Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36#define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47static DEFINE_WW_CLASS(regulator_ww_class);
48static DEFINE_MUTEX(regulator_nesting_mutex);
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_map_list);
51static LIST_HEAD(regulator_ena_gpio_list);
52static LIST_HEAD(regulator_supply_alias_list);
53static LIST_HEAD(regulator_coupler_list);
54static bool has_full_constraints;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80};
81
82/*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93};
94
95static int _regulator_is_enabled(struct regulator_dev *rdev);
96static int _regulator_disable(struct regulator *regulator);
97static int _regulator_get_current_limit(struct regulator_dev *rdev);
98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108static void destroy_regulator(struct regulator *regulator);
109static void _regulator_put(struct regulator *regulator);
110
111const char *rdev_get_name(struct regulator_dev *rdev)
112{
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119}
120
121static bool have_full_constraints(void)
122{
123 return has_full_constraints || of_have_populated_dt();
124}
125
126static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127{
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137}
138
139/**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
150static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152{
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(®ulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(®ulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(®ulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(®ulator_nesting_mutex);
179
180 return ret;
181}
182
183/**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
193void regulator_lock(struct regulator_dev *rdev)
194{
195 regulator_lock_nested(rdev, NULL);
196}
197EXPORT_SYMBOL_GPL(regulator_lock);
198
199/**
200 * regulator_unlock - unlock a single regulator
201 * @rdev: regulator_source
202 *
203 * This function unlocks the mutex when the
204 * reference counter reaches 0.
205 */
206void regulator_unlock(struct regulator_dev *rdev)
207{
208 mutex_lock(®ulator_nesting_mutex);
209
210 if (--rdev->ref_cnt == 0) {
211 rdev->mutex_owner = NULL;
212 ww_mutex_unlock(&rdev->mutex);
213 }
214
215 WARN_ON_ONCE(rdev->ref_cnt < 0);
216
217 mutex_unlock(®ulator_nesting_mutex);
218}
219EXPORT_SYMBOL_GPL(regulator_unlock);
220
221static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222{
223 struct regulator_dev *c_rdev;
224 int i;
225
226 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
227 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228
229 if (rdev->supply->rdev == c_rdev)
230 return true;
231 }
232
233 return false;
234}
235
236static void regulator_unlock_recursive(struct regulator_dev *rdev,
237 unsigned int n_coupled)
238{
239 struct regulator_dev *c_rdev, *supply_rdev;
240 int i, supply_n_coupled;
241
242 for (i = n_coupled; i > 0; i--) {
243 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244
245 if (!c_rdev)
246 continue;
247
248 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
249 supply_rdev = c_rdev->supply->rdev;
250 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
251
252 regulator_unlock_recursive(supply_rdev,
253 supply_n_coupled);
254 }
255
256 regulator_unlock(c_rdev);
257 }
258}
259
260static int regulator_lock_recursive(struct regulator_dev *rdev,
261 struct regulator_dev **new_contended_rdev,
262 struct regulator_dev **old_contended_rdev,
263 struct ww_acquire_ctx *ww_ctx)
264{
265 struct regulator_dev *c_rdev;
266 int i, err;
267
268 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
269 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
270
271 if (!c_rdev)
272 continue;
273
274 if (c_rdev != *old_contended_rdev) {
275 err = regulator_lock_nested(c_rdev, ww_ctx);
276 if (err) {
277 if (err == -EDEADLK) {
278 *new_contended_rdev = c_rdev;
279 goto err_unlock;
280 }
281
282 /* shouldn't happen */
283 WARN_ON_ONCE(err != -EALREADY);
284 }
285 } else {
286 *old_contended_rdev = NULL;
287 }
288
289 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
290 err = regulator_lock_recursive(c_rdev->supply->rdev,
291 new_contended_rdev,
292 old_contended_rdev,
293 ww_ctx);
294 if (err) {
295 regulator_unlock(c_rdev);
296 goto err_unlock;
297 }
298 }
299 }
300
301 return 0;
302
303err_unlock:
304 regulator_unlock_recursive(rdev, i);
305
306 return err;
307}
308
309/**
310 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
311 * regulators
312 * @rdev: regulator source
313 * @ww_ctx: w/w mutex acquire context
314 *
315 * Unlock all regulators related with rdev by coupling or supplying.
316 */
317static void regulator_unlock_dependent(struct regulator_dev *rdev,
318 struct ww_acquire_ctx *ww_ctx)
319{
320 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
321 ww_acquire_fini(ww_ctx);
322}
323
324/**
325 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
326 * @rdev: regulator source
327 * @ww_ctx: w/w mutex acquire context
328 *
329 * This function as a wrapper on regulator_lock_recursive(), which locks
330 * all regulators related with rdev by coupling or supplying.
331 */
332static void regulator_lock_dependent(struct regulator_dev *rdev,
333 struct ww_acquire_ctx *ww_ctx)
334{
335 struct regulator_dev *new_contended_rdev = NULL;
336 struct regulator_dev *old_contended_rdev = NULL;
337 int err;
338
339 mutex_lock(®ulator_list_mutex);
340
341 ww_acquire_init(ww_ctx, ®ulator_ww_class);
342
343 do {
344 if (new_contended_rdev) {
345 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
346 old_contended_rdev = new_contended_rdev;
347 old_contended_rdev->ref_cnt++;
348 }
349
350 err = regulator_lock_recursive(rdev,
351 &new_contended_rdev,
352 &old_contended_rdev,
353 ww_ctx);
354
355 if (old_contended_rdev)
356 regulator_unlock(old_contended_rdev);
357
358 } while (err == -EDEADLK);
359
360 ww_acquire_done(ww_ctx);
361
362 mutex_unlock(®ulator_list_mutex);
363}
364
365/**
366 * of_get_child_regulator - get a child regulator device node
367 * based on supply name
368 * @parent: Parent device node
369 * @prop_name: Combination regulator supply name and "-supply"
370 *
371 * Traverse all child nodes.
372 * Extract the child regulator device node corresponding to the supply name.
373 * returns the device node corresponding to the regulator if found, else
374 * returns NULL.
375 */
376static struct device_node *of_get_child_regulator(struct device_node *parent,
377 const char *prop_name)
378{
379 struct device_node *regnode = NULL;
380 struct device_node *child = NULL;
381
382 for_each_child_of_node(parent, child) {
383 regnode = of_parse_phandle(child, prop_name, 0);
384
385 if (!regnode) {
386 regnode = of_get_child_regulator(child, prop_name);
387 if (regnode)
388 goto err_node_put;
389 } else {
390 goto err_node_put;
391 }
392 }
393 return NULL;
394
395err_node_put:
396 of_node_put(child);
397 return regnode;
398}
399
400/**
401 * of_get_regulator - get a regulator device node based on supply name
402 * @dev: Device pointer for the consumer (of regulator) device
403 * @supply: regulator supply name
404 *
405 * Extract the regulator device node corresponding to the supply name.
406 * returns the device node corresponding to the regulator if found, else
407 * returns NULL.
408 */
409static struct device_node *of_get_regulator(struct device *dev, const char *supply)
410{
411 struct device_node *regnode = NULL;
412 char prop_name[32]; /* 32 is max size of property name */
413
414 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
415
416 snprintf(prop_name, 32, "%s-supply", supply);
417 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418
419 if (!regnode) {
420 regnode = of_get_child_regulator(dev->of_node, prop_name);
421 if (regnode)
422 return regnode;
423
424 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425 prop_name, dev->of_node);
426 return NULL;
427 }
428 return regnode;
429}
430
431/* Platform voltage constraint check */
432int regulator_check_voltage(struct regulator_dev *rdev,
433 int *min_uV, int *max_uV)
434{
435 BUG_ON(*min_uV > *max_uV);
436
437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438 rdev_err(rdev, "voltage operation not allowed\n");
439 return -EPERM;
440 }
441
442 if (*max_uV > rdev->constraints->max_uV)
443 *max_uV = rdev->constraints->max_uV;
444 if (*min_uV < rdev->constraints->min_uV)
445 *min_uV = rdev->constraints->min_uV;
446
447 if (*min_uV > *max_uV) {
448 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449 *min_uV, *max_uV);
450 return -EINVAL;
451 }
452
453 return 0;
454}
455
456/* return 0 if the state is valid */
457static int regulator_check_states(suspend_state_t state)
458{
459 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460}
461
462/* Make sure we select a voltage that suits the needs of all
463 * regulator consumers
464 */
465int regulator_check_consumers(struct regulator_dev *rdev,
466 int *min_uV, int *max_uV,
467 suspend_state_t state)
468{
469 struct regulator *regulator;
470 struct regulator_voltage *voltage;
471
472 list_for_each_entry(regulator, &rdev->consumer_list, list) {
473 voltage = ®ulator->voltage[state];
474 /*
475 * Assume consumers that didn't say anything are OK
476 * with anything in the constraint range.
477 */
478 if (!voltage->min_uV && !voltage->max_uV)
479 continue;
480
481 if (*max_uV > voltage->max_uV)
482 *max_uV = voltage->max_uV;
483 if (*min_uV < voltage->min_uV)
484 *min_uV = voltage->min_uV;
485 }
486
487 if (*min_uV > *max_uV) {
488 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489 *min_uV, *max_uV);
490 return -EINVAL;
491 }
492
493 return 0;
494}
495
496/* current constraint check */
497static int regulator_check_current_limit(struct regulator_dev *rdev,
498 int *min_uA, int *max_uA)
499{
500 BUG_ON(*min_uA > *max_uA);
501
502 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503 rdev_err(rdev, "current operation not allowed\n");
504 return -EPERM;
505 }
506
507 if (*max_uA > rdev->constraints->max_uA)
508 *max_uA = rdev->constraints->max_uA;
509 if (*min_uA < rdev->constraints->min_uA)
510 *min_uA = rdev->constraints->min_uA;
511
512 if (*min_uA > *max_uA) {
513 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514 *min_uA, *max_uA);
515 return -EINVAL;
516 }
517
518 return 0;
519}
520
521/* operating mode constraint check */
522static int regulator_mode_constrain(struct regulator_dev *rdev,
523 unsigned int *mode)
524{
525 switch (*mode) {
526 case REGULATOR_MODE_FAST:
527 case REGULATOR_MODE_NORMAL:
528 case REGULATOR_MODE_IDLE:
529 case REGULATOR_MODE_STANDBY:
530 break;
531 default:
532 rdev_err(rdev, "invalid mode %x specified\n", *mode);
533 return -EINVAL;
534 }
535
536 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537 rdev_err(rdev, "mode operation not allowed\n");
538 return -EPERM;
539 }
540
541 /* The modes are bitmasks, the most power hungry modes having
542 * the lowest values. If the requested mode isn't supported
543 * try higher modes. */
544 while (*mode) {
545 if (rdev->constraints->valid_modes_mask & *mode)
546 return 0;
547 *mode /= 2;
548 }
549
550 return -EINVAL;
551}
552
553static inline struct regulator_state *
554regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
555{
556 if (rdev->constraints == NULL)
557 return NULL;
558
559 switch (state) {
560 case PM_SUSPEND_STANDBY:
561 return &rdev->constraints->state_standby;
562 case PM_SUSPEND_MEM:
563 return &rdev->constraints->state_mem;
564 case PM_SUSPEND_MAX:
565 return &rdev->constraints->state_disk;
566 default:
567 return NULL;
568 }
569}
570
571static ssize_t regulator_uV_show(struct device *dev,
572 struct device_attribute *attr, char *buf)
573{
574 struct regulator_dev *rdev = dev_get_drvdata(dev);
575 int uV;
576
577 regulator_lock(rdev);
578 uV = regulator_get_voltage_rdev(rdev);
579 regulator_unlock(rdev);
580
581 if (uV < 0)
582 return uV;
583 return sprintf(buf, "%d\n", uV);
584}
585static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
586
587static ssize_t regulator_uA_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589{
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
593}
594static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
595
596static ssize_t name_show(struct device *dev, struct device_attribute *attr,
597 char *buf)
598{
599 struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601 return sprintf(buf, "%s\n", rdev_get_name(rdev));
602}
603static DEVICE_ATTR_RO(name);
604
605static const char *regulator_opmode_to_str(int mode)
606{
607 switch (mode) {
608 case REGULATOR_MODE_FAST:
609 return "fast";
610 case REGULATOR_MODE_NORMAL:
611 return "normal";
612 case REGULATOR_MODE_IDLE:
613 return "idle";
614 case REGULATOR_MODE_STANDBY:
615 return "standby";
616 }
617 return "unknown";
618}
619
620static ssize_t regulator_print_opmode(char *buf, int mode)
621{
622 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
623}
624
625static ssize_t regulator_opmode_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
627{
628 struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
631}
632static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
633
634static ssize_t regulator_print_state(char *buf, int state)
635{
636 if (state > 0)
637 return sprintf(buf, "enabled\n");
638 else if (state == 0)
639 return sprintf(buf, "disabled\n");
640 else
641 return sprintf(buf, "unknown\n");
642}
643
644static ssize_t regulator_state_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
646{
647 struct regulator_dev *rdev = dev_get_drvdata(dev);
648 ssize_t ret;
649
650 regulator_lock(rdev);
651 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
652 regulator_unlock(rdev);
653
654 return ret;
655}
656static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
657
658static ssize_t regulator_status_show(struct device *dev,
659 struct device_attribute *attr, char *buf)
660{
661 struct regulator_dev *rdev = dev_get_drvdata(dev);
662 int status;
663 char *label;
664
665 status = rdev->desc->ops->get_status(rdev);
666 if (status < 0)
667 return status;
668
669 switch (status) {
670 case REGULATOR_STATUS_OFF:
671 label = "off";
672 break;
673 case REGULATOR_STATUS_ON:
674 label = "on";
675 break;
676 case REGULATOR_STATUS_ERROR:
677 label = "error";
678 break;
679 case REGULATOR_STATUS_FAST:
680 label = "fast";
681 break;
682 case REGULATOR_STATUS_NORMAL:
683 label = "normal";
684 break;
685 case REGULATOR_STATUS_IDLE:
686 label = "idle";
687 break;
688 case REGULATOR_STATUS_STANDBY:
689 label = "standby";
690 break;
691 case REGULATOR_STATUS_BYPASS:
692 label = "bypass";
693 break;
694 case REGULATOR_STATUS_UNDEFINED:
695 label = "undefined";
696 break;
697 default:
698 return -ERANGE;
699 }
700
701 return sprintf(buf, "%s\n", label);
702}
703static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
704
705static ssize_t regulator_min_uA_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
707{
708 struct regulator_dev *rdev = dev_get_drvdata(dev);
709
710 if (!rdev->constraints)
711 return sprintf(buf, "constraint not defined\n");
712
713 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
714}
715static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
716
717static ssize_t regulator_max_uA_show(struct device *dev,
718 struct device_attribute *attr, char *buf)
719{
720 struct regulator_dev *rdev = dev_get_drvdata(dev);
721
722 if (!rdev->constraints)
723 return sprintf(buf, "constraint not defined\n");
724
725 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
726}
727static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
728
729static ssize_t regulator_min_uV_show(struct device *dev,
730 struct device_attribute *attr, char *buf)
731{
732 struct regulator_dev *rdev = dev_get_drvdata(dev);
733
734 if (!rdev->constraints)
735 return sprintf(buf, "constraint not defined\n");
736
737 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
738}
739static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
740
741static ssize_t regulator_max_uV_show(struct device *dev,
742 struct device_attribute *attr, char *buf)
743{
744 struct regulator_dev *rdev = dev_get_drvdata(dev);
745
746 if (!rdev->constraints)
747 return sprintf(buf, "constraint not defined\n");
748
749 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
750}
751static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
752
753static ssize_t regulator_total_uA_show(struct device *dev,
754 struct device_attribute *attr, char *buf)
755{
756 struct regulator_dev *rdev = dev_get_drvdata(dev);
757 struct regulator *regulator;
758 int uA = 0;
759
760 regulator_lock(rdev);
761 list_for_each_entry(regulator, &rdev->consumer_list, list) {
762 if (regulator->enable_count)
763 uA += regulator->uA_load;
764 }
765 regulator_unlock(rdev);
766 return sprintf(buf, "%d\n", uA);
767}
768static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
769
770static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
771 char *buf)
772{
773 struct regulator_dev *rdev = dev_get_drvdata(dev);
774 return sprintf(buf, "%d\n", rdev->use_count);
775}
776static DEVICE_ATTR_RO(num_users);
777
778static ssize_t type_show(struct device *dev, struct device_attribute *attr,
779 char *buf)
780{
781 struct regulator_dev *rdev = dev_get_drvdata(dev);
782
783 switch (rdev->desc->type) {
784 case REGULATOR_VOLTAGE:
785 return sprintf(buf, "voltage\n");
786 case REGULATOR_CURRENT:
787 return sprintf(buf, "current\n");
788 }
789 return sprintf(buf, "unknown\n");
790}
791static DEVICE_ATTR_RO(type);
792
793static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
794 struct device_attribute *attr, char *buf)
795{
796 struct regulator_dev *rdev = dev_get_drvdata(dev);
797
798 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
799}
800static DEVICE_ATTR(suspend_mem_microvolts, 0444,
801 regulator_suspend_mem_uV_show, NULL);
802
803static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
804 struct device_attribute *attr, char *buf)
805{
806 struct regulator_dev *rdev = dev_get_drvdata(dev);
807
808 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
809}
810static DEVICE_ATTR(suspend_disk_microvolts, 0444,
811 regulator_suspend_disk_uV_show, NULL);
812
813static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
814 struct device_attribute *attr, char *buf)
815{
816 struct regulator_dev *rdev = dev_get_drvdata(dev);
817
818 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
819}
820static DEVICE_ATTR(suspend_standby_microvolts, 0444,
821 regulator_suspend_standby_uV_show, NULL);
822
823static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 return regulator_print_opmode(buf,
829 rdev->constraints->state_mem.mode);
830}
831static DEVICE_ATTR(suspend_mem_mode, 0444,
832 regulator_suspend_mem_mode_show, NULL);
833
834static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
835 struct device_attribute *attr, char *buf)
836{
837 struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839 return regulator_print_opmode(buf,
840 rdev->constraints->state_disk.mode);
841}
842static DEVICE_ATTR(suspend_disk_mode, 0444,
843 regulator_suspend_disk_mode_show, NULL);
844
845static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
847{
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_standby.mode);
852}
853static DEVICE_ATTR(suspend_standby_mode, 0444,
854 regulator_suspend_standby_mode_show, NULL);
855
856static ssize_t regulator_suspend_mem_state_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
858{
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861 return regulator_print_state(buf,
862 rdev->constraints->state_mem.enabled);
863}
864static DEVICE_ATTR(suspend_mem_state, 0444,
865 regulator_suspend_mem_state_show, NULL);
866
867static ssize_t regulator_suspend_disk_state_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
869{
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872 return regulator_print_state(buf,
873 rdev->constraints->state_disk.enabled);
874}
875static DEVICE_ATTR(suspend_disk_state, 0444,
876 regulator_suspend_disk_state_show, NULL);
877
878static ssize_t regulator_suspend_standby_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880{
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_standby.enabled);
885}
886static DEVICE_ATTR(suspend_standby_state, 0444,
887 regulator_suspend_standby_state_show, NULL);
888
889static ssize_t regulator_bypass_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891{
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893 const char *report;
894 bool bypass;
895 int ret;
896
897 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
898
899 if (ret != 0)
900 report = "unknown";
901 else if (bypass)
902 report = "enabled";
903 else
904 report = "disabled";
905
906 return sprintf(buf, "%s\n", report);
907}
908static DEVICE_ATTR(bypass, 0444,
909 regulator_bypass_show, NULL);
910
911/* Calculate the new optimum regulator operating mode based on the new total
912 * consumer load. All locks held by caller */
913static int drms_uA_update(struct regulator_dev *rdev)
914{
915 struct regulator *sibling;
916 int current_uA = 0, output_uV, input_uV, err;
917 unsigned int mode;
918
919 /*
920 * first check to see if we can set modes at all, otherwise just
921 * tell the consumer everything is OK.
922 */
923 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
924 rdev_dbg(rdev, "DRMS operation not allowed\n");
925 return 0;
926 }
927
928 if (!rdev->desc->ops->get_optimum_mode &&
929 !rdev->desc->ops->set_load)
930 return 0;
931
932 if (!rdev->desc->ops->set_mode &&
933 !rdev->desc->ops->set_load)
934 return -EINVAL;
935
936 /* calc total requested load */
937 list_for_each_entry(sibling, &rdev->consumer_list, list) {
938 if (sibling->enable_count)
939 current_uA += sibling->uA_load;
940 }
941
942 current_uA += rdev->constraints->system_load;
943
944 if (rdev->desc->ops->set_load) {
945 /* set the optimum mode for our new total regulator load */
946 err = rdev->desc->ops->set_load(rdev, current_uA);
947 if (err < 0)
948 rdev_err(rdev, "failed to set load %d\n", current_uA);
949 } else {
950 /* get output voltage */
951 output_uV = regulator_get_voltage_rdev(rdev);
952 if (output_uV <= 0) {
953 rdev_err(rdev, "invalid output voltage found\n");
954 return -EINVAL;
955 }
956
957 /* get input voltage */
958 input_uV = 0;
959 if (rdev->supply)
960 input_uV = regulator_get_voltage(rdev->supply);
961 if (input_uV <= 0)
962 input_uV = rdev->constraints->input_uV;
963 if (input_uV <= 0) {
964 rdev_err(rdev, "invalid input voltage found\n");
965 return -EINVAL;
966 }
967
968 /* now get the optimum mode for our new total regulator load */
969 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
970 output_uV, current_uA);
971
972 /* check the new mode is allowed */
973 err = regulator_mode_constrain(rdev, &mode);
974 if (err < 0) {
975 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
976 current_uA, input_uV, output_uV);
977 return err;
978 }
979
980 err = rdev->desc->ops->set_mode(rdev, mode);
981 if (err < 0)
982 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
983 }
984
985 return err;
986}
987
988static int suspend_set_state(struct regulator_dev *rdev,
989 suspend_state_t state)
990{
991 int ret = 0;
992 struct regulator_state *rstate;
993
994 rstate = regulator_get_suspend_state(rdev, state);
995 if (rstate == NULL)
996 return 0;
997
998 /* If we have no suspend mode configuration don't set anything;
999 * only warn if the driver implements set_suspend_voltage or
1000 * set_suspend_mode callback.
1001 */
1002 if (rstate->enabled != ENABLE_IN_SUSPEND &&
1003 rstate->enabled != DISABLE_IN_SUSPEND) {
1004 if (rdev->desc->ops->set_suspend_voltage ||
1005 rdev->desc->ops->set_suspend_mode)
1006 rdev_warn(rdev, "No configuration\n");
1007 return 0;
1008 }
1009
1010 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1011 rdev->desc->ops->set_suspend_enable)
1012 ret = rdev->desc->ops->set_suspend_enable(rdev);
1013 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1014 rdev->desc->ops->set_suspend_disable)
1015 ret = rdev->desc->ops->set_suspend_disable(rdev);
1016 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1017 ret = 0;
1018
1019 if (ret < 0) {
1020 rdev_err(rdev, "failed to enabled/disable\n");
1021 return ret;
1022 }
1023
1024 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1025 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to set voltage\n");
1028 return ret;
1029 }
1030 }
1031
1032 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1033 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1034 if (ret < 0) {
1035 rdev_err(rdev, "failed to set mode\n");
1036 return ret;
1037 }
1038 }
1039
1040 return ret;
1041}
1042
1043static void print_constraints(struct regulator_dev *rdev)
1044{
1045 struct regulation_constraints *constraints = rdev->constraints;
1046 char buf[160] = "";
1047 size_t len = sizeof(buf) - 1;
1048 int count = 0;
1049 int ret;
1050
1051 if (constraints->min_uV && constraints->max_uV) {
1052 if (constraints->min_uV == constraints->max_uV)
1053 count += scnprintf(buf + count, len - count, "%d mV ",
1054 constraints->min_uV / 1000);
1055 else
1056 count += scnprintf(buf + count, len - count,
1057 "%d <--> %d mV ",
1058 constraints->min_uV / 1000,
1059 constraints->max_uV / 1000);
1060 }
1061
1062 if (!constraints->min_uV ||
1063 constraints->min_uV != constraints->max_uV) {
1064 ret = regulator_get_voltage_rdev(rdev);
1065 if (ret > 0)
1066 count += scnprintf(buf + count, len - count,
1067 "at %d mV ", ret / 1000);
1068 }
1069
1070 if (constraints->uV_offset)
1071 count += scnprintf(buf + count, len - count, "%dmV offset ",
1072 constraints->uV_offset / 1000);
1073
1074 if (constraints->min_uA && constraints->max_uA) {
1075 if (constraints->min_uA == constraints->max_uA)
1076 count += scnprintf(buf + count, len - count, "%d mA ",
1077 constraints->min_uA / 1000);
1078 else
1079 count += scnprintf(buf + count, len - count,
1080 "%d <--> %d mA ",
1081 constraints->min_uA / 1000,
1082 constraints->max_uA / 1000);
1083 }
1084
1085 if (!constraints->min_uA ||
1086 constraints->min_uA != constraints->max_uA) {
1087 ret = _regulator_get_current_limit(rdev);
1088 if (ret > 0)
1089 count += scnprintf(buf + count, len - count,
1090 "at %d mA ", ret / 1000);
1091 }
1092
1093 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1094 count += scnprintf(buf + count, len - count, "fast ");
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1096 count += scnprintf(buf + count, len - count, "normal ");
1097 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1098 count += scnprintf(buf + count, len - count, "idle ");
1099 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1100 count += scnprintf(buf + count, len - count, "standby");
1101
1102 if (!count)
1103 scnprintf(buf, len, "no parameters");
1104
1105 rdev_dbg(rdev, "%s\n", buf);
1106
1107 if ((constraints->min_uV != constraints->max_uV) &&
1108 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1109 rdev_warn(rdev,
1110 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1111}
1112
1113static int machine_constraints_voltage(struct regulator_dev *rdev,
1114 struct regulation_constraints *constraints)
1115{
1116 const struct regulator_ops *ops = rdev->desc->ops;
1117 int ret;
1118
1119 /* do we need to apply the constraint voltage */
1120 if (rdev->constraints->apply_uV &&
1121 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1122 int target_min, target_max;
1123 int current_uV = regulator_get_voltage_rdev(rdev);
1124
1125 if (current_uV == -ENOTRECOVERABLE) {
1126 /* This regulator can't be read and must be initialized */
1127 rdev_info(rdev, "Setting %d-%duV\n",
1128 rdev->constraints->min_uV,
1129 rdev->constraints->max_uV);
1130 _regulator_do_set_voltage(rdev,
1131 rdev->constraints->min_uV,
1132 rdev->constraints->max_uV);
1133 current_uV = regulator_get_voltage_rdev(rdev);
1134 }
1135
1136 if (current_uV < 0) {
1137 rdev_err(rdev,
1138 "failed to get the current voltage(%d)\n",
1139 current_uV);
1140 return current_uV;
1141 }
1142
1143 /*
1144 * If we're below the minimum voltage move up to the
1145 * minimum voltage, if we're above the maximum voltage
1146 * then move down to the maximum.
1147 */
1148 target_min = current_uV;
1149 target_max = current_uV;
1150
1151 if (current_uV < rdev->constraints->min_uV) {
1152 target_min = rdev->constraints->min_uV;
1153 target_max = rdev->constraints->min_uV;
1154 }
1155
1156 if (current_uV > rdev->constraints->max_uV) {
1157 target_min = rdev->constraints->max_uV;
1158 target_max = rdev->constraints->max_uV;
1159 }
1160
1161 if (target_min != current_uV || target_max != current_uV) {
1162 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1163 current_uV, target_min, target_max);
1164 ret = _regulator_do_set_voltage(
1165 rdev, target_min, target_max);
1166 if (ret < 0) {
1167 rdev_err(rdev,
1168 "failed to apply %d-%duV constraint(%d)\n",
1169 target_min, target_max, ret);
1170 return ret;
1171 }
1172 }
1173 }
1174
1175 /* constrain machine-level voltage specs to fit
1176 * the actual range supported by this regulator.
1177 */
1178 if (ops->list_voltage && rdev->desc->n_voltages) {
1179 int count = rdev->desc->n_voltages;
1180 int i;
1181 int min_uV = INT_MAX;
1182 int max_uV = INT_MIN;
1183 int cmin = constraints->min_uV;
1184 int cmax = constraints->max_uV;
1185
1186 /* it's safe to autoconfigure fixed-voltage supplies
1187 and the constraints are used by list_voltage. */
1188 if (count == 1 && !cmin) {
1189 cmin = 1;
1190 cmax = INT_MAX;
1191 constraints->min_uV = cmin;
1192 constraints->max_uV = cmax;
1193 }
1194
1195 /* voltage constraints are optional */
1196 if ((cmin == 0) && (cmax == 0))
1197 return 0;
1198
1199 /* else require explicit machine-level constraints */
1200 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1201 rdev_err(rdev, "invalid voltage constraints\n");
1202 return -EINVAL;
1203 }
1204
1205 /* no need to loop voltages if range is continuous */
1206 if (rdev->desc->continuous_voltage_range)
1207 return 0;
1208
1209 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1210 for (i = 0; i < count; i++) {
1211 int value;
1212
1213 value = ops->list_voltage(rdev, i);
1214 if (value <= 0)
1215 continue;
1216
1217 /* maybe adjust [min_uV..max_uV] */
1218 if (value >= cmin && value < min_uV)
1219 min_uV = value;
1220 if (value <= cmax && value > max_uV)
1221 max_uV = value;
1222 }
1223
1224 /* final: [min_uV..max_uV] valid iff constraints valid */
1225 if (max_uV < min_uV) {
1226 rdev_err(rdev,
1227 "unsupportable voltage constraints %u-%uuV\n",
1228 min_uV, max_uV);
1229 return -EINVAL;
1230 }
1231
1232 /* use regulator's subset of machine constraints */
1233 if (constraints->min_uV < min_uV) {
1234 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1235 constraints->min_uV, min_uV);
1236 constraints->min_uV = min_uV;
1237 }
1238 if (constraints->max_uV > max_uV) {
1239 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1240 constraints->max_uV, max_uV);
1241 constraints->max_uV = max_uV;
1242 }
1243 }
1244
1245 return 0;
1246}
1247
1248static int machine_constraints_current(struct regulator_dev *rdev,
1249 struct regulation_constraints *constraints)
1250{
1251 const struct regulator_ops *ops = rdev->desc->ops;
1252 int ret;
1253
1254 if (!constraints->min_uA && !constraints->max_uA)
1255 return 0;
1256
1257 if (constraints->min_uA > constraints->max_uA) {
1258 rdev_err(rdev, "Invalid current constraints\n");
1259 return -EINVAL;
1260 }
1261
1262 if (!ops->set_current_limit || !ops->get_current_limit) {
1263 rdev_warn(rdev, "Operation of current configuration missing\n");
1264 return 0;
1265 }
1266
1267 /* Set regulator current in constraints range */
1268 ret = ops->set_current_limit(rdev, constraints->min_uA,
1269 constraints->max_uA);
1270 if (ret < 0) {
1271 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1272 return ret;
1273 }
1274
1275 return 0;
1276}
1277
1278static int _regulator_do_enable(struct regulator_dev *rdev);
1279
1280/**
1281 * set_machine_constraints - sets regulator constraints
1282 * @rdev: regulator source
1283 * @constraints: constraints to apply
1284 *
1285 * Allows platform initialisation code to define and constrain
1286 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1287 * Constraints *must* be set by platform code in order for some
1288 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1289 * set_mode.
1290 */
1291static int set_machine_constraints(struct regulator_dev *rdev,
1292 const struct regulation_constraints *constraints)
1293{
1294 int ret = 0;
1295 const struct regulator_ops *ops = rdev->desc->ops;
1296
1297 if (constraints)
1298 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1299 GFP_KERNEL);
1300 else
1301 rdev->constraints = kzalloc(sizeof(*constraints),
1302 GFP_KERNEL);
1303 if (!rdev->constraints)
1304 return -ENOMEM;
1305
1306 ret = machine_constraints_voltage(rdev, rdev->constraints);
1307 if (ret != 0)
1308 return ret;
1309
1310 ret = machine_constraints_current(rdev, rdev->constraints);
1311 if (ret != 0)
1312 return ret;
1313
1314 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1315 ret = ops->set_input_current_limit(rdev,
1316 rdev->constraints->ilim_uA);
1317 if (ret < 0) {
1318 rdev_err(rdev, "failed to set input limit\n");
1319 return ret;
1320 }
1321 }
1322
1323 /* do we need to setup our suspend state */
1324 if (rdev->constraints->initial_state) {
1325 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1326 if (ret < 0) {
1327 rdev_err(rdev, "failed to set suspend state\n");
1328 return ret;
1329 }
1330 }
1331
1332 if (rdev->constraints->initial_mode) {
1333 if (!ops->set_mode) {
1334 rdev_err(rdev, "no set_mode operation\n");
1335 return -EINVAL;
1336 }
1337
1338 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1339 if (ret < 0) {
1340 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1341 return ret;
1342 }
1343 } else if (rdev->constraints->system_load) {
1344 /*
1345 * We'll only apply the initial system load if an
1346 * initial mode wasn't specified.
1347 */
1348 drms_uA_update(rdev);
1349 }
1350
1351 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1352 && ops->set_ramp_delay) {
1353 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1354 if (ret < 0) {
1355 rdev_err(rdev, "failed to set ramp_delay\n");
1356 return ret;
1357 }
1358 }
1359
1360 if (rdev->constraints->pull_down && ops->set_pull_down) {
1361 ret = ops->set_pull_down(rdev);
1362 if (ret < 0) {
1363 rdev_err(rdev, "failed to set pull down\n");
1364 return ret;
1365 }
1366 }
1367
1368 if (rdev->constraints->soft_start && ops->set_soft_start) {
1369 ret = ops->set_soft_start(rdev);
1370 if (ret < 0) {
1371 rdev_err(rdev, "failed to set soft start\n");
1372 return ret;
1373 }
1374 }
1375
1376 if (rdev->constraints->over_current_protection
1377 && ops->set_over_current_protection) {
1378 ret = ops->set_over_current_protection(rdev);
1379 if (ret < 0) {
1380 rdev_err(rdev, "failed to set over current protection\n");
1381 return ret;
1382 }
1383 }
1384
1385 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1386 bool ad_state = (rdev->constraints->active_discharge ==
1387 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1388
1389 ret = ops->set_active_discharge(rdev, ad_state);
1390 if (ret < 0) {
1391 rdev_err(rdev, "failed to set active discharge\n");
1392 return ret;
1393 }
1394 }
1395
1396 /* If the constraints say the regulator should be on at this point
1397 * and we have control then make sure it is enabled.
1398 */
1399 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1400 if (rdev->supply) {
1401 ret = regulator_enable(rdev->supply);
1402 if (ret < 0) {
1403 _regulator_put(rdev->supply);
1404 rdev->supply = NULL;
1405 return ret;
1406 }
1407 }
1408
1409 ret = _regulator_do_enable(rdev);
1410 if (ret < 0 && ret != -EINVAL) {
1411 rdev_err(rdev, "failed to enable\n");
1412 return ret;
1413 }
1414
1415 if (rdev->constraints->always_on)
1416 rdev->use_count++;
1417 }
1418
1419 print_constraints(rdev);
1420 return 0;
1421}
1422
1423/**
1424 * set_supply - set regulator supply regulator
1425 * @rdev: regulator name
1426 * @supply_rdev: supply regulator name
1427 *
1428 * Called by platform initialisation code to set the supply regulator for this
1429 * regulator. This ensures that a regulators supply will also be enabled by the
1430 * core if it's child is enabled.
1431 */
1432static int set_supply(struct regulator_dev *rdev,
1433 struct regulator_dev *supply_rdev)
1434{
1435 int err;
1436
1437 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1438
1439 if (!try_module_get(supply_rdev->owner))
1440 return -ENODEV;
1441
1442 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1443 if (rdev->supply == NULL) {
1444 err = -ENOMEM;
1445 return err;
1446 }
1447 supply_rdev->open_count++;
1448
1449 return 0;
1450}
1451
1452/**
1453 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1454 * @rdev: regulator source
1455 * @consumer_dev_name: dev_name() string for device supply applies to
1456 * @supply: symbolic name for supply
1457 *
1458 * Allows platform initialisation code to map physical regulator
1459 * sources to symbolic names for supplies for use by devices. Devices
1460 * should use these symbolic names to request regulators, avoiding the
1461 * need to provide board-specific regulator names as platform data.
1462 */
1463static int set_consumer_device_supply(struct regulator_dev *rdev,
1464 const char *consumer_dev_name,
1465 const char *supply)
1466{
1467 struct regulator_map *node, *new_node;
1468 int has_dev;
1469
1470 if (supply == NULL)
1471 return -EINVAL;
1472
1473 if (consumer_dev_name != NULL)
1474 has_dev = 1;
1475 else
1476 has_dev = 0;
1477
1478 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1479 if (new_node == NULL)
1480 return -ENOMEM;
1481
1482 new_node->regulator = rdev;
1483 new_node->supply = supply;
1484
1485 if (has_dev) {
1486 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1487 if (new_node->dev_name == NULL) {
1488 kfree(new_node);
1489 return -ENOMEM;
1490 }
1491 }
1492
1493 mutex_lock(®ulator_list_mutex);
1494 list_for_each_entry(node, ®ulator_map_list, list) {
1495 if (node->dev_name && consumer_dev_name) {
1496 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1497 continue;
1498 } else if (node->dev_name || consumer_dev_name) {
1499 continue;
1500 }
1501
1502 if (strcmp(node->supply, supply) != 0)
1503 continue;
1504
1505 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1506 consumer_dev_name,
1507 dev_name(&node->regulator->dev),
1508 node->regulator->desc->name,
1509 supply,
1510 dev_name(&rdev->dev), rdev_get_name(rdev));
1511 goto fail;
1512 }
1513
1514 list_add(&new_node->list, ®ulator_map_list);
1515 mutex_unlock(®ulator_list_mutex);
1516
1517 return 0;
1518
1519fail:
1520 mutex_unlock(®ulator_list_mutex);
1521 kfree(new_node->dev_name);
1522 kfree(new_node);
1523 return -EBUSY;
1524}
1525
1526static void unset_regulator_supplies(struct regulator_dev *rdev)
1527{
1528 struct regulator_map *node, *n;
1529
1530 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1531 if (rdev == node->regulator) {
1532 list_del(&node->list);
1533 kfree(node->dev_name);
1534 kfree(node);
1535 }
1536 }
1537}
1538
1539#ifdef CONFIG_DEBUG_FS
1540static ssize_t constraint_flags_read_file(struct file *file,
1541 char __user *user_buf,
1542 size_t count, loff_t *ppos)
1543{
1544 const struct regulator *regulator = file->private_data;
1545 const struct regulation_constraints *c = regulator->rdev->constraints;
1546 char *buf;
1547 ssize_t ret;
1548
1549 if (!c)
1550 return 0;
1551
1552 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1553 if (!buf)
1554 return -ENOMEM;
1555
1556 ret = snprintf(buf, PAGE_SIZE,
1557 "always_on: %u\n"
1558 "boot_on: %u\n"
1559 "apply_uV: %u\n"
1560 "ramp_disable: %u\n"
1561 "soft_start: %u\n"
1562 "pull_down: %u\n"
1563 "over_current_protection: %u\n",
1564 c->always_on,
1565 c->boot_on,
1566 c->apply_uV,
1567 c->ramp_disable,
1568 c->soft_start,
1569 c->pull_down,
1570 c->over_current_protection);
1571
1572 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1573 kfree(buf);
1574
1575 return ret;
1576}
1577
1578#endif
1579
1580static const struct file_operations constraint_flags_fops = {
1581#ifdef CONFIG_DEBUG_FS
1582 .open = simple_open,
1583 .read = constraint_flags_read_file,
1584 .llseek = default_llseek,
1585#endif
1586};
1587
1588#define REG_STR_SIZE 64
1589
1590static struct regulator *create_regulator(struct regulator_dev *rdev,
1591 struct device *dev,
1592 const char *supply_name)
1593{
1594 struct regulator *regulator;
1595 int err;
1596
1597 if (dev) {
1598 char buf[REG_STR_SIZE];
1599 int size;
1600
1601 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1602 dev->kobj.name, supply_name);
1603 if (size >= REG_STR_SIZE)
1604 return NULL;
1605
1606 supply_name = kstrdup(buf, GFP_KERNEL);
1607 if (supply_name == NULL)
1608 return NULL;
1609 } else {
1610 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611 if (supply_name == NULL)
1612 return NULL;
1613 }
1614
1615 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1616 if (regulator == NULL) {
1617 kfree(supply_name);
1618 return NULL;
1619 }
1620
1621 regulator->rdev = rdev;
1622 regulator->supply_name = supply_name;
1623
1624 regulator_lock(rdev);
1625 list_add(®ulator->list, &rdev->consumer_list);
1626 regulator_unlock(rdev);
1627
1628 if (dev) {
1629 regulator->dev = dev;
1630
1631 /* Add a link to the device sysfs entry */
1632 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1633 supply_name);
1634 if (err) {
1635 rdev_dbg(rdev, "could not add device link %s err %d\n",
1636 dev->kobj.name, err);
1637 /* non-fatal */
1638 }
1639 }
1640
1641 regulator->debugfs = debugfs_create_dir(supply_name,
1642 rdev->debugfs);
1643 if (!regulator->debugfs) {
1644 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1645 } else {
1646 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1647 ®ulator->uA_load);
1648 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1649 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1650 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1651 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1652 debugfs_create_file("constraint_flags", 0444,
1653 regulator->debugfs, regulator,
1654 &constraint_flags_fops);
1655 }
1656
1657 /*
1658 * Check now if the regulator is an always on regulator - if
1659 * it is then we don't need to do nearly so much work for
1660 * enable/disable calls.
1661 */
1662 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1663 _regulator_is_enabled(rdev))
1664 regulator->always_on = true;
1665
1666 return regulator;
1667}
1668
1669static int _regulator_get_enable_time(struct regulator_dev *rdev)
1670{
1671 if (rdev->constraints && rdev->constraints->enable_time)
1672 return rdev->constraints->enable_time;
1673 if (rdev->desc->ops->enable_time)
1674 return rdev->desc->ops->enable_time(rdev);
1675 return rdev->desc->enable_time;
1676}
1677
1678static struct regulator_supply_alias *regulator_find_supply_alias(
1679 struct device *dev, const char *supply)
1680{
1681 struct regulator_supply_alias *map;
1682
1683 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1684 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1685 return map;
1686
1687 return NULL;
1688}
1689
1690static void regulator_supply_alias(struct device **dev, const char **supply)
1691{
1692 struct regulator_supply_alias *map;
1693
1694 map = regulator_find_supply_alias(*dev, *supply);
1695 if (map) {
1696 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1697 *supply, map->alias_supply,
1698 dev_name(map->alias_dev));
1699 *dev = map->alias_dev;
1700 *supply = map->alias_supply;
1701 }
1702}
1703
1704static int regulator_match(struct device *dev, const void *data)
1705{
1706 struct regulator_dev *r = dev_to_rdev(dev);
1707
1708 return strcmp(rdev_get_name(r), data) == 0;
1709}
1710
1711static struct regulator_dev *regulator_lookup_by_name(const char *name)
1712{
1713 struct device *dev;
1714
1715 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1716
1717 return dev ? dev_to_rdev(dev) : NULL;
1718}
1719
1720/**
1721 * regulator_dev_lookup - lookup a regulator device.
1722 * @dev: device for regulator "consumer".
1723 * @supply: Supply name or regulator ID.
1724 *
1725 * If successful, returns a struct regulator_dev that corresponds to the name
1726 * @supply and with the embedded struct device refcount incremented by one.
1727 * The refcount must be dropped by calling put_device().
1728 * On failure one of the following ERR-PTR-encoded values is returned:
1729 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1730 * in the future.
1731 */
1732static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1733 const char *supply)
1734{
1735 struct regulator_dev *r = NULL;
1736 struct device_node *node;
1737 struct regulator_map *map;
1738 const char *devname = NULL;
1739
1740 regulator_supply_alias(&dev, &supply);
1741
1742 /* first do a dt based lookup */
1743 if (dev && dev->of_node) {
1744 node = of_get_regulator(dev, supply);
1745 if (node) {
1746 r = of_find_regulator_by_node(node);
1747 if (r)
1748 return r;
1749
1750 /*
1751 * We have a node, but there is no device.
1752 * assume it has not registered yet.
