Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
  35
  36#define rdev_crit(rdev, fmt, ...)					\
  37	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  38#define rdev_err(rdev, fmt, ...)					\
  39	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  40#define rdev_warn(rdev, fmt, ...)					\
  41	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_info(rdev, fmt, ...)					\
  43	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_dbg(rdev, fmt, ...)					\
  45	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46
  47static DEFINE_WW_CLASS(regulator_ww_class);
  48static DEFINE_MUTEX(regulator_nesting_mutex);
  49static DEFINE_MUTEX(regulator_list_mutex);
  50static LIST_HEAD(regulator_map_list);
  51static LIST_HEAD(regulator_ena_gpio_list);
  52static LIST_HEAD(regulator_supply_alias_list);
  53static LIST_HEAD(regulator_coupler_list);
  54static bool has_full_constraints;
  55
  56static struct dentry *debugfs_root;
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator_enable_gpio
  72 *
  73 * Management for shared enable GPIO pin
  74 */
  75struct regulator_enable_gpio {
  76	struct list_head list;
  77	struct gpio_desc *gpiod;
  78	u32 enable_count;	/* a number of enabled shared GPIO */
  79	u32 request_count;	/* a number of requested shared GPIO */
  80};
  81
  82/*
  83 * struct regulator_supply_alias
  84 *
  85 * Used to map lookups for a supply onto an alternative device.
  86 */
  87struct regulator_supply_alias {
  88	struct list_head list;
  89	struct device *src_dev;
  90	const char *src_supply;
  91	struct device *alias_dev;
  92	const char *alias_supply;
  93};
  94
  95static int _regulator_is_enabled(struct regulator_dev *rdev);
  96static int _regulator_disable(struct regulator *regulator);
  97static int _regulator_get_current_limit(struct regulator_dev *rdev);
  98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  99static int _notifier_call_chain(struct regulator_dev *rdev,
 100				  unsigned long event, void *data);
 101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 102				     int min_uV, int max_uV);
 103static int regulator_balance_voltage(struct regulator_dev *rdev,
 104				     suspend_state_t state);
 105static struct regulator *create_regulator(struct regulator_dev *rdev,
 106					  struct device *dev,
 107					  const char *supply_name);
 108static void destroy_regulator(struct regulator *regulator);
 109static void _regulator_put(struct regulator *regulator);
 110
 111const char *rdev_get_name(struct regulator_dev *rdev)
 112{
 113	if (rdev->constraints && rdev->constraints->name)
 114		return rdev->constraints->name;
 115	else if (rdev->desc->name)
 116		return rdev->desc->name;
 117	else
 118		return "";
 119}
 120
 121static bool have_full_constraints(void)
 122{
 123	return has_full_constraints || of_have_populated_dt();
 124}
 125
 126static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 127{
 128	if (!rdev->constraints) {
 129		rdev_err(rdev, "no constraints\n");
 130		return false;
 131	}
 132
 133	if (rdev->constraints->valid_ops_mask & ops)
 134		return true;
 135
 136	return false;
 137}
 138
 139/**
 140 * regulator_lock_nested - lock a single regulator
 141 * @rdev:		regulator source
 142 * @ww_ctx:		w/w mutex acquire context
 143 *
 144 * This function can be called many times by one task on
 145 * a single regulator and its mutex will be locked only
 146 * once. If a task, which is calling this function is other
 147 * than the one, which initially locked the mutex, it will
 148 * wait on mutex.
 149 */
 150static inline int regulator_lock_nested(struct regulator_dev *rdev,
 151					struct ww_acquire_ctx *ww_ctx)
 152{
 153	bool lock = false;
 154	int ret = 0;
 155
 156	mutex_lock(&regulator_nesting_mutex);
 157
 158	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 159		if (rdev->mutex_owner == current)
 160			rdev->ref_cnt++;
 161		else
 162			lock = true;
 163
 164		if (lock) {
 165			mutex_unlock(&regulator_nesting_mutex);
 166			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 167			mutex_lock(&regulator_nesting_mutex);
 168		}
 169	} else {
 170		lock = true;
 171	}
 172
 173	if (lock && ret != -EDEADLK) {
 174		rdev->ref_cnt++;
 175		rdev->mutex_owner = current;
 176	}
 177
 178	mutex_unlock(&regulator_nesting_mutex);
 179
 180	return ret;
 181}
 182
 183/**
 184 * regulator_lock - lock a single regulator
 185 * @rdev:		regulator source
 186 *
 187 * This function can be called many times by one task on
 188 * a single regulator and its mutex will be locked only
 189 * once. If a task, which is calling this function is other
 190 * than the one, which initially locked the mutex, it will
 191 * wait on mutex.
 192 */
 193void regulator_lock(struct regulator_dev *rdev)
 194{
 195	regulator_lock_nested(rdev, NULL);
 196}
 197EXPORT_SYMBOL_GPL(regulator_lock);
 198
 199/**
 200 * regulator_unlock - unlock a single regulator
 201 * @rdev:		regulator_source
 202 *
 203 * This function unlocks the mutex when the
 204 * reference counter reaches 0.
 205 */
 206void regulator_unlock(struct regulator_dev *rdev)
 207{
 208	mutex_lock(&regulator_nesting_mutex);
 209
 210	if (--rdev->ref_cnt == 0) {
 211		rdev->mutex_owner = NULL;
 212		ww_mutex_unlock(&rdev->mutex);
 213	}
 214
 215	WARN_ON_ONCE(rdev->ref_cnt < 0);
 216
 217	mutex_unlock(&regulator_nesting_mutex);
 218}
 219EXPORT_SYMBOL_GPL(regulator_unlock);
 220
 221static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 222{
 223	struct regulator_dev *c_rdev;
 224	int i;
 225
 226	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 227		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 228
 229		if (rdev->supply->rdev == c_rdev)
 230			return true;
 231	}
 232
 233	return false;
 234}
 235
 236static void regulator_unlock_recursive(struct regulator_dev *rdev,
 237				       unsigned int n_coupled)
 238{
 239	struct regulator_dev *c_rdev, *supply_rdev;
 240	int i, supply_n_coupled;
 241
 242	for (i = n_coupled; i > 0; i--) {
 243		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 244
 245		if (!c_rdev)
 246			continue;
 247
 248		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 249			supply_rdev = c_rdev->supply->rdev;
 250			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 251
 252			regulator_unlock_recursive(supply_rdev,
 253						   supply_n_coupled);
 254		}
 255
 256		regulator_unlock(c_rdev);
 257	}
 258}
 259
 260static int regulator_lock_recursive(struct regulator_dev *rdev,
 261				    struct regulator_dev **new_contended_rdev,
 262				    struct regulator_dev **old_contended_rdev,
 263				    struct ww_acquire_ctx *ww_ctx)
 264{
 265	struct regulator_dev *c_rdev;
 266	int i, err;
 267
 268	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 269		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 270
 271		if (!c_rdev)
 272			continue;
 273
 274		if (c_rdev != *old_contended_rdev) {
 275			err = regulator_lock_nested(c_rdev, ww_ctx);
 276			if (err) {
 277				if (err == -EDEADLK) {
 278					*new_contended_rdev = c_rdev;
 279					goto err_unlock;
 280				}
 281
 282				/* shouldn't happen */
 283				WARN_ON_ONCE(err != -EALREADY);
 284			}
 285		} else {
 286			*old_contended_rdev = NULL;
 287		}
 288
 289		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 290			err = regulator_lock_recursive(c_rdev->supply->rdev,
 291						       new_contended_rdev,
 292						       old_contended_rdev,
 293						       ww_ctx);
 294			if (err) {
 295				regulator_unlock(c_rdev);
 296				goto err_unlock;
 297			}
 298		}
 299	}
 300
 301	return 0;
 302
 303err_unlock:
 304	regulator_unlock_recursive(rdev, i);
 305
 306	return err;
 307}
 308
 309/**
 310 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 311 *				regulators
 312 * @rdev:			regulator source
 313 * @ww_ctx:			w/w mutex acquire context
 314 *
 315 * Unlock all regulators related with rdev by coupling or supplying.
 316 */
 317static void regulator_unlock_dependent(struct regulator_dev *rdev,
 318				       struct ww_acquire_ctx *ww_ctx)
 319{
 320	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 321	ww_acquire_fini(ww_ctx);
 322}
 323
 324/**
 325 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 326 * @rdev:			regulator source
 327 * @ww_ctx:			w/w mutex acquire context
 328 *
 329 * This function as a wrapper on regulator_lock_recursive(), which locks
 330 * all regulators related with rdev by coupling or supplying.
 331 */
 332static void regulator_lock_dependent(struct regulator_dev *rdev,
 333				     struct ww_acquire_ctx *ww_ctx)
 334{
 335	struct regulator_dev *new_contended_rdev = NULL;
 336	struct regulator_dev *old_contended_rdev = NULL;
 337	int err;
 338
 339	mutex_lock(&regulator_list_mutex);
 340
 341	ww_acquire_init(ww_ctx, &regulator_ww_class);
 342
 343	do {
 344		if (new_contended_rdev) {
 345			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 346			old_contended_rdev = new_contended_rdev;
 347			old_contended_rdev->ref_cnt++;
 348		}
 349
 350		err = regulator_lock_recursive(rdev,
 351					       &new_contended_rdev,
 352					       &old_contended_rdev,
 353					       ww_ctx);
 354
 355		if (old_contended_rdev)
 356			regulator_unlock(old_contended_rdev);
 357
 358	} while (err == -EDEADLK);
 359
 360	ww_acquire_done(ww_ctx);
 361
 362	mutex_unlock(&regulator_list_mutex);
 363}
 364
 365/**
 366 * of_get_child_regulator - get a child regulator device node
 367 * based on supply name
 368 * @parent: Parent device node
 369 * @prop_name: Combination regulator supply name and "-supply"
 370 *
 371 * Traverse all child nodes.
 372 * Extract the child regulator device node corresponding to the supply name.
 373 * returns the device node corresponding to the regulator if found, else
 374 * returns NULL.
 375 */
 376static struct device_node *of_get_child_regulator(struct device_node *parent,
 377						  const char *prop_name)
 378{
 379	struct device_node *regnode = NULL;
 380	struct device_node *child = NULL;
 381
 382	for_each_child_of_node(parent, child) {
 383		regnode = of_parse_phandle(child, prop_name, 0);
 384
 385		if (!regnode) {
 386			regnode = of_get_child_regulator(child, prop_name);
 387			if (regnode)
 388				goto err_node_put;
 389		} else {
 390			goto err_node_put;
 391		}
 392	}
 393	return NULL;
 394
 395err_node_put:
 396	of_node_put(child);
 397	return regnode;
 398}
 399
 400/**
 401 * of_get_regulator - get a regulator device node based on supply name
 402 * @dev: Device pointer for the consumer (of regulator) device
 403 * @supply: regulator supply name
 404 *
 405 * Extract the regulator device node corresponding to the supply name.
 406 * returns the device node corresponding to the regulator if found, else
 407 * returns NULL.
 408 */
 409static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 410{
 411	struct device_node *regnode = NULL;
 412	char prop_name[32]; /* 32 is max size of property name */
 413
 414	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 415
 416	snprintf(prop_name, 32, "%s-supply", supply);
 417	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 418
 419	if (!regnode) {
 420		regnode = of_get_child_regulator(dev->of_node, prop_name);
 421		if (regnode)
 422			return regnode;
 423
 424		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 425				prop_name, dev->of_node);
 426		return NULL;
 427	}
 428	return regnode;
 429}
 430
 431/* Platform voltage constraint check */
 432int regulator_check_voltage(struct regulator_dev *rdev,
 433			    int *min_uV, int *max_uV)
 434{
 435	BUG_ON(*min_uV > *max_uV);
 436
 437	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 438		rdev_err(rdev, "voltage operation not allowed\n");
 439		return -EPERM;
 440	}
 441
 442	if (*max_uV > rdev->constraints->max_uV)
 443		*max_uV = rdev->constraints->max_uV;
 444	if (*min_uV < rdev->constraints->min_uV)
 445		*min_uV = rdev->constraints->min_uV;
 446
 447	if (*min_uV > *max_uV) {
 448		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 449			 *min_uV, *max_uV);
 450		return -EINVAL;
 451	}
 452
 453	return 0;
 454}
 455
 456/* return 0 if the state is valid */
 457static int regulator_check_states(suspend_state_t state)
 458{
 459	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 460}
 461
 462/* Make sure we select a voltage that suits the needs of all
 463 * regulator consumers
 464 */
 465int regulator_check_consumers(struct regulator_dev *rdev,
 466			      int *min_uV, int *max_uV,
 467			      suspend_state_t state)
 468{
 469	struct regulator *regulator;
 470	struct regulator_voltage *voltage;
 471
 472	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 473		voltage = &regulator->voltage[state];
 474		/*
 475		 * Assume consumers that didn't say anything are OK
 476		 * with anything in the constraint range.
 477		 */
 478		if (!voltage->min_uV && !voltage->max_uV)
 479			continue;
 480
 481		if (*max_uV > voltage->max_uV)
 482			*max_uV = voltage->max_uV;
 483		if (*min_uV < voltage->min_uV)
 484			*min_uV = voltage->min_uV;
 485	}
 486
 487	if (*min_uV > *max_uV) {
 488		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 489			*min_uV, *max_uV);
 490		return -EINVAL;
 491	}
 492
 493	return 0;
 494}
 495
 496/* current constraint check */
 497static int regulator_check_current_limit(struct regulator_dev *rdev,
 498					int *min_uA, int *max_uA)
 499{
 500	BUG_ON(*min_uA > *max_uA);
 501
 502	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 503		rdev_err(rdev, "current operation not allowed\n");
 504		return -EPERM;
 505	}
 506
 507	if (*max_uA > rdev->constraints->max_uA)
 508		*max_uA = rdev->constraints->max_uA;
 509	if (*min_uA < rdev->constraints->min_uA)
 510		*min_uA = rdev->constraints->min_uA;
 511
 512	if (*min_uA > *max_uA) {
 513		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 514			 *min_uA, *max_uA);
 515		return -EINVAL;
 516	}
 517
 518	return 0;
 519}
 520
 521/* operating mode constraint check */
 522static int regulator_mode_constrain(struct regulator_dev *rdev,
 523				    unsigned int *mode)
 524{
 525	switch (*mode) {
 526	case REGULATOR_MODE_FAST:
 527	case REGULATOR_MODE_NORMAL:
 528	case REGULATOR_MODE_IDLE:
 529	case REGULATOR_MODE_STANDBY:
 530		break;
 531	default:
 532		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 533		return -EINVAL;
 534	}
 535
 536	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 537		rdev_err(rdev, "mode operation not allowed\n");
 538		return -EPERM;
 539	}
 540
 541	/* The modes are bitmasks, the most power hungry modes having
 542	 * the lowest values. If the requested mode isn't supported
 543	 * try higher modes. */
 544	while (*mode) {
 545		if (rdev->constraints->valid_modes_mask & *mode)
 546			return 0;
 547		*mode /= 2;
 548	}
 549
 550	return -EINVAL;
 551}
 552
 553static inline struct regulator_state *
 554regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 555{
 556	if (rdev->constraints == NULL)
 557		return NULL;
 558
 559	switch (state) {
 560	case PM_SUSPEND_STANDBY:
 561		return &rdev->constraints->state_standby;
 562	case PM_SUSPEND_MEM:
 563		return &rdev->constraints->state_mem;
 564	case PM_SUSPEND_MAX:
 565		return &rdev->constraints->state_disk;
 566	default:
 567		return NULL;
 568	}
 569}
 570
 571static ssize_t regulator_uV_show(struct device *dev,
 572				struct device_attribute *attr, char *buf)
 573{
 574	struct regulator_dev *rdev = dev_get_drvdata(dev);
 575	int uV;
 576
 577	regulator_lock(rdev);
 578	uV = regulator_get_voltage_rdev(rdev);
 579	regulator_unlock(rdev);
 580
 581	if (uV < 0)
 582		return uV;
 583	return sprintf(buf, "%d\n", uV);
 584}
 585static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 586
 587static ssize_t regulator_uA_show(struct device *dev,
 588				struct device_attribute *attr, char *buf)
 589{
 590	struct regulator_dev *rdev = dev_get_drvdata(dev);
 591
 592	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 593}
 594static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 595
 596static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 597			 char *buf)
 598{
 599	struct regulator_dev *rdev = dev_get_drvdata(dev);
 600
 601	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 602}
 603static DEVICE_ATTR_RO(name);
 604
 605static const char *regulator_opmode_to_str(int mode)
 606{
 607	switch (mode) {
 608	case REGULATOR_MODE_FAST:
 609		return "fast";
 610	case REGULATOR_MODE_NORMAL:
 611		return "normal";
 612	case REGULATOR_MODE_IDLE:
 613		return "idle";
 614	case REGULATOR_MODE_STANDBY:
 615		return "standby";
 616	}
 617	return "unknown";
 618}
 619
 620static ssize_t regulator_print_opmode(char *buf, int mode)
 621{
 622	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 623}
 624
 625static ssize_t regulator_opmode_show(struct device *dev,
 626				    struct device_attribute *attr, char *buf)
 627{
 628	struct regulator_dev *rdev = dev_get_drvdata(dev);
 629
 630	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 631}
 632static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 633
 634static ssize_t regulator_print_state(char *buf, int state)
 635{
 636	if (state > 0)
 637		return sprintf(buf, "enabled\n");
 638	else if (state == 0)
 639		return sprintf(buf, "disabled\n");
 640	else
 641		return sprintf(buf, "unknown\n");
 642}
 643
 644static ssize_t regulator_state_show(struct device *dev,
 645				   struct device_attribute *attr, char *buf)
 646{
 647	struct regulator_dev *rdev = dev_get_drvdata(dev);
 648	ssize_t ret;
 649
 650	regulator_lock(rdev);
 651	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 652	regulator_unlock(rdev);
 653
 654	return ret;
 655}
 656static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 657
 658static ssize_t regulator_status_show(struct device *dev,
 659				   struct device_attribute *attr, char *buf)
 660{
 661	struct regulator_dev *rdev = dev_get_drvdata(dev);
 662	int status;
 663	char *label;
 664
 665	status = rdev->desc->ops->get_status(rdev);
 666	if (status < 0)
 667		return status;
 668
 669	switch (status) {
 670	case REGULATOR_STATUS_OFF:
 671		label = "off";
 672		break;
 673	case REGULATOR_STATUS_ON:
 674		label = "on";
 675		break;
 676	case REGULATOR_STATUS_ERROR:
 677		label = "error";
 678		break;
 679	case REGULATOR_STATUS_FAST:
 680		label = "fast";
 681		break;
 682	case REGULATOR_STATUS_NORMAL:
 683		label = "normal";
 684		break;
 685	case REGULATOR_STATUS_IDLE:
 686		label = "idle";
 687		break;
 688	case REGULATOR_STATUS_STANDBY:
 689		label = "standby";
 690		break;
 691	case REGULATOR_STATUS_BYPASS:
 692		label = "bypass";
 693		break;
 694	case REGULATOR_STATUS_UNDEFINED:
 695		label = "undefined";
 696		break;
 697	default:
 698		return -ERANGE;
 699	}
 700
 701	return sprintf(buf, "%s\n", label);
 702}
 703static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 704
 705static ssize_t regulator_min_uA_show(struct device *dev,
 706				    struct device_attribute *attr, char *buf)
 707{
 708	struct regulator_dev *rdev = dev_get_drvdata(dev);
 709
 710	if (!rdev->constraints)
 711		return sprintf(buf, "constraint not defined\n");
 712
 713	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 714}
 715static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 716
 717static ssize_t regulator_max_uA_show(struct device *dev,
 718				    struct device_attribute *attr, char *buf)
 719{
 720	struct regulator_dev *rdev = dev_get_drvdata(dev);
 721
 722	if (!rdev->constraints)
 723		return sprintf(buf, "constraint not defined\n");
 724
 725	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 726}
 727static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 728
 729static ssize_t regulator_min_uV_show(struct device *dev,
 730				    struct device_attribute *attr, char *buf)
 731{
 732	struct regulator_dev *rdev = dev_get_drvdata(dev);
 733
 734	if (!rdev->constraints)
 735		return sprintf(buf, "constraint not defined\n");
 736
 737	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 738}
 739static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 740
 741static ssize_t regulator_max_uV_show(struct device *dev,
 742				    struct device_attribute *attr, char *buf)
 743{
 744	struct regulator_dev *rdev = dev_get_drvdata(dev);
 745
 746	if (!rdev->constraints)
 747		return sprintf(buf, "constraint not defined\n");
 748
 749	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 750}
 751static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 752
 753static ssize_t regulator_total_uA_show(struct device *dev,
 754				      struct device_attribute *attr, char *buf)
 755{
 756	struct regulator_dev *rdev = dev_get_drvdata(dev);
 757	struct regulator *regulator;
 758	int uA = 0;
 759
 760	regulator_lock(rdev);
 761	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 762		if (regulator->enable_count)
 763			uA += regulator->uA_load;
 764	}
 765	regulator_unlock(rdev);
 766	return sprintf(buf, "%d\n", uA);
 767}
 768static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 769
 770static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 771			      char *buf)
 772{
 773	struct regulator_dev *rdev = dev_get_drvdata(dev);
 774	return sprintf(buf, "%d\n", rdev->use_count);
 775}
 776static DEVICE_ATTR_RO(num_users);
 777
 778static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 779			 char *buf)
 780{
 781	struct regulator_dev *rdev = dev_get_drvdata(dev);
 782
 783	switch (rdev->desc->type) {
 784	case REGULATOR_VOLTAGE:
 785		return sprintf(buf, "voltage\n");
 786	case REGULATOR_CURRENT:
 787		return sprintf(buf, "current\n");
 788	}
 789	return sprintf(buf, "unknown\n");
 790}
 791static DEVICE_ATTR_RO(type);
 792
 793static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 794				struct device_attribute *attr, char *buf)
 795{
 796	struct regulator_dev *rdev = dev_get_drvdata(dev);
 797
 798	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 799}
 800static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 801		regulator_suspend_mem_uV_show, NULL);
 802
 803static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 804				struct device_attribute *attr, char *buf)
 805{
 806	struct regulator_dev *rdev = dev_get_drvdata(dev);
 807
 808	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 809}
 810static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 811		regulator_suspend_disk_uV_show, NULL);
 812
 813static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 814				struct device_attribute *attr, char *buf)
 815{
 816	struct regulator_dev *rdev = dev_get_drvdata(dev);
 817
 818	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 819}
 820static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 821		regulator_suspend_standby_uV_show, NULL);
 822
 823static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 824				struct device_attribute *attr, char *buf)
 825{
 826	struct regulator_dev *rdev = dev_get_drvdata(dev);
 827
 828	return regulator_print_opmode(buf,
 829		rdev->constraints->state_mem.mode);
 830}
 831static DEVICE_ATTR(suspend_mem_mode, 0444,
 832		regulator_suspend_mem_mode_show, NULL);
 833
 834static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 835				struct device_attribute *attr, char *buf)
 836{
 837	struct regulator_dev *rdev = dev_get_drvdata(dev);
 838
 839	return regulator_print_opmode(buf,
 840		rdev->constraints->state_disk.mode);
 841}
 842static DEVICE_ATTR(suspend_disk_mode, 0444,
 843		regulator_suspend_disk_mode_show, NULL);
 844
 845static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 846				struct device_attribute *attr, char *buf)
 847{
 848	struct regulator_dev *rdev = dev_get_drvdata(dev);
 849
 850	return regulator_print_opmode(buf,
 851		rdev->constraints->state_standby.mode);
 852}
 853static DEVICE_ATTR(suspend_standby_mode, 0444,
 854		regulator_suspend_standby_mode_show, NULL);
 855
 856static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 857				   struct device_attribute *attr, char *buf)
 858{
 859	struct regulator_dev *rdev = dev_get_drvdata(dev);
 860
 861	return regulator_print_state(buf,
 862			rdev->constraints->state_mem.enabled);
 863}
 864static DEVICE_ATTR(suspend_mem_state, 0444,
 865		regulator_suspend_mem_state_show, NULL);
 866
 867static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 868				   struct device_attribute *attr, char *buf)
 869{
 870	struct regulator_dev *rdev = dev_get_drvdata(dev);
 871
 872	return regulator_print_state(buf,
 873			rdev->constraints->state_disk.enabled);
 874}
 875static DEVICE_ATTR(suspend_disk_state, 0444,
 876		regulator_suspend_disk_state_show, NULL);
 877
 878static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 879				   struct device_attribute *attr, char *buf)
 880{
 881	struct regulator_dev *rdev = dev_get_drvdata(dev);
 882
 883	return regulator_print_state(buf,
 884			rdev->constraints->state_standby.enabled);
 885}
 886static DEVICE_ATTR(suspend_standby_state, 0444,
 887		regulator_suspend_standby_state_show, NULL);
 888
 889static ssize_t regulator_bypass_show(struct device *dev,
 890				     struct device_attribute *attr, char *buf)
 891{
 892	struct regulator_dev *rdev = dev_get_drvdata(dev);
 893	const char *report;
 894	bool bypass;
 895	int ret;
 896
 897	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 898
 899	if (ret != 0)
 900		report = "unknown";
 901	else if (bypass)
 902		report = "enabled";
 903	else
 904		report = "disabled";
 905
 906	return sprintf(buf, "%s\n", report);
 907}
 908static DEVICE_ATTR(bypass, 0444,
 909		   regulator_bypass_show, NULL);
 910
 911/* Calculate the new optimum regulator operating mode based on the new total
 912 * consumer load. All locks held by caller */
 913static int drms_uA_update(struct regulator_dev *rdev)
 914{
 915	struct regulator *sibling;
 916	int current_uA = 0, output_uV, input_uV, err;
 917	unsigned int mode;
 918
 919	/*
 920	 * first check to see if we can set modes at all, otherwise just
 921	 * tell the consumer everything is OK.
 922	 */
 923	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 924		rdev_dbg(rdev, "DRMS operation not allowed\n");
 925		return 0;
 926	}
 927
 928	if (!rdev->desc->ops->get_optimum_mode &&
 929	    !rdev->desc->ops->set_load)
 930		return 0;
 931
 932	if (!rdev->desc->ops->set_mode &&
 933	    !rdev->desc->ops->set_load)
 934		return -EINVAL;
 935
 936	/* calc total requested load */
 937	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 938		if (sibling->enable_count)
 939			current_uA += sibling->uA_load;
 940	}
 941
 942	current_uA += rdev->constraints->system_load;
 943
 944	if (rdev->desc->ops->set_load) {
 945		/* set the optimum mode for our new total regulator load */
 946		err = rdev->desc->ops->set_load(rdev, current_uA);
 947		if (err < 0)
 948			rdev_err(rdev, "failed to set load %d\n", current_uA);
 949	} else {
 950		/* get output voltage */
 951		output_uV = regulator_get_voltage_rdev(rdev);
 952		if (output_uV <= 0) {
 953			rdev_err(rdev, "invalid output voltage found\n");
 954			return -EINVAL;
 955		}
 956
 957		/* get input voltage */
 958		input_uV = 0;
 959		if (rdev->supply)
 960			input_uV = regulator_get_voltage(rdev->supply);
 961		if (input_uV <= 0)
 962			input_uV = rdev->constraints->input_uV;
 963		if (input_uV <= 0) {
 964			rdev_err(rdev, "invalid input voltage found\n");
 965			return -EINVAL;
 966		}
 967
 968		/* now get the optimum mode for our new total regulator load */
 969		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 970							 output_uV, current_uA);
 971
 972		/* check the new mode is allowed */
 973		err = regulator_mode_constrain(rdev, &mode);
 974		if (err < 0) {
 975			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 976				 current_uA, input_uV, output_uV);
 977			return err;
 978		}
 979
 980		err = rdev->desc->ops->set_mode(rdev, mode);
 981		if (err < 0)
 982			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 983	}
 984
 985	return err;
 986}
 987
 988static int suspend_set_state(struct regulator_dev *rdev,
 989				    suspend_state_t state)
 990{
 991	int ret = 0;
 992	struct regulator_state *rstate;
 993
 994	rstate = regulator_get_suspend_state(rdev, state);
 995	if (rstate == NULL)
 996		return 0;
 997
 998	/* If we have no suspend mode configuration don't set anything;
 999	 * only warn if the driver implements set_suspend_voltage or
1000	 * set_suspend_mode callback.
1001	 */
1002	if (rstate->enabled != ENABLE_IN_SUSPEND &&
1003	    rstate->enabled != DISABLE_IN_SUSPEND) {
1004		if (rdev->desc->ops->set_suspend_voltage ||
1005		    rdev->desc->ops->set_suspend_mode)
1006			rdev_warn(rdev, "No configuration\n");
1007		return 0;
1008	}
1009
1010	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1011		rdev->desc->ops->set_suspend_enable)
1012		ret = rdev->desc->ops->set_suspend_enable(rdev);
1013	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1014		rdev->desc->ops->set_suspend_disable)
1015		ret = rdev->desc->ops->set_suspend_disable(rdev);
1016	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1017		ret = 0;
1018
1019	if (ret < 0) {
1020		rdev_err(rdev, "failed to enabled/disable\n");
1021		return ret;
1022	}
1023
1024	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1025		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1026		if (ret < 0) {
1027			rdev_err(rdev, "failed to set voltage\n");
1028			return ret;
1029		}
1030	}
1031
1032	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1033		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1034		if (ret < 0) {
1035			rdev_err(rdev, "failed to set mode\n");
1036			return ret;
1037		}
1038	}
1039
1040	return ret;
1041}
1042
1043static void print_constraints(struct regulator_dev *rdev)
1044{
1045	struct regulation_constraints *constraints = rdev->constraints;
1046	char buf[160] = "";
1047	size_t len = sizeof(buf) - 1;
1048	int count = 0;
1049	int ret;
1050
1051	if (constraints->min_uV && constraints->max_uV) {
1052		if (constraints->min_uV == constraints->max_uV)
1053			count += scnprintf(buf + count, len - count, "%d mV ",
1054					   constraints->min_uV / 1000);
1055		else
1056			count += scnprintf(buf + count, len - count,
1057					   "%d <--> %d mV ",
1058					   constraints->min_uV / 1000,
1059					   constraints->max_uV / 1000);
1060	}
1061
1062	if (!constraints->min_uV ||
1063	    constraints->min_uV != constraints->max_uV) {
1064		ret = regulator_get_voltage_rdev(rdev);
1065		if (ret > 0)
1066			count += scnprintf(buf + count, len - count,
1067					   "at %d mV ", ret / 1000);
1068	}
1069
1070	if (constraints->uV_offset)
1071		count += scnprintf(buf + count, len - count, "%dmV offset ",
1072				   constraints->uV_offset / 1000);
1073
1074	if (constraints->min_uA && constraints->max_uA) {
1075		if (constraints->min_uA == constraints->max_uA)
1076			count += scnprintf(buf + count, len - count, "%d mA ",
1077					   constraints->min_uA / 1000);
1078		else
1079			count += scnprintf(buf + count, len - count,
1080					   "%d <--> %d mA ",
1081					   constraints->min_uA / 1000,
1082					   constraints->max_uA / 1000);
1083	}
1084
1085	if (!constraints->min_uA ||
1086	    constraints->min_uA != constraints->max_uA) {
1087		ret = _regulator_get_current_limit(rdev);
1088		if (ret > 0)
1089			count += scnprintf(buf + count, len - count,
1090					   "at %d mA ", ret / 1000);
1091	}
1092
1093	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1094		count += scnprintf(buf + count, len - count, "fast ");
1095	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1096		count += scnprintf(buf + count, len - count, "normal ");
1097	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1098		count += scnprintf(buf + count, len - count, "idle ");
1099	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1100		count += scnprintf(buf + count, len - count, "standby");
1101
1102	if (!count)
1103		scnprintf(buf, len, "no parameters");
1104
1105	rdev_dbg(rdev, "%s\n", buf);
1106
1107	if ((constraints->min_uV != constraints->max_uV) &&
1108	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1109		rdev_warn(rdev,
1110			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1111}
1112
1113static int machine_constraints_voltage(struct regulator_dev *rdev,
1114	struct regulation_constraints *constraints)
1115{
1116	const struct regulator_ops *ops = rdev->desc->ops;
1117	int ret;
1118
1119	/* do we need to apply the constraint voltage */
1120	if (rdev->constraints->apply_uV &&
1121	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1122		int target_min, target_max;
1123		int current_uV = regulator_get_voltage_rdev(rdev);
1124
1125		if (current_uV == -ENOTRECOVERABLE) {
1126			/* This regulator can't be read and must be initialized */
1127			rdev_info(rdev, "Setting %d-%duV\n",
1128				  rdev->constraints->min_uV,
1129				  rdev->constraints->max_uV);
1130			_regulator_do_set_voltage(rdev,
1131						  rdev->constraints->min_uV,
1132						  rdev->constraints->max_uV);
1133			current_uV = regulator_get_voltage_rdev(rdev);
1134		}
1135
1136		if (current_uV < 0) {
1137			rdev_err(rdev,
1138				 "failed to get the current voltage(%d)\n",
1139				 current_uV);
1140			return current_uV;
1141		}
1142
1143		/*
1144		 * If we're below the minimum voltage move up to the
1145		 * minimum voltage, if we're above the maximum voltage
1146		 * then move down to the maximum.
1147		 */
1148		target_min = current_uV;
1149		target_max = current_uV;
1150
1151		if (current_uV < rdev->constraints->min_uV) {
1152			target_min = rdev->constraints->min_uV;
1153			target_max = rdev->constraints->min_uV;
1154		}
1155
1156		if (current_uV > rdev->constraints->max_uV) {
1157			target_min = rdev->constraints->max_uV;
1158			target_max = rdev->constraints->max_uV;
1159		}
1160
1161		if (target_min != current_uV || target_max != current_uV) {
1162			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1163				  current_uV, target_min, target_max);
1164			ret = _regulator_do_set_voltage(
1165				rdev, target_min, target_max);
1166			if (ret < 0) {
1167				rdev_err(rdev,
1168					"failed to apply %d-%duV constraint(%d)\n",
1169					target_min, target_max, ret);
1170				return ret;
1171			}
1172		}
1173	}
1174
1175	/* constrain machine-level voltage specs to fit
1176	 * the actual range supported by this regulator.
1177	 */
1178	if (ops->list_voltage && rdev->desc->n_voltages) {
1179		int	count = rdev->desc->n_voltages;
1180		int	i;
1181		int	min_uV = INT_MAX;
1182		int	max_uV = INT_MIN;
1183		int	cmin = constraints->min_uV;
1184		int	cmax = constraints->max_uV;
1185
1186		/* it's safe to autoconfigure fixed-voltage supplies
1187		   and the constraints are used by list_voltage. */
1188		if (count == 1 && !cmin) {
1189			cmin = 1;
1190			cmax = INT_MAX;
1191			constraints->min_uV = cmin;
1192			constraints->max_uV = cmax;
1193		}
1194
1195		/* voltage constraints are optional */
1196		if ((cmin == 0) && (cmax == 0))
1197			return 0;
1198
1199		/* else require explicit machine-level constraints */
1200		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1201			rdev_err(rdev, "invalid voltage constraints\n");
1202			return -EINVAL;
1203		}
1204
1205		/* no need to loop voltages if range is continuous */
1206		if (rdev->desc->continuous_voltage_range)
1207			return 0;
1208
1209		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1210		for (i = 0; i < count; i++) {
1211			int	value;
1212
1213			value = ops->list_voltage(rdev, i);
1214			if (value <= 0)
1215				continue;
1216
1217			/* maybe adjust [min_uV..max_uV] */
1218			if (value >= cmin && value < min_uV)
1219				min_uV = value;
1220			if (value <= cmax && value > max_uV)
1221				max_uV = value;
1222		}
1223
1224		/* final: [min_uV..max_uV] valid iff constraints valid */
1225		if (max_uV < min_uV) {
1226			rdev_err(rdev,
1227				 "unsupportable voltage constraints %u-%uuV\n",
1228				 min_uV, max_uV);
1229			return -EINVAL;
1230		}
1231
1232		/* use regulator's subset of machine constraints */
1233		if (constraints->min_uV < min_uV) {
1234			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1235				 constraints->min_uV, min_uV);
1236			constraints->min_uV = min_uV;
1237		}
1238		if (constraints->max_uV > max_uV) {
1239			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1240				 constraints->max_uV, max_uV);
1241			constraints->max_uV = max_uV;
1242		}
1243	}
1244
1245	return 0;
1246}
1247
1248static int machine_constraints_current(struct regulator_dev *rdev,
1249	struct regulation_constraints *constraints)
1250{
1251	const struct regulator_ops *ops = rdev->desc->ops;
1252	int ret;
1253
1254	if (!constraints->min_uA && !constraints->max_uA)
1255		return 0;
1256
1257	if (constraints->min_uA > constraints->max_uA) {
1258		rdev_err(rdev, "Invalid current constraints\n");
1259		return -EINVAL;
1260	}
1261
1262	if (!ops->set_current_limit || !ops->get_current_limit) {
1263		rdev_warn(rdev, "Operation of current configuration missing\n");
1264		return 0;
1265	}
1266
1267	/* Set regulator current in constraints range */
1268	ret = ops->set_current_limit(rdev, constraints->min_uA,
1269			constraints->max_uA);
1270	if (ret < 0) {
1271		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1272		return ret;
1273	}
1274
1275	return 0;
1276}
1277
1278static int _regulator_do_enable(struct regulator_dev *rdev);
1279
1280/**
1281 * set_machine_constraints - sets regulator constraints
1282 * @rdev: regulator source
1283 * @constraints: constraints to apply
1284 *
1285 * Allows platform initialisation code to define and constrain
1286 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1287 * Constraints *must* be set by platform code in order for some
1288 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1289 * set_mode.
1290 */
1291static int set_machine_constraints(struct regulator_dev *rdev,
1292	const struct regulation_constraints *constraints)
1293{
1294	int ret = 0;
1295	const struct regulator_ops *ops = rdev->desc->ops;
1296
1297	if (constraints)
1298		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1299					    GFP_KERNEL);
1300	else
1301		rdev->constraints = kzalloc(sizeof(*constraints),
1302					    GFP_KERNEL);
1303	if (!rdev->constraints)
1304		return -ENOMEM;
1305
1306	ret = machine_constraints_voltage(rdev, rdev->constraints);
1307	if (ret != 0)
1308		return ret;
1309
1310	ret = machine_constraints_current(rdev, rdev->constraints);
1311	if (ret != 0)
1312		return ret;
1313
1314	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1315		ret = ops->set_input_current_limit(rdev,
1316						   rdev->constraints->ilim_uA);
1317		if (ret < 0) {
1318			rdev_err(rdev, "failed to set input limit\n");
1319			return ret;
1320		}
1321	}
1322
1323	/* do we need to setup our suspend state */
1324	if (rdev->constraints->initial_state) {
1325		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1326		if (ret < 0) {
1327			rdev_err(rdev, "failed to set suspend state\n");
1328			return ret;
1329		}
1330	}
1331
1332	if (rdev->constraints->initial_mode) {
1333		if (!ops->set_mode) {
1334			rdev_err(rdev, "no set_mode operation\n");
1335			return -EINVAL;
1336		}
1337
1338		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1339		if (ret < 0) {
1340			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1341			return ret;
1342		}
1343	} else if (rdev->constraints->system_load) {
1344		/*
1345		 * We'll only apply the initial system load if an
1346		 * initial mode wasn't specified.
1347		 */
1348		drms_uA_update(rdev);
1349	}
1350
1351	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1352		&& ops->set_ramp_delay) {
1353		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1354		if (ret < 0) {
1355			rdev_err(rdev, "failed to set ramp_delay\n");
1356			return ret;
1357		}
1358	}
1359
1360	if (rdev->constraints->pull_down && ops->set_pull_down) {
1361		ret = ops->set_pull_down(rdev);
1362		if (ret < 0) {
1363			rdev_err(rdev, "failed to set pull down\n");
1364			return ret;
1365		}
1366	}
1367
1368	if (rdev->constraints->soft_start && ops->set_soft_start) {
1369		ret = ops->set_soft_start(rdev);
1370		if (ret < 0) {
1371			rdev_err(rdev, "failed to set soft start\n");
1372			return ret;
1373		}
1374	}
1375
1376	if (rdev->constraints->over_current_protection
1377		&& ops->set_over_current_protection) {
1378		ret = ops->set_over_current_protection(rdev);
1379		if (ret < 0) {
1380			rdev_err(rdev, "failed to set over current protection\n");
1381			return ret;
1382		}
1383	}
1384
1385	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1386		bool ad_state = (rdev->constraints->active_discharge ==
1387			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1388
1389		ret = ops->set_active_discharge(rdev, ad_state);
1390		if (ret < 0) {
1391			rdev_err(rdev, "failed to set active discharge\n");
1392			return ret;
1393		}
1394	}
1395
1396	/* If the constraints say the regulator should be on at this point
1397	 * and we have control then make sure it is enabled.
1398	 */
1399	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1400		if (rdev->supply) {
1401			ret = regulator_enable(rdev->supply);
1402			if (ret < 0) {
1403				_regulator_put(rdev->supply);
1404				rdev->supply = NULL;
1405				return ret;
1406			}
1407		}
1408
1409		ret = _regulator_do_enable(rdev);
1410		if (ret < 0 && ret != -EINVAL) {
1411			rdev_err(rdev, "failed to enable\n");
1412			return ret;
1413		}
1414
1415		if (rdev->constraints->always_on)
1416			rdev->use_count++;
1417	}
1418
1419	print_constraints(rdev);
1420	return 0;
1421}
1422
1423/**
1424 * set_supply - set regulator supply regulator
1425 * @rdev: regulator name
1426 * @supply_rdev: supply regulator name
1427 *
1428 * Called by platform initialisation code to set the supply regulator for this
1429 * regulator. This ensures that a regulators supply will also be enabled by the
1430 * core if it's child is enabled.
1431 */
1432static int set_supply(struct regulator_dev *rdev,
1433		      struct regulator_dev *supply_rdev)
1434{
1435	int err;
1436
1437	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1438
1439	if (!try_module_get(supply_rdev->owner))
1440		return -ENODEV;
1441
1442	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1443	if (rdev->supply == NULL) {
1444		err = -ENOMEM;
1445		return err;
1446	}
1447	supply_rdev->open_count++;
1448
1449	return 0;
1450}
1451
1452/**
1453 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1454 * @rdev:         regulator source
1455 * @consumer_dev_name: dev_name() string for device supply applies to
1456 * @supply:       symbolic name for supply
1457 *
1458 * Allows platform initialisation code to map physical regulator
1459 * sources to symbolic names for supplies for use by devices.  Devices
1460 * should use these symbolic names to request regulators, avoiding the
1461 * need to provide board-specific regulator names as platform data.
1462 */
1463static int set_consumer_device_supply(struct regulator_dev *rdev,
1464				      const char *consumer_dev_name,
1465				      const char *supply)
1466{
1467	struct regulator_map *node, *new_node;
1468	int has_dev;
1469
1470	if (supply == NULL)
1471		return -EINVAL;
1472
1473	if (consumer_dev_name != NULL)
1474		has_dev = 1;
1475	else
1476		has_dev = 0;
1477
1478	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1479	if (new_node == NULL)
1480		return -ENOMEM;
1481
1482	new_node->regulator = rdev;
1483	new_node->supply = supply;
1484
1485	if (has_dev) {
1486		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1487		if (new_node->dev_name == NULL) {
1488			kfree(new_node);
1489			return -ENOMEM;
1490		}
1491	}
1492
1493	mutex_lock(&regulator_list_mutex);
1494	list_for_each_entry(node, &regulator_map_list, list) {
1495		if (node->dev_name && consumer_dev_name) {
1496			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1497				continue;
1498		} else if (node->dev_name || consumer_dev_name) {
1499			continue;
1500		}
1501
1502		if (strcmp(node->supply, supply) != 0)
1503			continue;
1504
1505		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1506			 consumer_dev_name,
1507			 dev_name(&node->regulator->dev),
1508			 node->regulator->desc->name,
1509			 supply,
1510			 dev_name(&rdev->dev), rdev_get_name(rdev));
1511		goto fail;
1512	}
1513
1514	list_add(&new_node->list, &regulator_map_list);
1515	mutex_unlock(&regulator_list_mutex);
 
