Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
 
 
 
 
 
 
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
 
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
  35
  36#define rdev_crit(rdev, fmt, ...)					\
  37	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  38#define rdev_err(rdev, fmt, ...)					\
  39	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  40#define rdev_warn(rdev, fmt, ...)					\
  41	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_info(rdev, fmt, ...)					\
  43	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_dbg(rdev, fmt, ...)					\
  45	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46
  47static DEFINE_WW_CLASS(regulator_ww_class);
  48static DEFINE_MUTEX(regulator_nesting_mutex);
  49static DEFINE_MUTEX(regulator_list_mutex);
  50static LIST_HEAD(regulator_map_list);
  51static LIST_HEAD(regulator_ena_gpio_list);
  52static LIST_HEAD(regulator_supply_alias_list);
  53static LIST_HEAD(regulator_coupler_list);
  54static bool has_full_constraints;
  55
  56static struct dentry *debugfs_root;
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator_enable_gpio
  72 *
  73 * Management for shared enable GPIO pin
  74 */
  75struct regulator_enable_gpio {
  76	struct list_head list;
  77	struct gpio_desc *gpiod;
  78	u32 enable_count;	/* a number of enabled shared GPIO */
  79	u32 request_count;	/* a number of requested shared GPIO */
 
  80};
  81
  82/*
  83 * struct regulator_supply_alias
  84 *
  85 * Used to map lookups for a supply onto an alternative device.
  86 */
  87struct regulator_supply_alias {
  88	struct list_head list;
  89	struct device *src_dev;
  90	const char *src_supply;
  91	struct device *alias_dev;
  92	const char *alias_supply;
  93};
  94
  95static int _regulator_is_enabled(struct regulator_dev *rdev);
  96static int _regulator_disable(struct regulator *regulator);
 
  97static int _regulator_get_current_limit(struct regulator_dev *rdev);
  98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  99static int _notifier_call_chain(struct regulator_dev *rdev,
 100				  unsigned long event, void *data);
 101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 102				     int min_uV, int max_uV);
 103static int regulator_balance_voltage(struct regulator_dev *rdev,
 104				     suspend_state_t state);
 105static struct regulator *create_regulator(struct regulator_dev *rdev,
 106					  struct device *dev,
 107					  const char *supply_name);
 108static void destroy_regulator(struct regulator *regulator);
 109static void _regulator_put(struct regulator *regulator);
 110
 111const char *rdev_get_name(struct regulator_dev *rdev)
 112{
 113	if (rdev->constraints && rdev->constraints->name)
 114		return rdev->constraints->name;
 115	else if (rdev->desc->name)
 116		return rdev->desc->name;
 117	else
 118		return "";
 119}
 120
 121static bool have_full_constraints(void)
 122{
 123	return has_full_constraints || of_have_populated_dt();
 124}
 125
 126static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 127{
 128	if (!rdev->constraints) {
 129		rdev_err(rdev, "no constraints\n");
 130		return false;
 131	}
 132
 133	if (rdev->constraints->valid_ops_mask & ops)
 134		return true;
 135
 136	return false;
 137}
 138
 139/**
 140 * regulator_lock_nested - lock a single regulator
 141 * @rdev:		regulator source
 142 * @ww_ctx:		w/w mutex acquire context
 143 *
 144 * This function can be called many times by one task on
 145 * a single regulator and its mutex will be locked only
 146 * once. If a task, which is calling this function is other
 147 * than the one, which initially locked the mutex, it will
 148 * wait on mutex.
 149 */
 150static inline int regulator_lock_nested(struct regulator_dev *rdev,
 151					struct ww_acquire_ctx *ww_ctx)
 152{
 153	bool lock = false;
 154	int ret = 0;
 155
 156	mutex_lock(&regulator_nesting_mutex);
 157
 158	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 159		if (rdev->mutex_owner == current)
 160			rdev->ref_cnt++;
 161		else
 162			lock = true;
 163
 164		if (lock) {
 165			mutex_unlock(&regulator_nesting_mutex);
 166			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 167			mutex_lock(&regulator_nesting_mutex);
 168		}
 169	} else {
 170		lock = true;
 171	}
 172
 173	if (lock && ret != -EDEADLK) {
 174		rdev->ref_cnt++;
 175		rdev->mutex_owner = current;
 176	}
 177
 178	mutex_unlock(&regulator_nesting_mutex);
 179
 180	return ret;
 181}
 182
 183/**
 184 * regulator_lock - lock a single regulator
 185 * @rdev:		regulator source
 186 *
 187 * This function can be called many times by one task on
 188 * a single regulator and its mutex will be locked only
 189 * once. If a task, which is calling this function is other
 190 * than the one, which initially locked the mutex, it will
 191 * wait on mutex.
 192 */
 193void regulator_lock(struct regulator_dev *rdev)
 194{
 195	regulator_lock_nested(rdev, NULL);
 196}
 197EXPORT_SYMBOL_GPL(regulator_lock);
 198
 199/**
 200 * regulator_unlock - unlock a single regulator
 201 * @rdev:		regulator_source
 202 *
 203 * This function unlocks the mutex when the
 204 * reference counter reaches 0.
 205 */
 206void regulator_unlock(struct regulator_dev *rdev)
 207{
 208	mutex_lock(&regulator_nesting_mutex);
 209
 210	if (--rdev->ref_cnt == 0) {
 211		rdev->mutex_owner = NULL;
 212		ww_mutex_unlock(&rdev->mutex);
 213	}
 214
 215	WARN_ON_ONCE(rdev->ref_cnt < 0);
 216
 217	mutex_unlock(&regulator_nesting_mutex);
 218}
 219EXPORT_SYMBOL_GPL(regulator_unlock);
 220
 221static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 222{
 223	struct regulator_dev *c_rdev;
 224	int i;
 225
 226	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 227		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 228
 229		if (rdev->supply->rdev == c_rdev)
 230			return true;
 231	}
 232
 233	return false;
 234}
 235
 236static void regulator_unlock_recursive(struct regulator_dev *rdev,
 237				       unsigned int n_coupled)
 238{
 239	struct regulator_dev *c_rdev, *supply_rdev;
 240	int i, supply_n_coupled;
 241
 242	for (i = n_coupled; i > 0; i--) {
 243		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 244
 245		if (!c_rdev)
 246			continue;
 247
 248		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 249			supply_rdev = c_rdev->supply->rdev;
 250			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 251
 252			regulator_unlock_recursive(supply_rdev,
 253						   supply_n_coupled);
 254		}
 255
 256		regulator_unlock(c_rdev);
 257	}
 258}
 259
 260static int regulator_lock_recursive(struct regulator_dev *rdev,
 261				    struct regulator_dev **new_contended_rdev,
 262				    struct regulator_dev **old_contended_rdev,
 263				    struct ww_acquire_ctx *ww_ctx)
 264{
 265	struct regulator_dev *c_rdev;
 266	int i, err;
 267
 268	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 269		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 270
 271		if (!c_rdev)
 272			continue;
 273
 274		if (c_rdev != *old_contended_rdev) {
 275			err = regulator_lock_nested(c_rdev, ww_ctx);
 276			if (err) {
 277				if (err == -EDEADLK) {
 278					*new_contended_rdev = c_rdev;
 279					goto err_unlock;
 280				}
 281
 282				/* shouldn't happen */
 283				WARN_ON_ONCE(err != -EALREADY);
 284			}
 285		} else {
 286			*old_contended_rdev = NULL;
 287		}
 288
 289		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 290			err = regulator_lock_recursive(c_rdev->supply->rdev,
 291						       new_contended_rdev,
 292						       old_contended_rdev,
 293						       ww_ctx);
 294			if (err) {
 295				regulator_unlock(c_rdev);
 296				goto err_unlock;
 297			}
 298		}
 299	}
 300
 301	return 0;
 302
 303err_unlock:
 304	regulator_unlock_recursive(rdev, i);
 305
 306	return err;
 307}
 308
 309/**
 310 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 311 *				regulators
 312 * @rdev:			regulator source
 313 * @ww_ctx:			w/w mutex acquire context
 314 *
 315 * Unlock all regulators related with rdev by coupling or supplying.
 316 */
 317static void regulator_unlock_dependent(struct regulator_dev *rdev,
 318				       struct ww_acquire_ctx *ww_ctx)
 319{
 320	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 321	ww_acquire_fini(ww_ctx);
 322}
 323
 324/**
 325 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 326 * @rdev:			regulator source
 327 * @ww_ctx:			w/w mutex acquire context
 328 *
 329 * This function as a wrapper on regulator_lock_recursive(), which locks
 330 * all regulators related with rdev by coupling or supplying.
 331 */
 332static void regulator_lock_dependent(struct regulator_dev *rdev,
 333				     struct ww_acquire_ctx *ww_ctx)
 334{
 335	struct regulator_dev *new_contended_rdev = NULL;
 336	struct regulator_dev *old_contended_rdev = NULL;
 337	int err;
 338
 339	mutex_lock(&regulator_list_mutex);
 340
 341	ww_acquire_init(ww_ctx, &regulator_ww_class);
 342
 343	do {
 344		if (new_contended_rdev) {
 345			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 346			old_contended_rdev = new_contended_rdev;
 347			old_contended_rdev->ref_cnt++;
 348		}
 349
 350		err = regulator_lock_recursive(rdev,
 351					       &new_contended_rdev,
 352					       &old_contended_rdev,
 353					       ww_ctx);
 354
 355		if (old_contended_rdev)
 356			regulator_unlock(old_contended_rdev);
 357
 358	} while (err == -EDEADLK);
 359
 360	ww_acquire_done(ww_ctx);
 
 
 361
 362	mutex_unlock(&regulator_list_mutex);
 363}
 364
 365/**
 366 * of_get_child_regulator - get a child regulator device node
 367 * based on supply name
 368 * @parent: Parent device node
 369 * @prop_name: Combination regulator supply name and "-supply"
 370 *
 371 * Traverse all child nodes.
 372 * Extract the child regulator device node corresponding to the supply name.
 373 * returns the device node corresponding to the regulator if found, else
 374 * returns NULL.
 375 */
 376static struct device_node *of_get_child_regulator(struct device_node *parent,
 377						  const char *prop_name)
 378{
 379	struct device_node *regnode = NULL;
 380	struct device_node *child = NULL;
 381
 382	for_each_child_of_node(parent, child) {
 383		regnode = of_parse_phandle(child, prop_name, 0);
 384
 385		if (!regnode) {
 386			regnode = of_get_child_regulator(child, prop_name);
 387			if (regnode)
 388				goto err_node_put;
 389		} else {
 390			goto err_node_put;
 391		}
 392	}
 393	return NULL;
 394
 395err_node_put:
 396	of_node_put(child);
 397	return regnode;
 398}
 399
 400/**
 401 * of_get_regulator - get a regulator device node based on supply name
 402 * @dev: Device pointer for the consumer (of regulator) device
 403 * @supply: regulator supply name
 404 *
 405 * Extract the regulator device node corresponding to the supply name.
 406 * returns the device node corresponding to the regulator if found, else
 407 * returns NULL.
 408 */
 409static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 410{
 411	struct device_node *regnode = NULL;
 412	char prop_name[32]; /* 32 is max size of property name */
 413
 414	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 415
 416	snprintf(prop_name, 32, "%s-supply", supply);
 417	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 418
 419	if (!regnode) {
 420		regnode = of_get_child_regulator(dev->of_node, prop_name);
 421		if (regnode)
 422			return regnode;
 423
 424		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 425				prop_name, dev->of_node);
 426		return NULL;
 427	}
 428	return regnode;
 429}
 430
 431/* Platform voltage constraint check */
 432int regulator_check_voltage(struct regulator_dev *rdev,
 433			    int *min_uV, int *max_uV)
 434{
 435	BUG_ON(*min_uV > *max_uV);
 436
 437	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 438		rdev_err(rdev, "voltage operation not allowed\n");
 439		return -EPERM;
 440	}
 441
 442	if (*max_uV > rdev->constraints->max_uV)
 443		*max_uV = rdev->constraints->max_uV;
 444	if (*min_uV < rdev->constraints->min_uV)
 445		*min_uV = rdev->constraints->min_uV;
 446
 447	if (*min_uV > *max_uV) {
 448		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 449			 *min_uV, *max_uV);
 450		return -EINVAL;
 451	}
 452
 453	return 0;
 454}
 455
 456/* return 0 if the state is valid */
 457static int regulator_check_states(suspend_state_t state)
 458{
 459	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 460}
 461
 462/* Make sure we select a voltage that suits the needs of all
 463 * regulator consumers
 464 */
 465int regulator_check_consumers(struct regulator_dev *rdev,
 466			      int *min_uV, int *max_uV,
 467			      suspend_state_t state)
 468{
 469	struct regulator *regulator;
 470	struct regulator_voltage *voltage;
 471
 472	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 473		voltage = &regulator->voltage[state];
 474		/*
 475		 * Assume consumers that didn't say anything are OK
 476		 * with anything in the constraint range.
 477		 */
 478		if (!voltage->min_uV && !voltage->max_uV)
 479			continue;
 480
 481		if (*max_uV > voltage->max_uV)
 482			*max_uV = voltage->max_uV;
 483		if (*min_uV < voltage->min_uV)
 484			*min_uV = voltage->min_uV;
 485	}
 486
 487	if (*min_uV > *max_uV) {
 488		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 489			*min_uV, *max_uV);
 490		return -EINVAL;
 491	}
 492
 493	return 0;
 494}
 495
 496/* current constraint check */
 497static int regulator_check_current_limit(struct regulator_dev *rdev,
 498					int *min_uA, int *max_uA)
 499{
 500	BUG_ON(*min_uA > *max_uA);
 501
 502	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 503		rdev_err(rdev, "current operation not allowed\n");
 504		return -EPERM;
 505	}
 506
 507	if (*max_uA > rdev->constraints->max_uA)
 508		*max_uA = rdev->constraints->max_uA;
 509	if (*min_uA < rdev->constraints->min_uA)
 510		*min_uA = rdev->constraints->min_uA;
 511
 512	if (*min_uA > *max_uA) {
 513		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 514			 *min_uA, *max_uA);
 515		return -EINVAL;
 516	}
 517
 518	return 0;
 519}
 520
 521/* operating mode constraint check */
 522static int regulator_mode_constrain(struct regulator_dev *rdev,
 523				    unsigned int *mode)
 524{
 525	switch (*mode) {
 526	case REGULATOR_MODE_FAST:
 527	case REGULATOR_MODE_NORMAL:
 528	case REGULATOR_MODE_IDLE:
 529	case REGULATOR_MODE_STANDBY:
 530		break;
 531	default:
 532		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 533		return -EINVAL;
 534	}
 535
 536	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 537		rdev_err(rdev, "mode operation not allowed\n");
 538		return -EPERM;
 539	}
 540
 541	/* The modes are bitmasks, the most power hungry modes having
 542	 * the lowest values. If the requested mode isn't supported
 543	 * try higher modes. */
 544	while (*mode) {
 545		if (rdev->constraints->valid_modes_mask & *mode)
 546			return 0;
 547		*mode /= 2;
 548	}
 549
 550	return -EINVAL;
 551}
 552
 553static inline struct regulator_state *
 554regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 555{
 556	if (rdev->constraints == NULL)
 557		return NULL;
 558
 559	switch (state) {
 560	case PM_SUSPEND_STANDBY:
 561		return &rdev->constraints->state_standby;
 562	case PM_SUSPEND_MEM:
 563		return &rdev->constraints->state_mem;
 564	case PM_SUSPEND_MAX:
 565		return &rdev->constraints->state_disk;
 566	default:
 567		return NULL;
 568	}
 569}
 570
 571static ssize_t regulator_uV_show(struct device *dev,
 572				struct device_attribute *attr, char *buf)
 573{
 574	struct regulator_dev *rdev = dev_get_drvdata(dev);
 575	int uV;
 576
 577	regulator_lock(rdev);
 578	uV = regulator_get_voltage_rdev(rdev);
 579	regulator_unlock(rdev);
 580
 581	if (uV < 0)
 582		return uV;
 583	return sprintf(buf, "%d\n", uV);
 584}
 585static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 586
 587static ssize_t regulator_uA_show(struct device *dev,
 588				struct device_attribute *attr, char *buf)
 589{
 590	struct regulator_dev *rdev = dev_get_drvdata(dev);
 591
 592	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 593}
 594static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 595
 596static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 597			 char *buf)
 598{
 599	struct regulator_dev *rdev = dev_get_drvdata(dev);
 600
 601	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 602}
 603static DEVICE_ATTR_RO(name);
 604
 605static const char *regulator_opmode_to_str(int mode)
 606{
 607	switch (mode) {
 608	case REGULATOR_MODE_FAST:
 609		return "fast";
 610	case REGULATOR_MODE_NORMAL:
 611		return "normal";
 612	case REGULATOR_MODE_IDLE:
 613		return "idle";
 614	case REGULATOR_MODE_STANDBY:
 615		return "standby";
 616	}
 617	return "unknown";
 618}
 619
 620static ssize_t regulator_print_opmode(char *buf, int mode)
 621{
 622	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 623}
 624
 625static ssize_t regulator_opmode_show(struct device *dev,
 626				    struct device_attribute *attr, char *buf)
 627{
 628	struct regulator_dev *rdev = dev_get_drvdata(dev);
 629
 630	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 631}
 632static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 633
 634static ssize_t regulator_print_state(char *buf, int state)
 635{
 636	if (state > 0)
 637		return sprintf(buf, "enabled\n");
 638	else if (state == 0)
 639		return sprintf(buf, "disabled\n");
 640	else
 641		return sprintf(buf, "unknown\n");
 642}
 643
 644static ssize_t regulator_state_show(struct device *dev,
 645				   struct device_attribute *attr, char *buf)
 646{
 647	struct regulator_dev *rdev = dev_get_drvdata(dev);
 648	ssize_t ret;
 649
 650	regulator_lock(rdev);
 651	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 652	regulator_unlock(rdev);
 653
 654	return ret;
 655}
 656static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 657
 658static ssize_t regulator_status_show(struct device *dev,
 659				   struct device_attribute *attr, char *buf)
 660{
 661	struct regulator_dev *rdev = dev_get_drvdata(dev);
 662	int status;
 663	char *label;
 664
 665	status = rdev->desc->ops->get_status(rdev);
 666	if (status < 0)
 667		return status;
 668
 669	switch (status) {
 670	case REGULATOR_STATUS_OFF:
 671		label = "off";
 672		break;
 673	case REGULATOR_STATUS_ON:
 674		label = "on";
 675		break;
 676	case REGULATOR_STATUS_ERROR:
 677		label = "error";
 678		break;
 679	case REGULATOR_STATUS_FAST:
 680		label = "fast";
 681		break;
 682	case REGULATOR_STATUS_NORMAL:
 683		label = "normal";
 684		break;
 685	case REGULATOR_STATUS_IDLE:
 686		label = "idle";
 687		break;
 688	case REGULATOR_STATUS_STANDBY:
 689		label = "standby";
 690		break;
 691	case REGULATOR_STATUS_BYPASS:
 692		label = "bypass";
 693		break;
 694	case REGULATOR_STATUS_UNDEFINED:
 695		label = "undefined";
 696		break;
 697	default:
 698		return -ERANGE;
 699	}
 700
 701	return sprintf(buf, "%s\n", label);
 702}
 703static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 704
 705static ssize_t regulator_min_uA_show(struct device *dev,
 706				    struct device_attribute *attr, char *buf)
 707{
 708	struct regulator_dev *rdev = dev_get_drvdata(dev);
 709
 710	if (!rdev->constraints)
 711		return sprintf(buf, "constraint not defined\n");
 712
 713	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 714}
 715static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 716
 717static ssize_t regulator_max_uA_show(struct device *dev,
 718				    struct device_attribute *attr, char *buf)
 719{
 720	struct regulator_dev *rdev = dev_get_drvdata(dev);
 721
 722	if (!rdev->constraints)
 723		return sprintf(buf, "constraint not defined\n");
 724
 725	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 726}
 727static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 728
 729static ssize_t regulator_min_uV_show(struct device *dev,
 730				    struct device_attribute *attr, char *buf)
 731{
 732	struct regulator_dev *rdev = dev_get_drvdata(dev);
 733
 734	if (!rdev->constraints)
 735		return sprintf(buf, "constraint not defined\n");
 736
 737	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 738}
 739static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 740
 741static ssize_t regulator_max_uV_show(struct device *dev,
 742				    struct device_attribute *attr, char *buf)
 743{
 744	struct regulator_dev *rdev = dev_get_drvdata(dev);
 745
 746	if (!rdev->constraints)
 747		return sprintf(buf, "constraint not defined\n");
 748
 749	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 750}
 751static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 752
 753static ssize_t regulator_total_uA_show(struct device *dev,
 754				      struct device_attribute *attr, char *buf)
 755{
 756	struct regulator_dev *rdev = dev_get_drvdata(dev);
 757	struct regulator *regulator;
 758	int uA = 0;
 759
 760	regulator_lock(rdev);
 761	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 762		if (regulator->enable_count)
 763			uA += regulator->uA_load;
 764	}
 765	regulator_unlock(rdev);
 766	return sprintf(buf, "%d\n", uA);
 767}
 768static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 769
 770static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 771			      char *buf)
 772{
 773	struct regulator_dev *rdev = dev_get_drvdata(dev);
 774	return sprintf(buf, "%d\n", rdev->use_count);
 775}
 776static DEVICE_ATTR_RO(num_users);
 777
 778static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 779			 char *buf)
 780{
 781	struct regulator_dev *rdev = dev_get_drvdata(dev);
 782
 783	switch (rdev->desc->type) {
 784	case REGULATOR_VOLTAGE:
 785		return sprintf(buf, "voltage\n");
 786	case REGULATOR_CURRENT:
 787		return sprintf(buf, "current\n");
 788	}
 789	return sprintf(buf, "unknown\n");
 790}
 791static DEVICE_ATTR_RO(type);
 792
 793static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 794				struct device_attribute *attr, char *buf)
 795{
 796	struct regulator_dev *rdev = dev_get_drvdata(dev);
 797
 798	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 799}
 800static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 801		regulator_suspend_mem_uV_show, NULL);
 802
 803static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 804				struct device_attribute *attr, char *buf)
 805{
 806	struct regulator_dev *rdev = dev_get_drvdata(dev);
 807
 808	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 809}
 810static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 811		regulator_suspend_disk_uV_show, NULL);
 812
 813static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 814				struct device_attribute *attr, char *buf)
 815{
 816	struct regulator_dev *rdev = dev_get_drvdata(dev);
 817
 818	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 819}
 820static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 821		regulator_suspend_standby_uV_show, NULL);
 822
 823static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 824				struct device_attribute *attr, char *buf)
 825{
 826	struct regulator_dev *rdev = dev_get_drvdata(dev);
 827
 828	return regulator_print_opmode(buf,
 829		rdev->constraints->state_mem.mode);
 830}
 831static DEVICE_ATTR(suspend_mem_mode, 0444,
 832		regulator_suspend_mem_mode_show, NULL);
 833
 834static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 835				struct device_attribute *attr, char *buf)
 836{
 837	struct regulator_dev *rdev = dev_get_drvdata(dev);
 838
 839	return regulator_print_opmode(buf,
 840		rdev->constraints->state_disk.mode);
 841}
 842static DEVICE_ATTR(suspend_disk_mode, 0444,
 843		regulator_suspend_disk_mode_show, NULL);
 844
 845static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 846				struct device_attribute *attr, char *buf)
 847{
 848	struct regulator_dev *rdev = dev_get_drvdata(dev);
 849
 850	return regulator_print_opmode(buf,
 851		rdev->constraints->state_standby.mode);
 852}
 853static DEVICE_ATTR(suspend_standby_mode, 0444,
 854		regulator_suspend_standby_mode_show, NULL);
 855
 856static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 857				   struct device_attribute *attr, char *buf)
 858{
 859	struct regulator_dev *rdev = dev_get_drvdata(dev);
 860
 861	return regulator_print_state(buf,
 862			rdev->constraints->state_mem.enabled);
 863}
 864static DEVICE_ATTR(suspend_mem_state, 0444,
 865		regulator_suspend_mem_state_show, NULL);
 866
 867static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 868				   struct device_attribute *attr, char *buf)
 869{
 870	struct regulator_dev *rdev = dev_get_drvdata(dev);
 871
 872	return regulator_print_state(buf,
 873			rdev->constraints->state_disk.enabled);
 874}
 875static DEVICE_ATTR(suspend_disk_state, 0444,
 876		regulator_suspend_disk_state_show, NULL);
 877
 878static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 879				   struct device_attribute *attr, char *buf)
 880{
 881	struct regulator_dev *rdev = dev_get_drvdata(dev);
 882
 883	return regulator_print_state(buf,
 884			rdev->constraints->state_standby.enabled);
 885}
 886static DEVICE_ATTR(suspend_standby_state, 0444,
 887		regulator_suspend_standby_state_show, NULL);
 888
 889static ssize_t regulator_bypass_show(struct device *dev,
 890				     struct device_attribute *attr, char *buf)
 891{
 892	struct regulator_dev *rdev = dev_get_drvdata(dev);
 893	const char *report;
 894	bool bypass;
 895	int ret;
 896
 897	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 898
 899	if (ret != 0)
 900		report = "unknown";
 901	else if (bypass)
 902		report = "enabled";
 903	else
 904		report = "disabled";
 905
 906	return sprintf(buf, "%s\n", report);
 907}
 908static DEVICE_ATTR(bypass, 0444,
 909		   regulator_bypass_show, NULL);
 910
 911/* Calculate the new optimum regulator operating mode based on the new total
 912 * consumer load. All locks held by caller */
 913static int drms_uA_update(struct regulator_dev *rdev)
 914{
 915	struct regulator *sibling;
 916	int current_uA = 0, output_uV, input_uV, err;
 917	unsigned int mode;
 918
 
 
 919	/*
 920	 * first check to see if we can set modes at all, otherwise just
 921	 * tell the consumer everything is OK.
 922	 */
 923	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 924		rdev_dbg(rdev, "DRMS operation not allowed\n");
 925		return 0;
 926	}
 927
 928	if (!rdev->desc->ops->get_optimum_mode &&
 929	    !rdev->desc->ops->set_load)
 930		return 0;
 931
 932	if (!rdev->desc->ops->set_mode &&
 933	    !rdev->desc->ops->set_load)
 934		return -EINVAL;
 935
 936	/* calc total requested load */
 937	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 938		if (sibling->enable_count)
 939			current_uA += sibling->uA_load;
 940	}
 941
 942	current_uA += rdev->constraints->system_load;
 943
 944	if (rdev->desc->ops->set_load) {
 945		/* set the optimum mode for our new total regulator load */
 946		err = rdev->desc->ops->set_load(rdev, current_uA);
 947		if (err < 0)
 948			rdev_err(rdev, "failed to set load %d\n", current_uA);
 949	} else {
 950		/* get output voltage */
 951		output_uV = regulator_get_voltage_rdev(rdev);
 952		if (output_uV <= 0) {
 953			rdev_err(rdev, "invalid output voltage found\n");
 954			return -EINVAL;
 955		}
 956
 957		/* get input voltage */
 958		input_uV = 0;
 959		if (rdev->supply)
 960			input_uV = regulator_get_voltage(rdev->supply);
 961		if (input_uV <= 0)
 962			input_uV = rdev->constraints->input_uV;
 963		if (input_uV <= 0) {
 964			rdev_err(rdev, "invalid input voltage found\n");
 965			return -EINVAL;
 966		}
 967
 968		/* now get the optimum mode for our new total regulator load */
 969		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 970							 output_uV, current_uA);
 971
 972		/* check the new mode is allowed */
 973		err = regulator_mode_constrain(rdev, &mode);
 974		if (err < 0) {
 975			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 976				 current_uA, input_uV, output_uV);
 977			return err;
 978		}
 979
 980		err = rdev->desc->ops->set_mode(rdev, mode);
 981		if (err < 0)
 982			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 983	}
 984
 985	return err;
 986}
 987
 988static int suspend_set_state(struct regulator_dev *rdev,
 989				    suspend_state_t state)
 990{
 991	int ret = 0;
 992	struct regulator_state *rstate;
 993
 994	rstate = regulator_get_suspend_state(rdev, state);
 995	if (rstate == NULL)
 996		return 0;
 997
 998	/* If we have no suspend mode configuration don't set anything;
 999	 * only warn if the driver implements set_suspend_voltage or
1000	 * set_suspend_mode callback.
1001	 */
1002	if (rstate->enabled != ENABLE_IN_SUSPEND &&
1003	    rstate->enabled != DISABLE_IN_SUSPEND) {
1004		if (rdev->desc->ops->set_suspend_voltage ||
1005		    rdev->desc->ops->set_suspend_mode)
1006			rdev_warn(rdev, "No configuration\n");
1007		return 0;
1008	}
1009
1010	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1011		rdev->desc->ops->set_suspend_enable)
1012		ret = rdev->desc->ops->set_suspend_enable(rdev);
1013	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1014		rdev->desc->ops->set_suspend_disable)
1015		ret = rdev->desc->ops->set_suspend_disable(rdev);
1016	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1017		ret = 0;
1018
1019	if (ret < 0) {
1020		rdev_err(rdev, "failed to enabled/disable\n");
1021		return ret;
1022	}
1023
1024	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1025		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1026		if (ret < 0) {
1027			rdev_err(rdev, "failed to set voltage\n");
1028			return ret;
1029		}
1030	}
1031
1032	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1033		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1034		if (ret < 0) {
1035			rdev_err(rdev, "failed to set mode\n");
1036			return ret;
1037		}
1038	}
1039
1040	return ret;
1041}
1042
1043static void print_constraints(struct regulator_dev *rdev)
1044{
1045	struct regulation_constraints *constraints = rdev->constraints;
1046	char buf[160] = "";
1047	size_t len = sizeof(buf) - 1;
1048	int count = 0;
1049	int ret;
1050
1051	if (constraints->min_uV && constraints->max_uV) {
1052		if (constraints->min_uV == constraints->max_uV)
1053			count += scnprintf(buf + count, len - count, "%d mV ",
1054					   constraints->min_uV / 1000);
1055		else
1056			count += scnprintf(buf + count, len - count,
1057					   "%d <--> %d mV ",
1058					   constraints->min_uV / 1000,
1059					   constraints->max_uV / 1000);
1060	}
1061
1062	if (!constraints->min_uV ||
1063	    constraints->min_uV != constraints->max_uV) {
1064		ret = regulator_get_voltage_rdev(rdev);
1065		if (ret > 0)
1066			count += scnprintf(buf + count, len - count,
1067					   "at %d mV ", ret / 1000);
1068	}
1069
1070	if (constraints->uV_offset)
1071		count += scnprintf(buf + count, len - count, "%dmV offset ",
1072				   constraints->uV_offset / 1000);
1073
1074	if (constraints->min_uA && constraints->max_uA) {
1075		if (constraints->min_uA == constraints->max_uA)
1076			count += scnprintf(buf + count, len - count, "%d mA ",
1077					   constraints->min_uA / 1000);
1078		else
1079			count += scnprintf(buf + count, len - count,
1080					   "%d <--> %d mA ",
1081					   constraints->min_uA / 1000,
1082					   constraints->max_uA / 1000);
1083	}
1084
1085	if (!constraints->min_uA ||
1086	    constraints->min_uA != constraints->max_uA) {
1087		ret = _regulator_get_current_limit(rdev);
1088		if (ret > 0)
1089			count += scnprintf(buf + count, len - count,
1090					   "at %d mA ", ret / 1000);
1091	}
1092
1093	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1094		count += scnprintf(buf + count, len - count, "fast ");
1095	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1096		count += scnprintf(buf + count, len - count, "normal ");
1097	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1098		count += scnprintf(buf + count, len - count, "idle ");
1099	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1100		count += scnprintf(buf + count, len - count, "standby");
1101
1102	if (!count)
1103		scnprintf(buf, len, "no parameters");
1104
1105	rdev_dbg(rdev, "%s\n", buf);
1106
1107	if ((constraints->min_uV != constraints->max_uV) &&
1108	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1109		rdev_warn(rdev,
1110			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1111}
1112
1113static int machine_constraints_voltage(struct regulator_dev *rdev,
1114	struct regulation_constraints *constraints)
1115{
1116	const struct regulator_ops *ops = rdev->desc->ops;
1117	int ret;
1118
1119	/* do we need to apply the constraint voltage */
1120	if (rdev->constraints->apply_uV &&
1121	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1122		int target_min, target_max;
1123		int current_uV = regulator_get_voltage_rdev(rdev);
1124
1125		if (current_uV == -ENOTRECOVERABLE) {
1126			/* This regulator can't be read and must be initialized */
1127			rdev_info(rdev, "Setting %d-%duV\n",
1128				  rdev->constraints->min_uV,
1129				  rdev->constraints->max_uV);
1130			_regulator_do_set_voltage(rdev,
1131						  rdev->constraints->min_uV,
1132						  rdev->constraints->max_uV);
1133			current_uV = regulator_get_voltage_rdev(rdev);
1134		}
1135
1136		if (current_uV < 0) {
1137			rdev_err(rdev,
1138				 "failed to get the current voltage(%d)\n",
1139				 current_uV);
1140			return current_uV;
1141		}
1142
1143		/*
1144		 * If we're below the minimum voltage move up to the
1145		 * minimum voltage, if we're above the maximum voltage
1146		 * then move down to the maximum.
1147		 */
1148		target_min = current_uV;
1149		target_max = current_uV;
1150
1151		if (current_uV < rdev->constraints->min_uV) {
1152			target_min = rdev->constraints->min_uV;
1153			target_max = rdev->constraints->min_uV;
1154		}
1155
1156		if (current_uV > rdev->constraints->max_uV) {
1157			target_min = rdev->constraints->max_uV;
1158			target_max = rdev->constraints->max_uV;
1159		}
1160
1161		if (target_min != current_uV || target_max != current_uV) {
1162			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1163				  current_uV, target_min, target_max);
1164			ret = _regulator_do_set_voltage(
1165				rdev, target_min, target_max);
1166			if (ret < 0) {
1167				rdev_err(rdev,
1168					"failed to apply %d-%duV constraint(%d)\n",
1169					target_min, target_max, ret);
1170				return ret;
1171			}
1172		}
1173	}
1174
1175	/* constrain machine-level voltage specs to fit
1176	 * the actual range supported by this regulator.
1177	 */
1178	if (ops->list_voltage && rdev->desc->n_voltages) {
1179		int	count = rdev->desc->n_voltages;
1180		int	i;
1181		int	min_uV = INT_MAX;
1182		int	max_uV = INT_MIN;
1183		int	cmin = constraints->min_uV;
1184		int	cmax = constraints->max_uV;
1185
1186		/* it's safe to autoconfigure fixed-voltage supplies
1187		   and the constraints are used by list_voltage. */
1188		if (count == 1 && !cmin) {
1189			cmin = 1;
1190			cmax = INT_MAX;
1191			constraints->min_uV = cmin;
1192			constraints->max_uV = cmax;
1193		}
1194
1195		/* voltage constraints are optional */
1196		if ((cmin == 0) && (cmax == 0))
1197			return 0;
1198
1199		/* else require explicit machine-level constraints */
1200		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1201			rdev_err(rdev, "invalid voltage constraints\n");
1202			return -EINVAL;
1203		}
1204
1205		/* no need to loop voltages if range is continuous */
1206		if (rdev->desc->continuous_voltage_range)
1207			return 0;
1208
1209		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1210		for (i = 0; i < count; i++) {
1211			int	value;
1212
1213			value = ops->list_voltage(rdev, i);
1214			if (value <= 0)
1215				continue;
1216
1217			/* maybe adjust [min_uV..max_uV] */
1218			if (value >= cmin && value < min_uV)
1219				min_uV = value;
1220			if (value <= cmax && value > max_uV)
1221				max_uV = value;
1222		}
1223
1224		/* final: [min_uV..max_uV] valid iff constraints valid */
1225		if (max_uV < min_uV) {
1226			rdev_err(rdev,
1227				 "unsupportable voltage constraints %u-%uuV\n",
1228				 min_uV, max_uV);
1229			return -EINVAL;
1230		}
1231
1232		/* use regulator's subset of machine constraints */
1233		if (constraints->min_uV < min_uV) {
1234			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1235				 constraints->min_uV, min_uV);
1236			constraints->min_uV = min_uV;
1237		}
1238		if (constraints->max_uV > max_uV) {
1239			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1240				 constraints->max_uV, max_uV);
1241			constraints->max_uV = max_uV;
1242		}
1243	}
1244
1245	return 0;
1246}
1247
1248static int machine_constraints_current(struct regulator_dev *rdev,
1249	struct regulation_constraints *constraints)
1250{
1251	const struct regulator_ops *ops = rdev->desc->ops;
1252	int ret;
1253
1254	if (!constraints->min_uA && !constraints->max_uA)
1255		return 0;
1256
1257	if (constraints->min_uA > constraints->max_uA) {
1258		rdev_err(rdev, "Invalid current constraints\n");
1259		return -EINVAL;
1260	}
1261
1262	if (!ops->set_current_limit || !ops->get_current_limit) {
1263		rdev_warn(rdev, "Operation of current configuration missing\n");
1264		return 0;
1265	}
1266
1267	/* Set regulator current in constraints range */
1268	ret = ops->set_current_limit(rdev, constraints->min_uA,
1269			constraints->max_uA);
1270	if (ret < 0) {
1271		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1272		return ret;
1273	}
1274
1275	return 0;
1276}
1277
1278static int _regulator_do_enable(struct regulator_dev *rdev);
1279
1280/**
1281 * set_machine_constraints - sets regulator constraints
1282 * @rdev: regulator source
1283 * @constraints: constraints to apply
1284 *
1285 * Allows platform initialisation code to define and constrain
1286 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1287 * Constraints *must* be set by platform code in order for some
1288 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1289 * set_mode.
1290 */
1291static int set_machine_constraints(struct regulator_dev *rdev,
1292	const struct regulation_constraints *constraints)
1293{
1294	int ret = 0;
1295	const struct regulator_ops *ops = rdev->desc->ops;
1296
1297	if (constraints)
1298		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1299					    GFP_KERNEL);
1300	else
1301		rdev->constraints = kzalloc(sizeof(*constraints),
1302					    GFP_KERNEL);
1303	if (!rdev->constraints)
1304		return -ENOMEM;
1305
1306	ret = machine_constraints_voltage(rdev, rdev->constraints);
1307	if (ret != 0)
1308		return ret;
1309
1310	ret = machine_constraints_current(rdev, rdev->constraints);
1311	if (ret != 0)
1312		return ret;
1313
1314	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1315		ret = ops->set_input_current_limit(rdev,
1316						   rdev->constraints->ilim_uA);
1317		if (ret < 0) {
1318			rdev_err(rdev, "failed to set input limit\n");
1319			return ret;
1320		}
1321	}
1322
1323	/* do we need to setup our suspend state */
1324	if (rdev->constraints->initial_state) {
1325		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1326		if (ret < 0) {
1327			rdev_err(rdev, "failed to set suspend state\n");
1328			return ret;
1329		}
1330	}
1331
1332	if (rdev->constraints->initial_mode) {
1333		if (!ops->set_mode) {
1334			rdev_err(rdev, "no set_mode operation\n");
1335			return -EINVAL;
1336		}
1337
1338		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1339		if (ret < 0) {
1340			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1341			return ret;
1342		}
1343	} else if (rdev->constraints->system_load) {
1344		/*
1345		 * We'll only apply the initial system load if an
1346		 * initial mode wasn't specified.
1347		 */
1348		drms_uA_update(rdev);
 
 
 
 
 