1753 */
1754 return ERR_PTR(-EPROBE_DEFER);
1755 }
1756 }
1757
1758 /* if not found, try doing it non-dt way */
1759 if (dev)
1760 devname = dev_name(dev);
1761
1762 mutex_lock(®ulator_list_mutex);
1763 list_for_each_entry(map, ®ulator_map_list, list) {
1764 /* If the mapping has a device set up it must match */
1765 if (map->dev_name &&
1766 (!devname || strcmp(map->dev_name, devname)))
1767 continue;
1768
1769 if (strcmp(map->supply, supply) == 0 &&
1770 get_device(&map->regulator->dev)) {
1771 r = map->regulator;
1772 break;
1773 }
1774 }
1775 mutex_unlock(®ulator_list_mutex);
1776
1777 if (r)
1778 return r;
1779
1780 r = regulator_lookup_by_name(supply);
1781 if (r)
1782 return r;
1783
1784 return ERR_PTR(-ENODEV);
1785}
1786
1787static int regulator_resolve_supply(struct regulator_dev *rdev)
1788{
1789 struct regulator_dev *r;
1790 struct device *dev = rdev->dev.parent;
1791 int ret;
1792
1793 /* No supply to resolve? */
1794 if (!rdev->supply_name)
1795 return 0;
1796
1797 /* Supply already resolved? */
1798 if (rdev->supply)
1799 return 0;
1800
1801 r = regulator_dev_lookup(dev, rdev->supply_name);
1802 if (IS_ERR(r)) {
1803 ret = PTR_ERR(r);
1804
1805 /* Did the lookup explicitly defer for us? */
1806 if (ret == -EPROBE_DEFER)
1807 return ret;
1808
1809 if (have_full_constraints()) {
1810 r = dummy_regulator_rdev;
1811 get_device(&r->dev);
1812 } else {
1813 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1814 rdev->supply_name, rdev->desc->name);
1815 return -EPROBE_DEFER;
1816 }
1817 }
1818
1819 /*
1820 * If the supply's parent device is not the same as the
1821 * regulator's parent device, then ensure the parent device
1822 * is bound before we resolve the supply, in case the parent
1823 * device get probe deferred and unregisters the supply.
1824 */
1825 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1826 if (!device_is_bound(r->dev.parent)) {
1827 put_device(&r->dev);
1828 return -EPROBE_DEFER;
1829 }
1830 }
1831
1832 /* Recursively resolve the supply of the supply */
1833 ret = regulator_resolve_supply(r);
1834 if (ret < 0) {
1835 put_device(&r->dev);
1836 return ret;
1837 }
1838
1839 ret = set_supply(rdev, r);
1840 if (ret < 0) {
1841 put_device(&r->dev);
1842 return ret;
1843 }
1844
1845 /*
1846 * In set_machine_constraints() we may have turned this regulator on
1847 * but we couldn't propagate to the supply if it hadn't been resolved
1848 * yet. Do it now.
1849 */
1850 if (rdev->use_count) {
1851 ret = regulator_enable(rdev->supply);
1852 if (ret < 0) {
1853 _regulator_put(rdev->supply);
1854 rdev->supply = NULL;
1855 return ret;
1856 }
1857 }
1858
1859 return 0;
1860}
1861
1862/* Internal regulator request function */
1863struct regulator *_regulator_get(struct device *dev, const char *id,
1864 enum regulator_get_type get_type)
1865{
1866 struct regulator_dev *rdev;
1867 struct regulator *regulator;
1868 struct device_link *link;
1869 int ret;
1870
1871 if (get_type >= MAX_GET_TYPE) {
1872 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1873 return ERR_PTR(-EINVAL);
1874 }
1875
1876 if (id == NULL) {
1877 pr_err("get() with no identifier\n");
1878 return ERR_PTR(-EINVAL);
1879 }
1880
1881 rdev = regulator_dev_lookup(dev, id);
1882 if (IS_ERR(rdev)) {
1883 ret = PTR_ERR(rdev);
1884
1885 /*
1886 * If regulator_dev_lookup() fails with error other
1887 * than -ENODEV our job here is done, we simply return it.
1888 */
1889 if (ret != -ENODEV)
1890 return ERR_PTR(ret);
1891
1892 if (!have_full_constraints()) {
1893 dev_warn(dev,
1894 "incomplete constraints, dummy supplies not allowed\n");
1895 return ERR_PTR(-ENODEV);
1896 }
1897
1898 switch (get_type) {
1899 case NORMAL_GET:
1900 /*
1901 * Assume that a regulator is physically present and
1902 * enabled, even if it isn't hooked up, and just
1903 * provide a dummy.
1904 */
1905 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1906 rdev = dummy_regulator_rdev;
1907 get_device(&rdev->dev);
1908 break;
1909
1910 case EXCLUSIVE_GET:
1911 dev_warn(dev,
1912 "dummy supplies not allowed for exclusive requests\n");
1913 fallthrough;
1914
1915 default:
1916 return ERR_PTR(-ENODEV);
1917 }
1918 }
1919
1920 if (rdev->exclusive) {
1921 regulator = ERR_PTR(-EPERM);
1922 put_device(&rdev->dev);
1923 return regulator;
1924 }
1925
1926 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1927 regulator = ERR_PTR(-EBUSY);
1928 put_device(&rdev->dev);
1929 return regulator;
1930 }
1931
1932 mutex_lock(®ulator_list_mutex);
1933 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1934 mutex_unlock(®ulator_list_mutex);
1935
1936 if (ret != 0) {
1937 regulator = ERR_PTR(-EPROBE_DEFER);
1938 put_device(&rdev->dev);
1939 return regulator;
1940 }
1941
1942 ret = regulator_resolve_supply(rdev);
1943 if (ret < 0) {
1944 regulator = ERR_PTR(ret);
1945 put_device(&rdev->dev);
1946 return regulator;
1947 }
1948
1949 if (!try_module_get(rdev->owner)) {
1950 regulator = ERR_PTR(-EPROBE_DEFER);
1951 put_device(&rdev->dev);
1952 return regulator;
1953 }
1954
1955 regulator = create_regulator(rdev, dev, id);
1956 if (regulator == NULL) {
1957 regulator = ERR_PTR(-ENOMEM);
1958 module_put(rdev->owner);
1959 put_device(&rdev->dev);
1960 return regulator;
1961 }
1962
1963 rdev->open_count++;
1964 if (get_type == EXCLUSIVE_GET) {
1965 rdev->exclusive = 1;
1966
1967 ret = _regulator_is_enabled(rdev);
1968 if (ret > 0)
1969 rdev->use_count = 1;
1970 else
1971 rdev->use_count = 0;
1972 }
1973
1974 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1975 if (!IS_ERR_OR_NULL(link))
1976 regulator->device_link = true;
1977
1978 return regulator;
1979}
1980
1981/**
1982 * regulator_get - lookup and obtain a reference to a regulator.
1983 * @dev: device for regulator "consumer"
1984 * @id: Supply name or regulator ID.
1985 *
1986 * Returns a struct regulator corresponding to the regulator producer,
1987 * or IS_ERR() condition containing errno.
1988 *
1989 * Use of supply names configured via regulator_set_device_supply() is
1990 * strongly encouraged. It is recommended that the supply name used
1991 * should match the name used for the supply and/or the relevant
1992 * device pins in the datasheet.
1993 */
1994struct regulator *regulator_get(struct device *dev, const char *id)
1995{
1996 return _regulator_get(dev, id, NORMAL_GET);
1997}
1998EXPORT_SYMBOL_GPL(regulator_get);
1999
2000/**
2001 * regulator_get_exclusive - obtain exclusive access to a regulator.
2002 * @dev: device for regulator "consumer"
2003 * @id: Supply name or regulator ID.
2004 *
2005 * Returns a struct regulator corresponding to the regulator producer,
2006 * or IS_ERR() condition containing errno. Other consumers will be
2007 * unable to obtain this regulator while this reference is held and the
2008 * use count for the regulator will be initialised to reflect the current
2009 * state of the regulator.
2010 *
2011 * This is intended for use by consumers which cannot tolerate shared
2012 * use of the regulator such as those which need to force the
2013 * regulator off for correct operation of the hardware they are
2014 * controlling.
2015 *
2016 * Use of supply names configured via regulator_set_device_supply() is
2017 * strongly encouraged. It is recommended that the supply name used
2018 * should match the name used for the supply and/or the relevant
2019 * device pins in the datasheet.
2020 */
2021struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2022{
2023 return _regulator_get(dev, id, EXCLUSIVE_GET);
2024}
2025EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2026
2027/**
2028 * regulator_get_optional - obtain optional access to a regulator.
2029 * @dev: device for regulator "consumer"
2030 * @id: Supply name or regulator ID.
2031 *
2032 * Returns a struct regulator corresponding to the regulator producer,
2033 * or IS_ERR() condition containing errno.
2034 *
2035 * This is intended for use by consumers for devices which can have
2036 * some supplies unconnected in normal use, such as some MMC devices.
2037 * It can allow the regulator core to provide stub supplies for other
2038 * supplies requested using normal regulator_get() calls without
2039 * disrupting the operation of drivers that can handle absent
2040 * supplies.
2041 *
2042 * Use of supply names configured via regulator_set_device_supply() is
2043 * strongly encouraged. It is recommended that the supply name used
2044 * should match the name used for the supply and/or the relevant
2045 * device pins in the datasheet.
2046 */
2047struct regulator *regulator_get_optional(struct device *dev, const char *id)
2048{
2049 return _regulator_get(dev, id, OPTIONAL_GET);
2050}
2051EXPORT_SYMBOL_GPL(regulator_get_optional);
2052
2053static void destroy_regulator(struct regulator *regulator)
2054{
2055 struct regulator_dev *rdev = regulator->rdev;
2056
2057 debugfs_remove_recursive(regulator->debugfs);
2058
2059 if (regulator->dev) {
2060 if (regulator->device_link)
2061 device_link_remove(regulator->dev, &rdev->dev);
2062
2063 /* remove any sysfs entries */
2064 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2065 }
2066
2067 regulator_lock(rdev);
2068 list_del(®ulator->list);
2069
2070 rdev->open_count--;
2071 rdev->exclusive = 0;
2072 regulator_unlock(rdev);
2073
2074 kfree_const(regulator->supply_name);
2075 kfree(regulator);
2076}
2077
2078/* regulator_list_mutex lock held by regulator_put() */
2079static void _regulator_put(struct regulator *regulator)
2080{
2081 struct regulator_dev *rdev;
2082
2083 if (IS_ERR_OR_NULL(regulator))
2084 return;
2085
2086 lockdep_assert_held_once(®ulator_list_mutex);
2087
2088 /* Docs say you must disable before calling regulator_put() */
2089 WARN_ON(regulator->enable_count);
2090
2091 rdev = regulator->rdev;
2092
2093 destroy_regulator(regulator);
2094
2095 module_put(rdev->owner);
2096 put_device(&rdev->dev);
2097}
2098
2099/**
2100 * regulator_put - "free" the regulator source
2101 * @regulator: regulator source
2102 *
2103 * Note: drivers must ensure that all regulator_enable calls made on this
2104 * regulator source are balanced by regulator_disable calls prior to calling
2105 * this function.
2106 */
2107void regulator_put(struct regulator *regulator)
2108{
2109 mutex_lock(®ulator_list_mutex);
2110 _regulator_put(regulator);
2111 mutex_unlock(®ulator_list_mutex);
2112}
2113EXPORT_SYMBOL_GPL(regulator_put);
2114
2115/**
2116 * regulator_register_supply_alias - Provide device alias for supply lookup
2117 *
2118 * @dev: device that will be given as the regulator "consumer"
2119 * @id: Supply name or regulator ID
2120 * @alias_dev: device that should be used to lookup the supply
2121 * @alias_id: Supply name or regulator ID that should be used to lookup the
2122 * supply
2123 *
2124 * All lookups for id on dev will instead be conducted for alias_id on
2125 * alias_dev.
2126 */
2127int regulator_register_supply_alias(struct device *dev, const char *id,
2128 struct device *alias_dev,
2129 const char *alias_id)
2130{
2131 struct regulator_supply_alias *map;
2132
2133 map = regulator_find_supply_alias(dev, id);
2134 if (map)
2135 return -EEXIST;
2136
2137 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2138 if (!map)
2139 return -ENOMEM;
2140
2141 map->src_dev = dev;
2142 map->src_supply = id;
2143 map->alias_dev = alias_dev;
2144 map->alias_supply = alias_id;
2145
2146 list_add(&map->list, ®ulator_supply_alias_list);
2147
2148 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2149 id, dev_name(dev), alias_id, dev_name(alias_dev));
2150
2151 return 0;
2152}
2153EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2154
2155/**
2156 * regulator_unregister_supply_alias - Remove device alias
2157 *
2158 * @dev: device that will be given as the regulator "consumer"
2159 * @id: Supply name or regulator ID
2160 *
2161 * Remove a lookup alias if one exists for id on dev.
2162 */
2163void regulator_unregister_supply_alias(struct device *dev, const char *id)
2164{
2165 struct regulator_supply_alias *map;
2166
2167 map = regulator_find_supply_alias(dev, id);
2168 if (map) {
2169 list_del(&map->list);
2170 kfree(map);
2171 }
2172}
2173EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2174
2175/**
2176 * regulator_bulk_register_supply_alias - register multiple aliases
2177 *
2178 * @dev: device that will be given as the regulator "consumer"
2179 * @id: List of supply names or regulator IDs
2180 * @alias_dev: device that should be used to lookup the supply
2181 * @alias_id: List of supply names or regulator IDs that should be used to
2182 * lookup the supply
2183 * @num_id: Number of aliases to register
2184 *
2185 * @return 0 on success, an errno on failure.
2186 *
2187 * This helper function allows drivers to register several supply
2188 * aliases in one operation. If any of the aliases cannot be
2189 * registered any aliases that were registered will be removed
2190 * before returning to the caller.
2191 */
2192int regulator_bulk_register_supply_alias(struct device *dev,
2193 const char *const *id,
2194 struct device *alias_dev,
2195 const char *const *alias_id,
2196 int num_id)
2197{
2198 int i;
2199 int ret;
2200
2201 for (i = 0; i < num_id; ++i) {
2202 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2203 alias_id[i]);
2204 if (ret < 0)
2205 goto err;
2206 }
2207
2208 return 0;
2209
2210err:
2211 dev_err(dev,
2212 "Failed to create supply alias %s,%s -> %s,%s\n",
2213 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2214
2215 while (--i >= 0)
2216 regulator_unregister_supply_alias(dev, id[i]);
2217
2218 return ret;
2219}
2220EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2221
2222/**
2223 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2224 *
2225 * @dev: device that will be given as the regulator "consumer"
2226 * @id: List of supply names or regulator IDs
2227 * @num_id: Number of aliases to unregister
2228 *
2229 * This helper function allows drivers to unregister several supply
2230 * aliases in one operation.
2231 */
2232void regulator_bulk_unregister_supply_alias(struct device *dev,
2233 const char *const *id,
2234 int num_id)
2235{
2236 int i;
2237
2238 for (i = 0; i < num_id; ++i)
2239 regulator_unregister_supply_alias(dev, id[i]);
2240}
2241EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2242
2243
2244/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2245static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2246 const struct regulator_config *config)
2247{
2248 struct regulator_enable_gpio *pin, *new_pin;
2249 struct gpio_desc *gpiod;
2250
2251 gpiod = config->ena_gpiod;
2252 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2253
2254 mutex_lock(®ulator_list_mutex);
2255
2256 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2257 if (pin->gpiod == gpiod) {
2258 rdev_dbg(rdev, "GPIO is already used\n");
2259 goto update_ena_gpio_to_rdev;
2260 }
2261 }
2262
2263 if (new_pin == NULL) {
2264 mutex_unlock(®ulator_list_mutex);
2265 return -ENOMEM;
2266 }
2267
2268 pin = new_pin;
2269 new_pin = NULL;
2270
2271 pin->gpiod = gpiod;
2272 list_add(&pin->list, ®ulator_ena_gpio_list);
2273
2274update_ena_gpio_to_rdev:
2275 pin->request_count++;
2276 rdev->ena_pin = pin;
2277
2278 mutex_unlock(®ulator_list_mutex);
2279 kfree(new_pin);
2280
2281 return 0;
2282}
2283
2284static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2285{
2286 struct regulator_enable_gpio *pin, *n;
2287
2288 if (!rdev->ena_pin)
2289 return;
2290
2291 /* Free the GPIO only in case of no use */
2292 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2293 if (pin != rdev->ena_pin)
2294 continue;
2295
2296 if (--pin->request_count)
2297 break;
2298
2299 gpiod_put(pin->gpiod);
2300 list_del(&pin->list);
2301 kfree(pin);
2302 break;
2303 }
2304
2305 rdev->ena_pin = NULL;
2306}
2307
2308/**
2309 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2310 * @rdev: regulator_dev structure
2311 * @enable: enable GPIO at initial use?
2312 *
2313 * GPIO is enabled in case of initial use. (enable_count is 0)
2314 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2315 */
2316static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2317{
2318 struct regulator_enable_gpio *pin = rdev->ena_pin;
2319
2320 if (!pin)
2321 return -EINVAL;
2322
2323 if (enable) {
2324 /* Enable GPIO at initial use */
2325 if (pin->enable_count == 0)
2326 gpiod_set_value_cansleep(pin->gpiod, 1);
2327
2328 pin->enable_count++;
2329 } else {
2330 if (pin->enable_count > 1) {
2331 pin->enable_count--;
2332 return 0;
2333 }
2334
2335 /* Disable GPIO if not used */
2336 if (pin->enable_count <= 1) {
2337 gpiod_set_value_cansleep(pin->gpiod, 0);
2338 pin->enable_count = 0;
2339 }
2340 }
2341
2342 return 0;
2343}
2344
2345/**
2346 * _regulator_enable_delay - a delay helper function
2347 * @delay: time to delay in microseconds
2348 *
2349 * Delay for the requested amount of time as per the guidelines in:
2350 *
2351 * Documentation/timers/timers-howto.rst
2352 *
2353 * The assumption here is that regulators will never be enabled in
2354 * atomic context and therefore sleeping functions can be used.
2355 */
2356static void _regulator_enable_delay(unsigned int delay)
2357{
2358 unsigned int ms = delay / 1000;
2359 unsigned int us = delay % 1000;
2360
2361 if (ms > 0) {
2362 /*
2363 * For small enough values, handle super-millisecond
2364 * delays in the usleep_range() call below.
2365 */
2366 if (ms < 20)
2367 us += ms * 1000;
2368 else
2369 msleep(ms);
2370 }
2371
2372 /*
2373 * Give the scheduler some room to coalesce with any other
2374 * wakeup sources. For delays shorter than 10 us, don't even
2375 * bother setting up high-resolution timers and just busy-
2376 * loop.
2377 */
2378 if (us >= 10)
2379 usleep_range(us, us + 100);
2380 else
2381 udelay(us);
2382}
2383
2384/**
2385 * _regulator_check_status_enabled
2386 *
2387 * A helper function to check if the regulator status can be interpreted
2388 * as 'regulator is enabled'.
2389 * @rdev: the regulator device to check
2390 *
2391 * Return:
2392 * * 1 - if status shows regulator is in enabled state
2393 * * 0 - if not enabled state
2394 * * Error Value - as received from ops->get_status()
2395 */
2396static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2397{
2398 int ret = rdev->desc->ops->get_status(rdev);
2399
2400 if (ret < 0) {
2401 rdev_info(rdev, "get_status returned error: %d\n", ret);
2402 return ret;
2403 }
2404
2405 switch (ret) {
2406 case REGULATOR_STATUS_OFF:
2407 case REGULATOR_STATUS_ERROR:
2408 case REGULATOR_STATUS_UNDEFINED:
2409 return 0;
2410 default:
2411 return 1;
2412 }
2413}
2414
2415static int _regulator_do_enable(struct regulator_dev *rdev)
2416{
2417 int ret, delay;
2418
2419 /* Query before enabling in case configuration dependent. */
2420 ret = _regulator_get_enable_time(rdev);
2421 if (ret >= 0) {
2422 delay = ret;
2423 } else {
2424 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2425 delay = 0;
2426 }
2427
2428 trace_regulator_enable(rdev_get_name(rdev));
2429
2430 if (rdev->desc->off_on_delay) {
2431 /* if needed, keep a distance of off_on_delay from last time
2432 * this regulator was disabled.
2433 */
2434 unsigned long start_jiffy = jiffies;
2435 unsigned long intended, max_delay, remaining;
2436
2437 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2438 intended = rdev->last_off_jiffy + max_delay;
2439
2440 if (time_before(start_jiffy, intended)) {
2441 /* calc remaining jiffies to deal with one-time
2442 * timer wrapping.
2443 * in case of multiple timer wrapping, either it can be
2444 * detected by out-of-range remaining, or it cannot be
2445 * detected and we get a penalty of
2446 * _regulator_enable_delay().
2447 */
2448 remaining = intended - start_jiffy;
2449 if (remaining <= max_delay)
2450 _regulator_enable_delay(
2451 jiffies_to_usecs(remaining));
2452 }
2453 }
2454
2455 if (rdev->ena_pin) {
2456 if (!rdev->ena_gpio_state) {
2457 ret = regulator_ena_gpio_ctrl(rdev, true);
2458 if (ret < 0)
2459 return ret;
2460 rdev->ena_gpio_state = 1;
2461 }
2462 } else if (rdev->desc->ops->enable) {
2463 ret = rdev->desc->ops->enable(rdev);
2464 if (ret < 0)
2465 return ret;
2466 } else {
2467 return -EINVAL;
2468 }
2469
2470 /* Allow the regulator to ramp; it would be useful to extend
2471 * this for bulk operations so that the regulators can ramp
2472 * together. */
2473 trace_regulator_enable_delay(rdev_get_name(rdev));
2474
2475 /* If poll_enabled_time is set, poll upto the delay calculated
2476 * above, delaying poll_enabled_time uS to check if the regulator
2477 * actually got enabled.
2478 * If the regulator isn't enabled after enable_delay has
2479 * expired, return -ETIMEDOUT.
2480 */
2481 if (rdev->desc->poll_enabled_time) {
2482 unsigned int time_remaining = delay;
2483
2484 while (time_remaining > 0) {
2485 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2486
2487 if (rdev->desc->ops->get_status) {
2488 ret = _regulator_check_status_enabled(rdev);
2489 if (ret < 0)
2490 return ret;
2491 else if (ret)
2492 break;
2493 } else if (rdev->desc->ops->is_enabled(rdev))
2494 break;
2495
2496 time_remaining -= rdev->desc->poll_enabled_time;
2497 }
2498
2499 if (time_remaining <= 0) {
2500 rdev_err(rdev, "Enabled check timed out\n");
2501 return -ETIMEDOUT;
2502 }
2503 } else {
2504 _regulator_enable_delay(delay);
2505 }
2506
2507 trace_regulator_enable_complete(rdev_get_name(rdev));
2508
2509 return 0;
2510}
2511
2512/**
2513 * _regulator_handle_consumer_enable - handle that a consumer enabled
2514 * @regulator: regulator source
2515 *
2516 * Some things on a regulator consumer (like the contribution towards total
2517 * load on the regulator) only have an effect when the consumer wants the
2518 * regulator enabled. Explained in example with two consumers of the same
2519 * regulator:
2520 * consumer A: set_load(100); => total load = 0
2521 * consumer A: regulator_enable(); => total load = 100
2522 * consumer B: set_load(1000); => total load = 100
2523 * consumer B: regulator_enable(); => total load = 1100
2524 * consumer A: regulator_disable(); => total_load = 1000
2525 *
2526 * This function (together with _regulator_handle_consumer_disable) is
2527 * responsible for keeping track of the refcount for a given regulator consumer
2528 * and applying / unapplying these things.
2529 *
2530 * Returns 0 upon no error; -error upon error.
2531 */
2532static int _regulator_handle_consumer_enable(struct regulator *regulator)
2533{
2534 struct regulator_dev *rdev = regulator->rdev;
2535
2536 lockdep_assert_held_once(&rdev->mutex.base);
2537
2538 regulator->enable_count++;
2539 if (regulator->uA_load && regulator->enable_count == 1)
2540 return drms_uA_update(rdev);
2541
2542 return 0;
2543}
2544
2545/**
2546 * _regulator_handle_consumer_disable - handle that a consumer disabled
2547 * @regulator: regulator source
2548 *
2549 * The opposite of _regulator_handle_consumer_enable().
2550 *
2551 * Returns 0 upon no error; -error upon error.
2552 */
2553static int _regulator_handle_consumer_disable(struct regulator *regulator)
2554{
2555 struct regulator_dev *rdev = regulator->rdev;
2556
2557 lockdep_assert_held_once(&rdev->mutex.base);
2558
2559 if (!regulator->enable_count) {
2560 rdev_err(rdev, "Underflow of regulator enable count\n");
2561 return -EINVAL;
2562 }
2563
2564 regulator->enable_count--;
2565 if (regulator->uA_load && regulator->enable_count == 0)
2566 return drms_uA_update(rdev);
2567
2568 return 0;
2569}
2570
2571/* locks held by regulator_enable() */
2572static int _regulator_enable(struct regulator *regulator)
2573{
2574 struct regulator_dev *rdev = regulator->rdev;
2575 int ret;
2576
2577 lockdep_assert_held_once(&rdev->mutex.base);
2578
2579 if (rdev->use_count == 0 && rdev->supply) {
2580 ret = _regulator_enable(rdev->supply);
2581 if (ret < 0)
2582 return ret;
2583 }
2584
2585 /* balance only if there are regulators coupled */
2586 if (rdev->coupling_desc.n_coupled > 1) {
2587 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2588 if (ret < 0)
2589 goto err_disable_supply;
2590 }
2591
2592 ret = _regulator_handle_consumer_enable(regulator);
2593 if (ret < 0)
2594 goto err_disable_supply;
2595
2596 if (rdev->use_count == 0) {
2597 /* The regulator may on if it's not switchable or left on */
2598 ret = _regulator_is_enabled(rdev);
2599 if (ret == -EINVAL || ret == 0) {
2600 if (!regulator_ops_is_valid(rdev,
2601 REGULATOR_CHANGE_STATUS)) {
2602 ret = -EPERM;
2603 goto err_consumer_disable;
2604 }
2605
2606 ret = _regulator_do_enable(rdev);
2607 if (ret < 0)
2608 goto err_consumer_disable;
2609
2610 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2611 NULL);
2612 } else if (ret < 0) {
2613 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2614 goto err_consumer_disable;
2615 }
2616 /* Fallthrough on positive return values - already enabled */
2617 }
2618
2619 rdev->use_count++;
2620
2621 return 0;
2622
2623err_consumer_disable:
2624 _regulator_handle_consumer_disable(regulator);
2625
2626err_disable_supply:
2627 if (rdev->use_count == 0 && rdev->supply)
2628 _regulator_disable(rdev->supply);
2629
2630 return ret;
2631}
2632
2633/**
2634 * regulator_enable - enable regulator output
2635 * @regulator: regulator source
2636 *
2637 * Request that the regulator be enabled with the regulator output at
2638 * the predefined voltage or current value. Calls to regulator_enable()
2639 * must be balanced with calls to regulator_disable().
2640 *
2641 * NOTE: the output value can be set by other drivers, boot loader or may be
2642 * hardwired in the regulator.
2643 */
2644int regulator_enable(struct regulator *regulator)
2645{
2646 struct regulator_dev *rdev = regulator->rdev;
2647 struct ww_acquire_ctx ww_ctx;
2648 int ret;
2649
2650 regulator_lock_dependent(rdev, &ww_ctx);
2651 ret = _regulator_enable(regulator);
2652 regulator_unlock_dependent(rdev, &ww_ctx);
2653
2654 return ret;
2655}
2656EXPORT_SYMBOL_GPL(regulator_enable);
2657
2658static int _regulator_do_disable(struct regulator_dev *rdev)
2659{
2660 int ret;
2661
2662 trace_regulator_disable(rdev_get_name(rdev));
2663
2664 if (rdev->ena_pin) {
2665 if (rdev->ena_gpio_state) {
2666 ret = regulator_ena_gpio_ctrl(rdev, false);
2667 if (ret < 0)
2668 return ret;
2669 rdev->ena_gpio_state = 0;
2670 }
2671
2672 } else if (rdev->desc->ops->disable) {
2673 ret = rdev->desc->ops->disable(rdev);
2674 if (ret != 0)
2675 return ret;
2676 }
2677
2678 /* cares about last_off_jiffy only if off_on_delay is required by
2679 * device.
2680 */
2681 if (rdev->desc->off_on_delay)
2682 rdev->last_off_jiffy = jiffies;
2683
2684 trace_regulator_disable_complete(rdev_get_name(rdev));
2685
2686 return 0;
2687}
2688
2689/* locks held by regulator_disable() */
2690static int _regulator_disable(struct regulator *regulator)
2691{
2692 struct regulator_dev *rdev = regulator->rdev;
2693 int ret = 0;
2694
2695 lockdep_assert_held_once(&rdev->mutex.base);
2696
2697 if (WARN(rdev->use_count <= 0,
2698 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2699 return -EIO;
2700
2701 /* are we the last user and permitted to disable ? */
2702 if (rdev->use_count == 1 &&
2703 (rdev->constraints && !rdev->constraints->always_on)) {
2704
2705 /* we are last user */
2706 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2707 ret = _notifier_call_chain(rdev,
2708 REGULATOR_EVENT_PRE_DISABLE,
2709 NULL);
2710 if (ret & NOTIFY_STOP_MASK)
2711 return -EINVAL;
2712
2713 ret = _regulator_do_disable(rdev);
2714 if (ret < 0) {
2715 rdev_err(rdev, "failed to disable\n");
2716 _notifier_call_chain(rdev,
2717 REGULATOR_EVENT_ABORT_DISABLE,
2718 NULL);
2719 return ret;
2720 }
2721 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2722 NULL);
2723 }
2724
2725 rdev->use_count = 0;
2726 } else if (rdev->use_count > 1) {
2727 rdev->use_count--;
2728 }
2729
2730 if (ret == 0)
2731 ret = _regulator_handle_consumer_disable(regulator);
2732
2733 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2734 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2735
2736 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2737 ret = _regulator_disable(rdev->supply);
2738
2739 return ret;
2740}
2741
2742/**
2743 * regulator_disable - disable regulator output
2744 * @regulator: regulator source
2745 *
2746 * Disable the regulator output voltage or current. Calls to
2747 * regulator_enable() must be balanced with calls to
2748 * regulator_disable().
2749 *
2750 * NOTE: this will only disable the regulator output if no other consumer
2751 * devices have it enabled, the regulator device supports disabling and
2752 * machine constraints permit this operation.
2753 */
2754int regulator_disable(struct regulator *regulator)
2755{
2756 struct regulator_dev *rdev = regulator->rdev;
2757 struct ww_acquire_ctx ww_ctx;
2758 int ret;
2759
2760 regulator_lock_dependent(rdev, &ww_ctx);
2761 ret = _regulator_disable(regulator);
2762 regulator_unlock_dependent(rdev, &ww_ctx);
2763
2764 return ret;
2765}
2766EXPORT_SYMBOL_GPL(regulator_disable);
2767
2768/* locks held by regulator_force_disable() */
2769static int _regulator_force_disable(struct regulator_dev *rdev)
2770{
2771 int ret = 0;
2772
2773 lockdep_assert_held_once(&rdev->mutex.base);
2774
2775 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2776 REGULATOR_EVENT_PRE_DISABLE, NULL);
2777 if (ret & NOTIFY_STOP_MASK)
2778 return -EINVAL;
2779
2780 ret = _regulator_do_disable(rdev);
2781 if (ret < 0) {
2782 rdev_err(rdev, "failed to force disable\n");
2783 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2784 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2785 return ret;
2786 }
2787
2788 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2789 REGULATOR_EVENT_DISABLE, NULL);
2790
2791 return 0;
2792}
2793
2794/**
2795 * regulator_force_disable - force disable regulator output
2796 * @regulator: regulator source
2797 *
2798 * Forcibly disable the regulator output voltage or current.
2799 * NOTE: this *will* disable the regulator output even if other consumer
2800 * devices have it enabled. This should be used for situations when device
2801 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2802 */
2803int regulator_force_disable(struct regulator *regulator)
2804{
2805 struct regulator_dev *rdev = regulator->rdev;
2806 struct ww_acquire_ctx ww_ctx;
2807 int ret;
2808
2809 regulator_lock_dependent(rdev, &ww_ctx);
2810
2811 ret = _regulator_force_disable(regulator->rdev);
2812
2813 if (rdev->coupling_desc.n_coupled > 1)
2814 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2815
2816 if (regulator->uA_load) {
2817 regulator->uA_load = 0;
2818 ret = drms_uA_update(rdev);
2819 }
2820
2821 if (rdev->use_count != 0 && rdev->supply)
2822 _regulator_disable(rdev->supply);
2823
2824 regulator_unlock_dependent(rdev, &ww_ctx);
2825
2826 return ret;
2827}
2828EXPORT_SYMBOL_GPL(regulator_force_disable);
2829
2830static void regulator_disable_work(struct work_struct *work)
2831{
2832 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2833 disable_work.work);
2834 struct ww_acquire_ctx ww_ctx;
2835 int count, i, ret;
2836 struct regulator *regulator;
2837 int total_count = 0;
2838
2839 regulator_lock_dependent(rdev, &ww_ctx);
2840
2841 /*
2842 * Workqueue functions queue the new work instance while the previous
2843 * work instance is being processed. Cancel the queued work instance
2844 * as the work instance under processing does the job of the queued
2845 * work instance.
2846 */
2847 cancel_delayed_work(&rdev->disable_work);
2848
2849 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2850 count = regulator->deferred_disables;
2851
2852 if (!count)
2853 continue;
2854
2855 total_count += count;
2856 regulator->deferred_disables = 0;
2857
2858 for (i = 0; i < count; i++) {
2859 ret = _regulator_disable(regulator);
2860 if (ret != 0)
2861 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2862 }
2863 }
2864 WARN_ON(!total_count);
2865
2866 if (rdev->coupling_desc.n_coupled > 1)
2867 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2868
2869 regulator_unlock_dependent(rdev, &ww_ctx);
2870}
2871
2872/**
2873 * regulator_disable_deferred - disable regulator output with delay
2874 * @regulator: regulator source
2875 * @ms: milliseconds until the regulator is disabled
2876 *
2877 * Execute regulator_disable() on the regulator after a delay. This
2878 * is intended for use with devices that require some time to quiesce.
2879 *
2880 * NOTE: this will only disable the regulator output if no other consumer
2881 * devices have it enabled, the regulator device supports disabling and
2882 * machine constraints permit this operation.
2883 */
2884int regulator_disable_deferred(struct regulator *regulator, int ms)
2885{
2886 struct regulator_dev *rdev = regulator->rdev;
2887
2888 if (!ms)
2889 return regulator_disable(regulator);
2890
2891 regulator_lock(rdev);
2892 regulator->deferred_disables++;
2893 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2894 msecs_to_jiffies(ms));
2895 regulator_unlock(rdev);
2896
2897 return 0;
2898}
2899EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2900
2901static int _regulator_is_enabled(struct regulator_dev *rdev)
2902{
2903 /* A GPIO control always takes precedence */
2904 if (rdev->ena_pin)
2905 return rdev->ena_gpio_state;
2906
2907 /* If we don't know then assume that the regulator is always on */
2908 if (!rdev->desc->ops->is_enabled)
2909 return 1;
2910
2911 return rdev->desc->ops->is_enabled(rdev);
2912}
2913
2914static int _regulator_list_voltage(struct regulator_dev *rdev,
2915 unsigned selector, int lock)
2916{
2917 const struct regulator_ops *ops = rdev->desc->ops;
2918 int ret;
2919
2920 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2921 return rdev->desc->fixed_uV;
2922
2923 if (ops->list_voltage) {
2924 if (selector >= rdev->desc->n_voltages)
2925 return -EINVAL;
2926 if (lock)
2927 regulator_lock(rdev);
2928 ret = ops->list_voltage(rdev, selector);
2929 if (lock)
2930 regulator_unlock(rdev);
2931 } else if (rdev->is_switch && rdev->supply) {
2932 ret = _regulator_list_voltage(rdev->supply->rdev,
2933 selector, lock);
2934 } else {
2935 return -EINVAL;
2936 }
2937
2938 if (ret > 0) {
2939 if (ret < rdev->constraints->min_uV)
2940 ret = 0;
2941 else if (ret > rdev->constraints->max_uV)
2942 ret = 0;
2943 }
2944
2945 return ret;
2946}
2947
2948/**
2949 * regulator_is_enabled - is the regulator output enabled
2950 * @regulator: regulator source
2951 *
2952 * Returns positive if the regulator driver backing the source/client
2953 * has requested that the device be enabled, zero if it hasn't, else a
2954 * negative errno code.
2955 *
2956 * Note that the device backing this regulator handle can have multiple
2957 * users, so it might be enabled even if regulator_enable() was never
2958 * called for this particular source.
2959 */
2960int regulator_is_enabled(struct regulator *regulator)
2961{
2962 int ret;
2963
2964 if (regulator->always_on)
2965 return 1;
2966
2967 regulator_lock(regulator->rdev);
2968 ret = _regulator_is_enabled(regulator->rdev);
2969 regulator_unlock(regulator->rdev);
2970
2971 return ret;
2972}
2973EXPORT_SYMBOL_GPL(regulator_is_enabled);
2974
2975/**
2976 * regulator_count_voltages - count regulator_list_voltage() selectors
2977 * @regulator: regulator source
2978 *
2979 * Returns number of selectors, or negative errno. Selectors are
2980 * numbered starting at zero, and typically correspond to bitfields
2981 * in hardware registers.
2982 */
2983int regulator_count_voltages(struct regulator *regulator)
2984{
2985 struct regulator_dev *rdev = regulator->rdev;
2986
2987 if (rdev->desc->n_voltages)
2988 return rdev->desc->n_voltages;
2989
2990 if (!rdev->is_switch || !rdev->supply)
2991 return -EINVAL;
2992
2993 return regulator_count_voltages(rdev->supply);
2994}
2995EXPORT_SYMBOL_GPL(regulator_count_voltages);
2996
2997/**
2998 * regulator_list_voltage - enumerate supported voltages
2999 * @regulator: regulator source
3000 * @selector: identify voltage to list
3001 * Context: can sleep
3002 *
3003 * Returns a voltage that can be passed to @regulator_set_voltage(),
3004 * zero if this selector code can't be used on this system, or a
3005 * negative errno.
3006 */
3007int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3008{
3009 return _regulator_list_voltage(regulator->rdev, selector, 1);
3010}
3011EXPORT_SYMBOL_GPL(regulator_list_voltage);
3012
3013/**
3014 * regulator_get_regmap - get the regulator's register map
3015 * @regulator: regulator source
3016 *
3017 * Returns the register map for the given regulator, or an ERR_PTR value
3018 * if the regulator doesn't use regmap.
3019 */
3020struct regmap *regulator_get_regmap(struct regulator *regulator)
3021{
3022 struct regmap *map = regulator->rdev->regmap;
3023
3024 return map ? map : ERR_PTR(-EOPNOTSUPP);
3025}
3026
3027/**
3028 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3029 * @regulator: regulator source
3030 * @vsel_reg: voltage selector register, output parameter
3031 * @vsel_mask: mask for voltage selector bitfield, output parameter
3032 *
3033 * Returns the hardware register offset and bitmask used for setting the
3034 * regulator voltage. This might be useful when configuring voltage-scaling
3035 * hardware or firmware that can make I2C requests behind the kernel's back,
3036 * for example.
3037 *
3038 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3039 * and 0 is returned, otherwise a negative errno is returned.
3040 */
3041int regulator_get_hardware_vsel_register(struct regulator *regulator,
3042 unsigned *vsel_reg,
3043 unsigned *vsel_mask)
3044{
3045 struct regulator_dev *rdev = regulator->rdev;
3046 const struct regulator_ops *ops = rdev->desc->ops;
3047
3048 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3049 return -EOPNOTSUPP;
3050
3051 *vsel_reg = rdev->desc->vsel_reg;
3052 *vsel_mask = rdev->desc->vsel_mask;
3053
3054 return 0;
3055}
3056EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3057
3058/**
3059 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3060 * @regulator: regulator source
3061 * @selector: identify voltage to list
3062 *
3063 * Converts the selector to a hardware-specific voltage selector that can be
3064 * directly written to the regulator registers. The address of the voltage
3065 * register can be determined by calling @regulator_get_hardware_vsel_register.
3066 *
3067 * On error a negative errno is returned.
3068 */
3069int regulator_list_hardware_vsel(struct regulator *regulator,
3070 unsigned selector)
3071{
3072 struct regulator_dev *rdev = regulator->rdev;
3073 const struct regulator_ops *ops = rdev->desc->ops;
3074
3075 if (selector >= rdev->desc->n_voltages)
3076 return -EINVAL;
3077 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3078 return -EOPNOTSUPP;
3079
3080 return selector;
3081}
3082EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3083
3084/**
3085 * regulator_get_linear_step - return the voltage step size between VSEL values
3086 * @regulator: regulator source
3087 *
3088 * Returns the voltage step size between VSEL values for linear
3089 * regulators, or return 0 if the regulator isn't a linear regulator.
3090 */
3091unsigned int regulator_get_linear_step(struct regulator *regulator)
3092{
3093 struct regulator_dev *rdev = regulator->rdev;
3094
3095 return rdev->desc->uV_step;
3096}
3097EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3098
3099/**
3100 * regulator_is_supported_voltage - check if a voltage range can be supported
3101 *
3102 * @regulator: Regulator to check.
3103 * @min_uV: Minimum required voltage in uV.
3104 * @max_uV: Maximum required voltage in uV.
3105 *
3106 * Returns a boolean.
3107 */
3108int regulator_is_supported_voltage(struct regulator *regulator,
3109 int min_uV, int max_uV)
3110{
3111 struct regulator_dev *rdev = regulator->rdev;
3112 int i, voltages, ret;
3113
3114 /* If we can't change voltage check the current voltage */
3115 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3116 ret = regulator_get_voltage(regulator);
3117 if (ret >= 0)
3118 return min_uV <= ret && ret <= max_uV;
3119 else
3120 return ret;
3121 }
3122
3123 /* Any voltage within constrains range is fine? */
3124 if (rdev->desc->continuous_voltage_range)
3125 return min_uV >= rdev->constraints->min_uV &&
3126 max_uV <= rdev->constraints->max_uV;
3127
3128 ret = regulator_count_voltages(regulator);
3129 if (ret < 0)
3130 return 0;
3131 voltages = ret;
3132
3133 for (i = 0; i < voltages; i++) {
3134 ret = regulator_list_voltage(regulator, i);
3135
3136 if (ret >= min_uV && ret <= max_uV)
3137 return 1;
3138 }
3139
3140 return 0;
3141}
3142EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3143
3144static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3145 int max_uV)
3146{
3147 const struct regulator_desc *desc = rdev->desc;
3148
3149 if (desc->ops->map_voltage)
3150 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3151
3152 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3153 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3154
3155 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3156 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3157
3158 if (desc->ops->list_voltage ==
3159 regulator_list_voltage_pickable_linear_range)
3160 return regulator_map_voltage_pickable_linear_range(rdev,
3161 min_uV, max_uV);
3162
3163 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3164}
3165
3166static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3167 int min_uV, int max_uV,
3168 unsigned *selector)
3169{
3170 struct pre_voltage_change_data data;
3171 int ret;
3172
3173 data.old_uV = regulator_get_voltage_rdev(rdev);
3174 data.min_uV = min_uV;
3175 data.max_uV = max_uV;
3176 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3177 &data);
3178 if (ret & NOTIFY_STOP_MASK)
3179 return -EINVAL;
3180
3181 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3182 if (ret >= 0)
3183 return ret;
3184
3185 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3186 (void *)data.old_uV);
3187
3188 return ret;
3189}
3190
3191static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3192 int uV, unsigned selector)
3193{
3194 struct pre_voltage_change_data data;
3195 int ret;
3196
3197 data.old_uV = regulator_get_voltage_rdev(rdev);
3198 data.min_uV = uV;
3199 data.max_uV = uV;
3200 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3201 &data);
3202 if (ret & NOTIFY_STOP_MASK)
3203 return -EINVAL;
3204
3205 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3206 if (ret >= 0)
3207 return ret;
3208
3209 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3210 (void *)data.old_uV);
3211
3212 return ret;
3213}
3214
3215static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3216 int uV, int new_selector)
3217{
3218 const struct regulator_ops *ops = rdev->desc->ops;
3219 int diff, old_sel, curr_sel, ret;
3220
3221 /* Stepping is only needed if the regulator is enabled. */
3222 if (!_regulator_is_enabled(rdev))
3223 goto final_set;
3224
3225 if (!ops->get_voltage_sel)
3226 return -EINVAL;
3227
3228 old_sel = ops->get_voltage_sel(rdev);
3229 if (old_sel < 0)
3230 return old_sel;
3231
3232 diff = new_selector - old_sel;
3233 if (diff == 0)
3234 return 0; /* No change needed. */
3235
3236 if (diff > 0) {
3237 /* Stepping up. */
3238 for (curr_sel = old_sel + rdev->desc->vsel_step;
3239 curr_sel < new_selector;
3240 curr_sel += rdev->desc->vsel_step) {
3241 /*
3242 * Call the callback directly instead of using
3243 * _regulator_call_set_voltage_sel() as we don't
3244 * want to notify anyone yet. Same in the branch
3245 * below.
