Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/fs.h>
  23#include <linux/namei.h>
  24#include <linux/pagemap.h>
 
  25#include <linux/fsnotify.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/ima.h>
  29#include <linux/syscalls.h>
  30#include <linux/mount.h>
  31#include <linux/audit.h>
  32#include <linux/capability.h>
  33#include <linux/file.h>
  34#include <linux/fcntl.h>
  35#include <linux/device_cgroup.h>
  36#include <linux/fs_struct.h>
  37#include <linux/posix_acl.h>
  38#include <linux/hash.h>
  39#include <linux/bitops.h>
  40#include <linux/init_task.h>
  41#include <linux/uaccess.h>
  42
  43#include "internal.h"
  44#include "mount.h"
  45
  46/* [Feb-1997 T. Schoebel-Theuer]
  47 * Fundamental changes in the pathname lookup mechanisms (namei)
  48 * were necessary because of omirr.  The reason is that omirr needs
  49 * to know the _real_ pathname, not the user-supplied one, in case
  50 * of symlinks (and also when transname replacements occur).
  51 *
  52 * The new code replaces the old recursive symlink resolution with
  53 * an iterative one (in case of non-nested symlink chains).  It does
  54 * this with calls to <fs>_follow_link().
  55 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  56 * replaced with a single function lookup_dentry() that can handle all 
  57 * the special cases of the former code.
  58 *
  59 * With the new dcache, the pathname is stored at each inode, at least as
  60 * long as the refcount of the inode is positive.  As a side effect, the
  61 * size of the dcache depends on the inode cache and thus is dynamic.
  62 *
  63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  64 * resolution to correspond with current state of the code.
  65 *
  66 * Note that the symlink resolution is not *completely* iterative.
  67 * There is still a significant amount of tail- and mid- recursion in
  68 * the algorithm.  Also, note that <fs>_readlink() is not used in
  69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  70 * may return different results than <fs>_follow_link().  Many virtual
  71 * filesystems (including /proc) exhibit this behavior.
  72 */
  73
  74/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  76 * and the name already exists in form of a symlink, try to create the new
  77 * name indicated by the symlink. The old code always complained that the
  78 * name already exists, due to not following the symlink even if its target
  79 * is nonexistent.  The new semantics affects also mknod() and link() when
  80 * the name is a symlink pointing to a non-existent name.
  81 *
  82 * I don't know which semantics is the right one, since I have no access
  83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  85 * "old" one. Personally, I think the new semantics is much more logical.
  86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  87 * file does succeed in both HP-UX and SunOs, but not in Solaris
  88 * and in the old Linux semantics.
  89 */
  90
  91/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  92 * semantics.  See the comments in "open_namei" and "do_link" below.
  93 *
  94 * [10-Sep-98 Alan Modra] Another symlink change.
  95 */
  96
  97/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  98 *	inside the path - always follow.
  99 *	in the last component in creation/removal/renaming - never follow.
 100 *	if LOOKUP_FOLLOW passed - follow.
 101 *	if the pathname has trailing slashes - follow.
 102 *	otherwise - don't follow.
 103 * (applied in that order).
 104 *
 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 107 * During the 2.4 we need to fix the userland stuff depending on it -
 108 * hopefully we will be able to get rid of that wart in 2.5. So far only
 109 * XEmacs seems to be relying on it...
 110 */
 111/*
 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 113 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 114 * any extra contention...
 115 */
 116
 117/* In order to reduce some races, while at the same time doing additional
 118 * checking and hopefully speeding things up, we copy filenames to the
 119 * kernel data space before using them..
 120 *
 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 122 * PATH_MAX includes the nul terminator --RR.
 123 */
 124
 125#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 126
 127struct filename *
 128getname_flags(const char __user *filename, int flags, int *empty)
 129{
 130	struct filename *result;
 131	char *kname;
 132	int len;
 133
 134	result = audit_reusename(filename);
 135	if (result)
 136		return result;
 137
 138	result = __getname();
 139	if (unlikely(!result))
 140		return ERR_PTR(-ENOMEM);
 141
 142	/*
 143	 * First, try to embed the struct filename inside the names_cache
 144	 * allocation
 145	 */
 146	kname = (char *)result->iname;
 147	result->name = kname;
 148
 149	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 150	if (unlikely(len < 0)) {
 151		__putname(result);
 152		return ERR_PTR(len);
 153	}
 154
 155	/*
 156	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 157	 * separate struct filename so we can dedicate the entire
 158	 * names_cache allocation for the pathname, and re-do the copy from
 159	 * userland.
 160	 */
 161	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 162		const size_t size = offsetof(struct filename, iname[1]);
 163		kname = (char *)result;
 164
 165		/*
 166		 * size is chosen that way we to guarantee that
 167		 * result->iname[0] is within the same object and that
 168		 * kname can't be equal to result->iname, no matter what.
 169		 */
 170		result = kzalloc(size, GFP_KERNEL);
 171		if (unlikely(!result)) {
 172			__putname(kname);
 173			return ERR_PTR(-ENOMEM);
 174		}
 175		result->name = kname;
 176		len = strncpy_from_user(kname, filename, PATH_MAX);
 177		if (unlikely(len < 0)) {
 178			__putname(kname);
 179			kfree(result);
 180			return ERR_PTR(len);
 181		}
 182		if (unlikely(len == PATH_MAX)) {
 183			__putname(kname);
 184			kfree(result);
 185			return ERR_PTR(-ENAMETOOLONG);
 186		}
 187	}
 188
 189	result->refcnt = 1;
 190	/* The empty path is special. */
 191	if (unlikely(!len)) {
 192		if (empty)
 193			*empty = 1;
 194		if (!(flags & LOOKUP_EMPTY)) {
 195			putname(result);
 196			return ERR_PTR(-ENOENT);
 197		}
 198	}
 199
 200	result->uptr = filename;
 201	result->aname = NULL;
 202	audit_getname(result);
 203	return result;
 204}
 205
 206struct filename *
 
 
 
 
 
 
 
 
 207getname(const char __user * filename)
 208{
 209	return getname_flags(filename, 0, NULL);
 210}
 211
 212struct filename *
 213getname_kernel(const char * filename)
 214{
 215	struct filename *result;
 216	int len = strlen(filename) + 1;
 217
 218	result = __getname();
 219	if (unlikely(!result))
 220		return ERR_PTR(-ENOMEM);
 221
 222	if (len <= EMBEDDED_NAME_MAX) {
 223		result->name = (char *)result->iname;
 224	} else if (len <= PATH_MAX) {
 225		const size_t size = offsetof(struct filename, iname[1]);
 226		struct filename *tmp;
 227
 228		tmp = kmalloc(size, GFP_KERNEL);
 229		if (unlikely(!tmp)) {
 230			__putname(result);
 231			return ERR_PTR(-ENOMEM);
 232		}
 233		tmp->name = (char *)result;
 234		result = tmp;
 235	} else {
 236		__putname(result);
 237		return ERR_PTR(-ENAMETOOLONG);
 238	}
 239	memcpy((char *)result->name, filename, len);
 240	result->uptr = NULL;
 241	result->aname = NULL;
 242	result->refcnt = 1;
 243	audit_getname(result);
 244
 245	return result;
 246}
 247
 248void putname(struct filename *name)
 249{
 
 
 
 250	BUG_ON(name->refcnt <= 0);
 251
 252	if (--name->refcnt > 0)
 253		return;
 254
 255	if (name->name != name->iname) {
 256		__putname(name->name);
 257		kfree(name);
 258	} else
 259		__putname(name);
 260}
 261
 262static int check_acl(struct inode *inode, int mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263{
 264#ifdef CONFIG_FS_POSIX_ACL
 265	struct posix_acl *acl;
 266
 267	if (mask & MAY_NOT_BLOCK) {
 268		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 269	        if (!acl)
 270	                return -EAGAIN;
 271		/* no ->get_acl() calls in RCU mode... */
 272		if (is_uncached_acl(acl))
 273			return -ECHILD;
 274	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
 275	}
 276
 277	acl = get_acl(inode, ACL_TYPE_ACCESS);
 278	if (IS_ERR(acl))
 279		return PTR_ERR(acl);
 280	if (acl) {
 281	        int error = posix_acl_permission(inode, acl, mask);
 282	        posix_acl_release(acl);
 283	        return error;
 284	}
 285#endif
 286
 287	return -EAGAIN;
 288}
 289
 290/*
 291 * This does the basic permission checking
 
 
 
 
 
 
 
 
 
 
 
 
 
 292 */
 293static int acl_permission_check(struct inode *inode, int mask)
 
 294{
 295	unsigned int mode = inode->i_mode;
 
 296
 297	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
 
 
 
 298		mode >>= 6;
 299	else {
 300		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 301			int error = check_acl(inode, mask);
 302			if (error != -EAGAIN)
 303				return error;
 304		}
 305
 306		if (in_group_p(inode->i_gid))
 307			mode >>= 3;
 
 
 
 308	}
 309
 
 
 
 310	/*
 311	 * If the DACs are ok we don't need any capability check.
 
 
 312	 */
 313	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
 314		return 0;
 315	return -EACCES;
 
 
 
 
 
 316}
 317
 318/**
 319 * generic_permission -  check for access rights on a Posix-like filesystem
 
 320 * @inode:	inode to check access rights for
 321 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
 
 322 *
 323 * Used to check for read/write/execute permissions on a file.
 324 * We use "fsuid" for this, letting us set arbitrary permissions
 325 * for filesystem access without changing the "normal" uids which
 326 * are used for other things.
 327 *
 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 329 * request cannot be satisfied (eg. requires blocking or too much complexity).
 330 * It would then be called again in ref-walk mode.
 
 
 
 
 
 
 331 */
 332int generic_permission(struct inode *inode, int mask)
 
 333{
 334	int ret;
 335
 336	/*
 337	 * Do the basic permission checks.
 338	 */
 339	ret = acl_permission_check(inode, mask);
 340	if (ret != -EACCES)
 341		return ret;
 342
 343	if (S_ISDIR(inode->i_mode)) {
 344		/* DACs are overridable for directories */
 345		if (!(mask & MAY_WRITE))
 346			if (capable_wrt_inode_uidgid(inode,
 347						     CAP_DAC_READ_SEARCH))
 348				return 0;
 349		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 
 350			return 0;
 351		return -EACCES;
 352	}
 353
 354	/*
 355	 * Searching includes executable on directories, else just read.
 356	 */
 357	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 358	if (mask == MAY_READ)
 359		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
 
 360			return 0;
 361	/*
 362	 * Read/write DACs are always overridable.
 363	 * Executable DACs are overridable when there is
 364	 * at least one exec bit set.
 365	 */
 366	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 367		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 
 368			return 0;
 369
 370	return -EACCES;
 371}
 372EXPORT_SYMBOL(generic_permission);
 373
 374/*
 
 
 
 
 
 375 * We _really_ want to just do "generic_permission()" without
 376 * even looking at the inode->i_op values. So we keep a cache
 377 * flag in inode->i_opflags, that says "this has not special
 378 * permission function, use the fast case".
 379 */
 380static inline int do_inode_permission(struct inode *inode, int mask)
 
 381{
 382	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 383		if (likely(inode->i_op->permission))
 384			return inode->i_op->permission(inode, mask);
 385
 386		/* This gets set once for the inode lifetime */
 387		spin_lock(&inode->i_lock);
 388		inode->i_opflags |= IOP_FASTPERM;
 389		spin_unlock(&inode->i_lock);
 390	}
 391	return generic_permission(inode, mask);
 392}
 393
 394/**
 395 * sb_permission - Check superblock-level permissions
 396 * @sb: Superblock of inode to check permission on
 397 * @inode: Inode to check permission on
 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 399 *
 400 * Separate out file-system wide checks from inode-specific permission checks.
 401 */
 402static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 403{
 404	if (unlikely(mask & MAY_WRITE)) {
 405		umode_t mode = inode->i_mode;
 406
 407		/* Nobody gets write access to a read-only fs. */
 408		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 409			return -EROFS;
 410	}
 411	return 0;
 412}
 413
 414/**
 415 * inode_permission - Check for access rights to a given inode
 416 * @inode: Inode to check permission on
 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 
 418 *
 419 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 420 * this, letting us set arbitrary permissions for filesystem access without
 421 * changing the "normal" UIDs which are used for other things.
 422 *
 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 424 */
 425int inode_permission(struct inode *inode, int mask)
 
 426{
 427	int retval;
 428
 429	retval = sb_permission(inode->i_sb, inode, mask);
 430	if (retval)
 431		return retval;
 432
 433	if (unlikely(mask & MAY_WRITE)) {
 434		/*
 435		 * Nobody gets write access to an immutable file.
 436		 */
 437		if (IS_IMMUTABLE(inode))
 438			return -EPERM;
 439
 440		/*
 441		 * Updating mtime will likely cause i_uid and i_gid to be
 442		 * written back improperly if their true value is unknown
 443		 * to the vfs.
 444		 */
 445		if (HAS_UNMAPPED_ID(inode))
 446			return -EACCES;
 447	}
 448
 449	retval = do_inode_permission(inode, mask);
 450	if (retval)
 451		return retval;
 452
 453	retval = devcgroup_inode_permission(inode, mask);
 454	if (retval)
 455		return retval;
 456
 457	return security_inode_permission(inode, mask);
 458}
 459EXPORT_SYMBOL(inode_permission);
 460
 461/**
 462 * path_get - get a reference to a path
 463 * @path: path to get the reference to
 464 *
 465 * Given a path increment the reference count to the dentry and the vfsmount.
 466 */
 467void path_get(const struct path *path)
 468{
 469	mntget(path->mnt);
 470	dget(path->dentry);
 471}
 472EXPORT_SYMBOL(path_get);
 473
 474/**
 475 * path_put - put a reference to a path
 476 * @path: path to put the reference to
 477 *
 478 * Given a path decrement the reference count to the dentry and the vfsmount.
 479 */
 480void path_put(const struct path *path)
 481{
 482	dput(path->dentry);
 483	mntput(path->mnt);
 484}
 485EXPORT_SYMBOL(path_put);
 486
 487#define EMBEDDED_LEVELS 2
 488struct nameidata {
 489	struct path	path;
 490	struct qstr	last;
 491	struct path	root;
 492	struct inode	*inode; /* path.dentry.d_inode */
 493	unsigned int	flags;
 494	unsigned	seq, m_seq;
 495	int		last_type;
 496	unsigned	depth;
 497	int		total_link_count;
 498	struct saved {
 499		struct path link;
 500		struct delayed_call done;
 501		const char *name;
 502		unsigned seq;
 503	} *stack, internal[EMBEDDED_LEVELS];
 504	struct filename	*name;
 505	struct nameidata *saved;
 506	struct inode	*link_inode;
 507	unsigned	root_seq;
 508	int		dfd;
 
 
 509} __randomize_layout;
 510
 511static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 
 
 
 
 512{
 513	struct nameidata *old = current->nameidata;
 514	p->stack = p->internal;
 
 515	p->dfd = dfd;
 516	p->name = name;
 
 
 517	p->total_link_count = old ? old->total_link_count : 0;
 518	p->saved = old;
 519	current->nameidata = p;
 520}
 521
 
 
 
 
 
 
 
 
 
 
 
 522static void restore_nameidata(void)
 523{
 524	struct nameidata *now = current->nameidata, *old = now->saved;
 525
 526	current->nameidata = old;
 527	if (old)
 528		old->total_link_count = now->total_link_count;
 529	if (now->stack != now->internal)
 530		kfree(now->stack);
 531}
 532
 533static int __nd_alloc_stack(struct nameidata *nd)
 534{
 535	struct saved *p;
 536
 537	if (nd->flags & LOOKUP_RCU) {
 538		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 539				  GFP_ATOMIC);
 540		if (unlikely(!p))
 541			return -ECHILD;
 542	} else {
 543		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 544				  GFP_KERNEL);
 545		if (unlikely(!p))
 546			return -ENOMEM;
 547	}
 548	memcpy(p, nd->internal, sizeof(nd->internal));
 549	nd->stack = p;
 550	return 0;
 551}
 552
 553/**
 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
 555 * @path: nameidate to verify
 556 *
 557 * Rename can sometimes move a file or directory outside of a bind
 558 * mount, path_connected allows those cases to be detected.
 559 */
 560static bool path_connected(const struct path *path)
 561{
 562	struct vfsmount *mnt = path->mnt;
 563	struct super_block *sb = mnt->mnt_sb;
 564
 565	/* Bind mounts and multi-root filesystems can have disconnected paths */
 566	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
 567		return true;
 568
 569	return is_subdir(path->dentry, mnt->mnt_root);
 570}
 571
 572static inline int nd_alloc_stack(struct nameidata *nd)
 573{
 574	if (likely(nd->depth != EMBEDDED_LEVELS))
 575		return 0;
 576	if (likely(nd->stack != nd->internal))
 577		return 0;
 578	return __nd_alloc_stack(nd);
 579}
 580
 581static void drop_links(struct nameidata *nd)
 582{
 583	int i = nd->depth;
 584	while (i--) {
 585		struct saved *last = nd->stack + i;
 586		do_delayed_call(&last->done);
 587		clear_delayed_call(&last->done);
 588	}
 589}
 590
 
 
 
 
 
 
 
 591static void terminate_walk(struct nameidata *nd)
 592{
 593	drop_links(nd);
 594	if (!(nd->flags & LOOKUP_RCU)) {
 595		int i;
 596		path_put(&nd->path);
 597		for (i = 0; i < nd->depth; i++)
 598			path_put(&nd->stack[i].link);
 599		if (nd->flags & LOOKUP_ROOT_GRABBED) {
 600			path_put(&nd->root);
 601			nd->flags &= ~LOOKUP_ROOT_GRABBED;
 602		}
 603	} else {
 604		nd->flags &= ~LOOKUP_RCU;
 605		rcu_read_unlock();
 606	}
 607	nd->depth = 0;
 
 
 608}
 609
 610/* path_put is needed afterwards regardless of success or failure */
 611static bool legitimize_path(struct nameidata *nd,
 612			    struct path *path, unsigned seq)
 613{
 614	int res = __legitimize_mnt(path->mnt, nd->m_seq);
 615	if (unlikely(res)) {
 616		if (res > 0)
 617			path->mnt = NULL;
 618		path->dentry = NULL;
 619		return false;
 620	}
 621	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 622		path->dentry = NULL;
 623		return false;
 624	}
 625	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 626}
 627
 
 
 
 
 
 
 628static bool legitimize_links(struct nameidata *nd)
 629{
 630	int i;
 
 
 
 
 
