Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
  35
  36#define rdev_crit(rdev, fmt, ...)					\
  37	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  38#define rdev_err(rdev, fmt, ...)					\
  39	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  40#define rdev_warn(rdev, fmt, ...)					\
  41	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  42#define rdev_info(rdev, fmt, ...)					\
  43	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  44#define rdev_dbg(rdev, fmt, ...)					\
  45	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
  46
  47static DEFINE_WW_CLASS(regulator_ww_class);
  48static DEFINE_MUTEX(regulator_nesting_mutex);
  49static DEFINE_MUTEX(regulator_list_mutex);
  50static LIST_HEAD(regulator_map_list);
  51static LIST_HEAD(regulator_ena_gpio_list);
  52static LIST_HEAD(regulator_supply_alias_list);
  53static LIST_HEAD(regulator_coupler_list);
  54static bool has_full_constraints;
  55
  56static struct dentry *debugfs_root;
  57
  58/*
  59 * struct regulator_map
  60 *
  61 * Used to provide symbolic supply names to devices.
  62 */
  63struct regulator_map {
  64	struct list_head list;
  65	const char *dev_name;   /* The dev_name() for the consumer */
  66	const char *supply;
  67	struct regulator_dev *regulator;
  68};
  69
  70/*
  71 * struct regulator_enable_gpio
  72 *
  73 * Management for shared enable GPIO pin
  74 */
  75struct regulator_enable_gpio {
  76	struct list_head list;
  77	struct gpio_desc *gpiod;
  78	u32 enable_count;	/* a number of enabled shared GPIO */
  79	u32 request_count;	/* a number of requested shared GPIO */
  80};
  81
  82/*
  83 * struct regulator_supply_alias
  84 *
  85 * Used to map lookups for a supply onto an alternative device.
  86 */
  87struct regulator_supply_alias {
  88	struct list_head list;
  89	struct device *src_dev;
  90	const char *src_supply;
  91	struct device *alias_dev;
  92	const char *alias_supply;
  93};
  94
  95static int _regulator_is_enabled(struct regulator_dev *rdev);
  96static int _regulator_disable(struct regulator *regulator);
  97static int _regulator_get_current_limit(struct regulator_dev *rdev);
  98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  99static int _notifier_call_chain(struct regulator_dev *rdev,
 100				  unsigned long event, void *data);
 101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
 102				     int min_uV, int max_uV);
 103static int regulator_balance_voltage(struct regulator_dev *rdev,
 104				     suspend_state_t state);
 105static struct regulator *create_regulator(struct regulator_dev *rdev,
 106					  struct device *dev,
 107					  const char *supply_name);
 108static void destroy_regulator(struct regulator *regulator);
 109static void _regulator_put(struct regulator *regulator);
 110
 111const char *rdev_get_name(struct regulator_dev *rdev)
 112{
 113	if (rdev->constraints && rdev->constraints->name)
 114		return rdev->constraints->name;
 115	else if (rdev->desc->name)
 116		return rdev->desc->name;
 117	else
 118		return "";
 119}
 
 120
 121static bool have_full_constraints(void)
 122{
 123	return has_full_constraints || of_have_populated_dt();
 124}
 125
 126static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 127{
 128	if (!rdev->constraints) {
 129		rdev_err(rdev, "no constraints\n");
 130		return false;
 131	}
 132
 133	if (rdev->constraints->valid_ops_mask & ops)
 134		return true;
 135
 136	return false;
 137}
 138
 139/**
 140 * regulator_lock_nested - lock a single regulator
 141 * @rdev:		regulator source
 142 * @ww_ctx:		w/w mutex acquire context
 143 *
 144 * This function can be called many times by one task on
 145 * a single regulator and its mutex will be locked only
 146 * once. If a task, which is calling this function is other
 147 * than the one, which initially locked the mutex, it will
 148 * wait on mutex.
 149 */
 150static inline int regulator_lock_nested(struct regulator_dev *rdev,
 151					struct ww_acquire_ctx *ww_ctx)
 152{
 153	bool lock = false;
 154	int ret = 0;
 155
 156	mutex_lock(&regulator_nesting_mutex);
 157
 158	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 159		if (rdev->mutex_owner == current)
 160			rdev->ref_cnt++;
 161		else
 162			lock = true;
 163
 164		if (lock) {
 165			mutex_unlock(&regulator_nesting_mutex);
 166			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 167			mutex_lock(&regulator_nesting_mutex);
 168		}
 169	} else {
 170		lock = true;
 171	}
 172
 173	if (lock && ret != -EDEADLK) {
 174		rdev->ref_cnt++;
 175		rdev->mutex_owner = current;
 176	}
 177
 178	mutex_unlock(&regulator_nesting_mutex);
 179
 180	return ret;
 181}
 182
 183/**
 184 * regulator_lock - lock a single regulator
 185 * @rdev:		regulator source
 186 *
 187 * This function can be called many times by one task on
 188 * a single regulator and its mutex will be locked only
 189 * once. If a task, which is calling this function is other
 190 * than the one, which initially locked the mutex, it will
 191 * wait on mutex.
 192 */
 193void regulator_lock(struct regulator_dev *rdev)
 194{
 195	regulator_lock_nested(rdev, NULL);
 196}
 197EXPORT_SYMBOL_GPL(regulator_lock);
 198
 199/**
 200 * regulator_unlock - unlock a single regulator
 201 * @rdev:		regulator_source
 202 *
 203 * This function unlocks the mutex when the
 204 * reference counter reaches 0.
 205 */
 206void regulator_unlock(struct regulator_dev *rdev)
 207{
 208	mutex_lock(&regulator_nesting_mutex);
 209
 210	if (--rdev->ref_cnt == 0) {
 211		rdev->mutex_owner = NULL;
 212		ww_mutex_unlock(&rdev->mutex);
 213	}
 214
 215	WARN_ON_ONCE(rdev->ref_cnt < 0);
 216
 217	mutex_unlock(&regulator_nesting_mutex);
 218}
 219EXPORT_SYMBOL_GPL(regulator_unlock);
 220
 221static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 222{
 223	struct regulator_dev *c_rdev;
 224	int i;
 225
 226	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 227		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 228
 229		if (rdev->supply->rdev == c_rdev)
 230			return true;
 231	}
 232
 233	return false;
 234}
 235
 236static void regulator_unlock_recursive(struct regulator_dev *rdev,
 237				       unsigned int n_coupled)
 238{
 239	struct regulator_dev *c_rdev, *supply_rdev;
 240	int i, supply_n_coupled;
 241
 242	for (i = n_coupled; i > 0; i--) {
 243		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 244
 245		if (!c_rdev)
 246			continue;
 247
 248		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 249			supply_rdev = c_rdev->supply->rdev;
 250			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 251
 252			regulator_unlock_recursive(supply_rdev,
 253						   supply_n_coupled);
 254		}
 255
 256		regulator_unlock(c_rdev);
 257	}
 258}
 259
 260static int regulator_lock_recursive(struct regulator_dev *rdev,
 261				    struct regulator_dev **new_contended_rdev,
 262				    struct regulator_dev **old_contended_rdev,
 263				    struct ww_acquire_ctx *ww_ctx)
 264{
 265	struct regulator_dev *c_rdev;
 266	int i, err;
 267
 268	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 269		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 270
 271		if (!c_rdev)
 272			continue;
 273
 274		if (c_rdev != *old_contended_rdev) {
 275			err = regulator_lock_nested(c_rdev, ww_ctx);
 276			if (err) {
 277				if (err == -EDEADLK) {
 278					*new_contended_rdev = c_rdev;
 279					goto err_unlock;
 280				}
 281
 282				/* shouldn't happen */
 283				WARN_ON_ONCE(err != -EALREADY);
 284			}
 285		} else {
 286			*old_contended_rdev = NULL;
 287		}
 288
 289		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 290			err = regulator_lock_recursive(c_rdev->supply->rdev,
 291						       new_contended_rdev,
 292						       old_contended_rdev,
 293						       ww_ctx);
 294			if (err) {
 295				regulator_unlock(c_rdev);
 296				goto err_unlock;
 297			}
 298		}
 299	}
 300
 301	return 0;
 302
 303err_unlock:
 304	regulator_unlock_recursive(rdev, i);
 305
 306	return err;
 307}
 308
 309/**
 310 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 311 *				regulators
 312 * @rdev:			regulator source
 313 * @ww_ctx:			w/w mutex acquire context
 314 *
 315 * Unlock all regulators related with rdev by coupling or supplying.
 316 */
 317static void regulator_unlock_dependent(struct regulator_dev *rdev,
 318				       struct ww_acquire_ctx *ww_ctx)
 319{
 320	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 321	ww_acquire_fini(ww_ctx);
 322}
 323
 324/**
 325 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 326 * @rdev:			regulator source
 327 * @ww_ctx:			w/w mutex acquire context
 328 *
 329 * This function as a wrapper on regulator_lock_recursive(), which locks
 330 * all regulators related with rdev by coupling or supplying.
 331 */
 332static void regulator_lock_dependent(struct regulator_dev *rdev,
 333				     struct ww_acquire_ctx *ww_ctx)
 334{
 335	struct regulator_dev *new_contended_rdev = NULL;
 336	struct regulator_dev *old_contended_rdev = NULL;
 337	int err;
 338
 339	mutex_lock(&regulator_list_mutex);
 340
 341	ww_acquire_init(ww_ctx, &regulator_ww_class);
 342
 343	do {
 344		if (new_contended_rdev) {
 345			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 346			old_contended_rdev = new_contended_rdev;
 347			old_contended_rdev->ref_cnt++;
 348		}
 349
 350		err = regulator_lock_recursive(rdev,
 351					       &new_contended_rdev,
 352					       &old_contended_rdev,
 353					       ww_ctx);
 354
 355		if (old_contended_rdev)
 356			regulator_unlock(old_contended_rdev);
 357
 358	} while (err == -EDEADLK);
 359
 360	ww_acquire_done(ww_ctx);
 361
 362	mutex_unlock(&regulator_list_mutex);
 363}
 364
 365/**
 366 * of_get_child_regulator - get a child regulator device node
 367 * based on supply name
 368 * @parent: Parent device node
 369 * @prop_name: Combination regulator supply name and "-supply"
 370 *
 371 * Traverse all child nodes.
 372 * Extract the child regulator device node corresponding to the supply name.
 373 * returns the device node corresponding to the regulator if found, else
 374 * returns NULL.
 375 */
 376static struct device_node *of_get_child_regulator(struct device_node *parent,
 377						  const char *prop_name)
 378{
 379	struct device_node *regnode = NULL;
 380	struct device_node *child = NULL;
 381
 382	for_each_child_of_node(parent, child) {
 383		regnode = of_parse_phandle(child, prop_name, 0);
 384
 385		if (!regnode) {
 386			regnode = of_get_child_regulator(child, prop_name);
 387			if (regnode)
 388				goto err_node_put;
 389		} else {
 390			goto err_node_put;
 391		}
 392	}
 393	return NULL;
 394
 395err_node_put:
 396	of_node_put(child);
 397	return regnode;
 398}
 399
 400/**
 401 * of_get_regulator - get a regulator device node based on supply name
 402 * @dev: Device pointer for the consumer (of regulator) device
 403 * @supply: regulator supply name
 404 *
 405 * Extract the regulator device node corresponding to the supply name.
 406 * returns the device node corresponding to the regulator if found, else
 407 * returns NULL.
 408 */
 409static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 410{
 411	struct device_node *regnode = NULL;
 412	char prop_name[32]; /* 32 is max size of property name */
 413
 414	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 415
 416	snprintf(prop_name, 32, "%s-supply", supply);
 417	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 418
 419	if (!regnode) {
 420		regnode = of_get_child_regulator(dev->of_node, prop_name);
 421		if (regnode)
 422			return regnode;
 423
 424		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 425				prop_name, dev->of_node);
 426		return NULL;
 427	}
 428	return regnode;
 429}
 430
 431/* Platform voltage constraint check */
 432int regulator_check_voltage(struct regulator_dev *rdev,
 433			    int *min_uV, int *max_uV)
 434{
 435	BUG_ON(*min_uV > *max_uV);
 436
 437	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 438		rdev_err(rdev, "voltage operation not allowed\n");
 439		return -EPERM;
 440	}
 441
 442	if (*max_uV > rdev->constraints->max_uV)
 443		*max_uV = rdev->constraints->max_uV;
 444	if (*min_uV < rdev->constraints->min_uV)
 445		*min_uV = rdev->constraints->min_uV;
 446
 447	if (*min_uV > *max_uV) {
 448		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 449			 *min_uV, *max_uV);
 450		return -EINVAL;
 451	}
 452
 453	return 0;
 454}
 455
 456/* return 0 if the state is valid */
 457static int regulator_check_states(suspend_state_t state)
 458{
 459	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 460}
 461
 462/* Make sure we select a voltage that suits the needs of all
 463 * regulator consumers
 464 */
 465int regulator_check_consumers(struct regulator_dev *rdev,
 466			      int *min_uV, int *max_uV,
 467			      suspend_state_t state)
 468{
 469	struct regulator *regulator;
 470	struct regulator_voltage *voltage;
 471
 472	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 473		voltage = &regulator->voltage[state];
 474		/*
 475		 * Assume consumers that didn't say anything are OK
 476		 * with anything in the constraint range.
 477		 */
 478		if (!voltage->min_uV && !voltage->max_uV)
 479			continue;
 480
 481		if (*max_uV > voltage->max_uV)
 482			*max_uV = voltage->max_uV;
 483		if (*min_uV < voltage->min_uV)
 484			*min_uV = voltage->min_uV;
 485	}
 486
 487	if (*min_uV > *max_uV) {
 488		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 489			*min_uV, *max_uV);
 490		return -EINVAL;
 491	}
 492
 493	return 0;
 494}
 495
 496/* current constraint check */
 497static int regulator_check_current_limit(struct regulator_dev *rdev,
 498					int *min_uA, int *max_uA)
 499{
 500	BUG_ON(*min_uA > *max_uA);
 501
 502	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 503		rdev_err(rdev, "current operation not allowed\n");
 504		return -EPERM;
 505	}
 506
 507	if (*max_uA > rdev->constraints->max_uA)
 508		*max_uA = rdev->constraints->max_uA;
 509	if (*min_uA < rdev->constraints->min_uA)
 510		*min_uA = rdev->constraints->min_uA;
 511
 512	if (*min_uA > *max_uA) {
 513		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 514			 *min_uA, *max_uA);
 515		return -EINVAL;
 516	}
 517
 518	return 0;
 519}
 520
 521/* operating mode constraint check */
 522static int regulator_mode_constrain(struct regulator_dev *rdev,
 523				    unsigned int *mode)
 524{
 525	switch (*mode) {
 526	case REGULATOR_MODE_FAST:
 527	case REGULATOR_MODE_NORMAL:
 528	case REGULATOR_MODE_IDLE:
 529	case REGULATOR_MODE_STANDBY:
 530		break;
 531	default:
 532		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 533		return -EINVAL;
 534	}
 535
 536	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 537		rdev_err(rdev, "mode operation not allowed\n");
 538		return -EPERM;
 539	}
 540
 541	/* The modes are bitmasks, the most power hungry modes having
 542	 * the lowest values. If the requested mode isn't supported
 543	 * try higher modes. */
 
 544	while (*mode) {
 545		if (rdev->constraints->valid_modes_mask & *mode)
 546			return 0;
 547		*mode /= 2;
 548	}
 549
 550	return -EINVAL;
 551}
 552
 553static inline struct regulator_state *
 554regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 555{
 556	if (rdev->constraints == NULL)
 557		return NULL;
 558
 559	switch (state) {
 560	case PM_SUSPEND_STANDBY:
 561		return &rdev->constraints->state_standby;
 562	case PM_SUSPEND_MEM:
 563		return &rdev->constraints->state_mem;
 564	case PM_SUSPEND_MAX:
 565		return &rdev->constraints->state_disk;
 566	default:
 567		return NULL;
 568	}
 569}
 570
 571static ssize_t regulator_uV_show(struct device *dev,
 572				struct device_attribute *attr, char *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 573{
 574	struct regulator_dev *rdev = dev_get_drvdata(dev);
 575	int uV;
 576
 577	regulator_lock(rdev);
 578	uV = regulator_get_voltage_rdev(rdev);
 579	regulator_unlock(rdev);
 580
 581	if (uV < 0)
 582		return uV;
 583	return sprintf(buf, "%d\n", uV);
 584}
 585static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
 586
 587static ssize_t regulator_uA_show(struct device *dev,
 588				struct device_attribute *attr, char *buf)
 589{
 590	struct regulator_dev *rdev = dev_get_drvdata(dev);
 591
 592	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 593}
 594static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
 595
 596static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 597			 char *buf)
 598{
 599	struct regulator_dev *rdev = dev_get_drvdata(dev);
 600
 601	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 602}
 603static DEVICE_ATTR_RO(name);
 604
 605static const char *regulator_opmode_to_str(int mode)
 606{
 607	switch (mode) {
 608	case REGULATOR_MODE_FAST:
 609		return "fast";
 610	case REGULATOR_MODE_NORMAL:
 611		return "normal";
 612	case REGULATOR_MODE_IDLE:
 613		return "idle";
 614	case REGULATOR_MODE_STANDBY:
 615		return "standby";
 616	}
 617	return "unknown";
 618}
 619
 620static ssize_t regulator_print_opmode(char *buf, int mode)
 621{
 622	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 623}
 624
 625static ssize_t regulator_opmode_show(struct device *dev,
 626				    struct device_attribute *attr, char *buf)
 627{
 628	struct regulator_dev *rdev = dev_get_drvdata(dev);
 629
 630	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 631}
 632static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
 633
 634static ssize_t regulator_print_state(char *buf, int state)
 635{
 636	if (state > 0)
 637		return sprintf(buf, "enabled\n");
 638	else if (state == 0)
 639		return sprintf(buf, "disabled\n");
 640	else
 641		return sprintf(buf, "unknown\n");
 642}
 643
 644static ssize_t regulator_state_show(struct device *dev,
 645				   struct device_attribute *attr, char *buf)
 646{
 647	struct regulator_dev *rdev = dev_get_drvdata(dev);
 648	ssize_t ret;
 649
 650	regulator_lock(rdev);
 651	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 652	regulator_unlock(rdev);
 653
 654	return ret;
 655}
 656static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
 657
 658static ssize_t regulator_status_show(struct device *dev,
 659				   struct device_attribute *attr, char *buf)
 660{
 661	struct regulator_dev *rdev = dev_get_drvdata(dev);
 662	int status;
 663	char *label;
 664
 665	status = rdev->desc->ops->get_status(rdev);
 666	if (status < 0)
 667		return status;
 668
 669	switch (status) {
 670	case REGULATOR_STATUS_OFF:
 671		label = "off";
 672		break;
 673	case REGULATOR_STATUS_ON:
 674		label = "on";
 675		break;
 676	case REGULATOR_STATUS_ERROR:
 677		label = "error";
 678		break;
 679	case REGULATOR_STATUS_FAST:
 680		label = "fast";
 681		break;
 682	case REGULATOR_STATUS_NORMAL:
 683		label = "normal";
 684		break;
 685	case REGULATOR_STATUS_IDLE:
 686		label = "idle";
 687		break;
 688	case REGULATOR_STATUS_STANDBY:
 689		label = "standby";
 690		break;
 691	case REGULATOR_STATUS_BYPASS:
 692		label = "bypass";
 693		break;
 694	case REGULATOR_STATUS_UNDEFINED:
 695		label = "undefined";
 696		break;
 697	default:
 698		return -ERANGE;
 699	}
 700
 701	return sprintf(buf, "%s\n", label);
 702}
 703static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
 704
 705static ssize_t regulator_min_uA_show(struct device *dev,
 706				    struct device_attribute *attr, char *buf)
 707{
 708	struct regulator_dev *rdev = dev_get_drvdata(dev);
 709
 710	if (!rdev->constraints)
 711		return sprintf(buf, "constraint not defined\n");
 712
 713	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 714}
 715static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
 716
 717static ssize_t regulator_max_uA_show(struct device *dev,
 718				    struct device_attribute *attr, char *buf)
 719{
 720	struct regulator_dev *rdev = dev_get_drvdata(dev);
 721
 722	if (!rdev->constraints)
 723		return sprintf(buf, "constraint not defined\n");
 724
 725	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 726}
 727static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
 728
 729static ssize_t regulator_min_uV_show(struct device *dev,
 730				    struct device_attribute *attr, char *buf)
 731{
 732	struct regulator_dev *rdev = dev_get_drvdata(dev);
 733
 734	if (!rdev->constraints)
 735		return sprintf(buf, "constraint not defined\n");
 736
 737	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 738}
 739static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
 740
 741static ssize_t regulator_max_uV_show(struct device *dev,
 742				    struct device_attribute *attr, char *buf)
 743{
 744	struct regulator_dev *rdev = dev_get_drvdata(dev);
 745
 746	if (!rdev->constraints)
 747		return sprintf(buf, "constraint not defined\n");
 748
 749	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 750}
 751static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
 752
 753static ssize_t regulator_total_uA_show(struct device *dev,
 754				      struct device_attribute *attr, char *buf)
 755{
 756	struct regulator_dev *rdev = dev_get_drvdata(dev);
 757	struct regulator *regulator;
 758	int uA = 0;
 759
 760	regulator_lock(rdev);
 761	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 762		if (regulator->enable_count)
 763			uA += regulator->uA_load;
 764	}
 765	regulator_unlock(rdev);
 766	return sprintf(buf, "%d\n", uA);
 767}
 768static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
 769
 770static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 771			      char *buf)
 772{
 773	struct regulator_dev *rdev = dev_get_drvdata(dev);
 774	return sprintf(buf, "%d\n", rdev->use_count);
 775}
 776static DEVICE_ATTR_RO(num_users);
 777
 778static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 779			 char *buf)
 780{
 781	struct regulator_dev *rdev = dev_get_drvdata(dev);
 782
 783	switch (rdev->desc->type) {
 784	case REGULATOR_VOLTAGE:
 785		return sprintf(buf, "voltage\n");
 786	case REGULATOR_CURRENT:
 787		return sprintf(buf, "current\n");
 788	}
 789	return sprintf(buf, "unknown\n");
 790}
 791static DEVICE_ATTR_RO(type);
 792
 793static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
 794				struct device_attribute *attr, char *buf)
 795{
 796	struct regulator_dev *rdev = dev_get_drvdata(dev);
 797
 798	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 799}
 800static DEVICE_ATTR(suspend_mem_microvolts, 0444,
 801		regulator_suspend_mem_uV_show, NULL);
 802
 803static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
 804				struct device_attribute *attr, char *buf)
 805{
 806	struct regulator_dev *rdev = dev_get_drvdata(dev);
 807
 808	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 809}
 810static DEVICE_ATTR(suspend_disk_microvolts, 0444,
 811		regulator_suspend_disk_uV_show, NULL);
 812
 813static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
 814				struct device_attribute *attr, char *buf)
 815{
 816	struct regulator_dev *rdev = dev_get_drvdata(dev);
 817
 818	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 819}
 820static DEVICE_ATTR(suspend_standby_microvolts, 0444,
 821		regulator_suspend_standby_uV_show, NULL);
 822
 823static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
 824				struct device_attribute *attr, char *buf)
 825{
 826	struct regulator_dev *rdev = dev_get_drvdata(dev);
 827
 828	return regulator_print_opmode(buf,
 829		rdev->constraints->state_mem.mode);
 830}
 831static DEVICE_ATTR(suspend_mem_mode, 0444,
 832		regulator_suspend_mem_mode_show, NULL);
 833
 834static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
 835				struct device_attribute *attr, char *buf)
 836{
 837	struct regulator_dev *rdev = dev_get_drvdata(dev);
 838
 839	return regulator_print_opmode(buf,
 840		rdev->constraints->state_disk.mode);
 841}
 842static DEVICE_ATTR(suspend_disk_mode, 0444,
 843		regulator_suspend_disk_mode_show, NULL);
 844
 845static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
 846				struct device_attribute *attr, char *buf)
 847{
 848	struct regulator_dev *rdev = dev_get_drvdata(dev);
 849
 850	return regulator_print_opmode(buf,
 851		rdev->constraints->state_standby.mode);
 852}
 853static DEVICE_ATTR(suspend_standby_mode, 0444,
 854		regulator_suspend_standby_mode_show, NULL);
 855
 856static ssize_t regulator_suspend_mem_state_show(struct device *dev,
 857				   struct device_attribute *attr, char *buf)
 858{
 859	struct regulator_dev *rdev = dev_get_drvdata(dev);
 860
 861	return regulator_print_state(buf,
 862			rdev->constraints->state_mem.enabled);
 863}
 864static DEVICE_ATTR(suspend_mem_state, 0444,
 865		regulator_suspend_mem_state_show, NULL);
 866
 867static ssize_t regulator_suspend_disk_state_show(struct device *dev,
 868				   struct device_attribute *attr, char *buf)
 869{
 870	struct regulator_dev *rdev = dev_get_drvdata(dev);
 871
 872	return regulator_print_state(buf,
 873			rdev->constraints->state_disk.enabled);
 874}
 875static DEVICE_ATTR(suspend_disk_state, 0444,
 876		regulator_suspend_disk_state_show, NULL);
 877
 878static ssize_t regulator_suspend_standby_state_show(struct device *dev,
 879				   struct device_attribute *attr, char *buf)
 880{
 881	struct regulator_dev *rdev = dev_get_drvdata(dev);
 882
 883	return regulator_print_state(buf,
 884			rdev->constraints->state_standby.enabled);
 885}
 886static DEVICE_ATTR(suspend_standby_state, 0444,
 887		regulator_suspend_standby_state_show, NULL);
 888
 889static ssize_t regulator_bypass_show(struct device *dev,
 890				     struct device_attribute *attr, char *buf)
 891{
 892	struct regulator_dev *rdev = dev_get_drvdata(dev);
 893	const char *report;
 894	bool bypass;
 895	int ret;
 896
 897	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 898
 899	if (ret != 0)
 900		report = "unknown";
 901	else if (bypass)
 902		report = "enabled";
 903	else
 904		report = "disabled";
 905
 906	return sprintf(buf, "%s\n", report);
 907}
 908static DEVICE_ATTR(bypass, 0444,
 909		   regulator_bypass_show, NULL);
 910
 911/* Calculate the new optimum regulator operating mode based on the new total
 912 * consumer load. All locks held by caller */
 
 913static int drms_uA_update(struct regulator_dev *rdev)
 914{
 915	struct regulator *sibling;
 916	int current_uA = 0, output_uV, input_uV, err;
 917	unsigned int mode;
 918
 919	/*
 920	 * first check to see if we can set modes at all, otherwise just
 921	 * tell the consumer everything is OK.
 922	 */
 923	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 924		rdev_dbg(rdev, "DRMS operation not allowed\n");
 925		return 0;
 926	}
 927
 928	if (!rdev->desc->ops->get_optimum_mode &&
 929	    !rdev->desc->ops->set_load)
 930		return 0;
 931
 932	if (!rdev->desc->ops->set_mode &&
 933	    !rdev->desc->ops->set_load)
 934		return -EINVAL;
 935
 936	/* calc total requested load */
 937	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 938		if (sibling->enable_count)
 939			current_uA += sibling->uA_load;
 940	}
 941
 942	current_uA += rdev->constraints->system_load;
 943
 944	if (rdev->desc->ops->set_load) {
 945		/* set the optimum mode for our new total regulator load */
 946		err = rdev->desc->ops->set_load(rdev, current_uA);
 947		if (err < 0)
 948			rdev_err(rdev, "failed to set load %d\n", current_uA);
 
 949	} else {
 950		/* get output voltage */
 951		output_uV = regulator_get_voltage_rdev(rdev);
 952		if (output_uV <= 0) {
 953			rdev_err(rdev, "invalid output voltage found\n");
 954			return -EINVAL;
 955		}
 956
 957		/* get input voltage */
 958		input_uV = 0;
 959		if (rdev->supply)
 960			input_uV = regulator_get_voltage(rdev->supply);
 961		if (input_uV <= 0)
 962			input_uV = rdev->constraints->input_uV;
 963		if (input_uV <= 0) {
 964			rdev_err(rdev, "invalid input voltage found\n");
 965			return -EINVAL;
 966		}
 967
 968		/* now get the optimum mode for our new total regulator load */
 969		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 970							 output_uV, current_uA);
 971
 972		/* check the new mode is allowed */
 973		err = regulator_mode_constrain(rdev, &mode);
 974		if (err < 0) {
 975			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
 976				 current_uA, input_uV, output_uV);
 977			return err;
 978		}
 979
 980		err = rdev->desc->ops->set_mode(rdev, mode);
 981		if (err < 0)
 982			rdev_err(rdev, "failed to set optimum mode %x\n", mode);
 
 983	}
 984
 985	return err;
 986}
 987
 988static int suspend_set_state(struct regulator_dev *rdev,
 989				    suspend_state_t state)
 990{
 991	int ret = 0;
 992	struct regulator_state *rstate;
 993
 994	rstate = regulator_get_suspend_state(rdev, state);
 995	if (rstate == NULL)
 996		return 0;
 997
 998	/* If we have no suspend mode configuration don't set anything;
 999	 * only warn if the driver implements set_suspend_voltage or
1000	 * set_suspend_mode callback.
1001	 */
1002	if (rstate->enabled != ENABLE_IN_SUSPEND &&
1003	    rstate->enabled != DISABLE_IN_SUSPEND) {
1004		if (rdev->desc->ops->set_suspend_voltage ||
1005		    rdev->desc->ops->set_suspend_mode)
1006			rdev_warn(rdev, "No configuration\n");
1007		return 0;
1008	}
1009
1010	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1011		rdev->desc->ops->set_suspend_enable)
1012		ret = rdev->desc->ops->set_suspend_enable(rdev);
1013	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1014		rdev->desc->ops->set_suspend_disable)
1015		ret = rdev->desc->ops->set_suspend_disable(rdev);
1016	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1017		ret = 0;
1018
1019	if (ret < 0) {
1020		rdev_err(rdev, "failed to enabled/disable\n");
1021		return ret;
1022	}
1023
1024	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1025		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1026		if (ret < 0) {
1027			rdev_err(rdev, "failed to set voltage\n");
1028			return ret;
1029		}
1030	}
1031
1032	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1033		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1034		if (ret < 0) {
1035			rdev_err(rdev, "failed to set mode\n");
1036			return ret;
1037		}
1038	}
1039
1040	return ret;
1041}
1042
1043static void print_constraints(struct regulator_dev *rdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
1044{
1045	struct regulation_constraints *constraints = rdev->constraints;
1046	char buf[160] = "";
1047	size_t len = sizeof(buf) - 1;
1048	int count = 0;
1049	int ret;
1050
1051	if (constraints->min_uV && constraints->max_uV) {
1052		if (constraints->min_uV == constraints->max_uV)
1053			count += scnprintf(buf + count, len - count, "%d mV ",
1054					   constraints->min_uV / 1000);
1055		else
1056			count += scnprintf(buf + count, len - count,
1057					   "%d <--> %d mV ",
1058					   constraints->min_uV / 1000,
1059					   constraints->max_uV / 1000);
1060	}
1061
1062	if (!constraints->min_uV ||
1063	    constraints->min_uV != constraints->max_uV) {
1064		ret = regulator_get_voltage_rdev(rdev);
1065		if (ret > 0)
1066			count += scnprintf(buf + count, len - count,
1067					   "at %d mV ", ret / 1000);
1068	}
1069
1070	if (constraints->uV_offset)
1071		count += scnprintf(buf + count, len - count, "%dmV offset ",
1072				   constraints->uV_offset / 1000);
1073
1074	if (constraints->min_uA && constraints->max_uA) {
1075		if (constraints->min_uA == constraints->max_uA)
1076			count += scnprintf(buf + count, len - count, "%d mA ",
1077					   constraints->min_uA / 1000);
1078		else
1079			count += scnprintf(buf + count, len - count,
1080					   "%d <--> %d mA ",
1081					   constraints->min_uA / 1000,
1082					   constraints->max_uA / 1000);
1083	}
1084
1085	if (!constraints->min_uA ||
1086	    constraints->min_uA != constraints->max_uA) {
1087		ret = _regulator_get_current_limit(rdev);
1088		if (ret > 0)
1089			count += scnprintf(buf + count, len - count,
1090					   "at %d mA ", ret / 1000);
1091	}
1092
1093	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1094		count += scnprintf(buf + count, len - count, "fast ");
1095	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1096		count += scnprintf(buf + count, len - count, "normal ");
1097	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1098		count += scnprintf(buf + count, len - count, "idle ");
1099	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1100		count += scnprintf(buf + count, len - count, "standby");
1101
1102	if (!count)
1103		scnprintf(buf, len, "no parameters");
 
 
 
 
 
1104
1105	rdev_dbg(rdev, "%s\n", buf);
 
 
 
 
 
 
 
 
 
 
1106
1107	if ((constraints->min_uV != constraints->max_uV) &&
1108	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1109		rdev_warn(rdev,
1110			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1111}
1112
1113static int machine_constraints_voltage(struct regulator_dev *rdev,
1114	struct regulation_constraints *constraints)
1115{
1116	const struct regulator_ops *ops = rdev->desc->ops;
1117	int ret;
1118
1119	/* do we need to apply the constraint voltage */
1120	if (rdev->constraints->apply_uV &&
1121	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1122		int target_min, target_max;
1123		int current_uV = regulator_get_voltage_rdev(rdev);
1124
1125		if (current_uV == -ENOTRECOVERABLE) {
1126			/* This regulator can't be read and must be initialized */
1127			rdev_info(rdev, "Setting %d-%duV\n",
1128				  rdev->constraints->min_uV,
1129				  rdev->constraints->max_uV);
1130			_regulator_do_set_voltage(rdev,
1131						  rdev->constraints->min_uV,
1132						  rdev->constraints->max_uV);
1133			current_uV = regulator_get_voltage_rdev(rdev);
1134		}
1135
1136		if (current_uV < 0) {
1137			rdev_err(rdev,
1138				 "failed to get the current voltage(%d)\n",
1139				 current_uV);
1140			return current_uV;
1141		}
1142
1143		/*
1144		 * If we're below the minimum voltage move up to the
1145		 * minimum voltage, if we're above the maximum voltage
1146		 * then move down to the maximum.
1147		 */
1148		target_min = current_uV;
1149		target_max = current_uV;
1150
1151		if (current_uV < rdev->constraints->min_uV) {
1152			target_min = rdev->constraints->min_uV;
1153			target_max = rdev->constraints->min_uV;
1154		}
1155
1156		if (current_uV > rdev->constraints->max_uV) {
1157			target_min = rdev->constraints->max_uV;
1158			target_max = rdev->constraints->max_uV;
1159		}
1160
1161		if (target_min != current_uV || target_max != current_uV) {
1162			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1163				  current_uV, target_min, target_max);
1164			ret = _regulator_do_set_voltage(
1165				rdev, target_min, target_max);
1166			if (ret < 0) {
1167				rdev_err(rdev,
1168					"failed to apply %d-%duV constraint(%d)\n",
1169					target_min, target_max, ret);
1170				return ret;
1171			}
1172		}
1173	}
1174
1175	/* constrain machine-level voltage specs to fit
1176	 * the actual range supported by this regulator.
1177	 */
1178	if (ops->list_voltage && rdev->desc->n_voltages) {
1179		int	count = rdev->desc->n_voltages;
1180		int	i;
1181		int	min_uV = INT_MAX;
1182		int	max_uV = INT_MIN;
1183		int	cmin = constraints->min_uV;
1184		int	cmax = constraints->max_uV;
1185
1186		/* it's safe to autoconfigure fixed-voltage supplies
1187		   and the constraints are used by list_voltage. */
 
1188		if (count == 1 && !cmin) {
1189			cmin = 1;
1190			cmax = INT_MAX;
1191			constraints->min_uV = cmin;
1192			constraints->max_uV = cmax;
1193		}
1194
1195		/* voltage constraints are optional */
1196		if ((cmin == 0) && (cmax == 0))
1197			return 0;
1198
1199		/* else require explicit machine-level constraints */
1200		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1201			rdev_err(rdev, "invalid voltage constraints\n");
1202			return -EINVAL;
1203		}
1204
1205		/* no need to loop voltages if range is continuous */
1206		if (rdev->desc->continuous_voltage_range)
1207			return 0;
1208
1209		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1210		for (i = 0; i < count; i++) {
1211			int	value;
1212
1213			value = ops->list_voltage(rdev, i);
1214			if (value <= 0)
1215				continue;
1216
1217			/* maybe adjust [min_uV..max_uV] */
1218			if (value >= cmin && value < min_uV)
1219				min_uV = value;
1220			if (value <= cmax && value > max_uV)
1221				max_uV = value;
1222		}
1223
1224		/* final: [min_uV..max_uV] valid iff constraints valid */
1225		if (max_uV < min_uV) {
1226			rdev_err(rdev,
1227				 "unsupportable voltage constraints %u-%uuV\n",
1228				 min_uV, max_uV);
1229			return -EINVAL;
1230		}
1231
1232		/* use regulator's subset of machine constraints */
1233		if (constraints->min_uV < min_uV) {
1234			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1235				 constraints->min_uV, min_uV);
1236			constraints->min_uV = min_uV;
1237		}
1238		if (constraints->max_uV > max_uV) {
1239			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1240				 constraints->max_uV, max_uV);
1241			constraints->max_uV = max_uV;
1242		}
1243	}
1244
1245	return 0;
1246}
1247
1248static int machine_constraints_current(struct regulator_dev *rdev,
1249	struct regulation_constraints *constraints)
1250{
1251	const struct regulator_ops *ops = rdev->desc->ops;
1252	int ret;
1253
1254	if (!constraints->min_uA && !constraints->max_uA)
1255		return 0;
1256
1257	if (constraints->min_uA > constraints->max_uA) {
1258		rdev_err(rdev, "Invalid current constraints\n");
1259		return -EINVAL;
1260	}
1261
1262	if (!ops->set_current_limit || !ops->get_current_limit) {
1263		rdev_warn(rdev, "Operation of current configuration missing\n");
1264		return 0;
1265	}
1266
1267	/* Set regulator current in constraints range */
1268	ret = ops->set_current_limit(rdev, constraints->min_uA,
1269			constraints->max_uA);
1270	if (ret < 0) {
1271		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1272		return ret;
1273	}
1274
1275	return 0;
1276}
1277
1278static int _regulator_do_enable(struct regulator_dev *rdev);
1279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280/**
1281 * set_machine_constraints - sets regulator constraints
1282 * @rdev: regulator source
1283 * @constraints: constraints to apply
1284 *
1285 * Allows platform initialisation code to define and constrain
1286 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1287 * Constraints *must* be set by platform code in order for some
1288 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1289 * set_mode.
1290 */
1291static int set_machine_constraints(struct regulator_dev *rdev,
1292	const struct regulation_constraints *constraints)
1293{
1294	int ret = 0;
1295	const struct regulator_ops *ops = rdev->desc->ops;
1296
1297	if (constraints)
1298		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1299					    GFP_KERNEL);
1300	else
1301		rdev->constraints = kzalloc(sizeof(*constraints),
1302					    GFP_KERNEL);
1303	if (!rdev->constraints)
1304		return -ENOMEM;
1305
1306	ret = machine_constraints_voltage(rdev, rdev->constraints);
1307	if (ret != 0)
1308		return ret;
1309
1310	ret = machine_constraints_current(rdev, rdev->constraints);
1311	if (ret != 0)
1312		return ret;
1313
1314	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1315		ret = ops->set_input_current_limit(rdev,
1316						   rdev->constraints->ilim_uA);
1317		if (ret < 0) {
1318			rdev_err(rdev, "failed to set input limit\n");
1319			return ret;
1320		}
1321	}
1322
1323	/* do we need to setup our suspend state */
1324	if (rdev->constraints->initial_state) {
1325		ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1326		if (ret < 0) {
1327			rdev_err(rdev, "failed to set suspend state\n");
1328			return ret;
1329		}
1330	}
1331
1332	if (rdev->constraints->initial_mode) {
1333		if (!ops->set_mode) {
1334			rdev_err(rdev, "no set_mode operation\n");
1335			return -EINVAL;
1336		}
1337
1338		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1339		if (ret < 0) {
1340			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1341			return ret;
1342		}
1343	} else if (rdev->constraints->system_load) {
1344		/*
1345		 * We'll only apply the initial system load if an
1346		 * initial mode wasn't specified.
1347		 */
1348		drms_uA_update(rdev);
1349	}
1350
1351	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1352		&& ops->set_ramp_delay) {
1353		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1354		if (ret < 0) {
1355			rdev_err(rdev, "failed to set ramp_delay\n");
1356			return ret;
1357		}
1358	}
1359
1360	if (rdev->constraints->pull_down && ops->set_pull_down) {
1361		ret = ops->set_pull_down(rdev);
1362		if (ret < 0) {
1363			rdev_err(rdev, "failed to set pull down\n");
1364			return ret;
1365		}
1366	}
1367
1368	if (rdev->constraints->soft_start && ops->set_soft_start) {
1369		ret = ops->set_soft_start(rdev);
1370		if (ret < 0) {
1371			rdev_err(rdev, "failed to set soft start\n");
1372			return ret;
1373		}
1374	}
1375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376	if (rdev->constraints->over_current_protection
1377		&& ops->set_over_current_protection) {
1378		ret = ops->set_over_current_protection(rdev);
 
 
 
 
1379		if (ret < 0) {
1380			rdev_err(rdev, "failed to set over current protection\n");
 
1381			return ret;
1382		}
1383	}
1384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1386		bool ad_state = (rdev->constraints->active_discharge ==
1387			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1388
1389		ret = ops->set_active_discharge(rdev, ad_state);
1390		if (ret < 0) {
1391			rdev_err(rdev, "failed to set active discharge\n");
1392			return ret;
1393		}
1394	}
1395
1396	/* If the constraints say the regulator should be on at this point
1397	 * and we have control then make sure it is enabled.
1398	 */
1399	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
 
 
 
 
 
 
1400		if (rdev->supply) {
1401			ret = regulator_enable(rdev->supply);
1402			if (ret < 0) {
1403				_regulator_put(rdev->supply);
1404				rdev->supply = NULL;
1405				return ret;
1406			}
1407		}
1408
1409		ret = _regulator_do_enable(rdev);
1410		if (ret < 0 && ret != -EINVAL) {
1411			rdev_err(rdev, "failed to enable\n");
1412			return ret;
1413		}
1414
1415		if (rdev->constraints->always_on)
1416			rdev->use_count++;
 
