans, inode, dst_path, path,
4280						 start_slot, ins_nr, 1, 0);
4281				if (ret < 0)
4282					goto out;
4283				ins_nr = 0;
4284			}
4285			ret = btrfs_next_leaf(root, path);
4286			if (ret < 0)
4287				goto out;
4288			if (ret > 0) {
4289				ret = 0;
4290				break;
4291			}
4292			continue;
4293		}
4294
4295		btrfs_item_key_to_cpu(leaf, &key, slot);
4296		if (key.objectid > ino)
4297			break;
4298		if (WARN_ON_ONCE(key.objectid < ino) ||
4299		    key.type < BTRFS_EXTENT_DATA_KEY ||
4300		    key.offset < i_size) {
4301			path->slots[0]++;
4302			continue;
4303		}
4304		if (!dropped_extents) {
4305			/*
4306			 * Avoid logging extent items logged in past fsync calls
4307			 * and leading to duplicate keys in the log tree.
4308			 */
4309			do {
4310				ret = btrfs_truncate_inode_items(trans,
4311							 root->log_root,
4312							 &inode->vfs_inode,
4313							 truncate_offset,
4314							 BTRFS_EXTENT_DATA_KEY);
4315			} while (ret == -EAGAIN);
4316			if (ret)
4317				goto out;
4318			dropped_extents = true;
4319		}
4320		if (ins_nr == 0)
4321			start_slot = slot;
4322		ins_nr++;
4323		path->slots[0]++;
4324		if (!dst_path) {
4325			dst_path = btrfs_alloc_path();
4326			if (!dst_path) {
4327				ret = -ENOMEM;
4328				goto out;
4329			}
4330		}
4331	}
4332	if (ins_nr > 0)
4333		ret = copy_items(trans, inode, dst_path, path,
4334				 start_slot, ins_nr, 1, 0);
4335out:
4336	btrfs_release_path(path);
4337	btrfs_free_path(dst_path);
4338	return ret;
4339}
4340
4341static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4342				     struct btrfs_root *root,
4343				     struct btrfs_inode *inode,
4344				     struct btrfs_path *path,
4345				     struct btrfs_log_ctx *ctx,
4346				     const u64 start,
4347				     const u64 end)
4348{
 
 
4349	struct extent_map *em, *n;
4350	struct list_head extents;
4351	struct extent_map_tree *tree = &inode->extent_tree;
4352	u64 test_gen;
4353	int ret = 0;
4354	int num = 0;
4355
4356	INIT_LIST_HEAD(&extents);
4357
4358	write_lock(&tree->lock);
4359	test_gen = root->fs_info->last_trans_committed;
4360
4361	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4362		/*
4363		 * Skip extents outside our logging range. It's important to do
4364		 * it for correctness because if we don't ignore them, we may
4365		 * log them before their ordered extent completes, and therefore
4366		 * we could log them without logging their respective checksums
4367		 * (the checksum items are added to the csum tree at the very
4368		 * end of btrfs_finish_ordered_io()). Also leave such extents
4369		 * outside of our range in the list, since we may have another
4370		 * ranged fsync in the near future that needs them. If an extent
4371		 * outside our range corresponds to a hole, log it to avoid
4372		 * leaving gaps between extents (fsck will complain when we are
4373		 * not using the NO_HOLES feature).
4374		 */
4375		if ((em->start > end || em->start + em->len <= start) &&
4376		    em->block_start != EXTENT_MAP_HOLE)
4377			continue;
4378
4379		list_del_init(&em->list);
4380		/*
4381		 * Just an arbitrary number, this can be really CPU intensive
4382		 * once we start getting a lot of extents, and really once we
4383		 * have a bunch of extents we just want to commit since it will
4384		 * be faster.
4385		 */
4386		if (++num > 32768) {
4387			list_del_init(&tree->modified_extents);
4388			ret = -EFBIG;
4389			goto process;
4390		}
4391
4392		if (em->generation <= test_gen)
4393			continue;
4394
4395		/* We log prealloc extents beyond eof later. */
4396		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4397		    em->start >= i_size_read(&inode->vfs_inode))
4398			continue;
4399
4400		/* Need a ref to keep it from getting evicted from cache */
4401		refcount_inc(&em->refs);
4402		set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4403		list_add_tail(&em->list, &extents);
4404		num++;
4405	}
4406
4407	list_sort(NULL, &extents, extent_cmp);
4408process:
4409	while (!list_empty(&extents)) {
4410		em = list_entry(extents.next, struct extent_map, list);
4411
4412		list_del_init(&em->list);
4413
4414		/*
4415		 * If we had an error we just need to delete everybody from our
4416		 * private list.
4417		 */
4418		if (ret) {
4419			clear_em_logging(tree, em);
4420			free_extent_map(em);
4421			continue;
4422		}
4423
4424		write_unlock(&tree->lock);
4425
4426		ret = log_one_extent(trans, inode, root, em, path, ctx);
4427		write_lock(&tree->lock);
4428		clear_em_logging(tree, em);
4429		free_extent_map(em);
4430	}
4431	WARN_ON(!list_empty(&extents));
4432	write_unlock(&tree->lock);
4433
4434	btrfs_release_path(path);
4435	if (!ret)
4436		ret = btrfs_log_prealloc_extents(trans, inode, path);
 
 
4437
4438	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4439}
4440
4441static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4442			     struct btrfs_path *path, u64 *size_ret)
4443{
4444	struct btrfs_key key;
4445	int ret;
4446
4447	key.objectid = btrfs_ino(inode);
4448	key.type = BTRFS_INODE_ITEM_KEY;
4449	key.offset = 0;
4450
4451	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4452	if (ret < 0) {
4453		return ret;
4454	} else if (ret > 0) {
4455		*size_ret = 0;
4456	} else {
4457		struct btrfs_inode_item *item;
4458
4459		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4460				      struct btrfs_inode_item);
4461		*size_ret = btrfs_inode_size(path->nodes[0], item);
4462		/*
4463		 * If the in-memory inode's i_size is smaller then the inode
4464		 * size stored in the btree, return the inode's i_size, so
4465		 * that we get a correct inode size after replaying the log
4466		 * when before a power failure we had a shrinking truncate
4467		 * followed by addition of a new name (rename / new hard link).
4468		 * Otherwise return the inode size from the btree, to avoid
4469		 * data loss when replaying a log due to previously doing a
4470		 * write that expands the inode's size and logging a new name
4471		 * immediately after.
4472		 */
4473		if (*size_ret > inode->vfs_inode.i_size)
4474			*size_ret = inode->vfs_inode.i_size;
4475	}
4476
4477	btrfs_release_path(path);
4478	return 0;
4479}
4480
4481/*
4482 * At the moment we always log all xattrs. This is to figure out at log replay
4483 * time which xattrs must have their deletion replayed. If a xattr is missing
4484 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4485 * because if a xattr is deleted, the inode is fsynced and a power failure
4486 * happens, causing the log to be replayed the next time the fs is mounted,
4487 * we want the xattr to not exist anymore (same behaviour as other filesystems
4488 * with a journal, ext3/4, xfs, f2fs, etc).
4489 */
4490static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4491				struct btrfs_root *root,
4492				struct btrfs_inode *inode,
4493				struct btrfs_path *path,
4494				struct btrfs_path *dst_path)
4495{
 
4496	int ret;
4497	struct btrfs_key key;
4498	const u64 ino = btrfs_ino(inode);
4499	int ins_nr = 0;
4500	int start_slot = 0;
 
 
 
 
4501
4502	key.objectid = ino;
4503	key.type = BTRFS_XATTR_ITEM_KEY;
4504	key.offset = 0;
4505
4506	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4507	if (ret < 0)
4508		return ret;
4509
4510	while (true) {
4511		int slot = path->slots[0];
4512		struct extent_buffer *leaf = path->nodes[0];
4513		int nritems = btrfs_header_nritems(leaf);
4514
4515		if (slot >= nritems) {
4516			if (ins_nr > 0) {
4517				ret = copy_items(trans, inode, dst_path, path,
4518						 start_slot, ins_nr, 1, 0);
4519				if (ret < 0)
4520					return ret;
4521				ins_nr = 0;
4522			}
4523			ret = btrfs_next_leaf(root, path);
4524			if (ret < 0)
4525				return ret;
4526			else if (ret > 0)
4527				break;
4528			continue;
4529		}
4530
4531		btrfs_item_key_to_cpu(leaf, &key, slot);
4532		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4533			break;
4534
4535		if (ins_nr == 0)
4536			start_slot = slot;
4537		ins_nr++;
4538		path->slots[0]++;
 
4539		cond_resched();
4540	}
4541	if (ins_nr > 0) {
4542		ret = copy_items(trans, inode, dst_path, path,
4543				 start_slot, ins_nr, 1, 0);
4544		if (ret < 0)
4545			return ret;
4546	}
4547
 
 
 
4548	return 0;
4549}
4550
4551/*
4552 * When using the NO_HOLES feature if we punched a hole that causes the
4553 * deletion of entire leafs or all the extent items of the first leaf (the one
4554 * that contains the inode item and references) we may end up not processing
4555 * any extents, because there are no leafs with a generation matching the
4556 * current transaction that have extent items for our inode. So we need to find
4557 * if any holes exist and then log them. We also need to log holes after any
4558 * truncate operation that changes the inode's size.
4559 */
4560static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4561			   struct btrfs_root *root,
4562			   struct btrfs_inode *inode,
4563			   struct btrfs_path *path)
4564{
 
4565	struct btrfs_fs_info *fs_info = root->fs_info;
4566	struct btrfs_key key;
4567	const u64 ino = btrfs_ino(inode);
4568	const u64 i_size = i_size_read(&inode->vfs_inode);
4569	u64 prev_extent_end = 0;
4570	int ret;
4571
4572	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4573		return 0;
4574
4575	key.objectid = ino;
4576	key.type = BTRFS_EXTENT_DATA_KEY;
4577	key.offset = 0;
4578
4579	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4580	if (ret < 0)
4581		return ret;
4582
4583	while (true) {
4584		struct extent_buffer *leaf = path->nodes[0];
4585
4586		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4587			ret = btrfs_next_leaf(root, path);
4588			if (ret < 0)
4589				return ret;
4590			if (ret > 0) {
4591				ret = 0;
4592				break;
4593			}
4594			leaf = path->nodes[0];
4595		}
4596
4597		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4598		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4599			break;
4600
4601		/* We have a hole, log it. */
4602		if (prev_extent_end < key.offset) {
4603			const u64 hole_len = key.offset - prev_extent_end;
4604
4605			/*
4606			 * Release the path to avoid deadlocks with other code
4607			 * paths that search the root while holding locks on
4608			 * leafs from the log root.
4609			 */
4610			btrfs_release_path(path);
4611			ret = btrfs_insert_file_extent(trans, root->log_root,
4612						       ino, prev_extent_end, 0,
4613						       0, hole_len, 0, hole_len,
4614						       0, 0, 0);
4615			if (ret < 0)
4616				return ret;
4617
4618			/*
4619			 * Search for the same key again in the root. Since it's
4620			 * an extent item and we are holding the inode lock, the
4621			 * key must still exist. If it doesn't just emit warning
4622			 * and return an error to fall back to a transaction
4623			 * commit.
4624			 */
4625			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4626			if (ret < 0)
4627				return ret;
4628			if (WARN_ON(ret > 0))
4629				return -ENOENT;
4630			leaf = path->nodes[0];
4631		}
4632
4633		prev_extent_end = btrfs_file_extent_end(path);
4634		path->slots[0]++;
4635		cond_resched();
4636	}
4637
4638	if (prev_extent_end < i_size) {
4639		u64 hole_len;
4640
4641		btrfs_release_path(path);
4642		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4643		ret = btrfs_insert_file_extent(trans, root->log_root,
4644					       ino, prev_extent_end, 0, 0,
4645					       hole_len, 0, hole_len,
4646					       0, 0, 0);
4647		if (ret < 0)
4648			return ret;
4649	}
4650
4651	return 0;
4652}
4653
4654/*
4655 * When we are logging a new inode X, check if it doesn't have a reference that
4656 * matches the reference from some other inode Y created in a past transaction
4657 * and that was renamed in the current transaction. If we don't do this, then at
4658 * log replay time we can lose inode Y (and all its files if it's a directory):
4659 *
4660 * mkdir /mnt/x
4661 * echo "hello world" > /mnt/x/foobar
4662 * sync
4663 * mv /mnt/x /mnt/y
4664 * mkdir /mnt/x                 # or touch /mnt/x
4665 * xfs_io -c fsync /mnt/x
4666 * <power fail>
4667 * mount fs, trigger log replay
4668 *
4669 * After the log replay procedure, we would lose the first directory and all its
4670 * files (file foobar).
4671 * For the case where inode Y is not a directory we simply end up losing it:
4672 *
4673 * echo "123" > /mnt/foo
4674 * sync
4675 * mv /mnt/foo /mnt/bar
4676 * echo "abc" > /mnt/foo
4677 * xfs_io -c fsync /mnt/foo
4678 * <power fail>
4679 *
4680 * We also need this for cases where a snapshot entry is replaced by some other
4681 * entry (file or directory) otherwise we end up with an unreplayable log due to
4682 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4683 * if it were a regular entry:
4684 *
4685 * mkdir /mnt/x
4686 * btrfs subvolume snapshot /mnt /mnt/x/snap
4687 * btrfs subvolume delete /mnt/x/snap
4688 * rmdir /mnt/x
4689 * mkdir /mnt/x
4690 * fsync /mnt/x or fsync some new file inside it
4691 * <power fail>
4692 *
4693 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4694 * the same transaction.
4695 */
4696static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4697					 const int slot,
4698					 const struct btrfs_key *key,
4699					 struct btrfs_inode *inode,
4700					 u64 *other_ino, u64 *other_parent)
4701{
4702	int ret;
4703	struct btrfs_path *search_path;
4704	char *name = NULL;
4705	u32 name_len = 0;
4706	u32 item_size = btrfs_item_size_nr(eb, slot);
4707	u32 cur_offset = 0;
4708	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4709
4710	search_path = btrfs_alloc_path();
4711	if (!search_path)
4712		return -ENOMEM;
4713	search_path->search_commit_root = 1;
4714	search_path->skip_locking = 1;
4715
4716	while (cur_offset < item_size) {
4717		u64 parent;
4718		u32 this_name_len;
4719		u32 this_len;
4720		unsigned long name_ptr;
4721		struct btrfs_dir_item *di;
 
4722
4723		if (key->type == BTRFS_INODE_REF_KEY) {
4724			struct btrfs_inode_ref *iref;
4725
4726			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4727			parent = key->offset;
4728			this_name_len = btrfs_inode_ref_name_len(eb, iref);
4729			name_ptr = (unsigned long)(iref + 1);
4730			this_len = sizeof(*iref) + this_name_len;
4731		} else {
4732			struct btrfs_inode_extref *extref;
4733
4734			extref = (struct btrfs_inode_extref *)(ptr +
4735							       cur_offset);
4736			parent = btrfs_inode_extref_parent(eb, extref);
4737			this_name_len = btrfs_inode_extref_name_len(eb, extref);
4738			name_ptr = (unsigned long)&extref->name;
4739			this_len = sizeof(*extref) + this_name_len;
4740		}
4741
4742		if (this_name_len > name_len) {
4743			char *new_name;
4744
4745			new_name = krealloc(name, this_name_len, GFP_NOFS);
4746			if (!new_name) {
4747				ret = -ENOMEM;
4748				goto out;
4749			}
4750			name_len = this_name_len;
4751			name = new_name;
4752		}
4753
4754		read_extent_buffer(eb, name, name_ptr, this_name_len);
 
 
 
4755		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4756				parent, name, this_name_len, 0);
4757		if (di && !IS_ERR(di)) {
4758			struct btrfs_key di_key;
4759
4760			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4761						  di, &di_key);
4762			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4763				if (di_key.objectid != key->objectid) {
4764					ret = 1;
4765					*other_ino = di_key.objectid;
4766					*other_parent = parent;
4767				} else {
4768					ret = 0;
4769				}
4770			} else {
4771				ret = -EAGAIN;
4772			}
4773			goto out;
4774		} else if (IS_ERR(di)) {
4775			ret = PTR_ERR(di);
4776			goto out;
4777		}
4778		btrfs_release_path(search_path);
4779
4780		cur_offset += this_len;
4781	}
4782	ret = 0;
4783out:
4784	btrfs_free_path(search_path);
4785	kfree(name);
4786	return ret;
4787}
4788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4789struct btrfs_ino_list {
4790	u64 ino;
4791	u64 parent;
4792	struct list_head list;
4793};
4794
4795static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4796				  struct btrfs_root *root,
4797				  struct btrfs_path *path,
4798				  struct btrfs_log_ctx *ctx,
4799				  u64 ino, u64 parent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4800{
4801	struct btrfs_ino_list *ino_elem;
4802	LIST_HEAD(inode_list);
4803	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4804
4805	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4806	if (!ino_elem)
4807		return -ENOMEM;
4808	ino_elem->ino = ino;
4809	ino_elem->parent = parent;
4810	list_add_tail(&ino_elem->list, &inode_list);
 
4811
4812	while (!list_empty(&inode_list)) {
4813		struct btrfs_fs_info *fs_info = root->fs_info;
4814		struct btrfs_key key;
4815		struct inode *inode;
4816
4817		ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4818					    list);
4819		ino = ino_elem->ino;
4820		parent = ino_elem->parent;
4821		list_del(&ino_elem->list);
4822		kfree(ino_elem);
4823		if (ret)
4824			continue;
4825
4826		btrfs_release_path(path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4827
4828		inode = btrfs_iget(fs_info->sb, ino, root);
4829		/*
4830		 * If the other inode that had a conflicting dir entry was
4831		 * deleted in the current transaction, we need to log its parent
4832		 * directory.
4833		 */
4834		if (IS_ERR(inode)) {
4835			ret = PTR_ERR(inode);
4836			if (ret == -ENOENT) {
4837				inode = btrfs_iget(fs_info->sb, parent, root);
4838				if (IS_ERR(inode)) {
4839					ret = PTR_ERR(inode);
4840				} else {
4841					ret = btrfs_log_inode(trans, root,
4842						      BTRFS_I(inode),
4843						      LOG_OTHER_INODE_ALL,
4844						      0, LLONG_MAX, ctx);
4845					btrfs_add_delayed_iput(inode);
4846				}
4847			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4848			continue;
4849		}
 
4850		/*
4851		 * If the inode was already logged skip it - otherwise we can
4852		 * hit an infinite loop. Example:
4853		 *
4854		 * From the commit root (previous transaction) we have the
4855		 * following inodes:
4856		 *
4857		 * inode 257 a directory
4858		 * inode 258 with references "zz" and "zz_link" on inode 257
4859		 * inode 259 with reference "a" on inode 257
4860		 *
4861		 * And in the current (uncommitted) transaction we have:
4862		 *
4863		 * inode 257 a directory, unchanged
4864		 * inode 258 with references "a" and "a2" on inode 257
4865		 * inode 259 with reference "zz_link" on inode 257
4866		 * inode 261 with reference "zz" on inode 257
4867		 *
4868		 * When logging inode 261 the following infinite loop could
4869		 * happen if we don't skip already logged inodes:
4870		 *
4871		 * - we detect inode 258 as a conflicting inode, with inode 261
4872		 *   on reference "zz", and log it;
4873		 *
4874		 * - we detect inode 259 as a conflicting inode, with inode 258
4875		 *   on reference "a", and log it;
4876		 *
4877		 * - we detect inode 258 as a conflicting inode, with inode 259
4878		 *   on reference "zz_link", and log it - again! After this we
4879		 *   repeat the above steps forever.
4880		 */
4881		spin_lock(&BTRFS_I(inode)->lock);
4882		/*
4883		 * Check the inode's logged_trans only instead of
4884		 * btrfs_inode_in_log(). This is because the last_log_commit of
4885		 * the inode is not updated when we only log that it exists and
4886		 * and it has the full sync bit set (see btrfs_log_inode()).
4887		 */
4888		if (BTRFS_I(inode)->logged_trans == trans->transid) {
4889			spin_unlock(&BTRFS_I(inode)->lock);
4890			btrfs_add_delayed_iput(inode);
4891			continue;
4892		}
4893		spin_unlock(&BTRFS_I(inode)->lock);
4894		/*
4895		 * We are safe logging the other inode without acquiring its
4896		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4897		 * are safe against concurrent renames of the other inode as
4898		 * well because during a rename we pin the log and update the
4899		 * log with the new name before we unpin it.
4900		 */
4901		ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4902				      LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4903		if (ret) {
4904			btrfs_add_delayed_iput(inode);
4905			continue;
4906		}
4907
4908		key.objectid = ino;
4909		key.type = BTRFS_INODE_REF_KEY;
4910		key.offset = 0;
4911		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4912		if (ret < 0) {
4913			btrfs_add_delayed_iput(inode);
4914			continue;
4915		}
4916
4917		while (true) {
4918			struct extent_buffer *leaf = path->nodes[0];
4919			int slot = path->slots[0];
4920			u64 other_ino = 0;
4921			u64 other_parent = 0;
4922
4923			if (slot >= btrfs_header_nritems(leaf)) {
4924				ret = btrfs_next_leaf(root, path);
4925				if (ret < 0) {
4926					break;
4927				} else if (ret > 0) {
4928					ret = 0;
4929					break;
4930				}
4931				continue;
4932			}
4933
4934			btrfs_item_key_to_cpu(leaf, &key, slot);
4935			if (key.objectid != ino ||
4936			    (key.type != BTRFS_INODE_REF_KEY &&
4937			     key.type != BTRFS_INODE_EXTREF_KEY)) {
4938				ret = 0;
4939				break;
4940			}
4941
4942			ret = btrfs_check_ref_name_override(leaf, slot, &key,
4943					BTRFS_I(inode), &other_ino,
4944					&other_parent);
4945			if (ret < 0)
4946				break;
4947			if (ret > 0) {
4948				ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4949				if (!ino_elem) {
4950					ret = -ENOMEM;
4951					break;
4952				}
4953				ino_elem->ino = other_ino;
4954				ino_elem->parent = other_parent;
4955				list_add_tail(&ino_elem->list, &inode_list);
4956				ret = 0;
4957			}
4958			path->slots[0]++;
4959		}
4960		btrfs_add_delayed_iput(inode);
4961	}
4962
 
 
 
 
4963	return ret;
4964}
4965
4966static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
4967				   struct btrfs_inode *inode,
4968				   struct btrfs_key *min_key,
4969				   const struct btrfs_key *max_key,
4970				   struct btrfs_path *path,
4971				   struct btrfs_path *dst_path,
4972				   const u64 logged_isize,
4973				   const bool recursive_logging,
4974				   const int inode_only,
4975				   struct btrfs_log_ctx *ctx,
4976				   bool *need_log_inode_item)
4977{
 
4978	struct btrfs_root *root = inode->root;
4979	int ins_start_slot = 0;
4980	int ins_nr = 0;
4981	int ret;
4982
4983	while (1) {
4984		ret = btrfs_search_forward(root, min_key, path, trans->transid);
4985		if (ret < 0)
4986			return ret;
4987		if (ret > 0) {
4988			ret = 0;
4989			break;
4990		}
4991again:
4992		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
4993		if (min_key->objectid != max_key->objectid)
4994			break;
4995		if (min_key->type > max_key->type)
4996			break;
4997
4998		if (min_key->type == BTRFS_INODE_ITEM_KEY)
4999			*need_log_inode_item = false;
5000
5001		if ((min_key->type == BTRFS_INODE_REF_KEY ||
5002		     min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5003		    inode->generation == trans->transid &&
5004		    !recursive_logging) {
 
 
 
 
 
 
 
 
5005			u64 other_ino = 0;
5006			u64 other_parent = 0;
5007
5008			ret = btrfs_check_ref_name_override(path->nodes[0],
5009					path->slots[0], min_key, inode,
5010					&other_ino, &other_parent);
5011			if (ret < 0) {
5012				return ret;
5013			} else if (ret > 0 && ctx &&
5014				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5015				if (ins_nr > 0) {
5016					ins_nr++;
5017				} else {
5018					ins_nr = 1;
5019					ins_start_slot = path->slots[0];
5020				}
5021				ret = copy_items(trans, inode, dst_path, path,
5022						 ins_start_slot, ins_nr,
5023						 inode_only, logged_isize);
5024				if (ret < 0)
5025					return ret;
5026				ins_nr = 0;
5027
5028				ret = log_conflicting_inodes(trans, root, path,
5029						ctx, other_ino, other_parent);
 
 
5030				if (ret)
5031					return ret;
5032				btrfs_release_path(path);
5033				goto next_key;
5034			}
5035		}
5036
5037		/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5038		if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5039			if (ins_nr == 0)
5040				goto next_slot;
5041			ret = copy_items(trans, inode, dst_path, path,
5042					 ins_start_slot,
5043					 ins_nr, inode_only, logged_isize);
5044			if (ret < 0)
5045				return ret;
5046			ins_nr = 0;
5047			goto next_slot;
5048		}
5049
5050		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5051			ins_nr++;
5052			goto next_slot;
5053		} else if (!ins_nr) {
5054			ins_start_slot = path->slots[0];
5055			ins_nr = 1;
5056			goto next_slot;
5057		}
5058
5059		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5060				 ins_nr, inode_only, logged_isize);
5061		if (ret < 0)
5062			return ret;
5063		ins_nr = 1;
5064		ins_start_slot = path->slots[0];
5065next_slot:
5066		path->slots[0]++;
5067		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5068			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5069					      path->slots[0]);
5070			goto again;
5071		}
5072		if (ins_nr) {
5073			ret = copy_items(trans, inode, dst_path, path,
5074					 ins_start_slot, ins_nr, inode_only,
5075					 logged_isize);
5076			if (ret < 0)
5077				return ret;
5078			ins_nr = 0;
5079		}
5080		btrfs_release_path(path);
5081next_key:
5082		if (min_key->offset < (u64)-1) {
5083			min_key->offset++;
5084		} else if (min_key->type < max_key->type) {
5085			min_key->type++;
5086			min_key->offset = 0;
5087		} else {
5088			break;
5089		}
 
 
 
 
 
 
 
5090	}
5091	if (ins_nr)
5092		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5093				 ins_nr, inode_only, logged_isize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5094
5095	return ret;
5096}
5097
5098/* log a single inode in the tree log.
5099 * At least one parent directory for this inode must exist in the tree
5100 * or be logged already.
5101 *
5102 * Any items from this inode changed by the current transaction are copied
5103 * to the log tree.  An extra reference is taken on any extents in this
5104 * file, allowing us to avoid a whole pile of corner cases around logging
5105 * blocks that have been removed from the tree.
5106 *
5107 * See LOG_INODE_ALL and related defines for a description of what inode_only
5108 * does.
5109 *
5110 * This handles both files and directories.
5111 */
5112static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5113			   struct btrfs_root *root, struct btrfs_inode *inode,
5114			   int inode_only,
5115			   const loff_t start,
5116			   const loff_t end,
5117			   struct btrfs_log_ctx *ctx)
5118{
5119	struct btrfs_path *path;
5120	struct btrfs_path *dst_path;
5121	struct btrfs_key min_key;
5122	struct btrfs_key max_key;
5123	struct btrfs_root *log = root->log_root;
5124	int err = 0;
5125	int ret = 0;
5126	bool fast_search = false;
5127	u64 ino = btrfs_ino(inode);
5128	struct extent_map_tree *em_tree = &inode->extent_tree;
5129	u64 logged_isize = 0;
5130	bool need_log_inode_item = true;
5131	bool xattrs_logged = false;
5132	bool recursive_logging = false;
 
 
 
5133
5134	path = btrfs_alloc_path();
5135	if (!path)
5136		return -ENOMEM;
5137	dst_path = btrfs_alloc_path();
5138	if (!dst_path) {
5139		btrfs_free_path(path);
5140		return -ENOMEM;
5141	}
5142
5143	min_key.objectid = ino;
5144	min_key.type = BTRFS_INODE_ITEM_KEY;
5145	min_key.offset = 0;
5146
5147	max_key.objectid = ino;
5148
5149
5150	/* today the code can only do partial logging of directories */
5151	if (S_ISDIR(inode->vfs_inode.i_mode) ||
5152	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5153		       &inode->runtime_flags) &&
5154	     inode_only >= LOG_INODE_EXISTS))
5155		max_key.type = BTRFS_XATTR_ITEM_KEY;
5156	else
5157		max_key.type = (u8)-1;
5158	max_key.offset = (u64)-1;
5159
 
 
 
5160	/*
5161	 * Only run delayed items if we are a directory. We want to make sure
5162	 * all directory indexes hit the fs/subvolume tree so we can find them
5163	 * and figure out which index ranges have to be logged.
5164	 *
5165	 * Otherwise commit the delayed inode only if the full sync flag is set,
5166	 * as we want to make sure an up to date version is in the subvolume
5167	 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5168	 * it to the log tree. For a non full sync, we always log the inode item
5169	 * based on the in-memory struct btrfs_inode which is always up to date.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5170	 */
5171	if (S_ISDIR(inode->vfs_inode.i_mode))
5172		ret = btrfs_commit_inode_delayed_items(trans, inode);
5173	else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5174		ret = btrfs_commit_inode_delayed_inode(inode);
5175
5176	if (ret) {
5177		btrfs_free_path(path);
5178		btrfs_free_path(dst_path);
5179		return ret;
5180	}
5181
5182	if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5183		recursive_logging = true;
5184		if (inode_only == LOG_OTHER_INODE)
5185			inode_only = LOG_INODE_EXISTS;
5186		else
5187			inode_only = LOG_INODE_ALL;
5188		mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5189	} else {
5190		mutex_lock(&inode->log_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5191	}
5192
5193	/*
5194	 * a brute force approach to making sure we get the most uptodate
5195	 * copies of everything.
5196	 */
5197	if (S_ISDIR(inode->vfs_inode.i_mode)) {
5198		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5199
5200		if (inode_only == LOG_INODE_EXISTS)
5201			max_key_type = BTRFS_XATTR_ITEM_KEY;
5202		ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5203	} else {
5204		if (inode_only == LOG_INODE_EXISTS) {
5205			/*
5206			 * Make sure the new inode item we write to the log has
5207			 * the same isize as the current one (if it exists).
5208			 * This is necessary to prevent data loss after log
5209			 * replay, and also to prevent doing a wrong expanding
5210			 * truncate - for e.g. create file, write 4K into offset
5211			 * 0, fsync, write 4K into offset 4096, add hard link,
5212			 * fsync some other file (to sync log), power fail - if
5213			 * we use the inode's current i_size, after log replay
5214			 * we get a 8Kb file, with the last 4Kb extent as a hole
5215			 * (zeroes), as if an expanding truncate happened,
5216			 * instead of getting a file of 4Kb only.
5217			 */
5218			err = logged_inode_size(log, inode, path, &logged_isize);
5219			if (err)
5220				goto out_unlock;
5221		}
5222		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5223			     &inode->runtime_flags)) {
5224			if (inode_only == LOG_INODE_EXISTS) {
5225				max_key.type = BTRFS_XATTR_ITEM_KEY;
5226				ret = drop_objectid_items(trans, log, path, ino,
5227							  max_key.type);
 
5228			} else {
5229				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5230					  &inode->runtime_flags);
5231				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5232					  &inode->runtime_flags);
5233				while(1) {
5234					ret = btrfs_truncate_inode_items(trans,
5235						log, &inode->vfs_inode, 0, 0);
5236					if (ret != -EAGAIN)
5237						break;
5238				}
5239			}
5240		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5241					      &inode->runtime_flags) ||
5242			   inode_only == LOG_INODE_EXISTS) {
5243			if (inode_only == LOG_INODE_ALL)
5244				fast_search = true;
5245			max_key.type = BTRFS_XATTR_ITEM_KEY;
5246			ret = drop_objectid_items(trans, log, path, ino,
5247						  max_key.type);
 
5248		} else {
5249			if (inode_only == LOG_INODE_ALL)
5250				fast_search = true;
 
5251			goto log_extents;
5252		}
5253
5254	}
5255	if (ret) {
5256		err = ret;
5257		goto out_unlock;
5258	}
5259
5260	err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
 
 
 
 
 
 
 
 
 
 
5261				      path, dst_path, logged_isize,
5262				      recursive_logging, inode_only, ctx,
5263				      &need_log_inode_item);
5264	if (err)
5265		goto out_unlock;
5266
5267	btrfs_release_path(path);
5268	btrfs_release_path(dst_path);
5269	err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5270	if (err)
5271		goto out_unlock;
5272	xattrs_logged = true;
5273	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5274		btrfs_release_path(path);
5275		btrfs_release_path(dst_path);
5276		err = btrfs_log_holes(trans, root, inode, path);
5277		if (err)
5278			goto out_unlock;
5279	}
5280log_extents:
5281	btrfs_release_path(path);
5282	btrfs_release_path(dst_path);
5283	if (need_log_inode_item) {
5284		err = log_inode_item(trans, log, dst_path, inode);
5285		if (!err && !xattrs_logged) {
5286			err = btrfs_log_all_xattrs(trans, root, inode, path,
5287						   dst_path);
 
 
 
 
 
 
 
 
 
 
 
5288			btrfs_release_path(path);
5289		}
5290		if (err)
5291			goto out_unlock;
5292	}
5293	if (fast_search) {
5294		ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5295						ctx, start, end);
5296		if (ret) {
5297			err = ret;
5298			goto out_unlock;
5299		}
5300	} else if (inode_only == LOG_INODE_ALL) {
5301		struct extent_map *em, *n;
5302
5303		write_lock(&em_tree->lock);
5304		/*
5305		 * We can't just remove every em if we're called for a ranged
5306		 * fsync - that is, one that doesn't cover the whole possible
5307		 * file range (0 to LLONG_MAX). This is because we can have
5308		 * em's that fall outside the range we're logging and therefore
5309		 * their ordered operations haven't completed yet
5310		 * (btrfs_finish_ordered_io() not invoked yet). This means we
5311		 * didn't get their respective file extent item in the fs/subvol
5312		 * tree yet, and need to let the next fast fsync (one which
5313		 * consults the list of modified extent maps) find the em so
5314		 * that it logs a matching file extent item and waits for the
5315		 * respective ordered operation to complete (if it's still
5316		 * running).
5317		 *
5318		 * Removing every em outside the range we're logging would make
5319		 * the next fast fsync not log their matching file extent items,
5320		 * therefore making us lose data after a log replay.
5321		 */
5322		list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5323					 list) {
5324			const u64 mod_end = em->mod_start + em->mod_len - 1;
5325
5326			if (em->mod_start >= start && mod_end <= end)
5327				list_del_init(&em->list);
5328		}
5329		write_unlock(&em_tree->lock);
5330	}
5331
5332	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5333		ret = log_directory_changes(trans, root, inode, path, dst_path,
5334					ctx);
5335		if (ret) {
5336			err = ret;
 
 
 
 
 
