Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36#define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47static DEFINE_WW_CLASS(regulator_ww_class);
48static DEFINE_MUTEX(regulator_nesting_mutex);
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_map_list);
51static LIST_HEAD(regulator_ena_gpio_list);
52static LIST_HEAD(regulator_supply_alias_list);
53static LIST_HEAD(regulator_coupler_list);
54static bool has_full_constraints;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80};
81
82/*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93};
94
95static int _regulator_is_enabled(struct regulator_dev *rdev);
96static int _regulator_disable(struct regulator *regulator);
97static int _regulator_get_current_limit(struct regulator_dev *rdev);
98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108static void destroy_regulator(struct regulator *regulator);
109static void _regulator_put(struct regulator *regulator);
110
111const char *rdev_get_name(struct regulator_dev *rdev)
112{
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119}
120
121static bool have_full_constraints(void)
122{
123 return has_full_constraints || of_have_populated_dt();
124}
125
126static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127{
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137}
138
139/**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
150static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152{
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(®ulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(®ulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(®ulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(®ulator_nesting_mutex);
179
180 return ret;
181}
182
183/**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
193void regulator_lock(struct regulator_dev *rdev)
194{
195 regulator_lock_nested(rdev, NULL);
196}
197EXPORT_SYMBOL_GPL(regulator_lock);
198
199/**
200 * regulator_unlock - unlock a single regulator
201 * @rdev: regulator_source
202 *
203 * This function unlocks the mutex when the
204 * reference counter reaches 0.
205 */
206void regulator_unlock(struct regulator_dev *rdev)
207{
208 mutex_lock(®ulator_nesting_mutex);
209
210 if (--rdev->ref_cnt == 0) {
211 rdev->mutex_owner = NULL;
212 ww_mutex_unlock(&rdev->mutex);
213 }
214
215 WARN_ON_ONCE(rdev->ref_cnt < 0);
216
217 mutex_unlock(®ulator_nesting_mutex);
218}
219EXPORT_SYMBOL_GPL(regulator_unlock);
220
221static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222{
223 struct regulator_dev *c_rdev;
224 int i;
225
226 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
227 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228
229 if (rdev->supply->rdev == c_rdev)
230 return true;
231 }
232
233 return false;
234}
235
236static void regulator_unlock_recursive(struct regulator_dev *rdev,
237 unsigned int n_coupled)
238{
239 struct regulator_dev *c_rdev, *supply_rdev;
240 int i, supply_n_coupled;
241
242 for (i = n_coupled; i > 0; i--) {
243 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244
245 if (!c_rdev)
246 continue;
247
248 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
249 supply_rdev = c_rdev->supply->rdev;
250 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
251
252 regulator_unlock_recursive(supply_rdev,
253 supply_n_coupled);
254 }
255
256 regulator_unlock(c_rdev);
257 }
258}
259
260static int regulator_lock_recursive(struct regulator_dev *rdev,
261 struct regulator_dev **new_contended_rdev,
262 struct regulator_dev **old_contended_rdev,
263 struct ww_acquire_ctx *ww_ctx)
264{
265 struct regulator_dev *c_rdev;
266 int i, err;
267
268 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
269 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
270
271 if (!c_rdev)
272 continue;
273
274 if (c_rdev != *old_contended_rdev) {
275 err = regulator_lock_nested(c_rdev, ww_ctx);
276 if (err) {
277 if (err == -EDEADLK) {
278 *new_contended_rdev = c_rdev;
279 goto err_unlock;
280 }
281
282 /* shouldn't happen */
283 WARN_ON_ONCE(err != -EALREADY);
284 }
285 } else {
286 *old_contended_rdev = NULL;
287 }
288
289 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
290 err = regulator_lock_recursive(c_rdev->supply->rdev,
291 new_contended_rdev,
292 old_contended_rdev,
293 ww_ctx);
294 if (err) {
295 regulator_unlock(c_rdev);
296 goto err_unlock;
297 }
298 }
299 }
300
301 return 0;
302
303err_unlock:
304 regulator_unlock_recursive(rdev, i);
305
306 return err;
307}
308
309/**
310 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
311 * regulators
312 * @rdev: regulator source
313 * @ww_ctx: w/w mutex acquire context
314 *
315 * Unlock all regulators related with rdev by coupling or supplying.
316 */
317static void regulator_unlock_dependent(struct regulator_dev *rdev,
318 struct ww_acquire_ctx *ww_ctx)
319{
320 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
321 ww_acquire_fini(ww_ctx);
322}
323
324/**
325 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
326 * @rdev: regulator source
327 * @ww_ctx: w/w mutex acquire context
328 *
329 * This function as a wrapper on regulator_lock_recursive(), which locks
330 * all regulators related with rdev by coupling or supplying.
331 */
332static void regulator_lock_dependent(struct regulator_dev *rdev,
333 struct ww_acquire_ctx *ww_ctx)
334{
335 struct regulator_dev *new_contended_rdev = NULL;
336 struct regulator_dev *old_contended_rdev = NULL;
337 int err;
338
339 mutex_lock(®ulator_list_mutex);
340
341 ww_acquire_init(ww_ctx, ®ulator_ww_class);
342
343 do {
344 if (new_contended_rdev) {
345 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
346 old_contended_rdev = new_contended_rdev;
347 old_contended_rdev->ref_cnt++;
348 }
349
350 err = regulator_lock_recursive(rdev,
351 &new_contended_rdev,
352 &old_contended_rdev,
353 ww_ctx);
354
355 if (old_contended_rdev)
356 regulator_unlock(old_contended_rdev);
357
358 } while (err == -EDEADLK);
359
360 ww_acquire_done(ww_ctx);
361
362 mutex_unlock(®ulator_list_mutex);
363}
364
365/**
366 * of_get_child_regulator - get a child regulator device node
367 * based on supply name
368 * @parent: Parent device node
369 * @prop_name: Combination regulator supply name and "-supply"
370 *
371 * Traverse all child nodes.
372 * Extract the child regulator device node corresponding to the supply name.
373 * returns the device node corresponding to the regulator if found, else
374 * returns NULL.
375 */
376static struct device_node *of_get_child_regulator(struct device_node *parent,
377 const char *prop_name)
378{
379 struct device_node *regnode = NULL;
380 struct device_node *child = NULL;
381
382 for_each_child_of_node(parent, child) {
383 regnode = of_parse_phandle(child, prop_name, 0);
384
385 if (!regnode) {
386 regnode = of_get_child_regulator(child, prop_name);
387 if (regnode)
388 goto err_node_put;
389 } else {
390 goto err_node_put;
391 }
392 }
393 return NULL;
394
395err_node_put:
396 of_node_put(child);
397 return regnode;
398}
399
400/**
401 * of_get_regulator - get a regulator device node based on supply name
402 * @dev: Device pointer for the consumer (of regulator) device
403 * @supply: regulator supply name
404 *
405 * Extract the regulator device node corresponding to the supply name.
406 * returns the device node corresponding to the regulator if found, else
407 * returns NULL.
408 */
409static struct device_node *of_get_regulator(struct device *dev, const char *supply)
410{
411 struct device_node *regnode = NULL;
412 char prop_name[32]; /* 32 is max size of property name */
413
414 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
415
416 snprintf(prop_name, 32, "%s-supply", supply);
417 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418
419 if (!regnode) {
420 regnode = of_get_child_regulator(dev->of_node, prop_name);
421 if (regnode)
422 return regnode;
423
424 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425 prop_name, dev->of_node);
426 return NULL;
427 }
428 return regnode;
429}
430
431/* Platform voltage constraint check */
432int regulator_check_voltage(struct regulator_dev *rdev,
433 int *min_uV, int *max_uV)
434{
435 BUG_ON(*min_uV > *max_uV);
436
437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438 rdev_err(rdev, "voltage operation not allowed\n");
439 return -EPERM;
440 }
441
442 if (*max_uV > rdev->constraints->max_uV)
443 *max_uV = rdev->constraints->max_uV;
444 if (*min_uV < rdev->constraints->min_uV)
445 *min_uV = rdev->constraints->min_uV;
446
447 if (*min_uV > *max_uV) {
448 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449 *min_uV, *max_uV);
450 return -EINVAL;
451 }
452
453 return 0;
454}
455
456/* return 0 if the state is valid */
457static int regulator_check_states(suspend_state_t state)
458{
459 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460}
461
462/* Make sure we select a voltage that suits the needs of all
463 * regulator consumers
464 */
465int regulator_check_consumers(struct regulator_dev *rdev,
466 int *min_uV, int *max_uV,
467 suspend_state_t state)
468{
469 struct regulator *regulator;
470 struct regulator_voltage *voltage;
471
472 list_for_each_entry(regulator, &rdev->consumer_list, list) {
473 voltage = ®ulator->voltage[state];
474 /*
475 * Assume consumers that didn't say anything are OK
476 * with anything in the constraint range.
477 */
478 if (!voltage->min_uV && !voltage->max_uV)
479 continue;
480
481 if (*max_uV > voltage->max_uV)
482 *max_uV = voltage->max_uV;
483 if (*min_uV < voltage->min_uV)
484 *min_uV = voltage->min_uV;
485 }
486
487 if (*min_uV > *max_uV) {
488 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489 *min_uV, *max_uV);
490 return -EINVAL;
491 }
492
493 return 0;
494}
495
496/* current constraint check */
497static int regulator_check_current_limit(struct regulator_dev *rdev,
498 int *min_uA, int *max_uA)
499{
500 BUG_ON(*min_uA > *max_uA);
501
502 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503 rdev_err(rdev, "current operation not allowed\n");
504 return -EPERM;
505 }
506
507 if (*max_uA > rdev->constraints->max_uA)
508 *max_uA = rdev->constraints->max_uA;
509 if (*min_uA < rdev->constraints->min_uA)
510 *min_uA = rdev->constraints->min_uA;
511
512 if (*min_uA > *max_uA) {
513 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514 *min_uA, *max_uA);
515 return -EINVAL;
516 }
517
518 return 0;
519}
520
521/* operating mode constraint check */
522static int regulator_mode_constrain(struct regulator_dev *rdev,
523 unsigned int *mode)
524{
525 switch (*mode) {
526 case REGULATOR_MODE_FAST:
527 case REGULATOR_MODE_NORMAL:
528 case REGULATOR_MODE_IDLE:
529 case REGULATOR_MODE_STANDBY:
530 break;
531 default:
532 rdev_err(rdev, "invalid mode %x specified\n", *mode);
533 return -EINVAL;
534 }
535
536 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537 rdev_err(rdev, "mode operation not allowed\n");
538 return -EPERM;
539 }
540
541 /* The modes are bitmasks, the most power hungry modes having
542 * the lowest values. If the requested mode isn't supported
543 * try higher modes. */
544 while (*mode) {
545 if (rdev->constraints->valid_modes_mask & *mode)
546 return 0;
547 *mode /= 2;
548 }
549
550 return -EINVAL;
551}
552
553static inline struct regulator_state *
554regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
555{
556 if (rdev->constraints == NULL)
557 return NULL;
558
559 switch (state) {
560 case PM_SUSPEND_STANDBY:
561 return &rdev->constraints->state_standby;
562 case PM_SUSPEND_MEM:
563 return &rdev->constraints->state_mem;
564 case PM_SUSPEND_MAX:
565 return &rdev->constraints->state_disk;
566 default:
567 return NULL;
568 }
569}
570
571static ssize_t regulator_uV_show(struct device *dev,
572 struct device_attribute *attr, char *buf)
573{
574 struct regulator_dev *rdev = dev_get_drvdata(dev);
575 int uV;
576
577 regulator_lock(rdev);
578 uV = regulator_get_voltage_rdev(rdev);
579 regulator_unlock(rdev);
580
581 if (uV < 0)
582 return uV;
583 return sprintf(buf, "%d\n", uV);
584}
585static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
586
587static ssize_t regulator_uA_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589{
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
593}
594static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
595
596static ssize_t name_show(struct device *dev, struct device_attribute *attr,
597 char *buf)
598{
599 struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601 return sprintf(buf, "%s\n", rdev_get_name(rdev));
602}
603static DEVICE_ATTR_RO(name);
604
605static const char *regulator_opmode_to_str(int mode)
606{
607 switch (mode) {
608 case REGULATOR_MODE_FAST:
609 return "fast";
610 case REGULATOR_MODE_NORMAL:
611 return "normal";
612 case REGULATOR_MODE_IDLE:
613 return "idle";
614 case REGULATOR_MODE_STANDBY:
615 return "standby";
616 }
617 return "unknown";
618}
619
620static ssize_t regulator_print_opmode(char *buf, int mode)
621{
622 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
623}
624
625static ssize_t regulator_opmode_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
627{
628 struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
631}
632static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
633
634static ssize_t regulator_print_state(char *buf, int state)
635{
636 if (state > 0)
637 return sprintf(buf, "enabled\n");
638 else if (state == 0)
639 return sprintf(buf, "disabled\n");
640 else
641 return sprintf(buf, "unknown\n");
642}
643
644static ssize_t regulator_state_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
646{
647 struct regulator_dev *rdev = dev_get_drvdata(dev);
648 ssize_t ret;
649
650 regulator_lock(rdev);
651 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
652 regulator_unlock(rdev);
653
654 return ret;
655}
656static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
657
658static ssize_t regulator_status_show(struct device *dev,
659 struct device_attribute *attr, char *buf)
660{
661 struct regulator_dev *rdev = dev_get_drvdata(dev);
662 int status;
663 char *label;
664
665 status = rdev->desc->ops->get_status(rdev);
666 if (status < 0)
667 return status;
668
669 switch (status) {
670 case REGULATOR_STATUS_OFF:
671 label = "off";
672 break;
673 case REGULATOR_STATUS_ON:
674 label = "on";
675 break;
676 case REGULATOR_STATUS_ERROR:
677 label = "error";
678 break;
679 case REGULATOR_STATUS_FAST:
680 label = "fast";
681 break;
682 case REGULATOR_STATUS_NORMAL:
683 label = "normal";
684 break;
685 case REGULATOR_STATUS_IDLE:
686 label = "idle";
687 break;
688 case REGULATOR_STATUS_STANDBY:
689 label = "standby";
690 break;
691 case REGULATOR_STATUS_BYPASS:
692 label = "bypass";
693 break;
694 case REGULATOR_STATUS_UNDEFINED:
695 label = "undefined";
696 break;
697 default:
698 return -ERANGE;
699 }
700
701 return sprintf(buf, "%s\n", label);
702}
703static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
704
705static ssize_t regulator_min_uA_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
707{
708 struct regulator_dev *rdev = dev_get_drvdata(dev);
709
710 if (!rdev->constraints)
711 return sprintf(buf, "constraint not defined\n");
712
713 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
714}
715static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
716
717static ssize_t regulator_max_uA_show(struct device *dev,
718 struct device_attribute *attr, char *buf)
719{
720 struct regulator_dev *rdev = dev_get_drvdata(dev);
721
722 if (!rdev->constraints)
723 return sprintf(buf, "constraint not defined\n");
724
725 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
726}
727static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
728
729static ssize_t regulator_min_uV_show(struct device *dev,
730 struct device_attribute *attr, char *buf)
731{
732 struct regulator_dev *rdev = dev_get_drvdata(dev);
733
734 if (!rdev->constraints)
735 return sprintf(buf, "constraint not defined\n");
736
737 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
738}
739static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
740
741static ssize_t regulator_max_uV_show(struct device *dev,
742 struct device_attribute *attr, char *buf)
743{
744 struct regulator_dev *rdev = dev_get_drvdata(dev);
745
746 if (!rdev->constraints)
747 return sprintf(buf, "constraint not defined\n");
748
749 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
750}
751static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
752
753static ssize_t regulator_total_uA_show(struct device *dev,
754 struct device_attribute *attr, char *buf)
755{
756 struct regulator_dev *rdev = dev_get_drvdata(dev);
757 struct regulator *regulator;
758 int uA = 0;
759
760 regulator_lock(rdev);
761 list_for_each_entry(regulator, &rdev->consumer_list, list) {
762 if (regulator->enable_count)
763 uA += regulator->uA_load;
764 }
765 regulator_unlock(rdev);
766 return sprintf(buf, "%d\n", uA);
767}
768static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
769
770static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
771 char *buf)
772{
773 struct regulator_dev *rdev = dev_get_drvdata(dev);
774 return sprintf(buf, "%d\n", rdev->use_count);
775}
776static DEVICE_ATTR_RO(num_users);
777
778static ssize_t type_show(struct device *dev, struct device_attribute *attr,
779 char *buf)
780{
781 struct regulator_dev *rdev = dev_get_drvdata(dev);
782
783 switch (rdev->desc->type) {
784 case REGULATOR_VOLTAGE:
785 return sprintf(buf, "voltage\n");
786 case REGULATOR_CURRENT:
787 return sprintf(buf, "current\n");
788 }
789 return sprintf(buf, "unknown\n");
790}
791static DEVICE_ATTR_RO(type);
792
793static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
794 struct device_attribute *attr, char *buf)
795{
796 struct regulator_dev *rdev = dev_get_drvdata(dev);
797
798 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
799}
800static DEVICE_ATTR(suspend_mem_microvolts, 0444,
801 regulator_suspend_mem_uV_show, NULL);
802
803static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
804 struct device_attribute *attr, char *buf)
805{
806 struct regulator_dev *rdev = dev_get_drvdata(dev);
807
808 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
809}
810static DEVICE_ATTR(suspend_disk_microvolts, 0444,
811 regulator_suspend_disk_uV_show, NULL);
812
813static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
814 struct device_attribute *attr, char *buf)
815{
816 struct regulator_dev *rdev = dev_get_drvdata(dev);
817
818 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
819}
820static DEVICE_ATTR(suspend_standby_microvolts, 0444,
821 regulator_suspend_standby_uV_show, NULL);
822
823static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 return regulator_print_opmode(buf,
829 rdev->constraints->state_mem.mode);
830}
831static DEVICE_ATTR(suspend_mem_mode, 0444,
832 regulator_suspend_mem_mode_show, NULL);
833
834static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
835 struct device_attribute *attr, char *buf)
836{
837 struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839 return regulator_print_opmode(buf,
840 rdev->constraints->state_disk.mode);
841}
842static DEVICE_ATTR(suspend_disk_mode, 0444,
843 regulator_suspend_disk_mode_show, NULL);
844
845static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
847{
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_standby.mode);
852}
853static DEVICE_ATTR(suspend_standby_mode, 0444,
854 regulator_suspend_standby_mode_show, NULL);
855
856static ssize_t regulator_suspend_mem_state_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
858{
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861 return regulator_print_state(buf,
862 rdev->constraints->state_mem.enabled);
863}
864static DEVICE_ATTR(suspend_mem_state, 0444,
865 regulator_suspend_mem_state_show, NULL);
866
867static ssize_t regulator_suspend_disk_state_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
869{
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872 return regulator_print_state(buf,
873 rdev->constraints->state_disk.enabled);
874}
875static DEVICE_ATTR(suspend_disk_state, 0444,
876 regulator_suspend_disk_state_show, NULL);
877
878static ssize_t regulator_suspend_standby_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880{
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_standby.enabled);
885}
886static DEVICE_ATTR(suspend_standby_state, 0444,
887 regulator_suspend_standby_state_show, NULL);
888
889static ssize_t regulator_bypass_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891{
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893 const char *report;
894 bool bypass;
895 int ret;
896
897 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
898
899 if (ret != 0)
900 report = "unknown";
901 else if (bypass)
902 report = "enabled";
903 else
904 report = "disabled";
905
906 return sprintf(buf, "%s\n", report);
907}
908static DEVICE_ATTR(bypass, 0444,
909 regulator_bypass_show, NULL);
910
911/* Calculate the new optimum regulator operating mode based on the new total
912 * consumer load. All locks held by caller */
913static int drms_uA_update(struct regulator_dev *rdev)
914{
915 struct regulator *sibling;
916 int current_uA = 0, output_uV, input_uV, err;
917 unsigned int mode;
918
919 /*
920 * first check to see if we can set modes at all, otherwise just
921 * tell the consumer everything is OK.
922 */
923 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
924 rdev_dbg(rdev, "DRMS operation not allowed\n");
925 return 0;
926 }
927
928 if (!rdev->desc->ops->get_optimum_mode &&
929 !rdev->desc->ops->set_load)
930 return 0;
931
932 if (!rdev->desc->ops->set_mode &&
933 !rdev->desc->ops->set_load)
934 return -EINVAL;
935
936 /* calc total requested load */
937 list_for_each_entry(sibling, &rdev->consumer_list, list) {
938 if (sibling->enable_count)
939 current_uA += sibling->uA_load;
940 }
941
942 current_uA += rdev->constraints->system_load;
943
944 if (rdev->desc->ops->set_load) {
945 /* set the optimum mode for our new total regulator load */
946 err = rdev->desc->ops->set_load(rdev, current_uA);
947 if (err < 0)
948 rdev_err(rdev, "failed to set load %d\n", current_uA);
949 } else {
950 /* get output voltage */
951 output_uV = regulator_get_voltage_rdev(rdev);
952 if (output_uV <= 0) {
953 rdev_err(rdev, "invalid output voltage found\n");
954 return -EINVAL;
955 }
956
957 /* get input voltage */
958 input_uV = 0;
959 if (rdev->supply)
960 input_uV = regulator_get_voltage(rdev->supply);
961 if (input_uV <= 0)
962 input_uV = rdev->constraints->input_uV;
963 if (input_uV <= 0) {
964 rdev_err(rdev, "invalid input voltage found\n");
965 return -EINVAL;
966 }
967
968 /* now get the optimum mode for our new total regulator load */
969 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
970 output_uV, current_uA);
971
972 /* check the new mode is allowed */
973 err = regulator_mode_constrain(rdev, &mode);
974 if (err < 0) {
975 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
976 current_uA, input_uV, output_uV);
977 return err;
978 }
979
980 err = rdev->desc->ops->set_mode(rdev, mode);
981 if (err < 0)
982 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
983 }
984
985 return err;
986}
987
988static int suspend_set_state(struct regulator_dev *rdev,
989 suspend_state_t state)
990{
991 int ret = 0;
992 struct regulator_state *rstate;
993
994 rstate = regulator_get_suspend_state(rdev, state);
995 if (rstate == NULL)
996 return 0;
997
998 /* If we have no suspend mode configuration don't set anything;
999 * only warn if the driver implements set_suspend_voltage or
1000 * set_suspend_mode callback.
1001 */
1002 if (rstate->enabled != ENABLE_IN_SUSPEND &&
1003 rstate->enabled != DISABLE_IN_SUSPEND) {
1004 if (rdev->desc->ops->set_suspend_voltage ||
1005 rdev->desc->ops->set_suspend_mode)
1006 rdev_warn(rdev, "No configuration\n");
1007 return 0;
1008 }
1009
1010 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1011 rdev->desc->ops->set_suspend_enable)
1012 ret = rdev->desc->ops->set_suspend_enable(rdev);
1013 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1014 rdev->desc->ops->set_suspend_disable)
1015 ret = rdev->desc->ops->set_suspend_disable(rdev);
1016 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1017 ret = 0;
1018
1019 if (ret < 0) {
1020 rdev_err(rdev, "failed to enabled/disable\n");
1021 return ret;
1022 }
1023
1024 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1025 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to set voltage\n");
1028 return ret;
1029 }
1030 }
1031
1032 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1033 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1034 if (ret < 0) {
1035 rdev_err(rdev, "failed to set mode\n");
1036 return ret;
1037 }
1038 }
1039
1040 return ret;
1041}
1042
1043static void print_constraints(struct regulator_dev *rdev)
1044{
1045 struct regulation_constraints *constraints = rdev->constraints;
1046 char buf[160] = "";
1047 size_t len = sizeof(buf) - 1;
1048 int count = 0;
1049 int ret;
1050
1051 if (constraints->min_uV && constraints->max_uV) {
1052 if (constraints->min_uV == constraints->max_uV)
1053 count += scnprintf(buf + count, len - count, "%d mV ",
1054 constraints->min_uV / 1000);
1055 else
1056 count += scnprintf(buf + count, len - count,
1057 "%d <--> %d mV ",
1058 constraints->min_uV / 1000,
1059 constraints->max_uV / 1000);
1060 }
1061
1062 if (!constraints->min_uV ||
1063 constraints->min_uV != constraints->max_uV) {
1064 ret = regulator_get_voltage_rdev(rdev);
1065 if (ret > 0)
1066 count += scnprintf(buf + count, len - count,
1067 "at %d mV ", ret / 1000);
1068 }
1069
1070 if (constraints->uV_offset)
1071 count += scnprintf(buf + count, len - count, "%dmV offset ",
1072 constraints->uV_offset / 1000);
1073
1074 if (constraints->min_uA && constraints->max_uA) {
1075 if (constraints->min_uA == constraints->max_uA)
1076 count += scnprintf(buf + count, len - count, "%d mA ",
1077 constraints->min_uA / 1000);
1078 else
1079 count += scnprintf(buf + count, len - count,
1080 "%d <--> %d mA ",
1081 constraints->min_uA / 1000,
1082 constraints->max_uA / 1000);
1083 }
1084
1085 if (!constraints->min_uA ||
1086 constraints->min_uA != constraints->max_uA) {
1087 ret = _regulator_get_current_limit(rdev);
1088 if (ret > 0)
1089 count += scnprintf(buf + count, len - count,
1090 "at %d mA ", ret / 1000);
1091 }
1092
1093 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1094 count += scnprintf(buf + count, len - count, "fast ");
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1096 count += scnprintf(buf + count, len - count, "normal ");
1097 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1098 count += scnprintf(buf + count, len - count, "idle ");
1099 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1100 count += scnprintf(buf + count, len - count, "standby");
1101
1102 if (!count)
1103 scnprintf(buf, len, "no parameters");
1104
1105 rdev_dbg(rdev, "%s\n", buf);
1106
1107 if ((constraints->min_uV != constraints->max_uV) &&
1108 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1109 rdev_warn(rdev,
1110 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1111}
1112
1113static int machine_constraints_voltage(struct regulator_dev *rdev,
1114 struct regulation_constraints *constraints)
1115{
1116 const struct regulator_ops *ops = rdev->desc->ops;
1117 int ret;
1118
1119 /* do we need to apply the constraint voltage */
1120 if (rdev->constraints->apply_uV &&
1121 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1122 int target_min, target_max;
1123 int current_uV = regulator_get_voltage_rdev(rdev);
1124
1125 if (current_uV == -ENOTRECOVERABLE) {
1126 /* This regulator can't be read and must be initialized */
1127 rdev_info(rdev, "Setting %d-%duV\n",
1128 rdev->constraints->min_uV,
1129 rdev->constraints->max_uV);
1130 _regulator_do_set_voltage(rdev,
1131 rdev->constraints->min_uV,
1132 rdev->constraints->max_uV);
1133 current_uV = regulator_get_voltage_rdev(rdev);
1134 }
1135
1136 if (current_uV < 0) {
1137 rdev_err(rdev,
1138 "failed to get the current voltage(%d)\n",
1139 current_uV);
1140 return current_uV;
1141 }
1142
1143 /*
1144 * If we're below the minimum voltage move up to the
1145 * minimum voltage, if we're above the maximum voltage
1146 * then move down to the maximum.
1147 */
1148 target_min = current_uV;
1149 target_max = current_uV;
1150
1151 if (current_uV < rdev->constraints->min_uV) {
1152 target_min = rdev->constraints->min_uV;
1153 target_max = rdev->constraints->min_uV;
1154 }
1155
1156 if (current_uV > rdev->constraints->max_uV) {
1157 target_min = rdev->constraints->max_uV;
1158 target_max = rdev->constraints->max_uV;
1159 }
1160
1161 if (target_min != current_uV || target_max != current_uV) {
1162 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1163 current_uV, target_min, target_max);
1164 ret = _regulator_do_set_voltage(
1165 rdev, target_min, target_max);
1166 if (ret < 0) {
1167 rdev_err(rdev,
1168 "failed to apply %d-%duV constraint(%d)\n",
1169 target_min, target_max, ret);
1170 return ret;
1171 }
1172 }
1173 }
1174
1175 /* constrain machine-level voltage specs to fit
1176 * the actual range supported by this regulator.
1177 */
1178 if (ops->list_voltage && rdev->desc->n_voltages) {
1179 int count = rdev->desc->n_voltages;
1180 int i;
1181 int min_uV = INT_MAX;
1182 int max_uV = INT_MIN;
1183 int cmin = constraints->min_uV;
1184 int cmax = constraints->max_uV;
1185
1186 /* it's safe to autoconfigure fixed-voltage supplies
1187 and the constraints are used by list_voltage. */
1188 if (count == 1 && !cmin) {
1189 cmin = 1;
1190 cmax = INT_MAX;
1191 constraints->min_uV = cmin;
1192 constraints->max_uV = cmax;
1193 }
1194
1195 /* voltage constraints are optional */
1196 if ((cmin == 0) && (cmax == 0))
1197 return 0;
1198
1199 /* else require explicit machine-level constraints */
1200 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1201 rdev_err(rdev, "invalid voltage constraints\n");
1202 return -EINVAL;
1203 }
1204
1205 /* no need to loop voltages if range is continuous */
1206 if (rdev->desc->continuous_voltage_range)
1207 return 0;
1208
1209 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1210 for (i = 0; i < count; i++) {
1211 int value;
1212
1213 value = ops->list_voltage(rdev, i);
1214 if (value <= 0)
1215 continue;
1216
1217 /* maybe adjust [min_uV..max_uV] */
1218 if (value >= cmin && value < min_uV)
1219 min_uV = value;
1220 if (value <= cmax && value > max_uV)
1221 max_uV = value;
1222 }
1223
1224 /* final: [min_uV..max_uV] valid iff constraints valid */
1225 if (max_uV < min_uV) {
1226 rdev_err(rdev,
1227 "unsupportable voltage constraints %u-%uuV\n",
1228 min_uV, max_uV);
1229 return -EINVAL;
1230 }
1231
1232 /* use regulator's subset of machine constraints */
1233 if (constraints->min_uV < min_uV) {
1234 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1235 constraints->min_uV, min_uV);
1236 constraints->min_uV = min_uV;
1237 }
1238 if (constraints->max_uV > max_uV) {
1239 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1240 constraints->max_uV, max_uV);
1241 constraints->max_uV = max_uV;
1242 }
1243 }
1244
1245 return 0;
1246}
1247
1248static int machine_constraints_current(struct regulator_dev *rdev,
1249 struct regulation_constraints *constraints)
1250{
1251 const struct regulator_ops *ops = rdev->desc->ops;
1252 int ret;
1253
1254 if (!constraints->min_uA && !constraints->max_uA)
1255 return 0;
1256
1257 if (constraints->min_uA > constraints->max_uA) {
1258 rdev_err(rdev, "Invalid current constraints\n");
1259 return -EINVAL;
1260 }
1261
1262 if (!ops->set_current_limit || !ops->get_current_limit) {
1263 rdev_warn(rdev, "Operation of current configuration missing\n");
1264 return 0;
1265 }
1266
1267 /* Set regulator current in constraints range */
1268 ret = ops->set_current_limit(rdev, constraints->min_uA,
1269 constraints->max_uA);
1270 if (ret < 0) {
1271 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1272 return ret;
1273 }
1274
1275 return 0;
1276}
1277
1278static int _regulator_do_enable(struct regulator_dev *rdev);
1279
1280/**
1281 * set_machine_constraints - sets regulator constraints
1282 * @rdev: regulator source
1283 * @constraints: constraints to apply
1284 *
1285 * Allows platform initialisation code to define and constrain
1286 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1287 * Constraints *must* be set by platform code in order for some
1288 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1289 * set_mode.
1290 */
1291static int set_machine_constraints(struct regulator_dev *rdev,
1292 const struct regulation_constraints *constraints)
1293{
1294 int ret = 0;
1295 const struct regulator_ops *ops = rdev->desc->ops;
1296
1297 if (constraints)
1298 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1299 GFP_KERNEL);
1300 else
1301 rdev->constraints = kzalloc(sizeof(*constraints),
1302 GFP_KERNEL);
1303 if (!rdev->constraints)
1304 return -ENOMEM;
1305
1306 ret = machine_constraints_voltage(rdev, rdev->constraints);
1307 if (ret != 0)
1308 return ret;
1309
1310 ret = machine_constraints_current(rdev, rdev->constraints);
1311 if (ret != 0)
1312 return ret;
1313
1314 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1315 ret = ops->set_input_current_limit(rdev,
1316 rdev->constraints->ilim_uA);
1317 if (ret < 0) {
1318 rdev_err(rdev, "failed to set input limit\n");
1319 return ret;
1320 }
1321 }
1322
1323 /* do we need to setup our suspend state */
1324 if (rdev->constraints->initial_state) {
1325 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1326 if (ret < 0) {
1327 rdev_err(rdev, "failed to set suspend state\n");
1328 return ret;
1329 }
1330 }
1331
1332 if (rdev->constraints->initial_mode) {
1333 if (!ops->set_mode) {
1334 rdev_err(rdev, "no set_mode operation\n");
1335 return -EINVAL;
1336 }
1337
1338 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1339 if (ret < 0) {
1340 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1341 return ret;
1342 }
1343 } else if (rdev->constraints->system_load) {
1344 /*
1345 * We'll only apply the initial system load if an
1346 * initial mode wasn't specified.
1347 */
1348 drms_uA_update(rdev);
1349 }
1350
1351 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1352 && ops->set_ramp_delay) {
1353 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1354 if (ret < 0) {
1355 rdev_err(rdev, "failed to set ramp_delay\n");
1356 return ret;
1357 }
1358 }
1359
1360 if (rdev->constraints->pull_down && ops->set_pull_down) {
1361 ret = ops->set_pull_down(rdev);
1362 if (ret < 0) {
1363 rdev_err(rdev, "failed to set pull down\n");
1364 return ret;
1365 }
1366 }
1367
1368 if (rdev->constraints->soft_start && ops->set_soft_start) {
1369 ret = ops->set_soft_start(rdev);
1370 if (ret < 0) {
1371 rdev_err(rdev, "failed to set soft start\n");
1372 return ret;
1373 }
1374 }
1375
1376 if (rdev->constraints->over_current_protection
1377 && ops->set_over_current_protection) {
1378 ret = ops->set_over_current_protection(rdev);
1379 if (ret < 0) {
1380 rdev_err(rdev, "failed to set over current protection\n");
1381 return ret;
1382 }
1383 }
1384
1385 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1386 bool ad_state = (rdev->constraints->active_discharge ==
1387 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1388
1389 ret = ops->set_active_discharge(rdev, ad_state);
1390 if (ret < 0) {
1391 rdev_err(rdev, "failed to set active discharge\n");
1392 return ret;
1393 }
1394 }
1395
1396 /* If the constraints say the regulator should be on at this point
1397 * and we have control then make sure it is enabled.
