Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "misc.h"
12#include "ctree.h"
13#include "tree-log.h"
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
17#include "backref.h"
18#include "compression.h"
19#include "qgroup.h"
20#include "inode-map.h"
21#include "block-group.h"
22#include "space-info.h"
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
36
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
95
96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct btrfs_inode *inode,
98 int inode_only,
99 const loff_t start,
100 const loff_t end,
101 struct btrfs_log_ctx *ctx);
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
142{
143 struct btrfs_fs_info *fs_info = root->fs_info;
144 int ret = 0;
145
146 mutex_lock(&root->log_mutex);
147
148 if (root->log_root) {
149 if (btrfs_need_log_full_commit(trans)) {
150 ret = -EAGAIN;
151 goto out;
152 }
153
154 if (!root->log_start_pid) {
155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 root->log_start_pid = current->pid;
157 } else if (root->log_start_pid != current->pid) {
158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 }
160 } else {
161 mutex_lock(&fs_info->tree_log_mutex);
162 if (!fs_info->log_root_tree)
163 ret = btrfs_init_log_root_tree(trans, fs_info);
164 mutex_unlock(&fs_info->tree_log_mutex);
165 if (ret)
166 goto out;
167
168 ret = btrfs_add_log_tree(trans, root);
169 if (ret)
170 goto out;
171
172 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
174 root->log_start_pid = current->pid;
175 }
176
177 atomic_inc(&root->log_batch);
178 atomic_inc(&root->log_writers);
179 if (ctx) {
180 int index = root->log_transid % 2;
181 list_add_tail(&ctx->list, &root->log_ctxs[index]);
182 ctx->log_transid = root->log_transid;
183 }
184
185out:
186 mutex_unlock(&root->log_mutex);
187 return ret;
188}
189
190/*
191 * returns 0 if there was a log transaction running and we were able
192 * to join, or returns -ENOENT if there were not transactions
193 * in progress
194 */
195static int join_running_log_trans(struct btrfs_root *root)
196{
197 int ret = -ENOENT;
198
199 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
200 return ret;
201
202 mutex_lock(&root->log_mutex);
203 if (root->log_root) {
204 ret = 0;
205 atomic_inc(&root->log_writers);
206 }
207 mutex_unlock(&root->log_mutex);
208 return ret;
209}
210
211/*
212 * This either makes the current running log transaction wait
213 * until you call btrfs_end_log_trans() or it makes any future
214 * log transactions wait until you call btrfs_end_log_trans()
215 */
216void btrfs_pin_log_trans(struct btrfs_root *root)
217{
218 mutex_lock(&root->log_mutex);
219 atomic_inc(&root->log_writers);
220 mutex_unlock(&root->log_mutex);
221}
222
223/*
224 * indicate we're done making changes to the log tree
225 * and wake up anyone waiting to do a sync
226 */
227void btrfs_end_log_trans(struct btrfs_root *root)
228{
229 if (atomic_dec_and_test(&root->log_writers)) {
230 /* atomic_dec_and_test implies a barrier */
231 cond_wake_up_nomb(&root->log_writer_wait);
232 }
233}
234
235static int btrfs_write_tree_block(struct extent_buffer *buf)
236{
237 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
238 buf->start + buf->len - 1);
239}
240
241static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
242{
243 filemap_fdatawait_range(buf->pages[0]->mapping,
244 buf->start, buf->start + buf->len - 1);
245}
246
247/*
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
252 */
253struct walk_control {
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
256 */
257 int free;
258
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
261 */
262 int write;
263
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
266 */
267 int wait;
268
269 /* pin only walk, we record which extents on disk belong to the
270 * log trees
271 */
272 int pin;
273
274 /* what stage of the replay code we're currently in */
275 int stage;
276
277 /*
278 * Ignore any items from the inode currently being processed. Needs
279 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
280 * the LOG_WALK_REPLAY_INODES stage.
281 */
282 bool ignore_cur_inode;
283
284 /* the root we are currently replaying */
285 struct btrfs_root *replay_dest;
286
287 /* the trans handle for the current replay */
288 struct btrfs_trans_handle *trans;
289
290 /* the function that gets used to process blocks we find in the
291 * tree. Note the extent_buffer might not be up to date when it is
292 * passed in, and it must be checked or read if you need the data
293 * inside it
294 */
295 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
296 struct walk_control *wc, u64 gen, int level);
297};
298
299/*
300 * process_func used to pin down extents, write them or wait on them
301 */
302static int process_one_buffer(struct btrfs_root *log,
303 struct extent_buffer *eb,
304 struct walk_control *wc, u64 gen, int level)
305{
306 struct btrfs_fs_info *fs_info = log->fs_info;
307 int ret = 0;
308
309 /*
310 * If this fs is mixed then we need to be able to process the leaves to
311 * pin down any logged extents, so we have to read the block.
312 */
313 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
314 ret = btrfs_read_buffer(eb, gen, level, NULL);
315 if (ret)
316 return ret;
317 }
318
319 if (wc->pin)
320 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
321 eb->len);
322
323 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
324 if (wc->pin && btrfs_header_level(eb) == 0)
325 ret = btrfs_exclude_logged_extents(eb);
326 if (wc->write)
327 btrfs_write_tree_block(eb);
328 if (wc->wait)
329 btrfs_wait_tree_block_writeback(eb);
330 }
331 return ret;
332}
333
334/*
335 * Item overwrite used by replay and tree logging. eb, slot and key all refer
336 * to the src data we are copying out.
337 *
338 * root is the tree we are copying into, and path is a scratch
339 * path for use in this function (it should be released on entry and
340 * will be released on exit).
341 *
342 * If the key is already in the destination tree the existing item is
343 * overwritten. If the existing item isn't big enough, it is extended.
344 * If it is too large, it is truncated.
345 *
346 * If the key isn't in the destination yet, a new item is inserted.
347 */
348static noinline int overwrite_item(struct btrfs_trans_handle *trans,
349 struct btrfs_root *root,
350 struct btrfs_path *path,
351 struct extent_buffer *eb, int slot,
352 struct btrfs_key *key)
353{
354 int ret;
355 u32 item_size;
356 u64 saved_i_size = 0;
357 int save_old_i_size = 0;
358 unsigned long src_ptr;
359 unsigned long dst_ptr;
360 int overwrite_root = 0;
361 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
362
363 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
364 overwrite_root = 1;
365
366 item_size = btrfs_item_size_nr(eb, slot);
367 src_ptr = btrfs_item_ptr_offset(eb, slot);
368
369 /* look for the key in the destination tree */
370 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
371 if (ret < 0)
372 return ret;
373
374 if (ret == 0) {
375 char *src_copy;
376 char *dst_copy;
377 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
378 path->slots[0]);
379 if (dst_size != item_size)
380 goto insert;
381
382 if (item_size == 0) {
383 btrfs_release_path(path);
384 return 0;
385 }
386 dst_copy = kmalloc(item_size, GFP_NOFS);
387 src_copy = kmalloc(item_size, GFP_NOFS);
388 if (!dst_copy || !src_copy) {
389 btrfs_release_path(path);
390 kfree(dst_copy);
391 kfree(src_copy);
392 return -ENOMEM;
393 }
394
395 read_extent_buffer(eb, src_copy, src_ptr, item_size);
396
397 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
398 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
399 item_size);
400 ret = memcmp(dst_copy, src_copy, item_size);
401
402 kfree(dst_copy);
403 kfree(src_copy);
404 /*
405 * they have the same contents, just return, this saves
406 * us from cowing blocks in the destination tree and doing
407 * extra writes that may not have been done by a previous
408 * sync
409 */
410 if (ret == 0) {
411 btrfs_release_path(path);
412 return 0;
413 }
414
415 /*
416 * We need to load the old nbytes into the inode so when we
417 * replay the extents we've logged we get the right nbytes.
418 */
419 if (inode_item) {
420 struct btrfs_inode_item *item;
421 u64 nbytes;
422 u32 mode;
423
424 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
425 struct btrfs_inode_item);
426 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
427 item = btrfs_item_ptr(eb, slot,
428 struct btrfs_inode_item);
429 btrfs_set_inode_nbytes(eb, item, nbytes);
430
431 /*
432 * If this is a directory we need to reset the i_size to
433 * 0 so that we can set it up properly when replaying
434 * the rest of the items in this log.
435 */
436 mode = btrfs_inode_mode(eb, item);
437 if (S_ISDIR(mode))
438 btrfs_set_inode_size(eb, item, 0);
439 }
440 } else if (inode_item) {
441 struct btrfs_inode_item *item;
442 u32 mode;
443
444 /*
445 * New inode, set nbytes to 0 so that the nbytes comes out
446 * properly when we replay the extents.
447 */
448 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
449 btrfs_set_inode_nbytes(eb, item, 0);
450
451 /*
452 * If this is a directory we need to reset the i_size to 0 so
453 * that we can set it up properly when replaying the rest of
454 * the items in this log.
455 */
456 mode = btrfs_inode_mode(eb, item);
457 if (S_ISDIR(mode))
458 btrfs_set_inode_size(eb, item, 0);
459 }
460insert:
461 btrfs_release_path(path);
462 /* try to insert the key into the destination tree */
463 path->skip_release_on_error = 1;
464 ret = btrfs_insert_empty_item(trans, root, path,
465 key, item_size);
466 path->skip_release_on_error = 0;
467
468 /* make sure any existing item is the correct size */
469 if (ret == -EEXIST || ret == -EOVERFLOW) {
470 u32 found_size;
471 found_size = btrfs_item_size_nr(path->nodes[0],
472 path->slots[0]);
473 if (found_size > item_size)
474 btrfs_truncate_item(path, item_size, 1);
475 else if (found_size < item_size)
476 btrfs_extend_item(path, item_size - found_size);
477 } else if (ret) {
478 return ret;
479 }
480 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
481 path->slots[0]);
482
483 /* don't overwrite an existing inode if the generation number
484 * was logged as zero. This is done when the tree logging code
485 * is just logging an inode to make sure it exists after recovery.
486 *
487 * Also, don't overwrite i_size on directories during replay.
488 * log replay inserts and removes directory items based on the
489 * state of the tree found in the subvolume, and i_size is modified
490 * as it goes
491 */
492 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
493 struct btrfs_inode_item *src_item;
494 struct btrfs_inode_item *dst_item;
495
496 src_item = (struct btrfs_inode_item *)src_ptr;
497 dst_item = (struct btrfs_inode_item *)dst_ptr;
498
499 if (btrfs_inode_generation(eb, src_item) == 0) {
500 struct extent_buffer *dst_eb = path->nodes[0];
501 const u64 ino_size = btrfs_inode_size(eb, src_item);
502
503 /*
504 * For regular files an ino_size == 0 is used only when
505 * logging that an inode exists, as part of a directory
506 * fsync, and the inode wasn't fsynced before. In this
507 * case don't set the size of the inode in the fs/subvol
508 * tree, otherwise we would be throwing valid data away.
509 */
510 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
511 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
512 ino_size != 0)
513 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
514 goto no_copy;
515 }
516
517 if (overwrite_root &&
518 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 save_old_i_size = 1;
521 saved_i_size = btrfs_inode_size(path->nodes[0],
522 dst_item);
523 }
524 }
525
526 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 src_ptr, item_size);
528
529 if (save_old_i_size) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
533 }
534
535 /* make sure the generation is filled in */
536 if (key->type == BTRFS_INODE_ITEM_KEY) {
537 struct btrfs_inode_item *dst_item;
538 dst_item = (struct btrfs_inode_item *)dst_ptr;
539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 btrfs_set_inode_generation(path->nodes[0], dst_item,
541 trans->transid);
542 }
543 }
544no_copy:
545 btrfs_mark_buffer_dirty(path->nodes[0]);
546 btrfs_release_path(path);
547 return 0;
548}
549
550/*
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
553 */
554static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 u64 objectid)
556{
557 struct inode *inode;
558
559 inode = btrfs_iget(root->fs_info->sb, objectid, root);
560 if (IS_ERR(inode))
561 inode = NULL;
562 return inode;
563}
564
565/* replays a single extent in 'eb' at 'slot' with 'key' into the
566 * subvolume 'root'. path is released on entry and should be released
567 * on exit.
568 *
569 * extents in the log tree have not been allocated out of the extent
570 * tree yet. So, this completes the allocation, taking a reference
571 * as required if the extent already exists or creating a new extent
572 * if it isn't in the extent allocation tree yet.
573 *
574 * The extent is inserted into the file, dropping any existing extents
575 * from the file that overlap the new one.
576 */
577static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
578 struct btrfs_root *root,
579 struct btrfs_path *path,
580 struct extent_buffer *eb, int slot,
581 struct btrfs_key *key)
582{
583 struct btrfs_fs_info *fs_info = root->fs_info;
584 int found_type;
585 u64 extent_end;
586 u64 start = key->offset;
587 u64 nbytes = 0;
588 struct btrfs_file_extent_item *item;
589 struct inode *inode = NULL;
590 unsigned long size;
591 int ret = 0;
592
593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 found_type = btrfs_file_extent_type(eb, item);
595
596 if (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 nbytes = btrfs_file_extent_num_bytes(eb, item);
599 extent_end = start + nbytes;
600
601 /*
602 * We don't add to the inodes nbytes if we are prealloc or a
603 * hole.
604 */
605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 nbytes = 0;
607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
608 size = btrfs_file_extent_ram_bytes(eb, item);
609 nbytes = btrfs_file_extent_ram_bytes(eb, item);
610 extent_end = ALIGN(start + size,
611 fs_info->sectorsize);
612 } else {
613 ret = 0;
614 goto out;
615 }
616
617 inode = read_one_inode(root, key->objectid);
618 if (!inode) {
619 ret = -EIO;
620 goto out;
621 }
622
623 /*
624 * first check to see if we already have this extent in the
625 * file. This must be done before the btrfs_drop_extents run
626 * so we don't try to drop this extent.
627 */
628 ret = btrfs_lookup_file_extent(trans, root, path,
629 btrfs_ino(BTRFS_I(inode)), start, 0);
630
631 if (ret == 0 &&
632 (found_type == BTRFS_FILE_EXTENT_REG ||
633 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
634 struct btrfs_file_extent_item cmp1;
635 struct btrfs_file_extent_item cmp2;
636 struct btrfs_file_extent_item *existing;
637 struct extent_buffer *leaf;
638
639 leaf = path->nodes[0];
640 existing = btrfs_item_ptr(leaf, path->slots[0],
641 struct btrfs_file_extent_item);
642
643 read_extent_buffer(eb, &cmp1, (unsigned long)item,
644 sizeof(cmp1));
645 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
646 sizeof(cmp2));
647
648 /*
649 * we already have a pointer to this exact extent,
650 * we don't have to do anything
651 */
652 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
653 btrfs_release_path(path);
654 goto out;
655 }
656 }
657 btrfs_release_path(path);
658
659 /* drop any overlapping extents */
660 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
661 if (ret)
662 goto out;
663
664 if (found_type == BTRFS_FILE_EXTENT_REG ||
665 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
666 u64 offset;
667 unsigned long dest_offset;
668 struct btrfs_key ins;
669
670 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
671 btrfs_fs_incompat(fs_info, NO_HOLES))
672 goto update_inode;
673
674 ret = btrfs_insert_empty_item(trans, root, path, key,
675 sizeof(*item));
676 if (ret)
677 goto out;
678 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
679 path->slots[0]);
680 copy_extent_buffer(path->nodes[0], eb, dest_offset,
681 (unsigned long)item, sizeof(*item));
682
683 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
684 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
685 ins.type = BTRFS_EXTENT_ITEM_KEY;
686 offset = key->offset - btrfs_file_extent_offset(eb, item);
687
688 /*
689 * Manually record dirty extent, as here we did a shallow
690 * file extent item copy and skip normal backref update,
691 * but modifying extent tree all by ourselves.
692 * So need to manually record dirty extent for qgroup,
693 * as the owner of the file extent changed from log tree
694 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
695 */
696 ret = btrfs_qgroup_trace_extent(trans,
697 btrfs_file_extent_disk_bytenr(eb, item),
698 btrfs_file_extent_disk_num_bytes(eb, item),
699 GFP_NOFS);
700 if (ret < 0)
701 goto out;
702
703 if (ins.objectid > 0) {
704 struct btrfs_ref ref = { 0 };
705 u64 csum_start;
706 u64 csum_end;
707 LIST_HEAD(ordered_sums);
708
709 /*
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
712 */
713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
714 ins.offset);
715 if (ret == 0) {
716 btrfs_init_generic_ref(&ref,
717 BTRFS_ADD_DELAYED_REF,
718 ins.objectid, ins.offset, 0);
719 btrfs_init_data_ref(&ref,
720 root->root_key.objectid,
721 key->objectid, offset);
722 ret = btrfs_inc_extent_ref(trans, &ref);
723 if (ret)
724 goto out;
725 } else {
726 /*
727 * insert the extent pointer in the extent
728 * allocation tree
729 */
730 ret = btrfs_alloc_logged_file_extent(trans,
731 root->root_key.objectid,
732 key->objectid, offset, &ins);
733 if (ret)
734 goto out;
735 }
736 btrfs_release_path(path);
737
738 if (btrfs_file_extent_compression(eb, item)) {
739 csum_start = ins.objectid;
740 csum_end = csum_start + ins.offset;
741 } else {
742 csum_start = ins.objectid +
743 btrfs_file_extent_offset(eb, item);
744 csum_end = csum_start +
745 btrfs_file_extent_num_bytes(eb, item);
746 }
747
748 ret = btrfs_lookup_csums_range(root->log_root,
749 csum_start, csum_end - 1,
750 &ordered_sums, 0);
751 if (ret)
752 goto out;
753 /*
754 * Now delete all existing cums in the csum root that
755 * cover our range. We do this because we can have an
756 * extent that is completely referenced by one file
757 * extent item and partially referenced by another
758 * file extent item (like after using the clone or
759 * extent_same ioctls). In this case if we end up doing
760 * the replay of the one that partially references the
761 * extent first, and we do not do the csum deletion
762 * below, we can get 2 csum items in the csum tree that
763 * overlap each other. For example, imagine our log has
764 * the two following file extent items:
765 *
766 * key (257 EXTENT_DATA 409600)
767 * extent data disk byte 12845056 nr 102400
768 * extent data offset 20480 nr 20480 ram 102400
769 *
770 * key (257 EXTENT_DATA 819200)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 0 nr 102400 ram 102400
773 *
774 * Where the second one fully references the 100K extent
775 * that starts at disk byte 12845056, and the log tree
776 * has a single csum item that covers the entire range
777 * of the extent:
778 *
779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
780 *
781 * After the first file extent item is replayed, the
782 * csum tree gets the following csum item:
783 *
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 *
786 * Which covers the 20K sub-range starting at offset 20K
787 * of our extent. Now when we replay the second file
788 * extent item, if we do not delete existing csum items
789 * that cover any of its blocks, we end up getting two
790 * csum items in our csum tree that overlap each other:
791 *
792 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
793 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
794 *
795 * Which is a problem, because after this anyone trying
796 * to lookup up for the checksum of any block of our
797 * extent starting at an offset of 40K or higher, will
798 * end up looking at the second csum item only, which
799 * does not contain the checksum for any block starting
800 * at offset 40K or higher of our extent.
801 */
802 while (!list_empty(&ordered_sums)) {
803 struct btrfs_ordered_sum *sums;
804 sums = list_entry(ordered_sums.next,
805 struct btrfs_ordered_sum,
806 list);
807 if (!ret)
808 ret = btrfs_del_csums(trans,
809 fs_info->csum_root,
810 sums->bytenr,
811 sums->len);
812 if (!ret)
813 ret = btrfs_csum_file_blocks(trans,
814 fs_info->csum_root, sums);
815 list_del(&sums->list);
816 kfree(sums);
817 }
818 if (ret)
819 goto out;
820 } else {
821 btrfs_release_path(path);
822 }
823 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
824 /* inline extents are easy, we just overwrite them */
825 ret = overwrite_item(trans, root, path, eb, slot, key);
826 if (ret)
827 goto out;
828 }
829
830 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
831 extent_end - start);
832 if (ret)
833 goto out;
834
835 inode_add_bytes(inode, nbytes);
836update_inode:
837 ret = btrfs_update_inode(trans, root, inode);
838out:
839 if (inode)
840 iput(inode);
841 return ret;
842}
843
844/*
845 * when cleaning up conflicts between the directory names in the
846 * subvolume, directory names in the log and directory names in the
847 * inode back references, we may have to unlink inodes from directories.
848 *
849 * This is a helper function to do the unlink of a specific directory
850 * item
851 */
852static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
853 struct btrfs_root *root,
854 struct btrfs_path *path,
855 struct btrfs_inode *dir,
856 struct btrfs_dir_item *di)
857{
858 struct inode *inode;
859 char *name;
860 int name_len;
861 struct extent_buffer *leaf;
862 struct btrfs_key location;
863 int ret;
864
865 leaf = path->nodes[0];
866
867 btrfs_dir_item_key_to_cpu(leaf, di, &location);
868 name_len = btrfs_dir_name_len(leaf, di);
869 name = kmalloc(name_len, GFP_NOFS);
870 if (!name)
871 return -ENOMEM;
872
873 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
874 btrfs_release_path(path);
875
876 inode = read_one_inode(root, location.objectid);
877 if (!inode) {
878 ret = -EIO;
879 goto out;
880 }
881
882 ret = link_to_fixup_dir(trans, root, path, location.objectid);
883 if (ret)
884 goto out;
885
886 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
887 name_len);
888 if (ret)
889 goto out;
890 else
891 ret = btrfs_run_delayed_items(trans);
892out:
893 kfree(name);
894 iput(inode);
895 return ret;
896}
897
898/*
899 * helper function to see if a given name and sequence number found
900 * in an inode back reference are already in a directory and correctly
901 * point to this inode
902 */
903static noinline int inode_in_dir(struct btrfs_root *root,
904 struct btrfs_path *path,
905 u64 dirid, u64 objectid, u64 index,
906 const char *name, int name_len)
907{
908 struct btrfs_dir_item *di;
909 struct btrfs_key location;
910 int match = 0;
911
912 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
913 index, name, name_len, 0);
914 if (di && !IS_ERR(di)) {
915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
916 if (location.objectid != objectid)
917 goto out;
918 } else
919 goto out;
920 btrfs_release_path(path);
921
922 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
923 if (di && !IS_ERR(di)) {
924 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
925 if (location.objectid != objectid)
926 goto out;
927 } else
928 goto out;
929 match = 1;
930out:
931 btrfs_release_path(path);
932 return match;
933}
934
935/*
936 * helper function to check a log tree for a named back reference in
937 * an inode. This is used to decide if a back reference that is
938 * found in the subvolume conflicts with what we find in the log.
939 *
940 * inode backreferences may have multiple refs in a single item,
941 * during replay we process one reference at a time, and we don't
942 * want to delete valid links to a file from the subvolume if that
943 * link is also in the log.
944 */
945static noinline int backref_in_log(struct btrfs_root *log,
946 struct btrfs_key *key,
947 u64 ref_objectid,
948 const char *name, int namelen)
949{
950 struct btrfs_path *path;
951 int ret;
952
953 path = btrfs_alloc_path();
954 if (!path)
955 return -ENOMEM;
956
957 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
958 if (ret < 0) {
959 goto out;
960 } else if (ret == 1) {
961 ret = 0;
962 goto out;
963 }
964
965 if (key->type == BTRFS_INODE_EXTREF_KEY)
966 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
967 path->slots[0],
968 ref_objectid,
969 name, namelen);
970 else
971 ret = !!btrfs_find_name_in_backref(path->nodes[0],
972 path->slots[0],
973 name, namelen);
974out:
975 btrfs_free_path(path);
976 return ret;
977}
978
979static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 struct btrfs_root *log_root,
983 struct btrfs_inode *dir,
984 struct btrfs_inode *inode,
985 u64 inode_objectid, u64 parent_objectid,
986 u64 ref_index, char *name, int namelen,
987 int *search_done)
988{
989 int ret;
990 char *victim_name;
991 int victim_name_len;
992 struct extent_buffer *leaf;
993 struct btrfs_dir_item *di;
994 struct btrfs_key search_key;
995 struct btrfs_inode_extref *extref;
996
997again:
998 /* Search old style refs */
999 search_key.objectid = inode_objectid;
1000 search_key.type = BTRFS_INODE_REF_KEY;
1001 search_key.offset = parent_objectid;
1002 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1003 if (ret == 0) {
1004 struct btrfs_inode_ref *victim_ref;
1005 unsigned long ptr;
1006 unsigned long ptr_end;
1007
1008 leaf = path->nodes[0];
1009
1010 /* are we trying to overwrite a back ref for the root directory
1011 * if so, just jump out, we're done
1012 */
1013 if (search_key.objectid == search_key.offset)
1014 return 1;
1015
1016 /* check all the names in this back reference to see
1017 * if they are in the log. if so, we allow them to stay
1018 * otherwise they must be unlinked as a conflict
1019 */
1020 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1021 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1022 while (ptr < ptr_end) {
1023 victim_ref = (struct btrfs_inode_ref *)ptr;
1024 victim_name_len = btrfs_inode_ref_name_len(leaf,
1025 victim_ref);
1026 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1027 if (!victim_name)
1028 return -ENOMEM;
1029
1030 read_extent_buffer(leaf, victim_name,
1031 (unsigned long)(victim_ref + 1),
1032 victim_name_len);
1033
1034 ret = backref_in_log(log_root, &search_key,
1035 parent_objectid, victim_name,
1036 victim_name_len);
1037 if (ret < 0) {
1038 kfree(victim_name);
1039 return ret;
1040 } else if (!ret) {
1041 inc_nlink(&inode->vfs_inode);
1042 btrfs_release_path(path);
1043
1044 ret = btrfs_unlink_inode(trans, root, dir, inode,
1045 victim_name, victim_name_len);
1046 kfree(victim_name);
1047 if (ret)
1048 return ret;
1049 ret = btrfs_run_delayed_items(trans);
1050 if (ret)
1051 return ret;
1052 *search_done = 1;
1053 goto again;
1054 }
1055 kfree(victim_name);
1056
1057 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1058 }
1059
1060 /*
1061 * NOTE: we have searched root tree and checked the
1062 * corresponding ref, it does not need to check again.
1063 */
1064 *search_done = 1;
1065 }
1066 btrfs_release_path(path);
1067
1068 /* Same search but for extended refs */
1069 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070 inode_objectid, parent_objectid, 0,
1071 0);
1072 if (!IS_ERR_OR_NULL(extref)) {
1073 u32 item_size;
1074 u32 cur_offset = 0;
1075 unsigned long base;
1076 struct inode *victim_parent;
1077
1078 leaf = path->nodes[0];
1079
1080 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1082
1083 while (cur_offset < item_size) {
1084 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1085
1086 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1087
1088 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089 goto next;
1090
1091 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1092 if (!victim_name)
1093 return -ENOMEM;
1094 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095 victim_name_len);
1096
1097 search_key.objectid = inode_objectid;
1098 search_key.type = BTRFS_INODE_EXTREF_KEY;
1099 search_key.offset = btrfs_extref_hash(parent_objectid,
1100 victim_name,
1101 victim_name_len);
1102 ret = backref_in_log(log_root, &search_key,
1103 parent_objectid, victim_name,
1104 victim_name_len);
1105 if (ret < 0) {
1106 return ret;
1107 } else if (!ret) {
1108 ret = -ENOENT;
1109 victim_parent = read_one_inode(root,
1110 parent_objectid);
1111 if (victim_parent) {
1112 inc_nlink(&inode->vfs_inode);
1113 btrfs_release_path(path);
1114
1115 ret = btrfs_unlink_inode(trans, root,
1116 BTRFS_I(victim_parent),
1117 inode,
1118 victim_name,
1119 victim_name_len);
1120 if (!ret)
1121 ret = btrfs_run_delayed_items(
1122 trans);
1123 }
1124 iput(victim_parent);
1125 kfree(victim_name);
1126 if (ret)
1127 return ret;
1128 *search_done = 1;
1129 goto again;
1130 }
1131 kfree(victim_name);
1132next:
1133 cur_offset += victim_name_len + sizeof(*extref);
1134 }
1135 *search_done = 1;
1136 }
1137 btrfs_release_path(path);
1138
1139 /* look for a conflicting sequence number */
1140 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1141 ref_index, name, namelen, 0);
1142 if (di && !IS_ERR(di)) {
1143 ret = drop_one_dir_item(trans, root, path, dir, di);
1144 if (ret)
1145 return ret;
1146 }
1147 btrfs_release_path(path);
1148
1149 /* look for a conflicting name */
1150 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1151 name, namelen, 0);
1152 if (di && !IS_ERR(di)) {
1153 ret = drop_one_dir_item(trans, root, path, dir, di);
1154 if (ret)
1155 return ret;
1156 }
1157 btrfs_release_path(path);
1158
1159 return 0;
1160}
1161
1162static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1163 u32 *namelen, char **name, u64 *index,
1164 u64 *parent_objectid)
1165{
1166 struct btrfs_inode_extref *extref;
1167
1168 extref = (struct btrfs_inode_extref *)ref_ptr;
1169
1170 *namelen = btrfs_inode_extref_name_len(eb, extref);
1171 *name = kmalloc(*namelen, GFP_NOFS);
1172 if (*name == NULL)
1173 return -ENOMEM;
1174
1175 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1176 *namelen);
1177
1178 if (index)
1179 *index = btrfs_inode_extref_index(eb, extref);
1180 if (parent_objectid)
1181 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1182
1183 return 0;
1184}
1185
1186static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1187 u32 *namelen, char **name, u64 *index)
1188{
1189 struct btrfs_inode_ref *ref;
1190
1191 ref = (struct btrfs_inode_ref *)ref_ptr;
1192
1193 *namelen = btrfs_inode_ref_name_len(eb, ref);
1194 *name = kmalloc(*namelen, GFP_NOFS);
1195 if (*name == NULL)
1196 return -ENOMEM;
1197
1198 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1199
1200 if (index)
1201 *index = btrfs_inode_ref_index(eb, ref);
1202
1203 return 0;
1204}
1205
1206/*
1207 * Take an inode reference item from the log tree and iterate all names from the
1208 * inode reference item in the subvolume tree with the same key (if it exists).
1209 * For any name that is not in the inode reference item from the log tree, do a
1210 * proper unlink of that name (that is, remove its entry from the inode
1211 * reference item and both dir index keys).
1212 */
1213static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1214 struct btrfs_root *root,
1215 struct btrfs_path *path,
1216 struct btrfs_inode *inode,
1217 struct extent_buffer *log_eb,
1218 int log_slot,
1219 struct btrfs_key *key)
1220{
1221 int ret;
1222 unsigned long ref_ptr;
1223 unsigned long ref_end;
1224 struct extent_buffer *eb;
1225
1226again:
1227 btrfs_release_path(path);
1228 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1229 if (ret > 0) {
1230 ret = 0;
1231 goto out;
1232 }
1233 if (ret < 0)
1234 goto out;
1235
1236 eb = path->nodes[0];
1237 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1238 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1239 while (ref_ptr < ref_end) {
1240 char *name = NULL;
1241 int namelen;
1242 u64 parent_id;
1243
1244 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1245 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1246 NULL, &parent_id);
1247 } else {
1248 parent_id = key->offset;
1249 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1250 NULL);
1251 }
1252 if (ret)
1253 goto out;
1254
1255 if (key->type == BTRFS_INODE_EXTREF_KEY)
1256 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1257 parent_id, name,
1258 namelen);
1259 else
1260 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1261 name, namelen);
1262
1263 if (!ret) {
1264 struct inode *dir;
1265
1266 btrfs_release_path(path);
1267 dir = read_one_inode(root, parent_id);
1268 if (!dir) {
1269 ret = -ENOENT;
1270 kfree(name);
1271 goto out;
1272 }
1273 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1274 inode, name, namelen);
1275 kfree(name);
1276 iput(dir);
1277 if (ret)
1278 goto out;
1279 goto again;
1280 }
1281
1282 kfree(name);
1283 ref_ptr += namelen;
1284 if (key->type == BTRFS_INODE_EXTREF_KEY)
1285 ref_ptr += sizeof(struct btrfs_inode_extref);
1286 else
1287 ref_ptr += sizeof(struct btrfs_inode_ref);
1288 }
1289 ret = 0;
1290 out:
1291 btrfs_release_path(path);
1292 return ret;
1293}
1294
1295static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1296 const u8 ref_type, const char *name,
1297 const int namelen)
1298{
1299 struct btrfs_key key;
1300 struct btrfs_path *path;
1301 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1302 int ret;
1303
1304 path = btrfs_alloc_path();
1305 if (!path)
1306 return -ENOMEM;
1307
1308 key.objectid = btrfs_ino(BTRFS_I(inode));
1309 key.type = ref_type;
1310 if (key.type == BTRFS_INODE_REF_KEY)
1311 key.offset = parent_id;
1312 else
1313 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1314
1315 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1316 if (ret < 0)
1317 goto out;
1318 if (ret > 0) {
1319 ret = 0;
1320 goto out;
1321 }
1322 if (key.type == BTRFS_INODE_EXTREF_KEY)
1323 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1324 path->slots[0], parent_id, name, namelen);
1325 else
1326 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327 name, namelen);
1328
1329out:
1330 btrfs_free_path(path);
1331 return ret;
1332}
1333
1334static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335 struct inode *dir, struct inode *inode, const char *name,
1336 int namelen, u64 ref_index)
1337{
1338 struct btrfs_dir_item *dir_item;
1339 struct btrfs_key key;
1340 struct btrfs_path *path;
1341 struct inode *other_inode = NULL;
1342 int ret;
1343
1344 path = btrfs_alloc_path();
1345 if (!path)
1346 return -ENOMEM;
1347
1348 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349 btrfs_ino(BTRFS_I(dir)),
1350 name, namelen, 0);
1351 if (!dir_item) {
1352 btrfs_release_path(path);
1353 goto add_link;
1354 } else if (IS_ERR(dir_item)) {
1355 ret = PTR_ERR(dir_item);
1356 goto out;
1357 }
1358
1359 /*
1360 * Our inode's dentry collides with the dentry of another inode which is
1361 * in the log but not yet processed since it has a higher inode number.
1362 * So delete that other dentry.
1363 */
1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365 btrfs_release_path(path);
1366 other_inode = read_one_inode(root, key.objectid);
1367 if (!other_inode) {
1368 ret = -ENOENT;
1369 goto out;
1370 }
1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372 name, namelen);
1373 if (ret)
1374 goto out;
1375 /*
1376 * If we dropped the link count to 0, bump it so that later the iput()
1377 * on the inode will not free it. We will fixup the link count later.
1378 */
1379 if (other_inode->i_nlink == 0)
1380 inc_nlink(other_inode);
1381
1382 ret = btrfs_run_delayed_items(trans);
1383 if (ret)
1384 goto out;
1385add_link:
1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387 name, namelen, 0, ref_index);
1388out:
1389 iput(other_inode);
1390 btrfs_free_path(path);
1391
1392 return ret;
1393}
1394
1395/*
1396 * replay one inode back reference item found in the log tree.
1397 * eb, slot and key refer to the buffer and key found in the log tree.
1398 * root is the destination we are replaying into, and path is for temp
1399 * use by this function. (it should be released on return).
1400 */
1401static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_root *log,
1404 struct btrfs_path *path,
1405 struct extent_buffer *eb, int slot,
1406 struct btrfs_key *key)
1407{
1408 struct inode *dir = NULL;
1409 struct inode *inode = NULL;
1410 unsigned long ref_ptr;
1411 unsigned long ref_end;
1412 char *name = NULL;
1413 int namelen;
1414 int ret;
1415 int search_done = 0;
1416 int log_ref_ver = 0;
1417 u64 parent_objectid;
1418 u64 inode_objectid;
1419 u64 ref_index = 0;
1420 int ref_struct_size;
1421
1422 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424
1425 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426 struct btrfs_inode_extref *r;
1427
1428 ref_struct_size = sizeof(struct btrfs_inode_extref);
1429 log_ref_ver = 1;
1430 r = (struct btrfs_inode_extref *)ref_ptr;
1431 parent_objectid = btrfs_inode_extref_parent(eb, r);
1432 } else {
1433 ref_struct_size = sizeof(struct btrfs_inode_ref);
1434 parent_objectid = key->offset;
1435 }
1436 inode_objectid = key->objectid;
1437
1438 /*
1439 * it is possible that we didn't log all the parent directories
1440 * for a given inode. If we don't find the dir, just don't
1441 * copy the back ref in. The link count fixup code will take
1442 * care of the rest
1443 */
1444 dir = read_one_inode(root, parent_objectid);
1445 if (!dir) {
1446 ret = -ENOENT;
1447 goto out;
1448 }
1449
1450 inode = read_one_inode(root, inode_objectid);
1451 if (!inode) {
1452 ret = -EIO;
1453 goto out;
1454 }
1455
1456 while (ref_ptr < ref_end) {
1457 if (log_ref_ver) {
1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459 &ref_index, &parent_objectid);
1460 /*
1461 * parent object can change from one array
1462 * item to another.
1463 */
1464 if (!dir)
1465 dir = read_one_inode(root, parent_objectid);
1466 if (!dir) {
1467 ret = -ENOENT;
1468 goto out;
1469 }
1470 } else {
1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472 &ref_index);
1473 }
1474 if (ret)
1475 goto out;
1476
1477 /* if we already have a perfect match, we're done */
1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479 btrfs_ino(BTRFS_I(inode)), ref_index,
1480 name, namelen)) {
1481 /*
1482 * look for a conflicting back reference in the
1483 * metadata. if we find one we have to unlink that name
1484 * of the file before we add our new link. Later on, we
1485 * overwrite any existing back reference, and we don't
1486 * want to create dangling pointers in the directory.
1487 */
1488
1489 if (!search_done) {
1490 ret = __add_inode_ref(trans, root, path, log,
1491 BTRFS_I(dir),
1492 BTRFS_I(inode),
1493 inode_objectid,
1494 parent_objectid,
1495 ref_index, name, namelen,
1496 &search_done);
1497 if (ret) {
1498 if (ret == 1)
1499 ret = 0;
1500 goto out;
1501 }
1502 }
1503
1504 /*
1505 * If a reference item already exists for this inode
1506 * with the same parent and name, but different index,
1507 * drop it and the corresponding directory index entries
1508 * from the parent before adding the new reference item
1509 * and dir index entries, otherwise we would fail with
1510 * -EEXIST returned from btrfs_add_link() below.
1511 */
1512 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513 name, namelen);
1514 if (ret > 0) {
1515 ret = btrfs_unlink_inode(trans, root,
1516 BTRFS_I(dir),
1517 BTRFS_I(inode),
1518 name, namelen);
1519 /*
1520 * If we dropped the link count to 0, bump it so
1521 * that later the iput() on the inode will not
1522 * free it. We will fixup the link count later.
1523 */
1524 if (!ret && inode->i_nlink == 0)
1525 inc_nlink(inode);
1526 }
1527 if (ret < 0)
1528 goto out;
1529
1530 /* insert our name */
1531 ret = add_link(trans, root, dir, inode, name, namelen,
1532 ref_index);
1533 if (ret)
1534 goto out;
1535
1536 btrfs_update_inode(trans, root, inode);
1537 }
1538
1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1540 kfree(name);
1541 name = NULL;
1542 if (log_ref_ver) {
1543 iput(dir);
1544 dir = NULL;
1545 }
1546 }
1547
1548 /*
1549 * Before we overwrite the inode reference item in the subvolume tree
1550 * with the item from the log tree, we must unlink all names from the
1551 * parent directory that are in the subvolume's tree inode reference
1552 * item, otherwise we end up with an inconsistent subvolume tree where
1553 * dir index entries exist for a name but there is no inode reference
1554 * item with the same name.
1555 */
1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557 key);
1558 if (ret)
1559 goto out;
1560
1561 /* finally write the back reference in the inode */
1562 ret = overwrite_item(trans, root, path, eb, slot, key);
1563out:
1564 btrfs_release_path(path);
1565 kfree(name);
1566 iput(dir);
1567 iput(inode);
1568 return ret;
1569}
1570
1571static int insert_orphan_item(struct btrfs_trans_handle *trans,
1572 struct btrfs_root *root, u64 ino)
1573{
1574 int ret;
1575
1576 ret = btrfs_insert_orphan_item(trans, root, ino);
1577 if (ret == -EEXIST)
1578 ret = 0;
1579
1580 return ret;
1581}
1582
1583static int count_inode_extrefs(struct btrfs_root *root,
1584 struct btrfs_inode *inode, struct btrfs_path *path)
1585{
1586 int ret = 0;
1587 int name_len;
1588 unsigned int nlink = 0;
1589 u32 item_size;
1590 u32 cur_offset = 0;
1591 u64 inode_objectid = btrfs_ino(inode);
1592 u64 offset = 0;
1593 unsigned long ptr;
1594 struct btrfs_inode_extref *extref;
1595 struct extent_buffer *leaf;
1596
1597 while (1) {
1598 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1599 &extref, &offset);
1600 if (ret)
1601 break;
1602
1603 leaf = path->nodes[0];
1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1606 cur_offset = 0;
1607
1608 while (cur_offset < item_size) {
1609 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1610 name_len = btrfs_inode_extref_name_len(leaf, extref);
1611
1612 nlink++;
1613
1614 cur_offset += name_len + sizeof(*extref);
1615 }
1616
1617 offset++;
1618 btrfs_release_path(path);
1619 }
1620 btrfs_release_path(path);
1621
1622 if (ret < 0 && ret != -ENOENT)
1623 return ret;
1624 return nlink;
1625}
1626
1627static int count_inode_refs(struct btrfs_root *root,
1628 struct btrfs_inode *inode, struct btrfs_path *path)
1629{
1630 int ret;
1631 struct btrfs_key key;
1632 unsigned int nlink = 0;
1633 unsigned long ptr;
1634 unsigned long ptr_end;
1635 int name_len;
1636 u64 ino = btrfs_ino(inode);
1637
1638 key.objectid = ino;
1639 key.type = BTRFS_INODE_REF_KEY;
1640 key.offset = (u64)-1;
1641
1642 while (1) {
1643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1644 if (ret < 0)
1645 break;
1646 if (ret > 0) {
1647 if (path->slots[0] == 0)
1648 break;
1649 path->slots[0]--;
1650 }
1651process_slot:
1652 btrfs_item_key_to_cpu(path->nodes[0], &key,
1653 path->slots[0]);
1654 if (key.objectid != ino ||
1655 key.type != BTRFS_INODE_REF_KEY)
1656 break;
1657 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1658 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1659 path->slots[0]);
1660 while (ptr < ptr_end) {
1661 struct btrfs_inode_ref *ref;
1662
1663 ref = (struct btrfs_inode_ref *)ptr;
1664 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1665 ref);
1666 ptr = (unsigned long)(ref + 1) + name_len;
1667 nlink++;
1668 }
1669
1670 if (key.offset == 0)
1671 break;
1672 if (path->slots[0] > 0) {
1673 path->slots[0]--;
1674 goto process_slot;
1675 }
1676 key.offset--;
1677 btrfs_release_path(path);
1678 }
1679 btrfs_release_path(path);
1680
1681 return nlink;
1682}
1683
1684/*
1685 * There are a few corners where the link count of the file can't
1686 * be properly maintained during replay. So, instead of adding
1687 * lots of complexity to the log code, we just scan the backrefs
1688 * for any file that has been through replay.
1689 *
1690 * The scan will update the link count on the inode to reflect the
1691 * number of back refs found. If it goes down to zero, the iput
1692 * will free the inode.
1693 */
1694static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1695 struct btrfs_root *root,
1696 struct inode *inode)
1697{
1698 struct btrfs_path *path;
1699 int ret;
1700 u64 nlink = 0;
1701 u64 ino = btrfs_ino(BTRFS_I(inode));
1702
1703 path = btrfs_alloc_path();
1704 if (!path)
1705 return -ENOMEM;
1706
1707 ret = count_inode_refs(root, BTRFS_I(inode), path);
1708 if (ret < 0)
1709 goto out;
1710
1711 nlink = ret;
1712
1713 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1714 if (ret < 0)
1715 goto out;
1716
1717 nlink += ret;
1718
1719 ret = 0;
1720
1721 if (nlink != inode->i_nlink) {
1722 set_nlink(inode, nlink);
1723 btrfs_update_inode(trans, root, inode);
1724 }
1725 BTRFS_I(inode)->index_cnt = (u64)-1;
1726
1727 if (inode->i_nlink == 0) {
1728 if (S_ISDIR(inode->i_mode)) {
1729 ret = replay_dir_deletes(trans, root, NULL, path,
1730 ino, 1);
1731 if (ret)
1732 goto out;
1733 }
1734 ret = insert_orphan_item(trans, root, ino);
1735 }
1736
1737out:
1738 btrfs_free_path(path);
1739 return ret;
1740}
1741
1742static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1743 struct btrfs_root *root,
1744 struct btrfs_path *path)
1745{
1746 int ret;
1747 struct btrfs_key key;
1748 struct inode *inode;
1749
1750 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751 key.type = BTRFS_ORPHAN_ITEM_KEY;
1752 key.offset = (u64)-1;
1753 while (1) {
1754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1755 if (ret < 0)
1756 break;
1757
1758 if (ret == 1) {
1759 if (path->slots[0] == 0)
1760 break;
1761 path->slots[0]--;
1762 }
1763
1764 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1765 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1766 key.type != BTRFS_ORPHAN_ITEM_KEY)
1767 break;
1768
1769 ret = btrfs_del_item(trans, root, path);
1770 if (ret)
1771 goto out;
1772
1773 btrfs_release_path(path);
1774 inode = read_one_inode(root, key.offset);
1775 if (!inode)
1776 return -EIO;
1777
1778 ret = fixup_inode_link_count(trans, root, inode);
1779 iput(inode);
1780 if (ret)
1781 goto out;
1782
1783 /*
1784 * fixup on a directory may create new entries,
1785 * make sure we always look for the highset possible
1786 * offset
1787 */
1788 key.offset = (u64)-1;
1789 }
1790 ret = 0;
1791out:
1792 btrfs_release_path(path);
1793 return ret;
1794}
1795
1796
1797/*
1798 * record a given inode in the fixup dir so we can check its link
1799 * count when replay is done. The link count is incremented here
1800 * so the inode won't go away until we check it
1801 */
1802static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 u64 objectid)
1806{
1807 struct btrfs_key key;
1808 int ret = 0;
1809 struct inode *inode;
1810
1811 inode = read_one_inode(root, objectid);
1812 if (!inode)
1813 return -EIO;
1814
1815 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1816 key.type = BTRFS_ORPHAN_ITEM_KEY;
1817 key.offset = objectid;
1818
1819 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1820
1821 btrfs_release_path(path);
1822 if (ret == 0) {
1823 if (!inode->i_nlink)
1824 set_nlink(inode, 1);
1825 else
1826 inc_nlink(inode);
1827 ret = btrfs_update_inode(trans, root, inode);
1828 } else if (ret == -EEXIST) {
1829 ret = 0;
1830 } else {
1831 BUG(); /* Logic Error */
1832 }
1833 iput(inode);
1834
1835 return ret;
1836}
1837
1838/*
1839 * when replaying the log for a directory, we only insert names
1840 * for inodes that actually exist. This means an fsync on a directory
1841 * does not implicitly fsync all the new files in it
1842 */
1843static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1844 struct btrfs_root *root,
1845 u64 dirid, u64 index,
1846 char *name, int name_len,
1847 struct btrfs_key *location)
1848{
1849 struct inode *inode;
1850 struct inode *dir;
1851 int ret;
1852
1853 inode = read_one_inode(root, location->objectid);
1854 if (!inode)
1855 return -ENOENT;
1856
1857 dir = read_one_inode(root, dirid);
1858 if (!dir) {
1859 iput(inode);
1860 return -EIO;
1861 }
1862
1863 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1864 name_len, 1, index);
1865
1866 /* FIXME, put inode into FIXUP list */
1867
1868 iput(inode);
1869 iput(dir);
1870 return ret;
1871}
1872
1873/*
1874 * take a single entry in a log directory item and replay it into
1875 * the subvolume.