 
5337			goto out_unlock;
5338		}
5339	}
5340
5341	/*
5342	 * Don't update last_log_commit if we logged that an inode exists after
5343	 * it was loaded to memory (full_sync bit set).
5344	 * This is to prevent data loss when we do a write to the inode, then
5345	 * the inode gets evicted after all delalloc was flushed, then we log
5346	 * it exists (due to a rename for example) and then fsync it. This last
5347	 * fsync would do nothing (not logging the extents previously written).
5348	 */
5349	spin_lock(&inode->lock);
5350	inode->logged_trans = trans->transid;
5351	if (inode_only != LOG_INODE_EXISTS ||
5352	    !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5353		inode->last_log_commit = inode->last_sub_trans;
5354	spin_unlock(&inode->lock);
5355out_unlock:
5356	mutex_unlock(&inode->log_mutex);
5357
5358	btrfs_free_path(path);
5359	btrfs_free_path(dst_path);
5360	return err;
5361}
5362
5363/*
5364 * Check if we must fallback to a transaction commit when logging an inode.
5365 * This must be called after logging the inode and is used only in the context
5366 * when fsyncing an inode requires the need to log some other inode - in which
5367 * case we can't lock the i_mutex of each other inode we need to log as that
5368 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5369 * log inodes up or down in the hierarchy) or rename operations for example. So
5370 * we take the log_mutex of the inode after we have logged it and then check for
5371 * its last_unlink_trans value - this is safe because any task setting
5372 * last_unlink_trans must take the log_mutex and it must do this before it does
5373 * the actual unlink operation, so if we do this check before a concurrent task
5374 * sets last_unlink_trans it means we've logged a consistent version/state of
5375 * all the inode items, otherwise we are not sure and must do a transaction
5376 * commit (the concurrent task might have only updated last_unlink_trans before
5377 * we logged the inode or it might have also done the unlink).
5378 */
5379static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5380					  struct btrfs_inode *inode)
5381{
5382	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5383	bool ret = false;
5384
5385	mutex_lock(&inode->log_mutex);
5386	if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5387		/*
5388		 * Make sure any commits to the log are forced to be full
5389		 * commits.
5390		 */
5391		btrfs_set_log_full_commit(trans);
5392		ret = true;
5393	}
5394	mutex_unlock(&inode->log_mutex);
5395
5396	return ret;
5397}
5398
5399/*
5400 * follow the dentry parent pointers up the chain and see if any
5401 * of the directories in it require a full commit before they can
5402 * be logged.  Returns zero if nothing special needs to be done or 1 if
5403 * a full commit is required.
5404 */
5405static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5406					       struct btrfs_inode *inode,
5407					       struct dentry *parent,
5408					       struct super_block *sb,
5409					       u64 last_committed)
5410{
5411	int ret = 0;
5412	struct dentry *old_parent = NULL;
5413
5414	/*
5415	 * for regular files, if its inode is already on disk, we don't
5416	 * have to worry about the parents at all.  This is because
5417	 * we can use the last_unlink_trans field to record renames
5418	 * and other fun in this file.
5419	 */
5420	if (S_ISREG(inode->vfs_inode.i_mode) &&
5421	    inode->generation <= last_committed &&
5422	    inode->last_unlink_trans <= last_committed)
5423		goto out;
5424
5425	if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5426		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5427			goto out;
5428		inode = BTRFS_I(d_inode(parent));
5429	}
5430
5431	while (1) {
5432		if (btrfs_must_commit_transaction(trans, inode)) {
5433			ret = 1;
5434			break;
5435		}
5436
5437		if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5438			break;
5439
5440		if (IS_ROOT(parent)) {
5441			inode = BTRFS_I(d_inode(parent));
5442			if (btrfs_must_commit_transaction(trans, inode))
5443				ret = 1;
5444			break;
5445		}
5446
5447		parent = dget_parent(parent);
5448		dput(old_parent);
5449		old_parent = parent;
5450		inode = BTRFS_I(d_inode(parent));
5451
5452	}
5453	dput(old_parent);
5454out:
5455	return ret;
5456}
5457
5458struct btrfs_dir_list {
5459	u64 ino;
5460	struct list_head list;
5461};
5462
5463/*
5464 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5465 * details about the why it is needed.
5466 * This is a recursive operation - if an existing dentry corresponds to a
5467 * directory, that directory's new entries are logged too (same behaviour as
5468 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5469 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5470 * complains about the following circular lock dependency / possible deadlock:
5471 *
5472 *        CPU0                                        CPU1
5473 *        ----                                        ----
5474 * lock(&type->i_mutex_dir_key#3/2);
5475 *                                            lock(sb_internal#2);
5476 *                                            lock(&type->i_mutex_dir_key#3/2);
5477 * lock(&sb->s_type->i_mutex_key#14);
5478 *
5479 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5480 * sb_start_intwrite() in btrfs_start_transaction().
5481 * Not locking i_mutex of the inodes is still safe because:
5482 *
5483 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5484 *    that while logging the inode new references (names) are added or removed
5485 *    from the inode, leaving the logged inode item with a link count that does
5486 *    not match the number of logged inode reference items. This is fine because
5487 *    at log replay time we compute the real number of links and correct the
5488 *    link count in the inode item (see replay_one_buffer() and
5489 *    link_to_fixup_dir());
5490 *
5491 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5492 *    while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5493 *    BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5494 *    has a size that doesn't match the sum of the lengths of all the logged
5495 *    names. This does not result in a problem because if a dir_item key is
5496 *    logged but its matching dir_index key is not logged, at log replay time we
5497 *    don't use it to replay the respective name (see replay_one_name()). On the
5498 *    other hand if only the dir_index key ends up being logged, the respective
5499 *    name is added to the fs/subvol tree with both the dir_item and dir_index
5500 *    keys created (see replay_one_name()).
5501 *    The directory's inode item with a wrong i_size is not a problem as well,
5502 *    since we don't use it at log replay time to set the i_size in the inode
5503 *    item of the fs/subvol tree (see overwrite_item()).
5504 */
5505static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5506				struct btrfs_root *root,
5507				struct btrfs_inode *start_inode,
5508				struct btrfs_log_ctx *ctx)
5509{
5510	struct btrfs_fs_info *fs_info = root->fs_info;
5511	struct btrfs_root *log = root->log_root;
5512	struct btrfs_path *path;
5513	LIST_HEAD(dir_list);
5514	struct btrfs_dir_list *dir_elem;
5515	int ret = 0;
5516
5517	path = btrfs_alloc_path();
5518	if (!path)
5519		return -ENOMEM;
5520
5521	dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5522	if (!dir_elem) {
5523		btrfs_free_path(path);
5524		return -ENOMEM;
5525	}
5526	dir_elem->ino = btrfs_ino(start_inode);
5527	list_add_tail(&dir_elem->list, &dir_list);
5528
5529	while (!list_empty(&dir_list)) {
5530		struct extent_buffer *leaf;
5531		struct btrfs_key min_key;
5532		int nritems;
5533		int i;
5534
5535		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5536					    list);
5537		if (ret)
5538			goto next_dir_inode;
5539
5540		min_key.objectid = dir_elem->ino;
5541		min_key.type = BTRFS_DIR_ITEM_KEY;
5542		min_key.offset = 0;
5543again:
5544		btrfs_release_path(path);
5545		ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5546		if (ret < 0) {
5547			goto next_dir_inode;
5548		} else if (ret > 0) {
5549			ret = 0;
5550			goto next_dir_inode;
5551		}
5552
5553process_leaf:
5554		leaf = path->nodes[0];
5555		nritems = btrfs_header_nritems(leaf);
5556		for (i = path->slots[0]; i < nritems; i++) {
5557			struct btrfs_dir_item *di;
5558			struct btrfs_key di_key;
5559			struct inode *di_inode;
5560			struct btrfs_dir_list *new_dir_elem;
5561			int log_mode = LOG_INODE_EXISTS;
5562			int type;
5563
5564			btrfs_item_key_to_cpu(leaf, &min_key, i);
5565			if (min_key.objectid != dir_elem->ino ||
5566			    min_key.type != BTRFS_DIR_ITEM_KEY)
5567				goto next_dir_inode;
5568
5569			di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5570			type = btrfs_dir_type(leaf, di);
5571			if (btrfs_dir_transid(leaf, di) < trans->transid &&
5572			    type != BTRFS_FT_DIR)
5573				continue;
5574			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5575			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5576				continue;
5577
5578			btrfs_release_path(path);
5579			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5580			if (IS_ERR(di_inode)) {
5581				ret = PTR_ERR(di_inode);
5582				goto next_dir_inode;
5583			}
5584
5585			if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5586				btrfs_add_delayed_iput(di_inode);
5587				break;
5588			}
5589
5590			ctx->log_new_dentries = false;
5591			if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5592				log_mode = LOG_INODE_ALL;
5593			ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5594					      log_mode, 0, LLONG_MAX, ctx);
5595			if (!ret &&
5596			    btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5597				ret = 1;
5598			btrfs_add_delayed_iput(di_inode);
5599			if (ret)
5600				goto next_dir_inode;
5601			if (ctx->log_new_dentries) {
5602				new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5603						       GFP_NOFS);
5604				if (!new_dir_elem) {
5605					ret = -ENOMEM;
5606					goto next_dir_inode;
5607				}
5608				new_dir_elem->ino = di_key.objectid;
5609				list_add_tail(&new_dir_elem->list, &dir_list);
5610			}
5611			break;
5612		}
5613		if (i == nritems) {
5614			ret = btrfs_next_leaf(log, path);
5615			if (ret < 0) {
5616				goto next_dir_inode;
5617			} else if (ret > 0) {
5618				ret = 0;
5619				goto next_dir_inode;
5620			}
5621			goto process_leaf;
5622		}
5623		if (min_key.offset < (u64)-1) {
5624			min_key.offset++;
5625			goto again;
5626		}
5627next_dir_inode:
5628		list_del(&dir_elem->list);
5629		kfree(dir_elem);
5630	}
5631
5632	btrfs_free_path(path);
5633	return ret;
5634}
5635
5636static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5637				 struct btrfs_inode *inode,
5638				 struct btrfs_log_ctx *ctx)
5639{
5640	struct btrfs_fs_info *fs_info = trans->fs_info;
5641	int ret;
5642	struct btrfs_path *path;
5643	struct btrfs_key key;
5644	struct btrfs_root *root = inode->root;
5645	const u64 ino = btrfs_ino(inode);
5646
5647	path = btrfs_alloc_path();
5648	if (!path)
5649		return -ENOMEM;
5650	path->skip_locking = 1;
5651	path->search_commit_root = 1;
5652
5653	key.objectid = ino;
5654	key.type = BTRFS_INODE_REF_KEY;
5655	key.offset = 0;
5656	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5657	if (ret < 0)
5658		goto out;
5659
5660	while (true) {
5661		struct extent_buffer *leaf = path->nodes[0];
5662		int slot = path->slots[0];
5663		u32 cur_offset = 0;
5664		u32 item_size;
5665		unsigned long ptr;
5666
5667		if (slot >= btrfs_header_nritems(leaf)) {
5668			ret = btrfs_next_leaf(root, path);
5669			if (ret < 0)
5670				goto out;
5671			else if (ret > 0)
5672				break;
5673			continue;
5674		}
5675
5676		btrfs_item_key_to_cpu(leaf, &key, slot);
5677		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5678		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5679			break;
5680
5681		item_size = btrfs_item_size_nr(leaf, slot);
5682		ptr = btrfs_item_ptr_offset(leaf, slot);
5683		while (cur_offset < item_size) {
5684			struct btrfs_key inode_key;
5685			struct inode *dir_inode;
5686
5687			inode_key.type = BTRFS_INODE_ITEM_KEY;
5688			inode_key.offset = 0;
5689
5690			if (key.type == BTRFS_INODE_EXTREF_KEY) {
5691				struct btrfs_inode_extref *extref;
5692
5693				extref = (struct btrfs_inode_extref *)
5694					(ptr + cur_offset);
5695				inode_key.objectid = btrfs_inode_extref_parent(
5696					leaf, extref);
5697				cur_offset += sizeof(*extref);
5698				cur_offset += btrfs_inode_extref_name_len(leaf,
5699					extref);
5700			} else {
5701				inode_key.objectid = key.offset;
5702				cur_offset = item_size;
5703			}
5704
5705			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5706					       root);
5707			/*
5708			 * If the parent inode was deleted, return an error to
5709			 * fallback to a transaction commit. This is to prevent
5710			 * getting an inode that was moved from one parent A to
5711			 * a parent B, got its former parent A deleted and then
5712			 * it got fsync'ed, from existing at both parents after
5713			 * a log replay (and the old parent still existing).
5714			 * Example:
5715			 *
5716			 * mkdir /mnt/A
5717			 * mkdir /mnt/B
5718			 * touch /mnt/B/bar
5719			 * sync
5720			 * mv /mnt/B/bar /mnt/A/bar
5721			 * mv -T /mnt/A /mnt/B
5722			 * fsync /mnt/B/bar
5723			 * <power fail>
5724			 *
5725			 * If we ignore the old parent B which got deleted,
5726			 * after a log replay we would have file bar linked
5727			 * at both parents and the old parent B would still
5728			 * exist.
5729			 */
5730			if (IS_ERR(dir_inode)) {
5731				ret = PTR_ERR(dir_inode);
5732				goto out;
5733			}
5734
5735			if (ctx)
5736				ctx->log_new_dentries = false;
5737			ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5738					      LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5739			if (!ret &&
5740			    btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5741				ret = 1;
5742			if (!ret && ctx && ctx->log_new_dentries)
5743				ret = log_new_dir_dentries(trans, root,
 
5744						   BTRFS_I(dir_inode), ctx);
5745			btrfs_add_delayed_iput(dir_inode);
5746			if (ret)
5747				goto out;
5748		}
5749		path->slots[0]++;
5750	}
5751	ret = 0;
5752out:
5753	btrfs_free_path(path);
5754	return ret;
5755}
5756
5757static int log_new_ancestors(struct btrfs_trans_handle *trans,
5758			     struct btrfs_root *root,
5759			     struct btrfs_path *path,
5760			     struct btrfs_log_ctx *ctx)
5761{
5762	struct btrfs_key found_key;
5763
5764	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5765
5766	while (true) {
5767		struct btrfs_fs_info *fs_info = root->fs_info;
5768		const u64 last_committed = fs_info->last_trans_committed;
5769		struct extent_buffer *leaf = path->nodes[0];
5770		int slot = path->slots[0];
5771		struct btrfs_key search_key;
5772		struct inode *inode;
5773		u64 ino;
5774		int ret = 0;
5775
5776		btrfs_release_path(path);
5777
5778		ino = found_key.offset;
5779
5780		search_key.objectid = found_key.offset;
5781		search_key.type = BTRFS_INODE_ITEM_KEY;
5782		search_key.offset = 0;
5783		inode = btrfs_iget(fs_info->sb, ino, root);
5784		if (IS_ERR(inode))
5785			return PTR_ERR(inode);
5786
5787		if (BTRFS_I(inode)->generation > last_committed)
5788			ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5789					      LOG_INODE_EXISTS,
5790					      0, LLONG_MAX, ctx);
5791		btrfs_add_delayed_iput(inode);
5792		if (ret)
5793			return ret;
5794
5795		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5796			break;
5797
5798		search_key.type = BTRFS_INODE_REF_KEY;
5799		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5800		if (ret < 0)
5801			return ret;
5802
5803		leaf = path->nodes[0];
5804		slot = path->slots[0];
5805		if (slot >= btrfs_header_nritems(leaf)) {
5806			ret = btrfs_next_leaf(root, path);
5807			if (ret < 0)
5808				return ret;
5809			else if (ret > 0)
5810				return -ENOENT;
5811			leaf = path->nodes[0];
5812			slot = path->slots[0];
5813		}
5814
5815		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5816		if (found_key.objectid != search_key.objectid ||
5817		    found_key.type != BTRFS_INODE_REF_KEY)
5818			return -ENOENT;
5819	}
5820	return 0;
5821}
5822
5823static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5824				  struct btrfs_inode *inode,
5825				  struct dentry *parent,
5826				  struct btrfs_log_ctx *ctx)
5827{
5828	struct btrfs_root *root = inode->root;
5829	struct btrfs_fs_info *fs_info = root->fs_info;
5830	struct dentry *old_parent = NULL;
5831	struct super_block *sb = inode->vfs_inode.i_sb;
5832	int ret = 0;
5833
5834	while (true) {
5835		if (!parent || d_really_is_negative(parent) ||
5836		    sb != parent->d_sb)
5837			break;
5838
5839		inode = BTRFS_I(d_inode(parent));
5840		if (root != inode->root)
5841			break;
5842
5843		if (inode->generation > fs_info->last_trans_committed) {
5844			ret = btrfs_log_inode(trans, root, inode,
5845					LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
 
5846			if (ret)
5847				break;
5848		}
5849		if (IS_ROOT(parent))
5850			break;
5851
5852		parent = dget_parent(parent);
5853		dput(old_parent);
5854		old_parent = parent;
5855	}
5856	dput(old_parent);
5857
5858	return ret;
5859}
5860
5861static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5862				 struct btrfs_inode *inode,
5863				 struct dentry *parent,
5864				 struct btrfs_log_ctx *ctx)
5865{
5866	struct btrfs_root *root = inode->root;
5867	const u64 ino = btrfs_ino(inode);
5868	struct btrfs_path *path;
5869	struct btrfs_key search_key;
5870	int ret;
5871
5872	/*
5873	 * For a single hard link case, go through a fast path that does not
5874	 * need to iterate the fs/subvolume tree.
5875	 */
5876	if (inode->vfs_inode.i_nlink < 2)
5877		return log_new_ancestors_fast(trans, inode, parent, ctx);
5878
5879	path = btrfs_alloc_path();
5880	if (!path)
5881		return -ENOMEM;
5882
5883	search_key.objectid = ino;
5884	search_key.type = BTRFS_INODE_REF_KEY;
5885	search_key.offset = 0;
5886again:
5887	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5888	if (ret < 0)
5889		goto out;
5890	if (ret == 0)
5891		path->slots[0]++;
5892
5893	while (true) {
5894		struct extent_buffer *leaf = path->nodes[0];
5895		int slot = path->slots[0];
5896		struct btrfs_key found_key;
5897
5898		if (slot >= btrfs_header_nritems(leaf)) {
5899			ret = btrfs_next_leaf(root, path);
5900			if (ret < 0)
5901				goto out;
5902			else if (ret > 0)
5903				break;
5904			continue;
5905		}
5906
5907		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5908		if (found_key.objectid != ino ||
5909		    found_key.type > BTRFS_INODE_EXTREF_KEY)
5910			break;
5911
5912		/*
5913		 * Don't deal with extended references because they are rare
5914		 * cases and too complex to deal with (we would need to keep
5915		 * track of which subitem we are processing for each item in
5916		 * this loop, etc). So just return some error to fallback to
5917		 * a transaction commit.
5918		 */
5919		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5920			ret = -EMLINK;
5921			goto out;
5922		}
5923
5924		/*
5925		 * Logging ancestors needs to do more searches on the fs/subvol
5926		 * tree, so it releases the path as needed to avoid deadlocks.
5927		 * Keep track of the last inode ref key and resume from that key
5928		 * after logging all new ancestors for the current hard link.
5929		 */
5930		memcpy(&search_key, &found_key, sizeof(search_key));
5931
5932		ret = log_new_ancestors(trans, root, path, ctx);
5933		if (ret)
5934			goto out;
5935		btrfs_release_path(path);
5936		goto again;
5937	}
5938	ret = 0;
5939out:
5940	btrfs_free_path(path);
5941	return ret;
5942}
5943
5944/*
5945 * helper function around btrfs_log_inode to make sure newly created
5946 * parent directories also end up in the log.  A minimal inode and backref
5947 * only logging is done of any parent directories that are older than
5948 * the last committed transaction
5949 */
5950static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5951				  struct btrfs_inode *inode,
5952				  struct dentry *parent,
5953				  const loff_t start,
5954				  const loff_t end,
5955				  int inode_only,
5956				  struct btrfs_log_ctx *ctx)
5957{
5958	struct btrfs_root *root = inode->root;
5959	struct btrfs_fs_info *fs_info = root->fs_info;
5960	struct super_block *sb;
5961	int ret = 0;
5962	u64 last_committed = fs_info->last_trans_committed;
5963	bool log_dentries = false;
5964
5965	sb = inode->vfs_inode.i_sb;
5966
5967	if (btrfs_test_opt(fs_info, NOTREELOG)) {
5968		ret = 1;
5969		goto end_no_trans;
5970	}
5971
5972	/*
5973	 * The prev transaction commit doesn't complete, we need do
5974	 * full commit by ourselves.
5975	 */
5976	if (fs_info->last_trans_log_full_commit >
5977	    fs_info->last_trans_committed) {
5978		ret = 1;
5979		goto end_no_trans;
5980	}
5981
5982	if (btrfs_root_refs(&root->root_item) == 0) {
5983		ret = 1;
5984		goto end_no_trans;
5985	}
5986
5987	ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5988			last_committed);
5989	if (ret)
5990		goto end_no_trans;
5991
5992	/*
5993	 * Skip already logged inodes or inodes corresponding to tmpfiles
5994	 * (since logging them is pointless, a link count of 0 means they
5995	 * will never be accessible).
5996	 */
5997	if (btrfs_inode_in_log(inode, trans->transid) ||
 
5998	    inode->vfs_inode.i_nlink == 0) {
5999		ret = BTRFS_NO_LOG_SYNC;
6000		goto end_no_trans;
6001	}
6002
6003	ret = start_log_trans(trans, root, ctx);
6004	if (ret)
6005		goto end_no_trans;
6006
6007	ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6008	if (ret)
6009		goto end_trans;
6010
6011	/*
6012	 * for regular files, if its inode is already on disk, we don't
6013	 * have to worry about the parents at all.  This is because
6014	 * we can use the last_unlink_trans field to record renames
6015	 * and other fun in this file.
6016	 */
6017	if (S_ISREG(inode->vfs_inode.i_mode) &&
6018	    inode->generation <= last_committed &&
6019	    inode->last_unlink_trans <= last_committed) {
6020		ret = 0;
6021		goto end_trans;
6022	}
6023
6024	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6025		log_dentries = true;
6026
6027	/*
6028	 * On unlink we must make sure all our current and old parent directory
6029	 * inodes are fully logged. This is to prevent leaving dangling
6030	 * directory index entries in directories that were our parents but are
6031	 * not anymore. Not doing this results in old parent directory being
6032	 * impossible to delete after log replay (rmdir will always fail with
6033	 * error -ENOTEMPTY).
6034	 *
6035	 * Example 1:
6036	 *
6037	 * mkdir testdir
6038	 * touch testdir/foo
6039	 * ln testdir/foo testdir/bar
6040	 * sync
6041	 * unlink testdir/bar
6042	 * xfs_io -c fsync testdir/foo
6043	 * <power failure>
6044	 * mount fs, triggers log replay
6045	 *
6046	 * If we don't log the parent directory (testdir), after log replay the
6047	 * directory still has an entry pointing to the file inode using the bar
6048	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6049	 * the file inode has a link count of 1.
6050	 *
6051	 * Example 2:
6052	 *
6053	 * mkdir testdir
6054	 * touch foo
6055	 * ln foo testdir/foo2
6056	 * ln foo testdir/foo3
6057	 * sync
6058	 * unlink testdir/foo3
6059	 * xfs_io -c fsync foo
6060	 * <power failure>
6061	 * mount fs, triggers log replay
6062	 *
6063	 * Similar as the first example, after log replay the parent directory
6064	 * testdir still has an entry pointing to the inode file with name foo3
6065	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6066	 * and has a link count of 2.
6067	 */
6068	if (inode->last_unlink_trans > last_committed) {
6069		ret = btrfs_log_all_parents(trans, inode, ctx);
6070		if (ret)
6071			goto end_trans;
6072	}
6073
6074	ret = log_all_new_ancestors(trans, inode, parent, ctx);
6075	if (ret)
6076		goto end_trans;
6077
6078	if (log_dentries)
6079		ret = log_new_dir_dentries(trans, root, inode, ctx);
6080	else
6081		ret = 0;
6082end_trans:
6083	if (ret < 0) {
6084		btrfs_set_log_full_commit(trans);
6085		ret = 1;
6086	}
6087
6088	if (ret)
6089		btrfs_remove_log_ctx(root, ctx);
6090	btrfs_end_log_trans(root);
6091end_no_trans:
6092	return ret;
6093}
6094
6095/*
6096 * it is not safe to log dentry if the chunk root has added new
6097 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
6098 * If this returns 1, you must commit the transaction to safely get your
6099 * data on disk.
6100 */
6101int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6102			  struct dentry *dentry,
6103			  const loff_t start,
6104			  const loff_t end,
6105			  struct btrfs_log_ctx *ctx)
6106{
6107	struct dentry *parent = dget_parent(dentry);
6108	int ret;
6109
6110	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6111				     start, end, LOG_INODE_ALL, ctx);
6112	dput(parent);
6113
6114	return ret;
6115}
6116
6117/*
6118 * should be called during mount to recover any replay any log trees
6119 * from the FS
6120 */
6121int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6122{
6123	int ret;
6124	struct btrfs_path *path;
6125	struct btrfs_trans_handle *trans;
6126	struct btrfs_key key;
6127	struct btrfs_key found_key;
6128	struct btrfs_root *log;
6129	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6130	struct walk_control wc = {
6131		.process_func = process_one_buffer,
6132		.stage = LOG_WALK_PIN_ONLY,
6133	};
6134
6135	path = btrfs_alloc_path();
6136	if (!path)
6137		return -ENOMEM;
6138
6139	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6140
6141	trans = btrfs_start_transaction(fs_info->tree_root, 0);
6142	if (IS_ERR(trans)) {
6143		ret = PTR_ERR(trans);
6144		goto error;
6145	}
6146
6147	wc.trans = trans;
6148	wc.pin = 1;
6149
6150	ret = walk_log_tree(trans, log_root_tree, &wc);
6151	if (ret) {
6152		btrfs_handle_fs_error(fs_info, ret,
6153			"Failed to pin buffers while recovering log root tree.");
6154		goto error;
6155	}
6156
6157again:
6158	key.objectid = BTRFS_TREE_LOG_OBJECTID;
6159	key.offset = (u64)-1;
6160	key.type = BTRFS_ROOT_ITEM_KEY;
6161
6162	while (1) {
6163		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6164
6165		if (ret < 0) {
6166			btrfs_handle_fs_error(fs_info, ret,
6167				    "Couldn't find tree log root.");
6168			goto error;
6169		}
6170		if (ret > 0) {
6171			if (path->slots[0] == 0)
6172				break;
6173			path->slots[0]--;
6174		}
6175		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6176				      path->slots[0]);
6177		btrfs_release_path(path);
6178		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6179			break;
6180
6181		log = btrfs_read_tree_root(log_root_tree, &found_key);
6182		if (IS_ERR(log)) {
6183			ret = PTR_ERR(log);
6184			btrfs_handle_fs_error(fs_info, ret,
6185				    "Couldn't read tree log root.");
6186			goto error;
6187		}
6188
6189		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6190						   true);
6191		if (IS_ERR(wc.replay_dest)) {
6192			ret = PTR_ERR(wc.replay_dest);
6193
6194			/*
6195			 * We didn't find the subvol, likely because it was
6196			 * deleted.  This is ok, simply skip this log and go to
6197			 * the next one.
6198			 *
6199			 * We need to exclude the root because we can't have
6200			 * other log replays overwriting this log as we'll read
6201			 * it back in a few more times.  This will keep our
6202			 * block from being modified, and we'll just bail for
6203			 * each subsequent pass.
6204			 */
6205			if (ret == -ENOENT)
6206				ret = btrfs_pin_extent_for_log_replay(trans,
6207							log->node->start,
6208							log->node->len);
6209			btrfs_put_root(log);
6210
6211			if (!ret)
6212				goto next;
6213			btrfs_handle_fs_error(fs_info, ret,
6214				"Couldn't read target root for tree log recovery.");
6215			goto error;
6216		}
6217
6218		wc.replay_dest->log_root = log;
6219		btrfs_record_root_in_trans(trans, wc.replay_dest);
6220		ret = walk_log_tree(trans, log, &wc);
 
 
 
 
6221
6222		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6223			ret = fixup_inode_link_counts(trans, wc.replay_dest,
6224						      path);
 
 
6225		}
6226
6227		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6228			struct btrfs_root *root = wc.replay_dest;
6229
6230			btrfs_release_path(path);
6231
6232			/*
6233			 * We have just replayed everything, and the highest
6234			 * objectid of fs roots probably has changed in case
6235			 * some inode_item's got replayed.
6236			 *
6237			 * root->objectid_mutex is not acquired as log replay
6238			 * could only happen during mount.
6239			 */
6240			ret = btrfs_find_highest_objectid(root,
6241						  &root->highest_objectid);
 
6242		}
6243
6244		wc.replay_dest->log_root = NULL;
6245		btrfs_put_root(wc.replay_dest);
6246		btrfs_put_root(log);
6247
6248		if (ret)
6249			goto error;
6250next:
6251		if (found_key.offset == 0)
6252			break;
6253		key.offset = found_key.offset - 1;
6254	}
6255	btrfs_release_path(path);
6256
6257	/* step one is to pin it all, step two is to replay just inodes */
6258	if (wc.pin) {
6259		wc.pin = 0;
6260		wc.process_func = replay_one_buffer;
6261		wc.stage = LOG_WALK_REPLAY_INODES;
6262		goto again;
6263	}
6264	/* step three is to replay everything */
6265	if (wc.stage < LOG_WALK_REPLAY_ALL) {
6266		wc.stage++;
6267		goto again;
6268	}
6269
6270	btrfs_free_path(path);
6271
6272	/* step 4: commit the transaction, which also unpins the blocks */
6273	ret = btrfs_commit_transaction(trans);
6274	if (ret)
6275		return ret;
6276
6277	log_root_tree->log_root = NULL;
6278	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6279	btrfs_put_root(log_root_tree);
6280
6281	return 0;
6282error:
6283	if (wc.trans)
6284		btrfs_end_transaction(wc.trans);
 
6285	btrfs_free_path(path);
6286	return ret;
6287}
6288
6289/*
6290 * there are some corner cases where we want to force a full
6291 * commit instead of allowing a directory to be logged.
6292 *
6293 * They revolve around files there were unlinked from the directory, and
6294 * this function updates the parent directory so that a full commit is
6295 * properly done if it is fsync'd later after the unlinks are done.
6296 *
6297 * Must be called before the unlink operations (updates to the subvolume tree,
6298 * inodes, etc) are done.
6299 */
6300void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6301			     struct btrfs_inode *dir, struct btrfs_inode *inode,
6302			     int for_rename)
6303{
6304	/*
6305	 * when we're logging a file, if it hasn't been renamed
6306	 * or unlinked, and its inode is fully committed on disk,
6307	 * we don't have to worry about walking up the directory chain
6308	 * to log its parents.
6309	 *
6310	 * So, we use the last_unlink_trans field to put this transid
6311	 * into the file.  When the file is logged we check it and
6312	 * don't log the parents if the file is fully on disk.
6313	 */
6314	mutex_lock(&inode->log_mutex);
6315	inode->last_unlink_trans = trans->transid;
6316	mutex_unlock(&inode->log_mutex);
6317
 
 
 
6318	/*
6319	 * if this directory was already logged any new
6320	 * names for this file/dir will get recorded
 
 
6321	 */
6322	if (dir->logged_trans == trans->transid)
6323		return;
6324
6325	/*
6326	 * if the inode we're about to unlink was logged,
6327	 * the log will be properly updated for any new names
 
 
6328	 */
6329	if (inode->logged_trans == trans->transid)
6330		return;
6331
6332	/*
6333	 * when renaming files across directories, if the directory
6334	 * there we're unlinking from gets fsync'd later on, there's
6335	 * no way to find the destination directory later and fsync it
6336	 * properly.  So, we have to be conservative and force commits
6337	 * so the new name gets discovered.
6338	 */
6339	if (for_rename)
6340		goto record;
6341
6342	/* we can safely do the unlink without any special recording */
6343	return;
6344
6345record:
6346	mutex_lock(&dir->log_mutex);
6347	dir->last_unlink_trans = trans->transid;
6348	mutex_unlock(&dir->log_mutex);
6349}
6350
6351/*
6352 * Make sure that if someone attempts to fsync the parent directory of a deleted
6353 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6354 * that after replaying the log tree of the parent directory's root we will not
6355 * see the snapshot anymore and at log replay time we will not see any log tree
6356 * corresponding to the deleted snapshot's root, which could lead to replaying
6357 * it after replaying the log tree of the parent directory (which would replay
6358 * the snapshot delete operation).
6359 *
6360 * Must be called before the actual snapshot destroy operation (updates to the
6361 * parent root and tree of tree roots trees, etc) are done.
6362 */
6363void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6364				   struct btrfs_inode *dir)
6365{
6366	mutex_lock(&dir->log_mutex);
6367	dir->last_unlink_trans = trans->transid;
6368	mutex_unlock(&dir->log_mutex);
6369}
6370
6371/*
6372 * Call this after adding a new name for a file and it will properly
6373 * update the log to reflect the new name.
6374 *
6375 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6376 * true (because it's not used).
6377 *
6378 * Return value depends on whether @sync_log is true or false.
6379 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6380 *            committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6381 *            otherwise.
6382 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6383 *             to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6384 *             or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6385 *             committed (without attempting to sync the log).
6386 */
6387int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6388			struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6389			struct dentry *parent,
6390			bool sync_log, struct btrfs_log_ctx *ctx)
 
 
 
 
6391{
6392	struct btrfs_fs_info *fs_info = trans->fs_info;
 
 
 
6393	int ret;
6394
6395	/*
6396	 * this will force the logging code to walk the dentry chain
6397	 * up for the file
6398	 */
6399	if (!S_ISDIR(inode->vfs_inode.i_mode))
6400		inode->last_unlink_trans = trans->transid;
6401
6402	/*
6403	 * if this inode hasn't been logged and directory we're renaming it
6404	 * from hasn't been logged, we don't need to log it
6405	 */
6406	if (inode->logged_trans <= fs_info->last_trans_committed &&
6407	    (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6408		return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6409			BTRFS_DONT_NEED_LOG_SYNC;
6410
6411	if (sync_log) {
6412		struct btrfs_log_ctx ctx2;
6413
6414		btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6415		ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6416					     LOG_INODE_EXISTS, &ctx2);
6417		if (ret == BTRFS_NO_LOG_SYNC)
6418			return BTRFS_DONT_NEED_TRANS_COMMIT;
6419		else if (ret)
6420			return BTRFS_NEED_TRANS_COMMIT;
 
 
 
6421
6422		ret = btrfs_sync_log(trans, inode->root, &ctx2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6423		if (ret)
6424			return BTRFS_NEED_TRANS_COMMIT;
6425		return BTRFS_DONT_NEED_TRANS_COMMIT;
6426	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6427
6428	ASSERT(ctx);
6429	ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6430				     LOG_INODE_EXISTS, ctx);
6431	if (ret == BTRFS_NO_LOG_SYNC)
6432		return BTRFS_DONT_NEED_LOG_SYNC;
6433	else if (ret)
6434		return BTRFS_NEED_TRANS_COMMIT;
6435
6436	return BTRFS_NEED_LOG_SYNC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6437}
6438
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/blkdev.h>
   9#include <linux/list_sort.h>
  10#include <linux/iversion.h>
  11#include "misc.h"
  12#include "ctree.h"
  13#include "tree-log.h"
  14#include "disk-io.h"
  15#include "locking.h"
  16#include "print-tree.h"
  17#include "backref.h"
  18#include "compression.h"
  19#include "qgroup.h"
 
  20#include "block-group.h"
  21#include "space-info.h"
  22#include "zoned.h"
  23#include "inode-item.h"
  24#include "fs.h"
  25#include "accessors.h"
  26#include "extent-tree.h"
  27#include "root-tree.h"
  28#include "dir-item.h"
  29#include "file-item.h"
  30#include "file.h"
  31#include "orphan.h"
  32#include "tree-checker.h"
  33
  34#define MAX_CONFLICT_INODES 10
  35
  36/* magic values for the inode_only field in btrfs_log_inode:
  37 *
  38 * LOG_INODE_ALL means to log everything
  39 * LOG_INODE_EXISTS means to log just enough to recreate the inode
  40 * during log replay
  41 */
  42enum {
  43	LOG_INODE_ALL,
  44	LOG_INODE_EXISTS,
 
 
  45};
  46
  47/*
  48 * directory trouble cases
  49 *
  50 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
  51 * log, we must force a full commit before doing an fsync of the directory
  52 * where the unlink was done.
  53 * ---> record transid of last unlink/rename per directory
  54 *
  55 * mkdir foo/some_dir
  56 * normal commit
  57 * rename foo/some_dir foo2/some_dir
  58 * mkdir foo/some_dir
  59 * fsync foo/some_dir/some_file
  60 *
  61 * The fsync above will unlink the original some_dir without recording
  62 * it in its new location (foo2).  After a crash, some_dir will be gone
  63 * unless the fsync of some_file forces a full commit
  64 *
  65 * 2) we must log any new names for any file or dir that is in the fsync
  66 * log. ---> check inode while renaming/linking.
  67 *
  68 * 2a) we must log any new names for any file or dir during rename
  69 * when the directory they are being removed from was logged.
  70 * ---> check inode and old parent dir during rename
  71 *
  72 *  2a is actually the more important variant.  With the extra logging
  73 *  a crash might unlink the old name without recreating the new one
  74 *
  75 * 3) after a crash, we must go through any directories with a link count
  76 * of zero and redo the rm -rf
  77 *
  78 * mkdir f1/foo
  79 * normal commit
  80 * rm -rf f1/foo
  81 * fsync(f1)
  82 *
  83 * The directory f1 was fully removed from the FS, but fsync was never
  84 * called on f1, only its parent dir.  After a crash the rm -rf must
  85 * be replayed.  This must be able to recurse down the entire
  86 * directory tree.  The inode link count fixup code takes care of the
  87 * ugly details.
  88 */
  89
  90/*
  91 * stages for the tree walking.  The first
  92 * stage (0) is to only pin down the blocks we find
  93 * the second stage (1) is to make sure that all the inodes
  94 * we find in the log are created in the subvolume.
  95 *
  96 * The last stage is to deal with directories and links and extents
  97 * and all the other fun semantics
  98 */
  99enum {
 100	LOG_WALK_PIN_ONLY,
 101	LOG_WALK_REPLAY_INODES,
 102	LOG_WALK_REPLAY_DIR_INDEX,
 103	LOG_WALK_REPLAY_ALL,
 104};
 105
 106static int btrfs_log_inode(struct btrfs_trans_handle *trans,
 107			   struct btrfs_inode *inode,
 108			   int inode_only,
 
 
 109			   struct btrfs_log_ctx *ctx);
 110static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
 111			     struct btrfs_root *root,
 112			     struct btrfs_path *path, u64 objectid);
 113static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
 114				       struct btrfs_root *root,
 115				       struct btrfs_root *log,
 116				       struct btrfs_path *path,
 117				       u64 dirid, int del_all);
 118static void wait_log_commit(struct btrfs_root *root, int transid);
 119
 120/*
 121 * tree logging is a special write ahead log used to make sure that
 122 * fsyncs and O_SYNCs can happen without doing full tree commits.
 123 *
 124 * Full tree commits are expensive because they require commonly
 125 * modified blocks to be recowed, creating many dirty pages in the
 126 * extent tree an 4x-6x higher write load than ext3.
 127 *
 128 * Instead of doing a tree commit on every fsync, we use the
 129 * key ranges and transaction ids to find items for a given file or directory
 130 * that have changed in this transaction.  Those items are copied into
 131 * a special tree (one per subvolume root), that tree is written to disk
 132 * and then the fsync is considered complete.
 133 *
 134 * After a crash, items are copied out of the log-tree back into the
 135 * subvolume tree.  Any file data extents found are recorded in the extent
 136 * allocation tree, and the log-tree freed.
 137 *
 138 * The log tree is read three times, once to pin down all the extents it is
 139 * using in ram and once, once to create all the inodes logged in the tree
 140 * and once to do all the other items.
 141 */
 142
 143/*
 144 * start a sub transaction and setup the log tree
 145 * this increments the log tree writer count to make the people
 146 * syncing the tree wait for us to finish
 147 */
 148static int start_log_trans(struct btrfs_trans_handle *trans,
 149			   struct btrfs_root *root,
 150			   struct btrfs_log_ctx *ctx)
 151{
 152	struct btrfs_fs_info *fs_info = root->fs_info;
 153	struct btrfs_root *tree_root = fs_info->tree_root;
 154	const bool zoned = btrfs_is_zoned(fs_info);
 155	int ret = 0;
 156	bool created = false;
 157
 158	/*
 159	 * First check if the log root tree was already created. If not, create
 160	 * it before locking the root's log_mutex, just to keep lockdep happy.
 161	 */
 162	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
 163		mutex_lock(&tree_root->log_mutex);
 164		if (!fs_info->log_root_tree) {
 165			ret = btrfs_init_log_root_tree(trans, fs_info);
 166			if (!ret) {
 167				set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
 168				created = true;
 169			}
 170		}
 171		mutex_unlock(&tree_root->log_mutex);
 172		if (ret)
 173			return ret;
 174	}
 175
 176	mutex_lock(&root->log_mutex);
 177
 178again:
 179	if (root->log_root) {
 180		int index = (root->log_transid + 1) % 2;
 181
 182		if (btrfs_need_log_full_commit(trans)) {
 183			ret = BTRFS_LOG_FORCE_COMMIT;
 184			goto out;
 185		}
 186
 187		if (zoned && atomic_read(&root->log_commit[index])) {
 188			wait_log_commit(root, root->log_transid - 1);
 189			goto again;
 190		}
 191
 192		if (!root->log_start_pid) {
 193			clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 194			root->log_start_pid = current->pid;
 195		} else if (root->log_start_pid != current->pid) {
 196			set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 197		}
 198	} else {
 199		/*
 200		 * This means fs_info->log_root_tree was already created
 201		 * for some other FS trees. Do the full commit not to mix
 202		 * nodes from multiple log transactions to do sequential
 203		 * writing.
 204		 */
 205		if (zoned && !created) {
 206			ret = BTRFS_LOG_FORCE_COMMIT;
 207			goto out;
 208		}
 209
 210		ret = btrfs_add_log_tree(trans, root);
 211		if (ret)
 212			goto out;
 213
 214		set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
 215		clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
 216		root->log_start_pid = current->pid;
 217	}
 218
 
 219	atomic_inc(&root->log_writers);
 220	if (!ctx->logging_new_name) {
 221		int index = root->log_transid % 2;
 222		list_add_tail(&ctx->list, &root->log_ctxs[index]);
 223		ctx->log_transid = root->log_transid;
 224	}
 225
 226out:
 227	mutex_unlock(&root->log_mutex);
 228	return ret;
 229}
 230
 231/*
 232 * returns 0 if there was a log transaction running and we were able
 233 * to join, or returns -ENOENT if there were not transactions
 234 * in progress
 235 */
 236static int join_running_log_trans(struct btrfs_root *root)
 237{
 238	const bool zoned = btrfs_is_zoned(root->fs_info);
 239	int ret = -ENOENT;
 240
 241	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
 242		return ret;
 243
 244	mutex_lock(&root->log_mutex);
 245again:
 246	if (root->log_root) {
 247		int index = (root->log_transid + 1) % 2;
 248
 249		ret = 0;
 250		if (zoned && atomic_read(&root->log_commit[index])) {
 251			wait_log_commit(root, root->log_transid - 1);
 252			goto again;
 253		}
 254		atomic_inc(&root->log_writers);
 255	}
 256	mutex_unlock(&root->log_mutex);
 257	return ret;
 258}
 259
 260/*
 261 * This either makes the current running log transaction wait
 262 * until you call btrfs_end_log_trans() or it makes any future
 263 * log transactions wait until you call btrfs_end_log_trans()
 264 */
 265void btrfs_pin_log_trans(struct btrfs_root *root)
 266{
 