1398 */
1399 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1400 if (rdev->supply) {
1401 ret = regulator_enable(rdev->supply);
1402 if (ret < 0) {
1403 _regulator_put(rdev->supply);
1404 rdev->supply = NULL;
1405 return ret;
1406 }
1407 }
1408
1409 ret = _regulator_do_enable(rdev);
1410 if (ret < 0 && ret != -EINVAL) {
1411 rdev_err(rdev, "failed to enable\n");
1412 return ret;
1413 }
1414
1415 if (rdev->constraints->always_on)
1416 rdev->use_count++;
1417 }
1418
1419 print_constraints(rdev);
1420 return 0;
1421}
1422
1423/**
1424 * set_supply - set regulator supply regulator
1425 * @rdev: regulator name
1426 * @supply_rdev: supply regulator name
1427 *
1428 * Called by platform initialisation code to set the supply regulator for this
1429 * regulator. This ensures that a regulators supply will also be enabled by the
1430 * core if it's child is enabled.
1431 */
1432static int set_supply(struct regulator_dev *rdev,
1433 struct regulator_dev *supply_rdev)
1434{
1435 int err;
1436
1437 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1438
1439 if (!try_module_get(supply_rdev->owner))
1440 return -ENODEV;
1441
1442 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1443 if (rdev->supply == NULL) {
1444 err = -ENOMEM;
1445 return err;
1446 }
1447 supply_rdev->open_count++;
1448
1449 return 0;
1450}
1451
1452/**
1453 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1454 * @rdev: regulator source
1455 * @consumer_dev_name: dev_name() string for device supply applies to
1456 * @supply: symbolic name for supply
1457 *
1458 * Allows platform initialisation code to map physical regulator
1459 * sources to symbolic names for supplies for use by devices. Devices
1460 * should use these symbolic names to request regulators, avoiding the
1461 * need to provide board-specific regulator names as platform data.
1462 */
1463static int set_consumer_device_supply(struct regulator_dev *rdev,
1464 const char *consumer_dev_name,
1465 const char *supply)
1466{
1467 struct regulator_map *node, *new_node;
1468 int has_dev;
1469
1470 if (supply == NULL)
1471 return -EINVAL;
1472
1473 if (consumer_dev_name != NULL)
1474 has_dev = 1;
1475 else
1476 has_dev = 0;
1477
1478 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1479 if (new_node == NULL)
1480 return -ENOMEM;
1481
1482 new_node->regulator = rdev;
1483 new_node->supply = supply;
1484
1485 if (has_dev) {
1486 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1487 if (new_node->dev_name == NULL) {
1488 kfree(new_node);
1489 return -ENOMEM;
1490 }
1491 }
1492
1493 mutex_lock(®ulator_list_mutex);
1494 list_for_each_entry(node, ®ulator_map_list, list) {
1495 if (node->dev_name && consumer_dev_name) {
1496 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1497 continue;
1498 } else if (node->dev_name || consumer_dev_name) {
1499 continue;
1500 }
1501
1502 if (strcmp(node->supply, supply) != 0)
1503 continue;
1504
1505 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1506 consumer_dev_name,
1507 dev_name(&node->regulator->dev),
1508 node->regulator->desc->name,
1509 supply,
1510 dev_name(&rdev->dev), rdev_get_name(rdev));
1511 goto fail;
1512 }
1513
1514 list_add(&new_node->list, ®ulator_map_list);
1515 mutex_unlock(®ulator_list_mutex);
1516
1517 return 0;
1518
1519fail:
1520 mutex_unlock(®ulator_list_mutex);
1521 kfree(new_node->dev_name);
1522 kfree(new_node);
1523 return -EBUSY;
1524}
1525
1526static void unset_regulator_supplies(struct regulator_dev *rdev)
1527{
1528 struct regulator_map *node, *n;
1529
1530 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1531 if (rdev == node->regulator) {
1532 list_del(&node->list);
1533 kfree(node->dev_name);
1534 kfree(node);
1535 }
1536 }
1537}
1538
1539#ifdef CONFIG_DEBUG_FS
1540static ssize_t constraint_flags_read_file(struct file *file,
1541 char __user *user_buf,
1542 size_t count, loff_t *ppos)
1543{
1544 const struct regulator *regulator = file->private_data;
1545 const struct regulation_constraints *c = regulator->rdev->constraints;
1546 char *buf;
1547 ssize_t ret;
1548
1549 if (!c)
1550 return 0;
1551
1552 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1553 if (!buf)
1554 return -ENOMEM;
1555
1556 ret = snprintf(buf, PAGE_SIZE,
1557 "always_on: %u\n"
1558 "boot_on: %u\n"
1559 "apply_uV: %u\n"
1560 "ramp_disable: %u\n"
1561 "soft_start: %u\n"
1562 "pull_down: %u\n"
1563 "over_current_protection: %u\n",
1564 c->always_on,
1565 c->boot_on,
1566 c->apply_uV,
1567 c->ramp_disable,
1568 c->soft_start,
1569 c->pull_down,
1570 c->over_current_protection);
1571
1572 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1573 kfree(buf);
1574
1575 return ret;
1576}
1577
1578#endif
1579
1580static const struct file_operations constraint_flags_fops = {
1581#ifdef CONFIG_DEBUG_FS
1582 .open = simple_open,
1583 .read = constraint_flags_read_file,
1584 .llseek = default_llseek,
1585#endif
1586};
1587
1588#define REG_STR_SIZE 64
1589
1590static struct regulator *create_regulator(struct regulator_dev *rdev,
1591 struct device *dev,
1592 const char *supply_name)
1593{
1594 struct regulator *regulator;
1595 int err;
1596
1597 if (dev) {
1598 char buf[REG_STR_SIZE];
1599 int size;
1600
1601 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1602 dev->kobj.name, supply_name);
1603 if (size >= REG_STR_SIZE)
1604 return NULL;
1605
1606 supply_name = kstrdup(buf, GFP_KERNEL);
1607 if (supply_name == NULL)
1608 return NULL;
1609 } else {
1610 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611 if (supply_name == NULL)
1612 return NULL;
1613 }
1614
1615 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1616 if (regulator == NULL) {
1617 kfree(supply_name);
1618 return NULL;
1619 }
1620
1621 regulator->rdev = rdev;
1622 regulator->supply_name = supply_name;
1623
1624 regulator_lock(rdev);
1625 list_add(®ulator->list, &rdev->consumer_list);
1626 regulator_unlock(rdev);
1627
1628 if (dev) {
1629 regulator->dev = dev;
1630
1631 /* Add a link to the device sysfs entry */
1632 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1633 supply_name);
1634 if (err) {
1635 rdev_dbg(rdev, "could not add device link %s err %d\n",
1636 dev->kobj.name, err);
1637 /* non-fatal */
1638 }
1639 }
1640
1641 regulator->debugfs = debugfs_create_dir(supply_name,
1642 rdev->debugfs);
1643 if (!regulator->debugfs) {
1644 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1645 } else {
1646 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1647 ®ulator->uA_load);
1648 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1649 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1650 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1651 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1652 debugfs_create_file("constraint_flags", 0444,
1653 regulator->debugfs, regulator,
1654 &constraint_flags_fops);
1655 }
1656
1657 /*
1658 * Check now if the regulator is an always on regulator - if
1659 * it is then we don't need to do nearly so much work for
1660 * enable/disable calls.
1661 */
1662 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1663 _regulator_is_enabled(rdev))
1664 regulator->always_on = true;
1665
1666 return regulator;
1667}
1668
1669static int _regulator_get_enable_time(struct regulator_dev *rdev)
1670{
1671 if (rdev->constraints && rdev->constraints->enable_time)
1672 return rdev->constraints->enable_time;
1673 if (rdev->desc->ops->enable_time)
1674 return rdev->desc->ops->enable_time(rdev);
1675 return rdev->desc->enable_time;
1676}
1677
1678static struct regulator_supply_alias *regulator_find_supply_alias(
1679 struct device *dev, const char *supply)
1680{
1681 struct regulator_supply_alias *map;
1682
1683 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1684 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1685 return map;
1686
1687 return NULL;
1688}
1689
1690static void regulator_supply_alias(struct device **dev, const char **supply)
1691{
1692 struct regulator_supply_alias *map;
1693
1694 map = regulator_find_supply_alias(*dev, *supply);
1695 if (map) {
1696 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1697 *supply, map->alias_supply,
1698 dev_name(map->alias_dev));
1699 *dev = map->alias_dev;
1700 *supply = map->alias_supply;
1701 }
1702}
1703
1704static int regulator_match(struct device *dev, const void *data)
1705{
1706 struct regulator_dev *r = dev_to_rdev(dev);
1707
1708 return strcmp(rdev_get_name(r), data) == 0;
1709}
1710
1711static struct regulator_dev *regulator_lookup_by_name(const char *name)
1712{
1713 struct device *dev;
1714
1715 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1716
1717 return dev ? dev_to_rdev(dev) : NULL;
1718}
1719
1720/**
1721 * regulator_dev_lookup - lookup a regulator device.
1722 * @dev: device for regulator "consumer".
1723 * @supply: Supply name or regulator ID.
1724 *
1725 * If successful, returns a struct regulator_dev that corresponds to the name
1726 * @supply and with the embedded struct device refcount incremented by one.
1727 * The refcount must be dropped by calling put_device().
1728 * On failure one of the following ERR-PTR-encoded values is returned:
1729 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1730 * in the future.
1731 */
1732static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1733 const char *supply)
1734{
1735 struct regulator_dev *r = NULL;
1736 struct device_node *node;
1737 struct regulator_map *map;
1738 const char *devname = NULL;
1739
1740 regulator_supply_alias(&dev, &supply);
1741
1742 /* first do a dt based lookup */
1743 if (dev && dev->of_node) {
1744 node = of_get_regulator(dev, supply);
1745 if (node) {
1746 r = of_find_regulator_by_node(node);
1747 if (r)
1748 return r;
1749
1750 /*
1751 * We have a node, but there is no device.
1752 * assume it has not registered yet.
1753 */
1754 return ERR_PTR(-EPROBE_DEFER);
1755 }
1756 }
1757
1758 /* if not found, try doing it non-dt way */
1759 if (dev)
1760 devname = dev_name(dev);
1761
1762 mutex_lock(®ulator_list_mutex);
1763 list_for_each_entry(map, ®ulator_map_list, list) {
1764 /* If the mapping has a device set up it must match */
1765 if (map->dev_name &&
1766 (!devname || strcmp(map->dev_name, devname)))
1767 continue;
1768
1769 if (strcmp(map->supply, supply) == 0 &&
1770 get_device(&map->regulator->dev)) {
1771 r = map->regulator;
1772 break;
1773 }
1774 }
1775 mutex_unlock(®ulator_list_mutex);
1776
1777 if (r)
1778 return r;
1779
1780 r = regulator_lookup_by_name(supply);
1781 if (r)
1782 return r;
1783
1784 return ERR_PTR(-ENODEV);
1785}
1786
1787static int regulator_resolve_supply(struct regulator_dev *rdev)
1788{
1789 struct regulator_dev *r;
1790 struct device *dev = rdev->dev.parent;
1791 int ret;
1792
1793 /* No supply to resolve? */
1794 if (!rdev->supply_name)
1795 return 0;
1796
1797 /* Supply already resolved? */
1798 if (rdev->supply)
1799 return 0;
1800
1801 r = regulator_dev_lookup(dev, rdev->supply_name);
1802 if (IS_ERR(r)) {
1803 ret = PTR_ERR(r);
1804
1805 /* Did the lookup explicitly defer for us? */
1806 if (ret == -EPROBE_DEFER)
1807 return ret;
1808
1809 if (have_full_constraints()) {
1810 r = dummy_regulator_rdev;
1811 get_device(&r->dev);
1812 } else {
1813 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1814 rdev->supply_name, rdev->desc->name);
1815 return -EPROBE_DEFER;
1816 }
1817 }
1818
1819 /*
1820 * If the supply's parent device is not the same as the
1821 * regulator's parent device, then ensure the parent device
1822 * is bound before we resolve the supply, in case the parent
1823 * device get probe deferred and unregisters the supply.
1824 */
1825 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1826 if (!device_is_bound(r->dev.parent)) {
1827 put_device(&r->dev);
1828 return -EPROBE_DEFER;
1829 }
1830 }
1831
1832 /* Recursively resolve the supply of the supply */
1833 ret = regulator_resolve_supply(r);
1834 if (ret < 0) {
1835 put_device(&r->dev);
1836 return ret;
1837 }
1838
1839 ret = set_supply(rdev, r);
1840 if (ret < 0) {
1841 put_device(&r->dev);
1842 return ret;
1843 }
1844
1845 /*
1846 * In set_machine_constraints() we may have turned this regulator on
1847 * but we couldn't propagate to the supply if it hadn't been resolved
1848 * yet. Do it now.
1849 */
1850 if (rdev->use_count) {
1851 ret = regulator_enable(rdev->supply);
1852 if (ret < 0) {
1853 _regulator_put(rdev->supply);
1854 rdev->supply = NULL;
1855 return ret;
1856 }
1857 }
1858
1859 return 0;
1860}
1861
1862/* Internal regulator request function */
1863struct regulator *_regulator_get(struct device *dev, const char *id,
1864 enum regulator_get_type get_type)
1865{
1866 struct regulator_dev *rdev;
1867 struct regulator *regulator;
1868 struct device_link *link;
1869 int ret;
1870
1871 if (get_type >= MAX_GET_TYPE) {
1872 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1873 return ERR_PTR(-EINVAL);
1874 }
1875
1876 if (id == NULL) {
1877 pr_err("get() with no identifier\n");
1878 return ERR_PTR(-EINVAL);
1879 }
1880
1881 rdev = regulator_dev_lookup(dev, id);
1882 if (IS_ERR(rdev)) {
1883 ret = PTR_ERR(rdev);
1884
1885 /*
1886 * If regulator_dev_lookup() fails with error other
1887 * than -ENODEV our job here is done, we simply return it.
1888 */
1889 if (ret != -ENODEV)
1890 return ERR_PTR(ret);
1891
1892 if (!have_full_constraints()) {
1893 dev_warn(dev,
1894 "incomplete constraints, dummy supplies not allowed\n");
1895 return ERR_PTR(-ENODEV);
1896 }
1897
1898 switch (get_type) {
1899 case NORMAL_GET:
1900 /*
1901 * Assume that a regulator is physically present and
1902 * enabled, even if it isn't hooked up, and just
1903 * provide a dummy.
1904 */
1905 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1906 rdev = dummy_regulator_rdev;
1907 get_device(&rdev->dev);
1908 break;
1909
1910 case EXCLUSIVE_GET:
1911 dev_warn(dev,
1912 "dummy supplies not allowed for exclusive requests\n");
1913 fallthrough;
1914
1915 default:
1916 return ERR_PTR(-ENODEV);
1917 }
1918 }
1919
1920 if (rdev->exclusive) {
1921 regulator = ERR_PTR(-EPERM);
1922 put_device(&rdev->dev);
1923 return regulator;
1924 }
1925
1926 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1927 regulator = ERR_PTR(-EBUSY);
1928 put_device(&rdev->dev);
1929 return regulator;
1930 }
1931
1932 mutex_lock(®ulator_list_mutex);
1933 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1934 mutex_unlock(®ulator_list_mutex);
1935
1936 if (ret != 0) {
1937 regulator = ERR_PTR(-EPROBE_DEFER);
1938 put_device(&rdev->dev);
1939 return regulator;
1940 }
1941
1942 ret = regulator_resolve_supply(rdev);
1943 if (ret < 0) {
1944 regulator = ERR_PTR(ret);
1945 put_device(&rdev->dev);
1946 return regulator;
1947 }
1948
1949 if (!try_module_get(rdev->owner)) {
1950 regulator = ERR_PTR(-EPROBE_DEFER);
1951 put_device(&rdev->dev);
1952 return regulator;
1953 }
1954
1955 regulator = create_regulator(rdev, dev, id);
1956 if (regulator == NULL) {
1957 regulator = ERR_PTR(-ENOMEM);
1958 module_put(rdev->owner);
1959 put_device(&rdev->dev);
1960 return regulator;
1961 }
1962
1963 rdev->open_count++;
1964 if (get_type == EXCLUSIVE_GET) {
1965 rdev->exclusive = 1;
1966
1967 ret = _regulator_is_enabled(rdev);
1968 if (ret > 0)
1969 rdev->use_count = 1;
1970 else
1971 rdev->use_count = 0;
1972 }
1973
1974 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1975 if (!IS_ERR_OR_NULL(link))
1976 regulator->device_link = true;
1977
1978 return regulator;
1979}
1980
1981/**
1982 * regulator_get - lookup and obtain a reference to a regulator.
1983 * @dev: device for regulator "consumer"
1984 * @id: Supply name or regulator ID.
1985 *
1986 * Returns a struct regulator corresponding to the regulator producer,
1987 * or IS_ERR() condition containing errno.
1988 *
1989 * Use of supply names configured via regulator_set_device_supply() is
1990 * strongly encouraged. It is recommended that the supply name used
1991 * should match the name used for the supply and/or the relevant
1992 * device pins in the datasheet.
1993 */
1994struct regulator *regulator_get(struct device *dev, const char *id)
1995{
1996 return _regulator_get(dev, id, NORMAL_GET);
1997}
1998EXPORT_SYMBOL_GPL(regulator_get);
1999
2000/**
2001 * regulator_get_exclusive - obtain exclusive access to a regulator.
2002 * @dev: device for regulator "consumer"
2003 * @id: Supply name or regulator ID.
2004 *
2005 * Returns a struct regulator corresponding to the regulator producer,
2006 * or IS_ERR() condition containing errno. Other consumers will be
2007 * unable to obtain this regulator while this reference is held and the
2008 * use count for the regulator will be initialised to reflect the current
2009 * state of the regulator.
2010 *
2011 * This is intended for use by consumers which cannot tolerate shared
2012 * use of the regulator such as those which need to force the
2013 * regulator off for correct operation of the hardware they are
2014 * controlling.
2015 *
2016 * Use of supply names configured via regulator_set_device_supply() is
2017 * strongly encouraged. It is recommended that the supply name used
2018 * should match the name used for the supply and/or the relevant
2019 * device pins in the datasheet.
2020 */
2021struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2022{
2023 return _regulator_get(dev, id, EXCLUSIVE_GET);
2024}
2025EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2026
2027/**
2028 * regulator_get_optional - obtain optional access to a regulator.
2029 * @dev: device for regulator "consumer"
2030 * @id: Supply name or regulator ID.
2031 *
2032 * Returns a struct regulator corresponding to the regulator producer,
2033 * or IS_ERR() condition containing errno.
2034 *
2035 * This is intended for use by consumers for devices which can have
2036 * some supplies unconnected in normal use, such as some MMC devices.
2037 * It can allow the regulator core to provide stub supplies for other
2038 * supplies requested using normal regulator_get() calls without
2039 * disrupting the operation of drivers that can handle absent
2040 * supplies.
2041 *
2042 * Use of supply names configured via regulator_set_device_supply() is
2043 * strongly encouraged. It is recommended that the supply name used
2044 * should match the name used for the supply and/or the relevant
2045 * device pins in the datasheet.
2046 */
2047struct regulator *regulator_get_optional(struct device *dev, const char *id)
2048{
2049 return _regulator_get(dev, id, OPTIONAL_GET);
2050}
2051EXPORT_SYMBOL_GPL(regulator_get_optional);
2052
2053static void destroy_regulator(struct regulator *regulator)
2054{
2055 struct regulator_dev *rdev = regulator->rdev;
2056
2057 debugfs_remove_recursive(regulator->debugfs);
2058
2059 if (regulator->dev) {
2060 if (regulator->device_link)
2061 device_link_remove(regulator->dev, &rdev->dev);
2062
2063 /* remove any sysfs entries */
2064 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2065 }
2066
2067 regulator_lock(rdev);
2068 list_del(®ulator->list);
2069
2070 rdev->open_count--;
2071 rdev->exclusive = 0;
2072 regulator_unlock(rdev);
2073
2074 kfree_const(regulator->supply_name);
2075 kfree(regulator);
2076}
2077
2078/* regulator_list_mutex lock held by regulator_put() */
2079static void _regulator_put(struct regulator *regulator)
2080{
2081 struct regulator_dev *rdev;
2082
2083 if (IS_ERR_OR_NULL(regulator))
2084 return;
2085
2086 lockdep_assert_held_once(®ulator_list_mutex);
2087
2088 /* Docs say you must disable before calling regulator_put() */
2089 WARN_ON(regulator->enable_count);
2090
2091 rdev = regulator->rdev;
2092
2093 destroy_regulator(regulator);
2094
2095 module_put(rdev->owner);
2096 put_device(&rdev->dev);
2097}
2098
2099/**
2100 * regulator_put - "free" the regulator source
2101 * @regulator: regulator source
2102 *
2103 * Note: drivers must ensure that all regulator_enable calls made on this
2104 * regulator source are balanced by regulator_disable calls prior to calling
2105 * this function.
2106 */
2107void regulator_put(struct regulator *regulator)
2108{
2109 mutex_lock(®ulator_list_mutex);
2110 _regulator_put(regulator);
2111 mutex_unlock(®ulator_list_mutex);
2112}
2113EXPORT_SYMBOL_GPL(regulator_put);
2114
2115/**
2116 * regulator_register_supply_alias - Provide device alias for supply lookup
2117 *
2118 * @dev: device that will be given as the regulator "consumer"
2119 * @id: Supply name or regulator ID
2120 * @alias_dev: device that should be used to lookup the supply
2121 * @alias_id: Supply name or regulator ID that should be used to lookup the
2122 * supply
2123 *
2124 * All lookups for id on dev will instead be conducted for alias_id on
2125 * alias_dev.
2126 */
2127int regulator_register_supply_alias(struct device *dev, const char *id,
2128 struct device *alias_dev,
2129 const char *alias_id)
2130{
2131 struct regulator_supply_alias *map;
2132
2133 map = regulator_find_supply_alias(dev, id);
2134 if (map)
2135 return -EEXIST;
2136
2137 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2138 if (!map)
2139 return -ENOMEM;
2140
2141 map->src_dev = dev;
2142 map->src_supply = id;
2143 map->alias_dev = alias_dev;
2144 map->alias_supply = alias_id;
2145
2146 list_add(&map->list, ®ulator_supply_alias_list);
2147
2148 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2149 id, dev_name(dev), alias_id, dev_name(alias_dev));
2150
2151 return 0;
2152}
2153EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2154
2155/**
2156 * regulator_unregister_supply_alias - Remove device alias
2157 *
2158 * @dev: device that will be given as the regulator "consumer"
2159 * @id: Supply name or regulator ID
2160 *
2161 * Remove a lookup alias if one exists for id on dev.
2162 */
2163void regulator_unregister_supply_alias(struct device *dev, const char *id)
2164{
2165 struct regulator_supply_alias *map;
2166
2167 map = regulator_find_supply_alias(dev, id);
2168 if (map) {
2169 list_del(&map->list);
2170 kfree(map);
2171 }
2172}
2173EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2174
2175/**
2176 * regulator_bulk_register_supply_alias - register multiple aliases
2177 *
2178 * @dev: device that will be given as the regulator "consumer"
2179 * @id: List of supply names or regulator IDs
2180 * @alias_dev: device that should be used to lookup the supply
2181 * @alias_id: List of supply names or regulator IDs that should be used to
2182 * lookup the supply
2183 * @num_id: Number of aliases to register
2184 *
2185 * @return 0 on success, an errno on failure.
2186 *
2187 * This helper function allows drivers to register several supply
2188 * aliases in one operation. If any of the aliases cannot be
2189 * registered any aliases that were registered will be removed
2190 * before returning to the caller.
2191 */
2192int regulator_bulk_register_supply_alias(struct device *dev,
2193 const char *const *id,
2194 struct device *alias_dev,
2195 const char *const *alias_id,
2196 int num_id)
2197{
2198 int i;
2199 int ret;
2200
2201 for (i = 0; i < num_id; ++i) {
2202 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2203 alias_id[i]);
2204 if (ret < 0)
2205 goto err;
2206 }
2207
2208 return 0;
2209
2210err:
2211 dev_err(dev,
2212 "Failed to create supply alias %s,%s -> %s,%s\n",
2213 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2214
2215 while (--i >= 0)
2216 regulator_unregister_supply_alias(dev, id[i]);
2217
2218 return ret;
2219}
2220EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2221
2222/**
2223 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2224 *
2225 * @dev: device that will be given as the regulator "consumer"
2226 * @id: List of supply names or regulator IDs
2227 * @num_id: Number of aliases to unregister
2228 *
2229 * This helper function allows drivers to unregister several supply
2230 * aliases in one operation.
2231 */
2232void regulator_bulk_unregister_supply_alias(struct device *dev,
2233 const char *const *id,
2234 int num_id)
2235{
2236 int i;
2237
2238 for (i = 0; i < num_id; ++i)
2239 regulator_unregister_supply_alias(dev, id[i]);
2240}
2241EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2242
2243
2244/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2245static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2246 const struct regulator_config *config)
2247{
2248 struct regulator_enable_gpio *pin, *new_pin;
2249 struct gpio_desc *gpiod;
2250
2251 gpiod = config->ena_gpiod;
2252 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2253
2254 mutex_lock(®ulator_list_mutex);
2255
2256 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2257 if (pin->gpiod == gpiod) {
2258 rdev_dbg(rdev, "GPIO is already used\n");
2259 goto update_ena_gpio_to_rdev;
2260 }
2261 }
2262
2263 if (new_pin == NULL) {
2264 mutex_unlock(®ulator_list_mutex);
2265 return -ENOMEM;
2266 }
2267
2268 pin = new_pin;
2269 new_pin = NULL;
2270
2271 pin->gpiod = gpiod;
2272 list_add(&pin->list, ®ulator_ena_gpio_list);
2273
2274update_ena_gpio_to_rdev:
2275 pin->request_count++;
2276 rdev->ena_pin = pin;
2277
2278 mutex_unlock(®ulator_list_mutex);
2279 kfree(new_pin);
2280
2281 return 0;
2282}
2283
2284static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2285{
2286 struct regulator_enable_gpio *pin, *n;
2287
2288 if (!rdev->ena_pin)
2289 return;
2290
2291 /* Free the GPIO only in case of no use */
2292 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2293 if (pin != rdev->ena_pin)
2294 continue;
2295
2296 if (--pin->request_count)
2297 break;
2298
2299 gpiod_put(pin->gpiod);
2300 list_del(&pin->list);
2301 kfree(pin);
2302 break;
2303 }
2304
2305 rdev->ena_pin = NULL;
2306}
2307
2308/**
2309 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2310 * @rdev: regulator_dev structure
2311 * @enable: enable GPIO at initial use?
2312 *
2313 * GPIO is enabled in case of initial use. (enable_count is 0)
2314 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2315 */
2316static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2317{
2318 struct regulator_enable_gpio *pin = rdev->ena_pin;
2319
2320 if (!pin)
2321 return -EINVAL;
2322
2323 if (enable) {
2324 /* Enable GPIO at initial use */
2325 if (pin->enable_count == 0)
2326 gpiod_set_value_cansleep(pin->gpiod, 1);
2327
2328 pin->enable_count++;
2329 } else {
2330 if (pin->enable_count > 1) {
2331 pin->enable_count--;
2332 return 0;
2333 }
2334
2335 /* Disable GPIO if not used */
2336 if (pin->enable_count <= 1) {
2337 gpiod_set_value_cansleep(pin->gpiod, 0);
2338 pin->enable_count = 0;
2339 }
2340 }
2341
2342 return 0;
2343}
2344
2345/**
2346 * _regulator_enable_delay - a delay helper function
2347 * @delay: time to delay in microseconds
2348 *
2349 * Delay for the requested amount of time as per the guidelines in:
2350 *
2351 * Documentation/timers/timers-howto.rst
2352 *
2353 * The assumption here is that regulators will never be enabled in
2354 * atomic context and therefore sleeping functions can be used.
2355 */
2356static void _regulator_enable_delay(unsigned int delay)
2357{
2358 unsigned int ms = delay / 1000;
2359 unsigned int us = delay % 1000;
2360
2361 if (ms > 0) {
2362 /*
2363 * For small enough values, handle super-millisecond
2364 * delays in the usleep_range() call below.
2365 */
2366 if (ms < 20)
2367 us += ms * 1000;
2368 else
2369 msleep(ms);
2370 }
2371
2372 /*
2373 * Give the scheduler some room to coalesce with any other
2374 * wakeup sources. For delays shorter than 10 us, don't even
2375 * bother setting up high-resolution timers and just busy-
2376 * loop.
2377 */
2378 if (us >= 10)
2379 usleep_range(us, us + 100);
2380 else
2381 udelay(us);
2382}
2383
2384/**
2385 * _regulator_check_status_enabled
2386 *
2387 * A helper function to check if the regulator status can be interpreted
2388 * as 'regulator is enabled'.
2389 * @rdev: the regulator device to check
2390 *
2391 * Return:
2392 * * 1 - if status shows regulator is in enabled state
2393 * * 0 - if not enabled state
2394 * * Error Value - as received from ops->get_status()
2395 */
2396static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2397{
2398 int ret = rdev->desc->ops->get_status(rdev);
2399
2400 if (ret < 0) {
2401 rdev_info(rdev, "get_status returned error: %d\n", ret);
2402 return ret;
2403 }
2404
2405 switch (ret) {
2406 case REGULATOR_STATUS_OFF:
2407 case REGULATOR_STATUS_ERROR:
2408 case REGULATOR_STATUS_UNDEFINED:
2409 return 0;
2410 default:
2411 return 1;
2412 }
2413}
2414
2415static int _regulator_do_enable(struct regulator_dev *rdev)
2416{
2417 int ret, delay;
2418
2419 /* Query before enabling in case configuration dependent. */
2420 ret = _regulator_get_enable_time(rdev);
2421 if (ret >= 0) {
2422 delay = ret;
2423 } else {
2424 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2425 delay = 0;
2426 }
2427
2428 trace_regulator_enable(rdev_get_name(rdev));
2429
2430 if (rdev->desc->off_on_delay) {
2431 /* if needed, keep a distance of off_on_delay from last time
2432 * this regulator was disabled.
2433 */
2434 unsigned long start_jiffy = jiffies;
2435 unsigned long intended, max_delay, remaining;
2436
2437 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2438 intended = rdev->last_off_jiffy + max_delay;
2439
2440 if (time_before(start_jiffy, intended)) {
2441 /* calc remaining jiffies to deal with one-time
2442 * timer wrapping.
2443 * in case of multiple timer wrapping, either it can be
2444 * detected by out-of-range remaining, or it cannot be
2445 * detected and we get a penalty of
2446 * _regulator_enable_delay().
2447 */
2448 remaining = intended - start_jiffy;
2449 if (remaining <= max_delay)
2450 _regulator_enable_delay(
2451 jiffies_to_usecs(remaining));
2452 }
2453 }
2454
2455 if (rdev->ena_pin) {
2456 if (!rdev->ena_gpio_state) {
2457 ret = regulator_ena_gpio_ctrl(rdev, true);
2458 if (ret < 0)
2459 return ret;
2460 rdev->ena_gpio_state = 1;
2461 }
2462 } else if (rdev->desc->ops->enable) {
2463 ret = rdev->desc->ops->enable(rdev);
2464 if (ret < 0)
2465 return ret;
2466 } else {
2467 return -EINVAL;
2468 }
2469
2470 /* Allow the regulator to ramp; it would be useful to extend
2471 * this for bulk operations so that the regulators can ramp
2472 * together. */
2473 trace_regulator_enable_delay(rdev_get_name(rdev));
2474
2475 /* If poll_enabled_time is set, poll upto the delay calculated
2476 * above, delaying poll_enabled_time uS to check if the regulator
2477 * actually got enabled.
2478 * If the regulator isn't enabled after enable_delay has
2479 * expired, return -ETIMEDOUT.
2480 */
2481 if (rdev->desc->poll_enabled_time) {
2482 unsigned int time_remaining = delay;
2483
2484 while (time_remaining > 0) {
2485 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2486
2487 if (rdev->desc->ops->get_status) {
2488 ret = _regulator_check_status_enabled(rdev);
2489 if (ret < 0)
2490 return ret;
2491 else if (ret)
2492 break;
2493 } else if (rdev->desc->ops->is_enabled(rdev))
2494 break;
2495
2496 time_remaining -= rdev->desc->poll_enabled_time;
2497 }
2498
2499 if (time_remaining <= 0) {
2500 rdev_err(rdev, "Enabled check timed out\n");
2501 return -ETIMEDOUT;
2502 }
2503 } else {
2504 _regulator_enable_delay(delay);
2505 }
2506
2507 trace_regulator_enable_complete(rdev_get_name(rdev));
2508
2509 return 0;
2510}
2511
2512/**
2513 * _regulator_handle_consumer_enable - handle that a consumer enabled
2514 * @regulator: regulator source
2515 *
2516 * Some things on a regulator consumer (like the contribution towards total
2517 * load on the regulator) only have an effect when the consumer wants the
2518 * regulator enabled. Explained in example with two consumers of the same
2519 * regulator:
2520 * consumer A: set_load(100); => total load = 0
2521 * consumer A: regulator_enable(); => total load = 100
2522 * consumer B: set_load(1000); => total load = 100
2523 * consumer B: regulator_enable(); => total load = 1100
2524 * consumer A: regulator_disable(); => total_load = 1000
2525 *
2526 * This function (together with _regulator_handle_consumer_disable) is
2527 * responsible for keeping track of the refcount for a given regulator consumer
2528 * and applying / unapplying these things.
2529 *
2530 * Returns 0 upon no error; -error upon error.
2531 */
2532static int _regulator_handle_consumer_enable(struct regulator *regulator)
2533{
2534 struct regulator_dev *rdev = regulator->rdev;
2535
2536 lockdep_assert_held_once(&rdev->mutex.base);
2537
2538 regulator->enable_count++;
2539 if (regulator->uA_load && regulator->enable_count == 1)
2540 return drms_uA_update(rdev);
2541
2542 return 0;
2543}
2544
2545/**
2546 * _regulator_handle_consumer_disable - handle that a consumer disabled
2547 * @regulator: regulator source
2548 *
2549 * The opposite of _regulator_handle_consumer_enable().
2550 *
2551 * Returns 0 upon no error; -error upon error.