1349	}
1350
1351	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1352		&& ops->set_ramp_delay) {
1353		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1354		if (ret < 0) {
1355			rdev_err(rdev, "failed to set ramp_delay\n");
1356			return ret;
1357		}
1358	}
1359
1360	if (rdev->constraints->pull_down && ops->set_pull_down) {
1361		ret = ops->set_pull_down(rdev);
1362		if (ret < 0) {
1363			rdev_err(rdev, "failed to set pull down\n");
1364			return ret;
1365		}
1366	}
1367
1368	if (rdev->constraints->soft_start && ops->set_soft_start) {
1369		ret = ops->set_soft_start(rdev);
1370		if (ret < 0) {
1371			rdev_err(rdev, "failed to set soft start\n");
1372			return ret;
1373		}
1374	}
1375
1376	if (rdev->constraints->over_current_protection
1377		&& ops->set_over_current_protection) {
1378		ret = ops->set_over_current_protection(rdev);
1379		if (ret < 0) {
1380			rdev_err(rdev, "failed to set over current protection\n");
1381			return ret;
1382		}
1383	}
1384
1385	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1386		bool ad_state = (rdev->constraints->active_discharge ==
1387			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1388
1389		ret = ops->set_active_discharge(rdev, ad_state);
1390		if (ret < 0) {
1391			rdev_err(rdev, "failed to set active discharge\n");
1392			return ret;
1393		}
1394	}
1395
1396	/* If the constraints say the regulator should be on at this point
1397	 * and we have control then make sure it is enabled.
1398	 */
1399	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1400		if (rdev->supply) {
1401			ret = regulator_enable(rdev->supply);
1402			if (ret < 0) {
1403				_regulator_put(rdev->supply);
1404				rdev->supply = NULL;
1405				return ret;
1406			}
1407		}
1408
1409		ret = _regulator_do_enable(rdev);
1410		if (ret < 0 && ret != -EINVAL) {
1411			rdev_err(rdev, "failed to enable\n");
1412			return ret;
1413		}
1414
1415		if (rdev->constraints->always_on)
1416			rdev->use_count++;
1417	}
1418
1419	print_constraints(rdev);
1420	return 0;
1421}
1422
1423/**
1424 * set_supply - set regulator supply regulator
1425 * @rdev: regulator name
1426 * @supply_rdev: supply regulator name
1427 *
1428 * Called by platform initialisation code to set the supply regulator for this
1429 * regulator. This ensures that a regulators supply will also be enabled by the
1430 * core if it's child is enabled.
1431 */
1432static int set_supply(struct regulator_dev *rdev,
1433		      struct regulator_dev *supply_rdev)
1434{
1435	int err;
1436
1437	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1438
1439	if (!try_module_get(supply_rdev->owner))
1440		return -ENODEV;
1441
1442	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1443	if (rdev->supply == NULL) {
1444		err = -ENOMEM;
1445		return err;
1446	}
1447	supply_rdev->open_count++;
1448
1449	return 0;
1450}
1451
1452/**
1453 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1454 * @rdev:         regulator source
1455 * @consumer_dev_name: dev_name() string for device supply applies to
1456 * @supply:       symbolic name for supply
1457 *
1458 * Allows platform initialisation code to map physical regulator
1459 * sources to symbolic names for supplies for use by devices.  Devices
1460 * should use these symbolic names to request regulators, avoiding the
1461 * need to provide board-specific regulator names as platform data.
1462 */
1463static int set_consumer_device_supply(struct regulator_dev *rdev,
1464				      const char *consumer_dev_name,
1465				      const char *supply)
1466{
1467	struct regulator_map *node, *new_node;
1468	int has_dev;
1469
1470	if (supply == NULL)
1471		return -EINVAL;
1472
1473	if (consumer_dev_name != NULL)
1474		has_dev = 1;
1475	else
1476		has_dev = 0;
1477
1478	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1479	if (new_node == NULL)
1480		return -ENOMEM;
1481
1482	new_node->regulator = rdev;
1483	new_node->supply = supply;
1484
1485	if (has_dev) {
1486		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1487		if (new_node->dev_name == NULL) {
1488			kfree(new_node);
1489			return -ENOMEM;
1490		}
1491	}
1492
1493	mutex_lock(&regulator_list_mutex);
1494	list_for_each_entry(node, &regulator_map_list, list) {
1495		if (node->dev_name && consumer_dev_name) {
1496			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1497				continue;
1498		} else if (node->dev_name || consumer_dev_name) {
1499			continue;
1500		}
1501
1502		if (strcmp(node->supply, supply) != 0)
1503			continue;
1504
1505		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1506			 consumer_dev_name,
1507			 dev_name(&node->regulator->dev),
1508			 node->regulator->desc->name,
1509			 supply,
1510			 dev_name(&rdev->dev), rdev_get_name(rdev));
1511		goto fail;
1512	}
1513
1514	list_add(&new_node->list, &regulator_map_list);
1515	mutex_unlock(&regulator_list_mutex);
 
1516
1517	return 0;
 
1518
1519fail:
1520	mutex_unlock(&regulator_list_mutex);
1521	kfree(new_node->dev_name);
1522	kfree(new_node);
1523	return -EBUSY;
 
 
 
 
 
1524}
1525
1526static void unset_regulator_supplies(struct regulator_dev *rdev)
1527{
1528	struct regulator_map *node, *n;
1529
1530	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1531		if (rdev == node->regulator) {
1532			list_del(&node->list);
1533			kfree(node->dev_name);
1534			kfree(node);
1535		}
1536	}
1537}
1538
1539#ifdef CONFIG_DEBUG_FS
1540static ssize_t constraint_flags_read_file(struct file *file,
1541					  char __user *user_buf,
1542					  size_t count, loff_t *ppos)
1543{
1544	const struct regulator *regulator = file->private_data;
1545	const struct regulation_constraints *c = regulator->rdev->constraints;
1546	char *buf;
1547	ssize_t ret;
1548
1549	if (!c)
1550		return 0;
1551
1552	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1553	if (!buf)
1554		return -ENOMEM;
1555
1556	ret = snprintf(buf, PAGE_SIZE,
1557			"always_on: %u\n"
1558			"boot_on: %u\n"
1559			"apply_uV: %u\n"
1560			"ramp_disable: %u\n"
1561			"soft_start: %u\n"
1562			"pull_down: %u\n"
1563			"over_current_protection: %u\n",
1564			c->always_on,
1565			c->boot_on,
1566			c->apply_uV,
1567			c->ramp_disable,
1568			c->soft_start,
1569			c->pull_down,
1570			c->over_current_protection);
1571
1572	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1573	kfree(buf);
1574
1575	return ret;
1576}
1577
1578#endif
1579
1580static const struct file_operations constraint_flags_fops = {
1581#ifdef CONFIG_DEBUG_FS
1582	.open = simple_open,
1583	.read = constraint_flags_read_file,
1584	.llseek = default_llseek,
1585#endif
1586};
1587
1588#define REG_STR_SIZE	64
1589
1590static struct regulator *create_regulator(struct regulator_dev *rdev,
1591					  struct device *dev,
1592					  const char *supply_name)
1593{
1594	struct regulator *regulator;
1595	int err;
1596
1597	if (dev) {
1598		char buf[REG_STR_SIZE];
1599		int size;
1600
1601		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1602				dev->kobj.name, supply_name);
1603		if (size >= REG_STR_SIZE)
1604			return NULL;
1605
1606		supply_name = kstrdup(buf, GFP_KERNEL);
1607		if (supply_name == NULL)
1608			return NULL;
1609	} else {
1610		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611		if (supply_name == NULL)
1612			return NULL;
1613	}
1614
1615	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1616	if (regulator == NULL) {
1617		kfree(supply_name);
1618		return NULL;
1619	}
1620
 
1621	regulator->rdev = rdev;
1622	regulator->supply_name = supply_name;
1623
1624	regulator_lock(rdev);
1625	list_add(&regulator->list, &rdev->consumer_list);
1626	regulator_unlock(rdev);
1627
1628	if (dev) {
1629		regulator->dev = dev;
1630
1631		/* Add a link to the device sysfs entry */
 
 
 
 
 
 
 
 
 
1632		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1633					       supply_name);
1634		if (err) {
1635			rdev_dbg(rdev, "could not add device link %s err %d\n",
1636				  dev->kobj.name, err);
1637			/* non-fatal */
1638		}
 
 
 
 
1639	}
1640
1641	regulator->debugfs = debugfs_create_dir(supply_name,
1642						rdev->debugfs);
1643	if (!regulator->debugfs) {
1644		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1645	} else {
1646		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1647				   &regulator->uA_load);
1648		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1649				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1650		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1651				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1652		debugfs_create_file("constraint_flags", 0444,
1653				    regulator->debugfs, regulator,
1654				    &constraint_flags_fops);
1655	}
1656
1657	/*
1658	 * Check now if the regulator is an always on regulator - if
1659	 * it is then we don't need to do nearly so much work for
1660	 * enable/disable calls.
1661	 */
1662	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1663	    _regulator_is_enabled(rdev))
1664		regulator->always_on = true;
1665
 
1666	return regulator;
 
 
 
 
 
1667}
1668
1669static int _regulator_get_enable_time(struct regulator_dev *rdev)
1670{
1671	if (rdev->constraints && rdev->constraints->enable_time)
1672		return rdev->constraints->enable_time;
1673	if (rdev->desc->ops->enable_time)
1674		return rdev->desc->ops->enable_time(rdev);
1675	return rdev->desc->enable_time;
1676}
1677
1678static struct regulator_supply_alias *regulator_find_supply_alias(
1679		struct device *dev, const char *supply)
1680{
1681	struct regulator_supply_alias *map;
1682
1683	list_for_each_entry(map, &regulator_supply_alias_list, list)
1684		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1685			return map;
1686
1687	return NULL;
1688}
1689
1690static void regulator_supply_alias(struct device **dev, const char **supply)
1691{
1692	struct regulator_supply_alias *map;
1693
1694	map = regulator_find_supply_alias(*dev, *supply);
1695	if (map) {
1696		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1697				*supply, map->alias_supply,
1698				dev_name(map->alias_dev));
1699		*dev = map->alias_dev;
1700		*supply = map->alias_supply;
1701	}
1702}
1703
1704static int regulator_match(struct device *dev, const void *data)
1705{
1706	struct regulator_dev *r = dev_to_rdev(dev);
1707
1708	return strcmp(rdev_get_name(r), data) == 0;
1709}
1710
1711static struct regulator_dev *regulator_lookup_by_name(const char *name)
1712{
1713	struct device *dev;
1714
1715	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1716
1717	return dev ? dev_to_rdev(dev) : NULL;
1718}
1719
1720/**
1721 * regulator_dev_lookup - lookup a regulator device.
1722 * @dev: device for regulator "consumer".
1723 * @supply: Supply name or regulator ID.
1724 *
1725 * If successful, returns a struct regulator_dev that corresponds to the name
1726 * @supply and with the embedded struct device refcount incremented by one.
1727 * The refcount must be dropped by calling put_device().
1728 * On failure one of the following ERR-PTR-encoded values is returned:
1729 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1730 * in the future.
1731 */
1732static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1733						  const char *supply)
1734{
1735	struct regulator_dev *r = NULL;
1736	struct device_node *node;
1737	struct regulator_map *map;
1738	const char *devname = NULL;
1739
1740	regulator_supply_alias(&dev, &supply);
1741
1742	/* first do a dt based lookup */
1743	if (dev && dev->of_node) {
1744		node = of_get_regulator(dev, supply);
1745		if (node) {
1746			r = of_find_regulator_by_node(node);
1747			if (r)
1748				return r;
1749
1750			/*
1751			 * We have a node, but there is no device.
1752			 * assume it has not registered yet.
1753			 */
1754			return ERR_PTR(-EPROBE_DEFER);
1755		}
1756	}
1757
1758	/* if not found, try doing it non-dt way */
1759	if (dev)
1760		devname = dev_name(dev);
1761
1762	mutex_lock(&regulator_list_mutex);
1763	list_for_each_entry(map, &regulator_map_list, list) {
1764		/* If the mapping has a device set up it must match */
1765		if (map->dev_name &&
1766		    (!devname || strcmp(map->dev_name, devname)))
1767			continue;
1768
1769		if (strcmp(map->supply, supply) == 0 &&
1770		    get_device(&map->regulator->dev)) {
1771			r = map->regulator;
1772			break;
1773		}
1774	}
1775	mutex_unlock(&regulator_list_mutex);
1776
1777	if (r)
1778		return r;
1779
1780	r = regulator_lookup_by_name(supply);
1781	if (r)
1782		return r;
1783
1784	return ERR_PTR(-ENODEV);
1785}
1786
1787static int regulator_resolve_supply(struct regulator_dev *rdev)
1788{
1789	struct regulator_dev *r;
1790	struct device *dev = rdev->dev.parent;
1791	int ret;
1792
1793	/* No supply to resolve? */
1794	if (!rdev->supply_name)
1795		return 0;
1796
1797	/* Supply already resolved? */
1798	if (rdev->supply)
1799		return 0;
1800
1801	r = regulator_dev_lookup(dev, rdev->supply_name);
1802	if (IS_ERR(r)) {
1803		ret = PTR_ERR(r);
1804
1805		/* Did the lookup explicitly defer for us? */
1806		if (ret == -EPROBE_DEFER)
1807			return ret;
1808
1809		if (have_full_constraints()) {
1810			r = dummy_regulator_rdev;
1811			get_device(&r->dev);
1812		} else {
1813			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1814				rdev->supply_name, rdev->desc->name);
1815			return -EPROBE_DEFER;
1816		}
1817	}
1818
1819	/*
1820	 * If the supply's parent device is not the same as the
1821	 * regulator's parent device, then ensure the parent device
1822	 * is bound before we resolve the supply, in case the parent
1823	 * device get probe deferred and unregisters the supply.
1824	 */
1825	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1826		if (!device_is_bound(r->dev.parent)) {
1827			put_device(&r->dev);
1828			return -EPROBE_DEFER;
1829		}
1830	}
1831
1832	/* Recursively resolve the supply of the supply */
1833	ret = regulator_resolve_supply(r);
1834	if (ret < 0) {
1835		put_device(&r->dev);
1836		return ret;
1837	}
1838
1839	ret = set_supply(rdev, r);
1840	if (ret < 0) {
1841		put_device(&r->dev);
1842		return ret;
1843	}
1844
1845	/*
1846	 * In set_machine_constraints() we may have turned this regulator on
1847	 * but we couldn't propagate to the supply if it hadn't been resolved
1848	 * yet.  Do it now.
1849	 */
1850	if (rdev->use_count) {
1851		ret = regulator_enable(rdev->supply);
1852		if (ret < 0) {
1853			_regulator_put(rdev->supply);
1854			rdev->supply = NULL;
1855			return ret;
1856		}
1857	}
1858
1859	return 0;
1860}
1861
1862/* Internal regulator request function */
1863struct regulator *_regulator_get(struct device *dev, const char *id,
1864				 enum regulator_get_type get_type)
1865{
1866	struct regulator_dev *rdev;
1867	struct regulator *regulator;
1868	struct device_link *link;
1869	int ret;
1870
1871	if (get_type >= MAX_GET_TYPE) {
1872		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1873		return ERR_PTR(-EINVAL);
1874	}
1875
1876	if (id == NULL) {
1877		pr_err("get() with no identifier\n");
1878		return ERR_PTR(-EINVAL);
1879	}
1880
1881	rdev = regulator_dev_lookup(dev, id);
1882	if (IS_ERR(rdev)) {
1883		ret = PTR_ERR(rdev);
1884
1885		/*
1886		 * If regulator_dev_lookup() fails with error other
1887		 * than -ENODEV our job here is done, we simply return it.
1888		 */
1889		if (ret != -ENODEV)
1890			return ERR_PTR(ret);
1891
1892		if (!have_full_constraints()) {
1893			dev_warn(dev,
1894				 "incomplete constraints, dummy supplies not allowed\n");
1895			return ERR_PTR(-ENODEV);
1896		}
1897
1898		switch (get_type) {
1899		case NORMAL_GET:
1900			/*
1901			 * Assume that a regulator is physically present and
1902			 * enabled, even if it isn't hooked up, and just
1903			 * provide a dummy.
1904			 */
1905			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
 
 
1906			rdev = dummy_regulator_rdev;
1907			get_device(&rdev->dev);
1908			break;
1909
1910		case EXCLUSIVE_GET:
1911			dev_warn(dev,
1912				 "dummy supplies not allowed for exclusive requests\n");
1913			fallthrough;
1914
1915		default:
1916			return ERR_PTR(-ENODEV);
1917		}
1918	}
1919
1920	if (rdev->exclusive) {
1921		regulator = ERR_PTR(-EPERM);
1922		put_device(&rdev->dev);
1923		return regulator;
1924	}
1925
1926	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1927		regulator = ERR_PTR(-EBUSY);
1928		put_device(&rdev->dev);
1929		return regulator;
1930	}
1931
1932	mutex_lock(&regulator_list_mutex);
1933	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1934	mutex_unlock(&regulator_list_mutex);
1935
1936	if (ret != 0) {
1937		regulator = ERR_PTR(-EPROBE_DEFER);
1938		put_device(&rdev->dev);
1939		return regulator;
1940	}
1941
1942	ret = regulator_resolve_supply(rdev);
1943	if (ret < 0) {
1944		regulator = ERR_PTR(ret);
1945		put_device(&rdev->dev);
1946		return regulator;
1947	}
1948
1949	if (!try_module_get(rdev->owner)) {
1950		regulator = ERR_PTR(-EPROBE_DEFER);
1951		put_device(&rdev->dev);
1952		return regulator;
1953	}
1954
1955	regulator = create_regulator(rdev, dev, id);
1956	if (regulator == NULL) {
1957		regulator = ERR_PTR(-ENOMEM);
1958		module_put(rdev->owner);
1959		put_device(&rdev->dev);
 
1960		return regulator;
1961	}
1962
1963	rdev->open_count++;
1964	if (get_type == EXCLUSIVE_GET) {
1965		rdev->exclusive = 1;
1966
1967		ret = _regulator_is_enabled(rdev);
1968		if (ret > 0)
1969			rdev->use_count = 1;
1970		else
1971			rdev->use_count = 0;
1972	}
1973
1974	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1975	if (!IS_ERR_OR_NULL(link))
1976		regulator->device_link = true;
1977
1978	return regulator;
1979}
1980
1981/**
1982 * regulator_get - lookup and obtain a reference to a regulator.
1983 * @dev: device for regulator "consumer"
1984 * @id: Supply name or regulator ID.
1985 *
1986 * Returns a struct regulator corresponding to the regulator producer,
1987 * or IS_ERR() condition containing errno.
1988 *
1989 * Use of supply names configured via regulator_set_device_supply() is
1990 * strongly encouraged.  It is recommended that the supply name used
1991 * should match the name used for the supply and/or the relevant
1992 * device pins in the datasheet.
1993 */
1994struct regulator *regulator_get(struct device *dev, const char *id)
1995{
1996	return _regulator_get(dev, id, NORMAL_GET);
1997}
1998EXPORT_SYMBOL_GPL(regulator_get);
1999
2000/**
2001 * regulator_get_exclusive - obtain exclusive access to a regulator.
2002 * @dev: device for regulator "consumer"
2003 * @id: Supply name or regulator ID.
2004 *
2005 * Returns a struct regulator corresponding to the regulator producer,
2006 * or IS_ERR() condition containing errno.  Other consumers will be
2007 * unable to obtain this regulator while this reference is held and the
2008 * use count for the regulator will be initialised to reflect the current
2009 * state of the regulator.
2010 *
2011 * This is intended for use by consumers which cannot tolerate shared
2012 * use of the regulator such as those which need to force the
2013 * regulator off for correct operation of the hardware they are
2014 * controlling.
2015 *
2016 * Use of supply names configured via regulator_set_device_supply() is
2017 * strongly encouraged.  It is recommended that the supply name used
2018 * should match the name used for the supply and/or the relevant
2019 * device pins in the datasheet.
2020 */
2021struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2022{
2023	return _regulator_get(dev, id, EXCLUSIVE_GET);
2024}
2025EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2026
2027/**
2028 * regulator_get_optional - obtain optional access to a regulator.
2029 * @dev: device for regulator "consumer"
2030 * @id: Supply name or regulator ID.
2031 *
2032 * Returns a struct regulator corresponding to the regulator producer,
2033 * or IS_ERR() condition containing errno.
2034 *
2035 * This is intended for use by consumers for devices which can have
2036 * some supplies unconnected in normal use, such as some MMC devices.
2037 * It can allow the regulator core to provide stub supplies for other
2038 * supplies requested using normal regulator_get() calls without
2039 * disrupting the operation of drivers that can handle absent
2040 * supplies.
2041 *
2042 * Use of supply names configured via regulator_set_device_supply() is
2043 * strongly encouraged.  It is recommended that the supply name used
2044 * should match the name used for the supply and/or the relevant
2045 * device pins in the datasheet.
2046 */
2047struct regulator *regulator_get_optional(struct device *dev, const char *id)
2048{
2049	return _regulator_get(dev, id, OPTIONAL_GET);
2050}
2051EXPORT_SYMBOL_GPL(regulator_get_optional);
2052
2053static void destroy_regulator(struct regulator *regulator)
2054{
2055	struct regulator_dev *rdev = regulator->rdev;
2056
2057	debugfs_remove_recursive(regulator->debugfs);
2058
2059	if (regulator->dev) {
2060		if (regulator->device_link)
2061			device_link_remove(regulator->dev, &rdev->dev);
2062
2063		/* remove any sysfs entries */
2064		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2065	}
2066
2067	regulator_lock(rdev);
2068	list_del(&regulator->list);
2069
2070	rdev->open_count--;
2071	rdev->exclusive = 0;
2072	regulator_unlock(rdev);
2073
2074	kfree_const(regulator->supply_name);
2075	kfree(regulator);
2076}
2077
2078/* regulator_list_mutex lock held by regulator_put() */
2079static void _regulator_put(struct regulator *regulator)
2080{
2081	struct regulator_dev *rdev;
2082
2083	if (IS_ERR_OR_NULL(regulator))
2084		return;
2085
2086	lockdep_assert_held_once(&regulator_list_mutex);
2087
2088	/* Docs say you must disable before calling regulator_put() */
2089	WARN_ON(regulator->enable_count);
2090
2091	rdev = regulator->rdev;
2092
2093	destroy_regulator(regulator);
2094
2095	module_put(rdev->owner);
 
 
 
 
 
 
 
2096	put_device(&rdev->dev);
 
 
 
 
 
 
2097}
2098
2099/**
2100 * regulator_put - "free" the regulator source
2101 * @regulator: regulator source
2102 *
2103 * Note: drivers must ensure that all regulator_enable calls made on this
2104 * regulator source are balanced by regulator_disable calls prior to calling
2105 * this function.
2106 */
2107void regulator_put(struct regulator *regulator)
2108{
2109	mutex_lock(&regulator_list_mutex);
2110	_regulator_put(regulator);
2111	mutex_unlock(&regulator_list_mutex);
2112}
2113EXPORT_SYMBOL_GPL(regulator_put);
2114
2115/**
2116 * regulator_register_supply_alias - Provide device alias for supply lookup
2117 *
2118 * @dev: device that will be given as the regulator "consumer"
2119 * @id: Supply name or regulator ID
2120 * @alias_dev: device that should be used to lookup the supply
2121 * @alias_id: Supply name or regulator ID that should be used to lookup the
2122 * supply
2123 *
2124 * All lookups for id on dev will instead be conducted for alias_id on
2125 * alias_dev.
2126 */
2127int regulator_register_supply_alias(struct device *dev, const char *id,
2128				    struct device *alias_dev,
2129				    const char *alias_id)
2130{
2131	struct regulator_supply_alias *map;
2132
2133	map = regulator_find_supply_alias(dev, id);
2134	if (map)
2135		return -EEXIST;
2136
2137	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2138	if (!map)
2139		return -ENOMEM;
2140
2141	map->src_dev = dev;
2142	map->src_supply = id;
2143	map->alias_dev = alias_dev;
2144	map->alias_supply = alias_id;
2145
2146	list_add(&map->list, &regulator_supply_alias_list);
2147
2148	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2149		id, dev_name(dev), alias_id, dev_name(alias_dev));
2150
2151	return 0;
2152}
2153EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2154
2155/**
2156 * regulator_unregister_supply_alias - Remove device alias
2157 *
2158 * @dev: device that will be given as the regulator "consumer"
2159 * @id: Supply name or regulator ID
2160 *
2161 * Remove a lookup alias if one exists for id on dev.
2162 */
2163void regulator_unregister_supply_alias(struct device *dev, const char *id)
2164{
2165	struct regulator_supply_alias *map;
2166
2167	map = regulator_find_supply_alias(dev, id);
2168	if (map) {
2169		list_del(&map->list);
2170		kfree(map);
2171	}
2172}
2173EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2174
2175/**
2176 * regulator_bulk_register_supply_alias - register multiple aliases
2177 *
2178 * @dev: device that will be given as the regulator "consumer"
2179 * @id: List of supply names or regulator IDs
2180 * @alias_dev: device that should be used to lookup the supply
2181 * @alias_id: List of supply names or regulator IDs that should be used to
2182 * lookup the supply
2183 * @num_id: Number of aliases to register
2184 *
2185 * @return 0 on success, an errno on failure.
2186 *
2187 * This helper function allows drivers to register several supply
2188 * aliases in one operation.  If any of the aliases cannot be
2189 * registered any aliases that were registered will be removed
2190 * before returning to the caller.
2191 */
2192int regulator_bulk_register_supply_alias(struct device *dev,
2193					 const char *const *id,
2194					 struct device *alias_dev,
2195					 const char *const *alias_id,
2196					 int num_id)
2197{
2198	int i;
2199	int ret;
2200
2201	for (i = 0; i < num_id; ++i) {
2202		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2203						      alias_id[i]);
2204		if (ret < 0)
2205			goto err;
2206	}
2207
2208	return 0;
2209
2210err:
2211	dev_err(dev,
2212		"Failed to create supply alias %s,%s -> %s,%s\n",
2213		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2214
2215	while (--i >= 0)
2216		regulator_unregister_supply_alias(dev, id[i]);
2217
2218	return ret;
2219}
2220EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2221
2222/**
2223 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2224 *
2225 * @dev: device that will be given as the regulator "consumer"
2226 * @id: List of supply names or regulator IDs
2227 * @num_id: Number of aliases to unregister
2228 *
2229 * This helper function allows drivers to unregister several supply
2230 * aliases in one operation.
2231 */
2232void regulator_bulk_unregister_supply_alias(struct device *dev,
2233					    const char *const *id,
2234					    int num_id)
2235{
2236	int i;
2237
2238	for (i = 0; i < num_id; ++i)
2239		regulator_unregister_supply_alias(dev, id[i]);
2240}
2241EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2242
2243
2244/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2245static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2246				const struct regulator_config *config)
2247{
2248	struct regulator_enable_gpio *pin, *new_pin;
2249	struct gpio_desc *gpiod;
 
2250
2251	gpiod = config->ena_gpiod;
2252	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2253
2254	mutex_lock(&regulator_list_mutex);
2255
2256	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2257		if (pin->gpiod == gpiod) {
2258			rdev_dbg(rdev, "GPIO is already used\n");
 
2259			goto update_ena_gpio_to_rdev;
2260		}
2261	}
2262
2263	if (new_pin == NULL) {
2264		mutex_unlock(&regulator_list_mutex);
2265		return -ENOMEM;
 
 
 
2266	}
2267
2268	pin = new_pin;
2269	new_pin = NULL;
 
 
 
 
2270
2271	pin->gpiod = gpiod;
 
2272	list_add(&pin->list, &regulator_ena_gpio_list);
2273
2274update_ena_gpio_to_rdev:
2275	pin->request_count++;
2276	rdev->ena_pin = pin;
2277
2278	mutex_unlock(&regulator_list_mutex);
2279	kfree(new_pin);
2280
2281	return 0;
2282}
2283
2284static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2285{
2286	struct regulator_enable_gpio *pin, *n;
2287
2288	if (!rdev->ena_pin)
2289		return;
2290
2291	/* Free the GPIO only in case of no use */
2292	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2293		if (pin != rdev->ena_pin)
2294			continue;
2295
2296		if (--pin->request_count)
2297			break;
2298
2299		gpiod_put(pin->gpiod);
2300		list_del(&pin->list);
2301		kfree(pin);
2302		break;
 
 
2303	}
2304
2305	rdev->ena_pin = NULL;
2306}
2307
2308/**
2309 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2310 * @rdev: regulator_dev structure
2311 * @enable: enable GPIO at initial use?
2312 *
2313 * GPIO is enabled in case of initial use. (enable_count is 0)
2314 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2315 */
2316static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2317{
2318	struct regulator_enable_gpio *pin = rdev->ena_pin;
2319
2320	if (!pin)
2321		return -EINVAL;
2322
2323	if (enable) {
2324		/* Enable GPIO at initial use */
2325		if (pin->enable_count == 0)
2326			gpiod_set_value_cansleep(pin->gpiod, 1);
 
2327
2328		pin->enable_count++;
2329	} else {
2330		if (pin->enable_count > 1) {
2331			pin->enable_count--;
2332			return 0;
2333		}
2334
2335		/* Disable GPIO if not used */
2336		if (pin->enable_count <= 1) {
2337			gpiod_set_value_cansleep(pin->gpiod, 0);
 
2338			pin->enable_count = 0;
2339		}
2340	}
2341
2342	return 0;
2343}
2344
2345/**
2346 * _regulator_enable_delay - a delay helper function
2347 * @delay: time to delay in microseconds
2348 *
2349 * Delay for the requested amount of time as per the guidelines in:
2350 *
2351 *     Documentation/timers/timers-howto.rst
2352 *
2353 * The assumption here is that regulators will never be enabled in
2354 * atomic context and therefore sleeping functions can be used.
2355 */
2356static void _regulator_enable_delay(unsigned int delay)
2357{
2358	unsigned int ms = delay / 1000;
2359	unsigned int us = delay % 1000;
2360
2361	if (ms > 0) {
2362		/*
2363		 * For small enough values, handle super-millisecond
2364		 * delays in the usleep_range() call below.
2365		 */
2366		if (ms < 20)
2367			us += ms * 1000;
2368		else
2369			msleep(ms);
2370	}
2371
2372	/*
2373	 * Give the scheduler some room to coalesce with any other
2374	 * wakeup sources. For delays shorter than 10 us, don't even
2375	 * bother setting up high-resolution timers and just busy-
2376	 * loop.
2377	 */
2378	if (us >= 10)
2379		usleep_range(us, us + 100);
2380	else
2381		udelay(us);
2382}
2383
2384/**
2385 * _regulator_check_status_enabled
2386 *
2387 * A helper function to check if the regulator status can be interpreted
2388 * as 'regulator is enabled'.
2389 * @rdev: the regulator device to check
2390 *
2391 * Return:
2392 * * 1			- if status shows regulator is in enabled state
2393 * * 0			- if not enabled state
2394 * * Error Value	- as received from ops->get_status()
2395 */
2396static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2397{
2398	int ret = rdev->desc->ops->get_status(rdev);
2399
2400	if (ret < 0) {
2401		rdev_info(rdev, "get_status returned error: %d\n", ret);
2402		return ret;
2403	}
2404
2405	switch (ret) {
2406	case REGULATOR_STATUS_OFF:
2407	case REGULATOR_STATUS_ERROR:
2408	case REGULATOR_STATUS_UNDEFINED:
2409		return 0;
2410	default:
2411		return 1;
2412	}
2413}
2414
2415static int _regulator_do_enable(struct regulator_dev *rdev)
2416{
2417	int ret, delay;
2418
2419	/* Query before enabling in case configuration dependent.  */
2420	ret = _regulator_get_enable_time(rdev);
2421	if (ret >= 0) {
2422		delay = ret;
2423	} else {
2424		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2425		delay = 0;
2426	}
2427
2428	trace_regulator_enable(rdev_get_name(rdev));
2429
2430	if (rdev->desc->off_on_delay) {
2431		/* if needed, keep a distance of off_on_delay from last time
2432		 * this regulator was disabled.
2433		 */
2434		unsigned long start_jiffy = jiffies;
2435		unsigned long intended, max_delay, remaining;
2436
2437		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2438		intended = rdev->last_off_jiffy + max_delay;
2439
2440		if (time_before(start_jiffy, intended)) {
2441			/* calc remaining jiffies to deal with one-time
2442			 * timer wrapping.
2443			 * in case of multiple timer wrapping, either it can be
2444			 * detected by out-of-range remaining, or it cannot be
2445			 * detected and we get a penalty of
2446			 * _regulator_enable_delay().
2447			 */
2448			remaining = intended - start_jiffy;
2449			if (remaining <= max_delay)
2450				_regulator_enable_delay(
2451						jiffies_to_usecs(remaining));
2452		}
2453	}
2454
2455	if (rdev->ena_pin) {
2456		if (!rdev->ena_gpio_state) {
2457			ret = regulator_ena_gpio_ctrl(rdev, true);
2458			if (ret < 0)
2459				return ret;
2460			rdev->ena_gpio_state = 1;
2461		}
2462	} else if (rdev->desc->ops->enable) {
2463		ret = rdev->desc->ops->enable(rdev);
2464		if (ret < 0)
2465			return ret;
2466	} else {
2467		return -EINVAL;
2468	}
2469
2470	/* Allow the regulator to ramp; it would be useful to extend
2471	 * this for bulk operations so that the regulators can ramp
2472	 * together.  */
2473	trace_regulator_enable_delay(rdev_get_name(rdev));
2474
2475	/* If poll_enabled_time is set, poll upto the delay calculated
2476	 * above, delaying poll_enabled_time uS to check if the regulator
2477	 * actually got enabled.
2478	 * If the regulator isn't enabled after enable_delay has
2479	 * expired, return -ETIMEDOUT.
2480	 */
2481	if (rdev->desc->poll_enabled_time) {
2482		unsigned int time_remaining = delay;
2483
2484		while (time_remaining > 0) {
2485			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2486
2487			if (rdev->desc->ops->get_status) {
2488				ret = _regulator_check_status_enabled(rdev);
2489				if (ret < 0)
2490					return ret;
2491				else if (ret)
2492					break;
2493			} else if (rdev->desc->ops->is_enabled(rdev))
2494				break;
2495
2496			time_remaining -= rdev->desc->poll_enabled_time;
2497		}
2498
2499		if (time_remaining <= 0) {
2500			rdev_err(rdev, "Enabled check timed out\n");
2501			return -ETIMEDOUT;
2502		}
2503	} else {
2504		_regulator_enable_delay(delay);
2505	}
2506
2507	trace_regulator_enable_complete(rdev_get_name(rdev));
2508
2509	return 0;
2510}
2511
2512/**
2513 * _regulator_handle_consumer_enable - handle that a consumer enabled
2514 * @regulator: regulator source
2515 *
2516 * Some things on a regulator consumer (like the contribution towards total
2517 * load on the regulator) only have an effect when the consumer wants the
2518 * regulator enabled.  Explained in example with two consumers of the same
2519 * regulator:
2520 *   consumer A: set_load(100);       => total load = 0
2521 *   consumer A: regulator_enable();  => total load = 100
2522 *   consumer B: set_load(1000);      => total load = 100
2523 *   consumer B: regulator_enable();  => total load = 1100
2524 *   consumer A: regulator_disable(); => total_load = 1000
2525 *
2526 * This function (together with _regulator_handle_consumer_disable) is
2527 * responsible for keeping track of the refcount for a given regulator consumer
2528 * and applying / unapplying these things.
2529 *
2530 * Returns 0 upon no error; -error upon error.
2531 */
2532static int _regulator_handle_consumer_enable(struct regulator *regulator)
2533{
2534	struct regulator_dev *rdev = regulator->rdev;
2535
2536	lockdep_assert_held_once(&rdev->mutex.base);
2537
2538	regulator->enable_count++;
2539	if (regulator->uA_load && regulator->enable_count == 1)
2540		return drms_uA_update(rdev);
2541
2542	return 0;
2543}
2544
2545/**
2546 * _regulator_handle_consumer_disable - handle that a consumer disabled
2547 * @regulator: regulator source
2548 *
2549 * The opposite of _regulator_handle_consumer_enable().
2550 *
2551 * Returns 0 upon no error; -error upon error.
2552 */
2553static int _regulator_handle_consumer_disable(struct regulator *regulator)
2554{
2555	struct regulator_dev *rdev = regulator->rdev;
2556
2557	lockdep_assert_held_once(&rdev->mutex.base);
2558
2559	if (!regulator->enable_count) {
2560		rdev_err(rdev, "Underflow of regulator enable count\n");
2561		return -EINVAL;
2562	}
2563
2564	regulator->enable_count--;
2565	if (regulator->uA_load && regulator->enable_count == 0)
2566		return drms_uA_update(rdev);
2567
2568	return 0;
2569}
2570
2571/* locks held by regulator_enable() */
2572static int _regulator_enable(struct regulator *regulator)
2573{
2574	struct regulator_dev *rdev = regulator->rdev;
2575	int ret;
2576
2577	lockdep_assert_held_once(&rdev->mutex.base);
2578
2579	if (rdev->use_count == 0 && rdev->supply) {
2580		ret = _regulator_enable(rdev->supply);
2581		if (ret < 0)
2582			return ret;
2583	}
2584
2585	/* balance only if there are regulators coupled */
2586	if (rdev->coupling_desc.n_coupled > 1) {
2587		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2588		if (ret < 0)
2589			goto err_disable_supply;
2590	}
2591
2592	ret = _regulator_handle_consumer_enable(regulator);
2593	if (ret < 0)
2594		goto err_disable_supply;
2595
2596	if (rdev->use_count == 0) {
2597		/* The regulator may on if it's not switchable or left on */
2598		ret = _regulator_is_enabled(rdev);
2599		if (ret == -EINVAL || ret == 0) {
2600			if (!regulator_ops_is_valid(rdev,
2601					REGULATOR_CHANGE_STATUS)) {
2602				ret = -EPERM;
2603				goto err_consumer_disable;
2604			}
2605
2606			ret = _regulator_do_enable(rdev);
2607			if (ret < 0)
2608				goto err_consumer_disable;
2609
2610			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2611					     NULL);
2612		} else if (ret < 0) {
2613			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2614			goto err_consumer_disable;
2615		}
2616		/* Fallthrough on positive return values - already enabled */
2617	}
2618
2619	rdev->use_count++;
2620
2621	return 0;
2622
2623err_consumer_disable:
2624	_regulator_handle_consumer_disable(regulator);
2625
2626err_disable_supply:
2627	if (rdev->use_count == 0 && rdev->supply)
2628		_regulator_disable(rdev->supply);
2629
2630	return ret;
2631}
2632
2633/**
2634 * regulator_enable - enable regulator output
2635 * @regulator: regulator source
2636 *
2637 * Request that the regulator be enabled with the regulator output at
2638 * the predefined voltage or current value.  Calls to regulator_enable()
2639 * must be balanced with calls to regulator_disable().
2640 *
2641 * NOTE: the output value can be set by other drivers, boot loader or may be
2642 * hardwired in the regulator.
2643 */
2644int regulator_enable(struct regulator *regulator)
2645{
2646	struct regulator_dev *rdev = regulator->rdev;
2647	struct ww_acquire_ctx ww_ctx;
2648	int ret;
2649
2650	regulator_lock_dependent(rdev, &ww_ctx);
2651	ret = _regulator_enable(regulator);
2652	regulator_unlock_dependent(rdev, &ww_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
2653
2654	return ret;
2655}
2656EXPORT_SYMBOL_GPL(regulator_enable);
2657
2658static int _regulator_do_disable(struct regulator_dev *rdev)
2659{
2660	int ret;
2661
2662	trace_regulator_disable(rdev_get_name(rdev));
2663
2664	if (rdev->ena_pin) {
2665		if (rdev->ena_gpio_state) {
2666			ret = regulator_ena_gpio_ctrl(rdev, false);
2667			if (ret < 0)
2668				return ret;
2669			rdev->ena_gpio_state = 0;
2670		}
2671
2672	} else if (rdev->desc->ops->disable) {
2673		ret = rdev->desc->ops->disable(rdev);
2674		if (ret != 0)
2675			return ret;
2676	}
2677
2678	/* cares about last_off_jiffy only if off_on_delay is required by
2679	 * device.
2680	 */
2681	if (rdev->desc->off_on_delay)
2682		rdev->last_off_jiffy = jiffies;
2683
2684	trace_regulator_disable_complete(rdev_get_name(rdev));
2685
2686	return 0;
2687}
2688
2689/* locks held by regulator_disable() */
2690static int _regulator_disable(struct regulator *regulator)
2691{
2692	struct regulator_dev *rdev = regulator->rdev;
2693	int ret = 0;
2694
2695	lockdep_assert_held_once(&rdev->mutex.base);
2696
2697	if (WARN(rdev->use_count <= 0,
2698		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2699		return -EIO;
2700
2701	/* are we the last user and permitted to disable ? */
2702	if (rdev->use_count == 1 &&
2703	    (rdev->constraints && !rdev->constraints->always_on)) {
2704
2705		/* we are last user */
2706		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2707			ret = _notifier_call_chain(rdev,
2708						   REGULATOR_EVENT_PRE_DISABLE,
2709						   NULL);
2710			if (ret & NOTIFY_STOP_MASK)
2711				return -EINVAL;
2712
2713			ret = _regulator_do_disable(rdev);
2714			if (ret < 0) {
2715				rdev_err(rdev, "failed to disable\n");
2716				_notifier_call_chain(rdev,
2717						REGULATOR_EVENT_ABORT_DISABLE,
2718						NULL);
2719				return ret;
2720			}
2721			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2722					NULL);
2723		}
2724
2725		rdev->use_count = 0;
2726	} else if (rdev->use_count > 1) {
 
