Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
17#include "backref.h"
18#include "compression.h"
19#include "qgroup.h"
20#include "inode-map.h"
21#include "block-group.h"
22#include "space-info.h"
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
36
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
95
96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct btrfs_inode *inode,
98 int inode_only,
99 const loff_t start,
100 const loff_t end,
101 struct btrfs_log_ctx *ctx);
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
142{
143 struct btrfs_fs_info *fs_info = root->fs_info;
144 int ret = 0;
145
146 mutex_lock(&root->log_mutex);
147
148 if (root->log_root) {
149 if (btrfs_need_log_full_commit(trans)) {
150 ret = -EAGAIN;
151 goto out;
152 }
153
154 if (!root->log_start_pid) {
155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 root->log_start_pid = current->pid;
157 } else if (root->log_start_pid != current->pid) {
158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 }
160 } else {
161 mutex_lock(&fs_info->tree_log_mutex);
162 if (!fs_info->log_root_tree)
163 ret = btrfs_init_log_root_tree(trans, fs_info);
164 mutex_unlock(&fs_info->tree_log_mutex);
165 if (ret)
166 goto out;
167
168 ret = btrfs_add_log_tree(trans, root);
169 if (ret)
170 goto out;
171
172 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
174 root->log_start_pid = current->pid;
175 }
176
177 atomic_inc(&root->log_batch);
178 atomic_inc(&root->log_writers);
179 if (ctx) {
180 int index = root->log_transid % 2;
181 list_add_tail(&ctx->list, &root->log_ctxs[index]);
182 ctx->log_transid = root->log_transid;
183 }
184
185out:
186 mutex_unlock(&root->log_mutex);
187 return ret;
188}
189
190/*
191 * returns 0 if there was a log transaction running and we were able
192 * to join, or returns -ENOENT if there were not transactions
193 * in progress
194 */
195static int join_running_log_trans(struct btrfs_root *root)
196{
197 int ret = -ENOENT;
198
199 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
200 return ret;
201
202 mutex_lock(&root->log_mutex);
203 if (root->log_root) {
204 ret = 0;
205 atomic_inc(&root->log_writers);
206 }
207 mutex_unlock(&root->log_mutex);
208 return ret;
209}
210
211/*
212 * This either makes the current running log transaction wait
213 * until you call btrfs_end_log_trans() or it makes any future
214 * log transactions wait until you call btrfs_end_log_trans()
215 */
216void btrfs_pin_log_trans(struct btrfs_root *root)
217{
218 mutex_lock(&root->log_mutex);
219 atomic_inc(&root->log_writers);
220 mutex_unlock(&root->log_mutex);
221}
222
223/*
224 * indicate we're done making changes to the log tree
225 * and wake up anyone waiting to do a sync
226 */
227void btrfs_end_log_trans(struct btrfs_root *root)
228{
229 if (atomic_dec_and_test(&root->log_writers)) {
230 /* atomic_dec_and_test implies a barrier */
231 cond_wake_up_nomb(&root->log_writer_wait);
232 }
233}
234
235static int btrfs_write_tree_block(struct extent_buffer *buf)
236{
237 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
238 buf->start + buf->len - 1);
239}
240
241static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
242{
243 filemap_fdatawait_range(buf->pages[0]->mapping,
244 buf->start, buf->start + buf->len - 1);
245}
246
247/*
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
252 */
253struct walk_control {
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
256 */
257 int free;
258
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
261 */
262 int write;
263
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
266 */
267 int wait;
268
269 /* pin only walk, we record which extents on disk belong to the
270 * log trees
271 */
272 int pin;
273
274 /* what stage of the replay code we're currently in */
275 int stage;
276
277 /*
278 * Ignore any items from the inode currently being processed. Needs
279 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
280 * the LOG_WALK_REPLAY_INODES stage.
281 */
282 bool ignore_cur_inode;
283
284 /* the root we are currently replaying */
285 struct btrfs_root *replay_dest;
286
287 /* the trans handle for the current replay */
288 struct btrfs_trans_handle *trans;
289
290 /* the function that gets used to process blocks we find in the
291 * tree. Note the extent_buffer might not be up to date when it is
292 * passed in, and it must be checked or read if you need the data
293 * inside it
294 */
295 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
296 struct walk_control *wc, u64 gen, int level);
297};
298
299/*
300 * process_func used to pin down extents, write them or wait on them
301 */
302static int process_one_buffer(struct btrfs_root *log,
303 struct extent_buffer *eb,
304 struct walk_control *wc, u64 gen, int level)
305{
306 struct btrfs_fs_info *fs_info = log->fs_info;
307 int ret = 0;
308
309 /*
310 * If this fs is mixed then we need to be able to process the leaves to
311 * pin down any logged extents, so we have to read the block.
312 */
313 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
314 ret = btrfs_read_buffer(eb, gen, level, NULL);
315 if (ret)
316 return ret;
317 }
318
319 if (wc->pin)
320 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
321 eb->len);
322
323 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
324 if (wc->pin && btrfs_header_level(eb) == 0)
325 ret = btrfs_exclude_logged_extents(eb);
326 if (wc->write)
327 btrfs_write_tree_block(eb);
328 if (wc->wait)
329 btrfs_wait_tree_block_writeback(eb);
330 }
331 return ret;
332}
333
334/*
335 * Item overwrite used by replay and tree logging. eb, slot and key all refer
336 * to the src data we are copying out.
337 *
338 * root is the tree we are copying into, and path is a scratch
339 * path for use in this function (it should be released on entry and
340 * will be released on exit).
341 *
342 * If the key is already in the destination tree the existing item is
343 * overwritten. If the existing item isn't big enough, it is extended.
344 * If it is too large, it is truncated.
345 *
346 * If the key isn't in the destination yet, a new item is inserted.
347 */
348static noinline int overwrite_item(struct btrfs_trans_handle *trans,
349 struct btrfs_root *root,
350 struct btrfs_path *path,
351 struct extent_buffer *eb, int slot,
352 struct btrfs_key *key)
353{
354 int ret;
355 u32 item_size;
356 u64 saved_i_size = 0;
357 int save_old_i_size = 0;
358 unsigned long src_ptr;
359 unsigned long dst_ptr;
360 int overwrite_root = 0;
361 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
362
363 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
364 overwrite_root = 1;
365
366 item_size = btrfs_item_size_nr(eb, slot);
367 src_ptr = btrfs_item_ptr_offset(eb, slot);
368
369 /* look for the key in the destination tree */
370 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
371 if (ret < 0)
372 return ret;
373
374 if (ret == 0) {
375 char *src_copy;
376 char *dst_copy;
377 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
378 path->slots[0]);
379 if (dst_size != item_size)
380 goto insert;
381
382 if (item_size == 0) {
383 btrfs_release_path(path);
384 return 0;
385 }
386 dst_copy = kmalloc(item_size, GFP_NOFS);
387 src_copy = kmalloc(item_size, GFP_NOFS);
388 if (!dst_copy || !src_copy) {
389 btrfs_release_path(path);
390 kfree(dst_copy);
391 kfree(src_copy);
392 return -ENOMEM;
393 }
394
395 read_extent_buffer(eb, src_copy, src_ptr, item_size);
396
397 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
398 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
399 item_size);
400 ret = memcmp(dst_copy, src_copy, item_size);
401
402 kfree(dst_copy);
403 kfree(src_copy);
404 /*
405 * they have the same contents, just return, this saves
406 * us from cowing blocks in the destination tree and doing
407 * extra writes that may not have been done by a previous
408 * sync
409 */
410 if (ret == 0) {
411 btrfs_release_path(path);
412 return 0;
413 }
414
415 /*
416 * We need to load the old nbytes into the inode so when we
417 * replay the extents we've logged we get the right nbytes.
418 */
419 if (inode_item) {
420 struct btrfs_inode_item *item;
421 u64 nbytes;
422 u32 mode;
423
424 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
425 struct btrfs_inode_item);
426 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
427 item = btrfs_item_ptr(eb, slot,
428 struct btrfs_inode_item);
429 btrfs_set_inode_nbytes(eb, item, nbytes);
430
431 /*
432 * If this is a directory we need to reset the i_size to
433 * 0 so that we can set it up properly when replaying
434 * the rest of the items in this log.
435 */
436 mode = btrfs_inode_mode(eb, item);
437 if (S_ISDIR(mode))
438 btrfs_set_inode_size(eb, item, 0);
439 }
440 } else if (inode_item) {
441 struct btrfs_inode_item *item;
442 u32 mode;
443
444 /*
445 * New inode, set nbytes to 0 so that the nbytes comes out
446 * properly when we replay the extents.
447 */
448 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
449 btrfs_set_inode_nbytes(eb, item, 0);
450
451 /*
452 * If this is a directory we need to reset the i_size to 0 so
453 * that we can set it up properly when replaying the rest of
454 * the items in this log.
455 */
456 mode = btrfs_inode_mode(eb, item);
457 if (S_ISDIR(mode))
458 btrfs_set_inode_size(eb, item, 0);
459 }
460insert:
461 btrfs_release_path(path);
462 /* try to insert the key into the destination tree */
463 path->skip_release_on_error = 1;
464 ret = btrfs_insert_empty_item(trans, root, path,
465 key, item_size);
466 path->skip_release_on_error = 0;
467
468 /* make sure any existing item is the correct size */
469 if (ret == -EEXIST || ret == -EOVERFLOW) {
470 u32 found_size;
471 found_size = btrfs_item_size_nr(path->nodes[0],
472 path->slots[0]);
473 if (found_size > item_size)
474 btrfs_truncate_item(path, item_size, 1);
475 else if (found_size < item_size)
476 btrfs_extend_item(path, item_size - found_size);
477 } else if (ret) {
478 return ret;
479 }
480 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
481 path->slots[0]);
482
483 /* don't overwrite an existing inode if the generation number
484 * was logged as zero. This is done when the tree logging code
485 * is just logging an inode to make sure it exists after recovery.
486 *
487 * Also, don't overwrite i_size on directories during replay.
488 * log replay inserts and removes directory items based on the
489 * state of the tree found in the subvolume, and i_size is modified
490 * as it goes
491 */
492 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
493 struct btrfs_inode_item *src_item;
494 struct btrfs_inode_item *dst_item;
495
496 src_item = (struct btrfs_inode_item *)src_ptr;
497 dst_item = (struct btrfs_inode_item *)dst_ptr;
498
499 if (btrfs_inode_generation(eb, src_item) == 0) {
500 struct extent_buffer *dst_eb = path->nodes[0];
501 const u64 ino_size = btrfs_inode_size(eb, src_item);
502
503 /*
504 * For regular files an ino_size == 0 is used only when
505 * logging that an inode exists, as part of a directory
506 * fsync, and the inode wasn't fsynced before. In this
507 * case don't set the size of the inode in the fs/subvol
508 * tree, otherwise we would be throwing valid data away.
509 */
510 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
511 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
512 ino_size != 0)
513 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
514 goto no_copy;
515 }
516
517 if (overwrite_root &&
518 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 save_old_i_size = 1;
521 saved_i_size = btrfs_inode_size(path->nodes[0],
522 dst_item);
523 }
524 }
525
526 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 src_ptr, item_size);
528
529 if (save_old_i_size) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
533 }
534
535 /* make sure the generation is filled in */
536 if (key->type == BTRFS_INODE_ITEM_KEY) {
537 struct btrfs_inode_item *dst_item;
538 dst_item = (struct btrfs_inode_item *)dst_ptr;
539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 btrfs_set_inode_generation(path->nodes[0], dst_item,
541 trans->transid);
542 }
543 }
544no_copy:
545 btrfs_mark_buffer_dirty(path->nodes[0]);
546 btrfs_release_path(path);
547 return 0;
548}
549
550/*
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
553 */
554static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 u64 objectid)
556{
557 struct inode *inode;
558
559 inode = btrfs_iget(root->fs_info->sb, objectid, root);
560 if (IS_ERR(inode))
561 inode = NULL;
562 return inode;
563}
564
565/* replays a single extent in 'eb' at 'slot' with 'key' into the
566 * subvolume 'root'. path is released on entry and should be released
567 * on exit.
568 *
569 * extents in the log tree have not been allocated out of the extent
570 * tree yet. So, this completes the allocation, taking a reference
571 * as required if the extent already exists or creating a new extent
572 * if it isn't in the extent allocation tree yet.
573 *
574 * The extent is inserted into the file, dropping any existing extents
575 * from the file that overlap the new one.
576 */
577static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
578 struct btrfs_root *root,
579 struct btrfs_path *path,
580 struct extent_buffer *eb, int slot,
581 struct btrfs_key *key)
582{
583 struct btrfs_fs_info *fs_info = root->fs_info;
584 int found_type;
585 u64 extent_end;
586 u64 start = key->offset;
587 u64 nbytes = 0;
588 struct btrfs_file_extent_item *item;
589 struct inode *inode = NULL;
590 unsigned long size;
591 int ret = 0;
592
593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 found_type = btrfs_file_extent_type(eb, item);
595
596 if (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 nbytes = btrfs_file_extent_num_bytes(eb, item);
599 extent_end = start + nbytes;
600
601 /*
602 * We don't add to the inodes nbytes if we are prealloc or a
603 * hole.
604 */
605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 nbytes = 0;
607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
608 size = btrfs_file_extent_ram_bytes(eb, item);
609 nbytes = btrfs_file_extent_ram_bytes(eb, item);
610 extent_end = ALIGN(start + size,
611 fs_info->sectorsize);
612 } else {
613 ret = 0;
614 goto out;
615 }
616
617 inode = read_one_inode(root, key->objectid);
618 if (!inode) {
619 ret = -EIO;
620 goto out;
621 }
622
623 /*
624 * first check to see if we already have this extent in the
625 * file. This must be done before the btrfs_drop_extents run
626 * so we don't try to drop this extent.
627 */
628 ret = btrfs_lookup_file_extent(trans, root, path,
629 btrfs_ino(BTRFS_I(inode)), start, 0);
630
631 if (ret == 0 &&
632 (found_type == BTRFS_FILE_EXTENT_REG ||
633 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
634 struct btrfs_file_extent_item cmp1;
635 struct btrfs_file_extent_item cmp2;
636 struct btrfs_file_extent_item *existing;
637 struct extent_buffer *leaf;
638
639 leaf = path->nodes[0];
640 existing = btrfs_item_ptr(leaf, path->slots[0],
641 struct btrfs_file_extent_item);
642
643 read_extent_buffer(eb, &cmp1, (unsigned long)item,
644 sizeof(cmp1));
645 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
646 sizeof(cmp2));
647
648 /*
649 * we already have a pointer to this exact extent,
650 * we don't have to do anything
651 */
652 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
653 btrfs_release_path(path);
654 goto out;
655 }
656 }
657 btrfs_release_path(path);
658
659 /* drop any overlapping extents */
660 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
661 if (ret)
662 goto out;
663
664 if (found_type == BTRFS_FILE_EXTENT_REG ||
665 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
666 u64 offset;
667 unsigned long dest_offset;
668 struct btrfs_key ins;
669
670 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
671 btrfs_fs_incompat(fs_info, NO_HOLES))
672 goto update_inode;
673
674 ret = btrfs_insert_empty_item(trans, root, path, key,
675 sizeof(*item));
676 if (ret)
677 goto out;
678 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
679 path->slots[0]);
680 copy_extent_buffer(path->nodes[0], eb, dest_offset,
681 (unsigned long)item, sizeof(*item));
682
683 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
684 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
685 ins.type = BTRFS_EXTENT_ITEM_KEY;
686 offset = key->offset - btrfs_file_extent_offset(eb, item);
687
688 /*
689 * Manually record dirty extent, as here we did a shallow
690 * file extent item copy and skip normal backref update,
691 * but modifying extent tree all by ourselves.
692 * So need to manually record dirty extent for qgroup,
693 * as the owner of the file extent changed from log tree
694 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
695 */
696 ret = btrfs_qgroup_trace_extent(trans,
697 btrfs_file_extent_disk_bytenr(eb, item),
698 btrfs_file_extent_disk_num_bytes(eb, item),
699 GFP_NOFS);
700 if (ret < 0)
701 goto out;
702
703 if (ins.objectid > 0) {
704 struct btrfs_ref ref = { 0 };
705 u64 csum_start;
706 u64 csum_end;
707 LIST_HEAD(ordered_sums);
708
709 /*
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
712 */
713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
714 ins.offset);
715 if (ret == 0) {
716 btrfs_init_generic_ref(&ref,
717 BTRFS_ADD_DELAYED_REF,
718 ins.objectid, ins.offset, 0);
719 btrfs_init_data_ref(&ref,
720 root->root_key.objectid,
721 key->objectid, offset);
722 ret = btrfs_inc_extent_ref(trans, &ref);
723 if (ret)
724 goto out;
725 } else {
726 /*
727 * insert the extent pointer in the extent
728 * allocation tree
729 */
730 ret = btrfs_alloc_logged_file_extent(trans,
731 root->root_key.objectid,
732 key->objectid, offset, &ins);
733 if (ret)
734 goto out;
735 }
736 btrfs_release_path(path);
737
738 if (btrfs_file_extent_compression(eb, item)) {
739 csum_start = ins.objectid;
740 csum_end = csum_start + ins.offset;
741 } else {
742 csum_start = ins.objectid +
743 btrfs_file_extent_offset(eb, item);
744 csum_end = csum_start +
745 btrfs_file_extent_num_bytes(eb, item);
746 }
747
748 ret = btrfs_lookup_csums_range(root->log_root,
749 csum_start, csum_end - 1,
750 &ordered_sums, 0);
751 if (ret)
752 goto out;
753 /*
754 * Now delete all existing cums in the csum root that
755 * cover our range. We do this because we can have an
756 * extent that is completely referenced by one file
757 * extent item and partially referenced by another
758 * file extent item (like after using the clone or
759 * extent_same ioctls). In this case if we end up doing
760 * the replay of the one that partially references the
761 * extent first, and we do not do the csum deletion
762 * below, we can get 2 csum items in the csum tree that
763 * overlap each other. For example, imagine our log has
764 * the two following file extent items:
765 *
766 * key (257 EXTENT_DATA 409600)
767 * extent data disk byte 12845056 nr 102400
768 * extent data offset 20480 nr 20480 ram 102400
769 *
770 * key (257 EXTENT_DATA 819200)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 0 nr 102400 ram 102400
773 *
774 * Where the second one fully references the 100K extent
775 * that starts at disk byte 12845056, and the log tree
776 * has a single csum item that covers the entire range
777 * of the extent:
778 *
779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
780 *
781 * After the first file extent item is replayed, the
782 * csum tree gets the following csum item:
783 *
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 *
786 * Which covers the 20K sub-range starting at offset 20K
787 * of our extent. Now when we replay the second file
788 * extent item, if we do not delete existing csum items
789 * that cover any of its blocks, we end up getting two
790 * csum items in our csum tree that overlap each other:
791 *
792 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
793 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
794 *
795 * Which is a problem, because after this anyone trying
796 * to lookup up for the checksum of any block of our
797 * extent starting at an offset of 40K or higher, will
798 * end up looking at the second csum item only, which
799 * does not contain the checksum for any block starting
800 * at offset 40K or higher of our extent.
801 */
802 while (!list_empty(&ordered_sums)) {
803 struct btrfs_ordered_sum *sums;
804 sums = list_entry(ordered_sums.next,
805 struct btrfs_ordered_sum,
806 list);
807 if (!ret)
808 ret = btrfs_del_csums(trans,
809 fs_info->csum_root,
810 sums->bytenr,
811 sums->len);
812 if (!ret)
813 ret = btrfs_csum_file_blocks(trans,
814 fs_info->csum_root, sums);
815 list_del(&sums->list);
816 kfree(sums);
817 }
818 if (ret)
819 goto out;
820 } else {
821 btrfs_release_path(path);
822 }
823 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
824 /* inline extents are easy, we just overwrite them */
825 ret = overwrite_item(trans, root, path, eb, slot, key);
826 if (ret)
827 goto out;
828 }
829
830 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
831 extent_end - start);
832 if (ret)
833 goto out;
834
835 inode_add_bytes(inode, nbytes);
836update_inode:
837 ret = btrfs_update_inode(trans, root, inode);
838out:
839 if (inode)
840 iput(inode);
841 return ret;
842}
843
844/*
845 * when cleaning up conflicts between the directory names in the
846 * subvolume, directory names in the log and directory names in the
847 * inode back references, we may have to unlink inodes from directories.
848 *
849 * This is a helper function to do the unlink of a specific directory
850 * item
851 */
852static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
853 struct btrfs_root *root,
854 struct btrfs_path *path,
855 struct btrfs_inode *dir,
856 struct btrfs_dir_item *di)
857{
858 struct inode *inode;
859 char *name;
860 int name_len;
861 struct extent_buffer *leaf;
862 struct btrfs_key location;
863 int ret;
864
865 leaf = path->nodes[0];
866
867 btrfs_dir_item_key_to_cpu(leaf, di, &location);
868 name_len = btrfs_dir_name_len(leaf, di);
869 name = kmalloc(name_len, GFP_NOFS);
870 if (!name)
871 return -ENOMEM;
872
873 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
874 btrfs_release_path(path);
875
876 inode = read_one_inode(root, location.objectid);
877 if (!inode) {
878 ret = -EIO;
879 goto out;
880 }
881
882 ret = link_to_fixup_dir(trans, root, path, location.objectid);
883 if (ret)
884 goto out;
885
886 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
887 name_len);
888 if (ret)
889 goto out;
890 else
891 ret = btrfs_run_delayed_items(trans);
892out:
893 kfree(name);
894 iput(inode);
895 return ret;
896}
897
898/*
899 * helper function to see if a given name and sequence number found
900 * in an inode back reference are already in a directory and correctly
901 * point to this inode
902 */
903static noinline int inode_in_dir(struct btrfs_root *root,
904 struct btrfs_path *path,
905 u64 dirid, u64 objectid, u64 index,
906 const char *name, int name_len)
907{
908 struct btrfs_dir_item *di;
909 struct btrfs_key location;
910 int match = 0;
911
912 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
913 index, name, name_len, 0);
914 if (di && !IS_ERR(di)) {
915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
916 if (location.objectid != objectid)
917 goto out;
918 } else
919 goto out;
920 btrfs_release_path(path);
921
922 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
923 if (di && !IS_ERR(di)) {
924 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
925 if (location.objectid != objectid)
926 goto out;
927 } else
928 goto out;
929 match = 1;
930out:
931 btrfs_release_path(path);
932 return match;
933}
934
935/*
936 * helper function to check a log tree for a named back reference in
937 * an inode. This is used to decide if a back reference that is
938 * found in the subvolume conflicts with what we find in the log.
939 *
940 * inode backreferences may have multiple refs in a single item,
941 * during replay we process one reference at a time, and we don't
942 * want to delete valid links to a file from the subvolume if that
943 * link is also in the log.
944 */
945static noinline int backref_in_log(struct btrfs_root *log,
946 struct btrfs_key *key,
947 u64 ref_objectid,
948 const char *name, int namelen)
949{
950 struct btrfs_path *path;
951 int ret;
952
953 path = btrfs_alloc_path();
954 if (!path)
955 return -ENOMEM;
956
957 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
958 if (ret < 0) {
959 goto out;
960 } else if (ret == 1) {
961 ret = 0;
962 goto out;
963 }
964
965 if (key->type == BTRFS_INODE_EXTREF_KEY)
966 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
967 path->slots[0],
968 ref_objectid,
969 name, namelen);
970 else
971 ret = !!btrfs_find_name_in_backref(path->nodes[0],
972 path->slots[0],
973 name, namelen);
974out:
975 btrfs_free_path(path);
976 return ret;
977}
978
979static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 struct btrfs_root *log_root,
983 struct btrfs_inode *dir,
984 struct btrfs_inode *inode,
985 u64 inode_objectid, u64 parent_objectid,
986 u64 ref_index, char *name, int namelen,
987 int *search_done)
988{
989 int ret;
990 char *victim_name;
991 int victim_name_len;
992 struct extent_buffer *leaf;
993 struct btrfs_dir_item *di;
994 struct btrfs_key search_key;
995 struct btrfs_inode_extref *extref;
996
997again:
998 /* Search old style refs */
999 search_key.objectid = inode_objectid;
1000 search_key.type = BTRFS_INODE_REF_KEY;
1001 search_key.offset = parent_objectid;
1002 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1003 if (ret == 0) {
1004 struct btrfs_inode_ref *victim_ref;
1005 unsigned long ptr;
1006 unsigned long ptr_end;
1007
1008 leaf = path->nodes[0];
1009
1010 /* are we trying to overwrite a back ref for the root directory
1011 * if so, just jump out, we're done
1012 */
1013 if (search_key.objectid == search_key.offset)
1014 return 1;
1015
1016 /* check all the names in this back reference to see
1017 * if they are in the log. if so, we allow them to stay
1018 * otherwise they must be unlinked as a conflict
1019 */
1020 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1021 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1022 while (ptr < ptr_end) {
1023 victim_ref = (struct btrfs_inode_ref *)ptr;
1024 victim_name_len = btrfs_inode_ref_name_len(leaf,
1025 victim_ref);
1026 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1027 if (!victim_name)
1028 return -ENOMEM;
1029
1030 read_extent_buffer(leaf, victim_name,
1031 (unsigned long)(victim_ref + 1),
1032 victim_name_len);
1033
1034 ret = backref_in_log(log_root, &search_key,
1035 parent_objectid, victim_name,
1036 victim_name_len);
1037 if (ret < 0) {
1038 kfree(victim_name);
1039 return ret;
1040 } else if (!ret) {
1041 inc_nlink(&inode->vfs_inode);
1042 btrfs_release_path(path);
1043
1044 ret = btrfs_unlink_inode(trans, root, dir, inode,
1045 victim_name, victim_name_len);
1046 kfree(victim_name);
1047 if (ret)
1048 return ret;
1049 ret = btrfs_run_delayed_items(trans);
1050 if (ret)
1051 return ret;
1052 *search_done = 1;
1053 goto again;
1054 }
1055 kfree(victim_name);
1056
1057 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1058 }
1059
1060 /*
1061 * NOTE: we have searched root tree and checked the
1062 * corresponding ref, it does not need to check again.
1063 */
1064 *search_done = 1;
1065 }
1066 btrfs_release_path(path);
1067
1068 /* Same search but for extended refs */
1069 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070 inode_objectid, parent_objectid, 0,
1071 0);
1072 if (!IS_ERR_OR_NULL(extref)) {
1073 u32 item_size;
1074 u32 cur_offset = 0;
1075 unsigned long base;
1076 struct inode *victim_parent;
1077
1078 leaf = path->nodes[0];
1079
1080 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1082
1083 while (cur_offset < item_size) {
1084 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1085
1086 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1087
1088 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089 goto next;
1090
1091 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1092 if (!victim_name)
1093 return -ENOMEM;
1094 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095 victim_name_len);
1096
1097 search_key.objectid = inode_objectid;
1098 search_key.type = BTRFS_INODE_EXTREF_KEY;
1099 search_key.offset = btrfs_extref_hash(parent_objectid,
1100 victim_name,
1101 victim_name_len);
1102 ret = backref_in_log(log_root, &search_key,
1103 parent_objectid, victim_name,
1104 victim_name_len);
1105 if (ret < 0) {
1106 return ret;
1107 } else if (!ret) {
1108 ret = -ENOENT;
1109 victim_parent = read_one_inode(root,
1110 parent_objectid);
1111 if (victim_parent) {
1112 inc_nlink(&inode->vfs_inode);
1113 btrfs_release_path(path);
1114
1115 ret = btrfs_unlink_inode(trans, root,
1116 BTRFS_I(victim_parent),
1117 inode,
1118 victim_name,
1119 victim_name_len);
1120 if (!ret)
1121 ret = btrfs_run_delayed_items(
1122 trans);
1123 }
1124 iput(victim_parent);
1125 kfree(victim_name);
1126 if (ret)
1127 return ret;
1128 *search_done = 1;
1129 goto again;
1130 }
1131 kfree(victim_name);
1132next:
1133 cur_offset += victim_name_len + sizeof(*extref);
1134 }
1135 *search_done = 1;
1136 }
1137 btrfs_release_path(path);
1138
1139 /* look for a conflicting sequence number */
1140 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1141 ref_index, name, namelen, 0);
1142 if (di && !IS_ERR(di)) {
1143 ret = drop_one_dir_item(trans, root, path, dir, di);
1144 if (ret)
1145 return ret;
1146 }
1147 btrfs_release_path(path);
1148
1149 /* look for a conflicting name */
1150 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1151 name, namelen, 0);
1152 if (di && !IS_ERR(di)) {
1153 ret = drop_one_dir_item(trans, root, path, dir, di);
1154 if (ret)
1155 return ret;
1156 }
1157 btrfs_release_path(path);
1158
1159 return 0;
1160}
1161
1162static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1163 u32 *namelen, char **name, u64 *index,
1164 u64 *parent_objectid)
1165{
1166 struct btrfs_inode_extref *extref;
1167
1168 extref = (struct btrfs_inode_extref *)ref_ptr;
1169
1170 *namelen = btrfs_inode_extref_name_len(eb, extref);
1171 *name = kmalloc(*namelen, GFP_NOFS);
1172 if (*name == NULL)
1173 return -ENOMEM;
1174
1175 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1176 *namelen);
1177
1178 if (index)
1179 *index = btrfs_inode_extref_index(eb, extref);
1180 if (parent_objectid)
1181 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1182
1183 return 0;
1184}
1185
1186static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1187 u32 *namelen, char **name, u64 *index)
1188{
1189 struct btrfs_inode_ref *ref;
1190
1191 ref = (struct btrfs_inode_ref *)ref_ptr;
1192
1193 *namelen = btrfs_inode_ref_name_len(eb, ref);
1194 *name = kmalloc(*namelen, GFP_NOFS);
1195 if (*name == NULL)
1196 return -ENOMEM;
1197
1198 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1199
1200 if (index)
1201 *index = btrfs_inode_ref_index(eb, ref);
1202
1203 return 0;
1204}
1205
1206/*
1207 * Take an inode reference item from the log tree and iterate all names from the
1208 * inode reference item in the subvolume tree with the same key (if it exists).
1209 * For any name that is not in the inode reference item from the log tree, do a
1210 * proper unlink of that name (that is, remove its entry from the inode
1211 * reference item and both dir index keys).
1212 */
1213static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1214 struct btrfs_root *root,
1215 struct btrfs_path *path,
1216 struct btrfs_inode *inode,
1217 struct extent_buffer *log_eb,
1218 int log_slot,
1219 struct btrfs_key *key)
1220{
1221 int ret;
1222 unsigned long ref_ptr;
1223 unsigned long ref_end;
1224 struct extent_buffer *eb;
1225
1226again:
1227 btrfs_release_path(path);
1228 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1229 if (ret > 0) {
1230 ret = 0;
1231 goto out;
1232 }
1233 if (ret < 0)
1234 goto out;
1235
1236 eb = path->nodes[0];
1237 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1238 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1239 while (ref_ptr < ref_end) {
1240 char *name = NULL;
1241 int namelen;
1242 u64 parent_id;
1243
1244 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1245 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1246 NULL, &parent_id);
1247 } else {
1248 parent_id = key->offset;
1249 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1250 NULL);
1251 }
1252 if (ret)
1253 goto out;
1254
1255 if (key->type == BTRFS_INODE_EXTREF_KEY)
1256 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1257 parent_id, name,
1258 namelen);
1259 else
1260 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1261 name, namelen);
1262
1263 if (!ret) {
1264 struct inode *dir;
1265
1266 btrfs_release_path(path);
1267 dir = read_one_inode(root, parent_id);
1268 if (!dir) {
1269 ret = -ENOENT;
1270 kfree(name);
1271 goto out;
1272 }
1273 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1274 inode, name, namelen);
1275 kfree(name);
1276 iput(dir);
1277 if (ret)
1278 goto out;
1279 goto again;
1280 }
1281
1282 kfree(name);
1283 ref_ptr += namelen;
1284 if (key->type == BTRFS_INODE_EXTREF_KEY)
1285 ref_ptr += sizeof(struct btrfs_inode_extref);
1286 else
1287 ref_ptr += sizeof(struct btrfs_inode_ref);
1288 }
1289 ret = 0;
1290 out:
1291 btrfs_release_path(path);
1292 return ret;
1293}
1294
1295static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1296 const u8 ref_type, const char *name,
1297 const int namelen)
1298{
1299 struct btrfs_key key;
1300 struct btrfs_path *path;
1301 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1302 int ret;
1303
1304 path = btrfs_alloc_path();
1305 if (!path)
1306 return -ENOMEM;
1307
1308 key.objectid = btrfs_ino(BTRFS_I(inode));
1309 key.type = ref_type;
1310 if (key.type == BTRFS_INODE_REF_KEY)
1311 key.offset = parent_id;
1312 else
1313 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1314
1315 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1316 if (ret < 0)
1317 goto out;
1318 if (ret > 0) {
1319 ret = 0;
1320 goto out;
1321 }
1322 if (key.type == BTRFS_INODE_EXTREF_KEY)
1323 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1324 path->slots[0], parent_id, name, namelen);
1325 else
1326 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327 name, namelen);
1328
1329out:
1330 btrfs_free_path(path);
1331 return ret;
1332}
1333
1334static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335 struct inode *dir, struct inode *inode, const char *name,
1336 int namelen, u64 ref_index)
1337{
1338 struct btrfs_dir_item *dir_item;
1339 struct btrfs_key key;
1340 struct btrfs_path *path;
1341 struct inode *other_inode = NULL;
1342 int ret;
1343
1344 path = btrfs_alloc_path();
1345 if (!path)
1346 return -ENOMEM;
1347
1348 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349 btrfs_ino(BTRFS_I(dir)),
1350 name, namelen, 0);
1351 if (!dir_item) {
1352 btrfs_release_path(path);
1353 goto add_link;
1354 } else if (IS_ERR(dir_item)) {
1355 ret = PTR_ERR(dir_item);
1356 goto out;
1357 }
1358
1359 /*
1360 * Our inode's dentry collides with the dentry of another inode which is
1361 * in the log but not yet processed since it has a higher inode number.
1362 * So delete that other dentry.
1363 */
1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365 btrfs_release_path(path);
1366 other_inode = read_one_inode(root, key.objectid);
1367 if (!other_inode) {
1368 ret = -ENOENT;
1369 goto out;
1370 }
1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372 name, namelen);
1373 if (ret)
1374 goto out;
1375 /*
1376 * If we dropped the link count to 0, bump it so that later the iput()
1377 * on the inode will not free it. We will fixup the link count later.
1378 */
1379 if (other_inode->i_nlink == 0)
1380 inc_nlink(other_inode);
1381
1382 ret = btrfs_run_delayed_items(trans);
1383 if (ret)
1384 goto out;
1385add_link:
1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387 name, namelen, 0, ref_index);
1388out:
1389 iput(other_inode);
1390 btrfs_free_path(path);
1391
1392 return ret;
1393}
1394
1395/*
1396 * replay one inode back reference item found in the log tree.
1397 * eb, slot and key refer to the buffer and key found in the log tree.
1398 * root is the destination we are replaying into, and path is for temp
1399 * use by this function. (it should be released on return).
1400 */
1401static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_root *log,
1404 struct btrfs_path *path,
1405 struct extent_buffer *eb, int slot,
1406 struct btrfs_key *key)
1407{
1408 struct inode *dir = NULL;
1409 struct inode *inode = NULL;
1410 unsigned long ref_ptr;
1411 unsigned long ref_end;
1412 char *name = NULL;
1413 int namelen;
1414 int ret;
1415 int search_done = 0;
1416 int log_ref_ver = 0;
1417 u64 parent_objectid;
1418 u64 inode_objectid;
1419 u64 ref_index = 0;
1420 int ref_struct_size;
1421
1422 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424
1425 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426 struct btrfs_inode_extref *r;
1427
1428 ref_struct_size = sizeof(struct btrfs_inode_extref);
1429 log_ref_ver = 1;
1430 r = (struct btrfs_inode_extref *)ref_ptr;
1431 parent_objectid = btrfs_inode_extref_parent(eb, r);
1432 } else {
1433 ref_struct_size = sizeof(struct btrfs_inode_ref);
1434 parent_objectid = key->offset;
1435 }
1436 inode_objectid = key->objectid;
1437
1438 /*
1439 * it is possible that we didn't log all the parent directories
1440 * for a given inode. If we don't find the dir, just don't
1441 * copy the back ref in. The link count fixup code will take
1442 * care of the rest
1443 */
1444 dir = read_one_inode(root, parent_objectid);
1445 if (!dir) {
1446 ret = -ENOENT;
1447 goto out;
1448 }
1449
1450 inode = read_one_inode(root, inode_objectid);
1451 if (!inode) {
1452 ret = -EIO;
1453 goto out;
1454 }
1455
1456 while (ref_ptr < ref_end) {
1457 if (log_ref_ver) {
1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459 &ref_index, &parent_objectid);
1460 /*
1461 * parent object can change from one array
1462 * item to another.
1463 */
1464 if (!dir)
1465 dir = read_one_inode(root, parent_objectid);
1466 if (!dir) {
1467 ret = -ENOENT;
1468 goto out;
1469 }
1470 } else {
1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472 &ref_index);
1473 }
1474 if (ret)
1475 goto out;
1476
1477 /* if we already have a perfect match, we're done */
1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479 btrfs_ino(BTRFS_I(inode)), ref_index,
1480 name, namelen)) {
1481 /*
1482 * look for a conflicting back reference in the
1483 * metadata. if we find one we have to unlink that name
1484 * of the file before we add our new link. Later on, we
1485 * overwrite any existing back reference, and we don't
1486 * want to create dangling pointers in the directory.
1487 */
1488
1489 if (!search_done) {
1490 ret = __add_inode_ref(trans, root, path, log,
1491 BTRFS_I(dir),
1492 BTRFS_I(inode),
1493 inode_objectid,
1494 parent_objectid,
1495 ref_index, name, namelen,
1496 &search_done);
1497 if (ret) {
1498 if (ret == 1)
1499 ret = 0;
1500 goto out;
1501 }
1502 }
1503
1504 /*
1505 * If a reference item already exists for this inode
1506 * with the same parent and name, but different index,
1507 * drop it and the corresponding directory index entries
1508 * from the parent before adding the new reference item
1509 * and dir index entries, otherwise we would fail with
1510 * -EEXIST returned from btrfs_add_link() below.
1511 */
1512 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513 name, namelen);
1514 if (ret > 0) {
1515 ret = btrfs_unlink_inode(trans, root,
1516 BTRFS_I(dir),
1517 BTRFS_I(inode),
1518 name, namelen);
1519 /*
1520 * If we dropped the link count to 0, bump it so
1521 * that later the iput() on the inode will not
1522 * free it. We will fixup the link count later.
1523 */
1524 if (!ret && inode->i_nlink == 0)
1525 inc_nlink(inode);
1526 }
1527 if (ret < 0)
1528 goto out;
1529
1530 /* insert our name */
1531 ret = add_link(trans, root, dir, inode, name, namelen,
1532 ref_index);
1533 if (ret)
1534 goto out;
1535
1536 btrfs_update_inode(trans, root, inode);
1537 }
1538
1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1540 kfree(name);
1541 name = NULL;
1542 if (log_ref_ver) {
1543 iput(dir);
1544 dir = NULL;
1545 }
1546 }
1547
1548 /*
1549 * Before we overwrite the inode reference item in the subvolume tree
1550 * with the item from the log tree, we must unlink all names from the
1551 * parent directory that are in the subvolume's tree inode reference
1552 * item, otherwise we end up with an inconsistent subvolume tree where
1553 * dir index entries exist for a name but there is no inode reference
1554 * item with the same name.
1555 */
1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557 key);
1558 if (ret)
1559 goto out;
1560
1561 /* finally write the back reference in the inode */
1562 ret = overwrite_item(trans, root, path, eb, slot, key);
1563out:
1564 btrfs_release_path(path);
1565 kfree(name);
1566 iput(dir);
1567 iput(inode);
1568 return ret;
1569}
1570
1571static int insert_orphan_item(struct btrfs_trans_handle *trans,
1572 struct btrfs_root *root, u64 ino)
1573{
1574 int ret;
1575
1576 ret = btrfs_insert_orphan_item(trans, root, ino);
1577 if (ret == -EEXIST)
1578 ret = 0;
1579
1580 return ret;
1581}
1582
1583static int count_inode_extrefs(struct btrfs_root *root,
1584 struct btrfs_inode *inode, struct btrfs_path *path)
1585{
1586 int ret = 0;
1587 int name_len;
1588 unsigned int nlink = 0;
1589 u32 item_size;
1590 u32 cur_offset = 0;
1591 u64 inode_objectid = btrfs_ino(inode);
1592 u64 offset = 0;
1593 unsigned long ptr;
1594 struct btrfs_inode_extref *extref;
1595 struct extent_buffer *leaf;
1596
1597 while (1) {
1598 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1599 &extref, &offset);
1600 if (ret)
1601 break;
1602
1603 leaf = path->nodes[0];
1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1606 cur_offset = 0;
1607
1608 while (cur_offset < item_size) {
1609 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1610 name_len = btrfs_inode_extref_name_len(leaf, extref);
1611
1612 nlink++;
1613
1614 cur_offset += name_len + sizeof(*extref);
1615 }
1616
1617 offset++;
1618 btrfs_release_path(path);
1619 }
1620 btrfs_release_path(path);
1621
1622 if (ret < 0 && ret != -ENOENT)
1623 return ret;
1624 return nlink;
1625}
1626
1627static int count_inode_refs(struct btrfs_root *root,
1628 struct btrfs_inode *inode, struct btrfs_path *path)
1629{
1630 int ret;
1631 struct btrfs_key key;
1632 unsigned int nlink = 0;
1633 unsigned long ptr;
1634 unsigned long ptr_end;
1635 int name_len;
1636 u64 ino = btrfs_ino(inode);
1637
1638 key.objectid = ino;
1639 key.type = BTRFS_INODE_REF_KEY;
1640 key.offset = (u64)-1;
1641
1642 while (1) {
1643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1644 if (ret < 0)
1645 break;
1646 if (ret > 0) {
1647 if (path->slots[0] == 0)
1648 break;
1649 path->slots[0]--;
1650 }
1651process_slot:
1652 btrfs_item_key_to_cpu(path->nodes[0], &key,
1653 path->slots[0]);
1654 if (key.objectid != ino ||
1655 key.type != BTRFS_INODE_REF_KEY)
1656 break;
1657 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1658 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1659 path->slots[0]);
1660 while (ptr < ptr_end) {
1661 struct btrfs_inode_ref *ref;
1662
1663 ref = (struct btrfs_inode_ref *)ptr;
1664 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1665 ref);
1666 ptr = (unsigned long)(ref + 1) + name_len;
1667 nlink++;
1668 }
1669
1670 if (key.offset == 0)
1671 break;
1672 if (path->slots[0] > 0) {
1673 path->slots[0]--;
1674 goto process_slot;
1675 }
1676 key.offset--;
1677 btrfs_release_path(path);
1678 }
1679 btrfs_release_path(path);
1680
1681 return nlink;
1682}
1683
1684/*
1685 * There are a few corners where the link count of the file can't
1686 * be properly maintained during replay. So, instead of adding
1687 * lots of complexity to the log code, we just scan the backrefs
1688 * for any file that has been through replay.
1689 *
1690 * The scan will update the link count on the inode to reflect the
1691 * number of back refs found. If it goes down to zero, the iput
1692 * will free the inode.
1693 */
1694static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1695 struct btrfs_root *root,
1696 struct inode *inode)
1697{
1698 struct btrfs_path *path;
1699 int ret;
1700 u64 nlink = 0;
1701 u64 ino = btrfs_ino(BTRFS_I(inode));
1702
1703 path = btrfs_alloc_path();
1704 if (!path)
1705 return -ENOMEM;
1706
1707 ret = count_inode_refs(root, BTRFS_I(inode), path);
1708 if (ret < 0)
1709 goto out;
1710
1711 nlink = ret;
1712
1713 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1714 if (ret < 0)
1715 goto out;
1716
1717 nlink += ret;
1718
1719 ret = 0;
1720
1721 if (nlink != inode->i_nlink) {
1722 set_nlink(inode, nlink);
1723 btrfs_update_inode(trans, root, inode);
1724 }
1725 BTRFS_I(inode)->index_cnt = (u64)-1;
1726
1727 if (inode->i_nlink == 0) {
1728 if (S_ISDIR(inode->i_mode)) {
1729 ret = replay_dir_deletes(trans, root, NULL, path,
1730 ino, 1);
1731 if (ret)
1732 goto out;
1733 }
1734 ret = insert_orphan_item(trans, root, ino);
1735 }
1736
1737out:
1738 btrfs_free_path(path);
1739 return ret;
1740}
1741
1742static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1743 struct btrfs_root *root,
1744 struct btrfs_path *path)
1745{
1746 int ret;
1747 struct btrfs_key key;
1748 struct inode *inode;
1749
1750 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751 key.type = BTRFS_ORPHAN_ITEM_KEY;
1752 key.offset = (u64)-1;
1753 while (1) {
1754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1755 if (ret < 0)
1756 break;
1757
1758 if (ret == 1) {
1759 if (path->slots[0] == 0)
1760 break;
1761 path->slots[0]--;
1762 }
1763
1764 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1765 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1766 key.type != BTRFS_ORPHAN_ITEM_KEY)
1767 break;
1768
1769 ret = btrfs_del_item(trans, root, path);
1770 if (ret)
1771 goto out;
1772
1773 btrfs_release_path(path);
1774 inode = read_one_inode(root, key.offset);
1775 if (!inode)
1776 return -EIO;
1777
1778 ret = fixup_inode_link_count(trans, root, inode);
1779 iput(inode);
1780 if (ret)
1781 goto out;
1782
1783 /*
1784 * fixup on a directory may create new entries,
1785 * make sure we always look for the highset possible
1786 * offset
1787 */
1788 key.offset = (u64)-1;
1789 }
1790 ret = 0;
1791out:
1792 btrfs_release_path(path);
1793 return ret;
1794}
1795
1796
1797/*
1798 * record a given inode in the fixup dir so we can check its link
1799 * count when replay is done. The link count is incremented here
1800 * so the inode won't go away until we check it
1801 */
1802static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 u64 objectid)
1806{
1807 struct btrfs_key key;
1808 int ret = 0;
1809 struct inode *inode;
1810
1811 inode = read_one_inode(root, objectid);
1812 if (!inode)
1813 return -EIO;
1814
1815 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1816 key.type = BTRFS_ORPHAN_ITEM_KEY;
1817 key.offset = objectid;
1818
1819 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1820
1821 btrfs_release_path(path);
1822 if (ret == 0) {
1823 if (!inode->i_nlink)
1824 set_nlink(inode, 1);
1825 else
1826 inc_nlink(inode);
1827 ret = btrfs_update_inode(trans, root, inode);
1828 } else if (ret == -EEXIST) {
1829 ret = 0;
1830 } else {
1831 BUG(); /* Logic Error */
1832 }
1833 iput(inode);
1834
1835 return ret;
1836}
1837
1838/*
1839 * when replaying the log for a directory, we only insert names
1840 * for inodes that actually exist. This means an fsync on a directory
1841 * does not implicitly fsync all the new files in it
1842 */
1843static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1844 struct btrfs_root *root,
1845 u64 dirid, u64 index,
1846 char *name, int name_len,
1847 struct btrfs_key *location)
1848{
1849 struct inode *inode;
1850 struct inode *dir;
1851 int ret;
1852
1853 inode = read_one_inode(root, location->objectid);
1854 if (!inode)
1855 return -ENOENT;
1856
1857 dir = read_one_inode(root, dirid);
1858 if (!dir) {
1859 iput(inode);
1860 return -EIO;
1861 }
1862
1863 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1864 name_len, 1, index);
1865
1866 /* FIXME, put inode into FIXUP list */
1867
1868 iput(inode);
1869 iput(dir);
1870 return ret;
1871}
1872
1873/*
1874 * take a single entry in a log directory item and replay it into
1875 * the subvolume.