 631	for (i = 0; i < nd->depth; i++) {
 632		struct saved *last = nd->stack + i;
 633		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 634			drop_links(nd);
 635			nd->depth = i + 1;
 636			return false;
 637		}
 638	}
 639	return true;
 640}
 641
 642static bool legitimize_root(struct nameidata *nd)
 643{
 644	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
 
 645		return true;
 646	nd->flags |= LOOKUP_ROOT_GRABBED;
 647	return legitimize_path(nd, &nd->root, nd->root_seq);
 648}
 649
 650/*
 651 * Path walking has 2 modes, rcu-walk and ref-walk (see
 652 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 654 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 655 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 656 * got stuck, so ref-walk may continue from there. If this is not successful
 657 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 658 * to restart the path walk from the beginning in ref-walk mode.
 659 */
 660
 661/**
 662 * unlazy_walk - try to switch to ref-walk mode.
 663 * @nd: nameidata pathwalk data
 664 * Returns: 0 on success, -ECHILD on failure
 665 *
 666 * unlazy_walk attempts to legitimize the current nd->path and nd->root
 667 * for ref-walk mode.
 668 * Must be called from rcu-walk context.
 669 * Nothing should touch nameidata between unlazy_walk() failure and
 670 * terminate_walk().
 671 */
 672static int unlazy_walk(struct nameidata *nd)
 673{
 674	struct dentry *parent = nd->path.dentry;
 675
 676	BUG_ON(!(nd->flags & LOOKUP_RCU));
 677
 678	nd->flags &= ~LOOKUP_RCU;
 679	if (unlikely(!legitimize_links(nd)))
 680		goto out1;
 681	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 682		goto out;
 683	if (unlikely(!legitimize_root(nd)))
 684		goto out;
 685	rcu_read_unlock();
 686	BUG_ON(nd->inode != parent->d_inode);
 687	return 0;
 688
 689out1:
 690	nd->path.mnt = NULL;
 691	nd->path.dentry = NULL;
 692out:
 693	rcu_read_unlock();
 694	return -ECHILD;
 695}
 696
 697/**
 698 * unlazy_child - try to switch to ref-walk mode.
 699 * @nd: nameidata pathwalk data
 700 * @dentry: child of nd->path.dentry
 701 * @seq: seq number to check dentry against
 702 * Returns: 0 on success, -ECHILD on failure
 703 *
 704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
 705 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
 706 * @nd.  Must be called from rcu-walk context.
 707 * Nothing should touch nameidata between unlazy_child() failure and
 708 * terminate_walk().
 709 */
 710static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
 711{
 
 712	BUG_ON(!(nd->flags & LOOKUP_RCU));
 713
 714	nd->flags &= ~LOOKUP_RCU;
 715	if (unlikely(!legitimize_links(nd)))
 716		goto out2;
 717	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
 718		goto out2;
 
 
 
 
 719	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 720		goto out1;
 721
 722	/*
 723	 * We need to move both the parent and the dentry from the RCU domain
 724	 * to be properly refcounted. And the sequence number in the dentry
 725	 * validates *both* dentry counters, since we checked the sequence
 726	 * number of the parent after we got the child sequence number. So we
 727	 * know the parent must still be valid if the child sequence number is
 728	 */
 729	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 730		goto out;
 731	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
 732		goto out_dput;
 733	/*
 734	 * Sequence counts matched. Now make sure that the root is
 735	 * still valid and get it if required.
 736	 */
 737	if (unlikely(!legitimize_root(nd)))
 738		goto out_dput;
 739	rcu_read_unlock();
 740	return 0;
 741
 742out2:
 743	nd->path.mnt = NULL;
 744out1:
 745	nd->path.dentry = NULL;
 746out:
 747	rcu_read_unlock();
 748	return -ECHILD;
 749out_dput:
 750	rcu_read_unlock();
 751	dput(dentry);
 752	return -ECHILD;
 753}
 754
 755static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 756{
 757	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 758		return dentry->d_op->d_revalidate(dentry, flags);
 759	else
 760		return 1;
 761}
 762
 763/**
 764 * complete_walk - successful completion of path walk
 765 * @nd:  pointer nameidata
 766 *
 767 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 768 * Revalidate the final result, unless we'd already done that during
 769 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 770 * success, -error on failure.  In case of failure caller does not
 771 * need to drop nd->path.
 772 */
 773static int complete_walk(struct nameidata *nd)
 774{
 775	struct dentry *dentry = nd->path.dentry;
 776	int status;
 777
 778	if (nd->flags & LOOKUP_RCU) {
 779		if (!(nd->flags & LOOKUP_ROOT))
 780			nd->root.mnt = NULL;
 781		if (unlikely(unlazy_walk(nd)))
 
 
 
 
 
 
 782			return -ECHILD;
 783	}
 784
 785	if (likely(!(nd->flags & LOOKUP_JUMPED)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786		return 0;
 787
 788	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 789		return 0;
 790
 791	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 792	if (status > 0)
 793		return 0;
 794
 795	if (!status)
 796		status = -ESTALE;
 797
 798	return status;
 799}
 800
 801static void set_root(struct nameidata *nd)
 802{
 803	struct fs_struct *fs = current->fs;
 804
 
 
 
 
 
 
 
 
 805	if (nd->flags & LOOKUP_RCU) {
 806		unsigned seq;
 807
 808		do {
 809			seq = read_seqcount_begin(&fs->seq);
 810			nd->root = fs->root;
 811			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 812		} while (read_seqcount_retry(&fs->seq, seq));
 813	} else {
 814		get_fs_root(fs, &nd->root);
 815		nd->flags |= LOOKUP_ROOT_GRABBED;
 816	}
 817}
 818
 819static void path_put_conditional(struct path *path, struct nameidata *nd)
 820{
 821	dput(path->dentry);
 822	if (path->mnt != nd->path.mnt)
 823		mntput(path->mnt);
 824}
 825
 826static inline void path_to_nameidata(const struct path *path,
 827					struct nameidata *nd)
 828{
 829	if (!(nd->flags & LOOKUP_RCU)) {
 830		dput(nd->path.dentry);
 831		if (nd->path.mnt != path->mnt)
 832			mntput(nd->path.mnt);
 833	}
 834	nd->path.mnt = path->mnt;
 835	nd->path.dentry = path->dentry;
 836}
 837
 838static int nd_jump_root(struct nameidata *nd)
 839{
 
 
 
 
 
 
 
 
 
 
 
 
 840	if (nd->flags & LOOKUP_RCU) {
 841		struct dentry *d;
 842		nd->path = nd->root;
 843		d = nd->path.dentry;
 844		nd->inode = d->d_inode;
 845		nd->seq = nd->root_seq;
 846		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
 847			return -ECHILD;
 848	} else {
 849		path_put(&nd->path);
 850		nd->path = nd->root;
 851		path_get(&nd->path);
 852		nd->inode = nd->path.dentry->d_inode;
 853	}
 854	nd->flags |= LOOKUP_JUMPED;
 855	return 0;
 856}
 857
 858/*
 859 * Helper to directly jump to a known parsed path from ->get_link,
 860 * caller must have taken a reference to path beforehand.
 861 */
 862void nd_jump_link(struct path *path)
 863{
 
 864	struct nameidata *nd = current->nameidata;
 865	path_put(&nd->path);
 866
 
 
 
 
 
 
 
 
 
 
 
 
 
 867	nd->path = *path;
 868	nd->inode = nd->path.dentry->d_inode;
 869	nd->flags |= LOOKUP_JUMPED;
 
 
 
 
 
 870}
 871
 872static inline void put_link(struct nameidata *nd)
 873{
 874	struct saved *last = nd->stack + --nd->depth;
 875	do_delayed_call(&last->done);
 876	if (!(nd->flags & LOOKUP_RCU))
 877		path_put(&last->link);
 878}
 879
 880int sysctl_protected_symlinks __read_mostly = 0;
 881int sysctl_protected_hardlinks __read_mostly = 0;
 882int sysctl_protected_fifos __read_mostly;
 883int sysctl_protected_regular __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885/**
 886 * may_follow_link - Check symlink following for unsafe situations
 887 * @nd: nameidata pathwalk data
 888 *
 889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
 891 * in a sticky world-writable directory. This is to protect privileged
 892 * processes from failing races against path names that may change out
 893 * from under them by way of other users creating malicious symlinks.
 894 * It will permit symlinks to be followed only when outside a sticky
 895 * world-writable directory, or when the uid of the symlink and follower
 896 * match, or when the directory owner matches the symlink's owner.
 897 *
 898 * Returns 0 if following the symlink is allowed, -ve on error.
 899 */
 900static inline int may_follow_link(struct nameidata *nd)
 901{
 902	const struct inode *inode;
 903	const struct inode *parent;
 904	kuid_t puid;
 905
 906	if (!sysctl_protected_symlinks)
 907		return 0;
 908
 
 
 909	/* Allowed if owner and follower match. */
 910	inode = nd->link_inode;
 911	if (uid_eq(current_cred()->fsuid, inode->i_uid))
 912		return 0;
 913
 914	/* Allowed if parent directory not sticky and world-writable. */
 915	parent = nd->inode;
 916	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 917		return 0;
 918
 919	/* Allowed if parent directory and link owner match. */
 920	puid = parent->i_uid;
 921	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
 922		return 0;
 923
 924	if (nd->flags & LOOKUP_RCU)
 925		return -ECHILD;
 926
 927	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
 928	audit_log_link_denied("follow_link");
 929	return -EACCES;
 930}
 931
 932/**
 933 * safe_hardlink_source - Check for safe hardlink conditions
 
 934 * @inode: the source inode to hardlink from
 935 *
 936 * Return false if at least one of the following conditions:
 937 *    - inode is not a regular file
 938 *    - inode is setuid
 939 *    - inode is setgid and group-exec
 940 *    - access failure for read and write
 941 *
 942 * Otherwise returns true.
 943 */
 944static bool safe_hardlink_source(struct inode *inode)
 
 945{
 946	umode_t mode = inode->i_mode;
 947
 948	/* Special files should not get pinned to the filesystem. */
 949	if (!S_ISREG(mode))
 950		return false;
 951
 952	/* Setuid files should not get pinned to the filesystem. */
 953	if (mode & S_ISUID)
 954		return false;
 955
 956	/* Executable setgid files should not get pinned to the filesystem. */
 957	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
 958		return false;
 959
 960	/* Hardlinking to unreadable or unwritable sources is dangerous. */
 961	if (inode_permission(inode, MAY_READ | MAY_WRITE))
 962		return false;
 963
 964	return true;
 965}
 966
 967/**
 968 * may_linkat - Check permissions for creating a hardlink
 
 969 * @link: the source to hardlink from
 970 *
 971 * Block hardlink when all of:
 972 *  - sysctl_protected_hardlinks enabled
 973 *  - fsuid does not match inode
 974 *  - hardlink source is unsafe (see safe_hardlink_source() above)
 975 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
 976 *
 
 
 
 
 
 
 977 * Returns 0 if successful, -ve on error.
 978 */
 979static int may_linkat(struct path *link)
 980{
 981	struct inode *inode = link->dentry->d_inode;
 982
 983	/* Inode writeback is not safe when the uid or gid are invalid. */
 984	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
 
 985		return -EOVERFLOW;
 986
 987	if (!sysctl_protected_hardlinks)
 988		return 0;
 989
 990	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
 991	 * otherwise, it must be a safe source.
 992	 */
 993	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
 
 994		return 0;
 995
 996	audit_log_link_denied("linkat");
 997	return -EPERM;
 998}
 999
1000/**
1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002 *			  should be allowed, or not, on files that already
1003 *			  exist.
1004 * @dir: the sticky parent directory
 
1005 * @inode: the inode of the file to open
1006 *
1007 * Block an O_CREAT open of a FIFO (or a regular file) when:
1008 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1009 *   - the file already exists
1010 *   - we are in a sticky directory
1011 *   - we don't own the file
1012 *   - the owner of the directory doesn't own the file
1013 *   - the directory is world writable
1014 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1015 * the directory doesn't have to be world writable: being group writable will
1016 * be enough.
1017 *
 
 
 
 
 
 
1018 * Returns 0 if the open is allowed, -ve on error.
1019 */
1020static int may_create_in_sticky(struct dentry * const dir,
1021				struct inode * const inode)
1022{
 
 
 
1023	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1024	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1025	    likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1026	    uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1027	    uid_eq(current_fsuid(), inode->i_uid))
1028		return 0;
1029
1030	if (likely(dir->d_inode->i_mode & 0002) ||
1031	    (dir->d_inode->i_mode & 0020 &&
1032	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1033	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
 
 
 
 
1034		return -EACCES;
1035	}
1036	return 0;
1037}
1038
1039static __always_inline
1040const char *get_link(struct nameidata *nd)
1041{
1042	struct saved *last = nd->stack + nd->depth - 1;
1043	struct dentry *dentry = last->link.dentry;
1044	struct inode *inode = nd->link_inode;
1045	int error;
1046	const char *res;
1047
1048	if (!(nd->flags & LOOKUP_RCU)) {
1049		touch_atime(&last->link);
1050		cond_resched();
1051	} else if (atime_needs_update(&last->link, inode)) {
1052		if (unlikely(unlazy_walk(nd)))
1053			return ERR_PTR(-ECHILD);
1054		touch_atime(&last->link);
1055	}
1056
1057	error = security_inode_follow_link(dentry, inode,
1058					   nd->flags & LOOKUP_RCU);
1059	if (unlikely(error))
1060		return ERR_PTR(error);
1061
1062	nd->last_type = LAST_BIND;
1063	res = READ_ONCE(inode->i_link);
1064	if (!res) {
1065		const char * (*get)(struct dentry *, struct inode *,
1066				struct delayed_call *);
1067		get = inode->i_op->get_link;
1068		if (nd->flags & LOOKUP_RCU) {
1069			res = get(NULL, inode, &last->done);
1070			if (res == ERR_PTR(-ECHILD)) {
1071				if (unlikely(unlazy_walk(nd)))
1072					return ERR_PTR(-ECHILD);
1073				res = get(dentry, inode, &last->done);
1074			}
1075		} else {
1076			res = get(dentry, inode, &last->done);
1077		}
1078		if (IS_ERR_OR_NULL(res))
1079			return res;
1080	}
1081	if (*res == '/') {
1082		if (!nd->root.mnt)
1083			set_root(nd);
1084		if (unlikely(nd_jump_root(nd)))
1085			return ERR_PTR(-ECHILD);
1086		while (unlikely(*++res == '/'))
1087			;
1088	}
1089	if (!*res)
1090		res = NULL;
1091	return res;
1092}
1093
1094/*
1095 * follow_up - Find the mountpoint of path's vfsmount
1096 *
1097 * Given a path, find the mountpoint of its source file system.
1098 * Replace @path with the path of the mountpoint in the parent mount.
1099 * Up is towards /.
1100 *
1101 * Return 1 if we went up a level and 0 if we were already at the
1102 * root.
1103 */
1104int follow_up(struct path *path)
1105{
1106	struct mount *mnt = real_mount(path->mnt);
1107	struct mount *parent;
1108	struct dentry *mountpoint;
1109
1110	read_seqlock_excl(&mount_lock);
1111	parent = mnt->mnt_parent;
1112	if (parent == mnt) {
1113		read_sequnlock_excl(&mount_lock);
1114		return 0;
1115	}
1116	mntget(&parent->mnt);
1117	mountpoint = dget(mnt->mnt_mountpoint);
1118	read_sequnlock_excl(&mount_lock);
1119	dput(path->dentry);
1120	path->dentry = mountpoint;
1121	mntput(path->mnt);
1122	path->mnt = &parent->mnt;
1123	return 1;
1124}
1125EXPORT_SYMBOL(follow_up);
1126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127/*
1128 * Perform an automount
1129 * - return -EISDIR to tell follow_managed() to stop and return the path we
1130 *   were called with.
1131 */
1132static int follow_automount(struct path *path, struct nameidata *nd,
1133			    bool *need_mntput)
1134{
1135	struct vfsmount *mnt;
1136	int err;
1137
1138	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1139		return -EREMOTE;
1140
1141	/* We don't want to mount if someone's just doing a stat -
1142	 * unless they're stat'ing a directory and appended a '/' to
1143	 * the name.
1144	 *
1145	 * We do, however, want to mount if someone wants to open or
1146	 * create a file of any type under the mountpoint, wants to
1147	 * traverse through the mountpoint or wants to open the
1148	 * mounted directory.  Also, autofs may mark negative dentries
1149	 * as being automount points.  These will need the attentions
1150	 * of the daemon to instantiate them before they can be used.
1151	 */
1152	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1153			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1154	    path->dentry->d_inode)
1155		return -EISDIR;
1156
1157	nd->total_link_count++;
1158	if (nd->total_link_count >= 40)
1159		return -ELOOP;
1160
1161	mnt = path->dentry->d_op->d_automount(path);
1162	if (IS_ERR(mnt)) {
1163		/*
1164		 * The filesystem is allowed to return -EISDIR here to indicate
1165		 * it doesn't want to automount.  For instance, autofs would do
1166		 * this so that its userspace daemon can mount on this dentry.
1167		 *
1168		 * However, we can only permit this if it's a terminal point in
1169		 * the path being looked up; if it wasn't then the remainder of
1170		 * the path is inaccessible and we should say so.
1171		 */
1172		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1173			return -EREMOTE;
1174		return PTR_ERR(mnt);
1175	}
1176
1177	if (!mnt) /* mount collision */
1178		return 0;
1179
1180	if (!*need_mntput) {
1181		/* lock_mount() may release path->mnt on error */
1182		mntget(path->mnt);
1183		*need_mntput = true;
1184	}
1185	err = finish_automount(mnt, path);
1186
1187	switch (err) {
1188	case -EBUSY:
1189		/* Someone else made a mount here whilst we were busy */
1190		return 0;
1191	case 0:
1192		path_put(path);
1193		path->mnt = mnt;
1194		path->dentry = dget(mnt->mnt_root);
1195		return 0;
1196	default:
1197		return err;
1198	}
1199
1200}
1201
1202/*
1203 * Handle a dentry that is managed in some way.
1204 * - Flagged for transit management (autofs)
1205 * - Flagged as mountpoint
1206 * - Flagged as automount point
1207 *
1208 * This may only be called in refwalk mode.
1209 *
1210 * Serialization is taken care of in namespace.c
1211 */
1212static int follow_managed(struct path *path, struct nameidata *nd)
 
