Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/highmem.h>
17#include <linux/lockdep.h>
18#include <linux/pci.h>
19#include <linux/interrupt.h>
20#include <linux/kmod.h>
21#include <linux/delay.h>
22#include <linux/workqueue.h>
23#include <linux/nmi.h>
24#include <linux/acpi.h>
25#include <linux/efi.h>
26#include <linux/ioport.h>
27#include <linux/list.h>
28#include <linux/jiffies.h>
29#include <linux/semaphore.h>
30#include <linux/security.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34#include <linux/io-64-nonatomic-lo-hi.h>
35
36#include "acpica/accommon.h"
37#include "acpica/acnamesp.h"
38#include "internal.h"
39
40#define _COMPONENT ACPI_OS_SERVICES
41ACPI_MODULE_NAME("osl");
42
43struct acpi_os_dpc {
44 acpi_osd_exec_callback function;
45 void *context;
46 struct work_struct work;
47};
48
49#ifdef ENABLE_DEBUGGER
50#include <linux/kdb.h>
51
52/* stuff for debugger support */
53int acpi_in_debugger;
54EXPORT_SYMBOL(acpi_in_debugger);
55#endif /*ENABLE_DEBUGGER */
56
57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 u32 pm1b_ctrl);
59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 u32 val_b);
61
62static acpi_osd_handler acpi_irq_handler;
63static void *acpi_irq_context;
64static struct workqueue_struct *kacpid_wq;
65static struct workqueue_struct *kacpi_notify_wq;
66static struct workqueue_struct *kacpi_hotplug_wq;
67static bool acpi_os_initialized;
68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69bool acpi_permanent_mmap = false;
70
71/*
72 * This list of permanent mappings is for memory that may be accessed from
73 * interrupt context, where we can't do the ioremap().
74 */
75struct acpi_ioremap {
76 struct list_head list;
77 void __iomem *virt;
78 acpi_physical_address phys;
79 acpi_size size;
80 union {
81 unsigned long refcount;
82 struct rcu_work rwork;
83 } track;
84};
85
86static LIST_HEAD(acpi_ioremaps);
87static DEFINE_MUTEX(acpi_ioremap_lock);
88#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
89
90static void __init acpi_request_region (struct acpi_generic_address *gas,
91 unsigned int length, char *desc)
92{
93 u64 addr;
94
95 /* Handle possible alignment issues */
96 memcpy(&addr, &gas->address, sizeof(addr));
97 if (!addr || !length)
98 return;
99
100 /* Resources are never freed */
101 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
102 request_region(addr, length, desc);
103 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
104 request_mem_region(addr, length, desc);
105}
106
107static int __init acpi_reserve_resources(void)
108{
109 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
110 "ACPI PM1a_EVT_BLK");
111
112 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
113 "ACPI PM1b_EVT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
116 "ACPI PM1a_CNT_BLK");
117
118 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
119 "ACPI PM1b_CNT_BLK");
120
121 if (acpi_gbl_FADT.pm_timer_length == 4)
122 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
123
124 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
125 "ACPI PM2_CNT_BLK");
126
127 /* Length of GPE blocks must be a non-negative multiple of 2 */
128
129 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
130 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
131 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
132
133 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
134 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
135 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
136
137 return 0;
138}
139fs_initcall_sync(acpi_reserve_resources);
140
141void acpi_os_printf(const char *fmt, ...)
142{
143 va_list args;
144 va_start(args, fmt);
145 acpi_os_vprintf(fmt, args);
146 va_end(args);
147}
148EXPORT_SYMBOL(acpi_os_printf);
149
150void acpi_os_vprintf(const char *fmt, va_list args)
151{
152 static char buffer[512];
153
154 vsprintf(buffer, fmt, args);
155
156#ifdef ENABLE_DEBUGGER
157 if (acpi_in_debugger) {
158 kdb_printf("%s", buffer);
159 } else {
160 if (printk_get_level(buffer))
161 printk("%s", buffer);
162 else
163 printk(KERN_CONT "%s", buffer);
164 }
165#else
166 if (acpi_debugger_write_log(buffer) < 0) {
167 if (printk_get_level(buffer))
168 printk("%s", buffer);
169 else
170 printk(KERN_CONT "%s", buffer);
171 }
172#endif
173}
174
175#ifdef CONFIG_KEXEC
176static unsigned long acpi_rsdp;
177static int __init setup_acpi_rsdp(char *arg)
178{
179 return kstrtoul(arg, 16, &acpi_rsdp);
180}
181early_param("acpi_rsdp", setup_acpi_rsdp);
182#endif
183
184acpi_physical_address __init acpi_os_get_root_pointer(void)
185{
186 acpi_physical_address pa;
187
188#ifdef CONFIG_KEXEC
189 /*
190 * We may have been provided with an RSDP on the command line,
191 * but if a malicious user has done so they may be pointing us
192 * at modified ACPI tables that could alter kernel behaviour -
193 * so, we check the lockdown status before making use of
194 * it. If we trust it then also stash it in an architecture
195 * specific location (if appropriate) so it can be carried
196 * over further kexec()s.
197 */
198 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
199 acpi_arch_set_root_pointer(acpi_rsdp);
200 return acpi_rsdp;
201 }
202#endif
203 pa = acpi_arch_get_root_pointer();
204 if (pa)
205 return pa;
206
207 if (efi_enabled(EFI_CONFIG_TABLES)) {
208 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
209 return efi.acpi20;
210 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
211 return efi.acpi;
212 pr_err(PREFIX "System description tables not found\n");
213 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
214 acpi_find_root_pointer(&pa);
215 }
216
217 return pa;
218}
219
220/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
221static struct acpi_ioremap *
222acpi_map_lookup(acpi_physical_address phys, acpi_size size)
223{
224 struct acpi_ioremap *map;
225
226 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
227 if (map->phys <= phys &&
228 phys + size <= map->phys + map->size)
229 return map;
230
231 return NULL;
232}
233
234/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
235static void __iomem *
236acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
237{
238 struct acpi_ioremap *map;
239
240 map = acpi_map_lookup(phys, size);
241 if (map)
242 return map->virt + (phys - map->phys);
243
244 return NULL;
245}
246
247void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
248{
249 struct acpi_ioremap *map;
250 void __iomem *virt = NULL;
251
252 mutex_lock(&acpi_ioremap_lock);
253 map = acpi_map_lookup(phys, size);
254 if (map) {
255 virt = map->virt + (phys - map->phys);
256 map->track.refcount++;
257 }
258 mutex_unlock(&acpi_ioremap_lock);
259 return virt;
260}
261EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
262
263/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
264static struct acpi_ioremap *
265acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
266{
267 struct acpi_ioremap *map;
268
269 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
270 if (map->virt <= virt &&
271 virt + size <= map->virt + map->size)
272 return map;
273
274 return NULL;
275}
276
277#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
278/* ioremap will take care of cache attributes */
279#define should_use_kmap(pfn) 0
280#else
281#define should_use_kmap(pfn) page_is_ram(pfn)
282#endif
283
284static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
285{
286 unsigned long pfn;
287
288 pfn = pg_off >> PAGE_SHIFT;
289 if (should_use_kmap(pfn)) {
290 if (pg_sz > PAGE_SIZE)
291 return NULL;
292 return (void __iomem __force *)kmap(pfn_to_page(pfn));
293 } else
294 return acpi_os_ioremap(pg_off, pg_sz);
295}
296
297static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
298{
299 unsigned long pfn;
300
301 pfn = pg_off >> PAGE_SHIFT;
302 if (should_use_kmap(pfn))
303 kunmap(pfn_to_page(pfn));
304 else
305 iounmap(vaddr);
306}
307
308/**
309 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
310 * @phys: Start of the physical address range to map.
311 * @size: Size of the physical address range to map.
312 *
313 * Look up the given physical address range in the list of existing ACPI memory
314 * mappings. If found, get a reference to it and return a pointer to it (its
315 * virtual address). If not found, map it, add it to that list and return a
316 * pointer to it.
317 *
318 * During early init (when acpi_permanent_mmap has not been set yet) this
319 * routine simply calls __acpi_map_table() to get the job done.
320 */
321void __iomem __ref
322*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
323{
324 struct acpi_ioremap *map;
325 void __iomem *virt;
326 acpi_physical_address pg_off;
327 acpi_size pg_sz;
328
329 if (phys > ULONG_MAX) {
330 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
331 return NULL;
332 }
333
334 if (!acpi_permanent_mmap)
335 return __acpi_map_table((unsigned long)phys, size);
336
337 mutex_lock(&acpi_ioremap_lock);
338 /* Check if there's a suitable mapping already. */
339 map = acpi_map_lookup(phys, size);
340 if (map) {
341 map->track.refcount++;
342 goto out;
343 }
344
345 map = kzalloc(sizeof(*map), GFP_KERNEL);
346 if (!map) {
347 mutex_unlock(&acpi_ioremap_lock);
348 return NULL;
349 }
350
351 pg_off = round_down(phys, PAGE_SIZE);
352 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
353 virt = acpi_map(phys, size);
354 if (!virt) {
355 mutex_unlock(&acpi_ioremap_lock);
356 kfree(map);
357 return NULL;
358 }
359
360 INIT_LIST_HEAD(&map->list);
361 map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
362 map->phys = pg_off;
363 map->size = pg_sz;
364 map->track.refcount = 1;
365
366 list_add_tail_rcu(&map->list, &acpi_ioremaps);
367
368out:
369 mutex_unlock(&acpi_ioremap_lock);
370 return map->virt + (phys - map->phys);
371}
372EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
373
374void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
375{
376 return (void *)acpi_os_map_iomem(phys, size);
377}
378EXPORT_SYMBOL_GPL(acpi_os_map_memory);
379
380static void acpi_os_map_remove(struct work_struct *work)
381{
382 struct acpi_ioremap *map = container_of(to_rcu_work(work),
383 struct acpi_ioremap,
384 track.rwork);
385
386 acpi_unmap(map->phys, map->virt);
387 kfree(map);
388}
389
390/* Must be called with mutex_lock(&acpi_ioremap_lock) */
391static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
392{
393 if (--map->track.refcount)
394 return;
395
396 list_del_rcu(&map->list);
397
398 INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
399 queue_rcu_work(system_wq, &map->track.rwork);
400}
401
402/**
403 * acpi_os_unmap_iomem - Drop a memory mapping reference.
404 * @virt: Start of the address range to drop a reference to.
405 * @size: Size of the address range to drop a reference to.
406 *
407 * Look up the given virtual address range in the list of existing ACPI memory
408 * mappings, drop a reference to it and if there are no more active references
409 * to it, queue it up for later removal.
410 *
411 * During early init (when acpi_permanent_mmap has not been set yet) this
412 * routine simply calls __acpi_unmap_table() to get the job done. Since
413 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
414 * here.
415 */
416void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
417{
418 struct acpi_ioremap *map;
419
420 if (!acpi_permanent_mmap) {
421 __acpi_unmap_table(virt, size);
422 return;
423 }
424
425 mutex_lock(&acpi_ioremap_lock);
426
427 map = acpi_map_lookup_virt(virt, size);
428 if (!map) {
429 mutex_unlock(&acpi_ioremap_lock);
430 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
431 return;
432 }
433 acpi_os_drop_map_ref(map);
434
435 mutex_unlock(&acpi_ioremap_lock);
436}
437EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
438
439/**
440 * acpi_os_unmap_memory - Drop a memory mapping reference.
441 * @virt: Start of the address range to drop a reference to.
442 * @size: Size of the address range to drop a reference to.