3246 */
3247 ret = ops->set_voltage_sel(rdev, curr_sel);
3248 if (ret)
3249 goto try_revert;
3250 }
3251 } else {
3252 /* Stepping down. */
3253 for (curr_sel = old_sel - rdev->desc->vsel_step;
3254 curr_sel > new_selector;
3255 curr_sel -= rdev->desc->vsel_step) {
3256 ret = ops->set_voltage_sel(rdev, curr_sel);
3257 if (ret)
3258 goto try_revert;
3259 }
3260 }
3261
3262final_set:
3263 /* The final selector will trigger the notifiers. */
3264 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3265
3266try_revert:
3267 /*
3268 * At least try to return to the previous voltage if setting a new
3269 * one failed.
3270 */
3271 (void)ops->set_voltage_sel(rdev, old_sel);
3272 return ret;
3273}
3274
3275static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3276 int old_uV, int new_uV)
3277{
3278 unsigned int ramp_delay = 0;
3279
3280 if (rdev->constraints->ramp_delay)
3281 ramp_delay = rdev->constraints->ramp_delay;
3282 else if (rdev->desc->ramp_delay)
3283 ramp_delay = rdev->desc->ramp_delay;
3284 else if (rdev->constraints->settling_time)
3285 return rdev->constraints->settling_time;
3286 else if (rdev->constraints->settling_time_up &&
3287 (new_uV > old_uV))
3288 return rdev->constraints->settling_time_up;
3289 else if (rdev->constraints->settling_time_down &&
3290 (new_uV < old_uV))
3291 return rdev->constraints->settling_time_down;
3292
3293 if (ramp_delay == 0) {
3294 rdev_dbg(rdev, "ramp_delay not set\n");
3295 return 0;
3296 }
3297
3298 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3299}
3300
3301static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3302 int min_uV, int max_uV)
3303{
3304 int ret;
3305 int delay = 0;
3306 int best_val = 0;
3307 unsigned int selector;
3308 int old_selector = -1;
3309 const struct regulator_ops *ops = rdev->desc->ops;
3310 int old_uV = regulator_get_voltage_rdev(rdev);
3311
3312 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3313
3314 min_uV += rdev->constraints->uV_offset;
3315 max_uV += rdev->constraints->uV_offset;
3316
3317 /*
3318 * If we can't obtain the old selector there is not enough
3319 * info to call set_voltage_time_sel().
3320 */
3321 if (_regulator_is_enabled(rdev) &&
3322 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3323 old_selector = ops->get_voltage_sel(rdev);
3324 if (old_selector < 0)
3325 return old_selector;
3326 }
3327
3328 if (ops->set_voltage) {
3329 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3330 &selector);
3331
3332 if (ret >= 0) {
3333 if (ops->list_voltage)
3334 best_val = ops->list_voltage(rdev,
3335 selector);
3336 else
3337 best_val = regulator_get_voltage_rdev(rdev);
3338 }
3339
3340 } else if (ops->set_voltage_sel) {
3341 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3342 if (ret >= 0) {
3343 best_val = ops->list_voltage(rdev, ret);
3344 if (min_uV <= best_val && max_uV >= best_val) {
3345 selector = ret;
3346 if (old_selector == selector)
3347 ret = 0;
3348 else if (rdev->desc->vsel_step)
3349 ret = _regulator_set_voltage_sel_step(
3350 rdev, best_val, selector);
3351 else
3352 ret = _regulator_call_set_voltage_sel(
3353 rdev, best_val, selector);
3354 } else {
3355 ret = -EINVAL;
3356 }
3357 }
3358 } else {
3359 ret = -EINVAL;
3360 }
3361
3362 if (ret)
3363 goto out;
3364
3365 if (ops->set_voltage_time_sel) {
3366 /*
3367 * Call set_voltage_time_sel if successfully obtained
3368 * old_selector
3369 */
3370 if (old_selector >= 0 && old_selector != selector)
3371 delay = ops->set_voltage_time_sel(rdev, old_selector,
3372 selector);
3373 } else {
3374 if (old_uV != best_val) {
3375 if (ops->set_voltage_time)
3376 delay = ops->set_voltage_time(rdev, old_uV,
3377 best_val);
3378 else
3379 delay = _regulator_set_voltage_time(rdev,
3380 old_uV,
3381 best_val);
3382 }
3383 }
3384
3385 if (delay < 0) {
3386 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3387 delay = 0;
3388 }
3389
3390 /* Insert any necessary delays */
3391 if (delay >= 1000) {
3392 mdelay(delay / 1000);
3393 udelay(delay % 1000);
3394 } else if (delay) {
3395 udelay(delay);
3396 }
3397
3398 if (best_val >= 0) {
3399 unsigned long data = best_val;
3400
3401 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3402 (void *)data);
3403 }
3404
3405out:
3406 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3407
3408 return ret;
3409}
3410
3411static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3412 int min_uV, int max_uV, suspend_state_t state)
3413{
3414 struct regulator_state *rstate;
3415 int uV, sel;
3416
3417 rstate = regulator_get_suspend_state(rdev, state);
3418 if (rstate == NULL)
3419 return -EINVAL;
3420
3421 if (min_uV < rstate->min_uV)
3422 min_uV = rstate->min_uV;
3423 if (max_uV > rstate->max_uV)
3424 max_uV = rstate->max_uV;
3425
3426 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3427 if (sel < 0)
3428 return sel;
3429
3430 uV = rdev->desc->ops->list_voltage(rdev, sel);
3431 if (uV >= min_uV && uV <= max_uV)
3432 rstate->uV = uV;
3433
3434 return 0;
3435}
3436
3437static int regulator_set_voltage_unlocked(struct regulator *regulator,
3438 int min_uV, int max_uV,
3439 suspend_state_t state)
3440{
3441 struct regulator_dev *rdev = regulator->rdev;
3442 struct regulator_voltage *voltage = ®ulator->voltage[state];
3443 int ret = 0;
3444 int old_min_uV, old_max_uV;
3445 int current_uV;
3446
3447 /* If we're setting the same range as last time the change
3448 * should be a noop (some cpufreq implementations use the same
3449 * voltage for multiple frequencies, for example).
3450 */
3451 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3452 goto out;
3453
3454 /* If we're trying to set a range that overlaps the current voltage,
3455 * return successfully even though the regulator does not support
3456 * changing the voltage.
3457 */
3458 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3459 current_uV = regulator_get_voltage_rdev(rdev);
3460 if (min_uV <= current_uV && current_uV <= max_uV) {
3461 voltage->min_uV = min_uV;
3462 voltage->max_uV = max_uV;
3463 goto out;
3464 }
3465 }
3466
3467 /* sanity check */
3468 if (!rdev->desc->ops->set_voltage &&
3469 !rdev->desc->ops->set_voltage_sel) {
3470 ret = -EINVAL;
3471 goto out;
3472 }
3473
3474 /* constraints check */
3475 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3476 if (ret < 0)
3477 goto out;
3478
3479 /* restore original values in case of error */
3480 old_min_uV = voltage->min_uV;
3481 old_max_uV = voltage->max_uV;
3482 voltage->min_uV = min_uV;
3483 voltage->max_uV = max_uV;
3484
3485 /* for not coupled regulators this will just set the voltage */
3486 ret = regulator_balance_voltage(rdev, state);
3487 if (ret < 0) {
3488 voltage->min_uV = old_min_uV;
3489 voltage->max_uV = old_max_uV;
3490 }
3491
3492out:
3493 return ret;
3494}
3495
3496int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3497 int max_uV, suspend_state_t state)
3498{
3499 int best_supply_uV = 0;
3500 int supply_change_uV = 0;
3501 int ret;
3502
3503 if (rdev->supply &&
3504 regulator_ops_is_valid(rdev->supply->rdev,
3505 REGULATOR_CHANGE_VOLTAGE) &&
3506 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3507 rdev->desc->ops->get_voltage_sel))) {
3508 int current_supply_uV;
3509 int selector;
3510
3511 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3512 if (selector < 0) {
3513 ret = selector;
3514 goto out;
3515 }
3516
3517 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3518 if (best_supply_uV < 0) {
3519 ret = best_supply_uV;
3520 goto out;
3521 }
3522
3523 best_supply_uV += rdev->desc->min_dropout_uV;
3524
3525 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3526 if (current_supply_uV < 0) {
3527 ret = current_supply_uV;
3528 goto out;
3529 }
3530
3531 supply_change_uV = best_supply_uV - current_supply_uV;
3532 }
3533
3534 if (supply_change_uV > 0) {
3535 ret = regulator_set_voltage_unlocked(rdev->supply,
3536 best_supply_uV, INT_MAX, state);
3537 if (ret) {
3538 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3539 ret);
3540 goto out;
3541 }
3542 }
3543
3544 if (state == PM_SUSPEND_ON)
3545 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3546 else
3547 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3548 max_uV, state);
3549 if (ret < 0)
3550 goto out;
3551
3552 if (supply_change_uV < 0) {
3553 ret = regulator_set_voltage_unlocked(rdev->supply,
3554 best_supply_uV, INT_MAX, state);
3555 if (ret)
3556 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3557 ret);
3558 /* No need to fail here */
3559 ret = 0;
3560 }
3561
3562out:
3563 return ret;
3564}
3565EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3566
3567static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3568 int *current_uV, int *min_uV)
3569{
3570 struct regulation_constraints *constraints = rdev->constraints;
3571
3572 /* Limit voltage change only if necessary */
3573 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3574 return 1;
3575
3576 if (*current_uV < 0) {
3577 *current_uV = regulator_get_voltage_rdev(rdev);
3578
3579 if (*current_uV < 0)
3580 return *current_uV;
3581 }
3582
3583 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3584 return 1;
3585
3586 /* Clamp target voltage within the given step */
3587 if (*current_uV < *min_uV)
3588 *min_uV = min(*current_uV + constraints->max_uV_step,
3589 *min_uV);
3590 else
3591 *min_uV = max(*current_uV - constraints->max_uV_step,
3592 *min_uV);
3593
3594 return 0;
3595}
3596
3597static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3598 int *current_uV,
3599 int *min_uV, int *max_uV,
3600 suspend_state_t state,
3601 int n_coupled)
3602{
3603 struct coupling_desc *c_desc = &rdev->coupling_desc;
3604 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3605 struct regulation_constraints *constraints = rdev->constraints;
3606 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3607 int max_current_uV = 0, min_current_uV = INT_MAX;
3608 int highest_min_uV = 0, target_uV, possible_uV;
3609 int i, ret, max_spread;
3610 bool done;
3611
3612 *current_uV = -1;
3613
3614 /*
3615 * If there are no coupled regulators, simply set the voltage
3616 * demanded by consumers.
3617 */
3618 if (n_coupled == 1) {
3619 /*
3620 * If consumers don't provide any demands, set voltage
3621 * to min_uV
3622 */
3623 desired_min_uV = constraints->min_uV;
3624 desired_max_uV = constraints->max_uV;
3625
3626 ret = regulator_check_consumers(rdev,
3627 &desired_min_uV,
3628 &desired_max_uV, state);
3629 if (ret < 0)
3630 return ret;
3631
3632 possible_uV = desired_min_uV;
3633 done = true;
3634
3635 goto finish;
3636 }
3637
3638 /* Find highest min desired voltage */
3639 for (i = 0; i < n_coupled; i++) {
3640 int tmp_min = 0;
3641 int tmp_max = INT_MAX;
3642
3643 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3644
3645 ret = regulator_check_consumers(c_rdevs[i],
3646 &tmp_min,
3647 &tmp_max, state);
3648 if (ret < 0)
3649 return ret;
3650
3651 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3652 if (ret < 0)
3653 return ret;
3654
3655 highest_min_uV = max(highest_min_uV, tmp_min);
3656
3657 if (i == 0) {
3658 desired_min_uV = tmp_min;
3659 desired_max_uV = tmp_max;
3660 }
3661 }
3662
3663 max_spread = constraints->max_spread[0];
3664
3665 /*
3666 * Let target_uV be equal to the desired one if possible.
3667 * If not, set it to minimum voltage, allowed by other coupled
3668 * regulators.
3669 */
3670 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3671
3672 /*
3673 * Find min and max voltages, which currently aren't violating
3674 * max_spread.
3675 */
3676 for (i = 1; i < n_coupled; i++) {
3677 int tmp_act;
3678
3679 if (!_regulator_is_enabled(c_rdevs[i]))
3680 continue;
3681
3682 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3683 if (tmp_act < 0)
3684 return tmp_act;
3685
3686 min_current_uV = min(tmp_act, min_current_uV);
3687 max_current_uV = max(tmp_act, max_current_uV);
3688 }
3689
3690 /* There aren't any other regulators enabled */
3691 if (max_current_uV == 0) {
3692 possible_uV = target_uV;
3693 } else {
3694 /*
3695 * Correct target voltage, so as it currently isn't
3696 * violating max_spread
3697 */
3698 possible_uV = max(target_uV, max_current_uV - max_spread);
3699 possible_uV = min(possible_uV, min_current_uV + max_spread);
3700 }
3701
3702 if (possible_uV > desired_max_uV)
3703 return -EINVAL;
3704
3705 done = (possible_uV == target_uV);
3706 desired_min_uV = possible_uV;
3707
3708finish:
3709 /* Apply max_uV_step constraint if necessary */
3710 if (state == PM_SUSPEND_ON) {
3711 ret = regulator_limit_voltage_step(rdev, current_uV,
3712 &desired_min_uV);
3713 if (ret < 0)
3714 return ret;
3715
3716 if (ret == 0)
3717 done = false;
3718 }
3719
3720 /* Set current_uV if wasn't done earlier in the code and if necessary */
3721 if (n_coupled > 1 && *current_uV == -1) {
3722
3723 if (_regulator_is_enabled(rdev)) {
3724 ret = regulator_get_voltage_rdev(rdev);
3725 if (ret < 0)
3726 return ret;
3727
3728 *current_uV = ret;
3729 } else {
3730 *current_uV = desired_min_uV;
3731 }
3732 }
3733
3734 *min_uV = desired_min_uV;
3735 *max_uV = desired_max_uV;
3736
3737 return done;
3738}
3739
3740int regulator_do_balance_voltage(struct regulator_dev *rdev,
3741 suspend_state_t state, bool skip_coupled)
3742{
3743 struct regulator_dev **c_rdevs;
3744 struct regulator_dev *best_rdev;
3745 struct coupling_desc *c_desc = &rdev->coupling_desc;
3746 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3747 unsigned int delta, best_delta;
3748 unsigned long c_rdev_done = 0;
3749 bool best_c_rdev_done;
3750
3751 c_rdevs = c_desc->coupled_rdevs;
3752 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3753
3754 /*
3755 * Find the best possible voltage change on each loop. Leave the loop
3756 * if there isn't any possible change.
3757 */
3758 do {
3759 best_c_rdev_done = false;
3760 best_delta = 0;
3761 best_min_uV = 0;
3762 best_max_uV = 0;
3763 best_c_rdev = 0;
3764 best_rdev = NULL;
3765
3766 /*
3767 * Find highest difference between optimal voltage
3768 * and current voltage.
3769 */
3770 for (i = 0; i < n_coupled; i++) {
3771 /*
3772 * optimal_uV is the best voltage that can be set for
3773 * i-th regulator at the moment without violating
3774 * max_spread constraint in order to balance
3775 * the coupled voltages.
3776 */
3777 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3778
3779 if (test_bit(i, &c_rdev_done))
3780 continue;
3781
3782 ret = regulator_get_optimal_voltage(c_rdevs[i],
3783 ¤t_uV,
3784 &optimal_uV,
3785 &optimal_max_uV,
3786 state, n_coupled);
3787 if (ret < 0)
3788 goto out;
3789
3790 delta = abs(optimal_uV - current_uV);
3791
3792 if (delta && best_delta <= delta) {
3793 best_c_rdev_done = ret;
3794 best_delta = delta;
3795 best_rdev = c_rdevs[i];
3796 best_min_uV = optimal_uV;
3797 best_max_uV = optimal_max_uV;
3798 best_c_rdev = i;
3799 }
3800 }
3801
3802 /* Nothing to change, return successfully */
3803 if (!best_rdev) {
3804 ret = 0;
3805 goto out;
3806 }
3807
3808 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3809 best_max_uV, state);
3810
3811 if (ret < 0)
3812 goto out;
3813
3814 if (best_c_rdev_done)
3815 set_bit(best_c_rdev, &c_rdev_done);
3816
3817 } while (n_coupled > 1);
3818
3819out:
3820 return ret;
3821}
3822
3823static int regulator_balance_voltage(struct regulator_dev *rdev,
3824 suspend_state_t state)
3825{
3826 struct coupling_desc *c_desc = &rdev->coupling_desc;
3827 struct regulator_coupler *coupler = c_desc->coupler;
3828 bool skip_coupled = false;
3829
3830 /*
3831 * If system is in a state other than PM_SUSPEND_ON, don't check
3832 * other coupled regulators.
3833 */
3834 if (state != PM_SUSPEND_ON)
3835 skip_coupled = true;
3836
3837 if (c_desc->n_resolved < c_desc->n_coupled) {
3838 rdev_err(rdev, "Not all coupled regulators registered\n");
3839 return -EPERM;
3840 }
3841
3842 /* Invoke custom balancer for customized couplers */
3843 if (coupler && coupler->balance_voltage)
3844 return coupler->balance_voltage(coupler, rdev, state);
3845
3846 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3847}
3848
3849/**
3850 * regulator_set_voltage - set regulator output voltage
3851 * @regulator: regulator source
3852 * @min_uV: Minimum required voltage in uV
3853 * @max_uV: Maximum acceptable voltage in uV
3854 *
3855 * Sets a voltage regulator to the desired output voltage. This can be set
3856 * during any regulator state. IOW, regulator can be disabled or enabled.
3857 *
3858 * If the regulator is enabled then the voltage will change to the new value
3859 * immediately otherwise if the regulator is disabled the regulator will
3860 * output at the new voltage when enabled.
3861 *
3862 * NOTE: If the regulator is shared between several devices then the lowest
3863 * request voltage that meets the system constraints will be used.
3864 * Regulator system constraints must be set for this regulator before
3865 * calling this function otherwise this call will fail.
3866 */
3867int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3868{
3869 struct ww_acquire_ctx ww_ctx;
3870 int ret;
3871
3872 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3873
3874 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3875 PM_SUSPEND_ON);
3876
3877 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3878
3879 return ret;
3880}
3881EXPORT_SYMBOL_GPL(regulator_set_voltage);
3882
3883static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3884 suspend_state_t state, bool en)
3885{
3886 struct regulator_state *rstate;
3887
3888 rstate = regulator_get_suspend_state(rdev, state);
3889 if (rstate == NULL)
3890 return -EINVAL;
3891
3892 if (!rstate->changeable)
3893 return -EPERM;
3894
3895 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3896
3897 return 0;
3898}
3899
3900int regulator_suspend_enable(struct regulator_dev *rdev,
3901 suspend_state_t state)
3902{
3903 return regulator_suspend_toggle(rdev, state, true);
3904}
3905EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3906
3907int regulator_suspend_disable(struct regulator_dev *rdev,
3908 suspend_state_t state)
3909{
3910 struct regulator *regulator;
3911 struct regulator_voltage *voltage;
3912
3913 /*
3914 * if any consumer wants this regulator device keeping on in
3915 * suspend states, don't set it as disabled.
3916 */
3917 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3918 voltage = ®ulator->voltage[state];
3919 if (voltage->min_uV || voltage->max_uV)
3920 return 0;
3921 }
3922
3923 return regulator_suspend_toggle(rdev, state, false);
3924}
3925EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3926
3927static int _regulator_set_suspend_voltage(struct regulator *regulator,
3928 int min_uV, int max_uV,
3929 suspend_state_t state)
3930{
3931 struct regulator_dev *rdev = regulator->rdev;
3932 struct regulator_state *rstate;
3933
3934 rstate = regulator_get_suspend_state(rdev, state);
3935 if (rstate == NULL)
3936 return -EINVAL;
3937
3938 if (rstate->min_uV == rstate->max_uV) {
3939 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3940 return -EPERM;
3941 }
3942
3943 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3944}
3945
3946int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3947 int max_uV, suspend_state_t state)
3948{
3949 struct ww_acquire_ctx ww_ctx;
3950 int ret;
3951
3952 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3953 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3954 return -EINVAL;
3955
3956 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3957
3958 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3959 max_uV, state);
3960
3961 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3962
3963 return ret;
3964}
3965EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3966
3967/**
3968 * regulator_set_voltage_time - get raise/fall time
3969 * @regulator: regulator source
3970 * @old_uV: starting voltage in microvolts
3971 * @new_uV: target voltage in microvolts
3972 *
3973 * Provided with the starting and ending voltage, this function attempts to
3974 * calculate the time in microseconds required to rise or fall to this new
3975 * voltage.
3976 */
3977int regulator_set_voltage_time(struct regulator *regulator,
3978 int old_uV, int new_uV)
3979{
3980 struct regulator_dev *rdev = regulator->rdev;
3981 const struct regulator_ops *ops = rdev->desc->ops;
3982 int old_sel = -1;
3983 int new_sel = -1;
3984 int voltage;
3985 int i;
3986
3987 if (ops->set_voltage_time)
3988 return ops->set_voltage_time(rdev, old_uV, new_uV);
3989 else if (!ops->set_voltage_time_sel)
3990 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3991
3992 /* Currently requires operations to do this */
3993 if (!ops->list_voltage || !rdev->desc->n_voltages)
3994 return -EINVAL;
3995
3996 for (i = 0; i < rdev->desc->n_voltages; i++) {
3997 /* We only look for exact voltage matches here */
3998 voltage = regulator_list_voltage(regulator, i);
3999 if (voltage < 0)
4000 return -EINVAL;
4001 if (voltage == 0)
4002 continue;
4003 if (voltage == old_uV)
4004 old_sel = i;
4005 if (voltage == new_uV)
4006 new_sel = i;
4007 }
4008
4009 if (old_sel < 0 || new_sel < 0)
4010 return -EINVAL;
4011
4012 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4013}
4014EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4015
4016/**
4017 * regulator_set_voltage_time_sel - get raise/fall time
4018 * @rdev: regulator source device
4019 * @old_selector: selector for starting voltage
4020 * @new_selector: selector for target voltage
4021 *
4022 * Provided with the starting and target voltage selectors, this function
4023 * returns time in microseconds required to rise or fall to this new voltage
4024 *
4025 * Drivers providing ramp_delay in regulation_constraints can use this as their
4026 * set_voltage_time_sel() operation.
4027 */
4028int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4029 unsigned int old_selector,
4030 unsigned int new_selector)
4031{
4032 int old_volt, new_volt;
4033
4034 /* sanity check */
4035 if (!rdev->desc->ops->list_voltage)
4036 return -EINVAL;
4037
4038 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4039 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4040
4041 if (rdev->desc->ops->set_voltage_time)
4042 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4043 new_volt);
4044 else
4045 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4046}
4047EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4048
4049/**
4050 * regulator_sync_voltage - re-apply last regulator output voltage
4051 * @regulator: regulator source
4052 *
4053 * Re-apply the last configured voltage. This is intended to be used
4054 * where some external control source the consumer is cooperating with
4055 * has caused the configured voltage to change.
4056 */
4057int regulator_sync_voltage(struct regulator *regulator)
4058{
4059 struct regulator_dev *rdev = regulator->rdev;
4060 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4061 int ret, min_uV, max_uV;
4062
4063 regulator_lock(rdev);
4064
4065 if (!rdev->desc->ops->set_voltage &&
4066 !rdev->desc->ops->set_voltage_sel) {
4067 ret = -EINVAL;
4068 goto out;
4069 }
4070
4071 /* This is only going to work if we've had a voltage configured. */
4072 if (!voltage->min_uV && !voltage->max_uV) {
4073 ret = -EINVAL;
4074 goto out;
4075 }
4076
4077 min_uV = voltage->min_uV;
4078 max_uV = voltage->max_uV;
4079
4080 /* This should be a paranoia check... */
4081 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4082 if (ret < 0)
4083 goto out;
4084
4085 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4086 if (ret < 0)
4087 goto out;
4088
4089 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4090
4091out:
4092 regulator_unlock(rdev);
4093 return ret;
4094}
4095EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4096
4097int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4098{
4099 int sel, ret;
4100 bool bypassed;
4101
4102 if (rdev->desc->ops->get_bypass) {
4103 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4104 if (ret < 0)
4105 return ret;
4106 if (bypassed) {
4107 /* if bypassed the regulator must have a supply */
4108 if (!rdev->supply) {
4109 rdev_err(rdev,
4110 "bypassed regulator has no supply!\n");
4111 return -EPROBE_DEFER;
4112 }
4113
4114 return regulator_get_voltage_rdev(rdev->supply->rdev);
4115 }
4116 }
4117
4118 if (rdev->desc->ops->get_voltage_sel) {
4119 sel = rdev->desc->ops->get_voltage_sel(rdev);
4120 if (sel < 0)
4121 return sel;
4122 ret = rdev->desc->ops->list_voltage(rdev, sel);
4123 } else if (rdev->desc->ops->get_voltage) {
4124 ret = rdev->desc->ops->get_voltage(rdev);
4125 } else if (rdev->desc->ops->list_voltage) {
4126 ret = rdev->desc->ops->list_voltage(rdev, 0);
4127 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4128 ret = rdev->desc->fixed_uV;
4129 } else if (rdev->supply) {
4130 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4131 } else {
4132 return -EINVAL;
4133 }
4134
4135 if (ret < 0)
4136 return ret;
4137 return ret - rdev->constraints->uV_offset;
4138}
4139EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4140
4141/**
4142 * regulator_get_voltage - get regulator output voltage
4143 * @regulator: regulator source
4144 *
4145 * This returns the current regulator voltage in uV.
4146 *
4147 * NOTE: If the regulator is disabled it will return the voltage value. This
4148 * function should not be used to determine regulator state.
4149 */
4150int regulator_get_voltage(struct regulator *regulator)
4151{
4152 struct ww_acquire_ctx ww_ctx;
4153 int ret;
4154
4155 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4156 ret = regulator_get_voltage_rdev(regulator->rdev);
4157 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4158
4159 return ret;
4160}
4161EXPORT_SYMBOL_GPL(regulator_get_voltage);
4162
4163/**
4164 * regulator_set_current_limit - set regulator output current limit
4165 * @regulator: regulator source
4166 * @min_uA: Minimum supported current in uA
4167 * @max_uA: Maximum supported current in uA
4168 *
4169 * Sets current sink to the desired output current. This can be set during
4170 * any regulator state. IOW, regulator can be disabled or enabled.
4171 *
4172 * If the regulator is enabled then the current will change to the new value
4173 * immediately otherwise if the regulator is disabled the regulator will
4174 * output at the new current when enabled.
4175 *
4176 * NOTE: Regulator system constraints must be set for this regulator before
4177 * calling this function otherwise this call will fail.
4178 */
4179int regulator_set_current_limit(struct regulator *regulator,
4180 int min_uA, int max_uA)
4181{
4182 struct regulator_dev *rdev = regulator->rdev;
4183 int ret;
4184
4185 regulator_lock(rdev);
4186
4187 /* sanity check */
4188 if (!rdev->desc->ops->set_current_limit) {
4189 ret = -EINVAL;
4190 goto out;
4191 }
4192
4193 /* constraints check */
4194 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4195 if (ret < 0)
4196 goto out;
4197
4198 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4199out:
4200 regulator_unlock(rdev);
4201 return ret;
4202}
4203EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4204
4205static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4206{
4207 /* sanity check */
4208 if (!rdev->desc->ops->get_current_limit)
4209 return -EINVAL;
4210
4211 return rdev->desc->ops->get_current_limit(rdev);
4212}
4213
4214static int _regulator_get_current_limit(struct regulator_dev *rdev)
4215{
4216 int ret;
4217
4218 regulator_lock(rdev);
4219 ret = _regulator_get_current_limit_unlocked(rdev);
4220 regulator_unlock(rdev);
4221
4222 return ret;
4223}
4224
4225/**
4226 * regulator_get_current_limit - get regulator output current
4227 * @regulator: regulator source
4228 *
4229 * This returns the current supplied by the specified current sink in uA.
4230 *
4231 * NOTE: If the regulator is disabled it will return the current value. This
4232 * function should not be used to determine regulator state.
4233 */
4234int regulator_get_current_limit(struct regulator *regulator)
4235{
4236 return _regulator_get_current_limit(regulator->rdev);
4237}
4238EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4239
4240/**
4241 * regulator_set_mode - set regulator operating mode
4242 * @regulator: regulator source
4243 * @mode: operating mode - one of the REGULATOR_MODE constants
4244 *
4245 * Set regulator operating mode to increase regulator efficiency or improve
4246 * regulation performance.
4247 *
4248 * NOTE: Regulator system constraints must be set for this regulator before
4249 * calling this function otherwise this call will fail.
4250 */
4251int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4252{
4253 struct regulator_dev *rdev = regulator->rdev;
4254 int ret;
4255 int regulator_curr_mode;
4256
4257 regulator_lock(rdev);
4258
4259 /* sanity check */
4260 if (!rdev->desc->ops->set_mode) {
4261 ret = -EINVAL;
4262 goto out;
4263 }
4264
4265 /* return if the same mode is requested */
4266 if (rdev->desc->ops->get_mode) {
4267 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4268 if (regulator_curr_mode == mode) {
4269 ret = 0;
4270 goto out;
4271 }
4272 }
4273
4274 /* constraints check */
4275 ret = regulator_mode_constrain(rdev, &mode);
4276 if (ret < 0)
4277 goto out;
4278
4279 ret = rdev->desc->ops->set_mode(rdev, mode);
4280out:
4281 regulator_unlock(rdev);
4282 return ret;
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_mode);
4285
4286static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4287{
4288 /* sanity check */
4289 if (!rdev->desc->ops->get_mode)
4290 return -EINVAL;
4291
4292 return rdev->desc->ops->get_mode(rdev);
4293}
4294
4295static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4296{
4297 int ret;
4298
4299 regulator_lock(rdev);
4300 ret = _regulator_get_mode_unlocked(rdev);
4301 regulator_unlock(rdev);
4302
4303 return ret;
4304}
4305
4306/**
4307 * regulator_get_mode - get regulator operating mode
4308 * @regulator: regulator source
4309 *
4310 * Get the current regulator operating mode.
4311 */
4312unsigned int regulator_get_mode(struct regulator *regulator)
4313{
4314 return _regulator_get_mode(regulator->rdev);
4315}
4316EXPORT_SYMBOL_GPL(regulator_get_mode);
4317
4318static int _regulator_get_error_flags(struct regulator_dev *rdev,
4319 unsigned int *flags)
4320{
4321 int ret;
4322
4323 regulator_lock(rdev);
4324
4325 /* sanity check */
4326 if (!rdev->desc->ops->get_error_flags) {
4327 ret = -EINVAL;
4328 goto out;
4329 }
4330
4331 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4332out:
4333 regulator_unlock(rdev);
4334 return ret;
4335}
4336
4337/**
4338 * regulator_get_error_flags - get regulator error information
4339 * @regulator: regulator source
4340 * @flags: pointer to store error flags
4341 *
4342 * Get the current regulator error information.
4343 */
4344int regulator_get_error_flags(struct regulator *regulator,
4345 unsigned int *flags)
4346{
4347 return _regulator_get_error_flags(regulator->rdev, flags);
4348}
4349EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4350
4351/**
4352 * regulator_set_load - set regulator load
4353 * @regulator: regulator source
4354 * @uA_load: load current
4355 *
4356 * Notifies the regulator core of a new device load. This is then used by
4357 * DRMS (if enabled by constraints) to set the most efficient regulator
4358 * operating mode for the new regulator loading.
4359 *
4360 * Consumer devices notify their supply regulator of the maximum power
4361 * they will require (can be taken from device datasheet in the power
4362 * consumption tables) when they change operational status and hence power
4363 * state. Examples of operational state changes that can affect power
4364 * consumption are :-
4365 *
4366 * o Device is opened / closed.
4367 * o Device I/O is about to begin or has just finished.
4368 * o Device is idling in between work.
4369 *
4370 * This information is also exported via sysfs to userspace.
4371 *
4372 * DRMS will sum the total requested load on the regulator and change
4373 * to the most efficient operating mode if platform constraints allow.
4374 *
4375 * NOTE: when a regulator consumer requests to have a regulator
4376 * disabled then any load that consumer requested no longer counts
4377 * toward the total requested load. If the regulator is re-enabled
4378 * then the previously requested load will start counting again.
4379 *
4380 * If a regulator is an always-on regulator then an individual consumer's
4381 * load will still be removed if that consumer is fully disabled.
4382 *
4383 * On error a negative errno is returned.
4384 */
4385int regulator_set_load(struct regulator *regulator, int uA_load)
4386{
4387 struct regulator_dev *rdev = regulator->rdev;
4388 int old_uA_load;
4389 int ret = 0;
4390
4391 regulator_lock(rdev);
4392 old_uA_load = regulator->uA_load;
4393 regulator->uA_load = uA_load;
4394 if (regulator->enable_count && old_uA_load != uA_load) {
4395 ret = drms_uA_update(rdev);
4396 if (ret < 0)
4397 regulator->uA_load = old_uA_load;
4398 }
4399 regulator_unlock(rdev);
4400
4401 return ret;
4402}
4403EXPORT_SYMBOL_GPL(regulator_set_load);
4404
4405/**
4406 * regulator_allow_bypass - allow the regulator to go into bypass mode
4407 *
4408 * @regulator: Regulator to configure
4409 * @enable: enable or disable bypass mode
4410 *
4411 * Allow the regulator to go into bypass mode if all other consumers
4412 * for the regulator also enable bypass mode and the machine
4413 * constraints allow this. Bypass mode means that the regulator is
4414 * simply passing the input directly to the output with no regulation.
4415 */
4416int regulator_allow_bypass(struct regulator *regulator, bool enable)
4417{
4418 struct regulator_dev *rdev = regulator->rdev;
4419 const char *name = rdev_get_name(rdev);
4420 int ret = 0;
4421
4422 if (!rdev->desc->ops->set_bypass)
4423 return 0;
4424
4425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4426 return 0;
4427
4428 regulator_lock(rdev);
4429
4430 if (enable && !regulator->bypass) {
4431 rdev->bypass_count++;
4432
4433 if (rdev->bypass_count == rdev->open_count) {
4434 trace_regulator_bypass_enable(name);
4435
4436 ret = rdev->desc->ops->set_bypass(rdev, enable);
4437 if (ret != 0)
4438 rdev->bypass_count--;
4439 else
4440 trace_regulator_bypass_enable_complete(name);
4441 }
4442
4443 } else if (!enable && regulator->bypass) {
4444 rdev->bypass_count--;
4445
4446 if (rdev->bypass_count != rdev->open_count) {
4447 trace_regulator_bypass_disable(name);
4448
4449 ret = rdev->desc->ops->set_bypass(rdev, enable);
4450 if (ret != 0)
4451 rdev->bypass_count++;
4452 else
4453 trace_regulator_bypass_disable_complete(name);
4454 }
4455 }
4456
4457 if (ret == 0)
4458 regulator->bypass = enable;
4459
4460 regulator_unlock(rdev);
4461
4462 return ret;
4463}
4464EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4465
4466/**
4467 * regulator_register_notifier - register regulator event notifier
4468 * @regulator: regulator source
4469 * @nb: notifier block
4470 *
4471 * Register notifier block to receive regulator events.
4472 */
4473int regulator_register_notifier(struct regulator *regulator,
4474 struct notifier_block *nb)
4475{
4476 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4477 nb);
4478}
4479EXPORT_SYMBOL_GPL(regulator_register_notifier);
4480
4481/**
4482 * regulator_unregister_notifier - unregister regulator event notifier
4483 * @regulator: regulator source
4484 * @nb: notifier block
4485 *
4486 * Unregister regulator event notifier block.
4487 */
4488int regulator_unregister_notifier(struct regulator *regulator,
4489 struct notifier_block *nb)
4490{
4491 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4492 nb);
4493}
4494EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4495
4496/* notify regulator consumers and downstream regulator consumers.
4497 * Note mutex must be held by caller.
4498 */
4499static int _notifier_call_chain(struct regulator_dev *rdev,
4500 unsigned long event, void *data)
4501{
4502 /* call rdev chain first */
4503 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4504}
4505
4506/**
4507 * regulator_bulk_get - get multiple regulator consumers
4508 *
4509 * @dev: Device to supply
4510 * @num_consumers: Number of consumers to register
4511 * @consumers: Configuration of consumers; clients are stored here.
4512 *
4513 * @return 0 on success, an errno on failure.
4514 *
4515 * This helper function allows drivers to get several regulator
4516 * consumers in one operation. If any of the regulators cannot be
4517 * acquired then any regulators that were allocated will be freed
4518 * before returning to the caller.
4519 */
4520int regulator_bulk_get(struct device *dev, int num_consumers,
4521 struct regulator_bulk_data *consumers)
4522{
4523 int i;
4524 int ret;
4525
4526 for (i = 0; i < num_consumers; i++)
4527 consumers[i].consumer = NULL;
4528
4529 for (i = 0; i < num_consumers; i++) {
4530 consumers[i].consumer = regulator_get(dev,
4531 consumers[i].supply);
4532 if (IS_ERR(consumers[i].consumer)) {
4533 ret = PTR_ERR(consumers[i].consumer);
4534 consumers[i].consumer = NULL;
4535 goto err;
4536 }
4537 }
4538
4539 return 0;
4540
4541err:
4542 if (ret != -EPROBE_DEFER)
4543 dev_err(dev, "Failed to get supply '%s': %d\n",
4544 consumers[i].supply, ret);
4545 else
4546 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4547 consumers[i].supply);
4548
4549 while (--i >= 0)
4550 regulator_put(consumers[i].consumer);
4551
4552 return ret;
4553}
4554EXPORT_SYMBOL_GPL(regulator_bulk_get);
4555
4556static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4557{
4558 struct regulator_bulk_data *bulk = data;
4559
4560 bulk->ret = regulator_enable(bulk->consumer);
4561}
4562
4563/**
4564 * regulator_bulk_enable - enable multiple regulator consumers
4565 *
4566 * @num_consumers: Number of consumers
4567 * @consumers: Consumer data; clients are stored here.
4568 * @return 0 on success, an errno on failure
4569 *
4570 * This convenience API allows consumers to enable multiple regulator
4571 * clients in a single API call. If any consumers cannot be enabled
4572 * then any others that were enabled will be disabled again prior to
4573 * return.
4574 */
4575int regulator_bulk_enable(int num_consumers,
4576 struct regulator_bulk_data *consumers)
4577{
4578 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4579 int i;
4580 int ret = 0;
4581
4582 for (i = 0; i < num_consumers; i++) {
4583 async_schedule_domain(regulator_bulk_enable_async,
4584 &consumers[i], &async_domain);
4585 }
4586
4587 async_synchronize_full_domain(&async_domain);
4588
4589 /* If any consumer failed we need to unwind any that succeeded */
4590 for (i = 0; i < num_consumers; i++) {
4591 if (consumers[i].ret != 0) {
4592 ret = consumers[i].ret;
4593 goto err;
4594 }
4595 }
4596
4597 return 0;
4598
4599err:
4600 for (i = 0; i < num_consumers; i++) {
4601 if (consumers[i].ret < 0)
4602 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4603 consumers[i].ret);
4604 else
4605 regulator_disable(consumers[i].consumer);
4606 }
4607
4608 return ret;
4609}
4610EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4611
4612/**
4613 * regulator_bulk_disable - disable multiple regulator consumers
4614 *
4615 * @num_consumers: Number of consumers
4616 * @consumers: Consumer data; clients are stored here.
4617 * @return 0 on success, an errno on failure
4618 *
4619 * This convenience API allows consumers to disable multiple regulator
4620 * clients in a single API call. If any consumers cannot be disabled
4621 * then any others that were disabled will be enabled again prior to
4622 * return.
4623 */
4624int regulator_bulk_disable(int num_consumers,
4625 struct regulator_bulk_data *consumers)
4626{
4627 int i;
4628 int ret, r;
4629
4630 for (i = num_consumers - 1; i >= 0; --i) {
4631 ret = regulator_disable(consumers[i].consumer);
4632 if (ret != 0)
4633 goto err;
4634 }
4635
4636 return 0;
4637
4638err:
4639 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4640 for (++i; i < num_consumers; ++i) {
4641 r = regulator_enable(consumers[i].consumer);
4642 if (r != 0)
4643 pr_err("Failed to re-enable %s: %d\n",
4644 consumers[i].supply, r);
4645 }
4646
4647 return ret;
4648}
4649EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4650
4651/**
4652 * regulator_bulk_force_disable - force disable multiple regulator consumers
4653 *
4654 * @num_consumers: Number of consumers
4655 * @consumers: Consumer data; clients are stored here.
4656 * @return 0 on success, an errno on failure
4657 *
4658 * This convenience API allows consumers to forcibly disable multiple regulator
4659 * clients in a single API call.
4660 * NOTE: This should be used for situations when device damage will
4661 * likely occur if the regulators are not disabled (e.g. over temp).
4662 * Although regulator_force_disable function call for some consumers can
4663 * return error numbers, the function is called for all consumers.
4664 */
4665int regulator_bulk_force_disable(int num_consumers,
4666 struct regulator_bulk_data *consumers)
4667{
4668 int i;
4669 int ret = 0;
4670
4671 for (i = 0; i < num_consumers; i++) {
4672 consumers[i].ret =
4673 regulator_force_disable(consumers[i].consumer);
4674
4675 /* Store first error for reporting */
4676 if (consumers[i].ret && !ret)
4677 ret = consumers[i].ret;
4678 }
4679
4680 return ret;
4681}
4682EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4683
4684/**
4685 * regulator_bulk_free - free multiple regulator consumers
4686 *
4687 * @num_consumers: Number of consumers
4688 * @consumers: Consumer data; clients are stored here.
4689 *
4690 * This convenience API allows consumers to free multiple regulator
4691 * clients in a single API call.
4692 */
4693void regulator_bulk_free(int num_consumers,
4694 struct regulator_bulk_data *consumers)
4695{
4696 int i;
4697
4698 for (i = 0; i < num_consumers; i++) {
4699 regulator_put(consumers[i].consumer);
4700 consumers[i].consumer = NULL;
4701 }
4702}
4703EXPORT_SYMBOL_GPL(regulator_bulk_free);
4704
4705/**
4706 * regulator_notifier_call_chain - call regulator event notifier
4707 * @rdev: regulator source
4708 * @event: notifier block
4709 * @data: callback-specific data.
4710 *
4711 * Called by regulator drivers to notify clients a regulator event has
4712 * occurred. We also notify regulator clients downstream.
4713 * Note lock must be held by caller.
4714 */
4715int regulator_notifier_call_chain(struct regulator_dev *rdev,
4716 unsigned long event, void *data)
4717{
4718 lockdep_assert_held_once(&rdev->mutex.base);
4719
4720 _notifier_call_chain(rdev, event, data);
4721 return NOTIFY_DONE;
4722
4723}
4724EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4725
4726/**
4727 * regulator_mode_to_status - convert a regulator mode into a status
4728 *
4729 * @mode: Mode to convert
4730 *
4731 * Convert a regulator mode into a status.
4732 */
4733int regulator_mode_to_status(unsigned int mode)
4734{
4735 switch (mode) {
4736 case REGULATOR_MODE_FAST:
4737 return REGULATOR_STATUS_FAST;
4738 case REGULATOR_MODE_NORMAL:
4739 return REGULATOR_STATUS_NORMAL;
4740 case REGULATOR_MODE_IDLE:
4741 return REGULATOR_STATUS_IDLE;
4742 case REGULATOR_MODE_STANDBY:
4743 return REGULATOR_STATUS_STANDBY;
4744 default:
4745 return REGULATOR_STATUS_UNDEFINED;
4746 }
4747}
4748EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4749
4750static struct attribute *regulator_dev_attrs[] = {
4751 &dev_attr_name.attr,
4752 &dev_attr_num_users.attr,
4753 &dev_attr_type.attr,
4754 &dev_attr_microvolts.attr,
4755 &dev_attr_microamps.attr,
4756 &dev_attr_opmode.attr,
4757 &dev_attr_state.attr,
4758 &dev_attr_status.attr,
4759 &dev_attr_bypass.attr,
4760 &dev_attr_requested_microamps.attr,
4761 &dev_attr_min_microvolts.attr,
4762 &dev_attr_max_microvolts.attr,
4763 &dev_attr_min_microamps.attr,
4764 &dev_attr_max_microamps.attr,
4765 &dev_attr_suspend_standby_state.attr,
4766 &dev_attr_suspend_mem_state.attr,
4767 &dev_attr_suspend_disk_state.attr,
4768 &dev_attr_suspend_standby_microvolts.attr,
4769 &dev_attr_suspend_mem_microvolts.attr,
4770 &dev_attr_suspend_disk_microvolts.attr,
4771 &dev_attr_suspend_standby_mode.attr,
4772 &dev_attr_suspend_mem_mode.attr,
4773 &dev_attr_suspend_disk_mode.attr,
4774 NULL
4775};
4776
4777/*
4778 * To avoid cluttering sysfs (and memory) with useless state, only
4779 * create attributes that can be meaningfully displayed.