 
1417	}
1418
1419	print_constraints(rdev);
1420	return 0;
1421}
1422
1423/**
1424 * set_supply - set regulator supply regulator
1425 * @rdev: regulator name
1426 * @supply_rdev: supply regulator name
1427 *
1428 * Called by platform initialisation code to set the supply regulator for this
1429 * regulator. This ensures that a regulators supply will also be enabled by the
1430 * core if it's child is enabled.
1431 */
1432static int set_supply(struct regulator_dev *rdev,
1433		      struct regulator_dev *supply_rdev)
1434{
1435	int err;
1436
1437	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1438
1439	if (!try_module_get(supply_rdev->owner))
1440		return -ENODEV;
1441
1442	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1443	if (rdev->supply == NULL) {
1444		err = -ENOMEM;
1445		return err;
1446	}
1447	supply_rdev->open_count++;
1448
1449	return 0;
1450}
1451
1452/**
1453 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1454 * @rdev:         regulator source
1455 * @consumer_dev_name: dev_name() string for device supply applies to
1456 * @supply:       symbolic name for supply
1457 *
1458 * Allows platform initialisation code to map physical regulator
1459 * sources to symbolic names for supplies for use by devices.  Devices
1460 * should use these symbolic names to request regulators, avoiding the
1461 * need to provide board-specific regulator names as platform data.
1462 */
1463static int set_consumer_device_supply(struct regulator_dev *rdev,
1464				      const char *consumer_dev_name,
1465				      const char *supply)
1466{
1467	struct regulator_map *node, *new_node;
1468	int has_dev;
1469
1470	if (supply == NULL)
1471		return -EINVAL;
1472
1473	if (consumer_dev_name != NULL)
1474		has_dev = 1;
1475	else
1476		has_dev = 0;
1477
1478	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1479	if (new_node == NULL)
1480		return -ENOMEM;
1481
1482	new_node->regulator = rdev;
1483	new_node->supply = supply;
1484
1485	if (has_dev) {
1486		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1487		if (new_node->dev_name == NULL) {
1488			kfree(new_node);
1489			return -ENOMEM;
1490		}
1491	}
1492
1493	mutex_lock(&regulator_list_mutex);
1494	list_for_each_entry(node, &regulator_map_list, list) {
1495		if (node->dev_name && consumer_dev_name) {
1496			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1497				continue;
1498		} else if (node->dev_name || consumer_dev_name) {
1499			continue;
1500		}
1501
1502		if (strcmp(node->supply, supply) != 0)
1503			continue;
1504
1505		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1506			 consumer_dev_name,
1507			 dev_name(&node->regulator->dev),
1508			 node->regulator->desc->name,
1509			 supply,
1510			 dev_name(&rdev->dev), rdev_get_name(rdev));
1511		goto fail;
1512	}
1513
1514	list_add(&new_node->list, &regulator_map_list);
1515	mutex_unlock(&regulator_list_mutex);
1516
1517	return 0;
1518
1519fail:
1520	mutex_unlock(&regulator_list_mutex);
1521	kfree(new_node->dev_name);
1522	kfree(new_node);
1523	return -EBUSY;
1524}
1525
1526static void unset_regulator_supplies(struct regulator_dev *rdev)
1527{
1528	struct regulator_map *node, *n;
1529
1530	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1531		if (rdev == node->regulator) {
1532			list_del(&node->list);
1533			kfree(node->dev_name);
1534			kfree(node);
1535		}
1536	}
1537}
1538
1539#ifdef CONFIG_DEBUG_FS
1540static ssize_t constraint_flags_read_file(struct file *file,
1541					  char __user *user_buf,
1542					  size_t count, loff_t *ppos)
1543{
1544	const struct regulator *regulator = file->private_data;
1545	const struct regulation_constraints *c = regulator->rdev->constraints;
1546	char *buf;
1547	ssize_t ret;
1548
1549	if (!c)
1550		return 0;
1551
1552	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1553	if (!buf)
1554		return -ENOMEM;
1555
1556	ret = snprintf(buf, PAGE_SIZE,
1557			"always_on: %u\n"
1558			"boot_on: %u\n"
1559			"apply_uV: %u\n"
1560			"ramp_disable: %u\n"
1561			"soft_start: %u\n"
1562			"pull_down: %u\n"
1563			"over_current_protection: %u\n",
1564			c->always_on,
1565			c->boot_on,
1566			c->apply_uV,
1567			c->ramp_disable,
1568			c->soft_start,
1569			c->pull_down,
1570			c->over_current_protection);
1571
1572	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1573	kfree(buf);
1574
1575	return ret;
1576}
1577
1578#endif
1579
1580static const struct file_operations constraint_flags_fops = {
1581#ifdef CONFIG_DEBUG_FS
1582	.open = simple_open,
1583	.read = constraint_flags_read_file,
1584	.llseek = default_llseek,
1585#endif
1586};
1587
1588#define REG_STR_SIZE	64
1589
1590static struct regulator *create_regulator(struct regulator_dev *rdev,
1591					  struct device *dev,
1592					  const char *supply_name)
1593{
1594	struct regulator *regulator;
1595	int err;
1596
1597	if (dev) {
1598		char buf[REG_STR_SIZE];
1599		int size;
1600
1601		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1602				dev->kobj.name, supply_name);
1603		if (size >= REG_STR_SIZE)
1604			return NULL;
1605
1606		supply_name = kstrdup(buf, GFP_KERNEL);
1607		if (supply_name == NULL)
1608			return NULL;
1609	} else {
1610		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611		if (supply_name == NULL)
1612			return NULL;
1613	}
1614
1615	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1616	if (regulator == NULL) {
1617		kfree(supply_name);
1618		return NULL;
1619	}
1620
1621	regulator->rdev = rdev;
1622	regulator->supply_name = supply_name;
1623
1624	regulator_lock(rdev);
1625	list_add(&regulator->list, &rdev->consumer_list);
1626	regulator_unlock(rdev);
1627
1628	if (dev) {
1629		regulator->dev = dev;
1630
1631		/* Add a link to the device sysfs entry */
1632		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1633					       supply_name);
1634		if (err) {
1635			rdev_dbg(rdev, "could not add device link %s err %d\n",
1636				  dev->kobj.name, err);
1637			/* non-fatal */
1638		}
1639	}
1640
1641	regulator->debugfs = debugfs_create_dir(supply_name,
1642						rdev->debugfs);
1643	if (!regulator->debugfs) {
1644		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1645	} else {
1646		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1647				   &regulator->uA_load);
1648		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1649				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1650		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1651				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1652		debugfs_create_file("constraint_flags", 0444,
1653				    regulator->debugfs, regulator,
1654				    &constraint_flags_fops);
1655	}
1656
1657	/*
1658	 * Check now if the regulator is an always on regulator - if
1659	 * it is then we don't need to do nearly so much work for
1660	 * enable/disable calls.
1661	 */
1662	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1663	    _regulator_is_enabled(rdev))
1664		regulator->always_on = true;
1665
1666	return regulator;
1667}
1668
1669static int _regulator_get_enable_time(struct regulator_dev *rdev)
1670{
1671	if (rdev->constraints && rdev->constraints->enable_time)
1672		return rdev->constraints->enable_time;
1673	if (rdev->desc->ops->enable_time)
1674		return rdev->desc->ops->enable_time(rdev);
1675	return rdev->desc->enable_time;
1676}
1677
1678static struct regulator_supply_alias *regulator_find_supply_alias(
1679		struct device *dev, const char *supply)
1680{
1681	struct regulator_supply_alias *map;
1682
1683	list_for_each_entry(map, &regulator_supply_alias_list, list)
1684		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1685			return map;
1686
1687	return NULL;
1688}
1689
1690static void regulator_supply_alias(struct device **dev, const char **supply)
1691{
1692	struct regulator_supply_alias *map;
1693
1694	map = regulator_find_supply_alias(*dev, *supply);
1695	if (map) {
1696		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1697				*supply, map->alias_supply,
1698				dev_name(map->alias_dev));
1699		*dev = map->alias_dev;
1700		*supply = map->alias_supply;
1701	}
1702}
1703
1704static int regulator_match(struct device *dev, const void *data)
1705{
1706	struct regulator_dev *r = dev_to_rdev(dev);
1707
1708	return strcmp(rdev_get_name(r), data) == 0;
1709}
1710
1711static struct regulator_dev *regulator_lookup_by_name(const char *name)
1712{
1713	struct device *dev;
1714
1715	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1716
1717	return dev ? dev_to_rdev(dev) : NULL;
1718}
1719
1720/**
1721 * regulator_dev_lookup - lookup a regulator device.
1722 * @dev: device for regulator "consumer".
1723 * @supply: Supply name or regulator ID.
1724 *
1725 * If successful, returns a struct regulator_dev that corresponds to the name
1726 * @supply and with the embedded struct device refcount incremented by one.
1727 * The refcount must be dropped by calling put_device().
1728 * On failure one of the following ERR-PTR-encoded values is returned:
1729 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1730 * in the future.
1731 */
1732static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1733						  const char *supply)
1734{
1735	struct regulator_dev *r = NULL;
1736	struct device_node *node;
1737	struct regulator_map *map;
1738	const char *devname = NULL;
1739
1740	regulator_supply_alias(&dev, &supply);
1741
1742	/* first do a dt based lookup */
1743	if (dev && dev->of_node) {
1744		node = of_get_regulator(dev, supply);
1745		if (node) {
1746			r = of_find_regulator_by_node(node);
1747			if (r)
1748				return r;
1749
1750			/*
1751			 * We have a node, but there is no device.
1752			 * assume it has not registered yet.
1753			 */
1754			return ERR_PTR(-EPROBE_DEFER);
1755		}
1756	}
1757
1758	/* if not found, try doing it non-dt way */
1759	if (dev)
1760		devname = dev_name(dev);
1761
1762	mutex_lock(&regulator_list_mutex);
1763	list_for_each_entry(map, &regulator_map_list, list) {
1764		/* If the mapping has a device set up it must match */
1765		if (map->dev_name &&
1766		    (!devname || strcmp(map->dev_name, devname)))
1767			continue;
1768
1769		if (strcmp(map->supply, supply) == 0 &&
1770		    get_device(&map->regulator->dev)) {
1771			r = map->regulator;
1772			break;
1773		}
1774	}
1775	mutex_unlock(&regulator_list_mutex);
1776
1777	if (r)
1778		return r;
1779
1780	r = regulator_lookup_by_name(supply);
1781	if (r)
1782		return r;
1783
1784	return ERR_PTR(-ENODEV);
1785}
1786
1787static int regulator_resolve_supply(struct regulator_dev *rdev)
1788{
1789	struct regulator_dev *r;
1790	struct device *dev = rdev->dev.parent;
1791	int ret;
1792
1793	/* No supply to resolve? */
1794	if (!rdev->supply_name)
1795		return 0;
1796
1797	/* Supply already resolved? */
1798	if (rdev->supply)
1799		return 0;
1800
1801	r = regulator_dev_lookup(dev, rdev->supply_name);
1802	if (IS_ERR(r)) {
1803		ret = PTR_ERR(r);
1804
1805		/* Did the lookup explicitly defer for us? */
1806		if (ret == -EPROBE_DEFER)
1807			return ret;
1808
1809		if (have_full_constraints()) {
1810			r = dummy_regulator_rdev;
1811			get_device(&r->dev);
1812		} else {
1813			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1814				rdev->supply_name, rdev->desc->name);
1815			return -EPROBE_DEFER;
 
1816		}
1817	}
1818
 
 
 
 
 
 
 
 
 
 
 
1819	/*
1820	 * If the supply's parent device is not the same as the
1821	 * regulator's parent device, then ensure the parent device
1822	 * is bound before we resolve the supply, in case the parent
1823	 * device get probe deferred and unregisters the supply.
1824	 */
1825	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1826		if (!device_is_bound(r->dev.parent)) {
1827			put_device(&r->dev);
1828			return -EPROBE_DEFER;
 
1829		}
1830	}
1831
1832	/* Recursively resolve the supply of the supply */
1833	ret = regulator_resolve_supply(r);
1834	if (ret < 0) {
1835		put_device(&r->dev);
1836		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837	}
1838
1839	ret = set_supply(rdev, r);
1840	if (ret < 0) {
 
1841		put_device(&r->dev);
1842		return ret;
1843	}
1844
 
 
1845	/*
1846	 * In set_machine_constraints() we may have turned this regulator on
1847	 * but we couldn't propagate to the supply if it hadn't been resolved
1848	 * yet.  Do it now.
1849	 */
1850	if (rdev->use_count) {
1851		ret = regulator_enable(rdev->supply);
1852		if (ret < 0) {
1853			_regulator_put(rdev->supply);
1854			rdev->supply = NULL;
1855			return ret;
1856		}
1857	}
1858
1859	return 0;
 
1860}
1861
1862/* Internal regulator request function */
1863struct regulator *_regulator_get(struct device *dev, const char *id,
1864				 enum regulator_get_type get_type)
1865{
1866	struct regulator_dev *rdev;
1867	struct regulator *regulator;
1868	struct device_link *link;
1869	int ret;
1870
1871	if (get_type >= MAX_GET_TYPE) {
1872		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1873		return ERR_PTR(-EINVAL);
1874	}
1875
1876	if (id == NULL) {
1877		pr_err("get() with no identifier\n");
1878		return ERR_PTR(-EINVAL);
1879	}
1880
1881	rdev = regulator_dev_lookup(dev, id);
1882	if (IS_ERR(rdev)) {
1883		ret = PTR_ERR(rdev);
1884
1885		/*
1886		 * If regulator_dev_lookup() fails with error other
1887		 * than -ENODEV our job here is done, we simply return it.
1888		 */
1889		if (ret != -ENODEV)
1890			return ERR_PTR(ret);
1891
1892		if (!have_full_constraints()) {
1893			dev_warn(dev,
1894				 "incomplete constraints, dummy supplies not allowed\n");
1895			return ERR_PTR(-ENODEV);
1896		}
1897
1898		switch (get_type) {
1899		case NORMAL_GET:
1900			/*
1901			 * Assume that a regulator is physically present and
1902			 * enabled, even if it isn't hooked up, and just
1903			 * provide a dummy.
1904			 */
1905			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1906			rdev = dummy_regulator_rdev;
1907			get_device(&rdev->dev);
1908			break;
1909
1910		case EXCLUSIVE_GET:
1911			dev_warn(dev,
1912				 "dummy supplies not allowed for exclusive requests\n");
1913			fallthrough;
1914
1915		default:
1916			return ERR_PTR(-ENODEV);
1917		}
1918	}
1919
1920	if (rdev->exclusive) {
1921		regulator = ERR_PTR(-EPERM);
1922		put_device(&rdev->dev);
1923		return regulator;
1924	}
1925
1926	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1927		regulator = ERR_PTR(-EBUSY);
1928		put_device(&rdev->dev);
1929		return regulator;
1930	}
1931
1932	mutex_lock(&regulator_list_mutex);
1933	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1934	mutex_unlock(&regulator_list_mutex);
1935
1936	if (ret != 0) {
1937		regulator = ERR_PTR(-EPROBE_DEFER);
1938		put_device(&rdev->dev);
1939		return regulator;
1940	}
1941
1942	ret = regulator_resolve_supply(rdev);
1943	if (ret < 0) {
1944		regulator = ERR_PTR(ret);
1945		put_device(&rdev->dev);
1946		return regulator;
1947	}
1948
1949	if (!try_module_get(rdev->owner)) {
1950		regulator = ERR_PTR(-EPROBE_DEFER);
1951		put_device(&rdev->dev);
1952		return regulator;
1953	}
1954
1955	regulator = create_regulator(rdev, dev, id);
1956	if (regulator == NULL) {
1957		regulator = ERR_PTR(-ENOMEM);
1958		module_put(rdev->owner);
1959		put_device(&rdev->dev);
1960		return regulator;
1961	}
1962
1963	rdev->open_count++;
1964	if (get_type == EXCLUSIVE_GET) {
1965		rdev->exclusive = 1;
1966
1967		ret = _regulator_is_enabled(rdev);
1968		if (ret > 0)
1969			rdev->use_count = 1;
1970		else
1971			rdev->use_count = 0;
1972	}
1973
1974	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1975	if (!IS_ERR_OR_NULL(link))
1976		regulator->device_link = true;
1977
1978	return regulator;
1979}
1980
1981/**
1982 * regulator_get - lookup and obtain a reference to a regulator.
1983 * @dev: device for regulator "consumer"
1984 * @id: Supply name or regulator ID.
1985 *
1986 * Returns a struct regulator corresponding to the regulator producer,
1987 * or IS_ERR() condition containing errno.
1988 *
1989 * Use of supply names configured via regulator_set_device_supply() is
1990 * strongly encouraged.  It is recommended that the supply name used
1991 * should match the name used for the supply and/or the relevant
1992 * device pins in the datasheet.
1993 */
1994struct regulator *regulator_get(struct device *dev, const char *id)
1995{
1996	return _regulator_get(dev, id, NORMAL_GET);
1997}
1998EXPORT_SYMBOL_GPL(regulator_get);
1999
2000/**
2001 * regulator_get_exclusive - obtain exclusive access to a regulator.
2002 * @dev: device for regulator "consumer"
2003 * @id: Supply name or regulator ID.
2004 *
2005 * Returns a struct regulator corresponding to the regulator producer,
2006 * or IS_ERR() condition containing errno.  Other consumers will be
2007 * unable to obtain this regulator while this reference is held and the
2008 * use count for the regulator will be initialised to reflect the current
2009 * state of the regulator.
2010 *
2011 * This is intended for use by consumers which cannot tolerate shared
2012 * use of the regulator such as those which need to force the
2013 * regulator off for correct operation of the hardware they are
2014 * controlling.
2015 *
2016 * Use of supply names configured via regulator_set_device_supply() is
2017 * strongly encouraged.  It is recommended that the supply name used
2018 * should match the name used for the supply and/or the relevant
2019 * device pins in the datasheet.
2020 */
2021struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2022{
2023	return _regulator_get(dev, id, EXCLUSIVE_GET);
2024}
2025EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2026
2027/**
2028 * regulator_get_optional - obtain optional access to a regulator.
2029 * @dev: device for regulator "consumer"
2030 * @id: Supply name or regulator ID.
2031 *
2032 * Returns a struct regulator corresponding to the regulator producer,
2033 * or IS_ERR() condition containing errno.
2034 *
2035 * This is intended for use by consumers for devices which can have
2036 * some supplies unconnected in normal use, such as some MMC devices.
2037 * It can allow the regulator core to provide stub supplies for other
2038 * supplies requested using normal regulator_get() calls without
2039 * disrupting the operation of drivers that can handle absent
2040 * supplies.
2041 *
2042 * Use of supply names configured via regulator_set_device_supply() is
2043 * strongly encouraged.  It is recommended that the supply name used
2044 * should match the name used for the supply and/or the relevant
2045 * device pins in the datasheet.
2046 */
2047struct regulator *regulator_get_optional(struct device *dev, const char *id)
2048{
2049	return _regulator_get(dev, id, OPTIONAL_GET);
2050}
2051EXPORT_SYMBOL_GPL(regulator_get_optional);
2052
2053static void destroy_regulator(struct regulator *regulator)
2054{
2055	struct regulator_dev *rdev = regulator->rdev;
2056
2057	debugfs_remove_recursive(regulator->debugfs);
2058
2059	if (regulator->dev) {
2060		if (regulator->device_link)
2061			device_link_remove(regulator->dev, &rdev->dev);
2062
2063		/* remove any sysfs entries */
2064		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2065	}
2066
2067	regulator_lock(rdev);
2068	list_del(&regulator->list);
2069
2070	rdev->open_count--;
2071	rdev->exclusive = 0;
2072	regulator_unlock(rdev);
2073
2074	kfree_const(regulator->supply_name);
2075	kfree(regulator);
2076}
2077
2078/* regulator_list_mutex lock held by regulator_put() */
2079static void _regulator_put(struct regulator *regulator)
2080{
2081	struct regulator_dev *rdev;
2082
2083	if (IS_ERR_OR_NULL(regulator))
2084		return;
2085
2086	lockdep_assert_held_once(&regulator_list_mutex);
2087
2088	/* Docs say you must disable before calling regulator_put() */
2089	WARN_ON(regulator->enable_count);
2090
2091	rdev = regulator->rdev;
2092
2093	destroy_regulator(regulator);
2094
2095	module_put(rdev->owner);
2096	put_device(&rdev->dev);
2097}
2098
2099/**
2100 * regulator_put - "free" the regulator source
2101 * @regulator: regulator source
2102 *
2103 * Note: drivers must ensure that all regulator_enable calls made on this
2104 * regulator source are balanced by regulator_disable calls prior to calling
2105 * this function.
2106 */
2107void regulator_put(struct regulator *regulator)
2108{
2109	mutex_lock(&regulator_list_mutex);
2110	_regulator_put(regulator);
2111	mutex_unlock(&regulator_list_mutex);
2112}
2113EXPORT_SYMBOL_GPL(regulator_put);
2114
2115/**
2116 * regulator_register_supply_alias - Provide device alias for supply lookup
2117 *
2118 * @dev: device that will be given as the regulator "consumer"
2119 * @id: Supply name or regulator ID
2120 * @alias_dev: device that should be used to lookup the supply
2121 * @alias_id: Supply name or regulator ID that should be used to lookup the
2122 * supply
2123 *
2124 * All lookups for id on dev will instead be conducted for alias_id on
2125 * alias_dev.
2126 */
2127int regulator_register_supply_alias(struct device *dev, const char *id,
2128				    struct device *alias_dev,
2129				    const char *alias_id)
2130{
2131	struct regulator_supply_alias *map;
2132
2133	map = regulator_find_supply_alias(dev, id);
2134	if (map)
2135		return -EEXIST;
2136
2137	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2138	if (!map)
2139		return -ENOMEM;
2140
2141	map->src_dev = dev;
2142	map->src_supply = id;
2143	map->alias_dev = alias_dev;
2144	map->alias_supply = alias_id;
2145
2146	list_add(&map->list, &regulator_supply_alias_list);
2147
2148	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2149		id, dev_name(dev), alias_id, dev_name(alias_dev));
2150
2151	return 0;
2152}
2153EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2154
2155/**
2156 * regulator_unregister_supply_alias - Remove device alias
2157 *
2158 * @dev: device that will be given as the regulator "consumer"
2159 * @id: Supply name or regulator ID
2160 *
2161 * Remove a lookup alias if one exists for id on dev.
2162 */
2163void regulator_unregister_supply_alias(struct device *dev, const char *id)
2164{
2165	struct regulator_supply_alias *map;
2166
2167	map = regulator_find_supply_alias(dev, id);
2168	if (map) {
2169		list_del(&map->list);
2170		kfree(map);
2171	}
2172}
2173EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2174
2175/**
2176 * regulator_bulk_register_supply_alias - register multiple aliases
2177 *
2178 * @dev: device that will be given as the regulator "consumer"
2179 * @id: List of supply names or regulator IDs
2180 * @alias_dev: device that should be used to lookup the supply
2181 * @alias_id: List of supply names or regulator IDs that should be used to
2182 * lookup the supply
2183 * @num_id: Number of aliases to register
2184 *
2185 * @return 0 on success, an errno on failure.
2186 *
2187 * This helper function allows drivers to register several supply
2188 * aliases in one operation.  If any of the aliases cannot be
2189 * registered any aliases that were registered will be removed
2190 * before returning to the caller.
2191 */
2192int regulator_bulk_register_supply_alias(struct device *dev,
2193					 const char *const *id,
2194					 struct device *alias_dev,
2195					 const char *const *alias_id,
2196					 int num_id)
2197{
2198	int i;
2199	int ret;
2200
2201	for (i = 0; i < num_id; ++i) {
2202		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2203						      alias_id[i]);
2204		if (ret < 0)
2205			goto err;
2206	}
2207
2208	return 0;
2209
2210err:
2211	dev_err(dev,
2212		"Failed to create supply alias %s,%s -> %s,%s\n",
2213		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2214
2215	while (--i >= 0)
2216		regulator_unregister_supply_alias(dev, id[i]);
2217
2218	return ret;
2219}
2220EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2221
2222/**
2223 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2224 *
2225 * @dev: device that will be given as the regulator "consumer"
2226 * @id: List of supply names or regulator IDs
2227 * @num_id: Number of aliases to unregister
2228 *
2229 * This helper function allows drivers to unregister several supply
2230 * aliases in one operation.
2231 */
2232void regulator_bulk_unregister_supply_alias(struct device *dev,
2233					    const char *const *id,
2234					    int num_id)
2235{
2236	int i;
2237
2238	for (i = 0; i < num_id; ++i)
2239		regulator_unregister_supply_alias(dev, id[i]);
2240}
2241EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2242
2243
2244/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2245static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2246				const struct regulator_config *config)
2247{
2248	struct regulator_enable_gpio *pin, *new_pin;
2249	struct gpio_desc *gpiod;
2250
2251	gpiod = config->ena_gpiod;
2252	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2253
2254	mutex_lock(&regulator_list_mutex);
2255
2256	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2257		if (pin->gpiod == gpiod) {
2258			rdev_dbg(rdev, "GPIO is already used\n");
2259			goto update_ena_gpio_to_rdev;
2260		}
2261	}
2262
2263	if (new_pin == NULL) {
2264		mutex_unlock(&regulator_list_mutex);
2265		return -ENOMEM;
2266	}
2267
2268	pin = new_pin;
2269	new_pin = NULL;
2270
2271	pin->gpiod = gpiod;
2272	list_add(&pin->list, &regulator_ena_gpio_list);
2273
2274update_ena_gpio_to_rdev:
2275	pin->request_count++;
2276	rdev->ena_pin = pin;
2277
2278	mutex_unlock(&regulator_list_mutex);
2279	kfree(new_pin);
2280
2281	return 0;
2282}
2283
2284static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2285{
2286	struct regulator_enable_gpio *pin, *n;
2287
2288	if (!rdev->ena_pin)
2289		return;
2290
2291	/* Free the GPIO only in case of no use */
2292	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2293		if (pin != rdev->ena_pin)
2294			continue;
2295
2296		if (--pin->request_count)
2297			break;
2298
2299		gpiod_put(pin->gpiod);
2300		list_del(&pin->list);
2301		kfree(pin);
2302		break;
2303	}
2304
2305	rdev->ena_pin = NULL;
2306}
2307
2308/**
2309 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2310 * @rdev: regulator_dev structure
2311 * @enable: enable GPIO at initial use?
2312 *
2313 * GPIO is enabled in case of initial use. (enable_count is 0)
2314 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2315 */
2316static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2317{
2318	struct regulator_enable_gpio *pin = rdev->ena_pin;
2319
2320	if (!pin)
2321		return -EINVAL;
2322
2323	if (enable) {
2324		/* Enable GPIO at initial use */
2325		if (pin->enable_count == 0)
2326			gpiod_set_value_cansleep(pin->gpiod, 1);
2327
2328		pin->enable_count++;
2329	} else {
2330		if (pin->enable_count > 1) {
2331			pin->enable_count--;
2332			return 0;
2333		}
2334
2335		/* Disable GPIO if not used */
2336		if (pin->enable_count <= 1) {
2337			gpiod_set_value_cansleep(pin->gpiod, 0);
2338			pin->enable_count = 0;
2339		}
2340	}
2341
2342	return 0;
2343}
2344
2345/**
2346 * _regulator_enable_delay - a delay helper function
2347 * @delay: time to delay in microseconds
2348 *
2349 * Delay for the requested amount of time as per the guidelines in:
2350 *
2351 *     Documentation/timers/timers-howto.rst
2352 *
2353 * The assumption here is that regulators will never be enabled in
2354 * atomic context and therefore sleeping functions can be used.
2355 */
2356static void _regulator_enable_delay(unsigned int delay)
2357{
2358	unsigned int ms = delay / 1000;
2359	unsigned int us = delay % 1000;
2360
2361	if (ms > 0) {
2362		/*
2363		 * For small enough values, handle super-millisecond
2364		 * delays in the usleep_range() call below.
2365		 */
2366		if (ms < 20)
2367			us += ms * 1000;
2368		else
2369			msleep(ms);
2370	}
2371
2372	/*
2373	 * Give the scheduler some room to coalesce with any other
2374	 * wakeup sources. For delays shorter than 10 us, don't even
2375	 * bother setting up high-resolution timers and just busy-
2376	 * loop.
2377	 */
2378	if (us >= 10)
2379		usleep_range(us, us + 100);
2380	else
2381		udelay(us);
2382}
2383
2384/**
2385 * _regulator_check_status_enabled
2386 *
2387 * A helper function to check if the regulator status can be interpreted
2388 * as 'regulator is enabled'.
2389 * @rdev: the regulator device to check
2390 *
2391 * Return:
2392 * * 1			- if status shows regulator is in enabled state
2393 * * 0			- if not enabled state
2394 * * Error Value	- as received from ops->get_status()
2395 */
2396static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2397{
2398	int ret = rdev->desc->ops->get_status(rdev);
2399
2400	if (ret < 0) {
2401		rdev_info(rdev, "get_status returned error: %d\n", ret);
2402		return ret;
2403	}
2404
2405	switch (ret) {
2406	case REGULATOR_STATUS_OFF:
2407	case REGULATOR_STATUS_ERROR:
2408	case REGULATOR_STATUS_UNDEFINED:
2409		return 0;
2410	default:
2411		return 1;
2412	}
2413}
2414
2415static int _regulator_do_enable(struct regulator_dev *rdev)
2416{
2417	int ret, delay;
2418
2419	/* Query before enabling in case configuration dependent.  */
2420	ret = _regulator_get_enable_time(rdev);
2421	if (ret >= 0) {
2422		delay = ret;
2423	} else {
2424		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2425		delay = 0;
2426	}
2427
2428	trace_regulator_enable(rdev_get_name(rdev));
2429
2430	if (rdev->desc->off_on_delay) {
2431		/* if needed, keep a distance of off_on_delay from last time
2432		 * this regulator was disabled.
2433		 */
2434		unsigned long start_jiffy = jiffies;
2435		unsigned long intended, max_delay, remaining;
2436
2437		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2438		intended = rdev->last_off_jiffy + max_delay;
2439
2440		if (time_before(start_jiffy, intended)) {
2441			/* calc remaining jiffies to deal with one-time
2442			 * timer wrapping.
2443			 * in case of multiple timer wrapping, either it can be
2444			 * detected by out-of-range remaining, or it cannot be
2445			 * detected and we get a penalty of
2446			 * _regulator_enable_delay().
2447			 */
2448			remaining = intended - start_jiffy;
2449			if (remaining <= max_delay)
2450				_regulator_enable_delay(
2451						jiffies_to_usecs(remaining));
2452		}
2453	}
2454
2455	if (rdev->ena_pin) {
2456		if (!rdev->ena_gpio_state) {
2457			ret = regulator_ena_gpio_ctrl(rdev, true);
2458			if (ret < 0)
2459				return ret;
2460			rdev->ena_gpio_state = 1;
2461		}
2462	} else if (rdev->desc->ops->enable) {
2463		ret = rdev->desc->ops->enable(rdev);
2464		if (ret < 0)
2465			return ret;
2466	} else {
2467		return -EINVAL;
2468	}
2469
2470	/* Allow the regulator to ramp; it would be useful to extend
2471	 * this for bulk operations so that the regulators can ramp
2472	 * together.  */
 
2473	trace_regulator_enable_delay(rdev_get_name(rdev));
2474
2475	/* If poll_enabled_time is set, poll upto the delay calculated
2476	 * above, delaying poll_enabled_time uS to check if the regulator
2477	 * actually got enabled.
2478	 * If the regulator isn't enabled after enable_delay has
2479	 * expired, return -ETIMEDOUT.
2480	 */
2481	if (rdev->desc->poll_enabled_time) {
2482		unsigned int time_remaining = delay;
2483
2484		while (time_remaining > 0) {
2485			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2486
2487			if (rdev->desc->ops->get_status) {
2488				ret = _regulator_check_status_enabled(rdev);
2489				if (ret < 0)
2490					return ret;
2491				else if (ret)
2492					break;
2493			} else if (rdev->desc->ops->is_enabled(rdev))
2494				break;
2495
2496			time_remaining -= rdev->desc->poll_enabled_time;
2497		}
2498
2499		if (time_remaining <= 0) {
2500			rdev_err(rdev, "Enabled check timed out\n");
2501			return -ETIMEDOUT;
2502		}
2503	} else {
2504		_regulator_enable_delay(delay);
2505	}
2506
2507	trace_regulator_enable_complete(rdev_get_name(rdev));
2508
2509	return 0;
2510}
2511
2512/**
2513 * _regulator_handle_consumer_enable - handle that a consumer enabled
2514 * @regulator: regulator source
2515 *
2516 * Some things on a regulator consumer (like the contribution towards total
2517 * load on the regulator) only have an effect when the consumer wants the
2518 * regulator enabled.  Explained in example with two consumers of the same
2519 * regulator:
2520 *   consumer A: set_load(100);       => total load = 0
2521 *   consumer A: regulator_enable();  => total load = 100
2522 *   consumer B: set_load(1000);      => total load = 100
2523 *   consumer B: regulator_enable();  => total load = 1100
2524 *   consumer A: regulator_disable(); => total_load = 1000
2525 *
2526 * This function (together with _regulator_handle_consumer_disable) is
2527 * responsible for keeping track of the refcount for a given regulator consumer
2528 * and applying / unapplying these things.
2529 *
2530 * Returns 0 upon no error; -error upon error.
2531 */
2532static int _regulator_handle_consumer_enable(struct regulator *regulator)
2533{
2534	struct regulator_dev *rdev = regulator->rdev;
2535
2536	lockdep_assert_held_once(&rdev->mutex.base);
2537
2538	regulator->enable_count++;
2539	if (regulator->uA_load && regulator->enable_count == 1)
2540		return drms_uA_update(rdev);
2541
2542	return 0;
2543}
2544
2545/**
2546 * _regulator_handle_consumer_disable - handle that a consumer disabled
2547 * @regulator: regulator source
2548 *
2549 * The opposite of _regulator_handle_consumer_enable().
2550 *
2551 * Returns 0 upon no error; -error upon error.
2552 */
2553static int _regulator_handle_consumer_disable(struct regulator *regulator)
2554{
2555	struct regulator_dev *rdev = regulator->rdev;
2556
2557	lockdep_assert_held_once(&rdev->mutex.base);
2558
2559	if (!regulator->enable_count) {
2560		rdev_err(rdev, "Underflow of regulator enable count\n");
2561		return -EINVAL;
2562	}
2563
2564	regulator->enable_count--;
2565	if (regulator->uA_load && regulator->enable_count == 0)
2566		return drms_uA_update(rdev);
2567
2568	return 0;
2569}
2570
2571/* locks held by regulator_enable() */
2572static int _regulator_enable(struct regulator *regulator)
2573{
2574	struct regulator_dev *rdev = regulator->rdev;
2575	int ret;
2576
2577	lockdep_assert_held_once(&rdev->mutex.base);
2578
2579	if (rdev->use_count == 0 && rdev->supply) {
2580		ret = _regulator_enable(rdev->supply);
2581		if (ret < 0)
2582			return ret;
2583	}
2584
2585	/* balance only if there are regulators coupled */
2586	if (rdev->coupling_desc.n_coupled > 1) {
2587		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2588		if (ret < 0)
2589			goto err_disable_supply;
2590	}
2591
2592	ret = _regulator_handle_consumer_enable(regulator);
2593	if (ret < 0)
2594		goto err_disable_supply;
2595
2596	if (rdev->use_count == 0) {
2597		/* The regulator may on if it's not switchable or left on */
 
 
 
2598		ret = _regulator_is_enabled(rdev);
2599		if (ret == -EINVAL || ret == 0) {
2600			if (!regulator_ops_is_valid(rdev,
2601					REGULATOR_CHANGE_STATUS)) {
2602				ret = -EPERM;
2603				goto err_consumer_disable;
2604			}
2605
2606			ret = _regulator_do_enable(rdev);
2607			if (ret < 0)
2608				goto err_consumer_disable;
2609
2610			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2611					     NULL);
2612		} else if (ret < 0) {
2613			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2614			goto err_consumer_disable;
2615		}
2616		/* Fallthrough on positive return values - already enabled */
2617	}
2618
2619	rdev->use_count++;
2620
2621	return 0;
2622
2623err_consumer_disable:
2624	_regulator_handle_consumer_disable(regulator);
2625
2626err_disable_supply:
2627	if (rdev->use_count == 0 && rdev->supply)
2628		_regulator_disable(rdev->supply);
2629
2630	return ret;
2631}
2632
2633/**
2634 * regulator_enable - enable regulator output
2635 * @regulator: regulator source
2636 *
2637 * Request that the regulator be enabled with the regulator output at
2638 * the predefined voltage or current value.  Calls to regulator_enable()
2639 * must be balanced with calls to regulator_disable().
2640 *
2641 * NOTE: the output value can be set by other drivers, boot loader or may be
2642 * hardwired in the regulator.
2643 */
2644int regulator_enable(struct regulator *regulator)
2645{
2646	struct regulator_dev *rdev = regulator->rdev;
2647	struct ww_acquire_ctx ww_ctx;
2648	int ret;
2649
2650	regulator_lock_dependent(rdev, &ww_ctx);
2651	ret = _regulator_enable(regulator);
2652	regulator_unlock_dependent(rdev, &ww_ctx);
2653
2654	return ret;
2655}
2656EXPORT_SYMBOL_GPL(regulator_enable);
2657
2658static int _regulator_do_disable(struct regulator_dev *rdev)
2659{
2660	int ret;
2661
2662	trace_regulator_disable(rdev_get_name(rdev));
2663
2664	if (rdev->ena_pin) {
2665		if (rdev->ena_gpio_state) {
2666			ret = regulator_ena_gpio_ctrl(rdev, false);
2667			if (ret < 0)
2668				return ret;
2669			rdev->ena_gpio_state = 0;
2670		}
2671
2672	} else if (rdev->desc->ops->disable) {
2673		ret = rdev->desc->ops->disable(rdev);
2674		if (ret != 0)
2675			return ret;
2676	}
2677
2678	/* cares about last_off_jiffy only if off_on_delay is required by
2679	 * device.
2680	 */
2681	if (rdev->desc->off_on_delay)
2682		rdev->last_off_jiffy = jiffies;
2683
2684	trace_regulator_disable_complete(rdev_get_name(rdev));
2685
2686	return 0;
2687}
2688
2689/* locks held by regulator_disable() */
2690static int _regulator_disable(struct regulator *regulator)
2691{
2692	struct regulator_dev *rdev = regulator->rdev;
2693	int ret = 0;
2694
2695	lockdep_assert_held_once(&rdev->mutex.base);
2696
2697	if (WARN(rdev->use_count <= 0,
2698		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2699		return -EIO;
2700
2701	/* are we the last user and permitted to disable ? */
2702	if (rdev->use_count == 1 &&
2703	    (rdev->constraints && !rdev->constraints->always_on)) {
2704
2705		/* we are last user */
2706		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2707			ret = _notifier_call_chain(rdev,
2708						   REGULATOR_EVENT_PRE_DISABLE,
2709						   NULL);
2710			if (ret & NOTIFY_STOP_MASK)
2711				return -EINVAL;
2712
2713			ret = _regulator_do_disable(rdev);
2714			if (ret < 0) {
2715				rdev_err(rdev, "failed to disable\n");
2716				_notifier_call_chain(rdev,
2717						REGULATOR_EVENT_ABORT_DISABLE,
2718						NULL);
2719				return ret;
2720			}
2721			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2722					NULL);
2723		}
2724
2725		rdev->use_count = 0;
2726	} else if (rdev->use_count > 1) {
2727		rdev->use_count--;
2728	}
2729
2730	if (ret == 0)
2731		ret = _regulator_handle_consumer_disable(regulator);
2732
2733	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2734		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2735
2736	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2737		ret = _regulator_disable(rdev->supply);
2738
2739	return ret;
2740}
2741
2742/**
2743 * regulator_disable - disable regulator output
2744 * @regulator: regulator source
2745 *
2746 * Disable the regulator output voltage or current.  Calls to
2747 * regulator_enable() must be balanced with calls to
2748 * regulator_disable().
2749 *
2750 * NOTE: this will only disable the regulator output if no other consumer
2751 * devices have it enabled, the regulator device supports disabling and
2752 * machine constraints permit this operation.
2753 */
2754int regulator_disable(struct regulator *regulator)
2755{
2756	struct regulator_dev *rdev = regulator->rdev;
2757	struct ww_acquire_ctx ww_ctx;
2758	int ret;
2759
2760	regulator_lock_dependent(rdev, &ww_ctx);
2761	ret = _regulator_disable(regulator);
2762	regulator_unlock_dependent(rdev, &ww_ctx);
2763
2764	return ret;
2765}
2766EXPORT_SYMBOL_GPL(regulator_disable);
2767
2768/* locks held by regulator_force_disable() */
2769static int _regulator_force_disable(struct regulator_dev *rdev)
2770{
2771	int ret = 0;
2772
2773	lockdep_assert_held_once(&rdev->mutex.base);
2774
2775	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2776			REGULATOR_EVENT_PRE_DISABLE, NULL);
2777	if (ret & NOTIFY_STOP_MASK)
2778		return -EINVAL;
2779
2780	ret = _regulator_do_disable(rdev);
2781	if (ret < 0) {
2782		rdev_err(rdev, "failed to force disable\n");
2783		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2784				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2785		return ret;
2786	}
2787
2788	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2789			REGULATOR_EVENT_DISABLE, NULL);
2790
2791	return 0;
2792}
2793
2794/**
2795 * regulator_force_disable - force disable regulator output
2796 * @regulator: regulator source
2797 *
2798 * Forcibly disable the regulator output voltage or current.
2799 * NOTE: this *will* disable the regulator output even if other consumer
2800 * devices have it enabled. This should be used for situations when device
2801 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2802 */
2803int regulator_force_disable(struct regulator *regulator)
2804{
2805	struct regulator_dev *rdev = regulator->rdev;
2806	struct ww_acquire_ctx ww_ctx;
2807	int ret;
2808
2809	regulator_lock_dependent(rdev, &ww_ctx);
2810
2811	ret = _regulator_force_disable(regulator->rdev);
2812
2813	if (rdev->coupling_desc.n_coupled > 1)
2814		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2815
2816	if (regulator->uA_load) {
2817		regulator->uA_load = 0;
2818		ret = drms_uA_update(rdev);
2819	}
2820
2821	if (rdev->use_count != 0 && rdev->supply)
2822		_regulator_disable(rdev->supply);
2823
2824	regulator_unlock_dependent(rdev, &ww_ctx);
2825
2826	return ret;
2827}
2828EXPORT_SYMBOL_GPL(regulator_force_disable);
2829
2830static void regulator_disable_work(struct work_struct *work)
2831{
2832	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2833						  disable_work.work);
2834	struct ww_acquire_ctx ww_ctx;
2835	int count, i, ret;
2836	struct regulator *regulator;
2837	int total_count = 0;
2838
2839	regulator_lock_dependent(rdev, &ww_ctx);
2840
2841	/*
2842	 * Workqueue functions queue the new work instance while the previous
2843	 * work instance is being processed. Cancel the queued work instance
2844	 * as the work instance under processing does the job of the queued
2845	 * work instance.
2846	 */
2847	cancel_delayed_work(&rdev->disable_work);
2848
2849	list_for_each_entry(regulator, &rdev->consumer_list, list) {
2850		count = regulator->deferred_disables;
2851
2852		if (!count)
2853			continue;
2854
2855		total_count += count;
2856		regulator->deferred_disables = 0;
2857
2858		for (i = 0; i < count; i++) {
2859			ret = _regulator_disable(regulator);
2860			if (ret != 0)
2861				rdev_err(rdev, "Deferred disable failed: %d\n", ret);
 
2862		}
2863	}
2864	WARN_ON(!total_count);
2865
2866	if (rdev->coupling_desc.n_coupled > 1)
2867		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2868
2869	regulator_unlock_dependent(rdev, &ww_ctx);
2870}
2871
2872/**
2873 * regulator_disable_deferred - disable regulator output with delay
2874 * @regulator: regulator source
2875 * @ms: milliseconds until the regulator is disabled
2876 *
2877 * Execute regulator_disable() on the regulator after a delay.  This
2878 * is intended for use with devices that require some time to quiesce.
2879 *
2880 * NOTE: this will only disable the regulator output if no other consumer
2881 * devices have it enabled, the regulator device supports disabling and
2882 * machine constraints permit this operation.
2883 */
2884int regulator_disable_deferred(struct regulator *regulator, int ms)
2885{
2886	struct regulator_dev *rdev = regulator->rdev;
2887
2888	if (!ms)
2889		return regulator_disable(regulator);
2890
2891	regulator_lock(rdev);
2892	regulator->deferred_disables++;
2893	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2894			 msecs_to_jiffies(ms));
2895	regulator_unlock(rdev);
2896
2897	return 0;
2898}
2899EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2900
2901static int _regulator_is_enabled(struct regulator_dev *rdev)
2902{
2903	/* A GPIO control always takes precedence */
2904	if (rdev->ena_pin)
2905		return rdev->ena_gpio_state;
2906
2907	/* If we don't know then assume that the regulator is always on */
2908	if (!rdev->desc->ops->is_enabled)
2909		return 1;
2910
2911	return rdev->desc->ops->is_enabled(rdev);
2912}
2913
2914static int _regulator_list_voltage(struct regulator_dev *rdev,
2915				   unsigned selector, int lock)
2916{
2917	const struct regulator_ops *ops = rdev->desc->ops;
2918	int ret;
2919
2920	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2921		return rdev->desc->fixed_uV;
2922
2923	if (ops->list_voltage) {
2924		if (selector >= rdev->desc->n_voltages)
2925			return -EINVAL;
 
 
2926		if (lock)
2927			regulator_lock(rdev);
2928		ret = ops->list_voltage(rdev, selector);
2929		if (lock)
2930			regulator_unlock(rdev);
2931	} else if (rdev->is_switch && rdev->supply) {
2932		ret = _regulator_list_voltage(rdev->supply->rdev,
2933					      selector, lock);
2934	} else {
2935		return -EINVAL;
2936	}
2937
2938	if (ret > 0) {
2939		if (ret < rdev->constraints->min_uV)
2940			ret = 0;
2941		else if (ret > rdev->constraints->max_uV)
2942			ret = 0;
2943	}
2944
2945	return ret;
2946}
2947
2948/**
2949 * regulator_is_enabled - is the regulator output enabled
2950 * @regulator: regulator source
2951 *
2952 * Returns positive if the regulator driver backing the source/client
2953 * has requested that the device be enabled, zero if it hasn't, else a
2954 * negative errno code.
2955 *
2956 * Note that the device backing this regulator handle can have multiple
2957 * users, so it might be enabled even if regulator_enable() was never
2958 * called for this particular source.
2959 */
2960int regulator_is_enabled(struct regulator *regulator)
2961{
2962	int ret;
2963
2964	if (regulator->always_on)
2965		return 1;
2966
2967	regulator_lock(regulator->rdev);
2968	ret = _regulator_is_enabled(regulator->rdev);
2969	regulator_unlock(regulator->rdev);
2970
2971	return ret;
2972}
2973EXPORT_SYMBOL_GPL(regulator_is_enabled);
2974
2975/**
2976 * regulator_count_voltages - count regulator_list_voltage() selectors
2977 * @regulator: regulator source
2978 *
2979 * Returns number of selectors, or negative errno.  Selectors are
2980 * numbered starting at zero, and typically correspond to bitfields
2981 * in hardware registers.
2982 */
2983int regulator_count_voltages(struct regulator *regulator)
2984{
2985	struct regulator_dev	*rdev = regulator->rdev;
2986
2987	if (rdev->desc->n_voltages)
2988		return rdev->desc->n_voltages;
2989
2990	if (!rdev->is_switch || !rdev->supply)
2991		return -EINVAL;
2992
2993	return regulator_count_voltages(rdev->supply);
2994}
2995EXPORT_SYMBOL_GPL(regulator_count_voltages);
2996
2997/**
2998 * regulator_list_voltage - enumerate supported voltages
2999 * @regulator: regulator source
3000 * @selector: identify voltage to list
3001 * Context: can sleep
3002 *
3003 * Returns a voltage that can be passed to @regulator_set_voltage(),
3004 * zero if this selector code can't be used on this system, or a
3005 * negative errno.
3006 */
3007int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3008{
3009	return _regulator_list_voltage(regulator->rdev, selector, 1);
3010}
3011EXPORT_SYMBOL_GPL(regulator_list_voltage);
3012
3013/**
3014 * regulator_get_regmap - get the regulator's register map
3015 * @regulator: regulator source
3016 *
3017 * Returns the register map for the given regulator, or an ERR_PTR value
3018 * if the regulator doesn't use regmap.
3019 */
3020struct regmap *regulator_get_regmap(struct regulator *regulator)
3021{
3022	struct regmap *map = regulator->rdev->regmap;
3023
3024	return map ? map : ERR_PTR(-EOPNOTSUPP);
3025}
3026
3027/**
3028 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3029 * @regulator: regulator source
3030 * @vsel_reg: voltage selector register, output parameter
3031 * @vsel_mask: mask for voltage selector bitfield, output parameter
3032 *
3033 * Returns the hardware register offset and bitmask used for setting the
3034 * regulator voltage. This might be useful when configuring voltage-scaling
3035 * hardware or firmware that can make I2C requests behind the kernel's back,
3036 * for example.
3037 *
3038 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3039 * and 0 is returned, otherwise a negative errno is returned.
3040 */
3041int regulator_get_hardware_vsel_register(struct regulator *regulator,
3042					 unsigned *vsel_reg,
3043					 unsigned *vsel_mask)
3044{
3045	struct regulator_dev *rdev = regulator->rdev;
3046	const struct regulator_ops *ops = rdev->desc->ops;
3047
3048	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3049		return -EOPNOTSUPP;
3050
3051	*vsel_reg = rdev->desc->vsel_reg;
3052	*vsel_mask = rdev->desc->vsel_mask;
3053
3054	 return 0;
3055}
3056EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3057
3058/**
3059 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3060 * @regulator: regulator source
3061 * @selector: identify voltage to list
3062 *
3063 * Converts the selector to a hardware-specific voltage selector that can be
3064 * directly written to the regulator registers. The address of the voltage
3065 * register can be determined by calling @regulator_get_hardware_vsel_register.
3066 *
3067 * On error a negative errno is returned.
3068 */
3069int regulator_list_hardware_vsel(struct regulator *regulator,
3070				 unsigned selector)
3071{
3072	struct regulator_dev *rdev = regulator->rdev;
3073	const struct regulator_ops *ops = rdev->desc->ops;
3074
3075	if (selector >= rdev->desc->n_voltages)
3076		return -EINVAL;
 