2552 */
2553static int _regulator_handle_consumer_disable(struct regulator *regulator)
2554{
2555 struct regulator_dev *rdev = regulator->rdev;
2556
2557 lockdep_assert_held_once(&rdev->mutex.base);
2558
2559 if (!regulator->enable_count) {
2560 rdev_err(rdev, "Underflow of regulator enable count\n");
2561 return -EINVAL;
2562 }
2563
2564 regulator->enable_count--;
2565 if (regulator->uA_load && regulator->enable_count == 0)
2566 return drms_uA_update(rdev);
2567
2568 return 0;
2569}
2570
2571/* locks held by regulator_enable() */
2572static int _regulator_enable(struct regulator *regulator)
2573{
2574 struct regulator_dev *rdev = regulator->rdev;
2575 int ret;
2576
2577 lockdep_assert_held_once(&rdev->mutex.base);
2578
2579 if (rdev->use_count == 0 && rdev->supply) {
2580 ret = _regulator_enable(rdev->supply);
2581 if (ret < 0)
2582 return ret;
2583 }
2584
2585 /* balance only if there are regulators coupled */
2586 if (rdev->coupling_desc.n_coupled > 1) {
2587 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2588 if (ret < 0)
2589 goto err_disable_supply;
2590 }
2591
2592 ret = _regulator_handle_consumer_enable(regulator);
2593 if (ret < 0)
2594 goto err_disable_supply;
2595
2596 if (rdev->use_count == 0) {
2597 /* The regulator may on if it's not switchable or left on */
2598 ret = _regulator_is_enabled(rdev);
2599 if (ret == -EINVAL || ret == 0) {
2600 if (!regulator_ops_is_valid(rdev,
2601 REGULATOR_CHANGE_STATUS)) {
2602 ret = -EPERM;
2603 goto err_consumer_disable;
2604 }
2605
2606 ret = _regulator_do_enable(rdev);
2607 if (ret < 0)
2608 goto err_consumer_disable;
2609
2610 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2611 NULL);
2612 } else if (ret < 0) {
2613 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2614 goto err_consumer_disable;
2615 }
2616 /* Fallthrough on positive return values - already enabled */
2617 }
2618
2619 rdev->use_count++;
2620
2621 return 0;
2622
2623err_consumer_disable:
2624 _regulator_handle_consumer_disable(regulator);
2625
2626err_disable_supply:
2627 if (rdev->use_count == 0 && rdev->supply)
2628 _regulator_disable(rdev->supply);
2629
2630 return ret;
2631}
2632
2633/**
2634 * regulator_enable - enable regulator output
2635 * @regulator: regulator source
2636 *
2637 * Request that the regulator be enabled with the regulator output at
2638 * the predefined voltage or current value. Calls to regulator_enable()
2639 * must be balanced with calls to regulator_disable().
2640 *
2641 * NOTE: the output value can be set by other drivers, boot loader or may be
2642 * hardwired in the regulator.
2643 */
2644int regulator_enable(struct regulator *regulator)
2645{
2646 struct regulator_dev *rdev = regulator->rdev;
2647 struct ww_acquire_ctx ww_ctx;
2648 int ret;
2649
2650 regulator_lock_dependent(rdev, &ww_ctx);
2651 ret = _regulator_enable(regulator);
2652 regulator_unlock_dependent(rdev, &ww_ctx);
2653
2654 return ret;
2655}
2656EXPORT_SYMBOL_GPL(regulator_enable);
2657
2658static int _regulator_do_disable(struct regulator_dev *rdev)
2659{
2660 int ret;
2661
2662 trace_regulator_disable(rdev_get_name(rdev));
2663
2664 if (rdev->ena_pin) {
2665 if (rdev->ena_gpio_state) {
2666 ret = regulator_ena_gpio_ctrl(rdev, false);
2667 if (ret < 0)
2668 return ret;
2669 rdev->ena_gpio_state = 0;
2670 }
2671
2672 } else if (rdev->desc->ops->disable) {
2673 ret = rdev->desc->ops->disable(rdev);
2674 if (ret != 0)
2675 return ret;
2676 }
2677
2678 /* cares about last_off_jiffy only if off_on_delay is required by
2679 * device.
2680 */
2681 if (rdev->desc->off_on_delay)
2682 rdev->last_off_jiffy = jiffies;
2683
2684 trace_regulator_disable_complete(rdev_get_name(rdev));
2685
2686 return 0;
2687}
2688
2689/* locks held by regulator_disable() */
2690static int _regulator_disable(struct regulator *regulator)
2691{
2692 struct regulator_dev *rdev = regulator->rdev;
2693 int ret = 0;
2694
2695 lockdep_assert_held_once(&rdev->mutex.base);
2696
2697 if (WARN(rdev->use_count <= 0,
2698 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2699 return -EIO;
2700
2701 /* are we the last user and permitted to disable ? */
2702 if (rdev->use_count == 1 &&
2703 (rdev->constraints && !rdev->constraints->always_on)) {
2704
2705 /* we are last user */
2706 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2707 ret = _notifier_call_chain(rdev,
2708 REGULATOR_EVENT_PRE_DISABLE,
2709 NULL);
2710 if (ret & NOTIFY_STOP_MASK)
2711 return -EINVAL;
2712
2713 ret = _regulator_do_disable(rdev);
2714 if (ret < 0) {
2715 rdev_err(rdev, "failed to disable\n");
2716 _notifier_call_chain(rdev,
2717 REGULATOR_EVENT_ABORT_DISABLE,
2718 NULL);
2719 return ret;
2720 }
2721 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2722 NULL);
2723 }
2724
2725 rdev->use_count = 0;
2726 } else if (rdev->use_count > 1) {
2727 rdev->use_count--;
2728 }
2729
2730 if (ret == 0)
2731 ret = _regulator_handle_consumer_disable(regulator);
2732
2733 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2734 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2735
2736 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2737 ret = _regulator_disable(rdev->supply);
2738
2739 return ret;
2740}
2741
2742/**
2743 * regulator_disable - disable regulator output
2744 * @regulator: regulator source
2745 *
2746 * Disable the regulator output voltage or current. Calls to
2747 * regulator_enable() must be balanced with calls to
2748 * regulator_disable().
2749 *
2750 * NOTE: this will only disable the regulator output if no other consumer
2751 * devices have it enabled, the regulator device supports disabling and
2752 * machine constraints permit this operation.
2753 */
2754int regulator_disable(struct regulator *regulator)
2755{
2756 struct regulator_dev *rdev = regulator->rdev;
2757 struct ww_acquire_ctx ww_ctx;
2758 int ret;
2759
2760 regulator_lock_dependent(rdev, &ww_ctx);
2761 ret = _regulator_disable(regulator);
2762 regulator_unlock_dependent(rdev, &ww_ctx);
2763
2764 return ret;
2765}
2766EXPORT_SYMBOL_GPL(regulator_disable);
2767
2768/* locks held by regulator_force_disable() */
2769static int _regulator_force_disable(struct regulator_dev *rdev)
2770{
2771 int ret = 0;
2772
2773 lockdep_assert_held_once(&rdev->mutex.base);
2774
2775 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2776 REGULATOR_EVENT_PRE_DISABLE, NULL);
2777 if (ret & NOTIFY_STOP_MASK)
2778 return -EINVAL;
2779
2780 ret = _regulator_do_disable(rdev);
2781 if (ret < 0) {
2782 rdev_err(rdev, "failed to force disable\n");
2783 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2784 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2785 return ret;
2786 }
2787
2788 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2789 REGULATOR_EVENT_DISABLE, NULL);
2790
2791 return 0;
2792}
2793
2794/**
2795 * regulator_force_disable - force disable regulator output
2796 * @regulator: regulator source
2797 *
2798 * Forcibly disable the regulator output voltage or current.
2799 * NOTE: this *will* disable the regulator output even if other consumer
2800 * devices have it enabled. This should be used for situations when device
2801 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2802 */
2803int regulator_force_disable(struct regulator *regulator)
2804{
2805 struct regulator_dev *rdev = regulator->rdev;
2806 struct ww_acquire_ctx ww_ctx;
2807 int ret;
2808
2809 regulator_lock_dependent(rdev, &ww_ctx);
2810
2811 ret = _regulator_force_disable(regulator->rdev);
2812
2813 if (rdev->coupling_desc.n_coupled > 1)
2814 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2815
2816 if (regulator->uA_load) {
2817 regulator->uA_load = 0;
2818 ret = drms_uA_update(rdev);
2819 }
2820
2821 if (rdev->use_count != 0 && rdev->supply)
2822 _regulator_disable(rdev->supply);
2823
2824 regulator_unlock_dependent(rdev, &ww_ctx);
2825
2826 return ret;
2827}
2828EXPORT_SYMBOL_GPL(regulator_force_disable);
2829
2830static void regulator_disable_work(struct work_struct *work)
2831{
2832 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2833 disable_work.work);
2834 struct ww_acquire_ctx ww_ctx;
2835 int count, i, ret;
2836 struct regulator *regulator;
2837 int total_count = 0;
2838
2839 regulator_lock_dependent(rdev, &ww_ctx);
2840
2841 /*
2842 * Workqueue functions queue the new work instance while the previous
2843 * work instance is being processed. Cancel the queued work instance
2844 * as the work instance under processing does the job of the queued
2845 * work instance.
2846 */
2847 cancel_delayed_work(&rdev->disable_work);
2848
2849 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2850 count = regulator->deferred_disables;
2851
2852 if (!count)
2853 continue;
2854
2855 total_count += count;
2856 regulator->deferred_disables = 0;
2857
2858 for (i = 0; i < count; i++) {
2859 ret = _regulator_disable(regulator);
2860 if (ret != 0)
2861 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2862 }
2863 }
2864 WARN_ON(!total_count);
2865
2866 if (rdev->coupling_desc.n_coupled > 1)
2867 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2868
2869 regulator_unlock_dependent(rdev, &ww_ctx);
2870}
2871
2872/**
2873 * regulator_disable_deferred - disable regulator output with delay
2874 * @regulator: regulator source
2875 * @ms: milliseconds until the regulator is disabled
2876 *
2877 * Execute regulator_disable() on the regulator after a delay. This
2878 * is intended for use with devices that require some time to quiesce.
2879 *
2880 * NOTE: this will only disable the regulator output if no other consumer
2881 * devices have it enabled, the regulator device supports disabling and
2882 * machine constraints permit this operation.
2883 */
2884int regulator_disable_deferred(struct regulator *regulator, int ms)
2885{
2886 struct regulator_dev *rdev = regulator->rdev;
2887
2888 if (!ms)
2889 return regulator_disable(regulator);
2890
2891 regulator_lock(rdev);
2892 regulator->deferred_disables++;
2893 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2894 msecs_to_jiffies(ms));
2895 regulator_unlock(rdev);
2896
2897 return 0;
2898}
2899EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2900
2901static int _regulator_is_enabled(struct regulator_dev *rdev)
2902{
2903 /* A GPIO control always takes precedence */
2904 if (rdev->ena_pin)
2905 return rdev->ena_gpio_state;
2906
2907 /* If we don't know then assume that the regulator is always on */
2908 if (!rdev->desc->ops->is_enabled)
2909 return 1;
2910
2911 return rdev->desc->ops->is_enabled(rdev);
2912}
2913
2914static int _regulator_list_voltage(struct regulator_dev *rdev,
2915 unsigned selector, int lock)
2916{
2917 const struct regulator_ops *ops = rdev->desc->ops;
2918 int ret;
2919
2920 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2921 return rdev->desc->fixed_uV;
2922
2923 if (ops->list_voltage) {
2924 if (selector >= rdev->desc->n_voltages)
2925 return -EINVAL;
2926 if (lock)
2927 regulator_lock(rdev);
2928 ret = ops->list_voltage(rdev, selector);
2929 if (lock)
2930 regulator_unlock(rdev);
2931 } else if (rdev->is_switch && rdev->supply) {
2932 ret = _regulator_list_voltage(rdev->supply->rdev,
2933 selector, lock);
2934 } else {
2935 return -EINVAL;
2936 }
2937
2938 if (ret > 0) {
2939 if (ret < rdev->constraints->min_uV)
2940 ret = 0;
2941 else if (ret > rdev->constraints->max_uV)
2942 ret = 0;
2943 }
2944
2945 return ret;
2946}
2947
2948/**
2949 * regulator_is_enabled - is the regulator output enabled
2950 * @regulator: regulator source
2951 *
2952 * Returns positive if the regulator driver backing the source/client
2953 * has requested that the device be enabled, zero if it hasn't, else a
2954 * negative errno code.
2955 *
2956 * Note that the device backing this regulator handle can have multiple
2957 * users, so it might be enabled even if regulator_enable() was never
2958 * called for this particular source.
2959 */
2960int regulator_is_enabled(struct regulator *regulator)
2961{
2962 int ret;
2963
2964 if (regulator->always_on)
2965 return 1;
2966
2967 regulator_lock(regulator->rdev);
2968 ret = _regulator_is_enabled(regulator->rdev);
2969 regulator_unlock(regulator->rdev);
2970
2971 return ret;
2972}
2973EXPORT_SYMBOL_GPL(regulator_is_enabled);
2974
2975/**
2976 * regulator_count_voltages - count regulator_list_voltage() selectors
2977 * @regulator: regulator source
2978 *
2979 * Returns number of selectors, or negative errno. Selectors are
2980 * numbered starting at zero, and typically correspond to bitfields
2981 * in hardware registers.
2982 */
2983int regulator_count_voltages(struct regulator *regulator)
2984{
2985 struct regulator_dev *rdev = regulator->rdev;
2986
2987 if (rdev->desc->n_voltages)
2988 return rdev->desc->n_voltages;
2989
2990 if (!rdev->is_switch || !rdev->supply)
2991 return -EINVAL;
2992
2993 return regulator_count_voltages(rdev->supply);
2994}
2995EXPORT_SYMBOL_GPL(regulator_count_voltages);
2996
2997/**
2998 * regulator_list_voltage - enumerate supported voltages
2999 * @regulator: regulator source
3000 * @selector: identify voltage to list
3001 * Context: can sleep
3002 *
3003 * Returns a voltage that can be passed to @regulator_set_voltage(),
3004 * zero if this selector code can't be used on this system, or a
3005 * negative errno.
3006 */
3007int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3008{
3009 return _regulator_list_voltage(regulator->rdev, selector, 1);
3010}
3011EXPORT_SYMBOL_GPL(regulator_list_voltage);
3012
3013/**
3014 * regulator_get_regmap - get the regulator's register map
3015 * @regulator: regulator source
3016 *
3017 * Returns the register map for the given regulator, or an ERR_PTR value
3018 * if the regulator doesn't use regmap.
3019 */
3020struct regmap *regulator_get_regmap(struct regulator *regulator)
3021{
3022 struct regmap *map = regulator->rdev->regmap;
3023
3024 return map ? map : ERR_PTR(-EOPNOTSUPP);
3025}
3026
3027/**
3028 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3029 * @regulator: regulator source
3030 * @vsel_reg: voltage selector register, output parameter
3031 * @vsel_mask: mask for voltage selector bitfield, output parameter
3032 *
3033 * Returns the hardware register offset and bitmask used for setting the
3034 * regulator voltage. This might be useful when configuring voltage-scaling
3035 * hardware or firmware that can make I2C requests behind the kernel's back,
3036 * for example.
3037 *
3038 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3039 * and 0 is returned, otherwise a negative errno is returned.
3040 */
3041int regulator_get_hardware_vsel_register(struct regulator *regulator,
3042 unsigned *vsel_reg,
3043 unsigned *vsel_mask)
3044{
3045 struct regulator_dev *rdev = regulator->rdev;
3046 const struct regulator_ops *ops = rdev->desc->ops;
3047
3048 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3049 return -EOPNOTSUPP;
3050
3051 *vsel_reg = rdev->desc->vsel_reg;
3052 *vsel_mask = rdev->desc->vsel_mask;
3053
3054 return 0;
3055}
3056EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3057
3058/**
3059 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3060 * @regulator: regulator source
3061 * @selector: identify voltage to list
3062 *
3063 * Converts the selector to a hardware-specific voltage selector that can be
3064 * directly written to the regulator registers. The address of the voltage
3065 * register can be determined by calling @regulator_get_hardware_vsel_register.
3066 *
3067 * On error a negative errno is returned.
3068 */
3069int regulator_list_hardware_vsel(struct regulator *regulator,
3070 unsigned selector)
3071{
3072 struct regulator_dev *rdev = regulator->rdev;
3073 const struct regulator_ops *ops = rdev->desc->ops;
3074
3075 if (selector >= rdev->desc->n_voltages)
3076 return -EINVAL;
3077 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3078 return -EOPNOTSUPP;
3079
3080 return selector;
3081}
3082EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3083
3084/**
3085 * regulator_get_linear_step - return the voltage step size between VSEL values
3086 * @regulator: regulator source
3087 *
3088 * Returns the voltage step size between VSEL values for linear
3089 * regulators, or return 0 if the regulator isn't a linear regulator.
3090 */
3091unsigned int regulator_get_linear_step(struct regulator *regulator)
3092{
3093 struct regulator_dev *rdev = regulator->rdev;
3094
3095 return rdev->desc->uV_step;
3096}
3097EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3098
3099/**
3100 * regulator_is_supported_voltage - check if a voltage range can be supported
3101 *
3102 * @regulator: Regulator to check.
3103 * @min_uV: Minimum required voltage in uV.
3104 * @max_uV: Maximum required voltage in uV.
3105 *
3106 * Returns a boolean.
3107 */
3108int regulator_is_supported_voltage(struct regulator *regulator,
3109 int min_uV, int max_uV)
3110{
3111 struct regulator_dev *rdev = regulator->rdev;
3112 int i, voltages, ret;
3113
3114 /* If we can't change voltage check the current voltage */
3115 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3116 ret = regulator_get_voltage(regulator);
3117 if (ret >= 0)
3118 return min_uV <= ret && ret <= max_uV;
3119 else
3120 return ret;
3121 }
3122
3123 /* Any voltage within constrains range is fine? */
3124 if (rdev->desc->continuous_voltage_range)
3125 return min_uV >= rdev->constraints->min_uV &&
3126 max_uV <= rdev->constraints->max_uV;
3127
3128 ret = regulator_count_voltages(regulator);
3129 if (ret < 0)
3130 return 0;
3131 voltages = ret;
3132
3133 for (i = 0; i < voltages; i++) {
3134 ret = regulator_list_voltage(regulator, i);
3135
3136 if (ret >= min_uV && ret <= max_uV)
3137 return 1;
3138 }
3139
3140 return 0;
3141}
3142EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3143
3144static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3145 int max_uV)
3146{
3147 const struct regulator_desc *desc = rdev->desc;
3148
3149 if (desc->ops->map_voltage)
3150 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3151
3152 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3153 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3154
3155 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3156 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3157
3158 if (desc->ops->list_voltage ==
3159 regulator_list_voltage_pickable_linear_range)
3160 return regulator_map_voltage_pickable_linear_range(rdev,
3161 min_uV, max_uV);
3162
3163 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3164}
3165
3166static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3167 int min_uV, int max_uV,
3168 unsigned *selector)
3169{
3170 struct pre_voltage_change_data data;
3171 int ret;
3172
3173 data.old_uV = regulator_get_voltage_rdev(rdev);
3174 data.min_uV = min_uV;
3175 data.max_uV = max_uV;
3176 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3177 &data);
3178 if (ret & NOTIFY_STOP_MASK)
3179 return -EINVAL;
3180
3181 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3182 if (ret >= 0)
3183 return ret;
3184
3185 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3186 (void *)data.old_uV);
3187
3188 return ret;
3189}
3190
3191static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3192 int uV, unsigned selector)
3193{
3194 struct pre_voltage_change_data data;
3195 int ret;
3196
3197 data.old_uV = regulator_get_voltage_rdev(rdev);
3198 data.min_uV = uV;
3199 data.max_uV = uV;
3200 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3201 &data);
3202 if (ret & NOTIFY_STOP_MASK)
3203 return -EINVAL;
3204
3205 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3206 if (ret >= 0)
3207 return ret;
3208
3209 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3210 (void *)data.old_uV);
3211
3212 return ret;
3213}
3214
3215static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3216 int uV, int new_selector)
3217{
3218 const struct regulator_ops *ops = rdev->desc->ops;
3219 int diff, old_sel, curr_sel, ret;
3220
3221 /* Stepping is only needed if the regulator is enabled. */
3222 if (!_regulator_is_enabled(rdev))
3223 goto final_set;
3224
3225 if (!ops->get_voltage_sel)
3226 return -EINVAL;
3227
3228 old_sel = ops->get_voltage_sel(rdev);
3229 if (old_sel < 0)
3230 return old_sel;
3231
3232 diff = new_selector - old_sel;
3233 if (diff == 0)
3234 return 0; /* No change needed. */
3235
3236 if (diff > 0) {
3237 /* Stepping up. */
3238 for (curr_sel = old_sel + rdev->desc->vsel_step;
3239 curr_sel < new_selector;
3240 curr_sel += rdev->desc->vsel_step) {
3241 /*
3242 * Call the callback directly instead of using
3243 * _regulator_call_set_voltage_sel() as we don't
3244 * want to notify anyone yet. Same in the branch
3245 * below.
3246 */
3247 ret = ops->set_voltage_sel(rdev, curr_sel);
3248 if (ret)
3249 goto try_revert;
3250 }
3251 } else {
3252 /* Stepping down. */
3253 for (curr_sel = old_sel - rdev->desc->vsel_step;
3254 curr_sel > new_selector;
3255 curr_sel -= rdev->desc->vsel_step) {
3256 ret = ops->set_voltage_sel(rdev, curr_sel);
3257 if (ret)
3258 goto try_revert;
3259 }
3260 }
3261
3262final_set:
3263 /* The final selector will trigger the notifiers. */
3264 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3265
3266try_revert:
3267 /*
3268 * At least try to return to the previous voltage if setting a new
3269 * one failed.
3270 */
3271 (void)ops->set_voltage_sel(rdev, old_sel);
3272 return ret;
3273}
3274
3275static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3276 int old_uV, int new_uV)
3277{
3278 unsigned int ramp_delay = 0;
3279
3280 if (rdev->constraints->ramp_delay)
3281 ramp_delay = rdev->constraints->ramp_delay;
3282 else if (rdev->desc->ramp_delay)
3283 ramp_delay = rdev->desc->ramp_delay;
3284 else if (rdev->constraints->settling_time)
3285 return rdev->constraints->settling_time;
3286 else if (rdev->constraints->settling_time_up &&
3287 (new_uV > old_uV))
3288 return rdev->constraints->settling_time_up;
3289 else if (rdev->constraints->settling_time_down &&
3290 (new_uV < old_uV))
3291 return rdev->constraints->settling_time_down;
3292
3293 if (ramp_delay == 0) {
3294 rdev_dbg(rdev, "ramp_delay not set\n");
3295 return 0;
3296 }
3297
3298 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3299}
3300
3301static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3302 int min_uV, int max_uV)
3303{
3304 int ret;
3305 int delay = 0;
3306 int best_val = 0;
3307 unsigned int selector;
3308 int old_selector = -1;
3309 const struct regulator_ops *ops = rdev->desc->ops;
3310 int old_uV = regulator_get_voltage_rdev(rdev);
3311
3312 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3313
3314 min_uV += rdev->constraints->uV_offset;
3315 max_uV += rdev->constraints->uV_offset;
3316
3317 /*
3318 * If we can't obtain the old selector there is not enough
3319 * info to call set_voltage_time_sel().
3320 */
3321 if (_regulator_is_enabled(rdev) &&
3322 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3323 old_selector = ops->get_voltage_sel(rdev);
3324 if (old_selector < 0)
3325 return old_selector;
3326 }
3327
3328 if (ops->set_voltage) {
3329 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3330 &selector);
3331
3332 if (ret >= 0) {
3333 if (ops->list_voltage)
3334 best_val = ops->list_voltage(rdev,
3335 selector);
3336 else
3337 best_val = regulator_get_voltage_rdev(rdev);
3338 }
3339
3340 } else if (ops->set_voltage_sel) {
3341 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3342 if (ret >= 0) {
3343 best_val = ops->list_voltage(rdev, ret);
3344 if (min_uV <= best_val && max_uV >= best_val) {
3345 selector = ret;
3346 if (old_selector == selector)
3347 ret = 0;
3348 else if (rdev->desc->vsel_step)
3349 ret = _regulator_set_voltage_sel_step(
3350 rdev, best_val, selector);
3351 else
3352 ret = _regulator_call_set_voltage_sel(
3353 rdev, best_val, selector);
3354 } else {
3355 ret = -EINVAL;
3356 }
3357 }
3358 } else {
3359 ret = -EINVAL;
3360 }
3361
3362 if (ret)
3363 goto out;
3364
3365 if (ops->set_voltage_time_sel) {
3366 /*
3367 * Call set_voltage_time_sel if successfully obtained
3368 * old_selector
3369 */
3370 if (old_selector >= 0 && old_selector != selector)
3371 delay = ops->set_voltage_time_sel(rdev, old_selector,
3372 selector);
3373 } else {
3374 if (old_uV != best_val) {
3375 if (ops->set_voltage_time)
3376 delay = ops->set_voltage_time(rdev, old_uV,
3377 best_val);
3378 else
3379 delay = _regulator_set_voltage_time(rdev,
3380 old_uV,
3381 best_val);
3382 }
3383 }
3384
3385 if (delay < 0) {
3386 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3387 delay = 0;
3388 }
3389
3390 /* Insert any necessary delays */
3391 if (delay >= 1000) {
3392 mdelay(delay / 1000);
3393 udelay(delay % 1000);
3394 } else if (delay) {
3395 udelay(delay);
3396 }
3397
3398 if (best_val >= 0) {
3399 unsigned long data = best_val;
3400
3401 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3402 (void *)data);
3403 }
3404
3405out:
3406 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3407
3408 return ret;
3409}
3410
3411static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3412 int min_uV, int max_uV, suspend_state_t state)
3413{
3414 struct regulator_state *rstate;
3415 int uV, sel;
3416
3417 rstate = regulator_get_suspend_state(rdev, state);
3418 if (rstate == NULL)
3419 return -EINVAL;
3420
3421 if (min_uV < rstate->min_uV)
3422 min_uV = rstate->min_uV;
3423 if (max_uV > rstate->max_uV)
3424 max_uV = rstate->max_uV;
3425
3426 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3427 if (sel < 0)
3428 return sel;
3429
3430 uV = rdev->desc->ops->list_voltage(rdev, sel);
3431 if (uV >= min_uV && uV <= max_uV)
3432 rstate->uV = uV;
3433
3434 return 0;
3435}
3436
3437static int regulator_set_voltage_unlocked(struct regulator *regulator,
3438 int min_uV, int max_uV,
3439 suspend_state_t state)
3440{
3441 struct regulator_dev *rdev = regulator->rdev;
3442 struct regulator_voltage *voltage = ®ulator->voltage[state];
3443 int ret = 0;
3444 int old_min_uV, old_max_uV;
3445 int current_uV;
3446
3447 /* If we're setting the same range as last time the change
3448 * should be a noop (some cpufreq implementations use the same
3449 * voltage for multiple frequencies, for example).
3450 */
3451 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3452 goto out;
3453
3454 /* If we're trying to set a range that overlaps the current voltage,
3455 * return successfully even though the regulator does not support
3456 * changing the voltage.
3457 */
3458 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3459 current_uV = regulator_get_voltage_rdev(rdev);
3460 if (min_uV <= current_uV && current_uV <= max_uV) {
3461 voltage->min_uV = min_uV;
3462 voltage->max_uV = max_uV;
3463 goto out;
3464 }
3465 }
3466
3467 /* sanity check */
3468 if (!rdev->desc->ops->set_voltage &&
3469 !rdev->desc->ops->set_voltage_sel) {
3470 ret = -EINVAL;
3471 goto out;
3472 }
3473
3474 /* constraints check */
3475 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3476 if (ret < 0)
3477 goto out;
3478
3479 /* restore original values in case of error */
3480 old_min_uV = voltage->min_uV;
3481 old_max_uV = voltage->max_uV;
3482 voltage->min_uV = min_uV;
3483 voltage->max_uV = max_uV;
3484
3485 /* for not coupled regulators this will just set the voltage */
3486 ret = regulator_balance_voltage(rdev, state);
3487 if (ret < 0) {
3488 voltage->min_uV = old_min_uV;
3489 voltage->max_uV = old_max_uV;
3490 }
3491
3492out:
3493 return ret;
3494}
3495
3496int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3497 int max_uV, suspend_state_t state)
3498{
3499 int best_supply_uV = 0;
3500 int supply_change_uV = 0;
3501 int ret;
3502
3503 if (rdev->supply &&
3504 regulator_ops_is_valid(rdev->supply->rdev,
3505 REGULATOR_CHANGE_VOLTAGE) &&
3506 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3507 rdev->desc->ops->get_voltage_sel))) {
3508 int current_supply_uV;
3509 int selector;
3510
3511 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3512 if (selector < 0) {
3513 ret = selector;
3514 goto out;
3515 }
3516
3517 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3518 if (best_supply_uV < 0) {
3519 ret = best_supply_uV;
3520 goto out;
3521 }
3522
3523 best_supply_uV += rdev->desc->min_dropout_uV;
3524
3525 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3526 if (current_supply_uV < 0) {
3527 ret = current_supply_uV;
3528 goto out;
3529 }
3530
3531 supply_change_uV = best_supply_uV - current_supply_uV;
3532 }
3533
3534 if (supply_change_uV > 0) {
3535 ret = regulator_set_voltage_unlocked(rdev->supply,
3536 best_supply_uV, INT_MAX, state);
3537 if (ret) {
3538 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3539 ret);
3540 goto out;
3541 }
3542 }
3543
3544 if (state == PM_SUSPEND_ON)
3545 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3546 else
3547 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3548 max_uV, state);
3549 if (ret < 0)
3550 goto out;
3551
3552 if (supply_change_uV < 0) {
3553 ret = regulator_set_voltage_unlocked(rdev->supply,
3554 best_supply_uV, INT_MAX, state);
3555 if (ret)
3556 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3557 ret);
3558 /* No need to fail here */
3559 ret = 0;
3560 }
3561
3562out:
3563 return ret;
3564}
3565EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3566
3567static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3568 int *current_uV, int *min_uV)
3569{
3570 struct regulation_constraints *constraints = rdev->constraints;
3571
3572 /* Limit voltage change only if necessary */
3573 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3574 return 1;
3575
3576 if (*current_uV < 0) {
3577 *current_uV = regulator_get_voltage_rdev(rdev);
3578
3579 if (*current_uV < 0)
3580 return *current_uV;
3581 }
3582
3583 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3584 return 1;
3585
3586 /* Clamp target voltage within the given step */
3587 if (*current_uV < *min_uV)
3588 *min_uV = min(*current_uV + constraints->max_uV_step,
3589 *min_uV);
3590 else
3591 *min_uV = max(*current_uV - constraints->max_uV_step,
3592 *min_uV);
3593
3594 return 0;
3595}
3596
3597static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3598 int *current_uV,
3599 int *min_uV, int *max_uV,
3600 suspend_state_t state,
3601 int n_coupled)
3602{
3603 struct coupling_desc *c_desc = &rdev->coupling_desc;
3604 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3605 struct regulation_constraints *constraints = rdev->constraints;
3606 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3607 int max_current_uV = 0, min_current_uV = INT_MAX;
3608 int highest_min_uV = 0, target_uV, possible_uV;
3609 int i, ret, max_spread;
3610 bool done;
3611
3612 *current_uV = -1;
3613
3614 /*
3615 * If there are no coupled regulators, simply set the voltage
3616 * demanded by consumers.
3617 */
3618 if (n_coupled == 1) {
3619 /*
3620 * If consumers don't provide any demands, set voltage
3621 * to min_uV
3622 */
3623 desired_min_uV = constraints->min_uV;
3624 desired_max_uV = constraints->max_uV;
3625
3626 ret = regulator_check_consumers(rdev,
3627 &desired_min_uV,
3628 &desired_max_uV, state);
3629 if (ret < 0)
3630 return ret;
3631
3632 possible_uV = desired_min_uV;
3633 done = true;
3634
3635 goto finish;
3636 }
3637
3638 /* Find highest min desired voltage */
3639 for (i = 0; i < n_coupled; i++) {
3640 int tmp_min = 0;
3641 int tmp_max = INT_MAX;
3642
3643 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3644
3645 ret = regulator_check_consumers(c_rdevs[i],
3646 &tmp_min,
3647 &tmp_max, state);
3648 if (ret < 0)
3649 return ret;
3650
3651 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3652 if (ret < 0)
3653 return ret;
3654
3655 highest_min_uV = max(highest_min_uV, tmp_min);
3656
3657 if (i == 0) {
3658 desired_min_uV = tmp_min;
3659 desired_max_uV = tmp_max;
3660 }
3661 }
3662
3663 max_spread = constraints->max_spread[0];
3664
3665 /*
3666 * Let target_uV be equal to the desired one if possible.
3667 * If not, set it to minimum voltage, allowed by other coupled
3668 * regulators.
3669 */
3670 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3671
3672 /*
3673 * Find min and max voltages, which currently aren't violating
3674 * max_spread.
3675 */
3676 for (i = 1; i < n_coupled; i++) {
3677 int tmp_act;
3678
3679 if (!_regulator_is_enabled(c_rdevs[i]))
3680 continue;
3681
3682 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3683 if (tmp_act < 0)
3684 return tmp_act;
3685
3686 min_current_uV = min(tmp_act, min_current_uV);
3687 max_current_uV = max(tmp_act, max_current_uV);
3688 }
3689
3690 /* There aren't any other regulators enabled */
3691 if (max_current_uV == 0) {
3692 possible_uV = target_uV;
3693 } else {
3694 /*
3695 * Correct target voltage, so as it currently isn't
3696 * violating max_spread
3697 */
3698 possible_uV = max(target_uV, max_current_uV - max_spread);
3699 possible_uV = min(possible_uV, min_current_uV + max_spread);
3700 }
3701
3702 if (possible_uV > desired_max_uV)
3703 return -EINVAL;
3704
3705 done = (possible_uV == target_uV);
3706 desired_min_uV = possible_uV;
3707
3708finish:
3709 /* Apply max_uV_step constraint if necessary */
3710 if (state == PM_SUSPEND_ON) {
3711 ret = regulator_limit_voltage_step(rdev, current_uV,
3712 &desired_min_uV);
3713 if (ret < 0)
3714 return ret;
3715
3716 if (ret == 0)
3717 done = false;
3718 }
3719
3720 /* Set current_uV if wasn't done earlier in the code and if necessary */
3721 if (n_coupled > 1 && *current_uV == -1) {
3722
3723 if (_regulator_is_enabled(rdev)) {
3724 ret = regulator_get_voltage_rdev(rdev);
3725 if (ret < 0)
3726 return ret;
3727
3728 *current_uV = ret;
3729 } else {
3730 *current_uV = desired_min_uV;
3731 }
3732 }
3733
3734 *min_uV = desired_min_uV;
3735 *max_uV = desired_max_uV;
3736
3737 return done;
3738}
3739
3740int regulator_do_balance_voltage(struct regulator_dev *rdev,
3741 suspend_state_t state, bool skip_coupled)
3742{
3743 struct regulator_dev **c_rdevs;
3744 struct regulator_dev *best_rdev;
3745 struct coupling_desc *c_desc = &rdev->coupling_desc;
3746 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3747 unsigned int delta, best_delta;
3748 unsigned long c_rdev_done = 0;
3749 bool best_c_rdev_done;
3750
3751 c_rdevs = c_desc->coupled_rdevs;
3752 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3753
3754 /*
3755 * Find the best possible voltage change on each loop. Leave the loop
3756 * if there isn't any possible change.
3757 */
3758 do {
3759 best_c_rdev_done = false;
3760 best_delta = 0;
3761 best_min_uV = 0;
3762 best_max_uV = 0;
3763 best_c_rdev = 0;
3764 best_rdev = NULL;
3765
3766 /*
3767 * Find highest difference between optimal voltage
3768 * and current voltage.
3769 */
3770 for (i = 0; i < n_coupled; i++) {
3771 /*
3772 * optimal_uV is the best voltage that can be set for
3773 * i-th regulator at the moment without violating
3774 * max_spread constraint in order to balance
3775 * the coupled voltages.