1876 *
1877 * if a conflicting item exists in the subdirectory already,
1878 * the inode it points to is unlinked and put into the link count
1879 * fix up tree.
1880 *
1881 * If a name from the log points to a file or directory that does
1882 * not exist in the FS, it is skipped. fsyncs on directories
1883 * do not force down inodes inside that directory, just changes to the
1884 * names or unlinks in a directory.
1885 *
1886 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1887 * non-existing inode) and 1 if the name was replayed.
1888 */
1889static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1890 struct btrfs_root *root,
1891 struct btrfs_path *path,
1892 struct extent_buffer *eb,
1893 struct btrfs_dir_item *di,
1894 struct btrfs_key *key)
1895{
1896 char *name;
1897 int name_len;
1898 struct btrfs_dir_item *dst_di;
1899 struct btrfs_key found_key;
1900 struct btrfs_key log_key;
1901 struct inode *dir;
1902 u8 log_type;
1903 int exists;
1904 int ret = 0;
1905 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1906 bool name_added = false;
1907
1908 dir = read_one_inode(root, key->objectid);
1909 if (!dir)
1910 return -EIO;
1911
1912 name_len = btrfs_dir_name_len(eb, di);
1913 name = kmalloc(name_len, GFP_NOFS);
1914 if (!name) {
1915 ret = -ENOMEM;
1916 goto out;
1917 }
1918
1919 log_type = btrfs_dir_type(eb, di);
1920 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1921 name_len);
1922
1923 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1924 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1925 if (exists == 0)
1926 exists = 1;
1927 else
1928 exists = 0;
1929 btrfs_release_path(path);
1930
1931 if (key->type == BTRFS_DIR_ITEM_KEY) {
1932 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1933 name, name_len, 1);
1934 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1935 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1936 key->objectid,
1937 key->offset, name,
1938 name_len, 1);
1939 } else {
1940 /* Corruption */
1941 ret = -EINVAL;
1942 goto out;
1943 }
1944 if (IS_ERR_OR_NULL(dst_di)) {
1945 /* we need a sequence number to insert, so we only
1946 * do inserts for the BTRFS_DIR_INDEX_KEY types
1947 */
1948 if (key->type != BTRFS_DIR_INDEX_KEY)
1949 goto out;
1950 goto insert;
1951 }
1952
1953 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1954 /* the existing item matches the logged item */
1955 if (found_key.objectid == log_key.objectid &&
1956 found_key.type == log_key.type &&
1957 found_key.offset == log_key.offset &&
1958 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1959 update_size = false;
1960 goto out;
1961 }
1962
1963 /*
1964 * don't drop the conflicting directory entry if the inode
1965 * for the new entry doesn't exist
1966 */
1967 if (!exists)
1968 goto out;
1969
1970 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1971 if (ret)
1972 goto out;
1973
1974 if (key->type == BTRFS_DIR_INDEX_KEY)
1975 goto insert;
1976out:
1977 btrfs_release_path(path);
1978 if (!ret && update_size) {
1979 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1980 ret = btrfs_update_inode(trans, root, dir);
1981 }
1982 kfree(name);
1983 iput(dir);
1984 if (!ret && name_added)
1985 ret = 1;
1986 return ret;
1987
1988insert:
1989 /*
1990 * Check if the inode reference exists in the log for the given name,
1991 * inode and parent inode
1992 */
1993 found_key.objectid = log_key.objectid;
1994 found_key.type = BTRFS_INODE_REF_KEY;
1995 found_key.offset = key->objectid;
1996 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1997 if (ret < 0) {
1998 goto out;
1999 } else if (ret) {
2000 /* The dentry will be added later. */
2001 ret = 0;
2002 update_size = false;
2003 goto out;
2004 }
2005
2006 found_key.objectid = log_key.objectid;
2007 found_key.type = BTRFS_INODE_EXTREF_KEY;
2008 found_key.offset = key->objectid;
2009 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2010 name_len);
2011 if (ret < 0) {
2012 goto out;
2013 } else if (ret) {
2014 /* The dentry will be added later. */
2015 ret = 0;
2016 update_size = false;
2017 goto out;
2018 }
2019 btrfs_release_path(path);
2020 ret = insert_one_name(trans, root, key->objectid, key->offset,
2021 name, name_len, &log_key);
2022 if (ret && ret != -ENOENT && ret != -EEXIST)
2023 goto out;
2024 if (!ret)
2025 name_added = true;
2026 update_size = false;
2027 ret = 0;
2028 goto out;
2029}
2030
2031/*
2032 * find all the names in a directory item and reconcile them into
2033 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2034 * one name in a directory item, but the same code gets used for
2035 * both directory index types
2036 */
2037static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2038 struct btrfs_root *root,
2039 struct btrfs_path *path,
2040 struct extent_buffer *eb, int slot,
2041 struct btrfs_key *key)
2042{
2043 int ret = 0;
2044 u32 item_size = btrfs_item_size_nr(eb, slot);
2045 struct btrfs_dir_item *di;
2046 int name_len;
2047 unsigned long ptr;
2048 unsigned long ptr_end;
2049 struct btrfs_path *fixup_path = NULL;
2050
2051 ptr = btrfs_item_ptr_offset(eb, slot);
2052 ptr_end = ptr + item_size;
2053 while (ptr < ptr_end) {
2054 di = (struct btrfs_dir_item *)ptr;
2055 name_len = btrfs_dir_name_len(eb, di);
2056 ret = replay_one_name(trans, root, path, eb, di, key);
2057 if (ret < 0)
2058 break;
2059 ptr = (unsigned long)(di + 1);
2060 ptr += name_len;
2061
2062 /*
2063 * If this entry refers to a non-directory (directories can not
2064 * have a link count > 1) and it was added in the transaction
2065 * that was not committed, make sure we fixup the link count of
2066 * the inode it the entry points to. Otherwise something like
2067 * the following would result in a directory pointing to an
2068 * inode with a wrong link that does not account for this dir
2069 * entry:
2070 *
2071 * mkdir testdir
2072 * touch testdir/foo
2073 * touch testdir/bar
2074 * sync
2075 *
2076 * ln testdir/bar testdir/bar_link
2077 * ln testdir/foo testdir/foo_link
2078 * xfs_io -c "fsync" testdir/bar
2079 *
2080 * <power failure>
2081 *
2082 * mount fs, log replay happens
2083 *
2084 * File foo would remain with a link count of 1 when it has two
2085 * entries pointing to it in the directory testdir. This would
2086 * make it impossible to ever delete the parent directory has
2087 * it would result in stale dentries that can never be deleted.
2088 */
2089 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2090 struct btrfs_key di_key;
2091
2092 if (!fixup_path) {
2093 fixup_path = btrfs_alloc_path();
2094 if (!fixup_path) {
2095 ret = -ENOMEM;
2096 break;
2097 }
2098 }
2099
2100 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2101 ret = link_to_fixup_dir(trans, root, fixup_path,
2102 di_key.objectid);
2103 if (ret)
2104 break;
2105 }
2106 ret = 0;
2107 }
2108 btrfs_free_path(fixup_path);
2109 return ret;
2110}
2111
2112/*
2113 * directory replay has two parts. There are the standard directory
2114 * items in the log copied from the subvolume, and range items
2115 * created in the log while the subvolume was logged.
2116 *
2117 * The range items tell us which parts of the key space the log
2118 * is authoritative for. During replay, if a key in the subvolume
2119 * directory is in a logged range item, but not actually in the log
2120 * that means it was deleted from the directory before the fsync
2121 * and should be removed.
2122 */
2123static noinline int find_dir_range(struct btrfs_root *root,
2124 struct btrfs_path *path,
2125 u64 dirid, int key_type,
2126 u64 *start_ret, u64 *end_ret)
2127{
2128 struct btrfs_key key;
2129 u64 found_end;
2130 struct btrfs_dir_log_item *item;
2131 int ret;
2132 int nritems;
2133
2134 if (*start_ret == (u64)-1)
2135 return 1;
2136
2137 key.objectid = dirid;
2138 key.type = key_type;
2139 key.offset = *start_ret;
2140
2141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2142 if (ret < 0)
2143 goto out;
2144 if (ret > 0) {
2145 if (path->slots[0] == 0)
2146 goto out;
2147 path->slots[0]--;
2148 }
2149 if (ret != 0)
2150 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2151
2152 if (key.type != key_type || key.objectid != dirid) {
2153 ret = 1;
2154 goto next;
2155 }
2156 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2157 struct btrfs_dir_log_item);
2158 found_end = btrfs_dir_log_end(path->nodes[0], item);
2159
2160 if (*start_ret >= key.offset && *start_ret <= found_end) {
2161 ret = 0;
2162 *start_ret = key.offset;
2163 *end_ret = found_end;
2164 goto out;
2165 }
2166 ret = 1;
2167next:
2168 /* check the next slot in the tree to see if it is a valid item */
2169 nritems = btrfs_header_nritems(path->nodes[0]);
2170 path->slots[0]++;
2171 if (path->slots[0] >= nritems) {
2172 ret = btrfs_next_leaf(root, path);
2173 if (ret)
2174 goto out;
2175 }
2176
2177 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2178
2179 if (key.type != key_type || key.objectid != dirid) {
2180 ret = 1;
2181 goto out;
2182 }
2183 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2184 struct btrfs_dir_log_item);
2185 found_end = btrfs_dir_log_end(path->nodes[0], item);
2186 *start_ret = key.offset;
2187 *end_ret = found_end;
2188 ret = 0;
2189out:
2190 btrfs_release_path(path);
2191 return ret;
2192}
2193
2194/*
2195 * this looks for a given directory item in the log. If the directory
2196 * item is not in the log, the item is removed and the inode it points
2197 * to is unlinked
2198 */
2199static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2200 struct btrfs_root *root,
2201 struct btrfs_root *log,
2202 struct btrfs_path *path,
2203 struct btrfs_path *log_path,
2204 struct inode *dir,
2205 struct btrfs_key *dir_key)
2206{
2207 int ret;
2208 struct extent_buffer *eb;
2209 int slot;
2210 u32 item_size;
2211 struct btrfs_dir_item *di;
2212 struct btrfs_dir_item *log_di;
2213 int name_len;
2214 unsigned long ptr;
2215 unsigned long ptr_end;
2216 char *name;
2217 struct inode *inode;
2218 struct btrfs_key location;
2219
2220again:
2221 eb = path->nodes[0];
2222 slot = path->slots[0];
2223 item_size = btrfs_item_size_nr(eb, slot);
2224 ptr = btrfs_item_ptr_offset(eb, slot);
2225 ptr_end = ptr + item_size;
2226 while (ptr < ptr_end) {
2227 di = (struct btrfs_dir_item *)ptr;
2228 name_len = btrfs_dir_name_len(eb, di);
2229 name = kmalloc(name_len, GFP_NOFS);
2230 if (!name) {
2231 ret = -ENOMEM;
2232 goto out;
2233 }
2234 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2235 name_len);
2236 log_di = NULL;
2237 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2238 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2239 dir_key->objectid,
2240 name, name_len, 0);
2241 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2242 log_di = btrfs_lookup_dir_index_item(trans, log,
2243 log_path,
2244 dir_key->objectid,
2245 dir_key->offset,
2246 name, name_len, 0);
2247 }
2248 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2249 btrfs_dir_item_key_to_cpu(eb, di, &location);
2250 btrfs_release_path(path);
2251 btrfs_release_path(log_path);
2252 inode = read_one_inode(root, location.objectid);
2253 if (!inode) {
2254 kfree(name);
2255 return -EIO;
2256 }
2257
2258 ret = link_to_fixup_dir(trans, root,
2259 path, location.objectid);
2260 if (ret) {
2261 kfree(name);
2262 iput(inode);
2263 goto out;
2264 }
2265
2266 inc_nlink(inode);
2267 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2268 BTRFS_I(inode), name, name_len);
2269 if (!ret)
2270 ret = btrfs_run_delayed_items(trans);
2271 kfree(name);
2272 iput(inode);
2273 if (ret)
2274 goto out;
2275
2276 /* there might still be more names under this key
2277 * check and repeat if required
2278 */
2279 ret = btrfs_search_slot(NULL, root, dir_key, path,
2280 0, 0);
2281 if (ret == 0)
2282 goto again;
2283 ret = 0;
2284 goto out;
2285 } else if (IS_ERR(log_di)) {
2286 kfree(name);
2287 return PTR_ERR(log_di);
2288 }
2289 btrfs_release_path(log_path);
2290 kfree(name);
2291
2292 ptr = (unsigned long)(di + 1);
2293 ptr += name_len;
2294 }
2295 ret = 0;
2296out:
2297 btrfs_release_path(path);
2298 btrfs_release_path(log_path);
2299 return ret;
2300}
2301
2302static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2303 struct btrfs_root *root,
2304 struct btrfs_root *log,
2305 struct btrfs_path *path,
2306 const u64 ino)
2307{
2308 struct btrfs_key search_key;
2309 struct btrfs_path *log_path;
2310 int i;
2311 int nritems;
2312 int ret;
2313
2314 log_path = btrfs_alloc_path();
2315 if (!log_path)
2316 return -ENOMEM;
2317
2318 search_key.objectid = ino;
2319 search_key.type = BTRFS_XATTR_ITEM_KEY;
2320 search_key.offset = 0;
2321again:
2322 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2323 if (ret < 0)
2324 goto out;
2325process_leaf:
2326 nritems = btrfs_header_nritems(path->nodes[0]);
2327 for (i = path->slots[0]; i < nritems; i++) {
2328 struct btrfs_key key;
2329 struct btrfs_dir_item *di;
2330 struct btrfs_dir_item *log_di;
2331 u32 total_size;
2332 u32 cur;
2333
2334 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2335 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2336 ret = 0;
2337 goto out;
2338 }
2339
2340 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2341 total_size = btrfs_item_size_nr(path->nodes[0], i);
2342 cur = 0;
2343 while (cur < total_size) {
2344 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2345 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2346 u32 this_len = sizeof(*di) + name_len + data_len;
2347 char *name;
2348
2349 name = kmalloc(name_len, GFP_NOFS);
2350 if (!name) {
2351 ret = -ENOMEM;
2352 goto out;
2353 }
2354 read_extent_buffer(path->nodes[0], name,
2355 (unsigned long)(di + 1), name_len);
2356
2357 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2358 name, name_len, 0);
2359 btrfs_release_path(log_path);
2360 if (!log_di) {
2361 /* Doesn't exist in log tree, so delete it. */
2362 btrfs_release_path(path);
2363 di = btrfs_lookup_xattr(trans, root, path, ino,
2364 name, name_len, -1);
2365 kfree(name);
2366 if (IS_ERR(di)) {
2367 ret = PTR_ERR(di);
2368 goto out;
2369 }
2370 ASSERT(di);
2371 ret = btrfs_delete_one_dir_name(trans, root,
2372 path, di);
2373 if (ret)
2374 goto out;
2375 btrfs_release_path(path);
2376 search_key = key;
2377 goto again;
2378 }
2379 kfree(name);
2380 if (IS_ERR(log_di)) {
2381 ret = PTR_ERR(log_di);
2382 goto out;
2383 }
2384 cur += this_len;
2385 di = (struct btrfs_dir_item *)((char *)di + this_len);
2386 }
2387 }
2388 ret = btrfs_next_leaf(root, path);
2389 if (ret > 0)
2390 ret = 0;
2391 else if (ret == 0)
2392 goto process_leaf;
2393out:
2394 btrfs_free_path(log_path);
2395 btrfs_release_path(path);
2396 return ret;
2397}
2398
2399
2400/*
2401 * deletion replay happens before we copy any new directory items
2402 * out of the log or out of backreferences from inodes. It
2403 * scans the log to find ranges of keys that log is authoritative for,
2404 * and then scans the directory to find items in those ranges that are
2405 * not present in the log.
2406 *
2407 * Anything we don't find in the log is unlinked and removed from the
2408 * directory.
2409 */
2410static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2411 struct btrfs_root *root,
2412 struct btrfs_root *log,
2413 struct btrfs_path *path,
2414 u64 dirid, int del_all)
2415{
2416 u64 range_start;
2417 u64 range_end;
2418 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2419 int ret = 0;
2420 struct btrfs_key dir_key;
2421 struct btrfs_key found_key;
2422 struct btrfs_path *log_path;
2423 struct inode *dir;
2424
2425 dir_key.objectid = dirid;
2426 dir_key.type = BTRFS_DIR_ITEM_KEY;
2427 log_path = btrfs_alloc_path();
2428 if (!log_path)
2429 return -ENOMEM;
2430
2431 dir = read_one_inode(root, dirid);
2432 /* it isn't an error if the inode isn't there, that can happen
2433 * because we replay the deletes before we copy in the inode item
2434 * from the log
2435 */
2436 if (!dir) {
2437 btrfs_free_path(log_path);
2438 return 0;
2439 }
2440again:
2441 range_start = 0;
2442 range_end = 0;
2443 while (1) {
2444 if (del_all)
2445 range_end = (u64)-1;
2446 else {
2447 ret = find_dir_range(log, path, dirid, key_type,
2448 &range_start, &range_end);
2449 if (ret != 0)
2450 break;
2451 }
2452
2453 dir_key.offset = range_start;
2454 while (1) {
2455 int nritems;
2456 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2457 0, 0);
2458 if (ret < 0)
2459 goto out;
2460
2461 nritems = btrfs_header_nritems(path->nodes[0]);
2462 if (path->slots[0] >= nritems) {
2463 ret = btrfs_next_leaf(root, path);
2464 if (ret == 1)
2465 break;
2466 else if (ret < 0)
2467 goto out;
2468 }
2469 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2470 path->slots[0]);
2471 if (found_key.objectid != dirid ||
2472 found_key.type != dir_key.type)
2473 goto next_type;
2474
2475 if (found_key.offset > range_end)
2476 break;
2477
2478 ret = check_item_in_log(trans, root, log, path,
2479 log_path, dir,
2480 &found_key);
2481 if (ret)
2482 goto out;
2483 if (found_key.offset == (u64)-1)
2484 break;
2485 dir_key.offset = found_key.offset + 1;
2486 }
2487 btrfs_release_path(path);
2488 if (range_end == (u64)-1)
2489 break;
2490 range_start = range_end + 1;
2491 }
2492
2493next_type:
2494 ret = 0;
2495 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2496 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2497 dir_key.type = BTRFS_DIR_INDEX_KEY;
2498 btrfs_release_path(path);
2499 goto again;
2500 }
2501out:
2502 btrfs_release_path(path);
2503 btrfs_free_path(log_path);
2504 iput(dir);
2505 return ret;
2506}
2507
2508/*
2509 * the process_func used to replay items from the log tree. This
2510 * gets called in two different stages. The first stage just looks
2511 * for inodes and makes sure they are all copied into the subvolume.
2512 *
2513 * The second stage copies all the other item types from the log into
2514 * the subvolume. The two stage approach is slower, but gets rid of
2515 * lots of complexity around inodes referencing other inodes that exist
2516 * only in the log (references come from either directory items or inode
2517 * back refs).
2518 */
2519static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2520 struct walk_control *wc, u64 gen, int level)
2521{
2522 int nritems;
2523 struct btrfs_path *path;
2524 struct btrfs_root *root = wc->replay_dest;
2525 struct btrfs_key key;
2526 int i;
2527 int ret;
2528
2529 ret = btrfs_read_buffer(eb, gen, level, NULL);
2530 if (ret)
2531 return ret;
2532
2533 level = btrfs_header_level(eb);
2534
2535 if (level != 0)
2536 return 0;
2537
2538 path = btrfs_alloc_path();
2539 if (!path)
2540 return -ENOMEM;
2541
2542 nritems = btrfs_header_nritems(eb);
2543 for (i = 0; i < nritems; i++) {
2544 btrfs_item_key_to_cpu(eb, &key, i);
2545
2546 /* inode keys are done during the first stage */
2547 if (key.type == BTRFS_INODE_ITEM_KEY &&
2548 wc->stage == LOG_WALK_REPLAY_INODES) {
2549 struct btrfs_inode_item *inode_item;
2550 u32 mode;
2551
2552 inode_item = btrfs_item_ptr(eb, i,
2553 struct btrfs_inode_item);
2554 /*
2555 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2556 * and never got linked before the fsync, skip it, as
2557 * replaying it is pointless since it would be deleted
2558 * later. We skip logging tmpfiles, but it's always
2559 * possible we are replaying a log created with a kernel
2560 * that used to log tmpfiles.
2561 */
2562 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2563 wc->ignore_cur_inode = true;
2564 continue;
2565 } else {
2566 wc->ignore_cur_inode = false;
2567 }
2568 ret = replay_xattr_deletes(wc->trans, root, log,
2569 path, key.objectid);
2570 if (ret)
2571 break;
2572 mode = btrfs_inode_mode(eb, inode_item);
2573 if (S_ISDIR(mode)) {
2574 ret = replay_dir_deletes(wc->trans,
2575 root, log, path, key.objectid, 0);
2576 if (ret)
2577 break;
2578 }
2579 ret = overwrite_item(wc->trans, root, path,
2580 eb, i, &key);
2581 if (ret)
2582 break;
2583
2584 /*
2585 * Before replaying extents, truncate the inode to its
2586 * size. We need to do it now and not after log replay
2587 * because before an fsync we can have prealloc extents
2588 * added beyond the inode's i_size. If we did it after,
2589 * through orphan cleanup for example, we would drop
2590 * those prealloc extents just after replaying them.
2591 */
2592 if (S_ISREG(mode)) {
2593 struct inode *inode;
2594 u64 from;
2595
2596 inode = read_one_inode(root, key.objectid);
2597 if (!inode) {
2598 ret = -EIO;
2599 break;
2600 }
2601 from = ALIGN(i_size_read(inode),
2602 root->fs_info->sectorsize);
2603 ret = btrfs_drop_extents(wc->trans, root, inode,
2604 from, (u64)-1, 1);
2605 if (!ret) {
2606 /* Update the inode's nbytes. */
2607 ret = btrfs_update_inode(wc->trans,
2608 root, inode);
2609 }
2610 iput(inode);
2611 if (ret)
2612 break;
2613 }
2614
2615 ret = link_to_fixup_dir(wc->trans, root,
2616 path, key.objectid);
2617 if (ret)
2618 break;
2619 }
2620
2621 if (wc->ignore_cur_inode)
2622 continue;
2623
2624 if (key.type == BTRFS_DIR_INDEX_KEY &&
2625 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2626 ret = replay_one_dir_item(wc->trans, root, path,
2627 eb, i, &key);
2628 if (ret)
2629 break;
2630 }
2631
2632 if (wc->stage < LOG_WALK_REPLAY_ALL)
2633 continue;
2634
2635 /* these keys are simply copied */
2636 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2637 ret = overwrite_item(wc->trans, root, path,
2638 eb, i, &key);
2639 if (ret)
2640 break;
2641 } else if (key.type == BTRFS_INODE_REF_KEY ||
2642 key.type == BTRFS_INODE_EXTREF_KEY) {
2643 ret = add_inode_ref(wc->trans, root, log, path,
2644 eb, i, &key);
2645 if (ret && ret != -ENOENT)
2646 break;
2647 ret = 0;
2648 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2649 ret = replay_one_extent(wc->trans, root, path,
2650 eb, i, &key);
2651 if (ret)
2652 break;
2653 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2654 ret = replay_one_dir_item(wc->trans, root, path,
2655 eb, i, &key);
2656 if (ret)
2657 break;
2658 }
2659 }
2660 btrfs_free_path(path);
2661 return ret;
2662}
2663
2664/*
2665 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2666 */
2667static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2668{
2669 struct btrfs_block_group *cache;
2670
2671 cache = btrfs_lookup_block_group(fs_info, start);
2672 if (!cache) {
2673 btrfs_err(fs_info, "unable to find block group for %llu", start);
2674 return;
2675 }
2676
2677 spin_lock(&cache->space_info->lock);
2678 spin_lock(&cache->lock);
2679 cache->reserved -= fs_info->nodesize;
2680 cache->space_info->bytes_reserved -= fs_info->nodesize;
2681 spin_unlock(&cache->lock);
2682 spin_unlock(&cache->space_info->lock);
2683
2684 btrfs_put_block_group(cache);
2685}
2686
2687static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2688 struct btrfs_root *root,
2689 struct btrfs_path *path, int *level,
2690 struct walk_control *wc)
2691{
2692 struct btrfs_fs_info *fs_info = root->fs_info;
2693 u64 bytenr;
2694 u64 ptr_gen;
2695 struct extent_buffer *next;
2696 struct extent_buffer *cur;
2697 u32 blocksize;
2698 int ret = 0;
2699
2700 while (*level > 0) {
2701 struct btrfs_key first_key;
2702
2703 cur = path->nodes[*level];
2704
2705 WARN_ON(btrfs_header_level(cur) != *level);
2706
2707 if (path->slots[*level] >=
2708 btrfs_header_nritems(cur))
2709 break;
2710
2711 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2712 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2713 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2714 blocksize = fs_info->nodesize;
2715
2716 next = btrfs_find_create_tree_block(fs_info, bytenr);
2717 if (IS_ERR(next))
2718 return PTR_ERR(next);
2719
2720 if (*level == 1) {
2721 ret = wc->process_func(root, next, wc, ptr_gen,
2722 *level - 1);
2723 if (ret) {
2724 free_extent_buffer(next);
2725 return ret;
2726 }
2727
2728 path->slots[*level]++;
2729 if (wc->free) {
2730 ret = btrfs_read_buffer(next, ptr_gen,
2731 *level - 1, &first_key);
2732 if (ret) {
2733 free_extent_buffer(next);
2734 return ret;
2735 }
2736
2737 if (trans) {
2738 btrfs_tree_lock(next);
2739 btrfs_set_lock_blocking_write(next);
2740 btrfs_clean_tree_block(next);
2741 btrfs_wait_tree_block_writeback(next);
2742 btrfs_tree_unlock(next);
2743 ret = btrfs_pin_reserved_extent(trans,
2744 bytenr, blocksize);
2745 if (ret) {
2746 free_extent_buffer(next);
2747 return ret;
2748 }
2749 } else {
2750 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2751 clear_extent_buffer_dirty(next);
2752 unaccount_log_buffer(fs_info, bytenr);
2753 }
2754 }
2755 free_extent_buffer(next);
2756 continue;
2757 }
2758 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2759 if (ret) {
2760 free_extent_buffer(next);
2761 return ret;
2762 }
2763
2764 if (path->nodes[*level-1])
2765 free_extent_buffer(path->nodes[*level-1]);
2766 path->nodes[*level-1] = next;
2767 *level = btrfs_header_level(next);
2768 path->slots[*level] = 0;
2769 cond_resched();
2770 }
2771 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2772
2773 cond_resched();
2774 return 0;
2775}
2776
2777static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2778 struct btrfs_root *root,
2779 struct btrfs_path *path, int *level,
2780 struct walk_control *wc)
2781{
2782 struct btrfs_fs_info *fs_info = root->fs_info;
2783 int i;
2784 int slot;
2785 int ret;
2786
2787 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2788 slot = path->slots[i];
2789 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2790 path->slots[i]++;
2791 *level = i;
2792 WARN_ON(*level == 0);
2793 return 0;
2794 } else {
2795 ret = wc->process_func(root, path->nodes[*level], wc,
2796 btrfs_header_generation(path->nodes[*level]),
2797 *level);
2798 if (ret)
2799 return ret;
2800
2801 if (wc->free) {
2802 struct extent_buffer *next;
2803
2804 next = path->nodes[*level];
2805
2806 if (trans) {
2807 btrfs_tree_lock(next);
2808 btrfs_set_lock_blocking_write(next);
2809 btrfs_clean_tree_block(next);
2810 btrfs_wait_tree_block_writeback(next);
2811 btrfs_tree_unlock(next);
2812 ret = btrfs_pin_reserved_extent(trans,
2813 path->nodes[*level]->start,
2814 path->nodes[*level]->len);
2815 if (ret)
2816 return ret;
2817 } else {
2818 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2819 clear_extent_buffer_dirty(next);
2820
2821 unaccount_log_buffer(fs_info,
2822 path->nodes[*level]->start);
2823 }
2824 }
2825 free_extent_buffer(path->nodes[*level]);
2826 path->nodes[*level] = NULL;
2827 *level = i + 1;
2828 }
2829 }
2830 return 1;
2831}
2832
2833/*
2834 * drop the reference count on the tree rooted at 'snap'. This traverses
2835 * the tree freeing any blocks that have a ref count of zero after being
2836 * decremented.
2837 */
2838static int walk_log_tree(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *log, struct walk_control *wc)
2840{
2841 struct btrfs_fs_info *fs_info = log->fs_info;
2842 int ret = 0;
2843 int wret;
2844 int level;
2845 struct btrfs_path *path;
2846 int orig_level;
2847
2848 path = btrfs_alloc_path();
2849 if (!path)
2850 return -ENOMEM;
2851
2852 level = btrfs_header_level(log->node);
2853 orig_level = level;
2854 path->nodes[level] = log->node;
2855 atomic_inc(&log->node->refs);
2856 path->slots[level] = 0;
2857
2858 while (1) {
2859 wret = walk_down_log_tree(trans, log, path, &level, wc);
2860 if (wret > 0)
2861 break;
2862 if (wret < 0) {
2863 ret = wret;
2864 goto out;
2865 }
2866
2867 wret = walk_up_log_tree(trans, log, path, &level, wc);
2868 if (wret > 0)
2869 break;
2870 if (wret < 0) {
2871 ret = wret;
2872 goto out;
2873 }
2874 }
2875
2876 /* was the root node processed? if not, catch it here */
2877 if (path->nodes[orig_level]) {
2878 ret = wc->process_func(log, path->nodes[orig_level], wc,
2879 btrfs_header_generation(path->nodes[orig_level]),
2880 orig_level);
2881 if (ret)
2882 goto out;
2883 if (wc->free) {
2884 struct extent_buffer *next;
2885
2886 next = path->nodes[orig_level];
2887
2888 if (trans) {
2889 btrfs_tree_lock(next);
2890 btrfs_set_lock_blocking_write(next);
2891 btrfs_clean_tree_block(next);
2892 btrfs_wait_tree_block_writeback(next);
2893 btrfs_tree_unlock(next);
2894 ret = btrfs_pin_reserved_extent(trans,
2895 next->start, next->len);
2896 if (ret)
2897 goto out;
2898 } else {
2899 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2900 clear_extent_buffer_dirty(next);
2901 unaccount_log_buffer(fs_info, next->start);
2902 }
2903 }
2904 }
2905
2906out:
2907 btrfs_free_path(path);
2908 return ret;
2909}
2910
2911/*
2912 * helper function to update the item for a given subvolumes log root
2913 * in the tree of log roots
2914 */
2915static int update_log_root(struct btrfs_trans_handle *trans,
2916 struct btrfs_root *log,
2917 struct btrfs_root_item *root_item)
2918{
2919 struct btrfs_fs_info *fs_info = log->fs_info;
2920 int ret;
2921
2922 if (log->log_transid == 1) {
2923 /* insert root item on the first sync */
2924 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2925 &log->root_key, root_item);
2926 } else {
2927 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2928 &log->root_key, root_item);
2929 }
2930 return ret;
2931}
2932
2933static void wait_log_commit(struct btrfs_root *root, int transid)
2934{
2935 DEFINE_WAIT(wait);
2936 int index = transid % 2;
2937
2938 /*
2939 * we only allow two pending log transactions at a time,
2940 * so we know that if ours is more than 2 older than the
2941 * current transaction, we're done
2942 */
2943 for (;;) {
2944 prepare_to_wait(&root->log_commit_wait[index],
2945 &wait, TASK_UNINTERRUPTIBLE);
2946
2947 if (!(root->log_transid_committed < transid &&
2948 atomic_read(&root->log_commit[index])))
2949 break;
2950
2951 mutex_unlock(&root->log_mutex);
2952 schedule();
2953 mutex_lock(&root->log_mutex);
2954 }
2955 finish_wait(&root->log_commit_wait[index], &wait);
2956}
2957
2958static void wait_for_writer(struct btrfs_root *root)
2959{
2960 DEFINE_WAIT(wait);
2961
2962 for (;;) {
2963 prepare_to_wait(&root->log_writer_wait, &wait,
2964 TASK_UNINTERRUPTIBLE);
2965 if (!atomic_read(&root->log_writers))
2966 break;
2967
2968 mutex_unlock(&root->log_mutex);
2969 schedule();
2970 mutex_lock(&root->log_mutex);
2971 }
2972 finish_wait(&root->log_writer_wait, &wait);
2973}
2974
2975static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2976 struct btrfs_log_ctx *ctx)
2977{
2978 if (!ctx)
2979 return;
2980
2981 mutex_lock(&root->log_mutex);
2982 list_del_init(&ctx->list);
2983 mutex_unlock(&root->log_mutex);
2984}
2985
2986/*
2987 * Invoked in log mutex context, or be sure there is no other task which
2988 * can access the list.
2989 */
2990static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2991 int index, int error)
2992{
2993 struct btrfs_log_ctx *ctx;
2994 struct btrfs_log_ctx *safe;
2995
2996 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2997 list_del_init(&ctx->list);
2998 ctx->log_ret = error;
2999 }
3000
3001 INIT_LIST_HEAD(&root->log_ctxs[index]);
3002}
3003
3004/*
3005 * btrfs_sync_log does sends a given tree log down to the disk and
3006 * updates the super blocks to record it. When this call is done,
3007 * you know that any inodes previously logged are safely on disk only
3008 * if it returns 0.
3009 *
3010 * Any other return value means you need to call btrfs_commit_transaction.
3011 * Some of the edge cases for fsyncing directories that have had unlinks
3012 * or renames done in the past mean that sometimes the only safe
3013 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3014 * that has happened.
3015 */
3016int btrfs_sync_log(struct btrfs_trans_handle *trans,
3017 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3018{
3019 int index1;
3020 int index2;
3021 int mark;
3022 int ret;
3023 struct btrfs_fs_info *fs_info = root->fs_info;
3024 struct btrfs_root *log = root->log_root;
3025 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3026 struct btrfs_root_item new_root_item;
3027 int log_transid = 0;
3028 struct btrfs_log_ctx root_log_ctx;
3029 struct blk_plug plug;
3030
3031 mutex_lock(&root->log_mutex);
3032 log_transid = ctx->log_transid;
3033 if (root->log_transid_committed >= log_transid) {
3034 mutex_unlock(&root->log_mutex);
3035 return ctx->log_ret;
3036 }
3037
3038 index1 = log_transid % 2;
3039 if (atomic_read(&root->log_commit[index1])) {
3040 wait_log_commit(root, log_transid);
3041 mutex_unlock(&root->log_mutex);
3042 return ctx->log_ret;
3043 }
3044 ASSERT(log_transid == root->log_transid);
3045 atomic_set(&root->log_commit[index1], 1);
3046
3047 /* wait for previous tree log sync to complete */
3048 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3049 wait_log_commit(root, log_transid - 1);
3050
3051 while (1) {
3052 int batch = atomic_read(&root->log_batch);
3053 /* when we're on an ssd, just kick the log commit out */
3054 if (!btrfs_test_opt(fs_info, SSD) &&
3055 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3056 mutex_unlock(&root->log_mutex);
3057 schedule_timeout_uninterruptible(1);
3058 mutex_lock(&root->log_mutex);
3059 }
3060 wait_for_writer(root);
3061 if (batch == atomic_read(&root->log_batch))
3062 break;
3063 }
3064
3065 /* bail out if we need to do a full commit */
3066 if (btrfs_need_log_full_commit(trans)) {
3067 ret = -EAGAIN;
3068 mutex_unlock(&root->log_mutex);
3069 goto out;
3070 }
3071
3072 if (log_transid % 2 == 0)
3073 mark = EXTENT_DIRTY;
3074 else
3075 mark = EXTENT_NEW;
3076
3077 /* we start IO on all the marked extents here, but we don't actually
3078 * wait for them until later.
3079 */
3080 blk_start_plug(&plug);
3081 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3082 if (ret) {
3083 blk_finish_plug(&plug);
3084 btrfs_abort_transaction(trans, ret);
3085 btrfs_set_log_full_commit(trans);
3086 mutex_unlock(&root->log_mutex);
3087 goto out;
3088 }
3089
3090 /*
3091 * We _must_ update under the root->log_mutex in order to make sure we
3092 * have a consistent view of the log root we are trying to commit at
3093 * this moment.
3094 *
3095 * We _must_ copy this into a local copy, because we are not holding the
3096 * log_root_tree->log_mutex yet. This is important because when we
3097 * commit the log_root_tree we must have a consistent view of the
3098 * log_root_tree when we update the super block to point at the
3099 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3100 * with the commit and possibly point at the new block which we may not
3101 * have written out.
3102 */
3103 btrfs_set_root_node(&log->root_item, log->node);
3104 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3105
3106 root->log_transid++;
3107 log->log_transid = root->log_transid;
3108 root->log_start_pid = 0;
3109 /*
3110 * IO has been started, blocks of the log tree have WRITTEN flag set
3111 * in their headers. new modifications of the log will be written to
3112 * new positions. so it's safe to allow log writers to go in.
3113 */
3114 mutex_unlock(&root->log_mutex);
3115
3116 btrfs_init_log_ctx(&root_log_ctx, NULL);
3117
3118 mutex_lock(&log_root_tree->log_mutex);
3119
3120 index2 = log_root_tree->log_transid % 2;
3121 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3122 root_log_ctx.log_transid = log_root_tree->log_transid;
3123
3124 /*
3125 * Now we are safe to update the log_root_tree because we're under the
3126 * log_mutex, and we're a current writer so we're holding the commit
3127 * open until we drop the log_mutex.
3128 */
3129 ret = update_log_root(trans, log, &new_root_item);
3130 if (ret) {
3131 if (!list_empty(&root_log_ctx.list))
3132 list_del_init(&root_log_ctx.list);
3133
3134 blk_finish_plug(&plug);
3135 btrfs_set_log_full_commit(trans);
3136
3137 if (ret != -ENOSPC) {
3138 btrfs_abort_transaction(trans, ret);
3139 mutex_unlock(&log_root_tree->log_mutex);
3140 goto out;
3141 }
3142 btrfs_wait_tree_log_extents(log, mark);
3143 mutex_unlock(&log_root_tree->log_mutex);
3144 ret = -EAGAIN;
3145 goto out;
3146 }
3147
3148 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3149 blk_finish_plug(&plug);
3150 list_del_init(&root_log_ctx.list);
3151 mutex_unlock(&log_root_tree->log_mutex);
3152 ret = root_log_ctx.log_ret;
3153 goto out;
3154 }
3155
3156 index2 = root_log_ctx.log_transid % 2;
3157 if (atomic_read(&log_root_tree->log_commit[index2])) {
3158 blk_finish_plug(&plug);
3159 ret = btrfs_wait_tree_log_extents(log, mark);
3160 wait_log_commit(log_root_tree,
3161 root_log_ctx.log_transid);
3162 mutex_unlock(&log_root_tree->log_mutex);
3163 if (!ret)
3164 ret = root_log_ctx.log_ret;
3165 goto out;
3166 }
3167 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3168 atomic_set(&log_root_tree->log_commit[index2], 1);
3169
3170 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3171 wait_log_commit(log_root_tree,
3172 root_log_ctx.log_transid - 1);
3173 }
3174
3175 /*
3176 * now that we've moved on to the tree of log tree roots,
3177 * check the full commit flag again
3178 */
3179 if (btrfs_need_log_full_commit(trans)) {
3180 blk_finish_plug(&plug);
3181 btrfs_wait_tree_log_extents(log, mark);
3182 mutex_unlock(&log_root_tree->log_mutex);
3183 ret = -EAGAIN;
3184 goto out_wake_log_root;
3185 }
3186
3187 ret = btrfs_write_marked_extents(fs_info,
3188 &log_root_tree->dirty_log_pages,
3189 EXTENT_DIRTY | EXTENT_NEW);
3190 blk_finish_plug(&plug);
3191 if (ret) {
3192 btrfs_set_log_full_commit(trans);
3193 btrfs_abort_transaction(trans, ret);
3194 mutex_unlock(&log_root_tree->log_mutex);
3195 goto out_wake_log_root;
3196 }
3197 ret = btrfs_wait_tree_log_extents(log, mark);
3198 if (!ret)
3199 ret = btrfs_wait_tree_log_extents(log_root_tree,
3200 EXTENT_NEW | EXTENT_DIRTY);
3201 if (ret) {
3202 btrfs_set_log_full_commit(trans);
3203 mutex_unlock(&log_root_tree->log_mutex);
3204 goto out_wake_log_root;
3205 }
3206
3207 btrfs_set_super_log_root(fs_info->super_for_commit,
3208 log_root_tree->node->start);
3209 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3210 btrfs_header_level(log_root_tree->node));
3211
3212 log_root_tree->log_transid++;
3213 mutex_unlock(&log_root_tree->log_mutex);
3214
3215 /*
3216 * Nobody else is going to jump in and write the ctree
3217 * super here because the log_commit atomic below is protecting
3218 * us. We must be called with a transaction handle pinning
3219 * the running transaction open, so a full commit can't hop
3220 * in and cause problems either.
3221 */
3222 ret = write_all_supers(fs_info, 1);
3223 if (ret) {
3224 btrfs_set_log_full_commit(trans);
3225 btrfs_abort_transaction(trans, ret);
3226 goto out_wake_log_root;
3227 }
3228
3229 mutex_lock(&root->log_mutex);
3230 if (root->last_log_commit < log_transid)
3231 root->last_log_commit = log_transid;
3232 mutex_unlock(&root->log_mutex);
3233
3234out_wake_log_root:
3235 mutex_lock(&log_root_tree->log_mutex);
3236 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3237
3238 log_root_tree->log_transid_committed++;
3239 atomic_set(&log_root_tree->log_commit[index2], 0);
3240 mutex_unlock(&log_root_tree->log_mutex);
3241
3242 /*
3243 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3244 * all the updates above are seen by the woken threads. It might not be
3245 * necessary, but proving that seems to be hard.
3246 */
3247 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3248out:
3249 mutex_lock(&root->log_mutex);
3250 btrfs_remove_all_log_ctxs(root, index1, ret);
3251 root->log_transid_committed++;
3252 atomic_set(&root->log_commit[index1], 0);
3253 mutex_unlock(&root->log_mutex);
3254
3255 /*
3256 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3257 * all the updates above are seen by the woken threads. It might not be
3258 * necessary, but proving that seems to be hard.
3259 */
3260 cond_wake_up(&root->log_commit_wait[index1]);
3261 return ret;
3262}
3263
3264static void free_log_tree(struct btrfs_trans_handle *trans,
3265 struct btrfs_root *log)
3266{
3267 int ret;
3268 struct walk_control wc = {
3269 .free = 1,
3270 .process_func = process_one_buffer
3271 };
3272
3273 ret = walk_log_tree(trans, log, &wc);
3274 if (ret) {
3275 if (trans)
3276 btrfs_abort_transaction(trans, ret);
3277 else
3278 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3279 }
3280
3281 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3282 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3283 extent_io_tree_release(&log->log_csum_range);
3284 btrfs_put_root(log);
3285}
3286
3287/*
3288 * free all the extents used by the tree log. This should be called
3289 * at commit time of the full transaction
3290 */
3291int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3292{
3293 if (root->log_root) {
3294 free_log_tree(trans, root->log_root);
3295 root->log_root = NULL;
3296 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3297 }
3298 return 0;
3299}
3300
3301int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3302 struct btrfs_fs_info *fs_info)
3303{
3304 if (fs_info->log_root_tree) {
3305 free_log_tree(trans, fs_info->log_root_tree);
3306 fs_info->log_root_tree = NULL;
3307 }
3308 return 0;
3309}
3310
3311/*
3312 * Check if an inode was logged in the current transaction. We can't always rely
3313 * on an inode's logged_trans value, because it's an in-memory only field and
3314 * therefore not persisted. This means that its value is lost if the inode gets
3315 * evicted and loaded again from disk (in which case it has a value of 0, and
3316 * certainly it is smaller then any possible transaction ID), when that happens
3317 * the full_sync flag is set in the inode's runtime flags, so on that case we
3318 * assume eviction happened and ignore the logged_trans value, assuming the
3319 * worst case, that the inode was logged before in the current transaction.
3320 */
3321static bool inode_logged(struct btrfs_trans_handle *trans,
3322 struct btrfs_inode *inode)
3323{
3324 if (inode->logged_trans == trans->transid)
3325 return true;
3326
3327 if (inode->last_trans == trans->transid &&
3328 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3329 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3330 return true;
3331
3332 return false;
3333}
3334
3335/*
3336 * If both a file and directory are logged, and unlinks or renames are
3337 * mixed in, we have a few interesting corners:
3338 *
3339 * create file X in dir Y
3340 * link file X to X.link in dir Y
3341 * fsync file X
3342 * unlink file X but leave X.link
3343 * fsync dir Y
3344 *
3345 * After a crash we would expect only X.link to exist. But file X
3346 * didn't get fsync'd again so the log has back refs for X and X.link.
3347 *
3348 * We solve this by removing directory entries and inode backrefs from the
3349 * log when a file that was logged in the current transaction is
3350 * unlinked. Any later fsync will include the updated log entries, and
3351 * we'll be able to reconstruct the proper directory items from backrefs.
3352 *
3353 * This optimizations allows us to avoid relogging the entire inode
3354 * or the entire directory.
3355 */
3356int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3357 struct btrfs_root *root,
3358 const char *name, int name_len,
3359 struct btrfs_inode *dir, u64 index)
3360{
3361 struct btrfs_root *log;
3362 struct btrfs_dir_item *di;
3363 struct btrfs_path *path;
3364 int ret;
3365 int err = 0;
3366 int bytes_del = 0;
3367 u64 dir_ino = btrfs_ino(dir);
3368
3369 if (!inode_logged(trans, dir))
3370 return 0;
3371
3372 ret = join_running_log_trans(root);
3373 if (ret)
3374 return 0;
3375
3376 mutex_lock(&dir->log_mutex);
3377
3378 log = root->log_root;
3379 path = btrfs_alloc_path();
3380 if (!path) {
3381 err = -ENOMEM;
3382 goto out_unlock;
3383 }
3384
3385 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3386 name, name_len, -1);
3387 if (IS_ERR(di)) {
3388 err = PTR_ERR(di);
3389 goto fail;
3390 }
3391 if (di) {
3392 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3393 bytes_del += name_len;
3394 if (ret) {
3395 err = ret;
3396 goto fail;
3397 }
3398 }
3399 btrfs_release_path(path);
3400 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3401 index, name, name_len, -1);
3402 if (IS_ERR(di)) {
3403 err = PTR_ERR(di);
3404 goto fail;
3405 }
3406 if (di) {
3407 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3408 bytes_del += name_len;
3409 if (ret) {
3410 err = ret;
3411 goto fail;
3412 }
3413 }
3414
3415 /* update the directory size in the log to reflect the names
3416 * we have removed
3417 */
3418 if (bytes_del) {
3419 struct btrfs_key key;
3420
3421 key.objectid = dir_ino;
3422 key.offset = 0;
3423 key.type = BTRFS_INODE_ITEM_KEY;
3424 btrfs_release_path(path);
3425
3426 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3427 if (ret < 0) {
3428 err = ret;
3429 goto fail;
3430 }
3431 if (ret == 0) {
3432 struct btrfs_inode_item *item;
3433 u64 i_size;
3434
3435 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3436 struct btrfs_inode_item);
3437 i_size = btrfs_inode_size(path->nodes[0], item);
3438 if (i_size > bytes_del)
3439 i_size -= bytes_del;
3440 else
3441 i_size = 0;
3442 btrfs_set_inode_size(path->nodes[0], item, i_size);
3443 btrfs_mark_buffer_dirty(path->nodes[0]);
3444 } else
3445 ret = 0;
3446 btrfs_release_path(path);
3447 }
3448fail:
3449 btrfs_free_path(path);
3450out_unlock:
3451 mutex_unlock(&dir->log_mutex);
3452 if (err == -ENOSPC) {
3453 btrfs_set_log_full_commit(trans);
3454 err = 0;
3455 } else if (err < 0 && err != -ENOENT) {
3456 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3457 btrfs_abort_transaction(trans, err);
3458 }
3459
3460 btrfs_end_log_trans(root);
3461
3462 return err;
3463}
3464
3465/* see comments for btrfs_del_dir_entries_in_log */
3466int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3467 struct btrfs_root *root,
3468 const char *name, int name_len,
3469 struct btrfs_inode *inode, u64 dirid)
3470{
3471 struct btrfs_root *log;
3472 u64 index;
3473 int ret;
3474
3475 if (!inode_logged(trans, inode))
3476 return 0;
3477
3478 ret = join_running_log_trans(root);
3479 if (ret)
3480 return 0;
3481 log = root->log_root;
3482 mutex_lock(&inode->log_mutex);
3483
3484 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3485 dirid, &index);
3486 mutex_unlock(&inode->log_mutex);
3487 if (ret == -ENOSPC) {
3488 btrfs_set_log_full_commit(trans);
3489 ret = 0;
3490 } else if (ret < 0 && ret != -ENOENT)
3491 btrfs_abort_transaction(trans, ret);
3492 btrfs_end_log_trans(root);
3493
3494 return ret;
3495}
3496
3497/*
3498 * creates a range item in the log for 'dirid'. first_offset and
3499 * last_offset tell us which parts of the key space the log should
3500 * be considered authoritative for.