1516
1517	return 0;
 
1518
1519fail:
1520	mutex_unlock(&regulator_list_mutex);
1521	kfree(new_node->dev_name);
1522	kfree(new_node);
1523	return -EBUSY;
 
 
 
 
 
1524}
1525
1526static void unset_regulator_supplies(struct regulator_dev *rdev)
1527{
1528	struct regulator_map *node, *n;
1529
1530	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1531		if (rdev == node->regulator) {
1532			list_del(&node->list);
1533			kfree(node->dev_name);
1534			kfree(node);
1535		}
1536	}
1537}
1538
1539#ifdef CONFIG_DEBUG_FS
1540static ssize_t constraint_flags_read_file(struct file *file,
1541					  char __user *user_buf,
1542					  size_t count, loff_t *ppos)
1543{
1544	const struct regulator *regulator = file->private_data;
1545	const struct regulation_constraints *c = regulator->rdev->constraints;
1546	char *buf;
1547	ssize_t ret;
1548
1549	if (!c)
1550		return 0;
1551
1552	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1553	if (!buf)
1554		return -ENOMEM;
1555
1556	ret = snprintf(buf, PAGE_SIZE,
1557			"always_on: %u\n"
1558			"boot_on: %u\n"
1559			"apply_uV: %u\n"
1560			"ramp_disable: %u\n"
1561			"soft_start: %u\n"
1562			"pull_down: %u\n"
1563			"over_current_protection: %u\n",
1564			c->always_on,
1565			c->boot_on,
1566			c->apply_uV,
1567			c->ramp_disable,
1568			c->soft_start,
1569			c->pull_down,
1570			c->over_current_protection);
1571
1572	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1573	kfree(buf);
1574
1575	return ret;
1576}
1577
1578#endif
1579
1580static const struct file_operations constraint_flags_fops = {
1581#ifdef CONFIG_DEBUG_FS
1582	.open = simple_open,
1583	.read = constraint_flags_read_file,
1584	.llseek = default_llseek,
1585#endif
1586};
1587
1588#define REG_STR_SIZE	64
1589
1590static struct regulator *create_regulator(struct regulator_dev *rdev,
1591					  struct device *dev,
1592					  const char *supply_name)
1593{
1594	struct regulator *regulator;
1595	int err;
1596
1597	if (dev) {
1598		char buf[REG_STR_SIZE];
1599		int size;
1600
1601		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1602				dev->kobj.name, supply_name);
1603		if (size >= REG_STR_SIZE)
1604			return NULL;
1605
1606		supply_name = kstrdup(buf, GFP_KERNEL);
1607		if (supply_name == NULL)
1608			return NULL;
1609	} else {
1610		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611		if (supply_name == NULL)
1612			return NULL;
1613	}
1614
1615	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1616	if (regulator == NULL) {
1617		kfree(supply_name);
1618		return NULL;
1619	}
1620
1621	regulator->rdev = rdev;
1622	regulator->supply_name = supply_name;
1623
1624	regulator_lock(rdev);
 
1625	list_add(&regulator->list, &rdev->consumer_list);
1626	regulator_unlock(rdev);
1627
1628	if (dev) {
1629		regulator->dev = dev;
1630
1631		/* Add a link to the device sysfs entry */
 
 
 
 
 
 
 
 
 
1632		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1633					       supply_name);
1634		if (err) {
1635			rdev_dbg(rdev, "could not add device link %s err %d\n",
1636				  dev->kobj.name, err);
1637			/* non-fatal */
1638		}
 
 
 
 
1639	}
1640
1641	regulator->debugfs = debugfs_create_dir(supply_name,
1642						rdev->debugfs);
1643	if (!regulator->debugfs) {
1644		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1645	} else {
1646		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1647				   &regulator->uA_load);
1648		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1649				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1650		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1651				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1652		debugfs_create_file("constraint_flags", 0444,
1653				    regulator->debugfs, regulator,
1654				    &constraint_flags_fops);
1655	}
1656
1657	/*
1658	 * Check now if the regulator is an always on regulator - if
1659	 * it is then we don't need to do nearly so much work for
1660	 * enable/disable calls.
1661	 */
1662	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1663	    _regulator_is_enabled(rdev))
1664		regulator->always_on = true;
1665
 
1666	return regulator;
 
 
 
 
 
1667}
1668
1669static int _regulator_get_enable_time(struct regulator_dev *rdev)
1670{
1671	if (rdev->constraints && rdev->constraints->enable_time)
1672		return rdev->constraints->enable_time;
1673	if (rdev->desc->ops->enable_time)
1674		return rdev->desc->ops->enable_time(rdev);
1675	return rdev->desc->enable_time;
1676}
1677
1678static struct regulator_supply_alias *regulator_find_supply_alias(
1679		struct device *dev, const char *supply)
1680{
1681	struct regulator_supply_alias *map;
1682
1683	list_for_each_entry(map, &regulator_supply_alias_list, list)
1684		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1685			return map;
1686
1687	return NULL;
1688}
1689
1690static void regulator_supply_alias(struct device **dev, const char **supply)
1691{
1692	struct regulator_supply_alias *map;
1693
1694	map = regulator_find_supply_alias(*dev, *supply);
1695	if (map) {
1696		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1697				*supply, map->alias_supply,
1698				dev_name(map->alias_dev));
1699		*dev = map->alias_dev;
1700		*supply = map->alias_supply;
1701	}
1702}
1703
1704static int regulator_match(struct device *dev, const void *data)
1705{
1706	struct regulator_dev *r = dev_to_rdev(dev);
1707
1708	return strcmp(rdev_get_name(r), data) == 0;
1709}
1710
1711static struct regulator_dev *regulator_lookup_by_name(const char *name)
1712{
1713	struct device *dev;
1714
1715	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1716
1717	return dev ? dev_to_rdev(dev) : NULL;
1718}
1719
1720/**
1721 * regulator_dev_lookup - lookup a regulator device.
1722 * @dev: device for regulator "consumer".
1723 * @supply: Supply name or regulator ID.
1724 *
1725 * If successful, returns a struct regulator_dev that corresponds to the name
1726 * @supply and with the embedded struct device refcount incremented by one.
1727 * The refcount must be dropped by calling put_device().
1728 * On failure one of the following ERR-PTR-encoded values is returned:
1729 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1730 * in the future.
1731 */
1732static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1733						  const char *supply)
1734{
1735	struct regulator_dev *r = NULL;
1736	struct device_node *node;
1737	struct regulator_map *map;
1738	const char *devname = NULL;
1739
1740	regulator_supply_alias(&dev, &supply);
1741
1742	/* first do a dt based lookup */
1743	if (dev && dev->of_node) {
1744		node = of_get_regulator(dev, supply);
1745		if (node) {
1746			r = of_find_regulator_by_node(node);
1747			if (r)
1748				return r;
1749
1750			/*
1751			 * We have a node, but there is no device.
1752			 * assume it has not registered yet.
1753			 */
1754			return ERR_PTR(-EPROBE_DEFER);
1755		}
1756	}
1757
1758	/* if not found, try doing it non-dt way */
1759	if (dev)
1760		devname = dev_name(dev);
1761
1762	mutex_lock(&regulator_list_mutex);
1763	list_for_each_entry(map, &regulator_map_list, list) {
1764		/* If the mapping has a device set up it must match */
1765		if (map->dev_name &&
1766		    (!devname || strcmp(map->dev_name, devname)))
1767			continue;
1768
1769		if (strcmp(map->supply, supply) == 0 &&
1770		    get_device(&map->regulator->dev)) {
1771			r = map->regulator;
1772			break;
1773		}
1774	}
1775	mutex_unlock(&regulator_list_mutex);
1776
1777	if (r)
1778		return r;
1779
1780	r = regulator_lookup_by_name(supply);
1781	if (r)
1782		return r;
1783
1784	return ERR_PTR(-ENODEV);
1785}
1786
1787static int regulator_resolve_supply(struct regulator_dev *rdev)
1788{
1789	struct regulator_dev *r;
1790	struct device *dev = rdev->dev.parent;
1791	int ret;
1792
1793	/* No supply to resolve? */
1794	if (!rdev->supply_name)
1795		return 0;
1796
1797	/* Supply already resolved? */
1798	if (rdev->supply)
1799		return 0;
1800
1801	r = regulator_dev_lookup(dev, rdev->supply_name);
1802	if (IS_ERR(r)) {
1803		ret = PTR_ERR(r);
1804
1805		/* Did the lookup explicitly defer for us? */
1806		if (ret == -EPROBE_DEFER)
1807			return ret;
1808
1809		if (have_full_constraints()) {
1810			r = dummy_regulator_rdev;
1811			get_device(&r->dev);
1812		} else {
1813			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1814				rdev->supply_name, rdev->desc->name);
1815			return -EPROBE_DEFER;
1816		}
1817	}
1818
1819	/*
1820	 * If the supply's parent device is not the same as the
1821	 * regulator's parent device, then ensure the parent device
1822	 * is bound before we resolve the supply, in case the parent
1823	 * device get probe deferred and unregisters the supply.
1824	 */
1825	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1826		if (!device_is_bound(r->dev.parent)) {
1827			put_device(&r->dev);
1828			return -EPROBE_DEFER;
1829		}
1830	}
1831
1832	/* Recursively resolve the supply of the supply */
1833	ret = regulator_resolve_supply(r);
1834	if (ret < 0) {
1835		put_device(&r->dev);
1836		return ret;
1837	}
1838
1839	ret = set_supply(rdev, r);
1840	if (ret < 0) {
1841		put_device(&r->dev);
1842		return ret;
1843	}
1844
1845	/*
1846	 * In set_machine_constraints() we may have turned this regulator on
1847	 * but we couldn't propagate to the supply if it hadn't been resolved
1848	 * yet.  Do it now.
1849	 */
1850	if (rdev->use_count) {
1851		ret = regulator_enable(rdev->supply);
1852		if (ret < 0) {
1853			_regulator_put(rdev->supply);
1854			rdev->supply = NULL;
1855			return ret;
1856		}
1857	}
1858
1859	return 0;
1860}
1861
1862/* Internal regulator request function */
1863struct regulator *_regulator_get(struct device *dev, const char *id,
1864				 enum regulator_get_type get_type)
1865{
1866	struct regulator_dev *rdev;
1867	struct regulator *regulator;
1868	struct device_link *link;
1869	int ret;
1870
1871	if (get_type >= MAX_GET_TYPE) {
1872		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1873		return ERR_PTR(-EINVAL);
1874	}
1875
1876	if (id == NULL) {
1877		pr_err("get() with no identifier\n");
1878		return ERR_PTR(-EINVAL);
1879	}
1880
1881	rdev = regulator_dev_lookup(dev, id);
1882	if (IS_ERR(rdev)) {
1883		ret = PTR_ERR(rdev);
1884
1885		/*
1886		 * If regulator_dev_lookup() fails with error other
1887		 * than -ENODEV our job here is done, we simply return it.
1888		 */
1889		if (ret != -ENODEV)
1890			return ERR_PTR(ret);
1891
1892		if (!have_full_constraints()) {
1893			dev_warn(dev,
1894				 "incomplete constraints, dummy supplies not allowed\n");
1895			return ERR_PTR(-ENODEV);
1896		}
1897
1898		switch (get_type) {
1899		case NORMAL_GET:
1900			/*
1901			 * Assume that a regulator is physically present and
1902			 * enabled, even if it isn't hooked up, and just
1903			 * provide a dummy.
1904			 */
1905			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
 
 
1906			rdev = dummy_regulator_rdev;
1907			get_device(&rdev->dev);
1908			break;
1909
1910		case EXCLUSIVE_GET:
1911			dev_warn(dev,
1912				 "dummy supplies not allowed for exclusive requests\n");
1913			fallthrough;
1914
1915		default:
1916			return ERR_PTR(-ENODEV);
1917		}
1918	}
1919
1920	if (rdev->exclusive) {
1921		regulator = ERR_PTR(-EPERM);
1922		put_device(&rdev->dev);
1923		return regulator;
1924	}
1925
1926	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1927		regulator = ERR_PTR(-EBUSY);
1928		put_device(&rdev->dev);
1929		return regulator;
1930	}
1931
1932	mutex_lock(&regulator_list_mutex);
1933	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1934	mutex_unlock(&regulator_list_mutex);
1935
1936	if (ret != 0) {
1937		regulator = ERR_PTR(-EPROBE_DEFER);
1938		put_device(&rdev->dev);
1939		return regulator;
1940	}
1941
1942	ret = regulator_resolve_supply(rdev);
1943	if (ret < 0) {
1944		regulator = ERR_PTR(ret);
1945		put_device(&rdev->dev);
1946		return regulator;
1947	}
1948
1949	if (!try_module_get(rdev->owner)) {
1950		regulator = ERR_PTR(-EPROBE_DEFER);
1951		put_device(&rdev->dev);
1952		return regulator;
1953	}
1954
1955	regulator = create_regulator(rdev, dev, id);
1956	if (regulator == NULL) {
1957		regulator = ERR_PTR(-ENOMEM);
1958		module_put(rdev->owner);
1959		put_device(&rdev->dev);
 
1960		return regulator;
1961	}
1962
1963	rdev->open_count++;
1964	if (get_type == EXCLUSIVE_GET) {
1965		rdev->exclusive = 1;
1966
1967		ret = _regulator_is_enabled(rdev);
1968		if (ret > 0)
1969			rdev->use_count = 1;
1970		else
1971			rdev->use_count = 0;
1972	}
1973
1974	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1975	if (!IS_ERR_OR_NULL(link))
1976		regulator->device_link = true;
1977
1978	return regulator;
1979}
1980
1981/**
1982 * regulator_get - lookup and obtain a reference to a regulator.
1983 * @dev: device for regulator "consumer"
1984 * @id: Supply name or regulator ID.
1985 *
1986 * Returns a struct regulator corresponding to the regulator producer,
1987 * or IS_ERR() condition containing errno.
1988 *
1989 * Use of supply names configured via regulator_set_device_supply() is
1990 * strongly encouraged.  It is recommended that the supply name used
1991 * should match the name used for the supply and/or the relevant
1992 * device pins in the datasheet.
1993 */
1994struct regulator *regulator_get(struct device *dev, const char *id)
1995{
1996	return _regulator_get(dev, id, NORMAL_GET);
1997}
1998EXPORT_SYMBOL_GPL(regulator_get);
1999
2000/**
2001 * regulator_get_exclusive - obtain exclusive access to a regulator.
2002 * @dev: device for regulator "consumer"
2003 * @id: Supply name or regulator ID.
2004 *
2005 * Returns a struct regulator corresponding to the regulator producer,
2006 * or IS_ERR() condition containing errno.  Other consumers will be
2007 * unable to obtain this regulator while this reference is held and the
2008 * use count for the regulator will be initialised to reflect the current
2009 * state of the regulator.
2010 *
2011 * This is intended for use by consumers which cannot tolerate shared
2012 * use of the regulator such as those which need to force the
2013 * regulator off for correct operation of the hardware they are
2014 * controlling.
2015 *
2016 * Use of supply names configured via regulator_set_device_supply() is
2017 * strongly encouraged.  It is recommended that the supply name used
2018 * should match the name used for the supply and/or the relevant
2019 * device pins in the datasheet.
2020 */
2021struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2022{
2023	return _regulator_get(dev, id, EXCLUSIVE_GET);
2024}
2025EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2026
2027/**
2028 * regulator_get_optional - obtain optional access to a regulator.
2029 * @dev: device for regulator "consumer"
2030 * @id: Supply name or regulator ID.
2031 *
2032 * Returns a struct regulator corresponding to the regulator producer,
2033 * or IS_ERR() condition containing errno.
2034 *
2035 * This is intended for use by consumers for devices which can have
2036 * some supplies unconnected in normal use, such as some MMC devices.
2037 * It can allow the regulator core to provide stub supplies for other
2038 * supplies requested using normal regulator_get() calls without
2039 * disrupting the operation of drivers that can handle absent
2040 * supplies.
2041 *
2042 * Use of supply names configured via regulator_set_device_supply() is
2043 * strongly encouraged.  It is recommended that the supply name used
2044 * should match the name used for the supply and/or the relevant
2045 * device pins in the datasheet.
2046 */
2047struct regulator *regulator_get_optional(struct device *dev, const char *id)
2048{
2049	return _regulator_get(dev, id, OPTIONAL_GET);
2050}
2051EXPORT_SYMBOL_GPL(regulator_get_optional);
2052
2053static void destroy_regulator(struct regulator *regulator)
 
2054{
2055	struct regulator_dev *rdev = regulator->rdev;
 
 
 
 
 
 
 
 
 
 
2056
2057	debugfs_remove_recursive(regulator->debugfs);
2058
2059	if (regulator->dev) {
2060		if (regulator->device_link)
2061			device_link_remove(regulator->dev, &rdev->dev);
2062
2063		/* remove any sysfs entries */
2064		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2065	}
2066
2067	regulator_lock(rdev);
2068	list_del(&regulator->list);
2069
2070	rdev->open_count--;
2071	rdev->exclusive = 0;
 
2072	regulator_unlock(rdev);
2073
2074	kfree_const(regulator->supply_name);
2075	kfree(regulator);
2076}
2077
2078/* regulator_list_mutex lock held by regulator_put() */
2079static void _regulator_put(struct regulator *regulator)
2080{
2081	struct regulator_dev *rdev;
2082
2083	if (IS_ERR_OR_NULL(regulator))
2084		return;
2085
2086	lockdep_assert_held_once(&regulator_list_mutex);
2087
2088	/* Docs say you must disable before calling regulator_put() */
2089	WARN_ON(regulator->enable_count);
2090
2091	rdev = regulator->rdev;
2092
2093	destroy_regulator(regulator);
2094
2095	module_put(rdev->owner);
2096	put_device(&rdev->dev);
2097}
2098
2099/**
2100 * regulator_put - "free" the regulator source
2101 * @regulator: regulator source
2102 *
2103 * Note: drivers must ensure that all regulator_enable calls made on this
2104 * regulator source are balanced by regulator_disable calls prior to calling
2105 * this function.
2106 */
2107void regulator_put(struct regulator *regulator)
2108{
2109	mutex_lock(&regulator_list_mutex);
2110	_regulator_put(regulator);
2111	mutex_unlock(&regulator_list_mutex);
2112}
2113EXPORT_SYMBOL_GPL(regulator_put);
2114
2115/**
2116 * regulator_register_supply_alias - Provide device alias for supply lookup
2117 *
2118 * @dev: device that will be given as the regulator "consumer"
2119 * @id: Supply name or regulator ID
2120 * @alias_dev: device that should be used to lookup the supply
2121 * @alias_id: Supply name or regulator ID that should be used to lookup the
2122 * supply
2123 *
2124 * All lookups for id on dev will instead be conducted for alias_id on
2125 * alias_dev.
2126 */
2127int regulator_register_supply_alias(struct device *dev, const char *id,
2128				    struct device *alias_dev,
2129				    const char *alias_id)
2130{
2131	struct regulator_supply_alias *map;
2132
2133	map = regulator_find_supply_alias(dev, id);
2134	if (map)
2135		return -EEXIST;
2136
2137	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2138	if (!map)
2139		return -ENOMEM;
2140
2141	map->src_dev = dev;
2142	map->src_supply = id;
2143	map->alias_dev = alias_dev;
2144	map->alias_supply = alias_id;
2145
2146	list_add(&map->list, &regulator_supply_alias_list);
2147
2148	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2149		id, dev_name(dev), alias_id, dev_name(alias_dev));
2150
2151	return 0;
2152}
2153EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2154
2155/**
2156 * regulator_unregister_supply_alias - Remove device alias
2157 *
2158 * @dev: device that will be given as the regulator "consumer"
2159 * @id: Supply name or regulator ID
2160 *
2161 * Remove a lookup alias if one exists for id on dev.
2162 */
2163void regulator_unregister_supply_alias(struct device *dev, const char *id)
2164{
2165	struct regulator_supply_alias *map;
2166
2167	map = regulator_find_supply_alias(dev, id);
2168	if (map) {
2169		list_del(&map->list);
2170		kfree(map);
2171	}
2172}
2173EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2174
2175/**
2176 * regulator_bulk_register_supply_alias - register multiple aliases
2177 *
2178 * @dev: device that will be given as the regulator "consumer"
2179 * @id: List of supply names or regulator IDs
2180 * @alias_dev: device that should be used to lookup the supply
2181 * @alias_id: List of supply names or regulator IDs that should be used to
2182 * lookup the supply
2183 * @num_id: Number of aliases to register
2184 *
2185 * @return 0 on success, an errno on failure.
2186 *
2187 * This helper function allows drivers to register several supply
2188 * aliases in one operation.  If any of the aliases cannot be
2189 * registered any aliases that were registered will be removed
2190 * before returning to the caller.
2191 */
2192int regulator_bulk_register_supply_alias(struct device *dev,
2193					 const char *const *id,
2194					 struct device *alias_dev,
2195					 const char *const *alias_id,
2196					 int num_id)
2197{
2198	int i;
2199	int ret;
2200
2201	for (i = 0; i < num_id; ++i) {
2202		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2203						      alias_id[i]);
2204		if (ret < 0)
2205			goto err;
2206	}
2207
2208	return 0;
2209
2210err:
2211	dev_err(dev,
2212		"Failed to create supply alias %s,%s -> %s,%s\n",
2213		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2214
2215	while (--i >= 0)
2216		regulator_unregister_supply_alias(dev, id[i]);
2217
2218	return ret;
2219}
2220EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2221
2222/**
2223 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2224 *
2225 * @dev: device that will be given as the regulator "consumer"
2226 * @id: List of supply names or regulator IDs
2227 * @num_id: Number of aliases to unregister
2228 *
2229 * This helper function allows drivers to unregister several supply
2230 * aliases in one operation.
2231 */
2232void regulator_bulk_unregister_supply_alias(struct device *dev,
2233					    const char *const *id,
2234					    int num_id)
2235{
2236	int i;
2237
2238	for (i = 0; i < num_id; ++i)
2239		regulator_unregister_supply_alias(dev, id[i]);
2240}
2241EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2242
2243
2244/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2245static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2246				const struct regulator_config *config)
2247{
2248	struct regulator_enable_gpio *pin, *new_pin;
2249	struct gpio_desc *gpiod;
2250
2251	gpiod = config->ena_gpiod;
2252	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2253
2254	mutex_lock(&regulator_list_mutex);
2255
2256	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2257		if (pin->gpiod == gpiod) {
2258			rdev_dbg(rdev, "GPIO is already used\n");
2259			goto update_ena_gpio_to_rdev;
2260		}
2261	}
2262
2263	if (new_pin == NULL) {
2264		mutex_unlock(&regulator_list_mutex);
2265		return -ENOMEM;
2266	}
2267
2268	pin = new_pin;
2269	new_pin = NULL;
2270
2271	pin->gpiod = gpiod;
2272	list_add(&pin->list, &regulator_ena_gpio_list);
2273
2274update_ena_gpio_to_rdev:
2275	pin->request_count++;
2276	rdev->ena_pin = pin;
2277
2278	mutex_unlock(&regulator_list_mutex);
2279	kfree(new_pin);
2280
2281	return 0;
2282}
2283
2284static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2285{
2286	struct regulator_enable_gpio *pin, *n;
2287
2288	if (!rdev->ena_pin)
2289		return;
2290
2291	/* Free the GPIO only in case of no use */
2292	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2293		if (pin != rdev->ena_pin)
2294			continue;
2295
2296		if (--pin->request_count)
2297			break;
2298
2299		gpiod_put(pin->gpiod);
2300		list_del(&pin->list);
2301		kfree(pin);
2302		break;
 