 267	atomic_inc(&root->log_writers);
 
 268}
 269
 270/*
 271 * indicate we're done making changes to the log tree
 272 * and wake up anyone waiting to do a sync
 273 */
 274void btrfs_end_log_trans(struct btrfs_root *root)
 275{
 276	if (atomic_dec_and_test(&root->log_writers)) {
 277		/* atomic_dec_and_test implies a barrier */
 278		cond_wake_up_nomb(&root->log_writer_wait);
 279	}
 280}
 281
 
 
 
 
 
 
 
 
 
 
 
 
 282/*
 283 * the walk control struct is used to pass state down the chain when
 284 * processing the log tree.  The stage field tells us which part
 285 * of the log tree processing we are currently doing.  The others
 286 * are state fields used for that specific part
 287 */
 288struct walk_control {
 289	/* should we free the extent on disk when done?  This is used
 290	 * at transaction commit time while freeing a log tree
 291	 */
 292	int free;
 293
 
 
 
 
 
 
 
 
 
 
 294	/* pin only walk, we record which extents on disk belong to the
 295	 * log trees
 296	 */
 297	int pin;
 298
 299	/* what stage of the replay code we're currently in */
 300	int stage;
 301
 302	/*
 303	 * Ignore any items from the inode currently being processed. Needs
 304	 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
 305	 * the LOG_WALK_REPLAY_INODES stage.
 306	 */
 307	bool ignore_cur_inode;
 308
 309	/* the root we are currently replaying */
 310	struct btrfs_root *replay_dest;
 311
 312	/* the trans handle for the current replay */
 313	struct btrfs_trans_handle *trans;
 314
 315	/* the function that gets used to process blocks we find in the
 316	 * tree.  Note the extent_buffer might not be up to date when it is
 317	 * passed in, and it must be checked or read if you need the data
 318	 * inside it
 319	 */
 320	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
 321			    struct walk_control *wc, u64 gen, int level);
 322};
 323
 324/*
 325 * process_func used to pin down extents, write them or wait on them
 326 */
 327static int process_one_buffer(struct btrfs_root *log,
 328			      struct extent_buffer *eb,
 329			      struct walk_control *wc, u64 gen, int level)
 330{
 331	struct btrfs_fs_info *fs_info = log->fs_info;
 332	int ret = 0;
 333
 334	/*
 335	 * If this fs is mixed then we need to be able to process the leaves to
 336	 * pin down any logged extents, so we have to read the block.
 337	 */
 338	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 339		struct btrfs_tree_parent_check check = {
 340			.level = level,
 341			.transid = gen
 342		};
 343
 344		ret = btrfs_read_extent_buffer(eb, &check);
 345		if (ret)
 346			return ret;
 347	}
 348
 349	if (wc->pin) {
 350		ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
 351		if (ret)
 352			return ret;
 353
 354		if (btrfs_buffer_uptodate(eb, gen, 0) &&
 355		    btrfs_header_level(eb) == 0)
 356			ret = btrfs_exclude_logged_extents(eb);
 
 
 
 
 357	}
 358	return ret;
 359}
 360
 361/*
 362 * Item overwrite used by replay and tree logging.  eb, slot and key all refer
 363 * to the src data we are copying out.
 364 *
 365 * root is the tree we are copying into, and path is a scratch
 366 * path for use in this function (it should be released on entry and
 367 * will be released on exit).
 368 *
 369 * If the key is already in the destination tree the existing item is
 370 * overwritten.  If the existing item isn't big enough, it is extended.
 371 * If it is too large, it is truncated.
 372 *
 373 * If the key isn't in the destination yet, a new item is inserted.
 374 */
 375static int overwrite_item(struct btrfs_trans_handle *trans,
 376			  struct btrfs_root *root,
 377			  struct btrfs_path *path,
 378			  struct extent_buffer *eb, int slot,
 379			  struct btrfs_key *key)
 380{
 381	int ret;
 382	u32 item_size;
 383	u64 saved_i_size = 0;
 384	int save_old_i_size = 0;
 385	unsigned long src_ptr;
 386	unsigned long dst_ptr;
 
 387	bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
 388
 389	/*
 390	 * This is only used during log replay, so the root is always from a
 391	 * fs/subvolume tree. In case we ever need to support a log root, then
 392	 * we'll have to clone the leaf in the path, release the path and use
 393	 * the leaf before writing into the log tree. See the comments at
 394	 * copy_items() for more details.
 395	 */
 396	ASSERT(root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
 397
 398	item_size = btrfs_item_size(eb, slot);
 399	src_ptr = btrfs_item_ptr_offset(eb, slot);
 400
 401	/* Look for the key in the destination tree. */
 402	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
 403	if (ret < 0)
 404		return ret;
 405
 406	if (ret == 0) {
 407		char *src_copy;
 408		char *dst_copy;
 409		u32 dst_size = btrfs_item_size(path->nodes[0],
 410						  path->slots[0]);
 411		if (dst_size != item_size)
 412			goto insert;
 413
 414		if (item_size == 0) {
 415			btrfs_release_path(path);
 416			return 0;
 417		}
 418		dst_copy = kmalloc(item_size, GFP_NOFS);
 419		src_copy = kmalloc(item_size, GFP_NOFS);
 420		if (!dst_copy || !src_copy) {
 421			btrfs_release_path(path);
 422			kfree(dst_copy);
 423			kfree(src_copy);
 424			return -ENOMEM;
 425		}
 426
 427		read_extent_buffer(eb, src_copy, src_ptr, item_size);
 428
 429		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
 430		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
 431				   item_size);
 432		ret = memcmp(dst_copy, src_copy, item_size);
 433
 434		kfree(dst_copy);
 435		kfree(src_copy);
 436		/*
 437		 * they have the same contents, just return, this saves
 438		 * us from cowing blocks in the destination tree and doing
 439		 * extra writes that may not have been done by a previous
 440		 * sync
 441		 */
 442		if (ret == 0) {
 443			btrfs_release_path(path);
 444			return 0;
 445		}
 446
 447		/*
 448		 * We need to load the old nbytes into the inode so when we
 449		 * replay the extents we've logged we get the right nbytes.
 450		 */
 451		if (inode_item) {
 452			struct btrfs_inode_item *item;
 453			u64 nbytes;
 454			u32 mode;
 455
 456			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
 457					      struct btrfs_inode_item);
 458			nbytes = btrfs_inode_nbytes(path->nodes[0], item);
 459			item = btrfs_item_ptr(eb, slot,
 460					      struct btrfs_inode_item);
 461			btrfs_set_inode_nbytes(eb, item, nbytes);
 462
 463			/*
 464			 * If this is a directory we need to reset the i_size to
 465			 * 0 so that we can set it up properly when replaying
 466			 * the rest of the items in this log.
 467			 */
 468			mode = btrfs_inode_mode(eb, item);
 469			if (S_ISDIR(mode))
 470				btrfs_set_inode_size(eb, item, 0);
 471		}
 472	} else if (inode_item) {
 473		struct btrfs_inode_item *item;
 474		u32 mode;
 475
 476		/*
 477		 * New inode, set nbytes to 0 so that the nbytes comes out
 478		 * properly when we replay the extents.
 479		 */
 480		item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
 481		btrfs_set_inode_nbytes(eb, item, 0);
 482
 483		/*
 484		 * If this is a directory we need to reset the i_size to 0 so
 485		 * that we can set it up properly when replaying the rest of
 486		 * the items in this log.
 487		 */
 488		mode = btrfs_inode_mode(eb, item);
 489		if (S_ISDIR(mode))
 490			btrfs_set_inode_size(eb, item, 0);
 491	}
 492insert:
 493	btrfs_release_path(path);
 494	/* try to insert the key into the destination tree */
 495	path->skip_release_on_error = 1;
 496	ret = btrfs_insert_empty_item(trans, root, path,
 497				      key, item_size);
 498	path->skip_release_on_error = 0;
 499
 500	/* make sure any existing item is the correct size */
 501	if (ret == -EEXIST || ret == -EOVERFLOW) {
 502		u32 found_size;
 503		found_size = btrfs_item_size(path->nodes[0],
 504						path->slots[0]);
 505		if (found_size > item_size)
 506			btrfs_truncate_item(trans, path, item_size, 1);
 507		else if (found_size < item_size)
 508			btrfs_extend_item(trans, path, item_size - found_size);
 509	} else if (ret) {
 510		return ret;
 511	}
 512	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
 513					path->slots[0]);
 514
 515	/* don't overwrite an existing inode if the generation number
 516	 * was logged as zero.  This is done when the tree logging code
 517	 * is just logging an inode to make sure it exists after recovery.
 518	 *
 519	 * Also, don't overwrite i_size on directories during replay.
 520	 * log replay inserts and removes directory items based on the
 521	 * state of the tree found in the subvolume, and i_size is modified
 522	 * as it goes
 523	 */
 524	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
 525		struct btrfs_inode_item *src_item;
 526		struct btrfs_inode_item *dst_item;
 527
 528		src_item = (struct btrfs_inode_item *)src_ptr;
 529		dst_item = (struct btrfs_inode_item *)dst_ptr;
 530
 531		if (btrfs_inode_generation(eb, src_item) == 0) {
 532			struct extent_buffer *dst_eb = path->nodes[0];
 533			const u64 ino_size = btrfs_inode_size(eb, src_item);
 534
 535			/*
 536			 * For regular files an ino_size == 0 is used only when
 537			 * logging that an inode exists, as part of a directory
 538			 * fsync, and the inode wasn't fsynced before. In this
 539			 * case don't set the size of the inode in the fs/subvol
 540			 * tree, otherwise we would be throwing valid data away.
 541			 */
 542			if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
 543			    S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
 544			    ino_size != 0)
 545				btrfs_set_inode_size(dst_eb, dst_item, ino_size);
 546			goto no_copy;
 547		}
 548
 549		if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
 
 550		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
 551			save_old_i_size = 1;
 552			saved_i_size = btrfs_inode_size(path->nodes[0],
 553							dst_item);
 554		}
 555	}
 556
 557	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
 558			   src_ptr, item_size);
 559
 560	if (save_old_i_size) {
 561		struct btrfs_inode_item *dst_item;
 562		dst_item = (struct btrfs_inode_item *)dst_ptr;
 563		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
 564	}
 565
 566	/* make sure the generation is filled in */
 567	if (key->type == BTRFS_INODE_ITEM_KEY) {
 568		struct btrfs_inode_item *dst_item;
 569		dst_item = (struct btrfs_inode_item *)dst_ptr;
 570		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
 571			btrfs_set_inode_generation(path->nodes[0], dst_item,
 572						   trans->transid);
 573		}
 574	}
 575no_copy:
 576	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
 577	btrfs_release_path(path);
 578	return 0;
 579}
 580
 581static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
 582			       struct fscrypt_str *name)
 583{
 584	char *buf;
 585
 586	buf = kmalloc(len, GFP_NOFS);
 587	if (!buf)
 588		return -ENOMEM;
 589
 590	read_extent_buffer(eb, buf, (unsigned long)start, len);
 591	name->name = buf;
 592	name->len = len;
 593	return 0;
 594}
 595
 596/*
 597 * simple helper to read an inode off the disk from a given root
 598 * This can only be called for subvolume roots and not for the log
 599 */
 600static noinline struct inode *read_one_inode(struct btrfs_root *root,
 601					     u64 objectid)
 602{
 603	struct inode *inode;
 604
 605	inode = btrfs_iget(root->fs_info->sb, objectid, root);
 606	if (IS_ERR(inode))
 607		inode = NULL;
 608	return inode;
 609}
 610
 611/* replays a single extent in 'eb' at 'slot' with 'key' into the
 612 * subvolume 'root'.  path is released on entry and should be released
 613 * on exit.
 614 *
 615 * extents in the log tree have not been allocated out of the extent
 616 * tree yet.  So, this completes the allocation, taking a reference
 617 * as required if the extent already exists or creating a new extent
 618 * if it isn't in the extent allocation tree yet.
 619 *
 620 * The extent is inserted into the file, dropping any existing extents
 621 * from the file that overlap the new one.
 622 */
 623static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
 624				      struct btrfs_root *root,
 625				      struct btrfs_path *path,
 626				      struct extent_buffer *eb, int slot,
 627				      struct btrfs_key *key)
 628{
 629	struct btrfs_drop_extents_args drop_args = { 0 };
 630	struct btrfs_fs_info *fs_info = root->fs_info;
 631	int found_type;
 632	u64 extent_end;
 633	u64 start = key->offset;
 634	u64 nbytes = 0;
 635	struct btrfs_file_extent_item *item;
 636	struct inode *inode = NULL;
 637	unsigned long size;
 638	int ret = 0;
 639
 640	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 641	found_type = btrfs_file_extent_type(eb, item);
 642
 643	if (found_type == BTRFS_FILE_EXTENT_REG ||
 644	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 645		nbytes = btrfs_file_extent_num_bytes(eb, item);
 646		extent_end = start + nbytes;
 647
 648		/*
 649		 * We don't add to the inodes nbytes if we are prealloc or a
 650		 * hole.
 651		 */
 652		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
 653			nbytes = 0;
 654	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 655		size = btrfs_file_extent_ram_bytes(eb, item);
 656		nbytes = btrfs_file_extent_ram_bytes(eb, item);
 657		extent_end = ALIGN(start + size,
 658				   fs_info->sectorsize);
 659	} else {
 660		ret = 0;
 661		goto out;
 662	}
 663
 664	inode = read_one_inode(root, key->objectid);
 665	if (!inode) {
 666		ret = -EIO;
 667		goto out;
 668	}
 669
 670	/*
 671	 * first check to see if we already have this extent in the
 672	 * file.  This must be done before the btrfs_drop_extents run
 673	 * so we don't try to drop this extent.
 674	 */
 675	ret = btrfs_lookup_file_extent(trans, root, path,
 676			btrfs_ino(BTRFS_I(inode)), start, 0);
 677
 678	if (ret == 0 &&
 679	    (found_type == BTRFS_FILE_EXTENT_REG ||
 680	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
 681		struct btrfs_file_extent_item cmp1;
 682		struct btrfs_file_extent_item cmp2;
 683		struct btrfs_file_extent_item *existing;
 684		struct extent_buffer *leaf;
 685
 686		leaf = path->nodes[0];
 687		existing = btrfs_item_ptr(leaf, path->slots[0],
 688					  struct btrfs_file_extent_item);
 689
 690		read_extent_buffer(eb, &cmp1, (unsigned long)item,
 691				   sizeof(cmp1));
 692		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
 693				   sizeof(cmp2));
 694
 695		/*
 696		 * we already have a pointer to this exact extent,
 697		 * we don't have to do anything
 698		 */
 699		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
 700			btrfs_release_path(path);
 701			goto out;
 702		}
 703	}
 704	btrfs_release_path(path);
 705
 706	/* drop any overlapping extents */
 707	drop_args.start = start;
 708	drop_args.end = extent_end;
 709	drop_args.drop_cache = true;
 710	ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
 711	if (ret)
 712		goto out;
 713
 714	if (found_type == BTRFS_FILE_EXTENT_REG ||
 715	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
 716		u64 offset;
 717		unsigned long dest_offset;
 718		struct btrfs_key ins;
 719
 720		if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
 721		    btrfs_fs_incompat(fs_info, NO_HOLES))
 722			goto update_inode;
 723
 724		ret = btrfs_insert_empty_item(trans, root, path, key,
 725					      sizeof(*item));
 726		if (ret)
 727			goto out;
 728		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
 729						    path->slots[0]);
 730		copy_extent_buffer(path->nodes[0], eb, dest_offset,
 731				(unsigned long)item,  sizeof(*item));
 732
 733		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
 734		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
 735		ins.type = BTRFS_EXTENT_ITEM_KEY;
 736		offset = key->offset - btrfs_file_extent_offset(eb, item);
 737
 738		/*
 739		 * Manually record dirty extent, as here we did a shallow
 740		 * file extent item copy and skip normal backref update,
 741		 * but modifying extent tree all by ourselves.
 742		 * So need to manually record dirty extent for qgroup,
 743		 * as the owner of the file extent changed from log tree
 744		 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
 745		 */
 746		ret = btrfs_qgroup_trace_extent(trans,
 747				btrfs_file_extent_disk_bytenr(eb, item),
 748				btrfs_file_extent_disk_num_bytes(eb, item));
 
 749		if (ret < 0)
 750			goto out;
 751
 752		if (ins.objectid > 0) {
 753			struct btrfs_ref ref = { 0 };
 754			u64 csum_start;
 755			u64 csum_end;
 756			LIST_HEAD(ordered_sums);
 757
 758			/*
 759			 * is this extent already allocated in the extent
 760			 * allocation tree?  If so, just add a reference
 761			 */
 762			ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
 763						ins.offset);
 764			if (ret < 0) {
 765				goto out;
 766			} else if (ret == 0) {
 767				btrfs_init_generic_ref(&ref,
 768						BTRFS_ADD_DELAYED_REF,
 769						ins.objectid, ins.offset, 0,
 770						root->root_key.objectid);
 771				btrfs_init_data_ref(&ref,
 772						root->root_key.objectid,
 773						key->objectid, offset, 0, false);
 774				ret = btrfs_inc_extent_ref(trans, &ref);
 775				if (ret)
 776					goto out;
 777			} else {
 778				/*
 779				 * insert the extent pointer in the extent
 780				 * allocation tree
 781				 */
 782				ret = btrfs_alloc_logged_file_extent(trans,
 783						root->root_key.objectid,
 784						key->objectid, offset, &ins);
 785				if (ret)
 786					goto out;
 787			}
 788			btrfs_release_path(path);
 789
 790			if (btrfs_file_extent_compression(eb, item)) {
 791				csum_start = ins.objectid;
 792				csum_end = csum_start + ins.offset;
 793			} else {
 794				csum_start = ins.objectid +
 795					btrfs_file_extent_offset(eb, item);
 796				csum_end = csum_start +
 797					btrfs_file_extent_num_bytes(eb, item);
 798			}
 799
 800			ret = btrfs_lookup_csums_list(root->log_root,
 801						csum_start, csum_end - 1,
 802						&ordered_sums, 0, false);
 803			if (ret)
 804				goto out;
 805			/*
 806			 * Now delete all existing cums in the csum root that
 807			 * cover our range. We do this because we can have an
 808			 * extent that is completely referenced by one file
 809			 * extent item and partially referenced by another
 810			 * file extent item (like after using the clone or
 811			 * extent_same ioctls). In this case if we end up doing
 812			 * the replay of the one that partially references the
 813			 * extent first, and we do not do the csum deletion
 814			 * below, we can get 2 csum items in the csum tree that
 815			 * overlap each other. For example, imagine our log has
 816			 * the two following file extent items:
 817			 *
 818			 * key (257 EXTENT_DATA 409600)
 819			 *     extent data disk byte 12845056 nr 102400
 820			 *     extent data offset 20480 nr 20480 ram 102400
 821			 *
 822			 * key (257 EXTENT_DATA 819200)
 823			 *     extent data disk byte 12845056 nr 102400
 824			 *     extent data offset 0 nr 102400 ram 102400
 825			 *
 826			 * Where the second one fully references the 100K extent
 827			 * that starts at disk byte 12845056, and the log tree
 828			 * has a single csum item that covers the entire range
 829			 * of the extent:
 830			 *
 831			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 832			 *
 833			 * After the first file extent item is replayed, the
 834			 * csum tree gets the following csum item:
 835			 *
 836			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 837			 *
 838			 * Which covers the 20K sub-range starting at offset 20K
 839			 * of our extent. Now when we replay the second file
 840			 * extent item, if we do not delete existing csum items
 841			 * that cover any of its blocks, we end up getting two
 842			 * csum items in our csum tree that overlap each other:
 843			 *
 844			 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
 845			 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
 846			 *
 847			 * Which is a problem, because after this anyone trying
 848			 * to lookup up for the checksum of any block of our
 849			 * extent starting at an offset of 40K or higher, will
 850			 * end up looking at the second csum item only, which
 851			 * does not contain the checksum for any block starting
 852			 * at offset 40K or higher of our extent.
 853			 */
 854			while (!list_empty(&ordered_sums)) {
 855				struct btrfs_ordered_sum *sums;
 856				struct btrfs_root *csum_root;
 857
 858				sums = list_entry(ordered_sums.next,
 859						struct btrfs_ordered_sum,
 860						list);
 861				csum_root = btrfs_csum_root(fs_info,
 862							    sums->logical);
 863				if (!ret)
 864					ret = btrfs_del_csums(trans, csum_root,
 865							      sums->logical,
 
 866							      sums->len);
 867				if (!ret)
 868					ret = btrfs_csum_file_blocks(trans,
 869								     csum_root,
 870								     sums);
 871				list_del(&sums->list);
 872				kfree(sums);
 873			}
 874			if (ret)
 875				goto out;
 876		} else {
 877			btrfs_release_path(path);
 878		}
 879	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
 880		/* inline extents are easy, we just overwrite them */
 881		ret = overwrite_item(trans, root, path, eb, slot, key);
 882		if (ret)
 883			goto out;
 884	}
 885
 886	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
 887						extent_end - start);
 888	if (ret)
 889		goto out;
 890
 
 891update_inode:
 892	btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
 893	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 894out:
 895	iput(inode);
 
 896	return ret;
 897}
 898
 899static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
 900				       struct btrfs_inode *dir,
 901				       struct btrfs_inode *inode,
 902				       const struct fscrypt_str *name)
 903{
 904	int ret;
 905
 906	ret = btrfs_unlink_inode(trans, dir, inode, name);
 907	if (ret)
 908		return ret;
 909	/*
 910	 * Whenever we need to check if a name exists or not, we check the
 911	 * fs/subvolume tree. So after an unlink we must run delayed items, so
 912	 * that future checks for a name during log replay see that the name
 913	 * does not exists anymore.
 914	 */
 915	return btrfs_run_delayed_items(trans);
 916}
 917
 918/*
 919 * when cleaning up conflicts between the directory names in the
 920 * subvolume, directory names in the log and directory names in the
 921 * inode back references, we may have to unlink inodes from directories.
 922 *
 923 * This is a helper function to do the unlink of a specific directory
 924 * item
 925 */
 926static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
 
 927				      struct btrfs_path *path,
 928				      struct btrfs_inode *dir,
 929				      struct btrfs_dir_item *di)
 930{
 931	struct btrfs_root *root = dir->root;
 932	struct inode *inode;
 933	struct fscrypt_str name;
 
 934	struct extent_buffer *leaf;
 935	struct btrfs_key location;
 936	int ret;
 937
 938	leaf = path->nodes[0];
 939
 940	btrfs_dir_item_key_to_cpu(leaf, di, &location);
 941	ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
 942	if (ret)
 
 943		return -ENOMEM;
 944
 
 945	btrfs_release_path(path);
 946
 947	inode = read_one_inode(root, location.objectid);
 948	if (!inode) {
 949		ret = -EIO;
 950		goto out;
 951	}
 952
 953	ret = link_to_fixup_dir(trans, root, path, location.objectid);
 954	if (ret)
 955		goto out;
 956
 957	ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
 
 
 
 
 
 958out:
 959	kfree(name.name);
 960	iput(inode);
 961	return ret;
 962}
 963
 964/*
 965 * See if a given name and sequence number found in an inode back reference are
 966 * already in a directory and correctly point to this inode.
 967 *
 968 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
 969 * exists.
 970 */
 971static noinline int inode_in_dir(struct btrfs_root *root,
 972				 struct btrfs_path *path,
 973				 u64 dirid, u64 objectid, u64 index,
 974				 struct fscrypt_str *name)
 975{
 976	struct btrfs_dir_item *di;
 977	struct btrfs_key location;
 978	int ret = 0;
 979
 980	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
 981					 index, name, 0);
 982	if (IS_ERR(di)) {
 983		ret = PTR_ERR(di);
 984		goto out;
 985	} else if (di) {
 986		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 987		if (location.objectid != objectid)
 988			goto out;
 989	} else {
 990		goto out;
 991	}
 992
 993	btrfs_release_path(path);
 994	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
 995	if (IS_ERR(di)) {
 996		ret = PTR_ERR(di);
 
 
 997		goto out;
 998	} else if (di) {
 999		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1000		if (location.objectid == objectid)
1001			ret = 1;
1002	}
1003out:
1004	btrfs_release_path(path);
1005	return ret;
1006}
1007
1008/*
1009 * helper function to check a log tree for a named back reference in
1010 * an inode.  This is used to decide if a back reference that is
1011 * found in the subvolume conflicts with what we find in the log.
1012 *
1013 * inode backreferences may have multiple refs in a single item,
1014 * during replay we process one reference at a time, and we don't
1015 * want to delete valid links to a file from the subvolume if that
1016 * link is also in the log.
1017 */
1018static noinline int backref_in_log(struct btrfs_root *log,
1019				   struct btrfs_key *key,
1020				   u64 ref_objectid,
1021				   const struct fscrypt_str *name)
1022{
1023	struct btrfs_path *path;
1024	int ret;
1025
1026	path = btrfs_alloc_path();
1027	if (!path)
1028		return -ENOMEM;
1029
1030	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1031	if (ret < 0) {
1032		goto out;
1033	} else if (ret == 1) {
1034		ret = 0;
1035		goto out;
1036	}
1037
1038	if (key->type == BTRFS_INODE_EXTREF_KEY)
1039		ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1040						       path->slots[0],
1041						       ref_objectid, name);
 
1042	else
1043		ret = !!btrfs_find_name_in_backref(path->nodes[0],
1044						   path->slots[0], name);
 
1045out:
1046	btrfs_free_path(path);
1047	return ret;
1048}
1049
1050static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1051				  struct btrfs_root *root,
1052				  struct btrfs_path *path,
1053				  struct btrfs_root *log_root,
1054				  struct btrfs_inode *dir,
1055				  struct btrfs_inode *inode,
1056				  u64 inode_objectid, u64 parent_objectid,
1057				  u64 ref_index, struct fscrypt_str *name)
 
1058{
1059	int ret;
 
 
1060	struct extent_buffer *leaf;
1061	struct btrfs_dir_item *di;
1062	struct btrfs_key search_key;
1063	struct btrfs_inode_extref *extref;
1064
1065again:
1066	/* Search old style refs */
1067	search_key.objectid = inode_objectid;
1068	search_key.type = BTRFS_INODE_REF_KEY;
1069	search_key.offset = parent_objectid;
1070	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1071	if (ret == 0) {
1072		struct btrfs_inode_ref *victim_ref;
1073		unsigned long ptr;
1074		unsigned long ptr_end;
1075
1076		leaf = path->nodes[0];
1077
1078		/* are we trying to overwrite a back ref for the root directory
1079		 * if so, just jump out, we're done
1080		 */
1081		if (search_key.objectid == search_key.offset)
1082			return 1;
1083
1084		/* check all the names in this back reference to see
1085		 * if they are in the log.  if so, we allow them to stay
1086		 * otherwise they must be unlinked as a conflict
1087		 */
1088		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1089		ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1090		while (ptr < ptr_end) {
1091			struct fscrypt_str victim_name;
1092
1093			victim_ref = (struct btrfs_inode_ref *)ptr;
1094			ret = read_alloc_one_name(leaf, (victim_ref + 1),
1095				 btrfs_inode_ref_name_len(leaf, victim_ref),
1096				 &victim_name);
1097			if (ret)
1098				return ret;
 
 
 
 
1099
1100			ret = backref_in_log(log_root, &search_key,
1101					     parent_objectid, &victim_name);
 
1102			if (ret < 0) {
1103				kfree(victim_name.name);
1104				return ret;
1105			} else if (!ret) {
1106				inc_nlink(&inode->vfs_inode);
1107				btrfs_release_path(path);
1108
1109				ret = unlink_inode_for_log_replay(trans, dir, inode,
1110						&victim_name);
1111				kfree(victim_name.name);
 
 
 
1112				if (ret)
1113					return ret;
 
1114				goto again;
1115			}
1116			kfree(victim_name.name);
1117
1118			ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1119		}
 
 
 
 
 
 
1120	}
1121	btrfs_release_path(path);
1122
1123	/* Same search but for extended refs */
1124	extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1125					   inode_objectid, parent_objectid, 0,
1126					   0);
1127	if (IS_ERR(extref)) {
1128		return PTR_ERR(extref);
1129	} else if (extref) {
1130		u32 item_size;
1131		u32 cur_offset = 0;
1132		unsigned long base;
1133		struct inode *victim_parent;
1134
1135		leaf = path->nodes[0];
1136
1137		item_size = btrfs_item_size(leaf, path->slots[0]);
1138		base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1139
1140		while (cur_offset < item_size) {
1141			struct fscrypt_str victim_name;
1142
1143			extref = (struct btrfs_inode_extref *)(base + cur_offset);
1144
1145			if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1146				goto next;
1147
1148			ret = read_alloc_one_name(leaf, &extref->name,
1149				 btrfs_inode_extref_name_len(leaf, extref),
1150				 &victim_name);
1151			if (ret)
1152				return ret;
1153
1154			search_key.objectid = inode_objectid;
1155			search_key.type = BTRFS_INODE_EXTREF_KEY;
1156			search_key.offset = btrfs_extref_hash(parent_objectid,
1157							      victim_name.name,
1158							      victim_name.len);
1159			ret = backref_in_log(log_root, &search_key,
1160					     parent_objectid, &victim_name);
 
1161			if (ret < 0) {
1162				kfree(victim_name.name);
1163				return ret;
1164			} else if (!ret) {
1165				ret = -ENOENT;
1166				victim_parent = read_one_inode(root,
1167						parent_objectid);
1168				if (victim_parent) {
1169					inc_nlink(&inode->vfs_inode);
1170					btrfs_release_path(path);
1171
1172					ret = unlink_inode_for_log_replay(trans,
1173							BTRFS_I(victim_parent),
1174							inode, &victim_name);
 
 
 
 
 
1175				}
1176				iput(victim_parent);
1177				kfree(victim_name.name);
1178				if (ret)
1179					return ret;
 
1180				goto again;
1181			}
1182			kfree(victim_name.name);
1183next:
1184			cur_offset += victim_name.len + sizeof(*extref);
1185		}
 
1186	}
1187	btrfs_release_path(path);
1188
1189	/* look for a conflicting sequence number */
1190	di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1191					 ref_index, name, 0);
1192	if (IS_ERR(di)) {
1193		return PTR_ERR(di);
1194	} else if (di) {
1195		ret = drop_one_dir_item(trans, path, dir, di);
1196		if (ret)
1197			return ret;
1198	}
1199	btrfs_release_path(path);
1200
1201	/* look for a conflicting name */
1202	di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1203	if (IS_ERR(di)) {
1204		return PTR_ERR(di);
1205	} else if (di) {
1206		ret = drop_one_dir_item(trans, path, dir, di);
1207		if (ret)
1208			return ret;
1209	}
1210	btrfs_release_path(path);
1211
1212	return 0;
1213}
1214
1215static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1216			     struct fscrypt_str *name, u64 *index,
1217			     u64 *parent_objectid)
1218{
1219	struct btrfs_inode_extref *extref;
1220	int ret;
1221
1222	extref = (struct btrfs_inode_extref *)ref_ptr;
1223
1224	ret = read_alloc_one_name(eb, &extref->name,
1225				  btrfs_inode_extref_name_len(eb, extref), name);
1226	if (ret)
1227		return ret;
 
 
 
1228
1229	if (index)
1230		*index = btrfs_inode_extref_index(eb, extref);
1231	if (parent_objectid)
1232		*parent_objectid = btrfs_inode_extref_parent(eb, extref);
1233
1234	return 0;
1235}
1236
1237static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1238			  struct fscrypt_str *name, u64 *index)
1239{
1240	struct btrfs_inode_ref *ref;
1241	int ret;
1242
1243	ref = (struct btrfs_inode_ref *)ref_ptr;
1244
1245	ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1246				  name);
1247	if (ret)
1248		return ret;
 
 
1249
1250	if (index)
1251		*index = btrfs_inode_ref_index(eb, ref);
1252
1253	return 0;
1254}
1255
1256/*
1257 * Take an inode reference item from the log tree and iterate all names from the
1258 * inode reference item in the subvolume tree with the same key (if it exists).
1259 * For any name that is not in the inode reference item from the log tree, do a
1260 * proper unlink of that name (that is, remove its entry from the inode
1261 * reference item and both dir index keys).
1262 */
1263static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1264				 struct btrfs_root *root,
1265				 struct btrfs_path *path,
1266				 struct btrfs_inode *inode,
1267				 struct extent_buffer *log_eb,
1268				 int log_slot,
1269				 struct btrfs_key *key)
1270{
1271	int ret;
1272	unsigned long ref_ptr;
1273	unsigned long ref_end;
1274	struct extent_buffer *eb;
1275
1276again:
1277	btrfs_release_path(path);
1278	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1279	if (ret > 0) {
1280		ret = 0;
1281		goto out;
1282	}
1283	if (ret < 0)
1284		goto out;
1285
1286	eb = path->nodes[0];
1287	ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1288	ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1289	while (ref_ptr < ref_end) {
1290		struct fscrypt_str name;
 
1291		u64 parent_id;
1292
1293		if (key->type == BTRFS_INODE_EXTREF_KEY) {
1294			ret = extref_get_fields(eb, ref_ptr, &name,
1295						NULL, &parent_id);
1296		} else {
1297			parent_id = key->offset;
1298			ret = ref_get_fields(eb, ref_ptr, &name, NULL);
 
1299		}
1300		if (ret)
1301			goto out;
1302
1303		if (key->type == BTRFS_INODE_EXTREF_KEY)
1304			ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1305							       parent_id, &name);
 
1306		else
1307			ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
 
1308
1309		if (!ret) {
1310			struct inode *dir;
1311
1312			btrfs_release_path(path);
1313			dir = read_one_inode(root, parent_id);
1314			if (!dir) {
1315				ret = -ENOENT;
1316				kfree(name.name);
1317				goto out;
1318			}
1319			ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1320						 inode, &name);
1321			kfree(name.name);
1322			iput(dir);
1323			if (ret)
1324				goto out;
1325			goto again;
1326		}
1327
1328		kfree(name.name);
1329		ref_ptr += name.len;
1330		if (key->type == BTRFS_INODE_EXTREF_KEY)
1331			ref_ptr += sizeof(struct btrfs_inode_extref);
1332		else
1333			ref_ptr += sizeof(struct btrfs_inode_ref);
1334	}
1335	ret = 0;
1336 out:
1337	btrfs_release_path(path);
1338	return ret;
1339}
1340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341/*
1342 * replay one inode back reference item found in the log tree.
1343 * eb, slot and key refer to the buffer and key found in the log tree.
1344 * root is the destination we are replaying into, and path is for temp
1345 * use by this function.  (it should be released on return).
1346 */
1347static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1348				  struct btrfs_root *root,
1349				  struct btrfs_root *log,
1350				  struct btrfs_path *path,
1351				  struct extent_buffer *eb, int slot,
1352				  struct btrfs_key *key)
1353{
1354	struct inode *dir = NULL;
1355	struct inode *inode = NULL;
1356	unsigned long ref_ptr;
1357	unsigned long ref_end;
1358	struct fscrypt_str name;
 
1359	int ret;
 
1360	int log_ref_ver = 0;
1361	u64 parent_objectid;
1362	u64 inode_objectid;
1363	u64 ref_index = 0;
1364	int ref_struct_size;
1365
1366	ref_ptr = btrfs_item_ptr_offset(eb, slot);
1367	ref_end = ref_ptr + btrfs_item_size(eb, slot);
1368
1369	if (key->type == BTRFS_INODE_EXTREF_KEY) {
1370		struct btrfs_inode_extref *r;
1371
1372		ref_struct_size = sizeof(struct btrfs_inode_extref);
1373		log_ref_ver = 1;
1374		r = (struct btrfs_inode_extref *)ref_ptr;
1375		parent_objectid = btrfs_inode_extref_parent(eb, r);
1376	} else {
1377		ref_struct_size = sizeof(struct btrfs_inode_ref);
1378		parent_objectid = key->offset;
1379	}
1380	inode_objectid = key->objectid;
1381
1382	/*
1383	 * it is possible that we didn't log all the parent directories
1384	 * for a given inode.  If we don't find the dir, just don't
1385	 * copy the back ref in.  The link count fixup code will take
1386	 * care of the rest
1387	 */
1388	dir = read_one_inode(root, parent_objectid);
1389	if (!dir) {
1390		ret = -ENOENT;
1391		goto out;
1392	}
1393
1394	inode = read_one_inode(root, inode_objectid);
1395	if (!inode) {
1396		ret = -EIO;
1397		goto out;
1398	}
1399
1400	while (ref_ptr < ref_end) {
1401		if (log_ref_ver) {
1402			ret = extref_get_fields(eb, ref_ptr, &name,
1403						&ref_index, &parent_objectid);
1404			/*
1405			 * parent object can change from one array
1406			 * item to another.
1407			 */
1408			if (!dir)
1409				dir = read_one_inode(root, parent_objectid);
1410			if (!dir) {
1411				ret = -ENOENT;
1412				goto out;
1413			}
1414		} else {
1415			ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
 
1416		}
1417		if (ret)
1418			goto out;
1419
1420		ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1421				   btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1422		if (ret < 0) {
1423			goto out;
1424		} else if (ret == 0) {
1425			/*
1426			 * look for a conflicting back reference in the
1427			 * metadata. if we find one we have to unlink that name
1428			 * of the file before we add our new link.  Later on, we
1429			 * overwrite any existing back reference, and we don't
1430			 * want to create dangling pointers in the directory.
1431			 */
1432			ret = __add_inode_ref(trans, root, path, log,
1433					      BTRFS_I(dir), BTRFS_I(inode),
1434					      inode_objectid, parent_objectid,
1435					      ref_index, &name);
1436			if (ret) {
1437				if (ret == 1)
1438					ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1439				goto out;
1440			}
1441
1442			/* insert our name */
1443			ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1444					     &name, 0, ref_index);
1445			if (ret)
1446				goto out;
1447
1448			ret = btrfs_update_inode(trans, BTRFS_I(inode));
1449			if (ret)
1450				goto out;
1451		}
1452		/* Else, ret == 1, we already have a perfect match, we're done. */
1453
1454		ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1455		kfree(name.name);
1456		name.name = NULL;
1457		if (log_ref_ver) {
1458			iput(dir);
1459			dir = NULL;
1460		}
1461	}
1462
1463	/*
1464	 * Before we overwrite the inode reference item in the subvolume tree
1465	 * with the item from the log tree, we must unlink all names from the
1466	 * parent directory that are in the subvolume's tree inode reference
1467	 * item, otherwise we end up with an inconsistent subvolume tree where
1468	 * dir index entries exist for a name but there is no inode reference
1469	 * item with the same name.
1470	 */
1471	ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1472				    key);
1473	if (ret)
1474		goto out;
1475
1476	/* finally write the back reference in the inode */
1477	ret = overwrite_item(trans, root, path, eb, slot, key);
1478out:
1479	btrfs_release_path(path);
1480	kfree(name.name);
1481	iput(dir);
1482	iput(inode);
1483	return ret;
1484}
1485
1486static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
1487{
1488	int ret = 0;
1489	int name_len;
1490	unsigned int nlink = 0;
1491	u32 item_size;
1492	u32 cur_offset = 0;
1493	u64 inode_objectid = btrfs_ino(inode);
1494	u64 offset = 0;
1495	unsigned long ptr;
1496	struct btrfs_inode_extref *extref;
1497	struct extent_buffer *leaf;
1498
1499	while (1) {
1500		ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1501					    path, &extref, &offset);
1502		if (ret)
1503			break;
1504
1505		leaf = path->nodes[0];
1506		item_size = btrfs_item_size(leaf, path->slots[0]);
1507		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1508		cur_offset = 0;
1509
1510		while (cur_offset < item_size) {
1511			extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1512			name_len = btrfs_inode_extref_name_len(leaf, extref);
1513
1514			nlink++;
1515
1516			cur_offset += name_len + sizeof(*extref);
1517		}
1518
1519		offset++;
1520		btrfs_release_path(path);
1521	}
1522	btrfs_release_path(path);
1523
1524	if (ret < 0 && ret != -ENOENT)
1525		return ret;
1526	return nlink;
1527}
1528
1529static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
 
