Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36#define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38#define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40#define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42#define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44#define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47static DEFINE_WW_CLASS(regulator_ww_class);
48static DEFINE_MUTEX(regulator_nesting_mutex);
49static DEFINE_MUTEX(regulator_list_mutex);
50static LIST_HEAD(regulator_map_list);
51static LIST_HEAD(regulator_ena_gpio_list);
52static LIST_HEAD(regulator_supply_alias_list);
53static LIST_HEAD(regulator_coupler_list);
54static bool has_full_constraints;
55
56static struct dentry *debugfs_root;
57
58/*
59 * struct regulator_map
60 *
61 * Used to provide symbolic supply names to devices.
62 */
63struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
68};
69
70/*
71 * struct regulator_enable_gpio
72 *
73 * Management for shared enable GPIO pin
74 */
75struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
80};
81
82/*
83 * struct regulator_supply_alias
84 *
85 * Used to map lookups for a supply onto an alternative device.
86 */
87struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
93};
94
95static int _regulator_is_enabled(struct regulator_dev *rdev);
96static int _regulator_disable(struct regulator *regulator);
97static int _regulator_get_current_limit(struct regulator_dev *rdev);
98static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108static void destroy_regulator(struct regulator *regulator);
109static void _regulator_put(struct regulator *regulator);
110
111const char *rdev_get_name(struct regulator_dev *rdev)
112{
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
119}
120
121static bool have_full_constraints(void)
122{
123 return has_full_constraints || of_have_populated_dt();
124}
125
126static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127{
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
131 }
132
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
135
136 return false;
137}
138
139/**
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
143 *
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
149 */
150static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
152{
153 bool lock = false;
154 int ret = 0;
155
156 mutex_lock(®ulator_nesting_mutex);
157
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
163
164 if (lock) {
165 mutex_unlock(®ulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(®ulator_nesting_mutex);
168 }
169 } else {
170 lock = true;
171 }
172
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
176 }
177
178 mutex_unlock(®ulator_nesting_mutex);
179
180 return ret;
181}
182
183/**
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
186 *
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
192 */
193void regulator_lock(struct regulator_dev *rdev)
194{
195 regulator_lock_nested(rdev, NULL);
196}
197EXPORT_SYMBOL_GPL(regulator_lock);
198
199/**
200 * regulator_unlock - unlock a single regulator
201 * @rdev: regulator_source
202 *
203 * This function unlocks the mutex when the
204 * reference counter reaches 0.
205 */
206void regulator_unlock(struct regulator_dev *rdev)
207{
208 mutex_lock(®ulator_nesting_mutex);
209
210 if (--rdev->ref_cnt == 0) {
211 rdev->mutex_owner = NULL;
212 ww_mutex_unlock(&rdev->mutex);
213 }
214
215 WARN_ON_ONCE(rdev->ref_cnt < 0);
216
217 mutex_unlock(®ulator_nesting_mutex);
218}
219EXPORT_SYMBOL_GPL(regulator_unlock);
220
221static bool regulator_supply_is_couple(struct regulator_dev *rdev)
222{
223 struct regulator_dev *c_rdev;
224 int i;
225
226 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
227 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
228
229 if (rdev->supply->rdev == c_rdev)
230 return true;
231 }
232
233 return false;
234}
235
236static void regulator_unlock_recursive(struct regulator_dev *rdev,
237 unsigned int n_coupled)
238{
239 struct regulator_dev *c_rdev, *supply_rdev;
240 int i, supply_n_coupled;
241
242 for (i = n_coupled; i > 0; i--) {
243 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
244
245 if (!c_rdev)
246 continue;
247
248 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
249 supply_rdev = c_rdev->supply->rdev;
250 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
251
252 regulator_unlock_recursive(supply_rdev,
253 supply_n_coupled);
254 }
255
256 regulator_unlock(c_rdev);
257 }
258}
259
260static int regulator_lock_recursive(struct regulator_dev *rdev,
261 struct regulator_dev **new_contended_rdev,
262 struct regulator_dev **old_contended_rdev,
263 struct ww_acquire_ctx *ww_ctx)
264{
265 struct regulator_dev *c_rdev;
266 int i, err;
267
268 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
269 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
270
271 if (!c_rdev)
272 continue;
273
274 if (c_rdev != *old_contended_rdev) {
275 err = regulator_lock_nested(c_rdev, ww_ctx);
276 if (err) {
277 if (err == -EDEADLK) {
278 *new_contended_rdev = c_rdev;
279 goto err_unlock;
280 }
281
282 /* shouldn't happen */
283 WARN_ON_ONCE(err != -EALREADY);
284 }
285 } else {
286 *old_contended_rdev = NULL;
287 }
288
289 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
290 err = regulator_lock_recursive(c_rdev->supply->rdev,
291 new_contended_rdev,
292 old_contended_rdev,
293 ww_ctx);
294 if (err) {
295 regulator_unlock(c_rdev);
296 goto err_unlock;
297 }
298 }
299 }
300
301 return 0;
302
303err_unlock:
304 regulator_unlock_recursive(rdev, i);
305
306 return err;
307}
308
309/**
310 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
311 * regulators
312 * @rdev: regulator source
313 * @ww_ctx: w/w mutex acquire context
314 *
315 * Unlock all regulators related with rdev by coupling or supplying.
316 */
317static void regulator_unlock_dependent(struct regulator_dev *rdev,
318 struct ww_acquire_ctx *ww_ctx)
319{
320 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
321 ww_acquire_fini(ww_ctx);
322}
323
324/**
325 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
326 * @rdev: regulator source
327 * @ww_ctx: w/w mutex acquire context
328 *
329 * This function as a wrapper on regulator_lock_recursive(), which locks
330 * all regulators related with rdev by coupling or supplying.
331 */
332static void regulator_lock_dependent(struct regulator_dev *rdev,
333 struct ww_acquire_ctx *ww_ctx)
334{
335 struct regulator_dev *new_contended_rdev = NULL;
336 struct regulator_dev *old_contended_rdev = NULL;
337 int err;
338
339 mutex_lock(®ulator_list_mutex);
340
341 ww_acquire_init(ww_ctx, ®ulator_ww_class);
342
343 do {
344 if (new_contended_rdev) {
345 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
346 old_contended_rdev = new_contended_rdev;
347 old_contended_rdev->ref_cnt++;
348 }
349
350 err = regulator_lock_recursive(rdev,
351 &new_contended_rdev,
352 &old_contended_rdev,
353 ww_ctx);
354
355 if (old_contended_rdev)
356 regulator_unlock(old_contended_rdev);
357
358 } while (err == -EDEADLK);
359
360 ww_acquire_done(ww_ctx);
361
362 mutex_unlock(®ulator_list_mutex);
363}
364
365/**
366 * of_get_child_regulator - get a child regulator device node
367 * based on supply name
368 * @parent: Parent device node
369 * @prop_name: Combination regulator supply name and "-supply"
370 *
371 * Traverse all child nodes.
372 * Extract the child regulator device node corresponding to the supply name.
373 * returns the device node corresponding to the regulator if found, else
374 * returns NULL.
375 */
376static struct device_node *of_get_child_regulator(struct device_node *parent,
377 const char *prop_name)
378{
379 struct device_node *regnode = NULL;
380 struct device_node *child = NULL;
381
382 for_each_child_of_node(parent, child) {
383 regnode = of_parse_phandle(child, prop_name, 0);
384
385 if (!regnode) {
386 regnode = of_get_child_regulator(child, prop_name);
387 if (regnode)
388 goto err_node_put;
389 } else {
390 goto err_node_put;
391 }
392 }
393 return NULL;
394
395err_node_put:
396 of_node_put(child);
397 return regnode;
398}
399
400/**
401 * of_get_regulator - get a regulator device node based on supply name
402 * @dev: Device pointer for the consumer (of regulator) device
403 * @supply: regulator supply name
404 *
405 * Extract the regulator device node corresponding to the supply name.
406 * returns the device node corresponding to the regulator if found, else
407 * returns NULL.
408 */
409static struct device_node *of_get_regulator(struct device *dev, const char *supply)
410{
411 struct device_node *regnode = NULL;
412 char prop_name[32]; /* 32 is max size of property name */
413
414 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
415
416 snprintf(prop_name, 32, "%s-supply", supply);
417 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
418
419 if (!regnode) {
420 regnode = of_get_child_regulator(dev->of_node, prop_name);
421 if (regnode)
422 return regnode;
423
424 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425 prop_name, dev->of_node);
426 return NULL;
427 }
428 return regnode;
429}
430
431/* Platform voltage constraint check */
432int regulator_check_voltage(struct regulator_dev *rdev,
433 int *min_uV, int *max_uV)
434{
435 BUG_ON(*min_uV > *max_uV);
436
437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438 rdev_err(rdev, "voltage operation not allowed\n");
439 return -EPERM;
440 }
441
442 if (*max_uV > rdev->constraints->max_uV)
443 *max_uV = rdev->constraints->max_uV;
444 if (*min_uV < rdev->constraints->min_uV)
445 *min_uV = rdev->constraints->min_uV;
446
447 if (*min_uV > *max_uV) {
448 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449 *min_uV, *max_uV);
450 return -EINVAL;
451 }
452
453 return 0;
454}
455
456/* return 0 if the state is valid */
457static int regulator_check_states(suspend_state_t state)
458{
459 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
460}
461
462/* Make sure we select a voltage that suits the needs of all
463 * regulator consumers
464 */
465int regulator_check_consumers(struct regulator_dev *rdev,
466 int *min_uV, int *max_uV,
467 suspend_state_t state)
468{
469 struct regulator *regulator;
470 struct regulator_voltage *voltage;
471
472 list_for_each_entry(regulator, &rdev->consumer_list, list) {
473 voltage = ®ulator->voltage[state];
474 /*
475 * Assume consumers that didn't say anything are OK
476 * with anything in the constraint range.
477 */
478 if (!voltage->min_uV && !voltage->max_uV)
479 continue;
480
481 if (*max_uV > voltage->max_uV)
482 *max_uV = voltage->max_uV;
483 if (*min_uV < voltage->min_uV)
484 *min_uV = voltage->min_uV;
485 }
486
487 if (*min_uV > *max_uV) {
488 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489 *min_uV, *max_uV);
490 return -EINVAL;
491 }
492
493 return 0;
494}
495
496/* current constraint check */
497static int regulator_check_current_limit(struct regulator_dev *rdev,
498 int *min_uA, int *max_uA)
499{
500 BUG_ON(*min_uA > *max_uA);
501
502 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503 rdev_err(rdev, "current operation not allowed\n");
504 return -EPERM;
505 }
506
507 if (*max_uA > rdev->constraints->max_uA)
508 *max_uA = rdev->constraints->max_uA;
509 if (*min_uA < rdev->constraints->min_uA)
510 *min_uA = rdev->constraints->min_uA;
511
512 if (*min_uA > *max_uA) {
513 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514 *min_uA, *max_uA);
515 return -EINVAL;
516 }
517
518 return 0;
519}
520
521/* operating mode constraint check */
522static int regulator_mode_constrain(struct regulator_dev *rdev,
523 unsigned int *mode)
524{
525 switch (*mode) {
526 case REGULATOR_MODE_FAST:
527 case REGULATOR_MODE_NORMAL:
528 case REGULATOR_MODE_IDLE:
529 case REGULATOR_MODE_STANDBY:
530 break;
531 default:
532 rdev_err(rdev, "invalid mode %x specified\n", *mode);
533 return -EINVAL;
534 }
535
536 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537 rdev_err(rdev, "mode operation not allowed\n");
538 return -EPERM;
539 }
540
541 /* The modes are bitmasks, the most power hungry modes having
542 * the lowest values. If the requested mode isn't supported
543 * try higher modes. */
544 while (*mode) {
545 if (rdev->constraints->valid_modes_mask & *mode)
546 return 0;
547 *mode /= 2;
548 }
549
550 return -EINVAL;
551}
552
553static inline struct regulator_state *
554regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
555{
556 if (rdev->constraints == NULL)
557 return NULL;
558
559 switch (state) {
560 case PM_SUSPEND_STANDBY:
561 return &rdev->constraints->state_standby;
562 case PM_SUSPEND_MEM:
563 return &rdev->constraints->state_mem;
564 case PM_SUSPEND_MAX:
565 return &rdev->constraints->state_disk;
566 default:
567 return NULL;
568 }
569}
570
571static ssize_t regulator_uV_show(struct device *dev,
572 struct device_attribute *attr, char *buf)
573{
574 struct regulator_dev *rdev = dev_get_drvdata(dev);
575 int uV;
576
577 regulator_lock(rdev);
578 uV = regulator_get_voltage_rdev(rdev);
579 regulator_unlock(rdev);
580
581 if (uV < 0)
582 return uV;
583 return sprintf(buf, "%d\n", uV);
584}
585static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
586
587static ssize_t regulator_uA_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589{
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
593}
594static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
595
596static ssize_t name_show(struct device *dev, struct device_attribute *attr,
597 char *buf)
598{
599 struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601 return sprintf(buf, "%s\n", rdev_get_name(rdev));
602}
603static DEVICE_ATTR_RO(name);
604
605static const char *regulator_opmode_to_str(int mode)
606{
607 switch (mode) {
608 case REGULATOR_MODE_FAST:
609 return "fast";
610 case REGULATOR_MODE_NORMAL:
611 return "normal";
612 case REGULATOR_MODE_IDLE:
613 return "idle";
614 case REGULATOR_MODE_STANDBY:
615 return "standby";
616 }
617 return "unknown";
618}
619
620static ssize_t regulator_print_opmode(char *buf, int mode)
621{
622 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
623}
624
625static ssize_t regulator_opmode_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
627{
628 struct regulator_dev *rdev = dev_get_drvdata(dev);
629
630 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
631}
632static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
633
634static ssize_t regulator_print_state(char *buf, int state)
635{
636 if (state > 0)
637 return sprintf(buf, "enabled\n");
638 else if (state == 0)
639 return sprintf(buf, "disabled\n");
640 else
641 return sprintf(buf, "unknown\n");
642}
643
644static ssize_t regulator_state_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
646{
647 struct regulator_dev *rdev = dev_get_drvdata(dev);
648 ssize_t ret;
649
650 regulator_lock(rdev);
651 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
652 regulator_unlock(rdev);
653
654 return ret;
655}
656static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
657
658static ssize_t regulator_status_show(struct device *dev,
659 struct device_attribute *attr, char *buf)
660{
661 struct regulator_dev *rdev = dev_get_drvdata(dev);
662 int status;
663 char *label;
664
665 status = rdev->desc->ops->get_status(rdev);
666 if (status < 0)
667 return status;
668
669 switch (status) {
670 case REGULATOR_STATUS_OFF:
671 label = "off";
672 break;
673 case REGULATOR_STATUS_ON:
674 label = "on";
675 break;
676 case REGULATOR_STATUS_ERROR:
677 label = "error";
678 break;
679 case REGULATOR_STATUS_FAST:
680 label = "fast";
681 break;
682 case REGULATOR_STATUS_NORMAL:
683 label = "normal";
684 break;
685 case REGULATOR_STATUS_IDLE:
686 label = "idle";
687 break;
688 case REGULATOR_STATUS_STANDBY:
689 label = "standby";
690 break;
691 case REGULATOR_STATUS_BYPASS:
692 label = "bypass";
693 break;
694 case REGULATOR_STATUS_UNDEFINED:
695 label = "undefined";
696 break;
697 default:
698 return -ERANGE;
699 }
700
701 return sprintf(buf, "%s\n", label);
702}
703static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
704
705static ssize_t regulator_min_uA_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
707{
708 struct regulator_dev *rdev = dev_get_drvdata(dev);
709
710 if (!rdev->constraints)
711 return sprintf(buf, "constraint not defined\n");
712
713 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
714}
715static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
716
717static ssize_t regulator_max_uA_show(struct device *dev,
718 struct device_attribute *attr, char *buf)
719{
720 struct regulator_dev *rdev = dev_get_drvdata(dev);
721
722 if (!rdev->constraints)
723 return sprintf(buf, "constraint not defined\n");
724
725 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
726}
727static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
728
729static ssize_t regulator_min_uV_show(struct device *dev,
730 struct device_attribute *attr, char *buf)
731{
732 struct regulator_dev *rdev = dev_get_drvdata(dev);
733
734 if (!rdev->constraints)
735 return sprintf(buf, "constraint not defined\n");
736
737 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
738}
739static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
740
741static ssize_t regulator_max_uV_show(struct device *dev,
742 struct device_attribute *attr, char *buf)
743{
744 struct regulator_dev *rdev = dev_get_drvdata(dev);
745
746 if (!rdev->constraints)
747 return sprintf(buf, "constraint not defined\n");
748
749 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
750}
751static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
752
753static ssize_t regulator_total_uA_show(struct device *dev,
754 struct device_attribute *attr, char *buf)
755{
756 struct regulator_dev *rdev = dev_get_drvdata(dev);
757 struct regulator *regulator;
758 int uA = 0;
759
760 regulator_lock(rdev);
761 list_for_each_entry(regulator, &rdev->consumer_list, list) {
762 if (regulator->enable_count)
763 uA += regulator->uA_load;
764 }
765 regulator_unlock(rdev);
766 return sprintf(buf, "%d\n", uA);
767}
768static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
769
770static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
771 char *buf)
772{
773 struct regulator_dev *rdev = dev_get_drvdata(dev);
774 return sprintf(buf, "%d\n", rdev->use_count);
775}
776static DEVICE_ATTR_RO(num_users);
777
778static ssize_t type_show(struct device *dev, struct device_attribute *attr,
779 char *buf)
780{
781 struct regulator_dev *rdev = dev_get_drvdata(dev);
782
783 switch (rdev->desc->type) {
784 case REGULATOR_VOLTAGE:
785 return sprintf(buf, "voltage\n");
786 case REGULATOR_CURRENT:
787 return sprintf(buf, "current\n");
788 }
789 return sprintf(buf, "unknown\n");
790}
791static DEVICE_ATTR_RO(type);
792
793static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
794 struct device_attribute *attr, char *buf)
795{
796 struct regulator_dev *rdev = dev_get_drvdata(dev);
797
798 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
799}
800static DEVICE_ATTR(suspend_mem_microvolts, 0444,
801 regulator_suspend_mem_uV_show, NULL);
802
803static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
804 struct device_attribute *attr, char *buf)
805{
806 struct regulator_dev *rdev = dev_get_drvdata(dev);
807
808 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
809}
810static DEVICE_ATTR(suspend_disk_microvolts, 0444,
811 regulator_suspend_disk_uV_show, NULL);
812
813static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
814 struct device_attribute *attr, char *buf)
815{
816 struct regulator_dev *rdev = dev_get_drvdata(dev);
817
818 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
819}
820static DEVICE_ATTR(suspend_standby_microvolts, 0444,
821 regulator_suspend_standby_uV_show, NULL);
822
823static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
825{
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
827
828 return regulator_print_opmode(buf,
829 rdev->constraints->state_mem.mode);
830}
831static DEVICE_ATTR(suspend_mem_mode, 0444,
832 regulator_suspend_mem_mode_show, NULL);
833
834static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
835 struct device_attribute *attr, char *buf)
836{
837 struct regulator_dev *rdev = dev_get_drvdata(dev);
838
839 return regulator_print_opmode(buf,
840 rdev->constraints->state_disk.mode);
841}
842static DEVICE_ATTR(suspend_disk_mode, 0444,
843 regulator_suspend_disk_mode_show, NULL);
844
845static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
847{
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_standby.mode);
852}
853static DEVICE_ATTR(suspend_standby_mode, 0444,
854 regulator_suspend_standby_mode_show, NULL);
855
856static ssize_t regulator_suspend_mem_state_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
858{
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861 return regulator_print_state(buf,
862 rdev->constraints->state_mem.enabled);
863}
864static DEVICE_ATTR(suspend_mem_state, 0444,
865 regulator_suspend_mem_state_show, NULL);
866
867static ssize_t regulator_suspend_disk_state_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
869{
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872 return regulator_print_state(buf,
873 rdev->constraints->state_disk.enabled);
874}
875static DEVICE_ATTR(suspend_disk_state, 0444,
876 regulator_suspend_disk_state_show, NULL);
877
878static ssize_t regulator_suspend_standby_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
880{
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883 return regulator_print_state(buf,
884 rdev->constraints->state_standby.enabled);
885}
886static DEVICE_ATTR(suspend_standby_state, 0444,
887 regulator_suspend_standby_state_show, NULL);
888
889static ssize_t regulator_bypass_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
891{
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893 const char *report;
894 bool bypass;
895 int ret;
896
897 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
898
899 if (ret != 0)
900 report = "unknown";
901 else if (bypass)
902 report = "enabled";
903 else
904 report = "disabled";
905
906 return sprintf(buf, "%s\n", report);
907}
908static DEVICE_ATTR(bypass, 0444,
909 regulator_bypass_show, NULL);
910
911/* Calculate the new optimum regulator operating mode based on the new total
912 * consumer load. All locks held by caller */
913static int drms_uA_update(struct regulator_dev *rdev)
914{
915 struct regulator *sibling;
916 int current_uA = 0, output_uV, input_uV, err;
917 unsigned int mode;
918
919 /*
920 * first check to see if we can set modes at all, otherwise just
921 * tell the consumer everything is OK.
922 */
923 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
924 rdev_dbg(rdev, "DRMS operation not allowed\n");
925 return 0;
926 }
927
928 if (!rdev->desc->ops->get_optimum_mode &&
929 !rdev->desc->ops->set_load)
930 return 0;
931
932 if (!rdev->desc->ops->set_mode &&
933 !rdev->desc->ops->set_load)
934 return -EINVAL;
935
936 /* calc total requested load */
937 list_for_each_entry(sibling, &rdev->consumer_list, list) {
938 if (sibling->enable_count)
939 current_uA += sibling->uA_load;
940 }
941
942 current_uA += rdev->constraints->system_load;
943
944 if (rdev->desc->ops->set_load) {
945 /* set the optimum mode for our new total regulator load */
946 err = rdev->desc->ops->set_load(rdev, current_uA);
947 if (err < 0)
948 rdev_err(rdev, "failed to set load %d\n", current_uA);
949 } else {
950 /* get output voltage */
951 output_uV = regulator_get_voltage_rdev(rdev);
952 if (output_uV <= 0) {
953 rdev_err(rdev, "invalid output voltage found\n");
954 return -EINVAL;
955 }
956
957 /* get input voltage */
958 input_uV = 0;
959 if (rdev->supply)
960 input_uV = regulator_get_voltage(rdev->supply);
961 if (input_uV <= 0)
962 input_uV = rdev->constraints->input_uV;
963 if (input_uV <= 0) {
964 rdev_err(rdev, "invalid input voltage found\n");
965 return -EINVAL;
966 }
967
968 /* now get the optimum mode for our new total regulator load */
969 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
970 output_uV, current_uA);
971
972 /* check the new mode is allowed */
973 err = regulator_mode_constrain(rdev, &mode);
974 if (err < 0) {
975 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
976 current_uA, input_uV, output_uV);
977 return err;
978 }
979
980 err = rdev->desc->ops->set_mode(rdev, mode);
981 if (err < 0)
982 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
983 }
984
985 return err;
986}
987
988static int suspend_set_state(struct regulator_dev *rdev,
989 suspend_state_t state)
990{
991 int ret = 0;
992 struct regulator_state *rstate;
993
994 rstate = regulator_get_suspend_state(rdev, state);
995 if (rstate == NULL)
996 return 0;
997
998 /* If we have no suspend mode configuration don't set anything;
999 * only warn if the driver implements set_suspend_voltage or
1000 * set_suspend_mode callback.
1001 */
1002 if (rstate->enabled != ENABLE_IN_SUSPEND &&
1003 rstate->enabled != DISABLE_IN_SUSPEND) {
1004 if (rdev->desc->ops->set_suspend_voltage ||
1005 rdev->desc->ops->set_suspend_mode)
1006 rdev_warn(rdev, "No configuration\n");
1007 return 0;
1008 }
1009
1010 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1011 rdev->desc->ops->set_suspend_enable)
1012 ret = rdev->desc->ops->set_suspend_enable(rdev);
1013 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1014 rdev->desc->ops->set_suspend_disable)
1015 ret = rdev->desc->ops->set_suspend_disable(rdev);
1016 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1017 ret = 0;
1018
1019 if (ret < 0) {
1020 rdev_err(rdev, "failed to enabled/disable\n");
1021 return ret;
1022 }
1023
1024 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1025 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to set voltage\n");
1028 return ret;
1029 }
1030 }
1031
1032 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1033 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1034 if (ret < 0) {
1035 rdev_err(rdev, "failed to set mode\n");
1036 return ret;
1037 }
1038 }
1039
1040 return ret;
1041}
1042
1043static void print_constraints(struct regulator_dev *rdev)
1044{
1045 struct regulation_constraints *constraints = rdev->constraints;
1046 char buf[160] = "";
1047 size_t len = sizeof(buf) - 1;
1048 int count = 0;
1049 int ret;
1050
1051 if (constraints->min_uV && constraints->max_uV) {
1052 if (constraints->min_uV == constraints->max_uV)
1053 count += scnprintf(buf + count, len - count, "%d mV ",
1054 constraints->min_uV / 1000);
1055 else
1056 count += scnprintf(buf + count, len - count,
1057 "%d <--> %d mV ",
1058 constraints->min_uV / 1000,
1059 constraints->max_uV / 1000);
1060 }
1061
1062 if (!constraints->min_uV ||
1063 constraints->min_uV != constraints->max_uV) {
1064 ret = regulator_get_voltage_rdev(rdev);
1065 if (ret > 0)
1066 count += scnprintf(buf + count, len - count,
1067 "at %d mV ", ret / 1000);
1068 }
1069
1070 if (constraints->uV_offset)
1071 count += scnprintf(buf + count, len - count, "%dmV offset ",
1072 constraints->uV_offset / 1000);
1073
1074 if (constraints->min_uA && constraints->max_uA) {
1075 if (constraints->min_uA == constraints->max_uA)
1076 count += scnprintf(buf + count, len - count, "%d mA ",
1077 constraints->min_uA / 1000);
1078 else
1079 count += scnprintf(buf + count, len - count,
1080 "%d <--> %d mA ",
1081 constraints->min_uA / 1000,
1082 constraints->max_uA / 1000);
1083 }
1084
1085 if (!constraints->min_uA ||
1086 constraints->min_uA != constraints->max_uA) {
1087 ret = _regulator_get_current_limit(rdev);
1088 if (ret > 0)
1089 count += scnprintf(buf + count, len - count,
1090 "at %d mA ", ret / 1000);
1091 }
1092
1093 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1094 count += scnprintf(buf + count, len - count, "fast ");
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1096 count += scnprintf(buf + count, len - count, "normal ");
1097 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1098 count += scnprintf(buf + count, len - count, "idle ");
1099 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1100 count += scnprintf(buf + count, len - count, "standby");
1101
1102 if (!count)
1103 scnprintf(buf, len, "no parameters");
1104
1105 rdev_dbg(rdev, "%s\n", buf);
1106
1107 if ((constraints->min_uV != constraints->max_uV) &&
1108 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1109 rdev_warn(rdev,
1110 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1111}
1112
1113static int machine_constraints_voltage(struct regulator_dev *rdev,
1114 struct regulation_constraints *constraints)
1115{
1116 const struct regulator_ops *ops = rdev->desc->ops;
1117 int ret;
1118
1119 /* do we need to apply the constraint voltage */
1120 if (rdev->constraints->apply_uV &&
1121 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1122 int target_min, target_max;
1123 int current_uV = regulator_get_voltage_rdev(rdev);
1124
1125 if (current_uV == -ENOTRECOVERABLE) {
1126 /* This regulator can't be read and must be initialized */
1127 rdev_info(rdev, "Setting %d-%duV\n",
1128 rdev->constraints->min_uV,
1129 rdev->constraints->max_uV);
1130 _regulator_do_set_voltage(rdev,
1131 rdev->constraints->min_uV,
1132 rdev->constraints->max_uV);
1133 current_uV = regulator_get_voltage_rdev(rdev);
1134 }
1135
1136 if (current_uV < 0) {
1137 rdev_err(rdev,
1138 "failed to get the current voltage(%d)\n",
1139 current_uV);
1140 return current_uV;
1141 }
1142
1143 /*
1144 * If we're below the minimum voltage move up to the
1145 * minimum voltage, if we're above the maximum voltage
1146 * then move down to the maximum.
1147 */
1148 target_min = current_uV;
1149 target_max = current_uV;
1150
1151 if (current_uV < rdev->constraints->min_uV) {
1152 target_min = rdev->constraints->min_uV;
1153 target_max = rdev->constraints->min_uV;
1154 }
1155
1156 if (current_uV > rdev->constraints->max_uV) {
1157 target_min = rdev->constraints->max_uV;
1158 target_max = rdev->constraints->max_uV;
1159 }
1160
1161 if (target_min != current_uV || target_max != current_uV) {
1162 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1163 current_uV, target_min, target_max);
1164 ret = _regulator_do_set_voltage(
1165 rdev, target_min, target_max);
1166 if (ret < 0) {
1167 rdev_err(rdev,
1168 "failed to apply %d-%duV constraint(%d)\n",
1169 target_min, target_max, ret);
1170 return ret;
1171 }
1172 }
1173 }
1174
1175 /* constrain machine-level voltage specs to fit
1176 * the actual range supported by this regulator.
1177 */
1178 if (ops->list_voltage && rdev->desc->n_voltages) {
1179 int count = rdev->desc->n_voltages;
1180 int i;
1181 int min_uV = INT_MAX;
1182 int max_uV = INT_MIN;
1183 int cmin = constraints->min_uV;
1184 int cmax = constraints->max_uV;
1185
1186 /* it's safe to autoconfigure fixed-voltage supplies
1187 and the constraints are used by list_voltage. */
1188 if (count == 1 && !cmin) {
1189 cmin = 1;
1190 cmax = INT_MAX;
1191 constraints->min_uV = cmin;
1192 constraints->max_uV = cmax;
1193 }
1194
1195 /* voltage constraints are optional */
1196 if ((cmin == 0) && (cmax == 0))
1197 return 0;
1198
1199 /* else require explicit machine-level constraints */
1200 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1201 rdev_err(rdev, "invalid voltage constraints\n");
1202 return -EINVAL;
1203 }
1204
1205 /* no need to loop voltages if range is continuous */
1206 if (rdev->desc->continuous_voltage_range)
1207 return 0;
1208
1209 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1210 for (i = 0; i < count; i++) {
1211 int value;
1212
1213 value = ops->list_voltage(rdev, i);
1214 if (value <= 0)
1215 continue;
1216
1217 /* maybe adjust [min_uV..max_uV] */
1218 if (value >= cmin && value < min_uV)
1219 min_uV = value;
1220 if (value <= cmax && value > max_uV)
1221 max_uV = value;
1222 }
1223
1224 /* final: [min_uV..max_uV] valid iff constraints valid */
1225 if (max_uV < min_uV) {
1226 rdev_err(rdev,
1227 "unsupportable voltage constraints %u-%uuV\n",
1228 min_uV, max_uV);
1229 return -EINVAL;
1230 }
1231
1232 /* use regulator's subset of machine constraints */
1233 if (constraints->min_uV < min_uV) {
1234 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1235 constraints->min_uV, min_uV);
1236 constraints->min_uV = min_uV;
1237 }
1238 if (constraints->max_uV > max_uV) {
1239 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1240 constraints->max_uV, max_uV);
1241 constraints->max_uV = max_uV;
1242 }
1243 }
1244
1245 return 0;
1246}
1247
1248static int machine_constraints_current(struct regulator_dev *rdev,
1249 struct regulation_constraints *constraints)
1250{
1251 const struct regulator_ops *ops = rdev->desc->ops;
1252 int ret;
1253
1254 if (!constraints->min_uA && !constraints->max_uA)
1255 return 0;
1256
1257 if (constraints->min_uA > constraints->max_uA) {
1258 rdev_err(rdev, "Invalid current constraints\n");
1259 return -EINVAL;
1260 }
1261
1262 if (!ops->set_current_limit || !ops->get_current_limit) {
1263 rdev_warn(rdev, "Operation of current configuration missing\n");
1264 return 0;
1265 }
1266
1267 /* Set regulator current in constraints range */
1268 ret = ops->set_current_limit(rdev, constraints->min_uA,
1269 constraints->max_uA);
1270 if (ret < 0) {
1271 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1272 return ret;
1273 }
1274
1275 return 0;
1276}
1277
1278static int _regulator_do_enable(struct regulator_dev *rdev);
1279
1280/**
1281 * set_machine_constraints - sets regulator constraints
1282 * @rdev: regulator source
1283 * @constraints: constraints to apply
1284 *
1285 * Allows platform initialisation code to define and constrain
1286 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1287 * Constraints *must* be set by platform code in order for some
1288 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1289 * set_mode.
1290 */
1291static int set_machine_constraints(struct regulator_dev *rdev,
1292 const struct regulation_constraints *constraints)
1293{
1294 int ret = 0;
1295 const struct regulator_ops *ops = rdev->desc->ops;
1296
1297 if (constraints)
1298 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1299 GFP_KERNEL);
1300 else
1301 rdev->constraints = kzalloc(sizeof(*constraints),
1302 GFP_KERNEL);
1303 if (!rdev->constraints)
1304 return -ENOMEM;
1305
1306 ret = machine_constraints_voltage(rdev, rdev->constraints);
1307 if (ret != 0)
1308 return ret;
1309
1310 ret = machine_constraints_current(rdev, rdev->constraints);
1311 if (ret != 0)
1312 return ret;
1313
1314 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1315 ret = ops->set_input_current_limit(rdev,
1316 rdev->constraints->ilim_uA);
1317 if (ret < 0) {
1318 rdev_err(rdev, "failed to set input limit\n");
1319 return ret;
1320 }
1321 }
1322
1323 /* do we need to setup our suspend state */
1324 if (rdev->constraints->initial_state) {
1325 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1326 if (ret < 0) {
1327 rdev_err(rdev, "failed to set suspend state\n");
1328 return ret;
1329 }
1330 }
1331
1332 if (rdev->constraints->initial_mode) {
1333 if (!ops->set_mode) {
1334 rdev_err(rdev, "no set_mode operation\n");
1335 return -EINVAL;
1336 }
1337
1338 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1339 if (ret < 0) {
1340 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1341 return ret;
1342 }
1343 } else if (rdev->constraints->system_load) {
1344 /*
1345 * We'll only apply the initial system load if an
1346 * initial mode wasn't specified.
1347 */
1348 drms_uA_update(rdev);
1349 }
1350
1351 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1352 && ops->set_ramp_delay) {
1353 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1354 if (ret < 0) {
1355 rdev_err(rdev, "failed to set ramp_delay\n");
1356 return ret;
1357 }
1358 }
1359
1360 if (rdev->constraints->pull_down && ops->set_pull_down) {
1361 ret = ops->set_pull_down(rdev);
1362 if (ret < 0) {
1363 rdev_err(rdev, "failed to set pull down\n");
1364 return ret;
1365 }
1366 }
1367
1368 if (rdev->constraints->soft_start && ops->set_soft_start) {
1369 ret = ops->set_soft_start(rdev);
1370 if (ret < 0) {
1371 rdev_err(rdev, "failed to set soft start\n");
1372 return ret;
1373 }
1374 }
1375
1376 if (rdev->constraints->over_current_protection
1377 && ops->set_over_current_protection) {
1378 ret = ops->set_over_current_protection(rdev);
1379 if (ret < 0) {
1380 rdev_err(rdev, "failed to set over current protection\n");
1381 return ret;
1382 }
1383 }
1384
1385 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1386 bool ad_state = (rdev->constraints->active_discharge ==
1387 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1388
1389 ret = ops->set_active_discharge(rdev, ad_state);
1390 if (ret < 0) {
1391 rdev_err(rdev, "failed to set active discharge\n");
1392 return ret;
1393 }
1394 }
1395
1396 /* If the constraints say the regulator should be on at this point
1397 * and we have control then make sure it is enabled.
1398 */
1399 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1400 if (rdev->supply) {
1401 ret = regulator_enable(rdev->supply);
1402 if (ret < 0) {
1403 _regulator_put(rdev->supply);
1404 rdev->supply = NULL;
1405 return ret;
1406 }
1407 }
1408
1409 ret = _regulator_do_enable(rdev);
1410 if (ret < 0 && ret != -EINVAL) {
1411 rdev_err(rdev, "failed to enable\n");
1412 return ret;
1413 }
1414
1415 if (rdev->constraints->always_on)
1416 rdev->use_count++;
1417 }
1418
1419 print_constraints(rdev);
1420 return 0;
1421}
1422
1423/**
1424 * set_supply - set regulator supply regulator
1425 * @rdev: regulator name
1426 * @supply_rdev: supply regulator name
1427 *
1428 * Called by platform initialisation code to set the supply regulator for this
1429 * regulator. This ensures that a regulators supply will also be enabled by the
1430 * core if it's child is enabled.
1431 */
1432static int set_supply(struct regulator_dev *rdev,
1433 struct regulator_dev *supply_rdev)
1434{
1435 int err;
1436
1437 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1438
1439 if (!try_module_get(supply_rdev->owner))
1440 return -ENODEV;
1441
1442 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1443 if (rdev->supply == NULL) {
1444 err = -ENOMEM;
1445 return err;
1446 }
1447 supply_rdev->open_count++;
1448
1449 return 0;
1450}
1451
1452/**
1453 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1454 * @rdev: regulator source
1455 * @consumer_dev_name: dev_name() string for device supply applies to
1456 * @supply: symbolic name for supply
1457 *
1458 * Allows platform initialisation code to map physical regulator
1459 * sources to symbolic names for supplies for use by devices. Devices
1460 * should use these symbolic names to request regulators, avoiding the
1461 * need to provide board-specific regulator names as platform data.
1462 */
1463static int set_consumer_device_supply(struct regulator_dev *rdev,
1464 const char *consumer_dev_name,
1465 const char *supply)
1466{
1467 struct regulator_map *node, *new_node;
1468 int has_dev;
1469
1470 if (supply == NULL)
1471 return -EINVAL;
1472
1473 if (consumer_dev_name != NULL)
1474 has_dev = 1;
1475 else
1476 has_dev = 0;
1477
1478 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1479 if (new_node == NULL)
1480 return -ENOMEM;
1481
1482 new_node->regulator = rdev;
1483 new_node->supply = supply;
1484
1485 if (has_dev) {
1486 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1487 if (new_node->dev_name == NULL) {
1488 kfree(new_node);
1489 return -ENOMEM;
1490 }
1491 }
1492
1493 mutex_lock(®ulator_list_mutex);
1494 list_for_each_entry(node, ®ulator_map_list, list) {
1495 if (node->dev_name && consumer_dev_name) {
1496 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1497 continue;
1498 } else if (node->dev_name || consumer_dev_name) {
1499 continue;
1500 }
1501
1502 if (strcmp(node->supply, supply) != 0)
1503 continue;
1504
1505 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1506 consumer_dev_name,
1507 dev_name(&node->regulator->dev),
1508 node->regulator->desc->name,
1509 supply,
1510 dev_name(&rdev->dev), rdev_get_name(rdev));
1511 goto fail;
1512 }
1513
1514 list_add(&new_node->list, ®ulator_map_list);
1515 mutex_unlock(®ulator_list_mutex);
1516
1517 return 0;
1518
1519fail:
1520 mutex_unlock(®ulator_list_mutex);
1521 kfree(new_node->dev_name);
1522 kfree(new_node);
1523 return -EBUSY;
1524}
1525
1526static void unset_regulator_supplies(struct regulator_dev *rdev)
1527{
1528 struct regulator_map *node, *n;
1529
1530 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1531 if (rdev == node->regulator) {
1532 list_del(&node->list);
1533 kfree(node->dev_name);
1534 kfree(node);
1535 }
1536 }
1537}
1538
1539#ifdef CONFIG_DEBUG_FS
1540static ssize_t constraint_flags_read_file(struct file *file,
1541 char __user *user_buf,
1542 size_t count, loff_t *ppos)
1543{
1544 const struct regulator *regulator = file->private_data;
1545 const struct regulation_constraints *c = regulator->rdev->constraints;
1546 char *buf;
1547 ssize_t ret;
1548
1549 if (!c)
1550 return 0;
1551
1552 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1553 if (!buf)
1554 return -ENOMEM;
1555
1556 ret = snprintf(buf, PAGE_SIZE,
1557 "always_on: %u\n"
1558 "boot_on: %u\n"
1559 "apply_uV: %u\n"
1560 "ramp_disable: %u\n"
1561 "soft_start: %u\n"
1562 "pull_down: %u\n"
1563 "over_current_protection: %u\n",
1564 c->always_on,
1565 c->boot_on,
1566 c->apply_uV,
1567 c->ramp_disable,
1568 c->soft_start,
1569 c->pull_down,
1570 c->over_current_protection);
1571
1572 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1573 kfree(buf);
1574
1575 return ret;
1576}
1577
1578#endif
1579
1580static const struct file_operations constraint_flags_fops = {
1581#ifdef CONFIG_DEBUG_FS
1582 .open = simple_open,
1583 .read = constraint_flags_read_file,
1584 .llseek = default_llseek,
1585#endif
1586};
1587
1588#define REG_STR_SIZE 64
1589
1590static struct regulator *create_regulator(struct regulator_dev *rdev,
1591 struct device *dev,
1592 const char *supply_name)
1593{
1594 struct regulator *regulator;
1595 int err;
1596
1597 if (dev) {
1598 char buf[REG_STR_SIZE];
1599 int size;
1600
1601 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1602 dev->kobj.name, supply_name);
1603 if (size >= REG_STR_SIZE)
1604 return NULL;
1605
1606 supply_name = kstrdup(buf, GFP_KERNEL);
1607 if (supply_name == NULL)
1608 return NULL;
1609 } else {
1610 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611 if (supply_name == NULL)
1612 return NULL;
1613 }
1614
1615 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1616 if (regulator == NULL) {
1617 kfree(supply_name);
1618 return NULL;
1619 }
1620
1621 regulator->rdev = rdev;
1622 regulator->supply_name = supply_name;
1623
1624 regulator_lock(rdev);
1625 list_add(®ulator->list, &rdev->consumer_list);
1626 regulator_unlock(rdev);
1627
1628 if (dev) {
1629 regulator->dev = dev;
1630
1631 /* Add a link to the device sysfs entry */
1632 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1633 supply_name);
1634 if (err) {
1635 rdev_dbg(rdev, "could not add device link %s err %d\n",
1636 dev->kobj.name, err);
1637 /* non-fatal */
1638 }
1639 }
1640
1641 regulator->debugfs = debugfs_create_dir(supply_name,
1642 rdev->debugfs);
1643 if (!regulator->debugfs) {
1644 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1645 } else {
1646 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1647 ®ulator->uA_load);
1648 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1649 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1650 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1651 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1652 debugfs_create_file("constraint_flags", 0444,
1653 regulator->debugfs, regulator,
1654 &constraint_flags_fops);
1655 }
1656
1657 /*
1658 * Check now if the regulator is an always on regulator - if
1659 * it is then we don't need to do nearly so much work for
1660 * enable/disable calls.