443 */
444void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
445{
446 acpi_os_unmap_iomem((void __iomem *)virt, size);
447}
448EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449
450int acpi_os_map_generic_address(struct acpi_generic_address *gas)
451{
452 u64 addr;
453 void __iomem *virt;
454
455 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
456 return 0;
457
458 /* Handle possible alignment issues */
459 memcpy(&addr, &gas->address, sizeof(addr));
460 if (!addr || !gas->bit_width)
461 return -EINVAL;
462
463 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
464 if (!virt)
465 return -EIO;
466
467 return 0;
468}
469EXPORT_SYMBOL(acpi_os_map_generic_address);
470
471void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
472{
473 u64 addr;
474 struct acpi_ioremap *map;
475
476 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
477 return;
478
479 /* Handle possible alignment issues */
480 memcpy(&addr, &gas->address, sizeof(addr));
481 if (!addr || !gas->bit_width)
482 return;
483
484 mutex_lock(&acpi_ioremap_lock);
485
486 map = acpi_map_lookup(addr, gas->bit_width / 8);
487 if (!map) {
488 mutex_unlock(&acpi_ioremap_lock);
489 return;
490 }
491 acpi_os_drop_map_ref(map);
492
493 mutex_unlock(&acpi_ioremap_lock);
494}
495EXPORT_SYMBOL(acpi_os_unmap_generic_address);
496
497#ifdef ACPI_FUTURE_USAGE
498acpi_status
499acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
500{
501 if (!phys || !virt)
502 return AE_BAD_PARAMETER;
503
504 *phys = virt_to_phys(virt);
505
506 return AE_OK;
507}
508#endif
509
510#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
511static bool acpi_rev_override;
512
513int __init acpi_rev_override_setup(char *str)
514{
515 acpi_rev_override = true;
516 return 1;
517}
518__setup("acpi_rev_override", acpi_rev_override_setup);
519#else
520#define acpi_rev_override false
521#endif
522
523#define ACPI_MAX_OVERRIDE_LEN 100
524
525static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
526
527acpi_status
528acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
529 acpi_string *new_val)
530{
531 if (!init_val || !new_val)
532 return AE_BAD_PARAMETER;
533
534 *new_val = NULL;
535 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
536 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
537 acpi_os_name);
538 *new_val = acpi_os_name;
539 }
540
541 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
542 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
543 *new_val = (char *)5;
544 }
545
546 return AE_OK;
547}
548
549static irqreturn_t acpi_irq(int irq, void *dev_id)
550{
551 u32 handled;
552
553 handled = (*acpi_irq_handler) (acpi_irq_context);
554
555 if (handled) {
556 acpi_irq_handled++;
557 return IRQ_HANDLED;
558 } else {
559 acpi_irq_not_handled++;
560 return IRQ_NONE;
561 }
562}
563
564acpi_status
565acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
566 void *context)
567{
568 unsigned int irq;
569
570 acpi_irq_stats_init();
571
572 /*
573 * ACPI interrupts different from the SCI in our copy of the FADT are
574 * not supported.
575 */
576 if (gsi != acpi_gbl_FADT.sci_interrupt)
577 return AE_BAD_PARAMETER;
578
579 if (acpi_irq_handler)
580 return AE_ALREADY_ACQUIRED;
581
582 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
583 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
584 gsi);
585 return AE_OK;
586 }
587
588 acpi_irq_handler = handler;
589 acpi_irq_context = context;
590 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
591 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
592 acpi_irq_handler = NULL;
593 return AE_NOT_ACQUIRED;
594 }
595 acpi_sci_irq = irq;
596
597 return AE_OK;
598}
599
600acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
601{
602 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
603 return AE_BAD_PARAMETER;
604
605 free_irq(acpi_sci_irq, acpi_irq);
606 acpi_irq_handler = NULL;
607 acpi_sci_irq = INVALID_ACPI_IRQ;
608
609 return AE_OK;
610}
611
612/*
613 * Running in interpreter thread context, safe to sleep
614 */
615
616void acpi_os_sleep(u64 ms)
617{
618 msleep(ms);
619}
620
621void acpi_os_stall(u32 us)
622{
623 while (us) {
624 u32 delay = 1000;
625
626 if (delay > us)
627 delay = us;
628 udelay(delay);
629 touch_nmi_watchdog();
630 us -= delay;
631 }
632}
633
634/*
635 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
636 * monotonically increasing timer with 100ns granularity. Do not use
637 * ktime_get() to implement this function because this function may get
638 * called after timekeeping has been suspended. Note: calling this function
639 * after timekeeping has been suspended may lead to unexpected results
640 * because when timekeeping is suspended the jiffies counter is not
641 * incremented. See also timekeeping_suspend().
642 */
643u64 acpi_os_get_timer(void)
644{
645 return (get_jiffies_64() - INITIAL_JIFFIES) *
646 (ACPI_100NSEC_PER_SEC / HZ);
647}
648
649acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
650{
651 u32 dummy;
652
653 if (!value)
654 value = &dummy;
655
656 *value = 0;
657 if (width <= 8) {
658 *(u8 *) value = inb(port);
659 } else if (width <= 16) {
660 *(u16 *) value = inw(port);
661 } else if (width <= 32) {
662 *(u32 *) value = inl(port);
663 } else {
664 BUG();
665 }
666
667 return AE_OK;
668}
669
670EXPORT_SYMBOL(acpi_os_read_port);
671
672acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
673{
674 if (width <= 8) {
675 outb(value, port);
676 } else if (width <= 16) {
677 outw(value, port);
678 } else if (width <= 32) {
679 outl(value, port);
680 } else {
681 BUG();
682 }
683
684 return AE_OK;
685}
686
687EXPORT_SYMBOL(acpi_os_write_port);
688
689int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
690{
691
692 switch (width) {
693 case 8:
694 *(u8 *) value = readb(virt_addr);
695 break;
696 case 16:
697 *(u16 *) value = readw(virt_addr);
698 break;
699 case 32:
700 *(u32 *) value = readl(virt_addr);
701 break;
702 case 64:
703 *(u64 *) value = readq(virt_addr);
704 break;
705 default:
706 return -EINVAL;
707 }
708
709 return 0;
710}
711
712acpi_status
713acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
714{
715 void __iomem *virt_addr;
716 unsigned int size = width / 8;
717 bool unmap = false;
718 u64 dummy;
719 int error;
720
721 rcu_read_lock();
722 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
723 if (!virt_addr) {
724 rcu_read_unlock();
725 virt_addr = acpi_os_ioremap(phys_addr, size);
726 if (!virt_addr)
727 return AE_BAD_ADDRESS;
728 unmap = true;
729 }
730
731 if (!value)
732 value = &dummy;
733
734 error = acpi_os_read_iomem(virt_addr, value, width);
735 BUG_ON(error);
736
737 if (unmap)
738 iounmap(virt_addr);
739 else
740 rcu_read_unlock();
741
742 return AE_OK;
743}
744
745acpi_status
746acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
747{
748 void __iomem *virt_addr;
749 unsigned int size = width / 8;
750 bool unmap = false;
751
752 rcu_read_lock();
753 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
754 if (!virt_addr) {
755 rcu_read_unlock();
756 virt_addr = acpi_os_ioremap(phys_addr, size);
757 if (!virt_addr)
758 return AE_BAD_ADDRESS;
759 unmap = true;
760 }
761
762 switch (width) {
763 case 8:
764 writeb(value, virt_addr);
765 break;
766 case 16:
767 writew(value, virt_addr);
768 break;
769 case 32:
770 writel(value, virt_addr);
771 break;
772 case 64:
773 writeq(value, virt_addr);
774 break;
775 default:
776 BUG();
777 }
778
779 if (unmap)
780 iounmap(virt_addr);
781 else
782 rcu_read_unlock();
783
784 return AE_OK;
785}
786
787#ifdef CONFIG_PCI
788acpi_status
789acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
790 u64 *value, u32 width)
791{
792 int result, size;
793 u32 value32;
794
795 if (!value)
796 return AE_BAD_PARAMETER;
797
798 switch (width) {
799 case 8:
800 size = 1;
801 break;
802 case 16:
803 size = 2;
804 break;
805 case 32:
806 size = 4;
807 break;
808 default:
809 return AE_ERROR;
810 }
811
812 result = raw_pci_read(pci_id->segment, pci_id->bus,
813 PCI_DEVFN(pci_id->device, pci_id->function),
814 reg, size, &value32);
815 *value = value32;
816
817 return (result ? AE_ERROR : AE_OK);
818}
819
820acpi_status
821acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
822 u64 value, u32 width)
823{
824 int result, size;
825
826 switch (width) {
827 case 8:
828 size = 1;
829 break;
830 case 16:
831 size = 2;
832 break;
833 case 32:
834 size = 4;
835 break;
836 default:
837 return AE_ERROR;
838 }
839
840 result = raw_pci_write(pci_id->segment, pci_id->bus,
841 PCI_DEVFN(pci_id->device, pci_id->function),
842 reg, size, value);
843
844 return (result ? AE_ERROR : AE_OK);
845}
846#endif
847
848static void acpi_os_execute_deferred(struct work_struct *work)
849{
850 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
851
852 dpc->function(dpc->context);
853 kfree(dpc);
854}
855
856#ifdef CONFIG_ACPI_DEBUGGER
857static struct acpi_debugger acpi_debugger;
858static bool acpi_debugger_initialized;
859
860int acpi_register_debugger(struct module *owner,
861 const struct acpi_debugger_ops *ops)
862{
863 int ret = 0;
864
865 mutex_lock(&acpi_debugger.lock);
866 if (acpi_debugger.ops) {
867 ret = -EBUSY;
868 goto err_lock;
869 }
870
871 acpi_debugger.owner = owner;
872 acpi_debugger.ops = ops;
873
874err_lock:
875 mutex_unlock(&acpi_debugger.lock);
876 return ret;
877}
878EXPORT_SYMBOL(acpi_register_debugger);
879
880void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
881{
882 mutex_lock(&acpi_debugger.lock);
883 if (ops == acpi_debugger.ops) {
884 acpi_debugger.ops = NULL;
885 acpi_debugger.owner = NULL;
886 }
887 mutex_unlock(&acpi_debugger.lock);
888}
889EXPORT_SYMBOL(acpi_unregister_debugger);
890
891int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
892{
893 int ret;
894 int (*func)(acpi_osd_exec_callback, void *);
895 struct module *owner;
896
897 if (!acpi_debugger_initialized)
898 return -ENODEV;
899 mutex_lock(&acpi_debugger.lock);
900 if (!acpi_debugger.ops) {
901 ret = -ENODEV;
902 goto err_lock;
903 }
904 if (!try_module_get(acpi_debugger.owner)) {
905 ret = -ENODEV;
906 goto err_lock;
907 }
908 func = acpi_debugger.ops->create_thread;
909 owner = acpi_debugger.owner;
910 mutex_unlock(&acpi_debugger.lock);
911
912 ret = func(function, context);
913
914 mutex_lock(&acpi_debugger.lock);
915 module_put(owner);
916err_lock:
917 mutex_unlock(&acpi_debugger.lock);
918 return ret;
919}
920
921ssize_t acpi_debugger_write_log(const char *msg)
922{
923 ssize_t ret;
924 ssize_t (*func)(const char *);
925 struct module *owner;
926
927 if (!acpi_debugger_initialized)
928 return -ENODEV;
929 mutex_lock(&acpi_debugger.lock);
930 if (!acpi_debugger.ops) {
931 ret = -ENODEV;
932 goto err_lock;
933 }
934 if (!try_module_get(acpi_debugger.owner)) {
935 ret = -ENODEV;
936 goto err_lock;
937 }
938 func = acpi_debugger.ops->write_log;
939 owner = acpi_debugger.owner;
940 mutex_unlock(&acpi_debugger.lock);
941
942 ret = func(msg);
943
944 mutex_lock(&acpi_debugger.lock);
945 module_put(owner);
946err_lock:
947 mutex_unlock(&acpi_debugger.lock);
948 return ret;
949}
950
951ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
952{
953 ssize_t ret;
954 ssize_t (*func)(char *, size_t);
955 struct module *owner;
956
957 if (!acpi_debugger_initialized)
958 return -ENODEV;
959 mutex_lock(&acpi_debugger.lock);
960 if (!acpi_debugger.ops) {
961 ret = -ENODEV;
962 goto err_lock;
963 }
964 if (!try_module_get(acpi_debugger.owner)) {
965 ret = -ENODEV;
966 goto err_lock;
967 }
968 func = acpi_debugger.ops->read_cmd;
969 owner = acpi_debugger.owner;
970 mutex_unlock(&acpi_debugger.lock);
971
972 ret = func(buffer, buffer_length);
973
974 mutex_lock(&acpi_debugger.lock);
975 module_put(owner);
976err_lock:
977 mutex_unlock(&acpi_debugger.lock);
978 return ret;
979}
980
981int acpi_debugger_wait_command_ready(void)
982{
983 int ret;
984 int (*func)(bool, char *, size_t);
985 struct module *owner;
986
987 if (!acpi_debugger_initialized)
988 return -ENODEV;
989 mutex_lock(&acpi_debugger.lock);
990 if (!acpi_debugger.ops) {
991 ret = -ENODEV;
992 goto err_lock;
993 }
994 if (!try_module_get(acpi_debugger.owner)) {
995 ret = -ENODEV;
996 goto err_lock;
997 }
998 func = acpi_debugger.ops->wait_command_ready;
999 owner = acpi_debugger.owner;
1000 mutex_unlock(&acpi_debugger.lock);
1001
1002 ret = func(acpi_gbl_method_executing,
1003 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1004
1005 mutex_lock(&acpi_debugger.lock);
1006 module_put(owner);
1007err_lock:
1008 mutex_unlock(&acpi_debugger.lock);
1009 return ret;
1010}
1011
1012int acpi_debugger_notify_command_complete(void)
1013{
1014 int ret;
1015 int (*func)(void);
1016 struct module *owner;
1017
1018 if (!acpi_debugger_initialized)
1019 return -ENODEV;
1020 mutex_lock(&acpi_debugger.lock);
1021 if (!acpi_debugger.ops) {
1022 ret = -ENODEV;
1023 goto err_lock;
1024 }
1025 if (!try_module_get(acpi_debugger.owner)) {
1026 ret = -ENODEV;
1027 goto err_lock;
1028 }
1029 func = acpi_debugger.ops->notify_command_complete;
1030 owner = acpi_debugger.owner;
1031 mutex_unlock(&acpi_debugger.lock);
1032
1033 ret = func();
1034
1035 mutex_lock(&acpi_debugger.lock);
1036 module_put(owner);
1037err_lock:
1038 mutex_unlock(&acpi_debugger.lock);
1039 return ret;
1040}
1041
1042int __init acpi_debugger_init(void)
1043{
1044 mutex_init(&acpi_debugger.lock);
1045 acpi_debugger_initialized = true;
1046 return 0;
1047}
1048#endif
1049
1050/*******************************************************************************
1051 *
1052 * FUNCTION: acpi_os_execute
1053 *
1054 * PARAMETERS: Type - Type of the callback
1055 * Function - Function to be executed
1056 * Context - Function parameters
1057 *
1058 * RETURN: Status
1059 *
1060 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1061 * immediately executes function on a separate thread.