1876 *
1877 * if a conflicting item exists in the subdirectory already,
1878 * the inode it points to is unlinked and put into the link count
1879 * fix up tree.
1880 *
1881 * If a name from the log points to a file or directory that does
1882 * not exist in the FS, it is skipped. fsyncs on directories
1883 * do not force down inodes inside that directory, just changes to the
1884 * names or unlinks in a directory.
1885 *
1886 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1887 * non-existing inode) and 1 if the name was replayed.
1888 */
1889static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1890 struct btrfs_root *root,
1891 struct btrfs_path *path,
1892 struct extent_buffer *eb,
1893 struct btrfs_dir_item *di,
1894 struct btrfs_key *key)
1895{
1896 char *name;
1897 int name_len;
1898 struct btrfs_dir_item *dst_di;
1899 struct btrfs_key found_key;
1900 struct btrfs_key log_key;
1901 struct inode *dir;
1902 u8 log_type;
1903 int exists;
1904 int ret = 0;
1905 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1906 bool name_added = false;
1907
1908 dir = read_one_inode(root, key->objectid);
1909 if (!dir)
1910 return -EIO;
1911
1912 name_len = btrfs_dir_name_len(eb, di);
1913 name = kmalloc(name_len, GFP_NOFS);
1914 if (!name) {
1915 ret = -ENOMEM;
1916 goto out;
1917 }
1918
1919 log_type = btrfs_dir_type(eb, di);
1920 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1921 name_len);
1922
1923 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1924 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1925 if (exists == 0)
1926 exists = 1;
1927 else
1928 exists = 0;
1929 btrfs_release_path(path);
1930
1931 if (key->type == BTRFS_DIR_ITEM_KEY) {
1932 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1933 name, name_len, 1);
1934 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1935 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1936 key->objectid,
1937 key->offset, name,
1938 name_len, 1);
1939 } else {
1940 /* Corruption */
1941 ret = -EINVAL;
1942 goto out;
1943 }
1944 if (IS_ERR_OR_NULL(dst_di)) {
1945 /* we need a sequence number to insert, so we only
1946 * do inserts for the BTRFS_DIR_INDEX_KEY types
1947 */
1948 if (key->type != BTRFS_DIR_INDEX_KEY)
1949 goto out;
1950 goto insert;
1951 }
1952
1953 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1954 /* the existing item matches the logged item */
1955 if (found_key.objectid == log_key.objectid &&
1956 found_key.type == log_key.type &&
1957 found_key.offset == log_key.offset &&
1958 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1959 update_size = false;
1960 goto out;
1961 }
1962
1963 /*
1964 * don't drop the conflicting directory entry if the inode
1965 * for the new entry doesn't exist
1966 */
1967 if (!exists)
1968 goto out;
1969
1970 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1971 if (ret)
1972 goto out;
1973
1974 if (key->type == BTRFS_DIR_INDEX_KEY)
1975 goto insert;
1976out:
1977 btrfs_release_path(path);
1978 if (!ret && update_size) {
1979 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1980 ret = btrfs_update_inode(trans, root, dir);
1981 }
1982 kfree(name);
1983 iput(dir);
1984 if (!ret && name_added)
1985 ret = 1;
1986 return ret;
1987
1988insert:
1989 /*
1990 * Check if the inode reference exists in the log for the given name,
1991 * inode and parent inode
1992 */
1993 found_key.objectid = log_key.objectid;
1994 found_key.type = BTRFS_INODE_REF_KEY;
1995 found_key.offset = key->objectid;
1996 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1997 if (ret < 0) {
1998 goto out;
1999 } else if (ret) {
2000 /* The dentry will be added later. */
2001 ret = 0;
2002 update_size = false;
2003 goto out;
2004 }
2005
2006 found_key.objectid = log_key.objectid;
2007 found_key.type = BTRFS_INODE_EXTREF_KEY;
2008 found_key.offset = key->objectid;
2009 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2010 name_len);
2011 if (ret < 0) {
2012 goto out;
2013 } else if (ret) {
2014 /* The dentry will be added later. */
2015 ret = 0;
2016 update_size = false;
2017 goto out;
2018 }
2019 btrfs_release_path(path);
2020 ret = insert_one_name(trans, root, key->objectid, key->offset,
2021 name, name_len, &log_key);
2022 if (ret && ret != -ENOENT && ret != -EEXIST)
2023 goto out;
2024 if (!ret)
2025 name_added = true;
2026 update_size = false;
2027 ret = 0;
2028 goto out;
2029}
2030
2031/*
2032 * find all the names in a directory item and reconcile them into
2033 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2034 * one name in a directory item, but the same code gets used for
2035 * both directory index types
2036 */
2037static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2038 struct btrfs_root *root,
2039 struct btrfs_path *path,
2040 struct extent_buffer *eb, int slot,
2041 struct btrfs_key *key)
2042{
2043 int ret = 0;
2044 u32 item_size = btrfs_item_size_nr(eb, slot);
2045 struct btrfs_dir_item *di;
2046 int name_len;
2047 unsigned long ptr;
2048 unsigned long ptr_end;
2049 struct btrfs_path *fixup_path = NULL;
2050
2051 ptr = btrfs_item_ptr_offset(eb, slot);
2052 ptr_end = ptr + item_size;
2053 while (ptr < ptr_end) {
2054 di = (struct btrfs_dir_item *)ptr;
2055 name_len = btrfs_dir_name_len(eb, di);
2056 ret = replay_one_name(trans, root, path, eb, di, key);
2057 if (ret < 0)
2058 break;
2059 ptr = (unsigned long)(di + 1);
2060 ptr += name_len;
2061
2062 /*
2063 * If this entry refers to a non-directory (directories can not
2064 * have a link count > 1) and it was added in the transaction
2065 * that was not committed, make sure we fixup the link count of
2066 * the inode it the entry points to. Otherwise something like
2067 * the following would result in a directory pointing to an
2068 * inode with a wrong link that does not account for this dir
2069 * entry:
2070 *
2071 * mkdir testdir
2072 * touch testdir/foo
2073 * touch testdir/bar
2074 * sync
2075 *
2076 * ln testdir/bar testdir/bar_link
2077 * ln testdir/foo testdir/foo_link
2078 * xfs_io -c "fsync" testdir/bar
2079 *
2080 * <power failure>
2081 *
2082 * mount fs, log replay happens
2083 *
2084 * File foo would remain with a link count of 1 when it has two
2085 * entries pointing to it in the directory testdir. This would
2086 * make it impossible to ever delete the parent directory has
2087 * it would result in stale dentries that can never be deleted.
2088 */
2089 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2090 struct btrfs_key di_key;
2091
2092 if (!fixup_path) {
2093 fixup_path = btrfs_alloc_path();
2094 if (!fixup_path) {
2095 ret = -ENOMEM;
2096 break;
2097 }
2098 }
2099
2100 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2101 ret = link_to_fixup_dir(trans, root, fixup_path,
2102 di_key.objectid);
2103 if (ret)
2104 break;
2105 }
2106 ret = 0;
2107 }
2108 btrfs_free_path(fixup_path);
2109 return ret;
2110}
2111
2112/*
2113 * directory replay has two parts. There are the standard directory
2114 * items in the log copied from the subvolume, and range items
2115 * created in the log while the subvolume was logged.
2116 *
2117 * The range items tell us which parts of the key space the log
2118 * is authoritative for. During replay, if a key in the subvolume
2119 * directory is in a logged range item, but not actually in the log
2120 * that means it was deleted from the directory before the fsync
2121 * and should be removed.
2122 */
2123static noinline int find_dir_range(struct btrfs_root *root,
2124 struct btrfs_path *path,
2125 u64 dirid, int key_type,
2126 u64 *start_ret, u64 *end_ret)
2127{
2128 struct btrfs_key key;
2129 u64 found_end;
2130 struct btrfs_dir_log_item *item;
2131 int ret;
2132 int nritems;
2133
2134 if (*start_ret == (u64)-1)
2135 return 1;
2136
2137 key.objectid = dirid;
2138 key.type = key_type;
2139 key.offset = *start_ret;
2140
2141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2142 if (ret < 0)
2143 goto out;
2144 if (ret > 0) {
2145 if (path->slots[0] == 0)
2146 goto out;
2147 path->slots[0]--;
2148 }
2149 if (ret != 0)
2150 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2151
2152 if (key.type != key_type || key.objectid != dirid) {
2153 ret = 1;
2154 goto next;
2155 }
2156 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2157 struct btrfs_dir_log_item);
2158 found_end = btrfs_dir_log_end(path->nodes[0], item);
2159
2160 if (*start_ret >= key.offset && *start_ret <= found_end) {
2161 ret = 0;
2162 *start_ret = key.offset;
2163 *end_ret = found_end;
2164 goto out;
2165 }
2166 ret = 1;
2167next:
2168 /* check the next slot in the tree to see if it is a valid item */
2169 nritems = btrfs_header_nritems(path->nodes[0]);
2170 path->slots[0]++;
2171 if (path->slots[0] >= nritems) {
2172 ret = btrfs_next_leaf(root, path);
2173 if (ret)
2174 goto out;
2175 }
2176
2177 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2178
2179 if (key.type != key_type || key.objectid != dirid) {
2180 ret = 1;
2181 goto out;
2182 }
2183 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2184 struct btrfs_dir_log_item);
2185 found_end = btrfs_dir_log_end(path->nodes[0], item);
2186 *start_ret = key.offset;
2187 *end_ret = found_end;
2188 ret = 0;
2189out:
2190 btrfs_release_path(path);
2191 return ret;
2192}
2193
2194/*
2195 * this looks for a given directory item in the log. If the directory
2196 * item is not in the log, the item is removed and the inode it points
2197 * to is unlinked
2198 */
2199static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2200 struct btrfs_root *root,
2201 struct btrfs_root *log,
2202 struct btrfs_path *path,
2203 struct btrfs_path *log_path,
2204 struct inode *dir,
2205 struct btrfs_key *dir_key)
2206{
2207 int ret;
2208 struct extent_buffer *eb;
2209 int slot;
2210 u32 item_size;
2211 struct btrfs_dir_item *di;
2212 struct btrfs_dir_item *log_di;
2213 int name_len;
2214 unsigned long ptr;
2215 unsigned long ptr_end;
2216 char *name;
2217 struct inode *inode;
2218 struct btrfs_key location;
2219
2220again:
2221 eb = path->nodes[0];
2222 slot = path->slots[0];
2223 item_size = btrfs_item_size_nr(eb, slot);
2224 ptr = btrfs_item_ptr_offset(eb, slot);
2225 ptr_end = ptr + item_size;
2226 while (ptr < ptr_end) {
2227 di = (struct btrfs_dir_item *)ptr;
2228 name_len = btrfs_dir_name_len(eb, di);
2229 name = kmalloc(name_len, GFP_NOFS);
2230 if (!name) {
2231 ret = -ENOMEM;
2232 goto out;
2233 }
2234 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2235 name_len);
2236 log_di = NULL;
2237 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2238 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2239 dir_key->objectid,
2240 name, name_len, 0);
2241 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2242 log_di = btrfs_lookup_dir_index_item(trans, log,
2243 log_path,
2244 dir_key->objectid,
2245 dir_key->offset,
2246 name, name_len, 0);
2247 }
2248 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2249 btrfs_dir_item_key_to_cpu(eb, di, &location);
2250 btrfs_release_path(path);
2251 btrfs_release_path(log_path);
2252 inode = read_one_inode(root, location.objectid);
2253 if (!inode) {
2254 kfree(name);
2255 return -EIO;
2256 }
2257
2258 ret = link_to_fixup_dir(trans, root,
2259 path, location.objectid);
2260 if (ret) {
2261 kfree(name);
2262 iput(inode);
2263 goto out;
2264 }
2265
2266 inc_nlink(inode);
2267 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2268 BTRFS_I(inode), name, name_len);
2269 if (!ret)
2270 ret = btrfs_run_delayed_items(trans);
2271 kfree(name);
2272 iput(inode);
2273 if (ret)
2274 goto out;
2275
2276 /* there might still be more names under this key
2277 * check and repeat if required
2278 */
2279 ret = btrfs_search_slot(NULL, root, dir_key, path,
2280 0, 0);
2281 if (ret == 0)
2282 goto again;
2283 ret = 0;
2284 goto out;
2285 } else if (IS_ERR(log_di)) {
2286 kfree(name);
2287 return PTR_ERR(log_di);
2288 }
2289 btrfs_release_path(log_path);
2290 kfree(name);
2291
2292 ptr = (unsigned long)(di + 1);
2293 ptr += name_len;
2294 }
2295 ret = 0;
2296out:
2297 btrfs_release_path(path);
2298 btrfs_release_path(log_path);
2299 return ret;
2300}
2301
2302static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2303 struct btrfs_root *root,
2304 struct btrfs_root *log,
2305 struct btrfs_path *path,
2306 const u64 ino)
2307{
2308 struct btrfs_key search_key;
2309 struct btrfs_path *log_path;
2310 int i;
2311 int nritems;
2312 int ret;
2313
2314 log_path = btrfs_alloc_path();
2315 if (!log_path)
2316 return -ENOMEM;
2317
2318 search_key.objectid = ino;
2319 search_key.type = BTRFS_XATTR_ITEM_KEY;
2320 search_key.offset = 0;
2321again:
2322 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2323 if (ret < 0)
2324 goto out;
2325process_leaf:
2326 nritems = btrfs_header_nritems(path->nodes[0]);
2327 for (i = path->slots[0]; i < nritems; i++) {
2328 struct btrfs_key key;
2329 struct btrfs_dir_item *di;
2330 struct btrfs_dir_item *log_di;
2331 u32 total_size;
2332 u32 cur;
2333
2334 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2335 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2336 ret = 0;
2337 goto out;
2338 }
2339
2340 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2341 total_size = btrfs_item_size_nr(path->nodes[0], i);
2342 cur = 0;
2343 while (cur < total_size) {
2344 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2345 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2346 u32 this_len = sizeof(*di) + name_len + data_len;
2347 char *name;
2348
2349 name = kmalloc(name_len, GFP_NOFS);
2350 if (!name) {
2351 ret = -ENOMEM;
2352 goto out;
2353 }
2354 read_extent_buffer(path->nodes[0], name,
2355 (unsigned long)(di + 1), name_len);
2356
2357 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2358 name, name_len, 0);
2359 btrfs_release_path(log_path);
2360 if (!log_di) {
2361 /* Doesn't exist in log tree, so delete it. */
2362 btrfs_release_path(path);
2363 di = btrfs_lookup_xattr(trans, root, path, ino,
2364 name, name_len, -1);
2365 kfree(name);
2366 if (IS_ERR(di)) {
2367 ret = PTR_ERR(di);
2368 goto out;
2369 }
2370 ASSERT(di);
2371 ret = btrfs_delete_one_dir_name(trans, root,
2372 path, di);
2373 if (ret)
2374 goto out;
2375 btrfs_release_path(path);
2376 search_key = key;
2377 goto again;
2378 }
2379 kfree(name);
2380 if (IS_ERR(log_di)) {
2381 ret = PTR_ERR(log_di);
2382 goto out;
2383 }
2384 cur += this_len;
2385 di = (struct btrfs_dir_item *)((char *)di + this_len);
2386 }
2387 }
2388 ret = btrfs_next_leaf(root, path);
2389 if (ret > 0)
2390 ret = 0;
2391 else if (ret == 0)
2392 goto process_leaf;
2393out:
2394 btrfs_free_path(log_path);
2395 btrfs_release_path(path);
2396 return ret;
2397}
2398
2399
2400/*
2401 * deletion replay happens before we copy any new directory items
2402 * out of the log or out of backreferences from inodes. It
2403 * scans the log to find ranges of keys that log is authoritative for,
2404 * and then scans the directory to find items in those ranges that are
2405 * not present in the log.
2406 *
2407 * Anything we don't find in the log is unlinked and removed from the
2408 * directory.
2409 */
2410static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2411 struct btrfs_root *root,
2412 struct btrfs_root *log,
2413 struct btrfs_path *path,
2414 u64 dirid, int del_all)
2415{
2416 u64 range_start;
2417 u64 range_end;
2418 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2419 int ret = 0;
2420 struct btrfs_key dir_key;
2421 struct btrfs_key found_key;
2422 struct btrfs_path *log_path;
2423 struct inode *dir;
2424
2425 dir_key.objectid = dirid;
2426 dir_key.type = BTRFS_DIR_ITEM_KEY;
2427 log_path = btrfs_alloc_path();
2428 if (!log_path)
2429 return -ENOMEM;
2430
2431 dir = read_one_inode(root, dirid);
2432 /* it isn't an error if the inode isn't there, that can happen
2433 * because we replay the deletes before we copy in the inode item
2434 * from the log
2435 */
2436 if (!dir) {
2437 btrfs_free_path(log_path);
2438 return 0;
2439 }
2440again:
2441 range_start = 0;
2442 range_end = 0;
2443 while (1) {
2444 if (del_all)
2445 range_end = (u64)-1;
2446 else {
2447 ret = find_dir_range(log, path, dirid, key_type,
2448 &range_start, &range_end);
2449 if (ret != 0)
2450 break;
2451 }
2452
2453 dir_key.offset = range_start;
2454 while (1) {
2455 int nritems;
2456 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2457 0, 0);
2458 if (ret < 0)
2459 goto out;
2460
2461 nritems = btrfs_header_nritems(path->nodes[0]);
2462 if (path->slots[0] >= nritems) {
2463 ret = btrfs_next_leaf(root, path);
2464 if (ret == 1)
2465 break;
2466 else if (ret < 0)
2467 goto out;
2468 }
2469 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2470 path->slots[0]);
2471 if (found_key.objectid != dirid ||
2472 found_key.type != dir_key.type)
2473 goto next_type;
2474
2475 if (found_key.offset > range_end)
2476 break;
2477
2478 ret = check_item_in_log(trans, root, log, path,
2479 log_path, dir,
2480 &found_key);
2481 if (ret)
2482 goto out;
2483 if (found_key.offset == (u64)-1)
2484 break;
2485 dir_key.offset = found_key.offset + 1;
2486 }
2487 btrfs_release_path(path);
2488 if (range_end == (u64)-1)
2489 break;
2490 range_start = range_end + 1;
2491 }
2492
2493next_type:
2494 ret = 0;
2495 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2496 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2497 dir_key.type = BTRFS_DIR_INDEX_KEY;
2498 btrfs_release_path(path);
2499 goto again;
2500 }
2501out:
2502 btrfs_release_path(path);
2503 btrfs_free_path(log_path);
2504 iput(dir);
2505 return ret;
2506}
2507
2508/*
2509 * the process_func used to replay items from the log tree. This
2510 * gets called in two different stages. The first stage just looks
2511 * for inodes and makes sure they are all copied into the subvolume.
2512 *
2513 * The second stage copies all the other item types from the log into
2514 * the subvolume. The two stage approach is slower, but gets rid of
2515 * lots of complexity around inodes referencing other inodes that exist
2516 * only in the log (references come from either directory items or inode
2517 * back refs).
2518 */
2519static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2520 struct walk_control *wc, u64 gen, int level)
2521{
2522 int nritems;
2523 struct btrfs_path *path;
2524 struct btrfs_root *root = wc->replay_dest;
2525 struct btrfs_key key;
2526 int i;
2527 int ret;
2528
2529 ret = btrfs_read_buffer(eb, gen, level, NULL);
2530 if (ret)
2531 return ret;
2532
2533 level = btrfs_header_level(eb);
2534
2535 if (level != 0)
2536 return 0;
2537
2538 path = btrfs_alloc_path();
2539 if (!path)
2540 return -ENOMEM;
2541
2542 nritems = btrfs_header_nritems(eb);
2543 for (i = 0; i < nritems; i++) {
2544 btrfs_item_key_to_cpu(eb, &key, i);
2545
2546 /* inode keys are done during the first stage */
2547 if (key.type == BTRFS_INODE_ITEM_KEY &&
2548 wc->stage == LOG_WALK_REPLAY_INODES) {
2549 struct btrfs_inode_item *inode_item;
2550 u32 mode;
2551
2552 inode_item = btrfs_item_ptr(eb, i,
2553 struct btrfs_inode_item);
2554 /*
2555 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2556 * and never got linked before the fsync, skip it, as
2557 * replaying it is pointless since it would be deleted
2558 * later. We skip logging tmpfiles, but it's always
2559 * possible we are replaying a log created with a kernel
2560 * that used to log tmpfiles.
2561 */
2562 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2563 wc->ignore_cur_inode = true;
2564 continue;
2565 } else {
2566 wc->ignore_cur_inode = false;
2567 }
2568 ret = replay_xattr_deletes(wc->trans, root, log,
2569 path, key.objectid);
2570 if (ret)
2571 break;
2572 mode = btrfs_inode_mode(eb, inode_item);
2573 if (S_ISDIR(mode)) {
2574 ret = replay_dir_deletes(wc->trans,
2575 root, log, path, key.objectid, 0);
2576 if (ret)
2577 break;
2578 }
2579 ret = overwrite_item(wc->trans, root, path,
2580 eb, i, &key);
2581 if (ret)
2582 break;
2583
2584 /*
2585 * Before replaying extents, truncate the inode to its
2586 * size. We need to do it now and not after log replay
2587 * because before an fsync we can have prealloc extents
2588 * added beyond the inode's i_size. If we did it after,
2589 * through orphan cleanup for example, we would drop
2590 * those prealloc extents just after replaying them.
2591 */
2592 if (S_ISREG(mode)) {
2593 struct inode *inode;
2594 u64 from;
2595
2596 inode = read_one_inode(root, key.objectid);
2597 if (!inode) {
2598 ret = -EIO;
2599 break;
2600 }
2601 from = ALIGN(i_size_read(inode),
2602 root->fs_info->sectorsize);
2603 ret = btrfs_drop_extents(wc->trans, root, inode,
2604 from, (u64)-1, 1);
2605 if (!ret) {
2606 /* Update the inode's nbytes. */
2607 ret = btrfs_update_inode(wc->trans,
2608 root, inode);
2609 }
2610 iput(inode);
2611 if (ret)
2612 break;
2613 }
2614
2615 ret = link_to_fixup_dir(wc->trans, root,
2616 path, key.objectid);
2617 if (ret)
2618 break;
2619 }
2620
2621 if (wc->ignore_cur_inode)
2622 continue;
2623
2624 if (key.type == BTRFS_DIR_INDEX_KEY &&
2625 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2626 ret = replay_one_dir_item(wc->trans, root, path,
2627 eb, i, &key);
2628 if (ret)
2629 break;
2630 }
2631
2632 if (wc->stage < LOG_WALK_REPLAY_ALL)
2633 continue;
2634
2635 /* these keys are simply copied */
2636 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2637 ret = overwrite_item(wc->trans, root, path,
2638 eb, i, &key);
2639 if (ret)
2640 break;
2641 } else if (key.type == BTRFS_INODE_REF_KEY ||
2642 key.type == BTRFS_INODE_EXTREF_KEY) {
2643 ret = add_inode_ref(wc->trans, root, log, path,
2644 eb, i, &key);
2645 if (ret && ret != -ENOENT)
2646 break;
2647 ret = 0;
2648 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2649 ret = replay_one_extent(wc->trans, root, path,
2650 eb, i, &key);
2651 if (ret)
2652 break;
2653 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2654 ret = replay_one_dir_item(wc->trans, root, path,
2655 eb, i, &key);
2656 if (ret)
2657 break;
2658 }
2659 }
2660 btrfs_free_path(path);
2661 return ret;
2662}
2663
2664/*
2665 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2666 */
2667static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2668{
2669 struct btrfs_block_group *cache;
2670
2671 cache = btrfs_lookup_block_group(fs_info, start);
2672 if (!cache) {
2673 btrfs_err(fs_info, "unable to find block group for %llu", start);
2674 return;
2675 }
2676
2677 spin_lock(&cache->space_info->lock);
2678 spin_lock(&cache->lock);
2679 cache->reserved -= fs_info->nodesize;
2680 cache->space_info->bytes_reserved -= fs_info->nodesize;
2681 spin_unlock(&cache->lock);
2682 spin_unlock(&cache->space_info->lock);
2683
2684 btrfs_put_block_group(cache);
2685}
2686
2687static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2688 struct btrfs_root *root,
2689 struct btrfs_path *path, int *level,
2690 struct walk_control *wc)
2691{
2692 struct btrfs_fs_info *fs_info = root->fs_info;
2693 u64 bytenr;
2694 u64 ptr_gen;
2695 struct extent_buffer *next;
2696 struct extent_buffer *cur;
2697 u32 blocksize;
2698 int ret = 0;
2699
2700 while (*level > 0) {
2701 struct btrfs_key first_key;
2702
2703 cur = path->nodes[*level];
2704
2705 WARN_ON(btrfs_header_level(cur) != *level);
2706
2707 if (path->slots[*level] >=
2708 btrfs_header_nritems(cur))
2709 break;
2710
2711 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2712 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2713 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2714 blocksize = fs_info->nodesize;
2715
2716 next = btrfs_find_create_tree_block(fs_info, bytenr);
2717 if (IS_ERR(next))
2718 return PTR_ERR(next);
2719
2720 if (*level == 1) {
2721 ret = wc->process_func(root, next, wc, ptr_gen,
2722 *level - 1);
2723 if (ret) {
2724 free_extent_buffer(next);
2725 return ret;
2726 }
2727
2728 path->slots[*level]++;
2729 if (wc->free) {
2730 ret = btrfs_read_buffer(next, ptr_gen,
2731 *level - 1, &first_key);
2732 if (ret) {
2733 free_extent_buffer(next);
2734 return ret;
2735 }
2736
2737 if (trans) {
2738 btrfs_tree_lock(next);
2739 btrfs_set_lock_blocking_write(next);
2740 btrfs_clean_tree_block(next);
2741 btrfs_wait_tree_block_writeback(next);
2742 btrfs_tree_unlock(next);
2743 ret = btrfs_pin_reserved_extent(trans,
2744 bytenr, blocksize);
2745 if (ret) {
2746 free_extent_buffer(next);
2747 return ret;
2748 }
2749 } else {
2750 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2751 clear_extent_buffer_dirty(next);
2752 unaccount_log_buffer(fs_info, bytenr);
2753 }
2754 }
2755 free_extent_buffer(next);
2756 continue;
2757 }
2758 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2759 if (ret) {
2760 free_extent_buffer(next);
2761 return ret;
2762 }
2763
2764 if (path->nodes[*level-1])
2765 free_extent_buffer(path->nodes[*level-1]);
2766 path->nodes[*level-1] = next;
2767 *level = btrfs_header_level(next);
2768 path->slots[*level] = 0;
2769 cond_resched();
2770 }
2771 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2772
2773 cond_resched();
2774 return 0;
2775}
2776
2777static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2778 struct btrfs_root *root,
2779 struct btrfs_path *path, int *level,
2780 struct walk_control *wc)
2781{
2782 struct btrfs_fs_info *fs_info = root->fs_info;
2783 int i;
2784 int slot;
2785 int ret;
2786
2787 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2788 slot = path->slots[i];
2789 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2790 path->slots[i]++;
2791 *level = i;
2792 WARN_ON(*level == 0);
2793 return 0;
2794 } else {
2795 ret = wc->process_func(root, path->nodes[*level], wc,
2796 btrfs_header_generation(path->nodes[*level]),
2797 *level);
2798 if (ret)
2799 return ret;
2800
2801 if (wc->free) {
2802 struct extent_buffer *next;
2803
2804 next = path->nodes[*level];
2805
2806 if (trans) {
2807 btrfs_tree_lock(next);
2808 btrfs_set_lock_blocking_write(next);
2809 btrfs_clean_tree_block(next);
2810 btrfs_wait_tree_block_writeback(next);
2811 btrfs_tree_unlock(next);
2812 ret = btrfs_pin_reserved_extent(trans,
2813 path->nodes[*level]->start,
2814 path->nodes[*level]->len);
2815 if (ret)
2816 return ret;
2817 } else {
2818 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2819 clear_extent_buffer_dirty(next);
2820
2821 unaccount_log_buffer(fs_info,
2822 path->nodes[*level]->start);
2823 }
2824 }
2825 free_extent_buffer(path->nodes[*level]);
2826 path->nodes[*level] = NULL;
2827 *level = i + 1;
2828 }
2829 }
2830 return 1;
2831}
2832
2833/*
2834 * drop the reference count on the tree rooted at 'snap'. This traverses
2835 * the tree freeing any blocks that have a ref count of zero after being
2836 * decremented.
2837 */
2838static int walk_log_tree(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *log, struct walk_control *wc)
2840{
2841 struct btrfs_fs_info *fs_info = log->fs_info;
2842 int ret = 0;
2843 int wret;
2844 int level;
2845 struct btrfs_path *path;
2846 int orig_level;
2847
2848 path = btrfs_alloc_path();
2849 if (!path)
2850 return -ENOMEM;
2851
2852 level = btrfs_header_level(log->node);
2853 orig_level = level;
2854 path->nodes[level] = log->node;
2855 atomic_inc(&log->node->refs);
2856 path->slots[level] = 0;
2857
2858 while (1) {
2859 wret = walk_down_log_tree(trans, log, path, &level, wc);
2860 if (wret > 0)
2861 break;
2862 if (wret < 0) {
2863 ret = wret;
2864 goto out;
2865 }
2866
2867 wret = walk_up_log_tree(trans, log, path, &level, wc);
2868 if (wret > 0)
2869 break;
2870 if (wret < 0) {
2871 ret = wret;
2872 goto out;
2873 }
2874 }
2875
2876 /* was the root node processed? if not, catch it here */
2877 if (path->nodes[orig_level]) {
2878 ret = wc->process_func(log, path->nodes[orig_level], wc,
2879 btrfs_header_generation(path->nodes[orig_level]),
2880 orig_level);
2881 if (ret)
2882 goto out;
2883 if (wc->free) {
2884 struct extent_buffer *next;
2885
2886 next = path->nodes[orig_level];
2887
2888 if (trans) {
2889 btrfs_tree_lock(next);
2890 btrfs_set_lock_blocking_write(next);
2891 btrfs_clean_tree_block(next);
2892 btrfs_wait_tree_block_writeback(next);
2893 btrfs_tree_unlock(next);
2894 ret = btrfs_pin_reserved_extent(trans,
2895 next->start, next->len);
2896 if (ret)
2897 goto out;
2898 } else {
2899 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2900 clear_extent_buffer_dirty(next);
2901 unaccount_log_buffer(fs_info, next->start);
2902 }
2903 }
2904 }
2905
2906out:
2907 btrfs_free_path(path);
2908 return ret;
2909}
2910
2911/*
2912 * helper function to update the item for a given subvolumes log root
2913 * in the tree of log roots
2914 */
2915static int update_log_root(struct btrfs_trans_handle *trans,
2916 struct btrfs_root *log,
2917 struct btrfs_root_item *root_item)
2918{
2919 struct btrfs_fs_info *fs_info = log->fs_info;
2920 int ret;
2921
2922 if (log->log_transid == 1) {
2923 /* insert root item on the first sync */
2924 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2925 &log->root_key, root_item);
2926 } else {
2927 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2928 &log->root_key, root_item);
2929 }
2930 return ret;
2931}
2932
2933static void wait_log_commit(struct btrfs_root *root, int transid)
2934{
2935 DEFINE_WAIT(wait);
2936 int index = transid % 2;
2937
2938 /*
2939 * we only allow two pending log transactions at a time,
2940 * so we know that if ours is more than 2 older than the
2941 * current transaction, we're done
2942 */
2943 for (;;) {
2944 prepare_to_wait(&root->log_commit_wait[index],
2945 &wait, TASK_UNINTERRUPTIBLE);
2946
2947 if (!(root->log_transid_committed < transid &&
2948 atomic_read(&root->log_commit[index])))
2949 break;
2950
2951 mutex_unlock(&root->log_mutex);
2952 schedule();
2953 mutex_lock(&root->log_mutex);
2954 }
2955 finish_wait(&root->log_commit_wait[index], &wait);
2956}
2957
2958static void wait_for_writer(struct btrfs_root *root)
2959{
2960 DEFINE_WAIT(wait);
2961
2962 for (;;) {
2963 prepare_to_wait(&root->log_writer_wait, &wait,
2964 TASK_UNINTERRUPTIBLE);
2965 if (!atomic_read(&root->log_writers))
2966 break;
2967
2968 mutex_unlock(&root->log_mutex);
2969 schedule();
2970 mutex_lock(&root->log_mutex);
2971 }
2972 finish_wait(&root->log_writer_wait, &wait);
2973}
2974
2975static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2976 struct btrfs_log_ctx *ctx)
2977{
2978 if (!ctx)
2979 return;
2980
2981 mutex_lock(&root->log_mutex);
2982 list_del_init(&ctx->list);
2983 mutex_unlock(&root->log_mutex);
2984}
2985
2986/*
2987 * Invoked in log mutex context, or be sure there is no other task which
2988 * can access the list.
2989 */
2990static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2991 int index, int error)
2992{
2993 struct btrfs_log_ctx *ctx;
2994 struct btrfs_log_ctx *safe;
2995
2996 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2997 list_del_init(&ctx->list);
2998 ctx->log_ret = error;
2999 }
3000
3001 INIT_LIST_HEAD(&root->log_ctxs[index]);
3002}
3003
3004/*
3005 * btrfs_sync_log does sends a given tree log down to the disk and
3006 * updates the super blocks to record it. When this call is done,
3007 * you know that any inodes previously logged are safely on disk only
3008 * if it returns 0.
3009 *
3010 * Any other return value means you need to call btrfs_commit_transaction.
3011 * Some of the edge cases for fsyncing directories that have had unlinks
3012 * or renames done in the past mean that sometimes the only safe
3013 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3014 * that has happened.
3015 */
3016int btrfs_sync_log(struct btrfs_trans_handle *trans,
3017 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3018{
3019 int index1;
3020 int index2;
3021 int mark;
3022 int ret;
3023 struct btrfs_fs_info *fs_info = root->fs_info;
3024 struct btrfs_root *log = root->log_root;
3025 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3026 struct btrfs_root_item new_root_item;
3027 int log_transid = 0;
3028 struct btrfs_log_ctx root_log_ctx;
3029 struct blk_plug plug;
3030
3031 mutex_lock(&root->log_mutex);
3032 log_transid = ctx->log_transid;
3033 if (root->log_transid_committed >= log_transid) {
3034 mutex_unlock(&root->log_mutex);
3035 return ctx->log_ret;
3036 }
3037
3038 index1 = log_transid % 2;
3039 if (atomic_read(&root->log_commit[index1])) {
3040 wait_log_commit(root, log_transid);
3041 mutex_unlock(&root->log_mutex);
3042 return ctx->log_ret;
3043 }
3044 ASSERT(log_transid == root->log_transid);
3045 atomic_set(&root->log_commit[index1], 1);
3046
3047 /* wait for previous tree log sync to complete */
3048 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3049 wait_log_commit(root, log_transid - 1);
3050
3051 while (1) {
3052 int batch = atomic_read(&root->log_batch);
3053 /* when we're on an ssd, just kick the log commit out */
3054 if (!btrfs_test_opt(fs_info, SSD) &&
3055 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3056 mutex_unlock(&root->log_mutex);
3057 schedule_timeout_uninterruptible(1);
3058 mutex_lock(&root->log_mutex);
3059 }
3060 wait_for_writer(root);
3061 if (batch == atomic_read(&root->log_batch))
3062 break;
3063 }
3064
3065 /* bail out if we need to do a full commit */
3066 if (btrfs_need_log_full_commit(trans)) {
3067 ret = -EAGAIN;
3068 mutex_unlock(&root->log_mutex);
3069 goto out;
3070 }
3071
3072 if (log_transid % 2 == 0)
3073 mark = EXTENT_DIRTY;
3074 else
3075 mark = EXTENT_NEW;
3076
3077 /* we start IO on all the marked extents here, but we don't actually
3078 * wait for them until later.
3079 */
3080 blk_start_plug(&plug);
3081 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3082 if (ret) {
3083 blk_finish_plug(&plug);
3084 btrfs_abort_transaction(trans, ret);
3085 btrfs_set_log_full_commit(trans);
3086 mutex_unlock(&root->log_mutex);
3087 goto out;
3088 }
3089
3090 /*
3091 * We _must_ update under the root->log_mutex in order to make sure we
3092 * have a consistent view of the log root we are trying to commit at
3093 * this moment.
3094 *
3095 * We _must_ copy this into a local copy, because we are not holding the
3096 * log_root_tree->log_mutex yet. This is important because when we
3097 * commit the log_root_tree we must have a consistent view of the
3098 * log_root_tree when we update the super block to point at the
3099 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3100 * with the commit and possibly point at the new block which we may not
3101 * have written out.
3102 */
3103 btrfs_set_root_node(&log->root_item, log->node);
3104 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3105
3106 root->log_transid++;
3107 log->log_transid = root->log_transid;
3108 root->log_start_pid = 0;
3109 /*
3110 * IO has been started, blocks of the log tree have WRITTEN flag set
3111 * in their headers. new modifications of the log will be written to
3112 * new positions. so it's safe to allow log writers to go in.
3113 */
3114 mutex_unlock(&root->log_mutex);
3115
3116 btrfs_init_log_ctx(&root_log_ctx, NULL);
3117
3118 mutex_lock(&log_root_tree->log_mutex);
3119
3120 index2 = log_root_tree->log_transid % 2;
3121 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3122 root_log_ctx.log_transid = log_root_tree->log_transid;
3123
3124 /*
3125 * Now we are safe to update the log_root_tree because we're under the
3126 * log_mutex, and we're a current writer so we're holding the commit
3127 * open until we drop the log_mutex.
3128 */
3129 ret = update_log_root(trans, log, &new_root_item);
3130 if (ret) {
3131 if (!list_empty(&root_log_ctx.list))
3132 list_del_init(&root_log_ctx.list);
3133
3134 blk_finish_plug(&plug);
3135 btrfs_set_log_full_commit(trans);
3136
3137 if (ret != -ENOSPC) {
3138 btrfs_abort_transaction(trans, ret);
3139 mutex_unlock(&log_root_tree->log_mutex);
3140 goto out;
3141 }
3142 btrfs_wait_tree_log_extents(log, mark);
3143 mutex_unlock(&log_root_tree->log_mutex);
3144 ret = -EAGAIN;
3145 goto out;
3146 }
3147
3148 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3149 blk_finish_plug(&plug);
3150 list_del_init(&root_log_ctx.list);
3151 mutex_unlock(&log_root_tree->log_mutex);
3152 ret = root_log_ctx.log_ret;
3153 goto out;
3154 }
3155
3156 index2 = root_log_ctx.log_transid % 2;
3157 if (atomic_read(&log_root_tree->log_commit[index2])) {
3158 blk_finish_plug(&plug);
3159 ret = btrfs_wait_tree_log_extents(log, mark);
3160 wait_log_commit(log_root_tree,
3161 root_log_ctx.log_transid);
3162 mutex_unlock(&log_root_tree->log_mutex);
3163 if (!ret)
3164 ret = root_log_ctx.log_ret;
3165 goto out;
3166 }
3167 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3168 atomic_set(&log_root_tree->log_commit[index2], 1);
3169
3170 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3171 wait_log_commit(log_root_tree,
3172 root_log_ctx.log_transid - 1);
3173 }
3174
3175 /*
3176 * now that we've moved on to the tree of log tree roots,
3177 * check the full commit flag again
3178 */
3179 if (btrfs_need_log_full_commit(trans)) {
3180 blk_finish_plug(&plug);
3181 btrfs_wait_tree_log_extents(log, mark);
3182 mutex_unlock(&log_root_tree->log_mutex);
3183 ret = -EAGAIN;
3184 goto out_wake_log_root;
3185 }
3186
3187 ret = btrfs_write_marked_extents(fs_info,
3188 &log_root_tree->dirty_log_pages,
3189 EXTENT_DIRTY | EXTENT_NEW);
3190 blk_finish_plug(&plug);
3191 if (ret) {
3192 btrfs_set_log_full_commit(trans);
3193 btrfs_abort_transaction(trans, ret);
3194 mutex_unlock(&log_root_tree->log_mutex);
3195 goto out_wake_log_root;
3196 }
3197 ret = btrfs_wait_tree_log_extents(log, mark);
3198 if (!ret)
3199 ret = btrfs_wait_tree_log_extents(log_root_tree,
3200 EXTENT_NEW | EXTENT_DIRTY);
3201 if (ret) {
3202 btrfs_set_log_full_commit(trans);
3203 mutex_unlock(&log_root_tree->log_mutex);
3204 goto out_wake_log_root;
3205 }
3206
3207 btrfs_set_super_log_root(fs_info->super_for_commit,
3208 log_root_tree->node->start);
3209 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3210 btrfs_header_level(log_root_tree->node));
3211
3212 log_root_tree->log_transid++;
3213 mutex_unlock(&log_root_tree->log_mutex);
3214
3215 /*
3216 * Nobody else is going to jump in and write the ctree
3217 * super here because the log_commit atomic below is protecting
3218 * us. We must be called with a transaction handle pinning
3219 * the running transaction open, so a full commit can't hop
3220 * in and cause problems either.
3221 */
3222 ret = write_all_supers(fs_info, 1);
3223 if (ret) {
3224 btrfs_set_log_full_commit(trans);
3225 btrfs_abort_transaction(trans, ret);
3226 goto out_wake_log_root;
3227 }
3228
3229 mutex_lock(&root->log_mutex);
3230 if (root->last_log_commit < log_transid)
3231 root->last_log_commit = log_transid;
3232 mutex_unlock(&root->log_mutex);
3233
3234out_wake_log_root:
3235 mutex_lock(&log_root_tree->log_mutex);
3236 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3237
3238 log_root_tree->log_transid_committed++;
3239 atomic_set(&log_root_tree->log_commit[index2], 0);
3240 mutex_unlock(&log_root_tree->log_mutex);
3241
3242 /*
3243 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3244 * all the updates above are seen by the woken threads. It might not be
3245 * necessary, but proving that seems to be hard.
3246 */
3247 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3248out:
3249 mutex_lock(&root->log_mutex);
3250 btrfs_remove_all_log_ctxs(root, index1, ret);
3251 root->log_transid_committed++;
3252 atomic_set(&root->log_commit[index1], 0);
3253 mutex_unlock(&root->log_mutex);
3254
3255 /*
3256 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3257 * all the updates above are seen by the woken threads. It might not be
3258 * necessary, but proving that seems to be hard.
3259 */
3260 cond_wake_up(&root->log_commit_wait[index1]);
3261 return ret;
3262}
3263
3264static void free_log_tree(struct btrfs_trans_handle *trans,
3265 struct btrfs_root *log)
3266{
3267 int ret;
3268 struct walk_control wc = {
3269 .free = 1,
3270 .process_func = process_one_buffer
3271 };
3272
3273 ret = walk_log_tree(trans, log, &wc);
3274 if (ret) {
3275 if (trans)
3276 btrfs_abort_transaction(trans, ret);
3277 else
3278 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3279 }
3280
3281 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3282 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3283 extent_io_tree_release(&log->log_csum_range);
3284 btrfs_put_root(log);
3285}
3286
3287/*
3288 * free all the extents used by the tree log. This should be called
3289 * at commit time of the full transaction
3290 */
3291int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3292{
3293 if (root->log_root) {
3294 free_log_tree(trans, root->log_root);
3295 root->log_root = NULL;
3296 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3297 }
3298 return 0;
3299}
3300
3301int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3302 struct btrfs_fs_info *fs_info)
3303{
3304 if (fs_info->log_root_tree) {
3305 free_log_tree(trans, fs_info->log_root_tree);
3306 fs_info->log_root_tree = NULL;
3307 }
3308 return 0;
3309}
3310
3311/*
3312 * Check if an inode was logged in the current transaction. We can't always rely
3313 * on an inode's logged_trans value, because it's an in-memory only field and
3314 * therefore not persisted. This means that its value is lost if the inode gets
3315 * evicted and loaded again from disk (in which case it has a value of 0, and
3316 * certainly it is smaller then any possible transaction ID), when that happens
3317 * the full_sync flag is set in the inode's runtime flags, so on that case we
3318 * assume eviction happened and ignore the logged_trans value, assuming the
3319 * worst case, that the inode was logged before in the current transaction.
3320 */
3321static bool inode_logged(struct btrfs_trans_handle *trans,
3322 struct btrfs_inode *inode)
3323{
3324 if (inode->logged_trans == trans->transid)
3325 return true;
3326
3327 if (inode->last_trans == trans->transid &&
3328 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3329 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3330 return true;
3331
3332 return false;
3333}
3334
3335/*
3336 * If both a file and directory are logged, and unlinks or renames are
3337 * mixed in, we have a few interesting corners:
3338 *
3339 * create file X in dir Y
3340 * link file X to X.link in dir Y
3341 * fsync file X
3342 * unlink file X but leave X.link
3343 * fsync dir Y
3344 *
3345 * After a crash we would expect only X.link to exist. But file X
3346 * didn't get fsync'd again so the log has back refs for X and X.link.