 
2303	}
2304
2305	rdev->ena_pin = NULL;
2306}
2307
2308/**
2309 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2310 * @rdev: regulator_dev structure
2311 * @enable: enable GPIO at initial use?
2312 *
2313 * GPIO is enabled in case of initial use. (enable_count is 0)
2314 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2315 */
2316static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2317{
2318	struct regulator_enable_gpio *pin = rdev->ena_pin;
2319
2320	if (!pin)
2321		return -EINVAL;
2322
2323	if (enable) {
2324		/* Enable GPIO at initial use */
2325		if (pin->enable_count == 0)
2326			gpiod_set_value_cansleep(pin->gpiod, 1);
2327
2328		pin->enable_count++;
2329	} else {
2330		if (pin->enable_count > 1) {
2331			pin->enable_count--;
2332			return 0;
2333		}
2334
2335		/* Disable GPIO if not used */
2336		if (pin->enable_count <= 1) {
2337			gpiod_set_value_cansleep(pin->gpiod, 0);
2338			pin->enable_count = 0;
2339		}
2340	}
2341
2342	return 0;
2343}
2344
2345/**
2346 * _regulator_enable_delay - a delay helper function
2347 * @delay: time to delay in microseconds
2348 *
2349 * Delay for the requested amount of time as per the guidelines in:
2350 *
2351 *     Documentation/timers/timers-howto.rst
2352 *
2353 * The assumption here is that regulators will never be enabled in
2354 * atomic context and therefore sleeping functions can be used.
2355 */
2356static void _regulator_enable_delay(unsigned int delay)
2357{
2358	unsigned int ms = delay / 1000;
2359	unsigned int us = delay % 1000;
2360
2361	if (ms > 0) {
2362		/*
2363		 * For small enough values, handle super-millisecond
2364		 * delays in the usleep_range() call below.
2365		 */
2366		if (ms < 20)
2367			us += ms * 1000;
2368		else
2369			msleep(ms);
2370	}
2371
2372	/*
2373	 * Give the scheduler some room to coalesce with any other
2374	 * wakeup sources. For delays shorter than 10 us, don't even
2375	 * bother setting up high-resolution timers and just busy-
2376	 * loop.
2377	 */
2378	if (us >= 10)
2379		usleep_range(us, us + 100);
2380	else
2381		udelay(us);
2382}
2383
2384/**
2385 * _regulator_check_status_enabled
2386 *
2387 * A helper function to check if the regulator status can be interpreted
2388 * as 'regulator is enabled'.
2389 * @rdev: the regulator device to check
2390 *
2391 * Return:
2392 * * 1			- if status shows regulator is in enabled state
2393 * * 0			- if not enabled state
2394 * * Error Value	- as received from ops->get_status()
2395 */
2396static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2397{
2398	int ret = rdev->desc->ops->get_status(rdev);
2399
2400	if (ret < 0) {
2401		rdev_info(rdev, "get_status returned error: %d\n", ret);
2402		return ret;
2403	}
2404
2405	switch (ret) {
2406	case REGULATOR_STATUS_OFF:
2407	case REGULATOR_STATUS_ERROR:
2408	case REGULATOR_STATUS_UNDEFINED:
2409		return 0;
2410	default:
2411		return 1;
2412	}
2413}
2414
2415static int _regulator_do_enable(struct regulator_dev *rdev)
2416{
2417	int ret, delay;
2418
2419	/* Query before enabling in case configuration dependent.  */
2420	ret = _regulator_get_enable_time(rdev);
2421	if (ret >= 0) {
2422		delay = ret;
2423	} else {
2424		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2425		delay = 0;
2426	}
2427
2428	trace_regulator_enable(rdev_get_name(rdev));
2429
2430	if (rdev->desc->off_on_delay) {
2431		/* if needed, keep a distance of off_on_delay from last time
2432		 * this regulator was disabled.
2433		 */
2434		unsigned long start_jiffy = jiffies;
2435		unsigned long intended, max_delay, remaining;
2436
2437		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2438		intended = rdev->last_off_jiffy + max_delay;
2439
2440		if (time_before(start_jiffy, intended)) {
2441			/* calc remaining jiffies to deal with one-time
2442			 * timer wrapping.
2443			 * in case of multiple timer wrapping, either it can be
2444			 * detected by out-of-range remaining, or it cannot be
2445			 * detected and we get a penalty of
2446			 * _regulator_enable_delay().
2447			 */
2448			remaining = intended - start_jiffy;
2449			if (remaining <= max_delay)
2450				_regulator_enable_delay(
2451						jiffies_to_usecs(remaining));
2452		}
2453	}
2454
2455	if (rdev->ena_pin) {
2456		if (!rdev->ena_gpio_state) {
2457			ret = regulator_ena_gpio_ctrl(rdev, true);
2458			if (ret < 0)
2459				return ret;
2460			rdev->ena_gpio_state = 1;
2461		}
2462	} else if (rdev->desc->ops->enable) {
2463		ret = rdev->desc->ops->enable(rdev);
2464		if (ret < 0)
2465			return ret;
2466	} else {
2467		return -EINVAL;
2468	}
2469
2470	/* Allow the regulator to ramp; it would be useful to extend
2471	 * this for bulk operations so that the regulators can ramp
2472	 * together.  */
2473	trace_regulator_enable_delay(rdev_get_name(rdev));
2474
2475	/* If poll_enabled_time is set, poll upto the delay calculated
2476	 * above, delaying poll_enabled_time uS to check if the regulator
2477	 * actually got enabled.
2478	 * If the regulator isn't enabled after enable_delay has
2479	 * expired, return -ETIMEDOUT.
2480	 */
2481	if (rdev->desc->poll_enabled_time) {
2482		unsigned int time_remaining = delay;
2483
2484		while (time_remaining > 0) {
2485			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2486
2487			if (rdev->desc->ops->get_status) {
2488				ret = _regulator_check_status_enabled(rdev);
2489				if (ret < 0)
2490					return ret;
2491				else if (ret)
2492					break;
2493			} else if (rdev->desc->ops->is_enabled(rdev))
2494				break;
2495
2496			time_remaining -= rdev->desc->poll_enabled_time;
2497		}
2498
2499		if (time_remaining <= 0) {
2500			rdev_err(rdev, "Enabled check timed out\n");
2501			return -ETIMEDOUT;
2502		}
2503	} else {
2504		_regulator_enable_delay(delay);
2505	}
2506
2507	trace_regulator_enable_complete(rdev_get_name(rdev));
2508
2509	return 0;
2510}
2511
2512/**
2513 * _regulator_handle_consumer_enable - handle that a consumer enabled
2514 * @regulator: regulator source
2515 *
2516 * Some things on a regulator consumer (like the contribution towards total
2517 * load on the regulator) only have an effect when the consumer wants the
2518 * regulator enabled.  Explained in example with two consumers of the same
2519 * regulator:
2520 *   consumer A: set_load(100);       => total load = 0
2521 *   consumer A: regulator_enable();  => total load = 100
2522 *   consumer B: set_load(1000);      => total load = 100
2523 *   consumer B: regulator_enable();  => total load = 1100
2524 *   consumer A: regulator_disable(); => total_load = 1000
2525 *
2526 * This function (together with _regulator_handle_consumer_disable) is
2527 * responsible for keeping track of the refcount for a given regulator consumer
2528 * and applying / unapplying these things.
2529 *
2530 * Returns 0 upon no error; -error upon error.
2531 */
2532static int _regulator_handle_consumer_enable(struct regulator *regulator)
2533{
2534	struct regulator_dev *rdev = regulator->rdev;
2535
2536	lockdep_assert_held_once(&rdev->mutex.base);
2537
2538	regulator->enable_count++;
2539	if (regulator->uA_load && regulator->enable_count == 1)
2540		return drms_uA_update(rdev);
2541
2542	return 0;
2543}
2544
2545/**
2546 * _regulator_handle_consumer_disable - handle that a consumer disabled
2547 * @regulator: regulator source
2548 *
2549 * The opposite of _regulator_handle_consumer_enable().
2550 *
2551 * Returns 0 upon no error; -error upon error.
2552 */
2553static int _regulator_handle_consumer_disable(struct regulator *regulator)
2554{
2555	struct regulator_dev *rdev = regulator->rdev;
2556
2557	lockdep_assert_held_once(&rdev->mutex.base);
2558
2559	if (!regulator->enable_count) {
2560		rdev_err(rdev, "Underflow of regulator enable count\n");
2561		return -EINVAL;
2562	}
2563
2564	regulator->enable_count--;
2565	if (regulator->uA_load && regulator->enable_count == 0)
2566		return drms_uA_update(rdev);
2567
2568	return 0;
2569}
2570
2571/* locks held by regulator_enable() */
2572static int _regulator_enable(struct regulator *regulator)
2573{
2574	struct regulator_dev *rdev = regulator->rdev;
2575	int ret;
2576
2577	lockdep_assert_held_once(&rdev->mutex.base);
2578
2579	if (rdev->use_count == 0 && rdev->supply) {
2580		ret = _regulator_enable(rdev->supply);
2581		if (ret < 0)
2582			return ret;
2583	}
2584
2585	/* balance only if there are regulators coupled */
2586	if (rdev->coupling_desc.n_coupled > 1) {
2587		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2588		if (ret < 0)
2589			goto err_disable_supply;
2590	}
2591
2592	ret = _regulator_handle_consumer_enable(regulator);
2593	if (ret < 0)
2594		goto err_disable_supply;
2595
2596	if (rdev->use_count == 0) {
2597		/* The regulator may on if it's not switchable or left on */
2598		ret = _regulator_is_enabled(rdev);
2599		if (ret == -EINVAL || ret == 0) {
2600			if (!regulator_ops_is_valid(rdev,
2601					REGULATOR_CHANGE_STATUS)) {
2602				ret = -EPERM;
2603				goto err_consumer_disable;
2604			}
2605
2606			ret = _regulator_do_enable(rdev);
2607			if (ret < 0)
2608				goto err_consumer_disable;
2609
2610			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2611					     NULL);
2612		} else if (ret < 0) {
2613			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2614			goto err_consumer_disable;
2615		}
2616		/* Fallthrough on positive return values - already enabled */
2617	}
2618
2619	rdev->use_count++;
2620
2621	return 0;
2622
2623err_consumer_disable:
2624	_regulator_handle_consumer_disable(regulator);
2625
2626err_disable_supply:
2627	if (rdev->use_count == 0 && rdev->supply)
2628		_regulator_disable(rdev->supply);
2629
2630	return ret;
2631}
2632
2633/**
2634 * regulator_enable - enable regulator output
2635 * @regulator: regulator source
2636 *
2637 * Request that the regulator be enabled with the regulator output at
2638 * the predefined voltage or current value.  Calls to regulator_enable()
2639 * must be balanced with calls to regulator_disable().
2640 *
2641 * NOTE: the output value can be set by other drivers, boot loader or may be
2642 * hardwired in the regulator.
2643 */
2644int regulator_enable(struct regulator *regulator)
2645{
2646	struct regulator_dev *rdev = regulator->rdev;
2647	struct ww_acquire_ctx ww_ctx;
2648	int ret;
2649
2650	regulator_lock_dependent(rdev, &ww_ctx);
2651	ret = _regulator_enable(regulator);
2652	regulator_unlock_dependent(rdev, &ww_ctx);
2653
2654	return ret;
2655}
2656EXPORT_SYMBOL_GPL(regulator_enable);
2657
2658static int _regulator_do_disable(struct regulator_dev *rdev)
2659{
2660	int ret;
2661
2662	trace_regulator_disable(rdev_get_name(rdev));
2663
2664	if (rdev->ena_pin) {
2665		if (rdev->ena_gpio_state) {
2666			ret = regulator_ena_gpio_ctrl(rdev, false);
2667			if (ret < 0)
2668				return ret;
2669			rdev->ena_gpio_state = 0;
2670		}
2671
2672	} else if (rdev->desc->ops->disable) {
2673		ret = rdev->desc->ops->disable(rdev);
2674		if (ret != 0)
2675			return ret;
2676	}
2677
2678	/* cares about last_off_jiffy only if off_on_delay is required by
2679	 * device.
2680	 */
2681	if (rdev->desc->off_on_delay)
2682		rdev->last_off_jiffy = jiffies;
2683
2684	trace_regulator_disable_complete(rdev_get_name(rdev));
2685
2686	return 0;
2687}
2688
2689/* locks held by regulator_disable() */
2690static int _regulator_disable(struct regulator *regulator)
2691{
2692	struct regulator_dev *rdev = regulator->rdev;
2693	int ret = 0;
2694
2695	lockdep_assert_held_once(&rdev->mutex.base);
2696
2697	if (WARN(rdev->use_count <= 0,
2698		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2699		return -EIO;
2700
2701	/* are we the last user and permitted to disable ? */
2702	if (rdev->use_count == 1 &&
2703	    (rdev->constraints && !rdev->constraints->always_on)) {
2704
2705		/* we are last user */
2706		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2707			ret = _notifier_call_chain(rdev,
2708						   REGULATOR_EVENT_PRE_DISABLE,
2709						   NULL);
2710			if (ret & NOTIFY_STOP_MASK)
2711				return -EINVAL;
2712
2713			ret = _regulator_do_disable(rdev);
2714			if (ret < 0) {
2715				rdev_err(rdev, "failed to disable\n");
2716				_notifier_call_chain(rdev,
2717						REGULATOR_EVENT_ABORT_DISABLE,
2718						NULL);
2719				return ret;
2720			}
2721			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2722					NULL);
2723		}
2724
2725		rdev->use_count = 0;
2726	} else if (rdev->use_count > 1) {
2727		rdev->use_count--;
2728	}
2729
2730	if (ret == 0)
2731		ret = _regulator_handle_consumer_disable(regulator);
2732
2733	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2734		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2735
2736	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2737		ret = _regulator_disable(rdev->supply);
2738
2739	return ret;
2740}
2741
2742/**
2743 * regulator_disable - disable regulator output
2744 * @regulator: regulator source
2745 *
2746 * Disable the regulator output voltage or current.  Calls to
2747 * regulator_enable() must be balanced with calls to
2748 * regulator_disable().
2749 *
2750 * NOTE: this will only disable the regulator output if no other consumer
2751 * devices have it enabled, the regulator device supports disabling and
2752 * machine constraints permit this operation.
2753 */
2754int regulator_disable(struct regulator *regulator)
2755{
2756	struct regulator_dev *rdev = regulator->rdev;
2757	struct ww_acquire_ctx ww_ctx;
2758	int ret;
2759
2760	regulator_lock_dependent(rdev, &ww_ctx);
2761	ret = _regulator_disable(regulator);
2762	regulator_unlock_dependent(rdev, &ww_ctx);
2763
2764	return ret;
2765}
2766EXPORT_SYMBOL_GPL(regulator_disable);
2767
2768/* locks held by regulator_force_disable() */
2769static int _regulator_force_disable(struct regulator_dev *rdev)
2770{
2771	int ret = 0;
2772
2773	lockdep_assert_held_once(&rdev->mutex.base);
2774
2775	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2776			REGULATOR_EVENT_PRE_DISABLE, NULL);
2777	if (ret & NOTIFY_STOP_MASK)
2778		return -EINVAL;
2779
2780	ret = _regulator_do_disable(rdev);
2781	if (ret < 0) {
2782		rdev_err(rdev, "failed to force disable\n");
2783		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2784				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2785		return ret;
2786	}
2787
2788	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2789			REGULATOR_EVENT_DISABLE, NULL);
2790
2791	return 0;
2792}
2793
2794/**
2795 * regulator_force_disable - force disable regulator output
2796 * @regulator: regulator source
2797 *
2798 * Forcibly disable the regulator output voltage or current.
2799 * NOTE: this *will* disable the regulator output even if other consumer
2800 * devices have it enabled. This should be used for situations when device
2801 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2802 */
2803int regulator_force_disable(struct regulator *regulator)
2804{
2805	struct regulator_dev *rdev = regulator->rdev;
2806	struct ww_acquire_ctx ww_ctx;
2807	int ret;
2808
2809	regulator_lock_dependent(rdev, &ww_ctx);
2810
2811	ret = _regulator_force_disable(regulator->rdev);
2812
2813	if (rdev->coupling_desc.n_coupled > 1)
2814		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2815
2816	if (regulator->uA_load) {
2817		regulator->uA_load = 0;
2818		ret = drms_uA_update(rdev);
2819	}
2820
2821	if (rdev->use_count != 0 && rdev->supply)
2822		_regulator_disable(rdev->supply);
2823
2824	regulator_unlock_dependent(rdev, &ww_ctx);
2825
2826	return ret;
2827}
2828EXPORT_SYMBOL_GPL(regulator_force_disable);
2829
2830static void regulator_disable_work(struct work_struct *work)
2831{
2832	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2833						  disable_work.work);
2834	struct ww_acquire_ctx ww_ctx;
2835	int count, i, ret;
2836	struct regulator *regulator;
2837	int total_count = 0;
2838
2839	regulator_lock_dependent(rdev, &ww_ctx);
2840
2841	/*
2842	 * Workqueue functions queue the new work instance while the previous
2843	 * work instance is being processed. Cancel the queued work instance
2844	 * as the work instance under processing does the job of the queued
2845	 * work instance.
2846	 */
2847	cancel_delayed_work(&rdev->disable_work);
2848
2849	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2850		count = regulator->deferred_disables;
2851
2852		if (!count)
2853			continue;
2854
2855		total_count += count;
2856		regulator->deferred_disables = 0;
2857
2858		for (i = 0; i < count; i++) {
2859			ret = _regulator_disable(regulator);
2860			if (ret != 0)
2861				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2862		}
2863	}
2864	WARN_ON(!total_count);
2865
2866	if (rdev->coupling_desc.n_coupled > 1)
2867		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2868
2869	regulator_unlock_dependent(rdev, &ww_ctx);
2870}
2871
2872/**
2873 * regulator_disable_deferred - disable regulator output with delay
2874 * @regulator: regulator source
2875 * @ms: milliseconds until the regulator is disabled
2876 *
2877 * Execute regulator_disable() on the regulator after a delay.  This
2878 * is intended for use with devices that require some time to quiesce.
2879 *
2880 * NOTE: this will only disable the regulator output if no other consumer
2881 * devices have it enabled, the regulator device supports disabling and
2882 * machine constraints permit this operation.
2883 */
2884int regulator_disable_deferred(struct regulator *regulator, int ms)
2885{
2886	struct regulator_dev *rdev = regulator->rdev;
2887
2888	if (!ms)
2889		return regulator_disable(regulator);
2890
2891	regulator_lock(rdev);
2892	regulator->deferred_disables++;
2893	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2894			 msecs_to_jiffies(ms));
2895	regulator_unlock(rdev);
2896
2897	return 0;
2898}
2899EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2900
2901static int _regulator_is_enabled(struct regulator_dev *rdev)
2902{
2903	/* A GPIO control always takes precedence */
2904	if (rdev->ena_pin)
2905		return rdev->ena_gpio_state;
2906
2907	/* If we don't know then assume that the regulator is always on */
2908	if (!rdev->desc->ops->is_enabled)
2909		return 1;
2910
2911	return rdev->desc->ops->is_enabled(rdev);
2912}
2913
2914static int _regulator_list_voltage(struct regulator_dev *rdev,
2915				   unsigned selector, int lock)
2916{
2917	const struct regulator_ops *ops = rdev->desc->ops;
2918	int ret;
2919
2920	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2921		return rdev->desc->fixed_uV;
2922
2923	if (ops->list_voltage) {
2924		if (selector >= rdev->desc->n_voltages)
2925			return -EINVAL;
2926		if (lock)
2927			regulator_lock(rdev);
2928		ret = ops->list_voltage(rdev, selector);
2929		if (lock)
2930			regulator_unlock(rdev);
2931	} else if (rdev->is_switch && rdev->supply) {
2932		ret = _regulator_list_voltage(rdev->supply->rdev,
2933					      selector, lock);
2934	} else {
2935		return -EINVAL;
2936	}
2937
2938	if (ret > 0) {
2939		if (ret < rdev->constraints->min_uV)
2940			ret = 0;
2941		else if (ret > rdev->constraints->max_uV)
2942			ret = 0;
2943	}
2944
2945	return ret;
2946}
2947
2948/**
2949 * regulator_is_enabled - is the regulator output enabled
2950 * @regulator: regulator source
2951 *
2952 * Returns positive if the regulator driver backing the source/client
2953 * has requested that the device be enabled, zero if it hasn't, else a
2954 * negative errno code.
2955 *
2956 * Note that the device backing this regulator handle can have multiple
2957 * users, so it might be enabled even if regulator_enable() was never
2958 * called for this particular source.
2959 */
2960int regulator_is_enabled(struct regulator *regulator)
2961{
2962	int ret;
2963
2964	if (regulator->always_on)
2965		return 1;
2966
2967	regulator_lock(regulator->rdev);
2968	ret = _regulator_is_enabled(regulator->rdev);
2969	regulator_unlock(regulator->rdev);
2970
2971	return ret;
2972}
2973EXPORT_SYMBOL_GPL(regulator_is_enabled);
2974
2975/**
2976 * regulator_count_voltages - count regulator_list_voltage() selectors
2977 * @regulator: regulator source
2978 *
2979 * Returns number of selectors, or negative errno.  Selectors are
2980 * numbered starting at zero, and typically correspond to bitfields
2981 * in hardware registers.
2982 */
2983int regulator_count_voltages(struct regulator *regulator)
2984{
2985	struct regulator_dev	*rdev = regulator->rdev;
2986
2987	if (rdev->desc->n_voltages)
2988		return rdev->desc->n_voltages;
2989
2990	if (!rdev->is_switch || !rdev->supply)
2991		return -EINVAL;
2992
2993	return regulator_count_voltages(rdev->supply);
2994}
2995EXPORT_SYMBOL_GPL(regulator_count_voltages);
2996
2997/**
2998 * regulator_list_voltage - enumerate supported voltages
2999 * @regulator: regulator source
3000 * @selector: identify voltage to list
3001 * Context: can sleep
3002 *
3003 * Returns a voltage that can be passed to @regulator_set_voltage(),
3004 * zero if this selector code can't be used on this system, or a
3005 * negative errno.
3006 */
3007int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3008{
3009	return _regulator_list_voltage(regulator->rdev, selector, 1);
3010}
3011EXPORT_SYMBOL_GPL(regulator_list_voltage);
3012
3013/**
3014 * regulator_get_regmap - get the regulator's register map
3015 * @regulator: regulator source
3016 *
3017 * Returns the register map for the given regulator, or an ERR_PTR value
3018 * if the regulator doesn't use regmap.
3019 */
3020struct regmap *regulator_get_regmap(struct regulator *regulator)
3021{
3022	struct regmap *map = regulator->rdev->regmap;
3023
3024	return map ? map : ERR_PTR(-EOPNOTSUPP);
3025}
3026
3027/**
3028 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3029 * @regulator: regulator source
3030 * @vsel_reg: voltage selector register, output parameter
3031 * @vsel_mask: mask for voltage selector bitfield, output parameter
3032 *
3033 * Returns the hardware register offset and bitmask used for setting the
3034 * regulator voltage. This might be useful when configuring voltage-scaling
3035 * hardware or firmware that can make I2C requests behind the kernel's back,
3036 * for example.
3037 *
3038 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3039 * and 0 is returned, otherwise a negative errno is returned.
3040 */
3041int regulator_get_hardware_vsel_register(struct regulator *regulator,
3042					 unsigned *vsel_reg,
3043					 unsigned *vsel_mask)
3044{
3045	struct regulator_dev *rdev = regulator->rdev;
3046	const struct regulator_ops *ops = rdev->desc->ops;
3047
3048	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3049		return -EOPNOTSUPP;
3050
3051	*vsel_reg = rdev->desc->vsel_reg;
3052	*vsel_mask = rdev->desc->vsel_mask;
3053
3054	 return 0;
3055}
3056EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3057
3058/**
3059 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3060 * @regulator: regulator source
3061 * @selector: identify voltage to list
3062 *
3063 * Converts the selector to a hardware-specific voltage selector that can be
3064 * directly written to the regulator registers. The address of the voltage
3065 * register can be determined by calling @regulator_get_hardware_vsel_register.
3066 *
3067 * On error a negative errno is returned.
3068 */
3069int regulator_list_hardware_vsel(struct regulator *regulator,
3070				 unsigned selector)
3071{
3072	struct regulator_dev *rdev = regulator->rdev;
3073	const struct regulator_ops *ops = rdev->desc->ops;
3074
3075	if (selector >= rdev->desc->n_voltages)
3076		return -EINVAL;
3077	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3078		return -EOPNOTSUPP;
3079
3080	return selector;
3081}
3082EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3083
3084/**
3085 * regulator_get_linear_step - return the voltage step size between VSEL values
3086 * @regulator: regulator source
3087 *
3088 * Returns the voltage step size between VSEL values for linear
3089 * regulators, or return 0 if the regulator isn't a linear regulator.
3090 */
3091unsigned int regulator_get_linear_step(struct regulator *regulator)
3092{
3093	struct regulator_dev *rdev = regulator->rdev;
3094
3095	return rdev->desc->uV_step;
3096}
3097EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3098
3099/**
3100 * regulator_is_supported_voltage - check if a voltage range can be supported
3101 *
3102 * @regulator: Regulator to check.
3103 * @min_uV: Minimum required voltage in uV.
3104 * @max_uV: Maximum required voltage in uV.
3105 *
3106 * Returns a boolean.
3107 */
3108int regulator_is_supported_voltage(struct regulator *regulator,
3109				   int min_uV, int max_uV)
3110{
3111	struct regulator_dev *rdev = regulator->rdev;
3112	int i, voltages, ret;
3113
3114	/* If we can't change voltage check the current voltage */
3115	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3116		ret = regulator_get_voltage(regulator);
3117		if (ret >= 0)
3118			return min_uV <= ret && ret <= max_uV;
3119		else
3120			return ret;
3121	}
3122
3123	/* Any voltage within constrains range is fine? */
3124	if (rdev->desc->continuous_voltage_range)
3125		return min_uV >= rdev->constraints->min_uV &&
3126				max_uV <= rdev->constraints->max_uV;
3127
3128	ret = regulator_count_voltages(regulator);
3129	if (ret < 0)
3130		return 0;
3131	voltages = ret;
3132
3133	for (i = 0; i < voltages; i++) {
3134		ret = regulator_list_voltage(regulator, i);
3135
3136		if (ret >= min_uV && ret <= max_uV)
3137			return 1;
3138	}
3139
3140	return 0;
3141}
3142EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3143
3144static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3145				 int max_uV)
3146{
3147	const struct regulator_desc *desc = rdev->desc;
3148
3149	if (desc->ops->map_voltage)
3150		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3151
3152	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3153		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3154
3155	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3156		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3157
3158	if (desc->ops->list_voltage ==
3159		regulator_list_voltage_pickable_linear_range)
3160		return regulator_map_voltage_pickable_linear_range(rdev,
3161							min_uV, max_uV);
3162
3163	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3164}
3165
3166static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3167				       int min_uV, int max_uV,
3168				       unsigned *selector)
3169{
3170	struct pre_voltage_change_data data;
3171	int ret;
3172
3173	data.old_uV = regulator_get_voltage_rdev(rdev);
3174	data.min_uV = min_uV;
3175	data.max_uV = max_uV;
3176	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3177				   &data);
3178	if (ret & NOTIFY_STOP_MASK)
3179		return -EINVAL;
3180
3181	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3182	if (ret >= 0)
3183		return ret;
3184
3185	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3186			     (void *)data.old_uV);
3187
3188	return ret;
3189}
3190
3191static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3192					   int uV, unsigned selector)
3193{
3194	struct pre_voltage_change_data data;
3195	int ret;
3196
3197	data.old_uV = regulator_get_voltage_rdev(rdev);
3198	data.min_uV = uV;
3199	data.max_uV = uV;
3200	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3201				   &data);
3202	if (ret & NOTIFY_STOP_MASK)
3203		return -EINVAL;
3204
3205	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3206	if (ret >= 0)
3207		return ret;
3208
3209	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3210			     (void *)data.old_uV);
3211
3212	return ret;
3213}
3214
3215static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3216					   int uV, int new_selector)
3217{
3218	const struct regulator_ops *ops = rdev->desc->ops;
3219	int diff, old_sel, curr_sel, ret;
3220
3221	/* Stepping is only needed if the regulator is enabled. */
3222	if (!_regulator_is_enabled(rdev))
3223		goto final_set;
3224
3225	if (!ops->get_voltage_sel)
3226		return -EINVAL;
3227
3228	old_sel = ops->get_voltage_sel(rdev);
3229	if (old_sel < 0)
3230		return old_sel;
3231
3232	diff = new_selector - old_sel;
3233	if (diff == 0)
3234		return 0; /* No change needed. */
3235
3236	if (diff > 0) {
3237		/* Stepping up. */
3238		for (curr_sel = old_sel + rdev->desc->vsel_step;
3239		     curr_sel < new_selector;
3240		     curr_sel += rdev->desc->vsel_step) {
3241			/*
3242			 * Call the callback directly instead of using
3243			 * _regulator_call_set_voltage_sel() as we don't
3244			 * want to notify anyone yet. Same in the branch
3245			 * below.
3246			 */
3247			ret = ops->set_voltage_sel(rdev, curr_sel);
3248			if (ret)
3249				goto try_revert;
3250		}
3251	} else {
3252		/* Stepping down. */
3253		for (curr_sel = old_sel - rdev->desc->vsel_step;
3254		     curr_sel > new_selector;
3255		     curr_sel -= rdev->desc->vsel_step) {
3256			ret = ops->set_voltage_sel(rdev, curr_sel);
3257			if (ret)
3258				goto try_revert;
3259		}
3260	}
3261
3262final_set:
3263	/* The final selector will trigger the notifiers. */
3264	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3265
3266try_revert:
3267	/*
3268	 * At least try to return to the previous voltage if setting a new
3269	 * one failed.
3270	 */
3271	(void)ops->set_voltage_sel(rdev, old_sel);
3272	return ret;
3273}
3274
3275static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3276				       int old_uV, int new_uV)
3277{
3278	unsigned int ramp_delay = 0;
3279
3280	if (rdev->constraints->ramp_delay)
3281		ramp_delay = rdev->constraints->ramp_delay;
3282	else if (rdev->desc->ramp_delay)
3283		ramp_delay = rdev->desc->ramp_delay;
3284	else if (rdev->constraints->settling_time)
3285		return rdev->constraints->settling_time;
3286	else if (rdev->constraints->settling_time_up &&
3287		 (new_uV > old_uV))
3288		return rdev->constraints->settling_time_up;
3289	else if (rdev->constraints->settling_time_down &&
3290		 (new_uV < old_uV))
3291		return rdev->constraints->settling_time_down;
3292
3293	if (ramp_delay == 0) {
3294		rdev_dbg(rdev, "ramp_delay not set\n");
3295		return 0;
3296	}
3297
3298	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3299}
3300
3301static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3302				     int min_uV, int max_uV)
3303{
3304	int ret;
3305	int delay = 0;
3306	int best_val = 0;
3307	unsigned int selector;
3308	int old_selector = -1;
3309	const struct regulator_ops *ops = rdev->desc->ops;
3310	int old_uV = regulator_get_voltage_rdev(rdev);
3311
3312	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3313
3314	min_uV += rdev->constraints->uV_offset;
3315	max_uV += rdev->constraints->uV_offset;
3316
3317	/*
3318	 * If we can't obtain the old selector there is not enough
3319	 * info to call set_voltage_time_sel().
3320	 */
3321	if (_regulator_is_enabled(rdev) &&
3322	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3323		old_selector = ops->get_voltage_sel(rdev);
3324		if (old_selector < 0)
3325			return old_selector;
3326	}
3327
3328	if (ops->set_voltage) {
3329		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3330						  &selector);
3331
3332		if (ret >= 0) {
3333			if (ops->list_voltage)
3334				best_val = ops->list_voltage(rdev,
3335							     selector);
3336			else
3337				best_val = regulator_get_voltage_rdev(rdev);
3338		}
3339
3340	} else if (ops->set_voltage_sel) {
3341		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3342		if (ret >= 0) {
3343			best_val = ops->list_voltage(rdev, ret);
3344			if (min_uV <= best_val && max_uV >= best_val) {
3345				selector = ret;
3346				if (old_selector == selector)
3347					ret = 0;
3348				else if (rdev->desc->vsel_step)
3349					ret = _regulator_set_voltage_sel_step(
3350						rdev, best_val, selector);
3351				else
3352					ret = _regulator_call_set_voltage_sel(
3353						rdev, best_val, selector);
3354			} else {
3355				ret = -EINVAL;
3356			}
3357		}
3358	} else {
3359		ret = -EINVAL;
3360	}
3361
3362	if (ret)
3363		goto out;
3364
3365	if (ops->set_voltage_time_sel) {
3366		/*
3367		 * Call set_voltage_time_sel if successfully obtained
3368		 * old_selector
3369		 */
3370		if (old_selector >= 0 && old_selector != selector)
3371			delay = ops->set_voltage_time_sel(rdev, old_selector,
3372							  selector);
3373	} else {
3374		if (old_uV != best_val) {
3375			if (ops->set_voltage_time)
3376				delay = ops->set_voltage_time(rdev, old_uV,
3377							      best_val);
3378			else
3379				delay = _regulator_set_voltage_time(rdev,
3380								    old_uV,
3381								    best_val);
3382		}
3383	}
3384
3385	if (delay < 0) {
3386		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3387		delay = 0;
3388	}
3389
3390	/* Insert any necessary delays */
3391	if (delay >= 1000) {
3392		mdelay(delay / 1000);
3393		udelay(delay % 1000);
3394	} else if (delay) {
3395		udelay(delay);
3396	}
3397
3398	if (best_val >= 0) {
3399		unsigned long data = best_val;
3400
3401		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3402				     (void *)data);
3403	}
3404
3405out:
3406	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3407
3408	return ret;
3409}
3410
3411static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3412				  int min_uV, int max_uV, suspend_state_t state)
3413{
3414	struct regulator_state *rstate;
3415	int uV, sel;
3416
3417	rstate = regulator_get_suspend_state(rdev, state);
3418	if (rstate == NULL)
3419		return -EINVAL;
3420
3421	if (min_uV < rstate->min_uV)
3422		min_uV = rstate->min_uV;
3423	if (max_uV > rstate->max_uV)
3424		max_uV = rstate->max_uV;
3425
3426	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3427	if (sel < 0)
3428		return sel;
3429
3430	uV = rdev->desc->ops->list_voltage(rdev, sel);
3431	if (uV >= min_uV && uV <= max_uV)
3432		rstate->uV = uV;
3433
3434	return 0;
3435}
3436
3437static int regulator_set_voltage_unlocked(struct regulator *regulator,
3438					  int min_uV, int max_uV,
3439					  suspend_state_t state)
3440{
3441	struct regulator_dev *rdev = regulator->rdev;
3442	struct regulator_voltage *voltage = &regulator->voltage[state];
3443	int ret = 0;
3444	int old_min_uV, old_max_uV;
3445	int current_uV;
3446
3447	/* If we're setting the same range as last time the change
3448	 * should be a noop (some cpufreq implementations use the same
3449	 * voltage for multiple frequencies, for example).
3450	 */
3451	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3452		goto out;
3453
3454	/* If we're trying to set a range that overlaps the current voltage,
3455	 * return successfully even though the regulator does not support
3456	 * changing the voltage.
3457	 */
3458	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3459		current_uV = regulator_get_voltage_rdev(rdev);
3460		if (min_uV <= current_uV && current_uV <= max_uV) {
3461			voltage->min_uV = min_uV;
3462			voltage->max_uV = max_uV;
3463			goto out;
3464		}
3465	}
3466
3467	/* sanity check */
3468	if (!rdev->desc->ops->set_voltage &&
3469	    !rdev->desc->ops->set_voltage_sel) {
3470		ret = -EINVAL;
3471		goto out;
3472	}
3473
3474	/* constraints check */
3475	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3476	if (ret < 0)
3477		goto out;
3478
3479	/* restore original values in case of error */
3480	old_min_uV = voltage->min_uV;
3481	old_max_uV = voltage->max_uV;
3482	voltage->min_uV = min_uV;
3483	voltage->max_uV = max_uV;
3484
3485	/* for not coupled regulators this will just set the voltage */
3486	ret = regulator_balance_voltage(rdev, state);
3487	if (ret < 0) {
3488		voltage->min_uV = old_min_uV;
3489		voltage->max_uV = old_max_uV;
3490	}
3491
3492out:
3493	return ret;
3494}
3495
3496int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3497			       int max_uV, suspend_state_t state)
3498{
3499	int best_supply_uV = 0;
3500	int supply_change_uV = 0;
3501	int ret;
3502
3503	if (rdev->supply &&
3504	    regulator_ops_is_valid(rdev->supply->rdev,
3505				   REGULATOR_CHANGE_VOLTAGE) &&
3506	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3507					   rdev->desc->ops->get_voltage_sel))) {
3508		int current_supply_uV;
3509		int selector;
3510
3511		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3512		if (selector < 0) {
3513			ret = selector;
3514			goto out;
3515		}
3516
3517		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3518		if (best_supply_uV < 0) {
3519			ret = best_supply_uV;
3520			goto out;
3521		}
3522
3523		best_supply_uV += rdev->desc->min_dropout_uV;
3524
3525		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3526		if (current_supply_uV < 0) {
3527			ret = current_supply_uV;
3528			goto out;
3529		}
3530
3531		supply_change_uV = best_supply_uV - current_supply_uV;
3532	}
3533
3534	if (supply_change_uV > 0) {
3535		ret = regulator_set_voltage_unlocked(rdev->supply,
3536				best_supply_uV, INT_MAX, state);
3537		if (ret) {
3538			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3539					ret);
3540			goto out;
3541		}
3542	}
3543
3544	if (state == PM_SUSPEND_ON)
3545		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3546	else
3547		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3548							max_uV, state);
3549	if (ret < 0)
3550		goto out;
3551
3552	if (supply_change_uV < 0) {
3553		ret = regulator_set_voltage_unlocked(rdev->supply,
3554				best_supply_uV, INT_MAX, state);
3555		if (ret)
3556			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3557					ret);
3558		/* No need to fail here */
3559		ret = 0;
3560	}
3561
3562out:
3563	return ret;
3564}
3565EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3566
3567static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3568					int *current_uV, int *min_uV)
3569{
3570	struct regulation_constraints *constraints = rdev->constraints;
3571
3572	/* Limit voltage change only if necessary */
3573	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3574		return 1;
3575
3576	if (*current_uV < 0) {
3577		*current_uV = regulator_get_voltage_rdev(rdev);
3578
3579		if (*current_uV < 0)
3580			return *current_uV;
3581	}
3582
3583	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3584		return 1;
3585
3586	/* Clamp target voltage within the given step */
3587	if (*current_uV < *min_uV)
3588		*min_uV = min(*current_uV + constraints->max_uV_step,
3589			      *min_uV);
3590	else
3591		*min_uV = max(*current_uV - constraints->max_uV_step,
3592			      *min_uV);
3593
3594	return 0;
3595}
3596
3597static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3598					 int *current_uV,
3599					 int *min_uV, int *max_uV,
3600					 suspend_state_t state,
3601					 int n_coupled)
3602{
3603	struct coupling_desc *c_desc = &rdev->coupling_desc;
3604	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3605	struct regulation_constraints *constraints = rdev->constraints;
3606	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3607	int max_current_uV = 0, min_current_uV = INT_MAX;
3608	int highest_min_uV = 0, target_uV, possible_uV;
3609	int i, ret, max_spread;
3610	bool done;
3611
3612	*current_uV = -1;
3613
3614	/*
3615	 * If there are no coupled regulators, simply set the voltage
3616	 * demanded by consumers.
3617	 */
3618	if (n_coupled == 1) {
3619		/*
3620		 * If consumers don't provide any demands, set voltage
3621		 * to min_uV
3622		 */
3623		desired_min_uV = constraints->min_uV;
3624		desired_max_uV = constraints->max_uV;
3625
3626		ret = regulator_check_consumers(rdev,
3627						&desired_min_uV,
3628						&desired_max_uV, state);
3629		if (ret < 0)
3630			return ret;
3631
3632		possible_uV = desired_min_uV;
3633		done = true;
3634
3635		goto finish;
3636	}
3637
3638	/* Find highest min desired voltage */
3639	for (i = 0; i < n_coupled; i++) {
3640		int tmp_min = 0;
3641		int tmp_max = INT_MAX;
3642
3643		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3644
3645		ret = regulator_check_consumers(c_rdevs[i],
3646						&tmp_min,
3647						&tmp_max, state);
3648		if (ret < 0)
3649			return ret;
3650
3651		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3652		if (ret < 0)
3653			return ret;
3654
3655		highest_min_uV = max(highest_min_uV, tmp_min);
3656
3657		if (i == 0) {
3658			desired_min_uV = tmp_min;
3659			desired_max_uV = tmp_max;
3660		}
3661	}
3662
3663	max_spread = constraints->max_spread[0];
3664
3665	/*
3666	 * Let target_uV be equal to the desired one if possible.
3667	 * If not, set it to minimum voltage, allowed by other coupled
3668	 * regulators.
3669	 */
3670	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3671
3672	/*
3673	 * Find min and max voltages, which currently aren't violating
3674	 * max_spread.
3675	 */
3676	for (i = 1; i < n_coupled; i++) {
3677		int tmp_act;
3678
3679		if (!_regulator_is_enabled(c_rdevs[i]))
3680			continue;
3681
3682		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3683		if (tmp_act < 0)
3684			return tmp_act;
3685
3686		min_current_uV = min(tmp_act, min_current_uV);
3687		max_current_uV = max(tmp_act, max_current_uV);
3688	}
3689
3690	/* There aren't any other regulators enabled */
3691	if (max_current_uV == 0) {
3692		possible_uV = target_uV;
3693	} else {
3694		/*
3695		 * Correct target voltage, so as it currently isn't
3696		 * violating max_spread
3697		 */
3698		possible_uV = max(target_uV, max_current_uV - max_spread);
3699		possible_uV = min(possible_uV, min_current_uV + max_spread);
3700	}
3701
3702	if (possible_uV > desired_max_uV)
3703		return -EINVAL;
3704
3705	done = (possible_uV == target_uV);
3706	desired_min_uV = possible_uV;
3707
3708finish:
3709	/* Apply max_uV_step constraint if necessary */
3710	if (state == PM_SUSPEND_ON) {
3711		ret = regulator_limit_voltage_step(rdev, current_uV,
3712						   &desired_min_uV);
3713		if (ret < 0)
3714			return ret;
3715
3716		if (ret == 0)
3717			done = false;
3718	}
3719
3720	/* Set current_uV if wasn't done earlier in the code and if necessary */
3721	if (n_coupled > 1 && *current_uV == -1) {
3722
3723		if (_regulator_is_enabled(rdev)) {
3724			ret = regulator_get_voltage_rdev(rdev);
3725			if (ret < 0)
3726				return ret;
3727
3728			*current_uV = ret;
3729		} else {
3730			*current_uV = desired_min_uV;
3731		}
3732	}
3733
3734	*min_uV = desired_min_uV;
3735	*max_uV = desired_max_uV;
3736
3737	return done;
3738}
3739
3740int regulator_do_balance_voltage(struct regulator_dev *rdev,
3741				 suspend_state_t state, bool skip_coupled)
3742{
3743	struct regulator_dev **c_rdevs;
3744	struct regulator_dev *best_rdev;
3745	struct coupling_desc *c_desc = &rdev->coupling_desc;
 
3746	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3747	unsigned int delta, best_delta;
3748	unsigned long c_rdev_done = 0;
3749	bool best_c_rdev_done;
3750
3751	c_rdevs = c_desc->coupled_rdevs;
3752	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3753
3754	/*
3755	 * Find the best possible voltage change on each loop. Leave the loop
3756	 * if there isn't any possible change.
3757	 */
3758	do {
3759		best_c_rdev_done = false;
3760		best_delta = 0;
3761		best_min_uV = 0;
3762		best_max_uV = 0;
3763		best_c_rdev = 0;
3764		best_rdev = NULL;
3765
3766		/*
3767		 * Find highest difference between optimal voltage
3768		 * and current voltage.
3769		 */
3770		for (i = 0; i < n_coupled; i++) {
3771			/*
3772			 * optimal_uV is the best voltage that can be set for
3773			 * i-th regulator at the moment without violating
3774			 * max_spread constraint in order to balance
3775			 * the coupled voltages.
3776			 */
3777			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3778
3779			if (test_bit(i, &c_rdev_done))
3780				continue;
3781
3782			ret = regulator_get_optimal_voltage(c_rdevs[i],
3783							    &current_uV,
3784							    &optimal_uV,
3785							    &optimal_max_uV,
3786							    state, n_coupled);
3787			if (ret < 0)
3788				goto out;
3789
3790			delta = abs(optimal_uV - current_uV);
3791
3792			if (delta && best_delta <= delta) {
3793				best_c_rdev_done = ret;
3794				best_delta = delta;
3795				best_rdev = c_rdevs[i];
3796				best_min_uV = optimal_uV;
3797				best_max_uV = optimal_max_uV;
3798				best_c_rdev = i;
3799			}
3800		}
3801
3802		/* Nothing to change, return successfully */
3803		if (!best_rdev) {
3804			ret = 0;
3805			goto out;
3806		}
3807
3808		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3809						 best_max_uV, state);
3810
3811		if (ret < 0)
3812			goto out;
3813
3814		if (best_c_rdev_done)
3815			set_bit(best_c_rdev, &c_rdev_done);
3816
3817	} while (n_coupled > 1);
3818
3819out:
3820	return ret;
3821}
3822
3823static int regulator_balance_voltage(struct regulator_dev *rdev,
3824				     suspend_state_t state)
3825{
3826	struct coupling_desc *c_desc = &rdev->coupling_desc;
3827	struct regulator_coupler *coupler = c_desc->coupler;
3828	bool skip_coupled = false;
3829
3830	/*
3831	 * If system is in a state other than PM_SUSPEND_ON, don't check
3832	 * other coupled regulators.
3833	 */
3834	if (state != PM_SUSPEND_ON)
3835		skip_coupled = true;
3836
3837	if (c_desc->n_resolved < c_desc->n_coupled) {
3838		rdev_err(rdev, "Not all coupled regulators registered\n");
3839		return -EPERM;
3840	}
3841
3842	/* Invoke custom balancer for customized couplers */
3843	if (coupler && coupler->balance_voltage)
3844		return coupler->balance_voltage(coupler, rdev, state);
3845
3846	return regulator_do_balance_voltage(rdev, state, skip_coupled);
3847}
3848
3849/**
3850 * regulator_set_voltage - set regulator output voltage
3851 * @regulator: regulator source
3852 * @min_uV: Minimum required voltage in uV
3853 * @max_uV: Maximum acceptable voltage in uV
3854 *
3855 * Sets a voltage regulator to the desired output voltage. This can be set
3856 * during any regulator state. IOW, regulator can be disabled or enabled.
3857 *
3858 * If the regulator is enabled then the voltage will change to the new value
3859 * immediately otherwise if the regulator is disabled the regulator will
3860 * output at the new voltage when enabled.
3861 *
3862 * NOTE: If the regulator is shared between several devices then the lowest
3863 * request voltage that meets the system constraints will be used.
3864 * Regulator system constraints must be set for this regulator before
3865 * calling this function otherwise this call will fail.
3866 */
3867int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3868{
3869	struct ww_acquire_ctx ww_ctx;
3870	int ret;
3871
3872	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3873
3874	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3875					     PM_SUSPEND_ON);
3876
3877	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3878
3879	return ret;
3880}
3881EXPORT_SYMBOL_GPL(regulator_set_voltage);
3882
3883static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3884					   suspend_state_t state, bool en)
3885{
3886	struct regulator_state *rstate;
3887
3888	rstate = regulator_get_suspend_state(rdev, state);
3889	if (rstate == NULL)
3890		return -EINVAL;
3891
3892	if (!rstate->changeable)
3893		return -EPERM;
3894
3895	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3896
3897	return 0;
3898}
3899
3900int regulator_suspend_enable(struct regulator_dev *rdev,
3901				    suspend_state_t state)
3902{
3903	return regulator_suspend_toggle(rdev, state, true);
3904}
3905EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3906
3907int regulator_suspend_disable(struct regulator_dev *rdev,
3908				     suspend_state_t state)
3909{
3910	struct regulator *regulator;
3911	struct regulator_voltage *voltage;
3912
3913	/*
3914	 * if any consumer wants this regulator device keeping on in
3915	 * suspend states, don't set it as disabled.
3916	 */
3917	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3918		voltage = &regulator->voltage[state];
3919		if (voltage->min_uV || voltage->max_uV)
3920			return 0;
3921	}
3922
3923	return regulator_suspend_toggle(rdev, state, false);
3924}
3925EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3926
3927static int _regulator_set_suspend_voltage(struct regulator *regulator,
3928					  int min_uV, int max_uV,
3929					  suspend_state_t state)
3930{
3931	struct regulator_dev *rdev = regulator->rdev;
3932	struct regulator_state *rstate;
3933
3934	rstate = regulator_get_suspend_state(rdev, state);
3935	if (rstate == NULL)
3936		return -EINVAL;
3937
3938	if (rstate->min_uV == rstate->max_uV) {
3939		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3940		return -EPERM;
3941	}
3942
3943	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3944}
3945
3946int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3947				  int max_uV, suspend_state_t state)
3948{
3949	struct ww_acquire_ctx ww_ctx;
3950	int ret;
3951
3952	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3953	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3954		return -EINVAL;
3955
3956	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3957
3958	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3959					     max_uV, state);
3960
3961	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3962
3963	return ret;
3964}
3965EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3966
3967/**
3968 * regulator_set_voltage_time - get raise/fall time
3969 * @regulator: regulator source
3970 * @old_uV: starting voltage in microvolts
3971 * @new_uV: target voltage in microvolts
3972 *
3973 * Provided with the starting and ending voltage, this function attempts to
3974 * calculate the time in microseconds required to rise or fall to this new
3975 * voltage.
3976 */
3977int regulator_set_voltage_time(struct regulator *regulator,
3978			       int old_uV, int new_uV)
3979{
3980	struct regulator_dev *rdev = regulator->rdev;
3981	const struct regulator_ops *ops = rdev->desc->ops;
3982	int old_sel = -1;
3983	int new_sel = -1;
3984	int voltage;
3985	int i;
3986
3987	if (ops->set_voltage_time)
3988		return ops->set_voltage_time(rdev, old_uV, new_uV);
3989	else if (!ops->set_voltage_time_sel)
3990		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3991
3992	/* Currently requires operations to do this */
3993	if (!ops->list_voltage || !rdev->desc->n_voltages)
3994		return -EINVAL;
3995
3996	for (i = 0; i < rdev->desc->n_voltages; i++) {
3997		/* We only look for exact voltage matches here */
3998		voltage = regulator_list_voltage(regulator, i);
3999		if (voltage < 0)
4000			return -EINVAL;
4001		if (voltage == 0)
4002			continue;
4003		if (voltage == old_uV)
4004			old_sel = i;
4005		if (voltage == new_uV)
4006			new_sel = i;
4007	}
4008
4009	if (old_sel < 0 || new_sel < 0)
4010		return -EINVAL;
4011
4012	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4013}
4014EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4015
4016/**
4017 * regulator_set_voltage_time_sel - get raise/fall time
4018 * @rdev: regulator source device
4019 * @old_selector: selector for starting voltage
4020 * @new_selector: selector for target voltage
4021 *
4022 * Provided with the starting and target voltage selectors, this function
4023 * returns time in microseconds required to rise or fall to this new voltage
4024 *
4025 * Drivers providing ramp_delay in regulation_constraints can use this as their
4026 * set_voltage_time_sel() operation.
4027 */
4028int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4029				   unsigned int old_selector,
4030				   unsigned int new_selector)
4031{
4032	int old_volt, new_volt;
4033
4034	/* sanity check */
4035	if (!rdev->desc->ops->list_voltage)
4036		return -EINVAL;
4037
4038	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4039	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4040
4041	if (rdev->desc->ops->set_voltage_time)
4042		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4043							 new_volt);
4044	else
4045		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4046}
4047EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4048
4049/**
4050 * regulator_sync_voltage - re-apply last regulator output voltage
4051 * @regulator: regulator source
4052 *
4053 * Re-apply the last configured voltage.  This is intended to be used
4054 * where some external control source the consumer is cooperating with
4055 * has caused the configured voltage to change.
4056 */
4057int regulator_sync_voltage(struct regulator *regulator)
4058{
4059	struct regulator_dev *rdev = regulator->rdev;
4060	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4061	int ret, min_uV, max_uV;
4062
4063	regulator_lock(rdev);
4064
4065	if (!rdev->desc->ops->set_voltage &&
4066	    !rdev->desc->ops->set_voltage_sel) {
4067		ret = -EINVAL;
4068		goto out;
4069	}
4070
4071	/* This is only going to work if we've had a voltage configured. */
4072	if (!voltage->min_uV && !voltage->max_uV) {
4073		ret = -EINVAL;
4074		goto out;
4075	}
4076
4077	min_uV = voltage->min_uV;
4078	max_uV = voltage->max_uV;
4079
4080	/* This should be a paranoia check... */
4081	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4082	if (ret < 0)
4083		goto out;
4084
4085	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4086	if (ret < 0)
4087		goto out;
4088
4089	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4090
4091out:
4092	regulator_unlock(rdev);
4093	return ret;
4094}
4095EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4096
4097int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4098{
4099	int sel, ret;
4100	bool bypassed;
4101
4102	if (rdev->desc->ops->get_bypass) {
4103		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4104		if (ret < 0)
4105			return ret;
4106		if (bypassed) {
4107			/* if bypassed the regulator must have a supply */
4108			if (!rdev->supply) {
4109				rdev_err(rdev,
4110					 "bypassed regulator has no supply!\n");
4111				return -EPROBE_DEFER;
4112			}
4113
4114			return regulator_get_voltage_rdev(rdev->supply->rdev);
4115		}
4116	}
4117
4118	if (rdev->desc->ops->get_voltage_sel) {
4119		sel = rdev->desc->ops->get_voltage_sel(rdev);
4120		if (sel < 0)
4121			return sel;
4122		ret = rdev->desc->ops->list_voltage(rdev, sel);
4123	} else if (rdev->desc->ops->get_voltage) {
4124		ret = rdev->desc->ops->get_voltage(rdev);
4125	} else if (rdev->desc->ops->list_voltage) {
4126		ret = rdev->desc->ops->list_voltage(rdev, 0);
4127	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4128		ret = rdev->desc->fixed_uV;
4129	} else if (rdev->supply) {
4130		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4131	} else {
4132		return -EINVAL;
4133	}
4134
4135	if (ret < 0)
4136		return ret;
4137	return ret - rdev->constraints->uV_offset;
4138}
4139EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4140
4141/**
4142 * regulator_get_voltage - get regulator output voltage
4143 * @regulator: regulator source
4144 *
4145 * This returns the current regulator voltage in uV.
4146 *
4147 * NOTE: If the regulator is disabled it will return the voltage value. This
4148 * function should not be used to determine regulator state.
4149 */
4150int regulator_get_voltage(struct regulator *regulator)
4151{
4152	struct ww_acquire_ctx ww_ctx;
4153	int ret;
4154
4155	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4156	ret = regulator_get_voltage_rdev(regulator->rdev);
4157	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4158
4159	return ret;
4160}
4161EXPORT_SYMBOL_GPL(regulator_get_voltage);
4162
4163/**
4164 * regulator_set_current_limit - set regulator output current limit
4165 * @regulator: regulator source
4166 * @min_uA: Minimum supported current in uA
4167 * @max_uA: Maximum supported current in uA
4168 *
4169 * Sets current sink to the desired output current. This can be set during
4170 * any regulator state. IOW, regulator can be disabled or enabled.
4171 *
4172 * If the regulator is enabled then the current will change to the new value
4173 * immediately otherwise if the regulator is disabled the regulator will
4174 * output at the new current when enabled.
4175 *
4176 * NOTE: Regulator system constraints must be set for this regulator before
4177 * calling this function otherwise this call will fail.
4178 */
4179int regulator_set_current_limit(struct regulator *regulator,
4180			       int min_uA, int max_uA)
4181{
4182	struct regulator_dev *rdev = regulator->rdev;
4183	int ret;
4184
4185	regulator_lock(rdev);
4186
4187	/* sanity check */
4188	if (!rdev->desc->ops->set_current_limit) {
4189		ret = -EINVAL;
4190		goto out;
4191	}
4192
4193	/* constraints check */
4194	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4195	if (ret < 0)
4196		goto out;
4197
4198	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4199out:
4200	regulator_unlock(rdev);
4201	return ret;
4202}
4203EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4204
4205static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4206{
4207	/* sanity check */
4208	if (!rdev->desc->ops->get_current_limit)
4209		return -EINVAL;
4210
4211	return rdev->desc->ops->get_current_limit(rdev);
4212}
4213
4214static int _regulator_get_current_limit(struct regulator_dev *rdev)
4215{
4216	int ret;
4217
4218	regulator_lock(rdev);
4219	ret = _regulator_get_current_limit_unlocked(rdev);
4220	regulator_unlock(rdev);
4221
4222	return ret;
4223}
4224
4225/**
4226 * regulator_get_current_limit - get regulator output current
4227 * @regulator: regulator source
4228 *
4229 * This returns the current supplied by the specified current sink in uA.
4230 *
4231 * NOTE: If the regulator is disabled it will return the current value. This
4232 * function should not be used to determine regulator state.
4233 */
4234int regulator_get_current_limit(struct regulator *regulator)
4235{
4236	return _regulator_get_current_limit(regulator->rdev);
4237}
4238EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4239
4240/**
4241 * regulator_set_mode - set regulator operating mode
4242 * @regulator: regulator source
4243 * @mode: operating mode - one of the REGULATOR_MODE constants
4244 *
4245 * Set regulator operating mode to increase regulator efficiency or improve
4246 * regulation performance.
4247 *
4248 * NOTE: Regulator system constraints must be set for this regulator before
4249 * calling this function otherwise this call will fail.
4250 */
4251int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4252{
4253	struct regulator_dev *rdev = regulator->rdev;
4254	int ret;
4255	int regulator_curr_mode;
4256
4257	regulator_lock(rdev);
4258
4259	/* sanity check */
4260	if (!rdev->desc->ops->set_mode) {
4261		ret = -EINVAL;
4262		goto out;
4263	}
4264
4265	/* return if the same mode is requested */
4266	if (rdev->desc->ops->get_mode) {
4267		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4268		if (regulator_curr_mode == mode) {
4269			ret = 0;
4270			goto out;
4271		}
4272	}
4273
4274	/* constraints check */
4275	ret = regulator_mode_constrain(rdev, &mode);
4276	if (ret < 0)
4277		goto out;
4278
4279	ret = rdev->desc->ops->set_mode(rdev, mode);
4280out:
4281	regulator_unlock(rdev);
4282	return ret;
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_mode);
4285
4286static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4287{
4288	/* sanity check */
4289	if (!rdev->desc->ops->get_mode)
4290		return -EINVAL;
4291
4292	return rdev->desc->ops->get_mode(rdev);
4293}
4294
4295static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4296{
4297	int ret;
4298
4299	regulator_lock(rdev);
4300	ret = _regulator_get_mode_unlocked(rdev);
4301	regulator_unlock(rdev);
4302
4303	return ret;
4304}
4305
4306/**
4307 * regulator_get_mode - get regulator operating mode
4308 * @regulator: regulator source
4309 *
4310 * Get the current regulator operating mode.
4311 */
4312unsigned int regulator_get_mode(struct regulator *regulator)
4313{
4314	return _regulator_get_mode(regulator->rdev);
4315}
4316EXPORT_SYMBOL_GPL(regulator_get_mode);
4317
4318static int _regulator_get_error_flags(struct regulator_dev *rdev,
4319					unsigned int *flags)
4320{
4321	int ret;
4322
4323	regulator_lock(rdev);
4324
4325	/* sanity check */
4326	if (!rdev->desc->ops->get_error_flags) {
4327		ret = -EINVAL;
4328		goto out;
4329	}
4330
4331	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4332out:
4333	regulator_unlock(rdev);
4334	return ret;
4335}
4336
4337/**
4338 * regulator_get_error_flags - get regulator error information
4339 * @regulator: regulator source
4340 * @flags: pointer to store error flags
4341 *
4342 * Get the current regulator error information.
4343 */
4344int regulator_get_error_flags(struct regulator *regulator,
4345				unsigned int *flags)
4346{
4347	return _regulator_get_error_flags(regulator->rdev, flags);
4348}
4349EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4350
4351/**
4352 * regulator_set_load - set regulator load
4353 * @regulator: regulator source
4354 * @uA_load: load current
4355 *
4356 * Notifies the regulator core of a new device load. This is then used by
4357 * DRMS (if enabled by constraints) to set the most efficient regulator
4358 * operating mode for the new regulator loading.
4359 *
4360 * Consumer devices notify their supply regulator of the maximum power
4361 * they will require (can be taken from device datasheet in the power
4362 * consumption tables) when they change operational status and hence power
4363 * state. Examples of operational state changes that can affect power
4364 * consumption are :-
4365 *
4366 *    o Device is opened / closed.
4367 *    o Device I/O is about to begin or has just finished.
4368 *    o Device is idling in between work.
4369 *
4370 * This information is also exported via sysfs to userspace.
4371 *
4372 * DRMS will sum the total requested load on the regulator and change
4373 * to the most efficient operating mode if platform constraints allow.
4374 *
4375 * NOTE: when a regulator consumer requests to have a regulator
4376 * disabled then any load that consumer requested no longer counts
4377 * toward the total requested load.  If the regulator is re-enabled
4378 * then the previously requested load will start counting again.
4379 *
4380 * If a regulator is an always-on regulator then an individual consumer's
4381 * load will still be removed if that consumer is fully disabled.
4382 *
4383 * On error a negative errno is returned.
4384 */
4385int regulator_set_load(struct regulator *regulator, int uA_load)
4386{
4387	struct regulator_dev *rdev = regulator->rdev;
4388	int old_uA_load;
4389	int ret = 0;
4390
4391	regulator_lock(rdev);
4392	old_uA_load = regulator->uA_load;
4393	regulator->uA_load = uA_load;
4394	if (regulator->enable_count && old_uA_load != uA_load) {
4395		ret = drms_uA_update(rdev);
4396		if (ret < 0)
4397			regulator->uA_load = old_uA_load;
4398	}
4399	regulator_unlock(rdev);
4400
4401	return ret;
4402}
4403EXPORT_SYMBOL_GPL(regulator_set_load);
4404
4405/**
4406 * regulator_allow_bypass - allow the regulator to go into bypass mode
4407 *
4408 * @regulator: Regulator to configure
4409 * @enable: enable or disable bypass mode
4410 *
4411 * Allow the regulator to go into bypass mode if all other consumers
4412 * for the regulator also enable bypass mode and the machine
4413 * constraints allow this.  Bypass mode means that the regulator is
4414 * simply passing the input directly to the output with no regulation.
4415 */
4416int regulator_allow_bypass(struct regulator *regulator, bool enable)
4417{
4418	struct regulator_dev *rdev = regulator->rdev;
4419	const char *name = rdev_get_name(rdev);
4420	int ret = 0;
4421
4422	if (!rdev->desc->ops->set_bypass)
4423		return 0;
4424
4425	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4426		return 0;
4427
4428	regulator_lock(rdev);
4429
4430	if (enable && !regulator->bypass) {
4431		rdev->bypass_count++;
4432
4433		if (rdev->bypass_count == rdev->open_count) {
4434			trace_regulator_bypass_enable(name);
4435
4436			ret = rdev->desc->ops->set_bypass(rdev, enable);
4437			if (ret != 0)
4438				rdev->bypass_count--;
4439			else
4440				trace_regulator_bypass_enable_complete(name);
4441		}
4442
4443	} else if (!enable && regulator->bypass) {
4444		rdev->bypass_count--;
4445
4446		if (rdev->bypass_count != rdev->open_count) {
4447			trace_regulator_bypass_disable(name);
4448
4449			ret = rdev->desc->ops->set_bypass(rdev, enable);
4450			if (ret != 0)
4451				rdev->bypass_count++;
4452			else
4453				trace_regulator_bypass_disable_complete(name);
4454		}
4455	}
4456
4457	if (ret == 0)
4458		regulator->bypass = enable;
4459
4460	regulator_unlock(rdev);
4461
4462	return ret;
4463}
4464EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4465
4466/**
4467 * regulator_register_notifier - register regulator event notifier
4468 * @regulator: regulator source
4469 * @nb: notifier block
4470 *
4471 * Register notifier block to receive regulator events.
4472 */
4473int regulator_register_notifier(struct regulator *regulator,
4474			      struct notifier_block *nb)
4475{
4476	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4477						nb);
4478}
4479EXPORT_SYMBOL_GPL(regulator_register_notifier);
4480
4481/**
4482 * regulator_unregister_notifier - unregister regulator event notifier
4483 * @regulator: regulator source
4484 * @nb: notifier block
4485 *
4486 * Unregister regulator event notifier block.
4487 */
4488int regulator_unregister_notifier(struct regulator *regulator,
4489				struct notifier_block *nb)
4490{
4491	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4492						  nb);
4493}
4494EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4495
4496/* notify regulator consumers and downstream regulator consumers.
4497 * Note mutex must be held by caller.
4498 */
4499static int _notifier_call_chain(struct regulator_dev *rdev,
4500				  unsigned long event, void *data)
4501{
4502	/* call rdev chain first */
4503	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4504}
4505
4506/**
4507 * regulator_bulk_get - get multiple regulator consumers
4508 *
4509 * @dev:           Device to supply
4510 * @num_consumers: Number of consumers to register
4511 * @consumers:     Configuration of consumers; clients are stored here.
4512 *
4513 * @return 0 on success, an errno on failure.
4514 *
4515 * This helper function allows drivers to get several regulator
4516 * consumers in one operation.  If any of the regulators cannot be
4517 * acquired then any regulators that were allocated will be freed
4518 * before returning to the caller.
4519 */
4520int regulator_bulk_get(struct device *dev, int num_consumers,
4521		       struct regulator_bulk_data *consumers)
4522{
4523	int i;
4524	int ret;
4525
4526	for (i = 0; i < num_consumers; i++)
4527		consumers[i].consumer = NULL;
4528
4529	for (i = 0; i < num_consumers; i++) {
4530		consumers[i].consumer = regulator_get(dev,
4531						      consumers[i].supply);
4532		if (IS_ERR(consumers[i].consumer)) {
4533			ret = PTR_ERR(consumers[i].consumer);
4534			consumers[i].consumer = NULL;
4535			goto err;
4536		}
4537	}
4538
4539	return 0;
4540
4541err:
4542	if (ret != -EPROBE_DEFER)
4543		dev_err(dev, "Failed to get supply '%s': %d\n",
4544			consumers[i].supply, ret);
4545	else
4546		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4547			consumers[i].supply);
4548
4549	while (--i >= 0)
4550		regulator_put(consumers[i].consumer);
4551
4552	return ret;
4553}
4554EXPORT_SYMBOL_GPL(regulator_bulk_get);
4555
4556static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4557{
4558	struct regulator_bulk_data *bulk = data;
4559
4560	bulk->ret = regulator_enable(bulk->consumer);
4561}
4562
4563/**
4564 * regulator_bulk_enable - enable multiple regulator consumers
4565 *
4566 * @num_consumers: Number of consumers
4567 * @consumers:     Consumer data; clients are stored here.
4568 * @return         0 on success, an errno on failure
4569 *
4570 * This convenience API allows consumers to enable multiple regulator
4571 * clients in a single API call.  If any consumers cannot be enabled
4572 * then any others that were enabled will be disabled again prior to
4573 * return.
4574 */
4575int regulator_bulk_enable(int num_consumers,
4576			  struct regulator_bulk_data *consumers)
4577{
4578	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4579	int i;
4580	int ret = 0;
4581
4582	for (i = 0; i < num_consumers; i++) {
4583		async_schedule_domain(regulator_bulk_enable_async,
4584				      &consumers[i], &async_domain);
4585	}
4586
4587	async_synchronize_full_domain(&async_domain);
4588
4589	/* If any consumer failed we need to unwind any that succeeded */
4590	for (i = 0; i < num_consumers; i++) {
4591		if (consumers[i].ret != 0) {
4592			ret = consumers[i].ret;
4593			goto err;
4594		}
4595	}
4596
4597	return 0;
4598
4599err:
4600	for (i = 0; i < num_consumers; i++) {
4601		if (consumers[i].ret < 0)
4602			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4603			       consumers[i].ret);
4604		else
4605			regulator_disable(consumers[i].consumer);
4606	}
4607
4608	return ret;
4609}
4610EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4611
4612/**
4613 * regulator_bulk_disable - disable multiple regulator consumers
4614 *
4615 * @num_consumers: Number of consumers
4616 * @consumers:     Consumer data; clients are stored here.
4617 * @return         0 on success, an errno on failure
4618 *
4619 * This convenience API allows consumers to disable multiple regulator
4620 * clients in a single API call.  If any consumers cannot be disabled
4621 * then any others that were disabled will be enabled again prior to
4622 * return.
4623 */
4624int regulator_bulk_disable(int num_consumers,
4625			   struct regulator_bulk_data *consumers)
4626{
4627	int i;
4628	int ret, r;
4629
4630	for (i = num_consumers - 1; i >= 0; --i) {
4631		ret = regulator_disable(consumers[i].consumer);
4632		if (ret != 0)
4633			goto err;
4634	}
4635
4636	return 0;
4637
4638err:
4639	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4640	for (++i; i < num_consumers; ++i) {
4641		r = regulator_enable(consumers[i].consumer);
4642		if (r != 0)
4643			pr_err("Failed to re-enable %s: %d\n",
4644			       consumers[i].supply, r);
4645	}
4646
4647	return ret;
4648}
4649EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4650
4651/**
4652 * regulator_bulk_force_disable - force disable multiple regulator consumers
4653 *
4654 * @num_consumers: Number of consumers
4655 * @consumers:     Consumer data; clients are stored here.
4656 * @return         0 on success, an errno on failure
4657 *
4658 * This convenience API allows consumers to forcibly disable multiple regulator
4659 * clients in a single API call.
4660 * NOTE: This should be used for situations when device damage will
4661 * likely occur if the regulators are not disabled (e.g. over temp).
4662 * Although regulator_force_disable function call for some consumers can
4663 * return error numbers, the function is called for all consumers.
4664 */
4665int regulator_bulk_force_disable(int num_consumers,
4666			   struct regulator_bulk_data *consumers)
4667{
4668	int i;
4669	int ret = 0;
4670
4671	for (i = 0; i < num_consumers; i++) {
4672		consumers[i].ret =
4673			    regulator_force_disable(consumers[i].consumer);
4674
4675		/* Store first error for reporting */
4676		if (consumers[i].ret && !ret)
4677			ret = consumers[i].ret;
4678	}
4679
4680	return ret;
4681}
4682EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4683
4684/**
4685 * regulator_bulk_free - free multiple regulator consumers
4686 *
4687 * @num_consumers: Number of consumers
4688 * @consumers:     Consumer data; clients are stored here.
4689 *
4690 * This convenience API allows consumers to free multiple regulator
4691 * clients in a single API call.
4692 */
4693void regulator_bulk_free(int num_consumers,
4694			 struct regulator_bulk_data *consumers)
4695{
4696	int i;
4697
4698	for (i = 0; i < num_consumers; i++) {
4699		regulator_put(consumers[i].consumer);
4700		consumers[i].consumer = NULL;
4701	}
4702}
4703EXPORT_SYMBOL_GPL(regulator_bulk_free);
4704
4705/**
4706 * regulator_notifier_call_chain - call regulator event notifier
4707 * @rdev: regulator source
4708 * @event: notifier block
4709 * @data: callback-specific data.
4710 *
4711 * Called by regulator drivers to notify clients a regulator event has
4712 * occurred. We also notify regulator clients downstream.
4713 * Note lock must be held by caller.
4714 */
4715int regulator_notifier_call_chain(struct regulator_dev *rdev,
4716				  unsigned long event, void *data)
4717{
4718	lockdep_assert_held_once(&rdev->mutex.base);
4719
4720	_notifier_call_chain(rdev, event, data);
4721	return NOTIFY_DONE;
4722
4723}
4724EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4725
4726/**
4727 * regulator_mode_to_status - convert a regulator mode into a status
4728 *
4729 * @mode: Mode to convert
4730 *
4731 * Convert a regulator mode into a status.
4732 */
4733int regulator_mode_to_status(unsigned int mode)
4734{
4735	switch (mode) {
4736	case REGULATOR_MODE_FAST:
4737		return REGULATOR_STATUS_FAST;
4738	case REGULATOR_MODE_NORMAL:
4739		return REGULATOR_STATUS_NORMAL;
4740	case REGULATOR_MODE_IDLE:
4741		return REGULATOR_STATUS_IDLE;
4742	case REGULATOR_MODE_STANDBY:
4743		return REGULATOR_STATUS_STANDBY;
4744	default:
4745		return REGULATOR_STATUS_UNDEFINED;
4746	}
4747}
4748EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4749
4750static struct attribute *regulator_dev_attrs[] = {
4751	&dev_attr_name.attr,
4752	&dev_attr_num_users.attr,
4753	&dev_attr_type.attr,
4754	&dev_attr_microvolts.attr,
4755	&dev_attr_microamps.attr,
4756	&dev_attr_opmode.attr,
4757	&dev_attr_state.attr,
4758	&dev_attr_status.attr,
4759	&dev_attr_bypass.attr,
4760	&dev_attr_requested_microamps.attr,
4761	&dev_attr_min_microvolts.attr,
4762	&dev_attr_max_microvolts.attr,
4763	&dev_attr_min_microamps.attr,
4764	&dev_attr_max_microamps.attr,
4765	&dev_attr_suspend_standby_state.attr,
4766	&dev_attr_suspend_mem_state.attr,
4767	&dev_attr_suspend_disk_state.attr,
4768	&dev_attr_suspend_standby_microvolts.attr,
4769	&dev_attr_suspend_mem_microvolts.attr,
4770	&dev_attr_suspend_disk_microvolts.attr,
4771	&dev_attr_suspend_standby_mode.attr,
4772	&dev_attr_suspend_mem_mode.attr,
4773	&dev_attr_suspend_disk_mode.attr,
4774	NULL
4775};
4776
4777/*
4778 * To avoid cluttering sysfs (and memory) with useless state, only
4779 * create attributes that can be meaningfully displayed.
4780 */
4781static umode_t regulator_attr_is_visible(struct kobject *kobj,
4782					 struct attribute *attr, int idx)
4783{
4784	struct device *dev = kobj_to_dev(kobj);
4785	struct regulator_dev *rdev = dev_to_rdev(dev);
4786	const struct regulator_ops *ops = rdev->desc->ops;
4787	umode_t mode = attr->mode;
4788
4789	/* these three are always present */
4790	if (attr == &dev_attr_name.attr ||
4791	    attr == &dev_attr_num_users.attr ||
4792	    attr == &dev_attr_type.attr)
4793		return mode;
4794
4795	/* some attributes need specific methods to be displayed */
4796	if (attr == &dev_attr_microvolts.attr) {
4797		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4798		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4799		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4800		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4801			return mode;
4802		return 0;
4803	}
4804
4805	if (attr == &dev_attr_microamps.attr)
4806		return ops->get_current_limit ? mode : 0;
4807
4808	if (attr == &dev_attr_opmode.attr)
4809		return ops->get_mode ? mode : 0;
4810
4811	if (attr == &dev_attr_state.attr)
4812		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4813
4814	if (attr == &dev_attr_status.attr)
4815		return ops->get_status ? mode : 0;
4816
4817	if (attr == &dev_attr_bypass.attr)
4818		return ops->get_bypass ? mode : 0;
4819
4820	/* constraints need specific supporting methods */
4821	if (attr == &dev_attr_min_microvolts.attr ||
4822	    attr == &dev_attr_max_microvolts.attr)
4823		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4824
4825	if (attr == &dev_attr_min_microamps.attr ||
4826	    attr == &dev_attr_max_microamps.attr)
4827		return ops->set_current_limit ? mode : 0;
4828
4829	if (attr == &dev_attr_suspend_standby_state.attr ||
4830	    attr == &dev_attr_suspend_mem_state.attr ||
4831	    attr == &dev_attr_suspend_disk_state.attr)
4832		return mode;
4833
4834	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4835	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4836	    attr == &dev_attr_suspend_disk_microvolts.attr)
4837		return ops->set_suspend_voltage ? mode : 0;
4838
4839	if (attr == &dev_attr_suspend_standby_mode.attr ||
4840	    attr == &dev_attr_suspend_mem_mode.attr ||
4841	    attr == &dev_attr_suspend_disk_mode.attr)
4842		return ops->set_suspend_mode ? mode : 0;
4843
4844	return mode;
4845}
4846
4847static const struct attribute_group regulator_dev_group = {
4848	.attrs = regulator_dev_attrs,
4849	.is_visible = regulator_attr_is_visible,
4850};
4851
4852static const struct attribute_group *regulator_dev_groups[] = {
4853	&regulator_dev_group,
4854	NULL
4855};
4856
4857static void regulator_dev_release(struct device *dev)
4858{
4859	struct regulator_dev *rdev = dev_get_drvdata(dev);
4860
4861	kfree(rdev->constraints);
4862	of_node_put(rdev->dev.of_node);
4863	kfree(rdev);
4864}
4865
4866static void rdev_init_debugfs(struct regulator_dev *rdev)
4867{
4868	struct device *parent = rdev->dev.parent;
4869	const char *rname = rdev_get_name(rdev);
4870	char name[NAME_MAX];
4871
4872	/* Avoid duplicate debugfs directory names */
4873	if (parent && rname == rdev->desc->name) {
4874		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4875			 rname);
4876		rname = name;
4877	}
4878
4879	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4880	if (!rdev->debugfs) {
4881		rdev_warn(rdev, "Failed to create debugfs directory\n");
4882		return;
4883	}
4884
4885	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4886			   &rdev->use_count);
4887	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4888			   &rdev->open_count);
4889	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4890			   &rdev->bypass_count);
4891}
4892
4893static int regulator_register_resolve_supply(struct device *dev, void *data)
4894{
4895	struct regulator_dev *rdev = dev_to_rdev(dev);
4896
4897	if (regulator_resolve_supply(rdev))
4898		rdev_dbg(rdev, "unable to resolve supply\n");
4899
4900	return 0;
4901}
4902
4903int regulator_coupler_register(struct regulator_coupler *coupler)
4904{
4905	mutex_lock(&regulator_list_mutex);
4906	list_add_tail(&coupler->list, &regulator_coupler_list);
4907	mutex_unlock(&regulator_list_mutex);
4908
4909	return 0;
4910}
4911
4912static struct regulator_coupler *
4913regulator_find_coupler(struct regulator_dev *rdev)
4914{
4915	struct regulator_coupler *coupler;
4916	int err;
4917
4918	/*
4919	 * Note that regulators are appended to the list and the generic
4920	 * coupler is registered first, hence it will be attached at last
4921	 * if nobody cared.
4922	 */
4923	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4924		err = coupler->attach_regulator(coupler, rdev);
4925		if (!err) {
4926			if (!coupler->balance_voltage &&
4927			    rdev->coupling_desc.n_coupled > 2)
4928				goto err_unsupported;
4929
4930			return coupler;
4931		}
4932
4933		if (err < 0)
4934			return ERR_PTR(err);
4935
4936		if (err == 1)
4937			continue;
4938
4939		break;
4940	}
4941
4942	return ERR_PTR(-EINVAL);
4943
4944err_unsupported:
4945	if (coupler->detach_regulator)
4946		coupler->detach_regulator(coupler, rdev);
4947
4948	rdev_err(rdev,
4949		"Voltage balancing for multiple regulator couples is unimplemented\n");
4950
4951	return ERR_PTR(-EPERM);
4952}
4953
4954static void regulator_resolve_coupling(struct regulator_dev *rdev)
4955{
4956	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4957	struct coupling_desc *c_desc = &rdev->coupling_desc;
4958	int n_coupled = c_desc->n_coupled;
4959	struct regulator_dev *c_rdev;
4960	int i;
4961
4962	for (i = 1; i < n_coupled; i++) {
4963		/* already resolved */
4964		if (c_desc->coupled_rdevs[i])
4965			continue;
4966
4967		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4968
4969		if (!c_rdev)
4970			continue;
4971
4972		if (c_rdev->coupling_desc.coupler != coupler) {
4973			rdev_err(rdev, "coupler mismatch with %s\n",
4974				 rdev_get_name(c_rdev));
4975			return;
4976		}
4977
 
