Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/highmem.h>
17#include <linux/lockdep.h>
18#include <linux/pci.h>
19#include <linux/interrupt.h>
20#include <linux/kmod.h>
21#include <linux/delay.h>
22#include <linux/workqueue.h>
23#include <linux/nmi.h>
24#include <linux/acpi.h>
25#include <linux/efi.h>
26#include <linux/ioport.h>
27#include <linux/list.h>
28#include <linux/jiffies.h>
29#include <linux/semaphore.h>
30#include <linux/security.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34#include <linux/io-64-nonatomic-lo-hi.h>
35
36#include "acpica/accommon.h"
37#include "acpica/acnamesp.h"
38#include "internal.h"
39
40#define _COMPONENT ACPI_OS_SERVICES
41ACPI_MODULE_NAME("osl");
42
43struct acpi_os_dpc {
44 acpi_osd_exec_callback function;
45 void *context;
46 struct work_struct work;
47};
48
49#ifdef ENABLE_DEBUGGER
50#include <linux/kdb.h>
51
52/* stuff for debugger support */
53int acpi_in_debugger;
54EXPORT_SYMBOL(acpi_in_debugger);
55#endif /*ENABLE_DEBUGGER */
56
57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 u32 pm1b_ctrl);
59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 u32 val_b);
61
62static acpi_osd_handler acpi_irq_handler;
63static void *acpi_irq_context;
64static struct workqueue_struct *kacpid_wq;
65static struct workqueue_struct *kacpi_notify_wq;
66static struct workqueue_struct *kacpi_hotplug_wq;
67static bool acpi_os_initialized;
68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69bool acpi_permanent_mmap = false;
70
71/*
72 * This list of permanent mappings is for memory that may be accessed from
73 * interrupt context, where we can't do the ioremap().
74 */
75struct acpi_ioremap {
76 struct list_head list;
77 void __iomem *virt;
78 acpi_physical_address phys;
79 acpi_size size;
80 union {
81 unsigned long refcount;
82 struct rcu_work rwork;
83 } track;
84};
85
86static LIST_HEAD(acpi_ioremaps);
87static DEFINE_MUTEX(acpi_ioremap_lock);
88#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
89
90static void __init acpi_request_region (struct acpi_generic_address *gas,
91 unsigned int length, char *desc)
92{
93 u64 addr;
94
95 /* Handle possible alignment issues */
96 memcpy(&addr, &gas->address, sizeof(addr));
97 if (!addr || !length)
98 return;
99
100 /* Resources are never freed */
101 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
102 request_region(addr, length, desc);
103 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
104 request_mem_region(addr, length, desc);
105}
106
107static int __init acpi_reserve_resources(void)
108{
109 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
110 "ACPI PM1a_EVT_BLK");
111
112 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
113 "ACPI PM1b_EVT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
116 "ACPI PM1a_CNT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
119 "ACPI PM1b_CNT_BLK");
120
121 if (acpi_gbl_FADT.pm_timer_length == 4)
122 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
123
124 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
125 "ACPI PM2_CNT_BLK");
126
127 /* Length of GPE blocks must be a non-negative multiple of 2 */
128
129 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
130 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
131 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
132
133 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
134 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
135 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
136
137 return 0;
138}
139fs_initcall_sync(acpi_reserve_resources);
140
141void acpi_os_printf(const char *fmt, ...)
142{
143 va_list args;
144 va_start(args, fmt);
145 acpi_os_vprintf(fmt, args);
146 va_end(args);
147}
148EXPORT_SYMBOL(acpi_os_printf);
149
150void acpi_os_vprintf(const char *fmt, va_list args)
151{
152 static char buffer[512];
153
154 vsprintf(buffer, fmt, args);
155
156#ifdef ENABLE_DEBUGGER
157 if (acpi_in_debugger) {
158 kdb_printf("%s", buffer);
159 } else {
160 if (printk_get_level(buffer))
161 printk("%s", buffer);
162 else
163 printk(KERN_CONT "%s", buffer);
164 }
165#else
166 if (acpi_debugger_write_log(buffer) < 0) {
167 if (printk_get_level(buffer))
168 printk("%s", buffer);
169 else
170 printk(KERN_CONT "%s", buffer);
171 }
172#endif
173}
174
175#ifdef CONFIG_KEXEC
176static unsigned long acpi_rsdp;
177static int __init setup_acpi_rsdp(char *arg)
178{
179 return kstrtoul(arg, 16, &acpi_rsdp);
180}
181early_param("acpi_rsdp", setup_acpi_rsdp);
182#endif
183
184acpi_physical_address __init acpi_os_get_root_pointer(void)
185{
186 acpi_physical_address pa;
187
188#ifdef CONFIG_KEXEC
189 /*
190 * We may have been provided with an RSDP on the command line,
191 * but if a malicious user has done so they may be pointing us
192 * at modified ACPI tables that could alter kernel behaviour -
193 * so, we check the lockdown status before making use of
194 * it. If we trust it then also stash it in an architecture
195 * specific location (if appropriate) so it can be carried
196 * over further kexec()s.
197 */
198 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
199 acpi_arch_set_root_pointer(acpi_rsdp);
200 return acpi_rsdp;
201 }
202#endif
203 pa = acpi_arch_get_root_pointer();
204 if (pa)
205 return pa;
206
207 if (efi_enabled(EFI_CONFIG_TABLES)) {
208 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
209 return efi.acpi20;
210 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi;
212 pr_err(PREFIX "System description tables not found\n");
213 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
214 acpi_find_root_pointer(&pa);
215 }
216
217 return pa;
218}
219
220/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
221static struct acpi_ioremap *
222acpi_map_lookup(acpi_physical_address phys, acpi_size size)
223{
224 struct acpi_ioremap *map;
225
226 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
227 if (map->phys <= phys &&
228 phys + size <= map->phys + map->size)
229 return map;
230
231 return NULL;
232}
233
234/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
235static void __iomem *
236acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
237{
238 struct acpi_ioremap *map;
239
240 map = acpi_map_lookup(phys, size);
241 if (map)
242 return map->virt + (phys - map->phys);
243
244 return NULL;
245}
246
247void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
248{
249 struct acpi_ioremap *map;
250 void __iomem *virt = NULL;
251
252 mutex_lock(&acpi_ioremap_lock);
253 map = acpi_map_lookup(phys, size);
254 if (map) {
255 virt = map->virt + (phys - map->phys);
256 map->track.refcount++;
257 }
258 mutex_unlock(&acpi_ioremap_lock);
259 return virt;
260}
261EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
262
263/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
264static struct acpi_ioremap *
265acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
266{
267 struct acpi_ioremap *map;
268
269 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
270 if (map->virt <= virt &&
271 virt + size <= map->virt + map->size)
272 return map;
273
274 return NULL;
275}
276
277#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
278/* ioremap will take care of cache attributes */
279#define should_use_kmap(pfn) 0
280#else
281#define should_use_kmap(pfn) page_is_ram(pfn)
282#endif
283
284static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
285{
286 unsigned long pfn;
287
288 pfn = pg_off >> PAGE_SHIFT;
289 if (should_use_kmap(pfn)) {
290 if (pg_sz > PAGE_SIZE)
291 return NULL;
292 return (void __iomem __force *)kmap(pfn_to_page(pfn));
293 } else
294 return acpi_os_ioremap(pg_off, pg_sz);
295}
296
297static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
298{
299 unsigned long pfn;
300
301 pfn = pg_off >> PAGE_SHIFT;
302 if (should_use_kmap(pfn))
303 kunmap(pfn_to_page(pfn));
304 else
305 iounmap(vaddr);
306}
307
308/**
309 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
310 * @phys: Start of the physical address range to map.
311 * @size: Size of the physical address range to map.
312 *
313 * Look up the given physical address range in the list of existing ACPI memory
314 * mappings. If found, get a reference to it and return a pointer to it (its
315 * virtual address). If not found, map it, add it to that list and return a
316 * pointer to it.
317 *
318 * During early init (when acpi_permanent_mmap has not been set yet) this
319 * routine simply calls __acpi_map_table() to get the job done.
320 */
321void __iomem __ref
322*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
323{
324 struct acpi_ioremap *map;
325 void __iomem *virt;
326 acpi_physical_address pg_off;
327 acpi_size pg_sz;
328
329 if (phys > ULONG_MAX) {
330 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
331 return NULL;
332 }
333
334 if (!acpi_permanent_mmap)
335 return __acpi_map_table((unsigned long)phys, size);
336
337 mutex_lock(&acpi_ioremap_lock);
338 /* Check if there's a suitable mapping already. */
339 map = acpi_map_lookup(phys, size);
340 if (map) {
341 map->track.refcount++;
342 goto out;
343 }
344
345 map = kzalloc(sizeof(*map), GFP_KERNEL);
346 if (!map) {
347 mutex_unlock(&acpi_ioremap_lock);
348 return NULL;
349 }
350
351 pg_off = round_down(phys, PAGE_SIZE);
352 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
353 virt = acpi_map(phys, size);
354 if (!virt) {
355 mutex_unlock(&acpi_ioremap_lock);
356 kfree(map);
357 return NULL;
358 }
359
360 INIT_LIST_HEAD(&map->list);
361 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
362 map->phys = pg_off;
363 map->size = pg_sz;
364 map->track.refcount = 1;
365
366 list_add_tail_rcu(&map->list, &acpi_ioremaps);
367
368out:
369 mutex_unlock(&acpi_ioremap_lock);
370 return map->virt + (phys - map->phys);
371}
372EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
373
374void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
375{
376 return (void *)acpi_os_map_iomem(phys, size);
377}
378EXPORT_SYMBOL_GPL(acpi_os_map_memory);
379
380static void acpi_os_map_remove(struct work_struct *work)
381{
382 struct acpi_ioremap *map = container_of(to_rcu_work(work),
383 struct acpi_ioremap,
384 track.rwork);
385
386 acpi_unmap(map->phys, map->virt);
387 kfree(map);
388}
389
390/* Must be called with mutex_lock(&acpi_ioremap_lock) */
391static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
392{
393 if (--map->track.refcount)
394 return;
395
396 list_del_rcu(&map->list);
397
398 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
399 queue_rcu_work(system_wq, &map->track.rwork);
400}
401
402/**
403 * acpi_os_unmap_iomem - Drop a memory mapping reference.
404 * @virt: Start of the address range to drop a reference to.
405 * @size: Size of the address range to drop a reference to.
406 *
407 * Look up the given virtual address range in the list of existing ACPI memory
408 * mappings, drop a reference to it and if there are no more active references
409 * to it, queue it up for later removal.
410 *
411 * During early init (when acpi_permanent_mmap has not been set yet) this
412 * routine simply calls __acpi_unmap_table() to get the job done. Since
413 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
414 * here.
415 */
416void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
417{
418 struct acpi_ioremap *map;
419
420 if (!acpi_permanent_mmap) {
421 __acpi_unmap_table(virt, size);
422 return;
423 }
424
425 mutex_lock(&acpi_ioremap_lock);
426
427 map = acpi_map_lookup_virt(virt, size);
428 if (!map) {
429 mutex_unlock(&acpi_ioremap_lock);
430 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
431 return;
432 }
433 acpi_os_drop_map_ref(map);
434
435 mutex_unlock(&acpi_ioremap_lock);
436}
437EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
438
439/**
440 * acpi_os_unmap_memory - Drop a memory mapping reference.
441 * @virt: Start of the address range to drop a reference to.
442 * @size: Size of the address range to drop a reference to.