1062 *
1063 ******************************************************************************/
1064
1065acpi_status acpi_os_execute(acpi_execute_type type,
1066 acpi_osd_exec_callback function, void *context)
1067{
1068 acpi_status status = AE_OK;
1069 struct acpi_os_dpc *dpc;
1070 struct workqueue_struct *queue;
1071 int ret;
1072 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1073 "Scheduling function [%p(%p)] for deferred execution.\n",
1074 function, context));
1075
1076 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1077 ret = acpi_debugger_create_thread(function, context);
1078 if (ret) {
1079 pr_err("Call to kthread_create() failed.\n");
1080 status = AE_ERROR;
1081 }
1082 goto out_thread;
1083 }
1084
1085 /*
1086 * Allocate/initialize DPC structure. Note that this memory will be
1087 * freed by the callee. The kernel handles the work_struct list in a
1088 * way that allows us to also free its memory inside the callee.
1089 * Because we may want to schedule several tasks with different
1090 * parameters we can't use the approach some kernel code uses of
1091 * having a static work_struct.
1092 */
1093
1094 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1095 if (!dpc)
1096 return AE_NO_MEMORY;
1097
1098 dpc->function = function;
1099 dpc->context = context;
1100
1101 /*
1102 * To prevent lockdep from complaining unnecessarily, make sure that
1103 * there is a different static lockdep key for each workqueue by using
1104 * INIT_WORK() for each of them separately.
1105 */
1106 if (type == OSL_NOTIFY_HANDLER) {
1107 queue = kacpi_notify_wq;
1108 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1109 } else if (type == OSL_GPE_HANDLER) {
1110 queue = kacpid_wq;
1111 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1112 } else {
1113 pr_err("Unsupported os_execute type %d.\n", type);
1114 status = AE_ERROR;
1115 }
1116
1117 if (ACPI_FAILURE(status))
1118 goto err_workqueue;
1119
1120 /*
1121 * On some machines, a software-initiated SMI causes corruption unless
1122 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1123 * typically it's done in GPE-related methods that are run via
1124 * workqueues, so we can avoid the known corruption cases by always
1125 * queueing on CPU 0.
1126 */
1127 ret = queue_work_on(0, queue, &dpc->work);
1128 if (!ret) {
1129 printk(KERN_ERR PREFIX
1130 "Call to queue_work() failed.\n");
1131 status = AE_ERROR;
1132 }
1133err_workqueue:
1134 if (ACPI_FAILURE(status))
1135 kfree(dpc);
1136out_thread:
1137 return status;
1138}
1139EXPORT_SYMBOL(acpi_os_execute);
1140
1141void acpi_os_wait_events_complete(void)
1142{
1143 /*
1144 * Make sure the GPE handler or the fixed event handler is not used
1145 * on another CPU after removal.
1146 */
1147 if (acpi_sci_irq_valid())
1148 synchronize_hardirq(acpi_sci_irq);
1149 flush_workqueue(kacpid_wq);
1150 flush_workqueue(kacpi_notify_wq);
1151}
1152EXPORT_SYMBOL(acpi_os_wait_events_complete);
1153
1154struct acpi_hp_work {
1155 struct work_struct work;
1156 struct acpi_device *adev;
1157 u32 src;
1158};
1159
1160static void acpi_hotplug_work_fn(struct work_struct *work)
1161{
1162 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1163
1164 acpi_os_wait_events_complete();
1165 acpi_device_hotplug(hpw->adev, hpw->src);
1166 kfree(hpw);
1167}
1168
1169acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1170{
1171 struct acpi_hp_work *hpw;
1172
1173 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1174 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1175 adev, src));
1176
1177 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1178 if (!hpw)
1179 return AE_NO_MEMORY;
1180
1181 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1182 hpw->adev = adev;
1183 hpw->src = src;
1184 /*
1185 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1186 * the hotplug code may call driver .remove() functions, which may
1187 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1188 * these workqueues.
1189 */
1190 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1191 kfree(hpw);
1192 return AE_ERROR;
1193 }
1194 return AE_OK;
1195}
1196
1197bool acpi_queue_hotplug_work(struct work_struct *work)
1198{
1199 return queue_work(kacpi_hotplug_wq, work);
1200}
1201
1202acpi_status
1203acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1204{
1205 struct semaphore *sem = NULL;
1206
1207 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1208 if (!sem)
1209 return AE_NO_MEMORY;
1210
1211 sema_init(sem, initial_units);
1212
1213 *handle = (acpi_handle *) sem;
1214
1215 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1216 *handle, initial_units));
1217
1218 return AE_OK;
1219}
1220
1221/*
1222 * TODO: A better way to delete semaphores? Linux doesn't have a
1223 * 'delete_semaphore()' function -- may result in an invalid
1224 * pointer dereference for non-synchronized consumers. Should
1225 * we at least check for blocked threads and signal/cancel them?
1226 */
1227
1228acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1229{
1230 struct semaphore *sem = (struct semaphore *)handle;
1231
1232 if (!sem)
1233 return AE_BAD_PARAMETER;
1234
1235 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1236
1237 BUG_ON(!list_empty(&sem->wait_list));
1238 kfree(sem);
1239 sem = NULL;
1240
1241 return AE_OK;
1242}
1243
1244/*
1245 * TODO: Support for units > 1?
1246 */
1247acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1248{
1249 acpi_status status = AE_OK;
1250 struct semaphore *sem = (struct semaphore *)handle;
1251 long jiffies;
1252 int ret = 0;
1253
1254 if (!acpi_os_initialized)
1255 return AE_OK;
1256
1257 if (!sem || (units < 1))
1258 return AE_BAD_PARAMETER;
1259
1260 if (units > 1)
1261 return AE_SUPPORT;
1262
1263 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1264 handle, units, timeout));
1265
1266 if (timeout == ACPI_WAIT_FOREVER)
1267 jiffies = MAX_SCHEDULE_TIMEOUT;
1268 else
1269 jiffies = msecs_to_jiffies(timeout);
1270
1271 ret = down_timeout(sem, jiffies);
1272 if (ret)
1273 status = AE_TIME;
1274
1275 if (ACPI_FAILURE(status)) {
1276 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277 "Failed to acquire semaphore[%p|%d|%d], %s",
1278 handle, units, timeout,
1279 acpi_format_exception(status)));
1280 } else {
1281 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1282 "Acquired semaphore[%p|%d|%d]", handle,
1283 units, timeout));
1284 }
1285
1286 return status;
1287}
1288
1289/*
1290 * TODO: Support for units > 1?
1291 */
1292acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1293{
1294 struct semaphore *sem = (struct semaphore *)handle;
1295
1296 if (!acpi_os_initialized)
1297 return AE_OK;
1298
1299 if (!sem || (units < 1))
1300 return AE_BAD_PARAMETER;
1301
1302 if (units > 1)
1303 return AE_SUPPORT;
1304
1305 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1306 units));
1307
1308 up(sem);
1309
1310 return AE_OK;
1311}
1312
1313acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1314{
1315#ifdef ENABLE_DEBUGGER
1316 if (acpi_in_debugger) {
1317 u32 chars;
1318
1319 kdb_read(buffer, buffer_length);
1320
1321 /* remove the CR kdb includes */
1322 chars = strlen(buffer) - 1;
1323 buffer[chars] = '\0';
1324 }
1325#else
1326 int ret;
1327
1328 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1329 if (ret < 0)
1330 return AE_ERROR;
1331 if (bytes_read)
1332 *bytes_read = ret;
1333#endif
1334
1335 return AE_OK;
1336}
1337EXPORT_SYMBOL(acpi_os_get_line);
1338
1339acpi_status acpi_os_wait_command_ready(void)
1340{
1341 int ret;
1342
1343 ret = acpi_debugger_wait_command_ready();
1344 if (ret < 0)
1345 return AE_ERROR;
1346 return AE_OK;
1347}
1348
1349acpi_status acpi_os_notify_command_complete(void)
1350{
1351 int ret;
1352
1353 ret = acpi_debugger_notify_command_complete();
1354 if (ret < 0)
1355 return AE_ERROR;
1356 return AE_OK;
1357}
1358
1359acpi_status acpi_os_signal(u32 function, void *info)
1360{
1361 switch (function) {
1362 case ACPI_SIGNAL_FATAL:
1363 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1364 break;
1365 case ACPI_SIGNAL_BREAKPOINT:
1366 /*
1367 * AML Breakpoint
1368 * ACPI spec. says to treat it as a NOP unless
1369 * you are debugging. So if/when we integrate
1370 * AML debugger into the kernel debugger its
1371 * hook will go here. But until then it is
1372 * not useful to print anything on breakpoints.
1373 */
1374 break;
1375 default:
1376 break;
1377 }
1378
1379 return AE_OK;
1380}
1381
1382static int __init acpi_os_name_setup(char *str)
1383{
1384 char *p = acpi_os_name;
1385 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1386
1387 if (!str || !*str)
1388 return 0;
1389
1390 for (; count-- && *str; str++) {
1391 if (isalnum(*str) || *str == ' ' || *str == ':')
1392 *p++ = *str;
1393 else if (*str == '\'' || *str == '"')
1394 continue;
1395 else
1396 break;
1397 }
1398 *p = 0;
1399
1400 return 1;
1401
1402}
1403
1404__setup("acpi_os_name=", acpi_os_name_setup);
1405
1406/*
1407 * Disable the auto-serialization of named objects creation methods.