 
4978		c_desc->coupled_rdevs[i] = c_rdev;
4979		c_desc->n_resolved++;
4980
 
 
4981		regulator_resolve_coupling(c_rdev);
4982	}
4983}
4984
4985static void regulator_remove_coupling(struct regulator_dev *rdev)
4986{
4987	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4988	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4989	struct regulator_dev *__c_rdev, *c_rdev;
4990	unsigned int __n_coupled, n_coupled;
4991	int i, k;
4992	int err;
4993
4994	n_coupled = c_desc->n_coupled;
4995
4996	for (i = 1; i < n_coupled; i++) {
4997		c_rdev = c_desc->coupled_rdevs[i];
4998
4999		if (!c_rdev)
5000			continue;
5001
5002		regulator_lock(c_rdev);
5003
5004		__c_desc = &c_rdev->coupling_desc;
5005		__n_coupled = __c_desc->n_coupled;
5006
5007		for (k = 1; k < __n_coupled; k++) {
5008			__c_rdev = __c_desc->coupled_rdevs[k];
5009
5010			if (__c_rdev == rdev) {
5011				__c_desc->coupled_rdevs[k] = NULL;
5012				__c_desc->n_resolved--;
5013				break;
5014			}
5015		}
5016
5017		regulator_unlock(c_rdev);
5018
5019		c_desc->coupled_rdevs[i] = NULL;
5020		c_desc->n_resolved--;
5021	}
5022
5023	if (coupler && coupler->detach_regulator) {
5024		err = coupler->detach_regulator(coupler, rdev);
5025		if (err)
5026			rdev_err(rdev, "failed to detach from coupler: %d\n",
5027				 err);
5028	}
5029
5030	kfree(rdev->coupling_desc.coupled_rdevs);
5031	rdev->coupling_desc.coupled_rdevs = NULL;
5032}
5033
5034static int regulator_init_coupling(struct regulator_dev *rdev)
5035{
5036	int err, n_phandles;
5037	size_t alloc_size;
5038
5039	if (!IS_ENABLED(CONFIG_OF))
5040		n_phandles = 0;
5041	else
5042		n_phandles = of_get_n_coupled(rdev);
5043
5044	alloc_size = sizeof(*rdev) * (n_phandles + 1);
5045
5046	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5047	if (!rdev->coupling_desc.coupled_rdevs)
5048		return -ENOMEM;
5049
5050	/*
5051	 * Every regulator should always have coupling descriptor filled with
5052	 * at least pointer to itself.
5053	 */
5054	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5055	rdev->coupling_desc.n_coupled = n_phandles + 1;
5056	rdev->coupling_desc.n_resolved++;
5057
5058	/* regulator isn't coupled */
5059	if (n_phandles == 0)
5060		return 0;
5061
5062	if (!of_check_coupling_data(rdev))
5063		return -EPERM;
5064
5065	mutex_lock(&regulator_list_mutex);
5066	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5067	mutex_unlock(&regulator_list_mutex);
5068
5069	if (IS_ERR(rdev->coupling_desc.coupler)) {
5070		err = PTR_ERR(rdev->coupling_desc.coupler);
5071		rdev_err(rdev, "failed to get coupler: %d\n", err);
5072		return err;
5073	}
5074
5075	return 0;
5076}
5077
5078static int generic_coupler_attach(struct regulator_coupler *coupler,
5079				  struct regulator_dev *rdev)
5080{
5081	if (rdev->coupling_desc.n_coupled > 2) {
5082		rdev_err(rdev,
5083			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5084		return -EPERM;
5085	}
5086
5087	if (!rdev->constraints->always_on) {
5088		rdev_err(rdev,
5089			 "Coupling of a non always-on regulator is unimplemented\n");
5090		return -ENOTSUPP;
5091	}
5092
5093	return 0;
5094}
5095
5096static struct regulator_coupler generic_regulator_coupler = {
5097	.attach_regulator = generic_coupler_attach,
5098};
5099
5100/**
5101 * regulator_register - register regulator
5102 * @regulator_desc: regulator to register
5103 * @cfg: runtime configuration for regulator
5104 *
5105 * Called by regulator drivers to register a regulator.
5106 * Returns a valid pointer to struct regulator_dev on success
5107 * or an ERR_PTR() on error.
5108 */
5109struct regulator_dev *
5110regulator_register(const struct regulator_desc *regulator_desc,
5111		   const struct regulator_config *cfg)
5112{
5113	const struct regulation_constraints *constraints = NULL;
5114	const struct regulator_init_data *init_data;
5115	struct regulator_config *config = NULL;
5116	static atomic_t regulator_no = ATOMIC_INIT(-1);
5117	struct regulator_dev *rdev;
5118	bool dangling_cfg_gpiod = false;
5119	bool dangling_of_gpiod = false;
5120	struct device *dev;
5121	int ret, i;
5122
5123	if (cfg == NULL)
5124		return ERR_PTR(-EINVAL);
5125	if (cfg->ena_gpiod)
5126		dangling_cfg_gpiod = true;
5127	if (regulator_desc == NULL) {
5128		ret = -EINVAL;
5129		goto rinse;
5130	}
5131
5132	dev = cfg->dev;
5133	WARN_ON(!dev);
5134
5135	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5136		ret = -EINVAL;
5137		goto rinse;
5138	}
5139
5140	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5141	    regulator_desc->type != REGULATOR_CURRENT) {
5142		ret = -EINVAL;
5143		goto rinse;
5144	}
5145
5146	/* Only one of each should be implemented */
5147	WARN_ON(regulator_desc->ops->get_voltage &&
5148		regulator_desc->ops->get_voltage_sel);
5149	WARN_ON(regulator_desc->ops->set_voltage &&
5150		regulator_desc->ops->set_voltage_sel);
5151
5152	/* If we're using selectors we must implement list_voltage. */
5153	if (regulator_desc->ops->get_voltage_sel &&
5154	    !regulator_desc->ops->list_voltage) {
5155		ret = -EINVAL;
5156		goto rinse;
5157	}
5158	if (regulator_desc->ops->set_voltage_sel &&
5159	    !regulator_desc->ops->list_voltage) {
5160		ret = -EINVAL;
5161		goto rinse;
5162	}
5163
5164	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5165	if (rdev == NULL) {
5166		ret = -ENOMEM;
5167		goto rinse;
5168	}
5169	device_initialize(&rdev->dev);
5170
5171	/*
5172	 * Duplicate the config so the driver could override it after
5173	 * parsing init data.
5174	 */
5175	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5176	if (config == NULL) {
 
5177		ret = -ENOMEM;
5178		goto clean;
5179	}
5180
5181	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5182					       &rdev->dev.of_node);
5183
5184	/*
5185	 * Sometimes not all resources are probed already so we need to take
5186	 * that into account. This happens most the time if the ena_gpiod comes
5187	 * from a gpio extender or something else.
5188	 */
5189	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
 
 
5190		ret = -EPROBE_DEFER;
5191		goto clean;
5192	}
5193
5194	/*
5195	 * We need to keep track of any GPIO descriptor coming from the
5196	 * device tree until we have handled it over to the core. If the
5197	 * config that was passed in to this function DOES NOT contain
5198	 * a descriptor, and the config after this call DOES contain
5199	 * a descriptor, we definitely got one from parsing the device
5200	 * tree.
5201	 */
5202	if (!cfg->ena_gpiod && config->ena_gpiod)
5203		dangling_of_gpiod = true;
5204	if (!init_data) {
5205		init_data = config->init_data;
5206		rdev->dev.of_node = of_node_get(config->of_node);
5207	}
5208
5209	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5210	rdev->reg_data = config->driver_data;
5211	rdev->owner = regulator_desc->owner;
5212	rdev->desc = regulator_desc;
5213	if (config->regmap)
5214		rdev->regmap = config->regmap;
5215	else if (dev_get_regmap(dev, NULL))
5216		rdev->regmap = dev_get_regmap(dev, NULL);
5217	else if (dev->parent)
5218		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5219	INIT_LIST_HEAD(&rdev->consumer_list);
5220	INIT_LIST_HEAD(&rdev->list);
5221	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5222	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5223
5224	/* preform any regulator specific init */
5225	if (init_data && init_data->regulator_init) {
5226		ret = init_data->regulator_init(rdev->reg_data);
5227		if (ret < 0)
5228			goto clean;
5229	}
5230
5231	if (config->ena_gpiod) {
 
5232		ret = regulator_ena_gpio_request(rdev, config);
 
5233		if (ret != 0) {
5234			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5235				 ret);
5236			goto clean;
5237		}
5238		/* The regulator core took over the GPIO descriptor */
5239		dangling_cfg_gpiod = false;
5240		dangling_of_gpiod = false;
5241	}
5242
5243	/* register with sysfs */
5244	rdev->dev.class = &regulator_class;
5245	rdev->dev.parent = dev;
5246	dev_set_name(&rdev->dev, "regulator.%lu",
5247		    (unsigned long) atomic_inc_return(&regulator_no));
5248	dev_set_drvdata(&rdev->dev, rdev);
5249
5250	/* set regulator constraints */
5251	if (init_data)
5252		constraints = &init_data->constraints;
5253
5254	if (init_data && init_data->supply_regulator)
5255		rdev->supply_name = init_data->supply_regulator;
5256	else if (regulator_desc->supply_name)
5257		rdev->supply_name = regulator_desc->supply_name;
5258
5259	/*
5260	 * Attempt to resolve the regulator supply, if specified,
5261	 * but don't return an error if we fail because we will try
5262	 * to resolve it again later as more regulators are added.
5263	 */
5264	if (regulator_resolve_supply(rdev))
5265		rdev_dbg(rdev, "unable to resolve supply\n");
5266
5267	ret = set_machine_constraints(rdev, constraints);
5268	if (ret < 0)
5269		goto wash;
5270
 
5271	ret = regulator_init_coupling(rdev);
 
5272	if (ret < 0)
5273		goto wash;
5274
5275	/* add consumers devices */
5276	if (init_data) {
 
5277		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5278			ret = set_consumer_device_supply(rdev,
5279				init_data->consumer_supplies[i].dev_name,
5280				init_data->consumer_supplies[i].supply);
5281			if (ret < 0) {
 
5282				dev_err(dev, "Failed to set supply %s\n",
5283					init_data->consumer_supplies[i].supply);
5284				goto unset_supplies;
5285			}
5286		}
 
5287	}
5288
5289	if (!rdev->desc->ops->get_voltage &&
5290	    !rdev->desc->ops->list_voltage &&
5291	    !rdev->desc->fixed_uV)
5292		rdev->is_switch = true;
5293
5294	ret = device_add(&rdev->dev);
5295	if (ret != 0)
 
 
5296		goto unset_supplies;
 
5297
5298	rdev_init_debugfs(rdev);
5299
5300	/* try to resolve regulators coupling since a new one was registered */
5301	mutex_lock(&regulator_list_mutex);
5302	regulator_resolve_coupling(rdev);
5303	mutex_unlock(&regulator_list_mutex);
5304
5305	/* try to resolve regulators supply since a new one was registered */
5306	class_for_each_device(&regulator_class, NULL, NULL,
5307			      regulator_register_resolve_supply);
5308	kfree(config);
5309	return rdev;
5310
5311unset_supplies:
5312	mutex_lock(&regulator_list_mutex);
5313	unset_regulator_supplies(rdev);
5314	regulator_remove_coupling(rdev);
5315	mutex_unlock(&regulator_list_mutex);
5316wash:
5317	kfree(rdev->coupling_desc.coupled_rdevs);
5318	mutex_lock(&regulator_list_mutex);
5319	regulator_ena_gpio_free(rdev);
5320	mutex_unlock(&regulator_list_mutex);
5321clean:
5322	if (dangling_of_gpiod)
5323		gpiod_put(config->ena_gpiod);
 
5324	kfree(config);
5325	put_device(&rdev->dev);
5326rinse:
5327	if (dangling_cfg_gpiod)
5328		gpiod_put(cfg->ena_gpiod);
5329	return ERR_PTR(ret);
5330}
5331EXPORT_SYMBOL_GPL(regulator_register);
5332
5333/**
5334 * regulator_unregister - unregister regulator
5335 * @rdev: regulator to unregister
5336 *
5337 * Called by regulator drivers to unregister a regulator.
5338 */
5339void regulator_unregister(struct regulator_dev *rdev)
5340{
5341	if (rdev == NULL)
5342		return;
5343
5344	if (rdev->supply) {
5345		while (rdev->use_count--)
5346			regulator_disable(rdev->supply);
5347		regulator_put(rdev->supply);
5348	}
5349
5350	flush_work(&rdev->disable_work.work);
5351
5352	mutex_lock(&regulator_list_mutex);
5353
5354	debugfs_remove_recursive(rdev->debugfs);
5355	WARN_ON(rdev->open_count);
5356	regulator_remove_coupling(rdev);
5357	unset_regulator_supplies(rdev);
5358	list_del(&rdev->list);
5359	regulator_ena_gpio_free(rdev);
5360	device_unregister(&rdev->dev);
5361
5362	mutex_unlock(&regulator_list_mutex);
5363}
5364EXPORT_SYMBOL_GPL(regulator_unregister);
5365
5366#ifdef CONFIG_SUSPEND
5367/**
5368 * regulator_suspend - prepare regulators for system wide suspend
5369 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5370 *
5371 * Configure each regulator with it's suspend operating parameters for state.
5372 */
5373static int regulator_suspend(struct device *dev)
5374{
5375	struct regulator_dev *rdev = dev_to_rdev(dev);
5376	suspend_state_t state = pm_suspend_target_state;
5377	int ret;
5378
5379	regulator_lock(rdev);
5380	ret = suspend_set_state(rdev, state);
5381	regulator_unlock(rdev);
5382
5383	return ret;
5384}
5385
5386static int regulator_resume(struct device *dev)
5387{
5388	suspend_state_t state = pm_suspend_target_state;
5389	struct regulator_dev *rdev = dev_to_rdev(dev);
5390	struct regulator_state *rstate;
5391	int ret = 0;
5392
5393	rstate = regulator_get_suspend_state(rdev, state);
5394	if (rstate == NULL)
5395		return 0;
5396
5397	regulator_lock(rdev);
5398
5399	if (rdev->desc->ops->resume &&
5400	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5401	     rstate->enabled == DISABLE_IN_SUSPEND))
5402		ret = rdev->desc->ops->resume(rdev);
5403
5404	regulator_unlock(rdev);
5405
5406	return ret;
5407}
5408#else /* !CONFIG_SUSPEND */
5409
5410#define regulator_suspend	NULL
5411#define regulator_resume	NULL
5412
5413#endif /* !CONFIG_SUSPEND */
5414
5415#ifdef CONFIG_PM
5416static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5417	.suspend	= regulator_suspend,
5418	.resume		= regulator_resume,
5419};
5420#endif
5421
5422struct class regulator_class = {
5423	.name = "regulator",
5424	.dev_release = regulator_dev_release,
5425	.dev_groups = regulator_dev_groups,
5426#ifdef CONFIG_PM
5427	.pm = &regulator_pm_ops,
5428#endif
5429};
5430/**
5431 * regulator_has_full_constraints - the system has fully specified constraints
5432 *
5433 * Calling this function will cause the regulator API to disable all
5434 * regulators which have a zero use count and don't have an always_on
5435 * constraint in a late_initcall.
5436 *
5437 * The intention is that this will become the default behaviour in a
5438 * future kernel release so users are encouraged to use this facility
5439 * now.
5440 */
5441void regulator_has_full_constraints(void)
5442{
5443	has_full_constraints = 1;
5444}
5445EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5446
5447/**
5448 * rdev_get_drvdata - get rdev regulator driver data
5449 * @rdev: regulator
5450 *
5451 * Get rdev regulator driver private data. This call can be used in the
5452 * regulator driver context.
5453 */
5454void *rdev_get_drvdata(struct regulator_dev *rdev)
5455{
5456	return rdev->reg_data;
5457}
5458EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5459
5460/**
5461 * regulator_get_drvdata - get regulator driver data
5462 * @regulator: regulator
5463 *
5464 * Get regulator driver private data. This call can be used in the consumer
5465 * driver context when non API regulator specific functions need to be called.
5466 */
5467void *regulator_get_drvdata(struct regulator *regulator)
5468{
5469	return regulator->rdev->reg_data;
5470}
5471EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5472
5473/**
5474 * regulator_set_drvdata - set regulator driver data
5475 * @regulator: regulator
5476 * @data: data
5477 */
5478void regulator_set_drvdata(struct regulator *regulator, void *data)
5479{
5480	regulator->rdev->reg_data = data;
5481}
5482EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5483
5484/**
5485 * regulator_get_id - get regulator ID
5486 * @rdev: regulator
5487 */
5488int rdev_get_id(struct regulator_dev *rdev)
5489{
5490	return rdev->desc->id;
5491}
5492EXPORT_SYMBOL_GPL(rdev_get_id);
5493
5494struct device *rdev_get_dev(struct regulator_dev *rdev)
5495{
5496	return &rdev->dev;
5497}
5498EXPORT_SYMBOL_GPL(rdev_get_dev);
5499
5500struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5501{
5502	return rdev->regmap;
5503}
5504EXPORT_SYMBOL_GPL(rdev_get_regmap);
5505
5506void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5507{
5508	return reg_init_data->driver_data;
5509}
5510EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5511
5512#ifdef CONFIG_DEBUG_FS
5513static int supply_map_show(struct seq_file *sf, void *data)
5514{
5515	struct regulator_map *map;
5516
5517	list_for_each_entry(map, &regulator_map_list, list) {
5518		seq_printf(sf, "%s -> %s.%s\n",
5519				rdev_get_name(map->regulator), map->dev_name,
5520				map->supply);
5521	}
5522
5523	return 0;
5524}
5525DEFINE_SHOW_ATTRIBUTE(supply_map);
5526
5527struct summary_data {
5528	struct seq_file *s;
5529	struct regulator_dev *parent;
5530	int level;
5531};
5532
5533static void regulator_summary_show_subtree(struct seq_file *s,
5534					   struct regulator_dev *rdev,
5535					   int level);
5536
5537static int regulator_summary_show_children(struct device *dev, void *data)
5538{
5539	struct regulator_dev *rdev = dev_to_rdev(dev);
5540	struct summary_data *summary_data = data;
5541
5542	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5543		regulator_summary_show_subtree(summary_data->s, rdev,
5544					       summary_data->level + 1);
5545
5546	return 0;
5547}
5548
5549static void regulator_summary_show_subtree(struct seq_file *s,
5550					   struct regulator_dev *rdev,
5551					   int level)
5552{
5553	struct regulation_constraints *c;
5554	struct regulator *consumer;
5555	struct summary_data summary_data;
5556	unsigned int opmode;
5557
5558	if (!rdev)
5559		return;
5560
5561	opmode = _regulator_get_mode_unlocked(rdev);
5562	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5563		   level * 3 + 1, "",
5564		   30 - level * 3, rdev_get_name(rdev),
5565		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5566		   regulator_opmode_to_str(opmode));
5567
5568	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5569	seq_printf(s, "%5dmA ",
5570		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5571
5572	c = rdev->constraints;
5573	if (c) {
5574		switch (rdev->desc->type) {
5575		case REGULATOR_VOLTAGE:
5576			seq_printf(s, "%5dmV %5dmV ",
5577				   c->min_uV / 1000, c->max_uV / 1000);
5578			break;
5579		case REGULATOR_CURRENT:
5580			seq_printf(s, "%5dmA %5dmA ",
5581				   c->min_uA / 1000, c->max_uA / 1000);
5582			break;
5583		}
5584	}
5585
5586	seq_puts(s, "\n");
5587
5588	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5589		if (consumer->dev && consumer->dev->class == &regulator_class)
5590			continue;
5591
5592		seq_printf(s, "%*s%-*s ",
5593			   (level + 1) * 3 + 1, "",
5594			   30 - (level + 1) * 3,
5595			   consumer->supply_name ? consumer->supply_name :
5596			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5597
5598		switch (rdev->desc->type) {
5599		case REGULATOR_VOLTAGE:
5600			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5601				   consumer->enable_count,
5602				   consumer->uA_load / 1000,
5603				   consumer->uA_load && !consumer->enable_count ?
5604				   '*' : ' ',
5605				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5606				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5607			break;
5608		case REGULATOR_CURRENT:
5609			break;
5610		}
5611
5612		seq_puts(s, "\n");
5613	}
5614
5615	summary_data.s = s;
5616	summary_data.level = level;
5617	summary_data.parent = rdev;
5618
5619	class_for_each_device(&regulator_class, NULL, &summary_data,
5620			      regulator_summary_show_children);
5621}
5622
5623struct summary_lock_data {
5624	struct ww_acquire_ctx *ww_ctx;
5625	struct regulator_dev **new_contended_rdev;
5626	struct regulator_dev **old_contended_rdev;
5627};
5628
5629static int regulator_summary_lock_one(struct device *dev, void *data)
5630{
5631	struct regulator_dev *rdev = dev_to_rdev(dev);
5632	struct summary_lock_data *lock_data = data;
5633	int ret = 0;
5634
5635	if (rdev != *lock_data->old_contended_rdev) {
5636		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5637
5638		if (ret == -EDEADLK)
5639			*lock_data->new_contended_rdev = rdev;
5640		else
5641			WARN_ON_ONCE(ret);
5642	} else {
5643		*lock_data->old_contended_rdev = NULL;
5644	}
5645
5646	return ret;
5647}
5648
5649static int regulator_summary_unlock_one(struct device *dev, void *data)
5650{
5651	struct regulator_dev *rdev = dev_to_rdev(dev);
5652	struct summary_lock_data *lock_data = data;
5653
5654	if (lock_data) {
5655		if (rdev == *lock_data->new_contended_rdev)
5656			return -EDEADLK;
5657	}
5658
5659	regulator_unlock(rdev);
5660
5661	return 0;
5662}
5663
5664static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5665				      struct regulator_dev **new_contended_rdev,
5666				      struct regulator_dev **old_contended_rdev)
5667{
5668	struct summary_lock_data lock_data;
5669	int ret;
5670
5671	lock_data.ww_ctx = ww_ctx;
5672	lock_data.new_contended_rdev = new_contended_rdev;
5673	lock_data.old_contended_rdev = old_contended_rdev;
5674
5675	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5676				    regulator_summary_lock_one);
5677	if (ret)
5678		class_for_each_device(&regulator_class, NULL, &lock_data,
5679				      regulator_summary_unlock_one);
5680
5681	return ret;
5682}
5683
5684static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5685{
5686	struct regulator_dev *new_contended_rdev = NULL;
5687	struct regulator_dev *old_contended_rdev = NULL;
5688	int err;
5689
5690	mutex_lock(&regulator_list_mutex);
5691
5692	ww_acquire_init(ww_ctx, &regulator_ww_class);
5693
5694	do {
5695		if (new_contended_rdev) {
5696			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5697			old_contended_rdev = new_contended_rdev;
5698			old_contended_rdev->ref_cnt++;
5699		}
5700
5701		err = regulator_summary_lock_all(ww_ctx,
5702						 &new_contended_rdev,
5703						 &old_contended_rdev);
5704
5705		if (old_contended_rdev)
5706			regulator_unlock(old_contended_rdev);
5707
5708	} while (err == -EDEADLK);
5709
5710	ww_acquire_done(ww_ctx);
5711}
5712
5713static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5714{
5715	class_for_each_device(&regulator_class, NULL, NULL,
5716			      regulator_summary_unlock_one);
5717	ww_acquire_fini(ww_ctx);
5718
5719	mutex_unlock(&regulator_list_mutex);
5720}
5721
5722static int regulator_summary_show_roots(struct device *dev, void *data)
5723{
5724	struct regulator_dev *rdev = dev_to_rdev(dev);
5725	struct seq_file *s = data;
5726
5727	if (!rdev->supply)
5728		regulator_summary_show_subtree(s, rdev, 0);
5729
5730	return 0;
5731}
5732
5733static int regulator_summary_show(struct seq_file *s, void *data)
5734{
5735	struct ww_acquire_ctx ww_ctx;
5736
5737	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5738	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5739
5740	regulator_summary_lock(&ww_ctx);
5741
5742	class_for_each_device(&regulator_class, NULL, s,
5743			      regulator_summary_show_roots);
5744
5745	regulator_summary_unlock(&ww_ctx);
5746
5747	return 0;
5748}
5749DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5750#endif /* CONFIG_DEBUG_FS */
5751
5752static int __init regulator_init(void)
5753{
5754	int ret;
5755
5756	ret = class_register(&regulator_class);
5757
5758	debugfs_root = debugfs_create_dir("regulator", NULL);
5759	if (!debugfs_root)
5760		pr_warn("regulator: Failed to create debugfs directory\n");
5761
5762#ifdef CONFIG_DEBUG_FS
5763	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5764			    &supply_map_fops);
5765
5766	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5767			    NULL, &regulator_summary_fops);
5768#endif
5769	regulator_dummy_init();
5770
5771	regulator_coupler_register(&generic_regulator_coupler);
5772
5773	return ret;
5774}
5775
5776/* init early to allow our consumers to complete system booting */
5777core_initcall(regulator_init);
5778
5779static int regulator_late_cleanup(struct device *dev, void *data)
5780{
5781	struct regulator_dev *rdev = dev_to_rdev(dev);
5782	const struct regulator_ops *ops = rdev->desc->ops;
5783	struct regulation_constraints *c = rdev->constraints;
5784	int enabled, ret;
5785
5786	if (c && c->always_on)
5787		return 0;
5788
5789	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5790		return 0;
5791
5792	regulator_lock(rdev);
5793
5794	if (rdev->use_count)
5795		goto unlock;
5796
5797	/* If we can't read the status assume it's on. */
5798	if (ops->is_enabled)
5799		enabled = ops->is_enabled(rdev);
5800	else
5801		enabled = 1;
5802
5803	if (!enabled)
5804		goto unlock;
5805
5806	if (have_full_constraints()) {
5807		/* We log since this may kill the system if it goes
5808		 * wrong. */
5809		rdev_info(rdev, "disabling\n");
5810		ret = _regulator_do_disable(rdev);
5811		if (ret != 0)
5812			rdev_err(rdev, "couldn't disable: %d\n", ret);
5813	} else {
5814		/* The intention is that in future we will
5815		 * assume that full constraints are provided
5816		 * so warn even if we aren't going to do
5817		 * anything here.
5818		 */
5819		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5820	}
5821
5822unlock:
5823	regulator_unlock(rdev);
5824
5825	return 0;
5826}
5827
5828static void regulator_init_complete_work_function(struct work_struct *work)
5829{
5830	/*
5831	 * Regulators may had failed to resolve their input supplies
5832	 * when were registered, either because the input supply was
5833	 * not registered yet or because its parent device was not
5834	 * bound yet. So attempt to resolve the input supplies for
5835	 * pending regulators before trying to disable unused ones.
5836	 */
5837	class_for_each_device(&regulator_class, NULL, NULL,
5838			      regulator_register_resolve_supply);
5839
5840	/* If we have a full configuration then disable any regulators
5841	 * we have permission to change the status for and which are
5842	 * not in use or always_on.  This is effectively the default
5843	 * for DT and ACPI as they have full constraints.
5844	 */
5845	class_for_each_device(&regulator_class, NULL, NULL,
5846			      regulator_late_cleanup);
5847}
5848
5849static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5850			    regulator_init_complete_work_function);
5851
5852static int __init regulator_init_complete(void)
5853{
5854	/*
5855	 * Since DT doesn't provide an idiomatic mechanism for
5856	 * enabling full constraints and since it's much more natural
5857	 * with DT to provide them just assume that a DT enabled
5858	 * system has full constraints.
5859	 */
5860	if (of_have_populated_dt())
5861		has_full_constraints = true;
5862
5863	/*
5864	 * We punt completion for an arbitrary amount of time since
5865	 * systems like distros will load many drivers from userspace
5866	 * so consumers might not always be ready yet, this is
5867	 * particularly an issue with laptops where this might bounce
5868	 * the display off then on.  Ideally we'd get a notification
5869	 * from userspace when this happens but we don't so just wait
5870	 * a bit and hope we waited long enough.  It'd be better if
5871	 * we'd only do this on systems that need it, and a kernel
5872	 * command line option might be useful.
5873	 */
5874	schedule_delayed_work(&regulator_init_complete_work,
5875			      msecs_to_jiffies(30000));
5876
5877	return 0;
5878}
5879late_initcall_sync(regulator_init_complete);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
  35
  36#define rdev_crit(rdev, fmt, ...)					\
  37	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  38#define rdev_err(rdev, fmt, ...)					\
  39	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  40#define rdev_warn(rdev, fmt, ...)					\
  41	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_info(rdev, fmt, ...)					\
  43	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_dbg(rdev, fmt, ...)					\
  45	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46
  47static DEFINE_WW_CLASS(regulator_ww_class);
  48static DEFINE_MUTEX(regulator_nesting_mutex);
  49static DEFINE_MUTEX(regulator_list_mutex);
  50static LIST_HEAD(regulator_map_list);
  51static LIST_HEAD(regulator_ena_gpio_list);
  52static LIST_HEAD(regulator_supply_alias_list);
  53static LIST_HEAD(regulator_coupler_list);
  54static bool has_full_constraints;
  55
  56static struct dentry *debugfs_root;
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator_enable_gpio
  72 *
  73 * Management for shared enable GPIO pin
  74 */
  75struct regulator_enable_gpio {
  76	struct list_head list;
  77	struct gpio_desc *gpiod;
  78	u32 enable_count;	/* a number of enabled shared GPIO */
  79	u32 request_count;	/* a number of requested shared GPIO */
  80};
  81
  82/*
  83 * struct regulator_supply_alias
  84 *
  85 * Used to map lookups for a supply onto an alternative device.
  86 */
  87struct regulator_supply_alias {
  88	struct list_head list;
  89	struct device *src_dev;
  90	const char *src_supply;
  91	struct device *alias_dev;
  92	const char *alias_supply;
  93};
  94
  95static int _regulator_is_enabled(struct regulator_dev *rdev);
  96static int _regulator_disable(struct regulator *regulator);
  97static int _regulator_get_current_limit(struct regulator_dev *rdev);
  98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  99static int _notifier_call_chain(struct regulator_dev *rdev,
 100				  unsigned long event, void *data);
 101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 102				     int min_uV, int max_uV);
 103static int regulator_balance_voltage(struct regulator_dev *rdev,
 104				     suspend_state_t state);
 105static struct regulator *create_regulator(struct regulator_dev *rdev,
 106					  struct device *dev,
 107					  const char *supply_name);
 