1213{
1214	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1215	unsigned managed;
1216	bool need_mntput = false;
1217	int ret = 0;
1218
1219	/* Given that we're not holding a lock here, we retain the value in a
1220	 * local variable for each dentry as we look at it so that we don't see
1221	 * the components of that value change under us */
1222	while (managed = READ_ONCE(path->dentry->d_flags),
1223	       managed &= DCACHE_MANAGED_DENTRY,
1224	       unlikely(managed != 0)) {
1225		/* Allow the filesystem to manage the transit without i_mutex
1226		 * being held. */
1227		if (managed & DCACHE_MANAGE_TRANSIT) {
1228			BUG_ON(!path->dentry->d_op);
1229			BUG_ON(!path->dentry->d_op->d_manage);
1230			ret = path->dentry->d_op->d_manage(path, false);
 
1231			if (ret < 0)
1232				break;
1233		}
1234
1235		/* Transit to a mounted filesystem. */
1236		if (managed & DCACHE_MOUNTED) {
1237			struct vfsmount *mounted = lookup_mnt(path);
1238			if (mounted) {
1239				dput(path->dentry);
1240				if (need_mntput)
1241					mntput(path->mnt);
1242				path->mnt = mounted;
1243				path->dentry = dget(mounted->mnt_root);
 
 
1244				need_mntput = true;
1245				continue;
1246			}
1247
1248			/* Something is mounted on this dentry in another
1249			 * namespace and/or whatever was mounted there in this
1250			 * namespace got unmounted before lookup_mnt() could
1251			 * get it */
1252		}
1253
1254		/* Handle an automount point */
1255		if (managed & DCACHE_NEED_AUTOMOUNT) {
1256			ret = follow_automount(path, nd, &need_mntput);
1257			if (ret < 0)
1258				break;
1259			continue;
1260		}
1261
1262		/* We didn't change the current path point */
1263		break;
 
 
 
1264	}
1265
 
 
 
1266	if (need_mntput && path->mnt == mnt)
1267		mntput(path->mnt);
1268	if (ret == -EISDIR || !ret)
1269		ret = 1;
1270	if (need_mntput)
1271		nd->flags |= LOOKUP_JUMPED;
1272	if (unlikely(ret < 0))
1273		path_put_conditional(path, nd);
1274	return ret;
1275}
1276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277int follow_down_one(struct path *path)
1278{
1279	struct vfsmount *mounted;
1280
1281	mounted = lookup_mnt(path);
1282	if (mounted) {
1283		dput(path->dentry);
1284		mntput(path->mnt);
1285		path->mnt = mounted;
1286		path->dentry = dget(mounted->mnt_root);
1287		return 1;
1288	}
1289	return 0;
1290}
1291EXPORT_SYMBOL(follow_down_one);
1292
1293static inline int managed_dentry_rcu(const struct path *path)
 
 
 
 
 
1294{
1295	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1296		path->dentry->d_op->d_manage(path, true) : 0;
 
 
 
 
 
1297}
 
1298
1299/*
1300 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1301 * we meet a managed dentry that would need blocking.
1302 */
1303static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1304			       struct inode **inode, unsigned *seqp)
1305{
 
 
 
 
 
 
 
 
 
1306	for (;;) {
1307		struct mount *mounted;
1308		/*
1309		 * Don't forget we might have a non-mountpoint managed dentry
1310		 * that wants to block transit.
1311		 */
1312		switch (managed_dentry_rcu(path)) {
1313		case -ECHILD:
1314		default:
1315			return false;
1316		case -EISDIR:
1317			return true;
1318		case 0:
1319			break;
1320		}
1321
1322		if (!d_mountpoint(path->dentry))
1323			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1324
1325		mounted = __lookup_mnt(path->mnt, path->dentry);
1326		if (!mounted)
1327			break;
1328		path->mnt = &mounted->mnt;
1329		path->dentry = mounted->mnt.mnt_root;
1330		nd->flags |= LOOKUP_JUMPED;
1331		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1332		/*
1333		 * Update the inode too. We don't need to re-check the
1334		 * dentry sequence number here after this d_inode read,
1335		 * because a mount-point is always pinned.
1336		 */
1337		*inode = path->dentry->d_inode;
1338	}
1339	return !read_seqretry(&mount_lock, nd->m_seq) &&
1340		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1341}
1342
1343static int follow_dotdot_rcu(struct nameidata *nd)
1344{
1345	struct inode *inode = nd->inode;
1346
1347	while (1) {
1348		if (path_equal(&nd->path, &nd->root))
1349			break;
1350		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1351			struct dentry *old = nd->path.dentry;
1352			struct dentry *parent = old->d_parent;
1353			unsigned seq;
1354
1355			inode = parent->d_inode;
1356			seq = read_seqcount_begin(&parent->d_seq);
1357			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1358				return -ECHILD;
1359			nd->path.dentry = parent;
1360			nd->seq = seq;
1361			if (unlikely(!path_connected(&nd->path)))
1362				return -ENOENT;
1363			break;
1364		} else {
1365			struct mount *mnt = real_mount(nd->path.mnt);
1366			struct mount *mparent = mnt->mnt_parent;
1367			struct dentry *mountpoint = mnt->mnt_mountpoint;
1368			struct inode *inode2 = mountpoint->d_inode;
1369			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1370			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1371				return -ECHILD;
1372			if (&mparent->mnt == nd->path.mnt)
1373				break;
1374			/* we know that mountpoint was pinned */
1375			nd->path.dentry = mountpoint;
1376			nd->path.mnt = &mparent->mnt;
1377			inode = inode2;
1378			nd->seq = seq;
1379		}
 
1380	}
1381	while (unlikely(d_mountpoint(nd->path.dentry))) {
1382		struct mount *mounted;
1383		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1384		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1385			return -ECHILD;
1386		if (!mounted)
1387			break;
1388		nd->path.mnt = &mounted->mnt;
1389		nd->path.dentry = mounted->mnt.mnt_root;
1390		inode = nd->path.dentry->d_inode;
1391		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1392	}
1393	nd->inode = inode;
1394	return 0;
1395}
1396
1397/*
1398 * Follow down to the covering mount currently visible to userspace.  At each
1399 * point, the filesystem owning that dentry may be queried as to whether the
1400 * caller is permitted to proceed or not.
1401 */
1402int follow_down(struct path *path)
1403{
1404	unsigned managed;
1405	int ret;
1406
1407	while (managed = READ_ONCE(path->dentry->d_flags),
1408	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1409		/* Allow the filesystem to manage the transit without i_mutex
1410		 * being held.
1411		 *
1412		 * We indicate to the filesystem if someone is trying to mount
1413		 * something here.  This gives autofs the chance to deny anyone
1414		 * other than its daemon the right to mount on its
1415		 * superstructure.
1416		 *
1417		 * The filesystem may sleep at this point.
1418		 */
1419		if (managed & DCACHE_MANAGE_TRANSIT) {
1420			BUG_ON(!path->dentry->d_op);
1421			BUG_ON(!path->dentry->d_op->d_manage);
1422			ret = path->dentry->d_op->d_manage(path, false);
1423			if (ret < 0)
1424				return ret == -EISDIR ? 0 : ret;
1425		}
1426
1427		/* Transit to a mounted filesystem. */
1428		if (managed & DCACHE_MOUNTED) {
1429			struct vfsmount *mounted = lookup_mnt(path);
1430			if (!mounted)
1431				break;
1432			dput(path->dentry);
1433			mntput(path->mnt);
1434			path->mnt = mounted;
1435			path->dentry = dget(mounted->mnt_root);
1436			continue;
1437		}
1438
1439		/* Don't handle automount points here */
1440		break;
1441	}
1442	return 0;
1443}
1444EXPORT_SYMBOL(follow_down);
1445
1446/*
1447 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1448 */
1449static void follow_mount(struct path *path)
1450{
1451	while (d_mountpoint(path->dentry)) {
1452		struct vfsmount *mounted = lookup_mnt(path);
1453		if (!mounted)
1454			break;
1455		dput(path->dentry);
1456		mntput(path->mnt);
1457		path->mnt = mounted;
1458		path->dentry = dget(mounted->mnt_root);
1459	}
1460}
1461
1462static int path_parent_directory(struct path *path)
1463{
1464	struct dentry *old = path->dentry;
1465	/* rare case of legitimate dget_parent()... */
1466	path->dentry = dget_parent(path->dentry);
1467	dput(old);
1468	if (unlikely(!path_connected(path)))
1469		return -ENOENT;
1470	return 0;
1471}
1472
1473static int follow_dotdot(struct nameidata *nd)
1474{
1475	while(1) {
1476		if (path_equal(&nd->path, &nd->root))
1477			break;
1478		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1479			int ret = path_parent_directory(&nd->path);
1480			if (ret)
1481				return ret;
1482			break;
1483		}
1484		if (!follow_up(&nd->path))
1485			break;
1486	}
1487	follow_mount(&nd->path);
1488	nd->inode = nd->path.dentry->d_inode;
1489	return 0;
1490}
1491
1492/*
1493 * This looks up the name in dcache and possibly revalidates the found dentry.
1494 * NULL is returned if the dentry does not exist in the cache.
1495 */
1496static struct dentry *lookup_dcache(const struct qstr *name,
1497				    struct dentry *dir,
1498				    unsigned int flags)
1499{
1500	struct dentry *dentry = d_lookup(dir, name);
1501	if (dentry) {
1502		int error = d_revalidate(dentry, flags);
1503		if (unlikely(error <= 0)) {
1504			if (!error)
1505				d_invalidate(dentry);
1506			dput(dentry);
1507			return ERR_PTR(error);
1508		}
1509	}
1510	return dentry;
1511}
1512
1513/*
1514 * Parent directory has inode locked exclusive.  This is one
1515 * and only case when ->lookup() gets called on non in-lookup
1516 * dentries - as the matter of fact, this only gets called
1517 * when directory is guaranteed to have no in-lookup children
1518 * at all.
1519 */
1520static struct dentry *__lookup_hash(const struct qstr *name,
1521		struct dentry *base, unsigned int flags)
1522{
1523	struct dentry *dentry = lookup_dcache(name, base, flags);
1524	struct dentry *old;
1525	struct inode *dir = base->d_inode;
1526
1527	if (dentry)
1528		return dentry;
1529
1530	/* Don't create child dentry for a dead directory. */
1531	if (unlikely(IS_DEADDIR(dir)))
1532		return ERR_PTR(-ENOENT);
1533
1534	dentry = d_alloc(base, name);
1535	if (unlikely(!dentry))
1536		return ERR_PTR(-ENOMEM);
1537
1538	old = dir->i_op->lookup(dir, dentry, flags);
1539	if (unlikely(old)) {
1540		dput(dentry);
1541		dentry = old;
1542	}
1543	return dentry;
1544}
1545
1546static int lookup_fast(struct nameidata *nd,
1547		       struct path *path, struct inode **inode,
1548		       unsigned *seqp)
1549{
1550	struct vfsmount *mnt = nd->path.mnt;
1551	struct dentry *dentry, *parent = nd->path.dentry;
1552	int status = 1;
1553	int err;
1554
1555	/*
1556	 * Rename seqlock is not required here because in the off chance
1557	 * of a false negative due to a concurrent rename, the caller is
1558	 * going to fall back to non-racy lookup.
1559	 */
1560	if (nd->flags & LOOKUP_RCU) {
1561		unsigned seq;
1562		bool negative;
1563		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1564		if (unlikely(!dentry)) {
1565			if (unlazy_walk(nd))
1566				return -ECHILD;
1567			return 0;
1568		}
1569
1570		/*
1571		 * This sequence count validates that the inode matches
1572		 * the dentry name information from lookup.
1573		 */
1574		*inode = d_backing_inode(dentry);
1575		negative = d_is_negative(dentry);
1576		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1577			return -ECHILD;
1578
1579		/*
1580		 * This sequence count validates that the parent had no
1581		 * changes while we did the lookup of the dentry above.
1582		 *
1583		 * The memory barrier in read_seqcount_begin of child is
1584		 *  enough, we can use __read_seqcount_retry here.
1585		 */
1586		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1587			return -ECHILD;
1588
1589		*seqp = seq;
1590		status = d_revalidate(dentry, nd->flags);
1591		if (likely(status > 0)) {
1592			/*
1593			 * Note: do negative dentry check after revalidation in
1594			 * case that drops it.
1595			 */
1596			if (unlikely(negative))
1597				return -ENOENT;
1598			path->mnt = mnt;
1599			path->dentry = dentry;
1600			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1601				return 1;
1602		}
1603		if (unlazy_child(nd, dentry, seq))
1604			return -ECHILD;
1605		if (unlikely(status == -ECHILD))
1606			/* we'd been told to redo it in non-rcu mode */
1607			status = d_revalidate(dentry, nd->flags);
1608	} else {
1609		dentry = __d_lookup(parent, &nd->last);
1610		if (unlikely(!dentry))
1611			return 0;
1612		status = d_revalidate(dentry, nd->flags);
1613	}
1614	if (unlikely(status <= 0)) {
1615		if (!status)
1616			d_invalidate(dentry);
1617		dput(dentry);
1618		return status;
1619	}
1620	if (unlikely(d_is_negative(dentry))) {
1621		dput(dentry);
1622		return -ENOENT;
1623	}
1624
1625	path->mnt = mnt;
1626	path->dentry = dentry;
1627	err = follow_managed(path, nd);
1628	if (likely(err > 0))
1629		*inode = d_backing_inode(path->dentry);
1630	return err;
1631}
1632
1633/* Fast lookup failed, do it the slow way */
1634static struct dentry *__lookup_slow(const struct qstr *name,
1635				    struct dentry *dir,
1636				    unsigned int flags)
1637{
1638	struct dentry *dentry, *old;
1639	struct inode *inode = dir->d_inode;
1640	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1641
1642	/* Don't go there if it's already dead */
1643	if (unlikely(IS_DEADDIR(inode)))
1644		return ERR_PTR(-ENOENT);
1645again:
1646	dentry = d_alloc_parallel(dir, name, &wq);
1647	if (IS_ERR(dentry))
1648		return dentry;
1649	if (unlikely(!d_in_lookup(dentry))) {
1650		if (!(flags & LOOKUP_NO_REVAL)) {
1651			int error = d_revalidate(dentry, flags);
1652			if (unlikely(error <= 0)) {
1653				if (!error) {
1654					d_invalidate(dentry);
1655					dput(dentry);
1656					goto again;
1657				}
1658				dput(dentry);
1659				dentry = ERR_PTR(error);
1660			}
 
 
1661		}
1662	} else {
1663		old = inode->i_op->lookup(inode, dentry, flags);
1664		d_lookup_done(dentry);
1665		if (unlikely(old)) {
1666			dput(dentry);
1667			dentry = old;
1668		}
1669	}
1670	return dentry;
1671}
1672
1673static struct dentry *lookup_slow(const struct qstr *name,
1674				  struct dentry *dir,
1675				  unsigned int flags)
1676{
1677	struct inode *inode = dir->d_inode;
1678	struct dentry *res;
1679	inode_lock_shared(inode);
1680	res = __lookup_slow(name, dir, flags);
1681	inode_unlock_shared(inode);
1682	return res;
1683}
1684
1685static inline int may_lookup(struct nameidata *nd)
 
1686{
1687	if (nd->flags & LOOKUP_RCU) {
1688		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1689		if (err != -ECHILD)
1690			return err;
1691		if (unlazy_walk(nd))
1692			return -ECHILD;
1693	}
1694	return inode_permission(nd->inode, MAY_EXEC);
1695}
1696
1697static inline int handle_dots(struct nameidata *nd, int type)
1698{
1699	if (type == LAST_DOTDOT) {
1700		if (!nd->root.mnt)
1701			set_root(nd);
1702		if (nd->flags & LOOKUP_RCU) {
1703			return follow_dotdot_rcu(nd);
1704		} else
1705			return follow_dotdot(nd);
 
 
 
 
 
 
 
 
 
 
 
 
 
1706	}
1707	return 0;
1708}
1709
1710static int pick_link(struct nameidata *nd, struct path *link,
1711		     struct inode *inode, unsigned seq)
 
 
1712{
1713	int error;
1714	struct saved *last;
1715	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1716		path_to_nameidata(link, nd);
1717		return -ELOOP;
1718	}
1719	if (!(nd->flags & LOOKUP_RCU)) {
1720		if (link->mnt == nd->path.mnt)
1721			mntget(link->mnt);
1722	}
1723	error = nd_alloc_stack(nd);
1724	if (unlikely(error)) {
1725		if (error == -ECHILD) {
1726			if (unlikely(!legitimize_path(nd, link, seq))) {
1727				drop_links(nd);
1728				nd->depth = 0;
1729				nd->flags &= ~LOOKUP_RCU;
1730				nd->path.mnt = NULL;
1731				nd->path.dentry = NULL;
1732				rcu_read_unlock();
1733			} else if (likely(unlazy_walk(nd)) == 0)
1734				error = nd_alloc_stack(nd);
1735		}
1736		if (error) {
1737			path_put(link);
1738			return error;
1739		}
1740	}
1741
1742	last = nd->stack + nd->depth++;
1743	last->link = *link;
1744	clear_delayed_call(&last->done);
1745	nd->link_inode = inode;
1746	last->seq = seq;
1747	return 1;
1748}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749
1750enum {WALK_FOLLOW = 1, WALK_MORE = 2};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751
1752/*
1753 * Do we need to follow links? We _really_ want to be able
1754 * to do this check without having to look at inode->i_op,
1755 * so we keep a cache of "no, this doesn't need follow_link"
1756 * for the common case.
 