3501 */
3502static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3503 struct btrfs_root *log,
3504 struct btrfs_path *path,
3505 int key_type, u64 dirid,
3506 u64 first_offset, u64 last_offset)
3507{
3508 int ret;
3509 struct btrfs_key key;
3510 struct btrfs_dir_log_item *item;
3511
3512 key.objectid = dirid;
3513 key.offset = first_offset;
3514 if (key_type == BTRFS_DIR_ITEM_KEY)
3515 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3516 else
3517 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3518 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3519 if (ret)
3520 return ret;
3521
3522 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3523 struct btrfs_dir_log_item);
3524 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3525 btrfs_mark_buffer_dirty(path->nodes[0]);
3526 btrfs_release_path(path);
3527 return 0;
3528}
3529
3530/*
3531 * log all the items included in the current transaction for a given
3532 * directory. This also creates the range items in the log tree required
3533 * to replay anything deleted before the fsync
3534 */
3535static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *root, struct btrfs_inode *inode,
3537 struct btrfs_path *path,
3538 struct btrfs_path *dst_path, int key_type,
3539 struct btrfs_log_ctx *ctx,
3540 u64 min_offset, u64 *last_offset_ret)
3541{
3542 struct btrfs_key min_key;
3543 struct btrfs_root *log = root->log_root;
3544 struct extent_buffer *src;
3545 int err = 0;
3546 int ret;
3547 int i;
3548 int nritems;
3549 u64 first_offset = min_offset;
3550 u64 last_offset = (u64)-1;
3551 u64 ino = btrfs_ino(inode);
3552
3553 log = root->log_root;
3554
3555 min_key.objectid = ino;
3556 min_key.type = key_type;
3557 min_key.offset = min_offset;
3558
3559 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3560
3561 /*
3562 * we didn't find anything from this transaction, see if there
3563 * is anything at all
3564 */
3565 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3566 min_key.objectid = ino;
3567 min_key.type = key_type;
3568 min_key.offset = (u64)-1;
3569 btrfs_release_path(path);
3570 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3571 if (ret < 0) {
3572 btrfs_release_path(path);
3573 return ret;
3574 }
3575 ret = btrfs_previous_item(root, path, ino, key_type);
3576
3577 /* if ret == 0 there are items for this type,
3578 * create a range to tell us the last key of this type.
3579 * otherwise, there are no items in this directory after
3580 * *min_offset, and we create a range to indicate that.
3581 */
3582 if (ret == 0) {
3583 struct btrfs_key tmp;
3584 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3585 path->slots[0]);
3586 if (key_type == tmp.type)
3587 first_offset = max(min_offset, tmp.offset) + 1;
3588 }
3589 goto done;
3590 }
3591
3592 /* go backward to find any previous key */
3593 ret = btrfs_previous_item(root, path, ino, key_type);
3594 if (ret == 0) {
3595 struct btrfs_key tmp;
3596 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3597 if (key_type == tmp.type) {
3598 first_offset = tmp.offset;
3599 ret = overwrite_item(trans, log, dst_path,
3600 path->nodes[0], path->slots[0],
3601 &tmp);
3602 if (ret) {
3603 err = ret;
3604 goto done;
3605 }
3606 }
3607 }
3608 btrfs_release_path(path);
3609
3610 /*
3611 * Find the first key from this transaction again. See the note for
3612 * log_new_dir_dentries, if we're logging a directory recursively we
3613 * won't be holding its i_mutex, which means we can modify the directory
3614 * while we're logging it. If we remove an entry between our first
3615 * search and this search we'll not find the key again and can just
3616 * bail.
3617 */
3618 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3619 if (ret != 0)
3620 goto done;
3621
3622 /*
3623 * we have a block from this transaction, log every item in it
3624 * from our directory
3625 */
3626 while (1) {
3627 struct btrfs_key tmp;
3628 src = path->nodes[0];
3629 nritems = btrfs_header_nritems(src);
3630 for (i = path->slots[0]; i < nritems; i++) {
3631 struct btrfs_dir_item *di;
3632
3633 btrfs_item_key_to_cpu(src, &min_key, i);
3634
3635 if (min_key.objectid != ino || min_key.type != key_type)
3636 goto done;
3637 ret = overwrite_item(trans, log, dst_path, src, i,
3638 &min_key);
3639 if (ret) {
3640 err = ret;
3641 goto done;
3642 }
3643
3644 /*
3645 * We must make sure that when we log a directory entry,
3646 * the corresponding inode, after log replay, has a
3647 * matching link count. For example:
3648 *
3649 * touch foo
3650 * mkdir mydir
3651 * sync
3652 * ln foo mydir/bar
3653 * xfs_io -c "fsync" mydir
3654 * <crash>
3655 * <mount fs and log replay>
3656 *
3657 * Would result in a fsync log that when replayed, our
3658 * file inode would have a link count of 1, but we get
3659 * two directory entries pointing to the same inode.
3660 * After removing one of the names, it would not be
3661 * possible to remove the other name, which resulted
3662 * always in stale file handle errors, and would not
3663 * be possible to rmdir the parent directory, since
3664 * its i_size could never decrement to the value
3665 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3666 */
3667 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3668 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3669 if (ctx &&
3670 (btrfs_dir_transid(src, di) == trans->transid ||
3671 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3672 tmp.type != BTRFS_ROOT_ITEM_KEY)
3673 ctx->log_new_dentries = true;
3674 }
3675 path->slots[0] = nritems;
3676
3677 /*
3678 * look ahead to the next item and see if it is also
3679 * from this directory and from this transaction
3680 */
3681 ret = btrfs_next_leaf(root, path);
3682 if (ret) {
3683 if (ret == 1)
3684 last_offset = (u64)-1;
3685 else
3686 err = ret;
3687 goto done;
3688 }
3689 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3690 if (tmp.objectid != ino || tmp.type != key_type) {
3691 last_offset = (u64)-1;
3692 goto done;
3693 }
3694 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3695 ret = overwrite_item(trans, log, dst_path,
3696 path->nodes[0], path->slots[0],
3697 &tmp);
3698 if (ret)
3699 err = ret;
3700 else
3701 last_offset = tmp.offset;
3702 goto done;
3703 }
3704 }
3705done:
3706 btrfs_release_path(path);
3707 btrfs_release_path(dst_path);
3708
3709 if (err == 0) {
3710 *last_offset_ret = last_offset;
3711 /*
3712 * insert the log range keys to indicate where the log
3713 * is valid
3714 */
3715 ret = insert_dir_log_key(trans, log, path, key_type,
3716 ino, first_offset, last_offset);
3717 if (ret)
3718 err = ret;
3719 }
3720 return err;
3721}
3722
3723/*
3724 * logging directories is very similar to logging inodes, We find all the items
3725 * from the current transaction and write them to the log.
3726 *
3727 * The recovery code scans the directory in the subvolume, and if it finds a
3728 * key in the range logged that is not present in the log tree, then it means
3729 * that dir entry was unlinked during the transaction.
3730 *
3731 * In order for that scan to work, we must include one key smaller than
3732 * the smallest logged by this transaction and one key larger than the largest
3733 * key logged by this transaction.
3734 */
3735static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3736 struct btrfs_root *root, struct btrfs_inode *inode,
3737 struct btrfs_path *path,
3738 struct btrfs_path *dst_path,
3739 struct btrfs_log_ctx *ctx)
3740{
3741 u64 min_key;
3742 u64 max_key;
3743 int ret;
3744 int key_type = BTRFS_DIR_ITEM_KEY;
3745
3746again:
3747 min_key = 0;
3748 max_key = 0;
3749 while (1) {
3750 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3751 ctx, min_key, &max_key);
3752 if (ret)
3753 return ret;
3754 if (max_key == (u64)-1)
3755 break;
3756 min_key = max_key + 1;
3757 }
3758
3759 if (key_type == BTRFS_DIR_ITEM_KEY) {
3760 key_type = BTRFS_DIR_INDEX_KEY;
3761 goto again;
3762 }
3763 return 0;
3764}
3765
3766/*
3767 * a helper function to drop items from the log before we relog an
3768 * inode. max_key_type indicates the highest item type to remove.
3769 * This cannot be run for file data extents because it does not
3770 * free the extents they point to.
3771 */
3772static int drop_objectid_items(struct btrfs_trans_handle *trans,
3773 struct btrfs_root *log,
3774 struct btrfs_path *path,
3775 u64 objectid, int max_key_type)
3776{
3777 int ret;
3778 struct btrfs_key key;
3779 struct btrfs_key found_key;
3780 int start_slot;
3781
3782 key.objectid = objectid;
3783 key.type = max_key_type;
3784 key.offset = (u64)-1;
3785
3786 while (1) {
3787 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3788 BUG_ON(ret == 0); /* Logic error */
3789 if (ret < 0)
3790 break;
3791
3792 if (path->slots[0] == 0)
3793 break;
3794
3795 path->slots[0]--;
3796 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3797 path->slots[0]);
3798
3799 if (found_key.objectid != objectid)
3800 break;
3801
3802 found_key.offset = 0;
3803 found_key.type = 0;
3804 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3805 if (ret < 0)
3806 break;
3807
3808 ret = btrfs_del_items(trans, log, path, start_slot,
3809 path->slots[0] - start_slot + 1);
3810 /*
3811 * If start slot isn't 0 then we don't need to re-search, we've
3812 * found the last guy with the objectid in this tree.
3813 */
3814 if (ret || start_slot != 0)
3815 break;
3816 btrfs_release_path(path);
3817 }
3818 btrfs_release_path(path);
3819 if (ret > 0)
3820 ret = 0;
3821 return ret;
3822}
3823
3824static void fill_inode_item(struct btrfs_trans_handle *trans,
3825 struct extent_buffer *leaf,
3826 struct btrfs_inode_item *item,
3827 struct inode *inode, int log_inode_only,
3828 u64 logged_isize)
3829{
3830 struct btrfs_map_token token;
3831
3832 btrfs_init_map_token(&token, leaf);
3833
3834 if (log_inode_only) {
3835 /* set the generation to zero so the recover code
3836 * can tell the difference between an logging
3837 * just to say 'this inode exists' and a logging
3838 * to say 'update this inode with these values'
3839 */
3840 btrfs_set_token_inode_generation(&token, item, 0);
3841 btrfs_set_token_inode_size(&token, item, logged_isize);
3842 } else {
3843 btrfs_set_token_inode_generation(&token, item,
3844 BTRFS_I(inode)->generation);
3845 btrfs_set_token_inode_size(&token, item, inode->i_size);
3846 }
3847
3848 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3849 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3850 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3851 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3852
3853 btrfs_set_token_timespec_sec(&token, &item->atime,
3854 inode->i_atime.tv_sec);
3855 btrfs_set_token_timespec_nsec(&token, &item->atime,
3856 inode->i_atime.tv_nsec);
3857
3858 btrfs_set_token_timespec_sec(&token, &item->mtime,
3859 inode->i_mtime.tv_sec);
3860 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3861 inode->i_mtime.tv_nsec);
3862
3863 btrfs_set_token_timespec_sec(&token, &item->ctime,
3864 inode->i_ctime.tv_sec);
3865 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3866 inode->i_ctime.tv_nsec);
3867
3868 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3869
3870 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3871 btrfs_set_token_inode_transid(&token, item, trans->transid);
3872 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3873 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3874 btrfs_set_token_inode_block_group(&token, item, 0);
3875}
3876
3877static int log_inode_item(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *log, struct btrfs_path *path,
3879 struct btrfs_inode *inode)
3880{
3881 struct btrfs_inode_item *inode_item;
3882 int ret;
3883
3884 ret = btrfs_insert_empty_item(trans, log, path,
3885 &inode->location, sizeof(*inode_item));
3886 if (ret && ret != -EEXIST)
3887 return ret;
3888 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3889 struct btrfs_inode_item);
3890 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3891 0, 0);
3892 btrfs_release_path(path);
3893 return 0;
3894}
3895
3896static int log_csums(struct btrfs_trans_handle *trans,
3897 struct btrfs_inode *inode,
3898 struct btrfs_root *log_root,
3899 struct btrfs_ordered_sum *sums)
3900{
3901 const u64 lock_end = sums->bytenr + sums->len - 1;
3902 struct extent_state *cached_state = NULL;
3903 int ret;
3904
3905 /*
3906 * If this inode was not used for reflink operations in the current
3907 * transaction with new extents, then do the fast path, no need to
3908 * worry about logging checksum items with overlapping ranges.
3909 */
3910 if (inode->last_reflink_trans < trans->transid)
3911 return btrfs_csum_file_blocks(trans, log_root, sums);
3912
3913 /*
3914 * Serialize logging for checksums. This is to avoid racing with the
3915 * same checksum being logged by another task that is logging another
3916 * file which happens to refer to the same extent as well. Such races
3917 * can leave checksum items in the log with overlapping ranges.
3918 */
3919 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3920 lock_end, &cached_state);
3921 if (ret)
3922 return ret;
3923 /*
3924 * Due to extent cloning, we might have logged a csum item that covers a
3925 * subrange of a cloned extent, and later we can end up logging a csum
3926 * item for a larger subrange of the same extent or the entire range.
3927 * This would leave csum items in the log tree that cover the same range
3928 * and break the searches for checksums in the log tree, resulting in
3929 * some checksums missing in the fs/subvolume tree. So just delete (or
3930 * trim and adjust) any existing csum items in the log for this range.
3931 */
3932 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3933 if (!ret)
3934 ret = btrfs_csum_file_blocks(trans, log_root, sums);
3935
3936 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3937 &cached_state);
3938
3939 return ret;
3940}
3941
3942static noinline int copy_items(struct btrfs_trans_handle *trans,
3943 struct btrfs_inode *inode,
3944 struct btrfs_path *dst_path,
3945 struct btrfs_path *src_path,
3946 int start_slot, int nr, int inode_only,
3947 u64 logged_isize)
3948{
3949 struct btrfs_fs_info *fs_info = trans->fs_info;
3950 unsigned long src_offset;
3951 unsigned long dst_offset;
3952 struct btrfs_root *log = inode->root->log_root;
3953 struct btrfs_file_extent_item *extent;
3954 struct btrfs_inode_item *inode_item;
3955 struct extent_buffer *src = src_path->nodes[0];
3956 int ret;
3957 struct btrfs_key *ins_keys;
3958 u32 *ins_sizes;
3959 char *ins_data;
3960 int i;
3961 struct list_head ordered_sums;
3962 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3963
3964 INIT_LIST_HEAD(&ordered_sums);
3965
3966 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3967 nr * sizeof(u32), GFP_NOFS);
3968 if (!ins_data)
3969 return -ENOMEM;
3970
3971 ins_sizes = (u32 *)ins_data;
3972 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3973
3974 for (i = 0; i < nr; i++) {
3975 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3976 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3977 }
3978 ret = btrfs_insert_empty_items(trans, log, dst_path,
3979 ins_keys, ins_sizes, nr);
3980 if (ret) {
3981 kfree(ins_data);
3982 return ret;
3983 }
3984
3985 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3986 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3987 dst_path->slots[0]);
3988
3989 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3990
3991 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3992 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3993 dst_path->slots[0],
3994 struct btrfs_inode_item);
3995 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3996 &inode->vfs_inode,
3997 inode_only == LOG_INODE_EXISTS,
3998 logged_isize);
3999 } else {
4000 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4001 src_offset, ins_sizes[i]);
4002 }
4003
4004 /* take a reference on file data extents so that truncates
4005 * or deletes of this inode don't have to relog the inode
4006 * again
4007 */
4008 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4009 !skip_csum) {
4010 int found_type;
4011 extent = btrfs_item_ptr(src, start_slot + i,
4012 struct btrfs_file_extent_item);
4013
4014 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4015 continue;
4016
4017 found_type = btrfs_file_extent_type(src, extent);
4018 if (found_type == BTRFS_FILE_EXTENT_REG) {
4019 u64 ds, dl, cs, cl;
4020 ds = btrfs_file_extent_disk_bytenr(src,
4021 extent);
4022 /* ds == 0 is a hole */
4023 if (ds == 0)
4024 continue;
4025
4026 dl = btrfs_file_extent_disk_num_bytes(src,
4027 extent);
4028 cs = btrfs_file_extent_offset(src, extent);
4029 cl = btrfs_file_extent_num_bytes(src,
4030 extent);
4031 if (btrfs_file_extent_compression(src,
4032 extent)) {
4033 cs = 0;
4034 cl = dl;
4035 }
4036
4037 ret = btrfs_lookup_csums_range(
4038 fs_info->csum_root,
4039 ds + cs, ds + cs + cl - 1,
4040 &ordered_sums, 0);
4041 if (ret)
4042 break;
4043 }
4044 }
4045 }
4046
4047 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4048 btrfs_release_path(dst_path);
4049 kfree(ins_data);
4050
4051 /*
4052 * we have to do this after the loop above to avoid changing the
4053 * log tree while trying to change the log tree.
4054 */
4055 while (!list_empty(&ordered_sums)) {
4056 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4057 struct btrfs_ordered_sum,
4058 list);
4059 if (!ret)
4060 ret = log_csums(trans, inode, log, sums);
4061 list_del(&sums->list);
4062 kfree(sums);
4063 }
4064
4065 return ret;
4066}
4067
4068static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4069{
4070 struct extent_map *em1, *em2;
4071
4072 em1 = list_entry(a, struct extent_map, list);
4073 em2 = list_entry(b, struct extent_map, list);
4074
4075 if (em1->start < em2->start)
4076 return -1;
4077 else if (em1->start > em2->start)
4078 return 1;
4079 return 0;
4080}
4081
4082static int log_extent_csums(struct btrfs_trans_handle *trans,
4083 struct btrfs_inode *inode,
4084 struct btrfs_root *log_root,
4085 const struct extent_map *em)
4086{
4087 u64 csum_offset;
4088 u64 csum_len;
4089 LIST_HEAD(ordered_sums);
4090 int ret = 0;
4091
4092 if (inode->flags & BTRFS_INODE_NODATASUM ||
4093 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4094 em->block_start == EXTENT_MAP_HOLE)
4095 return 0;
4096
4097 /* If we're compressed we have to save the entire range of csums. */
4098 if (em->compress_type) {
4099 csum_offset = 0;
4100 csum_len = max(em->block_len, em->orig_block_len);
4101 } else {
4102 csum_offset = em->mod_start - em->start;
4103 csum_len = em->mod_len;
4104 }
4105
4106 /* block start is already adjusted for the file extent offset. */
4107 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4108 em->block_start + csum_offset,
4109 em->block_start + csum_offset +
4110 csum_len - 1, &ordered_sums, 0);
4111 if (ret)
4112 return ret;
4113
4114 while (!list_empty(&ordered_sums)) {
4115 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4116 struct btrfs_ordered_sum,
4117 list);
4118 if (!ret)
4119 ret = log_csums(trans, inode, log_root, sums);
4120 list_del(&sums->list);
4121 kfree(sums);
4122 }
4123
4124 return ret;
4125}
4126
4127static int log_one_extent(struct btrfs_trans_handle *trans,
4128 struct btrfs_inode *inode, struct btrfs_root *root,
4129 const struct extent_map *em,
4130 struct btrfs_path *path,
4131 struct btrfs_log_ctx *ctx)
4132{
4133 struct btrfs_root *log = root->log_root;
4134 struct btrfs_file_extent_item *fi;
4135 struct extent_buffer *leaf;
4136 struct btrfs_map_token token;
4137 struct btrfs_key key;
4138 u64 extent_offset = em->start - em->orig_start;
4139 u64 block_len;
4140 int ret;
4141 int extent_inserted = 0;
4142
4143 ret = log_extent_csums(trans, inode, log, em);
4144 if (ret)
4145 return ret;
4146
4147 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4148 em->start + em->len, NULL, 0, 1,
4149 sizeof(*fi), &extent_inserted);
4150 if (ret)
4151 return ret;
4152
4153 if (!extent_inserted) {
4154 key.objectid = btrfs_ino(inode);
4155 key.type = BTRFS_EXTENT_DATA_KEY;
4156 key.offset = em->start;
4157
4158 ret = btrfs_insert_empty_item(trans, log, path, &key,
4159 sizeof(*fi));
4160 if (ret)
4161 return ret;
4162 }
4163 leaf = path->nodes[0];
4164 btrfs_init_map_token(&token, leaf);
4165 fi = btrfs_item_ptr(leaf, path->slots[0],
4166 struct btrfs_file_extent_item);
4167
4168 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4169 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4170 btrfs_set_token_file_extent_type(&token, fi,
4171 BTRFS_FILE_EXTENT_PREALLOC);
4172 else
4173 btrfs_set_token_file_extent_type(&token, fi,
4174 BTRFS_FILE_EXTENT_REG);
4175
4176 block_len = max(em->block_len, em->orig_block_len);
4177 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4178 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4179 em->block_start);
4180 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4181 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4182 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4183 em->block_start -
4184 extent_offset);
4185 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4186 } else {
4187 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4188 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4189 }
4190
4191 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4192 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4193 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4194 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4195 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4196 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4197 btrfs_mark_buffer_dirty(leaf);
4198
4199 btrfs_release_path(path);
4200
4201 return ret;
4202}
4203
4204/*
4205 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4206 * lose them after doing a fast fsync and replaying the log. We scan the
4207 * subvolume's root instead of iterating the inode's extent map tree because
4208 * otherwise we can log incorrect extent items based on extent map conversion.
4209 * That can happen due to the fact that extent maps are merged when they
4210 * are not in the extent map tree's list of modified extents.
4211 */
4212static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4213 struct btrfs_inode *inode,
4214 struct btrfs_path *path)
4215{
4216 struct btrfs_root *root = inode->root;
4217 struct btrfs_key key;
4218 const u64 i_size = i_size_read(&inode->vfs_inode);
4219 const u64 ino = btrfs_ino(inode);
4220 struct btrfs_path *dst_path = NULL;
4221 bool dropped_extents = false;
4222 u64 truncate_offset = i_size;
4223 struct extent_buffer *leaf;
4224 int slot;
4225 int ins_nr = 0;
4226 int start_slot;
4227 int ret;
4228
4229 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4230 return 0;
4231
4232 key.objectid = ino;
4233 key.type = BTRFS_EXTENT_DATA_KEY;
4234 key.offset = i_size;
4235 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4236 if (ret < 0)
4237 goto out;
4238
4239 /*
4240 * We must check if there is a prealloc extent that starts before the
4241 * i_size and crosses the i_size boundary. This is to ensure later we
4242 * truncate down to the end of that extent and not to the i_size, as
4243 * otherwise we end up losing part of the prealloc extent after a log
4244 * replay and with an implicit hole if there is another prealloc extent
4245 * that starts at an offset beyond i_size.
4246 */
4247 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4248 if (ret < 0)
4249 goto out;
4250
4251 if (ret == 0) {
4252 struct btrfs_file_extent_item *ei;
4253
4254 leaf = path->nodes[0];
4255 slot = path->slots[0];
4256 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4257
4258 if (btrfs_file_extent_type(leaf, ei) ==
4259 BTRFS_FILE_EXTENT_PREALLOC) {
4260 u64 extent_end;
4261
4262 btrfs_item_key_to_cpu(leaf, &key, slot);
4263 extent_end = key.offset +
4264 btrfs_file_extent_num_bytes(leaf, ei);
4265
4266 if (extent_end > i_size)
4267 truncate_offset = extent_end;
4268 }
4269 } else {
4270 ret = 0;
4271 }
4272
4273 while (true) {
4274 leaf = path->nodes[0];
4275 slot = path->slots[0];
4276
4277 if (slot >= btrfs_header_nritems(leaf)) {
4278 if (ins_nr > 0) {
4279 ret = copy_items(trans, inode, dst_path, path,
4280 start_slot, ins_nr, 1, 0);
4281 if (ret < 0)
4282 goto out;
4283 ins_nr = 0;
4284 }
4285 ret = btrfs_next_leaf(root, path);
4286 if (ret < 0)
4287 goto out;
4288 if (ret > 0) {
4289 ret = 0;
4290 break;
4291 }
4292 continue;
4293 }
4294
4295 btrfs_item_key_to_cpu(leaf, &key, slot);
4296 if (key.objectid > ino)
4297 break;
4298 if (WARN_ON_ONCE(key.objectid < ino) ||
4299 key.type < BTRFS_EXTENT_DATA_KEY ||
4300 key.offset < i_size) {
4301 path->slots[0]++;
4302 continue;
4303 }
4304 if (!dropped_extents) {
4305 /*
4306 * Avoid logging extent items logged in past fsync calls
4307 * and leading to duplicate keys in the log tree.
4308 */
4309 do {
4310 ret = btrfs_truncate_inode_items(trans,
4311 root->log_root,
4312 &inode->vfs_inode,
4313 truncate_offset,
4314 BTRFS_EXTENT_DATA_KEY);
4315 } while (ret == -EAGAIN);
4316 if (ret)
4317 goto out;
4318 dropped_extents = true;
4319 }
4320 if (ins_nr == 0)
4321 start_slot = slot;
4322 ins_nr++;
4323 path->slots[0]++;
4324 if (!dst_path) {
4325 dst_path = btrfs_alloc_path();
4326 if (!dst_path) {
4327 ret = -ENOMEM;
4328 goto out;
4329 }
4330 }
4331 }
4332 if (ins_nr > 0)
4333 ret = copy_items(trans, inode, dst_path, path,
4334 start_slot, ins_nr, 1, 0);
4335out:
4336 btrfs_release_path(path);
4337 btrfs_free_path(dst_path);
4338 return ret;
4339}
4340
4341static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4342 struct btrfs_root *root,
4343 struct btrfs_inode *inode,
4344 struct btrfs_path *path,
4345 struct btrfs_log_ctx *ctx,
4346 const u64 start,
4347 const u64 end)
4348{
4349 struct extent_map *em, *n;
4350 struct list_head extents;
4351 struct extent_map_tree *tree = &inode->extent_tree;
4352 u64 test_gen;
4353 int ret = 0;
4354 int num = 0;
4355
4356 INIT_LIST_HEAD(&extents);
4357
4358 write_lock(&tree->lock);
4359 test_gen = root->fs_info->last_trans_committed;
4360
4361 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4362 /*
4363 * Skip extents outside our logging range. It's important to do
4364 * it for correctness because if we don't ignore them, we may
4365 * log them before their ordered extent completes, and therefore
4366 * we could log them without logging their respective checksums
4367 * (the checksum items are added to the csum tree at the very
4368 * end of btrfs_finish_ordered_io()). Also leave such extents
4369 * outside of our range in the list, since we may have another
4370 * ranged fsync in the near future that needs them. If an extent
4371 * outside our range corresponds to a hole, log it to avoid
4372 * leaving gaps between extents (fsck will complain when we are
4373 * not using the NO_HOLES feature).
4374 */
4375 if ((em->start > end || em->start + em->len <= start) &&
4376 em->block_start != EXTENT_MAP_HOLE)
4377 continue;
4378
4379 list_del_init(&em->list);
4380 /*
4381 * Just an arbitrary number, this can be really CPU intensive
4382 * once we start getting a lot of extents, and really once we
4383 * have a bunch of extents we just want to commit since it will
4384 * be faster.
4385 */
4386 if (++num > 32768) {
4387 list_del_init(&tree->modified_extents);
4388 ret = -EFBIG;
4389 goto process;
4390 }
4391
4392 if (em->generation <= test_gen)
4393 continue;
4394
4395 /* We log prealloc extents beyond eof later. */
4396 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4397 em->start >= i_size_read(&inode->vfs_inode))
4398 continue;
4399
4400 /* Need a ref to keep it from getting evicted from cache */
4401 refcount_inc(&em->refs);
4402 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4403 list_add_tail(&em->list, &extents);
4404 num++;
4405 }
4406
4407 list_sort(NULL, &extents, extent_cmp);
4408process:
4409 while (!list_empty(&extents)) {
4410 em = list_entry(extents.next, struct extent_map, list);
4411
4412 list_del_init(&em->list);
4413
4414 /*
4415 * If we had an error we just need to delete everybody from our
4416 * private list.
4417 */
4418 if (ret) {
4419 clear_em_logging(tree, em);
4420 free_extent_map(em);
4421 continue;
4422 }
4423
4424 write_unlock(&tree->lock);
4425
4426 ret = log_one_extent(trans, inode, root, em, path, ctx);
4427 write_lock(&tree->lock);
4428 clear_em_logging(tree, em);
4429 free_extent_map(em);
4430 }
4431 WARN_ON(!list_empty(&extents));
4432 write_unlock(&tree->lock);
4433
4434 btrfs_release_path(path);
4435 if (!ret)
4436 ret = btrfs_log_prealloc_extents(trans, inode, path);
4437
4438 return ret;
4439}
4440
4441static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4442 struct btrfs_path *path, u64 *size_ret)
4443{
4444 struct btrfs_key key;
4445 int ret;
4446
4447 key.objectid = btrfs_ino(inode);
4448 key.type = BTRFS_INODE_ITEM_KEY;
4449 key.offset = 0;
4450
4451 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4452 if (ret < 0) {
4453 return ret;
4454 } else if (ret > 0) {
4455 *size_ret = 0;
4456 } else {
4457 struct btrfs_inode_item *item;
4458
4459 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4460 struct btrfs_inode_item);
4461 *size_ret = btrfs_inode_size(path->nodes[0], item);
4462 /*
4463 * If the in-memory inode's i_size is smaller then the inode
4464 * size stored in the btree, return the inode's i_size, so
4465 * that we get a correct inode size after replaying the log
4466 * when before a power failure we had a shrinking truncate
4467 * followed by addition of a new name (rename / new hard link).
4468 * Otherwise return the inode size from the btree, to avoid
4469 * data loss when replaying a log due to previously doing a
4470 * write that expands the inode's size and logging a new name
4471 * immediately after.
4472 */
4473 if (*size_ret > inode->vfs_inode.i_size)
4474 *size_ret = inode->vfs_inode.i_size;
4475 }
4476
4477 btrfs_release_path(path);
4478 return 0;
4479}
4480
4481/*
4482 * At the moment we always log all xattrs. This is to figure out at log replay
4483 * time which xattrs must have their deletion replayed. If a xattr is missing
4484 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4485 * because if a xattr is deleted, the inode is fsynced and a power failure
4486 * happens, causing the log to be replayed the next time the fs is mounted,
4487 * we want the xattr to not exist anymore (same behaviour as other filesystems
4488 * with a journal, ext3/4, xfs, f2fs, etc).
4489 */
4490static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4491 struct btrfs_root *root,
4492 struct btrfs_inode *inode,
4493 struct btrfs_path *path,
4494 struct btrfs_path *dst_path)
4495{
4496 int ret;
4497 struct btrfs_key key;
4498 const u64 ino = btrfs_ino(inode);
4499 int ins_nr = 0;
4500 int start_slot = 0;
4501
4502 key.objectid = ino;
4503 key.type = BTRFS_XATTR_ITEM_KEY;
4504 key.offset = 0;
4505
4506 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4507 if (ret < 0)
4508 return ret;
4509
4510 while (true) {
4511 int slot = path->slots[0];
4512 struct extent_buffer *leaf = path->nodes[0];
4513 int nritems = btrfs_header_nritems(leaf);
4514
4515 if (slot >= nritems) {
4516 if (ins_nr > 0) {
4517 ret = copy_items(trans, inode, dst_path, path,
4518 start_slot, ins_nr, 1, 0);
4519 if (ret < 0)
4520 return ret;
4521 ins_nr = 0;
4522 }
4523 ret = btrfs_next_leaf(root, path);
4524 if (ret < 0)
4525 return ret;
4526 else if (ret > 0)
4527 break;
4528 continue;
4529 }
4530
4531 btrfs_item_key_to_cpu(leaf, &key, slot);
4532 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4533 break;
4534
4535 if (ins_nr == 0)
4536 start_slot = slot;
4537 ins_nr++;
4538 path->slots[0]++;
4539 cond_resched();
4540 }
4541 if (ins_nr > 0) {
4542 ret = copy_items(trans, inode, dst_path, path,
4543 start_slot, ins_nr, 1, 0);
4544 if (ret < 0)
4545 return ret;
4546 }
4547
4548 return 0;
4549}
4550
4551/*
4552 * When using the NO_HOLES feature if we punched a hole that causes the
4553 * deletion of entire leafs or all the extent items of the first leaf (the one
4554 * that contains the inode item and references) we may end up not processing
4555 * any extents, because there are no leafs with a generation matching the
4556 * current transaction that have extent items for our inode. So we need to find
4557 * if any holes exist and then log them. We also need to log holes after any
4558 * truncate operation that changes the inode's size.
4559 */
4560static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4561 struct btrfs_root *root,
4562 struct btrfs_inode *inode,
4563 struct btrfs_path *path)
4564{
4565 struct btrfs_fs_info *fs_info = root->fs_info;
4566 struct btrfs_key key;
4567 const u64 ino = btrfs_ino(inode);
4568 const u64 i_size = i_size_read(&inode->vfs_inode);
4569 u64 prev_extent_end = 0;
4570 int ret;
4571
4572 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4573 return 0;
4574
4575 key.objectid = ino;
4576 key.type = BTRFS_EXTENT_DATA_KEY;
4577 key.offset = 0;
4578
4579 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4580 if (ret < 0)
4581 return ret;
4582
4583 while (true) {
4584 struct extent_buffer *leaf = path->nodes[0];
4585
4586 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4587 ret = btrfs_next_leaf(root, path);
4588 if (ret < 0)
4589 return ret;
4590 if (ret > 0) {
4591 ret = 0;
4592 break;
4593 }
4594 leaf = path->nodes[0];
4595 }
4596
4597 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4598 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4599 break;
4600
4601 /* We have a hole, log it. */
4602 if (prev_extent_end < key.offset) {
4603 const u64 hole_len = key.offset - prev_extent_end;
4604
4605 /*
4606 * Release the path to avoid deadlocks with other code
4607 * paths that search the root while holding locks on
4608 * leafs from the log root.
4609 */
4610 btrfs_release_path(path);
4611 ret = btrfs_insert_file_extent(trans, root->log_root,
4612 ino, prev_extent_end, 0,
4613 0, hole_len, 0, hole_len,
4614 0, 0, 0);
4615 if (ret < 0)
4616 return ret;
4617
4618 /*
4619 * Search for the same key again in the root. Since it's
4620 * an extent item and we are holding the inode lock, the
4621 * key must still exist. If it doesn't just emit warning
4622 * and return an error to fall back to a transaction
4623 * commit.
4624 */
4625 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4626 if (ret < 0)
4627 return ret;
4628 if (WARN_ON(ret > 0))
4629 return -ENOENT;
4630 leaf = path->nodes[0];
4631 }
4632
4633 prev_extent_end = btrfs_file_extent_end(path);
4634 path->slots[0]++;
4635 cond_resched();
4636 }
4637
4638 if (prev_extent_end < i_size) {
4639 u64 hole_len;
4640
4641 btrfs_release_path(path);
4642 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4643 ret = btrfs_insert_file_extent(trans, root->log_root,
4644 ino, prev_extent_end, 0, 0,
4645 hole_len, 0, hole_len,
4646 0, 0, 0);
4647 if (ret < 0)
4648 return ret;
4649 }
4650
4651 return 0;
4652}
4653
4654/*
4655 * When we are logging a new inode X, check if it doesn't have a reference that
4656 * matches the reference from some other inode Y created in a past transaction
4657 * and that was renamed in the current transaction. If we don't do this, then at
4658 * log replay time we can lose inode Y (and all its files if it's a directory):
4659 *
4660 * mkdir /mnt/x
4661 * echo "hello world" > /mnt/x/foobar
4662 * sync
4663 * mv /mnt/x /mnt/y
4664 * mkdir /mnt/x # or touch /mnt/x
4665 * xfs_io -c fsync /mnt/x
4666 * <power fail>
4667 * mount fs, trigger log replay
4668 *
4669 * After the log replay procedure, we would lose the first directory and all its
4670 * files (file foobar).
4671 * For the case where inode Y is not a directory we simply end up losing it:
4672 *
4673 * echo "123" > /mnt/foo
4674 * sync
4675 * mv /mnt/foo /mnt/bar
4676 * echo "abc" > /mnt/foo
4677 * xfs_io -c fsync /mnt/foo
4678 * <power fail>
4679 *
4680 * We also need this for cases where a snapshot entry is replaced by some other
4681 * entry (file or directory) otherwise we end up with an unreplayable log due to
4682 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4683 * if it were a regular entry:
4684 *
4685 * mkdir /mnt/x
4686 * btrfs subvolume snapshot /mnt /mnt/x/snap
4687 * btrfs subvolume delete /mnt/x/snap
4688 * rmdir /mnt/x
4689 * mkdir /mnt/x
4690 * fsync /mnt/x or fsync some new file inside it
4691 * <power fail>
4692 *
4693 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4694 * the same transaction.
4695 */
4696static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4697 const int slot,
4698 const struct btrfs_key *key,
4699 struct btrfs_inode *inode,
4700 u64 *other_ino, u64 *other_parent)
4701{
4702 int ret;
4703 struct btrfs_path *search_path;
4704 char *name = NULL;
4705 u32 name_len = 0;
4706 u32 item_size = btrfs_item_size_nr(eb, slot);
4707 u32 cur_offset = 0;
4708 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4709
4710 search_path = btrfs_alloc_path();
4711 if (!search_path)
4712 return -ENOMEM;
4713 search_path->search_commit_root = 1;
4714 search_path->skip_locking = 1;
4715
4716 while (cur_offset < item_size) {
4717 u64 parent;
4718 u32 this_name_len;
4719 u32 this_len;
4720 unsigned long name_ptr;
4721 struct btrfs_dir_item *di;
4722
4723 if (key->type == BTRFS_INODE_REF_KEY) {
4724 struct btrfs_inode_ref *iref;
4725
4726 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4727 parent = key->offset;
4728 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4729 name_ptr = (unsigned long)(iref + 1);
4730 this_len = sizeof(*iref) + this_name_len;
4731 } else {
4732 struct btrfs_inode_extref *extref;
4733
4734 extref = (struct btrfs_inode_extref *)(ptr +
4735 cur_offset);
4736 parent = btrfs_inode_extref_parent(eb, extref);
4737 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4738 name_ptr = (unsigned long)&extref->name;
4739 this_len = sizeof(*extref) + this_name_len;
4740 }
4741
4742 if (this_name_len > name_len) {
4743 char *new_name;
4744
4745 new_name = krealloc(name, this_name_len, GFP_NOFS);
4746 if (!new_name) {
4747 ret = -ENOMEM;
4748 goto out;
4749 }
4750 name_len = this_name_len;
4751 name = new_name;
4752 }
4753
4754 read_extent_buffer(eb, name, name_ptr, this_name_len);
4755 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4756 parent, name, this_name_len, 0);
4757 if (di && !IS_ERR(di)) {
4758 struct btrfs_key di_key;
4759
4760 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4761 di, &di_key);
4762 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4763 if (di_key.objectid != key->objectid) {
4764 ret = 1;
4765 *other_ino = di_key.objectid;
4766 *other_parent = parent;
4767 } else {
4768 ret = 0;
4769 }
4770 } else {
4771 ret = -EAGAIN;
4772 }
4773 goto out;
4774 } else if (IS_ERR(di)) {
4775 ret = PTR_ERR(di);
4776 goto out;
4777 }
4778 btrfs_release_path(search_path);
4779
4780 cur_offset += this_len;
4781 }
4782 ret = 0;
4783out:
4784 btrfs_free_path(search_path);
4785 kfree(name);
4786 return ret;
4787}
4788
4789struct btrfs_ino_list {
4790 u64 ino;
4791 u64 parent;
4792 struct list_head list;
4793};
4794
4795static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4796 struct btrfs_root *root,
4797 struct btrfs_path *path,
4798 struct btrfs_log_ctx *ctx,
4799 u64 ino, u64 parent)
4800{
4801 struct btrfs_ino_list *ino_elem;
4802 LIST_HEAD(inode_list);
4803 int ret = 0;
4804
4805 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4806 if (!ino_elem)
4807 return -ENOMEM;
4808 ino_elem->ino = ino;
4809 ino_elem->parent = parent;
4810 list_add_tail(&ino_elem->list, &inode_list);
4811
4812 while (!list_empty(&inode_list)) {
4813 struct btrfs_fs_info *fs_info = root->fs_info;
4814 struct btrfs_key key;
4815 struct inode *inode;
4816
4817 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4818 list);
4819 ino = ino_elem->ino;
4820 parent = ino_elem->parent;
4821 list_del(&ino_elem->list);
4822 kfree(ino_elem);
4823 if (ret)
4824 continue;
4825
4826 btrfs_release_path(path);
4827
4828 inode = btrfs_iget(fs_info->sb, ino, root);
4829 /*
4830 * If the other inode that had a conflicting dir entry was
4831 * deleted in the current transaction, we need to log its parent
4832 * directory.
4833 */
4834 if (IS_ERR(inode)) {
4835 ret = PTR_ERR(inode);
4836 if (ret == -ENOENT) {
4837 inode = btrfs_iget(fs_info->sb, parent, root);
4838 if (IS_ERR(inode)) {
4839 ret = PTR_ERR(inode);
4840 } else {
4841 ret = btrfs_log_inode(trans, root,
4842 BTRFS_I(inode),
4843 LOG_OTHER_INODE_ALL,
4844 0, LLONG_MAX, ctx);
4845 btrfs_add_delayed_iput(inode);
4846 }
4847 }
4848 continue;
4849 }
4850 /*
4851 * If the inode was already logged skip it - otherwise we can
4852 * hit an infinite loop. Example:
4853 *
4854 * From the commit root (previous transaction) we have the
4855 * following inodes:
4856 *
4857 * inode 257 a directory
4858 * inode 258 with references "zz" and "zz_link" on inode 257
4859 * inode 259 with reference "a" on inode 257
4860 *
4861 * And in the current (uncommitted) transaction we have:
4862 *
4863 * inode 257 a directory, unchanged
4864 * inode 258 with references "a" and "a2" on inode 257
4865 * inode 259 with reference "zz_link" on inode 257
4866 * inode 261 with reference "zz" on inode 257
4867 *
4868 * When logging inode 261 the following infinite loop could
4869 * happen if we don't skip already logged inodes:
4870 *
4871 * - we detect inode 258 as a conflicting inode, with inode 261
4872 * on reference "zz", and log it;
4873 *
4874 * - we detect inode 259 as a conflicting inode, with inode 258
4875 * on reference "a", and log it;
4876 *
4877 * - we detect inode 258 as a conflicting inode, with inode 259
4878 * on reference "zz_link", and log it - again! After this we
4879 * repeat the above steps forever.
4880 */
4881 spin_lock(&BTRFS_I(inode)->lock);
4882 /*
4883 * Check the inode's logged_trans only instead of
4884 * btrfs_inode_in_log(). This is because the last_log_commit of
4885 * the inode is not updated when we only log that it exists and
4886 * and it has the full sync bit set (see btrfs_log_inode()).
4887 */
4888 if (BTRFS_I(inode)->logged_trans == trans->transid) {
4889 spin_unlock(&BTRFS_I(inode)->lock);
4890 btrfs_add_delayed_iput(inode);
4891 continue;
4892 }
4893 spin_unlock(&BTRFS_I(inode)->lock);
4894 /*
4895 * We are safe logging the other inode without acquiring its
4896 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4897 * are safe against concurrent renames of the other inode as
4898 * well because during a rename we pin the log and update the
4899 * log with the new name before we unpin it.