 
3077	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3078		return -EOPNOTSUPP;
3079
3080	return selector;
3081}
3082EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3083
3084/**
3085 * regulator_get_linear_step - return the voltage step size between VSEL values
3086 * @regulator: regulator source
3087 *
3088 * Returns the voltage step size between VSEL values for linear
3089 * regulators, or return 0 if the regulator isn't a linear regulator.
3090 */
3091unsigned int regulator_get_linear_step(struct regulator *regulator)
3092{
3093	struct regulator_dev *rdev = regulator->rdev;
3094
3095	return rdev->desc->uV_step;
3096}
3097EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3098
3099/**
3100 * regulator_is_supported_voltage - check if a voltage range can be supported
3101 *
3102 * @regulator: Regulator to check.
3103 * @min_uV: Minimum required voltage in uV.
3104 * @max_uV: Maximum required voltage in uV.
3105 *
3106 * Returns a boolean.
3107 */
3108int regulator_is_supported_voltage(struct regulator *regulator,
3109				   int min_uV, int max_uV)
3110{
3111	struct regulator_dev *rdev = regulator->rdev;
3112	int i, voltages, ret;
3113
3114	/* If we can't change voltage check the current voltage */
3115	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3116		ret = regulator_get_voltage(regulator);
3117		if (ret >= 0)
3118			return min_uV <= ret && ret <= max_uV;
3119		else
3120			return ret;
3121	}
3122
3123	/* Any voltage within constrains range is fine? */
3124	if (rdev->desc->continuous_voltage_range)
3125		return min_uV >= rdev->constraints->min_uV &&
3126				max_uV <= rdev->constraints->max_uV;
3127
3128	ret = regulator_count_voltages(regulator);
3129	if (ret < 0)
3130		return 0;
3131	voltages = ret;
3132
3133	for (i = 0; i < voltages; i++) {
3134		ret = regulator_list_voltage(regulator, i);
3135
3136		if (ret >= min_uV && ret <= max_uV)
3137			return 1;
3138	}
3139
3140	return 0;
3141}
3142EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3143
3144static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3145				 int max_uV)
3146{
3147	const struct regulator_desc *desc = rdev->desc;
3148
3149	if (desc->ops->map_voltage)
3150		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3151
3152	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3153		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3154
3155	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3156		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3157
3158	if (desc->ops->list_voltage ==
3159		regulator_list_voltage_pickable_linear_range)
3160		return regulator_map_voltage_pickable_linear_range(rdev,
3161							min_uV, max_uV);
3162
3163	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3164}
3165
3166static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3167				       int min_uV, int max_uV,
3168				       unsigned *selector)
3169{
3170	struct pre_voltage_change_data data;
3171	int ret;
3172
3173	data.old_uV = regulator_get_voltage_rdev(rdev);
3174	data.min_uV = min_uV;
3175	data.max_uV = max_uV;
3176	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3177				   &data);
3178	if (ret & NOTIFY_STOP_MASK)
3179		return -EINVAL;
3180
3181	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3182	if (ret >= 0)
3183		return ret;
3184
3185	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3186			     (void *)data.old_uV);
3187
3188	return ret;
3189}
3190
3191static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3192					   int uV, unsigned selector)
3193{
3194	struct pre_voltage_change_data data;
3195	int ret;
3196
3197	data.old_uV = regulator_get_voltage_rdev(rdev);
3198	data.min_uV = uV;
3199	data.max_uV = uV;
3200	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3201				   &data);
3202	if (ret & NOTIFY_STOP_MASK)
3203		return -EINVAL;
3204
3205	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3206	if (ret >= 0)
3207		return ret;
3208
3209	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3210			     (void *)data.old_uV);
3211
3212	return ret;
3213}
3214
3215static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3216					   int uV, int new_selector)
3217{
3218	const struct regulator_ops *ops = rdev->desc->ops;
3219	int diff, old_sel, curr_sel, ret;
3220
3221	/* Stepping is only needed if the regulator is enabled. */
3222	if (!_regulator_is_enabled(rdev))
3223		goto final_set;
3224
3225	if (!ops->get_voltage_sel)
3226		return -EINVAL;
3227
3228	old_sel = ops->get_voltage_sel(rdev);
3229	if (old_sel < 0)
3230		return old_sel;
3231
3232	diff = new_selector - old_sel;
3233	if (diff == 0)
3234		return 0; /* No change needed. */
3235
3236	if (diff > 0) {
3237		/* Stepping up. */
3238		for (curr_sel = old_sel + rdev->desc->vsel_step;
3239		     curr_sel < new_selector;
3240		     curr_sel += rdev->desc->vsel_step) {
3241			/*
3242			 * Call the callback directly instead of using
3243			 * _regulator_call_set_voltage_sel() as we don't
3244			 * want to notify anyone yet. Same in the branch
3245			 * below.
3246			 */
3247			ret = ops->set_voltage_sel(rdev, curr_sel);
3248			if (ret)
3249				goto try_revert;
3250		}
3251	} else {
3252		/* Stepping down. */
3253		for (curr_sel = old_sel - rdev->desc->vsel_step;
3254		     curr_sel > new_selector;
3255		     curr_sel -= rdev->desc->vsel_step) {
3256			ret = ops->set_voltage_sel(rdev, curr_sel);
3257			if (ret)
3258				goto try_revert;
3259		}
3260	}
3261
3262final_set:
3263	/* The final selector will trigger the notifiers. */
3264	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3265
3266try_revert:
3267	/*
3268	 * At least try to return to the previous voltage if setting a new
3269	 * one failed.
3270	 */
3271	(void)ops->set_voltage_sel(rdev, old_sel);
3272	return ret;
3273}
3274
3275static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3276				       int old_uV, int new_uV)
3277{
3278	unsigned int ramp_delay = 0;
3279
3280	if (rdev->constraints->ramp_delay)
3281		ramp_delay = rdev->constraints->ramp_delay;
3282	else if (rdev->desc->ramp_delay)
3283		ramp_delay = rdev->desc->ramp_delay;
3284	else if (rdev->constraints->settling_time)
3285		return rdev->constraints->settling_time;
3286	else if (rdev->constraints->settling_time_up &&
3287		 (new_uV > old_uV))
3288		return rdev->constraints->settling_time_up;
3289	else if (rdev->constraints->settling_time_down &&
3290		 (new_uV < old_uV))
3291		return rdev->constraints->settling_time_down;
3292
3293	if (ramp_delay == 0) {
3294		rdev_dbg(rdev, "ramp_delay not set\n");
3295		return 0;
3296	}
3297
3298	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3299}
3300
3301static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3302				     int min_uV, int max_uV)
3303{
3304	int ret;
3305	int delay = 0;
3306	int best_val = 0;
3307	unsigned int selector;
3308	int old_selector = -1;
3309	const struct regulator_ops *ops = rdev->desc->ops;
3310	int old_uV = regulator_get_voltage_rdev(rdev);
3311
3312	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3313
3314	min_uV += rdev->constraints->uV_offset;
3315	max_uV += rdev->constraints->uV_offset;
3316
3317	/*
3318	 * If we can't obtain the old selector there is not enough
3319	 * info to call set_voltage_time_sel().
3320	 */
3321	if (_regulator_is_enabled(rdev) &&
3322	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3323		old_selector = ops->get_voltage_sel(rdev);
3324		if (old_selector < 0)
3325			return old_selector;
3326	}
3327
3328	if (ops->set_voltage) {
3329		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3330						  &selector);
3331
3332		if (ret >= 0) {
3333			if (ops->list_voltage)
3334				best_val = ops->list_voltage(rdev,
3335							     selector);
3336			else
3337				best_val = regulator_get_voltage_rdev(rdev);
3338		}
3339
3340	} else if (ops->set_voltage_sel) {
3341		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3342		if (ret >= 0) {
3343			best_val = ops->list_voltage(rdev, ret);
3344			if (min_uV <= best_val && max_uV >= best_val) {
3345				selector = ret;
3346				if (old_selector == selector)
3347					ret = 0;
3348				else if (rdev->desc->vsel_step)
3349					ret = _regulator_set_voltage_sel_step(
3350						rdev, best_val, selector);
3351				else
3352					ret = _regulator_call_set_voltage_sel(
3353						rdev, best_val, selector);
3354			} else {
3355				ret = -EINVAL;
3356			}
3357		}
3358	} else {
3359		ret = -EINVAL;
3360	}
3361
3362	if (ret)
3363		goto out;
3364
3365	if (ops->set_voltage_time_sel) {
3366		/*
3367		 * Call set_voltage_time_sel if successfully obtained
3368		 * old_selector
3369		 */
3370		if (old_selector >= 0 && old_selector != selector)
3371			delay = ops->set_voltage_time_sel(rdev, old_selector,
3372							  selector);
3373	} else {
3374		if (old_uV != best_val) {
3375			if (ops->set_voltage_time)
3376				delay = ops->set_voltage_time(rdev, old_uV,
3377							      best_val);
3378			else
3379				delay = _regulator_set_voltage_time(rdev,
3380								    old_uV,
3381								    best_val);
3382		}
3383	}
3384
3385	if (delay < 0) {
3386		rdev_warn(rdev, "failed to get delay: %d\n", delay);
3387		delay = 0;
3388	}
3389
3390	/* Insert any necessary delays */
3391	if (delay >= 1000) {
3392		mdelay(delay / 1000);
3393		udelay(delay % 1000);
3394	} else if (delay) {
3395		udelay(delay);
3396	}
3397
3398	if (best_val >= 0) {
3399		unsigned long data = best_val;
3400
3401		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3402				     (void *)data);
3403	}
3404
3405out:
3406	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3407
3408	return ret;
3409}
3410
3411static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3412				  int min_uV, int max_uV, suspend_state_t state)
3413{
3414	struct regulator_state *rstate;
3415	int uV, sel;
3416
3417	rstate = regulator_get_suspend_state(rdev, state);
3418	if (rstate == NULL)
3419		return -EINVAL;
3420
3421	if (min_uV < rstate->min_uV)
3422		min_uV = rstate->min_uV;
3423	if (max_uV > rstate->max_uV)
3424		max_uV = rstate->max_uV;
3425
3426	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3427	if (sel < 0)
3428		return sel;
3429
3430	uV = rdev->desc->ops->list_voltage(rdev, sel);
3431	if (uV >= min_uV && uV <= max_uV)
3432		rstate->uV = uV;
3433
3434	return 0;
3435}
3436
3437static int regulator_set_voltage_unlocked(struct regulator *regulator,
3438					  int min_uV, int max_uV,
3439					  suspend_state_t state)
3440{
3441	struct regulator_dev *rdev = regulator->rdev;
3442	struct regulator_voltage *voltage = &regulator->voltage[state];
3443	int ret = 0;
3444	int old_min_uV, old_max_uV;
3445	int current_uV;
3446
3447	/* If we're setting the same range as last time the change
3448	 * should be a noop (some cpufreq implementations use the same
3449	 * voltage for multiple frequencies, for example).
3450	 */
3451	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3452		goto out;
3453
3454	/* If we're trying to set a range that overlaps the current voltage,
3455	 * return successfully even though the regulator does not support
3456	 * changing the voltage.
3457	 */
3458	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3459		current_uV = regulator_get_voltage_rdev(rdev);
3460		if (min_uV <= current_uV && current_uV <= max_uV) {
3461			voltage->min_uV = min_uV;
3462			voltage->max_uV = max_uV;
3463			goto out;
3464		}
3465	}
3466
3467	/* sanity check */
3468	if (!rdev->desc->ops->set_voltage &&
3469	    !rdev->desc->ops->set_voltage_sel) {
3470		ret = -EINVAL;
3471		goto out;
3472	}
3473
3474	/* constraints check */
3475	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3476	if (ret < 0)
3477		goto out;
3478
3479	/* restore original values in case of error */
3480	old_min_uV = voltage->min_uV;
3481	old_max_uV = voltage->max_uV;
3482	voltage->min_uV = min_uV;
3483	voltage->max_uV = max_uV;
3484
3485	/* for not coupled regulators this will just set the voltage */
3486	ret = regulator_balance_voltage(rdev, state);
3487	if (ret < 0) {
3488		voltage->min_uV = old_min_uV;
3489		voltage->max_uV = old_max_uV;
3490	}
3491
3492out:
3493	return ret;
3494}
3495
3496int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3497			       int max_uV, suspend_state_t state)
3498{
3499	int best_supply_uV = 0;
3500	int supply_change_uV = 0;
3501	int ret;
3502
3503	if (rdev->supply &&
3504	    regulator_ops_is_valid(rdev->supply->rdev,
3505				   REGULATOR_CHANGE_VOLTAGE) &&
3506	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3507					   rdev->desc->ops->get_voltage_sel))) {
3508		int current_supply_uV;
3509		int selector;
3510
3511		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3512		if (selector < 0) {
3513			ret = selector;
3514			goto out;
3515		}
3516
3517		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3518		if (best_supply_uV < 0) {
3519			ret = best_supply_uV;
3520			goto out;
3521		}
3522
3523		best_supply_uV += rdev->desc->min_dropout_uV;
3524
3525		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3526		if (current_supply_uV < 0) {
3527			ret = current_supply_uV;
3528			goto out;
3529		}
3530
3531		supply_change_uV = best_supply_uV - current_supply_uV;
3532	}
3533
3534	if (supply_change_uV > 0) {
3535		ret = regulator_set_voltage_unlocked(rdev->supply,
3536				best_supply_uV, INT_MAX, state);
3537		if (ret) {
3538			dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3539					ret);
3540			goto out;
3541		}
3542	}
3543
3544	if (state == PM_SUSPEND_ON)
3545		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3546	else
3547		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3548							max_uV, state);
3549	if (ret < 0)
3550		goto out;
3551
3552	if (supply_change_uV < 0) {
3553		ret = regulator_set_voltage_unlocked(rdev->supply,
3554				best_supply_uV, INT_MAX, state);
3555		if (ret)
3556			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3557					ret);
3558		/* No need to fail here */
3559		ret = 0;
3560	}
3561
3562out:
3563	return ret;
3564}
3565EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3566
3567static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3568					int *current_uV, int *min_uV)
3569{
3570	struct regulation_constraints *constraints = rdev->constraints;
3571
3572	/* Limit voltage change only if necessary */
3573	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3574		return 1;
3575
3576	if (*current_uV < 0) {
3577		*current_uV = regulator_get_voltage_rdev(rdev);
3578
3579		if (*current_uV < 0)
3580			return *current_uV;
3581	}
3582
3583	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3584		return 1;
3585
3586	/* Clamp target voltage within the given step */
3587	if (*current_uV < *min_uV)
3588		*min_uV = min(*current_uV + constraints->max_uV_step,
3589			      *min_uV);
3590	else
3591		*min_uV = max(*current_uV - constraints->max_uV_step,
3592			      *min_uV);
3593
3594	return 0;
3595}
3596
3597static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3598					 int *current_uV,
3599					 int *min_uV, int *max_uV,
3600					 suspend_state_t state,
3601					 int n_coupled)
3602{
3603	struct coupling_desc *c_desc = &rdev->coupling_desc;
3604	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3605	struct regulation_constraints *constraints = rdev->constraints;
3606	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3607	int max_current_uV = 0, min_current_uV = INT_MAX;
3608	int highest_min_uV = 0, target_uV, possible_uV;
3609	int i, ret, max_spread;
3610	bool done;
3611
3612	*current_uV = -1;
3613
3614	/*
3615	 * If there are no coupled regulators, simply set the voltage
3616	 * demanded by consumers.
3617	 */
3618	if (n_coupled == 1) {
3619		/*
3620		 * If consumers don't provide any demands, set voltage
3621		 * to min_uV
3622		 */
3623		desired_min_uV = constraints->min_uV;
3624		desired_max_uV = constraints->max_uV;
3625
3626		ret = regulator_check_consumers(rdev,
3627						&desired_min_uV,
3628						&desired_max_uV, state);
3629		if (ret < 0)
3630			return ret;
3631
3632		possible_uV = desired_min_uV;
3633		done = true;
3634
3635		goto finish;
3636	}
3637
3638	/* Find highest min desired voltage */
3639	for (i = 0; i < n_coupled; i++) {
3640		int tmp_min = 0;
3641		int tmp_max = INT_MAX;
3642
3643		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3644
3645		ret = regulator_check_consumers(c_rdevs[i],
3646						&tmp_min,
3647						&tmp_max, state);
3648		if (ret < 0)
3649			return ret;
3650
3651		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3652		if (ret < 0)
3653			return ret;
3654
3655		highest_min_uV = max(highest_min_uV, tmp_min);
3656
3657		if (i == 0) {
3658			desired_min_uV = tmp_min;
3659			desired_max_uV = tmp_max;
3660		}
3661	}
3662
3663	max_spread = constraints->max_spread[0];
3664
3665	/*
3666	 * Let target_uV be equal to the desired one if possible.
3667	 * If not, set it to minimum voltage, allowed by other coupled
3668	 * regulators.
3669	 */
3670	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3671
3672	/*
3673	 * Find min and max voltages, which currently aren't violating
3674	 * max_spread.
3675	 */
3676	for (i = 1; i < n_coupled; i++) {
3677		int tmp_act;
3678
3679		if (!_regulator_is_enabled(c_rdevs[i]))
3680			continue;
3681
3682		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3683		if (tmp_act < 0)
3684			return tmp_act;
3685
3686		min_current_uV = min(tmp_act, min_current_uV);
3687		max_current_uV = max(tmp_act, max_current_uV);
3688	}
3689
3690	/* There aren't any other regulators enabled */
3691	if (max_current_uV == 0) {
3692		possible_uV = target_uV;
3693	} else {
3694		/*
3695		 * Correct target voltage, so as it currently isn't
3696		 * violating max_spread
3697		 */
3698		possible_uV = max(target_uV, max_current_uV - max_spread);
3699		possible_uV = min(possible_uV, min_current_uV + max_spread);
3700	}
3701
3702	if (possible_uV > desired_max_uV)
3703		return -EINVAL;
3704
3705	done = (possible_uV == target_uV);
3706	desired_min_uV = possible_uV;
3707
3708finish:
3709	/* Apply max_uV_step constraint if necessary */
3710	if (state == PM_SUSPEND_ON) {
3711		ret = regulator_limit_voltage_step(rdev, current_uV,
3712						   &desired_min_uV);
3713		if (ret < 0)
3714			return ret;
3715
3716		if (ret == 0)
3717			done = false;
3718	}
3719
3720	/* Set current_uV if wasn't done earlier in the code and if necessary */
3721	if (n_coupled > 1 && *current_uV == -1) {
3722
3723		if (_regulator_is_enabled(rdev)) {
3724			ret = regulator_get_voltage_rdev(rdev);
3725			if (ret < 0)
3726				return ret;
3727
3728			*current_uV = ret;
3729		} else {
3730			*current_uV = desired_min_uV;
3731		}
3732	}
3733
3734	*min_uV = desired_min_uV;
3735	*max_uV = desired_max_uV;
3736
3737	return done;
3738}
3739
3740int regulator_do_balance_voltage(struct regulator_dev *rdev,
3741				 suspend_state_t state, bool skip_coupled)
3742{
3743	struct regulator_dev **c_rdevs;
3744	struct regulator_dev *best_rdev;
3745	struct coupling_desc *c_desc = &rdev->coupling_desc;
3746	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3747	unsigned int delta, best_delta;
3748	unsigned long c_rdev_done = 0;
3749	bool best_c_rdev_done;
3750
3751	c_rdevs = c_desc->coupled_rdevs;
3752	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3753
3754	/*
3755	 * Find the best possible voltage change on each loop. Leave the loop
3756	 * if there isn't any possible change.
3757	 */
3758	do {
3759		best_c_rdev_done = false;
3760		best_delta = 0;
3761		best_min_uV = 0;
3762		best_max_uV = 0;
3763		best_c_rdev = 0;
3764		best_rdev = NULL;
3765
3766		/*
3767		 * Find highest difference between optimal voltage
3768		 * and current voltage.
3769		 */
3770		for (i = 0; i < n_coupled; i++) {
3771			/*
3772			 * optimal_uV is the best voltage that can be set for
3773			 * i-th regulator at the moment without violating
3774			 * max_spread constraint in order to balance
3775			 * the coupled voltages.
3776			 */
3777			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3778
3779			if (test_bit(i, &c_rdev_done))
3780				continue;
3781
3782			ret = regulator_get_optimal_voltage(c_rdevs[i],
3783							    &current_uV,
3784							    &optimal_uV,
3785							    &optimal_max_uV,
3786							    state, n_coupled);
3787			if (ret < 0)
3788				goto out;
3789
3790			delta = abs(optimal_uV - current_uV);
3791
3792			if (delta && best_delta <= delta) {
3793				best_c_rdev_done = ret;
3794				best_delta = delta;
3795				best_rdev = c_rdevs[i];
3796				best_min_uV = optimal_uV;
3797				best_max_uV = optimal_max_uV;
3798				best_c_rdev = i;
3799			}
3800		}
3801
3802		/* Nothing to change, return successfully */
3803		if (!best_rdev) {
3804			ret = 0;
3805			goto out;
3806		}
3807
3808		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3809						 best_max_uV, state);
3810
3811		if (ret < 0)
3812			goto out;
3813
3814		if (best_c_rdev_done)
3815			set_bit(best_c_rdev, &c_rdev_done);
3816
3817	} while (n_coupled > 1);
3818
3819out:
3820	return ret;
3821}
3822
3823static int regulator_balance_voltage(struct regulator_dev *rdev,
3824				     suspend_state_t state)
3825{
3826	struct coupling_desc *c_desc = &rdev->coupling_desc;
3827	struct regulator_coupler *coupler = c_desc->coupler;
3828	bool skip_coupled = false;
3829
3830	/*
3831	 * If system is in a state other than PM_SUSPEND_ON, don't check
3832	 * other coupled regulators.
3833	 */
3834	if (state != PM_SUSPEND_ON)
3835		skip_coupled = true;
3836
3837	if (c_desc->n_resolved < c_desc->n_coupled) {
3838		rdev_err(rdev, "Not all coupled regulators registered\n");
3839		return -EPERM;
3840	}
3841
3842	/* Invoke custom balancer for customized couplers */
3843	if (coupler && coupler->balance_voltage)
3844		return coupler->balance_voltage(coupler, rdev, state);
3845
3846	return regulator_do_balance_voltage(rdev, state, skip_coupled);
3847}
3848
3849/**
3850 * regulator_set_voltage - set regulator output voltage
3851 * @regulator: regulator source
3852 * @min_uV: Minimum required voltage in uV
3853 * @max_uV: Maximum acceptable voltage in uV
3854 *
3855 * Sets a voltage regulator to the desired output voltage. This can be set
3856 * during any regulator state. IOW, regulator can be disabled or enabled.
3857 *
3858 * If the regulator is enabled then the voltage will change to the new value
3859 * immediately otherwise if the regulator is disabled the regulator will
3860 * output at the new voltage when enabled.
3861 *
3862 * NOTE: If the regulator is shared between several devices then the lowest
3863 * request voltage that meets the system constraints will be used.
3864 * Regulator system constraints must be set for this regulator before
3865 * calling this function otherwise this call will fail.
3866 */
3867int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3868{
3869	struct ww_acquire_ctx ww_ctx;
3870	int ret;
3871
3872	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3873
3874	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3875					     PM_SUSPEND_ON);
3876
3877	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3878
3879	return ret;
3880}
3881EXPORT_SYMBOL_GPL(regulator_set_voltage);
3882
3883static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3884					   suspend_state_t state, bool en)
3885{
3886	struct regulator_state *rstate;
3887
3888	rstate = regulator_get_suspend_state(rdev, state);
3889	if (rstate == NULL)
3890		return -EINVAL;
3891
3892	if (!rstate->changeable)
3893		return -EPERM;
3894
3895	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3896
3897	return 0;
3898}
3899
3900int regulator_suspend_enable(struct regulator_dev *rdev,
3901				    suspend_state_t state)
3902{
3903	return regulator_suspend_toggle(rdev, state, true);
3904}
3905EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3906
3907int regulator_suspend_disable(struct regulator_dev *rdev,
3908				     suspend_state_t state)
3909{
3910	struct regulator *regulator;
3911	struct regulator_voltage *voltage;
3912
3913	/*
3914	 * if any consumer wants this regulator device keeping on in
3915	 * suspend states, don't set it as disabled.
3916	 */
3917	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3918		voltage = &regulator->voltage[state];
3919		if (voltage->min_uV || voltage->max_uV)
3920			return 0;
3921	}
3922
3923	return regulator_suspend_toggle(rdev, state, false);
3924}
3925EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3926
3927static int _regulator_set_suspend_voltage(struct regulator *regulator,
3928					  int min_uV, int max_uV,
3929					  suspend_state_t state)
3930{
3931	struct regulator_dev *rdev = regulator->rdev;
3932	struct regulator_state *rstate;
3933
3934	rstate = regulator_get_suspend_state(rdev, state);
3935	if (rstate == NULL)
3936		return -EINVAL;
3937
3938	if (rstate->min_uV == rstate->max_uV) {
3939		rdev_err(rdev, "The suspend voltage can't be changed!\n");
3940		return -EPERM;
3941	}
3942
3943	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3944}
3945
3946int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3947				  int max_uV, suspend_state_t state)
3948{
3949	struct ww_acquire_ctx ww_ctx;
3950	int ret;
3951
3952	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3953	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3954		return -EINVAL;
3955
3956	regulator_lock_dependent(regulator->rdev, &ww_ctx);
3957
3958	ret = _regulator_set_suspend_voltage(regulator, min_uV,
3959					     max_uV, state);
3960
3961	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3962
3963	return ret;
3964}
3965EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3966
3967/**
3968 * regulator_set_voltage_time - get raise/fall time
3969 * @regulator: regulator source
3970 * @old_uV: starting voltage in microvolts
3971 * @new_uV: target voltage in microvolts
3972 *
3973 * Provided with the starting and ending voltage, this function attempts to
3974 * calculate the time in microseconds required to rise or fall to this new
3975 * voltage.
3976 */
3977int regulator_set_voltage_time(struct regulator *regulator,
3978			       int old_uV, int new_uV)
3979{
3980	struct regulator_dev *rdev = regulator->rdev;
3981	const struct regulator_ops *ops = rdev->desc->ops;
3982	int old_sel = -1;
3983	int new_sel = -1;
3984	int voltage;
3985	int i;
3986
3987	if (ops->set_voltage_time)
3988		return ops->set_voltage_time(rdev, old_uV, new_uV);
3989	else if (!ops->set_voltage_time_sel)
3990		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3991
3992	/* Currently requires operations to do this */
3993	if (!ops->list_voltage || !rdev->desc->n_voltages)
3994		return -EINVAL;
3995
3996	for (i = 0; i < rdev->desc->n_voltages; i++) {
3997		/* We only look for exact voltage matches here */
 
 
 
 
 
 
3998		voltage = regulator_list_voltage(regulator, i);
3999		if (voltage < 0)
4000			return -EINVAL;
4001		if (voltage == 0)
4002			continue;
4003		if (voltage == old_uV)
4004			old_sel = i;
4005		if (voltage == new_uV)
4006			new_sel = i;
4007	}
4008
4009	if (old_sel < 0 || new_sel < 0)
4010		return -EINVAL;
4011
4012	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4013}
4014EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4015
4016/**
4017 * regulator_set_voltage_time_sel - get raise/fall time
4018 * @rdev: regulator source device
4019 * @old_selector: selector for starting voltage
4020 * @new_selector: selector for target voltage
4021 *
4022 * Provided with the starting and target voltage selectors, this function
4023 * returns time in microseconds required to rise or fall to this new voltage
4024 *
4025 * Drivers providing ramp_delay in regulation_constraints can use this as their
4026 * set_voltage_time_sel() operation.
4027 */
4028int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4029				   unsigned int old_selector,
4030				   unsigned int new_selector)
4031{
4032	int old_volt, new_volt;
4033
4034	/* sanity check */
4035	if (!rdev->desc->ops->list_voltage)
4036		return -EINVAL;
4037
4038	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4039	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4040
4041	if (rdev->desc->ops->set_voltage_time)
4042		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4043							 new_volt);
4044	else
4045		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4046}
4047EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4049/**
4050 * regulator_sync_voltage - re-apply last regulator output voltage
4051 * @regulator: regulator source
4052 *
4053 * Re-apply the last configured voltage.  This is intended to be used
4054 * where some external control source the consumer is cooperating with
4055 * has caused the configured voltage to change.
4056 */
4057int regulator_sync_voltage(struct regulator *regulator)
4058{
4059	struct regulator_dev *rdev = regulator->rdev;
4060	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4061	int ret, min_uV, max_uV;
4062
4063	regulator_lock(rdev);
4064
4065	if (!rdev->desc->ops->set_voltage &&
4066	    !rdev->desc->ops->set_voltage_sel) {
4067		ret = -EINVAL;
4068		goto out;
4069	}
4070
4071	/* This is only going to work if we've had a voltage configured. */
4072	if (!voltage->min_uV && !voltage->max_uV) {
4073		ret = -EINVAL;
4074		goto out;
4075	}
4076
4077	min_uV = voltage->min_uV;
4078	max_uV = voltage->max_uV;
4079
4080	/* This should be a paranoia check... */
4081	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4082	if (ret < 0)
4083		goto out;
4084
4085	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4086	if (ret < 0)
4087		goto out;
4088
4089	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
 
 
 
 
4090
4091out:
4092	regulator_unlock(rdev);
4093	return ret;
4094}
4095EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4096
4097int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4098{
4099	int sel, ret;
4100	bool bypassed;
4101
4102	if (rdev->desc->ops->get_bypass) {
4103		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4104		if (ret < 0)
4105			return ret;
4106		if (bypassed) {
4107			/* if bypassed the regulator must have a supply */
4108			if (!rdev->supply) {
4109				rdev_err(rdev,
4110					 "bypassed regulator has no supply!\n");
4111				return -EPROBE_DEFER;
4112			}
4113
4114			return regulator_get_voltage_rdev(rdev->supply->rdev);
4115		}
4116	}
4117
4118	if (rdev->desc->ops->get_voltage_sel) {
4119		sel = rdev->desc->ops->get_voltage_sel(rdev);
4120		if (sel < 0)
4121			return sel;
4122		ret = rdev->desc->ops->list_voltage(rdev, sel);
4123	} else if (rdev->desc->ops->get_voltage) {
4124		ret = rdev->desc->ops->get_voltage(rdev);
4125	} else if (rdev->desc->ops->list_voltage) {
4126		ret = rdev->desc->ops->list_voltage(rdev, 0);
4127	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4128		ret = rdev->desc->fixed_uV;
4129	} else if (rdev->supply) {
4130		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
 
 
4131	} else {
4132		return -EINVAL;
4133	}
4134
4135	if (ret < 0)
4136		return ret;
4137	return ret - rdev->constraints->uV_offset;
4138}
4139EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4140
4141/**
4142 * regulator_get_voltage - get regulator output voltage
4143 * @regulator: regulator source
4144 *
4145 * This returns the current regulator voltage in uV.
4146 *
4147 * NOTE: If the regulator is disabled it will return the voltage value. This
4148 * function should not be used to determine regulator state.
4149 */
4150int regulator_get_voltage(struct regulator *regulator)
4151{
4152	struct ww_acquire_ctx ww_ctx;
4153	int ret;
4154
4155	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4156	ret = regulator_get_voltage_rdev(regulator->rdev);
4157	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4158
4159	return ret;
4160}
4161EXPORT_SYMBOL_GPL(regulator_get_voltage);
4162
4163/**
4164 * regulator_set_current_limit - set regulator output current limit
4165 * @regulator: regulator source
4166 * @min_uA: Minimum supported current in uA
4167 * @max_uA: Maximum supported current in uA
4168 *
4169 * Sets current sink to the desired output current. This can be set during
4170 * any regulator state. IOW, regulator can be disabled or enabled.
4171 *
4172 * If the regulator is enabled then the current will change to the new value
4173 * immediately otherwise if the regulator is disabled the regulator will
4174 * output at the new current when enabled.
4175 *
4176 * NOTE: Regulator system constraints must be set for this regulator before
4177 * calling this function otherwise this call will fail.
4178 */
4179int regulator_set_current_limit(struct regulator *regulator,
4180			       int min_uA, int max_uA)
4181{
4182	struct regulator_dev *rdev = regulator->rdev;
4183	int ret;
4184
4185	regulator_lock(rdev);
4186
4187	/* sanity check */
4188	if (!rdev->desc->ops->set_current_limit) {
4189		ret = -EINVAL;
4190		goto out;
4191	}
4192
4193	/* constraints check */
4194	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4195	if (ret < 0)
4196		goto out;
4197
4198	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4199out:
4200	regulator_unlock(rdev);
4201	return ret;
4202}
4203EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4204
4205static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4206{
4207	/* sanity check */
4208	if (!rdev->desc->ops->get_current_limit)
4209		return -EINVAL;
4210
4211	return rdev->desc->ops->get_current_limit(rdev);
4212}
4213
4214static int _regulator_get_current_limit(struct regulator_dev *rdev)
4215{
4216	int ret;
4217
4218	regulator_lock(rdev);
4219	ret = _regulator_get_current_limit_unlocked(rdev);
4220	regulator_unlock(rdev);
4221
4222	return ret;
4223}
4224
4225/**
4226 * regulator_get_current_limit - get regulator output current
4227 * @regulator: regulator source
4228 *
4229 * This returns the current supplied by the specified current sink in uA.
4230 *
4231 * NOTE: If the regulator is disabled it will return the current value. This
4232 * function should not be used to determine regulator state.
4233 */
4234int regulator_get_current_limit(struct regulator *regulator)
4235{
4236	return _regulator_get_current_limit(regulator->rdev);
4237}
4238EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4239
4240/**
4241 * regulator_set_mode - set regulator operating mode
4242 * @regulator: regulator source
4243 * @mode: operating mode - one of the REGULATOR_MODE constants
4244 *
4245 * Set regulator operating mode to increase regulator efficiency or improve
4246 * regulation performance.
4247 *
4248 * NOTE: Regulator system constraints must be set for this regulator before
4249 * calling this function otherwise this call will fail.
4250 */
4251int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4252{
4253	struct regulator_dev *rdev = regulator->rdev;
4254	int ret;
4255	int regulator_curr_mode;
4256
4257	regulator_lock(rdev);
4258
4259	/* sanity check */
4260	if (!rdev->desc->ops->set_mode) {
4261		ret = -EINVAL;
4262		goto out;
4263	}
4264
4265	/* return if the same mode is requested */
4266	if (rdev->desc->ops->get_mode) {
4267		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4268		if (regulator_curr_mode == mode) {
4269			ret = 0;
4270			goto out;
4271		}
4272	}
4273
4274	/* constraints check */
4275	ret = regulator_mode_constrain(rdev, &mode);
4276	if (ret < 0)
4277		goto out;
4278
4279	ret = rdev->desc->ops->set_mode(rdev, mode);
4280out:
4281	regulator_unlock(rdev);
4282	return ret;
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_mode);
4285
4286static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4287{
4288	/* sanity check */
4289	if (!rdev->desc->ops->get_mode)
4290		return -EINVAL;
4291
4292	return rdev->desc->ops->get_mode(rdev);
4293}
4294
4295static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4296{
4297	int ret;
4298
4299	regulator_lock(rdev);
4300	ret = _regulator_get_mode_unlocked(rdev);
4301	regulator_unlock(rdev);
4302
4303	return ret;
4304}
4305
4306/**
4307 * regulator_get_mode - get regulator operating mode
4308 * @regulator: regulator source
4309 *
4310 * Get the current regulator operating mode.
4311 */
4312unsigned int regulator_get_mode(struct regulator *regulator)
4313{
4314	return _regulator_get_mode(regulator->rdev);
4315}
4316EXPORT_SYMBOL_GPL(regulator_get_mode);
4317
 
 
 
 
 
 
 
 
 
 
 
 
4318static int _regulator_get_error_flags(struct regulator_dev *rdev,
4319					unsigned int *flags)
4320{
4321	int ret;
4322
4323	regulator_lock(rdev);
4324
4325	/* sanity check */
4326	if (!rdev->desc->ops->get_error_flags) {
 
 
 
4327		ret = -EINVAL;
4328		goto out;
4329	}
4330
4331	ret = rdev->desc->ops->get_error_flags(rdev, flags);
4332out:
4333	regulator_unlock(rdev);
 