3776 */
3777 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3778
3779 if (test_bit(i, &c_rdev_done))
3780 continue;
3781
3782 ret = regulator_get_optimal_voltage(c_rdevs[i],
3783 ¤t_uV,
3784 &optimal_uV,
3785 &optimal_max_uV,
3786 state, n_coupled);
3787 if (ret < 0)
3788 goto out;
3789
3790 delta = abs(optimal_uV - current_uV);
3791
3792 if (delta && best_delta <= delta) {
3793 best_c_rdev_done = ret;
3794 best_delta = delta;
3795 best_rdev = c_rdevs[i];
3796 best_min_uV = optimal_uV;
3797 best_max_uV = optimal_max_uV;
3798 best_c_rdev = i;
3799 }
3800 }
3801
3802 /* Nothing to change, return successfully */
3803 if (!best_rdev) {
3804 ret = 0;
3805 goto out;
3806 }
3807
3808 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3809 best_max_uV, state);
3810
3811 if (ret < 0)
3812 goto out;
3813
3814 if (best_c_rdev_done)
3815 set_bit(best_c_rdev, &c_rdev_done);
3816
3817 } while (n_coupled > 1);
3818
3819out:
3820 return ret;
3821}
3822
3823static int regulator_balance_voltage(struct regulator_dev *rdev,
3824 suspend_state_t state)
3825{
3826 struct coupling_desc *c_desc = &rdev->coupling_desc;
3827 struct regulator_coupler *coupler = c_desc->coupler;
3828 bool skip_coupled = false;
3829
3830 /*
3831 * If system is in a state other than PM_SUSPEND_ON, don't check
3832 * other coupled regulators.
3833 */
3834 if (state != PM_SUSPEND_ON)
3835 skip_coupled = true;
3836
3837 if (c_desc->n_resolved < c_desc->n_coupled) {
3838 rdev_err(rdev, "Not all coupled regulators registered\n");
3839 return -EPERM;
3840 }
3841
3842 /* Invoke custom balancer for customized couplers */
3843 if (coupler && coupler->balance_voltage)
3844 return coupler->balance_voltage(coupler, rdev, state);
3845
3846 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3847}
3848
3849/**
3850 * regulator_set_voltage - set regulator output voltage
3851 * @regulator: regulator source
3852 * @min_uV: Minimum required voltage in uV
3853 * @max_uV: Maximum acceptable voltage in uV
3854 *
3855 * Sets a voltage regulator to the desired output voltage. This can be set
3856 * during any regulator state. IOW, regulator can be disabled or enabled.
3857 *
3858 * If the regulator is enabled then the voltage will change to the new value
3859 * immediately otherwise if the regulator is disabled the regulator will
3860 * output at the new voltage when enabled.
3861 *
3862 * NOTE: If the regulator is shared between several devices then the lowest
3863 * request voltage that meets the system constraints will be used.
3864 * Regulator system constraints must be set for this regulator before
3865 * calling this function otherwise this call will fail.
3866 */
3867int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3868{
3869 struct ww_acquire_ctx ww_ctx;
3870 int ret;
3871
3872 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3873
3874 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3875 PM_SUSPEND_ON);
3876
3877 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3878
3879 return ret;
3880}
3881EXPORT_SYMBOL_GPL(regulator_set_voltage);
3882
3883static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3884 suspend_state_t state, bool en)
3885{
3886 struct regulator_state *rstate;
3887
3888 rstate = regulator_get_suspend_state(rdev, state);
3889 if (rstate == NULL)
3890 return -EINVAL;
3891
3892 if (!rstate->changeable)
3893 return -EPERM;
3894
3895 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3896
3897 return 0;
3898}
3899
3900int regulator_suspend_enable(struct regulator_dev *rdev,
3901 suspend_state_t state)
3902{
3903 return regulator_suspend_toggle(rdev, state, true);
3904}
3905EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3906
3907int regulator_suspend_disable(struct regulator_dev *rdev,
3908 suspend_state_t state)
3909{
3910 struct regulator *regulator;
3911 struct regulator_voltage *voltage;
3912
3913 /*
3914 * if any consumer wants this regulator device keeping on in
3915 * suspend states, don't set it as disabled.
3916 */
3917 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3918 voltage = ®ulator->voltage[state];
3919 if (voltage->min_uV || voltage->max_uV)
3920 return 0;
3921 }
3922
3923 return regulator_suspend_toggle(rdev, state, false);
3924}
3925EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3926
3927static int _regulator_set_suspend_voltage(struct regulator *regulator,
3928 int min_uV, int max_uV,
3929 suspend_state_t state)
3930{
3931 struct regulator_dev *rdev = regulator->rdev;
3932 struct regulator_state *rstate;
3933
3934 rstate = regulator_get_suspend_state(rdev, state);
3935 if (rstate == NULL)
3936 return -EINVAL;
3937
3938 if (rstate->min_uV == rstate->max_uV) {
3939 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3940 return -EPERM;
3941 }
3942
3943 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3944}
3945
3946int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3947 int max_uV, suspend_state_t state)
3948{
3949 struct ww_acquire_ctx ww_ctx;
3950 int ret;
3951
3952 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3953 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3954 return -EINVAL;
3955
3956 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3957
3958 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3959 max_uV, state);
3960
3961 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3962
3963 return ret;
3964}
3965EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3966
3967/**
3968 * regulator_set_voltage_time - get raise/fall time
3969 * @regulator: regulator source
3970 * @old_uV: starting voltage in microvolts
3971 * @new_uV: target voltage in microvolts
3972 *
3973 * Provided with the starting and ending voltage, this function attempts to
3974 * calculate the time in microseconds required to rise or fall to this new
3975 * voltage.
3976 */
3977int regulator_set_voltage_time(struct regulator *regulator,
3978 int old_uV, int new_uV)
3979{
3980 struct regulator_dev *rdev = regulator->rdev;
3981 const struct regulator_ops *ops = rdev->desc->ops;
3982 int old_sel = -1;
3983 int new_sel = -1;
3984 int voltage;
3985 int i;
3986
3987 if (ops->set_voltage_time)
3988 return ops->set_voltage_time(rdev, old_uV, new_uV);
3989 else if (!ops->set_voltage_time_sel)
3990 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3991
3992 /* Currently requires operations to do this */
3993 if (!ops->list_voltage || !rdev->desc->n_voltages)
3994 return -EINVAL;
3995
3996 for (i = 0; i < rdev->desc->n_voltages; i++) {
3997 /* We only look for exact voltage matches here */
3998 voltage = regulator_list_voltage(regulator, i);
3999 if (voltage < 0)
4000 return -EINVAL;
4001 if (voltage == 0)
4002 continue;
4003 if (voltage == old_uV)
4004 old_sel = i;
4005 if (voltage == new_uV)
4006 new_sel = i;
4007 }
4008
4009 if (old_sel < 0 || new_sel < 0)
4010 return -EINVAL;
4011
4012 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4013}
4014EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4015
4016/**
4017 * regulator_set_voltage_time_sel - get raise/fall time
4018 * @rdev: regulator source device
4019 * @old_selector: selector for starting voltage
4020 * @new_selector: selector for target voltage
4021 *
4022 * Provided with the starting and target voltage selectors, this function
4023 * returns time in microseconds required to rise or fall to this new voltage
4024 *
4025 * Drivers providing ramp_delay in regulation_constraints can use this as their
4026 * set_voltage_time_sel() operation.
4027 */
4028int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4029 unsigned int old_selector,
4030 unsigned int new_selector)
4031{
4032 int old_volt, new_volt;
4033
4034 /* sanity check */
4035 if (!rdev->desc->ops->list_voltage)
4036 return -EINVAL;
4037
4038 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4039 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4040
4041 if (rdev->desc->ops->set_voltage_time)
4042 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4043 new_volt);
4044 else
4045 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4046}
4047EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4048
4049/**
4050 * regulator_sync_voltage - re-apply last regulator output voltage
4051 * @regulator: regulator source
4052 *
4053 * Re-apply the last configured voltage. This is intended to be used
4054 * where some external control source the consumer is cooperating with
4055 * has caused the configured voltage to change.
4056 */
4057int regulator_sync_voltage(struct regulator *regulator)
4058{
4059 struct regulator_dev *rdev = regulator->rdev;
4060 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4061 int ret, min_uV, max_uV;
4062
4063 regulator_lock(rdev);
4064
4065 if (!rdev->desc->ops->set_voltage &&
4066 !rdev->desc->ops->set_voltage_sel) {
4067 ret = -EINVAL;
4068 goto out;
4069 }
4070
4071 /* This is only going to work if we've had a voltage configured. */
4072 if (!voltage->min_uV && !voltage->max_uV) {
4073 ret = -EINVAL;
4074 goto out;
4075 }
4076
4077 min_uV = voltage->min_uV;
4078 max_uV = voltage->max_uV;
4079
4080 /* This should be a paranoia check... */
4081 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4082 if (ret < 0)
4083 goto out;
4084
4085 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4086 if (ret < 0)
4087 goto out;
4088
4089 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4090
4091out:
4092 regulator_unlock(rdev);
4093 return ret;
4094}
4095EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4096
4097int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4098{
4099 int sel, ret;
4100 bool bypassed;
4101
4102 if (rdev->desc->ops->get_bypass) {
4103 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4104 if (ret < 0)
4105 return ret;
4106 if (bypassed) {
4107 /* if bypassed the regulator must have a supply */
4108 if (!rdev->supply) {
4109 rdev_err(rdev,
4110 "bypassed regulator has no supply!\n");
4111 return -EPROBE_DEFER;
4112 }
4113
4114 return regulator_get_voltage_rdev(rdev->supply->rdev);
4115 }
4116 }
4117
4118 if (rdev->desc->ops->get_voltage_sel) {
4119 sel = rdev->desc->ops->get_voltage_sel(rdev);
4120 if (sel < 0)
4121 return sel;
4122 ret = rdev->desc->ops->list_voltage(rdev, sel);
4123 } else if (rdev->desc->ops->get_voltage) {
4124 ret = rdev->desc->ops->get_voltage(rdev);
4125 } else if (rdev->desc->ops->list_voltage) {
4126 ret = rdev->desc->ops->list_voltage(rdev, 0);
4127 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4128 ret = rdev->desc->fixed_uV;
4129 } else if (rdev->supply) {
4130 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4131 } else {
4132 return -EINVAL;
4133 }
4134
4135 if (ret < 0)
4136 return ret;
4137 return ret - rdev->constraints->uV_offset;
4138}
4139EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4140
4141/**
4142 * regulator_get_voltage - get regulator output voltage
4143 * @regulator: regulator source
4144 *
4145 * This returns the current regulator voltage in uV.
4146 *
4147 * NOTE: If the regulator is disabled it will return the voltage value. This
4148 * function should not be used to determine regulator state.
4149 */
4150int regulator_get_voltage(struct regulator *regulator)
4151{
4152 struct ww_acquire_ctx ww_ctx;
4153 int ret;
4154
4155 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4156 ret = regulator_get_voltage_rdev(regulator->rdev);
4157 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4158
4159 return ret;
4160}
4161EXPORT_SYMBOL_GPL(regulator_get_voltage);
4162
4163/**
4164 * regulator_set_current_limit - set regulator output current limit
4165 * @regulator: regulator source
4166 * @min_uA: Minimum supported current in uA
4167 * @max_uA: Maximum supported current in uA
4168 *
4169 * Sets current sink to the desired output current. This can be set during
4170 * any regulator state. IOW, regulator can be disabled or enabled.
4171 *
4172 * If the regulator is enabled then the current will change to the new value
4173 * immediately otherwise if the regulator is disabled the regulator will
4174 * output at the new current when enabled.
4175 *
4176 * NOTE: Regulator system constraints must be set for this regulator before
4177 * calling this function otherwise this call will fail.
4178 */
4179int regulator_set_current_limit(struct regulator *regulator,
4180 int min_uA, int max_uA)
4181{
4182 struct regulator_dev *rdev = regulator->rdev;
4183 int ret;
4184
4185 regulator_lock(rdev);
4186
4187 /* sanity check */
4188 if (!rdev->desc->ops->set_current_limit) {
4189 ret = -EINVAL;
4190 goto out;
4191 }
4192
4193 /* constraints check */
4194 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4195 if (ret < 0)
4196 goto out;
4197
4198 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4199out:
4200 regulator_unlock(rdev);
4201 return ret;
4202}
4203EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4204
4205static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4206{
4207 /* sanity check */
4208 if (!rdev->desc->ops->get_current_limit)
4209 return -EINVAL;
4210
4211 return rdev->desc->ops->get_current_limit(rdev);
4212}
4213
4214static int _regulator_get_current_limit(struct regulator_dev *rdev)
4215{
4216 int ret;
4217
4218 regulator_lock(rdev);
4219 ret = _regulator_get_current_limit_unlocked(rdev);
4220 regulator_unlock(rdev);
4221
4222 return ret;
4223}
4224
4225/**
4226 * regulator_get_current_limit - get regulator output current
4227 * @regulator: regulator source
4228 *
4229 * This returns the current supplied by the specified current sink in uA.
4230 *
4231 * NOTE: If the regulator is disabled it will return the current value. This
4232 * function should not be used to determine regulator state.
4233 */
4234int regulator_get_current_limit(struct regulator *regulator)
4235{
4236 return _regulator_get_current_limit(regulator->rdev);
4237}
4238EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4239
4240/**
4241 * regulator_set_mode - set regulator operating mode
4242 * @regulator: regulator source
4243 * @mode: operating mode - one of the REGULATOR_MODE constants
4244 *
4245 * Set regulator operating mode to increase regulator efficiency or improve
4246 * regulation performance.
4247 *
4248 * NOTE: Regulator system constraints must be set for this regulator before
4249 * calling this function otherwise this call will fail.
4250 */
4251int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4252{
4253 struct regulator_dev *rdev = regulator->rdev;
4254 int ret;
4255 int regulator_curr_mode;
4256
4257 regulator_lock(rdev);
4258
4259 /* sanity check */
4260 if (!rdev->desc->ops->set_mode) {
4261 ret = -EINVAL;
4262 goto out;
4263 }
4264
4265 /* return if the same mode is requested */
4266 if (rdev->desc->ops->get_mode) {
4267 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4268 if (regulator_curr_mode == mode) {
4269 ret = 0;
4270 goto out;
4271 }
4272 }
4273
4274 /* constraints check */
4275 ret = regulator_mode_constrain(rdev, &mode);
4276 if (ret < 0)
4277 goto out;
4278
4279 ret = rdev->desc->ops->set_mode(rdev, mode);
4280out:
4281 regulator_unlock(rdev);
4282 return ret;
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_mode);
4285
4286static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4287{
4288 /* sanity check */
4289 if (!rdev->desc->ops->get_mode)
4290 return -EINVAL;
4291
4292 return rdev->desc->ops->get_mode(rdev);
4293}
4294
4295static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4296{
4297 int ret;
4298
4299 regulator_lock(rdev);
4300 ret = _regulator_get_mode_unlocked(rdev);
4301 regulator_unlock(rdev);
4302
4303 return ret;
4304}
4305
4306/**
4307 * regulator_get_mode - get regulator operating mode
4308 * @regulator: regulator source
4309 *
4310 * Get the current regulator operating mode.
4311 */
4312unsigned int regulator_get_mode(struct regulator *regulator)
4313{
4314 return _regulator_get_mode(regulator->rdev);
4315}
4316EXPORT_SYMBOL_GPL(regulator_get_mode);
4317
4318static int _regulator_get_error_flags(struct regulator_dev *rdev,
4319 unsigned int *flags)
4320{
4321 int ret;
4322
4323 regulator_lock(rdev);
4324
4325 /* sanity check */
4326 if (!rdev->desc->ops->get_error_flags) {
4327 ret = -EINVAL;
4328 goto out;
4329 }
4330
4331 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4332out:
4333 regulator_unlock(rdev);
4334 return ret;
4335}
4336
4337/**
4338 * regulator_get_error_flags - get regulator error information
4339 * @regulator: regulator source
4340 * @flags: pointer to store error flags
4341 *
4342 * Get the current regulator error information.
4343 */
4344int regulator_get_error_flags(struct regulator *regulator,
4345 unsigned int *flags)
4346{
4347 return _regulator_get_error_flags(regulator->rdev, flags);
4348}
4349EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4350
4351/**
4352 * regulator_set_load - set regulator load
4353 * @regulator: regulator source
4354 * @uA_load: load current
4355 *
4356 * Notifies the regulator core of a new device load. This is then used by
4357 * DRMS (if enabled by constraints) to set the most efficient regulator
4358 * operating mode for the new regulator loading.
4359 *
4360 * Consumer devices notify their supply regulator of the maximum power
4361 * they will require (can be taken from device datasheet in the power
4362 * consumption tables) when they change operational status and hence power
4363 * state. Examples of operational state changes that can affect power
4364 * consumption are :-
4365 *
4366 * o Device is opened / closed.
4367 * o Device I/O is about to begin or has just finished.
4368 * o Device is idling in between work.
4369 *
4370 * This information is also exported via sysfs to userspace.
4371 *
4372 * DRMS will sum the total requested load on the regulator and change
4373 * to the most efficient operating mode if platform constraints allow.
4374 *
4375 * NOTE: when a regulator consumer requests to have a regulator
4376 * disabled then any load that consumer requested no longer counts
4377 * toward the total requested load. If the regulator is re-enabled
4378 * then the previously requested load will start counting again.
4379 *
4380 * If a regulator is an always-on regulator then an individual consumer's
4381 * load will still be removed if that consumer is fully disabled.
4382 *
4383 * On error a negative errno is returned.
4384 */
4385int regulator_set_load(struct regulator *regulator, int uA_load)
4386{
4387 struct regulator_dev *rdev = regulator->rdev;
4388 int old_uA_load;
4389 int ret = 0;
4390
4391 regulator_lock(rdev);
4392 old_uA_load = regulator->uA_load;
4393 regulator->uA_load = uA_load;
4394 if (regulator->enable_count && old_uA_load != uA_load) {
4395 ret = drms_uA_update(rdev);
4396 if (ret < 0)
4397 regulator->uA_load = old_uA_load;
4398 }
4399 regulator_unlock(rdev);
4400
4401 return ret;
4402}
4403EXPORT_SYMBOL_GPL(regulator_set_load);
4404
4405/**
4406 * regulator_allow_bypass - allow the regulator to go into bypass mode
4407 *
4408 * @regulator: Regulator to configure
4409 * @enable: enable or disable bypass mode
4410 *
4411 * Allow the regulator to go into bypass mode if all other consumers
4412 * for the regulator also enable bypass mode and the machine
4413 * constraints allow this. Bypass mode means that the regulator is
4414 * simply passing the input directly to the output with no regulation.
4415 */
4416int regulator_allow_bypass(struct regulator *regulator, bool enable)
4417{
4418 struct regulator_dev *rdev = regulator->rdev;
4419 const char *name = rdev_get_name(rdev);
4420 int ret = 0;
4421
4422 if (!rdev->desc->ops->set_bypass)
4423 return 0;
4424
4425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4426 return 0;
4427
4428 regulator_lock(rdev);
4429
4430 if (enable && !regulator->bypass) {
4431 rdev->bypass_count++;
4432
4433 if (rdev->bypass_count == rdev->open_count) {
4434 trace_regulator_bypass_enable(name);
4435
4436 ret = rdev->desc->ops->set_bypass(rdev, enable);
4437 if (ret != 0)
4438 rdev->bypass_count--;
4439 else
4440 trace_regulator_bypass_enable_complete(name);
4441 }
4442
4443 } else if (!enable && regulator->bypass) {
4444 rdev->bypass_count--;
4445
4446 if (rdev->bypass_count != rdev->open_count) {
4447 trace_regulator_bypass_disable(name);
4448
4449 ret = rdev->desc->ops->set_bypass(rdev, enable);
4450 if (ret != 0)
4451 rdev->bypass_count++;
4452 else
4453 trace_regulator_bypass_disable_complete(name);
4454 }
4455 }
4456
4457 if (ret == 0)
4458 regulator->bypass = enable;
4459
4460 regulator_unlock(rdev);
4461
4462 return ret;
4463}
4464EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4465
4466/**
4467 * regulator_register_notifier - register regulator event notifier
4468 * @regulator: regulator source
4469 * @nb: notifier block
4470 *
4471 * Register notifier block to receive regulator events.
4472 */
4473int regulator_register_notifier(struct regulator *regulator,
4474 struct notifier_block *nb)
4475{
4476 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4477 nb);
4478}
4479EXPORT_SYMBOL_GPL(regulator_register_notifier);
4480
4481/**
4482 * regulator_unregister_notifier - unregister regulator event notifier
4483 * @regulator: regulator source
4484 * @nb: notifier block
4485 *
4486 * Unregister regulator event notifier block.
4487 */
4488int regulator_unregister_notifier(struct regulator *regulator,
4489 struct notifier_block *nb)
4490{
4491 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4492 nb);
4493}
4494EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4495
4496/* notify regulator consumers and downstream regulator consumers.
4497 * Note mutex must be held by caller.
4498 */
4499static int _notifier_call_chain(struct regulator_dev *rdev,
4500 unsigned long event, void *data)
4501{
4502 /* call rdev chain first */
4503 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4504}
4505
4506/**
4507 * regulator_bulk_get - get multiple regulator consumers
4508 *
4509 * @dev: Device to supply
4510 * @num_consumers: Number of consumers to register
4511 * @consumers: Configuration of consumers; clients are stored here.
4512 *
4513 * @return 0 on success, an errno on failure.
4514 *
4515 * This helper function allows drivers to get several regulator
4516 * consumers in one operation. If any of the regulators cannot be
4517 * acquired then any regulators that were allocated will be freed
4518 * before returning to the caller.
4519 */
4520int regulator_bulk_get(struct device *dev, int num_consumers,
4521 struct regulator_bulk_data *consumers)
4522{
4523 int i;
4524 int ret;
4525
4526 for (i = 0; i < num_consumers; i++)
4527 consumers[i].consumer = NULL;
4528
4529 for (i = 0; i < num_consumers; i++) {
4530 consumers[i].consumer = regulator_get(dev,
4531 consumers[i].supply);
4532 if (IS_ERR(consumers[i].consumer)) {
4533 ret = PTR_ERR(consumers[i].consumer);
4534 consumers[i].consumer = NULL;
4535 goto err;
4536 }
4537 }
4538
4539 return 0;
4540
4541err:
4542 if (ret != -EPROBE_DEFER)
4543 dev_err(dev, "Failed to get supply '%s': %d\n",
4544 consumers[i].supply, ret);
4545 else
4546 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4547 consumers[i].supply);
4548
4549 while (--i >= 0)
4550 regulator_put(consumers[i].consumer);
4551
4552 return ret;
4553}
4554EXPORT_SYMBOL_GPL(regulator_bulk_get);
4555
4556static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4557{
4558 struct regulator_bulk_data *bulk = data;
4559
4560 bulk->ret = regulator_enable(bulk->consumer);
4561}
4562
4563/**
4564 * regulator_bulk_enable - enable multiple regulator consumers
4565 *
4566 * @num_consumers: Number of consumers
4567 * @consumers: Consumer data; clients are stored here.
4568 * @return 0 on success, an errno on failure
4569 *
4570 * This convenience API allows consumers to enable multiple regulator
4571 * clients in a single API call. If any consumers cannot be enabled
4572 * then any others that were enabled will be disabled again prior to
4573 * return.
4574 */
4575int regulator_bulk_enable(int num_consumers,
4576 struct regulator_bulk_data *consumers)
4577{
4578 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4579 int i;
4580 int ret = 0;
4581
4582 for (i = 0; i < num_consumers; i++) {
4583 async_schedule_domain(regulator_bulk_enable_async,
4584 &consumers[i], &async_domain);
4585 }
4586
4587 async_synchronize_full_domain(&async_domain);
4588
4589 /* If any consumer failed we need to unwind any that succeeded */
4590 for (i = 0; i < num_consumers; i++) {
4591 if (consumers[i].ret != 0) {
4592 ret = consumers[i].ret;
4593 goto err;
4594 }
4595 }
4596
4597 return 0;
4598
4599err:
4600 for (i = 0; i < num_consumers; i++) {
4601 if (consumers[i].ret < 0)
4602 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4603 consumers[i].ret);
4604 else
4605 regulator_disable(consumers[i].consumer);
4606 }
4607
4608 return ret;
4609}
4610EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4611
4612/**
4613 * regulator_bulk_disable - disable multiple regulator consumers
4614 *
4615 * @num_consumers: Number of consumers
4616 * @consumers: Consumer data; clients are stored here.
4617 * @return 0 on success, an errno on failure
4618 *
4619 * This convenience API allows consumers to disable multiple regulator
4620 * clients in a single API call. If any consumers cannot be disabled
4621 * then any others that were disabled will be enabled again prior to
4622 * return.
4623 */
4624int regulator_bulk_disable(int num_consumers,
4625 struct regulator_bulk_data *consumers)
4626{
4627 int i;
4628 int ret, r;
4629
4630 for (i = num_consumers - 1; i >= 0; --i) {
4631 ret = regulator_disable(consumers[i].consumer);
4632 if (ret != 0)
4633 goto err;
4634 }
4635
4636 return 0;
4637
4638err:
4639 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4640 for (++i; i < num_consumers; ++i) {
4641 r = regulator_enable(consumers[i].consumer);
4642 if (r != 0)
4643 pr_err("Failed to re-enable %s: %d\n",
4644 consumers[i].supply, r);
4645 }
4646
4647 return ret;
4648}
4649EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4650
4651/**
4652 * regulator_bulk_force_disable - force disable multiple regulator consumers
4653 *
4654 * @num_consumers: Number of consumers
4655 * @consumers: Consumer data; clients are stored here.
4656 * @return 0 on success, an errno on failure
4657 *
4658 * This convenience API allows consumers to forcibly disable multiple regulator
4659 * clients in a single API call.
4660 * NOTE: This should be used for situations when device damage will
4661 * likely occur if the regulators are not disabled (e.g. over temp).
4662 * Although regulator_force_disable function call for some consumers can
4663 * return error numbers, the function is called for all consumers.
4664 */
4665int regulator_bulk_force_disable(int num_consumers,
4666 struct regulator_bulk_data *consumers)
4667{
4668 int i;
4669 int ret = 0;
4670
4671 for (i = 0; i < num_consumers; i++) {
4672 consumers[i].ret =
4673 regulator_force_disable(consumers[i].consumer);
4674
4675 /* Store first error for reporting */
4676 if (consumers[i].ret && !ret)
4677 ret = consumers[i].ret;
4678 }
4679
4680 return ret;
4681}
4682EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4683
4684/**
4685 * regulator_bulk_free - free multiple regulator consumers
4686 *
4687 * @num_consumers: Number of consumers
4688 * @consumers: Consumer data; clients are stored here.
4689 *
4690 * This convenience API allows consumers to free multiple regulator
4691 * clients in a single API call.
4692 */
4693void regulator_bulk_free(int num_consumers,
4694 struct regulator_bulk_data *consumers)
4695{
4696 int i;
4697
4698 for (i = 0; i < num_consumers; i++) {
4699 regulator_put(consumers[i].consumer);
4700 consumers[i].consumer = NULL;
4701 }
4702}
4703EXPORT_SYMBOL_GPL(regulator_bulk_free);
4704
4705/**
4706 * regulator_notifier_call_chain - call regulator event notifier
4707 * @rdev: regulator source
4708 * @event: notifier block
4709 * @data: callback-specific data.
4710 *
4711 * Called by regulator drivers to notify clients a regulator event has
4712 * occurred. We also notify regulator clients downstream.
4713 * Note lock must be held by caller.
4714 */
4715int regulator_notifier_call_chain(struct regulator_dev *rdev,
4716 unsigned long event, void *data)
4717{
4718 lockdep_assert_held_once(&rdev->mutex.base);
4719
4720 _notifier_call_chain(rdev, event, data);
4721 return NOTIFY_DONE;
4722
4723}
4724EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4725
4726/**
4727 * regulator_mode_to_status - convert a regulator mode into a status
4728 *
4729 * @mode: Mode to convert
4730 *
4731 * Convert a regulator mode into a status.
4732 */
4733int regulator_mode_to_status(unsigned int mode)
4734{
4735 switch (mode) {
4736 case REGULATOR_MODE_FAST:
4737 return REGULATOR_STATUS_FAST;
4738 case REGULATOR_MODE_NORMAL:
4739 return REGULATOR_STATUS_NORMAL;
4740 case REGULATOR_MODE_IDLE:
4741 return REGULATOR_STATUS_IDLE;
4742 case REGULATOR_MODE_STANDBY:
4743 return REGULATOR_STATUS_STANDBY;
4744 default:
4745 return REGULATOR_STATUS_UNDEFINED;
4746 }
4747}
4748EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4749
4750static struct attribute *regulator_dev_attrs[] = {
4751 &dev_attr_name.attr,
4752 &dev_attr_num_users.attr,
4753 &dev_attr_type.attr,
4754 &dev_attr_microvolts.attr,
4755 &dev_attr_microamps.attr,
4756 &dev_attr_opmode.attr,
4757 &dev_attr_state.attr,
4758 &dev_attr_status.attr,
4759 &dev_attr_bypass.attr,
4760 &dev_attr_requested_microamps.attr,
4761 &dev_attr_min_microvolts.attr,
4762 &dev_attr_max_microvolts.attr,
4763 &dev_attr_min_microamps.attr,
4764 &dev_attr_max_microamps.attr,
4765 &dev_attr_suspend_standby_state.attr,
4766 &dev_attr_suspend_mem_state.attr,
4767 &dev_attr_suspend_disk_state.attr,
4768 &dev_attr_suspend_standby_microvolts.attr,
4769 &dev_attr_suspend_mem_microvolts.attr,
4770 &dev_attr_suspend_disk_microvolts.attr,
4771 &dev_attr_suspend_standby_mode.attr,
4772 &dev_attr_suspend_mem_mode.attr,
4773 &dev_attr_suspend_disk_mode.attr,
4774 NULL
4775};
4776
4777/*
4778 * To avoid cluttering sysfs (and memory) with useless state, only
4779 * create attributes that can be meaningfully displayed.
4780 */
4781static umode_t regulator_attr_is_visible(struct kobject *kobj,
4782 struct attribute *attr, int idx)
4783{
4784 struct device *dev = kobj_to_dev(kobj);
4785 struct regulator_dev *rdev = dev_to_rdev(dev);
4786 const struct regulator_ops *ops = rdev->desc->ops;
4787 umode_t mode = attr->mode;
4788
4789 /* these three are always present */
4790 if (attr == &dev_attr_name.attr ||
4791 attr == &dev_attr_num_users.attr ||
4792 attr == &dev_attr_type.attr)
4793 return mode;
4794
4795 /* some attributes need specific methods to be displayed */
4796 if (attr == &dev_attr_microvolts.attr) {
4797 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4798 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4799 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4800 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4801 return mode;
4802 return 0;
4803 }
4804
4805 if (attr == &dev_attr_microamps.attr)
4806 return ops->get_current_limit ? mode : 0;
4807
4808 if (attr == &dev_attr_opmode.attr)
4809 return ops->get_mode ? mode : 0;
4810
4811 if (attr == &dev_attr_state.attr)
4812 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4813
4814 if (attr == &dev_attr_status.attr)
4815 return ops->get_status ? mode : 0;
4816
4817 if (attr == &dev_attr_bypass.attr)
4818 return ops->get_bypass ? mode : 0;
4819
4820 /* constraints need specific supporting methods */
4821 if (attr == &dev_attr_min_microvolts.attr ||
4822 attr == &dev_attr_max_microvolts.attr)
4823 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4824
4825 if (attr == &dev_attr_min_microamps.attr ||
4826 attr == &dev_attr_max_microamps.attr)
4827 return ops->set_current_limit ? mode : 0;
4828
4829 if (attr == &dev_attr_suspend_standby_state.attr ||
4830 attr == &dev_attr_suspend_mem_state.attr ||
4831 attr == &dev_attr_suspend_disk_state.attr)
4832 return mode;
4833
4834 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4835 attr == &dev_attr_suspend_mem_microvolts.attr ||
4836 attr == &dev_attr_suspend_disk_microvolts.attr)
4837 return ops->set_suspend_voltage ? mode : 0;
4838
4839 if (attr == &dev_attr_suspend_standby_mode.attr ||
4840 attr == &dev_attr_suspend_mem_mode.attr ||
4841 attr == &dev_attr_suspend_disk_mode.attr)
4842 return ops->set_suspend_mode ? mode : 0;
4843
4844 return mode;
4845}
4846
4847static const struct attribute_group regulator_dev_group = {
4848 .attrs = regulator_dev_attrs,
4849 .is_visible = regulator_attr_is_visible,
4850};
4851
4852static const struct attribute_group *regulator_dev_groups[] = {
4853 ®ulator_dev_group,
4854 NULL
4855};
4856
4857static void regulator_dev_release(struct device *dev)
4858{
4859 struct regulator_dev *rdev = dev_get_drvdata(dev);
4860
4861 kfree(rdev->constraints);
4862 of_node_put(rdev->dev.of_node);
4863 kfree(rdev);
4864}
4865
4866static void rdev_init_debugfs(struct regulator_dev *rdev)
4867{
4868 struct device *parent = rdev->dev.parent;
4869 const char *rname = rdev_get_name(rdev);
4870 char name[NAME_MAX];
4871
4872 /* Avoid duplicate debugfs directory names */
4873 if (parent && rname == rdev->desc->name) {
4874 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4875 rname);
4876 rname = name;
4877 }
4878
4879 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4880 if (!rdev->debugfs) {
4881 rdev_warn(rdev, "Failed to create debugfs directory\n");
4882 return;
4883 }
4884
4885 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4886 &rdev->use_count);
4887 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4888 &rdev->open_count);
4889 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4890 &rdev->bypass_count);
4891}
4892
4893static int regulator_register_resolve_supply(struct device *dev, void *data)
4894{
4895 struct regulator_dev *rdev = dev_to_rdev(dev);
4896
4897 if (regulator_resolve_supply(rdev))
4898 rdev_dbg(rdev, "unable to resolve supply\n");
4899
4900 return 0;
4901}
4902
4903int regulator_coupler_register(struct regulator_coupler *coupler)
4904{
4905 mutex_lock(®ulator_list_mutex);
4906 list_add_tail(&coupler->list, ®ulator_coupler_list);
4907 mutex_unlock(®ulator_list_mutex);
4908
4909 return 0;
4910}
4911
4912static struct regulator_coupler *
4913regulator_find_coupler(struct regulator_dev *rdev)
4914{
4915 struct regulator_coupler *coupler;
4916 int err;
4917
4918 /*
4919 * Note that regulators are appended to the list and the generic
4920 * coupler is registered first, hence it will be attached at last
4921 * if nobody cared.