4900 */
4901 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4902 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4903 if (ret) {
4904 btrfs_add_delayed_iput(inode);
4905 continue;
4906 }
4907
4908 key.objectid = ino;
4909 key.type = BTRFS_INODE_REF_KEY;
4910 key.offset = 0;
4911 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4912 if (ret < 0) {
4913 btrfs_add_delayed_iput(inode);
4914 continue;
4915 }
4916
4917 while (true) {
4918 struct extent_buffer *leaf = path->nodes[0];
4919 int slot = path->slots[0];
4920 u64 other_ino = 0;
4921 u64 other_parent = 0;
4922
4923 if (slot >= btrfs_header_nritems(leaf)) {
4924 ret = btrfs_next_leaf(root, path);
4925 if (ret < 0) {
4926 break;
4927 } else if (ret > 0) {
4928 ret = 0;
4929 break;
4930 }
4931 continue;
4932 }
4933
4934 btrfs_item_key_to_cpu(leaf, &key, slot);
4935 if (key.objectid != ino ||
4936 (key.type != BTRFS_INODE_REF_KEY &&
4937 key.type != BTRFS_INODE_EXTREF_KEY)) {
4938 ret = 0;
4939 break;
4940 }
4941
4942 ret = btrfs_check_ref_name_override(leaf, slot, &key,
4943 BTRFS_I(inode), &other_ino,
4944 &other_parent);
4945 if (ret < 0)
4946 break;
4947 if (ret > 0) {
4948 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4949 if (!ino_elem) {
4950 ret = -ENOMEM;
4951 break;
4952 }
4953 ino_elem->ino = other_ino;
4954 ino_elem->parent = other_parent;
4955 list_add_tail(&ino_elem->list, &inode_list);
4956 ret = 0;
4957 }
4958 path->slots[0]++;
4959 }
4960 btrfs_add_delayed_iput(inode);
4961 }
4962
4963 return ret;
4964}
4965
4966static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
4967 struct btrfs_inode *inode,
4968 struct btrfs_key *min_key,
4969 const struct btrfs_key *max_key,
4970 struct btrfs_path *path,
4971 struct btrfs_path *dst_path,
4972 const u64 logged_isize,
4973 const bool recursive_logging,
4974 const int inode_only,
4975 struct btrfs_log_ctx *ctx,
4976 bool *need_log_inode_item)
4977{
4978 struct btrfs_root *root = inode->root;
4979 int ins_start_slot = 0;
4980 int ins_nr = 0;
4981 int ret;
4982
4983 while (1) {
4984 ret = btrfs_search_forward(root, min_key, path, trans->transid);
4985 if (ret < 0)
4986 return ret;
4987 if (ret > 0) {
4988 ret = 0;
4989 break;
4990 }
4991again:
4992 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
4993 if (min_key->objectid != max_key->objectid)
4994 break;
4995 if (min_key->type > max_key->type)
4996 break;
4997
4998 if (min_key->type == BTRFS_INODE_ITEM_KEY)
4999 *need_log_inode_item = false;
5000
5001 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5002 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5003 inode->generation == trans->transid &&
5004 !recursive_logging) {
5005 u64 other_ino = 0;
5006 u64 other_parent = 0;
5007
5008 ret = btrfs_check_ref_name_override(path->nodes[0],
5009 path->slots[0], min_key, inode,
5010 &other_ino, &other_parent);
5011 if (ret < 0) {
5012 return ret;
5013 } else if (ret > 0 && ctx &&
5014 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5015 if (ins_nr > 0) {
5016 ins_nr++;
5017 } else {
5018 ins_nr = 1;
5019 ins_start_slot = path->slots[0];
5020 }
5021 ret = copy_items(trans, inode, dst_path, path,
5022 ins_start_slot, ins_nr,
5023 inode_only, logged_isize);
5024 if (ret < 0)
5025 return ret;
5026 ins_nr = 0;
5027
5028 ret = log_conflicting_inodes(trans, root, path,
5029 ctx, other_ino, other_parent);
5030 if (ret)
5031 return ret;
5032 btrfs_release_path(path);
5033 goto next_key;
5034 }
5035 }
5036
5037 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5038 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5039 if (ins_nr == 0)
5040 goto next_slot;
5041 ret = copy_items(trans, inode, dst_path, path,
5042 ins_start_slot,
5043 ins_nr, inode_only, logged_isize);
5044 if (ret < 0)
5045 return ret;
5046 ins_nr = 0;
5047 goto next_slot;
5048 }
5049
5050 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5051 ins_nr++;
5052 goto next_slot;
5053 } else if (!ins_nr) {
5054 ins_start_slot = path->slots[0];
5055 ins_nr = 1;
5056 goto next_slot;
5057 }
5058
5059 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5060 ins_nr, inode_only, logged_isize);
5061 if (ret < 0)
5062 return ret;
5063 ins_nr = 1;
5064 ins_start_slot = path->slots[0];
5065next_slot:
5066 path->slots[0]++;
5067 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5068 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5069 path->slots[0]);
5070 goto again;
5071 }
5072 if (ins_nr) {
5073 ret = copy_items(trans, inode, dst_path, path,
5074 ins_start_slot, ins_nr, inode_only,
5075 logged_isize);
5076 if (ret < 0)
5077 return ret;
5078 ins_nr = 0;
5079 }
5080 btrfs_release_path(path);
5081next_key:
5082 if (min_key->offset < (u64)-1) {
5083 min_key->offset++;
5084 } else if (min_key->type < max_key->type) {
5085 min_key->type++;
5086 min_key->offset = 0;
5087 } else {
5088 break;
5089 }
5090 }
5091 if (ins_nr)
5092 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5093 ins_nr, inode_only, logged_isize);
5094
5095 return ret;
5096}
5097
5098/* log a single inode in the tree log.
5099 * At least one parent directory for this inode must exist in the tree
5100 * or be logged already.
5101 *
5102 * Any items from this inode changed by the current transaction are copied
5103 * to the log tree. An extra reference is taken on any extents in this
5104 * file, allowing us to avoid a whole pile of corner cases around logging
5105 * blocks that have been removed from the tree.
5106 *
5107 * See LOG_INODE_ALL and related defines for a description of what inode_only
5108 * does.
5109 *
5110 * This handles both files and directories.
5111 */
5112static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5113 struct btrfs_root *root, struct btrfs_inode *inode,
5114 int inode_only,
5115 const loff_t start,
5116 const loff_t end,
5117 struct btrfs_log_ctx *ctx)
5118{
5119 struct btrfs_path *path;
5120 struct btrfs_path *dst_path;
5121 struct btrfs_key min_key;
5122 struct btrfs_key max_key;
5123 struct btrfs_root *log = root->log_root;
5124 int err = 0;
5125 int ret = 0;
5126 bool fast_search = false;
5127 u64 ino = btrfs_ino(inode);
5128 struct extent_map_tree *em_tree = &inode->extent_tree;
5129 u64 logged_isize = 0;
5130 bool need_log_inode_item = true;
5131 bool xattrs_logged = false;
5132 bool recursive_logging = false;
5133
5134 path = btrfs_alloc_path();
5135 if (!path)
5136 return -ENOMEM;
5137 dst_path = btrfs_alloc_path();
5138 if (!dst_path) {
5139 btrfs_free_path(path);
5140 return -ENOMEM;
5141 }
5142
5143 min_key.objectid = ino;
5144 min_key.type = BTRFS_INODE_ITEM_KEY;
5145 min_key.offset = 0;
5146
5147 max_key.objectid = ino;
5148
5149
5150 /* today the code can only do partial logging of directories */
5151 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5152 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5153 &inode->runtime_flags) &&
5154 inode_only >= LOG_INODE_EXISTS))
5155 max_key.type = BTRFS_XATTR_ITEM_KEY;
5156 else
5157 max_key.type = (u8)-1;
5158 max_key.offset = (u64)-1;
5159
5160 /*
5161 * Only run delayed items if we are a directory. We want to make sure
5162 * all directory indexes hit the fs/subvolume tree so we can find them
5163 * and figure out which index ranges have to be logged.
5164 *
5165 * Otherwise commit the delayed inode only if the full sync flag is set,
5166 * as we want to make sure an up to date version is in the subvolume
5167 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5168 * it to the log tree. For a non full sync, we always log the inode item
5169 * based on the in-memory struct btrfs_inode which is always up to date.
5170 */
5171 if (S_ISDIR(inode->vfs_inode.i_mode))
5172 ret = btrfs_commit_inode_delayed_items(trans, inode);
5173 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5174 ret = btrfs_commit_inode_delayed_inode(inode);
5175
5176 if (ret) {
5177 btrfs_free_path(path);
5178 btrfs_free_path(dst_path);
5179 return ret;
5180 }
5181
5182 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5183 recursive_logging = true;
5184 if (inode_only == LOG_OTHER_INODE)
5185 inode_only = LOG_INODE_EXISTS;
5186 else
5187 inode_only = LOG_INODE_ALL;
5188 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5189 } else {
5190 mutex_lock(&inode->log_mutex);
5191 }
5192
5193 /*
5194 * a brute force approach to making sure we get the most uptodate
5195 * copies of everything.
5196 */
5197 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5198 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5199
5200 if (inode_only == LOG_INODE_EXISTS)
5201 max_key_type = BTRFS_XATTR_ITEM_KEY;
5202 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5203 } else {
5204 if (inode_only == LOG_INODE_EXISTS) {
5205 /*
5206 * Make sure the new inode item we write to the log has
5207 * the same isize as the current one (if it exists).
5208 * This is necessary to prevent data loss after log
5209 * replay, and also to prevent doing a wrong expanding
5210 * truncate - for e.g. create file, write 4K into offset
5211 * 0, fsync, write 4K into offset 4096, add hard link,
5212 * fsync some other file (to sync log), power fail - if
5213 * we use the inode's current i_size, after log replay
5214 * we get a 8Kb file, with the last 4Kb extent as a hole
5215 * (zeroes), as if an expanding truncate happened,
5216 * instead of getting a file of 4Kb only.
5217 */
5218 err = logged_inode_size(log, inode, path, &logged_isize);
5219 if (err)
5220 goto out_unlock;
5221 }
5222 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5223 &inode->runtime_flags)) {
5224 if (inode_only == LOG_INODE_EXISTS) {
5225 max_key.type = BTRFS_XATTR_ITEM_KEY;
5226 ret = drop_objectid_items(trans, log, path, ino,
5227 max_key.type);
5228 } else {
5229 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5230 &inode->runtime_flags);
5231 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5232 &inode->runtime_flags);
5233 while(1) {
5234 ret = btrfs_truncate_inode_items(trans,
5235 log, &inode->vfs_inode, 0, 0);
5236 if (ret != -EAGAIN)
5237 break;
5238 }
5239 }
5240 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5241 &inode->runtime_flags) ||
5242 inode_only == LOG_INODE_EXISTS) {
5243 if (inode_only == LOG_INODE_ALL)
5244 fast_search = true;
5245 max_key.type = BTRFS_XATTR_ITEM_KEY;
5246 ret = drop_objectid_items(trans, log, path, ino,
5247 max_key.type);
5248 } else {
5249 if (inode_only == LOG_INODE_ALL)
5250 fast_search = true;
5251 goto log_extents;
5252 }
5253
5254 }
5255 if (ret) {
5256 err = ret;
5257 goto out_unlock;
5258 }
5259
5260 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5261 path, dst_path, logged_isize,
5262 recursive_logging, inode_only, ctx,
5263 &need_log_inode_item);
5264 if (err)
5265 goto out_unlock;
5266
5267 btrfs_release_path(path);
5268 btrfs_release_path(dst_path);
5269 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5270 if (err)
5271 goto out_unlock;
5272 xattrs_logged = true;
5273 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5274 btrfs_release_path(path);
5275 btrfs_release_path(dst_path);
5276 err = btrfs_log_holes(trans, root, inode, path);
5277 if (err)
5278 goto out_unlock;
5279 }
5280log_extents:
5281 btrfs_release_path(path);
5282 btrfs_release_path(dst_path);
5283 if (need_log_inode_item) {
5284 err = log_inode_item(trans, log, dst_path, inode);
5285 if (!err && !xattrs_logged) {
5286 err = btrfs_log_all_xattrs(trans, root, inode, path,
5287 dst_path);
5288 btrfs_release_path(path);
5289 }
5290 if (err)
5291 goto out_unlock;
5292 }
5293 if (fast_search) {
5294 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5295 ctx, start, end);
5296 if (ret) {
5297 err = ret;
5298 goto out_unlock;
5299 }
5300 } else if (inode_only == LOG_INODE_ALL) {
5301 struct extent_map *em, *n;
5302
5303 write_lock(&em_tree->lock);
5304 /*
5305 * We can't just remove every em if we're called for a ranged
5306 * fsync - that is, one that doesn't cover the whole possible
5307 * file range (0 to LLONG_MAX). This is because we can have
5308 * em's that fall outside the range we're logging and therefore
5309 * their ordered operations haven't completed yet
5310 * (btrfs_finish_ordered_io() not invoked yet). This means we
5311 * didn't get their respective file extent item in the fs/subvol
5312 * tree yet, and need to let the next fast fsync (one which
5313 * consults the list of modified extent maps) find the em so
5314 * that it logs a matching file extent item and waits for the
5315 * respective ordered operation to complete (if it's still
5316 * running).
5317 *
5318 * Removing every em outside the range we're logging would make
5319 * the next fast fsync not log their matching file extent items,
5320 * therefore making us lose data after a log replay.
5321 */
5322 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5323 list) {
5324 const u64 mod_end = em->mod_start + em->mod_len - 1;
5325
5326 if (em->mod_start >= start && mod_end <= end)
5327 list_del_init(&em->list);
5328 }
5329 write_unlock(&em_tree->lock);
5330 }
5331
5332 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5333 ret = log_directory_changes(trans, root, inode, path, dst_path,
5334 ctx);
5335 if (ret) {
5336 err = ret;
5337 goto out_unlock;
5338 }
5339 }
5340
5341 /*
5342 * Don't update last_log_commit if we logged that an inode exists after
5343 * it was loaded to memory (full_sync bit set).
5344 * This is to prevent data loss when we do a write to the inode, then
5345 * the inode gets evicted after all delalloc was flushed, then we log
5346 * it exists (due to a rename for example) and then fsync it. This last
5347 * fsync would do nothing (not logging the extents previously written).
5348 */
5349 spin_lock(&inode->lock);
5350 inode->logged_trans = trans->transid;
5351 if (inode_only != LOG_INODE_EXISTS ||
5352 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5353 inode->last_log_commit = inode->last_sub_trans;
5354 spin_unlock(&inode->lock);
5355out_unlock:
5356 mutex_unlock(&inode->log_mutex);
5357
5358 btrfs_free_path(path);
5359 btrfs_free_path(dst_path);
5360 return err;
5361}
5362
5363/*
5364 * Check if we must fallback to a transaction commit when logging an inode.
5365 * This must be called after logging the inode and is used only in the context
5366 * when fsyncing an inode requires the need to log some other inode - in which
5367 * case we can't lock the i_mutex of each other inode we need to log as that
5368 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5369 * log inodes up or down in the hierarchy) or rename operations for example. So
5370 * we take the log_mutex of the inode after we have logged it and then check for
5371 * its last_unlink_trans value - this is safe because any task setting
5372 * last_unlink_trans must take the log_mutex and it must do this before it does
5373 * the actual unlink operation, so if we do this check before a concurrent task
5374 * sets last_unlink_trans it means we've logged a consistent version/state of
5375 * all the inode items, otherwise we are not sure and must do a transaction
5376 * commit (the concurrent task might have only updated last_unlink_trans before
5377 * we logged the inode or it might have also done the unlink).
5378 */
5379static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5380 struct btrfs_inode *inode)
5381{
5382 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5383 bool ret = false;
5384
5385 mutex_lock(&inode->log_mutex);
5386 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5387 /*
5388 * Make sure any commits to the log are forced to be full
5389 * commits.
5390 */
5391 btrfs_set_log_full_commit(trans);
5392 ret = true;
5393 }
5394 mutex_unlock(&inode->log_mutex);
5395
5396 return ret;
5397}
5398
5399/*
5400 * follow the dentry parent pointers up the chain and see if any
5401 * of the directories in it require a full commit before they can
5402 * be logged. Returns zero if nothing special needs to be done or 1 if
5403 * a full commit is required.
5404 */
5405static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5406 struct btrfs_inode *inode,
5407 struct dentry *parent,
5408 struct super_block *sb,
5409 u64 last_committed)
5410{
5411 int ret = 0;
5412 struct dentry *old_parent = NULL;
5413
5414 /*
5415 * for regular files, if its inode is already on disk, we don't
5416 * have to worry about the parents at all. This is because
5417 * we can use the last_unlink_trans field to record renames
5418 * and other fun in this file.
5419 */
5420 if (S_ISREG(inode->vfs_inode.i_mode) &&
5421 inode->generation <= last_committed &&
5422 inode->last_unlink_trans <= last_committed)
5423 goto out;
5424
5425 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5426 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5427 goto out;
5428 inode = BTRFS_I(d_inode(parent));
5429 }
5430
5431 while (1) {
5432 if (btrfs_must_commit_transaction(trans, inode)) {
5433 ret = 1;
5434 break;
5435 }
5436
5437 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5438 break;
5439
5440 if (IS_ROOT(parent)) {
5441 inode = BTRFS_I(d_inode(parent));
5442 if (btrfs_must_commit_transaction(trans, inode))
5443 ret = 1;
5444 break;
5445 }
5446
5447 parent = dget_parent(parent);
5448 dput(old_parent);
5449 old_parent = parent;
5450 inode = BTRFS_I(d_inode(parent));
5451
5452 }
5453 dput(old_parent);
5454out:
5455 return ret;
5456}
5457
5458struct btrfs_dir_list {
5459 u64 ino;
5460 struct list_head list;
5461};
5462
5463/*
5464 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5465 * details about the why it is needed.
5466 * This is a recursive operation - if an existing dentry corresponds to a
5467 * directory, that directory's new entries are logged too (same behaviour as
5468 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5469 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5470 * complains about the following circular lock dependency / possible deadlock:
5471 *
5472 * CPU0 CPU1
5473 * ---- ----
5474 * lock(&type->i_mutex_dir_key#3/2);
5475 * lock(sb_internal#2);
5476 * lock(&type->i_mutex_dir_key#3/2);
5477 * lock(&sb->s_type->i_mutex_key#14);
5478 *
5479 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5480 * sb_start_intwrite() in btrfs_start_transaction().
5481 * Not locking i_mutex of the inodes is still safe because:
5482 *
5483 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5484 * that while logging the inode new references (names) are added or removed
5485 * from the inode, leaving the logged inode item with a link count that does
5486 * not match the number of logged inode reference items. This is fine because
5487 * at log replay time we compute the real number of links and correct the
5488 * link count in the inode item (see replay_one_buffer() and
5489 * link_to_fixup_dir());
5490 *
5491 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5492 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5493 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5494 * has a size that doesn't match the sum of the lengths of all the logged
5495 * names. This does not result in a problem because if a dir_item key is
5496 * logged but its matching dir_index key is not logged, at log replay time we
5497 * don't use it to replay the respective name (see replay_one_name()). On the
5498 * other hand if only the dir_index key ends up being logged, the respective
5499 * name is added to the fs/subvol tree with both the dir_item and dir_index
5500 * keys created (see replay_one_name()).
5501 * The directory's inode item with a wrong i_size is not a problem as well,
5502 * since we don't use it at log replay time to set the i_size in the inode
5503 * item of the fs/subvol tree (see overwrite_item()).
5504 */
5505static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5506 struct btrfs_root *root,
5507 struct btrfs_inode *start_inode,
5508 struct btrfs_log_ctx *ctx)
5509{
5510 struct btrfs_fs_info *fs_info = root->fs_info;
5511 struct btrfs_root *log = root->log_root;
5512 struct btrfs_path *path;
5513 LIST_HEAD(dir_list);
5514 struct btrfs_dir_list *dir_elem;
5515 int ret = 0;
5516
5517 path = btrfs_alloc_path();
5518 if (!path)
5519 return -ENOMEM;
5520
5521 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5522 if (!dir_elem) {
5523 btrfs_free_path(path);
5524 return -ENOMEM;
5525 }
5526 dir_elem->ino = btrfs_ino(start_inode);
5527 list_add_tail(&dir_elem->list, &dir_list);
5528
5529 while (!list_empty(&dir_list)) {
5530 struct extent_buffer *leaf;
5531 struct btrfs_key min_key;
5532 int nritems;
5533 int i;
5534
5535 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5536 list);
5537 if (ret)
5538 goto next_dir_inode;
5539
5540 min_key.objectid = dir_elem->ino;
5541 min_key.type = BTRFS_DIR_ITEM_KEY;
5542 min_key.offset = 0;
5543again:
5544 btrfs_release_path(path);
5545 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5546 if (ret < 0) {
5547 goto next_dir_inode;
5548 } else if (ret > 0) {
5549 ret = 0;
5550 goto next_dir_inode;
5551 }
5552
5553process_leaf:
5554 leaf = path->nodes[0];
5555 nritems = btrfs_header_nritems(leaf);
5556 for (i = path->slots[0]; i < nritems; i++) {
5557 struct btrfs_dir_item *di;
5558 struct btrfs_key di_key;
5559 struct inode *di_inode;
5560 struct btrfs_dir_list *new_dir_elem;
5561 int log_mode = LOG_INODE_EXISTS;
5562 int type;
5563
5564 btrfs_item_key_to_cpu(leaf, &min_key, i);
5565 if (min_key.objectid != dir_elem->ino ||
5566 min_key.type != BTRFS_DIR_ITEM_KEY)
5567 goto next_dir_inode;
5568
5569 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5570 type = btrfs_dir_type(leaf, di);
5571 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5572 type != BTRFS_FT_DIR)
5573 continue;
5574 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5575 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5576 continue;
5577
5578 btrfs_release_path(path);
5579 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5580 if (IS_ERR(di_inode)) {
5581 ret = PTR_ERR(di_inode);
5582 goto next_dir_inode;
5583 }
5584
5585 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5586 btrfs_add_delayed_iput(di_inode);
5587 break;
5588 }
5589
5590 ctx->log_new_dentries = false;
5591 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5592 log_mode = LOG_INODE_ALL;
5593 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5594 log_mode, 0, LLONG_MAX, ctx);
5595 if (!ret &&
5596 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5597 ret = 1;
5598 btrfs_add_delayed_iput(di_inode);
5599 if (ret)
5600 goto next_dir_inode;
5601 if (ctx->log_new_dentries) {
5602 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5603 GFP_NOFS);
5604 if (!new_dir_elem) {
5605 ret = -ENOMEM;
5606 goto next_dir_inode;
5607 }
5608 new_dir_elem->ino = di_key.objectid;
5609 list_add_tail(&new_dir_elem->list, &dir_list);
5610 }
5611 break;
5612 }
5613 if (i == nritems) {
5614 ret = btrfs_next_leaf(log, path);
5615 if (ret < 0) {
5616 goto next_dir_inode;
5617 } else if (ret > 0) {
5618 ret = 0;
5619 goto next_dir_inode;
5620 }
5621 goto process_leaf;
5622 }
5623 if (min_key.offset < (u64)-1) {
5624 min_key.offset++;
5625 goto again;
5626 }
5627next_dir_inode:
5628 list_del(&dir_elem->list);
5629 kfree(dir_elem);
5630 }
5631
5632 btrfs_free_path(path);
5633 return ret;
5634}
5635
5636static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5637 struct btrfs_inode *inode,
5638 struct btrfs_log_ctx *ctx)
5639{
5640 struct btrfs_fs_info *fs_info = trans->fs_info;
5641 int ret;
5642 struct btrfs_path *path;
5643 struct btrfs_key key;
5644 struct btrfs_root *root = inode->root;
5645 const u64 ino = btrfs_ino(inode);
5646
5647 path = btrfs_alloc_path();
5648 if (!path)
5649 return -ENOMEM;
5650 path->skip_locking = 1;
5651 path->search_commit_root = 1;
5652
5653 key.objectid = ino;
5654 key.type = BTRFS_INODE_REF_KEY;
5655 key.offset = 0;
5656 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5657 if (ret < 0)
5658 goto out;
5659
5660 while (true) {
5661 struct extent_buffer *leaf = path->nodes[0];
5662 int slot = path->slots[0];
5663 u32 cur_offset = 0;
5664 u32 item_size;
5665 unsigned long ptr;
5666
5667 if (slot >= btrfs_header_nritems(leaf)) {
5668 ret = btrfs_next_leaf(root, path);
5669 if (ret < 0)
5670 goto out;
5671 else if (ret > 0)
5672 break;
5673 continue;
5674 }
5675
5676 btrfs_item_key_to_cpu(leaf, &key, slot);
5677 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5678 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5679 break;
5680
5681 item_size = btrfs_item_size_nr(leaf, slot);
5682 ptr = btrfs_item_ptr_offset(leaf, slot);
5683 while (cur_offset < item_size) {
5684 struct btrfs_key inode_key;
5685 struct inode *dir_inode;
5686
5687 inode_key.type = BTRFS_INODE_ITEM_KEY;
5688 inode_key.offset = 0;
5689
5690 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5691 struct btrfs_inode_extref *extref;
5692
5693 extref = (struct btrfs_inode_extref *)
5694 (ptr + cur_offset);
5695 inode_key.objectid = btrfs_inode_extref_parent(
5696 leaf, extref);
5697 cur_offset += sizeof(*extref);
5698 cur_offset += btrfs_inode_extref_name_len(leaf,
5699 extref);
5700 } else {
5701 inode_key.objectid = key.offset;
5702 cur_offset = item_size;
5703 }
5704
5705 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5706 root);
5707 /*
5708 * If the parent inode was deleted, return an error to
5709 * fallback to a transaction commit. This is to prevent
5710 * getting an inode that was moved from one parent A to
5711 * a parent B, got its former parent A deleted and then
5712 * it got fsync'ed, from existing at both parents after
5713 * a log replay (and the old parent still existing).
5714 * Example:
5715 *
5716 * mkdir /mnt/A
5717 * mkdir /mnt/B
5718 * touch /mnt/B/bar
5719 * sync
5720 * mv /mnt/B/bar /mnt/A/bar
5721 * mv -T /mnt/A /mnt/B
5722 * fsync /mnt/B/bar
5723 * <power fail>
5724 *
5725 * If we ignore the old parent B which got deleted,
5726 * after a log replay we would have file bar linked
5727 * at both parents and the old parent B would still
5728 * exist.
5729 */
5730 if (IS_ERR(dir_inode)) {
5731 ret = PTR_ERR(dir_inode);
5732 goto out;
5733 }
5734
5735 if (ctx)
5736 ctx->log_new_dentries = false;
5737 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5738 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5739 if (!ret &&
5740 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5741 ret = 1;
5742 if (!ret && ctx && ctx->log_new_dentries)
5743 ret = log_new_dir_dentries(trans, root,
5744 BTRFS_I(dir_inode), ctx);
5745 btrfs_add_delayed_iput(dir_inode);
5746 if (ret)
5747 goto out;
5748 }
5749 path->slots[0]++;
5750 }
5751 ret = 0;
5752out:
5753 btrfs_free_path(path);
5754 return ret;
5755}
5756
5757static int log_new_ancestors(struct btrfs_trans_handle *trans,
5758 struct btrfs_root *root,
5759 struct btrfs_path *path,
5760 struct btrfs_log_ctx *ctx)
5761{
5762 struct btrfs_key found_key;
5763
5764 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5765
5766 while (true) {
5767 struct btrfs_fs_info *fs_info = root->fs_info;
5768 const u64 last_committed = fs_info->last_trans_committed;
5769 struct extent_buffer *leaf = path->nodes[0];
5770 int slot = path->slots[0];
5771 struct btrfs_key search_key;
5772 struct inode *inode;
5773 u64 ino;
5774 int ret = 0;
5775
5776 btrfs_release_path(path);
5777
5778 ino = found_key.offset;
5779
5780 search_key.objectid = found_key.offset;
5781 search_key.type = BTRFS_INODE_ITEM_KEY;
5782 search_key.offset = 0;
5783 inode = btrfs_iget(fs_info->sb, ino, root);
5784 if (IS_ERR(inode))
5785 return PTR_ERR(inode);
5786
5787 if (BTRFS_I(inode)->generation > last_committed)
5788 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5789 LOG_INODE_EXISTS,
5790 0, LLONG_MAX, ctx);
5791 btrfs_add_delayed_iput(inode);
5792 if (ret)
5793 return ret;
5794
5795 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5796 break;
5797
5798 search_key.type = BTRFS_INODE_REF_KEY;
5799 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5800 if (ret < 0)
5801 return ret;
5802
5803 leaf = path->nodes[0];
5804 slot = path->slots[0];
5805 if (slot >= btrfs_header_nritems(leaf)) {
5806 ret = btrfs_next_leaf(root, path);
5807 if (ret < 0)
5808 return ret;
5809 else if (ret > 0)
5810 return -ENOENT;
5811 leaf = path->nodes[0];
5812 slot = path->slots[0];
5813 }
5814
5815 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5816 if (found_key.objectid != search_key.objectid ||
5817 found_key.type != BTRFS_INODE_REF_KEY)
5818 return -ENOENT;
5819 }
5820 return 0;
5821}
5822
5823static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5824 struct btrfs_inode *inode,
5825 struct dentry *parent,
5826 struct btrfs_log_ctx *ctx)
5827{
5828 struct btrfs_root *root = inode->root;
5829 struct btrfs_fs_info *fs_info = root->fs_info;
5830 struct dentry *old_parent = NULL;
5831 struct super_block *sb = inode->vfs_inode.i_sb;
5832 int ret = 0;
5833
5834 while (true) {
5835 if (!parent || d_really_is_negative(parent) ||
5836 sb != parent->d_sb)
5837 break;
5838
5839 inode = BTRFS_I(d_inode(parent));
5840 if (root != inode->root)
5841 break;
5842
5843 if (inode->generation > fs_info->last_trans_committed) {
5844 ret = btrfs_log_inode(trans, root, inode,
5845 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5846 if (ret)
5847 break;
5848 }
5849 if (IS_ROOT(parent))
5850 break;
5851
5852 parent = dget_parent(parent);
5853 dput(old_parent);
5854 old_parent = parent;
5855 }
5856 dput(old_parent);
5857
5858 return ret;
5859}
5860
5861static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5862 struct btrfs_inode *inode,
5863 struct dentry *parent,
5864 struct btrfs_log_ctx *ctx)
5865{
5866 struct btrfs_root *root = inode->root;
5867 const u64 ino = btrfs_ino(inode);
5868 struct btrfs_path *path;
5869 struct btrfs_key search_key;
5870 int ret;
5871
5872 /*
5873 * For a single hard link case, go through a fast path that does not
5874 * need to iterate the fs/subvolume tree.
5875 */
5876 if (inode->vfs_inode.i_nlink < 2)
5877 return log_new_ancestors_fast(trans, inode, parent, ctx);
5878
5879 path = btrfs_alloc_path();
5880 if (!path)
5881 return -ENOMEM;
5882
5883 search_key.objectid = ino;
5884 search_key.type = BTRFS_INODE_REF_KEY;
5885 search_key.offset = 0;
5886again:
5887 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5888 if (ret < 0)
5889 goto out;
5890 if (ret == 0)
5891 path->slots[0]++;
5892
5893 while (true) {
5894 struct extent_buffer *leaf = path->nodes[0];
5895 int slot = path->slots[0];
5896 struct btrfs_key found_key;
5897
5898 if (slot >= btrfs_header_nritems(leaf)) {
5899 ret = btrfs_next_leaf(root, path);
5900 if (ret < 0)
5901 goto out;
5902 else if (ret > 0)
5903 break;
5904 continue;
5905 }
5906
5907 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5908 if (found_key.objectid != ino ||
5909 found_key.type > BTRFS_INODE_EXTREF_KEY)
5910 break;
5911
5912 /*
5913 * Don't deal with extended references because they are rare
5914 * cases and too complex to deal with (we would need to keep
5915 * track of which subitem we are processing for each item in
5916 * this loop, etc). So just return some error to fallback to
5917 * a transaction commit.
5918 */
5919 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5920 ret = -EMLINK;
5921 goto out;
5922 }
5923
5924 /*
5925 * Logging ancestors needs to do more searches on the fs/subvol
5926 * tree, so it releases the path as needed to avoid deadlocks.
5927 * Keep track of the last inode ref key and resume from that key
5928 * after logging all new ancestors for the current hard link.
5929 */
5930 memcpy(&search_key, &found_key, sizeof(search_key));
5931
5932 ret = log_new_ancestors(trans, root, path, ctx);
5933 if (ret)
5934 goto out;
5935 btrfs_release_path(path);
5936 goto again;
5937 }
5938 ret = 0;
5939out:
5940 btrfs_free_path(path);
5941 return ret;
5942}
5943
5944/*
5945 * helper function around btrfs_log_inode to make sure newly created
5946 * parent directories also end up in the log. A minimal inode and backref
5947 * only logging is done of any parent directories that are older than
5948 * the last committed transaction
5949 */
5950static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5951 struct btrfs_inode *inode,
5952 struct dentry *parent,
5953 const loff_t start,
5954 const loff_t end,
5955 int inode_only,
5956 struct btrfs_log_ctx *ctx)
5957{
5958 struct btrfs_root *root = inode->root;
5959 struct btrfs_fs_info *fs_info = root->fs_info;
5960 struct super_block *sb;
5961 int ret = 0;
5962 u64 last_committed = fs_info->last_trans_committed;
5963 bool log_dentries = false;
5964
5965 sb = inode->vfs_inode.i_sb;
5966
5967 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5968 ret = 1;
5969 goto end_no_trans;
5970 }
5971
5972 /*
5973 * The prev transaction commit doesn't complete, we need do
5974 * full commit by ourselves.
5975 */
5976 if (fs_info->last_trans_log_full_commit >
5977 fs_info->last_trans_committed) {
5978 ret = 1;
5979 goto end_no_trans;
5980 }
5981
5982 if (btrfs_root_refs(&root->root_item) == 0) {
5983 ret = 1;
5984 goto end_no_trans;
5985 }
5986
5987 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5988 last_committed);
5989 if (ret)
5990 goto end_no_trans;
5991
5992 /*
5993 * Skip already logged inodes or inodes corresponding to tmpfiles
5994 * (since logging them is pointless, a link count of 0 means they
5995 * will never be accessible).
5996 */
5997 if (btrfs_inode_in_log(inode, trans->transid) ||
5998 inode->vfs_inode.i_nlink == 0) {
5999 ret = BTRFS_NO_LOG_SYNC;
6000 goto end_no_trans;
6001 }
6002
6003 ret = start_log_trans(trans, root, ctx);
6004 if (ret)
6005 goto end_no_trans;
6006
6007 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6008 if (ret)
6009 goto end_trans;
6010
6011 /*
6012 * for regular files, if its inode is already on disk, we don't
6013 * have to worry about the parents at all. This is because
6014 * we can use the last_unlink_trans field to record renames
6015 * and other fun in this file.
6016 */
6017 if (S_ISREG(inode->vfs_inode.i_mode) &&
6018 inode->generation <= last_committed &&
6019 inode->last_unlink_trans <= last_committed) {
6020 ret = 0;
6021 goto end_trans;
6022 }
6023
6024 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6025 log_dentries = true;
6026
6027 /*
6028 * On unlink we must make sure all our current and old parent directory
6029 * inodes are fully logged. This is to prevent leaving dangling
6030 * directory index entries in directories that were our parents but are
6031 * not anymore. Not doing this results in old parent directory being
6032 * impossible to delete after log replay (rmdir will always fail with
6033 * error -ENOTEMPTY).
6034 *
6035 * Example 1:
6036 *
6037 * mkdir testdir
6038 * touch testdir/foo
6039 * ln testdir/foo testdir/bar
6040 * sync
6041 * unlink testdir/bar
6042 * xfs_io -c fsync testdir/foo
6043 * <power failure>
6044 * mount fs, triggers log replay
6045 *
6046 * If we don't log the parent directory (testdir), after log replay the
6047 * directory still has an entry pointing to the file inode using the bar
6048 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6049 * the file inode has a link count of 1.
6050 *
6051 * Example 2:
6052 *
6053 * mkdir testdir
6054 * touch foo
6055 * ln foo testdir/foo2
6056 * ln foo testdir/foo3
6057 * sync
6058 * unlink testdir/foo3
6059 * xfs_io -c fsync foo
6060 * <power failure>
6061 * mount fs, triggers log replay
6062 *
6063 * Similar as the first example, after log replay the parent directory
6064 * testdir still has an entry pointing to the inode file with name foo3
6065 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6066 * and has a link count of 2.
6067 */
6068 if (inode->last_unlink_trans > last_committed) {
6069 ret = btrfs_log_all_parents(trans, inode, ctx);
6070 if (ret)
6071 goto end_trans;
6072 }
6073
6074 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6075 if (ret)
6076 goto end_trans;
6077
6078 if (log_dentries)
6079 ret = log_new_dir_dentries(trans, root, inode, ctx);
6080 else
6081 ret = 0;
6082end_trans:
6083 if (ret < 0) {
6084 btrfs_set_log_full_commit(trans);
6085 ret = 1;
6086 }
6087
6088 if (ret)
6089 btrfs_remove_log_ctx(root, ctx);
6090 btrfs_end_log_trans(root);
6091end_no_trans:
6092 return ret;
6093}
6094
6095/*
6096 * it is not safe to log dentry if the chunk root has added new
6097 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6098 * If this returns 1, you must commit the transaction to safely get your
6099 * data on disk.
6100 */
6101int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6102 struct dentry *dentry,
6103 const loff_t start,
6104 const loff_t end,
6105 struct btrfs_log_ctx *ctx)
6106{
6107 struct dentry *parent = dget_parent(dentry);
6108 int ret;
6109
6110 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6111 start, end, LOG_INODE_ALL, ctx);
6112 dput(parent);
6113
6114 return ret;
6115}
6116
6117/*
6118 * should be called during mount to recover any replay any log trees
6119 * from the FS
6120 */
6121int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6122{
6123 int ret;
6124 struct btrfs_path *path;
6125 struct btrfs_trans_handle *trans;
6126 struct btrfs_key key;
6127 struct btrfs_key found_key;
6128 struct btrfs_root *log;
6129 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6130 struct walk_control wc = {
6131 .process_func = process_one_buffer,
6132 .stage = LOG_WALK_PIN_ONLY,
6133 };
6134
6135 path = btrfs_alloc_path();
6136 if (!path)
6137 return -ENOMEM;
6138
6139 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6140
6141 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6142 if (IS_ERR(trans)) {
6143 ret = PTR_ERR(trans);
6144 goto error;
6145 }
6146
6147 wc.trans = trans;
6148 wc.pin = 1;
6149
6150 ret = walk_log_tree(trans, log_root_tree, &wc);
6151 if (ret) {
6152 btrfs_handle_fs_error(fs_info, ret,
6153 "Failed to pin buffers while recovering log root tree.");
6154 goto error;
6155 }
6156
6157again:
6158 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6159 key.offset = (u64)-1;
6160 key.type = BTRFS_ROOT_ITEM_KEY;
6161
6162 while (1) {
6163 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6164
6165 if (ret < 0) {
6166 btrfs_handle_fs_error(fs_info, ret,
6167 "Couldn't find tree log root.");
6168 goto error;
6169 }
6170 if (ret > 0) {
6171 if (path->slots[0] == 0)
6172 break;
6173 path->slots[0]--;
6174 }
6175 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6176 path->slots[0]);
6177 btrfs_release_path(path);
6178 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6179 break;
6180
6181 log = btrfs_read_tree_root(log_root_tree, &found_key);
6182 if (IS_ERR(log)) {
6183 ret = PTR_ERR(log);
6184 btrfs_handle_fs_error(fs_info, ret,
6185 "Couldn't read tree log root.");
6186 goto error;
6187 }
6188
6189 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6190 true);
6191 if (IS_ERR(wc.replay_dest)) {
6192 ret = PTR_ERR(wc.replay_dest);
6193
6194 /*
6195 * We didn't find the subvol, likely because it was
6196 * deleted. This is ok, simply skip this log and go to
6197 * the next one.
6198 *
6199 * We need to exclude the root because we can't have
6200 * other log replays overwriting this log as we'll read
6201 * it back in a few more times. This will keep our
6202 * block from being modified, and we'll just bail for
6203 * each subsequent pass.
6204 */
6205 if (ret == -ENOENT)
6206 ret = btrfs_pin_extent_for_log_replay(trans,
6207 log->node->start,
6208 log->node->len);
6209 btrfs_put_root(log);
6210
6211 if (!ret)
6212 goto next;
6213 btrfs_handle_fs_error(fs_info, ret,
6214 "Couldn't read target root for tree log recovery.");
6215 goto error;
6216 }
6217
6218 wc.replay_dest->log_root = log;
6219 btrfs_record_root_in_trans(trans, wc.replay_dest);
6220 ret = walk_log_tree(trans, log, &wc);
6221
6222 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6223 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6224 path);
6225 }
6226
6227 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6228 struct btrfs_root *root = wc.replay_dest;
6229
6230 btrfs_release_path(path);
6231
6232 /*
6233 * We have just replayed everything, and the highest
6234 * objectid of fs roots probably has changed in case
6235 * some inode_item's got replayed.
6236 *
6237 * root->objectid_mutex is not acquired as log replay
6238 * could only happen during mount.
6239 */
6240 ret = btrfs_find_highest_objectid(root,
6241 &root->highest_objectid);
6242 }
6243
6244 wc.replay_dest->log_root = NULL;
6245 btrfs_put_root(wc.replay_dest);
6246 btrfs_put_root(log);
6247
6248 if (ret)
6249 goto error;
6250next:
6251 if (found_key.offset == 0)
6252 break;
6253 key.offset = found_key.offset - 1;
6254 }
6255 btrfs_release_path(path);
6256
6257 /* step one is to pin it all, step two is to replay just inodes */
6258 if (wc.pin) {
6259 wc.pin = 0;
6260 wc.process_func = replay_one_buffer;
6261 wc.stage = LOG_WALK_REPLAY_INODES;
6262 goto again;
6263 }
6264 /* step three is to replay everything */
6265 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6266 wc.stage++;
6267 goto again;
6268 }
6269
6270 btrfs_free_path(path);
6271
6272 /* step 4: commit the transaction, which also unpins the blocks */
6273 ret = btrfs_commit_transaction(trans);
6274 if (ret)
6275 return ret;
6276
6277 log_root_tree->log_root = NULL;
6278 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6279 btrfs_put_root(log_root_tree);
6280
6281 return 0;
6282error:
6283 if (wc.trans)
6284 btrfs_end_transaction(wc.trans);
6285 btrfs_free_path(path);
6286 return ret;
6287}
6288
6289/*
6290 * there are some corner cases where we want to force a full
6291 * commit instead of allowing a directory to be logged.
6292 *
6293 * They revolve around files there were unlinked from the directory, and
6294 * this function updates the parent directory so that a full commit is
6295 * properly done if it is fsync'd later after the unlinks are done.
6296 *
6297 * Must be called before the unlink operations (updates to the subvolume tree,
6298 * inodes, etc) are done.
6299 */
6300void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6301 struct btrfs_inode *dir, struct btrfs_inode *inode,
6302 int for_rename)
6303{
6304 /*
6305 * when we're logging a file, if it hasn't been renamed
6306 * or unlinked, and its inode is fully committed on disk,
6307 * we don't have to worry about walking up the directory chain
6308 * to log its parents.
6309 *
6310 * So, we use the last_unlink_trans field to put this transid
6311 * into the file. When the file is logged we check it and
6312 * don't log the parents if the file is fully on disk.
6313 */
6314 mutex_lock(&inode->log_mutex);
6315 inode->last_unlink_trans = trans->transid;
6316 mutex_unlock(&inode->log_mutex);
6317
6318 /*
6319 * if this directory was already logged any new
6320 * names for this file/dir will get recorded
6321 */
6322 if (dir->logged_trans == trans->transid)
6323 return;
6324
6325 /*
6326 * if the inode we're about to unlink was logged,
6327 * the log will be properly updated for any new names
6328 */
6329 if (inode->logged_trans == trans->transid)
6330 return;
6331
6332 /*
6333 * when renaming files across directories, if the directory
6334 * there we're unlinking from gets fsync'd later on, there's
6335 * no way to find the destination directory later and fsync it
6336 * properly. So, we have to be conservative and force commits
6337 * so the new name gets discovered.
6338 */
6339 if (for_rename)
6340 goto record;
6341
6342 /* we can safely do the unlink without any special recording */
6343 return;
6344
6345record:
6346 mutex_lock(&dir->log_mutex);
6347 dir->last_unlink_trans = trans->transid;
6348 mutex_unlock(&dir->log_mutex);
6349}
6350
6351/*
6352 * Make sure that if someone attempts to fsync the parent directory of a deleted
6353 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6354 * that after replaying the log tree of the parent directory's root we will not
6355 * see the snapshot anymore and at log replay time we will not see any log tree
6356 * corresponding to the deleted snapshot's root, which could lead to replaying
6357 * it after replaying the log tree of the parent directory (which would replay
6358 * the snapshot delete operation).
6359 *
6360 * Must be called before the actual snapshot destroy operation (updates to the
6361 * parent root and tree of tree roots trees, etc) are done.
6362 */
6363void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6364 struct btrfs_inode *dir)
6365{
6366 mutex_lock(&dir->log_mutex);
6367 dir->last_unlink_trans = trans->transid;
6368 mutex_unlock(&dir->log_mutex);
6369}
6370
6371/*
6372 * Call this after adding a new name for a file and it will properly
6373 * update the log to reflect the new name.
6374 *
6375 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6376 * true (because it's not used).
6377 *
6378 * Return value depends on whether @sync_log is true or false.
6379 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6380 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6381 * otherwise.
6382 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6383 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6384 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6385 * committed (without attempting to sync the log).
6386 */
6387int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6388 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6389 struct dentry *parent,
6390 bool sync_log, struct btrfs_log_ctx *ctx)
6391{
6392 struct btrfs_fs_info *fs_info = trans->fs_info;
6393 int ret;
6394
6395 /*
6396 * this will force the logging code to walk the dentry chain
6397 * up for the file
6398 */
6399 if (!S_ISDIR(inode->vfs_inode.i_mode))
6400 inode->last_unlink_trans = trans->transid;
6401
6402 /*
6403 * if this inode hasn't been logged and directory we're renaming it
6404 * from hasn't been logged, we don't need to log it
6405 */
6406 if (inode->logged_trans <= fs_info->last_trans_committed &&
6407 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6408 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6409 BTRFS_DONT_NEED_LOG_SYNC;
6410
6411 if (sync_log) {
6412 struct btrfs_log_ctx ctx2;
6413
6414 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6415 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6416 LOG_INODE_EXISTS, &ctx2);
6417 if (ret == BTRFS_NO_LOG_SYNC)
6418 return BTRFS_DONT_NEED_TRANS_COMMIT;
6419 else if (ret)
6420 return BTRFS_NEED_TRANS_COMMIT;
6421
6422 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6423 if (ret)
6424 return BTRFS_NEED_TRANS_COMMIT;
6425 return BTRFS_DONT_NEED_TRANS_COMMIT;
6426 }
6427
6428 ASSERT(ctx);
6429 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6430 LOG_INODE_EXISTS, ctx);
6431 if (ret == BTRFS_NO_LOG_SYNC)
6432 return BTRFS_DONT_NEED_LOG_SYNC;
6433 else if (ret)
6434 return BTRFS_NEED_TRANS_COMMIT;
6435
6436 return BTRFS_NEED_LOG_SYNC;
6437}
6438
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
17#include "backref.h"
18#include "compression.h"
19#include "qgroup.h"
20#include "inode-map.h"
21
22/* magic values for the inode_only field in btrfs_log_inode:
23 *
24 * LOG_INODE_ALL means to log everything
25 * LOG_INODE_EXISTS means to log just enough to recreate the inode
26 * during log replay
27 */
28enum {
29 LOG_INODE_ALL,
30 LOG_INODE_EXISTS,
31 LOG_OTHER_INODE,
32 LOG_OTHER_INODE_ALL,
33};
34
35/*
36 * directory trouble cases
37 *
38 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
39 * log, we must force a full commit before doing an fsync of the directory
40 * where the unlink was done.
41 * ---> record transid of last unlink/rename per directory
42 *
43 * mkdir foo/some_dir
44 * normal commit
45 * rename foo/some_dir foo2/some_dir
46 * mkdir foo/some_dir
47 * fsync foo/some_dir/some_file
48 *
49 * The fsync above will unlink the original some_dir without recording
50 * it in its new location (foo2). After a crash, some_dir will be gone
51 * unless the fsync of some_file forces a full commit
52 *
53 * 2) we must log any new names for any file or dir that is in the fsync
54 * log. ---> check inode while renaming/linking.
55 *
56 * 2a) we must log any new names for any file or dir during rename
57 * when the directory they are being removed from was logged.
58 * ---> check inode and old parent dir during rename
59 *
60 * 2a is actually the more important variant. With the extra logging
61 * a crash might unlink the old name without recreating the new one
62 *
63 * 3) after a crash, we must go through any directories with a link count
64 * of zero and redo the rm -rf
65 *
66 * mkdir f1/foo
67 * normal commit
68 * rm -rf f1/foo
69 * fsync(f1)
70 *
71 * The directory f1 was fully removed from the FS, but fsync was never
72 * called on f1, only its parent dir. After a crash the rm -rf must
73 * be replayed. This must be able to recurse down the entire
74 * directory tree. The inode link count fixup code takes care of the
75 * ugly details.
76 */
77
78/*
79 * stages for the tree walking. The first
80 * stage (0) is to only pin down the blocks we find
81 * the second stage (1) is to make sure that all the inodes
82 * we find in the log are created in the subvolume.
