Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/highmem.h>
17#include <linux/lockdep.h>
18#include <linux/pci.h>
19#include <linux/interrupt.h>
20#include <linux/kmod.h>
21#include <linux/delay.h>
22#include <linux/workqueue.h>
23#include <linux/nmi.h>
24#include <linux/acpi.h>
25#include <linux/efi.h>
26#include <linux/ioport.h>
27#include <linux/list.h>
28#include <linux/jiffies.h>
29#include <linux/semaphore.h>
30#include <linux/security.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34#include <linux/io-64-nonatomic-lo-hi.h>
35
36#include "acpica/accommon.h"
37#include "acpica/acnamesp.h"
38#include "internal.h"
39
40#define _COMPONENT ACPI_OS_SERVICES
41ACPI_MODULE_NAME("osl");
42
43struct acpi_os_dpc {
44 acpi_osd_exec_callback function;
45 void *context;
46 struct work_struct work;
47};
48
49#ifdef ENABLE_DEBUGGER
50#include <linux/kdb.h>
51
52/* stuff for debugger support */
53int acpi_in_debugger;
54EXPORT_SYMBOL(acpi_in_debugger);
55#endif /*ENABLE_DEBUGGER */
56
57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 u32 pm1b_ctrl);
59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 u32 val_b);
61
62static acpi_osd_handler acpi_irq_handler;
63static void *acpi_irq_context;
64static struct workqueue_struct *kacpid_wq;
65static struct workqueue_struct *kacpi_notify_wq;
66static struct workqueue_struct *kacpi_hotplug_wq;
67static bool acpi_os_initialized;
68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69bool acpi_permanent_mmap = false;
70
71/*
72 * This list of permanent mappings is for memory that may be accessed from
73 * interrupt context, where we can't do the ioremap().
74 */
75struct acpi_ioremap {
76 struct list_head list;
77 void __iomem *virt;
78 acpi_physical_address phys;
79 acpi_size size;
80 union {
81 unsigned long refcount;
82 struct rcu_work rwork;
83 } track;
84};
85
86static LIST_HEAD(acpi_ioremaps);
87static DEFINE_MUTEX(acpi_ioremap_lock);
88#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
89
90static void __init acpi_request_region (struct acpi_generic_address *gas,
91 unsigned int length, char *desc)
92{
93 u64 addr;
94
95 /* Handle possible alignment issues */
96 memcpy(&addr, &gas->address, sizeof(addr));
97 if (!addr || !length)
98 return;
99
100 /* Resources are never freed */
101 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
102 request_region(addr, length, desc);
103 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
104 request_mem_region(addr, length, desc);
105}
106
107static int __init acpi_reserve_resources(void)
108{
109 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
110 "ACPI PM1a_EVT_BLK");
111
112 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
113 "ACPI PM1b_EVT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
116 "ACPI PM1a_CNT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
119 "ACPI PM1b_CNT_BLK");
120
121 if (acpi_gbl_FADT.pm_timer_length == 4)
122 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
123
124 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
125 "ACPI PM2_CNT_BLK");
126
127 /* Length of GPE blocks must be a non-negative multiple of 2 */
128
129 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
130 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
131 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
132
133 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
134 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
135 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
136
137 return 0;
138}
139fs_initcall_sync(acpi_reserve_resources);
140
141void acpi_os_printf(const char *fmt, ...)
142{
143 va_list args;
144 va_start(args, fmt);
145 acpi_os_vprintf(fmt, args);
146 va_end(args);
147}
148EXPORT_SYMBOL(acpi_os_printf);
149
150void acpi_os_vprintf(const char *fmt, va_list args)
151{
152 static char buffer[512];
153
154 vsprintf(buffer, fmt, args);
155
156#ifdef ENABLE_DEBUGGER
157 if (acpi_in_debugger) {
158 kdb_printf("%s", buffer);
159 } else {
160 if (printk_get_level(buffer))
161 printk("%s", buffer);
162 else
163 printk(KERN_CONT "%s", buffer);
164 }
165#else
166 if (acpi_debugger_write_log(buffer) < 0) {
167 if (printk_get_level(buffer))
168 printk("%s", buffer);
169 else
170 printk(KERN_CONT "%s", buffer);
171 }
172#endif
173}
174
175#ifdef CONFIG_KEXEC
176static unsigned long acpi_rsdp;
177static int __init setup_acpi_rsdp(char *arg)
178{
179 return kstrtoul(arg, 16, &acpi_rsdp);
180}
181early_param("acpi_rsdp", setup_acpi_rsdp);
182#endif
183
184acpi_physical_address __init acpi_os_get_root_pointer(void)
185{
186 acpi_physical_address pa;
187
188#ifdef CONFIG_KEXEC
189 /*
190 * We may have been provided with an RSDP on the command line,
191 * but if a malicious user has done so they may be pointing us
192 * at modified ACPI tables that could alter kernel behaviour -
193 * so, we check the lockdown status before making use of
194 * it. If we trust it then also stash it in an architecture
195 * specific location (if appropriate) so it can be carried
196 * over further kexec()s.
197 */
198 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
199 acpi_arch_set_root_pointer(acpi_rsdp);
200 return acpi_rsdp;
201 }
202#endif
203 pa = acpi_arch_get_root_pointer();
204 if (pa)
205 return pa;
206
207 if (efi_enabled(EFI_CONFIG_TABLES)) {
208 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
209 return efi.acpi20;
210 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi;
212 pr_err(PREFIX "System description tables not found\n");
213 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
214 acpi_find_root_pointer(&pa);
215 }
216
217 return pa;
218}
219
220/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
221static struct acpi_ioremap *
222acpi_map_lookup(acpi_physical_address phys, acpi_size size)
223{
224 struct acpi_ioremap *map;
225
226 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
227 if (map->phys <= phys &&
228 phys + size <= map->phys + map->size)
229 return map;
230
231 return NULL;
232}
233
234/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
235static void __iomem *
236acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
237{
238 struct acpi_ioremap *map;
239
240 map = acpi_map_lookup(phys, size);
241 if (map)
242 return map->virt + (phys - map->phys);
243
244 return NULL;
245}
246
247void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
248{
249 struct acpi_ioremap *map;
250 void __iomem *virt = NULL;
251
252 mutex_lock(&acpi_ioremap_lock);
253 map = acpi_map_lookup(phys, size);
254 if (map) {
255 virt = map->virt + (phys - map->phys);
256 map->track.refcount++;
257 }
258 mutex_unlock(&acpi_ioremap_lock);
259 return virt;
260}
261EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
262
263/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
264static struct acpi_ioremap *
265acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
266{
267 struct acpi_ioremap *map;
268
269 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
270 if (map->virt <= virt &&
271 virt + size <= map->virt + map->size)
272 return map;
273
274 return NULL;
275}
276
277#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
278/* ioremap will take care of cache attributes */
279#define should_use_kmap(pfn) 0
280#else
281#define should_use_kmap(pfn) page_is_ram(pfn)
282#endif
283
284static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
285{
286 unsigned long pfn;
287
288 pfn = pg_off >> PAGE_SHIFT;
289 if (should_use_kmap(pfn)) {
290 if (pg_sz > PAGE_SIZE)
291 return NULL;
292 return (void __iomem __force *)kmap(pfn_to_page(pfn));
293 } else
294 return acpi_os_ioremap(pg_off, pg_sz);
295}
296
297static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
298{
299 unsigned long pfn;
300
301 pfn = pg_off >> PAGE_SHIFT;
302 if (should_use_kmap(pfn))
303 kunmap(pfn_to_page(pfn));
304 else
305 iounmap(vaddr);
306}
307
308/**
309 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
310 * @phys: Start of the physical address range to map.
311 * @size: Size of the physical address range to map.
312 *
313 * Look up the given physical address range in the list of existing ACPI memory
314 * mappings. If found, get a reference to it and return a pointer to it (its
315 * virtual address). If not found, map it, add it to that list and return a
316 * pointer to it.
317 *
318 * During early init (when acpi_permanent_mmap has not been set yet) this
319 * routine simply calls __acpi_map_table() to get the job done.
320 */
321void __iomem __ref
322*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
323{
324 struct acpi_ioremap *map;
325 void __iomem *virt;
326 acpi_physical_address pg_off;
327 acpi_size pg_sz;
328
329 if (phys > ULONG_MAX) {
330 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
331 return NULL;
332 }
333
334 if (!acpi_permanent_mmap)
335 return __acpi_map_table((unsigned long)phys, size);
336
337 mutex_lock(&acpi_ioremap_lock);
338 /* Check if there's a suitable mapping already. */
339 map = acpi_map_lookup(phys, size);
340 if (map) {
341 map->track.refcount++;
342 goto out;
343 }
344
345 map = kzalloc(sizeof(*map), GFP_KERNEL);
346 if (!map) {
347 mutex_unlock(&acpi_ioremap_lock);
348 return NULL;
349 }
350
351 pg_off = round_down(phys, PAGE_SIZE);
352 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
353 virt = acpi_map(phys, size);
354 if (!virt) {
355 mutex_unlock(&acpi_ioremap_lock);
356 kfree(map);
357 return NULL;
358 }
359
360 INIT_LIST_HEAD(&map->list);
361 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
362 map->phys = pg_off;
363 map->size = pg_sz;
364 map->track.refcount = 1;
365
366 list_add_tail_rcu(&map->list, &acpi_ioremaps);
367
368out:
369 mutex_unlock(&acpi_ioremap_lock);
370 return map->virt + (phys - map->phys);
371}
372EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
373
374void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
375{
376 return (void *)acpi_os_map_iomem(phys, size);
377}
378EXPORT_SYMBOL_GPL(acpi_os_map_memory);
379
380static void acpi_os_map_remove(struct work_struct *work)
381{
382 struct acpi_ioremap *map = container_of(to_rcu_work(work),
383 struct acpi_ioremap,
384 track.rwork);
385
386 acpi_unmap(map->phys, map->virt);
387 kfree(map);
388}
389
390/* Must be called with mutex_lock(&acpi_ioremap_lock) */
391static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
392{
393 if (--map->track.refcount)
394 return;
395
396 list_del_rcu(&map->list);
397
398 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
399 queue_rcu_work(system_wq, &map->track.rwork);
400}
401
402/**
403 * acpi_os_unmap_iomem - Drop a memory mapping reference.
404 * @virt: Start of the address range to drop a reference to.
405 * @size: Size of the address range to drop a reference to.
406 *
407 * Look up the given virtual address range in the list of existing ACPI memory
408 * mappings, drop a reference to it and if there are no more active references
409 * to it, queue it up for later removal.
410 *
411 * During early init (when acpi_permanent_mmap has not been set yet) this
412 * routine simply calls __acpi_unmap_table() to get the job done. Since
413 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
414 * here.
415 */
416void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
417{
418 struct acpi_ioremap *map;
419
420 if (!acpi_permanent_mmap) {
421 __acpi_unmap_table(virt, size);
422 return;
423 }
424
425 mutex_lock(&acpi_ioremap_lock);
426
427 map = acpi_map_lookup_virt(virt, size);
428 if (!map) {
429 mutex_unlock(&acpi_ioremap_lock);
430 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
431 return;
432 }
433 acpi_os_drop_map_ref(map);
434
435 mutex_unlock(&acpi_ioremap_lock);
436}
437EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
438
439/**
440 * acpi_os_unmap_memory - Drop a memory mapping reference.
441 * @virt: Start of the address range to drop a reference to.
442 * @size: Size of the address range to drop a reference to.