 
 
2727		rdev->use_count--;
2728	}
2729
2730	if (ret == 0)
2731		ret = _regulator_handle_consumer_disable(regulator);
2732
2733	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2734		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2735
2736	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2737		ret = _regulator_disable(rdev->supply);
2738
2739	return ret;
2740}
2741
2742/**
2743 * regulator_disable - disable regulator output
2744 * @regulator: regulator source
2745 *
2746 * Disable the regulator output voltage or current.  Calls to
2747 * regulator_enable() must be balanced with calls to
2748 * regulator_disable().
2749 *
2750 * NOTE: this will only disable the regulator output if no other consumer
2751 * devices have it enabled, the regulator device supports disabling and
2752 * machine constraints permit this operation.
2753 */
2754int regulator_disable(struct regulator *regulator)
2755{
2756	struct regulator_dev *rdev = regulator->rdev;
2757	struct ww_acquire_ctx ww_ctx;
2758	int ret;
2759
2760	regulator_lock_dependent(rdev, &ww_ctx);
2761	ret = _regulator_disable(regulator);
2762	regulator_unlock_dependent(rdev, &ww_ctx);
 
 
 
 
 
 
2763
2764	return ret;
2765}
2766EXPORT_SYMBOL_GPL(regulator_disable);
2767
2768/* locks held by regulator_force_disable() */
2769static int _regulator_force_disable(struct regulator_dev *rdev)
2770{
2771	int ret = 0;
2772
2773	lockdep_assert_held_once(&rdev->mutex.base);
2774
2775	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2776			REGULATOR_EVENT_PRE_DISABLE, NULL);
2777	if (ret & NOTIFY_STOP_MASK)
2778		return -EINVAL;
2779
2780	ret = _regulator_do_disable(rdev);
2781	if (ret < 0) {
2782		rdev_err(rdev, "failed to force disable\n");
2783		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2784				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2785		return ret;
2786	}
2787
2788	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2789			REGULATOR_EVENT_DISABLE, NULL);
2790
2791	return 0;
2792}
2793
2794/**
2795 * regulator_force_disable - force disable regulator output
2796 * @regulator: regulator source
2797 *
2798 * Forcibly disable the regulator output voltage or current.
2799 * NOTE: this *will* disable the regulator output even if other consumer
2800 * devices have it enabled. This should be used for situations when device
2801 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2802 */
2803int regulator_force_disable(struct regulator *regulator)
2804{
2805	struct regulator_dev *rdev = regulator->rdev;
2806	struct ww_acquire_ctx ww_ctx;
2807	int ret;
2808
2809	regulator_lock_dependent(rdev, &ww_ctx);
2810
2811	ret = _regulator_force_disable(regulator->rdev);
 
2812
2813	if (rdev->coupling_desc.n_coupled > 1)
2814		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2815
2816	if (regulator->uA_load) {
2817		regulator->uA_load = 0;
2818		ret = drms_uA_update(rdev);
2819	}
2820
2821	if (rdev->use_count != 0 && rdev->supply)
2822		_regulator_disable(rdev->supply);
2823
2824	regulator_unlock_dependent(rdev, &ww_ctx);
2825
2826	return ret;
2827}
2828EXPORT_SYMBOL_GPL(regulator_force_disable);
2829
2830static void regulator_disable_work(struct work_struct *work)
2831{
2832	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2833						  disable_work.work);
2834	struct ww_acquire_ctx ww_ctx;
2835	int count, i, ret;
2836	struct regulator *regulator;
2837	int total_count = 0;
2838
2839	regulator_lock_dependent(rdev, &ww_ctx);
 
 
 
 
 
2840
2841	/*
2842	 * Workqueue functions queue the new work instance while the previous
2843	 * work instance is being processed. Cancel the queued work instance
2844	 * as the work instance under processing does the job of the queued
2845	 * work instance.
2846	 */
2847	cancel_delayed_work(&rdev->disable_work);
2848
2849	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2850		count = regulator->deferred_disables;
2851
2852		if (!count)
2853			continue;
2854
2855		total_count += count;
2856		regulator->deferred_disables = 0;
2857
 
2858		for (i = 0; i < count; i++) {
2859			ret = _regulator_disable(regulator);
2860			if (ret != 0)
2861				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
 
 
2862		}
2863	}
2864	WARN_ON(!total_count);
2865
2866	if (rdev->coupling_desc.n_coupled > 1)
2867		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2868
2869	regulator_unlock_dependent(rdev, &ww_ctx);
2870}
2871
2872/**
2873 * regulator_disable_deferred - disable regulator output with delay
2874 * @regulator: regulator source
2875 * @ms: milliseconds until the regulator is disabled
2876 *
2877 * Execute regulator_disable() on the regulator after a delay.  This
2878 * is intended for use with devices that require some time to quiesce.
2879 *
2880 * NOTE: this will only disable the regulator output if no other consumer
2881 * devices have it enabled, the regulator device supports disabling and
2882 * machine constraints permit this operation.
2883 */
2884int regulator_disable_deferred(struct regulator *regulator, int ms)
2885{
2886	struct regulator_dev *rdev = regulator->rdev;
2887
 
 
 
2888	if (!ms)
2889		return regulator_disable(regulator);
2890
2891	regulator_lock(rdev);
2892	regulator->deferred_disables++;
2893	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2894			 msecs_to_jiffies(ms));
2895	regulator_unlock(rdev);
2896
2897	return 0;
2898}
2899EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2900
2901static int _regulator_is_enabled(struct regulator_dev *rdev)
2902{
2903	/* A GPIO control always takes precedence */
2904	if (rdev->ena_pin)
2905		return rdev->ena_gpio_state;
2906
2907	/* If we don't know then assume that the regulator is always on */
2908	if (!rdev->desc->ops->is_enabled)
2909		return 1;
2910
2911	return rdev->desc->ops->is_enabled(rdev);
2912}
2913
2914static int _regulator_list_voltage(struct regulator_dev *rdev,
2915				   unsigned selector, int lock)
2916{
2917	const struct regulator_ops *ops = rdev->desc->ops;
2918	int ret;
2919
2920	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2921		return rdev->desc->fixed_uV;
2922
2923	if (ops->list_voltage) {
2924		if (selector >= rdev->desc->n_voltages)
2925			return -EINVAL;
2926		if (lock)
2927			regulator_lock(rdev);
2928		ret = ops->list_voltage(rdev, selector);
2929		if (lock)
2930			regulator_unlock(rdev);
2931	} else if (rdev->is_switch && rdev->supply) {
2932		ret = _regulator_list_voltage(rdev->supply->rdev,
2933					      selector, lock);
2934	} else {
2935		return -EINVAL;
2936	}
2937
2938	if (ret > 0) {
2939		if (ret < rdev->constraints->min_uV)
2940			ret = 0;
2941		else if (ret > rdev->constraints->max_uV)
2942			ret = 0;
2943	}
2944
2945	return ret;
2946}
2947
2948/**
2949 * regulator_is_enabled - is the regulator output enabled
2950 * @regulator: regulator source
2951 *
2952 * Returns positive if the regulator driver backing the source/client
2953 * has requested that the device be enabled, zero if it hasn't, else a
2954 * negative errno code.
2955 *
2956 * Note that the device backing this regulator handle can have multiple
2957 * users, so it might be enabled even if regulator_enable() was never
2958 * called for this particular source.
2959 */
2960int regulator_is_enabled(struct regulator *regulator)
2961{
2962	int ret;
2963
2964	if (regulator->always_on)
2965		return 1;
2966
2967	regulator_lock(regulator->rdev);
2968	ret = _regulator_is_enabled(regulator->rdev);
2969	regulator_unlock(regulator->rdev);
2970
2971	return ret;
2972}
2973EXPORT_SYMBOL_GPL(regulator_is_enabled);
2974
2975/**
2976 * regulator_count_voltages - count regulator_list_voltage() selectors
2977 * @regulator: regulator source
2978 *
2979 * Returns number of selectors, or negative errno.  Selectors are
2980 * numbered starting at zero, and typically correspond to bitfields
2981 * in hardware registers.
2982 */
2983int regulator_count_voltages(struct regulator *regulator)
2984{
2985	struct regulator_dev	*rdev = regulator->rdev;
2986
2987	if (rdev->desc->n_voltages)
2988		return rdev->desc->n_voltages;
2989
2990	if (!rdev->is_switch || !rdev->supply)
2991		return -EINVAL;
2992
2993	return regulator_count_voltages(rdev->supply);
2994}
2995EXPORT_SYMBOL_GPL(regulator_count_voltages);
2996
2997/**
2998 * regulator_list_voltage - enumerate supported voltages
2999 * @regulator: regulator source
3000 * @selector: identify voltage to list
3001 * Context: can sleep
3002 *
3003 * Returns a voltage that can be passed to @regulator_set_voltage(),
3004 * zero if this selector code can't be used on this system, or a
3005 * negative errno.
3006 */
3007int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3008{
3009	return _regulator_list_voltage(regulator->rdev, selector, 1);
3010}
3011EXPORT_SYMBOL_GPL(regulator_list_voltage);
3012
3013/**
3014 * regulator_get_regmap - get the regulator's register map
3015 * @regulator: regulator source
3016 *
3017 * Returns the register map for the given regulator, or an ERR_PTR value
3018 * if the regulator doesn't use regmap.
3019 */
3020struct regmap *regulator_get_regmap(struct regulator *regulator)
3021{
3022	struct regmap *map = regulator->rdev->regmap;
3023
3024	return map ? map : ERR_PTR(-EOPNOTSUPP);
3025}
3026
3027/**
3028 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3029 * @regulator: regulator source
3030 * @vsel_reg: voltage selector register, output parameter
3031 * @vsel_mask: mask for voltage selector bitfield, output parameter
3032 *
3033 * Returns the hardware register offset and bitmask used for setting the
3034 * regulator voltage. This might be useful when configuring voltage-scaling
3035 * hardware or firmware that can make I2C requests behind the kernel's back,
3036 * for example.
3037 *
3038 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3039 * and 0 is returned, otherwise a negative errno is returned.
3040 */
3041int regulator_get_hardware_vsel_register(struct regulator *regulator,
3042					 unsigned *vsel_reg,
3043					 unsigned *vsel_mask)
3044{
3045	struct regulator_dev *rdev = regulator->rdev;
3046	const struct regulator_ops *ops = rdev->desc->ops;
3047
3048	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3049		return -EOPNOTSUPP;
3050
3051	*vsel_reg = rdev->desc->vsel_reg;
3052	*vsel_mask = rdev->desc->vsel_mask;
3053
3054	 return 0;
3055}
3056EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3057
3058/**
3059 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3060 * @regulator: regulator source
3061 * @selector: identify voltage to list
3062 *
3063 * Converts the selector to a hardware-specific voltage selector that can be
3064 * directly written to the regulator registers. The address of the voltage
3065 * register can be determined by calling @regulator_get_hardware_vsel_register.
3066 *
3067 * On error a negative errno is returned.
3068 */
3069int regulator_list_hardware_vsel(struct regulator *regulator,
3070				 unsigned selector)
3071{
3072	struct regulator_dev *rdev = regulator->rdev;
3073	const struct regulator_ops *ops = rdev->desc->ops;
3074
3075	if (selector >= rdev->desc->n_voltages)
3076		return -EINVAL;
3077	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3078		return -EOPNOTSUPP;
3079
3080	return selector;
3081}
3082EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3083
3084/**
3085 * regulator_get_linear_step - return the voltage step size between VSEL values
3086 * @regulator: regulator source
3087 *
3088 * Returns the voltage step size between VSEL values for linear
3089 * regulators, or return 0 if the regulator isn't a linear regulator.
3090 */
3091unsigned int regulator_get_linear_step(struct regulator *regulator)
3092{
3093	struct regulator_dev *rdev = regulator->rdev;
3094
3095	return rdev->desc->uV_step;
3096}
3097EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3098
3099/**
3100 * regulator_is_supported_voltage - check if a voltage range can be supported
3101 *
3102 * @regulator: Regulator to check.
3103 * @min_uV: Minimum required voltage in uV.
3104 * @max_uV: Maximum required voltage in uV.
3105 *
3106 * Returns a boolean.
3107 */
3108int regulator_is_supported_voltage(struct regulator *regulator,
3109				   int min_uV, int max_uV)
3110{
3111	struct regulator_dev *rdev = regulator->rdev;
3112	int i, voltages, ret;
3113
3114	/* If we can't change voltage check the current voltage */
3115	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3116		ret = regulator_get_voltage(regulator);
3117		if (ret >= 0)
3118			return min_uV <= ret && ret <= max_uV;
3119		else
3120			return ret;
3121	}
3122
3123	/* Any voltage within constrains range is fine? */
3124	if (rdev->desc->continuous_voltage_range)
3125		return min_uV >= rdev->constraints->min_uV &&
3126				max_uV <= rdev->constraints->max_uV;
3127
3128	ret = regulator_count_voltages(regulator);
3129	if (ret < 0)
3130		return 0;
3131	voltages = ret;
3132
3133	for (i = 0; i < voltages; i++) {
3134		ret = regulator_list_voltage(regulator, i);
3135
3136		if (ret >= min_uV && ret <= max_uV)
3137			return 1;
3138	}
3139
3140	return 0;
3141}
3142EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3143
3144static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3145				 int max_uV)
3146{
3147	const struct regulator_desc *desc = rdev->desc;
3148
3149	if (desc->ops->map_voltage)
3150		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3151
3152	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3153		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3154
3155	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3156		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3157
3158	if (desc->ops->list_voltage ==
3159		regulator_list_voltage_pickable_linear_range)
3160		return regulator_map_voltage_pickable_linear_range(rdev,
3161							min_uV, max_uV);
3162
3163	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3164}
3165
3166static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3167				       int min_uV, int max_uV,
3168				       unsigned *selector)
3169{
3170	struct pre_voltage_change_data data;
3171	int ret;
3172
3173	data.old_uV = regulator_get_voltage_rdev(rdev);
3174	data.min_uV = min_uV;
3175	data.max_uV = max_uV;
3176	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3177				   &data);
3178	if (ret & NOTIFY_STOP_MASK)
3179		return -EINVAL;
3180
3181	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3182	if (ret >= 0)
3183		return ret;
3184
3185	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3186			     (void *)data.old_uV);
3187
3188	return ret;
3189}
3190
3191static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3192					   int uV, unsigned selector)
3193{
3194	struct pre_voltage_change_data data;
3195	int ret;
3196
3197	data.old_uV = regulator_get_voltage_rdev(rdev);
3198	data.min_uV = uV;
3199	data.max_uV = uV;
3200	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3201				   &data);
3202	if (ret & NOTIFY_STOP_MASK)
3203		return -EINVAL;
3204
3205	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3206	if (ret >= 0)
3207		return ret;
3208
3209	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3210			     (void *)data.old_uV);
3211
3212	return ret;
3213}
3214
3215static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3216					   int uV, int new_selector)
3217{
3218	const struct regulator_ops *ops = rdev->desc->ops;
3219	int diff, old_sel, curr_sel, ret;
3220
3221	/* Stepping is only needed if the regulator is enabled. */
3222	if (!_regulator_is_enabled(rdev))
3223		goto final_set;
3224
3225	if (!ops->get_voltage_sel)
3226		return -EINVAL;
3227
3228	old_sel = ops->get_voltage_sel(rdev);
3229	if (old_sel < 0)
3230		return old_sel;
3231
3232	diff = new_selector - old_sel;
3233	if (diff == 0)
3234		return 0; /* No change needed. */
3235
3236	if (diff > 0) {
3237		/* Stepping up. */
3238		for (curr_sel = old_sel + rdev->desc->vsel_step;
3239		     curr_sel < new_selector;
3240		     curr_sel += rdev->desc->vsel_step) {
3241			/*
3242			 * Call the callback directly instead of using
3243			 * _regulator_call_set_voltage_sel() as we don't
3244			 * want to notify anyone yet. Same in the branch
3245			 * below.
3246			 */
3247			ret = ops->set_voltage_sel(rdev, curr_sel);
3248			if (ret)
3249				goto try_revert;
3250		}
3251	} else {
3252		/* Stepping down. */
3253		for (curr_sel = old_sel - rdev->desc->vsel_step;
3254		     curr_sel > new_selector;
3255		     curr_sel -= rdev->desc->vsel_step) {
3256			ret = ops->set_voltage_sel(rdev, curr_sel);
3257			if (ret)
3258				goto try_revert;
3259		}
3260	}
3261
3262final_set:
3263	/* The final selector will trigger the notifiers. */
3264	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3265
3266try_revert:
3267	/*
3268	 * At least try to return to the previous voltage if setting a new
3269	 * one failed.
3270	 */
3271	(void)ops->set_voltage_sel(rdev, old_sel);
3272	return ret;
3273}
3274
3275static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3276				       int old_uV, int new_uV)
3277{
3278	unsigned int ramp_delay = 0;
3279
3280	if (rdev->constraints->ramp_delay)
3281		ramp_delay = rdev->constraints->ramp_delay;
3282	else if (rdev->desc->ramp_delay)
3283		ramp_delay = rdev->desc->ramp_delay;
3284	else if (rdev->constraints->settling_time)
3285		return rdev->constraints->settling_time;
3286	else if (rdev->constraints->settling_time_up &&
3287		 (new_uV > old_uV))
3288		return rdev->constraints->settling_time_up;
3289	else if (rdev->constraints->settling_time_down &&
3290		 (new_uV < old_uV))
3291		return rdev->constraints->settling_time_down;
3292
3293	if (ramp_delay == 0) {
3294		rdev_dbg(rdev, "ramp_delay not set\n");
3295		return 0;
3296	}
3297
3298	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3299}
3300
3301static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3302				     int min_uV, int max_uV)
3303{
3304	int ret;
3305	int delay = 0;
3306	int best_val = 0;
3307	unsigned int selector;
3308	int old_selector = -1;
3309	const struct regulator_ops *ops = rdev->desc->ops;
3310	int old_uV = regulator_get_voltage_rdev(rdev);
3311
3312	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3313
3314	min_uV += rdev->constraints->uV_offset;
3315	max_uV += rdev->constraints->uV_offset;
3316
3317	/*
3318	 * If we can't obtain the old selector there is not enough
3319	 * info to call set_voltage_time_sel().
3320	 */
3321	if (_regulator_is_enabled(rdev) &&
3322	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3323		old_selector = ops->get_voltage_sel(rdev);
3324		if (old_selector < 0)
3325			return old_selector;
3326	}
3327
3328	if (ops->set_voltage) {
3329		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3330						  &selector);
3331
3332		if (ret >= 0) {
3333			if (ops->list_voltage)
3334				best_val = ops->list_voltage(rdev,
3335							     selector);
3336			else
3337				best_val = regulator_get_voltage_rdev(rdev);
3338		}
3339
3340	} else if (ops->set_voltage_sel) {
3341		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3342		if (ret >= 0) {
3343			best_val = ops->list_voltage(rdev, ret);
3344			if (min_uV <= best_val && max_uV >= best_val) {
3345				selector = ret;
3346				if (old_selector == selector)
3347					ret = 0;
3348				else if (rdev->desc->vsel_step)
3349					ret = _regulator_set_voltage_sel_step(
3350						rdev, best_val, selector);
3351				else
3352					ret = _regulator_call_set_voltage_sel(
3353						rdev, best_val, selector);
3354			} else {
3355				ret = -EINVAL;
3356			}
3357		}
3358	} else {
3359		ret = -EINVAL;
3360	}
3361
3362	if (ret)
3363		goto out;
3364
3365	if (ops->set_voltage_time_sel) {
3366		/*
3367		 * Call set_voltage_time_sel if successfully obtained
3368		 * old_selector
3369		 */
3370		if (old_selector >= 0 && old_selector != selector)
3371			delay = ops->set_voltage_time_sel(rdev, old_selector,
3372							  selector);
3373	} else {
3374		if (old_uV != best_val) {
3375			if (ops->set_voltage_time)
3376				delay = ops->set_voltage_time(rdev, old_uV,
3377							      best_val);
3378			else
3379				delay = _regulator_set_voltage_time(rdev,
3380								    old_uV,
3381								    best_val);
3382		}
3383	}
3384
3385	if (delay < 0) {
3386		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3387		delay = 0;
3388	}
3389
3390	/* Insert any necessary delays */
3391	if (delay >= 1000) {
3392		mdelay(delay / 1000);
3393		udelay(delay % 1000);
3394	} else if (delay) {
3395		udelay(delay);
3396	}
3397
3398	if (best_val >= 0) {
3399		unsigned long data = best_val;
3400
3401		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3402				     (void *)data);
3403	}
3404
3405out:
3406	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3407
3408	return ret;
3409}
3410
3411static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3412				  int min_uV, int max_uV, suspend_state_t state)
3413{
3414	struct regulator_state *rstate;
3415	int uV, sel;
3416
3417	rstate = regulator_get_suspend_state(rdev, state);
3418	if (rstate == NULL)
3419		return -EINVAL;
3420
3421	if (min_uV < rstate->min_uV)
3422		min_uV = rstate->min_uV;
3423	if (max_uV > rstate->max_uV)
3424		max_uV = rstate->max_uV;
3425
3426	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3427	if (sel < 0)
3428		return sel;
3429
3430	uV = rdev->desc->ops->list_voltage(rdev, sel);
3431	if (uV >= min_uV && uV <= max_uV)
3432		rstate->uV = uV;
3433
3434	return 0;
3435}
3436
3437static int regulator_set_voltage_unlocked(struct regulator *regulator,
3438					  int min_uV, int max_uV,
3439					  suspend_state_t state)
3440{
3441	struct regulator_dev *rdev = regulator->rdev;
3442	struct regulator_voltage *voltage = &regulator->voltage[state];
3443	int ret = 0;
3444	int old_min_uV, old_max_uV;
3445	int current_uV;
 
 
3446
3447	/* If we're setting the same range as last time the change
3448	 * should be a noop (some cpufreq implementations use the same
3449	 * voltage for multiple frequencies, for example).
3450	 */
3451	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3452		goto out;
3453
3454	/* If we're trying to set a range that overlaps the current voltage,
3455	 * return successfully even though the regulator does not support
3456	 * changing the voltage.
3457	 */
3458	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3459		current_uV = regulator_get_voltage_rdev(rdev);
3460		if (min_uV <= current_uV && current_uV <= max_uV) {
3461			voltage->min_uV = min_uV;
3462			voltage->max_uV = max_uV;
3463			goto out;
3464		}
3465	}
3466
3467	/* sanity check */
3468	if (!rdev->desc->ops->set_voltage &&
3469	    !rdev->desc->ops->set_voltage_sel) {
3470		ret = -EINVAL;
3471		goto out;
3472	}
3473
3474	/* constraints check */
3475	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3476	if (ret < 0)
3477		goto out;
3478
3479	/* restore original values in case of error */
3480	old_min_uV = voltage->min_uV;
3481	old_max_uV = voltage->max_uV;
3482	voltage->min_uV = min_uV;
3483	voltage->max_uV = max_uV;
3484
3485	/* for not coupled regulators this will just set the voltage */
3486	ret = regulator_balance_voltage(rdev, state);
3487	if (ret < 0) {
3488		voltage->min_uV = old_min_uV;
3489		voltage->max_uV = old_max_uV;
3490	}
3491
3492out:
3493	return ret;
3494}
3495
3496int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3497			       int max_uV, suspend_state_t state)
3498{
3499	int best_supply_uV = 0;
3500	int supply_change_uV = 0;
3501	int ret;
3502
3503	if (rdev->supply &&
3504	    regulator_ops_is_valid(rdev->supply->rdev,
3505				   REGULATOR_CHANGE_VOLTAGE) &&
3506	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3507					   rdev->desc->ops->get_voltage_sel))) {
3508		int current_supply_uV;
3509		int selector;
3510
3511		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3512		if (selector < 0) {
3513			ret = selector;
3514			goto out;
3515		}
3516
3517		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3518		if (best_supply_uV < 0) {
3519			ret = best_supply_uV;
3520			goto out;
3521		}
3522
3523		best_supply_uV += rdev->desc->min_dropout_uV;
3524
3525		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3526		if (current_supply_uV < 0) {
3527			ret = current_supply_uV;
3528			goto out;
3529		}
3530
3531		supply_change_uV = best_supply_uV - current_supply_uV;
3532	}
3533
3534	if (supply_change_uV > 0) {
3535		ret = regulator_set_voltage_unlocked(rdev->supply,
3536				best_supply_uV, INT_MAX, state);
3537		if (ret) {
3538			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3539					ret);
3540			goto out;
3541		}
3542	}
3543
3544	if (state == PM_SUSPEND_ON)
3545		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3546	else
3547		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3548							max_uV, state);
3549	if (ret < 0)
3550		goto out;
3551
3552	if (supply_change_uV < 0) {
3553		ret = regulator_set_voltage_unlocked(rdev->supply,
3554				best_supply_uV, INT_MAX, state);
3555		if (ret)
3556			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3557					ret);
3558		/* No need to fail here */
3559		ret = 0;
3560	}
3561
3562out:
3563	return ret;
3564}
3565EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
 
3566
3567static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3568					int *current_uV, int *min_uV)
3569{
3570	struct regulation_constraints *constraints = rdev->constraints;
3571
3572	/* Limit voltage change only if necessary */
3573	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3574		return 1;
3575
3576	if (*current_uV < 0) {
3577		*current_uV = regulator_get_voltage_rdev(rdev);
3578
3579		if (*current_uV < 0)
3580			return *current_uV;
3581	}
3582
3583	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3584		return 1;
3585
3586	/* Clamp target voltage within the given step */
3587	if (*current_uV < *min_uV)
3588		*min_uV = min(*current_uV + constraints->max_uV_step,
3589			      *min_uV);
3590	else
3591		*min_uV = max(*current_uV - constraints->max_uV_step,
3592			      *min_uV);
3593
3594	return 0;
3595}
3596
3597static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3598					 int *current_uV,
3599					 int *min_uV, int *max_uV,
3600					 suspend_state_t state,
3601					 int n_coupled)
3602{
3603	struct coupling_desc *c_desc = &rdev->coupling_desc;
3604	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3605	struct regulation_constraints *constraints = rdev->constraints;
3606	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3607	int max_current_uV = 0, min_current_uV = INT_MAX;
3608	int highest_min_uV = 0, target_uV, possible_uV;
3609	int i, ret, max_spread;
3610	bool done;
3611
3612	*current_uV = -1;
3613
3614	/*
3615	 * If there are no coupled regulators, simply set the voltage
3616	 * demanded by consumers.
3617	 */
3618	if (n_coupled == 1) {
3619		/*
3620		 * If consumers don't provide any demands, set voltage
3621		 * to min_uV
3622		 */
3623		desired_min_uV = constraints->min_uV;
3624		desired_max_uV = constraints->max_uV;
3625
3626		ret = regulator_check_consumers(rdev,
3627						&desired_min_uV,
3628						&desired_max_uV, state);
3629		if (ret < 0)
3630			return ret;
3631
3632		possible_uV = desired_min_uV;
3633		done = true;
3634
3635		goto finish;
3636	}
3637
3638	/* Find highest min desired voltage */
3639	for (i = 0; i < n_coupled; i++) {
3640		int tmp_min = 0;
3641		int tmp_max = INT_MAX;
3642
3643		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3644
3645		ret = regulator_check_consumers(c_rdevs[i],
3646						&tmp_min,
3647						&tmp_max, state);
3648		if (ret < 0)
3649			return ret;
3650
3651		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3652		if (ret < 0)
3653			return ret;
3654
3655		highest_min_uV = max(highest_min_uV, tmp_min);
3656
3657		if (i == 0) {
3658			desired_min_uV = tmp_min;
3659			desired_max_uV = tmp_max;
3660		}
3661	}
3662
3663	max_spread = constraints->max_spread[0];
3664
3665	/*
3666	 * Let target_uV be equal to the desired one if possible.
3667	 * If not, set it to minimum voltage, allowed by other coupled
3668	 * regulators.
3669	 */
3670	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3671
3672	/*
3673	 * Find min and max voltages, which currently aren't violating
3674	 * max_spread.
3675	 */
3676	for (i = 1; i < n_coupled; i++) {
3677		int tmp_act;
3678
3679		if (!_regulator_is_enabled(c_rdevs[i]))
3680			continue;
3681
3682		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3683		if (tmp_act < 0)
3684			return tmp_act;
3685
3686		min_current_uV = min(tmp_act, min_current_uV);
3687		max_current_uV = max(tmp_act, max_current_uV);
3688	}
3689
3690	/* There aren't any other regulators enabled */
3691	if (max_current_uV == 0) {
3692		possible_uV = target_uV;
3693	} else {
3694		/*
3695		 * Correct target voltage, so as it currently isn't
3696		 * violating max_spread
3697		 */
3698		possible_uV = max(target_uV, max_current_uV - max_spread);
3699		possible_uV = min(possible_uV, min_current_uV + max_spread);
3700	}
3701
3702	if (possible_uV > desired_max_uV)
3703		return -EINVAL;
3704
3705	done = (possible_uV == target_uV);
3706	desired_min_uV = possible_uV;
3707
3708finish:
3709	/* Apply max_uV_step constraint if necessary */
3710	if (state == PM_SUSPEND_ON) {
3711		ret = regulator_limit_voltage_step(rdev, current_uV,
3712						   &desired_min_uV);
3713		if (ret < 0)
3714			return ret;
3715
3716		if (ret == 0)
3717			done = false;
3718	}
3719
3720	/* Set current_uV if wasn't done earlier in the code and if necessary */
3721	if (n_coupled > 1 && *current_uV == -1) {
3722
3723		if (_regulator_is_enabled(rdev)) {
3724			ret = regulator_get_voltage_rdev(rdev);
3725			if (ret < 0)
3726				return ret;
3727
3728			*current_uV = ret;
3729		} else {
3730			*current_uV = desired_min_uV;
3731		}
3732	}
3733
3734	*min_uV = desired_min_uV;
3735	*max_uV = desired_max_uV;
3736
3737	return done;
3738}
3739
3740int regulator_do_balance_voltage(struct regulator_dev *rdev,
3741				 suspend_state_t state, bool skip_coupled)
3742{
3743	struct regulator_dev **c_rdevs;
3744	struct regulator_dev *best_rdev;
3745	struct coupling_desc *c_desc = &rdev->coupling_desc;
3746	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3747	unsigned int delta, best_delta;
3748	unsigned long c_rdev_done = 0;
3749	bool best_c_rdev_done;
3750
3751	c_rdevs = c_desc->coupled_rdevs;
3752	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3753
3754	/*
3755	 * Find the best possible voltage change on each loop. Leave the loop
3756	 * if there isn't any possible change.
3757	 */
3758	do {
3759		best_c_rdev_done = false;
3760		best_delta = 0;
3761		best_min_uV = 0;
3762		best_max_uV = 0;
3763		best_c_rdev = 0;
3764		best_rdev = NULL;
3765
3766		/*
3767		 * Find highest difference between optimal voltage
3768		 * and current voltage.
3769		 */
3770		for (i = 0; i < n_coupled; i++) {
3771			/*
3772			 * optimal_uV is the best voltage that can be set for
3773			 * i-th regulator at the moment without violating
3774			 * max_spread constraint in order to balance
3775			 * the coupled voltages.
3776			 */
3777			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3778
3779			if (test_bit(i, &c_rdev_done))
3780				continue;
3781
3782			ret = regulator_get_optimal_voltage(c_rdevs[i],
3783							    &current_uV,
3784							    &optimal_uV,
3785							    &optimal_max_uV,
3786							    state, n_coupled);
3787			if (ret < 0)
3788				goto out;
3789
3790			delta = abs(optimal_uV - current_uV);
3791
3792			if (delta && best_delta <= delta) {
3793				best_c_rdev_done = ret;
3794				best_delta = delta;
3795				best_rdev = c_rdevs[i];
3796				best_min_uV = optimal_uV;
3797				best_max_uV = optimal_max_uV;
3798				best_c_rdev = i;
3799			}
3800		}
3801
3802		/* Nothing to change, return successfully */
3803		if (!best_rdev) {
3804			ret = 0;
3805			goto out;
3806		}
3807
3808		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3809						 best_max_uV, state);
3810
3811		if (ret < 0)
3812			goto out;
3813
3814		if (best_c_rdev_done)
3815			set_bit(best_c_rdev, &c_rdev_done);
3816
3817	} while (n_coupled > 1);
3818
3819out:
3820	return ret;
3821}
3822
3823static int regulator_balance_voltage(struct regulator_dev *rdev,
3824				     suspend_state_t state)
3825{
3826	struct coupling_desc *c_desc = &rdev->coupling_desc;
3827	struct regulator_coupler *coupler = c_desc->coupler;
3828	bool skip_coupled = false;
3829
3830	/*
3831	 * If system is in a state other than PM_SUSPEND_ON, don't check
3832	 * other coupled regulators.
3833	 */
3834	if (state != PM_SUSPEND_ON)
3835		skip_coupled = true;
3836
3837	if (c_desc->n_resolved < c_desc->n_coupled) {
3838		rdev_err(rdev, "Not all coupled regulators registered\n");
3839		return -EPERM;
3840	}
3841
3842	/* Invoke custom balancer for customized couplers */
3843	if (coupler && coupler->balance_voltage)
3844		return coupler->balance_voltage(coupler, rdev, state);
3845
3846	return regulator_do_balance_voltage(rdev, state, skip_coupled);
3847}
3848
3849/**
3850 * regulator_set_voltage - set regulator output voltage
3851 * @regulator: regulator source
3852 * @min_uV: Minimum required voltage in uV
3853 * @max_uV: Maximum acceptable voltage in uV
3854 *
3855 * Sets a voltage regulator to the desired output voltage. This can be set
3856 * during any regulator state. IOW, regulator can be disabled or enabled.
3857 *
3858 * If the regulator is enabled then the voltage will change to the new value
3859 * immediately otherwise if the regulator is disabled the regulator will
3860 * output at the new voltage when enabled.
3861 *
3862 * NOTE: If the regulator is shared between several devices then the lowest
3863 * request voltage that meets the system constraints will be used.
3864 * Regulator system constraints must be set for this regulator before
3865 * calling this function otherwise this call will fail.
3866 */
3867int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3868{
3869	struct ww_acquire_ctx ww_ctx;
3870	int ret;
3871
3872	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3873
3874	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3875					     PM_SUSPEND_ON);
3876
3877	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3878
3879	return ret;
3880}
3881EXPORT_SYMBOL_GPL(regulator_set_voltage);
3882
3883static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3884					   suspend_state_t state, bool en)
3885{
3886	struct regulator_state *rstate;
3887
3888	rstate = regulator_get_suspend_state(rdev, state);
3889	if (rstate == NULL)
3890		return -EINVAL;
3891
3892	if (!rstate->changeable)
3893		return -EPERM;
3894
3895	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3896
3897	return 0;
3898}
3899
3900int regulator_suspend_enable(struct regulator_dev *rdev,
3901				    suspend_state_t state)
3902{
3903	return regulator_suspend_toggle(rdev, state, true);
3904}
3905EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3906
3907int regulator_suspend_disable(struct regulator_dev *rdev,
3908				     suspend_state_t state)
3909{
3910	struct regulator *regulator;
3911	struct regulator_voltage *voltage;
3912
3913	/*
3914	 * if any consumer wants this regulator device keeping on in
3915	 * suspend states, don't set it as disabled.
3916	 */
3917	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3918		voltage = &regulator->voltage[state];
3919		if (voltage->min_uV || voltage->max_uV)
3920			return 0;
3921	}
3922
3923	return regulator_suspend_toggle(rdev, state, false);
3924}
3925EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3926
3927static int _regulator_set_suspend_voltage(struct regulator *regulator,
3928					  int min_uV, int max_uV,
3929					  suspend_state_t state)
3930{
3931	struct regulator_dev *rdev = regulator->rdev;
3932	struct regulator_state *rstate;
3933
3934	rstate = regulator_get_suspend_state(rdev, state);
3935	if (rstate == NULL)
3936		return -EINVAL;
3937
3938	if (rstate->min_uV == rstate->max_uV) {
3939		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3940		return -EPERM;
3941	}
3942
3943	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3944}
3945
3946int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3947				  int max_uV, suspend_state_t state)
3948{
3949	struct ww_acquire_ctx ww_ctx;
3950	int ret;
3951
3952	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3953	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3954		return -EINVAL;
3955
3956	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3957
3958	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3959					     max_uV, state);
3960
3961	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3962
3963	return ret;
3964}
3965EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3966
3967/**
3968 * regulator_set_voltage_time - get raise/fall time
3969 * @regulator: regulator source
3970 * @old_uV: starting voltage in microvolts
3971 * @new_uV: target voltage in microvolts
3972 *
3973 * Provided with the starting and ending voltage, this function attempts to
3974 * calculate the time in microseconds required to rise or fall to this new
3975 * voltage.
3976 */
3977int regulator_set_voltage_time(struct regulator *regulator,
3978			       int old_uV, int new_uV)
3979{
3980	struct regulator_dev *rdev = regulator->rdev;
3981	const struct regulator_ops *ops = rdev->desc->ops;
3982	int old_sel = -1;
3983	int new_sel = -1;
3984	int voltage;
3985	int i;
3986
3987	if (ops->set_voltage_time)
3988		return ops->set_voltage_time(rdev, old_uV, new_uV);
3989	else if (!ops->set_voltage_time_sel)
3990		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3991
3992	/* Currently requires operations to do this */
3993	if (!ops->list_voltage || !rdev->desc->n_voltages)
3994		return -EINVAL;
3995
3996	for (i = 0; i < rdev->desc->n_voltages; i++) {
3997		/* We only look for exact voltage matches here */
3998		voltage = regulator_list_voltage(regulator, i);
3999		if (voltage < 0)
4000			return -EINVAL;
4001		if (voltage == 0)
4002			continue;
4003		if (voltage == old_uV)
4004			old_sel = i;
4005		if (voltage == new_uV)
4006			new_sel = i;
4007	}
4008
4009	if (old_sel < 0 || new_sel < 0)
4010		return -EINVAL;
4011
4012	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4013}
4014EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4015
4016/**
4017 * regulator_set_voltage_time_sel - get raise/fall time
4018 * @rdev: regulator source device
4019 * @old_selector: selector for starting voltage
4020 * @new_selector: selector for target voltage
4021 *
4022 * Provided with the starting and target voltage selectors, this function
4023 * returns time in microseconds required to rise or fall to this new voltage
4024 *
4025 * Drivers providing ramp_delay in regulation_constraints can use this as their
4026 * set_voltage_time_sel() operation.
4027 */
4028int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4029				   unsigned int old_selector,
4030				   unsigned int new_selector)
4031{
4032	int old_volt, new_volt;
4033
4034	/* sanity check */
4035	if (!rdev->desc->ops->list_voltage)
4036		return -EINVAL;
4037
4038	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4039	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4040
4041	if (rdev->desc->ops->set_voltage_time)
4042		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4043							 new_volt);
4044	else
4045		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4046}
4047EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4048
4049/**
4050 * regulator_sync_voltage - re-apply last regulator output voltage
4051 * @regulator: regulator source
4052 *
4053 * Re-apply the last configured voltage.  This is intended to be used
4054 * where some external control source the consumer is cooperating with
4055 * has caused the configured voltage to change.
4056 */
4057int regulator_sync_voltage(struct regulator *regulator)
4058{
4059	struct regulator_dev *rdev = regulator->rdev;
4060	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4061	int ret, min_uV, max_uV;
4062
4063	regulator_lock(rdev);
4064
4065	if (!rdev->desc->ops->set_voltage &&
4066	    !rdev->desc->ops->set_voltage_sel) {
4067		ret = -EINVAL;
4068		goto out;
4069	}
4070
4071	/* This is only going to work if we've had a voltage configured. */
4072	if (!voltage->min_uV && !voltage->max_uV) {
4073		ret = -EINVAL;
4074		goto out;
4075	}
4076
4077	min_uV = voltage->min_uV;
4078	max_uV = voltage->max_uV;
4079
4080	/* This should be a paranoia check... */
4081	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4082	if (ret < 0)
4083		goto out;
4084
4085	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4086	if (ret < 0)
4087		goto out;
4088
4089	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4090
4091out:
4092	regulator_unlock(rdev);
4093	return ret;
4094}
4095EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4096
4097int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4098{
4099	int sel, ret;
4100	bool bypassed;
4101
4102	if (rdev->desc->ops->get_bypass) {
4103		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4104		if (ret < 0)
4105			return ret;
4106		if (bypassed) {
4107			/* if bypassed the regulator must have a supply */
4108			if (!rdev->supply) {
4109				rdev_err(rdev,
4110					 "bypassed regulator has no supply!\n");
4111				return -EPROBE_DEFER;
4112			}
4113
4114			return regulator_get_voltage_rdev(rdev->supply->rdev);
4115		}
4116	}
4117
4118	if (rdev->desc->ops->get_voltage_sel) {
4119		sel = rdev->desc->ops->get_voltage_sel(rdev);
4120		if (sel < 0)
4121			return sel;
4122		ret = rdev->desc->ops->list_voltage(rdev, sel);
4123	} else if (rdev->desc->ops->get_voltage) {
4124		ret = rdev->desc->ops->get_voltage(rdev);
4125	} else if (rdev->desc->ops->list_voltage) {
4126		ret = rdev->desc->ops->list_voltage(rdev, 0);
4127	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4128		ret = rdev->desc->fixed_uV;
4129	} else if (rdev->supply) {
4130		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4131	} else {
4132		return -EINVAL;
4133	}
4134
4135	if (ret < 0)
4136		return ret;
4137	return ret - rdev->constraints->uV_offset;
4138}
4139EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4140
4141/**
4142 * regulator_get_voltage - get regulator output voltage
4143 * @regulator: regulator source
4144 *
4145 * This returns the current regulator voltage in uV.
4146 *
4147 * NOTE: If the regulator is disabled it will return the voltage value. This
4148 * function should not be used to determine regulator state.
4149 */
4150int regulator_get_voltage(struct regulator *regulator)
4151{
4152	struct ww_acquire_ctx ww_ctx;
4153	int ret;
4154
4155	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4156	ret = regulator_get_voltage_rdev(regulator->rdev);
4157	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
 
