Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   4 *
   5 *  Copyright (C) 2000       Andrew Henroid
   6 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   7 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   8 *  Copyright (c) 2008 Intel Corporation
   9 *   Author: Matthew Wilcox <willy@linux.intel.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/mm.h>
  16#include <linux/highmem.h>
  17#include <linux/lockdep.h>
  18#include <linux/pci.h>
  19#include <linux/interrupt.h>
  20#include <linux/kmod.h>
  21#include <linux/delay.h>
  22#include <linux/workqueue.h>
  23#include <linux/nmi.h>
  24#include <linux/acpi.h>
  25#include <linux/efi.h>
  26#include <linux/ioport.h>
  27#include <linux/list.h>
  28#include <linux/jiffies.h>
  29#include <linux/semaphore.h>
  30#include <linux/security.h>
  31
  32#include <asm/io.h>
  33#include <linux/uaccess.h>
  34#include <linux/io-64-nonatomic-lo-hi.h>
  35
  36#include "acpica/accommon.h"
  37#include "acpica/acnamesp.h"
  38#include "internal.h"
  39
  40#define _COMPONENT		ACPI_OS_SERVICES
  41ACPI_MODULE_NAME("osl");
  42
  43struct acpi_os_dpc {
  44	acpi_osd_exec_callback function;
  45	void *context;
  46	struct work_struct work;
  47};
  48
  49#ifdef ENABLE_DEBUGGER
  50#include <linux/kdb.h>
  51
  52/* stuff for debugger support */
  53int acpi_in_debugger;
  54EXPORT_SYMBOL(acpi_in_debugger);
  55#endif				/*ENABLE_DEBUGGER */
  56
  57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  58				      u32 pm1b_ctrl);
  59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  60				      u32 val_b);
  61
  62static acpi_osd_handler acpi_irq_handler;
  63static void *acpi_irq_context;
  64static struct workqueue_struct *kacpid_wq;
  65static struct workqueue_struct *kacpi_notify_wq;
  66static struct workqueue_struct *kacpi_hotplug_wq;
  67static bool acpi_os_initialized;
  68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  69bool acpi_permanent_mmap = false;
  70
  71/*
  72 * This list of permanent mappings is for memory that may be accessed from
  73 * interrupt context, where we can't do the ioremap().
  74 */
  75struct acpi_ioremap {
  76	struct list_head list;
  77	void __iomem *virt;
  78	acpi_physical_address phys;
  79	acpi_size size;
  80	union {
  81		unsigned long refcount;
  82		struct rcu_work rwork;
  83	} track;
  84};
  85
  86static LIST_HEAD(acpi_ioremaps);
  87static DEFINE_MUTEX(acpi_ioremap_lock);
  88#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
  89
  90static void __init acpi_request_region (struct acpi_generic_address *gas,
  91	unsigned int length, char *desc)
  92{
  93	u64 addr;
  94
  95	/* Handle possible alignment issues */
  96	memcpy(&addr, &gas->address, sizeof(addr));
  97	if (!addr || !length)
  98		return;
  99
 100	/* Resources are never freed */
 101	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 102		request_region(addr, length, desc);
 103	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 104		request_mem_region(addr, length, desc);
 105}
 106
 107static int __init acpi_reserve_resources(void)
 108{
 109	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 110		"ACPI PM1a_EVT_BLK");
 111
 112	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 113		"ACPI PM1b_EVT_BLK");
 114
 115	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 116		"ACPI PM1a_CNT_BLK");
 117
 118	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 119		"ACPI PM1b_CNT_BLK");
 120
 121	if (acpi_gbl_FADT.pm_timer_length == 4)
 122		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 123
 124	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 125		"ACPI PM2_CNT_BLK");
 126
 127	/* Length of GPE blocks must be a non-negative multiple of 2 */
 128
 129	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 130		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 131			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 132
 133	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 134		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 135			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 136
 137	return 0;
 138}
 139fs_initcall_sync(acpi_reserve_resources);
 140
 141void acpi_os_printf(const char *fmt, ...)
 142{
 143	va_list args;
 144	va_start(args, fmt);
 145	acpi_os_vprintf(fmt, args);
 146	va_end(args);
 147}
 148EXPORT_SYMBOL(acpi_os_printf);
 149
 150void acpi_os_vprintf(const char *fmt, va_list args)
 151{
 152	static char buffer[512];
 153
 154	vsprintf(buffer, fmt, args);
 155
 156#ifdef ENABLE_DEBUGGER
 157	if (acpi_in_debugger) {
 158		kdb_printf("%s", buffer);
 159	} else {
 160		if (printk_get_level(buffer))
 161			printk("%s", buffer);
 162		else
 163			printk(KERN_CONT "%s", buffer);
 164	}
 165#else
 166	if (acpi_debugger_write_log(buffer) < 0) {
 167		if (printk_get_level(buffer))
 168			printk("%s", buffer);
 169		else
 170			printk(KERN_CONT "%s", buffer);
 171	}
 172#endif
 173}
 174
 175#ifdef CONFIG_KEXEC
 176static unsigned long acpi_rsdp;
 177static int __init setup_acpi_rsdp(char *arg)
 178{
 179	return kstrtoul(arg, 16, &acpi_rsdp);
 180}
 181early_param("acpi_rsdp", setup_acpi_rsdp);
 182#endif
 183
 184acpi_physical_address __init acpi_os_get_root_pointer(void)
 185{
 186	acpi_physical_address pa;
 187
 188#ifdef CONFIG_KEXEC
 189	/*
 190	 * We may have been provided with an RSDP on the command line,
 191	 * but if a malicious user has done so they may be pointing us
 192	 * at modified ACPI tables that could alter kernel behaviour -
 193	 * so, we check the lockdown status before making use of
 194	 * it. If we trust it then also stash it in an architecture
 195	 * specific location (if appropriate) so it can be carried
 196	 * over further kexec()s.
 197	 */
 198	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
 199		acpi_arch_set_root_pointer(acpi_rsdp);
 200		return acpi_rsdp;
 201	}
 202#endif
 203	pa = acpi_arch_get_root_pointer();
 204	if (pa)
 205		return pa;
 206
 207	if (efi_enabled(EFI_CONFIG_TABLES)) {
 208		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 209			return efi.acpi20;
 210		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 211			return efi.acpi;
 212		pr_err(PREFIX "System description tables not found\n");
 213	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 214		acpi_find_root_pointer(&pa);
 215	}
 216
 217	return pa;
 218}
 219
 220/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 221static struct acpi_ioremap *
 222acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 223{
 224	struct acpi_ioremap *map;
 225
 226	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 227		if (map->phys <= phys &&
 228		    phys + size <= map->phys + map->size)
 229			return map;
 230
 231	return NULL;
 232}
 233
 234/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 235static void __iomem *
 236acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 237{
 238	struct acpi_ioremap *map;
 239
 240	map = acpi_map_lookup(phys, size);
 241	if (map)
 242		return map->virt + (phys - map->phys);
 243
 244	return NULL;
 245}
 246
 247void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 248{
 249	struct acpi_ioremap *map;
 250	void __iomem *virt = NULL;
 251
 252	mutex_lock(&acpi_ioremap_lock);
 253	map = acpi_map_lookup(phys, size);
 254	if (map) {
 255		virt = map->virt + (phys - map->phys);
 256		map->track.refcount++;
 257	}
 258	mutex_unlock(&acpi_ioremap_lock);
 259	return virt;
 260}
 261EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 262
 263/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 264static struct acpi_ioremap *
 265acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 266{
 267	struct acpi_ioremap *map;
 268
 269	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 270		if (map->virt <= virt &&
 271		    virt + size <= map->virt + map->size)
 272			return map;
 273
 274	return NULL;
 275}
 276
 277#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 278/* ioremap will take care of cache attributes */
 279#define should_use_kmap(pfn)   0
 280#else
 281#define should_use_kmap(pfn)   page_is_ram(pfn)
 282#endif
 283
 284static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 285{
 286	unsigned long pfn;
 287
 288	pfn = pg_off >> PAGE_SHIFT;
 289	if (should_use_kmap(pfn)) {
 290		if (pg_sz > PAGE_SIZE)
 291			return NULL;
 292		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 293	} else
 294		return acpi_os_ioremap(pg_off, pg_sz);
 295}
 296
 297static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 298{
 299	unsigned long pfn;
 300
 301	pfn = pg_off >> PAGE_SHIFT;
 302	if (should_use_kmap(pfn))
 303		kunmap(pfn_to_page(pfn));
 304	else
 305		iounmap(vaddr);
 306}
 307
 308/**
 309 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 310 * @phys: Start of the physical address range to map.
 311 * @size: Size of the physical address range to map.
 312 *
 313 * Look up the given physical address range in the list of existing ACPI memory
 314 * mappings.  If found, get a reference to it and return a pointer to it (its
 315 * virtual address).  If not found, map it, add it to that list and return a
 316 * pointer to it.
 317 *
 318 * During early init (when acpi_permanent_mmap has not been set yet) this
 319 * routine simply calls __acpi_map_table() to get the job done.
 320 */
 321void __iomem __ref
 322*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 323{
 324	struct acpi_ioremap *map;
 325	void __iomem *virt;
 326	acpi_physical_address pg_off;
 327	acpi_size pg_sz;
 328
 329	if (phys > ULONG_MAX) {
 330		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 331		return NULL;
 332	}
 333
 334	if (!acpi_permanent_mmap)
 335		return __acpi_map_table((unsigned long)phys, size);
 336
 337	mutex_lock(&acpi_ioremap_lock);
 338	/* Check if there's a suitable mapping already. */
 339	map = acpi_map_lookup(phys, size);
 340	if (map) {
 341		map->track.refcount++;
 342		goto out;
 343	}
 344
 345	map = kzalloc(sizeof(*map), GFP_KERNEL);
 346	if (!map) {
 347		mutex_unlock(&acpi_ioremap_lock);
 348		return NULL;
 349	}
 350
 351	pg_off = round_down(phys, PAGE_SIZE);
 352	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 353	virt = acpi_map(phys, size);
 354	if (!virt) {
 355		mutex_unlock(&acpi_ioremap_lock);
 356		kfree(map);
 357		return NULL;
 358	}
 359
 360	INIT_LIST_HEAD(&map->list);
 361	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
 362	map->phys = pg_off;
 363	map->size = pg_sz;
 364	map->track.refcount = 1;
 365
 366	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 367
 368out:
 369	mutex_unlock(&acpi_ioremap_lock);
 370	return map->virt + (phys - map->phys);
 371}
 372EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 373
 374void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 375{
 376	return (void *)acpi_os_map_iomem(phys, size);
 377}
 378EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 379
 380static void acpi_os_map_remove(struct work_struct *work)
 381{
 382	struct acpi_ioremap *map = container_of(to_rcu_work(work),
 383						struct acpi_ioremap,
 384						track.rwork);
 385
 386	acpi_unmap(map->phys, map->virt);
 387	kfree(map);
 388}
 389
 390/* Must be called with mutex_lock(&acpi_ioremap_lock) */
 391static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 392{
 393	if (--map->track.refcount)
 394		return;
 395
 396	list_del_rcu(&map->list);
 397
 398	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
 399	queue_rcu_work(system_wq, &map->track.rwork);
 400}
 401
 402/**
 403 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 404 * @virt: Start of the address range to drop a reference to.
 405 * @size: Size of the address range to drop a reference to.
 406 *
 407 * Look up the given virtual address range in the list of existing ACPI memory
 408 * mappings, drop a reference to it and if there are no more active references
 409 * to it, queue it up for later removal.
 410 *
 411 * During early init (when acpi_permanent_mmap has not been set yet) this
 412 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 413 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 414 * here.
 415 */
 416void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 417{
 418	struct acpi_ioremap *map;
 419
 420	if (!acpi_permanent_mmap) {
 421		__acpi_unmap_table(virt, size);
 422		return;
 423	}
 424
 425	mutex_lock(&acpi_ioremap_lock);
 426
 427	map = acpi_map_lookup_virt(virt, size);
 428	if (!map) {
 429		mutex_unlock(&acpi_ioremap_lock);
 430		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 431		return;
 432	}
 433	acpi_os_drop_map_ref(map);
 434
 435	mutex_unlock(&acpi_ioremap_lock);
 