83 *
84 * The last stage is to deal with directories and links and extents
85 * and all the other fun semantics
86 */
87enum {
88 LOG_WALK_PIN_ONLY,
89 LOG_WALK_REPLAY_INODES,
90 LOG_WALK_REPLAY_DIR_INDEX,
91 LOG_WALK_REPLAY_ALL,
92};
93
94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct btrfs_inode *inode,
96 int inode_only,
97 const loff_t start,
98 const loff_t end,
99 struct btrfs_log_ctx *ctx);
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
108
109/*
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
112 *
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
116 *
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
122 *
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
126 *
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
130 */
131
132/*
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
136 */
137static int start_log_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root,
139 struct btrfs_log_ctx *ctx)
140{
141 struct btrfs_fs_info *fs_info = root->fs_info;
142 int ret = 0;
143
144 mutex_lock(&root->log_mutex);
145
146 if (root->log_root) {
147 if (btrfs_need_log_full_commit(trans)) {
148 ret = -EAGAIN;
149 goto out;
150 }
151
152 if (!root->log_start_pid) {
153 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 root->log_start_pid = current->pid;
155 } else if (root->log_start_pid != current->pid) {
156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
157 }
158 } else {
159 mutex_lock(&fs_info->tree_log_mutex);
160 if (!fs_info->log_root_tree)
161 ret = btrfs_init_log_root_tree(trans, fs_info);
162 mutex_unlock(&fs_info->tree_log_mutex);
163 if (ret)
164 goto out;
165
166 ret = btrfs_add_log_tree(trans, root);
167 if (ret)
168 goto out;
169
170 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
171 root->log_start_pid = current->pid;
172 }
173
174 atomic_inc(&root->log_batch);
175 atomic_inc(&root->log_writers);
176 if (ctx) {
177 int index = root->log_transid % 2;
178 list_add_tail(&ctx->list, &root->log_ctxs[index]);
179 ctx->log_transid = root->log_transid;
180 }
181
182out:
183 mutex_unlock(&root->log_mutex);
184 return ret;
185}
186
187/*
188 * returns 0 if there was a log transaction running and we were able
189 * to join, or returns -ENOENT if there were not transactions
190 * in progress
191 */
192static int join_running_log_trans(struct btrfs_root *root)
193{
194 int ret = -ENOENT;
195
196 mutex_lock(&root->log_mutex);
197 if (root->log_root) {
198 ret = 0;
199 atomic_inc(&root->log_writers);
200 }
201 mutex_unlock(&root->log_mutex);
202 return ret;
203}
204
205/*
206 * This either makes the current running log transaction wait
207 * until you call btrfs_end_log_trans() or it makes any future
208 * log transactions wait until you call btrfs_end_log_trans()
209 */
210void btrfs_pin_log_trans(struct btrfs_root *root)
211{
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
215}
216
217/*
218 * indicate we're done making changes to the log tree
219 * and wake up anyone waiting to do a sync
220 */
221void btrfs_end_log_trans(struct btrfs_root *root)
222{
223 if (atomic_dec_and_test(&root->log_writers)) {
224 /* atomic_dec_and_test implies a barrier */
225 cond_wake_up_nomb(&root->log_writer_wait);
226 }
227}
228
229static int btrfs_write_tree_block(struct extent_buffer *buf)
230{
231 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
232 buf->start + buf->len - 1);
233}
234
235static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
236{
237 filemap_fdatawait_range(buf->pages[0]->mapping,
238 buf->start, buf->start + buf->len - 1);
239}
240
241/*
242 * the walk control struct is used to pass state down the chain when
243 * processing the log tree. The stage field tells us which part
244 * of the log tree processing we are currently doing. The others
245 * are state fields used for that specific part
246 */
247struct walk_control {
248 /* should we free the extent on disk when done? This is used
249 * at transaction commit time while freeing a log tree
250 */
251 int free;
252
253 /* should we write out the extent buffer? This is used
254 * while flushing the log tree to disk during a sync
255 */
256 int write;
257
258 /* should we wait for the extent buffer io to finish? Also used
259 * while flushing the log tree to disk for a sync
260 */
261 int wait;
262
263 /* pin only walk, we record which extents on disk belong to the
264 * log trees
265 */
266 int pin;
267
268 /* what stage of the replay code we're currently in */
269 int stage;
270
271 /*
272 * Ignore any items from the inode currently being processed. Needs
273 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
274 * the LOG_WALK_REPLAY_INODES stage.
275 */
276 bool ignore_cur_inode;
277
278 /* the root we are currently replaying */
279 struct btrfs_root *replay_dest;
280
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle *trans;
283
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
287 * inside it
288 */
289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 struct walk_control *wc, u64 gen, int level);
291};
292
293/*
294 * process_func used to pin down extents, write them or wait on them
295 */
296static int process_one_buffer(struct btrfs_root *log,
297 struct extent_buffer *eb,
298 struct walk_control *wc, u64 gen, int level)
299{
300 struct btrfs_fs_info *fs_info = log->fs_info;
301 int ret = 0;
302
303 /*
304 * If this fs is mixed then we need to be able to process the leaves to
305 * pin down any logged extents, so we have to read the block.
306 */
307 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
308 ret = btrfs_read_buffer(eb, gen, level, NULL);
309 if (ret)
310 return ret;
311 }
312
313 if (wc->pin)
314 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
315 eb->len);
316
317 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
318 if (wc->pin && btrfs_header_level(eb) == 0)
319 ret = btrfs_exclude_logged_extents(eb);
320 if (wc->write)
321 btrfs_write_tree_block(eb);
322 if (wc->wait)
323 btrfs_wait_tree_block_writeback(eb);
324 }
325 return ret;
326}
327
328/*
329 * Item overwrite used by replay and tree logging. eb, slot and key all refer
330 * to the src data we are copying out.
331 *
332 * root is the tree we are copying into, and path is a scratch
333 * path for use in this function (it should be released on entry and
334 * will be released on exit).
335 *
336 * If the key is already in the destination tree the existing item is
337 * overwritten. If the existing item isn't big enough, it is extended.
338 * If it is too large, it is truncated.
339 *
340 * If the key isn't in the destination yet, a new item is inserted.
341 */
342static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343 struct btrfs_root *root,
344 struct btrfs_path *path,
345 struct extent_buffer *eb, int slot,
346 struct btrfs_key *key)
347{
348 int ret;
349 u32 item_size;
350 u64 saved_i_size = 0;
351 int save_old_i_size = 0;
352 unsigned long src_ptr;
353 unsigned long dst_ptr;
354 int overwrite_root = 0;
355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
356
357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 overwrite_root = 1;
359
360 item_size = btrfs_item_size_nr(eb, slot);
361 src_ptr = btrfs_item_ptr_offset(eb, slot);
362
363 /* look for the key in the destination tree */
364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 if (ret < 0)
366 return ret;
367
368 if (ret == 0) {
369 char *src_copy;
370 char *dst_copy;
371 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 path->slots[0]);
373 if (dst_size != item_size)
374 goto insert;
375
376 if (item_size == 0) {
377 btrfs_release_path(path);
378 return 0;
379 }
380 dst_copy = kmalloc(item_size, GFP_NOFS);
381 src_copy = kmalloc(item_size, GFP_NOFS);
382 if (!dst_copy || !src_copy) {
383 btrfs_release_path(path);
384 kfree(dst_copy);
385 kfree(src_copy);
386 return -ENOMEM;
387 }
388
389 read_extent_buffer(eb, src_copy, src_ptr, item_size);
390
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 item_size);
394 ret = memcmp(dst_copy, src_copy, item_size);
395
396 kfree(dst_copy);
397 kfree(src_copy);
398 /*
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
402 * sync
403 */
404 if (ret == 0) {
405 btrfs_release_path(path);
406 return 0;
407 }
408
409 /*
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
412 */
413 if (inode_item) {
414 struct btrfs_inode_item *item;
415 u64 nbytes;
416 u32 mode;
417
418 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 struct btrfs_inode_item);
420 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 item = btrfs_item_ptr(eb, slot,
422 struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, nbytes);
424
425 /*
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
429 */
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
433 }
434 } else if (inode_item) {
435 struct btrfs_inode_item *item;
436 u32 mode;
437
438 /*
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
441 */
442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 btrfs_set_inode_nbytes(eb, item, 0);
444
445 /*
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
449 */
450 mode = btrfs_inode_mode(eb, item);
451 if (S_ISDIR(mode))
452 btrfs_set_inode_size(eb, item, 0);
453 }
454insert:
455 btrfs_release_path(path);
456 /* try to insert the key into the destination tree */
457 path->skip_release_on_error = 1;
458 ret = btrfs_insert_empty_item(trans, root, path,
459 key, item_size);
460 path->skip_release_on_error = 0;
461
462 /* make sure any existing item is the correct size */
463 if (ret == -EEXIST || ret == -EOVERFLOW) {
464 u32 found_size;
465 found_size = btrfs_item_size_nr(path->nodes[0],
466 path->slots[0]);
467 if (found_size > item_size)
468 btrfs_truncate_item(path, item_size, 1);
469 else if (found_size < item_size)
470 btrfs_extend_item(path, item_size - found_size);
471 } else if (ret) {
472 return ret;
473 }
474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 path->slots[0]);
476
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
480 *
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
484 * as it goes
485 */
486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 struct btrfs_inode_item *src_item;
488 struct btrfs_inode_item *dst_item;
489
490 src_item = (struct btrfs_inode_item *)src_ptr;
491 dst_item = (struct btrfs_inode_item *)dst_ptr;
492
493 if (btrfs_inode_generation(eb, src_item) == 0) {
494 struct extent_buffer *dst_eb = path->nodes[0];
495 const u64 ino_size = btrfs_inode_size(eb, src_item);
496
497 /*
498 * For regular files an ino_size == 0 is used only when
499 * logging that an inode exists, as part of a directory
500 * fsync, and the inode wasn't fsynced before. In this
501 * case don't set the size of the inode in the fs/subvol
502 * tree, otherwise we would be throwing valid data away.
503 */
504 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
505 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 ino_size != 0) {
507 struct btrfs_map_token token;
508
509 btrfs_init_map_token(&token, dst_eb);
510 btrfs_set_token_inode_size(dst_eb, dst_item,
511 ino_size, &token);
512 }
513 goto no_copy;
514 }
515
516 if (overwrite_root &&
517 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 save_old_i_size = 1;
520 saved_i_size = btrfs_inode_size(path->nodes[0],
521 dst_item);
522 }
523 }
524
525 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 src_ptr, item_size);
527
528 if (save_old_i_size) {
529 struct btrfs_inode_item *dst_item;
530 dst_item = (struct btrfs_inode_item *)dst_ptr;
531 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
532 }
533
534 /* make sure the generation is filled in */
535 if (key->type == BTRFS_INODE_ITEM_KEY) {
536 struct btrfs_inode_item *dst_item;
537 dst_item = (struct btrfs_inode_item *)dst_ptr;
538 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 btrfs_set_inode_generation(path->nodes[0], dst_item,
540 trans->transid);
541 }
542 }
543no_copy:
544 btrfs_mark_buffer_dirty(path->nodes[0]);
545 btrfs_release_path(path);
546 return 0;
547}
548
549/*
550 * simple helper to read an inode off the disk from a given root
551 * This can only be called for subvolume roots and not for the log
552 */
553static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 u64 objectid)
555{
556 struct btrfs_key key;
557 struct inode *inode;
558
559 key.objectid = objectid;
560 key.type = BTRFS_INODE_ITEM_KEY;
561 key.offset = 0;
562 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
563 if (IS_ERR(inode))
564 inode = NULL;
565 return inode;
566}
567
568/* replays a single extent in 'eb' at 'slot' with 'key' into the
569 * subvolume 'root'. path is released on entry and should be released
570 * on exit.
571 *
572 * extents in the log tree have not been allocated out of the extent
573 * tree yet. So, this completes the allocation, taking a reference
574 * as required if the extent already exists or creating a new extent
575 * if it isn't in the extent allocation tree yet.
576 *
577 * The extent is inserted into the file, dropping any existing extents
578 * from the file that overlap the new one.
579 */
580static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
581 struct btrfs_root *root,
582 struct btrfs_path *path,
583 struct extent_buffer *eb, int slot,
584 struct btrfs_key *key)
585{
586 struct btrfs_fs_info *fs_info = root->fs_info;
587 int found_type;
588 u64 extent_end;
589 u64 start = key->offset;
590 u64 nbytes = 0;
591 struct btrfs_file_extent_item *item;
592 struct inode *inode = NULL;
593 unsigned long size;
594 int ret = 0;
595
596 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
597 found_type = btrfs_file_extent_type(eb, item);
598
599 if (found_type == BTRFS_FILE_EXTENT_REG ||
600 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
601 nbytes = btrfs_file_extent_num_bytes(eb, item);
602 extent_end = start + nbytes;
603
604 /*
605 * We don't add to the inodes nbytes if we are prealloc or a
606 * hole.
607 */
608 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
609 nbytes = 0;
610 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
611 size = btrfs_file_extent_ram_bytes(eb, item);
612 nbytes = btrfs_file_extent_ram_bytes(eb, item);
613 extent_end = ALIGN(start + size,
614 fs_info->sectorsize);
615 } else {
616 ret = 0;
617 goto out;
618 }
619
620 inode = read_one_inode(root, key->objectid);
621 if (!inode) {
622 ret = -EIO;
623 goto out;
624 }
625
626 /*
627 * first check to see if we already have this extent in the
628 * file. This must be done before the btrfs_drop_extents run
629 * so we don't try to drop this extent.
630 */
631 ret = btrfs_lookup_file_extent(trans, root, path,
632 btrfs_ino(BTRFS_I(inode)), start, 0);
633
634 if (ret == 0 &&
635 (found_type == BTRFS_FILE_EXTENT_REG ||
636 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
637 struct btrfs_file_extent_item cmp1;
638 struct btrfs_file_extent_item cmp2;
639 struct btrfs_file_extent_item *existing;
640 struct extent_buffer *leaf;
641
642 leaf = path->nodes[0];
643 existing = btrfs_item_ptr(leaf, path->slots[0],
644 struct btrfs_file_extent_item);
645
646 read_extent_buffer(eb, &cmp1, (unsigned long)item,
647 sizeof(cmp1));
648 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
649 sizeof(cmp2));
650
651 /*
652 * we already have a pointer to this exact extent,
653 * we don't have to do anything
654 */
655 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
656 btrfs_release_path(path);
657 goto out;
658 }
659 }
660 btrfs_release_path(path);
661
662 /* drop any overlapping extents */
663 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
664 if (ret)
665 goto out;
666
667 if (found_type == BTRFS_FILE_EXTENT_REG ||
668 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
669 u64 offset;
670 unsigned long dest_offset;
671 struct btrfs_key ins;
672
673 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
674 btrfs_fs_incompat(fs_info, NO_HOLES))
675 goto update_inode;
676
677 ret = btrfs_insert_empty_item(trans, root, path, key,
678 sizeof(*item));
679 if (ret)
680 goto out;
681 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
682 path->slots[0]);
683 copy_extent_buffer(path->nodes[0], eb, dest_offset,
684 (unsigned long)item, sizeof(*item));
685
686 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
687 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
688 ins.type = BTRFS_EXTENT_ITEM_KEY;
689 offset = key->offset - btrfs_file_extent_offset(eb, item);
690
691 /*
692 * Manually record dirty extent, as here we did a shallow
693 * file extent item copy and skip normal backref update,
694 * but modifying extent tree all by ourselves.
695 * So need to manually record dirty extent for qgroup,
696 * as the owner of the file extent changed from log tree
697 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
698 */
699 ret = btrfs_qgroup_trace_extent(trans,
700 btrfs_file_extent_disk_bytenr(eb, item),
701 btrfs_file_extent_disk_num_bytes(eb, item),
702 GFP_NOFS);
703 if (ret < 0)
704 goto out;
705
706 if (ins.objectid > 0) {
707 struct btrfs_ref ref = { 0 };
708 u64 csum_start;
709 u64 csum_end;
710 LIST_HEAD(ordered_sums);
711
712 /*
713 * is this extent already allocated in the extent
714 * allocation tree? If so, just add a reference
715 */
716 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
717 ins.offset);
718 if (ret == 0) {
719 btrfs_init_generic_ref(&ref,
720 BTRFS_ADD_DELAYED_REF,
721 ins.objectid, ins.offset, 0);
722 btrfs_init_data_ref(&ref,
723 root->root_key.objectid,
724 key->objectid, offset);
725 ret = btrfs_inc_extent_ref(trans, &ref);
726 if (ret)
727 goto out;
728 } else {
729 /*
730 * insert the extent pointer in the extent
731 * allocation tree
732 */
733 ret = btrfs_alloc_logged_file_extent(trans,
734 root->root_key.objectid,
735 key->objectid, offset, &ins);
736 if (ret)
737 goto out;
738 }
739 btrfs_release_path(path);
740
741 if (btrfs_file_extent_compression(eb, item)) {
742 csum_start = ins.objectid;
743 csum_end = csum_start + ins.offset;
744 } else {
745 csum_start = ins.objectid +
746 btrfs_file_extent_offset(eb, item);
747 csum_end = csum_start +
748 btrfs_file_extent_num_bytes(eb, item);
749 }
750
751 ret = btrfs_lookup_csums_range(root->log_root,
752 csum_start, csum_end - 1,
753 &ordered_sums, 0);
754 if (ret)
755 goto out;
756 /*
757 * Now delete all existing cums in the csum root that
758 * cover our range. We do this because we can have an
759 * extent that is completely referenced by one file
760 * extent item and partially referenced by another
761 * file extent item (like after using the clone or
762 * extent_same ioctls). In this case if we end up doing
763 * the replay of the one that partially references the
764 * extent first, and we do not do the csum deletion
765 * below, we can get 2 csum items in the csum tree that
766 * overlap each other. For example, imagine our log has
767 * the two following file extent items:
768 *
769 * key (257 EXTENT_DATA 409600)
770 * extent data disk byte 12845056 nr 102400
771 * extent data offset 20480 nr 20480 ram 102400
772 *
773 * key (257 EXTENT_DATA 819200)
774 * extent data disk byte 12845056 nr 102400
775 * extent data offset 0 nr 102400 ram 102400
776 *
777 * Where the second one fully references the 100K extent
778 * that starts at disk byte 12845056, and the log tree
779 * has a single csum item that covers the entire range
780 * of the extent:
781 *
782 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
783 *
784 * After the first file extent item is replayed, the
785 * csum tree gets the following csum item:
786 *
787 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
788 *
789 * Which covers the 20K sub-range starting at offset 20K
790 * of our extent. Now when we replay the second file
791 * extent item, if we do not delete existing csum items
792 * that cover any of its blocks, we end up getting two
793 * csum items in our csum tree that overlap each other:
794 *
795 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
797 *
798 * Which is a problem, because after this anyone trying
799 * to lookup up for the checksum of any block of our
800 * extent starting at an offset of 40K or higher, will
801 * end up looking at the second csum item only, which
802 * does not contain the checksum for any block starting
803 * at offset 40K or higher of our extent.
804 */
805 while (!list_empty(&ordered_sums)) {
806 struct btrfs_ordered_sum *sums;
807 sums = list_entry(ordered_sums.next,
808 struct btrfs_ordered_sum,
809 list);
810 if (!ret)
811 ret = btrfs_del_csums(trans, fs_info,
812 sums->bytenr,
813 sums->len);
814 if (!ret)
815 ret = btrfs_csum_file_blocks(trans,
816 fs_info->csum_root, sums);
817 list_del(&sums->list);
818 kfree(sums);
819 }
820 if (ret)
821 goto out;
822 } else {
823 btrfs_release_path(path);
824 }
825 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
826 /* inline extents are easy, we just overwrite them */
827 ret = overwrite_item(trans, root, path, eb, slot, key);
828 if (ret)
829 goto out;
830 }
831
832 inode_add_bytes(inode, nbytes);
833update_inode:
834 ret = btrfs_update_inode(trans, root, inode);
835out:
836 if (inode)
837 iput(inode);
838 return ret;
839}
840
841/*
842 * when cleaning up conflicts between the directory names in the
843 * subvolume, directory names in the log and directory names in the
844 * inode back references, we may have to unlink inodes from directories.
845 *
846 * This is a helper function to do the unlink of a specific directory
847 * item
848 */
849static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
850 struct btrfs_root *root,
851 struct btrfs_path *path,
852 struct btrfs_inode *dir,
853 struct btrfs_dir_item *di)
854{
855 struct inode *inode;
856 char *name;
857 int name_len;
858 struct extent_buffer *leaf;
859 struct btrfs_key location;
860 int ret;
861
862 leaf = path->nodes[0];
863
864 btrfs_dir_item_key_to_cpu(leaf, di, &location);
865 name_len = btrfs_dir_name_len(leaf, di);
866 name = kmalloc(name_len, GFP_NOFS);
867 if (!name)
868 return -ENOMEM;
869
870 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
871 btrfs_release_path(path);
872
873 inode = read_one_inode(root, location.objectid);
874 if (!inode) {
875 ret = -EIO;
876 goto out;
877 }
878
879 ret = link_to_fixup_dir(trans, root, path, location.objectid);
880 if (ret)
881 goto out;
882
883 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
884 name_len);
885 if (ret)
886 goto out;
887 else
888 ret = btrfs_run_delayed_items(trans);
889out:
890 kfree(name);
891 iput(inode);
892 return ret;
893}
894
895/*
896 * helper function to see if a given name and sequence number found
897 * in an inode back reference are already in a directory and correctly
898 * point to this inode
899 */
900static noinline int inode_in_dir(struct btrfs_root *root,
901 struct btrfs_path *path,
902 u64 dirid, u64 objectid, u64 index,
903 const char *name, int name_len)
904{
905 struct btrfs_dir_item *di;
906 struct btrfs_key location;
907 int match = 0;
908
909 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
910 index, name, name_len, 0);
911 if (di && !IS_ERR(di)) {
912 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
913 if (location.objectid != objectid)
914 goto out;
915 } else
916 goto out;
917 btrfs_release_path(path);
918
919 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
920 if (di && !IS_ERR(di)) {
921 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
922 if (location.objectid != objectid)
923 goto out;
924 } else
925 goto out;
926 match = 1;
927out:
928 btrfs_release_path(path);
929 return match;
930}
931
932/*
933 * helper function to check a log tree for a named back reference in
934 * an inode. This is used to decide if a back reference that is
935 * found in the subvolume conflicts with what we find in the log.
936 *
937 * inode backreferences may have multiple refs in a single item,
938 * during replay we process one reference at a time, and we don't
939 * want to delete valid links to a file from the subvolume if that
940 * link is also in the log.
941 */
942static noinline int backref_in_log(struct btrfs_root *log,
943 struct btrfs_key *key,
944 u64 ref_objectid,
945 const char *name, int namelen)
946{
947 struct btrfs_path *path;
948 struct btrfs_inode_ref *ref;
949 unsigned long ptr;
950 unsigned long ptr_end;
951 unsigned long name_ptr;
952 int found_name_len;
953 int item_size;
954 int ret;
955 int match = 0;
956
957 path = btrfs_alloc_path();
958 if (!path)
959 return -ENOMEM;
960
961 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
962 if (ret != 0)
963 goto out;
964
965 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
966
967 if (key->type == BTRFS_INODE_EXTREF_KEY) {
968 if (btrfs_find_name_in_ext_backref(path->nodes[0],
969 path->slots[0],
970 ref_objectid,
971 name, namelen))
972 match = 1;
973
974 goto out;
975 }
976
977 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
978 ptr_end = ptr + item_size;
979 while (ptr < ptr_end) {
980 ref = (struct btrfs_inode_ref *)ptr;
981 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
982 if (found_name_len == namelen) {
983 name_ptr = (unsigned long)(ref + 1);
984 ret = memcmp_extent_buffer(path->nodes[0], name,
985 name_ptr, namelen);
986 if (ret == 0) {
987 match = 1;
988 goto out;
989 }
990 }
991 ptr = (unsigned long)(ref + 1) + found_name_len;
992 }
993out:
994 btrfs_free_path(path);
995 return match;
996}
997
998static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
999 struct btrfs_root *root,
1000 struct btrfs_path *path,
1001 struct btrfs_root *log_root,
1002 struct btrfs_inode *dir,
1003 struct btrfs_inode *inode,
1004 u64 inode_objectid, u64 parent_objectid,
1005 u64 ref_index, char *name, int namelen,
1006 int *search_done)
1007{
1008 int ret;
1009 char *victim_name;
1010 int victim_name_len;
1011 struct extent_buffer *leaf;
1012 struct btrfs_dir_item *di;
1013 struct btrfs_key search_key;
1014 struct btrfs_inode_extref *extref;
1015
1016again:
1017 /* Search old style refs */
1018 search_key.objectid = inode_objectid;
1019 search_key.type = BTRFS_INODE_REF_KEY;
1020 search_key.offset = parent_objectid;
1021 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1022 if (ret == 0) {
1023 struct btrfs_inode_ref *victim_ref;
1024 unsigned long ptr;
1025 unsigned long ptr_end;
1026
1027 leaf = path->nodes[0];
1028
1029 /* are we trying to overwrite a back ref for the root directory
1030 * if so, just jump out, we're done
1031 */
1032 if (search_key.objectid == search_key.offset)
1033 return 1;
1034
1035 /* check all the names in this back reference to see
1036 * if they are in the log. if so, we allow them to stay
1037 * otherwise they must be unlinked as a conflict
1038 */
1039 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1040 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1041 while (ptr < ptr_end) {
1042 victim_ref = (struct btrfs_inode_ref *)ptr;
1043 victim_name_len = btrfs_inode_ref_name_len(leaf,
1044 victim_ref);
1045 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1046 if (!victim_name)
1047 return -ENOMEM;
1048
1049 read_extent_buffer(leaf, victim_name,
1050 (unsigned long)(victim_ref + 1),
1051 victim_name_len);
1052
1053 if (!backref_in_log(log_root, &search_key,
1054 parent_objectid,
1055 victim_name,
1056 victim_name_len)) {
1057 inc_nlink(&inode->vfs_inode);
1058 btrfs_release_path(path);
1059
1060 ret = btrfs_unlink_inode(trans, root, dir, inode,
1061 victim_name, victim_name_len);
1062 kfree(victim_name);
1063 if (ret)
1064 return ret;
1065 ret = btrfs_run_delayed_items(trans);
1066 if (ret)
1067 return ret;
1068 *search_done = 1;
1069 goto again;
1070 }
1071 kfree(victim_name);
1072
1073 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1074 }
1075
1076 /*
1077 * NOTE: we have searched root tree and checked the
1078 * corresponding ref, it does not need to check again.
1079 */
1080 *search_done = 1;
1081 }
1082 btrfs_release_path(path);
1083
1084 /* Same search but for extended refs */
1085 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1086 inode_objectid, parent_objectid, 0,
1087 0);
1088 if (!IS_ERR_OR_NULL(extref)) {
1089 u32 item_size;
1090 u32 cur_offset = 0;
1091 unsigned long base;
1092 struct inode *victim_parent;
1093
1094 leaf = path->nodes[0];
1095
1096 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1097 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1098
1099 while (cur_offset < item_size) {
1100 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1101
1102 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1103
1104 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1105 goto next;
1106
1107 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1108 if (!victim_name)
1109 return -ENOMEM;
1110 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1111 victim_name_len);
1112
1113 search_key.objectid = inode_objectid;
1114 search_key.type = BTRFS_INODE_EXTREF_KEY;
1115 search_key.offset = btrfs_extref_hash(parent_objectid,
1116 victim_name,
1117 victim_name_len);
1118 ret = 0;
1119 if (!backref_in_log(log_root, &search_key,
1120 parent_objectid, victim_name,
1121 victim_name_len)) {
1122 ret = -ENOENT;
1123 victim_parent = read_one_inode(root,
1124 parent_objectid);
1125 if (victim_parent) {
1126 inc_nlink(&inode->vfs_inode);
1127 btrfs_release_path(path);
1128
1129 ret = btrfs_unlink_inode(trans, root,
1130 BTRFS_I(victim_parent),
1131 inode,
1132 victim_name,
1133 victim_name_len);
1134 if (!ret)
1135 ret = btrfs_run_delayed_items(
1136 trans);
1137 }
1138 iput(victim_parent);
1139 kfree(victim_name);
1140 if (ret)
1141 return ret;
1142 *search_done = 1;
1143 goto again;
1144 }
1145 kfree(victim_name);
1146next:
1147 cur_offset += victim_name_len + sizeof(*extref);
1148 }
1149 *search_done = 1;
1150 }
1151 btrfs_release_path(path);
1152
1153 /* look for a conflicting sequence number */
1154 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1155 ref_index, name, namelen, 0);
1156 if (di && !IS_ERR(di)) {
1157 ret = drop_one_dir_item(trans, root, path, dir, di);
1158 if (ret)
1159 return ret;
1160 }
1161 btrfs_release_path(path);
1162
1163 /* look for a conflicting name */
1164 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1165 name, namelen, 0);
1166 if (di && !IS_ERR(di)) {
1167 ret = drop_one_dir_item(trans, root, path, dir, di);
1168 if (ret)
1169 return ret;
1170 }
1171 btrfs_release_path(path);
1172
1173 return 0;
1174}
1175
1176static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1177 u32 *namelen, char **name, u64 *index,
1178 u64 *parent_objectid)
1179{
1180 struct btrfs_inode_extref *extref;
1181
1182 extref = (struct btrfs_inode_extref *)ref_ptr;
1183
1184 *namelen = btrfs_inode_extref_name_len(eb, extref);
1185 *name = kmalloc(*namelen, GFP_NOFS);
1186 if (*name == NULL)
1187 return -ENOMEM;
1188
1189 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1190 *namelen);
1191
1192 if (index)
1193 *index = btrfs_inode_extref_index(eb, extref);
1194 if (parent_objectid)
1195 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1196
1197 return 0;
1198}
1199
1200static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1201 u32 *namelen, char **name, u64 *index)
1202{
1203 struct btrfs_inode_ref *ref;
1204
1205 ref = (struct btrfs_inode_ref *)ref_ptr;
1206
1207 *namelen = btrfs_inode_ref_name_len(eb, ref);
1208 *name = kmalloc(*namelen, GFP_NOFS);
1209 if (*name == NULL)
1210 return -ENOMEM;
1211
1212 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1213
1214 if (index)
1215 *index = btrfs_inode_ref_index(eb, ref);
1216
1217 return 0;
1218}
1219
1220/*
1221 * Take an inode reference item from the log tree and iterate all names from the
1222 * inode reference item in the subvolume tree with the same key (if it exists).
1223 * For any name that is not in the inode reference item from the log tree, do a
1224 * proper unlink of that name (that is, remove its entry from the inode
1225 * reference item and both dir index keys).
1226 */
1227static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1228 struct btrfs_root *root,
1229 struct btrfs_path *path,
1230 struct btrfs_inode *inode,
1231 struct extent_buffer *log_eb,
1232 int log_slot,
1233 struct btrfs_key *key)
1234{
1235 int ret;
1236 unsigned long ref_ptr;
1237 unsigned long ref_end;
1238 struct extent_buffer *eb;
1239
1240again:
1241 btrfs_release_path(path);
1242 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1243 if (ret > 0) {
1244 ret = 0;
1245 goto out;
1246 }
1247 if (ret < 0)
1248 goto out;
1249
1250 eb = path->nodes[0];
1251 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1252 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1253 while (ref_ptr < ref_end) {
1254 char *name = NULL;
1255 int namelen;
1256 u64 parent_id;
1257
1258 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1259 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1260 NULL, &parent_id);
1261 } else {
1262 parent_id = key->offset;
1263 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1264 NULL);
1265 }
1266 if (ret)
1267 goto out;
1268
1269 if (key->type == BTRFS_INODE_EXTREF_KEY)
1270 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1271 parent_id, name,
1272 namelen);
1273 else
1274 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1275 name, namelen);
1276
1277 if (!ret) {
1278 struct inode *dir;
1279
1280 btrfs_release_path(path);
1281 dir = read_one_inode(root, parent_id);
1282 if (!dir) {
1283 ret = -ENOENT;
1284 kfree(name);
1285 goto out;
1286 }
1287 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1288 inode, name, namelen);
1289 kfree(name);
1290 iput(dir);
1291 if (ret)
1292 goto out;
1293 goto again;
1294 }
1295
1296 kfree(name);
1297 ref_ptr += namelen;
1298 if (key->type == BTRFS_INODE_EXTREF_KEY)
1299 ref_ptr += sizeof(struct btrfs_inode_extref);
1300 else
1301 ref_ptr += sizeof(struct btrfs_inode_ref);
1302 }
1303 ret = 0;
1304 out:
1305 btrfs_release_path(path);
1306 return ret;
1307}
1308
1309static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1310 const u8 ref_type, const char *name,
1311 const int namelen)
1312{
1313 struct btrfs_key key;
1314 struct btrfs_path *path;
1315 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1316 int ret;
1317
1318 path = btrfs_alloc_path();
1319 if (!path)
1320 return -ENOMEM;
1321
1322 key.objectid = btrfs_ino(BTRFS_I(inode));
1323 key.type = ref_type;
1324 if (key.type == BTRFS_INODE_REF_KEY)
1325 key.offset = parent_id;
1326 else
1327 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1328
1329 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1330 if (ret < 0)
1331 goto out;
1332 if (ret > 0) {
1333 ret = 0;
1334 goto out;
1335 }
1336 if (key.type == BTRFS_INODE_EXTREF_KEY)
1337 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1338 path->slots[0], parent_id, name, namelen);
1339 else
1340 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1341 name, namelen);
1342
1343out:
1344 btrfs_free_path(path);
1345 return ret;
1346}
1347
1348static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1349 struct inode *dir, struct inode *inode, const char *name,
1350 int namelen, u64 ref_index)
1351{
1352 struct btrfs_dir_item *dir_item;
1353 struct btrfs_key key;
1354 struct btrfs_path *path;
1355 struct inode *other_inode = NULL;
1356 int ret;
1357
1358 path = btrfs_alloc_path();
1359 if (!path)
1360 return -ENOMEM;
1361
1362 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1363 btrfs_ino(BTRFS_I(dir)),
1364 name, namelen, 0);
1365 if (!dir_item) {
1366 btrfs_release_path(path);
1367 goto add_link;
1368 } else if (IS_ERR(dir_item)) {
1369 ret = PTR_ERR(dir_item);
1370 goto out;
1371 }
1372
1373 /*
1374 * Our inode's dentry collides with the dentry of another inode which is
1375 * in the log but not yet processed since it has a higher inode number.
1376 * So delete that other dentry.
1377 */
1378 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1379 btrfs_release_path(path);
1380 other_inode = read_one_inode(root, key.objectid);
1381 if (!other_inode) {
1382 ret = -ENOENT;
1383 goto out;
1384 }
1385 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1386 name, namelen);
1387 if (ret)
1388 goto out;
1389 /*
1390 * If we dropped the link count to 0, bump it so that later the iput()
1391 * on the inode will not free it. We will fixup the link count later.
1392 */
1393 if (other_inode->i_nlink == 0)
1394 inc_nlink(other_inode);
1395
1396 ret = btrfs_run_delayed_items(trans);
1397 if (ret)
1398 goto out;
1399add_link:
1400 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1401 name, namelen, 0, ref_index);
1402out:
1403 iput(other_inode);
1404 btrfs_free_path(path);
1405
1406 return ret;
1407}
1408
1409/*
1410 * replay one inode back reference item found in the log tree.
1411 * eb, slot and key refer to the buffer and key found in the log tree.
1412 * root is the destination we are replaying into, and path is for temp
1413 * use by this function. (it should be released on return).
1414 */
1415static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1416 struct btrfs_root *root,
1417 struct btrfs_root *log,
1418 struct btrfs_path *path,
1419 struct extent_buffer *eb, int slot,
1420 struct btrfs_key *key)
1421{
1422 struct inode *dir = NULL;
1423 struct inode *inode = NULL;
1424 unsigned long ref_ptr;
1425 unsigned long ref_end;
1426 char *name = NULL;
1427 int namelen;
1428 int ret;
1429 int search_done = 0;
1430 int log_ref_ver = 0;
1431 u64 parent_objectid;
1432 u64 inode_objectid;
1433 u64 ref_index = 0;
1434 int ref_struct_size;
1435
1436 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1437 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1438
1439 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1440 struct btrfs_inode_extref *r;
1441
1442 ref_struct_size = sizeof(struct btrfs_inode_extref);
1443 log_ref_ver = 1;
1444 r = (struct btrfs_inode_extref *)ref_ptr;
1445 parent_objectid = btrfs_inode_extref_parent(eb, r);
1446 } else {
1447 ref_struct_size = sizeof(struct btrfs_inode_ref);
1448 parent_objectid = key->offset;
1449 }
1450 inode_objectid = key->objectid;
1451
1452 /*
1453 * it is possible that we didn't log all the parent directories
1454 * for a given inode. If we don't find the dir, just don't
1455 * copy the back ref in. The link count fixup code will take
1456 * care of the rest
1457 */
1458 dir = read_one_inode(root, parent_objectid);
1459 if (!dir) {
1460 ret = -ENOENT;
1461 goto out;
1462 }
1463
1464 inode = read_one_inode(root, inode_objectid);
1465 if (!inode) {
1466 ret = -EIO;
1467 goto out;
1468 }
1469
1470 while (ref_ptr < ref_end) {
1471 if (log_ref_ver) {
1472 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1473 &ref_index, &parent_objectid);
1474 /*
1475 * parent object can change from one array
1476 * item to another.
1477 */
1478 if (!dir)
1479 dir = read_one_inode(root, parent_objectid);
1480 if (!dir) {
1481 ret = -ENOENT;
1482 goto out;
1483 }
1484 } else {
1485 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1486 &ref_index);
1487 }
1488 if (ret)
1489 goto out;
1490
1491 /* if we already have a perfect match, we're done */
1492 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1493 btrfs_ino(BTRFS_I(inode)), ref_index,
1494 name, namelen)) {
1495 /*
1496 * look for a conflicting back reference in the
1497 * metadata. if we find one we have to unlink that name
1498 * of the file before we add our new link. Later on, we
1499 * overwrite any existing back reference, and we don't
1500 * want to create dangling pointers in the directory.
1501 */
1502
1503 if (!search_done) {
1504 ret = __add_inode_ref(trans, root, path, log,
1505 BTRFS_I(dir),
1506 BTRFS_I(inode),
1507 inode_objectid,
1508 parent_objectid,
1509 ref_index, name, namelen,
1510 &search_done);
1511 if (ret) {
1512 if (ret == 1)
1513 ret = 0;
1514 goto out;
1515 }
1516 }
1517
1518 /*
1519 * If a reference item already exists for this inode
1520 * with the same parent and name, but different index,
1521 * drop it and the corresponding directory index entries
1522 * from the parent before adding the new reference item
1523 * and dir index entries, otherwise we would fail with
1524 * -EEXIST returned from btrfs_add_link() below.
1525 */
1526 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527 name, namelen);
1528 if (ret > 0) {
1529 ret = btrfs_unlink_inode(trans, root,
1530 BTRFS_I(dir),
1531 BTRFS_I(inode),
1532 name, namelen);
1533 /*
1534 * If we dropped the link count to 0, bump it so
1535 * that later the iput() on the inode will not
1536 * free it. We will fixup the link count later.
1537 */
1538 if (!ret && inode->i_nlink == 0)
1539 inc_nlink(inode);
1540 }
1541 if (ret < 0)
1542 goto out;
1543
1544 /* insert our name */
1545 ret = add_link(trans, root, dir, inode, name, namelen,
1546 ref_index);
1547 if (ret)
1548 goto out;
1549
1550 btrfs_update_inode(trans, root, inode);
1551 }
1552
1553 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1554 kfree(name);
1555 name = NULL;
1556 if (log_ref_ver) {
1557 iput(dir);
1558 dir = NULL;
1559 }
1560 }
1561
1562 /*
1563 * Before we overwrite the inode reference item in the subvolume tree
1564 * with the item from the log tree, we must unlink all names from the
1565 * parent directory that are in the subvolume's tree inode reference
1566 * item, otherwise we end up with an inconsistent subvolume tree where
1567 * dir index entries exist for a name but there is no inode reference
1568 * item with the same name.
1569 */
1570 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1571 key);
1572 if (ret)
1573 goto out;
1574
1575 /* finally write the back reference in the inode */
1576 ret = overwrite_item(trans, root, path, eb, slot, key);
1577out:
1578 btrfs_release_path(path);
1579 kfree(name);
1580 iput(dir);
1581 iput(inode);
1582 return ret;
1583}
1584
1585static int insert_orphan_item(struct btrfs_trans_handle *trans,
1586 struct btrfs_root *root, u64 ino)
1587{
1588 int ret;
1589
1590 ret = btrfs_insert_orphan_item(trans, root, ino);
1591 if (ret == -EEXIST)
1592 ret = 0;
1593
1594 return ret;
1595}
1596
1597static int count_inode_extrefs(struct btrfs_root *root,
1598 struct btrfs_inode *inode, struct btrfs_path *path)
1599{
1600 int ret = 0;
1601 int name_len;
1602 unsigned int nlink = 0;
1603 u32 item_size;
1604 u32 cur_offset = 0;
1605 u64 inode_objectid = btrfs_ino(inode);
1606 u64 offset = 0;
1607 unsigned long ptr;
1608 struct btrfs_inode_extref *extref;
1609 struct extent_buffer *leaf;
1610
1611 while (1) {
1612 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1613 &extref, &offset);
1614 if (ret)
1615 break;
1616
1617 leaf = path->nodes[0];
1618 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1619 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1620 cur_offset = 0;
1621
1622 while (cur_offset < item_size) {
1623 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1624 name_len = btrfs_inode_extref_name_len(leaf, extref);
1625
1626 nlink++;
1627
1628 cur_offset += name_len + sizeof(*extref);
1629 }
1630
1631 offset++;
1632 btrfs_release_path(path);
1633 }
1634 btrfs_release_path(path);
1635
1636 if (ret < 0 && ret != -ENOENT)
1637 return ret;
1638 return nlink;
1639}
1640
1641static int count_inode_refs(struct btrfs_root *root,
1642 struct btrfs_inode *inode, struct btrfs_path *path)
1643{
1644 int ret;
1645 struct btrfs_key key;
1646 unsigned int nlink = 0;
1647 unsigned long ptr;
1648 unsigned long ptr_end;
1649 int name_len;
1650 u64 ino = btrfs_ino(inode);
1651
1652 key.objectid = ino;
1653 key.type = BTRFS_INODE_REF_KEY;
1654 key.offset = (u64)-1;
1655
1656 while (1) {
1657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658 if (ret < 0)
1659 break;
1660 if (ret > 0) {
1661 if (path->slots[0] == 0)
1662 break;
1663 path->slots[0]--;
1664 }
1665process_slot:
1666 btrfs_item_key_to_cpu(path->nodes[0], &key,
1667 path->slots[0]);
1668 if (key.objectid != ino ||
1669 key.type != BTRFS_INODE_REF_KEY)
1670 break;
1671 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1672 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1673 path->slots[0]);
1674 while (ptr < ptr_end) {
1675 struct btrfs_inode_ref *ref;
1676
1677 ref = (struct btrfs_inode_ref *)ptr;
1678 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1679 ref);
1680 ptr = (unsigned long)(ref + 1) + name_len;
1681 nlink++;
1682 }
1683
1684 if (key.offset == 0)
1685 break;
1686 if (path->slots[0] > 0) {
1687 path->slots[0]--;
1688 goto process_slot;
1689 }
1690 key.offset--;
1691 btrfs_release_path(path);
1692 }
1693 btrfs_release_path(path);
1694
1695 return nlink;
1696}
1697
1698/*
1699 * There are a few corners where the link count of the file can't
1700 * be properly maintained during replay. So, instead of adding
1701 * lots of complexity to the log code, we just scan the backrefs
1702 * for any file that has been through replay.
1703 *
1704 * The scan will update the link count on the inode to reflect the
1705 * number of back refs found. If it goes down to zero, the iput
1706 * will free the inode.
1707 */
1708static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1709 struct btrfs_root *root,
1710 struct inode *inode)
1711{
1712 struct btrfs_path *path;
1713 int ret;
1714 u64 nlink = 0;
1715 u64 ino = btrfs_ino(BTRFS_I(inode));
1716
1717 path = btrfs_alloc_path();
1718 if (!path)
1719 return -ENOMEM;
1720
1721 ret = count_inode_refs(root, BTRFS_I(inode), path);
1722 if (ret < 0)
1723 goto out;
1724
1725 nlink = ret;
1726
1727 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1728 if (ret < 0)
1729 goto out;
1730
1731 nlink += ret;
1732
1733 ret = 0;
1734
1735 if (nlink != inode->i_nlink) {
1736 set_nlink(inode, nlink);
1737 btrfs_update_inode(trans, root, inode);
1738 }
1739 BTRFS_I(inode)->index_cnt = (u64)-1;
1740
1741 if (inode->i_nlink == 0) {
1742 if (S_ISDIR(inode->i_mode)) {
1743 ret = replay_dir_deletes(trans, root, NULL, path,
1744 ino, 1);
1745 if (ret)
1746 goto out;
1747 }
1748 ret = insert_orphan_item(trans, root, ino);
1749 }
1750
1751out:
1752 btrfs_free_path(path);
1753 return ret;
1754}
1755
1756static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root,
1758 struct btrfs_path *path)
1759{
1760 int ret;
1761 struct btrfs_key key;
1762 struct inode *inode;
1763
1764 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1765 key.type = BTRFS_ORPHAN_ITEM_KEY;
1766 key.offset = (u64)-1;
1767 while (1) {
1768 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769 if (ret < 0)
1770 break;
1771
1772 if (ret == 1) {
1773 if (path->slots[0] == 0)
1774 break;
1775 path->slots[0]--;
1776 }
1777
1778 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1780 key.type != BTRFS_ORPHAN_ITEM_KEY)
1781 break;
1782
1783 ret = btrfs_del_item(trans, root, path);
1784 if (ret)
1785 goto out;
1786
1787 btrfs_release_path(path);
1788 inode = read_one_inode(root, key.offset);
1789 if (!inode)
1790 return -EIO;
1791
1792 ret = fixup_inode_link_count(trans, root, inode);
1793 iput(inode);
1794 if (ret)
1795 goto out;
1796
1797 /*
1798 * fixup on a directory may create new entries,
1799 * make sure we always look for the highset possible
1800 * offset
1801 */
1802 key.offset = (u64)-1;
1803 }
1804 ret = 0;
1805out:
1806 btrfs_release_path(path);
1807 return ret;
1808}
1809
1810
1811/*
1812 * record a given inode in the fixup dir so we can check its link
1813 * count when replay is done. The link count is incremented here
1814 * so the inode won't go away until we check it
1815 */
1816static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1817 struct btrfs_root *root,
1818 struct btrfs_path *path,
1819 u64 objectid)
1820{
1821 struct btrfs_key key;
1822 int ret = 0;
1823 struct inode *inode;
1824
1825 inode = read_one_inode(root, objectid);
1826 if (!inode)
1827 return -EIO;
1828
1829 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1830 key.type = BTRFS_ORPHAN_ITEM_KEY;
1831 key.offset = objectid;
1832
1833 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1834
1835 btrfs_release_path(path);
1836 if (ret == 0) {
1837 if (!inode->i_nlink)
1838 set_nlink(inode, 1);
1839 else
1840 inc_nlink(inode);
1841 ret = btrfs_update_inode(trans, root, inode);
1842 } else if (ret == -EEXIST) {
1843 ret = 0;
1844 } else {
1845 BUG(); /* Logic Error */
1846 }
1847 iput(inode);
1848
1849 return ret;
1850}
1851
1852/*
1853 * when replaying the log for a directory, we only insert names
1854 * for inodes that actually exist. This means an fsync on a directory
1855 * does not implicitly fsync all the new files in it
1856 */
1857static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858 struct btrfs_root *root,
1859 u64 dirid, u64 index,
1860 char *name, int name_len,
1861 struct btrfs_key *location)
1862{
1863 struct inode *inode;
1864 struct inode *dir;
1865 int ret;
1866
1867 inode = read_one_inode(root, location->objectid);
1868 if (!inode)
1869 return -ENOENT;
1870
1871 dir = read_one_inode(root, dirid);
1872 if (!dir) {
1873 iput(inode);
1874 return -EIO;
1875 }
1876
1877 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878 name_len, 1, index);
1879
1880 /* FIXME, put inode into FIXUP list */
1881
1882 iput(inode);
1883 iput(dir);
1884 return ret;
1885}
1886
1887/*
1888 * Return true if an inode reference exists in the log for the given name,
1889 * inode and parent inode.