4922 */
4923 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
4924 err = coupler->attach_regulator(coupler, rdev);
4925 if (!err) {
4926 if (!coupler->balance_voltage &&
4927 rdev->coupling_desc.n_coupled > 2)
4928 goto err_unsupported;
4929
4930 return coupler;
4931 }
4932
4933 if (err < 0)
4934 return ERR_PTR(err);
4935
4936 if (err == 1)
4937 continue;
4938
4939 break;
4940 }
4941
4942 return ERR_PTR(-EINVAL);
4943
4944err_unsupported:
4945 if (coupler->detach_regulator)
4946 coupler->detach_regulator(coupler, rdev);
4947
4948 rdev_err(rdev,
4949 "Voltage balancing for multiple regulator couples is unimplemented\n");
4950
4951 return ERR_PTR(-EPERM);
4952}
4953
4954static void regulator_resolve_coupling(struct regulator_dev *rdev)
4955{
4956 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4957 struct coupling_desc *c_desc = &rdev->coupling_desc;
4958 int n_coupled = c_desc->n_coupled;
4959 struct regulator_dev *c_rdev;
4960 int i;
4961
4962 for (i = 1; i < n_coupled; i++) {
4963 /* already resolved */
4964 if (c_desc->coupled_rdevs[i])
4965 continue;
4966
4967 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4968
4969 if (!c_rdev)
4970 continue;
4971
4972 if (c_rdev->coupling_desc.coupler != coupler) {
4973 rdev_err(rdev, "coupler mismatch with %s\n",
4974 rdev_get_name(c_rdev));
4975 return;
4976 }
4977
4978 c_desc->coupled_rdevs[i] = c_rdev;
4979 c_desc->n_resolved++;
4980
4981 regulator_resolve_coupling(c_rdev);
4982 }
4983}
4984
4985static void regulator_remove_coupling(struct regulator_dev *rdev)
4986{
4987 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4988 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4989 struct regulator_dev *__c_rdev, *c_rdev;
4990 unsigned int __n_coupled, n_coupled;
4991 int i, k;
4992 int err;
4993
4994 n_coupled = c_desc->n_coupled;
4995
4996 for (i = 1; i < n_coupled; i++) {
4997 c_rdev = c_desc->coupled_rdevs[i];
4998
4999 if (!c_rdev)
5000 continue;
5001
5002 regulator_lock(c_rdev);
5003
5004 __c_desc = &c_rdev->coupling_desc;
5005 __n_coupled = __c_desc->n_coupled;
5006
5007 for (k = 1; k < __n_coupled; k++) {
5008 __c_rdev = __c_desc->coupled_rdevs[k];
5009
5010 if (__c_rdev == rdev) {
5011 __c_desc->coupled_rdevs[k] = NULL;
5012 __c_desc->n_resolved--;
5013 break;
5014 }
5015 }
5016
5017 regulator_unlock(c_rdev);
5018
5019 c_desc->coupled_rdevs[i] = NULL;
5020 c_desc->n_resolved--;
5021 }
5022
5023 if (coupler && coupler->detach_regulator) {
5024 err = coupler->detach_regulator(coupler, rdev);
5025 if (err)
5026 rdev_err(rdev, "failed to detach from coupler: %d\n",
5027 err);
5028 }
5029
5030 kfree(rdev->coupling_desc.coupled_rdevs);
5031 rdev->coupling_desc.coupled_rdevs = NULL;
5032}
5033
5034static int regulator_init_coupling(struct regulator_dev *rdev)
5035{
5036 int err, n_phandles;
5037 size_t alloc_size;
5038
5039 if (!IS_ENABLED(CONFIG_OF))
5040 n_phandles = 0;
5041 else
5042 n_phandles = of_get_n_coupled(rdev);
5043
5044 alloc_size = sizeof(*rdev) * (n_phandles + 1);
5045
5046 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5047 if (!rdev->coupling_desc.coupled_rdevs)
5048 return -ENOMEM;
5049
5050 /*
5051 * Every regulator should always have coupling descriptor filled with
5052 * at least pointer to itself.
5053 */
5054 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5055 rdev->coupling_desc.n_coupled = n_phandles + 1;
5056 rdev->coupling_desc.n_resolved++;
5057
5058 /* regulator isn't coupled */
5059 if (n_phandles == 0)
5060 return 0;
5061
5062 if (!of_check_coupling_data(rdev))
5063 return -EPERM;
5064
5065 mutex_lock(®ulator_list_mutex);
5066 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5067 mutex_unlock(®ulator_list_mutex);
5068
5069 if (IS_ERR(rdev->coupling_desc.coupler)) {
5070 err = PTR_ERR(rdev->coupling_desc.coupler);
5071 rdev_err(rdev, "failed to get coupler: %d\n", err);
5072 return err;
5073 }
5074
5075 return 0;
5076}
5077
5078static int generic_coupler_attach(struct regulator_coupler *coupler,
5079 struct regulator_dev *rdev)
5080{
5081 if (rdev->coupling_desc.n_coupled > 2) {
5082 rdev_err(rdev,
5083 "Voltage balancing for multiple regulator couples is unimplemented\n");
5084 return -EPERM;
5085 }
5086
5087 if (!rdev->constraints->always_on) {
5088 rdev_err(rdev,
5089 "Coupling of a non always-on regulator is unimplemented\n");
5090 return -ENOTSUPP;
5091 }
5092
5093 return 0;
5094}
5095
5096static struct regulator_coupler generic_regulator_coupler = {
5097 .attach_regulator = generic_coupler_attach,
5098};
5099
5100/**
5101 * regulator_register - register regulator
5102 * @regulator_desc: regulator to register
5103 * @cfg: runtime configuration for regulator
5104 *
5105 * Called by regulator drivers to register a regulator.
5106 * Returns a valid pointer to struct regulator_dev on success
5107 * or an ERR_PTR() on error.
5108 */
5109struct regulator_dev *
5110regulator_register(const struct regulator_desc *regulator_desc,
5111 const struct regulator_config *cfg)
5112{
5113 const struct regulation_constraints *constraints = NULL;
5114 const struct regulator_init_data *init_data;
5115 struct regulator_config *config = NULL;
5116 static atomic_t regulator_no = ATOMIC_INIT(-1);
5117 struct regulator_dev *rdev;
5118 bool dangling_cfg_gpiod = false;
5119 bool dangling_of_gpiod = false;
5120 struct device *dev;
5121 int ret, i;
5122
5123 if (cfg == NULL)
5124 return ERR_PTR(-EINVAL);
5125 if (cfg->ena_gpiod)
5126 dangling_cfg_gpiod = true;
5127 if (regulator_desc == NULL) {
5128 ret = -EINVAL;
5129 goto rinse;
5130 }
5131
5132 dev = cfg->dev;
5133 WARN_ON(!dev);
5134
5135 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5136 ret = -EINVAL;
5137 goto rinse;
5138 }
5139
5140 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5141 regulator_desc->type != REGULATOR_CURRENT) {
5142 ret = -EINVAL;
5143 goto rinse;
5144 }
5145
5146 /* Only one of each should be implemented */
5147 WARN_ON(regulator_desc->ops->get_voltage &&
5148 regulator_desc->ops->get_voltage_sel);
5149 WARN_ON(regulator_desc->ops->set_voltage &&
5150 regulator_desc->ops->set_voltage_sel);
5151
5152 /* If we're using selectors we must implement list_voltage. */
5153 if (regulator_desc->ops->get_voltage_sel &&
5154 !regulator_desc->ops->list_voltage) {
5155 ret = -EINVAL;
5156 goto rinse;
5157 }
5158 if (regulator_desc->ops->set_voltage_sel &&
5159 !regulator_desc->ops->list_voltage) {
5160 ret = -EINVAL;
5161 goto rinse;
5162 }
5163
5164 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5165 if (rdev == NULL) {
5166 ret = -ENOMEM;
5167 goto rinse;
5168 }
5169 device_initialize(&rdev->dev);
5170
5171 /*
5172 * Duplicate the config so the driver could override it after
5173 * parsing init data.
5174 */
5175 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5176 if (config == NULL) {
5177 ret = -ENOMEM;
5178 goto clean;
5179 }
5180
5181 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5182 &rdev->dev.of_node);
5183
5184 /*
5185 * Sometimes not all resources are probed already so we need to take
5186 * that into account. This happens most the time if the ena_gpiod comes
5187 * from a gpio extender or something else.
5188 */
5189 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5190 ret = -EPROBE_DEFER;
5191 goto clean;
5192 }
5193
5194 /*
5195 * We need to keep track of any GPIO descriptor coming from the
5196 * device tree until we have handled it over to the core. If the
5197 * config that was passed in to this function DOES NOT contain
5198 * a descriptor, and the config after this call DOES contain
5199 * a descriptor, we definitely got one from parsing the device
5200 * tree.
5201 */
5202 if (!cfg->ena_gpiod && config->ena_gpiod)
5203 dangling_of_gpiod = true;
5204 if (!init_data) {
5205 init_data = config->init_data;
5206 rdev->dev.of_node = of_node_get(config->of_node);
5207 }
5208
5209 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5210 rdev->reg_data = config->driver_data;
5211 rdev->owner = regulator_desc->owner;
5212 rdev->desc = regulator_desc;
5213 if (config->regmap)
5214 rdev->regmap = config->regmap;
5215 else if (dev_get_regmap(dev, NULL))
5216 rdev->regmap = dev_get_regmap(dev, NULL);
5217 else if (dev->parent)
5218 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5219 INIT_LIST_HEAD(&rdev->consumer_list);
5220 INIT_LIST_HEAD(&rdev->list);
5221 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5222 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5223
5224 /* preform any regulator specific init */
5225 if (init_data && init_data->regulator_init) {
5226 ret = init_data->regulator_init(rdev->reg_data);
5227 if (ret < 0)
5228 goto clean;
5229 }
5230
5231 if (config->ena_gpiod) {
5232 ret = regulator_ena_gpio_request(rdev, config);
5233 if (ret != 0) {
5234 rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5235 ret);
5236 goto clean;
5237 }
5238 /* The regulator core took over the GPIO descriptor */
5239 dangling_cfg_gpiod = false;
5240 dangling_of_gpiod = false;
5241 }
5242
5243 /* register with sysfs */
5244 rdev->dev.class = ®ulator_class;
5245 rdev->dev.parent = dev;
5246 dev_set_name(&rdev->dev, "regulator.%lu",
5247 (unsigned long) atomic_inc_return(®ulator_no));
5248 dev_set_drvdata(&rdev->dev, rdev);
5249
5250 /* set regulator constraints */
5251 if (init_data)
5252 constraints = &init_data->constraints;
5253
5254 if (init_data && init_data->supply_regulator)
5255 rdev->supply_name = init_data->supply_regulator;
5256 else if (regulator_desc->supply_name)
5257 rdev->supply_name = regulator_desc->supply_name;
5258
5259 /*
5260 * Attempt to resolve the regulator supply, if specified,
5261 * but don't return an error if we fail because we will try
5262 * to resolve it again later as more regulators are added.
5263 */
5264 if (regulator_resolve_supply(rdev))
5265 rdev_dbg(rdev, "unable to resolve supply\n");
5266
5267 ret = set_machine_constraints(rdev, constraints);
5268 if (ret < 0)
5269 goto wash;
5270
5271 ret = regulator_init_coupling(rdev);
5272 if (ret < 0)
5273 goto wash;
5274
5275 /* add consumers devices */
5276 if (init_data) {
5277 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5278 ret = set_consumer_device_supply(rdev,
5279 init_data->consumer_supplies[i].dev_name,
5280 init_data->consumer_supplies[i].supply);
5281 if (ret < 0) {
5282 dev_err(dev, "Failed to set supply %s\n",
5283 init_data->consumer_supplies[i].supply);
5284 goto unset_supplies;
5285 }
5286 }
5287 }
5288
5289 if (!rdev->desc->ops->get_voltage &&
5290 !rdev->desc->ops->list_voltage &&
5291 !rdev->desc->fixed_uV)
5292 rdev->is_switch = true;
5293
5294 ret = device_add(&rdev->dev);
5295 if (ret != 0)
5296 goto unset_supplies;
5297
5298 rdev_init_debugfs(rdev);
5299
5300 /* try to resolve regulators coupling since a new one was registered */
5301 mutex_lock(®ulator_list_mutex);
5302 regulator_resolve_coupling(rdev);
5303 mutex_unlock(®ulator_list_mutex);
5304
5305 /* try to resolve regulators supply since a new one was registered */
5306 class_for_each_device(®ulator_class, NULL, NULL,
5307 regulator_register_resolve_supply);
5308 kfree(config);
5309 return rdev;
5310
5311unset_supplies:
5312 mutex_lock(®ulator_list_mutex);
5313 unset_regulator_supplies(rdev);
5314 regulator_remove_coupling(rdev);
5315 mutex_unlock(®ulator_list_mutex);
5316wash:
5317 kfree(rdev->coupling_desc.coupled_rdevs);
5318 mutex_lock(®ulator_list_mutex);
5319 regulator_ena_gpio_free(rdev);
5320 mutex_unlock(®ulator_list_mutex);
5321clean:
5322 if (dangling_of_gpiod)
5323 gpiod_put(config->ena_gpiod);
5324 kfree(config);
5325 put_device(&rdev->dev);
5326rinse:
5327 if (dangling_cfg_gpiod)
5328 gpiod_put(cfg->ena_gpiod);
5329 return ERR_PTR(ret);
5330}
5331EXPORT_SYMBOL_GPL(regulator_register);
5332
5333/**
5334 * regulator_unregister - unregister regulator
5335 * @rdev: regulator to unregister
5336 *
5337 * Called by regulator drivers to unregister a regulator.
5338 */
5339void regulator_unregister(struct regulator_dev *rdev)
5340{
5341 if (rdev == NULL)
5342 return;
5343
5344 if (rdev->supply) {
5345 while (rdev->use_count--)
5346 regulator_disable(rdev->supply);
5347 regulator_put(rdev->supply);
5348 }
5349
5350 flush_work(&rdev->disable_work.work);
5351
5352 mutex_lock(®ulator_list_mutex);
5353
5354 debugfs_remove_recursive(rdev->debugfs);
5355 WARN_ON(rdev->open_count);
5356 regulator_remove_coupling(rdev);
5357 unset_regulator_supplies(rdev);
5358 list_del(&rdev->list);
5359 regulator_ena_gpio_free(rdev);
5360 device_unregister(&rdev->dev);
5361
5362 mutex_unlock(®ulator_list_mutex);
5363}
5364EXPORT_SYMBOL_GPL(regulator_unregister);
5365
5366#ifdef CONFIG_SUSPEND
5367/**
5368 * regulator_suspend - prepare regulators for system wide suspend
5369 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5370 *
5371 * Configure each regulator with it's suspend operating parameters for state.
5372 */
5373static int regulator_suspend(struct device *dev)
5374{
5375 struct regulator_dev *rdev = dev_to_rdev(dev);
5376 suspend_state_t state = pm_suspend_target_state;
5377 int ret;
5378
5379 regulator_lock(rdev);
5380 ret = suspend_set_state(rdev, state);
5381 regulator_unlock(rdev);
5382
5383 return ret;
5384}
5385
5386static int regulator_resume(struct device *dev)
5387{
5388 suspend_state_t state = pm_suspend_target_state;
5389 struct regulator_dev *rdev = dev_to_rdev(dev);
5390 struct regulator_state *rstate;
5391 int ret = 0;
5392
5393 rstate = regulator_get_suspend_state(rdev, state);
5394 if (rstate == NULL)
5395 return 0;
5396
5397 regulator_lock(rdev);
5398
5399 if (rdev->desc->ops->resume &&
5400 (rstate->enabled == ENABLE_IN_SUSPEND ||
5401 rstate->enabled == DISABLE_IN_SUSPEND))
5402 ret = rdev->desc->ops->resume(rdev);
5403
5404 regulator_unlock(rdev);
5405
5406 return ret;
5407}
5408#else /* !CONFIG_SUSPEND */
5409
5410#define regulator_suspend NULL
5411#define regulator_resume NULL
5412
5413#endif /* !CONFIG_SUSPEND */
5414
5415#ifdef CONFIG_PM
5416static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5417 .suspend = regulator_suspend,
5418 .resume = regulator_resume,
5419};
5420#endif
5421
5422struct class regulator_class = {
5423 .name = "regulator",
5424 .dev_release = regulator_dev_release,
5425 .dev_groups = regulator_dev_groups,
5426#ifdef CONFIG_PM
5427 .pm = ®ulator_pm_ops,
5428#endif
5429};
5430/**
5431 * regulator_has_full_constraints - the system has fully specified constraints
5432 *
5433 * Calling this function will cause the regulator API to disable all
5434 * regulators which have a zero use count and don't have an always_on
5435 * constraint in a late_initcall.
5436 *
5437 * The intention is that this will become the default behaviour in a
5438 * future kernel release so users are encouraged to use this facility
5439 * now.
5440 */
5441void regulator_has_full_constraints(void)
5442{
5443 has_full_constraints = 1;
5444}
5445EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5446
5447/**
5448 * rdev_get_drvdata - get rdev regulator driver data
5449 * @rdev: regulator
5450 *
5451 * Get rdev regulator driver private data. This call can be used in the
5452 * regulator driver context.
5453 */
5454void *rdev_get_drvdata(struct regulator_dev *rdev)
5455{
5456 return rdev->reg_data;
5457}
5458EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5459
5460/**
5461 * regulator_get_drvdata - get regulator driver data
5462 * @regulator: regulator
5463 *
5464 * Get regulator driver private data. This call can be used in the consumer
5465 * driver context when non API regulator specific functions need to be called.
5466 */
5467void *regulator_get_drvdata(struct regulator *regulator)
5468{
5469 return regulator->rdev->reg_data;
5470}
5471EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5472
5473/**
5474 * regulator_set_drvdata - set regulator driver data
5475 * @regulator: regulator
5476 * @data: data
5477 */
5478void regulator_set_drvdata(struct regulator *regulator, void *data)
5479{
5480 regulator->rdev->reg_data = data;
5481}
5482EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5483
5484/**
5485 * regulator_get_id - get regulator ID
5486 * @rdev: regulator
5487 */
5488int rdev_get_id(struct regulator_dev *rdev)
5489{
5490 return rdev->desc->id;
5491}
5492EXPORT_SYMBOL_GPL(rdev_get_id);
5493
5494struct device *rdev_get_dev(struct regulator_dev *rdev)
5495{
5496 return &rdev->dev;
5497}
5498EXPORT_SYMBOL_GPL(rdev_get_dev);
5499
5500struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5501{
5502 return rdev->regmap;
5503}
5504EXPORT_SYMBOL_GPL(rdev_get_regmap);
5505
5506void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5507{
5508 return reg_init_data->driver_data;
5509}
5510EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5511
5512#ifdef CONFIG_DEBUG_FS
5513static int supply_map_show(struct seq_file *sf, void *data)
5514{
5515 struct regulator_map *map;
5516
5517 list_for_each_entry(map, ®ulator_map_list, list) {
5518 seq_printf(sf, "%s -> %s.%s\n",
5519 rdev_get_name(map->regulator), map->dev_name,
5520 map->supply);
5521 }
5522
5523 return 0;
5524}
5525DEFINE_SHOW_ATTRIBUTE(supply_map);
5526
5527struct summary_data {
5528 struct seq_file *s;
5529 struct regulator_dev *parent;
5530 int level;
5531};
5532
5533static void regulator_summary_show_subtree(struct seq_file *s,
5534 struct regulator_dev *rdev,
5535 int level);
5536
5537static int regulator_summary_show_children(struct device *dev, void *data)
5538{
5539 struct regulator_dev *rdev = dev_to_rdev(dev);
5540 struct summary_data *summary_data = data;
5541
5542 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5543 regulator_summary_show_subtree(summary_data->s, rdev,
5544 summary_data->level + 1);
5545
5546 return 0;
5547}
5548
5549static void regulator_summary_show_subtree(struct seq_file *s,
5550 struct regulator_dev *rdev,
5551 int level)
5552{
5553 struct regulation_constraints *c;
5554 struct regulator *consumer;
5555 struct summary_data summary_data;
5556 unsigned int opmode;
5557
5558 if (!rdev)
5559 return;
5560
5561 opmode = _regulator_get_mode_unlocked(rdev);
5562 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5563 level * 3 + 1, "",
5564 30 - level * 3, rdev_get_name(rdev),
5565 rdev->use_count, rdev->open_count, rdev->bypass_count,
5566 regulator_opmode_to_str(opmode));
5567
5568 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5569 seq_printf(s, "%5dmA ",
5570 _regulator_get_current_limit_unlocked(rdev) / 1000);
5571
5572 c = rdev->constraints;
5573 if (c) {
5574 switch (rdev->desc->type) {
5575 case REGULATOR_VOLTAGE:
5576 seq_printf(s, "%5dmV %5dmV ",
5577 c->min_uV / 1000, c->max_uV / 1000);
5578 break;
5579 case REGULATOR_CURRENT:
5580 seq_printf(s, "%5dmA %5dmA ",
5581 c->min_uA / 1000, c->max_uA / 1000);
5582 break;
5583 }
5584 }
5585
5586 seq_puts(s, "\n");
5587
5588 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5589 if (consumer->dev && consumer->dev->class == ®ulator_class)
5590 continue;
5591
5592 seq_printf(s, "%*s%-*s ",
5593 (level + 1) * 3 + 1, "",
5594 30 - (level + 1) * 3,
5595 consumer->supply_name ? consumer->supply_name :
5596 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5597
5598 switch (rdev->desc->type) {
5599 case REGULATOR_VOLTAGE:
5600 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5601 consumer->enable_count,
5602 consumer->uA_load / 1000,
5603 consumer->uA_load && !consumer->enable_count ?
5604 '*' : ' ',
5605 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5606 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5607 break;
5608 case REGULATOR_CURRENT:
5609 break;
5610 }
5611
5612 seq_puts(s, "\n");
5613 }
5614
5615 summary_data.s = s;
5616 summary_data.level = level;
5617 summary_data.parent = rdev;
5618
5619 class_for_each_device(®ulator_class, NULL, &summary_data,
5620 regulator_summary_show_children);
5621}
5622
5623struct summary_lock_data {
5624 struct ww_acquire_ctx *ww_ctx;
5625 struct regulator_dev **new_contended_rdev;
5626 struct regulator_dev **old_contended_rdev;
5627};
5628
5629static int regulator_summary_lock_one(struct device *dev, void *data)
5630{
5631 struct regulator_dev *rdev = dev_to_rdev(dev);
5632 struct summary_lock_data *lock_data = data;
5633 int ret = 0;
5634
5635 if (rdev != *lock_data->old_contended_rdev) {
5636 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5637
5638 if (ret == -EDEADLK)
5639 *lock_data->new_contended_rdev = rdev;
5640 else
5641 WARN_ON_ONCE(ret);
5642 } else {
5643 *lock_data->old_contended_rdev = NULL;
5644 }
5645
5646 return ret;
5647}
5648
5649static int regulator_summary_unlock_one(struct device *dev, void *data)
5650{
5651 struct regulator_dev *rdev = dev_to_rdev(dev);
5652 struct summary_lock_data *lock_data = data;
5653
5654 if (lock_data) {
5655 if (rdev == *lock_data->new_contended_rdev)
5656 return -EDEADLK;
5657 }
5658
5659 regulator_unlock(rdev);
5660
5661 return 0;
5662}
5663
5664static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5665 struct regulator_dev **new_contended_rdev,
5666 struct regulator_dev **old_contended_rdev)
5667{
5668 struct summary_lock_data lock_data;
5669 int ret;
5670
5671 lock_data.ww_ctx = ww_ctx;
5672 lock_data.new_contended_rdev = new_contended_rdev;
5673 lock_data.old_contended_rdev = old_contended_rdev;
5674
5675 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5676 regulator_summary_lock_one);
5677 if (ret)
5678 class_for_each_device(®ulator_class, NULL, &lock_data,
5679 regulator_summary_unlock_one);
5680
5681 return ret;
5682}
5683
5684static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5685{
5686 struct regulator_dev *new_contended_rdev = NULL;
5687 struct regulator_dev *old_contended_rdev = NULL;
5688 int err;
5689
5690 mutex_lock(®ulator_list_mutex);
5691
5692 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5693
5694 do {
5695 if (new_contended_rdev) {
5696 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5697 old_contended_rdev = new_contended_rdev;
5698 old_contended_rdev->ref_cnt++;
5699 }
5700
5701 err = regulator_summary_lock_all(ww_ctx,
5702 &new_contended_rdev,
5703 &old_contended_rdev);
5704
5705 if (old_contended_rdev)
5706 regulator_unlock(old_contended_rdev);
5707
5708 } while (err == -EDEADLK);
5709
5710 ww_acquire_done(ww_ctx);
5711}
5712
5713static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5714{
5715 class_for_each_device(®ulator_class, NULL, NULL,
5716 regulator_summary_unlock_one);
5717 ww_acquire_fini(ww_ctx);
5718
5719 mutex_unlock(®ulator_list_mutex);
5720}
5721
5722static int regulator_summary_show_roots(struct device *dev, void *data)
5723{
5724 struct regulator_dev *rdev = dev_to_rdev(dev);
5725 struct seq_file *s = data;
5726
5727 if (!rdev->supply)
5728 regulator_summary_show_subtree(s, rdev, 0);
5729
5730 return 0;
5731}
5732
5733static int regulator_summary_show(struct seq_file *s, void *data)
5734{
5735 struct ww_acquire_ctx ww_ctx;
5736
5737 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5738 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5739
5740 regulator_summary_lock(&ww_ctx);
5741
5742 class_for_each_device(®ulator_class, NULL, s,
5743 regulator_summary_show_roots);
5744
5745 regulator_summary_unlock(&ww_ctx);
5746
5747 return 0;
5748}
5749DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5750#endif /* CONFIG_DEBUG_FS */
5751
5752static int __init regulator_init(void)
5753{
5754 int ret;
5755
5756 ret = class_register(®ulator_class);
5757
5758 debugfs_root = debugfs_create_dir("regulator", NULL);
5759 if (!debugfs_root)
5760 pr_warn("regulator: Failed to create debugfs directory\n");
5761
5762#ifdef CONFIG_DEBUG_FS
5763 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5764 &supply_map_fops);
5765
5766 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5767 NULL, ®ulator_summary_fops);
5768#endif
5769 regulator_dummy_init();
5770
5771 regulator_coupler_register(&generic_regulator_coupler);
5772
5773 return ret;
5774}
5775
5776/* init early to allow our consumers to complete system booting */
5777core_initcall(regulator_init);
5778
5779static int regulator_late_cleanup(struct device *dev, void *data)
5780{
5781 struct regulator_dev *rdev = dev_to_rdev(dev);
5782 const struct regulator_ops *ops = rdev->desc->ops;
5783 struct regulation_constraints *c = rdev->constraints;
5784 int enabled, ret;
5785
5786 if (c && c->always_on)
5787 return 0;
5788
5789 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5790 return 0;
5791
5792 regulator_lock(rdev);
5793
5794 if (rdev->use_count)
5795 goto unlock;
5796
5797 /* If we can't read the status assume it's on. */
5798 if (ops->is_enabled)
5799 enabled = ops->is_enabled(rdev);
5800 else
5801 enabled = 1;
5802
5803 if (!enabled)
5804 goto unlock;
5805
5806 if (have_full_constraints()) {
5807 /* We log since this may kill the system if it goes
5808 * wrong. */
5809 rdev_info(rdev, "disabling\n");
5810 ret = _regulator_do_disable(rdev);
5811 if (ret != 0)
5812 rdev_err(rdev, "couldn't disable: %d\n", ret);
5813 } else {
5814 /* The intention is that in future we will
5815 * assume that full constraints are provided
5816 * so warn even if we aren't going to do
5817 * anything here.
5818 */
5819 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5820 }
5821
5822unlock:
5823 regulator_unlock(rdev);
5824
5825 return 0;
5826}
5827
5828static void regulator_init_complete_work_function(struct work_struct *work)
5829{
5830 /*
5831 * Regulators may had failed to resolve their input supplies
5832 * when were registered, either because the input supply was
5833 * not registered yet or because its parent device was not
5834 * bound yet. So attempt to resolve the input supplies for
5835 * pending regulators before trying to disable unused ones.
5836 */
5837 class_for_each_device(®ulator_class, NULL, NULL,
5838 regulator_register_resolve_supply);
5839
5840 /* If we have a full configuration then disable any regulators
5841 * we have permission to change the status for and which are
5842 * not in use or always_on. This is effectively the default
5843 * for DT and ACPI as they have full constraints.
5844 */
5845 class_for_each_device(®ulator_class, NULL, NULL,
5846 regulator_late_cleanup);
5847}
5848
5849static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5850 regulator_init_complete_work_function);
5851
5852static int __init regulator_init_complete(void)
5853{
5854 /*
5855 * Since DT doesn't provide an idiomatic mechanism for
5856 * enabling full constraints and since it's much more natural
5857 * with DT to provide them just assume that a DT enabled
5858 * system has full constraints.
5859 */
5860 if (of_have_populated_dt())
5861 has_full_constraints = true;
5862
5863 /*
5864 * We punt completion for an arbitrary amount of time since
5865 * systems like distros will load many drivers from userspace
5866 * so consumers might not always be ready yet, this is
5867 * particularly an issue with laptops where this might bounce
5868 * the display off then on. Ideally we'd get a notification
5869 * from userspace when this happens but we don't so just wait
5870 * a bit and hope we waited long enough. It'd be better if
5871 * we'd only do this on systems that need it, and a kernel
5872 * command line option might be useful.
5873 */
5874 schedule_delayed_work(®ulator_init_complete_work,
5875 msecs_to_jiffies(30000));
5876
5877 return 0;
5878}
5879late_initcall_sync(regulator_init_complete);
1/*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/debugfs.h>
19#include <linux/device.h>
20#include <linux/slab.h>
21#include <linux/async.h>
22#include <linux/err.h>
23#include <linux/mutex.h>
24#include <linux/suspend.h>
25#include <linux/delay.h>
26#include <linux/gpio.h>
27#include <linux/of.h>
28#include <linux/regmap.h>
29#include <linux/regulator/of_regulator.h>
30#include <linux/regulator/consumer.h>
31#include <linux/regulator/driver.h>
32#include <linux/regulator/machine.h>
33#include <linux/module.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/regulator.h>
37
38#include "dummy.h"
39#include "internal.h"
40
41#define rdev_crit(rdev, fmt, ...) \
42 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43#define rdev_err(rdev, fmt, ...) \
44 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45#define rdev_warn(rdev, fmt, ...) \
46 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47#define rdev_info(rdev, fmt, ...) \
48 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49#define rdev_dbg(rdev, fmt, ...) \
50 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52static DEFINE_MUTEX(regulator_list_mutex);
53static LIST_HEAD(regulator_list);
54static LIST_HEAD(regulator_map_list);
55static LIST_HEAD(regulator_ena_gpio_list);
56static LIST_HEAD(regulator_supply_alias_list);
57static bool has_full_constraints;
58
59static struct dentry *debugfs_root;
60
61/*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
71};
72
73/*
74 * struct regulator_enable_gpio
75 *
76 * Management for shared enable GPIO pin
77 */
78struct regulator_enable_gpio {
79 struct list_head list;
80 int gpio;
81 u32 enable_count; /* a number of enabled shared GPIO */
82 u32 request_count; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert:1;
84};
85
86/*
87 * struct regulator_supply_alias
88 *
89 * Used to map lookups for a supply onto an alternative device.
90 */
91struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
97};
98
99static int _regulator_is_enabled(struct regulator_dev *rdev);
100static int _regulator_disable(struct regulator_dev *rdev);
101static int _regulator_get_voltage(struct regulator_dev *rdev);
102static int _regulator_get_current_limit(struct regulator_dev *rdev);
103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104static void _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
111
112static const char *rdev_get_name(struct regulator_dev *rdev)
113{
114 if (rdev->constraints && rdev->constraints->name)
115 return rdev->constraints->name;
116 else if (rdev->desc->name)
117 return rdev->desc->name;
118 else
119 return "";
120}
121
122static bool have_full_constraints(void)
123{
124 return has_full_constraints || of_have_populated_dt();
125}
126
127/**
128 * of_get_regulator - get a regulator device node based on supply name
129 * @dev: Device pointer for the consumer (of regulator) device
130 * @supply: regulator supply name
131 *
132 * Extract the regulator device node corresponding to the supply name.
133 * returns the device node corresponding to the regulator if found, else
134 * returns NULL.
135 */
136static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137{
138 struct device_node *regnode = NULL;
139 char prop_name[32]; /* 32 is max size of property name */
140
141 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143 snprintf(prop_name, 32, "%s-supply", supply);
144 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146 if (!regnode) {
147 dev_dbg(dev, "Looking up %s property in node %s failed",
148 prop_name, dev->of_node->full_name);
149 return NULL;
150 }
151 return regnode;
152}
153
154static int _regulator_can_change_status(struct regulator_dev *rdev)
155{
156 if (!rdev->constraints)
157 return 0;
158
159 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160 return 1;
161 else
162 return 0;
163}
164
165/* Platform voltage constraint check */
166static int regulator_check_voltage(struct regulator_dev *rdev,
167 int *min_uV, int *max_uV)
168{
169 BUG_ON(*min_uV > *max_uV);
170
171 if (!rdev->constraints) {
172 rdev_err(rdev, "no constraints\n");
173 return -ENODEV;
174 }
175 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176 rdev_err(rdev, "operation not allowed\n");
177 return -EPERM;
178 }
179
180 if (*max_uV > rdev->constraints->max_uV)
181 *max_uV = rdev->constraints->max_uV;
182 if (*min_uV < rdev->constraints->min_uV)
183 *min_uV = rdev->constraints->min_uV;
184
185 if (*min_uV > *max_uV) {
186 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187 *min_uV, *max_uV);
188 return -EINVAL;
189 }
190
191 return 0;
192}
193
194/* Make sure we select a voltage that suits the needs of all
195 * regulator consumers
196 */
197static int regulator_check_consumers(struct regulator_dev *rdev,
198 int *min_uV, int *max_uV)
199{
200 struct regulator *regulator;
201
202 list_for_each_entry(regulator, &rdev->consumer_list, list) {
203 /*
204 * Assume consumers that didn't say anything are OK
205 * with anything in the constraint range.