 
 436}
 437EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 438
 439/**
 440 * acpi_os_unmap_memory - Drop a memory mapping reference.
 441 * @virt: Start of the address range to drop a reference to.
 442 * @size: Size of the address range to drop a reference to.
 443 */
 444void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 445{
 446	acpi_os_unmap_iomem((void __iomem *)virt, size);
 447}
 448EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 449
 450int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 451{
 452	u64 addr;
 453	void __iomem *virt;
 454
 455	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 456		return 0;
 457
 458	/* Handle possible alignment issues */
 459	memcpy(&addr, &gas->address, sizeof(addr));
 460	if (!addr || !gas->bit_width)
 461		return -EINVAL;
 462
 463	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 464	if (!virt)
 465		return -EIO;
 466
 467	return 0;
 468}
 469EXPORT_SYMBOL(acpi_os_map_generic_address);
 470
 471void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 472{
 473	u64 addr;
 474	struct acpi_ioremap *map;
 475
 476	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 477		return;
 478
 479	/* Handle possible alignment issues */
 480	memcpy(&addr, &gas->address, sizeof(addr));
 481	if (!addr || !gas->bit_width)
 482		return;
 483
 484	mutex_lock(&acpi_ioremap_lock);
 485
 486	map = acpi_map_lookup(addr, gas->bit_width / 8);
 487	if (!map) {
 488		mutex_unlock(&acpi_ioremap_lock);
 489		return;
 490	}
 491	acpi_os_drop_map_ref(map);
 492
 493	mutex_unlock(&acpi_ioremap_lock);
 
 
 494}
 495EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 496
 497#ifdef ACPI_FUTURE_USAGE
 498acpi_status
 499acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 500{
 501	if (!phys || !virt)
 502		return AE_BAD_PARAMETER;
 503
 504	*phys = virt_to_phys(virt);
 505
 506	return AE_OK;
 507}
 508#endif
 509
 510#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 511static bool acpi_rev_override;
 512
 513int __init acpi_rev_override_setup(char *str)
 514{
 515	acpi_rev_override = true;
 516	return 1;
 517}
 518__setup("acpi_rev_override", acpi_rev_override_setup);
 519#else
 520#define acpi_rev_override	false
 521#endif
 522
 523#define ACPI_MAX_OVERRIDE_LEN 100
 524
 525static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 526
 527acpi_status
 528acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 529			    acpi_string *new_val)
 530{
 531	if (!init_val || !new_val)
 532		return AE_BAD_PARAMETER;
 533
 534	*new_val = NULL;
 535	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 536		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 537		       acpi_os_name);
 538		*new_val = acpi_os_name;
 539	}
 540
 541	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 542		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 543		*new_val = (char *)5;
 544	}
 545
 546	return AE_OK;
 547}
 548
 549static irqreturn_t acpi_irq(int irq, void *dev_id)
 550{
 551	u32 handled;
 552
 553	handled = (*acpi_irq_handler) (acpi_irq_context);
 554
 555	if (handled) {
 556		acpi_irq_handled++;
 557		return IRQ_HANDLED;
 558	} else {
 559		acpi_irq_not_handled++;
 560		return IRQ_NONE;
 561	}
 562}
 563
 564acpi_status
 565acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 566				  void *context)
 567{
 568	unsigned int irq;
 569
 570	acpi_irq_stats_init();
 571
 572	/*
 573	 * ACPI interrupts different from the SCI in our copy of the FADT are
 574	 * not supported.
 575	 */
 576	if (gsi != acpi_gbl_FADT.sci_interrupt)
 577		return AE_BAD_PARAMETER;
 578
 579	if (acpi_irq_handler)
 580		return AE_ALREADY_ACQUIRED;
 581
 582	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 583		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 584		       gsi);
 585		return AE_OK;
 586	}
 587
 588	acpi_irq_handler = handler;
 589	acpi_irq_context = context;
 590	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 591		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 592		acpi_irq_handler = NULL;
 593		return AE_NOT_ACQUIRED;
 594	}
 595	acpi_sci_irq = irq;
 596
 597	return AE_OK;
 598}
 599
 600acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 601{
 602	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 603		return AE_BAD_PARAMETER;
 604
 605	free_irq(acpi_sci_irq, acpi_irq);
 606	acpi_irq_handler = NULL;
 607	acpi_sci_irq = INVALID_ACPI_IRQ;
 608
 609	return AE_OK;
 610}
 611
 612/*
 613 * Running in interpreter thread context, safe to sleep
 614 */
 615
 616void acpi_os_sleep(u64 ms)
 617{
 618	msleep(ms);
 619}
 620
 621void acpi_os_stall(u32 us)
 622{
 623	while (us) {
 624		u32 delay = 1000;
 625
 626		if (delay > us)
 627			delay = us;
 628		udelay(delay);
 629		touch_nmi_watchdog();
 630		us -= delay;
 631	}
 632}
 633
 634/*
 635 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
 636 * monotonically increasing timer with 100ns granularity. Do not use
 637 * ktime_get() to implement this function because this function may get
 638 * called after timekeeping has been suspended. Note: calling this function
 639 * after timekeeping has been suspended may lead to unexpected results
 640 * because when timekeeping is suspended the jiffies counter is not
 641 * incremented. See also timekeeping_suspend().
 642 */
 643u64 acpi_os_get_timer(void)
 644{
 645	return (get_jiffies_64() - INITIAL_JIFFIES) *
 646		(ACPI_100NSEC_PER_SEC / HZ);
 