 
1757 */
1758static inline int step_into(struct nameidata *nd, struct path *path,
1759			    int flags, struct inode *inode, unsigned seq)
1760{
1761	if (!(flags & WALK_MORE) && nd->depth)
1762		put_link(nd);
1763	if (likely(!d_is_symlink(path->dentry)) ||
1764	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
 
 
 
 
 
 
1765		/* not a symlink or should not follow */
1766		path_to_nameidata(path, nd);
 
 
 
 
 
 
 
 
 
 
1767		nd->inode = inode;
1768		nd->seq = seq;
1769		return 0;
1770	}
1771	/* make sure that d_is_symlink above matches inode */
1772	if (nd->flags & LOOKUP_RCU) {
1773		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1774			return -ECHILD;
 
 
 
 
1775	}
1776	return pick_link(nd, path, inode, seq);
1777}
1778
1779static int walk_component(struct nameidata *nd, int flags)
1780{
1781	struct path path;
1782	struct inode *inode;
1783	unsigned seq;
1784	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785	/*
1786	 * "." and ".." are special - ".." especially so because it has
1787	 * to be able to know about the current root directory and
1788	 * parent relationships.
1789	 */
1790	if (unlikely(nd->last_type != LAST_NORM)) {
1791		err = handle_dots(nd, nd->last_type);
1792		if (!(flags & WALK_MORE) && nd->depth)
1793			put_link(nd);
1794		return err;
1795	}
1796	err = lookup_fast(nd, &path, &inode, &seq);
1797	if (unlikely(err <= 0)) {
1798		if (err < 0)
1799			return err;
1800		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1801					  nd->flags);
1802		if (IS_ERR(path.dentry))
1803			return PTR_ERR(path.dentry);
1804
1805		path.mnt = nd->path.mnt;
1806		err = follow_managed(&path, nd);
1807		if (unlikely(err < 0))
1808			return err;
1809
1810		if (unlikely(d_is_negative(path.dentry))) {
1811			path_to_nameidata(&path, nd);
1812			return -ENOENT;
1813		}
1814
1815		seq = 0;	/* we are already out of RCU mode */
1816		inode = d_backing_inode(path.dentry);
1817	}
1818
1819	return step_into(nd, &path, flags, inode, seq);
 
1820}
1821
1822/*
1823 * We can do the critical dentry name comparison and hashing
1824 * operations one word at a time, but we are limited to:
1825 *
1826 * - Architectures with fast unaligned word accesses. We could
1827 *   do a "get_unaligned()" if this helps and is sufficiently
1828 *   fast.
1829 *
1830 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1831 *   do not trap on the (extremely unlikely) case of a page
1832 *   crossing operation.
1833 *
1834 * - Furthermore, we need an efficient 64-bit compile for the
1835 *   64-bit case in order to generate the "number of bytes in
1836 *   the final mask". Again, that could be replaced with a
1837 *   efficient population count instruction or similar.
1838 */
1839#ifdef CONFIG_DCACHE_WORD_ACCESS
1840
1841#include <asm/word-at-a-time.h>
1842
1843#ifdef HASH_MIX
1844
1845/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1846
1847#elif defined(CONFIG_64BIT)
1848/*
1849 * Register pressure in the mixing function is an issue, particularly
1850 * on 32-bit x86, but almost any function requires one state value and
1851 * one temporary.  Instead, use a function designed for two state values
1852 * and no temporaries.
1853 *
1854 * This function cannot create a collision in only two iterations, so
1855 * we have two iterations to achieve avalanche.  In those two iterations,
1856 * we have six layers of mixing, which is enough to spread one bit's
1857 * influence out to 2^6 = 64 state bits.
1858 *
1859 * Rotate constants are scored by considering either 64 one-bit input
1860 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1861 * probability of that delta causing a change to each of the 128 output
1862 * bits, using a sample of random initial states.
1863 *
1864 * The Shannon entropy of the computed probabilities is then summed
1865 * to produce a score.  Ideally, any input change has a 50% chance of
1866 * toggling any given output bit.
1867 *
1868 * Mixing scores (in bits) for (12,45):
1869 * Input delta: 1-bit      2-bit
1870 * 1 round:     713.3    42542.6
1871 * 2 rounds:   2753.7   140389.8
1872 * 3 rounds:   5954.1   233458.2
1873 * 4 rounds:   7862.6   256672.2
1874 * Perfect:    8192     258048
1875 *            (64*128) (64*63/2 * 128)
1876 */
1877#define HASH_MIX(x, y, a)	\
1878	(	x ^= (a),	\
1879	y ^= x,	x = rol64(x,12),\
1880	x += y,	y = rol64(y,45),\
1881	y *= 9			)
1882
1883/*
1884 * Fold two longs into one 32-bit hash value.  This must be fast, but
1885 * latency isn't quite as critical, as there is a fair bit of additional
1886 * work done before the hash value is used.
1887 */
1888static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1889{
1890	y ^= x * GOLDEN_RATIO_64;
1891	y *= GOLDEN_RATIO_64;
1892	return y >> 32;
1893}
1894
1895#else	/* 32-bit case */
1896
1897/*
1898 * Mixing scores (in bits) for (7,20):
1899 * Input delta: 1-bit      2-bit
1900 * 1 round:     330.3     9201.6
1901 * 2 rounds:   1246.4    25475.4
1902 * 3 rounds:   1907.1    31295.1
1903 * 4 rounds:   2042.3    31718.6
1904 * Perfect:    2048      31744
1905 *            (32*64)   (32*31/2 * 64)
1906 */
1907#define HASH_MIX(x, y, a)	\
1908	(	x ^= (a),	\
1909	y ^= x,	x = rol32(x, 7),\
1910	x += y,	y = rol32(y,20),\
1911	y *= 9			)
1912
1913static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1914{
1915	/* Use arch-optimized multiply if one exists */
1916	return __hash_32(y ^ __hash_32(x));
1917}
1918
1919#endif
1920
1921/*
1922 * Return the hash of a string of known length.  This is carfully
1923 * designed to match hash_name(), which is the more critical function.
1924 * In particular, we must end by hashing a final word containing 0..7
1925 * payload bytes, to match the way that hash_name() iterates until it
1926 * finds the delimiter after the name.
1927 */
1928unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1929{
1930	unsigned long a, x = 0, y = (unsigned long)salt;
1931
1932	for (;;) {
1933		if (!len)
1934			goto done;
1935		a = load_unaligned_zeropad(name);
1936		if (len < sizeof(unsigned long))
1937			break;
1938		HASH_MIX(x, y, a);
1939		name += sizeof(unsigned long);
1940		len -= sizeof(unsigned long);
1941	}
1942	x ^= a & bytemask_from_count(len);
1943done:
1944	return fold_hash(x, y);
1945}
1946EXPORT_SYMBOL(full_name_hash);
1947
1948/* Return the "hash_len" (hash and length) of a null-terminated string */
1949u64 hashlen_string(const void *salt, const char *name)
1950{
1951	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1952	unsigned long adata, mask, len;
1953	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1954
1955	len = 0;
1956	goto inside;
1957
1958	do {
1959		HASH_MIX(x, y, a);
1960		len += sizeof(unsigned long);
1961inside:
1962		a = load_unaligned_zeropad(name+len);
1963	} while (!has_zero(a, &adata, &constants));
1964
1965	adata = prep_zero_mask(a, adata, &constants);
1966	mask = create_zero_mask(adata);
1967	x ^= a & zero_bytemask(mask);
1968
1969	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1970}
1971EXPORT_SYMBOL(hashlen_string);
1972
1973/*
1974 * Calculate the length and hash of the path component, and
1975 * return the "hash_len" as the result.
1976 */
1977static inline u64 hash_name(const void *salt, const char *name)
1978{
1979	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1980	unsigned long adata, bdata, mask, len;
1981	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1982
1983	len = 0;
1984	goto inside;
1985
1986	do {
1987		HASH_MIX(x, y, a);
1988		len += sizeof(unsigned long);
1989inside:
1990		a = load_unaligned_zeropad(name+len);
1991		b = a ^ REPEAT_BYTE('/');
1992	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1993
1994	adata = prep_zero_mask(a, adata, &constants);
1995	bdata = prep_zero_mask(b, bdata, &constants);
1996	mask = create_zero_mask(adata | bdata);
1997	x ^= a & zero_bytemask(mask);
1998
1999	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2000}
2001
2002#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2003
2004/* Return the hash of a string of known length */
2005unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2006{
2007	unsigned long hash = init_name_hash(salt);
2008	while (len--)
2009		hash = partial_name_hash((unsigned char)*name++, hash);
2010	return end_name_hash(hash);
2011}
2012EXPORT_SYMBOL(full_name_hash);
2013
2014/* Return the "hash_len" (hash and length) of a null-terminated string */
2015u64 hashlen_string(const void *salt, const char *name)
2016{
2017	unsigned long hash = init_name_hash(salt);
2018	unsigned long len = 0, c;
2019
2020	c = (unsigned char)*name;
2021	while (c) {
2022		len++;
2023		hash = partial_name_hash(c, hash);
2024		c = (unsigned char)name[len];
2025	}
2026	return hashlen_create(end_name_hash(hash), len);
2027}
2028EXPORT_SYMBOL(hashlen_string);
2029
2030/*
2031 * We know there's a real path component here of at least
2032 * one character.
2033 */
2034static inline u64 hash_name(const void *salt, const char *name)
2035{
2036	unsigned long hash = init_name_hash(salt);
2037	unsigned long len = 0, c;
2038
2039	c = (unsigned char)*name;
2040	do {
2041		len++;
2042		hash = partial_name_hash(c, hash);
2043		c = (unsigned char)name[len];
2044	} while (c && c != '/');
2045	return hashlen_create(end_name_hash(hash), len);
2046}
2047
2048#endif
2049
2050/*
2051 * Name resolution.
2052 * This is the basic name resolution function, turning a pathname into
2053 * the final dentry. We expect 'base' to be positive and a directory.
2054 *
2055 * Returns 0 and nd will have valid dentry and mnt on success.
2056 * Returns error and drops reference to input namei data on failure.
2057 */
2058static int link_path_walk(const char *name, struct nameidata *nd)
2059{
 
2060	int err;
2061
 
 
2062	if (IS_ERR(name))
2063		return PTR_ERR(name);
2064	while (*name=='/')
2065		name++;
2066	if (!*name)
 
2067		return 0;
 
2068
2069	/* At this point we know we have a real path component. */
2070	for(;;) {
 
 
2071		u64 hash_len;
2072		int type;
2073
2074		err = may_lookup(nd);
 
2075		if (err)
2076			return err;
2077
2078		hash_len = hash_name(nd->path.dentry, name);
2079
2080		type = LAST_NORM;
2081		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2082			case 2:
2083				if (name[1] == '.') {
2084					type = LAST_DOTDOT;
2085					nd->flags |= LOOKUP_JUMPED;
2086				}
2087				break;
2088			case 1:
2089				type = LAST_DOT;
2090		}
2091		if (likely(type == LAST_NORM)) {
2092			struct dentry *parent = nd->path.dentry;
2093			nd->flags &= ~LOOKUP_JUMPED;
2094			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2095				struct qstr this = { { .hash_len = hash_len }, .name = name };
2096				err = parent->d_op->d_hash(parent, &this);
2097				if (err < 0)
2098					return err;
2099				hash_len = this.hash_len;
2100				name = this.name;
2101			}
2102		}
2103
2104		nd->last.hash_len = hash_len;
2105		nd->last.name = name;
2106		nd->last_type = type;
2107
2108		name += hashlen_len(hash_len);
2109		if (!*name)
2110			goto OK;
2111		/*
2112		 * If it wasn't NUL, we know it was '/'. Skip that
2113		 * slash, and continue until no more slashes.
2114		 */
2115		do {
2116			name++;
2117		} while (unlikely(*name == '/'));
2118		if (unlikely(!*name)) {
2119OK:
2120			/* pathname body, done */
2121			if (!nd->depth)
2122				return 0;
2123			name = nd->stack[nd->depth - 1].name;
2124			/* trailing symlink, done */
2125			if (!name)
2126				return 0;
 
2127			/* last component of nested symlink */
2128			err = walk_component(nd, WALK_FOLLOW);
 
2129		} else {
2130			/* not the last component */
2131			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2132		}
2133		if (err < 0)
2134			return err;
2135
2136		if (err) {
2137			const char *s = get_link(nd);
2138
2139			if (IS_ERR(s))
2140				return PTR_ERR(s);
2141			err = 0;
2142			if (unlikely(!s)) {
2143				/* jumped */
2144				put_link(nd);
2145			} else {
2146				nd->stack[nd->depth - 1].name = name;
2147				name = s;
2148				continue;
2149			}
2150		}
2151		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2152			if (nd->flags & LOOKUP_RCU) {
2153				if (unlazy_walk(nd))
2154					return -ECHILD;
2155			}
2156			return -ENOTDIR;
2157		}
2158	}
2159}
2160
2161/* must be paired with terminate_walk() */
2162static const char *path_init(struct nameidata *nd, unsigned flags)
2163{
 
2164	const char *s = nd->name->name;
2165
 
 
 
 
2166	if (!*s)
2167		flags &= ~LOOKUP_RCU;
2168	if (flags & LOOKUP_RCU)
2169		rcu_read_lock();
 
 
2170
2171	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2172	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2173	nd->depth = 0;
2174	if (flags & LOOKUP_ROOT) {
 
 
 
 
2175		struct dentry *root = nd->root.dentry;
2176		struct inode *inode = root->d_inode;
2177		if (*s && unlikely(!d_can_lookup(root)))
2178			return ERR_PTR(-ENOTDIR);
2179		nd->path = nd->root;
2180		nd->inode = inode;
2181		if (flags & LOOKUP_RCU) {
2182			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2183			nd->root_seq = nd->seq;
2184			nd->m_seq = read_seqbegin(&mount_lock);
2185		} else {
2186			path_get(&nd->path);
2187		}
2188		return s;
2189	}
2190
2191	nd->root.mnt = NULL;
2192	nd->path.mnt = NULL;
2193	nd->path.dentry = NULL;
2194
2195	nd->m_seq = read_seqbegin(&mount_lock);
2196	if (*s == '/') {
2197		set_root(nd);
2198		if (likely(!nd_jump_root(nd)))
2199			return s;
2200		return ERR_PTR(-ECHILD);
2201	} else if (nd->dfd == AT_FDCWD) {
 
 
 
2202		if (flags & LOOKUP_RCU) {
2203			struct fs_struct *fs = current->fs;
2204			unsigned seq;
2205
2206			do {
2207				seq = read_seqcount_begin(&fs->seq);
2208				nd->path = fs->pwd;
2209				nd->inode = nd->path.dentry->d_inode;
2210				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2211			} while (read_seqcount_retry(&fs->seq, seq));
2212		} else {
2213			get_fs_pwd(current->fs, &nd->path);
2214			nd->inode = nd->path.dentry->d_inode;
2215		}
2216		return s;
2217	} else {
2218		/* Caller must check execute permissions on the starting path component */
2219		struct fd f = fdget_raw(nd->dfd);
2220		struct dentry *dentry;
2221
2222		if (!f.file)
2223			return ERR_PTR(-EBADF);
2224
2225		dentry = f.file->f_path.dentry;
2226
2227		if (*s && unlikely(!d_can_lookup(dentry))) {
2228			fdput(f);
2229			return ERR_PTR(-ENOTDIR);
2230		}
2231
2232		nd->path = f.file->f_path;
2233		if (flags & LOOKUP_RCU) {
2234			nd->inode = nd->path.dentry->d_inode;
2235			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2236		} else {
2237			path_get(&nd->path);
2238			nd->inode = nd->path.dentry->d_inode;
2239		}
2240		fdput(f);
2241		return s;
2242	}
2243}
2244
2245static const char *trailing_symlink(struct nameidata *nd)
2246{
2247	const char *s;
2248	int error = may_follow_link(nd);
2249	if (unlikely(error))
2250		return ERR_PTR(error);
2251	nd->flags |= LOOKUP_PARENT;
2252	nd->stack[0].name = NULL;
2253	s = get_link(nd);
2254	return s ? s : "";
 
2255}
2256
2257static inline int lookup_last(struct nameidata *nd)
2258{
2259	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2260		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2261
2262	nd->flags &= ~LOOKUP_PARENT;
2263	return walk_component(nd, 0);
2264}
2265
2266static int handle_lookup_down(struct nameidata *nd)
2267{
2268	struct path path = nd->path;
2269	struct inode *inode = nd->inode;
2270	unsigned seq = nd->seq;
2271	int err;
2272
2273	if (nd->flags & LOOKUP_RCU) {
2274		/*
2275		 * don't bother with unlazy_walk on failure - we are
2276		 * at the very beginning of walk, so we lose nothing
2277		 * if we simply redo everything in non-RCU mode
2278		 */
2279		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2280			return -ECHILD;
2281	} else {
2282		dget(path.dentry);
2283		err = follow_managed(&path, nd);
2284		if (unlikely(err < 0))
2285			return err;
2286		inode = d_backing_inode(path.dentry);
2287		seq = 0;
2288	}
2289	path_to_nameidata(&path, nd);
2290	nd->inode = inode;
2291	nd->seq = seq;
2292	return 0;
2293}
2294
2295/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2296static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2297{
2298	const char *s = path_init(nd, flags);
2299	int err;
2300
2301	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2302		err = handle_lookup_down(nd);
2303		if (unlikely(err < 0))
2304			s = ERR_PTR(err);
2305	}
2306
2307	while (!(err = link_path_walk(s, nd))
2308		&& ((err = lookup_last(nd)) > 0)) {
2309		s = trailing_symlink(nd);
 
 
 
2310	}
2311	if (!err)
2312		err = complete_walk(nd);
2313
2314	if (!err && nd->flags & LOOKUP_DIRECTORY)
2315		if (!d_can_lookup(nd->path.dentry))
2316			err = -ENOTDIR;
2317	if (!err) {
2318		*path = nd->path;
2319		nd->path.mnt = NULL;
2320		nd->path.dentry = NULL;
2321	}
2322	terminate_walk(nd);
2323	return err;
2324}
2325
2326int filename_lookup(int dfd, struct filename *name, unsigned flags,
2327		    struct path *path, struct path *root)
2328{
2329	int retval;
2330	struct nameidata nd;
2331	if (IS_ERR(name))
2332		return PTR_ERR(name);
2333	if (unlikely(root)) {
2334		nd.root = *root;
2335		flags |= LOOKUP_ROOT;
2336	}
2337	set_nameidata(&nd, dfd, name);
2338	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2339	if (unlikely(retval == -ECHILD))
2340		retval = path_lookupat(&nd, flags, path);
2341	if (unlikely(retval == -ESTALE))
2342		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2343
2344	if (likely(!retval))
2345		audit_inode(name, path->dentry, 0);
 
2346	restore_nameidata();
2347	putname(name);
2348	return retval;
2349}
2350
2351/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2352static int path_parentat(struct nameidata *nd, unsigned flags,
2353				struct path *parent)
2354{
2355	const char *s = path_init(nd, flags);
2356	int err = link_path_walk(s, nd);
2357	if (!err)
2358		err = complete_walk(nd);
2359	if (!err) {
2360		*parent = nd->path;
2361		nd->path.mnt = NULL;
2362		nd->path.dentry = NULL;
2363	}
2364	terminate_walk(nd);
2365	return err;
2366}
2367
2368static struct filename *filename_parentat(int dfd, struct filename *name,
2369				unsigned int flags, struct path *parent,
2370				struct qstr *last, int *type)
 