4780 */
4781static umode_t regulator_attr_is_visible(struct kobject *kobj,
4782 struct attribute *attr, int idx)
4783{
4784 struct device *dev = kobj_to_dev(kobj);
4785 struct regulator_dev *rdev = dev_to_rdev(dev);
4786 const struct regulator_ops *ops = rdev->desc->ops;
4787 umode_t mode = attr->mode;
4788
4789 /* these three are always present */
4790 if (attr == &dev_attr_name.attr ||
4791 attr == &dev_attr_num_users.attr ||
4792 attr == &dev_attr_type.attr)
4793 return mode;
4794
4795 /* some attributes need specific methods to be displayed */
4796 if (attr == &dev_attr_microvolts.attr) {
4797 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4798 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4799 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4800 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4801 return mode;
4802 return 0;
4803 }
4804
4805 if (attr == &dev_attr_microamps.attr)
4806 return ops->get_current_limit ? mode : 0;
4807
4808 if (attr == &dev_attr_opmode.attr)
4809 return ops->get_mode ? mode : 0;
4810
4811 if (attr == &dev_attr_state.attr)
4812 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4813
4814 if (attr == &dev_attr_status.attr)
4815 return ops->get_status ? mode : 0;
4816
4817 if (attr == &dev_attr_bypass.attr)
4818 return ops->get_bypass ? mode : 0;
4819
4820 /* constraints need specific supporting methods */
4821 if (attr == &dev_attr_min_microvolts.attr ||
4822 attr == &dev_attr_max_microvolts.attr)
4823 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4824
4825 if (attr == &dev_attr_min_microamps.attr ||
4826 attr == &dev_attr_max_microamps.attr)
4827 return ops->set_current_limit ? mode : 0;
4828
4829 if (attr == &dev_attr_suspend_standby_state.attr ||
4830 attr == &dev_attr_suspend_mem_state.attr ||
4831 attr == &dev_attr_suspend_disk_state.attr)
4832 return mode;
4833
4834 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4835 attr == &dev_attr_suspend_mem_microvolts.attr ||
4836 attr == &dev_attr_suspend_disk_microvolts.attr)
4837 return ops->set_suspend_voltage ? mode : 0;
4838
4839 if (attr == &dev_attr_suspend_standby_mode.attr ||
4840 attr == &dev_attr_suspend_mem_mode.attr ||
4841 attr == &dev_attr_suspend_disk_mode.attr)
4842 return ops->set_suspend_mode ? mode : 0;
4843
4844 return mode;
4845}
4846
4847static const struct attribute_group regulator_dev_group = {
4848 .attrs = regulator_dev_attrs,
4849 .is_visible = regulator_attr_is_visible,
4850};
4851
4852static const struct attribute_group *regulator_dev_groups[] = {
4853 ®ulator_dev_group,
4854 NULL
4855};
4856
4857static void regulator_dev_release(struct device *dev)
4858{
4859 struct regulator_dev *rdev = dev_get_drvdata(dev);
4860
4861 kfree(rdev->constraints);
4862 of_node_put(rdev->dev.of_node);
4863 kfree(rdev);
4864}
4865
4866static void rdev_init_debugfs(struct regulator_dev *rdev)
4867{
4868 struct device *parent = rdev->dev.parent;
4869 const char *rname = rdev_get_name(rdev);
4870 char name[NAME_MAX];
4871
4872 /* Avoid duplicate debugfs directory names */
4873 if (parent && rname == rdev->desc->name) {
4874 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4875 rname);
4876 rname = name;
4877 }
4878
4879 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4880 if (!rdev->debugfs) {
4881 rdev_warn(rdev, "Failed to create debugfs directory\n");
4882 return;
4883 }
4884
4885 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4886 &rdev->use_count);
4887 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4888 &rdev->open_count);
4889 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4890 &rdev->bypass_count);
4891}
4892
4893static int regulator_register_resolve_supply(struct device *dev, void *data)
4894{
4895 struct regulator_dev *rdev = dev_to_rdev(dev);
4896
4897 if (regulator_resolve_supply(rdev))
4898 rdev_dbg(rdev, "unable to resolve supply\n");
4899
4900 return 0;
4901}
4902
4903int regulator_coupler_register(struct regulator_coupler *coupler)
4904{
4905 mutex_lock(®ulator_list_mutex);
4906 list_add_tail(&coupler->list, ®ulator_coupler_list);
4907 mutex_unlock(®ulator_list_mutex);
4908
4909 return 0;
4910}
4911
4912static struct regulator_coupler *
4913regulator_find_coupler(struct regulator_dev *rdev)
4914{
4915 struct regulator_coupler *coupler;
4916 int err;
4917
4918 /*
4919 * Note that regulators are appended to the list and the generic
4920 * coupler is registered first, hence it will be attached at last
4921 * if nobody cared.
4922 */
4923 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
4924 err = coupler->attach_regulator(coupler, rdev);
4925 if (!err) {
4926 if (!coupler->balance_voltage &&
4927 rdev->coupling_desc.n_coupled > 2)
4928 goto err_unsupported;
4929
4930 return coupler;
4931 }
4932
4933 if (err < 0)
4934 return ERR_PTR(err);
4935
4936 if (err == 1)
4937 continue;
4938
4939 break;
4940 }
4941
4942 return ERR_PTR(-EINVAL);
4943
4944err_unsupported:
4945 if (coupler->detach_regulator)
4946 coupler->detach_regulator(coupler, rdev);
4947
4948 rdev_err(rdev,
4949 "Voltage balancing for multiple regulator couples is unimplemented\n");
4950
4951 return ERR_PTR(-EPERM);
4952}
4953
4954static void regulator_resolve_coupling(struct regulator_dev *rdev)
4955{
4956 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4957 struct coupling_desc *c_desc = &rdev->coupling_desc;
4958 int n_coupled = c_desc->n_coupled;
4959 struct regulator_dev *c_rdev;
4960 int i;
4961
4962 for (i = 1; i < n_coupled; i++) {
4963 /* already resolved */
4964 if (c_desc->coupled_rdevs[i])
4965 continue;
4966
4967 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4968
4969 if (!c_rdev)
4970 continue;
4971
4972 if (c_rdev->coupling_desc.coupler != coupler) {
4973 rdev_err(rdev, "coupler mismatch with %s\n",
4974 rdev_get_name(c_rdev));
4975 return;
4976 }
4977
4978 c_desc->coupled_rdevs[i] = c_rdev;
4979 c_desc->n_resolved++;
4980
4981 regulator_resolve_coupling(c_rdev);
4982 }
4983}
4984
4985static void regulator_remove_coupling(struct regulator_dev *rdev)
4986{
4987 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4988 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4989 struct regulator_dev *__c_rdev, *c_rdev;
4990 unsigned int __n_coupled, n_coupled;
4991 int i, k;
4992 int err;
4993
4994 n_coupled = c_desc->n_coupled;
4995
4996 for (i = 1; i < n_coupled; i++) {
4997 c_rdev = c_desc->coupled_rdevs[i];
4998
4999 if (!c_rdev)
5000 continue;
5001
5002 regulator_lock(c_rdev);
5003
5004 __c_desc = &c_rdev->coupling_desc;
5005 __n_coupled = __c_desc->n_coupled;
5006
5007 for (k = 1; k < __n_coupled; k++) {
5008 __c_rdev = __c_desc->coupled_rdevs[k];
5009
5010 if (__c_rdev == rdev) {
5011 __c_desc->coupled_rdevs[k] = NULL;
5012 __c_desc->n_resolved--;
5013 break;
5014 }
5015 }
5016
5017 regulator_unlock(c_rdev);
5018
5019 c_desc->coupled_rdevs[i] = NULL;
5020 c_desc->n_resolved--;
5021 }
5022
5023 if (coupler && coupler->detach_regulator) {
5024 err = coupler->detach_regulator(coupler, rdev);
5025 if (err)
5026 rdev_err(rdev, "failed to detach from coupler: %d\n",
5027 err);
5028 }
5029
5030 kfree(rdev->coupling_desc.coupled_rdevs);
5031 rdev->coupling_desc.coupled_rdevs = NULL;
5032}
5033
5034static int regulator_init_coupling(struct regulator_dev *rdev)
5035{
5036 int err, n_phandles;
5037 size_t alloc_size;
5038
5039 if (!IS_ENABLED(CONFIG_OF))
5040 n_phandles = 0;
5041 else
5042 n_phandles = of_get_n_coupled(rdev);
5043
5044 alloc_size = sizeof(*rdev) * (n_phandles + 1);
5045
5046 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5047 if (!rdev->coupling_desc.coupled_rdevs)
5048 return -ENOMEM;
5049
5050 /*
5051 * Every regulator should always have coupling descriptor filled with
5052 * at least pointer to itself.
5053 */
5054 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5055 rdev->coupling_desc.n_coupled = n_phandles + 1;
5056 rdev->coupling_desc.n_resolved++;
5057
5058 /* regulator isn't coupled */
5059 if (n_phandles == 0)
5060 return 0;
5061
5062 if (!of_check_coupling_data(rdev))
5063 return -EPERM;
5064
5065 mutex_lock(®ulator_list_mutex);
5066 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5067 mutex_unlock(®ulator_list_mutex);
5068
5069 if (IS_ERR(rdev->coupling_desc.coupler)) {
5070 err = PTR_ERR(rdev->coupling_desc.coupler);
5071 rdev_err(rdev, "failed to get coupler: %d\n", err);
5072 return err;
5073 }
5074
5075 return 0;
5076}
5077
5078static int generic_coupler_attach(struct regulator_coupler *coupler,
5079 struct regulator_dev *rdev)
5080{
5081 if (rdev->coupling_desc.n_coupled > 2) {
5082 rdev_err(rdev,
5083 "Voltage balancing for multiple regulator couples is unimplemented\n");
5084 return -EPERM;
5085 }
5086
5087 if (!rdev->constraints->always_on) {
5088 rdev_err(rdev,
5089 "Coupling of a non always-on regulator is unimplemented\n");
5090 return -ENOTSUPP;
5091 }
5092
5093 return 0;
5094}
5095
5096static struct regulator_coupler generic_regulator_coupler = {
5097 .attach_regulator = generic_coupler_attach,
5098};
5099
5100/**
5101 * regulator_register - register regulator
5102 * @regulator_desc: regulator to register
5103 * @cfg: runtime configuration for regulator
5104 *
5105 * Called by regulator drivers to register a regulator.
5106 * Returns a valid pointer to struct regulator_dev on success
5107 * or an ERR_PTR() on error.
5108 */
5109struct regulator_dev *
5110regulator_register(const struct regulator_desc *regulator_desc,
5111 const struct regulator_config *cfg)
5112{
5113 const struct regulation_constraints *constraints = NULL;
5114 const struct regulator_init_data *init_data;
5115 struct regulator_config *config = NULL;
5116 static atomic_t regulator_no = ATOMIC_INIT(-1);
5117 struct regulator_dev *rdev;
5118 bool dangling_cfg_gpiod = false;
5119 bool dangling_of_gpiod = false;
5120 struct device *dev;
5121 int ret, i;
5122
5123 if (cfg == NULL)
5124 return ERR_PTR(-EINVAL);
5125 if (cfg->ena_gpiod)
5126 dangling_cfg_gpiod = true;
5127 if (regulator_desc == NULL) {
5128 ret = -EINVAL;
5129 goto rinse;
5130 }
5131
5132 dev = cfg->dev;
5133 WARN_ON(!dev);
5134
5135 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5136 ret = -EINVAL;
5137 goto rinse;
5138 }
5139
5140 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5141 regulator_desc->type != REGULATOR_CURRENT) {
5142 ret = -EINVAL;
5143 goto rinse;
5144 }
5145
5146 /* Only one of each should be implemented */
5147 WARN_ON(regulator_desc->ops->get_voltage &&
5148 regulator_desc->ops->get_voltage_sel);
5149 WARN_ON(regulator_desc->ops->set_voltage &&
5150 regulator_desc->ops->set_voltage_sel);
5151
5152 /* If we're using selectors we must implement list_voltage. */
5153 if (regulator_desc->ops->get_voltage_sel &&
5154 !regulator_desc->ops->list_voltage) {
5155 ret = -EINVAL;
5156 goto rinse;
5157 }
5158 if (regulator_desc->ops->set_voltage_sel &&
5159 !regulator_desc->ops->list_voltage) {
5160 ret = -EINVAL;
5161 goto rinse;
5162 }
5163
5164 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5165 if (rdev == NULL) {
5166 ret = -ENOMEM;
5167 goto rinse;
5168 }
5169 device_initialize(&rdev->dev);
5170
5171 /*
5172 * Duplicate the config so the driver could override it after
5173 * parsing init data.
5174 */
5175 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5176 if (config == NULL) {
5177 ret = -ENOMEM;
5178 goto clean;
5179 }
5180
5181 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5182 &rdev->dev.of_node);
5183
5184 /*
5185 * Sometimes not all resources are probed already so we need to take
5186 * that into account. This happens most the time if the ena_gpiod comes
5187 * from a gpio extender or something else.
5188 */
5189 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5190 ret = -EPROBE_DEFER;
5191 goto clean;
5192 }
5193
5194 /*
5195 * We need to keep track of any GPIO descriptor coming from the
5196 * device tree until we have handled it over to the core. If the
5197 * config that was passed in to this function DOES NOT contain
5198 * a descriptor, and the config after this call DOES contain
5199 * a descriptor, we definitely got one from parsing the device
5200 * tree.
5201 */
5202 if (!cfg->ena_gpiod && config->ena_gpiod)
5203 dangling_of_gpiod = true;
5204 if (!init_data) {
5205 init_data = config->init_data;
5206 rdev->dev.of_node = of_node_get(config->of_node);
5207 }
5208
5209 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5210 rdev->reg_data = config->driver_data;
5211 rdev->owner = regulator_desc->owner;
5212 rdev->desc = regulator_desc;
5213 if (config->regmap)
5214 rdev->regmap = config->regmap;
5215 else if (dev_get_regmap(dev, NULL))
5216 rdev->regmap = dev_get_regmap(dev, NULL);
5217 else if (dev->parent)
5218 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5219 INIT_LIST_HEAD(&rdev->consumer_list);
5220 INIT_LIST_HEAD(&rdev->list);
5221 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5222 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5223
5224 /* preform any regulator specific init */
5225 if (init_data && init_data->regulator_init) {
5226 ret = init_data->regulator_init(rdev->reg_data);
5227 if (ret < 0)
5228 goto clean;
5229 }
5230
5231 if (config->ena_gpiod) {
5232 ret = regulator_ena_gpio_request(rdev, config);
5233 if (ret != 0) {
5234 rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5235 ret);
5236 goto clean;
5237 }
5238 /* The regulator core took over the GPIO descriptor */
5239 dangling_cfg_gpiod = false;
5240 dangling_of_gpiod = false;
5241 }
5242
5243 /* register with sysfs */
5244 rdev->dev.class = ®ulator_class;
5245 rdev->dev.parent = dev;
5246 dev_set_name(&rdev->dev, "regulator.%lu",
5247 (unsigned long) atomic_inc_return(®ulator_no));
5248 dev_set_drvdata(&rdev->dev, rdev);
5249
5250 /* set regulator constraints */
5251 if (init_data)
5252 constraints = &init_data->constraints;
5253
5254 if (init_data && init_data->supply_regulator)
5255 rdev->supply_name = init_data->supply_regulator;
5256 else if (regulator_desc->supply_name)
5257 rdev->supply_name = regulator_desc->supply_name;
5258
5259 /*
5260 * Attempt to resolve the regulator supply, if specified,
5261 * but don't return an error if we fail because we will try
5262 * to resolve it again later as more regulators are added.
5263 */
5264 if (regulator_resolve_supply(rdev))
5265 rdev_dbg(rdev, "unable to resolve supply\n");
5266
5267 ret = set_machine_constraints(rdev, constraints);
5268 if (ret < 0)
5269 goto wash;
5270
5271 ret = regulator_init_coupling(rdev);
5272 if (ret < 0)
5273 goto wash;
5274
5275 /* add consumers devices */
5276 if (init_data) {
5277 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5278 ret = set_consumer_device_supply(rdev,
5279 init_data->consumer_supplies[i].dev_name,
5280 init_data->consumer_supplies[i].supply);
5281 if (ret < 0) {
5282 dev_err(dev, "Failed to set supply %s\n",
5283 init_data->consumer_supplies[i].supply);
5284 goto unset_supplies;
5285 }
5286 }
5287 }
5288
5289 if (!rdev->desc->ops->get_voltage &&
5290 !rdev->desc->ops->list_voltage &&
5291 !rdev->desc->fixed_uV)
5292 rdev->is_switch = true;
5293
5294 ret = device_add(&rdev->dev);
5295 if (ret != 0)
5296 goto unset_supplies;
5297
5298 rdev_init_debugfs(rdev);
5299
5300 /* try to resolve regulators coupling since a new one was registered */
5301 mutex_lock(®ulator_list_mutex);
5302 regulator_resolve_coupling(rdev);
5303 mutex_unlock(®ulator_list_mutex);
5304
5305 /* try to resolve regulators supply since a new one was registered */
5306 class_for_each_device(®ulator_class, NULL, NULL,
5307 regulator_register_resolve_supply);
5308 kfree(config);
5309 return rdev;
5310
5311unset_supplies:
5312 mutex_lock(®ulator_list_mutex);
5313 unset_regulator_supplies(rdev);
5314 regulator_remove_coupling(rdev);
5315 mutex_unlock(®ulator_list_mutex);
5316wash:
5317 kfree(rdev->coupling_desc.coupled_rdevs);
5318 mutex_lock(®ulator_list_mutex);
5319 regulator_ena_gpio_free(rdev);
5320 mutex_unlock(®ulator_list_mutex);
5321clean:
5322 if (dangling_of_gpiod)
5323 gpiod_put(config->ena_gpiod);
5324 kfree(config);
5325 put_device(&rdev->dev);
5326rinse:
5327 if (dangling_cfg_gpiod)
5328 gpiod_put(cfg->ena_gpiod);
5329 return ERR_PTR(ret);
5330}
5331EXPORT_SYMBOL_GPL(regulator_register);
5332
5333/**
5334 * regulator_unregister - unregister regulator
5335 * @rdev: regulator to unregister
5336 *
5337 * Called by regulator drivers to unregister a regulator.
5338 */
5339void regulator_unregister(struct regulator_dev *rdev)
5340{
5341 if (rdev == NULL)
5342 return;
5343
5344 if (rdev->supply) {
5345 while (rdev->use_count--)
5346 regulator_disable(rdev->supply);
5347 regulator_put(rdev->supply);
5348 }
5349
5350 flush_work(&rdev->disable_work.work);
5351
5352 mutex_lock(®ulator_list_mutex);
5353
5354 debugfs_remove_recursive(rdev->debugfs);
5355 WARN_ON(rdev->open_count);
5356 regulator_remove_coupling(rdev);
5357 unset_regulator_supplies(rdev);
5358 list_del(&rdev->list);
5359 regulator_ena_gpio_free(rdev);
5360 device_unregister(&rdev->dev);
5361
5362 mutex_unlock(®ulator_list_mutex);
5363}
5364EXPORT_SYMBOL_GPL(regulator_unregister);
5365
5366#ifdef CONFIG_SUSPEND
5367/**
5368 * regulator_suspend - prepare regulators for system wide suspend
5369 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5370 *
5371 * Configure each regulator with it's suspend operating parameters for state.
5372 */
5373static int regulator_suspend(struct device *dev)
5374{
5375 struct regulator_dev *rdev = dev_to_rdev(dev);
5376 suspend_state_t state = pm_suspend_target_state;
5377 int ret;
5378
5379 regulator_lock(rdev);
5380 ret = suspend_set_state(rdev, state);
5381 regulator_unlock(rdev);
5382
5383 return ret;
5384}
5385
5386static int regulator_resume(struct device *dev)
5387{
5388 suspend_state_t state = pm_suspend_target_state;
5389 struct regulator_dev *rdev = dev_to_rdev(dev);
5390 struct regulator_state *rstate;
5391 int ret = 0;
5392
5393 rstate = regulator_get_suspend_state(rdev, state);
5394 if (rstate == NULL)
5395 return 0;
5396
5397 regulator_lock(rdev);
5398
5399 if (rdev->desc->ops->resume &&
5400 (rstate->enabled == ENABLE_IN_SUSPEND ||
5401 rstate->enabled == DISABLE_IN_SUSPEND))
5402 ret = rdev->desc->ops->resume(rdev);
5403
5404 regulator_unlock(rdev);
5405
5406 return ret;
5407}
5408#else /* !CONFIG_SUSPEND */
5409
5410#define regulator_suspend NULL
5411#define regulator_resume NULL
5412
5413#endif /* !CONFIG_SUSPEND */
5414
5415#ifdef CONFIG_PM
5416static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5417 .suspend = regulator_suspend,
5418 .resume = regulator_resume,
5419};
5420#endif
5421
5422struct class regulator_class = {
5423 .name = "regulator",
5424 .dev_release = regulator_dev_release,
5425 .dev_groups = regulator_dev_groups,
5426#ifdef CONFIG_PM
5427 .pm = ®ulator_pm_ops,
5428#endif
5429};
5430/**
5431 * regulator_has_full_constraints - the system has fully specified constraints
5432 *
5433 * Calling this function will cause the regulator API to disable all
5434 * regulators which have a zero use count and don't have an always_on
5435 * constraint in a late_initcall.
5436 *
5437 * The intention is that this will become the default behaviour in a
5438 * future kernel release so users are encouraged to use this facility
5439 * now.
5440 */
5441void regulator_has_full_constraints(void)
5442{
5443 has_full_constraints = 1;
5444}
5445EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5446
5447/**
5448 * rdev_get_drvdata - get rdev regulator driver data
5449 * @rdev: regulator
5450 *
5451 * Get rdev regulator driver private data. This call can be used in the
5452 * regulator driver context.
5453 */
5454void *rdev_get_drvdata(struct regulator_dev *rdev)
5455{
5456 return rdev->reg_data;
5457}
5458EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5459
5460/**
5461 * regulator_get_drvdata - get regulator driver data
5462 * @regulator: regulator
5463 *
5464 * Get regulator driver private data. This call can be used in the consumer
5465 * driver context when non API regulator specific functions need to be called.
5466 */
5467void *regulator_get_drvdata(struct regulator *regulator)
5468{
5469 return regulator->rdev->reg_data;
5470}
5471EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5472
5473/**
5474 * regulator_set_drvdata - set regulator driver data
5475 * @regulator: regulator
5476 * @data: data
5477 */
5478void regulator_set_drvdata(struct regulator *regulator, void *data)
5479{
5480 regulator->rdev->reg_data = data;
5481}
5482EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5483
5484/**
5485 * regulator_get_id - get regulator ID
5486 * @rdev: regulator
5487 */
5488int rdev_get_id(struct regulator_dev *rdev)
5489{
5490 return rdev->desc->id;
5491}
5492EXPORT_SYMBOL_GPL(rdev_get_id);
5493
5494struct device *rdev_get_dev(struct regulator_dev *rdev)
5495{
5496 return &rdev->dev;
5497}
5498EXPORT_SYMBOL_GPL(rdev_get_dev);
5499
5500struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5501{
5502 return rdev->regmap;
5503}
5504EXPORT_SYMBOL_GPL(rdev_get_regmap);
5505
5506void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5507{
5508 return reg_init_data->driver_data;
5509}
5510EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5511
5512#ifdef CONFIG_DEBUG_FS
5513static int supply_map_show(struct seq_file *sf, void *data)
5514{
5515 struct regulator_map *map;
5516
5517 list_for_each_entry(map, ®ulator_map_list, list) {
5518 seq_printf(sf, "%s -> %s.%s\n",
5519 rdev_get_name(map->regulator), map->dev_name,
5520 map->supply);
5521 }
5522
5523 return 0;
5524}
5525DEFINE_SHOW_ATTRIBUTE(supply_map);
5526
5527struct summary_data {
5528 struct seq_file *s;
5529 struct regulator_dev *parent;
5530 int level;
5531};
5532
5533static void regulator_summary_show_subtree(struct seq_file *s,
5534 struct regulator_dev *rdev,
5535 int level);
5536
5537static int regulator_summary_show_children(struct device *dev, void *data)
5538{
5539 struct regulator_dev *rdev = dev_to_rdev(dev);
5540 struct summary_data *summary_data = data;
5541
5542 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5543 regulator_summary_show_subtree(summary_data->s, rdev,
5544 summary_data->level + 1);
5545
5546 return 0;
5547}
5548
5549static void regulator_summary_show_subtree(struct seq_file *s,
5550 struct regulator_dev *rdev,
5551 int level)
5552{
5553 struct regulation_constraints *c;
5554 struct regulator *consumer;
5555 struct summary_data summary_data;
5556 unsigned int opmode;
5557
5558 if (!rdev)
5559 return;
5560
5561 opmode = _regulator_get_mode_unlocked(rdev);
5562 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5563 level * 3 + 1, "",
5564 30 - level * 3, rdev_get_name(rdev),
5565 rdev->use_count, rdev->open_count, rdev->bypass_count,
5566 regulator_opmode_to_str(opmode));
5567
5568 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5569 seq_printf(s, "%5dmA ",
5570 _regulator_get_current_limit_unlocked(rdev) / 1000);
5571
5572 c = rdev->constraints;
5573 if (c) {
5574 switch (rdev->desc->type) {
5575 case REGULATOR_VOLTAGE:
5576 seq_printf(s, "%5dmV %5dmV ",
5577 c->min_uV / 1000, c->max_uV / 1000);
5578 break;
5579 case REGULATOR_CURRENT:
5580 seq_printf(s, "%5dmA %5dmA ",
5581 c->min_uA / 1000, c->max_uA / 1000);
5582 break;
5583 }
5584 }
5585
5586 seq_puts(s, "\n");
5587
5588 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5589 if (consumer->dev && consumer->dev->class == ®ulator_class)
5590 continue;
5591
5592 seq_printf(s, "%*s%-*s ",
5593 (level + 1) * 3 + 1, "",
5594 30 - (level + 1) * 3,
5595 consumer->supply_name ? consumer->supply_name :
5596 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5597
5598 switch (rdev->desc->type) {
5599 case REGULATOR_VOLTAGE:
5600 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5601 consumer->enable_count,
5602 consumer->uA_load / 1000,
5603 consumer->uA_load && !consumer->enable_count ?
5604 '*' : ' ',
5605 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5606 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5607 break;
5608 case REGULATOR_CURRENT:
5609 break;
5610 }
5611
5612 seq_puts(s, "\n");
5613 }
5614
5615 summary_data.s = s;
5616 summary_data.level = level;
5617 summary_data.parent = rdev;
5618
5619 class_for_each_device(®ulator_class, NULL, &summary_data,
5620 regulator_summary_show_children);
5621}
5622
5623struct summary_lock_data {
5624 struct ww_acquire_ctx *ww_ctx;
5625 struct regulator_dev **new_contended_rdev;
5626 struct regulator_dev **old_contended_rdev;
5627};
5628
5629static int regulator_summary_lock_one(struct device *dev, void *data)
5630{
5631 struct regulator_dev *rdev = dev_to_rdev(dev);
5632 struct summary_lock_data *lock_data = data;
5633 int ret = 0;
5634
5635 if (rdev != *lock_data->old_contended_rdev) {
5636 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5637
5638 if (ret == -EDEADLK)
5639 *lock_data->new_contended_rdev = rdev;
5640 else
5641 WARN_ON_ONCE(ret);
5642 } else {
5643 *lock_data->old_contended_rdev = NULL;
5644 }
5645
5646 return ret;
5647}
5648
5649static int regulator_summary_unlock_one(struct device *dev, void *data)
5650{
5651 struct regulator_dev *rdev = dev_to_rdev(dev);
5652 struct summary_lock_data *lock_data = data;
5653
5654 if (lock_data) {
5655 if (rdev == *lock_data->new_contended_rdev)
5656 return -EDEADLK;
5657 }
5658
5659 regulator_unlock(rdev);
5660
5661 return 0;
5662}
5663
5664static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5665 struct regulator_dev **new_contended_rdev,
5666 struct regulator_dev **old_contended_rdev)
5667{
5668 struct summary_lock_data lock_data;
5669 int ret;
5670
5671 lock_data.ww_ctx = ww_ctx;
5672 lock_data.new_contended_rdev = new_contended_rdev;
5673 lock_data.old_contended_rdev = old_contended_rdev;
5674
5675 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5676 regulator_summary_lock_one);
5677 if (ret)
5678 class_for_each_device(®ulator_class, NULL, &lock_data,
5679 regulator_summary_unlock_one);
5680
5681 return ret;
5682}
5683
5684static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5685{
5686 struct regulator_dev *new_contended_rdev = NULL;
5687 struct regulator_dev *old_contended_rdev = NULL;
5688 int err;
5689
5690 mutex_lock(®ulator_list_mutex);
5691
5692 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5693
5694 do {
5695 if (new_contended_rdev) {
5696 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5697 old_contended_rdev = new_contended_rdev;
5698 old_contended_rdev->ref_cnt++;
5699 }
5700
5701 err = regulator_summary_lock_all(ww_ctx,
5702 &new_contended_rdev,
5703 &old_contended_rdev);
5704
5705 if (old_contended_rdev)
5706 regulator_unlock(old_contended_rdev);
5707
5708 } while (err == -EDEADLK);
5709
5710 ww_acquire_done(ww_ctx);
5711}
5712
5713static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5714{
5715 class_for_each_device(®ulator_class, NULL, NULL,
5716 regulator_summary_unlock_one);
5717 ww_acquire_fini(ww_ctx);
5718
5719 mutex_unlock(®ulator_list_mutex);
5720}
5721
5722static int regulator_summary_show_roots(struct device *dev, void *data)
5723{
5724 struct regulator_dev *rdev = dev_to_rdev(dev);
5725 struct seq_file *s = data;
5726
5727 if (!rdev->supply)
5728 regulator_summary_show_subtree(s, rdev, 0);
5729
5730 return 0;
5731}
5732
5733static int regulator_summary_show(struct seq_file *s, void *data)
5734{
5735 struct ww_acquire_ctx ww_ctx;
5736
5737 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5738 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5739
5740 regulator_summary_lock(&ww_ctx);
5741
5742 class_for_each_device(®ulator_class, NULL, s,
5743 regulator_summary_show_roots);
5744
5745 regulator_summary_unlock(&ww_ctx);
5746
5747 return 0;
5748}
5749DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5750#endif /* CONFIG_DEBUG_FS */
5751
5752static int __init regulator_init(void)
5753{
5754 int ret;
5755
5756 ret = class_register(®ulator_class);
5757
5758 debugfs_root = debugfs_create_dir("regulator", NULL);
5759 if (!debugfs_root)
5760 pr_warn("regulator: Failed to create debugfs directory\n");
5761
5762#ifdef CONFIG_DEBUG_FS
5763 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5764 &supply_map_fops);
5765
5766 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5767 NULL, ®ulator_summary_fops);
5768#endif
5769 regulator_dummy_init();
5770
5771 regulator_coupler_register(&generic_regulator_coupler);
5772
5773 return ret;
5774}
5775
5776/* init early to allow our consumers to complete system booting */
5777core_initcall(regulator_init);
5778
5779static int regulator_late_cleanup(struct device *dev, void *data)
5780{
5781 struct regulator_dev *rdev = dev_to_rdev(dev);
5782 const struct regulator_ops *ops = rdev->desc->ops;
5783 struct regulation_constraints *c = rdev->constraints;
5784 int enabled, ret;
5785
5786 if (c && c->always_on)
5787 return 0;
5788
5789 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5790 return 0;
5791
5792 regulator_lock(rdev);
5793
5794 if (rdev->use_count)
5795 goto unlock;
5796
5797 /* If we can't read the status assume it's on. */
5798 if (ops->is_enabled)
5799 enabled = ops->is_enabled(rdev);
5800 else
5801 enabled = 1;
5802
5803 if (!enabled)
5804 goto unlock;
5805
5806 if (have_full_constraints()) {
5807 /* We log since this may kill the system if it goes
5808 * wrong. */
5809 rdev_info(rdev, "disabling\n");
5810 ret = _regulator_do_disable(rdev);
5811 if (ret != 0)
5812 rdev_err(rdev, "couldn't disable: %d\n", ret);
5813 } else {
5814 /* The intention is that in future we will
5815 * assume that full constraints are provided
5816 * so warn even if we aren't going to do
5817 * anything here.
5818 */
5819 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5820 }
5821
5822unlock:
5823 regulator_unlock(rdev);
5824
5825 return 0;
5826}
5827
5828static void regulator_init_complete_work_function(struct work_struct *work)
5829{
5830 /*
5831 * Regulators may had failed to resolve their input supplies
5832 * when were registered, either because the input supply was
5833 * not registered yet or because its parent device was not
5834 * bound yet. So attempt to resolve the input supplies for
5835 * pending regulators before trying to disable unused ones.
5836 */
5837 class_for_each_device(®ulator_class, NULL, NULL,
5838 regulator_register_resolve_supply);
5839
5840 /* If we have a full configuration then disable any regulators
5841 * we have permission to change the status for and which are
5842 * not in use or always_on. This is effectively the default
5843 * for DT and ACPI as they have full constraints.
5844 */
5845 class_for_each_device(®ulator_class, NULL, NULL,
5846 regulator_late_cleanup);
5847}
5848
5849static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5850 regulator_init_complete_work_function);
5851
5852static int __init regulator_init_complete(void)
5853{
5854 /*
5855 * Since DT doesn't provide an idiomatic mechanism for
5856 * enabling full constraints and since it's much more natural
5857 * with DT to provide them just assume that a DT enabled
5858 * system has full constraints.
5859 */
5860 if (of_have_populated_dt())
5861 has_full_constraints = true;
5862
5863 /*
5864 * We punt completion for an arbitrary amount of time since
5865 * systems like distros will load many drivers from userspace
5866 * so consumers might not always be ready yet, this is
5867 * particularly an issue with laptops where this might bounce
5868 * the display off then on. Ideally we'd get a notification
5869 * from userspace when this happens but we don't so just wait
5870 * a bit and hope we waited long enough. It'd be better if
5871 * we'd only do this on systems that need it, and a kernel
5872 * command line option might be useful.
5873 */
5874 schedule_delayed_work(®ulator_init_complete_work,
5875 msecs_to_jiffies(30000));
5876
5877 return 0;
5878}
5879late_initcall_sync(regulator_init_complete);
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/reboot.h>
23#include <linux/regmap.h>
24#include <linux/regulator/of_regulator.h>
25#include <linux/regulator/consumer.h>
26#include <linux/regulator/coupler.h>
27#include <linux/regulator/driver.h>
28#include <linux/regulator/machine.h>
29#include <linux/module.h>
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/regulator.h>
33
34#include "dummy.h"
35#include "internal.h"
36#include "regnl.h"
37
38static DEFINE_WW_CLASS(regulator_ww_class);
39static DEFINE_MUTEX(regulator_nesting_mutex);
40static DEFINE_MUTEX(regulator_list_mutex);
41static LIST_HEAD(regulator_map_list);
42static LIST_HEAD(regulator_ena_gpio_list);
43static LIST_HEAD(regulator_supply_alias_list);
44static LIST_HEAD(regulator_coupler_list);
45static bool has_full_constraints;
46
47static struct dentry *debugfs_root;
48
49/*
50 * struct regulator_map
51 *
52 * Used to provide symbolic supply names to devices.
53 */
54struct regulator_map {
55 struct list_head list;
56 const char *dev_name; /* The dev_name() for the consumer */
57 const char *supply;
58 struct regulator_dev *regulator;
59};
60
61/*
62 * struct regulator_enable_gpio
63 *
64 * Management for shared enable GPIO pin
65 */
66struct regulator_enable_gpio {
67 struct list_head list;
68 struct gpio_desc *gpiod;
69 u32 enable_count; /* a number of enabled shared GPIO */
70 u32 request_count; /* a number of requested shared GPIO */
71};
72
73/*
74 * struct regulator_supply_alias
75 *
76 * Used to map lookups for a supply onto an alternative device.
77 */
78struct regulator_supply_alias {
79 struct list_head list;
80 struct device *src_dev;
81 const char *src_supply;
82 struct device *alias_dev;
83 const char *alias_supply;
84};
85
86static int _regulator_is_enabled(struct regulator_dev *rdev);
87static int _regulator_disable(struct regulator *regulator);
88static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
89static int _regulator_get_current_limit(struct regulator_dev *rdev);
90static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
91static int _notifier_call_chain(struct regulator_dev *rdev,
92 unsigned long event, void *data);
93static int _regulator_do_set_voltage(struct regulator_dev *rdev,
94 int min_uV, int max_uV);
95static int regulator_balance_voltage(struct regulator_dev *rdev,
96 suspend_state_t state);
97static struct regulator *create_regulator(struct regulator_dev *rdev,
98 struct device *dev,
99 const char *supply_name);
100static void destroy_regulator(struct regulator *regulator);
101static void _regulator_put(struct regulator *regulator);
102
103const char *rdev_get_name(struct regulator_dev *rdev)
104{
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111}
112EXPORT_SYMBOL_GPL(rdev_get_name);
113
114static bool have_full_constraints(void)
115{
116 return has_full_constraints || of_have_populated_dt();
117}
118
119static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
120{
121 if (!rdev->constraints) {
122 rdev_err(rdev, "no constraints\n");
123 return false;
124 }
125
126 if (rdev->constraints->valid_ops_mask & ops)
127 return true;
128
129 return false;
130}
131
132/**
133 * regulator_lock_nested - lock a single regulator
134 * @rdev: regulator source
135 * @ww_ctx: w/w mutex acquire context
136 *
137 * This function can be called many times by one task on
138 * a single regulator and its mutex will be locked only
139 * once. If a task, which is calling this function is other
140 * than the one, which initially locked the mutex, it will
141 * wait on mutex.
142 */
143static inline int regulator_lock_nested(struct regulator_dev *rdev,
144 struct ww_acquire_ctx *ww_ctx)
145{
146 bool lock = false;
147 int ret = 0;
148
149 mutex_lock(®ulator_nesting_mutex);
150
151 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
152 if (rdev->mutex_owner == current)
153 rdev->ref_cnt++;
154 else
155 lock = true;
156
157 if (lock) {
158 mutex_unlock(®ulator_nesting_mutex);
159 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
160 mutex_lock(®ulator_nesting_mutex);
161 }
162 } else {
163 lock = true;
164 }
165
166 if (lock && ret != -EDEADLK) {
167 rdev->ref_cnt++;
168 rdev->mutex_owner = current;
169 }
170
171 mutex_unlock(®ulator_nesting_mutex);
172
173 return ret;
174}
175
176/**
177 * regulator_lock - lock a single regulator
178 * @rdev: regulator source
179 *
180 * This function can be called many times by one task on
181 * a single regulator and its mutex will be locked only
182 * once. If a task, which is calling this function is other
183 * than the one, which initially locked the mutex, it will
184 * wait on mutex.
185 */
186static void regulator_lock(struct regulator_dev *rdev)
187{
188 regulator_lock_nested(rdev, NULL);
189}
190
191/**
192 * regulator_unlock - unlock a single regulator
193 * @rdev: regulator_source
194 *
195 * This function unlocks the mutex when the
196 * reference counter reaches 0.
197 */
198static void regulator_unlock(struct regulator_dev *rdev)
199{
200 mutex_lock(®ulator_nesting_mutex);
201
202 if (--rdev->ref_cnt == 0) {
203 rdev->mutex_owner = NULL;
204 ww_mutex_unlock(&rdev->mutex);
205 }
206
207 WARN_ON_ONCE(rdev->ref_cnt < 0);
208
209 mutex_unlock(®ulator_nesting_mutex);
210}
211
212/**
213 * regulator_lock_two - lock two regulators
214 * @rdev1: first regulator
215 * @rdev2: second regulator
216 * @ww_ctx: w/w mutex acquire context
217 *
218 * Locks both rdevs using the regulator_ww_class.
219 */
220static void regulator_lock_two(struct regulator_dev *rdev1,
221 struct regulator_dev *rdev2,
222 struct ww_acquire_ctx *ww_ctx)
223{
224 struct regulator_dev *held, *contended;
225 int ret;
226
227 ww_acquire_init(ww_ctx, ®ulator_ww_class);
228
229 /* Try to just grab both of them */
230 ret = regulator_lock_nested(rdev1, ww_ctx);
231 WARN_ON(ret);
232 ret = regulator_lock_nested(rdev2, ww_ctx);
233 if (ret != -EDEADLOCK) {
234 WARN_ON(ret);
235 goto exit;
236 }
237
238 held = rdev1;
239 contended = rdev2;
240 while (true) {
241 regulator_unlock(held);
242
243 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
244 contended->ref_cnt++;
245 contended->mutex_owner = current;
246 swap(held, contended);
247 ret = regulator_lock_nested(contended, ww_ctx);
248
249 if (ret != -EDEADLOCK) {
250 WARN_ON(ret);
251 break;
252 }
253 }
254
255exit:
256 ww_acquire_done(ww_ctx);
257}
258
259/**
260 * regulator_unlock_two - unlock two regulators
261 * @rdev1: first regulator
262 * @rdev2: second regulator
263 * @ww_ctx: w/w mutex acquire context
264 *
265 * The inverse of regulator_lock_two().
266 */
267
268static void regulator_unlock_two(struct regulator_dev *rdev1,
269 struct regulator_dev *rdev2,
270 struct ww_acquire_ctx *ww_ctx)
271{
272 regulator_unlock(rdev2);
273 regulator_unlock(rdev1);
274 ww_acquire_fini(ww_ctx);
275}
276
277static bool regulator_supply_is_couple(struct regulator_dev *rdev)
278{
279 struct regulator_dev *c_rdev;
280 int i;
281
282 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
283 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
284
285 if (rdev->supply->rdev == c_rdev)
286 return true;
287 }
288
289 return false;
290}
291
292static void regulator_unlock_recursive(struct regulator_dev *rdev,
293 unsigned int n_coupled)
294{
295 struct regulator_dev *c_rdev, *supply_rdev;
296 int i, supply_n_coupled;
297
298 for (i = n_coupled; i > 0; i--) {
299 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
300
301 if (!c_rdev)
302 continue;
303
304 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
305 supply_rdev = c_rdev->supply->rdev;
306 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
307
308 regulator_unlock_recursive(supply_rdev,
309 supply_n_coupled);
310 }
311
312 regulator_unlock(c_rdev);
313 }
314}
315
316static int regulator_lock_recursive(struct regulator_dev *rdev,
317 struct regulator_dev **new_contended_rdev,
318 struct regulator_dev **old_contended_rdev,
319 struct ww_acquire_ctx *ww_ctx)
320{
321 struct regulator_dev *c_rdev;
322 int i, err;
323
324 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
325 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
326
327 if (!c_rdev)
328 continue;
329
330 if (c_rdev != *old_contended_rdev) {
331 err = regulator_lock_nested(c_rdev, ww_ctx);
332 if (err) {
333 if (err == -EDEADLK) {
334 *new_contended_rdev = c_rdev;
335 goto err_unlock;
336 }
337
338 /* shouldn't happen */
339 WARN_ON_ONCE(err != -EALREADY);
340 }
341 } else {
342 *old_contended_rdev = NULL;
343 }
344
345 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
346 err = regulator_lock_recursive(c_rdev->supply->rdev,
347 new_contended_rdev,
348 old_contended_rdev,
349 ww_ctx);
350 if (err) {
351 regulator_unlock(c_rdev);
352 goto err_unlock;
353 }
354 }
355 }
356
357 return 0;
358
359err_unlock:
360 regulator_unlock_recursive(rdev, i);
361
362 return err;
363}
364
365/**
366 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
367 * regulators
368 * @rdev: regulator source
369 * @ww_ctx: w/w mutex acquire context
370 *
371 * Unlock all regulators related with rdev by coupling or supplying.
372 */
373static void regulator_unlock_dependent(struct regulator_dev *rdev,
374 struct ww_acquire_ctx *ww_ctx)
375{
376 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
377 ww_acquire_fini(ww_ctx);
378}
379
380/**
381 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
382 * @rdev: regulator source
383 * @ww_ctx: w/w mutex acquire context
384 *
385 * This function as a wrapper on regulator_lock_recursive(), which locks
386 * all regulators related with rdev by coupling or supplying.