 647}
 648
 649acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 650{
 651	u32 dummy;
 652
 653	if (!value)
 654		value = &dummy;
 655
 656	*value = 0;
 657	if (width <= 8) {
 658		*(u8 *) value = inb(port);
 659	} else if (width <= 16) {
 660		*(u16 *) value = inw(port);
 661	} else if (width <= 32) {
 662		*(u32 *) value = inl(port);
 663	} else {
 664		BUG();
 665	}
 666
 667	return AE_OK;
 668}
 669
 670EXPORT_SYMBOL(acpi_os_read_port);
 671
 672acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 673{
 674	if (width <= 8) {
 675		outb(value, port);
 676	} else if (width <= 16) {
 677		outw(value, port);
 678	} else if (width <= 32) {
 679		outl(value, port);
 680	} else {
 681		BUG();
 682	}
 683
 684	return AE_OK;
 685}
 686
 687EXPORT_SYMBOL(acpi_os_write_port);
 688
 689int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
 690{
 691
 692	switch (width) {
 693	case 8:
 694		*(u8 *) value = readb(virt_addr);
 695		break;
 696	case 16:
 697		*(u16 *) value = readw(virt_addr);
 698		break;
 699	case 32:
 700		*(u32 *) value = readl(virt_addr);
 701		break;
 702	case 64:
 703		*(u64 *) value = readq(virt_addr);
 704		break;
 705	default:
 706		return -EINVAL;
 707	}
 708
 709	return 0;
 710}
 711
 712acpi_status
 713acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 714{
 715	void __iomem *virt_addr;
 716	unsigned int size = width / 8;
 717	bool unmap = false;
 718	u64 dummy;
 719	int error;
 720
 721	rcu_read_lock();
 722	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 723	if (!virt_addr) {
 724		rcu_read_unlock();
 725		virt_addr = acpi_os_ioremap(phys_addr, size);
 726		if (!virt_addr)
 727			return AE_BAD_ADDRESS;
 728		unmap = true;
 729	}
 730
 731	if (!value)
 732		value = &dummy;
 733
 734	error = acpi_os_read_iomem(virt_addr, value, width);
 735	BUG_ON(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736
 737	if (unmap)
 738		iounmap(virt_addr);
 739	else
 740		rcu_read_unlock();
 741
 742	return AE_OK;
 743}
 744
 745acpi_status
 746acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 747{
 748	void __iomem *virt_addr;
 749	unsigned int size = width / 8;
 750	bool unmap = false;
 751
 752	rcu_read_lock();
 753	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 754	if (!virt_addr) {
 755		rcu_read_unlock();
 756		virt_addr = acpi_os_ioremap(phys_addr, size);
 757		if (!virt_addr)
 758			return AE_BAD_ADDRESS;
 759		unmap = true;
 760	}
 761
 762	switch (width) {
 763	case 8:
 764		writeb(value, virt_addr);
 765		break;
 766	case 16:
 767		writew(value, virt_addr);
 768		break;
 769	case 32:
 770		writel(value, virt_addr);
 771		break;
 772	case 64:
 773		writeq(value, virt_addr);
 774		break;
 775	default:
 776		BUG();
 777	}
 778
 779	if (unmap)
 780		iounmap(virt_addr);
 781	else
 782		rcu_read_unlock();
 783
 784	return AE_OK;
 785}
 786
 787#ifdef CONFIG_PCI
 788acpi_status
 789acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 790			       u64 *value, u32 width)
 791{
 792	int result, size;
 793	u32 value32;
 794
 795	if (!value)
 796		return AE_BAD_PARAMETER;
 797
 798	switch (width) {
 799	case 8:
 800		size = 1;
 801		break;
 802	case 16:
 803		size = 2;
 804		break;
 805	case 32:
 806		size = 4;
 807		break;
 808	default:
 809		return AE_ERROR;
 810	}
 811
 812	result = raw_pci_read(pci_id->segment, pci_id->bus,
 813				PCI_DEVFN(pci_id->device, pci_id->function),
 814				reg, size, &value32);
 815	*value = value32;
 816
 817	return (result ? AE_ERROR : AE_OK);
 818}
 819
 820acpi_status
 821acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 822				u64 value, u32 width)
 823{
 824	int result, size;
 825
 826	switch (width) {
 827	case 8:
 828		size = 1;
 829		break;
 830	case 16:
 831		size = 2;
 832		break;
 833	case 32:
 834		size = 4;
 835		break;
 836	default:
 837		return AE_ERROR;
 838	}
 839
 840	result = raw_pci_write(pci_id->segment, pci_id->bus,
 841				PCI_DEVFN(pci_id->device, pci_id->function),
 842				reg, size, value);
 843
 844	return (result ? AE_ERROR : AE_OK);
 845}
 846#endif
 847
 848static void acpi_os_execute_deferred(struct work_struct *work)
 849{
 850	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 851
 852	dpc->function(dpc->context);
 853	kfree(dpc);
 854}
 855
 856#ifdef CONFIG_ACPI_DEBUGGER
 857static struct acpi_debugger acpi_debugger;
 858static bool acpi_debugger_initialized;
 859
 860int acpi_register_debugger(struct module *owner,
 861			   const struct acpi_debugger_ops *ops)
 862{
 863	int ret = 0;
 864
 865	mutex_lock(&acpi_debugger.lock);
 866	if (acpi_debugger.ops) {
 867		ret = -EBUSY;
 868		goto err_lock;
 869	}
 870
 871	acpi_debugger.owner = owner;
 872	acpi_debugger.ops = ops;
 873
 874err_lock:
 875	mutex_unlock(&acpi_debugger.lock);
 876	return ret;
 877}
 878EXPORT_SYMBOL(acpi_register_debugger);
 879
 880void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 881{
 882	mutex_lock(&acpi_debugger.lock);
 883	if (ops == acpi_debugger.ops) {
 884		acpi_debugger.ops = NULL;
 885		acpi_debugger.owner = NULL;
 886	}
 887	mutex_unlock(&acpi_debugger.lock);
 888}
 889EXPORT_SYMBOL(acpi_unregister_debugger);
 890
 891int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 892{
 893	int ret;
 894	int (*func)(acpi_osd_exec_callback, void *);
 895	struct module *owner;
 896
 897	if (!acpi_debugger_initialized)
 898		return -ENODEV;
 899	mutex_lock(&acpi_debugger.lock);
 900	if (!acpi_debugger.ops) {
 901		ret = -ENODEV;
 902		goto err_lock;
 903	}
 904	if (!try_module_get(acpi_debugger.owner)) {
 905		ret = -ENODEV;
 906		goto err_lock;
 907	}
 908	func = acpi_debugger.ops->create_thread;
 909	owner = acpi_debugger.owner;
 910	mutex_unlock(&acpi_debugger.lock);
 911
 912	ret = func(function, context);
 913
 914	mutex_lock(&acpi_debugger.lock);
 915	module_put(owner);
 916err_lock:
 917	mutex_unlock(&acpi_debugger.lock);
 918	return ret;
 919}
 920
 921ssize_t acpi_debugger_write_log(const char *msg)
 922{
 923	ssize_t ret;
 924	ssize_t (*func)(const char *);
 925	struct module *owner;
 926
 927	if (!acpi_debugger_initialized)
 928		return -ENODEV;
 929	mutex_lock(&acpi_debugger.lock);
 930	if (!acpi_debugger.ops) {
 931		ret = -ENODEV;
 932		goto err_lock;
 933	}
 934	if (!try_module_get(acpi_debugger.owner)) {
 935		ret = -ENODEV;
 936		goto err_lock;
 937	}
 938	func = acpi_debugger.ops->write_log;
 939	owner = acpi_debugger.owner;
 940	mutex_unlock(&acpi_debugger.lock);
 941
 942	ret = func(msg);
 943
 944	mutex_lock(&acpi_debugger.lock);
 945	module_put(owner);
 946err_lock:
 947	mutex_unlock(&acpi_debugger.lock);
 948	return ret;
 949}
 950
 951ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 952{
 953	ssize_t ret;
 954	ssize_t (*func)(char *, size_t);
 955	struct module *owner;
 956
 957	if (!acpi_debugger_initialized)
 958		return -ENODEV;
 959	mutex_lock(&acpi_debugger.lock);
 960	if (!acpi_debugger.ops) {
 961		ret = -ENODEV;
 962		goto err_lock;
 963	}
 964	if (!try_module_get(acpi_debugger.owner)) {
 965		ret = -ENODEV;
 966		goto err_lock;
 967	}
 968	func = acpi_debugger.ops->read_cmd;
 969	owner = acpi_debugger.owner;
 970	mutex_unlock(&acpi_debugger.lock);
 971
 972	ret = func(buffer, buffer_length);
 973
 974	mutex_lock(&acpi_debugger.lock);
 975	module_put(owner);
 976err_lock:
 977	mutex_unlock(&acpi_debugger.lock);
 978	return ret;
 979}
 980
 981int acpi_debugger_wait_command_ready(void)
 982{
 983	int ret;
 984	int (*func)(bool, char *, size_t);
 985	struct module *owner;
 986
 987	if (!acpi_debugger_initialized)
 988		return -ENODEV;
 989	mutex_lock(&acpi_debugger.lock);
 990	if (!acpi_debugger.ops) {
 991		ret = -ENODEV;
 992		goto err_lock;
 993	}
 994	if (!try_module_get(acpi_debugger.owner)) {
 995		ret = -ENODEV;
 996		goto err_lock;
 997	}
 998	func = acpi_debugger.ops->wait_command_ready;
 999	owner = acpi_debugger.owner;
1000	mutex_unlock(&acpi_debugger.lock);
1001
1002	ret = func(acpi_gbl_method_executing,
1003		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1004
1005	mutex_lock(&acpi_debugger.lock);
1006	module_put(owner);
1007err_lock:
1008	mutex_unlock(&acpi_debugger.lock);
1009	return ret;
1010}
1011
1012int acpi_debugger_notify_command_complete(void)
1013{
1014	int ret;
1015	int (*func)(void);
1016	struct module *owner;
1017
1018	if (!acpi_debugger_initialized)
1019		return -ENODEV;
1020	mutex_lock(&acpi_debugger.lock);
1021	if (!acpi_debugger.ops) {
1022		ret = -ENODEV;
1023		goto err_lock;
1024	}
1025	if (!try_module_get(acpi_debugger.owner)) {
1026		ret = -ENODEV;
1027		goto err_lock;
1028	}
1029	func = acpi_debugger.ops->notify_command_complete;
1030	owner = acpi_debugger.owner;
1031	mutex_unlock(&acpi_debugger.lock);
1032
1033	ret = func();
1034
1035	mutex_lock(&acpi_debugger.lock);
1036	module_put(owner);
1037err_lock:
1038	mutex_unlock(&acpi_debugger.lock);
1039	return ret;
1040}
1041
1042int __init acpi_debugger_init(void)
1043{
1044	mutex_init(&acpi_debugger.lock);
1045	acpi_debugger_initialized = true;
1046	return 0;
1047}
1048#endif
1049
1050/*******************************************************************************
1051 *
1052 * FUNCTION:    acpi_os_execute
1053 *
1054 * PARAMETERS:  Type               - Type of the callback
1055 *              Function           - Function to be executed
1056 *              Context            - Function parameters
1057 *
1058 * RETURN:      Status
1059 *
1060 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1061 *              immediately executes function on a separate thread.
1062 *
1063 ******************************************************************************/
1064
1065acpi_status acpi_os_execute(acpi_execute_type type,
1066			    acpi_osd_exec_callback function, void *context)
1067{
1068	acpi_status status = AE_OK;
1069	struct acpi_os_dpc *dpc;
1070	struct workqueue_struct *queue;
1071	int ret;
1072	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1073			  "Scheduling function [%p(%p)] for deferred execution.\n",
1074			  function, context));
1075
1076	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1077		ret = acpi_debugger_create_thread(function, context);
1078		if (ret) {
1079			pr_err("Call to kthread_create() failed.\n");
1080			status = AE_ERROR;
1081		}
1082		goto out_thread;
1083	}
1084
1085	/*
1086	 * Allocate/initialize DPC structure.  Note that this memory will be
1087	 * freed by the callee.  The kernel handles the work_struct list  in a
1088	 * way that allows us to also free its memory inside the callee.
1089	 * Because we may want to schedule several tasks with different
1090	 * parameters we can't use the approach some kernel code uses of
1091	 * having a static work_struct.
1092	 */
1093
1094	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1095	if (!dpc)
1096		return AE_NO_MEMORY;
1097
1098	dpc->function = function;
1099	dpc->context = context;
1100
1101	/*
1102	 * To prevent lockdep from complaining unnecessarily, make sure that
1103	 * there is a different static lockdep key for each workqueue by using
1104	 * INIT_WORK() for each of them separately.
1105	 */
1106	if (type == OSL_NOTIFY_HANDLER) {
1107		queue = kacpi_notify_wq;
1108		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1109	} else if (type == OSL_GPE_HANDLER) {
1110		queue = kacpid_wq;
1111		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1112	} else {
1113		pr_err("Unsupported os_execute type %d.\n", type);
1114		status = AE_ERROR;
1115	}
1116
1117	if (ACPI_FAILURE(status))
1118		goto err_workqueue;
1119
1120	/*
1121	 * On some machines, a software-initiated SMI causes corruption unless
1122	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1123	 * typically it's done in GPE-related methods that are run via
1124	 * workqueues, so we can avoid the known corruption cases by always
1125	 * queueing on CPU 0.
1126	 */
1127	ret = queue_work_on(0, queue, &dpc->work);
1128	if (!ret) {
1129		printk(KERN_ERR PREFIX
1130			  "Call to queue_work() failed.\n");
1131		status = AE_ERROR;
1132	}
1133err_workqueue:
1134	if (ACPI_FAILURE(status))
1135		kfree(dpc);
1136out_thread:
1137	return status;
1138}
1139EXPORT_SYMBOL(acpi_os_execute);
1140
1141void acpi_os_wait_events_complete(void)
1142{
1143	/*
1144	 * Make sure the GPE handler or the fixed event handler is not used
1145	 * on another CPU after removal.
1146	 */
1147	if (acpi_sci_irq_valid())
1148		synchronize_hardirq(acpi_sci_irq);
1149	flush_workqueue(kacpid_wq);
1150	flush_workqueue(kacpi_notify_wq);
1151}
1152EXPORT_SYMBOL(acpi_os_wait_events_complete);
1153
1154struct acpi_hp_work {
1155	struct work_struct work;
1156	struct acpi_device *adev;
1157	u32 src;
1158};
1159
1160static void acpi_hotplug_work_fn(struct work_struct *work)
1161{
1162	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1163
1164	acpi_os_wait_events_complete();
1165	acpi_device_hotplug(hpw->adev, hpw->src);
1166	kfree(hpw);
1167}
1168
1169acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1170{
1171	struct acpi_hp_work *hpw;
1172
1173	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1174		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1175		  adev, src));
1176
1177	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1178	if (!hpw)
1179		return AE_NO_MEMORY;
1180
1181	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1182	hpw->adev = adev;
1183	hpw->src = src;
1184	/*
1185	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1186	 * the hotplug code may call driver .remove() functions, which may
1187	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1188	 * these workqueues.
1189	 */
1190	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1191		kfree(hpw);
1192		return AE_ERROR;
1193	}
1194	return AE_OK;
1195}
1196
1197bool acpi_queue_hotplug_work(struct work_struct *work)
1198{
1199	return queue_work(kacpi_hotplug_wq, work);
1200}
1201
1202acpi_status
1203acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1204{
1205	struct semaphore *sem = NULL;
1206
1207	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1208	if (!sem)
1209		return AE_NO_MEMORY;
1210
1211	sema_init(sem, initial_units);
1212
1213	*handle = (acpi_handle *) sem;
1214
1215	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1216			  *handle, initial_units));
1217
1218	return AE_OK;
1219}
1220
1221/*
1222 * TODO: A better way to delete semaphores?  Linux doesn't have a
1223 * 'delete_semaphore()' function -- may result in an invalid
1224 * pointer dereference for non-synchronized consumers.	Should
1225 * we at least check for blocked threads and signal/cancel them?
1226 */
1227
1228acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1229{
1230	struct semaphore *sem = (struct semaphore *)handle;
1231
1232	if (!sem)
1233		return AE_BAD_PARAMETER;
1234
1235	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1236
1237	BUG_ON(!list_empty(&sem->wait_list));
1238	kfree(sem);
1239	sem = NULL;
1240
1241	return AE_OK;
1242}
1243
1244/*
1245 * TODO: Support for units > 1?
1246 */
1247acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1248{
1249	acpi_status status = AE_OK;
1250	struct semaphore *sem = (struct semaphore *)handle;
1251	long jiffies;
1252	int ret = 0;
1253
1254	if (!acpi_os_initialized)
1255		return AE_OK;
1256
1257	if (!sem || (units < 1))
1258		return AE_BAD_PARAMETER;
1259
1260	if (units > 1)
1261		return AE_SUPPORT;
1262
1263	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1264			  handle, units, timeout));
1265
1266	if (timeout == ACPI_WAIT_FOREVER)
1267		jiffies = MAX_SCHEDULE_TIMEOUT;
1268	else
1269		jiffies = msecs_to_jiffies(timeout);
1270
1271	ret = down_timeout(sem, jiffies);
1272	if (ret)
1273		status = AE_TIME;
1274
1275	if (ACPI_FAILURE(status)) {
1276		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277				  "Failed to acquire semaphore[%p|%d|%d], %s",
1278				  handle, units, timeout,
1279				  acpi_format_exception(status)));
1280	} else {
1281		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1282				  "Acquired semaphore[%p|%d|%d]", handle,
1283				  units, timeout));
1284	}
1285
1286	return status;
1287}
1288
1289/*
1290 * TODO: Support for units > 1?
1291 */
1292acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1293{