 
4158
4159	return ret;
4160}
4161EXPORT_SYMBOL_GPL(regulator_get_voltage);
4162
4163/**
4164 * regulator_set_current_limit - set regulator output current limit
4165 * @regulator: regulator source
4166 * @min_uA: Minimum supported current in uA
4167 * @max_uA: Maximum supported current in uA
4168 *
4169 * Sets current sink to the desired output current. This can be set during
4170 * any regulator state. IOW, regulator can be disabled or enabled.
4171 *
4172 * If the regulator is enabled then the current will change to the new value
4173 * immediately otherwise if the regulator is disabled the regulator will
4174 * output at the new current when enabled.
4175 *
4176 * NOTE: Regulator system constraints must be set for this regulator before
4177 * calling this function otherwise this call will fail.
4178 */
4179int regulator_set_current_limit(struct regulator *regulator,
4180			       int min_uA, int max_uA)
4181{
4182	struct regulator_dev *rdev = regulator->rdev;
4183	int ret;
4184
4185	regulator_lock(rdev);
4186
4187	/* sanity check */
4188	if (!rdev->desc->ops->set_current_limit) {
4189		ret = -EINVAL;
4190		goto out;
4191	}
4192
4193	/* constraints check */
4194	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4195	if (ret < 0)
4196		goto out;
4197
4198	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4199out:
4200	regulator_unlock(rdev);
4201	return ret;
4202}
4203EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4204
4205static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4206{
4207	/* sanity check */
4208	if (!rdev->desc->ops->get_current_limit)
4209		return -EINVAL;
4210
4211	return rdev->desc->ops->get_current_limit(rdev);
4212}
4213
4214static int _regulator_get_current_limit(struct regulator_dev *rdev)
4215{
4216	int ret;
4217
4218	regulator_lock(rdev);
4219	ret = _regulator_get_current_limit_unlocked(rdev);
4220	regulator_unlock(rdev);
 
 
 
 
4221
 
 
 
4222	return ret;
4223}
4224
4225/**
4226 * regulator_get_current_limit - get regulator output current
4227 * @regulator: regulator source
4228 *
4229 * This returns the current supplied by the specified current sink in uA.
4230 *
4231 * NOTE: If the regulator is disabled it will return the current value. This
4232 * function should not be used to determine regulator state.
4233 */
4234int regulator_get_current_limit(struct regulator *regulator)
4235{
4236	return _regulator_get_current_limit(regulator->rdev);
4237}
4238EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4239
4240/**
4241 * regulator_set_mode - set regulator operating mode
4242 * @regulator: regulator source
4243 * @mode: operating mode - one of the REGULATOR_MODE constants
4244 *
4245 * Set regulator operating mode to increase regulator efficiency or improve
4246 * regulation performance.
4247 *
4248 * NOTE: Regulator system constraints must be set for this regulator before
4249 * calling this function otherwise this call will fail.
4250 */
4251int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4252{
4253	struct regulator_dev *rdev = regulator->rdev;
4254	int ret;
4255	int regulator_curr_mode;
4256
4257	regulator_lock(rdev);
4258
4259	/* sanity check */
4260	if (!rdev->desc->ops->set_mode) {
4261		ret = -EINVAL;
4262		goto out;
4263	}
4264
4265	/* return if the same mode is requested */
4266	if (rdev->desc->ops->get_mode) {
4267		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4268		if (regulator_curr_mode == mode) {
4269			ret = 0;
4270			goto out;
4271		}
4272	}
4273
4274	/* constraints check */
4275	ret = regulator_mode_constrain(rdev, &mode);
4276	if (ret < 0)
4277		goto out;
4278
4279	ret = rdev->desc->ops->set_mode(rdev, mode);
4280out:
4281	regulator_unlock(rdev);
4282	return ret;
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_mode);
4285
4286static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4287{
4288	/* sanity check */
4289	if (!rdev->desc->ops->get_mode)
4290		return -EINVAL;
4291
4292	return rdev->desc->ops->get_mode(rdev);
4293}
4294
4295static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4296{
4297	int ret;
4298
4299	regulator_lock(rdev);
4300	ret = _regulator_get_mode_unlocked(rdev);
4301	regulator_unlock(rdev);
4302
 
 
 
 
 
 
 
 
 
4303	return ret;
4304}
4305
4306/**
4307 * regulator_get_mode - get regulator operating mode
4308 * @regulator: regulator source
4309 *
4310 * Get the current regulator operating mode.
4311 */
4312unsigned int regulator_get_mode(struct regulator *regulator)
4313{
4314	return _regulator_get_mode(regulator->rdev);
4315}
4316EXPORT_SYMBOL_GPL(regulator_get_mode);
4317
4318static int _regulator_get_error_flags(struct regulator_dev *rdev,
4319					unsigned int *flags)
4320{
4321	int ret;
4322
4323	regulator_lock(rdev);
4324
4325	/* sanity check */
4326	if (!rdev->desc->ops->get_error_flags) {
4327		ret = -EINVAL;
4328		goto out;
4329	}
4330
4331	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4332out:
4333	regulator_unlock(rdev);
4334	return ret;
4335}
4336
4337/**
4338 * regulator_get_error_flags - get regulator error information
4339 * @regulator: regulator source
4340 * @flags: pointer to store error flags
4341 *
4342 * Get the current regulator error information.
4343 */
4344int regulator_get_error_flags(struct regulator *regulator,
4345				unsigned int *flags)
4346{
4347	return _regulator_get_error_flags(regulator->rdev, flags);
4348}
4349EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4350
4351/**
4352 * regulator_set_load - set regulator load
4353 * @regulator: regulator source
4354 * @uA_load: load current
4355 *
4356 * Notifies the regulator core of a new device load. This is then used by
4357 * DRMS (if enabled by constraints) to set the most efficient regulator
4358 * operating mode for the new regulator loading.
4359 *
4360 * Consumer devices notify their supply regulator of the maximum power
4361 * they will require (can be taken from device datasheet in the power
4362 * consumption tables) when they change operational status and hence power
4363 * state. Examples of operational state changes that can affect power
4364 * consumption are :-
4365 *
4366 *    o Device is opened / closed.
4367 *    o Device I/O is about to begin or has just finished.
4368 *    o Device is idling in between work.
4369 *
4370 * This information is also exported via sysfs to userspace.
4371 *
4372 * DRMS will sum the total requested load on the regulator and change
4373 * to the most efficient operating mode if platform constraints allow.
4374 *
4375 * NOTE: when a regulator consumer requests to have a regulator
4376 * disabled then any load that consumer requested no longer counts
4377 * toward the total requested load.  If the regulator is re-enabled
4378 * then the previously requested load will start counting again.
4379 *
4380 * If a regulator is an always-on regulator then an individual consumer's
4381 * load will still be removed if that consumer is fully disabled.
4382 *
4383 * On error a negative errno is returned.
4384 */
4385int regulator_set_load(struct regulator *regulator, int uA_load)
4386{
4387	struct regulator_dev *rdev = regulator->rdev;
4388	int old_uA_load;
4389	int ret = 0;
4390
4391	regulator_lock(rdev);
4392	old_uA_load = regulator->uA_load;
4393	regulator->uA_load = uA_load;
4394	if (regulator->enable_count && old_uA_load != uA_load) {
4395		ret = drms_uA_update(rdev);
4396		if (ret < 0)
4397			regulator->uA_load = old_uA_load;
4398	}
4399	regulator_unlock(rdev);
4400
4401	return ret;
4402}
4403EXPORT_SYMBOL_GPL(regulator_set_load);
4404
4405/**
4406 * regulator_allow_bypass - allow the regulator to go into bypass mode
4407 *
4408 * @regulator: Regulator to configure
4409 * @enable: enable or disable bypass mode
4410 *
4411 * Allow the regulator to go into bypass mode if all other consumers
4412 * for the regulator also enable bypass mode and the machine
4413 * constraints allow this.  Bypass mode means that the regulator is
4414 * simply passing the input directly to the output with no regulation.
4415 */
4416int regulator_allow_bypass(struct regulator *regulator, bool enable)
4417{
4418	struct regulator_dev *rdev = regulator->rdev;
4419	const char *name = rdev_get_name(rdev);
4420	int ret = 0;
4421
4422	if (!rdev->desc->ops->set_bypass)
4423		return 0;
4424
4425	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4426		return 0;
4427
4428	regulator_lock(rdev);
4429
4430	if (enable && !regulator->bypass) {
4431		rdev->bypass_count++;
4432
4433		if (rdev->bypass_count == rdev->open_count) {
4434			trace_regulator_bypass_enable(name);
4435
4436			ret = rdev->desc->ops->set_bypass(rdev, enable);
4437			if (ret != 0)
4438				rdev->bypass_count--;
4439			else
4440				trace_regulator_bypass_enable_complete(name);
4441		}
4442
4443	} else if (!enable && regulator->bypass) {
4444		rdev->bypass_count--;
4445
4446		if (rdev->bypass_count != rdev->open_count) {
4447			trace_regulator_bypass_disable(name);
4448
4449			ret = rdev->desc->ops->set_bypass(rdev, enable);
4450			if (ret != 0)
4451				rdev->bypass_count++;
4452			else
4453				trace_regulator_bypass_disable_complete(name);
4454		}
4455	}
4456
4457	if (ret == 0)
4458		regulator->bypass = enable;
4459
4460	regulator_unlock(rdev);
4461
4462	return ret;
4463}
4464EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4465
4466/**
4467 * regulator_register_notifier - register regulator event notifier
4468 * @regulator: regulator source
4469 * @nb: notifier block
4470 *
4471 * Register notifier block to receive regulator events.
4472 */
4473int regulator_register_notifier(struct regulator *regulator,
4474			      struct notifier_block *nb)
4475{
4476	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4477						nb);
4478}
4479EXPORT_SYMBOL_GPL(regulator_register_notifier);
4480
4481/**
4482 * regulator_unregister_notifier - unregister regulator event notifier
4483 * @regulator: regulator source
4484 * @nb: notifier block
4485 *
4486 * Unregister regulator event notifier block.
4487 */
4488int regulator_unregister_notifier(struct regulator *regulator,
4489				struct notifier_block *nb)
4490{
4491	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4492						  nb);
4493}
4494EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4495
4496/* notify regulator consumers and downstream regulator consumers.
4497 * Note mutex must be held by caller.
4498 */
4499static int _notifier_call_chain(struct regulator_dev *rdev,
4500				  unsigned long event, void *data)
4501{
4502	/* call rdev chain first */
4503	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4504}
4505
4506/**
4507 * regulator_bulk_get - get multiple regulator consumers
4508 *
4509 * @dev:           Device to supply
4510 * @num_consumers: Number of consumers to register
4511 * @consumers:     Configuration of consumers; clients are stored here.
4512 *
4513 * @return 0 on success, an errno on failure.
4514 *
4515 * This helper function allows drivers to get several regulator
4516 * consumers in one operation.  If any of the regulators cannot be
4517 * acquired then any regulators that were allocated will be freed
4518 * before returning to the caller.
4519 */
4520int regulator_bulk_get(struct device *dev, int num_consumers,
4521		       struct regulator_bulk_data *consumers)
4522{
4523	int i;
4524	int ret;
4525
4526	for (i = 0; i < num_consumers; i++)
4527		consumers[i].consumer = NULL;
4528
4529	for (i = 0; i < num_consumers; i++) {
4530		consumers[i].consumer = regulator_get(dev,
4531						      consumers[i].supply);
4532		if (IS_ERR(consumers[i].consumer)) {
4533			ret = PTR_ERR(consumers[i].consumer);
 
 
4534			consumers[i].consumer = NULL;
4535			goto err;
4536		}
4537	}
4538
4539	return 0;
4540
4541err:
4542	if (ret != -EPROBE_DEFER)
4543		dev_err(dev, "Failed to get supply '%s': %d\n",
4544			consumers[i].supply, ret);
4545	else
4546		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4547			consumers[i].supply);
4548
4549	while (--i >= 0)
4550		regulator_put(consumers[i].consumer);
4551
4552	return ret;
4553}
4554EXPORT_SYMBOL_GPL(regulator_bulk_get);
4555
4556static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4557{
4558	struct regulator_bulk_data *bulk = data;
4559
4560	bulk->ret = regulator_enable(bulk->consumer);
4561}
4562
4563/**
4564 * regulator_bulk_enable - enable multiple regulator consumers
4565 *
4566 * @num_consumers: Number of consumers
4567 * @consumers:     Consumer data; clients are stored here.
4568 * @return         0 on success, an errno on failure
4569 *
4570 * This convenience API allows consumers to enable multiple regulator
4571 * clients in a single API call.  If any consumers cannot be enabled
4572 * then any others that were enabled will be disabled again prior to
4573 * return.
4574 */
4575int regulator_bulk_enable(int num_consumers,
4576			  struct regulator_bulk_data *consumers)
4577{
4578	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4579	int i;
4580	int ret = 0;
4581
4582	for (i = 0; i < num_consumers; i++) {
4583		async_schedule_domain(regulator_bulk_enable_async,
4584				      &consumers[i], &async_domain);
 
 
 
4585	}
4586
4587	async_synchronize_full_domain(&async_domain);
4588
4589	/* If any consumer failed we need to unwind any that succeeded */
4590	for (i = 0; i < num_consumers; i++) {
4591		if (consumers[i].ret != 0) {
4592			ret = consumers[i].ret;
4593			goto err;
4594		}
4595	}
4596
4597	return 0;
4598
4599err:
4600	for (i = 0; i < num_consumers; i++) {
4601		if (consumers[i].ret < 0)
4602			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4603			       consumers[i].ret);
4604		else
4605			regulator_disable(consumers[i].consumer);
4606	}
4607
4608	return ret;
4609}
4610EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4611
4612/**
4613 * regulator_bulk_disable - disable multiple regulator consumers
4614 *
4615 * @num_consumers: Number of consumers
4616 * @consumers:     Consumer data; clients are stored here.
4617 * @return         0 on success, an errno on failure
4618 *
4619 * This convenience API allows consumers to disable multiple regulator
4620 * clients in a single API call.  If any consumers cannot be disabled
4621 * then any others that were disabled will be enabled again prior to
4622 * return.
4623 */
4624int regulator_bulk_disable(int num_consumers,
4625			   struct regulator_bulk_data *consumers)
4626{
4627	int i;
4628	int ret, r;
4629
4630	for (i = num_consumers - 1; i >= 0; --i) {
4631		ret = regulator_disable(consumers[i].consumer);
4632		if (ret != 0)
4633			goto err;
4634	}
4635
4636	return 0;
4637
4638err:
4639	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4640	for (++i; i < num_consumers; ++i) {
4641		r = regulator_enable(consumers[i].consumer);
4642		if (r != 0)
4643			pr_err("Failed to re-enable %s: %d\n",
4644			       consumers[i].supply, r);
4645	}
4646
4647	return ret;
4648}
4649EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4650
4651/**
4652 * regulator_bulk_force_disable - force disable multiple regulator consumers
4653 *
4654 * @num_consumers: Number of consumers
4655 * @consumers:     Consumer data; clients are stored here.
4656 * @return         0 on success, an errno on failure
4657 *
4658 * This convenience API allows consumers to forcibly disable multiple regulator
4659 * clients in a single API call.
4660 * NOTE: This should be used for situations when device damage will
4661 * likely occur if the regulators are not disabled (e.g. over temp).
4662 * Although regulator_force_disable function call for some consumers can
4663 * return error numbers, the function is called for all consumers.
4664 */
4665int regulator_bulk_force_disable(int num_consumers,
4666			   struct regulator_bulk_data *consumers)
4667{
4668	int i;
4669	int ret = 0;
4670
4671	for (i = 0; i < num_consumers; i++) {
4672		consumers[i].ret =
4673			    regulator_force_disable(consumers[i].consumer);
4674
4675		/* Store first error for reporting */
4676		if (consumers[i].ret && !ret)
4677			ret = consumers[i].ret;
4678	}
4679
4680	return ret;
4681}
4682EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4683
4684/**
4685 * regulator_bulk_free - free multiple regulator consumers
4686 *
4687 * @num_consumers: Number of consumers
4688 * @consumers:     Consumer data; clients are stored here.
4689 *
4690 * This convenience API allows consumers to free multiple regulator
4691 * clients in a single API call.
4692 */
4693void regulator_bulk_free(int num_consumers,
4694			 struct regulator_bulk_data *consumers)
4695{
4696	int i;
4697
4698	for (i = 0; i < num_consumers; i++) {
4699		regulator_put(consumers[i].consumer);
4700		consumers[i].consumer = NULL;
4701	}
4702}
4703EXPORT_SYMBOL_GPL(regulator_bulk_free);
4704
4705/**
4706 * regulator_notifier_call_chain - call regulator event notifier
4707 * @rdev: regulator source
4708 * @event: notifier block
4709 * @data: callback-specific data.
4710 *
4711 * Called by regulator drivers to notify clients a regulator event has
4712 * occurred. We also notify regulator clients downstream.
4713 * Note lock must be held by caller.
4714 */
4715int regulator_notifier_call_chain(struct regulator_dev *rdev,
4716				  unsigned long event, void *data)
4717{
4718	lockdep_assert_held_once(&rdev->mutex.base);
4719
4720	_notifier_call_chain(rdev, event, data);
4721	return NOTIFY_DONE;
4722
4723}
4724EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4725
4726/**
4727 * regulator_mode_to_status - convert a regulator mode into a status
4728 *
4729 * @mode: Mode to convert
4730 *
4731 * Convert a regulator mode into a status.
4732 */
4733int regulator_mode_to_status(unsigned int mode)
4734{
4735	switch (mode) {
4736	case REGULATOR_MODE_FAST:
4737		return REGULATOR_STATUS_FAST;
4738	case REGULATOR_MODE_NORMAL:
4739		return REGULATOR_STATUS_NORMAL;
4740	case REGULATOR_MODE_IDLE:
4741		return REGULATOR_STATUS_IDLE;
4742	case REGULATOR_MODE_STANDBY:
4743		return REGULATOR_STATUS_STANDBY;
4744	default:
4745		return REGULATOR_STATUS_UNDEFINED;
4746	}
4747}
4748EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4749
4750static struct attribute *regulator_dev_attrs[] = {
4751	&dev_attr_name.attr,
4752	&dev_attr_num_users.attr,
4753	&dev_attr_type.attr,
4754	&dev_attr_microvolts.attr,
4755	&dev_attr_microamps.attr,
4756	&dev_attr_opmode.attr,
4757	&dev_attr_state.attr,
4758	&dev_attr_status.attr,
4759	&dev_attr_bypass.attr,
4760	&dev_attr_requested_microamps.attr,
4761	&dev_attr_min_microvolts.attr,
4762	&dev_attr_max_microvolts.attr,
4763	&dev_attr_min_microamps.attr,
4764	&dev_attr_max_microamps.attr,
4765	&dev_attr_suspend_standby_state.attr,
4766	&dev_attr_suspend_mem_state.attr,
4767	&dev_attr_suspend_disk_state.attr,
4768	&dev_attr_suspend_standby_microvolts.attr,
4769	&dev_attr_suspend_mem_microvolts.attr,
4770	&dev_attr_suspend_disk_microvolts.attr,
4771	&dev_attr_suspend_standby_mode.attr,
4772	&dev_attr_suspend_mem_mode.attr,
4773	&dev_attr_suspend_disk_mode.attr,
4774	NULL
4775};
4776
4777/*
4778 * To avoid cluttering sysfs (and memory) with useless state, only
4779 * create attributes that can be meaningfully displayed.
4780 */
4781static umode_t regulator_attr_is_visible(struct kobject *kobj,
4782					 struct attribute *attr, int idx)
4783{
4784	struct device *dev = kobj_to_dev(kobj);
4785	struct regulator_dev *rdev = dev_to_rdev(dev);
4786	const struct regulator_ops *ops = rdev->desc->ops;
4787	umode_t mode = attr->mode;
4788
4789	/* these three are always present */
4790	if (attr == &dev_attr_name.attr ||
4791	    attr == &dev_attr_num_users.attr ||
4792	    attr == &dev_attr_type.attr)
4793		return mode;
4794
4795	/* some attributes need specific methods to be displayed */
4796	if (attr == &dev_attr_microvolts.attr) {
4797		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4798		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4799		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4800		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4801			return mode;
4802		return 0;
4803	}
4804
4805	if (attr == &dev_attr_microamps.attr)
4806		return ops->get_current_limit ? mode : 0;
4807
4808	if (attr == &dev_attr_opmode.attr)
4809		return ops->get_mode ? mode : 0;
4810
4811	if (attr == &dev_attr_state.attr)
4812		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4813
4814	if (attr == &dev_attr_status.attr)
4815		return ops->get_status ? mode : 0;
4816
4817	if (attr == &dev_attr_bypass.attr)
4818		return ops->get_bypass ? mode : 0;
4819
 
 
 
 
4820	/* constraints need specific supporting methods */
4821	if (attr == &dev_attr_min_microvolts.attr ||
4822	    attr == &dev_attr_max_microvolts.attr)
4823		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4824
4825	if (attr == &dev_attr_min_microamps.attr ||
4826	    attr == &dev_attr_max_microamps.attr)
4827		return ops->set_current_limit ? mode : 0;
4828
4829	if (attr == &dev_attr_suspend_standby_state.attr ||
4830	    attr == &dev_attr_suspend_mem_state.attr ||
4831	    attr == &dev_attr_suspend_disk_state.attr)
4832		return mode;
4833
4834	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4835	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4836	    attr == &dev_attr_suspend_disk_microvolts.attr)
4837		return ops->set_suspend_voltage ? mode : 0;
4838
4839	if (attr == &dev_attr_suspend_standby_mode.attr ||
4840	    attr == &dev_attr_suspend_mem_mode.attr ||
4841	    attr == &dev_attr_suspend_disk_mode.attr)
4842		return ops->set_suspend_mode ? mode : 0;
4843
4844	return mode;
4845}
4846
4847static const struct attribute_group regulator_dev_group = {
4848	.attrs = regulator_dev_attrs,
4849	.is_visible = regulator_attr_is_visible,
4850};
4851
4852static const struct attribute_group *regulator_dev_groups[] = {
4853	&regulator_dev_group,
4854	NULL
4855};
4856
4857static void regulator_dev_release(struct device *dev)
4858{
4859	struct regulator_dev *rdev = dev_get_drvdata(dev);
4860
4861	kfree(rdev->constraints);
4862	of_node_put(rdev->dev.of_node);
4863	kfree(rdev);
4864}
4865
4866static void rdev_init_debugfs(struct regulator_dev *rdev)
4867{
4868	struct device *parent = rdev->dev.parent;
4869	const char *rname = rdev_get_name(rdev);
4870	char name[NAME_MAX];
4871
4872	/* Avoid duplicate debugfs directory names */
4873	if (parent && rname == rdev->desc->name) {
4874		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4875			 rname);
4876		rname = name;
4877	}
4878
4879	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4880	if (!rdev->debugfs) {
4881		rdev_warn(rdev, "Failed to create debugfs directory\n");
4882		return;
4883	}
4884
4885	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4886			   &rdev->use_count);
4887	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4888			   &rdev->open_count);
4889	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4890			   &rdev->bypass_count);
4891}
4892
4893static int regulator_register_resolve_supply(struct device *dev, void *data)
4894{
4895	struct regulator_dev *rdev = dev_to_rdev(dev);
4896
4897	if (regulator_resolve_supply(rdev))
4898		rdev_dbg(rdev, "unable to resolve supply\n");
4899
4900	return 0;
4901}
4902
4903int regulator_coupler_register(struct regulator_coupler *coupler)
4904{
4905	mutex_lock(&regulator_list_mutex);
4906	list_add_tail(&coupler->list, &regulator_coupler_list);
4907	mutex_unlock(&regulator_list_mutex);
4908
4909	return 0;
4910}
4911
4912static struct regulator_coupler *
4913regulator_find_coupler(struct regulator_dev *rdev)
4914{
4915	struct regulator_coupler *coupler;
4916	int err;
4917
4918	/*
4919	 * Note that regulators are appended to the list and the generic
4920	 * coupler is registered first, hence it will be attached at last
4921	 * if nobody cared.
4922	 */
4923	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4924		err = coupler->attach_regulator(coupler, rdev);
4925		if (!err) {
4926			if (!coupler->balance_voltage &&
4927			    rdev->coupling_desc.n_coupled > 2)
4928				goto err_unsupported;
4929
4930			return coupler;
4931		}
4932
4933		if (err < 0)
4934			return ERR_PTR(err);
4935
4936		if (err == 1)
4937			continue;
4938
4939		break;
4940	}
4941
4942	return ERR_PTR(-EINVAL);
4943
4944err_unsupported:
4945	if (coupler->detach_regulator)
4946		coupler->detach_regulator(coupler, rdev);
4947
4948	rdev_err(rdev,
4949		"Voltage balancing for multiple regulator couples is unimplemented\n");
4950
4951	return ERR_PTR(-EPERM);
4952}
4953
4954static void regulator_resolve_coupling(struct regulator_dev *rdev)
4955{
4956	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4957	struct coupling_desc *c_desc = &rdev->coupling_desc;
4958	int n_coupled = c_desc->n_coupled;
4959	struct regulator_dev *c_rdev;
4960	int i;
4961
4962	for (i = 1; i < n_coupled; i++) {
4963		/* already resolved */
4964		if (c_desc->coupled_rdevs[i])
4965			continue;
4966
4967		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4968
4969		if (!c_rdev)
4970			continue;
4971
4972		if (c_rdev->coupling_desc.coupler != coupler) {
4973			rdev_err(rdev, "coupler mismatch with %s\n",
4974				 rdev_get_name(c_rdev));
4975			return;
4976		}
4977
4978		c_desc->coupled_rdevs[i] = c_rdev;
4979		c_desc->n_resolved++;
4980
4981		regulator_resolve_coupling(c_rdev);
4982	}
4983}
4984
4985static void regulator_remove_coupling(struct regulator_dev *rdev)
4986{
4987	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4988	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4989	struct regulator_dev *__c_rdev, *c_rdev;
4990	unsigned int __n_coupled, n_coupled;
4991	int i, k;
4992	int err;
4993
4994	n_coupled = c_desc->n_coupled;
4995
4996	for (i = 1; i < n_coupled; i++) {
4997		c_rdev = c_desc->coupled_rdevs[i];
4998
4999		if (!c_rdev)
5000			continue;
5001
5002		regulator_lock(c_rdev);
5003
5004		__c_desc = &c_rdev->coupling_desc;
5005		__n_coupled = __c_desc->n_coupled;
5006
5007		for (k = 1; k < __n_coupled; k++) {
5008			__c_rdev = __c_desc->coupled_rdevs[k];
5009
5010			if (__c_rdev == rdev) {
5011				__c_desc->coupled_rdevs[k] = NULL;
5012				__c_desc->n_resolved--;
5013				break;
5014			}
5015		}
5016
5017		regulator_unlock(c_rdev);
5018
5019		c_desc->coupled_rdevs[i] = NULL;
5020		c_desc->n_resolved--;
5021	}
5022
5023	if (coupler && coupler->detach_regulator) {
5024		err = coupler->detach_regulator(coupler, rdev);
5025		if (err)
5026			rdev_err(rdev, "failed to detach from coupler: %d\n",
5027				 err);
5028	}
5029
5030	kfree(rdev->coupling_desc.coupled_rdevs);
5031	rdev->coupling_desc.coupled_rdevs = NULL;
5032}
5033
5034static int regulator_init_coupling(struct regulator_dev *rdev)
5035{
5036	int err, n_phandles;
5037	size_t alloc_size;
5038
5039	if (!IS_ENABLED(CONFIG_OF))
5040		n_phandles = 0;
5041	else
5042		n_phandles = of_get_n_coupled(rdev);
5043
5044	alloc_size = sizeof(*rdev) * (n_phandles + 1);
5045
5046	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5047	if (!rdev->coupling_desc.coupled_rdevs)
5048		return -ENOMEM;
5049
5050	/*
5051	 * Every regulator should always have coupling descriptor filled with
5052	 * at least pointer to itself.
5053	 */
5054	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5055	rdev->coupling_desc.n_coupled = n_phandles + 1;
5056	rdev->coupling_desc.n_resolved++;
5057
5058	/* regulator isn't coupled */
5059	if (n_phandles == 0)
5060		return 0;
5061
5062	if (!of_check_coupling_data(rdev))
5063		return -EPERM;
5064
5065	mutex_lock(&regulator_list_mutex);
5066	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5067	mutex_unlock(&regulator_list_mutex);
5068
5069	if (IS_ERR(rdev->coupling_desc.coupler)) {
5070		err = PTR_ERR(rdev->coupling_desc.coupler);
5071		rdev_err(rdev, "failed to get coupler: %d\n", err);
5072		return err;
5073	}
5074
5075	return 0;
5076}
5077
5078static int generic_coupler_attach(struct regulator_coupler *coupler,
5079				  struct regulator_dev *rdev)
5080{
5081	if (rdev->coupling_desc.n_coupled > 2) {
5082		rdev_err(rdev,
5083			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5084		return -EPERM;
5085	}
5086
5087	if (!rdev->constraints->always_on) {
5088		rdev_err(rdev,
5089			 "Coupling of a non always-on regulator is unimplemented\n");
5090		return -ENOTSUPP;
5091	}
5092
5093	return 0;
5094}
5095
5096static struct regulator_coupler generic_regulator_coupler = {
5097	.attach_regulator = generic_coupler_attach,
5098};
5099
5100/**
5101 * regulator_register - register regulator
5102 * @regulator_desc: regulator to register
5103 * @cfg: runtime configuration for regulator
5104 *
5105 * Called by regulator drivers to register a regulator.
5106 * Returns a valid pointer to struct regulator_dev on success
5107 * or an ERR_PTR() on error.
5108 */
5109struct regulator_dev *
5110regulator_register(const struct regulator_desc *regulator_desc,
5111		   const struct regulator_config *cfg)
5112{
5113	const struct regulation_constraints *constraints = NULL;
5114	const struct regulator_init_data *init_data;
5115	struct regulator_config *config = NULL;
5116	static atomic_t regulator_no = ATOMIC_INIT(-1);
5117	struct regulator_dev *rdev;
5118	bool dangling_cfg_gpiod = false;
5119	bool dangling_of_gpiod = false;
5120	struct device *dev;
5121	int ret, i;
5122
5123	if (cfg == NULL)
5124		return ERR_PTR(-EINVAL);
5125	if (cfg->ena_gpiod)
5126		dangling_cfg_gpiod = true;
5127	if (regulator_desc == NULL) {
5128		ret = -EINVAL;
5129		goto rinse;
5130	}
5131
5132	dev = cfg->dev;
5133	WARN_ON(!dev);
5134
5135	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5136		ret = -EINVAL;
5137		goto rinse;
5138	}
5139
5140	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5141	    regulator_desc->type != REGULATOR_CURRENT) {
5142		ret = -EINVAL;
5143		goto rinse;
5144	}
5145
5146	/* Only one of each should be implemented */
5147	WARN_ON(regulator_desc->ops->get_voltage &&
5148		regulator_desc->ops->get_voltage_sel);
5149	WARN_ON(regulator_desc->ops->set_voltage &&
5150		regulator_desc->ops->set_voltage_sel);
5151
5152	/* If we're using selectors we must implement list_voltage. */
5153	if (regulator_desc->ops->get_voltage_sel &&
5154	    !regulator_desc->ops->list_voltage) {
5155		ret = -EINVAL;
5156		goto rinse;
5157	}
5158	if (regulator_desc->ops->set_voltage_sel &&
5159	    !regulator_desc->ops->list_voltage) {
5160		ret = -EINVAL;
5161		goto rinse;
5162	}
5163
5164	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5165	if (rdev == NULL) {
5166		ret = -ENOMEM;
5167		goto rinse;
5168	}
5169	device_initialize(&rdev->dev);
5170
5171	/*
5172	 * Duplicate the config so the driver could override it after
5173	 * parsing init data.
5174	 */
5175	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5176	if (config == NULL) {
5177		ret = -ENOMEM;
5178		goto clean;
5179	}
5180
5181	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5182					       &rdev->dev.of_node);
5183
5184	/*
5185	 * Sometimes not all resources are probed already so we need to take
5186	 * that into account. This happens most the time if the ena_gpiod comes
5187	 * from a gpio extender or something else.
5188	 */
5189	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5190		ret = -EPROBE_DEFER;
5191		goto clean;
5192	}
5193
5194	/*
5195	 * We need to keep track of any GPIO descriptor coming from the
5196	 * device tree until we have handled it over to the core. If the
5197	 * config that was passed in to this function DOES NOT contain
5198	 * a descriptor, and the config after this call DOES contain
5199	 * a descriptor, we definitely got one from parsing the device
5200	 * tree.
5201	 */
5202	if (!cfg->ena_gpiod && config->ena_gpiod)
5203		dangling_of_gpiod = true;
5204	if (!init_data) {
5205		init_data = config->init_data;
5206		rdev->dev.of_node = of_node_get(config->of_node);
5207	}
5208
5209	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5210	rdev->reg_data = config->driver_data;
5211	rdev->owner = regulator_desc->owner;
5212	rdev->desc = regulator_desc;
5213	if (config->regmap)
5214		rdev->regmap = config->regmap;
5215	else if (dev_get_regmap(dev, NULL))
5216		rdev->regmap = dev_get_regmap(dev, NULL);
5217	else if (dev->parent)
5218		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5219	INIT_LIST_HEAD(&rdev->consumer_list);
5220	INIT_LIST_HEAD(&rdev->list);
5221	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5222	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5223
5224	/* preform any regulator specific init */
5225	if (init_data && init_data->regulator_init) {
5226		ret = init_data->regulator_init(rdev->reg_data);
5227		if (ret < 0)
5228			goto clean;
5229	}
5230
5231	if (config->ena_gpiod) {
 
 
 
5232		ret = regulator_ena_gpio_request(rdev, config);
 
5233		if (ret != 0) {
5234			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5235				 ret);
5236			goto clean;
5237		}
5238		/* The regulator core took over the GPIO descriptor */
5239		dangling_cfg_gpiod = false;
5240		dangling_of_gpiod = false;
5241	}
5242
5243	/* register with sysfs */
5244	rdev->dev.class = &regulator_class;
5245	rdev->dev.parent = dev;
5246	dev_set_name(&rdev->dev, "regulator.%lu",
5247		    (unsigned long) atomic_inc_return(&regulator_no));
5248	dev_set_drvdata(&rdev->dev, rdev);
5249
5250	/* set regulator constraints */
5251	if (init_data)
5252		constraints = &init_data->constraints;
5253
5254	if (init_data && init_data->supply_regulator)
5255		rdev->supply_name = init_data->supply_regulator;
5256	else if (regulator_desc->supply_name)
5257		rdev->supply_name = regulator_desc->supply_name;
5258
5259	/*
5260	 * Attempt to resolve the regulator supply, if specified,
5261	 * but don't return an error if we fail because we will try
5262	 * to resolve it again later as more regulators are added.
5263	 */
5264	if (regulator_resolve_supply(rdev))
5265		rdev_dbg(rdev, "unable to resolve supply\n");
5266
5267	ret = set_machine_constraints(rdev, constraints);
5268	if (ret < 0)
5269		goto wash;
5270
5271	ret = regulator_init_coupling(rdev);
5272	if (ret < 0)
5273		goto wash;
5274
5275	/* add consumers devices */
5276	if (init_data) {
 
5277		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5278			ret = set_consumer_device_supply(rdev,
5279				init_data->consumer_supplies[i].dev_name,
5280				init_data->consumer_supplies[i].supply);
5281			if (ret < 0) {
 
5282				dev_err(dev, "Failed to set supply %s\n",
5283					init_data->consumer_supplies[i].supply);
5284				goto unset_supplies;
5285			}
5286		}
 
5287	}
5288
5289	if (!rdev->desc->ops->get_voltage &&
5290	    !rdev->desc->ops->list_voltage &&
5291	    !rdev->desc->fixed_uV)
5292		rdev->is_switch = true;
5293
5294	ret = device_add(&rdev->dev);
5295	if (ret != 0)
 
5296		goto unset_supplies;
 
5297
 
5298	rdev_init_debugfs(rdev);
5299
5300	/* try to resolve regulators coupling since a new one was registered */
5301	mutex_lock(&regulator_list_mutex);
5302	regulator_resolve_coupling(rdev);
5303	mutex_unlock(&regulator_list_mutex);
5304
5305	/* try to resolve regulators supply since a new one was registered */
5306	class_for_each_device(&regulator_class, NULL, NULL,
5307			      regulator_register_resolve_supply);
5308	kfree(config);
5309	return rdev;
5310
5311unset_supplies:
5312	mutex_lock(&regulator_list_mutex);
5313	unset_regulator_supplies(rdev);
5314	regulator_remove_coupling(rdev);
5315	mutex_unlock(&regulator_list_mutex);
5316wash:
5317	kfree(rdev->coupling_desc.coupled_rdevs);
5318	mutex_lock(&regulator_list_mutex);
5319	regulator_ena_gpio_free(rdev);
5320	mutex_unlock(&regulator_list_mutex);
5321clean:
5322	if (dangling_of_gpiod)
5323		gpiod_put(config->ena_gpiod);
5324	kfree(config);
5325	put_device(&rdev->dev);
5326rinse:
5327	if (dangling_cfg_gpiod)
5328		gpiod_put(cfg->ena_gpiod);
5329	return ERR_PTR(ret);
5330}
5331EXPORT_SYMBOL_GPL(regulator_register);
5332
5333/**
5334 * regulator_unregister - unregister regulator
5335 * @rdev: regulator to unregister
5336 *
5337 * Called by regulator drivers to unregister a regulator.
5338 */
5339void regulator_unregister(struct regulator_dev *rdev)
5340{
5341	if (rdev == NULL)
5342		return;
5343
5344	if (rdev->supply) {
5345		while (rdev->use_count--)
5346			regulator_disable(rdev->supply);
5347		regulator_put(rdev->supply);
5348	}
5349
5350	flush_work(&rdev->disable_work.work);
5351
5352	mutex_lock(&regulator_list_mutex);
5353
5354	debugfs_remove_recursive(rdev->debugfs);
 