4334	return ret;
4335}
4336
4337/**
4338 * regulator_get_error_flags - get regulator error information
4339 * @regulator: regulator source
4340 * @flags: pointer to store error flags
4341 *
4342 * Get the current regulator error information.
4343 */
4344int regulator_get_error_flags(struct regulator *regulator,
4345				unsigned int *flags)
4346{
4347	return _regulator_get_error_flags(regulator->rdev, flags);
4348}
4349EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4350
4351/**
4352 * regulator_set_load - set regulator load
4353 * @regulator: regulator source
4354 * @uA_load: load current
4355 *
4356 * Notifies the regulator core of a new device load. This is then used by
4357 * DRMS (if enabled by constraints) to set the most efficient regulator
4358 * operating mode for the new regulator loading.
4359 *
4360 * Consumer devices notify their supply regulator of the maximum power
4361 * they will require (can be taken from device datasheet in the power
4362 * consumption tables) when they change operational status and hence power
4363 * state. Examples of operational state changes that can affect power
4364 * consumption are :-
4365 *
4366 *    o Device is opened / closed.
4367 *    o Device I/O is about to begin or has just finished.
4368 *    o Device is idling in between work.
4369 *
4370 * This information is also exported via sysfs to userspace.
4371 *
4372 * DRMS will sum the total requested load on the regulator and change
4373 * to the most efficient operating mode if platform constraints allow.
4374 *
4375 * NOTE: when a regulator consumer requests to have a regulator
4376 * disabled then any load that consumer requested no longer counts
4377 * toward the total requested load.  If the regulator is re-enabled
4378 * then the previously requested load will start counting again.
4379 *
4380 * If a regulator is an always-on regulator then an individual consumer's
4381 * load will still be removed if that consumer is fully disabled.
4382 *
4383 * On error a negative errno is returned.
4384 */
4385int regulator_set_load(struct regulator *regulator, int uA_load)
4386{
4387	struct regulator_dev *rdev = regulator->rdev;
4388	int old_uA_load;
4389	int ret = 0;
4390
4391	regulator_lock(rdev);
4392	old_uA_load = regulator->uA_load;
4393	regulator->uA_load = uA_load;
4394	if (regulator->enable_count && old_uA_load != uA_load) {
4395		ret = drms_uA_update(rdev);
4396		if (ret < 0)
4397			regulator->uA_load = old_uA_load;
4398	}
4399	regulator_unlock(rdev);
4400
4401	return ret;
4402}
4403EXPORT_SYMBOL_GPL(regulator_set_load);
4404
4405/**
4406 * regulator_allow_bypass - allow the regulator to go into bypass mode
4407 *
4408 * @regulator: Regulator to configure
4409 * @enable: enable or disable bypass mode
4410 *
4411 * Allow the regulator to go into bypass mode if all other consumers
4412 * for the regulator also enable bypass mode and the machine
4413 * constraints allow this.  Bypass mode means that the regulator is
4414 * simply passing the input directly to the output with no regulation.
4415 */
4416int regulator_allow_bypass(struct regulator *regulator, bool enable)
4417{
4418	struct regulator_dev *rdev = regulator->rdev;
4419	const char *name = rdev_get_name(rdev);
4420	int ret = 0;
4421
4422	if (!rdev->desc->ops->set_bypass)
4423		return 0;
4424
4425	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4426		return 0;
4427
4428	regulator_lock(rdev);
4429
4430	if (enable && !regulator->bypass) {
4431		rdev->bypass_count++;
4432
4433		if (rdev->bypass_count == rdev->open_count) {
4434			trace_regulator_bypass_enable(name);
4435
4436			ret = rdev->desc->ops->set_bypass(rdev, enable);
4437			if (ret != 0)
4438				rdev->bypass_count--;
4439			else
4440				trace_regulator_bypass_enable_complete(name);
4441		}
4442
4443	} else if (!enable && regulator->bypass) {
4444		rdev->bypass_count--;
4445
4446		if (rdev->bypass_count != rdev->open_count) {
4447			trace_regulator_bypass_disable(name);
4448
4449			ret = rdev->desc->ops->set_bypass(rdev, enable);
4450			if (ret != 0)
4451				rdev->bypass_count++;
4452			else
4453				trace_regulator_bypass_disable_complete(name);
4454		}
4455	}
4456
4457	if (ret == 0)
4458		regulator->bypass = enable;
4459
4460	regulator_unlock(rdev);
4461
4462	return ret;
4463}
4464EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4465
4466/**
4467 * regulator_register_notifier - register regulator event notifier
4468 * @regulator: regulator source
4469 * @nb: notifier block
4470 *
4471 * Register notifier block to receive regulator events.
4472 */
4473int regulator_register_notifier(struct regulator *regulator,
4474			      struct notifier_block *nb)
4475{
4476	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4477						nb);
4478}
4479EXPORT_SYMBOL_GPL(regulator_register_notifier);
4480
4481/**
4482 * regulator_unregister_notifier - unregister regulator event notifier
4483 * @regulator: regulator source
4484 * @nb: notifier block
4485 *
4486 * Unregister regulator event notifier block.
4487 */
4488int regulator_unregister_notifier(struct regulator *regulator,
4489				struct notifier_block *nb)
4490{
4491	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4492						  nb);
4493}
4494EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4495
4496/* notify regulator consumers and downstream regulator consumers.
4497 * Note mutex must be held by caller.
4498 */
4499static int _notifier_call_chain(struct regulator_dev *rdev,
4500				  unsigned long event, void *data)
4501{
4502	/* call rdev chain first */
4503	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4504}
4505
4506/**
4507 * regulator_bulk_get - get multiple regulator consumers
4508 *
4509 * @dev:           Device to supply
4510 * @num_consumers: Number of consumers to register
4511 * @consumers:     Configuration of consumers; clients are stored here.
4512 *
4513 * @return 0 on success, an errno on failure.
4514 *
4515 * This helper function allows drivers to get several regulator
4516 * consumers in one operation.  If any of the regulators cannot be
4517 * acquired then any regulators that were allocated will be freed
4518 * before returning to the caller.
4519 */
4520int regulator_bulk_get(struct device *dev, int num_consumers,
4521		       struct regulator_bulk_data *consumers)
4522{
4523	int i;
4524	int ret;
4525
4526	for (i = 0; i < num_consumers; i++)
4527		consumers[i].consumer = NULL;
4528
4529	for (i = 0; i < num_consumers; i++) {
4530		consumers[i].consumer = regulator_get(dev,
4531						      consumers[i].supply);
4532		if (IS_ERR(consumers[i].consumer)) {
4533			ret = PTR_ERR(consumers[i].consumer);
4534			consumers[i].consumer = NULL;
4535			goto err;
4536		}
4537	}
4538
4539	return 0;
4540
4541err:
4542	if (ret != -EPROBE_DEFER)
4543		dev_err(dev, "Failed to get supply '%s': %d\n",
4544			consumers[i].supply, ret);
4545	else
4546		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4547			consumers[i].supply);
4548
4549	while (--i >= 0)
4550		regulator_put(consumers[i].consumer);
4551
4552	return ret;
4553}
4554EXPORT_SYMBOL_GPL(regulator_bulk_get);
4555
4556static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4557{
4558	struct regulator_bulk_data *bulk = data;
4559
4560	bulk->ret = regulator_enable(bulk->consumer);
4561}
4562
4563/**
4564 * regulator_bulk_enable - enable multiple regulator consumers
4565 *
4566 * @num_consumers: Number of consumers
4567 * @consumers:     Consumer data; clients are stored here.
4568 * @return         0 on success, an errno on failure
4569 *
4570 * This convenience API allows consumers to enable multiple regulator
4571 * clients in a single API call.  If any consumers cannot be enabled
4572 * then any others that were enabled will be disabled again prior to
4573 * return.
4574 */
4575int regulator_bulk_enable(int num_consumers,
4576			  struct regulator_bulk_data *consumers)
4577{
4578	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4579	int i;
4580	int ret = 0;
4581
4582	for (i = 0; i < num_consumers; i++) {
4583		async_schedule_domain(regulator_bulk_enable_async,
4584				      &consumers[i], &async_domain);
4585	}
4586
4587	async_synchronize_full_domain(&async_domain);
4588
4589	/* If any consumer failed we need to unwind any that succeeded */
4590	for (i = 0; i < num_consumers; i++) {
4591		if (consumers[i].ret != 0) {
4592			ret = consumers[i].ret;
4593			goto err;
4594		}
4595	}
4596
4597	return 0;
4598
4599err:
4600	for (i = 0; i < num_consumers; i++) {
4601		if (consumers[i].ret < 0)
4602			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4603			       consumers[i].ret);
4604		else
4605			regulator_disable(consumers[i].consumer);
4606	}
4607
4608	return ret;
4609}
4610EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4611
4612/**
4613 * regulator_bulk_disable - disable multiple regulator consumers
4614 *
4615 * @num_consumers: Number of consumers
4616 * @consumers:     Consumer data; clients are stored here.
4617 * @return         0 on success, an errno on failure
4618 *
4619 * This convenience API allows consumers to disable multiple regulator
4620 * clients in a single API call.  If any consumers cannot be disabled
4621 * then any others that were disabled will be enabled again prior to
4622 * return.
4623 */
4624int regulator_bulk_disable(int num_consumers,
4625			   struct regulator_bulk_data *consumers)
4626{
4627	int i;
4628	int ret, r;
4629
4630	for (i = num_consumers - 1; i >= 0; --i) {
4631		ret = regulator_disable(consumers[i].consumer);
4632		if (ret != 0)
4633			goto err;
4634	}
4635
4636	return 0;
4637
4638err:
4639	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4640	for (++i; i < num_consumers; ++i) {
4641		r = regulator_enable(consumers[i].consumer);
4642		if (r != 0)
4643			pr_err("Failed to re-enable %s: %d\n",
4644			       consumers[i].supply, r);
4645	}
4646
4647	return ret;
4648}
4649EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4650
4651/**
4652 * regulator_bulk_force_disable - force disable multiple regulator consumers
4653 *
4654 * @num_consumers: Number of consumers
4655 * @consumers:     Consumer data; clients are stored here.
4656 * @return         0 on success, an errno on failure
4657 *
4658 * This convenience API allows consumers to forcibly disable multiple regulator
4659 * clients in a single API call.
4660 * NOTE: This should be used for situations when device damage will
4661 * likely occur if the regulators are not disabled (e.g. over temp).
4662 * Although regulator_force_disable function call for some consumers can
4663 * return error numbers, the function is called for all consumers.
4664 */
4665int regulator_bulk_force_disable(int num_consumers,
4666			   struct regulator_bulk_data *consumers)
4667{
4668	int i;
4669	int ret = 0;
4670
4671	for (i = 0; i < num_consumers; i++) {
4672		consumers[i].ret =
4673			    regulator_force_disable(consumers[i].consumer);
4674
4675		/* Store first error for reporting */
4676		if (consumers[i].ret && !ret)
4677			ret = consumers[i].ret;
4678	}
4679
4680	return ret;
4681}
4682EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4683
4684/**
4685 * regulator_bulk_free - free multiple regulator consumers
4686 *
4687 * @num_consumers: Number of consumers
4688 * @consumers:     Consumer data; clients are stored here.
4689 *
4690 * This convenience API allows consumers to free multiple regulator
4691 * clients in a single API call.
4692 */
4693void regulator_bulk_free(int num_consumers,
4694			 struct regulator_bulk_data *consumers)
4695{
4696	int i;
4697
4698	for (i = 0; i < num_consumers; i++) {
4699		regulator_put(consumers[i].consumer);
4700		consumers[i].consumer = NULL;
4701	}
4702}
4703EXPORT_SYMBOL_GPL(regulator_bulk_free);
4704
4705/**
4706 * regulator_notifier_call_chain - call regulator event notifier
4707 * @rdev: regulator source
4708 * @event: notifier block
4709 * @data: callback-specific data.
4710 *
4711 * Called by regulator drivers to notify clients a regulator event has
4712 * occurred. We also notify regulator clients downstream.
4713 * Note lock must be held by caller.
4714 */
4715int regulator_notifier_call_chain(struct regulator_dev *rdev,
4716				  unsigned long event, void *data)
4717{
4718	lockdep_assert_held_once(&rdev->mutex.base);
4719
4720	_notifier_call_chain(rdev, event, data);
4721	return NOTIFY_DONE;
4722
4723}
4724EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4725
4726/**
4727 * regulator_mode_to_status - convert a regulator mode into a status
4728 *
4729 * @mode: Mode to convert
4730 *
4731 * Convert a regulator mode into a status.
4732 */
4733int regulator_mode_to_status(unsigned int mode)
4734{
4735	switch (mode) {
4736	case REGULATOR_MODE_FAST:
4737		return REGULATOR_STATUS_FAST;
4738	case REGULATOR_MODE_NORMAL:
4739		return REGULATOR_STATUS_NORMAL;
4740	case REGULATOR_MODE_IDLE:
4741		return REGULATOR_STATUS_IDLE;
4742	case REGULATOR_MODE_STANDBY:
4743		return REGULATOR_STATUS_STANDBY;
4744	default:
4745		return REGULATOR_STATUS_UNDEFINED;
4746	}
4747}
4748EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4749
4750static struct attribute *regulator_dev_attrs[] = {
4751	&dev_attr_name.attr,
4752	&dev_attr_num_users.attr,
4753	&dev_attr_type.attr,
4754	&dev_attr_microvolts.attr,
4755	&dev_attr_microamps.attr,
4756	&dev_attr_opmode.attr,
4757	&dev_attr_state.attr,
4758	&dev_attr_status.attr,
4759	&dev_attr_bypass.attr,
4760	&dev_attr_requested_microamps.attr,
4761	&dev_attr_min_microvolts.attr,
4762	&dev_attr_max_microvolts.attr,
4763	&dev_attr_min_microamps.attr,
4764	&dev_attr_max_microamps.attr,
4765	&dev_attr_suspend_standby_state.attr,
4766	&dev_attr_suspend_mem_state.attr,
4767	&dev_attr_suspend_disk_state.attr,
4768	&dev_attr_suspend_standby_microvolts.attr,
4769	&dev_attr_suspend_mem_microvolts.attr,
4770	&dev_attr_suspend_disk_microvolts.attr,
4771	&dev_attr_suspend_standby_mode.attr,
4772	&dev_attr_suspend_mem_mode.attr,
4773	&dev_attr_suspend_disk_mode.attr,
4774	NULL
4775};
4776
4777/*
4778 * To avoid cluttering sysfs (and memory) with useless state, only
4779 * create attributes that can be meaningfully displayed.
4780 */
4781static umode_t regulator_attr_is_visible(struct kobject *kobj,
4782					 struct attribute *attr, int idx)
4783{
4784	struct device *dev = kobj_to_dev(kobj);
4785	struct regulator_dev *rdev = dev_to_rdev(dev);
4786	const struct regulator_ops *ops = rdev->desc->ops;
4787	umode_t mode = attr->mode;
4788
4789	/* these three are always present */
4790	if (attr == &dev_attr_name.attr ||
4791	    attr == &dev_attr_num_users.attr ||
4792	    attr == &dev_attr_type.attr)
4793		return mode;
4794
4795	/* some attributes need specific methods to be displayed */
4796	if (attr == &dev_attr_microvolts.attr) {
4797		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4798		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4799		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4800		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4801			return mode;
4802		return 0;
4803	}
4804
4805	if (attr == &dev_attr_microamps.attr)
4806		return ops->get_current_limit ? mode : 0;
4807
4808	if (attr == &dev_attr_opmode.attr)
4809		return ops->get_mode ? mode : 0;
4810
4811	if (attr == &dev_attr_state.attr)
4812		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4813
4814	if (attr == &dev_attr_status.attr)
4815		return ops->get_status ? mode : 0;
4816
4817	if (attr == &dev_attr_bypass.attr)
4818		return ops->get_bypass ? mode : 0;
4819
4820	/* constraints need specific supporting methods */
4821	if (attr == &dev_attr_min_microvolts.attr ||
4822	    attr == &dev_attr_max_microvolts.attr)
4823		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4824
4825	if (attr == &dev_attr_min_microamps.attr ||
4826	    attr == &dev_attr_max_microamps.attr)
4827		return ops->set_current_limit ? mode : 0;
4828
4829	if (attr == &dev_attr_suspend_standby_state.attr ||
4830	    attr == &dev_attr_suspend_mem_state.attr ||
4831	    attr == &dev_attr_suspend_disk_state.attr)
4832		return mode;
4833
4834	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4835	    attr == &dev_attr_suspend_mem_microvolts.attr ||
4836	    attr == &dev_attr_suspend_disk_microvolts.attr)
4837		return ops->set_suspend_voltage ? mode : 0;
4838
4839	if (attr == &dev_attr_suspend_standby_mode.attr ||
4840	    attr == &dev_attr_suspend_mem_mode.attr ||
4841	    attr == &dev_attr_suspend_disk_mode.attr)
4842		return ops->set_suspend_mode ? mode : 0;
4843
4844	return mode;
4845}
4846
4847static const struct attribute_group regulator_dev_group = {
4848	.attrs = regulator_dev_attrs,
4849	.is_visible = regulator_attr_is_visible,
4850};
4851
4852static const struct attribute_group *regulator_dev_groups[] = {
4853	&regulator_dev_group,
4854	NULL
4855};
4856
4857static void regulator_dev_release(struct device *dev)
4858{
4859	struct regulator_dev *rdev = dev_get_drvdata(dev);
4860
4861	kfree(rdev->constraints);
4862	of_node_put(rdev->dev.of_node);
4863	kfree(rdev);
4864}
4865
4866static void rdev_init_debugfs(struct regulator_dev *rdev)
4867{
4868	struct device *parent = rdev->dev.parent;
4869	const char *rname = rdev_get_name(rdev);
4870	char name[NAME_MAX];
4871
4872	/* Avoid duplicate debugfs directory names */
4873	if (parent && rname == rdev->desc->name) {
4874		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4875			 rname);
4876		rname = name;
4877	}
4878
4879	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4880	if (!rdev->debugfs) {
4881		rdev_warn(rdev, "Failed to create debugfs directory\n");
4882		return;
4883	}
4884
4885	debugfs_create_u32("use_count", 0444, rdev->debugfs,
4886			   &rdev->use_count);
4887	debugfs_create_u32("open_count", 0444, rdev->debugfs,
4888			   &rdev->open_count);
4889	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4890			   &rdev->bypass_count);
4891}
4892
4893static int regulator_register_resolve_supply(struct device *dev, void *data)
4894{
4895	struct regulator_dev *rdev = dev_to_rdev(dev);
4896
4897	if (regulator_resolve_supply(rdev))
4898		rdev_dbg(rdev, "unable to resolve supply\n");
4899
4900	return 0;
4901}
4902
4903int regulator_coupler_register(struct regulator_coupler *coupler)
4904{
4905	mutex_lock(&regulator_list_mutex);
4906	list_add_tail(&coupler->list, &regulator_coupler_list);
4907	mutex_unlock(&regulator_list_mutex);
4908
4909	return 0;
4910}
4911
4912static struct regulator_coupler *
4913regulator_find_coupler(struct regulator_dev *rdev)
4914{
4915	struct regulator_coupler *coupler;
4916	int err;
4917
4918	/*
4919	 * Note that regulators are appended to the list and the generic
4920	 * coupler is registered first, hence it will be attached at last
4921	 * if nobody cared.
4922	 */
4923	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4924		err = coupler->attach_regulator(coupler, rdev);
4925		if (!err) {
4926			if (!coupler->balance_voltage &&
4927			    rdev->coupling_desc.n_coupled > 2)
4928				goto err_unsupported;
4929
4930			return coupler;
4931		}
4932
4933		if (err < 0)
4934			return ERR_PTR(err);
4935
4936		if (err == 1)
4937			continue;
4938
4939		break;
4940	}
4941
4942	return ERR_PTR(-EINVAL);
4943
4944err_unsupported:
4945	if (coupler->detach_regulator)
4946		coupler->detach_regulator(coupler, rdev);
4947
4948	rdev_err(rdev,
4949		"Voltage balancing for multiple regulator couples is unimplemented\n");
4950
4951	return ERR_PTR(-EPERM);
4952}
4953
4954static void regulator_resolve_coupling(struct regulator_dev *rdev)
4955{
4956	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4957	struct coupling_desc *c_desc = &rdev->coupling_desc;
4958	int n_coupled = c_desc->n_coupled;
4959	struct regulator_dev *c_rdev;
4960	int i;
4961
4962	for (i = 1; i < n_coupled; i++) {
4963		/* already resolved */
4964		if (c_desc->coupled_rdevs[i])
4965			continue;
4966
4967		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4968
4969		if (!c_rdev)
4970			continue;
4971
4972		if (c_rdev->coupling_desc.coupler != coupler) {
4973			rdev_err(rdev, "coupler mismatch with %s\n",
4974				 rdev_get_name(c_rdev));
4975			return;
4976		}
4977
4978		c_desc->coupled_rdevs[i] = c_rdev;
4979		c_desc->n_resolved++;
4980
4981		regulator_resolve_coupling(c_rdev);
4982	}
4983}
4984
4985static void regulator_remove_coupling(struct regulator_dev *rdev)
4986{
4987	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4988	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4989	struct regulator_dev *__c_rdev, *c_rdev;
4990	unsigned int __n_coupled, n_coupled;
4991	int i, k;
4992	int err;
4993
4994	n_coupled = c_desc->n_coupled;
4995
4996	for (i = 1; i < n_coupled; i++) {
4997		c_rdev = c_desc->coupled_rdevs[i];
4998
4999		if (!c_rdev)
5000			continue;
5001
5002		regulator_lock(c_rdev);
5003
5004		__c_desc = &c_rdev->coupling_desc;
5005		__n_coupled = __c_desc->n_coupled;
5006
5007		for (k = 1; k < __n_coupled; k++) {
5008			__c_rdev = __c_desc->coupled_rdevs[k];
5009
5010			if (__c_rdev == rdev) {
5011				__c_desc->coupled_rdevs[k] = NULL;
5012				__c_desc->n_resolved--;
5013				break;
5014			}
5015		}
5016
5017		regulator_unlock(c_rdev);
5018
5019		c_desc->coupled_rdevs[i] = NULL;
5020		c_desc->n_resolved--;
5021	}
5022
5023	if (coupler && coupler->detach_regulator) {
5024		err = coupler->detach_regulator(coupler, rdev);
5025		if (err)
5026			rdev_err(rdev, "failed to detach from coupler: %d\n",
5027				 err);
5028	}
5029
5030	kfree(rdev->coupling_desc.coupled_rdevs);
5031	rdev->coupling_desc.coupled_rdevs = NULL;
5032}
5033
5034static int regulator_init_coupling(struct regulator_dev *rdev)
5035{
 
5036	int err, n_phandles;
5037	size_t alloc_size;
5038
5039	if (!IS_ENABLED(CONFIG_OF))
5040		n_phandles = 0;
5041	else
5042		n_phandles = of_get_n_coupled(rdev);
5043
5044	alloc_size = sizeof(*rdev) * (n_phandles + 1);
5045
5046	rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5047	if (!rdev->coupling_desc.coupled_rdevs)
5048		return -ENOMEM;
5049
 
 
5050	/*
5051	 * Every regulator should always have coupling descriptor filled with
5052	 * at least pointer to itself.
5053	 */
5054	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5055	rdev->coupling_desc.n_coupled = n_phandles + 1;
5056	rdev->coupling_desc.n_resolved++;
5057
5058	/* regulator isn't coupled */
5059	if (n_phandles == 0)
5060		return 0;
5061
5062	if (!of_check_coupling_data(rdev))
5063		return -EPERM;
5064
5065	mutex_lock(&regulator_list_mutex);
5066	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5067	mutex_unlock(&regulator_list_mutex);
5068
5069	if (IS_ERR(rdev->coupling_desc.coupler)) {
5070		err = PTR_ERR(rdev->coupling_desc.coupler);
5071		rdev_err(rdev, "failed to get coupler: %d\n", err);
5072		return err;
5073	}
5074
5075	return 0;
5076}
5077
5078static int generic_coupler_attach(struct regulator_coupler *coupler,
5079				  struct regulator_dev *rdev)
5080{
5081	if (rdev->coupling_desc.n_coupled > 2) {
5082		rdev_err(rdev,
5083			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5084		return -EPERM;
5085	}
5086
5087	if (!rdev->constraints->always_on) {
5088		rdev_err(rdev,
5089			 "Coupling of a non always-on regulator is unimplemented\n");
5090		return -ENOTSUPP;
5091	}
5092
5093	return 0;
5094}
5095
5096static struct regulator_coupler generic_regulator_coupler = {
5097	.attach_regulator = generic_coupler_attach,
5098};
5099
5100/**
5101 * regulator_register - register regulator
5102 * @regulator_desc: regulator to register
5103 * @cfg: runtime configuration for regulator
5104 *
5105 * Called by regulator drivers to register a regulator.
5106 * Returns a valid pointer to struct regulator_dev on success
5107 * or an ERR_PTR() on error.
5108 */
5109struct regulator_dev *
5110regulator_register(const struct regulator_desc *regulator_desc,
5111		   const struct regulator_config *cfg)
5112{
5113	const struct regulation_constraints *constraints = NULL;
5114	const struct regulator_init_data *init_data;
5115	struct regulator_config *config = NULL;
5116	static atomic_t regulator_no = ATOMIC_INIT(-1);
5117	struct regulator_dev *rdev;
5118	bool dangling_cfg_gpiod = false;
5119	bool dangling_of_gpiod = false;
5120	struct device *dev;
5121	int ret, i;
5122
5123	if (cfg == NULL)
5124		return ERR_PTR(-EINVAL);
5125	if (cfg->ena_gpiod)
5126		dangling_cfg_gpiod = true;
5127	if (regulator_desc == NULL) {
5128		ret = -EINVAL;
5129		goto rinse;
5130	}
5131
5132	dev = cfg->dev;
5133	WARN_ON(!dev);
5134
5135	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5136		ret = -EINVAL;
5137		goto rinse;
5138	}
5139
5140	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5141	    regulator_desc->type != REGULATOR_CURRENT) {
5142		ret = -EINVAL;
5143		goto rinse;
5144	}
5145
5146	/* Only one of each should be implemented */
5147	WARN_ON(regulator_desc->ops->get_voltage &&
5148		regulator_desc->ops->get_voltage_sel);
5149	WARN_ON(regulator_desc->ops->set_voltage &&
5150		regulator_desc->ops->set_voltage_sel);
5151
5152	/* If we're using selectors we must implement list_voltage. */
5153	if (regulator_desc->ops->get_voltage_sel &&
5154	    !regulator_desc->ops->list_voltage) {
5155		ret = -EINVAL;
5156		goto rinse;
5157	}
5158	if (regulator_desc->ops->set_voltage_sel &&
5159	    !regulator_desc->ops->list_voltage) {
5160		ret = -EINVAL;
5161		goto rinse;
5162	}
5163
5164	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5165	if (rdev == NULL) {
5166		ret = -ENOMEM;
5167		goto rinse;
5168	}
5169	device_initialize(&rdev->dev);
 
5170
5171	/*
5172	 * Duplicate the config so the driver could override it after
5173	 * parsing init data.
5174	 */
5175	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5176	if (config == NULL) {
5177		ret = -ENOMEM;
5178		goto clean;
5179	}
5180
5181	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5182					       &rdev->dev.of_node);
5183
5184	/*
5185	 * Sometimes not all resources are probed already so we need to take
5186	 * that into account. This happens most the time if the ena_gpiod comes
5187	 * from a gpio extender or something else.
5188	 */
5189	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5190		ret = -EPROBE_DEFER;
5191		goto clean;
5192	}
5193
5194	/*
5195	 * We need to keep track of any GPIO descriptor coming from the
5196	 * device tree until we have handled it over to the core. If the
5197	 * config that was passed in to this function DOES NOT contain
5198	 * a descriptor, and the config after this call DOES contain
5199	 * a descriptor, we definitely got one from parsing the device
5200	 * tree.
5201	 */
5202	if (!cfg->ena_gpiod && config->ena_gpiod)
5203		dangling_of_gpiod = true;
5204	if (!init_data) {
5205		init_data = config->init_data;
5206		rdev->dev.of_node = of_node_get(config->of_node);
5207	}
5208
5209	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5210	rdev->reg_data = config->driver_data;
5211	rdev->owner = regulator_desc->owner;
5212	rdev->desc = regulator_desc;
5213	if (config->regmap)
5214		rdev->regmap = config->regmap;
5215	else if (dev_get_regmap(dev, NULL))
5216		rdev->regmap = dev_get_regmap(dev, NULL);
5217	else if (dev->parent)
5218		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5219	INIT_LIST_HEAD(&rdev->consumer_list);
5220	INIT_LIST_HEAD(&rdev->list);
5221	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5222	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5223
5224	/* preform any regulator specific init */
5225	if (init_data && init_data->regulator_init) {
5226		ret = init_data->regulator_init(rdev->reg_data);
5227		if (ret < 0)
5228			goto clean;
5229	}
5230
5231	if (config->ena_gpiod) {
5232		ret = regulator_ena_gpio_request(rdev, config);
5233		if (ret != 0) {
5234			rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5235				 ret);
5236			goto clean;
5237		}
5238		/* The regulator core took over the GPIO descriptor */
5239		dangling_cfg_gpiod = false;
5240		dangling_of_gpiod = false;
5241	}
5242
5243	/* register with sysfs */
5244	rdev->dev.class = &regulator_class;
5245	rdev->dev.parent = dev;
5246	dev_set_name(&rdev->dev, "regulator.%lu",
5247		    (unsigned long) atomic_inc_return(&regulator_no));
5248	dev_set_drvdata(&rdev->dev, rdev);
5249
5250	/* set regulator constraints */
5251	if (init_data)
5252		constraints = &init_data->constraints;
 
 
 
 
 
 
 
 
 
5253
5254	if (init_data && init_data->supply_regulator)
5255		rdev->supply_name = init_data->supply_regulator;
5256	else if (regulator_desc->supply_name)
5257		rdev->supply_name = regulator_desc->supply_name;
5258
5259	/*
5260	 * Attempt to resolve the regulator supply, if specified,
5261	 * but don't return an error if we fail because we will try
5262	 * to resolve it again later as more regulators are added.
5263	 */
5264	if (regulator_resolve_supply(rdev))
5265		rdev_dbg(rdev, "unable to resolve supply\n");
5266
5267	ret = set_machine_constraints(rdev, constraints);
 
 
 
 
 
 
 
 
 
5268	if (ret < 0)
5269		goto wash;
5270
5271	ret = regulator_init_coupling(rdev);
5272	if (ret < 0)
5273		goto wash;
5274
5275	/* add consumers devices */
5276	if (init_data) {
5277		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5278			ret = set_consumer_device_supply(rdev,
5279				init_data->consumer_supplies[i].dev_name,
5280				init_data->consumer_supplies[i].supply);
5281			if (ret < 0) {
5282				dev_err(dev, "Failed to set supply %s\n",
5283					init_data->consumer_supplies[i].supply);
5284				goto unset_supplies;
5285			}
5286		}
5287	}
5288
5289	if (!rdev->desc->ops->get_voltage &&
5290	    !rdev->desc->ops->list_voltage &&
5291	    !rdev->desc->fixed_uV)
5292		rdev->is_switch = true;
5293
5294	ret = device_add(&rdev->dev);
5295	if (ret != 0)
5296		goto unset_supplies;
5297
5298	rdev_init_debugfs(rdev);
5299
5300	/* try to resolve regulators coupling since a new one was registered */
5301	mutex_lock(&regulator_list_mutex);
5302	regulator_resolve_coupling(rdev);
5303	mutex_unlock(&regulator_list_mutex);
5304
5305	/* try to resolve regulators supply since a new one was registered */
5306	class_for_each_device(&regulator_class, NULL, NULL,
5307			      regulator_register_resolve_supply);
5308	kfree(config);
5309	return rdev;
5310
5311unset_supplies:
5312	mutex_lock(&regulator_list_mutex);
5313	unset_regulator_supplies(rdev);
5314	regulator_remove_coupling(rdev);
5315	mutex_unlock(&regulator_list_mutex);
5316wash:
5317	kfree(rdev->coupling_desc.coupled_rdevs);
5318	mutex_lock(&regulator_list_mutex);
5319	regulator_ena_gpio_free(rdev);
5320	mutex_unlock(&regulator_list_mutex);
5321clean:
5322	if (dangling_of_gpiod)
5323		gpiod_put(config->ena_gpiod);
5324	kfree(config);
5325	put_device(&rdev->dev);
5326rinse:
5327	if (dangling_cfg_gpiod)
5328		gpiod_put(cfg->ena_gpiod);
5329	return ERR_PTR(ret);
5330}
5331EXPORT_SYMBOL_GPL(regulator_register);
5332
5333/**
5334 * regulator_unregister - unregister regulator
5335 * @rdev: regulator to unregister
5336 *
5337 * Called by regulator drivers to unregister a regulator.
5338 */
5339void regulator_unregister(struct regulator_dev *rdev)
5340{
5341	if (rdev == NULL)
5342		return;
5343
5344	if (rdev->supply) {
5345		while (rdev->use_count--)
5346			regulator_disable(rdev->supply);
5347		regulator_put(rdev->supply);
5348	}
5349
5350	flush_work(&rdev->disable_work.work);
5351
5352	mutex_lock(&regulator_list_mutex);
5353
5354	debugfs_remove_recursive(rdev->debugfs);
5355	WARN_ON(rdev->open_count);
5356	regulator_remove_coupling(rdev);
5357	unset_regulator_supplies(rdev);
5358	list_del(&rdev->list);
5359	regulator_ena_gpio_free(rdev);
5360	device_unregister(&rdev->dev);
5361
5362	mutex_unlock(&regulator_list_mutex);
5363}
5364EXPORT_SYMBOL_GPL(regulator_unregister);
5365
5366#ifdef CONFIG_SUSPEND
5367/**
5368 * regulator_suspend - prepare regulators for system wide suspend
5369 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5370 *
5371 * Configure each regulator with it's suspend operating parameters for state.
5372 */
5373static int regulator_suspend(struct device *dev)
5374{
5375	struct regulator_dev *rdev = dev_to_rdev(dev);
5376	suspend_state_t state = pm_suspend_target_state;
5377	int ret;
 
 
 
 
 
5378
5379	regulator_lock(rdev);
5380	ret = suspend_set_state(rdev, state);
5381	regulator_unlock(rdev);
5382
5383	return ret;
5384}
5385
5386static int regulator_resume(struct device *dev)
5387{
5388	suspend_state_t state = pm_suspend_target_state;
5389	struct regulator_dev *rdev = dev_to_rdev(dev);
5390	struct regulator_state *rstate;
5391	int ret = 0;
5392
5393	rstate = regulator_get_suspend_state(rdev, state);
5394	if (rstate == NULL)
5395		return 0;
5396
 
 
 
 
5397	regulator_lock(rdev);
5398
5399	if (rdev->desc->ops->resume &&
5400	    (rstate->enabled == ENABLE_IN_SUSPEND ||
5401	     rstate->enabled == DISABLE_IN_SUSPEND))
5402		ret = rdev->desc->ops->resume(rdev);
5403
5404	regulator_unlock(rdev);
5405
5406	return ret;
5407}
5408#else /* !CONFIG_SUSPEND */
5409
5410#define regulator_suspend	NULL
5411#define regulator_resume	NULL
5412
5413#endif /* !CONFIG_SUSPEND */
5414
5415#ifdef CONFIG_PM
5416static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5417	.suspend	= regulator_suspend,
5418	.resume		= regulator_resume,
5419};
5420#endif
5421
5422struct class regulator_class = {
5423	.name = "regulator",
5424	.dev_release = regulator_dev_release,
5425	.dev_groups = regulator_dev_groups,
5426#ifdef CONFIG_PM
5427	.pm = &regulator_pm_ops,
5428#endif
5429};
5430/**
5431 * regulator_has_full_constraints - the system has fully specified constraints
5432 *
5433 * Calling this function will cause the regulator API to disable all
5434 * regulators which have a zero use count and don't have an always_on
5435 * constraint in a late_initcall.
5436 *
5437 * The intention is that this will become the default behaviour in a
5438 * future kernel release so users are encouraged to use this facility
5439 * now.
5440 */
5441void regulator_has_full_constraints(void)
5442{
5443	has_full_constraints = 1;
5444}
5445EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5446
5447/**
5448 * rdev_get_drvdata - get rdev regulator driver data
5449 * @rdev: regulator
5450 *
5451 * Get rdev regulator driver private data. This call can be used in the
5452 * regulator driver context.
5453 */
5454void *rdev_get_drvdata(struct regulator_dev *rdev)
5455{
5456	return rdev->reg_data;
5457}
5458EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5459
5460/**
5461 * regulator_get_drvdata - get regulator driver data
5462 * @regulator: regulator
5463 *
5464 * Get regulator driver private data. This call can be used in the consumer
5465 * driver context when non API regulator specific functions need to be called.
5466 */
5467void *regulator_get_drvdata(struct regulator *regulator)
5468{
5469	return regulator->rdev->reg_data;
5470}
5471EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5472
5473/**
5474 * regulator_set_drvdata - set regulator driver data
5475 * @regulator: regulator
5476 * @data: data
5477 */
5478void regulator_set_drvdata(struct regulator *regulator, void *data)
5479{
5480	regulator->rdev->reg_data = data;
5481}
5482EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5483
5484/**
5485 * regulator_get_id - get regulator ID
5486 * @rdev: regulator
5487 */
5488int rdev_get_id(struct regulator_dev *rdev)
5489{
5490	return rdev->desc->id;
5491}
5492EXPORT_SYMBOL_GPL(rdev_get_id);
5493
5494struct device *rdev_get_dev(struct regulator_dev *rdev)
5495{
5496	return &rdev->dev;
5497}
5498EXPORT_SYMBOL_GPL(rdev_get_dev);
5499
5500struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5501{
5502	return rdev->regmap;
5503}
5504EXPORT_SYMBOL_GPL(rdev_get_regmap);
5505
5506void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5507{
5508	return reg_init_data->driver_data;
5509}
5510EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5511
5512#ifdef CONFIG_DEBUG_FS
5513static int supply_map_show(struct seq_file *sf, void *data)
5514{
5515	struct regulator_map *map;
5516
5517	list_for_each_entry(map, &regulator_map_list, list) {
5518		seq_printf(sf, "%s -> %s.%s\n",
5519				rdev_get_name(map->regulator), map->dev_name,
5520				map->supply);
5521	}
5522
5523	return 0;
5524}
5525DEFINE_SHOW_ATTRIBUTE(supply_map);
5526
5527struct summary_data {
5528	struct seq_file *s;
5529	struct regulator_dev *parent;
5530	int level;
5531};
5532
5533static void regulator_summary_show_subtree(struct seq_file *s,
5534					   struct regulator_dev *rdev,
5535					   int level);
5536
5537static int regulator_summary_show_children(struct device *dev, void *data)
5538{
5539	struct regulator_dev *rdev = dev_to_rdev(dev);
5540	struct summary_data *summary_data = data;
5541
5542	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5543		regulator_summary_show_subtree(summary_data->s, rdev,
5544					       summary_data->level + 1);
5545
5546	return 0;
5547}
5548
5549static void regulator_summary_show_subtree(struct seq_file *s,
5550					   struct regulator_dev *rdev,
5551					   int level)
5552{
5553	struct regulation_constraints *c;
5554	struct regulator *consumer;
5555	struct summary_data summary_data;
5556	unsigned int opmode;
5557
5558	if (!rdev)
5559		return;
5560
5561	opmode = _regulator_get_mode_unlocked(rdev);
5562	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5563		   level * 3 + 1, "",
5564		   30 - level * 3, rdev_get_name(rdev),
5565		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5566		   regulator_opmode_to_str(opmode));
5567
5568	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5569	seq_printf(s, "%5dmA ",
5570		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5571
5572	c = rdev->constraints;
5573	if (c) {
5574		switch (rdev->desc->type) {
5575		case REGULATOR_VOLTAGE:
5576			seq_printf(s, "%5dmV %5dmV ",
5577				   c->min_uV / 1000, c->max_uV / 1000);
5578			break;
5579		case REGULATOR_CURRENT:
5580			seq_printf(s, "%5dmA %5dmA ",
5581				   c->min_uA / 1000, c->max_uA / 1000);
5582			break;
5583		}
5584	}
5585
5586	seq_puts(s, "\n");
5587
5588	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5589		if (consumer->dev && consumer->dev->class == &regulator_class)
5590			continue;
5591
5592		seq_printf(s, "%*s%-*s ",
5593			   (level + 1) * 3 + 1, "",
5594			   30 - (level + 1) * 3,
5595			   consumer->supply_name ? consumer->supply_name :
5596			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5597
5598		switch (rdev->desc->type) {
5599		case REGULATOR_VOLTAGE:
5600			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5601				   consumer->enable_count,
5602				   consumer->uA_load / 1000,
5603				   consumer->uA_load && !consumer->enable_count ?
5604				   '*' : ' ',
5605				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5606				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5607			break;
5608		case REGULATOR_CURRENT:
5609			break;
5610		}
5611
5612		seq_puts(s, "\n");
5613	}
5614
5615	summary_data.s = s;
5616	summary_data.level = level;
5617	summary_data.parent = rdev;
5618
5619	class_for_each_device(&regulator_class, NULL, &summary_data,
5620			      regulator_summary_show_children);
5621}
5622
5623struct summary_lock_data {
5624	struct ww_acquire_ctx *ww_ctx;
5625	struct regulator_dev **new_contended_rdev;
5626	struct regulator_dev **old_contended_rdev;
5627};
5628
5629static int regulator_summary_lock_one(struct device *dev, void *data)
5630{
5631	struct regulator_dev *rdev = dev_to_rdev(dev);
5632	struct summary_lock_data *lock_data = data;
5633	int ret = 0;
5634
5635	if (rdev != *lock_data->old_contended_rdev) {
5636		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5637
5638		if (ret == -EDEADLK)
5639			*lock_data->new_contended_rdev = rdev;
5640		else
5641			WARN_ON_ONCE(ret);
5642	} else {
5643		*lock_data->old_contended_rdev = NULL;
5644	}
5645
5646	return ret;
5647}
5648
5649static int regulator_summary_unlock_one(struct device *dev, void *data)
5650{
5651	struct regulator_dev *rdev = dev_to_rdev(dev);
5652	struct summary_lock_data *lock_data = data;
5653
5654	if (lock_data) {
5655		if (rdev == *lock_data->new_contended_rdev)
5656			return -EDEADLK;
5657	}
5658
5659	regulator_unlock(rdev);
5660
5661	return 0;
5662}
5663
5664static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5665				      struct regulator_dev **new_contended_rdev,
5666				      struct regulator_dev **old_contended_rdev)
5667{
5668	struct summary_lock_data lock_data;
5669	int ret;
5670
5671	lock_data.ww_ctx = ww_ctx;
5672	lock_data.new_contended_rdev = new_contended_rdev;
5673	lock_data.old_contended_rdev = old_contended_rdev;
5674
5675	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5676				    regulator_summary_lock_one);
5677	if (ret)
5678		class_for_each_device(&regulator_class, NULL, &lock_data,
5679				      regulator_summary_unlock_one);
5680
5681	return ret;
5682}
5683
5684static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5685{
5686	struct regulator_dev *new_contended_rdev = NULL;
5687	struct regulator_dev *old_contended_rdev = NULL;
5688	int err;
5689
5690	mutex_lock(&regulator_list_mutex);
5691
5692	ww_acquire_init(ww_ctx, &regulator_ww_class);
5693
5694	do {
5695		if (new_contended_rdev) {
5696			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5697			old_contended_rdev = new_contended_rdev;
5698			old_contended_rdev->ref_cnt++;
5699		}
5700
5701		err = regulator_summary_lock_all(ww_ctx,
5702						 &new_contended_rdev,
5703						 &old_contended_rdev);
5704
5705		if (old_contended_rdev)
5706			regulator_unlock(old_contended_rdev);
5707
5708	} while (err == -EDEADLK);
5709
5710	ww_acquire_done(ww_ctx);
5711}
5712
5713static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5714{
5715	class_for_each_device(&regulator_class, NULL, NULL,
5716			      regulator_summary_unlock_one);
5717	ww_acquire_fini(ww_ctx);
5718
5719	mutex_unlock(&regulator_list_mutex);
5720}
5721
5722static int regulator_summary_show_roots(struct device *dev, void *data)
5723{
5724	struct regulator_dev *rdev = dev_to_rdev(dev);
5725	struct seq_file *s = data;
5726
5727	if (!rdev->supply)
5728		regulator_summary_show_subtree(s, rdev, 0);
5729
5730	return 0;
5731}
5732
5733static int regulator_summary_show(struct seq_file *s, void *data)
5734{
5735	struct ww_acquire_ctx ww_ctx;
5736
5737	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5738	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5739
5740	regulator_summary_lock(&ww_ctx);
5741
5742	class_for_each_device(&regulator_class, NULL, s,
5743			      regulator_summary_show_roots);
5744
5745	regulator_summary_unlock(&ww_ctx);
5746
5747	return 0;
5748}
5749DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5750#endif /* CONFIG_DEBUG_FS */
5751
5752static int __init regulator_init(void)
5753{
5754	int ret;
5755
5756	ret = class_register(&regulator_class);
5757
5758	debugfs_root = debugfs_create_dir("regulator", NULL);
5759	if (!debugfs_root)
5760		pr_warn("regulator: Failed to create debugfs directory\n");
5761
5762#ifdef CONFIG_DEBUG_FS
5763	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5764			    &supply_map_fops);
5765
5766	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5767			    NULL, &regulator_summary_fops);
5768#endif
5769	regulator_dummy_init();
5770
5771	regulator_coupler_register(&generic_regulator_coupler);
5772
5773	return ret;
5774}
5775
5776/* init early to allow our consumers to complete system booting */
5777core_initcall(regulator_init);
5778
5779static int regulator_late_cleanup(struct device *dev, void *data)
5780{
5781	struct regulator_dev *rdev = dev_to_rdev(dev);
5782	const struct regulator_ops *ops = rdev->desc->ops;
5783	struct regulation_constraints *c = rdev->constraints;
5784	int enabled, ret;
5785
5786	if (c && c->always_on)
5787		return 0;
5788
5789	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5790		return 0;
5791
5792	regulator_lock(rdev);
5793
5794	if (rdev->use_count)
5795		goto unlock;
5796
5797	/* If we can't read the status assume it's on. */
5798	if (ops->is_enabled)
5799		enabled = ops->is_enabled(rdev);
5800	else
5801		enabled = 1;
5802
5803	if (!enabled)
 
5804		goto unlock;
5805
5806	if (have_full_constraints()) {
5807		/* We log since this may kill the system if it goes
5808		 * wrong. */
 
5809		rdev_info(rdev, "disabling\n");
5810		ret = _regulator_do_disable(rdev);
5811		if (ret != 0)
5812			rdev_err(rdev, "couldn't disable: %d\n", ret);
5813	} else {
5814		/* The intention is that in future we will
5815		 * assume that full constraints are provided
5816		 * so warn even if we aren't going to do
5817		 * anything here.
5818		 */
5819		rdev_warn(rdev, "incomplete constraints, leaving on\n");
5820	}
5821
5822unlock:
5823	regulator_unlock(rdev);
5824
5825	return 0;
5826}
5827
5828static void regulator_init_complete_work_function(struct work_struct *work)
5829{
5830	/*
5831	 * Regulators may had failed to resolve their input supplies
5832	 * when were registered, either because the input supply was
5833	 * not registered yet or because its parent device was not
5834	 * bound yet. So attempt to resolve the input supplies for
5835	 * pending regulators before trying to disable unused ones.
5836	 */
5837	class_for_each_device(&regulator_class, NULL, NULL,
5838			      regulator_register_resolve_supply);
5839
5840	/* If we have a full configuration then disable any regulators
5841	 * we have permission to change the status for and which are
5842	 * not in use or always_on.  This is effectively the default
5843	 * for DT and ACPI as they have full constraints.
5844	 */
5845	class_for_each_device(&regulator_class, NULL, NULL,
5846			      regulator_late_cleanup);
5847}
5848
5849static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5850			    regulator_init_complete_work_function);
5851
5852static int __init regulator_init_complete(void)
5853{
5854	/*
5855	 * Since DT doesn't provide an idiomatic mechanism for
5856	 * enabling full constraints and since it's much more natural
5857	 * with DT to provide them just assume that a DT enabled
5858	 * system has full constraints.
5859	 */
5860	if (of_have_populated_dt())
5861		has_full_constraints = true;
5862
5863	/*
5864	 * We punt completion for an arbitrary amount of time since
5865	 * systems like distros will load many drivers from userspace
5866	 * so consumers might not always be ready yet, this is
5867	 * particularly an issue with laptops where this might bounce
5868	 * the display off then on.  Ideally we'd get a notification
5869	 * from userspace when this happens but we don't so just wait
5870	 * a bit and hope we waited long enough.  It'd be better if
5871	 * we'd only do this on systems that need it, and a kernel
5872	 * command line option might be useful.
5873	 */
5874	schedule_delayed_work(&regulator_init_complete_work,
5875			      msecs_to_jiffies(30000));
5876
5877	return 0;
5878}
5879late_initcall_sync(regulator_init_complete);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2//
   3// core.c  --  Voltage/Current Regulator framework.
   4//
   5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
   6// Copyright 2008 SlimLogic Ltd.
   7//
   8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
   9
  10#include <linux/kernel.h>
  11#include <linux/init.h>
  12#include <linux/debugfs.h>
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/async.h>
  16#include <linux/err.h>
  17#include <linux/mutex.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/gpio/consumer.h>
  21#include <linux/of.h>
  22#include <linux/regmap.h>
  23#include <linux/regulator/of_regulator.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/regulator/coupler.h>
  26#include <linux/regulator/driver.h>
  27#include <linux/regulator/machine.h>
  28#include <linux/module.h>
  29
  30#define CREATE_TRACE_POINTS
  31#include <trace/events/regulator.h>
  32
  33#include "dummy.h"
  34#include "internal.h"
  35
 
 
 
 
 
 
 
 
 
 
 
  36static DEFINE_WW_CLASS(regulator_ww_class);
  37static DEFINE_MUTEX(regulator_nesting_mutex);
  38static DEFINE_MUTEX(regulator_list_mutex);
  39static LIST_HEAD(regulator_map_list);
  40static LIST_HEAD(regulator_ena_gpio_list);
  41static LIST_HEAD(regulator_supply_alias_list);
  42static LIST_HEAD(regulator_coupler_list);
  43static bool has_full_constraints;
  44
  45static struct dentry *debugfs_root;
  46
  47/*
  48 * struct regulator_map
  49 *
  50 * Used to provide symbolic supply names to devices.
  51 */
  52struct regulator_map {
  53	struct list_head list;
  54	const char *dev_name;   /* The dev_name() for the consumer */
  55	const char *supply;
  56	struct regulator_dev *regulator;
  57};
  58
  59/*
  60 * struct regulator_enable_gpio
  61 *
  62 * Management for shared enable GPIO pin
  63 */
  64struct regulator_enable_gpio {
  65	struct list_head list;
  66	struct gpio_desc *gpiod;
  67	u32 enable_count;	/* a number of enabled shared GPIO */
  68	u32 request_count;	/* a number of requested shared GPIO */
  69};
  70
  71/*
  72 * struct regulator_supply_alias
  73 *
  74 * Used to map lookups for a supply onto an alternative device.
  75 */
  76struct regulator_supply_alias {
  77	struct list_head list;
  78	struct device *src_dev;
  79	const char *src_supply;
  80	struct device *alias_dev;
  81	const char *alias_supply;
  82};
  83
  84static int _regulator_is_enabled(struct regulator_dev *rdev);
  85static int _regulator_disable(struct regulator *regulator);
  86static int _regulator_get_current_limit(struct regulator_dev *rdev);
  87static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
  88static int _notifier_call_chain(struct regulator_dev *rdev,
  89				  unsigned long event, void *data);
  90static int _regulator_do_set_voltage(struct regulator_dev *rdev,
  91				     int min_uV, int max_uV);
  92static int regulator_balance_voltage(struct regulator_dev *rdev,
  93				     suspend_state_t state);
  94static struct regulator *create_regulator(struct regulator_dev *rdev,
  95					  struct device *dev,
  96					  const char *supply_name);
  97static void destroy_regulator(struct regulator *regulator);
  98static void _regulator_put(struct regulator *regulator);
  99
 100const char *rdev_get_name(struct regulator_dev *rdev)
 101{
 102	if (rdev->constraints && rdev->constraints->name)
 103		return rdev->constraints->name;
 104	else if (rdev->desc->name)
 105		return rdev->desc->name;
 106	else
 107		return "";
 108}
 109EXPORT_SYMBOL_GPL(rdev_get_name);
 110
 111static bool have_full_constraints(void)
 112{
 113	return has_full_constraints || of_have_populated_dt();
 114}
 115
 116static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
 117{
 118	if (!rdev->constraints) {
 119		rdev_err(rdev, "no constraints\n");
 120		return false;
 121	}
 122
 123	if (rdev->constraints->valid_ops_mask & ops)
 124		return true;
 125
 126	return false;
 127}
 128
 129/**
 130 * regulator_lock_nested - lock a single regulator
 131 * @rdev:		regulator source
 132 * @ww_ctx:		w/w mutex acquire context
 133 *
 134 * This function can be called many times by one task on
 135 * a single regulator and its mutex will be locked only
 136 * once. If a task, which is calling this function is other
 137 * than the one, which initially locked the mutex, it will
 138 * wait on mutex.
 139 */
 140static inline int regulator_lock_nested(struct regulator_dev *rdev,
 141					struct ww_acquire_ctx *ww_ctx)
 142{
 143	bool lock = false;
 144	int ret = 0;
 145
 146	mutex_lock(&regulator_nesting_mutex);
 147
 148	if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
 149		if (rdev->mutex_owner == current)
 150			rdev->ref_cnt++;
 151		else
 152			lock = true;
 153
 154		if (lock) {
 155			mutex_unlock(&regulator_nesting_mutex);
 156			ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
 157			mutex_lock(&regulator_nesting_mutex);
 158		}
 159	} else {
 160		lock = true;
 161	}
 162
 163	if (lock && ret != -EDEADLK) {
 164		rdev->ref_cnt++;
 165		rdev->mutex_owner = current;
 166	}
 167
 168	mutex_unlock(&regulator_nesting_mutex);
 169
 170	return ret;
 171}
 172
 173/**
 174 * regulator_lock - lock a single regulator
 175 * @rdev:		regulator source
 176 *
 177 * This function can be called many times by one task on
 178 * a single regulator and its mutex will be locked only
 179 * once. If a task, which is calling this function is other
 180 * than the one, which initially locked the mutex, it will
 181 * wait on mutex.
 182 */
 183static void regulator_lock(struct regulator_dev *rdev)
 184{
 185	regulator_lock_nested(rdev, NULL);
 186}
 