 108static void _regulator_put(struct regulator *regulator);
 109
 110const char *rdev_get_name(struct regulator_dev *rdev)
 111{
 112	if (rdev->constraints && rdev->constraints->name)
 113		return rdev->constraints->name;
 114	else if (rdev->desc->name)
 115		return rdev->desc->name;
 116	else
 117		return "";
 118}
 119
 120static bool have_full_constraints(void)
 121{
 122	return has_full_constraints || of_have_populated_dt();
 123}
 124
 125static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 126{
 127	if (!rdev->constraints) {
 128		rdev_err(rdev, "no constraints\n");
 129		return false;
 130	}
 131
 132	if (rdev->constraints->valid_ops_mask & ops)
 133		return true;
 134
 135	return false;
 136}
 137
 138/**
 139 * regulator_lock_nested - lock a single regulator
 140 * @rdev:		regulator source
 141 * @ww_ctx:		w/w mutex acquire context
 142 *
 143 * This function can be called many times by one task on
 144 * a single regulator and its mutex will be locked only
 145 * once. If a task, which is calling this function is other
 146 * than the one, which initially locked the mutex, it will
 147 * wait on mutex.
 148 */
 149static inline int regulator_lock_nested(struct regulator_dev *rdev,
 150					struct ww_acquire_ctx *ww_ctx)
 151{
 152	bool lock = false;
 153	int ret = 0;
 154
 155	mutex_lock(&regulator_nesting_mutex);
 156
 157	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 158		if (rdev->mutex_owner == current)
 159			rdev->ref_cnt++;
 160		else
 161			lock = true;
 162
 163		if (lock) {
 164			mutex_unlock(&regulator_nesting_mutex);
 165			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 166			mutex_lock(&regulator_nesting_mutex);
 167		}
 168	} else {
 169		lock = true;
 170	}
 171
 172	if (lock && ret != -EDEADLK) {
 173		rdev->ref_cnt++;
 174		rdev->mutex_owner = current;
 175	}
 176
 177	mutex_unlock(&regulator_nesting_mutex);
 178
 179	return ret;
 180}
 181
 182/**
 183 * regulator_lock - lock a single regulator
 184 * @rdev:		regulator source
 185 *
 186 * This function can be called many times by one task on
 187 * a single regulator and its mutex will be locked only
 188 * once. If a task, which is calling this function is other
 189 * than the one, which initially locked the mutex, it will
 190 * wait on mutex.
 191 */
 192void regulator_lock(struct regulator_dev *rdev)
 193{
 194	regulator_lock_nested(rdev, NULL);
 195}
 196EXPORT_SYMBOL_GPL(regulator_lock);
 197
 198/**
 199 * regulator_unlock - unlock a single regulator
 200 * @rdev:		regulator_source
 201 *
 202 * This function unlocks the mutex when the
 203 * reference counter reaches 0.
 204 */
 205void regulator_unlock(struct regulator_dev *rdev)
 206{
 207	mutex_lock(&regulator_nesting_mutex);
 208
 209	if (--rdev->ref_cnt == 0) {
 210		rdev->mutex_owner = NULL;
 211		ww_mutex_unlock(&rdev->mutex);
 212	}
 213
 214	WARN_ON_ONCE(rdev->ref_cnt < 0);
 215
 216	mutex_unlock(&regulator_nesting_mutex);
 217}
 218EXPORT_SYMBOL_GPL(regulator_unlock);
 219
 220static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 221{
 222	struct regulator_dev *c_rdev;
 223	int i;
 224
 225	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 226		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 227
 228		if (rdev->supply->rdev == c_rdev)
 229			return true;
 230	}
 231
 232	return false;
 233}
 234
 235static void regulator_unlock_recursive(struct regulator_dev *rdev,
 236				       unsigned int n_coupled)
 237{
 238	struct regulator_dev *c_rdev;
 239	int i;
 240
 241	for (i = n_coupled; i > 0; i--) {
 242		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 243
 244		if (!c_rdev)
 245			continue;
 246
 247		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev))
 248			regulator_unlock_recursive(
 249					c_rdev->supply->rdev,
 250					c_rdev->coupling_desc.n_coupled);
 
 
 
 251
 252		regulator_unlock(c_rdev);
 253	}
 254}
 255
 256static int regulator_lock_recursive(struct regulator_dev *rdev,
 257				    struct regulator_dev **new_contended_rdev,
 258				    struct regulator_dev **old_contended_rdev,
 259				    struct ww_acquire_ctx *ww_ctx)
 260{
 261	struct regulator_dev *c_rdev;
 262	int i, err;
 263
 264	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 265		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 266
 267		if (!c_rdev)
 268			continue;
 269
 270		if (c_rdev != *old_contended_rdev) {
 271			err = regulator_lock_nested(c_rdev, ww_ctx);
 272			if (err) {
 273				if (err == -EDEADLK) {
 274					*new_contended_rdev = c_rdev;
 275					goto err_unlock;
 276				}
 277
 278				/* shouldn't happen */
 279				WARN_ON_ONCE(err != -EALREADY);
 280			}
 281		} else {
 282			*old_contended_rdev = NULL;
 283		}
 284
 285		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 286			err = regulator_lock_recursive(c_rdev->supply->rdev,
 287						       new_contended_rdev,
 288						       old_contended_rdev,
 289						       ww_ctx);
 290			if (err) {
 291				regulator_unlock(c_rdev);
 292				goto err_unlock;
 293			}
 294		}
 295	}
 296
 297	return 0;
 298
 299err_unlock:
 300	regulator_unlock_recursive(rdev, i);
 301
 302	return err;
 303}
 304
 305/**
 306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 307 *				regulators
 308 * @rdev:			regulator source
 309 * @ww_ctx:			w/w mutex acquire context
 310 *
 311 * Unlock all regulators related with rdev by coupling or supplying.
 312 */
 313static void regulator_unlock_dependent(struct regulator_dev *rdev,
 314				       struct ww_acquire_ctx *ww_ctx)
 315{
 316	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 317	ww_acquire_fini(ww_ctx);
 318}
 319
 320/**
 321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 322 * @rdev:			regulator source
 323 * @ww_ctx:			w/w mutex acquire context
 324 *
 325 * This function as a wrapper on regulator_lock_recursive(), which locks
 326 * all regulators related with rdev by coupling or supplying.
 327 */
 328static void regulator_lock_dependent(struct regulator_dev *rdev,
 329				     struct ww_acquire_ctx *ww_ctx)
 330{
 331	struct regulator_dev *new_contended_rdev = NULL;
 332	struct regulator_dev *old_contended_rdev = NULL;
 333	int err;
 334
 335	mutex_lock(&regulator_list_mutex);
 336
 337	ww_acquire_init(ww_ctx, &regulator_ww_class);
 338
 339	do {
 340		if (new_contended_rdev) {
 341			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 342			old_contended_rdev = new_contended_rdev;
 343			old_contended_rdev->ref_cnt++;
 344		}
 345
 346		err = regulator_lock_recursive(rdev,
 347					       &new_contended_rdev,
 348					       &old_contended_rdev,
 349					       ww_ctx);
 350
 351		if (old_contended_rdev)
 352			regulator_unlock(old_contended_rdev);
 353
 354	} while (err == -EDEADLK);
 355
 356	ww_acquire_done(ww_ctx);
 357
 358	mutex_unlock(&regulator_list_mutex);
 359}
 360
 361/**
 362 * of_get_child_regulator - get a child regulator device node
 363 * based on supply name
 364 * @parent: Parent device node
 365 * @prop_name: Combination regulator supply name and "-supply"
 366 *
 367 * Traverse all child nodes.
 368 * Extract the child regulator device node corresponding to the supply name.
 369 * returns the device node corresponding to the regulator if found, else
 370 * returns NULL.
 371 */
 372static struct device_node *of_get_child_regulator(struct device_node *parent,
 373						  const char *prop_name)
 374{
 375	struct device_node *regnode = NULL;
 376	struct device_node *child = NULL;
 377
 378	for_each_child_of_node(parent, child) {
 379		regnode = of_parse_phandle(child, prop_name, 0);
 380
 381		if (!regnode) {
 382			regnode = of_get_child_regulator(child, prop_name);
 383			if (regnode)
 384				goto err_node_put;
 385		} else {
 386			goto err_node_put;
 387		}
 388	}
 389	return NULL;
 390
 391err_node_put:
 392	of_node_put(child);
 393	return regnode;
 394}
 395
 396/**
 397 * of_get_regulator - get a regulator device node based on supply name
 398 * @dev: Device pointer for the consumer (of regulator) device
 399 * @supply: regulator supply name
 400 *
 401 * Extract the regulator device node corresponding to the supply name.
 402 * returns the device node corresponding to the regulator if found, else
 403 * returns NULL.
 404 */
 405static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 406{
 407	struct device_node *regnode = NULL;
 408	char prop_name[32]; /* 32 is max size of property name */
 409
 410	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 411
 412	snprintf(prop_name, 32, "%s-supply", supply);
 413	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 414
 415	if (!regnode) {
 416		regnode = of_get_child_regulator(dev->of_node, prop_name);
 417		if (regnode)
 418			return regnode;
 419
 420		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 421				prop_name, dev->of_node);
 422		return NULL;
 423	}
 424	return regnode;
 425}
 426
 427/* Platform voltage constraint check */
 428int regulator_check_voltage(struct regulator_dev *rdev,
 429			    int *min_uV, int *max_uV)
 430{
 431	BUG_ON(*min_uV > *max_uV);
 432
 433	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 434		rdev_err(rdev, "voltage operation not allowed\n");
 435		return -EPERM;
 436	}
 437
 438	if (*max_uV > rdev->constraints->max_uV)
 439		*max_uV = rdev->constraints->max_uV;
 440	if (*min_uV < rdev->constraints->min_uV)
 441		*min_uV = rdev->constraints->min_uV;
 442
 443	if (*min_uV > *max_uV) {
 444		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 445			 *min_uV, *max_uV);
 446		return -EINVAL;
 447	}
 448
 449	return 0;
 450}
 451
 452/* return 0 if the state is valid */
 453static int regulator_check_states(suspend_state_t state)
 454{
 455	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 456}
 457
 458/* Make sure we select a voltage that suits the needs of all
 459 * regulator consumers
 460 */
 461int regulator_check_consumers(struct regulator_dev *rdev,
 462			      int *min_uV, int *max_uV,
 463			      suspend_state_t state)
 464{
 465	struct regulator *regulator;
 466	struct regulator_voltage *voltage;
 467
 468	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 469		voltage = &regulator->voltage[state];
 470		/*
 471		 * Assume consumers that didn't say anything are OK
 472		 * with anything in the constraint range.
 473		 */
 474		if (!voltage->min_uV && !voltage->max_uV)
 475			continue;
 476
 477		if (*max_uV > voltage->max_uV)
 478			*max_uV = voltage->max_uV;
 479		if (*min_uV < voltage->min_uV)
 480			*min_uV = voltage->min_uV;
 481	}
 482
 483	if (*min_uV > *max_uV) {
 484		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 485			*min_uV, *max_uV);
 486		return -EINVAL;
 487	}
 488
 489	return 0;
 490}
 491
 492/* current constraint check */
 493static int regulator_check_current_limit(struct regulator_dev *rdev,
 494					int *min_uA, int *max_uA)
 495{
 496	BUG_ON(*min_uA > *max_uA);
 497
 498	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 499		rdev_err(rdev, "current operation not allowed\n");
 500		return -EPERM;
 501	}
 502
 503	if (*max_uA > rdev->constraints->max_uA)
 504		*max_uA = rdev->constraints->max_uA;
 505	if (*min_uA < rdev->constraints->min_uA)
 506		*min_uA = rdev->constraints->min_uA;
 507
 508	if (*min_uA > *max_uA) {
 509		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 510			 *min_uA, *max_uA);
 511		return -EINVAL;
 512	}
 513
 514	return 0;
 515}
 516
 517/* operating mode constraint check */
 518static int regulator_mode_constrain(struct regulator_dev *rdev,
 519				    unsigned int *mode)
 520{
 521	switch (*mode) {
 522	case REGULATOR_MODE_FAST:
 523	case REGULATOR_MODE_NORMAL:
 524	case REGULATOR_MODE_IDLE:
 525	case REGULATOR_MODE_STANDBY:
 526		break;
 527	default:
 528		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 529		return -EINVAL;
 530	}
 531
 532	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 533		rdev_err(rdev, "mode operation not allowed\n");
 534		return -EPERM;
 535	}
 536
 537	/* The modes are bitmasks, the most power hungry modes having
 538	 * the lowest values. If the requested mode isn't supported
 539	 * try higher modes. */
 540	while (*mode) {
 541		if (rdev->constraints->valid_modes_mask & *mode)
 542			return 0;
 543		*mode /= 2;
 544	}
 545
 546	return -EINVAL;
 547}
 548
 549static inline struct regulator_state *
 550regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 551{
 552	if (rdev->constraints == NULL)
 553		return NULL;
 554
 555	switch (state) {
 556	case PM_SUSPEND_STANDBY:
 557		return &rdev->constraints->state_standby;
 558	case PM_SUSPEND_MEM:
 559		return &rdev->constraints->state_mem;
 560	case PM_SUSPEND_MAX:
 561		return &rdev->constraints->state_disk;
 562	default:
 563		return NULL;
 564	}
 565}
 566
 567static ssize_t regulator_uV_show(struct device *dev,
 568				struct device_attribute *attr, char *buf)
 569{
 570	struct regulator_dev *rdev = dev_get_drvdata(dev);
 571	int uV;
 572
 573	regulator_lock(rdev);
 574	uV = regulator_get_voltage_rdev(rdev);
 575	regulator_unlock(rdev);
 576
 577	if (uV < 0)
 578		return uV;
 579	return sprintf(buf, "%d\n", uV);
 580}
 581static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 582
 583static ssize_t regulator_uA_show(struct device *dev,
 584				struct device_attribute *attr, char *buf)
 585{
 586	struct regulator_dev *rdev = dev_get_drvdata(dev);
 587
 588	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 589}
 590static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 591
 592static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 593			 char *buf)
 594{
 595	struct regulator_dev *rdev = dev_get_drvdata(dev);
 596
 597	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 598}
 599static DEVICE_ATTR_RO(name);
 600
 601static const char *regulator_opmode_to_str(int mode)
 602{
 603	switch (mode) {
 604	case REGULATOR_MODE_FAST:
 605		return "fast";
 606	case REGULATOR_MODE_NORMAL:
 607		return "normal";
 608	case REGULATOR_MODE_IDLE:
 609		return "idle";
 610	case REGULATOR_MODE_STANDBY:
 611		return "standby";
 612	}
 613	return "unknown";
 614}
 615
 616static ssize_t regulator_print_opmode(char *buf, int mode)
 617{
 618	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 619}
 620
 621static ssize_t regulator_opmode_show(struct device *dev,
 622				    struct device_attribute *attr, char *buf)
 623{
 624	struct regulator_dev *rdev = dev_get_drvdata(dev);
 625
 626	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 627}
 628static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 629
 630static ssize_t regulator_print_state(char *buf, int state)
 631{
 632	if (state > 0)
 633		return sprintf(buf, "enabled\n");
 634	else if (state == 0)
 635		return sprintf(buf, "disabled\n");
 636	else
 637		return sprintf(buf, "unknown\n");
 638}
 639
 640static ssize_t regulator_state_show(struct device *dev,
 641				   struct device_attribute *attr, char *buf)
 642{
 643	struct regulator_dev *rdev = dev_get_drvdata(dev);
 644	ssize_t ret;
 645
 646	regulator_lock(rdev);
 647	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 648	regulator_unlock(rdev);
 649
 650	return ret;
 651}
 652static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 653
 654static ssize_t regulator_status_show(struct device *dev,
 655				   struct device_attribute *attr, char *buf)
 656{
 657	struct regulator_dev *rdev = dev_get_drvdata(dev);
 658	int status;
 659	char *label;
 660
 661	status = rdev->desc->ops->get_status(rdev);
 662	if (status < 0)
 663		return status;
 664
 665	switch (status) {
 666	case REGULATOR_STATUS_OFF:
 667		label = "off";
 668		break;
 669	case REGULATOR_STATUS_ON:
 670		label = "on";
 671		break;
 672	case REGULATOR_STATUS_ERROR:
 673		label = "error";
 674		break;
 675	case REGULATOR_STATUS_FAST:
 676		label = "fast";
 677		break;
 678	case REGULATOR_STATUS_NORMAL:
 679		label = "normal";
 680		break;
 681	case REGULATOR_STATUS_IDLE:
 682		label = "idle";
 683		break;
 684	case REGULATOR_STATUS_STANDBY:
 685		label = "standby";
 686		break;
 687	case REGULATOR_STATUS_BYPASS:
 688		label = "bypass";
 689		break;
 690	case REGULATOR_STATUS_UNDEFINED:
 691		label = "undefined";
 692		break;
 693	default:
 694		return -ERANGE;
 695	}
 696
 697	return sprintf(buf, "%s\n", label);
 698}
 699static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 700
 701static ssize_t regulator_min_uA_show(struct device *dev,
 702				    struct device_attribute *attr, char *buf)
 703{
 704	struct regulator_dev *rdev = dev_get_drvdata(dev);
 705
 706	if (!rdev->constraints)
 707		return sprintf(buf, "constraint not defined\n");
 708
 709	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 710}
 711static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 712
 713static ssize_t regulator_max_uA_show(struct device *dev,
 714				    struct device_attribute *attr, char *buf)
 715{
 716	struct regulator_dev *rdev = dev_get_drvdata(dev);
 717
 718	if (!rdev->constraints)
 719		return sprintf(buf, "constraint not defined\n");
 720
 721	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 722}
 723static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 724
 725static ssize_t regulator_min_uV_show(struct device *dev,
 726				    struct device_attribute *attr, char *buf)
 727{
 728	struct regulator_dev *rdev = dev_get_drvdata(dev);
 729
 730	if (!rdev->constraints)
 731		return sprintf(buf, "constraint not defined\n");
 732
 733	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 734}
 735static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 736
 737static ssize_t regulator_max_uV_show(struct device *dev,
 738				    struct device_attribute *attr, char *buf)
 739{
 740	struct regulator_dev *rdev = dev_get_drvdata(dev);
 741
 742	if (!rdev->constraints)
 743		return sprintf(buf, "constraint not defined\n");
 744
 745	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 746}
 747static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 748
 749static ssize_t regulator_total_uA_show(struct device *dev,
 750				      struct device_attribute *attr, char *buf)
 751{
 752	struct regulator_dev *rdev = dev_get_drvdata(dev);
 753	struct regulator *regulator;
 754	int uA = 0;
 755
 756	regulator_lock(rdev);
 757	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 758		if (regulator->enable_count)
 759			uA += regulator->uA_load;
 760	}
 761	regulator_unlock(rdev);
 762	return sprintf(buf, "%d\n", uA);
 763}
 764static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 765
 766static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 767			      char *buf)
 768{
 769	struct regulator_dev *rdev = dev_get_drvdata(dev);
 770	return sprintf(buf, "%d\n", rdev->use_count);
 771}
 772static DEVICE_ATTR_RO(num_users);
 773
 774static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 775			 char *buf)
 776{
 777	struct regulator_dev *rdev = dev_get_drvdata(dev);
 778
 779	switch (rdev->desc->type) {
 780	case REGULATOR_VOLTAGE:
 781		return sprintf(buf, "voltage\n");
 782	case REGULATOR_CURRENT:
 783		return sprintf(buf, "current\n");
 784	}
 785	return sprintf(buf, "unknown\n");
 786}
 787static DEVICE_ATTR_RO(type);
 788
 789static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 790				struct device_attribute *attr, char *buf)
 791{
 792	struct regulator_dev *rdev = dev_get_drvdata(dev);
 793
 794	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 795}
 796static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 797		regulator_suspend_mem_uV_show, NULL);
 798
 799static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 800				struct device_attribute *attr, char *buf)
 801{
 802	struct regulator_dev *rdev = dev_get_drvdata(dev);
 803
 804	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 805}
 806static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 807		regulator_suspend_disk_uV_show, NULL);
 808
 809static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 810				struct device_attribute *attr, char *buf)
 811{
 812	struct regulator_dev *rdev = dev_get_drvdata(dev);
 813
 814	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 815}
 816static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 817		regulator_suspend_standby_uV_show, NULL);
 818
 819static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 820				struct device_attribute *attr, char *buf)
 821{
 822	struct regulator_dev *rdev = dev_get_drvdata(dev);
 823
 824	return regulator_print_opmode(buf,
 825		rdev->constraints->state_mem.mode);
 826}
 827static DEVICE_ATTR(suspend_mem_mode, 0444,
 828		regulator_suspend_mem_mode_show, NULL);
 829
 830static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 831				struct device_attribute *attr, char *buf)
 832{
 833	struct regulator_dev *rdev = dev_get_drvdata(dev);
 834
 835	return regulator_print_opmode(buf,
 836		rdev->constraints->state_disk.mode);
 837}
 838static DEVICE_ATTR(suspend_disk_mode, 0444,
 839		regulator_suspend_disk_mode_show, NULL);
 840
 841static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 842				struct device_attribute *attr, char *buf)
 843{
 844	struct regulator_dev *rdev = dev_get_drvdata(dev);
 845
 846	return regulator_print_opmode(buf,
 847		rdev->constraints->state_standby.mode);
 848}
 849static DEVICE_ATTR(suspend_standby_mode, 0444,
 850		regulator_suspend_standby_mode_show, NULL);
 851
 852static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 853				   struct device_attribute *attr, char *buf)
 854{
 855	struct regulator_dev *rdev = dev_get_drvdata(dev);
 856
 857	return regulator_print_state(buf,
 858			rdev->constraints->state_mem.enabled);
 859}
 860static DEVICE_ATTR(suspend_mem_state, 0444,
 861		regulator_suspend_mem_state_show, NULL);
 862
 863static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 864				   struct device_attribute *attr, char *buf)
 865{
 866	struct regulator_dev *rdev = dev_get_drvdata(dev);
 867
 868	return regulator_print_state(buf,
 869			rdev->constraints->state_disk.enabled);
 870}
 871static DEVICE_ATTR(suspend_disk_state, 0444,
 872		regulator_suspend_disk_state_show, NULL);
 873
 874static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 875				   struct device_attribute *attr, char *buf)
 876{
 877	struct regulator_dev *rdev = dev_get_drvdata(dev);
 878
 879	return regulator_print_state(buf,
 880			rdev->constraints->state_standby.enabled);
 881}
 882static DEVICE_ATTR(suspend_standby_state, 0444,
 883		regulator_suspend_standby_state_show, NULL);
 884
 885static ssize_t regulator_bypass_show(struct device *dev,
 886				     struct device_attribute *attr, char *buf)
 887{
 888	struct regulator_dev *rdev = dev_get_drvdata(dev);
 889	const char *report;
 890	bool bypass;
 891	int ret;
 892
 893	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 894
 895	if (ret != 0)
 896		report = "unknown";
 897	else if (bypass)
 898		report = "enabled";
 899	else
 900		report = "disabled";
 901
 902	return sprintf(buf, "%s\n", report);
 903}
 904static DEVICE_ATTR(bypass, 0444,
 905		   regulator_bypass_show, NULL);
 906
 907/* Calculate the new optimum regulator operating mode based on the new total
 908 * consumer load. All locks held by caller */
 909static int drms_uA_update(struct regulator_dev *rdev)
 910{
 911	struct regulator *sibling;
 912	int current_uA = 0, output_uV, input_uV, err;
 913	unsigned int mode;
 914
 915	/*
 916	 * first check to see if we can set modes at all, otherwise just
 917	 * tell the consumer everything is OK.
 918	 */
 919	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 920		rdev_dbg(rdev, "DRMS operation not allowed\n");
 921		return 0;
 922	}
 923
 924	if (!rdev->desc->ops->get_optimum_mode &&
 925	    !rdev->desc->ops->set_load)
 926		return 0;
 927
 928	if (!rdev->desc->ops->set_mode &&
 929	    !rdev->desc->ops->set_load)
 930		return -EINVAL;
 931
 932	/* calc total requested load */
 933	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 934		if (sibling->enable_count)
 935			current_uA += sibling->uA_load;
 936	}
 937
 938	current_uA += rdev->constraints->system_load;
 939
 940	if (rdev->desc->ops->set_load) {
 941		/* set the optimum mode for our new total regulator load */
 942		err = rdev->desc->ops->set_load(rdev, current_uA);
 943		if (err < 0)
 944			rdev_err(rdev, "failed to set load %d\n", current_uA);
 945	} else {
 946		/* get output voltage */
 947		output_uV = regulator_get_voltage_rdev(rdev);
 948		if (output_uV <= 0) {
 949			rdev_err(rdev, "invalid output voltage found\n");
 950			return -EINVAL;
 951		}
 952
 953		/* get input voltage */
 954		input_uV = 0;
 955		if (rdev->supply)
 956			input_uV = regulator_get_voltage(rdev->supply);
 957		if (input_uV <= 0)
 958			input_uV = rdev->constraints->input_uV;
 959		if (input_uV <= 0) {
 960			rdev_err(rdev, "invalid input voltage found\n");
 961			return -EINVAL;
 962		}
 963
 964		/* now get the optimum mode for our new total regulator load */
 965		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 966							 output_uV, current_uA);
 967
 968		/* check the new mode is allowed */
 969		err = regulator_mode_constrain(rdev, &mode);
 970		if (err < 0) {
 971			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 972				 current_uA, input_uV, output_uV);
 973			return err;
 974		}
 975
 976		err = rdev->desc->ops->set_mode(rdev, mode);
 977		if (err < 0)
 978			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 979	}
 980
 981	return err;
 982}
 983
 984static int suspend_set_state(struct regulator_dev *rdev,
 985				    suspend_state_t state)
 986{
 987	int ret = 0;
 988	struct regulator_state *rstate;
 989
 990	rstate = regulator_get_suspend_state(rdev, state);
 991	if (rstate == NULL)
 992		return 0;
 993
 994	/* If we have no suspend mode configuration don't set anything;
 995	 * only warn if the driver implements set_suspend_voltage or
 996	 * set_suspend_mode callback.
 997	 */
 998	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 999	    rstate->enabled != DISABLE_IN_SUSPEND) {
1000		if (rdev->desc->ops->set_suspend_voltage ||
1001		    rdev->desc->ops->set_suspend_mode)
1002			rdev_warn(rdev, "No configuration\n");
1003		return 0;
1004	}
1005
1006	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1007		rdev->desc->ops->set_suspend_enable)
1008		ret = rdev->desc->ops->set_suspend_enable(rdev);
1009	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1010		rdev->desc->ops->set_suspend_disable)
1011		ret = rdev->desc->ops->set_suspend_disable(rdev);
1012	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1013		ret = 0;
1014
1015	if (ret < 0) {
1016		rdev_err(rdev, "failed to enabled/disable\n");
1017		return ret;
1018	}
1019
1020	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1021		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1022		if (ret < 0) {
1023			rdev_err(rdev, "failed to set voltage\n");
1024			return ret;
1025		}
1026	}
1027
1028	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1029		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1030		if (ret < 0) {
1031			rdev_err(rdev, "failed to set mode\n");
1032			return ret;
1033		}
1034	}
1035
1036	return ret;
1037}
1038
1039static void print_constraints(struct regulator_dev *rdev)
1040{
1041	struct regulation_constraints *constraints = rdev->constraints;
1042	char buf[160] = "";
1043	size_t len = sizeof(buf) - 1;
1044	int count = 0;
1045	int ret;
1046
1047	if (constraints->min_uV && constraints->max_uV) {
1048		if (constraints->min_uV == constraints->max_uV)
1049			count += scnprintf(buf + count, len - count, "%d mV ",
1050					   constraints->min_uV / 1000);
1051		else
1052			count += scnprintf(buf + count, len - count,
1053					   "%d <--> %d mV ",
1054					   constraints->min_uV / 1000,
1055					   constraints->max_uV / 1000);
1056	}
1057
1058	if (!constraints->min_uV ||
1059	    constraints->min_uV != constraints->max_uV) {
1060		ret = regulator_get_voltage_rdev(rdev);
1061		if (ret > 0)
1062			count += scnprintf(buf + count, len - count,
1063					   "at %d mV ", ret / 1000);
1064	}
1065
1066	if (constraints->uV_offset)
1067		count += scnprintf(buf + count, len - count, "%dmV offset ",
1068				   constraints->uV_offset / 1000);
1069
1070	if (constraints->min_uA && constraints->max_uA) {
1071		if (constraints->min_uA == constraints->max_uA)
1072			count += scnprintf(buf + count, len - count, "%d mA ",
1073					   constraints->min_uA / 1000);
1074		else
1075			count += scnprintf(buf + count, len - count,
1076					   "%d <--> %d mA ",
1077					   constraints->min_uA / 1000,
1078					   constraints->max_uA / 1000);
1079	}
1080
1081	if (!constraints->min_uA ||
1082	    constraints->min_uA != constraints->max_uA) {
1083		ret = _regulator_get_current_limit(rdev);
1084		if (ret > 0)
1085			count += scnprintf(buf + count, len - count,
1086					   "at %d mA ", ret / 1000);
1087	}
1088
1089	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1090		count += scnprintf(buf + count, len - count, "fast ");
1091	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1092		count += scnprintf(buf + count, len - count, "normal ");
1093	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1094		count += scnprintf(buf + count, len - count, "idle ");
1095	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1096		count += scnprintf(buf + count, len - count, "standby");
1097
1098	if (!count)
1099		scnprintf(buf, len, "no parameters");
1100
1101	rdev_dbg(rdev, "%s\n", buf);
1102
1103	if ((constraints->min_uV != constraints->max_uV) &&
1104	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1105		rdev_warn(rdev,
1106			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1107}
1108
1109static int machine_constraints_voltage(struct regulator_dev *rdev,
1110	struct regulation_constraints *constraints)
1111{
1112	const struct regulator_ops *ops = rdev->desc->ops;
1113	int ret;
1114
1115	/* do we need to apply the constraint voltage */
1116	if (rdev->constraints->apply_uV &&
1117	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1118		int target_min, target_max;
1119		int current_uV = regulator_get_voltage_rdev(rdev);
1120
1121		if (current_uV == -ENOTRECOVERABLE) {
1122			/* This regulator can't be read and must be initialized */
1123			rdev_info(rdev, "Setting %d-%duV\n",
1124				  rdev->constraints->min_uV,
1125				  rdev->constraints->max_uV);
1126			_regulator_do_set_voltage(rdev,
1127						  rdev->constraints->min_uV,
1128						  rdev->constraints->max_uV);
1129			current_uV = regulator_get_voltage_rdev(rdev);
1130		}
1131
1132		if (current_uV < 0) {
1133			rdev_err(rdev,
1134				 "failed to get the current voltage(%d)\n",
1135				 current_uV);
1136			return current_uV;
1137		}
1138
1139		/*
1140		 * If we're below the minimum voltage move up to the
1141		 * minimum voltage, if we're above the maximum voltage
1142		 * then move down to the maximum.
1143		 */
1144		target_min = current_uV;
1145		target_max = current_uV;
1146
1147		if (current_uV < rdev->constraints->min_uV) {
1148			target_min = rdev->constraints->min_uV;
1149			target_max = rdev->constraints->min_uV;
1150		}
1151
1152		if (current_uV > rdev->constraints->max_uV) {
1153			target_min = rdev->constraints->max_uV;
1154			target_max = rdev->constraints->max_uV;
1155		}
1156
1157		if (target_min != current_uV || target_max != current_uV) {
1158			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1159				  current_uV, target_min, target_max);
1160			ret = _regulator_do_set_voltage(
1161				rdev, target_min, target_max);
1162			if (ret < 0) {
1163				rdev_err(rdev,
1164					"failed to apply %d-%duV constraint(%d)\n",
1165					target_min, target_max, ret);
1166				return ret;
1167			}
1168		}
1169	}
1170
1171	/* constrain machine-level voltage specs to fit
1172	 * the actual range supported by this regulator.
1173	 */
1174	if (ops->list_voltage && rdev->desc->n_voltages) {
1175		int	count = rdev->desc->n_voltages;
1176		int	i;
1177		int	min_uV = INT_MAX;
1178		int	max_uV = INT_MIN;
1179		int	cmin = constraints->min_uV;
1180		int	cmax = constraints->max_uV;
1181
1182		/* it's safe to autoconfigure fixed-voltage supplies
1183		   and the constraints are used by list_voltage. */
1184		if (count == 1 && !cmin) {
1185			cmin = 1;
1186			cmax = INT_MAX;
1187			constraints->min_uV = cmin;
1188			constraints->max_uV = cmax;
1189		}
1190
1191		/* voltage constraints are optional */
1192		if ((cmin == 0) && (cmax == 0))
1193			return 0;
1194
1195		/* else require explicit machine-level constraints */
1196		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1197			rdev_err(rdev, "invalid voltage constraints\n");
1198			return -EINVAL;
1199		}
1200
 
 
 
 
1201		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202		for (i = 0; i < count; i++) {
1203			int	value;
1204
1205			value = ops->list_voltage(rdev, i);
1206			if (value <= 0)
1207				continue;
1208
1209			/* maybe adjust [min_uV..max_uV] */
1210			if (value >= cmin && value < min_uV)
1211				min_uV = value;
1212			if (value <= cmax && value > max_uV)
1213				max_uV = value;
1214		}
1215
1216		/* final: [min_uV..max_uV] valid iff constraints valid */
1217		if (max_uV < min_uV) {
1218			rdev_err(rdev,
1219				 "unsupportable voltage constraints %u-%uuV\n",
1220				 min_uV, max_uV);
1221			return -EINVAL;
1222		}
1223
1224		/* use regulator's subset of machine constraints */
1225		if (constraints->min_uV < min_uV) {
1226			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1227				 constraints->min_uV, min_uV);
1228			constraints->min_uV = min_uV;
1229		}
1230		if (constraints->max_uV > max_uV) {
1231			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1232				 constraints->max_uV, max_uV);
1233			constraints->max_uV = max_uV;
1234		}
1235	}
1236
1237	return 0;
1238}
1239
1240static int machine_constraints_current(struct regulator_dev *rdev,
1241	struct regulation_constraints *constraints)
1242{
1243	const struct regulator_ops *ops = rdev->desc->ops;
1244	int ret;
1245
1246	if (!constraints->min_uA && !constraints->max_uA)
1247		return 0;
1248
1249	if (constraints->min_uA > constraints->max_uA) {
1250		rdev_err(rdev, "Invalid current constraints\n");
1251		return -EINVAL;
1252	}
1253
1254	if (!ops->set_current_limit || !ops->get_current_limit) {
1255		rdev_warn(rdev, "Operation of current configuration missing\n");
1256		return 0;
1257	}
1258
1259	/* Set regulator current in constraints range */
1260	ret = ops->set_current_limit(rdev, constraints->min_uA,
1261			constraints->max_uA);
1262	if (ret < 0) {
1263		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1264		return ret;
1265	}
1266
1267	return 0;
1268}
1269
1270static int _regulator_do_enable(struct regulator_dev *rdev);
1271
1272/**
1273 * set_machine_constraints - sets regulator constraints
1274 * @rdev: regulator source
1275 * @constraints: constraints to apply
1276 *
1277 * Allows platform initialisation code to define and constrain
1278 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1279 * Constraints *must* be set by platform code in order for some
1280 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1281 * set_mode.
1282 */
1283static int set_machine_constraints(struct regulator_dev *rdev,
1284	const struct regulation_constraints *constraints)
1285{
1286	int ret = 0;
1287	const struct regulator_ops *ops = rdev->desc->ops;
1288
1289	if (constraints)
1290		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1291					    GFP_KERNEL);
1292	else
1293		rdev->constraints = kzalloc(sizeof(*constraints),
1294					    GFP_KERNEL);
1295	if (!rdev->constraints)
1296		return -ENOMEM;
1297
1298	ret = machine_constraints_voltage(rdev, rdev->constraints);
1299	if (ret != 0)
1300		return ret;
1301
1302	ret = machine_constraints_current(rdev, rdev->constraints);
1303	if (ret != 0)
1304		return ret;
1305
1306	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1307		ret = ops->set_input_current_limit(rdev,
1308						   rdev->constraints->ilim_uA);
1309		if (ret < 0) {
1310			rdev_err(rdev, "failed to set input limit\n");
1311			return ret;
1312		}
1313	}
1314
1315	/* do we need to setup our suspend state */
1316	if (rdev->constraints->initial_state) {
1317		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1318		if (ret < 0) {
1319			rdev_err(rdev, "failed to set suspend state\n");
1320			return ret;
1321		}
1322	}
1323
1324	if (rdev->constraints->initial_mode) {
1325		if (!ops->set_mode) {
1326			rdev_err(rdev, "no set_mode operation\n");
1327			return -EINVAL;
1328		}
1329
1330		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1331		if (ret < 0) {
1332			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1333			return ret;
1334		}
1335	} else if (rdev->constraints->system_load) {
1336		/*
1337		 * We'll only apply the initial system load if an
1338		 * initial mode wasn't specified.
1339		 */
1340		drms_uA_update(rdev);
1341	}
1342
1343	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1344		&& ops->set_ramp_delay) {
1345		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1346		if (ret < 0) {
1347			rdev_err(rdev, "failed to set ramp_delay\n");
1348			return ret;
1349		}
1350	}
1351
1352	if (rdev->constraints->pull_down && ops->set_pull_down) {
1353		ret = ops->set_pull_down(rdev);
1354		if (ret < 0) {
1355			rdev_err(rdev, "failed to set pull down\n");
1356			return ret;
1357		}
1358	}
1359
1360	if (rdev->constraints->soft_start && ops->set_soft_start) {
1361		ret = ops->set_soft_start(rdev);
1362		if (ret < 0) {
1363			rdev_err(rdev, "failed to set soft start\n");
1364			return ret;
1365		}
1366	}
1367
1368	if (rdev->constraints->over_current_protection
1369		&& ops->set_over_current_protection) {
1370		ret = ops->set_over_current_protection(rdev);
1371		if (ret < 0) {
1372			rdev_err(rdev, "failed to set over current protection\n");
1373			return ret;
1374		}
1375	}
1376
1377	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1378		bool ad_state = (rdev->constraints->active_discharge ==
1379			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1380
1381		ret = ops->set_active_discharge(rdev, ad_state);
1382		if (ret < 0) {
1383			rdev_err(rdev, "failed to set active discharge\n");
1384			return ret;
1385		}
1386	}
1387
1388	/* If the constraints say the regulator should be on at this point
1389	 * and we have control then make sure it is enabled.
1390	 */
1391	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1392		if (rdev->supply) {
1393			ret = regulator_enable(rdev->supply);
1394			if (ret < 0) {
1395				_regulator_put(rdev->supply);
1396				rdev->supply = NULL;
1397				return ret;
1398			}
1399		}
1400
1401		ret = _regulator_do_enable(rdev);
1402		if (ret < 0 && ret != -EINVAL) {
1403			rdev_err(rdev, "failed to enable\n");
1404			return ret;
1405		}
1406		rdev->use_count++;
 