1661 */
1662 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1663 _regulator_is_enabled(rdev))
1664 regulator->always_on = true;
1665
1666 return regulator;
1667}
1668
1669static int _regulator_get_enable_time(struct regulator_dev *rdev)
1670{
1671 if (rdev->constraints && rdev->constraints->enable_time)
1672 return rdev->constraints->enable_time;
1673 if (rdev->desc->ops->enable_time)
1674 return rdev->desc->ops->enable_time(rdev);
1675 return rdev->desc->enable_time;
1676}
1677
1678static struct regulator_supply_alias *regulator_find_supply_alias(
1679 struct device *dev, const char *supply)
1680{
1681 struct regulator_supply_alias *map;
1682
1683 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1684 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1685 return map;
1686
1687 return NULL;
1688}
1689
1690static void regulator_supply_alias(struct device **dev, const char **supply)
1691{
1692 struct regulator_supply_alias *map;
1693
1694 map = regulator_find_supply_alias(*dev, *supply);
1695 if (map) {
1696 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1697 *supply, map->alias_supply,
1698 dev_name(map->alias_dev));
1699 *dev = map->alias_dev;
1700 *supply = map->alias_supply;
1701 }
1702}
1703
1704static int regulator_match(struct device *dev, const void *data)
1705{
1706 struct regulator_dev *r = dev_to_rdev(dev);
1707
1708 return strcmp(rdev_get_name(r), data) == 0;
1709}
1710
1711static struct regulator_dev *regulator_lookup_by_name(const char *name)
1712{
1713 struct device *dev;
1714
1715 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1716
1717 return dev ? dev_to_rdev(dev) : NULL;
1718}
1719
1720/**
1721 * regulator_dev_lookup - lookup a regulator device.
1722 * @dev: device for regulator "consumer".
1723 * @supply: Supply name or regulator ID.
1724 *
1725 * If successful, returns a struct regulator_dev that corresponds to the name
1726 * @supply and with the embedded struct device refcount incremented by one.
1727 * The refcount must be dropped by calling put_device().
1728 * On failure one of the following ERR-PTR-encoded values is returned:
1729 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1730 * in the future.
1731 */
1732static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1733 const char *supply)
1734{
1735 struct regulator_dev *r = NULL;
1736 struct device_node *node;
1737 struct regulator_map *map;
1738 const char *devname = NULL;
1739
1740 regulator_supply_alias(&dev, &supply);
1741
1742 /* first do a dt based lookup */
1743 if (dev && dev->of_node) {
1744 node = of_get_regulator(dev, supply);
1745 if (node) {
1746 r = of_find_regulator_by_node(node);
1747 if (r)
1748 return r;
1749
1750 /*
1751 * We have a node, but there is no device.
1752 * assume it has not registered yet.
1753 */
1754 return ERR_PTR(-EPROBE_DEFER);
1755 }
1756 }
1757
1758 /* if not found, try doing it non-dt way */
1759 if (dev)
1760 devname = dev_name(dev);
1761
1762 mutex_lock(®ulator_list_mutex);
1763 list_for_each_entry(map, ®ulator_map_list, list) {
1764 /* If the mapping has a device set up it must match */
1765 if (map->dev_name &&
1766 (!devname || strcmp(map->dev_name, devname)))
1767 continue;
1768
1769 if (strcmp(map->supply, supply) == 0 &&
1770 get_device(&map->regulator->dev)) {
1771 r = map->regulator;
1772 break;
1773 }
1774 }
1775 mutex_unlock(®ulator_list_mutex);
1776
1777 if (r)
1778 return r;
1779
1780 r = regulator_lookup_by_name(supply);
1781 if (r)
1782 return r;
1783
1784 return ERR_PTR(-ENODEV);
1785}
1786
1787static int regulator_resolve_supply(struct regulator_dev *rdev)
1788{
1789 struct regulator_dev *r;
1790 struct device *dev = rdev->dev.parent;
1791 int ret;
1792
1793 /* No supply to resolve? */
1794 if (!rdev->supply_name)
1795 return 0;
1796
1797 /* Supply already resolved? */
1798 if (rdev->supply)
1799 return 0;
1800
1801 r = regulator_dev_lookup(dev, rdev->supply_name);
1802 if (IS_ERR(r)) {
1803 ret = PTR_ERR(r);
1804
1805 /* Did the lookup explicitly defer for us? */
1806 if (ret == -EPROBE_DEFER)
1807 return ret;
1808
1809 if (have_full_constraints()) {
1810 r = dummy_regulator_rdev;
1811 get_device(&r->dev);
1812 } else {
1813 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1814 rdev->supply_name, rdev->desc->name);
1815 return -EPROBE_DEFER;
1816 }
1817 }
1818
1819 /*
1820 * If the supply's parent device is not the same as the
1821 * regulator's parent device, then ensure the parent device
1822 * is bound before we resolve the supply, in case the parent
1823 * device get probe deferred and unregisters the supply.
1824 */
1825 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1826 if (!device_is_bound(r->dev.parent)) {
1827 put_device(&r->dev);
1828 return -EPROBE_DEFER;
1829 }
1830 }
1831
1832 /* Recursively resolve the supply of the supply */
1833 ret = regulator_resolve_supply(r);
1834 if (ret < 0) {
1835 put_device(&r->dev);
1836 return ret;
1837 }
1838
1839 ret = set_supply(rdev, r);
1840 if (ret < 0) {
1841 put_device(&r->dev);
1842 return ret;
1843 }
1844
1845 /*
1846 * In set_machine_constraints() we may have turned this regulator on
1847 * but we couldn't propagate to the supply if it hadn't been resolved
1848 * yet. Do it now.
1849 */
1850 if (rdev->use_count) {
1851 ret = regulator_enable(rdev->supply);
1852 if (ret < 0) {
1853 _regulator_put(rdev->supply);
1854 rdev->supply = NULL;
1855 return ret;
1856 }
1857 }
1858
1859 return 0;
1860}
1861
1862/* Internal regulator request function */
1863struct regulator *_regulator_get(struct device *dev, const char *id,
1864 enum regulator_get_type get_type)
1865{
1866 struct regulator_dev *rdev;
1867 struct regulator *regulator;
1868 struct device_link *link;
1869 int ret;
1870
1871 if (get_type >= MAX_GET_TYPE) {
1872 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1873 return ERR_PTR(-EINVAL);
1874 }
1875
1876 if (id == NULL) {
1877 pr_err("get() with no identifier\n");
1878 return ERR_PTR(-EINVAL);
1879 }
1880
1881 rdev = regulator_dev_lookup(dev, id);
1882 if (IS_ERR(rdev)) {
1883 ret = PTR_ERR(rdev);
1884
1885 /*
1886 * If regulator_dev_lookup() fails with error other
1887 * than -ENODEV our job here is done, we simply return it.
1888 */
1889 if (ret != -ENODEV)
1890 return ERR_PTR(ret);
1891
1892 if (!have_full_constraints()) {
1893 dev_warn(dev,
1894 "incomplete constraints, dummy supplies not allowed\n");
1895 return ERR_PTR(-ENODEV);
1896 }
1897
1898 switch (get_type) {
1899 case NORMAL_GET:
1900 /*
1901 * Assume that a regulator is physically present and
1902 * enabled, even if it isn't hooked up, and just
1903 * provide a dummy.
1904 */
1905 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1906 rdev = dummy_regulator_rdev;
1907 get_device(&rdev->dev);
1908 break;
1909
1910 case EXCLUSIVE_GET:
1911 dev_warn(dev,
1912 "dummy supplies not allowed for exclusive requests\n");
1913 fallthrough;
1914
1915 default:
1916 return ERR_PTR(-ENODEV);
1917 }
1918 }
1919
1920 if (rdev->exclusive) {
1921 regulator = ERR_PTR(-EPERM);
1922 put_device(&rdev->dev);
1923 return regulator;
1924 }
1925
1926 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1927 regulator = ERR_PTR(-EBUSY);
1928 put_device(&rdev->dev);
1929 return regulator;
1930 }
1931
1932 mutex_lock(®ulator_list_mutex);
1933 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1934 mutex_unlock(®ulator_list_mutex);
1935
1936 if (ret != 0) {
1937 regulator = ERR_PTR(-EPROBE_DEFER);
1938 put_device(&rdev->dev);
1939 return regulator;
1940 }
1941
1942 ret = regulator_resolve_supply(rdev);
1943 if (ret < 0) {
1944 regulator = ERR_PTR(ret);
1945 put_device(&rdev->dev);
1946 return regulator;
1947 }
1948
1949 if (!try_module_get(rdev->owner)) {
1950 regulator = ERR_PTR(-EPROBE_DEFER);
1951 put_device(&rdev->dev);
1952 return regulator;
1953 }
1954
1955 regulator = create_regulator(rdev, dev, id);
1956 if (regulator == NULL) {
1957 regulator = ERR_PTR(-ENOMEM);
1958 module_put(rdev->owner);
1959 put_device(&rdev->dev);
1960 return regulator;
1961 }
1962
1963 rdev->open_count++;
1964 if (get_type == EXCLUSIVE_GET) {
1965 rdev->exclusive = 1;
1966
1967 ret = _regulator_is_enabled(rdev);
1968 if (ret > 0)
1969 rdev->use_count = 1;
1970 else
1971 rdev->use_count = 0;
1972 }
1973
1974 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1975 if (!IS_ERR_OR_NULL(link))
1976 regulator->device_link = true;
1977
1978 return regulator;
1979}
1980
1981/**
1982 * regulator_get - lookup and obtain a reference to a regulator.
1983 * @dev: device for regulator "consumer"
1984 * @id: Supply name or regulator ID.
1985 *
1986 * Returns a struct regulator corresponding to the regulator producer,
1987 * or IS_ERR() condition containing errno.
1988 *
1989 * Use of supply names configured via regulator_set_device_supply() is
1990 * strongly encouraged. It is recommended that the supply name used
1991 * should match the name used for the supply and/or the relevant
1992 * device pins in the datasheet.
1993 */
1994struct regulator *regulator_get(struct device *dev, const char *id)
1995{
1996 return _regulator_get(dev, id, NORMAL_GET);
1997}
1998EXPORT_SYMBOL_GPL(regulator_get);
1999
2000/**
2001 * regulator_get_exclusive - obtain exclusive access to a regulator.
2002 * @dev: device for regulator "consumer"
2003 * @id: Supply name or regulator ID.
2004 *
2005 * Returns a struct regulator corresponding to the regulator producer,
2006 * or IS_ERR() condition containing errno. Other consumers will be
2007 * unable to obtain this regulator while this reference is held and the
2008 * use count for the regulator will be initialised to reflect the current
2009 * state of the regulator.
2010 *
2011 * This is intended for use by consumers which cannot tolerate shared
2012 * use of the regulator such as those which need to force the
2013 * regulator off for correct operation of the hardware they are
2014 * controlling.
2015 *
2016 * Use of supply names configured via regulator_set_device_supply() is
2017 * strongly encouraged. It is recommended that the supply name used
2018 * should match the name used for the supply and/or the relevant
2019 * device pins in the datasheet.
2020 */
2021struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2022{
2023 return _regulator_get(dev, id, EXCLUSIVE_GET);
2024}
2025EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2026
2027/**
2028 * regulator_get_optional - obtain optional access to a regulator.
2029 * @dev: device for regulator "consumer"
2030 * @id: Supply name or regulator ID.
2031 *
2032 * Returns a struct regulator corresponding to the regulator producer,
2033 * or IS_ERR() condition containing errno.
2034 *
2035 * This is intended for use by consumers for devices which can have
2036 * some supplies unconnected in normal use, such as some MMC devices.
2037 * It can allow the regulator core to provide stub supplies for other
2038 * supplies requested using normal regulator_get() calls without
2039 * disrupting the operation of drivers that can handle absent
2040 * supplies.
2041 *
2042 * Use of supply names configured via regulator_set_device_supply() is
2043 * strongly encouraged. It is recommended that the supply name used
2044 * should match the name used for the supply and/or the relevant
2045 * device pins in the datasheet.
2046 */
2047struct regulator *regulator_get_optional(struct device *dev, const char *id)
2048{
2049 return _regulator_get(dev, id, OPTIONAL_GET);
2050}
2051EXPORT_SYMBOL_GPL(regulator_get_optional);
2052
2053static void destroy_regulator(struct regulator *regulator)
2054{
2055 struct regulator_dev *rdev = regulator->rdev;
2056
2057 debugfs_remove_recursive(regulator->debugfs);
2058
2059 if (regulator->dev) {
2060 if (regulator->device_link)
2061 device_link_remove(regulator->dev, &rdev->dev);
2062
2063 /* remove any sysfs entries */
2064 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2065 }
2066
2067 regulator_lock(rdev);
2068 list_del(®ulator->list);
2069
2070 rdev->open_count--;
2071 rdev->exclusive = 0;
2072 regulator_unlock(rdev);
2073
2074 kfree_const(regulator->supply_name);
2075 kfree(regulator);
2076}
2077
2078/* regulator_list_mutex lock held by regulator_put() */
2079static void _regulator_put(struct regulator *regulator)
2080{
2081 struct regulator_dev *rdev;
2082
2083 if (IS_ERR_OR_NULL(regulator))
2084 return;
2085
2086 lockdep_assert_held_once(®ulator_list_mutex);
2087
2088 /* Docs say you must disable before calling regulator_put() */
2089 WARN_ON(regulator->enable_count);
2090
2091 rdev = regulator->rdev;
2092
2093 destroy_regulator(regulator);
2094
2095 module_put(rdev->owner);
2096 put_device(&rdev->dev);
2097}
2098
2099/**
2100 * regulator_put - "free" the regulator source
2101 * @regulator: regulator source
2102 *
2103 * Note: drivers must ensure that all regulator_enable calls made on this
2104 * regulator source are balanced by regulator_disable calls prior to calling
2105 * this function.
2106 */
2107void regulator_put(struct regulator *regulator)
2108{
2109 mutex_lock(®ulator_list_mutex);
2110 _regulator_put(regulator);
2111 mutex_unlock(®ulator_list_mutex);
2112}
2113EXPORT_SYMBOL_GPL(regulator_put);
2114
2115/**
2116 * regulator_register_supply_alias - Provide device alias for supply lookup
2117 *
2118 * @dev: device that will be given as the regulator "consumer"
2119 * @id: Supply name or regulator ID
2120 * @alias_dev: device that should be used to lookup the supply
2121 * @alias_id: Supply name or regulator ID that should be used to lookup the
2122 * supply
2123 *
2124 * All lookups for id on dev will instead be conducted for alias_id on
2125 * alias_dev.
2126 */
2127int regulator_register_supply_alias(struct device *dev, const char *id,
2128 struct device *alias_dev,
2129 const char *alias_id)
2130{
2131 struct regulator_supply_alias *map;
2132
2133 map = regulator_find_supply_alias(dev, id);
2134 if (map)
2135 return -EEXIST;
2136
2137 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2138 if (!map)
2139 return -ENOMEM;
2140
2141 map->src_dev = dev;
2142 map->src_supply = id;
2143 map->alias_dev = alias_dev;
2144 map->alias_supply = alias_id;
2145
2146 list_add(&map->list, ®ulator_supply_alias_list);
2147
2148 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2149 id, dev_name(dev), alias_id, dev_name(alias_dev));
2150
2151 return 0;
2152}
2153EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2154
2155/**
2156 * regulator_unregister_supply_alias - Remove device alias
2157 *
2158 * @dev: device that will be given as the regulator "consumer"
2159 * @id: Supply name or regulator ID
2160 *
2161 * Remove a lookup alias if one exists for id on dev.
2162 */
2163void regulator_unregister_supply_alias(struct device *dev, const char *id)
2164{
2165 struct regulator_supply_alias *map;
2166
2167 map = regulator_find_supply_alias(dev, id);
2168 if (map) {
2169 list_del(&map->list);
2170 kfree(map);
2171 }
2172}
2173EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2174
2175/**
2176 * regulator_bulk_register_supply_alias - register multiple aliases
2177 *
2178 * @dev: device that will be given as the regulator "consumer"
2179 * @id: List of supply names or regulator IDs
2180 * @alias_dev: device that should be used to lookup the supply
2181 * @alias_id: List of supply names or regulator IDs that should be used to
2182 * lookup the supply
2183 * @num_id: Number of aliases to register
2184 *
2185 * @return 0 on success, an errno on failure.
2186 *
2187 * This helper function allows drivers to register several supply
2188 * aliases in one operation. If any of the aliases cannot be
2189 * registered any aliases that were registered will be removed
2190 * before returning to the caller.
2191 */
2192int regulator_bulk_register_supply_alias(struct device *dev,
2193 const char *const *id,
2194 struct device *alias_dev,
2195 const char *const *alias_id,
2196 int num_id)
2197{
2198 int i;
2199 int ret;
2200
2201 for (i = 0; i < num_id; ++i) {
2202 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2203 alias_id[i]);
2204 if (ret < 0)
2205 goto err;
2206 }
2207
2208 return 0;
2209
2210err:
2211 dev_err(dev,
2212 "Failed to create supply alias %s,%s -> %s,%s\n",
2213 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2214
2215 while (--i >= 0)
2216 regulator_unregister_supply_alias(dev, id[i]);
2217
2218 return ret;
2219}
2220EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2221
2222/**
2223 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2224 *
2225 * @dev: device that will be given as the regulator "consumer"
2226 * @id: List of supply names or regulator IDs
2227 * @num_id: Number of aliases to unregister
2228 *
2229 * This helper function allows drivers to unregister several supply
2230 * aliases in one operation.
2231 */
2232void regulator_bulk_unregister_supply_alias(struct device *dev,
2233 const char *const *id,
2234 int num_id)
2235{
2236 int i;
2237
2238 for (i = 0; i < num_id; ++i)
2239 regulator_unregister_supply_alias(dev, id[i]);
2240}
2241EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2242
2243
2244/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2245static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2246 const struct regulator_config *config)
2247{
2248 struct regulator_enable_gpio *pin, *new_pin;
2249 struct gpio_desc *gpiod;
2250
2251 gpiod = config->ena_gpiod;
2252 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2253
2254 mutex_lock(®ulator_list_mutex);
2255
2256 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2257 if (pin->gpiod == gpiod) {
2258 rdev_dbg(rdev, "GPIO is already used\n");
2259 goto update_ena_gpio_to_rdev;
2260 }
2261 }
2262
2263 if (new_pin == NULL) {
2264 mutex_unlock(®ulator_list_mutex);
2265 return -ENOMEM;
2266 }
2267
2268 pin = new_pin;
2269 new_pin = NULL;
2270
2271 pin->gpiod = gpiod;
2272 list_add(&pin->list, ®ulator_ena_gpio_list);
2273
2274update_ena_gpio_to_rdev:
2275 pin->request_count++;
2276 rdev->ena_pin = pin;
2277
2278 mutex_unlock(®ulator_list_mutex);
2279 kfree(new_pin);
2280
2281 return 0;
2282}
2283
2284static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2285{
2286 struct regulator_enable_gpio *pin, *n;
2287
2288 if (!rdev->ena_pin)
2289 return;
2290
2291 /* Free the GPIO only in case of no use */
2292 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2293 if (pin != rdev->ena_pin)
2294 continue;
2295
2296 if (--pin->request_count)
2297 break;
2298
2299 gpiod_put(pin->gpiod);
2300 list_del(&pin->list);
2301 kfree(pin);
2302 break;
2303 }
2304
2305 rdev->ena_pin = NULL;
2306}
2307
2308/**
2309 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2310 * @rdev: regulator_dev structure
2311 * @enable: enable GPIO at initial use?
2312 *
2313 * GPIO is enabled in case of initial use. (enable_count is 0)
2314 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2315 */
2316static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2317{
2318 struct regulator_enable_gpio *pin = rdev->ena_pin;
2319
2320 if (!pin)
2321 return -EINVAL;
2322
2323 if (enable) {
2324 /* Enable GPIO at initial use */
2325 if (pin->enable_count == 0)
2326 gpiod_set_value_cansleep(pin->gpiod, 1);
2327
2328 pin->enable_count++;
2329 } else {
2330 if (pin->enable_count > 1) {
2331 pin->enable_count--;
2332 return 0;
2333 }
2334
2335 /* Disable GPIO if not used */
2336 if (pin->enable_count <= 1) {
2337 gpiod_set_value_cansleep(pin->gpiod, 0);
2338 pin->enable_count = 0;
2339 }
2340 }
2341
2342 return 0;
2343}
2344
2345/**
2346 * _regulator_enable_delay - a delay helper function
2347 * @delay: time to delay in microseconds
2348 *
2349 * Delay for the requested amount of time as per the guidelines in:
2350 *
2351 * Documentation/timers/timers-howto.rst
2352 *
2353 * The assumption here is that regulators will never be enabled in
2354 * atomic context and therefore sleeping functions can be used.
2355 */
2356static void _regulator_enable_delay(unsigned int delay)
2357{
2358 unsigned int ms = delay / 1000;
2359 unsigned int us = delay % 1000;
2360
2361 if (ms > 0) {
2362 /*
2363 * For small enough values, handle super-millisecond
2364 * delays in the usleep_range() call below.
2365 */
2366 if (ms < 20)
2367 us += ms * 1000;
2368 else
2369 msleep(ms);
2370 }
2371
2372 /*
2373 * Give the scheduler some room to coalesce with any other
2374 * wakeup sources. For delays shorter than 10 us, don't even
2375 * bother setting up high-resolution timers and just busy-
2376 * loop.
2377 */
2378 if (us >= 10)
2379 usleep_range(us, us + 100);
2380 else
2381 udelay(us);
2382}
2383
2384/**
2385 * _regulator_check_status_enabled
2386 *
2387 * A helper function to check if the regulator status can be interpreted
2388 * as 'regulator is enabled'.
2389 * @rdev: the regulator device to check
2390 *
2391 * Return:
2392 * * 1 - if status shows regulator is in enabled state
2393 * * 0 - if not enabled state
2394 * * Error Value - as received from ops->get_status()
2395 */
2396static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2397{
2398 int ret = rdev->desc->ops->get_status(rdev);
2399
2400 if (ret < 0) {
2401 rdev_info(rdev, "get_status returned error: %d\n", ret);
2402 return ret;
2403 }
2404
2405 switch (ret) {
2406 case REGULATOR_STATUS_OFF:
2407 case REGULATOR_STATUS_ERROR:
2408 case REGULATOR_STATUS_UNDEFINED:
2409 return 0;
2410 default:
2411 return 1;
2412 }
2413}
2414
2415static int _regulator_do_enable(struct regulator_dev *rdev)
2416{
2417 int ret, delay;
2418
2419 /* Query before enabling in case configuration dependent. */
2420 ret = _regulator_get_enable_time(rdev);
2421 if (ret >= 0) {
2422 delay = ret;
2423 } else {
2424 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2425 delay = 0;
2426 }
2427
2428 trace_regulator_enable(rdev_get_name(rdev));
2429
2430 if (rdev->desc->off_on_delay) {
2431 /* if needed, keep a distance of off_on_delay from last time
2432 * this regulator was disabled.
2433 */
2434 unsigned long start_jiffy = jiffies;
2435 unsigned long intended, max_delay, remaining;
2436
2437 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2438 intended = rdev->last_off_jiffy + max_delay;
2439
2440 if (time_before(start_jiffy, intended)) {
2441 /* calc remaining jiffies to deal with one-time
2442 * timer wrapping.
2443 * in case of multiple timer wrapping, either it can be
2444 * detected by out-of-range remaining, or it cannot be
2445 * detected and we get a penalty of
2446 * _regulator_enable_delay().
2447 */
2448 remaining = intended - start_jiffy;
2449 if (remaining <= max_delay)
2450 _regulator_enable_delay(
2451 jiffies_to_usecs(remaining));
2452 }
2453 }
2454
2455 if (rdev->ena_pin) {
2456 if (!rdev->ena_gpio_state) {
2457 ret = regulator_ena_gpio_ctrl(rdev, true);
2458 if (ret < 0)
2459 return ret;
2460 rdev->ena_gpio_state = 1;
2461 }
2462 } else if (rdev->desc->ops->enable) {
2463 ret = rdev->desc->ops->enable(rdev);
2464 if (ret < 0)
2465 return ret;
2466 } else {
2467 return -EINVAL;
2468 }
2469
2470 /* Allow the regulator to ramp; it would be useful to extend
2471 * this for bulk operations so that the regulators can ramp
2472 * together. */
2473 trace_regulator_enable_delay(rdev_get_name(rdev));
2474
2475 /* If poll_enabled_time is set, poll upto the delay calculated
2476 * above, delaying poll_enabled_time uS to check if the regulator
2477 * actually got enabled.
2478 * If the regulator isn't enabled after enable_delay has
2479 * expired, return -ETIMEDOUT.
2480 */
2481 if (rdev->desc->poll_enabled_time) {
2482 unsigned int time_remaining = delay;
2483
2484 while (time_remaining > 0) {
2485 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2486
2487 if (rdev->desc->ops->get_status) {
2488 ret = _regulator_check_status_enabled(rdev);
2489 if (ret < 0)
2490 return ret;
2491 else if (ret)
2492 break;
2493 } else if (rdev->desc->ops->is_enabled(rdev))
2494 break;
2495
2496 time_remaining -= rdev->desc->poll_enabled_time;
2497 }
2498
2499 if (time_remaining <= 0) {
2500 rdev_err(rdev, "Enabled check timed out\n");
2501 return -ETIMEDOUT;
2502 }
2503 } else {
2504 _regulator_enable_delay(delay);
2505 }
2506
2507 trace_regulator_enable_complete(rdev_get_name(rdev));
2508
2509 return 0;
2510}
2511
2512/**
2513 * _regulator_handle_consumer_enable - handle that a consumer enabled
2514 * @regulator: regulator source
2515 *
2516 * Some things on a regulator consumer (like the contribution towards total
2517 * load on the regulator) only have an effect when the consumer wants the
2518 * regulator enabled. Explained in example with two consumers of the same
2519 * regulator:
2520 * consumer A: set_load(100); => total load = 0
2521 * consumer A: regulator_enable(); => total load = 100
2522 * consumer B: set_load(1000); => total load = 100
2523 * consumer B: regulator_enable(); => total load = 1100
2524 * consumer A: regulator_disable(); => total_load = 1000
2525 *
2526 * This function (together with _regulator_handle_consumer_disable) is
2527 * responsible for keeping track of the refcount for a given regulator consumer
2528 * and applying / unapplying these things.
2529 *
2530 * Returns 0 upon no error; -error upon error.
2531 */
2532static int _regulator_handle_consumer_enable(struct regulator *regulator)
2533{
2534 struct regulator_dev *rdev = regulator->rdev;
2535
2536 lockdep_assert_held_once(&rdev->mutex.base);
2537
2538 regulator->enable_count++;
2539 if (regulator->uA_load && regulator->enable_count == 1)
2540 return drms_uA_update(rdev);
2541
2542 return 0;
2543}
2544
2545/**
2546 * _regulator_handle_consumer_disable - handle that a consumer disabled
2547 * @regulator: regulator source
2548 *
2549 * The opposite of _regulator_handle_consumer_enable().
2550 *
2551 * Returns 0 upon no error; -error upon error.
2552 */
2553static int _regulator_handle_consumer_disable(struct regulator *regulator)
2554{
2555 struct regulator_dev *rdev = regulator->rdev;
2556
2557 lockdep_assert_held_once(&rdev->mutex.base);
2558
2559 if (!regulator->enable_count) {
2560 rdev_err(rdev, "Underflow of regulator enable count\n");
2561 return -EINVAL;
2562 }
2563
2564 regulator->enable_count--;
2565 if (regulator->uA_load && regulator->enable_count == 0)
2566 return drms_uA_update(rdev);
2567
2568 return 0;
2569}
2570
2571/* locks held by regulator_enable() */
2572static int _regulator_enable(struct regulator *regulator)
2573{
2574 struct regulator_dev *rdev = regulator->rdev;
2575 int ret;
2576
2577 lockdep_assert_held_once(&rdev->mutex.base);
2578
2579 if (rdev->use_count == 0 && rdev->supply) {
2580 ret = _regulator_enable(rdev->supply);
2581 if (ret < 0)
2582 return ret;
2583 }
2584
2585 /* balance only if there are regulators coupled */
2586 if (rdev->coupling_desc.n_coupled > 1) {
2587 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2588 if (ret < 0)
2589 goto err_disable_supply;
2590 }
2591
2592 ret = _regulator_handle_consumer_enable(regulator);
2593 if (ret < 0)
2594 goto err_disable_supply;
2595
2596 if (rdev->use_count == 0) {
2597 /* The regulator may on if it's not switchable or left on */
2598 ret = _regulator_is_enabled(rdev);
2599 if (ret == -EINVAL || ret == 0) {
2600 if (!regulator_ops_is_valid(rdev,
2601 REGULATOR_CHANGE_STATUS)) {
2602 ret = -EPERM;
2603 goto err_consumer_disable;
2604 }
2605
2606 ret = _regulator_do_enable(rdev);
2607 if (ret < 0)
2608 goto err_consumer_disable;
2609
2610 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2611 NULL);
2612 } else if (ret < 0) {
2613 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2614 goto err_consumer_disable;
2615 }
2616 /* Fallthrough on positive return values - already enabled */
2617 }
2618
2619 rdev->use_count++;
2620
2621 return 0;
2622
2623err_consumer_disable:
2624 _regulator_handle_consumer_disable(regulator);
2625
2626err_disable_supply:
2627 if (rdev->use_count == 0 && rdev->supply)
2628 _regulator_disable(rdev->supply);
2629
2630 return ret;
2631}
2632
2633/**
2634 * regulator_enable - enable regulator output
2635 * @regulator: regulator source
2636 *
2637 * Request that the regulator be enabled with the regulator output at
2638 * the predefined voltage or current value. Calls to regulator_enable()
2639 * must be balanced with calls to regulator_disable().
2640 *
2641 * NOTE: the output value can be set by other drivers, boot loader or may be
2642 * hardwired in the regulator.
2643 */
2644int regulator_enable(struct regulator *regulator)
2645{
2646 struct regulator_dev *rdev = regulator->rdev;
2647 struct ww_acquire_ctx ww_ctx;
2648 int ret;
2649
2650 regulator_lock_dependent(rdev, &ww_ctx);
2651 ret = _regulator_enable(regulator);
2652 regulator_unlock_dependent(rdev, &ww_ctx);
2653
2654 return ret;
2655}
2656EXPORT_SYMBOL_GPL(regulator_enable);
2657
2658static int _regulator_do_disable(struct regulator_dev *rdev)
2659{
2660 int ret;
2661
2662 trace_regulator_disable(rdev_get_name(rdev));
2663
2664 if (rdev->ena_pin) {
2665 if (rdev->ena_gpio_state) {
2666 ret = regulator_ena_gpio_ctrl(rdev, false);
2667 if (ret < 0)
2668 return ret;
2669 rdev->ena_gpio_state = 0;
2670 }
2671
2672 } else if (rdev->desc->ops->disable) {
2673 ret = rdev->desc->ops->disable(rdev);
2674 if (ret != 0)
2675 return ret;
2676 }
2677
2678 /* cares about last_off_jiffy only if off_on_delay is required by
2679 * device.
2680 */
2681 if (rdev->desc->off_on_delay)
2682 rdev->last_off_jiffy = jiffies;
2683
2684 trace_regulator_disable_complete(rdev_get_name(rdev));
2685
2686 return 0;
2687}
2688
2689/* locks held by regulator_disable() */
2690static int _regulator_disable(struct regulator *regulator)
2691{
2692 struct regulator_dev *rdev = regulator->rdev;
2693 int ret = 0;
2694
2695 lockdep_assert_held_once(&rdev->mutex.base);
2696
2697 if (WARN(rdev->use_count <= 0,
2698 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2699 return -EIO;
2700
2701 /* are we the last user and permitted to disable ? */
2702 if (rdev->use_count == 1 &&
2703 (rdev->constraints && !rdev->constraints->always_on)) {
2704
2705 /* we are last user */
2706 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2707 ret = _notifier_call_chain(rdev,
2708 REGULATOR_EVENT_PRE_DISABLE,
2709 NULL);
2710 if (ret & NOTIFY_STOP_MASK)
2711 return -EINVAL;
2712
2713 ret = _regulator_do_disable(rdev);
2714 if (ret < 0) {
2715 rdev_err(rdev, "failed to disable\n");
2716 _notifier_call_chain(rdev,
2717 REGULATOR_EVENT_ABORT_DISABLE,
2718 NULL);
2719 return ret;
2720 }
2721 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2722 NULL);
2723 }
2724
2725 rdev->use_count = 0;
2726 } else if (rdev->use_count > 1) {
2727 rdev->use_count--;
2728 }
2729
2730 if (ret == 0)
2731 ret = _regulator_handle_consumer_disable(regulator);
2732
2733 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2734 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2735
2736 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2737 ret = _regulator_disable(rdev->supply);
2738
2739 return ret;
2740}
2741
2742/**
2743 * regulator_disable - disable regulator output
2744 * @regulator: regulator source
2745 *
2746 * Disable the regulator output voltage or current. Calls to
2747 * regulator_enable() must be balanced with calls to
2748 * regulator_disable().
2749 *
2750 * NOTE: this will only disable the regulator output if no other consumer
2751 * devices have it enabled, the regulator device supports disabling and
2752 * machine constraints permit this operation.
2753 */
2754int regulator_disable(struct regulator *regulator)
2755{
2756 struct regulator_dev *rdev = regulator->rdev;
2757 struct ww_acquire_ctx ww_ctx;
2758 int ret;
2759
2760 regulator_lock_dependent(rdev, &ww_ctx);
2761 ret = _regulator_disable(regulator);
2762 regulator_unlock_dependent(rdev, &ww_ctx);
2763
2764 return ret;
2765}
2766EXPORT_SYMBOL_GPL(regulator_disable);
2767
2768/* locks held by regulator_force_disable() */
2769static int _regulator_force_disable(struct regulator_dev *rdev)
2770{
2771 int ret = 0;
2772
2773 lockdep_assert_held_once(&rdev->mutex.base);
2774
2775 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2776 REGULATOR_EVENT_PRE_DISABLE, NULL);
2777 if (ret & NOTIFY_STOP_MASK)
2778 return -EINVAL;
2779
2780 ret = _regulator_do_disable(rdev);
2781 if (ret < 0) {
2782 rdev_err(rdev, "failed to force disable\n");
2783 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2784 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2785 return ret;
2786 }
2787
2788 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2789 REGULATOR_EVENT_DISABLE, NULL);
2790
2791 return 0;
2792}
2793
2794/**
2795 * regulator_force_disable - force disable regulator output
2796 * @regulator: regulator source
2797 *
2798 * Forcibly disable the regulator output voltage or current.
2799 * NOTE: this *will* disable the regulator output even if other consumer
2800 * devices have it enabled. This should be used for situations when device
2801 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2802 */
2803int regulator_force_disable(struct regulator *regulator)
2804{
2805 struct regulator_dev *rdev = regulator->rdev;
2806 struct ww_acquire_ctx ww_ctx;
2807 int ret;
2808
2809 regulator_lock_dependent(rdev, &ww_ctx);
2810
2811 ret = _regulator_force_disable(regulator->rdev);
2812
2813 if (rdev->coupling_desc.n_coupled > 1)
2814 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2815
2816 if (regulator->uA_load) {
2817 regulator->uA_load = 0;
2818 ret = drms_uA_update(rdev);
2819 }
2820
2821 if (rdev->use_count != 0 && rdev->supply)
2822 _regulator_disable(rdev->supply);
2823
2824 regulator_unlock_dependent(rdev, &ww_ctx);
2825
2826 return ret;
2827}
2828EXPORT_SYMBOL_GPL(regulator_force_disable);
2829
2830static void regulator_disable_work(struct work_struct *work)
2831{
2832 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2833 disable_work.work);
2834 struct ww_acquire_ctx ww_ctx;
2835 int count, i, ret;
2836 struct regulator *regulator;
2837 int total_count = 0;
2838
2839 regulator_lock_dependent(rdev, &ww_ctx);
2840
2841 /*
2842 * Workqueue functions queue the new work instance while the previous
2843 * work instance is being processed. Cancel the queued work instance
2844 * as the work instance under processing does the job of the queued
2845 * work instance.
2846 */
2847 cancel_delayed_work(&rdev->disable_work);
2848
2849 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2850 count = regulator->deferred_disables;
2851
2852 if (!count)
2853 continue;
2854
2855 total_count += count;
2856 regulator->deferred_disables = 0;
2857
2858 for (i = 0; i < count; i++) {
2859 ret = _regulator_disable(regulator);
2860 if (ret != 0)
2861 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2862 }
2863 }
2864 WARN_ON(!total_count);
2865
2866 if (rdev->coupling_desc.n_coupled > 1)
2867 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2868
2869 regulator_unlock_dependent(rdev, &ww_ctx);
2870}
2871
2872/**
2873 * regulator_disable_deferred - disable regulator output with delay
2874 * @regulator: regulator source
2875 * @ms: milliseconds until the regulator is disabled
2876 *
2877 * Execute regulator_disable() on the regulator after a delay. This
2878 * is intended for use with devices that require some time to quiesce.
2879 *
2880 * NOTE: this will only disable the regulator output if no other consumer
2881 * devices have it enabled, the regulator device supports disabling and
2882 * machine constraints permit this operation.
2883 */
2884int regulator_disable_deferred(struct regulator *regulator, int ms)
2885{
2886 struct regulator_dev *rdev = regulator->rdev;
2887
2888 if (!ms)
2889 return regulator_disable(regulator);
2890
2891 regulator_lock(rdev);
2892 regulator->deferred_disables++;
2893 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2894 msecs_to_jiffies(ms));
2895 regulator_unlock(rdev);
2896
2897 return 0;
2898}
2899EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2900
2901static int _regulator_is_enabled(struct regulator_dev *rdev)
2902{
2903 /* A GPIO control always takes precedence */
2904 if (rdev->ena_pin)
2905 return rdev->ena_gpio_state;
2906
2907 /* If we don't know then assume that the regulator is always on */
2908 if (!rdev->desc->ops->is_enabled)
2909 return 1;
2910
2911 return rdev->desc->ops->is_enabled(rdev);
2912}
2913
2914static int _regulator_list_voltage(struct regulator_dev *rdev,
2915 unsigned selector, int lock)
2916{
2917 const struct regulator_ops *ops = rdev->desc->ops;
2918 int ret;
2919
2920 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2921 return rdev->desc->fixed_uV;
2922
2923 if (ops->list_voltage) {
2924 if (selector >= rdev->desc->n_voltages)
2925 return -EINVAL;
2926 if (lock)
2927 regulator_lock(rdev);
2928 ret = ops->list_voltage(rdev, selector);
2929 if (lock)
2930 regulator_unlock(rdev);
2931 } else if (rdev->is_switch && rdev->supply) {
2932 ret = _regulator_list_voltage(rdev->supply->rdev,
2933 selector, lock);
2934 } else {
2935 return -EINVAL;
2936 }
2937
2938 if (ret > 0) {
2939 if (ret < rdev->constraints->min_uV)
2940 ret = 0;
2941 else if (ret > rdev->constraints->max_uV)
2942 ret = 0;
2943 }
2944
2945 return ret;
2946}
2947
2948/**
2949 * regulator_is_enabled - is the regulator output enabled
2950 * @regulator: regulator source
2951 *
2952 * Returns positive if the regulator driver backing the source/client
2953 * has requested that the device be enabled, zero if it hasn't, else a
2954 * negative errno code.
2955 *
2956 * Note that the device backing this regulator handle can have multiple
2957 * users, so it might be enabled even if regulator_enable() was never
2958 * called for this particular source.
2959 */
2960int regulator_is_enabled(struct regulator *regulator)
2961{
2962 int ret;
2963
2964 if (regulator->always_on)
2965 return 1;
2966
2967 regulator_lock(regulator->rdev);
2968 ret = _regulator_is_enabled(regulator->rdev);
2969 regulator_unlock(regulator->rdev);
2970
2971 return ret;
2972}
2973EXPORT_SYMBOL_GPL(regulator_is_enabled);
2974
2975/**
2976 * regulator_count_voltages - count regulator_list_voltage() selectors
2977 * @regulator: regulator source
2978 *
2979 * Returns number of selectors, or negative errno. Selectors are
2980 * numbered starting at zero, and typically correspond to bitfields
2981 * in hardware registers.
2982 */
2983int regulator_count_voltages(struct regulator *regulator)
2984{
2985 struct regulator_dev *rdev = regulator->rdev;
2986
2987 if (rdev->desc->n_voltages)
2988 return rdev->desc->n_voltages;
2989
2990 if (!rdev->is_switch || !rdev->supply)
2991 return -EINVAL;
2992
2993 return regulator_count_voltages(rdev->supply);
2994}
2995EXPORT_SYMBOL_GPL(regulator_count_voltages);
2996
2997/**
2998 * regulator_list_voltage - enumerate supported voltages
2999 * @regulator: regulator source
3000 * @selector: identify voltage to list
3001 * Context: can sleep
3002 *
3003 * Returns a voltage that can be passed to @regulator_set_voltage(),
3004 * zero if this selector code can't be used on this system, or a
3005 * negative errno.
3006 */
3007int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3008{
3009 return _regulator_list_voltage(regulator->rdev, selector, 1);
3010}
3011EXPORT_SYMBOL_GPL(regulator_list_voltage);
3012
3013/**
3014 * regulator_get_regmap - get the regulator's register map
3015 * @regulator: regulator source
3016 *
3017 * Returns the register map for the given regulator, or an ERR_PTR value
3018 * if the regulator doesn't use regmap.
3019 */
3020struct regmap *regulator_get_regmap(struct regulator *regulator)
3021{
3022 struct regmap *map = regulator->rdev->regmap;
3023
3024 return map ? map : ERR_PTR(-EOPNOTSUPP);
3025}
3026
3027/**
3028 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3029 * @regulator: regulator source
3030 * @vsel_reg: voltage selector register, output parameter
3031 * @vsel_mask: mask for voltage selector bitfield, output parameter
3032 *
3033 * Returns the hardware register offset and bitmask used for setting the
3034 * regulator voltage. This might be useful when configuring voltage-scaling
3035 * hardware or firmware that can make I2C requests behind the kernel's back,
3036 * for example.
3037 *
3038 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3039 * and 0 is returned, otherwise a negative errno is returned.
3040 */
3041int regulator_get_hardware_vsel_register(struct regulator *regulator,
3042 unsigned *vsel_reg,
3043 unsigned *vsel_mask)
3044{
3045 struct regulator_dev *rdev = regulator->rdev;
3046 const struct regulator_ops *ops = rdev->desc->ops;
3047
3048 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3049 return -EOPNOTSUPP;
3050
3051 *vsel_reg = rdev->desc->vsel_reg;
3052 *vsel_mask = rdev->desc->vsel_mask;
3053
3054 return 0;
3055}
3056EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3057
3058/**
3059 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3060 * @regulator: regulator source
3061 * @selector: identify voltage to list
3062 *
3063 * Converts the selector to a hardware-specific voltage selector that can be
3064 * directly written to the regulator registers. The address of the voltage
3065 * register can be determined by calling @regulator_get_hardware_vsel_register.
3066 *
3067 * On error a negative errno is returned.
3068 */
3069int regulator_list_hardware_vsel(struct regulator *regulator,
3070 unsigned selector)
3071{
3072 struct regulator_dev *rdev = regulator->rdev;
3073 const struct regulator_ops *ops = rdev->desc->ops;
3074
3075 if (selector >= rdev->desc->n_voltages)
3076 return -EINVAL;
3077 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3078 return -EOPNOTSUPP;
3079
3080 return selector;
3081}
3082EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3083
3084/**
3085 * regulator_get_linear_step - return the voltage step size between VSEL values
3086 * @regulator: regulator source
3087 *
3088 * Returns the voltage step size between VSEL values for linear
3089 * regulators, or return 0 if the regulator isn't a linear regulator.
3090 */
3091unsigned int regulator_get_linear_step(struct regulator *regulator)
3092{
3093 struct regulator_dev *rdev = regulator->rdev;
3094
3095 return rdev->desc->uV_step;
3096}
3097EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3098
3099/**
3100 * regulator_is_supported_voltage - check if a voltage range can be supported
3101 *
3102 * @regulator: Regulator to check.
3103 * @min_uV: Minimum required voltage in uV.
3104 * @max_uV: Maximum required voltage in uV.
3105 *
3106 * Returns a boolean.