1294	struct semaphore *sem = (struct semaphore *)handle;
1295
1296	if (!acpi_os_initialized)
1297		return AE_OK;
1298
1299	if (!sem || (units < 1))
1300		return AE_BAD_PARAMETER;
1301
1302	if (units > 1)
1303		return AE_SUPPORT;
1304
1305	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1306			  units));
1307
1308	up(sem);
1309
1310	return AE_OK;
1311}
1312
1313acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1314{
1315#ifdef ENABLE_DEBUGGER
1316	if (acpi_in_debugger) {
1317		u32 chars;
1318
1319		kdb_read(buffer, buffer_length);
1320
1321		/* remove the CR kdb includes */
1322		chars = strlen(buffer) - 1;
1323		buffer[chars] = '\0';
1324	}
1325#else
1326	int ret;
1327
1328	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1329	if (ret < 0)
1330		return AE_ERROR;
1331	if (bytes_read)
1332		*bytes_read = ret;
1333#endif
1334
1335	return AE_OK;
1336}
1337EXPORT_SYMBOL(acpi_os_get_line);
1338
1339acpi_status acpi_os_wait_command_ready(void)
1340{
1341	int ret;
1342
1343	ret = acpi_debugger_wait_command_ready();
1344	if (ret < 0)
1345		return AE_ERROR;
1346	return AE_OK;
1347}
1348
1349acpi_status acpi_os_notify_command_complete(void)
1350{
1351	int ret;
1352
1353	ret = acpi_debugger_notify_command_complete();
1354	if (ret < 0)
1355		return AE_ERROR;
1356	return AE_OK;
1357}
1358
1359acpi_status acpi_os_signal(u32 function, void *info)
1360{
1361	switch (function) {
1362	case ACPI_SIGNAL_FATAL:
1363		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1364		break;
1365	case ACPI_SIGNAL_BREAKPOINT:
1366		/*
1367		 * AML Breakpoint
1368		 * ACPI spec. says to treat it as a NOP unless
1369		 * you are debugging.  So if/when we integrate
1370		 * AML debugger into the kernel debugger its
1371		 * hook will go here.  But until then it is
1372		 * not useful to print anything on breakpoints.
1373		 */
1374		break;
1375	default:
1376		break;
1377	}
1378
1379	return AE_OK;
1380}
1381
1382static int __init acpi_os_name_setup(char *str)
1383{
1384	char *p = acpi_os_name;
1385	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1386
1387	if (!str || !*str)
1388		return 0;
1389
1390	for (; count-- && *str; str++) {
1391		if (isalnum(*str) || *str == ' ' || *str == ':')
1392			*p++ = *str;
1393		else if (*str == '\'' || *str == '"')
1394			continue;
1395		else
1396			break;
1397	}
1398	*p = 0;
1399
1400	return 1;
1401
1402}
1403
1404__setup("acpi_os_name=", acpi_os_name_setup);
1405
1406/*
1407 * Disable the auto-serialization of named objects creation methods.
1408 *
1409 * This feature is enabled by default.  It marks the AML control methods
1410 * that contain the opcodes to create named objects as "Serialized".
1411 */
1412static int __init acpi_no_auto_serialize_setup(char *str)
1413{
1414	acpi_gbl_auto_serialize_methods = FALSE;
1415	pr_info("ACPI: auto-serialization disabled\n");
1416
1417	return 1;
1418}
1419
1420__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1421
1422/* Check of resource interference between native drivers and ACPI
1423 * OperationRegions (SystemIO and System Memory only).
1424 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1425 * in arbitrary AML code and can interfere with legacy drivers.
1426 * acpi_enforce_resources= can be set to:
1427 *
1428 *   - strict (default) (2)
1429 *     -> further driver trying to access the resources will not load
1430 *   - lax              (1)
1431 *     -> further driver trying to access the resources will load, but you
1432 *     get a system message that something might go wrong...
1433 *
1434 *   - no               (0)
1435 *     -> ACPI Operation Region resources will not be registered
1436 *
1437 */
1438#define ENFORCE_RESOURCES_STRICT 2
1439#define ENFORCE_RESOURCES_LAX    1
1440#define ENFORCE_RESOURCES_NO     0
1441
1442static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1443
1444static int __init acpi_enforce_resources_setup(char *str)
1445{
1446	if (str == NULL || *str == '\0')
1447		return 0;
1448
1449	if (!strcmp("strict", str))
1450		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1451	else if (!strcmp("lax", str))
1452		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1453	else if (!strcmp("no", str))
1454		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1455
1456	return 1;
1457}
1458
1459__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1460
1461/* Check for resource conflicts between ACPI OperationRegions and native
1462 * drivers */
1463int acpi_check_resource_conflict(const struct resource *res)
1464{
1465	acpi_adr_space_type space_id;
1466	acpi_size length;
1467	u8 warn = 0;
1468	int clash = 0;
1469
1470	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471		return 0;
1472	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1473		return 0;
1474
1475	if (res->flags & IORESOURCE_IO)
1476		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1477	else
1478		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1479
1480	length = resource_size(res);
1481	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1482		warn = 1;
1483	clash = acpi_check_address_range(space_id, res->start, length, warn);
1484
1485	if (clash) {
1486		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1487			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1488				printk(KERN_NOTICE "ACPI: This conflict may"
1489				       " cause random problems and system"
1490				       " instability\n");
1491			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1492			       " for this device, you should use it instead of"
1493			       " the native driver\n");
1494		}
1495		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1496			return -EBUSY;
1497	}
1498	return 0;
1499}
1500EXPORT_SYMBOL(acpi_check_resource_conflict);
1501
1502int acpi_check_region(resource_size_t start, resource_size_t n,
1503		      const char *name)
1504{
1505	struct resource res = {
1506		.start = start,
1507		.end   = start + n - 1,
1508		.name  = name,
1509		.flags = IORESOURCE_IO,
1510	};
1511
1512	return acpi_check_resource_conflict(&res);
1513}
1514EXPORT_SYMBOL(acpi_check_region);
1515
1516static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1517					      void *_res, void **return_value)
1518{
1519	struct acpi_mem_space_context **mem_ctx;
1520	union acpi_operand_object *handler_obj;
1521	union acpi_operand_object *region_obj2;
1522	union acpi_operand_object *region_obj;
1523	struct resource *res = _res;
1524	acpi_status status;
1525
1526	region_obj = acpi_ns_get_attached_object(handle);
1527	if (!region_obj)
1528		return AE_OK;
1529
1530	handler_obj = region_obj->region.handler;
1531	if (!handler_obj)
1532		return AE_OK;
1533
1534	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1535		return AE_OK;
1536
1537	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1538		return AE_OK;
1539
1540	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1541	if (!region_obj2)
1542		return AE_OK;
1543
1544	mem_ctx = (void *)&region_obj2->extra.region_context;
1545
1546	if (!(mem_ctx[0]->address >= res->start &&
1547	      mem_ctx[0]->address < res->end))
1548		return AE_OK;
1549
1550	status = handler_obj->address_space.setup(region_obj,
1551						  ACPI_REGION_DEACTIVATE,
1552						  NULL, (void **)mem_ctx);
1553	if (ACPI_SUCCESS(status))
1554		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1555
1556	return status;
1557}
1558
1559/**
1560 * acpi_release_memory - Release any mappings done to a memory region
1561 * @handle: Handle to namespace node
1562 * @res: Memory resource
1563 * @level: A level that terminates the search
1564 *
1565 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1566 * overlap with @res and that have already been activated (mapped).
1567 *
1568 * This is a helper that allows drivers to place special requirements on memory
1569 * region that may overlap with operation regions, primarily allowing them to
1570 * safely map the region as non-cached memory.
1571 *
1572 * The unmapped Operation Regions will be automatically remapped next time they
1573 * are called, so the drivers do not need to do anything else.
1574 */
1575acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1576				u32 level)
1577{
1578	acpi_status status;
1579
1580	if (!(res->flags & IORESOURCE_MEM))
1581		return AE_TYPE;
1582
1583	status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1584				     acpi_deactivate_mem_region, NULL,
1585				     res, NULL);
1586	if (ACPI_FAILURE(status))
1587		return status;
1588
1589	/*
1590	 * Wait for all of the mappings queued up for removal by
1591	 * acpi_deactivate_mem_region() to actually go away.
1592	 */
1593	synchronize_rcu();
1594	rcu_barrier();
1595	flush_scheduled_work();
1596
1597	return AE_OK;
1598}
1599EXPORT_SYMBOL_GPL(acpi_release_memory);
1600
1601/*
1602 * Let drivers know whether the resource checks are effective
1603 */
1604int acpi_resources_are_enforced(void)
1605{
1606	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1607}
1608EXPORT_SYMBOL(acpi_resources_are_enforced);
1609
1610/*
1611 * Deallocate the memory for a spinlock.
1612 */
1613void acpi_os_delete_lock(acpi_spinlock handle)
1614{
1615	ACPI_FREE(handle);
1616}
1617
1618/*
1619 * Acquire a spinlock.
1620 *
1621 * handle is a pointer to the spinlock_t.
1622 */
1623
1624acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1625	__acquires(lockp)
1626{
1627	acpi_cpu_flags flags;
1628	spin_lock_irqsave(lockp, flags);
1629	return flags;
1630}
1631
1632/*
1633 * Release a spinlock. See above.
1634 */
1635
1636void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1637	__releases(lockp)
1638{
1639	spin_unlock_irqrestore(lockp, flags);
1640}
1641
1642#ifndef ACPI_USE_LOCAL_CACHE
1643
1644/*******************************************************************************
1645 *
1646 * FUNCTION:    acpi_os_create_cache
1647 *
1648 * PARAMETERS:  name      - Ascii name for the cache
1649 *              size      - Size of each cached object
1650 *              depth     - Maximum depth of the cache (in objects) <ignored>
1651 *              cache     - Where the new cache object is returned
1652 *
1653 * RETURN:      status
1654 *
1655 * DESCRIPTION: Create a cache object
1656 *
1657 ******************************************************************************/
1658
1659acpi_status
1660acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1661{
1662	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1663	if (*cache == NULL)
1664		return AE_ERROR;
1665	else
1666		return AE_OK;
1667}
1668
1669/*******************************************************************************
1670 *
1671 * FUNCTION:    acpi_os_purge_cache
1672 *
1673 * PARAMETERS:  Cache           - Handle to cache object
1674 *
1675 * RETURN:      Status
1676 *
1677 * DESCRIPTION: Free all objects within the requested cache.
1678 *
1679 ******************************************************************************/
1680
1681acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1682{
1683	kmem_cache_shrink(cache);
1684	return (AE_OK);
1685}
1686
1687/*******************************************************************************
1688 *
1689 * FUNCTION:    acpi_os_delete_cache
1690 *
1691 * PARAMETERS:  Cache           - Handle to cache object
1692 *
1693 * RETURN:      Status
1694 *
1695 * DESCRIPTION: Free all objects within the requested cache and delete the
1696 *              cache object.
1697 *
1698 ******************************************************************************/
1699
1700acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1701{
1702	kmem_cache_destroy(cache);
1703	return (AE_OK);
1704}
1705
1706/*******************************************************************************
1707 *
1708 * FUNCTION:    acpi_os_release_object
1709 *
1710 * PARAMETERS:  Cache       - Handle to cache object
1711 *              Object      - The object to be released
1712 *
1713 * RETURN:      None
1714 *
1715 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1716 *              the object is deleted.
1717 *
1718 ******************************************************************************/
1719
1720acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1721{
1722	kmem_cache_free(cache, object);
1723	return (AE_OK);
1724}
1725#endif
1726
1727static int __init acpi_no_static_ssdt_setup(char *s)
1728{
1729	acpi_gbl_disable_ssdt_table_install = TRUE;
1730	pr_info("ACPI: static SSDT installation disabled\n");
1731
1732	return 0;
1733}
1734
1735early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1736
1737static int __init acpi_disable_return_repair(char *s)
1738{
1739	printk(KERN_NOTICE PREFIX
1740	       "ACPI: Predefined validation mechanism disabled\n");
1741	acpi_gbl_disable_auto_repair = TRUE;
1742
1743	return 1;
1744}
1745
1746__setup("acpica_no_return_repair", acpi_disable_return_repair);
1747
1748acpi_status __init acpi_os_initialize(void)
1749{
1750	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1751	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1752	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1753	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1754	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1755		/*
1756		 * Use acpi_os_map_generic_address to pre-map the reset
1757		 * register if it's in system memory.
1758		 */
1759		int rv;
1760
1761		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1762		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1763	}
1764	acpi_os_initialized = true;
1765
1766	return AE_OK;
1767}
1768
1769acpi_status __init acpi_os_initialize1(void)
1770{
1771	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1772	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1773	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1774	BUG_ON(!kacpid_wq);
1775	BUG_ON(!kacpi_notify_wq);
1776	BUG_ON(!kacpi_hotplug_wq);
1777	acpi_osi_init();
1778	return AE_OK;
1779}
1780
1781acpi_status acpi_os_terminate(void)
1782{
1783	if (acpi_irq_handler) {
1784		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1785						 acpi_irq_handler);
1786	}
1787
1788	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1789	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1790	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1791	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1792	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1793		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1794
1795	destroy_workqueue(kacpid_wq);
1796	destroy_workqueue(kacpi_notify_wq);
1797	destroy_workqueue(kacpi_hotplug_wq);
1798
1799	return AE_OK;
1800}
1801
1802acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1803				  u32 pm1b_control)
1804{
1805	int rc = 0;
1806	if (__acpi_os_prepare_sleep)
1807		rc = __acpi_os_prepare_sleep(sleep_state,
1808					     pm1a_control, pm1b_control);
1809	if (rc < 0)
1810		return AE_ERROR;
1811	else if (rc > 0)
1812		return AE_CTRL_TERMINATE;
1813
1814	return AE_OK;
1815}
1816
1817void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1818			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1819{
1820	__acpi_os_prepare_sleep = func;
1821}
1822
1823#if (ACPI_REDUCED_HARDWARE)
1824acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1825				  u32 val_b)
1826{
1827	int rc = 0;
1828	if (__acpi_os_prepare_extended_sleep)
1829		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1830					     val_a, val_b);
1831	if (rc < 0)
1832		return AE_ERROR;
1833	else if (rc > 0)
1834		return AE_CTRL_TERMINATE;
1835
1836	return AE_OK;
1837}
1838#else
1839acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1840				  u32 val_b)
1841{
1842	return AE_OK;
1843}
1844#endif
1845
1846void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1847			       u32 val_a, u32 val_b))
1848{
1849	__acpi_os_prepare_extended_sleep = func;
1850}
1851
1852acpi_status acpi_os_enter_sleep(u8 sleep_state,
1853				u32 reg_a_value, u32 reg_b_value)
1854{
1855	acpi_status status;
1856
1857	if (acpi_gbl_reduced_hardware)
1858		status = acpi_os_prepare_extended_sleep(sleep_state,
1859							reg_a_value,
1860							reg_b_value);
1861	else
1862		status = acpi_os_prepare_sleep(sleep_state,
1863					       reg_a_value, reg_b_value);
1864	return status;
1865}
v4.10.11
 