443 */
444void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
445{
446 acpi_os_unmap_iomem((void __iomem *)virt, size);
447}
448EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449
450int acpi_os_map_generic_address(struct acpi_generic_address *gas)
451{
452 u64 addr;
453 void __iomem *virt;
454
455 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
456 return 0;
457
458 /* Handle possible alignment issues */
459 memcpy(&addr, &gas->address, sizeof(addr));
460 if (!addr || !gas->bit_width)
461 return -EINVAL;
462
463 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
464 if (!virt)
465 return -EIO;
466
467 return 0;
468}
469EXPORT_SYMBOL(acpi_os_map_generic_address);
470
471void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
472{
473 u64 addr;
474 struct acpi_ioremap *map;
475
476 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
477 return;
478
479 /* Handle possible alignment issues */
480 memcpy(&addr, &gas->address, sizeof(addr));
481 if (!addr || !gas->bit_width)
482 return;
483
484 mutex_lock(&acpi_ioremap_lock);
485
486 map = acpi_map_lookup(addr, gas->bit_width / 8);
487 if (!map) {
488 mutex_unlock(&acpi_ioremap_lock);
489 return;
490 }
491 acpi_os_drop_map_ref(map);
492
493 mutex_unlock(&acpi_ioremap_lock);
494}
495EXPORT_SYMBOL(acpi_os_unmap_generic_address);
496
497#ifdef ACPI_FUTURE_USAGE
498acpi_status
499acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
500{
501 if (!phys || !virt)
502 return AE_BAD_PARAMETER;
503
504 *phys = virt_to_phys(virt);
505
506 return AE_OK;
507}
508#endif
509
510#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
511static bool acpi_rev_override;
512
513int __init acpi_rev_override_setup(char *str)
514{
515 acpi_rev_override = true;
516 return 1;
517}
518__setup("acpi_rev_override", acpi_rev_override_setup);
519#else
520#define acpi_rev_override false
521#endif
522
523#define ACPI_MAX_OVERRIDE_LEN 100
524
525static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
526
527acpi_status
528acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
529 acpi_string *new_val)
530{
531 if (!init_val || !new_val)
532 return AE_BAD_PARAMETER;
533
534 *new_val = NULL;
535 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
536 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
537 acpi_os_name);
538 *new_val = acpi_os_name;
539 }
540
541 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
542 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
543 *new_val = (char *)5;
544 }
545
546 return AE_OK;
547}
548
549static irqreturn_t acpi_irq(int irq, void *dev_id)
550{
551 u32 handled;
552
553 handled = (*acpi_irq_handler) (acpi_irq_context);
554
555 if (handled) {
556 acpi_irq_handled++;
557 return IRQ_HANDLED;
558 } else {
559 acpi_irq_not_handled++;
560 return IRQ_NONE;
561 }
562}
563
564acpi_status
565acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
566 void *context)
567{
568 unsigned int irq;
569
570 acpi_irq_stats_init();
571
572 /*
573 * ACPI interrupts different from the SCI in our copy of the FADT are
574 * not supported.
575 */
576 if (gsi != acpi_gbl_FADT.sci_interrupt)
577 return AE_BAD_PARAMETER;
578
579 if (acpi_irq_handler)
580 return AE_ALREADY_ACQUIRED;
581
582 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
583 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
584 gsi);
585 return AE_OK;
586 }
587
588 acpi_irq_handler = handler;
589 acpi_irq_context = context;
590 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
591 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
592 acpi_irq_handler = NULL;
593 return AE_NOT_ACQUIRED;
594 }
595 acpi_sci_irq = irq;
596
597 return AE_OK;
598}
599
600acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
601{
602 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
603 return AE_BAD_PARAMETER;
604
605 free_irq(acpi_sci_irq, acpi_irq);
606 acpi_irq_handler = NULL;
607 acpi_sci_irq = INVALID_ACPI_IRQ;
608
609 return AE_OK;
610}
611
612/*
613 * Running in interpreter thread context, safe to sleep
614 */
615
616void acpi_os_sleep(u64 ms)
617{
618 msleep(ms);
619}
620
621void acpi_os_stall(u32 us)
622{
623 while (us) {
624 u32 delay = 1000;
625
626 if (delay > us)
627 delay = us;
628 udelay(delay);
629 touch_nmi_watchdog();
630 us -= delay;
631 }
632}
633
634/*
635 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
636 * monotonically increasing timer with 100ns granularity. Do not use
637 * ktime_get() to implement this function because this function may get
638 * called after timekeeping has been suspended. Note: calling this function
639 * after timekeeping has been suspended may lead to unexpected results
640 * because when timekeeping is suspended the jiffies counter is not
641 * incremented. See also timekeeping_suspend().
642 */
643u64 acpi_os_get_timer(void)
644{
645 return (get_jiffies_64() - INITIAL_JIFFIES) *
646 (ACPI_100NSEC_PER_SEC / HZ);
647}
648
649acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
650{
651 u32 dummy;
652
653 if (!value)
654 value = &dummy;
655
656 *value = 0;
657 if (width <= 8) {
658 *(u8 *) value = inb(port);
659 } else if (width <= 16) {
660 *(u16 *) value = inw(port);
661 } else if (width <= 32) {
662 *(u32 *) value = inl(port);
663 } else {
664 BUG();
665 }
666
667 return AE_OK;
668}
669
670EXPORT_SYMBOL(acpi_os_read_port);
671
672acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
673{
674 if (width <= 8) {
675 outb(value, port);
676 } else if (width <= 16) {
677 outw(value, port);
678 } else if (width <= 32) {
679 outl(value, port);
680 } else {
681 BUG();
682 }
683
684 return AE_OK;
685}
686
687EXPORT_SYMBOL(acpi_os_write_port);
688
689int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
690{
691
692 switch (width) {
693 case 8:
694 *(u8 *) value = readb(virt_addr);
695 break;
696 case 16:
697 *(u16 *) value = readw(virt_addr);
698 break;
699 case 32:
700 *(u32 *) value = readl(virt_addr);
701 break;
702 case 64:
703 *(u64 *) value = readq(virt_addr);
704 break;
705 default:
706 return -EINVAL;
707 }
708
709 return 0;
710}
711
712acpi_status
713acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
714{
715 void __iomem *virt_addr;
716 unsigned int size = width / 8;
717 bool unmap = false;
718 u64 dummy;
719 int error;
720
721 rcu_read_lock();
722 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
723 if (!virt_addr) {
724 rcu_read_unlock();
725 virt_addr = acpi_os_ioremap(phys_addr, size);
726 if (!virt_addr)
727 return AE_BAD_ADDRESS;
728 unmap = true;
729 }
730
731 if (!value)
732 value = &dummy;
733
734 error = acpi_os_read_iomem(virt_addr, value, width);
735 BUG_ON(error);
736
737 if (unmap)
738 iounmap(virt_addr);
739 else
740 rcu_read_unlock();
741
742 return AE_OK;
743}
744
745acpi_status
746acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
747{
748 void __iomem *virt_addr;
749 unsigned int size = width / 8;
750 bool unmap = false;
751
752 rcu_read_lock();
753 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
754 if (!virt_addr) {
755 rcu_read_unlock();
756 virt_addr = acpi_os_ioremap(phys_addr, size);
757 if (!virt_addr)
758 return AE_BAD_ADDRESS;
759 unmap = true;
760 }
761
762 switch (width) {
763 case 8:
764 writeb(value, virt_addr);
765 break;
766 case 16:
767 writew(value, virt_addr);
768 break;
769 case 32:
770 writel(value, virt_addr);
771 break;
772 case 64:
773 writeq(value, virt_addr);
774 break;
775 default:
776 BUG();
777 }
778
779 if (unmap)
780 iounmap(virt_addr);
781 else
782 rcu_read_unlock();
783
784 return AE_OK;
785}
786
787#ifdef CONFIG_PCI
788acpi_status
789acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
790 u64 *value, u32 width)
791{
792 int result, size;
793 u32 value32;
794
795 if (!value)
796 return AE_BAD_PARAMETER;
797
798 switch (width) {
799 case 8:
800 size = 1;
801 break;
802 case 16:
803 size = 2;
804 break;
805 case 32:
806 size = 4;
807 break;
808 default:
809 return AE_ERROR;
810 }
811
812 result = raw_pci_read(pci_id->segment, pci_id->bus,
813 PCI_DEVFN(pci_id->device, pci_id->function),
814 reg, size, &value32);
815 *value = value32;
816
817 return (result ? AE_ERROR : AE_OK);
818}
819
820acpi_status
821acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
822 u64 value, u32 width)
823{
824 int result, size;
825
826 switch (width) {
827 case 8:
828 size = 1;
829 break;
830 case 16:
831 size = 2;
832 break;
833 case 32:
834 size = 4;
835 break;
836 default:
837 return AE_ERROR;
838 }
839
840 result = raw_pci_write(pci_id->segment, pci_id->bus,
841 PCI_DEVFN(pci_id->device, pci_id->function),
842 reg, size, value);
843
844 return (result ? AE_ERROR : AE_OK);
845}
846#endif
847
848static void acpi_os_execute_deferred(struct work_struct *work)
849{
850 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
851
852 dpc->function(dpc->context);
853 kfree(dpc);
854}
855
856#ifdef CONFIG_ACPI_DEBUGGER
857static struct acpi_debugger acpi_debugger;
858static bool acpi_debugger_initialized;
859
860int acpi_register_debugger(struct module *owner,
861 const struct acpi_debugger_ops *ops)
862{
863 int ret = 0;
864
865 mutex_lock(&acpi_debugger.lock);
866 if (acpi_debugger.ops) {
867 ret = -EBUSY;
868 goto err_lock;
869 }
870
871 acpi_debugger.owner = owner;
872 acpi_debugger.ops = ops;
873
874err_lock:
875 mutex_unlock(&acpi_debugger.lock);
876 return ret;
877}
878EXPORT_SYMBOL(acpi_register_debugger);
879
880void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
881{
882 mutex_lock(&acpi_debugger.lock);
883 if (ops == acpi_debugger.ops) {
884 acpi_debugger.ops = NULL;
885 acpi_debugger.owner = NULL;
886 }
887 mutex_unlock(&acpi_debugger.lock);
888}
889EXPORT_SYMBOL(acpi_unregister_debugger);
890
891int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
892{
893 int ret;
894 int (*func)(acpi_osd_exec_callback, void *);
895 struct module *owner;
896
897 if (!acpi_debugger_initialized)
898 return -ENODEV;
899 mutex_lock(&acpi_debugger.lock);
900 if (!acpi_debugger.ops) {
901 ret = -ENODEV;
902 goto err_lock;
903 }
904 if (!try_module_get(acpi_debugger.owner)) {
905 ret = -ENODEV;
906 goto err_lock;
907 }
908 func = acpi_debugger.ops->create_thread;
909 owner = acpi_debugger.owner;
910 mutex_unlock(&acpi_debugger.lock);
911
912 ret = func(function, context);
913
914 mutex_lock(&acpi_debugger.lock);
915 module_put(owner);
916err_lock:
917 mutex_unlock(&acpi_debugger.lock);
918 return ret;
919}
920
921ssize_t acpi_debugger_write_log(const char *msg)
922{
923 ssize_t ret;
924 ssize_t (*func)(const char *);
925 struct module *owner;
926
927 if (!acpi_debugger_initialized)
928 return -ENODEV;
929 mutex_lock(&acpi_debugger.lock);
930 if (!acpi_debugger.ops) {
931 ret = -ENODEV;
932 goto err_lock;
933 }
934 if (!try_module_get(acpi_debugger.owner)) {
935 ret = -ENODEV;
936 goto err_lock;
937 }
938 func = acpi_debugger.ops->write_log;
939 owner = acpi_debugger.owner;
940 mutex_unlock(&acpi_debugger.lock);
941
942 ret = func(msg);
943
944 mutex_lock(&acpi_debugger.lock);
945 module_put(owner);
946err_lock:
947 mutex_unlock(&acpi_debugger.lock);
948 return ret;
949}
950
951ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
952{
953 ssize_t ret;
954 ssize_t (*func)(char *, size_t);
955 struct module *owner;
956
957 if (!acpi_debugger_initialized)
958 return -ENODEV;
959 mutex_lock(&acpi_debugger.lock);
960 if (!acpi_debugger.ops) {
961 ret = -ENODEV;
962 goto err_lock;
963 }
964 if (!try_module_get(acpi_debugger.owner)) {
965 ret = -ENODEV;
966 goto err_lock;
967 }
968 func = acpi_debugger.ops->read_cmd;
969 owner = acpi_debugger.owner;
970 mutex_unlock(&acpi_debugger.lock);
971
972 ret = func(buffer, buffer_length);
973
974 mutex_lock(&acpi_debugger.lock);
975 module_put(owner);
976err_lock:
977 mutex_unlock(&acpi_debugger.lock);
978 return ret;
979}
980
981int acpi_debugger_wait_command_ready(void)
982{
983 int ret;
984 int (*func)(bool, char *, size_t);
985 struct module *owner;
986
987 if (!acpi_debugger_initialized)
988 return -ENODEV;
989 mutex_lock(&acpi_debugger.lock);
990 if (!acpi_debugger.ops) {
991 ret = -ENODEV;
992 goto err_lock;
993 }
994 if (!try_module_get(acpi_debugger.owner)) {
995 ret = -ENODEV;
996 goto err_lock;
997 }
998 func = acpi_debugger.ops->wait_command_ready;
999 owner = acpi_debugger.owner;
1000 mutex_unlock(&acpi_debugger.lock);
1001
1002 ret = func(acpi_gbl_method_executing,
1003 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1004
1005 mutex_lock(&acpi_debugger.lock);
1006 module_put(owner);
1007err_lock:
1008 mutex_unlock(&acpi_debugger.lock);
1009 return ret;
1010}
1011
1012int acpi_debugger_notify_command_complete(void)
1013{
1014 int ret;
1015 int (*func)(void);
1016 struct module *owner;
1017
1018 if (!acpi_debugger_initialized)
1019 return -ENODEV;
1020 mutex_lock(&acpi_debugger.lock);
1021 if (!acpi_debugger.ops) {
1022 ret = -ENODEV;
1023 goto err_lock;
1024 }
1025 if (!try_module_get(acpi_debugger.owner)) {
1026 ret = -ENODEV;
1027 goto err_lock;
1028 }
1029 func = acpi_debugger.ops->notify_command_complete;
1030 owner = acpi_debugger.owner;
1031 mutex_unlock(&acpi_debugger.lock);
1032
1033 ret = func();
1034
1035 mutex_lock(&acpi_debugger.lock);
1036 module_put(owner);
1037err_lock:
1038 mutex_unlock(&acpi_debugger.lock);
1039 return ret;
1040}
1041
1042int __init acpi_debugger_init(void)
1043{
1044 mutex_init(&acpi_debugger.lock);
1045 acpi_debugger_initialized = true;
1046 return 0;
1047}
1048#endif
1049
1050/*******************************************************************************
1051 *
1052 * FUNCTION: acpi_os_execute
1053 *
1054 * PARAMETERS: Type - Type of the callback
1055 * Function - Function to be executed
1056 * Context - Function parameters
1057 *
1058 * RETURN: Status
1059 *
1060 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1061 * immediately executes function on a separate thread.