3107 */
3108int regulator_is_supported_voltage(struct regulator *regulator,
3109 int min_uV, int max_uV)
3110{
3111 struct regulator_dev *rdev = regulator->rdev;
3112 int i, voltages, ret;
3113
3114 /* If we can't change voltage check the current voltage */
3115 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3116 ret = regulator_get_voltage(regulator);
3117 if (ret >= 0)
3118 return min_uV <= ret && ret <= max_uV;
3119 else
3120 return ret;
3121 }
3122
3123 /* Any voltage within constrains range is fine? */
3124 if (rdev->desc->continuous_voltage_range)
3125 return min_uV >= rdev->constraints->min_uV &&
3126 max_uV <= rdev->constraints->max_uV;
3127
3128 ret = regulator_count_voltages(regulator);
3129 if (ret < 0)
3130 return 0;
3131 voltages = ret;
3132
3133 for (i = 0; i < voltages; i++) {
3134 ret = regulator_list_voltage(regulator, i);
3135
3136 if (ret >= min_uV && ret <= max_uV)
3137 return 1;
3138 }
3139
3140 return 0;
3141}
3142EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3143
3144static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3145 int max_uV)
3146{
3147 const struct regulator_desc *desc = rdev->desc;
3148
3149 if (desc->ops->map_voltage)
3150 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3151
3152 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3153 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3154
3155 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3156 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3157
3158 if (desc->ops->list_voltage ==
3159 regulator_list_voltage_pickable_linear_range)
3160 return regulator_map_voltage_pickable_linear_range(rdev,
3161 min_uV, max_uV);
3162
3163 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3164}
3165
3166static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3167 int min_uV, int max_uV,
3168 unsigned *selector)
3169{
3170 struct pre_voltage_change_data data;
3171 int ret;
3172
3173 data.old_uV = regulator_get_voltage_rdev(rdev);
3174 data.min_uV = min_uV;
3175 data.max_uV = max_uV;
3176 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3177 &data);
3178 if (ret & NOTIFY_STOP_MASK)
3179 return -EINVAL;
3180
3181 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3182 if (ret >= 0)
3183 return ret;
3184
3185 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3186 (void *)data.old_uV);
3187
3188 return ret;
3189}
3190
3191static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3192 int uV, unsigned selector)
3193{
3194 struct pre_voltage_change_data data;
3195 int ret;
3196
3197 data.old_uV = regulator_get_voltage_rdev(rdev);
3198 data.min_uV = uV;
3199 data.max_uV = uV;
3200 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3201 &data);
3202 if (ret & NOTIFY_STOP_MASK)
3203 return -EINVAL;
3204
3205 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3206 if (ret >= 0)
3207 return ret;
3208
3209 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3210 (void *)data.old_uV);
3211
3212 return ret;
3213}
3214
3215static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3216 int uV, int new_selector)
3217{
3218 const struct regulator_ops *ops = rdev->desc->ops;
3219 int diff, old_sel, curr_sel, ret;
3220
3221 /* Stepping is only needed if the regulator is enabled. */
3222 if (!_regulator_is_enabled(rdev))
3223 goto final_set;
3224
3225 if (!ops->get_voltage_sel)
3226 return -EINVAL;
3227
3228 old_sel = ops->get_voltage_sel(rdev);
3229 if (old_sel < 0)
3230 return old_sel;
3231
3232 diff = new_selector - old_sel;
3233 if (diff == 0)
3234 return 0; /* No change needed. */
3235
3236 if (diff > 0) {
3237 /* Stepping up. */
3238 for (curr_sel = old_sel + rdev->desc->vsel_step;
3239 curr_sel < new_selector;
3240 curr_sel += rdev->desc->vsel_step) {
3241 /*
3242 * Call the callback directly instead of using
3243 * _regulator_call_set_voltage_sel() as we don't
3244 * want to notify anyone yet. Same in the branch
3245 * below.
3246 */
3247 ret = ops->set_voltage_sel(rdev, curr_sel);
3248 if (ret)
3249 goto try_revert;
3250 }
3251 } else {
3252 /* Stepping down. */
3253 for (curr_sel = old_sel - rdev->desc->vsel_step;
3254 curr_sel > new_selector;
3255 curr_sel -= rdev->desc->vsel_step) {
3256 ret = ops->set_voltage_sel(rdev, curr_sel);
3257 if (ret)
3258 goto try_revert;
3259 }
3260 }
3261
3262final_set:
3263 /* The final selector will trigger the notifiers. */
3264 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3265
3266try_revert:
3267 /*
3268 * At least try to return to the previous voltage if setting a new
3269 * one failed.
3270 */
3271 (void)ops->set_voltage_sel(rdev, old_sel);
3272 return ret;
3273}
3274
3275static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3276 int old_uV, int new_uV)
3277{
3278 unsigned int ramp_delay = 0;
3279
3280 if (rdev->constraints->ramp_delay)
3281 ramp_delay = rdev->constraints->ramp_delay;
3282 else if (rdev->desc->ramp_delay)
3283 ramp_delay = rdev->desc->ramp_delay;
3284 else if (rdev->constraints->settling_time)
3285 return rdev->constraints->settling_time;
3286 else if (rdev->constraints->settling_time_up &&
3287 (new_uV > old_uV))
3288 return rdev->constraints->settling_time_up;
3289 else if (rdev->constraints->settling_time_down &&
3290 (new_uV < old_uV))
3291 return rdev->constraints->settling_time_down;
3292
3293 if (ramp_delay == 0) {
3294 rdev_dbg(rdev, "ramp_delay not set\n");
3295 return 0;
3296 }
3297
3298 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3299}
3300
3301static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3302 int min_uV, int max_uV)
3303{
3304 int ret;
3305 int delay = 0;
3306 int best_val = 0;
3307 unsigned int selector;
3308 int old_selector = -1;
3309 const struct regulator_ops *ops = rdev->desc->ops;
3310 int old_uV = regulator_get_voltage_rdev(rdev);
3311
3312 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3313
3314 min_uV += rdev->constraints->uV_offset;
3315 max_uV += rdev->constraints->uV_offset;
3316
3317 /*
3318 * If we can't obtain the old selector there is not enough
3319 * info to call set_voltage_time_sel().
3320 */
3321 if (_regulator_is_enabled(rdev) &&
3322 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3323 old_selector = ops->get_voltage_sel(rdev);
3324 if (old_selector < 0)
3325 return old_selector;
3326 }
3327
3328 if (ops->set_voltage) {
3329 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3330 &selector);
3331
3332 if (ret >= 0) {
3333 if (ops->list_voltage)
3334 best_val = ops->list_voltage(rdev,
3335 selector);
3336 else
3337 best_val = regulator_get_voltage_rdev(rdev);
3338 }
3339
3340 } else if (ops->set_voltage_sel) {
3341 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3342 if (ret >= 0) {
3343 best_val = ops->list_voltage(rdev, ret);
3344 if (min_uV <= best_val && max_uV >= best_val) {
3345 selector = ret;
3346 if (old_selector == selector)
3347 ret = 0;
3348 else if (rdev->desc->vsel_step)
3349 ret = _regulator_set_voltage_sel_step(
3350 rdev, best_val, selector);
3351 else
3352 ret = _regulator_call_set_voltage_sel(
3353 rdev, best_val, selector);
3354 } else {
3355 ret = -EINVAL;
3356 }
3357 }
3358 } else {
3359 ret = -EINVAL;
3360 }
3361
3362 if (ret)
3363 goto out;
3364
3365 if (ops->set_voltage_time_sel) {
3366 /*
3367 * Call set_voltage_time_sel if successfully obtained
3368 * old_selector
3369 */
3370 if (old_selector >= 0 && old_selector != selector)
3371 delay = ops->set_voltage_time_sel(rdev, old_selector,
3372 selector);
3373 } else {
3374 if (old_uV != best_val) {
3375 if (ops->set_voltage_time)
3376 delay = ops->set_voltage_time(rdev, old_uV,
3377 best_val);
3378 else
3379 delay = _regulator_set_voltage_time(rdev,
3380 old_uV,
3381 best_val);
3382 }
3383 }
3384
3385 if (delay < 0) {
3386 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3387 delay = 0;
3388 }
3389
3390 /* Insert any necessary delays */
3391 if (delay >= 1000) {
3392 mdelay(delay / 1000);
3393 udelay(delay % 1000);
3394 } else if (delay) {
3395 udelay(delay);
3396 }
3397
3398 if (best_val >= 0) {
3399 unsigned long data = best_val;
3400
3401 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3402 (void *)data);
3403 }
3404
3405out:
3406 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3407
3408 return ret;
3409}
3410
3411static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3412 int min_uV, int max_uV, suspend_state_t state)
3413{
3414 struct regulator_state *rstate;
3415 int uV, sel;
3416
3417 rstate = regulator_get_suspend_state(rdev, state);
3418 if (rstate == NULL)
3419 return -EINVAL;
3420
3421 if (min_uV < rstate->min_uV)
3422 min_uV = rstate->min_uV;
3423 if (max_uV > rstate->max_uV)
3424 max_uV = rstate->max_uV;
3425
3426 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3427 if (sel < 0)
3428 return sel;
3429
3430 uV = rdev->desc->ops->list_voltage(rdev, sel);
3431 if (uV >= min_uV && uV <= max_uV)
3432 rstate->uV = uV;
3433
3434 return 0;
3435}
3436
3437static int regulator_set_voltage_unlocked(struct regulator *regulator,
3438 int min_uV, int max_uV,
3439 suspend_state_t state)
3440{
3441 struct regulator_dev *rdev = regulator->rdev;
3442 struct regulator_voltage *voltage = ®ulator->voltage[state];
3443 int ret = 0;
3444 int old_min_uV, old_max_uV;
3445 int current_uV;
3446
3447 /* If we're setting the same range as last time the change
3448 * should be a noop (some cpufreq implementations use the same
3449 * voltage for multiple frequencies, for example).
3450 */
3451 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3452 goto out;
3453
3454 /* If we're trying to set a range that overlaps the current voltage,
3455 * return successfully even though the regulator does not support
3456 * changing the voltage.
3457 */
3458 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3459 current_uV = regulator_get_voltage_rdev(rdev);
3460 if (min_uV <= current_uV && current_uV <= max_uV) {
3461 voltage->min_uV = min_uV;
3462 voltage->max_uV = max_uV;
3463 goto out;
3464 }
3465 }
3466
3467 /* sanity check */
3468 if (!rdev->desc->ops->set_voltage &&
3469 !rdev->desc->ops->set_voltage_sel) {
3470 ret = -EINVAL;
3471 goto out;
3472 }
3473
3474 /* constraints check */
3475 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3476 if (ret < 0)
3477 goto out;
3478
3479 /* restore original values in case of error */
3480 old_min_uV = voltage->min_uV;
3481 old_max_uV = voltage->max_uV;
3482 voltage->min_uV = min_uV;
3483 voltage->max_uV = max_uV;
3484
3485 /* for not coupled regulators this will just set the voltage */
3486 ret = regulator_balance_voltage(rdev, state);
3487 if (ret < 0) {
3488 voltage->min_uV = old_min_uV;
3489 voltage->max_uV = old_max_uV;
3490 }
3491
3492out:
3493 return ret;
3494}
3495
3496int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3497 int max_uV, suspend_state_t state)
3498{
3499 int best_supply_uV = 0;
3500 int supply_change_uV = 0;
3501 int ret;
3502
3503 if (rdev->supply &&
3504 regulator_ops_is_valid(rdev->supply->rdev,
3505 REGULATOR_CHANGE_VOLTAGE) &&
3506 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3507 rdev->desc->ops->get_voltage_sel))) {
3508 int current_supply_uV;
3509 int selector;
3510
3511 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3512 if (selector < 0) {
3513 ret = selector;
3514 goto out;
3515 }
3516
3517 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3518 if (best_supply_uV < 0) {
3519 ret = best_supply_uV;
3520 goto out;
3521 }
3522
3523 best_supply_uV += rdev->desc->min_dropout_uV;
3524
3525 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3526 if (current_supply_uV < 0) {
3527 ret = current_supply_uV;
3528 goto out;
3529 }
3530
3531 supply_change_uV = best_supply_uV - current_supply_uV;
3532 }
3533
3534 if (supply_change_uV > 0) {
3535 ret = regulator_set_voltage_unlocked(rdev->supply,
3536 best_supply_uV, INT_MAX, state);
3537 if (ret) {
3538 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3539 ret);
3540 goto out;
3541 }
3542 }
3543
3544 if (state == PM_SUSPEND_ON)
3545 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3546 else
3547 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3548 max_uV, state);
3549 if (ret < 0)
3550 goto out;
3551
3552 if (supply_change_uV < 0) {
3553 ret = regulator_set_voltage_unlocked(rdev->supply,
3554 best_supply_uV, INT_MAX, state);
3555 if (ret)
3556 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3557 ret);
3558 /* No need to fail here */
3559 ret = 0;
3560 }
3561
3562out:
3563 return ret;
3564}
3565EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3566
3567static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3568 int *current_uV, int *min_uV)
3569{
3570 struct regulation_constraints *constraints = rdev->constraints;
3571
3572 /* Limit voltage change only if necessary */
3573 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3574 return 1;
3575
3576 if (*current_uV < 0) {
3577 *current_uV = regulator_get_voltage_rdev(rdev);
3578
3579 if (*current_uV < 0)
3580 return *current_uV;
3581 }
3582
3583 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3584 return 1;
3585
3586 /* Clamp target voltage within the given step */
3587 if (*current_uV < *min_uV)
3588 *min_uV = min(*current_uV + constraints->max_uV_step,
3589 *min_uV);
3590 else
3591 *min_uV = max(*current_uV - constraints->max_uV_step,
3592 *min_uV);
3593
3594 return 0;
3595}
3596
3597static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3598 int *current_uV,
3599 int *min_uV, int *max_uV,
3600 suspend_state_t state,
3601 int n_coupled)
3602{
3603 struct coupling_desc *c_desc = &rdev->coupling_desc;
3604 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3605 struct regulation_constraints *constraints = rdev->constraints;
3606 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3607 int max_current_uV = 0, min_current_uV = INT_MAX;
3608 int highest_min_uV = 0, target_uV, possible_uV;
3609 int i, ret, max_spread;
3610 bool done;
3611
3612 *current_uV = -1;
3613
3614 /*
3615 * If there are no coupled regulators, simply set the voltage
3616 * demanded by consumers.
3617 */
3618 if (n_coupled == 1) {
3619 /*
3620 * If consumers don't provide any demands, set voltage
3621 * to min_uV
3622 */
3623 desired_min_uV = constraints->min_uV;
3624 desired_max_uV = constraints->max_uV;
3625
3626 ret = regulator_check_consumers(rdev,
3627 &desired_min_uV,
3628 &desired_max_uV, state);
3629 if (ret < 0)
3630 return ret;
3631
3632 possible_uV = desired_min_uV;
3633 done = true;
3634
3635 goto finish;
3636 }
3637
3638 /* Find highest min desired voltage */
3639 for (i = 0; i < n_coupled; i++) {
3640 int tmp_min = 0;
3641 int tmp_max = INT_MAX;
3642
3643 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3644
3645 ret = regulator_check_consumers(c_rdevs[i],
3646 &tmp_min,
3647 &tmp_max, state);
3648 if (ret < 0)
3649 return ret;
3650
3651 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3652 if (ret < 0)
3653 return ret;
3654
3655 highest_min_uV = max(highest_min_uV, tmp_min);
3656
3657 if (i == 0) {
3658 desired_min_uV = tmp_min;
3659 desired_max_uV = tmp_max;
3660 }
3661 }
3662
3663 max_spread = constraints->max_spread[0];
3664
3665 /*
3666 * Let target_uV be equal to the desired one if possible.
3667 * If not, set it to minimum voltage, allowed by other coupled
3668 * regulators.
3669 */
3670 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3671
3672 /*
3673 * Find min and max voltages, which currently aren't violating
3674 * max_spread.
3675 */
3676 for (i = 1; i < n_coupled; i++) {
3677 int tmp_act;
3678
3679 if (!_regulator_is_enabled(c_rdevs[i]))
3680 continue;
3681
3682 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3683 if (tmp_act < 0)
3684 return tmp_act;
3685
3686 min_current_uV = min(tmp_act, min_current_uV);
3687 max_current_uV = max(tmp_act, max_current_uV);
3688 }
3689
3690 /* There aren't any other regulators enabled */
3691 if (max_current_uV == 0) {
3692 possible_uV = target_uV;
3693 } else {
3694 /*
3695 * Correct target voltage, so as it currently isn't
3696 * violating max_spread
3697 */
3698 possible_uV = max(target_uV, max_current_uV - max_spread);
3699 possible_uV = min(possible_uV, min_current_uV + max_spread);
3700 }
3701
3702 if (possible_uV > desired_max_uV)
3703 return -EINVAL;
3704
3705 done = (possible_uV == target_uV);
3706 desired_min_uV = possible_uV;
3707
3708finish:
3709 /* Apply max_uV_step constraint if necessary */
3710 if (state == PM_SUSPEND_ON) {
3711 ret = regulator_limit_voltage_step(rdev, current_uV,
3712 &desired_min_uV);
3713 if (ret < 0)
3714 return ret;
3715
3716 if (ret == 0)
3717 done = false;
3718 }
3719
3720 /* Set current_uV if wasn't done earlier in the code and if necessary */
3721 if (n_coupled > 1 && *current_uV == -1) {
3722
3723 if (_regulator_is_enabled(rdev)) {
3724 ret = regulator_get_voltage_rdev(rdev);
3725 if (ret < 0)
3726 return ret;
3727
3728 *current_uV = ret;
3729 } else {
3730 *current_uV = desired_min_uV;
3731 }
3732 }
3733
3734 *min_uV = desired_min_uV;
3735 *max_uV = desired_max_uV;
3736
3737 return done;
3738}
3739
3740int regulator_do_balance_voltage(struct regulator_dev *rdev,
3741 suspend_state_t state, bool skip_coupled)
3742{
3743 struct regulator_dev **c_rdevs;
3744 struct regulator_dev *best_rdev;
3745 struct coupling_desc *c_desc = &rdev->coupling_desc;
3746 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3747 unsigned int delta, best_delta;
3748 unsigned long c_rdev_done = 0;
3749 bool best_c_rdev_done;
3750
3751 c_rdevs = c_desc->coupled_rdevs;
3752 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3753
3754 /*
3755 * Find the best possible voltage change on each loop. Leave the loop
3756 * if there isn't any possible change.
3757 */
3758 do {
3759 best_c_rdev_done = false;
3760 best_delta = 0;
3761 best_min_uV = 0;
3762 best_max_uV = 0;
3763 best_c_rdev = 0;
3764 best_rdev = NULL;
3765
3766 /*
3767 * Find highest difference between optimal voltage
3768 * and current voltage.
3769 */
3770 for (i = 0; i < n_coupled; i++) {
3771 /*
3772 * optimal_uV is the best voltage that can be set for
3773 * i-th regulator at the moment without violating
3774 * max_spread constraint in order to balance
3775 * the coupled voltages.
3776 */
3777 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3778
3779 if (test_bit(i, &c_rdev_done))
3780 continue;
3781
3782 ret = regulator_get_optimal_voltage(c_rdevs[i],
3783 ¤t_uV,
3784 &optimal_uV,
3785 &optimal_max_uV,
3786 state, n_coupled);
3787 if (ret < 0)
3788 goto out;
3789
3790 delta = abs(optimal_uV - current_uV);
3791
3792 if (delta && best_delta <= delta) {
3793 best_c_rdev_done = ret;
3794 best_delta = delta;
3795 best_rdev = c_rdevs[i];
3796 best_min_uV = optimal_uV;
3797 best_max_uV = optimal_max_uV;
3798 best_c_rdev = i;
3799 }
3800 }
3801
3802 /* Nothing to change, return successfully */
3803 if (!best_rdev) {
3804 ret = 0;
3805 goto out;
3806 }
3807
3808 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3809 best_max_uV, state);
3810
3811 if (ret < 0)
3812 goto out;
3813
3814 if (best_c_rdev_done)
3815 set_bit(best_c_rdev, &c_rdev_done);
3816
3817 } while (n_coupled > 1);
3818
3819out:
3820 return ret;
3821}
3822
3823static int regulator_balance_voltage(struct regulator_dev *rdev,
3824 suspend_state_t state)
3825{
3826 struct coupling_desc *c_desc = &rdev->coupling_desc;
3827 struct regulator_coupler *coupler = c_desc->coupler;
3828 bool skip_coupled = false;
3829
3830 /*
3831 * If system is in a state other than PM_SUSPEND_ON, don't check
3832 * other coupled regulators.
3833 */
3834 if (state != PM_SUSPEND_ON)
3835 skip_coupled = true;
3836
3837 if (c_desc->n_resolved < c_desc->n_coupled) {
3838 rdev_err(rdev, "Not all coupled regulators registered\n");
3839 return -EPERM;
3840 }
3841
3842 /* Invoke custom balancer for customized couplers */
3843 if (coupler && coupler->balance_voltage)
3844 return coupler->balance_voltage(coupler, rdev, state);
3845
3846 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3847}
3848
3849/**
3850 * regulator_set_voltage - set regulator output voltage
3851 * @regulator: regulator source
3852 * @min_uV: Minimum required voltage in uV
3853 * @max_uV: Maximum acceptable voltage in uV
3854 *
3855 * Sets a voltage regulator to the desired output voltage. This can be set
3856 * during any regulator state. IOW, regulator can be disabled or enabled.
3857 *
3858 * If the regulator is enabled then the voltage will change to the new value
3859 * immediately otherwise if the regulator is disabled the regulator will
3860 * output at the new voltage when enabled.
3861 *
3862 * NOTE: If the regulator is shared between several devices then the lowest
3863 * request voltage that meets the system constraints will be used.
3864 * Regulator system constraints must be set for this regulator before
3865 * calling this function otherwise this call will fail.
3866 */
3867int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3868{
3869 struct ww_acquire_ctx ww_ctx;
3870 int ret;
3871
3872 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3873
3874 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3875 PM_SUSPEND_ON);
3876
3877 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3878
3879 return ret;
3880}
3881EXPORT_SYMBOL_GPL(regulator_set_voltage);
3882
3883static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3884 suspend_state_t state, bool en)
3885{
3886 struct regulator_state *rstate;
3887
3888 rstate = regulator_get_suspend_state(rdev, state);
3889 if (rstate == NULL)
3890 return -EINVAL;
3891
3892 if (!rstate->changeable)
3893 return -EPERM;
3894
3895 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3896
3897 return 0;
3898}
3899
3900int regulator_suspend_enable(struct regulator_dev *rdev,
3901 suspend_state_t state)
3902{
3903 return regulator_suspend_toggle(rdev, state, true);
3904}
3905EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3906
3907int regulator_suspend_disable(struct regulator_dev *rdev,
3908 suspend_state_t state)
3909{
3910 struct regulator *regulator;
3911 struct regulator_voltage *voltage;
3912
3913 /*
3914 * if any consumer wants this regulator device keeping on in
3915 * suspend states, don't set it as disabled.
3916 */
3917 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3918 voltage = ®ulator->voltage[state];
3919 if (voltage->min_uV || voltage->max_uV)
3920 return 0;
3921 }
3922
3923 return regulator_suspend_toggle(rdev, state, false);
3924}
3925EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3926
3927static int _regulator_set_suspend_voltage(struct regulator *regulator,
3928 int min_uV, int max_uV,
3929 suspend_state_t state)
3930{
3931 struct regulator_dev *rdev = regulator->rdev;
3932 struct regulator_state *rstate;
3933
3934 rstate = regulator_get_suspend_state(rdev, state);
3935 if (rstate == NULL)
3936 return -EINVAL;
3937
3938 if (rstate->min_uV == rstate->max_uV) {
3939 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3940 return -EPERM;
3941 }
3942
3943 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3944}
3945
3946int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3947 int max_uV, suspend_state_t state)
3948{
3949 struct ww_acquire_ctx ww_ctx;
3950 int ret;
3951
3952 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3953 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3954 return -EINVAL;
3955
3956 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3957
3958 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3959 max_uV, state);
3960
3961 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3962
3963 return ret;
3964}
3965EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3966
3967/**
3968 * regulator_set_voltage_time - get raise/fall time
3969 * @regulator: regulator source
3970 * @old_uV: starting voltage in microvolts
3971 * @new_uV: target voltage in microvolts
3972 *
3973 * Provided with the starting and ending voltage, this function attempts to
3974 * calculate the time in microseconds required to rise or fall to this new
3975 * voltage.
3976 */
3977int regulator_set_voltage_time(struct regulator *regulator,
3978 int old_uV, int new_uV)
3979{
3980 struct regulator_dev *rdev = regulator->rdev;
3981 const struct regulator_ops *ops = rdev->desc->ops;
3982 int old_sel = -1;
3983 int new_sel = -1;
3984 int voltage;
3985 int i;
3986
3987 if (ops->set_voltage_time)
3988 return ops->set_voltage_time(rdev, old_uV, new_uV);
3989 else if (!ops->set_voltage_time_sel)
3990 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3991
3992 /* Currently requires operations to do this */
3993 if (!ops->list_voltage || !rdev->desc->n_voltages)
3994 return -EINVAL;
3995
3996 for (i = 0; i < rdev->desc->n_voltages; i++) {
3997 /* We only look for exact voltage matches here */
3998 voltage = regulator_list_voltage(regulator, i);
3999 if (voltage < 0)
4000 return -EINVAL;
4001 if (voltage == 0)
4002 continue;
4003 if (voltage == old_uV)
4004 old_sel = i;
4005 if (voltage == new_uV)
4006 new_sel = i;
4007 }
4008
4009 if (old_sel < 0 || new_sel < 0)
4010 return -EINVAL;
4011
4012 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4013}
4014EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4015
4016/**
4017 * regulator_set_voltage_time_sel - get raise/fall time
4018 * @rdev: regulator source device
4019 * @old_selector: selector for starting voltage
4020 * @new_selector: selector for target voltage
4021 *
4022 * Provided with the starting and target voltage selectors, this function
4023 * returns time in microseconds required to rise or fall to this new voltage
4024 *
4025 * Drivers providing ramp_delay in regulation_constraints can use this as their
4026 * set_voltage_time_sel() operation.
4027 */
4028int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4029 unsigned int old_selector,
4030 unsigned int new_selector)
4031{
4032 int old_volt, new_volt;
4033
4034 /* sanity check */
4035 if (!rdev->desc->ops->list_voltage)
4036 return -EINVAL;
4037
4038 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4039 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4040
4041 if (rdev->desc->ops->set_voltage_time)
4042 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4043 new_volt);
4044 else
4045 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4046}
4047EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4048
4049/**
4050 * regulator_sync_voltage - re-apply last regulator output voltage
4051 * @regulator: regulator source
4052 *
4053 * Re-apply the last configured voltage. This is intended to be used
4054 * where some external control source the consumer is cooperating with
4055 * has caused the configured voltage to change.
4056 */
4057int regulator_sync_voltage(struct regulator *regulator)
4058{
4059 struct regulator_dev *rdev = regulator->rdev;
4060 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4061 int ret, min_uV, max_uV;
4062
4063 regulator_lock(rdev);
4064
4065 if (!rdev->desc->ops->set_voltage &&
4066 !rdev->desc->ops->set_voltage_sel) {
4067 ret = -EINVAL;
4068 goto out;
4069 }
4070
4071 /* This is only going to work if we've had a voltage configured. */
4072 if (!voltage->min_uV && !voltage->max_uV) {
4073 ret = -EINVAL;
4074 goto out;
4075 }
4076
4077 min_uV = voltage->min_uV;
4078 max_uV = voltage->max_uV;
4079
4080 /* This should be a paranoia check... */
4081 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4082 if (ret < 0)
4083 goto out;
4084
4085 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4086 if (ret < 0)
4087 goto out;
4088
4089 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4090
4091out:
4092 regulator_unlock(rdev);
4093 return ret;
4094}
4095EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4096
4097int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4098{
4099 int sel, ret;
4100 bool bypassed;
4101
4102 if (rdev->desc->ops->get_bypass) {
4103 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4104 if (ret < 0)
4105 return ret;
4106 if (bypassed) {
4107 /* if bypassed the regulator must have a supply */
4108 if (!rdev->supply) {
4109 rdev_err(rdev,
4110 "bypassed regulator has no supply!\n");
4111 return -EPROBE_DEFER;
4112 }
4113
4114 return regulator_get_voltage_rdev(rdev->supply->rdev);
4115 }
4116 }
4117
4118 if (rdev->desc->ops->get_voltage_sel) {
4119 sel = rdev->desc->ops->get_voltage_sel(rdev);
4120 if (sel < 0)
4121 return sel;
4122 ret = rdev->desc->ops->list_voltage(rdev, sel);
4123 } else if (rdev->desc->ops->get_voltage) {
4124 ret = rdev->desc->ops->get_voltage(rdev);
4125 } else if (rdev->desc->ops->list_voltage) {
4126 ret = rdev->desc->ops->list_voltage(rdev, 0);
4127 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4128 ret = rdev->desc->fixed_uV;
4129 } else if (rdev->supply) {
4130 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4131 } else {
4132 return -EINVAL;
4133 }
4134
4135 if (ret < 0)
4136 return ret;
4137 return ret - rdev->constraints->uV_offset;
4138}
4139EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4140
4141/**
4142 * regulator_get_voltage - get regulator output voltage
4143 * @regulator: regulator source
4144 *
4145 * This returns the current regulator voltage in uV.
4146 *
4147 * NOTE: If the regulator is disabled it will return the voltage value. This
4148 * function should not be used to determine regulator state.
4149 */
4150int regulator_get_voltage(struct regulator *regulator)
4151{
4152 struct ww_acquire_ctx ww_ctx;
4153 int ret;
4154
4155 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4156 ret = regulator_get_voltage_rdev(regulator->rdev);
4157 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4158
4159 return ret;
4160}
4161EXPORT_SYMBOL_GPL(regulator_get_voltage);
4162
4163/**
4164 * regulator_set_current_limit - set regulator output current limit
4165 * @regulator: regulator source
4166 * @min_uA: Minimum supported current in uA
4167 * @max_uA: Maximum supported current in uA
4168 *
4169 * Sets current sink to the desired output current. This can be set during
4170 * any regulator state. IOW, regulator can be disabled or enabled.
4171 *
4172 * If the regulator is enabled then the current will change to the new value
4173 * immediately otherwise if the regulator is disabled the regulator will
4174 * output at the new current when enabled.
4175 *
4176 * NOTE: Regulator system constraints must be set for this regulator before
4177 * calling this function otherwise this call will fail.
4178 */
4179int regulator_set_current_limit(struct regulator *regulator,
4180 int min_uA, int max_uA)
4181{
4182 struct regulator_dev *rdev = regulator->rdev;
4183 int ret;
4184
4185 regulator_lock(rdev);
4186
4187 /* sanity check */
4188 if (!rdev->desc->ops->set_current_limit) {
4189 ret = -EINVAL;
4190 goto out;
4191 }
4192
4193 /* constraints check */
4194 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4195 if (ret < 0)
4196 goto out;
4197
4198 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4199out:
4200 regulator_unlock(rdev);
4201 return ret;
4202}
4203EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4204
4205static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4206{
4207 /* sanity check */
4208 if (!rdev->desc->ops->get_current_limit)
4209 return -EINVAL;
4210
4211 return rdev->desc->ops->get_current_limit(rdev);
4212}
4213
4214static int _regulator_get_current_limit(struct regulator_dev *rdev)
4215{
4216 int ret;
4217
4218 regulator_lock(rdev);
4219 ret = _regulator_get_current_limit_unlocked(rdev);
4220 regulator_unlock(rdev);
4221
4222 return ret;
4223}
4224
4225/**
4226 * regulator_get_current_limit - get regulator output current
4227 * @regulator: regulator source
4228 *
4229 * This returns the current supplied by the specified current sink in uA.
4230 *
4231 * NOTE: If the regulator is disabled it will return the current value. This
4232 * function should not be used to determine regulator state.
4233 */
4234int regulator_get_current_limit(struct regulator *regulator)
4235{
4236 return _regulator_get_current_limit(regulator->rdev);
4237}
4238EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4239
4240/**
4241 * regulator_set_mode - set regulator operating mode
4242 * @regulator: regulator source
4243 * @mode: operating mode - one of the REGULATOR_MODE constants
4244 *
4245 * Set regulator operating mode to increase regulator efficiency or improve
4246 * regulation performance.
4247 *
4248 * NOTE: Regulator system constraints must be set for this regulator before
4249 * calling this function otherwise this call will fail.
4250 */
4251int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4252{
4253 struct regulator_dev *rdev = regulator->rdev;
4254 int ret;
4255 int regulator_curr_mode;
4256
4257 regulator_lock(rdev);
4258
4259 /* sanity check */
4260 if (!rdev->desc->ops->set_mode) {
4261 ret = -EINVAL;
4262 goto out;
4263 }
4264
4265 /* return if the same mode is requested */
4266 if (rdev->desc->ops->get_mode) {
4267 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4268 if (regulator_curr_mode == mode) {
4269 ret = 0;
4270 goto out;
4271 }
4272 }
4273
4274 /* constraints check */
4275 ret = regulator_mode_constrain(rdev, &mode);
4276 if (ret < 0)
4277 goto out;
4278
4279 ret = rdev->desc->ops->set_mode(rdev, mode);
4280out:
4281 regulator_unlock(rdev);
4282 return ret;
4283}
4284EXPORT_SYMBOL_GPL(regulator_set_mode);
4285
4286static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4287{
4288 /* sanity check */
4289 if (!rdev->desc->ops->get_mode)
4290 return -EINVAL;
4291
4292 return rdev->desc->ops->get_mode(rdev);
4293}
4294
4295static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4296{
4297 int ret;
4298
4299 regulator_lock(rdev);
4300 ret = _regulator_get_mode_unlocked(rdev);
4301 regulator_unlock(rdev);
4302
4303 return ret;
4304}
4305
4306/**
4307 * regulator_get_mode - get regulator operating mode
4308 * @regulator: regulator source
4309 *
4310 * Get the current regulator operating mode.
4311 */
4312unsigned int regulator_get_mode(struct regulator *regulator)
4313{
4314 return _regulator_get_mode(regulator->rdev);
4315}
4316EXPORT_SYMBOL_GPL(regulator_get_mode);
4317
4318static int _regulator_get_error_flags(struct regulator_dev *rdev,
4319 unsigned int *flags)
4320{
4321 int ret;
4322
4323 regulator_lock(rdev);
4324
4325 /* sanity check */
4326 if (!rdev->desc->ops->get_error_flags) {
4327 ret = -EINVAL;
4328 goto out;
4329 }
4330
4331 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4332out:
4333 regulator_unlock(rdev);
4334 return ret;
4335}
4336
4337/**
4338 * regulator_get_error_flags - get regulator error information
4339 * @regulator: regulator source
4340 * @flags: pointer to store error flags
4341 *
4342 * Get the current regulator error information.
4343 */
4344int regulator_get_error_flags(struct regulator *regulator,
4345 unsigned int *flags)
4346{
4347 return _regulator_get_error_flags(regulator->rdev, flags);
4348}
4349EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4350
4351/**
4352 * regulator_set_load - set regulator load
4353 * @regulator: regulator source
4354 * @uA_load: load current
4355 *
4356 * Notifies the regulator core of a new device load. This is then used by
4357 * DRMS (if enabled by constraints) to set the most efficient regulator
4358 * operating mode for the new regulator loading.
4359 *
4360 * Consumer devices notify their supply regulator of the maximum power
4361 * they will require (can be taken from device datasheet in the power
4362 * consumption tables) when they change operational status and hence power
4363 * state. Examples of operational state changes that can affect power
4364 * consumption are :-
4365 *
4366 * o Device is opened / closed.
4367 * o Device I/O is about to begin or has just finished.
4368 * o Device is idling in between work.
4369 *
4370 * This information is also exported via sysfs to userspace.
4371 *
4372 * DRMS will sum the total requested load on the regulator and change
4373 * to the most efficient operating mode if platform constraints allow.
4374 *
4375 * NOTE: when a regulator consumer requests to have a regulator
4376 * disabled then any load that consumer requested no longer counts
4377 * toward the total requested load. If the regulator is re-enabled
4378 * then the previously requested load will start counting again.
4379 *
4380 * If a regulator is an always-on regulator then an individual consumer's
4381 * load will still be removed if that consumer is fully disabled.
4382 *
4383 * On error a negative errno is returned.
4384 */
4385int regulator_set_load(struct regulator *regulator, int uA_load)
4386{
4387 struct regulator_dev *rdev = regulator->rdev;
4388 int old_uA_load;
4389 int ret = 0;
4390
4391 regulator_lock(rdev);
4392 old_uA_load = regulator->uA_load;
4393 regulator->uA_load = uA_load;
4394 if (regulator->enable_count && old_uA_load != uA_load) {
4395 ret = drms_uA_update(rdev);
4396 if (ret < 0)
4397 regulator->uA_load = old_uA_load;
4398 }
4399 regulator_unlock(rdev);
4400
4401 return ret;
4402}
4403EXPORT_SYMBOL_GPL(regulator_set_load);
4404
4405/**
4406 * regulator_allow_bypass - allow the regulator to go into bypass mode
4407 *
4408 * @regulator: Regulator to configure
4409 * @enable: enable or disable bypass mode
4410 *
4411 * Allow the regulator to go into bypass mode if all other consumers
4412 * for the regulator also enable bypass mode and the machine
4413 * constraints allow this. Bypass mode means that the regulator is
4414 * simply passing the input directly to the output with no regulation.
4415 */
4416int regulator_allow_bypass(struct regulator *regulator, bool enable)
4417{
4418 struct regulator_dev *rdev = regulator->rdev;
4419 const char *name = rdev_get_name(rdev);
4420 int ret = 0;
4421
4422 if (!rdev->desc->ops->set_bypass)
4423 return 0;
4424
4425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4426 return 0;
4427
4428 regulator_lock(rdev);
4429
4430 if (enable && !regulator->bypass) {
4431 rdev->bypass_count++;
4432
4433 if (rdev->bypass_count == rdev->open_count) {
4434 trace_regulator_bypass_enable(name);
4435
4436 ret = rdev->desc->ops->set_bypass(rdev, enable);
4437 if (ret != 0)
4438 rdev->bypass_count--;
4439 else
4440 trace_regulator_bypass_enable_complete(name);
4441 }
4442
4443 } else if (!enable && regulator->bypass) {
4444 rdev->bypass_count--;
4445
4446 if (rdev->bypass_count != rdev->open_count) {
4447 trace_regulator_bypass_disable(name);
4448
4449 ret = rdev->desc->ops->set_bypass(rdev, enable);
4450 if (ret != 0)
4451 rdev->bypass_count++;
4452 else
4453 trace_regulator_bypass_disable_complete(name);
4454 }
4455 }
4456
4457 if (ret == 0)
4458 regulator->bypass = enable;
4459
4460 regulator_unlock(rdev);
4461
4462 return ret;
4463}
4464EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4465
4466/**
4467 * regulator_register_notifier - register regulator event notifier
4468 * @regulator: regulator source
4469 * @nb: notifier block
4470 *
4471 * Register notifier block to receive regulator events.
4472 */
4473int regulator_register_notifier(struct regulator *regulator,
4474 struct notifier_block *nb)
4475{
4476 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4477 nb);
4478}
4479EXPORT_SYMBOL_GPL(regulator_register_notifier);
4480
4481/**
4482 * regulator_unregister_notifier - unregister regulator event notifier
4483 * @regulator: regulator source
4484 * @nb: notifier block
4485 *
4486 * Unregister regulator event notifier block.
4487 */
4488int regulator_unregister_notifier(struct regulator *regulator,
4489 struct notifier_block *nb)
4490{
4491 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4492 nb);
4493}
4494EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4495
4496/* notify regulator consumers and downstream regulator consumers.
4497 * Note mutex must be held by caller.
4498 */
4499static int _notifier_call_chain(struct regulator_dev *rdev,
4500 unsigned long event, void *data)
4501{
4502 /* call rdev chain first */
4503 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4504}
4505
4506/**
4507 * regulator_bulk_get - get multiple regulator consumers
4508 *
4509 * @dev: Device to supply
4510 * @num_consumers: Number of consumers to register
4511 * @consumers: Configuration of consumers; clients are stored here.
4512 *
4513 * @return 0 on success, an errno on failure.
4514 *
4515 * This helper function allows drivers to get several regulator
4516 * consumers in one operation. If any of the regulators cannot be
4517 * acquired then any regulators that were allocated will be freed
4518 * before returning to the caller.
4519 */
4520int regulator_bulk_get(struct device *dev, int num_consumers,
4521 struct regulator_bulk_data *consumers)
4522{
4523 int i;
4524 int ret;
4525
4526 for (i = 0; i < num_consumers; i++)
4527 consumers[i].consumer = NULL;
4528
4529 for (i = 0; i < num_consumers; i++) {
4530 consumers[i].consumer = regulator_get(dev,
4531 consumers[i].supply);
4532 if (IS_ERR(consumers[i].consumer)) {
4533 ret = PTR_ERR(consumers[i].consumer);
4534 consumers[i].consumer = NULL;
4535 goto err;
4536 }
4537 }
4538
4539 return 0;
4540
4541err:
4542 if (ret != -EPROBE_DEFER)
4543 dev_err(dev, "Failed to get supply '%s': %d\n",
4544 consumers[i].supply, ret);
4545 else
4546 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4547 consumers[i].supply);
4548
4549 while (--i >= 0)
4550 regulator_put(consumers[i].consumer);
4551
4552 return ret;
4553}
4554EXPORT_SYMBOL_GPL(regulator_bulk_get);
4555
4556static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4557{
4558 struct regulator_bulk_data *bulk = data;
4559
4560 bulk->ret = regulator_enable(bulk->consumer);
4561}
4562
4563/**
4564 * regulator_bulk_enable - enable multiple regulator consumers
4565 *
4566 * @num_consumers: Number of consumers
4567 * @consumers: Consumer data; clients are stored here.
4568 * @return 0 on success, an errno on failure
4569 *
4570 * This convenience API allows consumers to enable multiple regulator
4571 * clients in a single API call. If any consumers cannot be enabled
4572 * then any others that were enabled will be disabled again prior to
4573 * return.
4574 */
4575int regulator_bulk_enable(int num_consumers,
4576 struct regulator_bulk_data *consumers)
4577{
4578 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4579 int i;
4580 int ret = 0;
4581
4582 for (i = 0; i < num_consumers; i++) {
4583 async_schedule_domain(regulator_bulk_enable_async,
4584 &consumers[i], &async_domain);
4585 }
4586
4587 async_synchronize_full_domain(&async_domain);
4588
4589 /* If any consumer failed we need to unwind any that succeeded */
4590 for (i = 0; i < num_consumers; i++) {
4591 if (consumers[i].ret != 0) {
4592 ret = consumers[i].ret;
4593 goto err;
4594 }
4595 }
4596
4597 return 0;
4598
4599err:
4600 for (i = 0; i < num_consumers; i++) {
4601 if (consumers[i].ret < 0)
4602 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4603 consumers[i].ret);
4604 else
4605 regulator_disable(consumers[i].consumer);
4606 }
4607
4608 return ret;
4609}
4610EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4611
4612/**
4613 * regulator_bulk_disable - disable multiple regulator consumers
4614 *
4615 * @num_consumers: Number of consumers
4616 * @consumers: Consumer data; clients are stored here.
4617 * @return 0 on success, an errno on failure
4618 *
4619 * This convenience API allows consumers to disable multiple regulator
4620 * clients in a single API call. If any consumers cannot be disabled
4621 * then any others that were disabled will be enabled again prior to
4622 * return.