387 */
388static void regulator_lock_dependent(struct regulator_dev *rdev,
389 struct ww_acquire_ctx *ww_ctx)
390{
391 struct regulator_dev *new_contended_rdev = NULL;
392 struct regulator_dev *old_contended_rdev = NULL;
393 int err;
394
395 mutex_lock(®ulator_list_mutex);
396
397 ww_acquire_init(ww_ctx, ®ulator_ww_class);
398
399 do {
400 if (new_contended_rdev) {
401 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
402 old_contended_rdev = new_contended_rdev;
403 old_contended_rdev->ref_cnt++;
404 old_contended_rdev->mutex_owner = current;
405 }
406
407 err = regulator_lock_recursive(rdev,
408 &new_contended_rdev,
409 &old_contended_rdev,
410 ww_ctx);
411
412 if (old_contended_rdev)
413 regulator_unlock(old_contended_rdev);
414
415 } while (err == -EDEADLK);
416
417 ww_acquire_done(ww_ctx);
418
419 mutex_unlock(®ulator_list_mutex);
420}
421
422/**
423 * of_get_child_regulator - get a child regulator device node
424 * based on supply name
425 * @parent: Parent device node
426 * @prop_name: Combination regulator supply name and "-supply"
427 *
428 * Traverse all child nodes.
429 * Extract the child regulator device node corresponding to the supply name.
430 * returns the device node corresponding to the regulator if found, else
431 * returns NULL.
432 */
433static struct device_node *of_get_child_regulator(struct device_node *parent,
434 const char *prop_name)
435{
436 struct device_node *regnode = NULL;
437 struct device_node *child = NULL;
438
439 for_each_child_of_node(parent, child) {
440 regnode = of_parse_phandle(child, prop_name, 0);
441
442 if (!regnode) {
443 regnode = of_get_child_regulator(child, prop_name);
444 if (regnode)
445 goto err_node_put;
446 } else {
447 goto err_node_put;
448 }
449 }
450 return NULL;
451
452err_node_put:
453 of_node_put(child);
454 return regnode;
455}
456
457/**
458 * of_get_regulator - get a regulator device node based on supply name
459 * @dev: Device pointer for the consumer (of regulator) device
460 * @supply: regulator supply name
461 *
462 * Extract the regulator device node corresponding to the supply name.
463 * returns the device node corresponding to the regulator if found, else
464 * returns NULL.
465 */
466static struct device_node *of_get_regulator(struct device *dev, const char *supply)
467{
468 struct device_node *regnode = NULL;
469 char prop_name[64]; /* 64 is max size of property name */
470
471 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
472
473 snprintf(prop_name, 64, "%s-supply", supply);
474 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
475
476 if (!regnode) {
477 regnode = of_get_child_regulator(dev->of_node, prop_name);
478 if (regnode)
479 return regnode;
480
481 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
482 prop_name, dev->of_node);
483 return NULL;
484 }
485 return regnode;
486}
487
488/* Platform voltage constraint check */
489int regulator_check_voltage(struct regulator_dev *rdev,
490 int *min_uV, int *max_uV)
491{
492 BUG_ON(*min_uV > *max_uV);
493
494 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
495 rdev_err(rdev, "voltage operation not allowed\n");
496 return -EPERM;
497 }
498
499 if (*max_uV > rdev->constraints->max_uV)
500 *max_uV = rdev->constraints->max_uV;
501 if (*min_uV < rdev->constraints->min_uV)
502 *min_uV = rdev->constraints->min_uV;
503
504 if (*min_uV > *max_uV) {
505 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
506 *min_uV, *max_uV);
507 return -EINVAL;
508 }
509
510 return 0;
511}
512
513/* return 0 if the state is valid */
514static int regulator_check_states(suspend_state_t state)
515{
516 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
517}
518
519/* Make sure we select a voltage that suits the needs of all
520 * regulator consumers
521 */
522int regulator_check_consumers(struct regulator_dev *rdev,
523 int *min_uV, int *max_uV,
524 suspend_state_t state)
525{
526 struct regulator *regulator;
527 struct regulator_voltage *voltage;
528
529 list_for_each_entry(regulator, &rdev->consumer_list, list) {
530 voltage = ®ulator->voltage[state];
531 /*
532 * Assume consumers that didn't say anything are OK
533 * with anything in the constraint range.
534 */
535 if (!voltage->min_uV && !voltage->max_uV)
536 continue;
537
538 if (*max_uV > voltage->max_uV)
539 *max_uV = voltage->max_uV;
540 if (*min_uV < voltage->min_uV)
541 *min_uV = voltage->min_uV;
542 }
543
544 if (*min_uV > *max_uV) {
545 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
546 *min_uV, *max_uV);
547 return -EINVAL;
548 }
549
550 return 0;
551}
552
553/* current constraint check */
554static int regulator_check_current_limit(struct regulator_dev *rdev,
555 int *min_uA, int *max_uA)
556{
557 BUG_ON(*min_uA > *max_uA);
558
559 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
560 rdev_err(rdev, "current operation not allowed\n");
561 return -EPERM;
562 }
563
564 if (*max_uA > rdev->constraints->max_uA)
565 *max_uA = rdev->constraints->max_uA;
566 if (*min_uA < rdev->constraints->min_uA)
567 *min_uA = rdev->constraints->min_uA;
568
569 if (*min_uA > *max_uA) {
570 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
571 *min_uA, *max_uA);
572 return -EINVAL;
573 }
574
575 return 0;
576}
577
578/* operating mode constraint check */
579static int regulator_mode_constrain(struct regulator_dev *rdev,
580 unsigned int *mode)
581{
582 switch (*mode) {
583 case REGULATOR_MODE_FAST:
584 case REGULATOR_MODE_NORMAL:
585 case REGULATOR_MODE_IDLE:
586 case REGULATOR_MODE_STANDBY:
587 break;
588 default:
589 rdev_err(rdev, "invalid mode %x specified\n", *mode);
590 return -EINVAL;
591 }
592
593 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
594 rdev_err(rdev, "mode operation not allowed\n");
595 return -EPERM;
596 }
597
598 /* The modes are bitmasks, the most power hungry modes having
599 * the lowest values. If the requested mode isn't supported
600 * try higher modes.
601 */
602 while (*mode) {
603 if (rdev->constraints->valid_modes_mask & *mode)
604 return 0;
605 *mode /= 2;
606 }
607
608 return -EINVAL;
609}
610
611static inline struct regulator_state *
612regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
613{
614 if (rdev->constraints == NULL)
615 return NULL;
616
617 switch (state) {
618 case PM_SUSPEND_STANDBY:
619 return &rdev->constraints->state_standby;
620 case PM_SUSPEND_MEM:
621 return &rdev->constraints->state_mem;
622 case PM_SUSPEND_MAX:
623 return &rdev->constraints->state_disk;
624 default:
625 return NULL;
626 }
627}
628
629static const struct regulator_state *
630regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
631{
632 const struct regulator_state *rstate;
633
634 rstate = regulator_get_suspend_state(rdev, state);
635 if (rstate == NULL)
636 return NULL;
637
638 /* If we have no suspend mode configuration don't set anything;
639 * only warn if the driver implements set_suspend_voltage or
640 * set_suspend_mode callback.
641 */
642 if (rstate->enabled != ENABLE_IN_SUSPEND &&
643 rstate->enabled != DISABLE_IN_SUSPEND) {
644 if (rdev->desc->ops->set_suspend_voltage ||
645 rdev->desc->ops->set_suspend_mode)
646 rdev_warn(rdev, "No configuration\n");
647 return NULL;
648 }
649
650 return rstate;
651}
652
653static ssize_t microvolts_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
655{
656 struct regulator_dev *rdev = dev_get_drvdata(dev);
657 int uV;
658
659 regulator_lock(rdev);
660 uV = regulator_get_voltage_rdev(rdev);
661 regulator_unlock(rdev);
662
663 if (uV < 0)
664 return uV;
665 return sprintf(buf, "%d\n", uV);
666}
667static DEVICE_ATTR_RO(microvolts);
668
669static ssize_t microamps_show(struct device *dev,
670 struct device_attribute *attr, char *buf)
671{
672 struct regulator_dev *rdev = dev_get_drvdata(dev);
673
674 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
675}
676static DEVICE_ATTR_RO(microamps);
677
678static ssize_t name_show(struct device *dev, struct device_attribute *attr,
679 char *buf)
680{
681 struct regulator_dev *rdev = dev_get_drvdata(dev);
682
683 return sprintf(buf, "%s\n", rdev_get_name(rdev));
684}
685static DEVICE_ATTR_RO(name);
686
687static const char *regulator_opmode_to_str(int mode)
688{
689 switch (mode) {
690 case REGULATOR_MODE_FAST:
691 return "fast";
692 case REGULATOR_MODE_NORMAL:
693 return "normal";
694 case REGULATOR_MODE_IDLE:
695 return "idle";
696 case REGULATOR_MODE_STANDBY:
697 return "standby";
698 }
699 return "unknown";
700}
701
702static ssize_t regulator_print_opmode(char *buf, int mode)
703{
704 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
705}
706
707static ssize_t opmode_show(struct device *dev,
708 struct device_attribute *attr, char *buf)
709{
710 struct regulator_dev *rdev = dev_get_drvdata(dev);
711
712 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
713}
714static DEVICE_ATTR_RO(opmode);
715
716static ssize_t regulator_print_state(char *buf, int state)
717{
718 if (state > 0)
719 return sprintf(buf, "enabled\n");
720 else if (state == 0)
721 return sprintf(buf, "disabled\n");
722 else
723 return sprintf(buf, "unknown\n");
724}
725
726static ssize_t state_show(struct device *dev,
727 struct device_attribute *attr, char *buf)
728{
729 struct regulator_dev *rdev = dev_get_drvdata(dev);
730 ssize_t ret;
731
732 regulator_lock(rdev);
733 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
734 regulator_unlock(rdev);
735
736 return ret;
737}
738static DEVICE_ATTR_RO(state);
739
740static ssize_t status_show(struct device *dev,
741 struct device_attribute *attr, char *buf)
742{
743 struct regulator_dev *rdev = dev_get_drvdata(dev);
744 int status;
745 char *label;
746
747 status = rdev->desc->ops->get_status(rdev);
748 if (status < 0)
749 return status;
750
751 switch (status) {
752 case REGULATOR_STATUS_OFF:
753 label = "off";
754 break;
755 case REGULATOR_STATUS_ON:
756 label = "on";
757 break;
758 case REGULATOR_STATUS_ERROR:
759 label = "error";
760 break;
761 case REGULATOR_STATUS_FAST:
762 label = "fast";
763 break;
764 case REGULATOR_STATUS_NORMAL:
765 label = "normal";
766 break;
767 case REGULATOR_STATUS_IDLE:
768 label = "idle";
769 break;
770 case REGULATOR_STATUS_STANDBY:
771 label = "standby";
772 break;
773 case REGULATOR_STATUS_BYPASS:
774 label = "bypass";
775 break;
776 case REGULATOR_STATUS_UNDEFINED:
777 label = "undefined";
778 break;
779 default:
780 return -ERANGE;
781 }
782
783 return sprintf(buf, "%s\n", label);
784}
785static DEVICE_ATTR_RO(status);
786
787static ssize_t min_microamps_show(struct device *dev,
788 struct device_attribute *attr, char *buf)
789{
790 struct regulator_dev *rdev = dev_get_drvdata(dev);
791
792 if (!rdev->constraints)
793 return sprintf(buf, "constraint not defined\n");
794
795 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
796}
797static DEVICE_ATTR_RO(min_microamps);
798
799static ssize_t max_microamps_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801{
802 struct regulator_dev *rdev = dev_get_drvdata(dev);
803
804 if (!rdev->constraints)
805 return sprintf(buf, "constraint not defined\n");
806
807 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
808}
809static DEVICE_ATTR_RO(max_microamps);
810
811static ssize_t min_microvolts_show(struct device *dev,
812 struct device_attribute *attr, char *buf)
813{
814 struct regulator_dev *rdev = dev_get_drvdata(dev);
815
816 if (!rdev->constraints)
817 return sprintf(buf, "constraint not defined\n");
818
819 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
820}
821static DEVICE_ATTR_RO(min_microvolts);
822
823static ssize_t max_microvolts_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 if (!rdev->constraints)
829 return sprintf(buf, "constraint not defined\n");
830
831 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
832}
833static DEVICE_ATTR_RO(max_microvolts);
834
835static ssize_t requested_microamps_show(struct device *dev,
836 struct device_attribute *attr, char *buf)
837{
838 struct regulator_dev *rdev = dev_get_drvdata(dev);
839 struct regulator *regulator;
840 int uA = 0;
841
842 regulator_lock(rdev);
843 list_for_each_entry(regulator, &rdev->consumer_list, list) {
844 if (regulator->enable_count)
845 uA += regulator->uA_load;
846 }
847 regulator_unlock(rdev);
848 return sprintf(buf, "%d\n", uA);
849}
850static DEVICE_ATTR_RO(requested_microamps);
851
852static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
854{
855 struct regulator_dev *rdev = dev_get_drvdata(dev);
856 return sprintf(buf, "%d\n", rdev->use_count);
857}
858static DEVICE_ATTR_RO(num_users);
859
860static ssize_t type_show(struct device *dev, struct device_attribute *attr,
861 char *buf)
862{
863 struct regulator_dev *rdev = dev_get_drvdata(dev);
864
865 switch (rdev->desc->type) {
866 case REGULATOR_VOLTAGE:
867 return sprintf(buf, "voltage\n");
868 case REGULATOR_CURRENT:
869 return sprintf(buf, "current\n");
870 }
871 return sprintf(buf, "unknown\n");
872}
873static DEVICE_ATTR_RO(type);
874
875static ssize_t suspend_mem_microvolts_show(struct device *dev,
876 struct device_attribute *attr, char *buf)
877{
878 struct regulator_dev *rdev = dev_get_drvdata(dev);
879
880 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
881}
882static DEVICE_ATTR_RO(suspend_mem_microvolts);
883
884static ssize_t suspend_disk_microvolts_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886{
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
890}
891static DEVICE_ATTR_RO(suspend_disk_microvolts);
892
893static ssize_t suspend_standby_microvolts_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897
898 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
899}
900static DEVICE_ATTR_RO(suspend_standby_microvolts);
901
902static ssize_t suspend_mem_mode_show(struct device *dev,
903 struct device_attribute *attr, char *buf)
904{
905 struct regulator_dev *rdev = dev_get_drvdata(dev);
906
907 return regulator_print_opmode(buf,
908 rdev->constraints->state_mem.mode);
909}
910static DEVICE_ATTR_RO(suspend_mem_mode);
911
912static ssize_t suspend_disk_mode_show(struct device *dev,
913 struct device_attribute *attr, char *buf)
914{
915 struct regulator_dev *rdev = dev_get_drvdata(dev);
916
917 return regulator_print_opmode(buf,
918 rdev->constraints->state_disk.mode);
919}
920static DEVICE_ATTR_RO(suspend_disk_mode);
921
922static ssize_t suspend_standby_mode_show(struct device *dev,
923 struct device_attribute *attr, char *buf)
924{
925 struct regulator_dev *rdev = dev_get_drvdata(dev);
926
927 return regulator_print_opmode(buf,
928 rdev->constraints->state_standby.mode);
929}
930static DEVICE_ATTR_RO(suspend_standby_mode);
931
932static ssize_t suspend_mem_state_show(struct device *dev,
933 struct device_attribute *attr, char *buf)
934{
935 struct regulator_dev *rdev = dev_get_drvdata(dev);
936
937 return regulator_print_state(buf,
938 rdev->constraints->state_mem.enabled);
939}
940static DEVICE_ATTR_RO(suspend_mem_state);
941
942static ssize_t suspend_disk_state_show(struct device *dev,
943 struct device_attribute *attr, char *buf)
944{
945 struct regulator_dev *rdev = dev_get_drvdata(dev);
946
947 return regulator_print_state(buf,
948 rdev->constraints->state_disk.enabled);
949}
950static DEVICE_ATTR_RO(suspend_disk_state);
951
952static ssize_t suspend_standby_state_show(struct device *dev,
953 struct device_attribute *attr, char *buf)
954{
955 struct regulator_dev *rdev = dev_get_drvdata(dev);
956
957 return regulator_print_state(buf,
958 rdev->constraints->state_standby.enabled);
959}
960static DEVICE_ATTR_RO(suspend_standby_state);
961
962static ssize_t bypass_show(struct device *dev,
963 struct device_attribute *attr, char *buf)
964{
965 struct regulator_dev *rdev = dev_get_drvdata(dev);
966 const char *report;
967 bool bypass;
968 int ret;
969
970 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
971
972 if (ret != 0)
973 report = "unknown";
974 else if (bypass)
975 report = "enabled";
976 else
977 report = "disabled";
978
979 return sprintf(buf, "%s\n", report);
980}
981static DEVICE_ATTR_RO(bypass);
982
983#define REGULATOR_ERROR_ATTR(name, bit) \
984 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
985 char *buf) \
986 { \
987 int ret; \
988 unsigned int flags; \
989 struct regulator_dev *rdev = dev_get_drvdata(dev); \
990 ret = _regulator_get_error_flags(rdev, &flags); \
991 if (ret) \
992 return ret; \
993 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
994 } \
995 static DEVICE_ATTR_RO(name)
996
997REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
998REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
999REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
1000REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
1001REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1002REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1004REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1005REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1006
1007/* Calculate the new optimum regulator operating mode based on the new total
1008 * consumer load. All locks held by caller
1009 */
1010static int drms_uA_update(struct regulator_dev *rdev)
1011{
1012 struct regulator *sibling;
1013 int current_uA = 0, output_uV, input_uV, err;
1014 unsigned int mode;
1015
1016 /*
1017 * first check to see if we can set modes at all, otherwise just
1018 * tell the consumer everything is OK.
1019 */
1020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1021 rdev_dbg(rdev, "DRMS operation not allowed\n");
1022 return 0;
1023 }
1024
1025 if (!rdev->desc->ops->get_optimum_mode &&
1026 !rdev->desc->ops->set_load)
1027 return 0;
1028
1029 if (!rdev->desc->ops->set_mode &&
1030 !rdev->desc->ops->set_load)
1031 return -EINVAL;
1032
1033 /* calc total requested load */
1034 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1035 if (sibling->enable_count)
1036 current_uA += sibling->uA_load;
1037 }
1038
1039 current_uA += rdev->constraints->system_load;
1040
1041 if (rdev->desc->ops->set_load) {
1042 /* set the optimum mode for our new total regulator load */
1043 err = rdev->desc->ops->set_load(rdev, current_uA);
1044 if (err < 0)
1045 rdev_err(rdev, "failed to set load %d: %pe\n",
1046 current_uA, ERR_PTR(err));
1047 } else {
1048 /*
1049 * Unfortunately in some cases the constraints->valid_ops has
1050 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1051 * That's not really legit but we won't consider it a fatal
1052 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1053 * wasn't set.
1054 */
1055 if (!rdev->constraints->valid_modes_mask) {
1056 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1057 return 0;
1058 }
1059
1060 /* get output voltage */
1061 output_uV = regulator_get_voltage_rdev(rdev);
1062
1063 /*
1064 * Don't return an error; if regulator driver cares about
1065 * output_uV then it's up to the driver to validate.
1066 */
1067 if (output_uV <= 0)
1068 rdev_dbg(rdev, "invalid output voltage found\n");
1069
1070 /* get input voltage */
1071 input_uV = 0;
1072 if (rdev->supply)
1073 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1074 if (input_uV <= 0)
1075 input_uV = rdev->constraints->input_uV;
1076
1077 /*
1078 * Don't return an error; if regulator driver cares about
1079 * input_uV then it's up to the driver to validate.
1080 */
1081 if (input_uV <= 0)
1082 rdev_dbg(rdev, "invalid input voltage found\n");
1083
1084 /* now get the optimum mode for our new total regulator load */
1085 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1086 output_uV, current_uA);
1087
1088 /* check the new mode is allowed */
1089 err = regulator_mode_constrain(rdev, &mode);
1090 if (err < 0) {
1091 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1092 current_uA, input_uV, output_uV, ERR_PTR(err));
1093 return err;
1094 }
1095
1096 err = rdev->desc->ops->set_mode(rdev, mode);
1097 if (err < 0)
1098 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1099 mode, ERR_PTR(err));
1100 }
1101
1102 return err;
1103}
1104
1105static int __suspend_set_state(struct regulator_dev *rdev,
1106 const struct regulator_state *rstate)
1107{
1108 int ret = 0;
1109
1110 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1111 rdev->desc->ops->set_suspend_enable)
1112 ret = rdev->desc->ops->set_suspend_enable(rdev);
1113 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1114 rdev->desc->ops->set_suspend_disable)
1115 ret = rdev->desc->ops->set_suspend_disable(rdev);
1116 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1117 ret = 0;
1118
1119 if (ret < 0) {
1120 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1121 return ret;
1122 }
1123
1124 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1125 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1126 if (ret < 0) {
1127 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1128 return ret;
1129 }
1130 }
1131
1132 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1133 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1134 if (ret < 0) {
1135 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1136 return ret;
1137 }
1138 }
1139
1140 return ret;
1141}
1142
1143static int suspend_set_initial_state(struct regulator_dev *rdev)
1144{
1145 const struct regulator_state *rstate;
1146
1147 rstate = regulator_get_suspend_state_check(rdev,
1148 rdev->constraints->initial_state);
1149 if (!rstate)
1150 return 0;
1151
1152 return __suspend_set_state(rdev, rstate);
1153}
1154
1155#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1156static void print_constraints_debug(struct regulator_dev *rdev)
1157{
1158 struct regulation_constraints *constraints = rdev->constraints;
1159 char buf[160] = "";
1160 size_t len = sizeof(buf) - 1;
1161 int count = 0;
1162 int ret;
1163
1164 if (constraints->min_uV && constraints->max_uV) {
1165 if (constraints->min_uV == constraints->max_uV)
1166 count += scnprintf(buf + count, len - count, "%d mV ",
1167 constraints->min_uV / 1000);
1168 else
1169 count += scnprintf(buf + count, len - count,
1170 "%d <--> %d mV ",
1171 constraints->min_uV / 1000,
1172 constraints->max_uV / 1000);
1173 }
1174
1175 if (!constraints->min_uV ||
1176 constraints->min_uV != constraints->max_uV) {
1177 ret = regulator_get_voltage_rdev(rdev);
1178 if (ret > 0)
1179 count += scnprintf(buf + count, len - count,
1180 "at %d mV ", ret / 1000);
1181 }
1182
1183 if (constraints->uV_offset)
1184 count += scnprintf(buf + count, len - count, "%dmV offset ",
1185 constraints->uV_offset / 1000);
1186
1187 if (constraints->min_uA && constraints->max_uA) {
1188 if (constraints->min_uA == constraints->max_uA)
1189 count += scnprintf(buf + count, len - count, "%d mA ",
1190 constraints->min_uA / 1000);
1191 else
1192 count += scnprintf(buf + count, len - count,
1193 "%d <--> %d mA ",
1194 constraints->min_uA / 1000,
1195 constraints->max_uA / 1000);
1196 }
1197
1198 if (!constraints->min_uA ||
1199 constraints->min_uA != constraints->max_uA) {
1200 ret = _regulator_get_current_limit(rdev);
1201 if (ret > 0)
1202 count += scnprintf(buf + count, len - count,
1203 "at %d mA ", ret / 1000);
1204 }
1205
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1207 count += scnprintf(buf + count, len - count, "fast ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1209 count += scnprintf(buf + count, len - count, "normal ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1211 count += scnprintf(buf + count, len - count, "idle ");
1212 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1213 count += scnprintf(buf + count, len - count, "standby ");
1214
1215 if (!count)
1216 count = scnprintf(buf, len, "no parameters");
1217 else
1218 --count;
1219
1220 count += scnprintf(buf + count, len - count, ", %s",
1221 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1222
1223 rdev_dbg(rdev, "%s\n", buf);
1224}
1225#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1227#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1228
1229static void print_constraints(struct regulator_dev *rdev)
1230{
1231 struct regulation_constraints *constraints = rdev->constraints;
1232
1233 print_constraints_debug(rdev);
1234
1235 if ((constraints->min_uV != constraints->max_uV) &&
1236 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1237 rdev_warn(rdev,
1238 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1239}
1240
1241static int machine_constraints_voltage(struct regulator_dev *rdev,
1242 struct regulation_constraints *constraints)
1243{
1244 const struct regulator_ops *ops = rdev->desc->ops;
1245 int ret;
1246
1247 /* do we need to apply the constraint voltage */
1248 if (rdev->constraints->apply_uV &&
1249 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1250 int target_min, target_max;
1251 int current_uV = regulator_get_voltage_rdev(rdev);
1252
1253 if (current_uV == -ENOTRECOVERABLE) {
1254 /* This regulator can't be read and must be initialized */
1255 rdev_info(rdev, "Setting %d-%duV\n",
1256 rdev->constraints->min_uV,
1257 rdev->constraints->max_uV);
1258 _regulator_do_set_voltage(rdev,
1259 rdev->constraints->min_uV,
1260 rdev->constraints->max_uV);
1261 current_uV = regulator_get_voltage_rdev(rdev);
1262 }
1263
1264 if (current_uV < 0) {
1265 if (current_uV != -EPROBE_DEFER)
1266 rdev_err(rdev,
1267 "failed to get the current voltage: %pe\n",
1268 ERR_PTR(current_uV));
1269 return current_uV;
1270 }
1271
1272 /*
1273 * If we're below the minimum voltage move up to the
1274 * minimum voltage, if we're above the maximum voltage
1275 * then move down to the maximum.
1276 */
1277 target_min = current_uV;
1278 target_max = current_uV;
1279
1280 if (current_uV < rdev->constraints->min_uV) {
1281 target_min = rdev->constraints->min_uV;
1282 target_max = rdev->constraints->min_uV;
1283 }
1284
1285 if (current_uV > rdev->constraints->max_uV) {
1286 target_min = rdev->constraints->max_uV;
1287 target_max = rdev->constraints->max_uV;
1288 }
1289
1290 if (target_min != current_uV || target_max != current_uV) {
1291 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1292 current_uV, target_min, target_max);
1293 ret = _regulator_do_set_voltage(
1294 rdev, target_min, target_max);
1295 if (ret < 0) {
1296 rdev_err(rdev,
1297 "failed to apply %d-%duV constraint: %pe\n",
1298 target_min, target_max, ERR_PTR(ret));
1299 return ret;
1300 }
1301 }
1302 }
1303
1304 /* constrain machine-level voltage specs to fit
1305 * the actual range supported by this regulator.
1306 */
1307 if (ops->list_voltage && rdev->desc->n_voltages) {
1308 int count = rdev->desc->n_voltages;
1309 int i;
1310 int min_uV = INT_MAX;
1311 int max_uV = INT_MIN;
1312 int cmin = constraints->min_uV;
1313 int cmax = constraints->max_uV;
1314
1315 /* it's safe to autoconfigure fixed-voltage supplies
1316 * and the constraints are used by list_voltage.
1317 */
1318 if (count == 1 && !cmin) {
1319 cmin = 1;
1320 cmax = INT_MAX;
1321 constraints->min_uV = cmin;
1322 constraints->max_uV = cmax;
1323 }
1324
1325 /* voltage constraints are optional */
1326 if ((cmin == 0) && (cmax == 0))
1327 return 0;
1328
1329 /* else require explicit machine-level constraints */
1330 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1331 rdev_err(rdev, "invalid voltage constraints\n");
1332 return -EINVAL;
1333 }
1334
1335 /* no need to loop voltages if range is continuous */
1336 if (rdev->desc->continuous_voltage_range)
1337 return 0;
1338
1339 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1340 for (i = 0; i < count; i++) {
1341 int value;
1342
1343 value = ops->list_voltage(rdev, i);
1344 if (value <= 0)
1345 continue;
1346
1347 /* maybe adjust [min_uV..max_uV] */
1348 if (value >= cmin && value < min_uV)
1349 min_uV = value;
1350 if (value <= cmax && value > max_uV)
1351 max_uV = value;
1352 }
1353
1354 /* final: [min_uV..max_uV] valid iff constraints valid */
1355 if (max_uV < min_uV) {
1356 rdev_err(rdev,
1357 "unsupportable voltage constraints %u-%uuV\n",
1358 min_uV, max_uV);
1359 return -EINVAL;
1360 }
1361
1362 /* use regulator's subset of machine constraints */
1363 if (constraints->min_uV < min_uV) {
1364 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1365 constraints->min_uV, min_uV);
1366 constraints->min_uV = min_uV;
1367 }
1368 if (constraints->max_uV > max_uV) {
1369 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1370 constraints->max_uV, max_uV);
1371 constraints->max_uV = max_uV;
1372 }
1373 }
1374
1375 return 0;
1376}
1377
1378static int machine_constraints_current(struct regulator_dev *rdev,
1379 struct regulation_constraints *constraints)
1380{
1381 const struct regulator_ops *ops = rdev->desc->ops;
1382 int ret;
1383
1384 if (!constraints->min_uA && !constraints->max_uA)
1385 return 0;
1386
1387 if (constraints->min_uA > constraints->max_uA) {
1388 rdev_err(rdev, "Invalid current constraints\n");
1389 return -EINVAL;
1390 }
1391
1392 if (!ops->set_current_limit || !ops->get_current_limit) {
1393 rdev_warn(rdev, "Operation of current configuration missing\n");
1394 return 0;
1395 }
1396
1397 /* Set regulator current in constraints range */
1398 ret = ops->set_current_limit(rdev, constraints->min_uA,
1399 constraints->max_uA);
1400 if (ret < 0) {
1401 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1402 return ret;
1403 }
1404
1405 return 0;
1406}
1407
1408static int _regulator_do_enable(struct regulator_dev *rdev);
1409
1410static int notif_set_limit(struct regulator_dev *rdev,
1411 int (*set)(struct regulator_dev *, int, int, bool),
1412 int limit, int severity)
1413{
1414 bool enable;
1415
1416 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1417 enable = false;
1418 limit = 0;
1419 } else {
1420 enable = true;
1421 }
1422
1423 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1424 limit = 0;
1425
1426 return set(rdev, limit, severity, enable);
1427}
1428
1429static int handle_notify_limits(struct regulator_dev *rdev,
1430 int (*set)(struct regulator_dev *, int, int, bool),
1431 struct notification_limit *limits)
1432{
1433 int ret = 0;
1434
1435 if (!set)
1436 return -EOPNOTSUPP;
1437
1438 if (limits->prot)
1439 ret = notif_set_limit(rdev, set, limits->prot,
1440 REGULATOR_SEVERITY_PROT);
1441 if (ret)
1442 return ret;
1443
1444 if (limits->err)
1445 ret = notif_set_limit(rdev, set, limits->err,
1446 REGULATOR_SEVERITY_ERR);
1447 if (ret)
1448 return ret;
1449
1450 if (limits->warn)
1451 ret = notif_set_limit(rdev, set, limits->warn,
1452 REGULATOR_SEVERITY_WARN);
1453
1454 return ret;
1455}
1456/**
1457 * set_machine_constraints - sets regulator constraints
1458 * @rdev: regulator source
1459 *
1460 * Allows platform initialisation code to define and constrain
1461 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1462 * Constraints *must* be set by platform code in order for some
1463 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1464 * set_mode.
1465 */
1466static int set_machine_constraints(struct regulator_dev *rdev)
1467{
1468 int ret = 0;
1469 const struct regulator_ops *ops = rdev->desc->ops;
1470
1471 ret = machine_constraints_voltage(rdev, rdev->constraints);
1472 if (ret != 0)
1473 return ret;
1474
1475 ret = machine_constraints_current(rdev, rdev->constraints);
1476 if (ret != 0)
1477 return ret;
1478
1479 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1480 ret = ops->set_input_current_limit(rdev,
1481 rdev->constraints->ilim_uA);
1482 if (ret < 0) {
1483 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1484 return ret;
1485 }
1486 }
1487
1488 /* do we need to setup our suspend state */
1489 if (rdev->constraints->initial_state) {
1490 ret = suspend_set_initial_state(rdev);
1491 if (ret < 0) {
1492 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1493 return ret;
1494 }
1495 }
1496
1497 if (rdev->constraints->initial_mode) {
1498 if (!ops->set_mode) {
1499 rdev_err(rdev, "no set_mode operation\n");
1500 return -EINVAL;
1501 }
1502
1503 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1504 if (ret < 0) {
1505 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1506 return ret;
1507 }
1508 } else if (rdev->constraints->system_load) {
1509 /*
1510 * We'll only apply the initial system load if an
1511 * initial mode wasn't specified.
1512 */
1513 drms_uA_update(rdev);
1514 }
1515
1516 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1517 && ops->set_ramp_delay) {
1518 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1519 if (ret < 0) {
1520 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1521 return ret;
1522 }
1523 }
1524
1525 if (rdev->constraints->pull_down && ops->set_pull_down) {
1526 ret = ops->set_pull_down(rdev);
1527 if (ret < 0) {
1528 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1529 return ret;
1530 }
1531 }
1532
1533 if (rdev->constraints->soft_start && ops->set_soft_start) {
1534 ret = ops->set_soft_start(rdev);
1535 if (ret < 0) {
1536 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1537 return ret;
1538 }
1539 }
1540
1541 /*
1542 * Existing logic does not warn if over_current_protection is given as
1543 * a constraint but driver does not support that. I think we should
1544 * warn about this type of issues as it is possible someone changes
1545 * PMIC on board to another type - and the another PMIC's driver does
1546 * not support setting protection. Board composer may happily believe
1547 * the DT limits are respected - especially if the new PMIC HW also
1548 * supports protection but the driver does not. I won't change the logic
1549 * without hearing more experienced opinion on this though.
1550 *
1551 * If warning is seen as a good idea then we can merge handling the
1552 * over-curret protection and detection and get rid of this special
1553 * handling.
1554 */
1555 if (rdev->constraints->over_current_protection
1556 && ops->set_over_current_protection) {
1557 int lim = rdev->constraints->over_curr_limits.prot;
1558
1559 ret = ops->set_over_current_protection(rdev, lim,
1560 REGULATOR_SEVERITY_PROT,
1561 true);
1562 if (ret < 0) {
1563 rdev_err(rdev, "failed to set over current protection: %pe\n",
1564 ERR_PTR(ret));
1565 return ret;
1566 }
1567 }
1568
1569 if (rdev->constraints->over_current_detection)
1570 ret = handle_notify_limits(rdev,
1571 ops->set_over_current_protection,
1572 &rdev->constraints->over_curr_limits);
1573 if (ret) {
1574 if (ret != -EOPNOTSUPP) {
1575 rdev_err(rdev, "failed to set over current limits: %pe\n",
1576 ERR_PTR(ret));
1577 return ret;
1578 }
1579 rdev_warn(rdev,
1580 "IC does not support requested over-current limits\n");
1581 }
1582
1583 if (rdev->constraints->over_voltage_detection)
1584 ret = handle_notify_limits(rdev,
1585 ops->set_over_voltage_protection,
1586 &rdev->constraints->over_voltage_limits);
1587 if (ret) {
1588 if (ret != -EOPNOTSUPP) {
1589 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1590 ERR_PTR(ret));
1591 return ret;
1592 }
1593 rdev_warn(rdev,
1594 "IC does not support requested over voltage limits\n");
1595 }
1596
1597 if (rdev->constraints->under_voltage_detection)
1598 ret = handle_notify_limits(rdev,
1599 ops->set_under_voltage_protection,
1600 &rdev->constraints->under_voltage_limits);
1601 if (ret) {
1602 if (ret != -EOPNOTSUPP) {
1603 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1604 ERR_PTR(ret));
1605 return ret;
1606 }
1607 rdev_warn(rdev,
1608 "IC does not support requested under voltage limits\n");
1609 }
1610
1611 if (rdev->constraints->over_temp_detection)
1612 ret = handle_notify_limits(rdev,
1613 ops->set_thermal_protection,
1614 &rdev->constraints->temp_limits);
1615 if (ret) {
1616 if (ret != -EOPNOTSUPP) {
1617 rdev_err(rdev, "failed to set temperature limits %pe\n",
1618 ERR_PTR(ret));
1619 return ret;
1620 }
1621 rdev_warn(rdev,
1622 "IC does not support requested temperature limits\n");
1623 }
1624
1625 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1626 bool ad_state = (rdev->constraints->active_discharge ==
1627 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1628
1629 ret = ops->set_active_discharge(rdev, ad_state);
1630 if (ret < 0) {
1631 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1632 return ret;
1633 }
1634 }
1635
1636 /*
1637 * If there is no mechanism for controlling the regulator then
1638 * flag it as always_on so we don't end up duplicating checks
1639 * for this so much. Note that we could control the state of
1640 * a supply to control the output on a regulator that has no
1641 * direct control.
1642 */
1643 if (!rdev->ena_pin && !ops->enable) {
1644 if (rdev->supply_name && !rdev->supply)
1645 return -EPROBE_DEFER;
1646
1647 if (rdev->supply)
1648 rdev->constraints->always_on =
1649 rdev->supply->rdev->constraints->always_on;
1650 else
1651 rdev->constraints->always_on = true;
1652 }
1653
1654 /* If the constraints say the regulator should be on at this point
1655 * and we have control then make sure it is enabled.
1656 */
1657 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1658 /* If we want to enable this regulator, make sure that we know
1659 * the supplying regulator.
1660 */
1661 if (rdev->supply_name && !rdev->supply)
1662 return -EPROBE_DEFER;
1663
1664 /* If supplying regulator has already been enabled,
1665 * it's not intended to have use_count increment
1666 * when rdev is only boot-on.
1667 */
1668 if (rdev->supply &&
1669 (rdev->constraints->always_on ||
1670 !regulator_is_enabled(rdev->supply))) {
1671 ret = regulator_enable(rdev->supply);
1672 if (ret < 0) {
1673 _regulator_put(rdev->supply);
1674 rdev->supply = NULL;
1675 return ret;
1676 }
1677 }
1678
1679 ret = _regulator_do_enable(rdev);
1680 if (ret < 0 && ret != -EINVAL) {
1681 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1682 return ret;
1683 }
1684
1685 if (rdev->constraints->always_on)
1686 rdev->use_count++;
1687 } else if (rdev->desc->off_on_delay) {
1688 rdev->last_off = ktime_get();
1689 }
1690
1691 print_constraints(rdev);
1692 return 0;
1693}
1694
1695/**
1696 * set_supply - set regulator supply regulator
1697 * @rdev: regulator (locked)
1698 * @supply_rdev: supply regulator (locked))
1699 *
1700 * Called by platform initialisation code to set the supply regulator for this
1701 * regulator. This ensures that a regulators supply will also be enabled by the
1702 * core if it's child is enabled.
1703 */
1704static int set_supply(struct regulator_dev *rdev,
1705 struct regulator_dev *supply_rdev)
1706{
1707 int err;
1708
1709 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1710
1711 if (!try_module_get(supply_rdev->owner))
1712 return -ENODEV;
1713
1714 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1715 if (rdev->supply == NULL) {
1716 module_put(supply_rdev->owner);
1717 err = -ENOMEM;
1718 return err;
1719 }
1720 supply_rdev->open_count++;
1721
1722 return 0;
1723}
1724
1725/**
1726 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1727 * @rdev: regulator source
1728 * @consumer_dev_name: dev_name() string for device supply applies to
1729 * @supply: symbolic name for supply
1730 *
1731 * Allows platform initialisation code to map physical regulator
1732 * sources to symbolic names for supplies for use by devices. Devices
1733 * should use these symbolic names to request regulators, avoiding the
1734 * need to provide board-specific regulator names as platform data.
1735 */
1736static int set_consumer_device_supply(struct regulator_dev *rdev,
1737 const char *consumer_dev_name,
1738 const char *supply)
1739{
1740 struct regulator_map *node, *new_node;
1741 int has_dev;
1742
1743 if (supply == NULL)
1744 return -EINVAL;
1745
1746 if (consumer_dev_name != NULL)
1747 has_dev = 1;
1748 else
1749 has_dev = 0;
1750
1751 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1752 if (new_node == NULL)
1753 return -ENOMEM;
1754
1755 new_node->regulator = rdev;
1756 new_node->supply = supply;
1757
1758 if (has_dev) {
1759 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1760 if (new_node->dev_name == NULL) {
1761 kfree(new_node);
1762 return -ENOMEM;
1763 }
1764 }
1765
1766 mutex_lock(®ulator_list_mutex);
1767 list_for_each_entry(node, ®ulator_map_list, list) {
1768 if (node->dev_name && consumer_dev_name) {
1769 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1770 continue;
1771 } else if (node->dev_name || consumer_dev_name) {
1772 continue;
1773 }
1774
1775 if (strcmp(node->supply, supply) != 0)
1776 continue;
1777
1778 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1779 consumer_dev_name,
1780 dev_name(&node->regulator->dev),
1781 node->regulator->desc->name,
1782 supply,
1783 dev_name(&rdev->dev), rdev_get_name(rdev));
1784 goto fail;
1785 }
1786
1787 list_add(&new_node->list, ®ulator_map_list);
1788 mutex_unlock(®ulator_list_mutex);
1789
1790 return 0;
1791
1792fail:
1793 mutex_unlock(®ulator_list_mutex);
1794 kfree(new_node->dev_name);
1795 kfree(new_node);
1796 return -EBUSY;
1797}
1798
1799static void unset_regulator_supplies(struct regulator_dev *rdev)
1800{
1801 struct regulator_map *node, *n;
1802
1803 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1804 if (rdev == node->regulator) {
1805 list_del(&node->list);
1806 kfree(node->dev_name);
1807 kfree(node);
1808 }
1809 }
1810}
1811
1812#ifdef CONFIG_DEBUG_FS
1813static ssize_t constraint_flags_read_file(struct file *file,
1814 char __user *user_buf,
1815 size_t count, loff_t *ppos)
1816{
1817 const struct regulator *regulator = file->private_data;
1818 const struct regulation_constraints *c = regulator->rdev->constraints;
1819 char *buf;
1820 ssize_t ret;
1821
1822 if (!c)
1823 return 0;
1824
1825 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1826 if (!buf)
1827 return -ENOMEM;
1828
1829 ret = snprintf(buf, PAGE_SIZE,
1830 "always_on: %u\n"
1831 "boot_on: %u\n"
1832 "apply_uV: %u\n"
1833 "ramp_disable: %u\n"
1834 "soft_start: %u\n"
1835 "pull_down: %u\n"
1836 "over_current_protection: %u\n",
1837 c->always_on,
1838 c->boot_on,
1839 c->apply_uV,
1840 c->ramp_disable,
1841 c->soft_start,
1842 c->pull_down,
1843 c->over_current_protection);
1844
1845 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1846 kfree(buf);
1847
1848 return ret;
1849}
1850
1851#endif
1852
1853static const struct file_operations constraint_flags_fops = {
1854#ifdef CONFIG_DEBUG_FS
1855 .open = simple_open,
1856 .read = constraint_flags_read_file,
1857 .llseek = default_llseek,
1858#endif
1859};
1860
1861#define REG_STR_SIZE 64
1862
1863static struct regulator *create_regulator(struct regulator_dev *rdev,
1864 struct device *dev,
1865 const char *supply_name)
1866{
1867 struct regulator *regulator;
1868 int err = 0;
1869
1870 lockdep_assert_held_once(&rdev->mutex.base);
1871
1872 if (dev) {
1873 char buf[REG_STR_SIZE];
1874 int size;
1875
1876 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1877 dev->kobj.name, supply_name);
1878 if (size >= REG_STR_SIZE)
1879 return NULL;
1880
1881 supply_name = kstrdup(buf, GFP_KERNEL);
1882 if (supply_name == NULL)
1883 return NULL;
1884 } else {
1885 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1886 if (supply_name == NULL)
1887 return NULL;
1888 }
1889
1890 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1891 if (regulator == NULL) {
1892 kfree_const(supply_name);
1893 return NULL;
1894 }
1895
1896 regulator->rdev = rdev;
1897 regulator->supply_name = supply_name;
1898
1899 list_add(®ulator->list, &rdev->consumer_list);
1900
1901 if (dev) {
1902 regulator->dev = dev;
1903
1904 /* Add a link to the device sysfs entry */
1905 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1906 supply_name);
1907 if (err) {
1908 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1909 dev->kobj.name, ERR_PTR(err));
1910 /* non-fatal */
1911 }
1912 }
1913
1914 if (err != -EEXIST) {
1915 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1916 if (IS_ERR(regulator->debugfs)) {
1917 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1918 regulator->debugfs = NULL;
1919 }
1920 }
1921
1922 if (regulator->debugfs) {
1923 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1924 ®ulator->uA_load);
1925 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1926 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1927 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1928 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1929 debugfs_create_file("constraint_flags", 0444, regulator->debugfs,
1930 regulator, &constraint_flags_fops);
1931 }
1932
1933 /*
1934 * Check now if the regulator is an always on regulator - if
1935 * it is then we don't need to do nearly so much work for
1936 * enable/disable calls.