443 */
444void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
445{
446 acpi_os_unmap_iomem((void __iomem *)virt, size);
447}
448EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449
450int acpi_os_map_generic_address(struct acpi_generic_address *gas)
451{
452 u64 addr;
453 void __iomem *virt;
454
455 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
456 return 0;
457
458 /* Handle possible alignment issues */
459 memcpy(&addr, &gas->address, sizeof(addr));
460 if (!addr || !gas->bit_width)
461 return -EINVAL;
462
463 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
464 if (!virt)
465 return -EIO;
466
467 return 0;
468}
469EXPORT_SYMBOL(acpi_os_map_generic_address);
470
471void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
472{
473 u64 addr;
474 struct acpi_ioremap *map;
475
476 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
477 return;
478
479 /* Handle possible alignment issues */
480 memcpy(&addr, &gas->address, sizeof(addr));
481 if (!addr || !gas->bit_width)
482 return;
483
484 mutex_lock(&acpi_ioremap_lock);
485
486 map = acpi_map_lookup(addr, gas->bit_width / 8);
487 if (!map) {
488 mutex_unlock(&acpi_ioremap_lock);
489 return;
490 }
491 acpi_os_drop_map_ref(map);
492
493 mutex_unlock(&acpi_ioremap_lock);
494}
495EXPORT_SYMBOL(acpi_os_unmap_generic_address);
496
497#ifdef ACPI_FUTURE_USAGE
498acpi_status
499acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
500{
501 if (!phys || !virt)
502 return AE_BAD_PARAMETER;
503
504 *phys = virt_to_phys(virt);
505
506 return AE_OK;
507}
508#endif
509
510#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
511static bool acpi_rev_override;
512
513int __init acpi_rev_override_setup(char *str)
514{
515 acpi_rev_override = true;
516 return 1;
517}
518__setup("acpi_rev_override", acpi_rev_override_setup);
519#else
520#define acpi_rev_override false
521#endif
522
523#define ACPI_MAX_OVERRIDE_LEN 100
524
525static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
526
527acpi_status
528acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
529 acpi_string *new_val)
530{
531 if (!init_val || !new_val)
532 return AE_BAD_PARAMETER;
533
534 *new_val = NULL;
535 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
536 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
537 acpi_os_name);
538 *new_val = acpi_os_name;
539 }
540
541 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
542 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
543 *new_val = (char *)5;
544 }
545
546 return AE_OK;
547}
548
549static irqreturn_t acpi_irq(int irq, void *dev_id)
550{
551 u32 handled;
552
553 handled = (*acpi_irq_handler) (acpi_irq_context);
554
555 if (handled) {
556 acpi_irq_handled++;
557 return IRQ_HANDLED;
558 } else {
559 acpi_irq_not_handled++;
560 return IRQ_NONE;
561 }
562}
563
564acpi_status
565acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
566 void *context)
567{
568 unsigned int irq;
569
570 acpi_irq_stats_init();
571
572 /*
573 * ACPI interrupts different from the SCI in our copy of the FADT are
574 * not supported.
575 */
576 if (gsi != acpi_gbl_FADT.sci_interrupt)
577 return AE_BAD_PARAMETER;
578
579 if (acpi_irq_handler)
580 return AE_ALREADY_ACQUIRED;
581
582 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
583 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
584 gsi);
585 return AE_OK;
586 }
587
588 acpi_irq_handler = handler;
589 acpi_irq_context = context;
590 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
591 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
592 acpi_irq_handler = NULL;
593 return AE_NOT_ACQUIRED;
594 }
595 acpi_sci_irq = irq;
596
597 return AE_OK;
598}
599
600acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
601{
602 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
603 return AE_BAD_PARAMETER;
604
605 free_irq(acpi_sci_irq, acpi_irq);
606 acpi_irq_handler = NULL;
607 acpi_sci_irq = INVALID_ACPI_IRQ;
608
609 return AE_OK;
610}
611
612/*
613 * Running in interpreter thread context, safe to sleep
614 */
615
616void acpi_os_sleep(u64 ms)
617{
618 msleep(ms);
619}
620
621void acpi_os_stall(u32 us)
622{
623 while (us) {
624 u32 delay = 1000;
625
626 if (delay > us)
627 delay = us;
628 udelay(delay);
629 touch_nmi_watchdog();
630 us -= delay;
631 }
632}
633
634/*
635 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
636 * monotonically increasing timer with 100ns granularity. Do not use
637 * ktime_get() to implement this function because this function may get
638 * called after timekeeping has been suspended. Note: calling this function
639 * after timekeeping has been suspended may lead to unexpected results
640 * because when timekeeping is suspended the jiffies counter is not
641 * incremented. See also timekeeping_suspend().
642 */
643u64 acpi_os_get_timer(void)
644{
645 return (get_jiffies_64() - INITIAL_JIFFIES) *
646 (ACPI_100NSEC_PER_SEC / HZ);
647}
648
649acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
650{
651 u32 dummy;
652
653 if (!value)
654 value = &dummy;
655
656 *value = 0;
657 if (width <= 8) {
658 *(u8 *) value = inb(port);
659 } else if (width <= 16) {
660 *(u16 *) value = inw(port);
661 } else if (width <= 32) {
662 *(u32 *) value = inl(port);
663 } else {
664 BUG();
665 }
666
667 return AE_OK;
668}
669
670EXPORT_SYMBOL(acpi_os_read_port);
671
672acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
673{
674 if (width <= 8) {
675 outb(value, port);
676 } else if (width <= 16) {
677 outw(value, port);
678 } else if (width <= 32) {
679 outl(value, port);
680 } else {
681 BUG();
682 }
683
684 return AE_OK;
685}
686
687EXPORT_SYMBOL(acpi_os_write_port);
688
689int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
690{
691
692 switch (width) {
693 case 8:
694 *(u8 *) value = readb(virt_addr);
695 break;
696 case 16:
697 *(u16 *) value = readw(virt_addr);
698 break;
699 case 32:
700 *(u32 *) value = readl(virt_addr);
701 break;
702 case 64:
703 *(u64 *) value = readq(virt_addr);
704 break;
705 default:
706 return -EINVAL;
707 }
708
709 return 0;
710}
711
712acpi_status
713acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
714{
715 void __iomem *virt_addr;
716 unsigned int size = width / 8;
717 bool unmap = false;
718 u64 dummy;
719 int error;
720
721 rcu_read_lock();
722 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
723 if (!virt_addr) {
724 rcu_read_unlock();
725 virt_addr = acpi_os_ioremap(phys_addr, size);
726 if (!virt_addr)
727 return AE_BAD_ADDRESS;
728 unmap = true;
729 }
730
731 if (!value)
732 value = &dummy;
733
734 error = acpi_os_read_iomem(virt_addr, value, width);
735 BUG_ON(error);
736
737 if (unmap)
738 iounmap(virt_addr);
739 else
740 rcu_read_unlock();
741
742 return AE_OK;
743}
744
745acpi_status
746acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
747{
748 void __iomem *virt_addr;
749 unsigned int size = width / 8;
750 bool unmap = false;
751
752 rcu_read_lock();
753 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
754 if (!virt_addr) {
755 rcu_read_unlock();
756 virt_addr = acpi_os_ioremap(phys_addr, size);
757 if (!virt_addr)
758 return AE_BAD_ADDRESS;
759 unmap = true;
760 }
761
762 switch (width) {
763 case 8:
764 writeb(value, virt_addr);
765 break;
766 case 16:
767 writew(value, virt_addr);
768 break;
769 case 32:
770 writel(value, virt_addr);
771 break;
772 case 64:
773 writeq(value, virt_addr);
774 break;
775 default:
776 BUG();
777 }
778
779 if (unmap)
780 iounmap(virt_addr);
781 else
782 rcu_read_unlock();
783
784 return AE_OK;
785}
786
787#ifdef CONFIG_PCI
788acpi_status
789acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
790 u64 *value, u32 width)
791{
792 int result, size;
793 u32 value32;
794
795 if (!value)
796 return AE_BAD_PARAMETER;
797
798 switch (width) {
799 case 8:
800 size = 1;
801 break;
802 case 16:
803 size = 2;
804 break;
805 case 32:
806 size = 4;
807 break;
808 default:
809 return AE_ERROR;
810 }
811
812 result = raw_pci_read(pci_id->segment, pci_id->bus,
813 PCI_DEVFN(pci_id->device, pci_id->function),
814 reg, size, &value32);
815 *value = value32;
816
817 return (result ? AE_ERROR : AE_OK);
818}
819
820acpi_status
821acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
822 u64 value, u32 width)
823{
824 int result, size;
825
826 switch (width) {
827 case 8:
828 size = 1;
829 break;
830 case 16:
831 size = 2;
832 break;
833 case 32:
834 size = 4;
835 break;
836 default:
837 return AE_ERROR;
838 }
839
840 result = raw_pci_write(pci_id->segment, pci_id->bus,
841 PCI_DEVFN(pci_id->device, pci_id->function),
842 reg, size, value);
843
844 return (result ? AE_ERROR : AE_OK);
845}
846#endif
847
848static void acpi_os_execute_deferred(struct work_struct *work)
849{
850 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
851
852 dpc->function(dpc->context);
853 kfree(dpc);
854}
855
856#ifdef CONFIG_ACPI_DEBUGGER
857static struct acpi_debugger acpi_debugger;
858static bool acpi_debugger_initialized;
859
860int acpi_register_debugger(struct module *owner,
861 const struct acpi_debugger_ops *ops)
862{
863 int ret = 0;
864
865 mutex_lock(&acpi_debugger.lock);
866 if (acpi_debugger.ops) {
867 ret = -EBUSY;
868 goto err_lock;
869 }
870
871 acpi_debugger.owner = owner;
872 acpi_debugger.ops = ops;
873
874err_lock:
875 mutex_unlock(&acpi_debugger.lock);
876 return ret;
877}
878EXPORT_SYMBOL(acpi_register_debugger);
879
880void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
881{
882 mutex_lock(&acpi_debugger.lock);
883 if (ops == acpi_debugger.ops) {
884 acpi_debugger.ops = NULL;
885 acpi_debugger.owner = NULL;
886 }
887 mutex_unlock(&acpi_debugger.lock);
888}
889EXPORT_SYMBOL(acpi_unregister_debugger);
890
891int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
892{
893 int ret;
894 int (*func)(acpi_osd_exec_callback, void *);
895 struct module *owner;
896
897 if (!acpi_debugger_initialized)
898 return -ENODEV;
899 mutex_lock(&acpi_debugger.lock);
900 if (!acpi_debugger.ops) {
901 ret = -ENODEV;
902 goto err_lock;
903 }
904 if (!try_module_get(acpi_debugger.owner)) {
905 ret = -ENODEV;
906 goto err_lock;
907 }
908 func = acpi_debugger.ops->create_thread;
909 owner = acpi_debugger.owner;
910 mutex_unlock(&acpi_debugger.lock);
911
912 ret = func(function, context);
913
914 mutex_lock(&acpi_debugger.lock);
915 module_put(owner);
916err_lock:
917 mutex_unlock(&acpi_debugger.lock);
918 return ret;
919}
920
921ssize_t acpi_debugger_write_log(const char *msg)
922{
923 ssize_t ret;
924 ssize_t (*func)(const char *);
925 struct module *owner;
926
927 if (!acpi_debugger_initialized)
928 return -ENODEV;
929 mutex_lock(&acpi_debugger.lock);
930 if (!acpi_debugger.ops) {
931 ret = -ENODEV;
932 goto err_lock;
933 }
934 if (!try_module_get(acpi_debugger.owner)) {
935 ret = -ENODEV;
936 goto err_lock;
937 }
938 func = acpi_debugger.ops->write_log;
939 owner = acpi_debugger.owner;
940 mutex_unlock(&acpi_debugger.lock);
941
942 ret = func(msg);
943
944 mutex_lock(&acpi_debugger.lock);
945 module_put(owner);
946err_lock:
947 mutex_unlock(&acpi_debugger.lock);
948 return ret;
949}
950
951ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
952{
953 ssize_t ret;
954 ssize_t (*func)(char *, size_t);
955 struct module *owner;
956
957 if (!acpi_debugger_initialized)
958 return -ENODEV;
959 mutex_lock(&acpi_debugger.lock);
960 if (!acpi_debugger.ops) {
961 ret = -ENODEV;
962 goto err_lock;
963 }
964 if (!try_module_get(acpi_debugger.owner)) {
965 ret = -ENODEV;
966 goto err_lock;
967 }
968 func = acpi_debugger.ops->read_cmd;
969 owner = acpi_debugger.owner;
970 mutex_unlock(&acpi_debugger.lock);
971
972 ret = func(buffer, buffer_length);
973
974 mutex_lock(&acpi_debugger.lock);
975 module_put(owner);
976err_lock:
977 mutex_unlock(&acpi_debugger.lock);
978 return ret;
979}
980
981int acpi_debugger_wait_command_ready(void)
982{
983 int ret;
984 int (*func)(bool, char *, size_t);
985 struct module *owner;
986
987 if (!acpi_debugger_initialized)
988 return -ENODEV;
989 mutex_lock(&acpi_debugger.lock);
990 if (!acpi_debugger.ops) {
991 ret = -ENODEV;
992 goto err_lock;
993 }
994 if (!try_module_get(acpi_debugger.owner)) {
995 ret = -ENODEV;
996 goto err_lock;
997 }
998 func = acpi_debugger.ops->wait_command_ready;
999 owner = acpi_debugger.owner;
1000 mutex_unlock(&acpi_debugger.lock);
1001
1002 ret = func(acpi_gbl_method_executing,
1003 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1004
1005 mutex_lock(&acpi_debugger.lock);
1006 module_put(owner);
1007err_lock:
1008 mutex_unlock(&acpi_debugger.lock);
1009 return ret;
1010}
1011
1012int acpi_debugger_notify_command_complete(void)
1013{
1014 int ret;
1015 int (*func)(void);
1016 struct module *owner;
1017
1018 if (!acpi_debugger_initialized)
1019 return -ENODEV;
1020 mutex_lock(&acpi_debugger.lock);
1021 if (!acpi_debugger.ops) {
1022 ret = -ENODEV;
1023 goto err_lock;
1024 }
1025 if (!try_module_get(acpi_debugger.owner)) {
1026 ret = -ENODEV;
1027 goto err_lock;
1028 }
1029 func = acpi_debugger.ops->notify_command_complete;
1030 owner = acpi_debugger.owner;
1031 mutex_unlock(&acpi_debugger.lock);
1032
1033 ret = func();
1034
1035 mutex_lock(&acpi_debugger.lock);
1036 module_put(owner);
1037err_lock:
1038 mutex_unlock(&acpi_debugger.lock);
1039 return ret;
1040}
1041
1042int __init acpi_debugger_init(void)
1043{
1044 mutex_init(&acpi_debugger.lock);
1045 acpi_debugger_initialized = true;
1046 return 0;
1047}
1048#endif
1049
1050/*******************************************************************************
1051 *
1052 * FUNCTION: acpi_os_execute
1053 *
1054 * PARAMETERS: Type - Type of the callback
1055 * Function - Function to be executed
1056 * Context - Function parameters
1057 *
1058 * RETURN: Status
1059 *
1060 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1061 * immediately executes function on a separate thread.
1062 *
1063 ******************************************************************************/
1064
1065acpi_status acpi_os_execute(acpi_execute_type type,
1066 acpi_osd_exec_callback function, void *context)
1067{
1068 acpi_status status = AE_OK;
1069 struct acpi_os_dpc *dpc;
1070 struct workqueue_struct *queue;
1071 int ret;
1072 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1073 "Scheduling function [%p(%p)] for deferred execution.\n",
1074 function, context));
1075
1076 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1077 ret = acpi_debugger_create_thread(function, context);
1078 if (ret) {
1079 pr_err("Call to kthread_create() failed.\n");
1080 status = AE_ERROR;
1081 }
1082 goto out_thread;
1083 }
1084
1085 /*
1086 * Allocate/initialize DPC structure. Note that this memory will be
1087 * freed by the callee. The kernel handles the work_struct list in a
1088 * way that allows us to also free its memory inside the callee.
1089 * Because we may want to schedule several tasks with different
1090 * parameters we can't use the approach some kernel code uses of
1091 * having a static work_struct.
1092 */
1093
1094 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1095 if (!dpc)
1096 return AE_NO_MEMORY;
1097
1098 dpc->function = function;
1099 dpc->context = context;
1100
1101 /*
1102 * To prevent lockdep from complaining unnecessarily, make sure that
1103 * there is a different static lockdep key for each workqueue by using
1104 * INIT_WORK() for each of them separately.
1105 */
1106 if (type == OSL_NOTIFY_HANDLER) {
1107 queue = kacpi_notify_wq;
1108 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1109 } else if (type == OSL_GPE_HANDLER) {
1110 queue = kacpid_wq;
1111 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1112 } else {
1113 pr_err("Unsupported os_execute type %d.\n", type);
1114 status = AE_ERROR;
1115 }
1116
1117 if (ACPI_FAILURE(status))
1118 goto err_workqueue;
1119
1120 /*
1121 * On some machines, a software-initiated SMI causes corruption unless
1122 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1123 * typically it's done in GPE-related methods that are run via
1124 * workqueues, so we can avoid the known corruption cases by always
1125 * queueing on CPU 0.
1126 */
1127 ret = queue_work_on(0, queue, &dpc->work);
1128 if (!ret) {
1129 printk(KERN_ERR PREFIX
1130 "Call to queue_work() failed.\n");
1131 status = AE_ERROR;
1132 }
1133err_workqueue:
1134 if (ACPI_FAILURE(status))
1135 kfree(dpc);
1136out_thread:
1137 return status;
1138}
1139EXPORT_SYMBOL(acpi_os_execute);
1140
1141void acpi_os_wait_events_complete(void)
1142{
1143 /*
1144 * Make sure the GPE handler or the fixed event handler is not used
1145 * on another CPU after removal.
1146 */
1147 if (acpi_sci_irq_valid())
1148 synchronize_hardirq(acpi_sci_irq);
1149 flush_workqueue(kacpid_wq);
1150 flush_workqueue(kacpi_notify_wq);
1151}
1152EXPORT_SYMBOL(acpi_os_wait_events_complete);
1153
1154struct acpi_hp_work {
1155 struct work_struct work;
1156 struct acpi_device *adev;
1157 u32 src;
1158};
1159
1160static void acpi_hotplug_work_fn(struct work_struct *work)
1161{
1162 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1163
1164 acpi_os_wait_events_complete();
1165 acpi_device_hotplug(hpw->adev, hpw->src);
1166 kfree(hpw);
1167}
1168
1169acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1170{
1171 struct acpi_hp_work *hpw;
1172
1173 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1174 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1175 adev, src));
1176
1177 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1178 if (!hpw)
1179 return AE_NO_MEMORY;
1180
1181 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1182 hpw->adev = adev;
1183 hpw->src = src;
1184 /*
1185 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1186 * the hotplug code may call driver .remove() functions, which may
1187 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1188 * these workqueues.
1189 */
1190 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1191 kfree(hpw);
1192 return AE_ERROR;
1193 }
1194 return AE_OK;
1195}
1196
1197bool acpi_queue_hotplug_work(struct work_struct *work)
1198{
1199 return queue_work(kacpi_hotplug_wq, work);
1200}
1201
1202acpi_status
1203acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1204{
1205 struct semaphore *sem = NULL;
1206
1207 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1208 if (!sem)
1209 return AE_NO_MEMORY;
1210
1211 sema_init(sem, initial_units);
1212
1213 *handle = (acpi_handle *) sem;
1214
1215 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1216 *handle, initial_units));
1217
1218 return AE_OK;
1219}
1220
1221/*
1222 * TODO: A better way to delete semaphores? Linux doesn't have a
1223 * 'delete_semaphore()' function -- may result in an invalid
1224 * pointer dereference for non-synchronized consumers. Should
1225 * we at least check for blocked threads and signal/cancel them?
1226 */
1227
1228acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1229{
1230 struct semaphore *sem = (struct semaphore *)handle;
1231
1232 if (!sem)
1233 return AE_BAD_PARAMETER;
1234
1235 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1236
1237 BUG_ON(!list_empty(&sem->wait_list));
1238 kfree(sem);
1239 sem = NULL;
1240
1241 return AE_OK;
1242}
1243
1244/*
1245 * TODO: Support for units > 1?
1246 */
1247acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1248{
1249 acpi_status status = AE_OK;
1250 struct semaphore *sem = (struct semaphore *)handle;
1251 long jiffies;
1252 int ret = 0;
1253
1254 if (!acpi_os_initialized)
1255 return AE_OK;
1256
1257 if (!sem || (units < 1))
1258 return AE_BAD_PARAMETER;
1259
1260 if (units > 1)
1261 return AE_SUPPORT;
1262
1263 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1264 handle, units, timeout));
1265
1266 if (timeout == ACPI_WAIT_FOREVER)
1267 jiffies = MAX_SCHEDULE_TIMEOUT;
1268 else
1269 jiffies = msecs_to_jiffies(timeout);
1270
1271 ret = down_timeout(sem, jiffies);
1272 if (ret)
1273 status = AE_TIME;
1274
1275 if (ACPI_FAILURE(status)) {
1276 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277 "Failed to acquire semaphore[%p|%d|%d], %s",
1278 handle, units, timeout,
1279 acpi_format_exception(status)));
1280 } else {
1281 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1282 "Acquired semaphore[%p|%d|%d]", handle,
1283 units, timeout));
1284 }
1285
1286 return status;
1287}
1288
1289/*
1290 * TODO: Support for units > 1?
1291 */
1292acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1293{
1294 struct semaphore *sem = (struct semaphore *)handle;
1295
1296 if (!acpi_os_initialized)
1297 return AE_OK;
1298
1299 if (!sem || (units < 1))
1300 return AE_BAD_PARAMETER;
1301
1302 if (units > 1)
1303 return AE_SUPPORT;
1304
1305 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1306 units));
1307
1308 up(sem);
1309
1310 return AE_OK;
1311}
1312
1313acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1314{
1315#ifdef ENABLE_DEBUGGER
1316 if (acpi_in_debugger) {
1317 u32 chars;
1318
1319 kdb_read(buffer, buffer_length);
1320
1321 /* remove the CR kdb includes */
1322 chars = strlen(buffer) - 1;
1323 buffer[chars] = '\0';
1324 }
1325#else
1326 int ret;
1327
1328 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1329 if (ret < 0)
1330 return AE_ERROR;
1331 if (bytes_read)
1332 *bytes_read = ret;
1333#endif
1334
1335 return AE_OK;
1336}
1337EXPORT_SYMBOL(acpi_os_get_line);
1338
1339acpi_status acpi_os_wait_command_ready(void)
1340{
1341 int ret;
1342
1343 ret = acpi_debugger_wait_command_ready();
1344 if (ret < 0)
1345 return AE_ERROR;
1346 return AE_OK;
1347}
1348
1349acpi_status acpi_os_notify_command_complete(void)
1350{
1351 int ret;
1352
1353 ret = acpi_debugger_notify_command_complete();
1354 if (ret < 0)
1355 return AE_ERROR;
1356 return AE_OK;
1357}
1358
1359acpi_status acpi_os_signal(u32 function, void *info)
1360{
1361 switch (function) {
1362 case ACPI_SIGNAL_FATAL:
1363 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1364 break;
1365 case ACPI_SIGNAL_BREAKPOINT:
1366 /*
1367 * AML Breakpoint
1368 * ACPI spec. says to treat it as a NOP unless
1369 * you are debugging. So if/when we integrate
1370 * AML debugger into the kernel debugger its
1371 * hook will go here. But until then it is
1372 * not useful to print anything on breakpoints.