1062 *
1063 ******************************************************************************/
1064
1065acpi_status acpi_os_execute(acpi_execute_type type,
1066 acpi_osd_exec_callback function, void *context)
1067{
1068 acpi_status status = AE_OK;
1069 struct acpi_os_dpc *dpc;
1070 struct workqueue_struct *queue;
1071 int ret;
1072 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1073 "Scheduling function [%p(%p)] for deferred execution.\n",
1074 function, context));
1075
1076 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1077 ret = acpi_debugger_create_thread(function, context);
1078 if (ret) {
1079 pr_err("Call to kthread_create() failed.\n");
1080 status = AE_ERROR;
1081 }
1082 goto out_thread;
1083 }
1084
1085 /*
1086 * Allocate/initialize DPC structure. Note that this memory will be
1087 * freed by the callee. The kernel handles the work_struct list in a
1088 * way that allows us to also free its memory inside the callee.
1089 * Because we may want to schedule several tasks with different
1090 * parameters we can't use the approach some kernel code uses of
1091 * having a static work_struct.
1092 */
1093
1094 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1095 if (!dpc)
1096 return AE_NO_MEMORY;
1097
1098 dpc->function = function;
1099 dpc->context = context;
1100
1101 /*
1102 * To prevent lockdep from complaining unnecessarily, make sure that
1103 * there is a different static lockdep key for each workqueue by using
1104 * INIT_WORK() for each of them separately.
1105 */
1106 if (type == OSL_NOTIFY_HANDLER) {
1107 queue = kacpi_notify_wq;
1108 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1109 } else if (type == OSL_GPE_HANDLER) {
1110 queue = kacpid_wq;
1111 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1112 } else {
1113 pr_err("Unsupported os_execute type %d.\n", type);
1114 status = AE_ERROR;
1115 }
1116
1117 if (ACPI_FAILURE(status))
1118 goto err_workqueue;
1119
1120 /*
1121 * On some machines, a software-initiated SMI causes corruption unless
1122 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1123 * typically it's done in GPE-related methods that are run via
1124 * workqueues, so we can avoid the known corruption cases by always
1125 * queueing on CPU 0.
1126 */
1127 ret = queue_work_on(0, queue, &dpc->work);
1128 if (!ret) {
1129 printk(KERN_ERR PREFIX
1130 "Call to queue_work() failed.\n");
1131 status = AE_ERROR;
1132 }
1133err_workqueue:
1134 if (ACPI_FAILURE(status))
1135 kfree(dpc);
1136out_thread:
1137 return status;
1138}
1139EXPORT_SYMBOL(acpi_os_execute);
1140
1141void acpi_os_wait_events_complete(void)
1142{
1143 /*
1144 * Make sure the GPE handler or the fixed event handler is not used
1145 * on another CPU after removal.
1146 */
1147 if (acpi_sci_irq_valid())
1148 synchronize_hardirq(acpi_sci_irq);
1149 flush_workqueue(kacpid_wq);
1150 flush_workqueue(kacpi_notify_wq);
1151}
1152EXPORT_SYMBOL(acpi_os_wait_events_complete);
1153
1154struct acpi_hp_work {
1155 struct work_struct work;
1156 struct acpi_device *adev;
1157 u32 src;
1158};
1159
1160static void acpi_hotplug_work_fn(struct work_struct *work)
1161{
1162 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1163
1164 acpi_os_wait_events_complete();
1165 acpi_device_hotplug(hpw->adev, hpw->src);
1166 kfree(hpw);
1167}
1168
1169acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1170{
1171 struct acpi_hp_work *hpw;
1172
1173 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1174 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1175 adev, src));
1176
1177 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1178 if (!hpw)
1179 return AE_NO_MEMORY;
1180
1181 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1182 hpw->adev = adev;
1183 hpw->src = src;
1184 /*
1185 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1186 * the hotplug code may call driver .remove() functions, which may
1187 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1188 * these workqueues.
1189 */
1190 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1191 kfree(hpw);
1192 return AE_ERROR;
1193 }
1194 return AE_OK;
1195}
1196
1197bool acpi_queue_hotplug_work(struct work_struct *work)
1198{
1199 return queue_work(kacpi_hotplug_wq, work);
1200}
1201
1202acpi_status
1203acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1204{
1205 struct semaphore *sem = NULL;
1206
1207 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1208 if (!sem)
1209 return AE_NO_MEMORY;
1210
1211 sema_init(sem, initial_units);
1212
1213 *handle = (acpi_handle *) sem;
1214
1215 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1216 *handle, initial_units));
1217
1218 return AE_OK;
1219}
1220
1221/*
1222 * TODO: A better way to delete semaphores? Linux doesn't have a
1223 * 'delete_semaphore()' function -- may result in an invalid
1224 * pointer dereference for non-synchronized consumers. Should
1225 * we at least check for blocked threads and signal/cancel them?
1226 */
1227
1228acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1229{
1230 struct semaphore *sem = (struct semaphore *)handle;
1231
1232 if (!sem)
1233 return AE_BAD_PARAMETER;
1234
1235 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1236
1237 BUG_ON(!list_empty(&sem->wait_list));
1238 kfree(sem);
1239 sem = NULL;
1240
1241 return AE_OK;
1242}
1243
1244/*
1245 * TODO: Support for units > 1?
1246 */
1247acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1248{
1249 acpi_status status = AE_OK;
1250 struct semaphore *sem = (struct semaphore *)handle;
1251 long jiffies;
1252 int ret = 0;
1253
1254 if (!acpi_os_initialized)
1255 return AE_OK;
1256
1257 if (!sem || (units < 1))
1258 return AE_BAD_PARAMETER;
1259
1260 if (units > 1)
1261 return AE_SUPPORT;
1262
1263 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1264 handle, units, timeout));
1265
1266 if (timeout == ACPI_WAIT_FOREVER)
1267 jiffies = MAX_SCHEDULE_TIMEOUT;
1268 else
1269 jiffies = msecs_to_jiffies(timeout);
1270
1271 ret = down_timeout(sem, jiffies);
1272 if (ret)
1273 status = AE_TIME;
1274
1275 if (ACPI_FAILURE(status)) {
1276 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277 "Failed to acquire semaphore[%p|%d|%d], %s",
1278 handle, units, timeout,
1279 acpi_format_exception(status)));
1280 } else {
1281 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1282 "Acquired semaphore[%p|%d|%d]", handle,
1283 units, timeout));
1284 }
1285
1286 return status;
1287}
1288
1289/*
1290 * TODO: Support for units > 1?
1291 */
1292acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1293{
1294 struct semaphore *sem = (struct semaphore *)handle;
1295
1296 if (!acpi_os_initialized)
1297 return AE_OK;
1298
1299 if (!sem || (units < 1))
1300 return AE_BAD_PARAMETER;
1301
1302 if (units > 1)
1303 return AE_SUPPORT;
1304
1305 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1306 units));
1307
1308 up(sem);
1309
1310 return AE_OK;
1311}
1312
1313acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1314{
1315#ifdef ENABLE_DEBUGGER
1316 if (acpi_in_debugger) {
1317 u32 chars;
1318
1319 kdb_read(buffer, buffer_length);
1320
1321 /* remove the CR kdb includes */
1322 chars = strlen(buffer) - 1;
1323 buffer[chars] = '\0';
1324 }
1325#else
1326 int ret;
1327
1328 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1329 if (ret < 0)
1330 return AE_ERROR;
1331 if (bytes_read)
1332 *bytes_read = ret;
1333#endif
1334
1335 return AE_OK;
1336}
1337EXPORT_SYMBOL(acpi_os_get_line);
1338
1339acpi_status acpi_os_wait_command_ready(void)
1340{
1341 int ret;
1342
1343 ret = acpi_debugger_wait_command_ready();
1344 if (ret < 0)
1345 return AE_ERROR;
1346 return AE_OK;
1347}
1348
1349acpi_status acpi_os_notify_command_complete(void)
1350{
1351 int ret;
1352
1353 ret = acpi_debugger_notify_command_complete();
1354 if (ret < 0)
1355 return AE_ERROR;
1356 return AE_OK;
1357}
1358
1359acpi_status acpi_os_signal(u32 function, void *info)
1360{
1361 switch (function) {
1362 case ACPI_SIGNAL_FATAL:
1363 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1364 break;
1365 case ACPI_SIGNAL_BREAKPOINT:
1366 /*
1367 * AML Breakpoint
1368 * ACPI spec. says to treat it as a NOP unless
1369 * you are debugging. So if/when we integrate
1370 * AML debugger into the kernel debugger its
1371 * hook will go here. But until then it is
1372 * not useful to print anything on breakpoints.
1373 */
1374 break;
1375 default:
1376 break;
1377 }
1378
1379 return AE_OK;
1380}
1381
1382static int __init acpi_os_name_setup(char *str)
1383{
1384 char *p = acpi_os_name;
1385 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1386
1387 if (!str || !*str)
1388 return 0;
1389
1390 for (; count-- && *str; str++) {
1391 if (isalnum(*str) || *str == ' ' || *str == ':')
1392 *p++ = *str;
1393 else if (*str == '\'' || *str == '"')
1394 continue;
1395 else
1396 break;
1397 }
1398 *p = 0;
1399
1400 return 1;
1401
1402}
1403
1404__setup("acpi_os_name=", acpi_os_name_setup);
1405
1406/*
1407 * Disable the auto-serialization of named objects creation methods.
