Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/highmem.h>
17#include <linux/lockdep.h>
18#include <linux/pci.h>
19#include <linux/interrupt.h>
20#include <linux/kmod.h>
21#include <linux/delay.h>
22#include <linux/workqueue.h>
23#include <linux/nmi.h>
24#include <linux/acpi.h>
25#include <linux/efi.h>
26#include <linux/ioport.h>
27#include <linux/list.h>
28#include <linux/jiffies.h>
29#include <linux/semaphore.h>
30#include <linux/security.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34#include <linux/io-64-nonatomic-lo-hi.h>
35
36#include "acpica/accommon.h"
37#include "acpica/acnamesp.h"
38#include "internal.h"
39
40#define _COMPONENT ACPI_OS_SERVICES
41ACPI_MODULE_NAME("osl");
42
43struct acpi_os_dpc {
44 acpi_osd_exec_callback function;
45 void *context;
46 struct work_struct work;
47};
48
49#ifdef ENABLE_DEBUGGER
50#include <linux/kdb.h>
51
52/* stuff for debugger support */
53int acpi_in_debugger;
54EXPORT_SYMBOL(acpi_in_debugger);
55#endif /*ENABLE_DEBUGGER */
56
57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 u32 pm1b_ctrl);
59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 u32 val_b);
61
62static acpi_osd_handler acpi_irq_handler;
63static void *acpi_irq_context;
64static struct workqueue_struct *kacpid_wq;
65static struct workqueue_struct *kacpi_notify_wq;
66static struct workqueue_struct *kacpi_hotplug_wq;
67static bool acpi_os_initialized;
68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69bool acpi_permanent_mmap = false;
70
71/*
72 * This list of permanent mappings is for memory that may be accessed from
73 * interrupt context, where we can't do the ioremap().
74 */
75struct acpi_ioremap {
76 struct list_head list;
77 void __iomem *virt;
78 acpi_physical_address phys;
79 acpi_size size;
80 union {
81 unsigned long refcount;
82 struct rcu_work rwork;
83 } track;
84};
85
86static LIST_HEAD(acpi_ioremaps);
87static DEFINE_MUTEX(acpi_ioremap_lock);
88#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
89
90static void __init acpi_request_region (struct acpi_generic_address *gas,
91 unsigned int length, char *desc)
92{
93 u64 addr;
94
95 /* Handle possible alignment issues */
96 memcpy(&addr, &gas->address, sizeof(addr));
97 if (!addr || !length)
98 return;
99
100 /* Resources are never freed */
101 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
102 request_region(addr, length, desc);
103 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
104 request_mem_region(addr, length, desc);
105}
106
107static int __init acpi_reserve_resources(void)
108{
109 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
110 "ACPI PM1a_EVT_BLK");
111
112 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
113 "ACPI PM1b_EVT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
116 "ACPI PM1a_CNT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
119 "ACPI PM1b_CNT_BLK");
120
121 if (acpi_gbl_FADT.pm_timer_length == 4)
122 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
123
124 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
125 "ACPI PM2_CNT_BLK");
126
127 /* Length of GPE blocks must be a non-negative multiple of 2 */
128
129 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
130 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
131 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
132
133 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
134 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
135 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
136
137 return 0;
138}
139fs_initcall_sync(acpi_reserve_resources);
140
141void acpi_os_printf(const char *fmt, ...)
142{
143 va_list args;
144 va_start(args, fmt);
145 acpi_os_vprintf(fmt, args);
146 va_end(args);
147}
148EXPORT_SYMBOL(acpi_os_printf);
149
150void acpi_os_vprintf(const char *fmt, va_list args)
151{
152 static char buffer[512];
153
154 vsprintf(buffer, fmt, args);
155
156#ifdef ENABLE_DEBUGGER
157 if (acpi_in_debugger) {
158 kdb_printf("%s", buffer);
159 } else {
160 if (printk_get_level(buffer))
161 printk("%s", buffer);
162 else
163 printk(KERN_CONT "%s", buffer);
164 }
165#else
166 if (acpi_debugger_write_log(buffer) < 0) {
167 if (printk_get_level(buffer))
168 printk("%s", buffer);
169 else
170 printk(KERN_CONT "%s", buffer);
171 }
172#endif
173}
174
175#ifdef CONFIG_KEXEC
176static unsigned long acpi_rsdp;
177static int __init setup_acpi_rsdp(char *arg)
178{
179 return kstrtoul(arg, 16, &acpi_rsdp);
180}
181early_param("acpi_rsdp", setup_acpi_rsdp);
182#endif
183
184acpi_physical_address __init acpi_os_get_root_pointer(void)
185{
186 acpi_physical_address pa;
187
188#ifdef CONFIG_KEXEC
189 /*
190 * We may have been provided with an RSDP on the command line,
191 * but if a malicious user has done so they may be pointing us
192 * at modified ACPI tables that could alter kernel behaviour -
193 * so, we check the lockdown status before making use of
194 * it. If we trust it then also stash it in an architecture
195 * specific location (if appropriate) so it can be carried
196 * over further kexec()s.
197 */
198 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
199 acpi_arch_set_root_pointer(acpi_rsdp);
200 return acpi_rsdp;
201 }
202#endif
203 pa = acpi_arch_get_root_pointer();
204 if (pa)
205 return pa;
206
207 if (efi_enabled(EFI_CONFIG_TABLES)) {
208 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
209 return efi.acpi20;
210 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi;
212 pr_err(PREFIX "System description tables not found\n");
213 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
214 acpi_find_root_pointer(&pa);
215 }
216
217 return pa;
218}
219
220/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
221static struct acpi_ioremap *
222acpi_map_lookup(acpi_physical_address phys, acpi_size size)
223{
224 struct acpi_ioremap *map;
225
226 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
227 if (map->phys <= phys &&
228 phys + size <= map->phys + map->size)
229 return map;
230
231 return NULL;
232}
233
234/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
235static void __iomem *
236acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
237{
238 struct acpi_ioremap *map;
239
240 map = acpi_map_lookup(phys, size);
241 if (map)
242 return map->virt + (phys - map->phys);
243
244 return NULL;
245}
246
247void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
248{
249 struct acpi_ioremap *map;
250 void __iomem *virt = NULL;
251
252 mutex_lock(&acpi_ioremap_lock);
253 map = acpi_map_lookup(phys, size);
254 if (map) {
255 virt = map->virt + (phys - map->phys);
256 map->track.refcount++;
257 }
258 mutex_unlock(&acpi_ioremap_lock);
259 return virt;
260}
261EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
262
263/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
264static struct acpi_ioremap *
265acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
266{
267 struct acpi_ioremap *map;
268
269 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
270 if (map->virt <= virt &&
271 virt + size <= map->virt + map->size)
272 return map;
273
274 return NULL;
275}
276
277#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
278/* ioremap will take care of cache attributes */
279#define should_use_kmap(pfn) 0
280#else
281#define should_use_kmap(pfn) page_is_ram(pfn)
282#endif
283
284static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
285{
286 unsigned long pfn;
287
288 pfn = pg_off >> PAGE_SHIFT;
289 if (should_use_kmap(pfn)) {
290 if (pg_sz > PAGE_SIZE)
291 return NULL;
292 return (void __iomem __force *)kmap(pfn_to_page(pfn));
293 } else
294 return acpi_os_ioremap(pg_off, pg_sz);
295}
296
297static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
298{
299 unsigned long pfn;
300
301 pfn = pg_off >> PAGE_SHIFT;
302 if (should_use_kmap(pfn))
303 kunmap(pfn_to_page(pfn));
304 else
305 iounmap(vaddr);
306}
307
308/**
309 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
310 * @phys: Start of the physical address range to map.
311 * @size: Size of the physical address range to map.
312 *
313 * Look up the given physical address range in the list of existing ACPI memory
314 * mappings. If found, get a reference to it and return a pointer to it (its
315 * virtual address). If not found, map it, add it to that list and return a
316 * pointer to it.
317 *
318 * During early init (when acpi_permanent_mmap has not been set yet) this
319 * routine simply calls __acpi_map_table() to get the job done.
320 */
321void __iomem __ref
322*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
323{
324 struct acpi_ioremap *map;
325 void __iomem *virt;
326 acpi_physical_address pg_off;
327 acpi_size pg_sz;
328
329 if (phys > ULONG_MAX) {
330 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
331 return NULL;
332 }
333
334 if (!acpi_permanent_mmap)
335 return __acpi_map_table((unsigned long)phys, size);
336
337 mutex_lock(&acpi_ioremap_lock);
338 /* Check if there's a suitable mapping already. */
339 map = acpi_map_lookup(phys, size);
340 if (map) {
341 map->track.refcount++;
342 goto out;
343 }
344
345 map = kzalloc(sizeof(*map), GFP_KERNEL);
346 if (!map) {
347 mutex_unlock(&acpi_ioremap_lock);
348 return NULL;
349 }
350
351 pg_off = round_down(phys, PAGE_SIZE);
352 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
353 virt = acpi_map(phys, size);
354 if (!virt) {
355 mutex_unlock(&acpi_ioremap_lock);
356 kfree(map);
357 return NULL;
358 }
359
360 INIT_LIST_HEAD(&map->list);
361 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
362 map->phys = pg_off;
363 map->size = pg_sz;
364 map->track.refcount = 1;
365
366 list_add_tail_rcu(&map->list, &acpi_ioremaps);
367
368out:
369 mutex_unlock(&acpi_ioremap_lock);
370 return map->virt + (phys - map->phys);
371}
372EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
373
374void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
375{
376 return (void *)acpi_os_map_iomem(phys, size);
377}
378EXPORT_SYMBOL_GPL(acpi_os_map_memory);
379
380static void acpi_os_map_remove(struct work_struct *work)
381{
382 struct acpi_ioremap *map = container_of(to_rcu_work(work),
383 struct acpi_ioremap,
384 track.rwork);
385
386 acpi_unmap(map->phys, map->virt);
387 kfree(map);
388}
389
390/* Must be called with mutex_lock(&acpi_ioremap_lock) */
391static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
392{
393 if (--map->track.refcount)
394 return;
395
396 list_del_rcu(&map->list);
397
398 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
399 queue_rcu_work(system_wq, &map->track.rwork);
400}
401
402/**
403 * acpi_os_unmap_iomem - Drop a memory mapping reference.
404 * @virt: Start of the address range to drop a reference to.
405 * @size: Size of the address range to drop a reference to.
406 *
407 * Look up the given virtual address range in the list of existing ACPI memory
408 * mappings, drop a reference to it and if there are no more active references
409 * to it, queue it up for later removal.
410 *
411 * During early init (when acpi_permanent_mmap has not been set yet) this
412 * routine simply calls __acpi_unmap_table() to get the job done. Since
413 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
414 * here.
415 */
416void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
417{
418 struct acpi_ioremap *map;
419
420 if (!acpi_permanent_mmap) {
421 __acpi_unmap_table(virt, size);
422 return;
423 }
424
425 mutex_lock(&acpi_ioremap_lock);
426
427 map = acpi_map_lookup_virt(virt, size);
428 if (!map) {
429 mutex_unlock(&acpi_ioremap_lock);
430 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
431 return;
432 }
433 acpi_os_drop_map_ref(map);
434
435 mutex_unlock(&acpi_ioremap_lock);
436}
437EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
438
439/**
440 * acpi_os_unmap_memory - Drop a memory mapping reference.
441 * @virt: Start of the address range to drop a reference to.
442 * @size: Size of the address range to drop a reference to.