 
1407	}
1408
1409	print_constraints(rdev);
1410	return 0;
1411}
1412
1413/**
1414 * set_supply - set regulator supply regulator
1415 * @rdev: regulator name
1416 * @supply_rdev: supply regulator name
1417 *
1418 * Called by platform initialisation code to set the supply regulator for this
1419 * regulator. This ensures that a regulators supply will also be enabled by the
1420 * core if it's child is enabled.
1421 */
1422static int set_supply(struct regulator_dev *rdev,
1423		      struct regulator_dev *supply_rdev)
1424{
1425	int err;
1426
1427	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1428
1429	if (!try_module_get(supply_rdev->owner))
1430		return -ENODEV;
1431
1432	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1433	if (rdev->supply == NULL) {
1434		err = -ENOMEM;
1435		return err;
1436	}
1437	supply_rdev->open_count++;
1438
1439	return 0;
1440}
1441
1442/**
1443 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1444 * @rdev:         regulator source
1445 * @consumer_dev_name: dev_name() string for device supply applies to
1446 * @supply:       symbolic name for supply
1447 *
1448 * Allows platform initialisation code to map physical regulator
1449 * sources to symbolic names for supplies for use by devices.  Devices
1450 * should use these symbolic names to request regulators, avoiding the
1451 * need to provide board-specific regulator names as platform data.
1452 */
1453static int set_consumer_device_supply(struct regulator_dev *rdev,
1454				      const char *consumer_dev_name,
1455				      const char *supply)
1456{
1457	struct regulator_map *node;
1458	int has_dev;
1459
1460	if (supply == NULL)
1461		return -EINVAL;
1462
1463	if (consumer_dev_name != NULL)
1464		has_dev = 1;
1465	else
1466		has_dev = 0;
1467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1468	list_for_each_entry(node, &regulator_map_list, list) {
1469		if (node->dev_name && consumer_dev_name) {
1470			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1471				continue;
1472		} else if (node->dev_name || consumer_dev_name) {
1473			continue;
1474		}
1475
1476		if (strcmp(node->supply, supply) != 0)
1477			continue;
1478
1479		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1480			 consumer_dev_name,
1481			 dev_name(&node->regulator->dev),
1482			 node->regulator->desc->name,
1483			 supply,
1484			 dev_name(&rdev->dev), rdev_get_name(rdev));
1485		return -EBUSY;
1486	}
1487
1488	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1489	if (node == NULL)
1490		return -ENOMEM;
1491
1492	node->regulator = rdev;
1493	node->supply = supply;
1494
1495	if (has_dev) {
1496		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1497		if (node->dev_name == NULL) {
1498			kfree(node);
1499			return -ENOMEM;
1500		}
1501	}
1502
1503	list_add(&node->list, &regulator_map_list);
1504	return 0;
1505}
1506
1507static void unset_regulator_supplies(struct regulator_dev *rdev)
1508{
1509	struct regulator_map *node, *n;
1510
1511	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1512		if (rdev == node->regulator) {
1513			list_del(&node->list);
1514			kfree(node->dev_name);
1515			kfree(node);
1516		}
1517	}
1518}
1519
1520#ifdef CONFIG_DEBUG_FS
1521static ssize_t constraint_flags_read_file(struct file *file,
1522					  char __user *user_buf,
1523					  size_t count, loff_t *ppos)
1524{
1525	const struct regulator *regulator = file->private_data;
1526	const struct regulation_constraints *c = regulator->rdev->constraints;
1527	char *buf;
1528	ssize_t ret;
1529
1530	if (!c)
1531		return 0;
1532
1533	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1534	if (!buf)
1535		return -ENOMEM;
1536
1537	ret = snprintf(buf, PAGE_SIZE,
1538			"always_on: %u\n"
1539			"boot_on: %u\n"
1540			"apply_uV: %u\n"
1541			"ramp_disable: %u\n"
1542			"soft_start: %u\n"
1543			"pull_down: %u\n"
1544			"over_current_protection: %u\n",
1545			c->always_on,
1546			c->boot_on,
1547			c->apply_uV,
1548			c->ramp_disable,
1549			c->soft_start,
1550			c->pull_down,
1551			c->over_current_protection);
1552
1553	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1554	kfree(buf);
1555
1556	return ret;
1557}
1558
1559#endif
1560
1561static const struct file_operations constraint_flags_fops = {
1562#ifdef CONFIG_DEBUG_FS
1563	.open = simple_open,
1564	.read = constraint_flags_read_file,
1565	.llseek = default_llseek,
1566#endif
1567};
1568
1569#define REG_STR_SIZE	64
1570
1571static struct regulator *create_regulator(struct regulator_dev *rdev,
1572					  struct device *dev,
1573					  const char *supply_name)
1574{
1575	struct regulator *regulator;
1576	char buf[REG_STR_SIZE];
1577	int err, size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578
1579	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1580	if (regulator == NULL)
 
1581		return NULL;
 
 
 
 
1582
1583	regulator_lock(rdev);
1584	regulator->rdev = rdev;
1585	list_add(&regulator->list, &rdev->consumer_list);
 
1586
1587	if (dev) {
1588		regulator->dev = dev;
1589
1590		/* Add a link to the device sysfs entry */
1591		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1592				dev->kobj.name, supply_name);
1593		if (size >= REG_STR_SIZE)
1594			goto overflow_err;
1595
1596		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1597		if (regulator->supply_name == NULL)
1598			goto overflow_err;
1599
1600		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1601					buf);
1602		if (err) {
1603			rdev_dbg(rdev, "could not add device link %s err %d\n",
1604				  dev->kobj.name, err);
1605			/* non-fatal */
1606		}
1607	} else {
1608		regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1609		if (regulator->supply_name == NULL)
1610			goto overflow_err;
1611	}
1612
1613	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1614						rdev->debugfs);
1615	if (!regulator->debugfs) {
1616		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1617	} else {
1618		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1619				   &regulator->uA_load);
1620		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1621				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1622		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1623				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1624		debugfs_create_file("constraint_flags", 0444,
1625				    regulator->debugfs, regulator,
1626				    &constraint_flags_fops);
1627	}
1628
1629	/*
1630	 * Check now if the regulator is an always on regulator - if
1631	 * it is then we don't need to do nearly so much work for
1632	 * enable/disable calls.
1633	 */
1634	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1635	    _regulator_is_enabled(rdev))
1636		regulator->always_on = true;
1637
1638	regulator_unlock(rdev);
1639	return regulator;
1640overflow_err:
1641	list_del(&regulator->list);
1642	kfree(regulator);
1643	regulator_unlock(rdev);
1644	return NULL;
1645}
1646
1647static int _regulator_get_enable_time(struct regulator_dev *rdev)
1648{
1649	if (rdev->constraints && rdev->constraints->enable_time)
1650		return rdev->constraints->enable_time;
1651	if (rdev->desc->ops->enable_time)
1652		return rdev->desc->ops->enable_time(rdev);
1653	return rdev->desc->enable_time;
1654}
1655
1656static struct regulator_supply_alias *regulator_find_supply_alias(
1657		struct device *dev, const char *supply)
1658{
1659	struct regulator_supply_alias *map;
1660
1661	list_for_each_entry(map, &regulator_supply_alias_list, list)
1662		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1663			return map;
1664
1665	return NULL;
1666}
1667
1668static void regulator_supply_alias(struct device **dev, const char **supply)
1669{
1670	struct regulator_supply_alias *map;
1671
1672	map = regulator_find_supply_alias(*dev, *supply);
1673	if (map) {
1674		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1675				*supply, map->alias_supply,
1676				dev_name(map->alias_dev));
1677		*dev = map->alias_dev;
1678		*supply = map->alias_supply;
1679	}
1680}
1681
1682static int regulator_match(struct device *dev, const void *data)
1683{
1684	struct regulator_dev *r = dev_to_rdev(dev);
1685
1686	return strcmp(rdev_get_name(r), data) == 0;
1687}
1688
1689static struct regulator_dev *regulator_lookup_by_name(const char *name)
1690{
1691	struct device *dev;
1692
1693	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1694
1695	return dev ? dev_to_rdev(dev) : NULL;
1696}
1697
1698/**
1699 * regulator_dev_lookup - lookup a regulator device.
1700 * @dev: device for regulator "consumer".
1701 * @supply: Supply name or regulator ID.
1702 *
1703 * If successful, returns a struct regulator_dev that corresponds to the name
1704 * @supply and with the embedded struct device refcount incremented by one.
1705 * The refcount must be dropped by calling put_device().
1706 * On failure one of the following ERR-PTR-encoded values is returned:
1707 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1708 * in the future.
1709 */
1710static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1711						  const char *supply)
1712{
1713	struct regulator_dev *r = NULL;
1714	struct device_node *node;
1715	struct regulator_map *map;
1716	const char *devname = NULL;
1717
1718	regulator_supply_alias(&dev, &supply);
1719
1720	/* first do a dt based lookup */
1721	if (dev && dev->of_node) {
1722		node = of_get_regulator(dev, supply);
1723		if (node) {
1724			r = of_find_regulator_by_node(node);
1725			if (r)
1726				return r;
1727
1728			/*
1729			 * We have a node, but there is no device.
1730			 * assume it has not registered yet.
1731			 */
1732			return ERR_PTR(-EPROBE_DEFER);
1733		}
1734	}
1735
1736	/* if not found, try doing it non-dt way */
1737	if (dev)
1738		devname = dev_name(dev);
1739
1740	mutex_lock(&regulator_list_mutex);
1741	list_for_each_entry(map, &regulator_map_list, list) {
1742		/* If the mapping has a device set up it must match */
1743		if (map->dev_name &&
1744		    (!devname || strcmp(map->dev_name, devname)))
1745			continue;
1746
1747		if (strcmp(map->supply, supply) == 0 &&
1748		    get_device(&map->regulator->dev)) {
1749			r = map->regulator;
1750			break;
1751		}
1752	}
1753	mutex_unlock(&regulator_list_mutex);
1754
1755	if (r)
1756		return r;
1757
1758	r = regulator_lookup_by_name(supply);
1759	if (r)
1760		return r;
1761
1762	return ERR_PTR(-ENODEV);
1763}
1764
1765static int regulator_resolve_supply(struct regulator_dev *rdev)
1766{
1767	struct regulator_dev *r;
1768	struct device *dev = rdev->dev.parent;
1769	int ret;
1770
1771	/* No supply to resolve? */
1772	if (!rdev->supply_name)
1773		return 0;
1774
1775	/* Supply already resolved? */
1776	if (rdev->supply)
1777		return 0;
1778
1779	r = regulator_dev_lookup(dev, rdev->supply_name);
1780	if (IS_ERR(r)) {
1781		ret = PTR_ERR(r);
1782
1783		/* Did the lookup explicitly defer for us? */
1784		if (ret == -EPROBE_DEFER)
1785			return ret;
1786
1787		if (have_full_constraints()) {
1788			r = dummy_regulator_rdev;
1789			get_device(&r->dev);
1790		} else {
1791			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1792				rdev->supply_name, rdev->desc->name);
1793			return -EPROBE_DEFER;
1794		}
1795	}
1796
1797	/*
1798	 * If the supply's parent device is not the same as the
1799	 * regulator's parent device, then ensure the parent device
1800	 * is bound before we resolve the supply, in case the parent
1801	 * device get probe deferred and unregisters the supply.
1802	 */
1803	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1804		if (!device_is_bound(r->dev.parent)) {
1805			put_device(&r->dev);
1806			return -EPROBE_DEFER;
1807		}
1808	}
1809
1810	/* Recursively resolve the supply of the supply */
1811	ret = regulator_resolve_supply(r);
1812	if (ret < 0) {
1813		put_device(&r->dev);
1814		return ret;
1815	}
1816
1817	ret = set_supply(rdev, r);
1818	if (ret < 0) {
1819		put_device(&r->dev);
1820		return ret;
1821	}
1822
1823	/*
1824	 * In set_machine_constraints() we may have turned this regulator on
1825	 * but we couldn't propagate to the supply if it hadn't been resolved
1826	 * yet.  Do it now.
1827	 */
1828	if (rdev->use_count) {
1829		ret = regulator_enable(rdev->supply);
1830		if (ret < 0) {
1831			_regulator_put(rdev->supply);
1832			rdev->supply = NULL;
1833			return ret;
1834		}
1835	}
1836
1837	return 0;
1838}
1839
1840/* Internal regulator request function */
1841struct regulator *_regulator_get(struct device *dev, const char *id,
1842				 enum regulator_get_type get_type)
1843{
1844	struct regulator_dev *rdev;
1845	struct regulator *regulator;
1846	const char *devname = dev ? dev_name(dev) : "deviceless";
1847	int ret;
1848
1849	if (get_type >= MAX_GET_TYPE) {
1850		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1851		return ERR_PTR(-EINVAL);
1852	}
1853
1854	if (id == NULL) {
1855		pr_err("get() with no identifier\n");
1856		return ERR_PTR(-EINVAL);
1857	}
1858
1859	rdev = regulator_dev_lookup(dev, id);
1860	if (IS_ERR(rdev)) {
1861		ret = PTR_ERR(rdev);
1862
1863		/*
1864		 * If regulator_dev_lookup() fails with error other
1865		 * than -ENODEV our job here is done, we simply return it.
1866		 */
1867		if (ret != -ENODEV)
1868			return ERR_PTR(ret);
1869
1870		if (!have_full_constraints()) {
1871			dev_warn(dev,
1872				 "incomplete constraints, dummy supplies not allowed\n");
1873			return ERR_PTR(-ENODEV);
1874		}
1875
1876		switch (get_type) {
1877		case NORMAL_GET:
1878			/*
1879			 * Assume that a regulator is physically present and
1880			 * enabled, even if it isn't hooked up, and just
1881			 * provide a dummy.
1882			 */
1883			dev_warn(dev,
1884				 "%s supply %s not found, using dummy regulator\n",
1885				 devname, id);
1886			rdev = dummy_regulator_rdev;
1887			get_device(&rdev->dev);
1888			break;
1889
1890		case EXCLUSIVE_GET:
1891			dev_warn(dev,
1892				 "dummy supplies not allowed for exclusive requests\n");
1893			/* fall through */
1894
1895		default:
1896			return ERR_PTR(-ENODEV);
1897		}
1898	}
1899
1900	if (rdev->exclusive) {
1901		regulator = ERR_PTR(-EPERM);
1902		put_device(&rdev->dev);
1903		return regulator;
1904	}
1905
1906	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1907		regulator = ERR_PTR(-EBUSY);
1908		put_device(&rdev->dev);
1909		return regulator;
1910	}
1911
1912	mutex_lock(&regulator_list_mutex);
1913	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1914	mutex_unlock(&regulator_list_mutex);
1915
1916	if (ret != 0) {
1917		regulator = ERR_PTR(-EPROBE_DEFER);
1918		put_device(&rdev->dev);
1919		return regulator;
1920	}
1921
1922	ret = regulator_resolve_supply(rdev);
1923	if (ret < 0) {
1924		regulator = ERR_PTR(ret);
1925		put_device(&rdev->dev);
1926		return regulator;
1927	}
1928
1929	if (!try_module_get(rdev->owner)) {
1930		regulator = ERR_PTR(-EPROBE_DEFER);
1931		put_device(&rdev->dev);
1932		return regulator;
1933	}
1934
1935	regulator = create_regulator(rdev, dev, id);
1936	if (regulator == NULL) {
1937		regulator = ERR_PTR(-ENOMEM);
 
1938		put_device(&rdev->dev);
1939		module_put(rdev->owner);
1940		return regulator;
1941	}
1942
1943	rdev->open_count++;
1944	if (get_type == EXCLUSIVE_GET) {
1945		rdev->exclusive = 1;
1946
1947		ret = _regulator_is_enabled(rdev);
1948		if (ret > 0)
1949			rdev->use_count = 1;
1950		else
1951			rdev->use_count = 0;
1952	}
1953
1954	device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
 
 
1955
1956	return regulator;
1957}
1958
1959/**
1960 * regulator_get - lookup and obtain a reference to a regulator.
1961 * @dev: device for regulator "consumer"
1962 * @id: Supply name or regulator ID.
1963 *
1964 * Returns a struct regulator corresponding to the regulator producer,
1965 * or IS_ERR() condition containing errno.
1966 *
1967 * Use of supply names configured via regulator_set_device_supply() is
1968 * strongly encouraged.  It is recommended that the supply name used
1969 * should match the name used for the supply and/or the relevant
1970 * device pins in the datasheet.
1971 */
1972struct regulator *regulator_get(struct device *dev, const char *id)
1973{
1974	return _regulator_get(dev, id, NORMAL_GET);
1975}
1976EXPORT_SYMBOL_GPL(regulator_get);
1977
1978/**
1979 * regulator_get_exclusive - obtain exclusive access to a regulator.
1980 * @dev: device for regulator "consumer"
1981 * @id: Supply name or regulator ID.
1982 *
1983 * Returns a struct regulator corresponding to the regulator producer,
1984 * or IS_ERR() condition containing errno.  Other consumers will be
1985 * unable to obtain this regulator while this reference is held and the
1986 * use count for the regulator will be initialised to reflect the current
1987 * state of the regulator.
1988 *
1989 * This is intended for use by consumers which cannot tolerate shared
1990 * use of the regulator such as those which need to force the
1991 * regulator off for correct operation of the hardware they are
1992 * controlling.
1993 *
1994 * Use of supply names configured via regulator_set_device_supply() is
1995 * strongly encouraged.  It is recommended that the supply name used
1996 * should match the name used for the supply and/or the relevant
1997 * device pins in the datasheet.
1998 */
1999struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2000{
2001	return _regulator_get(dev, id, EXCLUSIVE_GET);
2002}
2003EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2004
2005/**
2006 * regulator_get_optional - obtain optional access to a regulator.
2007 * @dev: device for regulator "consumer"
2008 * @id: Supply name or regulator ID.
2009 *
2010 * Returns a struct regulator corresponding to the regulator producer,
2011 * or IS_ERR() condition containing errno.
2012 *
2013 * This is intended for use by consumers for devices which can have
2014 * some supplies unconnected in normal use, such as some MMC devices.
2015 * It can allow the regulator core to provide stub supplies for other
2016 * supplies requested using normal regulator_get() calls without
2017 * disrupting the operation of drivers that can handle absent
2018 * supplies.
2019 *
2020 * Use of supply names configured via regulator_set_device_supply() is
2021 * strongly encouraged.  It is recommended that the supply name used
2022 * should match the name used for the supply and/or the relevant
2023 * device pins in the datasheet.
2024 */
2025struct regulator *regulator_get_optional(struct device *dev, const char *id)
2026{
2027	return _regulator_get(dev, id, OPTIONAL_GET);
2028}
2029EXPORT_SYMBOL_GPL(regulator_get_optional);
2030
2031/* regulator_list_mutex lock held by regulator_put() */
2032static void _regulator_put(struct regulator *regulator)
2033{
2034	struct regulator_dev *rdev;
2035
2036	if (IS_ERR_OR_NULL(regulator))
2037		return;
2038
2039	lockdep_assert_held_once(&regulator_list_mutex);
2040
2041	/* Docs say you must disable before calling regulator_put() */
2042	WARN_ON(regulator->enable_count);
2043
2044	rdev = regulator->rdev;
2045
2046	debugfs_remove_recursive(regulator->debugfs);
2047
2048	if (regulator->dev) {
2049		device_link_remove(regulator->dev, &rdev->dev);
 
2050
2051		/* remove any sysfs entries */
2052		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2053	}
2054
2055	regulator_lock(rdev);
2056	list_del(&regulator->list);
2057
2058	rdev->open_count--;
2059	rdev->exclusive = 0;
2060	put_device(&rdev->dev);
2061	regulator_unlock(rdev);
2062
2063	kfree_const(regulator->supply_name);
2064	kfree(regulator);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065
2066	module_put(rdev->owner);
 
2067}
2068
2069/**
2070 * regulator_put - "free" the regulator source
2071 * @regulator: regulator source
2072 *
2073 * Note: drivers must ensure that all regulator_enable calls made on this
2074 * regulator source are balanced by regulator_disable calls prior to calling
2075 * this function.
2076 */
2077void regulator_put(struct regulator *regulator)
2078{
2079	mutex_lock(&regulator_list_mutex);
2080	_regulator_put(regulator);
2081	mutex_unlock(&regulator_list_mutex);
2082}
2083EXPORT_SYMBOL_GPL(regulator_put);
2084
2085/**
2086 * regulator_register_supply_alias - Provide device alias for supply lookup
2087 *
2088 * @dev: device that will be given as the regulator "consumer"
2089 * @id: Supply name or regulator ID
2090 * @alias_dev: device that should be used to lookup the supply
2091 * @alias_id: Supply name or regulator ID that should be used to lookup the
2092 * supply
2093 *
2094 * All lookups for id on dev will instead be conducted for alias_id on
2095 * alias_dev.
2096 */
2097int regulator_register_supply_alias(struct device *dev, const char *id,
2098				    struct device *alias_dev,
2099				    const char *alias_id)
2100{
2101	struct regulator_supply_alias *map;
2102
2103	map = regulator_find_supply_alias(dev, id);
2104	if (map)
2105		return -EEXIST;
2106
2107	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2108	if (!map)
2109		return -ENOMEM;
2110
2111	map->src_dev = dev;
2112	map->src_supply = id;
2113	map->alias_dev = alias_dev;
2114	map->alias_supply = alias_id;
2115
2116	list_add(&map->list, &regulator_supply_alias_list);
2117
2118	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2119		id, dev_name(dev), alias_id, dev_name(alias_dev));
2120
2121	return 0;
2122}
2123EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2124
2125/**
2126 * regulator_unregister_supply_alias - Remove device alias
2127 *
2128 * @dev: device that will be given as the regulator "consumer"
2129 * @id: Supply name or regulator ID
2130 *
2131 * Remove a lookup alias if one exists for id on dev.
2132 */
2133void regulator_unregister_supply_alias(struct device *dev, const char *id)
2134{
2135	struct regulator_supply_alias *map;
2136
2137	map = regulator_find_supply_alias(dev, id);
2138	if (map) {
2139		list_del(&map->list);
2140		kfree(map);
2141	}
2142}
2143EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2144
2145/**
2146 * regulator_bulk_register_supply_alias - register multiple aliases
2147 *
2148 * @dev: device that will be given as the regulator "consumer"
2149 * @id: List of supply names or regulator IDs
2150 * @alias_dev: device that should be used to lookup the supply
2151 * @alias_id: List of supply names or regulator IDs that should be used to
2152 * lookup the supply
2153 * @num_id: Number of aliases to register
2154 *
2155 * @return 0 on success, an errno on failure.
2156 *
2157 * This helper function allows drivers to register several supply
2158 * aliases in one operation.  If any of the aliases cannot be
2159 * registered any aliases that were registered will be removed
2160 * before returning to the caller.
2161 */
2162int regulator_bulk_register_supply_alias(struct device *dev,
2163					 const char *const *id,
2164					 struct device *alias_dev,
2165					 const char *const *alias_id,
2166					 int num_id)
2167{
2168	int i;
2169	int ret;
2170
2171	for (i = 0; i < num_id; ++i) {
2172		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2173						      alias_id[i]);
2174		if (ret < 0)
2175			goto err;
2176	}
2177
2178	return 0;
2179
2180err:
2181	dev_err(dev,
2182		"Failed to create supply alias %s,%s -> %s,%s\n",
2183		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2184
2185	while (--i >= 0)
2186		regulator_unregister_supply_alias(dev, id[i]);
2187
2188	return ret;
2189}
2190EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2191
2192/**
2193 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2194 *
2195 * @dev: device that will be given as the regulator "consumer"
2196 * @id: List of supply names or regulator IDs
2197 * @num_id: Number of aliases to unregister
2198 *
2199 * This helper function allows drivers to unregister several supply
2200 * aliases in one operation.
2201 */
2202void regulator_bulk_unregister_supply_alias(struct device *dev,
2203					    const char *const *id,
2204					    int num_id)
2205{
2206	int i;
2207
2208	for (i = 0; i < num_id; ++i)
2209		regulator_unregister_supply_alias(dev, id[i]);
2210}
2211EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2212
2213
2214/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2215static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2216				const struct regulator_config *config)
2217{
2218	struct regulator_enable_gpio *pin;
2219	struct gpio_desc *gpiod;
2220
2221	gpiod = config->ena_gpiod;
 
 
 
2222
2223	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2224		if (pin->gpiod == gpiod) {
2225			rdev_dbg(rdev, "GPIO is already used\n");
2226			goto update_ena_gpio_to_rdev;
2227		}
2228	}
2229
2230	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2231	if (pin == NULL)
2232		return -ENOMEM;
 
 
 
 
2233
2234	pin->gpiod = gpiod;
2235	list_add(&pin->list, &regulator_ena_gpio_list);
2236
2237update_ena_gpio_to_rdev:
2238	pin->request_count++;
2239	rdev->ena_pin = pin;
 
 
 
 
2240	return 0;
2241}
2242
2243static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2244{
2245	struct regulator_enable_gpio *pin, *n;
2246
2247	if (!rdev->ena_pin)
2248		return;
2249
2250	/* Free the GPIO only in case of no use */
2251	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2252		if (pin->gpiod == rdev->ena_pin->gpiod) {
2253			if (pin->request_count <= 1) {
2254				pin->request_count = 0;
2255				gpiod_put(pin->gpiod);
2256				list_del(&pin->list);
2257				kfree(pin);
2258				rdev->ena_pin = NULL;
2259				return;
2260			} else {
2261				pin->request_count--;
2262			}
2263		}
2264	}
 
 
2265}
2266
2267/**
2268 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2269 * @rdev: regulator_dev structure
2270 * @enable: enable GPIO at initial use?
2271 *
2272 * GPIO is enabled in case of initial use. (enable_count is 0)
2273 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2274 */
2275static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2276{
2277	struct regulator_enable_gpio *pin = rdev->ena_pin;
2278
2279	if (!pin)
2280		return -EINVAL;
2281
2282	if (enable) {
2283		/* Enable GPIO at initial use */
2284		if (pin->enable_count == 0)
2285			gpiod_set_value_cansleep(pin->gpiod, 1);
2286
2287		pin->enable_count++;
2288	} else {
2289		if (pin->enable_count > 1) {
2290			pin->enable_count--;
2291			return 0;
2292		}
2293
2294		/* Disable GPIO if not used */
2295		if (pin->enable_count <= 1) {
2296			gpiod_set_value_cansleep(pin->gpiod, 0);
2297			pin->enable_count = 0;
2298		}
2299	}
2300
2301	return 0;
2302}
2303
2304/**
2305 * _regulator_enable_delay - a delay helper function
2306 * @delay: time to delay in microseconds
2307 *
2308 * Delay for the requested amount of time as per the guidelines in:
2309 *
2310 *     Documentation/timers/timers-howto.rst
2311 *
2312 * The assumption here is that regulators will never be enabled in
2313 * atomic context and therefore sleeping functions can be used.
2314 */
2315static void _regulator_enable_delay(unsigned int delay)
2316{
2317	unsigned int ms = delay / 1000;
2318	unsigned int us = delay % 1000;
2319
2320	if (ms > 0) {
2321		/*
2322		 * For small enough values, handle super-millisecond
2323		 * delays in the usleep_range() call below.
2324		 */
2325		if (ms < 20)
2326			us += ms * 1000;
2327		else
2328			msleep(ms);
2329	}
2330
2331	/*
2332	 * Give the scheduler some room to coalesce with any other
2333	 * wakeup sources. For delays shorter than 10 us, don't even
2334	 * bother setting up high-resolution timers and just busy-
2335	 * loop.
2336	 */
2337	if (us >= 10)
2338		usleep_range(us, us + 100);
2339	else
2340		udelay(us);
2341}
2342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2343static int _regulator_do_enable(struct regulator_dev *rdev)
2344{
2345	int ret, delay;
2346
2347	/* Query before enabling in case configuration dependent.  */
2348	ret = _regulator_get_enable_time(rdev);
2349	if (ret >= 0) {
2350		delay = ret;
2351	} else {
2352		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2353		delay = 0;
2354	}
2355
2356	trace_regulator_enable(rdev_get_name(rdev));
2357
2358	if (rdev->desc->off_on_delay) {
2359		/* if needed, keep a distance of off_on_delay from last time
2360		 * this regulator was disabled.
2361		 */
2362		unsigned long start_jiffy = jiffies;
2363		unsigned long intended, max_delay, remaining;
2364
2365		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2366		intended = rdev->last_off_jiffy + max_delay;
2367
2368		if (time_before(start_jiffy, intended)) {
2369			/* calc remaining jiffies to deal with one-time
2370			 * timer wrapping.
2371			 * in case of multiple timer wrapping, either it can be
2372			 * detected by out-of-range remaining, or it cannot be
2373			 * detected and we get a penalty of
2374			 * _regulator_enable_delay().
2375			 */
2376			remaining = intended - start_jiffy;
2377			if (remaining <= max_delay)
2378				_regulator_enable_delay(
2379						jiffies_to_usecs(remaining));
2380		}
2381	}
2382
2383	if (rdev->ena_pin) {
2384		if (!rdev->ena_gpio_state) {
2385			ret = regulator_ena_gpio_ctrl(rdev, true);
2386			if (ret < 0)
2387				return ret;
2388			rdev->ena_gpio_state = 1;
2389		}
2390	} else if (rdev->desc->ops->enable) {
2391		ret = rdev->desc->ops->enable(rdev);
2392		if (ret < 0)
2393			return ret;
2394	} else {
2395		return -EINVAL;
2396	}
2397
2398	/* Allow the regulator to ramp; it would be useful to extend
2399	 * this for bulk operations so that the regulators can ramp
2400	 * together.  */
2401	trace_regulator_enable_delay(rdev_get_name(rdev));
2402
2403	_regulator_enable_delay(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2404
2405	trace_regulator_enable_complete(rdev_get_name(rdev));
2406
2407	return 0;
2408}
2409
2410/**
2411 * _regulator_handle_consumer_enable - handle that a consumer enabled
2412 * @regulator: regulator source
2413 *
2414 * Some things on a regulator consumer (like the contribution towards total
2415 * load on the regulator) only have an effect when the consumer wants the
2416 * regulator enabled.  Explained in example with two consumers of the same
2417 * regulator:
2418 *   consumer A: set_load(100);       => total load = 0
2419 *   consumer A: regulator_enable();  => total load = 100
2420 *   consumer B: set_load(1000);      => total load = 100
2421 *   consumer B: regulator_enable();  => total load = 1100
2422 *   consumer A: regulator_disable(); => total_load = 1000
2423 *
2424 * This function (together with _regulator_handle_consumer_disable) is
2425 * responsible for keeping track of the refcount for a given regulator consumer
2426 * and applying / unapplying these things.
2427 *
2428 * Returns 0 upon no error; -error upon error.
2429 */
2430static int _regulator_handle_consumer_enable(struct regulator *regulator)
2431{
2432	struct regulator_dev *rdev = regulator->rdev;
2433
2434	lockdep_assert_held_once(&rdev->mutex.base);
2435
2436	regulator->enable_count++;
2437	if (regulator->uA_load && regulator->enable_count == 1)
2438		return drms_uA_update(rdev);
2439
2440	return 0;
2441}
2442
2443/**
2444 * _regulator_handle_consumer_disable - handle that a consumer disabled
2445 * @regulator: regulator source
2446 *
2447 * The opposite of _regulator_handle_consumer_enable().
2448 *
2449 * Returns 0 upon no error; -error upon error.
2450 */
2451static int _regulator_handle_consumer_disable(struct regulator *regulator)
2452{
2453	struct regulator_dev *rdev = regulator->rdev;
2454
2455	lockdep_assert_held_once(&rdev->mutex.base);
2456
2457	if (!regulator->enable_count) {
2458		rdev_err(rdev, "Underflow of regulator enable count\n");
2459		return -EINVAL;
2460	}
2461
2462	regulator->enable_count--;
2463	if (regulator->uA_load && regulator->enable_count == 0)
2464		return drms_uA_update(rdev);
2465
2466	return 0;
2467}
2468
2469/* locks held by regulator_enable() */
2470static int _regulator_enable(struct regulator *regulator)
2471{
2472	struct regulator_dev *rdev = regulator->rdev;
2473	int ret;
2474
2475	lockdep_assert_held_once(&rdev->mutex.base);
2476
2477	if (rdev->use_count == 0 && rdev->supply) {
2478		ret = _regulator_enable(rdev->supply);
2479		if (ret < 0)
2480			return ret;
2481	}
2482
2483	/* balance only if there are regulators coupled */
2484	if (rdev->coupling_desc.n_coupled > 1) {
2485		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2486		if (ret < 0)
2487			goto err_disable_supply;
2488	}
2489
2490	ret = _regulator_handle_consumer_enable(regulator);
2491	if (ret < 0)
2492		goto err_disable_supply;
2493
2494	if (rdev->use_count == 0) {
2495		/* The regulator may on if it's not switchable or left on */
2496		ret = _regulator_is_enabled(rdev);
2497		if (ret == -EINVAL || ret == 0) {
2498			if (!regulator_ops_is_valid(rdev,
2499					REGULATOR_CHANGE_STATUS)) {
2500				ret = -EPERM;
2501				goto err_consumer_disable;
2502			}
2503
2504			ret = _regulator_do_enable(rdev);
2505			if (ret < 0)
2506				goto err_consumer_disable;
2507
2508			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2509					     NULL);
2510		} else if (ret < 0) {
2511			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2512			goto err_consumer_disable;
2513		}
2514		/* Fallthrough on positive return values - already enabled */
2515	}
2516
2517	rdev->use_count++;
2518
2519	return 0;
2520
2521err_consumer_disable:
2522	_regulator_handle_consumer_disable(regulator);
2523
2524err_disable_supply:
2525	if (rdev->use_count == 0 && rdev->supply)
2526		_regulator_disable(rdev->supply);
2527
2528	return ret;
2529}
2530
2531/**
2532 * regulator_enable - enable regulator output
2533 * @regulator: regulator source
2534 *
2535 * Request that the regulator be enabled with the regulator output at
2536 * the predefined voltage or current value.  Calls to regulator_enable()
2537 * must be balanced with calls to regulator_disable().
2538 *
2539 * NOTE: the output value can be set by other drivers, boot loader or may be
2540 * hardwired in the regulator.
2541 */
2542int regulator_enable(struct regulator *regulator)
2543{
2544	struct regulator_dev *rdev = regulator->rdev;
2545	struct ww_acquire_ctx ww_ctx;
2546	int ret;
2547
2548	regulator_lock_dependent(rdev, &ww_ctx);
2549	ret = _regulator_enable(regulator);
2550	regulator_unlock_dependent(rdev, &ww_ctx);
2551
2552	return ret;
2553}
2554EXPORT_SYMBOL_GPL(regulator_enable);
2555
2556static int _regulator_do_disable(struct regulator_dev *rdev)
2557{
2558	int ret;
2559
2560	trace_regulator_disable(rdev_get_name(rdev));
2561
2562	if (rdev->ena_pin) {
2563		if (rdev->ena_gpio_state) {
2564			ret = regulator_ena_gpio_ctrl(rdev, false);
2565			if (ret < 0)
2566				return ret;
2567			rdev->ena_gpio_state = 0;
2568		}
2569
2570	} else if (rdev->desc->ops->disable) {
2571		ret = rdev->desc->ops->disable(rdev);
2572		if (ret != 0)
2573			return ret;
2574	}
2575
2576	/* cares about last_off_jiffy only if off_on_delay is required by
2577	 * device.
2578	 */
2579	if (rdev->desc->off_on_delay)
2580		rdev->last_off_jiffy = jiffies;
2581
2582	trace_regulator_disable_complete(rdev_get_name(rdev));
2583
2584	return 0;
2585}
2586
2587/* locks held by regulator_disable() */
2588static int _regulator_disable(struct regulator *regulator)
2589{
2590	struct regulator_dev *rdev = regulator->rdev;
2591	int ret = 0;
2592
2593	lockdep_assert_held_once(&rdev->mutex.base);
2594
2595	if (WARN(rdev->use_count <= 0,
2596		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2597		return -EIO;
2598
2599	/* are we the last user and permitted to disable ? */
2600	if (rdev->use_count == 1 &&
2601	    (rdev->constraints && !rdev->constraints->always_on)) {
2602
2603		/* we are last user */
2604		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2605			ret = _notifier_call_chain(rdev,
2606						   REGULATOR_EVENT_PRE_DISABLE,
2607						   NULL);
2608			if (ret & NOTIFY_STOP_MASK)
2609				return -EINVAL;
2610
2611			ret = _regulator_do_disable(rdev);
2612			if (ret < 0) {
2613				rdev_err(rdev, "failed to disable\n");
2614				_notifier_call_chain(rdev,
2615						REGULATOR_EVENT_ABORT_DISABLE,
2616						NULL);
2617				return ret;
2618			}
2619			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2620					NULL);
2621		}
2622
2623		rdev->use_count = 0;
2624	} else if (rdev->use_count > 1) {
2625		rdev->use_count--;
2626	}
2627
2628	if (ret == 0)
2629		ret = _regulator_handle_consumer_disable(regulator);
2630
2631	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2632		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2633
2634	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2635		ret = _regulator_disable(rdev->supply);
2636
2637	return ret;
2638}
2639
2640/**
2641 * regulator_disable - disable regulator output
2642 * @regulator: regulator source
2643 *
2644 * Disable the regulator output voltage or current.  Calls to
2645 * regulator_enable() must be balanced with calls to
2646 * regulator_disable().
2647 *
2648 * NOTE: this will only disable the regulator output if no other consumer
2649 * devices have it enabled, the regulator device supports disabling and
2650 * machine constraints permit this operation.
2651 */
2652int regulator_disable(struct regulator *regulator)
2653{
2654	struct regulator_dev *rdev = regulator->rdev;
2655	struct ww_acquire_ctx ww_ctx;
2656	int ret;
2657
2658	regulator_lock_dependent(rdev, &ww_ctx);
2659	ret = _regulator_disable(regulator);
2660	regulator_unlock_dependent(rdev, &ww_ctx);
2661
2662	return ret;
2663}
2664EXPORT_SYMBOL_GPL(regulator_disable);
2665
2666/* locks held by regulator_force_disable() */
2667static int _regulator_force_disable(struct regulator_dev *rdev)
2668{
2669	int ret = 0;
2670
2671	lockdep_assert_held_once(&rdev->mutex.base);
2672
2673	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2674			REGULATOR_EVENT_PRE_DISABLE, NULL);
2675	if (ret & NOTIFY_STOP_MASK)
2676		return -EINVAL;
2677
2678	ret = _regulator_do_disable(rdev);
2679	if (ret < 0) {
2680		rdev_err(rdev, "failed to force disable\n");
2681		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2682				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2683		return ret;
2684	}
2685
2686	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2687			REGULATOR_EVENT_DISABLE, NULL);
2688
2689	return 0;
2690}
2691
2692/**
2693 * regulator_force_disable - force disable regulator output
2694 * @regulator: regulator source
2695 *
2696 * Forcibly disable the regulator output voltage or current.
2697 * NOTE: this *will* disable the regulator output even if other consumer
2698 * devices have it enabled. This should be used for situations when device
2699 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2700 */
2701int regulator_force_disable(struct regulator *regulator)
2702{
2703	struct regulator_dev *rdev = regulator->rdev;
2704	struct ww_acquire_ctx ww_ctx;
2705	int ret;
2706
2707	regulator_lock_dependent(rdev, &ww_ctx);
2708
2709	ret = _regulator_force_disable(regulator->rdev);
2710
2711	if (rdev->coupling_desc.n_coupled > 1)
2712		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2713
2714	if (regulator->uA_load) {
2715		regulator->uA_load = 0;
2716		ret = drms_uA_update(rdev);
2717	}
2718
2719	if (rdev->use_count != 0 && rdev->supply)
2720		_regulator_disable(rdev->supply);
2721
2722	regulator_unlock_dependent(rdev, &ww_ctx);
2723
2724	return ret;
2725}
2726EXPORT_SYMBOL_GPL(regulator_force_disable);
2727
2728static void regulator_disable_work(struct work_struct *work)
2729{
2730	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2731						  disable_work.work);
2732	struct ww_acquire_ctx ww_ctx;
2733	int count, i, ret;
2734	struct regulator *regulator;
2735	int total_count = 0;
2736
2737	regulator_lock_dependent(rdev, &ww_ctx);
2738
2739	/*
2740	 * Workqueue functions queue the new work instance while the previous
2741	 * work instance is being processed. Cancel the queued work instance
2742	 * as the work instance under processing does the job of the queued
2743	 * work instance.
2744	 */
2745	cancel_delayed_work(&rdev->disable_work);
2746
2747	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2748		count = regulator->deferred_disables;
2749
2750		if (!count)
2751			continue;
2752
2753		total_count += count;
2754		regulator->deferred_disables = 0;
2755
2756		for (i = 0; i < count; i++) {
2757			ret = _regulator_disable(regulator);
2758			if (ret != 0)
2759				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2760		}
2761	}
2762	WARN_ON(!total_count);
2763
2764	if (rdev->coupling_desc.n_coupled > 1)
2765		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2766
2767	regulator_unlock_dependent(rdev, &ww_ctx);
2768}
2769
2770/**
2771 * regulator_disable_deferred - disable regulator output with delay
2772 * @regulator: regulator source
2773 * @ms: milliseconds until the regulator is disabled
2774 *
2775 * Execute regulator_disable() on the regulator after a delay.  This
2776 * is intended for use with devices that require some time to quiesce.
2777 *
2778 * NOTE: this will only disable the regulator output if no other consumer
2779 * devices have it enabled, the regulator device supports disabling and
2780 * machine constraints permit this operation.
2781 */
2782int regulator_disable_deferred(struct regulator *regulator, int ms)
2783{
2784	struct regulator_dev *rdev = regulator->rdev;
2785
2786	if (!ms)
2787		return regulator_disable(regulator);
2788
2789	regulator_lock(rdev);
2790	regulator->deferred_disables++;
2791	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2792			 msecs_to_jiffies(ms));
2793	regulator_unlock(rdev);
2794
2795	return 0;
2796}
2797EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2798
2799static int _regulator_is_enabled(struct regulator_dev *rdev)
2800{
2801	/* A GPIO control always takes precedence */
2802	if (rdev->ena_pin)
2803		return rdev->ena_gpio_state;
2804
2805	/* If we don't know then assume that the regulator is always on */
2806	if (!rdev->desc->ops->is_enabled)
2807		return 1;
2808
2809	return rdev->desc->ops->is_enabled(rdev);
2810}
2811
2812static int _regulator_list_voltage(struct regulator_dev *rdev,
2813				   unsigned selector, int lock)
2814{
2815	const struct regulator_ops *ops = rdev->desc->ops;
2816	int ret;
2817
2818	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2819		return rdev->desc->fixed_uV;
2820
2821	if (ops->list_voltage) {
2822		if (selector >= rdev->desc->n_voltages)
2823			return -EINVAL;
2824		if (lock)
2825			regulator_lock(rdev);
2826		ret = ops->list_voltage(rdev, selector);
2827		if (lock)
2828			regulator_unlock(rdev);
2829	} else if (rdev->is_switch && rdev->supply) {
2830		ret = _regulator_list_voltage(rdev->supply->rdev,
2831					      selector, lock);
2832	} else {
2833		return -EINVAL;
2834	}
2835
2836	if (ret > 0) {
2837		if (ret < rdev->constraints->min_uV)
2838			ret = 0;
2839		else if (ret > rdev->constraints->max_uV)
2840			ret = 0;
2841	}
2842
2843	return ret;
2844}
2845
2846/**
2847 * regulator_is_enabled - is the regulator output enabled
2848 * @regulator: regulator source
2849 *
2850 * Returns positive if the regulator driver backing the source/client
2851 * has requested that the device be enabled, zero if it hasn't, else a
2852 * negative errno code.
2853 *
2854 * Note that the device backing this regulator handle can have multiple
2855 * users, so it might be enabled even if regulator_enable() was never
2856 * called for this particular source.
2857 */
2858int regulator_is_enabled(struct regulator *regulator)
2859{
2860	int ret;
2861
2862	if (regulator->always_on)
2863		return 1;
2864
2865	regulator_lock(regulator->rdev);
2866	ret = _regulator_is_enabled(regulator->rdev);
2867	regulator_unlock(regulator->rdev);
2868
2869	return ret;
2870}
2871EXPORT_SYMBOL_GPL(regulator_is_enabled);
2872
2873/**
2874 * regulator_count_voltages - count regulator_list_voltage() selectors
2875 * @regulator: regulator source
2876 *
2877 * Returns number of selectors, or negative errno.  Selectors are
2878 * numbered starting at zero, and typically correspond to bitfields
2879 * in hardware registers.
2880 */
2881int regulator_count_voltages(struct regulator *regulator)
2882{
2883	struct regulator_dev	*rdev = regulator->rdev;
2884
2885	if (rdev->desc->n_voltages)
2886		return rdev->desc->n_voltages;
2887
2888	if (!rdev->is_switch || !rdev->supply)
2889		return -EINVAL;
2890
2891	return regulator_count_voltages(rdev->supply);
2892}
2893EXPORT_SYMBOL_GPL(regulator_count_voltages);
2894
2895/**
2896 * regulator_list_voltage - enumerate supported voltages
2897 * @regulator: regulator source
2898 * @selector: identify voltage to list
2899 * Context: can sleep
2900 *
2901 * Returns a voltage that can be passed to @regulator_set_voltage(),
2902 * zero if this selector code can't be used on this system, or a
2903 * negative errno.
2904 */
2905int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2906{
2907	return _regulator_list_voltage(regulator->rdev, selector, 1);
2908}
2909EXPORT_SYMBOL_GPL(regulator_list_voltage);
2910
2911/**
2912 * regulator_get_regmap - get the regulator's register map
2913 * @regulator: regulator source
2914 *
2915 * Returns the register map for the given regulator, or an ERR_PTR value
2916 * if the regulator doesn't use regmap.
2917 */
2918struct regmap *regulator_get_regmap(struct regulator *regulator)
2919{
2920	struct regmap *map = regulator->rdev->regmap;
2921
2922	return map ? map : ERR_PTR(-EOPNOTSUPP);
2923}
2924
2925/**
2926 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2927 * @regulator: regulator source
2928 * @vsel_reg: voltage selector register, output parameter
2929 * @vsel_mask: mask for voltage selector bitfield, output parameter
2930 *
2931 * Returns the hardware register offset and bitmask used for setting the
2932 * regulator voltage. This might be useful when configuring voltage-scaling
2933 * hardware or firmware that can make I2C requests behind the kernel's back,
2934 * for example.
2935 *
2936 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2937 * and 0 is returned, otherwise a negative errno is returned.
2938 */
2939int regulator_get_hardware_vsel_register(struct regulator *regulator,
2940					 unsigned *vsel_reg,
2941					 unsigned *vsel_mask)
2942{
2943	struct regulator_dev *rdev = regulator->rdev;
2944	const struct regulator_ops *ops = rdev->desc->ops;
2945
2946	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2947		return -EOPNOTSUPP;
2948
2949	*vsel_reg = rdev->desc->vsel_reg;
2950	*vsel_mask = rdev->desc->vsel_mask;
2951
2952	 return 0;
2953}
2954EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2955
2956/**
2957 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2958 * @regulator: regulator source
2959 * @selector: identify voltage to list
2960 *
2961 * Converts the selector to a hardware-specific voltage selector that can be
2962 * directly written to the regulator registers. The address of the voltage
2963 * register can be determined by calling @regulator_get_hardware_vsel_register.
2964 *
2965 * On error a negative errno is returned.
2966 */
2967int regulator_list_hardware_vsel(struct regulator *regulator,
2968				 unsigned selector)
2969{
2970	struct regulator_dev *rdev = regulator->rdev;
2971	const struct regulator_ops *ops = rdev->desc->ops;
2972
2973	if (selector >= rdev->desc->n_voltages)
2974		return -EINVAL;
2975	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2976		return -EOPNOTSUPP;
2977
2978	return selector;
2979}
2980EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2981
2982/**
2983 * regulator_get_linear_step - return the voltage step size between VSEL values
2984 * @regulator: regulator source
2985 *
2986 * Returns the voltage step size between VSEL values for linear
2987 * regulators, or return 0 if the regulator isn't a linear regulator.
2988 */
2989unsigned int regulator_get_linear_step(struct regulator *regulator)
2990{
2991	struct regulator_dev *rdev = regulator->rdev;
2992
2993	return rdev->desc->uV_step;
2994}
2995EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2996
2997/**
2998 * regulator_is_supported_voltage - check if a voltage range can be supported
2999 *
3000 * @regulator: Regulator to check.
3001 * @min_uV: Minimum required voltage in uV.
3002 * @max_uV: Maximum required voltage in uV.
3003 *
3004 * Returns a boolean.
3005 */
3006int regulator_is_supported_voltage(struct regulator *regulator,
3007				   int min_uV, int max_uV)
3008{
3009	struct regulator_dev *rdev = regulator->rdev;
3010	int i, voltages, ret;
3011
3012	/* If we can't change voltage check the current voltage */
3013	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3014		ret = regulator_get_voltage(regulator);
3015		if (ret >= 0)
3016			return min_uV <= ret && ret <= max_uV;
3017		else
3018			return ret;
3019	}
3020
3021	/* Any voltage within constrains range is fine? */
3022	if (rdev->desc->continuous_voltage_range)
3023		return min_uV >= rdev->constraints->min_uV &&
3024				max_uV <= rdev->constraints->max_uV;
3025
3026	ret = regulator_count_voltages(regulator);
3027	if (ret < 0)
3028		return 0;
3029	voltages = ret;
3030
3031	for (i = 0; i < voltages; i++) {
3032		ret = regulator_list_voltage(regulator, i);
3033
3034		if (ret >= min_uV && ret <= max_uV)
3035			return 1;
3036	}
3037
3038	return 0;
3039}
3040EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3041
3042static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3043				 int max_uV)
3044{
3045	const struct regulator_desc *desc = rdev->desc;
3046
3047	if (desc->ops->map_voltage)
3048		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3049
3050	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3051		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3052
3053	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3054		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3055
3056	if (desc->ops->list_voltage ==
3057		regulator_list_voltage_pickable_linear_range)
3058		return regulator_map_voltage_pickable_linear_range(rdev,
3059							min_uV, max_uV);
3060
3061	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3062}
3063
3064static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3065				       int min_uV, int max_uV,
3066				       unsigned *selector)
3067{
3068	struct pre_voltage_change_data data;
3069	int ret;
3070
3071	data.old_uV = regulator_get_voltage_rdev(rdev);
3072	data.min_uV = min_uV;
3073	data.max_uV = max_uV;
3074	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3075				   &data);
3076	if (ret & NOTIFY_STOP_MASK)
3077		return -EINVAL;
3078
3079	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3080	if (ret >= 0)
3081		return ret;
3082
3083	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3084			     (void *)data.old_uV);
3085
3086	return ret;
3087}
3088
3089static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3090					   int uV, unsigned selector)
3091{
3092	struct pre_voltage_change_data data;
3093	int ret;
3094
3095	data.old_uV = regulator_get_voltage_rdev(rdev);
3096	data.min_uV = uV;
3097	data.max_uV = uV;
3098	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3099				   &data);
3100	if (ret & NOTIFY_STOP_MASK)
3101		return -EINVAL;
3102
3103	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3104	if (ret >= 0)
3105		return ret;
3106
3107	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3108			     (void *)data.old_uV);
3109
3110	return ret;
3111}
3112
3113static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3114					   int uV, int new_selector)
3115{
3116	const struct regulator_ops *ops = rdev->desc->ops;
3117	int diff, old_sel, curr_sel, ret;
3118
3119	/* Stepping is only needed if the regulator is enabled. */
3120	if (!_regulator_is_enabled(rdev))
3121		goto final_set;
3122
3123	if (!ops->get_voltage_sel)
3124		return -EINVAL;
3125
3126	old_sel = ops->get_voltage_sel(rdev);
3127	if (old_sel < 0)
3128		return old_sel;
3129
3130	diff = new_selector - old_sel;
3131	if (diff == 0)
3132		return 0; /* No change needed. */
3133
3134	if (diff > 0) {
3135		/* Stepping up. */
3136		for (curr_sel = old_sel + rdev->desc->vsel_step;
3137		     curr_sel < new_selector;
3138		     curr_sel += rdev->desc->vsel_step) {
3139			/*
3140			 * Call the callback directly instead of using
3141			 * _regulator_call_set_voltage_sel() as we don't
3142			 * want to notify anyone yet. Same in the branch
3143			 * below.
3144			 */
3145			ret = ops->set_voltage_sel(rdev, curr_sel);
3146			if (ret)
3147				goto try_revert;
3148		}
3149	} else {
3150		/* Stepping down. */
3151		for (curr_sel = old_sel - rdev->desc->vsel_step;
3152		     curr_sel > new_selector;
3153		     curr_sel -= rdev->desc->vsel_step) {
3154			ret = ops->set_voltage_sel(rdev, curr_sel);
3155			if (ret)
3156				goto try_revert;
3157		}
3158	}
3159
3160final_set:
3161	/* The final selector will trigger the notifiers. */
3162	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3163
3164try_revert:
3165	/*
3166	 * At least try to return to the previous voltage if setting a new
3167	 * one failed.
3168	 */
3169	(void)ops->set_voltage_sel(rdev, old_sel);
3170	return ret;
3171}
3172
3173static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3174				       int old_uV, int new_uV)
3175{
3176	unsigned int ramp_delay = 0;
3177
3178	if (rdev->constraints->ramp_delay)
3179		ramp_delay = rdev->constraints->ramp_delay;
3180	else if (rdev->desc->ramp_delay)
3181		ramp_delay = rdev->desc->ramp_delay;
3182	else if (rdev->constraints->settling_time)
3183		return rdev->constraints->settling_time;
3184	else if (rdev->constraints->settling_time_up &&
3185		 (new_uV > old_uV))
3186		return rdev->constraints->settling_time_up;
3187	else if (rdev->constraints->settling_time_down &&
3188		 (new_uV < old_uV))
3189		return rdev->constraints->settling_time_down;
3190
3191	if (ramp_delay == 0) {
3192		rdev_dbg(rdev, "ramp_delay not set\n");
3193		return 0;
3194	}
3195
3196	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3197}
3198
3199static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3200				     int min_uV, int max_uV)
3201{
3202	int ret;
3203	int delay = 0;
3204	int best_val = 0;
3205	unsigned int selector;
3206	int old_selector = -1;
3207	const struct regulator_ops *ops = rdev->desc->ops;
3208	int old_uV = regulator_get_voltage_rdev(rdev);
3209
3210	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3211
3212	min_uV += rdev->constraints->uV_offset;
3213	max_uV += rdev->constraints->uV_offset;
3214
3215	/*
3216	 * If we can't obtain the old selector there is not enough
3217	 * info to call set_voltage_time_sel().
3218	 */
3219	if (_regulator_is_enabled(rdev) &&
3220	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3221		old_selector = ops->get_voltage_sel(rdev);
3222		if (old_selector < 0)
3223			return old_selector;
3224	}
3225
3226	if (ops->set_voltage) {
3227		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3228						  &selector);
3229
3230		if (ret >= 0) {
3231			if (ops->list_voltage)
3232				best_val = ops->list_voltage(rdev,
3233							     selector);
3234			else
3235				best_val = regulator_get_voltage_rdev(rdev);
3236		}
3237
3238	} else if (ops->set_voltage_sel) {
3239		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3240		if (ret >= 0) {
3241			best_val = ops->list_voltage(rdev, ret);
3242			if (min_uV <= best_val && max_uV >= best_val) {
3243				selector = ret;
3244				if (old_selector == selector)
3245					ret = 0;
3246				else if (rdev->desc->vsel_step)
3247					ret = _regulator_set_voltage_sel_step(
3248						rdev, best_val, selector);
3249				else
3250					ret = _regulator_call_set_voltage_sel(
3251						rdev, best_val, selector);
3252			} else {
3253				ret = -EINVAL;
3254			}
3255		}
3256	} else {
3257		ret = -EINVAL;
3258	}
3259
3260	if (ret)
3261		goto out;
3262
3263	if (ops->set_voltage_time_sel) {
3264		/*
3265		 * Call set_voltage_time_sel if successfully obtained
3266		 * old_selector
3267		 */
3268		if (old_selector >= 0 && old_selector != selector)
3269			delay = ops->set_voltage_time_sel(rdev, old_selector,
3270							  selector);
3271	} else {
3272		if (old_uV != best_val) {
3273			if (ops->set_voltage_time)
3274				delay = ops->set_voltage_time(rdev, old_uV,
3275							      best_val);
3276			else
3277				delay = _regulator_set_voltage_time(rdev,
3278								    old_uV,
3279								    best_val);
3280		}
3281	}
3282
3283	if (delay < 0) {
3284		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3285		delay = 0;
3286	}
3287
3288	/* Insert any necessary delays */
3289	if (delay >= 1000) {
3290		mdelay(delay / 1000);
3291		udelay(delay % 1000);
3292	} else if (delay) {
3293		udelay(delay);
3294	}
3295
3296	if (best_val >= 0) {
3297		unsigned long data = best_val;
3298
3299		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3300				     (void *)data);
3301	}
3302
3303out:
3304	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3305
3306	return ret;
3307}
3308
3309static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3310				  int min_uV, int max_uV, suspend_state_t state)
3311{
3312	struct regulator_state *rstate;
3313	int uV, sel;
3314
3315	rstate = regulator_get_suspend_state(rdev, state);
3316	if (rstate == NULL)
3317		return -EINVAL;
3318
3319	if (min_uV < rstate->min_uV)
3320		min_uV = rstate->min_uV;
3321	if (max_uV > rstate->max_uV)
3322		max_uV = rstate->max_uV;
3323
3324	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3325	if (sel < 0)
3326		return sel;
3327
3328	uV = rdev->desc->ops->list_voltage(rdev, sel);
3329	if (uV >= min_uV && uV <= max_uV)
3330		rstate->uV = uV;
3331
3332	return 0;
3333}
3334
3335static int regulator_set_voltage_unlocked(struct regulator *regulator,
3336					  int min_uV, int max_uV,
3337					  suspend_state_t state)
3338{
3339	struct regulator_dev *rdev = regulator->rdev;
3340	struct regulator_voltage *voltage = &regulator->voltage[state];
3341	int ret = 0;
3342	int old_min_uV, old_max_uV;
3343	int current_uV;
3344
3345	/* If we're setting the same range as last time the change
3346	 * should be a noop (some cpufreq implementations use the same
3347	 * voltage for multiple frequencies, for example).
3348	 */
3349	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3350		goto out;
3351
3352	/* If we're trying to set a range that overlaps the current voltage,
3353	 * return successfully even though the regulator does not support
3354	 * changing the voltage.
3355	 */
3356	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3357		current_uV = regulator_get_voltage_rdev(rdev);
3358		if (min_uV <= current_uV && current_uV <= max_uV) {
3359			voltage->min_uV = min_uV;
3360			voltage->max_uV = max_uV;
3361			goto out;
3362		}
3363	}
3364
3365	/* sanity check */
3366	if (!rdev->desc->ops->set_voltage &&
3367	    !rdev->desc->ops->set_voltage_sel) {
3368		ret = -EINVAL;
3369		goto out;
3370	}
3371
3372	/* constraints check */
3373	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3374	if (ret < 0)
3375		goto out;
3376
3377	/* restore original values in case of error */
3378	old_min_uV = voltage->min_uV;
3379	old_max_uV = voltage->max_uV;
3380	voltage->min_uV = min_uV;
3381	voltage->max_uV = max_uV;
3382
3383	/* for not coupled regulators this will just set the voltage */
3384	ret = regulator_balance_voltage(rdev, state);
3385	if (ret < 0) {
3386		voltage->min_uV = old_min_uV;
3387		voltage->max_uV = old_max_uV;
3388	}
3389
3390out:
3391	return ret;
3392}
3393
3394int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3395			       int max_uV, suspend_state_t state)
3396{
3397	int best_supply_uV = 0;
3398	int supply_change_uV = 0;
3399	int ret;
3400
3401	if (rdev->supply &&
3402	    regulator_ops_is_valid(rdev->supply->rdev,
3403				   REGULATOR_CHANGE_VOLTAGE) &&
3404	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3405					   rdev->desc->ops->get_voltage_sel))) {
3406		int current_supply_uV;
3407		int selector;
3408
3409		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3410		if (selector < 0) {
3411			ret = selector;
3412			goto out;
3413		}
3414
3415		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3416		if (best_supply_uV < 0) {
3417			ret = best_supply_uV;
3418			goto out;
3419		}
3420
3421		best_supply_uV += rdev->desc->min_dropout_uV;
3422
3423		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3424		if (current_supply_uV < 0) {
3425			ret = current_supply_uV;
3426			goto out;
3427		}
3428
3429		supply_change_uV = best_supply_uV - current_supply_uV;
3430	}
3431
3432	if (supply_change_uV > 0) {
3433		ret = regulator_set_voltage_unlocked(rdev->supply,
3434				best_supply_uV, INT_MAX, state);
3435		if (ret) {
3436			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3437					ret);
3438			goto out;
3439		}
3440	}
3441
3442	if (state == PM_SUSPEND_ON)
3443		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3444	else
3445		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3446							max_uV, state);
3447	if (ret < 0)
3448		goto out;
3449
3450	if (supply_change_uV < 0) {
3451		ret = regulator_set_voltage_unlocked(rdev->supply,
3452				best_supply_uV, INT_MAX, state);
3453		if (ret)
3454			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3455					ret);
3456		/* No need to fail here */
3457		ret = 0;
3458	}
3459
3460out:
3461	return ret;
3462}
 