   1/*
   2 *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
   3 *
   4 *  Copyright (C) 2000       Andrew Henroid
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (c) 2008 Intel Corporation
   8 *   Author: Matthew Wilcox <willy@linux.intel.com>
   9 *
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2 of the License, or
  15 *  (at your option) any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  23 *
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/highmem.h>
 
  31#include <linux/pci.h>
  32#include <linux/interrupt.h>
  33#include <linux/kmod.h>
  34#include <linux/delay.h>
  35#include <linux/workqueue.h>
  36#include <linux/nmi.h>
  37#include <linux/acpi.h>
  38#include <linux/efi.h>
  39#include <linux/ioport.h>
  40#include <linux/list.h>
  41#include <linux/jiffies.h>
  42#include <linux/semaphore.h>
 
  43
  44#include <asm/io.h>
  45#include <linux/uaccess.h>
  46#include <linux/io-64-nonatomic-lo-hi.h>
  47
 
 
  48#include "internal.h"
  49
  50#define _COMPONENT		ACPI_OS_SERVICES
  51ACPI_MODULE_NAME("osl");
  52
  53struct acpi_os_dpc {
  54	acpi_osd_exec_callback function;
  55	void *context;
  56	struct work_struct work;
  57};
  58
  59#ifdef ENABLE_DEBUGGER
  60#include <linux/kdb.h>
  61
  62/* stuff for debugger support */
  63int acpi_in_debugger;
  64EXPORT_SYMBOL(acpi_in_debugger);
  65#endif				/*ENABLE_DEBUGGER */
  66
  67static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
  68				      u32 pm1b_ctrl);
  69static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
  70				      u32 val_b);
  71
  72static acpi_osd_handler acpi_irq_handler;
  73static void *acpi_irq_context;
  74static struct workqueue_struct *kacpid_wq;
  75static struct workqueue_struct *kacpi_notify_wq;
  76static struct workqueue_struct *kacpi_hotplug_wq;
  77static bool acpi_os_initialized;
  78unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
  79bool acpi_permanent_mmap = false;
  80
  81/*
  82 * This list of permanent mappings is for memory that may be accessed from
  83 * interrupt context, where we can't do the ioremap().
  84 */
  85struct acpi_ioremap {
  86	struct list_head list;
  87	void __iomem *virt;
  88	acpi_physical_address phys;
  89	acpi_size size;
  90	unsigned long refcount;
 
 
 
  91};
  92
  93static LIST_HEAD(acpi_ioremaps);
  94static DEFINE_MUTEX(acpi_ioremap_lock);
 
  95
  96static void __init acpi_request_region (struct acpi_generic_address *gas,
  97	unsigned int length, char *desc)
  98{
  99	u64 addr;
 100
 101	/* Handle possible alignment issues */
 102	memcpy(&addr, &gas->address, sizeof(addr));
 103	if (!addr || !length)
 104		return;
 105
 106	/* Resources are never freed */
 107	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
 108		request_region(addr, length, desc);
 109	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 110		request_mem_region(addr, length, desc);
 111}
 112
 113static int __init acpi_reserve_resources(void)
 114{
 115	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
 116		"ACPI PM1a_EVT_BLK");
 117
 118	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
 119		"ACPI PM1b_EVT_BLK");
 120
 121	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
 122		"ACPI PM1a_CNT_BLK");
 123
 124	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
 125		"ACPI PM1b_CNT_BLK");
 126
 127	if (acpi_gbl_FADT.pm_timer_length == 4)
 128		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
 129
 130	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
 131		"ACPI PM2_CNT_BLK");
 132
 133	/* Length of GPE blocks must be a non-negative multiple of 2 */
 134
 135	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
 136		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
 137			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
 138
 139	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
 140		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
 141			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
 142
 143	return 0;
 144}
 145fs_initcall_sync(acpi_reserve_resources);
 146
 147void acpi_os_printf(const char *fmt, ...)
 148{
 149	va_list args;
 150	va_start(args, fmt);
 151	acpi_os_vprintf(fmt, args);
 152	va_end(args);
 153}
 154EXPORT_SYMBOL(acpi_os_printf);
 155
 156void acpi_os_vprintf(const char *fmt, va_list args)
 157{
 158	static char buffer[512];
 159
 160	vsprintf(buffer, fmt, args);
 161
 162#ifdef ENABLE_DEBUGGER
 163	if (acpi_in_debugger) {
 164		kdb_printf("%s", buffer);
 165	} else {
 166		if (printk_get_level(buffer))
 167			printk("%s", buffer);
 168		else
 169			printk(KERN_CONT "%s", buffer);
 170	}
 171#else
 172	if (acpi_debugger_write_log(buffer) < 0) {
 173		if (printk_get_level(buffer))
 174			printk("%s", buffer);
 175		else
 176			printk(KERN_CONT "%s", buffer);
 177	}
 178#endif
 179}
 180
 181#ifdef CONFIG_KEXEC
 182static unsigned long acpi_rsdp;
 183static int __init setup_acpi_rsdp(char *arg)
 184{
 185	return kstrtoul(arg, 16, &acpi_rsdp);
 186}
 187early_param("acpi_rsdp", setup_acpi_rsdp);
 188#endif
 189
 190acpi_physical_address __init acpi_os_get_root_pointer(void)
 191{
 192	acpi_physical_address pa = 0;
 193
 194#ifdef CONFIG_KEXEC
 195	if (acpi_rsdp)
 
 
 
 
 
 
 
 
 
 
 196		return acpi_rsdp;
 
 197#endif
 
 
 
 198
 199	if (efi_enabled(EFI_CONFIG_TABLES)) {
 200		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
 201			return efi.acpi20;
 202		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
 203			return efi.acpi;
 204		pr_err(PREFIX "System description tables not found\n");
 205	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
 206		acpi_find_root_pointer(&pa);
 207	}
 208
 209	return pa;
 210}
 211
 212/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 213static struct acpi_ioremap *
 214acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 215{
 216	struct acpi_ioremap *map;
 217
 218	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 219		if (map->phys <= phys &&
 220		    phys + size <= map->phys + map->size)
 221			return map;
 222
 223	return NULL;
 224}
 225
 226/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 227static void __iomem *
 228acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
 229{
 230	struct acpi_ioremap *map;
 231
 232	map = acpi_map_lookup(phys, size);
 233	if (map)
 234		return map->virt + (phys - map->phys);
 235
 236	return NULL;
 237}
 238
 239void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
 240{
 241	struct acpi_ioremap *map;
 242	void __iomem *virt = NULL;
 243
 244	mutex_lock(&acpi_ioremap_lock);
 245	map = acpi_map_lookup(phys, size);
 246	if (map) {
 247		virt = map->virt + (phys - map->phys);
 248		map->refcount++;
 249	}
 250	mutex_unlock(&acpi_ioremap_lock);
 251	return virt;
 252}
 253EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
 254
 255/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
 256static struct acpi_ioremap *
 257acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
 258{
 259	struct acpi_ioremap *map;
 260
 261	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
 262		if (map->virt <= virt &&
 263		    virt + size <= map->virt + map->size)
 264			return map;
 265
 266	return NULL;
 267}
 268
 269#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
 270/* ioremap will take care of cache attributes */
 271#define should_use_kmap(pfn)   0
 272#else
 273#define should_use_kmap(pfn)   page_is_ram(pfn)
 274#endif
 275
 276static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
 277{
 278	unsigned long pfn;
 279
 280	pfn = pg_off >> PAGE_SHIFT;
 281	if (should_use_kmap(pfn)) {
 282		if (pg_sz > PAGE_SIZE)
 283			return NULL;
 284		return (void __iomem __force *)kmap(pfn_to_page(pfn));
 285	} else
 286		return acpi_os_ioremap(pg_off, pg_sz);
 287}
 288
 289static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
 290{
 291	unsigned long pfn;
 292
 293	pfn = pg_off >> PAGE_SHIFT;
 294	if (should_use_kmap(pfn))
 295		kunmap(pfn_to_page(pfn));
 296	else
 297		iounmap(vaddr);
 298}
 299
 300/**
 301 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
 302 * @phys: Start of the physical address range to map.
 303 * @size: Size of the physical address range to map.
 304 *
 305 * Look up the given physical address range in the list of existing ACPI memory
 306 * mappings.  If found, get a reference to it and return a pointer to it (its
 307 * virtual address).  If not found, map it, add it to that list and return a
 308 * pointer to it.
 309 *
 310 * During early init (when acpi_permanent_mmap has not been set yet) this
 311 * routine simply calls __acpi_map_table() to get the job done.
 312 */
 313void __iomem *__ref
 314acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
 315{
 316	struct acpi_ioremap *map;
 317	void __iomem *virt;
 318	acpi_physical_address pg_off;
 319	acpi_size pg_sz;
 320
 321	if (phys > ULONG_MAX) {
 322		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
 323		return NULL;
 324	}
 325
 326	if (!acpi_permanent_mmap)
 327		return __acpi_map_table((unsigned long)phys, size);
 328
 329	mutex_lock(&acpi_ioremap_lock);
 330	/* Check if there's a suitable mapping already. */
 331	map = acpi_map_lookup(phys, size);
 332	if (map) {
 333		map->refcount++;
 334		goto out;
 335	}
 336
 337	map = kzalloc(sizeof(*map), GFP_KERNEL);
 338	if (!map) {
 339		mutex_unlock(&acpi_ioremap_lock);
 340		return NULL;
 341	}
 342
 343	pg_off = round_down(phys, PAGE_SIZE);
 344	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
 345	virt = acpi_map(pg_off, pg_sz);
 346	if (!virt) {
 347		mutex_unlock(&acpi_ioremap_lock);
 348		kfree(map);
 349		return NULL;
 350	}
 351
 352	INIT_LIST_HEAD(&map->list);
 353	map->virt = virt;
 354	map->phys = pg_off;
 355	map->size = pg_sz;
 356	map->refcount = 1;
 357
 358	list_add_tail_rcu(&map->list, &acpi_ioremaps);
 359
 360out:
 361	mutex_unlock(&acpi_ioremap_lock);
 362	return map->virt + (phys - map->phys);
 363}
 364EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
 365
 366void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
 367{
 368	return (void *)acpi_os_map_iomem(phys, size);
 369}
 370EXPORT_SYMBOL_GPL(acpi_os_map_memory);
 371
 372static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
 373{
 374	if (!--map->refcount)
 375		list_del_rcu(&map->list);
 