443 */
444void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
445{
446 acpi_os_unmap_iomem((void __iomem *)virt, size);
447}
448EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449
450int acpi_os_map_generic_address(struct acpi_generic_address *gas)
451{
452 u64 addr;
453 void __iomem *virt;
454
455 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
456 return 0;
457
458 /* Handle possible alignment issues */
459 memcpy(&addr, &gas->address, sizeof(addr));
460 if (!addr || !gas->bit_width)
461 return -EINVAL;
462
463 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
464 if (!virt)
465 return -EIO;
466
467 return 0;
468}
469EXPORT_SYMBOL(acpi_os_map_generic_address);
470
471void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
472{
473 u64 addr;
474 struct acpi_ioremap *map;
475
476 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
477 return;
478
479 /* Handle possible alignment issues */
480 memcpy(&addr, &gas->address, sizeof(addr));
481 if (!addr || !gas->bit_width)
482 return;
483
484 mutex_lock(&acpi_ioremap_lock);
485
486 map = acpi_map_lookup(addr, gas->bit_width / 8);
487 if (!map) {
488 mutex_unlock(&acpi_ioremap_lock);
489 return;
490 }
491 acpi_os_drop_map_ref(map);
492
493 mutex_unlock(&acpi_ioremap_lock);
494}
495EXPORT_SYMBOL(acpi_os_unmap_generic_address);
496
497#ifdef ACPI_FUTURE_USAGE
498acpi_status
499acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
500{
501 if (!phys || !virt)
502 return AE_BAD_PARAMETER;
503
504 *phys = virt_to_phys(virt);
505
506 return AE_OK;
507}
508#endif
509
510#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
511static bool acpi_rev_override;
512
513int __init acpi_rev_override_setup(char *str)
514{
515 acpi_rev_override = true;
516 return 1;
517}
518__setup("acpi_rev_override", acpi_rev_override_setup);
519#else
520#define acpi_rev_override false
521#endif
522
523#define ACPI_MAX_OVERRIDE_LEN 100
524
525static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
526
527acpi_status
528acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
529 acpi_string *new_val)
530{
531 if (!init_val || !new_val)
532 return AE_BAD_PARAMETER;
533
534 *new_val = NULL;
535 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
536 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
537 acpi_os_name);
538 *new_val = acpi_os_name;
539 }
540
541 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
542 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
543 *new_val = (char *)5;
544 }
545
546 return AE_OK;
547}
548
549static irqreturn_t acpi_irq(int irq, void *dev_id)
550{
551 u32 handled;
552
553 handled = (*acpi_irq_handler) (acpi_irq_context);
554
555 if (handled) {
556 acpi_irq_handled++;
557 return IRQ_HANDLED;
558 } else {
559 acpi_irq_not_handled++;
560 return IRQ_NONE;
561 }
562}
563
564acpi_status
565acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
566 void *context)
567{
568 unsigned int irq;
569
570 acpi_irq_stats_init();
571
572 /*
573 * ACPI interrupts different from the SCI in our copy of the FADT are
574 * not supported.
575 */
576 if (gsi != acpi_gbl_FADT.sci_interrupt)
577 return AE_BAD_PARAMETER;
578
579 if (acpi_irq_handler)
580 return AE_ALREADY_ACQUIRED;
581
582 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
583 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
584 gsi);
585 return AE_OK;
586 }
587
588 acpi_irq_handler = handler;
589 acpi_irq_context = context;
590 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
591 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
592 acpi_irq_handler = NULL;
593 return AE_NOT_ACQUIRED;
594 }
595 acpi_sci_irq = irq;
596
597 return AE_OK;
598}
599
600acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
601{
602 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
603 return AE_BAD_PARAMETER;
604
605 free_irq(acpi_sci_irq, acpi_irq);
606 acpi_irq_handler = NULL;
607 acpi_sci_irq = INVALID_ACPI_IRQ;
608
609 return AE_OK;
610}
611
612/*
613 * Running in interpreter thread context, safe to sleep
614 */
615
616void acpi_os_sleep(u64 ms)
617{
618 msleep(ms);
619}
620
621void acpi_os_stall(u32 us)
622{
623 while (us) {
624 u32 delay = 1000;
625
626 if (delay > us)
627 delay = us;
628 udelay(delay);
629 touch_nmi_watchdog();
630 us -= delay;
631 }
632}
633
634/*
635 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
636 * monotonically increasing timer with 100ns granularity. Do not use
637 * ktime_get() to implement this function because this function may get
638 * called after timekeeping has been suspended. Note: calling this function
639 * after timekeeping has been suspended may lead to unexpected results
640 * because when timekeeping is suspended the jiffies counter is not
641 * incremented. See also timekeeping_suspend().
642 */
643u64 acpi_os_get_timer(void)
644{
645 return (get_jiffies_64() - INITIAL_JIFFIES) *
646 (ACPI_100NSEC_PER_SEC / HZ);
647}
648
649acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
650{
651 u32 dummy;
652
653 if (!value)
654 value = &dummy;
655
656 *value = 0;
657 if (width <= 8) {
658 *(u8 *) value = inb(port);
659 } else if (width <= 16) {
660 *(u16 *) value = inw(port);
661 } else if (width <= 32) {
662 *(u32 *) value = inl(port);
663 } else {
664 BUG();
665 }
666
667 return AE_OK;
668}
669
670EXPORT_SYMBOL(acpi_os_read_port);
671
672acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
673{
674 if (width <= 8) {
675 outb(value, port);
676 } else if (width <= 16) {
677 outw(value, port);
678 } else if (width <= 32) {
679 outl(value, port);
680 } else {
681 BUG();
682 }
683
684 return AE_OK;
685}
686
687EXPORT_SYMBOL(acpi_os_write_port);
688
689int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
690{
691
692 switch (width) {
693 case 8:
694 *(u8 *) value = readb(virt_addr);
695 break;
696 case 16:
697 *(u16 *) value = readw(virt_addr);
698 break;
699 case 32:
700 *(u32 *) value = readl(virt_addr);
701 break;
702 case 64:
703 *(u64 *) value = readq(virt_addr);
704 break;
705 default:
706 return -EINVAL;
707 }
708
709 return 0;
710}
711
712acpi_status
713acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
714{
715 void __iomem *virt_addr;
716 unsigned int size = width / 8;
717 bool unmap = false;
718 u64 dummy;
719 int error;
720
721 rcu_read_lock();
722 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
723 if (!virt_addr) {
724 rcu_read_unlock();
725 virt_addr = acpi_os_ioremap(phys_addr, size);
726 if (!virt_addr)
727 return AE_BAD_ADDRESS;
728 unmap = true;
729 }
730
731 if (!value)
732 value = &dummy;
733
734 error = acpi_os_read_iomem(virt_addr, value, width);
735 BUG_ON(error);
736
737 if (unmap)
738 iounmap(virt_addr);
739 else
740 rcu_read_unlock();
741
742 return AE_OK;
743}
744
745acpi_status
746acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
747{
748 void __iomem *virt_addr;
749 unsigned int size = width / 8;
750 bool unmap = false;
751
752 rcu_read_lock();
753 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
754 if (!virt_addr) {
755 rcu_read_unlock();
756 virt_addr = acpi_os_ioremap(phys_addr, size);
757 if (!virt_addr)
758 return AE_BAD_ADDRESS;
759 unmap = true;
760 }
761
762 switch (width) {
763 case 8:
764 writeb(value, virt_addr);
765 break;
766 case 16:
767 writew(value, virt_addr);
768 break;
769 case 32:
770 writel(value, virt_addr);
771 break;
772 case 64:
773 writeq(value, virt_addr);
774 break;
775 default:
776 BUG();
777 }
778
779 if (unmap)
780 iounmap(virt_addr);
781 else
782 rcu_read_unlock();
783
784 return AE_OK;
785}
786
787#ifdef CONFIG_PCI
788acpi_status
789acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
790 u64 *value, u32 width)
791{
792 int result, size;
793 u32 value32;
794
795 if (!value)
796 return AE_BAD_PARAMETER;
797
798 switch (width) {
799 case 8:
800 size = 1;
801 break;
802 case 16:
803 size = 2;
804 break;
805 case 32:
806 size = 4;
807 break;
808 default:
809 return AE_ERROR;
810 }
811
812 result = raw_pci_read(pci_id->segment, pci_id->bus,
813 PCI_DEVFN(pci_id->device, pci_id->function),
814 reg, size, &value32);
815 *value = value32;
816
817 return (result ? AE_ERROR : AE_OK);
818}
819
820acpi_status
821acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
822 u64 value, u32 width)
823{
824 int result, size;
825
826 switch (width) {
827 case 8:
828 size = 1;
829 break;
830 case 16:
831 size = 2;
832 break;
833 case 32:
834 size = 4;
835 break;
836 default:
837 return AE_ERROR;
838 }
839
840 result = raw_pci_write(pci_id->segment, pci_id->bus,
841 PCI_DEVFN(pci_id->device, pci_id->function),
842 reg, size, value);
843
844 return (result ? AE_ERROR : AE_OK);
845}
846#endif
847
848static void acpi_os_execute_deferred(struct work_struct *work)
849{
850 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
851
852 dpc->function(dpc->context);
853 kfree(dpc);
854}
855
856#ifdef CONFIG_ACPI_DEBUGGER
857static struct acpi_debugger acpi_debugger;
858static bool acpi_debugger_initialized;
859
860int acpi_register_debugger(struct module *owner,
861 const struct acpi_debugger_ops *ops)
862{
863 int ret = 0;
864
865 mutex_lock(&acpi_debugger.lock);
866 if (acpi_debugger.ops) {
867 ret = -EBUSY;
868 goto err_lock;
869 }
870
871 acpi_debugger.owner = owner;
872 acpi_debugger.ops = ops;
873
874err_lock:
875 mutex_unlock(&acpi_debugger.lock);
876 return ret;
877}
878EXPORT_SYMBOL(acpi_register_debugger);
879
880void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
881{
882 mutex_lock(&acpi_debugger.lock);
883 if (ops == acpi_debugger.ops) {
884 acpi_debugger.ops = NULL;
885 acpi_debugger.owner = NULL;
886 }
887 mutex_unlock(&acpi_debugger.lock);
888}
889EXPORT_SYMBOL(acpi_unregister_debugger);
890
891int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
892{
893 int ret;
894 int (*func)(acpi_osd_exec_callback, void *);
895 struct module *owner;
896
897 if (!acpi_debugger_initialized)
898 return -ENODEV;
899 mutex_lock(&acpi_debugger.lock);
900 if (!acpi_debugger.ops) {
901 ret = -ENODEV;
902 goto err_lock;
903 }
904 if (!try_module_get(acpi_debugger.owner)) {
905 ret = -ENODEV;
906 goto err_lock;
907 }
908 func = acpi_debugger.ops->create_thread;
909 owner = acpi_debugger.owner;
910 mutex_unlock(&acpi_debugger.lock);
911
912 ret = func(function, context);
913
914 mutex_lock(&acpi_debugger.lock);
915 module_put(owner);
916err_lock:
917 mutex_unlock(&acpi_debugger.lock);
918 return ret;
919}
920
921ssize_t acpi_debugger_write_log(const char *msg)
922{
923 ssize_t ret;
924 ssize_t (*func)(const char *);
925 struct module *owner;
926
927 if (!acpi_debugger_initialized)
928 return -ENODEV;
929 mutex_lock(&acpi_debugger.lock);
930 if (!acpi_debugger.ops) {
931 ret = -ENODEV;
932 goto err_lock;
933 }
934 if (!try_module_get(acpi_debugger.owner)) {
935 ret = -ENODEV;
936 goto err_lock;
937 }
938 func = acpi_debugger.ops->write_log;
939 owner = acpi_debugger.owner;
940 mutex_unlock(&acpi_debugger.lock);
941
942 ret = func(msg);
943
944 mutex_lock(&acpi_debugger.lock);
945 module_put(owner);
946err_lock:
947 mutex_unlock(&acpi_debugger.lock);
948 return ret;
949}
950
951ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
952{
953 ssize_t ret;
954 ssize_t (*func)(char *, size_t);
955 struct module *owner;
956
957 if (!acpi_debugger_initialized)
958 return -ENODEV;
959 mutex_lock(&acpi_debugger.lock);
960 if (!acpi_debugger.ops) {
961 ret = -ENODEV;
962 goto err_lock;
963 }
964 if (!try_module_get(acpi_debugger.owner)) {
965 ret = -ENODEV;
966 goto err_lock;
967 }
968 func = acpi_debugger.ops->read_cmd;
969 owner = acpi_debugger.owner;
970 mutex_unlock(&acpi_debugger.lock);
971
972 ret = func(buffer, buffer_length);
973
974 mutex_lock(&acpi_debugger.lock);
975 module_put(owner);
976err_lock:
977 mutex_unlock(&acpi_debugger.lock);
978 return ret;
979}
980
981int acpi_debugger_wait_command_ready(void)
982{
983 int ret;
984 int (*func)(bool, char *, size_t);
985 struct module *owner;
986
987 if (!acpi_debugger_initialized)
988 return -ENODEV;
989 mutex_lock(&acpi_debugger.lock);
990 if (!acpi_debugger.ops) {
991 ret = -ENODEV;
992 goto err_lock;
993 }
994 if (!try_module_get(acpi_debugger.owner)) {
995 ret = -ENODEV;
996 goto err_lock;
997 }
998 func = acpi_debugger.ops->wait_command_ready;
999 owner = acpi_debugger.owner;
1000 mutex_unlock(&acpi_debugger.lock);
1001
1002 ret = func(acpi_gbl_method_executing,
1003 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1004
1005 mutex_lock(&acpi_debugger.lock);
1006 module_put(owner);
1007err_lock:
1008 mutex_unlock(&acpi_debugger.lock);
1009 return ret;
1010}
1011
1012int acpi_debugger_notify_command_complete(void)
1013{
1014 int ret;
1015 int (*func)(void);
1016 struct module *owner;
1017
1018 if (!acpi_debugger_initialized)
1019 return -ENODEV;
1020 mutex_lock(&acpi_debugger.lock);
1021 if (!acpi_debugger.ops) {
1022 ret = -ENODEV;
1023 goto err_lock;
1024 }
1025 if (!try_module_get(acpi_debugger.owner)) {
1026 ret = -ENODEV;
1027 goto err_lock;
1028 }
1029 func = acpi_debugger.ops->notify_command_complete;
1030 owner = acpi_debugger.owner;
1031 mutex_unlock(&acpi_debugger.lock);
1032
1033 ret = func();
1034
1035 mutex_lock(&acpi_debugger.lock);
1036 module_put(owner);
1037err_lock:
1038 mutex_unlock(&acpi_debugger.lock);
1039 return ret;
1040}
1041
1042int __init acpi_debugger_init(void)
1043{
1044 mutex_init(&acpi_debugger.lock);
1045 acpi_debugger_initialized = true;
1046 return 0;
1047}
1048#endif
1049
1050/*******************************************************************************
1051 *
1052 * FUNCTION: acpi_os_execute
1053 *
1054 * PARAMETERS: Type - Type of the callback
1055 * Function - Function to be executed
1056 * Context - Function parameters
1057 *
1058 * RETURN: Status
1059 *
1060 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1061 * immediately executes function on a separate thread.