3463
3464static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3465					int *current_uV, int *min_uV)
3466{
3467	struct regulation_constraints *constraints = rdev->constraints;
3468
3469	/* Limit voltage change only if necessary */
3470	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3471		return 1;
3472
3473	if (*current_uV < 0) {
3474		*current_uV = regulator_get_voltage_rdev(rdev);
3475
3476		if (*current_uV < 0)
3477			return *current_uV;
3478	}
3479
3480	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3481		return 1;
3482
3483	/* Clamp target voltage within the given step */
3484	if (*current_uV < *min_uV)
3485		*min_uV = min(*current_uV + constraints->max_uV_step,
3486			      *min_uV);
3487	else
3488		*min_uV = max(*current_uV - constraints->max_uV_step,
3489			      *min_uV);
3490
3491	return 0;
3492}
3493
3494static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3495					 int *current_uV,
3496					 int *min_uV, int *max_uV,
3497					 suspend_state_t state,
3498					 int n_coupled)
3499{
3500	struct coupling_desc *c_desc = &rdev->coupling_desc;
3501	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3502	struct regulation_constraints *constraints = rdev->constraints;
3503	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3504	int max_current_uV = 0, min_current_uV = INT_MAX;
3505	int highest_min_uV = 0, target_uV, possible_uV;
3506	int i, ret, max_spread;
3507	bool done;
3508
3509	*current_uV = -1;
3510
3511	/*
3512	 * If there are no coupled regulators, simply set the voltage
3513	 * demanded by consumers.
3514	 */
3515	if (n_coupled == 1) {
3516		/*
3517		 * If consumers don't provide any demands, set voltage
3518		 * to min_uV
3519		 */
3520		desired_min_uV = constraints->min_uV;
3521		desired_max_uV = constraints->max_uV;
3522
3523		ret = regulator_check_consumers(rdev,
3524						&desired_min_uV,
3525						&desired_max_uV, state);
3526		if (ret < 0)
3527			return ret;
3528
3529		possible_uV = desired_min_uV;
3530		done = true;
3531
3532		goto finish;
3533	}
3534
3535	/* Find highest min desired voltage */
3536	for (i = 0; i < n_coupled; i++) {
3537		int tmp_min = 0;
3538		int tmp_max = INT_MAX;
3539
3540		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3541
3542		ret = regulator_check_consumers(c_rdevs[i],
3543						&tmp_min,
3544						&tmp_max, state);
3545		if (ret < 0)
3546			return ret;
3547
3548		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3549		if (ret < 0)
3550			return ret;
3551
3552		highest_min_uV = max(highest_min_uV, tmp_min);
3553
3554		if (i == 0) {
3555			desired_min_uV = tmp_min;
3556			desired_max_uV = tmp_max;
3557		}
3558	}
3559
3560	max_spread = constraints->max_spread[0];
3561
3562	/*
3563	 * Let target_uV be equal to the desired one if possible.
3564	 * If not, set it to minimum voltage, allowed by other coupled
3565	 * regulators.
3566	 */
3567	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3568
3569	/*
3570	 * Find min and max voltages, which currently aren't violating
3571	 * max_spread.
3572	 */
3573	for (i = 1; i < n_coupled; i++) {
3574		int tmp_act;
3575
3576		if (!_regulator_is_enabled(c_rdevs[i]))
3577			continue;
3578
3579		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3580		if (tmp_act < 0)
3581			return tmp_act;
3582
3583		min_current_uV = min(tmp_act, min_current_uV);
3584		max_current_uV = max(tmp_act, max_current_uV);
3585	}
3586
3587	/* There aren't any other regulators enabled */
3588	if (max_current_uV == 0) {
3589		possible_uV = target_uV;
3590	} else {
3591		/*
3592		 * Correct target voltage, so as it currently isn't
3593		 * violating max_spread
3594		 */
3595		possible_uV = max(target_uV, max_current_uV - max_spread);
3596		possible_uV = min(possible_uV, min_current_uV + max_spread);
3597	}
3598
3599	if (possible_uV > desired_max_uV)
3600		return -EINVAL;
3601
3602	done = (possible_uV == target_uV);
3603	desired_min_uV = possible_uV;
3604
3605finish:
3606	/* Apply max_uV_step constraint if necessary */
3607	if (state == PM_SUSPEND_ON) {
3608		ret = regulator_limit_voltage_step(rdev, current_uV,
3609						   &desired_min_uV);
3610		if (ret < 0)
3611			return ret;
3612
3613		if (ret == 0)
3614			done = false;
3615	}
3616
3617	/* Set current_uV if wasn't done earlier in the code and if necessary */
3618	if (n_coupled > 1 && *current_uV == -1) {
3619
3620		if (_regulator_is_enabled(rdev)) {
3621			ret = regulator_get_voltage_rdev(rdev);
3622			if (ret < 0)
3623				return ret;
3624
3625			*current_uV = ret;
3626		} else {
3627			*current_uV = desired_min_uV;
3628		}
3629	}
3630
3631	*min_uV = desired_min_uV;
3632	*max_uV = desired_max_uV;
3633
3634	return done;
3635}
3636
3637static int regulator_balance_voltage(struct regulator_dev *rdev,
3638				     suspend_state_t state)
3639{
3640	struct regulator_dev **c_rdevs;
3641	struct regulator_dev *best_rdev;
3642	struct coupling_desc *c_desc = &rdev->coupling_desc;
3643	struct regulator_coupler *coupler = c_desc->coupler;
3644	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3645	unsigned int delta, best_delta;
3646	unsigned long c_rdev_done = 0;
3647	bool best_c_rdev_done;
3648
3649	c_rdevs = c_desc->coupled_rdevs;
3650	n_coupled = c_desc->n_coupled;
3651
3652	/*
3653	 * If system is in a state other than PM_SUSPEND_ON, don't check
3654	 * other coupled regulators.
3655	 */
3656	if (state != PM_SUSPEND_ON)
3657		n_coupled = 1;
3658
3659	if (c_desc->n_resolved < n_coupled) {
3660		rdev_err(rdev, "Not all coupled regulators registered\n");
3661		return -EPERM;
3662	}
3663
3664	/* Invoke custom balancer for customized couplers */
3665	if (coupler && coupler->balance_voltage)
3666		return coupler->balance_voltage(coupler, rdev, state);
3667
3668	/*
3669	 * Find the best possible voltage change on each loop. Leave the loop
3670	 * if there isn't any possible change.
3671	 */
3672	do {
3673		best_c_rdev_done = false;
3674		best_delta = 0;
3675		best_min_uV = 0;
3676		best_max_uV = 0;
3677		best_c_rdev = 0;
3678		best_rdev = NULL;
3679
3680		/*
3681		 * Find highest difference between optimal voltage
3682		 * and current voltage.
3683		 */
3684		for (i = 0; i < n_coupled; i++) {
3685			/*
3686			 * optimal_uV is the best voltage that can be set for
3687			 * i-th regulator at the moment without violating
3688			 * max_spread constraint in order to balance
3689			 * the coupled voltages.
3690			 */
3691			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3692
3693			if (test_bit(i, &c_rdev_done))
3694				continue;
3695
3696			ret = regulator_get_optimal_voltage(c_rdevs[i],
3697							    &current_uV,
3698							    &optimal_uV,
3699							    &optimal_max_uV,
3700							    state, n_coupled);
3701			if (ret < 0)
3702				goto out;
3703
3704			delta = abs(optimal_uV - current_uV);
3705
3706			if (delta && best_delta <= delta) {
3707				best_c_rdev_done = ret;
3708				best_delta = delta;
3709				best_rdev = c_rdevs[i];
3710				best_min_uV = optimal_uV;
3711				best_max_uV = optimal_max_uV;
3712				best_c_rdev = i;
3713			}
3714		}
3715
3716		/* Nothing to change, return successfully */
3717		if (!best_rdev) {
3718			ret = 0;
3719			goto out;
3720		}
3721
3722		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3723						 best_max_uV, state);
3724
3725		if (ret < 0)
3726			goto out;
3727
3728		if (best_c_rdev_done)
3729			set_bit(best_c_rdev, &c_rdev_done);
3730
3731	} while (n_coupled > 1);
3732
3733out:
3734	return ret;
3735}
3736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3737/**
3738 * regulator_set_voltage - set regulator output voltage
3739 * @regulator: regulator source
3740 * @min_uV: Minimum required voltage in uV
3741 * @max_uV: Maximum acceptable voltage in uV
3742 *
3743 * Sets a voltage regulator to the desired output voltage. This can be set
3744 * during any regulator state. IOW, regulator can be disabled or enabled.
3745 *
3746 * If the regulator is enabled then the voltage will change to the new value
3747 * immediately otherwise if the regulator is disabled the regulator will
3748 * output at the new voltage when enabled.
3749 *
3750 * NOTE: If the regulator is shared between several devices then the lowest
3751 * request voltage that meets the system constraints will be used.
3752 * Regulator system constraints must be set for this regulator before
3753 * calling this function otherwise this call will fail.
3754 */
3755int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3756{
3757	struct ww_acquire_ctx ww_ctx;
3758	int ret;
3759
3760	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3761
3762	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3763					     PM_SUSPEND_ON);
3764
3765	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3766
3767	return ret;
3768}
3769EXPORT_SYMBOL_GPL(regulator_set_voltage);
3770
3771static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3772					   suspend_state_t state, bool en)
3773{
3774	struct regulator_state *rstate;
3775
3776	rstate = regulator_get_suspend_state(rdev, state);
3777	if (rstate == NULL)
3778		return -EINVAL;
3779
3780	if (!rstate->changeable)
3781		return -EPERM;
3782
3783	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3784
3785	return 0;
3786}
3787
3788int regulator_suspend_enable(struct regulator_dev *rdev,
3789				    suspend_state_t state)
3790{
3791	return regulator_suspend_toggle(rdev, state, true);
3792}
3793EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3794
3795int regulator_suspend_disable(struct regulator_dev *rdev,
3796				     suspend_state_t state)
3797{
3798	struct regulator *regulator;
3799	struct regulator_voltage *voltage;
3800
3801	/*
3802	 * if any consumer wants this regulator device keeping on in
3803	 * suspend states, don't set it as disabled.
3804	 */
3805	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3806		voltage = &regulator->voltage[state];
3807		if (voltage->min_uV || voltage->max_uV)
3808			return 0;
3809	}
3810
3811	return regulator_suspend_toggle(rdev, state, false);
3812}
3813EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3814
3815static int _regulator_set_suspend_voltage(struct regulator *regulator,
3816					  int min_uV, int max_uV,
3817					  suspend_state_t state)
3818{
3819	struct regulator_dev *rdev = regulator->rdev;
3820	struct regulator_state *rstate;
3821
3822	rstate = regulator_get_suspend_state(rdev, state);
3823	if (rstate == NULL)
3824		return -EINVAL;
3825
3826	if (rstate->min_uV == rstate->max_uV) {
3827		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3828		return -EPERM;
3829	}
3830
3831	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3832}
3833
3834int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3835				  int max_uV, suspend_state_t state)
3836{
3837	struct ww_acquire_ctx ww_ctx;
3838	int ret;
3839
3840	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3841	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3842		return -EINVAL;
3843
3844	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3845
3846	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3847					     max_uV, state);
3848
3849	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3850
3851	return ret;
3852}
3853EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3854
3855/**
3856 * regulator_set_voltage_time - get raise/fall time
3857 * @regulator: regulator source
3858 * @old_uV: starting voltage in microvolts
3859 * @new_uV: target voltage in microvolts
3860 *
3861 * Provided with the starting and ending voltage, this function attempts to
3862 * calculate the time in microseconds required to rise or fall to this new
3863 * voltage.
3864 */
3865int regulator_set_voltage_time(struct regulator *regulator,
3866			       int old_uV, int new_uV)
3867{
3868	struct regulator_dev *rdev = regulator->rdev;
3869	const struct regulator_ops *ops = rdev->desc->ops;
3870	int old_sel = -1;
3871	int new_sel = -1;
3872	int voltage;
3873	int i;
3874
3875	if (ops->set_voltage_time)
3876		return ops->set_voltage_time(rdev, old_uV, new_uV);
3877	else if (!ops->set_voltage_time_sel)
3878		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3879
3880	/* Currently requires operations to do this */
3881	if (!ops->list_voltage || !rdev->desc->n_voltages)
3882		return -EINVAL;
3883
3884	for (i = 0; i < rdev->desc->n_voltages; i++) {
3885		/* We only look for exact voltage matches here */
3886		voltage = regulator_list_voltage(regulator, i);
3887		if (voltage < 0)
3888			return -EINVAL;
3889		if (voltage == 0)
3890			continue;
3891		if (voltage == old_uV)
3892			old_sel = i;
3893		if (voltage == new_uV)
3894			new_sel = i;
3895	}
3896
3897	if (old_sel < 0 || new_sel < 0)
3898		return -EINVAL;
3899
3900	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3901}
3902EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3903
3904/**
3905 * regulator_set_voltage_time_sel - get raise/fall time
3906 * @rdev: regulator source device
3907 * @old_selector: selector for starting voltage
3908 * @new_selector: selector for target voltage
3909 *
3910 * Provided with the starting and target voltage selectors, this function
3911 * returns time in microseconds required to rise or fall to this new voltage
3912 *
3913 * Drivers providing ramp_delay in regulation_constraints can use this as their
3914 * set_voltage_time_sel() operation.
3915 */
3916int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3917				   unsigned int old_selector,
3918				   unsigned int new_selector)
3919{
3920	int old_volt, new_volt;
3921
3922	/* sanity check */
3923	if (!rdev->desc->ops->list_voltage)
3924		return -EINVAL;
3925
3926	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3927	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3928
3929	if (rdev->desc->ops->set_voltage_time)
3930		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3931							 new_volt);
3932	else
3933		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3934}
3935EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3936
3937/**
3938 * regulator_sync_voltage - re-apply last regulator output voltage
3939 * @regulator: regulator source
3940 *
3941 * Re-apply the last configured voltage.  This is intended to be used
3942 * where some external control source the consumer is cooperating with
3943 * has caused the configured voltage to change.
3944 */
3945int regulator_sync_voltage(struct regulator *regulator)
3946{
3947	struct regulator_dev *rdev = regulator->rdev;
3948	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3949	int ret, min_uV, max_uV;
3950
3951	regulator_lock(rdev);
3952
3953	if (!rdev->desc->ops->set_voltage &&
3954	    !rdev->desc->ops->set_voltage_sel) {
3955		ret = -EINVAL;
3956		goto out;
3957	}
3958
3959	/* This is only going to work if we've had a voltage configured. */
3960	if (!voltage->min_uV && !voltage->max_uV) {
3961		ret = -EINVAL;
3962		goto out;
3963	}
3964
3965	min_uV = voltage->min_uV;
3966	max_uV = voltage->max_uV;
3967
3968	/* This should be a paranoia check... */
3969	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3970	if (ret < 0)
3971		goto out;
3972
3973	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3974	if (ret < 0)
3975		goto out;
3976
3977	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3978
3979out:
3980	regulator_unlock(rdev);
3981	return ret;
3982}
3983EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3984
3985int regulator_get_voltage_rdev(struct regulator_dev *rdev)
3986{
3987	int sel, ret;
3988	bool bypassed;
3989
3990	if (rdev->desc->ops->get_bypass) {
3991		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3992		if (ret < 0)
3993			return ret;
3994		if (bypassed) {
3995			/* if bypassed the regulator must have a supply */
3996			if (!rdev->supply) {
3997				rdev_err(rdev,
3998					 "bypassed regulator has no supply!\n");
3999				return -EPROBE_DEFER;
4000			}
4001
4002			return regulator_get_voltage_rdev(rdev->supply->rdev);
4003		}
4004	}
4005
4006	if (rdev->desc->ops->get_voltage_sel) {
4007		sel = rdev->desc->ops->get_voltage_sel(rdev);
4008		if (sel < 0)
4009			return sel;
4010		ret = rdev->desc->ops->list_voltage(rdev, sel);
4011	} else if (rdev->desc->ops->get_voltage) {
4012		ret = rdev->desc->ops->get_voltage(rdev);
4013	} else if (rdev->desc->ops->list_voltage) {
4014		ret = rdev->desc->ops->list_voltage(rdev, 0);
4015	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4016		ret = rdev->desc->fixed_uV;
4017	} else if (rdev->supply) {
4018		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4019	} else {
4020		return -EINVAL;
4021	}
4022
4023	if (ret < 0)
4024		return ret;
4025	return ret - rdev->constraints->uV_offset;
4026}
 
4027
4028/**
4029 * regulator_get_voltage - get regulator output voltage
4030 * @regulator: regulator source
4031 *
4032 * This returns the current regulator voltage in uV.
4033 *
4034 * NOTE: If the regulator is disabled it will return the voltage value. This
4035 * function should not be used to determine regulator state.
4036 */
4037int regulator_get_voltage(struct regulator *regulator)
4038{
4039	struct ww_acquire_ctx ww_ctx;
4040	int ret;
4041
4042	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4043	ret = regulator_get_voltage_rdev(regulator->rdev);
4044	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4045
4046	return ret;
4047}
4048EXPORT_SYMBOL_GPL(regulator_get_voltage);
4049
4050/**
4051 * regulator_set_current_limit - set regulator output current limit
4052 * @regulator: regulator source
4053 * @min_uA: Minimum supported current in uA
4054 * @max_uA: Maximum supported current in uA
4055 *
4056 * Sets current sink to the desired output current. This can be set during
4057 * any regulator state. IOW, regulator can be disabled or enabled.
4058 *
4059 * If the regulator is enabled then the current will change to the new value
4060 * immediately otherwise if the regulator is disabled the regulator will
4061 * output at the new current when enabled.
4062 *
4063 * NOTE: Regulator system constraints must be set for this regulator before
4064 * calling this function otherwise this call will fail.
4065 */
4066int regulator_set_current_limit(struct regulator *regulator,
4067			       int min_uA, int max_uA)
4068{
4069	struct regulator_dev *rdev = regulator->rdev;
4070	int ret;
4071
4072	regulator_lock(rdev);
4073
4074	/* sanity check */
4075	if (!rdev->desc->ops->set_current_limit) {
4076		ret = -EINVAL;
4077		goto out;
4078	}
4079
4080	/* constraints check */
4081	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4082	if (ret < 0)
4083		goto out;
4084
4085	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4086out:
4087	regulator_unlock(rdev);
4088	return ret;
4089}
4090EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4091
4092static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4093{
4094	/* sanity check */
4095	if (!rdev->desc->ops->get_current_limit)
4096		return -EINVAL;
4097
4098	return rdev->desc->ops->get_current_limit(rdev);
4099}
4100
4101static int _regulator_get_current_limit(struct regulator_dev *rdev)
4102{
4103	int ret;
4104
4105	regulator_lock(rdev);
4106	ret = _regulator_get_current_limit_unlocked(rdev);
4107	regulator_unlock(rdev);
4108
4109	return ret;
4110}
4111
4112/**
4113 * regulator_get_current_limit - get regulator output current
4114 * @regulator: regulator source
4115 *
4116 * This returns the current supplied by the specified current sink in uA.
4117 *
4118 * NOTE: If the regulator is disabled it will return the current value. This
4119 * function should not be used to determine regulator state.
4120 */
4121int regulator_get_current_limit(struct regulator *regulator)
4122{
4123	return _regulator_get_current_limit(regulator->rdev);
4124}
4125EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4126
4127/**
4128 * regulator_set_mode - set regulator operating mode
4129 * @regulator: regulator source
4130 * @mode: operating mode - one of the REGULATOR_MODE constants
4131 *
4132 * Set regulator operating mode to increase regulator efficiency or improve
4133 * regulation performance.
4134 *
4135 * NOTE: Regulator system constraints must be set for this regulator before
4136 * calling this function otherwise this call will fail.
4137 */
4138int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4139{
4140	struct regulator_dev *rdev = regulator->rdev;
4141	int ret;
4142	int regulator_curr_mode;
4143
4144	regulator_lock(rdev);
4145
4146	/* sanity check */
4147	if (!rdev->desc->ops->set_mode) {
4148		ret = -EINVAL;
4149		goto out;
4150	}
4151
4152	/* return if the same mode is requested */
4153	if (rdev->desc->ops->get_mode) {
4154		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4155		if (regulator_curr_mode == mode) {
4156			ret = 0;
4157			goto out;
4158		}
4159	}
4160
4161	/* constraints check */
4162	ret = regulator_mode_constrain(rdev, &mode);
4163	if (ret < 0)
4164		goto out;
4165
4166	ret = rdev->desc->ops->set_mode(rdev, mode);
4167out:
4168	regulator_unlock(rdev);
4169	return ret;
4170}
4171EXPORT_SYMBOL_GPL(regulator_set_mode);
4172
4173static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4174{
4175	/* sanity check */
4176	if (!rdev->desc->ops->get_mode)
4177		return -EINVAL;
4178
4179	return rdev->desc->ops->get_mode(rdev);
4180}
4181
4182static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4183{
4184	int ret;
4185
4186	regulator_lock(rdev);
4187	ret = _regulator_get_mode_unlocked(rdev);
4188	regulator_unlock(rdev);
4189
4190	return ret;
4191}
4192
4193/**
4194 * regulator_get_mode - get regulator operating mode
4195 * @regulator: regulator source
4196 *
4197 * Get the current regulator operating mode.
4198 */
4199unsigned int regulator_get_mode(struct regulator *regulator)
4200{
4201	return _regulator_get_mode(regulator->rdev);
4202}
4203EXPORT_SYMBOL_GPL(regulator_get_mode);
4204
4205static int _regulator_get_error_flags(struct regulator_dev *rdev,
4206					unsigned int *flags)
4207{
4208	int ret;
4209
4210	regulator_lock(rdev);
4211
4212	/* sanity check */
4213	if (!rdev->desc->ops->get_error_flags) {
4214		ret = -EINVAL;
4215		goto out;
4216	}
4217
4218	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4219out:
4220	regulator_unlock(rdev);
4221	return ret;
4222}
4223
4224/**
4225 * regulator_get_error_flags - get regulator error information
4226 * @regulator: regulator source
4227 * @flags: pointer to store error flags
4228 *
4229 * Get the current regulator error information.
4230 */
4231int regulator_get_error_flags(struct regulator *regulator,
4232				unsigned int *flags)
4233{
4234	return _regulator_get_error_flags(regulator->rdev, flags);
4235}
4236EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4237
4238/**
4239 * regulator_set_load - set regulator load
4240 * @regulator: regulator source
4241 * @uA_load: load current
4242 *
4243 * Notifies the regulator core of a new device load. This is then used by
4244 * DRMS (if enabled by constraints) to set the most efficient regulator
4245 * operating mode for the new regulator loading.
4246 *
4247 * Consumer devices notify their supply regulator of the maximum power
4248 * they will require (can be taken from device datasheet in the power
4249 * consumption tables) when they change operational status and hence power
4250 * state. Examples of operational state changes that can affect power
4251 * consumption are :-
4252 *
4253 *    o Device is opened / closed.
4254 *    o Device I/O is about to begin or has just finished.
4255 *    o Device is idling in between work.
4256 *
4257 * This information is also exported via sysfs to userspace.
4258 *
4259 * DRMS will sum the total requested load on the regulator and change
4260 * to the most efficient operating mode if platform constraints allow.
4261 *
4262 * NOTE: when a regulator consumer requests to have a regulator
4263 * disabled then any load that consumer requested no longer counts
4264 * toward the total requested load.  If the regulator is re-enabled
4265 * then the previously requested load will start counting again.
4266 *
4267 * If a regulator is an always-on regulator then an individual consumer's
4268 * load will still be removed if that consumer is fully disabled.
4269 *
4270 * On error a negative errno is returned.
4271 */
4272int regulator_set_load(struct regulator *regulator, int uA_load)
4273{
4274	struct regulator_dev *rdev = regulator->rdev;
4275	int old_uA_load;
4276	int ret = 0;
4277
4278	regulator_lock(rdev);
4279	old_uA_load = regulator->uA_load;
4280	regulator->uA_load = uA_load;
4281	if (regulator->enable_count && old_uA_load != uA_load) {
4282		ret = drms_uA_update(rdev);
4283		if (ret < 0)
4284			regulator->uA_load = old_uA_load;
4285	}
4286	regulator_unlock(rdev);
4287
4288	return ret;
4289}
4290EXPORT_SYMBOL_GPL(regulator_set_load);
4291
4292/**
4293 * regulator_allow_bypass - allow the regulator to go into bypass mode
4294 *
4295 * @regulator: Regulator to configure
4296 * @enable: enable or disable bypass mode
4297 *
4298 * Allow the regulator to go into bypass mode if all other consumers
4299 * for the regulator also enable bypass mode and the machine
4300 * constraints allow this.  Bypass mode means that the regulator is
4301 * simply passing the input directly to the output with no regulation.
4302 */
4303int regulator_allow_bypass(struct regulator *regulator, bool enable)
4304{
4305	struct regulator_dev *rdev = regulator->rdev;
 
4306	int ret = 0;
4307
4308	if (!rdev->desc->ops->set_bypass)
4309		return 0;
4310
4311	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4312		return 0;
4313
4314	regulator_lock(rdev);
4315
4316	if (enable && !regulator->bypass) {
4317		rdev->bypass_count++;
4318
4319		if (rdev->bypass_count == rdev->open_count) {
 
 
4320			ret = rdev->desc->ops->set_bypass(rdev, enable);
4321			if (ret != 0)
4322				rdev->bypass_count--;
 
 
4323		}
4324
4325	} else if (!enable && regulator->bypass) {
4326		rdev->bypass_count--;
4327
4328		if (rdev->bypass_count != rdev->open_count) {
 
 
4329			ret = rdev->desc->ops->set_bypass(rdev, enable);
4330			if (ret != 0)
4331				rdev->bypass_count++;
 