1530{
1531	int ret;
1532	struct btrfs_key key;
1533	unsigned int nlink = 0;
1534	unsigned long ptr;
1535	unsigned long ptr_end;
1536	int name_len;
1537	u64 ino = btrfs_ino(inode);
1538
1539	key.objectid = ino;
1540	key.type = BTRFS_INODE_REF_KEY;
1541	key.offset = (u64)-1;
1542
1543	while (1) {
1544		ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1545		if (ret < 0)
1546			break;
1547		if (ret > 0) {
1548			if (path->slots[0] == 0)
1549				break;
1550			path->slots[0]--;
1551		}
1552process_slot:
1553		btrfs_item_key_to_cpu(path->nodes[0], &key,
1554				      path->slots[0]);
1555		if (key.objectid != ino ||
1556		    key.type != BTRFS_INODE_REF_KEY)
1557			break;
1558		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1559		ptr_end = ptr + btrfs_item_size(path->nodes[0],
1560						   path->slots[0]);
1561		while (ptr < ptr_end) {
1562			struct btrfs_inode_ref *ref;
1563
1564			ref = (struct btrfs_inode_ref *)ptr;
1565			name_len = btrfs_inode_ref_name_len(path->nodes[0],
1566							    ref);
1567			ptr = (unsigned long)(ref + 1) + name_len;
1568			nlink++;
1569		}
1570
1571		if (key.offset == 0)
1572			break;
1573		if (path->slots[0] > 0) {
1574			path->slots[0]--;
1575			goto process_slot;
1576		}
1577		key.offset--;
1578		btrfs_release_path(path);
1579	}
1580	btrfs_release_path(path);
1581
1582	return nlink;
1583}
1584
1585/*
1586 * There are a few corners where the link count of the file can't
1587 * be properly maintained during replay.  So, instead of adding
1588 * lots of complexity to the log code, we just scan the backrefs
1589 * for any file that has been through replay.
1590 *
1591 * The scan will update the link count on the inode to reflect the
1592 * number of back refs found.  If it goes down to zero, the iput
1593 * will free the inode.
1594 */
1595static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
 
1596					   struct inode *inode)
1597{
1598	struct btrfs_root *root = BTRFS_I(inode)->root;
1599	struct btrfs_path *path;
1600	int ret;
1601	u64 nlink = 0;
1602	u64 ino = btrfs_ino(BTRFS_I(inode));
1603
1604	path = btrfs_alloc_path();
1605	if (!path)
1606		return -ENOMEM;
1607
1608	ret = count_inode_refs(BTRFS_I(inode), path);
1609	if (ret < 0)
1610		goto out;
1611
1612	nlink = ret;
1613
1614	ret = count_inode_extrefs(BTRFS_I(inode), path);
1615	if (ret < 0)
1616		goto out;
1617
1618	nlink += ret;
1619
1620	ret = 0;
1621
1622	if (nlink != inode->i_nlink) {
1623		set_nlink(inode, nlink);
1624		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1625		if (ret)
1626			goto out;
1627	}
1628	BTRFS_I(inode)->index_cnt = (u64)-1;
1629
1630	if (inode->i_nlink == 0) {
1631		if (S_ISDIR(inode->i_mode)) {
1632			ret = replay_dir_deletes(trans, root, NULL, path,
1633						 ino, 1);
1634			if (ret)
1635				goto out;
1636		}
1637		ret = btrfs_insert_orphan_item(trans, root, ino);
1638		if (ret == -EEXIST)
1639			ret = 0;
1640	}
1641
1642out:
1643	btrfs_free_path(path);
1644	return ret;
1645}
1646
1647static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1648					    struct btrfs_root *root,
1649					    struct btrfs_path *path)
1650{
1651	int ret;
1652	struct btrfs_key key;
1653	struct inode *inode;
1654
1655	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1656	key.type = BTRFS_ORPHAN_ITEM_KEY;
1657	key.offset = (u64)-1;
1658	while (1) {
1659		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1660		if (ret < 0)
1661			break;
1662
1663		if (ret == 1) {
1664			ret = 0;
1665			if (path->slots[0] == 0)
1666				break;
1667			path->slots[0]--;
1668		}
1669
1670		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1671		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1672		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1673			break;
1674
1675		ret = btrfs_del_item(trans, root, path);
1676		if (ret)
1677			break;
1678
1679		btrfs_release_path(path);
1680		inode = read_one_inode(root, key.offset);
1681		if (!inode) {
1682			ret = -EIO;
1683			break;
1684		}
1685
1686		ret = fixup_inode_link_count(trans, inode);
1687		iput(inode);
1688		if (ret)
1689			break;
1690
1691		/*
1692		 * fixup on a directory may create new entries,
1693		 * make sure we always look for the highset possible
1694		 * offset
1695		 */
1696		key.offset = (u64)-1;
1697	}
 
 
1698	btrfs_release_path(path);
1699	return ret;
1700}
1701
1702
1703/*
1704 * record a given inode in the fixup dir so we can check its link
1705 * count when replay is done.  The link count is incremented here
1706 * so the inode won't go away until we check it
1707 */
1708static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1709				      struct btrfs_root *root,
1710				      struct btrfs_path *path,
1711				      u64 objectid)
1712{
1713	struct btrfs_key key;
1714	int ret = 0;
1715	struct inode *inode;
1716
1717	inode = read_one_inode(root, objectid);
1718	if (!inode)
1719		return -EIO;
1720
1721	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1722	key.type = BTRFS_ORPHAN_ITEM_KEY;
1723	key.offset = objectid;
1724
1725	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1726
1727	btrfs_release_path(path);
1728	if (ret == 0) {
1729		if (!inode->i_nlink)
1730			set_nlink(inode, 1);
1731		else
1732			inc_nlink(inode);
1733		ret = btrfs_update_inode(trans, BTRFS_I(inode));
1734	} else if (ret == -EEXIST) {
1735		ret = 0;
 
 
1736	}
1737	iput(inode);
1738
1739	return ret;
1740}
1741
1742/*
1743 * when replaying the log for a directory, we only insert names
1744 * for inodes that actually exist.  This means an fsync on a directory
1745 * does not implicitly fsync all the new files in it
1746 */
1747static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1748				    struct btrfs_root *root,
1749				    u64 dirid, u64 index,
1750				    const struct fscrypt_str *name,
1751				    struct btrfs_key *location)
1752{
1753	struct inode *inode;
1754	struct inode *dir;
1755	int ret;
1756
1757	inode = read_one_inode(root, location->objectid);
1758	if (!inode)
1759		return -ENOENT;
1760
1761	dir = read_one_inode(root, dirid);
1762	if (!dir) {
1763		iput(inode);
1764		return -EIO;
1765	}
1766
1767	ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1768			     1, index);
1769
1770	/* FIXME, put inode into FIXUP list */
1771
1772	iput(inode);
1773	iput(dir);
1774	return ret;
1775}
1776
1777static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1778					struct btrfs_inode *dir,
1779					struct btrfs_path *path,
1780					struct btrfs_dir_item *dst_di,
1781					const struct btrfs_key *log_key,
1782					u8 log_flags,
1783					bool exists)
1784{
1785	struct btrfs_key found_key;
1786
1787	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1788	/* The existing dentry points to the same inode, don't delete it. */
1789	if (found_key.objectid == log_key->objectid &&
1790	    found_key.type == log_key->type &&
1791	    found_key.offset == log_key->offset &&
1792	    btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1793		return 1;
1794
1795	/*
1796	 * Don't drop the conflicting directory entry if the inode for the new
1797	 * entry doesn't exist.
1798	 */
1799	if (!exists)
1800		return 0;
1801
1802	return drop_one_dir_item(trans, path, dir, dst_di);
1803}
1804
1805/*
1806 * take a single entry in a log directory item and replay it into
1807 * the subvolume.
1808 *
1809 * if a conflicting item exists in the subdirectory already,
1810 * the inode it points to is unlinked and put into the link count
1811 * fix up tree.
1812 *
1813 * If a name from the log points to a file or directory that does
1814 * not exist in the FS, it is skipped.  fsyncs on directories
1815 * do not force down inodes inside that directory, just changes to the
1816 * names or unlinks in a directory.
1817 *
1818 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1819 * non-existing inode) and 1 if the name was replayed.
1820 */
1821static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1822				    struct btrfs_root *root,
1823				    struct btrfs_path *path,
1824				    struct extent_buffer *eb,
1825				    struct btrfs_dir_item *di,
1826				    struct btrfs_key *key)
1827{
1828	struct fscrypt_str name;
1829	struct btrfs_dir_item *dir_dst_di;
1830	struct btrfs_dir_item *index_dst_di;
1831	bool dir_dst_matches = false;
1832	bool index_dst_matches = false;
1833	struct btrfs_key log_key;
1834	struct btrfs_key search_key;
1835	struct inode *dir;
1836	u8 log_flags;
1837	bool exists;
1838	int ret;
1839	bool update_size = true;
1840	bool name_added = false;
1841
1842	dir = read_one_inode(root, key->objectid);
1843	if (!dir)
1844		return -EIO;
1845
1846	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1847	if (ret)
 
 
1848		goto out;
 
 
 
 
 
1849
1850	log_flags = btrfs_dir_flags(eb, di);
1851	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1852	ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
 
 
 
 
1853	btrfs_release_path(path);
1854	if (ret < 0)
 
 
 
 
 
 
 
 
 
 
 
1855		goto out;
1856	exists = (ret == 0);
1857	ret = 0;
1858
1859	dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1860					   &name, 1);
1861	if (IS_ERR(dir_dst_di)) {
1862		ret = PTR_ERR(dir_dst_di);
1863		goto out;
1864	} else if (dir_dst_di) {
1865		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1866						   dir_dst_di, &log_key,
1867						   log_flags, exists);
1868		if (ret < 0)
1869			goto out;
1870		dir_dst_matches = (ret == 1);
1871	}
1872
1873	btrfs_release_path(path);
1874
1875	index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1876						   key->objectid, key->offset,
1877						   &name, 1);
1878	if (IS_ERR(index_dst_di)) {
1879		ret = PTR_ERR(index_dst_di);
1880		goto out;
1881	} else if (index_dst_di) {
1882		ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1883						   index_dst_di, &log_key,
1884						   log_flags, exists);
1885		if (ret < 0)
1886			goto out;
1887		index_dst_matches = (ret == 1);
1888	}
1889
1890	btrfs_release_path(path);
 
 
 
 
 
1891
1892	if (dir_dst_matches && index_dst_matches) {
1893		ret = 0;
1894		update_size = false;
1895		goto out;
 
 
 
 
 
 
 
 
1896	}
 
 
 
 
 
1897
 
1898	/*
1899	 * Check if the inode reference exists in the log for the given name,
1900	 * inode and parent inode
1901	 */
1902	search_key.objectid = log_key.objectid;
1903	search_key.type = BTRFS_INODE_REF_KEY;
1904	search_key.offset = key->objectid;
1905	ret = backref_in_log(root->log_root, &search_key, 0, &name);
1906	if (ret < 0) {
1907	        goto out;
1908	} else if (ret) {
1909	        /* The dentry will be added later. */
1910	        ret = 0;
1911	        update_size = false;
1912	        goto out;
1913	}
1914
1915	search_key.objectid = log_key.objectid;
1916	search_key.type = BTRFS_INODE_EXTREF_KEY;
1917	search_key.offset = key->objectid;
1918	ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
 
1919	if (ret < 0) {
1920		goto out;
1921	} else if (ret) {
1922		/* The dentry will be added later. */
1923		ret = 0;
1924		update_size = false;
1925		goto out;
1926	}
1927	btrfs_release_path(path);
1928	ret = insert_one_name(trans, root, key->objectid, key->offset,
1929			      &name, &log_key);
1930	if (ret && ret != -ENOENT && ret != -EEXIST)
1931		goto out;
1932	if (!ret)
1933		name_added = true;
1934	update_size = false;
1935	ret = 0;
1936
1937out:
1938	if (!ret && update_size) {
1939		btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1940		ret = btrfs_update_inode(trans, BTRFS_I(dir));
1941	}
1942	kfree(name.name);
1943	iput(dir);
1944	if (!ret && name_added)
1945		ret = 1;
1946	return ret;
1947}
1948
1949/* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
 
 
 
 
 
1950static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1951					struct btrfs_root *root,
1952					struct btrfs_path *path,
1953					struct extent_buffer *eb, int slot,
1954					struct btrfs_key *key)
1955{
1956	int ret;
 
1957	struct btrfs_dir_item *di;
 
 
 
 
1958
1959	/* We only log dir index keys, which only contain a single dir item. */
1960	ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
 
 
 
 
 
 
 
 
1961
1962	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1963	ret = replay_one_name(trans, root, path, eb, di, key);
1964	if (ret < 0)
1965		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966
1967	/*
1968	 * If this entry refers to a non-directory (directories can not have a
1969	 * link count > 1) and it was added in the transaction that was not
1970	 * committed, make sure we fixup the link count of the inode the entry
1971	 * points to. Otherwise something like the following would result in a
1972	 * directory pointing to an inode with a wrong link that does not account
1973	 * for this dir entry:
1974	 *
1975	 * mkdir testdir
1976	 * touch testdir/foo
1977	 * touch testdir/bar
1978	 * sync
1979	 *
1980	 * ln testdir/bar testdir/bar_link
1981	 * ln testdir/foo testdir/foo_link
1982	 * xfs_io -c "fsync" testdir/bar
1983	 *
1984	 * <power failure>
1985	 *
1986	 * mount fs, log replay happens
1987	 *
1988	 * File foo would remain with a link count of 1 when it has two entries
1989	 * pointing to it in the directory testdir. This would make it impossible
1990	 * to ever delete the parent directory has it would result in stale
1991	 * dentries that can never be deleted.
1992	 */
1993	if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
1994		struct btrfs_path *fixup_path;
1995		struct btrfs_key di_key;
1996
1997		fixup_path = btrfs_alloc_path();
1998		if (!fixup_path)
1999			return -ENOMEM;
2000
2001		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2002		ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2003		btrfs_free_path(fixup_path);
2004	}
2005
2006	return ret;
2007}
2008
2009/*
2010 * directory replay has two parts.  There are the standard directory
2011 * items in the log copied from the subvolume, and range items
2012 * created in the log while the subvolume was logged.
2013 *
2014 * The range items tell us which parts of the key space the log
2015 * is authoritative for.  During replay, if a key in the subvolume
2016 * directory is in a logged range item, but not actually in the log
2017 * that means it was deleted from the directory before the fsync
2018 * and should be removed.
2019 */
2020static noinline int find_dir_range(struct btrfs_root *root,
2021				   struct btrfs_path *path,
2022				   u64 dirid,
2023				   u64 *start_ret, u64 *end_ret)
2024{
2025	struct btrfs_key key;
2026	u64 found_end;
2027	struct btrfs_dir_log_item *item;
2028	int ret;
2029	int nritems;
2030
2031	if (*start_ret == (u64)-1)
2032		return 1;
2033
2034	key.objectid = dirid;
2035	key.type = BTRFS_DIR_LOG_INDEX_KEY;
2036	key.offset = *start_ret;
2037
2038	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2039	if (ret < 0)
2040		goto out;
2041	if (ret > 0) {
2042		if (path->slots[0] == 0)
2043			goto out;
2044		path->slots[0]--;
2045	}
2046	if (ret != 0)
2047		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2048
2049	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2050		ret = 1;
2051		goto next;
2052	}
2053	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2054			      struct btrfs_dir_log_item);
2055	found_end = btrfs_dir_log_end(path->nodes[0], item);
2056
2057	if (*start_ret >= key.offset && *start_ret <= found_end) {
2058		ret = 0;
2059		*start_ret = key.offset;
2060		*end_ret = found_end;
2061		goto out;
2062	}
2063	ret = 1;
2064next:
2065	/* check the next slot in the tree to see if it is a valid item */
2066	nritems = btrfs_header_nritems(path->nodes[0]);
2067	path->slots[0]++;
2068	if (path->slots[0] >= nritems) {
2069		ret = btrfs_next_leaf(root, path);
2070		if (ret)
2071			goto out;
2072	}
2073
2074	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2075
2076	if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2077		ret = 1;
2078		goto out;
2079	}
2080	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2081			      struct btrfs_dir_log_item);
2082	found_end = btrfs_dir_log_end(path->nodes[0], item);
2083	*start_ret = key.offset;
2084	*end_ret = found_end;
2085	ret = 0;
2086out:
2087	btrfs_release_path(path);
2088	return ret;
2089}
2090
2091/*
2092 * this looks for a given directory item in the log.  If the directory
2093 * item is not in the log, the item is removed and the inode it points
2094 * to is unlinked
2095 */
2096static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
 
2097				      struct btrfs_root *log,
2098				      struct btrfs_path *path,
2099				      struct btrfs_path *log_path,
2100				      struct inode *dir,
2101				      struct btrfs_key *dir_key)
2102{
2103	struct btrfs_root *root = BTRFS_I(dir)->root;
2104	int ret;
2105	struct extent_buffer *eb;
2106	int slot;
 
2107	struct btrfs_dir_item *di;
2108	struct fscrypt_str name;
2109	struct inode *inode = NULL;
 
 
 
 
2110	struct btrfs_key location;
2111
2112	/*
2113	 * Currently we only log dir index keys. Even if we replay a log created
2114	 * by an older kernel that logged both dir index and dir item keys, all
2115	 * we need to do is process the dir index keys, we (and our caller) can
2116	 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2117	 */
2118	ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2119
2120	eb = path->nodes[0];
2121	slot = path->slots[0];
2122	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2123	ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2124	if (ret)
2125		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2126
2127	if (log) {
2128		struct btrfs_dir_item *log_di;
 
 
 
 
 
 
 
2129
2130		log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2131						     dir_key->objectid,
2132						     dir_key->offset, &name, 0);
2133		if (IS_ERR(log_di)) {
2134			ret = PTR_ERR(log_di);
2135			goto out;
2136		} else if (log_di) {
2137			/* The dentry exists in the log, we have nothing to do. */
2138			ret = 0;
2139			goto out;
 
 
 
2140		}
2141	}
 
2142
2143	btrfs_dir_item_key_to_cpu(eb, di, &location);
2144	btrfs_release_path(path);
2145	btrfs_release_path(log_path);
2146	inode = read_one_inode(root, location.objectid);
2147	if (!inode) {
2148		ret = -EIO;
2149		goto out;
2150	}
2151
2152	ret = link_to_fixup_dir(trans, root, path, location.objectid);
2153	if (ret)
2154		goto out;
2155
2156	inc_nlink(inode);
2157	ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2158					  &name);
2159	/*
2160	 * Unlike dir item keys, dir index keys can only have one name (entry) in
2161	 * them, as there are no key collisions since each key has a unique offset
2162	 * (an index number), so we're done.
2163	 */
2164out:
2165	btrfs_release_path(path);
2166	btrfs_release_path(log_path);
2167	kfree(name.name);
2168	iput(inode);
2169	return ret;
2170}
2171
2172static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2173			      struct btrfs_root *root,
2174			      struct btrfs_root *log,
2175			      struct btrfs_path *path,
2176			      const u64 ino)
2177{
2178	struct btrfs_key search_key;
2179	struct btrfs_path *log_path;
2180	int i;
2181	int nritems;
2182	int ret;
2183
2184	log_path = btrfs_alloc_path();
2185	if (!log_path)
2186		return -ENOMEM;
2187
2188	search_key.objectid = ino;
2189	search_key.type = BTRFS_XATTR_ITEM_KEY;
2190	search_key.offset = 0;
2191again:
2192	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2193	if (ret < 0)
2194		goto out;
2195process_leaf:
2196	nritems = btrfs_header_nritems(path->nodes[0]);
2197	for (i = path->slots[0]; i < nritems; i++) {
2198		struct btrfs_key key;
2199		struct btrfs_dir_item *di;
2200		struct btrfs_dir_item *log_di;
2201		u32 total_size;
2202		u32 cur;
2203
2204		btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2205		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2206			ret = 0;
2207			goto out;
2208		}
2209
2210		di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2211		total_size = btrfs_item_size(path->nodes[0], i);
2212		cur = 0;
2213		while (cur < total_size) {
2214			u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2215			u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2216			u32 this_len = sizeof(*di) + name_len + data_len;
2217			char *name;
2218
2219			name = kmalloc(name_len, GFP_NOFS);
2220			if (!name) {
2221				ret = -ENOMEM;
2222				goto out;
2223			}
2224			read_extent_buffer(path->nodes[0], name,
2225					   (unsigned long)(di + 1), name_len);
2226
2227			log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2228						    name, name_len, 0);
2229			btrfs_release_path(log_path);
2230			if (!log_di) {
2231				/* Doesn't exist in log tree, so delete it. */
2232				btrfs_release_path(path);
2233				di = btrfs_lookup_xattr(trans, root, path, ino,
2234							name, name_len, -1);
2235				kfree(name);
2236				if (IS_ERR(di)) {
2237					ret = PTR_ERR(di);
2238					goto out;
2239				}
2240				ASSERT(di);
2241				ret = btrfs_delete_one_dir_name(trans, root,
2242								path, di);
2243				if (ret)
2244					goto out;
2245				btrfs_release_path(path);
2246				search_key = key;
2247				goto again;
2248			}
2249			kfree(name);
2250			if (IS_ERR(log_di)) {
2251				ret = PTR_ERR(log_di);
2252				goto out;
2253			}
2254			cur += this_len;
2255			di = (struct btrfs_dir_item *)((char *)di + this_len);
2256		}
2257	}
2258	ret = btrfs_next_leaf(root, path);
2259	if (ret > 0)
2260		ret = 0;
2261	else if (ret == 0)
2262		goto process_leaf;
2263out:
2264	btrfs_free_path(log_path);
2265	btrfs_release_path(path);
2266	return ret;
2267}
2268
2269
2270/*
2271 * deletion replay happens before we copy any new directory items
2272 * out of the log or out of backreferences from inodes.  It
2273 * scans the log to find ranges of keys that log is authoritative for,
2274 * and then scans the directory to find items in those ranges that are
2275 * not present in the log.
2276 *
2277 * Anything we don't find in the log is unlinked and removed from the
2278 * directory.
2279 */
2280static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2281				       struct btrfs_root *root,
2282				       struct btrfs_root *log,
2283				       struct btrfs_path *path,
2284				       u64 dirid, int del_all)
2285{
2286	u64 range_start;
2287	u64 range_end;
 
2288	int ret = 0;
2289	struct btrfs_key dir_key;
2290	struct btrfs_key found_key;
2291	struct btrfs_path *log_path;
2292	struct inode *dir;
2293
2294	dir_key.objectid = dirid;
2295	dir_key.type = BTRFS_DIR_INDEX_KEY;
2296	log_path = btrfs_alloc_path();
2297	if (!log_path)
2298		return -ENOMEM;
2299
2300	dir = read_one_inode(root, dirid);
2301	/* it isn't an error if the inode isn't there, that can happen
2302	 * because we replay the deletes before we copy in the inode item
2303	 * from the log
2304	 */
2305	if (!dir) {
2306		btrfs_free_path(log_path);
2307		return 0;
2308	}
2309
2310	range_start = 0;
2311	range_end = 0;
2312	while (1) {
2313		if (del_all)
2314			range_end = (u64)-1;
2315		else {
2316			ret = find_dir_range(log, path, dirid,
2317					     &range_start, &range_end);
2318			if (ret < 0)
2319				goto out;
2320			else if (ret > 0)
2321				break;
2322		}
2323
2324		dir_key.offset = range_start;
2325		while (1) {
2326			int nritems;
2327			ret = btrfs_search_slot(NULL, root, &dir_key, path,
2328						0, 0);
2329			if (ret < 0)
2330				goto out;
2331
2332			nritems = btrfs_header_nritems(path->nodes[0]);
2333			if (path->slots[0] >= nritems) {
2334				ret = btrfs_next_leaf(root, path);
2335				if (ret == 1)
2336					break;
2337				else if (ret < 0)
2338					goto out;
2339			}
2340			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2341					      path->slots[0]);
2342			if (found_key.objectid != dirid ||
2343			    found_key.type != dir_key.type) {
2344				ret = 0;
2345				goto out;
2346			}
2347
2348			if (found_key.offset > range_end)
2349				break;
2350
2351			ret = check_item_in_log(trans, log, path,
2352						log_path, dir,
2353						&found_key);
2354			if (ret)
2355				goto out;
2356			if (found_key.offset == (u64)-1)
2357				break;
2358			dir_key.offset = found_key.offset + 1;
2359		}
2360		btrfs_release_path(path);
2361		if (range_end == (u64)-1)
2362			break;
2363		range_start = range_end + 1;
2364	}
 
 
2365	ret = 0;
 
 
 
 
 
 
2366out:
2367	btrfs_release_path(path);
2368	btrfs_free_path(log_path);
2369	iput(dir);
2370	return ret;
2371}
2372
2373/*
2374 * the process_func used to replay items from the log tree.  This
2375 * gets called in two different stages.  The first stage just looks
2376 * for inodes and makes sure they are all copied into the subvolume.
2377 *
2378 * The second stage copies all the other item types from the log into
2379 * the subvolume.  The two stage approach is slower, but gets rid of
2380 * lots of complexity around inodes referencing other inodes that exist
2381 * only in the log (references come from either directory items or inode
2382 * back refs).
2383 */
2384static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2385			     struct walk_control *wc, u64 gen, int level)
2386{
2387	int nritems;
2388	struct btrfs_tree_parent_check check = {
2389		.transid = gen,
2390		.level = level
2391	};
2392	struct btrfs_path *path;
2393	struct btrfs_root *root = wc->replay_dest;
2394	struct btrfs_key key;
2395	int i;
2396	int ret;
2397
2398	ret = btrfs_read_extent_buffer(eb, &check);
2399	if (ret)
2400		return ret;
2401
2402	level = btrfs_header_level(eb);
2403
2404	if (level != 0)
2405		return 0;
2406
2407	path = btrfs_alloc_path();
2408	if (!path)
2409		return -ENOMEM;
2410
2411	nritems = btrfs_header_nritems(eb);
2412	for (i = 0; i < nritems; i++) {
2413		btrfs_item_key_to_cpu(eb, &key, i);
2414
2415		/* inode keys are done during the first stage */
2416		if (key.type == BTRFS_INODE_ITEM_KEY &&
2417		    wc->stage == LOG_WALK_REPLAY_INODES) {
2418			struct btrfs_inode_item *inode_item;
2419			u32 mode;
2420
2421			inode_item = btrfs_item_ptr(eb, i,
2422					    struct btrfs_inode_item);
2423			/*
2424			 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2425			 * and never got linked before the fsync, skip it, as
2426			 * replaying it is pointless since it would be deleted
2427			 * later. We skip logging tmpfiles, but it's always
2428			 * possible we are replaying a log created with a kernel
2429			 * that used to log tmpfiles.
2430			 */
2431			if (btrfs_inode_nlink(eb, inode_item) == 0) {
2432				wc->ignore_cur_inode = true;
2433				continue;
2434			} else {
2435				wc->ignore_cur_inode = false;
2436			}
2437			ret = replay_xattr_deletes(wc->trans, root, log,
2438						   path, key.objectid);
2439			if (ret)
2440				break;
2441			mode = btrfs_inode_mode(eb, inode_item);
2442			if (S_ISDIR(mode)) {
2443				ret = replay_dir_deletes(wc->trans,
2444					 root, log, path, key.objectid, 0);
2445				if (ret)
2446					break;
2447			}
2448			ret = overwrite_item(wc->trans, root, path,
2449					     eb, i, &key);
2450			if (ret)
2451				break;
2452
2453			/*
2454			 * Before replaying extents, truncate the inode to its
2455			 * size. We need to do it now and not after log replay
2456			 * because before an fsync we can have prealloc extents
2457			 * added beyond the inode's i_size. If we did it after,
2458			 * through orphan cleanup for example, we would drop
2459			 * those prealloc extents just after replaying them.
2460			 */
2461			if (S_ISREG(mode)) {
2462				struct btrfs_drop_extents_args drop_args = { 0 };
2463				struct inode *inode;
2464				u64 from;
2465
2466				inode = read_one_inode(root, key.objectid);
2467				if (!inode) {
2468					ret = -EIO;
2469					break;
2470				}
2471				from = ALIGN(i_size_read(inode),
2472					     root->fs_info->sectorsize);
2473				drop_args.start = from;
2474				drop_args.end = (u64)-1;
2475				drop_args.drop_cache = true;
2476				ret = btrfs_drop_extents(wc->trans, root,
2477							 BTRFS_I(inode),
2478							 &drop_args);
2479				if (!ret) {
2480					inode_sub_bytes(inode,
2481							drop_args.bytes_found);
2482					/* Update the inode's nbytes. */
2483					ret = btrfs_update_inode(wc->trans,
2484								 BTRFS_I(inode));
2485				}
2486				iput(inode);
2487				if (ret)
2488					break;
2489			}
2490
2491			ret = link_to_fixup_dir(wc->trans, root,
2492						path, key.objectid);
2493			if (ret)
2494				break;
2495		}
2496
2497		if (wc->ignore_cur_inode)
2498			continue;
2499
2500		if (key.type == BTRFS_DIR_INDEX_KEY &&
2501		    wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2502			ret = replay_one_dir_item(wc->trans, root, path,
2503						  eb, i, &key);
2504			if (ret)
2505				break;
2506		}
2507
2508		if (wc->stage < LOG_WALK_REPLAY_ALL)
2509			continue;
2510
2511		/* these keys are simply copied */
2512		if (key.type == BTRFS_XATTR_ITEM_KEY) {
2513			ret = overwrite_item(wc->trans, root, path,
2514					     eb, i, &key);
2515			if (ret)
2516				break;
2517		} else if (key.type == BTRFS_INODE_REF_KEY ||
2518			   key.type == BTRFS_INODE_EXTREF_KEY) {
2519			ret = add_inode_ref(wc->trans, root, log, path,
2520					    eb, i, &key);
2521			if (ret && ret != -ENOENT)
2522				break;
2523			ret = 0;
2524		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2525			ret = replay_one_extent(wc->trans, root, path,
2526						eb, i, &key);
2527			if (ret)
2528				break;
 
 
 
 
 
2529		}
2530		/*
2531		 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2532		 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2533		 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2534		 * older kernel with such keys, ignore them.
2535		 */
2536	}
2537	btrfs_free_path(path);
2538	return ret;
2539}
2540
2541/*
2542 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2543 */
2544static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2545{
2546	struct btrfs_block_group *cache;
2547
2548	cache = btrfs_lookup_block_group(fs_info, start);
2549	if (!cache) {
2550		btrfs_err(fs_info, "unable to find block group for %llu", start);
2551		return;
2552	}
2553
2554	spin_lock(&cache->space_info->lock);
2555	spin_lock(&cache->lock);
2556	cache->reserved -= fs_info->nodesize;
2557	cache->space_info->bytes_reserved -= fs_info->nodesize;
2558	spin_unlock(&cache->lock);
2559	spin_unlock(&cache->space_info->lock);
2560
2561	btrfs_put_block_group(cache);
2562}
2563
2564static int clean_log_buffer(struct btrfs_trans_handle *trans,
2565			    struct extent_buffer *eb)
2566{
2567	int ret;
2568
2569	btrfs_tree_lock(eb);
2570	btrfs_clear_buffer_dirty(trans, eb);
2571	wait_on_extent_buffer_writeback(eb);
2572	btrfs_tree_unlock(eb);
2573
2574	if (trans) {
2575		ret = btrfs_pin_reserved_extent(trans, eb);
2576		if (ret)
2577			return ret;
2578	} else {
2579		unaccount_log_buffer(eb->fs_info, eb->start);
2580	}
2581
2582	return 0;
2583}
2584
2585static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2586				   struct btrfs_root *root,
2587				   struct btrfs_path *path, int *level,
2588				   struct walk_control *wc)
2589{
2590	struct btrfs_fs_info *fs_info = root->fs_info;
2591	u64 bytenr;
2592	u64 ptr_gen;
2593	struct extent_buffer *next;
2594	struct extent_buffer *cur;
 
2595	int ret = 0;
2596
2597	while (*level > 0) {
2598		struct btrfs_tree_parent_check check = { 0 };
2599
2600		cur = path->nodes[*level];
2601
2602		WARN_ON(btrfs_header_level(cur) != *level);
2603
2604		if (path->slots[*level] >=
2605		    btrfs_header_nritems(cur))
2606			break;
2607
2608		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2609		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2610		check.transid = ptr_gen;
2611		check.level = *level - 1;
2612		check.has_first_key = true;
2613		btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2614
2615		next = btrfs_find_create_tree_block(fs_info, bytenr,
2616						    btrfs_header_owner(cur),
2617						    *level - 1);
2618		if (IS_ERR(next))
2619			return PTR_ERR(next);
2620
2621		if (*level == 1) {
2622			ret = wc->process_func(root, next, wc, ptr_gen,
2623					       *level - 1);
2624			if (ret) {
2625				free_extent_buffer(next);
2626				return ret;
2627			}
2628
2629			path->slots[*level]++;
2630			if (wc->free) {
2631				ret = btrfs_read_extent_buffer(next, &check);
 
2632				if (ret) {
2633					free_extent_buffer(next);
2634					return ret;
2635				}
2636
2637				ret = clean_log_buffer(trans, next);
2638				if (ret) {
2639					free_extent_buffer(next);
2640					return ret;
 
 
 
 
 
 
 
 
 
 
 
 
2641				}
2642			}
2643			free_extent_buffer(next);
2644			continue;
2645		}
2646		ret = btrfs_read_extent_buffer(next, &check);
2647		if (ret) {
2648			free_extent_buffer(next);
2649			return ret;
2650		}
2651
2652		if (path->nodes[*level-1])
2653			free_extent_buffer(path->nodes[*level-1]);
2654		path->nodes[*level-1] = next;
2655		*level = btrfs_header_level(next);
2656		path->slots[*level] = 0;
2657		cond_resched();
2658	}
2659	path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2660
2661	cond_resched();
2662	return 0;
2663}
2664
2665static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2666				 struct btrfs_root *root,
2667				 struct btrfs_path *path, int *level,
2668				 struct walk_control *wc)
2669{
 
2670	int i;
2671	int slot;
2672	int ret;
2673
2674	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2675		slot = path->slots[i];
2676		if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2677			path->slots[i]++;
2678			*level = i;
2679			WARN_ON(*level == 0);
2680			return 0;
2681		} else {
2682			ret = wc->process_func(root, path->nodes[*level], wc,
2683				 btrfs_header_generation(path->nodes[*level]),
2684				 *level);
2685			if (ret)
2686				return ret;
2687
2688			if (wc->free) {
2689				ret = clean_log_buffer(trans, path->nodes[*level]);
2690				if (ret)
2691					return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2692			}
2693			free_extent_buffer(path->nodes[*level]);
2694			path->nodes[*level] = NULL;
2695			*level = i + 1;
2696		}
2697	}
2698	return 1;
2699}
2700
2701/*
2702 * drop the reference count on the tree rooted at 'snap'.  This traverses
2703 * the tree freeing any blocks that have a ref count of zero after being
2704 * decremented.
2705 */
2706static int walk_log_tree(struct btrfs_trans_handle *trans,
2707			 struct btrfs_root *log, struct walk_control *wc)
2708{
 
2709	int ret = 0;
2710	int wret;
2711	int level;
2712	struct btrfs_path *path;
2713	int orig_level;
2714
2715	path = btrfs_alloc_path();
2716	if (!path)
2717		return -ENOMEM;
2718
2719	level = btrfs_header_level(log->node);
2720	orig_level = level;
2721	path->nodes[level] = log->node;
2722	atomic_inc(&log->node->refs);
2723	path->slots[level] = 0;
2724
2725	while (1) {
2726		wret = walk_down_log_tree(trans, log, path, &level, wc);
2727		if (wret > 0)
2728			break;
2729		if (wret < 0) {
2730			ret = wret;
2731			goto out;
2732		}
2733
2734		wret = walk_up_log_tree(trans, log, path, &level, wc);
2735		if (wret > 0)
2736			break;
2737		if (wret < 0) {
2738			ret = wret;
2739			goto out;
2740		}
2741	}
2742
2743	/* was the root node processed? if not, catch it here */
2744	if (path->nodes[orig_level]) {
2745		ret = wc->process_func(log, path->nodes[orig_level], wc,
2746			 btrfs_header_generation(path->nodes[orig_level]),
2747			 orig_level);
2748		if (ret)
2749			goto out;
2750		if (wc->free)
2751			ret = clean_log_buffer(trans, path->nodes[orig_level]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2752	}
2753
2754out:
2755	btrfs_free_path(path);
2756	return ret;
2757}
2758
2759/*
2760 * helper function to update the item for a given subvolumes log root
2761 * in the tree of log roots
2762 */
2763static int update_log_root(struct btrfs_trans_handle *trans,
2764			   struct btrfs_root *log,
2765			   struct btrfs_root_item *root_item)
2766{
2767	struct btrfs_fs_info *fs_info = log->fs_info;
2768	int ret;
2769
2770	if (log->log_transid == 1) {
2771		/* insert root item on the first sync */
2772		ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2773				&log->root_key, root_item);
2774	} else {
2775		ret = btrfs_update_root(trans, fs_info->log_root_tree,
2776				&log->root_key, root_item);
2777	}
2778	return ret;
2779}
2780
2781static void wait_log_commit(struct btrfs_root *root, int transid)
2782{
2783	DEFINE_WAIT(wait);
2784	int index = transid % 2;
2785
2786	/*
2787	 * we only allow two pending log transactions at a time,
2788	 * so we know that if ours is more than 2 older than the
2789	 * current transaction, we're done
2790	 */
2791	for (;;) {
2792		prepare_to_wait(&root->log_commit_wait[index],
2793				&wait, TASK_UNINTERRUPTIBLE);
2794
2795		if (!(root->log_transid_committed < transid &&
2796		      atomic_read(&root->log_commit[index])))
2797			break;
2798
2799		mutex_unlock(&root->log_mutex);
2800		schedule();
2801		mutex_lock(&root->log_mutex);
2802	}
2803	finish_wait(&root->log_commit_wait[index], &wait);
2804}
2805
2806static void wait_for_writer(struct btrfs_root *root)
2807{
2808	DEFINE_WAIT(wait);
2809
2810	for (;;) {
2811		prepare_to_wait(&root->log_writer_wait, &wait,
2812				TASK_UNINTERRUPTIBLE);
2813		if (!atomic_read(&root->log_writers))
2814			break;
2815
2816		mutex_unlock(&root->log_mutex);
2817		schedule();
2818		mutex_lock(&root->log_mutex);
2819	}
2820	finish_wait(&root->log_writer_wait, &wait);
2821}
2822
2823static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2824					struct btrfs_log_ctx *ctx)
2825{
 
 
 
2826	mutex_lock(&root->log_mutex);
2827	list_del_init(&ctx->list);
2828	mutex_unlock(&root->log_mutex);
2829}
2830
2831/* 
2832 * Invoked in log mutex context, or be sure there is no other task which
2833 * can access the list.
2834 */
2835static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2836					     int index, int error)
2837{
2838	struct btrfs_log_ctx *ctx;
2839	struct btrfs_log_ctx *safe;
2840
2841	list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2842		list_del_init(&ctx->list);
2843		ctx->log_ret = error;
2844	}
 
 
2845}
2846
2847/*
2848 * Sends a given tree log down to the disk and updates the super blocks to
2849 * record it.  When this call is done, you know that any inodes previously
2850 * logged are safely on disk only if it returns 0.
 