 187
 188/**
 189 * regulator_unlock - unlock a single regulator
 190 * @rdev:		regulator_source
 191 *
 192 * This function unlocks the mutex when the
 193 * reference counter reaches 0.
 194 */
 195static void regulator_unlock(struct regulator_dev *rdev)
 196{
 197	mutex_lock(&regulator_nesting_mutex);
 198
 199	if (--rdev->ref_cnt == 0) {
 200		rdev->mutex_owner = NULL;
 201		ww_mutex_unlock(&rdev->mutex);
 202	}
 203
 204	WARN_ON_ONCE(rdev->ref_cnt < 0);
 205
 206	mutex_unlock(&regulator_nesting_mutex);
 207}
 
 208
 209static bool regulator_supply_is_couple(struct regulator_dev *rdev)
 210{
 211	struct regulator_dev *c_rdev;
 212	int i;
 213
 214	for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
 215		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 216
 217		if (rdev->supply->rdev == c_rdev)
 218			return true;
 219	}
 220
 221	return false;
 222}
 223
 224static void regulator_unlock_recursive(struct regulator_dev *rdev,
 225				       unsigned int n_coupled)
 226{
 227	struct regulator_dev *c_rdev, *supply_rdev;
 228	int i, supply_n_coupled;
 229
 230	for (i = n_coupled; i > 0; i--) {
 231		c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
 232
 233		if (!c_rdev)
 234			continue;
 235
 236		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 237			supply_rdev = c_rdev->supply->rdev;
 238			supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
 239
 240			regulator_unlock_recursive(supply_rdev,
 241						   supply_n_coupled);
 242		}
 243
 244		regulator_unlock(c_rdev);
 245	}
 246}
 247
 248static int regulator_lock_recursive(struct regulator_dev *rdev,
 249				    struct regulator_dev **new_contended_rdev,
 250				    struct regulator_dev **old_contended_rdev,
 251				    struct ww_acquire_ctx *ww_ctx)
 252{
 253	struct regulator_dev *c_rdev;
 254	int i, err;
 255
 256	for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
 257		c_rdev = rdev->coupling_desc.coupled_rdevs[i];
 258
 259		if (!c_rdev)
 260			continue;
 261
 262		if (c_rdev != *old_contended_rdev) {
 263			err = regulator_lock_nested(c_rdev, ww_ctx);
 264			if (err) {
 265				if (err == -EDEADLK) {
 266					*new_contended_rdev = c_rdev;
 267					goto err_unlock;
 268				}
 269
 270				/* shouldn't happen */
 271				WARN_ON_ONCE(err != -EALREADY);
 272			}
 273		} else {
 274			*old_contended_rdev = NULL;
 275		}
 276
 277		if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
 278			err = regulator_lock_recursive(c_rdev->supply->rdev,
 279						       new_contended_rdev,
 280						       old_contended_rdev,
 281						       ww_ctx);
 282			if (err) {
 283				regulator_unlock(c_rdev);
 284				goto err_unlock;
 285			}
 286		}
 287	}
 288
 289	return 0;
 290
 291err_unlock:
 292	regulator_unlock_recursive(rdev, i);
 293
 294	return err;
 295}
 296
 297/**
 298 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
 299 *				regulators
 300 * @rdev:			regulator source
 301 * @ww_ctx:			w/w mutex acquire context
 302 *
 303 * Unlock all regulators related with rdev by coupling or supplying.
 304 */
 305static void regulator_unlock_dependent(struct regulator_dev *rdev,
 306				       struct ww_acquire_ctx *ww_ctx)
 307{
 308	regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
 309	ww_acquire_fini(ww_ctx);
 310}
 311
 312/**
 313 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
 314 * @rdev:			regulator source
 315 * @ww_ctx:			w/w mutex acquire context
 316 *
 317 * This function as a wrapper on regulator_lock_recursive(), which locks
 318 * all regulators related with rdev by coupling or supplying.
 319 */
 320static void regulator_lock_dependent(struct regulator_dev *rdev,
 321				     struct ww_acquire_ctx *ww_ctx)
 322{
 323	struct regulator_dev *new_contended_rdev = NULL;
 324	struct regulator_dev *old_contended_rdev = NULL;
 325	int err;
 326
 327	mutex_lock(&regulator_list_mutex);
 328
 329	ww_acquire_init(ww_ctx, &regulator_ww_class);
 330
 331	do {
 332		if (new_contended_rdev) {
 333			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
 334			old_contended_rdev = new_contended_rdev;
 335			old_contended_rdev->ref_cnt++;
 336		}
 337
 338		err = regulator_lock_recursive(rdev,
 339					       &new_contended_rdev,
 340					       &old_contended_rdev,
 341					       ww_ctx);
 342
 343		if (old_contended_rdev)
 344			regulator_unlock(old_contended_rdev);
 345
 346	} while (err == -EDEADLK);
 347
 348	ww_acquire_done(ww_ctx);
 349
 350	mutex_unlock(&regulator_list_mutex);
 351}
 352
 353/**
 354 * of_get_child_regulator - get a child regulator device node
 355 * based on supply name
 356 * @parent: Parent device node
 357 * @prop_name: Combination regulator supply name and "-supply"
 358 *
 359 * Traverse all child nodes.
 360 * Extract the child regulator device node corresponding to the supply name.
 361 * returns the device node corresponding to the regulator if found, else
 362 * returns NULL.
 363 */
 364static struct device_node *of_get_child_regulator(struct device_node *parent,
 365						  const char *prop_name)
 366{
 367	struct device_node *regnode = NULL;
 368	struct device_node *child = NULL;
 369
 370	for_each_child_of_node(parent, child) {
 371		regnode = of_parse_phandle(child, prop_name, 0);
 372
 373		if (!regnode) {
 374			regnode = of_get_child_regulator(child, prop_name);
 375			if (regnode)
 376				goto err_node_put;
 377		} else {
 378			goto err_node_put;
 379		}
 380	}
 381	return NULL;
 382
 383err_node_put:
 384	of_node_put(child);
 385	return regnode;
 386}
 387
 388/**
 389 * of_get_regulator - get a regulator device node based on supply name
 390 * @dev: Device pointer for the consumer (of regulator) device
 391 * @supply: regulator supply name
 392 *
 393 * Extract the regulator device node corresponding to the supply name.
 394 * returns the device node corresponding to the regulator if found, else
 395 * returns NULL.
 396 */
 397static struct device_node *of_get_regulator(struct device *dev, const char *supply)
 398{
 399	struct device_node *regnode = NULL;
 400	char prop_name[64]; /* 64 is max size of property name */
 401
 402	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
 403
 404	snprintf(prop_name, 64, "%s-supply", supply);
 405	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
 406
 407	if (!regnode) {
 408		regnode = of_get_child_regulator(dev->of_node, prop_name);
 409		if (regnode)
 410			return regnode;
 411
 412		dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
 413				prop_name, dev->of_node);
 414		return NULL;
 415	}
 416	return regnode;
 417}
 418
 419/* Platform voltage constraint check */
 420int regulator_check_voltage(struct regulator_dev *rdev,
 421			    int *min_uV, int *max_uV)
 422{
 423	BUG_ON(*min_uV > *max_uV);
 424
 425	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
 426		rdev_err(rdev, "voltage operation not allowed\n");
 427		return -EPERM;
 428	}
 429
 430	if (*max_uV > rdev->constraints->max_uV)
 431		*max_uV = rdev->constraints->max_uV;
 432	if (*min_uV < rdev->constraints->min_uV)
 433		*min_uV = rdev->constraints->min_uV;
 434
 435	if (*min_uV > *max_uV) {
 436		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
 437			 *min_uV, *max_uV);
 438		return -EINVAL;
 439	}
 440
 441	return 0;
 442}
 443
 444/* return 0 if the state is valid */
 445static int regulator_check_states(suspend_state_t state)
 446{
 447	return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
 448}
 449
 450/* Make sure we select a voltage that suits the needs of all
 451 * regulator consumers
 452 */
 453int regulator_check_consumers(struct regulator_dev *rdev,
 454			      int *min_uV, int *max_uV,
 455			      suspend_state_t state)
 456{
 457	struct regulator *regulator;
 458	struct regulator_voltage *voltage;
 459
 460	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 461		voltage = &regulator->voltage[state];
 462		/*
 463		 * Assume consumers that didn't say anything are OK
 464		 * with anything in the constraint range.
 465		 */
 466		if (!voltage->min_uV && !voltage->max_uV)
 467			continue;
 468
 469		if (*max_uV > voltage->max_uV)
 470			*max_uV = voltage->max_uV;
 471		if (*min_uV < voltage->min_uV)
 472			*min_uV = voltage->min_uV;
 473	}
 474
 475	if (*min_uV > *max_uV) {
 476		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
 477			*min_uV, *max_uV);
 478		return -EINVAL;
 479	}
 480
 481	return 0;
 482}
 483
 484/* current constraint check */
 485static int regulator_check_current_limit(struct regulator_dev *rdev,
 486					int *min_uA, int *max_uA)
 487{
 488	BUG_ON(*min_uA > *max_uA);
 489
 490	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
 491		rdev_err(rdev, "current operation not allowed\n");
 492		return -EPERM;
 493	}
 494
 495	if (*max_uA > rdev->constraints->max_uA)
 496		*max_uA = rdev->constraints->max_uA;
 497	if (*min_uA < rdev->constraints->min_uA)
 498		*min_uA = rdev->constraints->min_uA;
 499
 500	if (*min_uA > *max_uA) {
 501		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
 502			 *min_uA, *max_uA);
 503		return -EINVAL;
 504	}
 505
 506	return 0;
 507}
 508
 509/* operating mode constraint check */
 510static int regulator_mode_constrain(struct regulator_dev *rdev,
 511				    unsigned int *mode)
 512{
 513	switch (*mode) {
 514	case REGULATOR_MODE_FAST:
 515	case REGULATOR_MODE_NORMAL:
 516	case REGULATOR_MODE_IDLE:
 517	case REGULATOR_MODE_STANDBY:
 518		break;
 519	default:
 520		rdev_err(rdev, "invalid mode %x specified\n", *mode);
 521		return -EINVAL;
 522	}
 523
 524	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
 525		rdev_err(rdev, "mode operation not allowed\n");
 526		return -EPERM;
 527	}
 528
 529	/* The modes are bitmasks, the most power hungry modes having
 530	 * the lowest values. If the requested mode isn't supported
 531	 * try higher modes.
 532	 */
 533	while (*mode) {
 534		if (rdev->constraints->valid_modes_mask & *mode)
 535			return 0;
 536		*mode /= 2;
 537	}
 538
 539	return -EINVAL;
 540}
 541
 542static inline struct regulator_state *
 543regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
 544{
 545	if (rdev->constraints == NULL)
 546		return NULL;
 547
 548	switch (state) {
 549	case PM_SUSPEND_STANDBY:
 550		return &rdev->constraints->state_standby;
 551	case PM_SUSPEND_MEM:
 552		return &rdev->constraints->state_mem;
 553	case PM_SUSPEND_MAX:
 554		return &rdev->constraints->state_disk;
 555	default:
 556		return NULL;
 557	}
 558}
 559
 560static const struct regulator_state *
 561regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
 562{
 563	const struct regulator_state *rstate;
 564
 565	rstate = regulator_get_suspend_state(rdev, state);
 566	if (rstate == NULL)
 567		return NULL;
 568
 569	/* If we have no suspend mode configuration don't set anything;
 570	 * only warn if the driver implements set_suspend_voltage or
 571	 * set_suspend_mode callback.
 572	 */
 573	if (rstate->enabled != ENABLE_IN_SUSPEND &&
 574	    rstate->enabled != DISABLE_IN_SUSPEND) {
 575		if (rdev->desc->ops->set_suspend_voltage ||
 576		    rdev->desc->ops->set_suspend_mode)
 577			rdev_warn(rdev, "No configuration\n");
 578		return NULL;
 579	}
 580
 581	return rstate;
 582}
 583
 584static ssize_t microvolts_show(struct device *dev,
 585			       struct device_attribute *attr, char *buf)
 586{
 587	struct regulator_dev *rdev = dev_get_drvdata(dev);
 588	int uV;
 589
 590	regulator_lock(rdev);
 591	uV = regulator_get_voltage_rdev(rdev);
 592	regulator_unlock(rdev);
 593
 594	if (uV < 0)
 595		return uV;
 596	return sprintf(buf, "%d\n", uV);
 597}
 598static DEVICE_ATTR_RO(microvolts);
 599
 600static ssize_t microamps_show(struct device *dev,
 601			      struct device_attribute *attr, char *buf)
 602{
 603	struct regulator_dev *rdev = dev_get_drvdata(dev);
 604
 605	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
 606}
 607static DEVICE_ATTR_RO(microamps);
 608
 609static ssize_t name_show(struct device *dev, struct device_attribute *attr,
 610			 char *buf)
 611{
 612	struct regulator_dev *rdev = dev_get_drvdata(dev);
 613
 614	return sprintf(buf, "%s\n", rdev_get_name(rdev));
 615}
 616static DEVICE_ATTR_RO(name);
 617
 618static const char *regulator_opmode_to_str(int mode)
 619{
 620	switch (mode) {
 621	case REGULATOR_MODE_FAST:
 622		return "fast";
 623	case REGULATOR_MODE_NORMAL:
 624		return "normal";
 625	case REGULATOR_MODE_IDLE:
 626		return "idle";
 627	case REGULATOR_MODE_STANDBY:
 628		return "standby";
 629	}
 630	return "unknown";
 631}
 632
 633static ssize_t regulator_print_opmode(char *buf, int mode)
 634{
 635	return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
 636}
 637
 638static ssize_t opmode_show(struct device *dev,
 639			   struct device_attribute *attr, char *buf)
 640{
 641	struct regulator_dev *rdev = dev_get_drvdata(dev);
 642
 643	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
 644}
 645static DEVICE_ATTR_RO(opmode);
 646
 647static ssize_t regulator_print_state(char *buf, int state)
 648{
 649	if (state > 0)
 650		return sprintf(buf, "enabled\n");
 651	else if (state == 0)
 652		return sprintf(buf, "disabled\n");
 653	else
 654		return sprintf(buf, "unknown\n");
 655}
 656
 657static ssize_t state_show(struct device *dev,
 658			  struct device_attribute *attr, char *buf)
 659{
 660	struct regulator_dev *rdev = dev_get_drvdata(dev);
 661	ssize_t ret;
 662
 663	regulator_lock(rdev);
 664	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
 665	regulator_unlock(rdev);
 666
 667	return ret;
 668}
 669static DEVICE_ATTR_RO(state);
 670
 671static ssize_t status_show(struct device *dev,
 672			   struct device_attribute *attr, char *buf)
 673{
 674	struct regulator_dev *rdev = dev_get_drvdata(dev);
 675	int status;
 676	char *label;
 677
 678	status = rdev->desc->ops->get_status(rdev);
 679	if (status < 0)
 680		return status;
 681
 682	switch (status) {
 683	case REGULATOR_STATUS_OFF:
 684		label = "off";
 685		break;
 686	case REGULATOR_STATUS_ON:
 687		label = "on";
 688		break;
 689	case REGULATOR_STATUS_ERROR:
 690		label = "error";
 691		break;
 692	case REGULATOR_STATUS_FAST:
 693		label = "fast";
 694		break;
 695	case REGULATOR_STATUS_NORMAL:
 696		label = "normal";
 697		break;
 698	case REGULATOR_STATUS_IDLE:
 699		label = "idle";
 700		break;
 701	case REGULATOR_STATUS_STANDBY:
 702		label = "standby";
 703		break;
 704	case REGULATOR_STATUS_BYPASS:
 705		label = "bypass";
 706		break;
 707	case REGULATOR_STATUS_UNDEFINED:
 708		label = "undefined";
 709		break;
 710	default:
 711		return -ERANGE;
 712	}
 713
 714	return sprintf(buf, "%s\n", label);
 715}
 716static DEVICE_ATTR_RO(status);
 717
 718static ssize_t min_microamps_show(struct device *dev,
 719				  struct device_attribute *attr, char *buf)
 720{
 721	struct regulator_dev *rdev = dev_get_drvdata(dev);
 722
 723	if (!rdev->constraints)
 724		return sprintf(buf, "constraint not defined\n");
 725
 726	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
 727}
 728static DEVICE_ATTR_RO(min_microamps);
 729
 730static ssize_t max_microamps_show(struct device *dev,
 731				  struct device_attribute *attr, char *buf)
 732{
 733	struct regulator_dev *rdev = dev_get_drvdata(dev);
 734
 735	if (!rdev->constraints)
 736		return sprintf(buf, "constraint not defined\n");
 737
 738	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
 739}
 740static DEVICE_ATTR_RO(max_microamps);
 741
 742static ssize_t min_microvolts_show(struct device *dev,
 743				   struct device_attribute *attr, char *buf)
 744{
 745	struct regulator_dev *rdev = dev_get_drvdata(dev);
 746
 747	if (!rdev->constraints)
 748		return sprintf(buf, "constraint not defined\n");
 749
 750	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
 751}
 752static DEVICE_ATTR_RO(min_microvolts);
 753
 754static ssize_t max_microvolts_show(struct device *dev,
 755				   struct device_attribute *attr, char *buf)
 756{
 757	struct regulator_dev *rdev = dev_get_drvdata(dev);
 758
 759	if (!rdev->constraints)
 760		return sprintf(buf, "constraint not defined\n");
 761
 762	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
 763}
 764static DEVICE_ATTR_RO(max_microvolts);
 765
 766static ssize_t requested_microamps_show(struct device *dev,
 767					struct device_attribute *attr, char *buf)
 768{
 769	struct regulator_dev *rdev = dev_get_drvdata(dev);
 770	struct regulator *regulator;
 771	int uA = 0;
 772
 773	regulator_lock(rdev);
 774	list_for_each_entry(regulator, &rdev->consumer_list, list) {
 775		if (regulator->enable_count)
 776			uA += regulator->uA_load;
 777	}
 778	regulator_unlock(rdev);
 779	return sprintf(buf, "%d\n", uA);
 780}
 781static DEVICE_ATTR_RO(requested_microamps);
 782
 783static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
 784			      char *buf)
 785{
 786	struct regulator_dev *rdev = dev_get_drvdata(dev);
 787	return sprintf(buf, "%d\n", rdev->use_count);
 788}
 789static DEVICE_ATTR_RO(num_users);
 790
 791static ssize_t type_show(struct device *dev, struct device_attribute *attr,
 792			 char *buf)
 793{
 794	struct regulator_dev *rdev = dev_get_drvdata(dev);
 795
 796	switch (rdev->desc->type) {
 797	case REGULATOR_VOLTAGE:
 798		return sprintf(buf, "voltage\n");
 799	case REGULATOR_CURRENT:
 800		return sprintf(buf, "current\n");
 801	}
 802	return sprintf(buf, "unknown\n");
 803}
 804static DEVICE_ATTR_RO(type);
 805
 806static ssize_t suspend_mem_microvolts_show(struct device *dev,
 807					   struct device_attribute *attr, char *buf)
 808{
 809	struct regulator_dev *rdev = dev_get_drvdata(dev);
 810
 811	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
 812}
 813static DEVICE_ATTR_RO(suspend_mem_microvolts);
 
 814
 815static ssize_t suspend_disk_microvolts_show(struct device *dev,
 816					    struct device_attribute *attr, char *buf)
 817{
 818	struct regulator_dev *rdev = dev_get_drvdata(dev);
 819
 820	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
 821}
 822static DEVICE_ATTR_RO(suspend_disk_microvolts);
 
 823
 824static ssize_t suspend_standby_microvolts_show(struct device *dev,
 825					       struct device_attribute *attr, char *buf)
 826{
 827	struct regulator_dev *rdev = dev_get_drvdata(dev);
 828
 829	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
 830}
 831static DEVICE_ATTR_RO(suspend_standby_microvolts);
 
 832
 833static ssize_t suspend_mem_mode_show(struct device *dev,
 834				     struct device_attribute *attr, char *buf)
 835{
 836	struct regulator_dev *rdev = dev_get_drvdata(dev);
 837
 838	return regulator_print_opmode(buf,
 839		rdev->constraints->state_mem.mode);
 840}
 841static DEVICE_ATTR_RO(suspend_mem_mode);
 
 842
 843static ssize_t suspend_disk_mode_show(struct device *dev,
 844				      struct device_attribute *attr, char *buf)
 845{
 846	struct regulator_dev *rdev = dev_get_drvdata(dev);
 847
 848	return regulator_print_opmode(buf,
 849		rdev->constraints->state_disk.mode);
 850}
 851static DEVICE_ATTR_RO(suspend_disk_mode);
 
 852
 853static ssize_t suspend_standby_mode_show(struct device *dev,
 854					 struct device_attribute *attr, char *buf)
 855{
 856	struct regulator_dev *rdev = dev_get_drvdata(dev);
 857
 858	return regulator_print_opmode(buf,
 859		rdev->constraints->state_standby.mode);
 860}
 861static DEVICE_ATTR_RO(suspend_standby_mode);
 
 862
 863static ssize_t suspend_mem_state_show(struct device *dev,
 864				      struct device_attribute *attr, char *buf)
 865{
 866	struct regulator_dev *rdev = dev_get_drvdata(dev);
 867
 868	return regulator_print_state(buf,
 869			rdev->constraints->state_mem.enabled);
 870}
 871static DEVICE_ATTR_RO(suspend_mem_state);
 
 872
 873static ssize_t suspend_disk_state_show(struct device *dev,
 874				       struct device_attribute *attr, char *buf)
 875{
 876	struct regulator_dev *rdev = dev_get_drvdata(dev);
 877
 878	return regulator_print_state(buf,
 879			rdev->constraints->state_disk.enabled);
 880}
 881static DEVICE_ATTR_RO(suspend_disk_state);
 
 882
 883static ssize_t suspend_standby_state_show(struct device *dev,
 884					  struct device_attribute *attr, char *buf)
 885{
 886	struct regulator_dev *rdev = dev_get_drvdata(dev);
 887
 888	return regulator_print_state(buf,
 889			rdev->constraints->state_standby.enabled);
 890}
 891static DEVICE_ATTR_RO(suspend_standby_state);
 
 892
 893static ssize_t bypass_show(struct device *dev,
 894			   struct device_attribute *attr, char *buf)
 895{
 896	struct regulator_dev *rdev = dev_get_drvdata(dev);
 897	const char *report;
 898	bool bypass;
 899	int ret;
 900
 901	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
 902
 903	if (ret != 0)
 904		report = "unknown";
 905	else if (bypass)
 906		report = "enabled";
 907	else
 908		report = "disabled";
 909
 910	return sprintf(buf, "%s\n", report);
 911}
 912static DEVICE_ATTR_RO(bypass);
 
 913
 914/* Calculate the new optimum regulator operating mode based on the new total
 915 * consumer load. All locks held by caller
 916 */
 917static int drms_uA_update(struct regulator_dev *rdev)
 918{
 919	struct regulator *sibling;
 920	int current_uA = 0, output_uV, input_uV, err;
 921	unsigned int mode;
 922
 923	/*
 924	 * first check to see if we can set modes at all, otherwise just
 925	 * tell the consumer everything is OK.
 926	 */
 927	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
 928		rdev_dbg(rdev, "DRMS operation not allowed\n");
 929		return 0;
 930	}
 931
 932	if (!rdev->desc->ops->get_optimum_mode &&
 933	    !rdev->desc->ops->set_load)
 934		return 0;
 935
 936	if (!rdev->desc->ops->set_mode &&
 937	    !rdev->desc->ops->set_load)
 938		return -EINVAL;
 939
 940	/* calc total requested load */
 941	list_for_each_entry(sibling, &rdev->consumer_list, list) {
 942		if (sibling->enable_count)
 943			current_uA += sibling->uA_load;
 944	}
 945
 946	current_uA += rdev->constraints->system_load;
 947
 948	if (rdev->desc->ops->set_load) {
 949		/* set the optimum mode for our new total regulator load */
 950		err = rdev->desc->ops->set_load(rdev, current_uA);
 951		if (err < 0)
 952			rdev_err(rdev, "failed to set load %d: %pe\n",
 953				 current_uA, ERR_PTR(err));
 954	} else {
 955		/* get output voltage */
 956		output_uV = regulator_get_voltage_rdev(rdev);
 957		if (output_uV <= 0) {
 958			rdev_err(rdev, "invalid output voltage found\n");
 959			return -EINVAL;
 960		}
 961
 962		/* get input voltage */
 963		input_uV = 0;
 964		if (rdev->supply)
 965			input_uV = regulator_get_voltage(rdev->supply);
 966		if (input_uV <= 0)
 967			input_uV = rdev->constraints->input_uV;
 968		if (input_uV <= 0) {
 969			rdev_err(rdev, "invalid input voltage found\n");
 970			return -EINVAL;
 971		}
 972
 973		/* now get the optimum mode for our new total regulator load */
 974		mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
 975							 output_uV, current_uA);
 976
 977		/* check the new mode is allowed */
 978		err = regulator_mode_constrain(rdev, &mode);
 979		if (err < 0) {
 980			rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
 981				 current_uA, input_uV, output_uV, ERR_PTR(err));
 982			return err;
 983		}
 984
 985		err = rdev->desc->ops->set_mode(rdev, mode);
 986		if (err < 0)
 987			rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
 988				 mode, ERR_PTR(err));
 989	}
 990
 991	return err;
 992}
 993
 994static int __suspend_set_state(struct regulator_dev *rdev,
 995			       const struct regulator_state *rstate)
 996{
 997	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998
 999	if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000		rdev->desc->ops->set_suspend_enable)
1001		ret = rdev->desc->ops->set_suspend_enable(rdev);
1002	else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003		rdev->desc->ops->set_suspend_disable)
1004		ret = rdev->desc->ops->set_suspend_disable(rdev);
1005	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1006		ret = 0;
1007
1008	if (ret < 0) {
1009		rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010		return ret;
1011	}
1012
1013	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1015		if (ret < 0) {
1016			rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017			return ret;
1018		}
1019	}
1020
1021	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1023		if (ret < 0) {
1024			rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025			return ret;
1026		}
1027	}
1028
1029	return ret;
1030}
1031
1032static int suspend_set_initial_state(struct regulator_dev *rdev)
1033{
1034	const struct regulator_state *rstate;
1035
1036	rstate = regulator_get_suspend_state_check(rdev,
1037			rdev->constraints->initial_state);
1038	if (!rstate)
1039		return 0;
1040
1041	return __suspend_set_state(rdev, rstate);
1042}
1043
1044#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045static void print_constraints_debug(struct regulator_dev *rdev)
1046{
1047	struct regulation_constraints *constraints = rdev->constraints;
1048	char buf[160] = "";
1049	size_t len = sizeof(buf) - 1;
1050	int count = 0;
1051	int ret;
1052
1053	if (constraints->min_uV && constraints->max_uV) {
1054		if (constraints->min_uV == constraints->max_uV)
1055			count += scnprintf(buf + count, len - count, "%d mV ",
1056					   constraints->min_uV / 1000);
1057		else
1058			count += scnprintf(buf + count, len - count,
1059					   "%d <--> %d mV ",
1060					   constraints->min_uV / 1000,
1061					   constraints->max_uV / 1000);
1062	}
1063
1064	if (!constraints->min_uV ||
1065	    constraints->min_uV != constraints->max_uV) {
1066		ret = regulator_get_voltage_rdev(rdev);
1067		if (ret > 0)
1068			count += scnprintf(buf + count, len - count,
1069					   "at %d mV ", ret / 1000);
1070	}
1071
1072	if (constraints->uV_offset)
1073		count += scnprintf(buf + count, len - count, "%dmV offset ",
1074				   constraints->uV_offset / 1000);
1075
1076	if (constraints->min_uA && constraints->max_uA) {
1077		if (constraints->min_uA == constraints->max_uA)
1078			count += scnprintf(buf + count, len - count, "%d mA ",
1079					   constraints->min_uA / 1000);
1080		else
1081			count += scnprintf(buf + count, len - count,
1082					   "%d <--> %d mA ",
1083					   constraints->min_uA / 1000,
1084					   constraints->max_uA / 1000);
1085	}
1086
1087	if (!constraints->min_uA ||
1088	    constraints->min_uA != constraints->max_uA) {
1089		ret = _regulator_get_current_limit(rdev);
1090		if (ret > 0)
1091			count += scnprintf(buf + count, len - count,
1092					   "at %d mA ", ret / 1000);
1093	}
1094
1095	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096		count += scnprintf(buf + count, len - count, "fast ");
1097	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098		count += scnprintf(buf + count, len - count, "normal ");
1099	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100		count += scnprintf(buf + count, len - count, "idle ");
1101	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102		count += scnprintf(buf + count, len - count, "standby ");
1103
1104	if (!count)
1105		count = scnprintf(buf, len, "no parameters");
1106	else
1107		--count;
1108
1109	count += scnprintf(buf + count, len - count, ", %s",
1110		_regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111
1112	rdev_dbg(rdev, "%s\n", buf);
1113}
1114#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1117
1118static void print_constraints(struct regulator_dev *rdev)
1119{
1120	struct regulation_constraints *constraints = rdev->constraints;
1121
1122	print_constraints_debug(rdev);
1123
1124	if ((constraints->min_uV != constraints->max_uV) &&
1125	    !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126		rdev_warn(rdev,
1127			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128}
1129
1130static int machine_constraints_voltage(struct regulator_dev *rdev,
1131	struct regulation_constraints *constraints)
1132{
1133	const struct regulator_ops *ops = rdev->desc->ops;
1134	int ret;
1135
1136	/* do we need to apply the constraint voltage */
1137	if (rdev->constraints->apply_uV &&
1138	    rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139		int target_min, target_max;
1140		int current_uV = regulator_get_voltage_rdev(rdev);
1141
1142		if (current_uV == -ENOTRECOVERABLE) {
1143			/* This regulator can't be read and must be initialized */
1144			rdev_info(rdev, "Setting %d-%duV\n",
1145				  rdev->constraints->min_uV,
1146				  rdev->constraints->max_uV);
1147			_regulator_do_set_voltage(rdev,
1148						  rdev->constraints->min_uV,
1149						  rdev->constraints->max_uV);
1150			current_uV = regulator_get_voltage_rdev(rdev);
1151		}
1152
1153		if (current_uV < 0) {
1154			rdev_err(rdev,
1155				 "failed to get the current voltage: %pe\n",
1156				 ERR_PTR(current_uV));
1157			return current_uV;
1158		}
1159
1160		/*
1161		 * If we're below the minimum voltage move up to the
1162		 * minimum voltage, if we're above the maximum voltage
1163		 * then move down to the maximum.
1164		 */
1165		target_min = current_uV;
1166		target_max = current_uV;
1167
1168		if (current_uV < rdev->constraints->min_uV) {
1169			target_min = rdev->constraints->min_uV;
1170			target_max = rdev->constraints->min_uV;
1171		}
1172
1173		if (current_uV > rdev->constraints->max_uV) {
1174			target_min = rdev->constraints->max_uV;
1175			target_max = rdev->constraints->max_uV;
1176		}
1177
1178		if (target_min != current_uV || target_max != current_uV) {
1179			rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1180				  current_uV, target_min, target_max);
1181			ret = _regulator_do_set_voltage(
1182				rdev, target_min, target_max);
1183			if (ret < 0) {
1184				rdev_err(rdev,
1185					"failed to apply %d-%duV constraint: %pe\n",
1186					target_min, target_max, ERR_PTR(ret));
1187				return ret;
1188			}
1189		}
1190	}
1191
1192	/* constrain machine-level voltage specs to fit
1193	 * the actual range supported by this regulator.
1194	 */
1195	if (ops->list_voltage && rdev->desc->n_voltages) {
1196		int	count = rdev->desc->n_voltages;
1197		int	i;
1198		int	min_uV = INT_MAX;
1199		int	max_uV = INT_MIN;
1200		int	cmin = constraints->min_uV;
1201		int	cmax = constraints->max_uV;
1202
1203		/* it's safe to autoconfigure fixed-voltage supplies
1204		 * and the constraints are used by list_voltage.
1205		 */
1206		if (count == 1 && !cmin) {
1207			cmin = 1;
1208			cmax = INT_MAX;
1209			constraints->min_uV = cmin;
1210			constraints->max_uV = cmax;
1211		}
1212
1213		/* voltage constraints are optional */
1214		if ((cmin == 0) && (cmax == 0))
1215			return 0;
1216
1217		/* else require explicit machine-level constraints */
1218		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1219			rdev_err(rdev, "invalid voltage constraints\n");
1220			return -EINVAL;
1221		}
1222
1223		/* no need to loop voltages if range is continuous */
1224		if (rdev->desc->continuous_voltage_range)
1225			return 0;
1226
1227		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1228		for (i = 0; i < count; i++) {
1229			int	value;
1230
1231			value = ops->list_voltage(rdev, i);
1232			if (value <= 0)
1233				continue;
1234
1235			/* maybe adjust [min_uV..max_uV] */
1236			if (value >= cmin && value < min_uV)
1237				min_uV = value;
1238			if (value <= cmax && value > max_uV)
1239				max_uV = value;
1240		}
1241
1242		/* final: [min_uV..max_uV] valid iff constraints valid */
1243		if (max_uV < min_uV) {
1244			rdev_err(rdev,
1245				 "unsupportable voltage constraints %u-%uuV\n",
1246				 min_uV, max_uV);
1247			return -EINVAL;
1248		}
1249
1250		/* use regulator's subset of machine constraints */
1251		if (constraints->min_uV < min_uV) {
1252			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1253				 constraints->min_uV, min_uV);
1254			constraints->min_uV = min_uV;
1255		}
1256		if (constraints->max_uV > max_uV) {
1257			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1258				 constraints->max_uV, max_uV);
1259			constraints->max_uV = max_uV;
1260		}
1261	}
1262
1263	return 0;
1264}
1265
1266static int machine_constraints_current(struct regulator_dev *rdev,
1267	struct regulation_constraints *constraints)
1268{
1269	const struct regulator_ops *ops = rdev->desc->ops;
1270	int ret;
1271
1272	if (!constraints->min_uA && !constraints->max_uA)
1273		return 0;
1274
1275	if (constraints->min_uA > constraints->max_uA) {
1276		rdev_err(rdev, "Invalid current constraints\n");
1277		return -EINVAL;
1278	}
1279
1280	if (!ops->set_current_limit || !ops->get_current_limit) {
1281		rdev_warn(rdev, "Operation of current configuration missing\n");
1282		return 0;
1283	}
1284
1285	/* Set regulator current in constraints range */
1286	ret = ops->set_current_limit(rdev, constraints->min_uA,
1287			constraints->max_uA);
1288	if (ret < 0) {
1289		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1290		return ret;
1291	}
1292
1293	return 0;
1294}
1295
1296static int _regulator_do_enable(struct regulator_dev *rdev);
1297
1298static int notif_set_limit(struct regulator_dev *rdev,
1299			   int (*set)(struct regulator_dev *, int, int, bool),
1300			   int limit, int severity)
1301{
1302	bool enable;
1303
1304	if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1305		enable = false;
1306		limit = 0;
1307	} else {
1308		enable = true;
1309	}
1310
1311	if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1312		limit = 0;
1313
1314	return set(rdev, limit, severity, enable);
1315}
1316
1317static int handle_notify_limits(struct regulator_dev *rdev,
1318			int (*set)(struct regulator_dev *, int, int, bool),
1319			struct notification_limit *limits)
1320{
1321	int ret = 0;
1322
1323	if (!set)
1324		return -EOPNOTSUPP;
1325
1326	if (limits->prot)
1327		ret = notif_set_limit(rdev, set, limits->prot,
1328				      REGULATOR_SEVERITY_PROT);
1329	if (ret)
1330		return ret;
1331
1332	if (limits->err)
1333		ret = notif_set_limit(rdev, set, limits->err,
1334				      REGULATOR_SEVERITY_ERR);
1335	if (ret)
1336		return ret;
1337
1338	if (limits->warn)
1339		ret = notif_set_limit(rdev, set, limits->warn,
1340				      REGULATOR_SEVERITY_WARN);
1341
1342	return ret;
1343}
1344/**
1345 * set_machine_constraints - sets regulator constraints
1346 * @rdev: regulator source
 
1347 *
1348 * Allows platform initialisation code to define and constrain
1349 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1350 * Constraints *must* be set by platform code in order for some
1351 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1352 * set_mode.
1353 */
1354static int set_machine_constraints(struct regulator_dev *rdev)
 
1355{
1356	int ret = 0;
1357	const struct regulator_ops *ops = rdev->desc->ops;
1358
 
 
 
 
 
 
 
 
 