4623 */
4624int regulator_bulk_disable(int num_consumers,
4625 struct regulator_bulk_data *consumers)
4626{
4627 int i;
4628 int ret, r;
4629
4630 for (i = num_consumers - 1; i >= 0; --i) {
4631 ret = regulator_disable(consumers[i].consumer);
4632 if (ret != 0)
4633 goto err;
4634 }
4635
4636 return 0;
4637
4638err:
4639 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4640 for (++i; i < num_consumers; ++i) {
4641 r = regulator_enable(consumers[i].consumer);
4642 if (r != 0)
4643 pr_err("Failed to re-enable %s: %d\n",
4644 consumers[i].supply, r);
4645 }
4646
4647 return ret;
4648}
4649EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4650
4651/**
4652 * regulator_bulk_force_disable - force disable multiple regulator consumers
4653 *
4654 * @num_consumers: Number of consumers
4655 * @consumers: Consumer data; clients are stored here.
4656 * @return 0 on success, an errno on failure
4657 *
4658 * This convenience API allows consumers to forcibly disable multiple regulator
4659 * clients in a single API call.
4660 * NOTE: This should be used for situations when device damage will
4661 * likely occur if the regulators are not disabled (e.g. over temp).
4662 * Although regulator_force_disable function call for some consumers can
4663 * return error numbers, the function is called for all consumers.
4664 */
4665int regulator_bulk_force_disable(int num_consumers,
4666 struct regulator_bulk_data *consumers)
4667{
4668 int i;
4669 int ret = 0;
4670
4671 for (i = 0; i < num_consumers; i++) {
4672 consumers[i].ret =
4673 regulator_force_disable(consumers[i].consumer);
4674
4675 /* Store first error for reporting */
4676 if (consumers[i].ret && !ret)
4677 ret = consumers[i].ret;
4678 }
4679
4680 return ret;
4681}
4682EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4683
4684/**
4685 * regulator_bulk_free - free multiple regulator consumers
4686 *
4687 * @num_consumers: Number of consumers
4688 * @consumers: Consumer data; clients are stored here.
4689 *
4690 * This convenience API allows consumers to free multiple regulator
4691 * clients in a single API call.
4692 */
4693void regulator_bulk_free(int num_consumers,
4694 struct regulator_bulk_data *consumers)
4695{
4696 int i;
4697
4698 for (i = 0; i < num_consumers; i++) {
4699 regulator_put(consumers[i].consumer);
4700 consumers[i].consumer = NULL;
4701 }
4702}
4703EXPORT_SYMBOL_GPL(regulator_bulk_free);
4704
4705/**
4706 * regulator_notifier_call_chain - call regulator event notifier
4707 * @rdev: regulator source
4708 * @event: notifier block
4709 * @data: callback-specific data.
4710 *
4711 * Called by regulator drivers to notify clients a regulator event has
4712 * occurred. We also notify regulator clients downstream.
4713 * Note lock must be held by caller.
4714 */
4715int regulator_notifier_call_chain(struct regulator_dev *rdev,
4716 unsigned long event, void *data)
4717{
4718 lockdep_assert_held_once(&rdev->mutex.base);
4719
4720 _notifier_call_chain(rdev, event, data);
4721 return NOTIFY_DONE;
4722
4723}
4724EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4725
4726/**
4727 * regulator_mode_to_status - convert a regulator mode into a status
4728 *
4729 * @mode: Mode to convert
4730 *
4731 * Convert a regulator mode into a status.
4732 */
4733int regulator_mode_to_status(unsigned int mode)
4734{
4735 switch (mode) {
4736 case REGULATOR_MODE_FAST:
4737 return REGULATOR_STATUS_FAST;
4738 case REGULATOR_MODE_NORMAL:
4739 return REGULATOR_STATUS_NORMAL;
4740 case REGULATOR_MODE_IDLE:
4741 return REGULATOR_STATUS_IDLE;
4742 case REGULATOR_MODE_STANDBY:
4743 return REGULATOR_STATUS_STANDBY;
4744 default:
4745 return REGULATOR_STATUS_UNDEFINED;
4746 }
4747}
4748EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4749
4750static struct attribute *regulator_dev_attrs[] = {
4751 &dev_attr_name.attr,
4752 &dev_attr_num_users.attr,
4753 &dev_attr_type.attr,
4754 &dev_attr_microvolts.attr,
4755 &dev_attr_microamps.attr,
4756 &dev_attr_opmode.attr,
4757 &dev_attr_state.attr,
4758 &dev_attr_status.attr,
4759 &dev_attr_bypass.attr,
4760 &dev_attr_requested_microamps.attr,
4761 &dev_attr_min_microvolts.attr,
4762 &dev_attr_max_microvolts.attr,
4763 &dev_attr_min_microamps.attr,
4764 &dev_attr_max_microamps.attr,
4765 &dev_attr_suspend_standby_state.attr,
4766 &dev_attr_suspend_mem_state.attr,
4767 &dev_attr_suspend_disk_state.attr,
4768 &dev_attr_suspend_standby_microvolts.attr,
4769 &dev_attr_suspend_mem_microvolts.attr,
4770 &dev_attr_suspend_disk_microvolts.attr,
4771 &dev_attr_suspend_standby_mode.attr,
4772 &dev_attr_suspend_mem_mode.attr,
4773 &dev_attr_suspend_disk_mode.attr,
4774 NULL
4775};
4776
4777/*
4778 * To avoid cluttering sysfs (and memory) with useless state, only
4779 * create attributes that can be meaningfully displayed.
4780 */
4781static umode_t regulator_attr_is_visible(struct kobject *kobj,
4782 struct attribute *attr, int idx)
4783{
4784 struct device *dev = kobj_to_dev(kobj);
4785 struct regulator_dev *rdev = dev_to_rdev(dev);
4786 const struct regulator_ops *ops = rdev->desc->ops;
4787 umode_t mode = attr->mode;
4788
4789 /* these three are always present */
4790 if (attr == &dev_attr_name.attr ||
4791 attr == &dev_attr_num_users.attr ||
4792 attr == &dev_attr_type.attr)
4793 return mode;
4794
4795 /* some attributes need specific methods to be displayed */
4796 if (attr == &dev_attr_microvolts.attr) {
4797 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4798 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4799 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4800 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4801 return mode;
4802 return 0;
4803 }
4804
4805 if (attr == &dev_attr_microamps.attr)
4806 return ops->get_current_limit ? mode : 0;
4807
4808 if (attr == &dev_attr_opmode.attr)
4809 return ops->get_mode ? mode : 0;
4810
4811 if (attr == &dev_attr_state.attr)
4812 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4813
4814 if (attr == &dev_attr_status.attr)
4815 return ops->get_status ? mode : 0;
4816
4817 if (attr == &dev_attr_bypass.attr)
4818 return ops->get_bypass ? mode : 0;
4819
4820 /* constraints need specific supporting methods */
4821 if (attr == &dev_attr_min_microvolts.attr ||
4822 attr == &dev_attr_max_microvolts.attr)
4823 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4824
4825 if (attr == &dev_attr_min_microamps.attr ||
4826 attr == &dev_attr_max_microamps.attr)
4827 return ops->set_current_limit ? mode : 0;
4828
4829 if (attr == &dev_attr_suspend_standby_state.attr ||
4830 attr == &dev_attr_suspend_mem_state.attr ||
4831 attr == &dev_attr_suspend_disk_state.attr)
4832 return mode;
4833
4834 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4835 attr == &dev_attr_suspend_mem_microvolts.attr ||
4836 attr == &dev_attr_suspend_disk_microvolts.attr)
4837 return ops->set_suspend_voltage ? mode : 0;
4838
4839 if (attr == &dev_attr_suspend_standby_mode.attr ||
4840 attr == &dev_attr_suspend_mem_mode.attr ||
4841 attr == &dev_attr_suspend_disk_mode.attr)
4842 return ops->set_suspend_mode ? mode : 0;
4843
4844 return mode;
4845}
4846
4847static const struct attribute_group regulator_dev_group = {
4848 .attrs = regulator_dev_attrs,
4849 .is_visible = regulator_attr_is_visible,
4850};
4851
4852static const struct attribute_group *regulator_dev_groups[] = {
4853 ®ulator_dev_group,
4854 NULL
4855};
4856
4857static void regulator_dev_release(struct device *dev)
4858{
4859 struct regulator_dev *rdev = dev_get_drvdata(dev);
4860
4861 kfree(rdev->constraints);
4862 of_node_put(rdev->dev.of_node);
4863 kfree(rdev);
4864}
4865
4866static void rdev_init_debugfs(struct regulator_dev *rdev)
4867{
4868 struct device *parent = rdev->dev.parent;
4869 const char *rname = rdev_get_name(rdev);
4870 char name[NAME_MAX];
4871
4872 /* Avoid duplicate debugfs directory names */
4873 if (parent && rname == rdev->desc->name) {
4874 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4875 rname);
4876 rname = name;
4877 }
4878
4879 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4880 if (!rdev->debugfs) {
4881 rdev_warn(rdev, "Failed to create debugfs directory\n");
4882 return;
4883 }
4884
4885 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4886 &rdev->use_count);
4887 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4888 &rdev->open_count);
4889 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4890 &rdev->bypass_count);
4891}
4892
4893static int regulator_register_resolve_supply(struct device *dev, void *data)
4894{
4895 struct regulator_dev *rdev = dev_to_rdev(dev);
4896
4897 if (regulator_resolve_supply(rdev))
4898 rdev_dbg(rdev, "unable to resolve supply\n");
4899
4900 return 0;
4901}
4902
4903int regulator_coupler_register(struct regulator_coupler *coupler)
4904{
4905 mutex_lock(®ulator_list_mutex);
4906 list_add_tail(&coupler->list, ®ulator_coupler_list);
4907 mutex_unlock(®ulator_list_mutex);
4908
4909 return 0;
4910}
4911
4912static struct regulator_coupler *
4913regulator_find_coupler(struct regulator_dev *rdev)
4914{
4915 struct regulator_coupler *coupler;
4916 int err;
4917
4918 /*
4919 * Note that regulators are appended to the list and the generic
4920 * coupler is registered first, hence it will be attached at last
4921 * if nobody cared.
4922 */
4923 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
4924 err = coupler->attach_regulator(coupler, rdev);
4925 if (!err) {
4926 if (!coupler->balance_voltage &&
4927 rdev->coupling_desc.n_coupled > 2)
4928 goto err_unsupported;
4929
4930 return coupler;
4931 }
4932
4933 if (err < 0)
4934 return ERR_PTR(err);
4935
4936 if (err == 1)
4937 continue;
4938
4939 break;
4940 }
4941
4942 return ERR_PTR(-EINVAL);
4943
4944err_unsupported:
4945 if (coupler->detach_regulator)
4946 coupler->detach_regulator(coupler, rdev);
4947
4948 rdev_err(rdev,
4949 "Voltage balancing for multiple regulator couples is unimplemented\n");
4950
4951 return ERR_PTR(-EPERM);
4952}
4953
4954static void regulator_resolve_coupling(struct regulator_dev *rdev)
4955{
4956 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4957 struct coupling_desc *c_desc = &rdev->coupling_desc;
4958 int n_coupled = c_desc->n_coupled;
4959 struct regulator_dev *c_rdev;
4960 int i;
4961
4962 for (i = 1; i < n_coupled; i++) {
4963 /* already resolved */
4964 if (c_desc->coupled_rdevs[i])
4965 continue;
4966
4967 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4968
4969 if (!c_rdev)
4970 continue;
4971
4972 if (c_rdev->coupling_desc.coupler != coupler) {
4973 rdev_err(rdev, "coupler mismatch with %s\n",
4974 rdev_get_name(c_rdev));
4975 return;
4976 }
4977
4978 c_desc->coupled_rdevs[i] = c_rdev;
4979 c_desc->n_resolved++;
4980
4981 regulator_resolve_coupling(c_rdev);
4982 }
4983}
4984
4985static void regulator_remove_coupling(struct regulator_dev *rdev)
4986{
4987 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4988 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4989 struct regulator_dev *__c_rdev, *c_rdev;
4990 unsigned int __n_coupled, n_coupled;
4991 int i, k;
4992 int err;
4993
4994 n_coupled = c_desc->n_coupled;
4995
4996 for (i = 1; i < n_coupled; i++) {
4997 c_rdev = c_desc->coupled_rdevs[i];
4998
4999 if (!c_rdev)
5000 continue;
5001
5002 regulator_lock(c_rdev);
5003
5004 __c_desc = &c_rdev->coupling_desc;
5005 __n_coupled = __c_desc->n_coupled;
5006
5007 for (k = 1; k < __n_coupled; k++) {
5008 __c_rdev = __c_desc->coupled_rdevs[k];
5009
5010 if (__c_rdev == rdev) {
5011 __c_desc->coupled_rdevs[k] = NULL;
5012 __c_desc->n_resolved--;
5013 break;
5014 }
5015 }
5016
5017 regulator_unlock(c_rdev);
5018
5019 c_desc->coupled_rdevs[i] = NULL;
5020 c_desc->n_resolved--;
5021 }
5022
5023 if (coupler && coupler->detach_regulator) {
5024 err = coupler->detach_regulator(coupler, rdev);
5025 if (err)
5026 rdev_err(rdev, "failed to detach from coupler: %d\n",
5027 err);
5028 }
5029
5030 kfree(rdev->coupling_desc.coupled_rdevs);
5031 rdev->coupling_desc.coupled_rdevs = NULL;
5032}
5033
5034static int regulator_init_coupling(struct regulator_dev *rdev)
5035{
5036 int err, n_phandles;
5037 size_t alloc_size;
5038
5039 if (!IS_ENABLED(CONFIG_OF))
5040 n_phandles = 0;
5041 else
5042 n_phandles = of_get_n_coupled(rdev);
5043
5044 alloc_size = sizeof(*rdev) * (n_phandles + 1);
5045
5046 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5047 if (!rdev->coupling_desc.coupled_rdevs)
5048 return -ENOMEM;
5049
5050 /*
5051 * Every regulator should always have coupling descriptor filled with
5052 * at least pointer to itself.
5053 */
5054 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5055 rdev->coupling_desc.n_coupled = n_phandles + 1;
5056 rdev->coupling_desc.n_resolved++;
5057
5058 /* regulator isn't coupled */
5059 if (n_phandles == 0)
5060 return 0;
5061
5062 if (!of_check_coupling_data(rdev))
5063 return -EPERM;
5064
5065 mutex_lock(®ulator_list_mutex);
5066 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5067 mutex_unlock(®ulator_list_mutex);
5068
5069 if (IS_ERR(rdev->coupling_desc.coupler)) {
5070 err = PTR_ERR(rdev->coupling_desc.coupler);
5071 rdev_err(rdev, "failed to get coupler: %d\n", err);
5072 return err;
5073 }
5074
5075 return 0;
5076}
5077
5078static int generic_coupler_attach(struct regulator_coupler *coupler,
5079 struct regulator_dev *rdev)
5080{
5081 if (rdev->coupling_desc.n_coupled > 2) {
5082 rdev_err(rdev,
5083 "Voltage balancing for multiple regulator couples is unimplemented\n");
5084 return -EPERM;
5085 }
5086
5087 if (!rdev->constraints->always_on) {
5088 rdev_err(rdev,
5089 "Coupling of a non always-on regulator is unimplemented\n");
5090 return -ENOTSUPP;
5091 }
5092
5093 return 0;
5094}
5095
5096static struct regulator_coupler generic_regulator_coupler = {
5097 .attach_regulator = generic_coupler_attach,
5098};
5099
5100/**
5101 * regulator_register - register regulator
5102 * @regulator_desc: regulator to register
5103 * @cfg: runtime configuration for regulator
5104 *
5105 * Called by regulator drivers to register a regulator.
5106 * Returns a valid pointer to struct regulator_dev on success
5107 * or an ERR_PTR() on error.
5108 */
5109struct regulator_dev *
5110regulator_register(const struct regulator_desc *regulator_desc,
5111 const struct regulator_config *cfg)
5112{
5113 const struct regulation_constraints *constraints = NULL;
5114 const struct regulator_init_data *init_data;
5115 struct regulator_config *config = NULL;
5116 static atomic_t regulator_no = ATOMIC_INIT(-1);
5117 struct regulator_dev *rdev;
5118 bool dangling_cfg_gpiod = false;
5119 bool dangling_of_gpiod = false;
5120 struct device *dev;
5121 int ret, i;
5122
5123 if (cfg == NULL)
5124 return ERR_PTR(-EINVAL);
5125 if (cfg->ena_gpiod)
5126 dangling_cfg_gpiod = true;
5127 if (regulator_desc == NULL) {
5128 ret = -EINVAL;
5129 goto rinse;
5130 }
5131
5132 dev = cfg->dev;
5133 WARN_ON(!dev);
5134
5135 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5136 ret = -EINVAL;
5137 goto rinse;
5138 }
5139
5140 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5141 regulator_desc->type != REGULATOR_CURRENT) {
5142 ret = -EINVAL;
5143 goto rinse;
5144 }
5145
5146 /* Only one of each should be implemented */
5147 WARN_ON(regulator_desc->ops->get_voltage &&
5148 regulator_desc->ops->get_voltage_sel);
5149 WARN_ON(regulator_desc->ops->set_voltage &&
5150 regulator_desc->ops->set_voltage_sel);
5151
5152 /* If we're using selectors we must implement list_voltage. */
5153 if (regulator_desc->ops->get_voltage_sel &&
5154 !regulator_desc->ops->list_voltage) {
5155 ret = -EINVAL;
5156 goto rinse;
5157 }
5158 if (regulator_desc->ops->set_voltage_sel &&
5159 !regulator_desc->ops->list_voltage) {
5160 ret = -EINVAL;
5161 goto rinse;
5162 }
5163
5164 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5165 if (rdev == NULL) {
5166 ret = -ENOMEM;
5167 goto rinse;
5168 }
5169 device_initialize(&rdev->dev);
5170
5171 /*
5172 * Duplicate the config so the driver could override it after
5173 * parsing init data.
5174 */
5175 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5176 if (config == NULL) {
5177 ret = -ENOMEM;
5178 goto clean;
5179 }
5180
5181 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5182 &rdev->dev.of_node);
5183
5184 /*
5185 * Sometimes not all resources are probed already so we need to take
5186 * that into account. This happens most the time if the ena_gpiod comes
5187 * from a gpio extender or something else.
5188 */
5189 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5190 ret = -EPROBE_DEFER;
5191 goto clean;
5192 }
5193
5194 /*
5195 * We need to keep track of any GPIO descriptor coming from the
5196 * device tree until we have handled it over to the core. If the
5197 * config that was passed in to this function DOES NOT contain
5198 * a descriptor, and the config after this call DOES contain
5199 * a descriptor, we definitely got one from parsing the device
5200 * tree.
5201 */
5202 if (!cfg->ena_gpiod && config->ena_gpiod)
5203 dangling_of_gpiod = true;
5204 if (!init_data) {
5205 init_data = config->init_data;
5206 rdev->dev.of_node = of_node_get(config->of_node);
5207 }
5208
5209 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5210 rdev->reg_data = config->driver_data;
5211 rdev->owner = regulator_desc->owner;
5212 rdev->desc = regulator_desc;
5213 if (config->regmap)
5214 rdev->regmap = config->regmap;
5215 else if (dev_get_regmap(dev, NULL))
5216 rdev->regmap = dev_get_regmap(dev, NULL);
5217 else if (dev->parent)
5218 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5219 INIT_LIST_HEAD(&rdev->consumer_list);
5220 INIT_LIST_HEAD(&rdev->list);
5221 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5222 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5223
5224 /* preform any regulator specific init */
5225 if (init_data && init_data->regulator_init) {
5226 ret = init_data->regulator_init(rdev->reg_data);
5227 if (ret < 0)
5228 goto clean;
5229 }
5230
5231 if (config->ena_gpiod) {
5232 ret = regulator_ena_gpio_request(rdev, config);
5233 if (ret != 0) {
5234 rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5235 ret);
5236 goto clean;
5237 }
5238 /* The regulator core took over the GPIO descriptor */
5239 dangling_cfg_gpiod = false;
5240 dangling_of_gpiod = false;
5241 }
5242
5243 /* register with sysfs */
5244 rdev->dev.class = ®ulator_class;
5245 rdev->dev.parent = dev;
5246 dev_set_name(&rdev->dev, "regulator.%lu",
5247 (unsigned long) atomic_inc_return(®ulator_no));
5248 dev_set_drvdata(&rdev->dev, rdev);
5249
5250 /* set regulator constraints */
5251 if (init_data)
5252 constraints = &init_data->constraints;
5253
5254 if (init_data && init_data->supply_regulator)
5255 rdev->supply_name = init_data->supply_regulator;
5256 else if (regulator_desc->supply_name)
5257 rdev->supply_name = regulator_desc->supply_name;
5258
5259 /*
5260 * Attempt to resolve the regulator supply, if specified,
5261 * but don't return an error if we fail because we will try
5262 * to resolve it again later as more regulators are added.
5263 */
5264 if (regulator_resolve_supply(rdev))
5265 rdev_dbg(rdev, "unable to resolve supply\n");
5266
5267 ret = set_machine_constraints(rdev, constraints);
5268 if (ret < 0)
5269 goto wash;
5270
5271 ret = regulator_init_coupling(rdev);
5272 if (ret < 0)
5273 goto wash;
5274
5275 /* add consumers devices */
5276 if (init_data) {
5277 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5278 ret = set_consumer_device_supply(rdev,
5279 init_data->consumer_supplies[i].dev_name,
5280 init_data->consumer_supplies[i].supply);
5281 if (ret < 0) {
5282 dev_err(dev, "Failed to set supply %s\n",
5283 init_data->consumer_supplies[i].supply);
5284 goto unset_supplies;
5285 }
5286 }
5287 }
5288
5289 if (!rdev->desc->ops->get_voltage &&
5290 !rdev->desc->ops->list_voltage &&
5291 !rdev->desc->fixed_uV)
5292 rdev->is_switch = true;
5293
5294 ret = device_add(&rdev->dev);
5295 if (ret != 0)
5296 goto unset_supplies;
5297
5298 rdev_init_debugfs(rdev);
5299
5300 /* try to resolve regulators coupling since a new one was registered */
5301 mutex_lock(®ulator_list_mutex);
5302 regulator_resolve_coupling(rdev);
5303 mutex_unlock(®ulator_list_mutex);
5304
5305 /* try to resolve regulators supply since a new one was registered */
5306 class_for_each_device(®ulator_class, NULL, NULL,
5307 regulator_register_resolve_supply);
5308 kfree(config);
5309 return rdev;
5310
5311unset_supplies:
5312 mutex_lock(®ulator_list_mutex);
5313 unset_regulator_supplies(rdev);
5314 regulator_remove_coupling(rdev);
5315 mutex_unlock(®ulator_list_mutex);
5316wash:
5317 kfree(rdev->coupling_desc.coupled_rdevs);
5318 mutex_lock(®ulator_list_mutex);
5319 regulator_ena_gpio_free(rdev);
5320 mutex_unlock(®ulator_list_mutex);
5321clean:
5322 if (dangling_of_gpiod)
5323 gpiod_put(config->ena_gpiod);
5324 kfree(config);
5325 put_device(&rdev->dev);
5326rinse:
5327 if (dangling_cfg_gpiod)
5328 gpiod_put(cfg->ena_gpiod);
5329 return ERR_PTR(ret);
5330}
5331EXPORT_SYMBOL_GPL(regulator_register);
5332
5333/**
5334 * regulator_unregister - unregister regulator
5335 * @rdev: regulator to unregister
5336 *
5337 * Called by regulator drivers to unregister a regulator.
5338 */
5339void regulator_unregister(struct regulator_dev *rdev)
5340{
5341 if (rdev == NULL)
5342 return;
5343
5344 if (rdev->supply) {
5345 while (rdev->use_count--)
5346 regulator_disable(rdev->supply);
5347 regulator_put(rdev->supply);
5348 }
5349
5350 flush_work(&rdev->disable_work.work);
5351
5352 mutex_lock(®ulator_list_mutex);
5353
5354 debugfs_remove_recursive(rdev->debugfs);
5355 WARN_ON(rdev->open_count);
5356 regulator_remove_coupling(rdev);
5357 unset_regulator_supplies(rdev);
5358 list_del(&rdev->list);
5359 regulator_ena_gpio_free(rdev);
5360 device_unregister(&rdev->dev);
5361
5362 mutex_unlock(®ulator_list_mutex);
5363}
5364EXPORT_SYMBOL_GPL(regulator_unregister);
5365
5366#ifdef CONFIG_SUSPEND
5367/**
5368 * regulator_suspend - prepare regulators for system wide suspend
5369 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5370 *
5371 * Configure each regulator with it's suspend operating parameters for state.
5372 */
5373static int regulator_suspend(struct device *dev)
5374{
5375 struct regulator_dev *rdev = dev_to_rdev(dev);
5376 suspend_state_t state = pm_suspend_target_state;
5377 int ret;
5378
5379 regulator_lock(rdev);
5380 ret = suspend_set_state(rdev, state);
5381 regulator_unlock(rdev);
5382
5383 return ret;
5384}
5385
5386static int regulator_resume(struct device *dev)
5387{
5388 suspend_state_t state = pm_suspend_target_state;
5389 struct regulator_dev *rdev = dev_to_rdev(dev);
5390 struct regulator_state *rstate;
5391 int ret = 0;
5392
5393 rstate = regulator_get_suspend_state(rdev, state);
5394 if (rstate == NULL)
5395 return 0;
5396
5397 regulator_lock(rdev);
5398
5399 if (rdev->desc->ops->resume &&
5400 (rstate->enabled == ENABLE_IN_SUSPEND ||
5401 rstate->enabled == DISABLE_IN_SUSPEND))
5402 ret = rdev->desc->ops->resume(rdev);
5403
5404 regulator_unlock(rdev);
5405
5406 return ret;
5407}
5408#else /* !CONFIG_SUSPEND */
5409
5410#define regulator_suspend NULL
5411#define regulator_resume NULL
5412
5413#endif /* !CONFIG_SUSPEND */
5414
5415#ifdef CONFIG_PM
5416static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5417 .suspend = regulator_suspend,
5418 .resume = regulator_resume,
5419};
5420#endif
5421
5422struct class regulator_class = {
5423 .name = "regulator",
5424 .dev_release = regulator_dev_release,
5425 .dev_groups = regulator_dev_groups,
5426#ifdef CONFIG_PM
5427 .pm = ®ulator_pm_ops,
5428#endif
5429};
5430/**
5431 * regulator_has_full_constraints - the system has fully specified constraints
5432 *
5433 * Calling this function will cause the regulator API to disable all
5434 * regulators which have a zero use count and don't have an always_on
5435 * constraint in a late_initcall.
5436 *
5437 * The intention is that this will become the default behaviour in a
5438 * future kernel release so users are encouraged to use this facility
5439 * now.
5440 */
5441void regulator_has_full_constraints(void)
5442{
5443 has_full_constraints = 1;
5444}
5445EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5446
5447/**
5448 * rdev_get_drvdata - get rdev regulator driver data
5449 * @rdev: regulator
5450 *
5451 * Get rdev regulator driver private data. This call can be used in the
5452 * regulator driver context.
5453 */
5454void *rdev_get_drvdata(struct regulator_dev *rdev)
5455{
5456 return rdev->reg_data;
5457}
5458EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5459
5460/**
5461 * regulator_get_drvdata - get regulator driver data
5462 * @regulator: regulator
5463 *
5464 * Get regulator driver private data. This call can be used in the consumer
5465 * driver context when non API regulator specific functions need to be called.
5466 */
5467void *regulator_get_drvdata(struct regulator *regulator)
5468{
5469 return regulator->rdev->reg_data;
5470}
5471EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5472
5473/**
5474 * regulator_set_drvdata - set regulator driver data
5475 * @regulator: regulator
5476 * @data: data
5477 */
5478void regulator_set_drvdata(struct regulator *regulator, void *data)
5479{
5480 regulator->rdev->reg_data = data;
5481}
5482EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5483
5484/**
5485 * regulator_get_id - get regulator ID
5486 * @rdev: regulator
5487 */
5488int rdev_get_id(struct regulator_dev *rdev)
5489{
5490 return rdev->desc->id;
5491}
5492EXPORT_SYMBOL_GPL(rdev_get_id);
5493
5494struct device *rdev_get_dev(struct regulator_dev *rdev)
5495{
5496 return &rdev->dev;
5497}
5498EXPORT_SYMBOL_GPL(rdev_get_dev);
5499
5500struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5501{
5502 return rdev->regmap;
5503}
5504EXPORT_SYMBOL_GPL(rdev_get_regmap);
5505
5506void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5507{
5508 return reg_init_data->driver_data;
5509}
5510EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5511
5512#ifdef CONFIG_DEBUG_FS
5513static int supply_map_show(struct seq_file *sf, void *data)
5514{
5515 struct regulator_map *map;
5516
5517 list_for_each_entry(map, ®ulator_map_list, list) {
5518 seq_printf(sf, "%s -> %s.%s\n",
5519 rdev_get_name(map->regulator), map->dev_name,
5520 map->supply);
5521 }
5522
5523 return 0;
5524}
5525DEFINE_SHOW_ATTRIBUTE(supply_map);
5526
5527struct summary_data {
5528 struct seq_file *s;
5529 struct regulator_dev *parent;
5530 int level;
5531};
5532
5533static void regulator_summary_show_subtree(struct seq_file *s,
5534 struct regulator_dev *rdev,
5535 int level);
5536
5537static int regulator_summary_show_children(struct device *dev, void *data)
5538{
5539 struct regulator_dev *rdev = dev_to_rdev(dev);
5540 struct summary_data *summary_data = data;
5541
5542 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5543 regulator_summary_show_subtree(summary_data->s, rdev,
5544 summary_data->level + 1);
5545
5546 return 0;
5547}
5548
5549static void regulator_summary_show_subtree(struct seq_file *s,
5550 struct regulator_dev *rdev,
5551 int level)
5552{
5553 struct regulation_constraints *c;
5554 struct regulator *consumer;
5555 struct summary_data summary_data;
5556 unsigned int opmode;
5557
5558 if (!rdev)
5559 return;
5560
5561 opmode = _regulator_get_mode_unlocked(rdev);
5562 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5563 level * 3 + 1, "",
5564 30 - level * 3, rdev_get_name(rdev),
5565 rdev->use_count, rdev->open_count, rdev->bypass_count,
5566 regulator_opmode_to_str(opmode));
5567
5568 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5569 seq_printf(s, "%5dmA ",
5570 _regulator_get_current_limit_unlocked(rdev) / 1000);
5571
5572 c = rdev->constraints;
5573 if (c) {
5574 switch (rdev->desc->type) {
5575 case REGULATOR_VOLTAGE:
5576 seq_printf(s, "%5dmV %5dmV ",
5577 c->min_uV / 1000, c->max_uV / 1000);
5578 break;
5579 case REGULATOR_CURRENT:
5580 seq_printf(s, "%5dmA %5dmA ",
5581 c->min_uA / 1000, c->max_uA / 1000);
5582 break;
5583 }
5584 }
5585
5586 seq_puts(s, "\n");
5587
5588 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5589 if (consumer->dev && consumer->dev->class == ®ulator_class)
5590 continue;
5591
5592 seq_printf(s, "%*s%-*s ",
5593 (level + 1) * 3 + 1, "",
5594 30 - (level + 1) * 3,
5595 consumer->supply_name ? consumer->supply_name :
5596 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5597
5598 switch (rdev->desc->type) {
5599 case REGULATOR_VOLTAGE:
5600 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5601 consumer->enable_count,
5602 consumer->uA_load / 1000,
5603 consumer->uA_load && !consumer->enable_count ?
5604 '*' : ' ',
5605 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5606 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5607 break;
5608 case REGULATOR_CURRENT:
5609 break;
5610 }
5611
5612 seq_puts(s, "\n");
5613 }
5614
5615 summary_data.s = s;
5616 summary_data.level = level;
5617 summary_data.parent = rdev;
5618
5619 class_for_each_device(®ulator_class, NULL, &summary_data,
5620 regulator_summary_show_children);
5621}
5622
5623struct summary_lock_data {
5624 struct ww_acquire_ctx *ww_ctx;
5625 struct regulator_dev **new_contended_rdev;
5626 struct regulator_dev **old_contended_rdev;
5627};
5628
5629static int regulator_summary_lock_one(struct device *dev, void *data)
5630{
5631 struct regulator_dev *rdev = dev_to_rdev(dev);
5632 struct summary_lock_data *lock_data = data;
5633 int ret = 0;
5634
5635 if (rdev != *lock_data->old_contended_rdev) {
5636 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5637
5638 if (ret == -EDEADLK)
5639 *lock_data->new_contended_rdev = rdev;
5640 else
5641 WARN_ON_ONCE(ret);
5642 } else {
5643 *lock_data->old_contended_rdev = NULL;
5644 }
5645
5646 return ret;
5647}
5648
5649static int regulator_summary_unlock_one(struct device *dev, void *data)
5650{
5651 struct regulator_dev *rdev = dev_to_rdev(dev);
5652 struct summary_lock_data *lock_data = data;
5653
5654 if (lock_data) {
5655 if (rdev == *lock_data->new_contended_rdev)
5656 return -EDEADLK;
5657 }
5658
5659 regulator_unlock(rdev);
5660
5661 return 0;
5662}
5663
5664static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5665 struct regulator_dev **new_contended_rdev,
5666 struct regulator_dev **old_contended_rdev)
5667{
5668 struct summary_lock_data lock_data;
5669 int ret;
5670
5671 lock_data.ww_ctx = ww_ctx;
5672 lock_data.new_contended_rdev = new_contended_rdev;
5673 lock_data.old_contended_rdev = old_contended_rdev;
5674
5675 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5676 regulator_summary_lock_one);
5677 if (ret)
5678 class_for_each_device(®ulator_class, NULL, &lock_data,
5679 regulator_summary_unlock_one);
5680
5681 return ret;
5682}
5683
5684static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5685{
5686 struct regulator_dev *new_contended_rdev = NULL;
5687 struct regulator_dev *old_contended_rdev = NULL;
5688 int err;
5689
5690 mutex_lock(®ulator_list_mutex);
5691
5692 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5693
5694 do {
5695 if (new_contended_rdev) {
5696 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5697 old_contended_rdev = new_contended_rdev;
5698 old_contended_rdev->ref_cnt++;
5699 }
5700
5701 err = regulator_summary_lock_all(ww_ctx,
5702 &new_contended_rdev,
5703 &old_contended_rdev);
5704
5705 if (old_contended_rdev)
5706 regulator_unlock(old_contended_rdev);
5707
5708 } while (err == -EDEADLK);
5709
5710 ww_acquire_done(ww_ctx);
5711}
5712
5713static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5714{
5715 class_for_each_device(®ulator_class, NULL, NULL,
5716 regulator_summary_unlock_one);
5717 ww_acquire_fini(ww_ctx);
5718
5719 mutex_unlock(®ulator_list_mutex);
5720}
5721
5722static int regulator_summary_show_roots(struct device *dev, void *data)
5723{
5724 struct regulator_dev *rdev = dev_to_rdev(dev);
5725 struct seq_file *s = data;
5726
5727 if (!rdev->supply)
5728 regulator_summary_show_subtree(s, rdev, 0);
5729
5730 return 0;
5731}
5732
5733static int regulator_summary_show(struct seq_file *s, void *data)
5734{
5735 struct ww_acquire_ctx ww_ctx;
5736
5737 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5738 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5739
5740 regulator_summary_lock(&ww_ctx);
5741
5742 class_for_each_device(®ulator_class, NULL, s,
5743 regulator_summary_show_roots);
5744
5745 regulator_summary_unlock(&ww_ctx);
5746
5747 return 0;
5748}
5749DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5750#endif /* CONFIG_DEBUG_FS */
5751
5752static int __init regulator_init(void)
5753{
5754 int ret;
5755
5756 ret = class_register(®ulator_class);
5757
5758 debugfs_root = debugfs_create_dir("regulator", NULL);
5759 if (!debugfs_root)
5760 pr_warn("regulator: Failed to create debugfs directory\n");
5761
5762#ifdef CONFIG_DEBUG_FS
5763 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5764 &supply_map_fops);
5765
5766 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5767 NULL, ®ulator_summary_fops);
5768#endif
5769 regulator_dummy_init();
5770
5771 regulator_coupler_register(&generic_regulator_coupler);
5772
5773 return ret;
5774}
5775
5776/* init early to allow our consumers to complete system booting */
5777core_initcall(regulator_init);
5778
5779static int regulator_late_cleanup(struct device *dev, void *data)
5780{
5781 struct regulator_dev *rdev = dev_to_rdev(dev);
5782 const struct regulator_ops *ops = rdev->desc->ops;
5783 struct regulation_constraints *c = rdev->constraints;
5784 int enabled, ret;
5785
5786 if (c && c->always_on)
5787 return 0;
5788
5789 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5790 return 0;
5791
5792 regulator_lock(rdev);
5793
5794 if (rdev->use_count)
5795 goto unlock;
5796
5797 /* If we can't read the status assume it's on. */
5798 if (ops->is_enabled)
5799 enabled = ops->is_enabled(rdev);
5800 else
5801 enabled = 1;
5802
5803 if (!enabled)
5804 goto unlock;
5805
5806 if (have_full_constraints()) {
5807 /* We log since this may kill the system if it goes
5808 * wrong. */
5809 rdev_info(rdev, "disabling\n");
5810 ret = _regulator_do_disable(rdev);
5811 if (ret != 0)
5812 rdev_err(rdev, "couldn't disable: %d\n", ret);
5813 } else {
5814 /* The intention is that in future we will
5815 * assume that full constraints are provided
5816 * so warn even if we aren't going to do
5817 * anything here.
5818 */
5819 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5820 }
5821
5822unlock:
5823 regulator_unlock(rdev);
5824
5825 return 0;
5826}
5827
5828static void regulator_init_complete_work_function(struct work_struct *work)
5829{
5830 /*
5831 * Regulators may had failed to resolve their input supplies
5832 * when were registered, either because the input supply was
5833 * not registered yet or because its parent device was not
5834 * bound yet. So attempt to resolve the input supplies for
5835 * pending regulators before trying to disable unused ones.
5836 */
5837 class_for_each_device(®ulator_class, NULL, NULL,
5838 regulator_register_resolve_supply);
5839
5840 /* If we have a full configuration then disable any regulators
5841 * we have permission to change the status for and which are
5842 * not in use or always_on. This is effectively the default
5843 * for DT and ACPI as they have full constraints.
5844 */
5845 class_for_each_device(®ulator_class, NULL, NULL,
5846 regulator_late_cleanup);
5847}
5848
5849static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5850 regulator_init_complete_work_function);
5851
5852static int __init regulator_init_complete(void)
5853{
5854 /*
5855 * Since DT doesn't provide an idiomatic mechanism for
5856 * enabling full constraints and since it's much more natural
5857 * with DT to provide them just assume that a DT enabled
5858 * system has full constraints.
5859 */
5860 if (of_have_populated_dt())
5861 has_full_constraints = true;
5862
5863 /*
5864 * We punt completion for an arbitrary amount of time since
5865 * systems like distros will load many drivers from userspace
5866 * so consumers might not always be ready yet, this is
5867 * particularly an issue with laptops where this might bounce
5868 * the display off then on. Ideally we'd get a notification
5869 * from userspace when this happens but we don't so just wait
5870 * a bit and hope we waited long enough. It'd be better if
5871 * we'd only do this on systems that need it, and a kernel
5872 * command line option might be useful.
5873 */
5874 schedule_delayed_work(®ulator_init_complete_work,
5875 msecs_to_jiffies(30000));
5876
5877 return 0;
5878}
5879late_initcall_sync(regulator_init_complete);
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36static DEFINE_WW_CLASS(regulator_ww_class);
37static DEFINE_MUTEX(regulator_nesting_mutex);
38static DEFINE_MUTEX(regulator_list_mutex);
39static LIST_HEAD(regulator_map_list);
40static LIST_HEAD(regulator_ena_gpio_list);
41static LIST_HEAD(regulator_supply_alias_list);
42static LIST_HEAD(regulator_coupler_list);
43static bool has_full_constraints;
44
45static struct dentry *debugfs_root;
46
47/*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57};
58
59/*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69};
70
71/*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator *regulator);
86static int _regulator_get_current_limit(struct regulator_dev *rdev);
87static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88static int _notifier_call_chain(struct regulator_dev *rdev,
89 unsigned long event, void *data);
90static int _regulator_do_set_voltage(struct regulator_dev *rdev,
91 int min_uV, int max_uV);
92static int regulator_balance_voltage(struct regulator_dev *rdev,
93 suspend_state_t state);
94static struct regulator *create_regulator(struct regulator_dev *rdev,
95 struct device *dev,
96 const char *supply_name);
97static void destroy_regulator(struct regulator *regulator);
98static void _regulator_put(struct regulator *regulator);
99
100const char *rdev_get_name(struct regulator_dev *rdev)
101{
102 if (rdev->constraints && rdev->constraints->name)
103 return rdev->constraints->name;
104 else if (rdev->desc->name)
105 return rdev->desc->name;
106 else
107 return "";
108}
109EXPORT_SYMBOL_GPL(rdev_get_name);
110
111static bool have_full_constraints(void)
112{
113 return has_full_constraints || of_have_populated_dt();
114}
115
116static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
117{
118 if (!rdev->constraints) {
119 rdev_err(rdev, "no constraints\n");
120 return false;
121 }
122
123 if (rdev->constraints->valid_ops_mask & ops)
124 return true;
125
126 return false;
127}
128
129/**
130 * regulator_lock_nested - lock a single regulator
131 * @rdev: regulator source
132 * @ww_ctx: w/w mutex acquire context
133 *
134 * This function can be called many times by one task on
135 * a single regulator and its mutex will be locked only
136 * once. If a task, which is calling this function is other
137 * than the one, which initially locked the mutex, it will
138 * wait on mutex.
139 */
140static inline int regulator_lock_nested(struct regulator_dev *rdev,
141 struct ww_acquire_ctx *ww_ctx)
142{
143 bool lock = false;
144 int ret = 0;
145
146 mutex_lock(®ulator_nesting_mutex);
147
148 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
149 if (rdev->mutex_owner == current)
150 rdev->ref_cnt++;
151 else
152 lock = true;
153
154 if (lock) {
155 mutex_unlock(®ulator_nesting_mutex);
156 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
157 mutex_lock(®ulator_nesting_mutex);
158 }
159 } else {
160 lock = true;
161 }
162
163 if (lock && ret != -EDEADLK) {
164 rdev->ref_cnt++;
165 rdev->mutex_owner = current;
166 }
167
168 mutex_unlock(®ulator_nesting_mutex);
169
170 return ret;
171}
172
173/**
174 * regulator_lock - lock a single regulator
175 * @rdev: regulator source
176 *
177 * This function can be called many times by one task on
178 * a single regulator and its mutex will be locked only
179 * once. If a task, which is calling this function is other
180 * than the one, which initially locked the mutex, it will
181 * wait on mutex.
182 */
183static void regulator_lock(struct regulator_dev *rdev)
184{
185 regulator_lock_nested(rdev, NULL);
186}
187
188/**
189 * regulator_unlock - unlock a single regulator
190 * @rdev: regulator_source
191 *
192 * This function unlocks the mutex when the
193 * reference counter reaches 0.