3347 *
3348 * We solve this by removing directory entries and inode backrefs from the
3349 * log when a file that was logged in the current transaction is
3350 * unlinked. Any later fsync will include the updated log entries, and
3351 * we'll be able to reconstruct the proper directory items from backrefs.
3352 *
3353 * This optimizations allows us to avoid relogging the entire inode
3354 * or the entire directory.
3355 */
3356int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3357 struct btrfs_root *root,
3358 const char *name, int name_len,
3359 struct btrfs_inode *dir, u64 index)
3360{
3361 struct btrfs_root *log;
3362 struct btrfs_dir_item *di;
3363 struct btrfs_path *path;
3364 int ret;
3365 int err = 0;
3366 int bytes_del = 0;
3367 u64 dir_ino = btrfs_ino(dir);
3368
3369 if (!inode_logged(trans, dir))
3370 return 0;
3371
3372 ret = join_running_log_trans(root);
3373 if (ret)
3374 return 0;
3375
3376 mutex_lock(&dir->log_mutex);
3377
3378 log = root->log_root;
3379 path = btrfs_alloc_path();
3380 if (!path) {
3381 err = -ENOMEM;
3382 goto out_unlock;
3383 }
3384
3385 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3386 name, name_len, -1);
3387 if (IS_ERR(di)) {
3388 err = PTR_ERR(di);
3389 goto fail;
3390 }
3391 if (di) {
3392 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3393 bytes_del += name_len;
3394 if (ret) {
3395 err = ret;
3396 goto fail;
3397 }
3398 }
3399 btrfs_release_path(path);
3400 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3401 index, name, name_len, -1);
3402 if (IS_ERR(di)) {
3403 err = PTR_ERR(di);
3404 goto fail;
3405 }
3406 if (di) {
3407 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3408 bytes_del += name_len;
3409 if (ret) {
3410 err = ret;
3411 goto fail;
3412 }
3413 }
3414
3415 /* update the directory size in the log to reflect the names
3416 * we have removed
3417 */
3418 if (bytes_del) {
3419 struct btrfs_key key;
3420
3421 key.objectid = dir_ino;
3422 key.offset = 0;
3423 key.type = BTRFS_INODE_ITEM_KEY;
3424 btrfs_release_path(path);
3425
3426 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3427 if (ret < 0) {
3428 err = ret;
3429 goto fail;
3430 }
3431 if (ret == 0) {
3432 struct btrfs_inode_item *item;
3433 u64 i_size;
3434
3435 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3436 struct btrfs_inode_item);
3437 i_size = btrfs_inode_size(path->nodes[0], item);
3438 if (i_size > bytes_del)
3439 i_size -= bytes_del;
3440 else
3441 i_size = 0;
3442 btrfs_set_inode_size(path->nodes[0], item, i_size);
3443 btrfs_mark_buffer_dirty(path->nodes[0]);
3444 } else
3445 ret = 0;
3446 btrfs_release_path(path);
3447 }
3448fail:
3449 btrfs_free_path(path);
3450out_unlock:
3451 mutex_unlock(&dir->log_mutex);
3452 if (err == -ENOSPC) {
3453 btrfs_set_log_full_commit(trans);
3454 err = 0;
3455 } else if (err < 0 && err != -ENOENT) {
3456 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3457 btrfs_abort_transaction(trans, err);
3458 }
3459
3460 btrfs_end_log_trans(root);
3461
3462 return err;
3463}
3464
3465/* see comments for btrfs_del_dir_entries_in_log */
3466int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3467 struct btrfs_root *root,
3468 const char *name, int name_len,
3469 struct btrfs_inode *inode, u64 dirid)
3470{
3471 struct btrfs_root *log;
3472 u64 index;
3473 int ret;
3474
3475 if (!inode_logged(trans, inode))
3476 return 0;
3477
3478 ret = join_running_log_trans(root);
3479 if (ret)
3480 return 0;
3481 log = root->log_root;
3482 mutex_lock(&inode->log_mutex);
3483
3484 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3485 dirid, &index);
3486 mutex_unlock(&inode->log_mutex);
3487 if (ret == -ENOSPC) {
3488 btrfs_set_log_full_commit(trans);
3489 ret = 0;
3490 } else if (ret < 0 && ret != -ENOENT)
3491 btrfs_abort_transaction(trans, ret);
3492 btrfs_end_log_trans(root);
3493
3494 return ret;
3495}
3496
3497/*
3498 * creates a range item in the log for 'dirid'. first_offset and
3499 * last_offset tell us which parts of the key space the log should
3500 * be considered authoritative for.
3501 */
3502static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3503 struct btrfs_root *log,
3504 struct btrfs_path *path,
3505 int key_type, u64 dirid,
3506 u64 first_offset, u64 last_offset)
3507{
3508 int ret;
3509 struct btrfs_key key;
3510 struct btrfs_dir_log_item *item;
3511
3512 key.objectid = dirid;
3513 key.offset = first_offset;
3514 if (key_type == BTRFS_DIR_ITEM_KEY)
3515 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3516 else
3517 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3518 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3519 if (ret)
3520 return ret;
3521
3522 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3523 struct btrfs_dir_log_item);
3524 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3525 btrfs_mark_buffer_dirty(path->nodes[0]);
3526 btrfs_release_path(path);
3527 return 0;
3528}
3529
3530/*
3531 * log all the items included in the current transaction for a given
3532 * directory. This also creates the range items in the log tree required
3533 * to replay anything deleted before the fsync
3534 */
3535static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *root, struct btrfs_inode *inode,
3537 struct btrfs_path *path,
3538 struct btrfs_path *dst_path, int key_type,
3539 struct btrfs_log_ctx *ctx,
3540 u64 min_offset, u64 *last_offset_ret)
3541{
3542 struct btrfs_key min_key;
3543 struct btrfs_root *log = root->log_root;
3544 struct extent_buffer *src;
3545 int err = 0;
3546 int ret;
3547 int i;
3548 int nritems;
3549 u64 first_offset = min_offset;
3550 u64 last_offset = (u64)-1;
3551 u64 ino = btrfs_ino(inode);
3552
3553 log = root->log_root;
3554
3555 min_key.objectid = ino;
3556 min_key.type = key_type;
3557 min_key.offset = min_offset;
3558
3559 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3560
3561 /*
3562 * we didn't find anything from this transaction, see if there
3563 * is anything at all
3564 */
3565 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3566 min_key.objectid = ino;
3567 min_key.type = key_type;
3568 min_key.offset = (u64)-1;
3569 btrfs_release_path(path);
3570 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3571 if (ret < 0) {
3572 btrfs_release_path(path);
3573 return ret;
3574 }
3575 ret = btrfs_previous_item(root, path, ino, key_type);
3576
3577 /* if ret == 0 there are items for this type,
3578 * create a range to tell us the last key of this type.
3579 * otherwise, there are no items in this directory after
3580 * *min_offset, and we create a range to indicate that.
3581 */
3582 if (ret == 0) {
3583 struct btrfs_key tmp;
3584 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3585 path->slots[0]);
3586 if (key_type == tmp.type)
3587 first_offset = max(min_offset, tmp.offset) + 1;
3588 }
3589 goto done;
3590 }
3591
3592 /* go backward to find any previous key */
3593 ret = btrfs_previous_item(root, path, ino, key_type);
3594 if (ret == 0) {
3595 struct btrfs_key tmp;
3596 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3597 if (key_type == tmp.type) {
3598 first_offset = tmp.offset;
3599 ret = overwrite_item(trans, log, dst_path,
3600 path->nodes[0], path->slots[0],
3601 &tmp);
3602 if (ret) {
3603 err = ret;
3604 goto done;
3605 }
3606 }
3607 }
3608 btrfs_release_path(path);
3609
3610 /*
3611 * Find the first key from this transaction again. See the note for
3612 * log_new_dir_dentries, if we're logging a directory recursively we
3613 * won't be holding its i_mutex, which means we can modify the directory
3614 * while we're logging it. If we remove an entry between our first
3615 * search and this search we'll not find the key again and can just
3616 * bail.
3617 */
3618 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3619 if (ret != 0)
3620 goto done;
3621
3622 /*
3623 * we have a block from this transaction, log every item in it
3624 * from our directory
3625 */
3626 while (1) {
3627 struct btrfs_key tmp;
3628 src = path->nodes[0];
3629 nritems = btrfs_header_nritems(src);
3630 for (i = path->slots[0]; i < nritems; i++) {
3631 struct btrfs_dir_item *di;
3632
3633 btrfs_item_key_to_cpu(src, &min_key, i);
3634
3635 if (min_key.objectid != ino || min_key.type != key_type)
3636 goto done;
3637 ret = overwrite_item(trans, log, dst_path, src, i,
3638 &min_key);
3639 if (ret) {
3640 err = ret;
3641 goto done;
3642 }
3643
3644 /*
3645 * We must make sure that when we log a directory entry,
3646 * the corresponding inode, after log replay, has a
3647 * matching link count. For example:
3648 *
3649 * touch foo
3650 * mkdir mydir
3651 * sync
3652 * ln foo mydir/bar
3653 * xfs_io -c "fsync" mydir
3654 * <crash>
3655 * <mount fs and log replay>
3656 *
3657 * Would result in a fsync log that when replayed, our
3658 * file inode would have a link count of 1, but we get
3659 * two directory entries pointing to the same inode.
3660 * After removing one of the names, it would not be
3661 * possible to remove the other name, which resulted
3662 * always in stale file handle errors, and would not
3663 * be possible to rmdir the parent directory, since
3664 * its i_size could never decrement to the value
3665 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3666 */
3667 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3668 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3669 if (ctx &&
3670 (btrfs_dir_transid(src, di) == trans->transid ||
3671 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3672 tmp.type != BTRFS_ROOT_ITEM_KEY)
3673 ctx->log_new_dentries = true;
3674 }
3675 path->slots[0] = nritems;
3676
3677 /*
3678 * look ahead to the next item and see if it is also
3679 * from this directory and from this transaction
3680 */
3681 ret = btrfs_next_leaf(root, path);
3682 if (ret) {
3683 if (ret == 1)
3684 last_offset = (u64)-1;
3685 else
3686 err = ret;
3687 goto done;
3688 }
3689 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3690 if (tmp.objectid != ino || tmp.type != key_type) {
3691 last_offset = (u64)-1;
3692 goto done;
3693 }
3694 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3695 ret = overwrite_item(trans, log, dst_path,
3696 path->nodes[0], path->slots[0],
3697 &tmp);
3698 if (ret)
3699 err = ret;
3700 else
3701 last_offset = tmp.offset;
3702 goto done;
3703 }
3704 }
3705done:
3706 btrfs_release_path(path);
3707 btrfs_release_path(dst_path);
3708
3709 if (err == 0) {
3710 *last_offset_ret = last_offset;
3711 /*
3712 * insert the log range keys to indicate where the log
3713 * is valid
3714 */
3715 ret = insert_dir_log_key(trans, log, path, key_type,
3716 ino, first_offset, last_offset);
3717 if (ret)
3718 err = ret;
3719 }
3720 return err;
3721}
3722
3723/*
3724 * logging directories is very similar to logging inodes, We find all the items
3725 * from the current transaction and write them to the log.
3726 *
3727 * The recovery code scans the directory in the subvolume, and if it finds a
3728 * key in the range logged that is not present in the log tree, then it means
3729 * that dir entry was unlinked during the transaction.
3730 *
3731 * In order for that scan to work, we must include one key smaller than
3732 * the smallest logged by this transaction and one key larger than the largest
3733 * key logged by this transaction.
3734 */
3735static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3736 struct btrfs_root *root, struct btrfs_inode *inode,
3737 struct btrfs_path *path,
3738 struct btrfs_path *dst_path,
3739 struct btrfs_log_ctx *ctx)
3740{
3741 u64 min_key;
3742 u64 max_key;
3743 int ret;
3744 int key_type = BTRFS_DIR_ITEM_KEY;
3745
3746again:
3747 min_key = 0;
3748 max_key = 0;
3749 while (1) {
3750 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3751 ctx, min_key, &max_key);
3752 if (ret)
3753 return ret;
3754 if (max_key == (u64)-1)
3755 break;
3756 min_key = max_key + 1;
3757 }
3758
3759 if (key_type == BTRFS_DIR_ITEM_KEY) {
3760 key_type = BTRFS_DIR_INDEX_KEY;
3761 goto again;
3762 }
3763 return 0;
3764}
3765
3766/*
3767 * a helper function to drop items from the log before we relog an
3768 * inode. max_key_type indicates the highest item type to remove.
3769 * This cannot be run for file data extents because it does not
3770 * free the extents they point to.
3771 */
3772static int drop_objectid_items(struct btrfs_trans_handle *trans,
3773 struct btrfs_root *log,
3774 struct btrfs_path *path,
3775 u64 objectid, int max_key_type)
3776{
3777 int ret;
3778 struct btrfs_key key;
3779 struct btrfs_key found_key;
3780 int start_slot;
3781
3782 key.objectid = objectid;
3783 key.type = max_key_type;
3784 key.offset = (u64)-1;
3785
3786 while (1) {
3787 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3788 BUG_ON(ret == 0); /* Logic error */
3789 if (ret < 0)
3790 break;
3791
3792 if (path->slots[0] == 0)
3793 break;
3794
3795 path->slots[0]--;
3796 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3797 path->slots[0]);
3798
3799 if (found_key.objectid != objectid)
3800 break;
3801
3802 found_key.offset = 0;
3803 found_key.type = 0;
3804 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
3805 if (ret < 0)
3806 break;
3807
3808 ret = btrfs_del_items(trans, log, path, start_slot,
3809 path->slots[0] - start_slot + 1);
3810 /*
3811 * If start slot isn't 0 then we don't need to re-search, we've
3812 * found the last guy with the objectid in this tree.
3813 */
3814 if (ret || start_slot != 0)
3815 break;
3816 btrfs_release_path(path);
3817 }
3818 btrfs_release_path(path);
3819 if (ret > 0)
3820 ret = 0;
3821 return ret;
3822}
3823
3824static void fill_inode_item(struct btrfs_trans_handle *trans,
3825 struct extent_buffer *leaf,
3826 struct btrfs_inode_item *item,
3827 struct inode *inode, int log_inode_only,
3828 u64 logged_isize)
3829{
3830 struct btrfs_map_token token;
3831
3832 btrfs_init_map_token(&token, leaf);
3833
3834 if (log_inode_only) {
3835 /* set the generation to zero so the recover code
3836 * can tell the difference between an logging
3837 * just to say 'this inode exists' and a logging
3838 * to say 'update this inode with these values'
3839 */
3840 btrfs_set_token_inode_generation(&token, item, 0);
3841 btrfs_set_token_inode_size(&token, item, logged_isize);
3842 } else {
3843 btrfs_set_token_inode_generation(&token, item,
3844 BTRFS_I(inode)->generation);
3845 btrfs_set_token_inode_size(&token, item, inode->i_size);
3846 }
3847
3848 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3849 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3850 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3851 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3852
3853 btrfs_set_token_timespec_sec(&token, &item->atime,
3854 inode->i_atime.tv_sec);
3855 btrfs_set_token_timespec_nsec(&token, &item->atime,
3856 inode->i_atime.tv_nsec);
3857
3858 btrfs_set_token_timespec_sec(&token, &item->mtime,
3859 inode->i_mtime.tv_sec);
3860 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3861 inode->i_mtime.tv_nsec);
3862
3863 btrfs_set_token_timespec_sec(&token, &item->ctime,
3864 inode->i_ctime.tv_sec);
3865 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3866 inode->i_ctime.tv_nsec);
3867
3868 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3869
3870 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3871 btrfs_set_token_inode_transid(&token, item, trans->transid);
3872 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3873 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3874 btrfs_set_token_inode_block_group(&token, item, 0);
3875}
3876
3877static int log_inode_item(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *log, struct btrfs_path *path,
3879 struct btrfs_inode *inode)
3880{
3881 struct btrfs_inode_item *inode_item;
3882 int ret;
3883
3884 ret = btrfs_insert_empty_item(trans, log, path,
3885 &inode->location, sizeof(*inode_item));
3886 if (ret && ret != -EEXIST)
3887 return ret;
3888 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3889 struct btrfs_inode_item);
3890 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3891 0, 0);
3892 btrfs_release_path(path);
3893 return 0;
3894}
3895
3896static int log_csums(struct btrfs_trans_handle *trans,
3897 struct btrfs_inode *inode,
3898 struct btrfs_root *log_root,
3899 struct btrfs_ordered_sum *sums)
3900{
3901 const u64 lock_end = sums->bytenr + sums->len - 1;
3902 struct extent_state *cached_state = NULL;
3903 int ret;
3904
3905 /*
3906 * If this inode was not used for reflink operations in the current
3907 * transaction with new extents, then do the fast path, no need to
3908 * worry about logging checksum items with overlapping ranges.
3909 */
3910 if (inode->last_reflink_trans < trans->transid)
3911 return btrfs_csum_file_blocks(trans, log_root, sums);
3912
3913 /*
3914 * Serialize logging for checksums. This is to avoid racing with the
3915 * same checksum being logged by another task that is logging another
3916 * file which happens to refer to the same extent as well. Such races
3917 * can leave checksum items in the log with overlapping ranges.
3918 */
3919 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3920 lock_end, &cached_state);
3921 if (ret)
3922 return ret;
3923 /*
3924 * Due to extent cloning, we might have logged a csum item that covers a
3925 * subrange of a cloned extent, and later we can end up logging a csum
3926 * item for a larger subrange of the same extent or the entire range.
3927 * This would leave csum items in the log tree that cover the same range
3928 * and break the searches for checksums in the log tree, resulting in
3929 * some checksums missing in the fs/subvolume tree. So just delete (or
3930 * trim and adjust) any existing csum items in the log for this range.
3931 */
3932 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3933 if (!ret)
3934 ret = btrfs_csum_file_blocks(trans, log_root, sums);
3935
3936 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3937 &cached_state);
3938
3939 return ret;
3940}
3941
3942static noinline int copy_items(struct btrfs_trans_handle *trans,
3943 struct btrfs_inode *inode,
3944 struct btrfs_path *dst_path,
3945 struct btrfs_path *src_path,
3946 int start_slot, int nr, int inode_only,
3947 u64 logged_isize)
3948{
3949 struct btrfs_fs_info *fs_info = trans->fs_info;
3950 unsigned long src_offset;
3951 unsigned long dst_offset;
3952 struct btrfs_root *log = inode->root->log_root;
3953 struct btrfs_file_extent_item *extent;
3954 struct btrfs_inode_item *inode_item;
3955 struct extent_buffer *src = src_path->nodes[0];
3956 int ret;
3957 struct btrfs_key *ins_keys;
3958 u32 *ins_sizes;
3959 char *ins_data;
3960 int i;
3961 struct list_head ordered_sums;
3962 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3963
3964 INIT_LIST_HEAD(&ordered_sums);
3965
3966 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3967 nr * sizeof(u32), GFP_NOFS);
3968 if (!ins_data)
3969 return -ENOMEM;
3970
3971 ins_sizes = (u32 *)ins_data;
3972 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3973
3974 for (i = 0; i < nr; i++) {
3975 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3976 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3977 }
3978 ret = btrfs_insert_empty_items(trans, log, dst_path,
3979 ins_keys, ins_sizes, nr);
3980 if (ret) {
3981 kfree(ins_data);
3982 return ret;
3983 }
3984
3985 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3986 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3987 dst_path->slots[0]);
3988
3989 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3990
3991 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3992 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3993 dst_path->slots[0],
3994 struct btrfs_inode_item);
3995 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3996 &inode->vfs_inode,
3997 inode_only == LOG_INODE_EXISTS,
3998 logged_isize);
3999 } else {
4000 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4001 src_offset, ins_sizes[i]);
4002 }
4003
4004 /* take a reference on file data extents so that truncates
4005 * or deletes of this inode don't have to relog the inode
4006 * again
4007 */
4008 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
4009 !skip_csum) {
4010 int found_type;
4011 extent = btrfs_item_ptr(src, start_slot + i,
4012 struct btrfs_file_extent_item);
4013
4014 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4015 continue;
4016
4017 found_type = btrfs_file_extent_type(src, extent);
4018 if (found_type == BTRFS_FILE_EXTENT_REG) {
4019 u64 ds, dl, cs, cl;
4020 ds = btrfs_file_extent_disk_bytenr(src,
4021 extent);
4022 /* ds == 0 is a hole */
4023 if (ds == 0)
4024 continue;
4025
4026 dl = btrfs_file_extent_disk_num_bytes(src,
4027 extent);
4028 cs = btrfs_file_extent_offset(src, extent);
4029 cl = btrfs_file_extent_num_bytes(src,
4030 extent);
4031 if (btrfs_file_extent_compression(src,
4032 extent)) {
4033 cs = 0;
4034 cl = dl;
4035 }
4036
4037 ret = btrfs_lookup_csums_range(
4038 fs_info->csum_root,
4039 ds + cs, ds + cs + cl - 1,
4040 &ordered_sums, 0);
4041 if (ret)
4042 break;
4043 }
4044 }
4045 }
4046
4047 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4048 btrfs_release_path(dst_path);
4049 kfree(ins_data);
4050
4051 /*
4052 * we have to do this after the loop above to avoid changing the
4053 * log tree while trying to change the log tree.
4054 */
4055 while (!list_empty(&ordered_sums)) {
4056 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4057 struct btrfs_ordered_sum,
4058 list);
4059 if (!ret)
4060 ret = log_csums(trans, inode, log, sums);
4061 list_del(&sums->list);
4062 kfree(sums);
4063 }
4064
4065 return ret;
4066}
4067
4068static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4069{
4070 struct extent_map *em1, *em2;
4071
4072 em1 = list_entry(a, struct extent_map, list);
4073 em2 = list_entry(b, struct extent_map, list);
4074
4075 if (em1->start < em2->start)
4076 return -1;
4077 else if (em1->start > em2->start)
4078 return 1;
4079 return 0;
4080}
4081
4082static int log_extent_csums(struct btrfs_trans_handle *trans,
4083 struct btrfs_inode *inode,
4084 struct btrfs_root *log_root,
4085 const struct extent_map *em)
4086{
4087 u64 csum_offset;
4088 u64 csum_len;
4089 LIST_HEAD(ordered_sums);
4090 int ret = 0;
4091
4092 if (inode->flags & BTRFS_INODE_NODATASUM ||
4093 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4094 em->block_start == EXTENT_MAP_HOLE)
4095 return 0;
4096
4097 /* If we're compressed we have to save the entire range of csums. */
4098 if (em->compress_type) {
4099 csum_offset = 0;
4100 csum_len = max(em->block_len, em->orig_block_len);
4101 } else {
4102 csum_offset = em->mod_start - em->start;
4103 csum_len = em->mod_len;
4104 }
4105
4106 /* block start is already adjusted for the file extent offset. */
4107 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4108 em->block_start + csum_offset,
4109 em->block_start + csum_offset +
4110 csum_len - 1, &ordered_sums, 0);
4111 if (ret)
4112 return ret;
4113
4114 while (!list_empty(&ordered_sums)) {
4115 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4116 struct btrfs_ordered_sum,
4117 list);
4118 if (!ret)
4119 ret = log_csums(trans, inode, log_root, sums);
4120 list_del(&sums->list);
4121 kfree(sums);
4122 }
4123
4124 return ret;
4125}
4126
4127static int log_one_extent(struct btrfs_trans_handle *trans,
4128 struct btrfs_inode *inode, struct btrfs_root *root,
4129 const struct extent_map *em,
4130 struct btrfs_path *path,
4131 struct btrfs_log_ctx *ctx)
4132{
4133 struct btrfs_root *log = root->log_root;
4134 struct btrfs_file_extent_item *fi;
4135 struct extent_buffer *leaf;
4136 struct btrfs_map_token token;
4137 struct btrfs_key key;
4138 u64 extent_offset = em->start - em->orig_start;
4139 u64 block_len;
4140 int ret;
4141 int extent_inserted = 0;
4142
4143 ret = log_extent_csums(trans, inode, log, em);
4144 if (ret)
4145 return ret;
4146
4147 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4148 em->start + em->len, NULL, 0, 1,
4149 sizeof(*fi), &extent_inserted);
4150 if (ret)
4151 return ret;
4152
4153 if (!extent_inserted) {
4154 key.objectid = btrfs_ino(inode);
4155 key.type = BTRFS_EXTENT_DATA_KEY;
4156 key.offset = em->start;
4157
4158 ret = btrfs_insert_empty_item(trans, log, path, &key,
4159 sizeof(*fi));
4160 if (ret)
4161 return ret;
4162 }
4163 leaf = path->nodes[0];
4164 btrfs_init_map_token(&token, leaf);
4165 fi = btrfs_item_ptr(leaf, path->slots[0],
4166 struct btrfs_file_extent_item);
4167
4168 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
4169 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4170 btrfs_set_token_file_extent_type(&token, fi,
4171 BTRFS_FILE_EXTENT_PREALLOC);
4172 else
4173 btrfs_set_token_file_extent_type(&token, fi,
4174 BTRFS_FILE_EXTENT_REG);
4175
4176 block_len = max(em->block_len, em->orig_block_len);
4177 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4178 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4179 em->block_start);
4180 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4181 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4182 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4183 em->block_start -
4184 extent_offset);
4185 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
4186 } else {
4187 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4188 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
4189 }
4190
4191 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4192 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4193 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4194 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4195 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4196 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
4197 btrfs_mark_buffer_dirty(leaf);
4198
4199 btrfs_release_path(path);
4200
4201 return ret;
4202}
4203
4204/*
4205 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4206 * lose them after doing a fast fsync and replaying the log. We scan the
4207 * subvolume's root instead of iterating the inode's extent map tree because
4208 * otherwise we can log incorrect extent items based on extent map conversion.
4209 * That can happen due to the fact that extent maps are merged when they
4210 * are not in the extent map tree's list of modified extents.
4211 */
4212static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4213 struct btrfs_inode *inode,
4214 struct btrfs_path *path)
4215{
4216 struct btrfs_root *root = inode->root;
4217 struct btrfs_key key;
4218 const u64 i_size = i_size_read(&inode->vfs_inode);
4219 const u64 ino = btrfs_ino(inode);
4220 struct btrfs_path *dst_path = NULL;
4221 bool dropped_extents = false;
4222 u64 truncate_offset = i_size;
4223 struct extent_buffer *leaf;
4224 int slot;
4225 int ins_nr = 0;
4226 int start_slot;
4227 int ret;
4228
4229 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4230 return 0;
4231
4232 key.objectid = ino;
4233 key.type = BTRFS_EXTENT_DATA_KEY;
4234 key.offset = i_size;
4235 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4236 if (ret < 0)
4237 goto out;
4238
4239 /*
4240 * We must check if there is a prealloc extent that starts before the
4241 * i_size and crosses the i_size boundary. This is to ensure later we
4242 * truncate down to the end of that extent and not to the i_size, as
4243 * otherwise we end up losing part of the prealloc extent after a log
4244 * replay and with an implicit hole if there is another prealloc extent
4245 * that starts at an offset beyond i_size.
4246 */
4247 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4248 if (ret < 0)
4249 goto out;
4250
4251 if (ret == 0) {
4252 struct btrfs_file_extent_item *ei;
4253
4254 leaf = path->nodes[0];
4255 slot = path->slots[0];
4256 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4257
4258 if (btrfs_file_extent_type(leaf, ei) ==
4259 BTRFS_FILE_EXTENT_PREALLOC) {
4260 u64 extent_end;
4261
4262 btrfs_item_key_to_cpu(leaf, &key, slot);
4263 extent_end = key.offset +
4264 btrfs_file_extent_num_bytes(leaf, ei);
4265
4266 if (extent_end > i_size)
4267 truncate_offset = extent_end;
4268 }
4269 } else {
4270 ret = 0;
4271 }
4272
4273 while (true) {
4274 leaf = path->nodes[0];
4275 slot = path->slots[0];
4276
4277 if (slot >= btrfs_header_nritems(leaf)) {
4278 if (ins_nr > 0) {
4279 ret = copy_items(trans, inode, dst_path, path,
4280 start_slot, ins_nr, 1, 0);
4281 if (ret < 0)
4282 goto out;
4283 ins_nr = 0;
4284 }
4285 ret = btrfs_next_leaf(root, path);
4286 if (ret < 0)
4287 goto out;
4288 if (ret > 0) {
4289 ret = 0;
4290 break;
4291 }
4292 continue;
4293 }
4294
4295 btrfs_item_key_to_cpu(leaf, &key, slot);
4296 if (key.objectid > ino)
4297 break;
4298 if (WARN_ON_ONCE(key.objectid < ino) ||
4299 key.type < BTRFS_EXTENT_DATA_KEY ||
4300 key.offset < i_size) {
4301 path->slots[0]++;
4302 continue;
4303 }
4304 if (!dropped_extents) {
4305 /*
4306 * Avoid logging extent items logged in past fsync calls
4307 * and leading to duplicate keys in the log tree.
4308 */
4309 do {
4310 ret = btrfs_truncate_inode_items(trans,
4311 root->log_root,
4312 &inode->vfs_inode,
4313 truncate_offset,
4314 BTRFS_EXTENT_DATA_KEY);
4315 } while (ret == -EAGAIN);
4316 if (ret)
4317 goto out;
4318 dropped_extents = true;
4319 }
4320 if (ins_nr == 0)
4321 start_slot = slot;
4322 ins_nr++;
4323 path->slots[0]++;
4324 if (!dst_path) {
4325 dst_path = btrfs_alloc_path();
4326 if (!dst_path) {
4327 ret = -ENOMEM;
4328 goto out;
4329 }
4330 }
4331 }
4332 if (ins_nr > 0)
4333 ret = copy_items(trans, inode, dst_path, path,
4334 start_slot, ins_nr, 1, 0);
4335out:
4336 btrfs_release_path(path);
4337 btrfs_free_path(dst_path);
4338 return ret;
4339}
4340
4341static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4342 struct btrfs_root *root,
4343 struct btrfs_inode *inode,
4344 struct btrfs_path *path,
4345 struct btrfs_log_ctx *ctx,
4346 const u64 start,
4347 const u64 end)
4348{
4349 struct extent_map *em, *n;
4350 struct list_head extents;
4351 struct extent_map_tree *tree = &inode->extent_tree;
4352 u64 test_gen;
4353 int ret = 0;
4354 int num = 0;
4355
4356 INIT_LIST_HEAD(&extents);
4357
4358 write_lock(&tree->lock);
4359 test_gen = root->fs_info->last_trans_committed;
4360
4361 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4362 /*
4363 * Skip extents outside our logging range. It's important to do
4364 * it for correctness because if we don't ignore them, we may
4365 * log them before their ordered extent completes, and therefore
4366 * we could log them without logging their respective checksums
4367 * (the checksum items are added to the csum tree at the very
4368 * end of btrfs_finish_ordered_io()). Also leave such extents
4369 * outside of our range in the list, since we may have another
4370 * ranged fsync in the near future that needs them. If an extent
4371 * outside our range corresponds to a hole, log it to avoid
4372 * leaving gaps between extents (fsck will complain when we are
4373 * not using the NO_HOLES feature).
4374 */
4375 if ((em->start > end || em->start + em->len <= start) &&
4376 em->block_start != EXTENT_MAP_HOLE)
4377 continue;
4378
4379 list_del_init(&em->list);
4380 /*
4381 * Just an arbitrary number, this can be really CPU intensive
4382 * once we start getting a lot of extents, and really once we
4383 * have a bunch of extents we just want to commit since it will
4384 * be faster.
4385 */
4386 if (++num > 32768) {
4387 list_del_init(&tree->modified_extents);
4388 ret = -EFBIG;
4389 goto process;
4390 }
4391
4392 if (em->generation <= test_gen)
4393 continue;
4394
4395 /* We log prealloc extents beyond eof later. */
4396 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4397 em->start >= i_size_read(&inode->vfs_inode))
4398 continue;
4399
4400 /* Need a ref to keep it from getting evicted from cache */
4401 refcount_inc(&em->refs);
4402 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4403 list_add_tail(&em->list, &extents);
4404 num++;
4405 }
4406
4407 list_sort(NULL, &extents, extent_cmp);
4408process:
4409 while (!list_empty(&extents)) {
4410 em = list_entry(extents.next, struct extent_map, list);
4411
4412 list_del_init(&em->list);
4413
4414 /*
4415 * If we had an error we just need to delete everybody from our
4416 * private list.
4417 */
4418 if (ret) {
4419 clear_em_logging(tree, em);
4420 free_extent_map(em);
4421 continue;
4422 }
4423
4424 write_unlock(&tree->lock);
4425
4426 ret = log_one_extent(trans, inode, root, em, path, ctx);
4427 write_lock(&tree->lock);
4428 clear_em_logging(tree, em);
4429 free_extent_map(em);
4430 }
4431 WARN_ON(!list_empty(&extents));
4432 write_unlock(&tree->lock);
4433
4434 btrfs_release_path(path);
4435 if (!ret)
4436 ret = btrfs_log_prealloc_extents(trans, inode, path);
4437
4438 return ret;
4439}
4440
4441static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4442 struct btrfs_path *path, u64 *size_ret)
4443{
4444 struct btrfs_key key;
4445 int ret;
4446
4447 key.objectid = btrfs_ino(inode);
4448 key.type = BTRFS_INODE_ITEM_KEY;
4449 key.offset = 0;
4450
4451 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4452 if (ret < 0) {
4453 return ret;
4454 } else if (ret > 0) {
4455 *size_ret = 0;
4456 } else {
4457 struct btrfs_inode_item *item;
4458
4459 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4460 struct btrfs_inode_item);
4461 *size_ret = btrfs_inode_size(path->nodes[0], item);
4462 /*
4463 * If the in-memory inode's i_size is smaller then the inode
4464 * size stored in the btree, return the inode's i_size, so
4465 * that we get a correct inode size after replaying the log
4466 * when before a power failure we had a shrinking truncate
4467 * followed by addition of a new name (rename / new hard link).
4468 * Otherwise return the inode size from the btree, to avoid
4469 * data loss when replaying a log due to previously doing a
4470 * write that expands the inode's size and logging a new name
4471 * immediately after.
4472 */
4473 if (*size_ret > inode->vfs_inode.i_size)
4474 *size_ret = inode->vfs_inode.i_size;
4475 }
4476
4477 btrfs_release_path(path);
4478 return 0;
4479}
4480
4481/*
4482 * At the moment we always log all xattrs. This is to figure out at log replay
4483 * time which xattrs must have their deletion replayed. If a xattr is missing
4484 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4485 * because if a xattr is deleted, the inode is fsynced and a power failure
4486 * happens, causing the log to be replayed the next time the fs is mounted,
4487 * we want the xattr to not exist anymore (same behaviour as other filesystems
4488 * with a journal, ext3/4, xfs, f2fs, etc).
4489 */
4490static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4491 struct btrfs_root *root,
4492 struct btrfs_inode *inode,
4493 struct btrfs_path *path,
4494 struct btrfs_path *dst_path)
4495{
4496 int ret;
4497 struct btrfs_key key;
4498 const u64 ino = btrfs_ino(inode);
4499 int ins_nr = 0;
4500 int start_slot = 0;
4501
4502 key.objectid = ino;
4503 key.type = BTRFS_XATTR_ITEM_KEY;
4504 key.offset = 0;
4505
4506 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4507 if (ret < 0)
4508 return ret;
4509
4510 while (true) {
4511 int slot = path->slots[0];
4512 struct extent_buffer *leaf = path->nodes[0];
4513 int nritems = btrfs_header_nritems(leaf);
4514
4515 if (slot >= nritems) {
4516 if (ins_nr > 0) {
4517 ret = copy_items(trans, inode, dst_path, path,
4518 start_slot, ins_nr, 1, 0);
4519 if (ret < 0)
4520 return ret;
4521 ins_nr = 0;
4522 }
4523 ret = btrfs_next_leaf(root, path);
4524 if (ret < 0)
4525 return ret;
4526 else if (ret > 0)
4527 break;
4528 continue;
4529 }
4530
4531 btrfs_item_key_to_cpu(leaf, &key, slot);
4532 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4533 break;
4534
4535 if (ins_nr == 0)
4536 start_slot = slot;
4537 ins_nr++;
4538 path->slots[0]++;
4539 cond_resched();
4540 }
4541 if (ins_nr > 0) {
4542 ret = copy_items(trans, inode, dst_path, path,
4543 start_slot, ins_nr, 1, 0);
4544 if (ret < 0)
4545 return ret;
4546 }
4547
4548 return 0;
4549}
4550
4551/*
4552 * When using the NO_HOLES feature if we punched a hole that causes the
4553 * deletion of entire leafs or all the extent items of the first leaf (the one
4554 * that contains the inode item and references) we may end up not processing
4555 * any extents, because there are no leafs with a generation matching the
4556 * current transaction that have extent items for our inode. So we need to find
4557 * if any holes exist and then log them. We also need to log holes after any
4558 * truncate operation that changes the inode's size.
4559 */
4560static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4561 struct btrfs_root *root,
4562 struct btrfs_inode *inode,
4563 struct btrfs_path *path)
4564{
4565 struct btrfs_fs_info *fs_info = root->fs_info;
4566 struct btrfs_key key;
4567 const u64 ino = btrfs_ino(inode);
4568 const u64 i_size = i_size_read(&inode->vfs_inode);
4569 u64 prev_extent_end = 0;
4570 int ret;
4571
4572 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4573 return 0;
4574
4575 key.objectid = ino;
4576 key.type = BTRFS_EXTENT_DATA_KEY;
4577 key.offset = 0;
4578
4579 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4580 if (ret < 0)
4581 return ret;
4582
4583 while (true) {
4584 struct extent_buffer *leaf = path->nodes[0];
4585
4586 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4587 ret = btrfs_next_leaf(root, path);
4588 if (ret < 0)
4589 return ret;
4590 if (ret > 0) {
4591 ret = 0;
4592 break;
4593 }
4594 leaf = path->nodes[0];
4595 }
4596
4597 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4598 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4599 break;
4600
4601 /* We have a hole, log it. */
4602 if (prev_extent_end < key.offset) {
4603 const u64 hole_len = key.offset - prev_extent_end;
4604
4605 /*
4606 * Release the path to avoid deadlocks with other code
4607 * paths that search the root while holding locks on
4608 * leafs from the log root.
4609 */
4610 btrfs_release_path(path);
4611 ret = btrfs_insert_file_extent(trans, root->log_root,
4612 ino, prev_extent_end, 0,
4613 0, hole_len, 0, hole_len,
4614 0, 0, 0);
4615 if (ret < 0)
4616 return ret;
4617
4618 /*
4619 * Search for the same key again in the root. Since it's
4620 * an extent item and we are holding the inode lock, the
4621 * key must still exist. If it doesn't just emit warning
4622 * and return an error to fall back to a transaction
4623 * commit.
4624 */
4625 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4626 if (ret < 0)
4627 return ret;
4628 if (WARN_ON(ret > 0))
4629 return -ENOENT;
4630 leaf = path->nodes[0];
4631 }
4632
4633 prev_extent_end = btrfs_file_extent_end(path);
4634 path->slots[0]++;
4635 cond_resched();
4636 }
4637
4638 if (prev_extent_end < i_size) {
4639 u64 hole_len;
4640
4641 btrfs_release_path(path);
4642 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4643 ret = btrfs_insert_file_extent(trans, root->log_root,
4644 ino, prev_extent_end, 0, 0,
4645 hole_len, 0, hole_len,
4646 0, 0, 0);
4647 if (ret < 0)
4648 return ret;
4649 }
4650
4651 return 0;
4652}
4653
4654/*
4655 * When we are logging a new inode X, check if it doesn't have a reference that
4656 * matches the reference from some other inode Y created in a past transaction
4657 * and that was renamed in the current transaction. If we don't do this, then at
4658 * log replay time we can lose inode Y (and all its files if it's a directory):
4659 *
4660 * mkdir /mnt/x
4661 * echo "hello world" > /mnt/x/foobar
4662 * sync
4663 * mv /mnt/x /mnt/y
4664 * mkdir /mnt/x # or touch /mnt/x
4665 * xfs_io -c fsync /mnt/x
4666 * <power fail>
4667 * mount fs, trigger log replay
4668 *
4669 * After the log replay procedure, we would lose the first directory and all its
4670 * files (file foobar).
4671 * For the case where inode Y is not a directory we simply end up losing it:
4672 *
4673 * echo "123" > /mnt/foo
4674 * sync
4675 * mv /mnt/foo /mnt/bar
4676 * echo "abc" > /mnt/foo
4677 * xfs_io -c fsync /mnt/foo
4678 * <power fail>
4679 *
4680 * We also need this for cases where a snapshot entry is replaced by some other
4681 * entry (file or directory) otherwise we end up with an unreplayable log due to
4682 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4683 * if it were a regular entry:
4684 *
4685 * mkdir /mnt/x
4686 * btrfs subvolume snapshot /mnt /mnt/x/snap
4687 * btrfs subvolume delete /mnt/x/snap
4688 * rmdir /mnt/x
4689 * mkdir /mnt/x
4690 * fsync /mnt/x or fsync some new file inside it
4691 * <power fail>
4692 *
4693 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4694 * the same transaction.
4695 */
4696static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4697 const int slot,
4698 const struct btrfs_key *key,
4699 struct btrfs_inode *inode,
4700 u64 *other_ino, u64 *other_parent)
4701{
4702 int ret;
4703 struct btrfs_path *search_path;
4704 char *name = NULL;
4705 u32 name_len = 0;
4706 u32 item_size = btrfs_item_size_nr(eb, slot);
4707 u32 cur_offset = 0;
4708 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4709
4710 search_path = btrfs_alloc_path();
4711 if (!search_path)
4712 return -ENOMEM;
4713 search_path->search_commit_root = 1;
4714 search_path->skip_locking = 1;
4715
4716 while (cur_offset < item_size) {
4717 u64 parent;
4718 u32 this_name_len;
4719 u32 this_len;
4720 unsigned long name_ptr;
4721 struct btrfs_dir_item *di;
4722
4723 if (key->type == BTRFS_INODE_REF_KEY) {
4724 struct btrfs_inode_ref *iref;
4725
4726 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4727 parent = key->offset;
4728 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4729 name_ptr = (unsigned long)(iref + 1);
4730 this_len = sizeof(*iref) + this_name_len;
4731 } else {
4732 struct btrfs_inode_extref *extref;
4733
4734 extref = (struct btrfs_inode_extref *)(ptr +
4735 cur_offset);
4736 parent = btrfs_inode_extref_parent(eb, extref);
4737 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4738 name_ptr = (unsigned long)&extref->name;
4739 this_len = sizeof(*extref) + this_name_len;
4740 }
4741
4742 if (this_name_len > name_len) {
4743 char *new_name;
4744
4745 new_name = krealloc(name, this_name_len, GFP_NOFS);
4746 if (!new_name) {
4747 ret = -ENOMEM;
4748 goto out;
4749 }
4750 name_len = this_name_len;
4751 name = new_name;
4752 }
4753
4754 read_extent_buffer(eb, name, name_ptr, this_name_len);
4755 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4756 parent, name, this_name_len, 0);
4757 if (di && !IS_ERR(di)) {
4758 struct btrfs_key di_key;
4759
4760 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4761 di, &di_key);
4762 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4763 if (di_key.objectid != key->objectid) {
4764 ret = 1;
4765 *other_ino = di_key.objectid;
4766 *other_parent = parent;
4767 } else {
4768 ret = 0;
4769 }
4770 } else {
4771 ret = -EAGAIN;
4772 }
4773 goto out;
4774 } else if (IS_ERR(di)) {
4775 ret = PTR_ERR(di);
4776 goto out;
4777 }
4778 btrfs_release_path(search_path);
4779
4780 cur_offset += this_len;
4781 }
4782 ret = 0;
4783out:
4784 btrfs_free_path(search_path);
4785 kfree(name);
4786 return ret;
4787}
4788
4789struct btrfs_ino_list {
4790 u64 ino;
4791 u64 parent;
4792 struct list_head list;
4793};
4794
4795static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4796 struct btrfs_root *root,
4797 struct btrfs_path *path,
4798 struct btrfs_log_ctx *ctx,
4799 u64 ino, u64 parent)
4800{
4801 struct btrfs_ino_list *ino_elem;
4802 LIST_HEAD(inode_list);
4803 int ret = 0;
4804
4805 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4806 if (!ino_elem)
4807 return -ENOMEM;
4808 ino_elem->ino = ino;
4809 ino_elem->parent = parent;
4810 list_add_tail(&ino_elem->list, &inode_list);
4811
4812 while (!list_empty(&inode_list)) {
4813 struct btrfs_fs_info *fs_info = root->fs_info;
4814 struct btrfs_key key;
4815 struct inode *inode;
4816
4817 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4818 list);
4819 ino = ino_elem->ino;
4820 parent = ino_elem->parent;
4821 list_del(&ino_elem->list);
4822 kfree(ino_elem);
4823 if (ret)
4824 continue;
4825
4826 btrfs_release_path(path);
4827
4828 inode = btrfs_iget(fs_info->sb, ino, root);
4829 /*
4830 * If the other inode that had a conflicting dir entry was
4831 * deleted in the current transaction, we need to log its parent
4832 * directory.
4833 */
4834 if (IS_ERR(inode)) {
4835 ret = PTR_ERR(inode);
4836 if (ret == -ENOENT) {
4837 inode = btrfs_iget(fs_info->sb, parent, root);
4838 if (IS_ERR(inode)) {
4839 ret = PTR_ERR(inode);
4840 } else {
4841 ret = btrfs_log_inode(trans, root,
4842 BTRFS_I(inode),
4843 LOG_OTHER_INODE_ALL,
4844 0, LLONG_MAX, ctx);
4845 btrfs_add_delayed_iput(inode);
4846 }
4847 }
4848 continue;
4849 }
4850 /*
4851 * If the inode was already logged skip it - otherwise we can
4852 * hit an infinite loop. Example:
4853 *
4854 * From the commit root (previous transaction) we have the
4855 * following inodes:
4856 *
4857 * inode 257 a directory
4858 * inode 258 with references "zz" and "zz_link" on inode 257
4859 * inode 259 with reference "a" on inode 257
4860 *
4861 * And in the current (uncommitted) transaction we have:
4862 *
4863 * inode 257 a directory, unchanged
4864 * inode 258 with references "a" and "a2" on inode 257
4865 * inode 259 with reference "zz_link" on inode 257
4866 * inode 261 with reference "zz" on inode 257
4867 *
4868 * When logging inode 261 the following infinite loop could
4869 * happen if we don't skip already logged inodes:
4870 *
4871 * - we detect inode 258 as a conflicting inode, with inode 261
4872 * on reference "zz", and log it;
4873 *
4874 * - we detect inode 259 as a conflicting inode, with inode 258
4875 * on reference "a", and log it;
4876 *
4877 * - we detect inode 258 as a conflicting inode, with inode 259
4878 * on reference "zz_link", and log it - again! After this we
4879 * repeat the above steps forever.