1408 *
1409 * This feature is enabled by default. It marks the AML control methods
1410 * that contain the opcodes to create named objects as "Serialized".
1411 */
1412static int __init acpi_no_auto_serialize_setup(char *str)
1413{
1414 acpi_gbl_auto_serialize_methods = FALSE;
1415 pr_info("ACPI: auto-serialization disabled\n");
1416
1417 return 1;
1418}
1419
1420__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1421
1422/* Check of resource interference between native drivers and ACPI
1423 * OperationRegions (SystemIO and System Memory only).
1424 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1425 * in arbitrary AML code and can interfere with legacy drivers.
1426 * acpi_enforce_resources= can be set to:
1427 *
1428 * - strict (default) (2)
1429 * -> further driver trying to access the resources will not load
1430 * - lax (1)
1431 * -> further driver trying to access the resources will load, but you
1432 * get a system message that something might go wrong...
1433 *
1434 * - no (0)
1435 * -> ACPI Operation Region resources will not be registered
1436 *
1437 */
1438#define ENFORCE_RESOURCES_STRICT 2
1439#define ENFORCE_RESOURCES_LAX 1
1440#define ENFORCE_RESOURCES_NO 0
1441
1442static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1443
1444static int __init acpi_enforce_resources_setup(char *str)
1445{
1446 if (str == NULL || *str == '\0')
1447 return 0;
1448
1449 if (!strcmp("strict", str))
1450 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1451 else if (!strcmp("lax", str))
1452 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1453 else if (!strcmp("no", str))
1454 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1455
1456 return 1;
1457}
1458
1459__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1460
1461/* Check for resource conflicts between ACPI OperationRegions and native
1462 * drivers */
1463int acpi_check_resource_conflict(const struct resource *res)
1464{
1465 acpi_adr_space_type space_id;
1466 acpi_size length;
1467 u8 warn = 0;
1468 int clash = 0;
1469
1470 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471 return 0;
1472 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1473 return 0;
1474
1475 if (res->flags & IORESOURCE_IO)
1476 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1477 else
1478 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1479
1480 length = resource_size(res);
1481 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1482 warn = 1;
1483 clash = acpi_check_address_range(space_id, res->start, length, warn);
1484
1485 if (clash) {
1486 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1487 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1488 printk(KERN_NOTICE "ACPI: This conflict may"
1489 " cause random problems and system"
1490 " instability\n");
1491 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1492 " for this device, you should use it instead of"
1493 " the native driver\n");
1494 }
1495 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1496 return -EBUSY;
1497 }
1498 return 0;
1499}
1500EXPORT_SYMBOL(acpi_check_resource_conflict);
1501
1502int acpi_check_region(resource_size_t start, resource_size_t n,
1503 const char *name)
1504{
1505 struct resource res = {
1506 .start = start,
1507 .end = start + n - 1,
1508 .name = name,
1509 .flags = IORESOURCE_IO,
1510 };
1511
1512 return acpi_check_resource_conflict(&res);
1513}
1514EXPORT_SYMBOL(acpi_check_region);
1515
1516static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1517 void *_res, void **return_value)
1518{
1519 struct acpi_mem_space_context **mem_ctx;
1520 union acpi_operand_object *handler_obj;
1521 union acpi_operand_object *region_obj2;
1522 union acpi_operand_object *region_obj;
1523 struct resource *res = _res;
1524 acpi_status status;
1525
1526 region_obj = acpi_ns_get_attached_object(handle);
1527 if (!region_obj)
1528 return AE_OK;
1529
1530 handler_obj = region_obj->region.handler;
1531 if (!handler_obj)
1532 return AE_OK;
1533
1534 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1535 return AE_OK;
1536
1537 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1538 return AE_OK;
1539
1540 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1541 if (!region_obj2)
1542 return AE_OK;
1543
1544 mem_ctx = (void *)®ion_obj2->extra.region_context;
1545
1546 if (!(mem_ctx[0]->address >= res->start &&
1547 mem_ctx[0]->address < res->end))
1548 return AE_OK;
1549
1550 status = handler_obj->address_space.setup(region_obj,
1551 ACPI_REGION_DEACTIVATE,
1552 NULL, (void **)mem_ctx);
1553 if (ACPI_SUCCESS(status))
1554 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1555
1556 return status;
1557}
1558
1559/**
1560 * acpi_release_memory - Release any mappings done to a memory region
1561 * @handle: Handle to namespace node
1562 * @res: Memory resource
1563 * @level: A level that terminates the search
1564 *
1565 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1566 * overlap with @res and that have already been activated (mapped).
1567 *
1568 * This is a helper that allows drivers to place special requirements on memory
1569 * region that may overlap with operation regions, primarily allowing them to
1570 * safely map the region as non-cached memory.
1571 *
1572 * The unmapped Operation Regions will be automatically remapped next time they
1573 * are called, so the drivers do not need to do anything else.
1574 */
1575acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1576 u32 level)
1577{
1578 acpi_status status;
1579
1580 if (!(res->flags & IORESOURCE_MEM))
1581 return AE_TYPE;
1582
1583 status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1584 acpi_deactivate_mem_region, NULL,
1585 res, NULL);
1586 if (ACPI_FAILURE(status))
1587 return status;
1588
1589 /*
1590 * Wait for all of the mappings queued up for removal by
1591 * acpi_deactivate_mem_region() to actually go away.
1592 */
1593 synchronize_rcu();
1594 rcu_barrier();
1595 flush_scheduled_work();
1596
1597 return AE_OK;
1598}
1599EXPORT_SYMBOL_GPL(acpi_release_memory);
1600
1601/*
1602 * Let drivers know whether the resource checks are effective
1603 */
1604int acpi_resources_are_enforced(void)
1605{
1606 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1607}
1608EXPORT_SYMBOL(acpi_resources_are_enforced);
1609
1610/*
1611 * Deallocate the memory for a spinlock.
1612 */
1613void acpi_os_delete_lock(acpi_spinlock handle)
1614{
1615 ACPI_FREE(handle);
1616}
1617
1618/*
1619 * Acquire a spinlock.
1620 *
1621 * handle is a pointer to the spinlock_t.
1622 */
1623
1624acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1625 __acquires(lockp)
1626{
1627 acpi_cpu_flags flags;
1628 spin_lock_irqsave(lockp, flags);
1629 return flags;
1630}
1631
1632/*
1633 * Release a spinlock. See above.
1634 */
1635
1636void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1637 __releases(lockp)
1638{
1639 spin_unlock_irqrestore(lockp, flags);
1640}
1641
1642#ifndef ACPI_USE_LOCAL_CACHE
1643
1644/*******************************************************************************
1645 *
1646 * FUNCTION: acpi_os_create_cache
1647 *
1648 * PARAMETERS: name - Ascii name for the cache
1649 * size - Size of each cached object
1650 * depth - Maximum depth of the cache (in objects) <ignored>
1651 * cache - Where the new cache object is returned
1652 *
1653 * RETURN: status
1654 *
1655 * DESCRIPTION: Create a cache object
1656 *
1657 ******************************************************************************/
1658
1659acpi_status
1660acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1661{
1662 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1663 if (*cache == NULL)
1664 return AE_ERROR;
1665 else
1666 return AE_OK;
1667}
1668
1669/*******************************************************************************
1670 *
1671 * FUNCTION: acpi_os_purge_cache
1672 *
1673 * PARAMETERS: Cache - Handle to cache object
1674 *
1675 * RETURN: Status
1676 *
1677 * DESCRIPTION: Free all objects within the requested cache.
1678 *
1679 ******************************************************************************/
1680
1681acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1682{
1683 kmem_cache_shrink(cache);
1684 return (AE_OK);
1685}
1686
1687/*******************************************************************************
1688 *
1689 * FUNCTION: acpi_os_delete_cache
1690 *
1691 * PARAMETERS: Cache - Handle to cache object
1692 *
1693 * RETURN: Status
1694 *
1695 * DESCRIPTION: Free all objects within the requested cache and delete the
1696 * cache object.
1697 *
1698 ******************************************************************************/
1699
1700acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1701{
1702 kmem_cache_destroy(cache);
1703 return (AE_OK);
1704}
1705
1706/*******************************************************************************
1707 *
1708 * FUNCTION: acpi_os_release_object
1709 *
1710 * PARAMETERS: Cache - Handle to cache object
1711 * Object - The object to be released
1712 *
1713 * RETURN: None
1714 *
1715 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1716 * the object is deleted.
1717 *
1718 ******************************************************************************/
1719
1720acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1721{
1722 kmem_cache_free(cache, object);
1723 return (AE_OK);
1724}
1725#endif
1726
1727static int __init acpi_no_static_ssdt_setup(char *s)
1728{
1729 acpi_gbl_disable_ssdt_table_install = TRUE;
1730 pr_info("ACPI: static SSDT installation disabled\n");
1731
1732 return 0;
1733}
1734
1735early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1736
1737static int __init acpi_disable_return_repair(char *s)
1738{
1739 printk(KERN_NOTICE PREFIX
1740 "ACPI: Predefined validation mechanism disabled\n");
1741 acpi_gbl_disable_auto_repair = TRUE;
1742
1743 return 1;
1744}
1745
1746__setup("acpica_no_return_repair", acpi_disable_return_repair);
1747
1748acpi_status __init acpi_os_initialize(void)
1749{
1750 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1751 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1752 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1753 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1754 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1755 /*
1756 * Use acpi_os_map_generic_address to pre-map the reset
1757 * register if it's in system memory.
1758 */
1759 int rv;
1760
1761 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1762 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1763 }
1764 acpi_os_initialized = true;
1765
1766 return AE_OK;
1767}
1768
1769acpi_status __init acpi_os_initialize1(void)
1770{
1771 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1772 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1773 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1774 BUG_ON(!kacpid_wq);
1775 BUG_ON(!kacpi_notify_wq);
1776 BUG_ON(!kacpi_hotplug_wq);
1777 acpi_osi_init();
1778 return AE_OK;
1779}
1780
1781acpi_status acpi_os_terminate(void)
1782{
1783 if (acpi_irq_handler) {
1784 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1785 acpi_irq_handler);
1786 }
1787
1788 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1789 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1790 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1791 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1792 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1793 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1794
1795 destroy_workqueue(kacpid_wq);
1796 destroy_workqueue(kacpi_notify_wq);
1797 destroy_workqueue(kacpi_hotplug_wq);
1798
1799 return AE_OK;
1800}
1801
1802acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1803 u32 pm1b_control)
1804{
1805 int rc = 0;
1806 if (__acpi_os_prepare_sleep)
1807 rc = __acpi_os_prepare_sleep(sleep_state,
1808 pm1a_control, pm1b_control);
1809 if (rc < 0)
1810 return AE_ERROR;
1811 else if (rc > 0)
1812 return AE_CTRL_TERMINATE;
1813
1814 return AE_OK;
1815}
1816
1817void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1818 u32 pm1a_ctrl, u32 pm1b_ctrl))
1819{
1820 __acpi_os_prepare_sleep = func;
1821}
1822
1823#if (ACPI_REDUCED_HARDWARE)
1824acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1825 u32 val_b)
1826{
1827 int rc = 0;
1828 if (__acpi_os_prepare_extended_sleep)
1829 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1830 val_a, val_b);
1831 if (rc < 0)
1832 return AE_ERROR;
1833 else if (rc > 0)
1834 return AE_CTRL_TERMINATE;
1835
1836 return AE_OK;
1837}
1838#else
1839acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1840 u32 val_b)
1841{
1842 return AE_OK;
1843}
1844#endif
1845
1846void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1847 u32 val_a, u32 val_b))
1848{
1849 __acpi_os_prepare_extended_sleep = func;
1850}
1851
1852acpi_status acpi_os_enter_sleep(u8 sleep_state,
1853 u32 reg_a_value, u32 reg_b_value)
1854{
1855 acpi_status status;
1856
1857 if (acpi_gbl_reduced_hardware)
1858 status = acpi_os_prepare_extended_sleep(sleep_state,
1859 reg_a_value,
1860 reg_b_value);
1861 else
1862 status = acpi_os_prepare_sleep(sleep_state,
1863 reg_a_value, reg_b_value);
1864 return status;
1865}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "acpica/acnamesp.h"
40#include "internal.h"
41
42/* Definitions for ACPI_DEBUG_PRINT() */
43#define _COMPONENT ACPI_OS_SERVICES
44ACPI_MODULE_NAME("osl");
45
46struct acpi_os_dpc {
47 acpi_osd_exec_callback function;
48 void *context;
49 struct work_struct work;
50};
51
52#ifdef ENABLE_DEBUGGER
53#include <linux/kdb.h>
54
55/* stuff for debugger support */
56int acpi_in_debugger;
57EXPORT_SYMBOL(acpi_in_debugger);
58#endif /*ENABLE_DEBUGGER */
59
60static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
61 u32 pm1b_ctrl);
62static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
63 u32 val_b);
64
65static acpi_osd_handler acpi_irq_handler;
66static void *acpi_irq_context;
67static struct workqueue_struct *kacpid_wq;
68static struct workqueue_struct *kacpi_notify_wq;
69static struct workqueue_struct *kacpi_hotplug_wq;
70static bool acpi_os_initialized;
71unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
72bool acpi_permanent_mmap = false;
73
74/*
75 * This list of permanent mappings is for memory that may be accessed from
76 * interrupt context, where we can't do the ioremap().