206 */
207 if (!regulator->min_uV && !regulator->max_uV)
208 continue;
209
210 if (*max_uV > regulator->max_uV)
211 *max_uV = regulator->max_uV;
212 if (*min_uV < regulator->min_uV)
213 *min_uV = regulator->min_uV;
214 }
215
216 if (*min_uV > *max_uV) {
217 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218 *min_uV, *max_uV);
219 return -EINVAL;
220 }
221
222 return 0;
223}
224
225/* current constraint check */
226static int regulator_check_current_limit(struct regulator_dev *rdev,
227 int *min_uA, int *max_uA)
228{
229 BUG_ON(*min_uA > *max_uA);
230
231 if (!rdev->constraints) {
232 rdev_err(rdev, "no constraints\n");
233 return -ENODEV;
234 }
235 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236 rdev_err(rdev, "operation not allowed\n");
237 return -EPERM;
238 }
239
240 if (*max_uA > rdev->constraints->max_uA)
241 *max_uA = rdev->constraints->max_uA;
242 if (*min_uA < rdev->constraints->min_uA)
243 *min_uA = rdev->constraints->min_uA;
244
245 if (*min_uA > *max_uA) {
246 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247 *min_uA, *max_uA);
248 return -EINVAL;
249 }
250
251 return 0;
252}
253
254/* operating mode constraint check */
255static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256{
257 switch (*mode) {
258 case REGULATOR_MODE_FAST:
259 case REGULATOR_MODE_NORMAL:
260 case REGULATOR_MODE_IDLE:
261 case REGULATOR_MODE_STANDBY:
262 break;
263 default:
264 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265 return -EINVAL;
266 }
267
268 if (!rdev->constraints) {
269 rdev_err(rdev, "no constraints\n");
270 return -ENODEV;
271 }
272 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273 rdev_err(rdev, "operation not allowed\n");
274 return -EPERM;
275 }
276
277 /* The modes are bitmasks, the most power hungry modes having
278 * the lowest values. If the requested mode isn't supported
279 * try higher modes. */
280 while (*mode) {
281 if (rdev->constraints->valid_modes_mask & *mode)
282 return 0;
283 *mode /= 2;
284 }
285
286 return -EINVAL;
287}
288
289/* dynamic regulator mode switching constraint check */
290static int regulator_check_drms(struct regulator_dev *rdev)
291{
292 if (!rdev->constraints) {
293 rdev_err(rdev, "no constraints\n");
294 return -ENODEV;
295 }
296 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297 rdev_err(rdev, "operation not allowed\n");
298 return -EPERM;
299 }
300 return 0;
301}
302
303static ssize_t regulator_uV_show(struct device *dev,
304 struct device_attribute *attr, char *buf)
305{
306 struct regulator_dev *rdev = dev_get_drvdata(dev);
307 ssize_t ret;
308
309 mutex_lock(&rdev->mutex);
310 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311 mutex_unlock(&rdev->mutex);
312
313 return ret;
314}
315static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317static ssize_t regulator_uA_show(struct device *dev,
318 struct device_attribute *attr, char *buf)
319{
320 struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323}
324static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327 char *buf)
328{
329 struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331 return sprintf(buf, "%s\n", rdev_get_name(rdev));
332}
333static DEVICE_ATTR_RO(name);
334
335static ssize_t regulator_print_opmode(char *buf, int mode)
336{
337 switch (mode) {
338 case REGULATOR_MODE_FAST:
339 return sprintf(buf, "fast\n");
340 case REGULATOR_MODE_NORMAL:
341 return sprintf(buf, "normal\n");
342 case REGULATOR_MODE_IDLE:
343 return sprintf(buf, "idle\n");
344 case REGULATOR_MODE_STANDBY:
345 return sprintf(buf, "standby\n");
346 }
347 return sprintf(buf, "unknown\n");
348}
349
350static ssize_t regulator_opmode_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352{
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356}
357static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359static ssize_t regulator_print_state(char *buf, int state)
360{
361 if (state > 0)
362 return sprintf(buf, "enabled\n");
363 else if (state == 0)
364 return sprintf(buf, "disabled\n");
365 else
366 return sprintf(buf, "unknown\n");
367}
368
369static ssize_t regulator_state_show(struct device *dev,
370 struct device_attribute *attr, char *buf)
371{
372 struct regulator_dev *rdev = dev_get_drvdata(dev);
373 ssize_t ret;
374
375 mutex_lock(&rdev->mutex);
376 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377 mutex_unlock(&rdev->mutex);
378
379 return ret;
380}
381static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383static ssize_t regulator_status_show(struct device *dev,
384 struct device_attribute *attr, char *buf)
385{
386 struct regulator_dev *rdev = dev_get_drvdata(dev);
387 int status;
388 char *label;
389
390 status = rdev->desc->ops->get_status(rdev);
391 if (status < 0)
392 return status;
393
394 switch (status) {
395 case REGULATOR_STATUS_OFF:
396 label = "off";
397 break;
398 case REGULATOR_STATUS_ON:
399 label = "on";
400 break;
401 case REGULATOR_STATUS_ERROR:
402 label = "error";
403 break;
404 case REGULATOR_STATUS_FAST:
405 label = "fast";
406 break;
407 case REGULATOR_STATUS_NORMAL:
408 label = "normal";
409 break;
410 case REGULATOR_STATUS_IDLE:
411 label = "idle";
412 break;
413 case REGULATOR_STATUS_STANDBY:
414 label = "standby";
415 break;
416 case REGULATOR_STATUS_BYPASS:
417 label = "bypass";
418 break;
419 case REGULATOR_STATUS_UNDEFINED:
420 label = "undefined";
421 break;
422 default:
423 return -ERANGE;
424 }
425
426 return sprintf(buf, "%s\n", label);
427}
428static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430static ssize_t regulator_min_uA_show(struct device *dev,
431 struct device_attribute *attr, char *buf)
432{
433 struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435 if (!rdev->constraints)
436 return sprintf(buf, "constraint not defined\n");
437
438 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439}
440static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442static ssize_t regulator_max_uA_show(struct device *dev,
443 struct device_attribute *attr, char *buf)
444{
445 struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447 if (!rdev->constraints)
448 return sprintf(buf, "constraint not defined\n");
449
450 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451}
452static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454static ssize_t regulator_min_uV_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
456{
457 struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459 if (!rdev->constraints)
460 return sprintf(buf, "constraint not defined\n");
461
462 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463}
464static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466static ssize_t regulator_max_uV_show(struct device *dev,
467 struct device_attribute *attr, char *buf)
468{
469 struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471 if (!rdev->constraints)
472 return sprintf(buf, "constraint not defined\n");
473
474 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475}
476static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478static ssize_t regulator_total_uA_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480{
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482 struct regulator *regulator;
483 int uA = 0;
484
485 mutex_lock(&rdev->mutex);
486 list_for_each_entry(regulator, &rdev->consumer_list, list)
487 uA += regulator->uA_load;
488 mutex_unlock(&rdev->mutex);
489 return sprintf(buf, "%d\n", uA);
490}
491static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494 char *buf)
495{
496 struct regulator_dev *rdev = dev_get_drvdata(dev);
497 return sprintf(buf, "%d\n", rdev->use_count);
498}
499static DEVICE_ATTR_RO(num_users);
500
501static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502 char *buf)
503{
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506 switch (rdev->desc->type) {
507 case REGULATOR_VOLTAGE:
508 return sprintf(buf, "voltage\n");
509 case REGULATOR_CURRENT:
510 return sprintf(buf, "current\n");
511 }
512 return sprintf(buf, "unknown\n");
513}
514static DEVICE_ATTR_RO(type);
515
516static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
518{
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522}
523static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524 regulator_suspend_mem_uV_show, NULL);
525
526static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528{
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532}
533static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534 regulator_suspend_disk_uV_show, NULL);
535
536static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
538{
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542}
543static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544 regulator_suspend_standby_uV_show, NULL);
545
546static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547 struct device_attribute *attr, char *buf)
548{
549 struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551 return regulator_print_opmode(buf,
552 rdev->constraints->state_mem.mode);
553}
554static DEVICE_ATTR(suspend_mem_mode, 0444,
555 regulator_suspend_mem_mode_show, NULL);
556
557static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
559{
560 struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562 return regulator_print_opmode(buf,
563 rdev->constraints->state_disk.mode);
564}
565static DEVICE_ATTR(suspend_disk_mode, 0444,
566 regulator_suspend_disk_mode_show, NULL);
567
568static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569 struct device_attribute *attr, char *buf)
570{
571 struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573 return regulator_print_opmode(buf,
574 rdev->constraints->state_standby.mode);
575}
576static DEVICE_ATTR(suspend_standby_mode, 0444,
577 regulator_suspend_standby_mode_show, NULL);
578
579static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580 struct device_attribute *attr, char *buf)
581{
582 struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584 return regulator_print_state(buf,
585 rdev->constraints->state_mem.enabled);
586}
587static DEVICE_ATTR(suspend_mem_state, 0444,
588 regulator_suspend_mem_state_show, NULL);
589
590static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591 struct device_attribute *attr, char *buf)
592{
593 struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595 return regulator_print_state(buf,
596 rdev->constraints->state_disk.enabled);
597}
598static DEVICE_ATTR(suspend_disk_state, 0444,
599 regulator_suspend_disk_state_show, NULL);
600
601static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602 struct device_attribute *attr, char *buf)
603{
604 struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606 return regulator_print_state(buf,
607 rdev->constraints->state_standby.enabled);
608}
609static DEVICE_ATTR(suspend_standby_state, 0444,
610 regulator_suspend_standby_state_show, NULL);
611
612static ssize_t regulator_bypass_show(struct device *dev,
613 struct device_attribute *attr, char *buf)
614{
615 struct regulator_dev *rdev = dev_get_drvdata(dev);
616 const char *report;
617 bool bypass;
618 int ret;
619
620 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622 if (ret != 0)
623 report = "unknown";
624 else if (bypass)
625 report = "enabled";
626 else
627 report = "disabled";
628
629 return sprintf(buf, "%s\n", report);
630}
631static DEVICE_ATTR(bypass, 0444,
632 regulator_bypass_show, NULL);
633
634/*
635 * These are the only attributes are present for all regulators.
636 * Other attributes are a function of regulator functionality.
637 */
638static struct attribute *regulator_dev_attrs[] = {
639 &dev_attr_name.attr,
640 &dev_attr_num_users.attr,
641 &dev_attr_type.attr,
642 NULL,
643};
644ATTRIBUTE_GROUPS(regulator_dev);
645
646static void regulator_dev_release(struct device *dev)
647{
648 struct regulator_dev *rdev = dev_get_drvdata(dev);
649 kfree(rdev);
650}
651
652static struct class regulator_class = {
653 .name = "regulator",
654 .dev_release = regulator_dev_release,
655 .dev_groups = regulator_dev_groups,
656};
657
658/* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660static void drms_uA_update(struct regulator_dev *rdev)
661{
662 struct regulator *sibling;
663 int current_uA = 0, output_uV, input_uV, err;
664 unsigned int mode;
665
666 err = regulator_check_drms(rdev);
667 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668 (!rdev->desc->ops->get_voltage &&
669 !rdev->desc->ops->get_voltage_sel) ||
670 !rdev->desc->ops->set_mode)
671 return;
672
673 /* get output voltage */
674 output_uV = _regulator_get_voltage(rdev);
675 if (output_uV <= 0)
676 return;
677
678 /* get input voltage */
679 input_uV = 0;
680 if (rdev->supply)
681 input_uV = regulator_get_voltage(rdev->supply);
682 if (input_uV <= 0)
683 input_uV = rdev->constraints->input_uV;
684 if (input_uV <= 0)
685 return;
686
687 /* calc total requested load */
688 list_for_each_entry(sibling, &rdev->consumer_list, list)
689 current_uA += sibling->uA_load;
690
691 /* now get the optimum mode for our new total regulator load */
692 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693 output_uV, current_uA);
694
695 /* check the new mode is allowed */
696 err = regulator_mode_constrain(rdev, &mode);
697 if (err == 0)
698 rdev->desc->ops->set_mode(rdev, mode);
699}
700
701static int suspend_set_state(struct regulator_dev *rdev,
702 struct regulator_state *rstate)
703{
704 int ret = 0;
705
706 /* If we have no suspend mode configration don't set anything;
707 * only warn if the driver implements set_suspend_voltage or
708 * set_suspend_mode callback.
709 */
710 if (!rstate->enabled && !rstate->disabled) {
711 if (rdev->desc->ops->set_suspend_voltage ||
712 rdev->desc->ops->set_suspend_mode)
713 rdev_warn(rdev, "No configuration\n");
714 return 0;
715 }
716
717 if (rstate->enabled && rstate->disabled) {
718 rdev_err(rdev, "invalid configuration\n");
719 return -EINVAL;
720 }
721
722 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723 ret = rdev->desc->ops->set_suspend_enable(rdev);
724 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725 ret = rdev->desc->ops->set_suspend_disable(rdev);
726 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727 ret = 0;
728
729 if (ret < 0) {
730 rdev_err(rdev, "failed to enabled/disable\n");
731 return ret;
732 }
733
734 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736 if (ret < 0) {
737 rdev_err(rdev, "failed to set voltage\n");
738 return ret;
739 }
740 }
741
742 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744 if (ret < 0) {
745 rdev_err(rdev, "failed to set mode\n");
746 return ret;
747 }
748 }
749 return ret;
750}
751
752/* locks held by caller */
753static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754{
755 if (!rdev->constraints)
756 return -EINVAL;
757
758 switch (state) {
759 case PM_SUSPEND_STANDBY:
760 return suspend_set_state(rdev,
761 &rdev->constraints->state_standby);
762 case PM_SUSPEND_MEM:
763 return suspend_set_state(rdev,
764 &rdev->constraints->state_mem);
765 case PM_SUSPEND_MAX:
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_disk);
768 default:
769 return -EINVAL;
770 }
771}
772
773static void print_constraints(struct regulator_dev *rdev)
774{
775 struct regulation_constraints *constraints = rdev->constraints;
776 char buf[80] = "";
777 int count = 0;
778 int ret;
779
780 if (constraints->min_uV && constraints->max_uV) {
781 if (constraints->min_uV == constraints->max_uV)
782 count += sprintf(buf + count, "%d mV ",
783 constraints->min_uV / 1000);
784 else
785 count += sprintf(buf + count, "%d <--> %d mV ",
786 constraints->min_uV / 1000,
787 constraints->max_uV / 1000);
788 }
789
790 if (!constraints->min_uV ||
791 constraints->min_uV != constraints->max_uV) {
792 ret = _regulator_get_voltage(rdev);
793 if (ret > 0)
794 count += sprintf(buf + count, "at %d mV ", ret / 1000);
795 }
796
797 if (constraints->uV_offset)
798 count += sprintf(buf, "%dmV offset ",
799 constraints->uV_offset / 1000);
800
801 if (constraints->min_uA && constraints->max_uA) {
802 if (constraints->min_uA == constraints->max_uA)
803 count += sprintf(buf + count, "%d mA ",
804 constraints->min_uA / 1000);
805 else
806 count += sprintf(buf + count, "%d <--> %d mA ",
807 constraints->min_uA / 1000,
808 constraints->max_uA / 1000);
809 }
810
811 if (!constraints->min_uA ||
812 constraints->min_uA != constraints->max_uA) {
813 ret = _regulator_get_current_limit(rdev);
814 if (ret > 0)
815 count += sprintf(buf + count, "at %d mA ", ret / 1000);
816 }
817
818 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819 count += sprintf(buf + count, "fast ");
820 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821 count += sprintf(buf + count, "normal ");
822 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823 count += sprintf(buf + count, "idle ");
824 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825 count += sprintf(buf + count, "standby");
826
827 if (!count)
828 sprintf(buf, "no parameters");
829
830 rdev_info(rdev, "%s\n", buf);
831
832 if ((constraints->min_uV != constraints->max_uV) &&
833 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834 rdev_warn(rdev,
835 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836}
837
838static int machine_constraints_voltage(struct regulator_dev *rdev,
839 struct regulation_constraints *constraints)
840{
841 struct regulator_ops *ops = rdev->desc->ops;
842 int ret;
843
844 /* do we need to apply the constraint voltage */
845 if (rdev->constraints->apply_uV &&
846 rdev->constraints->min_uV == rdev->constraints->max_uV) {
847 ret = _regulator_do_set_voltage(rdev,
848 rdev->constraints->min_uV,
849 rdev->constraints->max_uV);
850 if (ret < 0) {
851 rdev_err(rdev, "failed to apply %duV constraint\n",
852 rdev->constraints->min_uV);
853 return ret;
854 }
855 }
856
857 /* constrain machine-level voltage specs to fit
858 * the actual range supported by this regulator.
859 */
860 if (ops->list_voltage && rdev->desc->n_voltages) {
861 int count = rdev->desc->n_voltages;
862 int i;
863 int min_uV = INT_MAX;
864 int max_uV = INT_MIN;
865 int cmin = constraints->min_uV;
866 int cmax = constraints->max_uV;
867
868 /* it's safe to autoconfigure fixed-voltage supplies
869 and the constraints are used by list_voltage. */
870 if (count == 1 && !cmin) {
871 cmin = 1;
872 cmax = INT_MAX;
873 constraints->min_uV = cmin;
874 constraints->max_uV = cmax;
875 }
876
877 /* voltage constraints are optional */
878 if ((cmin == 0) && (cmax == 0))
879 return 0;
880
881 /* else require explicit machine-level constraints */
882 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883 rdev_err(rdev, "invalid voltage constraints\n");
884 return -EINVAL;
885 }
886
887 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888 for (i = 0; i < count; i++) {
889 int value;
890
891 value = ops->list_voltage(rdev, i);
892 if (value <= 0)
893 continue;
894
895 /* maybe adjust [min_uV..max_uV] */
896 if (value >= cmin && value < min_uV)
897 min_uV = value;
898 if (value <= cmax && value > max_uV)
899 max_uV = value;
900 }
901
902 /* final: [min_uV..max_uV] valid iff constraints valid */
903 if (max_uV < min_uV) {
904 rdev_err(rdev,
905 "unsupportable voltage constraints %u-%uuV\n",
906 min_uV, max_uV);
907 return -EINVAL;
908 }
909
910 /* use regulator's subset of machine constraints */
911 if (constraints->min_uV < min_uV) {
912 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913 constraints->min_uV, min_uV);
914 constraints->min_uV = min_uV;
915 }
916 if (constraints->max_uV > max_uV) {
917 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918 constraints->max_uV, max_uV);
919 constraints->max_uV = max_uV;
920 }
921 }
922
923 return 0;
924}
925
926static int machine_constraints_current(struct regulator_dev *rdev,
927 struct regulation_constraints *constraints)
928{
929 struct regulator_ops *ops = rdev->desc->ops;
930 int ret;
931
932 if (!constraints->min_uA && !constraints->max_uA)
933 return 0;
934
935 if (constraints->min_uA > constraints->max_uA) {
936 rdev_err(rdev, "Invalid current constraints\n");
937 return -EINVAL;
938 }
939
940 if (!ops->set_current_limit || !ops->get_current_limit) {
941 rdev_warn(rdev, "Operation of current configuration missing\n");
942 return 0;
943 }
944
945 /* Set regulator current in constraints range */
946 ret = ops->set_current_limit(rdev, constraints->min_uA,
947 constraints->max_uA);
948 if (ret < 0) {
949 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
950 return ret;
951 }
952
953 return 0;
954}
955
956static int _regulator_do_enable(struct regulator_dev *rdev);
957
958/**
959 * set_machine_constraints - sets regulator constraints
960 * @rdev: regulator source
961 * @constraints: constraints to apply
962 *
963 * Allows platform initialisation code to define and constrain
964 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
965 * Constraints *must* be set by platform code in order for some
966 * regulator operations to proceed i.e. set_voltage, set_current_limit,
967 * set_mode.
968 */
969static int set_machine_constraints(struct regulator_dev *rdev,
970 const struct regulation_constraints *constraints)
971{
972 int ret = 0;
973 struct regulator_ops *ops = rdev->desc->ops;
974
975 if (constraints)
976 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
977 GFP_KERNEL);
978 else
979 rdev->constraints = kzalloc(sizeof(*constraints),
980 GFP_KERNEL);
981 if (!rdev->constraints)
982 return -ENOMEM;
983
984 ret = machine_constraints_voltage(rdev, rdev->constraints);
985 if (ret != 0)
986 goto out;
987
988 ret = machine_constraints_current(rdev, rdev->constraints);
989 if (ret != 0)
990 goto out;
991
992 /* do we need to setup our suspend state */
993 if (rdev->constraints->initial_state) {
994 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
995 if (ret < 0) {
996 rdev_err(rdev, "failed to set suspend state\n");
997 goto out;
998 }
999 }
1000
1001 if (rdev->constraints->initial_mode) {
1002 if (!ops->set_mode) {
1003 rdev_err(rdev, "no set_mode operation\n");
1004 ret = -EINVAL;
1005 goto out;
1006 }
1007
1008 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1009 if (ret < 0) {
1010 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1011 goto out;
1012 }
1013 }
1014
1015 /* If the constraints say the regulator should be on at this point
1016 * and we have control then make sure it is enabled.
1017 */
1018 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1019 ret = _regulator_do_enable(rdev);
1020 if (ret < 0 && ret != -EINVAL) {
1021 rdev_err(rdev, "failed to enable\n");
1022 goto out;
1023 }
1024 }
1025
1026 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1027 && ops->set_ramp_delay) {
1028 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1029 if (ret < 0) {
1030 rdev_err(rdev, "failed to set ramp_delay\n");
1031 goto out;
1032 }
1033 }
1034
1035 print_constraints(rdev);
1036 return 0;
1037out:
1038 kfree(rdev->constraints);
1039 rdev->constraints = NULL;
1040 return ret;
1041}
1042
1043/**
1044 * set_supply - set regulator supply regulator
1045 * @rdev: regulator name
1046 * @supply_rdev: supply regulator name
1047 *
1048 * Called by platform initialisation code to set the supply regulator for this
1049 * regulator. This ensures that a regulators supply will also be enabled by the
1050 * core if it's child is enabled.
1051 */
1052static int set_supply(struct regulator_dev *rdev,
1053 struct regulator_dev *supply_rdev)
1054{
1055 int err;
1056
1057 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1058
1059 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1060 if (rdev->supply == NULL) {
1061 err = -ENOMEM;
1062 return err;
1063 }
1064 supply_rdev->open_count++;
1065
1066 return 0;
1067}
1068
1069/**
1070 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1071 * @rdev: regulator source
1072 * @consumer_dev_name: dev_name() string for device supply applies to
1073 * @supply: symbolic name for supply
1074 *
1075 * Allows platform initialisation code to map physical regulator
1076 * sources to symbolic names for supplies for use by devices. Devices
1077 * should use these symbolic names to request regulators, avoiding the
1078 * need to provide board-specific regulator names as platform data.
1079 */
1080static int set_consumer_device_supply(struct regulator_dev *rdev,
1081 const char *consumer_dev_name,
1082 const char *supply)
1083{
1084 struct regulator_map *node;
1085 int has_dev;
1086
1087 if (supply == NULL)
1088 return -EINVAL;
1089
1090 if (consumer_dev_name != NULL)
1091 has_dev = 1;
1092 else
1093 has_dev = 0;
1094
1095 list_for_each_entry(node, ®ulator_map_list, list) {
1096 if (node->dev_name && consumer_dev_name) {
1097 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1098 continue;
1099 } else if (node->dev_name || consumer_dev_name) {
1100 continue;
1101 }
1102
1103 if (strcmp(node->supply, supply) != 0)
1104 continue;
1105
1106 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1107 consumer_dev_name,
1108 dev_name(&node->regulator->dev),
1109 node->regulator->desc->name,
1110 supply,
1111 dev_name(&rdev->dev), rdev_get_name(rdev));
1112 return -EBUSY;
1113 }
1114
1115 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1116 if (node == NULL)
1117 return -ENOMEM;
1118
1119 node->regulator = rdev;
1120 node->supply = supply;
1121
1122 if (has_dev) {
1123 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1124 if (node->dev_name == NULL) {
1125 kfree(node);
1126 return -ENOMEM;
1127 }
1128 }
1129
1130 list_add(&node->list, ®ulator_map_list);
1131 return 0;
1132}
1133
1134static void unset_regulator_supplies(struct regulator_dev *rdev)
1135{
1136 struct regulator_map *node, *n;
1137
1138 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1139 if (rdev == node->regulator) {
1140 list_del(&node->list);
1141 kfree(node->dev_name);
1142 kfree(node);
1143 }
1144 }
1145}
1146
1147#define REG_STR_SIZE 64
1148
1149static struct regulator *create_regulator(struct regulator_dev *rdev,
1150 struct device *dev,
1151 const char *supply_name)
1152{
1153 struct regulator *regulator;
1154 char buf[REG_STR_SIZE];
1155 int err, size;
1156
1157 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1158 if (regulator == NULL)
1159 return NULL;
1160
1161 mutex_lock(&rdev->mutex);
1162 regulator->rdev = rdev;
1163 list_add(®ulator->list, &rdev->consumer_list);
1164
1165 if (dev) {
1166 regulator->dev = dev;
1167
1168 /* Add a link to the device sysfs entry */
1169 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1170 dev->kobj.name, supply_name);
1171 if (size >= REG_STR_SIZE)
1172 goto overflow_err;
1173
1174 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1175 if (regulator->supply_name == NULL)
1176 goto overflow_err;
1177
1178 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1179 buf);
1180 if (err) {
1181 rdev_warn(rdev, "could not add device link %s err %d\n",
1182 dev->kobj.name, err);
1183 /* non-fatal */
1184 }
1185 } else {
1186 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1187 if (regulator->supply_name == NULL)
1188 goto overflow_err;
1189 }
1190
1191 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1192 rdev->debugfs);
1193 if (!regulator->debugfs) {
1194 rdev_warn(rdev, "Failed to create debugfs directory\n");
1195 } else {
1196 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1197 ®ulator->uA_load);
1198 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1199 ®ulator->min_uV);
1200 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1201 ®ulator->max_uV);
1202 }
1203
1204 /*
1205 * Check now if the regulator is an always on regulator - if
1206 * it is then we don't need to do nearly so much work for
1207 * enable/disable calls.
1208 */
1209 if (!_regulator_can_change_status(rdev) &&
1210 _regulator_is_enabled(rdev))
1211 regulator->always_on = true;
1212
1213 mutex_unlock(&rdev->mutex);
1214 return regulator;
1215overflow_err:
1216 list_del(®ulator->list);
1217 kfree(regulator);
1218 mutex_unlock(&rdev->mutex);
1219 return NULL;
1220}
1221
1222static int _regulator_get_enable_time(struct regulator_dev *rdev)
1223{
1224 if (rdev->constraints && rdev->constraints->enable_time)
1225 return rdev->constraints->enable_time;
1226 if (!rdev->desc->ops->enable_time)
1227 return rdev->desc->enable_time;
1228 return rdev->desc->ops->enable_time(rdev);
1229}
1230
1231static struct regulator_supply_alias *regulator_find_supply_alias(
1232 struct device *dev, const char *supply)
1233{
1234 struct regulator_supply_alias *map;
1235
1236 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1237 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1238 return map;
1239
1240 return NULL;
1241}
1242
1243static void regulator_supply_alias(struct device **dev, const char **supply)
1244{
1245 struct regulator_supply_alias *map;
1246
1247 map = regulator_find_supply_alias(*dev, *supply);
1248 if (map) {
1249 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1250 *supply, map->alias_supply,
1251 dev_name(map->alias_dev));
1252 *dev = map->alias_dev;
1253 *supply = map->alias_supply;
1254 }
1255}
1256
1257static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1258 const char *supply,
1259 int *ret)
1260{
1261 struct regulator_dev *r;
1262 struct device_node *node;
1263 struct regulator_map *map;
1264 const char *devname = NULL;
1265
1266 regulator_supply_alias(&dev, &supply);
1267
1268 /* first do a dt based lookup */
1269 if (dev && dev->of_node) {
1270 node = of_get_regulator(dev, supply);
1271 if (node) {
1272 list_for_each_entry(r, ®ulator_list, list)
1273 if (r->dev.parent &&
1274 node == r->dev.of_node)
1275 return r;
1276 *ret = -EPROBE_DEFER;
1277 return NULL;
1278 } else {
1279 /*
1280 * If we couldn't even get the node then it's
1281 * not just that the device didn't register
1282 * yet, there's no node and we'll never
1283 * succeed.
1284 */
1285 *ret = -ENODEV;
1286 }
1287 }
1288
1289 /* if not found, try doing it non-dt way */
1290 if (dev)
1291 devname = dev_name(dev);
1292
1293 list_for_each_entry(r, ®ulator_list, list)
1294 if (strcmp(rdev_get_name(r), supply) == 0)
1295 return r;
1296
1297 list_for_each_entry(map, ®ulator_map_list, list) {
1298 /* If the mapping has a device set up it must match */
1299 if (map->dev_name &&
1300 (!devname || strcmp(map->dev_name, devname)))
1301 continue;
1302
1303 if (strcmp(map->supply, supply) == 0)
1304 return map->regulator;
1305 }
1306
1307
1308 return NULL;
1309}
1310
1311/* Internal regulator request function */
1312static struct regulator *_regulator_get(struct device *dev, const char *id,
1313 bool exclusive, bool allow_dummy)
1314{
1315 struct regulator_dev *rdev;
1316 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1317 const char *devname = NULL;
1318 int ret;
1319
1320 if (id == NULL) {
1321 pr_err("get() with no identifier\n");
1322 return ERR_PTR(-EINVAL);
1323 }
1324
1325 if (dev)
1326 devname = dev_name(dev);
1327
1328 if (have_full_constraints())
1329 ret = -ENODEV;
1330 else
1331 ret = -EPROBE_DEFER;
1332
1333 mutex_lock(®ulator_list_mutex);
1334
1335 rdev = regulator_dev_lookup(dev, id, &ret);
1336 if (rdev)
1337 goto found;
1338
1339 regulator = ERR_PTR(ret);
1340
1341 /*
1342 * If we have return value from dev_lookup fail, we do not expect to
1343 * succeed, so, quit with appropriate error value
1344 */
1345 if (ret && ret != -ENODEV)
1346 goto out;
1347
1348 if (!devname)
1349 devname = "deviceless";
1350
1351 /*
1352 * Assume that a regulator is physically present and enabled
1353 * even if it isn't hooked up and just provide a dummy.
1354 */
1355 if (have_full_constraints() && allow_dummy) {
1356 pr_warn("%s supply %s not found, using dummy regulator\n",
1357 devname, id);
1358
1359 rdev = dummy_regulator_rdev;
1360 goto found;
1361 /* Don't log an error when called from regulator_get_optional() */
1362 } else if (!have_full_constraints() || exclusive) {
1363 dev_warn(dev, "dummy supplies not allowed\n");
1364 }
1365
1366 mutex_unlock(®ulator_list_mutex);
1367 return regulator;
1368
1369found:
1370 if (rdev->exclusive) {
1371 regulator = ERR_PTR(-EPERM);
1372 goto out;
1373 }
1374
1375 if (exclusive && rdev->open_count) {
1376 regulator = ERR_PTR(-EBUSY);
1377 goto out;
1378 }
1379
1380 if (!try_module_get(rdev->owner))
1381 goto out;
1382
1383 regulator = create_regulator(rdev, dev, id);
1384 if (regulator == NULL) {
1385 regulator = ERR_PTR(-ENOMEM);
1386 module_put(rdev->owner);
1387 goto out;
1388 }
1389
1390 rdev->open_count++;
1391 if (exclusive) {
1392 rdev->exclusive = 1;
1393
1394 ret = _regulator_is_enabled(rdev);
1395 if (ret > 0)
1396 rdev->use_count = 1;
1397 else
1398 rdev->use_count = 0;
1399 }
1400
1401out:
1402 mutex_unlock(®ulator_list_mutex);
1403
1404 return regulator;
1405}
1406
1407/**
1408 * regulator_get - lookup and obtain a reference to a regulator.
1409 * @dev: device for regulator "consumer"
1410 * @id: Supply name or regulator ID.
1411 *
1412 * Returns a struct regulator corresponding to the regulator producer,
1413 * or IS_ERR() condition containing errno.
1414 *
1415 * Use of supply names configured via regulator_set_device_supply() is
1416 * strongly encouraged. It is recommended that the supply name used
1417 * should match the name used for the supply and/or the relevant
1418 * device pins in the datasheet.
1419 */
1420struct regulator *regulator_get(struct device *dev, const char *id)
1421{
1422 return _regulator_get(dev, id, false, true);
1423}
1424EXPORT_SYMBOL_GPL(regulator_get);
1425
1426/**
1427 * regulator_get_exclusive - obtain exclusive access to a regulator.
1428 * @dev: device for regulator "consumer"
1429 * @id: Supply name or regulator ID.
1430 *
1431 * Returns a struct regulator corresponding to the regulator producer,
1432 * or IS_ERR() condition containing errno. Other consumers will be
1433 * unable to obtain this reference is held and the use count for the
1434 * regulator will be initialised to reflect the current state of the
1435 * regulator.
1436 *
1437 * This is intended for use by consumers which cannot tolerate shared
1438 * use of the regulator such as those which need to force the
1439 * regulator off for correct operation of the hardware they are
1440 * controlling.
1441 *
1442 * Use of supply names configured via regulator_set_device_supply() is
1443 * strongly encouraged. It is recommended that the supply name used
1444 * should match the name used for the supply and/or the relevant
1445 * device pins in the datasheet.
1446 */
1447struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1448{
1449 return _regulator_get(dev, id, true, false);
1450}
1451EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1452
1453/**
1454 * regulator_get_optional - obtain optional access to a regulator.
1455 * @dev: device for regulator "consumer"
1456 * @id: Supply name or regulator ID.
1457 *
1458 * Returns a struct regulator corresponding to the regulator producer,
1459 * or IS_ERR() condition containing errno. Other consumers will be
1460 * unable to obtain this reference is held and the use count for the
1461 * regulator will be initialised to reflect the current state of the
1462 * regulator.
1463 *
1464 * This is intended for use by consumers for devices which can have
1465 * some supplies unconnected in normal use, such as some MMC devices.
1466 * It can allow the regulator core to provide stub supplies for other
1467 * supplies requested using normal regulator_get() calls without
1468 * disrupting the operation of drivers that can handle absent
1469 * supplies.
1470 *
1471 * Use of supply names configured via regulator_set_device_supply() is
1472 * strongly encouraged. It is recommended that the supply name used
1473 * should match the name used for the supply and/or the relevant
1474 * device pins in the datasheet.
1475 */
1476struct regulator *regulator_get_optional(struct device *dev, const char *id)
1477{
1478 return _regulator_get(dev, id, false, false);
1479}
1480EXPORT_SYMBOL_GPL(regulator_get_optional);
1481
1482/* Locks held by regulator_put() */
1483static void _regulator_put(struct regulator *regulator)
1484{
1485 struct regulator_dev *rdev;
1486
1487 if (regulator == NULL || IS_ERR(regulator))
1488 return;
1489
1490 rdev = regulator->rdev;
1491
1492 debugfs_remove_recursive(regulator->debugfs);
1493
1494 /* remove any sysfs entries */
1495 if (regulator->dev)
1496 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1497 kfree(regulator->supply_name);
1498 list_del(®ulator->list);
1499 kfree(regulator);
1500
1501 rdev->open_count--;
1502 rdev->exclusive = 0;
1503
1504 module_put(rdev->owner);
1505}
1506
1507/**
1508 * regulator_put - "free" the regulator source
1509 * @regulator: regulator source
1510 *
1511 * Note: drivers must ensure that all regulator_enable calls made on this
1512 * regulator source are balanced by regulator_disable calls prior to calling
1513 * this function.
1514 */
1515void regulator_put(struct regulator *regulator)
1516{
1517 mutex_lock(®ulator_list_mutex);
1518 _regulator_put(regulator);
1519 mutex_unlock(®ulator_list_mutex);
1520}
1521EXPORT_SYMBOL_GPL(regulator_put);
1522
1523/**
1524 * regulator_register_supply_alias - Provide device alias for supply lookup
1525 *
1526 * @dev: device that will be given as the regulator "consumer"
1527 * @id: Supply name or regulator ID
1528 * @alias_dev: device that should be used to lookup the supply
1529 * @alias_id: Supply name or regulator ID that should be used to lookup the
1530 * supply
1531 *
1532 * All lookups for id on dev will instead be conducted for alias_id on
1533 * alias_dev.