2371{
2372	int retval;
2373	struct nameidata nd;
2374
2375	if (IS_ERR(name))
2376		return name;
2377	set_nameidata(&nd, dfd, name);
2378	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2379	if (unlikely(retval == -ECHILD))
2380		retval = path_parentat(&nd, flags, parent);
2381	if (unlikely(retval == -ESTALE))
2382		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2383	if (likely(!retval)) {
2384		*last = nd.last;
2385		*type = nd.last_type;
2386		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2387	} else {
2388		putname(name);
2389		name = ERR_PTR(retval);
2390	}
2391	restore_nameidata();
2392	return name;
2393}
2394
2395/* does lookup, returns the object with parent locked */
2396struct dentry *kern_path_locked(const char *name, struct path *path)
2397{
2398	struct filename *filename;
2399	struct dentry *d;
2400	struct qstr last;
2401	int type;
2402
2403	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2404				    &last, &type);
2405	if (IS_ERR(filename))
2406		return ERR_CAST(filename);
2407	if (unlikely(type != LAST_NORM)) {
2408		path_put(path);
2409		putname(filename);
2410		return ERR_PTR(-EINVAL);
2411	}
2412	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2413	d = __lookup_hash(&last, path->dentry, 0);
2414	if (IS_ERR(d)) {
2415		inode_unlock(path->dentry->d_inode);
2416		path_put(path);
2417	}
2418	putname(filename);
2419	return d;
2420}
2421
 
 
 
 
 
 
 
 
 
2422int kern_path(const char *name, unsigned int flags, struct path *path)
2423{
2424	return filename_lookup(AT_FDCWD, getname_kernel(name),
2425			       flags, path, NULL);
 
 
 
 
2426}
2427EXPORT_SYMBOL(kern_path);
2428
2429/**
2430 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2431 * @dentry:  pointer to dentry of the base directory
2432 * @mnt: pointer to vfs mount of the base directory
2433 * @name: pointer to file name
2434 * @flags: lookup flags
2435 * @path: pointer to struct path to fill
2436 */
2437int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2438		    const char *name, unsigned int flags,
2439		    struct path *path)
2440{
 
2441	struct path root = {.mnt = mnt, .dentry = dentry};
 
 
 
2442	/* the first argument of filename_lookup() is ignored with root */
2443	return filename_lookup(AT_FDCWD, getname_kernel(name),
2444			       flags , path, &root);
 
2445}
2446EXPORT_SYMBOL(vfs_path_lookup);
2447
2448static int lookup_one_len_common(const char *name, struct dentry *base,
2449				 int len, struct qstr *this)
 
2450{
2451	this->name = name;
2452	this->len = len;
2453	this->hash = full_name_hash(base, name, len);
2454	if (!len)
2455		return -EACCES;
2456
2457	if (unlikely(name[0] == '.')) {
2458		if (len < 2 || (len == 2 && name[1] == '.'))
2459			return -EACCES;
2460	}
2461
2462	while (len--) {
2463		unsigned int c = *(const unsigned char *)name++;
2464		if (c == '/' || c == '\0')
2465			return -EACCES;
2466	}
2467	/*
2468	 * See if the low-level filesystem might want
2469	 * to use its own hash..
2470	 */
2471	if (base->d_flags & DCACHE_OP_HASH) {
2472		int err = base->d_op->d_hash(base, this);
2473		if (err < 0)
2474			return err;
2475	}
2476
2477	return inode_permission(base->d_inode, MAY_EXEC);
2478}
2479
2480/**
2481 * try_lookup_one_len - filesystem helper to lookup single pathname component
2482 * @name:	pathname component to lookup
2483 * @base:	base directory to lookup from
2484 * @len:	maximum length @len should be interpreted to
2485 *
2486 * Look up a dentry by name in the dcache, returning NULL if it does not
2487 * currently exist.  The function does not try to create a dentry.
2488 *
2489 * Note that this routine is purely a helper for filesystem usage and should
2490 * not be called by generic code.
2491 *
2492 * The caller must hold base->i_mutex.
2493 */
2494struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2495{
2496	struct qstr this;
2497	int err;
2498
2499	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2500
2501	err = lookup_one_len_common(name, base, len, &this);
2502	if (err)
2503		return ERR_PTR(err);
2504
2505	return lookup_dcache(&this, base, 0);
2506}
2507EXPORT_SYMBOL(try_lookup_one_len);
2508
2509/**
2510 * lookup_one_len - filesystem helper to lookup single pathname component
2511 * @name:	pathname component to lookup
2512 * @base:	base directory to lookup from
2513 * @len:	maximum length @len should be interpreted to
2514 *
2515 * Note that this routine is purely a helper for filesystem usage and should
2516 * not be called by generic code.
2517 *
2518 * The caller must hold base->i_mutex.
2519 */
2520struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2521{
2522	struct dentry *dentry;
2523	struct qstr this;
2524	int err;
2525
2526	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2527
2528	err = lookup_one_len_common(name, base, len, &this);
2529	if (err)
2530		return ERR_PTR(err);
2531
2532	dentry = lookup_dcache(&this, base, 0);
2533	return dentry ? dentry : __lookup_slow(&this, base, 0);
2534}
2535EXPORT_SYMBOL(lookup_one_len);
2536
2537/**
2538 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539 * @name:	pathname component to lookup
2540 * @base:	base directory to lookup from
2541 * @len:	maximum length @len should be interpreted to
2542 *
2543 * Note that this routine is purely a helper for filesystem usage and should
2544 * not be called by generic code.
2545 *
2546 * Unlike lookup_one_len, it should be called without the parent
2547 * i_mutex held, and will take the i_mutex itself if necessary.
2548 */
2549struct dentry *lookup_one_len_unlocked(const char *name,
2550				       struct dentry *base, int len)
 
2551{
2552	struct qstr this;
2553	int err;
2554	struct dentry *ret;
2555
2556	err = lookup_one_len_common(name, base, len, &this);
2557	if (err)
2558		return ERR_PTR(err);
2559
2560	ret = lookup_dcache(&this, base, 0);
2561	if (!ret)
2562		ret = lookup_slow(&this, base, 0);
2563	return ret;
2564}
2565EXPORT_SYMBOL(lookup_one_len_unlocked);
2566
2567#ifdef CONFIG_UNIX98_PTYS
2568int path_pts(struct path *path)
2569{
2570	/* Find something mounted on "pts" in the same directory as
2571	 * the input path.
2572	 */
2573	struct dentry *child, *parent;
2574	struct qstr this;
2575	int ret;
2576
2577	ret = path_parent_directory(path);
2578	if (ret)
2579		return ret;
2580
2581	parent = path->dentry;
2582	this.name = "pts";
2583	this.len = 3;
2584	child = d_hash_and_lookup(parent, &this);
2585	if (!child)
2586		return -ENOENT;
2587
2588	path->dentry = child;
2589	dput(parent);
2590	follow_mount(path);
2591	return 0;
2592}
2593#endif
2594
2595int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2596		 struct path *path, int *empty)
2597{
2598	return filename_lookup(dfd, getname_flags(name, flags, empty),
2599			       flags, path, NULL);
2600}
2601EXPORT_SYMBOL(user_path_at_empty);
2602
2603/**
2604 * mountpoint_last - look up last component for umount
2605 * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2606 *
2607 * This is a special lookup_last function just for umount. In this case, we
2608 * need to resolve the path without doing any revalidation.
 
2609 *
2610 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2611 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2612 * in almost all cases, this lookup will be served out of the dcache. The only
2613 * cases where it won't are if nd->last refers to a symlink or the path is
2614 * bogus and it doesn't exist.
2615 *
2616 * Returns:
2617 * -error: if there was an error during lookup. This includes -ENOENT if the
2618 *         lookup found a negative dentry.
2619 *
2620 * 0:      if we successfully resolved nd->last and found it to not to be a
2621 *         symlink that needs to be followed.
2622 *
2623 * 1:      if we successfully resolved nd->last and found it to be a symlink
2624 *         that needs to be followed.
2625 */
2626static int
2627mountpoint_last(struct nameidata *nd)
 
2628{
2629	int error = 0;
2630	struct dentry *dir = nd->path.dentry;
2631	struct path path;
2632
2633	/* If we're in rcuwalk, drop out of it to handle last component */
2634	if (nd->flags & LOOKUP_RCU) {
2635		if (unlazy_walk(nd))
2636			return -ECHILD;
2637	}
2638
2639	nd->flags &= ~LOOKUP_PARENT;
2640
2641	if (unlikely(nd->last_type != LAST_NORM)) {
2642		error = handle_dots(nd, nd->last_type);
2643		if (error)
2644			return error;
2645		path.dentry = dget(nd->path.dentry);
2646	} else {
2647		path.dentry = d_lookup(dir, &nd->last);
2648		if (!path.dentry) {
2649			/*
2650			 * No cached dentry. Mounted dentries are pinned in the
2651			 * cache, so that means that this dentry is probably
2652			 * a symlink or the path doesn't actually point
2653			 * to a mounted dentry.
2654			 */
2655			path.dentry = lookup_slow(&nd->last, dir,
2656					     nd->flags | LOOKUP_NO_REVAL);
2657			if (IS_ERR(path.dentry))
2658				return PTR_ERR(path.dentry);
2659		}
2660	}
2661	if (d_is_negative(path.dentry)) {
2662		dput(path.dentry);
2663		return -ENOENT;
2664	}
2665	path.mnt = nd->path.mnt;
2666	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2667}
 
2668
2669/**
2670 * path_mountpoint - look up a path to be umounted
2671 * @nd:		lookup context
2672 * @flags:	lookup flags
2673 * @path:	pointer to container for result
2674 *
2675 * Look up the given name, but don't attempt to revalidate the last component.
2676 * Returns 0 and "path" will be valid on success; Returns error otherwise.
 
 
 
2677 */
2678static int
2679path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2680{
2681	const char *s = path_init(nd, flags);
2682	int err;
2683
2684	while (!(err = link_path_walk(s, nd)) &&
2685		(err = mountpoint_last(nd)) > 0) {
2686		s = trailing_symlink(nd);
2687	}
2688	if (!err) {
2689		*path = nd->path;
2690		nd->path.mnt = NULL;
2691		nd->path.dentry = NULL;
2692		follow_mount(path);
2693	}
2694	terminate_walk(nd);
2695	return err;
2696}
 
2697
2698static int
2699filename_mountpoint(int dfd, struct filename *name, struct path *path,
2700			unsigned int flags)
 
 
 
 
 
 
 
2701{
2702	struct nameidata nd;
2703	int error;
2704	if (IS_ERR(name))
2705		return PTR_ERR(name);
2706	set_nameidata(&nd, dfd, name);
2707	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2708	if (unlikely(error == -ECHILD))
2709		error = path_mountpoint(&nd, flags, path);
2710	if (unlikely(error == -ESTALE))
2711		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2712	if (likely(!error))
2713		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2714	restore_nameidata();
2715	putname(name);
2716	return error;
2717}
 
2718
2719/**
2720 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2721 * @dfd:	directory file descriptor
2722 * @name:	pathname from userland
2723 * @flags:	lookup flags
2724 * @path:	pointer to container to hold result
2725 *
2726 * A umount is a special case for path walking. We're not actually interested
2727 * in the inode in this situation, and ESTALE errors can be a problem. We
2728 * simply want track down the dentry and vfsmount attached at the mountpoint
2729 * and avoid revalidating the last component.
2730 *
2731 * Returns 0 and populates "path" on success.
2732 */
2733int
2734user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2735			struct path *path)
2736{
2737	return filename_mountpoint(dfd, getname(name), path, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2738}
 
2739
2740int
2741kern_path_mountpoint(int dfd, const char *name, struct path *path,
2742			unsigned int flags)
2743{
2744	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
 
 
 
 
2745}
2746EXPORT_SYMBOL(kern_path_mountpoint);
2747
2748int __check_sticky(struct inode *dir, struct inode *inode)
 
2749{
2750	kuid_t fsuid = current_fsuid();
2751
2752	if (uid_eq(inode->i_uid, fsuid))
2753		return 0;
2754	if (uid_eq(dir->i_uid, fsuid))
2755		return 0;
2756	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2757}
2758EXPORT_SYMBOL(__check_sticky);
2759
2760/*
2761 *	Check whether we can remove a link victim from directory dir, check
2762 *  whether the type of victim is right.
2763 *  1. We can't do it if dir is read-only (done in permission())
2764 *  2. We should have write and exec permissions on dir
2765 *  3. We can't remove anything from append-only dir
2766 *  4. We can't do anything with immutable dir (done in permission())
2767 *  5. If the sticky bit on dir is set we should either
2768 *	a. be owner of dir, or
2769 *	b. be owner of victim, or
2770 *	c. have CAP_FOWNER capability
2771 *  6. If the victim is append-only or immutable we can't do antyhing with
2772 *     links pointing to it.
2773 *  7. If the victim has an unknown uid or gid we can't change the inode.
2774 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2775 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2776 * 10. We can't remove a root or mountpoint.
2777 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2778 *     nfs_async_unlink().
2779 */
2780static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
 
2781{
2782	struct inode *inode = d_backing_inode(victim);
2783	int error;
2784
2785	if (d_is_negative(victim))
2786		return -ENOENT;
2787	BUG_ON(!inode);
2788
2789	BUG_ON(victim->d_parent->d_inode != dir);
2790
2791	/* Inode writeback is not safe when the uid or gid are invalid. */
2792	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
 
2793		return -EOVERFLOW;
2794
2795	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2796
2797	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2798	if (error)
2799		return error;
2800	if (IS_APPEND(dir))
2801		return -EPERM;
2802
2803	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2804	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
 
2805		return -EPERM;
2806	if (isdir) {
2807		if (!d_is_dir(victim))
2808			return -ENOTDIR;
2809		if (IS_ROOT(victim))
2810			return -EBUSY;
2811	} else if (d_is_dir(victim))
2812		return -EISDIR;
2813	if (IS_DEADDIR(dir))
2814		return -ENOENT;
2815	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2816		return -EBUSY;
2817	return 0;
2818}
2819
2820/*	Check whether we can create an object with dentry child in directory
2821 *  dir.
2822 *  1. We can't do it if child already exists (open has special treatment for
2823 *     this case, but since we are inlined it's OK)
2824 *  2. We can't do it if dir is read-only (done in permission())
2825 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2826 *  4. We should have write and exec permissions on dir
2827 *  5. We can't do it if dir is immutable (done in permission())
2828 */
2829static inline int may_create(struct inode *dir, struct dentry *child)
 
2830{
2831	struct user_namespace *s_user_ns;
2832	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2833	if (child->d_inode)
2834		return -EEXIST;
2835	if (IS_DEADDIR(dir))
2836		return -ENOENT;
2837	s_user_ns = dir->i_sb->s_user_ns;
2838	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2839	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2840		return -EOVERFLOW;
2841	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
 
2842}
2843
2844/*
2845 * p1 and p2 should be directories on the same fs.
2846 */
2847struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2848{
2849	struct dentry *p;
2850
2851	if (p1 == p2) {
2852		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2853		return NULL;
2854	}
2855
2856	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2857
2858	p = d_ancestor(p2, p1);
2859	if (p) {
2860		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2861		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2862		return p;
2863	}
2864
2865	p = d_ancestor(p1, p2);
2866	if (p) {
2867		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2868		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2869		return p;
2870	}
2871
2872	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2873	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2874	return NULL;
2875}
2876EXPORT_SYMBOL(lock_rename);
2877
2878void unlock_rename(struct dentry *p1, struct dentry *p2)
2879{
2880	inode_unlock(p1->d_inode);
2881	if (p1 != p2) {
2882		inode_unlock(p2->d_inode);
2883		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2884	}
2885}
2886EXPORT_SYMBOL(unlock_rename);
2887
2888int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2889		bool want_excl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2890{
2891	int error = may_create(dir, dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2892	if (error)
2893		return error;
2894
2895	if (!dir->i_op->create)
2896		return -EACCES;	/* shouldn't it be ENOSYS? */
2897	mode &= S_IALLUGO;
2898	mode |= S_IFREG;
2899	error = security_inode_create(dir, dentry, mode);
2900	if (error)
2901		return error;
2902	error = dir->i_op->create(dir, dentry, mode, want_excl);
2903	if (!error)
2904		fsnotify_create(dir, dentry);
2905	return error;
2906}
2907EXPORT_SYMBOL(vfs_create);
2908
2909int vfs_mkobj(struct dentry *dentry, umode_t mode,
2910		int (*f)(struct dentry *, umode_t, void *),
2911		void *arg)
2912{
2913	struct inode *dir = dentry->d_parent->d_inode;
2914	int error = may_create(dir, dentry);
2915	if (error)
2916		return error;
2917
2918	mode &= S_IALLUGO;
2919	mode |= S_IFREG;
2920	error = security_inode_create(dir, dentry, mode);
2921	if (error)
2922		return error;
2923	error = f(dentry, mode, arg);
2924	if (!error)
2925		fsnotify_create(dir, dentry);
2926	return error;
2927}
2928EXPORT_SYMBOL(vfs_mkobj);
2929
2930bool may_open_dev(const struct path *path)
2931{
2932	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2933		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2934}
2935
2936static int may_open(const struct path *path, int acc_mode, int flag)
 
2937{
2938	struct dentry *dentry = path->dentry;
2939	struct inode *inode = dentry->d_inode;
2940	int error;
2941
2942	if (!inode)
2943		return -ENOENT;
2944
2945	switch (inode->i_mode & S_IFMT) {
2946	case S_IFLNK:
2947		return -ELOOP;
2948	case S_IFDIR:
2949		if (acc_mode & MAY_WRITE)
2950			return -EISDIR;
 
 
2951		break;
2952	case S_IFBLK:
2953	case S_IFCHR:
2954		if (!may_open_dev(path))
2955			return -EACCES;
2956		/*FALLTHRU*/
2957	case S_IFIFO:
2958	case S_IFSOCK:
 
 
2959		flag &= ~O_TRUNC;
2960		break;
 
 
 
 
2961	}
2962
2963	error = inode_permission(inode, MAY_OPEN | acc_mode);
2964	if (error)
2965		return error;
2966
2967	/*
2968	 * An append-only file must be opened in append mode for writing.
2969	 */
2970	if (IS_APPEND(inode)) {
2971		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2972			return -EPERM;
2973		if (flag & O_TRUNC)
2974			return -EPERM;
2975	}
2976
2977	/* O_NOATIME can only be set by the owner or superuser */
2978	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2979		return -EPERM;
2980
2981	return 0;
2982}
2983
2984static int handle_truncate(struct file *filp)
2985{
2986	const struct path *path = &filp->f_path;
2987	struct inode *inode = path->dentry->d_inode;
2988	int error = get_write_access(inode);
2989	if (error)
2990		return error;
2991	/*
2992	 * Refuse to truncate files with mandatory locks held on them.
2993	 */
2994	error = locks_verify_locked(filp);
2995	if (!error)
2996		error = security_path_truncate(path);
2997	if (!error) {
2998		error = do_truncate(path->dentry, 0,
2999				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3000				    filp);
3001	}
3002	put_write_access(inode);
3003	return error;
3004}
3005
3006static inline int open_to_namei_flags(int flag)
3007{
3008	if ((flag & O_ACCMODE) == 3)
3009		flag--;
3010	return flag;
3011}
3012
3013static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
 