4880 */
4881 spin_lock(&BTRFS_I(inode)->lock);
4882 /*
4883 * Check the inode's logged_trans only instead of
4884 * btrfs_inode_in_log(). This is because the last_log_commit of
4885 * the inode is not updated when we only log that it exists and
4886 * and it has the full sync bit set (see btrfs_log_inode()).
4887 */
4888 if (BTRFS_I(inode)->logged_trans == trans->transid) {
4889 spin_unlock(&BTRFS_I(inode)->lock);
4890 btrfs_add_delayed_iput(inode);
4891 continue;
4892 }
4893 spin_unlock(&BTRFS_I(inode)->lock);
4894 /*
4895 * We are safe logging the other inode without acquiring its
4896 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4897 * are safe against concurrent renames of the other inode as
4898 * well because during a rename we pin the log and update the
4899 * log with the new name before we unpin it.
4900 */
4901 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4902 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4903 if (ret) {
4904 btrfs_add_delayed_iput(inode);
4905 continue;
4906 }
4907
4908 key.objectid = ino;
4909 key.type = BTRFS_INODE_REF_KEY;
4910 key.offset = 0;
4911 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4912 if (ret < 0) {
4913 btrfs_add_delayed_iput(inode);
4914 continue;
4915 }
4916
4917 while (true) {
4918 struct extent_buffer *leaf = path->nodes[0];
4919 int slot = path->slots[0];
4920 u64 other_ino = 0;
4921 u64 other_parent = 0;
4922
4923 if (slot >= btrfs_header_nritems(leaf)) {
4924 ret = btrfs_next_leaf(root, path);
4925 if (ret < 0) {
4926 break;
4927 } else if (ret > 0) {
4928 ret = 0;
4929 break;
4930 }
4931 continue;
4932 }
4933
4934 btrfs_item_key_to_cpu(leaf, &key, slot);
4935 if (key.objectid != ino ||
4936 (key.type != BTRFS_INODE_REF_KEY &&
4937 key.type != BTRFS_INODE_EXTREF_KEY)) {
4938 ret = 0;
4939 break;
4940 }
4941
4942 ret = btrfs_check_ref_name_override(leaf, slot, &key,
4943 BTRFS_I(inode), &other_ino,
4944 &other_parent);
4945 if (ret < 0)
4946 break;
4947 if (ret > 0) {
4948 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4949 if (!ino_elem) {
4950 ret = -ENOMEM;
4951 break;
4952 }
4953 ino_elem->ino = other_ino;
4954 ino_elem->parent = other_parent;
4955 list_add_tail(&ino_elem->list, &inode_list);
4956 ret = 0;
4957 }
4958 path->slots[0]++;
4959 }
4960 btrfs_add_delayed_iput(inode);
4961 }
4962
4963 return ret;
4964}
4965
4966static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
4967 struct btrfs_inode *inode,
4968 struct btrfs_key *min_key,
4969 const struct btrfs_key *max_key,
4970 struct btrfs_path *path,
4971 struct btrfs_path *dst_path,
4972 const u64 logged_isize,
4973 const bool recursive_logging,
4974 const int inode_only,
4975 struct btrfs_log_ctx *ctx,
4976 bool *need_log_inode_item)
4977{
4978 struct btrfs_root *root = inode->root;
4979 int ins_start_slot = 0;
4980 int ins_nr = 0;
4981 int ret;
4982
4983 while (1) {
4984 ret = btrfs_search_forward(root, min_key, path, trans->transid);
4985 if (ret < 0)
4986 return ret;
4987 if (ret > 0) {
4988 ret = 0;
4989 break;
4990 }
4991again:
4992 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
4993 if (min_key->objectid != max_key->objectid)
4994 break;
4995 if (min_key->type > max_key->type)
4996 break;
4997
4998 if (min_key->type == BTRFS_INODE_ITEM_KEY)
4999 *need_log_inode_item = false;
5000
5001 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5002 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5003 inode->generation == trans->transid &&
5004 !recursive_logging) {
5005 u64 other_ino = 0;
5006 u64 other_parent = 0;
5007
5008 ret = btrfs_check_ref_name_override(path->nodes[0],
5009 path->slots[0], min_key, inode,
5010 &other_ino, &other_parent);
5011 if (ret < 0) {
5012 return ret;
5013 } else if (ret > 0 && ctx &&
5014 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5015 if (ins_nr > 0) {
5016 ins_nr++;
5017 } else {
5018 ins_nr = 1;
5019 ins_start_slot = path->slots[0];
5020 }
5021 ret = copy_items(trans, inode, dst_path, path,
5022 ins_start_slot, ins_nr,
5023 inode_only, logged_isize);
5024 if (ret < 0)
5025 return ret;
5026 ins_nr = 0;
5027
5028 ret = log_conflicting_inodes(trans, root, path,
5029 ctx, other_ino, other_parent);
5030 if (ret)
5031 return ret;
5032 btrfs_release_path(path);
5033 goto next_key;
5034 }
5035 }
5036
5037 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5038 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5039 if (ins_nr == 0)
5040 goto next_slot;
5041 ret = copy_items(trans, inode, dst_path, path,
5042 ins_start_slot,
5043 ins_nr, inode_only, logged_isize);
5044 if (ret < 0)
5045 return ret;
5046 ins_nr = 0;
5047 goto next_slot;
5048 }
5049
5050 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5051 ins_nr++;
5052 goto next_slot;
5053 } else if (!ins_nr) {
5054 ins_start_slot = path->slots[0];
5055 ins_nr = 1;
5056 goto next_slot;
5057 }
5058
5059 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5060 ins_nr, inode_only, logged_isize);
5061 if (ret < 0)
5062 return ret;
5063 ins_nr = 1;
5064 ins_start_slot = path->slots[0];
5065next_slot:
5066 path->slots[0]++;
5067 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5068 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5069 path->slots[0]);
5070 goto again;
5071 }
5072 if (ins_nr) {
5073 ret = copy_items(trans, inode, dst_path, path,
5074 ins_start_slot, ins_nr, inode_only,
5075 logged_isize);
5076 if (ret < 0)
5077 return ret;
5078 ins_nr = 0;
5079 }
5080 btrfs_release_path(path);
5081next_key:
5082 if (min_key->offset < (u64)-1) {
5083 min_key->offset++;
5084 } else if (min_key->type < max_key->type) {
5085 min_key->type++;
5086 min_key->offset = 0;
5087 } else {
5088 break;
5089 }
5090 }
5091 if (ins_nr)
5092 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5093 ins_nr, inode_only, logged_isize);
5094
5095 return ret;
5096}
5097
5098/* log a single inode in the tree log.
5099 * At least one parent directory for this inode must exist in the tree
5100 * or be logged already.
5101 *
5102 * Any items from this inode changed by the current transaction are copied
5103 * to the log tree. An extra reference is taken on any extents in this
5104 * file, allowing us to avoid a whole pile of corner cases around logging
5105 * blocks that have been removed from the tree.
5106 *
5107 * See LOG_INODE_ALL and related defines for a description of what inode_only
5108 * does.
5109 *
5110 * This handles both files and directories.
5111 */
5112static int btrfs_log_inode(struct btrfs_trans_handle *trans,
5113 struct btrfs_root *root, struct btrfs_inode *inode,
5114 int inode_only,
5115 const loff_t start,
5116 const loff_t end,
5117 struct btrfs_log_ctx *ctx)
5118{
5119 struct btrfs_path *path;
5120 struct btrfs_path *dst_path;
5121 struct btrfs_key min_key;
5122 struct btrfs_key max_key;
5123 struct btrfs_root *log = root->log_root;
5124 int err = 0;
5125 int ret = 0;
5126 bool fast_search = false;
5127 u64 ino = btrfs_ino(inode);
5128 struct extent_map_tree *em_tree = &inode->extent_tree;
5129 u64 logged_isize = 0;
5130 bool need_log_inode_item = true;
5131 bool xattrs_logged = false;
5132 bool recursive_logging = false;
5133
5134 path = btrfs_alloc_path();
5135 if (!path)
5136 return -ENOMEM;
5137 dst_path = btrfs_alloc_path();
5138 if (!dst_path) {
5139 btrfs_free_path(path);
5140 return -ENOMEM;
5141 }
5142
5143 min_key.objectid = ino;
5144 min_key.type = BTRFS_INODE_ITEM_KEY;
5145 min_key.offset = 0;
5146
5147 max_key.objectid = ino;
5148
5149
5150 /* today the code can only do partial logging of directories */
5151 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5152 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5153 &inode->runtime_flags) &&
5154 inode_only >= LOG_INODE_EXISTS))
5155 max_key.type = BTRFS_XATTR_ITEM_KEY;
5156 else
5157 max_key.type = (u8)-1;
5158 max_key.offset = (u64)-1;
5159
5160 /*
5161 * Only run delayed items if we are a directory. We want to make sure
5162 * all directory indexes hit the fs/subvolume tree so we can find them
5163 * and figure out which index ranges have to be logged.
5164 *
5165 * Otherwise commit the delayed inode only if the full sync flag is set,
5166 * as we want to make sure an up to date version is in the subvolume
5167 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5168 * it to the log tree. For a non full sync, we always log the inode item
5169 * based on the in-memory struct btrfs_inode which is always up to date.
5170 */
5171 if (S_ISDIR(inode->vfs_inode.i_mode))
5172 ret = btrfs_commit_inode_delayed_items(trans, inode);
5173 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5174 ret = btrfs_commit_inode_delayed_inode(inode);
5175
5176 if (ret) {
5177 btrfs_free_path(path);
5178 btrfs_free_path(dst_path);
5179 return ret;
5180 }
5181
5182 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5183 recursive_logging = true;
5184 if (inode_only == LOG_OTHER_INODE)
5185 inode_only = LOG_INODE_EXISTS;
5186 else
5187 inode_only = LOG_INODE_ALL;
5188 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5189 } else {
5190 mutex_lock(&inode->log_mutex);
5191 }
5192
5193 /*
5194 * a brute force approach to making sure we get the most uptodate
5195 * copies of everything.
5196 */
5197 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5198 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5199
5200 if (inode_only == LOG_INODE_EXISTS)
5201 max_key_type = BTRFS_XATTR_ITEM_KEY;
5202 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5203 } else {
5204 if (inode_only == LOG_INODE_EXISTS) {
5205 /*
5206 * Make sure the new inode item we write to the log has
5207 * the same isize as the current one (if it exists).
5208 * This is necessary to prevent data loss after log
5209 * replay, and also to prevent doing a wrong expanding
5210 * truncate - for e.g. create file, write 4K into offset
5211 * 0, fsync, write 4K into offset 4096, add hard link,
5212 * fsync some other file (to sync log), power fail - if
5213 * we use the inode's current i_size, after log replay
5214 * we get a 8Kb file, with the last 4Kb extent as a hole
5215 * (zeroes), as if an expanding truncate happened,
5216 * instead of getting a file of 4Kb only.
5217 */
5218 err = logged_inode_size(log, inode, path, &logged_isize);
5219 if (err)
5220 goto out_unlock;
5221 }
5222 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5223 &inode->runtime_flags)) {
5224 if (inode_only == LOG_INODE_EXISTS) {
5225 max_key.type = BTRFS_XATTR_ITEM_KEY;
5226 ret = drop_objectid_items(trans, log, path, ino,
5227 max_key.type);
5228 } else {
5229 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5230 &inode->runtime_flags);
5231 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5232 &inode->runtime_flags);
5233 while(1) {
5234 ret = btrfs_truncate_inode_items(trans,
5235 log, &inode->vfs_inode, 0, 0);
5236 if (ret != -EAGAIN)
5237 break;
5238 }
5239 }
5240 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5241 &inode->runtime_flags) ||
5242 inode_only == LOG_INODE_EXISTS) {
5243 if (inode_only == LOG_INODE_ALL)
5244 fast_search = true;
5245 max_key.type = BTRFS_XATTR_ITEM_KEY;
5246 ret = drop_objectid_items(trans, log, path, ino,
5247 max_key.type);
5248 } else {
5249 if (inode_only == LOG_INODE_ALL)
5250 fast_search = true;
5251 goto log_extents;
5252 }
5253
5254 }
5255 if (ret) {
5256 err = ret;
5257 goto out_unlock;
5258 }
5259
5260 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5261 path, dst_path, logged_isize,
5262 recursive_logging, inode_only, ctx,
5263 &need_log_inode_item);
5264 if (err)
5265 goto out_unlock;
5266
5267 btrfs_release_path(path);
5268 btrfs_release_path(dst_path);
5269 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5270 if (err)
5271 goto out_unlock;
5272 xattrs_logged = true;
5273 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5274 btrfs_release_path(path);
5275 btrfs_release_path(dst_path);
5276 err = btrfs_log_holes(trans, root, inode, path);
5277 if (err)
5278 goto out_unlock;
5279 }
5280log_extents:
5281 btrfs_release_path(path);
5282 btrfs_release_path(dst_path);
5283 if (need_log_inode_item) {
5284 err = log_inode_item(trans, log, dst_path, inode);
5285 if (!err && !xattrs_logged) {
5286 err = btrfs_log_all_xattrs(trans, root, inode, path,
5287 dst_path);
5288 btrfs_release_path(path);
5289 }
5290 if (err)
5291 goto out_unlock;
5292 }
5293 if (fast_search) {
5294 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5295 ctx, start, end);
5296 if (ret) {
5297 err = ret;
5298 goto out_unlock;
5299 }
5300 } else if (inode_only == LOG_INODE_ALL) {
5301 struct extent_map *em, *n;
5302
5303 write_lock(&em_tree->lock);
5304 /*
5305 * We can't just remove every em if we're called for a ranged
5306 * fsync - that is, one that doesn't cover the whole possible
5307 * file range (0 to LLONG_MAX). This is because we can have
5308 * em's that fall outside the range we're logging and therefore
5309 * their ordered operations haven't completed yet
5310 * (btrfs_finish_ordered_io() not invoked yet). This means we
5311 * didn't get their respective file extent item in the fs/subvol
5312 * tree yet, and need to let the next fast fsync (one which
5313 * consults the list of modified extent maps) find the em so
5314 * that it logs a matching file extent item and waits for the
5315 * respective ordered operation to complete (if it's still
5316 * running).
5317 *
5318 * Removing every em outside the range we're logging would make
5319 * the next fast fsync not log their matching file extent items,
5320 * therefore making us lose data after a log replay.
5321 */
5322 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5323 list) {
5324 const u64 mod_end = em->mod_start + em->mod_len - 1;
5325
5326 if (em->mod_start >= start && mod_end <= end)
5327 list_del_init(&em->list);
5328 }
5329 write_unlock(&em_tree->lock);
5330 }
5331
5332 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5333 ret = log_directory_changes(trans, root, inode, path, dst_path,
5334 ctx);
5335 if (ret) {
5336 err = ret;
5337 goto out_unlock;
5338 }
5339 }
5340
5341 /*
5342 * Don't update last_log_commit if we logged that an inode exists after
5343 * it was loaded to memory (full_sync bit set).
5344 * This is to prevent data loss when we do a write to the inode, then
5345 * the inode gets evicted after all delalloc was flushed, then we log
5346 * it exists (due to a rename for example) and then fsync it. This last
5347 * fsync would do nothing (not logging the extents previously written).
5348 */
5349 spin_lock(&inode->lock);
5350 inode->logged_trans = trans->transid;
5351 if (inode_only != LOG_INODE_EXISTS ||
5352 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5353 inode->last_log_commit = inode->last_sub_trans;
5354 spin_unlock(&inode->lock);
5355out_unlock:
5356 mutex_unlock(&inode->log_mutex);
5357
5358 btrfs_free_path(path);
5359 btrfs_free_path(dst_path);
5360 return err;
5361}
5362
5363/*
5364 * Check if we must fallback to a transaction commit when logging an inode.
5365 * This must be called after logging the inode and is used only in the context
5366 * when fsyncing an inode requires the need to log some other inode - in which
5367 * case we can't lock the i_mutex of each other inode we need to log as that
5368 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5369 * log inodes up or down in the hierarchy) or rename operations for example. So
5370 * we take the log_mutex of the inode after we have logged it and then check for
5371 * its last_unlink_trans value - this is safe because any task setting
5372 * last_unlink_trans must take the log_mutex and it must do this before it does
5373 * the actual unlink operation, so if we do this check before a concurrent task
5374 * sets last_unlink_trans it means we've logged a consistent version/state of
5375 * all the inode items, otherwise we are not sure and must do a transaction
5376 * commit (the concurrent task might have only updated last_unlink_trans before
5377 * we logged the inode or it might have also done the unlink).
5378 */
5379static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5380 struct btrfs_inode *inode)
5381{
5382 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5383 bool ret = false;
5384
5385 mutex_lock(&inode->log_mutex);
5386 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5387 /*
5388 * Make sure any commits to the log are forced to be full
5389 * commits.
5390 */
5391 btrfs_set_log_full_commit(trans);
5392 ret = true;
5393 }
5394 mutex_unlock(&inode->log_mutex);
5395
5396 return ret;
5397}
5398
5399/*
5400 * follow the dentry parent pointers up the chain and see if any
5401 * of the directories in it require a full commit before they can
5402 * be logged. Returns zero if nothing special needs to be done or 1 if
5403 * a full commit is required.
5404 */
5405static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5406 struct btrfs_inode *inode,
5407 struct dentry *parent,
5408 struct super_block *sb,
5409 u64 last_committed)
5410{
5411 int ret = 0;
5412 struct dentry *old_parent = NULL;
5413
5414 /*
5415 * for regular files, if its inode is already on disk, we don't
5416 * have to worry about the parents at all. This is because
5417 * we can use the last_unlink_trans field to record renames
5418 * and other fun in this file.
5419 */
5420 if (S_ISREG(inode->vfs_inode.i_mode) &&
5421 inode->generation <= last_committed &&
5422 inode->last_unlink_trans <= last_committed)
5423 goto out;
5424
5425 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5426 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5427 goto out;
5428 inode = BTRFS_I(d_inode(parent));
5429 }
5430
5431 while (1) {
5432 if (btrfs_must_commit_transaction(trans, inode)) {
5433 ret = 1;
5434 break;
5435 }
5436
5437 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5438 break;
5439
5440 if (IS_ROOT(parent)) {
5441 inode = BTRFS_I(d_inode(parent));
5442 if (btrfs_must_commit_transaction(trans, inode))
5443 ret = 1;
5444 break;
5445 }
5446
5447 parent = dget_parent(parent);
5448 dput(old_parent);
5449 old_parent = parent;
5450 inode = BTRFS_I(d_inode(parent));
5451
5452 }
5453 dput(old_parent);
5454out:
5455 return ret;
5456}
5457
5458struct btrfs_dir_list {
5459 u64 ino;
5460 struct list_head list;
5461};
5462
5463/*
5464 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5465 * details about the why it is needed.
5466 * This is a recursive operation - if an existing dentry corresponds to a
5467 * directory, that directory's new entries are logged too (same behaviour as
5468 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5469 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5470 * complains about the following circular lock dependency / possible deadlock:
5471 *
5472 * CPU0 CPU1
5473 * ---- ----
5474 * lock(&type->i_mutex_dir_key#3/2);
5475 * lock(sb_internal#2);
5476 * lock(&type->i_mutex_dir_key#3/2);
5477 * lock(&sb->s_type->i_mutex_key#14);
5478 *
5479 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5480 * sb_start_intwrite() in btrfs_start_transaction().
5481 * Not locking i_mutex of the inodes is still safe because:
5482 *
5483 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5484 * that while logging the inode new references (names) are added or removed
5485 * from the inode, leaving the logged inode item with a link count that does
5486 * not match the number of logged inode reference items. This is fine because
5487 * at log replay time we compute the real number of links and correct the
5488 * link count in the inode item (see replay_one_buffer() and
5489 * link_to_fixup_dir());
5490 *
5491 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5492 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5493 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5494 * has a size that doesn't match the sum of the lengths of all the logged
5495 * names. This does not result in a problem because if a dir_item key is
5496 * logged but its matching dir_index key is not logged, at log replay time we
5497 * don't use it to replay the respective name (see replay_one_name()). On the
5498 * other hand if only the dir_index key ends up being logged, the respective
5499 * name is added to the fs/subvol tree with both the dir_item and dir_index
5500 * keys created (see replay_one_name()).
5501 * The directory's inode item with a wrong i_size is not a problem as well,
5502 * since we don't use it at log replay time to set the i_size in the inode
5503 * item of the fs/subvol tree (see overwrite_item()).
5504 */
5505static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5506 struct btrfs_root *root,
5507 struct btrfs_inode *start_inode,
5508 struct btrfs_log_ctx *ctx)
5509{
5510 struct btrfs_fs_info *fs_info = root->fs_info;
5511 struct btrfs_root *log = root->log_root;
5512 struct btrfs_path *path;
5513 LIST_HEAD(dir_list);
5514 struct btrfs_dir_list *dir_elem;
5515 int ret = 0;
5516
5517 path = btrfs_alloc_path();
5518 if (!path)
5519 return -ENOMEM;
5520
5521 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5522 if (!dir_elem) {
5523 btrfs_free_path(path);
5524 return -ENOMEM;
5525 }
5526 dir_elem->ino = btrfs_ino(start_inode);
5527 list_add_tail(&dir_elem->list, &dir_list);
5528
5529 while (!list_empty(&dir_list)) {
5530 struct extent_buffer *leaf;
5531 struct btrfs_key min_key;
5532 int nritems;
5533 int i;
5534
5535 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5536 list);
5537 if (ret)
5538 goto next_dir_inode;
5539
5540 min_key.objectid = dir_elem->ino;
5541 min_key.type = BTRFS_DIR_ITEM_KEY;
5542 min_key.offset = 0;
5543again:
5544 btrfs_release_path(path);
5545 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5546 if (ret < 0) {
5547 goto next_dir_inode;
5548 } else if (ret > 0) {
5549 ret = 0;
5550 goto next_dir_inode;
5551 }
5552
5553process_leaf:
5554 leaf = path->nodes[0];
5555 nritems = btrfs_header_nritems(leaf);
5556 for (i = path->slots[0]; i < nritems; i++) {
5557 struct btrfs_dir_item *di;
5558 struct btrfs_key di_key;
5559 struct inode *di_inode;
5560 struct btrfs_dir_list *new_dir_elem;
5561 int log_mode = LOG_INODE_EXISTS;
5562 int type;
5563
5564 btrfs_item_key_to_cpu(leaf, &min_key, i);
5565 if (min_key.objectid != dir_elem->ino ||
5566 min_key.type != BTRFS_DIR_ITEM_KEY)
5567 goto next_dir_inode;
5568
5569 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5570 type = btrfs_dir_type(leaf, di);
5571 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5572 type != BTRFS_FT_DIR)
5573 continue;
5574 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5575 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5576 continue;
5577
5578 btrfs_release_path(path);
5579 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
5580 if (IS_ERR(di_inode)) {
5581 ret = PTR_ERR(di_inode);
5582 goto next_dir_inode;
5583 }
5584
5585 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5586 btrfs_add_delayed_iput(di_inode);
5587 break;
5588 }
5589
5590 ctx->log_new_dentries = false;
5591 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5592 log_mode = LOG_INODE_ALL;
5593 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5594 log_mode, 0, LLONG_MAX, ctx);
5595 if (!ret &&
5596 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5597 ret = 1;
5598 btrfs_add_delayed_iput(di_inode);
5599 if (ret)
5600 goto next_dir_inode;
5601 if (ctx->log_new_dentries) {
5602 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5603 GFP_NOFS);
5604 if (!new_dir_elem) {
5605 ret = -ENOMEM;
5606 goto next_dir_inode;
5607 }
5608 new_dir_elem->ino = di_key.objectid;
5609 list_add_tail(&new_dir_elem->list, &dir_list);
5610 }
5611 break;
5612 }
5613 if (i == nritems) {
5614 ret = btrfs_next_leaf(log, path);
5615 if (ret < 0) {
5616 goto next_dir_inode;
5617 } else if (ret > 0) {
5618 ret = 0;
5619 goto next_dir_inode;
5620 }
5621 goto process_leaf;
5622 }
5623 if (min_key.offset < (u64)-1) {
5624 min_key.offset++;
5625 goto again;
5626 }
5627next_dir_inode:
5628 list_del(&dir_elem->list);
5629 kfree(dir_elem);
5630 }
5631
5632 btrfs_free_path(path);
5633 return ret;
5634}
5635
5636static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5637 struct btrfs_inode *inode,
5638 struct btrfs_log_ctx *ctx)
5639{
5640 struct btrfs_fs_info *fs_info = trans->fs_info;
5641 int ret;
5642 struct btrfs_path *path;
5643 struct btrfs_key key;
5644 struct btrfs_root *root = inode->root;
5645 const u64 ino = btrfs_ino(inode);
5646
5647 path = btrfs_alloc_path();
5648 if (!path)
5649 return -ENOMEM;
5650 path->skip_locking = 1;
5651 path->search_commit_root = 1;
5652
5653 key.objectid = ino;
5654 key.type = BTRFS_INODE_REF_KEY;
5655 key.offset = 0;
5656 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5657 if (ret < 0)
5658 goto out;
5659
5660 while (true) {
5661 struct extent_buffer *leaf = path->nodes[0];
5662 int slot = path->slots[0];
5663 u32 cur_offset = 0;
5664 u32 item_size;
5665 unsigned long ptr;
5666
5667 if (slot >= btrfs_header_nritems(leaf)) {
5668 ret = btrfs_next_leaf(root, path);
5669 if (ret < 0)
5670 goto out;
5671 else if (ret > 0)
5672 break;
5673 continue;
5674 }
5675
5676 btrfs_item_key_to_cpu(leaf, &key, slot);
5677 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5678 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5679 break;
5680
5681 item_size = btrfs_item_size_nr(leaf, slot);
5682 ptr = btrfs_item_ptr_offset(leaf, slot);
5683 while (cur_offset < item_size) {
5684 struct btrfs_key inode_key;
5685 struct inode *dir_inode;
5686
5687 inode_key.type = BTRFS_INODE_ITEM_KEY;
5688 inode_key.offset = 0;
5689
5690 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5691 struct btrfs_inode_extref *extref;
5692
5693 extref = (struct btrfs_inode_extref *)
5694 (ptr + cur_offset);
5695 inode_key.objectid = btrfs_inode_extref_parent(
5696 leaf, extref);
5697 cur_offset += sizeof(*extref);
5698 cur_offset += btrfs_inode_extref_name_len(leaf,
5699 extref);
5700 } else {
5701 inode_key.objectid = key.offset;
5702 cur_offset = item_size;
5703 }
5704
5705 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5706 root);
5707 /*
5708 * If the parent inode was deleted, return an error to
5709 * fallback to a transaction commit. This is to prevent
5710 * getting an inode that was moved from one parent A to
5711 * a parent B, got its former parent A deleted and then
5712 * it got fsync'ed, from existing at both parents after
5713 * a log replay (and the old parent still existing).
5714 * Example:
5715 *
5716 * mkdir /mnt/A
5717 * mkdir /mnt/B
5718 * touch /mnt/B/bar
5719 * sync
5720 * mv /mnt/B/bar /mnt/A/bar
5721 * mv -T /mnt/A /mnt/B
5722 * fsync /mnt/B/bar
5723 * <power fail>
5724 *
5725 * If we ignore the old parent B which got deleted,
5726 * after a log replay we would have file bar linked
5727 * at both parents and the old parent B would still
5728 * exist.
5729 */
5730 if (IS_ERR(dir_inode)) {
5731 ret = PTR_ERR(dir_inode);
5732 goto out;
5733 }
5734
5735 if (ctx)
5736 ctx->log_new_dentries = false;
5737 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5738 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5739 if (!ret &&
5740 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5741 ret = 1;
5742 if (!ret && ctx && ctx->log_new_dentries)
5743 ret = log_new_dir_dentries(trans, root,
5744 BTRFS_I(dir_inode), ctx);
5745 btrfs_add_delayed_iput(dir_inode);
5746 if (ret)
5747 goto out;
5748 }
5749 path->slots[0]++;
5750 }
5751 ret = 0;
5752out:
5753 btrfs_free_path(path);
5754 return ret;
5755}
5756
5757static int log_new_ancestors(struct btrfs_trans_handle *trans,
5758 struct btrfs_root *root,
5759 struct btrfs_path *path,
5760 struct btrfs_log_ctx *ctx)
5761{
5762 struct btrfs_key found_key;
5763
5764 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5765
5766 while (true) {
5767 struct btrfs_fs_info *fs_info = root->fs_info;
5768 const u64 last_committed = fs_info->last_trans_committed;
5769 struct extent_buffer *leaf = path->nodes[0];
5770 int slot = path->slots[0];
5771 struct btrfs_key search_key;
5772 struct inode *inode;
5773 u64 ino;
5774 int ret = 0;
5775
5776 btrfs_release_path(path);
5777
5778 ino = found_key.offset;
5779
5780 search_key.objectid = found_key.offset;
5781 search_key.type = BTRFS_INODE_ITEM_KEY;
5782 search_key.offset = 0;
5783 inode = btrfs_iget(fs_info->sb, ino, root);
5784 if (IS_ERR(inode))
5785 return PTR_ERR(inode);
5786
5787 if (BTRFS_I(inode)->generation > last_committed)
5788 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5789 LOG_INODE_EXISTS,
5790 0, LLONG_MAX, ctx);
5791 btrfs_add_delayed_iput(inode);
5792 if (ret)
5793 return ret;
5794
5795 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5796 break;
5797
5798 search_key.type = BTRFS_INODE_REF_KEY;
5799 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5800 if (ret < 0)
5801 return ret;
5802
5803 leaf = path->nodes[0];
5804 slot = path->slots[0];
5805 if (slot >= btrfs_header_nritems(leaf)) {
5806 ret = btrfs_next_leaf(root, path);
5807 if (ret < 0)
5808 return ret;
5809 else if (ret > 0)
5810 return -ENOENT;
5811 leaf = path->nodes[0];
5812 slot = path->slots[0];
5813 }
5814
5815 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5816 if (found_key.objectid != search_key.objectid ||
5817 found_key.type != BTRFS_INODE_REF_KEY)
5818 return -ENOENT;
5819 }
5820 return 0;
5821}
5822
5823static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5824 struct btrfs_inode *inode,
5825 struct dentry *parent,
5826 struct btrfs_log_ctx *ctx)
5827{
5828 struct btrfs_root *root = inode->root;
5829 struct btrfs_fs_info *fs_info = root->fs_info;
5830 struct dentry *old_parent = NULL;
5831 struct super_block *sb = inode->vfs_inode.i_sb;
5832 int ret = 0;
5833
5834 while (true) {
5835 if (!parent || d_really_is_negative(parent) ||
5836 sb != parent->d_sb)
5837 break;
5838
5839 inode = BTRFS_I(d_inode(parent));
5840 if (root != inode->root)
5841 break;
5842
5843 if (inode->generation > fs_info->last_trans_committed) {
5844 ret = btrfs_log_inode(trans, root, inode,
5845 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5846 if (ret)
5847 break;
5848 }
5849 if (IS_ROOT(parent))
5850 break;
5851
5852 parent = dget_parent(parent);
5853 dput(old_parent);
5854 old_parent = parent;
5855 }
5856 dput(old_parent);
5857
5858 return ret;
5859}
5860
5861static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5862 struct btrfs_inode *inode,
5863 struct dentry *parent,
5864 struct btrfs_log_ctx *ctx)
5865{
5866 struct btrfs_root *root = inode->root;
5867 const u64 ino = btrfs_ino(inode);
5868 struct btrfs_path *path;
5869 struct btrfs_key search_key;
5870 int ret;
5871
5872 /*
5873 * For a single hard link case, go through a fast path that does not
5874 * need to iterate the fs/subvolume tree.
5875 */
5876 if (inode->vfs_inode.i_nlink < 2)
5877 return log_new_ancestors_fast(trans, inode, parent, ctx);
5878
5879 path = btrfs_alloc_path();
5880 if (!path)
5881 return -ENOMEM;
5882
5883 search_key.objectid = ino;
5884 search_key.type = BTRFS_INODE_REF_KEY;
5885 search_key.offset = 0;
5886again:
5887 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5888 if (ret < 0)
5889 goto out;
5890 if (ret == 0)
5891 path->slots[0]++;
5892
5893 while (true) {
5894 struct extent_buffer *leaf = path->nodes[0];
5895 int slot = path->slots[0];
5896 struct btrfs_key found_key;
5897
5898 if (slot >= btrfs_header_nritems(leaf)) {
5899 ret = btrfs_next_leaf(root, path);
5900 if (ret < 0)
5901 goto out;
5902 else if (ret > 0)
5903 break;
5904 continue;
5905 }
5906
5907 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5908 if (found_key.objectid != ino ||
5909 found_key.type > BTRFS_INODE_EXTREF_KEY)
5910 break;
5911
5912 /*
5913 * Don't deal with extended references because they are rare
5914 * cases and too complex to deal with (we would need to keep
5915 * track of which subitem we are processing for each item in
5916 * this loop, etc). So just return some error to fallback to
5917 * a transaction commit.
5918 */
5919 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5920 ret = -EMLINK;
5921 goto out;
5922 }
5923
5924 /*
5925 * Logging ancestors needs to do more searches on the fs/subvol
5926 * tree, so it releases the path as needed to avoid deadlocks.
5927 * Keep track of the last inode ref key and resume from that key
5928 * after logging all new ancestors for the current hard link.
5929 */
5930 memcpy(&search_key, &found_key, sizeof(search_key));
5931
5932 ret = log_new_ancestors(trans, root, path, ctx);
5933 if (ret)
5934 goto out;
5935 btrfs_release_path(path);
5936 goto again;
5937 }
5938 ret = 0;
5939out:
5940 btrfs_free_path(path);
5941 return ret;
5942}
5943
5944/*
5945 * helper function around btrfs_log_inode to make sure newly created
5946 * parent directories also end up in the log. A minimal inode and backref
5947 * only logging is done of any parent directories that are older than
5948 * the last committed transaction
5949 */
5950static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5951 struct btrfs_inode *inode,
5952 struct dentry *parent,
5953 const loff_t start,
5954 const loff_t end,
5955 int inode_only,
5956 struct btrfs_log_ctx *ctx)
5957{
5958 struct btrfs_root *root = inode->root;
5959 struct btrfs_fs_info *fs_info = root->fs_info;
5960 struct super_block *sb;
5961 int ret = 0;
5962 u64 last_committed = fs_info->last_trans_committed;
5963 bool log_dentries = false;
5964
5965 sb = inode->vfs_inode.i_sb;
5966
5967 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5968 ret = 1;
5969 goto end_no_trans;
5970 }
5971
5972 /*
5973 * The prev transaction commit doesn't complete, we need do
5974 * full commit by ourselves.
5975 */
5976 if (fs_info->last_trans_log_full_commit >
5977 fs_info->last_trans_committed) {
5978 ret = 1;
5979 goto end_no_trans;
5980 }
5981
5982 if (btrfs_root_refs(&root->root_item) == 0) {
5983 ret = 1;
5984 goto end_no_trans;
5985 }
5986
5987 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5988 last_committed);
5989 if (ret)
5990 goto end_no_trans;
5991
5992 /*
5993 * Skip already logged inodes or inodes corresponding to tmpfiles
5994 * (since logging them is pointless, a link count of 0 means they
5995 * will never be accessible).
5996 */
5997 if (btrfs_inode_in_log(inode, trans->transid) ||
5998 inode->vfs_inode.i_nlink == 0) {
5999 ret = BTRFS_NO_LOG_SYNC;
6000 goto end_no_trans;
6001 }
6002
6003 ret = start_log_trans(trans, root, ctx);
6004 if (ret)
6005 goto end_no_trans;
6006
6007 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6008 if (ret)
6009 goto end_trans;
6010
6011 /*
6012 * for regular files, if its inode is already on disk, we don't
6013 * have to worry about the parents at all. This is because
6014 * we can use the last_unlink_trans field to record renames
6015 * and other fun in this file.
6016 */
6017 if (S_ISREG(inode->vfs_inode.i_mode) &&
6018 inode->generation <= last_committed &&
6019 inode->last_unlink_trans <= last_committed) {
6020 ret = 0;
6021 goto end_trans;
6022 }
6023
6024 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6025 log_dentries = true;
6026
6027 /*
6028 * On unlink we must make sure all our current and old parent directory
6029 * inodes are fully logged. This is to prevent leaving dangling
6030 * directory index entries in directories that were our parents but are
6031 * not anymore. Not doing this results in old parent directory being
6032 * impossible to delete after log replay (rmdir will always fail with
6033 * error -ENOTEMPTY).
6034 *
6035 * Example 1:
6036 *
6037 * mkdir testdir
6038 * touch testdir/foo
6039 * ln testdir/foo testdir/bar
6040 * sync
6041 * unlink testdir/bar
6042 * xfs_io -c fsync testdir/foo
6043 * <power failure>
6044 * mount fs, triggers log replay
6045 *
6046 * If we don't log the parent directory (testdir), after log replay the
6047 * directory still has an entry pointing to the file inode using the bar
6048 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6049 * the file inode has a link count of 1.
6050 *
6051 * Example 2:
6052 *
6053 * mkdir testdir
6054 * touch foo
6055 * ln foo testdir/foo2
6056 * ln foo testdir/foo3
6057 * sync
6058 * unlink testdir/foo3
6059 * xfs_io -c fsync foo
6060 * <power failure>
6061 * mount fs, triggers log replay
6062 *
6063 * Similar as the first example, after log replay the parent directory
6064 * testdir still has an entry pointing to the inode file with name foo3
6065 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6066 * and has a link count of 2.
6067 */
6068 if (inode->last_unlink_trans > last_committed) {
6069 ret = btrfs_log_all_parents(trans, inode, ctx);
6070 if (ret)
6071 goto end_trans;
6072 }
6073
6074 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6075 if (ret)
6076 goto end_trans;
6077
6078 if (log_dentries)
6079 ret = log_new_dir_dentries(trans, root, inode, ctx);
6080 else
6081 ret = 0;
6082end_trans:
6083 if (ret < 0) {
6084 btrfs_set_log_full_commit(trans);
6085 ret = 1;
6086 }
6087
6088 if (ret)
6089 btrfs_remove_log_ctx(root, ctx);
6090 btrfs_end_log_trans(root);
6091end_no_trans:
6092 return ret;
6093}
6094
6095/*
6096 * it is not safe to log dentry if the chunk root has added new
6097 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6098 * If this returns 1, you must commit the transaction to safely get your
6099 * data on disk.
6100 */
6101int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6102 struct dentry *dentry,
6103 const loff_t start,
6104 const loff_t end,
6105 struct btrfs_log_ctx *ctx)
6106{
6107 struct dentry *parent = dget_parent(dentry);
6108 int ret;
6109
6110 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6111 start, end, LOG_INODE_ALL, ctx);
6112 dput(parent);
6113
6114 return ret;
6115}
6116
6117/*
6118 * should be called during mount to recover any replay any log trees
6119 * from the FS
6120 */
6121int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6122{
6123 int ret;
6124 struct btrfs_path *path;
6125 struct btrfs_trans_handle *trans;
6126 struct btrfs_key key;
6127 struct btrfs_key found_key;
6128 struct btrfs_root *log;
6129 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6130 struct walk_control wc = {
6131 .process_func = process_one_buffer,
6132 .stage = LOG_WALK_PIN_ONLY,
6133 };
6134
6135 path = btrfs_alloc_path();
6136 if (!path)
6137 return -ENOMEM;
6138
6139 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6140
6141 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6142 if (IS_ERR(trans)) {
6143 ret = PTR_ERR(trans);
6144 goto error;
6145 }
6146
6147 wc.trans = trans;
6148 wc.pin = 1;
6149
6150 ret = walk_log_tree(trans, log_root_tree, &wc);
6151 if (ret) {
6152 btrfs_handle_fs_error(fs_info, ret,
6153 "Failed to pin buffers while recovering log root tree.");
6154 goto error;
6155 }
6156
6157again:
6158 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6159 key.offset = (u64)-1;
6160 key.type = BTRFS_ROOT_ITEM_KEY;
6161
6162 while (1) {
6163 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6164
6165 if (ret < 0) {
6166 btrfs_handle_fs_error(fs_info, ret,
6167 "Couldn't find tree log root.");
6168 goto error;
6169 }
6170 if (ret > 0) {
6171 if (path->slots[0] == 0)
6172 break;
6173 path->slots[0]--;
6174 }
6175 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6176 path->slots[0]);
6177 btrfs_release_path(path);
6178 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6179 break;
6180
6181 log = btrfs_read_tree_root(log_root_tree, &found_key);
6182 if (IS_ERR(log)) {
6183 ret = PTR_ERR(log);
6184 btrfs_handle_fs_error(fs_info, ret,
6185 "Couldn't read tree log root.");
6186 goto error;
6187 }
6188
6189 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6190 true);
6191 if (IS_ERR(wc.replay_dest)) {
6192 ret = PTR_ERR(wc.replay_dest);
6193
6194 /*
6195 * We didn't find the subvol, likely because it was
6196 * deleted. This is ok, simply skip this log and go to
6197 * the next one.
6198 *
6199 * We need to exclude the root because we can't have
6200 * other log replays overwriting this log as we'll read
6201 * it back in a few more times. This will keep our
6202 * block from being modified, and we'll just bail for
6203 * each subsequent pass.
6204 */
6205 if (ret == -ENOENT)
6206 ret = btrfs_pin_extent_for_log_replay(trans,
6207 log->node->start,
6208 log->node->len);
6209 btrfs_put_root(log);
6210
6211 if (!ret)
6212 goto next;
6213 btrfs_handle_fs_error(fs_info, ret,
6214 "Couldn't read target root for tree log recovery.");
6215 goto error;
6216 }
6217
6218 wc.replay_dest->log_root = log;
6219 btrfs_record_root_in_trans(trans, wc.replay_dest);
6220 ret = walk_log_tree(trans, log, &wc);
6221
6222 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6223 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6224 path);
6225 }
6226
6227 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6228 struct btrfs_root *root = wc.replay_dest;
6229
6230 btrfs_release_path(path);
6231
6232 /*
6233 * We have just replayed everything, and the highest
6234 * objectid of fs roots probably has changed in case
6235 * some inode_item's got replayed.
6236 *
6237 * root->objectid_mutex is not acquired as log replay
6238 * could only happen during mount.
6239 */
6240 ret = btrfs_find_highest_objectid(root,
6241 &root->highest_objectid);
6242 }
6243
6244 wc.replay_dest->log_root = NULL;
6245 btrfs_put_root(wc.replay_dest);
6246 btrfs_put_root(log);
6247
6248 if (ret)
6249 goto error;
6250next:
6251 if (found_key.offset == 0)
6252 break;
6253 key.offset = found_key.offset - 1;
6254 }
6255 btrfs_release_path(path);
6256
6257 /* step one is to pin it all, step two is to replay just inodes */
6258 if (wc.pin) {
6259 wc.pin = 0;
6260 wc.process_func = replay_one_buffer;
6261 wc.stage = LOG_WALK_REPLAY_INODES;
6262 goto again;
6263 }
6264 /* step three is to replay everything */
6265 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6266 wc.stage++;
6267 goto again;
6268 }
6269
6270 btrfs_free_path(path);
6271
6272 /* step 4: commit the transaction, which also unpins the blocks */
6273 ret = btrfs_commit_transaction(trans);
6274 if (ret)
6275 return ret;
6276
6277 log_root_tree->log_root = NULL;
6278 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6279 btrfs_put_root(log_root_tree);
6280
6281 return 0;
6282error:
6283 if (wc.trans)
6284 btrfs_end_transaction(wc.trans);
6285 btrfs_free_path(path);
6286 return ret;
6287}
6288
6289/*
6290 * there are some corner cases where we want to force a full
6291 * commit instead of allowing a directory to be logged.
6292 *
6293 * They revolve around files there were unlinked from the directory, and
6294 * this function updates the parent directory so that a full commit is
6295 * properly done if it is fsync'd later after the unlinks are done.
6296 *
6297 * Must be called before the unlink operations (updates to the subvolume tree,
6298 * inodes, etc) are done.
6299 */
6300void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6301 struct btrfs_inode *dir, struct btrfs_inode *inode,
6302 int for_rename)
6303{
6304 /*
6305 * when we're logging a file, if it hasn't been renamed
6306 * or unlinked, and its inode is fully committed on disk,
6307 * we don't have to worry about walking up the directory chain
6308 * to log its parents.
6309 *
6310 * So, we use the last_unlink_trans field to put this transid
6311 * into the file. When the file is logged we check it and
6312 * don't log the parents if the file is fully on disk.
6313 */
6314 mutex_lock(&inode->log_mutex);
6315 inode->last_unlink_trans = trans->transid;
6316 mutex_unlock(&inode->log_mutex);
6317
6318 /*
6319 * if this directory was already logged any new
6320 * names for this file/dir will get recorded
6321 */
6322 if (dir->logged_trans == trans->transid)
6323 return;
6324
6325 /*
6326 * if the inode we're about to unlink was logged,
6327 * the log will be properly updated for any new names
6328 */
6329 if (inode->logged_trans == trans->transid)
6330 return;
6331
6332 /*
6333 * when renaming files across directories, if the directory
6334 * there we're unlinking from gets fsync'd later on, there's
6335 * no way to find the destination directory later and fsync it
6336 * properly. So, we have to be conservative and force commits
6337 * so the new name gets discovered.
6338 */
6339 if (for_rename)
6340 goto record;
6341
6342 /* we can safely do the unlink without any special recording */
6343 return;
6344
6345record:
6346 mutex_lock(&dir->log_mutex);
6347 dir->last_unlink_trans = trans->transid;
6348 mutex_unlock(&dir->log_mutex);
6349}
6350
6351/*
6352 * Make sure that if someone attempts to fsync the parent directory of a deleted
6353 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6354 * that after replaying the log tree of the parent directory's root we will not
6355 * see the snapshot anymore and at log replay time we will not see any log tree
6356 * corresponding to the deleted snapshot's root, which could lead to replaying
6357 * it after replaying the log tree of the parent directory (which would replay
6358 * the snapshot delete operation).