77 */
78struct acpi_ioremap {
79 struct list_head list;
80 void __iomem *virt;
81 acpi_physical_address phys;
82 acpi_size size;
83 union {
84 unsigned long refcount;
85 struct rcu_work rwork;
86 } track;
87};
88
89static LIST_HEAD(acpi_ioremaps);
90static DEFINE_MUTEX(acpi_ioremap_lock);
91#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
92
93static void __init acpi_request_region (struct acpi_generic_address *gas,
94 unsigned int length, char *desc)
95{
96 u64 addr;
97
98 /* Handle possible alignment issues */
99 memcpy(&addr, &gas->address, sizeof(addr));
100 if (!addr || !length)
101 return;
102
103 /* Resources are never freed */
104 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
105 request_region(addr, length, desc);
106 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
107 request_mem_region(addr, length, desc);
108}
109
110static int __init acpi_reserve_resources(void)
111{
112 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
113 "ACPI PM1a_EVT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
116 "ACPI PM1b_EVT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
119 "ACPI PM1a_CNT_BLK");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
122 "ACPI PM1b_CNT_BLK");
123
124 if (acpi_gbl_FADT.pm_timer_length == 4)
125 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
126
127 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
128 "ACPI PM2_CNT_BLK");
129
130 /* Length of GPE blocks must be a non-negative multiple of 2 */
131
132 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
133 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
134 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
135
136 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
137 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
138 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
139
140 return 0;
141}
142fs_initcall_sync(acpi_reserve_resources);
143
144void acpi_os_printf(const char *fmt, ...)
145{
146 va_list args;
147 va_start(args, fmt);
148 acpi_os_vprintf(fmt, args);
149 va_end(args);
150}
151EXPORT_SYMBOL(acpi_os_printf);
152
153void acpi_os_vprintf(const char *fmt, va_list args)
154{
155 static char buffer[512];
156
157 vsprintf(buffer, fmt, args);
158
159#ifdef ENABLE_DEBUGGER
160 if (acpi_in_debugger) {
161 kdb_printf("%s", buffer);
162 } else {
163 if (printk_get_level(buffer))
164 printk("%s", buffer);
165 else
166 printk(KERN_CONT "%s", buffer);
167 }
168#else
169 if (acpi_debugger_write_log(buffer) < 0) {
170 if (printk_get_level(buffer))
171 printk("%s", buffer);
172 else
173 printk(KERN_CONT "%s", buffer);
174 }
175#endif
176}
177
178#ifdef CONFIG_KEXEC
179static unsigned long acpi_rsdp;
180static int __init setup_acpi_rsdp(char *arg)
181{
182 return kstrtoul(arg, 16, &acpi_rsdp);
183}
184early_param("acpi_rsdp", setup_acpi_rsdp);
185#endif
186
187acpi_physical_address __init acpi_os_get_root_pointer(void)
188{
189 acpi_physical_address pa;
190
191#ifdef CONFIG_KEXEC
192 /*
193 * We may have been provided with an RSDP on the command line,
194 * but if a malicious user has done so they may be pointing us
195 * at modified ACPI tables that could alter kernel behaviour -
196 * so, we check the lockdown status before making use of
197 * it. If we trust it then also stash it in an architecture
198 * specific location (if appropriate) so it can be carried
199 * over further kexec()s.
200 */
201 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
202 acpi_arch_set_root_pointer(acpi_rsdp);
203 return acpi_rsdp;
204 }
205#endif
206 pa = acpi_arch_get_root_pointer();
207 if (pa)
208 return pa;
209
210 if (efi_enabled(EFI_CONFIG_TABLES)) {
211 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
212 return efi.acpi20;
213 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
214 return efi.acpi;
215 pr_err("System description tables not found\n");
216 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
217 acpi_find_root_pointer(&pa);
218 }
219
220 return pa;
221}
222
223/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
224static struct acpi_ioremap *
225acpi_map_lookup(acpi_physical_address phys, acpi_size size)
226{
227 struct acpi_ioremap *map;
228
229 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
230 if (map->phys <= phys &&
231 phys + size <= map->phys + map->size)
232 return map;
233
234 return NULL;
235}
236
237/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
238static void __iomem *
239acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
240{
241 struct acpi_ioremap *map;
242
243 map = acpi_map_lookup(phys, size);
244 if (map)
245 return map->virt + (phys - map->phys);
246
247 return NULL;
248}
249
250void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
251{
252 struct acpi_ioremap *map;
253 void __iomem *virt = NULL;
254
255 mutex_lock(&acpi_ioremap_lock);
256 map = acpi_map_lookup(phys, size);
257 if (map) {
258 virt = map->virt + (phys - map->phys);
259 map->track.refcount++;
260 }
261 mutex_unlock(&acpi_ioremap_lock);
262 return virt;
263}
264EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
265
266/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
267static struct acpi_ioremap *
268acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
269{
270 struct acpi_ioremap *map;
271
272 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
273 if (map->virt <= virt &&
274 virt + size <= map->virt + map->size)
275 return map;
276
277 return NULL;
278}
279
280#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
281/* ioremap will take care of cache attributes */
282#define should_use_kmap(pfn) 0
283#else
284#define should_use_kmap(pfn) page_is_ram(pfn)
285#endif
286
287static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
288{
289 unsigned long pfn;
290
291 pfn = pg_off >> PAGE_SHIFT;
292 if (should_use_kmap(pfn)) {
293 if (pg_sz > PAGE_SIZE)
294 return NULL;
295 return (void __iomem __force *)kmap(pfn_to_page(pfn));
296 } else
297 return acpi_os_ioremap(pg_off, pg_sz);
298}
299
300static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
301{
302 unsigned long pfn;
303
304 pfn = pg_off >> PAGE_SHIFT;
305 if (should_use_kmap(pfn))
306 kunmap(pfn_to_page(pfn));
307 else
308 iounmap(vaddr);
309}
310
311/**
312 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
313 * @phys: Start of the physical address range to map.
314 * @size: Size of the physical address range to map.
315 *
316 * Look up the given physical address range in the list of existing ACPI memory
317 * mappings. If found, get a reference to it and return a pointer to it (its
318 * virtual address). If not found, map it, add it to that list and return a
319 * pointer to it.
320 *
321 * During early init (when acpi_permanent_mmap has not been set yet) this
322 * routine simply calls __acpi_map_table() to get the job done.
323 */
324void __iomem __ref
325*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
326{
327 struct acpi_ioremap *map;
328 void __iomem *virt;
329 acpi_physical_address pg_off;
330 acpi_size pg_sz;
331
332 if (phys > ULONG_MAX) {
333 pr_err("Cannot map memory that high: 0x%llx\n", phys);
334 return NULL;
335 }
336
337 if (!acpi_permanent_mmap)
338 return __acpi_map_table((unsigned long)phys, size);
339
340 mutex_lock(&acpi_ioremap_lock);
341 /* Check if there's a suitable mapping already. */
342 map = acpi_map_lookup(phys, size);
343 if (map) {
344 map->track.refcount++;
345 goto out;
346 }
347
348 map = kzalloc(sizeof(*map), GFP_KERNEL);
349 if (!map) {
350 mutex_unlock(&acpi_ioremap_lock);
351 return NULL;
352 }
353
354 pg_off = round_down(phys, PAGE_SIZE);
355 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
356 virt = acpi_map(phys, size);
357 if (!virt) {
358 mutex_unlock(&acpi_ioremap_lock);
359 kfree(map);
360 return NULL;
361 }
362
363 INIT_LIST_HEAD(&map->list);
364 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
365 map->phys = pg_off;
366 map->size = pg_sz;
367 map->track.refcount = 1;
368
369 list_add_tail_rcu(&map->list, &acpi_ioremaps);
370
371out:
372 mutex_unlock(&acpi_ioremap_lock);
373 return map->virt + (phys - map->phys);
374}
375EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
376
377void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
378{
379 return (void *)acpi_os_map_iomem(phys, size);
380}
381EXPORT_SYMBOL_GPL(acpi_os_map_memory);
382
383static void acpi_os_map_remove(struct work_struct *work)
384{
385 struct acpi_ioremap *map = container_of(to_rcu_work(work),
386 struct acpi_ioremap,
387 track.rwork);
388
389 acpi_unmap(map->phys, map->virt);
390 kfree(map);
391}
392
393/* Must be called with mutex_lock(&acpi_ioremap_lock) */
394static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
395{
396 if (--map->track.refcount)
397 return;
398
399 list_del_rcu(&map->list);
400
401 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
402 queue_rcu_work(system_wq, &map->track.rwork);
403}
404
405/**
406 * acpi_os_unmap_iomem - Drop a memory mapping reference.
407 * @virt: Start of the address range to drop a reference to.
408 * @size: Size of the address range to drop a reference to.
409 *
410 * Look up the given virtual address range in the list of existing ACPI memory
411 * mappings, drop a reference to it and if there are no more active references
412 * to it, queue it up for later removal.
413 *
414 * During early init (when acpi_permanent_mmap has not been set yet) this
415 * routine simply calls __acpi_unmap_table() to get the job done. Since
416 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
417 * here.
418 */
419void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
420{
421 struct acpi_ioremap *map;
422
423 if (!acpi_permanent_mmap) {
424 __acpi_unmap_table(virt, size);
425 return;
426 }
427
428 mutex_lock(&acpi_ioremap_lock);
429
430 map = acpi_map_lookup_virt(virt, size);
431 if (!map) {
432 mutex_unlock(&acpi_ioremap_lock);
433 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
434 return;
435 }
436 acpi_os_drop_map_ref(map);
437
438 mutex_unlock(&acpi_ioremap_lock);
439}
440EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
441
442/**
443 * acpi_os_unmap_memory - Drop a memory mapping reference.
444 * @virt: Start of the address range to drop a reference to.
445 * @size: Size of the address range to drop a reference to.