1359	ret = machine_constraints_voltage(rdev, rdev->constraints);
1360	if (ret != 0)
1361		return ret;
1362
1363	ret = machine_constraints_current(rdev, rdev->constraints);
1364	if (ret != 0)
1365		return ret;
1366
1367	if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1368		ret = ops->set_input_current_limit(rdev,
1369						   rdev->constraints->ilim_uA);
1370		if (ret < 0) {
1371			rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1372			return ret;
1373		}
1374	}
1375
1376	/* do we need to setup our suspend state */
1377	if (rdev->constraints->initial_state) {
1378		ret = suspend_set_initial_state(rdev);
1379		if (ret < 0) {
1380			rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1381			return ret;
1382		}
1383	}
1384
1385	if (rdev->constraints->initial_mode) {
1386		if (!ops->set_mode) {
1387			rdev_err(rdev, "no set_mode operation\n");
1388			return -EINVAL;
1389		}
1390
1391		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1392		if (ret < 0) {
1393			rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1394			return ret;
1395		}
1396	} else if (rdev->constraints->system_load) {
1397		/*
1398		 * We'll only apply the initial system load if an
1399		 * initial mode wasn't specified.
1400		 */
1401		drms_uA_update(rdev);
1402	}
1403
1404	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1405		&& ops->set_ramp_delay) {
1406		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1407		if (ret < 0) {
1408			rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1409			return ret;
1410		}
1411	}
1412
1413	if (rdev->constraints->pull_down && ops->set_pull_down) {
1414		ret = ops->set_pull_down(rdev);
1415		if (ret < 0) {
1416			rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1417			return ret;
1418		}
1419	}
1420
1421	if (rdev->constraints->soft_start && ops->set_soft_start) {
1422		ret = ops->set_soft_start(rdev);
1423		if (ret < 0) {
1424			rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1425			return ret;
1426		}
1427	}
1428
1429	/*
1430	 * Existing logic does not warn if over_current_protection is given as
1431	 * a constraint but driver does not support that. I think we should
1432	 * warn about this type of issues as it is possible someone changes
1433	 * PMIC on board to another type - and the another PMIC's driver does
1434	 * not support setting protection. Board composer may happily believe
1435	 * the DT limits are respected - especially if the new PMIC HW also
1436	 * supports protection but the driver does not. I won't change the logic
1437	 * without hearing more experienced opinion on this though.
1438	 *
1439	 * If warning is seen as a good idea then we can merge handling the
1440	 * over-curret protection and detection and get rid of this special
1441	 * handling.
1442	 */
1443	if (rdev->constraints->over_current_protection
1444		&& ops->set_over_current_protection) {
1445		int lim = rdev->constraints->over_curr_limits.prot;
1446
1447		ret = ops->set_over_current_protection(rdev, lim,
1448						       REGULATOR_SEVERITY_PROT,
1449						       true);
1450		if (ret < 0) {
1451			rdev_err(rdev, "failed to set over current protection: %pe\n",
1452				 ERR_PTR(ret));
1453			return ret;
1454		}
1455	}
1456
1457	if (rdev->constraints->over_current_detection)
1458		ret = handle_notify_limits(rdev,
1459					   ops->set_over_current_protection,
1460					   &rdev->constraints->over_curr_limits);
1461	if (ret) {
1462		if (ret != -EOPNOTSUPP) {
1463			rdev_err(rdev, "failed to set over current limits: %pe\n",
1464				 ERR_PTR(ret));
1465			return ret;
1466		}
1467		rdev_warn(rdev,
1468			  "IC does not support requested over-current limits\n");
1469	}
1470
1471	if (rdev->constraints->over_voltage_detection)
1472		ret = handle_notify_limits(rdev,
1473					   ops->set_over_voltage_protection,
1474					   &rdev->constraints->over_voltage_limits);
1475	if (ret) {
1476		if (ret != -EOPNOTSUPP) {
1477			rdev_err(rdev, "failed to set over voltage limits %pe\n",
1478				 ERR_PTR(ret));
1479			return ret;
1480		}
1481		rdev_warn(rdev,
1482			  "IC does not support requested over voltage limits\n");
1483	}
1484
1485	if (rdev->constraints->under_voltage_detection)
1486		ret = handle_notify_limits(rdev,
1487					   ops->set_under_voltage_protection,
1488					   &rdev->constraints->under_voltage_limits);
1489	if (ret) {
1490		if (ret != -EOPNOTSUPP) {
1491			rdev_err(rdev, "failed to set under voltage limits %pe\n",
1492				 ERR_PTR(ret));
1493			return ret;
1494		}
1495		rdev_warn(rdev,
1496			  "IC does not support requested under voltage limits\n");
1497	}
1498
1499	if (rdev->constraints->over_temp_detection)
1500		ret = handle_notify_limits(rdev,
1501					   ops->set_thermal_protection,
1502					   &rdev->constraints->temp_limits);
1503	if (ret) {
1504		if (ret != -EOPNOTSUPP) {
1505			rdev_err(rdev, "failed to set temperature limits %pe\n",
1506				 ERR_PTR(ret));
1507			return ret;
1508		}
1509		rdev_warn(rdev,
1510			  "IC does not support requested temperature limits\n");
1511	}
1512
1513	if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1514		bool ad_state = (rdev->constraints->active_discharge ==
1515			      REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1516
1517		ret = ops->set_active_discharge(rdev, ad_state);
1518		if (ret < 0) {
1519			rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1520			return ret;
1521		}
1522	}
1523
1524	/* If the constraints say the regulator should be on at this point
1525	 * and we have control then make sure it is enabled.
1526	 */
1527	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1528		/* If we want to enable this regulator, make sure that we know
1529		 * the supplying regulator.
1530		 */
1531		if (rdev->supply_name && !rdev->supply)
1532			return -EPROBE_DEFER;
1533
1534		if (rdev->supply) {
1535			ret = regulator_enable(rdev->supply);
1536			if (ret < 0) {
1537				_regulator_put(rdev->supply);
1538				rdev->supply = NULL;
1539				return ret;
1540			}
1541		}
1542
1543		ret = _regulator_do_enable(rdev);
1544		if (ret < 0 && ret != -EINVAL) {
1545			rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1546			return ret;
1547		}
1548
1549		if (rdev->constraints->always_on)
1550			rdev->use_count++;
1551	} else if (rdev->desc->off_on_delay) {
1552		rdev->last_off = ktime_get();
1553	}
1554
1555	print_constraints(rdev);
1556	return 0;
1557}
1558
1559/**
1560 * set_supply - set regulator supply regulator
1561 * @rdev: regulator name
1562 * @supply_rdev: supply regulator name
1563 *
1564 * Called by platform initialisation code to set the supply regulator for this
1565 * regulator. This ensures that a regulators supply will also be enabled by the
1566 * core if it's child is enabled.
1567 */
1568static int set_supply(struct regulator_dev *rdev,
1569		      struct regulator_dev *supply_rdev)
1570{
1571	int err;
1572
1573	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1574
1575	if (!try_module_get(supply_rdev->owner))
1576		return -ENODEV;
1577
1578	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1579	if (rdev->supply == NULL) {
1580		err = -ENOMEM;
1581		return err;
1582	}
1583	supply_rdev->open_count++;
1584
1585	return 0;
1586}
1587
1588/**
1589 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1590 * @rdev:         regulator source
1591 * @consumer_dev_name: dev_name() string for device supply applies to
1592 * @supply:       symbolic name for supply
1593 *
1594 * Allows platform initialisation code to map physical regulator
1595 * sources to symbolic names for supplies for use by devices.  Devices
1596 * should use these symbolic names to request regulators, avoiding the
1597 * need to provide board-specific regulator names as platform data.
1598 */
1599static int set_consumer_device_supply(struct regulator_dev *rdev,
1600				      const char *consumer_dev_name,
1601				      const char *supply)
1602{
1603	struct regulator_map *node, *new_node;
1604	int has_dev;
1605
1606	if (supply == NULL)
1607		return -EINVAL;
1608
1609	if (consumer_dev_name != NULL)
1610		has_dev = 1;
1611	else
1612		has_dev = 0;
1613
1614	new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1615	if (new_node == NULL)
1616		return -ENOMEM;
1617
1618	new_node->regulator = rdev;
1619	new_node->supply = supply;
1620
1621	if (has_dev) {
1622		new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1623		if (new_node->dev_name == NULL) {
1624			kfree(new_node);
1625			return -ENOMEM;
1626		}
1627	}
1628
1629	mutex_lock(&regulator_list_mutex);
1630	list_for_each_entry(node, &regulator_map_list, list) {
1631		if (node->dev_name && consumer_dev_name) {
1632			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1633				continue;
1634		} else if (node->dev_name || consumer_dev_name) {
1635			continue;
1636		}
1637
1638		if (strcmp(node->supply, supply) != 0)
1639			continue;
1640
1641		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1642			 consumer_dev_name,
1643			 dev_name(&node->regulator->dev),
1644			 node->regulator->desc->name,
1645			 supply,
1646			 dev_name(&rdev->dev), rdev_get_name(rdev));
1647		goto fail;
1648	}
1649
1650	list_add(&new_node->list, &regulator_map_list);
1651	mutex_unlock(&regulator_list_mutex);
1652
1653	return 0;
1654
1655fail:
1656	mutex_unlock(&regulator_list_mutex);
1657	kfree(new_node->dev_name);
1658	kfree(new_node);
1659	return -EBUSY;
1660}
1661
1662static void unset_regulator_supplies(struct regulator_dev *rdev)
1663{
1664	struct regulator_map *node, *n;
1665
1666	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1667		if (rdev == node->regulator) {
1668			list_del(&node->list);
1669			kfree(node->dev_name);
1670			kfree(node);
1671		}
1672	}
1673}
1674
1675#ifdef CONFIG_DEBUG_FS
1676static ssize_t constraint_flags_read_file(struct file *file,
1677					  char __user *user_buf,
1678					  size_t count, loff_t *ppos)
1679{
1680	const struct regulator *regulator = file->private_data;
1681	const struct regulation_constraints *c = regulator->rdev->constraints;
1682	char *buf;
1683	ssize_t ret;
1684
1685	if (!c)
1686		return 0;
1687
1688	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1689	if (!buf)
1690		return -ENOMEM;
1691
1692	ret = snprintf(buf, PAGE_SIZE,
1693			"always_on: %u\n"
1694			"boot_on: %u\n"
1695			"apply_uV: %u\n"
1696			"ramp_disable: %u\n"
1697			"soft_start: %u\n"
1698			"pull_down: %u\n"
1699			"over_current_protection: %u\n",
1700			c->always_on,
1701			c->boot_on,
1702			c->apply_uV,
1703			c->ramp_disable,
1704			c->soft_start,
1705			c->pull_down,
1706			c->over_current_protection);
1707
1708	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1709	kfree(buf);
1710
1711	return ret;
1712}
1713
1714#endif
1715
1716static const struct file_operations constraint_flags_fops = {
1717#ifdef CONFIG_DEBUG_FS
1718	.open = simple_open,
1719	.read = constraint_flags_read_file,
1720	.llseek = default_llseek,
1721#endif
1722};
1723
1724#define REG_STR_SIZE	64
1725
1726static struct regulator *create_regulator(struct regulator_dev *rdev,
1727					  struct device *dev,
1728					  const char *supply_name)
1729{
1730	struct regulator *regulator;
1731	int err = 0;
1732
1733	if (dev) {
1734		char buf[REG_STR_SIZE];
1735		int size;
1736
1737		size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1738				dev->kobj.name, supply_name);
1739		if (size >= REG_STR_SIZE)
1740			return NULL;
1741
1742		supply_name = kstrdup(buf, GFP_KERNEL);
1743		if (supply_name == NULL)
1744			return NULL;
1745	} else {
1746		supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1747		if (supply_name == NULL)
1748			return NULL;
1749	}
1750
1751	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1752	if (regulator == NULL) {
1753		kfree(supply_name);
1754		return NULL;
1755	}
1756
1757	regulator->rdev = rdev;
1758	regulator->supply_name = supply_name;
1759
1760	regulator_lock(rdev);
1761	list_add(&regulator->list, &rdev->consumer_list);
1762	regulator_unlock(rdev);
1763
1764	if (dev) {
1765		regulator->dev = dev;
1766
1767		/* Add a link to the device sysfs entry */
1768		err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1769					       supply_name);
1770		if (err) {
1771			rdev_dbg(rdev, "could not add device link %s: %pe\n",
1772				  dev->kobj.name, ERR_PTR(err));
1773			/* non-fatal */
1774		}
1775	}
1776
1777	if (err != -EEXIST)
1778		regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1779	if (!regulator->debugfs) {
1780		rdev_dbg(rdev, "Failed to create debugfs directory\n");
1781	} else {
1782		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1783				   &regulator->uA_load);
1784		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1785				   &regulator->voltage[PM_SUSPEND_ON].min_uV);
1786		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1787				   &regulator->voltage[PM_SUSPEND_ON].max_uV);
1788		debugfs_create_file("constraint_flags", 0444,
1789				    regulator->debugfs, regulator,
1790				    &constraint_flags_fops);
1791	}
1792
1793	/*
1794	 * Check now if the regulator is an always on regulator - if
1795	 * it is then we don't need to do nearly so much work for
1796	 * enable/disable calls.
1797	 */
1798	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1799	    _regulator_is_enabled(rdev))
1800		regulator->always_on = true;
1801
1802	return regulator;
1803}
1804
1805static int _regulator_get_enable_time(struct regulator_dev *rdev)
1806{
1807	if (rdev->constraints && rdev->constraints->enable_time)
1808		return rdev->constraints->enable_time;
1809	if (rdev->desc->ops->enable_time)
1810		return rdev->desc->ops->enable_time(rdev);
1811	return rdev->desc->enable_time;
1812}
1813
1814static struct regulator_supply_alias *regulator_find_supply_alias(
1815		struct device *dev, const char *supply)
1816{
1817	struct regulator_supply_alias *map;
1818
1819	list_for_each_entry(map, &regulator_supply_alias_list, list)
1820		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1821			return map;
1822
1823	return NULL;
1824}
1825
1826static void regulator_supply_alias(struct device **dev, const char **supply)
1827{
1828	struct regulator_supply_alias *map;
1829
1830	map = regulator_find_supply_alias(*dev, *supply);
1831	if (map) {
1832		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1833				*supply, map->alias_supply,
1834				dev_name(map->alias_dev));
1835		*dev = map->alias_dev;
1836		*supply = map->alias_supply;
1837	}
1838}
1839
1840static int regulator_match(struct device *dev, const void *data)
1841{
1842	struct regulator_dev *r = dev_to_rdev(dev);
1843
1844	return strcmp(rdev_get_name(r), data) == 0;
1845}
1846
1847static struct regulator_dev *regulator_lookup_by_name(const char *name)
1848{
1849	struct device *dev;
1850
1851	dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1852
1853	return dev ? dev_to_rdev(dev) : NULL;
1854}
1855
1856/**
1857 * regulator_dev_lookup - lookup a regulator device.
1858 * @dev: device for regulator "consumer".
1859 * @supply: Supply name or regulator ID.
1860 *
1861 * If successful, returns a struct regulator_dev that corresponds to the name
1862 * @supply and with the embedded struct device refcount incremented by one.
1863 * The refcount must be dropped by calling put_device().
1864 * On failure one of the following ERR-PTR-encoded values is returned:
1865 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1866 * in the future.
1867 */
1868static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1869						  const char *supply)
1870{
1871	struct regulator_dev *r = NULL;
1872	struct device_node *node;
1873	struct regulator_map *map;
1874	const char *devname = NULL;
1875
1876	regulator_supply_alias(&dev, &supply);
1877
1878	/* first do a dt based lookup */
1879	if (dev && dev->of_node) {
1880		node = of_get_regulator(dev, supply);
1881		if (node) {
1882			r = of_find_regulator_by_node(node);
1883			if (r)
1884				return r;
1885
1886			/*
1887			 * We have a node, but there is no device.
1888			 * assume it has not registered yet.
1889			 */
1890			return ERR_PTR(-EPROBE_DEFER);
1891		}
1892	}
1893
1894	/* if not found, try doing it non-dt way */
1895	if (dev)
1896		devname = dev_name(dev);
1897
1898	mutex_lock(&regulator_list_mutex);
1899	list_for_each_entry(map, &regulator_map_list, list) {
1900		/* If the mapping has a device set up it must match */
1901		if (map->dev_name &&
1902		    (!devname || strcmp(map->dev_name, devname)))
1903			continue;
1904
1905		if (strcmp(map->supply, supply) == 0 &&
1906		    get_device(&map->regulator->dev)) {
1907			r = map->regulator;
1908			break;
1909		}
1910	}
1911	mutex_unlock(&regulator_list_mutex);
1912
1913	if (r)
1914		return r;
1915
1916	r = regulator_lookup_by_name(supply);
1917	if (r)
1918		return r;
1919
1920	return ERR_PTR(-ENODEV);
1921}
1922
1923static int regulator_resolve_supply(struct regulator_dev *rdev)
1924{
1925	struct regulator_dev *r;
1926	struct device *dev = rdev->dev.parent;
1927	int ret = 0;
1928
1929	/* No supply to resolve? */
1930	if (!rdev->supply_name)
1931		return 0;
1932
1933	/* Supply already resolved? (fast-path without locking contention) */
1934	if (rdev->supply)
1935		return 0;
1936
1937	r = regulator_dev_lookup(dev, rdev->supply_name);
1938	if (IS_ERR(r)) {
1939		ret = PTR_ERR(r);
1940
1941		/* Did the lookup explicitly defer for us? */
1942		if (ret == -EPROBE_DEFER)
1943			goto out;
1944
1945		if (have_full_constraints()) {
1946			r = dummy_regulator_rdev;
1947			get_device(&r->dev);
1948		} else {
1949			dev_err(dev, "Failed to resolve %s-supply for %s\n",
1950				rdev->supply_name, rdev->desc->name);
1951			ret = -EPROBE_DEFER;
1952			goto out;
1953		}
1954	}
1955
1956	if (r == rdev) {
1957		dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1958			rdev->desc->name, rdev->supply_name);
1959		if (!have_full_constraints()) {
1960			ret = -EINVAL;
1961			goto out;
1962		}
1963		r = dummy_regulator_rdev;
1964		get_device(&r->dev);
1965	}
1966
1967	/*
1968	 * If the supply's parent device is not the same as the
1969	 * regulator's parent device, then ensure the parent device
1970	 * is bound before we resolve the supply, in case the parent
1971	 * device get probe deferred and unregisters the supply.
1972	 */
1973	if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1974		if (!device_is_bound(r->dev.parent)) {
1975			put_device(&r->dev);
1976			ret = -EPROBE_DEFER;
1977			goto out;
1978		}
1979	}
1980
1981	/* Recursively resolve the supply of the supply */
1982	ret = regulator_resolve_supply(r);
1983	if (ret < 0) {
1984		put_device(&r->dev);
1985		goto out;
1986	}
1987
1988	/*
1989	 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1990	 * between rdev->supply null check and setting rdev->supply in
1991	 * set_supply() from concurrent tasks.
1992	 */
1993	regulator_lock(rdev);
1994
1995	/* Supply just resolved by a concurrent task? */
1996	if (rdev->supply) {
1997		regulator_unlock(rdev);
1998		put_device(&r->dev);
1999		goto out;
2000	}
2001
2002	ret = set_supply(rdev, r);
2003	if (ret < 0) {
2004		regulator_unlock(rdev);
2005		put_device(&r->dev);
2006		goto out;
2007	}
2008
2009	regulator_unlock(rdev);
2010
2011	/*
2012	 * In set_machine_constraints() we may have turned this regulator on
2013	 * but we couldn't propagate to the supply if it hadn't been resolved
2014	 * yet.  Do it now.
2015	 */
2016	if (rdev->use_count) {
2017		ret = regulator_enable(rdev->supply);
2018		if (ret < 0) {
2019			_regulator_put(rdev->supply);
2020			rdev->supply = NULL;
2021			goto out;
2022		}
2023	}
2024
2025out:
2026	return ret;
2027}
2028
2029/* Internal regulator request function */
2030struct regulator *_regulator_get(struct device *dev, const char *id,
2031				 enum regulator_get_type get_type)
2032{
2033	struct regulator_dev *rdev;
2034	struct regulator *regulator;
2035	struct device_link *link;
2036	int ret;
2037
2038	if (get_type >= MAX_GET_TYPE) {
2039		dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2040		return ERR_PTR(-EINVAL);
2041	}
2042
2043	if (id == NULL) {
2044		pr_err("get() with no identifier\n");
2045		return ERR_PTR(-EINVAL);
2046	}
2047
2048	rdev = regulator_dev_lookup(dev, id);
2049	if (IS_ERR(rdev)) {
2050		ret = PTR_ERR(rdev);
2051
2052		/*
2053		 * If regulator_dev_lookup() fails with error other
2054		 * than -ENODEV our job here is done, we simply return it.
2055		 */
2056		if (ret != -ENODEV)
2057			return ERR_PTR(ret);
2058
2059		if (!have_full_constraints()) {
2060			dev_warn(dev,
2061				 "incomplete constraints, dummy supplies not allowed\n");
2062			return ERR_PTR(-ENODEV);
2063		}
2064
2065		switch (get_type) {
2066		case NORMAL_GET:
2067			/*
2068			 * Assume that a regulator is physically present and
2069			 * enabled, even if it isn't hooked up, and just
2070			 * provide a dummy.
2071			 */
2072			dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2073			rdev = dummy_regulator_rdev;
2074			get_device(&rdev->dev);
2075			break;
2076
2077		case EXCLUSIVE_GET:
2078			dev_warn(dev,
2079				 "dummy supplies not allowed for exclusive requests\n");
2080			fallthrough;
2081
2082		default:
2083			return ERR_PTR(-ENODEV);
2084		}
2085	}
2086
2087	if (rdev->exclusive) {
2088		regulator = ERR_PTR(-EPERM);
2089		put_device(&rdev->dev);
2090		return regulator;
2091	}
2092
2093	if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2094		regulator = ERR_PTR(-EBUSY);
2095		put_device(&rdev->dev);
2096		return regulator;
2097	}
2098
2099	mutex_lock(&regulator_list_mutex);
2100	ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2101	mutex_unlock(&regulator_list_mutex);
2102
2103	if (ret != 0) {
2104		regulator = ERR_PTR(-EPROBE_DEFER);
2105		put_device(&rdev->dev);
2106		return regulator;
2107	}
2108
2109	ret = regulator_resolve_supply(rdev);
2110	if (ret < 0) {
2111		regulator = ERR_PTR(ret);
2112		put_device(&rdev->dev);
2113		return regulator;
2114	}
2115
2116	if (!try_module_get(rdev->owner)) {
2117		regulator = ERR_PTR(-EPROBE_DEFER);
2118		put_device(&rdev->dev);
2119		return regulator;
2120	}
2121
2122	regulator = create_regulator(rdev, dev, id);
2123	if (regulator == NULL) {
2124		regulator = ERR_PTR(-ENOMEM);
2125		module_put(rdev->owner);
2126		put_device(&rdev->dev);
2127		return regulator;
2128	}
2129
2130	rdev->open_count++;
2131	if (get_type == EXCLUSIVE_GET) {
2132		rdev->exclusive = 1;
2133
2134		ret = _regulator_is_enabled(rdev);
2135		if (ret > 0)
2136			rdev->use_count = 1;
2137		else
2138			rdev->use_count = 0;
2139	}
2140
2141	link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2142	if (!IS_ERR_OR_NULL(link))
2143		regulator->device_link = true;
2144
2145	return regulator;
2146}
2147
2148/**
2149 * regulator_get - lookup and obtain a reference to a regulator.
2150 * @dev: device for regulator "consumer"
2151 * @id: Supply name or regulator ID.
2152 *
2153 * Returns a struct regulator corresponding to the regulator producer,
2154 * or IS_ERR() condition containing errno.
2155 *
2156 * Use of supply names configured via set_consumer_device_supply() is
2157 * strongly encouraged.  It is recommended that the supply name used
2158 * should match the name used for the supply and/or the relevant
2159 * device pins in the datasheet.
2160 */
2161struct regulator *regulator_get(struct device *dev, const char *id)
2162{
2163	return _regulator_get(dev, id, NORMAL_GET);
2164}
2165EXPORT_SYMBOL_GPL(regulator_get);
2166
2167/**
2168 * regulator_get_exclusive - obtain exclusive access to a regulator.
2169 * @dev: device for regulator "consumer"
2170 * @id: Supply name or regulator ID.
2171 *
2172 * Returns a struct regulator corresponding to the regulator producer,
2173 * or IS_ERR() condition containing errno.  Other consumers will be
2174 * unable to obtain this regulator while this reference is held and the
2175 * use count for the regulator will be initialised to reflect the current
2176 * state of the regulator.
2177 *
2178 * This is intended for use by consumers which cannot tolerate shared
2179 * use of the regulator such as those which need to force the
2180 * regulator off for correct operation of the hardware they are
2181 * controlling.
2182 *
2183 * Use of supply names configured via set_consumer_device_supply() is
2184 * strongly encouraged.  It is recommended that the supply name used
2185 * should match the name used for the supply and/or the relevant
2186 * device pins in the datasheet.
2187 */
2188struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2189{
2190	return _regulator_get(dev, id, EXCLUSIVE_GET);
2191}
2192EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2193
2194/**
2195 * regulator_get_optional - obtain optional access to a regulator.
2196 * @dev: device for regulator "consumer"
2197 * @id: Supply name or regulator ID.
2198 *
2199 * Returns a struct regulator corresponding to the regulator producer,
2200 * or IS_ERR() condition containing errno.
2201 *
2202 * This is intended for use by consumers for devices which can have
2203 * some supplies unconnected in normal use, such as some MMC devices.
2204 * It can allow the regulator core to provide stub supplies for other
2205 * supplies requested using normal regulator_get() calls without
2206 * disrupting the operation of drivers that can handle absent
2207 * supplies.
2208 *
2209 * Use of supply names configured via set_consumer_device_supply() is
2210 * strongly encouraged.  It is recommended that the supply name used
2211 * should match the name used for the supply and/or the relevant
2212 * device pins in the datasheet.
2213 */
2214struct regulator *regulator_get_optional(struct device *dev, const char *id)
2215{
2216	return _regulator_get(dev, id, OPTIONAL_GET);
2217}
2218EXPORT_SYMBOL_GPL(regulator_get_optional);
2219
2220static void destroy_regulator(struct regulator *regulator)
2221{
2222	struct regulator_dev *rdev = regulator->rdev;
2223
2224	debugfs_remove_recursive(regulator->debugfs);
2225
2226	if (regulator->dev) {
2227		if (regulator->device_link)
2228			device_link_remove(regulator->dev, &rdev->dev);
2229
2230		/* remove any sysfs entries */
2231		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2232	}
2233
2234	regulator_lock(rdev);
2235	list_del(&regulator->list);
2236
2237	rdev->open_count--;
2238	rdev->exclusive = 0;
2239	regulator_unlock(rdev);
2240
2241	kfree_const(regulator->supply_name);
2242	kfree(regulator);
2243}
2244
2245/* regulator_list_mutex lock held by regulator_put() */
2246static void _regulator_put(struct regulator *regulator)
2247{
2248	struct regulator_dev *rdev;
2249
2250	if (IS_ERR_OR_NULL(regulator))
2251		return;
2252
2253	lockdep_assert_held_once(&regulator_list_mutex);
2254
2255	/* Docs say you must disable before calling regulator_put() */
2256	WARN_ON(regulator->enable_count);
2257
2258	rdev = regulator->rdev;
2259
2260	destroy_regulator(regulator);
2261
2262	module_put(rdev->owner);
2263	put_device(&rdev->dev);
2264}
2265
2266/**
2267 * regulator_put - "free" the regulator source
2268 * @regulator: regulator source
2269 *
2270 * Note: drivers must ensure that all regulator_enable calls made on this
2271 * regulator source are balanced by regulator_disable calls prior to calling
2272 * this function.
2273 */
2274void regulator_put(struct regulator *regulator)
2275{
2276	mutex_lock(&regulator_list_mutex);
2277	_regulator_put(regulator);
2278	mutex_unlock(&regulator_list_mutex);
2279}
2280EXPORT_SYMBOL_GPL(regulator_put);
2281
2282/**
2283 * regulator_register_supply_alias - Provide device alias for supply lookup
2284 *
2285 * @dev: device that will be given as the regulator "consumer"
2286 * @id: Supply name or regulator ID
2287 * @alias_dev: device that should be used to lookup the supply
2288 * @alias_id: Supply name or regulator ID that should be used to lookup the
2289 * supply
2290 *
2291 * All lookups for id on dev will instead be conducted for alias_id on
2292 * alias_dev.
2293 */
2294int regulator_register_supply_alias(struct device *dev, const char *id,
2295				    struct device *alias_dev,
2296				    const char *alias_id)
2297{
2298	struct regulator_supply_alias *map;
2299
2300	map = regulator_find_supply_alias(dev, id);
2301	if (map)
2302		return -EEXIST;
2303
2304	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2305	if (!map)
2306		return -ENOMEM;
2307
2308	map->src_dev = dev;
2309	map->src_supply = id;
2310	map->alias_dev = alias_dev;
2311	map->alias_supply = alias_id;
2312
2313	list_add(&map->list, &regulator_supply_alias_list);
2314
2315	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2316		id, dev_name(dev), alias_id, dev_name(alias_dev));
2317
2318	return 0;
2319}
2320EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2321
2322/**
2323 * regulator_unregister_supply_alias - Remove device alias
2324 *
2325 * @dev: device that will be given as the regulator "consumer"
2326 * @id: Supply name or regulator ID
2327 *
2328 * Remove a lookup alias if one exists for id on dev.
2329 */
2330void regulator_unregister_supply_alias(struct device *dev, const char *id)
2331{
2332	struct regulator_supply_alias *map;
2333
2334	map = regulator_find_supply_alias(dev, id);
2335	if (map) {
2336		list_del(&map->list);
2337		kfree(map);
2338	}
2339}
2340EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2341
2342/**
2343 * regulator_bulk_register_supply_alias - register multiple aliases
2344 *
2345 * @dev: device that will be given as the regulator "consumer"
2346 * @id: List of supply names or regulator IDs
2347 * @alias_dev: device that should be used to lookup the supply
2348 * @alias_id: List of supply names or regulator IDs that should be used to
2349 * lookup the supply
2350 * @num_id: Number of aliases to register
2351 *
2352 * @return 0 on success, an errno on failure.
2353 *
2354 * This helper function allows drivers to register several supply
2355 * aliases in one operation.  If any of the aliases cannot be
2356 * registered any aliases that were registered will be removed
2357 * before returning to the caller.
2358 */
2359int regulator_bulk_register_supply_alias(struct device *dev,
2360					 const char *const *id,
2361					 struct device *alias_dev,
2362					 const char *const *alias_id,
2363					 int num_id)
2364{
2365	int i;
2366	int ret;
2367
2368	for (i = 0; i < num_id; ++i) {
2369		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2370						      alias_id[i]);
2371		if (ret < 0)
2372			goto err;
2373	}
2374
2375	return 0;
2376
2377err:
2378	dev_err(dev,
2379		"Failed to create supply alias %s,%s -> %s,%s\n",
2380		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2381
2382	while (--i >= 0)
2383		regulator_unregister_supply_alias(dev, id[i]);
2384
2385	return ret;
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2388
2389/**
2390 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2391 *
2392 * @dev: device that will be given as the regulator "consumer"
2393 * @id: List of supply names or regulator IDs
2394 * @num_id: Number of aliases to unregister
2395 *
2396 * This helper function allows drivers to unregister several supply
2397 * aliases in one operation.
2398 */
2399void regulator_bulk_unregister_supply_alias(struct device *dev,
2400					    const char *const *id,
2401					    int num_id)
2402{
2403	int i;
2404
2405	for (i = 0; i < num_id; ++i)
2406		regulator_unregister_supply_alias(dev, id[i]);
2407}
2408EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2409
2410
2411/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2412static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2413				const struct regulator_config *config)
2414{
2415	struct regulator_enable_gpio *pin, *new_pin;
2416	struct gpio_desc *gpiod;
2417
2418	gpiod = config->ena_gpiod;
2419	new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2420
2421	mutex_lock(&regulator_list_mutex);
2422
2423	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2424		if (pin->gpiod == gpiod) {
2425			rdev_dbg(rdev, "GPIO is already used\n");
2426			goto update_ena_gpio_to_rdev;
2427		}
2428	}
2429
2430	if (new_pin == NULL) {
2431		mutex_unlock(&regulator_list_mutex);
2432		return -ENOMEM;
2433	}
2434
2435	pin = new_pin;
2436	new_pin = NULL;
2437
2438	pin->gpiod = gpiod;
2439	list_add(&pin->list, &regulator_ena_gpio_list);
2440
2441update_ena_gpio_to_rdev:
2442	pin->request_count++;
2443	rdev->ena_pin = pin;
2444
2445	mutex_unlock(&regulator_list_mutex);
2446	kfree(new_pin);
2447
2448	return 0;
2449}
2450
2451static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2452{
2453	struct regulator_enable_gpio *pin, *n;
2454
2455	if (!rdev->ena_pin)
2456		return;
2457
2458	/* Free the GPIO only in case of no use */
2459	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2460		if (pin != rdev->ena_pin)
2461			continue;
2462
2463		if (--pin->request_count)
2464			break;
2465
2466		gpiod_put(pin->gpiod);
2467		list_del(&pin->list);
2468		kfree(pin);
2469		break;
2470	}
2471
2472	rdev->ena_pin = NULL;
2473}
2474
2475/**
2476 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2477 * @rdev: regulator_dev structure
2478 * @enable: enable GPIO at initial use?
2479 *
2480 * GPIO is enabled in case of initial use. (enable_count is 0)
2481 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2482 */
2483static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2484{
2485	struct regulator_enable_gpio *pin = rdev->ena_pin;
2486
2487	if (!pin)
2488		return -EINVAL;
2489
2490	if (enable) {
2491		/* Enable GPIO at initial use */
2492		if (pin->enable_count == 0)
2493			gpiod_set_value_cansleep(pin->gpiod, 1);
2494
2495		pin->enable_count++;
2496	} else {
2497		if (pin->enable_count > 1) {
2498			pin->enable_count--;
2499			return 0;
2500		}
2501
2502		/* Disable GPIO if not used */
2503		if (pin->enable_count <= 1) {
2504			gpiod_set_value_cansleep(pin->gpiod, 0);
2505			pin->enable_count = 0;
2506		}
2507	}
2508
2509	return 0;
2510}
2511
2512/**
2513 * _regulator_enable_delay - a delay helper function
2514 * @delay: time to delay in microseconds
2515 *
2516 * Delay for the requested amount of time as per the guidelines in:
2517 *
2518 *     Documentation/timers/timers-howto.rst
2519 *
2520 * The assumption here is that regulators will never be enabled in
2521 * atomic context and therefore sleeping functions can be used.
2522 */
2523static void _regulator_enable_delay(unsigned int delay)
2524{
2525	unsigned int ms = delay / 1000;
2526	unsigned int us = delay % 1000;
2527
2528	if (ms > 0) {
2529		/*
2530		 * For small enough values, handle super-millisecond
2531		 * delays in the usleep_range() call below.
2532		 */
2533		if (ms < 20)
2534			us += ms * 1000;
2535		else
2536			msleep(ms);
2537	}
2538
2539	/*
2540	 * Give the scheduler some room to coalesce with any other
2541	 * wakeup sources. For delays shorter than 10 us, don't even
2542	 * bother setting up high-resolution timers and just busy-
2543	 * loop.
2544	 */
2545	if (us >= 10)
2546		usleep_range(us, us + 100);
2547	else
2548		udelay(us);
2549}
2550
2551/**
2552 * _regulator_check_status_enabled
2553 *
2554 * A helper function to check if the regulator status can be interpreted
2555 * as 'regulator is enabled'.
2556 * @rdev: the regulator device to check
2557 *
2558 * Return:
2559 * * 1			- if status shows regulator is in enabled state
2560 * * 0			- if not enabled state
2561 * * Error Value	- as received from ops->get_status()
2562 */
2563static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2564{
2565	int ret = rdev->desc->ops->get_status(rdev);
2566
2567	if (ret < 0) {
2568		rdev_info(rdev, "get_status returned error: %d\n", ret);
2569		return ret;
2570	}
2571
2572	switch (ret) {
2573	case REGULATOR_STATUS_OFF:
2574	case REGULATOR_STATUS_ERROR:
2575	case REGULATOR_STATUS_UNDEFINED:
2576		return 0;
2577	default:
2578		return 1;
2579	}
2580}
2581
2582static int _regulator_do_enable(struct regulator_dev *rdev)
2583{
2584	int ret, delay;
2585
2586	/* Query before enabling in case configuration dependent.  */
2587	ret = _regulator_get_enable_time(rdev);
2588	if (ret >= 0) {
2589		delay = ret;
2590	} else {
2591		rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2592		delay = 0;
2593	}
2594
2595	trace_regulator_enable(rdev_get_name(rdev));
2596
2597	if (rdev->desc->off_on_delay && rdev->last_off) {
2598		/* if needed, keep a distance of off_on_delay from last time
2599		 * this regulator was disabled.
2600		 */
2601		ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2602		s64 remaining = ktime_us_delta(end, ktime_get());
 
 
 
2603
2604		if (remaining > 0)
2605			_regulator_enable_delay(remaining);
 
 
 
 
 
 
 
 
 
 
 
2606	}
2607
2608	if (rdev->ena_pin) {
2609		if (!rdev->ena_gpio_state) {
2610			ret = regulator_ena_gpio_ctrl(rdev, true);
2611			if (ret < 0)
2612				return ret;
2613			rdev->ena_gpio_state = 1;
2614		}
2615	} else if (rdev->desc->ops->enable) {
2616		ret = rdev->desc->ops->enable(rdev);
2617		if (ret < 0)
2618			return ret;
2619	} else {
2620		return -EINVAL;
2621	}
2622
2623	/* Allow the regulator to ramp; it would be useful to extend
2624	 * this for bulk operations so that the regulators can ramp
2625	 * together.
2626	 */
2627	trace_regulator_enable_delay(rdev_get_name(rdev));
2628
2629	/* If poll_enabled_time is set, poll upto the delay calculated
2630	 * above, delaying poll_enabled_time uS to check if the regulator
2631	 * actually got enabled.
2632	 * If the regulator isn't enabled after enable_delay has
2633	 * expired, return -ETIMEDOUT.
2634	 */
2635	if (rdev->desc->poll_enabled_time) {
2636		unsigned int time_remaining = delay;
2637
2638		while (time_remaining > 0) {
2639			_regulator_enable_delay(rdev->desc->poll_enabled_time);
2640
2641			if (rdev->desc->ops->get_status) {
2642				ret = _regulator_check_status_enabled(rdev);
2643				if (ret < 0)
2644					return ret;
2645				else if (ret)
2646					break;
2647			} else if (rdev->desc->ops->is_enabled(rdev))
2648				break;
2649
2650			time_remaining -= rdev->desc->poll_enabled_time;
2651		}
2652
2653		if (time_remaining <= 0) {
2654			rdev_err(rdev, "Enabled check timed out\n");
2655			return -ETIMEDOUT;
2656		}
2657	} else {
2658		_regulator_enable_delay(delay);
2659	}
2660
2661	trace_regulator_enable_complete(rdev_get_name(rdev));
2662
2663	return 0;
2664}
2665
2666/**
2667 * _regulator_handle_consumer_enable - handle that a consumer enabled
2668 * @regulator: regulator source
2669 *
2670 * Some things on a regulator consumer (like the contribution towards total
2671 * load on the regulator) only have an effect when the consumer wants the
2672 * regulator enabled.  Explained in example with two consumers of the same
2673 * regulator:
2674 *   consumer A: set_load(100);       => total load = 0
2675 *   consumer A: regulator_enable();  => total load = 100
2676 *   consumer B: set_load(1000);      => total load = 100
2677 *   consumer B: regulator_enable();  => total load = 1100
2678 *   consumer A: regulator_disable(); => total_load = 1000
2679 *
2680 * This function (together with _regulator_handle_consumer_disable) is
2681 * responsible for keeping track of the refcount for a given regulator consumer
2682 * and applying / unapplying these things.
2683 *
2684 * Returns 0 upon no error; -error upon error.
2685 */
2686static int _regulator_handle_consumer_enable(struct regulator *regulator)
2687{
2688	struct regulator_dev *rdev = regulator->rdev;
2689
2690	lockdep_assert_held_once(&rdev->mutex.base);
2691
2692	regulator->enable_count++;
2693	if (regulator->uA_load && regulator->enable_count == 1)
2694		return drms_uA_update(rdev);
2695
2696	return 0;
2697}
2698
2699/**
2700 * _regulator_handle_consumer_disable - handle that a consumer disabled
2701 * @regulator: regulator source
2702 *
2703 * The opposite of _regulator_handle_consumer_enable().
2704 *
2705 * Returns 0 upon no error; -error upon error.
2706 */
2707static int _regulator_handle_consumer_disable(struct regulator *regulator)
2708{
2709	struct regulator_dev *rdev = regulator->rdev;
2710
2711	lockdep_assert_held_once(&rdev->mutex.base);
2712
2713	if (!regulator->enable_count) {
2714		rdev_err(rdev, "Underflow of regulator enable count\n");
2715		return -EINVAL;
2716	}
2717
2718	regulator->enable_count--;
2719	if (regulator->uA_load && regulator->enable_count == 0)
2720		return drms_uA_update(rdev);
2721
2722	return 0;
2723}
2724
2725/* locks held by regulator_enable() */
2726static int _regulator_enable(struct regulator *regulator)
2727{
2728	struct regulator_dev *rdev = regulator->rdev;
2729	int ret;
2730
2731	lockdep_assert_held_once(&rdev->mutex.base);
2732
2733	if (rdev->use_count == 0 && rdev->supply) {
2734		ret = _regulator_enable(rdev->supply);
2735		if (ret < 0)
2736			return ret;
2737	}
2738
2739	/* balance only if there are regulators coupled */
2740	if (rdev->coupling_desc.n_coupled > 1) {
2741		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2742		if (ret < 0)
2743			goto err_disable_supply;
2744	}
2745
2746	ret = _regulator_handle_consumer_enable(regulator);
2747	if (ret < 0)
2748		goto err_disable_supply;
2749
2750	if (rdev->use_count == 0) {
2751		/*
2752		 * The regulator may already be enabled if it's not switchable
2753		 * or was left on
2754		 */
2755		ret = _regulator_is_enabled(rdev);
2756		if (ret == -EINVAL || ret == 0) {
2757			if (!regulator_ops_is_valid(rdev,
2758					REGULATOR_CHANGE_STATUS)) {
2759				ret = -EPERM;
2760				goto err_consumer_disable;
2761			}
2762
2763			ret = _regulator_do_enable(rdev);
2764			if (ret < 0)
2765				goto err_consumer_disable;
2766
2767			_notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2768					     NULL);
2769		} else if (ret < 0) {
2770			rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2771			goto err_consumer_disable;
2772		}
2773		/* Fallthrough on positive return values - already enabled */
2774	}
2775
2776	rdev->use_count++;
2777
2778	return 0;
2779
2780err_consumer_disable:
2781	_regulator_handle_consumer_disable(regulator);
2782
2783err_disable_supply:
2784	if (rdev->use_count == 0 && rdev->supply)
2785		_regulator_disable(rdev->supply);
2786
2787	return ret;
2788}
2789
2790/**
2791 * regulator_enable - enable regulator output
2792 * @regulator: regulator source
2793 *
2794 * Request that the regulator be enabled with the regulator output at
2795 * the predefined voltage or current value.  Calls to regulator_enable()
2796 * must be balanced with calls to regulator_disable().
2797 *
2798 * NOTE: the output value can be set by other drivers, boot loader or may be
2799 * hardwired in the regulator.
2800 */
2801int regulator_enable(struct regulator *regulator)
2802{
2803	struct regulator_dev *rdev = regulator->rdev;
2804	struct ww_acquire_ctx ww_ctx;
2805	int ret;
2806
2807	regulator_lock_dependent(rdev, &ww_ctx);
2808	ret = _regulator_enable(regulator);
2809	regulator_unlock_dependent(rdev, &ww_ctx);
2810
2811	return ret;
2812}
2813EXPORT_SYMBOL_GPL(regulator_enable);
2814
2815static int _regulator_do_disable(struct regulator_dev *rdev)
2816{
2817	int ret;
2818
2819	trace_regulator_disable(rdev_get_name(rdev));
2820
2821	if (rdev->ena_pin) {
2822		if (rdev->ena_gpio_state) {
2823			ret = regulator_ena_gpio_ctrl(rdev, false);
2824			if (ret < 0)
2825				return ret;
2826			rdev->ena_gpio_state = 0;
2827		}
2828
2829	} else if (rdev->desc->ops->disable) {
2830		ret = rdev->desc->ops->disable(rdev);
2831		if (ret != 0)
2832			return ret;
2833	}
2834
 
 
 