1062 *
1063 ******************************************************************************/
1064
1065acpi_status acpi_os_execute(acpi_execute_type type,
1066 acpi_osd_exec_callback function, void *context)
1067{
1068 acpi_status status = AE_OK;
1069 struct acpi_os_dpc *dpc;
1070 struct workqueue_struct *queue;
1071 int ret;
1072 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1073 "Scheduling function [%p(%p)] for deferred execution.\n",
1074 function, context));
1075
1076 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1077 ret = acpi_debugger_create_thread(function, context);
1078 if (ret) {
1079 pr_err("Call to kthread_create() failed.\n");
1080 status = AE_ERROR;
1081 }
1082 goto out_thread;
1083 }
1084
1085 /*
1086 * Allocate/initialize DPC structure. Note that this memory will be
1087 * freed by the callee. The kernel handles the work_struct list in a
1088 * way that allows us to also free its memory inside the callee.
1089 * Because we may want to schedule several tasks with different
1090 * parameters we can't use the approach some kernel code uses of
1091 * having a static work_struct.
1092 */
1093
1094 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1095 if (!dpc)
1096 return AE_NO_MEMORY;
1097
1098 dpc->function = function;
1099 dpc->context = context;
1100
1101 /*
1102 * To prevent lockdep from complaining unnecessarily, make sure that
1103 * there is a different static lockdep key for each workqueue by using
1104 * INIT_WORK() for each of them separately.
1105 */
1106 if (type == OSL_NOTIFY_HANDLER) {
1107 queue = kacpi_notify_wq;
1108 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1109 } else if (type == OSL_GPE_HANDLER) {
1110 queue = kacpid_wq;
1111 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1112 } else {
1113 pr_err("Unsupported os_execute type %d.\n", type);
1114 status = AE_ERROR;
1115 }
1116
1117 if (ACPI_FAILURE(status))
1118 goto err_workqueue;
1119
1120 /*
1121 * On some machines, a software-initiated SMI causes corruption unless
1122 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1123 * typically it's done in GPE-related methods that are run via
1124 * workqueues, so we can avoid the known corruption cases by always
1125 * queueing on CPU 0.
1126 */
1127 ret = queue_work_on(0, queue, &dpc->work);
1128 if (!ret) {
1129 printk(KERN_ERR PREFIX
1130 "Call to queue_work() failed.\n");
1131 status = AE_ERROR;
1132 }
1133err_workqueue:
1134 if (ACPI_FAILURE(status))
1135 kfree(dpc);
1136out_thread:
1137 return status;
1138}
1139EXPORT_SYMBOL(acpi_os_execute);
1140
1141void acpi_os_wait_events_complete(void)
1142{
1143 /*
1144 * Make sure the GPE handler or the fixed event handler is not used
1145 * on another CPU after removal.
1146 */
1147 if (acpi_sci_irq_valid())
1148 synchronize_hardirq(acpi_sci_irq);
1149 flush_workqueue(kacpid_wq);
1150 flush_workqueue(kacpi_notify_wq);
1151}
1152EXPORT_SYMBOL(acpi_os_wait_events_complete);
1153
1154struct acpi_hp_work {
1155 struct work_struct work;
1156 struct acpi_device *adev;
1157 u32 src;
1158};
1159
1160static void acpi_hotplug_work_fn(struct work_struct *work)
1161{
1162 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1163
1164 acpi_os_wait_events_complete();
1165 acpi_device_hotplug(hpw->adev, hpw->src);
1166 kfree(hpw);
1167}
1168
1169acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1170{
1171 struct acpi_hp_work *hpw;
1172
1173 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1174 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1175 adev, src));
1176
1177 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1178 if (!hpw)
1179 return AE_NO_MEMORY;
1180
1181 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1182 hpw->adev = adev;
1183 hpw->src = src;
1184 /*
1185 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1186 * the hotplug code may call driver .remove() functions, which may
1187 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1188 * these workqueues.
1189 */
1190 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1191 kfree(hpw);
1192 return AE_ERROR;
1193 }
1194 return AE_OK;
1195}
1196
1197bool acpi_queue_hotplug_work(struct work_struct *work)
1198{
1199 return queue_work(kacpi_hotplug_wq, work);
1200}
1201
1202acpi_status
1203acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1204{
1205 struct semaphore *sem = NULL;
1206
1207 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1208 if (!sem)
1209 return AE_NO_MEMORY;
1210
1211 sema_init(sem, initial_units);
1212
1213 *handle = (acpi_handle *) sem;
1214
1215 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1216 *handle, initial_units));
1217
1218 return AE_OK;
1219}
1220
1221/*
1222 * TODO: A better way to delete semaphores? Linux doesn't have a
1223 * 'delete_semaphore()' function -- may result in an invalid
1224 * pointer dereference for non-synchronized consumers. Should
1225 * we at least check for blocked threads and signal/cancel them?
1226 */
1227
1228acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1229{
1230 struct semaphore *sem = (struct semaphore *)handle;
1231
1232 if (!sem)
1233 return AE_BAD_PARAMETER;
1234
1235 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1236
1237 BUG_ON(!list_empty(&sem->wait_list));
1238 kfree(sem);
1239 sem = NULL;
1240
1241 return AE_OK;
1242}
1243
1244/*
1245 * TODO: Support for units > 1?
1246 */
1247acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1248{
1249 acpi_status status = AE_OK;
1250 struct semaphore *sem = (struct semaphore *)handle;
1251 long jiffies;
1252 int ret = 0;
1253
1254 if (!acpi_os_initialized)
1255 return AE_OK;
1256
1257 if (!sem || (units < 1))
1258 return AE_BAD_PARAMETER;
1259
1260 if (units > 1)
1261 return AE_SUPPORT;
1262
1263 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1264 handle, units, timeout));
1265
1266 if (timeout == ACPI_WAIT_FOREVER)
1267 jiffies = MAX_SCHEDULE_TIMEOUT;
1268 else
1269 jiffies = msecs_to_jiffies(timeout);
1270
1271 ret = down_timeout(sem, jiffies);
1272 if (ret)
1273 status = AE_TIME;
1274
1275 if (ACPI_FAILURE(status)) {
1276 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277 "Failed to acquire semaphore[%p|%d|%d], %s",
1278 handle, units, timeout,
1279 acpi_format_exception(status)));
1280 } else {
1281 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1282 "Acquired semaphore[%p|%d|%d]", handle,
1283 units, timeout));
1284 }
1285
1286 return status;
1287}
1288
1289/*
1290 * TODO: Support for units > 1?
1291 */
1292acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1293{
1294 struct semaphore *sem = (struct semaphore *)handle;
1295
1296 if (!acpi_os_initialized)
1297 return AE_OK;
1298
1299 if (!sem || (units < 1))
1300 return AE_BAD_PARAMETER;
1301
1302 if (units > 1)
1303 return AE_SUPPORT;
1304
1305 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1306 units));
1307
1308 up(sem);
1309
1310 return AE_OK;
1311}
1312
1313acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1314{
1315#ifdef ENABLE_DEBUGGER
1316 if (acpi_in_debugger) {
1317 u32 chars;
1318
1319 kdb_read(buffer, buffer_length);
1320
1321 /* remove the CR kdb includes */
1322 chars = strlen(buffer) - 1;
1323 buffer[chars] = '\0';
1324 }
1325#else
1326 int ret;
1327
1328 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1329 if (ret < 0)
1330 return AE_ERROR;
1331 if (bytes_read)
1332 *bytes_read = ret;
1333#endif
1334
1335 return AE_OK;
1336}
1337EXPORT_SYMBOL(acpi_os_get_line);
1338
1339acpi_status acpi_os_wait_command_ready(void)
1340{
1341 int ret;
1342
1343 ret = acpi_debugger_wait_command_ready();
1344 if (ret < 0)
1345 return AE_ERROR;
1346 return AE_OK;
1347}
1348
1349acpi_status acpi_os_notify_command_complete(void)
1350{
1351 int ret;
1352
1353 ret = acpi_debugger_notify_command_complete();
1354 if (ret < 0)
1355 return AE_ERROR;
1356 return AE_OK;
1357}
1358
1359acpi_status acpi_os_signal(u32 function, void *info)
1360{
1361 switch (function) {
1362 case ACPI_SIGNAL_FATAL:
1363 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1364 break;
1365 case ACPI_SIGNAL_BREAKPOINT:
1366 /*
1367 * AML Breakpoint
1368 * ACPI spec. says to treat it as a NOP unless
1369 * you are debugging. So if/when we integrate
1370 * AML debugger into the kernel debugger its
1371 * hook will go here. But until then it is
1372 * not useful to print anything on breakpoints.