1890 */
1891static bool name_in_log_ref(struct btrfs_root *log_root,
1892 const char *name, const int name_len,
1893 const u64 dirid, const u64 ino)
1894{
1895 struct btrfs_key search_key;
1896
1897 search_key.objectid = ino;
1898 search_key.type = BTRFS_INODE_REF_KEY;
1899 search_key.offset = dirid;
1900 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1901 return true;
1902
1903 search_key.type = BTRFS_INODE_EXTREF_KEY;
1904 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1905 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1906 return true;
1907
1908 return false;
1909}
1910
1911/*
1912 * take a single entry in a log directory item and replay it into
1913 * the subvolume.
1914 *
1915 * if a conflicting item exists in the subdirectory already,
1916 * the inode it points to is unlinked and put into the link count
1917 * fix up tree.
1918 *
1919 * If a name from the log points to a file or directory that does
1920 * not exist in the FS, it is skipped. fsyncs on directories
1921 * do not force down inodes inside that directory, just changes to the
1922 * names or unlinks in a directory.
1923 *
1924 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1925 * non-existing inode) and 1 if the name was replayed.
1926 */
1927static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1928 struct btrfs_root *root,
1929 struct btrfs_path *path,
1930 struct extent_buffer *eb,
1931 struct btrfs_dir_item *di,
1932 struct btrfs_key *key)
1933{
1934 char *name;
1935 int name_len;
1936 struct btrfs_dir_item *dst_di;
1937 struct btrfs_key found_key;
1938 struct btrfs_key log_key;
1939 struct inode *dir;
1940 u8 log_type;
1941 int exists;
1942 int ret = 0;
1943 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1944 bool name_added = false;
1945
1946 dir = read_one_inode(root, key->objectid);
1947 if (!dir)
1948 return -EIO;
1949
1950 name_len = btrfs_dir_name_len(eb, di);
1951 name = kmalloc(name_len, GFP_NOFS);
1952 if (!name) {
1953 ret = -ENOMEM;
1954 goto out;
1955 }
1956
1957 log_type = btrfs_dir_type(eb, di);
1958 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1959 name_len);
1960
1961 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1962 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1963 if (exists == 0)
1964 exists = 1;
1965 else
1966 exists = 0;
1967 btrfs_release_path(path);
1968
1969 if (key->type == BTRFS_DIR_ITEM_KEY) {
1970 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1971 name, name_len, 1);
1972 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1973 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1974 key->objectid,
1975 key->offset, name,
1976 name_len, 1);
1977 } else {
1978 /* Corruption */
1979 ret = -EINVAL;
1980 goto out;
1981 }
1982 if (IS_ERR_OR_NULL(dst_di)) {
1983 /* we need a sequence number to insert, so we only
1984 * do inserts for the BTRFS_DIR_INDEX_KEY types
1985 */
1986 if (key->type != BTRFS_DIR_INDEX_KEY)
1987 goto out;
1988 goto insert;
1989 }
1990
1991 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1992 /* the existing item matches the logged item */
1993 if (found_key.objectid == log_key.objectid &&
1994 found_key.type == log_key.type &&
1995 found_key.offset == log_key.offset &&
1996 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1997 update_size = false;
1998 goto out;
1999 }
2000
2001 /*
2002 * don't drop the conflicting directory entry if the inode
2003 * for the new entry doesn't exist
2004 */
2005 if (!exists)
2006 goto out;
2007
2008 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
2009 if (ret)
2010 goto out;
2011
2012 if (key->type == BTRFS_DIR_INDEX_KEY)
2013 goto insert;
2014out:
2015 btrfs_release_path(path);
2016 if (!ret && update_size) {
2017 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
2018 ret = btrfs_update_inode(trans, root, dir);
2019 }
2020 kfree(name);
2021 iput(dir);
2022 if (!ret && name_added)
2023 ret = 1;
2024 return ret;
2025
2026insert:
2027 if (name_in_log_ref(root->log_root, name, name_len,
2028 key->objectid, log_key.objectid)) {
2029 /* The dentry will be added later. */
2030 ret = 0;
2031 update_size = false;
2032 goto out;
2033 }
2034 btrfs_release_path(path);
2035 ret = insert_one_name(trans, root, key->objectid, key->offset,
2036 name, name_len, &log_key);
2037 if (ret && ret != -ENOENT && ret != -EEXIST)
2038 goto out;
2039 if (!ret)
2040 name_added = true;
2041 update_size = false;
2042 ret = 0;
2043 goto out;
2044}
2045
2046/*
2047 * find all the names in a directory item and reconcile them into
2048 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2049 * one name in a directory item, but the same code gets used for
2050 * both directory index types
2051 */
2052static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2053 struct btrfs_root *root,
2054 struct btrfs_path *path,
2055 struct extent_buffer *eb, int slot,
2056 struct btrfs_key *key)
2057{
2058 int ret = 0;
2059 u32 item_size = btrfs_item_size_nr(eb, slot);
2060 struct btrfs_dir_item *di;
2061 int name_len;
2062 unsigned long ptr;
2063 unsigned long ptr_end;
2064 struct btrfs_path *fixup_path = NULL;
2065
2066 ptr = btrfs_item_ptr_offset(eb, slot);
2067 ptr_end = ptr + item_size;
2068 while (ptr < ptr_end) {
2069 di = (struct btrfs_dir_item *)ptr;
2070 name_len = btrfs_dir_name_len(eb, di);
2071 ret = replay_one_name(trans, root, path, eb, di, key);
2072 if (ret < 0)
2073 break;
2074 ptr = (unsigned long)(di + 1);
2075 ptr += name_len;
2076
2077 /*
2078 * If this entry refers to a non-directory (directories can not
2079 * have a link count > 1) and it was added in the transaction
2080 * that was not committed, make sure we fixup the link count of
2081 * the inode it the entry points to. Otherwise something like
2082 * the following would result in a directory pointing to an
2083 * inode with a wrong link that does not account for this dir
2084 * entry:
2085 *
2086 * mkdir testdir
2087 * touch testdir/foo
2088 * touch testdir/bar
2089 * sync
2090 *
2091 * ln testdir/bar testdir/bar_link
2092 * ln testdir/foo testdir/foo_link
2093 * xfs_io -c "fsync" testdir/bar
2094 *
2095 * <power failure>
2096 *
2097 * mount fs, log replay happens
2098 *
2099 * File foo would remain with a link count of 1 when it has two
2100 * entries pointing to it in the directory testdir. This would
2101 * make it impossible to ever delete the parent directory has
2102 * it would result in stale dentries that can never be deleted.
2103 */
2104 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2105 struct btrfs_key di_key;
2106
2107 if (!fixup_path) {
2108 fixup_path = btrfs_alloc_path();
2109 if (!fixup_path) {
2110 ret = -ENOMEM;
2111 break;
2112 }
2113 }
2114
2115 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2116 ret = link_to_fixup_dir(trans, root, fixup_path,
2117 di_key.objectid);
2118 if (ret)
2119 break;
2120 }
2121 ret = 0;
2122 }
2123 btrfs_free_path(fixup_path);
2124 return ret;
2125}
2126
2127/*
2128 * directory replay has two parts. There are the standard directory
2129 * items in the log copied from the subvolume, and range items
2130 * created in the log while the subvolume was logged.
2131 *
2132 * The range items tell us which parts of the key space the log
2133 * is authoritative for. During replay, if a key in the subvolume
2134 * directory is in a logged range item, but not actually in the log
2135 * that means it was deleted from the directory before the fsync
2136 * and should be removed.
2137 */
2138static noinline int find_dir_range(struct btrfs_root *root,
2139 struct btrfs_path *path,
2140 u64 dirid, int key_type,
2141 u64 *start_ret, u64 *end_ret)
2142{
2143 struct btrfs_key key;
2144 u64 found_end;
2145 struct btrfs_dir_log_item *item;
2146 int ret;
2147 int nritems;
2148
2149 if (*start_ret == (u64)-1)
2150 return 1;
2151
2152 key.objectid = dirid;
2153 key.type = key_type;
2154 key.offset = *start_ret;
2155
2156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157 if (ret < 0)
2158 goto out;
2159 if (ret > 0) {
2160 if (path->slots[0] == 0)
2161 goto out;
2162 path->slots[0]--;
2163 }
2164 if (ret != 0)
2165 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2166
2167 if (key.type != key_type || key.objectid != dirid) {
2168 ret = 1;
2169 goto next;
2170 }
2171 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2172 struct btrfs_dir_log_item);
2173 found_end = btrfs_dir_log_end(path->nodes[0], item);
2174
2175 if (*start_ret >= key.offset && *start_ret <= found_end) {
2176 ret = 0;
2177 *start_ret = key.offset;
2178 *end_ret = found_end;
2179 goto out;
2180 }
2181 ret = 1;
2182next:
2183 /* check the next slot in the tree to see if it is a valid item */
2184 nritems = btrfs_header_nritems(path->nodes[0]);
2185 path->slots[0]++;
2186 if (path->slots[0] >= nritems) {
2187 ret = btrfs_next_leaf(root, path);
2188 if (ret)
2189 goto out;
2190 }
2191
2192 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2193
2194 if (key.type != key_type || key.objectid != dirid) {
2195 ret = 1;
2196 goto out;
2197 }
2198 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2199 struct btrfs_dir_log_item);
2200 found_end = btrfs_dir_log_end(path->nodes[0], item);
2201 *start_ret = key.offset;
2202 *end_ret = found_end;
2203 ret = 0;
2204out:
2205 btrfs_release_path(path);
2206 return ret;
2207}
2208
2209/*
2210 * this looks for a given directory item in the log. If the directory
2211 * item is not in the log, the item is removed and the inode it points
2212 * to is unlinked
2213 */
2214static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root,
2216 struct btrfs_root *log,
2217 struct btrfs_path *path,
2218 struct btrfs_path *log_path,
2219 struct inode *dir,
2220 struct btrfs_key *dir_key)
2221{
2222 int ret;
2223 struct extent_buffer *eb;
2224 int slot;
2225 u32 item_size;
2226 struct btrfs_dir_item *di;
2227 struct btrfs_dir_item *log_di;
2228 int name_len;
2229 unsigned long ptr;
2230 unsigned long ptr_end;
2231 char *name;
2232 struct inode *inode;
2233 struct btrfs_key location;
2234
2235again:
2236 eb = path->nodes[0];
2237 slot = path->slots[0];
2238 item_size = btrfs_item_size_nr(eb, slot);
2239 ptr = btrfs_item_ptr_offset(eb, slot);
2240 ptr_end = ptr + item_size;
2241 while (ptr < ptr_end) {
2242 di = (struct btrfs_dir_item *)ptr;
2243 name_len = btrfs_dir_name_len(eb, di);
2244 name = kmalloc(name_len, GFP_NOFS);
2245 if (!name) {
2246 ret = -ENOMEM;
2247 goto out;
2248 }
2249 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2250 name_len);
2251 log_di = NULL;
2252 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2253 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2254 dir_key->objectid,
2255 name, name_len, 0);
2256 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2257 log_di = btrfs_lookup_dir_index_item(trans, log,
2258 log_path,
2259 dir_key->objectid,
2260 dir_key->offset,
2261 name, name_len, 0);
2262 }
2263 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2264 btrfs_dir_item_key_to_cpu(eb, di, &location);
2265 btrfs_release_path(path);
2266 btrfs_release_path(log_path);
2267 inode = read_one_inode(root, location.objectid);
2268 if (!inode) {
2269 kfree(name);
2270 return -EIO;
2271 }
2272
2273 ret = link_to_fixup_dir(trans, root,
2274 path, location.objectid);
2275 if (ret) {
2276 kfree(name);
2277 iput(inode);
2278 goto out;
2279 }
2280
2281 inc_nlink(inode);
2282 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2283 BTRFS_I(inode), name, name_len);
2284 if (!ret)
2285 ret = btrfs_run_delayed_items(trans);
2286 kfree(name);
2287 iput(inode);
2288 if (ret)
2289 goto out;
2290
2291 /* there might still be more names under this key
2292 * check and repeat if required
2293 */
2294 ret = btrfs_search_slot(NULL, root, dir_key, path,
2295 0, 0);
2296 if (ret == 0)
2297 goto again;
2298 ret = 0;
2299 goto out;
2300 } else if (IS_ERR(log_di)) {
2301 kfree(name);
2302 return PTR_ERR(log_di);
2303 }
2304 btrfs_release_path(log_path);
2305 kfree(name);
2306
2307 ptr = (unsigned long)(di + 1);
2308 ptr += name_len;
2309 }
2310 ret = 0;
2311out:
2312 btrfs_release_path(path);
2313 btrfs_release_path(log_path);
2314 return ret;
2315}
2316
2317static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2318 struct btrfs_root *root,
2319 struct btrfs_root *log,
2320 struct btrfs_path *path,
2321 const u64 ino)
2322{
2323 struct btrfs_key search_key;
2324 struct btrfs_path *log_path;
2325 int i;
2326 int nritems;
2327 int ret;
2328
2329 log_path = btrfs_alloc_path();
2330 if (!log_path)
2331 return -ENOMEM;
2332
2333 search_key.objectid = ino;
2334 search_key.type = BTRFS_XATTR_ITEM_KEY;
2335 search_key.offset = 0;
2336again:
2337 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2338 if (ret < 0)
2339 goto out;
2340process_leaf:
2341 nritems = btrfs_header_nritems(path->nodes[0]);
2342 for (i = path->slots[0]; i < nritems; i++) {
2343 struct btrfs_key key;
2344 struct btrfs_dir_item *di;
2345 struct btrfs_dir_item *log_di;
2346 u32 total_size;
2347 u32 cur;
2348
2349 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2350 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2351 ret = 0;
2352 goto out;
2353 }
2354
2355 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2356 total_size = btrfs_item_size_nr(path->nodes[0], i);
2357 cur = 0;
2358 while (cur < total_size) {
2359 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2360 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2361 u32 this_len = sizeof(*di) + name_len + data_len;
2362 char *name;
2363
2364 name = kmalloc(name_len, GFP_NOFS);
2365 if (!name) {
2366 ret = -ENOMEM;
2367 goto out;
2368 }
2369 read_extent_buffer(path->nodes[0], name,
2370 (unsigned long)(di + 1), name_len);
2371
2372 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2373 name, name_len, 0);
2374 btrfs_release_path(log_path);
2375 if (!log_di) {
2376 /* Doesn't exist in log tree, so delete it. */
2377 btrfs_release_path(path);
2378 di = btrfs_lookup_xattr(trans, root, path, ino,
2379 name, name_len, -1);
2380 kfree(name);
2381 if (IS_ERR(di)) {
2382 ret = PTR_ERR(di);
2383 goto out;
2384 }
2385 ASSERT(di);
2386 ret = btrfs_delete_one_dir_name(trans, root,
2387 path, di);
2388 if (ret)
2389 goto out;
2390 btrfs_release_path(path);
2391 search_key = key;
2392 goto again;
2393 }
2394 kfree(name);
2395 if (IS_ERR(log_di)) {
2396 ret = PTR_ERR(log_di);
2397 goto out;
2398 }
2399 cur += this_len;
2400 di = (struct btrfs_dir_item *)((char *)di + this_len);
2401 }
2402 }
2403 ret = btrfs_next_leaf(root, path);
2404 if (ret > 0)
2405 ret = 0;
2406 else if (ret == 0)
2407 goto process_leaf;
2408out:
2409 btrfs_free_path(log_path);
2410 btrfs_release_path(path);
2411 return ret;
2412}
2413
2414
2415/*
2416 * deletion replay happens before we copy any new directory items
2417 * out of the log or out of backreferences from inodes. It
2418 * scans the log to find ranges of keys that log is authoritative for,
2419 * and then scans the directory to find items in those ranges that are
2420 * not present in the log.
2421 *
2422 * Anything we don't find in the log is unlinked and removed from the
2423 * directory.
2424 */
2425static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2426 struct btrfs_root *root,
2427 struct btrfs_root *log,
2428 struct btrfs_path *path,
2429 u64 dirid, int del_all)
2430{
2431 u64 range_start;
2432 u64 range_end;
2433 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2434 int ret = 0;
2435 struct btrfs_key dir_key;
2436 struct btrfs_key found_key;
2437 struct btrfs_path *log_path;
2438 struct inode *dir;
2439
2440 dir_key.objectid = dirid;
2441 dir_key.type = BTRFS_DIR_ITEM_KEY;
2442 log_path = btrfs_alloc_path();
2443 if (!log_path)
2444 return -ENOMEM;
2445
2446 dir = read_one_inode(root, dirid);
2447 /* it isn't an error if the inode isn't there, that can happen
2448 * because we replay the deletes before we copy in the inode item
2449 * from the log
2450 */
2451 if (!dir) {
2452 btrfs_free_path(log_path);
2453 return 0;
2454 }
2455again:
2456 range_start = 0;
2457 range_end = 0;
2458 while (1) {
2459 if (del_all)
2460 range_end = (u64)-1;
2461 else {
2462 ret = find_dir_range(log, path, dirid, key_type,
2463 &range_start, &range_end);
2464 if (ret != 0)
2465 break;
2466 }
2467
2468 dir_key.offset = range_start;
2469 while (1) {
2470 int nritems;
2471 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2472 0, 0);
2473 if (ret < 0)
2474 goto out;
2475
2476 nritems = btrfs_header_nritems(path->nodes[0]);
2477 if (path->slots[0] >= nritems) {
2478 ret = btrfs_next_leaf(root, path);
2479 if (ret == 1)
2480 break;
2481 else if (ret < 0)
2482 goto out;
2483 }
2484 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2485 path->slots[0]);
2486 if (found_key.objectid != dirid ||
2487 found_key.type != dir_key.type)
2488 goto next_type;
2489
2490 if (found_key.offset > range_end)
2491 break;
2492
2493 ret = check_item_in_log(trans, root, log, path,
2494 log_path, dir,
2495 &found_key);
2496 if (ret)
2497 goto out;
2498 if (found_key.offset == (u64)-1)
2499 break;
2500 dir_key.offset = found_key.offset + 1;
2501 }
2502 btrfs_release_path(path);
2503 if (range_end == (u64)-1)
2504 break;
2505 range_start = range_end + 1;
2506 }
2507
2508next_type:
2509 ret = 0;
2510 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2511 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2512 dir_key.type = BTRFS_DIR_INDEX_KEY;
2513 btrfs_release_path(path);
2514 goto again;
2515 }
2516out:
2517 btrfs_release_path(path);
2518 btrfs_free_path(log_path);
2519 iput(dir);
2520 return ret;
2521}
2522
2523/*
2524 * the process_func used to replay items from the log tree. This
2525 * gets called in two different stages. The first stage just looks
2526 * for inodes and makes sure they are all copied into the subvolume.
2527 *
2528 * The second stage copies all the other item types from the log into
2529 * the subvolume. The two stage approach is slower, but gets rid of
2530 * lots of complexity around inodes referencing other inodes that exist
2531 * only in the log (references come from either directory items or inode
2532 * back refs).
2533 */
2534static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2535 struct walk_control *wc, u64 gen, int level)
2536{
2537 int nritems;
2538 struct btrfs_path *path;
2539 struct btrfs_root *root = wc->replay_dest;
2540 struct btrfs_key key;
2541 int i;
2542 int ret;
2543
2544 ret = btrfs_read_buffer(eb, gen, level, NULL);
2545 if (ret)
2546 return ret;
2547
2548 level = btrfs_header_level(eb);
2549
2550 if (level != 0)
2551 return 0;
2552
2553 path = btrfs_alloc_path();
2554 if (!path)
2555 return -ENOMEM;
2556
2557 nritems = btrfs_header_nritems(eb);
2558 for (i = 0; i < nritems; i++) {
2559 btrfs_item_key_to_cpu(eb, &key, i);
2560
2561 /* inode keys are done during the first stage */
2562 if (key.type == BTRFS_INODE_ITEM_KEY &&
2563 wc->stage == LOG_WALK_REPLAY_INODES) {
2564 struct btrfs_inode_item *inode_item;
2565 u32 mode;
2566
2567 inode_item = btrfs_item_ptr(eb, i,
2568 struct btrfs_inode_item);
2569 /*
2570 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2571 * and never got linked before the fsync, skip it, as
2572 * replaying it is pointless since it would be deleted
2573 * later. We skip logging tmpfiles, but it's always
2574 * possible we are replaying a log created with a kernel
2575 * that used to log tmpfiles.
2576 */
2577 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2578 wc->ignore_cur_inode = true;
2579 continue;
2580 } else {
2581 wc->ignore_cur_inode = false;
2582 }
2583 ret = replay_xattr_deletes(wc->trans, root, log,
2584 path, key.objectid);
2585 if (ret)
2586 break;
2587 mode = btrfs_inode_mode(eb, inode_item);
2588 if (S_ISDIR(mode)) {
2589 ret = replay_dir_deletes(wc->trans,
2590 root, log, path, key.objectid, 0);
2591 if (ret)
2592 break;
2593 }
2594 ret = overwrite_item(wc->trans, root, path,
2595 eb, i, &key);
2596 if (ret)
2597 break;
2598
2599 /*
2600 * Before replaying extents, truncate the inode to its
2601 * size. We need to do it now and not after log replay
2602 * because before an fsync we can have prealloc extents
2603 * added beyond the inode's i_size. If we did it after,
2604 * through orphan cleanup for example, we would drop
2605 * those prealloc extents just after replaying them.
2606 */
2607 if (S_ISREG(mode)) {
2608 struct inode *inode;
2609 u64 from;
2610
2611 inode = read_one_inode(root, key.objectid);
2612 if (!inode) {
2613 ret = -EIO;
2614 break;
2615 }
2616 from = ALIGN(i_size_read(inode),
2617 root->fs_info->sectorsize);
2618 ret = btrfs_drop_extents(wc->trans, root, inode,
2619 from, (u64)-1, 1);
2620 if (!ret) {
2621 /* Update the inode's nbytes. */
2622 ret = btrfs_update_inode(wc->trans,
2623 root, inode);
2624 }
2625 iput(inode);
2626 if (ret)
2627 break;
2628 }
2629
2630 ret = link_to_fixup_dir(wc->trans, root,
2631 path, key.objectid);
2632 if (ret)
2633 break;
2634 }
2635
2636 if (wc->ignore_cur_inode)
2637 continue;
2638
2639 if (key.type == BTRFS_DIR_INDEX_KEY &&
2640 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2641 ret = replay_one_dir_item(wc->trans, root, path,
2642 eb, i, &key);
2643 if (ret)
2644 break;
2645 }
2646
2647 if (wc->stage < LOG_WALK_REPLAY_ALL)
2648 continue;
2649
2650 /* these keys are simply copied */
2651 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2652 ret = overwrite_item(wc->trans, root, path,
2653 eb, i, &key);
2654 if (ret)
2655 break;
2656 } else if (key.type == BTRFS_INODE_REF_KEY ||
2657 key.type == BTRFS_INODE_EXTREF_KEY) {
2658 ret = add_inode_ref(wc->trans, root, log, path,
2659 eb, i, &key);
2660 if (ret && ret != -ENOENT)
2661 break;
2662 ret = 0;
2663 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2664 ret = replay_one_extent(wc->trans, root, path,
2665 eb, i, &key);
2666 if (ret)
2667 break;
2668 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2669 ret = replay_one_dir_item(wc->trans, root, path,
2670 eb, i, &key);
2671 if (ret)
2672 break;
2673 }
2674 }
2675 btrfs_free_path(path);
2676 return ret;
2677}
2678
2679static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2680 struct btrfs_root *root,
2681 struct btrfs_path *path, int *level,
2682 struct walk_control *wc)
2683{
2684 struct btrfs_fs_info *fs_info = root->fs_info;
2685 u64 root_owner;
2686 u64 bytenr;
2687 u64 ptr_gen;
2688 struct extent_buffer *next;
2689 struct extent_buffer *cur;
2690 struct extent_buffer *parent;
2691 u32 blocksize;
2692 int ret = 0;
2693
2694 WARN_ON(*level < 0);
2695 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2696
2697 while (*level > 0) {
2698 struct btrfs_key first_key;
2699
2700 WARN_ON(*level < 0);
2701 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2702 cur = path->nodes[*level];
2703
2704 WARN_ON(btrfs_header_level(cur) != *level);
2705
2706 if (path->slots[*level] >=
2707 btrfs_header_nritems(cur))
2708 break;
2709
2710 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2711 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2712 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2713 blocksize = fs_info->nodesize;
2714
2715 parent = path->nodes[*level];
2716 root_owner = btrfs_header_owner(parent);
2717
2718 next = btrfs_find_create_tree_block(fs_info, bytenr);
2719 if (IS_ERR(next))
2720 return PTR_ERR(next);
2721
2722 if (*level == 1) {
2723 ret = wc->process_func(root, next, wc, ptr_gen,
2724 *level - 1);
2725 if (ret) {
2726 free_extent_buffer(next);
2727 return ret;
2728 }
2729
2730 path->slots[*level]++;
2731 if (wc->free) {
2732 ret = btrfs_read_buffer(next, ptr_gen,
2733 *level - 1, &first_key);
2734 if (ret) {
2735 free_extent_buffer(next);
2736 return ret;
2737 }
2738
2739 if (trans) {
2740 btrfs_tree_lock(next);
2741 btrfs_set_lock_blocking_write(next);
2742 btrfs_clean_tree_block(next);
2743 btrfs_wait_tree_block_writeback(next);
2744 btrfs_tree_unlock(next);
2745 } else {
2746 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747 clear_extent_buffer_dirty(next);
2748 }
2749
2750 WARN_ON(root_owner !=
2751 BTRFS_TREE_LOG_OBJECTID);
2752 ret = btrfs_free_and_pin_reserved_extent(
2753 fs_info, bytenr,
2754 blocksize);
2755 if (ret) {
2756 free_extent_buffer(next);
2757 return ret;
2758 }
2759 }
2760 free_extent_buffer(next);
2761 continue;
2762 }
2763 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2764 if (ret) {
2765 free_extent_buffer(next);
2766 return ret;
2767 }
2768
2769 WARN_ON(*level <= 0);
2770 if (path->nodes[*level-1])
2771 free_extent_buffer(path->nodes[*level-1]);
2772 path->nodes[*level-1] = next;
2773 *level = btrfs_header_level(next);
2774 path->slots[*level] = 0;
2775 cond_resched();
2776 }
2777 WARN_ON(*level < 0);
2778 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2779
2780 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2781
2782 cond_resched();
2783 return 0;
2784}
2785
2786static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2787 struct btrfs_root *root,
2788 struct btrfs_path *path, int *level,
2789 struct walk_control *wc)
2790{
2791 struct btrfs_fs_info *fs_info = root->fs_info;
2792 u64 root_owner;
2793 int i;
2794 int slot;
2795 int ret;
2796
2797 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2798 slot = path->slots[i];
2799 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2800 path->slots[i]++;
2801 *level = i;
2802 WARN_ON(*level == 0);
2803 return 0;
2804 } else {
2805 struct extent_buffer *parent;
2806 if (path->nodes[*level] == root->node)
2807 parent = path->nodes[*level];
2808 else
2809 parent = path->nodes[*level + 1];
2810
2811 root_owner = btrfs_header_owner(parent);
2812 ret = wc->process_func(root, path->nodes[*level], wc,
2813 btrfs_header_generation(path->nodes[*level]),
2814 *level);
2815 if (ret)
2816 return ret;
2817
2818 if (wc->free) {
2819 struct extent_buffer *next;
2820
2821 next = path->nodes[*level];
2822
2823 if (trans) {
2824 btrfs_tree_lock(next);
2825 btrfs_set_lock_blocking_write(next);
2826 btrfs_clean_tree_block(next);
2827 btrfs_wait_tree_block_writeback(next);
2828 btrfs_tree_unlock(next);
2829 } else {
2830 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2831 clear_extent_buffer_dirty(next);
2832 }
2833
2834 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2835 ret = btrfs_free_and_pin_reserved_extent(
2836 fs_info,
2837 path->nodes[*level]->start,
2838 path->nodes[*level]->len);
2839 if (ret)
2840 return ret;
2841 }
2842 free_extent_buffer(path->nodes[*level]);
2843 path->nodes[*level] = NULL;
2844 *level = i + 1;
2845 }
2846 }
2847 return 1;
2848}
2849
2850/*
2851 * drop the reference count on the tree rooted at 'snap'. This traverses
2852 * the tree freeing any blocks that have a ref count of zero after being
2853 * decremented.
2854 */
2855static int walk_log_tree(struct btrfs_trans_handle *trans,
2856 struct btrfs_root *log, struct walk_control *wc)
2857{
2858 struct btrfs_fs_info *fs_info = log->fs_info;
2859 int ret = 0;
2860 int wret;
2861 int level;
2862 struct btrfs_path *path;
2863 int orig_level;
2864
2865 path = btrfs_alloc_path();
2866 if (!path)
2867 return -ENOMEM;
2868
2869 level = btrfs_header_level(log->node);
2870 orig_level = level;
2871 path->nodes[level] = log->node;
2872 extent_buffer_get(log->node);
2873 path->slots[level] = 0;
2874
2875 while (1) {
2876 wret = walk_down_log_tree(trans, log, path, &level, wc);
2877 if (wret > 0)
2878 break;
2879 if (wret < 0) {
2880 ret = wret;
2881 goto out;
2882 }
2883
2884 wret = walk_up_log_tree(trans, log, path, &level, wc);
2885 if (wret > 0)
2886 break;
2887 if (wret < 0) {
2888 ret = wret;
2889 goto out;
2890 }
2891 }
2892
2893 /* was the root node processed? if not, catch it here */
2894 if (path->nodes[orig_level]) {
2895 ret = wc->process_func(log, path->nodes[orig_level], wc,
2896 btrfs_header_generation(path->nodes[orig_level]),
2897 orig_level);
2898 if (ret)
2899 goto out;
2900 if (wc->free) {
2901 struct extent_buffer *next;
2902
2903 next = path->nodes[orig_level];
2904
2905 if (trans) {
2906 btrfs_tree_lock(next);
2907 btrfs_set_lock_blocking_write(next);
2908 btrfs_clean_tree_block(next);
2909 btrfs_wait_tree_block_writeback(next);
2910 btrfs_tree_unlock(next);
2911 } else {
2912 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913 clear_extent_buffer_dirty(next);
2914 }
2915
2916 WARN_ON(log->root_key.objectid !=
2917 BTRFS_TREE_LOG_OBJECTID);
2918 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2919 next->start, next->len);
2920 if (ret)
2921 goto out;
2922 }
2923 }
2924
2925out:
2926 btrfs_free_path(path);
2927 return ret;
2928}
2929
2930/*
2931 * helper function to update the item for a given subvolumes log root
2932 * in the tree of log roots
2933 */
2934static int update_log_root(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *log,
2936 struct btrfs_root_item *root_item)
2937{
2938 struct btrfs_fs_info *fs_info = log->fs_info;
2939 int ret;
2940
2941 if (log->log_transid == 1) {
2942 /* insert root item on the first sync */
2943 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2944 &log->root_key, root_item);
2945 } else {
2946 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2947 &log->root_key, root_item);
2948 }
2949 return ret;
2950}
2951
2952static void wait_log_commit(struct btrfs_root *root, int transid)
2953{
2954 DEFINE_WAIT(wait);
2955 int index = transid % 2;
2956
2957 /*
2958 * we only allow two pending log transactions at a time,
2959 * so we know that if ours is more than 2 older than the
2960 * current transaction, we're done
2961 */
2962 for (;;) {
2963 prepare_to_wait(&root->log_commit_wait[index],
2964 &wait, TASK_UNINTERRUPTIBLE);
2965
2966 if (!(root->log_transid_committed < transid &&
2967 atomic_read(&root->log_commit[index])))
2968 break;
2969
2970 mutex_unlock(&root->log_mutex);
2971 schedule();
2972 mutex_lock(&root->log_mutex);
2973 }
2974 finish_wait(&root->log_commit_wait[index], &wait);
2975}
2976
2977static void wait_for_writer(struct btrfs_root *root)
2978{
2979 DEFINE_WAIT(wait);
2980
2981 for (;;) {
2982 prepare_to_wait(&root->log_writer_wait, &wait,
2983 TASK_UNINTERRUPTIBLE);
2984 if (!atomic_read(&root->log_writers))
2985 break;
2986
2987 mutex_unlock(&root->log_mutex);
2988 schedule();
2989 mutex_lock(&root->log_mutex);
2990 }
2991 finish_wait(&root->log_writer_wait, &wait);
2992}
2993
2994static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2995 struct btrfs_log_ctx *ctx)
2996{
2997 if (!ctx)
2998 return;
2999
3000 mutex_lock(&root->log_mutex);
3001 list_del_init(&ctx->list);
3002 mutex_unlock(&root->log_mutex);
3003}
3004
3005/*
3006 * Invoked in log mutex context, or be sure there is no other task which
3007 * can access the list.
3008 */
3009static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3010 int index, int error)
3011{
3012 struct btrfs_log_ctx *ctx;
3013 struct btrfs_log_ctx *safe;
3014
3015 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3016 list_del_init(&ctx->list);
3017 ctx->log_ret = error;
3018 }
3019
3020 INIT_LIST_HEAD(&root->log_ctxs[index]);
3021}
3022
3023/*
3024 * btrfs_sync_log does sends a given tree log down to the disk and
3025 * updates the super blocks to record it. When this call is done,
3026 * you know that any inodes previously logged are safely on disk only
3027 * if it returns 0.
3028 *
3029 * Any other return value means you need to call btrfs_commit_transaction.
3030 * Some of the edge cases for fsyncing directories that have had unlinks
3031 * or renames done in the past mean that sometimes the only safe
3032 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3033 * that has happened.
3034 */
3035int btrfs_sync_log(struct btrfs_trans_handle *trans,
3036 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3037{
3038 int index1;
3039 int index2;
3040 int mark;
3041 int ret;
3042 struct btrfs_fs_info *fs_info = root->fs_info;
3043 struct btrfs_root *log = root->log_root;
3044 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3045 struct btrfs_root_item new_root_item;
3046 int log_transid = 0;
3047 struct btrfs_log_ctx root_log_ctx;
3048 struct blk_plug plug;
3049
3050 mutex_lock(&root->log_mutex);
3051 log_transid = ctx->log_transid;
3052 if (root->log_transid_committed >= log_transid) {
3053 mutex_unlock(&root->log_mutex);
3054 return ctx->log_ret;
3055 }
3056
3057 index1 = log_transid % 2;
3058 if (atomic_read(&root->log_commit[index1])) {
3059 wait_log_commit(root, log_transid);
3060 mutex_unlock(&root->log_mutex);
3061 return ctx->log_ret;
3062 }
3063 ASSERT(log_transid == root->log_transid);
3064 atomic_set(&root->log_commit[index1], 1);
3065
3066 /* wait for previous tree log sync to complete */
3067 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3068 wait_log_commit(root, log_transid - 1);
3069
3070 while (1) {
3071 int batch = atomic_read(&root->log_batch);
3072 /* when we're on an ssd, just kick the log commit out */
3073 if (!btrfs_test_opt(fs_info, SSD) &&
3074 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3075 mutex_unlock(&root->log_mutex);
3076 schedule_timeout_uninterruptible(1);
3077 mutex_lock(&root->log_mutex);
3078 }
3079 wait_for_writer(root);
3080 if (batch == atomic_read(&root->log_batch))
3081 break;
3082 }
3083
3084 /* bail out if we need to do a full commit */
3085 if (btrfs_need_log_full_commit(trans)) {
3086 ret = -EAGAIN;
3087 mutex_unlock(&root->log_mutex);
3088 goto out;
3089 }
3090
3091 if (log_transid % 2 == 0)
3092 mark = EXTENT_DIRTY;
3093 else
3094 mark = EXTENT_NEW;
3095
3096 /* we start IO on all the marked extents here, but we don't actually
3097 * wait for them until later.
3098 */
3099 blk_start_plug(&plug);
3100 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3101 if (ret) {
3102 blk_finish_plug(&plug);
3103 btrfs_abort_transaction(trans, ret);
3104 btrfs_set_log_full_commit(trans);
3105 mutex_unlock(&root->log_mutex);
3106 goto out;
3107 }
3108
3109 /*
3110 * We _must_ update under the root->log_mutex in order to make sure we
3111 * have a consistent view of the log root we are trying to commit at
3112 * this moment.
3113 *
3114 * We _must_ copy this into a local copy, because we are not holding the
3115 * log_root_tree->log_mutex yet. This is important because when we
3116 * commit the log_root_tree we must have a consistent view of the
3117 * log_root_tree when we update the super block to point at the
3118 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3119 * with the commit and possibly point at the new block which we may not
3120 * have written out.
3121 */
3122 btrfs_set_root_node(&log->root_item, log->node);
3123 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3124
3125 root->log_transid++;
3126 log->log_transid = root->log_transid;
3127 root->log_start_pid = 0;
3128 /*
3129 * IO has been started, blocks of the log tree have WRITTEN flag set
3130 * in their headers. new modifications of the log will be written to
3131 * new positions. so it's safe to allow log writers to go in.
3132 */
3133 mutex_unlock(&root->log_mutex);
3134
3135 btrfs_init_log_ctx(&root_log_ctx, NULL);
3136
3137 mutex_lock(&log_root_tree->log_mutex);
3138 atomic_inc(&log_root_tree->log_batch);
3139 atomic_inc(&log_root_tree->log_writers);
3140
3141 index2 = log_root_tree->log_transid % 2;
3142 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3143 root_log_ctx.log_transid = log_root_tree->log_transid;
3144
3145 mutex_unlock(&log_root_tree->log_mutex);
3146
3147 mutex_lock(&log_root_tree->log_mutex);
3148
3149 /*
3150 * Now we are safe to update the log_root_tree because we're under the
3151 * log_mutex, and we're a current writer so we're holding the commit
3152 * open until we drop the log_mutex.
3153 */
3154 ret = update_log_root(trans, log, &new_root_item);
3155
3156 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3157 /* atomic_dec_and_test implies a barrier */
3158 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3159 }
3160
3161 if (ret) {
3162 if (!list_empty(&root_log_ctx.list))
3163 list_del_init(&root_log_ctx.list);
3164
3165 blk_finish_plug(&plug);
3166 btrfs_set_log_full_commit(trans);
3167
3168 if (ret != -ENOSPC) {
3169 btrfs_abort_transaction(trans, ret);
3170 mutex_unlock(&log_root_tree->log_mutex);
3171 goto out;
3172 }
3173 btrfs_wait_tree_log_extents(log, mark);
3174 mutex_unlock(&log_root_tree->log_mutex);
3175 ret = -EAGAIN;
3176 goto out;
3177 }
3178
3179 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3180 blk_finish_plug(&plug);
3181 list_del_init(&root_log_ctx.list);
3182 mutex_unlock(&log_root_tree->log_mutex);
3183 ret = root_log_ctx.log_ret;
3184 goto out;
3185 }
3186
3187 index2 = root_log_ctx.log_transid % 2;
3188 if (atomic_read(&log_root_tree->log_commit[index2])) {
3189 blk_finish_plug(&plug);
3190 ret = btrfs_wait_tree_log_extents(log, mark);
3191 wait_log_commit(log_root_tree,
3192 root_log_ctx.log_transid);
3193 mutex_unlock(&log_root_tree->log_mutex);
3194 if (!ret)
3195 ret = root_log_ctx.log_ret;
3196 goto out;
3197 }
3198 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3199 atomic_set(&log_root_tree->log_commit[index2], 1);
3200
3201 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3202 wait_log_commit(log_root_tree,
3203 root_log_ctx.log_transid - 1);
3204 }
3205
3206 wait_for_writer(log_root_tree);
3207
3208 /*
3209 * now that we've moved on to the tree of log tree roots,
3210 * check the full commit flag again
3211 */
3212 if (btrfs_need_log_full_commit(trans)) {
3213 blk_finish_plug(&plug);
3214 btrfs_wait_tree_log_extents(log, mark);
3215 mutex_unlock(&log_root_tree->log_mutex);
3216 ret = -EAGAIN;
3217 goto out_wake_log_root;
3218 }
3219
3220 ret = btrfs_write_marked_extents(fs_info,
3221 &log_root_tree->dirty_log_pages,
3222 EXTENT_DIRTY | EXTENT_NEW);
3223 blk_finish_plug(&plug);
3224 if (ret) {
3225 btrfs_set_log_full_commit(trans);
3226 btrfs_abort_transaction(trans, ret);
3227 mutex_unlock(&log_root_tree->log_mutex);
3228 goto out_wake_log_root;
3229 }
3230 ret = btrfs_wait_tree_log_extents(log, mark);
3231 if (!ret)
3232 ret = btrfs_wait_tree_log_extents(log_root_tree,
3233 EXTENT_NEW | EXTENT_DIRTY);
3234 if (ret) {
3235 btrfs_set_log_full_commit(trans);
3236 mutex_unlock(&log_root_tree->log_mutex);
3237 goto out_wake_log_root;
3238 }
3239
3240 btrfs_set_super_log_root(fs_info->super_for_commit,
3241 log_root_tree->node->start);
3242 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3243 btrfs_header_level(log_root_tree->node));
3244
3245 log_root_tree->log_transid++;
3246 mutex_unlock(&log_root_tree->log_mutex);
3247
3248 /*
3249 * Nobody else is going to jump in and write the ctree
3250 * super here because the log_commit atomic below is protecting
3251 * us. We must be called with a transaction handle pinning
3252 * the running transaction open, so a full commit can't hop
3253 * in and cause problems either.
3254 */
3255 ret = write_all_supers(fs_info, 1);
3256 if (ret) {
3257 btrfs_set_log_full_commit(trans);
3258 btrfs_abort_transaction(trans, ret);
3259 goto out_wake_log_root;
3260 }
3261
3262 mutex_lock(&root->log_mutex);
3263 if (root->last_log_commit < log_transid)
3264 root->last_log_commit = log_transid;
3265 mutex_unlock(&root->log_mutex);
3266
3267out_wake_log_root:
3268 mutex_lock(&log_root_tree->log_mutex);
3269 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3270
3271 log_root_tree->log_transid_committed++;
3272 atomic_set(&log_root_tree->log_commit[index2], 0);
3273 mutex_unlock(&log_root_tree->log_mutex);
3274
3275 /*
3276 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3277 * all the updates above are seen by the woken threads. It might not be
3278 * necessary, but proving that seems to be hard.
3279 */
3280 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3281out:
3282 mutex_lock(&root->log_mutex);
3283 btrfs_remove_all_log_ctxs(root, index1, ret);
3284 root->log_transid_committed++;
3285 atomic_set(&root->log_commit[index1], 0);
3286 mutex_unlock(&root->log_mutex);
3287
3288 /*
3289 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3290 * all the updates above are seen by the woken threads. It might not be
3291 * necessary, but proving that seems to be hard.
3292 */
3293 cond_wake_up(&root->log_commit_wait[index1]);
3294 return ret;
3295}
3296
3297static void free_log_tree(struct btrfs_trans_handle *trans,
3298 struct btrfs_root *log)
3299{
3300 int ret;
3301 struct walk_control wc = {
3302 .free = 1,
3303 .process_func = process_one_buffer
3304 };
3305
3306 ret = walk_log_tree(trans, log, &wc);
3307 if (ret) {
3308 if (trans)
3309 btrfs_abort_transaction(trans, ret);
3310 else
3311 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3312 }
3313
3314 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3315 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3316 free_extent_buffer(log->node);
3317 kfree(log);
3318}
3319
3320/*
3321 * free all the extents used by the tree log. This should be called
3322 * at commit time of the full transaction
3323 */
3324int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3325{
3326 if (root->log_root) {
3327 free_log_tree(trans, root->log_root);
3328 root->log_root = NULL;
3329 }
3330 return 0;
3331}
3332
3333int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3334 struct btrfs_fs_info *fs_info)
3335{
3336 if (fs_info->log_root_tree) {
3337 free_log_tree(trans, fs_info->log_root_tree);
3338 fs_info->log_root_tree = NULL;
3339 }
3340 return 0;
3341}
3342
3343/*
3344 * Check if an inode was logged in the current transaction. We can't always rely
3345 * on an inode's logged_trans value, because it's an in-memory only field and
3346 * therefore not persisted. This means that its value is lost if the inode gets
3347 * evicted and loaded again from disk (in which case it has a value of 0, and
3348 * certainly it is smaller then any possible transaction ID), when that happens
3349 * the full_sync flag is set in the inode's runtime flags, so on that case we
3350 * assume eviction happened and ignore the logged_trans value, assuming the
3351 * worst case, that the inode was logged before in the current transaction.
3352 */
3353static bool inode_logged(struct btrfs_trans_handle *trans,
3354 struct btrfs_inode *inode)
3355{
3356 if (inode->logged_trans == trans->transid)
3357 return true;
3358
3359 if (inode->last_trans == trans->transid &&
3360 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3361 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3362 return true;
3363
3364 return false;
3365}
3366
3367/*
3368 * If both a file and directory are logged, and unlinks or renames are
3369 * mixed in, we have a few interesting corners:
3370 *
3371 * create file X in dir Y
3372 * link file X to X.link in dir Y
3373 * fsync file X
3374 * unlink file X but leave X.link
3375 * fsync dir Y
3376 *
3377 * After a crash we would expect only X.link to exist. But file X
3378 * didn't get fsync'd again so the log has back refs for X and X.link.
3379 *
3380 * We solve this by removing directory entries and inode backrefs from the
3381 * log when a file that was logged in the current transaction is
3382 * unlinked. Any later fsync will include the updated log entries, and
3383 * we'll be able to reconstruct the proper directory items from backrefs.
3384 *
3385 * This optimizations allows us to avoid relogging the entire inode
3386 * or the entire directory.