2851 *
2852 * Any other return value means you need to call btrfs_commit_transaction.
2853 * Some of the edge cases for fsyncing directories that have had unlinks
2854 * or renames done in the past mean that sometimes the only safe
2855 * fsync is to commit the whole FS.  When btrfs_sync_log returns -EAGAIN,
2856 * that has happened.
2857 */
2858int btrfs_sync_log(struct btrfs_trans_handle *trans,
2859		   struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2860{
2861	int index1;
2862	int index2;
2863	int mark;
2864	int ret;
2865	struct btrfs_fs_info *fs_info = root->fs_info;
2866	struct btrfs_root *log = root->log_root;
2867	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2868	struct btrfs_root_item new_root_item;
2869	int log_transid = 0;
2870	struct btrfs_log_ctx root_log_ctx;
2871	struct blk_plug plug;
2872	u64 log_root_start;
2873	u64 log_root_level;
2874
2875	mutex_lock(&root->log_mutex);
2876	log_transid = ctx->log_transid;
2877	if (root->log_transid_committed >= log_transid) {
2878		mutex_unlock(&root->log_mutex);
2879		return ctx->log_ret;
2880	}
2881
2882	index1 = log_transid % 2;
2883	if (atomic_read(&root->log_commit[index1])) {
2884		wait_log_commit(root, log_transid);
2885		mutex_unlock(&root->log_mutex);
2886		return ctx->log_ret;
2887	}
2888	ASSERT(log_transid == root->log_transid);
2889	atomic_set(&root->log_commit[index1], 1);
2890
2891	/* wait for previous tree log sync to complete */
2892	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2893		wait_log_commit(root, log_transid - 1);
2894
2895	while (1) {
2896		int batch = atomic_read(&root->log_batch);
2897		/* when we're on an ssd, just kick the log commit out */
2898		if (!btrfs_test_opt(fs_info, SSD) &&
2899		    test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2900			mutex_unlock(&root->log_mutex);
2901			schedule_timeout_uninterruptible(1);
2902			mutex_lock(&root->log_mutex);
2903		}
2904		wait_for_writer(root);
2905		if (batch == atomic_read(&root->log_batch))
2906			break;
2907	}
2908
2909	/* bail out if we need to do a full commit */
2910	if (btrfs_need_log_full_commit(trans)) {
2911		ret = BTRFS_LOG_FORCE_COMMIT;
2912		mutex_unlock(&root->log_mutex);
2913		goto out;
2914	}
2915
2916	if (log_transid % 2 == 0)
2917		mark = EXTENT_DIRTY;
2918	else
2919		mark = EXTENT_NEW;
2920
2921	/* we start IO on  all the marked extents here, but we don't actually
2922	 * wait for them until later.
2923	 */
2924	blk_start_plug(&plug);
2925	ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2926	/*
2927	 * -EAGAIN happens when someone, e.g., a concurrent transaction
2928	 *  commit, writes a dirty extent in this tree-log commit. This
2929	 *  concurrent write will create a hole writing out the extents,
2930	 *  and we cannot proceed on a zoned filesystem, requiring
2931	 *  sequential writing. While we can bail out to a full commit
2932	 *  here, but we can continue hoping the concurrent writing fills
2933	 *  the hole.
2934	 */
2935	if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
2936		ret = 0;
2937	if (ret) {
2938		blk_finish_plug(&plug);
 
2939		btrfs_set_log_full_commit(trans);
2940		mutex_unlock(&root->log_mutex);
2941		goto out;
2942	}
2943
2944	/*
2945	 * We _must_ update under the root->log_mutex in order to make sure we
2946	 * have a consistent view of the log root we are trying to commit at
2947	 * this moment.
2948	 *
2949	 * We _must_ copy this into a local copy, because we are not holding the
2950	 * log_root_tree->log_mutex yet.  This is important because when we
2951	 * commit the log_root_tree we must have a consistent view of the
2952	 * log_root_tree when we update the super block to point at the
2953	 * log_root_tree bytenr.  If we update the log_root_tree here we'll race
2954	 * with the commit and possibly point at the new block which we may not
2955	 * have written out.
2956	 */
2957	btrfs_set_root_node(&log->root_item, log->node);
2958	memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
2959
2960	btrfs_set_root_log_transid(root, root->log_transid + 1);
2961	log->log_transid = root->log_transid;
2962	root->log_start_pid = 0;
2963	/*
2964	 * IO has been started, blocks of the log tree have WRITTEN flag set
2965	 * in their headers. new modifications of the log will be written to
2966	 * new positions. so it's safe to allow log writers to go in.
2967	 */
2968	mutex_unlock(&root->log_mutex);
2969
2970	if (btrfs_is_zoned(fs_info)) {
2971		mutex_lock(&fs_info->tree_root->log_mutex);
2972		if (!log_root_tree->node) {
2973			ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
2974			if (ret) {
2975				mutex_unlock(&fs_info->tree_root->log_mutex);
2976				blk_finish_plug(&plug);
2977				goto out;
2978			}
2979		}
2980		mutex_unlock(&fs_info->tree_root->log_mutex);
2981	}
2982
2983	btrfs_init_log_ctx(&root_log_ctx, NULL);
2984
2985	mutex_lock(&log_root_tree->log_mutex);
2986
2987	index2 = log_root_tree->log_transid % 2;
2988	list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2989	root_log_ctx.log_transid = log_root_tree->log_transid;
2990
2991	/*
2992	 * Now we are safe to update the log_root_tree because we're under the
2993	 * log_mutex, and we're a current writer so we're holding the commit
2994	 * open until we drop the log_mutex.
2995	 */
2996	ret = update_log_root(trans, log, &new_root_item);
2997	if (ret) {
2998		list_del_init(&root_log_ctx.list);
 
 
2999		blk_finish_plug(&plug);
3000		btrfs_set_log_full_commit(trans);
3001		if (ret != -ENOSPC)
3002			btrfs_err(fs_info,
3003				  "failed to update log for root %llu ret %d",
3004				  root->root_key.objectid, ret);
 
 
3005		btrfs_wait_tree_log_extents(log, mark);
3006		mutex_unlock(&log_root_tree->log_mutex);
 
3007		goto out;
3008	}
3009
3010	if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3011		blk_finish_plug(&plug);
3012		list_del_init(&root_log_ctx.list);
3013		mutex_unlock(&log_root_tree->log_mutex);
3014		ret = root_log_ctx.log_ret;
3015		goto out;
3016	}
3017
 
3018	if (atomic_read(&log_root_tree->log_commit[index2])) {
3019		blk_finish_plug(&plug);
3020		ret = btrfs_wait_tree_log_extents(log, mark);
3021		wait_log_commit(log_root_tree,
3022				root_log_ctx.log_transid);
3023		mutex_unlock(&log_root_tree->log_mutex);
3024		if (!ret)
3025			ret = root_log_ctx.log_ret;
3026		goto out;
3027	}
3028	ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3029	atomic_set(&log_root_tree->log_commit[index2], 1);
3030
3031	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3032		wait_log_commit(log_root_tree,
3033				root_log_ctx.log_transid - 1);
3034	}
3035
3036	/*
3037	 * now that we've moved on to the tree of log tree roots,
3038	 * check the full commit flag again
3039	 */
3040	if (btrfs_need_log_full_commit(trans)) {
3041		blk_finish_plug(&plug);
3042		btrfs_wait_tree_log_extents(log, mark);
3043		mutex_unlock(&log_root_tree->log_mutex);
3044		ret = BTRFS_LOG_FORCE_COMMIT;
3045		goto out_wake_log_root;
3046	}
3047
3048	ret = btrfs_write_marked_extents(fs_info,
3049					 &log_root_tree->dirty_log_pages,
3050					 EXTENT_DIRTY | EXTENT_NEW);
3051	blk_finish_plug(&plug);
3052	/*
3053	 * As described above, -EAGAIN indicates a hole in the extents. We
3054	 * cannot wait for these write outs since the waiting cause a
3055	 * deadlock. Bail out to the full commit instead.
3056	 */
3057	if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3058		btrfs_set_log_full_commit(trans);
3059		btrfs_wait_tree_log_extents(log, mark);
3060		mutex_unlock(&log_root_tree->log_mutex);
3061		goto out_wake_log_root;
3062	} else if (ret) {
3063		btrfs_set_log_full_commit(trans);
 
3064		mutex_unlock(&log_root_tree->log_mutex);
3065		goto out_wake_log_root;
3066	}
3067	ret = btrfs_wait_tree_log_extents(log, mark);
3068	if (!ret)
3069		ret = btrfs_wait_tree_log_extents(log_root_tree,
3070						  EXTENT_NEW | EXTENT_DIRTY);
3071	if (ret) {
3072		btrfs_set_log_full_commit(trans);
3073		mutex_unlock(&log_root_tree->log_mutex);
3074		goto out_wake_log_root;
3075	}
3076
3077	log_root_start = log_root_tree->node->start;
3078	log_root_level = btrfs_header_level(log_root_tree->node);
 
 
 
3079	log_root_tree->log_transid++;
3080	mutex_unlock(&log_root_tree->log_mutex);
3081
3082	/*
3083	 * Here we are guaranteed that nobody is going to write the superblock
3084	 * for the current transaction before us and that neither we do write
3085	 * our superblock before the previous transaction finishes its commit
3086	 * and writes its superblock, because:
3087	 *
3088	 * 1) We are holding a handle on the current transaction, so no body
3089	 *    can commit it until we release the handle;
3090	 *
3091	 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3092	 *    if the previous transaction is still committing, and hasn't yet
3093	 *    written its superblock, we wait for it to do it, because a
3094	 *    transaction commit acquires the tree_log_mutex when the commit
3095	 *    begins and releases it only after writing its superblock.
3096	 */
3097	mutex_lock(&fs_info->tree_log_mutex);
3098
3099	/*
3100	 * The previous transaction writeout phase could have failed, and thus
3101	 * marked the fs in an error state.  We must not commit here, as we
3102	 * could have updated our generation in the super_for_commit and
3103	 * writing the super here would result in transid mismatches.  If there
3104	 * is an error here just bail.
3105	 */
3106	if (BTRFS_FS_ERROR(fs_info)) {
3107		ret = -EIO;
3108		btrfs_set_log_full_commit(trans);
3109		btrfs_abort_transaction(trans, ret);
3110		mutex_unlock(&fs_info->tree_log_mutex);
3111		goto out_wake_log_root;
3112	}
3113
3114	btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3115	btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3116	ret = write_all_supers(fs_info, 1);
3117	mutex_unlock(&fs_info->tree_log_mutex);
3118	if (ret) {
3119		btrfs_set_log_full_commit(trans);
3120		btrfs_abort_transaction(trans, ret);
3121		goto out_wake_log_root;
3122	}
3123
3124	/*
3125	 * We know there can only be one task here, since we have not yet set
3126	 * root->log_commit[index1] to 0 and any task attempting to sync the
3127	 * log must wait for the previous log transaction to commit if it's
3128	 * still in progress or wait for the current log transaction commit if
3129	 * someone else already started it. We use <= and not < because the
3130	 * first log transaction has an ID of 0.
3131	 */
3132	ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3133	btrfs_set_root_last_log_commit(root, log_transid);
3134
3135out_wake_log_root:
3136	mutex_lock(&log_root_tree->log_mutex);
3137	btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3138
3139	log_root_tree->log_transid_committed++;
3140	atomic_set(&log_root_tree->log_commit[index2], 0);
3141	mutex_unlock(&log_root_tree->log_mutex);
3142
3143	/*
3144	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3145	 * all the updates above are seen by the woken threads. It might not be
3146	 * necessary, but proving that seems to be hard.
3147	 */
3148	cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3149out:
3150	mutex_lock(&root->log_mutex);
3151	btrfs_remove_all_log_ctxs(root, index1, ret);
3152	root->log_transid_committed++;
3153	atomic_set(&root->log_commit[index1], 0);
3154	mutex_unlock(&root->log_mutex);
3155
3156	/*
3157	 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3158	 * all the updates above are seen by the woken threads. It might not be
3159	 * necessary, but proving that seems to be hard.
3160	 */
3161	cond_wake_up(&root->log_commit_wait[index1]);
3162	return ret;
3163}
3164
3165static void free_log_tree(struct btrfs_trans_handle *trans,
3166			  struct btrfs_root *log)
3167{
3168	int ret;
3169	struct walk_control wc = {
3170		.free = 1,
3171		.process_func = process_one_buffer
3172	};
3173
3174	if (log->node) {
3175		ret = walk_log_tree(trans, log, &wc);
3176		if (ret) {
3177			/*
3178			 * We weren't able to traverse the entire log tree, the
3179			 * typical scenario is getting an -EIO when reading an
3180			 * extent buffer of the tree, due to a previous writeback
3181			 * failure of it.
3182			 */
3183			set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3184				&log->fs_info->fs_state);
3185
3186			/*
3187			 * Some extent buffers of the log tree may still be dirty
3188			 * and not yet written back to storage, because we may
3189			 * have updates to a log tree without syncing a log tree,
3190			 * such as during rename and link operations. So flush
3191			 * them out and wait for their writeback to complete, so
3192			 * that we properly cleanup their state and pages.
3193			 */
3194			btrfs_write_marked_extents(log->fs_info,
3195						   &log->dirty_log_pages,
3196						   EXTENT_DIRTY | EXTENT_NEW);
3197			btrfs_wait_tree_log_extents(log,
3198						    EXTENT_DIRTY | EXTENT_NEW);
3199
3200			if (trans)
3201				btrfs_abort_transaction(trans, ret);
3202			else
3203				btrfs_handle_fs_error(log->fs_info, ret, NULL);
3204		}
3205	}
3206
3207	extent_io_tree_release(&log->dirty_log_pages);
 
3208	extent_io_tree_release(&log->log_csum_range);
3209
3210	btrfs_put_root(log);
3211}
3212
3213/*
3214 * free all the extents used by the tree log.  This should be called
3215 * at commit time of the full transaction
3216 */
3217int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3218{
3219	if (root->log_root) {
3220		free_log_tree(trans, root->log_root);
3221		root->log_root = NULL;
3222		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3223	}
3224	return 0;
3225}
3226
3227int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3228			     struct btrfs_fs_info *fs_info)
3229{
3230	if (fs_info->log_root_tree) {
3231		free_log_tree(trans, fs_info->log_root_tree);
3232		fs_info->log_root_tree = NULL;
3233		clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3234	}
3235	return 0;
3236}
3237
3238/*
3239 * Check if an inode was logged in the current transaction. This correctly deals
3240 * with the case where the inode was logged but has a logged_trans of 0, which
3241 * happens if the inode is evicted and loaded again, as logged_trans is an in
3242 * memory only field (not persisted).
3243 *
3244 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3245 * and < 0 on error.
3246 */
3247static int inode_logged(const struct btrfs_trans_handle *trans,
3248			struct btrfs_inode *inode,
3249			struct btrfs_path *path_in)
3250{
3251	struct btrfs_path *path = path_in;
3252	struct btrfs_key key;
3253	int ret;
3254
3255	if (inode->logged_trans == trans->transid)
3256		return 1;
3257
3258	/*
3259	 * If logged_trans is not 0, then we know the inode logged was not logged
3260	 * in this transaction, so we can return false right away.
3261	 */
3262	if (inode->logged_trans > 0)
3263		return 0;
3264
3265	/*
3266	 * If no log tree was created for this root in this transaction, then
3267	 * the inode can not have been logged in this transaction. In that case
3268	 * set logged_trans to anything greater than 0 and less than the current
3269	 * transaction's ID, to avoid the search below in a future call in case
3270	 * a log tree gets created after this.
3271	 */
3272	if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3273		inode->logged_trans = trans->transid - 1;
3274		return 0;
3275	}
3276
3277	/*
3278	 * We have a log tree and the inode's logged_trans is 0. We can't tell
3279	 * for sure if the inode was logged before in this transaction by looking
3280	 * only at logged_trans. We could be pessimistic and assume it was, but
3281	 * that can lead to unnecessarily logging an inode during rename and link
3282	 * operations, and then further updating the log in followup rename and
3283	 * link operations, specially if it's a directory, which adds latency
3284	 * visible to applications doing a series of rename or link operations.
3285	 *
3286	 * A logged_trans of 0 here can mean several things:
3287	 *
3288	 * 1) The inode was never logged since the filesystem was mounted, and may
3289	 *    or may have not been evicted and loaded again;
3290	 *
3291	 * 2) The inode was logged in a previous transaction, then evicted and
3292	 *    then loaded again;
3293	 *
3294	 * 3) The inode was logged in the current transaction, then evicted and
3295	 *    then loaded again.
3296	 *
3297	 * For cases 1) and 2) we don't want to return true, but we need to detect
3298	 * case 3) and return true. So we do a search in the log root for the inode
3299	 * item.
3300	 */
3301	key.objectid = btrfs_ino(inode);
3302	key.type = BTRFS_INODE_ITEM_KEY;
3303	key.offset = 0;
3304
3305	if (!path) {
3306		path = btrfs_alloc_path();
3307		if (!path)
3308			return -ENOMEM;
3309	}
3310
3311	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3312
3313	if (path_in)
3314		btrfs_release_path(path);
3315	else
3316		btrfs_free_path(path);
3317
3318	/*
3319	 * Logging an inode always results in logging its inode item. So if we
3320	 * did not find the item we know the inode was not logged for sure.
3321	 */
3322	if (ret < 0) {
3323		return ret;
3324	} else if (ret > 0) {
3325		/*
3326		 * Set logged_trans to a value greater than 0 and less then the
3327		 * current transaction to avoid doing the search in future calls.
3328		 */
3329		inode->logged_trans = trans->transid - 1;
3330		return 0;
3331	}
3332
3333	/*
3334	 * The inode was previously logged and then evicted, set logged_trans to
3335	 * the current transacion's ID, to avoid future tree searches as long as
3336	 * the inode is not evicted again.
3337	 */
3338	inode->logged_trans = trans->transid;
3339
3340	/*
3341	 * If it's a directory, then we must set last_dir_index_offset to the
3342	 * maximum possible value, so that the next attempt to log the inode does
3343	 * not skip checking if dir index keys found in modified subvolume tree
3344	 * leaves have been logged before, otherwise it would result in attempts
3345	 * to insert duplicate dir index keys in the log tree. This must be done
3346	 * because last_dir_index_offset is an in-memory only field, not persisted
3347	 * in the inode item or any other on-disk structure, so its value is lost
3348	 * once the inode is evicted.
3349	 */
3350	if (S_ISDIR(inode->vfs_inode.i_mode))
3351		inode->last_dir_index_offset = (u64)-1;
3352
3353	return 1;
3354}
3355
3356/*
3357 * Delete a directory entry from the log if it exists.
3358 *
3359 * Returns < 0 on error
3360 *           1 if the entry does not exists
3361 *           0 if the entry existed and was successfully deleted
3362 */
3363static int del_logged_dentry(struct btrfs_trans_handle *trans,
3364			     struct btrfs_root *log,
3365			     struct btrfs_path *path,
3366			     u64 dir_ino,
3367			     const struct fscrypt_str *name,
3368			     u64 index)
3369{
3370	struct btrfs_dir_item *di;
3371
3372	/*
3373	 * We only log dir index items of a directory, so we don't need to look
3374	 * for dir item keys.
3375	 */
3376	di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3377					 index, name, -1);
3378	if (IS_ERR(di))
3379		return PTR_ERR(di);
3380	else if (!di)
3381		return 1;
3382
3383	/*
3384	 * We do not need to update the size field of the directory's
3385	 * inode item because on log replay we update the field to reflect
3386	 * all existing entries in the directory (see overwrite_item()).
3387	 */
3388	return btrfs_delete_one_dir_name(trans, log, path, di);
3389}
3390
3391/*
3392 * If both a file and directory are logged, and unlinks or renames are
3393 * mixed in, we have a few interesting corners:
3394 *
3395 * create file X in dir Y
3396 * link file X to X.link in dir Y
3397 * fsync file X
3398 * unlink file X but leave X.link
3399 * fsync dir Y
3400 *
3401 * After a crash we would expect only X.link to exist.  But file X
3402 * didn't get fsync'd again so the log has back refs for X and X.link.
3403 *
3404 * We solve this by removing directory entries and inode backrefs from the
3405 * log when a file that was logged in the current transaction is
3406 * unlinked.  Any later fsync will include the updated log entries, and
3407 * we'll be able to reconstruct the proper directory items from backrefs.
3408 *
3409 * This optimizations allows us to avoid relogging the entire inode
3410 * or the entire directory.
3411 */
3412void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3413				  struct btrfs_root *root,
3414				  const struct fscrypt_str *name,
3415				  struct btrfs_inode *dir, u64 index)
3416{
 
 
3417	struct btrfs_path *path;
3418	int ret;
 
 
 
3419
3420	ret = inode_logged(trans, dir, NULL);
3421	if (ret == 0)
3422		return;
3423	else if (ret < 0) {
3424		btrfs_set_log_full_commit(trans);
3425		return;
3426	}
3427
3428	ret = join_running_log_trans(root);
3429	if (ret)
3430		return;
3431
3432	mutex_lock(&dir->log_mutex);
3433
 
3434	path = btrfs_alloc_path();
3435	if (!path) {
3436		ret = -ENOMEM;
3437		goto out_unlock;
3438	}
3439
3440	ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3441				name, index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442	btrfs_free_path(path);
3443out_unlock:
3444	mutex_unlock(&dir->log_mutex);
3445	if (ret < 0)
3446		btrfs_set_log_full_commit(trans);
 
 
 
 
 
 
3447	btrfs_end_log_trans(root);
 
 
3448}
3449
3450/* see comments for btrfs_del_dir_entries_in_log */
3451void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3452				struct btrfs_root *root,
3453				const struct fscrypt_str *name,
3454				struct btrfs_inode *inode, u64 dirid)
3455{
3456	struct btrfs_root *log;
3457	u64 index;
3458	int ret;
3459
3460	ret = inode_logged(trans, inode, NULL);
3461	if (ret == 0)
3462		return;
3463	else if (ret < 0) {
3464		btrfs_set_log_full_commit(trans);
3465		return;
3466	}
3467
3468	ret = join_running_log_trans(root);
3469	if (ret)
3470		return;
3471	log = root->log_root;
3472	mutex_lock(&inode->log_mutex);
3473
3474	ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3475				  dirid, &index);
3476	mutex_unlock(&inode->log_mutex);
3477	if (ret < 0 && ret != -ENOENT)
3478		btrfs_set_log_full_commit(trans);
 
 
 
3479	btrfs_end_log_trans(root);
 
 
3480}
3481
3482/*
3483 * creates a range item in the log for 'dirid'.  first_offset and
3484 * last_offset tell us which parts of the key space the log should
3485 * be considered authoritative for.
3486 */
3487static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3488				       struct btrfs_root *log,
3489				       struct btrfs_path *path,
3490				       u64 dirid,
3491				       u64 first_offset, u64 last_offset)
3492{
3493	int ret;
3494	struct btrfs_key key;
3495	struct btrfs_dir_log_item *item;
3496
3497	key.objectid = dirid;
3498	key.offset = first_offset;
3499	key.type = BTRFS_DIR_LOG_INDEX_KEY;
 
 
 
3500	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3501	/*
3502	 * -EEXIST is fine and can happen sporadically when we are logging a
3503	 * directory and have concurrent insertions in the subvolume's tree for
3504	 * items from other inodes and that result in pushing off some dir items
3505	 * from one leaf to another in order to accommodate for the new items.
3506	 * This results in logging the same dir index range key.
3507	 */
3508	if (ret && ret != -EEXIST)
3509		return ret;
3510
3511	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3512			      struct btrfs_dir_log_item);
3513	if (ret == -EEXIST) {
3514		const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3515
3516		/*
3517		 * btrfs_del_dir_entries_in_log() might have been called during
3518		 * an unlink between the initial insertion of this key and the
3519		 * current update, or we might be logging a single entry deletion
3520		 * during a rename, so set the new last_offset to the max value.
3521		 */
3522		last_offset = max(last_offset, curr_end);
3523	}
3524	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3525	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3526	btrfs_release_path(path);
3527	return 0;
3528}
3529
3530static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3531				 struct btrfs_inode *inode,
3532				 struct extent_buffer *src,
3533				 struct btrfs_path *dst_path,
3534				 int start_slot,
3535				 int count)
3536{
3537	struct btrfs_root *log = inode->root->log_root;
3538	char *ins_data = NULL;
3539	struct btrfs_item_batch batch;
3540	struct extent_buffer *dst;
3541	unsigned long src_offset;
3542	unsigned long dst_offset;
3543	u64 last_index;
3544	struct btrfs_key key;
3545	u32 item_size;
3546	int ret;
3547	int i;
3548
3549	ASSERT(count > 0);
3550	batch.nr = count;
3551
3552	if (count == 1) {
3553		btrfs_item_key_to_cpu(src, &key, start_slot);
3554		item_size = btrfs_item_size(src, start_slot);
3555		batch.keys = &key;
3556		batch.data_sizes = &item_size;
3557		batch.total_data_size = item_size;
3558	} else {
3559		struct btrfs_key *ins_keys;
3560		u32 *ins_sizes;
3561
3562		ins_data = kmalloc(count * sizeof(u32) +
3563				   count * sizeof(struct btrfs_key), GFP_NOFS);
3564		if (!ins_data)
3565			return -ENOMEM;
3566
3567		ins_sizes = (u32 *)ins_data;
3568		ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3569		batch.keys = ins_keys;
3570		batch.data_sizes = ins_sizes;
3571		batch.total_data_size = 0;
3572
3573		for (i = 0; i < count; i++) {
3574			const int slot = start_slot + i;
3575
3576			btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3577			ins_sizes[i] = btrfs_item_size(src, slot);
3578			batch.total_data_size += ins_sizes[i];
3579		}
3580	}
3581
3582	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3583	if (ret)
3584		goto out;
3585
3586	dst = dst_path->nodes[0];
3587	/*
3588	 * Copy all the items in bulk, in a single copy operation. Item data is
3589	 * organized such that it's placed at the end of a leaf and from right
3590	 * to left. For example, the data for the second item ends at an offset
3591	 * that matches the offset where the data for the first item starts, the
3592	 * data for the third item ends at an offset that matches the offset
3593	 * where the data of the second items starts, and so on.
3594	 * Therefore our source and destination start offsets for copy match the
3595	 * offsets of the last items (highest slots).
3596	 */
3597	dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3598	src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3599	copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3600	btrfs_release_path(dst_path);
3601
3602	last_index = batch.keys[count - 1].offset;
3603	ASSERT(last_index > inode->last_dir_index_offset);
3604
3605	/*
3606	 * If for some unexpected reason the last item's index is not greater
3607	 * than the last index we logged, warn and force a transaction commit.
3608	 */
3609	if (WARN_ON(last_index <= inode->last_dir_index_offset))
3610		ret = BTRFS_LOG_FORCE_COMMIT;
3611	else
3612		inode->last_dir_index_offset = last_index;
3613
3614	if (btrfs_get_first_dir_index_to_log(inode) == 0)
3615		btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3616out:
3617	kfree(ins_data);
3618
3619	return ret;
3620}
3621
3622static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3623				  struct btrfs_inode *inode,
3624				  struct btrfs_path *path,
3625				  struct btrfs_path *dst_path,
3626				  struct btrfs_log_ctx *ctx,
3627				  u64 *last_old_dentry_offset)
3628{
3629	struct btrfs_root *log = inode->root->log_root;
3630	struct extent_buffer *src;
3631	const int nritems = btrfs_header_nritems(path->nodes[0]);
3632	const u64 ino = btrfs_ino(inode);
3633	bool last_found = false;
3634	int batch_start = 0;
3635	int batch_size = 0;
3636	int i;
3637
3638	/*
3639	 * We need to clone the leaf, release the read lock on it, and use the
3640	 * clone before modifying the log tree. See the comment at copy_items()
3641	 * about why we need to do this.
3642	 */
3643	src = btrfs_clone_extent_buffer(path->nodes[0]);
3644	if (!src)
3645		return -ENOMEM;
3646
3647	i = path->slots[0];
3648	btrfs_release_path(path);
3649	path->nodes[0] = src;
3650	path->slots[0] = i;
3651
3652	for (; i < nritems; i++) {
3653		struct btrfs_dir_item *di;
3654		struct btrfs_key key;
3655		int ret;
3656
3657		btrfs_item_key_to_cpu(src, &key, i);
3658
3659		if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3660			last_found = true;
3661			break;
3662		}
3663
3664		di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3665
3666		/*
3667		 * Skip ranges of items that consist only of dir item keys created
3668		 * in past transactions. However if we find a gap, we must log a
3669		 * dir index range item for that gap, so that index keys in that
3670		 * gap are deleted during log replay.
3671		 */
3672		if (btrfs_dir_transid(src, di) < trans->transid) {
3673			if (key.offset > *last_old_dentry_offset + 1) {
3674				ret = insert_dir_log_key(trans, log, dst_path,
3675						 ino, *last_old_dentry_offset + 1,
3676						 key.offset - 1);
3677				if (ret < 0)
3678					return ret;
3679			}
3680
3681			*last_old_dentry_offset = key.offset;
3682			continue;
3683		}
3684
3685		/* If we logged this dir index item before, we can skip it. */
3686		if (key.offset <= inode->last_dir_index_offset)
3687			continue;
3688
3689		/*
3690		 * We must make sure that when we log a directory entry, the
3691		 * corresponding inode, after log replay, has a matching link
3692		 * count. For example:
3693		 *
3694		 * touch foo
3695		 * mkdir mydir
3696		 * sync
3697		 * ln foo mydir/bar
3698		 * xfs_io -c "fsync" mydir
3699		 * <crash>
3700		 * <mount fs and log replay>
3701		 *
3702		 * Would result in a fsync log that when replayed, our file inode
3703		 * would have a link count of 1, but we get two directory entries
3704		 * pointing to the same inode. After removing one of the names,
3705		 * it would not be possible to remove the other name, which
3706		 * resulted always in stale file handle errors, and would not be
3707		 * possible to rmdir the parent directory, since its i_size could
3708		 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3709		 * resulting in -ENOTEMPTY errors.
3710		 */
3711		if (!ctx->log_new_dentries) {
3712			struct btrfs_key di_key;
3713
3714			btrfs_dir_item_key_to_cpu(src, di, &di_key);
3715			if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3716				ctx->log_new_dentries = true;
3717		}
3718
3719		if (batch_size == 0)
3720			batch_start = i;
3721		batch_size++;
3722	}
3723
3724	if (batch_size > 0) {
3725		int ret;
3726
3727		ret = flush_dir_items_batch(trans, inode, src, dst_path,
3728					    batch_start, batch_size);
3729		if (ret < 0)
3730			return ret;
3731	}
3732
3733	return last_found ? 1 : 0;
3734}
3735
3736/*
3737 * log all the items included in the current transaction for a given
3738 * directory.  This also creates the range items in the log tree required
3739 * to replay anything deleted before the fsync
3740 */
3741static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3742			  struct btrfs_inode *inode,
3743			  struct btrfs_path *path,
3744			  struct btrfs_path *dst_path,
3745			  struct btrfs_log_ctx *ctx,
3746			  u64 min_offset, u64 *last_offset_ret)
3747{
3748	struct btrfs_key min_key;
3749	struct btrfs_root *root = inode->root;
3750	struct btrfs_root *log = root->log_root;
 
 
3751	int ret;
3752	u64 last_old_dentry_offset = min_offset - 1;
 
 
3753	u64 last_offset = (u64)-1;
3754	u64 ino = btrfs_ino(inode);
3755
 
 
3756	min_key.objectid = ino;
3757	min_key.type = BTRFS_DIR_INDEX_KEY;
3758	min_key.offset = min_offset;
3759
3760	ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3761
3762	/*
3763	 * we didn't find anything from this transaction, see if there
3764	 * is anything at all
3765	 */
3766	if (ret != 0 || min_key.objectid != ino ||
3767	    min_key.type != BTRFS_DIR_INDEX_KEY) {
3768		min_key.objectid = ino;
3769		min_key.type = BTRFS_DIR_INDEX_KEY;
3770		min_key.offset = (u64)-1;
3771		btrfs_release_path(path);
3772		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3773		if (ret < 0) {
3774			btrfs_release_path(path);
3775			return ret;
3776		}
3777		ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3778
3779		/* if ret == 0 there are items for this type,
3780		 * create a range to tell us the last key of this type.
3781		 * otherwise, there are no items in this directory after
3782		 * *min_offset, and we create a range to indicate that.
3783		 */
3784		if (ret == 0) {
3785			struct btrfs_key tmp;
3786
3787			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3788					      path->slots[0]);
3789			if (tmp.type == BTRFS_DIR_INDEX_KEY)
3790				last_old_dentry_offset = tmp.offset;
3791		} else if (ret > 0) {
3792			ret = 0;
3793		}
3794
3795		goto done;
3796	}
3797
3798	/* go backward to find any previous key */
3799	ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3800	if (ret == 0) {
3801		struct btrfs_key tmp;
3802
3803		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3804		/*
3805		 * The dir index key before the first one we found that needs to
3806		 * be logged might be in a previous leaf, and there might be a
3807		 * gap between these keys, meaning that we had deletions that
3808		 * happened. So the key range item we log (key type
3809		 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3810		 * previous key's offset plus 1, so that those deletes are replayed.
3811		 */
3812		if (tmp.type == BTRFS_DIR_INDEX_KEY)
3813			last_old_dentry_offset = tmp.offset;
3814	} else if (ret < 0) {
3815		goto done;
3816	}
3817
3818	btrfs_release_path(path);
3819
3820	/*
3821	 * Find the first key from this transaction again or the one we were at
3822	 * in the loop below in case we had to reschedule. We may be logging the
3823	 * directory without holding its VFS lock, which happen when logging new
3824	 * dentries (through log_new_dir_dentries()) or in some cases when we
3825	 * need to log the parent directory of an inode. This means a dir index
3826	 * key might be deleted from the inode's root, and therefore we may not
3827	 * find it anymore. If we can't find it, just move to the next key. We
3828	 * can not bail out and ignore, because if we do that we will simply
3829	 * not log dir index keys that come after the one that was just deleted
3830	 * and we can end up logging a dir index range that ends at (u64)-1
3831	 * (@last_offset is initialized to that), resulting in removing dir
3832	 * entries we should not remove at log replay time.
3833	 */
3834search:
3835	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3836	if (ret > 0) {
3837		ret = btrfs_next_item(root, path);
3838		if (ret > 0) {
3839			/* There are no more keys in the inode's root. */
3840			ret = 0;
3841			goto done;
3842		}
3843	}
3844	if (ret < 0)
3845		goto done;
3846
3847	/*
3848	 * we have a block from this transaction, log every item in it
3849	 * from our directory
3850	 */
3851	while (1) {
3852		ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3853					     &last_old_dentry_offset);
3854		if (ret != 0) {
3855			if (ret > 0)
3856				ret = 0;
3857			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3858		}
3859		path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3860
3861		/*
3862		 * look ahead to the next item and see if it is also
3863		 * from this directory and from this transaction
3864		 */
3865		ret = btrfs_next_leaf(root, path);
3866		if (ret) {
3867			if (ret == 1) {
3868				last_offset = (u64)-1;
3869				ret = 0;
3870			}
3871			goto done;
3872		}
3873		btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3874		if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3875			last_offset = (u64)-1;
3876			goto done;
3877		}
3878		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3879			/*
3880			 * The next leaf was not changed in the current transaction
3881			 * and has at least one dir index key.
3882			 * We check for the next key because there might have been
3883			 * one or more deletions between the last key we logged and
3884			 * that next key. So the key range item we log (key type
3885			 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3886			 * offset minus 1, so that those deletes are replayed.
3887			 */
3888			last_offset = min_key.offset - 1;
3889			goto done;
3890		}
3891		if (need_resched()) {
3892			btrfs_release_path(path);
3893			cond_resched();
3894			goto search;
3895		}
3896	}
3897done:
3898	btrfs_release_path(path);
3899	btrfs_release_path(dst_path);
3900
3901	if (ret == 0) {
3902		*last_offset_ret = last_offset;
3903		/*
3904		 * In case the leaf was changed in the current transaction but
3905		 * all its dir items are from a past transaction, the last item
3906		 * in the leaf is a dir item and there's no gap between that last
3907		 * dir item and the first one on the next leaf (which did not
3908		 * change in the current transaction), then we don't need to log
3909		 * a range, last_old_dentry_offset is == to last_offset.
3910		 */
3911		ASSERT(last_old_dentry_offset <= last_offset);
3912		if (last_old_dentry_offset < last_offset)
3913			ret = insert_dir_log_key(trans, log, path, ino,
3914						 last_old_dentry_offset + 1,
3915						 last_offset);
3916	}
3917
3918	return ret;
3919}
3920
3921/*
3922 * If the inode was logged before and it was evicted, then its
3923 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
3924 * key offset. If that's the case, search for it and update the inode. This
3925 * is to avoid lookups in the log tree every time we try to insert a dir index
3926 * key from a leaf changed in the current transaction, and to allow us to always
3927 * do batch insertions of dir index keys.
3928 */
3929static int update_last_dir_index_offset(struct btrfs_inode *inode,
3930					struct btrfs_path *path,
3931					const struct btrfs_log_ctx *ctx)
3932{
3933	const u64 ino = btrfs_ino(inode);
3934	struct btrfs_key key;
3935	int ret;
3936
3937	lockdep_assert_held(&inode->log_mutex);
3938
3939	if (inode->last_dir_index_offset != (u64)-1)
3940		return 0;
3941
3942	if (!ctx->logged_before) {
3943		inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3944		return 0;
3945	}
3946
3947	key.objectid = ino;
3948	key.type = BTRFS_DIR_INDEX_KEY;
3949	key.offset = (u64)-1;
3950
3951	ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3952	/*
3953	 * An error happened or we actually have an index key with an offset
3954	 * value of (u64)-1. Bail out, we're done.
3955	 */
3956	if (ret <= 0)
3957		goto out;
3958
3959	ret = 0;
3960	inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
3961
3962	/*
3963	 * No dir index items, bail out and leave last_dir_index_offset with
3964	 * the value right before the first valid index value.
3965	 */
3966	if (path->slots[0] == 0)
3967		goto out;
3968
3969	/*
3970	 * btrfs_search_slot() left us at one slot beyond the slot with the last
3971	 * index key, or beyond the last key of the directory that is not an
3972	 * index key. If we have an index key before, set last_dir_index_offset
3973	 * to its offset value, otherwise leave it with a value right before the
3974	 * first valid index value, as it means we have an empty directory.
3975	 */
3976	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3977	if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
3978		inode->last_dir_index_offset = key.offset;
3979
3980out:
3981	btrfs_release_path(path);
3982
3983	return ret;
3984}
3985
3986/*
3987 * logging directories is very similar to logging inodes, We find all the items
3988 * from the current transaction and write them to the log.
3989 *
3990 * The recovery code scans the directory in the subvolume, and if it finds a
3991 * key in the range logged that is not present in the log tree, then it means
3992 * that dir entry was unlinked during the transaction.
3993 *
3994 * In order for that scan to work, we must include one key smaller than
3995 * the smallest logged by this transaction and one key larger than the largest
3996 * key logged by this transaction.
3997 */
3998static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3999			  struct btrfs_inode *inode,
4000			  struct btrfs_path *path,
4001			  struct btrfs_path *dst_path,
4002			  struct btrfs_log_ctx *ctx)
4003{
4004	u64 min_key;
4005	u64 max_key;
4006	int ret;
 