194 */
195static void regulator_unlock(struct regulator_dev *rdev)
196{
197 mutex_lock(®ulator_nesting_mutex);
198
199 if (--rdev->ref_cnt == 0) {
200 rdev->mutex_owner = NULL;
201 ww_mutex_unlock(&rdev->mutex);
202 }
203
204 WARN_ON_ONCE(rdev->ref_cnt < 0);
205
206 mutex_unlock(®ulator_nesting_mutex);
207}
208
209static bool regulator_supply_is_couple(struct regulator_dev *rdev)
210{
211 struct regulator_dev *c_rdev;
212 int i;
213
214 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
215 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
216
217 if (rdev->supply->rdev == c_rdev)
218 return true;
219 }
220
221 return false;
222}
223
224static void regulator_unlock_recursive(struct regulator_dev *rdev,
225 unsigned int n_coupled)
226{
227 struct regulator_dev *c_rdev, *supply_rdev;
228 int i, supply_n_coupled;
229
230 for (i = n_coupled; i > 0; i--) {
231 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
232
233 if (!c_rdev)
234 continue;
235
236 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
237 supply_rdev = c_rdev->supply->rdev;
238 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
239
240 regulator_unlock_recursive(supply_rdev,
241 supply_n_coupled);
242 }
243
244 regulator_unlock(c_rdev);
245 }
246}
247
248static int regulator_lock_recursive(struct regulator_dev *rdev,
249 struct regulator_dev **new_contended_rdev,
250 struct regulator_dev **old_contended_rdev,
251 struct ww_acquire_ctx *ww_ctx)
252{
253 struct regulator_dev *c_rdev;
254 int i, err;
255
256 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
257 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
258
259 if (!c_rdev)
260 continue;
261
262 if (c_rdev != *old_contended_rdev) {
263 err = regulator_lock_nested(c_rdev, ww_ctx);
264 if (err) {
265 if (err == -EDEADLK) {
266 *new_contended_rdev = c_rdev;
267 goto err_unlock;
268 }
269
270 /* shouldn't happen */
271 WARN_ON_ONCE(err != -EALREADY);
272 }
273 } else {
274 *old_contended_rdev = NULL;
275 }
276
277 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278 err = regulator_lock_recursive(c_rdev->supply->rdev,
279 new_contended_rdev,
280 old_contended_rdev,
281 ww_ctx);
282 if (err) {
283 regulator_unlock(c_rdev);
284 goto err_unlock;
285 }
286 }
287 }
288
289 return 0;
290
291err_unlock:
292 regulator_unlock_recursive(rdev, i);
293
294 return err;
295}
296
297/**
298 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
299 * regulators
300 * @rdev: regulator source
301 * @ww_ctx: w/w mutex acquire context
302 *
303 * Unlock all regulators related with rdev by coupling or supplying.
304 */
305static void regulator_unlock_dependent(struct regulator_dev *rdev,
306 struct ww_acquire_ctx *ww_ctx)
307{
308 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
309 ww_acquire_fini(ww_ctx);
310}
311
312/**
313 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
314 * @rdev: regulator source
315 * @ww_ctx: w/w mutex acquire context
316 *
317 * This function as a wrapper on regulator_lock_recursive(), which locks
318 * all regulators related with rdev by coupling or supplying.
319 */
320static void regulator_lock_dependent(struct regulator_dev *rdev,
321 struct ww_acquire_ctx *ww_ctx)
322{
323 struct regulator_dev *new_contended_rdev = NULL;
324 struct regulator_dev *old_contended_rdev = NULL;
325 int err;
326
327 mutex_lock(®ulator_list_mutex);
328
329 ww_acquire_init(ww_ctx, ®ulator_ww_class);
330
331 do {
332 if (new_contended_rdev) {
333 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
334 old_contended_rdev = new_contended_rdev;
335 old_contended_rdev->ref_cnt++;
336 }
337
338 err = regulator_lock_recursive(rdev,
339 &new_contended_rdev,
340 &old_contended_rdev,
341 ww_ctx);
342
343 if (old_contended_rdev)
344 regulator_unlock(old_contended_rdev);
345
346 } while (err == -EDEADLK);
347
348 ww_acquire_done(ww_ctx);
349
350 mutex_unlock(®ulator_list_mutex);
351}
352
353/**
354 * of_get_child_regulator - get a child regulator device node
355 * based on supply name
356 * @parent: Parent device node
357 * @prop_name: Combination regulator supply name and "-supply"
358 *
359 * Traverse all child nodes.
360 * Extract the child regulator device node corresponding to the supply name.
361 * returns the device node corresponding to the regulator if found, else
362 * returns NULL.
363 */
364static struct device_node *of_get_child_regulator(struct device_node *parent,
365 const char *prop_name)
366{
367 struct device_node *regnode = NULL;
368 struct device_node *child = NULL;
369
370 for_each_child_of_node(parent, child) {
371 regnode = of_parse_phandle(child, prop_name, 0);
372
373 if (!regnode) {
374 regnode = of_get_child_regulator(child, prop_name);
375 if (regnode)
376 goto err_node_put;
377 } else {
378 goto err_node_put;
379 }
380 }
381 return NULL;
382
383err_node_put:
384 of_node_put(child);
385 return regnode;
386}
387
388/**
389 * of_get_regulator - get a regulator device node based on supply name
390 * @dev: Device pointer for the consumer (of regulator) device
391 * @supply: regulator supply name
392 *
393 * Extract the regulator device node corresponding to the supply name.
394 * returns the device node corresponding to the regulator if found, else
395 * returns NULL.
396 */
397static struct device_node *of_get_regulator(struct device *dev, const char *supply)
398{
399 struct device_node *regnode = NULL;
400 char prop_name[64]; /* 64 is max size of property name */
401
402 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
403
404 snprintf(prop_name, 64, "%s-supply", supply);
405 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
406
407 if (!regnode) {
408 regnode = of_get_child_regulator(dev->of_node, prop_name);
409 if (regnode)
410 return regnode;
411
412 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
413 prop_name, dev->of_node);
414 return NULL;
415 }
416 return regnode;
417}
418
419/* Platform voltage constraint check */
420int regulator_check_voltage(struct regulator_dev *rdev,
421 int *min_uV, int *max_uV)
422{
423 BUG_ON(*min_uV > *max_uV);
424
425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426 rdev_err(rdev, "voltage operation not allowed\n");
427 return -EPERM;
428 }
429
430 if (*max_uV > rdev->constraints->max_uV)
431 *max_uV = rdev->constraints->max_uV;
432 if (*min_uV < rdev->constraints->min_uV)
433 *min_uV = rdev->constraints->min_uV;
434
435 if (*min_uV > *max_uV) {
436 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
437 *min_uV, *max_uV);
438 return -EINVAL;
439 }
440
441 return 0;
442}
443
444/* return 0 if the state is valid */
445static int regulator_check_states(suspend_state_t state)
446{
447 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
448}
449
450/* Make sure we select a voltage that suits the needs of all
451 * regulator consumers
452 */
453int regulator_check_consumers(struct regulator_dev *rdev,
454 int *min_uV, int *max_uV,
455 suspend_state_t state)
456{
457 struct regulator *regulator;
458 struct regulator_voltage *voltage;
459
460 list_for_each_entry(regulator, &rdev->consumer_list, list) {
461 voltage = ®ulator->voltage[state];
462 /*
463 * Assume consumers that didn't say anything are OK
464 * with anything in the constraint range.
465 */
466 if (!voltage->min_uV && !voltage->max_uV)
467 continue;
468
469 if (*max_uV > voltage->max_uV)
470 *max_uV = voltage->max_uV;
471 if (*min_uV < voltage->min_uV)
472 *min_uV = voltage->min_uV;
473 }
474
475 if (*min_uV > *max_uV) {
476 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
477 *min_uV, *max_uV);
478 return -EINVAL;
479 }
480
481 return 0;
482}
483
484/* current constraint check */
485static int regulator_check_current_limit(struct regulator_dev *rdev,
486 int *min_uA, int *max_uA)
487{
488 BUG_ON(*min_uA > *max_uA);
489
490 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491 rdev_err(rdev, "current operation not allowed\n");
492 return -EPERM;
493 }
494
495 if (*max_uA > rdev->constraints->max_uA)
496 *max_uA = rdev->constraints->max_uA;
497 if (*min_uA < rdev->constraints->min_uA)
498 *min_uA = rdev->constraints->min_uA;
499
500 if (*min_uA > *max_uA) {
501 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
502 *min_uA, *max_uA);
503 return -EINVAL;
504 }
505
506 return 0;
507}
508
509/* operating mode constraint check */
510static int regulator_mode_constrain(struct regulator_dev *rdev,
511 unsigned int *mode)
512{
513 switch (*mode) {
514 case REGULATOR_MODE_FAST:
515 case REGULATOR_MODE_NORMAL:
516 case REGULATOR_MODE_IDLE:
517 case REGULATOR_MODE_STANDBY:
518 break;
519 default:
520 rdev_err(rdev, "invalid mode %x specified\n", *mode);
521 return -EINVAL;
522 }
523
524 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525 rdev_err(rdev, "mode operation not allowed\n");
526 return -EPERM;
527 }
528
529 /* The modes are bitmasks, the most power hungry modes having
530 * the lowest values. If the requested mode isn't supported
531 * try higher modes.
532 */
533 while (*mode) {
534 if (rdev->constraints->valid_modes_mask & *mode)
535 return 0;
536 *mode /= 2;
537 }
538
539 return -EINVAL;
540}
541
542static inline struct regulator_state *
543regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
544{
545 if (rdev->constraints == NULL)
546 return NULL;
547
548 switch (state) {
549 case PM_SUSPEND_STANDBY:
550 return &rdev->constraints->state_standby;
551 case PM_SUSPEND_MEM:
552 return &rdev->constraints->state_mem;
553 case PM_SUSPEND_MAX:
554 return &rdev->constraints->state_disk;
555 default:
556 return NULL;
557 }
558}
559
560static const struct regulator_state *
561regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
562{
563 const struct regulator_state *rstate;
564
565 rstate = regulator_get_suspend_state(rdev, state);
566 if (rstate == NULL)
567 return NULL;
568
569 /* If we have no suspend mode configuration don't set anything;
570 * only warn if the driver implements set_suspend_voltage or
571 * set_suspend_mode callback.
572 */
573 if (rstate->enabled != ENABLE_IN_SUSPEND &&
574 rstate->enabled != DISABLE_IN_SUSPEND) {
575 if (rdev->desc->ops->set_suspend_voltage ||
576 rdev->desc->ops->set_suspend_mode)
577 rdev_warn(rdev, "No configuration\n");
578 return NULL;
579 }
580
581 return rstate;
582}
583
584static ssize_t microvolts_show(struct device *dev,
585 struct device_attribute *attr, char *buf)
586{
587 struct regulator_dev *rdev = dev_get_drvdata(dev);
588 int uV;
589
590 regulator_lock(rdev);
591 uV = regulator_get_voltage_rdev(rdev);
592 regulator_unlock(rdev);
593
594 if (uV < 0)
595 return uV;
596 return sprintf(buf, "%d\n", uV);
597}
598static DEVICE_ATTR_RO(microvolts);
599
600static ssize_t microamps_show(struct device *dev,
601 struct device_attribute *attr, char *buf)
602{
603 struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
606}
607static DEVICE_ATTR_RO(microamps);
608
609static ssize_t name_show(struct device *dev, struct device_attribute *attr,
610 char *buf)
611{
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614 return sprintf(buf, "%s\n", rdev_get_name(rdev));
615}
616static DEVICE_ATTR_RO(name);
617
618static const char *regulator_opmode_to_str(int mode)
619{
620 switch (mode) {
621 case REGULATOR_MODE_FAST:
622 return "fast";
623 case REGULATOR_MODE_NORMAL:
624 return "normal";
625 case REGULATOR_MODE_IDLE:
626 return "idle";
627 case REGULATOR_MODE_STANDBY:
628 return "standby";
629 }
630 return "unknown";
631}
632
633static ssize_t regulator_print_opmode(char *buf, int mode)
634{
635 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
636}
637
638static ssize_t opmode_show(struct device *dev,
639 struct device_attribute *attr, char *buf)
640{
641 struct regulator_dev *rdev = dev_get_drvdata(dev);
642
643 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
644}
645static DEVICE_ATTR_RO(opmode);
646
647static ssize_t regulator_print_state(char *buf, int state)
648{
649 if (state > 0)
650 return sprintf(buf, "enabled\n");
651 else if (state == 0)
652 return sprintf(buf, "disabled\n");
653 else
654 return sprintf(buf, "unknown\n");
655}
656
657static ssize_t state_show(struct device *dev,
658 struct device_attribute *attr, char *buf)
659{
660 struct regulator_dev *rdev = dev_get_drvdata(dev);
661 ssize_t ret;
662
663 regulator_lock(rdev);
664 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665 regulator_unlock(rdev);
666
667 return ret;
668}
669static DEVICE_ATTR_RO(state);
670
671static ssize_t status_show(struct device *dev,
672 struct device_attribute *attr, char *buf)
673{
674 struct regulator_dev *rdev = dev_get_drvdata(dev);
675 int status;
676 char *label;
677
678 status = rdev->desc->ops->get_status(rdev);
679 if (status < 0)
680 return status;
681
682 switch (status) {
683 case REGULATOR_STATUS_OFF:
684 label = "off";
685 break;
686 case REGULATOR_STATUS_ON:
687 label = "on";
688 break;
689 case REGULATOR_STATUS_ERROR:
690 label = "error";
691 break;
692 case REGULATOR_STATUS_FAST:
693 label = "fast";
694 break;
695 case REGULATOR_STATUS_NORMAL:
696 label = "normal";
697 break;
698 case REGULATOR_STATUS_IDLE:
699 label = "idle";
700 break;
701 case REGULATOR_STATUS_STANDBY:
702 label = "standby";
703 break;
704 case REGULATOR_STATUS_BYPASS:
705 label = "bypass";
706 break;
707 case REGULATOR_STATUS_UNDEFINED:
708 label = "undefined";
709 break;
710 default:
711 return -ERANGE;
712 }
713
714 return sprintf(buf, "%s\n", label);
715}
716static DEVICE_ATTR_RO(status);
717
718static ssize_t min_microamps_show(struct device *dev,
719 struct device_attribute *attr, char *buf)
720{
721 struct regulator_dev *rdev = dev_get_drvdata(dev);
722
723 if (!rdev->constraints)
724 return sprintf(buf, "constraint not defined\n");
725
726 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
727}
728static DEVICE_ATTR_RO(min_microamps);
729
730static ssize_t max_microamps_show(struct device *dev,
731 struct device_attribute *attr, char *buf)
732{
733 struct regulator_dev *rdev = dev_get_drvdata(dev);
734
735 if (!rdev->constraints)
736 return sprintf(buf, "constraint not defined\n");
737
738 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
739}
740static DEVICE_ATTR_RO(max_microamps);
741
742static ssize_t min_microvolts_show(struct device *dev,
743 struct device_attribute *attr, char *buf)
744{
745 struct regulator_dev *rdev = dev_get_drvdata(dev);
746
747 if (!rdev->constraints)
748 return sprintf(buf, "constraint not defined\n");
749
750 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
751}
752static DEVICE_ATTR_RO(min_microvolts);
753
754static ssize_t max_microvolts_show(struct device *dev,
755 struct device_attribute *attr, char *buf)
756{
757 struct regulator_dev *rdev = dev_get_drvdata(dev);
758
759 if (!rdev->constraints)
760 return sprintf(buf, "constraint not defined\n");
761
762 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
763}
764static DEVICE_ATTR_RO(max_microvolts);
765
766static ssize_t requested_microamps_show(struct device *dev,
767 struct device_attribute *attr, char *buf)
768{
769 struct regulator_dev *rdev = dev_get_drvdata(dev);
770 struct regulator *regulator;
771 int uA = 0;
772
773 regulator_lock(rdev);
774 list_for_each_entry(regulator, &rdev->consumer_list, list) {
775 if (regulator->enable_count)
776 uA += regulator->uA_load;
777 }
778 regulator_unlock(rdev);
779 return sprintf(buf, "%d\n", uA);
780}
781static DEVICE_ATTR_RO(requested_microamps);
782
783static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
784 char *buf)
785{
786 struct regulator_dev *rdev = dev_get_drvdata(dev);
787 return sprintf(buf, "%d\n", rdev->use_count);
788}
789static DEVICE_ATTR_RO(num_users);
790
791static ssize_t type_show(struct device *dev, struct device_attribute *attr,
792 char *buf)
793{
794 struct regulator_dev *rdev = dev_get_drvdata(dev);
795
796 switch (rdev->desc->type) {
797 case REGULATOR_VOLTAGE:
798 return sprintf(buf, "voltage\n");
799 case REGULATOR_CURRENT:
800 return sprintf(buf, "current\n");
801 }
802 return sprintf(buf, "unknown\n");
803}
804static DEVICE_ATTR_RO(type);
805
806static ssize_t suspend_mem_microvolts_show(struct device *dev,
807 struct device_attribute *attr, char *buf)
808{
809 struct regulator_dev *rdev = dev_get_drvdata(dev);
810
811 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
812}
813static DEVICE_ATTR_RO(suspend_mem_microvolts);
814
815static ssize_t suspend_disk_microvolts_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
817{
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
821}
822static DEVICE_ATTR_RO(suspend_disk_microvolts);
823
824static ssize_t suspend_standby_microvolts_show(struct device *dev,
825 struct device_attribute *attr, char *buf)
826{
827 struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
830}
831static DEVICE_ATTR_RO(suspend_standby_microvolts);
832
833static ssize_t suspend_mem_mode_show(struct device *dev,
834 struct device_attribute *attr, char *buf)
835{
836 struct regulator_dev *rdev = dev_get_drvdata(dev);
837
838 return regulator_print_opmode(buf,
839 rdev->constraints->state_mem.mode);
840}
841static DEVICE_ATTR_RO(suspend_mem_mode);
842
843static ssize_t suspend_disk_mode_show(struct device *dev,
844 struct device_attribute *attr, char *buf)
845{
846 struct regulator_dev *rdev = dev_get_drvdata(dev);
847
848 return regulator_print_opmode(buf,
849 rdev->constraints->state_disk.mode);
850}
851static DEVICE_ATTR_RO(suspend_disk_mode);
852
853static ssize_t suspend_standby_mode_show(struct device *dev,
854 struct device_attribute *attr, char *buf)
855{
856 struct regulator_dev *rdev = dev_get_drvdata(dev);
857
858 return regulator_print_opmode(buf,
859 rdev->constraints->state_standby.mode);
860}
861static DEVICE_ATTR_RO(suspend_standby_mode);
862
863static ssize_t suspend_mem_state_show(struct device *dev,
864 struct device_attribute *attr, char *buf)
865{
866 struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868 return regulator_print_state(buf,
869 rdev->constraints->state_mem.enabled);
870}
871static DEVICE_ATTR_RO(suspend_mem_state);
872
873static ssize_t suspend_disk_state_show(struct device *dev,
874 struct device_attribute *attr, char *buf)
875{
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 return regulator_print_state(buf,
879 rdev->constraints->state_disk.enabled);
880}
881static DEVICE_ATTR_RO(suspend_disk_state);
882
883static ssize_t suspend_standby_state_show(struct device *dev,
884 struct device_attribute *attr, char *buf)
885{
886 struct regulator_dev *rdev = dev_get_drvdata(dev);
887
888 return regulator_print_state(buf,
889 rdev->constraints->state_standby.enabled);
890}
891static DEVICE_ATTR_RO(suspend_standby_state);
892
893static ssize_t bypass_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
895{
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
897 const char *report;
898 bool bypass;
899 int ret;
900
901 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
902
903 if (ret != 0)
904 report = "unknown";
905 else if (bypass)
906 report = "enabled";
907 else
908 report = "disabled";
909
910 return sprintf(buf, "%s\n", report);
911}
912static DEVICE_ATTR_RO(bypass);
913
914/* Calculate the new optimum regulator operating mode based on the new total
915 * consumer load. All locks held by caller
916 */
917static int drms_uA_update(struct regulator_dev *rdev)
918{
919 struct regulator *sibling;
920 int current_uA = 0, output_uV, input_uV, err;
921 unsigned int mode;
922
923 /*
924 * first check to see if we can set modes at all, otherwise just
925 * tell the consumer everything is OK.
926 */
927 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
928 rdev_dbg(rdev, "DRMS operation not allowed\n");
929 return 0;
930 }
931
932 if (!rdev->desc->ops->get_optimum_mode &&
933 !rdev->desc->ops->set_load)
934 return 0;
935
936 if (!rdev->desc->ops->set_mode &&
937 !rdev->desc->ops->set_load)
938 return -EINVAL;
939
940 /* calc total requested load */
941 list_for_each_entry(sibling, &rdev->consumer_list, list) {
942 if (sibling->enable_count)
943 current_uA += sibling->uA_load;
944 }
945
946 current_uA += rdev->constraints->system_load;
947
948 if (rdev->desc->ops->set_load) {
949 /* set the optimum mode for our new total regulator load */
950 err = rdev->desc->ops->set_load(rdev, current_uA);
951 if (err < 0)
952 rdev_err(rdev, "failed to set load %d: %pe\n",
953 current_uA, ERR_PTR(err));
954 } else {
955 /* get output voltage */
956 output_uV = regulator_get_voltage_rdev(rdev);
957 if (output_uV <= 0) {
958 rdev_err(rdev, "invalid output voltage found\n");
959 return -EINVAL;
960 }
961
962 /* get input voltage */
963 input_uV = 0;
964 if (rdev->supply)
965 input_uV = regulator_get_voltage(rdev->supply);
966 if (input_uV <= 0)
967 input_uV = rdev->constraints->input_uV;
968 if (input_uV <= 0) {
969 rdev_err(rdev, "invalid input voltage found\n");
970 return -EINVAL;
971 }
972
973 /* now get the optimum mode for our new total regulator load */
974 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
975 output_uV, current_uA);
976
977 /* check the new mode is allowed */
978 err = regulator_mode_constrain(rdev, &mode);
979 if (err < 0) {
980 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
981 current_uA, input_uV, output_uV, ERR_PTR(err));
982 return err;
983 }
984
985 err = rdev->desc->ops->set_mode(rdev, mode);
986 if (err < 0)
987 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
988 mode, ERR_PTR(err));
989 }
990
991 return err;
992}
993
994static int __suspend_set_state(struct regulator_dev *rdev,
995 const struct regulator_state *rstate)
996{
997 int ret = 0;
998
999 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000 rdev->desc->ops->set_suspend_enable)
1001 ret = rdev->desc->ops->set_suspend_enable(rdev);
1002 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003 rdev->desc->ops->set_suspend_disable)
1004 ret = rdev->desc->ops->set_suspend_disable(rdev);
1005 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1006 ret = 0;
1007
1008 if (ret < 0) {
1009 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010 return ret;
1011 }
1012
1013 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1015 if (ret < 0) {
1016 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017 return ret;
1018 }
1019 }
1020
1021 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1023 if (ret < 0) {
1024 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025 return ret;
1026 }
1027 }
1028
1029 return ret;
1030}
1031
1032static int suspend_set_initial_state(struct regulator_dev *rdev)
1033{
1034 const struct regulator_state *rstate;
1035
1036 rstate = regulator_get_suspend_state_check(rdev,
1037 rdev->constraints->initial_state);
1038 if (!rstate)
1039 return 0;
1040
1041 return __suspend_set_state(rdev, rstate);
1042}
1043
1044#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045static void print_constraints_debug(struct regulator_dev *rdev)
1046{
1047 struct regulation_constraints *constraints = rdev->constraints;
1048 char buf[160] = "";
1049 size_t len = sizeof(buf) - 1;
1050 int count = 0;
1051 int ret;
1052
1053 if (constraints->min_uV && constraints->max_uV) {
1054 if (constraints->min_uV == constraints->max_uV)
1055 count += scnprintf(buf + count, len - count, "%d mV ",
1056 constraints->min_uV / 1000);
1057 else
1058 count += scnprintf(buf + count, len - count,
1059 "%d <--> %d mV ",
1060 constraints->min_uV / 1000,
1061 constraints->max_uV / 1000);
1062 }
1063
1064 if (!constraints->min_uV ||
1065 constraints->min_uV != constraints->max_uV) {
1066 ret = regulator_get_voltage_rdev(rdev);
1067 if (ret > 0)
1068 count += scnprintf(buf + count, len - count,
1069 "at %d mV ", ret / 1000);
1070 }
1071
1072 if (constraints->uV_offset)
1073 count += scnprintf(buf + count, len - count, "%dmV offset ",
1074 constraints->uV_offset / 1000);
1075
1076 if (constraints->min_uA && constraints->max_uA) {
1077 if (constraints->min_uA == constraints->max_uA)
1078 count += scnprintf(buf + count, len - count, "%d mA ",
1079 constraints->min_uA / 1000);
1080 else
1081 count += scnprintf(buf + count, len - count,
1082 "%d <--> %d mA ",
1083 constraints->min_uA / 1000,
1084 constraints->max_uA / 1000);
1085 }
1086
1087 if (!constraints->min_uA ||
1088 constraints->min_uA != constraints->max_uA) {
1089 ret = _regulator_get_current_limit(rdev);
1090 if (ret > 0)
1091 count += scnprintf(buf + count, len - count,
1092 "at %d mA ", ret / 1000);
1093 }
1094
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096 count += scnprintf(buf + count, len - count, "fast ");
1097 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098 count += scnprintf(buf + count, len - count, "normal ");
1099 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100 count += scnprintf(buf + count, len - count, "idle ");
1101 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102 count += scnprintf(buf + count, len - count, "standby ");
1103
1104 if (!count)
1105 count = scnprintf(buf, len, "no parameters");
1106 else
1107 --count;
1108
1109 count += scnprintf(buf + count, len - count, ", %s",
1110 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111
1112 rdev_dbg(rdev, "%s\n", buf);
1113}
1114#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1117
1118static void print_constraints(struct regulator_dev *rdev)
1119{
1120 struct regulation_constraints *constraints = rdev->constraints;
1121
1122 print_constraints_debug(rdev);
1123
1124 if ((constraints->min_uV != constraints->max_uV) &&
1125 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126 rdev_warn(rdev,
1127 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128}
1129
1130static int machine_constraints_voltage(struct regulator_dev *rdev,
1131 struct regulation_constraints *constraints)
1132{
1133 const struct regulator_ops *ops = rdev->desc->ops;
1134 int ret;
1135
1136 /* do we need to apply the constraint voltage */
1137 if (rdev->constraints->apply_uV &&
1138 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139 int target_min, target_max;
1140 int current_uV = regulator_get_voltage_rdev(rdev);
1141
1142 if (current_uV == -ENOTRECOVERABLE) {
1143 /* This regulator can't be read and must be initialized */
1144 rdev_info(rdev, "Setting %d-%duV\n",
1145 rdev->constraints->min_uV,
1146 rdev->constraints->max_uV);
1147 _regulator_do_set_voltage(rdev,
1148 rdev->constraints->min_uV,
1149 rdev->constraints->max_uV);
1150 current_uV = regulator_get_voltage_rdev(rdev);
1151 }
1152
1153 if (current_uV < 0) {
1154 rdev_err(rdev,
1155 "failed to get the current voltage: %pe\n",
1156 ERR_PTR(current_uV));
1157 return current_uV;
1158 }
1159
1160 /*
1161 * If we're below the minimum voltage move up to the
1162 * minimum voltage, if we're above the maximum voltage
1163 * then move down to the maximum.
1164 */
1165 target_min = current_uV;
1166 target_max = current_uV;
1167
1168 if (current_uV < rdev->constraints->min_uV) {
1169 target_min = rdev->constraints->min_uV;
1170 target_max = rdev->constraints->min_uV;
1171 }
1172
1173 if (current_uV > rdev->constraints->max_uV) {
1174 target_min = rdev->constraints->max_uV;
1175 target_max = rdev->constraints->max_uV;
1176 }
1177
1178 if (target_min != current_uV || target_max != current_uV) {
1179 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1180 current_uV, target_min, target_max);
1181 ret = _regulator_do_set_voltage(
1182 rdev, target_min, target_max);
1183 if (ret < 0) {
1184 rdev_err(rdev,
1185 "failed to apply %d-%duV constraint: %pe\n",
1186 target_min, target_max, ERR_PTR(ret));
1187 return ret;
1188 }
1189 }
1190 }
1191
1192 /* constrain machine-level voltage specs to fit
1193 * the actual range supported by this regulator.
1194 */
1195 if (ops->list_voltage && rdev->desc->n_voltages) {
1196 int count = rdev->desc->n_voltages;
1197 int i;
1198 int min_uV = INT_MAX;
1199 int max_uV = INT_MIN;
1200 int cmin = constraints->min_uV;
1201 int cmax = constraints->max_uV;
1202
1203 /* it's safe to autoconfigure fixed-voltage supplies
1204 * and the constraints are used by list_voltage.
1205 */
1206 if (count == 1 && !cmin) {
1207 cmin = 1;
1208 cmax = INT_MAX;
1209 constraints->min_uV = cmin;
1210 constraints->max_uV = cmax;
1211 }
1212
1213 /* voltage constraints are optional */
1214 if ((cmin == 0) && (cmax == 0))
1215 return 0;
1216
1217 /* else require explicit machine-level constraints */
1218 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1219 rdev_err(rdev, "invalid voltage constraints\n");
1220 return -EINVAL;
1221 }
1222
1223 /* no need to loop voltages if range is continuous */
1224 if (rdev->desc->continuous_voltage_range)
1225 return 0;
1226
1227 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1228 for (i = 0; i < count; i++) {
1229 int value;
1230
1231 value = ops->list_voltage(rdev, i);
1232 if (value <= 0)
1233 continue;
1234
1235 /* maybe adjust [min_uV..max_uV] */
1236 if (value >= cmin && value < min_uV)
1237 min_uV = value;
1238 if (value <= cmax && value > max_uV)
1239 max_uV = value;
1240 }
1241
1242 /* final: [min_uV..max_uV] valid iff constraints valid */
1243 if (max_uV < min_uV) {
1244 rdev_err(rdev,
1245 "unsupportable voltage constraints %u-%uuV\n",
1246 min_uV, max_uV);
1247 return -EINVAL;
1248 }
1249
1250 /* use regulator's subset of machine constraints */
1251 if (constraints->min_uV < min_uV) {
1252 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1253 constraints->min_uV, min_uV);
1254 constraints->min_uV = min_uV;
1255 }
1256 if (constraints->max_uV > max_uV) {
1257 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1258 constraints->max_uV, max_uV);
1259 constraints->max_uV = max_uV;
1260 }
1261 }
1262
1263 return 0;
1264}
1265
1266static int machine_constraints_current(struct regulator_dev *rdev,
1267 struct regulation_constraints *constraints)
1268{
1269 const struct regulator_ops *ops = rdev->desc->ops;
1270 int ret;
1271
1272 if (!constraints->min_uA && !constraints->max_uA)
1273 return 0;
1274
1275 if (constraints->min_uA > constraints->max_uA) {
1276 rdev_err(rdev, "Invalid current constraints\n");
1277 return -EINVAL;
1278 }
1279
1280 if (!ops->set_current_limit || !ops->get_current_limit) {
1281 rdev_warn(rdev, "Operation of current configuration missing\n");
1282 return 0;
1283 }
1284
1285 /* Set regulator current in constraints range */
1286 ret = ops->set_current_limit(rdev, constraints->min_uA,
1287 constraints->max_uA);
1288 if (ret < 0) {
1289 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1290 return ret;
1291 }
1292
1293 return 0;
1294}
1295
1296static int _regulator_do_enable(struct regulator_dev *rdev);
1297
1298static int notif_set_limit(struct regulator_dev *rdev,
1299 int (*set)(struct regulator_dev *, int, int, bool),
1300 int limit, int severity)
1301{
1302 bool enable;
1303
1304 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1305 enable = false;
1306 limit = 0;
1307 } else {
1308 enable = true;
1309 }
1310
1311 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1312 limit = 0;
1313
1314 return set(rdev, limit, severity, enable);
1315}
1316
1317static int handle_notify_limits(struct regulator_dev *rdev,
1318 int (*set)(struct regulator_dev *, int, int, bool),
1319 struct notification_limit *limits)
1320{
1321 int ret = 0;
1322
1323 if (!set)
1324 return -EOPNOTSUPP;
1325
1326 if (limits->prot)
1327 ret = notif_set_limit(rdev, set, limits->prot,
1328 REGULATOR_SEVERITY_PROT);
1329 if (ret)
1330 return ret;
1331
1332 if (limits->err)
1333 ret = notif_set_limit(rdev, set, limits->err,
1334 REGULATOR_SEVERITY_ERR);
1335 if (ret)
1336 return ret;
1337
1338 if (limits->warn)
1339 ret = notif_set_limit(rdev, set, limits->warn,
1340 REGULATOR_SEVERITY_WARN);
1341
1342 return ret;
1343}
1344/**
1345 * set_machine_constraints - sets regulator constraints
1346 * @rdev: regulator source
1347 *
1348 * Allows platform initialisation code to define and constrain
1349 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1350 * Constraints *must* be set by platform code in order for some
1351 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1352 * set_mode.
1353 */
1354static int set_machine_constraints(struct regulator_dev *rdev)
1355{
1356 int ret = 0;
1357 const struct regulator_ops *ops = rdev->desc->ops;
1358
1359 ret = machine_constraints_voltage(rdev, rdev->constraints);
1360 if (ret != 0)
1361 return ret;
1362
1363 ret = machine_constraints_current(rdev, rdev->constraints);
1364 if (ret != 0)
1365 return ret;
1366
1367 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1368 ret = ops->set_input_current_limit(rdev,
1369 rdev->constraints->ilim_uA);
1370 if (ret < 0) {
1371 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1372 return ret;
1373 }
1374 }
1375
1376 /* do we need to setup our suspend state */
1377 if (rdev->constraints->initial_state) {
1378 ret = suspend_set_initial_state(rdev);
1379 if (ret < 0) {
1380 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1381 return ret;
1382 }
1383 }
1384
1385 if (rdev->constraints->initial_mode) {
1386 if (!ops->set_mode) {
1387 rdev_err(rdev, "no set_mode operation\n");
1388 return -EINVAL;
1389 }
1390
1391 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1392 if (ret < 0) {
1393 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1394 return ret;
1395 }
1396 } else if (rdev->constraints->system_load) {
1397 /*
1398 * We'll only apply the initial system load if an
1399 * initial mode wasn't specified.
1400 */
1401 drms_uA_update(rdev);
1402 }
1403
1404 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1405 && ops->set_ramp_delay) {
1406 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1407 if (ret < 0) {
1408 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1409 return ret;
1410 }
1411 }
1412
1413 if (rdev->constraints->pull_down && ops->set_pull_down) {
1414 ret = ops->set_pull_down(rdev);
1415 if (ret < 0) {
1416 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1417 return ret;
1418 }
1419 }
1420
1421 if (rdev->constraints->soft_start && ops->set_soft_start) {
1422 ret = ops->set_soft_start(rdev);
1423 if (ret < 0) {
1424 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1425 return ret;
1426 }
1427 }
1428
1429 /*
1430 * Existing logic does not warn if over_current_protection is given as
1431 * a constraint but driver does not support that. I think we should
1432 * warn about this type of issues as it is possible someone changes
1433 * PMIC on board to another type - and the another PMIC's driver does
1434 * not support setting protection. Board composer may happily believe
1435 * the DT limits are respected - especially if the new PMIC HW also
1436 * supports protection but the driver does not. I won't change the logic
1437 * without hearing more experienced opinion on this though.
1438 *
1439 * If warning is seen as a good idea then we can merge handling the
1440 * over-curret protection and detection and get rid of this special
1441 * handling.
1442 */
1443 if (rdev->constraints->over_current_protection
1444 && ops->set_over_current_protection) {
1445 int lim = rdev->constraints->over_curr_limits.prot;
1446
1447 ret = ops->set_over_current_protection(rdev, lim,
1448 REGULATOR_SEVERITY_PROT,
1449 true);
1450 if (ret < 0) {
1451 rdev_err(rdev, "failed to set over current protection: %pe\n",
1452 ERR_PTR(ret));
1453 return ret;
1454 }
1455 }
1456
1457 if (rdev->constraints->over_current_detection)
1458 ret = handle_notify_limits(rdev,
1459 ops->set_over_current_protection,
1460 &rdev->constraints->over_curr_limits);
1461 if (ret) {
1462 if (ret != -EOPNOTSUPP) {
1463 rdev_err(rdev, "failed to set over current limits: %pe\n",
1464 ERR_PTR(ret));
1465 return ret;
1466 }
1467 rdev_warn(rdev,
1468 "IC does not support requested over-current limits\n");
1469 }
1470
1471 if (rdev->constraints->over_voltage_detection)
1472 ret = handle_notify_limits(rdev,
1473 ops->set_over_voltage_protection,
1474 &rdev->constraints->over_voltage_limits);
1475 if (ret) {
1476 if (ret != -EOPNOTSUPP) {
1477 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1478 ERR_PTR(ret));
1479 return ret;
1480 }
1481 rdev_warn(rdev,
1482 "IC does not support requested over voltage limits\n");
1483 }
1484
1485 if (rdev->constraints->under_voltage_detection)
1486 ret = handle_notify_limits(rdev,
1487 ops->set_under_voltage_protection,
1488 &rdev->constraints->under_voltage_limits);
1489 if (ret) {
1490 if (ret != -EOPNOTSUPP) {
1491 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1492 ERR_PTR(ret));
1493 return ret;
1494 }
1495 rdev_warn(rdev,
1496 "IC does not support requested under voltage limits\n");
1497 }
1498
1499 if (rdev->constraints->over_temp_detection)
1500 ret = handle_notify_limits(rdev,
1501 ops->set_thermal_protection,
1502 &rdev->constraints->temp_limits);
1503 if (ret) {
1504 if (ret != -EOPNOTSUPP) {
1505 rdev_err(rdev, "failed to set temperature limits %pe\n",
1506 ERR_PTR(ret));
1507 return ret;
1508 }
1509 rdev_warn(rdev,
1510 "IC does not support requested temperature limits\n");
1511 }
1512
1513 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1514 bool ad_state = (rdev->constraints->active_discharge ==
1515 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1516
1517 ret = ops->set_active_discharge(rdev, ad_state);
1518 if (ret < 0) {
1519 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1520 return ret;
1521 }
1522 }
1523
1524 /* If the constraints say the regulator should be on at this point
1525 * and we have control then make sure it is enabled.
1526 */
1527 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1528 /* If we want to enable this regulator, make sure that we know
1529 * the supplying regulator.
1530 */
1531 if (rdev->supply_name && !rdev->supply)
1532 return -EPROBE_DEFER;
1533
1534 if (rdev->supply) {
1535 ret = regulator_enable(rdev->supply);
1536 if (ret < 0) {
1537 _regulator_put(rdev->supply);
1538 rdev->supply = NULL;
1539 return ret;
1540 }
1541 }
1542
1543 ret = _regulator_do_enable(rdev);
1544 if (ret < 0 && ret != -EINVAL) {
1545 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1546 return ret;
1547 }
1548
1549 if (rdev->constraints->always_on)
1550 rdev->use_count++;
1551 } else if (rdev->desc->off_on_delay) {
1552 rdev->last_off = ktime_get();
1553 }
1554
1555 print_constraints(rdev);
1556 return 0;
1557}
1558
1559/**
1560 * set_supply - set regulator supply regulator
1561 * @rdev: regulator name
1562 * @supply_rdev: supply regulator name
1563 *
1564 * Called by platform initialisation code to set the supply regulator for this
1565 * regulator. This ensures that a regulators supply will also be enabled by the
1566 * core if it's child is enabled.
1567 */
1568static int set_supply(struct regulator_dev *rdev,
1569 struct regulator_dev *supply_rdev)
1570{
1571 int err;
1572
1573 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1574
1575 if (!try_module_get(supply_rdev->owner))
1576 return -ENODEV;
1577
1578 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1579 if (rdev->supply == NULL) {
1580 err = -ENOMEM;
1581 return err;
1582 }
1583 supply_rdev->open_count++;
1584
1585 return 0;
1586}
1587
1588/**
1589 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1590 * @rdev: regulator source
1591 * @consumer_dev_name: dev_name() string for device supply applies to
1592 * @supply: symbolic name for supply
1593 *
1594 * Allows platform initialisation code to map physical regulator
1595 * sources to symbolic names for supplies for use by devices. Devices
1596 * should use these symbolic names to request regulators, avoiding the
1597 * need to provide board-specific regulator names as platform data.
1598 */
1599static int set_consumer_device_supply(struct regulator_dev *rdev,
1600 const char *consumer_dev_name,
1601 const char *supply)
1602{
1603 struct regulator_map *node, *new_node;
1604 int has_dev;
1605
1606 if (supply == NULL)
1607 return -EINVAL;
1608
1609 if (consumer_dev_name != NULL)
1610 has_dev = 1;
1611 else
1612 has_dev = 0;
1613
1614 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1615 if (new_node == NULL)
1616 return -ENOMEM;
1617
1618 new_node->regulator = rdev;
1619 new_node->supply = supply;
1620
1621 if (has_dev) {
1622 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1623 if (new_node->dev_name == NULL) {
1624 kfree(new_node);
1625 return -ENOMEM;
1626 }
1627 }
1628
1629 mutex_lock(®ulator_list_mutex);
1630 list_for_each_entry(node, ®ulator_map_list, list) {
1631 if (node->dev_name && consumer_dev_name) {
1632 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1633 continue;
1634 } else if (node->dev_name || consumer_dev_name) {
1635 continue;
1636 }
1637
1638 if (strcmp(node->supply, supply) != 0)
1639 continue;
1640
1641 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1642 consumer_dev_name,
1643 dev_name(&node->regulator->dev),
1644 node->regulator->desc->name,
1645 supply,
1646 dev_name(&rdev->dev), rdev_get_name(rdev));
1647 goto fail;
1648 }
1649
1650 list_add(&new_node->list, ®ulator_map_list);
1651 mutex_unlock(®ulator_list_mutex);
1652
1653 return 0;
1654
1655fail:
1656 mutex_unlock(®ulator_list_mutex);
1657 kfree(new_node->dev_name);
1658 kfree(new_node);
1659 return -EBUSY;
1660}
1661
1662static void unset_regulator_supplies(struct regulator_dev *rdev)
1663{
1664 struct regulator_map *node, *n;
1665
1666 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1667 if (rdev == node->regulator) {
1668 list_del(&node->list);
1669 kfree(node->dev_name);
1670 kfree(node);
1671 }
1672 }
1673}
1674
1675#ifdef CONFIG_DEBUG_FS
1676static ssize_t constraint_flags_read_file(struct file *file,
1677 char __user *user_buf,
1678 size_t count, loff_t *ppos)
1679{
1680 const struct regulator *regulator = file->private_data;
1681 const struct regulation_constraints *c = regulator->rdev->constraints;
1682 char *buf;
1683 ssize_t ret;
1684
1685 if (!c)
1686 return 0;
1687
1688 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1689 if (!buf)
1690 return -ENOMEM;
1691
1692 ret = snprintf(buf, PAGE_SIZE,
1693 "always_on: %u\n"
1694 "boot_on: %u\n"
1695 "apply_uV: %u\n"
1696 "ramp_disable: %u\n"
1697 "soft_start: %u\n"
1698 "pull_down: %u\n"
1699 "over_current_protection: %u\n",
1700 c->always_on,
1701 c->boot_on,
1702 c->apply_uV,
1703 c->ramp_disable,
1704 c->soft_start,
1705 c->pull_down,
1706 c->over_current_protection);
1707
1708 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1709 kfree(buf);
1710
1711 return ret;
1712}
1713
1714#endif
1715
1716static const struct file_operations constraint_flags_fops = {
1717#ifdef CONFIG_DEBUG_FS
1718 .open = simple_open,
1719 .read = constraint_flags_read_file,
1720 .llseek = default_llseek,
1721#endif
1722};
1723
1724#define REG_STR_SIZE 64
1725
1726static struct regulator *create_regulator(struct regulator_dev *rdev,
1727 struct device *dev,
1728 const char *supply_name)
1729{
1730 struct regulator *regulator;
1731 int err = 0;
1732
1733 if (dev) {
1734 char buf[REG_STR_SIZE];
1735 int size;
1736
1737 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1738 dev->kobj.name, supply_name);
1739 if (size >= REG_STR_SIZE)
1740 return NULL;
1741
1742 supply_name = kstrdup(buf, GFP_KERNEL);
1743 if (supply_name == NULL)
1744 return NULL;
1745 } else {
1746 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1747 if (supply_name == NULL)
1748 return NULL;
1749 }
1750
1751 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1752 if (regulator == NULL) {
1753 kfree(supply_name);
1754 return NULL;
1755 }
1756
1757 regulator->rdev = rdev;
1758 regulator->supply_name = supply_name;
1759
1760 regulator_lock(rdev);
1761 list_add(®ulator->list, &rdev->consumer_list);
1762 regulator_unlock(rdev);
1763
1764 if (dev) {
1765 regulator->dev = dev;
1766
1767 /* Add a link to the device sysfs entry */
1768 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1769 supply_name);
1770 if (err) {
1771 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1772 dev->kobj.name, ERR_PTR(err));
1773 /* non-fatal */
1774 }
1775 }
1776
1777 if (err != -EEXIST)
1778 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1779 if (!regulator->debugfs) {
1780 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1781 } else {
1782 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1783 ®ulator->uA_load);
1784 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1785 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1786 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1787 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1788 debugfs_create_file("constraint_flags", 0444,
1789 regulator->debugfs, regulator,
1790 &constraint_flags_fops);
1791 }
1792
1793 /*
1794 * Check now if the regulator is an always on regulator - if
1795 * it is then we don't need to do nearly so much work for
1796 * enable/disable calls.