6359 *
6360 * Must be called before the actual snapshot destroy operation (updates to the
6361 * parent root and tree of tree roots trees, etc) are done.
6362 */
6363void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6364 struct btrfs_inode *dir)
6365{
6366 mutex_lock(&dir->log_mutex);
6367 dir->last_unlink_trans = trans->transid;
6368 mutex_unlock(&dir->log_mutex);
6369}
6370
6371/*
6372 * Call this after adding a new name for a file and it will properly
6373 * update the log to reflect the new name.
6374 *
6375 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6376 * true (because it's not used).
6377 *
6378 * Return value depends on whether @sync_log is true or false.
6379 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6380 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6381 * otherwise.
6382 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6383 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6384 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6385 * committed (without attempting to sync the log).
6386 */
6387int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6388 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6389 struct dentry *parent,
6390 bool sync_log, struct btrfs_log_ctx *ctx)
6391{
6392 struct btrfs_fs_info *fs_info = trans->fs_info;
6393 int ret;
6394
6395 /*
6396 * this will force the logging code to walk the dentry chain
6397 * up for the file
6398 */
6399 if (!S_ISDIR(inode->vfs_inode.i_mode))
6400 inode->last_unlink_trans = trans->transid;
6401
6402 /*
6403 * if this inode hasn't been logged and directory we're renaming it
6404 * from hasn't been logged, we don't need to log it
6405 */
6406 if (inode->logged_trans <= fs_info->last_trans_committed &&
6407 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6408 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6409 BTRFS_DONT_NEED_LOG_SYNC;
6410
6411 if (sync_log) {
6412 struct btrfs_log_ctx ctx2;
6413
6414 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6415 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6416 LOG_INODE_EXISTS, &ctx2);
6417 if (ret == BTRFS_NO_LOG_SYNC)
6418 return BTRFS_DONT_NEED_TRANS_COMMIT;
6419 else if (ret)
6420 return BTRFS_NEED_TRANS_COMMIT;
6421
6422 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6423 if (ret)
6424 return BTRFS_NEED_TRANS_COMMIT;
6425 return BTRFS_DONT_NEED_TRANS_COMMIT;
6426 }
6427
6428 ASSERT(ctx);
6429 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6430 LOG_INODE_EXISTS, ctx);
6431 if (ret == BTRFS_NO_LOG_SYNC)
6432 return BTRFS_DONT_NEED_LOG_SYNC;
6433 else if (ret)
6434 return BTRFS_NEED_TRANS_COMMIT;
6435
6436 return BTRFS_NEED_LOG_SYNC;
6437}
6438
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/slab.h>
8#include <linux/blkdev.h>
9#include <linux/list_sort.h>
10#include <linux/iversion.h>
11#include "ctree.h"
12#include "tree-log.h"
13#include "disk-io.h"
14#include "locking.h"
15#include "print-tree.h"
16#include "backref.h"
17#include "compression.h"
18#include "qgroup.h"
19#include "inode-map.h"
20
21/* magic values for the inode_only field in btrfs_log_inode:
22 *
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
25 * during log replay
26 */
27#define LOG_INODE_ALL 0
28#define LOG_INODE_EXISTS 1
29#define LOG_OTHER_INODE 2
30
31/*
32 * directory trouble cases
33 *
34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35 * log, we must force a full commit before doing an fsync of the directory
36 * where the unlink was done.
37 * ---> record transid of last unlink/rename per directory
38 *
39 * mkdir foo/some_dir
40 * normal commit
41 * rename foo/some_dir foo2/some_dir
42 * mkdir foo/some_dir
43 * fsync foo/some_dir/some_file
44 *
45 * The fsync above will unlink the original some_dir without recording
46 * it in its new location (foo2). After a crash, some_dir will be gone
47 * unless the fsync of some_file forces a full commit
48 *
49 * 2) we must log any new names for any file or dir that is in the fsync
50 * log. ---> check inode while renaming/linking.
51 *
52 * 2a) we must log any new names for any file or dir during rename
53 * when the directory they are being removed from was logged.
54 * ---> check inode and old parent dir during rename
55 *
56 * 2a is actually the more important variant. With the extra logging
57 * a crash might unlink the old name without recreating the new one
58 *
59 * 3) after a crash, we must go through any directories with a link count
60 * of zero and redo the rm -rf
61 *
62 * mkdir f1/foo
63 * normal commit
64 * rm -rf f1/foo
65 * fsync(f1)
66 *
67 * The directory f1 was fully removed from the FS, but fsync was never
68 * called on f1, only its parent dir. After a crash the rm -rf must
69 * be replayed. This must be able to recurse down the entire
70 * directory tree. The inode link count fixup code takes care of the
71 * ugly details.
72 */
73
74/*
75 * stages for the tree walking. The first
76 * stage (0) is to only pin down the blocks we find
77 * the second stage (1) is to make sure that all the inodes
78 * we find in the log are created in the subvolume.
79 *
80 * The last stage is to deal with directories and links and extents
81 * and all the other fun semantics
82 */
83#define LOG_WALK_PIN_ONLY 0
84#define LOG_WALK_REPLAY_INODES 1
85#define LOG_WALK_REPLAY_DIR_INDEX 2
86#define LOG_WALK_REPLAY_ALL 3
87
88static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root, struct btrfs_inode *inode,
90 int inode_only,
91 const loff_t start,
92 const loff_t end,
93 struct btrfs_log_ctx *ctx);
94static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 struct btrfs_path *path, u64 objectid);
97static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_root *log,
100 struct btrfs_path *path,
101 u64 dirid, int del_all);
102
103/*
104 * tree logging is a special write ahead log used to make sure that
105 * fsyncs and O_SYNCs can happen without doing full tree commits.
106 *
107 * Full tree commits are expensive because they require commonly
108 * modified blocks to be recowed, creating many dirty pages in the
109 * extent tree an 4x-6x higher write load than ext3.
110 *
111 * Instead of doing a tree commit on every fsync, we use the
112 * key ranges and transaction ids to find items for a given file or directory
113 * that have changed in this transaction. Those items are copied into
114 * a special tree (one per subvolume root), that tree is written to disk
115 * and then the fsync is considered complete.
116 *
117 * After a crash, items are copied out of the log-tree back into the
118 * subvolume tree. Any file data extents found are recorded in the extent
119 * allocation tree, and the log-tree freed.
120 *
121 * The log tree is read three times, once to pin down all the extents it is
122 * using in ram and once, once to create all the inodes logged in the tree
123 * and once to do all the other items.
124 */
125
126/*
127 * start a sub transaction and setup the log tree
128 * this increments the log tree writer count to make the people
129 * syncing the tree wait for us to finish
130 */
131static int start_log_trans(struct btrfs_trans_handle *trans,
132 struct btrfs_root *root,
133 struct btrfs_log_ctx *ctx)
134{
135 struct btrfs_fs_info *fs_info = root->fs_info;
136 int ret = 0;
137
138 mutex_lock(&root->log_mutex);
139
140 if (root->log_root) {
141 if (btrfs_need_log_full_commit(fs_info, trans)) {
142 ret = -EAGAIN;
143 goto out;
144 }
145
146 if (!root->log_start_pid) {
147 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 root->log_start_pid = current->pid;
149 } else if (root->log_start_pid != current->pid) {
150 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
151 }
152 } else {
153 mutex_lock(&fs_info->tree_log_mutex);
154 if (!fs_info->log_root_tree)
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 mutex_unlock(&fs_info->tree_log_mutex);
157 if (ret)
158 goto out;
159
160 ret = btrfs_add_log_tree(trans, root);
161 if (ret)
162 goto out;
163
164 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 root->log_start_pid = current->pid;
166 }
167
168 atomic_inc(&root->log_batch);
169 atomic_inc(&root->log_writers);
170 if (ctx) {
171 int index = root->log_transid % 2;
172 list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 ctx->log_transid = root->log_transid;
174 }
175
176out:
177 mutex_unlock(&root->log_mutex);
178 return ret;
179}
180
181/*
182 * returns 0 if there was a log transaction running and we were able
183 * to join, or returns -ENOENT if there were not transactions
184 * in progress
185 */
186static int join_running_log_trans(struct btrfs_root *root)
187{
188 int ret = -ENOENT;
189
190 smp_mb();
191 if (!root->log_root)
192 return -ENOENT;
193
194 mutex_lock(&root->log_mutex);
195 if (root->log_root) {
196 ret = 0;
197 atomic_inc(&root->log_writers);
198 }
199 mutex_unlock(&root->log_mutex);
200 return ret;
201}
202
203/*
204 * This either makes the current running log transaction wait
205 * until you call btrfs_end_log_trans() or it makes any future
206 * log transactions wait until you call btrfs_end_log_trans()
207 */
208int btrfs_pin_log_trans(struct btrfs_root *root)
209{
210 int ret = -ENOENT;
211
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
215 return ret;
216}
217
218/*
219 * indicate we're done making changes to the log tree
220 * and wake up anyone waiting to do a sync
221 */
222void btrfs_end_log_trans(struct btrfs_root *root)
223{
224 if (atomic_dec_and_test(&root->log_writers)) {
225 /*
226 * Implicit memory barrier after atomic_dec_and_test
227 */
228 if (waitqueue_active(&root->log_writer_wait))
229 wake_up(&root->log_writer_wait);
230 }
231}
232
233
234/*
235 * the walk control struct is used to pass state down the chain when
236 * processing the log tree. The stage field tells us which part
237 * of the log tree processing we are currently doing. The others
238 * are state fields used for that specific part
239 */
240struct walk_control {
241 /* should we free the extent on disk when done? This is used
242 * at transaction commit time while freeing a log tree
243 */
244 int free;
245
246 /* should we write out the extent buffer? This is used
247 * while flushing the log tree to disk during a sync
248 */
249 int write;
250
251 /* should we wait for the extent buffer io to finish? Also used
252 * while flushing the log tree to disk for a sync
253 */
254 int wait;
255
256 /* pin only walk, we record which extents on disk belong to the
257 * log trees
258 */
259 int pin;
260
261 /* what stage of the replay code we're currently in */
262 int stage;
263
264 /* the root we are currently replaying */
265 struct btrfs_root *replay_dest;
266
267 /* the trans handle for the current replay */
268 struct btrfs_trans_handle *trans;
269
270 /* the function that gets used to process blocks we find in the
271 * tree. Note the extent_buffer might not be up to date when it is
272 * passed in, and it must be checked or read if you need the data
273 * inside it
274 */
275 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen, int level);
277};
278
279/*
280 * process_func used to pin down extents, write them or wait on them
281 */
282static int process_one_buffer(struct btrfs_root *log,
283 struct extent_buffer *eb,
284 struct walk_control *wc, u64 gen, int level)
285{
286 struct btrfs_fs_info *fs_info = log->fs_info;
287 int ret = 0;
288
289 /*
290 * If this fs is mixed then we need to be able to process the leaves to
291 * pin down any logged extents, so we have to read the block.
292 */
293 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
294 ret = btrfs_read_buffer(eb, gen, level, NULL);
295 if (ret)
296 return ret;
297 }
298
299 if (wc->pin)
300 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
301 eb->len);
302
303 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
304 if (wc->pin && btrfs_header_level(eb) == 0)
305 ret = btrfs_exclude_logged_extents(fs_info, eb);
306 if (wc->write)
307 btrfs_write_tree_block(eb);
308 if (wc->wait)
309 btrfs_wait_tree_block_writeback(eb);
310 }
311 return ret;
312}
313
314/*
315 * Item overwrite used by replay and tree logging. eb, slot and key all refer
316 * to the src data we are copying out.
317 *
318 * root is the tree we are copying into, and path is a scratch
319 * path for use in this function (it should be released on entry and
320 * will be released on exit).
321 *
322 * If the key is already in the destination tree the existing item is
323 * overwritten. If the existing item isn't big enough, it is extended.
324 * If it is too large, it is truncated.
325 *
326 * If the key isn't in the destination yet, a new item is inserted.
327 */
328static noinline int overwrite_item(struct btrfs_trans_handle *trans,
329 struct btrfs_root *root,
330 struct btrfs_path *path,
331 struct extent_buffer *eb, int slot,
332 struct btrfs_key *key)
333{
334 struct btrfs_fs_info *fs_info = root->fs_info;
335 int ret;
336 u32 item_size;
337 u64 saved_i_size = 0;
338 int save_old_i_size = 0;
339 unsigned long src_ptr;
340 unsigned long dst_ptr;
341 int overwrite_root = 0;
342 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
343
344 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
345 overwrite_root = 1;
346
347 item_size = btrfs_item_size_nr(eb, slot);
348 src_ptr = btrfs_item_ptr_offset(eb, slot);
349
350 /* look for the key in the destination tree */
351 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
352 if (ret < 0)
353 return ret;
354
355 if (ret == 0) {
356 char *src_copy;
357 char *dst_copy;
358 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
359 path->slots[0]);
360 if (dst_size != item_size)
361 goto insert;
362
363 if (item_size == 0) {
364 btrfs_release_path(path);
365 return 0;
366 }
367 dst_copy = kmalloc(item_size, GFP_NOFS);
368 src_copy = kmalloc(item_size, GFP_NOFS);
369 if (!dst_copy || !src_copy) {
370 btrfs_release_path(path);
371 kfree(dst_copy);
372 kfree(src_copy);
373 return -ENOMEM;
374 }
375
376 read_extent_buffer(eb, src_copy, src_ptr, item_size);
377
378 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
379 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
380 item_size);
381 ret = memcmp(dst_copy, src_copy, item_size);
382
383 kfree(dst_copy);
384 kfree(src_copy);
385 /*
386 * they have the same contents, just return, this saves
387 * us from cowing blocks in the destination tree and doing
388 * extra writes that may not have been done by a previous
389 * sync
390 */
391 if (ret == 0) {
392 btrfs_release_path(path);
393 return 0;
394 }
395
396 /*
397 * We need to load the old nbytes into the inode so when we
398 * replay the extents we've logged we get the right nbytes.
399 */
400 if (inode_item) {
401 struct btrfs_inode_item *item;
402 u64 nbytes;
403 u32 mode;
404
405 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
406 struct btrfs_inode_item);
407 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
408 item = btrfs_item_ptr(eb, slot,
409 struct btrfs_inode_item);
410 btrfs_set_inode_nbytes(eb, item, nbytes);
411
412 /*
413 * If this is a directory we need to reset the i_size to
414 * 0 so that we can set it up properly when replaying
415 * the rest of the items in this log.
416 */
417 mode = btrfs_inode_mode(eb, item);
418 if (S_ISDIR(mode))
419 btrfs_set_inode_size(eb, item, 0);
420 }
421 } else if (inode_item) {
422 struct btrfs_inode_item *item;
423 u32 mode;
424
425 /*
426 * New inode, set nbytes to 0 so that the nbytes comes out
427 * properly when we replay the extents.
428 */
429 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
430 btrfs_set_inode_nbytes(eb, item, 0);
431
432 /*
433 * If this is a directory we need to reset the i_size to 0 so
434 * that we can set it up properly when replaying the rest of
435 * the items in this log.
436 */
437 mode = btrfs_inode_mode(eb, item);
438 if (S_ISDIR(mode))
439 btrfs_set_inode_size(eb, item, 0);
440 }
441insert:
442 btrfs_release_path(path);
443 /* try to insert the key into the destination tree */
444 path->skip_release_on_error = 1;
445 ret = btrfs_insert_empty_item(trans, root, path,
446 key, item_size);
447 path->skip_release_on_error = 0;
448
449 /* make sure any existing item is the correct size */
450 if (ret == -EEXIST || ret == -EOVERFLOW) {
451 u32 found_size;
452 found_size = btrfs_item_size_nr(path->nodes[0],
453 path->slots[0]);
454 if (found_size > item_size)
455 btrfs_truncate_item(fs_info, path, item_size, 1);
456 else if (found_size < item_size)
457 btrfs_extend_item(fs_info, path,
458 item_size - found_size);
459 } else if (ret) {
460 return ret;
461 }
462 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
463 path->slots[0]);
464
465 /* don't overwrite an existing inode if the generation number
466 * was logged as zero. This is done when the tree logging code
467 * is just logging an inode to make sure it exists after recovery.
468 *
469 * Also, don't overwrite i_size on directories during replay.
470 * log replay inserts and removes directory items based on the
471 * state of the tree found in the subvolume, and i_size is modified
472 * as it goes
473 */
474 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
475 struct btrfs_inode_item *src_item;
476 struct btrfs_inode_item *dst_item;
477
478 src_item = (struct btrfs_inode_item *)src_ptr;
479 dst_item = (struct btrfs_inode_item *)dst_ptr;
480
481 if (btrfs_inode_generation(eb, src_item) == 0) {
482 struct extent_buffer *dst_eb = path->nodes[0];
483 const u64 ino_size = btrfs_inode_size(eb, src_item);
484
485 /*
486 * For regular files an ino_size == 0 is used only when
487 * logging that an inode exists, as part of a directory
488 * fsync, and the inode wasn't fsynced before. In this
489 * case don't set the size of the inode in the fs/subvol
490 * tree, otherwise we would be throwing valid data away.
491 */
492 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
493 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
494 ino_size != 0) {
495 struct btrfs_map_token token;
496
497 btrfs_init_map_token(&token);
498 btrfs_set_token_inode_size(dst_eb, dst_item,
499 ino_size, &token);
500 }
501 goto no_copy;
502 }
503
504 if (overwrite_root &&
505 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
506 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
507 save_old_i_size = 1;
508 saved_i_size = btrfs_inode_size(path->nodes[0],
509 dst_item);
510 }
511 }
512
513 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
514 src_ptr, item_size);
515
516 if (save_old_i_size) {
517 struct btrfs_inode_item *dst_item;
518 dst_item = (struct btrfs_inode_item *)dst_ptr;
519 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
520 }
521
522 /* make sure the generation is filled in */
523 if (key->type == BTRFS_INODE_ITEM_KEY) {
524 struct btrfs_inode_item *dst_item;
525 dst_item = (struct btrfs_inode_item *)dst_ptr;
526 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
527 btrfs_set_inode_generation(path->nodes[0], dst_item,
528 trans->transid);
529 }
530 }
531no_copy:
532 btrfs_mark_buffer_dirty(path->nodes[0]);
533 btrfs_release_path(path);
534 return 0;
535}
536
537/*
538 * simple helper to read an inode off the disk from a given root
539 * This can only be called for subvolume roots and not for the log
540 */
541static noinline struct inode *read_one_inode(struct btrfs_root *root,
542 u64 objectid)
543{
544 struct btrfs_key key;
545 struct inode *inode;
546
547 key.objectid = objectid;
548 key.type = BTRFS_INODE_ITEM_KEY;
549 key.offset = 0;
550 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
551 if (IS_ERR(inode)) {
552 inode = NULL;
553 } else if (is_bad_inode(inode)) {
554 iput(inode);
555 inode = NULL;
556 }
557 return inode;
558}
559
560/* replays a single extent in 'eb' at 'slot' with 'key' into the
561 * subvolume 'root'. path is released on entry and should be released
562 * on exit.
563 *
564 * extents in the log tree have not been allocated out of the extent
565 * tree yet. So, this completes the allocation, taking a reference
566 * as required if the extent already exists or creating a new extent
567 * if it isn't in the extent allocation tree yet.
568 *
569 * The extent is inserted into the file, dropping any existing extents
570 * from the file that overlap the new one.
571 */
572static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
573 struct btrfs_root *root,
574 struct btrfs_path *path,
575 struct extent_buffer *eb, int slot,
576 struct btrfs_key *key)
577{
578 struct btrfs_fs_info *fs_info = root->fs_info;
579 int found_type;
580 u64 extent_end;
581 u64 start = key->offset;
582 u64 nbytes = 0;
583 struct btrfs_file_extent_item *item;
584 struct inode *inode = NULL;
585 unsigned long size;
586 int ret = 0;
587
588 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
589 found_type = btrfs_file_extent_type(eb, item);
590
591 if (found_type == BTRFS_FILE_EXTENT_REG ||
592 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
593 nbytes = btrfs_file_extent_num_bytes(eb, item);
594 extent_end = start + nbytes;
595
596 /*
597 * We don't add to the inodes nbytes if we are prealloc or a
598 * hole.
599 */
600 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
601 nbytes = 0;
602 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
603 size = btrfs_file_extent_inline_len(eb, slot, item);
604 nbytes = btrfs_file_extent_ram_bytes(eb, item);
605 extent_end = ALIGN(start + size,
606 fs_info->sectorsize);
607 } else {
608 ret = 0;
609 goto out;
610 }
611
612 inode = read_one_inode(root, key->objectid);
613 if (!inode) {
614 ret = -EIO;
615 goto out;
616 }
617
618 /*
619 * first check to see if we already have this extent in the
620 * file. This must be done before the btrfs_drop_extents run
621 * so we don't try to drop this extent.
622 */
623 ret = btrfs_lookup_file_extent(trans, root, path,
624 btrfs_ino(BTRFS_I(inode)), start, 0);
625
626 if (ret == 0 &&
627 (found_type == BTRFS_FILE_EXTENT_REG ||
628 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
629 struct btrfs_file_extent_item cmp1;
630 struct btrfs_file_extent_item cmp2;
631 struct btrfs_file_extent_item *existing;
632 struct extent_buffer *leaf;
633
634 leaf = path->nodes[0];
635 existing = btrfs_item_ptr(leaf, path->slots[0],
636 struct btrfs_file_extent_item);
637
638 read_extent_buffer(eb, &cmp1, (unsigned long)item,
639 sizeof(cmp1));
640 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
641 sizeof(cmp2));
642
643 /*
644 * we already have a pointer to this exact extent,
645 * we don't have to do anything
646 */
647 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
648 btrfs_release_path(path);
649 goto out;
650 }
651 }
652 btrfs_release_path(path);
653
654 /* drop any overlapping extents */
655 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
656 if (ret)
657 goto out;
658
659 if (found_type == BTRFS_FILE_EXTENT_REG ||
660 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
661 u64 offset;
662 unsigned long dest_offset;
663 struct btrfs_key ins;
664
665 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
666 btrfs_fs_incompat(fs_info, NO_HOLES))
667 goto update_inode;
668
669 ret = btrfs_insert_empty_item(trans, root, path, key,
670 sizeof(*item));
671 if (ret)
672 goto out;
673 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 path->slots[0]);
675 copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 (unsigned long)item, sizeof(*item));
677
678 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 ins.type = BTRFS_EXTENT_ITEM_KEY;
681 offset = key->offset - btrfs_file_extent_offset(eb, item);
682
683 /*
684 * Manually record dirty extent, as here we did a shallow
685 * file extent item copy and skip normal backref update,
686 * but modifying extent tree all by ourselves.
687 * So need to manually record dirty extent for qgroup,
688 * as the owner of the file extent changed from log tree
689 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
690 */
691 ret = btrfs_qgroup_trace_extent(trans, fs_info,
692 btrfs_file_extent_disk_bytenr(eb, item),
693 btrfs_file_extent_disk_num_bytes(eb, item),
694 GFP_NOFS);
695 if (ret < 0)
696 goto out;
697
698 if (ins.objectid > 0) {
699 u64 csum_start;
700 u64 csum_end;
701 LIST_HEAD(ordered_sums);
702 /*
703 * is this extent already allocated in the extent
704 * allocation tree? If so, just add a reference
705 */
706 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
707 ins.offset);
708 if (ret == 0) {
709 ret = btrfs_inc_extent_ref(trans, root,
710 ins.objectid, ins.offset,
711 0, root->root_key.objectid,
712 key->objectid, offset);
713 if (ret)
714 goto out;
715 } else {
716 /*
717 * insert the extent pointer in the extent
718 * allocation tree
719 */
720 ret = btrfs_alloc_logged_file_extent(trans,
721 fs_info,
722 root->root_key.objectid,
723 key->objectid, offset, &ins);
724 if (ret)
725 goto out;
726 }
727 btrfs_release_path(path);
728
729 if (btrfs_file_extent_compression(eb, item)) {
730 csum_start = ins.objectid;
731 csum_end = csum_start + ins.offset;
732 } else {
733 csum_start = ins.objectid +
734 btrfs_file_extent_offset(eb, item);
735 csum_end = csum_start +
736 btrfs_file_extent_num_bytes(eb, item);
737 }
738
739 ret = btrfs_lookup_csums_range(root->log_root,
740 csum_start, csum_end - 1,
741 &ordered_sums, 0);
742 if (ret)
743 goto out;
744 /*
745 * Now delete all existing cums in the csum root that
746 * cover our range. We do this because we can have an
747 * extent that is completely referenced by one file
748 * extent item and partially referenced by another
749 * file extent item (like after using the clone or
750 * extent_same ioctls). In this case if we end up doing
751 * the replay of the one that partially references the
752 * extent first, and we do not do the csum deletion
753 * below, we can get 2 csum items in the csum tree that
754 * overlap each other. For example, imagine our log has
755 * the two following file extent items:
756 *
757 * key (257 EXTENT_DATA 409600)
758 * extent data disk byte 12845056 nr 102400
759 * extent data offset 20480 nr 20480 ram 102400
760 *
761 * key (257 EXTENT_DATA 819200)
762 * extent data disk byte 12845056 nr 102400
763 * extent data offset 0 nr 102400 ram 102400
764 *
765 * Where the second one fully references the 100K extent
766 * that starts at disk byte 12845056, and the log tree
767 * has a single csum item that covers the entire range
768 * of the extent:
769 *
770 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
771 *
772 * After the first file extent item is replayed, the
773 * csum tree gets the following csum item:
774 *
775 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
776 *
777 * Which covers the 20K sub-range starting at offset 20K
778 * of our extent. Now when we replay the second file
779 * extent item, if we do not delete existing csum items
780 * that cover any of its blocks, we end up getting two
781 * csum items in our csum tree that overlap each other:
782 *
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 *
786 * Which is a problem, because after this anyone trying
787 * to lookup up for the checksum of any block of our
788 * extent starting at an offset of 40K or higher, will
789 * end up looking at the second csum item only, which
790 * does not contain the checksum for any block starting
791 * at offset 40K or higher of our extent.
792 */
793 while (!list_empty(&ordered_sums)) {
794 struct btrfs_ordered_sum *sums;
795 sums = list_entry(ordered_sums.next,
796 struct btrfs_ordered_sum,
797 list);
798 if (!ret)
799 ret = btrfs_del_csums(trans, fs_info,
800 sums->bytenr,
801 sums->len);
802 if (!ret)
803 ret = btrfs_csum_file_blocks(trans,
804 fs_info->csum_root, sums);
805 list_del(&sums->list);
806 kfree(sums);
807 }
808 if (ret)
809 goto out;
810 } else {
811 btrfs_release_path(path);
812 }
813 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
814 /* inline extents are easy, we just overwrite them */
815 ret = overwrite_item(trans, root, path, eb, slot, key);
816 if (ret)
817 goto out;
818 }
819
820 inode_add_bytes(inode, nbytes);
821update_inode:
822 ret = btrfs_update_inode(trans, root, inode);
823out:
824 if (inode)
825 iput(inode);
826 return ret;
827}
828
829/*
830 * when cleaning up conflicts between the directory names in the
831 * subvolume, directory names in the log and directory names in the
832 * inode back references, we may have to unlink inodes from directories.
833 *
834 * This is a helper function to do the unlink of a specific directory
835 * item
836 */
837static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct btrfs_path *path,
840 struct btrfs_inode *dir,
841 struct btrfs_dir_item *di)
842{
843 struct inode *inode;
844 char *name;
845 int name_len;
846 struct extent_buffer *leaf;
847 struct btrfs_key location;
848 int ret;
849
850 leaf = path->nodes[0];
851
852 btrfs_dir_item_key_to_cpu(leaf, di, &location);
853 name_len = btrfs_dir_name_len(leaf, di);
854 name = kmalloc(name_len, GFP_NOFS);
855 if (!name)
856 return -ENOMEM;
857
858 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
859 btrfs_release_path(path);
860
861 inode = read_one_inode(root, location.objectid);
862 if (!inode) {
863 ret = -EIO;
864 goto out;
865 }
866
867 ret = link_to_fixup_dir(trans, root, path, location.objectid);
868 if (ret)
869 goto out;
870
871 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
872 name_len);
873 if (ret)
874 goto out;
875 else
876 ret = btrfs_run_delayed_items(trans);
877out:
878 kfree(name);
879 iput(inode);
880 return ret;
881}
882
883/*
884 * helper function to see if a given name and sequence number found
885 * in an inode back reference are already in a directory and correctly
886 * point to this inode
887 */
888static noinline int inode_in_dir(struct btrfs_root *root,
889 struct btrfs_path *path,
890 u64 dirid, u64 objectid, u64 index,
891 const char *name, int name_len)
892{
893 struct btrfs_dir_item *di;
894 struct btrfs_key location;
895 int match = 0;
896
897 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
898 index, name, name_len, 0);
899 if (di && !IS_ERR(di)) {
900 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
901 if (location.objectid != objectid)
902 goto out;
903 } else
904 goto out;
905 btrfs_release_path(path);
906
907 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
908 if (di && !IS_ERR(di)) {
909 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
910 if (location.objectid != objectid)
911 goto out;
912 } else
913 goto out;
914 match = 1;
915out:
916 btrfs_release_path(path);
917 return match;
918}
919
920/*
921 * helper function to check a log tree for a named back reference in
922 * an inode. This is used to decide if a back reference that is
923 * found in the subvolume conflicts with what we find in the log.
924 *
925 * inode backreferences may have multiple refs in a single item,
926 * during replay we process one reference at a time, and we don't
927 * want to delete valid links to a file from the subvolume if that
928 * link is also in the log.
929 */
930static noinline int backref_in_log(struct btrfs_root *log,
931 struct btrfs_key *key,
932 u64 ref_objectid,
933 const char *name, int namelen)
934{
935 struct btrfs_path *path;
936 struct btrfs_inode_ref *ref;
937 unsigned long ptr;
938 unsigned long ptr_end;
939 unsigned long name_ptr;
940 int found_name_len;
941 int item_size;
942 int ret;
943 int match = 0;
944
945 path = btrfs_alloc_path();
946 if (!path)
947 return -ENOMEM;
948
949 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
950 if (ret != 0)
951 goto out;
952
953 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
954
955 if (key->type == BTRFS_INODE_EXTREF_KEY) {
956 if (btrfs_find_name_in_ext_backref(path->nodes[0],
957 path->slots[0],
958 ref_objectid,
959 name, namelen, NULL))
960 match = 1;
961
962 goto out;
963 }
964
965 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
966 ptr_end = ptr + item_size;
967 while (ptr < ptr_end) {
968 ref = (struct btrfs_inode_ref *)ptr;
969 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
970 if (found_name_len == namelen) {
971 name_ptr = (unsigned long)(ref + 1);
972 ret = memcmp_extent_buffer(path->nodes[0], name,
973 name_ptr, namelen);
974 if (ret == 0) {
975 match = 1;
976 goto out;
977 }
978 }
979 ptr = (unsigned long)(ref + 1) + found_name_len;
980 }
981out:
982 btrfs_free_path(path);
983 return match;
984}
985
986static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
987 struct btrfs_root *root,
988 struct btrfs_path *path,
989 struct btrfs_root *log_root,
990 struct btrfs_inode *dir,
991 struct btrfs_inode *inode,
992 u64 inode_objectid, u64 parent_objectid,
993 u64 ref_index, char *name, int namelen,
994 int *search_done)
995{
996 int ret;
997 char *victim_name;
998 int victim_name_len;
999 struct extent_buffer *leaf;
1000 struct btrfs_dir_item *di;
1001 struct btrfs_key search_key;
1002 struct btrfs_inode_extref *extref;
1003
1004again:
1005 /* Search old style refs */
1006 search_key.objectid = inode_objectid;
1007 search_key.type = BTRFS_INODE_REF_KEY;
1008 search_key.offset = parent_objectid;
1009 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1010 if (ret == 0) {
1011 struct btrfs_inode_ref *victim_ref;
1012 unsigned long ptr;
1013 unsigned long ptr_end;
1014
1015 leaf = path->nodes[0];
1016
1017 /* are we trying to overwrite a back ref for the root directory
1018 * if so, just jump out, we're done
1019 */
1020 if (search_key.objectid == search_key.offset)
1021 return 1;
1022
1023 /* check all the names in this back reference to see
1024 * if they are in the log. if so, we allow them to stay
1025 * otherwise they must be unlinked as a conflict
1026 */
1027 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1028 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1029 while (ptr < ptr_end) {
1030 victim_ref = (struct btrfs_inode_ref *)ptr;
1031 victim_name_len = btrfs_inode_ref_name_len(leaf,
1032 victim_ref);
1033 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1034 if (!victim_name)
1035 return -ENOMEM;
1036
1037 read_extent_buffer(leaf, victim_name,
1038 (unsigned long)(victim_ref + 1),
1039 victim_name_len);
1040
1041 if (!backref_in_log(log_root, &search_key,
1042 parent_objectid,
1043 victim_name,
1044 victim_name_len)) {
1045 inc_nlink(&inode->vfs_inode);
1046 btrfs_release_path(path);
1047
1048 ret = btrfs_unlink_inode(trans, root, dir, inode,
1049 victim_name, victim_name_len);
1050 kfree(victim_name);
1051 if (ret)
1052 return ret;
1053 ret = btrfs_run_delayed_items(trans);
1054 if (ret)
1055 return ret;
1056 *search_done = 1;
1057 goto again;
1058 }
1059 kfree(victim_name);
1060
1061 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1062 }
1063
1064 /*
1065 * NOTE: we have searched root tree and checked the
1066 * corresponding ref, it does not need to check again.
1067 */
1068 *search_done = 1;
1069 }
1070 btrfs_release_path(path);
1071
1072 /* Same search but for extended refs */
1073 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1074 inode_objectid, parent_objectid, 0,
1075 0);
1076 if (!IS_ERR_OR_NULL(extref)) {
1077 u32 item_size;
1078 u32 cur_offset = 0;
1079 unsigned long base;
1080 struct inode *victim_parent;
1081
1082 leaf = path->nodes[0];
1083
1084 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1085 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1086
1087 while (cur_offset < item_size) {
1088 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1089
1090 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1091
1092 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1093 goto next;
1094
1095 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1096 if (!victim_name)
1097 return -ENOMEM;
1098 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1099 victim_name_len);
1100
1101 search_key.objectid = inode_objectid;
1102 search_key.type = BTRFS_INODE_EXTREF_KEY;
1103 search_key.offset = btrfs_extref_hash(parent_objectid,
1104 victim_name,
1105 victim_name_len);
1106 ret = 0;
1107 if (!backref_in_log(log_root, &search_key,
1108 parent_objectid, victim_name,
1109 victim_name_len)) {
1110 ret = -ENOENT;
1111 victim_parent = read_one_inode(root,
1112 parent_objectid);
1113 if (victim_parent) {
1114 inc_nlink(&inode->vfs_inode);
1115 btrfs_release_path(path);
1116
1117 ret = btrfs_unlink_inode(trans, root,
1118 BTRFS_I(victim_parent),
1119 inode,
1120 victim_name,
1121 victim_name_len);
1122 if (!ret)
1123 ret = btrfs_run_delayed_items(
1124 trans);
1125 }
1126 iput(victim_parent);
1127 kfree(victim_name);
1128 if (ret)
1129 return ret;
1130 *search_done = 1;
1131 goto again;
1132 }
1133 kfree(victim_name);
1134next:
1135 cur_offset += victim_name_len + sizeof(*extref);
1136 }
1137 *search_done = 1;
1138 }
1139 btrfs_release_path(path);
1140
1141 /* look for a conflicting sequence number */
1142 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1143 ref_index, name, namelen, 0);
1144 if (di && !IS_ERR(di)) {
1145 ret = drop_one_dir_item(trans, root, path, dir, di);
1146 if (ret)
1147 return ret;
1148 }
1149 btrfs_release_path(path);
1150
1151 /* look for a conflicing name */
1152 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1153 name, namelen, 0);
1154 if (di && !IS_ERR(di)) {
1155 ret = drop_one_dir_item(trans, root, path, dir, di);
1156 if (ret)
1157 return ret;
1158 }
1159 btrfs_release_path(path);
1160
1161 return 0;
1162}
1163
1164static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1165 u32 *namelen, char **name, u64 *index,
1166 u64 *parent_objectid)
1167{
1168 struct btrfs_inode_extref *extref;
1169
1170 extref = (struct btrfs_inode_extref *)ref_ptr;
1171
1172 *namelen = btrfs_inode_extref_name_len(eb, extref);
1173 *name = kmalloc(*namelen, GFP_NOFS);
1174 if (*name == NULL)
1175 return -ENOMEM;
1176
1177 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1178 *namelen);
1179
1180 if (index)
1181 *index = btrfs_inode_extref_index(eb, extref);
1182 if (parent_objectid)
1183 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1184
1185 return 0;
1186}
1187
1188static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1189 u32 *namelen, char **name, u64 *index)
1190{
1191 struct btrfs_inode_ref *ref;
1192
1193 ref = (struct btrfs_inode_ref *)ref_ptr;
1194
1195 *namelen = btrfs_inode_ref_name_len(eb, ref);
1196 *name = kmalloc(*namelen, GFP_NOFS);
1197 if (*name == NULL)
1198 return -ENOMEM;
1199
1200 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1201
1202 if (index)
1203 *index = btrfs_inode_ref_index(eb, ref);
1204
1205 return 0;
1206}
1207
1208/*
1209 * Take an inode reference item from the log tree and iterate all names from the
1210 * inode reference item in the subvolume tree with the same key (if it exists).
1211 * For any name that is not in the inode reference item from the log tree, do a
1212 * proper unlink of that name (that is, remove its entry from the inode
1213 * reference item and both dir index keys).
1214 */
1215static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root,
1217 struct btrfs_path *path,
1218 struct btrfs_inode *inode,
1219 struct extent_buffer *log_eb,
1220 int log_slot,
1221 struct btrfs_key *key)
1222{
1223 int ret;
1224 unsigned long ref_ptr;
1225 unsigned long ref_end;
1226 struct extent_buffer *eb;
1227
1228again:
1229 btrfs_release_path(path);
1230 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1231 if (ret > 0) {
1232 ret = 0;
1233 goto out;
1234 }
1235 if (ret < 0)
1236 goto out;
1237
1238 eb = path->nodes[0];
1239 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1240 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1241 while (ref_ptr < ref_end) {
1242 char *name = NULL;
1243 int namelen;
1244 u64 parent_id;
1245
1246 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1247 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1248 NULL, &parent_id);
1249 } else {
1250 parent_id = key->offset;
1251 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1252 NULL);
1253 }
1254 if (ret)
1255 goto out;
1256
1257 if (key->type == BTRFS_INODE_EXTREF_KEY)
1258 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1259 parent_id, name,
1260 namelen, NULL);
1261 else
1262 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1263 namelen, NULL);
1264
1265 if (!ret) {
1266 struct inode *dir;
1267
1268 btrfs_release_path(path);
1269 dir = read_one_inode(root, parent_id);
1270 if (!dir) {
1271 ret = -ENOENT;
1272 kfree(name);
1273 goto out;
1274 }
1275 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1276 inode, name, namelen);
1277 kfree(name);
1278 iput(dir);
1279 if (ret)
1280 goto out;
1281 goto again;
1282 }
1283
1284 kfree(name);
1285 ref_ptr += namelen;
1286 if (key->type == BTRFS_INODE_EXTREF_KEY)
1287 ref_ptr += sizeof(struct btrfs_inode_extref);
1288 else
1289 ref_ptr += sizeof(struct btrfs_inode_ref);
1290 }
1291 ret = 0;
1292 out:
1293 btrfs_release_path(path);
1294 return ret;
1295}
1296
1297/*
1298 * replay one inode back reference item found in the log tree.
1299 * eb, slot and key refer to the buffer and key found in the log tree.
1300 * root is the destination we are replaying into, and path is for temp
1301 * use by this function. (it should be released on return).
1302 */
1303static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1304 struct btrfs_root *root,
1305 struct btrfs_root *log,
1306 struct btrfs_path *path,
1307 struct extent_buffer *eb, int slot,
1308 struct btrfs_key *key)
1309{
1310 struct inode *dir = NULL;
1311 struct inode *inode = NULL;
1312 unsigned long ref_ptr;
1313 unsigned long ref_end;
1314 char *name = NULL;
1315 int namelen;
1316 int ret;
1317 int search_done = 0;
1318 int log_ref_ver = 0;
1319 u64 parent_objectid;
1320 u64 inode_objectid;
1321 u64 ref_index = 0;
1322 int ref_struct_size;
1323
1324 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1325 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1326
1327 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1328 struct btrfs_inode_extref *r;
1329
1330 ref_struct_size = sizeof(struct btrfs_inode_extref);
1331 log_ref_ver = 1;
1332 r = (struct btrfs_inode_extref *)ref_ptr;
1333 parent_objectid = btrfs_inode_extref_parent(eb, r);
1334 } else {
1335 ref_struct_size = sizeof(struct btrfs_inode_ref);
1336 parent_objectid = key->offset;
1337 }
1338 inode_objectid = key->objectid;
1339
1340 /*
1341 * it is possible that we didn't log all the parent directories
1342 * for a given inode. If we don't find the dir, just don't
1343 * copy the back ref in. The link count fixup code will take
1344 * care of the rest
1345 */
1346 dir = read_one_inode(root, parent_objectid);
1347 if (!dir) {
1348 ret = -ENOENT;
1349 goto out;
1350 }
1351
1352 inode = read_one_inode(root, inode_objectid);
1353 if (!inode) {
1354 ret = -EIO;
1355 goto out;
1356 }
1357
1358 while (ref_ptr < ref_end) {
1359 if (log_ref_ver) {
1360 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1361 &ref_index, &parent_objectid);
1362 /*
1363 * parent object can change from one array
1364 * item to another.
1365 */
1366 if (!dir)
1367 dir = read_one_inode(root, parent_objectid);
1368 if (!dir) {
1369 ret = -ENOENT;
1370 goto out;
1371 }
1372 } else {
1373 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1374 &ref_index);
1375 }
1376 if (ret)
1377 goto out;
1378
1379 /* if we already have a perfect match, we're done */
1380 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1381 btrfs_ino(BTRFS_I(inode)), ref_index,
1382 name, namelen)) {
1383 /*
1384 * look for a conflicting back reference in the
1385 * metadata. if we find one we have to unlink that name
1386 * of the file before we add our new link. Later on, we
1387 * overwrite any existing back reference, and we don't
1388 * want to create dangling pointers in the directory.
1389 */
1390
1391 if (!search_done) {
1392 ret = __add_inode_ref(trans, root, path, log,
1393 BTRFS_I(dir),
1394 BTRFS_I(inode),
1395 inode_objectid,
1396 parent_objectid,
1397 ref_index, name, namelen,
1398 &search_done);
1399 if (ret) {
1400 if (ret == 1)
1401 ret = 0;
1402 goto out;
1403 }
1404 }
1405
1406 /* insert our name */
1407 ret = btrfs_add_link(trans, BTRFS_I(dir),
1408 BTRFS_I(inode),
1409 name, namelen, 0, ref_index);
1410 if (ret)
1411 goto out;
1412
1413 btrfs_update_inode(trans, root, inode);
1414 }
1415
1416 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1417 kfree(name);
1418 name = NULL;
1419 if (log_ref_ver) {
1420 iput(dir);
1421 dir = NULL;
1422 }
1423 }
1424
1425 /*
1426 * Before we overwrite the inode reference item in the subvolume tree
1427 * with the item from the log tree, we must unlink all names from the
1428 * parent directory that are in the subvolume's tree inode reference
1429 * item, otherwise we end up with an inconsistent subvolume tree where
1430 * dir index entries exist for a name but there is no inode reference
1431 * item with the same name.
1432 */
1433 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1434 key);
1435 if (ret)
1436 goto out;
1437
1438 /* finally write the back reference in the inode */
1439 ret = overwrite_item(trans, root, path, eb, slot, key);
1440out:
1441 btrfs_release_path(path);
1442 kfree(name);
1443 iput(dir);
1444 iput(inode);
1445 return ret;
1446}
1447
1448static int insert_orphan_item(struct btrfs_trans_handle *trans,
1449 struct btrfs_root *root, u64 ino)
1450{
1451 int ret;
1452
1453 ret = btrfs_insert_orphan_item(trans, root, ino);
1454 if (ret == -EEXIST)
1455 ret = 0;
1456
1457 return ret;
1458}
1459
1460static int count_inode_extrefs(struct btrfs_root *root,
1461 struct btrfs_inode *inode, struct btrfs_path *path)
1462{
1463 int ret = 0;
1464 int name_len;
1465 unsigned int nlink = 0;
1466 u32 item_size;
1467 u32 cur_offset = 0;
1468 u64 inode_objectid = btrfs_ino(inode);
1469 u64 offset = 0;
1470 unsigned long ptr;
1471 struct btrfs_inode_extref *extref;
1472 struct extent_buffer *leaf;
1473
1474 while (1) {
1475 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1476 &extref, &offset);
1477 if (ret)
1478 break;
1479
1480 leaf = path->nodes[0];
1481 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1482 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1483 cur_offset = 0;
1484
1485 while (cur_offset < item_size) {
1486 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1487 name_len = btrfs_inode_extref_name_len(leaf, extref);
1488
1489 nlink++;
1490
1491 cur_offset += name_len + sizeof(*extref);
1492 }
1493
1494 offset++;
1495 btrfs_release_path(path);
1496 }
1497 btrfs_release_path(path);
1498
1499 if (ret < 0 && ret != -ENOENT)
1500 return ret;
1501 return nlink;
1502}
1503
1504static int count_inode_refs(struct btrfs_root *root,
1505 struct btrfs_inode *inode, struct btrfs_path *path)
1506{
1507 int ret;
1508 struct btrfs_key key;
1509 unsigned int nlink = 0;
1510 unsigned long ptr;
1511 unsigned long ptr_end;
1512 int name_len;
1513 u64 ino = btrfs_ino(inode);
1514
1515 key.objectid = ino;
1516 key.type = BTRFS_INODE_REF_KEY;
1517 key.offset = (u64)-1;
1518
1519 while (1) {
1520 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1521 if (ret < 0)
1522 break;
1523 if (ret > 0) {
1524 if (path->slots[0] == 0)
1525 break;
1526 path->slots[0]--;
1527 }
1528process_slot:
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid != ino ||
1532 key.type != BTRFS_INODE_REF_KEY)
1533 break;
1534 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1535 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1536 path->slots[0]);
1537 while (ptr < ptr_end) {
1538 struct btrfs_inode_ref *ref;
1539
1540 ref = (struct btrfs_inode_ref *)ptr;
1541 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1542 ref);
1543 ptr = (unsigned long)(ref + 1) + name_len;
1544 nlink++;
1545 }
1546
1547 if (key.offset == 0)
1548 break;
1549 if (path->slots[0] > 0) {
1550 path->slots[0]--;
1551 goto process_slot;
1552 }
1553 key.offset--;
1554 btrfs_release_path(path);
1555 }
1556 btrfs_release_path(path);
1557
1558 return nlink;
1559}
1560
1561/*
1562 * There are a few corners where the link count of the file can't
1563 * be properly maintained during replay. So, instead of adding
1564 * lots of complexity to the log code, we just scan the backrefs
1565 * for any file that has been through replay.