1937 */
1938 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1939 _regulator_is_enabled(rdev))
1940 regulator->always_on = true;
1941
1942 return regulator;
1943}
1944
1945static int _regulator_get_enable_time(struct regulator_dev *rdev)
1946{
1947 if (rdev->constraints && rdev->constraints->enable_time)
1948 return rdev->constraints->enable_time;
1949 if (rdev->desc->ops->enable_time)
1950 return rdev->desc->ops->enable_time(rdev);
1951 return rdev->desc->enable_time;
1952}
1953
1954static struct regulator_supply_alias *regulator_find_supply_alias(
1955 struct device *dev, const char *supply)
1956{
1957 struct regulator_supply_alias *map;
1958
1959 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1960 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1961 return map;
1962
1963 return NULL;
1964}
1965
1966static void regulator_supply_alias(struct device **dev, const char **supply)
1967{
1968 struct regulator_supply_alias *map;
1969
1970 map = regulator_find_supply_alias(*dev, *supply);
1971 if (map) {
1972 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1973 *supply, map->alias_supply,
1974 dev_name(map->alias_dev));
1975 *dev = map->alias_dev;
1976 *supply = map->alias_supply;
1977 }
1978}
1979
1980static int regulator_match(struct device *dev, const void *data)
1981{
1982 struct regulator_dev *r = dev_to_rdev(dev);
1983
1984 return strcmp(rdev_get_name(r), data) == 0;
1985}
1986
1987static struct regulator_dev *regulator_lookup_by_name(const char *name)
1988{
1989 struct device *dev;
1990
1991 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1992
1993 return dev ? dev_to_rdev(dev) : NULL;
1994}
1995
1996/**
1997 * regulator_dev_lookup - lookup a regulator device.
1998 * @dev: device for regulator "consumer".
1999 * @supply: Supply name or regulator ID.
2000 *
2001 * If successful, returns a struct regulator_dev that corresponds to the name
2002 * @supply and with the embedded struct device refcount incremented by one.
2003 * The refcount must be dropped by calling put_device().
2004 * On failure one of the following ERR-PTR-encoded values is returned:
2005 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2006 * in the future.
2007 */
2008static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2009 const char *supply)
2010{
2011 struct regulator_dev *r = NULL;
2012 struct device_node *node;
2013 struct regulator_map *map;
2014 const char *devname = NULL;
2015
2016 regulator_supply_alias(&dev, &supply);
2017
2018 /* first do a dt based lookup */
2019 if (dev && dev->of_node) {
2020 node = of_get_regulator(dev, supply);
2021 if (node) {
2022 r = of_find_regulator_by_node(node);
2023 of_node_put(node);
2024 if (r)
2025 return r;
2026
2027 /*
2028 * We have a node, but there is no device.
2029 * assume it has not registered yet.
2030 */
2031 return ERR_PTR(-EPROBE_DEFER);
2032 }
2033 }
2034
2035 /* if not found, try doing it non-dt way */
2036 if (dev)
2037 devname = dev_name(dev);
2038
2039 mutex_lock(®ulator_list_mutex);
2040 list_for_each_entry(map, ®ulator_map_list, list) {
2041 /* If the mapping has a device set up it must match */
2042 if (map->dev_name &&
2043 (!devname || strcmp(map->dev_name, devname)))
2044 continue;
2045
2046 if (strcmp(map->supply, supply) == 0 &&
2047 get_device(&map->regulator->dev)) {
2048 r = map->regulator;
2049 break;
2050 }
2051 }
2052 mutex_unlock(®ulator_list_mutex);
2053
2054 if (r)
2055 return r;
2056
2057 r = regulator_lookup_by_name(supply);
2058 if (r)
2059 return r;
2060
2061 return ERR_PTR(-ENODEV);
2062}
2063
2064static int regulator_resolve_supply(struct regulator_dev *rdev)
2065{
2066 struct regulator_dev *r;
2067 struct device *dev = rdev->dev.parent;
2068 struct ww_acquire_ctx ww_ctx;
2069 int ret = 0;
2070
2071 /* No supply to resolve? */
2072 if (!rdev->supply_name)
2073 return 0;
2074
2075 /* Supply already resolved? (fast-path without locking contention) */
2076 if (rdev->supply)
2077 return 0;
2078
2079 r = regulator_dev_lookup(dev, rdev->supply_name);
2080 if (IS_ERR(r)) {
2081 ret = PTR_ERR(r);
2082
2083 /* Did the lookup explicitly defer for us? */
2084 if (ret == -EPROBE_DEFER)
2085 goto out;
2086
2087 if (have_full_constraints()) {
2088 r = dummy_regulator_rdev;
2089 get_device(&r->dev);
2090 } else {
2091 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2092 rdev->supply_name, rdev->desc->name);
2093 ret = -EPROBE_DEFER;
2094 goto out;
2095 }
2096 }
2097
2098 if (r == rdev) {
2099 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2100 rdev->desc->name, rdev->supply_name);
2101 if (!have_full_constraints()) {
2102 ret = -EINVAL;
2103 goto out;
2104 }
2105 r = dummy_regulator_rdev;
2106 get_device(&r->dev);
2107 }
2108
2109 /*
2110 * If the supply's parent device is not the same as the
2111 * regulator's parent device, then ensure the parent device
2112 * is bound before we resolve the supply, in case the parent
2113 * device get probe deferred and unregisters the supply.
2114 */
2115 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2116 if (!device_is_bound(r->dev.parent)) {
2117 put_device(&r->dev);
2118 ret = -EPROBE_DEFER;
2119 goto out;
2120 }
2121 }
2122
2123 /* Recursively resolve the supply of the supply */
2124 ret = regulator_resolve_supply(r);
2125 if (ret < 0) {
2126 put_device(&r->dev);
2127 goto out;
2128 }
2129
2130 /*
2131 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2132 * between rdev->supply null check and setting rdev->supply in
2133 * set_supply() from concurrent tasks.
2134 */
2135 regulator_lock_two(rdev, r, &ww_ctx);
2136
2137 /* Supply just resolved by a concurrent task? */
2138 if (rdev->supply) {
2139 regulator_unlock_two(rdev, r, &ww_ctx);
2140 put_device(&r->dev);
2141 goto out;
2142 }
2143
2144 ret = set_supply(rdev, r);
2145 if (ret < 0) {
2146 regulator_unlock_two(rdev, r, &ww_ctx);
2147 put_device(&r->dev);
2148 goto out;
2149 }
2150
2151 regulator_unlock_two(rdev, r, &ww_ctx);
2152
2153 /*
2154 * In set_machine_constraints() we may have turned this regulator on
2155 * but we couldn't propagate to the supply if it hadn't been resolved
2156 * yet. Do it now.
2157 */
2158 if (rdev->use_count) {
2159 ret = regulator_enable(rdev->supply);
2160 if (ret < 0) {
2161 _regulator_put(rdev->supply);
2162 rdev->supply = NULL;
2163 goto out;
2164 }
2165 }
2166
2167out:
2168 return ret;
2169}
2170
2171/* Internal regulator request function */
2172struct regulator *_regulator_get(struct device *dev, const char *id,
2173 enum regulator_get_type get_type)
2174{
2175 struct regulator_dev *rdev;
2176 struct regulator *regulator;
2177 struct device_link *link;
2178 int ret;
2179
2180 if (get_type >= MAX_GET_TYPE) {
2181 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2182 return ERR_PTR(-EINVAL);
2183 }
2184
2185 if (id == NULL) {
2186 pr_err("get() with no identifier\n");
2187 return ERR_PTR(-EINVAL);
2188 }
2189
2190 rdev = regulator_dev_lookup(dev, id);
2191 if (IS_ERR(rdev)) {
2192 ret = PTR_ERR(rdev);
2193
2194 /*
2195 * If regulator_dev_lookup() fails with error other
2196 * than -ENODEV our job here is done, we simply return it.
2197 */
2198 if (ret != -ENODEV)
2199 return ERR_PTR(ret);
2200
2201 if (!have_full_constraints()) {
2202 dev_warn(dev,
2203 "incomplete constraints, dummy supplies not allowed\n");
2204 return ERR_PTR(-ENODEV);
2205 }
2206
2207 switch (get_type) {
2208 case NORMAL_GET:
2209 /*
2210 * Assume that a regulator is physically present and
2211 * enabled, even if it isn't hooked up, and just
2212 * provide a dummy.
2213 */
2214 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2215 rdev = dummy_regulator_rdev;
2216 get_device(&rdev->dev);
2217 break;
2218
2219 case EXCLUSIVE_GET:
2220 dev_warn(dev,
2221 "dummy supplies not allowed for exclusive requests\n");
2222 fallthrough;
2223
2224 default:
2225 return ERR_PTR(-ENODEV);
2226 }
2227 }
2228
2229 if (rdev->exclusive) {
2230 regulator = ERR_PTR(-EPERM);
2231 put_device(&rdev->dev);
2232 return regulator;
2233 }
2234
2235 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2236 regulator = ERR_PTR(-EBUSY);
2237 put_device(&rdev->dev);
2238 return regulator;
2239 }
2240
2241 mutex_lock(®ulator_list_mutex);
2242 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2243 mutex_unlock(®ulator_list_mutex);
2244
2245 if (ret != 0) {
2246 regulator = ERR_PTR(-EPROBE_DEFER);
2247 put_device(&rdev->dev);
2248 return regulator;
2249 }
2250
2251 ret = regulator_resolve_supply(rdev);
2252 if (ret < 0) {
2253 regulator = ERR_PTR(ret);
2254 put_device(&rdev->dev);
2255 return regulator;
2256 }
2257
2258 if (!try_module_get(rdev->owner)) {
2259 regulator = ERR_PTR(-EPROBE_DEFER);
2260 put_device(&rdev->dev);
2261 return regulator;
2262 }
2263
2264 regulator_lock(rdev);
2265 regulator = create_regulator(rdev, dev, id);
2266 regulator_unlock(rdev);
2267 if (regulator == NULL) {
2268 regulator = ERR_PTR(-ENOMEM);
2269 module_put(rdev->owner);
2270 put_device(&rdev->dev);
2271 return regulator;
2272 }
2273
2274 rdev->open_count++;
2275 if (get_type == EXCLUSIVE_GET) {
2276 rdev->exclusive = 1;
2277
2278 ret = _regulator_is_enabled(rdev);
2279 if (ret > 0) {
2280 rdev->use_count = 1;
2281 regulator->enable_count = 1;
2282
2283 /* Propagate the regulator state to its supply */
2284 if (rdev->supply) {
2285 ret = regulator_enable(rdev->supply);
2286 if (ret < 0) {
2287 destroy_regulator(regulator);
2288 module_put(rdev->owner);
2289 put_device(&rdev->dev);
2290 return ERR_PTR(ret);
2291 }
2292 }
2293 } else {
2294 rdev->use_count = 0;
2295 regulator->enable_count = 0;
2296 }
2297 }
2298
2299 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2300 if (!IS_ERR_OR_NULL(link))
2301 regulator->device_link = true;
2302
2303 return regulator;
2304}
2305
2306/**
2307 * regulator_get - lookup and obtain a reference to a regulator.
2308 * @dev: device for regulator "consumer"
2309 * @id: Supply name or regulator ID.
2310 *
2311 * Returns a struct regulator corresponding to the regulator producer,
2312 * or IS_ERR() condition containing errno.
2313 *
2314 * Use of supply names configured via set_consumer_device_supply() is
2315 * strongly encouraged. It is recommended that the supply name used
2316 * should match the name used for the supply and/or the relevant
2317 * device pins in the datasheet.
2318 */
2319struct regulator *regulator_get(struct device *dev, const char *id)
2320{
2321 return _regulator_get(dev, id, NORMAL_GET);
2322}
2323EXPORT_SYMBOL_GPL(regulator_get);
2324
2325/**
2326 * regulator_get_exclusive - obtain exclusive access to a regulator.
2327 * @dev: device for regulator "consumer"
2328 * @id: Supply name or regulator ID.
2329 *
2330 * Returns a struct regulator corresponding to the regulator producer,
2331 * or IS_ERR() condition containing errno. Other consumers will be
2332 * unable to obtain this regulator while this reference is held and the
2333 * use count for the regulator will be initialised to reflect the current
2334 * state of the regulator.
2335 *
2336 * This is intended for use by consumers which cannot tolerate shared
2337 * use of the regulator such as those which need to force the
2338 * regulator off for correct operation of the hardware they are
2339 * controlling.
2340 *
2341 * Use of supply names configured via set_consumer_device_supply() is
2342 * strongly encouraged. It is recommended that the supply name used
2343 * should match the name used for the supply and/or the relevant
2344 * device pins in the datasheet.
2345 */
2346struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2347{
2348 return _regulator_get(dev, id, EXCLUSIVE_GET);
2349}
2350EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2351
2352/**
2353 * regulator_get_optional - obtain optional access to a regulator.
2354 * @dev: device for regulator "consumer"
2355 * @id: Supply name or regulator ID.
2356 *
2357 * Returns a struct regulator corresponding to the regulator producer,
2358 * or IS_ERR() condition containing errno.
2359 *
2360 * This is intended for use by consumers for devices which can have
2361 * some supplies unconnected in normal use, such as some MMC devices.
2362 * It can allow the regulator core to provide stub supplies for other
2363 * supplies requested using normal regulator_get() calls without
2364 * disrupting the operation of drivers that can handle absent
2365 * supplies.
2366 *
2367 * Use of supply names configured via set_consumer_device_supply() is
2368 * strongly encouraged. It is recommended that the supply name used
2369 * should match the name used for the supply and/or the relevant
2370 * device pins in the datasheet.
2371 */
2372struct regulator *regulator_get_optional(struct device *dev, const char *id)
2373{
2374 return _regulator_get(dev, id, OPTIONAL_GET);
2375}
2376EXPORT_SYMBOL_GPL(regulator_get_optional);
2377
2378static void destroy_regulator(struct regulator *regulator)
2379{
2380 struct regulator_dev *rdev = regulator->rdev;
2381
2382 debugfs_remove_recursive(regulator->debugfs);
2383
2384 if (regulator->dev) {
2385 if (regulator->device_link)
2386 device_link_remove(regulator->dev, &rdev->dev);
2387
2388 /* remove any sysfs entries */
2389 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2390 }
2391
2392 regulator_lock(rdev);
2393 list_del(®ulator->list);
2394
2395 rdev->open_count--;
2396 rdev->exclusive = 0;
2397 regulator_unlock(rdev);
2398
2399 kfree_const(regulator->supply_name);
2400 kfree(regulator);
2401}
2402
2403/* regulator_list_mutex lock held by regulator_put() */
2404static void _regulator_put(struct regulator *regulator)
2405{
2406 struct regulator_dev *rdev;
2407
2408 if (IS_ERR_OR_NULL(regulator))
2409 return;
2410
2411 lockdep_assert_held_once(®ulator_list_mutex);
2412
2413 /* Docs say you must disable before calling regulator_put() */
2414 WARN_ON(regulator->enable_count);
2415
2416 rdev = regulator->rdev;
2417
2418 destroy_regulator(regulator);
2419
2420 module_put(rdev->owner);
2421 put_device(&rdev->dev);
2422}
2423
2424/**
2425 * regulator_put - "free" the regulator source
2426 * @regulator: regulator source
2427 *
2428 * Note: drivers must ensure that all regulator_enable calls made on this
2429 * regulator source are balanced by regulator_disable calls prior to calling
2430 * this function.
2431 */
2432void regulator_put(struct regulator *regulator)
2433{
2434 mutex_lock(®ulator_list_mutex);
2435 _regulator_put(regulator);
2436 mutex_unlock(®ulator_list_mutex);
2437}
2438EXPORT_SYMBOL_GPL(regulator_put);
2439
2440/**
2441 * regulator_register_supply_alias - Provide device alias for supply lookup
2442 *
2443 * @dev: device that will be given as the regulator "consumer"
2444 * @id: Supply name or regulator ID
2445 * @alias_dev: device that should be used to lookup the supply
2446 * @alias_id: Supply name or regulator ID that should be used to lookup the
2447 * supply
2448 *
2449 * All lookups for id on dev will instead be conducted for alias_id on
2450 * alias_dev.
2451 */
2452int regulator_register_supply_alias(struct device *dev, const char *id,
2453 struct device *alias_dev,
2454 const char *alias_id)
2455{
2456 struct regulator_supply_alias *map;
2457
2458 map = regulator_find_supply_alias(dev, id);
2459 if (map)
2460 return -EEXIST;
2461
2462 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2463 if (!map)
2464 return -ENOMEM;
2465
2466 map->src_dev = dev;
2467 map->src_supply = id;
2468 map->alias_dev = alias_dev;
2469 map->alias_supply = alias_id;
2470
2471 list_add(&map->list, ®ulator_supply_alias_list);
2472
2473 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2474 id, dev_name(dev), alias_id, dev_name(alias_dev));
2475
2476 return 0;
2477}
2478EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2479
2480/**
2481 * regulator_unregister_supply_alias - Remove device alias
2482 *
2483 * @dev: device that will be given as the regulator "consumer"
2484 * @id: Supply name or regulator ID
2485 *
2486 * Remove a lookup alias if one exists for id on dev.
2487 */
2488void regulator_unregister_supply_alias(struct device *dev, const char *id)
2489{
2490 struct regulator_supply_alias *map;
2491
2492 map = regulator_find_supply_alias(dev, id);
2493 if (map) {
2494 list_del(&map->list);
2495 kfree(map);
2496 }
2497}
2498EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2499
2500/**
2501 * regulator_bulk_register_supply_alias - register multiple aliases
2502 *
2503 * @dev: device that will be given as the regulator "consumer"
2504 * @id: List of supply names or regulator IDs
2505 * @alias_dev: device that should be used to lookup the supply
2506 * @alias_id: List of supply names or regulator IDs that should be used to
2507 * lookup the supply
2508 * @num_id: Number of aliases to register
2509 *
2510 * @return 0 on success, an errno on failure.
2511 *
2512 * This helper function allows drivers to register several supply
2513 * aliases in one operation. If any of the aliases cannot be
2514 * registered any aliases that were registered will be removed
2515 * before returning to the caller.
2516 */
2517int regulator_bulk_register_supply_alias(struct device *dev,
2518 const char *const *id,
2519 struct device *alias_dev,
2520 const char *const *alias_id,
2521 int num_id)
2522{
2523 int i;
2524 int ret;
2525
2526 for (i = 0; i < num_id; ++i) {
2527 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2528 alias_id[i]);
2529 if (ret < 0)
2530 goto err;
2531 }
2532
2533 return 0;
2534
2535err:
2536 dev_err(dev,
2537 "Failed to create supply alias %s,%s -> %s,%s\n",
2538 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2539
2540 while (--i >= 0)
2541 regulator_unregister_supply_alias(dev, id[i]);
2542
2543 return ret;
2544}
2545EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2546
2547/**
2548 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2549 *
2550 * @dev: device that will be given as the regulator "consumer"
2551 * @id: List of supply names or regulator IDs
2552 * @num_id: Number of aliases to unregister
2553 *
2554 * This helper function allows drivers to unregister several supply
2555 * aliases in one operation.
2556 */
2557void regulator_bulk_unregister_supply_alias(struct device *dev,
2558 const char *const *id,
2559 int num_id)
2560{
2561 int i;
2562
2563 for (i = 0; i < num_id; ++i)
2564 regulator_unregister_supply_alias(dev, id[i]);
2565}
2566EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2567
2568
2569/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2570static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2571 const struct regulator_config *config)
2572{
2573 struct regulator_enable_gpio *pin, *new_pin;
2574 struct gpio_desc *gpiod;
2575
2576 gpiod = config->ena_gpiod;
2577 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2578
2579 mutex_lock(®ulator_list_mutex);
2580
2581 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2582 if (pin->gpiod == gpiod) {
2583 rdev_dbg(rdev, "GPIO is already used\n");
2584 goto update_ena_gpio_to_rdev;
2585 }
2586 }
2587
2588 if (new_pin == NULL) {
2589 mutex_unlock(®ulator_list_mutex);
2590 return -ENOMEM;
2591 }
2592
2593 pin = new_pin;
2594 new_pin = NULL;
2595
2596 pin->gpiod = gpiod;
2597 list_add(&pin->list, ®ulator_ena_gpio_list);
2598
2599update_ena_gpio_to_rdev:
2600 pin->request_count++;
2601 rdev->ena_pin = pin;
2602
2603 mutex_unlock(®ulator_list_mutex);
2604 kfree(new_pin);
2605
2606 return 0;
2607}
2608
2609static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2610{
2611 struct regulator_enable_gpio *pin, *n;
2612
2613 if (!rdev->ena_pin)
2614 return;
2615
2616 /* Free the GPIO only in case of no use */
2617 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2618 if (pin != rdev->ena_pin)
2619 continue;
2620
2621 if (--pin->request_count)
2622 break;
2623
2624 gpiod_put(pin->gpiod);
2625 list_del(&pin->list);
2626 kfree(pin);
2627 break;
2628 }
2629
2630 rdev->ena_pin = NULL;
2631}
2632
2633/**
2634 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2635 * @rdev: regulator_dev structure
2636 * @enable: enable GPIO at initial use?
2637 *
2638 * GPIO is enabled in case of initial use. (enable_count is 0)
2639 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2640 */
2641static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2642{
2643 struct regulator_enable_gpio *pin = rdev->ena_pin;
2644
2645 if (!pin)
2646 return -EINVAL;
2647
2648 if (enable) {
2649 /* Enable GPIO at initial use */
2650 if (pin->enable_count == 0)
2651 gpiod_set_value_cansleep(pin->gpiod, 1);
2652
2653 pin->enable_count++;
2654 } else {
2655 if (pin->enable_count > 1) {
2656 pin->enable_count--;
2657 return 0;
2658 }
2659
2660 /* Disable GPIO if not used */
2661 if (pin->enable_count <= 1) {
2662 gpiod_set_value_cansleep(pin->gpiod, 0);
2663 pin->enable_count = 0;
2664 }
2665 }
2666
2667 return 0;
2668}
2669
2670/**
2671 * _regulator_delay_helper - a delay helper function
2672 * @delay: time to delay in microseconds
2673 *
2674 * Delay for the requested amount of time as per the guidelines in:
2675 *
2676 * Documentation/timers/timers-howto.rst
2677 *
2678 * The assumption here is that these regulator operations will never used in
2679 * atomic context and therefore sleeping functions can be used.
2680 */
2681static void _regulator_delay_helper(unsigned int delay)
2682{
2683 unsigned int ms = delay / 1000;
2684 unsigned int us = delay % 1000;
2685
2686 if (ms > 0) {
2687 /*
2688 * For small enough values, handle super-millisecond
2689 * delays in the usleep_range() call below.
2690 */
2691 if (ms < 20)
2692 us += ms * 1000;
2693 else
2694 msleep(ms);
2695 }
2696
2697 /*
2698 * Give the scheduler some room to coalesce with any other
2699 * wakeup sources. For delays shorter than 10 us, don't even
2700 * bother setting up high-resolution timers and just busy-
2701 * loop.
2702 */
2703 if (us >= 10)
2704 usleep_range(us, us + 100);
2705 else
2706 udelay(us);
2707}
2708
2709/**
2710 * _regulator_check_status_enabled
2711 *
2712 * A helper function to check if the regulator status can be interpreted
2713 * as 'regulator is enabled'.
2714 * @rdev: the regulator device to check
2715 *
2716 * Return:
2717 * * 1 - if status shows regulator is in enabled state
2718 * * 0 - if not enabled state
2719 * * Error Value - as received from ops->get_status()
2720 */
2721static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2722{
2723 int ret = rdev->desc->ops->get_status(rdev);
2724
2725 if (ret < 0) {
2726 rdev_info(rdev, "get_status returned error: %d\n", ret);
2727 return ret;
2728 }
2729
2730 switch (ret) {
2731 case REGULATOR_STATUS_OFF:
2732 case REGULATOR_STATUS_ERROR:
2733 case REGULATOR_STATUS_UNDEFINED:
2734 return 0;
2735 default:
2736 return 1;
2737 }
2738}
2739
2740static int _regulator_do_enable(struct regulator_dev *rdev)
2741{
2742 int ret, delay;
2743
2744 /* Query before enabling in case configuration dependent. */
2745 ret = _regulator_get_enable_time(rdev);
2746 if (ret >= 0) {
2747 delay = ret;
2748 } else {
2749 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2750 delay = 0;
2751 }
2752
2753 trace_regulator_enable(rdev_get_name(rdev));
2754
2755 if (rdev->desc->off_on_delay) {
2756 /* if needed, keep a distance of off_on_delay from last time
2757 * this regulator was disabled.
2758 */
2759 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2760 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2761
2762 if (remaining > 0)
2763 _regulator_delay_helper(remaining);
2764 }
2765
2766 if (rdev->ena_pin) {
2767 if (!rdev->ena_gpio_state) {
2768 ret = regulator_ena_gpio_ctrl(rdev, true);
2769 if (ret < 0)
2770 return ret;
2771 rdev->ena_gpio_state = 1;
2772 }
2773 } else if (rdev->desc->ops->enable) {
2774 ret = rdev->desc->ops->enable(rdev);
2775 if (ret < 0)
2776 return ret;
2777 } else {
2778 return -EINVAL;
2779 }
2780
2781 /* Allow the regulator to ramp; it would be useful to extend
2782 * this for bulk operations so that the regulators can ramp
2783 * together.
2784 */
2785 trace_regulator_enable_delay(rdev_get_name(rdev));
2786
2787 /* If poll_enabled_time is set, poll upto the delay calculated
2788 * above, delaying poll_enabled_time uS to check if the regulator
2789 * actually got enabled.
2790 * If the regulator isn't enabled after our delay helper has expired,
2791 * return -ETIMEDOUT.
2792 */
2793 if (rdev->desc->poll_enabled_time) {
2794 int time_remaining = delay;
2795
2796 while (time_remaining > 0) {
2797 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2798
2799 if (rdev->desc->ops->get_status) {
2800 ret = _regulator_check_status_enabled(rdev);
2801 if (ret < 0)
2802 return ret;
2803 else if (ret)
2804 break;
2805 } else if (rdev->desc->ops->is_enabled(rdev))
2806 break;
2807
2808 time_remaining -= rdev->desc->poll_enabled_time;
2809 }
2810
2811 if (time_remaining <= 0) {
2812 rdev_err(rdev, "Enabled check timed out\n");
2813 return -ETIMEDOUT;
2814 }
2815 } else {
2816 _regulator_delay_helper(delay);
2817 }
2818
2819 trace_regulator_enable_complete(rdev_get_name(rdev));
2820
2821 return 0;
2822}
2823
2824/**
2825 * _regulator_handle_consumer_enable - handle that a consumer enabled
2826 * @regulator: regulator source
2827 *
2828 * Some things on a regulator consumer (like the contribution towards total
2829 * load on the regulator) only have an effect when the consumer wants the
2830 * regulator enabled. Explained in example with two consumers of the same
2831 * regulator:
2832 * consumer A: set_load(100); => total load = 0
2833 * consumer A: regulator_enable(); => total load = 100
2834 * consumer B: set_load(1000); => total load = 100
2835 * consumer B: regulator_enable(); => total load = 1100
2836 * consumer A: regulator_disable(); => total_load = 1000
2837 *
2838 * This function (together with _regulator_handle_consumer_disable) is
2839 * responsible for keeping track of the refcount for a given regulator consumer
2840 * and applying / unapplying these things.
2841 *
2842 * Returns 0 upon no error; -error upon error.
2843 */
2844static int _regulator_handle_consumer_enable(struct regulator *regulator)
2845{
2846 int ret;
2847 struct regulator_dev *rdev = regulator->rdev;
2848
2849 lockdep_assert_held_once(&rdev->mutex.base);
2850
2851 regulator->enable_count++;
2852 if (regulator->uA_load && regulator->enable_count == 1) {
2853 ret = drms_uA_update(rdev);
2854 if (ret)
2855 regulator->enable_count--;
2856 return ret;
2857 }
2858
2859 return 0;
2860}
2861
2862/**
2863 * _regulator_handle_consumer_disable - handle that a consumer disabled
2864 * @regulator: regulator source
2865 *
2866 * The opposite of _regulator_handle_consumer_enable().
2867 *
2868 * Returns 0 upon no error; -error upon error.
2869 */
2870static int _regulator_handle_consumer_disable(struct regulator *regulator)
2871{
2872 struct regulator_dev *rdev = regulator->rdev;
2873
2874 lockdep_assert_held_once(&rdev->mutex.base);
2875
2876 if (!regulator->enable_count) {
2877 rdev_err(rdev, "Underflow of regulator enable count\n");
2878 return -EINVAL;
2879 }
2880
2881 regulator->enable_count--;
2882 if (regulator->uA_load && regulator->enable_count == 0)
2883 return drms_uA_update(rdev);
2884
2885 return 0;
2886}
2887
2888/* locks held by regulator_enable() */
2889static int _regulator_enable(struct regulator *regulator)
2890{
2891 struct regulator_dev *rdev = regulator->rdev;
2892 int ret;
2893
2894 lockdep_assert_held_once(&rdev->mutex.base);
2895
2896 if (rdev->use_count == 0 && rdev->supply) {
2897 ret = _regulator_enable(rdev->supply);
2898 if (ret < 0)
2899 return ret;
2900 }
2901
2902 /* balance only if there are regulators coupled */
2903 if (rdev->coupling_desc.n_coupled > 1) {
2904 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2905 if (ret < 0)
2906 goto err_disable_supply;
2907 }
2908
2909 ret = _regulator_handle_consumer_enable(regulator);
2910 if (ret < 0)
2911 goto err_disable_supply;
2912
2913 if (rdev->use_count == 0) {
2914 /*
2915 * The regulator may already be enabled if it's not switchable
2916 * or was left on
2917 */
2918 ret = _regulator_is_enabled(rdev);
2919 if (ret == -EINVAL || ret == 0) {
2920 if (!regulator_ops_is_valid(rdev,
2921 REGULATOR_CHANGE_STATUS)) {
2922 ret = -EPERM;
2923 goto err_consumer_disable;
2924 }
2925
2926 ret = _regulator_do_enable(rdev);
2927 if (ret < 0)
2928 goto err_consumer_disable;
2929
2930 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2931 NULL);
2932 } else if (ret < 0) {
2933 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2934 goto err_consumer_disable;
2935 }
2936 /* Fallthrough on positive return values - already enabled */
2937 }
2938
2939 if (regulator->enable_count == 1)
2940 rdev->use_count++;
2941
2942 return 0;
2943
2944err_consumer_disable:
2945 _regulator_handle_consumer_disable(regulator);
2946
2947err_disable_supply:
2948 if (rdev->use_count == 0 && rdev->supply)
2949 _regulator_disable(rdev->supply);
2950
2951 return ret;
2952}
2953
2954/**
2955 * regulator_enable - enable regulator output
2956 * @regulator: regulator source
2957 *
2958 * Request that the regulator be enabled with the regulator output at
2959 * the predefined voltage or current value. Calls to regulator_enable()
2960 * must be balanced with calls to regulator_disable().
2961 *
2962 * NOTE: the output value can be set by other drivers, boot loader or may be
2963 * hardwired in the regulator.
2964 */
2965int regulator_enable(struct regulator *regulator)
2966{
2967 struct regulator_dev *rdev = regulator->rdev;
2968 struct ww_acquire_ctx ww_ctx;
2969 int ret;
2970
2971 regulator_lock_dependent(rdev, &ww_ctx);
2972 ret = _regulator_enable(regulator);
2973 regulator_unlock_dependent(rdev, &ww_ctx);
2974
2975 return ret;
2976}
2977EXPORT_SYMBOL_GPL(regulator_enable);
2978
2979static int _regulator_do_disable(struct regulator_dev *rdev)
2980{
2981 int ret;
2982
2983 trace_regulator_disable(rdev_get_name(rdev));
2984
2985 if (rdev->ena_pin) {
2986 if (rdev->ena_gpio_state) {
2987 ret = regulator_ena_gpio_ctrl(rdev, false);
2988 if (ret < 0)
2989 return ret;
2990 rdev->ena_gpio_state = 0;
2991 }
2992
2993 } else if (rdev->desc->ops->disable) {
2994 ret = rdev->desc->ops->disable(rdev);
2995 if (ret != 0)
2996 return ret;
2997 }
2998
2999 if (rdev->desc->off_on_delay)
3000 rdev->last_off = ktime_get_boottime();
3001
3002 trace_regulator_disable_complete(rdev_get_name(rdev));
3003
3004 return 0;
3005}
3006
3007/* locks held by regulator_disable() */
3008static int _regulator_disable(struct regulator *regulator)
3009{
3010 struct regulator_dev *rdev = regulator->rdev;
3011 int ret = 0;
3012
3013 lockdep_assert_held_once(&rdev->mutex.base);
3014
3015 if (WARN(regulator->enable_count == 0,
3016 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3017 return -EIO;
3018
3019 if (regulator->enable_count == 1) {
3020 /* disabling last enable_count from this regulator */
3021 /* are we the last user and permitted to disable ? */
3022 if (rdev->use_count == 1 &&
3023 (rdev->constraints && !rdev->constraints->always_on)) {
3024
3025 /* we are last user */
3026 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3027 ret = _notifier_call_chain(rdev,
3028 REGULATOR_EVENT_PRE_DISABLE,
3029 NULL);
3030 if (ret & NOTIFY_STOP_MASK)
3031 return -EINVAL;
3032
3033 ret = _regulator_do_disable(rdev);
3034 if (ret < 0) {
3035 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3036 _notifier_call_chain(rdev,
3037 REGULATOR_EVENT_ABORT_DISABLE,
3038 NULL);
3039 return ret;
3040 }
3041 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3042 NULL);
3043 }
3044
3045 rdev->use_count = 0;
3046 } else if (rdev->use_count > 1) {
3047 rdev->use_count--;
3048 }
3049 }
3050
3051 if (ret == 0)
3052 ret = _regulator_handle_consumer_disable(regulator);
3053
3054 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3055 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3056
3057 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3058 ret = _regulator_disable(rdev->supply);
3059
3060 return ret;
3061}
3062
3063/**
3064 * regulator_disable - disable regulator output
3065 * @regulator: regulator source
3066 *
3067 * Disable the regulator output voltage or current. Calls to
3068 * regulator_enable() must be balanced with calls to
3069 * regulator_disable().
3070 *
3071 * NOTE: this will only disable the regulator output if no other consumer
3072 * devices have it enabled, the regulator device supports disabling and
3073 * machine constraints permit this operation.
3074 */
3075int regulator_disable(struct regulator *regulator)
3076{
3077 struct regulator_dev *rdev = regulator->rdev;
3078 struct ww_acquire_ctx ww_ctx;
3079 int ret;
3080
3081 regulator_lock_dependent(rdev, &ww_ctx);
3082 ret = _regulator_disable(regulator);
3083 regulator_unlock_dependent(rdev, &ww_ctx);
3084
3085 return ret;
3086}
3087EXPORT_SYMBOL_GPL(regulator_disable);
3088
3089/* locks held by regulator_force_disable() */
3090static int _regulator_force_disable(struct regulator_dev *rdev)
3091{
3092 int ret = 0;
3093
3094 lockdep_assert_held_once(&rdev->mutex.base);
3095
3096 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3097 REGULATOR_EVENT_PRE_DISABLE, NULL);
3098 if (ret & NOTIFY_STOP_MASK)
3099 return -EINVAL;
3100
3101 ret = _regulator_do_disable(rdev);
3102 if (ret < 0) {
3103 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3104 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3105 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3106 return ret;
3107 }
3108
3109 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3110 REGULATOR_EVENT_DISABLE, NULL);
3111
3112 return 0;
3113}
3114
3115/**
3116 * regulator_force_disable - force disable regulator output
3117 * @regulator: regulator source
3118 *
3119 * Forcibly disable the regulator output voltage or current.
3120 * NOTE: this *will* disable the regulator output even if other consumer
3121 * devices have it enabled. This should be used for situations when device
3122 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3123 */
3124int regulator_force_disable(struct regulator *regulator)
3125{
3126 struct regulator_dev *rdev = regulator->rdev;
3127 struct ww_acquire_ctx ww_ctx;
3128 int ret;
3129
3130 regulator_lock_dependent(rdev, &ww_ctx);
3131
3132 ret = _regulator_force_disable(regulator->rdev);
3133
3134 if (rdev->coupling_desc.n_coupled > 1)
3135 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3136
3137 if (regulator->uA_load) {
3138 regulator->uA_load = 0;
3139 ret = drms_uA_update(rdev);
3140 }
3141
3142 if (rdev->use_count != 0 && rdev->supply)
3143 _regulator_disable(rdev->supply);
3144
3145 regulator_unlock_dependent(rdev, &ww_ctx);
3146
3147 return ret;
3148}
3149EXPORT_SYMBOL_GPL(regulator_force_disable);
3150
3151static void regulator_disable_work(struct work_struct *work)
3152{
3153 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3154 disable_work.work);
3155 struct ww_acquire_ctx ww_ctx;
3156 int count, i, ret;
3157 struct regulator *regulator;
3158 int total_count = 0;
3159
3160 regulator_lock_dependent(rdev, &ww_ctx);
3161
3162 /*
3163 * Workqueue functions queue the new work instance while the previous
3164 * work instance is being processed. Cancel the queued work instance
3165 * as the work instance under processing does the job of the queued
3166 * work instance.
3167 */
3168 cancel_delayed_work(&rdev->disable_work);
3169
3170 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3171 count = regulator->deferred_disables;
3172
3173 if (!count)
3174 continue;
3175
3176 total_count += count;
3177 regulator->deferred_disables = 0;
3178
3179 for (i = 0; i < count; i++) {
3180 ret = _regulator_disable(regulator);
3181 if (ret != 0)
3182 rdev_err(rdev, "Deferred disable failed: %pe\n",
3183 ERR_PTR(ret));
3184 }
3185 }
3186 WARN_ON(!total_count);
3187
3188 if (rdev->coupling_desc.n_coupled > 1)
3189 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3190
3191 regulator_unlock_dependent(rdev, &ww_ctx);
3192}
3193
3194/**
3195 * regulator_disable_deferred - disable regulator output with delay
3196 * @regulator: regulator source
3197 * @ms: milliseconds until the regulator is disabled
3198 *
3199 * Execute regulator_disable() on the regulator after a delay. This
3200 * is intended for use with devices that require some time to quiesce.
3201 *
3202 * NOTE: this will only disable the regulator output if no other consumer
3203 * devices have it enabled, the regulator device supports disabling and
3204 * machine constraints permit this operation.
3205 */
3206int regulator_disable_deferred(struct regulator *regulator, int ms)
3207{
3208 struct regulator_dev *rdev = regulator->rdev;
3209
3210 if (!ms)
3211 return regulator_disable(regulator);
3212
3213 regulator_lock(rdev);
3214 regulator->deferred_disables++;
3215 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3216 msecs_to_jiffies(ms));
3217 regulator_unlock(rdev);
3218
3219 return 0;
3220}
3221EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3222
3223static int _regulator_is_enabled(struct regulator_dev *rdev)
3224{
3225 /* A GPIO control always takes precedence */
3226 if (rdev->ena_pin)
3227 return rdev->ena_gpio_state;
3228
3229 /* If we don't know then assume that the regulator is always on */
3230 if (!rdev->desc->ops->is_enabled)
3231 return 1;
3232
3233 return rdev->desc->ops->is_enabled(rdev);
3234}
3235
3236static int _regulator_list_voltage(struct regulator_dev *rdev,
3237 unsigned selector, int lock)
3238{
3239 const struct regulator_ops *ops = rdev->desc->ops;
3240 int ret;
3241
3242 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3243 return rdev->desc->fixed_uV;
3244
3245 if (ops->list_voltage) {
3246 if (selector >= rdev->desc->n_voltages)
3247 return -EINVAL;
3248 if (selector < rdev->desc->linear_min_sel)
3249 return 0;
3250 if (lock)
3251 regulator_lock(rdev);
3252 ret = ops->list_voltage(rdev, selector);
3253 if (lock)
3254 regulator_unlock(rdev);
3255 } else if (rdev->is_switch && rdev->supply) {
3256 ret = _regulator_list_voltage(rdev->supply->rdev,
3257 selector, lock);
3258 } else {
3259 return -EINVAL;
3260 }
3261
3262 if (ret > 0) {
3263 if (ret < rdev->constraints->min_uV)
3264 ret = 0;
3265 else if (ret > rdev->constraints->max_uV)
3266 ret = 0;
3267 }
3268
3269 return ret;
3270}
3271
3272/**
3273 * regulator_is_enabled - is the regulator output enabled
3274 * @regulator: regulator source
3275 *
3276 * Returns positive if the regulator driver backing the source/client
3277 * has requested that the device be enabled, zero if it hasn't, else a
3278 * negative errno code.
3279 *
3280 * Note that the device backing this regulator handle can have multiple
3281 * users, so it might be enabled even if regulator_enable() was never
3282 * called for this particular source.
3283 */
3284int regulator_is_enabled(struct regulator *regulator)
3285{
3286 int ret;
3287
3288 if (regulator->always_on)
3289 return 1;
3290
3291 regulator_lock(regulator->rdev);
3292 ret = _regulator_is_enabled(regulator->rdev);
3293 regulator_unlock(regulator->rdev);
3294
3295 return ret;
3296}
3297EXPORT_SYMBOL_GPL(regulator_is_enabled);
3298
3299/**
3300 * regulator_count_voltages - count regulator_list_voltage() selectors
3301 * @regulator: regulator source
3302 *
3303 * Returns number of selectors, or negative errno. Selectors are
3304 * numbered starting at zero, and typically correspond to bitfields
3305 * in hardware registers.
3306 */
3307int regulator_count_voltages(struct regulator *regulator)
3308{
3309 struct regulator_dev *rdev = regulator->rdev;
3310
3311 if (rdev->desc->n_voltages)
3312 return rdev->desc->n_voltages;
3313
3314 if (!rdev->is_switch || !rdev->supply)
3315 return -EINVAL;
3316
3317 return regulator_count_voltages(rdev->supply);
3318}
3319EXPORT_SYMBOL_GPL(regulator_count_voltages);
3320
3321/**
3322 * regulator_list_voltage - enumerate supported voltages
3323 * @regulator: regulator source
3324 * @selector: identify voltage to list
3325 * Context: can sleep
3326 *
3327 * Returns a voltage that can be passed to @regulator_set_voltage(),
3328 * zero if this selector code can't be used on this system, or a
3329 * negative errno.
3330 */
3331int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3332{
3333 return _regulator_list_voltage(regulator->rdev, selector, 1);
3334}
3335EXPORT_SYMBOL_GPL(regulator_list_voltage);
3336
3337/**
3338 * regulator_get_regmap - get the regulator's register map
3339 * @regulator: regulator source
3340 *
3341 * Returns the register map for the given regulator, or an ERR_PTR value
3342 * if the regulator doesn't use regmap.
3343 */
3344struct regmap *regulator_get_regmap(struct regulator *regulator)
3345{
3346 struct regmap *map = regulator->rdev->regmap;
3347
3348 return map ? map : ERR_PTR(-EOPNOTSUPP);
3349}
3350
3351/**
3352 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3353 * @regulator: regulator source
3354 * @vsel_reg: voltage selector register, output parameter
3355 * @vsel_mask: mask for voltage selector bitfield, output parameter
3356 *
3357 * Returns the hardware register offset and bitmask used for setting the
3358 * regulator voltage. This might be useful when configuring voltage-scaling
3359 * hardware or firmware that can make I2C requests behind the kernel's back,
3360 * for example.
3361 *
3362 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3363 * and 0 is returned, otherwise a negative errno is returned.
3364 */
3365int regulator_get_hardware_vsel_register(struct regulator *regulator,
3366 unsigned *vsel_reg,
3367 unsigned *vsel_mask)
3368{
3369 struct regulator_dev *rdev = regulator->rdev;
3370 const struct regulator_ops *ops = rdev->desc->ops;
3371
3372 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3373 return -EOPNOTSUPP;
3374
3375 *vsel_reg = rdev->desc->vsel_reg;
3376 *vsel_mask = rdev->desc->vsel_mask;
3377
3378 return 0;
3379}
3380EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3381
3382/**
3383 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3384 * @regulator: regulator source
3385 * @selector: identify voltage to list
3386 *
3387 * Converts the selector to a hardware-specific voltage selector that can be
3388 * directly written to the regulator registers. The address of the voltage
3389 * register can be determined by calling @regulator_get_hardware_vsel_register.
3390 *
3391 * On error a negative errno is returned.
3392 */
3393int regulator_list_hardware_vsel(struct regulator *regulator,
3394 unsigned selector)
3395{
3396 struct regulator_dev *rdev = regulator->rdev;
3397 const struct regulator_ops *ops = rdev->desc->ops;
3398
3399 if (selector >= rdev->desc->n_voltages)
3400 return -EINVAL;
3401 if (selector < rdev->desc->linear_min_sel)
3402 return 0;
3403 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3404 return -EOPNOTSUPP;
3405
3406 return selector;
3407}
3408EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3409
3410/**
3411 * regulator_get_linear_step - return the voltage step size between VSEL values
3412 * @regulator: regulator source
3413 *
3414 * Returns the voltage step size between VSEL values for linear
3415 * regulators, or return 0 if the regulator isn't a linear regulator.