4007
4008	ret = update_last_dir_index_offset(inode, path, ctx);
4009	if (ret)
4010		return ret;
4011
4012	min_key = BTRFS_DIR_START_INDEX;
4013	max_key = 0;
4014
4015	while (1) {
4016		ret = log_dir_items(trans, inode, path, dst_path,
4017				ctx, min_key, &max_key);
4018		if (ret)
4019			return ret;
4020		if (max_key == (u64)-1)
4021			break;
4022		min_key = max_key + 1;
4023	}
4024
 
 
 
 
4025	return 0;
4026}
4027
4028/*
4029 * a helper function to drop items from the log before we relog an
4030 * inode.  max_key_type indicates the highest item type to remove.
4031 * This cannot be run for file data extents because it does not
4032 * free the extents they point to.
4033 */
4034static int drop_inode_items(struct btrfs_trans_handle *trans,
4035				  struct btrfs_root *log,
4036				  struct btrfs_path *path,
4037				  struct btrfs_inode *inode,
4038				  int max_key_type)
4039{
4040	int ret;
4041	struct btrfs_key key;
4042	struct btrfs_key found_key;
4043	int start_slot;
4044
4045	key.objectid = btrfs_ino(inode);
4046	key.type = max_key_type;
4047	key.offset = (u64)-1;
4048
4049	while (1) {
4050		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4051		if (ret < 0) {
 
 
 
 
4052			break;
4053		} else if (ret > 0) {
4054			if (path->slots[0] == 0)
4055				break;
4056			path->slots[0]--;
4057		}
4058
 
4059		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4060				      path->slots[0]);
4061
4062		if (found_key.objectid != key.objectid)
4063			break;
4064
4065		found_key.offset = 0;
4066		found_key.type = 0;
4067		ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4068		if (ret < 0)
4069			break;
4070
4071		ret = btrfs_del_items(trans, log, path, start_slot,
4072				      path->slots[0] - start_slot + 1);
4073		/*
4074		 * If start slot isn't 0 then we don't need to re-search, we've
4075		 * found the last guy with the objectid in this tree.
4076		 */
4077		if (ret || start_slot != 0)
4078			break;
4079		btrfs_release_path(path);
4080	}
4081	btrfs_release_path(path);
4082	if (ret > 0)
4083		ret = 0;
4084	return ret;
4085}
4086
4087static int truncate_inode_items(struct btrfs_trans_handle *trans,
4088				struct btrfs_root *log_root,
4089				struct btrfs_inode *inode,
4090				u64 new_size, u32 min_type)
4091{
4092	struct btrfs_truncate_control control = {
4093		.new_size = new_size,
4094		.ino = btrfs_ino(inode),
4095		.min_type = min_type,
4096		.skip_ref_updates = true,
4097	};
4098
4099	return btrfs_truncate_inode_items(trans, log_root, &control);
4100}
4101
4102static void fill_inode_item(struct btrfs_trans_handle *trans,
4103			    struct extent_buffer *leaf,
4104			    struct btrfs_inode_item *item,
4105			    struct inode *inode, int log_inode_only,
4106			    u64 logged_isize)
4107{
4108	struct btrfs_map_token token;
4109	u64 flags;
4110
4111	btrfs_init_map_token(&token, leaf);
4112
4113	if (log_inode_only) {
4114		/* set the generation to zero so the recover code
4115		 * can tell the difference between an logging
4116		 * just to say 'this inode exists' and a logging
4117		 * to say 'update this inode with these values'
4118		 */
4119		btrfs_set_token_inode_generation(&token, item, 0);
4120		btrfs_set_token_inode_size(&token, item, logged_isize);
4121	} else {
4122		btrfs_set_token_inode_generation(&token, item,
4123						 BTRFS_I(inode)->generation);
4124		btrfs_set_token_inode_size(&token, item, inode->i_size);
4125	}
4126
4127	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4128	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4129	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4130	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4131
4132	btrfs_set_token_timespec_sec(&token, &item->atime,
4133				     inode_get_atime_sec(inode));
4134	btrfs_set_token_timespec_nsec(&token, &item->atime,
4135				      inode_get_atime_nsec(inode));
4136
4137	btrfs_set_token_timespec_sec(&token, &item->mtime,
4138				     inode_get_mtime_sec(inode));
4139	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4140				      inode_get_mtime_nsec(inode));
4141
4142	btrfs_set_token_timespec_sec(&token, &item->ctime,
4143				     inode_get_ctime_sec(inode));
4144	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4145				      inode_get_ctime_nsec(inode));
4146
4147	/*
4148	 * We do not need to set the nbytes field, in fact during a fast fsync
4149	 * its value may not even be correct, since a fast fsync does not wait
4150	 * for ordered extent completion, which is where we update nbytes, it
4151	 * only waits for writeback to complete. During log replay as we find
4152	 * file extent items and replay them, we adjust the nbytes field of the
4153	 * inode item in subvolume tree as needed (see overwrite_item()).
4154	 */
4155
4156	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4157	btrfs_set_token_inode_transid(&token, item, trans->transid);
4158	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4159	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4160					  BTRFS_I(inode)->ro_flags);
4161	btrfs_set_token_inode_flags(&token, item, flags);
4162	btrfs_set_token_inode_block_group(&token, item, 0);
4163}
4164
4165static int log_inode_item(struct btrfs_trans_handle *trans,
4166			  struct btrfs_root *log, struct btrfs_path *path,
4167			  struct btrfs_inode *inode, bool inode_item_dropped)
4168{
4169	struct btrfs_inode_item *inode_item;
4170	int ret;
4171
4172	/*
4173	 * If we are doing a fast fsync and the inode was logged before in the
4174	 * current transaction, then we know the inode was previously logged and
4175	 * it exists in the log tree. For performance reasons, in this case use
4176	 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4177	 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4178	 * contention in case there are concurrent fsyncs for other inodes of the
4179	 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4180	 * already exists can also result in unnecessarily splitting a leaf.
4181	 */
4182	if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4183		ret = btrfs_search_slot(trans, log, &inode->location, path, 0, 1);
4184		ASSERT(ret <= 0);
4185		if (ret > 0)
4186			ret = -ENOENT;
4187	} else {
4188		/*
4189		 * This means it is the first fsync in the current transaction,
4190		 * so the inode item is not in the log and we need to insert it.
4191		 * We can never get -EEXIST because we are only called for a fast
4192		 * fsync and in case an inode eviction happens after the inode was
4193		 * logged before in the current transaction, when we load again
4194		 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4195		 * flags and set ->logged_trans to 0.
4196		 */
4197		ret = btrfs_insert_empty_item(trans, log, path, &inode->location,
4198					      sizeof(*inode_item));
4199		ASSERT(ret != -EEXIST);
4200	}
4201	if (ret)
4202		return ret;
4203	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4204				    struct btrfs_inode_item);
4205	fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4206			0, 0);
4207	btrfs_release_path(path);
4208	return 0;
4209}
4210
4211static int log_csums(struct btrfs_trans_handle *trans,
4212		     struct btrfs_inode *inode,
4213		     struct btrfs_root *log_root,
4214		     struct btrfs_ordered_sum *sums)
4215{
4216	const u64 lock_end = sums->logical + sums->len - 1;
4217	struct extent_state *cached_state = NULL;
4218	int ret;
4219
4220	/*
4221	 * If this inode was not used for reflink operations in the current
4222	 * transaction with new extents, then do the fast path, no need to
4223	 * worry about logging checksum items with overlapping ranges.
4224	 */
4225	if (inode->last_reflink_trans < trans->transid)
4226		return btrfs_csum_file_blocks(trans, log_root, sums);
4227
4228	/*
4229	 * Serialize logging for checksums. This is to avoid racing with the
4230	 * same checksum being logged by another task that is logging another
4231	 * file which happens to refer to the same extent as well. Such races
4232	 * can leave checksum items in the log with overlapping ranges.
4233	 */
4234	ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4235			  &cached_state);
4236	if (ret)
4237		return ret;
4238	/*
4239	 * Due to extent cloning, we might have logged a csum item that covers a
4240	 * subrange of a cloned extent, and later we can end up logging a csum
4241	 * item for a larger subrange of the same extent or the entire range.
4242	 * This would leave csum items in the log tree that cover the same range
4243	 * and break the searches for checksums in the log tree, resulting in
4244	 * some checksums missing in the fs/subvolume tree. So just delete (or
4245	 * trim and adjust) any existing csum items in the log for this range.
4246	 */
4247	ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4248	if (!ret)
4249		ret = btrfs_csum_file_blocks(trans, log_root, sums);
4250
4251	unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4252		      &cached_state);
4253
4254	return ret;
4255}
4256
4257static noinline int copy_items(struct btrfs_trans_handle *trans,
4258			       struct btrfs_inode *inode,
4259			       struct btrfs_path *dst_path,
4260			       struct btrfs_path *src_path,
4261			       int start_slot, int nr, int inode_only,
4262			       u64 logged_isize)
4263{
 
 
 
4264	struct btrfs_root *log = inode->root->log_root;
4265	struct btrfs_file_extent_item *extent;
4266	struct extent_buffer *src;
4267	int ret = 0;
 
4268	struct btrfs_key *ins_keys;
4269	u32 *ins_sizes;
4270	struct btrfs_item_batch batch;
4271	char *ins_data;
4272	int i;
4273	int dst_index;
4274	const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4275	const u64 i_size = i_size_read(&inode->vfs_inode);
4276
4277	/*
4278	 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4279	 * use the clone. This is because otherwise we would be changing the log
4280	 * tree, to insert items from the subvolume tree or insert csum items,
4281	 * while holding a read lock on a leaf from the subvolume tree, which
4282	 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4283	 *
4284	 * 1) Modifying the log tree triggers an extent buffer allocation while
4285	 *    holding a write lock on a parent extent buffer from the log tree.
4286	 *    Allocating the pages for an extent buffer, or the extent buffer
4287	 *    struct, can trigger inode eviction and finally the inode eviction
4288	 *    will trigger a release/remove of a delayed node, which requires
4289	 *    taking the delayed node's mutex;
4290	 *
4291	 * 2) Allocating a metadata extent for a log tree can trigger the async
4292	 *    reclaim thread and make us wait for it to release enough space and
4293	 *    unblock our reservation ticket. The reclaim thread can start
4294	 *    flushing delayed items, and that in turn results in the need to
4295	 *    lock delayed node mutexes and in the need to write lock extent
4296	 *    buffers of a subvolume tree - all this while holding a write lock
4297	 *    on the parent extent buffer in the log tree.
4298	 *
4299	 * So one task in scenario 1) running in parallel with another task in
4300	 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4301	 * node mutex while having a read lock on a leaf from the subvolume,
4302	 * while the other is holding the delayed node's mutex and wants to
4303	 * write lock the same subvolume leaf for flushing delayed items.
4304	 */
4305	src = btrfs_clone_extent_buffer(src_path->nodes[0]);
4306	if (!src)
4307		return -ENOMEM;
4308
4309	i = src_path->slots[0];
4310	btrfs_release_path(src_path);
4311	src_path->nodes[0] = src;
4312	src_path->slots[0] = i;
4313
4314	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4315			   nr * sizeof(u32), GFP_NOFS);
4316	if (!ins_data)
4317		return -ENOMEM;
4318
4319	ins_sizes = (u32 *)ins_data;
4320	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4321	batch.keys = ins_keys;
4322	batch.data_sizes = ins_sizes;
4323	batch.total_data_size = 0;
4324	batch.nr = 0;
4325
4326	dst_index = 0;
4327	for (i = 0; i < nr; i++) {
4328		const int src_slot = start_slot + i;
4329		struct btrfs_root *csum_root;
4330		struct btrfs_ordered_sum *sums;
4331		struct btrfs_ordered_sum *sums_next;
4332		LIST_HEAD(ordered_sums);
4333		u64 disk_bytenr;
4334		u64 disk_num_bytes;
4335		u64 extent_offset;
4336		u64 extent_num_bytes;
4337		bool is_old_extent;
4338
4339		btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4340
4341		if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4342			goto add_to_batch;
4343
4344		extent = btrfs_item_ptr(src, src_slot,
4345					struct btrfs_file_extent_item);
4346
4347		is_old_extent = (btrfs_file_extent_generation(src, extent) <
4348				 trans->transid);
4349
4350		/*
4351		 * Don't copy extents from past generations. That would make us
4352		 * log a lot more metadata for common cases like doing only a
4353		 * few random writes into a file and then fsync it for the first
4354		 * time or after the full sync flag is set on the inode. We can
4355		 * get leaves full of extent items, most of which are from past
4356		 * generations, so we can skip them - as long as the inode has
4357		 * not been the target of a reflink operation in this transaction,
4358		 * as in that case it might have had file extent items with old
4359		 * generations copied into it. We also must always log prealloc
4360		 * extents that start at or beyond eof, otherwise we would lose
4361		 * them on log replay.
4362		 */
4363		if (is_old_extent &&
4364		    ins_keys[dst_index].offset < i_size &&
4365		    inode->last_reflink_trans < trans->transid)
4366			continue;
4367
4368		if (skip_csum)
4369			goto add_to_batch;
4370
4371		/* Only regular extents have checksums. */
4372		if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4373			goto add_to_batch;
4374
4375		/*
4376		 * If it's an extent created in a past transaction, then its
4377		 * checksums are already accessible from the committed csum tree,
4378		 * no need to log them.
4379		 */
4380		if (is_old_extent)
4381			goto add_to_batch;
4382
4383		disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4384		/* If it's an explicit hole, there are no checksums. */
4385		if (disk_bytenr == 0)
4386			goto add_to_batch;
4387
4388		disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4389
4390		if (btrfs_file_extent_compression(src, extent)) {
4391			extent_offset = 0;
4392			extent_num_bytes = disk_num_bytes;
4393		} else {
4394			extent_offset = btrfs_file_extent_offset(src, extent);
4395			extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4396		}
4397
4398		csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4399		disk_bytenr += extent_offset;
4400		ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4401					      disk_bytenr + extent_num_bytes - 1,
4402					      &ordered_sums, 0, false);
4403		if (ret)
4404			goto out;
4405
4406		list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4407			if (!ret)
4408				ret = log_csums(trans, inode, log, sums);
4409			list_del(&sums->list);
4410			kfree(sums);
4411		}
4412		if (ret)
4413			goto out;
4414
4415add_to_batch:
4416		ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4417		batch.total_data_size += ins_sizes[dst_index];
4418		batch.nr++;
4419		dst_index++;
4420	}
4421
4422	/*
4423	 * We have a leaf full of old extent items that don't need to be logged,
4424	 * so we don't need to do anything.
4425	 */
4426	if (batch.nr == 0)
4427		goto out;
4428
4429	ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4430	if (ret)
4431		goto out;
4432
4433	dst_index = 0;
4434	for (i = 0; i < nr; i++) {
4435		const int src_slot = start_slot + i;
4436		const int dst_slot = dst_path->slots[0] + dst_index;
4437		struct btrfs_key key;
4438		unsigned long src_offset;
4439		unsigned long dst_offset;
4440
4441		/*
4442		 * We're done, all the remaining items in the source leaf
4443		 * correspond to old file extent items.
4444		 */
4445		if (dst_index >= batch.nr)
4446			break;
4447
4448		btrfs_item_key_to_cpu(src, &key, src_slot);
4449
4450		if (key.type != BTRFS_EXTENT_DATA_KEY)
4451			goto copy_item;
4452
4453		extent = btrfs_item_ptr(src, src_slot,
4454					struct btrfs_file_extent_item);
4455
4456		/* See the comment in the previous loop, same logic. */
4457		if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4458		    key.offset < i_size &&
4459		    inode->last_reflink_trans < trans->transid)
4460			continue;
4461
4462copy_item:
4463		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4464		src_offset = btrfs_item_ptr_offset(src, src_slot);
4465
4466		if (key.type == BTRFS_INODE_ITEM_KEY) {
4467			struct btrfs_inode_item *inode_item;
4468
4469			inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4470						    struct btrfs_inode_item);
4471			fill_inode_item(trans, dst_path->nodes[0], inode_item,
4472					&inode->vfs_inode,
4473					inode_only == LOG_INODE_EXISTS,
4474					logged_isize);
4475		} else {
4476			copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4477					   src_offset, ins_sizes[dst_index]);
4478		}
4479
4480		dst_index++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4481	}
4482
4483	btrfs_mark_buffer_dirty(trans, dst_path->nodes[0]);
4484	btrfs_release_path(dst_path);
4485out:
4486	kfree(ins_data);
4487
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4488	return ret;
4489}
4490
4491static int extent_cmp(void *priv, const struct list_head *a,
4492		      const struct list_head *b)
4493{
4494	const struct extent_map *em1, *em2;
4495
4496	em1 = list_entry(a, struct extent_map, list);
4497	em2 = list_entry(b, struct extent_map, list);
4498
4499	if (em1->start < em2->start)
4500		return -1;
4501	else if (em1->start > em2->start)
4502		return 1;
4503	return 0;
4504}
4505
4506static int log_extent_csums(struct btrfs_trans_handle *trans,
4507			    struct btrfs_inode *inode,
4508			    struct btrfs_root *log_root,
4509			    const struct extent_map *em,
4510			    struct btrfs_log_ctx *ctx)
4511{
4512	struct btrfs_ordered_extent *ordered;
4513	struct btrfs_root *csum_root;
4514	u64 csum_offset;
4515	u64 csum_len;
4516	u64 mod_start = em->mod_start;
4517	u64 mod_len = em->mod_len;
4518	LIST_HEAD(ordered_sums);
4519	int ret = 0;
4520
4521	if (inode->flags & BTRFS_INODE_NODATASUM ||
4522	    (em->flags & EXTENT_FLAG_PREALLOC) ||
4523	    em->block_start == EXTENT_MAP_HOLE)
4524		return 0;
4525
4526	list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4527		const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4528		const u64 mod_end = mod_start + mod_len;
4529		struct btrfs_ordered_sum *sums;
4530
4531		if (mod_len == 0)
4532			break;
4533
4534		if (ordered_end <= mod_start)
4535			continue;
4536		if (mod_end <= ordered->file_offset)
4537			break;
4538
4539		/*
4540		 * We are going to copy all the csums on this ordered extent, so
4541		 * go ahead and adjust mod_start and mod_len in case this ordered
4542		 * extent has already been logged.
4543		 */
4544		if (ordered->file_offset > mod_start) {
4545			if (ordered_end >= mod_end)
4546				mod_len = ordered->file_offset - mod_start;
4547			/*
4548			 * If we have this case
4549			 *
4550			 * |--------- logged extent ---------|
4551			 *       |----- ordered extent ----|
4552			 *
4553			 * Just don't mess with mod_start and mod_len, we'll
4554			 * just end up logging more csums than we need and it
4555			 * will be ok.
4556			 */
4557		} else {
4558			if (ordered_end < mod_end) {
4559				mod_len = mod_end - ordered_end;
4560				mod_start = ordered_end;
4561			} else {
4562				mod_len = 0;
4563			}
4564		}
4565
4566		/*
4567		 * To keep us from looping for the above case of an ordered
4568		 * extent that falls inside of the logged extent.
4569		 */
4570		if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4571			continue;
4572
4573		list_for_each_entry(sums, &ordered->list, list) {
4574			ret = log_csums(trans, inode, log_root, sums);
4575			if (ret)
4576				return ret;
4577		}
4578	}
4579
4580	/* We're done, found all csums in the ordered extents. */
4581	if (mod_len == 0)
4582		return 0;
4583
4584	/* If we're compressed we have to save the entire range of csums. */
4585	if (extent_map_is_compressed(em)) {
4586		csum_offset = 0;
4587		csum_len = max(em->block_len, em->orig_block_len);
4588	} else {
4589		csum_offset = mod_start - em->start;
4590		csum_len = mod_len;
4591	}
4592
4593	/* block start is already adjusted for the file extent offset. */
4594	csum_root = btrfs_csum_root(trans->fs_info, em->block_start);
4595	ret = btrfs_lookup_csums_list(csum_root, em->block_start + csum_offset,
4596				      em->block_start + csum_offset +
4597				      csum_len - 1, &ordered_sums, 0, false);
4598	if (ret)
4599		return ret;
4600
4601	while (!list_empty(&ordered_sums)) {
4602		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4603						   struct btrfs_ordered_sum,
4604						   list);
4605		if (!ret)
4606			ret = log_csums(trans, inode, log_root, sums);
4607		list_del(&sums->list);
4608		kfree(sums);
4609	}
4610
4611	return ret;
4612}
4613
4614static int log_one_extent(struct btrfs_trans_handle *trans,
4615			  struct btrfs_inode *inode,
4616			  const struct extent_map *em,
4617			  struct btrfs_path *path,
4618			  struct btrfs_log_ctx *ctx)
4619{
4620	struct btrfs_drop_extents_args drop_args = { 0 };
4621	struct btrfs_root *log = inode->root->log_root;
4622	struct btrfs_file_extent_item fi = { 0 };
4623	struct extent_buffer *leaf;
 
4624	struct btrfs_key key;
4625	enum btrfs_compression_type compress_type;
4626	u64 extent_offset = em->start - em->orig_start;
4627	u64 block_len;
4628	int ret;
 
4629
4630	btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4631	if (em->flags & EXTENT_FLAG_PREALLOC)
4632		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4633	else
4634		btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4635
4636	block_len = max(em->block_len, em->orig_block_len);
4637	compress_type = extent_map_compression(em);
4638	if (compress_type != BTRFS_COMPRESS_NONE) {
4639		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start);
4640		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4641	} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4642		btrfs_set_stack_file_extent_disk_bytenr(&fi, em->block_start -
4643							extent_offset);
4644		btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4645	}
4646
4647	btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4648	btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4649	btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4650	btrfs_set_stack_file_extent_compression(&fi, compress_type);
4651
4652	ret = log_extent_csums(trans, inode, log, em, ctx);
4653	if (ret)
4654		return ret;
4655
4656	/*
4657	 * If this is the first time we are logging the inode in the current
4658	 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4659	 * because it does a deletion search, which always acquires write locks
4660	 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4661	 * but also adds significant contention in a log tree, since log trees
4662	 * are small, with a root at level 2 or 3 at most, due to their short
4663	 * life span.
4664	 */
4665	if (ctx->logged_before) {
4666		drop_args.path = path;
4667		drop_args.start = em->start;
4668		drop_args.end = em->start + em->len;
4669		drop_args.replace_extent = true;
4670		drop_args.extent_item_size = sizeof(fi);
4671		ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4672		if (ret)
4673			return ret;
4674	}
4675
4676	if (!drop_args.extent_inserted) {
4677		key.objectid = btrfs_ino(inode);
4678		key.type = BTRFS_EXTENT_DATA_KEY;
4679		key.offset = em->start;
4680
4681		ret = btrfs_insert_empty_item(trans, log, path, &key,
4682					      sizeof(fi));
4683		if (ret)
4684			return ret;
4685	}
4686	leaf = path->nodes[0];
4687	write_extent_buffer(leaf, &fi,
4688			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4689			    sizeof(fi));
4690	btrfs_mark_buffer_dirty(trans, leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4691
4692	btrfs_release_path(path);
4693
4694	return ret;
4695}
4696
4697/*
4698 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4699 * lose them after doing a full/fast fsync and replaying the log. We scan the
4700 * subvolume's root instead of iterating the inode's extent map tree because
4701 * otherwise we can log incorrect extent items based on extent map conversion.
4702 * That can happen due to the fact that extent maps are merged when they
4703 * are not in the extent map tree's list of modified extents.
4704 */
4705static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4706				      struct btrfs_inode *inode,
4707				      struct btrfs_path *path)
4708{
4709	struct btrfs_root *root = inode->root;
4710	struct btrfs_key key;
4711	const u64 i_size = i_size_read(&inode->vfs_inode);
4712	const u64 ino = btrfs_ino(inode);
4713	struct btrfs_path *dst_path = NULL;
4714	bool dropped_extents = false;
4715	u64 truncate_offset = i_size;
4716	struct extent_buffer *leaf;
4717	int slot;
4718	int ins_nr = 0;
4719	int start_slot = 0;
4720	int ret;
4721
4722	if (!(inode->flags & BTRFS_INODE_PREALLOC))
4723		return 0;
4724
4725	key.objectid = ino;
4726	key.type = BTRFS_EXTENT_DATA_KEY;
4727	key.offset = i_size;
4728	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4729	if (ret < 0)
4730		goto out;
4731
4732	/*
4733	 * We must check if there is a prealloc extent that starts before the
4734	 * i_size and crosses the i_size boundary. This is to ensure later we
4735	 * truncate down to the end of that extent and not to the i_size, as
4736	 * otherwise we end up losing part of the prealloc extent after a log
4737	 * replay and with an implicit hole if there is another prealloc extent
4738	 * that starts at an offset beyond i_size.
4739	 */
4740	ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4741	if (ret < 0)
4742		goto out;
4743
4744	if (ret == 0) {
4745		struct btrfs_file_extent_item *ei;
4746
4747		leaf = path->nodes[0];
4748		slot = path->slots[0];
4749		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4750
4751		if (btrfs_file_extent_type(leaf, ei) ==
4752		    BTRFS_FILE_EXTENT_PREALLOC) {
4753			u64 extent_end;
4754
4755			btrfs_item_key_to_cpu(leaf, &key, slot);
4756			extent_end = key.offset +
4757				btrfs_file_extent_num_bytes(leaf, ei);
4758
4759			if (extent_end > i_size)
4760				truncate_offset = extent_end;
4761		}
4762	} else {
4763		ret = 0;
4764	}
4765
4766	while (true) {
4767		leaf = path->nodes[0];
4768		slot = path->slots[0];
4769
4770		if (slot >= btrfs_header_nritems(leaf)) {
4771			if (ins_nr > 0) {
4772				ret = copy_items(trans, inode, dst_path, path,
4773						 start_slot, ins_nr, 1, 0);
4774				if (ret < 0)
4775					goto out;
4776				ins_nr = 0;
4777			}
4778			ret = btrfs_next_leaf(root, path);
4779			if (ret < 0)
4780				goto out;
4781			if (ret > 0) {
4782				ret = 0;
4783				break;
4784			}
4785			continue;
4786		}
4787
4788		btrfs_item_key_to_cpu(leaf, &key, slot);
4789		if (key.objectid > ino)
4790			break;
4791		if (WARN_ON_ONCE(key.objectid < ino) ||
4792		    key.type < BTRFS_EXTENT_DATA_KEY ||
4793		    key.offset < i_size) {
4794			path->slots[0]++;
4795			continue;
4796		}
4797		if (!dropped_extents) {
4798			/*
4799			 * Avoid logging extent items logged in past fsync calls
4800			 * and leading to duplicate keys in the log tree.
4801			 */
4802			ret = truncate_inode_items(trans, root->log_root, inode,
4803						   truncate_offset,
4804						   BTRFS_EXTENT_DATA_KEY);
 
 
 
 
4805			if (ret)
4806				goto out;
4807			dropped_extents = true;
4808		}
4809		if (ins_nr == 0)
4810			start_slot = slot;
4811		ins_nr++;
4812		path->slots[0]++;
4813		if (!dst_path) {
4814			dst_path = btrfs_alloc_path();
4815			if (!dst_path) {
4816				ret = -ENOMEM;
4817				goto out;
4818			}
4819		}
4820	}
4821	if (ins_nr > 0)
4822		ret = copy_items(trans, inode, dst_path, path,
4823				 start_slot, ins_nr, 1, 0);
4824out:
4825	btrfs_release_path(path);
4826	btrfs_free_path(dst_path);
4827	return ret;
4828}
4829
4830static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
 
4831				     struct btrfs_inode *inode,
4832				     struct btrfs_path *path,
4833				     struct btrfs_log_ctx *ctx)
 
 
4834{
4835	struct btrfs_ordered_extent *ordered;
4836	struct btrfs_ordered_extent *tmp;
4837	struct extent_map *em, *n;
4838	LIST_HEAD(extents);
4839	struct extent_map_tree *tree = &inode->extent_tree;
 
4840	int ret = 0;
4841	int num = 0;
4842
 
 
4843	write_lock(&tree->lock);
 
4844
4845	list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4846		list_del_init(&em->list);
4847		/*
4848		 * Just an arbitrary number, this can be really CPU intensive
4849		 * once we start getting a lot of extents, and really once we
4850		 * have a bunch of extents we just want to commit since it will
4851		 * be faster.
4852		 */
4853		if (++num > 32768) {
4854			list_del_init(&tree->modified_extents);
4855			ret = -EFBIG;
4856			goto process;
4857		}
4858
4859		if (em->generation < trans->transid)
4860			continue;
4861
4862		/* We log prealloc extents beyond eof later. */
4863		if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4864		    em->start >= i_size_read(&inode->vfs_inode))
4865			continue;
4866
4867		/* Need a ref to keep it from getting evicted from cache */
4868		refcount_inc(&em->refs);
4869		em->flags |= EXTENT_FLAG_LOGGING;
4870		list_add_tail(&em->list, &extents);
4871		num++;
4872	}
4873
4874	list_sort(NULL, &extents, extent_cmp);
4875process:
4876	while (!list_empty(&extents)) {
4877		em = list_entry(extents.next, struct extent_map, list);
4878
4879		list_del_init(&em->list);
4880
4881		/*
4882		 * If we had an error we just need to delete everybody from our
4883		 * private list.
4884		 */
4885		if (ret) {
4886			clear_em_logging(tree, em);
4887			free_extent_map(em);
4888			continue;
4889		}
4890
4891		write_unlock(&tree->lock);
4892
4893		ret = log_one_extent(trans, inode, em, path, ctx);
4894		write_lock(&tree->lock);
4895		clear_em_logging(tree, em);
4896		free_extent_map(em);
4897	}
4898	WARN_ON(!list_empty(&extents));
4899	write_unlock(&tree->lock);
4900
 
4901	if (!ret)
4902		ret = btrfs_log_prealloc_extents(trans, inode, path);
4903	if (ret)
4904		return ret;
4905
4906	/*
4907	 * We have logged all extents successfully, now make sure the commit of
4908	 * the current transaction waits for the ordered extents to complete
4909	 * before it commits and wipes out the log trees, otherwise we would
4910	 * lose data if an ordered extents completes after the transaction
4911	 * commits and a power failure happens after the transaction commit.
4912	 */
4913	list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4914		list_del_init(&ordered->log_list);
4915		set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4916
4917		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4918			spin_lock_irq(&inode->ordered_tree_lock);
4919			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4920				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4921				atomic_inc(&trans->transaction->pending_ordered);
4922			}
4923			spin_unlock_irq(&inode->ordered_tree_lock);
4924		}
4925		btrfs_put_ordered_extent(ordered);
4926	}
4927
4928	return 0;
4929}
4930
4931static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4932			     struct btrfs_path *path, u64 *size_ret)
4933{
4934	struct btrfs_key key;
4935	int ret;
4936
4937	key.objectid = btrfs_ino(inode);
4938	key.type = BTRFS_INODE_ITEM_KEY;
4939	key.offset = 0;
4940
4941	ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4942	if (ret < 0) {
4943		return ret;
4944	} else if (ret > 0) {
4945		*size_ret = 0;
4946	} else {
4947		struct btrfs_inode_item *item;
4948
4949		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4950				      struct btrfs_inode_item);
4951		*size_ret = btrfs_inode_size(path->nodes[0], item);
4952		/*
4953		 * If the in-memory inode's i_size is smaller then the inode
4954		 * size stored in the btree, return the inode's i_size, so
4955		 * that we get a correct inode size after replaying the log
4956		 * when before a power failure we had a shrinking truncate
4957		 * followed by addition of a new name (rename / new hard link).
4958		 * Otherwise return the inode size from the btree, to avoid
4959		 * data loss when replaying a log due to previously doing a
4960		 * write that expands the inode's size and logging a new name
4961		 * immediately after.
4962		 */
4963		if (*size_ret > inode->vfs_inode.i_size)
4964			*size_ret = inode->vfs_inode.i_size;
4965	}
4966
4967	btrfs_release_path(path);
4968	return 0;
4969}
4970
4971/*
4972 * At the moment we always log all xattrs. This is to figure out at log replay
4973 * time which xattrs must have their deletion replayed. If a xattr is missing
4974 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4975 * because if a xattr is deleted, the inode is fsynced and a power failure
4976 * happens, causing the log to be replayed the next time the fs is mounted,
4977 * we want the xattr to not exist anymore (same behaviour as other filesystems
4978 * with a journal, ext3/4, xfs, f2fs, etc).
4979 */
4980static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
 
4981				struct btrfs_inode *inode,
4982				struct btrfs_path *path,
4983				struct btrfs_path *dst_path)
4984{
4985	struct btrfs_root *root = inode->root;
4986	int ret;
4987	struct btrfs_key key;
4988	const u64 ino = btrfs_ino(inode);
4989	int ins_nr = 0;
4990	int start_slot = 0;
4991	bool found_xattrs = false;
4992
4993	if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
4994		return 0;
4995
4996	key.objectid = ino;
4997	key.type = BTRFS_XATTR_ITEM_KEY;
4998	key.offset = 0;
4999
5000	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5001	if (ret < 0)
5002		return ret;
5003
5004	while (true) {
5005		int slot = path->slots[0];
5006		struct extent_buffer *leaf = path->nodes[0];
5007		int nritems = btrfs_header_nritems(leaf);
5008
5009		if (slot >= nritems) {
5010			if (ins_nr > 0) {
5011				ret = copy_items(trans, inode, dst_path, path,
5012						 start_slot, ins_nr, 1, 0);
5013				if (ret < 0)
5014					return ret;
5015				ins_nr = 0;
5016			}
5017			ret = btrfs_next_leaf(root, path);
5018			if (ret < 0)
5019				return ret;
5020			else if (ret > 0)
5021				break;
5022			continue;
5023		}
5024
5025		btrfs_item_key_to_cpu(leaf, &key, slot);
5026		if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5027			break;
5028
5029		if (ins_nr == 0)
5030			start_slot = slot;
5031		ins_nr++;
5032		path->slots[0]++;
5033		found_xattrs = true;
5034		cond_resched();
5035	}
5036	if (ins_nr > 0) {
5037		ret = copy_items(trans, inode, dst_path, path,
5038				 start_slot, ins_nr, 1, 0);
5039		if (ret < 0)
5040			return ret;
5041	}
5042
5043	if (!found_xattrs)
5044		set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5045
5046	return 0;
5047}
5048
5049/*
5050 * When using the NO_HOLES feature if we punched a hole that causes the
5051 * deletion of entire leafs or all the extent items of the first leaf (the one
5052 * that contains the inode item and references) we may end up not processing
5053 * any extents, because there are no leafs with a generation matching the
5054 * current transaction that have extent items for our inode. So we need to find
5055 * if any holes exist and then log them. We also need to log holes after any
5056 * truncate operation that changes the inode's size.
5057 */
5058static int btrfs_log_holes(struct btrfs_trans_handle *trans,
 
5059			   struct btrfs_inode *inode,
5060			   struct btrfs_path *path)
5061{
5062	struct btrfs_root *root = inode->root;
5063	struct btrfs_fs_info *fs_info = root->fs_info;
5064	struct btrfs_key key;
5065	const u64 ino = btrfs_ino(inode);
5066	const u64 i_size = i_size_read(&inode->vfs_inode);
5067	u64 prev_extent_end = 0;
5068	int ret;
5069
5070	if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5071		return 0;
5072
5073	key.objectid = ino;
5074	key.type = BTRFS_EXTENT_DATA_KEY;
5075	key.offset = 0;
5076
5077	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5078	if (ret < 0)
5079		return ret;
5080
5081	while (true) {
5082		struct extent_buffer *leaf = path->nodes[0];
5083
5084		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5085			ret = btrfs_next_leaf(root, path);
5086			if (ret < 0)
5087				return ret;
5088			if (ret > 0) {
5089				ret = 0;
5090				break;
5091			}
5092			leaf = path->nodes[0];
5093		}
5094
5095		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5096		if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5097			break;
5098
5099		/* We have a hole, log it. */
5100		if (prev_extent_end < key.offset) {
5101			const u64 hole_len = key.offset - prev_extent_end;
5102
5103			/*
5104			 * Release the path to avoid deadlocks with other code
5105			 * paths that search the root while holding locks on
5106			 * leafs from the log root.
5107			 */
5108			btrfs_release_path(path);
5109			ret = btrfs_insert_hole_extent(trans, root->log_root,
5110						       ino, prev_extent_end,
5111						       hole_len);
 
5112			if (ret < 0)
5113				return ret;
5114
5115			/*
5116			 * Search for the same key again in the root. Since it's
5117			 * an extent item and we are holding the inode lock, the
5118			 * key must still exist. If it doesn't just emit warning
5119			 * and return an error to fall back to a transaction
5120			 * commit.
5121			 */
5122			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5123			if (ret < 0)
5124				return ret;
5125			if (WARN_ON(ret > 0))
5126				return -ENOENT;
5127			leaf = path->nodes[0];
5128		}
5129
5130		prev_extent_end = btrfs_file_extent_end(path);
5131		path->slots[0]++;
5132		cond_resched();
5133	}
5134
5135	if (prev_extent_end < i_size) {
5136		u64 hole_len;
5137
5138		btrfs_release_path(path);
5139		hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5140		ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5141					       prev_extent_end, hole_len);
 