446 */
447void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
448{
449 acpi_os_unmap_iomem((void __iomem *)virt, size);
450}
451EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
452
453void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
454{
455 u64 addr;
456
457 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
458 return NULL;
459
460 /* Handle possible alignment issues */
461 memcpy(&addr, &gas->address, sizeof(addr));
462 if (!addr || !gas->bit_width)
463 return NULL;
464
465 return acpi_os_map_iomem(addr, gas->bit_width / 8);
466}
467EXPORT_SYMBOL(acpi_os_map_generic_address);
468
469void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
470{
471 u64 addr;
472 struct acpi_ioremap *map;
473
474 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
475 return;
476
477 /* Handle possible alignment issues */
478 memcpy(&addr, &gas->address, sizeof(addr));
479 if (!addr || !gas->bit_width)
480 return;
481
482 mutex_lock(&acpi_ioremap_lock);
483
484 map = acpi_map_lookup(addr, gas->bit_width / 8);
485 if (!map) {
486 mutex_unlock(&acpi_ioremap_lock);
487 return;
488 }
489 acpi_os_drop_map_ref(map);
490
491 mutex_unlock(&acpi_ioremap_lock);
492}
493EXPORT_SYMBOL(acpi_os_unmap_generic_address);
494
495#ifdef ACPI_FUTURE_USAGE
496acpi_status
497acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
498{
499 if (!phys || !virt)
500 return AE_BAD_PARAMETER;
501
502 *phys = virt_to_phys(virt);
503
504 return AE_OK;
505}
506#endif
507
508#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
509static bool acpi_rev_override;
510
511int __init acpi_rev_override_setup(char *str)
512{
513 acpi_rev_override = true;
514 return 1;
515}
516__setup("acpi_rev_override", acpi_rev_override_setup);
517#else
518#define acpi_rev_override false
519#endif
520
521#define ACPI_MAX_OVERRIDE_LEN 100
522
523static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
524
525acpi_status
526acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
527 acpi_string *new_val)
528{
529 if (!init_val || !new_val)
530 return AE_BAD_PARAMETER;
531
532 *new_val = NULL;
533 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
534 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
535 *new_val = acpi_os_name;
536 }
537
538 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
539 pr_info("Overriding _REV return value to 5\n");
540 *new_val = (char *)5;
541 }
542
543 return AE_OK;
544}
545
546static irqreturn_t acpi_irq(int irq, void *dev_id)
547{
548 u32 handled;
549
550 handled = (*acpi_irq_handler) (acpi_irq_context);
551
552 if (handled) {
553 acpi_irq_handled++;
554 return IRQ_HANDLED;
555 } else {
556 acpi_irq_not_handled++;
557 return IRQ_NONE;
558 }
559}
560
561acpi_status
562acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
563 void *context)
564{
565 unsigned int irq;
566
567 acpi_irq_stats_init();
568
569 /*
570 * ACPI interrupts different from the SCI in our copy of the FADT are
571 * not supported.
572 */
573 if (gsi != acpi_gbl_FADT.sci_interrupt)
574 return AE_BAD_PARAMETER;
575
576 if (acpi_irq_handler)
577 return AE_ALREADY_ACQUIRED;
578
579 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
580 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
581 return AE_OK;
582 }
583
584 acpi_irq_handler = handler;
585 acpi_irq_context = context;
586 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
587 pr_err("SCI (IRQ%d) allocation failed\n", irq);
588 acpi_irq_handler = NULL;
589 return AE_NOT_ACQUIRED;
590 }
591 acpi_sci_irq = irq;
592
593 return AE_OK;
594}
595
596acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
597{
598 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
599 return AE_BAD_PARAMETER;
600
601 free_irq(acpi_sci_irq, acpi_irq);
602 acpi_irq_handler = NULL;
603 acpi_sci_irq = INVALID_ACPI_IRQ;
604
605 return AE_OK;
606}
607
608/*
609 * Running in interpreter thread context, safe to sleep
610 */
611
612void acpi_os_sleep(u64 ms)
613{
614 msleep(ms);
615}
616
617void acpi_os_stall(u32 us)
618{
619 while (us) {
620 u32 delay = 1000;
621
622 if (delay > us)
623 delay = us;
624 udelay(delay);
625 touch_nmi_watchdog();
626 us -= delay;
627 }
628}
629
630/*
631 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
632 * monotonically increasing timer with 100ns granularity. Do not use
633 * ktime_get() to implement this function because this function may get
634 * called after timekeeping has been suspended. Note: calling this function
635 * after timekeeping has been suspended may lead to unexpected results
636 * because when timekeeping is suspended the jiffies counter is not
637 * incremented. See also timekeeping_suspend().
638 */
639u64 acpi_os_get_timer(void)
640{
641 return (get_jiffies_64() - INITIAL_JIFFIES) *
642 (ACPI_100NSEC_PER_SEC / HZ);
643}
644
645acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
646{
647 u32 dummy;
648
649 if (!value)
650 value = &dummy;
651
652 *value = 0;
653 if (width <= 8) {
654 *(u8 *) value = inb(port);
655 } else if (width <= 16) {
656 *(u16 *) value = inw(port);
657 } else if (width <= 32) {
658 *(u32 *) value = inl(port);
659 } else {
660 BUG();
661 }
662
663 return AE_OK;
664}
665
666EXPORT_SYMBOL(acpi_os_read_port);
667
668acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
669{
670 if (width <= 8) {
671 outb(value, port);
672 } else if (width <= 16) {
673 outw(value, port);
674 } else if (width <= 32) {
675 outl(value, port);
676 } else {
677 BUG();
678 }
679
680 return AE_OK;
681}
682
683EXPORT_SYMBOL(acpi_os_write_port);
684
685int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
686{
687
688 switch (width) {
689 case 8:
690 *(u8 *) value = readb(virt_addr);
691 break;
692 case 16:
693 *(u16 *) value = readw(virt_addr);
694 break;
695 case 32:
696 *(u32 *) value = readl(virt_addr);
697 break;
698 case 64:
699 *(u64 *) value = readq(virt_addr);
700 break;
701 default:
702 return -EINVAL;
703 }
704
705 return 0;
706}
707
708acpi_status
709acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
710{
711 void __iomem *virt_addr;
712 unsigned int size = width / 8;
713 bool unmap = false;
714 u64 dummy;
715 int error;
716
717 rcu_read_lock();
718 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
719 if (!virt_addr) {
720 rcu_read_unlock();
721 virt_addr = acpi_os_ioremap(phys_addr, size);
722 if (!virt_addr)
723 return AE_BAD_ADDRESS;
724 unmap = true;
725 }
726
727 if (!value)
728 value = &dummy;
729
730 error = acpi_os_read_iomem(virt_addr, value, width);
731 BUG_ON(error);
732
733 if (unmap)
734 iounmap(virt_addr);
735 else
736 rcu_read_unlock();
737
738 return AE_OK;
739}
740
741acpi_status
742acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
743{
744 void __iomem *virt_addr;
745 unsigned int size = width / 8;
746 bool unmap = false;
747
748 rcu_read_lock();
749 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
750 if (!virt_addr) {
751 rcu_read_unlock();
752 virt_addr = acpi_os_ioremap(phys_addr, size);
753 if (!virt_addr)
754 return AE_BAD_ADDRESS;
755 unmap = true;
756 }
757
758 switch (width) {
759 case 8:
760 writeb(value, virt_addr);
761 break;
762 case 16:
763 writew(value, virt_addr);
764 break;
765 case 32:
766 writel(value, virt_addr);
767 break;
768 case 64:
769 writeq(value, virt_addr);
770 break;
771 default:
772 BUG();
773 }
774
775 if (unmap)
776 iounmap(virt_addr);
777 else
778 rcu_read_unlock();
779
780 return AE_OK;
781}
782
783#ifdef CONFIG_PCI
784acpi_status
785acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
786 u64 *value, u32 width)
787{
788 int result, size;
789 u32 value32;
790
791 if (!value)
792 return AE_BAD_PARAMETER;
793
794 switch (width) {
795 case 8:
796 size = 1;
797 break;
798 case 16:
799 size = 2;
800 break;
801 case 32:
802 size = 4;
803 break;
804 default:
805 return AE_ERROR;
806 }
807
808 result = raw_pci_read(pci_id->segment, pci_id->bus,
809 PCI_DEVFN(pci_id->device, pci_id->function),
810 reg, size, &value32);
811 *value = value32;
812
813 return (result ? AE_ERROR : AE_OK);
814}
815
816acpi_status
817acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
818 u64 value, u32 width)
819{
820 int result, size;
821
822 switch (width) {
823 case 8:
824 size = 1;
825 break;
826 case 16:
827 size = 2;
828 break;
829 case 32:
830 size = 4;
831 break;
832 default:
833 return AE_ERROR;
834 }
835
836 result = raw_pci_write(pci_id->segment, pci_id->bus,
837 PCI_DEVFN(pci_id->device, pci_id->function),
838 reg, size, value);
839
840 return (result ? AE_ERROR : AE_OK);
841}
842#endif
843
844static void acpi_os_execute_deferred(struct work_struct *work)
845{
846 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
847
848 dpc->function(dpc->context);
849 kfree(dpc);
850}
851
852#ifdef CONFIG_ACPI_DEBUGGER
853static struct acpi_debugger acpi_debugger;
854static bool acpi_debugger_initialized;
855
856int acpi_register_debugger(struct module *owner,
857 const struct acpi_debugger_ops *ops)
858{
859 int ret = 0;
860
861 mutex_lock(&acpi_debugger.lock);
862 if (acpi_debugger.ops) {
863 ret = -EBUSY;
864 goto err_lock;
865 }
866
867 acpi_debugger.owner = owner;
868 acpi_debugger.ops = ops;
869
870err_lock:
871 mutex_unlock(&acpi_debugger.lock);
872 return ret;
873}
874EXPORT_SYMBOL(acpi_register_debugger);
875
876void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
877{
878 mutex_lock(&acpi_debugger.lock);
879 if (ops == acpi_debugger.ops) {
880 acpi_debugger.ops = NULL;
881 acpi_debugger.owner = NULL;
882 }
883 mutex_unlock(&acpi_debugger.lock);
884}
885EXPORT_SYMBOL(acpi_unregister_debugger);
886
887int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
888{
889 int ret;
890 int (*func)(acpi_osd_exec_callback, void *);
891 struct module *owner;
892
893 if (!acpi_debugger_initialized)
894 return -ENODEV;
895 mutex_lock(&acpi_debugger.lock);
896 if (!acpi_debugger.ops) {
897 ret = -ENODEV;
898 goto err_lock;
899 }
900 if (!try_module_get(acpi_debugger.owner)) {
901 ret = -ENODEV;
902 goto err_lock;
903 }
904 func = acpi_debugger.ops->create_thread;
905 owner = acpi_debugger.owner;
906 mutex_unlock(&acpi_debugger.lock);
907
908 ret = func(function, context);
909
910 mutex_lock(&acpi_debugger.lock);
911 module_put(owner);
912err_lock:
913 mutex_unlock(&acpi_debugger.lock);
914 return ret;
915}
916
917ssize_t acpi_debugger_write_log(const char *msg)
918{
919 ssize_t ret;
920 ssize_t (*func)(const char *);
921 struct module *owner;
922
923 if (!acpi_debugger_initialized)
924 return -ENODEV;
925 mutex_lock(&acpi_debugger.lock);
926 if (!acpi_debugger.ops) {
927 ret = -ENODEV;
928 goto err_lock;
929 }
930 if (!try_module_get(acpi_debugger.owner)) {
931 ret = -ENODEV;
932 goto err_lock;
933 }
934 func = acpi_debugger.ops->write_log;
935 owner = acpi_debugger.owner;
936 mutex_unlock(&acpi_debugger.lock);
937
938 ret = func(msg);
939
940 mutex_lock(&acpi_debugger.lock);
941 module_put(owner);
942err_lock:
943 mutex_unlock(&acpi_debugger.lock);
944 return ret;
945}
946
947ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
948{
949 ssize_t ret;
950 ssize_t (*func)(char *, size_t);
951 struct module *owner;
952
953 if (!acpi_debugger_initialized)
954 return -ENODEV;
955 mutex_lock(&acpi_debugger.lock);
956 if (!acpi_debugger.ops) {
957 ret = -ENODEV;
958 goto err_lock;
959 }
960 if (!try_module_get(acpi_debugger.owner)) {
961 ret = -ENODEV;
962 goto err_lock;
963 }
964 func = acpi_debugger.ops->read_cmd;
965 owner = acpi_debugger.owner;
966 mutex_unlock(&acpi_debugger.lock);
967
968 ret = func(buffer, buffer_length);
969
970 mutex_lock(&acpi_debugger.lock);
971 module_put(owner);
972err_lock:
973 mutex_unlock(&acpi_debugger.lock);
974 return ret;
975}
976
977int acpi_debugger_wait_command_ready(void)
978{
979 int ret;
980 int (*func)(bool, char *, size_t);
981 struct module *owner;
982
983 if (!acpi_debugger_initialized)
984 return -ENODEV;
985 mutex_lock(&acpi_debugger.lock);
986 if (!acpi_debugger.ops) {
987 ret = -ENODEV;
988 goto err_lock;
989 }
990 if (!try_module_get(acpi_debugger.owner)) {
991 ret = -ENODEV;
992 goto err_lock;
993 }
994 func = acpi_debugger.ops->wait_command_ready;
995 owner = acpi_debugger.owner;
996 mutex_unlock(&acpi_debugger.lock);
997
998 ret = func(acpi_gbl_method_executing,
999 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1000
1001 mutex_lock(&acpi_debugger.lock);
1002 module_put(owner);
1003err_lock:
1004 mutex_unlock(&acpi_debugger.lock);
1005 return ret;
1006}
1007
1008int acpi_debugger_notify_command_complete(void)
1009{
1010 int ret;
1011 int (*func)(void);
1012 struct module *owner;
1013
1014 if (!acpi_debugger_initialized)
1015 return -ENODEV;
1016 mutex_lock(&acpi_debugger.lock);
1017 if (!acpi_debugger.ops) {
1018 ret = -ENODEV;
1019 goto err_lock;
1020 }
1021 if (!try_module_get(acpi_debugger.owner)) {
1022 ret = -ENODEV;
1023 goto err_lock;
1024 }
1025 func = acpi_debugger.ops->notify_command_complete;
1026 owner = acpi_debugger.owner;
1027 mutex_unlock(&acpi_debugger.lock);
1028
1029 ret = func();
1030
1031 mutex_lock(&acpi_debugger.lock);
1032 module_put(owner);
1033err_lock:
1034 mutex_unlock(&acpi_debugger.lock);
1035 return ret;
1036}
1037
1038int __init acpi_debugger_init(void)
1039{
1040 mutex_init(&acpi_debugger.lock);
1041 acpi_debugger_initialized = true;
1042 return 0;
1043}
1044#endif
1045
1046/*******************************************************************************
1047 *
1048 * FUNCTION: acpi_os_execute
1049 *
1050 * PARAMETERS: Type - Type of the callback
1051 * Function - Function to be executed
1052 * Context - Function parameters
1053 *
1054 * RETURN: Status
1055 *
1056 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1057 * immediately executes function on a separate thread.