3387 */
3388int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3389 struct btrfs_root *root,
3390 const char *name, int name_len,
3391 struct btrfs_inode *dir, u64 index)
3392{
3393 struct btrfs_root *log;
3394 struct btrfs_dir_item *di;
3395 struct btrfs_path *path;
3396 int ret;
3397 int err = 0;
3398 int bytes_del = 0;
3399 u64 dir_ino = btrfs_ino(dir);
3400
3401 if (!inode_logged(trans, dir))
3402 return 0;
3403
3404 ret = join_running_log_trans(root);
3405 if (ret)
3406 return 0;
3407
3408 mutex_lock(&dir->log_mutex);
3409
3410 log = root->log_root;
3411 path = btrfs_alloc_path();
3412 if (!path) {
3413 err = -ENOMEM;
3414 goto out_unlock;
3415 }
3416
3417 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3418 name, name_len, -1);
3419 if (IS_ERR(di)) {
3420 err = PTR_ERR(di);
3421 goto fail;
3422 }
3423 if (di) {
3424 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3425 bytes_del += name_len;
3426 if (ret) {
3427 err = ret;
3428 goto fail;
3429 }
3430 }
3431 btrfs_release_path(path);
3432 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3433 index, name, name_len, -1);
3434 if (IS_ERR(di)) {
3435 err = PTR_ERR(di);
3436 goto fail;
3437 }
3438 if (di) {
3439 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3440 bytes_del += name_len;
3441 if (ret) {
3442 err = ret;
3443 goto fail;
3444 }
3445 }
3446
3447 /* update the directory size in the log to reflect the names
3448 * we have removed
3449 */
3450 if (bytes_del) {
3451 struct btrfs_key key;
3452
3453 key.objectid = dir_ino;
3454 key.offset = 0;
3455 key.type = BTRFS_INODE_ITEM_KEY;
3456 btrfs_release_path(path);
3457
3458 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3459 if (ret < 0) {
3460 err = ret;
3461 goto fail;
3462 }
3463 if (ret == 0) {
3464 struct btrfs_inode_item *item;
3465 u64 i_size;
3466
3467 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3468 struct btrfs_inode_item);
3469 i_size = btrfs_inode_size(path->nodes[0], item);
3470 if (i_size > bytes_del)
3471 i_size -= bytes_del;
3472 else
3473 i_size = 0;
3474 btrfs_set_inode_size(path->nodes[0], item, i_size);
3475 btrfs_mark_buffer_dirty(path->nodes[0]);
3476 } else
3477 ret = 0;
3478 btrfs_release_path(path);
3479 }
3480fail:
3481 btrfs_free_path(path);
3482out_unlock:
3483 mutex_unlock(&dir->log_mutex);
3484 if (ret == -ENOSPC) {
3485 btrfs_set_log_full_commit(trans);
3486 ret = 0;
3487 } else if (ret < 0)
3488 btrfs_abort_transaction(trans, ret);
3489
3490 btrfs_end_log_trans(root);
3491
3492 return err;
3493}
3494
3495/* see comments for btrfs_del_dir_entries_in_log */
3496int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3497 struct btrfs_root *root,
3498 const char *name, int name_len,
3499 struct btrfs_inode *inode, u64 dirid)
3500{
3501 struct btrfs_root *log;
3502 u64 index;
3503 int ret;
3504
3505 if (!inode_logged(trans, inode))
3506 return 0;
3507
3508 ret = join_running_log_trans(root);
3509 if (ret)
3510 return 0;
3511 log = root->log_root;
3512 mutex_lock(&inode->log_mutex);
3513
3514 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3515 dirid, &index);
3516 mutex_unlock(&inode->log_mutex);
3517 if (ret == -ENOSPC) {
3518 btrfs_set_log_full_commit(trans);
3519 ret = 0;
3520 } else if (ret < 0 && ret != -ENOENT)
3521 btrfs_abort_transaction(trans, ret);
3522 btrfs_end_log_trans(root);
3523
3524 return ret;
3525}
3526
3527/*
3528 * creates a range item in the log for 'dirid'. first_offset and
3529 * last_offset tell us which parts of the key space the log should
3530 * be considered authoritative for.
3531 */
3532static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3533 struct btrfs_root *log,
3534 struct btrfs_path *path,
3535 int key_type, u64 dirid,
3536 u64 first_offset, u64 last_offset)
3537{
3538 int ret;
3539 struct btrfs_key key;
3540 struct btrfs_dir_log_item *item;
3541
3542 key.objectid = dirid;
3543 key.offset = first_offset;
3544 if (key_type == BTRFS_DIR_ITEM_KEY)
3545 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3546 else
3547 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3548 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3549 if (ret)
3550 return ret;
3551
3552 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3553 struct btrfs_dir_log_item);
3554 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3555 btrfs_mark_buffer_dirty(path->nodes[0]);
3556 btrfs_release_path(path);
3557 return 0;
3558}
3559
3560/*
3561 * log all the items included in the current transaction for a given
3562 * directory. This also creates the range items in the log tree required
3563 * to replay anything deleted before the fsync
3564 */
3565static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3566 struct btrfs_root *root, struct btrfs_inode *inode,
3567 struct btrfs_path *path,
3568 struct btrfs_path *dst_path, int key_type,
3569 struct btrfs_log_ctx *ctx,
3570 u64 min_offset, u64 *last_offset_ret)
3571{
3572 struct btrfs_key min_key;
3573 struct btrfs_root *log = root->log_root;
3574 struct extent_buffer *src;
3575 int err = 0;
3576 int ret;
3577 int i;
3578 int nritems;
3579 u64 first_offset = min_offset;
3580 u64 last_offset = (u64)-1;
3581 u64 ino = btrfs_ino(inode);
3582
3583 log = root->log_root;
3584
3585 min_key.objectid = ino;
3586 min_key.type = key_type;
3587 min_key.offset = min_offset;
3588
3589 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3590
3591 /*
3592 * we didn't find anything from this transaction, see if there
3593 * is anything at all
3594 */
3595 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3596 min_key.objectid = ino;
3597 min_key.type = key_type;
3598 min_key.offset = (u64)-1;
3599 btrfs_release_path(path);
3600 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3601 if (ret < 0) {
3602 btrfs_release_path(path);
3603 return ret;
3604 }
3605 ret = btrfs_previous_item(root, path, ino, key_type);
3606
3607 /* if ret == 0 there are items for this type,
3608 * create a range to tell us the last key of this type.
3609 * otherwise, there are no items in this directory after
3610 * *min_offset, and we create a range to indicate that.
3611 */
3612 if (ret == 0) {
3613 struct btrfs_key tmp;
3614 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3615 path->slots[0]);
3616 if (key_type == tmp.type)
3617 first_offset = max(min_offset, tmp.offset) + 1;
3618 }
3619 goto done;
3620 }
3621
3622 /* go backward to find any previous key */
3623 ret = btrfs_previous_item(root, path, ino, key_type);
3624 if (ret == 0) {
3625 struct btrfs_key tmp;
3626 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3627 if (key_type == tmp.type) {
3628 first_offset = tmp.offset;
3629 ret = overwrite_item(trans, log, dst_path,
3630 path->nodes[0], path->slots[0],
3631 &tmp);
3632 if (ret) {
3633 err = ret;
3634 goto done;
3635 }
3636 }
3637 }
3638 btrfs_release_path(path);
3639
3640 /*
3641 * Find the first key from this transaction again. See the note for
3642 * log_new_dir_dentries, if we're logging a directory recursively we
3643 * won't be holding its i_mutex, which means we can modify the directory
3644 * while we're logging it. If we remove an entry between our first
3645 * search and this search we'll not find the key again and can just
3646 * bail.
3647 */
3648 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3649 if (ret != 0)
3650 goto done;
3651
3652 /*
3653 * we have a block from this transaction, log every item in it
3654 * from our directory
3655 */
3656 while (1) {
3657 struct btrfs_key tmp;
3658 src = path->nodes[0];
3659 nritems = btrfs_header_nritems(src);
3660 for (i = path->slots[0]; i < nritems; i++) {
3661 struct btrfs_dir_item *di;
3662
3663 btrfs_item_key_to_cpu(src, &min_key, i);
3664
3665 if (min_key.objectid != ino || min_key.type != key_type)
3666 goto done;
3667 ret = overwrite_item(trans, log, dst_path, src, i,
3668 &min_key);
3669 if (ret) {
3670 err = ret;
3671 goto done;
3672 }
3673
3674 /*
3675 * We must make sure that when we log a directory entry,
3676 * the corresponding inode, after log replay, has a
3677 * matching link count. For example:
3678 *
3679 * touch foo
3680 * mkdir mydir
3681 * sync
3682 * ln foo mydir/bar
3683 * xfs_io -c "fsync" mydir
3684 * <crash>
3685 * <mount fs and log replay>
3686 *
3687 * Would result in a fsync log that when replayed, our
3688 * file inode would have a link count of 1, but we get
3689 * two directory entries pointing to the same inode.
3690 * After removing one of the names, it would not be
3691 * possible to remove the other name, which resulted
3692 * always in stale file handle errors, and would not
3693 * be possible to rmdir the parent directory, since
3694 * its i_size could never decrement to the value
3695 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3696 */
3697 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3698 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3699 if (ctx &&
3700 (btrfs_dir_transid(src, di) == trans->transid ||
3701 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3702 tmp.type != BTRFS_ROOT_ITEM_KEY)
3703 ctx->log_new_dentries = true;
3704 }
3705 path->slots[0] = nritems;
3706
3707 /*
3708 * look ahead to the next item and see if it is also
3709 * from this directory and from this transaction
3710 */
3711 ret = btrfs_next_leaf(root, path);
3712 if (ret) {
3713 if (ret == 1)
3714 last_offset = (u64)-1;
3715 else
3716 err = ret;
3717 goto done;
3718 }
3719 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3720 if (tmp.objectid != ino || tmp.type != key_type) {
3721 last_offset = (u64)-1;
3722 goto done;
3723 }
3724 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3725 ret = overwrite_item(trans, log, dst_path,
3726 path->nodes[0], path->slots[0],
3727 &tmp);
3728 if (ret)
3729 err = ret;
3730 else
3731 last_offset = tmp.offset;
3732 goto done;
3733 }
3734 }
3735done:
3736 btrfs_release_path(path);
3737 btrfs_release_path(dst_path);
3738
3739 if (err == 0) {
3740 *last_offset_ret = last_offset;
3741 /*
3742 * insert the log range keys to indicate where the log
3743 * is valid
3744 */
3745 ret = insert_dir_log_key(trans, log, path, key_type,
3746 ino, first_offset, last_offset);
3747 if (ret)
3748 err = ret;
3749 }
3750 return err;
3751}
3752
3753/*
3754 * logging directories is very similar to logging inodes, We find all the items
3755 * from the current transaction and write them to the log.
3756 *
3757 * The recovery code scans the directory in the subvolume, and if it finds a
3758 * key in the range logged that is not present in the log tree, then it means
3759 * that dir entry was unlinked during the transaction.
3760 *
3761 * In order for that scan to work, we must include one key smaller than
3762 * the smallest logged by this transaction and one key larger than the largest
3763 * key logged by this transaction.
3764 */
3765static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3766 struct btrfs_root *root, struct btrfs_inode *inode,
3767 struct btrfs_path *path,
3768 struct btrfs_path *dst_path,
3769 struct btrfs_log_ctx *ctx)
3770{
3771 u64 min_key;
3772 u64 max_key;
3773 int ret;
3774 int key_type = BTRFS_DIR_ITEM_KEY;
3775
3776again:
3777 min_key = 0;
3778 max_key = 0;
3779 while (1) {
3780 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3781 ctx, min_key, &max_key);
3782 if (ret)
3783 return ret;
3784 if (max_key == (u64)-1)
3785 break;
3786 min_key = max_key + 1;
3787 }
3788
3789 if (key_type == BTRFS_DIR_ITEM_KEY) {
3790 key_type = BTRFS_DIR_INDEX_KEY;
3791 goto again;
3792 }
3793 return 0;
3794}
3795
3796/*
3797 * a helper function to drop items from the log before we relog an
3798 * inode. max_key_type indicates the highest item type to remove.
3799 * This cannot be run for file data extents because it does not
3800 * free the extents they point to.
3801 */
3802static int drop_objectid_items(struct btrfs_trans_handle *trans,
3803 struct btrfs_root *log,
3804 struct btrfs_path *path,
3805 u64 objectid, int max_key_type)
3806{
3807 int ret;
3808 struct btrfs_key key;
3809 struct btrfs_key found_key;
3810 int start_slot;
3811
3812 key.objectid = objectid;
3813 key.type = max_key_type;
3814 key.offset = (u64)-1;
3815
3816 while (1) {
3817 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3818 BUG_ON(ret == 0); /* Logic error */
3819 if (ret < 0)
3820 break;
3821
3822 if (path->slots[0] == 0)
3823 break;
3824
3825 path->slots[0]--;
3826 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3827 path->slots[0]);
3828
3829 if (found_key.objectid != objectid)
3830 break;
3831
3832 found_key.offset = 0;
3833 found_key.type = 0;
3834 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3835 &start_slot);
3836 if (ret < 0)
3837 break;
3838
3839 ret = btrfs_del_items(trans, log, path, start_slot,
3840 path->slots[0] - start_slot + 1);
3841 /*
3842 * If start slot isn't 0 then we don't need to re-search, we've
3843 * found the last guy with the objectid in this tree.
3844 */
3845 if (ret || start_slot != 0)
3846 break;
3847 btrfs_release_path(path);
3848 }
3849 btrfs_release_path(path);
3850 if (ret > 0)
3851 ret = 0;
3852 return ret;
3853}
3854
3855static void fill_inode_item(struct btrfs_trans_handle *trans,
3856 struct extent_buffer *leaf,
3857 struct btrfs_inode_item *item,
3858 struct inode *inode, int log_inode_only,
3859 u64 logged_isize)
3860{
3861 struct btrfs_map_token token;
3862
3863 btrfs_init_map_token(&token, leaf);
3864
3865 if (log_inode_only) {
3866 /* set the generation to zero so the recover code
3867 * can tell the difference between an logging
3868 * just to say 'this inode exists' and a logging
3869 * to say 'update this inode with these values'
3870 */
3871 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3872 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3873 } else {
3874 btrfs_set_token_inode_generation(leaf, item,
3875 BTRFS_I(inode)->generation,
3876 &token);
3877 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3878 }
3879
3880 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3881 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3882 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3883 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3884
3885 btrfs_set_token_timespec_sec(leaf, &item->atime,
3886 inode->i_atime.tv_sec, &token);
3887 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3888 inode->i_atime.tv_nsec, &token);
3889
3890 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3891 inode->i_mtime.tv_sec, &token);
3892 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3893 inode->i_mtime.tv_nsec, &token);
3894
3895 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3896 inode->i_ctime.tv_sec, &token);
3897 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3898 inode->i_ctime.tv_nsec, &token);
3899
3900 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3901 &token);
3902
3903 btrfs_set_token_inode_sequence(leaf, item,
3904 inode_peek_iversion(inode), &token);
3905 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3906 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3907 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3908 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3909}
3910
3911static int log_inode_item(struct btrfs_trans_handle *trans,
3912 struct btrfs_root *log, struct btrfs_path *path,
3913 struct btrfs_inode *inode)
3914{
3915 struct btrfs_inode_item *inode_item;
3916 int ret;
3917
3918 ret = btrfs_insert_empty_item(trans, log, path,
3919 &inode->location, sizeof(*inode_item));
3920 if (ret && ret != -EEXIST)
3921 return ret;
3922 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3923 struct btrfs_inode_item);
3924 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3925 0, 0);
3926 btrfs_release_path(path);
3927 return 0;
3928}
3929
3930static noinline int copy_items(struct btrfs_trans_handle *trans,
3931 struct btrfs_inode *inode,
3932 struct btrfs_path *dst_path,
3933 struct btrfs_path *src_path, u64 *last_extent,
3934 int start_slot, int nr, int inode_only,
3935 u64 logged_isize)
3936{
3937 struct btrfs_fs_info *fs_info = trans->fs_info;
3938 unsigned long src_offset;
3939 unsigned long dst_offset;
3940 struct btrfs_root *log = inode->root->log_root;
3941 struct btrfs_file_extent_item *extent;
3942 struct btrfs_inode_item *inode_item;
3943 struct extent_buffer *src = src_path->nodes[0];
3944 struct btrfs_key first_key, last_key, key;
3945 int ret;
3946 struct btrfs_key *ins_keys;
3947 u32 *ins_sizes;
3948 char *ins_data;
3949 int i;
3950 struct list_head ordered_sums;
3951 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3952 bool has_extents = false;
3953 bool need_find_last_extent = true;
3954 bool done = false;
3955
3956 INIT_LIST_HEAD(&ordered_sums);
3957
3958 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3959 nr * sizeof(u32), GFP_NOFS);
3960 if (!ins_data)
3961 return -ENOMEM;
3962
3963 first_key.objectid = (u64)-1;
3964
3965 ins_sizes = (u32 *)ins_data;
3966 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3967
3968 for (i = 0; i < nr; i++) {
3969 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3970 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3971 }
3972 ret = btrfs_insert_empty_items(trans, log, dst_path,
3973 ins_keys, ins_sizes, nr);
3974 if (ret) {
3975 kfree(ins_data);
3976 return ret;
3977 }
3978
3979 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3980 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3981 dst_path->slots[0]);
3982
3983 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3984
3985 if (i == nr - 1)
3986 last_key = ins_keys[i];
3987
3988 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3989 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3990 dst_path->slots[0],
3991 struct btrfs_inode_item);
3992 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3993 &inode->vfs_inode,
3994 inode_only == LOG_INODE_EXISTS,
3995 logged_isize);
3996 } else {
3997 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3998 src_offset, ins_sizes[i]);
3999 }
4000
4001 /*
4002 * We set need_find_last_extent here in case we know we were
4003 * processing other items and then walk into the first extent in
4004 * the inode. If we don't hit an extent then nothing changes,
4005 * we'll do the last search the next time around.
4006 */
4007 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
4008 has_extents = true;
4009 if (first_key.objectid == (u64)-1)
4010 first_key = ins_keys[i];
4011 } else {
4012 need_find_last_extent = false;
4013 }
4014
4015 /* take a reference on file data extents so that truncates
4016 * or deletes of this inode don't have to relog the inode
4017 * again
4018 */
4019 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4020 !skip_csum) {
4021 int found_type;
4022 extent = btrfs_item_ptr(src, start_slot + i,
4023 struct btrfs_file_extent_item);
4024
4025 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4026 continue;
4027
4028 found_type = btrfs_file_extent_type(src, extent);
4029 if (found_type == BTRFS_FILE_EXTENT_REG) {
4030 u64 ds, dl, cs, cl;
4031 ds = btrfs_file_extent_disk_bytenr(src,
4032 extent);
4033 /* ds == 0 is a hole */
4034 if (ds == 0)
4035 continue;
4036
4037 dl = btrfs_file_extent_disk_num_bytes(src,
4038 extent);
4039 cs = btrfs_file_extent_offset(src, extent);
4040 cl = btrfs_file_extent_num_bytes(src,
4041 extent);
4042 if (btrfs_file_extent_compression(src,
4043 extent)) {
4044 cs = 0;
4045 cl = dl;
4046 }
4047
4048 ret = btrfs_lookup_csums_range(
4049 fs_info->csum_root,
4050 ds + cs, ds + cs + cl - 1,
4051 &ordered_sums, 0);
4052 if (ret) {
4053 btrfs_release_path(dst_path);
4054 kfree(ins_data);
4055 return ret;
4056 }
4057 }
4058 }
4059 }
4060
4061 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4062 btrfs_release_path(dst_path);
4063 kfree(ins_data);
4064
4065 /*
4066 * we have to do this after the loop above to avoid changing the
4067 * log tree while trying to change the log tree.
4068 */
4069 ret = 0;
4070 while (!list_empty(&ordered_sums)) {
4071 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4072 struct btrfs_ordered_sum,
4073 list);
4074 if (!ret)
4075 ret = btrfs_csum_file_blocks(trans, log, sums);
4076 list_del(&sums->list);
4077 kfree(sums);
4078 }
4079
4080 if (!has_extents)
4081 return ret;
4082
4083 if (need_find_last_extent && *last_extent == first_key.offset) {
4084 /*
4085 * We don't have any leafs between our current one and the one
4086 * we processed before that can have file extent items for our
4087 * inode (and have a generation number smaller than our current
4088 * transaction id).
4089 */
4090 need_find_last_extent = false;
4091 }
4092
4093 /*
4094 * Because we use btrfs_search_forward we could skip leaves that were
4095 * not modified and then assume *last_extent is valid when it really
4096 * isn't. So back up to the previous leaf and read the end of the last
4097 * extent before we go and fill in holes.
4098 */
4099 if (need_find_last_extent) {
4100 u64 len;
4101
4102 ret = btrfs_prev_leaf(inode->root, src_path);
4103 if (ret < 0)
4104 return ret;
4105 if (ret)
4106 goto fill_holes;
4107 if (src_path->slots[0])
4108 src_path->slots[0]--;
4109 src = src_path->nodes[0];
4110 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
4111 if (key.objectid != btrfs_ino(inode) ||
4112 key.type != BTRFS_EXTENT_DATA_KEY)
4113 goto fill_holes;
4114 extent = btrfs_item_ptr(src, src_path->slots[0],
4115 struct btrfs_file_extent_item);
4116 if (btrfs_file_extent_type(src, extent) ==
4117 BTRFS_FILE_EXTENT_INLINE) {
4118 len = btrfs_file_extent_ram_bytes(src, extent);
4119 *last_extent = ALIGN(key.offset + len,
4120 fs_info->sectorsize);
4121 } else {
4122 len = btrfs_file_extent_num_bytes(src, extent);
4123 *last_extent = key.offset + len;
4124 }
4125 }
4126fill_holes:
4127 /* So we did prev_leaf, now we need to move to the next leaf, but a few
4128 * things could have happened
4129 *
4130 * 1) A merge could have happened, so we could currently be on a leaf
4131 * that holds what we were copying in the first place.
4132 * 2) A split could have happened, and now not all of the items we want
4133 * are on the same leaf.
4134 *
4135 * So we need to adjust how we search for holes, we need to drop the
4136 * path and re-search for the first extent key we found, and then walk
4137 * forward until we hit the last one we copied.
4138 */
4139 if (need_find_last_extent) {
4140 /* btrfs_prev_leaf could return 1 without releasing the path */
4141 btrfs_release_path(src_path);
4142 ret = btrfs_search_slot(NULL, inode->root, &first_key,
4143 src_path, 0, 0);
4144 if (ret < 0)
4145 return ret;
4146 ASSERT(ret == 0);
4147 src = src_path->nodes[0];
4148 i = src_path->slots[0];
4149 } else {
4150 i = start_slot;
4151 }
4152
4153 /*
4154 * Ok so here we need to go through and fill in any holes we may have
4155 * to make sure that holes are punched for those areas in case they had
4156 * extents previously.
4157 */
4158 while (!done) {
4159 u64 offset, len;
4160 u64 extent_end;
4161
4162 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4163 ret = btrfs_next_leaf(inode->root, src_path);
4164 if (ret < 0)
4165 return ret;
4166 ASSERT(ret == 0);
4167 src = src_path->nodes[0];
4168 i = 0;
4169 need_find_last_extent = true;
4170 }
4171
4172 btrfs_item_key_to_cpu(src, &key, i);
4173 if (!btrfs_comp_cpu_keys(&key, &last_key))
4174 done = true;
4175 if (key.objectid != btrfs_ino(inode) ||
4176 key.type != BTRFS_EXTENT_DATA_KEY) {
4177 i++;
4178 continue;
4179 }
4180 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4181 if (btrfs_file_extent_type(src, extent) ==
4182 BTRFS_FILE_EXTENT_INLINE) {
4183 len = btrfs_file_extent_ram_bytes(src, extent);
4184 extent_end = ALIGN(key.offset + len,
4185 fs_info->sectorsize);
4186 } else {
4187 len = btrfs_file_extent_num_bytes(src, extent);
4188 extent_end = key.offset + len;
4189 }
4190 i++;
4191
4192 if (*last_extent == key.offset) {
4193 *last_extent = extent_end;
4194 continue;
4195 }
4196 offset = *last_extent;
4197 len = key.offset - *last_extent;
4198 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4199 offset, 0, 0, len, 0, len, 0, 0, 0);
4200 if (ret)
4201 break;
4202 *last_extent = extent_end;
4203 }
4204
4205 /*
4206 * Check if there is a hole between the last extent found in our leaf
4207 * and the first extent in the next leaf. If there is one, we need to
4208 * log an explicit hole so that at replay time we can punch the hole.
4209 */
4210 if (ret == 0 &&
4211 key.objectid == btrfs_ino(inode) &&
4212 key.type == BTRFS_EXTENT_DATA_KEY &&
4213 i == btrfs_header_nritems(src_path->nodes[0])) {
4214 ret = btrfs_next_leaf(inode->root, src_path);
4215 need_find_last_extent = true;
4216 if (ret > 0) {
4217 ret = 0;
4218 } else if (ret == 0) {
4219 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4220 src_path->slots[0]);
4221 if (key.objectid == btrfs_ino(inode) &&
4222 key.type == BTRFS_EXTENT_DATA_KEY &&
4223 *last_extent < key.offset) {
4224 const u64 len = key.offset - *last_extent;
4225
4226 ret = btrfs_insert_file_extent(trans, log,
4227 btrfs_ino(inode),
4228 *last_extent, 0,
4229 0, len, 0, len,
4230 0, 0, 0);
4231 *last_extent += len;
4232 }
4233 }
4234 }
4235 /*
4236 * Need to let the callers know we dropped the path so they should
4237 * re-search.
4238 */
4239 if (!ret && need_find_last_extent)
4240 ret = 1;
4241 return ret;
4242}
4243
4244static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4245{
4246 struct extent_map *em1, *em2;
4247
4248 em1 = list_entry(a, struct extent_map, list);
4249 em2 = list_entry(b, struct extent_map, list);
4250
4251 if (em1->start < em2->start)
4252 return -1;
4253 else if (em1->start > em2->start)
4254 return 1;
4255 return 0;
4256}
4257
4258static int log_extent_csums(struct btrfs_trans_handle *trans,
4259 struct btrfs_inode *inode,
4260 struct btrfs_root *log_root,
4261 const struct extent_map *em)
4262{
4263 u64 csum_offset;
4264 u64 csum_len;
4265 LIST_HEAD(ordered_sums);
4266 int ret = 0;
4267
4268 if (inode->flags & BTRFS_INODE_NODATASUM ||
4269 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4270 em->block_start == EXTENT_MAP_HOLE)
4271 return 0;
4272
4273 /* If we're compressed we have to save the entire range of csums. */
4274 if (em->compress_type) {
4275 csum_offset = 0;
4276 csum_len = max(em->block_len, em->orig_block_len);
4277 } else {
4278 csum_offset = em->mod_start - em->start;
4279 csum_len = em->mod_len;
4280 }
4281
4282 /* block start is already adjusted for the file extent offset. */
4283 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4284 em->block_start + csum_offset,
4285 em->block_start + csum_offset +
4286 csum_len - 1, &ordered_sums, 0);
4287 if (ret)
4288 return ret;
4289
4290 while (!list_empty(&ordered_sums)) {
4291 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4292 struct btrfs_ordered_sum,
4293 list);
4294 if (!ret)
4295 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4296 list_del(&sums->list);
4297 kfree(sums);
4298 }
4299
4300 return ret;
4301}
4302
4303static int log_one_extent(struct btrfs_trans_handle *trans,
4304 struct btrfs_inode *inode, struct btrfs_root *root,
4305 const struct extent_map *em,
4306 struct btrfs_path *path,
4307 struct btrfs_log_ctx *ctx)
4308{
4309 struct btrfs_root *log = root->log_root;
4310 struct btrfs_file_extent_item *fi;
4311 struct extent_buffer *leaf;
4312 struct btrfs_map_token token;
4313 struct btrfs_key key;
4314 u64 extent_offset = em->start - em->orig_start;
4315 u64 block_len;
4316 int ret;
4317 int extent_inserted = 0;
4318
4319 ret = log_extent_csums(trans, inode, log, em);
4320 if (ret)
4321 return ret;
4322
4323 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4324 em->start + em->len, NULL, 0, 1,
4325 sizeof(*fi), &extent_inserted);
4326 if (ret)
4327 return ret;
4328
4329 if (!extent_inserted) {
4330 key.objectid = btrfs_ino(inode);
4331 key.type = BTRFS_EXTENT_DATA_KEY;
4332 key.offset = em->start;
4333
4334 ret = btrfs_insert_empty_item(trans, log, path, &key,
4335 sizeof(*fi));
4336 if (ret)
4337 return ret;
4338 }
4339 leaf = path->nodes[0];
4340 btrfs_init_map_token(&token, leaf);
4341 fi = btrfs_item_ptr(leaf, path->slots[0],
4342 struct btrfs_file_extent_item);
4343
4344 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4345 &token);
4346 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4347 btrfs_set_token_file_extent_type(leaf, fi,
4348 BTRFS_FILE_EXTENT_PREALLOC,
4349 &token);
4350 else
4351 btrfs_set_token_file_extent_type(leaf, fi,
4352 BTRFS_FILE_EXTENT_REG,
4353 &token);
4354
4355 block_len = max(em->block_len, em->orig_block_len);
4356 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4357 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4358 em->block_start,
4359 &token);
4360 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4361 &token);
4362 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4363 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4364 em->block_start -
4365 extent_offset, &token);
4366 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4367 &token);
4368 } else {
4369 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4370 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4371 &token);
4372 }
4373
4374 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4375 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4376 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4377 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4378 &token);
4379 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4380 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4381 btrfs_mark_buffer_dirty(leaf);
4382
4383 btrfs_release_path(path);
4384
4385 return ret;
4386}
4387
4388/*
4389 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4390 * lose them after doing a fast fsync and replaying the log. We scan the
4391 * subvolume's root instead of iterating the inode's extent map tree because
4392 * otherwise we can log incorrect extent items based on extent map conversion.
4393 * That can happen due to the fact that extent maps are merged when they
4394 * are not in the extent map tree's list of modified extents.
4395 */
4396static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4397 struct btrfs_inode *inode,
4398 struct btrfs_path *path)
4399{
4400 struct btrfs_root *root = inode->root;
4401 struct btrfs_key key;
4402 const u64 i_size = i_size_read(&inode->vfs_inode);
4403 const u64 ino = btrfs_ino(inode);
4404 struct btrfs_path *dst_path = NULL;
4405 u64 last_extent = (u64)-1;
4406 int ins_nr = 0;
4407 int start_slot;
4408 int ret;
4409
4410 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4411 return 0;
4412
4413 key.objectid = ino;
4414 key.type = BTRFS_EXTENT_DATA_KEY;
4415 key.offset = i_size;
4416 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4417 if (ret < 0)
4418 goto out;
4419
4420 while (true) {
4421 struct extent_buffer *leaf = path->nodes[0];
4422 int slot = path->slots[0];
4423
4424 if (slot >= btrfs_header_nritems(leaf)) {
4425 if (ins_nr > 0) {
4426 ret = copy_items(trans, inode, dst_path, path,
4427 &last_extent, start_slot,
4428 ins_nr, 1, 0);
4429 if (ret < 0)
4430 goto out;
4431 ins_nr = 0;
4432 }
4433 ret = btrfs_next_leaf(root, path);
4434 if (ret < 0)
4435 goto out;
4436 if (ret > 0) {
4437 ret = 0;
4438 break;
4439 }
4440 continue;
4441 }
4442
4443 btrfs_item_key_to_cpu(leaf, &key, slot);
4444 if (key.objectid > ino)
4445 break;
4446 if (WARN_ON_ONCE(key.objectid < ino) ||
4447 key.type < BTRFS_EXTENT_DATA_KEY ||
4448 key.offset < i_size) {
4449 path->slots[0]++;
4450 continue;
4451 }
4452 if (last_extent == (u64)-1) {
4453 last_extent = key.offset;
4454 /*
4455 * Avoid logging extent items logged in past fsync calls
4456 * and leading to duplicate keys in the log tree.
4457 */
4458 do {
4459 ret = btrfs_truncate_inode_items(trans,
4460 root->log_root,
4461 &inode->vfs_inode,
4462 i_size,
4463 BTRFS_EXTENT_DATA_KEY);
4464 } while (ret == -EAGAIN);
4465 if (ret)
4466 goto out;
4467 }
4468 if (ins_nr == 0)
4469 start_slot = slot;
4470 ins_nr++;
4471 path->slots[0]++;
4472 if (!dst_path) {
4473 dst_path = btrfs_alloc_path();
4474 if (!dst_path) {
4475 ret = -ENOMEM;
4476 goto out;
4477 }
4478 }
4479 }
4480 if (ins_nr > 0) {
4481 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4482 start_slot, ins_nr, 1, 0);
4483 if (ret > 0)
4484 ret = 0;
4485 }
4486out:
4487 btrfs_release_path(path);
4488 btrfs_free_path(dst_path);
4489 return ret;
4490}
4491
4492static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4493 struct btrfs_root *root,
4494 struct btrfs_inode *inode,
4495 struct btrfs_path *path,
4496 struct btrfs_log_ctx *ctx,
4497 const u64 start,
4498 const u64 end)
4499{
4500 struct extent_map *em, *n;
4501 struct list_head extents;
4502 struct extent_map_tree *tree = &inode->extent_tree;
4503 u64 test_gen;
4504 int ret = 0;
4505 int num = 0;
4506
4507 INIT_LIST_HEAD(&extents);
4508
4509 write_lock(&tree->lock);
4510 test_gen = root->fs_info->last_trans_committed;
4511
4512 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4513 /*
4514 * Skip extents outside our logging range. It's important to do
4515 * it for correctness because if we don't ignore them, we may
4516 * log them before their ordered extent completes, and therefore
4517 * we could log them without logging their respective checksums
4518 * (the checksum items are added to the csum tree at the very
4519 * end of btrfs_finish_ordered_io()). Also leave such extents
4520 * outside of our range in the list, since we may have another
4521 * ranged fsync in the near future that needs them. If an extent
4522 * outside our range corresponds to a hole, log it to avoid
4523 * leaving gaps between extents (fsck will complain when we are
4524 * not using the NO_HOLES feature).
4525 */
4526 if ((em->start > end || em->start + em->len <= start) &&
4527 em->block_start != EXTENT_MAP_HOLE)
4528 continue;
4529
4530 list_del_init(&em->list);
4531 /*
4532 * Just an arbitrary number, this can be really CPU intensive
4533 * once we start getting a lot of extents, and really once we
4534 * have a bunch of extents we just want to commit since it will
4535 * be faster.
4536 */
4537 if (++num > 32768) {
4538 list_del_init(&tree->modified_extents);
4539 ret = -EFBIG;
4540 goto process;
4541 }
4542
4543 if (em->generation <= test_gen)
4544 continue;
4545
4546 /* We log prealloc extents beyond eof later. */
4547 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4548 em->start >= i_size_read(&inode->vfs_inode))
4549 continue;
4550
4551 /* Need a ref to keep it from getting evicted from cache */
4552 refcount_inc(&em->refs);
4553 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4554 list_add_tail(&em->list, &extents);
4555 num++;
4556 }
4557
4558 list_sort(NULL, &extents, extent_cmp);
4559process:
4560 while (!list_empty(&extents)) {
4561 em = list_entry(extents.next, struct extent_map, list);
4562
4563 list_del_init(&em->list);
4564
4565 /*
4566 * If we had an error we just need to delete everybody from our
4567 * private list.
4568 */
4569 if (ret) {
4570 clear_em_logging(tree, em);
4571 free_extent_map(em);
4572 continue;
4573 }
4574
4575 write_unlock(&tree->lock);
4576
4577 ret = log_one_extent(trans, inode, root, em, path, ctx);
4578 write_lock(&tree->lock);
4579 clear_em_logging(tree, em);
4580 free_extent_map(em);
4581 }
4582 WARN_ON(!list_empty(&extents));
4583 write_unlock(&tree->lock);
4584
4585 btrfs_release_path(path);
4586 if (!ret)
4587 ret = btrfs_log_prealloc_extents(trans, inode, path);
4588
4589 return ret;
4590}
4591
4592static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4593 struct btrfs_path *path, u64 *size_ret)
4594{
4595 struct btrfs_key key;
4596 int ret;
4597
4598 key.objectid = btrfs_ino(inode);
4599 key.type = BTRFS_INODE_ITEM_KEY;
4600 key.offset = 0;
4601
4602 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4603 if (ret < 0) {
4604 return ret;
4605 } else if (ret > 0) {
4606 *size_ret = 0;
4607 } else {
4608 struct btrfs_inode_item *item;
4609
4610 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4611 struct btrfs_inode_item);
4612 *size_ret = btrfs_inode_size(path->nodes[0], item);
4613 /*
4614 * If the in-memory inode's i_size is smaller then the inode
4615 * size stored in the btree, return the inode's i_size, so
4616 * that we get a correct inode size after replaying the log
4617 * when before a power failure we had a shrinking truncate
4618 * followed by addition of a new name (rename / new hard link).
4619 * Otherwise return the inode size from the btree, to avoid
4620 * data loss when replaying a log due to previously doing a
4621 * write that expands the inode's size and logging a new name
4622 * immediately after.
4623 */
4624 if (*size_ret > inode->vfs_inode.i_size)
4625 *size_ret = inode->vfs_inode.i_size;
4626 }
4627
4628 btrfs_release_path(path);
4629 return 0;
4630}
4631
4632/*
4633 * At the moment we always log all xattrs. This is to figure out at log replay
4634 * time which xattrs must have their deletion replayed. If a xattr is missing
4635 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4636 * because if a xattr is deleted, the inode is fsynced and a power failure
4637 * happens, causing the log to be replayed the next time the fs is mounted,
4638 * we want the xattr to not exist anymore (same behaviour as other filesystems
4639 * with a journal, ext3/4, xfs, f2fs, etc).
4640 */
4641static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4642 struct btrfs_root *root,
4643 struct btrfs_inode *inode,
4644 struct btrfs_path *path,
4645 struct btrfs_path *dst_path)
4646{
4647 int ret;
4648 struct btrfs_key key;
4649 const u64 ino = btrfs_ino(inode);
4650 int ins_nr = 0;
4651 int start_slot = 0;
4652
4653 key.objectid = ino;
4654 key.type = BTRFS_XATTR_ITEM_KEY;
4655 key.offset = 0;
4656
4657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4658 if (ret < 0)
4659 return ret;
4660
4661 while (true) {
4662 int slot = path->slots[0];
4663 struct extent_buffer *leaf = path->nodes[0];
4664 int nritems = btrfs_header_nritems(leaf);
4665
4666 if (slot >= nritems) {
4667 if (ins_nr > 0) {
4668 u64 last_extent = 0;
4669
4670 ret = copy_items(trans, inode, dst_path, path,
4671 &last_extent, start_slot,
4672 ins_nr, 1, 0);
4673 /* can't be 1, extent items aren't processed */
4674 ASSERT(ret <= 0);
4675 if (ret < 0)
4676 return ret;
4677 ins_nr = 0;
4678 }
4679 ret = btrfs_next_leaf(root, path);
4680 if (ret < 0)
4681 return ret;
4682 else if (ret > 0)
4683 break;
4684 continue;
4685 }
4686
4687 btrfs_item_key_to_cpu(leaf, &key, slot);
4688 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4689 break;
4690
4691 if (ins_nr == 0)
4692 start_slot = slot;
4693 ins_nr++;
4694 path->slots[0]++;
4695 cond_resched();
4696 }
4697 if (ins_nr > 0) {
4698 u64 last_extent = 0;
4699
4700 ret = copy_items(trans, inode, dst_path, path,
4701 &last_extent, start_slot,
4702 ins_nr, 1, 0);
4703 /* can't be 1, extent items aren't processed */
4704 ASSERT(ret <= 0);
4705 if (ret < 0)
4706 return ret;
4707 }
4708
4709 return 0;
4710}
4711
4712/*
4713 * If the no holes feature is enabled we need to make sure any hole between the
4714 * last extent and the i_size of our inode is explicitly marked in the log. This
4715 * is to make sure that doing something like:
4716 *
4717 * 1) create file with 128Kb of data
4718 * 2) truncate file to 64Kb
4719 * 3) truncate file to 256Kb
4720 * 4) fsync file
4721 * 5) <crash/power failure>
4722 * 6) mount fs and trigger log replay
4723 *
4724 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4725 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4726 * file correspond to a hole. The presence of explicit holes in a log tree is
4727 * what guarantees that log replay will remove/adjust file extent items in the
4728 * fs/subvol tree.
4729 *
4730 * Here we do not need to care about holes between extents, that is already done
4731 * by copy_items(). We also only need to do this in the full sync path, where we
4732 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4733 * lookup the list of modified extent maps and if any represents a hole, we
4734 * insert a corresponding extent representing a hole in the log tree.
4735 */
4736static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4737 struct btrfs_root *root,
4738 struct btrfs_inode *inode,
4739 struct btrfs_path *path)
4740{
4741 struct btrfs_fs_info *fs_info = root->fs_info;
4742 int ret;
4743 struct btrfs_key key;
4744 u64 hole_start;
4745 u64 hole_size;
4746 struct extent_buffer *leaf;
4747 struct btrfs_root *log = root->log_root;
4748 const u64 ino = btrfs_ino(inode);
4749 const u64 i_size = i_size_read(&inode->vfs_inode);
4750
4751 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4752 return 0;
4753
4754 key.objectid = ino;
4755 key.type = BTRFS_EXTENT_DATA_KEY;
4756 key.offset = (u64)-1;
4757
4758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4759 ASSERT(ret != 0);
4760 if (ret < 0)
4761 return ret;
4762
4763 ASSERT(path->slots[0] > 0);
4764 path->slots[0]--;
4765 leaf = path->nodes[0];
4766 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4767
4768 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4769 /* inode does not have any extents */
4770 hole_start = 0;
4771 hole_size = i_size;
4772 } else {
4773 struct btrfs_file_extent_item *extent;
4774 u64 len;
4775
4776 /*
4777 * If there's an extent beyond i_size, an explicit hole was
4778 * already inserted by copy_items().
4779 */
4780 if (key.offset >= i_size)
4781 return 0;
4782
4783 extent = btrfs_item_ptr(leaf, path->slots[0],
4784 struct btrfs_file_extent_item);
4785
4786 if (btrfs_file_extent_type(leaf, extent) ==
4787 BTRFS_FILE_EXTENT_INLINE)
4788 return 0;
4789
4790 len = btrfs_file_extent_num_bytes(leaf, extent);
4791 /* Last extent goes beyond i_size, no need to log a hole. */
4792 if (key.offset + len > i_size)
4793 return 0;
4794 hole_start = key.offset + len;
4795 hole_size = i_size - hole_start;
4796 }
4797 btrfs_release_path(path);
4798
4799 /* Last extent ends at i_size. */
4800 if (hole_size == 0)
4801 return 0;
4802
4803 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4804 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4805 hole_size, 0, hole_size, 0, 0, 0);
4806 return ret;
4807}
4808
4809/*
4810 * When we are logging a new inode X, check if it doesn't have a reference that
4811 * matches the reference from some other inode Y created in a past transaction
4812 * and that was renamed in the current transaction. If we don't do this, then at
4813 * log replay time we can lose inode Y (and all its files if it's a directory):
4814 *
4815 * mkdir /mnt/x
4816 * echo "hello world" > /mnt/x/foobar
4817 * sync
4818 * mv /mnt/x /mnt/y
4819 * mkdir /mnt/x # or touch /mnt/x
4820 * xfs_io -c fsync /mnt/x
4821 * <power fail>
4822 * mount fs, trigger log replay
4823 *
4824 * After the log replay procedure, we would lose the first directory and all its
4825 * files (file foobar).
4826 * For the case where inode Y is not a directory we simply end up losing it:
4827 *
4828 * echo "123" > /mnt/foo
4829 * sync
4830 * mv /mnt/foo /mnt/bar
4831 * echo "abc" > /mnt/foo
4832 * xfs_io -c fsync /mnt/foo
4833 * <power fail>
4834 *
4835 * We also need this for cases where a snapshot entry is replaced by some other
4836 * entry (file or directory) otherwise we end up with an unreplayable log due to
4837 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4838 * if it were a regular entry:
4839 *
4840 * mkdir /mnt/x
4841 * btrfs subvolume snapshot /mnt /mnt/x/snap
4842 * btrfs subvolume delete /mnt/x/snap
4843 * rmdir /mnt/x
4844 * mkdir /mnt/x
4845 * fsync /mnt/x or fsync some new file inside it
4846 * <power fail>
4847 *
4848 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4849 * the same transaction.
4850 */
4851static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4852 const int slot,
4853 const struct btrfs_key *key,
4854 struct btrfs_inode *inode,
4855 u64 *other_ino, u64 *other_parent)
4856{
4857 int ret;
4858 struct btrfs_path *search_path;
4859 char *name = NULL;
4860 u32 name_len = 0;
4861 u32 item_size = btrfs_item_size_nr(eb, slot);
4862 u32 cur_offset = 0;
4863 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4864
4865 search_path = btrfs_alloc_path();
4866 if (!search_path)
4867 return -ENOMEM;
4868 search_path->search_commit_root = 1;
4869 search_path->skip_locking = 1;
4870
4871 while (cur_offset < item_size) {
4872 u64 parent;
4873 u32 this_name_len;
4874 u32 this_len;
4875 unsigned long name_ptr;
4876 struct btrfs_dir_item *di;
4877
4878 if (key->type == BTRFS_INODE_REF_KEY) {
4879 struct btrfs_inode_ref *iref;
4880
4881 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4882 parent = key->offset;
4883 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4884 name_ptr = (unsigned long)(iref + 1);
4885 this_len = sizeof(*iref) + this_name_len;
4886 } else {
4887 struct btrfs_inode_extref *extref;
4888
4889 extref = (struct btrfs_inode_extref *)(ptr +
4890 cur_offset);
4891 parent = btrfs_inode_extref_parent(eb, extref);
4892 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4893 name_ptr = (unsigned long)&extref->name;
4894 this_len = sizeof(*extref) + this_name_len;
4895 }
4896
4897 if (this_name_len > name_len) {
4898 char *new_name;
4899
4900 new_name = krealloc(name, this_name_len, GFP_NOFS);
4901 if (!new_name) {
4902 ret = -ENOMEM;
4903 goto out;
4904 }
4905 name_len = this_name_len;
4906 name = new_name;
4907 }
4908
4909 read_extent_buffer(eb, name, name_ptr, this_name_len);
4910 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4911 parent, name, this_name_len, 0);
4912 if (di && !IS_ERR(di)) {
4913 struct btrfs_key di_key;
4914
4915 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4916 di, &di_key);
4917 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4918 if (di_key.objectid != key->objectid) {
4919 ret = 1;
4920 *other_ino = di_key.objectid;
4921 *other_parent = parent;
4922 } else {
4923 ret = 0;
4924 }
4925 } else {
4926 ret = -EAGAIN;
4927 }
4928 goto out;
4929 } else if (IS_ERR(di)) {
4930 ret = PTR_ERR(di);
4931 goto out;
4932 }
4933 btrfs_release_path(search_path);
4934
4935 cur_offset += this_len;
4936 }
4937 ret = 0;
4938out:
4939 btrfs_free_path(search_path);
4940 kfree(name);
4941 return ret;
4942}
4943
4944struct btrfs_ino_list {
4945 u64 ino;
4946 u64 parent;
4947 struct list_head list;
4948};
4949
4950static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4951 struct btrfs_root *root,
4952 struct btrfs_path *path,
4953 struct btrfs_log_ctx *ctx,
4954 u64 ino, u64 parent)
4955{
4956 struct btrfs_ino_list *ino_elem;
4957 LIST_HEAD(inode_list);
4958 int ret = 0;
4959
4960 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4961 if (!ino_elem)
4962 return -ENOMEM;
4963 ino_elem->ino = ino;
4964 ino_elem->parent = parent;
4965 list_add_tail(&ino_elem->list, &inode_list);
4966
4967 while (!list_empty(&inode_list)) {
4968 struct btrfs_fs_info *fs_info = root->fs_info;
4969 struct btrfs_key key;
4970 struct inode *inode;
4971
4972 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4973 list);
4974 ino = ino_elem->ino;
4975 parent = ino_elem->parent;
4976 list_del(&ino_elem->list);
4977 kfree(ino_elem);
4978 if (ret)
4979 continue;
4980
4981 btrfs_release_path(path);
4982
4983 key.objectid = ino;
4984 key.type = BTRFS_INODE_ITEM_KEY;
4985 key.offset = 0;
4986 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4987 /*
4988 * If the other inode that had a conflicting dir entry was
4989 * deleted in the current transaction, we need to log its parent
4990 * directory.