1566 *
1567 * The scan will update the link count on the inode to reflect the
1568 * number of back refs found. If it goes down to zero, the iput
1569 * will free the inode.
1570 */
1571static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1572 struct btrfs_root *root,
1573 struct inode *inode)
1574{
1575 struct btrfs_path *path;
1576 int ret;
1577 u64 nlink = 0;
1578 u64 ino = btrfs_ino(BTRFS_I(inode));
1579
1580 path = btrfs_alloc_path();
1581 if (!path)
1582 return -ENOMEM;
1583
1584 ret = count_inode_refs(root, BTRFS_I(inode), path);
1585 if (ret < 0)
1586 goto out;
1587
1588 nlink = ret;
1589
1590 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1591 if (ret < 0)
1592 goto out;
1593
1594 nlink += ret;
1595
1596 ret = 0;
1597
1598 if (nlink != inode->i_nlink) {
1599 set_nlink(inode, nlink);
1600 btrfs_update_inode(trans, root, inode);
1601 }
1602 BTRFS_I(inode)->index_cnt = (u64)-1;
1603
1604 if (inode->i_nlink == 0) {
1605 if (S_ISDIR(inode->i_mode)) {
1606 ret = replay_dir_deletes(trans, root, NULL, path,
1607 ino, 1);
1608 if (ret)
1609 goto out;
1610 }
1611 ret = insert_orphan_item(trans, root, ino);
1612 }
1613
1614out:
1615 btrfs_free_path(path);
1616 return ret;
1617}
1618
1619static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1620 struct btrfs_root *root,
1621 struct btrfs_path *path)
1622{
1623 int ret;
1624 struct btrfs_key key;
1625 struct inode *inode;
1626
1627 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1628 key.type = BTRFS_ORPHAN_ITEM_KEY;
1629 key.offset = (u64)-1;
1630 while (1) {
1631 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1632 if (ret < 0)
1633 break;
1634
1635 if (ret == 1) {
1636 if (path->slots[0] == 0)
1637 break;
1638 path->slots[0]--;
1639 }
1640
1641 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1642 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1643 key.type != BTRFS_ORPHAN_ITEM_KEY)
1644 break;
1645
1646 ret = btrfs_del_item(trans, root, path);
1647 if (ret)
1648 goto out;
1649
1650 btrfs_release_path(path);
1651 inode = read_one_inode(root, key.offset);
1652 if (!inode)
1653 return -EIO;
1654
1655 ret = fixup_inode_link_count(trans, root, inode);
1656 iput(inode);
1657 if (ret)
1658 goto out;
1659
1660 /*
1661 * fixup on a directory may create new entries,
1662 * make sure we always look for the highset possible
1663 * offset
1664 */
1665 key.offset = (u64)-1;
1666 }
1667 ret = 0;
1668out:
1669 btrfs_release_path(path);
1670 return ret;
1671}
1672
1673
1674/*
1675 * record a given inode in the fixup dir so we can check its link
1676 * count when replay is done. The link count is incremented here
1677 * so the inode won't go away until we check it
1678 */
1679static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1680 struct btrfs_root *root,
1681 struct btrfs_path *path,
1682 u64 objectid)
1683{
1684 struct btrfs_key key;
1685 int ret = 0;
1686 struct inode *inode;
1687
1688 inode = read_one_inode(root, objectid);
1689 if (!inode)
1690 return -EIO;
1691
1692 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1693 key.type = BTRFS_ORPHAN_ITEM_KEY;
1694 key.offset = objectid;
1695
1696 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1697
1698 btrfs_release_path(path);
1699 if (ret == 0) {
1700 if (!inode->i_nlink)
1701 set_nlink(inode, 1);
1702 else
1703 inc_nlink(inode);
1704 ret = btrfs_update_inode(trans, root, inode);
1705 } else if (ret == -EEXIST) {
1706 ret = 0;
1707 } else {
1708 BUG(); /* Logic Error */
1709 }
1710 iput(inode);
1711
1712 return ret;
1713}
1714
1715/*
1716 * when replaying the log for a directory, we only insert names
1717 * for inodes that actually exist. This means an fsync on a directory
1718 * does not implicitly fsync all the new files in it
1719 */
1720static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1721 struct btrfs_root *root,
1722 u64 dirid, u64 index,
1723 char *name, int name_len,
1724 struct btrfs_key *location)
1725{
1726 struct inode *inode;
1727 struct inode *dir;
1728 int ret;
1729
1730 inode = read_one_inode(root, location->objectid);
1731 if (!inode)
1732 return -ENOENT;
1733
1734 dir = read_one_inode(root, dirid);
1735 if (!dir) {
1736 iput(inode);
1737 return -EIO;
1738 }
1739
1740 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1741 name_len, 1, index);
1742
1743 /* FIXME, put inode into FIXUP list */
1744
1745 iput(inode);
1746 iput(dir);
1747 return ret;
1748}
1749
1750/*
1751 * Return true if an inode reference exists in the log for the given name,
1752 * inode and parent inode.
1753 */
1754static bool name_in_log_ref(struct btrfs_root *log_root,
1755 const char *name, const int name_len,
1756 const u64 dirid, const u64 ino)
1757{
1758 struct btrfs_key search_key;
1759
1760 search_key.objectid = ino;
1761 search_key.type = BTRFS_INODE_REF_KEY;
1762 search_key.offset = dirid;
1763 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1764 return true;
1765
1766 search_key.type = BTRFS_INODE_EXTREF_KEY;
1767 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1768 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1769 return true;
1770
1771 return false;
1772}
1773
1774/*
1775 * take a single entry in a log directory item and replay it into
1776 * the subvolume.
1777 *
1778 * if a conflicting item exists in the subdirectory already,
1779 * the inode it points to is unlinked and put into the link count
1780 * fix up tree.
1781 *
1782 * If a name from the log points to a file or directory that does
1783 * not exist in the FS, it is skipped. fsyncs on directories
1784 * do not force down inodes inside that directory, just changes to the
1785 * names or unlinks in a directory.
1786 *
1787 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1788 * non-existing inode) and 1 if the name was replayed.
1789 */
1790static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1791 struct btrfs_root *root,
1792 struct btrfs_path *path,
1793 struct extent_buffer *eb,
1794 struct btrfs_dir_item *di,
1795 struct btrfs_key *key)
1796{
1797 char *name;
1798 int name_len;
1799 struct btrfs_dir_item *dst_di;
1800 struct btrfs_key found_key;
1801 struct btrfs_key log_key;
1802 struct inode *dir;
1803 u8 log_type;
1804 int exists;
1805 int ret = 0;
1806 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1807 bool name_added = false;
1808
1809 dir = read_one_inode(root, key->objectid);
1810 if (!dir)
1811 return -EIO;
1812
1813 name_len = btrfs_dir_name_len(eb, di);
1814 name = kmalloc(name_len, GFP_NOFS);
1815 if (!name) {
1816 ret = -ENOMEM;
1817 goto out;
1818 }
1819
1820 log_type = btrfs_dir_type(eb, di);
1821 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1822 name_len);
1823
1824 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1825 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1826 if (exists == 0)
1827 exists = 1;
1828 else
1829 exists = 0;
1830 btrfs_release_path(path);
1831
1832 if (key->type == BTRFS_DIR_ITEM_KEY) {
1833 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1834 name, name_len, 1);
1835 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1836 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1837 key->objectid,
1838 key->offset, name,
1839 name_len, 1);
1840 } else {
1841 /* Corruption */
1842 ret = -EINVAL;
1843 goto out;
1844 }
1845 if (IS_ERR_OR_NULL(dst_di)) {
1846 /* we need a sequence number to insert, so we only
1847 * do inserts for the BTRFS_DIR_INDEX_KEY types
1848 */
1849 if (key->type != BTRFS_DIR_INDEX_KEY)
1850 goto out;
1851 goto insert;
1852 }
1853
1854 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1855 /* the existing item matches the logged item */
1856 if (found_key.objectid == log_key.objectid &&
1857 found_key.type == log_key.type &&
1858 found_key.offset == log_key.offset &&
1859 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1860 update_size = false;
1861 goto out;
1862 }
1863
1864 /*
1865 * don't drop the conflicting directory entry if the inode
1866 * for the new entry doesn't exist
1867 */
1868 if (!exists)
1869 goto out;
1870
1871 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1872 if (ret)
1873 goto out;
1874
1875 if (key->type == BTRFS_DIR_INDEX_KEY)
1876 goto insert;
1877out:
1878 btrfs_release_path(path);
1879 if (!ret && update_size) {
1880 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1881 ret = btrfs_update_inode(trans, root, dir);
1882 }
1883 kfree(name);
1884 iput(dir);
1885 if (!ret && name_added)
1886 ret = 1;
1887 return ret;
1888
1889insert:
1890 if (name_in_log_ref(root->log_root, name, name_len,
1891 key->objectid, log_key.objectid)) {
1892 /* The dentry will be added later. */
1893 ret = 0;
1894 update_size = false;
1895 goto out;
1896 }
1897 btrfs_release_path(path);
1898 ret = insert_one_name(trans, root, key->objectid, key->offset,
1899 name, name_len, &log_key);
1900 if (ret && ret != -ENOENT && ret != -EEXIST)
1901 goto out;
1902 if (!ret)
1903 name_added = true;
1904 update_size = false;
1905 ret = 0;
1906 goto out;
1907}
1908
1909/*
1910 * find all the names in a directory item and reconcile them into
1911 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1912 * one name in a directory item, but the same code gets used for
1913 * both directory index types
1914 */
1915static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1916 struct btrfs_root *root,
1917 struct btrfs_path *path,
1918 struct extent_buffer *eb, int slot,
1919 struct btrfs_key *key)
1920{
1921 int ret = 0;
1922 u32 item_size = btrfs_item_size_nr(eb, slot);
1923 struct btrfs_dir_item *di;
1924 int name_len;
1925 unsigned long ptr;
1926 unsigned long ptr_end;
1927 struct btrfs_path *fixup_path = NULL;
1928
1929 ptr = btrfs_item_ptr_offset(eb, slot);
1930 ptr_end = ptr + item_size;
1931 while (ptr < ptr_end) {
1932 di = (struct btrfs_dir_item *)ptr;
1933 name_len = btrfs_dir_name_len(eb, di);
1934 ret = replay_one_name(trans, root, path, eb, di, key);
1935 if (ret < 0)
1936 break;
1937 ptr = (unsigned long)(di + 1);
1938 ptr += name_len;
1939
1940 /*
1941 * If this entry refers to a non-directory (directories can not
1942 * have a link count > 1) and it was added in the transaction
1943 * that was not committed, make sure we fixup the link count of
1944 * the inode it the entry points to. Otherwise something like
1945 * the following would result in a directory pointing to an
1946 * inode with a wrong link that does not account for this dir
1947 * entry:
1948 *
1949 * mkdir testdir
1950 * touch testdir/foo
1951 * touch testdir/bar
1952 * sync
1953 *
1954 * ln testdir/bar testdir/bar_link
1955 * ln testdir/foo testdir/foo_link
1956 * xfs_io -c "fsync" testdir/bar
1957 *
1958 * <power failure>
1959 *
1960 * mount fs, log replay happens
1961 *
1962 * File foo would remain with a link count of 1 when it has two
1963 * entries pointing to it in the directory testdir. This would
1964 * make it impossible to ever delete the parent directory has
1965 * it would result in stale dentries that can never be deleted.
1966 */
1967 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1968 struct btrfs_key di_key;
1969
1970 if (!fixup_path) {
1971 fixup_path = btrfs_alloc_path();
1972 if (!fixup_path) {
1973 ret = -ENOMEM;
1974 break;
1975 }
1976 }
1977
1978 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1979 ret = link_to_fixup_dir(trans, root, fixup_path,
1980 di_key.objectid);
1981 if (ret)
1982 break;
1983 }
1984 ret = 0;
1985 }
1986 btrfs_free_path(fixup_path);
1987 return ret;
1988}
1989
1990/*
1991 * directory replay has two parts. There are the standard directory
1992 * items in the log copied from the subvolume, and range items
1993 * created in the log while the subvolume was logged.
1994 *
1995 * The range items tell us which parts of the key space the log
1996 * is authoritative for. During replay, if a key in the subvolume
1997 * directory is in a logged range item, but not actually in the log
1998 * that means it was deleted from the directory before the fsync
1999 * and should be removed.
2000 */
2001static noinline int find_dir_range(struct btrfs_root *root,
2002 struct btrfs_path *path,
2003 u64 dirid, int key_type,
2004 u64 *start_ret, u64 *end_ret)
2005{
2006 struct btrfs_key key;
2007 u64 found_end;
2008 struct btrfs_dir_log_item *item;
2009 int ret;
2010 int nritems;
2011
2012 if (*start_ret == (u64)-1)
2013 return 1;
2014
2015 key.objectid = dirid;
2016 key.type = key_type;
2017 key.offset = *start_ret;
2018
2019 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2020 if (ret < 0)
2021 goto out;
2022 if (ret > 0) {
2023 if (path->slots[0] == 0)
2024 goto out;
2025 path->slots[0]--;
2026 }
2027 if (ret != 0)
2028 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2029
2030 if (key.type != key_type || key.objectid != dirid) {
2031 ret = 1;
2032 goto next;
2033 }
2034 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2035 struct btrfs_dir_log_item);
2036 found_end = btrfs_dir_log_end(path->nodes[0], item);
2037
2038 if (*start_ret >= key.offset && *start_ret <= found_end) {
2039 ret = 0;
2040 *start_ret = key.offset;
2041 *end_ret = found_end;
2042 goto out;
2043 }
2044 ret = 1;
2045next:
2046 /* check the next slot in the tree to see if it is a valid item */
2047 nritems = btrfs_header_nritems(path->nodes[0]);
2048 path->slots[0]++;
2049 if (path->slots[0] >= nritems) {
2050 ret = btrfs_next_leaf(root, path);
2051 if (ret)
2052 goto out;
2053 }
2054
2055 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056
2057 if (key.type != key_type || key.objectid != dirid) {
2058 ret = 1;
2059 goto out;
2060 }
2061 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_dir_log_item);
2063 found_end = btrfs_dir_log_end(path->nodes[0], item);
2064 *start_ret = key.offset;
2065 *end_ret = found_end;
2066 ret = 0;
2067out:
2068 btrfs_release_path(path);
2069 return ret;
2070}
2071
2072/*
2073 * this looks for a given directory item in the log. If the directory
2074 * item is not in the log, the item is removed and the inode it points
2075 * to is unlinked
2076 */
2077static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2078 struct btrfs_root *root,
2079 struct btrfs_root *log,
2080 struct btrfs_path *path,
2081 struct btrfs_path *log_path,
2082 struct inode *dir,
2083 struct btrfs_key *dir_key)
2084{
2085 int ret;
2086 struct extent_buffer *eb;
2087 int slot;
2088 u32 item_size;
2089 struct btrfs_dir_item *di;
2090 struct btrfs_dir_item *log_di;
2091 int name_len;
2092 unsigned long ptr;
2093 unsigned long ptr_end;
2094 char *name;
2095 struct inode *inode;
2096 struct btrfs_key location;
2097
2098again:
2099 eb = path->nodes[0];
2100 slot = path->slots[0];
2101 item_size = btrfs_item_size_nr(eb, slot);
2102 ptr = btrfs_item_ptr_offset(eb, slot);
2103 ptr_end = ptr + item_size;
2104 while (ptr < ptr_end) {
2105 di = (struct btrfs_dir_item *)ptr;
2106 name_len = btrfs_dir_name_len(eb, di);
2107 name = kmalloc(name_len, GFP_NOFS);
2108 if (!name) {
2109 ret = -ENOMEM;
2110 goto out;
2111 }
2112 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2113 name_len);
2114 log_di = NULL;
2115 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2116 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2117 dir_key->objectid,
2118 name, name_len, 0);
2119 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2120 log_di = btrfs_lookup_dir_index_item(trans, log,
2121 log_path,
2122 dir_key->objectid,
2123 dir_key->offset,
2124 name, name_len, 0);
2125 }
2126 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2127 btrfs_dir_item_key_to_cpu(eb, di, &location);
2128 btrfs_release_path(path);
2129 btrfs_release_path(log_path);
2130 inode = read_one_inode(root, location.objectid);
2131 if (!inode) {
2132 kfree(name);
2133 return -EIO;
2134 }
2135
2136 ret = link_to_fixup_dir(trans, root,
2137 path, location.objectid);
2138 if (ret) {
2139 kfree(name);
2140 iput(inode);
2141 goto out;
2142 }
2143
2144 inc_nlink(inode);
2145 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2146 BTRFS_I(inode), name, name_len);
2147 if (!ret)
2148 ret = btrfs_run_delayed_items(trans);
2149 kfree(name);
2150 iput(inode);
2151 if (ret)
2152 goto out;
2153
2154 /* there might still be more names under this key
2155 * check and repeat if required
2156 */
2157 ret = btrfs_search_slot(NULL, root, dir_key, path,
2158 0, 0);
2159 if (ret == 0)
2160 goto again;
2161 ret = 0;
2162 goto out;
2163 } else if (IS_ERR(log_di)) {
2164 kfree(name);
2165 return PTR_ERR(log_di);
2166 }
2167 btrfs_release_path(log_path);
2168 kfree(name);
2169
2170 ptr = (unsigned long)(di + 1);
2171 ptr += name_len;
2172 }
2173 ret = 0;
2174out:
2175 btrfs_release_path(path);
2176 btrfs_release_path(log_path);
2177 return ret;
2178}
2179
2180static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_root *log,
2183 struct btrfs_path *path,
2184 const u64 ino)
2185{
2186 struct btrfs_key search_key;
2187 struct btrfs_path *log_path;
2188 int i;
2189 int nritems;
2190 int ret;
2191
2192 log_path = btrfs_alloc_path();
2193 if (!log_path)
2194 return -ENOMEM;
2195
2196 search_key.objectid = ino;
2197 search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 search_key.offset = 0;
2199again:
2200 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201 if (ret < 0)
2202 goto out;
2203process_leaf:
2204 nritems = btrfs_header_nritems(path->nodes[0]);
2205 for (i = path->slots[0]; i < nritems; i++) {
2206 struct btrfs_key key;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_dir_item *log_di;
2209 u32 total_size;
2210 u32 cur;
2211
2212 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214 ret = 0;
2215 goto out;
2216 }
2217
2218 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219 total_size = btrfs_item_size_nr(path->nodes[0], i);
2220 cur = 0;
2221 while (cur < total_size) {
2222 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 u32 this_len = sizeof(*di) + name_len + data_len;
2225 char *name;
2226
2227 name = kmalloc(name_len, GFP_NOFS);
2228 if (!name) {
2229 ret = -ENOMEM;
2230 goto out;
2231 }
2232 read_extent_buffer(path->nodes[0], name,
2233 (unsigned long)(di + 1), name_len);
2234
2235 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236 name, name_len, 0);
2237 btrfs_release_path(log_path);
2238 if (!log_di) {
2239 /* Doesn't exist in log tree, so delete it. */
2240 btrfs_release_path(path);
2241 di = btrfs_lookup_xattr(trans, root, path, ino,
2242 name, name_len, -1);
2243 kfree(name);
2244 if (IS_ERR(di)) {
2245 ret = PTR_ERR(di);
2246 goto out;
2247 }
2248 ASSERT(di);
2249 ret = btrfs_delete_one_dir_name(trans, root,
2250 path, di);
2251 if (ret)
2252 goto out;
2253 btrfs_release_path(path);
2254 search_key = key;
2255 goto again;
2256 }
2257 kfree(name);
2258 if (IS_ERR(log_di)) {
2259 ret = PTR_ERR(log_di);
2260 goto out;
2261 }
2262 cur += this_len;
2263 di = (struct btrfs_dir_item *)((char *)di + this_len);
2264 }
2265 }
2266 ret = btrfs_next_leaf(root, path);
2267 if (ret > 0)
2268 ret = 0;
2269 else if (ret == 0)
2270 goto process_leaf;
2271out:
2272 btrfs_free_path(log_path);
2273 btrfs_release_path(path);
2274 return ret;
2275}
2276
2277
2278/*
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes. It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2284 *
2285 * Anything we don't find in the log is unlinked and removed from the
2286 * directory.
2287 */
2288static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 struct btrfs_root *root,
2290 struct btrfs_root *log,
2291 struct btrfs_path *path,
2292 u64 dirid, int del_all)
2293{
2294 u64 range_start;
2295 u64 range_end;
2296 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2297 int ret = 0;
2298 struct btrfs_key dir_key;
2299 struct btrfs_key found_key;
2300 struct btrfs_path *log_path;
2301 struct inode *dir;
2302
2303 dir_key.objectid = dirid;
2304 dir_key.type = BTRFS_DIR_ITEM_KEY;
2305 log_path = btrfs_alloc_path();
2306 if (!log_path)
2307 return -ENOMEM;
2308
2309 dir = read_one_inode(root, dirid);
2310 /* it isn't an error if the inode isn't there, that can happen
2311 * because we replay the deletes before we copy in the inode item
2312 * from the log
2313 */
2314 if (!dir) {
2315 btrfs_free_path(log_path);
2316 return 0;
2317 }
2318again:
2319 range_start = 0;
2320 range_end = 0;
2321 while (1) {
2322 if (del_all)
2323 range_end = (u64)-1;
2324 else {
2325 ret = find_dir_range(log, path, dirid, key_type,
2326 &range_start, &range_end);
2327 if (ret != 0)
2328 break;
2329 }
2330
2331 dir_key.offset = range_start;
2332 while (1) {
2333 int nritems;
2334 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2335 0, 0);
2336 if (ret < 0)
2337 goto out;
2338
2339 nritems = btrfs_header_nritems(path->nodes[0]);
2340 if (path->slots[0] >= nritems) {
2341 ret = btrfs_next_leaf(root, path);
2342 if (ret == 1)
2343 break;
2344 else if (ret < 0)
2345 goto out;
2346 }
2347 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2348 path->slots[0]);
2349 if (found_key.objectid != dirid ||
2350 found_key.type != dir_key.type)
2351 goto next_type;
2352
2353 if (found_key.offset > range_end)
2354 break;
2355
2356 ret = check_item_in_log(trans, root, log, path,
2357 log_path, dir,
2358 &found_key);
2359 if (ret)
2360 goto out;
2361 if (found_key.offset == (u64)-1)
2362 break;
2363 dir_key.offset = found_key.offset + 1;
2364 }
2365 btrfs_release_path(path);
2366 if (range_end == (u64)-1)
2367 break;
2368 range_start = range_end + 1;
2369 }
2370
2371next_type:
2372 ret = 0;
2373 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2374 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2375 dir_key.type = BTRFS_DIR_INDEX_KEY;
2376 btrfs_release_path(path);
2377 goto again;
2378 }
2379out:
2380 btrfs_release_path(path);
2381 btrfs_free_path(log_path);
2382 iput(dir);
2383 return ret;
2384}
2385
2386/*
2387 * the process_func used to replay items from the log tree. This
2388 * gets called in two different stages. The first stage just looks
2389 * for inodes and makes sure they are all copied into the subvolume.
2390 *
2391 * The second stage copies all the other item types from the log into
2392 * the subvolume. The two stage approach is slower, but gets rid of
2393 * lots of complexity around inodes referencing other inodes that exist
2394 * only in the log (references come from either directory items or inode
2395 * back refs).
2396 */
2397static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2398 struct walk_control *wc, u64 gen, int level)
2399{
2400 int nritems;
2401 struct btrfs_path *path;
2402 struct btrfs_root *root = wc->replay_dest;
2403 struct btrfs_key key;
2404 int i;
2405 int ret;
2406
2407 ret = btrfs_read_buffer(eb, gen, level, NULL);
2408 if (ret)
2409 return ret;
2410
2411 level = btrfs_header_level(eb);
2412
2413 if (level != 0)
2414 return 0;
2415
2416 path = btrfs_alloc_path();
2417 if (!path)
2418 return -ENOMEM;
2419
2420 nritems = btrfs_header_nritems(eb);
2421 for (i = 0; i < nritems; i++) {
2422 btrfs_item_key_to_cpu(eb, &key, i);
2423
2424 /* inode keys are done during the first stage */
2425 if (key.type == BTRFS_INODE_ITEM_KEY &&
2426 wc->stage == LOG_WALK_REPLAY_INODES) {
2427 struct btrfs_inode_item *inode_item;
2428 u32 mode;
2429
2430 inode_item = btrfs_item_ptr(eb, i,
2431 struct btrfs_inode_item);
2432 ret = replay_xattr_deletes(wc->trans, root, log,
2433 path, key.objectid);
2434 if (ret)
2435 break;
2436 mode = btrfs_inode_mode(eb, inode_item);
2437 if (S_ISDIR(mode)) {
2438 ret = replay_dir_deletes(wc->trans,
2439 root, log, path, key.objectid, 0);
2440 if (ret)
2441 break;
2442 }
2443 ret = overwrite_item(wc->trans, root, path,
2444 eb, i, &key);
2445 if (ret)
2446 break;
2447
2448 /*
2449 * Before replaying extents, truncate the inode to its
2450 * size. We need to do it now and not after log replay
2451 * because before an fsync we can have prealloc extents
2452 * added beyond the inode's i_size. If we did it after,
2453 * through orphan cleanup for example, we would drop
2454 * those prealloc extents just after replaying them.
2455 */
2456 if (S_ISREG(mode)) {
2457 struct inode *inode;
2458 u64 from;
2459
2460 inode = read_one_inode(root, key.objectid);
2461 if (!inode) {
2462 ret = -EIO;
2463 break;
2464 }
2465 from = ALIGN(i_size_read(inode),
2466 root->fs_info->sectorsize);
2467 ret = btrfs_drop_extents(wc->trans, root, inode,
2468 from, (u64)-1, 1);
2469 /*
2470 * If the nlink count is zero here, the iput
2471 * will free the inode. We bump it to make
2472 * sure it doesn't get freed until the link
2473 * count fixup is done.
2474 */
2475 if (!ret) {
2476 if (inode->i_nlink == 0)
2477 inc_nlink(inode);
2478 /* Update link count and nbytes. */
2479 ret = btrfs_update_inode(wc->trans,
2480 root, inode);
2481 }
2482 iput(inode);
2483 if (ret)
2484 break;
2485 }
2486
2487 ret = link_to_fixup_dir(wc->trans, root,
2488 path, key.objectid);
2489 if (ret)
2490 break;
2491 }
2492
2493 if (key.type == BTRFS_DIR_INDEX_KEY &&
2494 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2495 ret = replay_one_dir_item(wc->trans, root, path,
2496 eb, i, &key);
2497 if (ret)
2498 break;
2499 }
2500
2501 if (wc->stage < LOG_WALK_REPLAY_ALL)
2502 continue;
2503
2504 /* these keys are simply copied */
2505 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2506 ret = overwrite_item(wc->trans, root, path,
2507 eb, i, &key);
2508 if (ret)
2509 break;
2510 } else if (key.type == BTRFS_INODE_REF_KEY ||
2511 key.type == BTRFS_INODE_EXTREF_KEY) {
2512 ret = add_inode_ref(wc->trans, root, log, path,
2513 eb, i, &key);
2514 if (ret && ret != -ENOENT)
2515 break;
2516 ret = 0;
2517 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2518 ret = replay_one_extent(wc->trans, root, path,
2519 eb, i, &key);
2520 if (ret)
2521 break;
2522 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2523 ret = replay_one_dir_item(wc->trans, root, path,
2524 eb, i, &key);
2525 if (ret)
2526 break;
2527 }
2528 }
2529 btrfs_free_path(path);
2530 return ret;
2531}
2532
2533static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2534 struct btrfs_root *root,
2535 struct btrfs_path *path, int *level,
2536 struct walk_control *wc)
2537{
2538 struct btrfs_fs_info *fs_info = root->fs_info;
2539 u64 root_owner;
2540 u64 bytenr;
2541 u64 ptr_gen;
2542 struct extent_buffer *next;
2543 struct extent_buffer *cur;
2544 struct extent_buffer *parent;
2545 u32 blocksize;
2546 int ret = 0;
2547
2548 WARN_ON(*level < 0);
2549 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2550
2551 while (*level > 0) {
2552 struct btrfs_key first_key;
2553
2554 WARN_ON(*level < 0);
2555 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2556 cur = path->nodes[*level];
2557
2558 WARN_ON(btrfs_header_level(cur) != *level);
2559
2560 if (path->slots[*level] >=
2561 btrfs_header_nritems(cur))
2562 break;
2563
2564 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2565 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2566 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2567 blocksize = fs_info->nodesize;
2568
2569 parent = path->nodes[*level];
2570 root_owner = btrfs_header_owner(parent);
2571
2572 next = btrfs_find_create_tree_block(fs_info, bytenr);
2573 if (IS_ERR(next))
2574 return PTR_ERR(next);
2575
2576 if (*level == 1) {
2577 ret = wc->process_func(root, next, wc, ptr_gen,
2578 *level - 1);
2579 if (ret) {
2580 free_extent_buffer(next);
2581 return ret;
2582 }
2583
2584 path->slots[*level]++;
2585 if (wc->free) {
2586 ret = btrfs_read_buffer(next, ptr_gen,
2587 *level - 1, &first_key);
2588 if (ret) {
2589 free_extent_buffer(next);
2590 return ret;
2591 }
2592
2593 if (trans) {
2594 btrfs_tree_lock(next);
2595 btrfs_set_lock_blocking(next);
2596 clean_tree_block(fs_info, next);
2597 btrfs_wait_tree_block_writeback(next);
2598 btrfs_tree_unlock(next);
2599 } else {
2600 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2601 clear_extent_buffer_dirty(next);
2602 }
2603
2604 WARN_ON(root_owner !=
2605 BTRFS_TREE_LOG_OBJECTID);
2606 ret = btrfs_free_and_pin_reserved_extent(
2607 fs_info, bytenr,
2608 blocksize);
2609 if (ret) {
2610 free_extent_buffer(next);
2611 return ret;
2612 }
2613 }
2614 free_extent_buffer(next);
2615 continue;
2616 }
2617 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2618 if (ret) {
2619 free_extent_buffer(next);
2620 return ret;
2621 }
2622
2623 WARN_ON(*level <= 0);
2624 if (path->nodes[*level-1])
2625 free_extent_buffer(path->nodes[*level-1]);
2626 path->nodes[*level-1] = next;
2627 *level = btrfs_header_level(next);
2628 path->slots[*level] = 0;
2629 cond_resched();
2630 }
2631 WARN_ON(*level < 0);
2632 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2633
2634 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2635
2636 cond_resched();
2637 return 0;
2638}
2639
2640static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2641 struct btrfs_root *root,
2642 struct btrfs_path *path, int *level,
2643 struct walk_control *wc)
2644{
2645 struct btrfs_fs_info *fs_info = root->fs_info;
2646 u64 root_owner;
2647 int i;
2648 int slot;
2649 int ret;
2650
2651 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2652 slot = path->slots[i];
2653 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2654 path->slots[i]++;
2655 *level = i;
2656 WARN_ON(*level == 0);
2657 return 0;
2658 } else {
2659 struct extent_buffer *parent;
2660 if (path->nodes[*level] == root->node)
2661 parent = path->nodes[*level];
2662 else
2663 parent = path->nodes[*level + 1];
2664
2665 root_owner = btrfs_header_owner(parent);
2666 ret = wc->process_func(root, path->nodes[*level], wc,
2667 btrfs_header_generation(path->nodes[*level]),
2668 *level);
2669 if (ret)
2670 return ret;
2671
2672 if (wc->free) {
2673 struct extent_buffer *next;
2674
2675 next = path->nodes[*level];
2676
2677 if (trans) {
2678 btrfs_tree_lock(next);
2679 btrfs_set_lock_blocking(next);
2680 clean_tree_block(fs_info, next);
2681 btrfs_wait_tree_block_writeback(next);
2682 btrfs_tree_unlock(next);
2683 } else {
2684 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2685 clear_extent_buffer_dirty(next);
2686 }
2687
2688 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2689 ret = btrfs_free_and_pin_reserved_extent(
2690 fs_info,
2691 path->nodes[*level]->start,
2692 path->nodes[*level]->len);
2693 if (ret)
2694 return ret;
2695 }
2696 free_extent_buffer(path->nodes[*level]);
2697 path->nodes[*level] = NULL;
2698 *level = i + 1;
2699 }
2700 }
2701 return 1;
2702}
2703
2704/*
2705 * drop the reference count on the tree rooted at 'snap'. This traverses
2706 * the tree freeing any blocks that have a ref count of zero after being
2707 * decremented.
2708 */
2709static int walk_log_tree(struct btrfs_trans_handle *trans,
2710 struct btrfs_root *log, struct walk_control *wc)
2711{
2712 struct btrfs_fs_info *fs_info = log->fs_info;
2713 int ret = 0;
2714 int wret;
2715 int level;
2716 struct btrfs_path *path;
2717 int orig_level;
2718
2719 path = btrfs_alloc_path();
2720 if (!path)
2721 return -ENOMEM;
2722
2723 level = btrfs_header_level(log->node);
2724 orig_level = level;
2725 path->nodes[level] = log->node;
2726 extent_buffer_get(log->node);
2727 path->slots[level] = 0;
2728
2729 while (1) {
2730 wret = walk_down_log_tree(trans, log, path, &level, wc);
2731 if (wret > 0)
2732 break;
2733 if (wret < 0) {
2734 ret = wret;
2735 goto out;
2736 }
2737
2738 wret = walk_up_log_tree(trans, log, path, &level, wc);
2739 if (wret > 0)
2740 break;
2741 if (wret < 0) {
2742 ret = wret;
2743 goto out;
2744 }
2745 }
2746
2747 /* was the root node processed? if not, catch it here */
2748 if (path->nodes[orig_level]) {
2749 ret = wc->process_func(log, path->nodes[orig_level], wc,
2750 btrfs_header_generation(path->nodes[orig_level]),
2751 orig_level);
2752 if (ret)
2753 goto out;
2754 if (wc->free) {
2755 struct extent_buffer *next;
2756
2757 next = path->nodes[orig_level];
2758
2759 if (trans) {
2760 btrfs_tree_lock(next);
2761 btrfs_set_lock_blocking(next);
2762 clean_tree_block(fs_info, next);
2763 btrfs_wait_tree_block_writeback(next);
2764 btrfs_tree_unlock(next);
2765 } else {
2766 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2767 clear_extent_buffer_dirty(next);
2768 }
2769
2770 WARN_ON(log->root_key.objectid !=
2771 BTRFS_TREE_LOG_OBJECTID);
2772 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2773 next->start, next->len);
2774 if (ret)
2775 goto out;
2776 }
2777 }
2778
2779out:
2780 btrfs_free_path(path);
2781 return ret;
2782}
2783
2784/*
2785 * helper function to update the item for a given subvolumes log root
2786 * in the tree of log roots
2787 */
2788static int update_log_root(struct btrfs_trans_handle *trans,
2789 struct btrfs_root *log)
2790{
2791 struct btrfs_fs_info *fs_info = log->fs_info;
2792 int ret;
2793
2794 if (log->log_transid == 1) {
2795 /* insert root item on the first sync */
2796 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2797 &log->root_key, &log->root_item);
2798 } else {
2799 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2800 &log->root_key, &log->root_item);
2801 }
2802 return ret;
2803}
2804
2805static void wait_log_commit(struct btrfs_root *root, int transid)
2806{
2807 DEFINE_WAIT(wait);
2808 int index = transid % 2;
2809
2810 /*
2811 * we only allow two pending log transactions at a time,
2812 * so we know that if ours is more than 2 older than the
2813 * current transaction, we're done
2814 */
2815 for (;;) {
2816 prepare_to_wait(&root->log_commit_wait[index],
2817 &wait, TASK_UNINTERRUPTIBLE);
2818
2819 if (!(root->log_transid_committed < transid &&
2820 atomic_read(&root->log_commit[index])))
2821 break;
2822
2823 mutex_unlock(&root->log_mutex);
2824 schedule();
2825 mutex_lock(&root->log_mutex);
2826 }
2827 finish_wait(&root->log_commit_wait[index], &wait);
2828}
2829
2830static void wait_for_writer(struct btrfs_root *root)
2831{
2832 DEFINE_WAIT(wait);
2833
2834 for (;;) {
2835 prepare_to_wait(&root->log_writer_wait, &wait,
2836 TASK_UNINTERRUPTIBLE);
2837 if (!atomic_read(&root->log_writers))
2838 break;
2839
2840 mutex_unlock(&root->log_mutex);
2841 schedule();
2842 mutex_lock(&root->log_mutex);
2843 }
2844 finish_wait(&root->log_writer_wait, &wait);
2845}
2846
2847static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2848 struct btrfs_log_ctx *ctx)
2849{
2850 if (!ctx)
2851 return;
2852
2853 mutex_lock(&root->log_mutex);
2854 list_del_init(&ctx->list);
2855 mutex_unlock(&root->log_mutex);
2856}
2857
2858/*
2859 * Invoked in log mutex context, or be sure there is no other task which
2860 * can access the list.
2861 */
2862static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2863 int index, int error)
2864{
2865 struct btrfs_log_ctx *ctx;
2866 struct btrfs_log_ctx *safe;
2867
2868 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2869 list_del_init(&ctx->list);
2870 ctx->log_ret = error;
2871 }
2872
2873 INIT_LIST_HEAD(&root->log_ctxs[index]);
2874}
2875
2876/*
2877 * btrfs_sync_log does sends a given tree log down to the disk and
2878 * updates the super blocks to record it. When this call is done,
2879 * you know that any inodes previously logged are safely on disk only
2880 * if it returns 0.
2881 *
2882 * Any other return value means you need to call btrfs_commit_transaction.
2883 * Some of the edge cases for fsyncing directories that have had unlinks
2884 * or renames done in the past mean that sometimes the only safe
2885 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2886 * that has happened.
2887 */
2888int btrfs_sync_log(struct btrfs_trans_handle *trans,
2889 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2890{
2891 int index1;
2892 int index2;
2893 int mark;
2894 int ret;
2895 struct btrfs_fs_info *fs_info = root->fs_info;
2896 struct btrfs_root *log = root->log_root;
2897 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2898 int log_transid = 0;
2899 struct btrfs_log_ctx root_log_ctx;
2900 struct blk_plug plug;
2901
2902 mutex_lock(&root->log_mutex);
2903 log_transid = ctx->log_transid;
2904 if (root->log_transid_committed >= log_transid) {
2905 mutex_unlock(&root->log_mutex);
2906 return ctx->log_ret;
2907 }
2908
2909 index1 = log_transid % 2;
2910 if (atomic_read(&root->log_commit[index1])) {
2911 wait_log_commit(root, log_transid);
2912 mutex_unlock(&root->log_mutex);
2913 return ctx->log_ret;
2914 }
2915 ASSERT(log_transid == root->log_transid);
2916 atomic_set(&root->log_commit[index1], 1);
2917
2918 /* wait for previous tree log sync to complete */
2919 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2920 wait_log_commit(root, log_transid - 1);
2921
2922 while (1) {
2923 int batch = atomic_read(&root->log_batch);
2924 /* when we're on an ssd, just kick the log commit out */
2925 if (!btrfs_test_opt(fs_info, SSD) &&
2926 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2927 mutex_unlock(&root->log_mutex);
2928 schedule_timeout_uninterruptible(1);
2929 mutex_lock(&root->log_mutex);
2930 }
2931 wait_for_writer(root);
2932 if (batch == atomic_read(&root->log_batch))
2933 break;
2934 }
2935
2936 /* bail out if we need to do a full commit */
2937 if (btrfs_need_log_full_commit(fs_info, trans)) {
2938 ret = -EAGAIN;
2939 btrfs_free_logged_extents(log, log_transid);
2940 mutex_unlock(&root->log_mutex);
2941 goto out;
2942 }
2943
2944 if (log_transid % 2 == 0)
2945 mark = EXTENT_DIRTY;
2946 else
2947 mark = EXTENT_NEW;
2948
2949 /* we start IO on all the marked extents here, but we don't actually
2950 * wait for them until later.
2951 */
2952 blk_start_plug(&plug);
2953 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2954 if (ret) {
2955 blk_finish_plug(&plug);
2956 btrfs_abort_transaction(trans, ret);
2957 btrfs_free_logged_extents(log, log_transid);
2958 btrfs_set_log_full_commit(fs_info, trans);
2959 mutex_unlock(&root->log_mutex);
2960 goto out;
2961 }
2962
2963 btrfs_set_root_node(&log->root_item, log->node);
2964
2965 root->log_transid++;
2966 log->log_transid = root->log_transid;
2967 root->log_start_pid = 0;
2968 /*
2969 * IO has been started, blocks of the log tree have WRITTEN flag set
2970 * in their headers. new modifications of the log will be written to
2971 * new positions. so it's safe to allow log writers to go in.
2972 */
2973 mutex_unlock(&root->log_mutex);
2974
2975 btrfs_init_log_ctx(&root_log_ctx, NULL);
2976
2977 mutex_lock(&log_root_tree->log_mutex);
2978 atomic_inc(&log_root_tree->log_batch);
2979 atomic_inc(&log_root_tree->log_writers);
2980
2981 index2 = log_root_tree->log_transid % 2;
2982 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2983 root_log_ctx.log_transid = log_root_tree->log_transid;
2984
2985 mutex_unlock(&log_root_tree->log_mutex);
2986
2987 ret = update_log_root(trans, log);
2988
2989 mutex_lock(&log_root_tree->log_mutex);
2990 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2991 /*
2992 * Implicit memory barrier after atomic_dec_and_test
2993 */
2994 if (waitqueue_active(&log_root_tree->log_writer_wait))
2995 wake_up(&log_root_tree->log_writer_wait);
2996 }
2997
2998 if (ret) {
2999 if (!list_empty(&root_log_ctx.list))
3000 list_del_init(&root_log_ctx.list);
3001
3002 blk_finish_plug(&plug);
3003 btrfs_set_log_full_commit(fs_info, trans);
3004
3005 if (ret != -ENOSPC) {
3006 btrfs_abort_transaction(trans, ret);
3007 mutex_unlock(&log_root_tree->log_mutex);
3008 goto out;
3009 }
3010 btrfs_wait_tree_log_extents(log, mark);
3011 btrfs_free_logged_extents(log, log_transid);
3012 mutex_unlock(&log_root_tree->log_mutex);
3013 ret = -EAGAIN;
3014 goto out;
3015 }
3016
3017 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3018 blk_finish_plug(&plug);
3019 list_del_init(&root_log_ctx.list);
3020 mutex_unlock(&log_root_tree->log_mutex);
3021 ret = root_log_ctx.log_ret;
3022 goto out;
3023 }
3024
3025 index2 = root_log_ctx.log_transid % 2;
3026 if (atomic_read(&log_root_tree->log_commit[index2])) {
3027 blk_finish_plug(&plug);
3028 ret = btrfs_wait_tree_log_extents(log, mark);
3029 btrfs_wait_logged_extents(trans, log, log_transid);
3030 wait_log_commit(log_root_tree,
3031 root_log_ctx.log_transid);
3032 mutex_unlock(&log_root_tree->log_mutex);
3033 if (!ret)
3034 ret = root_log_ctx.log_ret;
3035 goto out;
3036 }
3037 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3038 atomic_set(&log_root_tree->log_commit[index2], 1);
3039
3040 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3041 wait_log_commit(log_root_tree,
3042 root_log_ctx.log_transid - 1);
3043 }
3044
3045 wait_for_writer(log_root_tree);
3046
3047 /*
3048 * now that we've moved on to the tree of log tree roots,
3049 * check the full commit flag again
3050 */
3051 if (btrfs_need_log_full_commit(fs_info, trans)) {
3052 blk_finish_plug(&plug);
3053 btrfs_wait_tree_log_extents(log, mark);
3054 btrfs_free_logged_extents(log, log_transid);
3055 mutex_unlock(&log_root_tree->log_mutex);
3056 ret = -EAGAIN;
3057 goto out_wake_log_root;
3058 }
3059
3060 ret = btrfs_write_marked_extents(fs_info,
3061 &log_root_tree->dirty_log_pages,
3062 EXTENT_DIRTY | EXTENT_NEW);
3063 blk_finish_plug(&plug);
3064 if (ret) {
3065 btrfs_set_log_full_commit(fs_info, trans);
3066 btrfs_abort_transaction(trans, ret);
3067 btrfs_free_logged_extents(log, log_transid);
3068 mutex_unlock(&log_root_tree->log_mutex);
3069 goto out_wake_log_root;
3070 }
3071 ret = btrfs_wait_tree_log_extents(log, mark);
3072 if (!ret)
3073 ret = btrfs_wait_tree_log_extents(log_root_tree,
3074 EXTENT_NEW | EXTENT_DIRTY);
3075 if (ret) {
3076 btrfs_set_log_full_commit(fs_info, trans);
3077 btrfs_free_logged_extents(log, log_transid);
3078 mutex_unlock(&log_root_tree->log_mutex);
3079 goto out_wake_log_root;
3080 }
3081 btrfs_wait_logged_extents(trans, log, log_transid);
3082
3083 btrfs_set_super_log_root(fs_info->super_for_commit,
3084 log_root_tree->node->start);
3085 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3086 btrfs_header_level(log_root_tree->node));
3087
3088 log_root_tree->log_transid++;
3089 mutex_unlock(&log_root_tree->log_mutex);
3090
3091 /*
3092 * nobody else is going to jump in and write the the ctree
3093 * super here because the log_commit atomic below is protecting
3094 * us. We must be called with a transaction handle pinning
3095 * the running transaction open, so a full commit can't hop
3096 * in and cause problems either.