 
 
 
 376}
 377
 378static void acpi_os_map_cleanup(struct acpi_ioremap *map)
 
 379{
 380	if (!map->refcount) {
 381		synchronize_rcu_expedited();
 382		acpi_unmap(map->phys, map->virt);
 383		kfree(map);
 384	}
 
 
 385}
 386
 387/**
 388 * acpi_os_unmap_iomem - Drop a memory mapping reference.
 389 * @virt: Start of the address range to drop a reference to.
 390 * @size: Size of the address range to drop a reference to.
 391 *
 392 * Look up the given virtual address range in the list of existing ACPI memory
 393 * mappings, drop a reference to it and unmap it if there are no more active
 394 * references to it.
 395 *
 396 * During early init (when acpi_permanent_mmap has not been set yet) this
 397 * routine simply calls __acpi_unmap_table() to get the job done.  Since
 398 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
 399 * here.
 400 */
 401void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
 402{
 403	struct acpi_ioremap *map;
 404
 405	if (!acpi_permanent_mmap) {
 406		__acpi_unmap_table(virt, size);
 407		return;
 408	}
 409
 410	mutex_lock(&acpi_ioremap_lock);
 
 411	map = acpi_map_lookup_virt(virt, size);
 412	if (!map) {
 413		mutex_unlock(&acpi_ioremap_lock);
 414		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
 415		return;
 416	}
 417	acpi_os_drop_map_ref(map);
 
 418	mutex_unlock(&acpi_ioremap_lock);
 419
 420	acpi_os_map_cleanup(map);
 421}
 422EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
 423
 
 
 
 
 
 424void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
 425{
 426	return acpi_os_unmap_iomem((void __iomem *)virt, size);
 427}
 428EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
 429
 430int acpi_os_map_generic_address(struct acpi_generic_address *gas)
 431{
 432	u64 addr;
 433	void __iomem *virt;
 434
 435	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 436		return 0;
 437
 438	/* Handle possible alignment issues */
 439	memcpy(&addr, &gas->address, sizeof(addr));
 440	if (!addr || !gas->bit_width)
 441		return -EINVAL;
 442
 443	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
 444	if (!virt)
 445		return -EIO;
 446
 447	return 0;
 448}
 449EXPORT_SYMBOL(acpi_os_map_generic_address);
 450
 451void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
 452{
 453	u64 addr;
 454	struct acpi_ioremap *map;
 455
 456	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
 457		return;
 458
 459	/* Handle possible alignment issues */
 460	memcpy(&addr, &gas->address, sizeof(addr));
 461	if (!addr || !gas->bit_width)
 462		return;
 463
 464	mutex_lock(&acpi_ioremap_lock);
 
 465	map = acpi_map_lookup(addr, gas->bit_width / 8);
 466	if (!map) {
 467		mutex_unlock(&acpi_ioremap_lock);
 468		return;
 469	}
 470	acpi_os_drop_map_ref(map);
 
 471	mutex_unlock(&acpi_ioremap_lock);
 472
 473	acpi_os_map_cleanup(map);
 474}
 475EXPORT_SYMBOL(acpi_os_unmap_generic_address);
 476
 477#ifdef ACPI_FUTURE_USAGE
 478acpi_status
 479acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
 480{
 481	if (!phys || !virt)
 482		return AE_BAD_PARAMETER;
 483
 484	*phys = virt_to_phys(virt);
 485
 486	return AE_OK;
 487}
 488#endif
 489
 490#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
 491static bool acpi_rev_override;
 492
 493int __init acpi_rev_override_setup(char *str)
 494{
 495	acpi_rev_override = true;
 496	return 1;
 497}
 498__setup("acpi_rev_override", acpi_rev_override_setup);
 499#else
 500#define acpi_rev_override	false
 501#endif
 502
 503#define ACPI_MAX_OVERRIDE_LEN 100
 504
 505static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
 506
 507acpi_status
 508acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
 509			    acpi_string *new_val)
 510{
 511	if (!init_val || !new_val)
 512		return AE_BAD_PARAMETER;
 513
 514	*new_val = NULL;
 515	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
 516		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
 517		       acpi_os_name);
 518		*new_val = acpi_os_name;
 519	}
 520
 521	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
 522		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
 523		*new_val = (char *)5;
 524	}
 525
 526	return AE_OK;
 527}
 528
 529static irqreturn_t acpi_irq(int irq, void *dev_id)
 530{
 531	u32 handled;
 532
 533	handled = (*acpi_irq_handler) (acpi_irq_context);
 534
 535	if (handled) {
 536		acpi_irq_handled++;
 537		return IRQ_HANDLED;
 538	} else {
 539		acpi_irq_not_handled++;
 540		return IRQ_NONE;
 541	}
 542}
 543
 544acpi_status
 545acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
 546				  void *context)
 547{
 548	unsigned int irq;
 549
 550	acpi_irq_stats_init();
 551
 552	/*
 553	 * ACPI interrupts different from the SCI in our copy of the FADT are
 554	 * not supported.
 555	 */
 556	if (gsi != acpi_gbl_FADT.sci_interrupt)
 557		return AE_BAD_PARAMETER;
 558
 559	if (acpi_irq_handler)
 560		return AE_ALREADY_ACQUIRED;
 561
 562	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
 563		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
 564		       gsi);
 565		return AE_OK;
 566	}
 567
 568	acpi_irq_handler = handler;
 569	acpi_irq_context = context;
 570	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
 571		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
 572		acpi_irq_handler = NULL;
 573		return AE_NOT_ACQUIRED;
 574	}
 575	acpi_sci_irq = irq;
 576
 577	return AE_OK;
 578}
 579
 580acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
 581{
 582	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
 583		return AE_BAD_PARAMETER;
 584
 585	free_irq(acpi_sci_irq, acpi_irq);
 586	acpi_irq_handler = NULL;
 587	acpi_sci_irq = INVALID_ACPI_IRQ;
 588
 589	return AE_OK;
 590}
 591
 592/*
 593 * Running in interpreter thread context, safe to sleep
 594 */
 595
 596void acpi_os_sleep(u64 ms)
 597{
 598	msleep(ms);
 599}
 600
 601void acpi_os_stall(u32 us)
 602{
 603	while (us) {
 604		u32 delay = 1000;
 605
 606		if (delay > us)
 607			delay = us;
 608		udelay(delay);
 609		touch_nmi_watchdog();
 610		us -= delay;
 611	}
 612}
 613
 614/*
 615 * Support ACPI 3.0 AML Timer operand
 616 * Returns 64-bit free-running, monotonically increasing timer
 617 * with 100ns granularity
 
 
 
 
 618 */
 619u64 acpi_os_get_timer(void)
 620{
 621	u64 time_ns = ktime_to_ns(ktime_get());
 622	do_div(time_ns, 100);
 623	return time_ns;
 624}
 625
 626acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
 627{
 628	u32 dummy;
 629
 630	if (!value)
 631		value = &dummy;
 632
 633	*value = 0;
 634	if (width <= 8) {
 635		*(u8 *) value = inb(port);
 636	} else if (width <= 16) {
 637		*(u16 *) value = inw(port);
 638	} else if (width <= 32) {
 639		*(u32 *) value = inl(port);
 640	} else {
 641		BUG();
 642	}
 643
 644	return AE_OK;
 645}
 646
 647EXPORT_SYMBOL(acpi_os_read_port);
 648
 649acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
 650{
 651	if (width <= 8) {
 652		outb(value, port);
 653	} else if (width <= 16) {
 654		outw(value, port);
 655	} else if (width <= 32) {
 656		outl(value, port);
 657	} else {
 658		BUG();
 659	}
 660
 661	return AE_OK;
 662}
 663
 664EXPORT_SYMBOL(acpi_os_write_port);
 665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666acpi_status
 667acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
 668{
 669	void __iomem *virt_addr;
 670	unsigned int size = width / 8;
 671	bool unmap = false;
 672	u64 dummy;
 
 673
 674	rcu_read_lock();
 675	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 676	if (!virt_addr) {
 677		rcu_read_unlock();
 678		virt_addr = acpi_os_ioremap(phys_addr, size);
 679		if (!virt_addr)
 680			return AE_BAD_ADDRESS;
 681		unmap = true;
 682	}
 683
 684	if (!value)
 685		value = &dummy;
 686
 687	switch (width) {
 688	case 8:
 689		*(u8 *) value = readb(virt_addr);
 690		break;
 691	case 16:
 692		*(u16 *) value = readw(virt_addr);
 693		break;
 694	case 32:
 695		*(u32 *) value = readl(virt_addr);
 696		break;
 697	case 64:
 698		*(u64 *) value = readq(virt_addr);
 699		break;
 700	default:
 701		BUG();
 702	}
 703
 704	if (unmap)
 705		iounmap(virt_addr);
 706	else
 707		rcu_read_unlock();
 708
 709	return AE_OK;
 710}
 711
 712acpi_status
 713acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
 714{
 715	void __iomem *virt_addr;
 716	unsigned int size = width / 8;
 717	bool unmap = false;
 718
 719	rcu_read_lock();
 720	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
 721	if (!virt_addr) {
 722		rcu_read_unlock();
 723		virt_addr = acpi_os_ioremap(phys_addr, size);
 724		if (!virt_addr)
 725			return AE_BAD_ADDRESS;
 726		unmap = true;
 727	}
 728
 729	switch (width) {
 730	case 8:
 731		writeb(value, virt_addr);
 732		break;
 733	case 16:
 734		writew(value, virt_addr);
 735		break;
 736	case 32:
 737		writel(value, virt_addr);
 738		break;
 739	case 64:
 740		writeq(value, virt_addr);
 741		break;
 742	default:
 743		BUG();
 744	}
 745
 746	if (unmap)
 747		iounmap(virt_addr);
 748	else
 749		rcu_read_unlock();
 750
 751	return AE_OK;
 752}
 753
 
 754acpi_status
 755acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 756			       u64 *value, u32 width)
 757{
 758	int result, size;
 759	u32 value32;
 760
 761	if (!value)
 762		return AE_BAD_PARAMETER;
 763
 764	switch (width) {
 765	case 8:
 766		size = 1;
 767		break;
 768	case 16:
 769		size = 2;
 770		break;
 771	case 32:
 772		size = 4;
 773		break;
 774	default:
 775		return AE_ERROR;
 776	}
 777
 778	result = raw_pci_read(pci_id->segment, pci_id->bus,
 779				PCI_DEVFN(pci_id->device, pci_id->function),
 780				reg, size, &value32);
 781	*value = value32;
 782
 783	return (result ? AE_ERROR : AE_OK);
 784}
 785
 786acpi_status
 787acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
 788				u64 value, u32 width)
 789{
 790	int result, size;
 791
 792	switch (width) {
 793	case 8:
 794		size = 1;
 795		break;
 796	case 16:
 797		size = 2;
 798		break;
 799	case 32:
 800		size = 4;
 801		break;
 802	default:
 803		return AE_ERROR;
 804	}
 805
 806	result = raw_pci_write(pci_id->segment, pci_id->bus,
 807				PCI_DEVFN(pci_id->device, pci_id->function),
 808				reg, size, value);
 809
 810	return (result ? AE_ERROR : AE_OK);
 811}
 