2835	if (rdev->desc->off_on_delay)
2836		rdev->last_off = ktime_get();
2837
2838	trace_regulator_disable_complete(rdev_get_name(rdev));
2839
2840	return 0;
2841}
2842
2843/* locks held by regulator_disable() */
2844static int _regulator_disable(struct regulator *regulator)
2845{
2846	struct regulator_dev *rdev = regulator->rdev;
2847	int ret = 0;
2848
2849	lockdep_assert_held_once(&rdev->mutex.base);
2850
2851	if (WARN(rdev->use_count <= 0,
2852		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2853		return -EIO;
2854
2855	/* are we the last user and permitted to disable ? */
2856	if (rdev->use_count == 1 &&
2857	    (rdev->constraints && !rdev->constraints->always_on)) {
2858
2859		/* we are last user */
2860		if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2861			ret = _notifier_call_chain(rdev,
2862						   REGULATOR_EVENT_PRE_DISABLE,
2863						   NULL);
2864			if (ret & NOTIFY_STOP_MASK)
2865				return -EINVAL;
2866
2867			ret = _regulator_do_disable(rdev);
2868			if (ret < 0) {
2869				rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2870				_notifier_call_chain(rdev,
2871						REGULATOR_EVENT_ABORT_DISABLE,
2872						NULL);
2873				return ret;
2874			}
2875			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2876					NULL);
2877		}
2878
2879		rdev->use_count = 0;
2880	} else if (rdev->use_count > 1) {
2881		rdev->use_count--;
2882	}
2883
2884	if (ret == 0)
2885		ret = _regulator_handle_consumer_disable(regulator);
2886
2887	if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2888		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889
2890	if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2891		ret = _regulator_disable(rdev->supply);
2892
2893	return ret;
2894}
2895
2896/**
2897 * regulator_disable - disable regulator output
2898 * @regulator: regulator source
2899 *
2900 * Disable the regulator output voltage or current.  Calls to
2901 * regulator_enable() must be balanced with calls to
2902 * regulator_disable().
2903 *
2904 * NOTE: this will only disable the regulator output if no other consumer
2905 * devices have it enabled, the regulator device supports disabling and
2906 * machine constraints permit this operation.
2907 */
2908int regulator_disable(struct regulator *regulator)
2909{
2910	struct regulator_dev *rdev = regulator->rdev;
2911	struct ww_acquire_ctx ww_ctx;
2912	int ret;
2913
2914	regulator_lock_dependent(rdev, &ww_ctx);
2915	ret = _regulator_disable(regulator);
2916	regulator_unlock_dependent(rdev, &ww_ctx);
2917
2918	return ret;
2919}
2920EXPORT_SYMBOL_GPL(regulator_disable);
2921
2922/* locks held by regulator_force_disable() */
2923static int _regulator_force_disable(struct regulator_dev *rdev)
2924{
2925	int ret = 0;
2926
2927	lockdep_assert_held_once(&rdev->mutex.base);
2928
2929	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2930			REGULATOR_EVENT_PRE_DISABLE, NULL);
2931	if (ret & NOTIFY_STOP_MASK)
2932		return -EINVAL;
2933
2934	ret = _regulator_do_disable(rdev);
2935	if (ret < 0) {
2936		rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2937		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2938				REGULATOR_EVENT_ABORT_DISABLE, NULL);
2939		return ret;
2940	}
2941
2942	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2943			REGULATOR_EVENT_DISABLE, NULL);
2944
2945	return 0;
2946}
2947
2948/**
2949 * regulator_force_disable - force disable regulator output
2950 * @regulator: regulator source
2951 *
2952 * Forcibly disable the regulator output voltage or current.
2953 * NOTE: this *will* disable the regulator output even if other consumer
2954 * devices have it enabled. This should be used for situations when device
2955 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2956 */
2957int regulator_force_disable(struct regulator *regulator)
2958{
2959	struct regulator_dev *rdev = regulator->rdev;
2960	struct ww_acquire_ctx ww_ctx;
2961	int ret;
2962
2963	regulator_lock_dependent(rdev, &ww_ctx);
2964
2965	ret = _regulator_force_disable(regulator->rdev);
2966
2967	if (rdev->coupling_desc.n_coupled > 1)
2968		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2969
2970	if (regulator->uA_load) {
2971		regulator->uA_load = 0;
2972		ret = drms_uA_update(rdev);
2973	}
2974
2975	if (rdev->use_count != 0 && rdev->supply)
2976		_regulator_disable(rdev->supply);
2977
2978	regulator_unlock_dependent(rdev, &ww_ctx);
2979
2980	return ret;
2981}
2982EXPORT_SYMBOL_GPL(regulator_force_disable);
2983
2984static void regulator_disable_work(struct work_struct *work)
2985{
2986	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2987						  disable_work.work);
2988	struct ww_acquire_ctx ww_ctx;
2989	int count, i, ret;
2990	struct regulator *regulator;
2991	int total_count = 0;
2992
2993	regulator_lock_dependent(rdev, &ww_ctx);
2994
2995	/*
2996	 * Workqueue functions queue the new work instance while the previous
2997	 * work instance is being processed. Cancel the queued work instance
2998	 * as the work instance under processing does the job of the queued
2999	 * work instance.
3000	 */
3001	cancel_delayed_work(&rdev->disable_work);
3002
3003	list_for_each_entry(regulator, &rdev->consumer_list, list) {
3004		count = regulator->deferred_disables;
3005
3006		if (!count)
3007			continue;
3008
3009		total_count += count;
3010		regulator->deferred_disables = 0;
3011
3012		for (i = 0; i < count; i++) {
3013			ret = _regulator_disable(regulator);
3014			if (ret != 0)
3015				rdev_err(rdev, "Deferred disable failed: %pe\n",
3016					 ERR_PTR(ret));
3017		}
3018	}
3019	WARN_ON(!total_count);
3020
3021	if (rdev->coupling_desc.n_coupled > 1)
3022		regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3023
3024	regulator_unlock_dependent(rdev, &ww_ctx);
3025}
3026
3027/**
3028 * regulator_disable_deferred - disable regulator output with delay
3029 * @regulator: regulator source
3030 * @ms: milliseconds until the regulator is disabled
3031 *
3032 * Execute regulator_disable() on the regulator after a delay.  This
3033 * is intended for use with devices that require some time to quiesce.
3034 *
3035 * NOTE: this will only disable the regulator output if no other consumer
3036 * devices have it enabled, the regulator device supports disabling and
3037 * machine constraints permit this operation.
3038 */
3039int regulator_disable_deferred(struct regulator *regulator, int ms)
3040{
3041	struct regulator_dev *rdev = regulator->rdev;
3042
3043	if (!ms)
3044		return regulator_disable(regulator);
3045
3046	regulator_lock(rdev);
3047	regulator->deferred_disables++;
3048	mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3049			 msecs_to_jiffies(ms));
3050	regulator_unlock(rdev);
3051
3052	return 0;
3053}
3054EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3055
3056static int _regulator_is_enabled(struct regulator_dev *rdev)
3057{
3058	/* A GPIO control always takes precedence */
3059	if (rdev->ena_pin)
3060		return rdev->ena_gpio_state;
3061
3062	/* If we don't know then assume that the regulator is always on */
3063	if (!rdev->desc->ops->is_enabled)
3064		return 1;
3065
3066	return rdev->desc->ops->is_enabled(rdev);
3067}
3068
3069static int _regulator_list_voltage(struct regulator_dev *rdev,
3070				   unsigned selector, int lock)
3071{
3072	const struct regulator_ops *ops = rdev->desc->ops;
3073	int ret;
3074
3075	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3076		return rdev->desc->fixed_uV;
3077
3078	if (ops->list_voltage) {
3079		if (selector >= rdev->desc->n_voltages)
3080			return -EINVAL;
3081		if (selector < rdev->desc->linear_min_sel)
3082			return 0;
3083		if (lock)
3084			regulator_lock(rdev);
3085		ret = ops->list_voltage(rdev, selector);
3086		if (lock)
3087			regulator_unlock(rdev);
3088	} else if (rdev->is_switch && rdev->supply) {
3089		ret = _regulator_list_voltage(rdev->supply->rdev,
3090					      selector, lock);
3091	} else {
3092		return -EINVAL;
3093	}
3094
3095	if (ret > 0) {
3096		if (ret < rdev->constraints->min_uV)
3097			ret = 0;
3098		else if (ret > rdev->constraints->max_uV)
3099			ret = 0;
3100	}
3101
3102	return ret;
3103}
3104
3105/**
3106 * regulator_is_enabled - is the regulator output enabled
3107 * @regulator: regulator source
3108 *
3109 * Returns positive if the regulator driver backing the source/client
3110 * has requested that the device be enabled, zero if it hasn't, else a
3111 * negative errno code.
3112 *
3113 * Note that the device backing this regulator handle can have multiple
3114 * users, so it might be enabled even if regulator_enable() was never
3115 * called for this particular source.
3116 */
3117int regulator_is_enabled(struct regulator *regulator)
3118{
3119	int ret;
3120
3121	if (regulator->always_on)
3122		return 1;
3123
3124	regulator_lock(regulator->rdev);
3125	ret = _regulator_is_enabled(regulator->rdev);
3126	regulator_unlock(regulator->rdev);
3127
3128	return ret;
3129}
3130EXPORT_SYMBOL_GPL(regulator_is_enabled);
3131
3132/**
3133 * regulator_count_voltages - count regulator_list_voltage() selectors
3134 * @regulator: regulator source
3135 *
3136 * Returns number of selectors, or negative errno.  Selectors are
3137 * numbered starting at zero, and typically correspond to bitfields
3138 * in hardware registers.
3139 */
3140int regulator_count_voltages(struct regulator *regulator)
3141{
3142	struct regulator_dev	*rdev = regulator->rdev;
3143
3144	if (rdev->desc->n_voltages)
3145		return rdev->desc->n_voltages;
3146
3147	if (!rdev->is_switch || !rdev->supply)
3148		return -EINVAL;
3149
3150	return regulator_count_voltages(rdev->supply);
3151}
3152EXPORT_SYMBOL_GPL(regulator_count_voltages);
3153
3154/**
3155 * regulator_list_voltage - enumerate supported voltages
3156 * @regulator: regulator source
3157 * @selector: identify voltage to list
3158 * Context: can sleep
3159 *
3160 * Returns a voltage that can be passed to @regulator_set_voltage(),
3161 * zero if this selector code can't be used on this system, or a
3162 * negative errno.
3163 */
3164int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3165{
3166	return _regulator_list_voltage(regulator->rdev, selector, 1);
3167}
3168EXPORT_SYMBOL_GPL(regulator_list_voltage);
3169
3170/**
3171 * regulator_get_regmap - get the regulator's register map
3172 * @regulator: regulator source
3173 *
3174 * Returns the register map for the given regulator, or an ERR_PTR value
3175 * if the regulator doesn't use regmap.
3176 */
3177struct regmap *regulator_get_regmap(struct regulator *regulator)
3178{
3179	struct regmap *map = regulator->rdev->regmap;
3180
3181	return map ? map : ERR_PTR(-EOPNOTSUPP);
3182}
3183
3184/**
3185 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3186 * @regulator: regulator source
3187 * @vsel_reg: voltage selector register, output parameter
3188 * @vsel_mask: mask for voltage selector bitfield, output parameter
3189 *
3190 * Returns the hardware register offset and bitmask used for setting the
3191 * regulator voltage. This might be useful when configuring voltage-scaling
3192 * hardware or firmware that can make I2C requests behind the kernel's back,
3193 * for example.
3194 *
3195 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3196 * and 0 is returned, otherwise a negative errno is returned.
3197 */
3198int regulator_get_hardware_vsel_register(struct regulator *regulator,
3199					 unsigned *vsel_reg,
3200					 unsigned *vsel_mask)
3201{
3202	struct regulator_dev *rdev = regulator->rdev;
3203	const struct regulator_ops *ops = rdev->desc->ops;
3204
3205	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3206		return -EOPNOTSUPP;
3207
3208	*vsel_reg = rdev->desc->vsel_reg;
3209	*vsel_mask = rdev->desc->vsel_mask;
3210
3211	return 0;
3212}
3213EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3214
3215/**
3216 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3217 * @regulator: regulator source
3218 * @selector: identify voltage to list
3219 *
3220 * Converts the selector to a hardware-specific voltage selector that can be
3221 * directly written to the regulator registers. The address of the voltage
3222 * register can be determined by calling @regulator_get_hardware_vsel_register.
3223 *
3224 * On error a negative errno is returned.
3225 */
3226int regulator_list_hardware_vsel(struct regulator *regulator,
3227				 unsigned selector)
3228{
3229	struct regulator_dev *rdev = regulator->rdev;
3230	const struct regulator_ops *ops = rdev->desc->ops;
3231
3232	if (selector >= rdev->desc->n_voltages)
3233		return -EINVAL;
3234	if (selector < rdev->desc->linear_min_sel)
3235		return 0;
3236	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3237		return -EOPNOTSUPP;
3238
3239	return selector;
3240}
3241EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3242
3243/**
3244 * regulator_get_linear_step - return the voltage step size between VSEL values
3245 * @regulator: regulator source
3246 *
3247 * Returns the voltage step size between VSEL values for linear
3248 * regulators, or return 0 if the regulator isn't a linear regulator.
3249 */
3250unsigned int regulator_get_linear_step(struct regulator *regulator)
3251{
3252	struct regulator_dev *rdev = regulator->rdev;
3253
3254	return rdev->desc->uV_step;
3255}
3256EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3257
3258/**
3259 * regulator_is_supported_voltage - check if a voltage range can be supported
3260 *
3261 * @regulator: Regulator to check.
3262 * @min_uV: Minimum required voltage in uV.
3263 * @max_uV: Maximum required voltage in uV.
3264 *
3265 * Returns a boolean.
3266 */
3267int regulator_is_supported_voltage(struct regulator *regulator,
3268				   int min_uV, int max_uV)
3269{
3270	struct regulator_dev *rdev = regulator->rdev;
3271	int i, voltages, ret;
3272
3273	/* If we can't change voltage check the current voltage */
3274	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3275		ret = regulator_get_voltage(regulator);
3276		if (ret >= 0)
3277			return min_uV <= ret && ret <= max_uV;
3278		else
3279			return ret;
3280	}
3281
3282	/* Any voltage within constrains range is fine? */
3283	if (rdev->desc->continuous_voltage_range)
3284		return min_uV >= rdev->constraints->min_uV &&
3285				max_uV <= rdev->constraints->max_uV;
3286
3287	ret = regulator_count_voltages(regulator);
3288	if (ret < 0)
3289		return 0;
3290	voltages = ret;
3291
3292	for (i = 0; i < voltages; i++) {
3293		ret = regulator_list_voltage(regulator, i);
3294
3295		if (ret >= min_uV && ret <= max_uV)
3296			return 1;
3297	}
3298
3299	return 0;
3300}
3301EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3302
3303static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3304				 int max_uV)
3305{
3306	const struct regulator_desc *desc = rdev->desc;
3307
3308	if (desc->ops->map_voltage)
3309		return desc->ops->map_voltage(rdev, min_uV, max_uV);
3310
3311	if (desc->ops->list_voltage == regulator_list_voltage_linear)
3312		return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3313
3314	if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3315		return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3316
3317	if (desc->ops->list_voltage ==
3318		regulator_list_voltage_pickable_linear_range)
3319		return regulator_map_voltage_pickable_linear_range(rdev,
3320							min_uV, max_uV);
3321
3322	return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3323}
3324
3325static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3326				       int min_uV, int max_uV,
3327				       unsigned *selector)
3328{
3329	struct pre_voltage_change_data data;
3330	int ret;
3331
3332	data.old_uV = regulator_get_voltage_rdev(rdev);
3333	data.min_uV = min_uV;
3334	data.max_uV = max_uV;
3335	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3336				   &data);
3337	if (ret & NOTIFY_STOP_MASK)
3338		return -EINVAL;
3339
3340	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3341	if (ret >= 0)
3342		return ret;
3343
3344	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3345			     (void *)data.old_uV);
3346
3347	return ret;
3348}
3349
3350static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3351					   int uV, unsigned selector)
3352{
3353	struct pre_voltage_change_data data;
3354	int ret;
3355
3356	data.old_uV = regulator_get_voltage_rdev(rdev);
3357	data.min_uV = uV;
3358	data.max_uV = uV;
3359	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3360				   &data);
3361	if (ret & NOTIFY_STOP_MASK)
3362		return -EINVAL;
3363
3364	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3365	if (ret >= 0)
3366		return ret;
3367
3368	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3369			     (void *)data.old_uV);
3370
3371	return ret;
3372}
3373
3374static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3375					   int uV, int new_selector)
3376{
3377	const struct regulator_ops *ops = rdev->desc->ops;
3378	int diff, old_sel, curr_sel, ret;
3379
3380	/* Stepping is only needed if the regulator is enabled. */
3381	if (!_regulator_is_enabled(rdev))
3382		goto final_set;
3383
3384	if (!ops->get_voltage_sel)
3385		return -EINVAL;
3386
3387	old_sel = ops->get_voltage_sel(rdev);
3388	if (old_sel < 0)
3389		return old_sel;
3390
3391	diff = new_selector - old_sel;
3392	if (diff == 0)
3393		return 0; /* No change needed. */
3394
3395	if (diff > 0) {
3396		/* Stepping up. */
3397		for (curr_sel = old_sel + rdev->desc->vsel_step;
3398		     curr_sel < new_selector;
3399		     curr_sel += rdev->desc->vsel_step) {
3400			/*
3401			 * Call the callback directly instead of using
3402			 * _regulator_call_set_voltage_sel() as we don't
3403			 * want to notify anyone yet. Same in the branch
3404			 * below.
3405			 */
3406			ret = ops->set_voltage_sel(rdev, curr_sel);
3407			if (ret)
3408				goto try_revert;
3409		}
3410	} else {
3411		/* Stepping down. */
3412		for (curr_sel = old_sel - rdev->desc->vsel_step;
3413		     curr_sel > new_selector;
3414		     curr_sel -= rdev->desc->vsel_step) {
3415			ret = ops->set_voltage_sel(rdev, curr_sel);
3416			if (ret)
3417				goto try_revert;
3418		}
3419	}
3420
3421final_set:
3422	/* The final selector will trigger the notifiers. */
3423	return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3424
3425try_revert:
3426	/*
3427	 * At least try to return to the previous voltage if setting a new
3428	 * one failed.
3429	 */
3430	(void)ops->set_voltage_sel(rdev, old_sel);
3431	return ret;
3432}
3433
3434static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3435				       int old_uV, int new_uV)
3436{
3437	unsigned int ramp_delay = 0;
3438
3439	if (rdev->constraints->ramp_delay)
3440		ramp_delay = rdev->constraints->ramp_delay;
3441	else if (rdev->desc->ramp_delay)
3442		ramp_delay = rdev->desc->ramp_delay;
3443	else if (rdev->constraints->settling_time)
3444		return rdev->constraints->settling_time;
3445	else if (rdev->constraints->settling_time_up &&
3446		 (new_uV > old_uV))
3447		return rdev->constraints->settling_time_up;
3448	else if (rdev->constraints->settling_time_down &&
3449		 (new_uV < old_uV))
3450		return rdev->constraints->settling_time_down;
3451
3452	if (ramp_delay == 0) {
3453		rdev_dbg(rdev, "ramp_delay not set\n");
3454		return 0;
3455	}
3456
3457	return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3458}
3459
3460static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3461				     int min_uV, int max_uV)
3462{
3463	int ret;
3464	int delay = 0;
3465	int best_val = 0;
3466	unsigned int selector;
3467	int old_selector = -1;
3468	const struct regulator_ops *ops = rdev->desc->ops;
3469	int old_uV = regulator_get_voltage_rdev(rdev);
3470
3471	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3472
3473	min_uV += rdev->constraints->uV_offset;
3474	max_uV += rdev->constraints->uV_offset;
3475
3476	/*
3477	 * If we can't obtain the old selector there is not enough
3478	 * info to call set_voltage_time_sel().
3479	 */
3480	if (_regulator_is_enabled(rdev) &&
3481	    ops->set_voltage_time_sel && ops->get_voltage_sel) {
3482		old_selector = ops->get_voltage_sel(rdev);
3483		if (old_selector < 0)
3484			return old_selector;
3485	}
3486
3487	if (ops->set_voltage) {
3488		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3489						  &selector);
3490
3491		if (ret >= 0) {
3492			if (ops->list_voltage)
3493				best_val = ops->list_voltage(rdev,
3494							     selector);
3495			else
3496				best_val = regulator_get_voltage_rdev(rdev);
3497		}
3498
3499	} else if (ops->set_voltage_sel) {
3500		ret = regulator_map_voltage(rdev, min_uV, max_uV);
3501		if (ret >= 0) {
3502			best_val = ops->list_voltage(rdev, ret);
3503			if (min_uV <= best_val && max_uV >= best_val) {
3504				selector = ret;
3505				if (old_selector == selector)
3506					ret = 0;
3507				else if (rdev->desc->vsel_step)
3508					ret = _regulator_set_voltage_sel_step(
3509						rdev, best_val, selector);
3510				else
3511					ret = _regulator_call_set_voltage_sel(
3512						rdev, best_val, selector);
3513			} else {
3514				ret = -EINVAL;
3515			}
3516		}
3517	} else {
3518		ret = -EINVAL;
3519	}
3520
3521	if (ret)
3522		goto out;
3523
3524	if (ops->set_voltage_time_sel) {
3525		/*
3526		 * Call set_voltage_time_sel if successfully obtained
3527		 * old_selector
3528		 */
3529		if (old_selector >= 0 && old_selector != selector)
3530			delay = ops->set_voltage_time_sel(rdev, old_selector,
3531							  selector);
3532	} else {
3533		if (old_uV != best_val) {
3534			if (ops->set_voltage_time)
3535				delay = ops->set_voltage_time(rdev, old_uV,
3536							      best_val);
3537			else
3538				delay = _regulator_set_voltage_time(rdev,
3539								    old_uV,
3540								    best_val);
3541		}
3542	}
3543
3544	if (delay < 0) {
3545		rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3546		delay = 0;
3547	}
3548
3549	/* Insert any necessary delays */
3550	if (delay >= 1000) {
3551		mdelay(delay / 1000);
3552		udelay(delay % 1000);
3553	} else if (delay) {
3554		udelay(delay);
3555	}
3556
3557	if (best_val >= 0) {
3558		unsigned long data = best_val;
3559
3560		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3561				     (void *)data);
3562	}
3563
3564out:
3565	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3566
3567	return ret;
3568}
3569
3570static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3571				  int min_uV, int max_uV, suspend_state_t state)
3572{
3573	struct regulator_state *rstate;
3574	int uV, sel;
3575
3576	rstate = regulator_get_suspend_state(rdev, state);
3577	if (rstate == NULL)
3578		return -EINVAL;
3579
3580	if (min_uV < rstate->min_uV)
3581		min_uV = rstate->min_uV;
3582	if (max_uV > rstate->max_uV)
3583		max_uV = rstate->max_uV;
3584
3585	sel = regulator_map_voltage(rdev, min_uV, max_uV);
3586	if (sel < 0)
3587		return sel;
3588
3589	uV = rdev->desc->ops->list_voltage(rdev, sel);
3590	if (uV >= min_uV && uV <= max_uV)
3591		rstate->uV = uV;
3592
3593	return 0;
3594}
3595
3596static int regulator_set_voltage_unlocked(struct regulator *regulator,
3597					  int min_uV, int max_uV,
3598					  suspend_state_t state)
3599{
3600	struct regulator_dev *rdev = regulator->rdev;
3601	struct regulator_voltage *voltage = &regulator->voltage[state];
3602	int ret = 0;
3603	int old_min_uV, old_max_uV;
3604	int current_uV;
3605
3606	/* If we're setting the same range as last time the change
3607	 * should be a noop (some cpufreq implementations use the same
3608	 * voltage for multiple frequencies, for example).
3609	 */
3610	if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3611		goto out;
3612
3613	/* If we're trying to set a range that overlaps the current voltage,
3614	 * return successfully even though the regulator does not support
3615	 * changing the voltage.
3616	 */
3617	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3618		current_uV = regulator_get_voltage_rdev(rdev);
3619		if (min_uV <= current_uV && current_uV <= max_uV) {
3620			voltage->min_uV = min_uV;
3621			voltage->max_uV = max_uV;
3622			goto out;
3623		}
3624	}
3625
3626	/* sanity check */
3627	if (!rdev->desc->ops->set_voltage &&
3628	    !rdev->desc->ops->set_voltage_sel) {
3629		ret = -EINVAL;
3630		goto out;
3631	}
3632
3633	/* constraints check */
3634	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3635	if (ret < 0)
3636		goto out;
3637
3638	/* restore original values in case of error */
3639	old_min_uV = voltage->min_uV;
3640	old_max_uV = voltage->max_uV;
3641	voltage->min_uV = min_uV;
3642	voltage->max_uV = max_uV;
3643
3644	/* for not coupled regulators this will just set the voltage */
3645	ret = regulator_balance_voltage(rdev, state);
3646	if (ret < 0) {
3647		voltage->min_uV = old_min_uV;
3648		voltage->max_uV = old_max_uV;
3649	}
3650
3651out:
3652	return ret;
3653}
3654
3655int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3656			       int max_uV, suspend_state_t state)
3657{
3658	int best_supply_uV = 0;
3659	int supply_change_uV = 0;
3660	int ret;
3661
3662	if (rdev->supply &&
3663	    regulator_ops_is_valid(rdev->supply->rdev,
3664				   REGULATOR_CHANGE_VOLTAGE) &&
3665	    (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3666					   rdev->desc->ops->get_voltage_sel))) {
3667		int current_supply_uV;
3668		int selector;
3669
3670		selector = regulator_map_voltage(rdev, min_uV, max_uV);
3671		if (selector < 0) {
3672			ret = selector;
3673			goto out;
3674		}
3675
3676		best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3677		if (best_supply_uV < 0) {
3678			ret = best_supply_uV;
3679			goto out;
3680		}
3681
3682		best_supply_uV += rdev->desc->min_dropout_uV;
3683
3684		current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3685		if (current_supply_uV < 0) {
3686			ret = current_supply_uV;
3687			goto out;
3688		}
3689
3690		supply_change_uV = best_supply_uV - current_supply_uV;
3691	}
3692
3693	if (supply_change_uV > 0) {
3694		ret = regulator_set_voltage_unlocked(rdev->supply,
3695				best_supply_uV, INT_MAX, state);
3696		if (ret) {
3697			dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3698				ERR_PTR(ret));
3699			goto out;
3700		}
3701	}
3702
3703	if (state == PM_SUSPEND_ON)
3704		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3705	else
3706		ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3707							max_uV, state);
3708	if (ret < 0)
3709		goto out;
3710
3711	if (supply_change_uV < 0) {
3712		ret = regulator_set_voltage_unlocked(rdev->supply,
3713				best_supply_uV, INT_MAX, state);
3714		if (ret)
3715			dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3716				 ERR_PTR(ret));
3717		/* No need to fail here */
3718		ret = 0;
3719	}
3720
3721out:
3722	return ret;
3723}
3724EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3725
3726static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3727					int *current_uV, int *min_uV)
3728{
3729	struct regulation_constraints *constraints = rdev->constraints;
3730
3731	/* Limit voltage change only if necessary */
3732	if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3733		return 1;
3734
3735	if (*current_uV < 0) {
3736		*current_uV = regulator_get_voltage_rdev(rdev);
3737
3738		if (*current_uV < 0)
3739			return *current_uV;
3740	}
3741
3742	if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3743		return 1;
3744
3745	/* Clamp target voltage within the given step */
3746	if (*current_uV < *min_uV)
3747		*min_uV = min(*current_uV + constraints->max_uV_step,
3748			      *min_uV);
3749	else
3750		*min_uV = max(*current_uV - constraints->max_uV_step,
3751			      *min_uV);
3752
3753	return 0;
3754}
3755
3756static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3757					 int *current_uV,
3758					 int *min_uV, int *max_uV,
3759					 suspend_state_t state,
3760					 int n_coupled)
3761{
3762	struct coupling_desc *c_desc = &rdev->coupling_desc;
3763	struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3764	struct regulation_constraints *constraints = rdev->constraints;
3765	int desired_min_uV = 0, desired_max_uV = INT_MAX;
3766	int max_current_uV = 0, min_current_uV = INT_MAX;
3767	int highest_min_uV = 0, target_uV, possible_uV;
3768	int i, ret, max_spread;
3769	bool done;
3770
3771	*current_uV = -1;
3772
3773	/*
3774	 * If there are no coupled regulators, simply set the voltage
3775	 * demanded by consumers.
3776	 */
3777	if (n_coupled == 1) {
3778		/*
3779		 * If consumers don't provide any demands, set voltage
3780		 * to min_uV
3781		 */
3782		desired_min_uV = constraints->min_uV;
3783		desired_max_uV = constraints->max_uV;
3784
3785		ret = regulator_check_consumers(rdev,
3786						&desired_min_uV,
3787						&desired_max_uV, state);
3788		if (ret < 0)
3789			return ret;
3790
3791		possible_uV = desired_min_uV;
3792		done = true;
3793
3794		goto finish;
3795	}
3796
3797	/* Find highest min desired voltage */
3798	for (i = 0; i < n_coupled; i++) {
3799		int tmp_min = 0;
3800		int tmp_max = INT_MAX;
3801
3802		lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3803
3804		ret = regulator_check_consumers(c_rdevs[i],
3805						&tmp_min,
3806						&tmp_max, state);
3807		if (ret < 0)
3808			return ret;
3809
3810		ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3811		if (ret < 0)
3812			return ret;
3813
3814		highest_min_uV = max(highest_min_uV, tmp_min);
3815
3816		if (i == 0) {
3817			desired_min_uV = tmp_min;
3818			desired_max_uV = tmp_max;
3819		}
3820	}
3821
3822	max_spread = constraints->max_spread[0];
3823
3824	/*
3825	 * Let target_uV be equal to the desired one if possible.
3826	 * If not, set it to minimum voltage, allowed by other coupled
3827	 * regulators.
3828	 */
3829	target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3830
3831	/*
3832	 * Find min and max voltages, which currently aren't violating
3833	 * max_spread.
3834	 */
3835	for (i = 1; i < n_coupled; i++) {
3836		int tmp_act;
3837
3838		if (!_regulator_is_enabled(c_rdevs[i]))
3839			continue;
3840
3841		tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3842		if (tmp_act < 0)
3843			return tmp_act;
3844
3845		min_current_uV = min(tmp_act, min_current_uV);
3846		max_current_uV = max(tmp_act, max_current_uV);
3847	}
3848
3849	/* There aren't any other regulators enabled */
3850	if (max_current_uV == 0) {
3851		possible_uV = target_uV;
3852	} else {
3853		/*
3854		 * Correct target voltage, so as it currently isn't
3855		 * violating max_spread
3856		 */
3857		possible_uV = max(target_uV, max_current_uV - max_spread);
3858		possible_uV = min(possible_uV, min_current_uV + max_spread);
3859	}
3860
3861	if (possible_uV > desired_max_uV)
3862		return -EINVAL;
3863
3864	done = (possible_uV == target_uV);
3865	desired_min_uV = possible_uV;
3866
3867finish:
3868	/* Apply max_uV_step constraint if necessary */
3869	if (state == PM_SUSPEND_ON) {
3870		ret = regulator_limit_voltage_step(rdev, current_uV,
3871						   &desired_min_uV);
3872		if (ret < 0)
3873			return ret;
3874
3875		if (ret == 0)
3876			done = false;
3877	}
3878
3879	/* Set current_uV if wasn't done earlier in the code and if necessary */
3880	if (n_coupled > 1 && *current_uV == -1) {
3881
3882		if (_regulator_is_enabled(rdev)) {
3883			ret = regulator_get_voltage_rdev(rdev);
3884			if (ret < 0)
3885				return ret;
3886
3887			*current_uV = ret;
3888		} else {
3889			*current_uV = desired_min_uV;
3890		}
3891	}
3892
3893	*min_uV = desired_min_uV;
3894	*max_uV = desired_max_uV;
3895
3896	return done;
3897}
3898
3899int regulator_do_balance_voltage(struct regulator_dev *rdev,
3900				 suspend_state_t state, bool skip_coupled)
3901{
3902	struct regulator_dev **c_rdevs;
3903	struct regulator_dev *best_rdev;
3904	struct coupling_desc *c_desc = &rdev->coupling_desc;
3905	int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3906	unsigned int delta, best_delta;
3907	unsigned long c_rdev_done = 0;
3908	bool best_c_rdev_done;
3909
3910	c_rdevs = c_desc->coupled_rdevs;
3911	n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3912
3913	/*
3914	 * Find the best possible voltage change on each loop. Leave the loop
3915	 * if there isn't any possible change.
3916	 */
3917	do {
3918		best_c_rdev_done = false;
3919		best_delta = 0;
3920		best_min_uV = 0;
3921		best_max_uV = 0;
3922		best_c_rdev = 0;
3923		best_rdev = NULL;
3924
3925		/*
3926		 * Find highest difference between optimal voltage
3927		 * and current voltage.
3928		 */
3929		for (i = 0; i < n_coupled; i++) {
3930			/*
3931			 * optimal_uV is the best voltage that can be set for
3932			 * i-th regulator at the moment without violating
3933			 * max_spread constraint in order to balance
3934			 * the coupled voltages.
3935			 */
3936			int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3937
3938			if (test_bit(i, &c_rdev_done))
3939				continue;
3940
3941			ret = regulator_get_optimal_voltage(c_rdevs[i],
3942							    &current_uV,
3943							    &optimal_uV,
3944							    &optimal_max_uV,
3945							    state, n_coupled);
3946			if (ret < 0)
3947				goto out;
3948
3949			delta = abs(optimal_uV - current_uV);
3950
3951			if (delta && best_delta <= delta) {
3952				best_c_rdev_done = ret;
3953				best_delta = delta;
3954				best_rdev = c_rdevs[i];
3955				best_min_uV = optimal_uV;
3956				best_max_uV = optimal_max_uV;
3957				best_c_rdev = i;
3958			}
3959		}
3960
3961		/* Nothing to change, return successfully */
3962		if (!best_rdev) {
3963			ret = 0;
3964			goto out;
3965		}
3966
3967		ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3968						 best_max_uV, state);
3969
3970		if (ret < 0)
3971			goto out;
3972
3973		if (best_c_rdev_done)
3974			set_bit(best_c_rdev, &c_rdev_done);
3975
3976	} while (n_coupled > 1);
3977
3978out:
3979	return ret;
3980}
3981
3982static int regulator_balance_voltage(struct regulator_dev *rdev,
3983				     suspend_state_t state)
3984{
3985	struct coupling_desc *c_desc = &rdev->coupling_desc;
3986	struct regulator_coupler *coupler = c_desc->coupler;
3987	bool skip_coupled = false;
3988
3989	/*
3990	 * If system is in a state other than PM_SUSPEND_ON, don't check
3991	 * other coupled regulators.
3992	 */
3993	if (state != PM_SUSPEND_ON)
3994		skip_coupled = true;
3995
3996	if (c_desc->n_resolved < c_desc->n_coupled) {
3997		rdev_err(rdev, "Not all coupled regulators registered\n");
3998		return -EPERM;
3999	}
4000
4001	/* Invoke custom balancer for customized couplers */
4002	if (coupler && coupler->balance_voltage)
4003		return coupler->balance_voltage(coupler, rdev, state);
4004
4005	return regulator_do_balance_voltage(rdev, state, skip_coupled);
4006}
4007
4008/**
4009 * regulator_set_voltage - set regulator output voltage
4010 * @regulator: regulator source
4011 * @min_uV: Minimum required voltage in uV
4012 * @max_uV: Maximum acceptable voltage in uV
4013 *
4014 * Sets a voltage regulator to the desired output voltage. This can be set
4015 * during any regulator state. IOW, regulator can be disabled or enabled.
4016 *
4017 * If the regulator is enabled then the voltage will change to the new value
4018 * immediately otherwise if the regulator is disabled the regulator will
4019 * output at the new voltage when enabled.
4020 *
4021 * NOTE: If the regulator is shared between several devices then the lowest
4022 * request voltage that meets the system constraints will be used.
4023 * Regulator system constraints must be set for this regulator before
4024 * calling this function otherwise this call will fail.
4025 */
4026int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4027{
4028	struct ww_acquire_ctx ww_ctx;
4029	int ret;
4030
4031	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4032
4033	ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4034					     PM_SUSPEND_ON);
4035
4036	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4037
4038	return ret;
4039}
4040EXPORT_SYMBOL_GPL(regulator_set_voltage);
4041
4042static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4043					   suspend_state_t state, bool en)
4044{
4045	struct regulator_state *rstate;
4046
4047	rstate = regulator_get_suspend_state(rdev, state);
4048	if (rstate == NULL)
4049		return -EINVAL;
4050
4051	if (!rstate->changeable)
4052		return -EPERM;
4053
4054	rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4055
4056	return 0;
4057}
4058
4059int regulator_suspend_enable(struct regulator_dev *rdev,
4060				    suspend_state_t state)
4061{
4062	return regulator_suspend_toggle(rdev, state, true);
4063}
4064EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4065
4066int regulator_suspend_disable(struct regulator_dev *rdev,
4067				     suspend_state_t state)
4068{
4069	struct regulator *regulator;
4070	struct regulator_voltage *voltage;
4071
4072	/*
4073	 * if any consumer wants this regulator device keeping on in
4074	 * suspend states, don't set it as disabled.
4075	 */
4076	list_for_each_entry(regulator, &rdev->consumer_list, list) {
4077		voltage = &regulator->voltage[state];
4078		if (voltage->min_uV || voltage->max_uV)
4079			return 0;
4080	}
4081
4082	return regulator_suspend_toggle(rdev, state, false);
4083}
4084EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4085
4086static int _regulator_set_suspend_voltage(struct regulator *regulator,
4087					  int min_uV, int max_uV,
4088					  suspend_state_t state)
4089{
4090	struct regulator_dev *rdev = regulator->rdev;
4091	struct regulator_state *rstate;
4092
4093	rstate = regulator_get_suspend_state(rdev, state);
4094	if (rstate == NULL)
4095		return -EINVAL;
4096
4097	if (rstate->min_uV == rstate->max_uV) {
4098		rdev_err(rdev, "The suspend voltage can't be changed!\n");
4099		return -EPERM;
4100	}
4101
4102	return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4103}
4104
4105int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4106				  int max_uV, suspend_state_t state)
4107{
4108	struct ww_acquire_ctx ww_ctx;
4109	int ret;
4110
4111	/* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4112	if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4113		return -EINVAL;
4114
4115	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4116
4117	ret = _regulator_set_suspend_voltage(regulator, min_uV,
4118					     max_uV, state);
4119
4120	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4121
4122	return ret;
4123}
4124EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4125
4126/**
4127 * regulator_set_voltage_time - get raise/fall time
4128 * @regulator: regulator source
4129 * @old_uV: starting voltage in microvolts
4130 * @new_uV: target voltage in microvolts
4131 *
4132 * Provided with the starting and ending voltage, this function attempts to
4133 * calculate the time in microseconds required to rise or fall to this new
4134 * voltage.
4135 */
4136int regulator_set_voltage_time(struct regulator *regulator,
4137			       int old_uV, int new_uV)
4138{
4139	struct regulator_dev *rdev = regulator->rdev;
4140	const struct regulator_ops *ops = rdev->desc->ops;
4141	int old_sel = -1;
4142	int new_sel = -1;
4143	int voltage;
4144	int i;
4145
4146	if (ops->set_voltage_time)
4147		return ops->set_voltage_time(rdev, old_uV, new_uV);
4148	else if (!ops->set_voltage_time_sel)
4149		return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4150
4151	/* Currently requires operations to do this */
4152	if (!ops->list_voltage || !rdev->desc->n_voltages)
4153		return -EINVAL;
4154
4155	for (i = 0; i < rdev->desc->n_voltages; i++) {
4156		/* We only look for exact voltage matches here */
4157		if (i < rdev->desc->linear_min_sel)
4158			continue;
4159
4160		if (old_sel >= 0 && new_sel >= 0)
4161			break;
4162
4163		voltage = regulator_list_voltage(regulator, i);
4164		if (voltage < 0)
4165			return -EINVAL;
4166		if (voltage == 0)
4167			continue;
4168		if (voltage == old_uV)
4169			old_sel = i;
4170		if (voltage == new_uV)
4171			new_sel = i;
4172	}
4173
4174	if (old_sel < 0 || new_sel < 0)
4175		return -EINVAL;
4176
4177	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4178}
4179EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4180
4181/**
4182 * regulator_set_voltage_time_sel - get raise/fall time
4183 * @rdev: regulator source device
4184 * @old_selector: selector for starting voltage
4185 * @new_selector: selector for target voltage
4186 *
4187 * Provided with the starting and target voltage selectors, this function
4188 * returns time in microseconds required to rise or fall to this new voltage
4189 *
4190 * Drivers providing ramp_delay in regulation_constraints can use this as their
4191 * set_voltage_time_sel() operation.
4192 */
4193int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4194				   unsigned int old_selector,
4195				   unsigned int new_selector)
4196{
4197	int old_volt, new_volt;
4198
4199	/* sanity check */
4200	if (!rdev->desc->ops->list_voltage)
4201		return -EINVAL;
4202
4203	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4204	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4205
4206	if (rdev->desc->ops->set_voltage_time)
4207		return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4208							 new_volt);
4209	else
4210		return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4211}
4212EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4213
4214int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4215{
4216	int ret;
4217
4218	regulator_lock(rdev);
4219
4220	if (!rdev->desc->ops->set_voltage &&
4221	    !rdev->desc->ops->set_voltage_sel) {
4222		ret = -EINVAL;
4223		goto out;
4224	}
4225
4226	/* balance only, if regulator is coupled */
4227	if (rdev->coupling_desc.n_coupled > 1)
4228		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4229	else
4230		ret = -EOPNOTSUPP;
4231
4232out:
4233	regulator_unlock(rdev);
4234	return ret;
4235}
4236
4237/**
4238 * regulator_sync_voltage - re-apply last regulator output voltage
4239 * @regulator: regulator source
4240 *
4241 * Re-apply the last configured voltage.  This is intended to be used
4242 * where some external control source the consumer is cooperating with
4243 * has caused the configured voltage to change.
4244 */
4245int regulator_sync_voltage(struct regulator *regulator)
4246{
4247	struct regulator_dev *rdev = regulator->rdev;
4248	struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4249	int ret, min_uV, max_uV;
4250
4251	regulator_lock(rdev);
4252
4253	if (!rdev->desc->ops->set_voltage &&
4254	    !rdev->desc->ops->set_voltage_sel) {
4255		ret = -EINVAL;
4256		goto out;
4257	}
4258
4259	/* This is only going to work if we've had a voltage configured. */
4260	if (!voltage->min_uV && !voltage->max_uV) {
4261		ret = -EINVAL;
4262		goto out;
4263	}
4264
4265	min_uV = voltage->min_uV;
4266	max_uV = voltage->max_uV;
4267
4268	/* This should be a paranoia check... */
4269	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4270	if (ret < 0)
4271		goto out;
4272
4273	ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4274	if (ret < 0)
4275		goto out;
4276
4277	/* balance only, if regulator is coupled */
4278	if (rdev->coupling_desc.n_coupled > 1)
4279		ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4280	else
4281		ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4282
4283out:
4284	regulator_unlock(rdev);
4285	return ret;
4286}
4287EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4288
4289int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4290{
4291	int sel, ret;
4292	bool bypassed;
4293
4294	if (rdev->desc->ops->get_bypass) {
4295		ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4296		if (ret < 0)
4297			return ret;
4298		if (bypassed) {
4299			/* if bypassed the regulator must have a supply */
4300			if (!rdev->supply) {
4301				rdev_err(rdev,
4302					 "bypassed regulator has no supply!\n");
4303				return -EPROBE_DEFER;
4304			}
4305
4306			return regulator_get_voltage_rdev(rdev->supply->rdev);
4307		}
4308	}
4309
4310	if (rdev->desc->ops->get_voltage_sel) {
4311		sel = rdev->desc->ops->get_voltage_sel(rdev);
4312		if (sel < 0)
4313			return sel;
4314		ret = rdev->desc->ops->list_voltage(rdev, sel);
4315	} else if (rdev->desc->ops->get_voltage) {
4316		ret = rdev->desc->ops->get_voltage(rdev);
4317	} else if (rdev->desc->ops->list_voltage) {
4318		ret = rdev->desc->ops->list_voltage(rdev, 0);
4319	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4320		ret = rdev->desc->fixed_uV;
4321	} else if (rdev->supply) {
4322		ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4323	} else if (rdev->supply_name) {
4324		return -EPROBE_DEFER;
4325	} else {
4326		return -EINVAL;
4327	}
4328
4329	if (ret < 0)
4330		return ret;
4331	return ret - rdev->constraints->uV_offset;
4332}
4333EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4334
4335/**
4336 * regulator_get_voltage - get regulator output voltage
4337 * @regulator: regulator source
4338 *
4339 * This returns the current regulator voltage in uV.
4340 *
4341 * NOTE: If the regulator is disabled it will return the voltage value. This
4342 * function should not be used to determine regulator state.
4343 */
4344int regulator_get_voltage(struct regulator *regulator)
4345{
4346	struct ww_acquire_ctx ww_ctx;
4347	int ret;
4348
4349	regulator_lock_dependent(regulator->rdev, &ww_ctx);
4350	ret = regulator_get_voltage_rdev(regulator->rdev);
4351	regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4352
4353	return ret;
4354}
4355EXPORT_SYMBOL_GPL(regulator_get_voltage);
4356
4357/**
4358 * regulator_set_current_limit - set regulator output current limit
4359 * @regulator: regulator source
4360 * @min_uA: Minimum supported current in uA
4361 * @max_uA: Maximum supported current in uA
4362 *
4363 * Sets current sink to the desired output current. This can be set during
4364 * any regulator state. IOW, regulator can be disabled or enabled.
4365 *
4366 * If the regulator is enabled then the current will change to the new value
4367 * immediately otherwise if the regulator is disabled the regulator will
4368 * output at the new current when enabled.
4369 *
4370 * NOTE: Regulator system constraints must be set for this regulator before
4371 * calling this function otherwise this call will fail.
4372 */
4373int regulator_set_current_limit(struct regulator *regulator,
4374			       int min_uA, int max_uA)
4375{
4376	struct regulator_dev *rdev = regulator->rdev;
4377	int ret;
4378
4379	regulator_lock(rdev);
4380
4381	/* sanity check */
4382	if (!rdev->desc->ops->set_current_limit) {
4383		ret = -EINVAL;
4384		goto out;
4385	}
4386
4387	/* constraints check */
4388	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4389	if (ret < 0)
4390		goto out;
4391
4392	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4393out:
4394	regulator_unlock(rdev);
4395	return ret;
4396}
4397EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4398
4399static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4400{
4401	/* sanity check */
4402	if (!rdev->desc->ops->get_current_limit)
4403		return -EINVAL;
4404
4405	return rdev->desc->ops->get_current_limit(rdev);
4406}
4407
4408static int _regulator_get_current_limit(struct regulator_dev *rdev)
4409{
4410	int ret;
4411
4412	regulator_lock(rdev);
4413	ret = _regulator_get_current_limit_unlocked(rdev);
4414	regulator_unlock(rdev);
4415
4416	return ret;
4417}
4418
4419/**
4420 * regulator_get_current_limit - get regulator output current
4421 * @regulator: regulator source
4422 *
4423 * This returns the current supplied by the specified current sink in uA.
4424 *
4425 * NOTE: If the regulator is disabled it will return the current value. This
4426 * function should not be used to determine regulator state.
4427 */
4428int regulator_get_current_limit(struct regulator *regulator)
4429{
4430	return _regulator_get_current_limit(regulator->rdev);
4431}
4432EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4433
4434/**
4435 * regulator_set_mode - set regulator operating mode
4436 * @regulator: regulator source
4437 * @mode: operating mode - one of the REGULATOR_MODE constants
4438 *
4439 * Set regulator operating mode to increase regulator efficiency or improve
4440 * regulation performance.
4441 *
4442 * NOTE: Regulator system constraints must be set for this regulator before
4443 * calling this function otherwise this call will fail.
4444 */
4445int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4446{
4447	struct regulator_dev *rdev = regulator->rdev;
4448	int ret;
4449	int regulator_curr_mode;
4450
4451	regulator_lock(rdev);
4452
4453	/* sanity check */
4454	if (!rdev->desc->ops->set_mode) {
4455		ret = -EINVAL;
4456		goto out;
4457	}
4458
4459	/* return if the same mode is requested */
4460	if (rdev->desc->ops->get_mode) {
4461		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4462		if (regulator_curr_mode == mode) {
4463			ret = 0;
4464			goto out;
4465		}
4466	}
4467
4468	/* constraints check */
4469	ret = regulator_mode_constrain(rdev, &mode);
4470	if (ret < 0)
4471		goto out;
4472
4473	ret = rdev->desc->ops->set_mode(rdev, mode);
4474out:
4475	regulator_unlock(rdev);
4476	return ret;
4477}
4478EXPORT_SYMBOL_GPL(regulator_set_mode);
4479
4480static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4481{
4482	/* sanity check */
4483	if (!rdev->desc->ops->get_mode)
4484		return -EINVAL;
4485
4486	return rdev->desc->ops->get_mode(rdev);
4487}
4488
4489static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4490{
4491	int ret;
4492
4493	regulator_lock(rdev);
4494	ret = _regulator_get_mode_unlocked(rdev);
4495	regulator_unlock(rdev);
4496
4497	return ret;
4498}
4499
4500/**
4501 * regulator_get_mode - get regulator operating mode
4502 * @regulator: regulator source
4503 *
4504 * Get the current regulator operating mode.
4505 */
4506unsigned int regulator_get_mode(struct regulator *regulator)
4507{
4508	return _regulator_get_mode(regulator->rdev);
4509}
4510EXPORT_SYMBOL_GPL(regulator_get_mode);
4511
4512static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4513{
4514	int ret = 0;
4515
4516	if (rdev->use_cached_err) {
4517		spin_lock(&rdev->err_lock);
4518		ret = rdev->cached_err;
4519		spin_unlock(&rdev->err_lock);
4520	}
4521	return ret;
4522}
4523
4524static int _regulator_get_error_flags(struct regulator_dev *rdev,
4525					unsigned int *flags)
4526{
4527	int cached_flags, ret = 0;
4528
4529	regulator_lock(rdev);
4530
4531	cached_flags = rdev_get_cached_err_flags(rdev);
4532
4533	if (rdev->desc->ops->get_error_flags)
4534		ret = rdev->desc->ops->get_error_flags(rdev, flags);
4535	else if (!rdev->use_cached_err)
4536		ret = -EINVAL;
 