1797 */
1798 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1799 _regulator_is_enabled(rdev))
1800 regulator->always_on = true;
1801
1802 return regulator;
1803}
1804
1805static int _regulator_get_enable_time(struct regulator_dev *rdev)
1806{
1807 if (rdev->constraints && rdev->constraints->enable_time)
1808 return rdev->constraints->enable_time;
1809 if (rdev->desc->ops->enable_time)
1810 return rdev->desc->ops->enable_time(rdev);
1811 return rdev->desc->enable_time;
1812}
1813
1814static struct regulator_supply_alias *regulator_find_supply_alias(
1815 struct device *dev, const char *supply)
1816{
1817 struct regulator_supply_alias *map;
1818
1819 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1820 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1821 return map;
1822
1823 return NULL;
1824}
1825
1826static void regulator_supply_alias(struct device **dev, const char **supply)
1827{
1828 struct regulator_supply_alias *map;
1829
1830 map = regulator_find_supply_alias(*dev, *supply);
1831 if (map) {
1832 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1833 *supply, map->alias_supply,
1834 dev_name(map->alias_dev));
1835 *dev = map->alias_dev;
1836 *supply = map->alias_supply;
1837 }
1838}
1839
1840static int regulator_match(struct device *dev, const void *data)
1841{
1842 struct regulator_dev *r = dev_to_rdev(dev);
1843
1844 return strcmp(rdev_get_name(r), data) == 0;
1845}
1846
1847static struct regulator_dev *regulator_lookup_by_name(const char *name)
1848{
1849 struct device *dev;
1850
1851 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1852
1853 return dev ? dev_to_rdev(dev) : NULL;
1854}
1855
1856/**
1857 * regulator_dev_lookup - lookup a regulator device.
1858 * @dev: device for regulator "consumer".
1859 * @supply: Supply name or regulator ID.
1860 *
1861 * If successful, returns a struct regulator_dev that corresponds to the name
1862 * @supply and with the embedded struct device refcount incremented by one.
1863 * The refcount must be dropped by calling put_device().
1864 * On failure one of the following ERR-PTR-encoded values is returned:
1865 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1866 * in the future.
1867 */
1868static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1869 const char *supply)
1870{
1871 struct regulator_dev *r = NULL;
1872 struct device_node *node;
1873 struct regulator_map *map;
1874 const char *devname = NULL;
1875
1876 regulator_supply_alias(&dev, &supply);
1877
1878 /* first do a dt based lookup */
1879 if (dev && dev->of_node) {
1880 node = of_get_regulator(dev, supply);
1881 if (node) {
1882 r = of_find_regulator_by_node(node);
1883 if (r)
1884 return r;
1885
1886 /*
1887 * We have a node, but there is no device.
1888 * assume it has not registered yet.
1889 */
1890 return ERR_PTR(-EPROBE_DEFER);
1891 }
1892 }
1893
1894 /* if not found, try doing it non-dt way */
1895 if (dev)
1896 devname = dev_name(dev);
1897
1898 mutex_lock(®ulator_list_mutex);
1899 list_for_each_entry(map, ®ulator_map_list, list) {
1900 /* If the mapping has a device set up it must match */
1901 if (map->dev_name &&
1902 (!devname || strcmp(map->dev_name, devname)))
1903 continue;
1904
1905 if (strcmp(map->supply, supply) == 0 &&
1906 get_device(&map->regulator->dev)) {
1907 r = map->regulator;
1908 break;
1909 }
1910 }
1911 mutex_unlock(®ulator_list_mutex);
1912
1913 if (r)
1914 return r;
1915
1916 r = regulator_lookup_by_name(supply);
1917 if (r)
1918 return r;
1919
1920 return ERR_PTR(-ENODEV);
1921}
1922
1923static int regulator_resolve_supply(struct regulator_dev *rdev)
1924{
1925 struct regulator_dev *r;
1926 struct device *dev = rdev->dev.parent;
1927 int ret = 0;
1928
1929 /* No supply to resolve? */
1930 if (!rdev->supply_name)
1931 return 0;
1932
1933 /* Supply already resolved? (fast-path without locking contention) */
1934 if (rdev->supply)
1935 return 0;
1936
1937 r = regulator_dev_lookup(dev, rdev->supply_name);
1938 if (IS_ERR(r)) {
1939 ret = PTR_ERR(r);
1940
1941 /* Did the lookup explicitly defer for us? */
1942 if (ret == -EPROBE_DEFER)
1943 goto out;
1944
1945 if (have_full_constraints()) {
1946 r = dummy_regulator_rdev;
1947 get_device(&r->dev);
1948 } else {
1949 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1950 rdev->supply_name, rdev->desc->name);
1951 ret = -EPROBE_DEFER;
1952 goto out;
1953 }
1954 }
1955
1956 if (r == rdev) {
1957 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1958 rdev->desc->name, rdev->supply_name);
1959 if (!have_full_constraints()) {
1960 ret = -EINVAL;
1961 goto out;
1962 }
1963 r = dummy_regulator_rdev;
1964 get_device(&r->dev);
1965 }
1966
1967 /*
1968 * If the supply's parent device is not the same as the
1969 * regulator's parent device, then ensure the parent device
1970 * is bound before we resolve the supply, in case the parent
1971 * device get probe deferred and unregisters the supply.
1972 */
1973 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1974 if (!device_is_bound(r->dev.parent)) {
1975 put_device(&r->dev);
1976 ret = -EPROBE_DEFER;
1977 goto out;
1978 }
1979 }
1980
1981 /* Recursively resolve the supply of the supply */
1982 ret = regulator_resolve_supply(r);
1983 if (ret < 0) {
1984 put_device(&r->dev);
1985 goto out;
1986 }
1987
1988 /*
1989 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1990 * between rdev->supply null check and setting rdev->supply in
1991 * set_supply() from concurrent tasks.
1992 */
1993 regulator_lock(rdev);
1994
1995 /* Supply just resolved by a concurrent task? */
1996 if (rdev->supply) {
1997 regulator_unlock(rdev);
1998 put_device(&r->dev);
1999 goto out;
2000 }
2001
2002 ret = set_supply(rdev, r);
2003 if (ret < 0) {
2004 regulator_unlock(rdev);
2005 put_device(&r->dev);
2006 goto out;
2007 }
2008
2009 regulator_unlock(rdev);
2010
2011 /*
2012 * In set_machine_constraints() we may have turned this regulator on
2013 * but we couldn't propagate to the supply if it hadn't been resolved
2014 * yet. Do it now.
2015 */
2016 if (rdev->use_count) {
2017 ret = regulator_enable(rdev->supply);
2018 if (ret < 0) {
2019 _regulator_put(rdev->supply);
2020 rdev->supply = NULL;
2021 goto out;
2022 }
2023 }
2024
2025out:
2026 return ret;
2027}
2028
2029/* Internal regulator request function */
2030struct regulator *_regulator_get(struct device *dev, const char *id,
2031 enum regulator_get_type get_type)
2032{
2033 struct regulator_dev *rdev;
2034 struct regulator *regulator;
2035 struct device_link *link;
2036 int ret;
2037
2038 if (get_type >= MAX_GET_TYPE) {
2039 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2040 return ERR_PTR(-EINVAL);
2041 }
2042
2043 if (id == NULL) {
2044 pr_err("get() with no identifier\n");
2045 return ERR_PTR(-EINVAL);
2046 }
2047
2048 rdev = regulator_dev_lookup(dev, id);
2049 if (IS_ERR(rdev)) {
2050 ret = PTR_ERR(rdev);
2051
2052 /*
2053 * If regulator_dev_lookup() fails with error other
2054 * than -ENODEV our job here is done, we simply return it.
2055 */
2056 if (ret != -ENODEV)
2057 return ERR_PTR(ret);
2058
2059 if (!have_full_constraints()) {
2060 dev_warn(dev,
2061 "incomplete constraints, dummy supplies not allowed\n");
2062 return ERR_PTR(-ENODEV);
2063 }
2064
2065 switch (get_type) {
2066 case NORMAL_GET:
2067 /*
2068 * Assume that a regulator is physically present and
2069 * enabled, even if it isn't hooked up, and just
2070 * provide a dummy.
2071 */
2072 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2073 rdev = dummy_regulator_rdev;
2074 get_device(&rdev->dev);
2075 break;
2076
2077 case EXCLUSIVE_GET:
2078 dev_warn(dev,
2079 "dummy supplies not allowed for exclusive requests\n");
2080 fallthrough;
2081
2082 default:
2083 return ERR_PTR(-ENODEV);
2084 }
2085 }
2086
2087 if (rdev->exclusive) {
2088 regulator = ERR_PTR(-EPERM);
2089 put_device(&rdev->dev);
2090 return regulator;
2091 }
2092
2093 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2094 regulator = ERR_PTR(-EBUSY);
2095 put_device(&rdev->dev);
2096 return regulator;
2097 }
2098
2099 mutex_lock(®ulator_list_mutex);
2100 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2101 mutex_unlock(®ulator_list_mutex);
2102
2103 if (ret != 0) {
2104 regulator = ERR_PTR(-EPROBE_DEFER);
2105 put_device(&rdev->dev);
2106 return regulator;
2107 }
2108
2109 ret = regulator_resolve_supply(rdev);
2110 if (ret < 0) {
2111 regulator = ERR_PTR(ret);
2112 put_device(&rdev->dev);
2113 return regulator;
2114 }
2115
2116 if (!try_module_get(rdev->owner)) {
2117 regulator = ERR_PTR(-EPROBE_DEFER);
2118 put_device(&rdev->dev);
2119 return regulator;
2120 }
2121
2122 regulator = create_regulator(rdev, dev, id);
2123 if (regulator == NULL) {
2124 regulator = ERR_PTR(-ENOMEM);
2125 module_put(rdev->owner);
2126 put_device(&rdev->dev);
2127 return regulator;
2128 }
2129
2130 rdev->open_count++;
2131 if (get_type == EXCLUSIVE_GET) {
2132 rdev->exclusive = 1;
2133
2134 ret = _regulator_is_enabled(rdev);
2135 if (ret > 0)
2136 rdev->use_count = 1;
2137 else
2138 rdev->use_count = 0;
2139 }
2140
2141 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2142 if (!IS_ERR_OR_NULL(link))
2143 regulator->device_link = true;
2144
2145 return regulator;
2146}
2147
2148/**
2149 * regulator_get - lookup and obtain a reference to a regulator.
2150 * @dev: device for regulator "consumer"
2151 * @id: Supply name or regulator ID.
2152 *
2153 * Returns a struct regulator corresponding to the regulator producer,
2154 * or IS_ERR() condition containing errno.
2155 *
2156 * Use of supply names configured via set_consumer_device_supply() is
2157 * strongly encouraged. It is recommended that the supply name used
2158 * should match the name used for the supply and/or the relevant
2159 * device pins in the datasheet.
2160 */
2161struct regulator *regulator_get(struct device *dev, const char *id)
2162{
2163 return _regulator_get(dev, id, NORMAL_GET);
2164}
2165EXPORT_SYMBOL_GPL(regulator_get);
2166
2167/**
2168 * regulator_get_exclusive - obtain exclusive access to a regulator.
2169 * @dev: device for regulator "consumer"
2170 * @id: Supply name or regulator ID.
2171 *
2172 * Returns a struct regulator corresponding to the regulator producer,
2173 * or IS_ERR() condition containing errno. Other consumers will be
2174 * unable to obtain this regulator while this reference is held and the
2175 * use count for the regulator will be initialised to reflect the current
2176 * state of the regulator.
2177 *
2178 * This is intended for use by consumers which cannot tolerate shared
2179 * use of the regulator such as those which need to force the
2180 * regulator off for correct operation of the hardware they are
2181 * controlling.
2182 *
2183 * Use of supply names configured via set_consumer_device_supply() is
2184 * strongly encouraged. It is recommended that the supply name used
2185 * should match the name used for the supply and/or the relevant
2186 * device pins in the datasheet.
2187 */
2188struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2189{
2190 return _regulator_get(dev, id, EXCLUSIVE_GET);
2191}
2192EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2193
2194/**
2195 * regulator_get_optional - obtain optional access to a regulator.
2196 * @dev: device for regulator "consumer"
2197 * @id: Supply name or regulator ID.
2198 *
2199 * Returns a struct regulator corresponding to the regulator producer,
2200 * or IS_ERR() condition containing errno.
2201 *
2202 * This is intended for use by consumers for devices which can have
2203 * some supplies unconnected in normal use, such as some MMC devices.
2204 * It can allow the regulator core to provide stub supplies for other
2205 * supplies requested using normal regulator_get() calls without
2206 * disrupting the operation of drivers that can handle absent
2207 * supplies.
2208 *
2209 * Use of supply names configured via set_consumer_device_supply() is
2210 * strongly encouraged. It is recommended that the supply name used
2211 * should match the name used for the supply and/or the relevant
2212 * device pins in the datasheet.
2213 */
2214struct regulator *regulator_get_optional(struct device *dev, const char *id)
2215{
2216 return _regulator_get(dev, id, OPTIONAL_GET);
2217}
2218EXPORT_SYMBOL_GPL(regulator_get_optional);
2219
2220static void destroy_regulator(struct regulator *regulator)
2221{
2222 struct regulator_dev *rdev = regulator->rdev;
2223
2224 debugfs_remove_recursive(regulator->debugfs);
2225
2226 if (regulator->dev) {
2227 if (regulator->device_link)
2228 device_link_remove(regulator->dev, &rdev->dev);
2229
2230 /* remove any sysfs entries */
2231 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2232 }
2233
2234 regulator_lock(rdev);
2235 list_del(®ulator->list);
2236
2237 rdev->open_count--;
2238 rdev->exclusive = 0;
2239 regulator_unlock(rdev);
2240
2241 kfree_const(regulator->supply_name);
2242 kfree(regulator);
2243}
2244
2245/* regulator_list_mutex lock held by regulator_put() */
2246static void _regulator_put(struct regulator *regulator)
2247{
2248 struct regulator_dev *rdev;
2249
2250 if (IS_ERR_OR_NULL(regulator))
2251 return;
2252
2253 lockdep_assert_held_once(®ulator_list_mutex);
2254
2255 /* Docs say you must disable before calling regulator_put() */
2256 WARN_ON(regulator->enable_count);
2257
2258 rdev = regulator->rdev;
2259
2260 destroy_regulator(regulator);
2261
2262 module_put(rdev->owner);
2263 put_device(&rdev->dev);
2264}
2265
2266/**
2267 * regulator_put - "free" the regulator source
2268 * @regulator: regulator source
2269 *
2270 * Note: drivers must ensure that all regulator_enable calls made on this
2271 * regulator source are balanced by regulator_disable calls prior to calling
2272 * this function.
2273 */
2274void regulator_put(struct regulator *regulator)
2275{
2276 mutex_lock(®ulator_list_mutex);
2277 _regulator_put(regulator);
2278 mutex_unlock(®ulator_list_mutex);
2279}
2280EXPORT_SYMBOL_GPL(regulator_put);
2281
2282/**
2283 * regulator_register_supply_alias - Provide device alias for supply lookup
2284 *
2285 * @dev: device that will be given as the regulator "consumer"
2286 * @id: Supply name or regulator ID
2287 * @alias_dev: device that should be used to lookup the supply
2288 * @alias_id: Supply name or regulator ID that should be used to lookup the
2289 * supply
2290 *
2291 * All lookups for id on dev will instead be conducted for alias_id on
2292 * alias_dev.
2293 */
2294int regulator_register_supply_alias(struct device *dev, const char *id,
2295 struct device *alias_dev,
2296 const char *alias_id)
2297{
2298 struct regulator_supply_alias *map;
2299
2300 map = regulator_find_supply_alias(dev, id);
2301 if (map)
2302 return -EEXIST;
2303
2304 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2305 if (!map)
2306 return -ENOMEM;
2307
2308 map->src_dev = dev;
2309 map->src_supply = id;
2310 map->alias_dev = alias_dev;
2311 map->alias_supply = alias_id;
2312
2313 list_add(&map->list, ®ulator_supply_alias_list);
2314
2315 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2316 id, dev_name(dev), alias_id, dev_name(alias_dev));
2317
2318 return 0;
2319}
2320EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2321
2322/**
2323 * regulator_unregister_supply_alias - Remove device alias
2324 *
2325 * @dev: device that will be given as the regulator "consumer"
2326 * @id: Supply name or regulator ID
2327 *
2328 * Remove a lookup alias if one exists for id on dev.
2329 */
2330void regulator_unregister_supply_alias(struct device *dev, const char *id)
2331{
2332 struct regulator_supply_alias *map;
2333
2334 map = regulator_find_supply_alias(dev, id);
2335 if (map) {
2336 list_del(&map->list);
2337 kfree(map);
2338 }
2339}
2340EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2341
2342/**
2343 * regulator_bulk_register_supply_alias - register multiple aliases
2344 *
2345 * @dev: device that will be given as the regulator "consumer"
2346 * @id: List of supply names or regulator IDs
2347 * @alias_dev: device that should be used to lookup the supply
2348 * @alias_id: List of supply names or regulator IDs that should be used to
2349 * lookup the supply
2350 * @num_id: Number of aliases to register
2351 *
2352 * @return 0 on success, an errno on failure.
2353 *
2354 * This helper function allows drivers to register several supply
2355 * aliases in one operation. If any of the aliases cannot be
2356 * registered any aliases that were registered will be removed
2357 * before returning to the caller.
2358 */
2359int regulator_bulk_register_supply_alias(struct device *dev,
2360 const char *const *id,
2361 struct device *alias_dev,
2362 const char *const *alias_id,
2363 int num_id)
2364{
2365 int i;
2366 int ret;
2367
2368 for (i = 0; i < num_id; ++i) {
2369 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2370 alias_id[i]);
2371 if (ret < 0)
2372 goto err;
2373 }
2374
2375 return 0;
2376
2377err:
2378 dev_err(dev,
2379 "Failed to create supply alias %s,%s -> %s,%s\n",
2380 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2381
2382 while (--i >= 0)
2383 regulator_unregister_supply_alias(dev, id[i]);
2384
2385 return ret;
2386}
2387EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2388
2389/**
2390 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2391 *
2392 * @dev: device that will be given as the regulator "consumer"
2393 * @id: List of supply names or regulator IDs
2394 * @num_id: Number of aliases to unregister
2395 *
2396 * This helper function allows drivers to unregister several supply
2397 * aliases in one operation.
2398 */
2399void regulator_bulk_unregister_supply_alias(struct device *dev,
2400 const char *const *id,
2401 int num_id)
2402{
2403 int i;
2404
2405 for (i = 0; i < num_id; ++i)
2406 regulator_unregister_supply_alias(dev, id[i]);
2407}
2408EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2409
2410
2411/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2412static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2413 const struct regulator_config *config)
2414{
2415 struct regulator_enable_gpio *pin, *new_pin;
2416 struct gpio_desc *gpiod;
2417
2418 gpiod = config->ena_gpiod;
2419 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2420
2421 mutex_lock(®ulator_list_mutex);
2422
2423 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2424 if (pin->gpiod == gpiod) {
2425 rdev_dbg(rdev, "GPIO is already used\n");
2426 goto update_ena_gpio_to_rdev;
2427 }
2428 }
2429
2430 if (new_pin == NULL) {
2431 mutex_unlock(®ulator_list_mutex);
2432 return -ENOMEM;
2433 }
2434
2435 pin = new_pin;
2436 new_pin = NULL;
2437
2438 pin->gpiod = gpiod;
2439 list_add(&pin->list, ®ulator_ena_gpio_list);
2440
2441update_ena_gpio_to_rdev:
2442 pin->request_count++;
2443 rdev->ena_pin = pin;
2444
2445 mutex_unlock(®ulator_list_mutex);
2446 kfree(new_pin);
2447
2448 return 0;
2449}
2450
2451static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2452{
2453 struct regulator_enable_gpio *pin, *n;
2454
2455 if (!rdev->ena_pin)
2456 return;
2457
2458 /* Free the GPIO only in case of no use */
2459 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2460 if (pin != rdev->ena_pin)
2461 continue;
2462
2463 if (--pin->request_count)
2464 break;
2465
2466 gpiod_put(pin->gpiod);
2467 list_del(&pin->list);
2468 kfree(pin);
2469 break;
2470 }
2471
2472 rdev->ena_pin = NULL;
2473}
2474
2475/**
2476 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2477 * @rdev: regulator_dev structure
2478 * @enable: enable GPIO at initial use?
2479 *
2480 * GPIO is enabled in case of initial use. (enable_count is 0)
2481 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2482 */
2483static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2484{
2485 struct regulator_enable_gpio *pin = rdev->ena_pin;
2486
2487 if (!pin)
2488 return -EINVAL;
2489
2490 if (enable) {
2491 /* Enable GPIO at initial use */
2492 if (pin->enable_count == 0)
2493 gpiod_set_value_cansleep(pin->gpiod, 1);
2494
2495 pin->enable_count++;
2496 } else {
2497 if (pin->enable_count > 1) {
2498 pin->enable_count--;
2499 return 0;
2500 }
2501
2502 /* Disable GPIO if not used */
2503 if (pin->enable_count <= 1) {
2504 gpiod_set_value_cansleep(pin->gpiod, 0);
2505 pin->enable_count = 0;
2506 }
2507 }
2508
2509 return 0;
2510}
2511
2512/**
2513 * _regulator_enable_delay - a delay helper function
2514 * @delay: time to delay in microseconds
2515 *
2516 * Delay for the requested amount of time as per the guidelines in:
2517 *
2518 * Documentation/timers/timers-howto.rst
2519 *
2520 * The assumption here is that regulators will never be enabled in
2521 * atomic context and therefore sleeping functions can be used.
2522 */
2523static void _regulator_enable_delay(unsigned int delay)
2524{
2525 unsigned int ms = delay / 1000;
2526 unsigned int us = delay % 1000;
2527
2528 if (ms > 0) {
2529 /*
2530 * For small enough values, handle super-millisecond
2531 * delays in the usleep_range() call below.
2532 */
2533 if (ms < 20)
2534 us += ms * 1000;
2535 else
2536 msleep(ms);
2537 }
2538
2539 /*
2540 * Give the scheduler some room to coalesce with any other
2541 * wakeup sources. For delays shorter than 10 us, don't even
2542 * bother setting up high-resolution timers and just busy-
2543 * loop.
2544 */
2545 if (us >= 10)
2546 usleep_range(us, us + 100);
2547 else
2548 udelay(us);
2549}
2550
2551/**
2552 * _regulator_check_status_enabled
2553 *
2554 * A helper function to check if the regulator status can be interpreted
2555 * as 'regulator is enabled'.
2556 * @rdev: the regulator device to check
2557 *
2558 * Return:
2559 * * 1 - if status shows regulator is in enabled state
2560 * * 0 - if not enabled state
2561 * * Error Value - as received from ops->get_status()
2562 */
2563static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2564{
2565 int ret = rdev->desc->ops->get_status(rdev);
2566
2567 if (ret < 0) {
2568 rdev_info(rdev, "get_status returned error: %d\n", ret);
2569 return ret;
2570 }
2571
2572 switch (ret) {
2573 case REGULATOR_STATUS_OFF:
2574 case REGULATOR_STATUS_ERROR:
2575 case REGULATOR_STATUS_UNDEFINED:
2576 return 0;
2577 default:
2578 return 1;
2579 }
2580}
2581
2582static int _regulator_do_enable(struct regulator_dev *rdev)
2583{
2584 int ret, delay;
2585
2586 /* Query before enabling in case configuration dependent. */
2587 ret = _regulator_get_enable_time(rdev);
2588 if (ret >= 0) {
2589 delay = ret;
2590 } else {
2591 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2592 delay = 0;
2593 }
2594
2595 trace_regulator_enable(rdev_get_name(rdev));
2596
2597 if (rdev->desc->off_on_delay && rdev->last_off) {
2598 /* if needed, keep a distance of off_on_delay from last time
2599 * this regulator was disabled.
2600 */
2601 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2602 s64 remaining = ktime_us_delta(end, ktime_get());
2603
2604 if (remaining > 0)
2605 _regulator_enable_delay(remaining);
2606 }
2607
2608 if (rdev->ena_pin) {
2609 if (!rdev->ena_gpio_state) {
2610 ret = regulator_ena_gpio_ctrl(rdev, true);
2611 if (ret < 0)
2612 return ret;
2613 rdev->ena_gpio_state = 1;
2614 }
2615 } else if (rdev->desc->ops->enable) {
2616 ret = rdev->desc->ops->enable(rdev);
2617 if (ret < 0)
2618 return ret;
2619 } else {
2620 return -EINVAL;
2621 }
2622
2623 /* Allow the regulator to ramp; it would be useful to extend
2624 * this for bulk operations so that the regulators can ramp
2625 * together.
2626 */
2627 trace_regulator_enable_delay(rdev_get_name(rdev));
2628
2629 /* If poll_enabled_time is set, poll upto the delay calculated
2630 * above, delaying poll_enabled_time uS to check if the regulator
2631 * actually got enabled.
2632 * If the regulator isn't enabled after enable_delay has
2633 * expired, return -ETIMEDOUT.
2634 */
2635 if (rdev->desc->poll_enabled_time) {
2636 unsigned int time_remaining = delay;
2637
2638 while (time_remaining > 0) {
2639 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2640
2641 if (rdev->desc->ops->get_status) {
2642 ret = _regulator_check_status_enabled(rdev);
2643 if (ret < 0)
2644 return ret;
2645 else if (ret)
2646 break;
2647 } else if (rdev->desc->ops->is_enabled(rdev))
2648 break;
2649
2650 time_remaining -= rdev->desc->poll_enabled_time;
2651 }
2652
2653 if (time_remaining <= 0) {
2654 rdev_err(rdev, "Enabled check timed out\n");
2655 return -ETIMEDOUT;
2656 }
2657 } else {
2658 _regulator_enable_delay(delay);
2659 }
2660
2661 trace_regulator_enable_complete(rdev_get_name(rdev));
2662
2663 return 0;
2664}
2665
2666/**
2667 * _regulator_handle_consumer_enable - handle that a consumer enabled
2668 * @regulator: regulator source
2669 *
2670 * Some things on a regulator consumer (like the contribution towards total
2671 * load on the regulator) only have an effect when the consumer wants the
2672 * regulator enabled. Explained in example with two consumers of the same
2673 * regulator:
2674 * consumer A: set_load(100); => total load = 0
2675 * consumer A: regulator_enable(); => total load = 100
2676 * consumer B: set_load(1000); => total load = 100
2677 * consumer B: regulator_enable(); => total load = 1100
2678 * consumer A: regulator_disable(); => total_load = 1000
2679 *
2680 * This function (together with _regulator_handle_consumer_disable) is
2681 * responsible for keeping track of the refcount for a given regulator consumer
2682 * and applying / unapplying these things.
2683 *
2684 * Returns 0 upon no error; -error upon error.
2685 */
2686static int _regulator_handle_consumer_enable(struct regulator *regulator)
2687{
2688 struct regulator_dev *rdev = regulator->rdev;
2689
2690 lockdep_assert_held_once(&rdev->mutex.base);
2691
2692 regulator->enable_count++;
2693 if (regulator->uA_load && regulator->enable_count == 1)
2694 return drms_uA_update(rdev);
2695
2696 return 0;
2697}
2698
2699/**
2700 * _regulator_handle_consumer_disable - handle that a consumer disabled
2701 * @regulator: regulator source
2702 *
2703 * The opposite of _regulator_handle_consumer_enable().
2704 *
2705 * Returns 0 upon no error; -error upon error.
2706 */
2707static int _regulator_handle_consumer_disable(struct regulator *regulator)
2708{
2709 struct regulator_dev *rdev = regulator->rdev;
2710
2711 lockdep_assert_held_once(&rdev->mutex.base);
2712
2713 if (!regulator->enable_count) {
2714 rdev_err(rdev, "Underflow of regulator enable count\n");
2715 return -EINVAL;
2716 }
2717
2718 regulator->enable_count--;
2719 if (regulator->uA_load && regulator->enable_count == 0)
2720 return drms_uA_update(rdev);
2721
2722 return 0;
2723}
2724
2725/* locks held by regulator_enable() */
2726static int _regulator_enable(struct regulator *regulator)
2727{
2728 struct regulator_dev *rdev = regulator->rdev;
2729 int ret;
2730
2731 lockdep_assert_held_once(&rdev->mutex.base);
2732
2733 if (rdev->use_count == 0 && rdev->supply) {
2734 ret = _regulator_enable(rdev->supply);
2735 if (ret < 0)
2736 return ret;
2737 }
2738
2739 /* balance only if there are regulators coupled */
2740 if (rdev->coupling_desc.n_coupled > 1) {
2741 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2742 if (ret < 0)
2743 goto err_disable_supply;
2744 }
2745
2746 ret = _regulator_handle_consumer_enable(regulator);
2747 if (ret < 0)
2748 goto err_disable_supply;
2749
2750 if (rdev->use_count == 0) {
2751 /*
2752 * The regulator may already be enabled if it's not switchable
2753 * or was left on
2754 */
2755 ret = _regulator_is_enabled(rdev);
2756 if (ret == -EINVAL || ret == 0) {
2757 if (!regulator_ops_is_valid(rdev,
2758 REGULATOR_CHANGE_STATUS)) {
2759 ret = -EPERM;
2760 goto err_consumer_disable;
2761 }
2762
2763 ret = _regulator_do_enable(rdev);
2764 if (ret < 0)
2765 goto err_consumer_disable;
2766
2767 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2768 NULL);
2769 } else if (ret < 0) {
2770 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2771 goto err_consumer_disable;
2772 }
2773 /* Fallthrough on positive return values - already enabled */
2774 }
2775
2776 rdev->use_count++;
2777
2778 return 0;
2779
2780err_consumer_disable:
2781 _regulator_handle_consumer_disable(regulator);
2782
2783err_disable_supply:
2784 if (rdev->use_count == 0 && rdev->supply)
2785 _regulator_disable(rdev->supply);
2786
2787 return ret;
2788}
2789
2790/**
2791 * regulator_enable - enable regulator output
2792 * @regulator: regulator source
2793 *
2794 * Request that the regulator be enabled with the regulator output at
2795 * the predefined voltage or current value. Calls to regulator_enable()
2796 * must be balanced with calls to regulator_disable().
2797 *
2798 * NOTE: the output value can be set by other drivers, boot loader or may be
2799 * hardwired in the regulator.
2800 */
2801int regulator_enable(struct regulator *regulator)
2802{
2803 struct regulator_dev *rdev = regulator->rdev;
2804 struct ww_acquire_ctx ww_ctx;
2805 int ret;
2806
2807 regulator_lock_dependent(rdev, &ww_ctx);
2808 ret = _regulator_enable(regulator);
2809 regulator_unlock_dependent(rdev, &ww_ctx);
2810
2811 return ret;
2812}
2813EXPORT_SYMBOL_GPL(regulator_enable);
2814
2815static int _regulator_do_disable(struct regulator_dev *rdev)
2816{
2817 int ret;
2818
2819 trace_regulator_disable(rdev_get_name(rdev));
2820
2821 if (rdev->ena_pin) {
2822 if (rdev->ena_gpio_state) {
2823 ret = regulator_ena_gpio_ctrl(rdev, false);
2824 if (ret < 0)
2825 return ret;
2826 rdev->ena_gpio_state = 0;
2827 }
2828
2829 } else if (rdev->desc->ops->disable) {
2830 ret = rdev->desc->ops->disable(rdev);
2831 if (ret != 0)
2832 return ret;
2833 }
2834
2835 if (rdev->desc->off_on_delay)
2836 rdev->last_off = ktime_get();
2837
2838 trace_regulator_disable_complete(rdev_get_name(rdev));
2839
2840 return 0;
2841}
2842
2843/* locks held by regulator_disable() */
2844static int _regulator_disable(struct regulator *regulator)
2845{
2846 struct regulator_dev *rdev = regulator->rdev;
2847 int ret = 0;
2848
2849 lockdep_assert_held_once(&rdev->mutex.base);
2850
2851 if (WARN(rdev->use_count <= 0,
2852 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2853 return -EIO;
2854
2855 /* are we the last user and permitted to disable ? */
2856 if (rdev->use_count == 1 &&
2857 (rdev->constraints && !rdev->constraints->always_on)) {
2858
2859 /* we are last user */
2860 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2861 ret = _notifier_call_chain(rdev,
2862 REGULATOR_EVENT_PRE_DISABLE,
2863 NULL);
2864 if (ret & NOTIFY_STOP_MASK)
2865 return -EINVAL;
2866
2867 ret = _regulator_do_disable(rdev);
2868 if (ret < 0) {
2869 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2870 _notifier_call_chain(rdev,
2871 REGULATOR_EVENT_ABORT_DISABLE,
2872 NULL);
2873 return ret;
2874 }
2875 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2876 NULL);
2877 }
2878
2879 rdev->use_count = 0;
2880 } else if (rdev->use_count > 1) {
2881 rdev->use_count--;
2882 }
2883
2884 if (ret == 0)
2885 ret = _regulator_handle_consumer_disable(regulator);
2886
2887 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2888 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889
2890 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2891 ret = _regulator_disable(rdev->supply);
2892
2893 return ret;
2894}
2895
2896/**
2897 * regulator_disable - disable regulator output
2898 * @regulator: regulator source
2899 *
2900 * Disable the regulator output voltage or current. Calls to
2901 * regulator_enable() must be balanced with calls to
2902 * regulator_disable().
2903 *
2904 * NOTE: this will only disable the regulator output if no other consumer
2905 * devices have it enabled, the regulator device supports disabling and
2906 * machine constraints permit this operation.
2907 */
2908int regulator_disable(struct regulator *regulator)
2909{
2910 struct regulator_dev *rdev = regulator->rdev;
2911 struct ww_acquire_ctx ww_ctx;
2912 int ret;
2913
2914 regulator_lock_dependent(rdev, &ww_ctx);
2915 ret = _regulator_disable(regulator);
2916 regulator_unlock_dependent(rdev, &ww_ctx);
2917
2918 return ret;
2919}
2920EXPORT_SYMBOL_GPL(regulator_disable);
2921
2922/* locks held by regulator_force_disable() */
2923static int _regulator_force_disable(struct regulator_dev *rdev)
2924{
2925 int ret = 0;
2926
2927 lockdep_assert_held_once(&rdev->mutex.base);
2928
2929 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2930 REGULATOR_EVENT_PRE_DISABLE, NULL);
2931 if (ret & NOTIFY_STOP_MASK)
2932 return -EINVAL;
2933
2934 ret = _regulator_do_disable(rdev);
2935 if (ret < 0) {
2936 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2937 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2938 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2939 return ret;
2940 }
2941
2942 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2943 REGULATOR_EVENT_DISABLE, NULL);
2944
2945 return 0;
2946}
2947
2948/**
2949 * regulator_force_disable - force disable regulator output
2950 * @regulator: regulator source
2951 *
2952 * Forcibly disable the regulator output voltage or current.
2953 * NOTE: this *will* disable the regulator output even if other consumer
2954 * devices have it enabled. This should be used for situations when device
2955 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2956 */
2957int regulator_force_disable(struct regulator *regulator)
2958{
2959 struct regulator_dev *rdev = regulator->rdev;
2960 struct ww_acquire_ctx ww_ctx;
2961 int ret;
2962
2963 regulator_lock_dependent(rdev, &ww_ctx);
2964
2965 ret = _regulator_force_disable(regulator->rdev);
2966
2967 if (rdev->coupling_desc.n_coupled > 1)
2968 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2969
2970 if (regulator->uA_load) {
2971 regulator->uA_load = 0;
2972 ret = drms_uA_update(rdev);
2973 }
2974
2975 if (rdev->use_count != 0 && rdev->supply)
2976 _regulator_disable(rdev->supply);
2977
2978 regulator_unlock_dependent(rdev, &ww_ctx);
2979
2980 return ret;
2981}
2982EXPORT_SYMBOL_GPL(regulator_force_disable);
2983
2984static void regulator_disable_work(struct work_struct *work)
2985{
2986 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2987 disable_work.work);
2988 struct ww_acquire_ctx ww_ctx;
2989 int count, i, ret;
2990 struct regulator *regulator;
2991 int total_count = 0;
2992
2993 regulator_lock_dependent(rdev, &ww_ctx);
2994
2995 /*
2996 * Workqueue functions queue the new work instance while the previous
2997 * work instance is being processed. Cancel the queued work instance
2998 * as the work instance under processing does the job of the queued
2999 * work instance.
3000 */
3001 cancel_delayed_work(&rdev->disable_work);
3002
3003 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3004 count = regulator->deferred_disables;
3005
3006 if (!count)
3007 continue;
3008
3009 total_count += count;
3010 regulator->deferred_disables = 0;
3011
3012 for (i = 0; i < count; i++) {
3013 ret = _regulator_disable(regulator);
3014 if (ret != 0)
3015 rdev_err(rdev, "Deferred disable failed: %pe\n",
3016 ERR_PTR(ret));
3017 }
3018 }
3019 WARN_ON(!total_count);
3020
3021 if (rdev->coupling_desc.n_coupled > 1)
3022 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3023
3024 regulator_unlock_dependent(rdev, &ww_ctx);
3025}
3026
3027/**
3028 * regulator_disable_deferred - disable regulator output with delay
3029 * @regulator: regulator source
3030 * @ms: milliseconds until the regulator is disabled
3031 *
3032 * Execute regulator_disable() on the regulator after a delay. This
3033 * is intended for use with devices that require some time to quiesce.
3034 *
3035 * NOTE: this will only disable the regulator output if no other consumer
3036 * devices have it enabled, the regulator device supports disabling and
3037 * machine constraints permit this operation.
3038 */
3039int regulator_disable_deferred(struct regulator *regulator, int ms)
3040{
3041 struct regulator_dev *rdev = regulator->rdev;
3042
3043 if (!ms)
3044 return regulator_disable(regulator);
3045
3046 regulator_lock(rdev);
3047 regulator->deferred_disables++;
3048 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3049 msecs_to_jiffies(ms));
3050 regulator_unlock(rdev);
3051
3052 return 0;
3053}
3054EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3055
3056static int _regulator_is_enabled(struct regulator_dev *rdev)
3057{
3058 /* A GPIO control always takes precedence */
3059 if (rdev->ena_pin)
3060 return rdev->ena_gpio_state;
3061
3062 /* If we don't know then assume that the regulator is always on */
3063 if (!rdev->desc->ops->is_enabled)
3064 return 1;
3065
3066 return rdev->desc->ops->is_enabled(rdev);
3067}
3068
3069static int _regulator_list_voltage(struct regulator_dev *rdev,
3070 unsigned selector, int lock)
3071{
3072 const struct regulator_ops *ops = rdev->desc->ops;
3073 int ret;
3074
3075 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3076 return rdev->desc->fixed_uV;
3077
3078 if (ops->list_voltage) {
3079 if (selector >= rdev->desc->n_voltages)
3080 return -EINVAL;
3081 if (selector < rdev->desc->linear_min_sel)
3082 return 0;
3083 if (lock)
3084 regulator_lock(rdev);
3085 ret = ops->list_voltage(rdev, selector);
3086 if (lock)
3087 regulator_unlock(rdev);
3088 } else if (rdev->is_switch && rdev->supply) {
3089 ret = _regulator_list_voltage(rdev->supply->rdev,
3090 selector, lock);
3091 } else {
3092 return -EINVAL;
3093 }
3094
3095 if (ret > 0) {
3096 if (ret < rdev->constraints->min_uV)
3097 ret = 0;
3098 else if (ret > rdev->constraints->max_uV)
3099 ret = 0;
3100 }
3101
3102 return ret;
3103}
3104
3105/**
3106 * regulator_is_enabled - is the regulator output enabled
3107 * @regulator: regulator source
3108 *
3109 * Returns positive if the regulator driver backing the source/client
3110 * has requested that the device be enabled, zero if it hasn't, else a
3111 * negative errno code.
3112 *
3113 * Note that the device backing this regulator handle can have multiple
3114 * users, so it might be enabled even if regulator_enable() was never
3115 * called for this particular source.
3116 */
3117int regulator_is_enabled(struct regulator *regulator)
3118{
3119 int ret;
3120
3121 if (regulator->always_on)
3122 return 1;
3123
3124 regulator_lock(regulator->rdev);
3125 ret = _regulator_is_enabled(regulator->rdev);
3126 regulator_unlock(regulator->rdev);
3127
3128 return ret;
3129}
3130EXPORT_SYMBOL_GPL(regulator_is_enabled);
3131
3132/**
3133 * regulator_count_voltages - count regulator_list_voltage() selectors
3134 * @regulator: regulator source
3135 *
3136 * Returns number of selectors, or negative errno. Selectors are
3137 * numbered starting at zero, and typically correspond to bitfields
3138 * in hardware registers.
3139 */
3140int regulator_count_voltages(struct regulator *regulator)
3141{
3142 struct regulator_dev *rdev = regulator->rdev;
3143
3144 if (rdev->desc->n_voltages)
3145 return rdev->desc->n_voltages;
3146
3147 if (!rdev->is_switch || !rdev->supply)
3148 return -EINVAL;
3149
3150 return regulator_count_voltages(rdev->supply);
3151}
3152EXPORT_SYMBOL_GPL(regulator_count_voltages);
3153
3154/**
3155 * regulator_list_voltage - enumerate supported voltages
3156 * @regulator: regulator source
3157 * @selector: identify voltage to list
3158 * Context: can sleep
3159 *
3160 * Returns a voltage that can be passed to @regulator_set_voltage(),
3161 * zero if this selector code can't be used on this system, or a
3162 * negative errno.
3163 */
3164int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3165{
3166 return _regulator_list_voltage(regulator->rdev, selector, 1);
3167}
3168EXPORT_SYMBOL_GPL(regulator_list_voltage);
3169
3170/**
3171 * regulator_get_regmap - get the regulator's register map
3172 * @regulator: regulator source
3173 *
3174 * Returns the register map for the given regulator, or an ERR_PTR value
3175 * if the regulator doesn't use regmap.
3176 */
3177struct regmap *regulator_get_regmap(struct regulator *regulator)
3178{
3179 struct regmap *map = regulator->rdev->regmap;
3180
3181 return map ? map : ERR_PTR(-EOPNOTSUPP);
3182}
3183
3184/**
3185 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3186 * @regulator: regulator source
3187 * @vsel_reg: voltage selector register, output parameter
3188 * @vsel_mask: mask for voltage selector bitfield, output parameter
3189 *
3190 * Returns the hardware register offset and bitmask used for setting the
3191 * regulator voltage. This might be useful when configuring voltage-scaling
3192 * hardware or firmware that can make I2C requests behind the kernel's back,
3193 * for example.