1373 */
1374 break;
1375 default:
1376 break;
1377 }
1378
1379 return AE_OK;
1380}
1381
1382static int __init acpi_os_name_setup(char *str)
1383{
1384 char *p = acpi_os_name;
1385 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1386
1387 if (!str || !*str)
1388 return 0;
1389
1390 for (; count-- && *str; str++) {
1391 if (isalnum(*str) || *str == ' ' || *str == ':')
1392 *p++ = *str;
1393 else if (*str == '\'' || *str == '"')
1394 continue;
1395 else
1396 break;
1397 }
1398 *p = 0;
1399
1400 return 1;
1401
1402}
1403
1404__setup("acpi_os_name=", acpi_os_name_setup);
1405
1406/*
1407 * Disable the auto-serialization of named objects creation methods.
1408 *
1409 * This feature is enabled by default. It marks the AML control methods
1410 * that contain the opcodes to create named objects as "Serialized".
1411 */
1412static int __init acpi_no_auto_serialize_setup(char *str)
1413{
1414 acpi_gbl_auto_serialize_methods = FALSE;
1415 pr_info("ACPI: auto-serialization disabled\n");
1416
1417 return 1;
1418}
1419
1420__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1421
1422/* Check of resource interference between native drivers and ACPI
1423 * OperationRegions (SystemIO and System Memory only).
1424 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1425 * in arbitrary AML code and can interfere with legacy drivers.
1426 * acpi_enforce_resources= can be set to:
1427 *
1428 * - strict (default) (2)
1429 * -> further driver trying to access the resources will not load
1430 * - lax (1)
1431 * -> further driver trying to access the resources will load, but you
1432 * get a system message that something might go wrong...
1433 *
1434 * - no (0)
1435 * -> ACPI Operation Region resources will not be registered
1436 *
1437 */
1438#define ENFORCE_RESOURCES_STRICT 2
1439#define ENFORCE_RESOURCES_LAX 1
1440#define ENFORCE_RESOURCES_NO 0
1441
1442static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1443
1444static int __init acpi_enforce_resources_setup(char *str)
1445{
1446 if (str == NULL || *str == '\0')
1447 return 0;
1448
1449 if (!strcmp("strict", str))
1450 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1451 else if (!strcmp("lax", str))
1452 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1453 else if (!strcmp("no", str))
1454 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1455
1456 return 1;
1457}
1458
1459__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1460
1461/* Check for resource conflicts between ACPI OperationRegions and native
1462 * drivers */
1463int acpi_check_resource_conflict(const struct resource *res)
1464{
1465 acpi_adr_space_type space_id;
1466 acpi_size length;
1467 u8 warn = 0;
1468 int clash = 0;
1469
1470 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471 return 0;
1472 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1473 return 0;
1474
1475 if (res->flags & IORESOURCE_IO)
1476 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1477 else
1478 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1479
1480 length = resource_size(res);
1481 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1482 warn = 1;
1483 clash = acpi_check_address_range(space_id, res->start, length, warn);
1484
1485 if (clash) {
1486 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1487 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1488 printk(KERN_NOTICE "ACPI: This conflict may"
1489 " cause random problems and system"
1490 " instability\n");
1491 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1492 " for this device, you should use it instead of"
1493 " the native driver\n");
1494 }
1495 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1496 return -EBUSY;
1497 }
1498 return 0;
1499}
1500EXPORT_SYMBOL(acpi_check_resource_conflict);
1501
1502int acpi_check_region(resource_size_t start, resource_size_t n,
1503 const char *name)
1504{
1505 struct resource res = {
1506 .start = start,
1507 .end = start + n - 1,
1508 .name = name,
1509 .flags = IORESOURCE_IO,
1510 };
1511
1512 return acpi_check_resource_conflict(&res);
1513}
1514EXPORT_SYMBOL(acpi_check_region);
1515
1516static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1517 void *_res, void **return_value)
1518{
1519 struct acpi_mem_space_context **mem_ctx;
1520 union acpi_operand_object *handler_obj;
1521 union acpi_operand_object *region_obj2;
1522 union acpi_operand_object *region_obj;
1523 struct resource *res = _res;
1524 acpi_status status;
1525
1526 region_obj = acpi_ns_get_attached_object(handle);
1527 if (!region_obj)
1528 return AE_OK;
1529
1530 handler_obj = region_obj->region.handler;
1531 if (!handler_obj)
1532 return AE_OK;
1533
1534 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1535 return AE_OK;
1536
1537 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1538 return AE_OK;
1539
1540 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1541 if (!region_obj2)
1542 return AE_OK;
1543
1544 mem_ctx = (void *)®ion_obj2->extra.region_context;
1545
1546 if (!(mem_ctx[0]->address >= res->start &&
1547 mem_ctx[0]->address < res->end))
1548 return AE_OK;
1549
1550 status = handler_obj->address_space.setup(region_obj,
1551 ACPI_REGION_DEACTIVATE,
1552 NULL, (void **)mem_ctx);
1553 if (ACPI_SUCCESS(status))
1554 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1555
1556 return status;
1557}
1558
1559/**
1560 * acpi_release_memory - Release any mappings done to a memory region
1561 * @handle: Handle to namespace node
1562 * @res: Memory resource
1563 * @level: A level that terminates the search
1564 *
1565 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1566 * overlap with @res and that have already been activated (mapped).
1567 *
1568 * This is a helper that allows drivers to place special requirements on memory
1569 * region that may overlap with operation regions, primarily allowing them to
1570 * safely map the region as non-cached memory.
1571 *
1572 * The unmapped Operation Regions will be automatically remapped next time they
1573 * are called, so the drivers do not need to do anything else.
1574 */
1575acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1576 u32 level)
1577{
1578 acpi_status status;
1579
1580 if (!(res->flags & IORESOURCE_MEM))
1581 return AE_TYPE;
1582
1583 status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1584 acpi_deactivate_mem_region, NULL,
1585 res, NULL);
1586 if (ACPI_FAILURE(status))
1587 return status;
1588
1589 /*
1590 * Wait for all of the mappings queued up for removal by
1591 * acpi_deactivate_mem_region() to actually go away.
1592 */
1593 synchronize_rcu();
1594 rcu_barrier();
1595 flush_scheduled_work();
1596
1597 return AE_OK;
1598}
1599EXPORT_SYMBOL_GPL(acpi_release_memory);
1600
1601/*
1602 * Let drivers know whether the resource checks are effective
1603 */
1604int acpi_resources_are_enforced(void)
1605{
1606 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1607}
1608EXPORT_SYMBOL(acpi_resources_are_enforced);
1609
1610/*
1611 * Deallocate the memory for a spinlock.
1612 */
1613void acpi_os_delete_lock(acpi_spinlock handle)
1614{
1615 ACPI_FREE(handle);
1616}
1617
1618/*
1619 * Acquire a spinlock.
1620 *
1621 * handle is a pointer to the spinlock_t.
1622 */
1623
1624acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1625 __acquires(lockp)
1626{
1627 acpi_cpu_flags flags;
1628 spin_lock_irqsave(lockp, flags);
1629 return flags;
1630}
1631
1632/*
1633 * Release a spinlock. See above.
1634 */
1635
1636void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1637 __releases(lockp)
1638{
1639 spin_unlock_irqrestore(lockp, flags);
1640}
1641
1642#ifndef ACPI_USE_LOCAL_CACHE
1643
1644/*******************************************************************************
1645 *
1646 * FUNCTION: acpi_os_create_cache
1647 *
1648 * PARAMETERS: name - Ascii name for the cache
1649 * size - Size of each cached object
1650 * depth - Maximum depth of the cache (in objects) <ignored>
1651 * cache - Where the new cache object is returned
1652 *
1653 * RETURN: status
1654 *
1655 * DESCRIPTION: Create a cache object
1656 *
1657 ******************************************************************************/
1658
1659acpi_status
1660acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1661{
1662 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1663 if (*cache == NULL)
1664 return AE_ERROR;
1665 else
1666 return AE_OK;
1667}
1668
1669/*******************************************************************************
1670 *
1671 * FUNCTION: acpi_os_purge_cache
1672 *
1673 * PARAMETERS: Cache - Handle to cache object
1674 *
1675 * RETURN: Status
1676 *
1677 * DESCRIPTION: Free all objects within the requested cache.
1678 *
1679 ******************************************************************************/
1680
1681acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1682{
1683 kmem_cache_shrink(cache);
1684 return (AE_OK);
1685}
1686
1687/*******************************************************************************
1688 *
1689 * FUNCTION: acpi_os_delete_cache
1690 *
1691 * PARAMETERS: Cache - Handle to cache object
1692 *
1693 * RETURN: Status
1694 *
1695 * DESCRIPTION: Free all objects within the requested cache and delete the
1696 * cache object.
1697 *
1698 ******************************************************************************/
1699
1700acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1701{
1702 kmem_cache_destroy(cache);
1703 return (AE_OK);
1704}
1705
1706/*******************************************************************************
1707 *
1708 * FUNCTION: acpi_os_release_object
1709 *
1710 * PARAMETERS: Cache - Handle to cache object
1711 * Object - The object to be released
1712 *
1713 * RETURN: None
1714 *
1715 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1716 * the object is deleted.
1717 *
1718 ******************************************************************************/
1719
1720acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1721{
1722 kmem_cache_free(cache, object);
1723 return (AE_OK);
1724}
1725#endif
1726
1727static int __init acpi_no_static_ssdt_setup(char *s)
1728{
1729 acpi_gbl_disable_ssdt_table_install = TRUE;
1730 pr_info("ACPI: static SSDT installation disabled\n");
1731
1732 return 0;
1733}
1734
1735early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1736
1737static int __init acpi_disable_return_repair(char *s)
1738{
1739 printk(KERN_NOTICE PREFIX
1740 "ACPI: Predefined validation mechanism disabled\n");
1741 acpi_gbl_disable_auto_repair = TRUE;
1742
1743 return 1;
1744}
1745
1746__setup("acpica_no_return_repair", acpi_disable_return_repair);
1747
1748acpi_status __init acpi_os_initialize(void)
1749{
1750 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1751 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1752 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1753 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1754 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1755 /*
1756 * Use acpi_os_map_generic_address to pre-map the reset
1757 * register if it's in system memory.