1534 */
1535int regulator_register_supply_alias(struct device *dev, const char *id,
1536 struct device *alias_dev,
1537 const char *alias_id)
1538{
1539 struct regulator_supply_alias *map;
1540
1541 map = regulator_find_supply_alias(dev, id);
1542 if (map)
1543 return -EEXIST;
1544
1545 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1546 if (!map)
1547 return -ENOMEM;
1548
1549 map->src_dev = dev;
1550 map->src_supply = id;
1551 map->alias_dev = alias_dev;
1552 map->alias_supply = alias_id;
1553
1554 list_add(&map->list, ®ulator_supply_alias_list);
1555
1556 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1557 id, dev_name(dev), alias_id, dev_name(alias_dev));
1558
1559 return 0;
1560}
1561EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1562
1563/**
1564 * regulator_unregister_supply_alias - Remove device alias
1565 *
1566 * @dev: device that will be given as the regulator "consumer"
1567 * @id: Supply name or regulator ID
1568 *
1569 * Remove a lookup alias if one exists for id on dev.
1570 */
1571void regulator_unregister_supply_alias(struct device *dev, const char *id)
1572{
1573 struct regulator_supply_alias *map;
1574
1575 map = regulator_find_supply_alias(dev, id);
1576 if (map) {
1577 list_del(&map->list);
1578 kfree(map);
1579 }
1580}
1581EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1582
1583/**
1584 * regulator_bulk_register_supply_alias - register multiple aliases
1585 *
1586 * @dev: device that will be given as the regulator "consumer"
1587 * @id: List of supply names or regulator IDs
1588 * @alias_dev: device that should be used to lookup the supply
1589 * @alias_id: List of supply names or regulator IDs that should be used to
1590 * lookup the supply
1591 * @num_id: Number of aliases to register
1592 *
1593 * @return 0 on success, an errno on failure.
1594 *
1595 * This helper function allows drivers to register several supply
1596 * aliases in one operation. If any of the aliases cannot be
1597 * registered any aliases that were registered will be removed
1598 * before returning to the caller.
1599 */
1600int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1601 struct device *alias_dev,
1602 const char **alias_id,
1603 int num_id)
1604{
1605 int i;
1606 int ret;
1607
1608 for (i = 0; i < num_id; ++i) {
1609 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1610 alias_id[i]);
1611 if (ret < 0)
1612 goto err;
1613 }
1614
1615 return 0;
1616
1617err:
1618 dev_err(dev,
1619 "Failed to create supply alias %s,%s -> %s,%s\n",
1620 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1621
1622 while (--i >= 0)
1623 regulator_unregister_supply_alias(dev, id[i]);
1624
1625 return ret;
1626}
1627EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1628
1629/**
1630 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1631 *
1632 * @dev: device that will be given as the regulator "consumer"
1633 * @id: List of supply names or regulator IDs
1634 * @num_id: Number of aliases to unregister
1635 *
1636 * This helper function allows drivers to unregister several supply
1637 * aliases in one operation.
1638 */
1639void regulator_bulk_unregister_supply_alias(struct device *dev,
1640 const char **id,
1641 int num_id)
1642{
1643 int i;
1644
1645 for (i = 0; i < num_id; ++i)
1646 regulator_unregister_supply_alias(dev, id[i]);
1647}
1648EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1649
1650
1651/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1652static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1653 const struct regulator_config *config)
1654{
1655 struct regulator_enable_gpio *pin;
1656 int ret;
1657
1658 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1659 if (pin->gpio == config->ena_gpio) {
1660 rdev_dbg(rdev, "GPIO %d is already used\n",
1661 config->ena_gpio);
1662 goto update_ena_gpio_to_rdev;
1663 }
1664 }
1665
1666 ret = gpio_request_one(config->ena_gpio,
1667 GPIOF_DIR_OUT | config->ena_gpio_flags,
1668 rdev_get_name(rdev));
1669 if (ret)
1670 return ret;
1671
1672 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1673 if (pin == NULL) {
1674 gpio_free(config->ena_gpio);
1675 return -ENOMEM;
1676 }
1677
1678 pin->gpio = config->ena_gpio;
1679 pin->ena_gpio_invert = config->ena_gpio_invert;
1680 list_add(&pin->list, ®ulator_ena_gpio_list);
1681
1682update_ena_gpio_to_rdev:
1683 pin->request_count++;
1684 rdev->ena_pin = pin;
1685 return 0;
1686}
1687
1688static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1689{
1690 struct regulator_enable_gpio *pin, *n;
1691
1692 if (!rdev->ena_pin)
1693 return;
1694
1695 /* Free the GPIO only in case of no use */
1696 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
1697 if (pin->gpio == rdev->ena_pin->gpio) {
1698 if (pin->request_count <= 1) {
1699 pin->request_count = 0;
1700 gpio_free(pin->gpio);
1701 list_del(&pin->list);
1702 kfree(pin);
1703 } else {
1704 pin->request_count--;
1705 }
1706 }
1707 }
1708}
1709
1710/**
1711 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1712 * @rdev: regulator_dev structure
1713 * @enable: enable GPIO at initial use?
1714 *
1715 * GPIO is enabled in case of initial use. (enable_count is 0)
1716 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1717 */
1718static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1719{
1720 struct regulator_enable_gpio *pin = rdev->ena_pin;
1721
1722 if (!pin)
1723 return -EINVAL;
1724
1725 if (enable) {
1726 /* Enable GPIO at initial use */
1727 if (pin->enable_count == 0)
1728 gpio_set_value_cansleep(pin->gpio,
1729 !pin->ena_gpio_invert);
1730
1731 pin->enable_count++;
1732 } else {
1733 if (pin->enable_count > 1) {
1734 pin->enable_count--;
1735 return 0;
1736 }
1737
1738 /* Disable GPIO if not used */
1739 if (pin->enable_count <= 1) {
1740 gpio_set_value_cansleep(pin->gpio,
1741 pin->ena_gpio_invert);
1742 pin->enable_count = 0;
1743 }
1744 }
1745
1746 return 0;
1747}
1748
1749static int _regulator_do_enable(struct regulator_dev *rdev)
1750{
1751 int ret, delay;
1752
1753 /* Query before enabling in case configuration dependent. */
1754 ret = _regulator_get_enable_time(rdev);
1755 if (ret >= 0) {
1756 delay = ret;
1757 } else {
1758 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1759 delay = 0;
1760 }
1761
1762 trace_regulator_enable(rdev_get_name(rdev));
1763
1764 if (rdev->ena_pin) {
1765 ret = regulator_ena_gpio_ctrl(rdev, true);
1766 if (ret < 0)
1767 return ret;
1768 rdev->ena_gpio_state = 1;
1769 } else if (rdev->desc->ops->enable) {
1770 ret = rdev->desc->ops->enable(rdev);
1771 if (ret < 0)
1772 return ret;
1773 } else {
1774 return -EINVAL;
1775 }
1776
1777 /* Allow the regulator to ramp; it would be useful to extend
1778 * this for bulk operations so that the regulators can ramp
1779 * together. */
1780 trace_regulator_enable_delay(rdev_get_name(rdev));
1781
1782 /*
1783 * Delay for the requested amount of time as per the guidelines in:
1784 *
1785 * Documentation/timers/timers-howto.txt
1786 *
1787 * The assumption here is that regulators will never be enabled in
1788 * atomic context and therefore sleeping functions can be used.
1789 */
1790 if (delay) {
1791 unsigned int ms = delay / 1000;
1792 unsigned int us = delay % 1000;
1793
1794 if (ms > 0) {
1795 /*
1796 * For small enough values, handle super-millisecond
1797 * delays in the usleep_range() call below.
1798 */
1799 if (ms < 20)
1800 us += ms * 1000;
1801 else
1802 msleep(ms);
1803 }
1804
1805 /*
1806 * Give the scheduler some room to coalesce with any other
1807 * wakeup sources. For delays shorter than 10 us, don't even
1808 * bother setting up high-resolution timers and just busy-
1809 * loop.
1810 */
1811 if (us >= 10)
1812 usleep_range(us, us + 100);
1813 else
1814 udelay(us);
1815 }
1816
1817 trace_regulator_enable_complete(rdev_get_name(rdev));
1818
1819 return 0;
1820}
1821
1822/* locks held by regulator_enable() */
1823static int _regulator_enable(struct regulator_dev *rdev)
1824{
1825 int ret;
1826
1827 /* check voltage and requested load before enabling */
1828 if (rdev->constraints &&
1829 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1830 drms_uA_update(rdev);
1831
1832 if (rdev->use_count == 0) {
1833 /* The regulator may on if it's not switchable or left on */
1834 ret = _regulator_is_enabled(rdev);
1835 if (ret == -EINVAL || ret == 0) {
1836 if (!_regulator_can_change_status(rdev))
1837 return -EPERM;
1838
1839 ret = _regulator_do_enable(rdev);
1840 if (ret < 0)
1841 return ret;
1842
1843 } else if (ret < 0) {
1844 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1845 return ret;
1846 }
1847 /* Fallthrough on positive return values - already enabled */
1848 }
1849
1850 rdev->use_count++;
1851
1852 return 0;
1853}
1854
1855/**
1856 * regulator_enable - enable regulator output
1857 * @regulator: regulator source
1858 *
1859 * Request that the regulator be enabled with the regulator output at
1860 * the predefined voltage or current value. Calls to regulator_enable()
1861 * must be balanced with calls to regulator_disable().
1862 *
1863 * NOTE: the output value can be set by other drivers, boot loader or may be
1864 * hardwired in the regulator.
1865 */
1866int regulator_enable(struct regulator *regulator)
1867{
1868 struct regulator_dev *rdev = regulator->rdev;
1869 int ret = 0;
1870
1871 if (regulator->always_on)
1872 return 0;
1873
1874 if (rdev->supply) {
1875 ret = regulator_enable(rdev->supply);
1876 if (ret != 0)
1877 return ret;
1878 }
1879
1880 mutex_lock(&rdev->mutex);
1881 ret = _regulator_enable(rdev);
1882 mutex_unlock(&rdev->mutex);
1883
1884 if (ret != 0 && rdev->supply)
1885 regulator_disable(rdev->supply);
1886
1887 return ret;
1888}
1889EXPORT_SYMBOL_GPL(regulator_enable);
1890
1891static int _regulator_do_disable(struct regulator_dev *rdev)
1892{
1893 int ret;
1894
1895 trace_regulator_disable(rdev_get_name(rdev));
1896
1897 if (rdev->ena_pin) {
1898 ret = regulator_ena_gpio_ctrl(rdev, false);
1899 if (ret < 0)
1900 return ret;
1901 rdev->ena_gpio_state = 0;
1902
1903 } else if (rdev->desc->ops->disable) {
1904 ret = rdev->desc->ops->disable(rdev);
1905 if (ret != 0)
1906 return ret;
1907 }
1908
1909 trace_regulator_disable_complete(rdev_get_name(rdev));
1910
1911 return 0;
1912}
1913
1914/* locks held by regulator_disable() */
1915static int _regulator_disable(struct regulator_dev *rdev)
1916{
1917 int ret = 0;
1918
1919 if (WARN(rdev->use_count <= 0,
1920 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1921 return -EIO;
1922
1923 /* are we the last user and permitted to disable ? */
1924 if (rdev->use_count == 1 &&
1925 (rdev->constraints && !rdev->constraints->always_on)) {
1926
1927 /* we are last user */
1928 if (_regulator_can_change_status(rdev)) {
1929 ret = _regulator_do_disable(rdev);
1930 if (ret < 0) {
1931 rdev_err(rdev, "failed to disable\n");
1932 return ret;
1933 }
1934 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1935 NULL);
1936 }
1937
1938 rdev->use_count = 0;
1939 } else if (rdev->use_count > 1) {
1940
1941 if (rdev->constraints &&
1942 (rdev->constraints->valid_ops_mask &
1943 REGULATOR_CHANGE_DRMS))
1944 drms_uA_update(rdev);
1945
1946 rdev->use_count--;
1947 }
1948
1949 return ret;
1950}
1951
1952/**
1953 * regulator_disable - disable regulator output
1954 * @regulator: regulator source
1955 *
1956 * Disable the regulator output voltage or current. Calls to
1957 * regulator_enable() must be balanced with calls to
1958 * regulator_disable().
1959 *
1960 * NOTE: this will only disable the regulator output if no other consumer
1961 * devices have it enabled, the regulator device supports disabling and
1962 * machine constraints permit this operation.
1963 */
1964int regulator_disable(struct regulator *regulator)
1965{
1966 struct regulator_dev *rdev = regulator->rdev;
1967 int ret = 0;
1968
1969 if (regulator->always_on)
1970 return 0;
1971
1972 mutex_lock(&rdev->mutex);
1973 ret = _regulator_disable(rdev);
1974 mutex_unlock(&rdev->mutex);
1975
1976 if (ret == 0 && rdev->supply)
1977 regulator_disable(rdev->supply);
1978
1979 return ret;
1980}
1981EXPORT_SYMBOL_GPL(regulator_disable);
1982
1983/* locks held by regulator_force_disable() */
1984static int _regulator_force_disable(struct regulator_dev *rdev)
1985{
1986 int ret = 0;
1987
1988 ret = _regulator_do_disable(rdev);
1989 if (ret < 0) {
1990 rdev_err(rdev, "failed to force disable\n");
1991 return ret;
1992 }
1993
1994 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1995 REGULATOR_EVENT_DISABLE, NULL);
1996
1997 return 0;
1998}
1999
2000/**
2001 * regulator_force_disable - force disable regulator output
2002 * @regulator: regulator source
2003 *
2004 * Forcibly disable the regulator output voltage or current.
2005 * NOTE: this *will* disable the regulator output even if other consumer
2006 * devices have it enabled. This should be used for situations when device
2007 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2008 */
2009int regulator_force_disable(struct regulator *regulator)
2010{
2011 struct regulator_dev *rdev = regulator->rdev;
2012 int ret;
2013
2014 mutex_lock(&rdev->mutex);
2015 regulator->uA_load = 0;
2016 ret = _regulator_force_disable(regulator->rdev);
2017 mutex_unlock(&rdev->mutex);
2018
2019 if (rdev->supply)
2020 while (rdev->open_count--)
2021 regulator_disable(rdev->supply);
2022
2023 return ret;
2024}
2025EXPORT_SYMBOL_GPL(regulator_force_disable);
2026
2027static void regulator_disable_work(struct work_struct *work)
2028{
2029 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2030 disable_work.work);
2031 int count, i, ret;
2032
2033 mutex_lock(&rdev->mutex);
2034
2035 BUG_ON(!rdev->deferred_disables);
2036
2037 count = rdev->deferred_disables;
2038 rdev->deferred_disables = 0;
2039
2040 for (i = 0; i < count; i++) {
2041 ret = _regulator_disable(rdev);
2042 if (ret != 0)
2043 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2044 }
2045
2046 mutex_unlock(&rdev->mutex);
2047
2048 if (rdev->supply) {
2049 for (i = 0; i < count; i++) {
2050 ret = regulator_disable(rdev->supply);
2051 if (ret != 0) {
2052 rdev_err(rdev,
2053 "Supply disable failed: %d\n", ret);
2054 }
2055 }
2056 }
2057}
2058
2059/**
2060 * regulator_disable_deferred - disable regulator output with delay
2061 * @regulator: regulator source
2062 * @ms: miliseconds until the regulator is disabled
2063 *
2064 * Execute regulator_disable() on the regulator after a delay. This
2065 * is intended for use with devices that require some time to quiesce.
2066 *
2067 * NOTE: this will only disable the regulator output if no other consumer
2068 * devices have it enabled, the regulator device supports disabling and
2069 * machine constraints permit this operation.
2070 */
2071int regulator_disable_deferred(struct regulator *regulator, int ms)
2072{
2073 struct regulator_dev *rdev = regulator->rdev;
2074 int ret;
2075
2076 if (regulator->always_on)
2077 return 0;
2078
2079 if (!ms)
2080 return regulator_disable(regulator);
2081
2082 mutex_lock(&rdev->mutex);
2083 rdev->deferred_disables++;
2084 mutex_unlock(&rdev->mutex);
2085
2086 ret = queue_delayed_work(system_power_efficient_wq,
2087 &rdev->disable_work,
2088 msecs_to_jiffies(ms));
2089 if (ret < 0)
2090 return ret;
2091 else
2092 return 0;
2093}
2094EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2095
2096static int _regulator_is_enabled(struct regulator_dev *rdev)
2097{
2098 /* A GPIO control always takes precedence */
2099 if (rdev->ena_pin)
2100 return rdev->ena_gpio_state;
2101
2102 /* If we don't know then assume that the regulator is always on */
2103 if (!rdev->desc->ops->is_enabled)
2104 return 1;
2105
2106 return rdev->desc->ops->is_enabled(rdev);
2107}
2108
2109/**
2110 * regulator_is_enabled - is the regulator output enabled
2111 * @regulator: regulator source
2112 *
2113 * Returns positive if the regulator driver backing the source/client
2114 * has requested that the device be enabled, zero if it hasn't, else a
2115 * negative errno code.
2116 *
2117 * Note that the device backing this regulator handle can have multiple
2118 * users, so it might be enabled even if regulator_enable() was never
2119 * called for this particular source.
2120 */
2121int regulator_is_enabled(struct regulator *regulator)
2122{
2123 int ret;
2124
2125 if (regulator->always_on)
2126 return 1;
2127
2128 mutex_lock(®ulator->rdev->mutex);
2129 ret = _regulator_is_enabled(regulator->rdev);
2130 mutex_unlock(®ulator->rdev->mutex);
2131
2132 return ret;
2133}
2134EXPORT_SYMBOL_GPL(regulator_is_enabled);
2135
2136/**
2137 * regulator_can_change_voltage - check if regulator can change voltage
2138 * @regulator: regulator source
2139 *
2140 * Returns positive if the regulator driver backing the source/client
2141 * can change its voltage, false otherwise. Useful for detecting fixed
2142 * or dummy regulators and disabling voltage change logic in the client
2143 * driver.
2144 */
2145int regulator_can_change_voltage(struct regulator *regulator)
2146{
2147 struct regulator_dev *rdev = regulator->rdev;
2148
2149 if (rdev->constraints &&
2150 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2151 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2152 return 1;
2153
2154 if (rdev->desc->continuous_voltage_range &&
2155 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2156 rdev->constraints->min_uV != rdev->constraints->max_uV)
2157 return 1;
2158 }
2159
2160 return 0;
2161}
2162EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2163
2164/**
2165 * regulator_count_voltages - count regulator_list_voltage() selectors
2166 * @regulator: regulator source
2167 *
2168 * Returns number of selectors, or negative errno. Selectors are
2169 * numbered starting at zero, and typically correspond to bitfields
2170 * in hardware registers.
2171 */
2172int regulator_count_voltages(struct regulator *regulator)
2173{
2174 struct regulator_dev *rdev = regulator->rdev;
2175
2176 return rdev->desc->n_voltages ? : -EINVAL;
2177}
2178EXPORT_SYMBOL_GPL(regulator_count_voltages);
2179
2180/**
2181 * regulator_list_voltage - enumerate supported voltages
2182 * @regulator: regulator source
2183 * @selector: identify voltage to list
2184 * Context: can sleep
2185 *
2186 * Returns a voltage that can be passed to @regulator_set_voltage(),
2187 * zero if this selector code can't be used on this system, or a
2188 * negative errno.
2189 */
2190int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2191{
2192 struct regulator_dev *rdev = regulator->rdev;
2193 struct regulator_ops *ops = rdev->desc->ops;
2194 int ret;
2195
2196 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2197 return rdev->desc->fixed_uV;
2198
2199 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2200 return -EINVAL;
2201
2202 mutex_lock(&rdev->mutex);
2203 ret = ops->list_voltage(rdev, selector);
2204 mutex_unlock(&rdev->mutex);
2205
2206 if (ret > 0) {
2207 if (ret < rdev->constraints->min_uV)
2208 ret = 0;
2209 else if (ret > rdev->constraints->max_uV)
2210 ret = 0;
2211 }
2212
2213 return ret;
2214}
2215EXPORT_SYMBOL_GPL(regulator_list_voltage);
2216
2217/**
2218 * regulator_get_linear_step - return the voltage step size between VSEL values
2219 * @regulator: regulator source
2220 *
2221 * Returns the voltage step size between VSEL values for linear
2222 * regulators, or return 0 if the regulator isn't a linear regulator.
2223 */
2224unsigned int regulator_get_linear_step(struct regulator *regulator)
2225{
2226 struct regulator_dev *rdev = regulator->rdev;
2227
2228 return rdev->desc->uV_step;
2229}
2230EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2231
2232/**
2233 * regulator_is_supported_voltage - check if a voltage range can be supported
2234 *
2235 * @regulator: Regulator to check.
2236 * @min_uV: Minimum required voltage in uV.
2237 * @max_uV: Maximum required voltage in uV.
2238 *
2239 * Returns a boolean or a negative error code.
2240 */
2241int regulator_is_supported_voltage(struct regulator *regulator,
2242 int min_uV, int max_uV)
2243{
2244 struct regulator_dev *rdev = regulator->rdev;
2245 int i, voltages, ret;
2246
2247 /* If we can't change voltage check the current voltage */
2248 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2249 ret = regulator_get_voltage(regulator);
2250 if (ret >= 0)
2251 return min_uV <= ret && ret <= max_uV;
2252 else
2253 return ret;
2254 }
2255
2256 /* Any voltage within constrains range is fine? */
2257 if (rdev->desc->continuous_voltage_range)
2258 return min_uV >= rdev->constraints->min_uV &&
2259 max_uV <= rdev->constraints->max_uV;
2260
2261 ret = regulator_count_voltages(regulator);
2262 if (ret < 0)
2263 return ret;
2264 voltages = ret;
2265
2266 for (i = 0; i < voltages; i++) {
2267 ret = regulator_list_voltage(regulator, i);
2268
2269 if (ret >= min_uV && ret <= max_uV)
2270 return 1;
2271 }
2272
2273 return 0;
2274}
2275EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2276
2277static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2278 int min_uV, int max_uV)
2279{
2280 int ret;
2281 int delay = 0;
2282 int best_val = 0;
2283 unsigned int selector;
2284 int old_selector = -1;
2285
2286 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2287
2288 min_uV += rdev->constraints->uV_offset;
2289 max_uV += rdev->constraints->uV_offset;
2290
2291 /*
2292 * If we can't obtain the old selector there is not enough
2293 * info to call set_voltage_time_sel().
2294 */
2295 if (_regulator_is_enabled(rdev) &&
2296 rdev->desc->ops->set_voltage_time_sel &&
2297 rdev->desc->ops->get_voltage_sel) {
2298 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2299 if (old_selector < 0)
2300 return old_selector;
2301 }
2302
2303 if (rdev->desc->ops->set_voltage) {
2304 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2305 &selector);
2306
2307 if (ret >= 0) {
2308 if (rdev->desc->ops->list_voltage)
2309 best_val = rdev->desc->ops->list_voltage(rdev,
2310 selector);
2311 else
2312 best_val = _regulator_get_voltage(rdev);
2313 }
2314
2315 } else if (rdev->desc->ops->set_voltage_sel) {
2316 if (rdev->desc->ops->map_voltage) {
2317 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2318 max_uV);
2319 } else {
2320 if (rdev->desc->ops->list_voltage ==
2321 regulator_list_voltage_linear)
2322 ret = regulator_map_voltage_linear(rdev,
2323 min_uV, max_uV);
2324 else
2325 ret = regulator_map_voltage_iterate(rdev,
2326 min_uV, max_uV);
2327 }
2328
2329 if (ret >= 0) {
2330 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2331 if (min_uV <= best_val && max_uV >= best_val) {
2332 selector = ret;
2333 if (old_selector == selector)
2334 ret = 0;
2335 else
2336 ret = rdev->desc->ops->set_voltage_sel(
2337 rdev, ret);
2338 } else {
2339 ret = -EINVAL;
2340 }
2341 }
2342 } else {
2343 ret = -EINVAL;
2344 }
2345
2346 /* Call set_voltage_time_sel if successfully obtained old_selector */
2347 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2348 && old_selector != selector) {
2349
2350 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2351 old_selector, selector);
2352 if (delay < 0) {
2353 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2354 delay);
2355 delay = 0;
2356 }
2357
2358 /* Insert any necessary delays */
2359 if (delay >= 1000) {
2360 mdelay(delay / 1000);
2361 udelay(delay % 1000);
2362 } else if (delay) {
2363 udelay(delay);
2364 }
2365 }
2366
2367 if (ret == 0 && best_val >= 0) {
2368 unsigned long data = best_val;
2369
2370 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2371 (void *)data);
2372 }
2373
2374 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2375
2376 return ret;
2377}
2378
2379/**
2380 * regulator_set_voltage - set regulator output voltage
2381 * @regulator: regulator source
2382 * @min_uV: Minimum required voltage in uV
2383 * @max_uV: Maximum acceptable voltage in uV
2384 *
2385 * Sets a voltage regulator to the desired output voltage. This can be set
2386 * during any regulator state. IOW, regulator can be disabled or enabled.
2387 *
2388 * If the regulator is enabled then the voltage will change to the new value
2389 * immediately otherwise if the regulator is disabled the regulator will
2390 * output at the new voltage when enabled.
2391 *
2392 * NOTE: If the regulator is shared between several devices then the lowest
2393 * request voltage that meets the system constraints will be used.
2394 * Regulator system constraints must be set for this regulator before
2395 * calling this function otherwise this call will fail.
2396 */
2397int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2398{
2399 struct regulator_dev *rdev = regulator->rdev;
2400 int ret = 0;
2401 int old_min_uV, old_max_uV;
2402 int current_uV;
2403
2404 mutex_lock(&rdev->mutex);
2405
2406 /* If we're setting the same range as last time the change
2407 * should be a noop (some cpufreq implementations use the same
2408 * voltage for multiple frequencies, for example).
2409 */
2410 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2411 goto out;
2412
2413 /* If we're trying to set a range that overlaps the current voltage,
2414 * return succesfully even though the regulator does not support
2415 * changing the voltage.
2416 */
2417 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2418 current_uV = _regulator_get_voltage(rdev);
2419 if (min_uV <= current_uV && current_uV <= max_uV) {
2420 regulator->min_uV = min_uV;
2421 regulator->max_uV = max_uV;
2422 goto out;
2423 }
2424 }
2425
2426 /* sanity check */
2427 if (!rdev->desc->ops->set_voltage &&
2428 !rdev->desc->ops->set_voltage_sel) {
2429 ret = -EINVAL;
2430 goto out;
2431 }
2432
2433 /* constraints check */
2434 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2435 if (ret < 0)
2436 goto out;
2437
2438 /* restore original values in case of error */
2439 old_min_uV = regulator->min_uV;
2440 old_max_uV = regulator->max_uV;
2441 regulator->min_uV = min_uV;
2442 regulator->max_uV = max_uV;
2443
2444 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2445 if (ret < 0)
2446 goto out2;
2447
2448 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2449 if (ret < 0)
2450 goto out2;
2451
2452out:
2453 mutex_unlock(&rdev->mutex);
2454 return ret;
2455out2:
2456 regulator->min_uV = old_min_uV;
2457 regulator->max_uV = old_max_uV;
2458 mutex_unlock(&rdev->mutex);
2459 return ret;
2460}
2461EXPORT_SYMBOL_GPL(regulator_set_voltage);
2462
2463/**
2464 * regulator_set_voltage_time - get raise/fall time
2465 * @regulator: regulator source
2466 * @old_uV: starting voltage in microvolts
2467 * @new_uV: target voltage in microvolts
2468 *
2469 * Provided with the starting and ending voltage, this function attempts to
2470 * calculate the time in microseconds required to rise or fall to this new
2471 * voltage.
2472 */
2473int regulator_set_voltage_time(struct regulator *regulator,
2474 int old_uV, int new_uV)
2475{
2476 struct regulator_dev *rdev = regulator->rdev;
2477 struct regulator_ops *ops = rdev->desc->ops;
2478 int old_sel = -1;
2479 int new_sel = -1;
2480 int voltage;
2481 int i;
2482
2483 /* Currently requires operations to do this */
2484 if (!ops->list_voltage || !ops->set_voltage_time_sel
2485 || !rdev->desc->n_voltages)
2486 return -EINVAL;
2487
2488 for (i = 0; i < rdev->desc->n_voltages; i++) {
2489 /* We only look for exact voltage matches here */
2490 voltage = regulator_list_voltage(regulator, i);
2491 if (voltage < 0)
2492 return -EINVAL;
2493 if (voltage == 0)
2494 continue;
2495 if (voltage == old_uV)
2496 old_sel = i;
2497 if (voltage == new_uV)
2498 new_sel = i;
2499 }
2500
2501 if (old_sel < 0 || new_sel < 0)
2502 return -EINVAL;
2503
2504 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2505}
2506EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2507
2508/**
2509 * regulator_set_voltage_time_sel - get raise/fall time
2510 * @rdev: regulator source device
2511 * @old_selector: selector for starting voltage
2512 * @new_selector: selector for target voltage
2513 *
2514 * Provided with the starting and target voltage selectors, this function
2515 * returns time in microseconds required to rise or fall to this new voltage
2516 *
2517 * Drivers providing ramp_delay in regulation_constraints can use this as their
2518 * set_voltage_time_sel() operation.
2519 */
2520int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2521 unsigned int old_selector,
2522 unsigned int new_selector)
2523{
2524 unsigned int ramp_delay = 0;
2525 int old_volt, new_volt;
2526
2527 if (rdev->constraints->ramp_delay)
2528 ramp_delay = rdev->constraints->ramp_delay;
2529 else if (rdev->desc->ramp_delay)
2530 ramp_delay = rdev->desc->ramp_delay;
2531
2532 if (ramp_delay == 0) {
2533 rdev_warn(rdev, "ramp_delay not set\n");
2534 return 0;
2535 }
2536
2537 /* sanity check */
2538 if (!rdev->desc->ops->list_voltage)
2539 return -EINVAL;
2540
2541 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2542 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2543
2544 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2545}
2546EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2547
2548/**
2549 * regulator_sync_voltage - re-apply last regulator output voltage
2550 * @regulator: regulator source
2551 *
2552 * Re-apply the last configured voltage. This is intended to be used
2553 * where some external control source the consumer is cooperating with
2554 * has caused the configured voltage to change.
2555 */
2556int regulator_sync_voltage(struct regulator *regulator)
2557{
2558 struct regulator_dev *rdev = regulator->rdev;
2559 int ret, min_uV, max_uV;
2560
2561 mutex_lock(&rdev->mutex);
2562
2563 if (!rdev->desc->ops->set_voltage &&
2564 !rdev->desc->ops->set_voltage_sel) {
2565 ret = -EINVAL;
2566 goto out;
2567 }
2568
2569 /* This is only going to work if we've had a voltage configured. */
2570 if (!regulator->min_uV && !regulator->max_uV) {
2571 ret = -EINVAL;
2572 goto out;
2573 }
2574
2575 min_uV = regulator->min_uV;
2576 max_uV = regulator->max_uV;
2577
2578 /* This should be a paranoia check... */
2579 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2580 if (ret < 0)
2581 goto out;
2582
2583 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2584 if (ret < 0)
2585 goto out;
2586
2587 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2588
2589out:
2590 mutex_unlock(&rdev->mutex);
2591 return ret;
2592}
2593EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2594
2595static int _regulator_get_voltage(struct regulator_dev *rdev)
2596{
2597 int sel, ret;
2598
2599 if (rdev->desc->ops->get_voltage_sel) {
2600 sel = rdev->desc->ops->get_voltage_sel(rdev);
2601 if (sel < 0)
2602 return sel;
2603 ret = rdev->desc->ops->list_voltage(rdev, sel);
2604 } else if (rdev->desc->ops->get_voltage) {
2605 ret = rdev->desc->ops->get_voltage(rdev);
2606 } else if (rdev->desc->ops->list_voltage) {
2607 ret = rdev->desc->ops->list_voltage(rdev, 0);
2608 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2609 ret = rdev->desc->fixed_uV;
2610 } else {
2611 return -EINVAL;
2612 }
2613
2614 if (ret < 0)
2615 return ret;
2616 return ret - rdev->constraints->uV_offset;
2617}
2618
2619/**
2620 * regulator_get_voltage - get regulator output voltage
2621 * @regulator: regulator source
2622 *
2623 * This returns the current regulator voltage in uV.
2624 *
2625 * NOTE: If the regulator is disabled it will return the voltage value. This
2626 * function should not be used to determine regulator state.
2627 */
2628int regulator_get_voltage(struct regulator *regulator)
2629{
2630 int ret;
2631
2632 mutex_lock(®ulator->rdev->mutex);
2633
2634 ret = _regulator_get_voltage(regulator->rdev);
2635
2636 mutex_unlock(®ulator->rdev->mutex);
2637
2638 return ret;
2639}
2640EXPORT_SYMBOL_GPL(regulator_get_voltage);
2641
2642/**
2643 * regulator_set_current_limit - set regulator output current limit
2644 * @regulator: regulator source
2645 * @min_uA: Minimum supported current in uA
2646 * @max_uA: Maximum supported current in uA
2647 *
2648 * Sets current sink to the desired output current. This can be set during
2649 * any regulator state. IOW, regulator can be disabled or enabled.
2650 *
2651 * If the regulator is enabled then the current will change to the new value
2652 * immediately otherwise if the regulator is disabled the regulator will
2653 * output at the new current when enabled.
2654 *
2655 * NOTE: Regulator system constraints must be set for this regulator before
2656 * calling this function otherwise this call will fail.
2657 */
2658int regulator_set_current_limit(struct regulator *regulator,
2659 int min_uA, int max_uA)
2660{
2661 struct regulator_dev *rdev = regulator->rdev;
2662 int ret;
2663
2664 mutex_lock(&rdev->mutex);
2665
2666 /* sanity check */
2667 if (!rdev->desc->ops->set_current_limit) {
2668 ret = -EINVAL;
2669 goto out;
2670 }
2671
2672 /* constraints check */
2673 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2674 if (ret < 0)
2675 goto out;
2676
2677 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2678out:
2679 mutex_unlock(&rdev->mutex);
2680 return ret;
2681}
2682EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2683
2684static int _regulator_get_current_limit(struct regulator_dev *rdev)
2685{
2686 int ret;
2687
2688 mutex_lock(&rdev->mutex);
2689
2690 /* sanity check */
2691 if (!rdev->desc->ops->get_current_limit) {
2692 ret = -EINVAL;
2693 goto out;
2694 }
2695
2696 ret = rdev->desc->ops->get_current_limit(rdev);
2697out:
2698 mutex_unlock(&rdev->mutex);
2699 return ret;
2700}
2701
2702/**
2703 * regulator_get_current_limit - get regulator output current
2704 * @regulator: regulator source
2705 *
2706 * This returns the current supplied by the specified current sink in uA.
2707 *
2708 * NOTE: If the regulator is disabled it will return the current value. This
2709 * function should not be used to determine regulator state.