3097 */
3098 ret = write_all_supers(fs_info, 1);
3099 if (ret) {
3100 btrfs_set_log_full_commit(fs_info, trans);
3101 btrfs_abort_transaction(trans, ret);
3102 goto out_wake_log_root;
3103 }
3104
3105 mutex_lock(&root->log_mutex);
3106 if (root->last_log_commit < log_transid)
3107 root->last_log_commit = log_transid;
3108 mutex_unlock(&root->log_mutex);
3109
3110out_wake_log_root:
3111 mutex_lock(&log_root_tree->log_mutex);
3112 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3113
3114 log_root_tree->log_transid_committed++;
3115 atomic_set(&log_root_tree->log_commit[index2], 0);
3116 mutex_unlock(&log_root_tree->log_mutex);
3117
3118 /*
3119 * The barrier before waitqueue_active is implied by mutex_unlock
3120 */
3121 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3122 wake_up(&log_root_tree->log_commit_wait[index2]);
3123out:
3124 mutex_lock(&root->log_mutex);
3125 btrfs_remove_all_log_ctxs(root, index1, ret);
3126 root->log_transid_committed++;
3127 atomic_set(&root->log_commit[index1], 0);
3128 mutex_unlock(&root->log_mutex);
3129
3130 /*
3131 * The barrier before waitqueue_active is implied by mutex_unlock
3132 */
3133 if (waitqueue_active(&root->log_commit_wait[index1]))
3134 wake_up(&root->log_commit_wait[index1]);
3135 return ret;
3136}
3137
3138static void free_log_tree(struct btrfs_trans_handle *trans,
3139 struct btrfs_root *log)
3140{
3141 int ret;
3142 u64 start;
3143 u64 end;
3144 struct walk_control wc = {
3145 .free = 1,
3146 .process_func = process_one_buffer
3147 };
3148
3149 ret = walk_log_tree(trans, log, &wc);
3150 /* I don't think this can happen but just in case */
3151 if (ret)
3152 btrfs_abort_transaction(trans, ret);
3153
3154 while (1) {
3155 ret = find_first_extent_bit(&log->dirty_log_pages,
3156 0, &start, &end,
3157 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3158 NULL);
3159 if (ret)
3160 break;
3161
3162 clear_extent_bits(&log->dirty_log_pages, start, end,
3163 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3164 }
3165
3166 /*
3167 * We may have short-circuited the log tree with the full commit logic
3168 * and left ordered extents on our list, so clear these out to keep us
3169 * from leaking inodes and memory.
3170 */
3171 btrfs_free_logged_extents(log, 0);
3172 btrfs_free_logged_extents(log, 1);
3173
3174 free_extent_buffer(log->node);
3175 kfree(log);
3176}
3177
3178/*
3179 * free all the extents used by the tree log. This should be called
3180 * at commit time of the full transaction
3181 */
3182int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3183{
3184 if (root->log_root) {
3185 free_log_tree(trans, root->log_root);
3186 root->log_root = NULL;
3187 }
3188 return 0;
3189}
3190
3191int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3192 struct btrfs_fs_info *fs_info)
3193{
3194 if (fs_info->log_root_tree) {
3195 free_log_tree(trans, fs_info->log_root_tree);
3196 fs_info->log_root_tree = NULL;
3197 }
3198 return 0;
3199}
3200
3201/*
3202 * If both a file and directory are logged, and unlinks or renames are
3203 * mixed in, we have a few interesting corners:
3204 *
3205 * create file X in dir Y
3206 * link file X to X.link in dir Y
3207 * fsync file X
3208 * unlink file X but leave X.link
3209 * fsync dir Y
3210 *
3211 * After a crash we would expect only X.link to exist. But file X
3212 * didn't get fsync'd again so the log has back refs for X and X.link.
3213 *
3214 * We solve this by removing directory entries and inode backrefs from the
3215 * log when a file that was logged in the current transaction is
3216 * unlinked. Any later fsync will include the updated log entries, and
3217 * we'll be able to reconstruct the proper directory items from backrefs.
3218 *
3219 * This optimizations allows us to avoid relogging the entire inode
3220 * or the entire directory.
3221 */
3222int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3223 struct btrfs_root *root,
3224 const char *name, int name_len,
3225 struct btrfs_inode *dir, u64 index)
3226{
3227 struct btrfs_root *log;
3228 struct btrfs_dir_item *di;
3229 struct btrfs_path *path;
3230 int ret;
3231 int err = 0;
3232 int bytes_del = 0;
3233 u64 dir_ino = btrfs_ino(dir);
3234
3235 if (dir->logged_trans < trans->transid)
3236 return 0;
3237
3238 ret = join_running_log_trans(root);
3239 if (ret)
3240 return 0;
3241
3242 mutex_lock(&dir->log_mutex);
3243
3244 log = root->log_root;
3245 path = btrfs_alloc_path();
3246 if (!path) {
3247 err = -ENOMEM;
3248 goto out_unlock;
3249 }
3250
3251 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3252 name, name_len, -1);
3253 if (IS_ERR(di)) {
3254 err = PTR_ERR(di);
3255 goto fail;
3256 }
3257 if (di) {
3258 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3259 bytes_del += name_len;
3260 if (ret) {
3261 err = ret;
3262 goto fail;
3263 }
3264 }
3265 btrfs_release_path(path);
3266 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3267 index, name, name_len, -1);
3268 if (IS_ERR(di)) {
3269 err = PTR_ERR(di);
3270 goto fail;
3271 }
3272 if (di) {
3273 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3274 bytes_del += name_len;
3275 if (ret) {
3276 err = ret;
3277 goto fail;
3278 }
3279 }
3280
3281 /* update the directory size in the log to reflect the names
3282 * we have removed
3283 */
3284 if (bytes_del) {
3285 struct btrfs_key key;
3286
3287 key.objectid = dir_ino;
3288 key.offset = 0;
3289 key.type = BTRFS_INODE_ITEM_KEY;
3290 btrfs_release_path(path);
3291
3292 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3293 if (ret < 0) {
3294 err = ret;
3295 goto fail;
3296 }
3297 if (ret == 0) {
3298 struct btrfs_inode_item *item;
3299 u64 i_size;
3300
3301 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3302 struct btrfs_inode_item);
3303 i_size = btrfs_inode_size(path->nodes[0], item);
3304 if (i_size > bytes_del)
3305 i_size -= bytes_del;
3306 else
3307 i_size = 0;
3308 btrfs_set_inode_size(path->nodes[0], item, i_size);
3309 btrfs_mark_buffer_dirty(path->nodes[0]);
3310 } else
3311 ret = 0;
3312 btrfs_release_path(path);
3313 }
3314fail:
3315 btrfs_free_path(path);
3316out_unlock:
3317 mutex_unlock(&dir->log_mutex);
3318 if (ret == -ENOSPC) {
3319 btrfs_set_log_full_commit(root->fs_info, trans);
3320 ret = 0;
3321 } else if (ret < 0)
3322 btrfs_abort_transaction(trans, ret);
3323
3324 btrfs_end_log_trans(root);
3325
3326 return err;
3327}
3328
3329/* see comments for btrfs_del_dir_entries_in_log */
3330int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3331 struct btrfs_root *root,
3332 const char *name, int name_len,
3333 struct btrfs_inode *inode, u64 dirid)
3334{
3335 struct btrfs_fs_info *fs_info = root->fs_info;
3336 struct btrfs_root *log;
3337 u64 index;
3338 int ret;
3339
3340 if (inode->logged_trans < trans->transid)
3341 return 0;
3342
3343 ret = join_running_log_trans(root);
3344 if (ret)
3345 return 0;
3346 log = root->log_root;
3347 mutex_lock(&inode->log_mutex);
3348
3349 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3350 dirid, &index);
3351 mutex_unlock(&inode->log_mutex);
3352 if (ret == -ENOSPC) {
3353 btrfs_set_log_full_commit(fs_info, trans);
3354 ret = 0;
3355 } else if (ret < 0 && ret != -ENOENT)
3356 btrfs_abort_transaction(trans, ret);
3357 btrfs_end_log_trans(root);
3358
3359 return ret;
3360}
3361
3362/*
3363 * creates a range item in the log for 'dirid'. first_offset and
3364 * last_offset tell us which parts of the key space the log should
3365 * be considered authoritative for.
3366 */
3367static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3368 struct btrfs_root *log,
3369 struct btrfs_path *path,
3370 int key_type, u64 dirid,
3371 u64 first_offset, u64 last_offset)
3372{
3373 int ret;
3374 struct btrfs_key key;
3375 struct btrfs_dir_log_item *item;
3376
3377 key.objectid = dirid;
3378 key.offset = first_offset;
3379 if (key_type == BTRFS_DIR_ITEM_KEY)
3380 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3381 else
3382 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3383 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3384 if (ret)
3385 return ret;
3386
3387 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3388 struct btrfs_dir_log_item);
3389 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3390 btrfs_mark_buffer_dirty(path->nodes[0]);
3391 btrfs_release_path(path);
3392 return 0;
3393}
3394
3395/*
3396 * log all the items included in the current transaction for a given
3397 * directory. This also creates the range items in the log tree required
3398 * to replay anything deleted before the fsync
3399 */
3400static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3401 struct btrfs_root *root, struct btrfs_inode *inode,
3402 struct btrfs_path *path,
3403 struct btrfs_path *dst_path, int key_type,
3404 struct btrfs_log_ctx *ctx,
3405 u64 min_offset, u64 *last_offset_ret)
3406{
3407 struct btrfs_key min_key;
3408 struct btrfs_root *log = root->log_root;
3409 struct extent_buffer *src;
3410 int err = 0;
3411 int ret;
3412 int i;
3413 int nritems;
3414 u64 first_offset = min_offset;
3415 u64 last_offset = (u64)-1;
3416 u64 ino = btrfs_ino(inode);
3417
3418 log = root->log_root;
3419
3420 min_key.objectid = ino;
3421 min_key.type = key_type;
3422 min_key.offset = min_offset;
3423
3424 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3425
3426 /*
3427 * we didn't find anything from this transaction, see if there
3428 * is anything at all
3429 */
3430 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3431 min_key.objectid = ino;
3432 min_key.type = key_type;
3433 min_key.offset = (u64)-1;
3434 btrfs_release_path(path);
3435 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3436 if (ret < 0) {
3437 btrfs_release_path(path);
3438 return ret;
3439 }
3440 ret = btrfs_previous_item(root, path, ino, key_type);
3441
3442 /* if ret == 0 there are items for this type,
3443 * create a range to tell us the last key of this type.
3444 * otherwise, there are no items in this directory after
3445 * *min_offset, and we create a range to indicate that.
3446 */
3447 if (ret == 0) {
3448 struct btrfs_key tmp;
3449 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3450 path->slots[0]);
3451 if (key_type == tmp.type)
3452 first_offset = max(min_offset, tmp.offset) + 1;
3453 }
3454 goto done;
3455 }
3456
3457 /* go backward to find any previous key */
3458 ret = btrfs_previous_item(root, path, ino, key_type);
3459 if (ret == 0) {
3460 struct btrfs_key tmp;
3461 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3462 if (key_type == tmp.type) {
3463 first_offset = tmp.offset;
3464 ret = overwrite_item(trans, log, dst_path,
3465 path->nodes[0], path->slots[0],
3466 &tmp);
3467 if (ret) {
3468 err = ret;
3469 goto done;
3470 }
3471 }
3472 }
3473 btrfs_release_path(path);
3474
3475 /* find the first key from this transaction again */
3476 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3477 if (WARN_ON(ret != 0))
3478 goto done;
3479
3480 /*
3481 * we have a block from this transaction, log every item in it
3482 * from our directory
3483 */
3484 while (1) {
3485 struct btrfs_key tmp;
3486 src = path->nodes[0];
3487 nritems = btrfs_header_nritems(src);
3488 for (i = path->slots[0]; i < nritems; i++) {
3489 struct btrfs_dir_item *di;
3490
3491 btrfs_item_key_to_cpu(src, &min_key, i);
3492
3493 if (min_key.objectid != ino || min_key.type != key_type)
3494 goto done;
3495 ret = overwrite_item(trans, log, dst_path, src, i,
3496 &min_key);
3497 if (ret) {
3498 err = ret;
3499 goto done;
3500 }
3501
3502 /*
3503 * We must make sure that when we log a directory entry,
3504 * the corresponding inode, after log replay, has a
3505 * matching link count. For example:
3506 *
3507 * touch foo
3508 * mkdir mydir
3509 * sync
3510 * ln foo mydir/bar
3511 * xfs_io -c "fsync" mydir
3512 * <crash>
3513 * <mount fs and log replay>
3514 *
3515 * Would result in a fsync log that when replayed, our
3516 * file inode would have a link count of 1, but we get
3517 * two directory entries pointing to the same inode.
3518 * After removing one of the names, it would not be
3519 * possible to remove the other name, which resulted
3520 * always in stale file handle errors, and would not
3521 * be possible to rmdir the parent directory, since
3522 * its i_size could never decrement to the value
3523 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3524 */
3525 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3526 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3527 if (ctx &&
3528 (btrfs_dir_transid(src, di) == trans->transid ||
3529 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3530 tmp.type != BTRFS_ROOT_ITEM_KEY)
3531 ctx->log_new_dentries = true;
3532 }
3533 path->slots[0] = nritems;
3534
3535 /*
3536 * look ahead to the next item and see if it is also
3537 * from this directory and from this transaction
3538 */
3539 ret = btrfs_next_leaf(root, path);
3540 if (ret) {
3541 if (ret == 1)
3542 last_offset = (u64)-1;
3543 else
3544 err = ret;
3545 goto done;
3546 }
3547 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3548 if (tmp.objectid != ino || tmp.type != key_type) {
3549 last_offset = (u64)-1;
3550 goto done;
3551 }
3552 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3553 ret = overwrite_item(trans, log, dst_path,
3554 path->nodes[0], path->slots[0],
3555 &tmp);
3556 if (ret)
3557 err = ret;
3558 else
3559 last_offset = tmp.offset;
3560 goto done;
3561 }
3562 }
3563done:
3564 btrfs_release_path(path);
3565 btrfs_release_path(dst_path);
3566
3567 if (err == 0) {
3568 *last_offset_ret = last_offset;
3569 /*
3570 * insert the log range keys to indicate where the log
3571 * is valid
3572 */
3573 ret = insert_dir_log_key(trans, log, path, key_type,
3574 ino, first_offset, last_offset);
3575 if (ret)
3576 err = ret;
3577 }
3578 return err;
3579}
3580
3581/*
3582 * logging directories is very similar to logging inodes, We find all the items
3583 * from the current transaction and write them to the log.
3584 *
3585 * The recovery code scans the directory in the subvolume, and if it finds a
3586 * key in the range logged that is not present in the log tree, then it means
3587 * that dir entry was unlinked during the transaction.
3588 *
3589 * In order for that scan to work, we must include one key smaller than
3590 * the smallest logged by this transaction and one key larger than the largest
3591 * key logged by this transaction.
3592 */
3593static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3594 struct btrfs_root *root, struct btrfs_inode *inode,
3595 struct btrfs_path *path,
3596 struct btrfs_path *dst_path,
3597 struct btrfs_log_ctx *ctx)
3598{
3599 u64 min_key;
3600 u64 max_key;
3601 int ret;
3602 int key_type = BTRFS_DIR_ITEM_KEY;
3603
3604again:
3605 min_key = 0;
3606 max_key = 0;
3607 while (1) {
3608 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3609 ctx, min_key, &max_key);
3610 if (ret)
3611 return ret;
3612 if (max_key == (u64)-1)
3613 break;
3614 min_key = max_key + 1;
3615 }
3616
3617 if (key_type == BTRFS_DIR_ITEM_KEY) {
3618 key_type = BTRFS_DIR_INDEX_KEY;
3619 goto again;
3620 }
3621 return 0;
3622}
3623
3624/*
3625 * a helper function to drop items from the log before we relog an
3626 * inode. max_key_type indicates the highest item type to remove.
3627 * This cannot be run for file data extents because it does not
3628 * free the extents they point to.
3629 */
3630static int drop_objectid_items(struct btrfs_trans_handle *trans,
3631 struct btrfs_root *log,
3632 struct btrfs_path *path,
3633 u64 objectid, int max_key_type)
3634{
3635 int ret;
3636 struct btrfs_key key;
3637 struct btrfs_key found_key;
3638 int start_slot;
3639
3640 key.objectid = objectid;
3641 key.type = max_key_type;
3642 key.offset = (u64)-1;
3643
3644 while (1) {
3645 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3646 BUG_ON(ret == 0); /* Logic error */
3647 if (ret < 0)
3648 break;
3649
3650 if (path->slots[0] == 0)
3651 break;
3652
3653 path->slots[0]--;
3654 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3655 path->slots[0]);
3656
3657 if (found_key.objectid != objectid)
3658 break;
3659
3660 found_key.offset = 0;
3661 found_key.type = 0;
3662 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3663 &start_slot);
3664
3665 ret = btrfs_del_items(trans, log, path, start_slot,
3666 path->slots[0] - start_slot + 1);
3667 /*
3668 * If start slot isn't 0 then we don't need to re-search, we've
3669 * found the last guy with the objectid in this tree.
3670 */
3671 if (ret || start_slot != 0)
3672 break;
3673 btrfs_release_path(path);
3674 }
3675 btrfs_release_path(path);
3676 if (ret > 0)
3677 ret = 0;
3678 return ret;
3679}
3680
3681static void fill_inode_item(struct btrfs_trans_handle *trans,
3682 struct extent_buffer *leaf,
3683 struct btrfs_inode_item *item,
3684 struct inode *inode, int log_inode_only,
3685 u64 logged_isize)
3686{
3687 struct btrfs_map_token token;
3688
3689 btrfs_init_map_token(&token);
3690
3691 if (log_inode_only) {
3692 /* set the generation to zero so the recover code
3693 * can tell the difference between an logging
3694 * just to say 'this inode exists' and a logging
3695 * to say 'update this inode with these values'
3696 */
3697 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3698 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3699 } else {
3700 btrfs_set_token_inode_generation(leaf, item,
3701 BTRFS_I(inode)->generation,
3702 &token);
3703 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3704 }
3705
3706 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3707 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3708 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3709 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3710
3711 btrfs_set_token_timespec_sec(leaf, &item->atime,
3712 inode->i_atime.tv_sec, &token);
3713 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3714 inode->i_atime.tv_nsec, &token);
3715
3716 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3717 inode->i_mtime.tv_sec, &token);
3718 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3719 inode->i_mtime.tv_nsec, &token);
3720
3721 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3722 inode->i_ctime.tv_sec, &token);
3723 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3724 inode->i_ctime.tv_nsec, &token);
3725
3726 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3727 &token);
3728
3729 btrfs_set_token_inode_sequence(leaf, item,
3730 inode_peek_iversion(inode), &token);
3731 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3732 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3733 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3734 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3735}
3736
3737static int log_inode_item(struct btrfs_trans_handle *trans,
3738 struct btrfs_root *log, struct btrfs_path *path,
3739 struct btrfs_inode *inode)
3740{
3741 struct btrfs_inode_item *inode_item;
3742 int ret;
3743
3744 ret = btrfs_insert_empty_item(trans, log, path,
3745 &inode->location, sizeof(*inode_item));
3746 if (ret && ret != -EEXIST)
3747 return ret;
3748 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3749 struct btrfs_inode_item);
3750 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3751 0, 0);
3752 btrfs_release_path(path);
3753 return 0;
3754}
3755
3756static noinline int copy_items(struct btrfs_trans_handle *trans,
3757 struct btrfs_inode *inode,
3758 struct btrfs_path *dst_path,
3759 struct btrfs_path *src_path, u64 *last_extent,
3760 int start_slot, int nr, int inode_only,
3761 u64 logged_isize)
3762{
3763 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3764 unsigned long src_offset;
3765 unsigned long dst_offset;
3766 struct btrfs_root *log = inode->root->log_root;
3767 struct btrfs_file_extent_item *extent;
3768 struct btrfs_inode_item *inode_item;
3769 struct extent_buffer *src = src_path->nodes[0];
3770 struct btrfs_key first_key, last_key, key;
3771 int ret;
3772 struct btrfs_key *ins_keys;
3773 u32 *ins_sizes;
3774 char *ins_data;
3775 int i;
3776 struct list_head ordered_sums;
3777 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3778 bool has_extents = false;
3779 bool need_find_last_extent = true;
3780 bool done = false;
3781
3782 INIT_LIST_HEAD(&ordered_sums);
3783
3784 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3785 nr * sizeof(u32), GFP_NOFS);
3786 if (!ins_data)
3787 return -ENOMEM;
3788
3789 first_key.objectid = (u64)-1;
3790
3791 ins_sizes = (u32 *)ins_data;
3792 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3793
3794 for (i = 0; i < nr; i++) {
3795 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3796 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3797 }
3798 ret = btrfs_insert_empty_items(trans, log, dst_path,
3799 ins_keys, ins_sizes, nr);
3800 if (ret) {
3801 kfree(ins_data);
3802 return ret;
3803 }
3804
3805 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3806 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3807 dst_path->slots[0]);
3808
3809 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3810
3811 if (i == nr - 1)
3812 last_key = ins_keys[i];
3813
3814 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3815 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3816 dst_path->slots[0],
3817 struct btrfs_inode_item);
3818 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3819 &inode->vfs_inode,
3820 inode_only == LOG_INODE_EXISTS,
3821 logged_isize);
3822 } else {
3823 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3824 src_offset, ins_sizes[i]);
3825 }
3826
3827 /*
3828 * We set need_find_last_extent here in case we know we were
3829 * processing other items and then walk into the first extent in
3830 * the inode. If we don't hit an extent then nothing changes,
3831 * we'll do the last search the next time around.
3832 */
3833 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3834 has_extents = true;
3835 if (first_key.objectid == (u64)-1)
3836 first_key = ins_keys[i];
3837 } else {
3838 need_find_last_extent = false;
3839 }
3840
3841 /* take a reference on file data extents so that truncates
3842 * or deletes of this inode don't have to relog the inode
3843 * again
3844 */
3845 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3846 !skip_csum) {
3847 int found_type;
3848 extent = btrfs_item_ptr(src, start_slot + i,
3849 struct btrfs_file_extent_item);
3850
3851 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3852 continue;
3853
3854 found_type = btrfs_file_extent_type(src, extent);
3855 if (found_type == BTRFS_FILE_EXTENT_REG) {
3856 u64 ds, dl, cs, cl;
3857 ds = btrfs_file_extent_disk_bytenr(src,
3858 extent);
3859 /* ds == 0 is a hole */
3860 if (ds == 0)
3861 continue;
3862
3863 dl = btrfs_file_extent_disk_num_bytes(src,
3864 extent);
3865 cs = btrfs_file_extent_offset(src, extent);
3866 cl = btrfs_file_extent_num_bytes(src,
3867 extent);
3868 if (btrfs_file_extent_compression(src,
3869 extent)) {
3870 cs = 0;
3871 cl = dl;
3872 }
3873
3874 ret = btrfs_lookup_csums_range(
3875 fs_info->csum_root,
3876 ds + cs, ds + cs + cl - 1,
3877 &ordered_sums, 0);
3878 if (ret) {
3879 btrfs_release_path(dst_path);
3880 kfree(ins_data);
3881 return ret;
3882 }
3883 }
3884 }
3885 }
3886
3887 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3888 btrfs_release_path(dst_path);
3889 kfree(ins_data);
3890
3891 /*
3892 * we have to do this after the loop above to avoid changing the
3893 * log tree while trying to change the log tree.
3894 */
3895 ret = 0;
3896 while (!list_empty(&ordered_sums)) {
3897 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3898 struct btrfs_ordered_sum,
3899 list);
3900 if (!ret)
3901 ret = btrfs_csum_file_blocks(trans, log, sums);
3902 list_del(&sums->list);
3903 kfree(sums);
3904 }
3905
3906 if (!has_extents)
3907 return ret;
3908
3909 if (need_find_last_extent && *last_extent == first_key.offset) {
3910 /*
3911 * We don't have any leafs between our current one and the one
3912 * we processed before that can have file extent items for our
3913 * inode (and have a generation number smaller than our current
3914 * transaction id).
3915 */
3916 need_find_last_extent = false;
3917 }
3918
3919 /*
3920 * Because we use btrfs_search_forward we could skip leaves that were
3921 * not modified and then assume *last_extent is valid when it really
3922 * isn't. So back up to the previous leaf and read the end of the last
3923 * extent before we go and fill in holes.
3924 */
3925 if (need_find_last_extent) {
3926 u64 len;
3927
3928 ret = btrfs_prev_leaf(inode->root, src_path);
3929 if (ret < 0)
3930 return ret;
3931 if (ret)
3932 goto fill_holes;
3933 if (src_path->slots[0])
3934 src_path->slots[0]--;
3935 src = src_path->nodes[0];
3936 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3937 if (key.objectid != btrfs_ino(inode) ||
3938 key.type != BTRFS_EXTENT_DATA_KEY)
3939 goto fill_holes;
3940 extent = btrfs_item_ptr(src, src_path->slots[0],
3941 struct btrfs_file_extent_item);
3942 if (btrfs_file_extent_type(src, extent) ==
3943 BTRFS_FILE_EXTENT_INLINE) {
3944 len = btrfs_file_extent_inline_len(src,
3945 src_path->slots[0],
3946 extent);
3947 *last_extent = ALIGN(key.offset + len,
3948 fs_info->sectorsize);
3949 } else {
3950 len = btrfs_file_extent_num_bytes(src, extent);
3951 *last_extent = key.offset + len;
3952 }
3953 }
3954fill_holes:
3955 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3956 * things could have happened
3957 *
3958 * 1) A merge could have happened, so we could currently be on a leaf
3959 * that holds what we were copying in the first place.
3960 * 2) A split could have happened, and now not all of the items we want
3961 * are on the same leaf.
3962 *
3963 * So we need to adjust how we search for holes, we need to drop the
3964 * path and re-search for the first extent key we found, and then walk
3965 * forward until we hit the last one we copied.
3966 */
3967 if (need_find_last_extent) {
3968 /* btrfs_prev_leaf could return 1 without releasing the path */
3969 btrfs_release_path(src_path);
3970 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3971 src_path, 0, 0);
3972 if (ret < 0)
3973 return ret;
3974 ASSERT(ret == 0);
3975 src = src_path->nodes[0];
3976 i = src_path->slots[0];
3977 } else {
3978 i = start_slot;
3979 }
3980
3981 /*
3982 * Ok so here we need to go through and fill in any holes we may have
3983 * to make sure that holes are punched for those areas in case they had
3984 * extents previously.
3985 */
3986 while (!done) {
3987 u64 offset, len;
3988 u64 extent_end;
3989
3990 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3991 ret = btrfs_next_leaf(inode->root, src_path);
3992 if (ret < 0)
3993 return ret;
3994 ASSERT(ret == 0);
3995 src = src_path->nodes[0];
3996 i = 0;
3997 need_find_last_extent = true;
3998 }
3999
4000 btrfs_item_key_to_cpu(src, &key, i);
4001 if (!btrfs_comp_cpu_keys(&key, &last_key))
4002 done = true;
4003 if (key.objectid != btrfs_ino(inode) ||
4004 key.type != BTRFS_EXTENT_DATA_KEY) {
4005 i++;
4006 continue;
4007 }
4008 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4009 if (btrfs_file_extent_type(src, extent) ==
4010 BTRFS_FILE_EXTENT_INLINE) {
4011 len = btrfs_file_extent_inline_len(src, i, extent);
4012 extent_end = ALIGN(key.offset + len,
4013 fs_info->sectorsize);
4014 } else {
4015 len = btrfs_file_extent_num_bytes(src, extent);
4016 extent_end = key.offset + len;
4017 }
4018 i++;
4019
4020 if (*last_extent == key.offset) {
4021 *last_extent = extent_end;
4022 continue;
4023 }
4024 offset = *last_extent;
4025 len = key.offset - *last_extent;
4026 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4027 offset, 0, 0, len, 0, len, 0, 0, 0);
4028 if (ret)
4029 break;
4030 *last_extent = extent_end;
4031 }
4032
4033 /*
4034 * Check if there is a hole between the last extent found in our leaf
4035 * and the first extent in the next leaf. If there is one, we need to
4036 * log an explicit hole so that at replay time we can punch the hole.
4037 */
4038 if (ret == 0 &&
4039 key.objectid == btrfs_ino(inode) &&
4040 key.type == BTRFS_EXTENT_DATA_KEY &&
4041 i == btrfs_header_nritems(src_path->nodes[0])) {
4042 ret = btrfs_next_leaf(inode->root, src_path);
4043 need_find_last_extent = true;
4044 if (ret > 0) {
4045 ret = 0;
4046 } else if (ret == 0) {
4047 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4048 src_path->slots[0]);
4049 if (key.objectid == btrfs_ino(inode) &&
4050 key.type == BTRFS_EXTENT_DATA_KEY &&
4051 *last_extent < key.offset) {
4052 const u64 len = key.offset - *last_extent;
4053
4054 ret = btrfs_insert_file_extent(trans, log,
4055 btrfs_ino(inode),
4056 *last_extent, 0,
4057 0, len, 0, len,
4058 0, 0, 0);
4059 }
4060 }
4061 }
4062 /*
4063 * Need to let the callers know we dropped the path so they should
4064 * re-search.
4065 */
4066 if (!ret && need_find_last_extent)
4067 ret = 1;
4068 return ret;
4069}
4070
4071static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4072{
4073 struct extent_map *em1, *em2;
4074
4075 em1 = list_entry(a, struct extent_map, list);
4076 em2 = list_entry(b, struct extent_map, list);
4077
4078 if (em1->start < em2->start)
4079 return -1;
4080 else if (em1->start > em2->start)
4081 return 1;
4082 return 0;
4083}
4084
4085static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4086 struct inode *inode,
4087 struct btrfs_root *root,
4088 const struct extent_map *em,
4089 const struct list_head *logged_list,
4090 bool *ordered_io_error)
4091{
4092 struct btrfs_fs_info *fs_info = root->fs_info;
4093 struct btrfs_ordered_extent *ordered;
4094 struct btrfs_root *log = root->log_root;
4095 u64 mod_start = em->mod_start;
4096 u64 mod_len = em->mod_len;
4097 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
4098 u64 csum_offset;
4099 u64 csum_len;
4100 LIST_HEAD(ordered_sums);
4101 int ret = 0;
4102
4103 *ordered_io_error = false;
4104
4105 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4106 em->block_start == EXTENT_MAP_HOLE)
4107 return 0;
4108
4109 /*
4110 * Wait far any ordered extent that covers our extent map. If it
4111 * finishes without an error, first check and see if our csums are on
4112 * our outstanding ordered extents.
4113 */
4114 list_for_each_entry(ordered, logged_list, log_list) {
4115 struct btrfs_ordered_sum *sum;
4116
4117 if (!mod_len)
4118 break;
4119
4120 if (ordered->file_offset + ordered->len <= mod_start ||
4121 mod_start + mod_len <= ordered->file_offset)
4122 continue;
4123
4124 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4125 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4126 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4127 const u64 start = ordered->file_offset;
4128 const u64 end = ordered->file_offset + ordered->len - 1;
4129
4130 WARN_ON(ordered->inode != inode);
4131 filemap_fdatawrite_range(inode->i_mapping, start, end);
4132 }
4133
4134 wait_event(ordered->wait,
4135 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4136 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4137
4138 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
4139 /*
4140 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4141 * i_mapping flags, so that the next fsync won't get
4142 * an outdated io error too.
4143 */
4144 filemap_check_errors(inode->i_mapping);
4145 *ordered_io_error = true;
4146 break;
4147 }
4148 /*
4149 * We are going to copy all the csums on this ordered extent, so
4150 * go ahead and adjust mod_start and mod_len in case this
4151 * ordered extent has already been logged.
4152 */
4153 if (ordered->file_offset > mod_start) {
4154 if (ordered->file_offset + ordered->len >=
4155 mod_start + mod_len)
4156 mod_len = ordered->file_offset - mod_start;
4157 /*
4158 * If we have this case
4159 *
4160 * |--------- logged extent ---------|
4161 * |----- ordered extent ----|
4162 *
4163 * Just don't mess with mod_start and mod_len, we'll
4164 * just end up logging more csums than we need and it
4165 * will be ok.
4166 */
4167 } else {
4168 if (ordered->file_offset + ordered->len <
4169 mod_start + mod_len) {
4170 mod_len = (mod_start + mod_len) -
4171 (ordered->file_offset + ordered->len);
4172 mod_start = ordered->file_offset +
4173 ordered->len;
4174 } else {
4175 mod_len = 0;
4176 }
4177 }
4178
4179 if (skip_csum)
4180 continue;
4181
4182 /*
4183 * To keep us from looping for the above case of an ordered
4184 * extent that falls inside of the logged extent.
4185 */
4186 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4187 &ordered->flags))
4188 continue;
4189
4190 list_for_each_entry(sum, &ordered->list, list) {
4191 ret = btrfs_csum_file_blocks(trans, log, sum);
4192 if (ret)
4193 break;
4194 }
4195 }
4196
4197 if (*ordered_io_error || !mod_len || ret || skip_csum)
4198 return ret;
4199
4200 if (em->compress_type) {
4201 csum_offset = 0;
4202 csum_len = max(em->block_len, em->orig_block_len);
4203 } else {
4204 csum_offset = mod_start - em->start;
4205 csum_len = mod_len;
4206 }
4207
4208 /* block start is already adjusted for the file extent offset. */
4209 ret = btrfs_lookup_csums_range(fs_info->csum_root,
4210 em->block_start + csum_offset,
4211 em->block_start + csum_offset +
4212 csum_len - 1, &ordered_sums, 0);
4213 if (ret)
4214 return ret;
4215
4216 while (!list_empty(&ordered_sums)) {
4217 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4218 struct btrfs_ordered_sum,
4219 list);
4220 if (!ret)
4221 ret = btrfs_csum_file_blocks(trans, log, sums);
4222 list_del(&sums->list);
4223 kfree(sums);
4224 }
4225
4226 return ret;
4227}
4228
4229static int log_one_extent(struct btrfs_trans_handle *trans,
4230 struct btrfs_inode *inode, struct btrfs_root *root,
4231 const struct extent_map *em,
4232 struct btrfs_path *path,
4233 const struct list_head *logged_list,
4234 struct btrfs_log_ctx *ctx)
4235{
4236 struct btrfs_root *log = root->log_root;
4237 struct btrfs_file_extent_item *fi;
4238 struct extent_buffer *leaf;
4239 struct btrfs_map_token token;
4240 struct btrfs_key key;
4241 u64 extent_offset = em->start - em->orig_start;
4242 u64 block_len;
4243 int ret;
4244 int extent_inserted = 0;
4245 bool ordered_io_err = false;
4246
4247 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4248 logged_list, &ordered_io_err);
4249 if (ret)
4250 return ret;
4251
4252 if (ordered_io_err) {
4253 ctx->io_err = -EIO;
4254 return ctx->io_err;
4255 }
4256
4257 btrfs_init_map_token(&token);
4258
4259 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4260 em->start + em->len, NULL, 0, 1,
4261 sizeof(*fi), &extent_inserted);
4262 if (ret)
4263 return ret;
4264
4265 if (!extent_inserted) {
4266 key.objectid = btrfs_ino(inode);
4267 key.type = BTRFS_EXTENT_DATA_KEY;
4268 key.offset = em->start;
4269
4270 ret = btrfs_insert_empty_item(trans, log, path, &key,
4271 sizeof(*fi));
4272 if (ret)
4273 return ret;
4274 }
4275 leaf = path->nodes[0];
4276 fi = btrfs_item_ptr(leaf, path->slots[0],
4277 struct btrfs_file_extent_item);
4278
4279 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4280 &token);
4281 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4282 btrfs_set_token_file_extent_type(leaf, fi,
4283 BTRFS_FILE_EXTENT_PREALLOC,
4284 &token);
4285 else
4286 btrfs_set_token_file_extent_type(leaf, fi,
4287 BTRFS_FILE_EXTENT_REG,
4288 &token);
4289
4290 block_len = max(em->block_len, em->orig_block_len);
4291 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4292 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4293 em->block_start,
4294 &token);
4295 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4296 &token);
4297 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4298 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4299 em->block_start -
4300 extent_offset, &token);
4301 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4302 &token);
4303 } else {
4304 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4305 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4306 &token);
4307 }
4308
4309 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4310 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4311 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4312 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4313 &token);
4314 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4315 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4316 btrfs_mark_buffer_dirty(leaf);
4317
4318 btrfs_release_path(path);
4319
4320 return ret;
4321}
4322
4323/*
4324 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4325 * lose them after doing a fast fsync and replaying the log. We scan the
4326 * subvolume's root instead of iterating the inode's extent map tree because
4327 * otherwise we can log incorrect extent items based on extent map conversion.
4328 * That can happen due to the fact that extent maps are merged when they
4329 * are not in the extent map tree's list of modified extents.
4330 */
4331static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4332 struct btrfs_inode *inode,
4333 struct btrfs_path *path)
4334{
4335 struct btrfs_root *root = inode->root;
4336 struct btrfs_key key;
4337 const u64 i_size = i_size_read(&inode->vfs_inode);
4338 const u64 ino = btrfs_ino(inode);
4339 struct btrfs_path *dst_path = NULL;
4340 u64 last_extent = (u64)-1;
4341 int ins_nr = 0;
4342 int start_slot;
4343 int ret;
4344
4345 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4346 return 0;
4347
4348 key.objectid = ino;
4349 key.type = BTRFS_EXTENT_DATA_KEY;
4350 key.offset = i_size;
4351 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4352 if (ret < 0)
4353 goto out;
4354
4355 while (true) {
4356 struct extent_buffer *leaf = path->nodes[0];
4357 int slot = path->slots[0];
4358
4359 if (slot >= btrfs_header_nritems(leaf)) {
4360 if (ins_nr > 0) {
4361 ret = copy_items(trans, inode, dst_path, path,
4362 &last_extent, start_slot,
4363 ins_nr, 1, 0);
4364 if (ret < 0)
4365 goto out;
4366 ins_nr = 0;
4367 }
4368 ret = btrfs_next_leaf(root, path);
4369 if (ret < 0)
4370 goto out;
4371 if (ret > 0) {
4372 ret = 0;
4373 break;
4374 }
4375 continue;
4376 }
4377
4378 btrfs_item_key_to_cpu(leaf, &key, slot);
4379 if (key.objectid > ino)
4380 break;
4381 if (WARN_ON_ONCE(key.objectid < ino) ||
4382 key.type < BTRFS_EXTENT_DATA_KEY ||
4383 key.offset < i_size) {
4384 path->slots[0]++;
4385 continue;
4386 }
4387 if (last_extent == (u64)-1) {
4388 last_extent = key.offset;
4389 /*
4390 * Avoid logging extent items logged in past fsync calls
4391 * and leading to duplicate keys in the log tree.
4392 */
4393 do {
4394 ret = btrfs_truncate_inode_items(trans,
4395 root->log_root,
4396 &inode->vfs_inode,
4397 i_size,
4398 BTRFS_EXTENT_DATA_KEY);
4399 } while (ret == -EAGAIN);
4400 if (ret)
4401 goto out;
4402 }
4403 if (ins_nr == 0)
4404 start_slot = slot;
4405 ins_nr++;
4406 path->slots[0]++;
4407 if (!dst_path) {
4408 dst_path = btrfs_alloc_path();
4409 if (!dst_path) {
4410 ret = -ENOMEM;
4411 goto out;
4412 }
4413 }
4414 }
4415 if (ins_nr > 0) {
4416 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4417 start_slot, ins_nr, 1, 0);
4418 if (ret > 0)
4419 ret = 0;
4420 }
4421out:
4422 btrfs_release_path(path);
4423 btrfs_free_path(dst_path);
4424 return ret;
4425}
4426
4427static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4428 struct btrfs_root *root,
4429 struct btrfs_inode *inode,
4430 struct btrfs_path *path,
4431 struct list_head *logged_list,
4432 struct btrfs_log_ctx *ctx,
4433 const u64 start,
4434 const u64 end)
4435{
4436 struct extent_map *em, *n;
4437 struct list_head extents;
4438 struct extent_map_tree *tree = &inode->extent_tree;
4439 u64 logged_start, logged_end;
4440 u64 test_gen;
4441 int ret = 0;
4442 int num = 0;
4443
4444 INIT_LIST_HEAD(&extents);
4445
4446 down_write(&inode->dio_sem);
4447 write_lock(&tree->lock);
4448 test_gen = root->fs_info->last_trans_committed;
4449 logged_start = start;
4450 logged_end = end;
4451
4452 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4453 list_del_init(&em->list);
4454 /*
4455 * Just an arbitrary number, this can be really CPU intensive
4456 * once we start getting a lot of extents, and really once we
4457 * have a bunch of extents we just want to commit since it will
4458 * be faster.
4459 */
4460 if (++num > 32768) {
4461 list_del_init(&tree->modified_extents);
4462 ret = -EFBIG;
4463 goto process;
4464 }
4465
4466 if (em->generation <= test_gen)
4467 continue;
4468
4469 /* We log prealloc extents beyond eof later. */
4470 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4471 em->start >= i_size_read(&inode->vfs_inode))
4472 continue;
4473
4474 if (em->start < logged_start)
4475 logged_start = em->start;
4476 if ((em->start + em->len - 1) > logged_end)
4477 logged_end = em->start + em->len - 1;
4478
4479 /* Need a ref to keep it from getting evicted from cache */
4480 refcount_inc(&em->refs);
4481 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4482 list_add_tail(&em->list, &extents);
4483 num++;
4484 }
4485
4486 list_sort(NULL, &extents, extent_cmp);
4487 btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4488 /*
4489 * Some ordered extents started by fsync might have completed
4490 * before we could collect them into the list logged_list, which
4491 * means they're gone, not in our logged_list nor in the inode's
4492 * ordered tree. We want the application/user space to know an
4493 * error happened while attempting to persist file data so that
4494 * it can take proper action. If such error happened, we leave
4495 * without writing to the log tree and the fsync must report the
4496 * file data write error and not commit the current transaction.
4497 */
4498 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4499 if (ret)
4500 ctx->io_err = ret;
4501process:
4502 while (!list_empty(&extents)) {
4503 em = list_entry(extents.next, struct extent_map, list);
4504
4505 list_del_init(&em->list);
4506
4507 /*
4508 * If we had an error we just need to delete everybody from our
4509 * private list.
4510 */
4511 if (ret) {
4512 clear_em_logging(tree, em);
4513 free_extent_map(em);
4514 continue;
4515 }
4516
4517 write_unlock(&tree->lock);
4518
4519 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4520 ctx);
4521 write_lock(&tree->lock);
4522 clear_em_logging(tree, em);
4523 free_extent_map(em);
4524 }
4525 WARN_ON(!list_empty(&extents));
4526 write_unlock(&tree->lock);
4527 up_write(&inode->dio_sem);
4528
4529 btrfs_release_path(path);
4530 if (!ret)
4531 ret = btrfs_log_prealloc_extents(trans, inode, path);
4532
4533 return ret;
4534}
4535
4536static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4537 struct btrfs_path *path, u64 *size_ret)
4538{
4539 struct btrfs_key key;
4540 int ret;
4541
4542 key.objectid = btrfs_ino(inode);
4543 key.type = BTRFS_INODE_ITEM_KEY;
4544 key.offset = 0;
4545
4546 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4547 if (ret < 0) {
4548 return ret;
4549 } else if (ret > 0) {
4550 *size_ret = 0;
4551 } else {
4552 struct btrfs_inode_item *item;
4553
4554 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4555 struct btrfs_inode_item);
4556 *size_ret = btrfs_inode_size(path->nodes[0], item);
4557 }
4558
4559 btrfs_release_path(path);
4560 return 0;
4561}
4562
4563/*
4564 * At the moment we always log all xattrs. This is to figure out at log replay
4565 * time which xattrs must have their deletion replayed. If a xattr is missing
4566 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4567 * because if a xattr is deleted, the inode is fsynced and a power failure
4568 * happens, causing the log to be replayed the next time the fs is mounted,
4569 * we want the xattr to not exist anymore (same behaviour as other filesystems
4570 * with a journal, ext3/4, xfs, f2fs, etc).
4571 */
4572static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4573 struct btrfs_root *root,
4574 struct btrfs_inode *inode,
4575 struct btrfs_path *path,
4576 struct btrfs_path *dst_path)
4577{
4578 int ret;
4579 struct btrfs_key key;
4580 const u64 ino = btrfs_ino(inode);
4581 int ins_nr = 0;
4582 int start_slot = 0;
4583
4584 key.objectid = ino;
4585 key.type = BTRFS_XATTR_ITEM_KEY;
4586 key.offset = 0;
4587
4588 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4589 if (ret < 0)
4590 return ret;
4591
4592 while (true) {
4593 int slot = path->slots[0];
4594 struct extent_buffer *leaf = path->nodes[0];
4595 int nritems = btrfs_header_nritems(leaf);
4596
4597 if (slot >= nritems) {
4598 if (ins_nr > 0) {
4599 u64 last_extent = 0;
4600
4601 ret = copy_items(trans, inode, dst_path, path,
4602 &last_extent, start_slot,
4603 ins_nr, 1, 0);
4604 /* can't be 1, extent items aren't processed */
4605 ASSERT(ret <= 0);
4606 if (ret < 0)
4607 return ret;
4608 ins_nr = 0;
4609 }
4610 ret = btrfs_next_leaf(root, path);
4611 if (ret < 0)
4612 return ret;
4613 else if (ret > 0)
4614 break;
4615 continue;
4616 }
4617
4618 btrfs_item_key_to_cpu(leaf, &key, slot);
4619 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4620 break;
4621
4622 if (ins_nr == 0)
4623 start_slot = slot;
4624 ins_nr++;
4625 path->slots[0]++;
4626 cond_resched();
4627 }
4628 if (ins_nr > 0) {
4629 u64 last_extent = 0;
4630
4631 ret = copy_items(trans, inode, dst_path, path,
4632 &last_extent, start_slot,
4633 ins_nr, 1, 0);
4634 /* can't be 1, extent items aren't processed */
4635 ASSERT(ret <= 0);
4636 if (ret < 0)
4637 return ret;
4638 }
4639
4640 return 0;
4641}
4642
4643/*
4644 * If the no holes feature is enabled we need to make sure any hole between the
4645 * last extent and the i_size of our inode is explicitly marked in the log. This
4646 * is to make sure that doing something like:
4647 *
4648 * 1) create file with 128Kb of data
4649 * 2) truncate file to 64Kb
4650 * 3) truncate file to 256Kb
4651 * 4) fsync file
4652 * 5) <crash/power failure>
4653 * 6) mount fs and trigger log replay
4654 *
4655 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4656 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4657 * file correspond to a hole. The presence of explicit holes in a log tree is
4658 * what guarantees that log replay will remove/adjust file extent items in the
4659 * fs/subvol tree.