1758 */
1759 int rv;
1760
1761 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1762 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1763 }
1764 acpi_os_initialized = true;
1765
1766 return AE_OK;
1767}
1768
1769acpi_status __init acpi_os_initialize1(void)
1770{
1771 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1772 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1773 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1774 BUG_ON(!kacpid_wq);
1775 BUG_ON(!kacpi_notify_wq);
1776 BUG_ON(!kacpi_hotplug_wq);
1777 acpi_osi_init();
1778 return AE_OK;
1779}
1780
1781acpi_status acpi_os_terminate(void)
1782{
1783 if (acpi_irq_handler) {
1784 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1785 acpi_irq_handler);
1786 }
1787
1788 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1789 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1790 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1791 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1792 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1793 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1794
1795 destroy_workqueue(kacpid_wq);
1796 destroy_workqueue(kacpi_notify_wq);
1797 destroy_workqueue(kacpi_hotplug_wq);
1798
1799 return AE_OK;
1800}
1801
1802acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1803 u32 pm1b_control)
1804{
1805 int rc = 0;
1806 if (__acpi_os_prepare_sleep)
1807 rc = __acpi_os_prepare_sleep(sleep_state,
1808 pm1a_control, pm1b_control);
1809 if (rc < 0)
1810 return AE_ERROR;
1811 else if (rc > 0)
1812 return AE_CTRL_TERMINATE;
1813
1814 return AE_OK;
1815}
1816
1817void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1818 u32 pm1a_ctrl, u32 pm1b_ctrl))
1819{
1820 __acpi_os_prepare_sleep = func;
1821}
1822
1823#if (ACPI_REDUCED_HARDWARE)
1824acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1825 u32 val_b)
1826{
1827 int rc = 0;
1828 if (__acpi_os_prepare_extended_sleep)
1829 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1830 val_a, val_b);
1831 if (rc < 0)
1832 return AE_ERROR;
1833 else if (rc > 0)
1834 return AE_CTRL_TERMINATE;
1835
1836 return AE_OK;
1837}
1838#else
1839acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1840 u32 val_b)
1841{
1842 return AE_OK;
1843}
1844#endif
1845
1846void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1847 u32 val_a, u32 val_b))
1848{
1849 __acpi_os_prepare_extended_sleep = func;
1850}
1851
1852acpi_status acpi_os_enter_sleep(u8 sleep_state,
1853 u32 reg_a_value, u32 reg_b_value)
1854{
1855 acpi_status status;
1856
1857 if (acpi_gbl_reduced_hardware)
1858 status = acpi_os_prepare_extended_sleep(sleep_state,
1859 reg_a_value,
1860 reg_b_value);
1861 else
1862 status = acpi_os_prepare_sleep(sleep_state,
1863 reg_a_value, reg_b_value);
1864 return status;
1865}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/slab.h>
17#include <linux/mm.h>
18#include <linux/highmem.h>
19#include <linux/lockdep.h>
20#include <linux/pci.h>
21#include <linux/interrupt.h>
22#include <linux/kmod.h>
23#include <linux/delay.h>
24#include <linux/workqueue.h>
25#include <linux/nmi.h>
26#include <linux/acpi.h>
27#include <linux/efi.h>
28#include <linux/ioport.h>
29#include <linux/list.h>
30#include <linux/jiffies.h>
31#include <linux/semaphore.h>
32#include <linux/security.h>
33
34#include <asm/io.h>
35#include <linux/uaccess.h>
36#include <linux/io-64-nonatomic-lo-hi.h>
37
38#include "acpica/accommon.h"
39#include "internal.h"
40
41/* Definitions for ACPI_DEBUG_PRINT() */
42#define _COMPONENT ACPI_OS_SERVICES
43ACPI_MODULE_NAME("osl");
44
45struct acpi_os_dpc {
46 acpi_osd_exec_callback function;
47 void *context;
48 struct work_struct work;
49};
50
51#ifdef ENABLE_DEBUGGER
52#include <linux/kdb.h>
53
54/* stuff for debugger support */
55int acpi_in_debugger;
56EXPORT_SYMBOL(acpi_in_debugger);
57#endif /*ENABLE_DEBUGGER */
58
59static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
60 u32 pm1b_ctrl);
61static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
62 u32 val_b);
63
64static acpi_osd_handler acpi_irq_handler;
65static void *acpi_irq_context;
66static struct workqueue_struct *kacpid_wq;
67static struct workqueue_struct *kacpi_notify_wq;
68static struct workqueue_struct *kacpi_hotplug_wq;
69static bool acpi_os_initialized;
70unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
71bool acpi_permanent_mmap = false;
72
73/*
74 * This list of permanent mappings is for memory that may be accessed from
75 * interrupt context, where we can't do the ioremap().
76 */
77struct acpi_ioremap {
78 struct list_head list;
79 void __iomem *virt;
80 acpi_physical_address phys;
81 acpi_size size;
82 union {
83 unsigned long refcount;
84 struct rcu_work rwork;
85 } track;
86};
87
88static LIST_HEAD(acpi_ioremaps);
89static DEFINE_MUTEX(acpi_ioremap_lock);
90#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
91
92static void __init acpi_request_region (struct acpi_generic_address *gas,
93 unsigned int length, char *desc)
94{
95 u64 addr;
96
97 /* Handle possible alignment issues */
98 memcpy(&addr, &gas->address, sizeof(addr));
99 if (!addr || !length)
100 return;
101
102 /* Resources are never freed */
103 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
104 request_region(addr, length, desc);
105 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
106 request_mem_region(addr, length, desc);
107}
108
109static int __init acpi_reserve_resources(void)
110{
111 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
112 "ACPI PM1a_EVT_BLK");
113
114 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1b_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
118 "ACPI PM1a_CNT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1b_CNT_BLK");
122
123 if (acpi_gbl_FADT.pm_timer_length == 4)
124 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
125
126 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
127 "ACPI PM2_CNT_BLK");
128
129 /* Length of GPE blocks must be a non-negative multiple of 2 */
130
131 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
132 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
133 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
134
135 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
136 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
137 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
138
139 return 0;
140}
141fs_initcall_sync(acpi_reserve_resources);
142
143void acpi_os_printf(const char *fmt, ...)
144{
145 va_list args;
146 va_start(args, fmt);
147 acpi_os_vprintf(fmt, args);
148 va_end(args);
149}
150EXPORT_SYMBOL(acpi_os_printf);
151
152void __printf(1, 0) acpi_os_vprintf(const char *fmt, va_list args)
153{
154 static char buffer[512];
155
156 vsprintf(buffer, fmt, args);
157
158#ifdef ENABLE_DEBUGGER
159 if (acpi_in_debugger) {
160 kdb_printf("%s", buffer);
161 } else {
162 if (printk_get_level(buffer))
163 printk("%s", buffer);
164 else
165 printk(KERN_CONT "%s", buffer);
166 }
167#else
168 if (acpi_debugger_write_log(buffer) < 0) {
169 if (printk_get_level(buffer))
170 printk("%s", buffer);
171 else
172 printk(KERN_CONT "%s", buffer);
173 }
174#endif
175}
176
177#ifdef CONFIG_KEXEC
178static unsigned long acpi_rsdp;
179static int __init setup_acpi_rsdp(char *arg)
180{
181 return kstrtoul(arg, 16, &acpi_rsdp);
182}
183early_param("acpi_rsdp", setup_acpi_rsdp);
184#endif
185
186acpi_physical_address __init acpi_os_get_root_pointer(void)
187{
188 acpi_physical_address pa;
189
190#ifdef CONFIG_KEXEC
191 /*
192 * We may have been provided with an RSDP on the command line,
193 * but if a malicious user has done so they may be pointing us
194 * at modified ACPI tables that could alter kernel behaviour -
195 * so, we check the lockdown status before making use of
196 * it. If we trust it then also stash it in an architecture
197 * specific location (if appropriate) so it can be carried
198 * over further kexec()s.
199 */
200 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
201 acpi_arch_set_root_pointer(acpi_rsdp);
202 return acpi_rsdp;
203 }
204#endif
205 pa = acpi_arch_get_root_pointer();
206 if (pa)
207 return pa;
208
209 if (efi_enabled(EFI_CONFIG_TABLES)) {
210 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi20;
212 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
213 return efi.acpi;
214 pr_err("System description tables not found\n");
215 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
216 acpi_find_root_pointer(&pa);
217 }
218
219 return pa;
220}
221
222/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
223static struct acpi_ioremap *
224acpi_map_lookup(acpi_physical_address phys, acpi_size size)
225{
226 struct acpi_ioremap *map;
227
228 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
229 if (map->phys <= phys &&
230 phys + size <= map->phys + map->size)
231 return map;
232
233 return NULL;
234}
235
236/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
237static void __iomem *
238acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
239{
240 struct acpi_ioremap *map;
241
242 map = acpi_map_lookup(phys, size);
243 if (map)
244 return map->virt + (phys - map->phys);
245
246 return NULL;
247}
248
249void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
250{
251 struct acpi_ioremap *map;
252 void __iomem *virt = NULL;
253
254 mutex_lock(&acpi_ioremap_lock);
255 map = acpi_map_lookup(phys, size);
256 if (map) {
257 virt = map->virt + (phys - map->phys);
258 map->track.refcount++;
259 }
260 mutex_unlock(&acpi_ioremap_lock);
261 return virt;
262}
263EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
264
265/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
266static struct acpi_ioremap *
267acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
268{
269 struct acpi_ioremap *map;
270
271 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
272 if (map->virt <= virt &&
273 virt + size <= map->virt + map->size)
274 return map;
275
276 return NULL;
277}
278
279#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280/* ioremap will take care of cache attributes */
281#define should_use_kmap(pfn) 0
282#else
283#define should_use_kmap(pfn) page_is_ram(pfn)
284#endif
285
286static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
287{
288 unsigned long pfn;
289
290 pfn = pg_off >> PAGE_SHIFT;
291 if (should_use_kmap(pfn)) {
292 if (pg_sz > PAGE_SIZE)
293 return NULL;
294 return (void __iomem __force *)kmap(pfn_to_page(pfn));
295 } else
296 return acpi_os_ioremap(pg_off, pg_sz);
297}
298
299static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
300{
301 unsigned long pfn;
302
303 pfn = pg_off >> PAGE_SHIFT;
304 if (should_use_kmap(pfn))
305 kunmap(pfn_to_page(pfn));
306 else
307 iounmap(vaddr);
308}
309
310/**
311 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
312 * @phys: Start of the physical address range to map.
313 * @size: Size of the physical address range to map.
314 *
315 * Look up the given physical address range in the list of existing ACPI memory
316 * mappings. If found, get a reference to it and return a pointer to it (its
317 * virtual address). If not found, map it, add it to that list and return a
318 * pointer to it.
319 *
320 * During early init (when acpi_permanent_mmap has not been set yet) this
321 * routine simply calls __acpi_map_table() to get the job done.
322 */
323void __iomem __ref
324*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
325{
326 struct acpi_ioremap *map;
327 void __iomem *virt;
328 acpi_physical_address pg_off;
329 acpi_size pg_sz;
330
331 if (phys > ULONG_MAX) {
332 pr_err("Cannot map memory that high: 0x%llx\n", phys);
333 return NULL;
334 }
335
336 if (!acpi_permanent_mmap)
337 return __acpi_map_table((unsigned long)phys, size);
338
339 mutex_lock(&acpi_ioremap_lock);
340 /* Check if there's a suitable mapping already. */
341 map = acpi_map_lookup(phys, size);
342 if (map) {
343 map->track.refcount++;
344 goto out;
345 }
346
347 map = kzalloc(sizeof(*map), GFP_KERNEL);
348 if (!map) {
349 mutex_unlock(&acpi_ioremap_lock);
350 return NULL;
351 }
352
353 pg_off = round_down(phys, PAGE_SIZE);
354 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
355 virt = acpi_map(phys, size);
356 if (!virt) {
357 mutex_unlock(&acpi_ioremap_lock);
358 kfree(map);
359 return NULL;
360 }
361
362 INIT_LIST_HEAD(&map->list);
363 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
364 map->phys = pg_off;
365 map->size = pg_sz;
366 map->track.refcount = 1;
367
368 list_add_tail_rcu(&map->list, &acpi_ioremaps);
369
370out:
371 mutex_unlock(&acpi_ioremap_lock);
372 return map->virt + (phys - map->phys);
373}
374EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
375
376void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
377{
378 return (void *)acpi_os_map_iomem(phys, size);
379}
380EXPORT_SYMBOL_GPL(acpi_os_map_memory);
381
382static void acpi_os_map_remove(struct work_struct *work)
383{
384 struct acpi_ioremap *map = container_of(to_rcu_work(work),
385 struct acpi_ioremap,
386 track.rwork);
387
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390}
391
392/* Must be called with mutex_lock(&acpi_ioremap_lock) */
393static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
394{
395 if (--map->track.refcount)
396 return;
397
398 list_del_rcu(&map->list);
399
400 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
401 queue_rcu_work(system_wq, &map->track.rwork);
402}
403
404/**
405 * acpi_os_unmap_iomem - Drop a memory mapping reference.
406 * @virt: Start of the address range to drop a reference to.
407 * @size: Size of the address range to drop a reference to.
408 *
409 * Look up the given virtual address range in the list of existing ACPI memory
410 * mappings, drop a reference to it and if there are no more active references
411 * to it, queue it up for later removal.
412 *
413 * During early init (when acpi_permanent_mmap has not been set yet) this
414 * routine simply calls __acpi_unmap_table() to get the job done. Since
415 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
416 * here.