1373 */
1374 break;
1375 default:
1376 break;
1377 }
1378
1379 return AE_OK;
1380}
1381
1382static int __init acpi_os_name_setup(char *str)
1383{
1384 char *p = acpi_os_name;
1385 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1386
1387 if (!str || !*str)
1388 return 0;
1389
1390 for (; count-- && *str; str++) {
1391 if (isalnum(*str) || *str == ' ' || *str == ':')
1392 *p++ = *str;
1393 else if (*str == '\'' || *str == '"')
1394 continue;
1395 else
1396 break;
1397 }
1398 *p = 0;
1399
1400 return 1;
1401
1402}
1403
1404__setup("acpi_os_name=", acpi_os_name_setup);
1405
1406/*
1407 * Disable the auto-serialization of named objects creation methods.
1408 *
1409 * This feature is enabled by default. It marks the AML control methods
1410 * that contain the opcodes to create named objects as "Serialized".
1411 */
1412static int __init acpi_no_auto_serialize_setup(char *str)
1413{
1414 acpi_gbl_auto_serialize_methods = FALSE;
1415 pr_info("ACPI: auto-serialization disabled\n");
1416
1417 return 1;
1418}
1419
1420__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1421
1422/* Check of resource interference between native drivers and ACPI
1423 * OperationRegions (SystemIO and System Memory only).
1424 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1425 * in arbitrary AML code and can interfere with legacy drivers.
1426 * acpi_enforce_resources= can be set to:
1427 *
1428 * - strict (default) (2)
1429 * -> further driver trying to access the resources will not load
1430 * - lax (1)
1431 * -> further driver trying to access the resources will load, but you
1432 * get a system message that something might go wrong...
1433 *
1434 * - no (0)
1435 * -> ACPI Operation Region resources will not be registered
1436 *
1437 */
1438#define ENFORCE_RESOURCES_STRICT 2
1439#define ENFORCE_RESOURCES_LAX 1
1440#define ENFORCE_RESOURCES_NO 0
1441
1442static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1443
1444static int __init acpi_enforce_resources_setup(char *str)
1445{
1446 if (str == NULL || *str == '\0')
1447 return 0;
1448
1449 if (!strcmp("strict", str))
1450 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1451 else if (!strcmp("lax", str))
1452 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1453 else if (!strcmp("no", str))
1454 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1455
1456 return 1;
1457}
1458
1459__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1460
1461/* Check for resource conflicts between ACPI OperationRegions and native
1462 * drivers */
1463int acpi_check_resource_conflict(const struct resource *res)
1464{
1465 acpi_adr_space_type space_id;
1466 acpi_size length;
1467 u8 warn = 0;
1468 int clash = 0;
1469
1470 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471 return 0;
1472 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1473 return 0;
1474
1475 if (res->flags & IORESOURCE_IO)
1476 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1477 else
1478 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1479
1480 length = resource_size(res);
1481 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1482 warn = 1;
1483 clash = acpi_check_address_range(space_id, res->start, length, warn);
1484
1485 if (clash) {
1486 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1487 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1488 printk(KERN_NOTICE "ACPI: This conflict may"
1489 " cause random problems and system"
1490 " instability\n");
1491 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1492 " for this device, you should use it instead of"
1493 " the native driver\n");
1494 }
1495 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1496 return -EBUSY;
1497 }
1498 return 0;
1499}
1500EXPORT_SYMBOL(acpi_check_resource_conflict);
1501
1502int acpi_check_region(resource_size_t start, resource_size_t n,
1503 const char *name)
1504{
1505 struct resource res = {
1506 .start = start,
1507 .end = start + n - 1,
1508 .name = name,
1509 .flags = IORESOURCE_IO,
1510 };
1511
1512 return acpi_check_resource_conflict(&res);
1513}
1514EXPORT_SYMBOL(acpi_check_region);
1515
1516static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1517 void *_res, void **return_value)
1518{
1519 struct acpi_mem_space_context **mem_ctx;
1520 union acpi_operand_object *handler_obj;
1521 union acpi_operand_object *region_obj2;
1522 union acpi_operand_object *region_obj;
1523 struct resource *res = _res;
1524 acpi_status status;
1525
1526 region_obj = acpi_ns_get_attached_object(handle);
1527 if (!region_obj)
1528 return AE_OK;
1529
1530 handler_obj = region_obj->region.handler;
1531 if (!handler_obj)
1532 return AE_OK;
1533
1534 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1535 return AE_OK;
1536
1537 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1538 return AE_OK;
1539
1540 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1541 if (!region_obj2)
1542 return AE_OK;
1543
1544 mem_ctx = (void *)®ion_obj2->extra.region_context;
1545
1546 if (!(mem_ctx[0]->address >= res->start &&
1547 mem_ctx[0]->address < res->end))
1548 return AE_OK;
1549
1550 status = handler_obj->address_space.setup(region_obj,
1551 ACPI_REGION_DEACTIVATE,
1552 NULL, (void **)mem_ctx);
1553 if (ACPI_SUCCESS(status))
1554 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1555
1556 return status;
1557}
1558
1559/**
1560 * acpi_release_memory - Release any mappings done to a memory region
1561 * @handle: Handle to namespace node
1562 * @res: Memory resource
1563 * @level: A level that terminates the search
1564 *
1565 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1566 * overlap with @res and that have already been activated (mapped).
1567 *
1568 * This is a helper that allows drivers to place special requirements on memory
1569 * region that may overlap with operation regions, primarily allowing them to
1570 * safely map the region as non-cached memory.
1571 *
1572 * The unmapped Operation Regions will be automatically remapped next time they
1573 * are called, so the drivers do not need to do anything else.
1574 */
1575acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1576 u32 level)
1577{
1578 acpi_status status;
1579
1580 if (!(res->flags & IORESOURCE_MEM))
1581 return AE_TYPE;
1582
1583 status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1584 acpi_deactivate_mem_region, NULL,
1585 res, NULL);
1586 if (ACPI_FAILURE(status))
1587 return status;
1588
1589 /*
1590 * Wait for all of the mappings queued up for removal by
1591 * acpi_deactivate_mem_region() to actually go away.
1592 */
1593 synchronize_rcu();
1594 rcu_barrier();
1595 flush_scheduled_work();
1596
1597 return AE_OK;
1598}
1599EXPORT_SYMBOL_GPL(acpi_release_memory);
1600
1601/*
1602 * Let drivers know whether the resource checks are effective
1603 */
1604int acpi_resources_are_enforced(void)
1605{
1606 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1607}
1608EXPORT_SYMBOL(acpi_resources_are_enforced);
1609
1610/*
1611 * Deallocate the memory for a spinlock.
1612 */
1613void acpi_os_delete_lock(acpi_spinlock handle)
1614{
1615 ACPI_FREE(handle);
1616}
1617
1618/*
1619 * Acquire a spinlock.
1620 *
1621 * handle is a pointer to the spinlock_t.
1622 */
1623
1624acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1625 __acquires(lockp)
1626{
1627 acpi_cpu_flags flags;
1628 spin_lock_irqsave(lockp, flags);
1629 return flags;
1630}
1631
1632/*
1633 * Release a spinlock. See above.
1634 */
1635
1636void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1637 __releases(lockp)
1638{
1639 spin_unlock_irqrestore(lockp, flags);
1640}
1641
1642#ifndef ACPI_USE_LOCAL_CACHE
1643
1644/*******************************************************************************
1645 *
1646 * FUNCTION: acpi_os_create_cache
1647 *
1648 * PARAMETERS: name - Ascii name for the cache
1649 * size - Size of each cached object
1650 * depth - Maximum depth of the cache (in objects) <ignored>
1651 * cache - Where the new cache object is returned
1652 *
1653 * RETURN: status
1654 *
1655 * DESCRIPTION: Create a cache object
1656 *
1657 ******************************************************************************/
1658
1659acpi_status
1660acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1661{
1662 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1663 if (*cache == NULL)
1664 return AE_ERROR;
1665 else
1666 return AE_OK;
1667}
1668
1669/*******************************************************************************
1670 *
1671 * FUNCTION: acpi_os_purge_cache
1672 *
1673 * PARAMETERS: Cache - Handle to cache object
1674 *
1675 * RETURN: Status
1676 *
1677 * DESCRIPTION: Free all objects within the requested cache.
1678 *
1679 ******************************************************************************/
1680
1681acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1682{
1683 kmem_cache_shrink(cache);
1684 return (AE_OK);
1685}
1686
1687/*******************************************************************************
1688 *
1689 * FUNCTION: acpi_os_delete_cache
1690 *
1691 * PARAMETERS: Cache - Handle to cache object
1692 *
1693 * RETURN: Status
1694 *
1695 * DESCRIPTION: Free all objects within the requested cache and delete the
1696 * cache object.
1697 *
1698 ******************************************************************************/
1699
1700acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1701{
1702 kmem_cache_destroy(cache);
1703 return (AE_OK);
1704}
1705
1706/*******************************************************************************
1707 *
1708 * FUNCTION: acpi_os_release_object
1709 *
1710 * PARAMETERS: Cache - Handle to cache object
1711 * Object - The object to be released
1712 *
1713 * RETURN: None
1714 *
1715 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1716 * the object is deleted.
1717 *
1718 ******************************************************************************/
1719
1720acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1721{
1722 kmem_cache_free(cache, object);
1723 return (AE_OK);
1724}
1725#endif
1726
1727static int __init acpi_no_static_ssdt_setup(char *s)
1728{
1729 acpi_gbl_disable_ssdt_table_install = TRUE;
1730 pr_info("ACPI: static SSDT installation disabled\n");
1731
1732 return 0;
1733}
1734
1735early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1736
1737static int __init acpi_disable_return_repair(char *s)
1738{
1739 printk(KERN_NOTICE PREFIX
1740 "ACPI: Predefined validation mechanism disabled\n");
1741 acpi_gbl_disable_auto_repair = TRUE;
1742
1743 return 1;
1744}
1745
1746__setup("acpica_no_return_repair", acpi_disable_return_repair);
1747
1748acpi_status __init acpi_os_initialize(void)
1749{
1750 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1751 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1752 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1753 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1754 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1755 /*
1756 * Use acpi_os_map_generic_address to pre-map the reset
1757 * register if it's in system memory.