3194 *
3195 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3196 * and 0 is returned, otherwise a negative errno is returned.
3197 */
3198int regulator_get_hardware_vsel_register(struct regulator *regulator,
3199 unsigned *vsel_reg,
3200 unsigned *vsel_mask)
3201{
3202 struct regulator_dev *rdev = regulator->rdev;
3203 const struct regulator_ops *ops = rdev->desc->ops;
3204
3205 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3206 return -EOPNOTSUPP;
3207
3208 *vsel_reg = rdev->desc->vsel_reg;
3209 *vsel_mask = rdev->desc->vsel_mask;
3210
3211 return 0;
3212}
3213EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3214
3215/**
3216 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3217 * @regulator: regulator source
3218 * @selector: identify voltage to list
3219 *
3220 * Converts the selector to a hardware-specific voltage selector that can be
3221 * directly written to the regulator registers. The address of the voltage
3222 * register can be determined by calling @regulator_get_hardware_vsel_register.
3223 *
3224 * On error a negative errno is returned.
3225 */
3226int regulator_list_hardware_vsel(struct regulator *regulator,
3227 unsigned selector)
3228{
3229 struct regulator_dev *rdev = regulator->rdev;
3230 const struct regulator_ops *ops = rdev->desc->ops;
3231
3232 if (selector >= rdev->desc->n_voltages)
3233 return -EINVAL;
3234 if (selector < rdev->desc->linear_min_sel)
3235 return 0;
3236 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3237 return -EOPNOTSUPP;
3238
3239 return selector;
3240}
3241EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3242
3243/**
3244 * regulator_get_linear_step - return the voltage step size between VSEL values
3245 * @regulator: regulator source
3246 *
3247 * Returns the voltage step size between VSEL values for linear
3248 * regulators, or return 0 if the regulator isn't a linear regulator.
3249 */
3250unsigned int regulator_get_linear_step(struct regulator *regulator)
3251{
3252 struct regulator_dev *rdev = regulator->rdev;
3253
3254 return rdev->desc->uV_step;
3255}
3256EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3257
3258/**
3259 * regulator_is_supported_voltage - check if a voltage range can be supported
3260 *
3261 * @regulator: Regulator to check.
3262 * @min_uV: Minimum required voltage in uV.
3263 * @max_uV: Maximum required voltage in uV.
3264 *
3265 * Returns a boolean.
3266 */
3267int regulator_is_supported_voltage(struct regulator *regulator,
3268 int min_uV, int max_uV)
3269{
3270 struct regulator_dev *rdev = regulator->rdev;
3271 int i, voltages, ret;
3272
3273 /* If we can't change voltage check the current voltage */
3274 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3275 ret = regulator_get_voltage(regulator);
3276 if (ret >= 0)
3277 return min_uV <= ret && ret <= max_uV;
3278 else
3279 return ret;
3280 }
3281
3282 /* Any voltage within constrains range is fine? */
3283 if (rdev->desc->continuous_voltage_range)
3284 return min_uV >= rdev->constraints->min_uV &&
3285 max_uV <= rdev->constraints->max_uV;
3286
3287 ret = regulator_count_voltages(regulator);
3288 if (ret < 0)
3289 return 0;
3290 voltages = ret;
3291
3292 for (i = 0; i < voltages; i++) {
3293 ret = regulator_list_voltage(regulator, i);
3294
3295 if (ret >= min_uV && ret <= max_uV)
3296 return 1;
3297 }
3298
3299 return 0;
3300}
3301EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3302
3303static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3304 int max_uV)
3305{
3306 const struct regulator_desc *desc = rdev->desc;
3307
3308 if (desc->ops->map_voltage)
3309 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3310
3311 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3312 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3313
3314 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3315 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3316
3317 if (desc->ops->list_voltage ==
3318 regulator_list_voltage_pickable_linear_range)
3319 return regulator_map_voltage_pickable_linear_range(rdev,
3320 min_uV, max_uV);
3321
3322 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3323}
3324
3325static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3326 int min_uV, int max_uV,
3327 unsigned *selector)
3328{
3329 struct pre_voltage_change_data data;
3330 int ret;
3331
3332 data.old_uV = regulator_get_voltage_rdev(rdev);
3333 data.min_uV = min_uV;
3334 data.max_uV = max_uV;
3335 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3336 &data);
3337 if (ret & NOTIFY_STOP_MASK)
3338 return -EINVAL;
3339
3340 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3341 if (ret >= 0)
3342 return ret;
3343
3344 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3345 (void *)data.old_uV);
3346
3347 return ret;
3348}
3349
3350static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3351 int uV, unsigned selector)
3352{
3353 struct pre_voltage_change_data data;
3354 int ret;
3355
3356 data.old_uV = regulator_get_voltage_rdev(rdev);
3357 data.min_uV = uV;
3358 data.max_uV = uV;
3359 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3360 &data);
3361 if (ret & NOTIFY_STOP_MASK)
3362 return -EINVAL;
3363
3364 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3365 if (ret >= 0)
3366 return ret;
3367
3368 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3369 (void *)data.old_uV);
3370
3371 return ret;
3372}
3373
3374static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3375 int uV, int new_selector)
3376{
3377 const struct regulator_ops *ops = rdev->desc->ops;
3378 int diff, old_sel, curr_sel, ret;
3379
3380 /* Stepping is only needed if the regulator is enabled. */
3381 if (!_regulator_is_enabled(rdev))
3382 goto final_set;
3383
3384 if (!ops->get_voltage_sel)
3385 return -EINVAL;
3386
3387 old_sel = ops->get_voltage_sel(rdev);
3388 if (old_sel < 0)
3389 return old_sel;
3390
3391 diff = new_selector - old_sel;
3392 if (diff == 0)
3393 return 0; /* No change needed. */
3394
3395 if (diff > 0) {
3396 /* Stepping up. */
3397 for (curr_sel = old_sel + rdev->desc->vsel_step;
3398 curr_sel < new_selector;
3399 curr_sel += rdev->desc->vsel_step) {
3400 /*
3401 * Call the callback directly instead of using
3402 * _regulator_call_set_voltage_sel() as we don't
3403 * want to notify anyone yet. Same in the branch
3404 * below.
3405 */
3406 ret = ops->set_voltage_sel(rdev, curr_sel);
3407 if (ret)
3408 goto try_revert;
3409 }
3410 } else {
3411 /* Stepping down. */
3412 for (curr_sel = old_sel - rdev->desc->vsel_step;
3413 curr_sel > new_selector;
3414 curr_sel -= rdev->desc->vsel_step) {
3415 ret = ops->set_voltage_sel(rdev, curr_sel);
3416 if (ret)
3417 goto try_revert;
3418 }
3419 }
3420
3421final_set:
3422 /* The final selector will trigger the notifiers. */
3423 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3424
3425try_revert:
3426 /*
3427 * At least try to return to the previous voltage if setting a new
3428 * one failed.
3429 */
3430 (void)ops->set_voltage_sel(rdev, old_sel);
3431 return ret;
3432}
3433
3434static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3435 int old_uV, int new_uV)
3436{
3437 unsigned int ramp_delay = 0;
3438
3439 if (rdev->constraints->ramp_delay)
3440 ramp_delay = rdev->constraints->ramp_delay;
3441 else if (rdev->desc->ramp_delay)
3442 ramp_delay = rdev->desc->ramp_delay;
3443 else if (rdev->constraints->settling_time)
3444 return rdev->constraints->settling_time;
3445 else if (rdev->constraints->settling_time_up &&
3446 (new_uV > old_uV))
3447 return rdev->constraints->settling_time_up;
3448 else if (rdev->constraints->settling_time_down &&
3449 (new_uV < old_uV))
3450 return rdev->constraints->settling_time_down;
3451
3452 if (ramp_delay == 0) {
3453 rdev_dbg(rdev, "ramp_delay not set\n");
3454 return 0;
3455 }
3456
3457 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3458}
3459
3460static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3461 int min_uV, int max_uV)
3462{
3463 int ret;
3464 int delay = 0;
3465 int best_val = 0;
3466 unsigned int selector;
3467 int old_selector = -1;
3468 const struct regulator_ops *ops = rdev->desc->ops;
3469 int old_uV = regulator_get_voltage_rdev(rdev);
3470
3471 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3472
3473 min_uV += rdev->constraints->uV_offset;
3474 max_uV += rdev->constraints->uV_offset;
3475
3476 /*
3477 * If we can't obtain the old selector there is not enough
3478 * info to call set_voltage_time_sel().
3479 */
3480 if (_regulator_is_enabled(rdev) &&
3481 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3482 old_selector = ops->get_voltage_sel(rdev);
3483 if (old_selector < 0)
3484 return old_selector;
3485 }
3486
3487 if (ops->set_voltage) {
3488 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3489 &selector);
3490
3491 if (ret >= 0) {
3492 if (ops->list_voltage)
3493 best_val = ops->list_voltage(rdev,
3494 selector);
3495 else
3496 best_val = regulator_get_voltage_rdev(rdev);
3497 }
3498
3499 } else if (ops->set_voltage_sel) {
3500 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3501 if (ret >= 0) {
3502 best_val = ops->list_voltage(rdev, ret);
3503 if (min_uV <= best_val && max_uV >= best_val) {
3504 selector = ret;
3505 if (old_selector == selector)
3506 ret = 0;
3507 else if (rdev->desc->vsel_step)
3508 ret = _regulator_set_voltage_sel_step(
3509 rdev, best_val, selector);
3510 else
3511 ret = _regulator_call_set_voltage_sel(
3512 rdev, best_val, selector);
3513 } else {
3514 ret = -EINVAL;
3515 }
3516 }
3517 } else {
3518 ret = -EINVAL;
3519 }
3520
3521 if (ret)
3522 goto out;
3523
3524 if (ops->set_voltage_time_sel) {
3525 /*
3526 * Call set_voltage_time_sel if successfully obtained
3527 * old_selector
3528 */
3529 if (old_selector >= 0 && old_selector != selector)
3530 delay = ops->set_voltage_time_sel(rdev, old_selector,
3531 selector);
3532 } else {
3533 if (old_uV != best_val) {
3534 if (ops->set_voltage_time)
3535 delay = ops->set_voltage_time(rdev, old_uV,
3536 best_val);
3537 else
3538 delay = _regulator_set_voltage_time(rdev,
3539 old_uV,
3540 best_val);
3541 }
3542 }
3543
3544 if (delay < 0) {
3545 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3546 delay = 0;
3547 }
3548
3549 /* Insert any necessary delays */
3550 if (delay >= 1000) {
3551 mdelay(delay / 1000);
3552 udelay(delay % 1000);
3553 } else if (delay) {
3554 udelay(delay);
3555 }
3556
3557 if (best_val >= 0) {
3558 unsigned long data = best_val;
3559
3560 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3561 (void *)data);
3562 }
3563
3564out:
3565 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3566
3567 return ret;
3568}
3569
3570static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3571 int min_uV, int max_uV, suspend_state_t state)
3572{
3573 struct regulator_state *rstate;
3574 int uV, sel;
3575
3576 rstate = regulator_get_suspend_state(rdev, state);
3577 if (rstate == NULL)
3578 return -EINVAL;
3579
3580 if (min_uV < rstate->min_uV)
3581 min_uV = rstate->min_uV;
3582 if (max_uV > rstate->max_uV)
3583 max_uV = rstate->max_uV;
3584
3585 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3586 if (sel < 0)
3587 return sel;
3588
3589 uV = rdev->desc->ops->list_voltage(rdev, sel);
3590 if (uV >= min_uV && uV <= max_uV)
3591 rstate->uV = uV;
3592
3593 return 0;
3594}
3595
3596static int regulator_set_voltage_unlocked(struct regulator *regulator,
3597 int min_uV, int max_uV,
3598 suspend_state_t state)
3599{
3600 struct regulator_dev *rdev = regulator->rdev;
3601 struct regulator_voltage *voltage = ®ulator->voltage[state];
3602 int ret = 0;
3603 int old_min_uV, old_max_uV;
3604 int current_uV;
3605
3606 /* If we're setting the same range as last time the change
3607 * should be a noop (some cpufreq implementations use the same
3608 * voltage for multiple frequencies, for example).
3609 */
3610 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3611 goto out;
3612
3613 /* If we're trying to set a range that overlaps the current voltage,
3614 * return successfully even though the regulator does not support
3615 * changing the voltage.
3616 */
3617 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3618 current_uV = regulator_get_voltage_rdev(rdev);
3619 if (min_uV <= current_uV && current_uV <= max_uV) {
3620 voltage->min_uV = min_uV;
3621 voltage->max_uV = max_uV;
3622 goto out;
3623 }
3624 }
3625
3626 /* sanity check */
3627 if (!rdev->desc->ops->set_voltage &&
3628 !rdev->desc->ops->set_voltage_sel) {
3629 ret = -EINVAL;
3630 goto out;
3631 }
3632
3633 /* constraints check */
3634 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3635 if (ret < 0)
3636 goto out;
3637
3638 /* restore original values in case of error */
3639 old_min_uV = voltage->min_uV;
3640 old_max_uV = voltage->max_uV;
3641 voltage->min_uV = min_uV;
3642 voltage->max_uV = max_uV;
3643
3644 /* for not coupled regulators this will just set the voltage */
3645 ret = regulator_balance_voltage(rdev, state);
3646 if (ret < 0) {
3647 voltage->min_uV = old_min_uV;
3648 voltage->max_uV = old_max_uV;
3649 }
3650
3651out:
3652 return ret;
3653}
3654
3655int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3656 int max_uV, suspend_state_t state)
3657{
3658 int best_supply_uV = 0;
3659 int supply_change_uV = 0;
3660 int ret;
3661
3662 if (rdev->supply &&
3663 regulator_ops_is_valid(rdev->supply->rdev,
3664 REGULATOR_CHANGE_VOLTAGE) &&
3665 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3666 rdev->desc->ops->get_voltage_sel))) {
3667 int current_supply_uV;
3668 int selector;
3669
3670 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3671 if (selector < 0) {
3672 ret = selector;
3673 goto out;
3674 }
3675
3676 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3677 if (best_supply_uV < 0) {
3678 ret = best_supply_uV;
3679 goto out;
3680 }
3681
3682 best_supply_uV += rdev->desc->min_dropout_uV;
3683
3684 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3685 if (current_supply_uV < 0) {
3686 ret = current_supply_uV;
3687 goto out;
3688 }
3689
3690 supply_change_uV = best_supply_uV - current_supply_uV;
3691 }
3692
3693 if (supply_change_uV > 0) {
3694 ret = regulator_set_voltage_unlocked(rdev->supply,
3695 best_supply_uV, INT_MAX, state);
3696 if (ret) {
3697 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3698 ERR_PTR(ret));
3699 goto out;
3700 }
3701 }
3702
3703 if (state == PM_SUSPEND_ON)
3704 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3705 else
3706 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3707 max_uV, state);
3708 if (ret < 0)
3709 goto out;
3710
3711 if (supply_change_uV < 0) {
3712 ret = regulator_set_voltage_unlocked(rdev->supply,
3713 best_supply_uV, INT_MAX, state);
3714 if (ret)
3715 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3716 ERR_PTR(ret));
3717 /* No need to fail here */
3718 ret = 0;
3719 }
3720
3721out:
3722 return ret;
3723}
3724EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3725
3726static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3727 int *current_uV, int *min_uV)
3728{
3729 struct regulation_constraints *constraints = rdev->constraints;
3730
3731 /* Limit voltage change only if necessary */
3732 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3733 return 1;
3734
3735 if (*current_uV < 0) {
3736 *current_uV = regulator_get_voltage_rdev(rdev);
3737
3738 if (*current_uV < 0)
3739 return *current_uV;
3740 }
3741
3742 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3743 return 1;
3744
3745 /* Clamp target voltage within the given step */
3746 if (*current_uV < *min_uV)
3747 *min_uV = min(*current_uV + constraints->max_uV_step,
3748 *min_uV);
3749 else
3750 *min_uV = max(*current_uV - constraints->max_uV_step,
3751 *min_uV);
3752
3753 return 0;
3754}
3755
3756static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3757 int *current_uV,
3758 int *min_uV, int *max_uV,
3759 suspend_state_t state,
3760 int n_coupled)
3761{
3762 struct coupling_desc *c_desc = &rdev->coupling_desc;
3763 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3764 struct regulation_constraints *constraints = rdev->constraints;
3765 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3766 int max_current_uV = 0, min_current_uV = INT_MAX;
3767 int highest_min_uV = 0, target_uV, possible_uV;
3768 int i, ret, max_spread;
3769 bool done;
3770
3771 *current_uV = -1;
3772
3773 /*
3774 * If there are no coupled regulators, simply set the voltage
3775 * demanded by consumers.
3776 */
3777 if (n_coupled == 1) {
3778 /*
3779 * If consumers don't provide any demands, set voltage
3780 * to min_uV
3781 */
3782 desired_min_uV = constraints->min_uV;
3783 desired_max_uV = constraints->max_uV;
3784
3785 ret = regulator_check_consumers(rdev,
3786 &desired_min_uV,
3787 &desired_max_uV, state);
3788 if (ret < 0)
3789 return ret;
3790
3791 possible_uV = desired_min_uV;
3792 done = true;
3793
3794 goto finish;
3795 }
3796
3797 /* Find highest min desired voltage */
3798 for (i = 0; i < n_coupled; i++) {
3799 int tmp_min = 0;
3800 int tmp_max = INT_MAX;
3801
3802 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3803
3804 ret = regulator_check_consumers(c_rdevs[i],
3805 &tmp_min,
3806 &tmp_max, state);
3807 if (ret < 0)
3808 return ret;
3809
3810 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3811 if (ret < 0)
3812 return ret;
3813
3814 highest_min_uV = max(highest_min_uV, tmp_min);
3815
3816 if (i == 0) {
3817 desired_min_uV = tmp_min;
3818 desired_max_uV = tmp_max;
3819 }
3820 }
3821
3822 max_spread = constraints->max_spread[0];
3823
3824 /*
3825 * Let target_uV be equal to the desired one if possible.
3826 * If not, set it to minimum voltage, allowed by other coupled
3827 * regulators.
3828 */
3829 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3830
3831 /*
3832 * Find min and max voltages, which currently aren't violating
3833 * max_spread.
3834 */
3835 for (i = 1; i < n_coupled; i++) {
3836 int tmp_act;
3837
3838 if (!_regulator_is_enabled(c_rdevs[i]))
3839 continue;
3840
3841 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3842 if (tmp_act < 0)
3843 return tmp_act;
3844
3845 min_current_uV = min(tmp_act, min_current_uV);
3846 max_current_uV = max(tmp_act, max_current_uV);
3847 }
3848
3849 /* There aren't any other regulators enabled */
3850 if (max_current_uV == 0) {
3851 possible_uV = target_uV;
3852 } else {
3853 /*
3854 * Correct target voltage, so as it currently isn't
3855 * violating max_spread
3856 */
3857 possible_uV = max(target_uV, max_current_uV - max_spread);
3858 possible_uV = min(possible_uV, min_current_uV + max_spread);
3859 }
3860
3861 if (possible_uV > desired_max_uV)
3862 return -EINVAL;
3863
3864 done = (possible_uV == target_uV);
3865 desired_min_uV = possible_uV;
3866
3867finish:
3868 /* Apply max_uV_step constraint if necessary */
3869 if (state == PM_SUSPEND_ON) {
3870 ret = regulator_limit_voltage_step(rdev, current_uV,
3871 &desired_min_uV);
3872 if (ret < 0)
3873 return ret;
3874
3875 if (ret == 0)
3876 done = false;
3877 }
3878
3879 /* Set current_uV if wasn't done earlier in the code and if necessary */
3880 if (n_coupled > 1 && *current_uV == -1) {
3881
3882 if (_regulator_is_enabled(rdev)) {
3883 ret = regulator_get_voltage_rdev(rdev);
3884 if (ret < 0)
3885 return ret;
3886
3887 *current_uV = ret;
3888 } else {
3889 *current_uV = desired_min_uV;
3890 }
3891 }
3892
3893 *min_uV = desired_min_uV;
3894 *max_uV = desired_max_uV;
3895
3896 return done;
3897}
3898
3899int regulator_do_balance_voltage(struct regulator_dev *rdev,
3900 suspend_state_t state, bool skip_coupled)
3901{
3902 struct regulator_dev **c_rdevs;
3903 struct regulator_dev *best_rdev;
3904 struct coupling_desc *c_desc = &rdev->coupling_desc;
3905 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3906 unsigned int delta, best_delta;
3907 unsigned long c_rdev_done = 0;
3908 bool best_c_rdev_done;
3909
3910 c_rdevs = c_desc->coupled_rdevs;
3911 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3912
3913 /*
3914 * Find the best possible voltage change on each loop. Leave the loop
3915 * if there isn't any possible change.
3916 */
3917 do {
3918 best_c_rdev_done = false;
3919 best_delta = 0;
3920 best_min_uV = 0;
3921 best_max_uV = 0;
3922 best_c_rdev = 0;
3923 best_rdev = NULL;
3924
3925 /*
3926 * Find highest difference between optimal voltage
3927 * and current voltage.
3928 */
3929 for (i = 0; i < n_coupled; i++) {
3930 /*
3931 * optimal_uV is the best voltage that can be set for
3932 * i-th regulator at the moment without violating
3933 * max_spread constraint in order to balance
3934 * the coupled voltages.
3935 */
3936 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3937
3938 if (test_bit(i, &c_rdev_done))
3939 continue;
3940
3941 ret = regulator_get_optimal_voltage(c_rdevs[i],
3942 ¤t_uV,
3943 &optimal_uV,
3944 &optimal_max_uV,
3945 state, n_coupled);
3946 if (ret < 0)
3947 goto out;
3948
3949 delta = abs(optimal_uV - current_uV);
3950
3951 if (delta && best_delta <= delta) {
3952 best_c_rdev_done = ret;
3953 best_delta = delta;
3954 best_rdev = c_rdevs[i];
3955 best_min_uV = optimal_uV;
3956 best_max_uV = optimal_max_uV;
3957 best_c_rdev = i;
3958 }
3959 }
3960
3961 /* Nothing to change, return successfully */
3962 if (!best_rdev) {
3963 ret = 0;
3964 goto out;
3965 }
3966
3967 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3968 best_max_uV, state);
3969
3970 if (ret < 0)
3971 goto out;
3972
3973 if (best_c_rdev_done)
3974 set_bit(best_c_rdev, &c_rdev_done);
3975
3976 } while (n_coupled > 1);
3977
3978out:
3979 return ret;
3980}
3981
3982static int regulator_balance_voltage(struct regulator_dev *rdev,
3983 suspend_state_t state)
3984{
3985 struct coupling_desc *c_desc = &rdev->coupling_desc;
3986 struct regulator_coupler *coupler = c_desc->coupler;
3987 bool skip_coupled = false;
3988
3989 /*
3990 * If system is in a state other than PM_SUSPEND_ON, don't check
3991 * other coupled regulators.
3992 */
3993 if (state != PM_SUSPEND_ON)
3994 skip_coupled = true;
3995
3996 if (c_desc->n_resolved < c_desc->n_coupled) {
3997 rdev_err(rdev, "Not all coupled regulators registered\n");
3998 return -EPERM;
3999 }
4000
4001 /* Invoke custom balancer for customized couplers */
4002 if (coupler && coupler->balance_voltage)
4003 return coupler->balance_voltage(coupler, rdev, state);
4004
4005 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4006}
4007
4008/**
4009 * regulator_set_voltage - set regulator output voltage
4010 * @regulator: regulator source
4011 * @min_uV: Minimum required voltage in uV
4012 * @max_uV: Maximum acceptable voltage in uV
4013 *
4014 * Sets a voltage regulator to the desired output voltage. This can be set
4015 * during any regulator state. IOW, regulator can be disabled or enabled.
4016 *
4017 * If the regulator is enabled then the voltage will change to the new value
4018 * immediately otherwise if the regulator is disabled the regulator will
4019 * output at the new voltage when enabled.
4020 *
4021 * NOTE: If the regulator is shared between several devices then the lowest
4022 * request voltage that meets the system constraints will be used.
4023 * Regulator system constraints must be set for this regulator before
4024 * calling this function otherwise this call will fail.
4025 */
4026int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4027{
4028 struct ww_acquire_ctx ww_ctx;
4029 int ret;
4030
4031 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4032
4033 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4034 PM_SUSPEND_ON);
4035
4036 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4037
4038 return ret;
4039}
4040EXPORT_SYMBOL_GPL(regulator_set_voltage);
4041
4042static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4043 suspend_state_t state, bool en)
4044{
4045 struct regulator_state *rstate;
4046
4047 rstate = regulator_get_suspend_state(rdev, state);
4048 if (rstate == NULL)
4049 return -EINVAL;
4050
4051 if (!rstate->changeable)
4052 return -EPERM;
4053
4054 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4055
4056 return 0;
4057}
4058
4059int regulator_suspend_enable(struct regulator_dev *rdev,
4060 suspend_state_t state)
4061{
4062 return regulator_suspend_toggle(rdev, state, true);
4063}
4064EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4065
4066int regulator_suspend_disable(struct regulator_dev *rdev,
4067 suspend_state_t state)
4068{
4069 struct regulator *regulator;
4070 struct regulator_voltage *voltage;
4071
4072 /*
4073 * if any consumer wants this regulator device keeping on in
4074 * suspend states, don't set it as disabled.
4075 */
4076 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4077 voltage = ®ulator->voltage[state];
4078 if (voltage->min_uV || voltage->max_uV)
4079 return 0;
4080 }
4081
4082 return regulator_suspend_toggle(rdev, state, false);
4083}
4084EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4085
4086static int _regulator_set_suspend_voltage(struct regulator *regulator,
4087 int min_uV, int max_uV,
4088 suspend_state_t state)
4089{
4090 struct regulator_dev *rdev = regulator->rdev;
4091 struct regulator_state *rstate;
4092
4093 rstate = regulator_get_suspend_state(rdev, state);
4094 if (rstate == NULL)
4095 return -EINVAL;
4096
4097 if (rstate->min_uV == rstate->max_uV) {
4098 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4099 return -EPERM;
4100 }
4101
4102 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4103}
4104
4105int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4106 int max_uV, suspend_state_t state)
4107{
4108 struct ww_acquire_ctx ww_ctx;
4109 int ret;
4110
4111 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4112 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4113 return -EINVAL;
4114
4115 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4116
4117 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4118 max_uV, state);
4119
4120 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4121
4122 return ret;
4123}
4124EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4125
4126/**
4127 * regulator_set_voltage_time - get raise/fall time
4128 * @regulator: regulator source
4129 * @old_uV: starting voltage in microvolts
4130 * @new_uV: target voltage in microvolts
4131 *
4132 * Provided with the starting and ending voltage, this function attempts to
4133 * calculate the time in microseconds required to rise or fall to this new
4134 * voltage.
4135 */
4136int regulator_set_voltage_time(struct regulator *regulator,
4137 int old_uV, int new_uV)
4138{
4139 struct regulator_dev *rdev = regulator->rdev;
4140 const struct regulator_ops *ops = rdev->desc->ops;
4141 int old_sel = -1;
4142 int new_sel = -1;
4143 int voltage;
4144 int i;
4145
4146 if (ops->set_voltage_time)
4147 return ops->set_voltage_time(rdev, old_uV, new_uV);
4148 else if (!ops->set_voltage_time_sel)
4149 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4150
4151 /* Currently requires operations to do this */
4152 if (!ops->list_voltage || !rdev->desc->n_voltages)
4153 return -EINVAL;
4154
4155 for (i = 0; i < rdev->desc->n_voltages; i++) {
4156 /* We only look for exact voltage matches here */
4157 if (i < rdev->desc->linear_min_sel)
4158 continue;
4159
4160 if (old_sel >= 0 && new_sel >= 0)
4161 break;
4162
4163 voltage = regulator_list_voltage(regulator, i);
4164 if (voltage < 0)
4165 return -EINVAL;
4166 if (voltage == 0)
4167 continue;
4168 if (voltage == old_uV)
4169 old_sel = i;
4170 if (voltage == new_uV)
4171 new_sel = i;
4172 }
4173
4174 if (old_sel < 0 || new_sel < 0)
4175 return -EINVAL;
4176
4177 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4178}
4179EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4180
4181/**
4182 * regulator_set_voltage_time_sel - get raise/fall time
4183 * @rdev: regulator source device
4184 * @old_selector: selector for starting voltage
4185 * @new_selector: selector for target voltage
4186 *
4187 * Provided with the starting and target voltage selectors, this function
4188 * returns time in microseconds required to rise or fall to this new voltage
4189 *
4190 * Drivers providing ramp_delay in regulation_constraints can use this as their
4191 * set_voltage_time_sel() operation.
4192 */
4193int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4194 unsigned int old_selector,
4195 unsigned int new_selector)
4196{
4197 int old_volt, new_volt;
4198
4199 /* sanity check */
4200 if (!rdev->desc->ops->list_voltage)
4201 return -EINVAL;
4202
4203 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4204 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4205
4206 if (rdev->desc->ops->set_voltage_time)
4207 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4208 new_volt);
4209 else
4210 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4211}
4212EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4213
4214int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4215{
4216 int ret;
4217
4218 regulator_lock(rdev);
4219
4220 if (!rdev->desc->ops->set_voltage &&
4221 !rdev->desc->ops->set_voltage_sel) {
4222 ret = -EINVAL;
4223 goto out;
4224 }
4225
4226 /* balance only, if regulator is coupled */
4227 if (rdev->coupling_desc.n_coupled > 1)
4228 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4229 else
4230 ret = -EOPNOTSUPP;
4231
4232out:
4233 regulator_unlock(rdev);
4234 return ret;
4235}
4236
4237/**
4238 * regulator_sync_voltage - re-apply last regulator output voltage
4239 * @regulator: regulator source
4240 *
4241 * Re-apply the last configured voltage. This is intended to be used
4242 * where some external control source the consumer is cooperating with
4243 * has caused the configured voltage to change.
4244 */
4245int regulator_sync_voltage(struct regulator *regulator)
4246{
4247 struct regulator_dev *rdev = regulator->rdev;
4248 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4249 int ret, min_uV, max_uV;
4250
4251 regulator_lock(rdev);
4252
4253 if (!rdev->desc->ops->set_voltage &&
4254 !rdev->desc->ops->set_voltage_sel) {
4255 ret = -EINVAL;
4256 goto out;
4257 }
4258
4259 /* This is only going to work if we've had a voltage configured. */
4260 if (!voltage->min_uV && !voltage->max_uV) {
4261 ret = -EINVAL;
4262 goto out;
4263 }
4264
4265 min_uV = voltage->min_uV;
4266 max_uV = voltage->max_uV;
4267
4268 /* This should be a paranoia check... */
4269 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4270 if (ret < 0)
4271 goto out;
4272
4273 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4274 if (ret < 0)
4275 goto out;
4276
4277 /* balance only, if regulator is coupled */
4278 if (rdev->coupling_desc.n_coupled > 1)
4279 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4280 else
4281 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4282
4283out:
4284 regulator_unlock(rdev);
4285 return ret;
4286}
4287EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4288
4289int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4290{
4291 int sel, ret;
4292 bool bypassed;
4293
4294 if (rdev->desc->ops->get_bypass) {
4295 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4296 if (ret < 0)
4297 return ret;
4298 if (bypassed) {
4299 /* if bypassed the regulator must have a supply */
4300 if (!rdev->supply) {
4301 rdev_err(rdev,
4302 "bypassed regulator has no supply!\n");
4303 return -EPROBE_DEFER;
4304 }
4305
4306 return regulator_get_voltage_rdev(rdev->supply->rdev);
4307 }
4308 }
4309
4310 if (rdev->desc->ops->get_voltage_sel) {
4311 sel = rdev->desc->ops->get_voltage_sel(rdev);
4312 if (sel < 0)
4313 return sel;
4314 ret = rdev->desc->ops->list_voltage(rdev, sel);
4315 } else if (rdev->desc->ops->get_voltage) {
4316 ret = rdev->desc->ops->get_voltage(rdev);
4317 } else if (rdev->desc->ops->list_voltage) {
4318 ret = rdev->desc->ops->list_voltage(rdev, 0);
4319 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4320 ret = rdev->desc->fixed_uV;
4321 } else if (rdev->supply) {
4322 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4323 } else if (rdev->supply_name) {
4324 return -EPROBE_DEFER;
4325 } else {
4326 return -EINVAL;
4327 }
4328
4329 if (ret < 0)
4330 return ret;
4331 return ret - rdev->constraints->uV_offset;
4332}
4333EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4334
4335/**
4336 * regulator_get_voltage - get regulator output voltage
4337 * @regulator: regulator source
4338 *
4339 * This returns the current regulator voltage in uV.
4340 *
4341 * NOTE: If the regulator is disabled it will return the voltage value. This
4342 * function should not be used to determine regulator state.
4343 */
4344int regulator_get_voltage(struct regulator *regulator)
4345{
4346 struct ww_acquire_ctx ww_ctx;
4347 int ret;
4348
4349 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4350 ret = regulator_get_voltage_rdev(regulator->rdev);
4351 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4352
4353 return ret;
4354}
4355EXPORT_SYMBOL_GPL(regulator_get_voltage);
4356
4357/**
4358 * regulator_set_current_limit - set regulator output current limit
4359 * @regulator: regulator source
4360 * @min_uA: Minimum supported current in uA
4361 * @max_uA: Maximum supported current in uA
4362 *
4363 * Sets current sink to the desired output current. This can be set during
4364 * any regulator state. IOW, regulator can be disabled or enabled.
4365 *
4366 * If the regulator is enabled then the current will change to the new value
4367 * immediately otherwise if the regulator is disabled the regulator will
4368 * output at the new current when enabled.
4369 *
4370 * NOTE: Regulator system constraints must be set for this regulator before
4371 * calling this function otherwise this call will fail.
4372 */
4373int regulator_set_current_limit(struct regulator *regulator,
4374 int min_uA, int max_uA)
4375{
4376 struct regulator_dev *rdev = regulator->rdev;
4377 int ret;
4378
4379 regulator_lock(rdev);
4380
4381 /* sanity check */
4382 if (!rdev->desc->ops->set_current_limit) {
4383 ret = -EINVAL;
4384 goto out;
4385 }
4386
4387 /* constraints check */
4388 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4389 if (ret < 0)
4390 goto out;
4391
4392 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4393out:
4394 regulator_unlock(rdev);
4395 return ret;
4396}
4397EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4398
4399static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4400{
4401 /* sanity check */
4402 if (!rdev->desc->ops->get_current_limit)
4403 return -EINVAL;
4404
4405 return rdev->desc->ops->get_current_limit(rdev);
4406}
4407
4408static int _regulator_get_current_limit(struct regulator_dev *rdev)
4409{
4410 int ret;
4411
4412 regulator_lock(rdev);
4413 ret = _regulator_get_current_limit_unlocked(rdev);
4414 regulator_unlock(rdev);
4415
4416 return ret;
4417}
4418
4419/**
4420 * regulator_get_current_limit - get regulator output current
4421 * @regulator: regulator source
4422 *
4423 * This returns the current supplied by the specified current sink in uA.
4424 *
4425 * NOTE: If the regulator is disabled it will return the current value. This
4426 * function should not be used to determine regulator state.
4427 */
4428int regulator_get_current_limit(struct regulator *regulator)
4429{
4430 return _regulator_get_current_limit(regulator->rdev);
4431}
4432EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4433
4434/**
4435 * regulator_set_mode - set regulator operating mode
4436 * @regulator: regulator source
4437 * @mode: operating mode - one of the REGULATOR_MODE constants
4438 *
4439 * Set regulator operating mode to increase regulator efficiency or improve
4440 * regulation performance.
4441 *
4442 * NOTE: Regulator system constraints must be set for this regulator before
4443 * calling this function otherwise this call will fail.
4444 */
4445int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4446{
4447 struct regulator_dev *rdev = regulator->rdev;
4448 int ret;
4449 int regulator_curr_mode;
4450
4451 regulator_lock(rdev);
4452
4453 /* sanity check */
4454 if (!rdev->desc->ops->set_mode) {
4455 ret = -EINVAL;
4456 goto out;
4457 }
4458
4459 /* return if the same mode is requested */
4460 if (rdev->desc->ops->get_mode) {
4461 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4462 if (regulator_curr_mode == mode) {
4463 ret = 0;
4464 goto out;
4465 }
4466 }
4467
4468 /* constraints check */
4469 ret = regulator_mode_constrain(rdev, &mode);
4470 if (ret < 0)
4471 goto out;
4472
4473 ret = rdev->desc->ops->set_mode(rdev, mode);
4474out:
4475 regulator_unlock(rdev);
4476 return ret;
4477}
4478EXPORT_SYMBOL_GPL(regulator_set_mode);
4479
4480static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4481{
4482 /* sanity check */
4483 if (!rdev->desc->ops->get_mode)
4484 return -EINVAL;
4485
4486 return rdev->desc->ops->get_mode(rdev);
4487}
4488
4489static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4490{
4491 int ret;
4492
4493 regulator_lock(rdev);
4494 ret = _regulator_get_mode_unlocked(rdev);
4495 regulator_unlock(rdev);
4496
4497 return ret;
4498}
4499
4500/**
4501 * regulator_get_mode - get regulator operating mode
4502 * @regulator: regulator source
4503 *
4504 * Get the current regulator operating mode.
4505 */
4506unsigned int regulator_get_mode(struct regulator *regulator)
4507{
4508 return _regulator_get_mode(regulator->rdev);
4509}
4510EXPORT_SYMBOL_GPL(regulator_get_mode);
4511
4512static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4513{
4514 int ret = 0;
4515
4516 if (rdev->use_cached_err) {
4517 spin_lock(&rdev->err_lock);
4518 ret = rdev->cached_err;
4519 spin_unlock(&rdev->err_lock);
4520 }
4521 return ret;
4522}
4523
4524static int _regulator_get_error_flags(struct regulator_dev *rdev,
4525 unsigned int *flags)
4526{
4527 int cached_flags, ret = 0;
4528
4529 regulator_lock(rdev);
4530
4531 cached_flags = rdev_get_cached_err_flags(rdev);
4532
4533 if (rdev->desc->ops->get_error_flags)
4534 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4535 else if (!rdev->use_cached_err)
4536 ret = -EINVAL;
4537
4538 *flags |= cached_flags;
4539
4540 regulator_unlock(rdev);
4541
4542 return ret;
4543}
4544
4545/**
4546 * regulator_get_error_flags - get regulator error information
4547 * @regulator: regulator source
4548 * @flags: pointer to store error flags
4549 *
4550 * Get the current regulator error information.
4551 */
4552int regulator_get_error_flags(struct regulator *regulator,
4553 unsigned int *flags)
4554{
4555 return _regulator_get_error_flags(regulator->rdev, flags);
4556}
4557EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4558
4559/**
4560 * regulator_set_load - set regulator load
4561 * @regulator: regulator source
4562 * @uA_load: load current
4563 *
4564 * Notifies the regulator core of a new device load. This is then used by
4565 * DRMS (if enabled by constraints) to set the most efficient regulator
4566 * operating mode for the new regulator loading.
4567 *
4568 * Consumer devices notify their supply regulator of the maximum power
4569 * they will require (can be taken from device datasheet in the power
4570 * consumption tables) when they change operational status and hence power
4571 * state. Examples of operational state changes that can affect power
4572 * consumption are :-
4573 *
4574 * o Device is opened / closed.
4575 * o Device I/O is about to begin or has just finished.
4576 * o Device is idling in between work.
4577 *
4578 * This information is also exported via sysfs to userspace.
4579 *
4580 * DRMS will sum the total requested load on the regulator and change
4581 * to the most efficient operating mode if platform constraints allow.
4582 *
4583 * NOTE: when a regulator consumer requests to have a regulator
4584 * disabled then any load that consumer requested no longer counts
4585 * toward the total requested load. If the regulator is re-enabled
4586 * then the previously requested load will start counting again.
4587 *
4588 * If a regulator is an always-on regulator then an individual consumer's
4589 * load will still be removed if that consumer is fully disabled.
4590 *
4591 * On error a negative errno is returned.
4592 */
4593int regulator_set_load(struct regulator *regulator, int uA_load)
4594{
4595 struct regulator_dev *rdev = regulator->rdev;
4596 int old_uA_load;
4597 int ret = 0;
4598
4599 regulator_lock(rdev);
4600 old_uA_load = regulator->uA_load;
4601 regulator->uA_load = uA_load;
4602 if (regulator->enable_count && old_uA_load != uA_load) {
4603 ret = drms_uA_update(rdev);
4604 if (ret < 0)
4605 regulator->uA_load = old_uA_load;
4606 }
4607 regulator_unlock(rdev);
4608
4609 return ret;
4610}
4611EXPORT_SYMBOL_GPL(regulator_set_load);
4612
4613/**
4614 * regulator_allow_bypass - allow the regulator to go into bypass mode
4615 *
4616 * @regulator: Regulator to configure
4617 * @enable: enable or disable bypass mode
4618 *
4619 * Allow the regulator to go into bypass mode if all other consumers
4620 * for the regulator also enable bypass mode and the machine
4621 * constraints allow this. Bypass mode means that the regulator is
4622 * simply passing the input directly to the output with no regulation.
4623 */
4624int regulator_allow_bypass(struct regulator *regulator, bool enable)
4625{
4626 struct regulator_dev *rdev = regulator->rdev;
4627 const char *name = rdev_get_name(rdev);
4628 int ret = 0;
4629
4630 if (!rdev->desc->ops->set_bypass)
4631 return 0;
4632
4633 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4634 return 0;
4635
4636 regulator_lock(rdev);
4637
4638 if (enable && !regulator->bypass) {
4639 rdev->bypass_count++;
4640
4641 if (rdev->bypass_count == rdev->open_count) {
4642 trace_regulator_bypass_enable(name);
4643
4644 ret = rdev->desc->ops->set_bypass(rdev, enable);
4645 if (ret != 0)
4646 rdev->bypass_count--;
4647 else
4648 trace_regulator_bypass_enable_complete(name);
4649 }
4650
4651 } else if (!enable && regulator->bypass) {
4652 rdev->bypass_count--;
4653
4654 if (rdev->bypass_count != rdev->open_count) {
4655 trace_regulator_bypass_disable(name);
4656
4657 ret = rdev->desc->ops->set_bypass(rdev, enable);
4658 if (ret != 0)
4659 rdev->bypass_count++;
4660 else
4661 trace_regulator_bypass_disable_complete(name);
4662 }
4663 }
4664
4665 if (ret == 0)
4666 regulator->bypass = enable;
4667
4668 regulator_unlock(rdev);
4669
4670 return ret;
4671}
4672EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4673
4674/**
4675 * regulator_register_notifier - register regulator event notifier
4676 * @regulator: regulator source
4677 * @nb: notifier block
4678 *
4679 * Register notifier block to receive regulator events.
4680 */
4681int regulator_register_notifier(struct regulator *regulator,
4682 struct notifier_block *nb)
4683{
4684 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4685 nb);
4686}
4687EXPORT_SYMBOL_GPL(regulator_register_notifier);
4688
4689/**
4690 * regulator_unregister_notifier - unregister regulator event notifier
4691 * @regulator: regulator source
4692 * @nb: notifier block
4693 *
4694 * Unregister regulator event notifier block.
4695 */
4696int regulator_unregister_notifier(struct regulator *regulator,
4697 struct notifier_block *nb)
4698{
4699 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4700 nb);
4701}
4702EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4703
4704/* notify regulator consumers and downstream regulator consumers.
4705 * Note mutex must be held by caller.
4706 */
4707static int _notifier_call_chain(struct regulator_dev *rdev,
4708 unsigned long event, void *data)
4709{
4710 /* call rdev chain first */
4711 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4712}
4713
4714/**
4715 * regulator_bulk_get - get multiple regulator consumers
4716 *
4717 * @dev: Device to supply
4718 * @num_consumers: Number of consumers to register
4719 * @consumers: Configuration of consumers; clients are stored here.