417 */
418void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
419{
420 struct acpi_ioremap *map;
421
422 if (!acpi_permanent_mmap) {
423 __acpi_unmap_table(virt, size);
424 return;
425 }
426
427 mutex_lock(&acpi_ioremap_lock);
428
429 map = acpi_map_lookup_virt(virt, size);
430 if (!map) {
431 mutex_unlock(&acpi_ioremap_lock);
432 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
433 return;
434 }
435 acpi_os_drop_map_ref(map);
436
437 mutex_unlock(&acpi_ioremap_lock);
438}
439EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
440
441/**
442 * acpi_os_unmap_memory - Drop a memory mapping reference.
443 * @virt: Start of the address range to drop a reference to.
444 * @size: Size of the address range to drop a reference to.
445 */
446void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
447{
448 acpi_os_unmap_iomem((void __iomem *)virt, size);
449}
450EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
451
452void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
453{
454 u64 addr;
455
456 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
457 return NULL;
458
459 /* Handle possible alignment issues */
460 memcpy(&addr, &gas->address, sizeof(addr));
461 if (!addr || !gas->bit_width)
462 return NULL;
463
464 return acpi_os_map_iomem(addr, gas->bit_width / 8);
465}
466EXPORT_SYMBOL(acpi_os_map_generic_address);
467
468void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
469{
470 u64 addr;
471 struct acpi_ioremap *map;
472
473 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
474 return;
475
476 /* Handle possible alignment issues */
477 memcpy(&addr, &gas->address, sizeof(addr));
478 if (!addr || !gas->bit_width)
479 return;
480
481 mutex_lock(&acpi_ioremap_lock);
482
483 map = acpi_map_lookup(addr, gas->bit_width / 8);
484 if (!map) {
485 mutex_unlock(&acpi_ioremap_lock);
486 return;
487 }
488 acpi_os_drop_map_ref(map);
489
490 mutex_unlock(&acpi_ioremap_lock);
491}
492EXPORT_SYMBOL(acpi_os_unmap_generic_address);
493
494#ifdef ACPI_FUTURE_USAGE
495acpi_status
496acpi_os_get_physical_address(void *virt, acpi_physical_address *phys)
497{
498 if (!phys || !virt)
499 return AE_BAD_PARAMETER;
500
501 *phys = virt_to_phys(virt);
502
503 return AE_OK;
504}
505#endif
506
507#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
508static bool acpi_rev_override;
509
510int __init acpi_rev_override_setup(char *str)
511{
512 acpi_rev_override = true;
513 return 1;
514}
515__setup("acpi_rev_override", acpi_rev_override_setup);
516#else
517#define acpi_rev_override false
518#endif
519
520#define ACPI_MAX_OVERRIDE_LEN 100
521
522static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
523
524acpi_status
525acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
526 acpi_string *new_val)
527{
528 if (!init_val || !new_val)
529 return AE_BAD_PARAMETER;
530
531 *new_val = NULL;
532 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
533 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
534 *new_val = acpi_os_name;
535 }
536
537 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
538 pr_info("Overriding _REV return value to 5\n");
539 *new_val = (char *)5;
540 }
541
542 return AE_OK;
543}
544
545static irqreturn_t acpi_irq(int irq, void *dev_id)
546{
547 if ((*acpi_irq_handler)(acpi_irq_context)) {
548 acpi_irq_handled++;
549 return IRQ_HANDLED;
550 } else {
551 acpi_irq_not_handled++;
552 return IRQ_NONE;
553 }
554}
555
556acpi_status
557acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 void *context)
559{
560 unsigned int irq;
561
562 acpi_irq_stats_init();
563
564 /*
565 * ACPI interrupts different from the SCI in our copy of the FADT are
566 * not supported.
567 */
568 if (gsi != acpi_gbl_FADT.sci_interrupt)
569 return AE_BAD_PARAMETER;
570
571 if (acpi_irq_handler)
572 return AE_ALREADY_ACQUIRED;
573
574 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
576 return AE_OK;
577 }
578
579 acpi_irq_handler = handler;
580 acpi_irq_context = context;
581 if (request_threaded_irq(irq, NULL, acpi_irq, IRQF_SHARED | IRQF_ONESHOT,
582 "acpi", acpi_irq)) {
583 pr_err("SCI (IRQ%d) allocation failed\n", irq);
584 acpi_irq_handler = NULL;
585 return AE_NOT_ACQUIRED;
586 }
587 acpi_sci_irq = irq;
588
589 return AE_OK;
590}
591
592acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593{
594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 return AE_BAD_PARAMETER;
596
597 free_irq(acpi_sci_irq, acpi_irq);
598 acpi_irq_handler = NULL;
599 acpi_sci_irq = INVALID_ACPI_IRQ;
600
601 return AE_OK;
602}
603
604/*
605 * Running in interpreter thread context, safe to sleep
606 */
607
608void acpi_os_sleep(u64 ms)
609{
610 msleep(ms);
611}
612
613void acpi_os_stall(u32 us)
614{
615 while (us) {
616 u32 delay = 1000;
617
618 if (delay > us)
619 delay = us;
620 udelay(delay);
621 touch_nmi_watchdog();
622 us -= delay;
623 }
624}
625
626/*
627 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
628 * monotonically increasing timer with 100ns granularity. Do not use
629 * ktime_get() to implement this function because this function may get
630 * called after timekeeping has been suspended. Note: calling this function
631 * after timekeeping has been suspended may lead to unexpected results
632 * because when timekeeping is suspended the jiffies counter is not
633 * incremented. See also timekeeping_suspend().
634 */
635u64 acpi_os_get_timer(void)
636{
637 return (get_jiffies_64() - INITIAL_JIFFIES) *
638 (ACPI_100NSEC_PER_SEC / HZ);
639}
640
641acpi_status acpi_os_read_port(acpi_io_address port, u32 *value, u32 width)
642{
643 u32 dummy;
644
645 if (!IS_ENABLED(CONFIG_HAS_IOPORT)) {
646 /*
647 * set all-1 result as if reading from non-existing
648 * I/O port
649 */
650 *value = GENMASK(width, 0);
651 return AE_NOT_IMPLEMENTED;
652 }
653
654 if (value)
655 *value = 0;
656 else
657 value = &dummy;
658
659 if (width <= 8) {
660 *value = inb(port);
661 } else if (width <= 16) {
662 *value = inw(port);
663 } else if (width <= 32) {
664 *value = inl(port);
665 } else {
666 pr_debug("%s: Access width %d not supported\n", __func__, width);
667 return AE_BAD_PARAMETER;
668 }
669
670 return AE_OK;
671}
672
673EXPORT_SYMBOL(acpi_os_read_port);
674
675acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
676{
677 if (!IS_ENABLED(CONFIG_HAS_IOPORT))
678 return AE_NOT_IMPLEMENTED;
679
680 if (width <= 8) {
681 outb(value, port);
682 } else if (width <= 16) {
683 outw(value, port);
684 } else if (width <= 32) {
685 outl(value, port);
686 } else {
687 pr_debug("%s: Access width %d not supported\n", __func__, width);
688 return AE_BAD_PARAMETER;
689 }
690
691 return AE_OK;
692}
693
694EXPORT_SYMBOL(acpi_os_write_port);
695
696int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
697{
698
699 switch (width) {
700 case 8:
701 *(u8 *) value = readb(virt_addr);
702 break;
703 case 16:
704 *(u16 *) value = readw(virt_addr);
705 break;
706 case 32:
707 *(u32 *) value = readl(virt_addr);
708 break;
709 case 64:
710 *(u64 *) value = readq(virt_addr);
711 break;
712 default:
713 return -EINVAL;
714 }
715
716 return 0;
717}
718
719acpi_status
720acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
721{
722 void __iomem *virt_addr;
723 unsigned int size = width / 8;
724 bool unmap = false;
725 u64 dummy;
726 int error;
727
728 rcu_read_lock();
729 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
730 if (!virt_addr) {
731 rcu_read_unlock();
732 virt_addr = acpi_os_ioremap(phys_addr, size);
733 if (!virt_addr)
734 return AE_BAD_ADDRESS;
735 unmap = true;
736 }
737
738 if (!value)
739 value = &dummy;
740
741 error = acpi_os_read_iomem(virt_addr, value, width);
742 BUG_ON(error);
743
744 if (unmap)
745 iounmap(virt_addr);
746 else
747 rcu_read_unlock();
748
749 return AE_OK;
750}
751
752acpi_status
753acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
754{
755 void __iomem *virt_addr;
756 unsigned int size = width / 8;
757 bool unmap = false;
758
759 rcu_read_lock();
760 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
761 if (!virt_addr) {
762 rcu_read_unlock();
763 virt_addr = acpi_os_ioremap(phys_addr, size);
764 if (!virt_addr)
765 return AE_BAD_ADDRESS;
766 unmap = true;
767 }
768
769 switch (width) {
770 case 8:
771 writeb(value, virt_addr);
772 break;
773 case 16:
774 writew(value, virt_addr);
775 break;
776 case 32:
777 writel(value, virt_addr);
778 break;
779 case 64:
780 writeq(value, virt_addr);
781 break;
782 default:
783 BUG();
784 }
785
786 if (unmap)
787 iounmap(virt_addr);
788 else
789 rcu_read_unlock();
790
791 return AE_OK;
792}
793
794#ifdef CONFIG_PCI
795acpi_status
796acpi_os_read_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
797 u64 *value, u32 width)
798{
799 int result, size;
800 u32 value32;
801
802 if (!value)
803 return AE_BAD_PARAMETER;
804
805 switch (width) {
806 case 8:
807 size = 1;
808 break;
809 case 16:
810 size = 2;
811 break;
812 case 32:
813 size = 4;
814 break;
815 default:
816 return AE_ERROR;
817 }
818
819 result = raw_pci_read(pci_id->segment, pci_id->bus,
820 PCI_DEVFN(pci_id->device, pci_id->function),
821 reg, size, &value32);
822 *value = value32;
823
824 return (result ? AE_ERROR : AE_OK);
825}
826
827acpi_status
828acpi_os_write_pci_configuration(struct acpi_pci_id *pci_id, u32 reg,
829 u64 value, u32 width)
830{
831 int result, size;
832
833 switch (width) {
834 case 8:
835 size = 1;
836 break;
837 case 16:
838 size = 2;
839 break;
840 case 32:
841 size = 4;
842 break;
843 default:
844 return AE_ERROR;
845 }
846
847 result = raw_pci_write(pci_id->segment, pci_id->bus,
848 PCI_DEVFN(pci_id->device, pci_id->function),
849 reg, size, value);
850
851 return (result ? AE_ERROR : AE_OK);
852}
853#endif
854
855static void acpi_os_execute_deferred(struct work_struct *work)
856{
857 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
858
859 dpc->function(dpc->context);
860 kfree(dpc);
861}
862
863#ifdef CONFIG_ACPI_DEBUGGER
864static struct acpi_debugger acpi_debugger;
865static bool acpi_debugger_initialized;
866
867int acpi_register_debugger(struct module *owner,
868 const struct acpi_debugger_ops *ops)
869{
870 int ret = 0;
871
872 mutex_lock(&acpi_debugger.lock);
873 if (acpi_debugger.ops) {
874 ret = -EBUSY;
875 goto err_lock;
876 }
877
878 acpi_debugger.owner = owner;
879 acpi_debugger.ops = ops;
880
881err_lock:
882 mutex_unlock(&acpi_debugger.lock);
883 return ret;
884}
885EXPORT_SYMBOL(acpi_register_debugger);
886
887void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
888{
889 mutex_lock(&acpi_debugger.lock);
890 if (ops == acpi_debugger.ops) {