 
5142		if (ret < 0)
5143			return ret;
5144	}
5145
5146	return 0;
5147}
5148
5149/*
5150 * When we are logging a new inode X, check if it doesn't have a reference that
5151 * matches the reference from some other inode Y created in a past transaction
5152 * and that was renamed in the current transaction. If we don't do this, then at
5153 * log replay time we can lose inode Y (and all its files if it's a directory):
5154 *
5155 * mkdir /mnt/x
5156 * echo "hello world" > /mnt/x/foobar
5157 * sync
5158 * mv /mnt/x /mnt/y
5159 * mkdir /mnt/x                 # or touch /mnt/x
5160 * xfs_io -c fsync /mnt/x
5161 * <power fail>
5162 * mount fs, trigger log replay
5163 *
5164 * After the log replay procedure, we would lose the first directory and all its
5165 * files (file foobar).
5166 * For the case where inode Y is not a directory we simply end up losing it:
5167 *
5168 * echo "123" > /mnt/foo
5169 * sync
5170 * mv /mnt/foo /mnt/bar
5171 * echo "abc" > /mnt/foo
5172 * xfs_io -c fsync /mnt/foo
5173 * <power fail>
5174 *
5175 * We also need this for cases where a snapshot entry is replaced by some other
5176 * entry (file or directory) otherwise we end up with an unreplayable log due to
5177 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5178 * if it were a regular entry:
5179 *
5180 * mkdir /mnt/x
5181 * btrfs subvolume snapshot /mnt /mnt/x/snap
5182 * btrfs subvolume delete /mnt/x/snap
5183 * rmdir /mnt/x
5184 * mkdir /mnt/x
5185 * fsync /mnt/x or fsync some new file inside it
5186 * <power fail>
5187 *
5188 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5189 * the same transaction.
5190 */
5191static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5192					 const int slot,
5193					 const struct btrfs_key *key,
5194					 struct btrfs_inode *inode,
5195					 u64 *other_ino, u64 *other_parent)
5196{
5197	int ret;
5198	struct btrfs_path *search_path;
5199	char *name = NULL;
5200	u32 name_len = 0;
5201	u32 item_size = btrfs_item_size(eb, slot);
5202	u32 cur_offset = 0;
5203	unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5204
5205	search_path = btrfs_alloc_path();
5206	if (!search_path)
5207		return -ENOMEM;
5208	search_path->search_commit_root = 1;
5209	search_path->skip_locking = 1;
5210
5211	while (cur_offset < item_size) {
5212		u64 parent;
5213		u32 this_name_len;
5214		u32 this_len;
5215		unsigned long name_ptr;
5216		struct btrfs_dir_item *di;
5217		struct fscrypt_str name_str;
5218
5219		if (key->type == BTRFS_INODE_REF_KEY) {
5220			struct btrfs_inode_ref *iref;
5221
5222			iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5223			parent = key->offset;
5224			this_name_len = btrfs_inode_ref_name_len(eb, iref);
5225			name_ptr = (unsigned long)(iref + 1);
5226			this_len = sizeof(*iref) + this_name_len;
5227		} else {
5228			struct btrfs_inode_extref *extref;
5229
5230			extref = (struct btrfs_inode_extref *)(ptr +
5231							       cur_offset);
5232			parent = btrfs_inode_extref_parent(eb, extref);
5233			this_name_len = btrfs_inode_extref_name_len(eb, extref);
5234			name_ptr = (unsigned long)&extref->name;
5235			this_len = sizeof(*extref) + this_name_len;
5236		}
5237
5238		if (this_name_len > name_len) {
5239			char *new_name;
5240
5241			new_name = krealloc(name, this_name_len, GFP_NOFS);
5242			if (!new_name) {
5243				ret = -ENOMEM;
5244				goto out;
5245			}
5246			name_len = this_name_len;
5247			name = new_name;
5248		}
5249
5250		read_extent_buffer(eb, name, name_ptr, this_name_len);
5251
5252		name_str.name = name;
5253		name_str.len = this_name_len;
5254		di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5255				parent, &name_str, 0);
5256		if (di && !IS_ERR(di)) {
5257			struct btrfs_key di_key;
5258
5259			btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5260						  di, &di_key);
5261			if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5262				if (di_key.objectid != key->objectid) {
5263					ret = 1;
5264					*other_ino = di_key.objectid;
5265					*other_parent = parent;
5266				} else {
5267					ret = 0;
5268				}
5269			} else {
5270				ret = -EAGAIN;
5271			}
5272			goto out;
5273		} else if (IS_ERR(di)) {
5274			ret = PTR_ERR(di);
5275			goto out;
5276		}
5277		btrfs_release_path(search_path);
5278
5279		cur_offset += this_len;
5280	}
5281	ret = 0;
5282out:
5283	btrfs_free_path(search_path);
5284	kfree(name);
5285	return ret;
5286}
5287
5288/*
5289 * Check if we need to log an inode. This is used in contexts where while
5290 * logging an inode we need to log another inode (either that it exists or in
5291 * full mode). This is used instead of btrfs_inode_in_log() because the later
5292 * requires the inode to be in the log and have the log transaction committed,
5293 * while here we do not care if the log transaction was already committed - our
5294 * caller will commit the log later - and we want to avoid logging an inode
5295 * multiple times when multiple tasks have joined the same log transaction.
5296 */
5297static bool need_log_inode(const struct btrfs_trans_handle *trans,
5298			   struct btrfs_inode *inode)
5299{
5300	/*
5301	 * If a directory was not modified, no dentries added or removed, we can
5302	 * and should avoid logging it.
5303	 */
5304	if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5305		return false;
5306
5307	/*
5308	 * If this inode does not have new/updated/deleted xattrs since the last
5309	 * time it was logged and is flagged as logged in the current transaction,
5310	 * we can skip logging it. As for new/deleted names, those are updated in
5311	 * the log by link/unlink/rename operations.
5312	 * In case the inode was logged and then evicted and reloaded, its
5313	 * logged_trans will be 0, in which case we have to fully log it since
5314	 * logged_trans is a transient field, not persisted.
5315	 */
5316	if (inode_logged(trans, inode, NULL) == 1 &&
5317	    !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5318		return false;
5319
5320	return true;
5321}
5322
5323struct btrfs_dir_list {
5324	u64 ino;
5325	struct list_head list;
5326};
5327
5328/*
5329 * Log the inodes of the new dentries of a directory.
5330 * See process_dir_items_leaf() for details about why it is needed.
5331 * This is a recursive operation - if an existing dentry corresponds to a
5332 * directory, that directory's new entries are logged too (same behaviour as
5333 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5334 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5335 * complains about the following circular lock dependency / possible deadlock:
5336 *
5337 *        CPU0                                        CPU1
5338 *        ----                                        ----
5339 * lock(&type->i_mutex_dir_key#3/2);
5340 *                                            lock(sb_internal#2);
5341 *                                            lock(&type->i_mutex_dir_key#3/2);
5342 * lock(&sb->s_type->i_mutex_key#14);
5343 *
5344 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5345 * sb_start_intwrite() in btrfs_start_transaction().
5346 * Not acquiring the VFS lock of the inodes is still safe because:
5347 *
5348 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5349 *    that while logging the inode new references (names) are added or removed
5350 *    from the inode, leaving the logged inode item with a link count that does
5351 *    not match the number of logged inode reference items. This is fine because
5352 *    at log replay time we compute the real number of links and correct the
5353 *    link count in the inode item (see replay_one_buffer() and
5354 *    link_to_fixup_dir());
5355 *
5356 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5357 *    while logging the inode's items new index items (key type
5358 *    BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5359 *    has a size that doesn't match the sum of the lengths of all the logged
5360 *    names - this is ok, not a problem, because at log replay time we set the
5361 *    directory's i_size to the correct value (see replay_one_name() and
5362 *    overwrite_item()).
5363 */
5364static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5365				struct btrfs_inode *start_inode,
5366				struct btrfs_log_ctx *ctx)
5367{
5368	struct btrfs_root *root = start_inode->root;
5369	struct btrfs_fs_info *fs_info = root->fs_info;
5370	struct btrfs_path *path;
5371	LIST_HEAD(dir_list);
5372	struct btrfs_dir_list *dir_elem;
5373	u64 ino = btrfs_ino(start_inode);
5374	struct btrfs_inode *curr_inode = start_inode;
5375	int ret = 0;
5376
5377	/*
5378	 * If we are logging a new name, as part of a link or rename operation,
5379	 * don't bother logging new dentries, as we just want to log the names
5380	 * of an inode and that any new parents exist.
5381	 */
5382	if (ctx->logging_new_name)
5383		return 0;
5384
5385	path = btrfs_alloc_path();
5386	if (!path)
5387		return -ENOMEM;
5388
5389	/* Pairs with btrfs_add_delayed_iput below. */
5390	ihold(&curr_inode->vfs_inode);
5391
5392	while (true) {
5393		struct inode *vfs_inode;
5394		struct btrfs_key key;
5395		struct btrfs_key found_key;
5396		u64 next_index;
5397		bool continue_curr_inode = true;
5398		int iter_ret;
5399
5400		key.objectid = ino;
5401		key.type = BTRFS_DIR_INDEX_KEY;
5402		key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5403		next_index = key.offset;
5404again:
5405		btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5406			struct extent_buffer *leaf = path->nodes[0];
5407			struct btrfs_dir_item *di;
5408			struct btrfs_key di_key;
5409			struct inode *di_inode;
5410			int log_mode = LOG_INODE_EXISTS;
5411			int type;
5412
5413			if (found_key.objectid != ino ||
5414			    found_key.type != BTRFS_DIR_INDEX_KEY) {
5415				continue_curr_inode = false;
5416				break;
5417			}
5418
5419			next_index = found_key.offset + 1;
5420
5421			di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5422			type = btrfs_dir_ftype(leaf, di);
5423			if (btrfs_dir_transid(leaf, di) < trans->transid)
5424				continue;
5425			btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5426			if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5427				continue;
5428
5429			btrfs_release_path(path);
5430			di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5431			if (IS_ERR(di_inode)) {
5432				ret = PTR_ERR(di_inode);
5433				goto out;
5434			}
5435
5436			if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5437				btrfs_add_delayed_iput(BTRFS_I(di_inode));
5438				break;
5439			}
5440
5441			ctx->log_new_dentries = false;
5442			if (type == BTRFS_FT_DIR)
5443				log_mode = LOG_INODE_ALL;
5444			ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5445					      log_mode, ctx);
5446			btrfs_add_delayed_iput(BTRFS_I(di_inode));
5447			if (ret)
5448				goto out;
5449			if (ctx->log_new_dentries) {
5450				dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5451				if (!dir_elem) {
5452					ret = -ENOMEM;
5453					goto out;
5454				}
5455				dir_elem->ino = di_key.objectid;
5456				list_add_tail(&dir_elem->list, &dir_list);
5457			}
5458			break;
5459		}
5460
5461		btrfs_release_path(path);
5462
5463		if (iter_ret < 0) {
5464			ret = iter_ret;
5465			goto out;
5466		} else if (iter_ret > 0) {
5467			continue_curr_inode = false;
5468		} else {
5469			key = found_key;
5470		}
5471
5472		if (continue_curr_inode && key.offset < (u64)-1) {
5473			key.offset++;
5474			goto again;
5475		}
5476
5477		btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5478
5479		if (list_empty(&dir_list))
5480			break;
5481
5482		dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5483		ino = dir_elem->ino;
5484		list_del(&dir_elem->list);
5485		kfree(dir_elem);
5486
5487		btrfs_add_delayed_iput(curr_inode);
5488		curr_inode = NULL;
5489
5490		vfs_inode = btrfs_iget(fs_info->sb, ino, root);
5491		if (IS_ERR(vfs_inode)) {
5492			ret = PTR_ERR(vfs_inode);
5493			break;
5494		}
5495		curr_inode = BTRFS_I(vfs_inode);
5496	}
5497out:
5498	btrfs_free_path(path);
5499	if (curr_inode)
5500		btrfs_add_delayed_iput(curr_inode);
5501
5502	if (ret) {
5503		struct btrfs_dir_list *next;
5504
5505		list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5506			kfree(dir_elem);
5507	}
5508
5509	return ret;
5510}
5511
5512struct btrfs_ino_list {
5513	u64 ino;
5514	u64 parent;
5515	struct list_head list;
5516};
5517
5518static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5519{
5520	struct btrfs_ino_list *curr;
5521	struct btrfs_ino_list *next;
5522
5523	list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5524		list_del(&curr->list);
5525		kfree(curr);
5526	}
5527}
5528
5529static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5530				    struct btrfs_path *path)
5531{
5532	struct btrfs_key key;
5533	int ret;
5534
5535	key.objectid = ino;
5536	key.type = BTRFS_INODE_ITEM_KEY;
5537	key.offset = 0;
5538
5539	path->search_commit_root = 1;
5540	path->skip_locking = 1;
5541
5542	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5543	if (WARN_ON_ONCE(ret > 0)) {
5544		/*
5545		 * We have previously found the inode through the commit root
5546		 * so this should not happen. If it does, just error out and
5547		 * fallback to a transaction commit.
5548		 */
5549		ret = -ENOENT;
5550	} else if (ret == 0) {
5551		struct btrfs_inode_item *item;
5552
5553		item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5554				      struct btrfs_inode_item);
5555		if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5556			ret = 1;
5557	}
5558
5559	btrfs_release_path(path);
5560	path->search_commit_root = 0;
5561	path->skip_locking = 0;
5562
5563	return ret;
5564}
5565
5566static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5567				 struct btrfs_root *root,
5568				 struct btrfs_path *path,
5569				 u64 ino, u64 parent,
5570				 struct btrfs_log_ctx *ctx)
5571{
5572	struct btrfs_ino_list *ino_elem;
5573	struct inode *inode;
5574
5575	/*
5576	 * It's rare to have a lot of conflicting inodes, in practice it is not
5577	 * common to have more than 1 or 2. We don't want to collect too many,
5578	 * as we could end up logging too many inodes (even if only in
5579	 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5580	 * commits.
5581	 */
5582	if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5583		return BTRFS_LOG_FORCE_COMMIT;
5584
5585	inode = btrfs_iget(root->fs_info->sb, ino, root);
5586	/*
5587	 * If the other inode that had a conflicting dir entry was deleted in
5588	 * the current transaction then we either:
5589	 *
5590	 * 1) Log the parent directory (later after adding it to the list) if
5591	 *    the inode is a directory. This is because it may be a deleted
5592	 *    subvolume/snapshot or it may be a regular directory that had
5593	 *    deleted subvolumes/snapshots (or subdirectories that had them),
5594	 *    and at the moment we can't deal with dropping subvolumes/snapshots
5595	 *    during log replay. So we just log the parent, which will result in
5596	 *    a fallback to a transaction commit if we are dealing with those
5597	 *    cases (last_unlink_trans will match the current transaction);
5598	 *
5599	 * 2) Do nothing if it's not a directory. During log replay we simply
5600	 *    unlink the conflicting dentry from the parent directory and then
5601	 *    add the dentry for our inode. Like this we can avoid logging the
5602	 *    parent directory (and maybe fallback to a transaction commit in
5603	 *    case it has a last_unlink_trans == trans->transid, due to moving
5604	 *    some inode from it to some other directory).
5605	 */
5606	if (IS_ERR(inode)) {
5607		int ret = PTR_ERR(inode);
5608
5609		if (ret != -ENOENT)
5610			return ret;
5611
5612		ret = conflicting_inode_is_dir(root, ino, path);
5613		/* Not a directory or we got an error. */
5614		if (ret <= 0)
5615			return ret;
5616
5617		/* Conflicting inode is a directory, so we'll log its parent. */
5618		ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5619		if (!ino_elem)
5620			return -ENOMEM;
5621		ino_elem->ino = ino;
5622		ino_elem->parent = parent;
5623		list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5624		ctx->num_conflict_inodes++;
5625
5626		return 0;
5627	}
5628
5629	/*
5630	 * If the inode was already logged skip it - otherwise we can hit an
5631	 * infinite loop. Example:
5632	 *
5633	 * From the commit root (previous transaction) we have the following
5634	 * inodes:
5635	 *
5636	 * inode 257 a directory
5637	 * inode 258 with references "zz" and "zz_link" on inode 257
5638	 * inode 259 with reference "a" on inode 257
5639	 *
5640	 * And in the current (uncommitted) transaction we have:
5641	 *
5642	 * inode 257 a directory, unchanged
5643	 * inode 258 with references "a" and "a2" on inode 257
5644	 * inode 259 with reference "zz_link" on inode 257
5645	 * inode 261 with reference "zz" on inode 257
5646	 *
5647	 * When logging inode 261 the following infinite loop could
5648	 * happen if we don't skip already logged inodes:
5649	 *
5650	 * - we detect inode 258 as a conflicting inode, with inode 261
5651	 *   on reference "zz", and log it;
5652	 *
5653	 * - we detect inode 259 as a conflicting inode, with inode 258
5654	 *   on reference "a", and log it;
5655	 *
5656	 * - we detect inode 258 as a conflicting inode, with inode 259
5657	 *   on reference "zz_link", and log it - again! After this we
5658	 *   repeat the above steps forever.
5659	 *
5660	 * Here we can use need_log_inode() because we only need to log the
5661	 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5662	 * so that the log ends up with the new name and without the old name.
5663	 */
5664	if (!need_log_inode(trans, BTRFS_I(inode))) {
5665		btrfs_add_delayed_iput(BTRFS_I(inode));
5666		return 0;
5667	}
5668
5669	btrfs_add_delayed_iput(BTRFS_I(inode));
5670
5671	ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5672	if (!ino_elem)
5673		return -ENOMEM;
5674	ino_elem->ino = ino;
5675	ino_elem->parent = parent;
5676	list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5677	ctx->num_conflict_inodes++;
5678
5679	return 0;
5680}
 
 
5681
5682static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5683				  struct btrfs_root *root,
5684				  struct btrfs_log_ctx *ctx)
5685{
5686	struct btrfs_fs_info *fs_info = root->fs_info;
5687	int ret = 0;
 
 
5688
5689	/*
5690	 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5691	 * otherwise we could have unbounded recursion of btrfs_log_inode()
5692	 * calls. This check guarantees we can have only 1 level of recursion.
5693	 */
5694	if (ctx->logging_conflict_inodes)
5695		return 0;
5696
5697	ctx->logging_conflict_inodes = true;
5698
5699	/*
5700	 * New conflicting inodes may be found and added to the list while we
5701	 * are logging a conflicting inode, so keep iterating while the list is
5702	 * not empty.
5703	 */
5704	while (!list_empty(&ctx->conflict_inodes)) {
5705		struct btrfs_ino_list *curr;
5706		struct inode *inode;
5707		u64 ino;
5708		u64 parent;
5709
5710		curr = list_first_entry(&ctx->conflict_inodes,
5711					struct btrfs_ino_list, list);
5712		ino = curr->ino;
5713		parent = curr->parent;
5714		list_del(&curr->list);
5715		kfree(curr);
5716
5717		inode = btrfs_iget(fs_info->sb, ino, root);
5718		/*
5719		 * If the other inode that had a conflicting dir entry was
5720		 * deleted in the current transaction, we need to log its parent
5721		 * directory. See the comment at add_conflicting_inode().
5722		 */
5723		if (IS_ERR(inode)) {
5724			ret = PTR_ERR(inode);
5725			if (ret != -ENOENT)
5726				break;
5727
5728			inode = btrfs_iget(fs_info->sb, parent, root);
5729			if (IS_ERR(inode)) {
5730				ret = PTR_ERR(inode);
5731				break;
 
 
 
 
5732			}
5733
5734			/*
5735			 * Always log the directory, we cannot make this
5736			 * conditional on need_log_inode() because the directory
5737			 * might have been logged in LOG_INODE_EXISTS mode or
5738			 * the dir index of the conflicting inode is not in a
5739			 * dir index key range logged for the directory. So we
5740			 * must make sure the deletion is recorded.
5741			 */
5742			ret = btrfs_log_inode(trans, BTRFS_I(inode),
5743					      LOG_INODE_ALL, ctx);
5744			btrfs_add_delayed_iput(BTRFS_I(inode));
5745			if (ret)
5746				break;
5747			continue;
5748		}
5749
5750		/*
5751		 * Here we can use need_log_inode() because we only need to log
5752		 * the inode in LOG_INODE_EXISTS mode and rename operations
5753		 * update the log, so that the log ends up with the new name and
5754		 * without the old name.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5755		 *
5756		 * We did this check at add_conflicting_inode(), but here we do
5757		 * it again because if some other task logged the inode after
5758		 * that, we can avoid doing it again.
5759		 */
5760		if (!need_log_inode(trans, BTRFS_I(inode))) {
5761			btrfs_add_delayed_iput(BTRFS_I(inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5762			continue;
5763		}
5764
5765		/*
5766		 * We are safe logging the other inode without acquiring its
5767		 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5768		 * are safe against concurrent renames of the other inode as
5769		 * well because during a rename we pin the log and update the
5770		 * log with the new name before we unpin it.
5771		 */
5772		ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5773		btrfs_add_delayed_iput(BTRFS_I(inode));
5774		if (ret)
5775			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5776	}
5777
5778	ctx->logging_conflict_inodes = false;
5779	if (ret)
5780		free_conflicting_inodes(ctx);
5781
5782	return ret;
5783}
5784
5785static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5786				   struct btrfs_inode *inode,
5787				   struct btrfs_key *min_key,
5788				   const struct btrfs_key *max_key,
5789				   struct btrfs_path *path,
5790				   struct btrfs_path *dst_path,
5791				   const u64 logged_isize,
 
5792				   const int inode_only,
5793				   struct btrfs_log_ctx *ctx,
5794				   bool *need_log_inode_item)
5795{
5796	const u64 i_size = i_size_read(&inode->vfs_inode);
5797	struct btrfs_root *root = inode->root;
5798	int ins_start_slot = 0;
5799	int ins_nr = 0;
5800	int ret;
5801
5802	while (1) {
5803		ret = btrfs_search_forward(root, min_key, path, trans->transid);
5804		if (ret < 0)
5805			return ret;
5806		if (ret > 0) {
5807			ret = 0;
5808			break;
5809		}
5810again:
5811		/* Note, ins_nr might be > 0 here, cleanup outside the loop */
5812		if (min_key->objectid != max_key->objectid)
5813			break;
5814		if (min_key->type > max_key->type)
5815			break;
5816
5817		if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5818			*need_log_inode_item = false;
5819		} else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5820			   min_key->offset >= i_size) {
5821			/*
5822			 * Extents at and beyond eof are logged with
5823			 * btrfs_log_prealloc_extents().
5824			 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5825			 * and no keys greater than that, so bail out.
5826			 */
5827			break;
5828		} else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5829			    min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5830			   (inode->generation == trans->transid ||
5831			    ctx->logging_conflict_inodes)) {
5832			u64 other_ino = 0;
5833			u64 other_parent = 0;
5834
5835			ret = btrfs_check_ref_name_override(path->nodes[0],
5836					path->slots[0], min_key, inode,
5837					&other_ino, &other_parent);
5838			if (ret < 0) {
5839				return ret;
5840			} else if (ret > 0 &&
5841				   other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5842				if (ins_nr > 0) {
5843					ins_nr++;
5844				} else {
5845					ins_nr = 1;
5846					ins_start_slot = path->slots[0];
5847				}
5848				ret = copy_items(trans, inode, dst_path, path,
5849						 ins_start_slot, ins_nr,
5850						 inode_only, logged_isize);
5851				if (ret < 0)
5852					return ret;
5853				ins_nr = 0;
5854
5855				btrfs_release_path(path);
5856				ret = add_conflicting_inode(trans, root, path,
5857							    other_ino,
5858							    other_parent, ctx);
5859				if (ret)
5860					return ret;
 
5861				goto next_key;
5862			}
5863		} else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5864			/* Skip xattrs, logged later with btrfs_log_all_xattrs() */
 
 
5865			if (ins_nr == 0)
5866				goto next_slot;
5867			ret = copy_items(trans, inode, dst_path, path,
5868					 ins_start_slot,
5869					 ins_nr, inode_only, logged_isize);
5870			if (ret < 0)
5871				return ret;
5872			ins_nr = 0;
5873			goto next_slot;
5874		}
5875
5876		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5877			ins_nr++;
5878			goto next_slot;
5879		} else if (!ins_nr) {
5880			ins_start_slot = path->slots[0];
5881			ins_nr = 1;
5882			goto next_slot;
5883		}
5884
5885		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5886				 ins_nr, inode_only, logged_isize);
5887		if (ret < 0)
5888			return ret;
5889		ins_nr = 1;
5890		ins_start_slot = path->slots[0];
5891next_slot:
5892		path->slots[0]++;
5893		if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5894			btrfs_item_key_to_cpu(path->nodes[0], min_key,
5895					      path->slots[0]);
5896			goto again;
5897		}
5898		if (ins_nr) {
5899			ret = copy_items(trans, inode, dst_path, path,
5900					 ins_start_slot, ins_nr, inode_only,
5901					 logged_isize);
5902			if (ret < 0)
5903				return ret;
5904			ins_nr = 0;
5905		}
5906		btrfs_release_path(path);
5907next_key:
5908		if (min_key->offset < (u64)-1) {
5909			min_key->offset++;
5910		} else if (min_key->type < max_key->type) {
5911			min_key->type++;
5912			min_key->offset = 0;
5913		} else {
5914			break;
5915		}
5916
5917		/*
5918		 * We may process many leaves full of items for our inode, so
5919		 * avoid monopolizing a cpu for too long by rescheduling while
5920		 * not holding locks on any tree.
5921		 */
5922		cond_resched();
5923	}
5924	if (ins_nr) {
5925		ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5926				 ins_nr, inode_only, logged_isize);
5927		if (ret)
5928			return ret;
5929	}
5930
5931	if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
5932		/*
5933		 * Release the path because otherwise we might attempt to double
5934		 * lock the same leaf with btrfs_log_prealloc_extents() below.
5935		 */
5936		btrfs_release_path(path);
5937		ret = btrfs_log_prealloc_extents(trans, inode, dst_path);
5938	}
5939
5940	return ret;
5941}
5942
5943static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
5944				      struct btrfs_root *log,
5945				      struct btrfs_path *path,
5946				      const struct btrfs_item_batch *batch,
5947				      const struct btrfs_delayed_item *first_item)
5948{
5949	const struct btrfs_delayed_item *curr = first_item;
5950	int ret;
5951
5952	ret = btrfs_insert_empty_items(trans, log, path, batch);
5953	if (ret)
5954		return ret;
5955
5956	for (int i = 0; i < batch->nr; i++) {
5957		char *data_ptr;
5958
5959		data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
5960		write_extent_buffer(path->nodes[0], &curr->data,
5961				    (unsigned long)data_ptr, curr->data_len);
5962		curr = list_next_entry(curr, log_list);
5963		path->slots[0]++;
5964	}
5965
5966	btrfs_release_path(path);
5967
5968	return 0;
5969}
5970
5971static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
5972				       struct btrfs_inode *inode,
5973				       struct btrfs_path *path,
5974				       const struct list_head *delayed_ins_list,
5975				       struct btrfs_log_ctx *ctx)
5976{
5977	/* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
5978	const int max_batch_size = 195;
5979	const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
5980	const u64 ino = btrfs_ino(inode);
5981	struct btrfs_root *log = inode->root->log_root;
5982	struct btrfs_item_batch batch = {
5983		.nr = 0,
5984		.total_data_size = 0,
5985	};
5986	const struct btrfs_delayed_item *first = NULL;
5987	const struct btrfs_delayed_item *curr;
5988	char *ins_data;
5989	struct btrfs_key *ins_keys;
5990	u32 *ins_sizes;
5991	u64 curr_batch_size = 0;
5992	int batch_idx = 0;
5993	int ret;
5994
5995	/* We are adding dir index items to the log tree. */
5996	lockdep_assert_held(&inode->log_mutex);
5997
5998	/*
5999	 * We collect delayed items before copying index keys from the subvolume
6000	 * to the log tree. However just after we collected them, they may have
6001	 * been flushed (all of them or just some of them), and therefore we
6002	 * could have copied them from the subvolume tree to the log tree.
6003	 * So find the first delayed item that was not yet logged (they are
6004	 * sorted by index number).
6005	 */
6006	list_for_each_entry(curr, delayed_ins_list, log_list) {
6007		if (curr->index > inode->last_dir_index_offset) {
6008			first = curr;
6009			break;
6010		}
6011	}
6012
6013	/* Empty list or all delayed items were already logged. */
6014	if (!first)
6015		return 0;
6016
6017	ins_data = kmalloc(max_batch_size * sizeof(u32) +
6018			   max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6019	if (!ins_data)
6020		return -ENOMEM;
6021	ins_sizes = (u32 *)ins_data;
6022	batch.data_sizes = ins_sizes;
6023	ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6024	batch.keys = ins_keys;
6025
6026	curr = first;
6027	while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6028		const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6029
6030		if (curr_batch_size + curr_size > leaf_data_size ||
6031		    batch.nr == max_batch_size) {
6032			ret = insert_delayed_items_batch(trans, log, path,
6033							 &batch, first);
6034			if (ret)
6035				goto out;
6036			batch_idx = 0;
6037			batch.nr = 0;
6038			batch.total_data_size = 0;
6039			curr_batch_size = 0;
6040			first = curr;
6041		}
6042
6043		ins_sizes[batch_idx] = curr->data_len;
6044		ins_keys[batch_idx].objectid = ino;
6045		ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6046		ins_keys[batch_idx].offset = curr->index;
6047		curr_batch_size += curr_size;
6048		batch.total_data_size += curr->data_len;
6049		batch.nr++;
6050		batch_idx++;
6051		curr = list_next_entry(curr, log_list);
6052	}
6053
6054	ASSERT(batch.nr >= 1);
6055	ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6056
6057	curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6058			       log_list);
6059	inode->last_dir_index_offset = curr->index;
6060out:
6061	kfree(ins_data);
6062
6063	return ret;
6064}
6065
6066static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6067				      struct btrfs_inode *inode,
6068				      struct btrfs_path *path,
6069				      const struct list_head *delayed_del_list,
6070				      struct btrfs_log_ctx *ctx)
6071{
6072	const u64 ino = btrfs_ino(inode);
6073	const struct btrfs_delayed_item *curr;
6074
6075	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6076				log_list);
6077
6078	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6079		u64 first_dir_index = curr->index;
6080		u64 last_dir_index;
6081		const struct btrfs_delayed_item *next;
6082		int ret;
6083
6084		/*
6085		 * Find a range of consecutive dir index items to delete. Like
6086		 * this we log a single dir range item spanning several contiguous
6087		 * dir items instead of logging one range item per dir index item.
6088		 */
6089		next = list_next_entry(curr, log_list);
6090		while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6091			if (next->index != curr->index + 1)
6092				break;
6093			curr = next;
6094			next = list_next_entry(next, log_list);
6095		}
6096
6097		last_dir_index = curr->index;
6098		ASSERT(last_dir_index >= first_dir_index);
6099
6100		ret = insert_dir_log_key(trans, inode->root->log_root, path,
6101					 ino, first_dir_index, last_dir_index);
6102		if (ret)
6103			return ret;
6104		curr = list_next_entry(curr, log_list);
6105	}
6106
6107	return 0;
6108}
6109
6110static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6111					struct btrfs_inode *inode,
6112					struct btrfs_path *path,
6113					struct btrfs_log_ctx *ctx,
6114					const struct list_head *delayed_del_list,
6115					const struct btrfs_delayed_item *first,
6116					const struct btrfs_delayed_item **last_ret)
6117{
6118	const struct btrfs_delayed_item *next;
6119	struct extent_buffer *leaf = path->nodes[0];
6120	const int last_slot = btrfs_header_nritems(leaf) - 1;
6121	int slot = path->slots[0] + 1;
6122	const u64 ino = btrfs_ino(inode);
6123
6124	next = list_next_entry(first, log_list);
6125
6126	while (slot < last_slot &&
6127	       !list_entry_is_head(next, delayed_del_list, log_list)) {
6128		struct btrfs_key key;
6129
6130		btrfs_item_key_to_cpu(leaf, &key, slot);
6131		if (key.objectid != ino ||
6132		    key.type != BTRFS_DIR_INDEX_KEY ||
6133		    key.offset != next->index)
6134			break;
6135
6136		slot++;
6137		*last_ret = next;
6138		next = list_next_entry(next, log_list);
6139	}
6140
6141	return btrfs_del_items(trans, inode->root->log_root, path,
6142			       path->slots[0], slot - path->slots[0]);
6143}
6144
6145static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6146					     struct btrfs_inode *inode,
6147					     struct btrfs_path *path,
6148					     const struct list_head *delayed_del_list,
6149					     struct btrfs_log_ctx *ctx)
6150{
6151	struct btrfs_root *log = inode->root->log_root;
6152	const struct btrfs_delayed_item *curr;
6153	u64 last_range_start = 0;
6154	u64 last_range_end = 0;
6155	struct btrfs_key key;
6156
6157	key.objectid = btrfs_ino(inode);
6158	key.type = BTRFS_DIR_INDEX_KEY;
6159	curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6160				log_list);
6161
6162	while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6163		const struct btrfs_delayed_item *last = curr;
6164		u64 first_dir_index = curr->index;
6165		u64 last_dir_index;
6166		bool deleted_items = false;
6167		int ret;
6168
6169		key.offset = curr->index;
6170		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6171		if (ret < 0) {
6172			return ret;
6173		} else if (ret == 0) {
6174			ret = batch_delete_dir_index_items(trans, inode, path, ctx,
6175							   delayed_del_list, curr,
6176							   &last);
6177			if (ret)
6178				return ret;
6179			deleted_items = true;
6180		}
6181
6182		btrfs_release_path(path);
6183
6184		/*
6185		 * If we deleted items from the leaf, it means we have a range
6186		 * item logging their range, so no need to add one or update an
6187		 * existing one. Otherwise we have to log a dir range item.
6188		 */
6189		if (deleted_items)
6190			goto next_batch;
6191
6192		last_dir_index = last->index;
6193		ASSERT(last_dir_index >= first_dir_index);
6194		/*
6195		 * If this range starts right after where the previous one ends,
6196		 * then we want to reuse the previous range item and change its
6197		 * end offset to the end of this range. This is just to minimize
6198		 * leaf space usage, by avoiding adding a new range item.
6199		 */
6200		if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6201			first_dir_index = last_range_start;
6202
6203		ret = insert_dir_log_key(trans, log, path, key.objectid,
6204					 first_dir_index, last_dir_index);
6205		if (ret)
6206			return ret;
6207
6208		last_range_start = first_dir_index;
6209		last_range_end = last_dir_index;
6210next_batch:
6211		curr = list_next_entry(last, log_list);
6212	}
6213
6214	return 0;
6215}
6216
6217static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6218				      struct btrfs_inode *inode,
6219				      struct btrfs_path *path,
6220				      const struct list_head *delayed_del_list,
6221				      struct btrfs_log_ctx *ctx)
6222{
6223	/*
6224	 * We are deleting dir index items from the log tree or adding range
6225	 * items to it.
6226	 */
6227	lockdep_assert_held(&inode->log_mutex);
6228
6229	if (list_empty(delayed_del_list))
6230		return 0;
6231
6232	if (ctx->logged_before)
6233		return log_delayed_deletions_incremental(trans, inode, path,
6234							 delayed_del_list, ctx);
6235
6236	return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6237					  ctx);
6238}
6239
6240/*
6241 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6242 * items instead of the subvolume tree.
6243 */
6244static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6245				    struct btrfs_inode *inode,
6246				    const struct list_head *delayed_ins_list,
6247				    struct btrfs_log_ctx *ctx)
6248{
6249	const bool orig_log_new_dentries = ctx->log_new_dentries;
6250	struct btrfs_fs_info *fs_info = trans->fs_info;
6251	struct btrfs_delayed_item *item;
6252	int ret = 0;
6253
6254	/*
6255	 * No need for the log mutex, plus to avoid potential deadlocks or
6256	 * lockdep annotations due to nesting of delayed inode mutexes and log
6257	 * mutexes.
6258	 */
6259	lockdep_assert_not_held(&inode->log_mutex);
6260
6261	ASSERT(!ctx->logging_new_delayed_dentries);
6262	ctx->logging_new_delayed_dentries = true;
6263
6264	list_for_each_entry(item, delayed_ins_list, log_list) {
6265		struct btrfs_dir_item *dir_item;
6266		struct inode *di_inode;
6267		struct btrfs_key key;
6268		int log_mode = LOG_INODE_EXISTS;
6269
6270		dir_item = (struct btrfs_dir_item *)item->data;
6271		btrfs_disk_key_to_cpu(&key, &dir_item->location);
6272
6273		if (key.type == BTRFS_ROOT_ITEM_KEY)
6274			continue;
6275
6276		di_inode = btrfs_iget(fs_info->sb, key.objectid, inode->root);
6277		if (IS_ERR(di_inode)) {
6278			ret = PTR_ERR(di_inode);
6279			break;
6280		}
6281
6282		if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6283			btrfs_add_delayed_iput(BTRFS_I(di_inode));
6284			continue;
6285		}
6286
6287		if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6288			log_mode = LOG_INODE_ALL;
6289
6290		ctx->log_new_dentries = false;
6291		ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6292
6293		if (!ret && ctx->log_new_dentries)
6294			ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6295
6296		btrfs_add_delayed_iput(BTRFS_I(di_inode));
6297
6298		if (ret)
6299			break;
6300	}
6301
6302	ctx->log_new_dentries = orig_log_new_dentries;
6303	ctx->logging_new_delayed_dentries = false;
6304
6305	return ret;
6306}
6307
6308/* log a single inode in the tree log.
6309 * At least one parent directory for this inode must exist in the tree
6310 * or be logged already.
6311 *
6312 * Any items from this inode changed by the current transaction are copied
6313 * to the log tree.  An extra reference is taken on any extents in this
6314 * file, allowing us to avoid a whole pile of corner cases around logging
6315 * blocks that have been removed from the tree.
6316 *
6317 * See LOG_INODE_ALL and related defines for a description of what inode_only
6318 * does.
6319 *
6320 * This handles both files and directories.
6321 */
6322static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6323			   struct btrfs_inode *inode,
6324			   int inode_only,
 
 
6325			   struct btrfs_log_ctx *ctx)
6326{
6327	struct btrfs_path *path;
6328	struct btrfs_path *dst_path;
6329	struct btrfs_key min_key;
6330	struct btrfs_key max_key;
6331	struct btrfs_root *log = inode->root->log_root;
6332	int ret;
 