5355	WARN_ON(rdev->open_count);
5356	regulator_remove_coupling(rdev);
5357	unset_regulator_supplies(rdev);
5358	list_del(&rdev->list);
5359	regulator_ena_gpio_free(rdev);
5360	device_unregister(&rdev->dev);
5361
5362	mutex_unlock(&regulator_list_mutex);
 
5363}
5364EXPORT_SYMBOL_GPL(regulator_unregister);
5365
5366#ifdef CONFIG_SUSPEND
5367/**
5368 * regulator_suspend - prepare regulators for system wide suspend
5369 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5370 *
5371 * Configure each regulator with it's suspend operating parameters for state.
5372 */
5373static int regulator_suspend(struct device *dev)
5374{
5375	struct regulator_dev *rdev = dev_to_rdev(dev);
5376	suspend_state_t state = pm_suspend_target_state;
5377	int ret;
5378
5379	regulator_lock(rdev);
5380	ret = suspend_set_state(rdev, state);
5381	regulator_unlock(rdev);
5382
5383	return ret;
5384}
5385
5386static int regulator_resume(struct device *dev)
 
 
 
 
 
 
5387{
5388	suspend_state_t state = pm_suspend_target_state;
 
 
 
 
 
 
 
 
5389	struct regulator_dev *rdev = dev_to_rdev(dev);
 
5390	struct regulator_state *rstate;
5391	int ret = 0;
5392
5393	rstate = regulator_get_suspend_state(rdev, state);
5394	if (rstate == NULL)
5395		return 0;
5396
5397	regulator_lock(rdev);
5398
5399	if (rdev->desc->ops->resume &&
5400	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5401	     rstate->enabled == DISABLE_IN_SUSPEND))
5402		ret = rdev->desc->ops->resume(rdev);
5403
5404	regulator_unlock(rdev);
5405
5406	return ret;
5407}
 
 
 
 
 
 
 
 
 
5408#else /* !CONFIG_SUSPEND */
5409
5410#define regulator_suspend	NULL
5411#define regulator_resume	NULL
5412
5413#endif /* !CONFIG_SUSPEND */
5414
5415#ifdef CONFIG_PM
5416static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5417	.suspend	= regulator_suspend,
5418	.resume		= regulator_resume,
5419};
5420#endif
5421
5422struct class regulator_class = {
5423	.name = "regulator",
5424	.dev_release = regulator_dev_release,
5425	.dev_groups = regulator_dev_groups,
5426#ifdef CONFIG_PM
5427	.pm = &regulator_pm_ops,
5428#endif
5429};
5430/**
5431 * regulator_has_full_constraints - the system has fully specified constraints
5432 *
5433 * Calling this function will cause the regulator API to disable all
5434 * regulators which have a zero use count and don't have an always_on
5435 * constraint in a late_initcall.
5436 *
5437 * The intention is that this will become the default behaviour in a
5438 * future kernel release so users are encouraged to use this facility
5439 * now.
5440 */
5441void regulator_has_full_constraints(void)
5442{
5443	has_full_constraints = 1;
5444}
5445EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5446
5447/**
5448 * rdev_get_drvdata - get rdev regulator driver data
5449 * @rdev: regulator
5450 *
5451 * Get rdev regulator driver private data. This call can be used in the
5452 * regulator driver context.
5453 */
5454void *rdev_get_drvdata(struct regulator_dev *rdev)
5455{
5456	return rdev->reg_data;
5457}
5458EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5459
5460/**
5461 * regulator_get_drvdata - get regulator driver data
5462 * @regulator: regulator
5463 *
5464 * Get regulator driver private data. This call can be used in the consumer
5465 * driver context when non API regulator specific functions need to be called.
5466 */
5467void *regulator_get_drvdata(struct regulator *regulator)
5468{
5469	return regulator->rdev->reg_data;
5470}
5471EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5472
5473/**
5474 * regulator_set_drvdata - set regulator driver data
5475 * @regulator: regulator
5476 * @data: data
5477 */
5478void regulator_set_drvdata(struct regulator *regulator, void *data)
5479{
5480	regulator->rdev->reg_data = data;
5481}
5482EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5483
5484/**
5485 * regulator_get_id - get regulator ID
5486 * @rdev: regulator
5487 */
5488int rdev_get_id(struct regulator_dev *rdev)
5489{
5490	return rdev->desc->id;
5491}
5492EXPORT_SYMBOL_GPL(rdev_get_id);
5493
5494struct device *rdev_get_dev(struct regulator_dev *rdev)
5495{
5496	return &rdev->dev;
5497}
5498EXPORT_SYMBOL_GPL(rdev_get_dev);
5499
5500struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5501{
5502	return rdev->regmap;
5503}
5504EXPORT_SYMBOL_GPL(rdev_get_regmap);
5505
5506void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5507{
5508	return reg_init_data->driver_data;
5509}
5510EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5511
5512#ifdef CONFIG_DEBUG_FS
5513static int supply_map_show(struct seq_file *sf, void *data)
5514{
5515	struct regulator_map *map;
5516
5517	list_for_each_entry(map, &regulator_map_list, list) {
5518		seq_printf(sf, "%s -> %s.%s\n",
5519				rdev_get_name(map->regulator), map->dev_name,
5520				map->supply);
5521	}
5522
5523	return 0;
5524}
5525DEFINE_SHOW_ATTRIBUTE(supply_map);
5526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5527struct summary_data {
5528	struct seq_file *s;
5529	struct regulator_dev *parent;
5530	int level;
5531};
5532
5533static void regulator_summary_show_subtree(struct seq_file *s,
5534					   struct regulator_dev *rdev,
5535					   int level);
5536
5537static int regulator_summary_show_children(struct device *dev, void *data)
5538{
5539	struct regulator_dev *rdev = dev_to_rdev(dev);
5540	struct summary_data *summary_data = data;
5541
5542	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5543		regulator_summary_show_subtree(summary_data->s, rdev,
5544					       summary_data->level + 1);
5545
5546	return 0;
5547}
5548
5549static void regulator_summary_show_subtree(struct seq_file *s,
5550					   struct regulator_dev *rdev,
5551					   int level)
5552{
5553	struct regulation_constraints *c;
5554	struct regulator *consumer;
5555	struct summary_data summary_data;
5556	unsigned int opmode;
5557
5558	if (!rdev)
5559		return;
5560
5561	opmode = _regulator_get_mode_unlocked(rdev);
5562	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5563		   level * 3 + 1, "",
5564		   30 - level * 3, rdev_get_name(rdev),
5565		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5566		   regulator_opmode_to_str(opmode));
5567
5568	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5569	seq_printf(s, "%5dmA ",
5570		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5571
5572	c = rdev->constraints;
5573	if (c) {
5574		switch (rdev->desc->type) {
5575		case REGULATOR_VOLTAGE:
5576			seq_printf(s, "%5dmV %5dmV ",
5577				   c->min_uV / 1000, c->max_uV / 1000);
5578			break;
5579		case REGULATOR_CURRENT:
5580			seq_printf(s, "%5dmA %5dmA ",
5581				   c->min_uA / 1000, c->max_uA / 1000);
5582			break;
5583		}
5584	}
5585
5586	seq_puts(s, "\n");
5587
5588	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5589		if (consumer->dev && consumer->dev->class == &regulator_class)
5590			continue;
5591
5592		seq_printf(s, "%*s%-*s ",
5593			   (level + 1) * 3 + 1, "",
5594			   30 - (level + 1) * 3,
5595			   consumer->supply_name ? consumer->supply_name :
5596			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5597
5598		switch (rdev->desc->type) {
5599		case REGULATOR_VOLTAGE:
5600			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5601				   consumer->enable_count,
5602				   consumer->uA_load / 1000,
5603				   consumer->uA_load && !consumer->enable_count ?
5604				   '*' : ' ',
5605				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5606				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5607			break;
5608		case REGULATOR_CURRENT:
5609			break;
5610		}
5611
5612		seq_puts(s, "\n");
5613	}
5614
5615	summary_data.s = s;
5616	summary_data.level = level;
5617	summary_data.parent = rdev;
5618
5619	class_for_each_device(&regulator_class, NULL, &summary_data,
5620			      regulator_summary_show_children);
5621}
5622
5623struct summary_lock_data {
5624	struct ww_acquire_ctx *ww_ctx;
5625	struct regulator_dev **new_contended_rdev;
5626	struct regulator_dev **old_contended_rdev;
5627};
5628
5629static int regulator_summary_lock_one(struct device *dev, void *data)
5630{
5631	struct regulator_dev *rdev = dev_to_rdev(dev);
5632	struct summary_lock_data *lock_data = data;
5633	int ret = 0;
5634
5635	if (rdev != *lock_data->old_contended_rdev) {
5636		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5637
5638		if (ret == -EDEADLK)
5639			*lock_data->new_contended_rdev = rdev;
5640		else
5641			WARN_ON_ONCE(ret);
5642	} else {
5643		*lock_data->old_contended_rdev = NULL;
5644	}
5645
5646	return ret;
5647}
5648
5649static int regulator_summary_unlock_one(struct device *dev, void *data)
5650{
5651	struct regulator_dev *rdev = dev_to_rdev(dev);
5652	struct summary_lock_data *lock_data = data;
5653
5654	if (lock_data) {
5655		if (rdev == *lock_data->new_contended_rdev)
5656			return -EDEADLK;
5657	}
5658
5659	regulator_unlock(rdev);
5660
5661	return 0;
5662}
5663
5664static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5665				      struct regulator_dev **new_contended_rdev,
5666				      struct regulator_dev **old_contended_rdev)
5667{
5668	struct summary_lock_data lock_data;
5669	int ret;
5670
5671	lock_data.ww_ctx = ww_ctx;
5672	lock_data.new_contended_rdev = new_contended_rdev;
5673	lock_data.old_contended_rdev = old_contended_rdev;
5674
5675	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5676				    regulator_summary_lock_one);
5677	if (ret)
5678		class_for_each_device(&regulator_class, NULL, &lock_data,
5679				      regulator_summary_unlock_one);
5680
5681	return ret;
5682}
5683
5684static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5685{
5686	struct regulator_dev *new_contended_rdev = NULL;
5687	struct regulator_dev *old_contended_rdev = NULL;
5688	int err;
5689
5690	mutex_lock(&regulator_list_mutex);
5691
5692	ww_acquire_init(ww_ctx, &regulator_ww_class);
5693
5694	do {
5695		if (new_contended_rdev) {
5696			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5697			old_contended_rdev = new_contended_rdev;
5698			old_contended_rdev->ref_cnt++;
5699		}
5700
5701		err = regulator_summary_lock_all(ww_ctx,
5702						 &new_contended_rdev,
5703						 &old_contended_rdev);
5704
5705		if (old_contended_rdev)
5706			regulator_unlock(old_contended_rdev);
5707
5708	} while (err == -EDEADLK);
5709
5710	ww_acquire_done(ww_ctx);
5711}
5712
5713static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5714{
5715	class_for_each_device(&regulator_class, NULL, NULL,
5716			      regulator_summary_unlock_one);
5717	ww_acquire_fini(ww_ctx);
5718
5719	mutex_unlock(&regulator_list_mutex);
5720}
5721
5722static int regulator_summary_show_roots(struct device *dev, void *data)
5723{
5724	struct regulator_dev *rdev = dev_to_rdev(dev);
5725	struct seq_file *s = data;
5726
5727	if (!rdev->supply)
5728		regulator_summary_show_subtree(s, rdev, 0);
5729
5730	return 0;
5731}
5732
5733static int regulator_summary_show(struct seq_file *s, void *data)
5734{
5735	struct ww_acquire_ctx ww_ctx;
5736
5737	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5738	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5739
5740	regulator_summary_lock(&ww_ctx);
5741
5742	class_for_each_device(&regulator_class, NULL, s,
5743			      regulator_summary_show_roots);
5744
5745	regulator_summary_unlock(&ww_ctx);
5746
5747	return 0;
5748}
5749DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5750#endif /* CONFIG_DEBUG_FS */
 
 
 
 
 
 
 
 
 
 
 
 
 
5751
5752static int __init regulator_init(void)
5753{
5754	int ret;
5755
5756	ret = class_register(&regulator_class);
5757
5758	debugfs_root = debugfs_create_dir("regulator", NULL);
5759	if (!debugfs_root)
5760		pr_warn("regulator: Failed to create debugfs directory\n");
5761
5762#ifdef CONFIG_DEBUG_FS
5763	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5764			    &supply_map_fops);
5765
5766	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5767			    NULL, &regulator_summary_fops);
5768#endif
5769	regulator_dummy_init();
5770
5771	regulator_coupler_register(&generic_regulator_coupler);
5772
5773	return ret;
5774}
5775
5776/* init early to allow our consumers to complete system booting */
5777core_initcall(regulator_init);
5778
5779static int regulator_late_cleanup(struct device *dev, void *data)
5780{
5781	struct regulator_dev *rdev = dev_to_rdev(dev);
5782	const struct regulator_ops *ops = rdev->desc->ops;
5783	struct regulation_constraints *c = rdev->constraints;
5784	int enabled, ret;
5785
5786	if (c && c->always_on)
5787		return 0;
5788
5789	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5790		return 0;
5791
5792	regulator_lock(rdev);
5793
5794	if (rdev->use_count)
5795		goto unlock;
5796
5797	/* If we can't read the status assume it's on. */
5798	if (ops->is_enabled)
5799		enabled = ops->is_enabled(rdev);
5800	else
5801		enabled = 1;
5802
5803	if (!enabled)
5804		goto unlock;
5805
5806	if (have_full_constraints()) {
5807		/* We log since this may kill the system if it goes
5808		 * wrong. */
5809		rdev_info(rdev, "disabling\n");
5810		ret = _regulator_do_disable(rdev);
5811		if (ret != 0)
5812			rdev_err(rdev, "couldn't disable: %d\n", ret);
5813	} else {
5814		/* The intention is that in future we will
5815		 * assume that full constraints are provided
5816		 * so warn even if we aren't going to do
5817		 * anything here.
5818		 */
5819		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5820	}
5821
5822unlock:
5823	regulator_unlock(rdev);
5824
5825	return 0;
5826}
5827
5828static void regulator_init_complete_work_function(struct work_struct *work)
5829{
5830	/*
 
 
 
 
 
 
 
 
 
5831	 * Regulators may had failed to resolve their input supplies
5832	 * when were registered, either because the input supply was
5833	 * not registered yet or because its parent device was not
5834	 * bound yet. So attempt to resolve the input supplies for
5835	 * pending regulators before trying to disable unused ones.
5836	 */
5837	class_for_each_device(&regulator_class, NULL, NULL,
5838			      regulator_register_resolve_supply);
5839
5840	/* If we have a full configuration then disable any regulators
5841	 * we have permission to change the status for and which are
5842	 * not in use or always_on.  This is effectively the default
5843	 * for DT and ACPI as they have full constraints.
5844	 */
5845	class_for_each_device(&regulator_class, NULL, NULL,
5846			      regulator_late_cleanup);
5847}
5848
5849static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5850			    regulator_init_complete_work_function);
5851
5852static int __init regulator_init_complete(void)
5853{
5854	/*
5855	 * Since DT doesn't provide an idiomatic mechanism for
5856	 * enabling full constraints and since it's much more natural
5857	 * with DT to provide them just assume that a DT enabled
5858	 * system has full constraints.
5859	 */
5860	if (of_have_populated_dt())
5861		has_full_constraints = true;
5862
5863	/*
5864	 * We punt completion for an arbitrary amount of time since
5865	 * systems like distros will load many drivers from userspace
5866	 * so consumers might not always be ready yet, this is
5867	 * particularly an issue with laptops where this might bounce
5868	 * the display off then on.  Ideally we'd get a notification
5869	 * from userspace when this happens but we don't so just wait
5870	 * a bit and hope we waited long enough.  It'd be better if
5871	 * we'd only do this on systems that need it, and a kernel
5872	 * command line option might be useful.
5873	 */
5874	schedule_delayed_work(&regulator_init_complete_work,
5875			      msecs_to_jiffies(30000));
5876
5877	return 0;
5878}
5879late_initcall_sync(regulator_init_complete);
v4.17
   1/*
   2 * core.c  --  Voltage/Current Regulator framework.
   3 *
   4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
   5 * Copyright 2008 SlimLogic Ltd.
   6 *
   7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
   8 *
   9 *  This program is free software; you can redistribute  it and/or modify it
  10 *  under  the terms of  the GNU General  Public License as published by the
  11 *  Free Software Foundation;  either version 2 of the  License, or (at your
  12 *  option) any later version.
  13 *
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/init.h>
  18#include <linux/debugfs.h>
  19#include <linux/device.h>
  20#include <linux/slab.h>
  21#include <linux/async.h>
  22#include <linux/err.h>
  23#include <linux/mutex.h>
  24#include <linux/suspend.h>
  25#include <linux/delay.h>
  26#include <linux/gpio.h>
  27#include <linux/gpio/consumer.h>
  28#include <linux/of.h>
  29#include <linux/regmap.h>
  30#include <linux/regulator/of_regulator.h>
  31#include <linux/regulator/consumer.h>
 
  32#include <linux/regulator/driver.h>
  33#include <linux/regulator/machine.h>
  34#include <linux/module.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/regulator.h>
  38
  39#include "dummy.h"
  40#include "internal.h"
  41
  42#define rdev_crit(rdev, fmt, ...)					\
  43	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_err(rdev, fmt, ...)					\
  45	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46#define rdev_warn(rdev, fmt, ...)					\
  47	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  48#define rdev_info(rdev, fmt, ...)					\
  49	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  50#define rdev_dbg(rdev, fmt, ...)					\
  51	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  52
 
 
  53static DEFINE_MUTEX(regulator_list_mutex);
  54static LIST_HEAD(regulator_map_list);
  55static LIST_HEAD(regulator_ena_gpio_list);
  56static LIST_HEAD(regulator_supply_alias_list);
 
  57static bool has_full_constraints;
  58
  59static struct dentry *debugfs_root;
  60
  61/*
  62 * struct regulator_map
  63 *
  64 * Used to provide symbolic supply names to devices.
  65 */
  66struct regulator_map {
  67	struct list_head list;
  68	const char *dev_name;   /* The dev_name() for the consumer */
  69	const char *supply;
  70	struct regulator_dev *regulator;
  71};
  72
  73/*
  74 * struct regulator_enable_gpio
  75 *
  76 * Management for shared enable GPIO pin
  77 */
  78struct regulator_enable_gpio {
  79	struct list_head list;
  80	struct gpio_desc *gpiod;
  81	u32 enable_count;	/* a number of enabled shared GPIO */
  82	u32 request_count;	/* a number of requested shared GPIO */
  83	unsigned int ena_gpio_invert:1;
  84};
  85
  86/*
  87 * struct regulator_supply_alias
  88 *
  89 * Used to map lookups for a supply onto an alternative device.
  90 */
  91struct regulator_supply_alias {
  92	struct list_head list;
  93	struct device *src_dev;
  94	const char *src_supply;
  95	struct device *alias_dev;
  96	const char *alias_supply;
  97};
  98
  99static int _regulator_is_enabled(struct regulator_dev *rdev);
 100static int _regulator_disable(struct regulator_dev *rdev);
 101static int _regulator_get_voltage(struct regulator_dev *rdev);
 102static int _regulator_get_current_limit(struct regulator_dev *rdev);
 103static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
 104static int _notifier_call_chain(struct regulator_dev *rdev,
 105				  unsigned long event, void *data);
 106static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 107				     int min_uV, int max_uV);
 
 
 108static struct regulator *create_regulator(struct regulator_dev *rdev,
 109					  struct device *dev,
 110					  const char *supply_name);
 
 111static void _regulator_put(struct regulator *regulator);
 112
 113static const char *rdev_get_name(struct regulator_dev *rdev)
 114{
 115	if (rdev->constraints && rdev->constraints->name)
 116		return rdev->constraints->name;
 117	else if (rdev->desc->name)
 118		return rdev->desc->name;
 119	else
 120		return "";
 121}
 122
 123static bool have_full_constraints(void)
 124{
 125	return has_full_constraints || of_have_populated_dt();
 126}
 127
 128static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 129{
 130	if (!rdev->constraints) {
 131		rdev_err(rdev, "no constraints\n");
 132		return false;
 133	}
 134
 135	if (rdev->constraints->valid_ops_mask & ops)
 136		return true;
 137
 138	return false;
 139}
 140
 141static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 142{
 143	if (rdev && rdev->supply)
 144		return rdev->supply->rdev;
 145
 146	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147}
 
 148
 149/**
 150 * regulator_lock_supply - lock a regulator and its supplies
 151 * @rdev:         regulator source
 
 
 
 152 */
 153static void regulator_lock_supply(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154{
 
 155	int i;
 156
 157	for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
 158		mutex_lock_nested(&rdev->mutex, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159}
 160
 161/**
 162 * regulator_unlock_supply - unlock a regulator and its supplies
 163 * @rdev:         regulator source
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164 */
 165static void regulator_unlock_supply(struct regulator_dev *rdev)
 
 166{
 167	struct regulator *supply;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 168
 169	while (1) {
 170		mutex_unlock(&rdev->mutex);
 171		supply = rdev->supply;
 172
 173		if (!rdev->supply)
 174			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175
 176		rdev = supply->rdev;
 
 
 
 
 
 
 177	}
 
 
 
 
 
 178}
 179
 180/**
 181 * of_get_regulator - get a regulator device node based on supply name
 182 * @dev: Device pointer for the consumer (of regulator) device
 183 * @supply: regulator supply name
 184 *
 185 * Extract the regulator device node corresponding to the supply name.
 186 * returns the device node corresponding to the regulator if found, else
 187 * returns NULL.
 188 */
 189static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 190{
 191	struct device_node *regnode = NULL;
 192	char prop_name[32]; /* 32 is max size of property name */
 193
 194	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 195
 196	snprintf(prop_name, 32, "%s-supply", supply);
 197	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 198
 199	if (!regnode) {
 
 
 
 
 200		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 201				prop_name, dev->of_node);
 202		return NULL;
 203	}
 204	return regnode;
 205}
 206
 207/* Platform voltage constraint check */
 208static int regulator_check_voltage(struct regulator_dev *rdev,
 209				   int *min_uV, int *max_uV)
 210{
 211	BUG_ON(*min_uV > *max_uV);
 212
 213	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 214		rdev_err(rdev, "voltage operation not allowed\n");
 215		return -EPERM;
 216	}
 217
 218	if (*max_uV > rdev->constraints->max_uV)
 219		*max_uV = rdev->constraints->max_uV;
 220	if (*min_uV < rdev->constraints->min_uV)
 221		*min_uV = rdev->constraints->min_uV;
 222
 223	if (*min_uV > *max_uV) {
 224		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 225			 *min_uV, *max_uV);
 226		return -EINVAL;
 227	}
 228
 229	return 0;
 230}
 231
 232/* return 0 if the state is valid */
 233static int regulator_check_states(suspend_state_t state)
 234{
 235	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 236}
 237
 238/* Make sure we select a voltage that suits the needs of all
 239 * regulator consumers
 240 */
 241static int regulator_check_consumers(struct regulator_dev *rdev,
 242				     int *min_uV, int *max_uV,
 243				     suspend_state_t state)
 244{
 245	struct regulator *regulator;
 246	struct regulator_voltage *voltage;
 247
 248	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 249		voltage = &regulator->voltage[state];
 250		/*
 251		 * Assume consumers that didn't say anything are OK
 252		 * with anything in the constraint range.
 253		 */
 254		if (!voltage->min_uV && !voltage->max_uV)
 255			continue;
 256
 257		if (*max_uV > voltage->max_uV)
 258			*max_uV = voltage->max_uV;
 259		if (*min_uV < voltage->min_uV)
 260			*min_uV = voltage->min_uV;
 261	}
 262
 263	if (*min_uV > *max_uV) {
 264		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 265			*min_uV, *max_uV);
 266		return -EINVAL;
 267	}
 268
 269	return 0;
 270}
 271
 272/* current constraint check */
 273static int regulator_check_current_limit(struct regulator_dev *rdev,
 274					int *min_uA, int *max_uA)
 275{
 276	BUG_ON(*min_uA > *max_uA);
 277
 278	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 279		rdev_err(rdev, "current operation not allowed\n");
 280		return -EPERM;
 281	}
 282
 283	if (*max_uA > rdev->constraints->max_uA)
 284		*max_uA = rdev->constraints->max_uA;
 285	if (*min_uA < rdev->constraints->min_uA)
 286		*min_uA = rdev->constraints->min_uA;
 287
 288	if (*min_uA > *max_uA) {
 289		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 290			 *min_uA, *max_uA);
 291		return -EINVAL;
 292	}
 293
 294	return 0;
 295}
 296
 297/* operating mode constraint check */
 298static int regulator_mode_constrain(struct regulator_dev *rdev,
 299				    unsigned int *mode)
 300{
 301	switch (*mode) {
 302	case REGULATOR_MODE_FAST:
 303	case REGULATOR_MODE_NORMAL:
 304	case REGULATOR_MODE_IDLE:
 305	case REGULATOR_MODE_STANDBY:
 306		break;
 307	default:
 308		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 309		return -EINVAL;
 310	}
 311
 312	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 313		rdev_err(rdev, "mode operation not allowed\n");
 314		return -EPERM;
 315	}
 316
 317	/* The modes are bitmasks, the most power hungry modes having
 318	 * the lowest values. If the requested mode isn't supported
 319	 * try higher modes. */
 320	while (*mode) {
 321		if (rdev->constraints->valid_modes_mask & *mode)
 322			return 0;
 323		*mode /= 2;
 324	}
 325
 326	return -EINVAL;
 327}
 328
 329static inline struct regulator_state *
 330regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 331{
 332	if (rdev->constraints == NULL)
 333		return NULL;
 334
 335	switch (state) {
 336	case PM_SUSPEND_STANDBY:
 337		return &rdev->constraints->state_standby;
 338	case PM_SUSPEND_MEM:
 339		return &rdev->constraints->state_mem;
 340	case PM_SUSPEND_MAX:
 341		return &rdev->constraints->state_disk;
 342	default:
 343		return NULL;
 344	}
 345}
 346
 347static ssize_t regulator_uV_show(struct device *dev,
 348				struct device_attribute *attr, char *buf)
 349{
 350	struct regulator_dev *rdev = dev_get_drvdata(dev);
 351	ssize_t ret;
 352
 353	mutex_lock(&rdev->mutex);
 354	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
 355	mutex_unlock(&rdev->mutex);
 356
 357	return ret;
 
 
 358}
 359static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 360
 361static ssize_t regulator_uA_show(struct device *dev,
 362				struct device_attribute *attr, char *buf)
 363{
 364	struct regulator_dev *rdev = dev_get_drvdata(dev);
 365
 366	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 367}
 368static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 369
 370static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 371			 char *buf)
 372{
 373	struct regulator_dev *rdev = dev_get_drvdata(dev);
 374
 375	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 376}
 377static DEVICE_ATTR_RO(name);
 378
 379static ssize_t regulator_print_opmode(char *buf, int mode)
 380{
 381	switch (mode) {
 382	case REGULATOR_MODE_FAST:
 383		return sprintf(buf, "fast\n");
 384	case REGULATOR_MODE_NORMAL:
 385		return sprintf(buf, "normal\n");
 386	case REGULATOR_MODE_IDLE:
 387		return sprintf(buf, "idle\n");
 388	case REGULATOR_MODE_STANDBY:
 389		return sprintf(buf, "standby\n");
 390	}
 391	return sprintf(buf, "unknown\n");
 
 
 
 
 
 392}
 393
 394static ssize_t regulator_opmode_show(struct device *dev,
 395				    struct device_attribute *attr, char *buf)
 396{
 397	struct regulator_dev *rdev = dev_get_drvdata(dev);
 398
 399	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 400}
 401static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 402
 403static ssize_t regulator_print_state(char *buf, int state)
 404{
 405	if (state > 0)
 406		return sprintf(buf, "enabled\n");
 407	else if (state == 0)
 408		return sprintf(buf, "disabled\n");
 409	else
 410		return sprintf(buf, "unknown\n");
 411}
 412
 413static ssize_t regulator_state_show(struct device *dev,
 414				   struct device_attribute *attr, char *buf)
 415{
 416	struct regulator_dev *rdev = dev_get_drvdata(dev);
 417	ssize_t ret;
 418
 419	mutex_lock(&rdev->mutex);
 420	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 421	mutex_unlock(&rdev->mutex);
 422
 423	return ret;
 424}
 425static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 426
 427static ssize_t regulator_status_show(struct device *dev,
 428				   struct device_attribute *attr, char *buf)
 429{
 430	struct regulator_dev *rdev = dev_get_drvdata(dev);
 431	int status;
 432	char *label;
 433
 434	status = rdev->desc->ops->get_status(rdev);
 435	if (status < 0)
 436		return status;
 437
 438	switch (status) {
 439	case REGULATOR_STATUS_OFF:
 440		label = "off";
 441		break;
 442	case REGULATOR_STATUS_ON:
 443		label = "on";
 444		break;
 445	case REGULATOR_STATUS_ERROR:
 446		label = "error";
 447		break;
 448	case REGULATOR_STATUS_FAST:
 449		label = "fast";
 450		break;
 451	case REGULATOR_STATUS_NORMAL:
 452		label = "normal";
 453		break;
 454	case REGULATOR_STATUS_IDLE:
 455		label = "idle";
 456		break;
 457	case REGULATOR_STATUS_STANDBY:
 458		label = "standby";
 459		break;
 460	case REGULATOR_STATUS_BYPASS:
 461		label = "bypass";
 462		break;
 463	case REGULATOR_STATUS_UNDEFINED:
 464		label = "undefined";
 465		break;
 466	default:
 467		return -ERANGE;
 468	}
 469
 470	return sprintf(buf, "%s\n", label);
 471}
 472static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 473
 474static ssize_t regulator_min_uA_show(struct device *dev,
 475				    struct device_attribute *attr, char *buf)
 476{
 477	struct regulator_dev *rdev = dev_get_drvdata(dev);
 478
 479	if (!rdev->constraints)
 480		return sprintf(buf, "constraint not defined\n");
 481
 482	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 483}
 484static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 485
 486static ssize_t regulator_max_uA_show(struct device *dev,
 487				    struct device_attribute *attr, char *buf)
 488{
 489	struct regulator_dev *rdev = dev_get_drvdata(dev);
 490
 491	if (!rdev->constraints)
 492		return sprintf(buf, "constraint not defined\n");
 493
 494	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 495}
 496static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 497
 498static ssize_t regulator_min_uV_show(struct device *dev,
 499				    struct device_attribute *attr, char *buf)
 500{
 501	struct regulator_dev *rdev = dev_get_drvdata(dev);
 502
 503	if (!rdev->constraints)
 504		return sprintf(buf, "constraint not defined\n");
 505
 506	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 507}
 508static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 509
 510static ssize_t regulator_max_uV_show(struct device *dev,
 511				    struct device_attribute *attr, char *buf)
 512{
 513	struct regulator_dev *rdev = dev_get_drvdata(dev);
 514
 515	if (!rdev->constraints)
 516		return sprintf(buf, "constraint not defined\n");
 517
 518	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 519}
 520static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 521
 522static ssize_t regulator_total_uA_show(struct device *dev,
 523				      struct device_attribute *attr, char *buf)
 524{
 525	struct regulator_dev *rdev = dev_get_drvdata(dev);
 526	struct regulator *regulator;
 527	int uA = 0;
 528
 529	mutex_lock(&rdev->mutex);
 530	list_for_each_entry(regulator, &rdev->consumer_list, list)
 531		uA += regulator->uA_load;
 532	mutex_unlock(&rdev->mutex);
 
 
 533	return sprintf(buf, "%d\n", uA);
 534}
 535static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 536
 537static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 538			      char *buf)
 539{
 540	struct regulator_dev *rdev = dev_get_drvdata(dev);
 541	return sprintf(buf, "%d\n", rdev->use_count);
 542}
 543static DEVICE_ATTR_RO(num_users);
 544
 545static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 546			 char *buf)
 547{
 548	struct regulator_dev *rdev = dev_get_drvdata(dev);
 549
 550	switch (rdev->desc->type) {
 551	case REGULATOR_VOLTAGE:
 552		return sprintf(buf, "voltage\n");
 553	case REGULATOR_CURRENT:
 554		return sprintf(buf, "current\n");
 555	}
 556	return sprintf(buf, "unknown\n");
 557}
 558static DEVICE_ATTR_RO(type);
 559
 560static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 561				struct device_attribute *attr, char *buf)
 562{
 563	struct regulator_dev *rdev = dev_get_drvdata(dev);
 564
 565	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 566}
 567static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 568		regulator_suspend_mem_uV_show, NULL);
 569
 570static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 571				struct device_attribute *attr, char *buf)
 572{
 573	struct regulator_dev *rdev = dev_get_drvdata(dev);
 574
 575	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 576}
 577static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 578		regulator_suspend_disk_uV_show, NULL);
 579
 580static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 581				struct device_attribute *attr, char *buf)
 582{
 583	struct regulator_dev *rdev = dev_get_drvdata(dev);
 584
 585	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 586}
 587static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 588		regulator_suspend_standby_uV_show, NULL);
 589
 590static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 591				struct device_attribute *attr, char *buf)
 592{
 593	struct regulator_dev *rdev = dev_get_drvdata(dev);
 594
 595	return regulator_print_opmode(buf,
 596		rdev->constraints->state_mem.mode);
 597}
 598static DEVICE_ATTR(suspend_mem_mode, 0444,
 599		regulator_suspend_mem_mode_show, NULL);
 600
 601static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 602				struct device_attribute *attr, char *buf)
 603{
 604	struct regulator_dev *rdev = dev_get_drvdata(dev);
 605
 606	return regulator_print_opmode(buf,
 607		rdev->constraints->state_disk.mode);
 608}
 609static DEVICE_ATTR(suspend_disk_mode, 0444,
 610		regulator_suspend_disk_mode_show, NULL);
 611
 612static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 613				struct device_attribute *attr, char *buf)
 614{
 615	struct regulator_dev *rdev = dev_get_drvdata(dev);
 616
 617	return regulator_print_opmode(buf,
 618		rdev->constraints->state_standby.mode);
 619}
 620static DEVICE_ATTR(suspend_standby_mode, 0444,
 621		regulator_suspend_standby_mode_show, NULL);
 622
 623static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 624				   struct device_attribute *attr, char *buf)
 625{
 626	struct regulator_dev *rdev = dev_get_drvdata(dev);
 627
 628	return regulator_print_state(buf,
 629			rdev->constraints->state_mem.enabled);
 630}
 631static DEVICE_ATTR(suspend_mem_state, 0444,
 632		regulator_suspend_mem_state_show, NULL);
 633
 634static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 635				   struct device_attribute *attr, char *buf)
 636{
 637	struct regulator_dev *rdev = dev_get_drvdata(dev);
 638
 639	return regulator_print_state(buf,
 640			rdev->constraints->state_disk.enabled);
 641}
 642static DEVICE_ATTR(suspend_disk_state, 0444,
 643		regulator_suspend_disk_state_show, NULL);
 644
 645static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 646				   struct device_attribute *attr, char *buf)
 647{
 648	struct regulator_dev *rdev = dev_get_drvdata(dev);
 649
 650	return regulator_print_state(buf,
 651			rdev->constraints->state_standby.enabled);
 652}
 653static DEVICE_ATTR(suspend_standby_state, 0444,
 654		regulator_suspend_standby_state_show, NULL);
 655
 656static ssize_t regulator_bypass_show(struct device *dev,
 657				     struct device_attribute *attr, char *buf)
 658{
 659	struct regulator_dev *rdev = dev_get_drvdata(dev);
 660	const char *report;
 661	bool bypass;
 662	int ret;
 663
 664	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 665
 666	if (ret != 0)
 667		report = "unknown";
 668	else if (bypass)
 669		report = "enabled";
 670	else
 671		report = "disabled";
 672
 673	return sprintf(buf, "%s\n", report);
 674}
 675static DEVICE_ATTR(bypass, 0444,
 676		   regulator_bypass_show, NULL);
 677
 678/* Calculate the new optimum regulator operating mode based on the new total
 679 * consumer load. All locks held by caller */
 680static int drms_uA_update(struct regulator_dev *rdev)
 681{
 682	struct regulator *sibling;
 683	int current_uA = 0, output_uV, input_uV, err;
 684	unsigned int mode;
 685
 686	lockdep_assert_held_once(&rdev->mutex);
 687
 688	/*
 689	 * first check to see if we can set modes at all, otherwise just
 690	 * tell the consumer everything is OK.
 691	 */
 692	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
 
 693		return 0;
 
 694
 695	if (!rdev->desc->ops->get_optimum_mode &&
 696	    !rdev->desc->ops->set_load)
 697		return 0;
 698
 699	if (!rdev->desc->ops->set_mode &&
 700	    !rdev->desc->ops->set_load)
 701		return -EINVAL;
 702
 703	/* calc total requested load */
 704	list_for_each_entry(sibling, &rdev->consumer_list, list)
 705		current_uA += sibling->uA_load;
 