 812
 813static void acpi_os_execute_deferred(struct work_struct *work)
 814{
 815	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
 816
 817	dpc->function(dpc->context);
 818	kfree(dpc);
 819}
 820
 821#ifdef CONFIG_ACPI_DEBUGGER
 822static struct acpi_debugger acpi_debugger;
 823static bool acpi_debugger_initialized;
 824
 825int acpi_register_debugger(struct module *owner,
 826			   const struct acpi_debugger_ops *ops)
 827{
 828	int ret = 0;
 829
 830	mutex_lock(&acpi_debugger.lock);
 831	if (acpi_debugger.ops) {
 832		ret = -EBUSY;
 833		goto err_lock;
 834	}
 835
 836	acpi_debugger.owner = owner;
 837	acpi_debugger.ops = ops;
 838
 839err_lock:
 840	mutex_unlock(&acpi_debugger.lock);
 841	return ret;
 842}
 843EXPORT_SYMBOL(acpi_register_debugger);
 844
 845void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
 846{
 847	mutex_lock(&acpi_debugger.lock);
 848	if (ops == acpi_debugger.ops) {
 849		acpi_debugger.ops = NULL;
 850		acpi_debugger.owner = NULL;
 851	}
 852	mutex_unlock(&acpi_debugger.lock);
 853}
 854EXPORT_SYMBOL(acpi_unregister_debugger);
 855
 856int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
 857{
 858	int ret;
 859	int (*func)(acpi_osd_exec_callback, void *);
 860	struct module *owner;
 861
 862	if (!acpi_debugger_initialized)
 863		return -ENODEV;
 864	mutex_lock(&acpi_debugger.lock);
 865	if (!acpi_debugger.ops) {
 866		ret = -ENODEV;
 867		goto err_lock;
 868	}
 869	if (!try_module_get(acpi_debugger.owner)) {
 870		ret = -ENODEV;
 871		goto err_lock;
 872	}
 873	func = acpi_debugger.ops->create_thread;
 874	owner = acpi_debugger.owner;
 875	mutex_unlock(&acpi_debugger.lock);
 876
 877	ret = func(function, context);
 878
 879	mutex_lock(&acpi_debugger.lock);
 880	module_put(owner);
 881err_lock:
 882	mutex_unlock(&acpi_debugger.lock);
 883	return ret;
 884}
 885
 886ssize_t acpi_debugger_write_log(const char *msg)
 887{
 888	ssize_t ret;
 889	ssize_t (*func)(const char *);
 890	struct module *owner;
 891
 892	if (!acpi_debugger_initialized)
 893		return -ENODEV;
 894	mutex_lock(&acpi_debugger.lock);
 895	if (!acpi_debugger.ops) {
 896		ret = -ENODEV;
 897		goto err_lock;
 898	}
 899	if (!try_module_get(acpi_debugger.owner)) {
 900		ret = -ENODEV;
 901		goto err_lock;
 902	}
 903	func = acpi_debugger.ops->write_log;
 904	owner = acpi_debugger.owner;
 905	mutex_unlock(&acpi_debugger.lock);
 906
 907	ret = func(msg);
 908
 909	mutex_lock(&acpi_debugger.lock);
 910	module_put(owner);
 911err_lock:
 912	mutex_unlock(&acpi_debugger.lock);
 913	return ret;
 914}
 915
 916ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
 917{
 918	ssize_t ret;
 919	ssize_t (*func)(char *, size_t);
 920	struct module *owner;
 921
 922	if (!acpi_debugger_initialized)
 923		return -ENODEV;
 924	mutex_lock(&acpi_debugger.lock);
 925	if (!acpi_debugger.ops) {
 926		ret = -ENODEV;
 927		goto err_lock;
 928	}
 929	if (!try_module_get(acpi_debugger.owner)) {
 930		ret = -ENODEV;
 931		goto err_lock;
 932	}
 933	func = acpi_debugger.ops->read_cmd;
 934	owner = acpi_debugger.owner;
 935	mutex_unlock(&acpi_debugger.lock);
 936
 937	ret = func(buffer, buffer_length);
 938
 939	mutex_lock(&acpi_debugger.lock);
 940	module_put(owner);
 941err_lock:
 942	mutex_unlock(&acpi_debugger.lock);
 943	return ret;
 944}
 945
 946int acpi_debugger_wait_command_ready(void)
 947{
 948	int ret;
 949	int (*func)(bool, char *, size_t);
 950	struct module *owner;
 951
 952	if (!acpi_debugger_initialized)
 953		return -ENODEV;
 954	mutex_lock(&acpi_debugger.lock);
 955	if (!acpi_debugger.ops) {
 956		ret = -ENODEV;
 957		goto err_lock;
 958	}
 959	if (!try_module_get(acpi_debugger.owner)) {
 960		ret = -ENODEV;
 961		goto err_lock;
 962	}
 963	func = acpi_debugger.ops->wait_command_ready;
 964	owner = acpi_debugger.owner;
 965	mutex_unlock(&acpi_debugger.lock);
 966
 967	ret = func(acpi_gbl_method_executing,
 968		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
 969
 970	mutex_lock(&acpi_debugger.lock);
 971	module_put(owner);
 972err_lock:
 973	mutex_unlock(&acpi_debugger.lock);
 974	return ret;
 975}
 976
 977int acpi_debugger_notify_command_complete(void)
 978{
 979	int ret;
 980	int (*func)(void);
 981	struct module *owner;
 982
 983	if (!acpi_debugger_initialized)
 984		return -ENODEV;
 985	mutex_lock(&acpi_debugger.lock);
 986	if (!acpi_debugger.ops) {
 987		ret = -ENODEV;
 988		goto err_lock;
 989	}
 990	if (!try_module_get(acpi_debugger.owner)) {
 991		ret = -ENODEV;
 992		goto err_lock;
 993	}
 994	func = acpi_debugger.ops->notify_command_complete;
 995	owner = acpi_debugger.owner;
 996	mutex_unlock(&acpi_debugger.lock);
 997
 998	ret = func();
 999
1000	mutex_lock(&acpi_debugger.lock);
1001	module_put(owner);
1002err_lock:
1003	mutex_unlock(&acpi_debugger.lock);
1004	return ret;
1005}
1006
1007int __init acpi_debugger_init(void)
1008{
1009	mutex_init(&acpi_debugger.lock);
1010	acpi_debugger_initialized = true;
1011	return 0;
1012}
1013#endif
1014
1015/*******************************************************************************
1016 *
1017 * FUNCTION:    acpi_os_execute
1018 *
1019 * PARAMETERS:  Type               - Type of the callback
1020 *              Function           - Function to be executed
1021 *              Context            - Function parameters
1022 *
1023 * RETURN:      Status
1024 *
1025 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1026 *              immediately executes function on a separate thread.
1027 *
1028 ******************************************************************************/
1029
1030acpi_status acpi_os_execute(acpi_execute_type type,
1031			    acpi_osd_exec_callback function, void *context)
1032{
1033	acpi_status status = AE_OK;
1034	struct acpi_os_dpc *dpc;
1035	struct workqueue_struct *queue;
1036	int ret;
1037	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1038			  "Scheduling function [%p(%p)] for deferred execution.\n",
1039			  function, context));
1040
1041	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1042		ret = acpi_debugger_create_thread(function, context);
1043		if (ret) {
1044			pr_err("Call to kthread_create() failed.\n");
1045			status = AE_ERROR;
1046		}
1047		goto out_thread;
1048	}
1049
1050	/*
1051	 * Allocate/initialize DPC structure.  Note that this memory will be
1052	 * freed by the callee.  The kernel handles the work_struct list  in a
1053	 * way that allows us to also free its memory inside the callee.
1054	 * Because we may want to schedule several tasks with different
1055	 * parameters we can't use the approach some kernel code uses of
1056	 * having a static work_struct.
1057	 */
1058
1059	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1060	if (!dpc)
1061		return AE_NO_MEMORY;
1062
1063	dpc->function = function;
1064	dpc->context = context;
1065
1066	/*
1067	 * To prevent lockdep from complaining unnecessarily, make sure that
1068	 * there is a different static lockdep key for each workqueue by using
1069	 * INIT_WORK() for each of them separately.
1070	 */
1071	if (type == OSL_NOTIFY_HANDLER) {
1072		queue = kacpi_notify_wq;
1073		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1074	} else if (type == OSL_GPE_HANDLER) {
1075		queue = kacpid_wq;
1076		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1077	} else {
1078		pr_err("Unsupported os_execute type %d.\n", type);
1079		status = AE_ERROR;
1080	}
1081
1082	if (ACPI_FAILURE(status))
1083		goto err_workqueue;
1084
1085	/*
1086	 * On some machines, a software-initiated SMI causes corruption unless
1087	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1088	 * typically it's done in GPE-related methods that are run via
1089	 * workqueues, so we can avoid the known corruption cases by always
1090	 * queueing on CPU 0.
1091	 */
1092	ret = queue_work_on(0, queue, &dpc->work);
1093	if (!ret) {
1094		printk(KERN_ERR PREFIX
1095			  "Call to queue_work() failed.\n");
1096		status = AE_ERROR;
1097	}
1098err_workqueue:
1099	if (ACPI_FAILURE(status))
1100		kfree(dpc);
1101out_thread:
1102	return status;
1103}
1104EXPORT_SYMBOL(acpi_os_execute);
1105
1106void acpi_os_wait_events_complete(void)
1107{
1108	/*
1109	 * Make sure the GPE handler or the fixed event handler is not used
1110	 * on another CPU after removal.
1111	 */
1112	if (acpi_sci_irq_valid())
1113		synchronize_hardirq(acpi_sci_irq);
1114	flush_workqueue(kacpid_wq);
1115	flush_workqueue(kacpi_notify_wq);
1116}
 