1058 *
1059 ******************************************************************************/
1060
1061acpi_status acpi_os_execute(acpi_execute_type type,
1062 acpi_osd_exec_callback function, void *context)
1063{
1064 acpi_status status = AE_OK;
1065 struct acpi_os_dpc *dpc;
1066 struct workqueue_struct *queue;
1067 int ret;
1068 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1069 "Scheduling function [%p(%p)] for deferred execution.\n",
1070 function, context));
1071
1072 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1073 ret = acpi_debugger_create_thread(function, context);
1074 if (ret) {
1075 pr_err("Kernel thread creation failed\n");
1076 status = AE_ERROR;
1077 }
1078 goto out_thread;
1079 }
1080
1081 /*
1082 * Allocate/initialize DPC structure. Note that this memory will be
1083 * freed by the callee. The kernel handles the work_struct list in a
1084 * way that allows us to also free its memory inside the callee.
1085 * Because we may want to schedule several tasks with different
1086 * parameters we can't use the approach some kernel code uses of
1087 * having a static work_struct.
1088 */
1089
1090 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1091 if (!dpc)
1092 return AE_NO_MEMORY;
1093
1094 dpc->function = function;
1095 dpc->context = context;
1096
1097 /*
1098 * To prevent lockdep from complaining unnecessarily, make sure that
1099 * there is a different static lockdep key for each workqueue by using
1100 * INIT_WORK() for each of them separately.
1101 */
1102 if (type == OSL_NOTIFY_HANDLER) {
1103 queue = kacpi_notify_wq;
1104 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1105 } else if (type == OSL_GPE_HANDLER) {
1106 queue = kacpid_wq;
1107 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1108 } else {
1109 pr_err("Unsupported os_execute type %d.\n", type);
1110 status = AE_ERROR;
1111 }
1112
1113 if (ACPI_FAILURE(status))
1114 goto err_workqueue;
1115
1116 /*
1117 * On some machines, a software-initiated SMI causes corruption unless
1118 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1119 * typically it's done in GPE-related methods that are run via
1120 * workqueues, so we can avoid the known corruption cases by always
1121 * queueing on CPU 0.
1122 */
1123 ret = queue_work_on(0, queue, &dpc->work);
1124 if (!ret) {
1125 pr_err("Unable to queue work\n");
1126 status = AE_ERROR;
1127 }
1128err_workqueue:
1129 if (ACPI_FAILURE(status))
1130 kfree(dpc);
1131out_thread:
1132 return status;
1133}
1134EXPORT_SYMBOL(acpi_os_execute);
1135
1136void acpi_os_wait_events_complete(void)
1137{
1138 /*
1139 * Make sure the GPE handler or the fixed event handler is not used
1140 * on another CPU after removal.
1141 */
1142 if (acpi_sci_irq_valid())
1143 synchronize_hardirq(acpi_sci_irq);
1144 flush_workqueue(kacpid_wq);
1145 flush_workqueue(kacpi_notify_wq);
1146}
1147EXPORT_SYMBOL(acpi_os_wait_events_complete);
1148
1149struct acpi_hp_work {
1150 struct work_struct work;
1151 struct acpi_device *adev;
1152 u32 src;
1153};
1154
1155static void acpi_hotplug_work_fn(struct work_struct *work)
1156{
1157 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1158
1159 acpi_os_wait_events_complete();
1160 acpi_device_hotplug(hpw->adev, hpw->src);
1161 kfree(hpw);
1162}
1163
1164acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1165{
1166 struct acpi_hp_work *hpw;
1167
1168 acpi_handle_debug(adev->handle,
1169 "Scheduling hotplug event %u for deferred handling\n",
1170 src);
1171
1172 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1173 if (!hpw)
1174 return AE_NO_MEMORY;
1175
1176 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1177 hpw->adev = adev;
1178 hpw->src = src;
1179 /*
1180 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1181 * the hotplug code may call driver .remove() functions, which may
1182 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1183 * these workqueues.
1184 */
1185 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1186 kfree(hpw);
1187 return AE_ERROR;
1188 }
1189 return AE_OK;
1190}
1191
1192bool acpi_queue_hotplug_work(struct work_struct *work)
1193{
1194 return queue_work(kacpi_hotplug_wq, work);
1195}
1196
1197acpi_status
1198acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1199{
1200 struct semaphore *sem = NULL;
1201
1202 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1203 if (!sem)
1204 return AE_NO_MEMORY;
1205
1206 sema_init(sem, initial_units);
1207
1208 *handle = (acpi_handle *) sem;
1209
1210 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1211 *handle, initial_units));
1212
1213 return AE_OK;
1214}
1215
1216/*
1217 * TODO: A better way to delete semaphores? Linux doesn't have a
1218 * 'delete_semaphore()' function -- may result in an invalid
1219 * pointer dereference for non-synchronized consumers. Should
1220 * we at least check for blocked threads and signal/cancel them?
1221 */
1222
1223acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1224{
1225 struct semaphore *sem = (struct semaphore *)handle;
1226
1227 if (!sem)
1228 return AE_BAD_PARAMETER;
1229
1230 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1231
1232 BUG_ON(!list_empty(&sem->wait_list));
1233 kfree(sem);
1234 sem = NULL;
1235
1236 return AE_OK;
1237}
1238
1239/*
1240 * TODO: Support for units > 1?
1241 */
1242acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1243{
1244 acpi_status status = AE_OK;
1245 struct semaphore *sem = (struct semaphore *)handle;
1246 long jiffies;
1247 int ret = 0;
1248
1249 if (!acpi_os_initialized)
1250 return AE_OK;
1251
1252 if (!sem || (units < 1))
1253 return AE_BAD_PARAMETER;
1254
1255 if (units > 1)
1256 return AE_SUPPORT;
1257
1258 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1259 handle, units, timeout));
1260
1261 if (timeout == ACPI_WAIT_FOREVER)
1262 jiffies = MAX_SCHEDULE_TIMEOUT;
1263 else
1264 jiffies = msecs_to_jiffies(timeout);
1265
1266 ret = down_timeout(sem, jiffies);
1267 if (ret)
1268 status = AE_TIME;
1269
1270 if (ACPI_FAILURE(status)) {
1271 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1272 "Failed to acquire semaphore[%p|%d|%d], %s",
1273 handle, units, timeout,
1274 acpi_format_exception(status)));
1275 } else {
1276 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277 "Acquired semaphore[%p|%d|%d]", handle,
1278 units, timeout));
1279 }
1280
1281 return status;
1282}
1283
1284/*
1285 * TODO: Support for units > 1?
1286 */
1287acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1288{
1289 struct semaphore *sem = (struct semaphore *)handle;
1290
1291 if (!acpi_os_initialized)
1292 return AE_OK;
1293
1294 if (!sem || (units < 1))
1295 return AE_BAD_PARAMETER;
1296
1297 if (units > 1)
1298 return AE_SUPPORT;
1299
1300 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1301 units));
1302
1303 up(sem);
1304
1305 return AE_OK;
1306}
1307
1308acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1309{
1310#ifdef ENABLE_DEBUGGER
1311 if (acpi_in_debugger) {
1312 u32 chars;
1313
1314 kdb_read(buffer, buffer_length);
1315
1316 /* remove the CR kdb includes */
1317 chars = strlen(buffer) - 1;
1318 buffer[chars] = '\0';
1319 }
1320#else
1321 int ret;
1322
1323 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1324 if (ret < 0)
1325 return AE_ERROR;
1326 if (bytes_read)
1327 *bytes_read = ret;
1328#endif
1329
1330 return AE_OK;
1331}
1332EXPORT_SYMBOL(acpi_os_get_line);
1333
1334acpi_status acpi_os_wait_command_ready(void)
1335{
1336 int ret;
1337
1338 ret = acpi_debugger_wait_command_ready();
1339 if (ret < 0)
1340 return AE_ERROR;
1341 return AE_OK;
1342}
1343
1344acpi_status acpi_os_notify_command_complete(void)
1345{
1346 int ret;
1347
1348 ret = acpi_debugger_notify_command_complete();
1349 if (ret < 0)
1350 return AE_ERROR;
1351 return AE_OK;
1352}
1353
1354acpi_status acpi_os_signal(u32 function, void *info)
1355{
1356 switch (function) {
1357 case ACPI_SIGNAL_FATAL:
1358 pr_err("Fatal opcode executed\n");
1359 break;
1360 case ACPI_SIGNAL_BREAKPOINT:
1361 /*
1362 * AML Breakpoint
1363 * ACPI spec. says to treat it as a NOP unless
1364 * you are debugging. So if/when we integrate
1365 * AML debugger into the kernel debugger its
1366 * hook will go here. But until then it is
1367 * not useful to print anything on breakpoints.
1368 */
1369 break;
1370 default:
1371 break;
1372 }
1373
1374 return AE_OK;
1375}
1376
1377static int __init acpi_os_name_setup(char *str)
1378{
1379 char *p = acpi_os_name;
1380 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1381
1382 if (!str || !*str)
1383 return 0;
1384
1385 for (; count-- && *str; str++) {
1386 if (isalnum(*str) || *str == ' ' || *str == ':')
1387 *p++ = *str;
1388 else if (*str == '\'' || *str == '"')
1389 continue;
1390 else
1391 break;
1392 }
1393 *p = 0;
1394
1395 return 1;
1396
1397}
1398
1399__setup("acpi_os_name=", acpi_os_name_setup);
1400
1401/*
1402 * Disable the auto-serialization of named objects creation methods.