1758 */
1759 int rv;
1760
1761 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1762 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1763 }
1764 acpi_os_initialized = true;
1765
1766 return AE_OK;
1767}
1768
1769acpi_status __init acpi_os_initialize1(void)
1770{
1771 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1772 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1773 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1774 BUG_ON(!kacpid_wq);
1775 BUG_ON(!kacpi_notify_wq);
1776 BUG_ON(!kacpi_hotplug_wq);
1777 acpi_osi_init();
1778 return AE_OK;
1779}
1780
1781acpi_status acpi_os_terminate(void)
1782{
1783 if (acpi_irq_handler) {
1784 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1785 acpi_irq_handler);
1786 }
1787
1788 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1789 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1790 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1791 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1792 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1793 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1794
1795 destroy_workqueue(kacpid_wq);
1796 destroy_workqueue(kacpi_notify_wq);
1797 destroy_workqueue(kacpi_hotplug_wq);
1798
1799 return AE_OK;
1800}
1801
1802acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1803 u32 pm1b_control)
1804{
1805 int rc = 0;
1806 if (__acpi_os_prepare_sleep)
1807 rc = __acpi_os_prepare_sleep(sleep_state,
1808 pm1a_control, pm1b_control);
1809 if (rc < 0)
1810 return AE_ERROR;
1811 else if (rc > 0)
1812 return AE_CTRL_TERMINATE;
1813
1814 return AE_OK;
1815}
1816
1817void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1818 u32 pm1a_ctrl, u32 pm1b_ctrl))
1819{
1820 __acpi_os_prepare_sleep = func;
1821}
1822
1823#if (ACPI_REDUCED_HARDWARE)
1824acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1825 u32 val_b)
1826{
1827 int rc = 0;
1828 if (__acpi_os_prepare_extended_sleep)
1829 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1830 val_a, val_b);
1831 if (rc < 0)
1832 return AE_ERROR;
1833 else if (rc > 0)
1834 return AE_CTRL_TERMINATE;
1835
1836 return AE_OK;
1837}
1838#else
1839acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1840 u32 val_b)
1841{
1842 return AE_OK;
1843}
1844#endif
1845
1846void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1847 u32 val_a, u32 val_b))
1848{
1849 __acpi_os_prepare_extended_sleep = func;
1850}
1851
1852acpi_status acpi_os_enter_sleep(u8 sleep_state,
1853 u32 reg_a_value, u32 reg_b_value)
1854{
1855 acpi_status status;
1856
1857 if (acpi_gbl_reduced_hardware)
1858 status = acpi_os_prepare_extended_sleep(sleep_state,
1859 reg_a_value,
1860 reg_b_value);
1861 else
1862 status = acpi_os_prepare_sleep(sleep_state,
1863 reg_a_value, reg_b_value);
1864 return status;
1865}
1/*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26#include <linux/module.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/pci.h>
32#include <linux/interrupt.h>
33#include <linux/kmod.h>
34#include <linux/delay.h>
35#include <linux/workqueue.h>
36#include <linux/nmi.h>
37#include <linux/acpi.h>
38#include <linux/efi.h>
39#include <linux/ioport.h>
40#include <linux/list.h>
41#include <linux/jiffies.h>
42#include <linux/semaphore.h>
43
44#include <asm/io.h>
45#include <linux/uaccess.h>
46#include <linux/io-64-nonatomic-lo-hi.h>
47
48#include "internal.h"
49
50#define _COMPONENT ACPI_OS_SERVICES
51ACPI_MODULE_NAME("osl");
52
53struct acpi_os_dpc {
54 acpi_osd_exec_callback function;
55 void *context;
56 struct work_struct work;
57};
58
59#ifdef ENABLE_DEBUGGER
60#include <linux/kdb.h>
61
62/* stuff for debugger support */
63int acpi_in_debugger;
64EXPORT_SYMBOL(acpi_in_debugger);
65#endif /*ENABLE_DEBUGGER */
66
67static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 u32 pm1b_ctrl);
69static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 u32 val_b);
71
72static acpi_osd_handler acpi_irq_handler;
73static void *acpi_irq_context;
74static struct workqueue_struct *kacpid_wq;
75static struct workqueue_struct *kacpi_notify_wq;
76static struct workqueue_struct *kacpi_hotplug_wq;
77static bool acpi_os_initialized;
78unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79bool acpi_permanent_mmap = false;
80
81/*
82 * This list of permanent mappings is for memory that may be accessed from
83 * interrupt context, where we can't do the ioremap().
84 */
85struct acpi_ioremap {
86 struct list_head list;
87 void __iomem *virt;
88 acpi_physical_address phys;
89 acpi_size size;
90 unsigned long refcount;
91};
92
93static LIST_HEAD(acpi_ioremaps);
94static DEFINE_MUTEX(acpi_ioremap_lock);
95
96static void __init acpi_request_region (struct acpi_generic_address *gas,
97 unsigned int length, char *desc)
98{
99 u64 addr;
100
101 /* Handle possible alignment issues */
102 memcpy(&addr, &gas->address, sizeof(addr));
103 if (!addr || !length)
104 return;
105
106 /* Resources are never freed */
107 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
108 request_region(addr, length, desc);
109 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
110 request_mem_region(addr, length, desc);
111}
112
113static int __init acpi_reserve_resources(void)
114{
115 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
116 "ACPI PM1a_EVT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
119 "ACPI PM1b_EVT_BLK");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
122 "ACPI PM1a_CNT_BLK");
123
124 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
125 "ACPI PM1b_CNT_BLK");
126
127 if (acpi_gbl_FADT.pm_timer_length == 4)
128 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
129
130 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
131 "ACPI PM2_CNT_BLK");
132
133 /* Length of GPE blocks must be a non-negative multiple of 2 */
134
135 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
137 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
138
139 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
140 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
141 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
142
143 return 0;
144}
145fs_initcall_sync(acpi_reserve_resources);
146
147void acpi_os_printf(const char *fmt, ...)
148{
149 va_list args;
150 va_start(args, fmt);
151 acpi_os_vprintf(fmt, args);
152 va_end(args);
153}
154EXPORT_SYMBOL(acpi_os_printf);
155
156void acpi_os_vprintf(const char *fmt, va_list args)
157{
158 static char buffer[512];
159
160 vsprintf(buffer, fmt, args);
161
162#ifdef ENABLE_DEBUGGER
163 if (acpi_in_debugger) {
164 kdb_printf("%s", buffer);
165 } else {
166 if (printk_get_level(buffer))
167 printk("%s", buffer);
168 else
169 printk(KERN_CONT "%s", buffer);
170 }
171#else
172 if (acpi_debugger_write_log(buffer) < 0) {
173 if (printk_get_level(buffer))
174 printk("%s", buffer);
175 else
176 printk(KERN_CONT "%s", buffer);
177 }
178#endif
179}
180
181#ifdef CONFIG_KEXEC
182static unsigned long acpi_rsdp;
183static int __init setup_acpi_rsdp(char *arg)
184{
185 return kstrtoul(arg, 16, &acpi_rsdp);
186}
187early_param("acpi_rsdp", setup_acpi_rsdp);
188#endif
189
190acpi_physical_address __init acpi_os_get_root_pointer(void)
191{
192 acpi_physical_address pa;
193
194#ifdef CONFIG_KEXEC
195 if (acpi_rsdp)
196 return acpi_rsdp;
197#endif
198 pa = acpi_arch_get_root_pointer();
199 if (pa)
200 return pa;
201
202 if (efi_enabled(EFI_CONFIG_TABLES)) {
203 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
204 return efi.acpi20;
205 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi;
207 pr_err(PREFIX "System description tables not found\n");
208 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
209 acpi_find_root_pointer(&pa);
210 }
211
212 return pa;
213}
214
215/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
216static struct acpi_ioremap *
217acpi_map_lookup(acpi_physical_address phys, acpi_size size)
218{
219 struct acpi_ioremap *map;
220
221 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
222 if (map->phys <= phys &&
223 phys + size <= map->phys + map->size)
224 return map;
225
226 return NULL;
227}
228
229/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
230static void __iomem *
231acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
232{
233 struct acpi_ioremap *map;
234
235 map = acpi_map_lookup(phys, size);
236 if (map)
237 return map->virt + (phys - map->phys);
238
239 return NULL;
240}
241
242void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
243{
244 struct acpi_ioremap *map;
245 void __iomem *virt = NULL;
246
247 mutex_lock(&acpi_ioremap_lock);
248 map = acpi_map_lookup(phys, size);
249 if (map) {
250 virt = map->virt + (phys - map->phys);
251 map->refcount++;
252 }
253 mutex_unlock(&acpi_ioremap_lock);
254 return virt;
255}
256EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
257
258/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
259static struct acpi_ioremap *
260acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
261{
262 struct acpi_ioremap *map;
263
264 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
265 if (map->virt <= virt &&
266 virt + size <= map->virt + map->size)
267 return map;
268
269 return NULL;
270}
271
272#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
273/* ioremap will take care of cache attributes */
274#define should_use_kmap(pfn) 0
275#else
276#define should_use_kmap(pfn) page_is_ram(pfn)
277#endif
278
279static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
280{
281 unsigned long pfn;
282
283 pfn = pg_off >> PAGE_SHIFT;
284 if (should_use_kmap(pfn)) {
285 if (pg_sz > PAGE_SIZE)
286 return NULL;
287 return (void __iomem __force *)kmap(pfn_to_page(pfn));
288 } else
289 return acpi_os_ioremap(pg_off, pg_sz);
290}
291
292static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
293{
294 unsigned long pfn;
295
296 pfn = pg_off >> PAGE_SHIFT;
297 if (should_use_kmap(pfn))
298 kunmap(pfn_to_page(pfn));
299 else
300 iounmap(vaddr);
301}
302
303/**
304 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
305 * @phys: Start of the physical address range to map.
306 * @size: Size of the physical address range to map.
307 *
308 * Look up the given physical address range in the list of existing ACPI memory
309 * mappings. If found, get a reference to it and return a pointer to it (its
310 * virtual address). If not found, map it, add it to that list and return a
311 * pointer to it.
312 *
313 * During early init (when acpi_permanent_mmap has not been set yet) this
314 * routine simply calls __acpi_map_table() to get the job done.
315 */
316void __iomem *__ref
317acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
318{
319 struct acpi_ioremap *map;
320 void __iomem *virt;
321 acpi_physical_address pg_off;
322 acpi_size pg_sz;
323
324 if (phys > ULONG_MAX) {
325 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
326 return NULL;
327 }
328
329 if (!acpi_permanent_mmap)
330 return __acpi_map_table((unsigned long)phys, size);
331
332 mutex_lock(&acpi_ioremap_lock);
333 /* Check if there's a suitable mapping already. */
334 map = acpi_map_lookup(phys, size);
335 if (map) {
336 map->refcount++;
337 goto out;
338 }
339
340 map = kzalloc(sizeof(*map), GFP_KERNEL);
341 if (!map) {
342 mutex_unlock(&acpi_ioremap_lock);
343 return NULL;
344 }
345
346 pg_off = round_down(phys, PAGE_SIZE);
347 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
348 virt = acpi_map(pg_off, pg_sz);
349 if (!virt) {
350 mutex_unlock(&acpi_ioremap_lock);
351 kfree(map);
352 return NULL;
353 }
354
355 INIT_LIST_HEAD(&map->list);
356 map->virt = virt;
357 map->phys = pg_off;
358 map->size = pg_sz;
359 map->refcount = 1;
360
361 list_add_tail_rcu(&map->list, &acpi_ioremaps);
362
363out:
364 mutex_unlock(&acpi_ioremap_lock);
365 return map->virt + (phys - map->phys);
366}
367EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
368
369void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
370{
371 return (void *)acpi_os_map_iomem(phys, size);
372}
373EXPORT_SYMBOL_GPL(acpi_os_map_memory);
374
375static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
376{
377 if (!--map->refcount)
378 list_del_rcu(&map->list);
379}
380
381static void acpi_os_map_cleanup(struct acpi_ioremap *map)
382{
383 if (!map->refcount) {
384 synchronize_rcu_expedited();
385 acpi_unmap(map->phys, map->virt);
386 kfree(map);
387 }
388}
389
390/**
391 * acpi_os_unmap_iomem - Drop a memory mapping reference.
392 * @virt: Start of the address range to drop a reference to.
393 * @size: Size of the address range to drop a reference to.