1117
1118struct acpi_hp_work {
1119	struct work_struct work;
1120	struct acpi_device *adev;
1121	u32 src;
1122};
1123
1124static void acpi_hotplug_work_fn(struct work_struct *work)
1125{
1126	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1127
1128	acpi_os_wait_events_complete();
1129	acpi_device_hotplug(hpw->adev, hpw->src);
1130	kfree(hpw);
1131}
1132
1133acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1134{
1135	struct acpi_hp_work *hpw;
1136
1137	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1138		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1139		  adev, src));
1140
1141	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1142	if (!hpw)
1143		return AE_NO_MEMORY;
1144
1145	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1146	hpw->adev = adev;
1147	hpw->src = src;
1148	/*
1149	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1150	 * the hotplug code may call driver .remove() functions, which may
1151	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1152	 * these workqueues.
1153	 */
1154	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1155		kfree(hpw);
1156		return AE_ERROR;
1157	}
1158	return AE_OK;
1159}
1160
1161bool acpi_queue_hotplug_work(struct work_struct *work)
1162{
1163	return queue_work(kacpi_hotplug_wq, work);
1164}
1165
1166acpi_status
1167acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1168{
1169	struct semaphore *sem = NULL;
1170
1171	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1172	if (!sem)
1173		return AE_NO_MEMORY;
1174
1175	sema_init(sem, initial_units);
1176
1177	*handle = (acpi_handle *) sem;
1178
1179	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1180			  *handle, initial_units));
1181
1182	return AE_OK;
1183}
1184
1185/*
1186 * TODO: A better way to delete semaphores?  Linux doesn't have a
1187 * 'delete_semaphore()' function -- may result in an invalid
1188 * pointer dereference for non-synchronized consumers.	Should
1189 * we at least check for blocked threads and signal/cancel them?
1190 */
1191
1192acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1193{
1194	struct semaphore *sem = (struct semaphore *)handle;
1195
1196	if (!sem)
1197		return AE_BAD_PARAMETER;
1198
1199	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1200
1201	BUG_ON(!list_empty(&sem->wait_list));
1202	kfree(sem);
1203	sem = NULL;
1204
1205	return AE_OK;
1206}
1207
1208/*
1209 * TODO: Support for units > 1?
1210 */
1211acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1212{
1213	acpi_status status = AE_OK;
1214	struct semaphore *sem = (struct semaphore *)handle;
1215	long jiffies;
1216	int ret = 0;
1217
1218	if (!acpi_os_initialized)
1219		return AE_OK;
1220
1221	if (!sem || (units < 1))
1222		return AE_BAD_PARAMETER;
1223
1224	if (units > 1)
1225		return AE_SUPPORT;
1226
1227	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1228			  handle, units, timeout));
1229
1230	if (timeout == ACPI_WAIT_FOREVER)
1231		jiffies = MAX_SCHEDULE_TIMEOUT;
1232	else
1233		jiffies = msecs_to_jiffies(timeout);
1234
1235	ret = down_timeout(sem, jiffies);
1236	if (ret)
1237		status = AE_TIME;
1238
1239	if (ACPI_FAILURE(status)) {
1240		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1241				  "Failed to acquire semaphore[%p|%d|%d], %s",
1242				  handle, units, timeout,
1243				  acpi_format_exception(status)));
1244	} else {
1245		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1246				  "Acquired semaphore[%p|%d|%d]", handle,
1247				  units, timeout));
1248	}
1249
1250	return status;
1251}
1252
1253/*
1254 * TODO: Support for units > 1?
1255 */
1256acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1257{
1258	struct semaphore *sem = (struct semaphore *)handle;
1259
1260	if (!acpi_os_initialized)
1261		return AE_OK;
1262
1263	if (!sem || (units < 1))
1264		return AE_BAD_PARAMETER;
1265
1266	if (units > 1)
1267		return AE_SUPPORT;
1268
1269	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1270			  units));
1271
1272	up(sem);
1273
1274	return AE_OK;
1275}
1276
1277acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1278{
1279#ifdef ENABLE_DEBUGGER
1280	if (acpi_in_debugger) {
1281		u32 chars;
1282
1283		kdb_read(buffer, buffer_length);
1284
1285		/* remove the CR kdb includes */
1286		chars = strlen(buffer) - 1;
1287		buffer[chars] = '\0';
1288	}
1289#else
1290	int ret;
1291
1292	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1293	if (ret < 0)
1294		return AE_ERROR;
1295	if (bytes_read)
1296		*bytes_read = ret;
1297#endif
1298
1299	return AE_OK;
1300}
1301EXPORT_SYMBOL(acpi_os_get_line);
1302
1303acpi_status acpi_os_wait_command_ready(void)
1304{
1305	int ret;
1306
1307	ret = acpi_debugger_wait_command_ready();
1308	if (ret < 0)
1309		return AE_ERROR;
1310	return AE_OK;
1311}
1312
1313acpi_status acpi_os_notify_command_complete(void)
1314{
1315	int ret;
1316
1317	ret = acpi_debugger_notify_command_complete();
1318	if (ret < 0)
1319		return AE_ERROR;
1320	return AE_OK;
1321}
1322
1323acpi_status acpi_os_signal(u32 function, void *info)
1324{
1325	switch (function) {
1326	case ACPI_SIGNAL_FATAL:
1327		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1328		break;
1329	case ACPI_SIGNAL_BREAKPOINT:
1330		/*
1331		 * AML Breakpoint
1332		 * ACPI spec. says to treat it as a NOP unless
1333		 * you are debugging.  So if/when we integrate
1334		 * AML debugger into the kernel debugger its
1335		 * hook will go here.  But until then it is
1336		 * not useful to print anything on breakpoints.
1337		 */
1338		break;
1339	default:
1340		break;
1341	}
1342
1343	return AE_OK;
1344}
1345
1346static int __init acpi_os_name_setup(char *str)
1347{
1348	char *p = acpi_os_name;
1349	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1350
1351	if (!str || !*str)
1352		return 0;
1353
1354	for (; count-- && *str; str++) {
1355		if (isalnum(*str) || *str == ' ' || *str == ':')
1356			*p++ = *str;
1357		else if (*str == '\'' || *str == '"')
1358			continue;
1359		else
1360			break;
1361	}
1362	*p = 0;
1363
1364	return 1;
1365
1366}
1367
1368__setup("acpi_os_name=", acpi_os_name_setup);
1369
1370/*
1371 * Disable the auto-serialization of named objects creation methods.
1372 *
1373 * This feature is enabled by default.  It marks the AML control methods
1374 * that contain the opcodes to create named objects as "Serialized".
1375 */
1376static int __init acpi_no_auto_serialize_setup(char *str)
1377{
1378	acpi_gbl_auto_serialize_methods = FALSE;
1379	pr_info("ACPI: auto-serialization disabled\n");
1380
1381	return 1;
1382}
1383
1384__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1385
1386/* Check of resource interference between native drivers and ACPI
1387 * OperationRegions (SystemIO and System Memory only).
1388 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1389 * in arbitrary AML code and can interfere with legacy drivers.
1390 * acpi_enforce_resources= can be set to:
1391 *
1392 *   - strict (default) (2)
1393 *     -> further driver trying to access the resources will not load
1394 *   - lax              (1)
1395 *     -> further driver trying to access the resources will load, but you
1396 *     get a system message that something might go wrong...
1397 *
1398 *   - no               (0)
1399 *     -> ACPI Operation Region resources will not be registered
1400 *
1401 */
1402#define ENFORCE_RESOURCES_STRICT 2
1403#define ENFORCE_RESOURCES_LAX    1
1404#define ENFORCE_RESOURCES_NO     0
1405
1406static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1407
1408static int __init acpi_enforce_resources_setup(char *str)
1409{
1410	if (str == NULL || *str == '\0')
1411		return 0;
1412
1413	if (!strcmp("strict", str))
1414		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1415	else if (!strcmp("lax", str))
1416		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1417	else if (!strcmp("no", str))
1418		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1419
1420	return 1;
1421}
1422
1423__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1424
1425/* Check for resource conflicts between ACPI OperationRegions and native
1426 * drivers */
1427int acpi_check_resource_conflict(const struct resource *res)
1428{
1429	acpi_adr_space_type space_id;
1430	acpi_size length;
1431	u8 warn = 0;
1432	int clash = 0;
1433
1434	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1435		return 0;
1436	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1437		return 0;
1438
1439	if (res->flags & IORESOURCE_IO)
1440		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1441	else
1442		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1443
1444	length = resource_size(res);
1445	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1446		warn = 1;
1447	clash = acpi_check_address_range(space_id, res->start, length, warn);
1448
1449	if (clash) {
1450		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1451			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1452				printk(KERN_NOTICE "ACPI: This conflict may"
1453				       " cause random problems and system"
1454				       " instability\n");
1455			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1456			       " for this device, you should use it instead of"
1457			       " the native driver\n");
1458		}
1459		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1460			return -EBUSY;
1461	}
1462	return 0;
1463}
1464EXPORT_SYMBOL(acpi_check_resource_conflict);
1465
1466int acpi_check_region(resource_size_t start, resource_size_t n,
1467		      const char *name)
1468{
1469	struct resource res = {
1470		.start = start,
1471		.end   = start + n - 1,
1472		.name  = name,
1473		.flags = IORESOURCE_IO,
1474	};
1475
1476	return acpi_check_resource_conflict(&res);
1477}
1478EXPORT_SYMBOL(acpi_check_region);
1479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1480/*
1481 * Let drivers know whether the resource checks are effective
1482 */
1483int acpi_resources_are_enforced(void)
1484{
1485	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1486}
1487EXPORT_SYMBOL(acpi_resources_are_enforced);
1488
1489/*
1490 * Deallocate the memory for a spinlock.
1491 */
1492void acpi_os_delete_lock(acpi_spinlock handle)
1493{
1494	ACPI_FREE(handle);
1495}
1496
1497/*
1498 * Acquire a spinlock.
1499 *
1500 * handle is a pointer to the spinlock_t.
1501 */
1502
1503acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
 
1504{
1505	acpi_cpu_flags flags;
1506	spin_lock_irqsave(lockp, flags);
1507	return flags;
1508}
1509
1510/*
1511 * Release a spinlock. See above.
1512 */
1513
1514void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
 
1515{
1516	spin_unlock_irqrestore(lockp, flags);
1517}
1518
1519#ifndef ACPI_USE_LOCAL_CACHE
1520
1521/*******************************************************************************
1522 *
1523 * FUNCTION:    acpi_os_create_cache
1524 *
1525 * PARAMETERS:  name      - Ascii name for the cache
1526 *              size      - Size of each cached object
1527 *              depth     - Maximum depth of the cache (in objects) <ignored>
1528 *              cache     - Where the new cache object is returned
1529 *
1530 * RETURN:      status
1531 *
1532 * DESCRIPTION: Create a cache object
1533 *
1534 ******************************************************************************/
1535
1536acpi_status
1537acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1538{
1539	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1540	if (*cache == NULL)
1541		return AE_ERROR;
1542	else
1543		return AE_OK;
1544}
1545
1546/*******************************************************************************
1547 *
1548 * FUNCTION:    acpi_os_purge_cache
1549 *
1550 * PARAMETERS:  Cache           - Handle to cache object
1551 *
1552 * RETURN:      Status
1553 *
1554 * DESCRIPTION: Free all objects within the requested cache.
1555 *
1556 ******************************************************************************/
1557
1558acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1559{
1560	kmem_cache_shrink(cache);
1561	return (AE_OK);
1562}
1563
1564/*******************************************************************************
1565 *
1566 * FUNCTION:    acpi_os_delete_cache
1567 *
1568 * PARAMETERS:  Cache           - Handle to cache object
1569 *
1570 * RETURN:      Status
1571 *
1572 * DESCRIPTION: Free all objects within the requested cache and delete the
1573 *              cache object.
1574 *
1575 ******************************************************************************/
1576
1577acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1578{
1579	kmem_cache_destroy(cache);
1580	return (AE_OK);
1581}
1582
1583/*******************************************************************************
1584 *
1585 * FUNCTION:    acpi_os_release_object
1586 *
1587 * PARAMETERS:  Cache       - Handle to cache object
1588 *              Object      - The object to be released
1589 *
1590 * RETURN:      None
1591 *
1592 * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1593 *              the object is deleted.
1594 *
1595 ******************************************************************************/
1596
1597acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1598{
1599	kmem_cache_free(cache, object);
1600	return (AE_OK);
1601}
1602#endif
1603
1604static int __init acpi_no_static_ssdt_setup(char *s)
1605{
1606	acpi_gbl_disable_ssdt_table_install = TRUE;
1607	pr_info("ACPI: static SSDT installation disabled\n");
1608
1609	return 0;
1610}
1611
1612early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1613
1614static int __init acpi_disable_return_repair(char *s)
1615{
1616	printk(KERN_NOTICE PREFIX
1617	       "ACPI: Predefined validation mechanism disabled\n");
1618	acpi_gbl_disable_auto_repair = TRUE;
1619
1620	return 1;
1621}
1622
1623__setup("acpica_no_return_repair", acpi_disable_return_repair);
1624
1625acpi_status __init acpi_os_initialize(void)
1626{
1627	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1628	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1629	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1630	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1631	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1632		/*
1633		 * Use acpi_os_map_generic_address to pre-map the reset
1634		 * register if it's in system memory.
1635		 */
1636		int rv;
1637
1638		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1639		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1640	}
1641	acpi_os_initialized = true;
1642
1643	return AE_OK;
1644}
1645
1646acpi_status __init acpi_os_initialize1(void)
1647{
1648	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1649	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1650	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1651	BUG_ON(!kacpid_wq);
1652	BUG_ON(!kacpi_notify_wq);
1653	BUG_ON(!kacpi_hotplug_wq);
1654	acpi_osi_init();
1655	return AE_OK;
1656}
1657
1658acpi_status acpi_os_terminate(void)
1659{
1660	if (acpi_irq_handler) {
1661		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1662						 acpi_irq_handler);
1663	}
1664
1665	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1666	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1667	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1668	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1669	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1670		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1671
1672	destroy_workqueue(kacpid_wq);
1673	destroy_workqueue(kacpi_notify_wq);
1674	destroy_workqueue(kacpi_hotplug_wq);
1675
1676	return AE_OK;
1677}
1678
1679acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1680				  u32 pm1b_control)
1681{
1682	int rc = 0;
1683	if (__acpi_os_prepare_sleep)
1684		rc = __acpi_os_prepare_sleep(sleep_state,
1685					     pm1a_control, pm1b_control);
1686	if (rc < 0)
1687		return AE_ERROR;
1688	else if (rc > 0)
1689		return AE_CTRL_SKIP;
1690
1691	return AE_OK;
1692}
1693
1694void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1695			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1696{
1697	__acpi_os_prepare_sleep = func;
1698}
1699
 
1700acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1701				  u32 val_b)
1702{
1703	int rc = 0;
1704	if (__acpi_os_prepare_extended_sleep)
1705		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1706					     val_a, val_b);
1707	if (rc < 0)
1708		return AE_ERROR;
1709	else if (rc > 0)
1710		return AE_CTRL_SKIP;
1711
1712	return AE_OK;
1713}
 
 
 
 
 
 
 
1714
1715void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1716			       u32 val_a, u32 val_b))
1717{
1718	__acpi_os_prepare_extended_sleep = func;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719}