891 acpi_debugger.ops = NULL;
892 acpi_debugger.owner = NULL;
893 }
894 mutex_unlock(&acpi_debugger.lock);
895}
896EXPORT_SYMBOL(acpi_unregister_debugger);
897
898int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
899{
900 int ret;
901 int (*func)(acpi_osd_exec_callback, void *);
902 struct module *owner;
903
904 if (!acpi_debugger_initialized)
905 return -ENODEV;
906 mutex_lock(&acpi_debugger.lock);
907 if (!acpi_debugger.ops) {
908 ret = -ENODEV;
909 goto err_lock;
910 }
911 if (!try_module_get(acpi_debugger.owner)) {
912 ret = -ENODEV;
913 goto err_lock;
914 }
915 func = acpi_debugger.ops->create_thread;
916 owner = acpi_debugger.owner;
917 mutex_unlock(&acpi_debugger.lock);
918
919 ret = func(function, context);
920
921 mutex_lock(&acpi_debugger.lock);
922 module_put(owner);
923err_lock:
924 mutex_unlock(&acpi_debugger.lock);
925 return ret;
926}
927
928ssize_t acpi_debugger_write_log(const char *msg)
929{
930 ssize_t ret;
931 ssize_t (*func)(const char *);
932 struct module *owner;
933
934 if (!acpi_debugger_initialized)
935 return -ENODEV;
936 mutex_lock(&acpi_debugger.lock);
937 if (!acpi_debugger.ops) {
938 ret = -ENODEV;
939 goto err_lock;
940 }
941 if (!try_module_get(acpi_debugger.owner)) {
942 ret = -ENODEV;
943 goto err_lock;
944 }
945 func = acpi_debugger.ops->write_log;
946 owner = acpi_debugger.owner;
947 mutex_unlock(&acpi_debugger.lock);
948
949 ret = func(msg);
950
951 mutex_lock(&acpi_debugger.lock);
952 module_put(owner);
953err_lock:
954 mutex_unlock(&acpi_debugger.lock);
955 return ret;
956}
957
958ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
959{
960 ssize_t ret;
961 ssize_t (*func)(char *, size_t);
962 struct module *owner;
963
964 if (!acpi_debugger_initialized)
965 return -ENODEV;
966 mutex_lock(&acpi_debugger.lock);
967 if (!acpi_debugger.ops) {
968 ret = -ENODEV;
969 goto err_lock;
970 }
971 if (!try_module_get(acpi_debugger.owner)) {
972 ret = -ENODEV;
973 goto err_lock;
974 }
975 func = acpi_debugger.ops->read_cmd;
976 owner = acpi_debugger.owner;
977 mutex_unlock(&acpi_debugger.lock);
978
979 ret = func(buffer, buffer_length);
980
981 mutex_lock(&acpi_debugger.lock);
982 module_put(owner);
983err_lock:
984 mutex_unlock(&acpi_debugger.lock);
985 return ret;
986}
987
988int acpi_debugger_wait_command_ready(void)
989{
990 int ret;
991 int (*func)(bool, char *, size_t);
992 struct module *owner;
993
994 if (!acpi_debugger_initialized)
995 return -ENODEV;
996 mutex_lock(&acpi_debugger.lock);
997 if (!acpi_debugger.ops) {
998 ret = -ENODEV;
999 goto err_lock;
1000 }
1001 if (!try_module_get(acpi_debugger.owner)) {
1002 ret = -ENODEV;
1003 goto err_lock;
1004 }
1005 func = acpi_debugger.ops->wait_command_ready;
1006 owner = acpi_debugger.owner;
1007 mutex_unlock(&acpi_debugger.lock);
1008
1009 ret = func(acpi_gbl_method_executing,
1010 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1011
1012 mutex_lock(&acpi_debugger.lock);
1013 module_put(owner);
1014err_lock:
1015 mutex_unlock(&acpi_debugger.lock);
1016 return ret;
1017}
1018
1019int acpi_debugger_notify_command_complete(void)
1020{
1021 int ret;
1022 int (*func)(void);
1023 struct module *owner;
1024
1025 if (!acpi_debugger_initialized)
1026 return -ENODEV;
1027 mutex_lock(&acpi_debugger.lock);
1028 if (!acpi_debugger.ops) {
1029 ret = -ENODEV;
1030 goto err_lock;
1031 }
1032 if (!try_module_get(acpi_debugger.owner)) {
1033 ret = -ENODEV;
1034 goto err_lock;
1035 }
1036 func = acpi_debugger.ops->notify_command_complete;
1037 owner = acpi_debugger.owner;
1038 mutex_unlock(&acpi_debugger.lock);
1039
1040 ret = func();
1041
1042 mutex_lock(&acpi_debugger.lock);
1043 module_put(owner);
1044err_lock:
1045 mutex_unlock(&acpi_debugger.lock);
1046 return ret;
1047}
1048
1049int __init acpi_debugger_init(void)
1050{
1051 mutex_init(&acpi_debugger.lock);
1052 acpi_debugger_initialized = true;
1053 return 0;
1054}
1055#endif
1056
1057/*******************************************************************************
1058 *
1059 * FUNCTION: acpi_os_execute
1060 *
1061 * PARAMETERS: Type - Type of the callback
1062 * Function - Function to be executed
1063 * Context - Function parameters
1064 *
1065 * RETURN: Status
1066 *
1067 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1068 * immediately executes function on a separate thread.
1069 *
1070 ******************************************************************************/
1071
1072acpi_status acpi_os_execute(acpi_execute_type type,
1073 acpi_osd_exec_callback function, void *context)
1074{
1075 struct acpi_os_dpc *dpc;
1076 int ret;
1077
1078 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1079 "Scheduling function [%p(%p)] for deferred execution.\n",
1080 function, context));
1081
1082 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1083 ret = acpi_debugger_create_thread(function, context);
1084 if (ret) {
1085 pr_err("Kernel thread creation failed\n");
1086 return AE_ERROR;
1087 }
1088 return AE_OK;
1089 }
1090
1091 /*
1092 * Allocate/initialize DPC structure. Note that this memory will be
1093 * freed by the callee. The kernel handles the work_struct list in a
1094 * way that allows us to also free its memory inside the callee.
1095 * Because we may want to schedule several tasks with different
1096 * parameters we can't use the approach some kernel code uses of
1097 * having a static work_struct.
1098 */
1099
1100 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1101 if (!dpc)
1102 return AE_NO_MEMORY;
1103
1104 dpc->function = function;
1105 dpc->context = context;
1106 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107
1108 /*
1109 * To prevent lockdep from complaining unnecessarily, make sure that
1110 * there is a different static lockdep key for each workqueue by using
1111 * INIT_WORK() for each of them separately.
1112 */
1113 switch (type) {
1114 case OSL_NOTIFY_HANDLER:
1115 ret = queue_work(kacpi_notify_wq, &dpc->work);
1116 break;
1117 case OSL_GPE_HANDLER:
1118 /*
1119 * On some machines, a software-initiated SMI causes corruption
1120 * unless the SMI runs on CPU 0. An SMI can be initiated by
1121 * any AML, but typically it's done in GPE-related methods that
1122 * are run via workqueues, so we can avoid the known corruption
1123 * cases by always queueing on CPU 0.
1124 */
1125 ret = queue_work_on(0, kacpid_wq, &dpc->work);
1126 break;
1127 default:
1128 pr_err("Unsupported os_execute type %d.\n", type);
1129 goto err;
1130 }
1131 if (!ret) {
1132 pr_err("Unable to queue work\n");
1133 goto err;
1134 }
1135
1136 return AE_OK;
1137
1138err:
1139 kfree(dpc);
1140 return AE_ERROR;
1141}
1142EXPORT_SYMBOL(acpi_os_execute);
1143
1144void acpi_os_wait_events_complete(void)
1145{
1146 /*
1147 * Make sure the GPE handler or the fixed event handler is not used
1148 * on another CPU after removal.
1149 */
1150 if (acpi_sci_irq_valid())
1151 synchronize_hardirq(acpi_sci_irq);
1152 flush_workqueue(kacpid_wq);
1153 flush_workqueue(kacpi_notify_wq);
1154}
1155EXPORT_SYMBOL(acpi_os_wait_events_complete);
1156
1157struct acpi_hp_work {
1158 struct work_struct work;
1159 struct acpi_device *adev;
1160 u32 src;
1161};
1162
1163static void acpi_hotplug_work_fn(struct work_struct *work)
1164{
1165 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1166
1167 acpi_os_wait_events_complete();
1168 acpi_device_hotplug(hpw->adev, hpw->src);
1169 kfree(hpw);
1170}
1171
1172acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1173{
1174 struct acpi_hp_work *hpw;
1175
1176 acpi_handle_debug(adev->handle,
1177 "Scheduling hotplug event %u for deferred handling\n",
1178 src);
1179
1180 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1181 if (!hpw)
1182 return AE_NO_MEMORY;
1183
1184 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1185 hpw->adev = adev;
1186 hpw->src = src;
1187 /*
1188 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1189 * the hotplug code may call driver .remove() functions, which may
1190 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1191 * these workqueues.
1192 */
1193 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1194 kfree(hpw);
1195 return AE_ERROR;
1196 }
1197 return AE_OK;
1198}
1199
1200bool acpi_queue_hotplug_work(struct work_struct *work)
1201{
1202 return queue_work(kacpi_hotplug_wq, work);
1203}
1204
1205acpi_status
1206acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle *handle)
1207{
1208 struct semaphore *sem = NULL;
1209
1210 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1211 if (!sem)
1212 return AE_NO_MEMORY;
1213
1214 sema_init(sem, initial_units);
1215
1216 *handle = (acpi_handle *) sem;
1217
1218 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1219 *handle, initial_units));
1220
1221 return AE_OK;
1222}
1223
1224/*
1225 * TODO: A better way to delete semaphores? Linux doesn't have a
1226 * 'delete_semaphore()' function -- may result in an invalid
1227 * pointer dereference for non-synchronized consumers. Should
1228 * we at least check for blocked threads and signal/cancel them?
1229 */
1230
1231acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1232{
1233 struct semaphore *sem = (struct semaphore *)handle;
1234
1235 if (!sem)
1236 return AE_BAD_PARAMETER;
1237
1238 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1239
1240 BUG_ON(!list_empty(&sem->wait_list));
1241 kfree(sem);
1242 sem = NULL;
1243
1244 return AE_OK;
1245}
1246
1247/*
1248 * TODO: Support for units > 1?
1249 */
1250acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1251{
1252 acpi_status status = AE_OK;
1253 struct semaphore *sem = (struct semaphore *)handle;
1254 long jiffies;
1255 int ret = 0;
1256
1257 if (!acpi_os_initialized)
1258 return AE_OK;
1259
1260 if (!sem || (units < 1))
1261 return AE_BAD_PARAMETER;
1262
1263 if (units > 1)
1264 return AE_SUPPORT;
1265
1266 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1267 handle, units, timeout));
1268
1269 if (timeout == ACPI_WAIT_FOREVER)
1270 jiffies = MAX_SCHEDULE_TIMEOUT;
1271 else
1272 jiffies = msecs_to_jiffies(timeout);
1273
1274 ret = down_timeout(sem, jiffies);
1275 if (ret)
1276 status = AE_TIME;
1277
1278 if (ACPI_FAILURE(status)) {
1279 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1280 "Failed to acquire semaphore[%p|%d|%d], %s",
1281 handle, units, timeout,
1282 acpi_format_exception(status)));
1283 } else {
1284 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1285 "Acquired semaphore[%p|%d|%d]", handle,
1286 units, timeout));
1287 }
1288
1289 return status;
1290}
1291
1292/*
1293 * TODO: Support for units > 1?