3416 */
3417unsigned int regulator_get_linear_step(struct regulator *regulator)
3418{
3419 struct regulator_dev *rdev = regulator->rdev;
3420
3421 return rdev->desc->uV_step;
3422}
3423EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3424
3425/**
3426 * regulator_is_supported_voltage - check if a voltage range can be supported
3427 *
3428 * @regulator: Regulator to check.
3429 * @min_uV: Minimum required voltage in uV.
3430 * @max_uV: Maximum required voltage in uV.
3431 *
3432 * Returns a boolean.
3433 */
3434int regulator_is_supported_voltage(struct regulator *regulator,
3435 int min_uV, int max_uV)
3436{
3437 struct regulator_dev *rdev = regulator->rdev;
3438 int i, voltages, ret;
3439
3440 /* If we can't change voltage check the current voltage */
3441 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3442 ret = regulator_get_voltage(regulator);
3443 if (ret >= 0)
3444 return min_uV <= ret && ret <= max_uV;
3445 else
3446 return ret;
3447 }
3448
3449 /* Any voltage within constrains range is fine? */
3450 if (rdev->desc->continuous_voltage_range)
3451 return min_uV >= rdev->constraints->min_uV &&
3452 max_uV <= rdev->constraints->max_uV;
3453
3454 ret = regulator_count_voltages(regulator);
3455 if (ret < 0)
3456 return 0;
3457 voltages = ret;
3458
3459 for (i = 0; i < voltages; i++) {
3460 ret = regulator_list_voltage(regulator, i);
3461
3462 if (ret >= min_uV && ret <= max_uV)
3463 return 1;
3464 }
3465
3466 return 0;
3467}
3468EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3469
3470static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3471 int max_uV)
3472{
3473 const struct regulator_desc *desc = rdev->desc;
3474
3475 if (desc->ops->map_voltage)
3476 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3477
3478 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3479 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3480
3481 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3482 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3483
3484 if (desc->ops->list_voltage ==
3485 regulator_list_voltage_pickable_linear_range)
3486 return regulator_map_voltage_pickable_linear_range(rdev,
3487 min_uV, max_uV);
3488
3489 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3490}
3491
3492static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3493 int min_uV, int max_uV,
3494 unsigned *selector)
3495{
3496 struct pre_voltage_change_data data;
3497 int ret;
3498
3499 data.old_uV = regulator_get_voltage_rdev(rdev);
3500 data.min_uV = min_uV;
3501 data.max_uV = max_uV;
3502 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3503 &data);
3504 if (ret & NOTIFY_STOP_MASK)
3505 return -EINVAL;
3506
3507 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3508 if (ret >= 0)
3509 return ret;
3510
3511 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3512 (void *)data.old_uV);
3513
3514 return ret;
3515}
3516
3517static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3518 int uV, unsigned selector)
3519{
3520 struct pre_voltage_change_data data;
3521 int ret;
3522
3523 data.old_uV = regulator_get_voltage_rdev(rdev);
3524 data.min_uV = uV;
3525 data.max_uV = uV;
3526 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3527 &data);
3528 if (ret & NOTIFY_STOP_MASK)
3529 return -EINVAL;
3530
3531 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3532 if (ret >= 0)
3533 return ret;
3534
3535 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3536 (void *)data.old_uV);
3537
3538 return ret;
3539}
3540
3541static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3542 int uV, int new_selector)
3543{
3544 const struct regulator_ops *ops = rdev->desc->ops;
3545 int diff, old_sel, curr_sel, ret;
3546
3547 /* Stepping is only needed if the regulator is enabled. */
3548 if (!_regulator_is_enabled(rdev))
3549 goto final_set;
3550
3551 if (!ops->get_voltage_sel)
3552 return -EINVAL;
3553
3554 old_sel = ops->get_voltage_sel(rdev);
3555 if (old_sel < 0)
3556 return old_sel;
3557
3558 diff = new_selector - old_sel;
3559 if (diff == 0)
3560 return 0; /* No change needed. */
3561
3562 if (diff > 0) {
3563 /* Stepping up. */
3564 for (curr_sel = old_sel + rdev->desc->vsel_step;
3565 curr_sel < new_selector;
3566 curr_sel += rdev->desc->vsel_step) {
3567 /*
3568 * Call the callback directly instead of using
3569 * _regulator_call_set_voltage_sel() as we don't
3570 * want to notify anyone yet. Same in the branch
3571 * below.
3572 */
3573 ret = ops->set_voltage_sel(rdev, curr_sel);
3574 if (ret)
3575 goto try_revert;
3576 }
3577 } else {
3578 /* Stepping down. */
3579 for (curr_sel = old_sel - rdev->desc->vsel_step;
3580 curr_sel > new_selector;
3581 curr_sel -= rdev->desc->vsel_step) {
3582 ret = ops->set_voltage_sel(rdev, curr_sel);
3583 if (ret)
3584 goto try_revert;
3585 }
3586 }
3587
3588final_set:
3589 /* The final selector will trigger the notifiers. */
3590 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3591
3592try_revert:
3593 /*
3594 * At least try to return to the previous voltage if setting a new
3595 * one failed.
3596 */
3597 (void)ops->set_voltage_sel(rdev, old_sel);
3598 return ret;
3599}
3600
3601static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3602 int old_uV, int new_uV)
3603{
3604 unsigned int ramp_delay = 0;
3605
3606 if (rdev->constraints->ramp_delay)
3607 ramp_delay = rdev->constraints->ramp_delay;
3608 else if (rdev->desc->ramp_delay)
3609 ramp_delay = rdev->desc->ramp_delay;
3610 else if (rdev->constraints->settling_time)
3611 return rdev->constraints->settling_time;
3612 else if (rdev->constraints->settling_time_up &&
3613 (new_uV > old_uV))
3614 return rdev->constraints->settling_time_up;
3615 else if (rdev->constraints->settling_time_down &&
3616 (new_uV < old_uV))
3617 return rdev->constraints->settling_time_down;
3618
3619 if (ramp_delay == 0)
3620 return 0;
3621
3622 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3623}
3624
3625static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3626 int min_uV, int max_uV)
3627{
3628 int ret;
3629 int delay = 0;
3630 int best_val = 0;
3631 unsigned int selector;
3632 int old_selector = -1;
3633 const struct regulator_ops *ops = rdev->desc->ops;
3634 int old_uV = regulator_get_voltage_rdev(rdev);
3635
3636 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3637
3638 min_uV += rdev->constraints->uV_offset;
3639 max_uV += rdev->constraints->uV_offset;
3640
3641 /*
3642 * If we can't obtain the old selector there is not enough
3643 * info to call set_voltage_time_sel().
3644 */
3645 if (_regulator_is_enabled(rdev) &&
3646 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3647 old_selector = ops->get_voltage_sel(rdev);
3648 if (old_selector < 0)
3649 return old_selector;
3650 }
3651
3652 if (ops->set_voltage) {
3653 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3654 &selector);
3655
3656 if (ret >= 0) {
3657 if (ops->list_voltage)
3658 best_val = ops->list_voltage(rdev,
3659 selector);
3660 else
3661 best_val = regulator_get_voltage_rdev(rdev);
3662 }
3663
3664 } else if (ops->set_voltage_sel) {
3665 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3666 if (ret >= 0) {
3667 best_val = ops->list_voltage(rdev, ret);
3668 if (min_uV <= best_val && max_uV >= best_val) {
3669 selector = ret;
3670 if (old_selector == selector)
3671 ret = 0;
3672 else if (rdev->desc->vsel_step)
3673 ret = _regulator_set_voltage_sel_step(
3674 rdev, best_val, selector);
3675 else
3676 ret = _regulator_call_set_voltage_sel(
3677 rdev, best_val, selector);
3678 } else {
3679 ret = -EINVAL;
3680 }
3681 }
3682 } else {
3683 ret = -EINVAL;
3684 }
3685
3686 if (ret)
3687 goto out;
3688
3689 if (ops->set_voltage_time_sel) {
3690 /*
3691 * Call set_voltage_time_sel if successfully obtained
3692 * old_selector
3693 */
3694 if (old_selector >= 0 && old_selector != selector)
3695 delay = ops->set_voltage_time_sel(rdev, old_selector,
3696 selector);
3697 } else {
3698 if (old_uV != best_val) {
3699 if (ops->set_voltage_time)
3700 delay = ops->set_voltage_time(rdev, old_uV,
3701 best_val);
3702 else
3703 delay = _regulator_set_voltage_time(rdev,
3704 old_uV,
3705 best_val);
3706 }
3707 }
3708
3709 if (delay < 0) {
3710 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3711 delay = 0;
3712 }
3713
3714 /* Insert any necessary delays */
3715 _regulator_delay_helper(delay);
3716
3717 if (best_val >= 0) {
3718 unsigned long data = best_val;
3719
3720 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3721 (void *)data);
3722 }
3723
3724out:
3725 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3726
3727 return ret;
3728}
3729
3730static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3731 int min_uV, int max_uV, suspend_state_t state)
3732{
3733 struct regulator_state *rstate;
3734 int uV, sel;
3735
3736 rstate = regulator_get_suspend_state(rdev, state);
3737 if (rstate == NULL)
3738 return -EINVAL;
3739
3740 if (min_uV < rstate->min_uV)
3741 min_uV = rstate->min_uV;
3742 if (max_uV > rstate->max_uV)
3743 max_uV = rstate->max_uV;
3744
3745 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3746 if (sel < 0)
3747 return sel;
3748
3749 uV = rdev->desc->ops->list_voltage(rdev, sel);
3750 if (uV >= min_uV && uV <= max_uV)
3751 rstate->uV = uV;
3752
3753 return 0;
3754}
3755
3756static int regulator_set_voltage_unlocked(struct regulator *regulator,
3757 int min_uV, int max_uV,
3758 suspend_state_t state)
3759{
3760 struct regulator_dev *rdev = regulator->rdev;
3761 struct regulator_voltage *voltage = ®ulator->voltage[state];
3762 int ret = 0;
3763 int old_min_uV, old_max_uV;
3764 int current_uV;
3765
3766 /* If we're setting the same range as last time the change
3767 * should be a noop (some cpufreq implementations use the same
3768 * voltage for multiple frequencies, for example).
3769 */
3770 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3771 goto out;
3772
3773 /* If we're trying to set a range that overlaps the current voltage,
3774 * return successfully even though the regulator does not support
3775 * changing the voltage.
3776 */
3777 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3778 current_uV = regulator_get_voltage_rdev(rdev);
3779 if (min_uV <= current_uV && current_uV <= max_uV) {
3780 voltage->min_uV = min_uV;
3781 voltage->max_uV = max_uV;
3782 goto out;
3783 }
3784 }
3785
3786 /* sanity check */
3787 if (!rdev->desc->ops->set_voltage &&
3788 !rdev->desc->ops->set_voltage_sel) {
3789 ret = -EINVAL;
3790 goto out;
3791 }
3792
3793 /* constraints check */
3794 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3795 if (ret < 0)
3796 goto out;
3797
3798 /* restore original values in case of error */
3799 old_min_uV = voltage->min_uV;
3800 old_max_uV = voltage->max_uV;
3801 voltage->min_uV = min_uV;
3802 voltage->max_uV = max_uV;
3803
3804 /* for not coupled regulators this will just set the voltage */
3805 ret = regulator_balance_voltage(rdev, state);
3806 if (ret < 0) {
3807 voltage->min_uV = old_min_uV;
3808 voltage->max_uV = old_max_uV;
3809 }
3810
3811out:
3812 return ret;
3813}
3814
3815int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3816 int max_uV, suspend_state_t state)
3817{
3818 int best_supply_uV = 0;
3819 int supply_change_uV = 0;
3820 int ret;
3821
3822 if (rdev->supply &&
3823 regulator_ops_is_valid(rdev->supply->rdev,
3824 REGULATOR_CHANGE_VOLTAGE) &&
3825 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3826 rdev->desc->ops->get_voltage_sel))) {
3827 int current_supply_uV;
3828 int selector;
3829
3830 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3831 if (selector < 0) {
3832 ret = selector;
3833 goto out;
3834 }
3835
3836 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3837 if (best_supply_uV < 0) {
3838 ret = best_supply_uV;
3839 goto out;
3840 }
3841
3842 best_supply_uV += rdev->desc->min_dropout_uV;
3843
3844 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3845 if (current_supply_uV < 0) {
3846 ret = current_supply_uV;
3847 goto out;
3848 }
3849
3850 supply_change_uV = best_supply_uV - current_supply_uV;
3851 }
3852
3853 if (supply_change_uV > 0) {
3854 ret = regulator_set_voltage_unlocked(rdev->supply,
3855 best_supply_uV, INT_MAX, state);
3856 if (ret) {
3857 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3858 ERR_PTR(ret));
3859 goto out;
3860 }
3861 }
3862
3863 if (state == PM_SUSPEND_ON)
3864 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3865 else
3866 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3867 max_uV, state);
3868 if (ret < 0)
3869 goto out;
3870
3871 if (supply_change_uV < 0) {
3872 ret = regulator_set_voltage_unlocked(rdev->supply,
3873 best_supply_uV, INT_MAX, state);
3874 if (ret)
3875 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3876 ERR_PTR(ret));
3877 /* No need to fail here */
3878 ret = 0;
3879 }
3880
3881out:
3882 return ret;
3883}
3884EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3885
3886static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3887 int *current_uV, int *min_uV)
3888{
3889 struct regulation_constraints *constraints = rdev->constraints;
3890
3891 /* Limit voltage change only if necessary */
3892 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3893 return 1;
3894
3895 if (*current_uV < 0) {
3896 *current_uV = regulator_get_voltage_rdev(rdev);
3897
3898 if (*current_uV < 0)
3899 return *current_uV;
3900 }
3901
3902 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3903 return 1;
3904
3905 /* Clamp target voltage within the given step */
3906 if (*current_uV < *min_uV)
3907 *min_uV = min(*current_uV + constraints->max_uV_step,
3908 *min_uV);
3909 else
3910 *min_uV = max(*current_uV - constraints->max_uV_step,
3911 *min_uV);
3912
3913 return 0;
3914}
3915
3916static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3917 int *current_uV,
3918 int *min_uV, int *max_uV,
3919 suspend_state_t state,
3920 int n_coupled)
3921{
3922 struct coupling_desc *c_desc = &rdev->coupling_desc;
3923 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3924 struct regulation_constraints *constraints = rdev->constraints;
3925 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3926 int max_current_uV = 0, min_current_uV = INT_MAX;
3927 int highest_min_uV = 0, target_uV, possible_uV;
3928 int i, ret, max_spread;
3929 bool done;
3930
3931 *current_uV = -1;
3932
3933 /*
3934 * If there are no coupled regulators, simply set the voltage
3935 * demanded by consumers.
3936 */
3937 if (n_coupled == 1) {
3938 /*
3939 * If consumers don't provide any demands, set voltage
3940 * to min_uV
3941 */
3942 desired_min_uV = constraints->min_uV;
3943 desired_max_uV = constraints->max_uV;
3944
3945 ret = regulator_check_consumers(rdev,
3946 &desired_min_uV,
3947 &desired_max_uV, state);
3948 if (ret < 0)
3949 return ret;
3950
3951 done = true;
3952
3953 goto finish;
3954 }
3955
3956 /* Find highest min desired voltage */
3957 for (i = 0; i < n_coupled; i++) {
3958 int tmp_min = 0;
3959 int tmp_max = INT_MAX;
3960
3961 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3962
3963 ret = regulator_check_consumers(c_rdevs[i],
3964 &tmp_min,
3965 &tmp_max, state);
3966 if (ret < 0)
3967 return ret;
3968
3969 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3970 if (ret < 0)
3971 return ret;
3972
3973 highest_min_uV = max(highest_min_uV, tmp_min);
3974
3975 if (i == 0) {
3976 desired_min_uV = tmp_min;
3977 desired_max_uV = tmp_max;
3978 }
3979 }
3980
3981 max_spread = constraints->max_spread[0];
3982
3983 /*
3984 * Let target_uV be equal to the desired one if possible.
3985 * If not, set it to minimum voltage, allowed by other coupled
3986 * regulators.
3987 */
3988 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3989
3990 /*
3991 * Find min and max voltages, which currently aren't violating
3992 * max_spread.
3993 */
3994 for (i = 1; i < n_coupled; i++) {
3995 int tmp_act;
3996
3997 if (!_regulator_is_enabled(c_rdevs[i]))
3998 continue;
3999
4000 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
4001 if (tmp_act < 0)
4002 return tmp_act;
4003
4004 min_current_uV = min(tmp_act, min_current_uV);
4005 max_current_uV = max(tmp_act, max_current_uV);
4006 }
4007
4008 /* There aren't any other regulators enabled */
4009 if (max_current_uV == 0) {
4010 possible_uV = target_uV;
4011 } else {
4012 /*
4013 * Correct target voltage, so as it currently isn't
4014 * violating max_spread
4015 */
4016 possible_uV = max(target_uV, max_current_uV - max_spread);
4017 possible_uV = min(possible_uV, min_current_uV + max_spread);
4018 }
4019
4020 if (possible_uV > desired_max_uV)
4021 return -EINVAL;
4022
4023 done = (possible_uV == target_uV);
4024 desired_min_uV = possible_uV;
4025
4026finish:
4027 /* Apply max_uV_step constraint if necessary */
4028 if (state == PM_SUSPEND_ON) {
4029 ret = regulator_limit_voltage_step(rdev, current_uV,
4030 &desired_min_uV);
4031 if (ret < 0)
4032 return ret;
4033
4034 if (ret == 0)
4035 done = false;
4036 }
4037
4038 /* Set current_uV if wasn't done earlier in the code and if necessary */
4039 if (n_coupled > 1 && *current_uV == -1) {
4040
4041 if (_regulator_is_enabled(rdev)) {
4042 ret = regulator_get_voltage_rdev(rdev);
4043 if (ret < 0)
4044 return ret;
4045
4046 *current_uV = ret;
4047 } else {
4048 *current_uV = desired_min_uV;
4049 }
4050 }
4051
4052 *min_uV = desired_min_uV;
4053 *max_uV = desired_max_uV;
4054
4055 return done;
4056}
4057
4058int regulator_do_balance_voltage(struct regulator_dev *rdev,
4059 suspend_state_t state, bool skip_coupled)
4060{
4061 struct regulator_dev **c_rdevs;
4062 struct regulator_dev *best_rdev;
4063 struct coupling_desc *c_desc = &rdev->coupling_desc;
4064 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4065 unsigned int delta, best_delta;
4066 unsigned long c_rdev_done = 0;
4067 bool best_c_rdev_done;
4068
4069 c_rdevs = c_desc->coupled_rdevs;
4070 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4071
4072 /*
4073 * Find the best possible voltage change on each loop. Leave the loop
4074 * if there isn't any possible change.
4075 */
4076 do {
4077 best_c_rdev_done = false;
4078 best_delta = 0;
4079 best_min_uV = 0;
4080 best_max_uV = 0;
4081 best_c_rdev = 0;
4082 best_rdev = NULL;
4083
4084 /*
4085 * Find highest difference between optimal voltage
4086 * and current voltage.
4087 */
4088 for (i = 0; i < n_coupled; i++) {
4089 /*
4090 * optimal_uV is the best voltage that can be set for
4091 * i-th regulator at the moment without violating
4092 * max_spread constraint in order to balance
4093 * the coupled voltages.
4094 */
4095 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4096
4097 if (test_bit(i, &c_rdev_done))
4098 continue;
4099
4100 ret = regulator_get_optimal_voltage(c_rdevs[i],
4101 ¤t_uV,
4102 &optimal_uV,
4103 &optimal_max_uV,
4104 state, n_coupled);
4105 if (ret < 0)
4106 goto out;
4107
4108 delta = abs(optimal_uV - current_uV);
4109
4110 if (delta && best_delta <= delta) {
4111 best_c_rdev_done = ret;
4112 best_delta = delta;
4113 best_rdev = c_rdevs[i];
4114 best_min_uV = optimal_uV;
4115 best_max_uV = optimal_max_uV;
4116 best_c_rdev = i;
4117 }
4118 }
4119
4120 /* Nothing to change, return successfully */
4121 if (!best_rdev) {
4122 ret = 0;
4123 goto out;
4124 }
4125
4126 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4127 best_max_uV, state);
4128
4129 if (ret < 0)
4130 goto out;
4131
4132 if (best_c_rdev_done)
4133 set_bit(best_c_rdev, &c_rdev_done);
4134
4135 } while (n_coupled > 1);
4136
4137out:
4138 return ret;
4139}
4140
4141static int regulator_balance_voltage(struct regulator_dev *rdev,
4142 suspend_state_t state)
4143{
4144 struct coupling_desc *c_desc = &rdev->coupling_desc;
4145 struct regulator_coupler *coupler = c_desc->coupler;
4146 bool skip_coupled = false;
4147
4148 /*
4149 * If system is in a state other than PM_SUSPEND_ON, don't check
4150 * other coupled regulators.
4151 */
4152 if (state != PM_SUSPEND_ON)
4153 skip_coupled = true;
4154
4155 if (c_desc->n_resolved < c_desc->n_coupled) {
4156 rdev_err(rdev, "Not all coupled regulators registered\n");
4157 return -EPERM;
4158 }
4159
4160 /* Invoke custom balancer for customized couplers */
4161 if (coupler && coupler->balance_voltage)
4162 return coupler->balance_voltage(coupler, rdev, state);
4163
4164 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4165}
4166
4167/**
4168 * regulator_set_voltage - set regulator output voltage
4169 * @regulator: regulator source
4170 * @min_uV: Minimum required voltage in uV
4171 * @max_uV: Maximum acceptable voltage in uV
4172 *
4173 * Sets a voltage regulator to the desired output voltage. This can be set
4174 * during any regulator state. IOW, regulator can be disabled or enabled.
4175 *
4176 * If the regulator is enabled then the voltage will change to the new value
4177 * immediately otherwise if the regulator is disabled the regulator will
4178 * output at the new voltage when enabled.
4179 *
4180 * NOTE: If the regulator is shared between several devices then the lowest
4181 * request voltage that meets the system constraints will be used.
4182 * Regulator system constraints must be set for this regulator before
4183 * calling this function otherwise this call will fail.
4184 */
4185int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4186{
4187 struct ww_acquire_ctx ww_ctx;
4188 int ret;
4189
4190 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4191
4192 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4193 PM_SUSPEND_ON);
4194
4195 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4196
4197 return ret;
4198}
4199EXPORT_SYMBOL_GPL(regulator_set_voltage);
4200
4201static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4202 suspend_state_t state, bool en)
4203{
4204 struct regulator_state *rstate;
4205
4206 rstate = regulator_get_suspend_state(rdev, state);
4207 if (rstate == NULL)
4208 return -EINVAL;
4209
4210 if (!rstate->changeable)
4211 return -EPERM;
4212
4213 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4214
4215 return 0;
4216}
4217
4218int regulator_suspend_enable(struct regulator_dev *rdev,
4219 suspend_state_t state)
4220{
4221 return regulator_suspend_toggle(rdev, state, true);
4222}
4223EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4224
4225int regulator_suspend_disable(struct regulator_dev *rdev,
4226 suspend_state_t state)
4227{
4228 struct regulator *regulator;
4229 struct regulator_voltage *voltage;
4230
4231 /*
4232 * if any consumer wants this regulator device keeping on in
4233 * suspend states, don't set it as disabled.
4234 */
4235 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4236 voltage = ®ulator->voltage[state];
4237 if (voltage->min_uV || voltage->max_uV)
4238 return 0;
4239 }
4240
4241 return regulator_suspend_toggle(rdev, state, false);
4242}
4243EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4244
4245static int _regulator_set_suspend_voltage(struct regulator *regulator,
4246 int min_uV, int max_uV,
4247 suspend_state_t state)
4248{
4249 struct regulator_dev *rdev = regulator->rdev;
4250 struct regulator_state *rstate;
4251
4252 rstate = regulator_get_suspend_state(rdev, state);
4253 if (rstate == NULL)
4254 return -EINVAL;
4255
4256 if (rstate->min_uV == rstate->max_uV) {
4257 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4258 return -EPERM;
4259 }
4260
4261 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4262}
4263
4264int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4265 int max_uV, suspend_state_t state)
4266{
4267 struct ww_acquire_ctx ww_ctx;
4268 int ret;
4269
4270 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4271 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4272 return -EINVAL;
4273
4274 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4275
4276 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4277 max_uV, state);
4278
4279 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4280
4281 return ret;
4282}
4283EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4284
4285/**
4286 * regulator_set_voltage_time - get raise/fall time
4287 * @regulator: regulator source
4288 * @old_uV: starting voltage in microvolts
4289 * @new_uV: target voltage in microvolts
4290 *
4291 * Provided with the starting and ending voltage, this function attempts to
4292 * calculate the time in microseconds required to rise or fall to this new
4293 * voltage.
4294 */
4295int regulator_set_voltage_time(struct regulator *regulator,
4296 int old_uV, int new_uV)
4297{
4298 struct regulator_dev *rdev = regulator->rdev;
4299 const struct regulator_ops *ops = rdev->desc->ops;
4300 int old_sel = -1;
4301 int new_sel = -1;
4302 int voltage;
4303 int i;
4304
4305 if (ops->set_voltage_time)
4306 return ops->set_voltage_time(rdev, old_uV, new_uV);
4307 else if (!ops->set_voltage_time_sel)
4308 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4309
4310 /* Currently requires operations to do this */
4311 if (!ops->list_voltage || !rdev->desc->n_voltages)
4312 return -EINVAL;
4313
4314 for (i = 0; i < rdev->desc->n_voltages; i++) {
4315 /* We only look for exact voltage matches here */
4316 if (i < rdev->desc->linear_min_sel)
4317 continue;
4318
4319 if (old_sel >= 0 && new_sel >= 0)
4320 break;
4321
4322 voltage = regulator_list_voltage(regulator, i);
4323 if (voltage < 0)
4324 return -EINVAL;
4325 if (voltage == 0)
4326 continue;
4327 if (voltage == old_uV)
4328 old_sel = i;
4329 if (voltage == new_uV)
4330 new_sel = i;
4331 }
4332
4333 if (old_sel < 0 || new_sel < 0)
4334 return -EINVAL;
4335
4336 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4337}
4338EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4339
4340/**
4341 * regulator_set_voltage_time_sel - get raise/fall time
4342 * @rdev: regulator source device
4343 * @old_selector: selector for starting voltage
4344 * @new_selector: selector for target voltage
4345 *
4346 * Provided with the starting and target voltage selectors, this function
4347 * returns time in microseconds required to rise or fall to this new voltage
4348 *
4349 * Drivers providing ramp_delay in regulation_constraints can use this as their
4350 * set_voltage_time_sel() operation.
4351 */
4352int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4353 unsigned int old_selector,
4354 unsigned int new_selector)
4355{
4356 int old_volt, new_volt;
4357
4358 /* sanity check */
4359 if (!rdev->desc->ops->list_voltage)
4360 return -EINVAL;
4361
4362 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4363 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4364
4365 if (rdev->desc->ops->set_voltage_time)
4366 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4367 new_volt);
4368 else
4369 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4370}
4371EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4372
4373int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4374{
4375 int ret;
4376
4377 regulator_lock(rdev);
4378
4379 if (!rdev->desc->ops->set_voltage &&
4380 !rdev->desc->ops->set_voltage_sel) {
4381 ret = -EINVAL;
4382 goto out;
4383 }
4384
4385 /* balance only, if regulator is coupled */
4386 if (rdev->coupling_desc.n_coupled > 1)
4387 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4388 else
4389 ret = -EOPNOTSUPP;
4390
4391out:
4392 regulator_unlock(rdev);
4393 return ret;
4394}
4395
4396/**
4397 * regulator_sync_voltage - re-apply last regulator output voltage
4398 * @regulator: regulator source
4399 *
4400 * Re-apply the last configured voltage. This is intended to be used
4401 * where some external control source the consumer is cooperating with
4402 * has caused the configured voltage to change.
4403 */
4404int regulator_sync_voltage(struct regulator *regulator)
4405{
4406 struct regulator_dev *rdev = regulator->rdev;
4407 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4408 int ret, min_uV, max_uV;
4409
4410 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4411 return 0;
4412
4413 regulator_lock(rdev);
4414
4415 if (!rdev->desc->ops->set_voltage &&
4416 !rdev->desc->ops->set_voltage_sel) {
4417 ret = -EINVAL;
4418 goto out;
4419 }
4420
4421 /* This is only going to work if we've had a voltage configured. */
4422 if (!voltage->min_uV && !voltage->max_uV) {
4423 ret = -EINVAL;
4424 goto out;
4425 }
4426
4427 min_uV = voltage->min_uV;
4428 max_uV = voltage->max_uV;
4429
4430 /* This should be a paranoia check... */
4431 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4432 if (ret < 0)
4433 goto out;
4434
4435 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4436 if (ret < 0)
4437 goto out;
4438
4439 /* balance only, if regulator is coupled */
4440 if (rdev->coupling_desc.n_coupled > 1)
4441 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4442 else
4443 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4444
4445out:
4446 regulator_unlock(rdev);
4447 return ret;
4448}
4449EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4450
4451int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4452{
4453 int sel, ret;
4454 bool bypassed;
4455
4456 if (rdev->desc->ops->get_bypass) {
4457 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4458 if (ret < 0)
4459 return ret;
4460 if (bypassed) {
4461 /* if bypassed the regulator must have a supply */
4462 if (!rdev->supply) {
4463 rdev_err(rdev,
4464 "bypassed regulator has no supply!\n");
4465 return -EPROBE_DEFER;
4466 }
4467
4468 return regulator_get_voltage_rdev(rdev->supply->rdev);
4469 }
4470 }
4471
4472 if (rdev->desc->ops->get_voltage_sel) {
4473 sel = rdev->desc->ops->get_voltage_sel(rdev);
4474 if (sel < 0)
4475 return sel;
4476 ret = rdev->desc->ops->list_voltage(rdev, sel);
4477 } else if (rdev->desc->ops->get_voltage) {
4478 ret = rdev->desc->ops->get_voltage(rdev);
4479 } else if (rdev->desc->ops->list_voltage) {
4480 ret = rdev->desc->ops->list_voltage(rdev, 0);
4481 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4482 ret = rdev->desc->fixed_uV;
4483 } else if (rdev->supply) {
4484 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4485 } else if (rdev->supply_name) {
4486 return -EPROBE_DEFER;
4487 } else {
4488 return -EINVAL;
4489 }
4490
4491 if (ret < 0)
4492 return ret;
4493 return ret - rdev->constraints->uV_offset;
4494}
4495EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4496
4497/**
4498 * regulator_get_voltage - get regulator output voltage
4499 * @regulator: regulator source
4500 *
4501 * This returns the current regulator voltage in uV.
4502 *
4503 * NOTE: If the regulator is disabled it will return the voltage value. This
4504 * function should not be used to determine regulator state.
4505 */
4506int regulator_get_voltage(struct regulator *regulator)
4507{
4508 struct ww_acquire_ctx ww_ctx;
4509 int ret;
4510
4511 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4512 ret = regulator_get_voltage_rdev(regulator->rdev);
4513 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4514
4515 return ret;
4516}
4517EXPORT_SYMBOL_GPL(regulator_get_voltage);
4518
4519/**
4520 * regulator_set_current_limit - set regulator output current limit
4521 * @regulator: regulator source
4522 * @min_uA: Minimum supported current in uA
4523 * @max_uA: Maximum supported current in uA
4524 *
4525 * Sets current sink to the desired output current. This can be set during
4526 * any regulator state. IOW, regulator can be disabled or enabled.
4527 *
4528 * If the regulator is enabled then the current will change to the new value
4529 * immediately otherwise if the regulator is disabled the regulator will
4530 * output at the new current when enabled.
4531 *
4532 * NOTE: Regulator system constraints must be set for this regulator before
4533 * calling this function otherwise this call will fail.
4534 */
4535int regulator_set_current_limit(struct regulator *regulator,
4536 int min_uA, int max_uA)
4537{
4538 struct regulator_dev *rdev = regulator->rdev;
4539 int ret;
4540
4541 regulator_lock(rdev);
4542
4543 /* sanity check */
4544 if (!rdev->desc->ops->set_current_limit) {
4545 ret = -EINVAL;
4546 goto out;
4547 }
4548
4549 /* constraints check */
4550 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4551 if (ret < 0)
4552 goto out;
4553
4554 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4555out:
4556 regulator_unlock(rdev);
4557 return ret;
4558}
4559EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4560
4561static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4562{
4563 /* sanity check */
4564 if (!rdev->desc->ops->get_current_limit)
4565 return -EINVAL;
4566
4567 return rdev->desc->ops->get_current_limit(rdev);
4568}
4569
4570static int _regulator_get_current_limit(struct regulator_dev *rdev)
4571{
4572 int ret;
4573
4574 regulator_lock(rdev);
4575 ret = _regulator_get_current_limit_unlocked(rdev);
4576 regulator_unlock(rdev);
4577
4578 return ret;
4579}
4580
4581/**
4582 * regulator_get_current_limit - get regulator output current
4583 * @regulator: regulator source
4584 *
4585 * This returns the current supplied by the specified current sink in uA.
4586 *
4587 * NOTE: If the regulator is disabled it will return the current value. This
4588 * function should not be used to determine regulator state.
4589 */
4590int regulator_get_current_limit(struct regulator *regulator)
4591{
4592 return _regulator_get_current_limit(regulator->rdev);
4593}
4594EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4595
4596/**
4597 * regulator_set_mode - set regulator operating mode
4598 * @regulator: regulator source
4599 * @mode: operating mode - one of the REGULATOR_MODE constants
4600 *
4601 * Set regulator operating mode to increase regulator efficiency or improve
4602 * regulation performance.
4603 *
4604 * NOTE: Regulator system constraints must be set for this regulator before
4605 * calling this function otherwise this call will fail.
4606 */
4607int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4608{
4609 struct regulator_dev *rdev = regulator->rdev;
4610 int ret;
4611 int regulator_curr_mode;
4612
4613 regulator_lock(rdev);
4614
4615 /* sanity check */
4616 if (!rdev->desc->ops->set_mode) {
4617 ret = -EINVAL;
4618 goto out;
4619 }
4620
4621 /* return if the same mode is requested */
4622 if (rdev->desc->ops->get_mode) {
4623 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4624 if (regulator_curr_mode == mode) {
4625 ret = 0;
4626 goto out;
4627 }
4628 }
4629
4630 /* constraints check */
4631 ret = regulator_mode_constrain(rdev, &mode);
4632 if (ret < 0)
4633 goto out;
4634
4635 ret = rdev->desc->ops->set_mode(rdev, mode);
4636out:
4637 regulator_unlock(rdev);
4638 return ret;
4639}
4640EXPORT_SYMBOL_GPL(regulator_set_mode);
4641
4642static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4643{
4644 /* sanity check */
4645 if (!rdev->desc->ops->get_mode)
4646 return -EINVAL;
4647
4648 return rdev->desc->ops->get_mode(rdev);
4649}
4650
4651static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4652{
4653 int ret;
4654
4655 regulator_lock(rdev);
4656 ret = _regulator_get_mode_unlocked(rdev);
4657 regulator_unlock(rdev);
4658
4659 return ret;
4660}
4661
4662/**
4663 * regulator_get_mode - get regulator operating mode
4664 * @regulator: regulator source
4665 *
4666 * Get the current regulator operating mode.
4667 */
4668unsigned int regulator_get_mode(struct regulator *regulator)
4669{
4670 return _regulator_get_mode(regulator->rdev);
4671}
4672EXPORT_SYMBOL_GPL(regulator_get_mode);
4673
4674static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4675{
4676 int ret = 0;
4677
4678 if (rdev->use_cached_err) {
4679 spin_lock(&rdev->err_lock);
4680 ret = rdev->cached_err;
4681 spin_unlock(&rdev->err_lock);
4682 }
4683 return ret;
4684}
4685
4686static int _regulator_get_error_flags(struct regulator_dev *rdev,
4687 unsigned int *flags)
4688{
4689 int cached_flags, ret = 0;
4690
4691 regulator_lock(rdev);
4692
4693 cached_flags = rdev_get_cached_err_flags(rdev);
4694
4695 if (rdev->desc->ops->get_error_flags)
4696 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4697 else if (!rdev->use_cached_err)
4698 ret = -EINVAL;
4699
4700 *flags |= cached_flags;
4701
4702 regulator_unlock(rdev);
4703
4704 return ret;
4705}
4706
4707/**
4708 * regulator_get_error_flags - get regulator error information
4709 * @regulator: regulator source
4710 * @flags: pointer to store error flags
4711 *
4712 * Get the current regulator error information.
4713 */
4714int regulator_get_error_flags(struct regulator *regulator,
4715 unsigned int *flags)
4716{
4717 return _regulator_get_error_flags(regulator->rdev, flags);
4718}
4719EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4720
4721/**
4722 * regulator_set_load - set regulator load
4723 * @regulator: regulator source
4724 * @uA_load: load current
4725 *
4726 * Notifies the regulator core of a new device load. This is then used by
4727 * DRMS (if enabled by constraints) to set the most efficient regulator
4728 * operating mode for the new regulator loading.
4729 *
4730 * Consumer devices notify their supply regulator of the maximum power
4731 * they will require (can be taken from device datasheet in the power
4732 * consumption tables) when they change operational status and hence power
4733 * state. Examples of operational state changes that can affect power
4734 * consumption are :-
4735 *
4736 * o Device is opened / closed.
4737 * o Device I/O is about to begin or has just finished.
4738 * o Device is idling in between work.
4739 *
4740 * This information is also exported via sysfs to userspace.
4741 *
4742 * DRMS will sum the total requested load on the regulator and change
4743 * to the most efficient operating mode if platform constraints allow.
4744 *
4745 * NOTE: when a regulator consumer requests to have a regulator
4746 * disabled then any load that consumer requested no longer counts
4747 * toward the total requested load. If the regulator is re-enabled
4748 * then the previously requested load will start counting again.
4749 *
4750 * If a regulator is an always-on regulator then an individual consumer's
4751 * load will still be removed if that consumer is fully disabled.
4752 *
4753 * On error a negative errno is returned.
4754 */
4755int regulator_set_load(struct regulator *regulator, int uA_load)
4756{
4757 struct regulator_dev *rdev = regulator->rdev;
4758 int old_uA_load;
4759 int ret = 0;
4760
4761 regulator_lock(rdev);
4762 old_uA_load = regulator->uA_load;
4763 regulator->uA_load = uA_load;
4764 if (regulator->enable_count && old_uA_load != uA_load) {
4765 ret = drms_uA_update(rdev);
4766 if (ret < 0)
4767 regulator->uA_load = old_uA_load;
4768 }
4769 regulator_unlock(rdev);
4770
4771 return ret;
4772}
4773EXPORT_SYMBOL_GPL(regulator_set_load);
4774
4775/**
4776 * regulator_allow_bypass - allow the regulator to go into bypass mode
4777 *
4778 * @regulator: Regulator to configure
4779 * @enable: enable or disable bypass mode
4780 *
4781 * Allow the regulator to go into bypass mode if all other consumers
4782 * for the regulator also enable bypass mode and the machine
4783 * constraints allow this. Bypass mode means that the regulator is
4784 * simply passing the input directly to the output with no regulation.
4785 */
4786int regulator_allow_bypass(struct regulator *regulator, bool enable)
4787{
4788 struct regulator_dev *rdev = regulator->rdev;
4789 const char *name = rdev_get_name(rdev);
4790 int ret = 0;
4791
4792 if (!rdev->desc->ops->set_bypass)
4793 return 0;
4794
4795 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4796 return 0;
4797
4798 regulator_lock(rdev);
4799
4800 if (enable && !regulator->bypass) {
4801 rdev->bypass_count++;
4802
4803 if (rdev->bypass_count == rdev->open_count) {
4804 trace_regulator_bypass_enable(name);
4805
4806 ret = rdev->desc->ops->set_bypass(rdev, enable);
4807 if (ret != 0)
4808 rdev->bypass_count--;
4809 else
4810 trace_regulator_bypass_enable_complete(name);
4811 }
4812
4813 } else if (!enable && regulator->bypass) {
4814 rdev->bypass_count--;
4815
4816 if (rdev->bypass_count != rdev->open_count) {
4817 trace_regulator_bypass_disable(name);
4818
4819 ret = rdev->desc->ops->set_bypass(rdev, enable);
4820 if (ret != 0)
4821 rdev->bypass_count++;
4822 else
4823 trace_regulator_bypass_disable_complete(name);
4824 }
4825 }
4826
4827 if (ret == 0)
4828 regulator->bypass = enable;
4829
4830 regulator_unlock(rdev);
4831
4832 return ret;
4833}
4834EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4835
4836/**
4837 * regulator_register_notifier - register regulator event notifier
4838 * @regulator: regulator source
4839 * @nb: notifier block
4840 *
4841 * Register notifier block to receive regulator events.
4842 */
4843int regulator_register_notifier(struct regulator *regulator,
4844 struct notifier_block *nb)
4845{
4846 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4847 nb);
4848}
4849EXPORT_SYMBOL_GPL(regulator_register_notifier);
4850
4851/**
4852 * regulator_unregister_notifier - unregister regulator event notifier
4853 * @regulator: regulator source
4854 * @nb: notifier block
4855 *
4856 * Unregister regulator event notifier block.
4857 */
4858int regulator_unregister_notifier(struct regulator *regulator,
4859 struct notifier_block *nb)
4860{
4861 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4862 nb);
4863}
4864EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4865
4866/* notify regulator consumers and downstream regulator consumers.
4867 * Note mutex must be held by caller.
4868 */
4869static int _notifier_call_chain(struct regulator_dev *rdev,
4870 unsigned long event, void *data)
4871{
4872 /* call rdev chain first */
4873 int ret = blocking_notifier_call_chain(&rdev->notifier, event, data);
4874
4875 if (IS_REACHABLE(CONFIG_REGULATOR_NETLINK_EVENTS)) {
4876 struct device *parent = rdev->dev.parent;
4877 const char *rname = rdev_get_name(rdev);
4878 char name[32];
4879
4880 /* Avoid duplicate debugfs directory names */
4881 if (parent && rname == rdev->desc->name) {
4882 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4883 rname);
4884 rname = name;
4885 }
4886 reg_generate_netlink_event(rname, event);
4887 }
4888
4889 return ret;
4890}
4891
4892int _regulator_bulk_get(struct device *dev, int num_consumers,
4893 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4894{
4895 int i;
4896 int ret;
4897
4898 for (i = 0; i < num_consumers; i++)
4899 consumers[i].consumer = NULL;
4900
4901 for (i = 0; i < num_consumers; i++) {
4902 consumers[i].consumer = _regulator_get(dev,
4903 consumers[i].supply, get_type);
4904 if (IS_ERR(consumers[i].consumer)) {
4905 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4906 "Failed to get supply '%s'",
4907 consumers[i].supply);
4908 consumers[i].consumer = NULL;
4909 goto err;
4910 }
4911
4912 if (consumers[i].init_load_uA > 0) {
4913 ret = regulator_set_load(consumers[i].consumer,
4914 consumers[i].init_load_uA);
4915 if (ret) {
4916 i++;
4917 goto err;
4918 }
4919 }
4920 }
4921
4922 return 0;
4923
4924err:
4925 while (--i >= 0)
4926 regulator_put(consumers[i].consumer);
4927
4928 return ret;
4929}
4930
4931/**
4932 * regulator_bulk_get - get multiple regulator consumers
4933 *
4934 * @dev: Device to supply
4935 * @num_consumers: Number of consumers to register
4936 * @consumers: Configuration of consumers; clients are stored here.
4937 *
4938 * @return 0 on success, an errno on failure.
4939 *
4940 * This helper function allows drivers to get several regulator
4941 * consumers in one operation. If any of the regulators cannot be
4942 * acquired then any regulators that were allocated will be freed
4943 * before returning to the caller.
4944 */
4945int regulator_bulk_get(struct device *dev, int num_consumers,
4946 struct regulator_bulk_data *consumers)
4947{
4948 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4949}
4950EXPORT_SYMBOL_GPL(regulator_bulk_get);
4951
4952static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4953{
4954 struct regulator_bulk_data *bulk = data;
4955
4956 bulk->ret = regulator_enable(bulk->consumer);
4957}
4958
4959/**
4960 * regulator_bulk_enable - enable multiple regulator consumers
4961 *
4962 * @num_consumers: Number of consumers
4963 * @consumers: Consumer data; clients are stored here.
4964 * @return 0 on success, an errno on failure
4965 *
4966 * This convenience API allows consumers to enable multiple regulator
4967 * clients in a single API call. If any consumers cannot be enabled
4968 * then any others that were enabled will be disabled again prior to
4969 * return.