 
3014{
3015	struct user_namespace *s_user_ns;
3016	int error = security_path_mknod(dir, dentry, mode, 0);
3017	if (error)
3018		return error;
3019
3020	s_user_ns = dir->dentry->d_sb->s_user_ns;
3021	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3022	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3023		return -EOVERFLOW;
3024
3025	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
 
3026	if (error)
3027		return error;
3028
3029	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3030}
3031
3032/*
3033 * Attempt to atomically look up, create and open a file from a negative
3034 * dentry.
3035 *
3036 * Returns 0 if successful.  The file will have been created and attached to
3037 * @file by the filesystem calling finish_open().
3038 *
3039 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3040 * be set.  The caller will need to perform the open themselves.  @path will
3041 * have been updated to point to the new dentry.  This may be negative.
3042 *
3043 * Returns an error code otherwise.
3044 */
3045static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3046			struct path *path, struct file *file,
3047			const struct open_flags *op,
3048			int open_flag, umode_t mode)
3049{
3050	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3051	struct inode *dir =  nd->path.dentry->d_inode;
3052	int error;
3053
3054	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3055		open_flag &= ~O_TRUNC;
3056
3057	if (nd->flags & LOOKUP_DIRECTORY)
3058		open_flag |= O_DIRECTORY;
3059
3060	file->f_path.dentry = DENTRY_NOT_SET;
3061	file->f_path.mnt = nd->path.mnt;
3062	error = dir->i_op->atomic_open(dir, dentry, file,
3063				       open_to_namei_flags(open_flag), mode);
3064	d_lookup_done(dentry);
3065	if (!error) {
3066		if (file->f_mode & FMODE_OPENED) {
3067			/*
3068			 * We didn't have the inode before the open, so check open
3069			 * permission here.
3070			 */
3071			int acc_mode = op->acc_mode;
3072			if (file->f_mode & FMODE_CREATED) {
3073				WARN_ON(!(open_flag & O_CREAT));
3074				fsnotify_create(dir, dentry);
3075				acc_mode = 0;
3076			}
3077			error = may_open(&file->f_path, acc_mode, open_flag);
3078			if (WARN_ON(error > 0))
3079				error = -EINVAL;
3080		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3081			error = -EIO;
3082		} else {
3083			if (file->f_path.dentry) {
3084				dput(dentry);
3085				dentry = file->f_path.dentry;
3086			}
3087			if (file->f_mode & FMODE_CREATED)
3088				fsnotify_create(dir, dentry);
3089			if (unlikely(d_is_negative(dentry))) {
3090				error = -ENOENT;
3091			} else {
3092				path->dentry = dentry;
3093				path->mnt = nd->path.mnt;
3094				return 0;
3095			}
3096		}
3097	}
3098	dput(dentry);
3099	return error;
 
 
 
3100}
3101
3102/*
3103 * Look up and maybe create and open the last component.
3104 *
3105 * Must be called with parent locked (exclusive in O_CREAT case).
3106 *
3107 * Returns 0 on success, that is, if
3108 *  the file was successfully atomically created (if necessary) and opened, or
3109 *  the file was not completely opened at this time, though lookups and
3110 *  creations were performed.
3111 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3112 * In the latter case dentry returned in @path might be negative if O_CREAT
3113 * hadn't been specified.
3114 *
3115 * An error code is returned on failure.
3116 */
3117static int lookup_open(struct nameidata *nd, struct path *path,
3118			struct file *file,
3119			const struct open_flags *op,
3120			bool got_write)
3121{
 
3122	struct dentry *dir = nd->path.dentry;
3123	struct inode *dir_inode = dir->d_inode;
3124	int open_flag = op->open_flag;
3125	struct dentry *dentry;
3126	int error, create_error = 0;
3127	umode_t mode = op->mode;
3128	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3129
3130	if (unlikely(IS_DEADDIR(dir_inode)))
3131		return -ENOENT;
3132
3133	file->f_mode &= ~FMODE_CREATED;
3134	dentry = d_lookup(dir, &nd->last);
3135	for (;;) {
3136		if (!dentry) {
3137			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3138			if (IS_ERR(dentry))
3139				return PTR_ERR(dentry);
3140		}
3141		if (d_in_lookup(dentry))
3142			break;
3143
3144		error = d_revalidate(dentry, nd->flags);
3145		if (likely(error > 0))
3146			break;
3147		if (error)
3148			goto out_dput;
3149		d_invalidate(dentry);
3150		dput(dentry);
3151		dentry = NULL;
3152	}
3153	if (dentry->d_inode) {
3154		/* Cached positive dentry: will open in f_op->open */
3155		goto out_no_open;
3156	}
3157
3158	/*
3159	 * Checking write permission is tricky, bacuse we don't know if we are
3160	 * going to actually need it: O_CREAT opens should work as long as the
3161	 * file exists.  But checking existence breaks atomicity.  The trick is
3162	 * to check access and if not granted clear O_CREAT from the flags.
3163	 *
3164	 * Another problem is returing the "right" error value (e.g. for an
3165	 * O_EXCL open we want to return EEXIST not EROFS).
3166	 */
 
 
 
3167	if (open_flag & O_CREAT) {
3168		if (!IS_POSIXACL(dir->d_inode))
3169			mode &= ~current_umask();
3170		if (unlikely(!got_write)) {
 
 
 
 
3171			create_error = -EROFS;
3172			open_flag &= ~O_CREAT;
3173			if (open_flag & (O_EXCL | O_TRUNC))
3174				goto no_open;
3175			/* No side effects, safe to clear O_CREAT */
3176		} else {
3177			create_error = may_o_create(&nd->path, dentry, mode);
3178			if (create_error) {
3179				open_flag &= ~O_CREAT;
3180				if (open_flag & O_EXCL)
3181					goto no_open;
3182			}
3183		}
3184	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3185		   unlikely(!got_write)) {
3186		/*
3187		 * No O_CREATE -> atomicity not a requirement -> fall
3188		 * back to lookup + open
3189		 */
3190		goto no_open;
3191	}
3192
 
3193	if (dir_inode->i_op->atomic_open) {
3194		error = atomic_open(nd, dentry, path, file, op, open_flag,
3195				    mode);
3196		if (unlikely(error == -ENOENT) && create_error)
3197			error = create_error;
3198		return error;
3199	}
3200
3201no_open:
3202	if (d_in_lookup(dentry)) {
3203		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3204							     nd->flags);
3205		d_lookup_done(dentry);
3206		if (unlikely(res)) {
3207			if (IS_ERR(res)) {
3208				error = PTR_ERR(res);
3209				goto out_dput;
3210			}
3211			dput(dentry);
3212			dentry = res;
3213		}
3214	}
3215
3216	/* Negative dentry, just create the file */
3217	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3218		file->f_mode |= FMODE_CREATED;
3219		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3220		if (!dir_inode->i_op->create) {
3221			error = -EACCES;
3222			goto out_dput;
3223		}
3224		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3225						open_flag & O_EXCL);
 
3226		if (error)
3227			goto out_dput;
3228		fsnotify_create(dir_inode, dentry);
3229	}
3230	if (unlikely(create_error) && !dentry->d_inode) {
3231		error = create_error;
3232		goto out_dput;
3233	}
3234out_no_open:
3235	path->dentry = dentry;
3236	path->mnt = nd->path.mnt;
3237	return 0;
3238
3239out_dput:
3240	dput(dentry);
3241	return error;
3242}
3243
3244/*
3245 * Handle the last step of open()
3246 */
3247static int do_last(struct nameidata *nd,
3248		   struct file *file, const struct open_flags *op)
3249{
3250	struct dentry *dir = nd->path.dentry;
3251	int open_flag = op->open_flag;
3252	bool will_truncate = (open_flag & O_TRUNC) != 0;
3253	bool got_write = false;
3254	int acc_mode = op->acc_mode;
3255	unsigned seq;
3256	struct inode *inode;
3257	struct path path;
3258	int error;
3259
3260	nd->flags &= ~LOOKUP_PARENT;
3261	nd->flags |= op->intent;
3262
3263	if (nd->last_type != LAST_NORM) {
3264		error = handle_dots(nd, nd->last_type);
3265		if (unlikely(error))
3266			return error;
3267		goto finish_open;
3268	}
3269
3270	if (!(open_flag & O_CREAT)) {
3271		if (nd->last.name[nd->last.len])
3272			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3273		/* we _can_ be in RCU mode here */
3274		error = lookup_fast(nd, &path, &inode, &seq);
3275		if (likely(error > 0))
 
 
3276			goto finish_lookup;
3277
3278		if (error < 0)
3279			return error;
3280
3281		BUG_ON(nd->inode != dir->d_inode);
3282		BUG_ON(nd->flags & LOOKUP_RCU);
3283	} else {
3284		/* create side of things */
3285		/*
3286		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3287		 * has been cleared when we got to the last component we are
3288		 * about to look up
3289		 */
3290		error = complete_walk(nd);
3291		if (error)
3292			return error;
3293
3294		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3295		/* trailing slashes? */
3296		if (unlikely(nd->last.name[nd->last.len]))
3297			return -EISDIR;
3298	}
3299
3300	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3301		error = mnt_want_write(nd->path.mnt);
3302		if (!error)
3303			got_write = true;
3304		/*
3305		 * do _not_ fail yet - we might not need that or fail with
3306		 * a different error; let lookup_open() decide; we'll be
3307		 * dropping this one anyway.
3308		 */
3309	}
3310	if (open_flag & O_CREAT)
3311		inode_lock(dir->d_inode);
3312	else
3313		inode_lock_shared(dir->d_inode);
3314	error = lookup_open(nd, &path, file, op, got_write);
 
 
3315	if (open_flag & O_CREAT)
3316		inode_unlock(dir->d_inode);
3317	else
3318		inode_unlock_shared(dir->d_inode);
3319
3320	if (error)
3321		goto out;
3322
3323	if (file->f_mode & FMODE_OPENED) {
3324		if ((file->f_mode & FMODE_CREATED) ||
3325		    !S_ISREG(file_inode(file)->i_mode))
3326			will_truncate = false;
3327
3328		audit_inode(nd->name, file->f_path.dentry, 0);
3329		goto opened;
3330	}
3331
3332	if (file->f_mode & FMODE_CREATED) {
3333		/* Don't check for write permission, don't truncate */
3334		open_flag &= ~O_TRUNC;
3335		will_truncate = false;
3336		acc_mode = 0;
3337		path_to_nameidata(&path, nd);
3338		goto finish_open_created;
3339	}
3340
3341	/*
3342	 * If atomic_open() acquired write access it is dropped now due to
3343	 * possible mount and symlink following (this might be optimized away if
3344	 * necessary...)
3345	 */
3346	if (got_write) {
3347		mnt_drop_write(nd->path.mnt);
3348		got_write = false;
3349	}
3350
3351	error = follow_managed(&path, nd);
3352	if (unlikely(error < 0))
3353		return error;
3354
3355	if (unlikely(d_is_negative(path.dentry))) {
3356		path_to_nameidata(&path, nd);
3357		return -ENOENT;
 
3358	}
3359
3360	/*
3361	 * create/update audit record if it already exists.
3362	 */
3363	audit_inode(nd->name, path.dentry, 0);
 
 
 
 
3364
3365	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3366		path_to_nameidata(&path, nd);
3367		return -EEXIST;
3368	}
 
 
 
 
 
 
 
3369
3370	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3371	inode = d_backing_inode(path.dentry);
3372finish_lookup:
3373	error = step_into(nd, &path, 0, inode, seq);
3374	if (unlikely(error))
3375		return error;
3376finish_open:
3377	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3378	error = complete_walk(nd);
3379	if (error)
3380		return error;
3381	audit_inode(nd->name, nd->path.dentry, 0);
3382	if (open_flag & O_CREAT) {
3383		error = -EISDIR;
 
3384		if (d_is_dir(nd->path.dentry))
3385			goto out;
3386		error = may_create_in_sticky(dir,
3387					     d_backing_inode(nd->path.dentry));
3388		if (unlikely(error))
3389			goto out;
3390	}
3391	error = -ENOTDIR;
3392	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3393		goto out;
3394	if (!d_is_reg(nd->path.dentry))
3395		will_truncate = false;
3396
3397	if (will_truncate) {
 
 
 
 
 
 
3398		error = mnt_want_write(nd->path.mnt);
3399		if (error)
3400			goto out;
3401		got_write = true;
3402	}
3403finish_open_created:
3404	error = may_open(&nd->path, acc_mode, open_flag);
3405	if (error)
3406		goto out;
3407	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3408	error = vfs_open(&nd->path, file);
3409	if (error)
3410		goto out;
3411opened:
3412	error = ima_file_check(file, op->acc_mode);
3413	if (!error && will_truncate)
3414		error = handle_truncate(file);
3415out:
3416	if (unlikely(error > 0)) {
3417		WARN_ON(1);
3418		error = -EINVAL;
3419	}
3420	if (got_write)
3421		mnt_drop_write(nd->path.mnt);
3422	return error;
3423}
3424
3425struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3426{
3427	struct dentry *child = NULL;
3428	struct inode *dir = dentry->d_inode;
3429	struct inode *inode;
3430	int error;
 
3431
3432	/* we want directory to be writable */
3433	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3434	if (error)
3435		goto out_err;
3436	error = -EOPNOTSUPP;
3437	if (!dir->i_op->tmpfile)
3438		goto out_err;
3439	error = -ENOMEM;
3440	child = d_alloc(dentry, &slash_name);
3441	if (unlikely(!child))
3442		goto out_err;
3443	error = dir->i_op->tmpfile(dir, child, mode);
 
 
 
 
3444	if (error)
3445		goto out_err;
3446	error = -ENOENT;
3447	inode = child->d_inode;
3448	if (unlikely(!inode))
3449		goto out_err;
 
3450	if (!(open_flag & O_EXCL)) {
3451		spin_lock(&inode->i_lock);
3452		inode->i_state |= I_LINKABLE;
3453		spin_unlock(&inode->i_lock);
3454	}
3455	ima_post_create_tmpfile(inode);
3456	return child;
 
3457
3458out_err:
3459	dput(child);
3460	return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3461}
3462EXPORT_SYMBOL(vfs_tmpfile);
3463
3464static int do_tmpfile(struct nameidata *nd, unsigned flags,
3465		const struct open_flags *op,
3466		struct file *file)
3467{
3468	struct dentry *child;
3469	struct path path;
3470	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
 
3471	if (unlikely(error))
3472		return error;
3473	error = mnt_want_write(path.mnt);
3474	if (unlikely(error))
3475		goto out;
3476	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3477	error = PTR_ERR(child);
3478	if (IS_ERR(child))
3479		goto out2;
3480	dput(path.dentry);
3481	path.dentry = child;
3482	audit_inode(nd->name, child, 0);
3483	/* Don't check for other permissions, the inode was just created */
3484	error = may_open(&path, 0, op->open_flag);
3485	if (error)
3486		goto out2;
3487	file->f_path.mnt = path.mnt;
3488	error = finish_open(file, child, NULL);
3489out2:
3490	mnt_drop_write(path.mnt);
3491out:
3492	path_put(&path);
3493	return error;
3494}
3495
3496static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3497{
3498	struct path path;
3499	int error = path_lookupat(nd, flags, &path);
3500	if (!error) {
3501		audit_inode(nd->name, path.dentry, 0);
3502		error = vfs_open(&path, file);
3503		path_put(&path);
3504	}
3505	return error;
3506}
3507
3508static struct file *path_openat(struct nameidata *nd,
3509			const struct open_flags *op, unsigned flags)
3510{
3511	struct file *file;
3512	int error;
3513
3514	file = alloc_empty_file(op->open_flag, current_cred());
3515	if (IS_ERR(file))
3516		return file;
3517
3518	if (unlikely(file->f_flags & __O_TMPFILE)) {
3519		error = do_tmpfile(nd, flags, op, file);
3520	} else if (unlikely(file->f_flags & O_PATH)) {
3521		error = do_o_path(nd, flags, file);
3522	} else {
3523		const char *s = path_init(nd, flags);
3524		while (!(error = link_path_walk(s, nd)) &&
3525			(error = do_last(nd, file, op)) > 0) {
3526			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3527			s = trailing_symlink(nd);
3528		}
3529		terminate_walk(nd);
3530	}
3531	if (likely(!error)) {
3532		if (likely(file->f_mode & FMODE_OPENED))
3533			return file;
3534		WARN_ON(1);
3535		error = -EINVAL;
3536	}
3537	fput(file);
3538	if (error == -EOPENSTALE) {
3539		if (flags & LOOKUP_RCU)
3540			error = -ECHILD;
3541		else
3542			error = -ESTALE;
3543	}
3544	return ERR_PTR(error);
3545}
3546
3547struct file *do_filp_open(int dfd, struct filename *pathname,
3548		const struct open_flags *op)
3549{
3550	struct nameidata nd;
3551	int flags = op->lookup_flags;
3552	struct file *filp;
3553
3554	set_nameidata(&nd, dfd, pathname);
3555	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3556	if (unlikely(filp == ERR_PTR(-ECHILD)))
3557		filp = path_openat(&nd, op, flags);
3558	if (unlikely(filp == ERR_PTR(-ESTALE)))
3559		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3560	restore_nameidata();
3561	return filp;
3562}
3563
3564struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3565		const char *name, const struct open_flags *op)
3566{
3567	struct nameidata nd;
3568	struct file *file;
3569	struct filename *filename;
3570	int flags = op->lookup_flags | LOOKUP_ROOT;
3571
3572	nd.root.mnt = mnt;
3573	nd.root.dentry = dentry;
3574
3575	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3576		return ERR_PTR(-ELOOP);
3577
3578	filename = getname_kernel(name);
3579	if (IS_ERR(filename))
3580		return ERR_CAST(filename);
3581
3582	set_nameidata(&nd, -1, filename);
3583	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3584	if (unlikely(file == ERR_PTR(-ECHILD)))
3585		file = path_openat(&nd, op, flags);
3586	if (unlikely(file == ERR_PTR(-ESTALE)))
3587		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3588	restore_nameidata();
3589	putname(filename);
3590	return file;
3591}
3592
3593static struct dentry *filename_create(int dfd, struct filename *name,
3594				struct path *path, unsigned int lookup_flags)
3595{
3596	struct dentry *dentry = ERR_PTR(-EEXIST);
3597	struct qstr last;
 
 
 
3598	int type;
3599	int err2;
3600	int error;
3601	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3602
3603	/*
3604	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3605	 * other flags passed in are ignored!
3606	 */
3607	lookup_flags &= LOOKUP_REVAL;
3608
3609	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3610	if (IS_ERR(name))
3611		return ERR_CAST(name);
3612
3613	/*
3614	 * Yucky last component or no last component at all?
3615	 * (foo/., foo/.., /////)
3616	 */
3617	if (unlikely(type != LAST_NORM))
3618		goto out;
3619
3620	/* don't fail immediately if it's r/o, at least try to report other errors */
3621	err2 = mnt_want_write(path->mnt);
3622	/*
3623	 * Do the final lookup.
 