4660 *
4661 * Here we do not need to care about holes between extents, that is already done
4662 * by copy_items(). We also only need to do this in the full sync path, where we
4663 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4664 * lookup the list of modified extent maps and if any represents a hole, we
4665 * insert a corresponding extent representing a hole in the log tree.
4666 */
4667static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4668 struct btrfs_root *root,
4669 struct btrfs_inode *inode,
4670 struct btrfs_path *path)
4671{
4672 struct btrfs_fs_info *fs_info = root->fs_info;
4673 int ret;
4674 struct btrfs_key key;
4675 u64 hole_start;
4676 u64 hole_size;
4677 struct extent_buffer *leaf;
4678 struct btrfs_root *log = root->log_root;
4679 const u64 ino = btrfs_ino(inode);
4680 const u64 i_size = i_size_read(&inode->vfs_inode);
4681
4682 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4683 return 0;
4684
4685 key.objectid = ino;
4686 key.type = BTRFS_EXTENT_DATA_KEY;
4687 key.offset = (u64)-1;
4688
4689 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4690 ASSERT(ret != 0);
4691 if (ret < 0)
4692 return ret;
4693
4694 ASSERT(path->slots[0] > 0);
4695 path->slots[0]--;
4696 leaf = path->nodes[0];
4697 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4698
4699 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4700 /* inode does not have any extents */
4701 hole_start = 0;
4702 hole_size = i_size;
4703 } else {
4704 struct btrfs_file_extent_item *extent;
4705 u64 len;
4706
4707 /*
4708 * If there's an extent beyond i_size, an explicit hole was
4709 * already inserted by copy_items().
4710 */
4711 if (key.offset >= i_size)
4712 return 0;
4713
4714 extent = btrfs_item_ptr(leaf, path->slots[0],
4715 struct btrfs_file_extent_item);
4716
4717 if (btrfs_file_extent_type(leaf, extent) ==
4718 BTRFS_FILE_EXTENT_INLINE) {
4719 len = btrfs_file_extent_inline_len(leaf,
4720 path->slots[0],
4721 extent);
4722 ASSERT(len == i_size ||
4723 (len == fs_info->sectorsize &&
4724 btrfs_file_extent_compression(leaf, extent) !=
4725 BTRFS_COMPRESS_NONE));
4726 return 0;
4727 }
4728
4729 len = btrfs_file_extent_num_bytes(leaf, extent);
4730 /* Last extent goes beyond i_size, no need to log a hole. */
4731 if (key.offset + len > i_size)
4732 return 0;
4733 hole_start = key.offset + len;
4734 hole_size = i_size - hole_start;
4735 }
4736 btrfs_release_path(path);
4737
4738 /* Last extent ends at i_size. */
4739 if (hole_size == 0)
4740 return 0;
4741
4742 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4743 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4744 hole_size, 0, hole_size, 0, 0, 0);
4745 return ret;
4746}
4747
4748/*
4749 * When we are logging a new inode X, check if it doesn't have a reference that
4750 * matches the reference from some other inode Y created in a past transaction
4751 * and that was renamed in the current transaction. If we don't do this, then at
4752 * log replay time we can lose inode Y (and all its files if it's a directory):
4753 *
4754 * mkdir /mnt/x
4755 * echo "hello world" > /mnt/x/foobar
4756 * sync
4757 * mv /mnt/x /mnt/y
4758 * mkdir /mnt/x # or touch /mnt/x
4759 * xfs_io -c fsync /mnt/x
4760 * <power fail>
4761 * mount fs, trigger log replay
4762 *
4763 * After the log replay procedure, we would lose the first directory and all its
4764 * files (file foobar).
4765 * For the case where inode Y is not a directory we simply end up losing it:
4766 *
4767 * echo "123" > /mnt/foo
4768 * sync
4769 * mv /mnt/foo /mnt/bar
4770 * echo "abc" > /mnt/foo
4771 * xfs_io -c fsync /mnt/foo
4772 * <power fail>
4773 *
4774 * We also need this for cases where a snapshot entry is replaced by some other
4775 * entry (file or directory) otherwise we end up with an unreplayable log due to
4776 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4777 * if it were a regular entry:
4778 *
4779 * mkdir /mnt/x
4780 * btrfs subvolume snapshot /mnt /mnt/x/snap
4781 * btrfs subvolume delete /mnt/x/snap
4782 * rmdir /mnt/x
4783 * mkdir /mnt/x
4784 * fsync /mnt/x or fsync some new file inside it
4785 * <power fail>
4786 *
4787 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4788 * the same transaction.
4789 */
4790static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4791 const int slot,
4792 const struct btrfs_key *key,
4793 struct btrfs_inode *inode,
4794 u64 *other_ino)
4795{
4796 int ret;
4797 struct btrfs_path *search_path;
4798 char *name = NULL;
4799 u32 name_len = 0;
4800 u32 item_size = btrfs_item_size_nr(eb, slot);
4801 u32 cur_offset = 0;
4802 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4803
4804 search_path = btrfs_alloc_path();
4805 if (!search_path)
4806 return -ENOMEM;
4807 search_path->search_commit_root = 1;
4808 search_path->skip_locking = 1;
4809
4810 while (cur_offset < item_size) {
4811 u64 parent;
4812 u32 this_name_len;
4813 u32 this_len;
4814 unsigned long name_ptr;
4815 struct btrfs_dir_item *di;
4816
4817 if (key->type == BTRFS_INODE_REF_KEY) {
4818 struct btrfs_inode_ref *iref;
4819
4820 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4821 parent = key->offset;
4822 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4823 name_ptr = (unsigned long)(iref + 1);
4824 this_len = sizeof(*iref) + this_name_len;
4825 } else {
4826 struct btrfs_inode_extref *extref;
4827
4828 extref = (struct btrfs_inode_extref *)(ptr +
4829 cur_offset);
4830 parent = btrfs_inode_extref_parent(eb, extref);
4831 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4832 name_ptr = (unsigned long)&extref->name;
4833 this_len = sizeof(*extref) + this_name_len;
4834 }
4835
4836 if (this_name_len > name_len) {
4837 char *new_name;
4838
4839 new_name = krealloc(name, this_name_len, GFP_NOFS);
4840 if (!new_name) {
4841 ret = -ENOMEM;
4842 goto out;
4843 }
4844 name_len = this_name_len;
4845 name = new_name;
4846 }
4847
4848 read_extent_buffer(eb, name, name_ptr, this_name_len);
4849 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4850 parent, name, this_name_len, 0);
4851 if (di && !IS_ERR(di)) {
4852 struct btrfs_key di_key;
4853
4854 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4855 di, &di_key);
4856 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4857 ret = 1;
4858 *other_ino = di_key.objectid;
4859 } else {
4860 ret = -EAGAIN;
4861 }
4862 goto out;
4863 } else if (IS_ERR(di)) {
4864 ret = PTR_ERR(di);
4865 goto out;
4866 }
4867 btrfs_release_path(search_path);
4868
4869 cur_offset += this_len;
4870 }
4871 ret = 0;
4872out:
4873 btrfs_free_path(search_path);
4874 kfree(name);
4875 return ret;
4876}
4877
4878/* log a single inode in the tree log.
4879 * At least one parent directory for this inode must exist in the tree
4880 * or be logged already.
4881 *
4882 * Any items from this inode changed by the current transaction are copied
4883 * to the log tree. An extra reference is taken on any extents in this
4884 * file, allowing us to avoid a whole pile of corner cases around logging
4885 * blocks that have been removed from the tree.
4886 *
4887 * See LOG_INODE_ALL and related defines for a description of what inode_only
4888 * does.
4889 *
4890 * This handles both files and directories.
4891 */
4892static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4893 struct btrfs_root *root, struct btrfs_inode *inode,
4894 int inode_only,
4895 const loff_t start,
4896 const loff_t end,
4897 struct btrfs_log_ctx *ctx)
4898{
4899 struct btrfs_fs_info *fs_info = root->fs_info;
4900 struct btrfs_path *path;
4901 struct btrfs_path *dst_path;
4902 struct btrfs_key min_key;
4903 struct btrfs_key max_key;
4904 struct btrfs_root *log = root->log_root;
4905 LIST_HEAD(logged_list);
4906 u64 last_extent = 0;
4907 int err = 0;
4908 int ret;
4909 int nritems;
4910 int ins_start_slot = 0;
4911 int ins_nr;
4912 bool fast_search = false;
4913 u64 ino = btrfs_ino(inode);
4914 struct extent_map_tree *em_tree = &inode->extent_tree;
4915 u64 logged_isize = 0;
4916 bool need_log_inode_item = true;
4917 bool xattrs_logged = false;
4918
4919 path = btrfs_alloc_path();
4920 if (!path)
4921 return -ENOMEM;
4922 dst_path = btrfs_alloc_path();
4923 if (!dst_path) {
4924 btrfs_free_path(path);
4925 return -ENOMEM;
4926 }
4927
4928 min_key.objectid = ino;
4929 min_key.type = BTRFS_INODE_ITEM_KEY;
4930 min_key.offset = 0;
4931
4932 max_key.objectid = ino;
4933
4934
4935 /* today the code can only do partial logging of directories */
4936 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4937 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4938 &inode->runtime_flags) &&
4939 inode_only >= LOG_INODE_EXISTS))
4940 max_key.type = BTRFS_XATTR_ITEM_KEY;
4941 else
4942 max_key.type = (u8)-1;
4943 max_key.offset = (u64)-1;
4944
4945 /*
4946 * Only run delayed items if we are a dir or a new file.
4947 * Otherwise commit the delayed inode only, which is needed in
4948 * order for the log replay code to mark inodes for link count
4949 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4950 */
4951 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4952 inode->generation > fs_info->last_trans_committed)
4953 ret = btrfs_commit_inode_delayed_items(trans, inode);
4954 else
4955 ret = btrfs_commit_inode_delayed_inode(inode);
4956
4957 if (ret) {
4958 btrfs_free_path(path);
4959 btrfs_free_path(dst_path);
4960 return ret;
4961 }
4962
4963 if (inode_only == LOG_OTHER_INODE) {
4964 inode_only = LOG_INODE_EXISTS;
4965 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4966 } else {
4967 mutex_lock(&inode->log_mutex);
4968 }
4969
4970 /*
4971 * a brute force approach to making sure we get the most uptodate
4972 * copies of everything.
4973 */
4974 if (S_ISDIR(inode->vfs_inode.i_mode)) {
4975 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4976
4977 if (inode_only == LOG_INODE_EXISTS)
4978 max_key_type = BTRFS_XATTR_ITEM_KEY;
4979 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4980 } else {
4981 if (inode_only == LOG_INODE_EXISTS) {
4982 /*
4983 * Make sure the new inode item we write to the log has
4984 * the same isize as the current one (if it exists).
4985 * This is necessary to prevent data loss after log
4986 * replay, and also to prevent doing a wrong expanding
4987 * truncate - for e.g. create file, write 4K into offset
4988 * 0, fsync, write 4K into offset 4096, add hard link,
4989 * fsync some other file (to sync log), power fail - if
4990 * we use the inode's current i_size, after log replay
4991 * we get a 8Kb file, with the last 4Kb extent as a hole
4992 * (zeroes), as if an expanding truncate happened,
4993 * instead of getting a file of 4Kb only.
4994 */
4995 err = logged_inode_size(log, inode, path, &logged_isize);
4996 if (err)
4997 goto out_unlock;
4998 }
4999 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5000 &inode->runtime_flags)) {
5001 if (inode_only == LOG_INODE_EXISTS) {
5002 max_key.type = BTRFS_XATTR_ITEM_KEY;
5003 ret = drop_objectid_items(trans, log, path, ino,
5004 max_key.type);
5005 } else {
5006 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5007 &inode->runtime_flags);
5008 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5009 &inode->runtime_flags);
5010 while(1) {
5011 ret = btrfs_truncate_inode_items(trans,
5012 log, &inode->vfs_inode, 0, 0);
5013 if (ret != -EAGAIN)
5014 break;
5015 }
5016 }
5017 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5018 &inode->runtime_flags) ||
5019 inode_only == LOG_INODE_EXISTS) {
5020 if (inode_only == LOG_INODE_ALL)
5021 fast_search = true;
5022 max_key.type = BTRFS_XATTR_ITEM_KEY;
5023 ret = drop_objectid_items(trans, log, path, ino,
5024 max_key.type);
5025 } else {
5026 if (inode_only == LOG_INODE_ALL)
5027 fast_search = true;
5028 goto log_extents;
5029 }
5030
5031 }
5032 if (ret) {
5033 err = ret;
5034 goto out_unlock;
5035 }
5036
5037 while (1) {
5038 ins_nr = 0;
5039 ret = btrfs_search_forward(root, &min_key,
5040 path, trans->transid);
5041 if (ret < 0) {
5042 err = ret;
5043 goto out_unlock;
5044 }
5045 if (ret != 0)
5046 break;
5047again:
5048 /* note, ins_nr might be > 0 here, cleanup outside the loop */
5049 if (min_key.objectid != ino)
5050 break;
5051 if (min_key.type > max_key.type)
5052 break;
5053
5054 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5055 need_log_inode_item = false;
5056
5057 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5058 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5059 inode->generation == trans->transid) {
5060 u64 other_ino = 0;
5061
5062 ret = btrfs_check_ref_name_override(path->nodes[0],
5063 path->slots[0], &min_key, inode,
5064 &other_ino);
5065 if (ret < 0) {
5066 err = ret;
5067 goto out_unlock;
5068 } else if (ret > 0 && ctx &&
5069 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5070 struct btrfs_key inode_key;
5071 struct inode *other_inode;
5072
5073 if (ins_nr > 0) {
5074 ins_nr++;
5075 } else {
5076 ins_nr = 1;
5077 ins_start_slot = path->slots[0];
5078 }
5079 ret = copy_items(trans, inode, dst_path, path,
5080 &last_extent, ins_start_slot,
5081 ins_nr, inode_only,
5082 logged_isize);
5083 if (ret < 0) {
5084 err = ret;
5085 goto out_unlock;
5086 }
5087 ins_nr = 0;
5088 btrfs_release_path(path);
5089 inode_key.objectid = other_ino;
5090 inode_key.type = BTRFS_INODE_ITEM_KEY;
5091 inode_key.offset = 0;
5092 other_inode = btrfs_iget(fs_info->sb,
5093 &inode_key, root,
5094 NULL);
5095 /*
5096 * If the other inode that had a conflicting dir
5097 * entry was deleted in the current transaction,
5098 * we don't need to do more work nor fallback to
5099 * a transaction commit.
5100 */
5101 if (IS_ERR(other_inode) &&
5102 PTR_ERR(other_inode) == -ENOENT) {
5103 goto next_key;
5104 } else if (IS_ERR(other_inode)) {
5105 err = PTR_ERR(other_inode);
5106 goto out_unlock;
5107 }
5108 /*
5109 * We are safe logging the other inode without
5110 * acquiring its i_mutex as long as we log with
5111 * the LOG_INODE_EXISTS mode. We're safe against
5112 * concurrent renames of the other inode as well
5113 * because during a rename we pin the log and
5114 * update the log with the new name before we
5115 * unpin it.
5116 */
5117 err = btrfs_log_inode(trans, root,
5118 BTRFS_I(other_inode),
5119 LOG_OTHER_INODE, 0, LLONG_MAX,
5120 ctx);
5121 iput(other_inode);
5122 if (err)
5123 goto out_unlock;
5124 else
5125 goto next_key;
5126 }
5127 }
5128
5129 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5130 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5131 if (ins_nr == 0)
5132 goto next_slot;
5133 ret = copy_items(trans, inode, dst_path, path,
5134 &last_extent, ins_start_slot,
5135 ins_nr, inode_only, logged_isize);
5136 if (ret < 0) {
5137 err = ret;
5138 goto out_unlock;
5139 }
5140 ins_nr = 0;
5141 if (ret) {
5142 btrfs_release_path(path);
5143 continue;
5144 }
5145 goto next_slot;
5146 }
5147
5148 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5149 ins_nr++;
5150 goto next_slot;
5151 } else if (!ins_nr) {
5152 ins_start_slot = path->slots[0];
5153 ins_nr = 1;
5154 goto next_slot;
5155 }
5156
5157 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5158 ins_start_slot, ins_nr, inode_only,
5159 logged_isize);
5160 if (ret < 0) {
5161 err = ret;
5162 goto out_unlock;
5163 }
5164 if (ret) {
5165 ins_nr = 0;
5166 btrfs_release_path(path);
5167 continue;
5168 }
5169 ins_nr = 1;
5170 ins_start_slot = path->slots[0];
5171next_slot:
5172
5173 nritems = btrfs_header_nritems(path->nodes[0]);
5174 path->slots[0]++;
5175 if (path->slots[0] < nritems) {
5176 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5177 path->slots[0]);
5178 goto again;
5179 }
5180 if (ins_nr) {
5181 ret = copy_items(trans, inode, dst_path, path,
5182 &last_extent, ins_start_slot,
5183 ins_nr, inode_only, logged_isize);
5184 if (ret < 0) {
5185 err = ret;
5186 goto out_unlock;
5187 }
5188 ret = 0;
5189 ins_nr = 0;
5190 }
5191 btrfs_release_path(path);
5192next_key:
5193 if (min_key.offset < (u64)-1) {
5194 min_key.offset++;
5195 } else if (min_key.type < max_key.type) {
5196 min_key.type++;
5197 min_key.offset = 0;
5198 } else {
5199 break;
5200 }
5201 }
5202 if (ins_nr) {
5203 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5204 ins_start_slot, ins_nr, inode_only,
5205 logged_isize);
5206 if (ret < 0) {
5207 err = ret;
5208 goto out_unlock;
5209 }
5210 ret = 0;
5211 ins_nr = 0;
5212 }
5213
5214 btrfs_release_path(path);
5215 btrfs_release_path(dst_path);
5216 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5217 if (err)
5218 goto out_unlock;
5219 xattrs_logged = true;
5220 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5221 btrfs_release_path(path);
5222 btrfs_release_path(dst_path);
5223 err = btrfs_log_trailing_hole(trans, root, inode, path);
5224 if (err)
5225 goto out_unlock;
5226 }
5227log_extents:
5228 btrfs_release_path(path);
5229 btrfs_release_path(dst_path);
5230 if (need_log_inode_item) {
5231 err = log_inode_item(trans, log, dst_path, inode);
5232 if (!err && !xattrs_logged) {
5233 err = btrfs_log_all_xattrs(trans, root, inode, path,
5234 dst_path);
5235 btrfs_release_path(path);
5236 }
5237 if (err)
5238 goto out_unlock;
5239 }
5240 if (fast_search) {
5241 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5242 &logged_list, ctx, start, end);
5243 if (ret) {
5244 err = ret;
5245 goto out_unlock;
5246 }
5247 } else if (inode_only == LOG_INODE_ALL) {
5248 struct extent_map *em, *n;
5249
5250 write_lock(&em_tree->lock);
5251 /*
5252 * We can't just remove every em if we're called for a ranged
5253 * fsync - that is, one that doesn't cover the whole possible
5254 * file range (0 to LLONG_MAX). This is because we can have
5255 * em's that fall outside the range we're logging and therefore
5256 * their ordered operations haven't completed yet
5257 * (btrfs_finish_ordered_io() not invoked yet). This means we
5258 * didn't get their respective file extent item in the fs/subvol
5259 * tree yet, and need to let the next fast fsync (one which
5260 * consults the list of modified extent maps) find the em so
5261 * that it logs a matching file extent item and waits for the
5262 * respective ordered operation to complete (if it's still
5263 * running).
5264 *
5265 * Removing every em outside the range we're logging would make
5266 * the next fast fsync not log their matching file extent items,
5267 * therefore making us lose data after a log replay.
5268 */
5269 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5270 list) {
5271 const u64 mod_end = em->mod_start + em->mod_len - 1;
5272
5273 if (em->mod_start >= start && mod_end <= end)
5274 list_del_init(&em->list);
5275 }
5276 write_unlock(&em_tree->lock);
5277 }
5278
5279 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5280 ret = log_directory_changes(trans, root, inode, path, dst_path,
5281 ctx);
5282 if (ret) {
5283 err = ret;
5284 goto out_unlock;
5285 }
5286 }
5287
5288 spin_lock(&inode->lock);
5289 inode->logged_trans = trans->transid;
5290 inode->last_log_commit = inode->last_sub_trans;
5291 spin_unlock(&inode->lock);
5292out_unlock:
5293 if (unlikely(err))
5294 btrfs_put_logged_extents(&logged_list);
5295 else
5296 btrfs_submit_logged_extents(&logged_list, log);
5297 mutex_unlock(&inode->log_mutex);
5298
5299 btrfs_free_path(path);
5300 btrfs_free_path(dst_path);
5301 return err;
5302}
5303
5304/*
5305 * Check if we must fallback to a transaction commit when logging an inode.
5306 * This must be called after logging the inode and is used only in the context
5307 * when fsyncing an inode requires the need to log some other inode - in which
5308 * case we can't lock the i_mutex of each other inode we need to log as that
5309 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5310 * log inodes up or down in the hierarchy) or rename operations for example. So
5311 * we take the log_mutex of the inode after we have logged it and then check for
5312 * its last_unlink_trans value - this is safe because any task setting
5313 * last_unlink_trans must take the log_mutex and it must do this before it does
5314 * the actual unlink operation, so if we do this check before a concurrent task
5315 * sets last_unlink_trans it means we've logged a consistent version/state of
5316 * all the inode items, otherwise we are not sure and must do a transaction
5317 * commit (the concurrent task might have only updated last_unlink_trans before
5318 * we logged the inode or it might have also done the unlink).
5319 */
5320static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5321 struct btrfs_inode *inode)
5322{
5323 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5324 bool ret = false;
5325
5326 mutex_lock(&inode->log_mutex);
5327 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5328 /*
5329 * Make sure any commits to the log are forced to be full
5330 * commits.
5331 */
5332 btrfs_set_log_full_commit(fs_info, trans);
5333 ret = true;
5334 }
5335 mutex_unlock(&inode->log_mutex);
5336
5337 return ret;
5338}
5339
5340/*
5341 * follow the dentry parent pointers up the chain and see if any
5342 * of the directories in it require a full commit before they can
5343 * be logged. Returns zero if nothing special needs to be done or 1 if
5344 * a full commit is required.
5345 */
5346static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5347 struct btrfs_inode *inode,
5348 struct dentry *parent,
5349 struct super_block *sb,
5350 u64 last_committed)
5351{
5352 int ret = 0;
5353 struct dentry *old_parent = NULL;
5354 struct btrfs_inode *orig_inode = inode;
5355
5356 /*
5357 * for regular files, if its inode is already on disk, we don't
5358 * have to worry about the parents at all. This is because
5359 * we can use the last_unlink_trans field to record renames
5360 * and other fun in this file.
5361 */
5362 if (S_ISREG(inode->vfs_inode.i_mode) &&
5363 inode->generation <= last_committed &&
5364 inode->last_unlink_trans <= last_committed)
5365 goto out;
5366
5367 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5368 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5369 goto out;
5370 inode = BTRFS_I(d_inode(parent));
5371 }
5372
5373 while (1) {
5374 /*
5375 * If we are logging a directory then we start with our inode,
5376 * not our parent's inode, so we need to skip setting the
5377 * logged_trans so that further down in the log code we don't
5378 * think this inode has already been logged.
5379 */
5380 if (inode != orig_inode)
5381 inode->logged_trans = trans->transid;
5382 smp_mb();
5383
5384 if (btrfs_must_commit_transaction(trans, inode)) {
5385 ret = 1;
5386 break;
5387 }
5388
5389 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5390 break;
5391
5392 if (IS_ROOT(parent)) {
5393 inode = BTRFS_I(d_inode(parent));
5394 if (btrfs_must_commit_transaction(trans, inode))
5395 ret = 1;
5396 break;
5397 }
5398
5399 parent = dget_parent(parent);
5400 dput(old_parent);
5401 old_parent = parent;
5402 inode = BTRFS_I(d_inode(parent));
5403
5404 }
5405 dput(old_parent);
5406out:
5407 return ret;
5408}
5409
5410struct btrfs_dir_list {
5411 u64 ino;
5412 struct list_head list;
5413};
5414
5415/*
5416 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5417 * details about the why it is needed.
5418 * This is a recursive operation - if an existing dentry corresponds to a
5419 * directory, that directory's new entries are logged too (same behaviour as
5420 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5421 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5422 * complains about the following circular lock dependency / possible deadlock:
5423 *
5424 * CPU0 CPU1
5425 * ---- ----
5426 * lock(&type->i_mutex_dir_key#3/2);
5427 * lock(sb_internal#2);
5428 * lock(&type->i_mutex_dir_key#3/2);
5429 * lock(&sb->s_type->i_mutex_key#14);
5430 *
5431 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5432 * sb_start_intwrite() in btrfs_start_transaction().
5433 * Not locking i_mutex of the inodes is still safe because:
5434 *
5435 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5436 * that while logging the inode new references (names) are added or removed
5437 * from the inode, leaving the logged inode item with a link count that does
5438 * not match the number of logged inode reference items. This is fine because
5439 * at log replay time we compute the real number of links and correct the
5440 * link count in the inode item (see replay_one_buffer() and
5441 * link_to_fixup_dir());
5442 *
5443 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5444 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5445 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5446 * has a size that doesn't match the sum of the lengths of all the logged
5447 * names. This does not result in a problem because if a dir_item key is
5448 * logged but its matching dir_index key is not logged, at log replay time we
5449 * don't use it to replay the respective name (see replay_one_name()). On the
5450 * other hand if only the dir_index key ends up being logged, the respective
5451 * name is added to the fs/subvol tree with both the dir_item and dir_index
5452 * keys created (see replay_one_name()).
5453 * The directory's inode item with a wrong i_size is not a problem as well,
5454 * since we don't use it at log replay time to set the i_size in the inode
5455 * item of the fs/subvol tree (see overwrite_item()).
5456 */
5457static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5458 struct btrfs_root *root,
5459 struct btrfs_inode *start_inode,
5460 struct btrfs_log_ctx *ctx)
5461{
5462 struct btrfs_fs_info *fs_info = root->fs_info;
5463 struct btrfs_root *log = root->log_root;
5464 struct btrfs_path *path;
5465 LIST_HEAD(dir_list);
5466 struct btrfs_dir_list *dir_elem;
5467 int ret = 0;
5468
5469 path = btrfs_alloc_path();
5470 if (!path)
5471 return -ENOMEM;
5472
5473 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5474 if (!dir_elem) {
5475 btrfs_free_path(path);
5476 return -ENOMEM;
5477 }
5478 dir_elem->ino = btrfs_ino(start_inode);
5479 list_add_tail(&dir_elem->list, &dir_list);
5480
5481 while (!list_empty(&dir_list)) {
5482 struct extent_buffer *leaf;
5483 struct btrfs_key min_key;
5484 int nritems;
5485 int i;
5486
5487 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5488 list);
5489 if (ret)
5490 goto next_dir_inode;
5491
5492 min_key.objectid = dir_elem->ino;
5493 min_key.type = BTRFS_DIR_ITEM_KEY;
5494 min_key.offset = 0;
5495again:
5496 btrfs_release_path(path);
5497 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5498 if (ret < 0) {
5499 goto next_dir_inode;
5500 } else if (ret > 0) {
5501 ret = 0;
5502 goto next_dir_inode;
5503 }
5504
5505process_leaf:
5506 leaf = path->nodes[0];
5507 nritems = btrfs_header_nritems(leaf);
5508 for (i = path->slots[0]; i < nritems; i++) {
5509 struct btrfs_dir_item *di;
5510 struct btrfs_key di_key;
5511 struct inode *di_inode;
5512 struct btrfs_dir_list *new_dir_elem;
5513 int log_mode = LOG_INODE_EXISTS;
5514 int type;
5515
5516 btrfs_item_key_to_cpu(leaf, &min_key, i);
5517 if (min_key.objectid != dir_elem->ino ||
5518 min_key.type != BTRFS_DIR_ITEM_KEY)
5519 goto next_dir_inode;
5520
5521 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5522 type = btrfs_dir_type(leaf, di);
5523 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5524 type != BTRFS_FT_DIR)
5525 continue;
5526 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5527 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5528 continue;
5529
5530 btrfs_release_path(path);
5531 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5532 if (IS_ERR(di_inode)) {
5533 ret = PTR_ERR(di_inode);
5534 goto next_dir_inode;
5535 }
5536
5537 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5538 iput(di_inode);
5539 break;
5540 }
5541
5542 ctx->log_new_dentries = false;
5543 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5544 log_mode = LOG_INODE_ALL;
5545 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5546 log_mode, 0, LLONG_MAX, ctx);
5547 if (!ret &&
5548 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5549 ret = 1;
5550 iput(di_inode);
5551 if (ret)
5552 goto next_dir_inode;
5553 if (ctx->log_new_dentries) {
5554 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5555 GFP_NOFS);
5556 if (!new_dir_elem) {
5557 ret = -ENOMEM;
5558 goto next_dir_inode;
5559 }
5560 new_dir_elem->ino = di_key.objectid;
5561 list_add_tail(&new_dir_elem->list, &dir_list);
5562 }
5563 break;
5564 }
5565 if (i == nritems) {
5566 ret = btrfs_next_leaf(log, path);
5567 if (ret < 0) {
5568 goto next_dir_inode;
5569 } else if (ret > 0) {
5570 ret = 0;
5571 goto next_dir_inode;
5572 }
5573 goto process_leaf;
5574 }
5575 if (min_key.offset < (u64)-1) {
5576 min_key.offset++;
5577 goto again;
5578 }
5579next_dir_inode:
5580 list_del(&dir_elem->list);
5581 kfree(dir_elem);
5582 }
5583
5584 btrfs_free_path(path);
5585 return ret;
5586}
5587
5588static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5589 struct btrfs_inode *inode,
5590 struct btrfs_log_ctx *ctx)
5591{
5592 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5593 int ret;
5594 struct btrfs_path *path;
5595 struct btrfs_key key;
5596 struct btrfs_root *root = inode->root;
5597 const u64 ino = btrfs_ino(inode);
5598
5599 path = btrfs_alloc_path();
5600 if (!path)
5601 return -ENOMEM;
5602 path->skip_locking = 1;
5603 path->search_commit_root = 1;
5604
5605 key.objectid = ino;
5606 key.type = BTRFS_INODE_REF_KEY;
5607 key.offset = 0;
5608 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5609 if (ret < 0)
5610 goto out;
5611
5612 while (true) {
5613 struct extent_buffer *leaf = path->nodes[0];
5614 int slot = path->slots[0];
5615 u32 cur_offset = 0;
5616 u32 item_size;
5617 unsigned long ptr;
5618
5619 if (slot >= btrfs_header_nritems(leaf)) {
5620 ret = btrfs_next_leaf(root, path);
5621 if (ret < 0)
5622 goto out;
5623 else if (ret > 0)
5624 break;
5625 continue;
5626 }
5627
5628 btrfs_item_key_to_cpu(leaf, &key, slot);
5629 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5630 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5631 break;
5632
5633 item_size = btrfs_item_size_nr(leaf, slot);
5634 ptr = btrfs_item_ptr_offset(leaf, slot);
5635 while (cur_offset < item_size) {
5636 struct btrfs_key inode_key;
5637 struct inode *dir_inode;
5638
5639 inode_key.type = BTRFS_INODE_ITEM_KEY;
5640 inode_key.offset = 0;
5641
5642 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5643 struct btrfs_inode_extref *extref;
5644
5645 extref = (struct btrfs_inode_extref *)
5646 (ptr + cur_offset);
5647 inode_key.objectid = btrfs_inode_extref_parent(
5648 leaf, extref);
5649 cur_offset += sizeof(*extref);
5650 cur_offset += btrfs_inode_extref_name_len(leaf,
5651 extref);
5652 } else {
5653 inode_key.objectid = key.offset;
5654 cur_offset = item_size;
5655 }
5656
5657 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5658 root, NULL);
5659 /* If parent inode was deleted, skip it. */
5660 if (IS_ERR(dir_inode))
5661 continue;
5662
5663 if (ctx)
5664 ctx->log_new_dentries = false;
5665 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5666 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5667 if (!ret &&
5668 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5669 ret = 1;
5670 if (!ret && ctx && ctx->log_new_dentries)
5671 ret = log_new_dir_dentries(trans, root,
5672 BTRFS_I(dir_inode), ctx);
5673 iput(dir_inode);
5674 if (ret)
5675 goto out;
5676 }
5677 path->slots[0]++;
5678 }
5679 ret = 0;
5680out:
5681 btrfs_free_path(path);
5682 return ret;
5683}
5684
5685/*
5686 * helper function around btrfs_log_inode to make sure newly created
5687 * parent directories also end up in the log. A minimal inode and backref
5688 * only logging is done of any parent directories that are older than
5689 * the last committed transaction
5690 */
5691static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5692 struct btrfs_inode *inode,
5693 struct dentry *parent,
5694 const loff_t start,
5695 const loff_t end,
5696 int inode_only,
5697 struct btrfs_log_ctx *ctx)
5698{
5699 struct btrfs_root *root = inode->root;
5700 struct btrfs_fs_info *fs_info = root->fs_info;
5701 struct super_block *sb;
5702 struct dentry *old_parent = NULL;
5703 int ret = 0;
5704 u64 last_committed = fs_info->last_trans_committed;
5705 bool log_dentries = false;
5706 struct btrfs_inode *orig_inode = inode;
5707
5708 sb = inode->vfs_inode.i_sb;
5709
5710 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5711 ret = 1;
5712 goto end_no_trans;
5713 }
5714
5715 /*
5716 * The prev transaction commit doesn't complete, we need do
5717 * full commit by ourselves.
5718 */
5719 if (fs_info->last_trans_log_full_commit >
5720 fs_info->last_trans_committed) {
5721 ret = 1;
5722 goto end_no_trans;
5723 }
5724
5725 if (btrfs_root_refs(&root->root_item) == 0) {
5726 ret = 1;
5727 goto end_no_trans;
5728 }
5729
5730 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5731 last_committed);
5732 if (ret)
5733 goto end_no_trans;
5734
5735 if (btrfs_inode_in_log(inode, trans->transid)) {
5736 ret = BTRFS_NO_LOG_SYNC;
5737 goto end_no_trans;
5738 }
5739
5740 ret = start_log_trans(trans, root, ctx);
5741 if (ret)
5742 goto end_no_trans;
5743
5744 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5745 if (ret)
5746 goto end_trans;
5747
5748 /*
5749 * for regular files, if its inode is already on disk, we don't
5750 * have to worry about the parents at all. This is because
5751 * we can use the last_unlink_trans field to record renames
5752 * and other fun in this file.
5753 */
5754 if (S_ISREG(inode->vfs_inode.i_mode) &&
5755 inode->generation <= last_committed &&
5756 inode->last_unlink_trans <= last_committed) {
5757 ret = 0;
5758 goto end_trans;
5759 }
5760
5761 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5762 log_dentries = true;
5763
5764 /*
5765 * On unlink we must make sure all our current and old parent directory
5766 * inodes are fully logged. This is to prevent leaving dangling
5767 * directory index entries in directories that were our parents but are
5768 * not anymore. Not doing this results in old parent directory being
5769 * impossible to delete after log replay (rmdir will always fail with
5770 * error -ENOTEMPTY).
5771 *
5772 * Example 1:
5773 *
5774 * mkdir testdir
5775 * touch testdir/foo
5776 * ln testdir/foo testdir/bar
5777 * sync
5778 * unlink testdir/bar
5779 * xfs_io -c fsync testdir/foo
5780 * <power failure>
5781 * mount fs, triggers log replay
5782 *
5783 * If we don't log the parent directory (testdir), after log replay the
5784 * directory still has an entry pointing to the file inode using the bar
5785 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5786 * the file inode has a link count of 1.
5787 *
5788 * Example 2:
5789 *
5790 * mkdir testdir
5791 * touch foo
5792 * ln foo testdir/foo2
5793 * ln foo testdir/foo3
5794 * sync
5795 * unlink testdir/foo3
5796 * xfs_io -c fsync foo
5797 * <power failure>
5798 * mount fs, triggers log replay
5799 *
5800 * Similar as the first example, after log replay the parent directory
5801 * testdir still has an entry pointing to the inode file with name foo3
5802 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5803 * and has a link count of 2.
5804 */
5805 if (inode->last_unlink_trans > last_committed) {
5806 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5807 if (ret)
5808 goto end_trans;
5809 }
5810
5811 while (1) {
5812 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5813 break;
5814
5815 inode = BTRFS_I(d_inode(parent));
5816 if (root != inode->root)
5817 break;
5818
5819 if (inode->generation > last_committed) {
5820 ret = btrfs_log_inode(trans, root, inode,
5821 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5822 if (ret)
5823 goto end_trans;
5824 }
5825 if (IS_ROOT(parent))
5826 break;
5827
5828 parent = dget_parent(parent);
5829 dput(old_parent);
5830 old_parent = parent;
5831 }
5832 if (log_dentries)
5833 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5834 else
5835 ret = 0;
5836end_trans:
5837 dput(old_parent);
5838 if (ret < 0) {
5839 btrfs_set_log_full_commit(fs_info, trans);
5840 ret = 1;
5841 }
5842
5843 if (ret)
5844 btrfs_remove_log_ctx(root, ctx);
5845 btrfs_end_log_trans(root);
5846end_no_trans:
5847 return ret;
5848}
5849
5850/*
5851 * it is not safe to log dentry if the chunk root has added new
5852 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5853 * If this returns 1, you must commit the transaction to safely get your
5854 * data on disk.
5855 */
5856int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5857 struct dentry *dentry,
5858 const loff_t start,
5859 const loff_t end,
5860 struct btrfs_log_ctx *ctx)
5861{
5862 struct dentry *parent = dget_parent(dentry);
5863 int ret;
5864
5865 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5866 start, end, LOG_INODE_ALL, ctx);
5867 dput(parent);
5868
5869 return ret;
5870}
5871
5872/*
5873 * should be called during mount to recover any replay any log trees
5874 * from the FS
5875 */
5876int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5877{
5878 int ret;
5879 struct btrfs_path *path;
5880 struct btrfs_trans_handle *trans;
5881 struct btrfs_key key;
5882 struct btrfs_key found_key;
5883 struct btrfs_key tmp_key;
5884 struct btrfs_root *log;
5885 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5886 struct walk_control wc = {
5887 .process_func = process_one_buffer,
5888 .stage = 0,
5889 };
5890
5891 path = btrfs_alloc_path();
5892 if (!path)
5893 return -ENOMEM;
5894
5895 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5896
5897 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5898 if (IS_ERR(trans)) {
5899 ret = PTR_ERR(trans);
5900 goto error;
5901 }
5902
5903 wc.trans = trans;
5904 wc.pin = 1;
5905
5906 ret = walk_log_tree(trans, log_root_tree, &wc);
5907 if (ret) {
5908 btrfs_handle_fs_error(fs_info, ret,
5909 "Failed to pin buffers while recovering log root tree.");
5910 goto error;
5911 }
5912
5913again:
5914 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5915 key.offset = (u64)-1;
5916 key.type = BTRFS_ROOT_ITEM_KEY;
5917
5918 while (1) {
5919 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5920
5921 if (ret < 0) {
5922 btrfs_handle_fs_error(fs_info, ret,
5923 "Couldn't find tree log root.");
5924 goto error;
5925 }
5926 if (ret > 0) {
5927 if (path->slots[0] == 0)
5928 break;
5929 path->slots[0]--;
5930 }
5931 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5932 path->slots[0]);
5933 btrfs_release_path(path);
5934 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5935 break;
5936
5937 log = btrfs_read_fs_root(log_root_tree, &found_key);
5938 if (IS_ERR(log)) {
5939 ret = PTR_ERR(log);
5940 btrfs_handle_fs_error(fs_info, ret,
5941 "Couldn't read tree log root.");
5942 goto error;
5943 }
5944
5945 tmp_key.objectid = found_key.offset;
5946 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5947 tmp_key.offset = (u64)-1;
5948
5949 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5950 if (IS_ERR(wc.replay_dest)) {
5951 ret = PTR_ERR(wc.replay_dest);
5952 free_extent_buffer(log->node);
5953 free_extent_buffer(log->commit_root);
5954 kfree(log);
5955 btrfs_handle_fs_error(fs_info, ret,
5956 "Couldn't read target root for tree log recovery.");
5957 goto error;
5958 }
5959
5960 wc.replay_dest->log_root = log;
5961 btrfs_record_root_in_trans(trans, wc.replay_dest);
5962 ret = walk_log_tree(trans, log, &wc);
5963
5964 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5965 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5966 path);
5967 }
5968
5969 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5970 struct btrfs_root *root = wc.replay_dest;
5971
5972 btrfs_release_path(path);
5973
5974 /*
5975 * We have just replayed everything, and the highest
5976 * objectid of fs roots probably has changed in case
5977 * some inode_item's got replayed.
5978 *
5979 * root->objectid_mutex is not acquired as log replay
5980 * could only happen during mount.
5981 */
5982 ret = btrfs_find_highest_objectid(root,
5983 &root->highest_objectid);
5984 }
5985
5986 key.offset = found_key.offset - 1;
5987 wc.replay_dest->log_root = NULL;
5988 free_extent_buffer(log->node);
5989 free_extent_buffer(log->commit_root);
5990 kfree(log);
5991
5992 if (ret)
5993 goto error;
5994
5995 if (found_key.offset == 0)
5996 break;
5997 }
5998 btrfs_release_path(path);
5999
6000 /* step one is to pin it all, step two is to replay just inodes */
6001 if (wc.pin) {
6002 wc.pin = 0;
6003 wc.process_func = replay_one_buffer;
6004 wc.stage = LOG_WALK_REPLAY_INODES;
6005 goto again;
6006 }
6007 /* step three is to replay everything */
6008 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6009 wc.stage++;
6010 goto again;
6011 }
6012
6013 btrfs_free_path(path);
6014
6015 /* step 4: commit the transaction, which also unpins the blocks */
6016 ret = btrfs_commit_transaction(trans);
6017 if (ret)
6018 return ret;
6019
6020 free_extent_buffer(log_root_tree->node);
6021 log_root_tree->log_root = NULL;
6022 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6023 kfree(log_root_tree);
6024
6025 return 0;
6026error:
6027 if (wc.trans)
6028 btrfs_end_transaction(wc.trans);
6029 btrfs_free_path(path);
6030 return ret;
6031}
6032
6033/*
6034 * there are some corner cases where we want to force a full
6035 * commit instead of allowing a directory to be logged.
6036 *
6037 * They revolve around files there were unlinked from the directory, and
6038 * this function updates the parent directory so that a full commit is
6039 * properly done if it is fsync'd later after the unlinks are done.
6040 *
6041 * Must be called before the unlink operations (updates to the subvolume tree,
6042 * inodes, etc) are done.
6043 */
6044void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6045 struct btrfs_inode *dir, struct btrfs_inode *inode,
6046 int for_rename)
6047{
6048 /*
6049 * when we're logging a file, if it hasn't been renamed
6050 * or unlinked, and its inode is fully committed on disk,
6051 * we don't have to worry about walking up the directory chain
6052 * to log its parents.
6053 *
6054 * So, we use the last_unlink_trans field to put this transid
6055 * into the file. When the file is logged we check it and
6056 * don't log the parents if the file is fully on disk.
6057 */
6058 mutex_lock(&inode->log_mutex);
6059 inode->last_unlink_trans = trans->transid;
6060 mutex_unlock(&inode->log_mutex);
6061
6062 /*
6063 * if this directory was already logged any new
6064 * names for this file/dir will get recorded
6065 */
6066 smp_mb();
6067 if (dir->logged_trans == trans->transid)
6068 return;
6069
6070 /*
6071 * if the inode we're about to unlink was logged,
6072 * the log will be properly updated for any new names
6073 */
6074 if (inode->logged_trans == trans->transid)
6075 return;
6076
6077 /*
6078 * when renaming files across directories, if the directory
6079 * there we're unlinking from gets fsync'd later on, there's
6080 * no way to find the destination directory later and fsync it
6081 * properly. So, we have to be conservative and force commits
6082 * so the new name gets discovered.
6083 */
6084 if (for_rename)
6085 goto record;
6086
6087 /* we can safely do the unlink without any special recording */
6088 return;
6089
6090record:
6091 mutex_lock(&dir->log_mutex);
6092 dir->last_unlink_trans = trans->transid;
6093 mutex_unlock(&dir->log_mutex);
6094}
6095
6096/*
6097 * Make sure that if someone attempts to fsync the parent directory of a deleted
6098 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6099 * that after replaying the log tree of the parent directory's root we will not
6100 * see the snapshot anymore and at log replay time we will not see any log tree
6101 * corresponding to the deleted snapshot's root, which could lead to replaying
6102 * it after replaying the log tree of the parent directory (which would replay
6103 * the snapshot delete operation).
6104 *
6105 * Must be called before the actual snapshot destroy operation (updates to the
6106 * parent root and tree of tree roots trees, etc) are done.
6107 */
6108void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6109 struct btrfs_inode *dir)
6110{
6111 mutex_lock(&dir->log_mutex);
6112 dir->last_unlink_trans = trans->transid;
6113 mutex_unlock(&dir->log_mutex);
6114}
6115
6116/*
6117 * Call this after adding a new name for a file and it will properly
6118 * update the log to reflect the new name.
6119 *
6120 * It will return zero if all goes well, and it will return 1 if a
6121 * full transaction commit is required.
6122 */
6123int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6124 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6125 struct dentry *parent)
6126{
6127 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6128
6129 /*
6130 * this will force the logging code to walk the dentry chain
6131 * up for the file
6132 */
6133 if (!S_ISDIR(inode->vfs_inode.i_mode))
6134 inode->last_unlink_trans = trans->transid;
6135
6136 /*
6137 * if this inode hasn't been logged and directory we're renaming it
6138 * from hasn't been logged, we don't need to log it
6139 */
6140 if (inode->logged_trans <= fs_info->last_trans_committed &&
6141 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6142 return 0;
6143
6144 return btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6145 LOG_INODE_EXISTS, NULL);
6146}
6147