4970 */
4971int regulator_bulk_enable(int num_consumers,
4972 struct regulator_bulk_data *consumers)
4973{
4974 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4975 int i;
4976 int ret = 0;
4977
4978 for (i = 0; i < num_consumers; i++) {
4979 async_schedule_domain(regulator_bulk_enable_async,
4980 &consumers[i], &async_domain);
4981 }
4982
4983 async_synchronize_full_domain(&async_domain);
4984
4985 /* If any consumer failed we need to unwind any that succeeded */
4986 for (i = 0; i < num_consumers; i++) {
4987 if (consumers[i].ret != 0) {
4988 ret = consumers[i].ret;
4989 goto err;
4990 }
4991 }
4992
4993 return 0;
4994
4995err:
4996 for (i = 0; i < num_consumers; i++) {
4997 if (consumers[i].ret < 0)
4998 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4999 ERR_PTR(consumers[i].ret));
5000 else
5001 regulator_disable(consumers[i].consumer);
5002 }
5003
5004 return ret;
5005}
5006EXPORT_SYMBOL_GPL(regulator_bulk_enable);
5007
5008/**
5009 * regulator_bulk_disable - disable multiple regulator consumers
5010 *
5011 * @num_consumers: Number of consumers
5012 * @consumers: Consumer data; clients are stored here.
5013 * @return 0 on success, an errno on failure
5014 *
5015 * This convenience API allows consumers to disable multiple regulator
5016 * clients in a single API call. If any consumers cannot be disabled
5017 * then any others that were disabled will be enabled again prior to
5018 * return.
5019 */
5020int regulator_bulk_disable(int num_consumers,
5021 struct regulator_bulk_data *consumers)
5022{
5023 int i;
5024 int ret, r;
5025
5026 for (i = num_consumers - 1; i >= 0; --i) {
5027 ret = regulator_disable(consumers[i].consumer);
5028 if (ret != 0)
5029 goto err;
5030 }
5031
5032 return 0;
5033
5034err:
5035 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5036 for (++i; i < num_consumers; ++i) {
5037 r = regulator_enable(consumers[i].consumer);
5038 if (r != 0)
5039 pr_err("Failed to re-enable %s: %pe\n",
5040 consumers[i].supply, ERR_PTR(r));
5041 }
5042
5043 return ret;
5044}
5045EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5046
5047/**
5048 * regulator_bulk_force_disable - force disable multiple regulator consumers
5049 *
5050 * @num_consumers: Number of consumers
5051 * @consumers: Consumer data; clients are stored here.
5052 * @return 0 on success, an errno on failure
5053 *
5054 * This convenience API allows consumers to forcibly disable multiple regulator
5055 * clients in a single API call.
5056 * NOTE: This should be used for situations when device damage will
5057 * likely occur if the regulators are not disabled (e.g. over temp).
5058 * Although regulator_force_disable function call for some consumers can
5059 * return error numbers, the function is called for all consumers.
5060 */
5061int regulator_bulk_force_disable(int num_consumers,
5062 struct regulator_bulk_data *consumers)
5063{
5064 int i;
5065 int ret = 0;
5066
5067 for (i = 0; i < num_consumers; i++) {
5068 consumers[i].ret =
5069 regulator_force_disable(consumers[i].consumer);
5070
5071 /* Store first error for reporting */
5072 if (consumers[i].ret && !ret)
5073 ret = consumers[i].ret;
5074 }
5075
5076 return ret;
5077}
5078EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5079
5080/**
5081 * regulator_bulk_free - free multiple regulator consumers
5082 *
5083 * @num_consumers: Number of consumers
5084 * @consumers: Consumer data; clients are stored here.
5085 *
5086 * This convenience API allows consumers to free multiple regulator
5087 * clients in a single API call.
5088 */
5089void regulator_bulk_free(int num_consumers,
5090 struct regulator_bulk_data *consumers)
5091{
5092 int i;
5093
5094 for (i = 0; i < num_consumers; i++) {
5095 regulator_put(consumers[i].consumer);
5096 consumers[i].consumer = NULL;
5097 }
5098}
5099EXPORT_SYMBOL_GPL(regulator_bulk_free);
5100
5101/**
5102 * regulator_handle_critical - Handle events for system-critical regulators.
5103 * @rdev: The regulator device.
5104 * @event: The event being handled.
5105 *
5106 * This function handles critical events such as under-voltage, over-current,
5107 * and unknown errors for regulators deemed system-critical. On detecting such
5108 * events, it triggers a hardware protection shutdown with a defined timeout.
5109 */
5110static void regulator_handle_critical(struct regulator_dev *rdev,
5111 unsigned long event)
5112{
5113 const char *reason = NULL;
5114
5115 if (!rdev->constraints->system_critical)
5116 return;
5117
5118 switch (event) {
5119 case REGULATOR_EVENT_UNDER_VOLTAGE:
5120 reason = "System critical regulator: voltage drop detected";
5121 break;
5122 case REGULATOR_EVENT_OVER_CURRENT:
5123 reason = "System critical regulator: over-current detected";
5124 break;
5125 case REGULATOR_EVENT_FAIL:
5126 reason = "System critical regulator: unknown error";
5127 }
5128
5129 if (!reason)
5130 return;
5131
5132 hw_protection_shutdown(reason,
5133 rdev->constraints->uv_less_critical_window_ms);
5134}
5135
5136/**
5137 * regulator_notifier_call_chain - call regulator event notifier
5138 * @rdev: regulator source
5139 * @event: notifier block
5140 * @data: callback-specific data.
5141 *
5142 * Called by regulator drivers to notify clients a regulator event has
5143 * occurred.
5144 */
5145int regulator_notifier_call_chain(struct regulator_dev *rdev,
5146 unsigned long event, void *data)
5147{
5148 regulator_handle_critical(rdev, event);
5149
5150 _notifier_call_chain(rdev, event, data);
5151 return NOTIFY_DONE;
5152
5153}
5154EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5155
5156/**
5157 * regulator_mode_to_status - convert a regulator mode into a status
5158 *
5159 * @mode: Mode to convert
5160 *
5161 * Convert a regulator mode into a status.
5162 */
5163int regulator_mode_to_status(unsigned int mode)
5164{
5165 switch (mode) {
5166 case REGULATOR_MODE_FAST:
5167 return REGULATOR_STATUS_FAST;
5168 case REGULATOR_MODE_NORMAL:
5169 return REGULATOR_STATUS_NORMAL;
5170 case REGULATOR_MODE_IDLE:
5171 return REGULATOR_STATUS_IDLE;
5172 case REGULATOR_MODE_STANDBY:
5173 return REGULATOR_STATUS_STANDBY;
5174 default:
5175 return REGULATOR_STATUS_UNDEFINED;
5176 }
5177}
5178EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5179
5180static struct attribute *regulator_dev_attrs[] = {
5181 &dev_attr_name.attr,
5182 &dev_attr_num_users.attr,
5183 &dev_attr_type.attr,
5184 &dev_attr_microvolts.attr,
5185 &dev_attr_microamps.attr,
5186 &dev_attr_opmode.attr,
5187 &dev_attr_state.attr,
5188 &dev_attr_status.attr,
5189 &dev_attr_bypass.attr,
5190 &dev_attr_requested_microamps.attr,
5191 &dev_attr_min_microvolts.attr,
5192 &dev_attr_max_microvolts.attr,
5193 &dev_attr_min_microamps.attr,
5194 &dev_attr_max_microamps.attr,
5195 &dev_attr_under_voltage.attr,
5196 &dev_attr_over_current.attr,
5197 &dev_attr_regulation_out.attr,
5198 &dev_attr_fail.attr,
5199 &dev_attr_over_temp.attr,
5200 &dev_attr_under_voltage_warn.attr,
5201 &dev_attr_over_current_warn.attr,
5202 &dev_attr_over_voltage_warn.attr,
5203 &dev_attr_over_temp_warn.attr,
5204 &dev_attr_suspend_standby_state.attr,
5205 &dev_attr_suspend_mem_state.attr,
5206 &dev_attr_suspend_disk_state.attr,
5207 &dev_attr_suspend_standby_microvolts.attr,
5208 &dev_attr_suspend_mem_microvolts.attr,
5209 &dev_attr_suspend_disk_microvolts.attr,
5210 &dev_attr_suspend_standby_mode.attr,
5211 &dev_attr_suspend_mem_mode.attr,
5212 &dev_attr_suspend_disk_mode.attr,
5213 NULL
5214};
5215
5216/*
5217 * To avoid cluttering sysfs (and memory) with useless state, only
5218 * create attributes that can be meaningfully displayed.
5219 */
5220static umode_t regulator_attr_is_visible(struct kobject *kobj,
5221 struct attribute *attr, int idx)
5222{
5223 struct device *dev = kobj_to_dev(kobj);
5224 struct regulator_dev *rdev = dev_to_rdev(dev);
5225 const struct regulator_ops *ops = rdev->desc->ops;
5226 umode_t mode = attr->mode;
5227
5228 /* these three are always present */
5229 if (attr == &dev_attr_name.attr ||
5230 attr == &dev_attr_num_users.attr ||
5231 attr == &dev_attr_type.attr)
5232 return mode;
5233
5234 /* some attributes need specific methods to be displayed */
5235 if (attr == &dev_attr_microvolts.attr) {
5236 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5237 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5238 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5239 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5240 return mode;
5241 return 0;
5242 }
5243
5244 if (attr == &dev_attr_microamps.attr)
5245 return ops->get_current_limit ? mode : 0;
5246
5247 if (attr == &dev_attr_opmode.attr)
5248 return ops->get_mode ? mode : 0;
5249
5250 if (attr == &dev_attr_state.attr)
5251 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5252
5253 if (attr == &dev_attr_status.attr)
5254 return ops->get_status ? mode : 0;
5255
5256 if (attr == &dev_attr_bypass.attr)
5257 return ops->get_bypass ? mode : 0;
5258
5259 if (attr == &dev_attr_under_voltage.attr ||
5260 attr == &dev_attr_over_current.attr ||
5261 attr == &dev_attr_regulation_out.attr ||
5262 attr == &dev_attr_fail.attr ||
5263 attr == &dev_attr_over_temp.attr ||
5264 attr == &dev_attr_under_voltage_warn.attr ||
5265 attr == &dev_attr_over_current_warn.attr ||
5266 attr == &dev_attr_over_voltage_warn.attr ||
5267 attr == &dev_attr_over_temp_warn.attr)
5268 return ops->get_error_flags ? mode : 0;
5269
5270 /* constraints need specific supporting methods */
5271 if (attr == &dev_attr_min_microvolts.attr ||
5272 attr == &dev_attr_max_microvolts.attr)
5273 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5274
5275 if (attr == &dev_attr_min_microamps.attr ||
5276 attr == &dev_attr_max_microamps.attr)
5277 return ops->set_current_limit ? mode : 0;
5278
5279 if (attr == &dev_attr_suspend_standby_state.attr ||
5280 attr == &dev_attr_suspend_mem_state.attr ||
5281 attr == &dev_attr_suspend_disk_state.attr)
5282 return mode;
5283
5284 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5285 attr == &dev_attr_suspend_mem_microvolts.attr ||
5286 attr == &dev_attr_suspend_disk_microvolts.attr)
5287 return ops->set_suspend_voltage ? mode : 0;
5288
5289 if (attr == &dev_attr_suspend_standby_mode.attr ||
5290 attr == &dev_attr_suspend_mem_mode.attr ||
5291 attr == &dev_attr_suspend_disk_mode.attr)
5292 return ops->set_suspend_mode ? mode : 0;
5293
5294 return mode;
5295}
5296
5297static const struct attribute_group regulator_dev_group = {
5298 .attrs = regulator_dev_attrs,
5299 .is_visible = regulator_attr_is_visible,
5300};
5301
5302static const struct attribute_group *regulator_dev_groups[] = {
5303 ®ulator_dev_group,
5304 NULL
5305};
5306
5307static void regulator_dev_release(struct device *dev)
5308{
5309 struct regulator_dev *rdev = dev_get_drvdata(dev);
5310
5311 debugfs_remove_recursive(rdev->debugfs);
5312 kfree(rdev->constraints);
5313 of_node_put(rdev->dev.of_node);
5314 kfree(rdev);
5315}
5316
5317static void rdev_init_debugfs(struct regulator_dev *rdev)
5318{
5319 struct device *parent = rdev->dev.parent;
5320 const char *rname = rdev_get_name(rdev);
5321 char name[NAME_MAX];
5322
5323 /* Avoid duplicate debugfs directory names */
5324 if (parent && rname == rdev->desc->name) {
5325 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5326 rname);
5327 rname = name;
5328 }
5329
5330 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5331 if (IS_ERR(rdev->debugfs))
5332 rdev_dbg(rdev, "Failed to create debugfs directory\n");
5333
5334 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5335 &rdev->use_count);
5336 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5337 &rdev->open_count);
5338 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5339 &rdev->bypass_count);
5340}
5341
5342static int regulator_register_resolve_supply(struct device *dev, void *data)
5343{
5344 struct regulator_dev *rdev = dev_to_rdev(dev);
5345
5346 if (regulator_resolve_supply(rdev))
5347 rdev_dbg(rdev, "unable to resolve supply\n");
5348
5349 return 0;
5350}
5351
5352int regulator_coupler_register(struct regulator_coupler *coupler)
5353{
5354 mutex_lock(®ulator_list_mutex);
5355 list_add_tail(&coupler->list, ®ulator_coupler_list);
5356 mutex_unlock(®ulator_list_mutex);
5357
5358 return 0;
5359}
5360
5361static struct regulator_coupler *
5362regulator_find_coupler(struct regulator_dev *rdev)
5363{
5364 struct regulator_coupler *coupler;
5365 int err;
5366
5367 /*
5368 * Note that regulators are appended to the list and the generic
5369 * coupler is registered first, hence it will be attached at last
5370 * if nobody cared.
5371 */
5372 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5373 err = coupler->attach_regulator(coupler, rdev);
5374 if (!err) {
5375 if (!coupler->balance_voltage &&
5376 rdev->coupling_desc.n_coupled > 2)
5377 goto err_unsupported;
5378
5379 return coupler;
5380 }
5381
5382 if (err < 0)
5383 return ERR_PTR(err);
5384
5385 if (err == 1)
5386 continue;
5387
5388 break;
5389 }
5390
5391 return ERR_PTR(-EINVAL);
5392
5393err_unsupported:
5394 if (coupler->detach_regulator)
5395 coupler->detach_regulator(coupler, rdev);
5396
5397 rdev_err(rdev,
5398 "Voltage balancing for multiple regulator couples is unimplemented\n");
5399
5400 return ERR_PTR(-EPERM);
5401}
5402
5403static void regulator_resolve_coupling(struct regulator_dev *rdev)
5404{
5405 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5406 struct coupling_desc *c_desc = &rdev->coupling_desc;
5407 int n_coupled = c_desc->n_coupled;
5408 struct regulator_dev *c_rdev;
5409 int i;
5410
5411 for (i = 1; i < n_coupled; i++) {
5412 /* already resolved */
5413 if (c_desc->coupled_rdevs[i])
5414 continue;
5415
5416 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5417
5418 if (!c_rdev)
5419 continue;
5420
5421 if (c_rdev->coupling_desc.coupler != coupler) {
5422 rdev_err(rdev, "coupler mismatch with %s\n",
5423 rdev_get_name(c_rdev));
5424 return;
5425 }
5426
5427 c_desc->coupled_rdevs[i] = c_rdev;
5428 c_desc->n_resolved++;
5429
5430 regulator_resolve_coupling(c_rdev);
5431 }
5432}
5433
5434static void regulator_remove_coupling(struct regulator_dev *rdev)
5435{
5436 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5437 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5438 struct regulator_dev *__c_rdev, *c_rdev;
5439 unsigned int __n_coupled, n_coupled;
5440 int i, k;
5441 int err;
5442
5443 n_coupled = c_desc->n_coupled;
5444
5445 for (i = 1; i < n_coupled; i++) {
5446 c_rdev = c_desc->coupled_rdevs[i];
5447
5448 if (!c_rdev)
5449 continue;
5450
5451 regulator_lock(c_rdev);
5452
5453 __c_desc = &c_rdev->coupling_desc;
5454 __n_coupled = __c_desc->n_coupled;
5455
5456 for (k = 1; k < __n_coupled; k++) {
5457 __c_rdev = __c_desc->coupled_rdevs[k];
5458
5459 if (__c_rdev == rdev) {
5460 __c_desc->coupled_rdevs[k] = NULL;
5461 __c_desc->n_resolved--;
5462 break;
5463 }
5464 }
5465
5466 regulator_unlock(c_rdev);
5467
5468 c_desc->coupled_rdevs[i] = NULL;
5469 c_desc->n_resolved--;
5470 }
5471
5472 if (coupler && coupler->detach_regulator) {
5473 err = coupler->detach_regulator(coupler, rdev);
5474 if (err)
5475 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5476 ERR_PTR(err));
5477 }
5478
5479 kfree(rdev->coupling_desc.coupled_rdevs);
5480 rdev->coupling_desc.coupled_rdevs = NULL;
5481}
5482
5483static int regulator_init_coupling(struct regulator_dev *rdev)
5484{
5485 struct regulator_dev **coupled;
5486 int err, n_phandles;
5487
5488 if (!IS_ENABLED(CONFIG_OF))
5489 n_phandles = 0;
5490 else
5491 n_phandles = of_get_n_coupled(rdev);
5492
5493 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5494 if (!coupled)
5495 return -ENOMEM;
5496
5497 rdev->coupling_desc.coupled_rdevs = coupled;
5498
5499 /*
5500 * Every regulator should always have coupling descriptor filled with
5501 * at least pointer to itself.
5502 */
5503 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5504 rdev->coupling_desc.n_coupled = n_phandles + 1;
5505 rdev->coupling_desc.n_resolved++;
5506
5507 /* regulator isn't coupled */
5508 if (n_phandles == 0)
5509 return 0;
5510
5511 if (!of_check_coupling_data(rdev))
5512 return -EPERM;
5513
5514 mutex_lock(®ulator_list_mutex);
5515 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5516 mutex_unlock(®ulator_list_mutex);
5517
5518 if (IS_ERR(rdev->coupling_desc.coupler)) {
5519 err = PTR_ERR(rdev->coupling_desc.coupler);
5520 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5521 return err;
5522 }
5523
5524 return 0;
5525}
5526
5527static int generic_coupler_attach(struct regulator_coupler *coupler,
5528 struct regulator_dev *rdev)
5529{
5530 if (rdev->coupling_desc.n_coupled > 2) {
5531 rdev_err(rdev,
5532 "Voltage balancing for multiple regulator couples is unimplemented\n");
5533 return -EPERM;
5534 }
5535
5536 if (!rdev->constraints->always_on) {
5537 rdev_err(rdev,
5538 "Coupling of a non always-on regulator is unimplemented\n");
5539 return -ENOTSUPP;
5540 }
5541
5542 return 0;
5543}
5544
5545static struct regulator_coupler generic_regulator_coupler = {
5546 .attach_regulator = generic_coupler_attach,
5547};
5548
5549/**
5550 * regulator_register - register regulator
5551 * @dev: the device that drive the regulator
5552 * @regulator_desc: regulator to register
5553 * @cfg: runtime configuration for regulator
5554 *
5555 * Called by regulator drivers to register a regulator.
5556 * Returns a valid pointer to struct regulator_dev on success
5557 * or an ERR_PTR() on error.
5558 */
5559struct regulator_dev *
5560regulator_register(struct device *dev,
5561 const struct regulator_desc *regulator_desc,
5562 const struct regulator_config *cfg)
5563{
5564 const struct regulator_init_data *init_data;
5565 struct regulator_config *config = NULL;
5566 static atomic_t regulator_no = ATOMIC_INIT(-1);
5567 struct regulator_dev *rdev;
5568 bool dangling_cfg_gpiod = false;
5569 bool dangling_of_gpiod = false;
5570 int ret, i;
5571 bool resolved_early = false;
5572
5573 if (cfg == NULL)
5574 return ERR_PTR(-EINVAL);
5575 if (cfg->ena_gpiod)
5576 dangling_cfg_gpiod = true;
5577 if (regulator_desc == NULL) {
5578 ret = -EINVAL;
5579 goto rinse;
5580 }
5581
5582 WARN_ON(!dev || !cfg->dev);
5583
5584 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5585 ret = -EINVAL;
5586 goto rinse;
5587 }
5588
5589 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5590 regulator_desc->type != REGULATOR_CURRENT) {
5591 ret = -EINVAL;
5592 goto rinse;
5593 }
5594
5595 /* Only one of each should be implemented */
5596 WARN_ON(regulator_desc->ops->get_voltage &&
5597 regulator_desc->ops->get_voltage_sel);
5598 WARN_ON(regulator_desc->ops->set_voltage &&
5599 regulator_desc->ops->set_voltage_sel);
5600
5601 /* If we're using selectors we must implement list_voltage. */
5602 if (regulator_desc->ops->get_voltage_sel &&
5603 !regulator_desc->ops->list_voltage) {
5604 ret = -EINVAL;
5605 goto rinse;
5606 }
5607 if (regulator_desc->ops->set_voltage_sel &&
5608 !regulator_desc->ops->list_voltage) {
5609 ret = -EINVAL;
5610 goto rinse;
5611 }
5612
5613 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5614 if (rdev == NULL) {
5615 ret = -ENOMEM;
5616 goto rinse;
5617 }
5618 device_initialize(&rdev->dev);
5619 dev_set_drvdata(&rdev->dev, rdev);
5620 rdev->dev.class = ®ulator_class;
5621 spin_lock_init(&rdev->err_lock);
5622
5623 /*
5624 * Duplicate the config so the driver could override it after
5625 * parsing init data.
5626 */
5627 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5628 if (config == NULL) {
5629 ret = -ENOMEM;
5630 goto clean;
5631 }
5632
5633 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5634 &rdev->dev.of_node);
5635
5636 /*
5637 * Sometimes not all resources are probed already so we need to take
5638 * that into account. This happens most the time if the ena_gpiod comes
5639 * from a gpio extender or something else.
5640 */
5641 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5642 ret = -EPROBE_DEFER;
5643 goto clean;
5644 }
5645
5646 /*
5647 * We need to keep track of any GPIO descriptor coming from the
5648 * device tree until we have handled it over to the core. If the
5649 * config that was passed in to this function DOES NOT contain
5650 * a descriptor, and the config after this call DOES contain
5651 * a descriptor, we definitely got one from parsing the device
5652 * tree.
5653 */
5654 if (!cfg->ena_gpiod && config->ena_gpiod)
5655 dangling_of_gpiod = true;
5656 if (!init_data) {
5657 init_data = config->init_data;
5658 rdev->dev.of_node = of_node_get(config->of_node);
5659 }
5660
5661 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5662 rdev->reg_data = config->driver_data;
5663 rdev->owner = regulator_desc->owner;
5664 rdev->desc = regulator_desc;
5665 if (config->regmap)
5666 rdev->regmap = config->regmap;
5667 else if (dev_get_regmap(dev, NULL))
5668 rdev->regmap = dev_get_regmap(dev, NULL);
5669 else if (dev->parent)
5670 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5671 INIT_LIST_HEAD(&rdev->consumer_list);
5672 INIT_LIST_HEAD(&rdev->list);
5673 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5674 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5675
5676 if (init_data && init_data->supply_regulator)
5677 rdev->supply_name = init_data->supply_regulator;
5678 else if (regulator_desc->supply_name)
5679 rdev->supply_name = regulator_desc->supply_name;
5680
5681 /* register with sysfs */
5682 rdev->dev.parent = config->dev;
5683 dev_set_name(&rdev->dev, "regulator.%lu",
5684 (unsigned long) atomic_inc_return(®ulator_no));
5685
5686 /* set regulator constraints */
5687 if (init_data)
5688 rdev->constraints = kmemdup(&init_data->constraints,
5689 sizeof(*rdev->constraints),
5690 GFP_KERNEL);
5691 else
5692 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5693 GFP_KERNEL);
5694 if (!rdev->constraints) {
5695 ret = -ENOMEM;
5696 goto wash;
5697 }
5698
5699 if ((rdev->supply_name && !rdev->supply) &&
5700 (rdev->constraints->always_on ||
5701 rdev->constraints->boot_on)) {
5702 ret = regulator_resolve_supply(rdev);
5703 if (ret)
5704 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5705 ERR_PTR(ret));
5706
5707 resolved_early = true;
5708 }
5709
5710 /* perform any regulator specific init */
5711 if (init_data && init_data->regulator_init) {
5712 ret = init_data->regulator_init(rdev->reg_data);
5713 if (ret < 0)
5714 goto wash;
5715 }
5716
5717 if (config->ena_gpiod) {
5718 ret = regulator_ena_gpio_request(rdev, config);
5719 if (ret != 0) {
5720 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5721 ERR_PTR(ret));
5722 goto wash;
5723 }
5724 /* The regulator core took over the GPIO descriptor */
5725 dangling_cfg_gpiod = false;
5726 dangling_of_gpiod = false;
5727 }
5728
5729 ret = set_machine_constraints(rdev);
5730 if (ret == -EPROBE_DEFER && !resolved_early) {
5731 /* Regulator might be in bypass mode and so needs its supply
5732 * to set the constraints
5733 */
5734 /* FIXME: this currently triggers a chicken-and-egg problem
5735 * when creating -SUPPLY symlink in sysfs to a regulator
5736 * that is just being created
5737 */
5738 rdev_dbg(rdev, "will resolve supply early: %s\n",
5739 rdev->supply_name);
5740 ret = regulator_resolve_supply(rdev);
5741 if (!ret)
5742 ret = set_machine_constraints(rdev);
5743 else
5744 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5745 ERR_PTR(ret));
5746 }
5747 if (ret < 0)
5748 goto wash;
5749
5750 ret = regulator_init_coupling(rdev);
5751 if (ret < 0)
5752 goto wash;
5753
5754 /* add consumers devices */
5755 if (init_data) {
5756 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5757 ret = set_consumer_device_supply(rdev,
5758 init_data->consumer_supplies[i].dev_name,
5759 init_data->consumer_supplies[i].supply);
5760 if (ret < 0) {
5761 dev_err(dev, "Failed to set supply %s\n",
5762 init_data->consumer_supplies[i].supply);
5763 goto unset_supplies;
5764 }
5765 }
5766 }
5767
5768 if (!rdev->desc->ops->get_voltage &&
5769 !rdev->desc->ops->list_voltage &&
5770 !rdev->desc->fixed_uV)
5771 rdev->is_switch = true;
5772
5773 ret = device_add(&rdev->dev);
5774 if (ret != 0)
5775 goto unset_supplies;
5776
5777 rdev_init_debugfs(rdev);
5778
5779 /* try to resolve regulators coupling since a new one was registered */
5780 mutex_lock(®ulator_list_mutex);
5781 regulator_resolve_coupling(rdev);
5782 mutex_unlock(®ulator_list_mutex);
5783
5784 /* try to resolve regulators supply since a new one was registered */
5785 class_for_each_device(®ulator_class, NULL, NULL,
5786 regulator_register_resolve_supply);
5787 kfree(config);
5788 return rdev;
5789
5790unset_supplies:
5791 mutex_lock(®ulator_list_mutex);
5792 unset_regulator_supplies(rdev);
5793 regulator_remove_coupling(rdev);
5794 mutex_unlock(®ulator_list_mutex);
5795wash:
5796 regulator_put(rdev->supply);
5797 kfree(rdev->coupling_desc.coupled_rdevs);
5798 mutex_lock(®ulator_list_mutex);
5799 regulator_ena_gpio_free(rdev);
5800 mutex_unlock(®ulator_list_mutex);
5801clean:
5802 if (dangling_of_gpiod)
5803 gpiod_put(config->ena_gpiod);
5804 kfree(config);
5805 put_device(&rdev->dev);
5806rinse:
5807 if (dangling_cfg_gpiod)
5808 gpiod_put(cfg->ena_gpiod);
5809 return ERR_PTR(ret);
5810}
5811EXPORT_SYMBOL_GPL(regulator_register);
5812
5813/**
5814 * regulator_unregister - unregister regulator
5815 * @rdev: regulator to unregister
5816 *
5817 * Called by regulator drivers to unregister a regulator.
5818 */
5819void regulator_unregister(struct regulator_dev *rdev)
5820{
5821 if (rdev == NULL)
5822 return;
5823
5824 if (rdev->supply) {
5825 while (rdev->use_count--)
5826 regulator_disable(rdev->supply);
5827 regulator_put(rdev->supply);
5828 }
5829
5830 flush_work(&rdev->disable_work.work);
5831
5832 mutex_lock(®ulator_list_mutex);
5833
5834 WARN_ON(rdev->open_count);
5835 regulator_remove_coupling(rdev);
5836 unset_regulator_supplies(rdev);
5837 list_del(&rdev->list);
5838 regulator_ena_gpio_free(rdev);
5839 device_unregister(&rdev->dev);
5840
5841 mutex_unlock(®ulator_list_mutex);
5842}
5843EXPORT_SYMBOL_GPL(regulator_unregister);
5844
5845#ifdef CONFIG_SUSPEND
5846/**
5847 * regulator_suspend - prepare regulators for system wide suspend
5848 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5849 *
5850 * Configure each regulator with it's suspend operating parameters for state.
5851 */
5852static int regulator_suspend(struct device *dev)
5853{
5854 struct regulator_dev *rdev = dev_to_rdev(dev);
5855 suspend_state_t state = pm_suspend_target_state;
5856 int ret;
5857 const struct regulator_state *rstate;
5858
5859 rstate = regulator_get_suspend_state_check(rdev, state);
5860 if (!rstate)
5861 return 0;
5862
5863 regulator_lock(rdev);
5864 ret = __suspend_set_state(rdev, rstate);
5865 regulator_unlock(rdev);
5866
5867 return ret;
5868}
5869
5870static int regulator_resume(struct device *dev)
5871{
5872 suspend_state_t state = pm_suspend_target_state;
5873 struct regulator_dev *rdev = dev_to_rdev(dev);
5874 struct regulator_state *rstate;
5875 int ret = 0;
5876
5877 rstate = regulator_get_suspend_state(rdev, state);
5878 if (rstate == NULL)
5879 return 0;
5880
5881 /* Avoid grabbing the lock if we don't need to */
5882 if (!rdev->desc->ops->resume)
5883 return 0;
5884
5885 regulator_lock(rdev);
5886
5887 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5888 rstate->enabled == DISABLE_IN_SUSPEND)
5889 ret = rdev->desc->ops->resume(rdev);
5890
5891 regulator_unlock(rdev);
5892
5893 return ret;
5894}
5895#else /* !CONFIG_SUSPEND */
5896
5897#define regulator_suspend NULL
5898#define regulator_resume NULL
5899
5900#endif /* !CONFIG_SUSPEND */
5901
5902#ifdef CONFIG_PM
5903static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5904 .suspend = regulator_suspend,
5905 .resume = regulator_resume,
5906};
5907#endif
5908
5909const struct class regulator_class = {
5910 .name = "regulator",
5911 .dev_release = regulator_dev_release,
5912 .dev_groups = regulator_dev_groups,
5913#ifdef CONFIG_PM
5914 .pm = ®ulator_pm_ops,
5915#endif
5916};
5917/**
5918 * regulator_has_full_constraints - the system has fully specified constraints
5919 *
5920 * Calling this function will cause the regulator API to disable all
5921 * regulators which have a zero use count and don't have an always_on
5922 * constraint in a late_initcall.
5923 *
5924 * The intention is that this will become the default behaviour in a
5925 * future kernel release so users are encouraged to use this facility
5926 * now.
5927 */
5928void regulator_has_full_constraints(void)
5929{
5930 has_full_constraints = 1;
5931}
5932EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5933
5934/**
5935 * rdev_get_drvdata - get rdev regulator driver data
5936 * @rdev: regulator
5937 *
5938 * Get rdev regulator driver private data. This call can be used in the
5939 * regulator driver context.
5940 */
5941void *rdev_get_drvdata(struct regulator_dev *rdev)
5942{
5943 return rdev->reg_data;
5944}
5945EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5946
5947/**
5948 * regulator_get_drvdata - get regulator driver data
5949 * @regulator: regulator
5950 *
5951 * Get regulator driver private data. This call can be used in the consumer
5952 * driver context when non API regulator specific functions need to be called.
5953 */
5954void *regulator_get_drvdata(struct regulator *regulator)
5955{
5956 return regulator->rdev->reg_data;
5957}
5958EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5959
5960/**
5961 * regulator_set_drvdata - set regulator driver data
5962 * @regulator: regulator
5963 * @data: data
5964 */
5965void regulator_set_drvdata(struct regulator *regulator, void *data)
5966{
5967 regulator->rdev->reg_data = data;
5968}
5969EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5970
5971/**
5972 * rdev_get_id - get regulator ID
5973 * @rdev: regulator
5974 */
5975int rdev_get_id(struct regulator_dev *rdev)
5976{
5977 return rdev->desc->id;
5978}
5979EXPORT_SYMBOL_GPL(rdev_get_id);
5980
5981struct device *rdev_get_dev(struct regulator_dev *rdev)
5982{
5983 return &rdev->dev;
5984}
5985EXPORT_SYMBOL_GPL(rdev_get_dev);
5986
5987struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5988{
5989 return rdev->regmap;
5990}
5991EXPORT_SYMBOL_GPL(rdev_get_regmap);
5992
5993void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5994{
5995 return reg_init_data->driver_data;
5996}
5997EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5998
5999#ifdef CONFIG_DEBUG_FS
6000static int supply_map_show(struct seq_file *sf, void *data)
6001{
6002 struct regulator_map *map;
6003
6004 list_for_each_entry(map, ®ulator_map_list, list) {
6005 seq_printf(sf, "%s -> %s.%s\n",
6006 rdev_get_name(map->regulator), map->dev_name,
6007 map->supply);
6008 }
6009
6010 return 0;
6011}
6012DEFINE_SHOW_ATTRIBUTE(supply_map);
6013
6014struct summary_data {
6015 struct seq_file *s;
6016 struct regulator_dev *parent;
6017 int level;
6018};
6019
6020static void regulator_summary_show_subtree(struct seq_file *s,
6021 struct regulator_dev *rdev,
6022 int level);
6023
6024static int regulator_summary_show_children(struct device *dev, void *data)
6025{
6026 struct regulator_dev *rdev = dev_to_rdev(dev);
6027 struct summary_data *summary_data = data;
6028
6029 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
6030 regulator_summary_show_subtree(summary_data->s, rdev,
6031 summary_data->level + 1);
6032
6033 return 0;
6034}
6035
6036static void regulator_summary_show_subtree(struct seq_file *s,
6037 struct regulator_dev *rdev,
6038 int level)
6039{
6040 struct regulation_constraints *c;
6041 struct regulator *consumer;
6042 struct summary_data summary_data;
6043 unsigned int opmode;
6044
6045 if (!rdev)
6046 return;
6047
6048 opmode = _regulator_get_mode_unlocked(rdev);
6049 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6050 level * 3 + 1, "",
6051 30 - level * 3, rdev_get_name(rdev),
6052 rdev->use_count, rdev->open_count, rdev->bypass_count,
6053 regulator_opmode_to_str(opmode));
6054
6055 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6056 seq_printf(s, "%5dmA ",
6057 _regulator_get_current_limit_unlocked(rdev) / 1000);
6058
6059 c = rdev->constraints;
6060 if (c) {
6061 switch (rdev->desc->type) {
6062 case REGULATOR_VOLTAGE:
6063 seq_printf(s, "%5dmV %5dmV ",
6064 c->min_uV / 1000, c->max_uV / 1000);
6065 break;
6066 case REGULATOR_CURRENT:
6067 seq_printf(s, "%5dmA %5dmA ",
6068 c->min_uA / 1000, c->max_uA / 1000);
6069 break;
6070 }
6071 }
6072
6073 seq_puts(s, "\n");
6074
6075 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6076 if (consumer->dev && consumer->dev->class == ®ulator_class)
6077 continue;
6078
6079 seq_printf(s, "%*s%-*s ",
6080 (level + 1) * 3 + 1, "",
6081 30 - (level + 1) * 3,
6082 consumer->supply_name ? consumer->supply_name :
6083 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6084
6085 switch (rdev->desc->type) {
6086 case REGULATOR_VOLTAGE:
6087 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6088 consumer->enable_count,
6089 consumer->uA_load / 1000,
6090 consumer->uA_load && !consumer->enable_count ?
6091 '*' : ' ',
6092 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6093 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6094 break;
6095 case REGULATOR_CURRENT:
6096 break;
6097 }
6098
6099 seq_puts(s, "\n");
6100 }
6101
6102 summary_data.s = s;
6103 summary_data.level = level;
6104 summary_data.parent = rdev;
6105
6106 class_for_each_device(®ulator_class, NULL, &summary_data,
6107 regulator_summary_show_children);
6108}
6109
6110struct summary_lock_data {
6111 struct ww_acquire_ctx *ww_ctx;
6112 struct regulator_dev **new_contended_rdev;
6113 struct regulator_dev **old_contended_rdev;
6114};
6115
6116static int regulator_summary_lock_one(struct device *dev, void *data)
6117{
6118 struct regulator_dev *rdev = dev_to_rdev(dev);
6119 struct summary_lock_data *lock_data = data;
6120 int ret = 0;
6121
6122 if (rdev != *lock_data->old_contended_rdev) {
6123 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6124
6125 if (ret == -EDEADLK)
6126 *lock_data->new_contended_rdev = rdev;
6127 else
6128 WARN_ON_ONCE(ret);
6129 } else {
6130 *lock_data->old_contended_rdev = NULL;
6131 }
6132
6133 return ret;
6134}
6135
6136static int regulator_summary_unlock_one(struct device *dev, void *data)
6137{
6138 struct regulator_dev *rdev = dev_to_rdev(dev);
6139 struct summary_lock_data *lock_data = data;
6140
6141 if (lock_data) {
6142 if (rdev == *lock_data->new_contended_rdev)
6143 return -EDEADLK;
6144 }
6145
6146 regulator_unlock(rdev);
6147
6148 return 0;
6149}
6150
6151static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6152 struct regulator_dev **new_contended_rdev,
6153 struct regulator_dev **old_contended_rdev)
6154{
6155 struct summary_lock_data lock_data;
6156 int ret;
6157
6158 lock_data.ww_ctx = ww_ctx;
6159 lock_data.new_contended_rdev = new_contended_rdev;
6160 lock_data.old_contended_rdev = old_contended_rdev;
6161
6162 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6163 regulator_summary_lock_one);
6164 if (ret)
6165 class_for_each_device(®ulator_class, NULL, &lock_data,
6166 regulator_summary_unlock_one);
6167
6168 return ret;
6169}
6170
6171static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6172{
6173 struct regulator_dev *new_contended_rdev = NULL;
6174 struct regulator_dev *old_contended_rdev = NULL;
6175 int err;
6176
6177 mutex_lock(®ulator_list_mutex);
6178
6179 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6180
6181 do {
6182 if (new_contended_rdev) {
6183 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6184 old_contended_rdev = new_contended_rdev;
6185 old_contended_rdev->ref_cnt++;
6186 old_contended_rdev->mutex_owner = current;
6187 }
6188
6189 err = regulator_summary_lock_all(ww_ctx,
6190 &new_contended_rdev,
6191 &old_contended_rdev);
6192
6193 if (old_contended_rdev)
6194 regulator_unlock(old_contended_rdev);
6195
6196 } while (err == -EDEADLK);
6197
6198 ww_acquire_done(ww_ctx);
6199}
6200
6201static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6202{
6203 class_for_each_device(®ulator_class, NULL, NULL,
6204 regulator_summary_unlock_one);
6205 ww_acquire_fini(ww_ctx);
6206
6207 mutex_unlock(®ulator_list_mutex);
6208}
6209
6210static int regulator_summary_show_roots(struct device *dev, void *data)
6211{
6212 struct regulator_dev *rdev = dev_to_rdev(dev);
6213 struct seq_file *s = data;
6214
6215 if (!rdev->supply)
6216 regulator_summary_show_subtree(s, rdev, 0);
6217
6218 return 0;
6219}
6220
6221static int regulator_summary_show(struct seq_file *s, void *data)
6222{
6223 struct ww_acquire_ctx ww_ctx;
6224
6225 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6226 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6227
6228 regulator_summary_lock(&ww_ctx);
6229
6230 class_for_each_device(®ulator_class, NULL, s,
6231 regulator_summary_show_roots);
6232
6233 regulator_summary_unlock(&ww_ctx);
6234
6235 return 0;
6236}
6237DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6238#endif /* CONFIG_DEBUG_FS */
6239
6240static int __init regulator_init(void)
6241{
6242 int ret;
6243
6244 ret = class_register(®ulator_class);
6245
6246 debugfs_root = debugfs_create_dir("regulator", NULL);
6247 if (IS_ERR(debugfs_root))
6248 pr_debug("regulator: Failed to create debugfs directory\n");
6249
6250#ifdef CONFIG_DEBUG_FS
6251 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6252 &supply_map_fops);
6253
6254 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6255 NULL, ®ulator_summary_fops);
6256#endif
6257 regulator_dummy_init();
6258
6259 regulator_coupler_register(&generic_regulator_coupler);
6260
6261 return ret;
6262}
6263
6264/* init early to allow our consumers to complete system booting */
6265core_initcall(regulator_init);
6266
6267static int regulator_late_cleanup(struct device *dev, void *data)
6268{
6269 struct regulator_dev *rdev = dev_to_rdev(dev);
6270 struct regulation_constraints *c = rdev->constraints;
6271 int ret;
6272
6273 if (c && c->always_on)
6274 return 0;
6275
6276 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6277 return 0;
6278
6279 regulator_lock(rdev);
6280
6281 if (rdev->use_count)
6282 goto unlock;
6283
6284 /* If reading the status failed, assume that it's off. */
6285 if (_regulator_is_enabled(rdev) <= 0)
6286 goto unlock;
6287
6288 if (have_full_constraints()) {
6289 /* We log since this may kill the system if it goes
6290 * wrong.
6291 */
6292 rdev_info(rdev, "disabling\n");
6293 ret = _regulator_do_disable(rdev);
6294 if (ret != 0)
6295 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6296 } else {
6297 /* The intention is that in future we will
6298 * assume that full constraints are provided
6299 * so warn even if we aren't going to do
6300 * anything here.
6301 */
6302 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6303 }
6304
6305unlock:
6306 regulator_unlock(rdev);
6307
6308 return 0;
6309}
6310
6311static bool regulator_ignore_unused;
6312static int __init regulator_ignore_unused_setup(char *__unused)
6313{
6314 regulator_ignore_unused = true;
6315 return 1;
6316}
6317__setup("regulator_ignore_unused", regulator_ignore_unused_setup);
6318
6319static void regulator_init_complete_work_function(struct work_struct *work)
6320{
6321 /*
6322 * Regulators may had failed to resolve their input supplies
6323 * when were registered, either because the input supply was
6324 * not registered yet or because its parent device was not
6325 * bound yet. So attempt to resolve the input supplies for
6326 * pending regulators before trying to disable unused ones.
6327 */
6328 class_for_each_device(®ulator_class, NULL, NULL,
6329 regulator_register_resolve_supply);
6330
6331 /*
6332 * For debugging purposes, it may be useful to prevent unused
6333 * regulators from being disabled.
6334 */
6335 if (regulator_ignore_unused) {
6336 pr_warn("regulator: Not disabling unused regulators\n");
6337 return;
6338 }
6339
6340 /* If we have a full configuration then disable any regulators
6341 * we have permission to change the status for and which are
6342 * not in use or always_on. This is effectively the default
6343 * for DT and ACPI as they have full constraints.
6344 */
6345 class_for_each_device(®ulator_class, NULL, NULL,
6346 regulator_late_cleanup);
6347}
6348
6349static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6350 regulator_init_complete_work_function);
6351
6352static int __init regulator_init_complete(void)
6353{
6354 /*
6355 * Since DT doesn't provide an idiomatic mechanism for
6356 * enabling full constraints and since it's much more natural
6357 * with DT to provide them just assume that a DT enabled
6358 * system has full constraints.
6359 */
6360 if (of_have_populated_dt())
6361 has_full_constraints = true;
6362
6363 /*
6364 * We punt completion for an arbitrary amount of time since
6365 * systems like distros will load many drivers from userspace
6366 * so consumers might not always be ready yet, this is
6367 * particularly an issue with laptops where this might bounce
6368 * the display off then on. Ideally we'd get a notification
6369 * from userspace when this happens but we don't so just wait
6370 * a bit and hope we waited long enough. It'd be better if
6371 * we'd only do this on systems that need it, and a kernel
6372 * command line option might be useful.
6373 */
6374 schedule_delayed_work(®ulator_init_complete_work,
6375 msecs_to_jiffies(30000));
6376
6377 return 0;
6378}
6379late_initcall_sync(regulator_init_complete);