1403 *
1404 * This feature is enabled by default. It marks the AML control methods
1405 * that contain the opcodes to create named objects as "Serialized".
1406 */
1407static int __init acpi_no_auto_serialize_setup(char *str)
1408{
1409 acpi_gbl_auto_serialize_methods = FALSE;
1410 pr_info("Auto-serialization disabled\n");
1411
1412 return 1;
1413}
1414
1415__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1416
1417/* Check of resource interference between native drivers and ACPI
1418 * OperationRegions (SystemIO and System Memory only).
1419 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1420 * in arbitrary AML code and can interfere with legacy drivers.
1421 * acpi_enforce_resources= can be set to:
1422 *
1423 * - strict (default) (2)
1424 * -> further driver trying to access the resources will not load
1425 * - lax (1)
1426 * -> further driver trying to access the resources will load, but you
1427 * get a system message that something might go wrong...
1428 *
1429 * - no (0)
1430 * -> ACPI Operation Region resources will not be registered
1431 *
1432 */
1433#define ENFORCE_RESOURCES_STRICT 2
1434#define ENFORCE_RESOURCES_LAX 1
1435#define ENFORCE_RESOURCES_NO 0
1436
1437static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1438
1439static int __init acpi_enforce_resources_setup(char *str)
1440{
1441 if (str == NULL || *str == '\0')
1442 return 0;
1443
1444 if (!strcmp("strict", str))
1445 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446 else if (!strcmp("lax", str))
1447 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1448 else if (!strcmp("no", str))
1449 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1450
1451 return 1;
1452}
1453
1454__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1455
1456/* Check for resource conflicts between ACPI OperationRegions and native
1457 * drivers */
1458int acpi_check_resource_conflict(const struct resource *res)
1459{
1460 acpi_adr_space_type space_id;
1461
1462 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1463 return 0;
1464
1465 if (res->flags & IORESOURCE_IO)
1466 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1467 else if (res->flags & IORESOURCE_MEM)
1468 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1469 else
1470 return 0;
1471
1472 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1473 return 0;
1474
1475 pr_info("Resource conflict; ACPI support missing from driver?\n");
1476
1477 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1478 return -EBUSY;
1479
1480 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1481 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1482
1483 return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488 const char *name)
1489{
1490 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1491
1492 return acpi_check_resource_conflict(&res);
1493}
1494EXPORT_SYMBOL(acpi_check_region);
1495
1496static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1497 void *_res, void **return_value)
1498{
1499 struct acpi_mem_space_context **mem_ctx;
1500 union acpi_operand_object *handler_obj;
1501 union acpi_operand_object *region_obj2;
1502 union acpi_operand_object *region_obj;
1503 struct resource *res = _res;
1504 acpi_status status;
1505
1506 region_obj = acpi_ns_get_attached_object(handle);
1507 if (!region_obj)
1508 return AE_OK;
1509
1510 handler_obj = region_obj->region.handler;
1511 if (!handler_obj)
1512 return AE_OK;
1513
1514 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1515 return AE_OK;
1516
1517 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1518 return AE_OK;
1519
1520 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1521 if (!region_obj2)
1522 return AE_OK;
1523
1524 mem_ctx = (void *)®ion_obj2->extra.region_context;
1525
1526 if (!(mem_ctx[0]->address >= res->start &&
1527 mem_ctx[0]->address < res->end))
1528 return AE_OK;
1529
1530 status = handler_obj->address_space.setup(region_obj,
1531 ACPI_REGION_DEACTIVATE,
1532 NULL, (void **)mem_ctx);
1533 if (ACPI_SUCCESS(status))
1534 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1535
1536 return status;
1537}
1538
1539/**
1540 * acpi_release_memory - Release any mappings done to a memory region
1541 * @handle: Handle to namespace node
1542 * @res: Memory resource
1543 * @level: A level that terminates the search
1544 *
1545 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1546 * overlap with @res and that have already been activated (mapped).
1547 *
1548 * This is a helper that allows drivers to place special requirements on memory
1549 * region that may overlap with operation regions, primarily allowing them to
1550 * safely map the region as non-cached memory.
1551 *
1552 * The unmapped Operation Regions will be automatically remapped next time they
1553 * are called, so the drivers do not need to do anything else.
1554 */
1555acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1556 u32 level)
1557{
1558 acpi_status status;
1559
1560 if (!(res->flags & IORESOURCE_MEM))
1561 return AE_TYPE;
1562
1563 status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1564 acpi_deactivate_mem_region, NULL,
1565 res, NULL);
1566 if (ACPI_FAILURE(status))
1567 return status;
1568
1569 /*
1570 * Wait for all of the mappings queued up for removal by
1571 * acpi_deactivate_mem_region() to actually go away.
1572 */
1573 synchronize_rcu();
1574 rcu_barrier();
1575 flush_scheduled_work();
1576
1577 return AE_OK;
1578}
1579EXPORT_SYMBOL_GPL(acpi_release_memory);
1580
1581/*
1582 * Let drivers know whether the resource checks are effective
1583 */
1584int acpi_resources_are_enforced(void)
1585{
1586 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1587}
1588EXPORT_SYMBOL(acpi_resources_are_enforced);
1589
1590/*
1591 * Deallocate the memory for a spinlock.
1592 */
1593void acpi_os_delete_lock(acpi_spinlock handle)
1594{
1595 ACPI_FREE(handle);
1596}
1597
1598/*
1599 * Acquire a spinlock.
1600 *
1601 * handle is a pointer to the spinlock_t.
1602 */
1603
1604acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1605 __acquires(lockp)
1606{
1607 acpi_cpu_flags flags;
1608 spin_lock_irqsave(lockp, flags);
1609 return flags;
1610}
1611
1612/*
1613 * Release a spinlock. See above.
1614 */
1615
1616void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1617 __releases(lockp)
1618{
1619 spin_unlock_irqrestore(lockp, flags);
1620}
1621
1622#ifndef ACPI_USE_LOCAL_CACHE
1623
1624/*******************************************************************************
1625 *
1626 * FUNCTION: acpi_os_create_cache
1627 *
1628 * PARAMETERS: name - Ascii name for the cache
1629 * size - Size of each cached object
1630 * depth - Maximum depth of the cache (in objects) <ignored>
1631 * cache - Where the new cache object is returned
1632 *
1633 * RETURN: status
1634 *
1635 * DESCRIPTION: Create a cache object
1636 *
1637 ******************************************************************************/
1638
1639acpi_status
1640acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1641{
1642 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1643 if (*cache == NULL)
1644 return AE_ERROR;
1645 else
1646 return AE_OK;
1647}
1648
1649/*******************************************************************************
1650 *
1651 * FUNCTION: acpi_os_purge_cache
1652 *
1653 * PARAMETERS: Cache - Handle to cache object
1654 *
1655 * RETURN: Status
1656 *
1657 * DESCRIPTION: Free all objects within the requested cache.
1658 *
1659 ******************************************************************************/
1660
1661acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1662{
1663 kmem_cache_shrink(cache);
1664 return (AE_OK);
1665}
1666
1667/*******************************************************************************
1668 *
1669 * FUNCTION: acpi_os_delete_cache
1670 *
1671 * PARAMETERS: Cache - Handle to cache object
1672 *
1673 * RETURN: Status
1674 *
1675 * DESCRIPTION: Free all objects within the requested cache and delete the
1676 * cache object.
1677 *
1678 ******************************************************************************/
1679
1680acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1681{
1682 kmem_cache_destroy(cache);
1683 return (AE_OK);
1684}
1685
1686/*******************************************************************************
1687 *
1688 * FUNCTION: acpi_os_release_object
1689 *
1690 * PARAMETERS: Cache - Handle to cache object
1691 * Object - The object to be released
1692 *
1693 * RETURN: None
1694 *
1695 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1696 * the object is deleted.
1697 *
1698 ******************************************************************************/
1699
1700acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1701{
1702 kmem_cache_free(cache, object);
1703 return (AE_OK);
1704}
1705#endif
1706
1707static int __init acpi_no_static_ssdt_setup(char *s)
1708{
1709 acpi_gbl_disable_ssdt_table_install = TRUE;
1710 pr_info("Static SSDT installation disabled\n");
1711
1712 return 0;
1713}
1714
1715early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1716
1717static int __init acpi_disable_return_repair(char *s)
1718{
1719 pr_notice("Predefined validation mechanism disabled\n");
1720 acpi_gbl_disable_auto_repair = TRUE;
1721
1722 return 1;
1723}
1724
1725__setup("acpica_no_return_repair", acpi_disable_return_repair);
1726
1727acpi_status __init acpi_os_initialize(void)
1728{
1729 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1730 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1731
1732 acpi_gbl_xgpe0_block_logical_address =
1733 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1734 acpi_gbl_xgpe1_block_logical_address =
1735 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1736
1737 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1738 /*
1739 * Use acpi_os_map_generic_address to pre-map the reset
1740 * register if it's in system memory.
1741 */
1742 void *rv;
1743
1744 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1745 pr_debug("%s: Reset register mapping %s\n", __func__,
1746 rv ? "successful" : "failed");
1747 }
1748 acpi_os_initialized = true;
1749
1750 return AE_OK;
1751}
1752
1753acpi_status __init acpi_os_initialize1(void)
1754{
1755 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1756 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1757 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1758 BUG_ON(!kacpid_wq);
1759 BUG_ON(!kacpi_notify_wq);
1760 BUG_ON(!kacpi_hotplug_wq);
1761 acpi_osi_init();
1762 return AE_OK;
1763}
1764
1765acpi_status acpi_os_terminate(void)
1766{
1767 if (acpi_irq_handler) {
1768 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1769 acpi_irq_handler);
1770 }
1771
1772 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1773 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1774 acpi_gbl_xgpe0_block_logical_address = 0UL;
1775 acpi_gbl_xgpe1_block_logical_address = 0UL;
1776
1777 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1778 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1779
1780 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1781 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1782
1783 destroy_workqueue(kacpid_wq);
1784 destroy_workqueue(kacpi_notify_wq);
1785 destroy_workqueue(kacpi_hotplug_wq);
1786
1787 return AE_OK;
1788}
1789
1790acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1791 u32 pm1b_control)
1792{
1793 int rc = 0;
1794 if (__acpi_os_prepare_sleep)
1795 rc = __acpi_os_prepare_sleep(sleep_state,
1796 pm1a_control, pm1b_control);
1797 if (rc < 0)
1798 return AE_ERROR;
1799 else if (rc > 0)
1800 return AE_CTRL_TERMINATE;
1801
1802 return AE_OK;
1803}
1804
1805void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1806 u32 pm1a_ctrl, u32 pm1b_ctrl))
1807{
1808 __acpi_os_prepare_sleep = func;
1809}
1810
1811#if (ACPI_REDUCED_HARDWARE)
1812acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1813 u32 val_b)
1814{
1815 int rc = 0;
1816 if (__acpi_os_prepare_extended_sleep)
1817 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1818 val_a, val_b);
1819 if (rc < 0)
1820 return AE_ERROR;
1821 else if (rc > 0)
1822 return AE_CTRL_TERMINATE;
1823
1824 return AE_OK;
1825}
1826#else
1827acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1828 u32 val_b)
1829{
1830 return AE_OK;
1831}
1832#endif
1833
1834void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1835 u32 val_a, u32 val_b))
1836{
1837 __acpi_os_prepare_extended_sleep = func;
1838}
1839
1840acpi_status acpi_os_enter_sleep(u8 sleep_state,
1841 u32 reg_a_value, u32 reg_b_value)
1842{
1843 acpi_status status;
1844
1845 if (acpi_gbl_reduced_hardware)
1846 status = acpi_os_prepare_extended_sleep(sleep_state,
1847 reg_a_value,
1848 reg_b_value);
1849 else
1850 status = acpi_os_prepare_sleep(sleep_state,
1851 reg_a_value, reg_b_value);
1852 return status;
1853}