1408 *
1409 * This feature is enabled by default. It marks the AML control methods
1410 * that contain the opcodes to create named objects as "Serialized".
1411 */
1412static int __init acpi_no_auto_serialize_setup(char *str)
1413{
1414 acpi_gbl_auto_serialize_methods = FALSE;
1415 pr_info("ACPI: auto-serialization disabled\n");
1416
1417 return 1;
1418}
1419
1420__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1421
1422/* Check of resource interference between native drivers and ACPI
1423 * OperationRegions (SystemIO and System Memory only).
1424 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1425 * in arbitrary AML code and can interfere with legacy drivers.
1426 * acpi_enforce_resources= can be set to:
1427 *
1428 * - strict (default) (2)
1429 * -> further driver trying to access the resources will not load
1430 * - lax (1)
1431 * -> further driver trying to access the resources will load, but you
1432 * get a system message that something might go wrong...
1433 *
1434 * - no (0)
1435 * -> ACPI Operation Region resources will not be registered
1436 *
1437 */
1438#define ENFORCE_RESOURCES_STRICT 2
1439#define ENFORCE_RESOURCES_LAX 1
1440#define ENFORCE_RESOURCES_NO 0
1441
1442static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1443
1444static int __init acpi_enforce_resources_setup(char *str)
1445{
1446 if (str == NULL || *str == '\0')
1447 return 0;
1448
1449 if (!strcmp("strict", str))
1450 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1451 else if (!strcmp("lax", str))
1452 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1453 else if (!strcmp("no", str))
1454 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1455
1456 return 1;
1457}
1458
1459__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1460
1461/* Check for resource conflicts between ACPI OperationRegions and native
1462 * drivers */
1463int acpi_check_resource_conflict(const struct resource *res)
1464{
1465 acpi_adr_space_type space_id;
1466 acpi_size length;
1467 u8 warn = 0;
1468 int clash = 0;
1469
1470 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1471 return 0;
1472 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1473 return 0;
1474
1475 if (res->flags & IORESOURCE_IO)
1476 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1477 else
1478 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1479
1480 length = resource_size(res);
1481 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1482 warn = 1;
1483 clash = acpi_check_address_range(space_id, res->start, length, warn);
1484
1485 if (clash) {
1486 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1487 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1488 printk(KERN_NOTICE "ACPI: This conflict may"
1489 " cause random problems and system"
1490 " instability\n");
1491 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1492 " for this device, you should use it instead of"
1493 " the native driver\n");
1494 }
1495 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1496 return -EBUSY;
1497 }
1498 return 0;
1499}
1500EXPORT_SYMBOL(acpi_check_resource_conflict);
1501
1502int acpi_check_region(resource_size_t start, resource_size_t n,
1503 const char *name)
1504{
1505 struct resource res = {
1506 .start = start,
1507 .end = start + n - 1,
1508 .name = name,
1509 .flags = IORESOURCE_IO,
1510 };
1511
1512 return acpi_check_resource_conflict(&res);
1513}
1514EXPORT_SYMBOL(acpi_check_region);
1515
1516static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1517 void *_res, void **return_value)
1518{
1519 struct acpi_mem_space_context **mem_ctx;
1520 union acpi_operand_object *handler_obj;
1521 union acpi_operand_object *region_obj2;
1522 union acpi_operand_object *region_obj;
1523 struct resource *res = _res;
1524 acpi_status status;
1525
1526 region_obj = acpi_ns_get_attached_object(handle);
1527 if (!region_obj)
1528 return AE_OK;
1529
1530 handler_obj = region_obj->region.handler;
1531 if (!handler_obj)
1532 return AE_OK;
1533
1534 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1535 return AE_OK;
1536
1537 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1538 return AE_OK;
1539
1540 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1541 if (!region_obj2)
1542 return AE_OK;
1543
1544 mem_ctx = (void *)®ion_obj2->extra.region_context;
1545
1546 if (!(mem_ctx[0]->address >= res->start &&
1547 mem_ctx[0]->address < res->end))
1548 return AE_OK;
1549
1550 status = handler_obj->address_space.setup(region_obj,
1551 ACPI_REGION_DEACTIVATE,
1552 NULL, (void **)mem_ctx);
1553 if (ACPI_SUCCESS(status))
1554 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1555
1556 return status;
1557}
1558
1559/**
1560 * acpi_release_memory - Release any mappings done to a memory region
1561 * @handle: Handle to namespace node
1562 * @res: Memory resource
1563 * @level: A level that terminates the search
1564 *
1565 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1566 * overlap with @res and that have already been activated (mapped).
1567 *
1568 * This is a helper that allows drivers to place special requirements on memory
1569 * region that may overlap with operation regions, primarily allowing them to
1570 * safely map the region as non-cached memory.
1571 *
1572 * The unmapped Operation Regions will be automatically remapped next time they
1573 * are called, so the drivers do not need to do anything else.
1574 */
1575acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1576 u32 level)
1577{
1578 acpi_status status;
1579
1580 if (!(res->flags & IORESOURCE_MEM))
1581 return AE_TYPE;
1582
1583 status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1584 acpi_deactivate_mem_region, NULL,
1585 res, NULL);
1586 if (ACPI_FAILURE(status))
1587 return status;
1588
1589 /*
1590 * Wait for all of the mappings queued up for removal by
1591 * acpi_deactivate_mem_region() to actually go away.
1592 */
1593 synchronize_rcu();
1594 rcu_barrier();
1595 flush_scheduled_work();
1596
1597 return AE_OK;
1598}
1599EXPORT_SYMBOL_GPL(acpi_release_memory);
1600
1601/*
1602 * Let drivers know whether the resource checks are effective
1603 */
1604int acpi_resources_are_enforced(void)
1605{
1606 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1607}
1608EXPORT_SYMBOL(acpi_resources_are_enforced);
1609
1610/*
1611 * Deallocate the memory for a spinlock.
1612 */
1613void acpi_os_delete_lock(acpi_spinlock handle)
1614{
1615 ACPI_FREE(handle);
1616}
1617
1618/*
1619 * Acquire a spinlock.
1620 *
1621 * handle is a pointer to the spinlock_t.
1622 */
1623
1624acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1625 __acquires(lockp)
1626{
1627 acpi_cpu_flags flags;
1628 spin_lock_irqsave(lockp, flags);
1629 return flags;
1630}
1631
1632/*
1633 * Release a spinlock. See above.
1634 */
1635
1636void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1637 __releases(lockp)
1638{
1639 spin_unlock_irqrestore(lockp, flags);
1640}
1641
1642#ifndef ACPI_USE_LOCAL_CACHE
1643
1644/*******************************************************************************
1645 *
1646 * FUNCTION: acpi_os_create_cache
1647 *
1648 * PARAMETERS: name - Ascii name for the cache
1649 * size - Size of each cached object
1650 * depth - Maximum depth of the cache (in objects) <ignored>
1651 * cache - Where the new cache object is returned
1652 *
1653 * RETURN: status
1654 *
1655 * DESCRIPTION: Create a cache object
1656 *
1657 ******************************************************************************/
1658
1659acpi_status
1660acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1661{
1662 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1663 if (*cache == NULL)
1664 return AE_ERROR;
1665 else
1666 return AE_OK;
1667}
1668
1669/*******************************************************************************
1670 *
1671 * FUNCTION: acpi_os_purge_cache
1672 *
1673 * PARAMETERS: Cache - Handle to cache object
1674 *
1675 * RETURN: Status
1676 *
1677 * DESCRIPTION: Free all objects within the requested cache.
1678 *
1679 ******************************************************************************/
1680
1681acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1682{
1683 kmem_cache_shrink(cache);
1684 return (AE_OK);
1685}
1686
1687/*******************************************************************************
1688 *
1689 * FUNCTION: acpi_os_delete_cache
1690 *
1691 * PARAMETERS: Cache - Handle to cache object
1692 *
1693 * RETURN: Status
1694 *
1695 * DESCRIPTION: Free all objects within the requested cache and delete the
1696 * cache object.
1697 *
1698 ******************************************************************************/
1699
1700acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1701{
1702 kmem_cache_destroy(cache);
1703 return (AE_OK);
1704}
1705
1706/*******************************************************************************
1707 *
1708 * FUNCTION: acpi_os_release_object
1709 *
1710 * PARAMETERS: Cache - Handle to cache object
1711 * Object - The object to be released
1712 *
1713 * RETURN: None
1714 *
1715 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1716 * the object is deleted.
1717 *
1718 ******************************************************************************/
1719
1720acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1721{
1722 kmem_cache_free(cache, object);
1723 return (AE_OK);
1724}
1725#endif
1726
1727static int __init acpi_no_static_ssdt_setup(char *s)
1728{
1729 acpi_gbl_disable_ssdt_table_install = TRUE;
1730 pr_info("ACPI: static SSDT installation disabled\n");
1731
1732 return 0;
1733}
1734
1735early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1736
1737static int __init acpi_disable_return_repair(char *s)
1738{
1739 printk(KERN_NOTICE PREFIX
1740 "ACPI: Predefined validation mechanism disabled\n");
1741 acpi_gbl_disable_auto_repair = TRUE;
1742
1743 return 1;
1744}
1745
1746__setup("acpica_no_return_repair", acpi_disable_return_repair);
1747
1748acpi_status __init acpi_os_initialize(void)
1749{
1750 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1751 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1752 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1753 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1754 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1755 /*
1756 * Use acpi_os_map_generic_address to pre-map the reset
1757 * register if it's in system memory.