3624	 */
3625	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
 
3626	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3627	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3628	if (IS_ERR(dentry))
3629		goto unlock;
3630
3631	error = -EEXIST;
3632	if (d_is_positive(dentry))
3633		goto fail;
3634
3635	/*
3636	 * Special case - lookup gave negative, but... we had foo/bar/
3637	 * From the vfs_mknod() POV we just have a negative dentry -
3638	 * all is fine. Let's be bastards - you had / on the end, you've
3639	 * been asking for (non-existent) directory. -ENOENT for you.
3640	 */
3641	if (unlikely(!is_dir && last.name[last.len])) {
3642		error = -ENOENT;
3643		goto fail;
3644	}
3645	if (unlikely(err2)) {
3646		error = err2;
3647		goto fail;
3648	}
3649	putname(name);
3650	return dentry;
3651fail:
3652	dput(dentry);
3653	dentry = ERR_PTR(error);
3654unlock:
3655	inode_unlock(path->dentry->d_inode);
3656	if (!err2)
3657		mnt_drop_write(path->mnt);
3658out:
3659	path_put(path);
3660	putname(name);
3661	return dentry;
3662}
3663
3664struct dentry *kern_path_create(int dfd, const char *pathname,
3665				struct path *path, unsigned int lookup_flags)
3666{
3667	return filename_create(dfd, getname_kernel(pathname),
3668				path, lookup_flags);
 
 
 
3669}
3670EXPORT_SYMBOL(kern_path_create);
3671
3672void done_path_create(struct path *path, struct dentry *dentry)
3673{
3674	dput(dentry);
3675	inode_unlock(path->dentry->d_inode);
3676	mnt_drop_write(path->mnt);
3677	path_put(path);
3678}
3679EXPORT_SYMBOL(done_path_create);
3680
3681inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3682				struct path *path, unsigned int lookup_flags)
3683{
3684	return filename_create(dfd, getname(pathname), path, lookup_flags);
 
 
 
 
3685}
3686EXPORT_SYMBOL(user_path_create);
3687
3688int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3689{
3690	int error = may_create(dir, dentry);
 
3691
3692	if (error)
3693		return error;
3694
3695	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
 
3696		return -EPERM;
3697
3698	if (!dir->i_op->mknod)
3699		return -EPERM;
3700
 
3701	error = devcgroup_inode_mknod(mode, dev);
3702	if (error)
3703		return error;
3704
3705	error = security_inode_mknod(dir, dentry, mode, dev);
3706	if (error)
3707		return error;
3708
3709	error = dir->i_op->mknod(dir, dentry, mode, dev);
3710	if (!error)
3711		fsnotify_create(dir, dentry);
3712	return error;
3713}
3714EXPORT_SYMBOL(vfs_mknod);
3715
3716static int may_mknod(umode_t mode)
3717{
3718	switch (mode & S_IFMT) {
3719	case S_IFREG:
3720	case S_IFCHR:
3721	case S_IFBLK:
3722	case S_IFIFO:
3723	case S_IFSOCK:
3724	case 0: /* zero mode translates to S_IFREG */
3725		return 0;
3726	case S_IFDIR:
3727		return -EPERM;
3728	default:
3729		return -EINVAL;
3730	}
3731}
3732
3733long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3734		unsigned int dev)
3735{
 
3736	struct dentry *dentry;
3737	struct path path;
3738	int error;
3739	unsigned int lookup_flags = 0;
3740
3741	error = may_mknod(mode);
3742	if (error)
3743		return error;
3744retry:
3745	dentry = user_path_create(dfd, filename, &path, lookup_flags);
 
3746	if (IS_ERR(dentry))
3747		return PTR_ERR(dentry);
3748
3749	if (!IS_POSIXACL(path.dentry->d_inode))
3750		mode &= ~current_umask();
3751	error = security_path_mknod(&path, dentry, mode, dev);
3752	if (error)
3753		goto out;
 
 
3754	switch (mode & S_IFMT) {
3755		case 0: case S_IFREG:
3756			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
 
3757			if (!error)
3758				ima_post_path_mknod(dentry);
3759			break;
3760		case S_IFCHR: case S_IFBLK:
3761			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3762					new_decode_dev(dev));
3763			break;
3764		case S_IFIFO: case S_IFSOCK:
3765			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
 
3766			break;
3767	}
3768out:
3769	done_path_create(&path, dentry);
3770	if (retry_estale(error, lookup_flags)) {
3771		lookup_flags |= LOOKUP_REVAL;
3772		goto retry;
3773	}
 
 
3774	return error;
3775}
3776
3777SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3778		unsigned int, dev)
3779{
3780	return do_mknodat(dfd, filename, mode, dev);
3781}
3782
3783SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3784{
3785	return do_mknodat(AT_FDCWD, filename, mode, dev);
3786}
3787
3788int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3789{
3790	int error = may_create(dir, dentry);
3791	unsigned max_links = dir->i_sb->s_max_links;
3792
3793	if (error)
3794		return error;
3795
3796	if (!dir->i_op->mkdir)
3797		return -EPERM;
3798
3799	mode &= (S_IRWXUGO|S_ISVTX);
3800	error = security_inode_mkdir(dir, dentry, mode);
3801	if (error)
3802		return error;
3803
3804	if (max_links && dir->i_nlink >= max_links)
3805		return -EMLINK;
3806
3807	error = dir->i_op->mkdir(dir, dentry, mode);
3808	if (!error)
3809		fsnotify_mkdir(dir, dentry);
3810	return error;
3811}
3812EXPORT_SYMBOL(vfs_mkdir);
3813
3814long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3815{
3816	struct dentry *dentry;
3817	struct path path;
3818	int error;
3819	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3820
3821retry:
3822	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
 
3823	if (IS_ERR(dentry))
3824		return PTR_ERR(dentry);
3825
3826	if (!IS_POSIXACL(path.dentry->d_inode))
3827		mode &= ~current_umask();
3828	error = security_path_mkdir(&path, dentry, mode);
3829	if (!error)
3830		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
 
 
 
3831	done_path_create(&path, dentry);
3832	if (retry_estale(error, lookup_flags)) {
3833		lookup_flags |= LOOKUP_REVAL;
3834		goto retry;
3835	}
 
 
3836	return error;
3837}
3838
3839SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3840{
3841	return do_mkdirat(dfd, pathname, mode);
3842}
3843
3844SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3845{
3846	return do_mkdirat(AT_FDCWD, pathname, mode);
3847}
3848
3849int vfs_rmdir(struct inode *dir, struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3850{
3851	int error = may_delete(dir, dentry, 1);
3852
3853	if (error)
3854		return error;
3855
3856	if (!dir->i_op->rmdir)
3857		return -EPERM;
3858
3859	dget(dentry);
3860	inode_lock(dentry->d_inode);
3861
3862	error = -EBUSY;
3863	if (is_local_mountpoint(dentry))
 
3864		goto out;
3865
3866	error = security_inode_rmdir(dir, dentry);
3867	if (error)
3868		goto out;
3869
3870	error = dir->i_op->rmdir(dir, dentry);
3871	if (error)
3872		goto out;
3873
3874	shrink_dcache_parent(dentry);
3875	dentry->d_inode->i_flags |= S_DEAD;
3876	dont_mount(dentry);
3877	detach_mounts(dentry);
3878	fsnotify_rmdir(dir, dentry);
3879
3880out:
3881	inode_unlock(dentry->d_inode);
3882	dput(dentry);
3883	if (!error)
3884		d_delete(dentry);
3885	return error;
3886}
3887EXPORT_SYMBOL(vfs_rmdir);
3888
3889long do_rmdir(int dfd, const char __user *pathname)
3890{
3891	int error = 0;
3892	struct filename *name;
3893	struct dentry *dentry;
3894	struct path path;
3895	struct qstr last;
3896	int type;
3897	unsigned int lookup_flags = 0;
3898retry:
3899	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3900				&path, &last, &type);
3901	if (IS_ERR(name))
3902		return PTR_ERR(name);
3903
3904	switch (type) {
3905	case LAST_DOTDOT:
3906		error = -ENOTEMPTY;
3907		goto exit1;
3908	case LAST_DOT:
3909		error = -EINVAL;
3910		goto exit1;
3911	case LAST_ROOT:
3912		error = -EBUSY;
3913		goto exit1;
3914	}
3915
3916	error = mnt_want_write(path.mnt);
3917	if (error)
3918		goto exit1;
3919
3920	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3921	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3922	error = PTR_ERR(dentry);
3923	if (IS_ERR(dentry))
3924		goto exit2;
3925	if (!dentry->d_inode) {
3926		error = -ENOENT;
3927		goto exit3;
3928	}
3929	error = security_path_rmdir(&path, dentry);
3930	if (error)
3931		goto exit3;
3932	error = vfs_rmdir(path.dentry->d_inode, dentry);
3933exit3:
 
3934	dput(dentry);
3935exit2:
3936	inode_unlock(path.dentry->d_inode);
3937	mnt_drop_write(path.mnt);
3938exit1:
3939	path_put(&path);
3940	putname(name);
3941	if (retry_estale(error, lookup_flags)) {
3942		lookup_flags |= LOOKUP_REVAL;
3943		goto retry;
3944	}
 
 
3945	return error;
3946}
3947
3948SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3949{
3950	return do_rmdir(AT_FDCWD, pathname);
3951}
3952
3953/**
3954 * vfs_unlink - unlink a filesystem object
 
3955 * @dir:	parent directory
3956 * @dentry:	victim
3957 * @delegated_inode: returns victim inode, if the inode is delegated.
3958 *
3959 * The caller must hold dir->i_mutex.
3960 *
3961 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3962 * return a reference to the inode in delegated_inode.  The caller
3963 * should then break the delegation on that inode and retry.  Because
3964 * breaking a delegation may take a long time, the caller should drop
3965 * dir->i_mutex before doing so.
3966 *
3967 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3968 * be appropriate for callers that expect the underlying filesystem not
3969 * to be NFS exported.
 
 
 
 
 
 
3970 */
3971int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
 
3972{
3973	struct inode *target = dentry->d_inode;
3974	int error = may_delete(dir, dentry, 0);
3975
3976	if (error)
3977		return error;
3978
3979	if (!dir->i_op->unlink)
3980		return -EPERM;
3981
3982	inode_lock(target);
3983	if (is_local_mountpoint(dentry))
 
 
3984		error = -EBUSY;
3985	else {
3986		error = security_inode_unlink(dir, dentry);
3987		if (!error) {
3988			error = try_break_deleg(target, delegated_inode);
3989			if (error)
3990				goto out;
3991			error = dir->i_op->unlink(dir, dentry);
3992			if (!error) {
3993				dont_mount(dentry);
3994				detach_mounts(dentry);
3995				fsnotify_unlink(dir, dentry);
3996			}
3997		}
3998	}
3999out:
4000	inode_unlock(target);
4001
4002	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4003	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
 
 
4004		fsnotify_link_count(target);
4005		d_delete(dentry);
4006	}
4007
4008	return error;
4009}
4010EXPORT_SYMBOL(vfs_unlink);
4011
4012/*
4013 * Make sure that the actual truncation of the file will occur outside its
4014 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4015 * writeout happening, and we don't want to prevent access to the directory
4016 * while waiting on the I/O.
4017 */
4018long do_unlinkat(int dfd, struct filename *name)
4019{
4020	int error;
4021	struct dentry *dentry;
4022	struct path path;
4023	struct qstr last;
4024	int type;
4025	struct inode *inode = NULL;
4026	struct inode *delegated_inode = NULL;
4027	unsigned int lookup_flags = 0;
4028retry:
4029	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4030	if (IS_ERR(name))
4031		return PTR_ERR(name);
4032
4033	error = -EISDIR;
4034	if (type != LAST_NORM)
4035		goto exit1;
4036
4037	error = mnt_want_write(path.mnt);
4038	if (error)
4039		goto exit1;
4040retry_deleg:
4041	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4042	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4043	error = PTR_ERR(dentry);
4044	if (!IS_ERR(dentry)) {
 
 
4045		/* Why not before? Because we want correct error value */
4046		if (last.name[last.len])
4047			goto slashes;
4048		inode = dentry->d_inode;
4049		if (d_is_negative(dentry))
4050			goto slashes;
4051		ihold(inode);
4052		error = security_path_unlink(&path, dentry);
4053		if (error)
4054			goto exit2;
4055		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4056exit2:
 
 
4057		dput(dentry);
4058	}
4059	inode_unlock(path.dentry->d_inode);
4060	if (inode)
4061		iput(inode);	/* truncate the inode here */
4062	inode = NULL;
4063	if (delegated_inode) {
4064		error = break_deleg_wait(&delegated_inode);
4065		if (!error)
4066			goto retry_deleg;
4067	}
4068	mnt_drop_write(path.mnt);
4069exit1:
4070	path_put(&path);
4071	if (retry_estale(error, lookup_flags)) {
4072		lookup_flags |= LOOKUP_REVAL;
4073		inode = NULL;
4074		goto retry;
4075	}
 
4076	putname(name);
4077	return error;
4078
4079slashes:
4080	if (d_is_negative(dentry))
4081		error = -ENOENT;
4082	else if (d_is_dir(dentry))
4083		error = -EISDIR;
4084	else
4085		error = -ENOTDIR;
4086	goto exit2;
4087}
4088
4089SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4090{
4091	if ((flag & ~AT_REMOVEDIR) != 0)
4092		return -EINVAL;
4093
4094	if (flag & AT_REMOVEDIR)
4095		return do_rmdir(dfd, pathname);
4096
4097	return do_unlinkat(dfd, getname(pathname));
4098}
4099
4100SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4101{
4102	return do_unlinkat(AT_FDCWD, getname(pathname));
4103}
4104
4105int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4106{
4107	int error = may_create(dir, dentry);
4108
4109	if (error)
4110		return error;
4111
4112	if (!dir->i_op->symlink)
4113		return -EPERM;
4114
4115	error = security_inode_symlink(dir, dentry, oldname);
4116	if (error)
4117		return error;
4118
4119	error = dir->i_op->symlink(dir, dentry, oldname);
4120	if (!error)
4121		fsnotify_create(dir, dentry);
4122	return error;
4123}
4124EXPORT_SYMBOL(vfs_symlink);
4125
4126long do_symlinkat(const char __user *oldname, int newdfd,
4127		  const char __user *newname)
4128{
4129	int error;
4130	struct filename *from;
4131	struct dentry *dentry;
4132	struct path path;
4133	unsigned int lookup_flags = 0;
4134
4135	from = getname(oldname);
4136	if (IS_ERR(from))
4137		return PTR_ERR(from);
 
4138retry:
4139	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4140	error = PTR_ERR(dentry);
4141	if (IS_ERR(dentry))
4142		goto out_putname;
4143
4144	error = security_path_symlink(&path, dentry, from->name);
4145	if (!error)
4146		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
 
 
 
 
 
4147	done_path_create(&path, dentry);
4148	if (retry_estale(error, lookup_flags)) {
4149		lookup_flags |= LOOKUP_REVAL;
4150		goto retry;
4151	}
4152out_putname:
 
4153	putname(from);
4154	return error;
4155}
4156
4157SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4158		int, newdfd, const char __user *, newname)
4159{
4160	return do_symlinkat(oldname, newdfd, newname);
4161}
4162
4163SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4164{
4165	return do_symlinkat(oldname, AT_FDCWD, newname);
4166}
4167
4168/**
4169 * vfs_link - create a new link
4170 * @old_dentry:	object to be linked
 
4171 * @dir:	new parent
4172 * @new_dentry:	where to create the new link
4173 * @delegated_inode: returns inode needing a delegation break
4174 *
4175 * The caller must hold dir->i_mutex
4176 *
4177 * If vfs_link discovers a delegation on the to-be-linked file in need
4178 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4179 * inode in delegated_inode.  The caller should then break the delegation
4180 * and retry.  Because breaking a delegation may take a long time, the
4181 * caller should drop the i_mutex before doing so.
4182 *
4183 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4184 * be appropriate for callers that expect the underlying filesystem not
4185 * to be NFS exported.
4186 */
4187int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
 
 
 
 
 
 
 
 
4188{
4189	struct inode *inode = old_dentry->d_inode;
4190	unsigned max_links = dir->i_sb->s_max_links;
4191	int error;
4192
4193	if (!inode)
4194		return -ENOENT;
4195
4196	error = may_create(dir, new_dentry);
4197	if (error)
4198		return error;
4199
4200	if (dir->i_sb != inode->i_sb)
4201		return -EXDEV;
4202
4203	/*
4204	 * A link to an append-only or immutable file cannot be created.
4205	 */
4206	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4207		return -EPERM;
4208	/*
4209	 * Updating the link count will likely cause i_uid and i_gid to
4210	 * be writen back improperly if their true value is unknown to
4211	 * the vfs.
4212	 */
4213	if (HAS_UNMAPPED_ID(inode))
4214		return -EPERM;
4215	if (!dir->i_op->link)
4216		return -EPERM;
4217	if (S_ISDIR(inode->i_mode))
4218		return -EPERM;
4219
4220	error = security_inode_link(old_dentry, dir, new_dentry);
4221	if (error)
4222		return error;
4223
4224	inode_lock(inode);
4225	/* Make sure we don't allow creating hardlink to an unlinked file */
4226	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4227		error =  -ENOENT;
4228	else if (max_links && inode->i_nlink >= max_links)
4229		error = -EMLINK;
4230	else {
4231		error = try_break_deleg(inode, delegated_inode);
4232		if (!error)
4233			error = dir->i_op->link(old_dentry, dir, new_dentry);
4234	}
4235
4236	if (!error && (inode->i_state & I_LINKABLE)) {
4237		spin_lock(&inode->i_lock);
4238		inode->i_state &= ~I_LINKABLE;
4239		spin_unlock(&inode->i_lock);
4240	}
4241	inode_unlock(inode);
4242	if (!error)
4243		fsnotify_link(dir, inode, new_dentry);
4244	return error;
4245}
4246EXPORT_SYMBOL(vfs_link);
4247
4248/*
4249 * Hardlinks are often used in delicate situations.  We avoid
4250 * security-related surprises by not following symlinks on the
4251 * newname.  --KAB
4252 *
4253 * We don't follow them on the oldname either to be compatible
4254 * with linux 2.0, and to avoid hard-linking to directories
4255 * and other special files.  --ADM
4256 */
4257int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4258	      const char __user *newname, int flags)
4259{
 