1294 */
1295acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1296{
1297 struct semaphore *sem = (struct semaphore *)handle;
1298
1299 if (!acpi_os_initialized)
1300 return AE_OK;
1301
1302 if (!sem || (units < 1))
1303 return AE_BAD_PARAMETER;
1304
1305 if (units > 1)
1306 return AE_SUPPORT;
1307
1308 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1309 units));
1310
1311 up(sem);
1312
1313 return AE_OK;
1314}
1315
1316acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1317{
1318#ifdef ENABLE_DEBUGGER
1319 if (acpi_in_debugger) {
1320 u32 chars;
1321
1322 kdb_read(buffer, buffer_length);
1323
1324 /* remove the CR kdb includes */
1325 chars = strlen(buffer) - 1;
1326 buffer[chars] = '\0';
1327 }
1328#else
1329 int ret;
1330
1331 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1332 if (ret < 0)
1333 return AE_ERROR;
1334 if (bytes_read)
1335 *bytes_read = ret;
1336#endif
1337
1338 return AE_OK;
1339}
1340EXPORT_SYMBOL(acpi_os_get_line);
1341
1342acpi_status acpi_os_wait_command_ready(void)
1343{
1344 int ret;
1345
1346 ret = acpi_debugger_wait_command_ready();
1347 if (ret < 0)
1348 return AE_ERROR;
1349 return AE_OK;
1350}
1351
1352acpi_status acpi_os_notify_command_complete(void)
1353{
1354 int ret;
1355
1356 ret = acpi_debugger_notify_command_complete();
1357 if (ret < 0)
1358 return AE_ERROR;
1359 return AE_OK;
1360}
1361
1362acpi_status acpi_os_signal(u32 function, void *info)
1363{
1364 switch (function) {
1365 case ACPI_SIGNAL_FATAL:
1366 pr_err("Fatal opcode executed\n");
1367 break;
1368 case ACPI_SIGNAL_BREAKPOINT:
1369 /*
1370 * AML Breakpoint
1371 * ACPI spec. says to treat it as a NOP unless
1372 * you are debugging. So if/when we integrate
1373 * AML debugger into the kernel debugger its
1374 * hook will go here. But until then it is
1375 * not useful to print anything on breakpoints.
1376 */
1377 break;
1378 default:
1379 break;
1380 }
1381
1382 return AE_OK;
1383}
1384
1385static int __init acpi_os_name_setup(char *str)
1386{
1387 char *p = acpi_os_name;
1388 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1389
1390 if (!str || !*str)
1391 return 0;
1392
1393 for (; count-- && *str; str++) {
1394 if (isalnum(*str) || *str == ' ' || *str == ':')
1395 *p++ = *str;
1396 else if (*str == '\'' || *str == '"')
1397 continue;
1398 else
1399 break;
1400 }
1401 *p = 0;
1402
1403 return 1;
1404
1405}
1406
1407__setup("acpi_os_name=", acpi_os_name_setup);
1408
1409/*
1410 * Disable the auto-serialization of named objects creation methods.
1411 *
1412 * This feature is enabled by default. It marks the AML control methods
1413 * that contain the opcodes to create named objects as "Serialized".
1414 */
1415static int __init acpi_no_auto_serialize_setup(char *str)
1416{
1417 acpi_gbl_auto_serialize_methods = FALSE;
1418 pr_info("Auto-serialization disabled\n");
1419
1420 return 1;
1421}
1422
1423__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1424
1425/* Check of resource interference between native drivers and ACPI
1426 * OperationRegions (SystemIO and System Memory only).
1427 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1428 * in arbitrary AML code and can interfere with legacy drivers.
1429 * acpi_enforce_resources= can be set to:
1430 *
1431 * - strict (default) (2)
1432 * -> further driver trying to access the resources will not load
1433 * - lax (1)
1434 * -> further driver trying to access the resources will load, but you
1435 * get a system message that something might go wrong...
1436 *
1437 * - no (0)
1438 * -> ACPI Operation Region resources will not be registered
1439 *
1440 */
1441#define ENFORCE_RESOURCES_STRICT 2
1442#define ENFORCE_RESOURCES_LAX 1
1443#define ENFORCE_RESOURCES_NO 0
1444
1445static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446
1447static int __init acpi_enforce_resources_setup(char *str)
1448{
1449 if (str == NULL || *str == '\0')
1450 return 0;
1451
1452 if (!strcmp("strict", str))
1453 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1454 else if (!strcmp("lax", str))
1455 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1456 else if (!strcmp("no", str))
1457 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1458
1459 return 1;
1460}
1461
1462__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1463
1464/* Check for resource conflicts between ACPI OperationRegions and native
1465 * drivers */
1466int acpi_check_resource_conflict(const struct resource *res)
1467{
1468 acpi_adr_space_type space_id;
1469
1470 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471 return 0;
1472
1473 if (res->flags & IORESOURCE_IO)
1474 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1475 else if (res->flags & IORESOURCE_MEM)
1476 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1477 else
1478 return 0;
1479
1480 if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1481 return 0;
1482
1483 pr_info("Resource conflict; ACPI support missing from driver?\n");
1484
1485 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1486 return -EBUSY;
1487
1488 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1489 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1490
1491 return 0;
1492}
1493EXPORT_SYMBOL(acpi_check_resource_conflict);
1494
1495int acpi_check_region(resource_size_t start, resource_size_t n,
1496 const char *name)
1497{
1498 struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1499
1500 return acpi_check_resource_conflict(&res);
1501}
1502EXPORT_SYMBOL(acpi_check_region);
1503
1504/*
1505 * Let drivers know whether the resource checks are effective
1506 */
1507int acpi_resources_are_enforced(void)
1508{
1509 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1510}
1511EXPORT_SYMBOL(acpi_resources_are_enforced);
1512
1513/*
1514 * Deallocate the memory for a spinlock.
1515 */
1516void acpi_os_delete_lock(acpi_spinlock handle)
1517{
1518 ACPI_FREE(handle);
1519}
1520
1521/*
1522 * Acquire a spinlock.
1523 *
1524 * handle is a pointer to the spinlock_t.
1525 */
1526
1527acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1528 __acquires(lockp)
1529{
1530 spin_lock(lockp);
1531 return 0;
1532}
1533
1534/*
1535 * Release a spinlock. See above.
1536 */
1537
1538void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags not_used)
1539 __releases(lockp)
1540{
1541 spin_unlock(lockp);
1542}
1543
1544#ifndef ACPI_USE_LOCAL_CACHE
1545
1546/*******************************************************************************
1547 *
1548 * FUNCTION: acpi_os_create_cache
1549 *
1550 * PARAMETERS: name - Ascii name for the cache
1551 * size - Size of each cached object
1552 * depth - Maximum depth of the cache (in objects) <ignored>
1553 * cache - Where the new cache object is returned
1554 *
1555 * RETURN: status
1556 *
1557 * DESCRIPTION: Create a cache object
1558 *
1559 ******************************************************************************/
1560
1561acpi_status
1562acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t **cache)
1563{
1564 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1565 if (*cache == NULL)
1566 return AE_ERROR;
1567 else
1568 return AE_OK;
1569}
1570
1571/*******************************************************************************
1572 *
1573 * FUNCTION: acpi_os_purge_cache
1574 *
1575 * PARAMETERS: Cache - Handle to cache object
1576 *
1577 * RETURN: Status
1578 *
1579 * DESCRIPTION: Free all objects within the requested cache.
1580 *
1581 ******************************************************************************/
1582
1583acpi_status acpi_os_purge_cache(acpi_cache_t *cache)
1584{
1585 kmem_cache_shrink(cache);
1586 return AE_OK;
1587}
1588
1589/*******************************************************************************
1590 *
1591 * FUNCTION: acpi_os_delete_cache
1592 *
1593 * PARAMETERS: Cache - Handle to cache object
1594 *
1595 * RETURN: Status
1596 *
1597 * DESCRIPTION: Free all objects within the requested cache and delete the
1598 * cache object.
1599 *
1600 ******************************************************************************/
1601
1602acpi_status acpi_os_delete_cache(acpi_cache_t *cache)
1603{
1604 kmem_cache_destroy(cache);
1605 return AE_OK;
1606}
1607
1608/*******************************************************************************
1609 *
1610 * FUNCTION: acpi_os_release_object
1611 *
1612 * PARAMETERS: Cache - Handle to cache object
1613 * Object - The object to be released
1614 *
1615 * RETURN: None
1616 *
1617 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1618 * the object is deleted.
1619 *
1620 ******************************************************************************/
1621
1622acpi_status acpi_os_release_object(acpi_cache_t *cache, void *object)
1623{
1624 kmem_cache_free(cache, object);
1625 return AE_OK;
1626}
1627#endif
1628
1629static int __init acpi_no_static_ssdt_setup(char *s)
1630{
1631 acpi_gbl_disable_ssdt_table_install = TRUE;
1632 pr_info("Static SSDT installation disabled\n");
1633
1634 return 0;
1635}
1636
1637early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1638
1639static int __init acpi_disable_return_repair(char *s)
1640{
1641 pr_notice("Predefined validation mechanism disabled\n");
1642 acpi_gbl_disable_auto_repair = TRUE;
1643
1644 return 1;
1645}
1646
1647__setup("acpica_no_return_repair", acpi_disable_return_repair);
1648
1649acpi_status __init acpi_os_initialize(void)
1650{
1651 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1652 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1653
1654 acpi_gbl_xgpe0_block_logical_address =
1655 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1656 acpi_gbl_xgpe1_block_logical_address =
1657 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1658
1659 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1660 /*
1661 * Use acpi_os_map_generic_address to pre-map the reset
1662 * register if it's in system memory.
1663 */
1664 void *rv;
1665
1666 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1667 pr_debug("%s: Reset register mapping %s\n", __func__,
1668 rv ? "successful" : "failed");
1669 }
1670 acpi_os_initialized = true;
1671
1672 return AE_OK;
1673}
1674
1675acpi_status __init acpi_os_initialize1(void)
1676{
1677 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1678 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 0);
1679 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1680 BUG_ON(!kacpid_wq);
1681 BUG_ON(!kacpi_notify_wq);
1682 BUG_ON(!kacpi_hotplug_wq);
1683 acpi_osi_init();
1684 return AE_OK;
1685}
1686
1687acpi_status acpi_os_terminate(void)
1688{
1689 if (acpi_irq_handler) {
1690 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1691 acpi_irq_handler);
1692 }
1693
1694 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1695 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1696 acpi_gbl_xgpe0_block_logical_address = 0UL;
1697 acpi_gbl_xgpe1_block_logical_address = 0UL;
1698
1699 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1700 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1701
1702 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1703 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1704
1705 destroy_workqueue(kacpid_wq);
1706 destroy_workqueue(kacpi_notify_wq);
1707 destroy_workqueue(kacpi_hotplug_wq);
1708
1709 return AE_OK;
1710}
1711
1712acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1713 u32 pm1b_control)
1714{
1715 int rc = 0;
1716
1717 if (__acpi_os_prepare_sleep)
1718 rc = __acpi_os_prepare_sleep(sleep_state,
1719 pm1a_control, pm1b_control);
1720 if (rc < 0)
1721 return AE_ERROR;
1722 else if (rc > 0)
1723 return AE_CTRL_TERMINATE;
1724
1725 return AE_OK;
1726}
1727
1728void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1729 u32 pm1a_ctrl, u32 pm1b_ctrl))
1730{
1731 __acpi_os_prepare_sleep = func;
1732}
1733
1734#if (ACPI_REDUCED_HARDWARE)
1735acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1736 u32 val_b)
1737{
1738 int rc = 0;
1739
1740 if (__acpi_os_prepare_extended_sleep)
1741 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1742 val_a, val_b);
1743 if (rc < 0)
1744 return AE_ERROR;
1745 else if (rc > 0)
1746 return AE_CTRL_TERMINATE;
1747
1748 return AE_OK;
1749}
1750#else
1751acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1752 u32 val_b)
1753{
1754 return AE_OK;
1755}
1756#endif
1757
1758void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1759 u32 val_a, u32 val_b))
1760{
1761 __acpi_os_prepare_extended_sleep = func;
1762}
1763
1764acpi_status acpi_os_enter_sleep(u8 sleep_state,
1765 u32 reg_a_value, u32 reg_b_value)
1766{
1767 acpi_status status;
1768
1769 if (acpi_gbl_reduced_hardware)
1770 status = acpi_os_prepare_extended_sleep(sleep_state,
1771 reg_a_value,
1772 reg_b_value);
1773 else
1774 status = acpi_os_prepare_sleep(sleep_state,
1775 reg_a_value, reg_b_value);
1776 return status;
1777}