 
4332		}
4333	}
4334
4335	if (ret == 0)
4336		regulator->bypass = enable;
4337
4338	regulator_unlock(rdev);
4339
4340	return ret;
4341}
4342EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4343
4344/**
4345 * regulator_register_notifier - register regulator event notifier
4346 * @regulator: regulator source
4347 * @nb: notifier block
4348 *
4349 * Register notifier block to receive regulator events.
4350 */
4351int regulator_register_notifier(struct regulator *regulator,
4352			      struct notifier_block *nb)
4353{
4354	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4355						nb);
4356}
4357EXPORT_SYMBOL_GPL(regulator_register_notifier);
4358
4359/**
4360 * regulator_unregister_notifier - unregister regulator event notifier
4361 * @regulator: regulator source
4362 * @nb: notifier block
4363 *
4364 * Unregister regulator event notifier block.
4365 */
4366int regulator_unregister_notifier(struct regulator *regulator,
4367				struct notifier_block *nb)
4368{
4369	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4370						  nb);
4371}
4372EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4373
4374/* notify regulator consumers and downstream regulator consumers.
4375 * Note mutex must be held by caller.
4376 */
4377static int _notifier_call_chain(struct regulator_dev *rdev,
4378				  unsigned long event, void *data)
4379{
4380	/* call rdev chain first */
4381	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4382}
4383
4384/**
4385 * regulator_bulk_get - get multiple regulator consumers
4386 *
4387 * @dev:           Device to supply
4388 * @num_consumers: Number of consumers to register
4389 * @consumers:     Configuration of consumers; clients are stored here.
4390 *
4391 * @return 0 on success, an errno on failure.
4392 *
4393 * This helper function allows drivers to get several regulator
4394 * consumers in one operation.  If any of the regulators cannot be
4395 * acquired then any regulators that were allocated will be freed
4396 * before returning to the caller.
4397 */
4398int regulator_bulk_get(struct device *dev, int num_consumers,
4399		       struct regulator_bulk_data *consumers)
4400{
4401	int i;
4402	int ret;
4403
4404	for (i = 0; i < num_consumers; i++)
4405		consumers[i].consumer = NULL;
4406
4407	for (i = 0; i < num_consumers; i++) {
4408		consumers[i].consumer = regulator_get(dev,
4409						      consumers[i].supply);
4410		if (IS_ERR(consumers[i].consumer)) {
4411			ret = PTR_ERR(consumers[i].consumer);
4412			consumers[i].consumer = NULL;
4413			goto err;
4414		}
4415	}
4416
4417	return 0;
4418
4419err:
4420	if (ret != -EPROBE_DEFER)
4421		dev_err(dev, "Failed to get supply '%s': %d\n",
4422			consumers[i].supply, ret);
4423	else
4424		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4425			consumers[i].supply);
4426
4427	while (--i >= 0)
4428		regulator_put(consumers[i].consumer);
4429
4430	return ret;
4431}
4432EXPORT_SYMBOL_GPL(regulator_bulk_get);
4433
4434static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4435{
4436	struct regulator_bulk_data *bulk = data;
4437
4438	bulk->ret = regulator_enable(bulk->consumer);
4439}
4440
4441/**
4442 * regulator_bulk_enable - enable multiple regulator consumers
4443 *
4444 * @num_consumers: Number of consumers
4445 * @consumers:     Consumer data; clients are stored here.
4446 * @return         0 on success, an errno on failure
4447 *
4448 * This convenience API allows consumers to enable multiple regulator
4449 * clients in a single API call.  If any consumers cannot be enabled
4450 * then any others that were enabled will be disabled again prior to
4451 * return.
4452 */
4453int regulator_bulk_enable(int num_consumers,
4454			  struct regulator_bulk_data *consumers)
4455{
4456	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4457	int i;
4458	int ret = 0;
4459
4460	for (i = 0; i < num_consumers; i++) {
4461		async_schedule_domain(regulator_bulk_enable_async,
4462				      &consumers[i], &async_domain);
4463	}
4464
4465	async_synchronize_full_domain(&async_domain);
4466
4467	/* If any consumer failed we need to unwind any that succeeded */
4468	for (i = 0; i < num_consumers; i++) {
4469		if (consumers[i].ret != 0) {
4470			ret = consumers[i].ret;
4471			goto err;
4472		}
4473	}
4474
4475	return 0;
4476
4477err:
4478	for (i = 0; i < num_consumers; i++) {
4479		if (consumers[i].ret < 0)
4480			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4481			       consumers[i].ret);
4482		else
4483			regulator_disable(consumers[i].consumer);
4484	}
4485
4486	return ret;
4487}
4488EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4489
4490/**
4491 * regulator_bulk_disable - disable multiple regulator consumers
4492 *
4493 * @num_consumers: Number of consumers
4494 * @consumers:     Consumer data; clients are stored here.
4495 * @return         0 on success, an errno on failure
4496 *
4497 * This convenience API allows consumers to disable multiple regulator
4498 * clients in a single API call.  If any consumers cannot be disabled
4499 * then any others that were disabled will be enabled again prior to
4500 * return.
4501 */
4502int regulator_bulk_disable(int num_consumers,
4503			   struct regulator_bulk_data *consumers)
4504{
4505	int i;
4506	int ret, r;
4507
4508	for (i = num_consumers - 1; i >= 0; --i) {
4509		ret = regulator_disable(consumers[i].consumer);
4510		if (ret != 0)
4511			goto err;
4512	}
4513
4514	return 0;
4515
4516err:
4517	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4518	for (++i; i < num_consumers; ++i) {
4519		r = regulator_enable(consumers[i].consumer);
4520		if (r != 0)
4521			pr_err("Failed to re-enable %s: %d\n",
4522			       consumers[i].supply, r);
4523	}
4524
4525	return ret;
4526}
4527EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4528
4529/**
4530 * regulator_bulk_force_disable - force disable multiple regulator consumers
4531 *
4532 * @num_consumers: Number of consumers
4533 * @consumers:     Consumer data; clients are stored here.
4534 * @return         0 on success, an errno on failure
4535 *
4536 * This convenience API allows consumers to forcibly disable multiple regulator
4537 * clients in a single API call.
4538 * NOTE: This should be used for situations when device damage will
4539 * likely occur if the regulators are not disabled (e.g. over temp).
4540 * Although regulator_force_disable function call for some consumers can
4541 * return error numbers, the function is called for all consumers.
4542 */
4543int regulator_bulk_force_disable(int num_consumers,
4544			   struct regulator_bulk_data *consumers)
4545{
4546	int i;
4547	int ret = 0;
4548
4549	for (i = 0; i < num_consumers; i++) {
4550		consumers[i].ret =
4551			    regulator_force_disable(consumers[i].consumer);
4552
4553		/* Store first error for reporting */
4554		if (consumers[i].ret && !ret)
4555			ret = consumers[i].ret;
4556	}
4557
4558	return ret;
4559}
4560EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4561
4562/**
4563 * regulator_bulk_free - free multiple regulator consumers
4564 *
4565 * @num_consumers: Number of consumers
4566 * @consumers:     Consumer data; clients are stored here.
4567 *
4568 * This convenience API allows consumers to free multiple regulator
4569 * clients in a single API call.
4570 */
4571void regulator_bulk_free(int num_consumers,
4572			 struct regulator_bulk_data *consumers)
4573{
4574	int i;
4575
4576	for (i = 0; i < num_consumers; i++) {
4577		regulator_put(consumers[i].consumer);
4578		consumers[i].consumer = NULL;
4579	}
4580}
4581EXPORT_SYMBOL_GPL(regulator_bulk_free);
4582
4583/**
4584 * regulator_notifier_call_chain - call regulator event notifier
4585 * @rdev: regulator source
4586 * @event: notifier block
4587 * @data: callback-specific data.
4588 *
4589 * Called by regulator drivers to notify clients a regulator event has
4590 * occurred. We also notify regulator clients downstream.
4591 * Note lock must be held by caller.
4592 */
4593int regulator_notifier_call_chain(struct regulator_dev *rdev,
4594				  unsigned long event, void *data)
4595{
4596	lockdep_assert_held_once(&rdev->mutex.base);
4597
4598	_notifier_call_chain(rdev, event, data);
4599	return NOTIFY_DONE;
4600
4601}
4602EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4603
4604/**
4605 * regulator_mode_to_status - convert a regulator mode into a status
4606 *
4607 * @mode: Mode to convert
4608 *
4609 * Convert a regulator mode into a status.
4610 */
4611int regulator_mode_to_status(unsigned int mode)
4612{
4613	switch (mode) {
4614	case REGULATOR_MODE_FAST:
4615		return REGULATOR_STATUS_FAST;
4616	case REGULATOR_MODE_NORMAL:
4617		return REGULATOR_STATUS_NORMAL;
4618	case REGULATOR_MODE_IDLE:
4619		return REGULATOR_STATUS_IDLE;
4620	case REGULATOR_MODE_STANDBY:
4621		return REGULATOR_STATUS_STANDBY;
4622	default:
4623		return REGULATOR_STATUS_UNDEFINED;
4624	}
4625}
4626EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4627
4628static struct attribute *regulator_dev_attrs[] = {
4629	&dev_attr_name.attr,
4630	&dev_attr_num_users.attr,
4631	&dev_attr_type.attr,
4632	&dev_attr_microvolts.attr,
4633	&dev_attr_microamps.attr,
4634	&dev_attr_opmode.attr,
4635	&dev_attr_state.attr,
4636	&dev_attr_status.attr,
4637	&dev_attr_bypass.attr,
4638	&dev_attr_requested_microamps.attr,
4639	&dev_attr_min_microvolts.attr,
4640	&dev_attr_max_microvolts.attr,
4641	&dev_attr_min_microamps.attr,
4642	&dev_attr_max_microamps.attr,
4643	&dev_attr_suspend_standby_state.attr,
4644	&dev_attr_suspend_mem_state.attr,
4645	&dev_attr_suspend_disk_state.attr,
4646	&dev_attr_suspend_standby_microvolts.attr,
4647	&dev_attr_suspend_mem_microvolts.attr,
4648	&dev_attr_suspend_disk_microvolts.attr,
4649	&dev_attr_suspend_standby_mode.attr,
4650	&dev_attr_suspend_mem_mode.attr,
4651	&dev_attr_suspend_disk_mode.attr,
4652	NULL
4653};
4654
4655/*
4656 * To avoid cluttering sysfs (and memory) with useless state, only
4657 * create attributes that can be meaningfully displayed.
4658 */
4659static umode_t regulator_attr_is_visible(struct kobject *kobj,
4660					 struct attribute *attr, int idx)
4661{
4662	struct device *dev = kobj_to_dev(kobj);
4663	struct regulator_dev *rdev = dev_to_rdev(dev);
4664	const struct regulator_ops *ops = rdev->desc->ops;
4665	umode_t mode = attr->mode;
4666
4667	/* these three are always present */
4668	if (attr == &dev_attr_name.attr ||
4669	    attr == &dev_attr_num_users.attr ||
4670	    attr == &dev_attr_type.attr)
4671		return mode;
4672
4673	/* some attributes need specific methods to be displayed */
4674	if (attr == &dev_attr_microvolts.attr) {
4675		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4676		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4677		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4678		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4679			return mode;
4680		return 0;
4681	}
4682
4683	if (attr == &dev_attr_microamps.attr)
4684		return ops->get_current_limit ? mode : 0;
4685
4686	if (attr == &dev_attr_opmode.attr)
4687		return ops->get_mode ? mode : 0;
4688
4689	if (attr == &dev_attr_state.attr)
4690		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4691
4692	if (attr == &dev_attr_status.attr)
4693		return ops->get_status ? mode : 0;
4694
4695	if (attr == &dev_attr_bypass.attr)
4696		return ops->get_bypass ? mode : 0;
4697
4698	/* constraints need specific supporting methods */
4699	if (attr == &dev_attr_min_microvolts.attr ||
4700	    attr == &dev_attr_max_microvolts.attr)
4701		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4702
4703	if (attr == &dev_attr_min_microamps.attr ||
4704	    attr == &dev_attr_max_microamps.attr)
4705		return ops->set_current_limit ? mode : 0;
4706
4707	if (attr == &dev_attr_suspend_standby_state.attr ||
4708	    attr == &dev_attr_suspend_mem_state.attr ||
4709	    attr == &dev_attr_suspend_disk_state.attr)
4710		return mode;
4711
4712	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4713	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4714	    attr == &dev_attr_suspend_disk_microvolts.attr)
4715		return ops->set_suspend_voltage ? mode : 0;
4716
4717	if (attr == &dev_attr_suspend_standby_mode.attr ||
4718	    attr == &dev_attr_suspend_mem_mode.attr ||
4719	    attr == &dev_attr_suspend_disk_mode.attr)
4720		return ops->set_suspend_mode ? mode : 0;
4721
4722	return mode;
4723}
4724
4725static const struct attribute_group regulator_dev_group = {
4726	.attrs = regulator_dev_attrs,
4727	.is_visible = regulator_attr_is_visible,
4728};
4729
4730static const struct attribute_group *regulator_dev_groups[] = {
4731	&regulator_dev_group,
4732	NULL
4733};
4734
4735static void regulator_dev_release(struct device *dev)
4736{
4737	struct regulator_dev *rdev = dev_get_drvdata(dev);
4738
4739	kfree(rdev->constraints);
4740	of_node_put(rdev->dev.of_node);
4741	kfree(rdev);
4742}
4743
4744static void rdev_init_debugfs(struct regulator_dev *rdev)
4745{
4746	struct device *parent = rdev->dev.parent;
4747	const char *rname = rdev_get_name(rdev);
4748	char name[NAME_MAX];
4749
4750	/* Avoid duplicate debugfs directory names */
4751	if (parent && rname == rdev->desc->name) {
4752		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4753			 rname);
4754		rname = name;
4755	}
4756
4757	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4758	if (!rdev->debugfs) {
4759		rdev_warn(rdev, "Failed to create debugfs directory\n");
4760		return;
4761	}
4762
4763	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4764			   &rdev->use_count);
4765	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4766			   &rdev->open_count);
4767	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4768			   &rdev->bypass_count);
4769}
4770
4771static int regulator_register_resolve_supply(struct device *dev, void *data)
4772{
4773	struct regulator_dev *rdev = dev_to_rdev(dev);
4774
4775	if (regulator_resolve_supply(rdev))
4776		rdev_dbg(rdev, "unable to resolve supply\n");
4777
4778	return 0;
4779}
4780
4781int regulator_coupler_register(struct regulator_coupler *coupler)
4782{
4783	mutex_lock(&regulator_list_mutex);
4784	list_add_tail(&coupler->list, &regulator_coupler_list);
4785	mutex_unlock(&regulator_list_mutex);
4786
4787	return 0;
4788}
4789
4790static struct regulator_coupler *
4791regulator_find_coupler(struct regulator_dev *rdev)
4792{
4793	struct regulator_coupler *coupler;
4794	int err;
4795
4796	/*
4797	 * Note that regulators are appended to the list and the generic
4798	 * coupler is registered first, hence it will be attached at last
4799	 * if nobody cared.
4800	 */
4801	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4802		err = coupler->attach_regulator(coupler, rdev);
4803		if (!err) {
4804			if (!coupler->balance_voltage &&
4805			    rdev->coupling_desc.n_coupled > 2)
4806				goto err_unsupported;
4807
4808			return coupler;
4809		}
4810
4811		if (err < 0)
4812			return ERR_PTR(err);
4813
4814		if (err == 1)
4815			continue;
4816
4817		break;
4818	}
4819
4820	return ERR_PTR(-EINVAL);
4821
4822err_unsupported:
4823	if (coupler->detach_regulator)
4824		coupler->detach_regulator(coupler, rdev);
4825
4826	rdev_err(rdev,
4827		"Voltage balancing for multiple regulator couples is unimplemented\n");
4828
4829	return ERR_PTR(-EPERM);
4830}
4831
4832static void regulator_resolve_coupling(struct regulator_dev *rdev)
4833{
4834	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4835	struct coupling_desc *c_desc = &rdev->coupling_desc;
4836	int n_coupled = c_desc->n_coupled;
4837	struct regulator_dev *c_rdev;
4838	int i;
4839
4840	for (i = 1; i < n_coupled; i++) {
4841		/* already resolved */
4842		if (c_desc->coupled_rdevs[i])
4843			continue;
4844
4845		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4846
4847		if (!c_rdev)
4848			continue;
4849
4850		if (c_rdev->coupling_desc.coupler != coupler) {
4851			rdev_err(rdev, "coupler mismatch with %s\n",
4852				 rdev_get_name(c_rdev));
4853			return;
4854		}
4855
4856		regulator_lock(c_rdev);
4857
4858		c_desc->coupled_rdevs[i] = c_rdev;
4859		c_desc->n_resolved++;
4860
4861		regulator_unlock(c_rdev);
4862
4863		regulator_resolve_coupling(c_rdev);
4864	}
4865}
4866
4867static void regulator_remove_coupling(struct regulator_dev *rdev)
4868{
4869	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4870	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4871	struct regulator_dev *__c_rdev, *c_rdev;
4872	unsigned int __n_coupled, n_coupled;
4873	int i, k;
4874	int err;
4875
4876	n_coupled = c_desc->n_coupled;
4877
4878	for (i = 1; i < n_coupled; i++) {
4879		c_rdev = c_desc->coupled_rdevs[i];
4880
4881		if (!c_rdev)
4882			continue;
4883
4884		regulator_lock(c_rdev);
4885
4886		__c_desc = &c_rdev->coupling_desc;
4887		__n_coupled = __c_desc->n_coupled;
4888
4889		for (k = 1; k < __n_coupled; k++) {
4890			__c_rdev = __c_desc->coupled_rdevs[k];
4891
4892			if (__c_rdev == rdev) {
4893				__c_desc->coupled_rdevs[k] = NULL;
4894				__c_desc->n_resolved--;
4895				break;
4896			}
4897		}
4898
4899		regulator_unlock(c_rdev);
4900
4901		c_desc->coupled_rdevs[i] = NULL;
4902		c_desc->n_resolved--;
4903	}
4904
4905	if (coupler && coupler->detach_regulator) {
4906		err = coupler->detach_regulator(coupler, rdev);
4907		if (err)
4908			rdev_err(rdev, "failed to detach from coupler: %d\n",
4909				 err);
4910	}
4911
4912	kfree(rdev->coupling_desc.coupled_rdevs);
4913	rdev->coupling_desc.coupled_rdevs = NULL;
4914}
4915
4916static int regulator_init_coupling(struct regulator_dev *rdev)
4917{
4918	int err, n_phandles;
4919	size_t alloc_size;
4920
4921	if (!IS_ENABLED(CONFIG_OF))
4922		n_phandles = 0;
4923	else
4924		n_phandles = of_get_n_coupled(rdev);
4925
4926	alloc_size = sizeof(*rdev) * (n_phandles + 1);
4927
4928	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
4929	if (!rdev->coupling_desc.coupled_rdevs)
4930		return -ENOMEM;
4931
4932	/*
4933	 * Every regulator should always have coupling descriptor filled with
4934	 * at least pointer to itself.
4935	 */
4936	rdev->coupling_desc.coupled_rdevs[0] = rdev;
4937	rdev->coupling_desc.n_coupled = n_phandles + 1;
4938	rdev->coupling_desc.n_resolved++;
4939
4940	/* regulator isn't coupled */
4941	if (n_phandles == 0)
4942		return 0;
4943
4944	if (!of_check_coupling_data(rdev))
4945		return -EPERM;
4946
 
4947	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
 
 
4948	if (IS_ERR(rdev->coupling_desc.coupler)) {
4949		err = PTR_ERR(rdev->coupling_desc.coupler);
4950		rdev_err(rdev, "failed to get coupler: %d\n", err);
4951		return err;
4952	}
4953
4954	return 0;
4955}
4956
4957static int generic_coupler_attach(struct regulator_coupler *coupler,
4958				  struct regulator_dev *rdev)
4959{
4960	if (rdev->coupling_desc.n_coupled > 2) {
4961		rdev_err(rdev,
4962			 "Voltage balancing for multiple regulator couples is unimplemented\n");
4963		return -EPERM;
4964	}
4965
 
 
 
 
 
 
4966	return 0;
4967}
4968
4969static struct regulator_coupler generic_regulator_coupler = {
4970	.attach_regulator = generic_coupler_attach,
4971};
4972
4973/**
4974 * regulator_register - register regulator
4975 * @regulator_desc: regulator to register
4976 * @cfg: runtime configuration for regulator
4977 *
4978 * Called by regulator drivers to register a regulator.
4979 * Returns a valid pointer to struct regulator_dev on success
4980 * or an ERR_PTR() on error.
4981 */
4982struct regulator_dev *
4983regulator_register(const struct regulator_desc *regulator_desc,
4984		   const struct regulator_config *cfg)
4985{
4986	const struct regulation_constraints *constraints = NULL;
4987	const struct regulator_init_data *init_data;
4988	struct regulator_config *config = NULL;
4989	static atomic_t regulator_no = ATOMIC_INIT(-1);
4990	struct regulator_dev *rdev;
4991	bool dangling_cfg_gpiod = false;
4992	bool dangling_of_gpiod = false;
4993	struct device *dev;
4994	int ret, i;
4995
4996	if (cfg == NULL)
4997		return ERR_PTR(-EINVAL);
4998	if (cfg->ena_gpiod)
4999		dangling_cfg_gpiod = true;
5000	if (regulator_desc == NULL) {
5001		ret = -EINVAL;
5002		goto rinse;
5003	}
5004
5005	dev = cfg->dev;
5006	WARN_ON(!dev);
5007
5008	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5009		ret = -EINVAL;
5010		goto rinse;
5011	}
5012
5013	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5014	    regulator_desc->type != REGULATOR_CURRENT) {
5015		ret = -EINVAL;
5016		goto rinse;
5017	}
5018
5019	/* Only one of each should be implemented */
5020	WARN_ON(regulator_desc->ops->get_voltage &&
5021		regulator_desc->ops->get_voltage_sel);
5022	WARN_ON(regulator_desc->ops->set_voltage &&
5023		regulator_desc->ops->set_voltage_sel);
5024
5025	/* If we're using selectors we must implement list_voltage. */
5026	if (regulator_desc->ops->get_voltage_sel &&
5027	    !regulator_desc->ops->list_voltage) {
5028		ret = -EINVAL;
5029		goto rinse;
5030	}
5031	if (regulator_desc->ops->set_voltage_sel &&
5032	    !regulator_desc->ops->list_voltage) {
5033		ret = -EINVAL;
5034		goto rinse;
5035	}
5036
5037	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5038	if (rdev == NULL) {
5039		ret = -ENOMEM;
5040		goto rinse;
5041	}
 
5042
5043	/*
5044	 * Duplicate the config so the driver could override it after
5045	 * parsing init data.
5046	 */
5047	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5048	if (config == NULL) {
5049		kfree(rdev);
5050		ret = -ENOMEM;
5051		goto rinse;
5052	}
5053
5054	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5055					       &rdev->dev.of_node);
5056
5057	/*
5058	 * Sometimes not all resources are probed already so we need to take
5059	 * that into account. This happens most the time if the ena_gpiod comes
5060	 * from a gpio extender or something else.
5061	 */
5062	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5063		kfree(config);
5064		kfree(rdev);
5065		ret = -EPROBE_DEFER;
5066		goto rinse;
5067	}
5068
5069	/*
5070	 * We need to keep track of any GPIO descriptor coming from the
5071	 * device tree until we have handled it over to the core. If the
5072	 * config that was passed in to this function DOES NOT contain
5073	 * a descriptor, and the config after this call DOES contain
5074	 * a descriptor, we definitely got one from parsing the device
5075	 * tree.
5076	 */
5077	if (!cfg->ena_gpiod && config->ena_gpiod)
5078		dangling_of_gpiod = true;
5079	if (!init_data) {
5080		init_data = config->init_data;
5081		rdev->dev.of_node = of_node_get(config->of_node);
5082	}
5083
5084	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5085	rdev->reg_data = config->driver_data;
5086	rdev->owner = regulator_desc->owner;
5087	rdev->desc = regulator_desc;
5088	if (config->regmap)
5089		rdev->regmap = config->regmap;
5090	else if (dev_get_regmap(dev, NULL))
5091		rdev->regmap = dev_get_regmap(dev, NULL);
5092	else if (dev->parent)
5093		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5094	INIT_LIST_HEAD(&rdev->consumer_list);
5095	INIT_LIST_HEAD(&rdev->list);
5096	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5097	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5098
5099	/* preform any regulator specific init */
5100	if (init_data && init_data->regulator_init) {
5101		ret = init_data->regulator_init(rdev->reg_data);
5102		if (ret < 0)
5103			goto clean;
5104	}
5105
5106	if (config->ena_gpiod) {
5107		mutex_lock(&regulator_list_mutex);
5108		ret = regulator_ena_gpio_request(rdev, config);
5109		mutex_unlock(&regulator_list_mutex);
5110		if (ret != 0) {
5111			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5112				 ret);
5113			goto clean;
5114		}
5115		/* The regulator core took over the GPIO descriptor */
5116		dangling_cfg_gpiod = false;
5117		dangling_of_gpiod = false;
5118	}
5119
5120	/* register with sysfs */
5121	rdev->dev.class = &regulator_class;
5122	rdev->dev.parent = dev;
5123	dev_set_name(&rdev->dev, "regulator.%lu",
5124		    (unsigned long) atomic_inc_return(&regulator_no));
 
5125
5126	/* set regulator constraints */
5127	if (init_data)
5128		constraints = &init_data->constraints;
5129
5130	if (init_data && init_data->supply_regulator)
5131		rdev->supply_name = init_data->supply_regulator;
5132	else if (regulator_desc->supply_name)
5133		rdev->supply_name = regulator_desc->supply_name;
5134
5135	/*
5136	 * Attempt to resolve the regulator supply, if specified,
5137	 * but don't return an error if we fail because we will try
5138	 * to resolve it again later as more regulators are added.
5139	 */
5140	if (regulator_resolve_supply(rdev))
5141		rdev_dbg(rdev, "unable to resolve supply\n");
5142
5143	ret = set_machine_constraints(rdev, constraints);
5144	if (ret < 0)
5145		goto wash;
5146
5147	mutex_lock(&regulator_list_mutex);
5148	ret = regulator_init_coupling(rdev);
5149	mutex_unlock(&regulator_list_mutex);
5150	if (ret < 0)
5151		goto wash;
5152
5153	/* add consumers devices */
5154	if (init_data) {
5155		mutex_lock(&regulator_list_mutex);
5156		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5157			ret = set_consumer_device_supply(rdev,
5158				init_data->consumer_supplies[i].dev_name,
5159				init_data->consumer_supplies[i].supply);
5160			if (ret < 0) {
5161				mutex_unlock(&regulator_list_mutex);
5162				dev_err(dev, "Failed to set supply %s\n",
5163					init_data->consumer_supplies[i].supply);
5164				goto unset_supplies;
5165			}
5166		}
5167		mutex_unlock(&regulator_list_mutex);
5168	}
5169
5170	if (!rdev->desc->ops->get_voltage &&
5171	    !rdev->desc->ops->list_voltage &&
5172	    !rdev->desc->fixed_uV)
5173		rdev->is_switch = true;
5174
5175	dev_set_drvdata(&rdev->dev, rdev);
5176	ret = device_register(&rdev->dev);
5177	if (ret != 0) {
5178		put_device(&rdev->dev);
5179		goto unset_supplies;
5180	}
5181
5182	rdev_init_debugfs(rdev);
5183
5184	/* try to resolve regulators coupling since a new one was registered */
5185	mutex_lock(&regulator_list_mutex);
5186	regulator_resolve_coupling(rdev);
5187	mutex_unlock(&regulator_list_mutex);
5188
5189	/* try to resolve regulators supply since a new one was registered */
5190	class_for_each_device(&regulator_class, NULL, NULL,
5191			      regulator_register_resolve_supply);
5192	kfree(config);
5193	return rdev;
5194
5195unset_supplies:
5196	mutex_lock(&regulator_list_mutex);
5197	unset_regulator_supplies(rdev);
5198	regulator_remove_coupling(rdev);
5199	mutex_unlock(&regulator_list_mutex);
5200wash:
5201	kfree(rdev->constraints);
5202	mutex_lock(&regulator_list_mutex);
5203	regulator_ena_gpio_free(rdev);
5204	mutex_unlock(&regulator_list_mutex);
5205clean:
5206	if (dangling_of_gpiod)
5207		gpiod_put(config->ena_gpiod);
5208	kfree(rdev);
5209	kfree(config);
 
5210rinse:
5211	if (dangling_cfg_gpiod)
5212		gpiod_put(cfg->ena_gpiod);
5213	return ERR_PTR(ret);
5214}
5215EXPORT_SYMBOL_GPL(regulator_register);
5216
5217/**
5218 * regulator_unregister - unregister regulator
5219 * @rdev: regulator to unregister
5220 *
5221 * Called by regulator drivers to unregister a regulator.
5222 */
5223void regulator_unregister(struct regulator_dev *rdev)
5224{
5225	if (rdev == NULL)
5226		return;
5227
5228	if (rdev->supply) {
5229		while (rdev->use_count--)
5230			regulator_disable(rdev->supply);
5231		regulator_put(rdev->supply);
5232	}
5233
5234	flush_work(&rdev->disable_work.work);
5235
5236	mutex_lock(&regulator_list_mutex);
5237
5238	debugfs_remove_recursive(rdev->debugfs);
5239	WARN_ON(rdev->open_count);
5240	regulator_remove_coupling(rdev);
5241	unset_regulator_supplies(rdev);
5242	list_del(&rdev->list);
5243	regulator_ena_gpio_free(rdev);
5244	device_unregister(&rdev->dev);
5245
5246	mutex_unlock(&regulator_list_mutex);
5247}
5248EXPORT_SYMBOL_GPL(regulator_unregister);
5249
5250#ifdef CONFIG_SUSPEND
5251/**
5252 * regulator_suspend - prepare regulators for system wide suspend
5253 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5254 *
5255 * Configure each regulator with it's suspend operating parameters for state.
5256 */
5257static int regulator_suspend(struct device *dev)
5258{
5259	struct regulator_dev *rdev = dev_to_rdev(dev);
5260	suspend_state_t state = pm_suspend_target_state;
5261	int ret;
5262
5263	regulator_lock(rdev);
5264	ret = suspend_set_state(rdev, state);
5265	regulator_unlock(rdev);
5266
5267	return ret;
5268}
5269
5270static int regulator_resume(struct device *dev)
5271{
5272	suspend_state_t state = pm_suspend_target_state;
5273	struct regulator_dev *rdev = dev_to_rdev(dev);
5274	struct regulator_state *rstate;
5275	int ret = 0;
5276
5277	rstate = regulator_get_suspend_state(rdev, state);
5278	if (rstate == NULL)
5279		return 0;
5280
5281	regulator_lock(rdev);
5282
5283	if (rdev->desc->ops->resume &&
5284	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5285	     rstate->enabled == DISABLE_IN_SUSPEND))
5286		ret = rdev->desc->ops->resume(rdev);
5287
5288	regulator_unlock(rdev);
5289
5290	return ret;
5291}
5292#else /* !CONFIG_SUSPEND */
5293
5294#define regulator_suspend	NULL
5295#define regulator_resume	NULL
5296
5297#endif /* !CONFIG_SUSPEND */
5298
5299#ifdef CONFIG_PM
5300static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5301	.suspend	= regulator_suspend,
5302	.resume		= regulator_resume,
5303};
5304#endif
5305
5306struct class regulator_class = {
5307	.name = "regulator",
5308	.dev_release = regulator_dev_release,
5309	.dev_groups = regulator_dev_groups,
5310#ifdef CONFIG_PM
5311	.pm = &regulator_pm_ops,
5312#endif
5313};
5314/**
5315 * regulator_has_full_constraints - the system has fully specified constraints
5316 *
5317 * Calling this function will cause the regulator API to disable all
5318 * regulators which have a zero use count and don't have an always_on
5319 * constraint in a late_initcall.
5320 *
5321 * The intention is that this will become the default behaviour in a
5322 * future kernel release so users are encouraged to use this facility
5323 * now.
5324 */
5325void regulator_has_full_constraints(void)
5326{
5327	has_full_constraints = 1;
5328}
5329EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5330
5331/**
5332 * rdev_get_drvdata - get rdev regulator driver data
5333 * @rdev: regulator
5334 *
5335 * Get rdev regulator driver private data. This call can be used in the
5336 * regulator driver context.
5337 */
5338void *rdev_get_drvdata(struct regulator_dev *rdev)
5339{
5340	return rdev->reg_data;
5341}
5342EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5343
5344/**
5345 * regulator_get_drvdata - get regulator driver data
5346 * @regulator: regulator
5347 *
5348 * Get regulator driver private data. This call can be used in the consumer
5349 * driver context when non API regulator specific functions need to be called.
5350 */
5351void *regulator_get_drvdata(struct regulator *regulator)
5352{
5353	return regulator->rdev->reg_data;
5354}
5355EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5356
5357/**
5358 * regulator_set_drvdata - set regulator driver data
5359 * @regulator: regulator
5360 * @data: data
5361 */
5362void regulator_set_drvdata(struct regulator *regulator, void *data)
5363{
5364	regulator->rdev->reg_data = data;
5365}
5366EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5367
5368/**
5369 * regulator_get_id - get regulator ID
5370 * @rdev: regulator
5371 */
5372int rdev_get_id(struct regulator_dev *rdev)
5373{
5374	return rdev->desc->id;
5375}
5376EXPORT_SYMBOL_GPL(rdev_get_id);
5377
5378struct device *rdev_get_dev(struct regulator_dev *rdev)
5379{
5380	return &rdev->dev;
5381}
5382EXPORT_SYMBOL_GPL(rdev_get_dev);
5383
5384struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5385{
5386	return rdev->regmap;
5387}
5388EXPORT_SYMBOL_GPL(rdev_get_regmap);
5389
5390void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5391{
5392	return reg_init_data->driver_data;
5393}
5394EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5395
5396#ifdef CONFIG_DEBUG_FS
5397static int supply_map_show(struct seq_file *sf, void *data)
5398{
5399	struct regulator_map *map;
5400
5401	list_for_each_entry(map, &regulator_map_list, list) {
5402		seq_printf(sf, "%s -> %s.%s\n",
5403				rdev_get_name(map->regulator), map->dev_name,
5404				map->supply);
5405	}
5406
5407	return 0;
5408}
5409DEFINE_SHOW_ATTRIBUTE(supply_map);
5410
5411struct summary_data {
5412	struct seq_file *s;
5413	struct regulator_dev *parent;
5414	int level;
5415};
5416
5417static void regulator_summary_show_subtree(struct seq_file *s,
5418					   struct regulator_dev *rdev,
5419					   int level);
5420
5421static int regulator_summary_show_children(struct device *dev, void *data)
5422{
5423	struct regulator_dev *rdev = dev_to_rdev(dev);
5424	struct summary_data *summary_data = data;
5425
5426	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5427		regulator_summary_show_subtree(summary_data->s, rdev,
5428					       summary_data->level + 1);
5429
5430	return 0;
5431}
5432
5433static void regulator_summary_show_subtree(struct seq_file *s,
5434					   struct regulator_dev *rdev,
5435					   int level)
5436{
5437	struct regulation_constraints *c;
5438	struct regulator *consumer;
5439	struct summary_data summary_data;
5440	unsigned int opmode;
5441
5442	if (!rdev)
5443		return;
5444
5445	opmode = _regulator_get_mode_unlocked(rdev);
5446	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5447		   level * 3 + 1, "",
5448		   30 - level * 3, rdev_get_name(rdev),
5449		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5450		   regulator_opmode_to_str(opmode));
5451
5452	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5453	seq_printf(s, "%5dmA ",
5454		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5455
5456	c = rdev->constraints;
5457	if (c) {
5458		switch (rdev->desc->type) {
5459		case REGULATOR_VOLTAGE:
5460			seq_printf(s, "%5dmV %5dmV ",
5461				   c->min_uV / 1000, c->max_uV / 1000);
5462			break;
5463		case REGULATOR_CURRENT:
5464			seq_printf(s, "%5dmA %5dmA ",
5465				   c->min_uA / 1000, c->max_uA / 1000);
5466			break;
5467		}
5468	}
5469
5470	seq_puts(s, "\n");
5471
5472	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5473		if (consumer->dev && consumer->dev->class == &regulator_class)
5474			continue;
5475
5476		seq_printf(s, "%*s%-*s ",
5477			   (level + 1) * 3 + 1, "",
5478			   30 - (level + 1) * 3,
 
5479			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5480
5481		switch (rdev->desc->type) {
5482		case REGULATOR_VOLTAGE:
5483			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5484				   consumer->enable_count,
5485				   consumer->uA_load / 1000,
5486				   consumer->uA_load && !consumer->enable_count ?
5487				   '*' : ' ',
5488				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5489				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5490			break;
5491		case REGULATOR_CURRENT:
5492			break;
5493		}
5494
5495		seq_puts(s, "\n");
5496	}
5497
5498	summary_data.s = s;
5499	summary_data.level = level;
5500	summary_data.parent = rdev;
5501
5502	class_for_each_device(&regulator_class, NULL, &summary_data,
5503			      regulator_summary_show_children);
5504}
5505
5506struct summary_lock_data {
5507	struct ww_acquire_ctx *ww_ctx;
5508	struct regulator_dev **new_contended_rdev;
5509	struct regulator_dev **old_contended_rdev;
5510};
5511
5512static int regulator_summary_lock_one(struct device *dev, void *data)
5513{
5514	struct regulator_dev *rdev = dev_to_rdev(dev);
5515	struct summary_lock_data *lock_data = data;
5516	int ret = 0;
5517
5518	if (rdev != *lock_data->old_contended_rdev) {
5519		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5520
5521		if (ret == -EDEADLK)
5522			*lock_data->new_contended_rdev = rdev;
5523		else
5524			WARN_ON_ONCE(ret);
5525	} else {
5526		*lock_data->old_contended_rdev = NULL;
5527	}
5528
5529	return ret;
5530}
5531
5532static int regulator_summary_unlock_one(struct device *dev, void *data)
5533{
5534	struct regulator_dev *rdev = dev_to_rdev(dev);
5535	struct summary_lock_data *lock_data = data;
5536
5537	if (lock_data) {
5538		if (rdev == *lock_data->new_contended_rdev)
5539			return -EDEADLK;
5540	}
5541
5542	regulator_unlock(rdev);
5543
5544	return 0;
5545}
5546
5547static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5548				      struct regulator_dev **new_contended_rdev,
5549				      struct regulator_dev **old_contended_rdev)
5550{
5551	struct summary_lock_data lock_data;
5552	int ret;
5553
5554	lock_data.ww_ctx = ww_ctx;
5555	lock_data.new_contended_rdev = new_contended_rdev;
5556	lock_data.old_contended_rdev = old_contended_rdev;
5557
5558	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5559				    regulator_summary_lock_one);
5560	if (ret)
5561		class_for_each_device(&regulator_class, NULL, &lock_data,
5562				      regulator_summary_unlock_one);
5563
5564	return ret;
5565}
5566
5567static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5568{
5569	struct regulator_dev *new_contended_rdev = NULL;
5570	struct regulator_dev *old_contended_rdev = NULL;
5571	int err;
5572
5573	mutex_lock(&regulator_list_mutex);
5574
5575	ww_acquire_init(ww_ctx, &regulator_ww_class);
5576
5577	do {
5578		if (new_contended_rdev) {
5579			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5580			old_contended_rdev = new_contended_rdev;
5581			old_contended_rdev->ref_cnt++;
5582		}
5583
5584		err = regulator_summary_lock_all(ww_ctx,
5585						 &new_contended_rdev,
5586						 &old_contended_rdev);
5587
5588		if (old_contended_rdev)
5589			regulator_unlock(old_contended_rdev);
5590
5591	} while (err == -EDEADLK);
5592
5593	ww_acquire_done(ww_ctx);
5594}
5595
5596static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5597{
5598	class_for_each_device(&regulator_class, NULL, NULL,
5599			      regulator_summary_unlock_one);
5600	ww_acquire_fini(ww_ctx);
5601
5602	mutex_unlock(&regulator_list_mutex);
5603}
5604
5605static int regulator_summary_show_roots(struct device *dev, void *data)
5606{
5607	struct regulator_dev *rdev = dev_to_rdev(dev);
5608	struct seq_file *s = data;
5609
5610	if (!rdev->supply)
5611		regulator_summary_show_subtree(s, rdev, 0);
5612
5613	return 0;
5614}
5615
5616static int regulator_summary_show(struct seq_file *s, void *data)
5617{
5618	struct ww_acquire_ctx ww_ctx;
5619
5620	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5621	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5622
5623	regulator_summary_lock(&ww_ctx);
5624
5625	class_for_each_device(&regulator_class, NULL, s,
5626			      regulator_summary_show_roots);
5627
5628	regulator_summary_unlock(&ww_ctx);
5629
5630	return 0;
5631}
5632DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5633#endif /* CONFIG_DEBUG_FS */
5634
5635static int __init regulator_init(void)
5636{
5637	int ret;
5638
5639	ret = class_register(&regulator_class);
5640
5641	debugfs_root = debugfs_create_dir("regulator", NULL);
5642	if (!debugfs_root)
5643		pr_warn("regulator: Failed to create debugfs directory\n");
5644
5645#ifdef CONFIG_DEBUG_FS
5646	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5647			    &supply_map_fops);
5648
5649	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5650			    NULL, &regulator_summary_fops);
5651#endif
5652	regulator_dummy_init();
5653
5654	regulator_coupler_register(&generic_regulator_coupler);
5655
5656	return ret;
5657}
5658
5659/* init early to allow our consumers to complete system booting */
5660core_initcall(regulator_init);
5661
5662static int regulator_late_cleanup(struct device *dev, void *data)
5663{
5664	struct regulator_dev *rdev = dev_to_rdev(dev);
5665	const struct regulator_ops *ops = rdev->desc->ops;
5666	struct regulation_constraints *c = rdev->constraints;
5667	int enabled, ret;
5668
5669	if (c && c->always_on)
5670		return 0;
5671
5672	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5673		return 0;
5674
5675	regulator_lock(rdev);
5676
5677	if (rdev->use_count)
5678		goto unlock;
5679
5680	/* If we can't read the status assume it's on. */
5681	if (ops->is_enabled)
5682		enabled = ops->is_enabled(rdev);
5683	else
5684		enabled = 1;
5685
5686	if (!enabled)
5687		goto unlock;
5688
5689	if (have_full_constraints()) {
5690		/* We log since this may kill the system if it goes
5691		 * wrong. */
5692		rdev_info(rdev, "disabling\n");
5693		ret = _regulator_do_disable(rdev);
5694		if (ret != 0)
5695			rdev_err(rdev, "couldn't disable: %d\n", ret);
5696	} else {
5697		/* The intention is that in future we will
5698		 * assume that full constraints are provided
5699		 * so warn even if we aren't going to do
5700		 * anything here.
5701		 */
5702		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5703	}
5704
5705unlock:
5706	regulator_unlock(rdev);
5707
5708	return 0;
5709}
5710
5711static void regulator_init_complete_work_function(struct work_struct *work)
5712{
5713	/*
5714	 * Regulators may had failed to resolve their input supplies
5715	 * when were registered, either because the input supply was
5716	 * not registered yet or because its parent device was not
5717	 * bound yet. So attempt to resolve the input supplies for
5718	 * pending regulators before trying to disable unused ones.
5719	 */
5720	class_for_each_device(&regulator_class, NULL, NULL,
5721			      regulator_register_resolve_supply);
5722
5723	/* If we have a full configuration then disable any regulators
5724	 * we have permission to change the status for and which are
5725	 * not in use or always_on.  This is effectively the default
5726	 * for DT and ACPI as they have full constraints.
5727	 */
5728	class_for_each_device(&regulator_class, NULL, NULL,
5729			      regulator_late_cleanup);
5730}
5731
5732static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5733			    regulator_init_complete_work_function);
5734
5735static int __init regulator_init_complete(void)
5736{
5737	/*
5738	 * Since DT doesn't provide an idiomatic mechanism for
5739	 * enabling full constraints and since it's much more natural
5740	 * with DT to provide them just assume that a DT enabled
5741	 * system has full constraints.
5742	 */
5743	if (of_have_populated_dt())
5744		has_full_constraints = true;
5745
5746	/*
5747	 * We punt completion for an arbitrary amount of time since
5748	 * systems like distros will load many drivers from userspace
5749	 * so consumers might not always be ready yet, this is
5750	 * particularly an issue with laptops where this might bounce
5751	 * the display off then on.  Ideally we'd get a notification
5752	 * from userspace when this happens but we don't so just wait
5753	 * a bit and hope we waited long enough.  It'd be better if
5754	 * we'd only do this on systems that need it, and a kernel
5755	 * command line option might be useful.
5756	 */
5757	schedule_delayed_work(&regulator_init_complete_work,
5758			      msecs_to_jiffies(30000));
5759
5760	return 0;
5761}
5762late_initcall_sync(regulator_init_complete);