1758 */
1759 int rv;
1760
1761 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1762 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1763 }
1764 acpi_os_initialized = true;
1765
1766 return AE_OK;
1767}
1768
1769acpi_status __init acpi_os_initialize1(void)
1770{
1771 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1772 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1773 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1774 BUG_ON(!kacpid_wq);
1775 BUG_ON(!kacpi_notify_wq);
1776 BUG_ON(!kacpi_hotplug_wq);
1777 acpi_osi_init();
1778 return AE_OK;
1779}
1780
1781acpi_status acpi_os_terminate(void)
1782{
1783 if (acpi_irq_handler) {
1784 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1785 acpi_irq_handler);
1786 }
1787
1788 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1789 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1790 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1791 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1792 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1793 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1794
1795 destroy_workqueue(kacpid_wq);
1796 destroy_workqueue(kacpi_notify_wq);
1797 destroy_workqueue(kacpi_hotplug_wq);
1798
1799 return AE_OK;
1800}
1801
1802acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1803 u32 pm1b_control)
1804{
1805 int rc = 0;
1806 if (__acpi_os_prepare_sleep)
1807 rc = __acpi_os_prepare_sleep(sleep_state,
1808 pm1a_control, pm1b_control);
1809 if (rc < 0)
1810 return AE_ERROR;
1811 else if (rc > 0)
1812 return AE_CTRL_TERMINATE;
1813
1814 return AE_OK;
1815}
1816
1817void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1818 u32 pm1a_ctrl, u32 pm1b_ctrl))
1819{
1820 __acpi_os_prepare_sleep = func;
1821}
1822
1823#if (ACPI_REDUCED_HARDWARE)
1824acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1825 u32 val_b)
1826{
1827 int rc = 0;
1828 if (__acpi_os_prepare_extended_sleep)
1829 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1830 val_a, val_b);
1831 if (rc < 0)
1832 return AE_ERROR;
1833 else if (rc > 0)
1834 return AE_CTRL_TERMINATE;
1835
1836 return AE_OK;
1837}
1838#else
1839acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1840 u32 val_b)
1841{
1842 return AE_OK;
1843}
1844#endif
1845
1846void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1847 u32 val_a, u32 val_b))
1848{
1849 __acpi_os_prepare_extended_sleep = func;
1850}
1851
1852acpi_status acpi_os_enter_sleep(u8 sleep_state,
1853 u32 reg_a_value, u32 reg_b_value)
1854{
1855 acpi_status status;
1856
1857 if (acpi_gbl_reduced_hardware)
1858 status = acpi_os_prepare_extended_sleep(sleep_state,
1859 reg_a_value,
1860 reg_b_value);
1861 else
1862 status = acpi_os_prepare_sleep(sleep_state,
1863 reg_a_value, reg_b_value);
1864 return status;
1865}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4 *
5 * Copyright (C) 2000 Andrew Henroid
6 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8 * Copyright (c) 2008 Intel Corporation
9 * Author: Matthew Wilcox <willy@linux.intel.com>
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/mm.h>
16#include <linux/highmem.h>
17#include <linux/lockdep.h>
18#include <linux/pci.h>
19#include <linux/interrupt.h>
20#include <linux/kmod.h>
21#include <linux/delay.h>
22#include <linux/workqueue.h>
23#include <linux/nmi.h>
24#include <linux/acpi.h>
25#include <linux/efi.h>
26#include <linux/ioport.h>
27#include <linux/list.h>
28#include <linux/jiffies.h>
29#include <linux/semaphore.h>
30#include <linux/security.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34#include <linux/io-64-nonatomic-lo-hi.h>
35
36#include "acpica/accommon.h"
37#include "acpica/acnamesp.h"
38#include "internal.h"
39
40#define _COMPONENT ACPI_OS_SERVICES
41ACPI_MODULE_NAME("osl");
42
43struct acpi_os_dpc {
44 acpi_osd_exec_callback function;
45 void *context;
46 struct work_struct work;
47};
48
49#ifdef ENABLE_DEBUGGER
50#include <linux/kdb.h>
51
52/* stuff for debugger support */
53int acpi_in_debugger;
54EXPORT_SYMBOL(acpi_in_debugger);
55#endif /*ENABLE_DEBUGGER */
56
57static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 u32 pm1b_ctrl);
59static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 u32 val_b);
61
62static acpi_osd_handler acpi_irq_handler;
63static void *acpi_irq_context;
64static struct workqueue_struct *kacpid_wq;
65static struct workqueue_struct *kacpi_notify_wq;
66static struct workqueue_struct *kacpi_hotplug_wq;
67static bool acpi_os_initialized;
68unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69bool acpi_permanent_mmap = false;
70
71/*
72 * This list of permanent mappings is for memory that may be accessed from
73 * interrupt context, where we can't do the ioremap().
74 */
75struct acpi_ioremap {
76 struct list_head list;
77 void __iomem *virt;
78 acpi_physical_address phys;
79 acpi_size size;
80 unsigned long refcount;
81};
82
83static LIST_HEAD(acpi_ioremaps);
84static DEFINE_MUTEX(acpi_ioremap_lock);
85#define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
86
87static void __init acpi_request_region (struct acpi_generic_address *gas,
88 unsigned int length, char *desc)
89{
90 u64 addr;
91
92 /* Handle possible alignment issues */
93 memcpy(&addr, &gas->address, sizeof(addr));
94 if (!addr || !length)
95 return;
96
97 /* Resources are never freed */
98 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
99 request_region(addr, length, desc);
100 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
101 request_mem_region(addr, length, desc);
102}
103
104static int __init acpi_reserve_resources(void)
105{
106 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
107 "ACPI PM1a_EVT_BLK");
108
109 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
110 "ACPI PM1b_EVT_BLK");
111
112 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
113 "ACPI PM1a_CNT_BLK");
114
115 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
116 "ACPI PM1b_CNT_BLK");
117
118 if (acpi_gbl_FADT.pm_timer_length == 4)
119 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
120
121 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
122 "ACPI PM2_CNT_BLK");
123
124 /* Length of GPE blocks must be a non-negative multiple of 2 */
125
126 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
127 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
128 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
129
130 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
131 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
132 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
133
134 return 0;
135}
136fs_initcall_sync(acpi_reserve_resources);
137
138void acpi_os_printf(const char *fmt, ...)
139{
140 va_list args;
141 va_start(args, fmt);
142 acpi_os_vprintf(fmt, args);
143 va_end(args);
144}
145EXPORT_SYMBOL(acpi_os_printf);
146
147void acpi_os_vprintf(const char *fmt, va_list args)
148{
149 static char buffer[512];
150
151 vsprintf(buffer, fmt, args);
152
153#ifdef ENABLE_DEBUGGER
154 if (acpi_in_debugger) {
155 kdb_printf("%s", buffer);
156 } else {
157 if (printk_get_level(buffer))
158 printk("%s", buffer);
159 else
160 printk(KERN_CONT "%s", buffer);
161 }
162#else
163 if (acpi_debugger_write_log(buffer) < 0) {
164 if (printk_get_level(buffer))
165 printk("%s", buffer);
166 else
167 printk(KERN_CONT "%s", buffer);
168 }
169#endif
170}
171
172#ifdef CONFIG_KEXEC
173static unsigned long acpi_rsdp;
174static int __init setup_acpi_rsdp(char *arg)
175{
176 return kstrtoul(arg, 16, &acpi_rsdp);
177}
178early_param("acpi_rsdp", setup_acpi_rsdp);
179#endif
180
181acpi_physical_address __init acpi_os_get_root_pointer(void)
182{
183 acpi_physical_address pa;
184
185#ifdef CONFIG_KEXEC
186 /*
187 * We may have been provided with an RSDP on the command line,
188 * but if a malicious user has done so they may be pointing us
189 * at modified ACPI tables that could alter kernel behaviour -
190 * so, we check the lockdown status before making use of
191 * it. If we trust it then also stash it in an architecture
192 * specific location (if appropriate) so it can be carried
193 * over further kexec()s.
194 */
195 if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
196 acpi_arch_set_root_pointer(acpi_rsdp);
197 return acpi_rsdp;
198 }
199#endif
200 pa = acpi_arch_get_root_pointer();
201 if (pa)
202 return pa;
203
204 if (efi_enabled(EFI_CONFIG_TABLES)) {
205 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 return efi.acpi20;
207 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 return efi.acpi;
209 pr_err(PREFIX "System description tables not found\n");
210 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 acpi_find_root_pointer(&pa);
212 }
213
214 return pa;
215}
216
217/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218static struct acpi_ioremap *
219acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220{
221 struct acpi_ioremap *map;
222
223 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
224 if (map->phys <= phys &&
225 phys + size <= map->phys + map->size)
226 return map;
227
228 return NULL;
229}
230
231/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232static void __iomem *
233acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234{
235 struct acpi_ioremap *map;
236
237 map = acpi_map_lookup(phys, size);
238 if (map)
239 return map->virt + (phys - map->phys);
240
241 return NULL;
242}
243
244void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245{
246 struct acpi_ioremap *map;
247 void __iomem *virt = NULL;
248
249 mutex_lock(&acpi_ioremap_lock);
250 map = acpi_map_lookup(phys, size);
251 if (map) {
252 virt = map->virt + (phys - map->phys);
253 map->refcount++;
254 }
255 mutex_unlock(&acpi_ioremap_lock);
256 return virt;
257}
258EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260/* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261static struct acpi_ioremap *
262acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263{
264 struct acpi_ioremap *map;
265
266 list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
267 if (map->virt <= virt &&
268 virt + size <= map->virt + map->size)
269 return map;
270
271 return NULL;
272}
273
274#if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275/* ioremap will take care of cache attributes */
276#define should_use_kmap(pfn) 0
277#else
278#define should_use_kmap(pfn) page_is_ram(pfn)
279#endif
280
281static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282{
283 unsigned long pfn;
284
285 pfn = pg_off >> PAGE_SHIFT;
286 if (should_use_kmap(pfn)) {
287 if (pg_sz > PAGE_SIZE)
288 return NULL;
289 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 } else
291 return acpi_os_ioremap(pg_off, pg_sz);
292}
293
294static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295{
296 unsigned long pfn;
297
298 pfn = pg_off >> PAGE_SHIFT;
299 if (should_use_kmap(pfn))
300 kunmap(pfn_to_page(pfn));
301 else
302 iounmap(vaddr);
303}
304
305/**
306 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307 * @phys: Start of the physical address range to map.
308 * @size: Size of the physical address range to map.
309 *
310 * Look up the given physical address range in the list of existing ACPI memory
311 * mappings. If found, get a reference to it and return a pointer to it (its
312 * virtual address). If not found, map it, add it to that list and return a
313 * pointer to it.
314 *
315 * During early init (when acpi_permanent_mmap has not been set yet) this
316 * routine simply calls __acpi_map_table() to get the job done.
317 */
318void __iomem __ref
319*acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320{
321 struct acpi_ioremap *map;
322 void __iomem *virt;
323 acpi_physical_address pg_off;
324 acpi_size pg_sz;
325
326 if (phys > ULONG_MAX) {
327 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 return NULL;
329 }
330
331 if (!acpi_permanent_mmap)
332 return __acpi_map_table((unsigned long)phys, size);
333
334 mutex_lock(&acpi_ioremap_lock);
335 /* Check if there's a suitable mapping already. */
336 map = acpi_map_lookup(phys, size);
337 if (map) {
338 map->refcount++;
339 goto out;
340 }
341
342 map = kzalloc(sizeof(*map), GFP_KERNEL);
343 if (!map) {
344 mutex_unlock(&acpi_ioremap_lock);
345 return NULL;
346 }
347
348 pg_off = round_down(phys, PAGE_SIZE);
349 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 virt = acpi_map(pg_off, pg_sz);
351 if (!virt) {
352 mutex_unlock(&acpi_ioremap_lock);
353 kfree(map);
354 return NULL;
355 }
356
357 INIT_LIST_HEAD(&map->list);
358 map->virt = virt;
359 map->phys = pg_off;
360 map->size = pg_sz;
361 map->refcount = 1;
362
363 list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365out:
366 mutex_unlock(&acpi_ioremap_lock);
367 return map->virt + (phys - map->phys);
368}
369EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
371void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372{
373 return (void *)acpi_os_map_iomem(phys, size);
374}
375EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
377static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
378{
379 if (!--map->refcount)
380 list_del_rcu(&map->list);
381}
382
383static void acpi_os_map_cleanup(struct acpi_ioremap *map)
384{
385 if (!map->refcount) {
386 synchronize_rcu_expedited();
387 acpi_unmap(map->phys, map->virt);
388 kfree(map);
389 }
390}
391
392/**
393 * acpi_os_unmap_iomem - Drop a memory mapping reference.
394 * @virt: Start of the address range to drop a reference to.
395 * @size: Size of the address range to drop a reference to.
396 *
397 * Look up the given virtual address range in the list of existing ACPI memory
398 * mappings, drop a reference to it and unmap it if there are no more active
399 * references to it.
400 *
401 * During early init (when acpi_permanent_mmap has not been set yet) this
402 * routine simply calls __acpi_unmap_table() to get the job done. Since
403 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
404 * here.