394 *
395 * Look up the given virtual address range in the list of existing ACPI memory
396 * mappings, drop a reference to it and unmap it if there are no more active
397 * references to it.
398 *
399 * During early init (when acpi_permanent_mmap has not been set yet) this
400 * routine simply calls __acpi_unmap_table() to get the job done. Since
401 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
402 * here.
403 */
404void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
405{
406 struct acpi_ioremap *map;
407
408 if (!acpi_permanent_mmap) {
409 __acpi_unmap_table(virt, size);
410 return;
411 }
412
413 mutex_lock(&acpi_ioremap_lock);
414 map = acpi_map_lookup_virt(virt, size);
415 if (!map) {
416 mutex_unlock(&acpi_ioremap_lock);
417 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
418 return;
419 }
420 acpi_os_drop_map_ref(map);
421 mutex_unlock(&acpi_ioremap_lock);
422
423 acpi_os_map_cleanup(map);
424}
425EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
426
427void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
428{
429 return acpi_os_unmap_iomem((void __iomem *)virt, size);
430}
431EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
432
433int acpi_os_map_generic_address(struct acpi_generic_address *gas)
434{
435 u64 addr;
436 void __iomem *virt;
437
438 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
439 return 0;
440
441 /* Handle possible alignment issues */
442 memcpy(&addr, &gas->address, sizeof(addr));
443 if (!addr || !gas->bit_width)
444 return -EINVAL;
445
446 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
447 if (!virt)
448 return -EIO;
449
450 return 0;
451}
452EXPORT_SYMBOL(acpi_os_map_generic_address);
453
454void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
455{
456 u64 addr;
457 struct acpi_ioremap *map;
458
459 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
460 return;
461
462 /* Handle possible alignment issues */
463 memcpy(&addr, &gas->address, sizeof(addr));
464 if (!addr || !gas->bit_width)
465 return;
466
467 mutex_lock(&acpi_ioremap_lock);
468 map = acpi_map_lookup(addr, gas->bit_width / 8);
469 if (!map) {
470 mutex_unlock(&acpi_ioremap_lock);
471 return;
472 }
473 acpi_os_drop_map_ref(map);
474 mutex_unlock(&acpi_ioremap_lock);
475
476 acpi_os_map_cleanup(map);
477}
478EXPORT_SYMBOL(acpi_os_unmap_generic_address);
479
480#ifdef ACPI_FUTURE_USAGE
481acpi_status
482acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
483{
484 if (!phys || !virt)
485 return AE_BAD_PARAMETER;
486
487 *phys = virt_to_phys(virt);
488
489 return AE_OK;
490}
491#endif
492
493#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
494static bool acpi_rev_override;
495
496int __init acpi_rev_override_setup(char *str)
497{
498 acpi_rev_override = true;
499 return 1;
500}
501__setup("acpi_rev_override", acpi_rev_override_setup);
502#else
503#define acpi_rev_override false
504#endif
505
506#define ACPI_MAX_OVERRIDE_LEN 100
507
508static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
509
510acpi_status
511acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
512 acpi_string *new_val)
513{
514 if (!init_val || !new_val)
515 return AE_BAD_PARAMETER;
516
517 *new_val = NULL;
518 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
519 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
520 acpi_os_name);
521 *new_val = acpi_os_name;
522 }
523
524 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
525 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
526 *new_val = (char *)5;
527 }
528
529 return AE_OK;
530}
531
532static irqreturn_t acpi_irq(int irq, void *dev_id)
533{
534 u32 handled;
535
536 handled = (*acpi_irq_handler) (acpi_irq_context);
537
538 if (handled) {
539 acpi_irq_handled++;
540 return IRQ_HANDLED;
541 } else {
542 acpi_irq_not_handled++;
543 return IRQ_NONE;
544 }
545}
546
547acpi_status
548acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
549 void *context)
550{
551 unsigned int irq;
552
553 acpi_irq_stats_init();
554
555 /*
556 * ACPI interrupts different from the SCI in our copy of the FADT are
557 * not supported.
558 */
559 if (gsi != acpi_gbl_FADT.sci_interrupt)
560 return AE_BAD_PARAMETER;
561
562 if (acpi_irq_handler)
563 return AE_ALREADY_ACQUIRED;
564
565 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
566 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
567 gsi);
568 return AE_OK;
569 }
570
571 acpi_irq_handler = handler;
572 acpi_irq_context = context;
573 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
574 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
575 acpi_irq_handler = NULL;
576 return AE_NOT_ACQUIRED;
577 }
578 acpi_sci_irq = irq;
579
580 return AE_OK;
581}
582
583acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
584{
585 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
586 return AE_BAD_PARAMETER;
587
588 free_irq(acpi_sci_irq, acpi_irq);
589 acpi_irq_handler = NULL;
590 acpi_sci_irq = INVALID_ACPI_IRQ;
591
592 return AE_OK;
593}
594
595/*
596 * Running in interpreter thread context, safe to sleep
597 */
598
599void acpi_os_sleep(u64 ms)
600{
601 msleep(ms);
602}
603
604void acpi_os_stall(u32 us)
605{
606 while (us) {
607 u32 delay = 1000;
608
609 if (delay > us)
610 delay = us;
611 udelay(delay);
612 touch_nmi_watchdog();
613 us -= delay;
614 }
615}
616
617/*
618 * Support ACPI 3.0 AML Timer operand
619 * Returns 64-bit free-running, monotonically increasing timer
620 * with 100ns granularity
621 */
622u64 acpi_os_get_timer(void)
623{
624 u64 time_ns = ktime_to_ns(ktime_get());
625 do_div(time_ns, 100);
626 return time_ns;
627}
628
629acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
630{
631 u32 dummy;
632
633 if (!value)
634 value = &dummy;
635
636 *value = 0;
637 if (width <= 8) {
638 *(u8 *) value = inb(port);
639 } else if (width <= 16) {
640 *(u16 *) value = inw(port);
641 } else if (width <= 32) {
642 *(u32 *) value = inl(port);
643 } else {
644 BUG();
645 }
646
647 return AE_OK;
648}
649
650EXPORT_SYMBOL(acpi_os_read_port);
651
652acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
653{
654 if (width <= 8) {
655 outb(value, port);
656 } else if (width <= 16) {
657 outw(value, port);
658 } else if (width <= 32) {
659 outl(value, port);
660 } else {
661 BUG();
662 }
663
664 return AE_OK;
665}
666
667EXPORT_SYMBOL(acpi_os_write_port);
668
669int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
670{
671
672 switch (width) {
673 case 8:
674 *(u8 *) value = readb(virt_addr);
675 break;
676 case 16:
677 *(u16 *) value = readw(virt_addr);
678 break;
679 case 32:
680 *(u32 *) value = readl(virt_addr);
681 break;
682 case 64:
683 *(u64 *) value = readq(virt_addr);
684 break;
685 default:
686 return -EINVAL;
687 }
688
689 return 0;
690}
691
692acpi_status
693acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
694{
695 void __iomem *virt_addr;
696 unsigned int size = width / 8;
697 bool unmap = false;
698 u64 dummy;
699 int error;
700
701 rcu_read_lock();
702 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
703 if (!virt_addr) {
704 rcu_read_unlock();
705 virt_addr = acpi_os_ioremap(phys_addr, size);
706 if (!virt_addr)
707 return AE_BAD_ADDRESS;
708 unmap = true;
709 }
710
711 if (!value)
712 value = &dummy;
713
714 error = acpi_os_read_iomem(virt_addr, value, width);
715 BUG_ON(error);
716
717 if (unmap)
718 iounmap(virt_addr);
719 else
720 rcu_read_unlock();
721
722 return AE_OK;
723}
724
725acpi_status
726acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
727{
728 void __iomem *virt_addr;
729 unsigned int size = width / 8;
730 bool unmap = false;
731
732 rcu_read_lock();
733 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
734 if (!virt_addr) {
735 rcu_read_unlock();
736 virt_addr = acpi_os_ioremap(phys_addr, size);
737 if (!virt_addr)
738 return AE_BAD_ADDRESS;
739 unmap = true;
740 }
741
742 switch (width) {
743 case 8:
744 writeb(value, virt_addr);
745 break;
746 case 16:
747 writew(value, virt_addr);
748 break;
749 case 32:
750 writel(value, virt_addr);
751 break;
752 case 64:
753 writeq(value, virt_addr);
754 break;
755 default:
756 BUG();
757 }
758
759 if (unmap)
760 iounmap(virt_addr);
761 else
762 rcu_read_unlock();
763
764 return AE_OK;
765}
766
767acpi_status
768acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
769 u64 *value, u32 width)
770{
771 int result, size;
772 u32 value32;
773
774 if (!value)
775 return AE_BAD_PARAMETER;
776
777 switch (width) {
778 case 8:
779 size = 1;
780 break;
781 case 16:
782 size = 2;
783 break;
784 case 32:
785 size = 4;
786 break;
787 default:
788 return AE_ERROR;
789 }
790
791 result = raw_pci_read(pci_id->segment, pci_id->bus,
792 PCI_DEVFN(pci_id->device, pci_id->function),
793 reg, size, &value32);
794 *value = value32;
795
796 return (result ? AE_ERROR : AE_OK);
797}
798
799acpi_status
800acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
801 u64 value, u32 width)
802{
803 int result, size;
804
805 switch (width) {
806 case 8:
807 size = 1;
808 break;
809 case 16:
810 size = 2;
811 break;
812 case 32:
813 size = 4;
814 break;
815 default:
816 return AE_ERROR;
817 }
818
819 result = raw_pci_write(pci_id->segment, pci_id->bus,
820 PCI_DEVFN(pci_id->device, pci_id->function),
821 reg, size, value);
822
823 return (result ? AE_ERROR : AE_OK);
824}
825
826static void acpi_os_execute_deferred(struct work_struct *work)
827{
828 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
829
830 dpc->function(dpc->context);
831 kfree(dpc);
832}
833
834#ifdef CONFIG_ACPI_DEBUGGER
835static struct acpi_debugger acpi_debugger;
836static bool acpi_debugger_initialized;
837
838int acpi_register_debugger(struct module *owner,
839 const struct acpi_debugger_ops *ops)
840{
841 int ret = 0;
842
843 mutex_lock(&acpi_debugger.lock);
844 if (acpi_debugger.ops) {
845 ret = -EBUSY;
846 goto err_lock;
847 }
848
849 acpi_debugger.owner = owner;
850 acpi_debugger.ops = ops;
851
852err_lock:
853 mutex_unlock(&acpi_debugger.lock);
854 return ret;
855}
856EXPORT_SYMBOL(acpi_register_debugger);
857
858void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
859{
860 mutex_lock(&acpi_debugger.lock);
861 if (ops == acpi_debugger.ops) {
862 acpi_debugger.ops = NULL;
863 acpi_debugger.owner = NULL;
864 }
865 mutex_unlock(&acpi_debugger.lock);
866}
867EXPORT_SYMBOL(acpi_unregister_debugger);
868
869int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
870{
871 int ret;
872 int (*func)(acpi_osd_exec_callback, void *);