2710 */
2711int regulator_get_current_limit(struct regulator *regulator)
2712{
2713 return _regulator_get_current_limit(regulator->rdev);
2714}
2715EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2716
2717/**
2718 * regulator_set_mode - set regulator operating mode
2719 * @regulator: regulator source
2720 * @mode: operating mode - one of the REGULATOR_MODE constants
2721 *
2722 * Set regulator operating mode to increase regulator efficiency or improve
2723 * regulation performance.
2724 *
2725 * NOTE: Regulator system constraints must be set for this regulator before
2726 * calling this function otherwise this call will fail.
2727 */
2728int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2729{
2730 struct regulator_dev *rdev = regulator->rdev;
2731 int ret;
2732 int regulator_curr_mode;
2733
2734 mutex_lock(&rdev->mutex);
2735
2736 /* sanity check */
2737 if (!rdev->desc->ops->set_mode) {
2738 ret = -EINVAL;
2739 goto out;
2740 }
2741
2742 /* return if the same mode is requested */
2743 if (rdev->desc->ops->get_mode) {
2744 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2745 if (regulator_curr_mode == mode) {
2746 ret = 0;
2747 goto out;
2748 }
2749 }
2750
2751 /* constraints check */
2752 ret = regulator_mode_constrain(rdev, &mode);
2753 if (ret < 0)
2754 goto out;
2755
2756 ret = rdev->desc->ops->set_mode(rdev, mode);
2757out:
2758 mutex_unlock(&rdev->mutex);
2759 return ret;
2760}
2761EXPORT_SYMBOL_GPL(regulator_set_mode);
2762
2763static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2764{
2765 int ret;
2766
2767 mutex_lock(&rdev->mutex);
2768
2769 /* sanity check */
2770 if (!rdev->desc->ops->get_mode) {
2771 ret = -EINVAL;
2772 goto out;
2773 }
2774
2775 ret = rdev->desc->ops->get_mode(rdev);
2776out:
2777 mutex_unlock(&rdev->mutex);
2778 return ret;
2779}
2780
2781/**
2782 * regulator_get_mode - get regulator operating mode
2783 * @regulator: regulator source
2784 *
2785 * Get the current regulator operating mode.
2786 */
2787unsigned int regulator_get_mode(struct regulator *regulator)
2788{
2789 return _regulator_get_mode(regulator->rdev);
2790}
2791EXPORT_SYMBOL_GPL(regulator_get_mode);
2792
2793/**
2794 * regulator_set_optimum_mode - set regulator optimum operating mode
2795 * @regulator: regulator source
2796 * @uA_load: load current
2797 *
2798 * Notifies the regulator core of a new device load. This is then used by
2799 * DRMS (if enabled by constraints) to set the most efficient regulator
2800 * operating mode for the new regulator loading.
2801 *
2802 * Consumer devices notify their supply regulator of the maximum power
2803 * they will require (can be taken from device datasheet in the power
2804 * consumption tables) when they change operational status and hence power
2805 * state. Examples of operational state changes that can affect power
2806 * consumption are :-
2807 *
2808 * o Device is opened / closed.
2809 * o Device I/O is about to begin or has just finished.
2810 * o Device is idling in between work.
2811 *
2812 * This information is also exported via sysfs to userspace.
2813 *
2814 * DRMS will sum the total requested load on the regulator and change
2815 * to the most efficient operating mode if platform constraints allow.
2816 *
2817 * Returns the new regulator mode or error.
2818 */
2819int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2820{
2821 struct regulator_dev *rdev = regulator->rdev;
2822 struct regulator *consumer;
2823 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2824 unsigned int mode;
2825
2826 if (rdev->supply)
2827 input_uV = regulator_get_voltage(rdev->supply);
2828
2829 mutex_lock(&rdev->mutex);
2830
2831 /*
2832 * first check to see if we can set modes at all, otherwise just
2833 * tell the consumer everything is OK.
2834 */
2835 regulator->uA_load = uA_load;
2836 ret = regulator_check_drms(rdev);
2837 if (ret < 0) {
2838 ret = 0;
2839 goto out;
2840 }
2841
2842 if (!rdev->desc->ops->get_optimum_mode)
2843 goto out;
2844
2845 /*
2846 * we can actually do this so any errors are indicators of
2847 * potential real failure.
2848 */
2849 ret = -EINVAL;
2850
2851 if (!rdev->desc->ops->set_mode)
2852 goto out;
2853
2854 /* get output voltage */
2855 output_uV = _regulator_get_voltage(rdev);
2856 if (output_uV <= 0) {
2857 rdev_err(rdev, "invalid output voltage found\n");
2858 goto out;
2859 }
2860
2861 /* No supply? Use constraint voltage */
2862 if (input_uV <= 0)
2863 input_uV = rdev->constraints->input_uV;
2864 if (input_uV <= 0) {
2865 rdev_err(rdev, "invalid input voltage found\n");
2866 goto out;
2867 }
2868
2869 /* calc total requested load for this regulator */
2870 list_for_each_entry(consumer, &rdev->consumer_list, list)
2871 total_uA_load += consumer->uA_load;
2872
2873 mode = rdev->desc->ops->get_optimum_mode(rdev,
2874 input_uV, output_uV,
2875 total_uA_load);
2876 ret = regulator_mode_constrain(rdev, &mode);
2877 if (ret < 0) {
2878 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2879 total_uA_load, input_uV, output_uV);
2880 goto out;
2881 }
2882
2883 ret = rdev->desc->ops->set_mode(rdev, mode);
2884 if (ret < 0) {
2885 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2886 goto out;
2887 }
2888 ret = mode;
2889out:
2890 mutex_unlock(&rdev->mutex);
2891 return ret;
2892}
2893EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2894
2895/**
2896 * regulator_allow_bypass - allow the regulator to go into bypass mode
2897 *
2898 * @regulator: Regulator to configure
2899 * @enable: enable or disable bypass mode
2900 *
2901 * Allow the regulator to go into bypass mode if all other consumers
2902 * for the regulator also enable bypass mode and the machine
2903 * constraints allow this. Bypass mode means that the regulator is
2904 * simply passing the input directly to the output with no regulation.
2905 */
2906int regulator_allow_bypass(struct regulator *regulator, bool enable)
2907{
2908 struct regulator_dev *rdev = regulator->rdev;
2909 int ret = 0;
2910
2911 if (!rdev->desc->ops->set_bypass)
2912 return 0;
2913
2914 if (rdev->constraints &&
2915 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2916 return 0;
2917
2918 mutex_lock(&rdev->mutex);
2919
2920 if (enable && !regulator->bypass) {
2921 rdev->bypass_count++;
2922
2923 if (rdev->bypass_count == rdev->open_count) {
2924 ret = rdev->desc->ops->set_bypass(rdev, enable);
2925 if (ret != 0)
2926 rdev->bypass_count--;
2927 }
2928
2929 } else if (!enable && regulator->bypass) {
2930 rdev->bypass_count--;
2931
2932 if (rdev->bypass_count != rdev->open_count) {
2933 ret = rdev->desc->ops->set_bypass(rdev, enable);
2934 if (ret != 0)
2935 rdev->bypass_count++;
2936 }
2937 }
2938
2939 if (ret == 0)
2940 regulator->bypass = enable;
2941
2942 mutex_unlock(&rdev->mutex);
2943
2944 return ret;
2945}
2946EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2947
2948/**
2949 * regulator_register_notifier - register regulator event notifier
2950 * @regulator: regulator source
2951 * @nb: notifier block
2952 *
2953 * Register notifier block to receive regulator events.
2954 */
2955int regulator_register_notifier(struct regulator *regulator,
2956 struct notifier_block *nb)
2957{
2958 return blocking_notifier_chain_register(®ulator->rdev->notifier,
2959 nb);
2960}
2961EXPORT_SYMBOL_GPL(regulator_register_notifier);
2962
2963/**
2964 * regulator_unregister_notifier - unregister regulator event notifier
2965 * @regulator: regulator source
2966 * @nb: notifier block
2967 *
2968 * Unregister regulator event notifier block.
2969 */
2970int regulator_unregister_notifier(struct regulator *regulator,
2971 struct notifier_block *nb)
2972{
2973 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
2974 nb);
2975}
2976EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2977
2978/* notify regulator consumers and downstream regulator consumers.
2979 * Note mutex must be held by caller.
2980 */
2981static void _notifier_call_chain(struct regulator_dev *rdev,
2982 unsigned long event, void *data)
2983{
2984 /* call rdev chain first */
2985 blocking_notifier_call_chain(&rdev->notifier, event, data);
2986}
2987
2988/**
2989 * regulator_bulk_get - get multiple regulator consumers
2990 *
2991 * @dev: Device to supply
2992 * @num_consumers: Number of consumers to register
2993 * @consumers: Configuration of consumers; clients are stored here.
2994 *
2995 * @return 0 on success, an errno on failure.
2996 *
2997 * This helper function allows drivers to get several regulator
2998 * consumers in one operation. If any of the regulators cannot be
2999 * acquired then any regulators that were allocated will be freed
3000 * before returning to the caller.
3001 */
3002int regulator_bulk_get(struct device *dev, int num_consumers,
3003 struct regulator_bulk_data *consumers)
3004{
3005 int i;
3006 int ret;
3007
3008 for (i = 0; i < num_consumers; i++)
3009 consumers[i].consumer = NULL;
3010
3011 for (i = 0; i < num_consumers; i++) {
3012 consumers[i].consumer = regulator_get(dev,
3013 consumers[i].supply);
3014 if (IS_ERR(consumers[i].consumer)) {
3015 ret = PTR_ERR(consumers[i].consumer);
3016 dev_err(dev, "Failed to get supply '%s': %d\n",
3017 consumers[i].supply, ret);
3018 consumers[i].consumer = NULL;
3019 goto err;
3020 }
3021 }
3022
3023 return 0;
3024
3025err:
3026 while (--i >= 0)
3027 regulator_put(consumers[i].consumer);
3028
3029 return ret;
3030}
3031EXPORT_SYMBOL_GPL(regulator_bulk_get);
3032
3033static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3034{
3035 struct regulator_bulk_data *bulk = data;
3036
3037 bulk->ret = regulator_enable(bulk->consumer);
3038}
3039
3040/**
3041 * regulator_bulk_enable - enable multiple regulator consumers
3042 *
3043 * @num_consumers: Number of consumers
3044 * @consumers: Consumer data; clients are stored here.
3045 * @return 0 on success, an errno on failure
3046 *
3047 * This convenience API allows consumers to enable multiple regulator
3048 * clients in a single API call. If any consumers cannot be enabled
3049 * then any others that were enabled will be disabled again prior to
3050 * return.
3051 */
3052int regulator_bulk_enable(int num_consumers,
3053 struct regulator_bulk_data *consumers)
3054{
3055 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3056 int i;
3057 int ret = 0;
3058
3059 for (i = 0; i < num_consumers; i++) {
3060 if (consumers[i].consumer->always_on)
3061 consumers[i].ret = 0;
3062 else
3063 async_schedule_domain(regulator_bulk_enable_async,
3064 &consumers[i], &async_domain);
3065 }
3066
3067 async_synchronize_full_domain(&async_domain);
3068
3069 /* If any consumer failed we need to unwind any that succeeded */
3070 for (i = 0; i < num_consumers; i++) {
3071 if (consumers[i].ret != 0) {
3072 ret = consumers[i].ret;
3073 goto err;
3074 }
3075 }
3076
3077 return 0;
3078
3079err:
3080 for (i = 0; i < num_consumers; i++) {
3081 if (consumers[i].ret < 0)
3082 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3083 consumers[i].ret);
3084 else
3085 regulator_disable(consumers[i].consumer);
3086 }
3087
3088 return ret;
3089}
3090EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3091
3092/**
3093 * regulator_bulk_disable - disable multiple regulator consumers
3094 *
3095 * @num_consumers: Number of consumers
3096 * @consumers: Consumer data; clients are stored here.
3097 * @return 0 on success, an errno on failure
3098 *
3099 * This convenience API allows consumers to disable multiple regulator
3100 * clients in a single API call. If any consumers cannot be disabled
3101 * then any others that were disabled will be enabled again prior to
3102 * return.
3103 */
3104int regulator_bulk_disable(int num_consumers,
3105 struct regulator_bulk_data *consumers)
3106{
3107 int i;
3108 int ret, r;
3109
3110 for (i = num_consumers - 1; i >= 0; --i) {
3111 ret = regulator_disable(consumers[i].consumer);
3112 if (ret != 0)
3113 goto err;
3114 }
3115
3116 return 0;
3117
3118err:
3119 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3120 for (++i; i < num_consumers; ++i) {
3121 r = regulator_enable(consumers[i].consumer);
3122 if (r != 0)
3123 pr_err("Failed to reename %s: %d\n",
3124 consumers[i].supply, r);
3125 }
3126
3127 return ret;
3128}
3129EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3130
3131/**
3132 * regulator_bulk_force_disable - force disable multiple regulator consumers
3133 *
3134 * @num_consumers: Number of consumers
3135 * @consumers: Consumer data; clients are stored here.
3136 * @return 0 on success, an errno on failure
3137 *
3138 * This convenience API allows consumers to forcibly disable multiple regulator
3139 * clients in a single API call.
3140 * NOTE: This should be used for situations when device damage will
3141 * likely occur if the regulators are not disabled (e.g. over temp).
3142 * Although regulator_force_disable function call for some consumers can
3143 * return error numbers, the function is called for all consumers.
3144 */
3145int regulator_bulk_force_disable(int num_consumers,
3146 struct regulator_bulk_data *consumers)
3147{
3148 int i;
3149 int ret;
3150
3151 for (i = 0; i < num_consumers; i++)
3152 consumers[i].ret =
3153 regulator_force_disable(consumers[i].consumer);
3154
3155 for (i = 0; i < num_consumers; i++) {
3156 if (consumers[i].ret != 0) {
3157 ret = consumers[i].ret;
3158 goto out;
3159 }
3160 }
3161
3162 return 0;
3163out:
3164 return ret;
3165}
3166EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3167
3168/**
3169 * regulator_bulk_free - free multiple regulator consumers
3170 *
3171 * @num_consumers: Number of consumers
3172 * @consumers: Consumer data; clients are stored here.
3173 *
3174 * This convenience API allows consumers to free multiple regulator
3175 * clients in a single API call.
3176 */
3177void regulator_bulk_free(int num_consumers,
3178 struct regulator_bulk_data *consumers)
3179{
3180 int i;
3181
3182 for (i = 0; i < num_consumers; i++) {
3183 regulator_put(consumers[i].consumer);
3184 consumers[i].consumer = NULL;
3185 }
3186}
3187EXPORT_SYMBOL_GPL(regulator_bulk_free);
3188
3189/**
3190 * regulator_notifier_call_chain - call regulator event notifier
3191 * @rdev: regulator source
3192 * @event: notifier block
3193 * @data: callback-specific data.
3194 *
3195 * Called by regulator drivers to notify clients a regulator event has
3196 * occurred. We also notify regulator clients downstream.
3197 * Note lock must be held by caller.
3198 */
3199int regulator_notifier_call_chain(struct regulator_dev *rdev,
3200 unsigned long event, void *data)
3201{
3202 _notifier_call_chain(rdev, event, data);
3203 return NOTIFY_DONE;
3204
3205}
3206EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3207
3208/**
3209 * regulator_mode_to_status - convert a regulator mode into a status
3210 *
3211 * @mode: Mode to convert
3212 *
3213 * Convert a regulator mode into a status.
3214 */
3215int regulator_mode_to_status(unsigned int mode)
3216{
3217 switch (mode) {
3218 case REGULATOR_MODE_FAST:
3219 return REGULATOR_STATUS_FAST;
3220 case REGULATOR_MODE_NORMAL:
3221 return REGULATOR_STATUS_NORMAL;
3222 case REGULATOR_MODE_IDLE:
3223 return REGULATOR_STATUS_IDLE;
3224 case REGULATOR_MODE_STANDBY:
3225 return REGULATOR_STATUS_STANDBY;
3226 default:
3227 return REGULATOR_STATUS_UNDEFINED;
3228 }
3229}
3230EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3231
3232/*
3233 * To avoid cluttering sysfs (and memory) with useless state, only
3234 * create attributes that can be meaningfully displayed.
3235 */
3236static int add_regulator_attributes(struct regulator_dev *rdev)
3237{
3238 struct device *dev = &rdev->dev;
3239 struct regulator_ops *ops = rdev->desc->ops;
3240 int status = 0;
3241
3242 /* some attributes need specific methods to be displayed */
3243 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3244 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3245 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3246 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3247 status = device_create_file(dev, &dev_attr_microvolts);
3248 if (status < 0)
3249 return status;
3250 }
3251 if (ops->get_current_limit) {
3252 status = device_create_file(dev, &dev_attr_microamps);
3253 if (status < 0)
3254 return status;
3255 }
3256 if (ops->get_mode) {
3257 status = device_create_file(dev, &dev_attr_opmode);
3258 if (status < 0)
3259 return status;
3260 }
3261 if (rdev->ena_pin || ops->is_enabled) {
3262 status = device_create_file(dev, &dev_attr_state);
3263 if (status < 0)
3264 return status;
3265 }
3266 if (ops->get_status) {
3267 status = device_create_file(dev, &dev_attr_status);
3268 if (status < 0)
3269 return status;
3270 }
3271 if (ops->get_bypass) {
3272 status = device_create_file(dev, &dev_attr_bypass);
3273 if (status < 0)
3274 return status;
3275 }
3276
3277 /* some attributes are type-specific */
3278 if (rdev->desc->type == REGULATOR_CURRENT) {
3279 status = device_create_file(dev, &dev_attr_requested_microamps);
3280 if (status < 0)
3281 return status;
3282 }
3283
3284 /* all the other attributes exist to support constraints;
3285 * don't show them if there are no constraints, or if the
3286 * relevant supporting methods are missing.
3287 */
3288 if (!rdev->constraints)
3289 return status;
3290
3291 /* constraints need specific supporting methods */
3292 if (ops->set_voltage || ops->set_voltage_sel) {
3293 status = device_create_file(dev, &dev_attr_min_microvolts);
3294 if (status < 0)
3295 return status;
3296 status = device_create_file(dev, &dev_attr_max_microvolts);
3297 if (status < 0)
3298 return status;
3299 }
3300 if (ops->set_current_limit) {
3301 status = device_create_file(dev, &dev_attr_min_microamps);
3302 if (status < 0)
3303 return status;
3304 status = device_create_file(dev, &dev_attr_max_microamps);
3305 if (status < 0)
3306 return status;
3307 }
3308
3309 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3310 if (status < 0)
3311 return status;
3312 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3313 if (status < 0)
3314 return status;
3315 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3316 if (status < 0)
3317 return status;
3318
3319 if (ops->set_suspend_voltage) {
3320 status = device_create_file(dev,
3321 &dev_attr_suspend_standby_microvolts);
3322 if (status < 0)
3323 return status;
3324 status = device_create_file(dev,
3325 &dev_attr_suspend_mem_microvolts);
3326 if (status < 0)
3327 return status;
3328 status = device_create_file(dev,
3329 &dev_attr_suspend_disk_microvolts);
3330 if (status < 0)
3331 return status;
3332 }
3333
3334 if (ops->set_suspend_mode) {
3335 status = device_create_file(dev,
3336 &dev_attr_suspend_standby_mode);
3337 if (status < 0)
3338 return status;
3339 status = device_create_file(dev,
3340 &dev_attr_suspend_mem_mode);
3341 if (status < 0)
3342 return status;
3343 status = device_create_file(dev,
3344 &dev_attr_suspend_disk_mode);
3345 if (status < 0)
3346 return status;
3347 }
3348
3349 return status;
3350}
3351
3352static void rdev_init_debugfs(struct regulator_dev *rdev)
3353{
3354 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3355 if (!rdev->debugfs) {
3356 rdev_warn(rdev, "Failed to create debugfs directory\n");
3357 return;
3358 }
3359
3360 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3361 &rdev->use_count);
3362 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3363 &rdev->open_count);
3364 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3365 &rdev->bypass_count);
3366}
3367
3368/**
3369 * regulator_register - register regulator
3370 * @regulator_desc: regulator to register
3371 * @config: runtime configuration for regulator
3372 *
3373 * Called by regulator drivers to register a regulator.
3374 * Returns a valid pointer to struct regulator_dev on success
3375 * or an ERR_PTR() on error.
3376 */
3377struct regulator_dev *
3378regulator_register(const struct regulator_desc *regulator_desc,
3379 const struct regulator_config *config)
3380{
3381 const struct regulation_constraints *constraints = NULL;
3382 const struct regulator_init_data *init_data;
3383 static atomic_t regulator_no = ATOMIC_INIT(0);
3384 struct regulator_dev *rdev;
3385 struct device *dev;
3386 int ret, i;
3387 const char *supply = NULL;
3388
3389 if (regulator_desc == NULL || config == NULL)
3390 return ERR_PTR(-EINVAL);
3391
3392 dev = config->dev;
3393 WARN_ON(!dev);
3394
3395 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3396 return ERR_PTR(-EINVAL);
3397
3398 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3399 regulator_desc->type != REGULATOR_CURRENT)
3400 return ERR_PTR(-EINVAL);
3401
3402 /* Only one of each should be implemented */
3403 WARN_ON(regulator_desc->ops->get_voltage &&
3404 regulator_desc->ops->get_voltage_sel);
3405 WARN_ON(regulator_desc->ops->set_voltage &&
3406 regulator_desc->ops->set_voltage_sel);
3407
3408 /* If we're using selectors we must implement list_voltage. */
3409 if (regulator_desc->ops->get_voltage_sel &&
3410 !regulator_desc->ops->list_voltage) {
3411 return ERR_PTR(-EINVAL);
3412 }
3413 if (regulator_desc->ops->set_voltage_sel &&
3414 !regulator_desc->ops->list_voltage) {
3415 return ERR_PTR(-EINVAL);
3416 }
3417
3418 init_data = config->init_data;
3419
3420 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3421 if (rdev == NULL)
3422 return ERR_PTR(-ENOMEM);
3423
3424 mutex_lock(®ulator_list_mutex);
3425
3426 mutex_init(&rdev->mutex);
3427 rdev->reg_data = config->driver_data;
3428 rdev->owner = regulator_desc->owner;
3429 rdev->desc = regulator_desc;
3430 if (config->regmap)
3431 rdev->regmap = config->regmap;
3432 else if (dev_get_regmap(dev, NULL))
3433 rdev->regmap = dev_get_regmap(dev, NULL);
3434 else if (dev->parent)
3435 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3436 INIT_LIST_HEAD(&rdev->consumer_list);
3437 INIT_LIST_HEAD(&rdev->list);
3438 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3439 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3440
3441 /* preform any regulator specific init */
3442 if (init_data && init_data->regulator_init) {
3443 ret = init_data->regulator_init(rdev->reg_data);
3444 if (ret < 0)
3445 goto clean;
3446 }
3447
3448 /* register with sysfs */
3449 rdev->dev.class = ®ulator_class;
3450 rdev->dev.of_node = config->of_node;
3451 rdev->dev.parent = dev;
3452 dev_set_name(&rdev->dev, "regulator.%d",
3453 atomic_inc_return(®ulator_no) - 1);
3454 ret = device_register(&rdev->dev);
3455 if (ret != 0) {
3456 put_device(&rdev->dev);
3457 goto clean;
3458 }
3459
3460 dev_set_drvdata(&rdev->dev, rdev);
3461
3462 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3463 ret = regulator_ena_gpio_request(rdev, config);
3464 if (ret != 0) {
3465 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3466 config->ena_gpio, ret);
3467 goto wash;
3468 }
3469
3470 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3471 rdev->ena_gpio_state = 1;
3472
3473 if (config->ena_gpio_invert)
3474 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3475 }
3476
3477 /* set regulator constraints */
3478 if (init_data)
3479 constraints = &init_data->constraints;
3480
3481 ret = set_machine_constraints(rdev, constraints);
3482 if (ret < 0)
3483 goto scrub;
3484
3485 /* add attributes supported by this regulator */
3486 ret = add_regulator_attributes(rdev);
3487 if (ret < 0)
3488 goto scrub;
3489
3490 if (init_data && init_data->supply_regulator)
3491 supply = init_data->supply_regulator;
3492 else if (regulator_desc->supply_name)
3493 supply = regulator_desc->supply_name;
3494
3495 if (supply) {
3496 struct regulator_dev *r;
3497
3498 r = regulator_dev_lookup(dev, supply, &ret);
3499
3500 if (ret == -ENODEV) {
3501 /*
3502 * No supply was specified for this regulator and
3503 * there will never be one.
3504 */
3505 ret = 0;
3506 goto add_dev;
3507 } else if (!r) {
3508 dev_err(dev, "Failed to find supply %s\n", supply);
3509 ret = -EPROBE_DEFER;
3510 goto scrub;
3511 }
3512
3513 ret = set_supply(rdev, r);
3514 if (ret < 0)
3515 goto scrub;
3516
3517 /* Enable supply if rail is enabled */
3518 if (_regulator_is_enabled(rdev)) {
3519 ret = regulator_enable(rdev->supply);
3520 if (ret < 0)
3521 goto scrub;
3522 }
3523 }
3524
3525add_dev:
3526 /* add consumers devices */
3527 if (init_data) {
3528 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3529 ret = set_consumer_device_supply(rdev,
3530 init_data->consumer_supplies[i].dev_name,
3531 init_data->consumer_supplies[i].supply);
3532 if (ret < 0) {
3533 dev_err(dev, "Failed to set supply %s\n",
3534 init_data->consumer_supplies[i].supply);
3535 goto unset_supplies;
3536 }
3537 }
3538 }
3539
3540 list_add(&rdev->list, ®ulator_list);
3541
3542 rdev_init_debugfs(rdev);
3543out:
3544 mutex_unlock(®ulator_list_mutex);
3545 return rdev;
3546
3547unset_supplies:
3548 unset_regulator_supplies(rdev);
3549
3550scrub:
3551 if (rdev->supply)
3552 _regulator_put(rdev->supply);
3553 regulator_ena_gpio_free(rdev);
3554 kfree(rdev->constraints);
3555wash:
3556 device_unregister(&rdev->dev);
3557 /* device core frees rdev */
3558 rdev = ERR_PTR(ret);
3559 goto out;
3560
3561clean:
3562 kfree(rdev);
3563 rdev = ERR_PTR(ret);
3564 goto out;
3565}
3566EXPORT_SYMBOL_GPL(regulator_register);
3567
3568/**
3569 * regulator_unregister - unregister regulator
3570 * @rdev: regulator to unregister
3571 *
3572 * Called by regulator drivers to unregister a regulator.
3573 */
3574void regulator_unregister(struct regulator_dev *rdev)
3575{
3576 if (rdev == NULL)
3577 return;
3578
3579 if (rdev->supply) {
3580 while (rdev->use_count--)
3581 regulator_disable(rdev->supply);
3582 regulator_put(rdev->supply);
3583 }
3584 mutex_lock(®ulator_list_mutex);
3585 debugfs_remove_recursive(rdev->debugfs);
3586 flush_work(&rdev->disable_work.work);
3587 WARN_ON(rdev->open_count);
3588 unset_regulator_supplies(rdev);
3589 list_del(&rdev->list);
3590 kfree(rdev->constraints);
3591 regulator_ena_gpio_free(rdev);
3592 device_unregister(&rdev->dev);
3593 mutex_unlock(®ulator_list_mutex);
3594}
3595EXPORT_SYMBOL_GPL(regulator_unregister);
3596
3597/**
3598 * regulator_suspend_prepare - prepare regulators for system wide suspend
3599 * @state: system suspend state
3600 *
3601 * Configure each regulator with it's suspend operating parameters for state.
3602 * This will usually be called by machine suspend code prior to supending.
3603 */
3604int regulator_suspend_prepare(suspend_state_t state)
3605{
3606 struct regulator_dev *rdev;
3607 int ret = 0;
3608
3609 /* ON is handled by regulator active state */
3610 if (state == PM_SUSPEND_ON)
3611 return -EINVAL;
3612
3613 mutex_lock(®ulator_list_mutex);
3614 list_for_each_entry(rdev, ®ulator_list, list) {
3615
3616 mutex_lock(&rdev->mutex);
3617 ret = suspend_prepare(rdev, state);
3618 mutex_unlock(&rdev->mutex);
3619
3620 if (ret < 0) {
3621 rdev_err(rdev, "failed to prepare\n");
3622 goto out;
3623 }
3624 }
3625out:
3626 mutex_unlock(®ulator_list_mutex);
3627 return ret;
3628}
3629EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3630
3631/**
3632 * regulator_suspend_finish - resume regulators from system wide suspend
3633 *
3634 * Turn on regulators that might be turned off by regulator_suspend_prepare
3635 * and that should be turned on according to the regulators properties.
3636 */
3637int regulator_suspend_finish(void)
3638{
3639 struct regulator_dev *rdev;
3640 int ret = 0, error;
3641
3642 mutex_lock(®ulator_list_mutex);
3643 list_for_each_entry(rdev, ®ulator_list, list) {
3644 mutex_lock(&rdev->mutex);
3645 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3646 error = _regulator_do_enable(rdev);
3647 if (error)
3648 ret = error;
3649 } else {
3650 if (!have_full_constraints())
3651 goto unlock;
3652 if (!_regulator_is_enabled(rdev))
3653 goto unlock;
3654
3655 error = _regulator_do_disable(rdev);
3656 if (error)
3657 ret = error;
3658 }
3659unlock:
3660 mutex_unlock(&rdev->mutex);
3661 }
3662 mutex_unlock(®ulator_list_mutex);
3663 return ret;
3664}
3665EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3666
3667/**
3668 * regulator_has_full_constraints - the system has fully specified constraints
3669 *
3670 * Calling this function will cause the regulator API to disable all
3671 * regulators which have a zero use count and don't have an always_on
3672 * constraint in a late_initcall.
3673 *
3674 * The intention is that this will become the default behaviour in a
3675 * future kernel release so users are encouraged to use this facility
3676 * now.
3677 */
3678void regulator_has_full_constraints(void)
3679{
3680 has_full_constraints = 1;
3681}
3682EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3683
3684/**
3685 * rdev_get_drvdata - get rdev regulator driver data
3686 * @rdev: regulator
3687 *
3688 * Get rdev regulator driver private data. This call can be used in the
3689 * regulator driver context.
3690 */
3691void *rdev_get_drvdata(struct regulator_dev *rdev)
3692{
3693 return rdev->reg_data;
3694}
3695EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3696
3697/**
3698 * regulator_get_drvdata - get regulator driver data
3699 * @regulator: regulator
3700 *
3701 * Get regulator driver private data. This call can be used in the consumer
3702 * driver context when non API regulator specific functions need to be called.
3703 */
3704void *regulator_get_drvdata(struct regulator *regulator)
3705{
3706 return regulator->rdev->reg_data;
3707}
3708EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3709
3710/**
3711 * regulator_set_drvdata - set regulator driver data
3712 * @regulator: regulator
3713 * @data: data
3714 */
3715void regulator_set_drvdata(struct regulator *regulator, void *data)
3716{
3717 regulator->rdev->reg_data = data;
3718}
3719EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3720
3721/**
3722 * regulator_get_id - get regulator ID
3723 * @rdev: regulator
3724 */
3725int rdev_get_id(struct regulator_dev *rdev)
3726{
3727 return rdev->desc->id;
3728}
3729EXPORT_SYMBOL_GPL(rdev_get_id);
3730
3731struct device *rdev_get_dev(struct regulator_dev *rdev)
3732{
3733 return &rdev->dev;
3734}
3735EXPORT_SYMBOL_GPL(rdev_get_dev);
3736
3737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3738{
3739 return reg_init_data->driver_data;
3740}
3741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3742
3743#ifdef CONFIG_DEBUG_FS
3744static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3745 size_t count, loff_t *ppos)
3746{
3747 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3748 ssize_t len, ret = 0;
3749 struct regulator_map *map;
3750
3751 if (!buf)
3752 return -ENOMEM;
3753
3754 list_for_each_entry(map, ®ulator_map_list, list) {
3755 len = snprintf(buf + ret, PAGE_SIZE - ret,
3756 "%s -> %s.%s\n",
3757 rdev_get_name(map->regulator), map->dev_name,
3758 map->supply);
3759 if (len >= 0)
3760 ret += len;
3761 if (ret > PAGE_SIZE) {
3762 ret = PAGE_SIZE;
3763 break;
3764 }
3765 }
3766
3767 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3768
3769 kfree(buf);
3770
3771 return ret;
3772}
3773#endif
3774
3775static const struct file_operations supply_map_fops = {
3776#ifdef CONFIG_DEBUG_FS
3777 .read = supply_map_read_file,
3778 .llseek = default_llseek,
3779#endif
3780};
3781
3782static int __init regulator_init(void)
3783{
3784 int ret;
3785
3786 ret = class_register(®ulator_class);
3787
3788 debugfs_root = debugfs_create_dir("regulator", NULL);
3789 if (!debugfs_root)
3790 pr_warn("regulator: Failed to create debugfs directory\n");
3791
3792 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3793 &supply_map_fops);
3794
3795 regulator_dummy_init();
3796
3797 return ret;
3798}
3799
3800/* init early to allow our consumers to complete system booting */
3801core_initcall(regulator_init);
3802
3803static int __init regulator_init_complete(void)
3804{
3805 struct regulator_dev *rdev;
3806 struct regulator_ops *ops;
3807 struct regulation_constraints *c;
3808 int enabled, ret;
3809
3810 /*
3811 * Since DT doesn't provide an idiomatic mechanism for
3812 * enabling full constraints and since it's much more natural
3813 * with DT to provide them just assume that a DT enabled
3814 * system has full constraints.
3815 */
3816 if (of_have_populated_dt())
3817 has_full_constraints = true;
3818
3819 mutex_lock(®ulator_list_mutex);
3820
3821 /* If we have a full configuration then disable any regulators
3822 * which are not in use or always_on. This will become the
3823 * default behaviour in the future.
3824 */
3825 list_for_each_entry(rdev, ®ulator_list, list) {
3826 ops = rdev->desc->ops;
3827 c = rdev->constraints;
3828
3829 if (c && c->always_on)
3830 continue;
3831
3832 mutex_lock(&rdev->mutex);
3833
3834 if (rdev->use_count)
3835 goto unlock;
3836
3837 /* If we can't read the status assume it's on. */
3838 if (ops->is_enabled)
3839 enabled = ops->is_enabled(rdev);
3840 else
3841 enabled = 1;
3842
3843 if (!enabled)
3844 goto unlock;
3845
3846 if (have_full_constraints()) {
3847 /* We log since this may kill the system if it
3848 * goes wrong. */
3849 rdev_info(rdev, "disabling\n");
3850 ret = _regulator_do_disable(rdev);
3851 if (ret != 0)
3852 rdev_err(rdev, "couldn't disable: %d\n", ret);
3853 } else {
3854 /* The intention is that in future we will
3855 * assume that full constraints are provided
3856 * so warn even if we aren't going to do
3857 * anything here.
3858 */
3859 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3860 }
3861
3862unlock:
3863 mutex_unlock(&rdev->mutex);
3864 }
3865
3866 mutex_unlock(®ulator_list_mutex);
3867
3868 return 0;
3869}
3870late_initcall(regulator_init_complete);