 
 706
 707	current_uA += rdev->constraints->system_load;
 708
 709	if (rdev->desc->ops->set_load) {
 710		/* set the optimum mode for our new total regulator load */
 711		err = rdev->desc->ops->set_load(rdev, current_uA);
 712		if (err < 0)
 713			rdev_err(rdev, "failed to set load %d\n", current_uA);
 714	} else {
 715		/* get output voltage */
 716		output_uV = _regulator_get_voltage(rdev);
 717		if (output_uV <= 0) {
 718			rdev_err(rdev, "invalid output voltage found\n");
 719			return -EINVAL;
 720		}
 721
 722		/* get input voltage */
 723		input_uV = 0;
 724		if (rdev->supply)
 725			input_uV = regulator_get_voltage(rdev->supply);
 726		if (input_uV <= 0)
 727			input_uV = rdev->constraints->input_uV;
 728		if (input_uV <= 0) {
 729			rdev_err(rdev, "invalid input voltage found\n");
 730			return -EINVAL;
 731		}
 732
 733		/* now get the optimum mode for our new total regulator load */
 734		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 735							 output_uV, current_uA);
 736
 737		/* check the new mode is allowed */
 738		err = regulator_mode_constrain(rdev, &mode);
 739		if (err < 0) {
 740			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 741				 current_uA, input_uV, output_uV);
 742			return err;
 743		}
 744
 745		err = rdev->desc->ops->set_mode(rdev, mode);
 746		if (err < 0)
 747			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 748	}
 749
 750	return err;
 751}
 752
 753static int suspend_set_state(struct regulator_dev *rdev,
 754				    suspend_state_t state)
 755{
 756	int ret = 0;
 757	struct regulator_state *rstate;
 758
 759	rstate = regulator_get_suspend_state(rdev, state);
 760	if (rstate == NULL)
 761		return 0;
 762
 763	/* If we have no suspend mode configration don't set anything;
 764	 * only warn if the driver implements set_suspend_voltage or
 765	 * set_suspend_mode callback.
 766	 */
 767	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 768	    rstate->enabled != DISABLE_IN_SUSPEND) {
 769		if (rdev->desc->ops->set_suspend_voltage ||
 770		    rdev->desc->ops->set_suspend_mode)
 771			rdev_warn(rdev, "No configuration\n");
 772		return 0;
 773	}
 774
 775	if (rstate->enabled == ENABLE_IN_SUSPEND &&
 776		rdev->desc->ops->set_suspend_enable)
 777		ret = rdev->desc->ops->set_suspend_enable(rdev);
 778	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
 779		rdev->desc->ops->set_suspend_disable)
 780		ret = rdev->desc->ops->set_suspend_disable(rdev);
 781	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
 782		ret = 0;
 783
 784	if (ret < 0) {
 785		rdev_err(rdev, "failed to enabled/disable\n");
 786		return ret;
 787	}
 788
 789	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
 790		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
 791		if (ret < 0) {
 792			rdev_err(rdev, "failed to set voltage\n");
 793			return ret;
 794		}
 795	}
 796
 797	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
 798		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
 799		if (ret < 0) {
 800			rdev_err(rdev, "failed to set mode\n");
 801			return ret;
 802		}
 803	}
 804
 805	return ret;
 806}
 807
 808static void print_constraints(struct regulator_dev *rdev)
 809{
 810	struct regulation_constraints *constraints = rdev->constraints;
 811	char buf[160] = "";
 812	size_t len = sizeof(buf) - 1;
 813	int count = 0;
 814	int ret;
 815
 816	if (constraints->min_uV && constraints->max_uV) {
 817		if (constraints->min_uV == constraints->max_uV)
 818			count += scnprintf(buf + count, len - count, "%d mV ",
 819					   constraints->min_uV / 1000);
 820		else
 821			count += scnprintf(buf + count, len - count,
 822					   "%d <--> %d mV ",
 823					   constraints->min_uV / 1000,
 824					   constraints->max_uV / 1000);
 825	}
 826
 827	if (!constraints->min_uV ||
 828	    constraints->min_uV != constraints->max_uV) {
 829		ret = _regulator_get_voltage(rdev);
 830		if (ret > 0)
 831			count += scnprintf(buf + count, len - count,
 832					   "at %d mV ", ret / 1000);
 833	}
 834
 835	if (constraints->uV_offset)
 836		count += scnprintf(buf + count, len - count, "%dmV offset ",
 837				   constraints->uV_offset / 1000);
 838
 839	if (constraints->min_uA && constraints->max_uA) {
 840		if (constraints->min_uA == constraints->max_uA)
 841			count += scnprintf(buf + count, len - count, "%d mA ",
 842					   constraints->min_uA / 1000);
 843		else
 844			count += scnprintf(buf + count, len - count,
 845					   "%d <--> %d mA ",
 846					   constraints->min_uA / 1000,
 847					   constraints->max_uA / 1000);
 848	}
 849
 850	if (!constraints->min_uA ||
 851	    constraints->min_uA != constraints->max_uA) {
 852		ret = _regulator_get_current_limit(rdev);
 853		if (ret > 0)
 854			count += scnprintf(buf + count, len - count,
 855					   "at %d mA ", ret / 1000);
 856	}
 857
 858	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
 859		count += scnprintf(buf + count, len - count, "fast ");
 860	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
 861		count += scnprintf(buf + count, len - count, "normal ");
 862	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
 863		count += scnprintf(buf + count, len - count, "idle ");
 864	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
 865		count += scnprintf(buf + count, len - count, "standby");
 866
 867	if (!count)
 868		scnprintf(buf, len, "no parameters");
 869
 870	rdev_dbg(rdev, "%s\n", buf);
 871
 872	if ((constraints->min_uV != constraints->max_uV) &&
 873	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
 874		rdev_warn(rdev,
 875			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
 876}
 877
 878static int machine_constraints_voltage(struct regulator_dev *rdev,
 879	struct regulation_constraints *constraints)
 880{
 881	const struct regulator_ops *ops = rdev->desc->ops;
 882	int ret;
 883
 884	/* do we need to apply the constraint voltage */
 885	if (rdev->constraints->apply_uV &&
 886	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
 887		int target_min, target_max;
 888		int current_uV = _regulator_get_voltage(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 889		if (current_uV < 0) {
 890			rdev_err(rdev,
 891				 "failed to get the current voltage(%d)\n",
 892				 current_uV);
 893			return current_uV;
 894		}
 895
 896		/*
 897		 * If we're below the minimum voltage move up to the
 898		 * minimum voltage, if we're above the maximum voltage
 899		 * then move down to the maximum.
 900		 */
 901		target_min = current_uV;
 902		target_max = current_uV;
 903
 904		if (current_uV < rdev->constraints->min_uV) {
 905			target_min = rdev->constraints->min_uV;
 906			target_max = rdev->constraints->min_uV;
 907		}
 908
 909		if (current_uV > rdev->constraints->max_uV) {
 910			target_min = rdev->constraints->max_uV;
 911			target_max = rdev->constraints->max_uV;
 912		}
 913
 914		if (target_min != current_uV || target_max != current_uV) {
 915			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
 916				  current_uV, target_min, target_max);
 917			ret = _regulator_do_set_voltage(
 918				rdev, target_min, target_max);
 919			if (ret < 0) {
 920				rdev_err(rdev,
 921					"failed to apply %d-%duV constraint(%d)\n",
 922					target_min, target_max, ret);
 923				return ret;
 924			}
 925		}
 926	}
 927
 928	/* constrain machine-level voltage specs to fit
 929	 * the actual range supported by this regulator.
 930	 */
 931	if (ops->list_voltage && rdev->desc->n_voltages) {
 932		int	count = rdev->desc->n_voltages;
 933		int	i;
 934		int	min_uV = INT_MAX;
 935		int	max_uV = INT_MIN;
 936		int	cmin = constraints->min_uV;
 937		int	cmax = constraints->max_uV;
 938
 939		/* it's safe to autoconfigure fixed-voltage supplies
 940		   and the constraints are used by list_voltage. */
 941		if (count == 1 && !cmin) {
 942			cmin = 1;
 943			cmax = INT_MAX;
 944			constraints->min_uV = cmin;
 945			constraints->max_uV = cmax;
 946		}
 947
 948		/* voltage constraints are optional */
 949		if ((cmin == 0) && (cmax == 0))
 950			return 0;
 951
 952		/* else require explicit machine-level constraints */
 953		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
 954			rdev_err(rdev, "invalid voltage constraints\n");
 955			return -EINVAL;
 956		}
 957
 
 
 
 
 958		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
 959		for (i = 0; i < count; i++) {
 960			int	value;
 961
 962			value = ops->list_voltage(rdev, i);
 963			if (value <= 0)
 964				continue;
 965
 966			/* maybe adjust [min_uV..max_uV] */
 967			if (value >= cmin && value < min_uV)
 968				min_uV = value;
 969			if (value <= cmax && value > max_uV)
 970				max_uV = value;
 971		}
 972
 973		/* final: [min_uV..max_uV] valid iff constraints valid */
 974		if (max_uV < min_uV) {
 975			rdev_err(rdev,
 976				 "unsupportable voltage constraints %u-%uuV\n",
 977				 min_uV, max_uV);
 978			return -EINVAL;
 979		}
 980
 981		/* use regulator's subset of machine constraints */
 982		if (constraints->min_uV < min_uV) {
 983			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
 984				 constraints->min_uV, min_uV);
 985			constraints->min_uV = min_uV;
 986		}
 987		if (constraints->max_uV > max_uV) {
 988			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
 989				 constraints->max_uV, max_uV);
 990			constraints->max_uV = max_uV;
 991		}
 992	}
 993
 994	return 0;
 995}
 996
 997static int machine_constraints_current(struct regulator_dev *rdev,
 998	struct regulation_constraints *constraints)
 999{
1000	const struct regulator_ops *ops = rdev->desc->ops;
1001	int ret;
1002
1003	if (!constraints->min_uA && !constraints->max_uA)
1004		return 0;
1005
1006	if (constraints->min_uA > constraints->max_uA) {
1007		rdev_err(rdev, "Invalid current constraints\n");
1008		return -EINVAL;
1009	}
1010
1011	if (!ops->set_current_limit || !ops->get_current_limit) {
1012		rdev_warn(rdev, "Operation of current configuration missing\n");
1013		return 0;
1014	}
1015
1016	/* Set regulator current in constraints range */
1017	ret = ops->set_current_limit(rdev, constraints->min_uA,
1018			constraints->max_uA);
1019	if (ret < 0) {
1020		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1021		return ret;
1022	}
1023
1024	return 0;
1025}
1026
1027static int _regulator_do_enable(struct regulator_dev *rdev);
1028
1029/**
1030 * set_machine_constraints - sets regulator constraints
1031 * @rdev: regulator source
1032 * @constraints: constraints to apply
1033 *
1034 * Allows platform initialisation code to define and constrain
1035 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1036 * Constraints *must* be set by platform code in order for some
1037 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1038 * set_mode.
1039 */
1040static int set_machine_constraints(struct regulator_dev *rdev,
1041	const struct regulation_constraints *constraints)
1042{
1043	int ret = 0;
1044	const struct regulator_ops *ops = rdev->desc->ops;
1045
1046	if (constraints)
1047		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1048					    GFP_KERNEL);
1049	else
1050		rdev->constraints = kzalloc(sizeof(*constraints),
1051					    GFP_KERNEL);
1052	if (!rdev->constraints)
1053		return -ENOMEM;
1054
1055	ret = machine_constraints_voltage(rdev, rdev->constraints);
1056	if (ret != 0)
1057		return ret;
1058
1059	ret = machine_constraints_current(rdev, rdev->constraints);
1060	if (ret != 0)
1061		return ret;
1062
1063	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1064		ret = ops->set_input_current_limit(rdev,
1065						   rdev->constraints->ilim_uA);
1066		if (ret < 0) {
1067			rdev_err(rdev, "failed to set input limit\n");
1068			return ret;
1069		}
1070	}
1071
1072	/* do we need to setup our suspend state */
1073	if (rdev->constraints->initial_state) {
1074		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1075		if (ret < 0) {
1076			rdev_err(rdev, "failed to set suspend state\n");
1077			return ret;
1078		}
1079	}
1080
1081	if (rdev->constraints->initial_mode) {
1082		if (!ops->set_mode) {
1083			rdev_err(rdev, "no set_mode operation\n");
1084			return -EINVAL;
1085		}
1086
1087		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1088		if (ret < 0) {
1089			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1090			return ret;
1091		}
1092	}
1093
1094	/* If the constraints say the regulator should be on at this point
1095	 * and we have control then make sure it is enabled.
1096	 */
1097	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1098		ret = _regulator_do_enable(rdev);
1099		if (ret < 0 && ret != -EINVAL) {
1100			rdev_err(rdev, "failed to enable\n");
1101			return ret;
1102		}
1103	}
1104
1105	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1106		&& ops->set_ramp_delay) {
1107		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1108		if (ret < 0) {
1109			rdev_err(rdev, "failed to set ramp_delay\n");
1110			return ret;
1111		}
1112	}
1113
1114	if (rdev->constraints->pull_down && ops->set_pull_down) {
1115		ret = ops->set_pull_down(rdev);
1116		if (ret < 0) {
1117			rdev_err(rdev, "failed to set pull down\n");
1118			return ret;
1119		}
1120	}
1121
1122	if (rdev->constraints->soft_start && ops->set_soft_start) {
1123		ret = ops->set_soft_start(rdev);
1124		if (ret < 0) {
1125			rdev_err(rdev, "failed to set soft start\n");
1126			return ret;
1127		}
1128	}
1129
1130	if (rdev->constraints->over_current_protection
1131		&& ops->set_over_current_protection) {
1132		ret = ops->set_over_current_protection(rdev);
1133		if (ret < 0) {
1134			rdev_err(rdev, "failed to set over current protection\n");
1135			return ret;
1136		}
1137	}
1138
1139	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1140		bool ad_state = (rdev->constraints->active_discharge ==
1141			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1142
1143		ret = ops->set_active_discharge(rdev, ad_state);
1144		if (ret < 0) {
1145			rdev_err(rdev, "failed to set active discharge\n");
1146			return ret;
1147		}
1148	}
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150	print_constraints(rdev);
1151	return 0;
1152}
1153
1154/**
1155 * set_supply - set regulator supply regulator
1156 * @rdev: regulator name
1157 * @supply_rdev: supply regulator name
1158 *
1159 * Called by platform initialisation code to set the supply regulator for this
1160 * regulator. This ensures that a regulators supply will also be enabled by the
1161 * core if it's child is enabled.
1162 */
1163static int set_supply(struct regulator_dev *rdev,
1164		      struct regulator_dev *supply_rdev)
1165{
1166	int err;
1167
1168	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1169
1170	if (!try_module_get(supply_rdev->owner))
1171		return -ENODEV;
1172
1173	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1174	if (rdev->supply == NULL) {
1175		err = -ENOMEM;
1176		return err;
1177	}
1178	supply_rdev->open_count++;
1179
1180	return 0;
1181}
1182
1183/**
1184 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1185 * @rdev:         regulator source
1186 * @consumer_dev_name: dev_name() string for device supply applies to
1187 * @supply:       symbolic name for supply
1188 *
1189 * Allows platform initialisation code to map physical regulator
1190 * sources to symbolic names for supplies for use by devices.  Devices
1191 * should use these symbolic names to request regulators, avoiding the
1192 * need to provide board-specific regulator names as platform data.
1193 */
1194static int set_consumer_device_supply(struct regulator_dev *rdev,
1195				      const char *consumer_dev_name,
1196				      const char *supply)
1197{
1198	struct regulator_map *node;
1199	int has_dev;
1200
1201	if (supply == NULL)
1202		return -EINVAL;
1203
1204	if (consumer_dev_name != NULL)
1205		has_dev = 1;
1206	else
1207		has_dev = 0;
1208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209	list_for_each_entry(node, &regulator_map_list, list) {
1210		if (node->dev_name && consumer_dev_name) {
1211			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1212				continue;
1213		} else if (node->dev_name || consumer_dev_name) {
1214			continue;
1215		}
1216
1217		if (strcmp(node->supply, supply) != 0)
1218			continue;
1219
1220		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1221			 consumer_dev_name,
1222			 dev_name(&node->regulator->dev),
1223			 node->regulator->desc->name,
1224			 supply,
1225			 dev_name(&rdev->dev), rdev_get_name(rdev));
1226		return -EBUSY;
1227	}
1228
1229	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1230	if (node == NULL)
1231		return -ENOMEM;
1232
1233	node->regulator = rdev;
1234	node->supply = supply;
1235
1236	if (has_dev) {
1237		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1238		if (node->dev_name == NULL) {
1239			kfree(node);
1240			return -ENOMEM;
1241		}
1242	}
1243
1244	list_add(&node->list, &regulator_map_list);
1245	return 0;
1246}
1247
1248static void unset_regulator_supplies(struct regulator_dev *rdev)
1249{
1250	struct regulator_map *node, *n;
1251
1252	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1253		if (rdev == node->regulator) {
1254			list_del(&node->list);
1255			kfree(node->dev_name);
1256			kfree(node);
1257		}
1258	}
1259}
1260
1261#ifdef CONFIG_DEBUG_FS
1262static ssize_t constraint_flags_read_file(struct file *file,
1263					  char __user *user_buf,
1264					  size_t count, loff_t *ppos)
1265{
1266	const struct regulator *regulator = file->private_data;
1267	const struct regulation_constraints *c = regulator->rdev->constraints;
1268	char *buf;
1269	ssize_t ret;
1270
1271	if (!c)
1272		return 0;
1273
1274	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1275	if (!buf)
1276		return -ENOMEM;
1277
1278	ret = snprintf(buf, PAGE_SIZE,
1279			"always_on: %u\n"
1280			"boot_on: %u\n"
1281			"apply_uV: %u\n"
1282			"ramp_disable: %u\n"
1283			"soft_start: %u\n"
1284			"pull_down: %u\n"
1285			"over_current_protection: %u\n",
1286			c->always_on,
1287			c->boot_on,
1288			c->apply_uV,
1289			c->ramp_disable,
1290			c->soft_start,
1291			c->pull_down,
1292			c->over_current_protection);
1293
1294	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1295	kfree(buf);
1296
1297	return ret;
1298}
1299
1300#endif
1301
1302static const struct file_operations constraint_flags_fops = {
1303#ifdef CONFIG_DEBUG_FS
1304	.open = simple_open,
1305	.read = constraint_flags_read_file,
1306	.llseek = default_llseek,
1307#endif
1308};
1309
1310#define REG_STR_SIZE	64
1311
1312static struct regulator *create_regulator(struct regulator_dev *rdev,
1313					  struct device *dev,
1314					  const char *supply_name)
1315{
1316	struct regulator *regulator;
1317	char buf[REG_STR_SIZE];
1318	int err, size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319
1320	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1321	if (regulator == NULL)
 
1322		return NULL;
 
1323
1324	mutex_lock(&rdev->mutex);
1325	regulator->rdev = rdev;
 
 
 
1326	list_add(&regulator->list, &rdev->consumer_list);
 
1327
1328	if (dev) {
1329		regulator->dev = dev;
1330
1331		/* Add a link to the device sysfs entry */
1332		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1333				dev->kobj.name, supply_name);
1334		if (size >= REG_STR_SIZE)
1335			goto overflow_err;
1336
1337		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1338		if (regulator->supply_name == NULL)
1339			goto overflow_err;
1340
1341		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1342					buf);
1343		if (err) {
1344			rdev_dbg(rdev, "could not add device link %s err %d\n",
1345				  dev->kobj.name, err);
1346			/* non-fatal */
1347		}
1348	} else {
1349		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1350		if (regulator->supply_name == NULL)
1351			goto overflow_err;
1352	}
1353
1354	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1355						rdev->debugfs);
1356	if (!regulator->debugfs) {
1357		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1358	} else {
1359		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1360				   &regulator->uA_load);
1361		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1362				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1363		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1364				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1365		debugfs_create_file("constraint_flags", 0444,
1366				    regulator->debugfs, regulator,
1367				    &constraint_flags_fops);
1368	}
1369
1370	/*
1371	 * Check now if the regulator is an always on regulator - if
1372	 * it is then we don't need to do nearly so much work for
1373	 * enable/disable calls.
1374	 */
1375	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1376	    _regulator_is_enabled(rdev))
1377		regulator->always_on = true;
1378
1379	mutex_unlock(&rdev->mutex);
1380	return regulator;
1381overflow_err:
1382	list_del(&regulator->list);
1383	kfree(regulator);
1384	mutex_unlock(&rdev->mutex);
1385	return NULL;
1386}
1387
1388static int _regulator_get_enable_time(struct regulator_dev *rdev)
1389{
1390	if (rdev->constraints && rdev->constraints->enable_time)
1391		return rdev->constraints->enable_time;
1392	if (!rdev->desc->ops->enable_time)
1393		return rdev->desc->enable_time;
1394	return rdev->desc->ops->enable_time(rdev);
1395}
1396
1397static struct regulator_supply_alias *regulator_find_supply_alias(
1398		struct device *dev, const char *supply)
1399{
1400	struct regulator_supply_alias *map;
1401
1402	list_for_each_entry(map, &regulator_supply_alias_list, list)
1403		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1404			return map;
1405
1406	return NULL;
1407}
1408
1409static void regulator_supply_alias(struct device **dev, const char **supply)
1410{
1411	struct regulator_supply_alias *map;
1412
1413	map = regulator_find_supply_alias(*dev, *supply);
1414	if (map) {
1415		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1416				*supply, map->alias_supply,
1417				dev_name(map->alias_dev));
1418		*dev = map->alias_dev;
1419		*supply = map->alias_supply;
1420	}
1421}
1422
1423static int regulator_match(struct device *dev, const void *data)
1424{
1425	struct regulator_dev *r = dev_to_rdev(dev);
1426
1427	return strcmp(rdev_get_name(r), data) == 0;
1428}
1429
1430static struct regulator_dev *regulator_lookup_by_name(const char *name)
1431{
1432	struct device *dev;
1433
1434	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1435
1436	return dev ? dev_to_rdev(dev) : NULL;
1437}
1438
1439/**
1440 * regulator_dev_lookup - lookup a regulator device.
1441 * @dev: device for regulator "consumer".
1442 * @supply: Supply name or regulator ID.
1443 *
1444 * If successful, returns a struct regulator_dev that corresponds to the name
1445 * @supply and with the embedded struct device refcount incremented by one.
1446 * The refcount must be dropped by calling put_device().
1447 * On failure one of the following ERR-PTR-encoded values is returned:
1448 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1449 * in the future.
1450 */
1451static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1452						  const char *supply)
1453{
1454	struct regulator_dev *r = NULL;
1455	struct device_node *node;
1456	struct regulator_map *map;
1457	const char *devname = NULL;
1458
1459	regulator_supply_alias(&dev, &supply);
1460
1461	/* first do a dt based lookup */
1462	if (dev && dev->of_node) {
1463		node = of_get_regulator(dev, supply);
1464		if (node) {
1465			r = of_find_regulator_by_node(node);
1466			if (r)
1467				return r;
1468
1469			/*
1470			 * We have a node, but there is no device.
1471			 * assume it has not registered yet.
1472			 */
1473			return ERR_PTR(-EPROBE_DEFER);
1474		}
1475	}
1476
1477	/* if not found, try doing it non-dt way */
1478	if (dev)
1479		devname = dev_name(dev);
1480
1481	mutex_lock(&regulator_list_mutex);
1482	list_for_each_entry(map, &regulator_map_list, list) {
1483		/* If the mapping has a device set up it must match */
1484		if (map->dev_name &&
1485		    (!devname || strcmp(map->dev_name, devname)))
1486			continue;
1487
1488		if (strcmp(map->supply, supply) == 0 &&
1489		    get_device(&map->regulator->dev)) {
1490			r = map->regulator;
1491			break;
1492		}
1493	}
1494	mutex_unlock(&regulator_list_mutex);
1495
1496	if (r)
1497		return r;
1498
1499	r = regulator_lookup_by_name(supply);
1500	if (r)
1501		return r;
1502
1503	return ERR_PTR(-ENODEV);
1504}
1505
1506static int regulator_resolve_supply(struct regulator_dev *rdev)
1507{
1508	struct regulator_dev *r;
1509	struct device *dev = rdev->dev.parent;
1510	int ret;
1511
1512	/* No supply to resovle? */
1513	if (!rdev->supply_name)
1514		return 0;
1515
1516	/* Supply already resolved? */
1517	if (rdev->supply)
1518		return 0;
1519
1520	r = regulator_dev_lookup(dev, rdev->supply_name);
1521	if (IS_ERR(r)) {
1522		ret = PTR_ERR(r);
1523
1524		/* Did the lookup explicitly defer for us? */
1525		if (ret == -EPROBE_DEFER)
1526			return ret;
1527
1528		if (have_full_constraints()) {
1529			r = dummy_regulator_rdev;
1530			get_device(&r->dev);
1531		} else {
1532			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1533				rdev->supply_name, rdev->desc->name);
1534			return -EPROBE_DEFER;
1535		}
1536	}
1537
1538	/*
1539	 * If the supply's parent device is not the same as the
1540	 * regulator's parent device, then ensure the parent device
1541	 * is bound before we resolve the supply, in case the parent
1542	 * device get probe deferred and unregisters the supply.
1543	 */
1544	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1545		if (!device_is_bound(r->dev.parent)) {
1546			put_device(&r->dev);
1547			return -EPROBE_DEFER;
1548		}
1549	}
1550
1551	/* Recursively resolve the supply of the supply */
1552	ret = regulator_resolve_supply(r);
1553	if (ret < 0) {
1554		put_device(&r->dev);
1555		return ret;
1556	}
1557
1558	ret = set_supply(rdev, r);
1559	if (ret < 0) {
1560		put_device(&r->dev);
1561		return ret;
1562	}
1563
1564	/* Cascade always-on state to supply */
1565	if (_regulator_is_enabled(rdev)) {
 
 
 
 
1566		ret = regulator_enable(rdev->supply);
1567		if (ret < 0) {
1568			_regulator_put(rdev->supply);
1569			rdev->supply = NULL;
1570			return ret;
1571		}
1572	}
1573
1574	return 0;
1575}
1576
1577/* Internal regulator request function */
1578struct regulator *_regulator_get(struct device *dev, const char *id,
1579				 enum regulator_get_type get_type)
1580{
1581	struct regulator_dev *rdev;
1582	struct regulator *regulator;
1583	const char *devname = dev ? dev_name(dev) : "deviceless";
1584	int ret;
1585
1586	if (get_type >= MAX_GET_TYPE) {
1587		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1588		return ERR_PTR(-EINVAL);
1589	}
1590
1591	if (id == NULL) {
1592		pr_err("get() with no identifier\n");
1593		return ERR_PTR(-EINVAL);
1594	}
1595
1596	rdev = regulator_dev_lookup(dev, id);
1597	if (IS_ERR(rdev)) {
1598		ret = PTR_ERR(rdev);
1599
1600		/*
1601		 * If regulator_dev_lookup() fails with error other
1602		 * than -ENODEV our job here is done, we simply return it.
1603		 */
1604		if (ret != -ENODEV)
1605			return ERR_PTR(ret);
1606
1607		if (!have_full_constraints()) {
1608			dev_warn(dev,
1609				 "incomplete constraints, dummy supplies not allowed\n");
1610			return ERR_PTR(-ENODEV);
1611		}
1612
1613		switch (get_type) {
1614		case NORMAL_GET:
1615			/*
1616			 * Assume that a regulator is physically present and
1617			 * enabled, even if it isn't hooked up, and just
1618			 * provide a dummy.
1619			 */
1620			dev_warn(dev,
1621				 "%s supply %s not found, using dummy regulator\n",
1622				 devname, id);
1623			rdev = dummy_regulator_rdev;
1624			get_device(&rdev->dev);
1625			break;
1626
1627		case EXCLUSIVE_GET:
1628			dev_warn(dev,
1629				 "dummy supplies not allowed for exclusive requests\n");
1630			/* fall through */
1631
1632		default:
1633			return ERR_PTR(-ENODEV);
1634		}
1635	}
1636
1637	if (rdev->exclusive) {
1638		regulator = ERR_PTR(-EPERM);
1639		put_device(&rdev->dev);
1640		return regulator;
1641	}
1642
1643	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1644		regulator = ERR_PTR(-EBUSY);
1645		put_device(&rdev->dev);
1646		return regulator;
1647	}
1648
 
 
 
 
 
 
 
 
 
 
1649	ret = regulator_resolve_supply(rdev);
1650	if (ret < 0) {
1651		regulator = ERR_PTR(ret);
1652		put_device(&rdev->dev);
1653		return regulator;
1654	}
1655
1656	if (!try_module_get(rdev->owner)) {
1657		regulator = ERR_PTR(-EPROBE_DEFER);
1658		put_device(&rdev->dev);
1659		return regulator;
1660	}
1661
1662	regulator = create_regulator(rdev, dev, id);
1663	if (regulator == NULL) {
1664		regulator = ERR_PTR(-ENOMEM);
 
1665		put_device(&rdev->dev);
1666		module_put(rdev->owner);
1667		return regulator;
1668	}
1669
1670	rdev->open_count++;
1671	if (get_type == EXCLUSIVE_GET) {
1672		rdev->exclusive = 1;
1673
1674		ret = _regulator_is_enabled(rdev);
1675		if (ret > 0)
1676			rdev->use_count = 1;
1677		else
1678			rdev->use_count = 0;
1679	}
1680
 
 
 
 
1681	return regulator;
1682}
1683
1684/**
1685 * regulator_get - lookup and obtain a reference to a regulator.
1686 * @dev: device for regulator "consumer"
1687 * @id: Supply name or regulator ID.
1688 *
1689 * Returns a struct regulator corresponding to the regulator producer,
1690 * or IS_ERR() condition containing errno.
1691 *
1692 * Use of supply names configured via regulator_set_device_supply() is
1693 * strongly encouraged.  It is recommended that the supply name used
1694 * should match the name used for the supply and/or the relevant
1695 * device pins in the datasheet.
1696 */
1697struct regulator *regulator_get(struct device *dev, const char *id)
1698{
1699	return _regulator_get(dev, id, NORMAL_GET);
1700}
1701EXPORT_SYMBOL_GPL(regulator_get);
1702
1703/**
1704 * regulator_get_exclusive - obtain exclusive access to a regulator.
1705 * @dev: device for regulator "consumer"
1706 * @id: Supply name or regulator ID.
1707 *
1708 * Returns a struct regulator corresponding to the regulator producer,
1709 * or IS_ERR() condition containing errno.  Other consumers will be
1710 * unable to obtain this regulator while this reference is held and the
1711 * use count for the regulator will be initialised to reflect the current
1712 * state of the regulator.
1713 *
1714 * This is intended for use by consumers which cannot tolerate shared
1715 * use of the regulator such as those which need to force the
1716 * regulator off for correct operation of the hardware they are
1717 * controlling.
1718 *
1719 * Use of supply names configured via regulator_set_device_supply() is
1720 * strongly encouraged.  It is recommended that the supply name used
1721 * should match the name used for the supply and/or the relevant
1722 * device pins in the datasheet.
1723 */
1724struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1725{
1726	return _regulator_get(dev, id, EXCLUSIVE_GET);
1727}
1728EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1729
1730/**
1731 * regulator_get_optional - obtain optional access to a regulator.
1732 * @dev: device for regulator "consumer"
1733 * @id: Supply name or regulator ID.
1734 *
1735 * Returns a struct regulator corresponding to the regulator producer,
1736 * or IS_ERR() condition containing errno.
1737 *
1738 * This is intended for use by consumers for devices which can have
1739 * some supplies unconnected in normal use, such as some MMC devices.
1740 * It can allow the regulator core to provide stub supplies for other
1741 * supplies requested using normal regulator_get() calls without
1742 * disrupting the operation of drivers that can handle absent
1743 * supplies.
1744 *
1745 * Use of supply names configured via regulator_set_device_supply() is
1746 * strongly encouraged.  It is recommended that the supply name used
1747 * should match the name used for the supply and/or the relevant
1748 * device pins in the datasheet.
1749 */
1750struct regulator *regulator_get_optional(struct device *dev, const char *id)
1751{
1752	return _regulator_get(dev, id, OPTIONAL_GET);
1753}
1754EXPORT_SYMBOL_GPL(regulator_get_optional);
1755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1756/* regulator_list_mutex lock held by regulator_put() */
1757static void _regulator_put(struct regulator *regulator)
1758{
1759	struct regulator_dev *rdev;
1760
1761	if (IS_ERR_OR_NULL(regulator))
1762		return;
1763
1764	lockdep_assert_held_once(&regulator_list_mutex);
1765
 
 
 
1766	rdev = regulator->rdev;
1767
1768	debugfs_remove_recursive(regulator->debugfs);
1769
1770	/* remove any sysfs entries */
1771	if (regulator->dev)
1772		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1773	mutex_lock(&rdev->mutex);
1774	list_del(&regulator->list);
1775
1776	rdev->open_count--;
1777	rdev->exclusive = 0;
1778	put_device(&rdev->dev);
1779	mutex_unlock(&rdev->mutex);
1780
1781	kfree_const(regulator->supply_name);
1782	kfree(regulator);
1783
1784	module_put(rdev->owner);
1785}
1786
1787/**
1788 * regulator_put - "free" the regulator source
1789 * @regulator: regulator source
1790 *
1791 * Note: drivers must ensure that all regulator_enable calls made on this
1792 * regulator source are balanced by regulator_disable calls prior to calling
1793 * this function.
1794 */
1795void regulator_put(struct regulator *regulator)
1796{
1797	mutex_lock(&regulator_list_mutex);
1798	_regulator_put(regulator);
1799	mutex_unlock(&regulator_list_mutex);
1800}
1801EXPORT_SYMBOL_GPL(regulator_put);
1802
1803/**
1804 * regulator_register_supply_alias - Provide device alias for supply lookup
1805 *
1806 * @dev: device that will be given as the regulator "consumer"
1807 * @id: Supply name or regulator ID
1808 * @alias_dev: device that should be used to lookup the supply
1809 * @alias_id: Supply name or regulator ID that should be used to lookup the
1810 * supply
1811 *
1812 * All lookups for id on dev will instead be conducted for alias_id on
1813 * alias_dev.
1814 */
1815int regulator_register_supply_alias(struct device *dev, const char *id,
1816				    struct device *alias_dev,
1817				    const char *alias_id)
1818{
1819	struct regulator_supply_alias *map;
1820
1821	map = regulator_find_supply_alias(dev, id);
1822	if (map)
1823		return -EEXIST;
1824
1825	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1826	if (!map)
1827		return -ENOMEM;
1828
1829	map->src_dev = dev;
1830	map->src_supply = id;
1831	map->alias_dev = alias_dev;
1832	map->alias_supply = alias_id;
1833
1834	list_add(&map->list, &regulator_supply_alias_list);
1835
1836	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1837		id, dev_name(dev), alias_id, dev_name(alias_dev));
1838
1839	return 0;
1840}
1841EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1842
1843/**
1844 * regulator_unregister_supply_alias - Remove device alias
1845 *
1846 * @dev: device that will be given as the regulator "consumer"
1847 * @id: Supply name or regulator ID
1848 *
1849 * Remove a lookup alias if one exists for id on dev.
1850 */
1851void regulator_unregister_supply_alias(struct device *dev, const char *id)
1852{
1853	struct regulator_supply_alias *map;
1854
1855	map = regulator_find_supply_alias(dev, id);
1856	if (map) {
1857		list_del(&map->list);
1858		kfree(map);
1859	}
1860}
1861EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1862
1863/**
1864 * regulator_bulk_register_supply_alias - register multiple aliases
1865 *
1866 * @dev: device that will be given as the regulator "consumer"
1867 * @id: List of supply names or regulator IDs
1868 * @alias_dev: device that should be used to lookup the supply
1869 * @alias_id: List of supply names or regulator IDs that should be used to
1870 * lookup the supply
1871 * @num_id: Number of aliases to register
1872 *
1873 * @return 0 on success, an errno on failure.
1874 *
1875 * This helper function allows drivers to register several supply
1876 * aliases in one operation.  If any of the aliases cannot be
1877 * registered any aliases that were registered will be removed
1878 * before returning to the caller.
1879 */
1880int regulator_bulk_register_supply_alias(struct device *dev,
1881					 const char *const *id,
1882					 struct device *alias_dev,
1883					 const char *const *alias_id,
1884					 int num_id)
1885{
1886	int i;
1887	int ret;
1888
1889	for (i = 0; i < num_id; ++i) {
1890		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1891						      alias_id[i]);
1892		if (ret < 0)
1893			goto err;
1894	}
1895
1896	return 0;
1897
1898err:
1899	dev_err(dev,
1900		"Failed to create supply alias %s,%s -> %s,%s\n",
1901		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1902
1903	while (--i >= 0)
1904		regulator_unregister_supply_alias(dev, id[i]);
1905
1906	return ret;
1907}
1908EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1909
1910/**
1911 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1912 *
1913 * @dev: device that will be given as the regulator "consumer"
1914 * @id: List of supply names or regulator IDs
1915 * @num_id: Number of aliases to unregister
1916 *
1917 * This helper function allows drivers to unregister several supply
1918 * aliases in one operation.
1919 */
1920void regulator_bulk_unregister_supply_alias(struct device *dev,
1921					    const char *const *id,
1922					    int num_id)
1923{
1924	int i;
1925
1926	for (i = 0; i < num_id; ++i)
1927		regulator_unregister_supply_alias(dev, id[i]);
1928}
1929EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1930
1931
1932/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1933static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1934				const struct regulator_config *config)
1935{
1936	struct regulator_enable_gpio *pin;
1937	struct gpio_desc *gpiod;
1938	int ret;
1939
1940	if (config->ena_gpiod)
1941		gpiod = config->ena_gpiod;
1942	else
1943		gpiod = gpio_to_desc(config->ena_gpio);
1944
1945	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1946		if (pin->gpiod == gpiod) {
1947			rdev_dbg(rdev, "GPIO %d is already used\n",
1948				config->ena_gpio);
1949			goto update_ena_gpio_to_rdev;
1950		}
1951	}
1952
1953	if (!config->ena_gpiod) {
1954		ret = gpio_request_one(config->ena_gpio,
1955				       GPIOF_DIR_OUT | config->ena_gpio_flags,
1956				       rdev_get_name(rdev));
1957		if (ret)
1958			return ret;
1959	}
1960
1961	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1962	if (pin == NULL) {
1963		if (!config->ena_gpiod)
1964			gpio_free(config->ena_gpio);
1965		return -ENOMEM;
1966	}
1967
1968	pin->gpiod = gpiod;
1969	pin->ena_gpio_invert = config->ena_gpio_invert;
1970	list_add(&pin->list, &regulator_ena_gpio_list);
1971
1972update_ena_gpio_to_rdev:
1973	pin->request_count++;
1974	rdev->ena_pin = pin;
 
 
 
 
1975	return 0;
1976}
1977
1978static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1979{
1980	struct regulator_enable_gpio *pin, *n;
1981
1982	if (!rdev->ena_pin)
1983		return;
1984
1985	/* Free the GPIO only in case of no use */
1986	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1987		if (pin->gpiod == rdev->ena_pin->gpiod) {
1988			if (pin->request_count <= 1) {
1989				pin->request_count = 0;
1990				gpiod_put(pin->gpiod);
1991				list_del(&pin->list);
1992				kfree(pin);
1993				rdev->ena_pin = NULL;
1994				return;
1995			} else {
1996				pin->request_count--;
1997			}
1998		}
1999	}
 
 
2000}
2001
2002/**
2003 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2004 * @rdev: regulator_dev structure
2005 * @enable: enable GPIO at initial use?
2006 *
2007 * GPIO is enabled in case of initial use. (enable_count is 0)
2008 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2009 */
2010static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2011{
2012	struct regulator_enable_gpio *pin = rdev->ena_pin;
2013
2014	if (!pin)
2015		return -EINVAL;
2016
2017	if (enable) {
2018		/* Enable GPIO at initial use */
2019		if (pin->enable_count == 0)
2020			gpiod_set_value_cansleep(pin->gpiod,
2021						 !pin->ena_gpio_invert);
2022
2023		pin->enable_count++;
2024	} else {
2025		if (pin->enable_count > 1) {
2026			pin->enable_count--;
2027			return 0;
2028		}
2029
2030		/* Disable GPIO if not used */
2031		if (pin->enable_count <= 1) {
2032			gpiod_set_value_cansleep(pin->gpiod,
2033						 pin->ena_gpio_invert);
2034			pin->enable_count = 0;
2035		}
2036	}
2037
2038	return 0;
2039}
2040
2041/**
2042 * _regulator_enable_delay - a delay helper function
2043 * @delay: time to delay in microseconds
2044 *
2045 * Delay for the requested amount of time as per the guidelines in:
2046 *
2047 *     Documentation/timers/timers-howto.txt
2048 *
2049 * The assumption here is that regulators will never be enabled in
2050 * atomic context and therefore sleeping functions can be used.
2051 */
2052static void _regulator_enable_delay(unsigned int delay)
2053{
2054	unsigned int ms = delay / 1000;
2055	unsigned int us = delay % 1000;
2056
2057	if (ms > 0) {
2058		/*
2059		 * For small enough values, handle super-millisecond
2060		 * delays in the usleep_range() call below.
2061		 */
2062		if (ms < 20)
2063			us += ms * 1000;
2064		else
2065			msleep(ms);
2066	}
2067
2068	/*
2069	 * Give the scheduler some room to coalesce with any other
2070	 * wakeup sources. For delays shorter than 10 us, don't even
2071	 * bother setting up high-resolution timers and just busy-
2072	 * loop.
2073	 */
2074	if (us >= 10)
2075		usleep_range(us, us + 100);
2076	else
2077		udelay(us);
2078}
2079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080static int _regulator_do_enable(struct regulator_dev *rdev)
2081{
2082	int ret, delay;
2083
2084	/* Query before enabling in case configuration dependent.  */
2085	ret = _regulator_get_enable_time(rdev);
2086	if (ret >= 0) {
2087		delay = ret;
2088	} else {
2089		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2090		delay = 0;
2091	}
2092
2093	trace_regulator_enable(rdev_get_name(rdev));
2094
2095	if (rdev->desc->off_on_delay) {
2096		/* if needed, keep a distance of off_on_delay from last time
2097		 * this regulator was disabled.
2098		 */
2099		unsigned long start_jiffy = jiffies;
2100		unsigned long intended, max_delay, remaining;
2101
2102		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2103		intended = rdev->last_off_jiffy + max_delay;
2104
2105		if (time_before(start_jiffy, intended)) {
2106			/* calc remaining jiffies to deal with one-time
2107			 * timer wrapping.
2108			 * in case of multiple timer wrapping, either it can be
2109			 * detected by out-of-range remaining, or it cannot be
2110			 * detected and we gets a panelty of
2111			 * _regulator_enable_delay().
2112			 */
2113			remaining = intended - start_jiffy;
2114			if (remaining <= max_delay)
2115				_regulator_enable_delay(
2116						jiffies_to_usecs(remaining));
2117		}
2118	}
2119
2120	if (rdev->ena_pin) {
2121		if (!rdev->ena_gpio_state) {
2122			ret = regulator_ena_gpio_ctrl(rdev, true);
2123			if (ret < 0)
2124				return ret;
2125			rdev->ena_gpio_state = 1;
2126		}
2127	} else if (rdev->desc->ops->enable) {
2128		ret = rdev->desc->ops->enable(rdev);
2129		if (ret < 0)
2130			return ret;
2131	} else {
2132		return -EINVAL;
2133	}
2134
2135	/* Allow the regulator to ramp; it would be useful to extend
2136	 * this for bulk operations so that the regulators can ramp
2137	 * together.  */
2138	trace_regulator_enable_delay(rdev_get_name(rdev));
2139
2140	_regulator_enable_delay(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2141
2142	trace_regulator_enable_complete(rdev_get_name(rdev));
2143
2144	return 0;
2145}
2146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147/* locks held by regulator_enable() */
2148static int _regulator_enable(struct regulator_dev *rdev)
2149{
 