873 struct module *owner;
874
875 if (!acpi_debugger_initialized)
876 return -ENODEV;
877 mutex_lock(&acpi_debugger.lock);
878 if (!acpi_debugger.ops) {
879 ret = -ENODEV;
880 goto err_lock;
881 }
882 if (!try_module_get(acpi_debugger.owner)) {
883 ret = -ENODEV;
884 goto err_lock;
885 }
886 func = acpi_debugger.ops->create_thread;
887 owner = acpi_debugger.owner;
888 mutex_unlock(&acpi_debugger.lock);
889
890 ret = func(function, context);
891
892 mutex_lock(&acpi_debugger.lock);
893 module_put(owner);
894err_lock:
895 mutex_unlock(&acpi_debugger.lock);
896 return ret;
897}
898
899ssize_t acpi_debugger_write_log(const char *msg)
900{
901 ssize_t ret;
902 ssize_t (*func)(const char *);
903 struct module *owner;
904
905 if (!acpi_debugger_initialized)
906 return -ENODEV;
907 mutex_lock(&acpi_debugger.lock);
908 if (!acpi_debugger.ops) {
909 ret = -ENODEV;
910 goto err_lock;
911 }
912 if (!try_module_get(acpi_debugger.owner)) {
913 ret = -ENODEV;
914 goto err_lock;
915 }
916 func = acpi_debugger.ops->write_log;
917 owner = acpi_debugger.owner;
918 mutex_unlock(&acpi_debugger.lock);
919
920 ret = func(msg);
921
922 mutex_lock(&acpi_debugger.lock);
923 module_put(owner);
924err_lock:
925 mutex_unlock(&acpi_debugger.lock);
926 return ret;
927}
928
929ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
930{
931 ssize_t ret;
932 ssize_t (*func)(char *, size_t);
933 struct module *owner;
934
935 if (!acpi_debugger_initialized)
936 return -ENODEV;
937 mutex_lock(&acpi_debugger.lock);
938 if (!acpi_debugger.ops) {
939 ret = -ENODEV;
940 goto err_lock;
941 }
942 if (!try_module_get(acpi_debugger.owner)) {
943 ret = -ENODEV;
944 goto err_lock;
945 }
946 func = acpi_debugger.ops->read_cmd;
947 owner = acpi_debugger.owner;
948 mutex_unlock(&acpi_debugger.lock);
949
950 ret = func(buffer, buffer_length);
951
952 mutex_lock(&acpi_debugger.lock);
953 module_put(owner);
954err_lock:
955 mutex_unlock(&acpi_debugger.lock);
956 return ret;
957}
958
959int acpi_debugger_wait_command_ready(void)
960{
961 int ret;
962 int (*func)(bool, char *, size_t);
963 struct module *owner;
964
965 if (!acpi_debugger_initialized)
966 return -ENODEV;
967 mutex_lock(&acpi_debugger.lock);
968 if (!acpi_debugger.ops) {
969 ret = -ENODEV;
970 goto err_lock;
971 }
972 if (!try_module_get(acpi_debugger.owner)) {
973 ret = -ENODEV;
974 goto err_lock;
975 }
976 func = acpi_debugger.ops->wait_command_ready;
977 owner = acpi_debugger.owner;
978 mutex_unlock(&acpi_debugger.lock);
979
980 ret = func(acpi_gbl_method_executing,
981 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
982
983 mutex_lock(&acpi_debugger.lock);
984 module_put(owner);
985err_lock:
986 mutex_unlock(&acpi_debugger.lock);
987 return ret;
988}
989
990int acpi_debugger_notify_command_complete(void)
991{
992 int ret;
993 int (*func)(void);
994 struct module *owner;
995
996 if (!acpi_debugger_initialized)
997 return -ENODEV;
998 mutex_lock(&acpi_debugger.lock);
999 if (!acpi_debugger.ops) {
1000 ret = -ENODEV;
1001 goto err_lock;
1002 }
1003 if (!try_module_get(acpi_debugger.owner)) {
1004 ret = -ENODEV;
1005 goto err_lock;
1006 }
1007 func = acpi_debugger.ops->notify_command_complete;
1008 owner = acpi_debugger.owner;
1009 mutex_unlock(&acpi_debugger.lock);
1010
1011 ret = func();
1012
1013 mutex_lock(&acpi_debugger.lock);
1014 module_put(owner);
1015err_lock:
1016 mutex_unlock(&acpi_debugger.lock);
1017 return ret;
1018}
1019
1020int __init acpi_debugger_init(void)
1021{
1022 mutex_init(&acpi_debugger.lock);
1023 acpi_debugger_initialized = true;
1024 return 0;
1025}
1026#endif
1027
1028/*******************************************************************************
1029 *
1030 * FUNCTION: acpi_os_execute
1031 *
1032 * PARAMETERS: Type - Type of the callback
1033 * Function - Function to be executed
1034 * Context - Function parameters
1035 *
1036 * RETURN: Status
1037 *
1038 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1039 * immediately executes function on a separate thread.
1040 *
1041 ******************************************************************************/
1042
1043acpi_status acpi_os_execute(acpi_execute_type type,
1044 acpi_osd_exec_callback function, void *context)
1045{
1046 acpi_status status = AE_OK;
1047 struct acpi_os_dpc *dpc;
1048 struct workqueue_struct *queue;
1049 int ret;
1050 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1051 "Scheduling function [%p(%p)] for deferred execution.\n",
1052 function, context));
1053
1054 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1055 ret = acpi_debugger_create_thread(function, context);
1056 if (ret) {
1057 pr_err("Call to kthread_create() failed.\n");
1058 status = AE_ERROR;
1059 }
1060 goto out_thread;
1061 }
1062
1063 /*
1064 * Allocate/initialize DPC structure. Note that this memory will be
1065 * freed by the callee. The kernel handles the work_struct list in a
1066 * way that allows us to also free its memory inside the callee.
1067 * Because we may want to schedule several tasks with different
1068 * parameters we can't use the approach some kernel code uses of
1069 * having a static work_struct.
1070 */
1071
1072 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1073 if (!dpc)
1074 return AE_NO_MEMORY;
1075
1076 dpc->function = function;
1077 dpc->context = context;
1078
1079 /*
1080 * To prevent lockdep from complaining unnecessarily, make sure that
1081 * there is a different static lockdep key for each workqueue by using
1082 * INIT_WORK() for each of them separately.
1083 */
1084 if (type == OSL_NOTIFY_HANDLER) {
1085 queue = kacpi_notify_wq;
1086 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1087 } else if (type == OSL_GPE_HANDLER) {
1088 queue = kacpid_wq;
1089 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1090 } else {
1091 pr_err("Unsupported os_execute type %d.\n", type);
1092 status = AE_ERROR;
1093 }
1094
1095 if (ACPI_FAILURE(status))
1096 goto err_workqueue;
1097
1098 /*
1099 * On some machines, a software-initiated SMI causes corruption unless
1100 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1101 * typically it's done in GPE-related methods that are run via
1102 * workqueues, so we can avoid the known corruption cases by always
1103 * queueing on CPU 0.
1104 */
1105 ret = queue_work_on(0, queue, &dpc->work);
1106 if (!ret) {
1107 printk(KERN_ERR PREFIX
1108 "Call to queue_work() failed.\n");
1109 status = AE_ERROR;
1110 }
1111err_workqueue:
1112 if (ACPI_FAILURE(status))
1113 kfree(dpc);
1114out_thread:
1115 return status;
1116}
1117EXPORT_SYMBOL(acpi_os_execute);
1118
1119void acpi_os_wait_events_complete(void)
1120{
1121 /*
1122 * Make sure the GPE handler or the fixed event handler is not used
1123 * on another CPU after removal.
1124 */
1125 if (acpi_sci_irq_valid())
1126 synchronize_hardirq(acpi_sci_irq);
1127 flush_workqueue(kacpid_wq);
1128 flush_workqueue(kacpi_notify_wq);
1129}
1130
1131struct acpi_hp_work {
1132 struct work_struct work;
1133 struct acpi_device *adev;
1134 u32 src;
1135};
1136
1137static void acpi_hotplug_work_fn(struct work_struct *work)
1138{
1139 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1140
1141 acpi_os_wait_events_complete();
1142 acpi_device_hotplug(hpw->adev, hpw->src);
1143 kfree(hpw);
1144}
1145
1146acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1147{
1148 struct acpi_hp_work *hpw;
1149
1150 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1151 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1152 adev, src));
1153
1154 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1155 if (!hpw)
1156 return AE_NO_MEMORY;
1157
1158 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1159 hpw->adev = adev;
1160 hpw->src = src;
1161 /*
1162 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1163 * the hotplug code may call driver .remove() functions, which may
1164 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1165 * these workqueues.
1166 */
1167 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1168 kfree(hpw);
1169 return AE_ERROR;
1170 }
1171 return AE_OK;
1172}
1173
1174bool acpi_queue_hotplug_work(struct work_struct *work)
1175{
1176 return queue_work(kacpi_hotplug_wq, work);
1177}
1178
1179acpi_status
1180acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1181{
1182 struct semaphore *sem = NULL;
1183
1184 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1185 if (!sem)
1186 return AE_NO_MEMORY;
1187
1188 sema_init(sem, initial_units);
1189
1190 *handle = (acpi_handle *) sem;
1191
1192 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1193 *handle, initial_units));
1194
1195 return AE_OK;
1196}
1197
1198/*
1199 * TODO: A better way to delete semaphores? Linux doesn't have a
1200 * 'delete_semaphore()' function -- may result in an invalid
1201 * pointer dereference for non-synchronized consumers. Should
1202 * we at least check for blocked threads and signal/cancel them?
1203 */
1204
1205acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1206{
1207 struct semaphore *sem = (struct semaphore *)handle;
1208
1209 if (!sem)
1210 return AE_BAD_PARAMETER;
1211
1212 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1213
1214 BUG_ON(!list_empty(&sem->wait_list));
1215 kfree(sem);
1216 sem = NULL;
1217
1218 return AE_OK;
1219}
1220
1221/*
1222 * TODO: Support for units > 1?
1223 */
1224acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1225{
1226 acpi_status status = AE_OK;
1227 struct semaphore *sem = (struct semaphore *)handle;
1228 long jiffies;
1229 int ret = 0;
1230
1231 if (!acpi_os_initialized)
1232 return AE_OK;
1233
1234 if (!sem || (units < 1))
1235 return AE_BAD_PARAMETER;
1236
1237 if (units > 1)
1238 return AE_SUPPORT;
1239
1240 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1241 handle, units, timeout));
1242
1243 if (timeout == ACPI_WAIT_FOREVER)
1244 jiffies = MAX_SCHEDULE_TIMEOUT;
1245 else
1246 jiffies = msecs_to_jiffies(timeout);
1247
1248 ret = down_timeout(sem, jiffies);
1249 if (ret)
1250 status = AE_TIME;
1251
1252 if (ACPI_FAILURE(status)) {
1253 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1254 "Failed to acquire semaphore[%p|%d|%d], %s",
1255 handle, units, timeout,
1256 acpi_format_exception(status)));
1257 } else {
1258 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1259 "Acquired semaphore[%p|%d|%d]", handle,
1260 units, timeout));
1261 }
1262
1263 return status;
1264}
1265
1266/*
1267 * TODO: Support for units > 1?