4720 *
4721 * @return 0 on success, an errno on failure.
4722 *
4723 * This helper function allows drivers to get several regulator
4724 * consumers in one operation. If any of the regulators cannot be
4725 * acquired then any regulators that were allocated will be freed
4726 * before returning to the caller.
4727 */
4728int regulator_bulk_get(struct device *dev, int num_consumers,
4729 struct regulator_bulk_data *consumers)
4730{
4731 int i;
4732 int ret;
4733
4734 for (i = 0; i < num_consumers; i++)
4735 consumers[i].consumer = NULL;
4736
4737 for (i = 0; i < num_consumers; i++) {
4738 consumers[i].consumer = regulator_get(dev,
4739 consumers[i].supply);
4740 if (IS_ERR(consumers[i].consumer)) {
4741 ret = PTR_ERR(consumers[i].consumer);
4742 consumers[i].consumer = NULL;
4743 goto err;
4744 }
4745 }
4746
4747 return 0;
4748
4749err:
4750 if (ret != -EPROBE_DEFER)
4751 dev_err(dev, "Failed to get supply '%s': %pe\n",
4752 consumers[i].supply, ERR_PTR(ret));
4753 else
4754 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4755 consumers[i].supply);
4756
4757 while (--i >= 0)
4758 regulator_put(consumers[i].consumer);
4759
4760 return ret;
4761}
4762EXPORT_SYMBOL_GPL(regulator_bulk_get);
4763
4764static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4765{
4766 struct regulator_bulk_data *bulk = data;
4767
4768 bulk->ret = regulator_enable(bulk->consumer);
4769}
4770
4771/**
4772 * regulator_bulk_enable - enable multiple regulator consumers
4773 *
4774 * @num_consumers: Number of consumers
4775 * @consumers: Consumer data; clients are stored here.
4776 * @return 0 on success, an errno on failure
4777 *
4778 * This convenience API allows consumers to enable multiple regulator
4779 * clients in a single API call. If any consumers cannot be enabled
4780 * then any others that were enabled will be disabled again prior to
4781 * return.
4782 */
4783int regulator_bulk_enable(int num_consumers,
4784 struct regulator_bulk_data *consumers)
4785{
4786 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4787 int i;
4788 int ret = 0;
4789
4790 for (i = 0; i < num_consumers; i++) {
4791 async_schedule_domain(regulator_bulk_enable_async,
4792 &consumers[i], &async_domain);
4793 }
4794
4795 async_synchronize_full_domain(&async_domain);
4796
4797 /* If any consumer failed we need to unwind any that succeeded */
4798 for (i = 0; i < num_consumers; i++) {
4799 if (consumers[i].ret != 0) {
4800 ret = consumers[i].ret;
4801 goto err;
4802 }
4803 }
4804
4805 return 0;
4806
4807err:
4808 for (i = 0; i < num_consumers; i++) {
4809 if (consumers[i].ret < 0)
4810 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4811 ERR_PTR(consumers[i].ret));
4812 else
4813 regulator_disable(consumers[i].consumer);
4814 }
4815
4816 return ret;
4817}
4818EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4819
4820/**
4821 * regulator_bulk_disable - disable multiple regulator consumers
4822 *
4823 * @num_consumers: Number of consumers
4824 * @consumers: Consumer data; clients are stored here.
4825 * @return 0 on success, an errno on failure
4826 *
4827 * This convenience API allows consumers to disable multiple regulator
4828 * clients in a single API call. If any consumers cannot be disabled
4829 * then any others that were disabled will be enabled again prior to
4830 * return.
4831 */
4832int regulator_bulk_disable(int num_consumers,
4833 struct regulator_bulk_data *consumers)
4834{
4835 int i;
4836 int ret, r;
4837
4838 for (i = num_consumers - 1; i >= 0; --i) {
4839 ret = regulator_disable(consumers[i].consumer);
4840 if (ret != 0)
4841 goto err;
4842 }
4843
4844 return 0;
4845
4846err:
4847 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4848 for (++i; i < num_consumers; ++i) {
4849 r = regulator_enable(consumers[i].consumer);
4850 if (r != 0)
4851 pr_err("Failed to re-enable %s: %pe\n",
4852 consumers[i].supply, ERR_PTR(r));
4853 }
4854
4855 return ret;
4856}
4857EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4858
4859/**
4860 * regulator_bulk_force_disable - force disable multiple regulator consumers
4861 *
4862 * @num_consumers: Number of consumers
4863 * @consumers: Consumer data; clients are stored here.
4864 * @return 0 on success, an errno on failure
4865 *
4866 * This convenience API allows consumers to forcibly disable multiple regulator
4867 * clients in a single API call.
4868 * NOTE: This should be used for situations when device damage will
4869 * likely occur if the regulators are not disabled (e.g. over temp).
4870 * Although regulator_force_disable function call for some consumers can
4871 * return error numbers, the function is called for all consumers.
4872 */
4873int regulator_bulk_force_disable(int num_consumers,
4874 struct regulator_bulk_data *consumers)
4875{
4876 int i;
4877 int ret = 0;
4878
4879 for (i = 0; i < num_consumers; i++) {
4880 consumers[i].ret =
4881 regulator_force_disable(consumers[i].consumer);
4882
4883 /* Store first error for reporting */
4884 if (consumers[i].ret && !ret)
4885 ret = consumers[i].ret;
4886 }
4887
4888 return ret;
4889}
4890EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4891
4892/**
4893 * regulator_bulk_free - free multiple regulator consumers
4894 *
4895 * @num_consumers: Number of consumers
4896 * @consumers: Consumer data; clients are stored here.
4897 *
4898 * This convenience API allows consumers to free multiple regulator
4899 * clients in a single API call.
4900 */
4901void regulator_bulk_free(int num_consumers,
4902 struct regulator_bulk_data *consumers)
4903{
4904 int i;
4905
4906 for (i = 0; i < num_consumers; i++) {
4907 regulator_put(consumers[i].consumer);
4908 consumers[i].consumer = NULL;
4909 }
4910}
4911EXPORT_SYMBOL_GPL(regulator_bulk_free);
4912
4913/**
4914 * regulator_notifier_call_chain - call regulator event notifier
4915 * @rdev: regulator source
4916 * @event: notifier block
4917 * @data: callback-specific data.
4918 *
4919 * Called by regulator drivers to notify clients a regulator event has
4920 * occurred.
4921 */
4922int regulator_notifier_call_chain(struct regulator_dev *rdev,
4923 unsigned long event, void *data)
4924{
4925 _notifier_call_chain(rdev, event, data);
4926 return NOTIFY_DONE;
4927
4928}
4929EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4930
4931/**
4932 * regulator_mode_to_status - convert a regulator mode into a status
4933 *
4934 * @mode: Mode to convert
4935 *
4936 * Convert a regulator mode into a status.
4937 */
4938int regulator_mode_to_status(unsigned int mode)
4939{
4940 switch (mode) {
4941 case REGULATOR_MODE_FAST:
4942 return REGULATOR_STATUS_FAST;
4943 case REGULATOR_MODE_NORMAL:
4944 return REGULATOR_STATUS_NORMAL;
4945 case REGULATOR_MODE_IDLE:
4946 return REGULATOR_STATUS_IDLE;
4947 case REGULATOR_MODE_STANDBY:
4948 return REGULATOR_STATUS_STANDBY;
4949 default:
4950 return REGULATOR_STATUS_UNDEFINED;
4951 }
4952}
4953EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4954
4955static struct attribute *regulator_dev_attrs[] = {
4956 &dev_attr_name.attr,
4957 &dev_attr_num_users.attr,
4958 &dev_attr_type.attr,
4959 &dev_attr_microvolts.attr,
4960 &dev_attr_microamps.attr,
4961 &dev_attr_opmode.attr,
4962 &dev_attr_state.attr,
4963 &dev_attr_status.attr,
4964 &dev_attr_bypass.attr,
4965 &dev_attr_requested_microamps.attr,
4966 &dev_attr_min_microvolts.attr,
4967 &dev_attr_max_microvolts.attr,
4968 &dev_attr_min_microamps.attr,
4969 &dev_attr_max_microamps.attr,
4970 &dev_attr_suspend_standby_state.attr,
4971 &dev_attr_suspend_mem_state.attr,
4972 &dev_attr_suspend_disk_state.attr,
4973 &dev_attr_suspend_standby_microvolts.attr,
4974 &dev_attr_suspend_mem_microvolts.attr,
4975 &dev_attr_suspend_disk_microvolts.attr,
4976 &dev_attr_suspend_standby_mode.attr,
4977 &dev_attr_suspend_mem_mode.attr,
4978 &dev_attr_suspend_disk_mode.attr,
4979 NULL
4980};
4981
4982/*
4983 * To avoid cluttering sysfs (and memory) with useless state, only
4984 * create attributes that can be meaningfully displayed.
4985 */
4986static umode_t regulator_attr_is_visible(struct kobject *kobj,
4987 struct attribute *attr, int idx)
4988{
4989 struct device *dev = kobj_to_dev(kobj);
4990 struct regulator_dev *rdev = dev_to_rdev(dev);
4991 const struct regulator_ops *ops = rdev->desc->ops;
4992 umode_t mode = attr->mode;
4993
4994 /* these three are always present */
4995 if (attr == &dev_attr_name.attr ||
4996 attr == &dev_attr_num_users.attr ||
4997 attr == &dev_attr_type.attr)
4998 return mode;
4999
5000 /* some attributes need specific methods to be displayed */
5001 if (attr == &dev_attr_microvolts.attr) {
5002 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5003 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5004 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5005 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5006 return mode;
5007 return 0;
5008 }
5009
5010 if (attr == &dev_attr_microamps.attr)
5011 return ops->get_current_limit ? mode : 0;
5012
5013 if (attr == &dev_attr_opmode.attr)
5014 return ops->get_mode ? mode : 0;
5015
5016 if (attr == &dev_attr_state.attr)
5017 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5018
5019 if (attr == &dev_attr_status.attr)
5020 return ops->get_status ? mode : 0;
5021
5022 if (attr == &dev_attr_bypass.attr)
5023 return ops->get_bypass ? mode : 0;
5024
5025 /* constraints need specific supporting methods */
5026 if (attr == &dev_attr_min_microvolts.attr ||
5027 attr == &dev_attr_max_microvolts.attr)
5028 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5029
5030 if (attr == &dev_attr_min_microamps.attr ||
5031 attr == &dev_attr_max_microamps.attr)
5032 return ops->set_current_limit ? mode : 0;
5033
5034 if (attr == &dev_attr_suspend_standby_state.attr ||
5035 attr == &dev_attr_suspend_mem_state.attr ||
5036 attr == &dev_attr_suspend_disk_state.attr)
5037 return mode;
5038
5039 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5040 attr == &dev_attr_suspend_mem_microvolts.attr ||
5041 attr == &dev_attr_suspend_disk_microvolts.attr)
5042 return ops->set_suspend_voltage ? mode : 0;
5043
5044 if (attr == &dev_attr_suspend_standby_mode.attr ||
5045 attr == &dev_attr_suspend_mem_mode.attr ||
5046 attr == &dev_attr_suspend_disk_mode.attr)
5047 return ops->set_suspend_mode ? mode : 0;
5048
5049 return mode;
5050}
5051
5052static const struct attribute_group regulator_dev_group = {
5053 .attrs = regulator_dev_attrs,
5054 .is_visible = regulator_attr_is_visible,
5055};
5056
5057static const struct attribute_group *regulator_dev_groups[] = {
5058 ®ulator_dev_group,
5059 NULL
5060};
5061
5062static void regulator_dev_release(struct device *dev)
5063{
5064 struct regulator_dev *rdev = dev_get_drvdata(dev);
5065
5066 kfree(rdev->constraints);
5067 of_node_put(rdev->dev.of_node);
5068 kfree(rdev);
5069}
5070
5071static void rdev_init_debugfs(struct regulator_dev *rdev)
5072{
5073 struct device *parent = rdev->dev.parent;
5074 const char *rname = rdev_get_name(rdev);
5075 char name[NAME_MAX];
5076
5077 /* Avoid duplicate debugfs directory names */
5078 if (parent && rname == rdev->desc->name) {
5079 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5080 rname);
5081 rname = name;
5082 }
5083
5084 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5085 if (!rdev->debugfs) {
5086 rdev_warn(rdev, "Failed to create debugfs directory\n");
5087 return;
5088 }
5089
5090 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5091 &rdev->use_count);
5092 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5093 &rdev->open_count);
5094 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5095 &rdev->bypass_count);
5096}
5097
5098static int regulator_register_resolve_supply(struct device *dev, void *data)
5099{
5100 struct regulator_dev *rdev = dev_to_rdev(dev);
5101
5102 if (regulator_resolve_supply(rdev))
5103 rdev_dbg(rdev, "unable to resolve supply\n");
5104
5105 return 0;
5106}
5107
5108int regulator_coupler_register(struct regulator_coupler *coupler)
5109{
5110 mutex_lock(®ulator_list_mutex);
5111 list_add_tail(&coupler->list, ®ulator_coupler_list);
5112 mutex_unlock(®ulator_list_mutex);
5113
5114 return 0;
5115}
5116
5117static struct regulator_coupler *
5118regulator_find_coupler(struct regulator_dev *rdev)
5119{
5120 struct regulator_coupler *coupler;
5121 int err;
5122
5123 /*
5124 * Note that regulators are appended to the list and the generic
5125 * coupler is registered first, hence it will be attached at last
5126 * if nobody cared.
5127 */
5128 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5129 err = coupler->attach_regulator(coupler, rdev);
5130 if (!err) {
5131 if (!coupler->balance_voltage &&
5132 rdev->coupling_desc.n_coupled > 2)
5133 goto err_unsupported;
5134
5135 return coupler;
5136 }
5137
5138 if (err < 0)
5139 return ERR_PTR(err);
5140
5141 if (err == 1)
5142 continue;
5143
5144 break;
5145 }
5146
5147 return ERR_PTR(-EINVAL);
5148
5149err_unsupported:
5150 if (coupler->detach_regulator)
5151 coupler->detach_regulator(coupler, rdev);
5152
5153 rdev_err(rdev,
5154 "Voltage balancing for multiple regulator couples is unimplemented\n");
5155
5156 return ERR_PTR(-EPERM);
5157}
5158
5159static void regulator_resolve_coupling(struct regulator_dev *rdev)
5160{
5161 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5162 struct coupling_desc *c_desc = &rdev->coupling_desc;
5163 int n_coupled = c_desc->n_coupled;
5164 struct regulator_dev *c_rdev;
5165 int i;
5166
5167 for (i = 1; i < n_coupled; i++) {
5168 /* already resolved */
5169 if (c_desc->coupled_rdevs[i])
5170 continue;
5171
5172 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5173
5174 if (!c_rdev)
5175 continue;
5176
5177 if (c_rdev->coupling_desc.coupler != coupler) {
5178 rdev_err(rdev, "coupler mismatch with %s\n",
5179 rdev_get_name(c_rdev));
5180 return;
5181 }
5182
5183 c_desc->coupled_rdevs[i] = c_rdev;
5184 c_desc->n_resolved++;
5185
5186 regulator_resolve_coupling(c_rdev);
5187 }
5188}
5189
5190static void regulator_remove_coupling(struct regulator_dev *rdev)
5191{
5192 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5193 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5194 struct regulator_dev *__c_rdev, *c_rdev;
5195 unsigned int __n_coupled, n_coupled;
5196 int i, k;
5197 int err;
5198
5199 n_coupled = c_desc->n_coupled;
5200
5201 for (i = 1; i < n_coupled; i++) {
5202 c_rdev = c_desc->coupled_rdevs[i];
5203
5204 if (!c_rdev)
5205 continue;
5206
5207 regulator_lock(c_rdev);
5208
5209 __c_desc = &c_rdev->coupling_desc;
5210 __n_coupled = __c_desc->n_coupled;
5211
5212 for (k = 1; k < __n_coupled; k++) {
5213 __c_rdev = __c_desc->coupled_rdevs[k];
5214
5215 if (__c_rdev == rdev) {
5216 __c_desc->coupled_rdevs[k] = NULL;
5217 __c_desc->n_resolved--;
5218 break;
5219 }
5220 }
5221
5222 regulator_unlock(c_rdev);
5223
5224 c_desc->coupled_rdevs[i] = NULL;
5225 c_desc->n_resolved--;
5226 }
5227
5228 if (coupler && coupler->detach_regulator) {
5229 err = coupler->detach_regulator(coupler, rdev);
5230 if (err)
5231 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5232 ERR_PTR(err));
5233 }
5234
5235 kfree(rdev->coupling_desc.coupled_rdevs);
5236 rdev->coupling_desc.coupled_rdevs = NULL;
5237}
5238
5239static int regulator_init_coupling(struct regulator_dev *rdev)
5240{
5241 struct regulator_dev **coupled;
5242 int err, n_phandles;
5243
5244 if (!IS_ENABLED(CONFIG_OF))
5245 n_phandles = 0;
5246 else
5247 n_phandles = of_get_n_coupled(rdev);
5248
5249 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5250 if (!coupled)
5251 return -ENOMEM;
5252
5253 rdev->coupling_desc.coupled_rdevs = coupled;
5254
5255 /*
5256 * Every regulator should always have coupling descriptor filled with
5257 * at least pointer to itself.
5258 */
5259 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5260 rdev->coupling_desc.n_coupled = n_phandles + 1;
5261 rdev->coupling_desc.n_resolved++;
5262
5263 /* regulator isn't coupled */
5264 if (n_phandles == 0)
5265 return 0;
5266
5267 if (!of_check_coupling_data(rdev))
5268 return -EPERM;
5269
5270 mutex_lock(®ulator_list_mutex);
5271 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5272 mutex_unlock(®ulator_list_mutex);
5273
5274 if (IS_ERR(rdev->coupling_desc.coupler)) {
5275 err = PTR_ERR(rdev->coupling_desc.coupler);
5276 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5277 return err;
5278 }
5279
5280 return 0;
5281}
5282
5283static int generic_coupler_attach(struct regulator_coupler *coupler,
5284 struct regulator_dev *rdev)
5285{
5286 if (rdev->coupling_desc.n_coupled > 2) {
5287 rdev_err(rdev,
5288 "Voltage balancing for multiple regulator couples is unimplemented\n");
5289 return -EPERM;
5290 }
5291
5292 if (!rdev->constraints->always_on) {
5293 rdev_err(rdev,
5294 "Coupling of a non always-on regulator is unimplemented\n");
5295 return -ENOTSUPP;
5296 }
5297
5298 return 0;
5299}
5300
5301static struct regulator_coupler generic_regulator_coupler = {
5302 .attach_regulator = generic_coupler_attach,
5303};
5304
5305/**
5306 * regulator_register - register regulator
5307 * @regulator_desc: regulator to register
5308 * @cfg: runtime configuration for regulator
5309 *
5310 * Called by regulator drivers to register a regulator.
5311 * Returns a valid pointer to struct regulator_dev on success
5312 * or an ERR_PTR() on error.
5313 */
5314struct regulator_dev *
5315regulator_register(const struct regulator_desc *regulator_desc,
5316 const struct regulator_config *cfg)
5317{
5318 const struct regulator_init_data *init_data;
5319 struct regulator_config *config = NULL;
5320 static atomic_t regulator_no = ATOMIC_INIT(-1);
5321 struct regulator_dev *rdev;
5322 bool dangling_cfg_gpiod = false;
5323 bool dangling_of_gpiod = false;
5324 struct device *dev;
5325 int ret, i;
5326
5327 if (cfg == NULL)
5328 return ERR_PTR(-EINVAL);
5329 if (cfg->ena_gpiod)
5330 dangling_cfg_gpiod = true;
5331 if (regulator_desc == NULL) {
5332 ret = -EINVAL;
5333 goto rinse;
5334 }
5335
5336 dev = cfg->dev;
5337 WARN_ON(!dev);
5338
5339 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5340 ret = -EINVAL;
5341 goto rinse;
5342 }
5343
5344 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5345 regulator_desc->type != REGULATOR_CURRENT) {
5346 ret = -EINVAL;
5347 goto rinse;
5348 }
5349
5350 /* Only one of each should be implemented */
5351 WARN_ON(regulator_desc->ops->get_voltage &&
5352 regulator_desc->ops->get_voltage_sel);
5353 WARN_ON(regulator_desc->ops->set_voltage &&
5354 regulator_desc->ops->set_voltage_sel);
5355
5356 /* If we're using selectors we must implement list_voltage. */
5357 if (regulator_desc->ops->get_voltage_sel &&
5358 !regulator_desc->ops->list_voltage) {
5359 ret = -EINVAL;
5360 goto rinse;
5361 }
5362 if (regulator_desc->ops->set_voltage_sel &&
5363 !regulator_desc->ops->list_voltage) {
5364 ret = -EINVAL;
5365 goto rinse;
5366 }
5367
5368 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5369 if (rdev == NULL) {
5370 ret = -ENOMEM;
5371 goto rinse;
5372 }
5373 device_initialize(&rdev->dev);
5374 spin_lock_init(&rdev->err_lock);
5375
5376 /*
5377 * Duplicate the config so the driver could override it after
5378 * parsing init data.
5379 */
5380 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5381 if (config == NULL) {
5382 ret = -ENOMEM;
5383 goto clean;
5384 }
5385
5386 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5387 &rdev->dev.of_node);
5388
5389 /*
5390 * Sometimes not all resources are probed already so we need to take
5391 * that into account. This happens most the time if the ena_gpiod comes
5392 * from a gpio extender or something else.
5393 */
5394 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5395 ret = -EPROBE_DEFER;
5396 goto clean;
5397 }
5398
5399 /*
5400 * We need to keep track of any GPIO descriptor coming from the
5401 * device tree until we have handled it over to the core. If the
5402 * config that was passed in to this function DOES NOT contain
5403 * a descriptor, and the config after this call DOES contain
5404 * a descriptor, we definitely got one from parsing the device
5405 * tree.
5406 */
5407 if (!cfg->ena_gpiod && config->ena_gpiod)
5408 dangling_of_gpiod = true;
5409 if (!init_data) {
5410 init_data = config->init_data;
5411 rdev->dev.of_node = of_node_get(config->of_node);
5412 }
5413
5414 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5415 rdev->reg_data = config->driver_data;
5416 rdev->owner = regulator_desc->owner;
5417 rdev->desc = regulator_desc;
5418 if (config->regmap)
5419 rdev->regmap = config->regmap;
5420 else if (dev_get_regmap(dev, NULL))
5421 rdev->regmap = dev_get_regmap(dev, NULL);
5422 else if (dev->parent)
5423 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5424 INIT_LIST_HEAD(&rdev->consumer_list);
5425 INIT_LIST_HEAD(&rdev->list);
5426 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5427 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5428
5429 /* preform any regulator specific init */
5430 if (init_data && init_data->regulator_init) {
5431 ret = init_data->regulator_init(rdev->reg_data);
5432 if (ret < 0)
5433 goto clean;
5434 }
5435
5436 if (config->ena_gpiod) {
5437 ret = regulator_ena_gpio_request(rdev, config);
5438 if (ret != 0) {
5439 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5440 ERR_PTR(ret));
5441 goto clean;
5442 }
5443 /* The regulator core took over the GPIO descriptor */
5444 dangling_cfg_gpiod = false;
5445 dangling_of_gpiod = false;
5446 }
5447
5448 /* register with sysfs */
5449 rdev->dev.class = ®ulator_class;
5450 rdev->dev.parent = dev;
5451 dev_set_name(&rdev->dev, "regulator.%lu",
5452 (unsigned long) atomic_inc_return(®ulator_no));
5453 dev_set_drvdata(&rdev->dev, rdev);
5454
5455 /* set regulator constraints */
5456 if (init_data)
5457 rdev->constraints = kmemdup(&init_data->constraints,
5458 sizeof(*rdev->constraints),
5459 GFP_KERNEL);
5460 else
5461 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5462 GFP_KERNEL);
5463 if (!rdev->constraints) {
5464 ret = -ENOMEM;
5465 goto wash;
5466 }
5467
5468 if (init_data && init_data->supply_regulator)
5469 rdev->supply_name = init_data->supply_regulator;
5470 else if (regulator_desc->supply_name)
5471 rdev->supply_name = regulator_desc->supply_name;
5472
5473 ret = set_machine_constraints(rdev);
5474 if (ret == -EPROBE_DEFER) {
5475 /* Regulator might be in bypass mode and so needs its supply
5476 * to set the constraints
5477 */
5478 /* FIXME: this currently triggers a chicken-and-egg problem
5479 * when creating -SUPPLY symlink in sysfs to a regulator
5480 * that is just being created
5481 */
5482 rdev_dbg(rdev, "will resolve supply early: %s\n",
5483 rdev->supply_name);
5484 ret = regulator_resolve_supply(rdev);
5485 if (!ret)
5486 ret = set_machine_constraints(rdev);
5487 else
5488 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5489 ERR_PTR(ret));
5490 }
5491 if (ret < 0)
5492 goto wash;
5493
5494 ret = regulator_init_coupling(rdev);
5495 if (ret < 0)
5496 goto wash;
5497
5498 /* add consumers devices */
5499 if (init_data) {
5500 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5501 ret = set_consumer_device_supply(rdev,
5502 init_data->consumer_supplies[i].dev_name,
5503 init_data->consumer_supplies[i].supply);
5504 if (ret < 0) {
5505 dev_err(dev, "Failed to set supply %s\n",
5506 init_data->consumer_supplies[i].supply);
5507 goto unset_supplies;
5508 }
5509 }
5510 }
5511
5512 if (!rdev->desc->ops->get_voltage &&
5513 !rdev->desc->ops->list_voltage &&
5514 !rdev->desc->fixed_uV)
5515 rdev->is_switch = true;
5516
5517 ret = device_add(&rdev->dev);
5518 if (ret != 0)
5519 goto unset_supplies;
5520
5521 rdev_init_debugfs(rdev);
5522
5523 /* try to resolve regulators coupling since a new one was registered */
5524 mutex_lock(®ulator_list_mutex);
5525 regulator_resolve_coupling(rdev);
5526 mutex_unlock(®ulator_list_mutex);
5527
5528 /* try to resolve regulators supply since a new one was registered */
5529 class_for_each_device(®ulator_class, NULL, NULL,
5530 regulator_register_resolve_supply);
5531 kfree(config);
5532 return rdev;
5533
5534unset_supplies:
5535 mutex_lock(®ulator_list_mutex);
5536 unset_regulator_supplies(rdev);
5537 regulator_remove_coupling(rdev);
5538 mutex_unlock(®ulator_list_mutex);
5539wash:
5540 kfree(rdev->coupling_desc.coupled_rdevs);
5541 mutex_lock(®ulator_list_mutex);
5542 regulator_ena_gpio_free(rdev);
5543 mutex_unlock(®ulator_list_mutex);
5544clean:
5545 if (dangling_of_gpiod)
5546 gpiod_put(config->ena_gpiod);
5547 kfree(config);
5548 put_device(&rdev->dev);
5549rinse:
5550 if (dangling_cfg_gpiod)
5551 gpiod_put(cfg->ena_gpiod);
5552 return ERR_PTR(ret);
5553}
5554EXPORT_SYMBOL_GPL(regulator_register);
5555
5556/**
5557 * regulator_unregister - unregister regulator
5558 * @rdev: regulator to unregister
5559 *
5560 * Called by regulator drivers to unregister a regulator.
5561 */
5562void regulator_unregister(struct regulator_dev *rdev)
5563{
5564 if (rdev == NULL)
5565 return;
5566
5567 if (rdev->supply) {
5568 while (rdev->use_count--)
5569 regulator_disable(rdev->supply);
5570 regulator_put(rdev->supply);
5571 }
5572
5573 flush_work(&rdev->disable_work.work);
5574
5575 mutex_lock(®ulator_list_mutex);
5576
5577 debugfs_remove_recursive(rdev->debugfs);
5578 WARN_ON(rdev->open_count);
5579 regulator_remove_coupling(rdev);
5580 unset_regulator_supplies(rdev);
5581 list_del(&rdev->list);
5582 regulator_ena_gpio_free(rdev);
5583 device_unregister(&rdev->dev);
5584
5585 mutex_unlock(®ulator_list_mutex);
5586}
5587EXPORT_SYMBOL_GPL(regulator_unregister);
5588
5589#ifdef CONFIG_SUSPEND
5590/**
5591 * regulator_suspend - prepare regulators for system wide suspend
5592 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5593 *
5594 * Configure each regulator with it's suspend operating parameters for state.
5595 */
5596static int regulator_suspend(struct device *dev)
5597{
5598 struct regulator_dev *rdev = dev_to_rdev(dev);
5599 suspend_state_t state = pm_suspend_target_state;
5600 int ret;
5601 const struct regulator_state *rstate;
5602
5603 rstate = regulator_get_suspend_state_check(rdev, state);
5604 if (!rstate)
5605 return 0;
5606
5607 regulator_lock(rdev);
5608 ret = __suspend_set_state(rdev, rstate);
5609 regulator_unlock(rdev);
5610
5611 return ret;
5612}
5613
5614static int regulator_resume(struct device *dev)
5615{
5616 suspend_state_t state = pm_suspend_target_state;
5617 struct regulator_dev *rdev = dev_to_rdev(dev);
5618 struct regulator_state *rstate;
5619 int ret = 0;
5620
5621 rstate = regulator_get_suspend_state(rdev, state);
5622 if (rstate == NULL)
5623 return 0;
5624
5625 /* Avoid grabbing the lock if we don't need to */
5626 if (!rdev->desc->ops->resume)
5627 return 0;
5628
5629 regulator_lock(rdev);
5630
5631 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5632 rstate->enabled == DISABLE_IN_SUSPEND)
5633 ret = rdev->desc->ops->resume(rdev);
5634
5635 regulator_unlock(rdev);
5636
5637 return ret;
5638}
5639#else /* !CONFIG_SUSPEND */
5640
5641#define regulator_suspend NULL
5642#define regulator_resume NULL
5643
5644#endif /* !CONFIG_SUSPEND */
5645
5646#ifdef CONFIG_PM
5647static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5648 .suspend = regulator_suspend,
5649 .resume = regulator_resume,
5650};
5651#endif
5652
5653struct class regulator_class = {
5654 .name = "regulator",
5655 .dev_release = regulator_dev_release,
5656 .dev_groups = regulator_dev_groups,
5657#ifdef CONFIG_PM
5658 .pm = ®ulator_pm_ops,
5659#endif
5660};
5661/**
5662 * regulator_has_full_constraints - the system has fully specified constraints
5663 *
5664 * Calling this function will cause the regulator API to disable all
5665 * regulators which have a zero use count and don't have an always_on
5666 * constraint in a late_initcall.
5667 *
5668 * The intention is that this will become the default behaviour in a
5669 * future kernel release so users are encouraged to use this facility
5670 * now.
5671 */
5672void regulator_has_full_constraints(void)
5673{
5674 has_full_constraints = 1;
5675}
5676EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5677
5678/**
5679 * rdev_get_drvdata - get rdev regulator driver data
5680 * @rdev: regulator
5681 *
5682 * Get rdev regulator driver private data. This call can be used in the
5683 * regulator driver context.
5684 */
5685void *rdev_get_drvdata(struct regulator_dev *rdev)
5686{
5687 return rdev->reg_data;
5688}
5689EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5690
5691/**
5692 * regulator_get_drvdata - get regulator driver data
5693 * @regulator: regulator
5694 *
5695 * Get regulator driver private data. This call can be used in the consumer
5696 * driver context when non API regulator specific functions need to be called.
5697 */
5698void *regulator_get_drvdata(struct regulator *regulator)
5699{
5700 return regulator->rdev->reg_data;
5701}
5702EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5703
5704/**
5705 * regulator_set_drvdata - set regulator driver data
5706 * @regulator: regulator
5707 * @data: data
5708 */
5709void regulator_set_drvdata(struct regulator *regulator, void *data)
5710{
5711 regulator->rdev->reg_data = data;
5712}
5713EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5714
5715/**
5716 * rdev_get_id - get regulator ID
5717 * @rdev: regulator
5718 */
5719int rdev_get_id(struct regulator_dev *rdev)
5720{
5721 return rdev->desc->id;
5722}
5723EXPORT_SYMBOL_GPL(rdev_get_id);
5724
5725struct device *rdev_get_dev(struct regulator_dev *rdev)
5726{
5727 return &rdev->dev;
5728}
5729EXPORT_SYMBOL_GPL(rdev_get_dev);
5730
5731struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5732{
5733 return rdev->regmap;
5734}
5735EXPORT_SYMBOL_GPL(rdev_get_regmap);
5736
5737void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5738{
5739 return reg_init_data->driver_data;
5740}
5741EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5742
5743#ifdef CONFIG_DEBUG_FS
5744static int supply_map_show(struct seq_file *sf, void *data)
5745{
5746 struct regulator_map *map;
5747
5748 list_for_each_entry(map, ®ulator_map_list, list) {
5749 seq_printf(sf, "%s -> %s.%s\n",
5750 rdev_get_name(map->regulator), map->dev_name,
5751 map->supply);
5752 }
5753
5754 return 0;
5755}
5756DEFINE_SHOW_ATTRIBUTE(supply_map);
5757
5758struct summary_data {
5759 struct seq_file *s;
5760 struct regulator_dev *parent;
5761 int level;
5762};
5763
5764static void regulator_summary_show_subtree(struct seq_file *s,
5765 struct regulator_dev *rdev,
5766 int level);
5767
5768static int regulator_summary_show_children(struct device *dev, void *data)
5769{
5770 struct regulator_dev *rdev = dev_to_rdev(dev);
5771 struct summary_data *summary_data = data;
5772
5773 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5774 regulator_summary_show_subtree(summary_data->s, rdev,
5775 summary_data->level + 1);
5776
5777 return 0;
5778}
5779
5780static void regulator_summary_show_subtree(struct seq_file *s,
5781 struct regulator_dev *rdev,
5782 int level)
5783{
5784 struct regulation_constraints *c;
5785 struct regulator *consumer;
5786 struct summary_data summary_data;
5787 unsigned int opmode;
5788
5789 if (!rdev)
5790 return;
5791
5792 opmode = _regulator_get_mode_unlocked(rdev);
5793 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5794 level * 3 + 1, "",
5795 30 - level * 3, rdev_get_name(rdev),
5796 rdev->use_count, rdev->open_count, rdev->bypass_count,
5797 regulator_opmode_to_str(opmode));
5798
5799 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5800 seq_printf(s, "%5dmA ",
5801 _regulator_get_current_limit_unlocked(rdev) / 1000);
5802
5803 c = rdev->constraints;
5804 if (c) {
5805 switch (rdev->desc->type) {
5806 case REGULATOR_VOLTAGE:
5807 seq_printf(s, "%5dmV %5dmV ",
5808 c->min_uV / 1000, c->max_uV / 1000);
5809 break;
5810 case REGULATOR_CURRENT:
5811 seq_printf(s, "%5dmA %5dmA ",
5812 c->min_uA / 1000, c->max_uA / 1000);
5813 break;
5814 }
5815 }
5816
5817 seq_puts(s, "\n");
5818
5819 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5820 if (consumer->dev && consumer->dev->class == ®ulator_class)
5821 continue;
5822
5823 seq_printf(s, "%*s%-*s ",
5824 (level + 1) * 3 + 1, "",
5825 30 - (level + 1) * 3,
5826 consumer->supply_name ? consumer->supply_name :
5827 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5828
5829 switch (rdev->desc->type) {
5830 case REGULATOR_VOLTAGE:
5831 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5832 consumer->enable_count,
5833 consumer->uA_load / 1000,
5834 consumer->uA_load && !consumer->enable_count ?
5835 '*' : ' ',
5836 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5837 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5838 break;
5839 case REGULATOR_CURRENT:
5840 break;
5841 }
5842
5843 seq_puts(s, "\n");
5844 }
5845
5846 summary_data.s = s;
5847 summary_data.level = level;
5848 summary_data.parent = rdev;
5849
5850 class_for_each_device(®ulator_class, NULL, &summary_data,
5851 regulator_summary_show_children);
5852}
5853
5854struct summary_lock_data {
5855 struct ww_acquire_ctx *ww_ctx;
5856 struct regulator_dev **new_contended_rdev;
5857 struct regulator_dev **old_contended_rdev;
5858};
5859
5860static int regulator_summary_lock_one(struct device *dev, void *data)
5861{
5862 struct regulator_dev *rdev = dev_to_rdev(dev);
5863 struct summary_lock_data *lock_data = data;
5864 int ret = 0;
5865
5866 if (rdev != *lock_data->old_contended_rdev) {
5867 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5868
5869 if (ret == -EDEADLK)
5870 *lock_data->new_contended_rdev = rdev;
5871 else
5872 WARN_ON_ONCE(ret);
5873 } else {
5874 *lock_data->old_contended_rdev = NULL;
5875 }
5876
5877 return ret;
5878}
5879
5880static int regulator_summary_unlock_one(struct device *dev, void *data)
5881{
5882 struct regulator_dev *rdev = dev_to_rdev(dev);
5883 struct summary_lock_data *lock_data = data;
5884
5885 if (lock_data) {
5886 if (rdev == *lock_data->new_contended_rdev)
5887 return -EDEADLK;
5888 }
5889
5890 regulator_unlock(rdev);
5891
5892 return 0;
5893}
5894
5895static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5896 struct regulator_dev **new_contended_rdev,
5897 struct regulator_dev **old_contended_rdev)
5898{
5899 struct summary_lock_data lock_data;
5900 int ret;
5901
5902 lock_data.ww_ctx = ww_ctx;
5903 lock_data.new_contended_rdev = new_contended_rdev;
5904 lock_data.old_contended_rdev = old_contended_rdev;
5905
5906 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5907 regulator_summary_lock_one);
5908 if (ret)
5909 class_for_each_device(®ulator_class, NULL, &lock_data,
5910 regulator_summary_unlock_one);
5911
5912 return ret;
5913}
5914
5915static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5916{
5917 struct regulator_dev *new_contended_rdev = NULL;
5918 struct regulator_dev *old_contended_rdev = NULL;
5919 int err;
5920
5921 mutex_lock(®ulator_list_mutex);
5922
5923 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5924
5925 do {
5926 if (new_contended_rdev) {
5927 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5928 old_contended_rdev = new_contended_rdev;
5929 old_contended_rdev->ref_cnt++;
5930 }
5931
5932 err = regulator_summary_lock_all(ww_ctx,
5933 &new_contended_rdev,
5934 &old_contended_rdev);
5935
5936 if (old_contended_rdev)
5937 regulator_unlock(old_contended_rdev);
5938
5939 } while (err == -EDEADLK);
5940
5941 ww_acquire_done(ww_ctx);
5942}
5943
5944static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5945{
5946 class_for_each_device(®ulator_class, NULL, NULL,
5947 regulator_summary_unlock_one);
5948 ww_acquire_fini(ww_ctx);
5949
5950 mutex_unlock(®ulator_list_mutex);
5951}
5952
5953static int regulator_summary_show_roots(struct device *dev, void *data)
5954{
5955 struct regulator_dev *rdev = dev_to_rdev(dev);
5956 struct seq_file *s = data;
5957
5958 if (!rdev->supply)
5959 regulator_summary_show_subtree(s, rdev, 0);
5960
5961 return 0;
5962}
5963
5964static int regulator_summary_show(struct seq_file *s, void *data)
5965{
5966 struct ww_acquire_ctx ww_ctx;
5967
5968 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5969 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5970
5971 regulator_summary_lock(&ww_ctx);
5972
5973 class_for_each_device(®ulator_class, NULL, s,
5974 regulator_summary_show_roots);
5975
5976 regulator_summary_unlock(&ww_ctx);
5977
5978 return 0;
5979}
5980DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5981#endif /* CONFIG_DEBUG_FS */
5982
5983static int __init regulator_init(void)
5984{
5985 int ret;
5986
5987 ret = class_register(®ulator_class);
5988
5989 debugfs_root = debugfs_create_dir("regulator", NULL);
5990 if (!debugfs_root)
5991 pr_warn("regulator: Failed to create debugfs directory\n");
5992
5993#ifdef CONFIG_DEBUG_FS
5994 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5995 &supply_map_fops);
5996
5997 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5998 NULL, ®ulator_summary_fops);
5999#endif
6000 regulator_dummy_init();
6001
6002 regulator_coupler_register(&generic_regulator_coupler);
6003
6004 return ret;
6005}
6006
6007/* init early to allow our consumers to complete system booting */
6008core_initcall(regulator_init);
6009
6010static int regulator_late_cleanup(struct device *dev, void *data)
6011{
6012 struct regulator_dev *rdev = dev_to_rdev(dev);
6013 const struct regulator_ops *ops = rdev->desc->ops;
6014 struct regulation_constraints *c = rdev->constraints;
6015 int enabled, ret;
6016
6017 if (c && c->always_on)
6018 return 0;
6019
6020 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6021 return 0;
6022
6023 regulator_lock(rdev);
6024
6025 if (rdev->use_count)
6026 goto unlock;
6027
6028 /* If we can't read the status assume it's always on. */
6029 if (ops->is_enabled)
6030 enabled = ops->is_enabled(rdev);
6031 else
6032 enabled = 1;
6033
6034 /* But if reading the status failed, assume that it's off. */
6035 if (enabled <= 0)
6036 goto unlock;
6037
6038 if (have_full_constraints()) {
6039 /* We log since this may kill the system if it goes
6040 * wrong.
6041 */
6042 rdev_info(rdev, "disabling\n");
6043 ret = _regulator_do_disable(rdev);
6044 if (ret != 0)
6045 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6046 } else {
6047 /* The intention is that in future we will
6048 * assume that full constraints are provided
6049 * so warn even if we aren't going to do
6050 * anything here.
6051 */
6052 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6053 }
6054
6055unlock:
6056 regulator_unlock(rdev);
6057
6058 return 0;
6059}
6060
6061static void regulator_init_complete_work_function(struct work_struct *work)
6062{
6063 /*
6064 * Regulators may had failed to resolve their input supplies
6065 * when were registered, either because the input supply was
6066 * not registered yet or because its parent device was not
6067 * bound yet. So attempt to resolve the input supplies for
6068 * pending regulators before trying to disable unused ones.
6069 */
6070 class_for_each_device(®ulator_class, NULL, NULL,
6071 regulator_register_resolve_supply);
6072
6073 /* If we have a full configuration then disable any regulators
6074 * we have permission to change the status for and which are
6075 * not in use or always_on. This is effectively the default
6076 * for DT and ACPI as they have full constraints.
6077 */
6078 class_for_each_device(®ulator_class, NULL, NULL,
6079 regulator_late_cleanup);
6080}
6081
6082static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6083 regulator_init_complete_work_function);
6084
6085static int __init regulator_init_complete(void)
6086{
6087 /*
6088 * Since DT doesn't provide an idiomatic mechanism for
6089 * enabling full constraints and since it's much more natural
6090 * with DT to provide them just assume that a DT enabled
6091 * system has full constraints.
6092 */
6093 if (of_have_populated_dt())
6094 has_full_constraints = true;
6095
6096 /*
6097 * We punt completion for an arbitrary amount of time since
6098 * systems like distros will load many drivers from userspace
6099 * so consumers might not always be ready yet, this is
6100 * particularly an issue with laptops where this might bounce
6101 * the display off then on. Ideally we'd get a notification
6102 * from userspace when this happens but we don't so just wait
6103 * a bit and hope we waited long enough. It'd be better if
6104 * we'd only do this on systems that need it, and a kernel
6105 * command line option might be useful.
6106 */
6107 schedule_delayed_work(®ulator_init_complete_work,
6108 msecs_to_jiffies(30000));
6109
6110 return 0;
6111}
6112late_initcall_sync(regulator_init_complete);