6333	bool fast_search = false;
6334	u64 ino = btrfs_ino(inode);
6335	struct extent_map_tree *em_tree = &inode->extent_tree;
6336	u64 logged_isize = 0;
6337	bool need_log_inode_item = true;
6338	bool xattrs_logged = false;
6339	bool inode_item_dropped = true;
6340	bool full_dir_logging = false;
6341	LIST_HEAD(delayed_ins_list);
6342	LIST_HEAD(delayed_del_list);
6343
6344	path = btrfs_alloc_path();
6345	if (!path)
6346		return -ENOMEM;
6347	dst_path = btrfs_alloc_path();
6348	if (!dst_path) {
6349		btrfs_free_path(path);
6350		return -ENOMEM;
6351	}
6352
6353	min_key.objectid = ino;
6354	min_key.type = BTRFS_INODE_ITEM_KEY;
6355	min_key.offset = 0;
6356
6357	max_key.objectid = ino;
6358
6359
6360	/* today the code can only do partial logging of directories */
6361	if (S_ISDIR(inode->vfs_inode.i_mode) ||
6362	    (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6363		       &inode->runtime_flags) &&
6364	     inode_only >= LOG_INODE_EXISTS))
6365		max_key.type = BTRFS_XATTR_ITEM_KEY;
6366	else
6367		max_key.type = (u8)-1;
6368	max_key.offset = (u64)-1;
6369
6370	if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6371		full_dir_logging = true;
6372
6373	/*
6374	 * If we are logging a directory while we are logging dentries of the
6375	 * delayed items of some other inode, then we need to flush the delayed
6376	 * items of this directory and not log the delayed items directly. This
6377	 * is to prevent more than one level of recursion into btrfs_log_inode()
6378	 * by having something like this:
6379	 *
6380	 *     $ mkdir -p a/b/c/d/e/f/g/h/...
6381	 *     $ xfs_io -c "fsync" a
6382	 *
6383	 * Where all directories in the path did not exist before and are
6384	 * created in the current transaction.
6385	 * So in such a case we directly log the delayed items of the main
6386	 * directory ("a") without flushing them first, while for each of its
6387	 * subdirectories we flush their delayed items before logging them.
6388	 * This prevents a potential unbounded recursion like this:
6389	 *
6390	 * btrfs_log_inode()
6391	 *   log_new_delayed_dentries()
6392	 *      btrfs_log_inode()
6393	 *        log_new_delayed_dentries()
6394	 *          btrfs_log_inode()
6395	 *            log_new_delayed_dentries()
6396	 *              (...)
6397	 *
6398	 * We have thresholds for the maximum number of delayed items to have in
6399	 * memory, and once they are hit, the items are flushed asynchronously.
6400	 * However the limit is quite high, so lets prevent deep levels of
6401	 * recursion to happen by limiting the maximum depth to be 1.
6402	 */
6403	if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6404		ret = btrfs_commit_inode_delayed_items(trans, inode);
6405		if (ret)
6406			goto out;
 
 
 
 
 
6407	}
6408
6409	mutex_lock(&inode->log_mutex);
6410
6411	/*
6412	 * For symlinks, we must always log their content, which is stored in an
6413	 * inline extent, otherwise we could end up with an empty symlink after
6414	 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6415	 * one attempts to create an empty symlink).
6416	 * We don't need to worry about flushing delalloc, because when we create
6417	 * the inline extent when the symlink is created (we never have delalloc
6418	 * for symlinks).
6419	 */
6420	if (S_ISLNK(inode->vfs_inode.i_mode))
6421		inode_only = LOG_INODE_ALL;
6422
6423	/*
6424	 * Before logging the inode item, cache the value returned by
6425	 * inode_logged(), because after that we have the need to figure out if
6426	 * the inode was previously logged in this transaction.
6427	 */
6428	ret = inode_logged(trans, inode, path);
6429	if (ret < 0)
6430		goto out_unlock;
6431	ctx->logged_before = (ret == 1);
6432	ret = 0;
6433
6434	/*
6435	 * This is for cases where logging a directory could result in losing a
6436	 * a file after replaying the log. For example, if we move a file from a
6437	 * directory A to a directory B, then fsync directory A, we have no way
6438	 * to known the file was moved from A to B, so logging just A would
6439	 * result in losing the file after a log replay.
6440	 */
6441	if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6442		ret = BTRFS_LOG_FORCE_COMMIT;
6443		goto out_unlock;
6444	}
6445
6446	/*
6447	 * a brute force approach to making sure we get the most uptodate
6448	 * copies of everything.
6449	 */
6450	if (S_ISDIR(inode->vfs_inode.i_mode)) {
6451		clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6452		if (ctx->logged_before)
6453			ret = drop_inode_items(trans, log, path, inode,
6454					       BTRFS_XATTR_ITEM_KEY);
 
6455	} else {
6456		if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6457			/*
6458			 * Make sure the new inode item we write to the log has
6459			 * the same isize as the current one (if it exists).
6460			 * This is necessary to prevent data loss after log
6461			 * replay, and also to prevent doing a wrong expanding
6462			 * truncate - for e.g. create file, write 4K into offset
6463			 * 0, fsync, write 4K into offset 4096, add hard link,
6464			 * fsync some other file (to sync log), power fail - if
6465			 * we use the inode's current i_size, after log replay
6466			 * we get a 8Kb file, with the last 4Kb extent as a hole
6467			 * (zeroes), as if an expanding truncate happened,
6468			 * instead of getting a file of 4Kb only.
6469			 */
6470			ret = logged_inode_size(log, inode, path, &logged_isize);
6471			if (ret)
6472				goto out_unlock;
6473		}
6474		if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6475			     &inode->runtime_flags)) {
6476			if (inode_only == LOG_INODE_EXISTS) {
6477				max_key.type = BTRFS_XATTR_ITEM_KEY;
6478				if (ctx->logged_before)
6479					ret = drop_inode_items(trans, log, path,
6480							       inode, max_key.type);
6481			} else {
6482				clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6483					  &inode->runtime_flags);
6484				clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6485					  &inode->runtime_flags);
6486				if (ctx->logged_before)
6487					ret = truncate_inode_items(trans, log,
6488								   inode, 0, 0);
 
 
 
6489			}
6490		} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6491					      &inode->runtime_flags) ||
6492			   inode_only == LOG_INODE_EXISTS) {
6493			if (inode_only == LOG_INODE_ALL)
6494				fast_search = true;
6495			max_key.type = BTRFS_XATTR_ITEM_KEY;
6496			if (ctx->logged_before)
6497				ret = drop_inode_items(trans, log, path, inode,
6498						       max_key.type);
6499		} else {
6500			if (inode_only == LOG_INODE_ALL)
6501				fast_search = true;
6502			inode_item_dropped = false;
6503			goto log_extents;
6504		}
6505
6506	}
6507	if (ret)
 
6508		goto out_unlock;
 
6509
6510	/*
6511	 * If we are logging a directory in full mode, collect the delayed items
6512	 * before iterating the subvolume tree, so that we don't miss any new
6513	 * dir index items in case they get flushed while or right after we are
6514	 * iterating the subvolume tree.
6515	 */
6516	if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6517		btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6518					    &delayed_del_list);
6519
6520	ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6521				      path, dst_path, logged_isize,
6522				      inode_only, ctx,
6523				      &need_log_inode_item);
6524	if (ret)
6525		goto out_unlock;
6526
6527	btrfs_release_path(path);
6528	btrfs_release_path(dst_path);
6529	ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6530	if (ret)
6531		goto out_unlock;
6532	xattrs_logged = true;
6533	if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6534		btrfs_release_path(path);
6535		btrfs_release_path(dst_path);
6536		ret = btrfs_log_holes(trans, inode, path);
6537		if (ret)
6538			goto out_unlock;
6539	}
6540log_extents:
6541	btrfs_release_path(path);
6542	btrfs_release_path(dst_path);
6543	if (need_log_inode_item) {
6544		ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6545		if (ret)
6546			goto out_unlock;
6547		/*
6548		 * If we are doing a fast fsync and the inode was logged before
6549		 * in this transaction, we don't need to log the xattrs because
6550		 * they were logged before. If xattrs were added, changed or
6551		 * deleted since the last time we logged the inode, then we have
6552		 * already logged them because the inode had the runtime flag
6553		 * BTRFS_INODE_COPY_EVERYTHING set.
6554		 */
6555		if (!xattrs_logged && inode->logged_trans < trans->transid) {
6556			ret = btrfs_log_all_xattrs(trans, inode, path, dst_path);
6557			if (ret)
6558				goto out_unlock;
6559			btrfs_release_path(path);
6560		}
 
 
6561	}
6562	if (fast_search) {
6563		ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6564		if (ret)
 
 
6565			goto out_unlock;
 
6566	} else if (inode_only == LOG_INODE_ALL) {
6567		struct extent_map *em, *n;
6568
6569		write_lock(&em_tree->lock);
6570		list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6571			list_del_init(&em->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6572		write_unlock(&em_tree->lock);
6573	}
6574
6575	if (full_dir_logging) {
6576		ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6577		if (ret)
6578			goto out_unlock;
6579		ret = log_delayed_insertion_items(trans, inode, path,
6580						  &delayed_ins_list, ctx);
6581		if (ret)
6582			goto out_unlock;
6583		ret = log_delayed_deletion_items(trans, inode, path,
6584						 &delayed_del_list, ctx);
6585		if (ret)
6586			goto out_unlock;
 
6587	}
6588
 
 
 
 
 
 
 
 
6589	spin_lock(&inode->lock);
6590	inode->logged_trans = trans->transid;
6591	/*
6592	 * Don't update last_log_commit if we logged that an inode exists.
6593	 * We do this for three reasons:
6594	 *
6595	 * 1) We might have had buffered writes to this inode that were
6596	 *    flushed and had their ordered extents completed in this
6597	 *    transaction, but we did not previously log the inode with
6598	 *    LOG_INODE_ALL. Later the inode was evicted and after that
6599	 *    it was loaded again and this LOG_INODE_EXISTS log operation
6600	 *    happened. We must make sure that if an explicit fsync against
6601	 *    the inode is performed later, it logs the new extents, an
6602	 *    updated inode item, etc, and syncs the log. The same logic
6603	 *    applies to direct IO writes instead of buffered writes.
6604	 *
6605	 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6606	 *    is logged with an i_size of 0 or whatever value was logged
6607	 *    before. If later the i_size of the inode is increased by a
6608	 *    truncate operation, the log is synced through an fsync of
6609	 *    some other inode and then finally an explicit fsync against
6610	 *    this inode is made, we must make sure this fsync logs the
6611	 *    inode with the new i_size, the hole between old i_size and
6612	 *    the new i_size, and syncs the log.
6613	 *
6614	 * 3) If we are logging that an ancestor inode exists as part of
6615	 *    logging a new name from a link or rename operation, don't update
6616	 *    its last_log_commit - otherwise if an explicit fsync is made
6617	 *    against an ancestor, the fsync considers the inode in the log
6618	 *    and doesn't sync the log, resulting in the ancestor missing after
6619	 *    a power failure unless the log was synced as part of an fsync
6620	 *    against any other unrelated inode.
6621	 */
6622	if (inode_only != LOG_INODE_EXISTS)
6623		inode->last_log_commit = inode->last_sub_trans;
6624	spin_unlock(&inode->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6625
6626	/*
6627	 * Reset the last_reflink_trans so that the next fsync does not need to
6628	 * go through the slower path when logging extents and their checksums.
 
 
6629	 */
6630	if (inode_only == LOG_INODE_ALL)
6631		inode->last_reflink_trans = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6632
6633out_unlock:
6634	mutex_unlock(&inode->log_mutex);
6635out:
6636	btrfs_free_path(path);
6637	btrfs_free_path(dst_path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6638
6639	if (ret)
6640		free_conflicting_inodes(ctx);
6641	else
6642		ret = log_conflicting_inodes(trans, inode->root, ctx);
 
 
6643
6644	if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6645		if (!ret)
6646			ret = log_new_delayed_dentries(trans, inode,
6647						       &delayed_ins_list, ctx);
6648
6649		btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6650					    &delayed_del_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6651	}
6652
 
6653	return ret;
6654}
6655
6656static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6657				 struct btrfs_inode *inode,
6658				 struct btrfs_log_ctx *ctx)
6659{
6660	struct btrfs_fs_info *fs_info = trans->fs_info;
6661	int ret;
6662	struct btrfs_path *path;
6663	struct btrfs_key key;
6664	struct btrfs_root *root = inode->root;
6665	const u64 ino = btrfs_ino(inode);
6666
6667	path = btrfs_alloc_path();
6668	if (!path)
6669		return -ENOMEM;
6670	path->skip_locking = 1;
6671	path->search_commit_root = 1;
6672
6673	key.objectid = ino;
6674	key.type = BTRFS_INODE_REF_KEY;
6675	key.offset = 0;
6676	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6677	if (ret < 0)
6678		goto out;
6679
6680	while (true) {
6681		struct extent_buffer *leaf = path->nodes[0];
6682		int slot = path->slots[0];
6683		u32 cur_offset = 0;
6684		u32 item_size;
6685		unsigned long ptr;
6686
6687		if (slot >= btrfs_header_nritems(leaf)) {
6688			ret = btrfs_next_leaf(root, path);
6689			if (ret < 0)
6690				goto out;
6691			else if (ret > 0)
6692				break;
6693			continue;
6694		}
6695
6696		btrfs_item_key_to_cpu(leaf, &key, slot);
6697		/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6698		if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6699			break;
6700
6701		item_size = btrfs_item_size(leaf, slot);
6702		ptr = btrfs_item_ptr_offset(leaf, slot);
6703		while (cur_offset < item_size) {
6704			struct btrfs_key inode_key;
6705			struct inode *dir_inode;
6706
6707			inode_key.type = BTRFS_INODE_ITEM_KEY;
6708			inode_key.offset = 0;
6709
6710			if (key.type == BTRFS_INODE_EXTREF_KEY) {
6711				struct btrfs_inode_extref *extref;
6712
6713				extref = (struct btrfs_inode_extref *)
6714					(ptr + cur_offset);
6715				inode_key.objectid = btrfs_inode_extref_parent(
6716					leaf, extref);
6717				cur_offset += sizeof(*extref);
6718				cur_offset += btrfs_inode_extref_name_len(leaf,
6719					extref);
6720			} else {
6721				inode_key.objectid = key.offset;
6722				cur_offset = item_size;
6723			}
6724
6725			dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
6726					       root);
6727			/*
6728			 * If the parent inode was deleted, return an error to
6729			 * fallback to a transaction commit. This is to prevent
6730			 * getting an inode that was moved from one parent A to
6731			 * a parent B, got its former parent A deleted and then
6732			 * it got fsync'ed, from existing at both parents after
6733			 * a log replay (and the old parent still existing).
6734			 * Example:
6735			 *
6736			 * mkdir /mnt/A
6737			 * mkdir /mnt/B
6738			 * touch /mnt/B/bar
6739			 * sync
6740			 * mv /mnt/B/bar /mnt/A/bar
6741			 * mv -T /mnt/A /mnt/B
6742			 * fsync /mnt/B/bar
6743			 * <power fail>
6744			 *
6745			 * If we ignore the old parent B which got deleted,
6746			 * after a log replay we would have file bar linked
6747			 * at both parents and the old parent B would still
6748			 * exist.
6749			 */
6750			if (IS_ERR(dir_inode)) {
6751				ret = PTR_ERR(dir_inode);
6752				goto out;
6753			}
6754
6755			if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6756				btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6757				continue;
6758			}
6759
6760			ctx->log_new_dentries = false;
6761			ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6762					      LOG_INODE_ALL, ctx);
6763			if (!ret && ctx->log_new_dentries)
6764				ret = log_new_dir_dentries(trans,
6765						   BTRFS_I(dir_inode), ctx);
6766			btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6767			if (ret)
6768				goto out;
6769		}
6770		path->slots[0]++;
6771	}
6772	ret = 0;
6773out:
6774	btrfs_free_path(path);
6775	return ret;
6776}
6777
6778static int log_new_ancestors(struct btrfs_trans_handle *trans,
6779			     struct btrfs_root *root,
6780			     struct btrfs_path *path,
6781			     struct btrfs_log_ctx *ctx)
6782{
6783	struct btrfs_key found_key;
6784
6785	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6786
6787	while (true) {
6788		struct btrfs_fs_info *fs_info = root->fs_info;
6789		struct extent_buffer *leaf;
6790		int slot;
 
6791		struct btrfs_key search_key;
6792		struct inode *inode;
6793		u64 ino;
6794		int ret = 0;
6795
6796		btrfs_release_path(path);
6797
6798		ino = found_key.offset;
6799
6800		search_key.objectid = found_key.offset;
6801		search_key.type = BTRFS_INODE_ITEM_KEY;
6802		search_key.offset = 0;
6803		inode = btrfs_iget(fs_info->sb, ino, root);
6804		if (IS_ERR(inode))
6805			return PTR_ERR(inode);
6806
6807		if (BTRFS_I(inode)->generation >= trans->transid &&
6808		    need_log_inode(trans, BTRFS_I(inode)))
6809			ret = btrfs_log_inode(trans, BTRFS_I(inode),
6810					      LOG_INODE_EXISTS, ctx);
6811		btrfs_add_delayed_iput(BTRFS_I(inode));
6812		if (ret)
6813			return ret;
6814
6815		if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6816			break;
6817
6818		search_key.type = BTRFS_INODE_REF_KEY;
6819		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6820		if (ret < 0)
6821			return ret;
6822
6823		leaf = path->nodes[0];
6824		slot = path->slots[0];
6825		if (slot >= btrfs_header_nritems(leaf)) {
6826			ret = btrfs_next_leaf(root, path);
6827			if (ret < 0)
6828				return ret;
6829			else if (ret > 0)
6830				return -ENOENT;
6831			leaf = path->nodes[0];
6832			slot = path->slots[0];
6833		}
6834
6835		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6836		if (found_key.objectid != search_key.objectid ||
6837		    found_key.type != BTRFS_INODE_REF_KEY)
6838			return -ENOENT;
6839	}
6840	return 0;
6841}
6842
6843static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6844				  struct btrfs_inode *inode,
6845				  struct dentry *parent,
6846				  struct btrfs_log_ctx *ctx)
6847{
6848	struct btrfs_root *root = inode->root;
 
6849	struct dentry *old_parent = NULL;
6850	struct super_block *sb = inode->vfs_inode.i_sb;
6851	int ret = 0;
6852
6853	while (true) {
6854		if (!parent || d_really_is_negative(parent) ||
6855		    sb != parent->d_sb)
6856			break;
6857
6858		inode = BTRFS_I(d_inode(parent));
6859		if (root != inode->root)
6860			break;
6861
6862		if (inode->generation >= trans->transid &&
6863		    need_log_inode(trans, inode)) {
6864			ret = btrfs_log_inode(trans, inode,
6865					      LOG_INODE_EXISTS, ctx);
6866			if (ret)
6867				break;
6868		}
6869		if (IS_ROOT(parent))
6870			break;
6871
6872		parent = dget_parent(parent);
6873		dput(old_parent);
6874		old_parent = parent;
6875	}
6876	dput(old_parent);
6877
6878	return ret;
6879}
6880
6881static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6882				 struct btrfs_inode *inode,
6883				 struct dentry *parent,
6884				 struct btrfs_log_ctx *ctx)
6885{
6886	struct btrfs_root *root = inode->root;
6887	const u64 ino = btrfs_ino(inode);
6888	struct btrfs_path *path;
6889	struct btrfs_key search_key;
6890	int ret;
6891
6892	/*
6893	 * For a single hard link case, go through a fast path that does not
6894	 * need to iterate the fs/subvolume tree.
6895	 */
6896	if (inode->vfs_inode.i_nlink < 2)
6897		return log_new_ancestors_fast(trans, inode, parent, ctx);
6898
6899	path = btrfs_alloc_path();
6900	if (!path)
6901		return -ENOMEM;
6902
6903	search_key.objectid = ino;
6904	search_key.type = BTRFS_INODE_REF_KEY;
6905	search_key.offset = 0;
6906again:
6907	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6908	if (ret < 0)
6909		goto out;
6910	if (ret == 0)
6911		path->slots[0]++;
6912
6913	while (true) {
6914		struct extent_buffer *leaf = path->nodes[0];
6915		int slot = path->slots[0];
6916		struct btrfs_key found_key;
6917
6918		if (slot >= btrfs_header_nritems(leaf)) {
6919			ret = btrfs_next_leaf(root, path);
6920			if (ret < 0)
6921				goto out;
6922			else if (ret > 0)
6923				break;
6924			continue;
6925		}
6926
6927		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6928		if (found_key.objectid != ino ||
6929		    found_key.type > BTRFS_INODE_EXTREF_KEY)
6930			break;
6931
6932		/*
6933		 * Don't deal with extended references because they are rare
6934		 * cases and too complex to deal with (we would need to keep
6935		 * track of which subitem we are processing for each item in
6936		 * this loop, etc). So just return some error to fallback to
6937		 * a transaction commit.
6938		 */
6939		if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6940			ret = -EMLINK;
6941			goto out;
6942		}
6943
6944		/*
6945		 * Logging ancestors needs to do more searches on the fs/subvol
6946		 * tree, so it releases the path as needed to avoid deadlocks.
6947		 * Keep track of the last inode ref key and resume from that key
6948		 * after logging all new ancestors for the current hard link.
6949		 */
6950		memcpy(&search_key, &found_key, sizeof(search_key));
6951
6952		ret = log_new_ancestors(trans, root, path, ctx);
6953		if (ret)
6954			goto out;
6955		btrfs_release_path(path);
6956		goto again;
6957	}
6958	ret = 0;
6959out:
6960	btrfs_free_path(path);
6961	return ret;
6962}
6963
6964/*
6965 * helper function around btrfs_log_inode to make sure newly created
6966 * parent directories also end up in the log.  A minimal inode and backref
6967 * only logging is done of any parent directories that are older than
6968 * the last committed transaction
6969 */
6970static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6971				  struct btrfs_inode *inode,
6972				  struct dentry *parent,
 
 
6973				  int inode_only,
6974				  struct btrfs_log_ctx *ctx)
6975{
6976	struct btrfs_root *root = inode->root;
6977	struct btrfs_fs_info *fs_info = root->fs_info;
 
6978	int ret = 0;
 
6979	bool log_dentries = false;
6980
 
 
6981	if (btrfs_test_opt(fs_info, NOTREELOG)) {
6982		ret = BTRFS_LOG_FORCE_COMMIT;
 
 
 
 
 
 
 
 
 
 
6983		goto end_no_trans;
6984	}
6985
6986	if (btrfs_root_refs(&root->root_item) == 0) {
6987		ret = BTRFS_LOG_FORCE_COMMIT;
6988		goto end_no_trans;
6989	}
6990
 
 
 
 
 
6991	/*
6992	 * Skip already logged inodes or inodes corresponding to tmpfiles
6993	 * (since logging them is pointless, a link count of 0 means they
6994	 * will never be accessible).
6995	 */
6996	if ((btrfs_inode_in_log(inode, trans->transid) &&
6997	     list_empty(&ctx->ordered_extents)) ||
6998	    inode->vfs_inode.i_nlink == 0) {
6999		ret = BTRFS_NO_LOG_SYNC;
7000		goto end_no_trans;
7001	}
7002
7003	ret = start_log_trans(trans, root, ctx);
7004	if (ret)
7005		goto end_no_trans;
7006
7007	ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7008	if (ret)
7009		goto end_trans;
7010
7011	/*
7012	 * for regular files, if its inode is already on disk, we don't
7013	 * have to worry about the parents at all.  This is because
7014	 * we can use the last_unlink_trans field to record renames
7015	 * and other fun in this file.
7016	 */
7017	if (S_ISREG(inode->vfs_inode.i_mode) &&
7018	    inode->generation < trans->transid &&
7019	    inode->last_unlink_trans < trans->transid) {
7020		ret = 0;
7021		goto end_trans;
7022	}
7023
7024	if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7025		log_dentries = true;
7026
7027	/*
7028	 * On unlink we must make sure all our current and old parent directory
7029	 * inodes are fully logged. This is to prevent leaving dangling
7030	 * directory index entries in directories that were our parents but are
7031	 * not anymore. Not doing this results in old parent directory being
7032	 * impossible to delete after log replay (rmdir will always fail with
7033	 * error -ENOTEMPTY).
7034	 *
7035	 * Example 1:
7036	 *
7037	 * mkdir testdir
7038	 * touch testdir/foo
7039	 * ln testdir/foo testdir/bar
7040	 * sync
7041	 * unlink testdir/bar
7042	 * xfs_io -c fsync testdir/foo
7043	 * <power failure>
7044	 * mount fs, triggers log replay
7045	 *
7046	 * If we don't log the parent directory (testdir), after log replay the
7047	 * directory still has an entry pointing to the file inode using the bar
7048	 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7049	 * the file inode has a link count of 1.
7050	 *
7051	 * Example 2:
7052	 *
7053	 * mkdir testdir
7054	 * touch foo
7055	 * ln foo testdir/foo2
7056	 * ln foo testdir/foo3
7057	 * sync
7058	 * unlink testdir/foo3
7059	 * xfs_io -c fsync foo
7060	 * <power failure>
7061	 * mount fs, triggers log replay
7062	 *
7063	 * Similar as the first example, after log replay the parent directory
7064	 * testdir still has an entry pointing to the inode file with name foo3
7065	 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7066	 * and has a link count of 2.
7067	 */
7068	if (inode->last_unlink_trans >= trans->transid) {
7069		ret = btrfs_log_all_parents(trans, inode, ctx);
7070		if (ret)
7071			goto end_trans;
7072	}
7073
7074	ret = log_all_new_ancestors(trans, inode, parent, ctx);
7075	if (ret)
7076		goto end_trans;
7077
7078	if (log_dentries)
7079		ret = log_new_dir_dentries(trans, inode, ctx);
7080	else
7081		ret = 0;
7082end_trans:
7083	if (ret < 0) {
7084		btrfs_set_log_full_commit(trans);
7085		ret = BTRFS_LOG_FORCE_COMMIT;
7086	}
7087
7088	if (ret)
7089		btrfs_remove_log_ctx(root, ctx);
7090	btrfs_end_log_trans(root);
7091end_no_trans:
7092	return ret;
7093}
7094
7095/*
7096 * it is not safe to log dentry if the chunk root has added new
7097 * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
7098 * If this returns 1, you must commit the transaction to safely get your
7099 * data on disk.
7100 */
7101int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7102			  struct dentry *dentry,
 
 
7103			  struct btrfs_log_ctx *ctx)
7104{
7105	struct dentry *parent = dget_parent(dentry);
7106	int ret;
7107
7108	ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7109				     LOG_INODE_ALL, ctx);
7110	dput(parent);
7111
7112	return ret;
7113}
7114
7115/*
7116 * should be called during mount to recover any replay any log trees
7117 * from the FS
7118 */
7119int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7120{
7121	int ret;
7122	struct btrfs_path *path;
7123	struct btrfs_trans_handle *trans;
7124	struct btrfs_key key;
7125	struct btrfs_key found_key;
7126	struct btrfs_root *log;
7127	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7128	struct walk_control wc = {
7129		.process_func = process_one_buffer,
7130		.stage = LOG_WALK_PIN_ONLY,
7131	};
7132
7133	path = btrfs_alloc_path();
7134	if (!path)
7135		return -ENOMEM;
7136
7137	set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7138
7139	trans = btrfs_start_transaction(fs_info->tree_root, 0);
7140	if (IS_ERR(trans)) {
7141		ret = PTR_ERR(trans);
7142		goto error;
7143	}
7144
7145	wc.trans = trans;
7146	wc.pin = 1;
7147
7148	ret = walk_log_tree(trans, log_root_tree, &wc);
7149	if (ret) {
7150		btrfs_abort_transaction(trans, ret);
 
7151		goto error;
7152	}
7153
7154again:
7155	key.objectid = BTRFS_TREE_LOG_OBJECTID;
7156	key.offset = (u64)-1;
7157	key.type = BTRFS_ROOT_ITEM_KEY;
7158
7159	while (1) {
7160		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7161
7162		if (ret < 0) {
7163			btrfs_abort_transaction(trans, ret);
 
7164			goto error;
7165		}
7166		if (ret > 0) {
7167			if (path->slots[0] == 0)
7168				break;
7169			path->slots[0]--;
7170		}
7171		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7172				      path->slots[0]);
7173		btrfs_release_path(path);
7174		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7175			break;
7176
7177		log = btrfs_read_tree_root(log_root_tree, &found_key);
7178		if (IS_ERR(log)) {
7179			ret = PTR_ERR(log);
7180			btrfs_abort_transaction(trans, ret);
 
7181			goto error;
7182		}
7183
7184		wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7185						   true);
7186		if (IS_ERR(wc.replay_dest)) {
7187			ret = PTR_ERR(wc.replay_dest);
7188
7189			/*
7190			 * We didn't find the subvol, likely because it was
7191			 * deleted.  This is ok, simply skip this log and go to
7192			 * the next one.
7193			 *
7194			 * We need to exclude the root because we can't have
7195			 * other log replays overwriting this log as we'll read
7196			 * it back in a few more times.  This will keep our
7197			 * block from being modified, and we'll just bail for
7198			 * each subsequent pass.
7199			 */
7200			if (ret == -ENOENT)
7201				ret = btrfs_pin_extent_for_log_replay(trans, log->node);
 
 
7202			btrfs_put_root(log);
7203
7204			if (!ret)
7205				goto next;
7206			btrfs_abort_transaction(trans, ret);
 
7207			goto error;
7208		}
7209
7210		wc.replay_dest->log_root = log;
7211		ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7212		if (ret)
7213			/* The loop needs to continue due to the root refs */
7214			btrfs_abort_transaction(trans, ret);
7215		else
7216			ret = walk_log_tree(trans, log, &wc);
7217
7218		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7219			ret = fixup_inode_link_counts(trans, wc.replay_dest,
7220						      path);
7221			if (ret)
7222				btrfs_abort_transaction(trans, ret);
7223		}
7224
7225		if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7226			struct btrfs_root *root = wc.replay_dest;
7227
7228			btrfs_release_path(path);
7229
7230			/*
7231			 * We have just replayed everything, and the highest
7232			 * objectid of fs roots probably has changed in case
7233			 * some inode_item's got replayed.
7234			 *
7235			 * root->objectid_mutex is not acquired as log replay
7236			 * could only happen during mount.
7237			 */
7238			ret = btrfs_init_root_free_objectid(root);
7239			if (ret)
7240				btrfs_abort_transaction(trans, ret);
7241		}
7242
7243		wc.replay_dest->log_root = NULL;
7244		btrfs_put_root(wc.replay_dest);
7245		btrfs_put_root(log);
7246
7247		if (ret)
7248			goto error;
7249next:
7250		if (found_key.offset == 0)
7251			break;
7252		key.offset = found_key.offset - 1;
7253	}
7254	btrfs_release_path(path);
7255
7256	/* step one is to pin it all, step two is to replay just inodes */
7257	if (wc.pin) {
7258		wc.pin = 0;
7259		wc.process_func = replay_one_buffer;
7260		wc.stage = LOG_WALK_REPLAY_INODES;
7261		goto again;
7262	}
7263	/* step three is to replay everything */
7264	if (wc.stage < LOG_WALK_REPLAY_ALL) {
7265		wc.stage++;
7266		goto again;
7267	}
7268
7269	btrfs_free_path(path);
7270
7271	/* step 4: commit the transaction, which also unpins the blocks */
7272	ret = btrfs_commit_transaction(trans);
7273	if (ret)
7274		return ret;
7275
7276	log_root_tree->log_root = NULL;
7277	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7278	btrfs_put_root(log_root_tree);
7279
7280	return 0;
7281error:
7282	if (wc.trans)
7283		btrfs_end_transaction(wc.trans);
7284	clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7285	btrfs_free_path(path);
7286	return ret;
7287}
7288
7289/*
7290 * there are some corner cases where we want to force a full
7291 * commit instead of allowing a directory to be logged.
7292 *
7293 * They revolve around files there were unlinked from the directory, and
7294 * this function updates the parent directory so that a full commit is
7295 * properly done if it is fsync'd later after the unlinks are done.
7296 *
7297 * Must be called before the unlink operations (updates to the subvolume tree,
7298 * inodes, etc) are done.
7299 */
7300void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7301			     struct btrfs_inode *dir, struct btrfs_inode *inode,
7302			     bool for_rename)
7303{
7304	/*
7305	 * when we're logging a file, if it hasn't been renamed
7306	 * or unlinked, and its inode is fully committed on disk,
7307	 * we don't have to worry about walking up the directory chain
7308	 * to log its parents.
7309	 *
7310	 * So, we use the last_unlink_trans field to put this transid
7311	 * into the file.  When the file is logged we check it and
7312	 * don't log the parents if the file is fully on disk.
7313	 */
7314	mutex_lock(&inode->log_mutex);
7315	inode->last_unlink_trans = trans->transid;
7316	mutex_unlock(&inode->log_mutex);
7317
7318	if (!for_rename)
7319		return;
7320
7321	/*
7322	 * If this directory was already logged, any new names will be logged
7323	 * with btrfs_log_new_name() and old names will be deleted from the log
7324	 * tree with btrfs_del_dir_entries_in_log() or with
7325	 * btrfs_del_inode_ref_in_log().
7326	 */
7327	if (inode_logged(trans, dir, NULL) == 1)
7328		return;
7329
7330	/*
7331	 * If the inode we're about to unlink was logged before, the log will be
7332	 * properly updated with the new name with btrfs_log_new_name() and the
7333	 * old name removed with btrfs_del_dir_entries_in_log() or with
7334	 * btrfs_del_inode_ref_in_log().
7335	 */
7336	if (inode_logged(trans, inode, NULL) == 1)
7337		return;
7338
7339	/*
7340	 * when renaming files across directories, if the directory
7341	 * there we're unlinking from gets fsync'd later on, there's
7342	 * no way to find the destination directory later and fsync it
7343	 * properly.  So, we have to be conservative and force commits
7344	 * so the new name gets discovered.
7345	 */
 
 
 
 
 
 
 
7346	mutex_lock(&dir->log_mutex);
7347	dir->last_unlink_trans = trans->transid;
7348	mutex_unlock(&dir->log_mutex);
7349}
7350
7351/*
7352 * Make sure that if someone attempts to fsync the parent directory of a deleted
7353 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7354 * that after replaying the log tree of the parent directory's root we will not
7355 * see the snapshot anymore and at log replay time we will not see any log tree
7356 * corresponding to the deleted snapshot's root, which could lead to replaying
7357 * it after replaying the log tree of the parent directory (which would replay
7358 * the snapshot delete operation).
7359 *
7360 * Must be called before the actual snapshot destroy operation (updates to the
7361 * parent root and tree of tree roots trees, etc) are done.
7362 */
7363void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7364				   struct btrfs_inode *dir)
7365{
7366	mutex_lock(&dir->log_mutex);
7367	dir->last_unlink_trans = trans->transid;
7368	mutex_unlock(&dir->log_mutex);
7369}
7370
7371/*
7372 * Update the log after adding a new name for an inode.
 
 
 
 
7373 *
7374 * @trans:              Transaction handle.
7375 * @old_dentry:         The dentry associated with the old name and the old
7376 *                      parent directory.
7377 * @old_dir:            The inode of the previous parent directory for the case
7378 *                      of a rename. For a link operation, it must be NULL.
7379 * @old_dir_index:      The index number associated with the old name, meaningful
7380 *                      only for rename operations (when @old_dir is not NULL).
7381 *                      Ignored for link operations.
7382 * @parent:             The dentry associated with the directory under which the
7383 *                      new name is located.
7384 *
7385 * Call this after adding a new name for an inode, as a result of a link or
7386 * rename operation, and it will properly update the log to reflect the new name.
7387 */
7388void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7389			struct dentry *old_dentry, struct btrfs_inode *old_dir,
7390			u64 old_dir_index, struct dentry *parent)
7391{
7392	struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7393	struct btrfs_root *root = inode->root;
7394	struct btrfs_log_ctx ctx;
7395	bool log_pinned = false;
7396	int ret;
7397
7398	/*
7399	 * this will force the logging code to walk the dentry chain
7400	 * up for the file
7401	 */
7402	if (!S_ISDIR(inode->vfs_inode.i_mode))
7403		inode->last_unlink_trans = trans->transid;
7404
7405	/*
7406	 * if this inode hasn't been logged and directory we're renaming it
7407	 * from hasn't been logged, we don't need to log it
7408	 */
7409	ret = inode_logged(trans, inode, NULL);
7410	if (ret < 0) {
7411		goto out;
7412	} else if (ret == 0) {
7413		if (!old_dir)
7414			return;
7415		/*
7416		 * If the inode was not logged and we are doing a rename (old_dir is not
7417		 * NULL), check if old_dir was logged - if it was not we can return and
7418		 * do nothing.
7419		 */
7420		ret = inode_logged(trans, old_dir, NULL);
7421		if (ret < 0)
7422			goto out;
7423		else if (ret == 0)
7424			return;
7425	}
7426	ret = 0;
7427
7428	/*
7429	 * If we are doing a rename (old_dir is not NULL) from a directory that
7430	 * was previously logged, make sure that on log replay we get the old
7431	 * dir entry deleted. This is needed because we will also log the new
7432	 * name of the renamed inode, so we need to make sure that after log
7433	 * replay we don't end up with both the new and old dir entries existing.
7434	 */
7435	if (old_dir && old_dir->logged_trans == trans->transid) {
7436		struct btrfs_root *log = old_dir->root->log_root;
7437		struct btrfs_path *path;
7438		struct fscrypt_name fname;
7439
7440		ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7441
7442		ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7443					     &old_dentry->d_name, 0, &fname);
7444		if (ret)
7445			goto out;
7446		/*
7447		 * We have two inodes to update in the log, the old directory and
7448		 * the inode that got renamed, so we must pin the log to prevent
7449		 * anyone from syncing the log until we have updated both inodes
7450		 * in the log.
7451		 */
7452		ret = join_running_log_trans(root);
7453		/*
7454		 * At least one of the inodes was logged before, so this should
7455		 * not fail, but if it does, it's not serious, just bail out and
7456		 * mark the log for a full commit.
7457		 */
7458		if (WARN_ON_ONCE(ret < 0)) {
7459			fscrypt_free_filename(&fname);
7460			goto out;
7461		}
7462
7463		log_pinned = true;
7464
7465		path = btrfs_alloc_path();
7466		if (!path) {
7467			ret = -ENOMEM;
7468			fscrypt_free_filename(&fname);
7469			goto out;
7470		}
7471
7472		/*
7473		 * Other concurrent task might be logging the old directory,
7474		 * as it can be triggered when logging other inode that had or
7475		 * still has a dentry in the old directory. We lock the old
7476		 * directory's log_mutex to ensure the deletion of the old
7477		 * name is persisted, because during directory logging we
7478		 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7479		 * the old name's dir index item is in the delayed items, so
7480		 * it could be missed by an in progress directory logging.
7481		 */
7482		mutex_lock(&old_dir->log_mutex);
7483		ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7484					&fname.disk_name, old_dir_index);
7485		if (ret > 0) {
7486			/*
7487			 * The dentry does not exist in the log, so record its
7488			 * deletion.
7489			 */
7490			btrfs_release_path(path);
7491			ret = insert_dir_log_key(trans, log, path,
7492						 btrfs_ino(old_dir),
7493						 old_dir_index, old_dir_index);
7494		}
7495		mutex_unlock(&old_dir->log_mutex);
7496
7497		btrfs_free_path(path);
7498		fscrypt_free_filename(&fname);
7499		if (ret < 0)
7500			goto out;
7501	}
 
 
7502
7503	btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
7504	ctx.logging_new_name = true;
7505	/*
7506	 * We don't care about the return value. If we fail to log the new name
7507	 * then we know the next attempt to sync the log will fallback to a full
7508	 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7509	 * we don't need to worry about getting a log committed that has an
7510	 * inconsistent state after a rename operation.
7511	 */
7512	btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7513	ASSERT(list_empty(&ctx.conflict_inodes));
7514out:
7515	/*
7516	 * If an error happened mark the log for a full commit because it's not
7517	 * consistent and up to date or we couldn't find out if one of the
7518	 * inodes was logged before in this transaction. Do it before unpinning
7519	 * the log, to avoid any races with someone else trying to commit it.
7520	 */
7521	if (ret < 0)
7522		btrfs_set_log_full_commit(trans);
7523	if (log_pinned)
7524		btrfs_end_log_trans(root);
7525}
7526