1268 */
1269acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1270{
1271 struct semaphore *sem = (struct semaphore *)handle;
1272
1273 if (!acpi_os_initialized)
1274 return AE_OK;
1275
1276 if (!sem || (units < 1))
1277 return AE_BAD_PARAMETER;
1278
1279 if (units > 1)
1280 return AE_SUPPORT;
1281
1282 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1283 units));
1284
1285 up(sem);
1286
1287 return AE_OK;
1288}
1289
1290acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1291{
1292#ifdef ENABLE_DEBUGGER
1293 if (acpi_in_debugger) {
1294 u32 chars;
1295
1296 kdb_read(buffer, buffer_length);
1297
1298 /* remove the CR kdb includes */
1299 chars = strlen(buffer) - 1;
1300 buffer[chars] = '\0';
1301 }
1302#else
1303 int ret;
1304
1305 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1306 if (ret < 0)
1307 return AE_ERROR;
1308 if (bytes_read)
1309 *bytes_read = ret;
1310#endif
1311
1312 return AE_OK;
1313}
1314EXPORT_SYMBOL(acpi_os_get_line);
1315
1316acpi_status acpi_os_wait_command_ready(void)
1317{
1318 int ret;
1319
1320 ret = acpi_debugger_wait_command_ready();
1321 if (ret < 0)
1322 return AE_ERROR;
1323 return AE_OK;
1324}
1325
1326acpi_status acpi_os_notify_command_complete(void)
1327{
1328 int ret;
1329
1330 ret = acpi_debugger_notify_command_complete();
1331 if (ret < 0)
1332 return AE_ERROR;
1333 return AE_OK;
1334}
1335
1336acpi_status acpi_os_signal(u32 function, void *info)
1337{
1338 switch (function) {
1339 case ACPI_SIGNAL_FATAL:
1340 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1341 break;
1342 case ACPI_SIGNAL_BREAKPOINT:
1343 /*
1344 * AML Breakpoint
1345 * ACPI spec. says to treat it as a NOP unless
1346 * you are debugging. So if/when we integrate
1347 * AML debugger into the kernel debugger its
1348 * hook will go here. But until then it is
1349 * not useful to print anything on breakpoints.
1350 */
1351 break;
1352 default:
1353 break;
1354 }
1355
1356 return AE_OK;
1357}
1358
1359static int __init acpi_os_name_setup(char *str)
1360{
1361 char *p = acpi_os_name;
1362 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1363
1364 if (!str || !*str)
1365 return 0;
1366
1367 for (; count-- && *str; str++) {
1368 if (isalnum(*str) || *str == ' ' || *str == ':')
1369 *p++ = *str;
1370 else if (*str == '\'' || *str == '"')
1371 continue;
1372 else
1373 break;
1374 }
1375 *p = 0;
1376
1377 return 1;
1378
1379}
1380
1381__setup("acpi_os_name=", acpi_os_name_setup);
1382
1383/*
1384 * Disable the auto-serialization of named objects creation methods.
1385 *
1386 * This feature is enabled by default. It marks the AML control methods
1387 * that contain the opcodes to create named objects as "Serialized".
1388 */
1389static int __init acpi_no_auto_serialize_setup(char *str)
1390{
1391 acpi_gbl_auto_serialize_methods = FALSE;
1392 pr_info("ACPI: auto-serialization disabled\n");
1393
1394 return 1;
1395}
1396
1397__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1398
1399/* Check of resource interference between native drivers and ACPI
1400 * OperationRegions (SystemIO and System Memory only).
1401 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1402 * in arbitrary AML code and can interfere with legacy drivers.
1403 * acpi_enforce_resources= can be set to:
1404 *
1405 * - strict (default) (2)
1406 * -> further driver trying to access the resources will not load
1407 * - lax (1)
1408 * -> further driver trying to access the resources will load, but you
1409 * get a system message that something might go wrong...
1410 *
1411 * - no (0)
1412 * -> ACPI Operation Region resources will not be registered
1413 *
1414 */
1415#define ENFORCE_RESOURCES_STRICT 2
1416#define ENFORCE_RESOURCES_LAX 1
1417#define ENFORCE_RESOURCES_NO 0
1418
1419static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1420
1421static int __init acpi_enforce_resources_setup(char *str)
1422{
1423 if (str == NULL || *str == '\0')
1424 return 0;
1425
1426 if (!strcmp("strict", str))
1427 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428 else if (!strcmp("lax", str))
1429 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1430 else if (!strcmp("no", str))
1431 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1432
1433 return 1;
1434}
1435
1436__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1437
1438/* Check for resource conflicts between ACPI OperationRegions and native
1439 * drivers */
1440int acpi_check_resource_conflict(const struct resource *res)
1441{
1442 acpi_adr_space_type space_id;
1443 acpi_size length;
1444 u8 warn = 0;
1445 int clash = 0;
1446
1447 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1448 return 0;
1449 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1450 return 0;
1451
1452 if (res->flags & IORESOURCE_IO)
1453 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1454 else
1455 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1456
1457 length = resource_size(res);
1458 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1459 warn = 1;
1460 clash = acpi_check_address_range(space_id, res->start, length, warn);
1461
1462 if (clash) {
1463 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1464 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1465 printk(KERN_NOTICE "ACPI: This conflict may"
1466 " cause random problems and system"
1467 " instability\n");
1468 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1469 " for this device, you should use it instead of"
1470 " the native driver\n");
1471 }
1472 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1473 return -EBUSY;
1474 }
1475 return 0;
1476}
1477EXPORT_SYMBOL(acpi_check_resource_conflict);
1478
1479int acpi_check_region(resource_size_t start, resource_size_t n,
1480 const char *name)
1481{
1482 struct resource res = {
1483 .start = start,
1484 .end = start + n - 1,
1485 .name = name,
1486 .flags = IORESOURCE_IO,
1487 };
1488
1489 return acpi_check_resource_conflict(&res);
1490}
1491EXPORT_SYMBOL(acpi_check_region);
1492
1493/*
1494 * Let drivers know whether the resource checks are effective
1495 */
1496int acpi_resources_are_enforced(void)
1497{
1498 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1499}
1500EXPORT_SYMBOL(acpi_resources_are_enforced);
1501
1502/*
1503 * Deallocate the memory for a spinlock.
1504 */
1505void acpi_os_delete_lock(acpi_spinlock handle)
1506{
1507 ACPI_FREE(handle);
1508}
1509
1510/*
1511 * Acquire a spinlock.
1512 *
1513 * handle is a pointer to the spinlock_t.
1514 */
1515
1516acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1517{
1518 acpi_cpu_flags flags;
1519 spin_lock_irqsave(lockp, flags);
1520 return flags;
1521}
1522
1523/*
1524 * Release a spinlock. See above.
1525 */
1526
1527void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1528{
1529 spin_unlock_irqrestore(lockp, flags);
1530}
1531
1532#ifndef ACPI_USE_LOCAL_CACHE
1533
1534/*******************************************************************************
1535 *
1536 * FUNCTION: acpi_os_create_cache
1537 *
1538 * PARAMETERS: name - Ascii name for the cache
1539 * size - Size of each cached object
1540 * depth - Maximum depth of the cache (in objects) <ignored>
1541 * cache - Where the new cache object is returned
1542 *
1543 * RETURN: status
1544 *
1545 * DESCRIPTION: Create a cache object
1546 *
1547 ******************************************************************************/
1548
1549acpi_status
1550acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1551{
1552 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1553 if (*cache == NULL)
1554 return AE_ERROR;
1555 else
1556 return AE_OK;
1557}
1558
1559/*******************************************************************************
1560 *
1561 * FUNCTION: acpi_os_purge_cache
1562 *
1563 * PARAMETERS: Cache - Handle to cache object
1564 *
1565 * RETURN: Status
1566 *
1567 * DESCRIPTION: Free all objects within the requested cache.
1568 *
1569 ******************************************************************************/
1570
1571acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1572{
1573 kmem_cache_shrink(cache);
1574 return (AE_OK);
1575}
1576
1577/*******************************************************************************
1578 *
1579 * FUNCTION: acpi_os_delete_cache
1580 *
1581 * PARAMETERS: Cache - Handle to cache object
1582 *
1583 * RETURN: Status
1584 *
1585 * DESCRIPTION: Free all objects within the requested cache and delete the
1586 * cache object.
1587 *
1588 ******************************************************************************/
1589
1590acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1591{
1592 kmem_cache_destroy(cache);
1593 return (AE_OK);
1594}
1595
1596/*******************************************************************************
1597 *
1598 * FUNCTION: acpi_os_release_object
1599 *
1600 * PARAMETERS: Cache - Handle to cache object
1601 * Object - The object to be released
1602 *
1603 * RETURN: None
1604 *
1605 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1606 * the object is deleted.
1607 *
1608 ******************************************************************************/
1609
1610acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1611{
1612 kmem_cache_free(cache, object);
1613 return (AE_OK);
1614}
1615#endif
1616
1617static int __init acpi_no_static_ssdt_setup(char *s)
1618{
1619 acpi_gbl_disable_ssdt_table_install = TRUE;
1620 pr_info("ACPI: static SSDT installation disabled\n");
1621
1622 return 0;
1623}
1624
1625early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1626
1627static int __init acpi_disable_return_repair(char *s)
1628{
1629 printk(KERN_NOTICE PREFIX
1630 "ACPI: Predefined validation mechanism disabled\n");
1631 acpi_gbl_disable_auto_repair = TRUE;
1632
1633 return 1;
1634}
1635
1636__setup("acpica_no_return_repair", acpi_disable_return_repair);
1637
1638acpi_status __init acpi_os_initialize(void)
1639{
1640 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1641 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1642 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1643 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1644 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1645 /*
1646 * Use acpi_os_map_generic_address to pre-map the reset
1647 * register if it's in system memory.
1648 */
1649 int rv;
1650
1651 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1652 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1653 }
1654 acpi_os_initialized = true;
1655
1656 return AE_OK;
1657}
1658
1659acpi_status __init acpi_os_initialize1(void)
1660{
1661 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1662 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1663 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1664 BUG_ON(!kacpid_wq);
1665 BUG_ON(!kacpi_notify_wq);
1666 BUG_ON(!kacpi_hotplug_wq);
1667 acpi_osi_init();
1668 return AE_OK;
1669}
1670
1671acpi_status acpi_os_terminate(void)
1672{
1673 if (acpi_irq_handler) {
1674 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1675 acpi_irq_handler);
1676 }
1677
1678 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1679 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1680 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1681 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1682 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1683 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1684
1685 destroy_workqueue(kacpid_wq);
1686 destroy_workqueue(kacpi_notify_wq);
1687 destroy_workqueue(kacpi_hotplug_wq);
1688
1689 return AE_OK;
1690}
1691
1692acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1693 u32 pm1b_control)
1694{
1695 int rc = 0;
1696 if (__acpi_os_prepare_sleep)
1697 rc = __acpi_os_prepare_sleep(sleep_state,
1698 pm1a_control, pm1b_control);
1699 if (rc < 0)
1700 return AE_ERROR;
1701 else if (rc > 0)
1702 return AE_CTRL_TERMINATE;
1703
1704 return AE_OK;
1705}
1706
1707void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1708 u32 pm1a_ctrl, u32 pm1b_ctrl))
1709{
1710 __acpi_os_prepare_sleep = func;
1711}
1712
1713#if (ACPI_REDUCED_HARDWARE)
1714acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1715 u32 val_b)
1716{
1717 int rc = 0;
1718 if (__acpi_os_prepare_extended_sleep)
1719 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1720 val_a, val_b);
1721 if (rc < 0)
1722 return AE_ERROR;
1723 else if (rc > 0)
1724 return AE_CTRL_TERMINATE;
1725
1726 return AE_OK;
1727}
1728#else
1729acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1730 u32 val_b)
1731{
1732 return AE_OK;
1733}
1734#endif
1735
1736void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1737 u32 val_a, u32 val_b))
1738{
1739 __acpi_os_prepare_extended_sleep = func;
1740}
1741
1742acpi_status acpi_os_enter_sleep(u8 sleep_state,
1743 u32 reg_a_value, u32 reg_b_value)
1744{
1745 acpi_status status;
1746
1747 if (acpi_gbl_reduced_hardware)
1748 status = acpi_os_prepare_extended_sleep(sleep_state,
1749 reg_a_value,
1750 reg_b_value);
1751 else
1752 status = acpi_os_prepare_sleep(sleep_state,
1753 reg_a_value, reg_b_value);
1754 return status;
1755}