405 */
406void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
407{
408 struct acpi_ioremap *map;
409
410 if (!acpi_permanent_mmap) {
411 __acpi_unmap_table(virt, size);
412 return;
413 }
414
415 mutex_lock(&acpi_ioremap_lock);
416 map = acpi_map_lookup_virt(virt, size);
417 if (!map) {
418 mutex_unlock(&acpi_ioremap_lock);
419 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
420 return;
421 }
422 acpi_os_drop_map_ref(map);
423 mutex_unlock(&acpi_ioremap_lock);
424
425 acpi_os_map_cleanup(map);
426}
427EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
428
429void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
430{
431 return acpi_os_unmap_iomem((void __iomem *)virt, size);
432}
433EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
434
435int acpi_os_map_generic_address(struct acpi_generic_address *gas)
436{
437 u64 addr;
438 void __iomem *virt;
439
440 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
441 return 0;
442
443 /* Handle possible alignment issues */
444 memcpy(&addr, &gas->address, sizeof(addr));
445 if (!addr || !gas->bit_width)
446 return -EINVAL;
447
448 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
449 if (!virt)
450 return -EIO;
451
452 return 0;
453}
454EXPORT_SYMBOL(acpi_os_map_generic_address);
455
456void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
457{
458 u64 addr;
459 struct acpi_ioremap *map;
460
461 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
462 return;
463
464 /* Handle possible alignment issues */
465 memcpy(&addr, &gas->address, sizeof(addr));
466 if (!addr || !gas->bit_width)
467 return;
468
469 mutex_lock(&acpi_ioremap_lock);
470 map = acpi_map_lookup(addr, gas->bit_width / 8);
471 if (!map) {
472 mutex_unlock(&acpi_ioremap_lock);
473 return;
474 }
475 acpi_os_drop_map_ref(map);
476 mutex_unlock(&acpi_ioremap_lock);
477
478 acpi_os_map_cleanup(map);
479}
480EXPORT_SYMBOL(acpi_os_unmap_generic_address);
481
482#ifdef ACPI_FUTURE_USAGE
483acpi_status
484acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
485{
486 if (!phys || !virt)
487 return AE_BAD_PARAMETER;
488
489 *phys = virt_to_phys(virt);
490
491 return AE_OK;
492}
493#endif
494
495#ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
496static bool acpi_rev_override;
497
498int __init acpi_rev_override_setup(char *str)
499{
500 acpi_rev_override = true;
501 return 1;
502}
503__setup("acpi_rev_override", acpi_rev_override_setup);
504#else
505#define acpi_rev_override false
506#endif
507
508#define ACPI_MAX_OVERRIDE_LEN 100
509
510static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
511
512acpi_status
513acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
514 acpi_string *new_val)
515{
516 if (!init_val || !new_val)
517 return AE_BAD_PARAMETER;
518
519 *new_val = NULL;
520 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
521 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
522 acpi_os_name);
523 *new_val = acpi_os_name;
524 }
525
526 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
527 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
528 *new_val = (char *)5;
529 }
530
531 return AE_OK;
532}
533
534static irqreturn_t acpi_irq(int irq, void *dev_id)
535{
536 u32 handled;
537
538 handled = (*acpi_irq_handler) (acpi_irq_context);
539
540 if (handled) {
541 acpi_irq_handled++;
542 return IRQ_HANDLED;
543 } else {
544 acpi_irq_not_handled++;
545 return IRQ_NONE;
546 }
547}
548
549acpi_status
550acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
551 void *context)
552{
553 unsigned int irq;
554
555 acpi_irq_stats_init();
556
557 /*
558 * ACPI interrupts different from the SCI in our copy of the FADT are
559 * not supported.
560 */
561 if (gsi != acpi_gbl_FADT.sci_interrupt)
562 return AE_BAD_PARAMETER;
563
564 if (acpi_irq_handler)
565 return AE_ALREADY_ACQUIRED;
566
567 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
568 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
569 gsi);
570 return AE_OK;
571 }
572
573 acpi_irq_handler = handler;
574 acpi_irq_context = context;
575 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
576 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
577 acpi_irq_handler = NULL;
578 return AE_NOT_ACQUIRED;
579 }
580 acpi_sci_irq = irq;
581
582 return AE_OK;
583}
584
585acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
586{
587 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
588 return AE_BAD_PARAMETER;
589
590 free_irq(acpi_sci_irq, acpi_irq);
591 acpi_irq_handler = NULL;
592 acpi_sci_irq = INVALID_ACPI_IRQ;
593
594 return AE_OK;
595}
596
597/*
598 * Running in interpreter thread context, safe to sleep
599 */
600
601void acpi_os_sleep(u64 ms)
602{
603 msleep(ms);
604}
605
606void acpi_os_stall(u32 us)
607{
608 while (us) {
609 u32 delay = 1000;
610
611 if (delay > us)
612 delay = us;
613 udelay(delay);
614 touch_nmi_watchdog();
615 us -= delay;
616 }
617}
618
619/*
620 * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
621 * monotonically increasing timer with 100ns granularity. Do not use
622 * ktime_get() to implement this function because this function may get
623 * called after timekeeping has been suspended. Note: calling this function
624 * after timekeeping has been suspended may lead to unexpected results
625 * because when timekeeping is suspended the jiffies counter is not
626 * incremented. See also timekeeping_suspend().
627 */
628u64 acpi_os_get_timer(void)
629{
630 return (get_jiffies_64() - INITIAL_JIFFIES) *
631 (ACPI_100NSEC_PER_SEC / HZ);
632}
633
634acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
635{
636 u32 dummy;
637
638 if (!value)
639 value = &dummy;
640
641 *value = 0;
642 if (width <= 8) {
643 *(u8 *) value = inb(port);
644 } else if (width <= 16) {
645 *(u16 *) value = inw(port);
646 } else if (width <= 32) {
647 *(u32 *) value = inl(port);
648 } else {
649 BUG();
650 }
651
652 return AE_OK;
653}
654
655EXPORT_SYMBOL(acpi_os_read_port);
656
657acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
658{
659 if (width <= 8) {
660 outb(value, port);
661 } else if (width <= 16) {
662 outw(value, port);
663 } else if (width <= 32) {
664 outl(value, port);
665 } else {
666 BUG();
667 }
668
669 return AE_OK;
670}
671
672EXPORT_SYMBOL(acpi_os_write_port);
673
674int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
675{
676
677 switch (width) {
678 case 8:
679 *(u8 *) value = readb(virt_addr);
680 break;
681 case 16:
682 *(u16 *) value = readw(virt_addr);
683 break;
684 case 32:
685 *(u32 *) value = readl(virt_addr);
686 break;
687 case 64:
688 *(u64 *) value = readq(virt_addr);
689 break;
690 default:
691 return -EINVAL;
692 }
693
694 return 0;
695}
696
697acpi_status
698acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
699{
700 void __iomem *virt_addr;
701 unsigned int size = width / 8;
702 bool unmap = false;
703 u64 dummy;
704 int error;
705
706 rcu_read_lock();
707 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
708 if (!virt_addr) {
709 rcu_read_unlock();
710 virt_addr = acpi_os_ioremap(phys_addr, size);
711 if (!virt_addr)
712 return AE_BAD_ADDRESS;
713 unmap = true;
714 }
715
716 if (!value)
717 value = &dummy;
718
719 error = acpi_os_read_iomem(virt_addr, value, width);
720 BUG_ON(error);
721
722 if (unmap)
723 iounmap(virt_addr);
724 else
725 rcu_read_unlock();
726
727 return AE_OK;
728}
729
730acpi_status
731acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
732{
733 void __iomem *virt_addr;
734 unsigned int size = width / 8;
735 bool unmap = false;
736
737 rcu_read_lock();
738 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739 if (!virt_addr) {
740 rcu_read_unlock();
741 virt_addr = acpi_os_ioremap(phys_addr, size);
742 if (!virt_addr)
743 return AE_BAD_ADDRESS;
744 unmap = true;
745 }
746
747 switch (width) {
748 case 8:
749 writeb(value, virt_addr);
750 break;
751 case 16:
752 writew(value, virt_addr);
753 break;
754 case 32:
755 writel(value, virt_addr);
756 break;
757 case 64:
758 writeq(value, virt_addr);
759 break;
760 default:
761 BUG();
762 }
763
764 if (unmap)
765 iounmap(virt_addr);
766 else
767 rcu_read_unlock();
768
769 return AE_OK;
770}
771
772#ifdef CONFIG_PCI
773acpi_status
774acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
775 u64 *value, u32 width)
776{
777 int result, size;
778 u32 value32;
779
780 if (!value)
781 return AE_BAD_PARAMETER;
782
783 switch (width) {
784 case 8:
785 size = 1;
786 break;
787 case 16:
788 size = 2;
789 break;
790 case 32:
791 size = 4;
792 break;
793 default:
794 return AE_ERROR;
795 }
796
797 result = raw_pci_read(pci_id->segment, pci_id->bus,
798 PCI_DEVFN(pci_id->device, pci_id->function),
799 reg, size, &value32);
800 *value = value32;
801
802 return (result ? AE_ERROR : AE_OK);
803}
804
805acpi_status
806acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
807 u64 value, u32 width)
808{
809 int result, size;
810
811 switch (width) {
812 case 8:
813 size = 1;
814 break;
815 case 16:
816 size = 2;
817 break;
818 case 32:
819 size = 4;
820 break;
821 default:
822 return AE_ERROR;
823 }
824
825 result = raw_pci_write(pci_id->segment, pci_id->bus,
826 PCI_DEVFN(pci_id->device, pci_id->function),
827 reg, size, value);
828
829 return (result ? AE_ERROR : AE_OK);
830}
831#endif
832
833static void acpi_os_execute_deferred(struct work_struct *work)
834{
835 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
836
837 dpc->function(dpc->context);
838 kfree(dpc);
839}
840
841#ifdef CONFIG_ACPI_DEBUGGER
842static struct acpi_debugger acpi_debugger;
843static bool acpi_debugger_initialized;
844
845int acpi_register_debugger(struct module *owner,
846 const struct acpi_debugger_ops *ops)
847{
848 int ret = 0;
849
850 mutex_lock(&acpi_debugger.lock);
851 if (acpi_debugger.ops) {
852 ret = -EBUSY;
853 goto err_lock;
854 }
855
856 acpi_debugger.owner = owner;
857 acpi_debugger.ops = ops;
858
859err_lock:
860 mutex_unlock(&acpi_debugger.lock);
861 return ret;
862}
863EXPORT_SYMBOL(acpi_register_debugger);
864
865void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
866{
867 mutex_lock(&acpi_debugger.lock);
868 if (ops == acpi_debugger.ops) {
869 acpi_debugger.ops = NULL;
870 acpi_debugger.owner = NULL;
871 }
872 mutex_unlock(&acpi_debugger.lock);
873}
874EXPORT_SYMBOL(acpi_unregister_debugger);
875
876int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
877{
878 int ret;
879 int (*func)(acpi_osd_exec_callback, void *);
880 struct module *owner;
881
882 if (!acpi_debugger_initialized)
883 return -ENODEV;
884 mutex_lock(&acpi_debugger.lock);
885 if (!acpi_debugger.ops) {
886 ret = -ENODEV;
887 goto err_lock;
888 }
889 if (!try_module_get(acpi_debugger.owner)) {
890 ret = -ENODEV;
891 goto err_lock;
892 }
893 func = acpi_debugger.ops->create_thread;
894 owner = acpi_debugger.owner;
895 mutex_unlock(&acpi_debugger.lock);
896
897 ret = func(function, context);
898
899 mutex_lock(&acpi_debugger.lock);
900 module_put(owner);
901err_lock:
902 mutex_unlock(&acpi_debugger.lock);
903 return ret;
904}
905
906ssize_t acpi_debugger_write_log(const char *msg)
907{
908 ssize_t ret;
909 ssize_t (*func)(const char *);
910 struct module *owner;
911
912 if (!acpi_debugger_initialized)
913 return -ENODEV;
914 mutex_lock(&acpi_debugger.lock);
915 if (!acpi_debugger.ops) {
916 ret = -ENODEV;
917 goto err_lock;
918 }
919 if (!try_module_get(acpi_debugger.owner)) {
920 ret = -ENODEV;
921 goto err_lock;
922 }
923 func = acpi_debugger.ops->write_log;
924 owner = acpi_debugger.owner;
925 mutex_unlock(&acpi_debugger.lock);
926
927 ret = func(msg);
928
929 mutex_lock(&acpi_debugger.lock);
930 module_put(owner);
931err_lock:
932 mutex_unlock(&acpi_debugger.lock);
933 return ret;
934}
935
936ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
937{
938 ssize_t ret;
939 ssize_t (*func)(char *, size_t);
940 struct module *owner;
941
942 if (!acpi_debugger_initialized)
943 return -ENODEV;
944 mutex_lock(&acpi_debugger.lock);
945 if (!acpi_debugger.ops) {
946 ret = -ENODEV;
947 goto err_lock;
948 }
949 if (!try_module_get(acpi_debugger.owner)) {
950 ret = -ENODEV;
951 goto err_lock;
952 }
953 func = acpi_debugger.ops->read_cmd;
954 owner = acpi_debugger.owner;
955 mutex_unlock(&acpi_debugger.lock);
956
957 ret = func(buffer, buffer_length);
958
959 mutex_lock(&acpi_debugger.lock);
960 module_put(owner);
961err_lock:
962 mutex_unlock(&acpi_debugger.lock);
963 return ret;
964}
965
966int acpi_debugger_wait_command_ready(void)
967{
968 int ret;
969 int (*func)(bool, char *, size_t);
970 struct module *owner;
971
972 if (!acpi_debugger_initialized)
973 return -ENODEV;
974 mutex_lock(&acpi_debugger.lock);
975 if (!acpi_debugger.ops) {
976 ret = -ENODEV;
977 goto err_lock;
978 }
979 if (!try_module_get(acpi_debugger.owner)) {
980 ret = -ENODEV;
981 goto err_lock;
982 }
983 func = acpi_debugger.ops->wait_command_ready;
984 owner = acpi_debugger.owner;
985 mutex_unlock(&acpi_debugger.lock);
986
987 ret = func(acpi_gbl_method_executing,
988 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
989
990 mutex_lock(&acpi_debugger.lock);
991 module_put(owner);
992err_lock:
993 mutex_unlock(&acpi_debugger.lock);
994 return ret;
995}
996
997int acpi_debugger_notify_command_complete(void)
998{
999 int ret;
1000 int (*func)(void);
1001 struct module *owner;
1002
1003 if (!acpi_debugger_initialized)
1004 return -ENODEV;
1005 mutex_lock(&acpi_debugger.lock);
1006 if (!acpi_debugger.ops) {
1007 ret = -ENODEV;
1008 goto err_lock;
1009 }
1010 if (!try_module_get(acpi_debugger.owner)) {
1011 ret = -ENODEV;
1012 goto err_lock;
1013 }
1014 func = acpi_debugger.ops->notify_command_complete;
1015 owner = acpi_debugger.owner;
1016 mutex_unlock(&acpi_debugger.lock);
1017
1018 ret = func();
1019
1020 mutex_lock(&acpi_debugger.lock);
1021 module_put(owner);
1022err_lock:
1023 mutex_unlock(&acpi_debugger.lock);
1024 return ret;
1025}
1026
1027int __init acpi_debugger_init(void)
1028{
1029 mutex_init(&acpi_debugger.lock);
1030 acpi_debugger_initialized = true;
1031 return 0;
1032}
1033#endif
1034
1035/*******************************************************************************
1036 *
1037 * FUNCTION: acpi_os_execute
1038 *
1039 * PARAMETERS: Type - Type of the callback
1040 * Function - Function to be executed
1041 * Context - Function parameters
1042 *
1043 * RETURN: Status
1044 *
1045 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1046 * immediately executes function on a separate thread.