 
4537
4538	*flags |= cached_flags;
4539
4540	regulator_unlock(rdev);
4541
4542	return ret;
4543}
4544
4545/**
4546 * regulator_get_error_flags - get regulator error information
4547 * @regulator: regulator source
4548 * @flags: pointer to store error flags
4549 *
4550 * Get the current regulator error information.
4551 */
4552int regulator_get_error_flags(struct regulator *regulator,
4553				unsigned int *flags)
4554{
4555	return _regulator_get_error_flags(regulator->rdev, flags);
4556}
4557EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4558
4559/**
4560 * regulator_set_load - set regulator load
4561 * @regulator: regulator source
4562 * @uA_load: load current
4563 *
4564 * Notifies the regulator core of a new device load. This is then used by
4565 * DRMS (if enabled by constraints) to set the most efficient regulator
4566 * operating mode for the new regulator loading.
4567 *
4568 * Consumer devices notify their supply regulator of the maximum power
4569 * they will require (can be taken from device datasheet in the power
4570 * consumption tables) when they change operational status and hence power
4571 * state. Examples of operational state changes that can affect power
4572 * consumption are :-
4573 *
4574 *    o Device is opened / closed.
4575 *    o Device I/O is about to begin or has just finished.
4576 *    o Device is idling in between work.
4577 *
4578 * This information is also exported via sysfs to userspace.
4579 *
4580 * DRMS will sum the total requested load on the regulator and change
4581 * to the most efficient operating mode if platform constraints allow.
4582 *
4583 * NOTE: when a regulator consumer requests to have a regulator
4584 * disabled then any load that consumer requested no longer counts
4585 * toward the total requested load.  If the regulator is re-enabled
4586 * then the previously requested load will start counting again.
4587 *
4588 * If a regulator is an always-on regulator then an individual consumer's
4589 * load will still be removed if that consumer is fully disabled.
4590 *
4591 * On error a negative errno is returned.
4592 */
4593int regulator_set_load(struct regulator *regulator, int uA_load)
4594{
4595	struct regulator_dev *rdev = regulator->rdev;
4596	int old_uA_load;
4597	int ret = 0;
4598
4599	regulator_lock(rdev);
4600	old_uA_load = regulator->uA_load;
4601	regulator->uA_load = uA_load;
4602	if (regulator->enable_count && old_uA_load != uA_load) {
4603		ret = drms_uA_update(rdev);
4604		if (ret < 0)
4605			regulator->uA_load = old_uA_load;
4606	}
4607	regulator_unlock(rdev);
4608
4609	return ret;
4610}
4611EXPORT_SYMBOL_GPL(regulator_set_load);
4612
4613/**
4614 * regulator_allow_bypass - allow the regulator to go into bypass mode
4615 *
4616 * @regulator: Regulator to configure
4617 * @enable: enable or disable bypass mode
4618 *
4619 * Allow the regulator to go into bypass mode if all other consumers
4620 * for the regulator also enable bypass mode and the machine
4621 * constraints allow this.  Bypass mode means that the regulator is
4622 * simply passing the input directly to the output with no regulation.
4623 */
4624int regulator_allow_bypass(struct regulator *regulator, bool enable)
4625{
4626	struct regulator_dev *rdev = regulator->rdev;
4627	const char *name = rdev_get_name(rdev);
4628	int ret = 0;
4629
4630	if (!rdev->desc->ops->set_bypass)
4631		return 0;
4632
4633	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4634		return 0;
4635
4636	regulator_lock(rdev);
4637
4638	if (enable && !regulator->bypass) {
4639		rdev->bypass_count++;
4640
4641		if (rdev->bypass_count == rdev->open_count) {
4642			trace_regulator_bypass_enable(name);
4643
4644			ret = rdev->desc->ops->set_bypass(rdev, enable);
4645			if (ret != 0)
4646				rdev->bypass_count--;
4647			else
4648				trace_regulator_bypass_enable_complete(name);
4649		}
4650
4651	} else if (!enable && regulator->bypass) {
4652		rdev->bypass_count--;
4653
4654		if (rdev->bypass_count != rdev->open_count) {
4655			trace_regulator_bypass_disable(name);
4656
4657			ret = rdev->desc->ops->set_bypass(rdev, enable);
4658			if (ret != 0)
4659				rdev->bypass_count++;
4660			else
4661				trace_regulator_bypass_disable_complete(name);
4662		}
4663	}
4664
4665	if (ret == 0)
4666		regulator->bypass = enable;
4667
4668	regulator_unlock(rdev);
4669
4670	return ret;
4671}
4672EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4673
4674/**
4675 * regulator_register_notifier - register regulator event notifier
4676 * @regulator: regulator source
4677 * @nb: notifier block
4678 *
4679 * Register notifier block to receive regulator events.
4680 */
4681int regulator_register_notifier(struct regulator *regulator,
4682			      struct notifier_block *nb)
4683{
4684	return blocking_notifier_chain_register(&regulator->rdev->notifier,
4685						nb);
4686}
4687EXPORT_SYMBOL_GPL(regulator_register_notifier);
4688
4689/**
4690 * regulator_unregister_notifier - unregister regulator event notifier
4691 * @regulator: regulator source
4692 * @nb: notifier block
4693 *
4694 * Unregister regulator event notifier block.
4695 */
4696int regulator_unregister_notifier(struct regulator *regulator,
4697				struct notifier_block *nb)
4698{
4699	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4700						  nb);
4701}
4702EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4703
4704/* notify regulator consumers and downstream regulator consumers.
4705 * Note mutex must be held by caller.
4706 */
4707static int _notifier_call_chain(struct regulator_dev *rdev,
4708				  unsigned long event, void *data)
4709{
4710	/* call rdev chain first */
4711	return blocking_notifier_call_chain(&rdev->notifier, event, data);
4712}
4713
4714/**
4715 * regulator_bulk_get - get multiple regulator consumers
4716 *
4717 * @dev:           Device to supply
4718 * @num_consumers: Number of consumers to register
4719 * @consumers:     Configuration of consumers; clients are stored here.
4720 *
4721 * @return 0 on success, an errno on failure.
4722 *
4723 * This helper function allows drivers to get several regulator
4724 * consumers in one operation.  If any of the regulators cannot be
4725 * acquired then any regulators that were allocated will be freed
4726 * before returning to the caller.
4727 */
4728int regulator_bulk_get(struct device *dev, int num_consumers,
4729		       struct regulator_bulk_data *consumers)
4730{
4731	int i;
4732	int ret;
4733
4734	for (i = 0; i < num_consumers; i++)
4735		consumers[i].consumer = NULL;
4736
4737	for (i = 0; i < num_consumers; i++) {
4738		consumers[i].consumer = regulator_get(dev,
4739						      consumers[i].supply);
4740		if (IS_ERR(consumers[i].consumer)) {
4741			ret = PTR_ERR(consumers[i].consumer);
4742			consumers[i].consumer = NULL;
4743			goto err;
4744		}
4745	}
4746
4747	return 0;
4748
4749err:
4750	if (ret != -EPROBE_DEFER)
4751		dev_err(dev, "Failed to get supply '%s': %pe\n",
4752			consumers[i].supply, ERR_PTR(ret));
4753	else
4754		dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4755			consumers[i].supply);
4756
4757	while (--i >= 0)
4758		regulator_put(consumers[i].consumer);
4759
4760	return ret;
4761}
4762EXPORT_SYMBOL_GPL(regulator_bulk_get);
4763
4764static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4765{
4766	struct regulator_bulk_data *bulk = data;
4767
4768	bulk->ret = regulator_enable(bulk->consumer);
4769}
4770
4771/**
4772 * regulator_bulk_enable - enable multiple regulator consumers
4773 *
4774 * @num_consumers: Number of consumers
4775 * @consumers:     Consumer data; clients are stored here.
4776 * @return         0 on success, an errno on failure
4777 *
4778 * This convenience API allows consumers to enable multiple regulator
4779 * clients in a single API call.  If any consumers cannot be enabled
4780 * then any others that were enabled will be disabled again prior to
4781 * return.
4782 */
4783int regulator_bulk_enable(int num_consumers,
4784			  struct regulator_bulk_data *consumers)
4785{
4786	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4787	int i;
4788	int ret = 0;
4789
4790	for (i = 0; i < num_consumers; i++) {
4791		async_schedule_domain(regulator_bulk_enable_async,
4792				      &consumers[i], &async_domain);
4793	}
4794
4795	async_synchronize_full_domain(&async_domain);
4796
4797	/* If any consumer failed we need to unwind any that succeeded */
4798	for (i = 0; i < num_consumers; i++) {
4799		if (consumers[i].ret != 0) {
4800			ret = consumers[i].ret;
4801			goto err;
4802		}
4803	}
4804
4805	return 0;
4806
4807err:
4808	for (i = 0; i < num_consumers; i++) {
4809		if (consumers[i].ret < 0)
4810			pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4811			       ERR_PTR(consumers[i].ret));
4812		else
4813			regulator_disable(consumers[i].consumer);
4814	}
4815
4816	return ret;
4817}
4818EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4819
4820/**
4821 * regulator_bulk_disable - disable multiple regulator consumers
4822 *
4823 * @num_consumers: Number of consumers
4824 * @consumers:     Consumer data; clients are stored here.
4825 * @return         0 on success, an errno on failure
4826 *
4827 * This convenience API allows consumers to disable multiple regulator
4828 * clients in a single API call.  If any consumers cannot be disabled
4829 * then any others that were disabled will be enabled again prior to
4830 * return.
4831 */
4832int regulator_bulk_disable(int num_consumers,
4833			   struct regulator_bulk_data *consumers)
4834{
4835	int i;
4836	int ret, r;
4837
4838	for (i = num_consumers - 1; i >= 0; --i) {
4839		ret = regulator_disable(consumers[i].consumer);
4840		if (ret != 0)
4841			goto err;
4842	}
4843
4844	return 0;
4845
4846err:
4847	pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4848	for (++i; i < num_consumers; ++i) {
4849		r = regulator_enable(consumers[i].consumer);
4850		if (r != 0)
4851			pr_err("Failed to re-enable %s: %pe\n",
4852			       consumers[i].supply, ERR_PTR(r));
4853	}
4854
4855	return ret;
4856}
4857EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4858
4859/**
4860 * regulator_bulk_force_disable - force disable multiple regulator consumers
4861 *
4862 * @num_consumers: Number of consumers
4863 * @consumers:     Consumer data; clients are stored here.
4864 * @return         0 on success, an errno on failure
4865 *
4866 * This convenience API allows consumers to forcibly disable multiple regulator
4867 * clients in a single API call.
4868 * NOTE: This should be used for situations when device damage will
4869 * likely occur if the regulators are not disabled (e.g. over temp).
4870 * Although regulator_force_disable function call for some consumers can
4871 * return error numbers, the function is called for all consumers.
4872 */
4873int regulator_bulk_force_disable(int num_consumers,
4874			   struct regulator_bulk_data *consumers)
4875{
4876	int i;
4877	int ret = 0;
4878
4879	for (i = 0; i < num_consumers; i++) {
4880		consumers[i].ret =
4881			    regulator_force_disable(consumers[i].consumer);
4882
4883		/* Store first error for reporting */
4884		if (consumers[i].ret && !ret)
4885			ret = consumers[i].ret;
4886	}
4887
4888	return ret;
4889}
4890EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4891
4892/**
4893 * regulator_bulk_free - free multiple regulator consumers
4894 *
4895 * @num_consumers: Number of consumers
4896 * @consumers:     Consumer data; clients are stored here.
4897 *
4898 * This convenience API allows consumers to free multiple regulator
4899 * clients in a single API call.
4900 */
4901void regulator_bulk_free(int num_consumers,
4902			 struct regulator_bulk_data *consumers)
4903{
4904	int i;
4905
4906	for (i = 0; i < num_consumers; i++) {
4907		regulator_put(consumers[i].consumer);
4908		consumers[i].consumer = NULL;
4909	}
4910}
4911EXPORT_SYMBOL_GPL(regulator_bulk_free);
4912
4913/**
4914 * regulator_notifier_call_chain - call regulator event notifier
4915 * @rdev: regulator source
4916 * @event: notifier block
4917 * @data: callback-specific data.
4918 *
4919 * Called by regulator drivers to notify clients a regulator event has
4920 * occurred.
 
4921 */
4922int regulator_notifier_call_chain(struct regulator_dev *rdev,
4923				  unsigned long event, void *data)
4924{
 
 
4925	_notifier_call_chain(rdev, event, data);
4926	return NOTIFY_DONE;
4927
4928}
4929EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4930
4931/**
4932 * regulator_mode_to_status - convert a regulator mode into a status
4933 *
4934 * @mode: Mode to convert
4935 *
4936 * Convert a regulator mode into a status.
4937 */
4938int regulator_mode_to_status(unsigned int mode)
4939{
4940	switch (mode) {
4941	case REGULATOR_MODE_FAST:
4942		return REGULATOR_STATUS_FAST;
4943	case REGULATOR_MODE_NORMAL:
4944		return REGULATOR_STATUS_NORMAL;
4945	case REGULATOR_MODE_IDLE:
4946		return REGULATOR_STATUS_IDLE;
4947	case REGULATOR_MODE_STANDBY:
4948		return REGULATOR_STATUS_STANDBY;
4949	default:
4950		return REGULATOR_STATUS_UNDEFINED;
4951	}
4952}
4953EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4954
4955static struct attribute *regulator_dev_attrs[] = {
4956	&dev_attr_name.attr,
4957	&dev_attr_num_users.attr,
4958	&dev_attr_type.attr,
4959	&dev_attr_microvolts.attr,
4960	&dev_attr_microamps.attr,
4961	&dev_attr_opmode.attr,
4962	&dev_attr_state.attr,
4963	&dev_attr_status.attr,
4964	&dev_attr_bypass.attr,
4965	&dev_attr_requested_microamps.attr,
4966	&dev_attr_min_microvolts.attr,
4967	&dev_attr_max_microvolts.attr,
4968	&dev_attr_min_microamps.attr,
4969	&dev_attr_max_microamps.attr,
4970	&dev_attr_suspend_standby_state.attr,
4971	&dev_attr_suspend_mem_state.attr,
4972	&dev_attr_suspend_disk_state.attr,
4973	&dev_attr_suspend_standby_microvolts.attr,
4974	&dev_attr_suspend_mem_microvolts.attr,
4975	&dev_attr_suspend_disk_microvolts.attr,
4976	&dev_attr_suspend_standby_mode.attr,
4977	&dev_attr_suspend_mem_mode.attr,
4978	&dev_attr_suspend_disk_mode.attr,
4979	NULL
4980};
4981
4982/*
4983 * To avoid cluttering sysfs (and memory) with useless state, only
4984 * create attributes that can be meaningfully displayed.
4985 */
4986static umode_t regulator_attr_is_visible(struct kobject *kobj,
4987					 struct attribute *attr, int idx)
4988{
4989	struct device *dev = kobj_to_dev(kobj);
4990	struct regulator_dev *rdev = dev_to_rdev(dev);
4991	const struct regulator_ops *ops = rdev->desc->ops;
4992	umode_t mode = attr->mode;
4993
4994	/* these three are always present */
4995	if (attr == &dev_attr_name.attr ||
4996	    attr == &dev_attr_num_users.attr ||
4997	    attr == &dev_attr_type.attr)
4998		return mode;
4999
5000	/* some attributes need specific methods to be displayed */
5001	if (attr == &dev_attr_microvolts.attr) {
5002		if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5003		    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5004		    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5005		    (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5006			return mode;
5007		return 0;
5008	}
5009
5010	if (attr == &dev_attr_microamps.attr)
5011		return ops->get_current_limit ? mode : 0;
5012
5013	if (attr == &dev_attr_opmode.attr)
5014		return ops->get_mode ? mode : 0;
5015
5016	if (attr == &dev_attr_state.attr)
5017		return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5018
5019	if (attr == &dev_attr_status.attr)
5020		return ops->get_status ? mode : 0;
5021
5022	if (attr == &dev_attr_bypass.attr)
5023		return ops->get_bypass ? mode : 0;
5024
5025	/* constraints need specific supporting methods */
5026	if (attr == &dev_attr_min_microvolts.attr ||
5027	    attr == &dev_attr_max_microvolts.attr)
5028		return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5029
5030	if (attr == &dev_attr_min_microamps.attr ||
5031	    attr == &dev_attr_max_microamps.attr)
5032		return ops->set_current_limit ? mode : 0;
5033
5034	if (attr == &dev_attr_suspend_standby_state.attr ||
5035	    attr == &dev_attr_suspend_mem_state.attr ||
5036	    attr == &dev_attr_suspend_disk_state.attr)
5037		return mode;
5038
5039	if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5040	    attr == &dev_attr_suspend_mem_microvolts.attr ||
5041	    attr == &dev_attr_suspend_disk_microvolts.attr)
5042		return ops->set_suspend_voltage ? mode : 0;
5043
5044	if (attr == &dev_attr_suspend_standby_mode.attr ||
5045	    attr == &dev_attr_suspend_mem_mode.attr ||
5046	    attr == &dev_attr_suspend_disk_mode.attr)
5047		return ops->set_suspend_mode ? mode : 0;
5048
5049	return mode;
5050}
5051
5052static const struct attribute_group regulator_dev_group = {
5053	.attrs = regulator_dev_attrs,
5054	.is_visible = regulator_attr_is_visible,
5055};
5056
5057static const struct attribute_group *regulator_dev_groups[] = {
5058	&regulator_dev_group,
5059	NULL
5060};
5061
5062static void regulator_dev_release(struct device *dev)
5063{
5064	struct regulator_dev *rdev = dev_get_drvdata(dev);
5065
5066	kfree(rdev->constraints);
5067	of_node_put(rdev->dev.of_node);
5068	kfree(rdev);
5069}
5070
5071static void rdev_init_debugfs(struct regulator_dev *rdev)
5072{
5073	struct device *parent = rdev->dev.parent;
5074	const char *rname = rdev_get_name(rdev);
5075	char name[NAME_MAX];
5076
5077	/* Avoid duplicate debugfs directory names */
5078	if (parent && rname == rdev->desc->name) {
5079		snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5080			 rname);
5081		rname = name;
5082	}
5083
5084	rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5085	if (!rdev->debugfs) {
5086		rdev_warn(rdev, "Failed to create debugfs directory\n");
5087		return;
5088	}
5089
5090	debugfs_create_u32("use_count", 0444, rdev->debugfs,
5091			   &rdev->use_count);
5092	debugfs_create_u32("open_count", 0444, rdev->debugfs,
5093			   &rdev->open_count);
5094	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5095			   &rdev->bypass_count);
5096}
5097
5098static int regulator_register_resolve_supply(struct device *dev, void *data)
5099{
5100	struct regulator_dev *rdev = dev_to_rdev(dev);
5101
5102	if (regulator_resolve_supply(rdev))
5103		rdev_dbg(rdev, "unable to resolve supply\n");
5104
5105	return 0;
5106}
5107
5108int regulator_coupler_register(struct regulator_coupler *coupler)
5109{
5110	mutex_lock(&regulator_list_mutex);
5111	list_add_tail(&coupler->list, &regulator_coupler_list);
5112	mutex_unlock(&regulator_list_mutex);
5113
5114	return 0;
5115}
5116
5117static struct regulator_coupler *
5118regulator_find_coupler(struct regulator_dev *rdev)
5119{
5120	struct regulator_coupler *coupler;
5121	int err;
5122
5123	/*
5124	 * Note that regulators are appended to the list and the generic
5125	 * coupler is registered first, hence it will be attached at last
5126	 * if nobody cared.
5127	 */
5128	list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5129		err = coupler->attach_regulator(coupler, rdev);
5130		if (!err) {
5131			if (!coupler->balance_voltage &&
5132			    rdev->coupling_desc.n_coupled > 2)
5133				goto err_unsupported;
5134
5135			return coupler;
5136		}
5137
5138		if (err < 0)
5139			return ERR_PTR(err);
5140
5141		if (err == 1)
5142			continue;
5143
5144		break;
5145	}
5146
5147	return ERR_PTR(-EINVAL);
5148
5149err_unsupported:
5150	if (coupler->detach_regulator)
5151		coupler->detach_regulator(coupler, rdev);
5152
5153	rdev_err(rdev,
5154		"Voltage balancing for multiple regulator couples is unimplemented\n");
5155
5156	return ERR_PTR(-EPERM);
5157}
5158
5159static void regulator_resolve_coupling(struct regulator_dev *rdev)
5160{
5161	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5162	struct coupling_desc *c_desc = &rdev->coupling_desc;
5163	int n_coupled = c_desc->n_coupled;
5164	struct regulator_dev *c_rdev;
5165	int i;
5166
5167	for (i = 1; i < n_coupled; i++) {
5168		/* already resolved */
5169		if (c_desc->coupled_rdevs[i])
5170			continue;
5171
5172		c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5173
5174		if (!c_rdev)
5175			continue;
5176
5177		if (c_rdev->coupling_desc.coupler != coupler) {
5178			rdev_err(rdev, "coupler mismatch with %s\n",
5179				 rdev_get_name(c_rdev));
5180			return;
5181		}
5182
5183		c_desc->coupled_rdevs[i] = c_rdev;
5184		c_desc->n_resolved++;
5185
5186		regulator_resolve_coupling(c_rdev);
5187	}
5188}
5189
5190static void regulator_remove_coupling(struct regulator_dev *rdev)
5191{
5192	struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5193	struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5194	struct regulator_dev *__c_rdev, *c_rdev;
5195	unsigned int __n_coupled, n_coupled;
5196	int i, k;
5197	int err;
5198
5199	n_coupled = c_desc->n_coupled;
5200
5201	for (i = 1; i < n_coupled; i++) {
5202		c_rdev = c_desc->coupled_rdevs[i];
5203
5204		if (!c_rdev)
5205			continue;
5206
5207		regulator_lock(c_rdev);
5208
5209		__c_desc = &c_rdev->coupling_desc;
5210		__n_coupled = __c_desc->n_coupled;
5211
5212		for (k = 1; k < __n_coupled; k++) {
5213			__c_rdev = __c_desc->coupled_rdevs[k];
5214
5215			if (__c_rdev == rdev) {
5216				__c_desc->coupled_rdevs[k] = NULL;
5217				__c_desc->n_resolved--;
5218				break;
5219			}
5220		}
5221
5222		regulator_unlock(c_rdev);
5223
5224		c_desc->coupled_rdevs[i] = NULL;
5225		c_desc->n_resolved--;
5226	}
5227
5228	if (coupler && coupler->detach_regulator) {
5229		err = coupler->detach_regulator(coupler, rdev);
5230		if (err)
5231			rdev_err(rdev, "failed to detach from coupler: %pe\n",
5232				 ERR_PTR(err));
5233	}
5234
5235	kfree(rdev->coupling_desc.coupled_rdevs);
5236	rdev->coupling_desc.coupled_rdevs = NULL;
5237}
5238
5239static int regulator_init_coupling(struct regulator_dev *rdev)
5240{
5241	struct regulator_dev **coupled;
5242	int err, n_phandles;
 
5243
5244	if (!IS_ENABLED(CONFIG_OF))
5245		n_phandles = 0;
5246	else
5247		n_phandles = of_get_n_coupled(rdev);
5248
5249	coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5250	if (!coupled)
 
 
5251		return -ENOMEM;
5252
5253	rdev->coupling_desc.coupled_rdevs = coupled;
5254
5255	/*
5256	 * Every regulator should always have coupling descriptor filled with
5257	 * at least pointer to itself.
5258	 */
5259	rdev->coupling_desc.coupled_rdevs[0] = rdev;
5260	rdev->coupling_desc.n_coupled = n_phandles + 1;
5261	rdev->coupling_desc.n_resolved++;
5262
5263	/* regulator isn't coupled */
5264	if (n_phandles == 0)
5265		return 0;
5266
5267	if (!of_check_coupling_data(rdev))
5268		return -EPERM;
5269
5270	mutex_lock(&regulator_list_mutex);
5271	rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5272	mutex_unlock(&regulator_list_mutex);
5273
5274	if (IS_ERR(rdev->coupling_desc.coupler)) {
5275		err = PTR_ERR(rdev->coupling_desc.coupler);
5276		rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5277		return err;
5278	}
5279
5280	return 0;
5281}
5282
5283static int generic_coupler_attach(struct regulator_coupler *coupler,
5284				  struct regulator_dev *rdev)
5285{
5286	if (rdev->coupling_desc.n_coupled > 2) {
5287		rdev_err(rdev,
5288			 "Voltage balancing for multiple regulator couples is unimplemented\n");
5289		return -EPERM;
5290	}
5291
5292	if (!rdev->constraints->always_on) {
5293		rdev_err(rdev,
5294			 "Coupling of a non always-on regulator is unimplemented\n");
5295		return -ENOTSUPP;
5296	}
5297
5298	return 0;
5299}
5300
5301static struct regulator_coupler generic_regulator_coupler = {
5302	.attach_regulator = generic_coupler_attach,
5303};
5304
5305/**
5306 * regulator_register - register regulator
5307 * @regulator_desc: regulator to register
5308 * @cfg: runtime configuration for regulator
5309 *
5310 * Called by regulator drivers to register a regulator.
5311 * Returns a valid pointer to struct regulator_dev on success
5312 * or an ERR_PTR() on error.
5313 */
5314struct regulator_dev *
5315regulator_register(const struct regulator_desc *regulator_desc,
5316		   const struct regulator_config *cfg)
5317{
 
5318	const struct regulator_init_data *init_data;
5319	struct regulator_config *config = NULL;
5320	static atomic_t regulator_no = ATOMIC_INIT(-1);
5321	struct regulator_dev *rdev;
5322	bool dangling_cfg_gpiod = false;
5323	bool dangling_of_gpiod = false;
5324	struct device *dev;
5325	int ret, i;
5326
5327	if (cfg == NULL)
5328		return ERR_PTR(-EINVAL);
5329	if (cfg->ena_gpiod)
5330		dangling_cfg_gpiod = true;
5331	if (regulator_desc == NULL) {
5332		ret = -EINVAL;
5333		goto rinse;
5334	}
5335
5336	dev = cfg->dev;
5337	WARN_ON(!dev);
5338
5339	if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5340		ret = -EINVAL;
5341		goto rinse;
5342	}
5343
5344	if (regulator_desc->type != REGULATOR_VOLTAGE &&
5345	    regulator_desc->type != REGULATOR_CURRENT) {
5346		ret = -EINVAL;
5347		goto rinse;
5348	}
5349
5350	/* Only one of each should be implemented */
5351	WARN_ON(regulator_desc->ops->get_voltage &&
5352		regulator_desc->ops->get_voltage_sel);
5353	WARN_ON(regulator_desc->ops->set_voltage &&
5354		regulator_desc->ops->set_voltage_sel);
5355
5356	/* If we're using selectors we must implement list_voltage. */
5357	if (regulator_desc->ops->get_voltage_sel &&
5358	    !regulator_desc->ops->list_voltage) {
5359		ret = -EINVAL;
5360		goto rinse;
5361	}
5362	if (regulator_desc->ops->set_voltage_sel &&
5363	    !regulator_desc->ops->list_voltage) {
5364		ret = -EINVAL;
5365		goto rinse;
5366	}
5367
5368	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5369	if (rdev == NULL) {
5370		ret = -ENOMEM;
5371		goto rinse;
5372	}
5373	device_initialize(&rdev->dev);
5374	spin_lock_init(&rdev->err_lock);
5375
5376	/*
5377	 * Duplicate the config so the driver could override it after
5378	 * parsing init data.
5379	 */
5380	config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5381	if (config == NULL) {
5382		ret = -ENOMEM;
5383		goto clean;
5384	}
5385
5386	init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5387					       &rdev->dev.of_node);
5388
5389	/*
5390	 * Sometimes not all resources are probed already so we need to take
5391	 * that into account. This happens most the time if the ena_gpiod comes
5392	 * from a gpio extender or something else.
5393	 */
5394	if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5395		ret = -EPROBE_DEFER;
5396		goto clean;
5397	}
5398
5399	/*
5400	 * We need to keep track of any GPIO descriptor coming from the
5401	 * device tree until we have handled it over to the core. If the
5402	 * config that was passed in to this function DOES NOT contain
5403	 * a descriptor, and the config after this call DOES contain
5404	 * a descriptor, we definitely got one from parsing the device
5405	 * tree.
5406	 */
5407	if (!cfg->ena_gpiod && config->ena_gpiod)
5408		dangling_of_gpiod = true;
5409	if (!init_data) {
5410		init_data = config->init_data;
5411		rdev->dev.of_node = of_node_get(config->of_node);
5412	}
5413
5414	ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5415	rdev->reg_data = config->driver_data;
5416	rdev->owner = regulator_desc->owner;
5417	rdev->desc = regulator_desc;
5418	if (config->regmap)
5419		rdev->regmap = config->regmap;
5420	else if (dev_get_regmap(dev, NULL))
5421		rdev->regmap = dev_get_regmap(dev, NULL);
5422	else if (dev->parent)
5423		rdev->regmap = dev_get_regmap(dev->parent, NULL);
5424	INIT_LIST_HEAD(&rdev->consumer_list);
5425	INIT_LIST_HEAD(&rdev->list);
5426	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5427	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5428
5429	/* preform any regulator specific init */
5430	if (init_data && init_data->regulator_init) {
5431		ret = init_data->regulator_init(rdev->reg_data);
5432		if (ret < 0)
5433			goto clean;
5434	}
5435
5436	if (config->ena_gpiod) {
5437		ret = regulator_ena_gpio_request(rdev, config);
5438		if (ret != 0) {
5439			rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5440				 ERR_PTR(ret));
5441			goto clean;
5442		}
5443		/* The regulator core took over the GPIO descriptor */
5444		dangling_cfg_gpiod = false;
5445		dangling_of_gpiod = false;
5446	}
5447
5448	/* register with sysfs */
5449	rdev->dev.class = &regulator_class;
5450	rdev->dev.parent = dev;
5451	dev_set_name(&rdev->dev, "regulator.%lu",
5452		    (unsigned long) atomic_inc_return(&regulator_no));
5453	dev_set_drvdata(&rdev->dev, rdev);
5454
5455	/* set regulator constraints */
5456	if (init_data)
5457		rdev->constraints = kmemdup(&init_data->constraints,
5458					    sizeof(*rdev->constraints),
5459					    GFP_KERNEL);
5460	else
5461		rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5462					    GFP_KERNEL);
5463	if (!rdev->constraints) {
5464		ret = -ENOMEM;
5465		goto wash;
5466	}
5467
5468	if (init_data && init_data->supply_regulator)
5469		rdev->supply_name = init_data->supply_regulator;
5470	else if (regulator_desc->supply_name)
5471		rdev->supply_name = regulator_desc->supply_name;
5472
5473	ret = set_machine_constraints(rdev);
5474	if (ret == -EPROBE_DEFER) {
5475		/* Regulator might be in bypass mode and so needs its supply
5476		 * to set the constraints
5477		 */
5478		/* FIXME: this currently triggers a chicken-and-egg problem
5479		 * when creating -SUPPLY symlink in sysfs to a regulator
5480		 * that is just being created
5481		 */
5482		rdev_dbg(rdev, "will resolve supply early: %s\n",
5483			 rdev->supply_name);
5484		ret = regulator_resolve_supply(rdev);
5485		if (!ret)
5486			ret = set_machine_constraints(rdev);
5487		else
5488			rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5489				 ERR_PTR(ret));
5490	}
5491	if (ret < 0)
5492		goto wash;
5493
5494	ret = regulator_init_coupling(rdev);
5495	if (ret < 0)
5496		goto wash;
5497
5498	/* add consumers devices */
5499	if (init_data) {
5500		for (i = 0; i < init_data->num_consumer_supplies; i++) {
5501			ret = set_consumer_device_supply(rdev,
5502				init_data->consumer_supplies[i].dev_name,
5503				init_data->consumer_supplies[i].supply);
5504			if (ret < 0) {
5505				dev_err(dev, "Failed to set supply %s\n",
5506					init_data->consumer_supplies[i].supply);
5507				goto unset_supplies;
5508			}
5509		}
5510	}
5511
5512	if (!rdev->desc->ops->get_voltage &&
5513	    !rdev->desc->ops->list_voltage &&
5514	    !rdev->desc->fixed_uV)
5515		rdev->is_switch = true;
5516
5517	ret = device_add(&rdev->dev);
5518	if (ret != 0)
5519		goto unset_supplies;
5520
5521	rdev_init_debugfs(rdev);
5522
5523	/* try to resolve regulators coupling since a new one was registered */
5524	mutex_lock(&regulator_list_mutex);
5525	regulator_resolve_coupling(rdev);
5526	mutex_unlock(&regulator_list_mutex);
5527
5528	/* try to resolve regulators supply since a new one was registered */
5529	class_for_each_device(&regulator_class, NULL, NULL,
5530			      regulator_register_resolve_supply);
5531	kfree(config);
5532	return rdev;
5533
5534unset_supplies:
5535	mutex_lock(&regulator_list_mutex);
5536	unset_regulator_supplies(rdev);
5537	regulator_remove_coupling(rdev);
5538	mutex_unlock(&regulator_list_mutex);
5539wash:
5540	kfree(rdev->coupling_desc.coupled_rdevs);
5541	mutex_lock(&regulator_list_mutex);
5542	regulator_ena_gpio_free(rdev);
5543	mutex_unlock(&regulator_list_mutex);
5544clean:
5545	if (dangling_of_gpiod)
5546		gpiod_put(config->ena_gpiod);
5547	kfree(config);
5548	put_device(&rdev->dev);
5549rinse:
5550	if (dangling_cfg_gpiod)
5551		gpiod_put(cfg->ena_gpiod);
5552	return ERR_PTR(ret);
5553}
5554EXPORT_SYMBOL_GPL(regulator_register);
5555
5556/**
5557 * regulator_unregister - unregister regulator
5558 * @rdev: regulator to unregister
5559 *
5560 * Called by regulator drivers to unregister a regulator.
5561 */
5562void regulator_unregister(struct regulator_dev *rdev)
5563{
5564	if (rdev == NULL)
5565		return;
5566
5567	if (rdev->supply) {
5568		while (rdev->use_count--)
5569			regulator_disable(rdev->supply);
5570		regulator_put(rdev->supply);
5571	}
5572
5573	flush_work(&rdev->disable_work.work);
5574
5575	mutex_lock(&regulator_list_mutex);
5576
5577	debugfs_remove_recursive(rdev->debugfs);
5578	WARN_ON(rdev->open_count);
5579	regulator_remove_coupling(rdev);
5580	unset_regulator_supplies(rdev);
5581	list_del(&rdev->list);
5582	regulator_ena_gpio_free(rdev);
5583	device_unregister(&rdev->dev);
5584
5585	mutex_unlock(&regulator_list_mutex);
5586}
5587EXPORT_SYMBOL_GPL(regulator_unregister);
5588
5589#ifdef CONFIG_SUSPEND
5590/**
5591 * regulator_suspend - prepare regulators for system wide suspend
5592 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5593 *
5594 * Configure each regulator with it's suspend operating parameters for state.
5595 */
5596static int regulator_suspend(struct device *dev)
5597{
5598	struct regulator_dev *rdev = dev_to_rdev(dev);
5599	suspend_state_t state = pm_suspend_target_state;
5600	int ret;
5601	const struct regulator_state *rstate;
5602
5603	rstate = regulator_get_suspend_state_check(rdev, state);
5604	if (!rstate)
5605		return 0;
5606
5607	regulator_lock(rdev);
5608	ret = __suspend_set_state(rdev, rstate);
5609	regulator_unlock(rdev);
5610
5611	return ret;
5612}
5613
5614static int regulator_resume(struct device *dev)
5615{
5616	suspend_state_t state = pm_suspend_target_state;
5617	struct regulator_dev *rdev = dev_to_rdev(dev);
5618	struct regulator_state *rstate;
5619	int ret = 0;
5620
5621	rstate = regulator_get_suspend_state(rdev, state);
5622	if (rstate == NULL)
5623		return 0;
5624
5625	/* Avoid grabbing the lock if we don't need to */
5626	if (!rdev->desc->ops->resume)
5627		return 0;
5628
5629	regulator_lock(rdev);
5630
5631	if (rstate->enabled == ENABLE_IN_SUSPEND ||
5632	    rstate->enabled == DISABLE_IN_SUSPEND)
 
5633		ret = rdev->desc->ops->resume(rdev);
5634
5635	regulator_unlock(rdev);
5636
5637	return ret;
5638}
5639#else /* !CONFIG_SUSPEND */
5640
5641#define regulator_suspend	NULL
5642#define regulator_resume	NULL
5643
5644#endif /* !CONFIG_SUSPEND */
5645
5646#ifdef CONFIG_PM
5647static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5648	.suspend	= regulator_suspend,
5649	.resume		= regulator_resume,
5650};
5651#endif
5652
5653struct class regulator_class = {
5654	.name = "regulator",
5655	.dev_release = regulator_dev_release,
5656	.dev_groups = regulator_dev_groups,
5657#ifdef CONFIG_PM
5658	.pm = &regulator_pm_ops,
5659#endif
5660};
5661/**
5662 * regulator_has_full_constraints - the system has fully specified constraints
5663 *
5664 * Calling this function will cause the regulator API to disable all
5665 * regulators which have a zero use count and don't have an always_on
5666 * constraint in a late_initcall.
5667 *
5668 * The intention is that this will become the default behaviour in a
5669 * future kernel release so users are encouraged to use this facility
5670 * now.
5671 */
5672void regulator_has_full_constraints(void)
5673{
5674	has_full_constraints = 1;
5675}
5676EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5677
5678/**
5679 * rdev_get_drvdata - get rdev regulator driver data
5680 * @rdev: regulator
5681 *
5682 * Get rdev regulator driver private data. This call can be used in the
5683 * regulator driver context.
5684 */
5685void *rdev_get_drvdata(struct regulator_dev *rdev)
5686{
5687	return rdev->reg_data;
5688}
5689EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5690
5691/**
5692 * regulator_get_drvdata - get regulator driver data
5693 * @regulator: regulator
5694 *
5695 * Get regulator driver private data. This call can be used in the consumer
5696 * driver context when non API regulator specific functions need to be called.
5697 */
5698void *regulator_get_drvdata(struct regulator *regulator)
5699{
5700	return regulator->rdev->reg_data;
5701}
5702EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5703
5704/**
5705 * regulator_set_drvdata - set regulator driver data
5706 * @regulator: regulator
5707 * @data: data
5708 */
5709void regulator_set_drvdata(struct regulator *regulator, void *data)
5710{
5711	regulator->rdev->reg_data = data;
5712}
5713EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5714
5715/**
5716 * rdev_get_id - get regulator ID
5717 * @rdev: regulator
5718 */
5719int rdev_get_id(struct regulator_dev *rdev)
5720{
5721	return rdev->desc->id;
5722}
5723EXPORT_SYMBOL_GPL(rdev_get_id);
5724
5725struct device *rdev_get_dev(struct regulator_dev *rdev)
5726{
5727	return &rdev->dev;
5728}
5729EXPORT_SYMBOL_GPL(rdev_get_dev);
5730
5731struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5732{
5733	return rdev->regmap;
5734}
5735EXPORT_SYMBOL_GPL(rdev_get_regmap);
5736
5737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5738{
5739	return reg_init_data->driver_data;
5740}
5741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5742
5743#ifdef CONFIG_DEBUG_FS
5744static int supply_map_show(struct seq_file *sf, void *data)
5745{
5746	struct regulator_map *map;
5747
5748	list_for_each_entry(map, &regulator_map_list, list) {
5749		seq_printf(sf, "%s -> %s.%s\n",
5750				rdev_get_name(map->regulator), map->dev_name,
5751				map->supply);
5752	}
5753
5754	return 0;
5755}
5756DEFINE_SHOW_ATTRIBUTE(supply_map);
5757
5758struct summary_data {
5759	struct seq_file *s;
5760	struct regulator_dev *parent;
5761	int level;
5762};
5763
5764static void regulator_summary_show_subtree(struct seq_file *s,
5765					   struct regulator_dev *rdev,
5766					   int level);
5767
5768static int regulator_summary_show_children(struct device *dev, void *data)
5769{
5770	struct regulator_dev *rdev = dev_to_rdev(dev);
5771	struct summary_data *summary_data = data;
5772
5773	if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5774		regulator_summary_show_subtree(summary_data->s, rdev,
5775					       summary_data->level + 1);
5776
5777	return 0;
5778}
5779
5780static void regulator_summary_show_subtree(struct seq_file *s,
5781					   struct regulator_dev *rdev,
5782					   int level)
5783{
5784	struct regulation_constraints *c;
5785	struct regulator *consumer;
5786	struct summary_data summary_data;
5787	unsigned int opmode;
5788
5789	if (!rdev)
5790		return;
5791
5792	opmode = _regulator_get_mode_unlocked(rdev);
5793	seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5794		   level * 3 + 1, "",
5795		   30 - level * 3, rdev_get_name(rdev),
5796		   rdev->use_count, rdev->open_count, rdev->bypass_count,
5797		   regulator_opmode_to_str(opmode));
5798
5799	seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5800	seq_printf(s, "%5dmA ",
5801		   _regulator_get_current_limit_unlocked(rdev) / 1000);
5802
5803	c = rdev->constraints;
5804	if (c) {
5805		switch (rdev->desc->type) {
5806		case REGULATOR_VOLTAGE:
5807			seq_printf(s, "%5dmV %5dmV ",
5808				   c->min_uV / 1000, c->max_uV / 1000);
5809			break;
5810		case REGULATOR_CURRENT:
5811			seq_printf(s, "%5dmA %5dmA ",
5812				   c->min_uA / 1000, c->max_uA / 1000);
5813			break;
5814		}
5815	}
5816
5817	seq_puts(s, "\n");
5818
5819	list_for_each_entry(consumer, &rdev->consumer_list, list) {
5820		if (consumer->dev && consumer->dev->class == &regulator_class)
5821			continue;
5822
5823		seq_printf(s, "%*s%-*s ",
5824			   (level + 1) * 3 + 1, "",
5825			   30 - (level + 1) * 3,
5826			   consumer->supply_name ? consumer->supply_name :
5827			   consumer->dev ? dev_name(consumer->dev) : "deviceless");
5828
5829		switch (rdev->desc->type) {
5830		case REGULATOR_VOLTAGE:
5831			seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5832				   consumer->enable_count,
5833				   consumer->uA_load / 1000,
5834				   consumer->uA_load && !consumer->enable_count ?
5835				   '*' : ' ',
5836				   consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5837				   consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5838			break;
5839		case REGULATOR_CURRENT:
5840			break;
5841		}
5842
5843		seq_puts(s, "\n");
5844	}
5845
5846	summary_data.s = s;
5847	summary_data.level = level;
5848	summary_data.parent = rdev;
5849
5850	class_for_each_device(&regulator_class, NULL, &summary_data,
5851			      regulator_summary_show_children);
5852}
5853
5854struct summary_lock_data {
5855	struct ww_acquire_ctx *ww_ctx;
5856	struct regulator_dev **new_contended_rdev;
5857	struct regulator_dev **old_contended_rdev;
5858};
5859
5860static int regulator_summary_lock_one(struct device *dev, void *data)
5861{
5862	struct regulator_dev *rdev = dev_to_rdev(dev);
5863	struct summary_lock_data *lock_data = data;
5864	int ret = 0;
5865
5866	if (rdev != *lock_data->old_contended_rdev) {
5867		ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5868
5869		if (ret == -EDEADLK)
5870			*lock_data->new_contended_rdev = rdev;
5871		else
5872			WARN_ON_ONCE(ret);
5873	} else {
5874		*lock_data->old_contended_rdev = NULL;
5875	}
5876
5877	return ret;
5878}
5879
5880static int regulator_summary_unlock_one(struct device *dev, void *data)
5881{
5882	struct regulator_dev *rdev = dev_to_rdev(dev);
5883	struct summary_lock_data *lock_data = data;
5884
5885	if (lock_data) {
5886		if (rdev == *lock_data->new_contended_rdev)
5887			return -EDEADLK;
5888	}
5889
5890	regulator_unlock(rdev);
5891
5892	return 0;
5893}
5894
5895static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5896				      struct regulator_dev **new_contended_rdev,
5897				      struct regulator_dev **old_contended_rdev)
5898{
5899	struct summary_lock_data lock_data;
5900	int ret;
5901
5902	lock_data.ww_ctx = ww_ctx;
5903	lock_data.new_contended_rdev = new_contended_rdev;
5904	lock_data.old_contended_rdev = old_contended_rdev;
5905
5906	ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5907				    regulator_summary_lock_one);
5908	if (ret)
5909		class_for_each_device(&regulator_class, NULL, &lock_data,
5910				      regulator_summary_unlock_one);
5911
5912	return ret;
5913}
5914
5915static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5916{
5917	struct regulator_dev *new_contended_rdev = NULL;
5918	struct regulator_dev *old_contended_rdev = NULL;
5919	int err;
5920
5921	mutex_lock(&regulator_list_mutex);
5922
5923	ww_acquire_init(ww_ctx, &regulator_ww_class);
5924
5925	do {
5926		if (new_contended_rdev) {
5927			ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5928			old_contended_rdev = new_contended_rdev;
5929			old_contended_rdev->ref_cnt++;
5930		}
5931
5932		err = regulator_summary_lock_all(ww_ctx,
5933						 &new_contended_rdev,
5934						 &old_contended_rdev);
5935
5936		if (old_contended_rdev)
5937			regulator_unlock(old_contended_rdev);
5938
5939	} while (err == -EDEADLK);
5940
5941	ww_acquire_done(ww_ctx);
5942}
5943
5944static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5945{
5946	class_for_each_device(&regulator_class, NULL, NULL,
5947			      regulator_summary_unlock_one);
5948	ww_acquire_fini(ww_ctx);
5949
5950	mutex_unlock(&regulator_list_mutex);
5951}
5952
5953static int regulator_summary_show_roots(struct device *dev, void *data)
5954{
5955	struct regulator_dev *rdev = dev_to_rdev(dev);
5956	struct seq_file *s = data;
5957
5958	if (!rdev->supply)
5959		regulator_summary_show_subtree(s, rdev, 0);
5960
5961	return 0;
5962}
5963
5964static int regulator_summary_show(struct seq_file *s, void *data)
5965{
5966	struct ww_acquire_ctx ww_ctx;
5967
5968	seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5969	seq_puts(s, "---------------------------------------------------------------------------------------\n");
5970
5971	regulator_summary_lock(&ww_ctx);
5972
5973	class_for_each_device(&regulator_class, NULL, s,
5974			      regulator_summary_show_roots);
5975
5976	regulator_summary_unlock(&ww_ctx);
5977
5978	return 0;
5979}
5980DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5981#endif /* CONFIG_DEBUG_FS */
5982
5983static int __init regulator_init(void)
5984{
5985	int ret;
5986
5987	ret = class_register(&regulator_class);
5988
5989	debugfs_root = debugfs_create_dir("regulator", NULL);
5990	if (!debugfs_root)
5991		pr_warn("regulator: Failed to create debugfs directory\n");
5992
5993#ifdef CONFIG_DEBUG_FS
5994	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5995			    &supply_map_fops);
5996
5997	debugfs_create_file("regulator_summary", 0444, debugfs_root,
5998			    NULL, &regulator_summary_fops);
5999#endif
6000	regulator_dummy_init();
6001
6002	regulator_coupler_register(&generic_regulator_coupler);
6003
6004	return ret;
6005}
6006
6007/* init early to allow our consumers to complete system booting */
6008core_initcall(regulator_init);
6009
6010static int regulator_late_cleanup(struct device *dev, void *data)
6011{
6012	struct regulator_dev *rdev = dev_to_rdev(dev);
6013	const struct regulator_ops *ops = rdev->desc->ops;
6014	struct regulation_constraints *c = rdev->constraints;
6015	int enabled, ret;
6016
6017	if (c && c->always_on)
6018		return 0;
6019
6020	if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6021		return 0;
6022
6023	regulator_lock(rdev);
6024
6025	if (rdev->use_count)
6026		goto unlock;
6027
6028	/* If we can't read the status assume it's always on. */
6029	if (ops->is_enabled)
6030		enabled = ops->is_enabled(rdev);
6031	else
6032		enabled = 1;
6033
6034	/* But if reading the status failed, assume that it's off. */
6035	if (enabled <= 0)
6036		goto unlock;
6037
6038	if (have_full_constraints()) {
6039		/* We log since this may kill the system if it goes
6040		 * wrong.
6041		 */
6042		rdev_info(rdev, "disabling\n");
6043		ret = _regulator_do_disable(rdev);
6044		if (ret != 0)
6045			rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6046	} else {
6047		/* The intention is that in future we will
6048		 * assume that full constraints are provided
6049		 * so warn even if we aren't going to do
6050		 * anything here.
6051		 */
6052		rdev_warn(rdev, "incomplete constraints, leaving on\n");
6053	}
6054
6055unlock:
6056	regulator_unlock(rdev);
6057
6058	return 0;
6059}
6060
6061static void regulator_init_complete_work_function(struct work_struct *work)
6062{
6063	/*
6064	 * Regulators may had failed to resolve their input supplies
6065	 * when were registered, either because the input supply was
6066	 * not registered yet or because its parent device was not
6067	 * bound yet. So attempt to resolve the input supplies for
6068	 * pending regulators before trying to disable unused ones.
6069	 */
6070	class_for_each_device(&regulator_class, NULL, NULL,
6071			      regulator_register_resolve_supply);
6072
6073	/* If we have a full configuration then disable any regulators
6074	 * we have permission to change the status for and which are
6075	 * not in use or always_on.  This is effectively the default
6076	 * for DT and ACPI as they have full constraints.
6077	 */
6078	class_for_each_device(&regulator_class, NULL, NULL,
6079			      regulator_late_cleanup);
6080}
6081
6082static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6083			    regulator_init_complete_work_function);
6084
6085static int __init regulator_init_complete(void)
6086{
6087	/*
6088	 * Since DT doesn't provide an idiomatic mechanism for
6089	 * enabling full constraints and since it's much more natural
6090	 * with DT to provide them just assume that a DT enabled
6091	 * system has full constraints.
6092	 */
6093	if (of_have_populated_dt())
6094		has_full_constraints = true;
6095
6096	/*
6097	 * We punt completion for an arbitrary amount of time since
6098	 * systems like distros will load many drivers from userspace
6099	 * so consumers might not always be ready yet, this is
6100	 * particularly an issue with laptops where this might bounce
6101	 * the display off then on.  Ideally we'd get a notification
6102	 * from userspace when this happens but we don't so just wait
6103	 * a bit and hope we waited long enough.  It'd be better if
6104	 * we'd only do this on systems that need it, and a kernel
6105	 * command line option might be useful.
6106	 */
6107	schedule_delayed_work(&regulator_init_complete_work,
6108			      msecs_to_jiffies(30000));
6109
6110	return 0;
6111}
6112late_initcall_sync(regulator_init_complete);