4991 */
4992 if (IS_ERR(inode)) {
4993 ret = PTR_ERR(inode);
4994 if (ret == -ENOENT) {
4995 key.objectid = parent;
4996 inode = btrfs_iget(fs_info->sb, &key, root,
4997 NULL);
4998 if (IS_ERR(inode)) {
4999 ret = PTR_ERR(inode);
5000 } else {
5001 ret = btrfs_log_inode(trans, root,
5002 BTRFS_I(inode),
5003 LOG_OTHER_INODE_ALL,
5004 0, LLONG_MAX, ctx);
5005 btrfs_add_delayed_iput(inode);
5006 }
5007 }
5008 continue;
5009 }
5010 /*
5011 * We are safe logging the other inode without acquiring its
5012 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5013 * are safe against concurrent renames of the other inode as
5014 * well because during a rename we pin the log and update the
5015 * log with the new name before we unpin it.
5016 */
5017 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5018 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5019 if (ret) {
5020 btrfs_add_delayed_iput(inode);
5021 continue;
5022 }
5023
5024 key.objectid = ino;
5025 key.type = BTRFS_INODE_REF_KEY;
5026 key.offset = 0;
5027 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5028 if (ret < 0) {
5029 btrfs_add_delayed_iput(inode);
5030 continue;
5031 }
5032
5033 while (true) {
5034 struct extent_buffer *leaf = path->nodes[0];
5035 int slot = path->slots[0];
5036 u64 other_ino = 0;
5037 u64 other_parent = 0;
5038
5039 if (slot >= btrfs_header_nritems(leaf)) {
5040 ret = btrfs_next_leaf(root, path);
5041 if (ret < 0) {
5042 break;
5043 } else if (ret > 0) {
5044 ret = 0;
5045 break;
5046 }
5047 continue;
5048 }
5049
5050 btrfs_item_key_to_cpu(leaf, &key, slot);
5051 if (key.objectid != ino ||
5052 (key.type != BTRFS_INODE_REF_KEY &&
5053 key.type != BTRFS_INODE_EXTREF_KEY)) {
5054 ret = 0;
5055 break;
5056 }
5057
5058 ret = btrfs_check_ref_name_override(leaf, slot, &key,
5059 BTRFS_I(inode), &other_ino,
5060 &other_parent);
5061 if (ret < 0)
5062 break;
5063 if (ret > 0) {
5064 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5065 if (!ino_elem) {
5066 ret = -ENOMEM;
5067 break;
5068 }
5069 ino_elem->ino = other_ino;
5070 ino_elem->parent = other_parent;
5071 list_add_tail(&ino_elem->list, &inode_list);
5072 ret = 0;
5073 }
5074 path->slots[0]++;
5075 }
5076 btrfs_add_delayed_iput(inode);
5077 }
5078
5079 return ret;
5080}
5081
5082/* log a single inode in the tree log.
5083 * At least one parent directory for this inode must exist in the tree
5084 * or be logged already.
5085 *
5086 * Any items from this inode changed by the current transaction are copied
5087 * to the log tree. An extra reference is taken on any extents in this
5088 * file, allowing us to avoid a whole pile of corner cases around logging
5089 * blocks that have been removed from the tree.
5090 *
5091 * See LOG_INODE_ALL and related defines for a description of what inode_only
5092 * does.
5093 *
5094 * This handles both files and directories.
5095 */
5096static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5097 struct btrfs_root *root, struct btrfs_inode *inode,
5098 int inode_only,
5099 const loff_t start,
5100 const loff_t end,
5101 struct btrfs_log_ctx *ctx)
5102{
5103 struct btrfs_fs_info *fs_info = root->fs_info;
5104 struct btrfs_path *path;
5105 struct btrfs_path *dst_path;
5106 struct btrfs_key min_key;
5107 struct btrfs_key max_key;
5108 struct btrfs_root *log = root->log_root;
5109 u64 last_extent = 0;
5110 int err = 0;
5111 int ret;
5112 int nritems;
5113 int ins_start_slot = 0;
5114 int ins_nr;
5115 bool fast_search = false;
5116 u64 ino = btrfs_ino(inode);
5117 struct extent_map_tree *em_tree = &inode->extent_tree;
5118 u64 logged_isize = 0;
5119 bool need_log_inode_item = true;
5120 bool xattrs_logged = false;
5121 bool recursive_logging = false;
5122
5123 path = btrfs_alloc_path();
5124 if (!path)
5125 return -ENOMEM;
5126 dst_path = btrfs_alloc_path();
5127 if (!dst_path) {
5128 btrfs_free_path(path);
5129 return -ENOMEM;
5130 }
5131
5132 min_key.objectid = ino;
5133 min_key.type = BTRFS_INODE_ITEM_KEY;
5134 min_key.offset = 0;
5135
5136 max_key.objectid = ino;
5137
5138
5139 /* today the code can only do partial logging of directories */
5140 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5141 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5142 &inode->runtime_flags) &&
5143 inode_only >= LOG_INODE_EXISTS))
5144 max_key.type = BTRFS_XATTR_ITEM_KEY;
5145 else
5146 max_key.type = (u8)-1;
5147 max_key.offset = (u64)-1;
5148
5149 /*
5150 * Only run delayed items if we are a dir or a new file.
5151 * Otherwise commit the delayed inode only, which is needed in
5152 * order for the log replay code to mark inodes for link count
5153 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5154 */
5155 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5156 inode->generation > fs_info->last_trans_committed)
5157 ret = btrfs_commit_inode_delayed_items(trans, inode);
5158 else
5159 ret = btrfs_commit_inode_delayed_inode(inode);
5160
5161 if (ret) {
5162 btrfs_free_path(path);
5163 btrfs_free_path(dst_path);
5164 return ret;
5165 }
5166
5167 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5168 recursive_logging = true;
5169 if (inode_only == LOG_OTHER_INODE)
5170 inode_only = LOG_INODE_EXISTS;
5171 else
5172 inode_only = LOG_INODE_ALL;
5173 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5174 } else {
5175 mutex_lock(&inode->log_mutex);
5176 }
5177
5178 /*
5179 * a brute force approach to making sure we get the most uptodate
5180 * copies of everything.
5181 */
5182 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5183 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5184
5185 if (inode_only == LOG_INODE_EXISTS)
5186 max_key_type = BTRFS_XATTR_ITEM_KEY;
5187 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5188 } else {
5189 if (inode_only == LOG_INODE_EXISTS) {
5190 /*
5191 * Make sure the new inode item we write to the log has
5192 * the same isize as the current one (if it exists).
5193 * This is necessary to prevent data loss after log
5194 * replay, and also to prevent doing a wrong expanding
5195 * truncate - for e.g. create file, write 4K into offset
5196 * 0, fsync, write 4K into offset 4096, add hard link,
5197 * fsync some other file (to sync log), power fail - if
5198 * we use the inode's current i_size, after log replay
5199 * we get a 8Kb file, with the last 4Kb extent as a hole
5200 * (zeroes), as if an expanding truncate happened,
5201 * instead of getting a file of 4Kb only.
5202 */
5203 err = logged_inode_size(log, inode, path, &logged_isize);
5204 if (err)
5205 goto out_unlock;
5206 }
5207 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5208 &inode->runtime_flags)) {
5209 if (inode_only == LOG_INODE_EXISTS) {
5210 max_key.type = BTRFS_XATTR_ITEM_KEY;
5211 ret = drop_objectid_items(trans, log, path, ino,
5212 max_key.type);
5213 } else {
5214 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5215 &inode->runtime_flags);
5216 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5217 &inode->runtime_flags);
5218 while(1) {
5219 ret = btrfs_truncate_inode_items(trans,
5220 log, &inode->vfs_inode, 0, 0);
5221 if (ret != -EAGAIN)
5222 break;
5223 }
5224 }
5225 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5226 &inode->runtime_flags) ||
5227 inode_only == LOG_INODE_EXISTS) {
5228 if (inode_only == LOG_INODE_ALL)
5229 fast_search = true;
5230 max_key.type = BTRFS_XATTR_ITEM_KEY;
5231 ret = drop_objectid_items(trans, log, path, ino,
5232 max_key.type);
5233 } else {
5234 if (inode_only == LOG_INODE_ALL)
5235 fast_search = true;
5236 goto log_extents;
5237 }
5238
5239 }
5240 if (ret) {
5241 err = ret;
5242 goto out_unlock;
5243 }
5244
5245 while (1) {
5246 ins_nr = 0;
5247 ret = btrfs_search_forward(root, &min_key,
5248 path, trans->transid);
5249 if (ret < 0) {
5250 err = ret;
5251 goto out_unlock;
5252 }
5253 if (ret != 0)
5254 break;
5255again:
5256 /* note, ins_nr might be > 0 here, cleanup outside the loop */
5257 if (min_key.objectid != ino)
5258 break;
5259 if (min_key.type > max_key.type)
5260 break;
5261
5262 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5263 need_log_inode_item = false;
5264
5265 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5266 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5267 inode->generation == trans->transid &&
5268 !recursive_logging) {
5269 u64 other_ino = 0;
5270 u64 other_parent = 0;
5271
5272 ret = btrfs_check_ref_name_override(path->nodes[0],
5273 path->slots[0], &min_key, inode,
5274 &other_ino, &other_parent);
5275 if (ret < 0) {
5276 err = ret;
5277 goto out_unlock;
5278 } else if (ret > 0 && ctx &&
5279 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5280 if (ins_nr > 0) {
5281 ins_nr++;
5282 } else {
5283 ins_nr = 1;
5284 ins_start_slot = path->slots[0];
5285 }
5286 ret = copy_items(trans, inode, dst_path, path,
5287 &last_extent, ins_start_slot,
5288 ins_nr, inode_only,
5289 logged_isize);
5290 if (ret < 0) {
5291 err = ret;
5292 goto out_unlock;
5293 }
5294 ins_nr = 0;
5295
5296 err = log_conflicting_inodes(trans, root, path,
5297 ctx, other_ino, other_parent);
5298 if (err)
5299 goto out_unlock;
5300 btrfs_release_path(path);
5301 goto next_key;
5302 }
5303 }
5304
5305 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5306 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5307 if (ins_nr == 0)
5308 goto next_slot;
5309 ret = copy_items(trans, inode, dst_path, path,
5310 &last_extent, ins_start_slot,
5311 ins_nr, inode_only, logged_isize);
5312 if (ret < 0) {
5313 err = ret;
5314 goto out_unlock;
5315 }
5316 ins_nr = 0;
5317 if (ret) {
5318 btrfs_release_path(path);
5319 continue;
5320 }
5321 goto next_slot;
5322 }
5323
5324 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5325 ins_nr++;
5326 goto next_slot;
5327 } else if (!ins_nr) {
5328 ins_start_slot = path->slots[0];
5329 ins_nr = 1;
5330 goto next_slot;
5331 }
5332
5333 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5334 ins_start_slot, ins_nr, inode_only,
5335 logged_isize);
5336 if (ret < 0) {
5337 err = ret;
5338 goto out_unlock;
5339 }
5340 if (ret) {
5341 ins_nr = 0;
5342 btrfs_release_path(path);
5343 continue;
5344 }
5345 ins_nr = 1;
5346 ins_start_slot = path->slots[0];
5347next_slot:
5348
5349 nritems = btrfs_header_nritems(path->nodes[0]);
5350 path->slots[0]++;
5351 if (path->slots[0] < nritems) {
5352 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5353 path->slots[0]);
5354 goto again;
5355 }
5356 if (ins_nr) {
5357 ret = copy_items(trans, inode, dst_path, path,
5358 &last_extent, ins_start_slot,
5359 ins_nr, inode_only, logged_isize);
5360 if (ret < 0) {
5361 err = ret;
5362 goto out_unlock;
5363 }
5364 ret = 0;
5365 ins_nr = 0;
5366 }
5367 btrfs_release_path(path);
5368next_key:
5369 if (min_key.offset < (u64)-1) {
5370 min_key.offset++;
5371 } else if (min_key.type < max_key.type) {
5372 min_key.type++;
5373 min_key.offset = 0;
5374 } else {
5375 break;
5376 }
5377 }
5378 if (ins_nr) {
5379 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5380 ins_start_slot, ins_nr, inode_only,
5381 logged_isize);
5382 if (ret < 0) {
5383 err = ret;
5384 goto out_unlock;
5385 }
5386 ret = 0;
5387 ins_nr = 0;
5388 }
5389
5390 btrfs_release_path(path);
5391 btrfs_release_path(dst_path);
5392 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5393 if (err)
5394 goto out_unlock;
5395 xattrs_logged = true;
5396 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5397 btrfs_release_path(path);
5398 btrfs_release_path(dst_path);
5399 err = btrfs_log_trailing_hole(trans, root, inode, path);
5400 if (err)
5401 goto out_unlock;
5402 }
5403log_extents:
5404 btrfs_release_path(path);
5405 btrfs_release_path(dst_path);
5406 if (need_log_inode_item) {
5407 err = log_inode_item(trans, log, dst_path, inode);
5408 if (!err && !xattrs_logged) {
5409 err = btrfs_log_all_xattrs(trans, root, inode, path,
5410 dst_path);
5411 btrfs_release_path(path);
5412 }
5413 if (err)
5414 goto out_unlock;
5415 }
5416 if (fast_search) {
5417 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5418 ctx, start, end);
5419 if (ret) {
5420 err = ret;
5421 goto out_unlock;
5422 }
5423 } else if (inode_only == LOG_INODE_ALL) {
5424 struct extent_map *em, *n;
5425
5426 write_lock(&em_tree->lock);
5427 /*
5428 * We can't just remove every em if we're called for a ranged
5429 * fsync - that is, one that doesn't cover the whole possible
5430 * file range (0 to LLONG_MAX). This is because we can have
5431 * em's that fall outside the range we're logging and therefore
5432 * their ordered operations haven't completed yet
5433 * (btrfs_finish_ordered_io() not invoked yet). This means we
5434 * didn't get their respective file extent item in the fs/subvol
5435 * tree yet, and need to let the next fast fsync (one which
5436 * consults the list of modified extent maps) find the em so
5437 * that it logs a matching file extent item and waits for the
5438 * respective ordered operation to complete (if it's still
5439 * running).
5440 *
5441 * Removing every em outside the range we're logging would make
5442 * the next fast fsync not log their matching file extent items,
5443 * therefore making us lose data after a log replay.
5444 */
5445 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5446 list) {
5447 const u64 mod_end = em->mod_start + em->mod_len - 1;
5448
5449 if (em->mod_start >= start && mod_end <= end)
5450 list_del_init(&em->list);
5451 }
5452 write_unlock(&em_tree->lock);
5453 }
5454
5455 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5456 ret = log_directory_changes(trans, root, inode, path, dst_path,
5457 ctx);
5458 if (ret) {
5459 err = ret;
5460 goto out_unlock;
5461 }
5462 }
5463
5464 /*
5465 * Don't update last_log_commit if we logged that an inode exists after
5466 * it was loaded to memory (full_sync bit set).
5467 * This is to prevent data loss when we do a write to the inode, then
5468 * the inode gets evicted after all delalloc was flushed, then we log
5469 * it exists (due to a rename for example) and then fsync it. This last
5470 * fsync would do nothing (not logging the extents previously written).
5471 */
5472 spin_lock(&inode->lock);
5473 inode->logged_trans = trans->transid;
5474 if (inode_only != LOG_INODE_EXISTS ||
5475 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5476 inode->last_log_commit = inode->last_sub_trans;
5477 spin_unlock(&inode->lock);
5478out_unlock:
5479 mutex_unlock(&inode->log_mutex);
5480
5481 btrfs_free_path(path);
5482 btrfs_free_path(dst_path);
5483 return err;
5484}
5485
5486/*
5487 * Check if we must fallback to a transaction commit when logging an inode.
5488 * This must be called after logging the inode and is used only in the context
5489 * when fsyncing an inode requires the need to log some other inode - in which
5490 * case we can't lock the i_mutex of each other inode we need to log as that
5491 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5492 * log inodes up or down in the hierarchy) or rename operations for example. So
5493 * we take the log_mutex of the inode after we have logged it and then check for
5494 * its last_unlink_trans value - this is safe because any task setting
5495 * last_unlink_trans must take the log_mutex and it must do this before it does
5496 * the actual unlink operation, so if we do this check before a concurrent task
5497 * sets last_unlink_trans it means we've logged a consistent version/state of
5498 * all the inode items, otherwise we are not sure and must do a transaction
5499 * commit (the concurrent task might have only updated last_unlink_trans before
5500 * we logged the inode or it might have also done the unlink).
5501 */
5502static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5503 struct btrfs_inode *inode)
5504{
5505 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5506 bool ret = false;
5507
5508 mutex_lock(&inode->log_mutex);
5509 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5510 /*
5511 * Make sure any commits to the log are forced to be full
5512 * commits.
5513 */
5514 btrfs_set_log_full_commit(trans);
5515 ret = true;
5516 }
5517 mutex_unlock(&inode->log_mutex);
5518
5519 return ret;
5520}
5521
5522/*
5523 * follow the dentry parent pointers up the chain and see if any
5524 * of the directories in it require a full commit before they can
5525 * be logged. Returns zero if nothing special needs to be done or 1 if
5526 * a full commit is required.
5527 */
5528static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5529 struct btrfs_inode *inode,
5530 struct dentry *parent,
5531 struct super_block *sb,
5532 u64 last_committed)
5533{
5534 int ret = 0;
5535 struct dentry *old_parent = NULL;
5536
5537 /*
5538 * for regular files, if its inode is already on disk, we don't
5539 * have to worry about the parents at all. This is because
5540 * we can use the last_unlink_trans field to record renames
5541 * and other fun in this file.
5542 */
5543 if (S_ISREG(inode->vfs_inode.i_mode) &&
5544 inode->generation <= last_committed &&
5545 inode->last_unlink_trans <= last_committed)
5546 goto out;
5547
5548 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5549 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5550 goto out;
5551 inode = BTRFS_I(d_inode(parent));
5552 }
5553
5554 while (1) {
5555 if (btrfs_must_commit_transaction(trans, inode)) {
5556 ret = 1;
5557 break;
5558 }
5559
5560 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5561 break;
5562
5563 if (IS_ROOT(parent)) {
5564 inode = BTRFS_I(d_inode(parent));
5565 if (btrfs_must_commit_transaction(trans, inode))
5566 ret = 1;
5567 break;
5568 }
5569
5570 parent = dget_parent(parent);
5571 dput(old_parent);
5572 old_parent = parent;
5573 inode = BTRFS_I(d_inode(parent));
5574
5575 }
5576 dput(old_parent);
5577out:
5578 return ret;
5579}
5580
5581struct btrfs_dir_list {
5582 u64 ino;
5583 struct list_head list;
5584};
5585
5586/*
5587 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5588 * details about the why it is needed.
5589 * This is a recursive operation - if an existing dentry corresponds to a
5590 * directory, that directory's new entries are logged too (same behaviour as
5591 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5592 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5593 * complains about the following circular lock dependency / possible deadlock:
5594 *
5595 * CPU0 CPU1
5596 * ---- ----
5597 * lock(&type->i_mutex_dir_key#3/2);
5598 * lock(sb_internal#2);
5599 * lock(&type->i_mutex_dir_key#3/2);
5600 * lock(&sb->s_type->i_mutex_key#14);
5601 *
5602 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5603 * sb_start_intwrite() in btrfs_start_transaction().
5604 * Not locking i_mutex of the inodes is still safe because:
5605 *
5606 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5607 * that while logging the inode new references (names) are added or removed
5608 * from the inode, leaving the logged inode item with a link count that does
5609 * not match the number of logged inode reference items. This is fine because
5610 * at log replay time we compute the real number of links and correct the
5611 * link count in the inode item (see replay_one_buffer() and
5612 * link_to_fixup_dir());
5613 *
5614 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5615 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5616 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5617 * has a size that doesn't match the sum of the lengths of all the logged
5618 * names. This does not result in a problem because if a dir_item key is
5619 * logged but its matching dir_index key is not logged, at log replay time we
5620 * don't use it to replay the respective name (see replay_one_name()). On the
5621 * other hand if only the dir_index key ends up being logged, the respective
5622 * name is added to the fs/subvol tree with both the dir_item and dir_index
5623 * keys created (see replay_one_name()).
5624 * The directory's inode item with a wrong i_size is not a problem as well,
5625 * since we don't use it at log replay time to set the i_size in the inode
5626 * item of the fs/subvol tree (see overwrite_item()).
5627 */
5628static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5629 struct btrfs_root *root,
5630 struct btrfs_inode *start_inode,
5631 struct btrfs_log_ctx *ctx)
5632{
5633 struct btrfs_fs_info *fs_info = root->fs_info;
5634 struct btrfs_root *log = root->log_root;
5635 struct btrfs_path *path;
5636 LIST_HEAD(dir_list);
5637 struct btrfs_dir_list *dir_elem;
5638 int ret = 0;
5639
5640 path = btrfs_alloc_path();
5641 if (!path)
5642 return -ENOMEM;
5643
5644 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5645 if (!dir_elem) {
5646 btrfs_free_path(path);
5647 return -ENOMEM;
5648 }
5649 dir_elem->ino = btrfs_ino(start_inode);
5650 list_add_tail(&dir_elem->list, &dir_list);
5651
5652 while (!list_empty(&dir_list)) {
5653 struct extent_buffer *leaf;
5654 struct btrfs_key min_key;
5655 int nritems;
5656 int i;
5657
5658 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5659 list);
5660 if (ret)
5661 goto next_dir_inode;
5662
5663 min_key.objectid = dir_elem->ino;
5664 min_key.type = BTRFS_DIR_ITEM_KEY;
5665 min_key.offset = 0;
5666again:
5667 btrfs_release_path(path);
5668 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5669 if (ret < 0) {
5670 goto next_dir_inode;
5671 } else if (ret > 0) {
5672 ret = 0;
5673 goto next_dir_inode;
5674 }
5675
5676process_leaf:
5677 leaf = path->nodes[0];
5678 nritems = btrfs_header_nritems(leaf);
5679 for (i = path->slots[0]; i < nritems; i++) {
5680 struct btrfs_dir_item *di;
5681 struct btrfs_key di_key;
5682 struct inode *di_inode;
5683 struct btrfs_dir_list *new_dir_elem;
5684 int log_mode = LOG_INODE_EXISTS;
5685 int type;
5686
5687 btrfs_item_key_to_cpu(leaf, &min_key, i);
5688 if (min_key.objectid != dir_elem->ino ||
5689 min_key.type != BTRFS_DIR_ITEM_KEY)
5690 goto next_dir_inode;
5691
5692 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5693 type = btrfs_dir_type(leaf, di);
5694 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5695 type != BTRFS_FT_DIR)
5696 continue;
5697 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5698 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5699 continue;
5700
5701 btrfs_release_path(path);
5702 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5703 if (IS_ERR(di_inode)) {
5704 ret = PTR_ERR(di_inode);
5705 goto next_dir_inode;
5706 }
5707
5708 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5709 btrfs_add_delayed_iput(di_inode);
5710 break;
5711 }
5712
5713 ctx->log_new_dentries = false;
5714 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5715 log_mode = LOG_INODE_ALL;
5716 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5717 log_mode, 0, LLONG_MAX, ctx);
5718 if (!ret &&
5719 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5720 ret = 1;
5721 btrfs_add_delayed_iput(di_inode);
5722 if (ret)
5723 goto next_dir_inode;
5724 if (ctx->log_new_dentries) {
5725 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5726 GFP_NOFS);
5727 if (!new_dir_elem) {
5728 ret = -ENOMEM;
5729 goto next_dir_inode;
5730 }
5731 new_dir_elem->ino = di_key.objectid;
5732 list_add_tail(&new_dir_elem->list, &dir_list);
5733 }
5734 break;
5735 }
5736 if (i == nritems) {
5737 ret = btrfs_next_leaf(log, path);
5738 if (ret < 0) {
5739 goto next_dir_inode;
5740 } else if (ret > 0) {
5741 ret = 0;
5742 goto next_dir_inode;
5743 }
5744 goto process_leaf;
5745 }
5746 if (min_key.offset < (u64)-1) {
5747 min_key.offset++;
5748 goto again;
5749 }
5750next_dir_inode:
5751 list_del(&dir_elem->list);
5752 kfree(dir_elem);
5753 }
5754
5755 btrfs_free_path(path);
5756 return ret;
5757}
5758
5759static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5760 struct btrfs_inode *inode,
5761 struct btrfs_log_ctx *ctx)
5762{
5763 struct btrfs_fs_info *fs_info = trans->fs_info;
5764 int ret;
5765 struct btrfs_path *path;
5766 struct btrfs_key key;
5767 struct btrfs_root *root = inode->root;
5768 const u64 ino = btrfs_ino(inode);
5769
5770 path = btrfs_alloc_path();
5771 if (!path)
5772 return -ENOMEM;
5773 path->skip_locking = 1;
5774 path->search_commit_root = 1;
5775
5776 key.objectid = ino;
5777 key.type = BTRFS_INODE_REF_KEY;
5778 key.offset = 0;
5779 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5780 if (ret < 0)
5781 goto out;
5782
5783 while (true) {
5784 struct extent_buffer *leaf = path->nodes[0];
5785 int slot = path->slots[0];
5786 u32 cur_offset = 0;
5787 u32 item_size;
5788 unsigned long ptr;
5789
5790 if (slot >= btrfs_header_nritems(leaf)) {
5791 ret = btrfs_next_leaf(root, path);
5792 if (ret < 0)
5793 goto out;
5794 else if (ret > 0)
5795 break;
5796 continue;
5797 }
5798
5799 btrfs_item_key_to_cpu(leaf, &key, slot);
5800 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5801 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5802 break;
5803
5804 item_size = btrfs_item_size_nr(leaf, slot);
5805 ptr = btrfs_item_ptr_offset(leaf, slot);
5806 while (cur_offset < item_size) {
5807 struct btrfs_key inode_key;
5808 struct inode *dir_inode;
5809
5810 inode_key.type = BTRFS_INODE_ITEM_KEY;
5811 inode_key.offset = 0;
5812
5813 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5814 struct btrfs_inode_extref *extref;
5815
5816 extref = (struct btrfs_inode_extref *)
5817 (ptr + cur_offset);
5818 inode_key.objectid = btrfs_inode_extref_parent(
5819 leaf, extref);
5820 cur_offset += sizeof(*extref);
5821 cur_offset += btrfs_inode_extref_name_len(leaf,
5822 extref);
5823 } else {
5824 inode_key.objectid = key.offset;
5825 cur_offset = item_size;
5826 }
5827
5828 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5829 root, NULL);
5830 /*
5831 * If the parent inode was deleted, return an error to
5832 * fallback to a transaction commit. This is to prevent
5833 * getting an inode that was moved from one parent A to
5834 * a parent B, got its former parent A deleted and then
5835 * it got fsync'ed, from existing at both parents after
5836 * a log replay (and the old parent still existing).
5837 * Example:
5838 *
5839 * mkdir /mnt/A
5840 * mkdir /mnt/B
5841 * touch /mnt/B/bar
5842 * sync
5843 * mv /mnt/B/bar /mnt/A/bar
5844 * mv -T /mnt/A /mnt/B
5845 * fsync /mnt/B/bar
5846 * <power fail>
5847 *
5848 * If we ignore the old parent B which got deleted,
5849 * after a log replay we would have file bar linked
5850 * at both parents and the old parent B would still
5851 * exist.
5852 */
5853 if (IS_ERR(dir_inode)) {
5854 ret = PTR_ERR(dir_inode);
5855 goto out;
5856 }
5857
5858 if (ctx)
5859 ctx->log_new_dentries = false;
5860 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5861 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5862 if (!ret &&
5863 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5864 ret = 1;
5865 if (!ret && ctx && ctx->log_new_dentries)
5866 ret = log_new_dir_dentries(trans, root,
5867 BTRFS_I(dir_inode), ctx);
5868 btrfs_add_delayed_iput(dir_inode);
5869 if (ret)
5870 goto out;
5871 }
5872 path->slots[0]++;
5873 }
5874 ret = 0;
5875out:
5876 btrfs_free_path(path);
5877 return ret;
5878}
5879
5880static int log_new_ancestors(struct btrfs_trans_handle *trans,
5881 struct btrfs_root *root,
5882 struct btrfs_path *path,
5883 struct btrfs_log_ctx *ctx)
5884{
5885 struct btrfs_key found_key;
5886
5887 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5888
5889 while (true) {
5890 struct btrfs_fs_info *fs_info = root->fs_info;
5891 const u64 last_committed = fs_info->last_trans_committed;
5892 struct extent_buffer *leaf = path->nodes[0];
5893 int slot = path->slots[0];
5894 struct btrfs_key search_key;
5895 struct inode *inode;
5896 int ret = 0;
5897
5898 btrfs_release_path(path);
5899
5900 search_key.objectid = found_key.offset;
5901 search_key.type = BTRFS_INODE_ITEM_KEY;
5902 search_key.offset = 0;
5903 inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5904 if (IS_ERR(inode))
5905 return PTR_ERR(inode);
5906
5907 if (BTRFS_I(inode)->generation > last_committed)
5908 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5909 LOG_INODE_EXISTS,
5910 0, LLONG_MAX, ctx);
5911 btrfs_add_delayed_iput(inode);
5912 if (ret)
5913 return ret;
5914
5915 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5916 break;
5917
5918 search_key.type = BTRFS_INODE_REF_KEY;
5919 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5920 if (ret < 0)
5921 return ret;
5922
5923 leaf = path->nodes[0];
5924 slot = path->slots[0];
5925 if (slot >= btrfs_header_nritems(leaf)) {
5926 ret = btrfs_next_leaf(root, path);
5927 if (ret < 0)
5928 return ret;
5929 else if (ret > 0)
5930 return -ENOENT;
5931 leaf = path->nodes[0];
5932 slot = path->slots[0];
5933 }
5934
5935 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5936 if (found_key.objectid != search_key.objectid ||
5937 found_key.type != BTRFS_INODE_REF_KEY)
5938 return -ENOENT;
5939 }
5940 return 0;
5941}
5942
5943static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5944 struct btrfs_inode *inode,
5945 struct dentry *parent,
5946 struct btrfs_log_ctx *ctx)
5947{
5948 struct btrfs_root *root = inode->root;
5949 struct btrfs_fs_info *fs_info = root->fs_info;
5950 struct dentry *old_parent = NULL;
5951 struct super_block *sb = inode->vfs_inode.i_sb;
5952 int ret = 0;
5953
5954 while (true) {
5955 if (!parent || d_really_is_negative(parent) ||
5956 sb != parent->d_sb)
5957 break;
5958
5959 inode = BTRFS_I(d_inode(parent));
5960 if (root != inode->root)
5961 break;
5962
5963 if (inode->generation > fs_info->last_trans_committed) {
5964 ret = btrfs_log_inode(trans, root, inode,
5965 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5966 if (ret)
5967 break;
5968 }
5969 if (IS_ROOT(parent))
5970 break;
5971
5972 parent = dget_parent(parent);
5973 dput(old_parent);
5974 old_parent = parent;
5975 }
5976 dput(old_parent);
5977
5978 return ret;
5979}
5980
5981static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5982 struct btrfs_inode *inode,
5983 struct dentry *parent,
5984 struct btrfs_log_ctx *ctx)
5985{
5986 struct btrfs_root *root = inode->root;
5987 const u64 ino = btrfs_ino(inode);
5988 struct btrfs_path *path;
5989 struct btrfs_key search_key;
5990 int ret;
5991
5992 /*
5993 * For a single hard link case, go through a fast path that does not
5994 * need to iterate the fs/subvolume tree.
5995 */
5996 if (inode->vfs_inode.i_nlink < 2)
5997 return log_new_ancestors_fast(trans, inode, parent, ctx);
5998
5999 path = btrfs_alloc_path();
6000 if (!path)
6001 return -ENOMEM;
6002
6003 search_key.objectid = ino;
6004 search_key.type = BTRFS_INODE_REF_KEY;
6005 search_key.offset = 0;
6006again:
6007 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6008 if (ret < 0)
6009 goto out;
6010 if (ret == 0)
6011 path->slots[0]++;
6012
6013 while (true) {
6014 struct extent_buffer *leaf = path->nodes[0];
6015 int slot = path->slots[0];
6016 struct btrfs_key found_key;
6017
6018 if (slot >= btrfs_header_nritems(leaf)) {
6019 ret = btrfs_next_leaf(root, path);
6020 if (ret < 0)
6021 goto out;
6022 else if (ret > 0)
6023 break;
6024 continue;
6025 }
6026
6027 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6028 if (found_key.objectid != ino ||
6029 found_key.type > BTRFS_INODE_EXTREF_KEY)
6030 break;
6031
6032 /*
6033 * Don't deal with extended references because they are rare
6034 * cases and too complex to deal with (we would need to keep
6035 * track of which subitem we are processing for each item in
6036 * this loop, etc). So just return some error to fallback to
6037 * a transaction commit.
6038 */
6039 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6040 ret = -EMLINK;
6041 goto out;
6042 }
6043
6044 /*
6045 * Logging ancestors needs to do more searches on the fs/subvol
6046 * tree, so it releases the path as needed to avoid deadlocks.
6047 * Keep track of the last inode ref key and resume from that key
6048 * after logging all new ancestors for the current hard link.
6049 */
6050 memcpy(&search_key, &found_key, sizeof(search_key));
6051
6052 ret = log_new_ancestors(trans, root, path, ctx);
6053 if (ret)
6054 goto out;
6055 btrfs_release_path(path);
6056 goto again;
6057 }
6058 ret = 0;
6059out:
6060 btrfs_free_path(path);
6061 return ret;
6062}
6063
6064/*
6065 * helper function around btrfs_log_inode to make sure newly created
6066 * parent directories also end up in the log. A minimal inode and backref
6067 * only logging is done of any parent directories that are older than
6068 * the last committed transaction
6069 */
6070static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
6071 struct btrfs_inode *inode,
6072 struct dentry *parent,
6073 const loff_t start,
6074 const loff_t end,
6075 int inode_only,
6076 struct btrfs_log_ctx *ctx)
6077{
6078 struct btrfs_root *root = inode->root;
6079 struct btrfs_fs_info *fs_info = root->fs_info;
6080 struct super_block *sb;
6081 int ret = 0;
6082 u64 last_committed = fs_info->last_trans_committed;
6083 bool log_dentries = false;
6084
6085 sb = inode->vfs_inode.i_sb;
6086
6087 if (btrfs_test_opt(fs_info, NOTREELOG)) {
6088 ret = 1;
6089 goto end_no_trans;
6090 }
6091
6092 /*
6093 * The prev transaction commit doesn't complete, we need do
6094 * full commit by ourselves.
6095 */
6096 if (fs_info->last_trans_log_full_commit >
6097 fs_info->last_trans_committed) {
6098 ret = 1;
6099 goto end_no_trans;
6100 }
6101
6102 if (btrfs_root_refs(&root->root_item) == 0) {
6103 ret = 1;
6104 goto end_no_trans;
6105 }
6106
6107 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6108 last_committed);
6109 if (ret)
6110 goto end_no_trans;
6111
6112 /*
6113 * Skip already logged inodes or inodes corresponding to tmpfiles
6114 * (since logging them is pointless, a link count of 0 means they
6115 * will never be accessible).
6116 */
6117 if (btrfs_inode_in_log(inode, trans->transid) ||
6118 inode->vfs_inode.i_nlink == 0) {
6119 ret = BTRFS_NO_LOG_SYNC;
6120 goto end_no_trans;
6121 }
6122
6123 ret = start_log_trans(trans, root, ctx);
6124 if (ret)
6125 goto end_no_trans;
6126
6127 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6128 if (ret)
6129 goto end_trans;
6130
6131 /*
6132 * for regular files, if its inode is already on disk, we don't
6133 * have to worry about the parents at all. This is because
6134 * we can use the last_unlink_trans field to record renames
6135 * and other fun in this file.
6136 */
6137 if (S_ISREG(inode->vfs_inode.i_mode) &&
6138 inode->generation <= last_committed &&
6139 inode->last_unlink_trans <= last_committed) {
6140 ret = 0;
6141 goto end_trans;
6142 }
6143
6144 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6145 log_dentries = true;
6146
6147 /*
6148 * On unlink we must make sure all our current and old parent directory
6149 * inodes are fully logged. This is to prevent leaving dangling
6150 * directory index entries in directories that were our parents but are
6151 * not anymore. Not doing this results in old parent directory being
6152 * impossible to delete after log replay (rmdir will always fail with
6153 * error -ENOTEMPTY).
6154 *
6155 * Example 1:
6156 *
6157 * mkdir testdir
6158 * touch testdir/foo
6159 * ln testdir/foo testdir/bar
6160 * sync
6161 * unlink testdir/bar
6162 * xfs_io -c fsync testdir/foo
6163 * <power failure>
6164 * mount fs, triggers log replay
6165 *
6166 * If we don't log the parent directory (testdir), after log replay the
6167 * directory still has an entry pointing to the file inode using the bar
6168 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6169 * the file inode has a link count of 1.
6170 *
6171 * Example 2:
6172 *
6173 * mkdir testdir
6174 * touch foo
6175 * ln foo testdir/foo2
6176 * ln foo testdir/foo3
6177 * sync
6178 * unlink testdir/foo3
6179 * xfs_io -c fsync foo
6180 * <power failure>
6181 * mount fs, triggers log replay
6182 *
6183 * Similar as the first example, after log replay the parent directory
6184 * testdir still has an entry pointing to the inode file with name foo3
6185 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6186 * and has a link count of 2.
6187 */
6188 if (inode->last_unlink_trans > last_committed) {
6189 ret = btrfs_log_all_parents(trans, inode, ctx);
6190 if (ret)
6191 goto end_trans;
6192 }
6193
6194 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6195 if (ret)
6196 goto end_trans;
6197
6198 if (log_dentries)
6199 ret = log_new_dir_dentries(trans, root, inode, ctx);
6200 else
6201 ret = 0;
6202end_trans:
6203 if (ret < 0) {
6204 btrfs_set_log_full_commit(trans);
6205 ret = 1;
6206 }
6207
6208 if (ret)
6209 btrfs_remove_log_ctx(root, ctx);
6210 btrfs_end_log_trans(root);
6211end_no_trans:
6212 return ret;
6213}
6214
6215/*
6216 * it is not safe to log dentry if the chunk root has added new
6217 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6218 * If this returns 1, you must commit the transaction to safely get your
6219 * data on disk.
6220 */
6221int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6222 struct dentry *dentry,
6223 const loff_t start,
6224 const loff_t end,
6225 struct btrfs_log_ctx *ctx)
6226{
6227 struct dentry *parent = dget_parent(dentry);
6228 int ret;
6229
6230 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6231 start, end, LOG_INODE_ALL, ctx);
6232 dput(parent);
6233
6234 return ret;
6235}
6236
6237/*
6238 * should be called during mount to recover any replay any log trees
6239 * from the FS
6240 */
6241int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6242{
6243 int ret;
6244 struct btrfs_path *path;
6245 struct btrfs_trans_handle *trans;
6246 struct btrfs_key key;
6247 struct btrfs_key found_key;
6248 struct btrfs_key tmp_key;
6249 struct btrfs_root *log;
6250 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6251 struct walk_control wc = {
6252 .process_func = process_one_buffer,
6253 .stage = LOG_WALK_PIN_ONLY,
6254 };
6255
6256 path = btrfs_alloc_path();
6257 if (!path)
6258 return -ENOMEM;
6259
6260 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6261
6262 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6263 if (IS_ERR(trans)) {
6264 ret = PTR_ERR(trans);
6265 goto error;
6266 }
6267
6268 wc.trans = trans;
6269 wc.pin = 1;
6270
6271 ret = walk_log_tree(trans, log_root_tree, &wc);
6272 if (ret) {
6273 btrfs_handle_fs_error(fs_info, ret,
6274 "Failed to pin buffers while recovering log root tree.");
6275 goto error;
6276 }
6277
6278again:
6279 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6280 key.offset = (u64)-1;
6281 key.type = BTRFS_ROOT_ITEM_KEY;
6282
6283 while (1) {
6284 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6285
6286 if (ret < 0) {
6287 btrfs_handle_fs_error(fs_info, ret,
6288 "Couldn't find tree log root.");
6289 goto error;
6290 }
6291 if (ret > 0) {
6292 if (path->slots[0] == 0)
6293 break;
6294 path->slots[0]--;
6295 }
6296 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6297 path->slots[0]);
6298 btrfs_release_path(path);
6299 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6300 break;
6301
6302 log = btrfs_read_fs_root(log_root_tree, &found_key);
6303 if (IS_ERR(log)) {
6304 ret = PTR_ERR(log);
6305 btrfs_handle_fs_error(fs_info, ret,
6306 "Couldn't read tree log root.");
6307 goto error;
6308 }
6309
6310 tmp_key.objectid = found_key.offset;
6311 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6312 tmp_key.offset = (u64)-1;
6313
6314 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6315 if (IS_ERR(wc.replay_dest)) {
6316 ret = PTR_ERR(wc.replay_dest);
6317 free_extent_buffer(log->node);
6318 free_extent_buffer(log->commit_root);
6319 kfree(log);
6320 btrfs_handle_fs_error(fs_info, ret,
6321 "Couldn't read target root for tree log recovery.");
6322 goto error;
6323 }
6324
6325 wc.replay_dest->log_root = log;
6326 btrfs_record_root_in_trans(trans, wc.replay_dest);
6327 ret = walk_log_tree(trans, log, &wc);
6328
6329 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6330 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6331 path);
6332 }
6333
6334 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6335 struct btrfs_root *root = wc.replay_dest;
6336
6337 btrfs_release_path(path);
6338
6339 /*
6340 * We have just replayed everything, and the highest
6341 * objectid of fs roots probably has changed in case
6342 * some inode_item's got replayed.
6343 *
6344 * root->objectid_mutex is not acquired as log replay
6345 * could only happen during mount.
6346 */
6347 ret = btrfs_find_highest_objectid(root,
6348 &root->highest_objectid);
6349 }
6350
6351 key.offset = found_key.offset - 1;
6352 wc.replay_dest->log_root = NULL;
6353 free_extent_buffer(log->node);
6354 free_extent_buffer(log->commit_root);
6355 kfree(log);
6356
6357 if (ret)
6358 goto error;
6359
6360 if (found_key.offset == 0)
6361 break;
6362 }
6363 btrfs_release_path(path);
6364
6365 /* step one is to pin it all, step two is to replay just inodes */
6366 if (wc.pin) {
6367 wc.pin = 0;
6368 wc.process_func = replay_one_buffer;
6369 wc.stage = LOG_WALK_REPLAY_INODES;
6370 goto again;
6371 }
6372 /* step three is to replay everything */
6373 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6374 wc.stage++;
6375 goto again;
6376 }
6377
6378 btrfs_free_path(path);
6379
6380 /* step 4: commit the transaction, which also unpins the blocks */
6381 ret = btrfs_commit_transaction(trans);
6382 if (ret)
6383 return ret;
6384
6385 free_extent_buffer(log_root_tree->node);
6386 log_root_tree->log_root = NULL;
6387 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6388 kfree(log_root_tree);
6389
6390 return 0;
6391error:
6392 if (wc.trans)
6393 btrfs_end_transaction(wc.trans);
6394 btrfs_free_path(path);
6395 return ret;
6396}
6397
6398/*
6399 * there are some corner cases where we want to force a full
6400 * commit instead of allowing a directory to be logged.
6401 *
6402 * They revolve around files there were unlinked from the directory, and
6403 * this function updates the parent directory so that a full commit is
6404 * properly done if it is fsync'd later after the unlinks are done.
6405 *
6406 * Must be called before the unlink operations (updates to the subvolume tree,
6407 * inodes, etc) are done.
6408 */
6409void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6410 struct btrfs_inode *dir, struct btrfs_inode *inode,
6411 int for_rename)
6412{
6413 /*
6414 * when we're logging a file, if it hasn't been renamed
6415 * or unlinked, and its inode is fully committed on disk,
6416 * we don't have to worry about walking up the directory chain
6417 * to log its parents.
6418 *
6419 * So, we use the last_unlink_trans field to put this transid
6420 * into the file. When the file is logged we check it and
6421 * don't log the parents if the file is fully on disk.
6422 */
6423 mutex_lock(&inode->log_mutex);
6424 inode->last_unlink_trans = trans->transid;
6425 mutex_unlock(&inode->log_mutex);
6426
6427 /*
6428 * if this directory was already logged any new
6429 * names for this file/dir will get recorded
6430 */
6431 if (dir->logged_trans == trans->transid)
6432 return;
6433
6434 /*
6435 * if the inode we're about to unlink was logged,
6436 * the log will be properly updated for any new names
6437 */
6438 if (inode->logged_trans == trans->transid)
6439 return;
6440
6441 /*
6442 * when renaming files across directories, if the directory
6443 * there we're unlinking from gets fsync'd later on, there's
6444 * no way to find the destination directory later and fsync it
6445 * properly. So, we have to be conservative and force commits
6446 * so the new name gets discovered.
6447 */
6448 if (for_rename)
6449 goto record;
6450
6451 /* we can safely do the unlink without any special recording */
6452 return;
6453
6454record:
6455 mutex_lock(&dir->log_mutex);
6456 dir->last_unlink_trans = trans->transid;
6457 mutex_unlock(&dir->log_mutex);
6458}
6459
6460/*
6461 * Make sure that if someone attempts to fsync the parent directory of a deleted
6462 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6463 * that after replaying the log tree of the parent directory's root we will not
6464 * see the snapshot anymore and at log replay time we will not see any log tree
6465 * corresponding to the deleted snapshot's root, which could lead to replaying
6466 * it after replaying the log tree of the parent directory (which would replay
6467 * the snapshot delete operation).
6468 *
6469 * Must be called before the actual snapshot destroy operation (updates to the
6470 * parent root and tree of tree roots trees, etc) are done.
6471 */
6472void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6473 struct btrfs_inode *dir)
6474{
6475 mutex_lock(&dir->log_mutex);
6476 dir->last_unlink_trans = trans->transid;
6477 mutex_unlock(&dir->log_mutex);
6478}
6479
6480/*
6481 * Call this after adding a new name for a file and it will properly
6482 * update the log to reflect the new name.
6483 *
6484 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6485 * true (because it's not used).
6486 *
6487 * Return value depends on whether @sync_log is true or false.
6488 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6489 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6490 * otherwise.
6491 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6492 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6493 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6494 * committed (without attempting to sync the log).
6495 */
6496int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6497 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6498 struct dentry *parent,
6499 bool sync_log, struct btrfs_log_ctx *ctx)
6500{
6501 struct btrfs_fs_info *fs_info = trans->fs_info;
6502 int ret;
6503
6504 /*
6505 * this will force the logging code to walk the dentry chain
6506 * up for the file
6507 */
6508 if (!S_ISDIR(inode->vfs_inode.i_mode))
6509 inode->last_unlink_trans = trans->transid;
6510
6511 /*
6512 * if this inode hasn't been logged and directory we're renaming it
6513 * from hasn't been logged, we don't need to log it
6514 */
6515 if (inode->logged_trans <= fs_info->last_trans_committed &&
6516 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6517 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6518 BTRFS_DONT_NEED_LOG_SYNC;
6519
6520 if (sync_log) {
6521 struct btrfs_log_ctx ctx2;
6522
6523 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6524 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6525 LOG_INODE_EXISTS, &ctx2);
6526 if (ret == BTRFS_NO_LOG_SYNC)
6527 return BTRFS_DONT_NEED_TRANS_COMMIT;
6528 else if (ret)
6529 return BTRFS_NEED_TRANS_COMMIT;
6530
6531 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6532 if (ret)
6533 return BTRFS_NEED_TRANS_COMMIT;
6534 return BTRFS_DONT_NEED_TRANS_COMMIT;
6535 }
6536
6537 ASSERT(ctx);
6538 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6539 LOG_INODE_EXISTS, ctx);
6540 if (ret == BTRFS_NO_LOG_SYNC)
6541 return BTRFS_DONT_NEED_LOG_SYNC;
6542 else if (ret)
6543 return BTRFS_NEED_TRANS_COMMIT;
6544
6545 return BTRFS_NEED_LOG_SYNC;
6546}
6547