1047 *
1048 ******************************************************************************/
1049
1050acpi_status acpi_os_execute(acpi_execute_type type,
1051 acpi_osd_exec_callback function, void *context)
1052{
1053 acpi_status status = AE_OK;
1054 struct acpi_os_dpc *dpc;
1055 struct workqueue_struct *queue;
1056 int ret;
1057 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1058 "Scheduling function [%p(%p)] for deferred execution.\n",
1059 function, context));
1060
1061 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1062 ret = acpi_debugger_create_thread(function, context);
1063 if (ret) {
1064 pr_err("Call to kthread_create() failed.\n");
1065 status = AE_ERROR;
1066 }
1067 goto out_thread;
1068 }
1069
1070 /*
1071 * Allocate/initialize DPC structure. Note that this memory will be
1072 * freed by the callee. The kernel handles the work_struct list in a
1073 * way that allows us to also free its memory inside the callee.
1074 * Because we may want to schedule several tasks with different
1075 * parameters we can't use the approach some kernel code uses of
1076 * having a static work_struct.
1077 */
1078
1079 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1080 if (!dpc)
1081 return AE_NO_MEMORY;
1082
1083 dpc->function = function;
1084 dpc->context = context;
1085
1086 /*
1087 * To prevent lockdep from complaining unnecessarily, make sure that
1088 * there is a different static lockdep key for each workqueue by using
1089 * INIT_WORK() for each of them separately.
1090 */
1091 if (type == OSL_NOTIFY_HANDLER) {
1092 queue = kacpi_notify_wq;
1093 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1094 } else if (type == OSL_GPE_HANDLER) {
1095 queue = kacpid_wq;
1096 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1097 } else {
1098 pr_err("Unsupported os_execute type %d.\n", type);
1099 status = AE_ERROR;
1100 }
1101
1102 if (ACPI_FAILURE(status))
1103 goto err_workqueue;
1104
1105 /*
1106 * On some machines, a software-initiated SMI causes corruption unless
1107 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1108 * typically it's done in GPE-related methods that are run via
1109 * workqueues, so we can avoid the known corruption cases by always
1110 * queueing on CPU 0.
1111 */
1112 ret = queue_work_on(0, queue, &dpc->work);
1113 if (!ret) {
1114 printk(KERN_ERR PREFIX
1115 "Call to queue_work() failed.\n");
1116 status = AE_ERROR;
1117 }
1118err_workqueue:
1119 if (ACPI_FAILURE(status))
1120 kfree(dpc);
1121out_thread:
1122 return status;
1123}
1124EXPORT_SYMBOL(acpi_os_execute);
1125
1126void acpi_os_wait_events_complete(void)
1127{
1128 /*
1129 * Make sure the GPE handler or the fixed event handler is not used
1130 * on another CPU after removal.
1131 */
1132 if (acpi_sci_irq_valid())
1133 synchronize_hardirq(acpi_sci_irq);
1134 flush_workqueue(kacpid_wq);
1135 flush_workqueue(kacpi_notify_wq);
1136}
1137EXPORT_SYMBOL(acpi_os_wait_events_complete);
1138
1139struct acpi_hp_work {
1140 struct work_struct work;
1141 struct acpi_device *adev;
1142 u32 src;
1143};
1144
1145static void acpi_hotplug_work_fn(struct work_struct *work)
1146{
1147 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1148
1149 acpi_os_wait_events_complete();
1150 acpi_device_hotplug(hpw->adev, hpw->src);
1151 kfree(hpw);
1152}
1153
1154acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1155{
1156 struct acpi_hp_work *hpw;
1157
1158 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1159 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1160 adev, src));
1161
1162 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1163 if (!hpw)
1164 return AE_NO_MEMORY;
1165
1166 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1167 hpw->adev = adev;
1168 hpw->src = src;
1169 /*
1170 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1171 * the hotplug code may call driver .remove() functions, which may
1172 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1173 * these workqueues.
1174 */
1175 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1176 kfree(hpw);
1177 return AE_ERROR;
1178 }
1179 return AE_OK;
1180}
1181
1182bool acpi_queue_hotplug_work(struct work_struct *work)
1183{
1184 return queue_work(kacpi_hotplug_wq, work);
1185}
1186
1187acpi_status
1188acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1189{
1190 struct semaphore *sem = NULL;
1191
1192 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1193 if (!sem)
1194 return AE_NO_MEMORY;
1195
1196 sema_init(sem, initial_units);
1197
1198 *handle = (acpi_handle *) sem;
1199
1200 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1201 *handle, initial_units));
1202
1203 return AE_OK;
1204}
1205
1206/*
1207 * TODO: A better way to delete semaphores? Linux doesn't have a
1208 * 'delete_semaphore()' function -- may result in an invalid
1209 * pointer dereference for non-synchronized consumers. Should
1210 * we at least check for blocked threads and signal/cancel them?
1211 */
1212
1213acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1214{
1215 struct semaphore *sem = (struct semaphore *)handle;
1216
1217 if (!sem)
1218 return AE_BAD_PARAMETER;
1219
1220 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1221
1222 BUG_ON(!list_empty(&sem->wait_list));
1223 kfree(sem);
1224 sem = NULL;
1225
1226 return AE_OK;
1227}
1228
1229/*
1230 * TODO: Support for units > 1?
1231 */
1232acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1233{
1234 acpi_status status = AE_OK;
1235 struct semaphore *sem = (struct semaphore *)handle;
1236 long jiffies;
1237 int ret = 0;
1238
1239 if (!acpi_os_initialized)
1240 return AE_OK;
1241
1242 if (!sem || (units < 1))
1243 return AE_BAD_PARAMETER;
1244
1245 if (units > 1)
1246 return AE_SUPPORT;
1247
1248 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1249 handle, units, timeout));
1250
1251 if (timeout == ACPI_WAIT_FOREVER)
1252 jiffies = MAX_SCHEDULE_TIMEOUT;
1253 else
1254 jiffies = msecs_to_jiffies(timeout);
1255
1256 ret = down_timeout(sem, jiffies);
1257 if (ret)
1258 status = AE_TIME;
1259
1260 if (ACPI_FAILURE(status)) {
1261 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1262 "Failed to acquire semaphore[%p|%d|%d], %s",
1263 handle, units, timeout,
1264 acpi_format_exception(status)));
1265 } else {
1266 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1267 "Acquired semaphore[%p|%d|%d]", handle,
1268 units, timeout));
1269 }
1270
1271 return status;
1272}
1273
1274/*
1275 * TODO: Support for units > 1?
1276 */
1277acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1278{
1279 struct semaphore *sem = (struct semaphore *)handle;
1280
1281 if (!acpi_os_initialized)
1282 return AE_OK;
1283
1284 if (!sem || (units < 1))
1285 return AE_BAD_PARAMETER;
1286
1287 if (units > 1)
1288 return AE_SUPPORT;
1289
1290 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1291 units));
1292
1293 up(sem);
1294
1295 return AE_OK;
1296}
1297
1298acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1299{
1300#ifdef ENABLE_DEBUGGER
1301 if (acpi_in_debugger) {
1302 u32 chars;
1303
1304 kdb_read(buffer, buffer_length);
1305
1306 /* remove the CR kdb includes */
1307 chars = strlen(buffer) - 1;
1308 buffer[chars] = '\0';
1309 }
1310#else
1311 int ret;
1312
1313 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1314 if (ret < 0)
1315 return AE_ERROR;
1316 if (bytes_read)
1317 *bytes_read = ret;
1318#endif
1319
1320 return AE_OK;
1321}
1322EXPORT_SYMBOL(acpi_os_get_line);
1323
1324acpi_status acpi_os_wait_command_ready(void)
1325{
1326 int ret;
1327
1328 ret = acpi_debugger_wait_command_ready();
1329 if (ret < 0)
1330 return AE_ERROR;
1331 return AE_OK;
1332}
1333
1334acpi_status acpi_os_notify_command_complete(void)
1335{
1336 int ret;
1337
1338 ret = acpi_debugger_notify_command_complete();
1339 if (ret < 0)
1340 return AE_ERROR;
1341 return AE_OK;
1342}
1343
1344acpi_status acpi_os_signal(u32 function, void *info)
1345{
1346 switch (function) {
1347 case ACPI_SIGNAL_FATAL:
1348 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1349 break;
1350 case ACPI_SIGNAL_BREAKPOINT:
1351 /*
1352 * AML Breakpoint
1353 * ACPI spec. says to treat it as a NOP unless
1354 * you are debugging. So if/when we integrate
1355 * AML debugger into the kernel debugger its
1356 * hook will go here. But until then it is
1357 * not useful to print anything on breakpoints.
1358 */
1359 break;
1360 default:
1361 break;
1362 }
1363
1364 return AE_OK;
1365}
1366
1367static int __init acpi_os_name_setup(char *str)
1368{
1369 char *p = acpi_os_name;
1370 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1371
1372 if (!str || !*str)
1373 return 0;
1374
1375 for (; count-- && *str; str++) {
1376 if (isalnum(*str) || *str == ' ' || *str == ':')
1377 *p++ = *str;
1378 else if (*str == '\'' || *str == '"')
1379 continue;
1380 else
1381 break;
1382 }
1383 *p = 0;
1384
1385 return 1;
1386
1387}
1388
1389__setup("acpi_os_name=", acpi_os_name_setup);
1390
1391/*
1392 * Disable the auto-serialization of named objects creation methods.