2150	int ret;
2151
2152	lockdep_assert_held_once(&rdev->mutex);
2153
2154	/* check voltage and requested load before enabling */
2155	if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2156		drms_uA_update(rdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
2157
2158	if (rdev->use_count == 0) {
2159		/* The regulator may on if it's not switchable or left on */
2160		ret = _regulator_is_enabled(rdev);
2161		if (ret == -EINVAL || ret == 0) {
2162			if (!regulator_ops_is_valid(rdev,
2163					REGULATOR_CHANGE_STATUS))
2164				return -EPERM;
 
 
2165
2166			ret = _regulator_do_enable(rdev);
2167			if (ret < 0)
2168				return ret;
2169
2170			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2171					     NULL);
2172		} else if (ret < 0) {
2173			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2174			return ret;
2175		}
2176		/* Fallthrough on positive return values - already enabled */
2177	}
2178
2179	rdev->use_count++;
2180
2181	return 0;
 
 
 
 
 
 
 
 
 
2182}
2183
2184/**
2185 * regulator_enable - enable regulator output
2186 * @regulator: regulator source
2187 *
2188 * Request that the regulator be enabled with the regulator output at
2189 * the predefined voltage or current value.  Calls to regulator_enable()
2190 * must be balanced with calls to regulator_disable().
2191 *
2192 * NOTE: the output value can be set by other drivers, boot loader or may be
2193 * hardwired in the regulator.
2194 */
2195int regulator_enable(struct regulator *regulator)
2196{
2197	struct regulator_dev *rdev = regulator->rdev;
2198	int ret = 0;
 
2199
2200	if (regulator->always_on)
2201		return 0;
2202
2203	if (rdev->supply) {
2204		ret = regulator_enable(rdev->supply);
2205		if (ret != 0)
2206			return ret;
2207	}
2208
2209	mutex_lock(&rdev->mutex);
2210	ret = _regulator_enable(rdev);
2211	mutex_unlock(&rdev->mutex);
2212
2213	if (ret != 0 && rdev->supply)
2214		regulator_disable(rdev->supply);
2215
2216	return ret;
2217}
2218EXPORT_SYMBOL_GPL(regulator_enable);
2219
2220static int _regulator_do_disable(struct regulator_dev *rdev)
2221{
2222	int ret;
2223
2224	trace_regulator_disable(rdev_get_name(rdev));
2225
2226	if (rdev->ena_pin) {
2227		if (rdev->ena_gpio_state) {
2228			ret = regulator_ena_gpio_ctrl(rdev, false);
2229			if (ret < 0)
2230				return ret;
2231			rdev->ena_gpio_state = 0;
2232		}
2233
2234	} else if (rdev->desc->ops->disable) {
2235		ret = rdev->desc->ops->disable(rdev);
2236		if (ret != 0)
2237			return ret;
2238	}
2239
2240	/* cares about last_off_jiffy only if off_on_delay is required by
2241	 * device.
2242	 */
2243	if (rdev->desc->off_on_delay)
2244		rdev->last_off_jiffy = jiffies;
2245
2246	trace_regulator_disable_complete(rdev_get_name(rdev));
2247
2248	return 0;
2249}
2250
2251/* locks held by regulator_disable() */
2252static int _regulator_disable(struct regulator_dev *rdev)
2253{
 
2254	int ret = 0;
2255
2256	lockdep_assert_held_once(&rdev->mutex);
2257
2258	if (WARN(rdev->use_count <= 0,
2259		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2260		return -EIO;
2261
2262	/* are we the last user and permitted to disable ? */
2263	if (rdev->use_count == 1 &&
2264	    (rdev->constraints && !rdev->constraints->always_on)) {
2265
2266		/* we are last user */
2267		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2268			ret = _notifier_call_chain(rdev,
2269						   REGULATOR_EVENT_PRE_DISABLE,
2270						   NULL);
2271			if (ret & NOTIFY_STOP_MASK)
2272				return -EINVAL;
2273
2274			ret = _regulator_do_disable(rdev);
2275			if (ret < 0) {
2276				rdev_err(rdev, "failed to disable\n");
2277				_notifier_call_chain(rdev,
2278						REGULATOR_EVENT_ABORT_DISABLE,
2279						NULL);
2280				return ret;
2281			}
2282			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2283					NULL);
2284		}
2285
2286		rdev->use_count = 0;
2287	} else if (rdev->use_count > 1) {
2288		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2289			drms_uA_update(rdev);
2290
2291		rdev->use_count--;
2292	}
2293
 
 
 
 
 
 
 
 
 
2294	return ret;
2295}
2296
2297/**
2298 * regulator_disable - disable regulator output
2299 * @regulator: regulator source
2300 *
2301 * Disable the regulator output voltage or current.  Calls to
2302 * regulator_enable() must be balanced with calls to
2303 * regulator_disable().
2304 *
2305 * NOTE: this will only disable the regulator output if no other consumer
2306 * devices have it enabled, the regulator device supports disabling and
2307 * machine constraints permit this operation.
2308 */
2309int regulator_disable(struct regulator *regulator)
2310{
2311	struct regulator_dev *rdev = regulator->rdev;
2312	int ret = 0;
 
2313
2314	if (regulator->always_on)
2315		return 0;
2316
2317	mutex_lock(&rdev->mutex);
2318	ret = _regulator_disable(rdev);
2319	mutex_unlock(&rdev->mutex);
2320
2321	if (ret == 0 && rdev->supply)
2322		regulator_disable(rdev->supply);
2323
2324	return ret;
2325}
2326EXPORT_SYMBOL_GPL(regulator_disable);
2327
2328/* locks held by regulator_force_disable() */
2329static int _regulator_force_disable(struct regulator_dev *rdev)
2330{
2331	int ret = 0;
2332
2333	lockdep_assert_held_once(&rdev->mutex);
2334
2335	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2336			REGULATOR_EVENT_PRE_DISABLE, NULL);
2337	if (ret & NOTIFY_STOP_MASK)
2338		return -EINVAL;
2339
2340	ret = _regulator_do_disable(rdev);
2341	if (ret < 0) {
2342		rdev_err(rdev, "failed to force disable\n");
2343		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2344				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2345		return ret;
2346	}
2347
2348	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2349			REGULATOR_EVENT_DISABLE, NULL);
2350
2351	return 0;
2352}
2353
2354/**
2355 * regulator_force_disable - force disable regulator output
2356 * @regulator: regulator source
2357 *
2358 * Forcibly disable the regulator output voltage or current.
2359 * NOTE: this *will* disable the regulator output even if other consumer
2360 * devices have it enabled. This should be used for situations when device
2361 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2362 */
2363int regulator_force_disable(struct regulator *regulator)
2364{
2365	struct regulator_dev *rdev = regulator->rdev;
 
2366	int ret;
2367
2368	mutex_lock(&rdev->mutex);
2369	regulator->uA_load = 0;
2370	ret = _regulator_force_disable(regulator->rdev);
2371	mutex_unlock(&rdev->mutex);
2372
2373	if (rdev->supply)
2374		while (rdev->open_count--)
2375			regulator_disable(rdev->supply);
 
 
 
 
 
 
 
 
 
2376
2377	return ret;
2378}
2379EXPORT_SYMBOL_GPL(regulator_force_disable);
2380
2381static void regulator_disable_work(struct work_struct *work)
2382{
2383	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2384						  disable_work.work);
 
2385	int count, i, ret;
 
 
2386
2387	mutex_lock(&rdev->mutex);
2388
2389	BUG_ON(!rdev->deferred_disables);
2390
2391	count = rdev->deferred_disables;
2392	rdev->deferred_disables = 0;
2393
2394	/*
2395	 * Workqueue functions queue the new work instance while the previous
2396	 * work instance is being processed. Cancel the queued work instance
2397	 * as the work instance under processing does the job of the queued
2398	 * work instance.
2399	 */
2400	cancel_delayed_work(&rdev->disable_work);
2401
2402	for (i = 0; i < count; i++) {
2403		ret = _regulator_disable(rdev);
2404		if (ret != 0)
2405			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2406	}
2407
2408	mutex_unlock(&rdev->mutex);
 
2409
2410	if (rdev->supply) {
2411		for (i = 0; i < count; i++) {
2412			ret = regulator_disable(rdev->supply);
2413			if (ret != 0) {
2414				rdev_err(rdev,
2415					 "Supply disable failed: %d\n", ret);
2416			}
2417		}
2418	}
 
 
 
 
 
 
2419}
2420
2421/**
2422 * regulator_disable_deferred - disable regulator output with delay
2423 * @regulator: regulator source
2424 * @ms: miliseconds until the regulator is disabled
2425 *
2426 * Execute regulator_disable() on the regulator after a delay.  This
2427 * is intended for use with devices that require some time to quiesce.
2428 *
2429 * NOTE: this will only disable the regulator output if no other consumer
2430 * devices have it enabled, the regulator device supports disabling and
2431 * machine constraints permit this operation.
2432 */
2433int regulator_disable_deferred(struct regulator *regulator, int ms)
2434{
2435	struct regulator_dev *rdev = regulator->rdev;
2436
2437	if (regulator->always_on)
2438		return 0;
2439
2440	if (!ms)
2441		return regulator_disable(regulator);
2442
2443	mutex_lock(&rdev->mutex);
2444	rdev->deferred_disables++;
2445	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2446			 msecs_to_jiffies(ms));
2447	mutex_unlock(&rdev->mutex);
2448
2449	return 0;
2450}
2451EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2452
2453static int _regulator_is_enabled(struct regulator_dev *rdev)
2454{
2455	/* A GPIO control always takes precedence */
2456	if (rdev->ena_pin)
2457		return rdev->ena_gpio_state;
2458
2459	/* If we don't know then assume that the regulator is always on */
2460	if (!rdev->desc->ops->is_enabled)
2461		return 1;
2462
2463	return rdev->desc->ops->is_enabled(rdev);
2464}
2465
2466static int _regulator_list_voltage(struct regulator_dev *rdev,
2467				   unsigned selector, int lock)
2468{
2469	const struct regulator_ops *ops = rdev->desc->ops;
2470	int ret;
2471
2472	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2473		return rdev->desc->fixed_uV;
2474
2475	if (ops->list_voltage) {
2476		if (selector >= rdev->desc->n_voltages)
2477			return -EINVAL;
2478		if (lock)
2479			mutex_lock(&rdev->mutex);
2480		ret = ops->list_voltage(rdev, selector);
2481		if (lock)
2482			mutex_unlock(&rdev->mutex);
2483	} else if (rdev->is_switch && rdev->supply) {
2484		ret = _regulator_list_voltage(rdev->supply->rdev,
2485					      selector, lock);
2486	} else {
2487		return -EINVAL;
2488	}
2489
2490	if (ret > 0) {
2491		if (ret < rdev->constraints->min_uV)
2492			ret = 0;
2493		else if (ret > rdev->constraints->max_uV)
2494			ret = 0;
2495	}
2496
2497	return ret;
2498}
2499
2500/**
2501 * regulator_is_enabled - is the regulator output enabled
2502 * @regulator: regulator source
2503 *
2504 * Returns positive if the regulator driver backing the source/client
2505 * has requested that the device be enabled, zero if it hasn't, else a
2506 * negative errno code.
2507 *
2508 * Note that the device backing this regulator handle can have multiple
2509 * users, so it might be enabled even if regulator_enable() was never
2510 * called for this particular source.
2511 */
2512int regulator_is_enabled(struct regulator *regulator)
2513{
2514	int ret;
2515
2516	if (regulator->always_on)
2517		return 1;
2518
2519	mutex_lock(&regulator->rdev->mutex);
2520	ret = _regulator_is_enabled(regulator->rdev);
2521	mutex_unlock(&regulator->rdev->mutex);
2522
2523	return ret;
2524}
2525EXPORT_SYMBOL_GPL(regulator_is_enabled);
2526
2527/**
2528 * regulator_count_voltages - count regulator_list_voltage() selectors
2529 * @regulator: regulator source
2530 *
2531 * Returns number of selectors, or negative errno.  Selectors are
2532 * numbered starting at zero, and typically correspond to bitfields
2533 * in hardware registers.
2534 */
2535int regulator_count_voltages(struct regulator *regulator)
2536{
2537	struct regulator_dev	*rdev = regulator->rdev;
2538
2539	if (rdev->desc->n_voltages)
2540		return rdev->desc->n_voltages;
2541
2542	if (!rdev->is_switch || !rdev->supply)
2543		return -EINVAL;
2544
2545	return regulator_count_voltages(rdev->supply);
2546}
2547EXPORT_SYMBOL_GPL(regulator_count_voltages);
2548
2549/**
2550 * regulator_list_voltage - enumerate supported voltages
2551 * @regulator: regulator source
2552 * @selector: identify voltage to list
2553 * Context: can sleep
2554 *
2555 * Returns a voltage that can be passed to @regulator_set_voltage(),
2556 * zero if this selector code can't be used on this system, or a
2557 * negative errno.
2558 */
2559int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2560{
2561	return _regulator_list_voltage(regulator->rdev, selector, 1);
2562}
2563EXPORT_SYMBOL_GPL(regulator_list_voltage);
2564
2565/**
2566 * regulator_get_regmap - get the regulator's register map
2567 * @regulator: regulator source
2568 *
2569 * Returns the register map for the given regulator, or an ERR_PTR value
2570 * if the regulator doesn't use regmap.
2571 */
2572struct regmap *regulator_get_regmap(struct regulator *regulator)
2573{
2574	struct regmap *map = regulator->rdev->regmap;
2575
2576	return map ? map : ERR_PTR(-EOPNOTSUPP);
2577}
2578
2579/**
2580 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2581 * @regulator: regulator source
2582 * @vsel_reg: voltage selector register, output parameter
2583 * @vsel_mask: mask for voltage selector bitfield, output parameter
2584 *
2585 * Returns the hardware register offset and bitmask used for setting the
2586 * regulator voltage. This might be useful when configuring voltage-scaling
2587 * hardware or firmware that can make I2C requests behind the kernel's back,
2588 * for example.
2589 *
2590 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2591 * and 0 is returned, otherwise a negative errno is returned.
2592 */
2593int regulator_get_hardware_vsel_register(struct regulator *regulator,
2594					 unsigned *vsel_reg,
2595					 unsigned *vsel_mask)
2596{
2597	struct regulator_dev *rdev = regulator->rdev;
2598	const struct regulator_ops *ops = rdev->desc->ops;
2599
2600	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2601		return -EOPNOTSUPP;
2602
2603	*vsel_reg = rdev->desc->vsel_reg;
2604	*vsel_mask = rdev->desc->vsel_mask;
2605
2606	 return 0;
2607}
2608EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2609
2610/**
2611 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2612 * @regulator: regulator source
2613 * @selector: identify voltage to list
2614 *
2615 * Converts the selector to a hardware-specific voltage selector that can be
2616 * directly written to the regulator registers. The address of the voltage
2617 * register can be determined by calling @regulator_get_hardware_vsel_register.
2618 *
2619 * On error a negative errno is returned.
2620 */
2621int regulator_list_hardware_vsel(struct regulator *regulator,
2622				 unsigned selector)
2623{
2624	struct regulator_dev *rdev = regulator->rdev;
2625	const struct regulator_ops *ops = rdev->desc->ops;
2626
2627	if (selector >= rdev->desc->n_voltages)
2628		return -EINVAL;
2629	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2630		return -EOPNOTSUPP;
2631
2632	return selector;
2633}
2634EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2635
2636/**
2637 * regulator_get_linear_step - return the voltage step size between VSEL values
2638 * @regulator: regulator source
2639 *
2640 * Returns the voltage step size between VSEL values for linear
2641 * regulators, or return 0 if the regulator isn't a linear regulator.
2642 */
2643unsigned int regulator_get_linear_step(struct regulator *regulator)
2644{
2645	struct regulator_dev *rdev = regulator->rdev;
2646
2647	return rdev->desc->uV_step;
2648}
2649EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2650
2651/**
2652 * regulator_is_supported_voltage - check if a voltage range can be supported
2653 *
2654 * @regulator: Regulator to check.
2655 * @min_uV: Minimum required voltage in uV.
2656 * @max_uV: Maximum required voltage in uV.
2657 *
2658 * Returns a boolean or a negative error code.
2659 */
2660int regulator_is_supported_voltage(struct regulator *regulator,
2661				   int min_uV, int max_uV)
2662{
2663	struct regulator_dev *rdev = regulator->rdev;
2664	int i, voltages, ret;
2665
2666	/* If we can't change voltage check the current voltage */
2667	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2668		ret = regulator_get_voltage(regulator);
2669		if (ret >= 0)
2670			return min_uV <= ret && ret <= max_uV;
2671		else
2672			return ret;
2673	}
2674
2675	/* Any voltage within constrains range is fine? */
2676	if (rdev->desc->continuous_voltage_range)
2677		return min_uV >= rdev->constraints->min_uV &&
2678				max_uV <= rdev->constraints->max_uV;
2679
2680	ret = regulator_count_voltages(regulator);
2681	if (ret < 0)
2682		return ret;
2683	voltages = ret;
2684
2685	for (i = 0; i < voltages; i++) {
2686		ret = regulator_list_voltage(regulator, i);
2687
2688		if (ret >= min_uV && ret <= max_uV)
2689			return 1;
2690	}
2691
2692	return 0;
2693}
2694EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2695
2696static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2697				 int max_uV)
2698{
2699	const struct regulator_desc *desc = rdev->desc;
2700
2701	if (desc->ops->map_voltage)
2702		return desc->ops->map_voltage(rdev, min_uV, max_uV);
2703
2704	if (desc->ops->list_voltage == regulator_list_voltage_linear)
2705		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2706
2707	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2708		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2709
 
 
 
 
 
2710	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2711}
2712
2713static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2714				       int min_uV, int max_uV,
2715				       unsigned *selector)
2716{
2717	struct pre_voltage_change_data data;
2718	int ret;
2719
2720	data.old_uV = _regulator_get_voltage(rdev);
2721	data.min_uV = min_uV;
2722	data.max_uV = max_uV;
2723	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2724				   &data);
2725	if (ret & NOTIFY_STOP_MASK)
2726		return -EINVAL;
2727
2728	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2729	if (ret >= 0)
2730		return ret;
2731
2732	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2733			     (void *)data.old_uV);
2734
2735	return ret;
2736}
2737
2738static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2739					   int uV, unsigned selector)
2740{
2741	struct pre_voltage_change_data data;
2742	int ret;
2743
2744	data.old_uV = _regulator_get_voltage(rdev);
2745	data.min_uV = uV;
2746	data.max_uV = uV;
2747	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2748				   &data);
2749	if (ret & NOTIFY_STOP_MASK)
2750		return -EINVAL;
2751
2752	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2753	if (ret >= 0)
2754		return ret;
2755
2756	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2757			     (void *)data.old_uV);
2758
2759	return ret;
2760}
2761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2762static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2763				       int old_uV, int new_uV)
2764{
2765	unsigned int ramp_delay = 0;
2766
2767	if (rdev->constraints->ramp_delay)
2768		ramp_delay = rdev->constraints->ramp_delay;
2769	else if (rdev->desc->ramp_delay)
2770		ramp_delay = rdev->desc->ramp_delay;
2771	else if (rdev->constraints->settling_time)
2772		return rdev->constraints->settling_time;
2773	else if (rdev->constraints->settling_time_up &&
2774		 (new_uV > old_uV))
2775		return rdev->constraints->settling_time_up;
2776	else if (rdev->constraints->settling_time_down &&
2777		 (new_uV < old_uV))
2778		return rdev->constraints->settling_time_down;
2779
2780	if (ramp_delay == 0) {
2781		rdev_dbg(rdev, "ramp_delay not set\n");
2782		return 0;
2783	}
2784
2785	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2786}
2787
2788static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2789				     int min_uV, int max_uV)
2790{
2791	int ret;
2792	int delay = 0;
2793	int best_val = 0;
2794	unsigned int selector;
2795	int old_selector = -1;
2796	const struct regulator_ops *ops = rdev->desc->ops;
2797	int old_uV = _regulator_get_voltage(rdev);
2798
2799	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2800
2801	min_uV += rdev->constraints->uV_offset;
2802	max_uV += rdev->constraints->uV_offset;
2803
2804	/*
2805	 * If we can't obtain the old selector there is not enough
2806	 * info to call set_voltage_time_sel().
2807	 */
2808	if (_regulator_is_enabled(rdev) &&
2809	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
2810		old_selector = ops->get_voltage_sel(rdev);
2811		if (old_selector < 0)
2812			return old_selector;
2813	}
2814
2815	if (ops->set_voltage) {
2816		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2817						  &selector);
2818
2819		if (ret >= 0) {
2820			if (ops->list_voltage)
2821				best_val = ops->list_voltage(rdev,
2822							     selector);
2823			else
2824				best_val = _regulator_get_voltage(rdev);
2825		}
2826
2827	} else if (ops->set_voltage_sel) {
2828		ret = regulator_map_voltage(rdev, min_uV, max_uV);
2829		if (ret >= 0) {
2830			best_val = ops->list_voltage(rdev, ret);
2831			if (min_uV <= best_val && max_uV >= best_val) {
2832				selector = ret;
2833				if (old_selector == selector)
2834					ret = 0;
 
 
 
2835				else
2836					ret = _regulator_call_set_voltage_sel(
2837						rdev, best_val, selector);
2838			} else {
2839				ret = -EINVAL;
2840			}
2841		}
2842	} else {
2843		ret = -EINVAL;
2844	}
2845
2846	if (ret)
2847		goto out;
2848
2849	if (ops->set_voltage_time_sel) {
2850		/*
2851		 * Call set_voltage_time_sel if successfully obtained
2852		 * old_selector
2853		 */
2854		if (old_selector >= 0 && old_selector != selector)
2855			delay = ops->set_voltage_time_sel(rdev, old_selector,
2856							  selector);
2857	} else {
2858		if (old_uV != best_val) {
2859			if (ops->set_voltage_time)
2860				delay = ops->set_voltage_time(rdev, old_uV,
2861							      best_val);
2862			else
2863				delay = _regulator_set_voltage_time(rdev,
2864								    old_uV,
2865								    best_val);
2866		}
2867	}
2868
2869	if (delay < 0) {
2870		rdev_warn(rdev, "failed to get delay: %d\n", delay);
2871		delay = 0;
2872	}
2873
2874	/* Insert any necessary delays */
2875	if (delay >= 1000) {
2876		mdelay(delay / 1000);
2877		udelay(delay % 1000);
2878	} else if (delay) {
2879		udelay(delay);
2880	}
2881
2882	if (best_val >= 0) {
2883		unsigned long data = best_val;
2884
2885		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2886				     (void *)data);
2887	}
2888
2889out:
2890	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2891
2892	return ret;
2893}
2894
2895static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2896				  int min_uV, int max_uV, suspend_state_t state)
2897{
2898	struct regulator_state *rstate;
2899	int uV, sel;
2900
2901	rstate = regulator_get_suspend_state(rdev, state);
2902	if (rstate == NULL)
2903		return -EINVAL;
2904
2905	if (min_uV < rstate->min_uV)
2906		min_uV = rstate->min_uV;
2907	if (max_uV > rstate->max_uV)
2908		max_uV = rstate->max_uV;
2909
2910	sel = regulator_map_voltage(rdev, min_uV, max_uV);
2911	if (sel < 0)
2912		return sel;
2913
2914	uV = rdev->desc->ops->list_voltage(rdev, sel);
2915	if (uV >= min_uV && uV <= max_uV)
2916		rstate->uV = uV;
2917
2918	return 0;
2919}
2920
2921static int regulator_set_voltage_unlocked(struct regulator *regulator,
2922					  int min_uV, int max_uV,
2923					  suspend_state_t state)
2924{
2925	struct regulator_dev *rdev = regulator->rdev;
2926	struct regulator_voltage *voltage = &regulator->voltage[state];
2927	int ret = 0;
2928	int old_min_uV, old_max_uV;
2929	int current_uV;
2930	int best_supply_uV = 0;
2931	int supply_change_uV = 0;
2932
2933	/* If we're setting the same range as last time the change
2934	 * should be a noop (some cpufreq implementations use the same
2935	 * voltage for multiple frequencies, for example).
2936	 */
2937	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
2938		goto out;
2939
2940	/* If we're trying to set a range that overlaps the current voltage,
2941	 * return successfully even though the regulator does not support
2942	 * changing the voltage.
2943	 */
2944	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2945		current_uV = _regulator_get_voltage(rdev);
2946		if (min_uV <= current_uV && current_uV <= max_uV) {
2947			voltage->min_uV = min_uV;
2948			voltage->max_uV = max_uV;
2949			goto out;
2950		}
2951	}
2952
2953	/* sanity check */
2954	if (!rdev->desc->ops->set_voltage &&
2955	    !rdev->desc->ops->set_voltage_sel) {
2956		ret = -EINVAL;
2957		goto out;
2958	}
2959
2960	/* constraints check */
2961	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2962	if (ret < 0)
2963		goto out;
2964
2965	/* restore original values in case of error */
2966	old_min_uV = voltage->min_uV;
2967	old_max_uV = voltage->max_uV;
2968	voltage->min_uV = min_uV;
2969	voltage->max_uV = max_uV;
2970
2971	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
2972	if (ret < 0)
2973		goto out2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2974
2975	if (rdev->supply &&
2976	    regulator_ops_is_valid(rdev->supply->rdev,
2977				   REGULATOR_CHANGE_VOLTAGE) &&
2978	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
2979					   rdev->desc->ops->get_voltage_sel))) {
2980		int current_supply_uV;
2981		int selector;
2982
2983		selector = regulator_map_voltage(rdev, min_uV, max_uV);
2984		if (selector < 0) {
2985			ret = selector;
2986			goto out2;
2987		}
2988
2989		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
2990		if (best_supply_uV < 0) {
2991			ret = best_supply_uV;
2992			goto out2;
2993		}
2994
2995		best_supply_uV += rdev->desc->min_dropout_uV;
2996
2997		current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2998		if (current_supply_uV < 0) {
2999			ret = current_supply_uV;
3000			goto out2;
3001		}
3002
3003		supply_change_uV = best_supply_uV - current_supply_uV;
3004	}
3005
3006	if (supply_change_uV > 0) {
3007		ret = regulator_set_voltage_unlocked(rdev->supply,
3008				best_supply_uV, INT_MAX, state);
3009		if (ret) {
3010			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3011					ret);
3012			goto out2;
3013		}
3014	}
3015
3016	if (state == PM_SUSPEND_ON)
3017		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3018	else
3019		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3020							max_uV, state);
3021	if (ret < 0)
3022		goto out2;
3023
3024	if (supply_change_uV < 0) {
3025		ret = regulator_set_voltage_unlocked(rdev->supply,
3026				best_supply_uV, INT_MAX, state);
3027		if (ret)
3028			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3029					ret);
3030		/* No need to fail here */
3031		ret = 0;
3032	}
3033
3034out:
3035	return ret;
3036out2:
3037	voltage->min_uV = old_min_uV;
3038	voltage->max_uV = old_max_uV;
3039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3040	return ret;
3041}
3042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3043/**
3044 * regulator_set_voltage - set regulator output voltage
3045 * @regulator: regulator source
3046 * @min_uV: Minimum required voltage in uV
3047 * @max_uV: Maximum acceptable voltage in uV
3048 *
3049 * Sets a voltage regulator to the desired output voltage. This can be set
3050 * during any regulator state. IOW, regulator can be disabled or enabled.
3051 *
3052 * If the regulator is enabled then the voltage will change to the new value
3053 * immediately otherwise if the regulator is disabled the regulator will
3054 * output at the new voltage when enabled.
3055 *
3056 * NOTE: If the regulator is shared between several devices then the lowest
3057 * request voltage that meets the system constraints will be used.
3058 * Regulator system constraints must be set for this regulator before
3059 * calling this function otherwise this call will fail.
3060 */
3061int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3062{
3063	int ret = 0;
 
3064
3065	regulator_lock_supply(regulator->rdev);
3066
3067	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3068					     PM_SUSPEND_ON);
3069
3070	regulator_unlock_supply(regulator->rdev);
3071
3072	return ret;
3073}
3074EXPORT_SYMBOL_GPL(regulator_set_voltage);
3075
3076static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3077					   suspend_state_t state, bool en)
3078{
3079	struct regulator_state *rstate;
3080
3081	rstate = regulator_get_suspend_state(rdev, state);
3082	if (rstate == NULL)
3083		return -EINVAL;
3084
3085	if (!rstate->changeable)
3086		return -EPERM;
3087
3088	rstate->enabled = en;
3089
3090	return 0;
3091}
3092
3093int regulator_suspend_enable(struct regulator_dev *rdev,
3094				    suspend_state_t state)
3095{
3096	return regulator_suspend_toggle(rdev, state, true);
3097}
3098EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3099
3100int regulator_suspend_disable(struct regulator_dev *rdev,
3101				     suspend_state_t state)
3102{
3103	struct regulator *regulator;
3104	struct regulator_voltage *voltage;
3105
3106	/*
3107	 * if any consumer wants this regulator device keeping on in
3108	 * suspend states, don't set it as disabled.
3109	 */
3110	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3111		voltage = &regulator->voltage[state];
3112		if (voltage->min_uV || voltage->max_uV)
3113			return 0;
3114	}
3115
3116	return regulator_suspend_toggle(rdev, state, false);
3117}
3118EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3119
3120static int _regulator_set_suspend_voltage(struct regulator *regulator,
3121					  int min_uV, int max_uV,
3122					  suspend_state_t state)
3123{
3124	struct regulator_dev *rdev = regulator->rdev;
3125	struct regulator_state *rstate;
3126
3127	rstate = regulator_get_suspend_state(rdev, state);
3128	if (rstate == NULL)
3129		return -EINVAL;
3130
3131	if (rstate->min_uV == rstate->max_uV) {
3132		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3133		return -EPERM;
3134	}
3135
3136	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3137}
3138
3139int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3140				  int max_uV, suspend_state_t state)
3141{
3142	int ret = 0;
 
3143
3144	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3145	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3146		return -EINVAL;
3147
3148	regulator_lock_supply(regulator->rdev);
3149
3150	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3151					     max_uV, state);
3152
3153	regulator_unlock_supply(regulator->rdev);
3154
3155	return ret;
3156}
3157EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3158
3159/**
3160 * regulator_set_voltage_time - get raise/fall time
3161 * @regulator: regulator source
3162 * @old_uV: starting voltage in microvolts
3163 * @new_uV: target voltage in microvolts
3164 *
3165 * Provided with the starting and ending voltage, this function attempts to
3166 * calculate the time in microseconds required to rise or fall to this new
3167 * voltage.
3168 */
3169int regulator_set_voltage_time(struct regulator *regulator,
3170			       int old_uV, int new_uV)
3171{
3172	struct regulator_dev *rdev = regulator->rdev;
3173	const struct regulator_ops *ops = rdev->desc->ops;
3174	int old_sel = -1;
3175	int new_sel = -1;
3176	int voltage;
3177	int i;
3178
3179	if (ops->set_voltage_time)
3180		return ops->set_voltage_time(rdev, old_uV, new_uV);
3181	else if (!ops->set_voltage_time_sel)
3182		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3183
3184	/* Currently requires operations to do this */
3185	if (!ops->list_voltage || !rdev->desc->n_voltages)
3186		return -EINVAL;
3187
3188	for (i = 0; i < rdev->desc->n_voltages; i++) {
3189		/* We only look for exact voltage matches here */
3190		voltage = regulator_list_voltage(regulator, i);
3191		if (voltage < 0)
3192			return -EINVAL;
3193		if (voltage == 0)
3194			continue;
3195		if (voltage == old_uV)
3196			old_sel = i;
3197		if (voltage == new_uV)
3198			new_sel = i;
3199	}
3200
3201	if (old_sel < 0 || new_sel < 0)
3202		return -EINVAL;
3203
3204	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3205}
3206EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3207
3208/**
3209 * regulator_set_voltage_time_sel - get raise/fall time
3210 * @rdev: regulator source device
3211 * @old_selector: selector for starting voltage
3212 * @new_selector: selector for target voltage
3213 *
3214 * Provided with the starting and target voltage selectors, this function
3215 * returns time in microseconds required to rise or fall to this new voltage
3216 *
3217 * Drivers providing ramp_delay in regulation_constraints can use this as their
3218 * set_voltage_time_sel() operation.
3219 */
3220int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3221				   unsigned int old_selector,
3222				   unsigned int new_selector)
3223{
3224	int old_volt, new_volt;
3225
3226	/* sanity check */
3227	if (!rdev->desc->ops->list_voltage)
3228		return -EINVAL;
3229
3230	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3231	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3232
3233	if (rdev->desc->ops->set_voltage_time)
3234		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3235							 new_volt);
3236	else
3237		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3238}
3239EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3240
3241/**
3242 * regulator_sync_voltage - re-apply last regulator output voltage
3243 * @regulator: regulator source
3244 *
3245 * Re-apply the last configured voltage.  This is intended to be used
3246 * where some external control source the consumer is cooperating with
3247 * has caused the configured voltage to change.
3248 */
3249int regulator_sync_voltage(struct regulator *regulator)
3250{
3251	struct regulator_dev *rdev = regulator->rdev;
3252	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3253	int ret, min_uV, max_uV;
3254
3255	mutex_lock(&rdev->mutex);
3256
3257	if (!rdev->desc->ops->set_voltage &&
3258	    !rdev->desc->ops->set_voltage_sel) {
3259		ret = -EINVAL;
3260		goto out;
3261	}
3262
3263	/* This is only going to work if we've had a voltage configured. */
3264	if (!voltage->min_uV && !voltage->max_uV) {
3265		ret = -EINVAL;
3266		goto out;
3267	}
3268
3269	min_uV = voltage->min_uV;
3270	max_uV = voltage->max_uV;
3271
3272	/* This should be a paranoia check... */
3273	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3274	if (ret < 0)
3275		goto out;
3276
3277	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3278	if (ret < 0)
3279		goto out;
3280
3281	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3282
3283out:
3284	mutex_unlock(&rdev->mutex);
3285	return ret;
3286}
3287EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3288
3289static int _regulator_get_voltage(struct regulator_dev *rdev)
3290{
3291	int sel, ret;
3292	bool bypassed;
3293
3294	if (rdev->desc->ops->get_bypass) {
3295		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3296		if (ret < 0)
3297			return ret;
3298		if (bypassed) {
3299			/* if bypassed the regulator must have a supply */
3300			if (!rdev->supply) {
3301				rdev_err(rdev,
3302					 "bypassed regulator has no supply!\n");
3303				return -EPROBE_DEFER;
3304			}
3305
3306			return _regulator_get_voltage(rdev->supply->rdev);
3307		}
3308	}
3309
3310	if (rdev->desc->ops->get_voltage_sel) {
3311		sel = rdev->desc->ops->get_voltage_sel(rdev);
3312		if (sel < 0)
3313			return sel;
3314		ret = rdev->desc->ops->list_voltage(rdev, sel);
3315	} else if (rdev->desc->ops->get_voltage) {
3316		ret = rdev->desc->ops->get_voltage(rdev);
3317	} else if (rdev->desc->ops->list_voltage) {
3318		ret = rdev->desc->ops->list_voltage(rdev, 0);
3319	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3320		ret = rdev->desc->fixed_uV;
3321	} else if (rdev->supply) {
3322		ret = _regulator_get_voltage(rdev->supply->rdev);
3323	} else {
3324		return -EINVAL;
3325	}
3326
3327	if (ret < 0)
3328		return ret;
3329	return ret - rdev->constraints->uV_offset;
3330}
 
3331
3332/**
3333 * regulator_get_voltage - get regulator output voltage
3334 * @regulator: regulator source
3335 *
3336 * This returns the current regulator voltage in uV.
3337 *
3338 * NOTE: If the regulator is disabled it will return the voltage value. This
3339 * function should not be used to determine regulator state.
3340 */
3341int regulator_get_voltage(struct regulator *regulator)
3342{
 
3343	int ret;
3344
3345	regulator_lock_supply(regulator->rdev);
3346
3347	ret = _regulator_get_voltage(regulator->rdev);
3348
3349	regulator_unlock_supply(regulator->rdev);
3350
3351	return ret;
3352}
3353EXPORT_SYMBOL_GPL(regulator_get_voltage);
3354
3355/**
3356 * regulator_set_current_limit - set regulator output current limit
3357 * @regulator: regulator source
3358 * @min_uA: Minimum supported current in uA
3359 * @max_uA: Maximum supported current in uA
3360 *
3361 * Sets current sink to the desired output current. This can be set during
3362 * any regulator state. IOW, regulator can be disabled or enabled.
3363 *
3364 * If the regulator is enabled then the current will change to the new value
3365 * immediately otherwise if the regulator is disabled the regulator will
3366 * output at the new current when enabled.
3367 *
3368 * NOTE: Regulator system constraints must be set for this regulator before
3369 * calling this function otherwise this call will fail.
3370 */
3371int regulator_set_current_limit(struct regulator *regulator,
3372			       int min_uA, int max_uA)
3373{
3374	struct regulator_dev *rdev = regulator->rdev;
3375	int ret;
3376
3377	mutex_lock(&rdev->mutex);
3378
3379	/* sanity check */
3380	if (!rdev->desc->ops->set_current_limit) {
3381		ret = -EINVAL;
3382		goto out;
3383	}
3384
3385	/* constraints check */
3386	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3387	if (ret < 0)
3388		goto out;
3389
3390	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3391out:
3392	mutex_unlock(&rdev->mutex);
3393	return ret;
3394}
3395EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3396
 
 
 
 
 
 
 
 
 
3397static int _regulator_get_current_limit(struct regulator_dev *rdev)
3398{
3399	int ret;
3400
3401	mutex_lock(&rdev->mutex);
3402
3403	/* sanity check */
3404	if (!rdev->desc->ops->get_current_limit) {
3405		ret = -EINVAL;
3406		goto out;
3407	}
3408
3409	ret = rdev->desc->ops->get_current_limit(rdev);
3410out:
3411	mutex_unlock(&rdev->mutex);
3412	return ret;
3413}
3414
3415/**
3416 * regulator_get_current_limit - get regulator output current
3417 * @regulator: regulator source
3418 *
3419 * This returns the current supplied by the specified current sink in uA.
3420 *
3421 * NOTE: If the regulator is disabled it will return the current value. This
3422 * function should not be used to determine regulator state.
3423 */
3424int regulator_get_current_limit(struct regulator *regulator)
3425{
3426	return _regulator_get_current_limit(regulator->rdev);
3427}
3428EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3429
3430/**
3431 * regulator_set_mode - set regulator operating mode
3432 * @regulator: regulator source
3433 * @mode: operating mode - one of the REGULATOR_MODE constants
3434 *
3435 * Set regulator operating mode to increase regulator efficiency or improve
3436 * regulation performance.
3437 *
3438 * NOTE: Regulator system constraints must be set for this regulator before
3439 * calling this function otherwise this call will fail.
3440 */
3441int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3442{
3443	struct regulator_dev *rdev = regulator->rdev;
3444	int ret;
3445	int regulator_curr_mode;
3446
3447	mutex_lock(&rdev->mutex);
3448
3449	/* sanity check */
3450	if (!rdev->desc->ops->set_mode) {
3451		ret = -EINVAL;
3452		goto out;
3453	}
3454
3455	/* return if the same mode is requested */
3456	if (rdev->desc->ops->get_mode) {
3457		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3458		if (regulator_curr_mode == mode) {
3459			ret = 0;
3460			goto out;
3461		}
3462	}
3463
3464	/* constraints check */
3465	ret = regulator_mode_constrain(rdev, &mode);
3466	if (ret < 0)
3467		goto out;
3468
3469	ret = rdev->desc->ops->set_mode(rdev, mode);
3470out:
3471	mutex_unlock(&rdev->mutex);
3472	return ret;
3473}
3474EXPORT_SYMBOL_GPL(regulator_set_mode);
3475
 
 
 
 
 
 
 
 
 
3476static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3477{
3478	int ret;
3479
3480	mutex_lock(&rdev->mutex);
 
 
3481
3482	/* sanity check */
3483	if (!rdev->desc->ops->get_mode) {
3484		ret = -EINVAL;
3485		goto out;
3486	}
3487
3488	ret = rdev->desc->ops->get_mode(rdev);
3489out:
3490	mutex_unlock(&rdev->mutex);
3491	return ret;
3492}
3493
3494/**
3495 * regulator_get_mode - get regulator operating mode
3496 * @regulator: regulator source
3497 *
3498 * Get the current regulator operating mode.
3499 */
3500unsigned int regulator_get_mode(struct regulator *regulator)
3501{
3502	return _regulator_get_mode(regulator->rdev);
3503}
3504EXPORT_SYMBOL_GPL(regulator_get_mode);
3505
3506static int _regulator_get_error_flags(struct regulator_dev *rdev,
3507					unsigned int *flags)
3508{
3509	int ret;
3510
3511	mutex_lock(&rdev->mutex);
3512
3513	/* sanity check */
3514	if (!rdev->desc->ops->get_error_flags) {
3515		ret = -EINVAL;
3516		goto out;
3517	}
3518
3519	ret = rdev->desc->ops->get_error_flags(rdev, flags);
3520out:
3521	mutex_unlock(&rdev->mutex);
3522	return ret;
3523}
3524
3525/**
3526 * regulator_get_error_flags - get regulator error information
3527 * @regulator: regulator source
3528 * @flags: pointer to store error flags
3529 *
3530 * Get the current regulator error information.
3531 */
3532int regulator_get_error_flags(struct regulator *regulator,
3533				unsigned int *flags)
3534{
3535	return _regulator_get_error_flags(regulator->rdev, flags);
3536}
3537EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3538
3539/**
3540 * regulator_set_load - set regulator load
3541 * @regulator: regulator source
3542 * @uA_load: load current
3543 *
3544 * Notifies the regulator core of a new device load. This is then used by
3545 * DRMS (if enabled by constraints) to set the most efficient regulator
3546 * operating mode for the new regulator loading.
3547 *
3548 * Consumer devices notify their supply regulator of the maximum power
3549 * they will require (can be taken from device datasheet in the power
3550 * consumption tables) when they change operational status and hence power
3551 * state. Examples of operational state changes that can affect power
3552 * consumption are :-
3553 *
3554 *    o Device is opened / closed.
3555 *    o Device I/O is about to begin or has just finished.
3556 *    o Device is idling in between work.
3557 *
3558 * This information is also exported via sysfs to userspace.
3559 *
3560 * DRMS will sum the total requested load on the regulator and change
3561 * to the most efficient operating mode if platform constraints allow.
3562 *
 
 
 
 
 
 
 
 
3563 * On error a negative errno is returned.
3564 */
3565int regulator_set_load(struct regulator *regulator, int uA_load)
3566{
3567	struct regulator_dev *rdev = regulator->rdev;
3568	int ret;
 
3569
3570	mutex_lock(&rdev->mutex);
 
3571	regulator->uA_load = uA_load;
3572	ret = drms_uA_update(rdev);
3573	mutex_unlock(&rdev->mutex);
 
 
 
 
3574
3575	return ret;
3576}
3577EXPORT_SYMBOL_GPL(regulator_set_load);
3578
3579/**
3580 * regulator_allow_bypass - allow the regulator to go into bypass mode
3581 *
3582 * @regulator: Regulator to configure
3583 * @enable: enable or disable bypass mode
3584 *
3585 * Allow the regulator to go into bypass mode if all other consumers
3586 * for the regulator also enable bypass mode and the machine
3587 * constraints allow this.  Bypass mode means that the regulator is
3588 * simply passing the input directly to the output with no regulation.
3589 */
3590int regulator_allow_bypass(struct regulator *regulator, bool enable)
3591{
3592	struct regulator_dev *rdev = regulator->rdev;
 
3593	int ret = 0;
3594
3595	if (!rdev->desc->ops->set_bypass)
3596		return 0;
3597
3598	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3599		return 0;
3600
3601	mutex_lock(&rdev->mutex);
3602
3603	if (enable && !regulator->bypass) {
3604		rdev->bypass_count++;
3605
3606		if (rdev->bypass_count == rdev->open_count) {
 
 
3607			ret = rdev->desc->ops->set_bypass(rdev, enable);
3608			if (ret != 0)
3609				rdev->bypass_count--;
 
 
3610		}
3611
3612	} else if (!enable && regulator->bypass) {
3613		rdev->bypass_count--;
3614
3615		if (rdev->bypass_count != rdev->open_count) {
 
 
3616			ret = rdev->desc->ops->set_bypass(rdev, enable);
3617			if (ret != 0)
3618				rdev->bypass_count++;
 
 
3619		}
3620	}
3621
3622	if (ret == 0)
3623		regulator->bypass = enable;
3624
3625	mutex_unlock(&rdev->mutex);
3626
3627	return ret;
3628}
3629EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3630
3631/**
3632 * regulator_register_notifier - register regulator event notifier
3633 * @regulator: regulator source
3634 * @nb: notifier block
3635 *
3636 * Register notifier block to receive regulator events.
3637 */
3638int regulator_register_notifier(struct regulator *regulator,
3639			      struct notifier_block *nb)
3640{
3641	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3642						nb);
3643}
3644EXPORT_SYMBOL_GPL(regulator_register_notifier);
3645
3646/**
3647 * regulator_unregister_notifier - unregister regulator event notifier
3648 * @regulator: regulator source
3649 * @nb: notifier block
3650 *
3651 * Unregister regulator event notifier block.
3652 */
3653int regulator_unregister_notifier(struct regulator *regulator,
3654				struct notifier_block *nb)
3655{
3656	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3657						  nb);
3658}
3659EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3660
3661/* notify regulator consumers and downstream regulator consumers.
3662 * Note mutex must be held by caller.
3663 */
3664static int _notifier_call_chain(struct regulator_dev *rdev,
3665				  unsigned long event, void *data)
3666{
3667	/* call rdev chain first */
3668	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3669}
3670
3671/**
3672 * regulator_bulk_get - get multiple regulator consumers
3673 *
3674 * @dev:           Device to supply
3675 * @num_consumers: Number of consumers to register
3676 * @consumers:     Configuration of consumers; clients are stored here.
3677 *
3678 * @return 0 on success, an errno on failure.
3679 *
3680 * This helper function allows drivers to get several regulator
3681 * consumers in one operation.  If any of the regulators cannot be
3682 * acquired then any regulators that were allocated will be freed
3683 * before returning to the caller.
3684 */
3685int regulator_bulk_get(struct device *dev, int num_consumers,
3686		       struct regulator_bulk_data *consumers)
3687{
3688	int i;
3689	int ret;
3690
3691	for (i = 0; i < num_consumers; i++)
3692		consumers[i].consumer = NULL;
3693
3694	for (i = 0; i < num_consumers; i++) {
3695		consumers[i].consumer = regulator_get(dev,
3696						      consumers[i].supply);
3697		if (IS_ERR(consumers[i].consumer)) {
3698			ret = PTR_ERR(consumers[i].consumer);
3699			dev_err(dev, "Failed to get supply '%s': %d\n",
3700				consumers[i].supply, ret);
3701			consumers[i].consumer = NULL;
3702			goto err;
3703		}
3704	}
3705
3706	return 0;
3707
3708err:
 
 
 
 
 
 
 
3709	while (--i >= 0)
3710		regulator_put(consumers[i].consumer);
3711
3712	return ret;
3713}
3714EXPORT_SYMBOL_GPL(regulator_bulk_get);
3715
3716static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3717{
3718	struct regulator_bulk_data *bulk = data;
3719
3720	bulk->ret = regulator_enable(bulk->consumer);
3721}
3722
3723/**
3724 * regulator_bulk_enable - enable multiple regulator consumers
3725 *
3726 * @num_consumers: Number of consumers
3727 * @consumers:     Consumer data; clients are stored here.
3728 * @return         0 on success, an errno on failure
3729 *
3730 * This convenience API allows consumers to enable multiple regulator
3731 * clients in a single API call.  If any consumers cannot be enabled
3732 * then any others that were enabled will be disabled again prior to
3733 * return.
3734 */
3735int regulator_bulk_enable(int num_consumers,
3736			  struct regulator_bulk_data *consumers)
3737{
3738	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3739	int i;
3740	int ret = 0;
3741
3742	for (i = 0; i < num_consumers; i++) {
3743		if (consumers[i].consumer->always_on)
3744			consumers[i].ret = 0;
3745		else
3746			async_schedule_domain(regulator_bulk_enable_async,
3747					      &consumers[i], &async_domain);
3748	}
3749
3750	async_synchronize_full_domain(&async_domain);
3751
3752	/* If any consumer failed we need to unwind any that succeeded */
3753	for (i = 0; i < num_consumers; i++) {
3754		if (consumers[i].ret != 0) {
3755			ret = consumers[i].ret;
3756			goto err;
3757		}
3758	}
3759
3760	return 0;
3761
3762err:
3763	for (i = 0; i < num_consumers; i++) {
3764		if (consumers[i].ret < 0)
3765			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3766			       consumers[i].ret);
3767		else
3768			regulator_disable(consumers[i].consumer);
3769	}
3770
3771	return ret;
3772}
3773EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3774
3775/**
3776 * regulator_bulk_disable - disable multiple regulator consumers
3777 *
3778 * @num_consumers: Number of consumers
3779 * @consumers:     Consumer data; clients are stored here.
3780 * @return         0 on success, an errno on failure
3781 *
3782 * This convenience API allows consumers to disable multiple regulator
3783 * clients in a single API call.  If any consumers cannot be disabled
3784 * then any others that were disabled will be enabled again prior to
3785 * return.
3786 */
3787int regulator_bulk_disable(int num_consumers,
3788			   struct regulator_bulk_data *consumers)
3789{
3790	int i;
3791	int ret, r;
3792
3793	for (i = num_consumers - 1; i >= 0; --i) {
3794		ret = regulator_disable(consumers[i].consumer);
3795		if (ret != 0)
3796			goto err;
3797	}
3798
3799	return 0;
3800
3801err:
3802	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3803	for (++i; i < num_consumers; ++i) {
3804		r = regulator_enable(consumers[i].consumer);
3805		if (r != 0)
3806			pr_err("Failed to re-enable %s: %d\n",
3807			       consumers[i].supply, r);
3808	}
3809
3810	return ret;
3811}
3812EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3813
3814/**
3815 * regulator_bulk_force_disable - force disable multiple regulator consumers
3816 *
3817 * @num_consumers: Number of consumers
3818 * @consumers:     Consumer data; clients are stored here.
3819 * @return         0 on success, an errno on failure
3820 *
3821 * This convenience API allows consumers to forcibly disable multiple regulator
3822 * clients in a single API call.
3823 * NOTE: This should be used for situations when device damage will
3824 * likely occur if the regulators are not disabled (e.g. over temp).
3825 * Although regulator_force_disable function call for some consumers can
3826 * return error numbers, the function is called for all consumers.
3827 */
3828int regulator_bulk_force_disable(int num_consumers,
3829			   struct regulator_bulk_data *consumers)
3830{
3831	int i;
3832	int ret = 0;
3833
3834	for (i = 0; i < num_consumers; i++) {
3835		consumers[i].ret =
3836			    regulator_force_disable(consumers[i].consumer);
3837
3838		/* Store first error for reporting */
3839		if (consumers[i].ret && !ret)
3840			ret = consumers[i].ret;
3841	}
3842
3843	return ret;
3844}
3845EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3846
3847/**
3848 * regulator_bulk_free - free multiple regulator consumers
3849 *
3850 * @num_consumers: Number of consumers
3851 * @consumers:     Consumer data; clients are stored here.
3852 *
3853 * This convenience API allows consumers to free multiple regulator
3854 * clients in a single API call.
3855 */
3856void regulator_bulk_free(int num_consumers,
3857			 struct regulator_bulk_data *consumers)
3858{
3859	int i;
3860
3861	for (i = 0; i < num_consumers; i++) {
3862		regulator_put(consumers[i].consumer);
3863		consumers[i].consumer = NULL;
3864	}
3865}
3866EXPORT_SYMBOL_GPL(regulator_bulk_free);
3867
3868/**
3869 * regulator_notifier_call_chain - call regulator event notifier
3870 * @rdev: regulator source
3871 * @event: notifier block
3872 * @data: callback-specific data.
3873 *
3874 * Called by regulator drivers to notify clients a regulator event has
3875 * occurred. We also notify regulator clients downstream.
3876 * Note lock must be held by caller.
3877 */
3878int regulator_notifier_call_chain(struct regulator_dev *rdev,
3879				  unsigned long event, void *data)
3880{
3881	lockdep_assert_held_once(&rdev->mutex);
3882
3883	_notifier_call_chain(rdev, event, data);
3884	return NOTIFY_DONE;
3885
3886}
3887EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3888
3889/**
3890 * regulator_mode_to_status - convert a regulator mode into a status
3891 *
3892 * @mode: Mode to convert
3893 *
3894 * Convert a regulator mode into a status.
3895 */
3896int regulator_mode_to_status(unsigned int mode)
3897{
3898	switch (mode) {
3899	case REGULATOR_MODE_FAST:
3900		return REGULATOR_STATUS_FAST;
3901	case REGULATOR_MODE_NORMAL:
3902		return REGULATOR_STATUS_NORMAL;
3903	case REGULATOR_MODE_IDLE:
3904		return REGULATOR_STATUS_IDLE;
3905	case REGULATOR_MODE_STANDBY:
3906		return REGULATOR_STATUS_STANDBY;
3907	default:
3908		return REGULATOR_STATUS_UNDEFINED;
3909	}
3910}
3911EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3912
3913static struct attribute *regulator_dev_attrs[] = {
3914	&dev_attr_name.attr,
3915	&dev_attr_num_users.attr,
3916	&dev_attr_type.attr,
3917	&dev_attr_microvolts.attr,
3918	&dev_attr_microamps.attr,
3919	&dev_attr_opmode.attr,
3920	&dev_attr_state.attr,
3921	&dev_attr_status.attr,
3922	&dev_attr_bypass.attr,
3923	&dev_attr_requested_microamps.attr,
3924	&dev_attr_min_microvolts.attr,
3925	&dev_attr_max_microvolts.attr,
3926	&dev_attr_min_microamps.attr,
3927	&dev_attr_max_microamps.attr,
3928	&dev_attr_suspend_standby_state.attr,
3929	&dev_attr_suspend_mem_state.attr,
3930	&dev_attr_suspend_disk_state.attr,
3931	&dev_attr_suspend_standby_microvolts.attr,
3932	&dev_attr_suspend_mem_microvolts.attr,
3933	&dev_attr_suspend_disk_microvolts.attr,
3934	&dev_attr_suspend_standby_mode.attr,
3935	&dev_attr_suspend_mem_mode.attr,
3936	&dev_attr_suspend_disk_mode.attr,
3937	NULL
3938};
3939
3940/*
3941 * To avoid cluttering sysfs (and memory) with useless state, only
3942 * create attributes that can be meaningfully displayed.
3943 */
3944static umode_t regulator_attr_is_visible(struct kobject *kobj,
3945					 struct attribute *attr, int idx)
3946{
3947	struct device *dev = kobj_to_dev(kobj);
3948	struct regulator_dev *rdev = dev_to_rdev(dev);
3949	const struct regulator_ops *ops = rdev->desc->ops;
3950	umode_t mode = attr->mode;
3951
3952	/* these three are always present */
3953	if (attr == &dev_attr_name.attr ||
3954	    attr == &dev_attr_num_users.attr ||
3955	    attr == &dev_attr_type.attr)
3956		return mode;
3957
3958	/* some attributes need specific methods to be displayed */
3959	if (attr == &dev_attr_microvolts.attr) {
3960		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3961		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3962		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3963		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3964			return mode;
3965		return 0;
3966	}
3967
3968	if (attr == &dev_attr_microamps.attr)
3969		return ops->get_current_limit ? mode : 0;
3970
3971	if (attr == &dev_attr_opmode.attr)
3972		return ops->get_mode ? mode : 0;
3973
3974	if (attr == &dev_attr_state.attr)
3975		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3976
3977	if (attr == &dev_attr_status.attr)
3978		return ops->get_status ? mode : 0;
3979
3980	if (attr == &dev_attr_bypass.attr)
3981		return ops->get_bypass ? mode : 0;
3982
3983	/* some attributes are type-specific */
3984	if (attr == &dev_attr_requested_microamps.attr)
3985		return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3986
3987	/* constraints need specific supporting methods */
3988	if (attr == &dev_attr_min_microvolts.attr ||
3989	    attr == &dev_attr_max_microvolts.attr)
3990		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3991
3992	if (attr == &dev_attr_min_microamps.attr ||
3993	    attr == &dev_attr_max_microamps.attr)
3994		return ops->set_current_limit ? mode : 0;
3995
3996	if (attr == &dev_attr_suspend_standby_state.attr ||
3997	    attr == &dev_attr_suspend_mem_state.attr ||
3998	    attr == &dev_attr_suspend_disk_state.attr)
3999		return mode;
4000
4001	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4002	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4003	    attr == &dev_attr_suspend_disk_microvolts.attr)
4004		return ops->set_suspend_voltage ? mode : 0;
4005
4006	if (attr == &dev_attr_suspend_standby_mode.attr ||
4007	    attr == &dev_attr_suspend_mem_mode.attr ||
4008	    attr == &dev_attr_suspend_disk_mode.attr)
4009		return ops->set_suspend_mode ? mode : 0;
4010
4011	return mode;
4012}
4013
4014static const struct attribute_group regulator_dev_group = {
4015	.attrs = regulator_dev_attrs,
4016	.is_visible = regulator_attr_is_visible,
4017};
4018
4019static const struct attribute_group *regulator_dev_groups[] = {
4020	&regulator_dev_group,
4021	NULL
4022};
4023
4024static void regulator_dev_release(struct device *dev)
4025{
4026	struct regulator_dev *rdev = dev_get_drvdata(dev);
4027
4028	kfree(rdev->constraints);
4029	of_node_put(rdev->dev.of_node);
4030	kfree(rdev);
4031}
4032
4033static void rdev_init_debugfs(struct regulator_dev *rdev)
4034{
4035	struct device *parent = rdev->dev.parent;
4036	const char *rname = rdev_get_name(rdev);
4037	char name[NAME_MAX];
4038
4039	/* Avoid duplicate debugfs directory names */
4040	if (parent && rname == rdev->desc->name) {
4041		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4042			 rname);
4043		rname = name;
4044	}
4045
4046	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4047	if (!rdev->debugfs) {
4048		rdev_warn(rdev, "Failed to create debugfs directory\n");
4049		return;
4050	}
4051
4052	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4053			   &rdev->use_count);
4054	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4055			   &rdev->open_count);
4056	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4057			   &rdev->bypass_count);
4058}
4059
4060static int regulator_register_resolve_supply(struct device *dev, void *data)
4061{
4062	struct regulator_dev *rdev = dev_to_rdev(dev);
4063
4064	if (regulator_resolve_supply(rdev))
4065		rdev_dbg(rdev, "unable to resolve supply\n");
4066
4067	return 0;
4068}
4069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4070/**
4071 * regulator_register - register regulator
4072 * @regulator_desc: regulator to register
4073 * @cfg: runtime configuration for regulator
4074 *
4075 * Called by regulator drivers to register a regulator.
4076 * Returns a valid pointer to struct regulator_dev on success
4077 * or an ERR_PTR() on error.
4078 */
4079struct regulator_dev *
4080regulator_register(const struct regulator_desc *regulator_desc,
4081		   const struct regulator_config *cfg)
4082{
4083	const struct regulation_constraints *constraints = NULL;
4084	const struct regulator_init_data *init_data;
4085	struct regulator_config *config = NULL;
4086	static atomic_t regulator_no = ATOMIC_INIT(-1);
4087	struct regulator_dev *rdev;
 
 
4088	struct device *dev;
4089	int ret, i;
4090
4091	if (regulator_desc == NULL || cfg == NULL)
4092		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
4093
4094	dev = cfg->dev;
4095	WARN_ON(!dev);
4096
4097	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4098		return ERR_PTR(-EINVAL);
 
 
4099
4100	if (regulator_desc->type != REGULATOR_VOLTAGE &&
4101	    regulator_desc->type != REGULATOR_CURRENT)
4102		return ERR_PTR(-EINVAL);
 
 
4103
4104	/* Only one of each should be implemented */
4105	WARN_ON(regulator_desc->ops->get_voltage &&
4106		regulator_desc->ops->get_voltage_sel);
4107	WARN_ON(regulator_desc->ops->set_voltage &&
4108		regulator_desc->ops->set_voltage_sel);
4109
4110	/* If we're using selectors we must implement list_voltage. */
4111	if (regulator_desc->ops->get_voltage_sel &&
4112	    !regulator_desc->ops->list_voltage) {
4113		return ERR_PTR(-EINVAL);
 
4114	}
4115	if (regulator_desc->ops->set_voltage_sel &&
4116	    !regulator_desc->ops->list_voltage) {
4117		return ERR_PTR(-EINVAL);
 
4118	}
4119
4120	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4121	if (rdev == NULL)
4122		return ERR_PTR(-ENOMEM);
 
 
 
4123
4124	/*
4125	 * Duplicate the config so the driver could override it after
4126	 * parsing init data.
4127	 */
4128	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4129	if (config == NULL) {
4130		kfree(rdev);
4131		return ERR_PTR(-ENOMEM);
4132	}
4133
4134	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4135					       &rdev->dev.of_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4136	if (!init_data) {
4137		init_data = config->init_data;
4138		rdev->dev.of_node = of_node_get(config->of_node);
4139	}
4140
4141	mutex_init(&rdev->mutex);
4142	rdev->reg_data = config->driver_data;
4143	rdev->owner = regulator_desc->owner;
4144	rdev->desc = regulator_desc;
4145	if (config->regmap)
4146		rdev->regmap = config->regmap;
4147	else if (dev_get_regmap(dev, NULL))
4148		rdev->regmap = dev_get_regmap(dev, NULL);
4149	else if (dev->parent)
4150		rdev->regmap = dev_get_regmap(dev->parent, NULL);
4151	INIT_LIST_HEAD(&rdev->consumer_list);
4152	INIT_LIST_HEAD(&rdev->list);
4153	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4154	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4155
4156	/* preform any regulator specific init */
4157	if (init_data && init_data->regulator_init) {
4158		ret = init_data->regulator_init(rdev->reg_data);
4159		if (ret < 0)
4160			goto clean;
4161	}
4162
4163	if (config->ena_gpiod ||
4164	    ((config->ena_gpio || config->ena_gpio_initialized) &&
4165	     gpio_is_valid(config->ena_gpio))) {
4166		mutex_lock(&regulator_list_mutex);
4167		ret = regulator_ena_gpio_request(rdev, config);
4168		mutex_unlock(&regulator_list_mutex);
4169		if (ret != 0) {
4170			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4171				 config->ena_gpio, ret);
4172			goto clean;
4173		}
 
 
 
4174	}
4175
4176	/* register with sysfs */
4177	rdev->dev.class = &regulator_class;
4178	rdev->dev.parent = dev;
4179	dev_set_name(&rdev->dev, "regulator.%lu",
4180		    (unsigned long) atomic_inc_return(&regulator_no));
 
4181
4182	/* set regulator constraints */
4183	if (init_data)
4184		constraints = &init_data->constraints;
4185
4186	if (init_data && init_data->supply_regulator)
4187		rdev->supply_name = init_data->supply_regulator;
4188	else if (regulator_desc->supply_name)
4189		rdev->supply_name = regulator_desc->supply_name;
4190
4191	/*
4192	 * Attempt to resolve the regulator supply, if specified,
4193	 * but don't return an error if we fail because we will try
4194	 * to resolve it again later as more regulators are added.
4195	 */
4196	if (regulator_resolve_supply(rdev))
4197		rdev_dbg(rdev, "unable to resolve supply\n");
4198
4199	ret = set_machine_constraints(rdev, constraints);
4200	if (ret < 0)
4201		goto wash;
4202
 
 
 
 
4203	/* add consumers devices */
4204	if (init_data) {
4205		mutex_lock(&regulator_list_mutex);
4206		for (i = 0; i < init_data->num_consumer_supplies; i++) {
4207			ret = set_consumer_device_supply(rdev,
4208				init_data->consumer_supplies[i].dev_name,
4209				init_data->consumer_supplies[i].supply);
4210			if (ret < 0) {
4211				mutex_unlock(&regulator_list_mutex);
4212				dev_err(dev, "Failed to set supply %s\n",
4213					init_data->consumer_supplies[i].supply);
4214				goto unset_supplies;
4215			}
4216		}
4217		mutex_unlock(&regulator_list_mutex);
4218	}
4219
4220	if (!rdev->desc->ops->get_voltage &&
4221	    !rdev->desc->ops->list_voltage &&
4222	    !rdev->desc->fixed_uV)
4223		rdev->is_switch = true;
4224
4225	ret = device_register(&rdev->dev);
4226	if (ret != 0) {
4227		put_device(&rdev->dev);
4228		goto unset_supplies;
4229	}
4230
4231	dev_set_drvdata(&rdev->dev, rdev);
4232	rdev_init_debugfs(rdev);
4233
 
 
 
 
 
4234	/* try to resolve regulators supply since a new one was registered */
4235	class_for_each_device(&regulator_class, NULL, NULL,
4236			      regulator_register_resolve_supply);
4237	kfree(config);
4238	return rdev;
4239
4240unset_supplies:
4241	mutex_lock(&regulator_list_mutex);
4242	unset_regulator_supplies(rdev);
 
4243	mutex_unlock(&regulator_list_mutex);
4244wash:
4245	kfree(rdev->constraints);
4246	mutex_lock(&regulator_list_mutex);
4247	regulator_ena_gpio_free(rdev);
4248	mutex_unlock(&regulator_list_mutex);
4249clean:
4250	kfree(rdev);
 
4251	kfree(config);
 
 
 
 
4252	return ERR_PTR(ret);
4253}
4254EXPORT_SYMBOL_GPL(regulator_register);
4255
4256/**
4257 * regulator_unregister - unregister regulator
4258 * @rdev: regulator to unregister
4259 *
4260 * Called by regulator drivers to unregister a regulator.
4261 */
4262void regulator_unregister(struct regulator_dev *rdev)
4263{
4264	if (rdev == NULL)
4265		return;
4266
4267	if (rdev->supply) {
4268		while (rdev->use_count--)
4269			regulator_disable(rdev->supply);
4270		regulator_put(rdev->supply);
4271	}
 
 
 
4272	mutex_lock(&regulator_list_mutex);
 
4273	debugfs_remove_recursive(rdev->debugfs);
4274	flush_work(&rdev->disable_work.work);
4275	WARN_ON(rdev->open_count);
 
4276	unset_regulator_supplies(rdev);
4277	list_del(&rdev->list);
4278	regulator_ena_gpio_free(rdev);
 
 
4279	mutex_unlock(&regulator_list_mutex);
4280	device_unregister(&rdev->dev);
4281}
4282EXPORT_SYMBOL_GPL(regulator_unregister);
4283
4284#ifdef CONFIG_SUSPEND
4285static int _regulator_suspend_late(struct device *dev, void *data)
 
 
 
 
 
 
4286{
4287	struct regulator_dev *rdev = dev_to_rdev(dev);
4288	suspend_state_t *state = data;
4289	int ret;
4290
4291	mutex_lock(&rdev->mutex);
4292	ret = suspend_set_state(rdev, *state);
4293	mutex_unlock(&rdev->mutex);
4294
4295	return ret;
4296}
4297
4298/**
4299 * regulator_suspend_late - prepare regulators for system wide suspend
4300 * @state: system suspend state
4301 *
4302 * Configure each regulator with it's suspend operating parameters for state.
4303 */
4304static int regulator_suspend_late(struct device *dev)
4305{
4306	suspend_state_t state = pm_suspend_target_state;
4307
4308	return class_for_each_device(&regulator_class, NULL, &state,
4309				     _regulator_suspend_late);
4310}
4311
4312static int _regulator_resume_early(struct device *dev, void *data)
4313{
4314	int ret = 0;
4315	struct regulator_dev *rdev = dev_to_rdev(dev);
4316	suspend_state_t *state = data;
4317	struct regulator_state *rstate;
 
4318
4319	rstate = regulator_get_suspend_state(rdev, *state);
4320	if (rstate == NULL)
4321		return 0;
4322
4323	mutex_lock(&rdev->mutex);
4324
4325	if (rdev->desc->ops->resume_early &&
4326	    (rstate->enabled == ENABLE_IN_SUSPEND ||
4327	     rstate->enabled == DISABLE_IN_SUSPEND))
4328		ret = rdev->desc->ops->resume_early(rdev);
4329
4330	mutex_unlock(&rdev->mutex);
4331
4332	return ret;
4333}
4334
4335static int regulator_resume_early(struct device *dev)
4336{
4337	suspend_state_t state = pm_suspend_target_state;
4338
4339	return class_for_each_device(&regulator_class, NULL, &state,
4340				     _regulator_resume_early);
4341}
4342
4343#else /* !CONFIG_SUSPEND */
4344
4345#define regulator_suspend_late	NULL
4346#define regulator_resume_early	NULL
4347
4348#endif /* !CONFIG_SUSPEND */
4349
4350#ifdef CONFIG_PM
4351static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4352	.suspend_late	= regulator_suspend_late,
4353	.resume_early	= regulator_resume_early,
4354};
4355#endif
4356
4357struct class regulator_class = {
4358	.name = "regulator",
4359	.dev_release = regulator_dev_release,
4360	.dev_groups = regulator_dev_groups,
4361#ifdef CONFIG_PM
4362	.pm = &regulator_pm_ops,
4363#endif
4364};
4365/**
4366 * regulator_has_full_constraints - the system has fully specified constraints
4367 *
4368 * Calling this function will cause the regulator API to disable all
4369 * regulators which have a zero use count and don't have an always_on
4370 * constraint in a late_initcall.
4371 *
4372 * The intention is that this will become the default behaviour in a
4373 * future kernel release so users are encouraged to use this facility
4374 * now.
4375 */
4376void regulator_has_full_constraints(void)
4377{
4378	has_full_constraints = 1;
4379}
4380EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4381
4382/**
4383 * rdev_get_drvdata - get rdev regulator driver data
4384 * @rdev: regulator
4385 *
4386 * Get rdev regulator driver private data. This call can be used in the
4387 * regulator driver context.
4388 */
4389void *rdev_get_drvdata(struct regulator_dev *rdev)
4390{
4391	return rdev->reg_data;
4392}
4393EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4394
4395/**
4396 * regulator_get_drvdata - get regulator driver data
4397 * @regulator: regulator
4398 *
4399 * Get regulator driver private data. This call can be used in the consumer
4400 * driver context when non API regulator specific functions need to be called.
4401 */
4402void *regulator_get_drvdata(struct regulator *regulator)
4403{
4404	return regulator->rdev->reg_data;
4405}
4406EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4407
4408/**
4409 * regulator_set_drvdata - set regulator driver data
4410 * @regulator: regulator
4411 * @data: data
4412 */
4413void regulator_set_drvdata(struct regulator *regulator, void *data)
4414{
4415	regulator->rdev->reg_data = data;
4416}
4417EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4418
4419/**
4420 * regulator_get_id - get regulator ID
4421 * @rdev: regulator
4422 */
4423int rdev_get_id(struct regulator_dev *rdev)
4424{
4425	return rdev->desc->id;
4426}
4427EXPORT_SYMBOL_GPL(rdev_get_id);
4428
4429struct device *rdev_get_dev(struct regulator_dev *rdev)
4430{
4431	return &rdev->dev;
4432}
4433EXPORT_SYMBOL_GPL(rdev_get_dev);
4434
 
 
 
 
 
 
4435void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4436{
4437	return reg_init_data->driver_data;
4438}
4439EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4440
4441#ifdef CONFIG_DEBUG_FS
4442static int supply_map_show(struct seq_file *sf, void *data)
4443{
4444	struct regulator_map *map;
4445
4446	list_for_each_entry(map, &regulator_map_list, list) {
4447		seq_printf(sf, "%s -> %s.%s\n",
4448				rdev_get_name(map->regulator), map->dev_name,
4449				map->supply);
4450	}
4451
4452	return 0;
4453}
 
4454
4455static int supply_map_open(struct inode *inode, struct file *file)
4456{
4457	return single_open(file, supply_map_show, inode->i_private);
4458}
4459#endif
4460
4461static const struct file_operations supply_map_fops = {
4462#ifdef CONFIG_DEBUG_FS
4463	.open = supply_map_open,
4464	.read = seq_read,
4465	.llseek = seq_lseek,
4466	.release = single_release,
4467#endif
4468};
4469
4470#ifdef CONFIG_DEBUG_FS
4471struct summary_data {
4472	struct seq_file *s;
4473	struct regulator_dev *parent;
4474	int level;
4475};
4476
4477static void regulator_summary_show_subtree(struct seq_file *s,
4478					   struct regulator_dev *rdev,
4479					   int level);
4480
4481static int regulator_summary_show_children(struct device *dev, void *data)
4482{
4483	struct regulator_dev *rdev = dev_to_rdev(dev);
4484	struct summary_data *summary_data = data;
4485
4486	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4487		regulator_summary_show_subtree(summary_data->s, rdev,
4488					       summary_data->level + 1);
4489
4490	return 0;
4491}
4492
4493static void regulator_summary_show_subtree(struct seq_file *s,
4494					   struct regulator_dev *rdev,
4495					   int level)
4496{
4497	struct regulation_constraints *c;
4498	struct regulator *consumer;
4499	struct summary_data summary_data;
 
4500
4501	if (!rdev)
4502		return;
4503
4504	seq_printf(s, "%*s%-*s %3d %4d %6d ",
 
4505		   level * 3 + 1, "",
4506		   30 - level * 3, rdev_get_name(rdev),
4507		   rdev->use_count, rdev->open_count, rdev->bypass_count);
 
4508
4509	seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4510	seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
 
4511
4512	c = rdev->constraints;
4513	if (c) {
4514		switch (rdev->desc->type) {
4515		case REGULATOR_VOLTAGE:
4516			seq_printf(s, "%5dmV %5dmV ",
4517				   c->min_uV / 1000, c->max_uV / 1000);
4518			break;
4519		case REGULATOR_CURRENT:
4520			seq_printf(s, "%5dmA %5dmA ",
4521				   c->min_uA / 1000, c->max_uA / 1000);
4522			break;
4523		}
4524	}
4525
4526	seq_puts(s, "\n");
4527
4528	list_for_each_entry(consumer, &rdev->consumer_list, list) {
4529		if (consumer->dev && consumer->dev->class == &regulator_class)
4530			continue;
4531
4532		seq_printf(s, "%*s%-*s ",
4533			   (level + 1) * 3 + 1, "",
4534			   30 - (level + 1) * 3,
 
4535			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
4536
4537		switch (rdev->desc->type) {
4538		case REGULATOR_VOLTAGE:
4539			seq_printf(s, "%37dmV %5dmV",
 
 
 
 
4540				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4541				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4542			break;
4543		case REGULATOR_CURRENT:
4544			break;
4545		}
4546
4547		seq_puts(s, "\n");
4548	}
4549
4550	summary_data.s = s;
4551	summary_data.level = level;
4552	summary_data.parent = rdev;
4553
4554	class_for_each_device(&regulator_class, NULL, &summary_data,
4555			      regulator_summary_show_children);
4556}
4557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4558static int regulator_summary_show_roots(struct device *dev, void *data)
4559{
4560	struct regulator_dev *rdev = dev_to_rdev(dev);
4561	struct seq_file *s = data;
4562
4563	if (!rdev->supply)
4564		regulator_summary_show_subtree(s, rdev, 0);
4565
4566	return 0;
4567}
4568
4569static int regulator_summary_show(struct seq_file *s, void *data)
4570{
4571	seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4572	seq_puts(s, "-------------------------------------------------------------------------------\n");
 
 
 
 
4573
4574	class_for_each_device(&regulator_class, NULL, s,
4575			      regulator_summary_show_roots);
4576
 
 
4577	return 0;
4578}
4579
4580static int regulator_summary_open(struct inode *inode, struct file *file)
4581{
4582	return single_open(file, regulator_summary_show, inode->i_private);
4583}
4584#endif
4585
4586static const struct file_operations regulator_summary_fops = {
4587#ifdef CONFIG_DEBUG_FS
4588	.open		= regulator_summary_open,
4589	.read		= seq_read,
4590	.llseek		= seq_lseek,
4591	.release	= single_release,
4592#endif
4593};
4594
4595static int __init regulator_init(void)
4596{
4597	int ret;
4598
4599	ret = class_register(&regulator_class);
4600
4601	debugfs_root = debugfs_create_dir("regulator", NULL);
4602	if (!debugfs_root)
4603		pr_warn("regulator: Failed to create debugfs directory\n");
4604
 
4605	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4606			    &supply_map_fops);
4607
4608	debugfs_create_file("regulator_summary", 0444, debugfs_root,
4609			    NULL, &regulator_summary_fops);
 
 
4610
4611	regulator_dummy_init();
4612
4613	return ret;
4614}
4615
4616/* init early to allow our consumers to complete system booting */
4617core_initcall(regulator_init);
4618
4619static int __init regulator_late_cleanup(struct device *dev, void *data)
4620{
4621	struct regulator_dev *rdev = dev_to_rdev(dev);
4622	const struct regulator_ops *ops = rdev->desc->ops;
4623	struct regulation_constraints *c = rdev->constraints;
4624	int enabled, ret;
4625
4626	if (c && c->always_on)
4627		return 0;
4628
4629	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4630		return 0;
4631
4632	mutex_lock(&rdev->mutex);
4633
4634	if (rdev->use_count)
4635		goto unlock;
4636
4637	/* If we can't read the status assume it's on. */
4638	if (ops->is_enabled)
4639		enabled = ops->is_enabled(rdev);
4640	else
4641		enabled = 1;
4642
4643	if (!enabled)
4644		goto unlock;
4645
4646	if (have_full_constraints()) {
4647		/* We log since this may kill the system if it goes
4648		 * wrong. */
4649		rdev_info(rdev, "disabling\n");
4650		ret = _regulator_do_disable(rdev);
4651		if (ret != 0)
4652			rdev_err(rdev, "couldn't disable: %d\n", ret);
4653	} else {
4654		/* The intention is that in future we will
4655		 * assume that full constraints are provided
4656		 * so warn even if we aren't going to do
4657		 * anything here.
4658		 */
4659		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4660	}
4661
4662unlock:
4663	mutex_unlock(&rdev->mutex);
4664
4665	return 0;
4666}
4667
4668static int __init regulator_init_complete(void)
4669{
4670	/*
4671	 * Since DT doesn't provide an idiomatic mechanism for
4672	 * enabling full constraints and since it's much more natural
4673	 * with DT to provide them just assume that a DT enabled
4674	 * system has full constraints.
4675	 */
4676	if (of_have_populated_dt())
4677		has_full_constraints = true;
4678
4679	/*
4680	 * Regulators may had failed to resolve their input supplies
4681	 * when were registered, either because the input supply was
4682	 * not registered yet or because its parent device was not
4683	 * bound yet. So attempt to resolve the input supplies for
4684	 * pending regulators before trying to disable unused ones.
4685	 */
4686	class_for_each_device(&regulator_class, NULL, NULL,
4687			      regulator_register_resolve_supply);
4688
4689	/* If we have a full configuration then disable any regulators
4690	 * we have permission to change the status for and which are
4691	 * not in use or always_on.  This is effectively the default
4692	 * for DT and ACPI as they have full constraints.
4693	 */
4694	class_for_each_device(&regulator_class, NULL, NULL,
4695			      regulator_late_cleanup);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4696
4697	return 0;
4698}
4699late_initcall_sync(regulator_init_complete);