1393 *
1394 * This feature is enabled by default. It marks the AML control methods
1395 * that contain the opcodes to create named objects as "Serialized".
1396 */
1397static int __init acpi_no_auto_serialize_setup(char *str)
1398{
1399 acpi_gbl_auto_serialize_methods = FALSE;
1400 pr_info("ACPI: auto-serialization disabled\n");
1401
1402 return 1;
1403}
1404
1405__setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1406
1407/* Check of resource interference between native drivers and ACPI
1408 * OperationRegions (SystemIO and System Memory only).
1409 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1410 * in arbitrary AML code and can interfere with legacy drivers.
1411 * acpi_enforce_resources= can be set to:
1412 *
1413 * - strict (default) (2)
1414 * -> further driver trying to access the resources will not load
1415 * - lax (1)
1416 * -> further driver trying to access the resources will load, but you
1417 * get a system message that something might go wrong...
1418 *
1419 * - no (0)
1420 * -> ACPI Operation Region resources will not be registered
1421 *
1422 */
1423#define ENFORCE_RESOURCES_STRICT 2
1424#define ENFORCE_RESOURCES_LAX 1
1425#define ENFORCE_RESOURCES_NO 0
1426
1427static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1428
1429static int __init acpi_enforce_resources_setup(char *str)
1430{
1431 if (str == NULL || *str == '\0')
1432 return 0;
1433
1434 if (!strcmp("strict", str))
1435 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1436 else if (!strcmp("lax", str))
1437 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1438 else if (!strcmp("no", str))
1439 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1440
1441 return 1;
1442}
1443
1444__setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1445
1446/* Check for resource conflicts between ACPI OperationRegions and native
1447 * drivers */
1448int acpi_check_resource_conflict(const struct resource *res)
1449{
1450 acpi_adr_space_type space_id;
1451 acpi_size length;
1452 u8 warn = 0;
1453 int clash = 0;
1454
1455 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1456 return 0;
1457 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1458 return 0;
1459
1460 if (res->flags & IORESOURCE_IO)
1461 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1462 else
1463 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1464
1465 length = resource_size(res);
1466 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1467 warn = 1;
1468 clash = acpi_check_address_range(space_id, res->start, length, warn);
1469
1470 if (clash) {
1471 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1472 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1473 printk(KERN_NOTICE "ACPI: This conflict may"
1474 " cause random problems and system"
1475 " instability\n");
1476 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1477 " for this device, you should use it instead of"
1478 " the native driver\n");
1479 }
1480 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1481 return -EBUSY;
1482 }
1483 return 0;
1484}
1485EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487int acpi_check_region(resource_size_t start, resource_size_t n,
1488 const char *name)
1489{
1490 struct resource res = {
1491 .start = start,
1492 .end = start + n - 1,
1493 .name = name,
1494 .flags = IORESOURCE_IO,
1495 };
1496
1497 return acpi_check_resource_conflict(&res);
1498}
1499EXPORT_SYMBOL(acpi_check_region);
1500
1501static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1502 void *_res, void **return_value)
1503{
1504 struct acpi_mem_space_context **mem_ctx;
1505 union acpi_operand_object *handler_obj;
1506 union acpi_operand_object *region_obj2;
1507 union acpi_operand_object *region_obj;
1508 struct resource *res = _res;
1509 acpi_status status;
1510
1511 region_obj = acpi_ns_get_attached_object(handle);
1512 if (!region_obj)
1513 return AE_OK;
1514
1515 handler_obj = region_obj->region.handler;
1516 if (!handler_obj)
1517 return AE_OK;
1518
1519 if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1520 return AE_OK;
1521
1522 if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1523 return AE_OK;
1524
1525 region_obj2 = acpi_ns_get_secondary_object(region_obj);
1526 if (!region_obj2)
1527 return AE_OK;
1528
1529 mem_ctx = (void *)®ion_obj2->extra.region_context;
1530
1531 if (!(mem_ctx[0]->address >= res->start &&
1532 mem_ctx[0]->address < res->end))
1533 return AE_OK;
1534
1535 status = handler_obj->address_space.setup(region_obj,
1536 ACPI_REGION_DEACTIVATE,
1537 NULL, (void **)mem_ctx);
1538 if (ACPI_SUCCESS(status))
1539 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1540
1541 return status;
1542}
1543
1544/**
1545 * acpi_release_memory - Release any mappings done to a memory region
1546 * @handle: Handle to namespace node
1547 * @res: Memory resource
1548 * @level: A level that terminates the search
1549 *
1550 * Walks through @handle and unmaps all SystemMemory Operation Regions that
1551 * overlap with @res and that have already been activated (mapped).
1552 *
1553 * This is a helper that allows drivers to place special requirements on memory
1554 * region that may overlap with operation regions, primarily allowing them to
1555 * safely map the region as non-cached memory.
1556 *
1557 * The unmapped Operation Regions will be automatically remapped next time they
1558 * are called, so the drivers do not need to do anything else.
1559 */
1560acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1561 u32 level)
1562{
1563 if (!(res->flags & IORESOURCE_MEM))
1564 return AE_TYPE;
1565
1566 return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1567 acpi_deactivate_mem_region, NULL, res, NULL);
1568}
1569EXPORT_SYMBOL_GPL(acpi_release_memory);
1570
1571/*
1572 * Let drivers know whether the resource checks are effective
1573 */
1574int acpi_resources_are_enforced(void)
1575{
1576 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1577}
1578EXPORT_SYMBOL(acpi_resources_are_enforced);
1579
1580/*
1581 * Deallocate the memory for a spinlock.
1582 */
1583void acpi_os_delete_lock(acpi_spinlock handle)
1584{
1585 ACPI_FREE(handle);
1586}
1587
1588/*
1589 * Acquire a spinlock.
1590 *
1591 * handle is a pointer to the spinlock_t.
1592 */
1593
1594acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1595{
1596 acpi_cpu_flags flags;
1597 spin_lock_irqsave(lockp, flags);
1598 return flags;
1599}
1600
1601/*
1602 * Release a spinlock. See above.
1603 */
1604
1605void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1606{
1607 spin_unlock_irqrestore(lockp, flags);
1608}
1609
1610#ifndef ACPI_USE_LOCAL_CACHE
1611
1612/*******************************************************************************
1613 *
1614 * FUNCTION: acpi_os_create_cache
1615 *
1616 * PARAMETERS: name - Ascii name for the cache
1617 * size - Size of each cached object
1618 * depth - Maximum depth of the cache (in objects) <ignored>
1619 * cache - Where the new cache object is returned
1620 *
1621 * RETURN: status
1622 *
1623 * DESCRIPTION: Create a cache object
1624 *
1625 ******************************************************************************/
1626
1627acpi_status
1628acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1629{
1630 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1631 if (*cache == NULL)
1632 return AE_ERROR;
1633 else
1634 return AE_OK;
1635}
1636
1637/*******************************************************************************
1638 *
1639 * FUNCTION: acpi_os_purge_cache
1640 *
1641 * PARAMETERS: Cache - Handle to cache object
1642 *
1643 * RETURN: Status
1644 *
1645 * DESCRIPTION: Free all objects within the requested cache.
1646 *
1647 ******************************************************************************/
1648
1649acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1650{
1651 kmem_cache_shrink(cache);
1652 return (AE_OK);
1653}
1654
1655/*******************************************************************************
1656 *
1657 * FUNCTION: acpi_os_delete_cache
1658 *
1659 * PARAMETERS: Cache - Handle to cache object
1660 *
1661 * RETURN: Status
1662 *
1663 * DESCRIPTION: Free all objects within the requested cache and delete the
1664 * cache object.
1665 *
1666 ******************************************************************************/
1667
1668acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1669{
1670 kmem_cache_destroy(cache);
1671 return (AE_OK);
1672}
1673
1674/*******************************************************************************
1675 *
1676 * FUNCTION: acpi_os_release_object
1677 *
1678 * PARAMETERS: Cache - Handle to cache object
1679 * Object - The object to be released
1680 *
1681 * RETURN: None
1682 *
1683 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1684 * the object is deleted.
1685 *
1686 ******************************************************************************/
1687
1688acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1689{
1690 kmem_cache_free(cache, object);
1691 return (AE_OK);
1692}
1693#endif
1694
1695static int __init acpi_no_static_ssdt_setup(char *s)
1696{
1697 acpi_gbl_disable_ssdt_table_install = TRUE;
1698 pr_info("ACPI: static SSDT installation disabled\n");
1699
1700 return 0;
1701}
1702
1703early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1704
1705static int __init acpi_disable_return_repair(char *s)
1706{
1707 printk(KERN_NOTICE PREFIX
1708 "ACPI: Predefined validation mechanism disabled\n");
1709 acpi_gbl_disable_auto_repair = TRUE;
1710
1711 return 1;
1712}
1713
1714__setup("acpica_no_return_repair", acpi_disable_return_repair);
1715
1716acpi_status __init acpi_os_initialize(void)
1717{
1718 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1719 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1720 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1721 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1722 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1723 /*
1724 * Use acpi_os_map_generic_address to pre-map the reset
1725 * register if it's in system memory.
1726 */
1727 int rv;
1728
1729 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1730 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1731 }
1732 acpi_os_initialized = true;
1733
1734 return AE_OK;
1735}
1736
1737acpi_status __init acpi_os_initialize1(void)
1738{
1739 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1740 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1741 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1742 BUG_ON(!kacpid_wq);
1743 BUG_ON(!kacpi_notify_wq);
1744 BUG_ON(!kacpi_hotplug_wq);
1745 acpi_osi_init();
1746 return AE_OK;
1747}
1748
1749acpi_status acpi_os_terminate(void)
1750{
1751 if (acpi_irq_handler) {
1752 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1753 acpi_irq_handler);
1754 }
1755
1756 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1757 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1758 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1759 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1760 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1761 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1762
1763 destroy_workqueue(kacpid_wq);
1764 destroy_workqueue(kacpi_notify_wq);
1765 destroy_workqueue(kacpi_hotplug_wq);
1766
1767 return AE_OK;
1768}
1769
1770acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1771 u32 pm1b_control)
1772{
1773 int rc = 0;
1774 if (__acpi_os_prepare_sleep)
1775 rc = __acpi_os_prepare_sleep(sleep_state,
1776 pm1a_control, pm1b_control);
1777 if (rc < 0)
1778 return AE_ERROR;
1779 else if (rc > 0)
1780 return AE_CTRL_TERMINATE;
1781
1782 return AE_OK;
1783}
1784
1785void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1786 u32 pm1a_ctrl, u32 pm1b_ctrl))
1787{
1788 __acpi_os_prepare_sleep = func;
1789}
1790
1791#if (ACPI_REDUCED_HARDWARE)
1792acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1793 u32 val_b)
1794{
1795 int rc = 0;
1796 if (__acpi_os_prepare_extended_sleep)
1797 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1798 val_a, val_b);
1799 if (rc < 0)
1800 return AE_ERROR;
1801 else if (rc > 0)
1802 return AE_CTRL_TERMINATE;
1803
1804 return AE_OK;
1805}
1806#else
1807acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1808 u32 val_b)
1809{
1810 return AE_OK;
1811}
1812#endif
1813
1814void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1815 u32 val_a, u32 val_b))
1816{
1817 __acpi_os_prepare_extended_sleep = func;
1818}
1819
1820acpi_status acpi_os_enter_sleep(u8 sleep_state,
1821 u32 reg_a_value, u32 reg_b_value)
1822{
1823 acpi_status status;
1824
1825 if (acpi_gbl_reduced_hardware)
1826 status = acpi_os_prepare_extended_sleep(sleep_state,
1827 reg_a_value,
1828 reg_b_value);
1829 else
1830 status = acpi_os_prepare_sleep(sleep_state,
1831 reg_a_value, reg_b_value);
1832 return status;
1833}