4260	struct dentry *new_dentry;
4261	struct path old_path, new_path;
4262	struct inode *delegated_inode = NULL;
4263	int how = 0;
4264	int error;
4265
4266	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4267		return -EINVAL;
 
 
4268	/*
4269	 * To use null names we require CAP_DAC_READ_SEARCH
4270	 * This ensures that not everyone will be able to create
4271	 * handlink using the passed filedescriptor.
4272	 */
4273	if (flags & AT_EMPTY_PATH) {
4274		if (!capable(CAP_DAC_READ_SEARCH))
4275			return -ENOENT;
4276		how = LOOKUP_EMPTY;
4277	}
4278
4279	if (flags & AT_SYMLINK_FOLLOW)
4280		how |= LOOKUP_FOLLOW;
4281retry:
4282	error = user_path_at(olddfd, oldname, how, &old_path);
4283	if (error)
4284		return error;
4285
4286	new_dentry = user_path_create(newdfd, newname, &new_path,
4287					(how & LOOKUP_REVAL));
4288	error = PTR_ERR(new_dentry);
4289	if (IS_ERR(new_dentry))
4290		goto out;
4291
4292	error = -EXDEV;
4293	if (old_path.mnt != new_path.mnt)
4294		goto out_dput;
4295	error = may_linkat(&old_path);
 
4296	if (unlikely(error))
4297		goto out_dput;
4298	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4299	if (error)
4300		goto out_dput;
4301	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
 
4302out_dput:
4303	done_path_create(&new_path, new_dentry);
4304	if (delegated_inode) {
4305		error = break_deleg_wait(&delegated_inode);
4306		if (!error) {
4307			path_put(&old_path);
4308			goto retry;
4309		}
4310	}
4311	if (retry_estale(error, how)) {
4312		path_put(&old_path);
4313		how |= LOOKUP_REVAL;
4314		goto retry;
4315	}
4316out:
4317	path_put(&old_path);
 
 
 
4318
4319	return error;
4320}
4321
4322SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4323		int, newdfd, const char __user *, newname, int, flags)
4324{
4325	return do_linkat(olddfd, oldname, newdfd, newname, flags);
 
4326}
4327
4328SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4329{
4330	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4331}
4332
4333/**
4334 * vfs_rename - rename a filesystem object
4335 * @old_dir:	parent of source
4336 * @old_dentry:	source
4337 * @new_dir:	parent of destination
4338 * @new_dentry:	destination
4339 * @delegated_inode: returns an inode needing a delegation break
4340 * @flags:	rename flags
4341 *
4342 * The caller must hold multiple mutexes--see lock_rename()).
4343 *
4344 * If vfs_rename discovers a delegation in need of breaking at either
4345 * the source or destination, it will return -EWOULDBLOCK and return a
4346 * reference to the inode in delegated_inode.  The caller should then
4347 * break the delegation and retry.  Because breaking a delegation may
4348 * take a long time, the caller should drop all locks before doing
4349 * so.
4350 *
4351 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4352 * be appropriate for callers that expect the underlying filesystem not
4353 * to be NFS exported.
4354 *
4355 * The worst of all namespace operations - renaming directory. "Perverted"
4356 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4357 * Problems:
4358 *
4359 *	a) we can get into loop creation.
4360 *	b) race potential - two innocent renames can create a loop together.
4361 *	   That's where 4.4 screws up. Current fix: serialization on
4362 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4363 *	   story.
4364 *	c) we have to lock _four_ objects - parents and victim (if it exists),
4365 *	   and source (if it is not a directory).
4366 *	   And that - after we got ->i_mutex on parents (until then we don't know
4367 *	   whether the target exists).  Solution: try to be smart with locking
4368 *	   order for inodes.  We rely on the fact that tree topology may change
4369 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4370 *	   move will be locked.  Thus we can rank directories by the tree
4371 *	   (ancestors first) and rank all non-directories after them.
4372 *	   That works since everybody except rename does "lock parent, lookup,
4373 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4374 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4375 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4376 *	   we'd better make sure that there's no link(2) for them.
4377 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4378 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4379 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4380 *	   ->i_mutex on parents, which works but leads to some truly excessive
4381 *	   locking].
4382 */
4383int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4384	       struct inode *new_dir, struct dentry *new_dentry,
4385	       struct inode **delegated_inode, unsigned int flags)
4386{
4387	int error;
 
 
 
 
 
4388	bool is_dir = d_is_dir(old_dentry);
4389	struct inode *source = old_dentry->d_inode;
4390	struct inode *target = new_dentry->d_inode;
4391	bool new_is_dir = false;
4392	unsigned max_links = new_dir->i_sb->s_max_links;
4393	struct name_snapshot old_name;
4394
4395	if (source == target)
4396		return 0;
4397
4398	error = may_delete(old_dir, old_dentry, is_dir);
4399	if (error)
4400		return error;
4401
4402	if (!target) {
4403		error = may_create(new_dir, new_dentry);
4404	} else {
4405		new_is_dir = d_is_dir(new_dentry);
4406
4407		if (!(flags & RENAME_EXCHANGE))
4408			error = may_delete(new_dir, new_dentry, is_dir);
 
4409		else
4410			error = may_delete(new_dir, new_dentry, new_is_dir);
 
4411	}
4412	if (error)
4413		return error;
4414
4415	if (!old_dir->i_op->rename)
4416		return -EPERM;
4417
4418	/*
4419	 * If we are going to change the parent - check write permissions,
4420	 * we'll need to flip '..'.
4421	 */
4422	if (new_dir != old_dir) {
4423		if (is_dir) {
4424			error = inode_permission(source, MAY_WRITE);
 
4425			if (error)
4426				return error;
4427		}
4428		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4429			error = inode_permission(target, MAY_WRITE);
 
4430			if (error)
4431				return error;
4432		}
4433	}
4434
4435	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4436				      flags);
4437	if (error)
4438		return error;
4439
4440	take_dentry_name_snapshot(&old_name, old_dentry);
4441	dget(new_dentry);
4442	if (!is_dir || (flags & RENAME_EXCHANGE))
4443		lock_two_nondirectories(source, target);
4444	else if (target)
4445		inode_lock(target);
4446
 
 
 
 
4447	error = -EBUSY;
4448	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4449		goto out;
4450
4451	if (max_links && new_dir != old_dir) {
4452		error = -EMLINK;
4453		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4454			goto out;
4455		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4456		    old_dir->i_nlink >= max_links)
4457			goto out;
4458	}
4459	if (!is_dir) {
4460		error = try_break_deleg(source, delegated_inode);
4461		if (error)
4462			goto out;
4463	}
4464	if (target && !new_is_dir) {
4465		error = try_break_deleg(target, delegated_inode);
4466		if (error)
4467			goto out;
4468	}
4469	error = old_dir->i_op->rename(old_dir, old_dentry,
4470				       new_dir, new_dentry, flags);
4471	if (error)
4472		goto out;
4473
4474	if (!(flags & RENAME_EXCHANGE) && target) {
4475		if (is_dir) {
4476			shrink_dcache_parent(new_dentry);
4477			target->i_flags |= S_DEAD;
4478		}
4479		dont_mount(new_dentry);
4480		detach_mounts(new_dentry);
4481	}
4482	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4483		if (!(flags & RENAME_EXCHANGE))
4484			d_move(old_dentry, new_dentry);
4485		else
4486			d_exchange(old_dentry, new_dentry);
4487	}
4488out:
4489	if (!is_dir || (flags & RENAME_EXCHANGE))
4490		unlock_two_nondirectories(source, target);
4491	else if (target)
4492		inode_unlock(target);
4493	dput(new_dentry);
4494	if (!error) {
4495		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4496			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4497		if (flags & RENAME_EXCHANGE) {
4498			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4499				      new_is_dir, NULL, new_dentry);
4500		}
4501	}
4502	release_dentry_name_snapshot(&old_name);
4503
4504	return error;
4505}
4506EXPORT_SYMBOL(vfs_rename);
4507
4508static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4509			const char __user *newname, unsigned int flags)
4510{
 
4511	struct dentry *old_dentry, *new_dentry;
4512	struct dentry *trap;
4513	struct path old_path, new_path;
4514	struct qstr old_last, new_last;
4515	int old_type, new_type;
4516	struct inode *delegated_inode = NULL;
4517	struct filename *from;
4518	struct filename *to;
4519	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4520	bool should_retry = false;
4521	int error;
4522
4523	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4524		return -EINVAL;
4525
4526	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4527	    (flags & RENAME_EXCHANGE))
4528		return -EINVAL;
4529
4530	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4531		return -EPERM;
4532
4533	if (flags & RENAME_EXCHANGE)
4534		target_flags = 0;
4535
4536retry:
4537	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4538				&old_path, &old_last, &old_type);
4539	if (IS_ERR(from)) {
4540		error = PTR_ERR(from);
4541		goto exit;
4542	}
4543
4544	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4545				&new_path, &new_last, &new_type);
4546	if (IS_ERR(to)) {
4547		error = PTR_ERR(to);
4548		goto exit1;
4549	}
4550
4551	error = -EXDEV;
4552	if (old_path.mnt != new_path.mnt)
4553		goto exit2;
4554
4555	error = -EBUSY;
4556	if (old_type != LAST_NORM)
4557		goto exit2;
4558
4559	if (flags & RENAME_NOREPLACE)
4560		error = -EEXIST;
4561	if (new_type != LAST_NORM)
4562		goto exit2;
4563
4564	error = mnt_want_write(old_path.mnt);
4565	if (error)
4566		goto exit2;
4567
4568retry_deleg:
4569	trap = lock_rename(new_path.dentry, old_path.dentry);
4570
4571	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4572	error = PTR_ERR(old_dentry);
4573	if (IS_ERR(old_dentry))
4574		goto exit3;
4575	/* source must exist */
4576	error = -ENOENT;
4577	if (d_is_negative(old_dentry))
4578		goto exit4;
4579	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4580	error = PTR_ERR(new_dentry);
4581	if (IS_ERR(new_dentry))
4582		goto exit4;
4583	error = -EEXIST;
4584	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4585		goto exit5;
4586	if (flags & RENAME_EXCHANGE) {
4587		error = -ENOENT;
4588		if (d_is_negative(new_dentry))
4589			goto exit5;
4590
4591		if (!d_is_dir(new_dentry)) {
4592			error = -ENOTDIR;
4593			if (new_last.name[new_last.len])
4594				goto exit5;
4595		}
4596	}
4597	/* unless the source is a directory trailing slashes give -ENOTDIR */
4598	if (!d_is_dir(old_dentry)) {
4599		error = -ENOTDIR;
4600		if (old_last.name[old_last.len])
4601			goto exit5;
4602		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4603			goto exit5;
4604	}
4605	/* source should not be ancestor of target */
4606	error = -EINVAL;
4607	if (old_dentry == trap)
4608		goto exit5;
4609	/* target should not be an ancestor of source */
4610	if (!(flags & RENAME_EXCHANGE))
4611		error = -ENOTEMPTY;
4612	if (new_dentry == trap)
4613		goto exit5;
4614
4615	error = security_path_rename(&old_path, old_dentry,
4616				     &new_path, new_dentry, flags);
4617	if (error)
4618		goto exit5;
4619	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4620			   new_path.dentry->d_inode, new_dentry,
4621			   &delegated_inode, flags);
 
 
 
 
 
 
 
4622exit5:
4623	dput(new_dentry);
4624exit4:
4625	dput(old_dentry);
4626exit3:
4627	unlock_rename(new_path.dentry, old_path.dentry);
4628	if (delegated_inode) {
4629		error = break_deleg_wait(&delegated_inode);
4630		if (!error)
4631			goto retry_deleg;
4632	}
4633	mnt_drop_write(old_path.mnt);
4634exit2:
4635	if (retry_estale(error, lookup_flags))
4636		should_retry = true;
4637	path_put(&new_path);
4638	putname(to);
4639exit1:
4640	path_put(&old_path);
4641	putname(from);
4642	if (should_retry) {
4643		should_retry = false;
4644		lookup_flags |= LOOKUP_REVAL;
4645		goto retry;
4646	}
4647exit:
 
 
4648	return error;
4649}
4650
4651SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4652		int, newdfd, const char __user *, newname, unsigned int, flags)
4653{
4654	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
 
4655}
4656
4657SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4658		int, newdfd, const char __user *, newname)
4659{
4660	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
 
4661}
4662
4663SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4664{
4665	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4666}
4667
4668int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4669{
4670	int error = may_create(dir, dentry);
4671	if (error)
4672		return error;
4673
4674	if (!dir->i_op->mknod)
4675		return -EPERM;
4676
4677	return dir->i_op->mknod(dir, dentry,
4678				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4679}
4680EXPORT_SYMBOL(vfs_whiteout);
4681
4682int readlink_copy(char __user *buffer, int buflen, const char *link)
4683{
4684	int len = PTR_ERR(link);
4685	if (IS_ERR(link))
4686		goto out;
4687
4688	len = strlen(link);
4689	if (len > (unsigned) buflen)
4690		len = buflen;
4691	if (copy_to_user(buffer, link, len))
4692		len = -EFAULT;
4693out:
4694	return len;
4695}
4696
4697/**
4698 * vfs_readlink - copy symlink body into userspace buffer
4699 * @dentry: dentry on which to get symbolic link
4700 * @buffer: user memory pointer
4701 * @buflen: size of buffer
4702 *
4703 * Does not touch atime.  That's up to the caller if necessary
4704 *
4705 * Does not call security hook.
4706 */
4707int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4708{
4709	struct inode *inode = d_inode(dentry);
4710	DEFINE_DELAYED_CALL(done);
4711	const char *link;
4712	int res;
4713
4714	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4715		if (unlikely(inode->i_op->readlink))
4716			return inode->i_op->readlink(dentry, buffer, buflen);
4717
4718		if (!d_is_symlink(dentry))
4719			return -EINVAL;
4720
4721		spin_lock(&inode->i_lock);
4722		inode->i_opflags |= IOP_DEFAULT_READLINK;
4723		spin_unlock(&inode->i_lock);
4724	}
4725
4726	link = READ_ONCE(inode->i_link);
4727	if (!link) {
4728		link = inode->i_op->get_link(dentry, inode, &done);
4729		if (IS_ERR(link))
4730			return PTR_ERR(link);
4731	}
4732	res = readlink_copy(buffer, buflen, link);
4733	do_delayed_call(&done);
4734	return res;
4735}
4736EXPORT_SYMBOL(vfs_readlink);
4737
4738/**
4739 * vfs_get_link - get symlink body
4740 * @dentry: dentry on which to get symbolic link
4741 * @done: caller needs to free returned data with this
4742 *
4743 * Calls security hook and i_op->get_link() on the supplied inode.
4744 *
4745 * It does not touch atime.  That's up to the caller if necessary.
4746 *
4747 * Does not work on "special" symlinks like /proc/$$/fd/N
4748 */
4749const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4750{
4751	const char *res = ERR_PTR(-EINVAL);
4752	struct inode *inode = d_inode(dentry);
4753
4754	if (d_is_symlink(dentry)) {
4755		res = ERR_PTR(security_inode_readlink(dentry));
4756		if (!res)
4757			res = inode->i_op->get_link(dentry, inode, done);
4758	}
4759	return res;
4760}
4761EXPORT_SYMBOL(vfs_get_link);
4762
4763/* get the link contents into pagecache */
4764const char *page_get_link(struct dentry *dentry, struct inode *inode,
4765			  struct delayed_call *callback)
4766{
4767	char *kaddr;
4768	struct page *page;
4769	struct address_space *mapping = inode->i_mapping;
4770
4771	if (!dentry) {
4772		page = find_get_page(mapping, 0);
4773		if (!page)
4774			return ERR_PTR(-ECHILD);
4775		if (!PageUptodate(page)) {
4776			put_page(page);
4777			return ERR_PTR(-ECHILD);
4778		}
4779	} else {
4780		page = read_mapping_page(mapping, 0, NULL);
4781		if (IS_ERR(page))
4782			return (char*)page;
4783	}
4784	set_delayed_call(callback, page_put_link, page);
4785	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4786	kaddr = page_address(page);
4787	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4788	return kaddr;
4789}
4790
4791EXPORT_SYMBOL(page_get_link);
4792
4793void page_put_link(void *arg)
4794{
4795	put_page(arg);
4796}
4797EXPORT_SYMBOL(page_put_link);
4798
4799int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4800{
4801	DEFINE_DELAYED_CALL(done);
4802	int res = readlink_copy(buffer, buflen,
4803				page_get_link(dentry, d_inode(dentry),
4804					      &done));
4805	do_delayed_call(&done);
4806	return res;
4807}
4808EXPORT_SYMBOL(page_readlink);
4809
4810/*
4811 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4812 */
4813int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4814{
4815	struct address_space *mapping = inode->i_mapping;
 
 
4816	struct page *page;
4817	void *fsdata;
4818	int err;
4819	unsigned int flags = 0;
4820	if (nofs)
4821		flags |= AOP_FLAG_NOFS;
4822
4823retry:
4824	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4825				flags, &page, &fsdata);
 
 
 
4826	if (err)
4827		goto fail;
4828
4829	memcpy(page_address(page), symname, len-1);
4830
4831	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4832							page, fsdata);
4833	if (err < 0)
4834		goto fail;
4835	if (err < len-1)
4836		goto retry;
4837
4838	mark_inode_dirty(inode);
4839	return 0;
4840fail:
4841	return err;
4842}
4843EXPORT_SYMBOL(__page_symlink);
4844
4845int page_symlink(struct inode *inode, const char *symname, int len)
4846{
4847	return __page_symlink(inode, symname, len,
4848			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4849}
4850EXPORT_SYMBOL(page_symlink);
4851
4852const struct inode_operations page_symlink_inode_operations = {
4853	.get_link	= page_get_link,
4854};
4855EXPORT_SYMBOL(page_symlink_inode_operations);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/fs.h>
  23#include <linux/namei.h>
  24#include <linux/pagemap.h>
  25#include <linux/sched/mm.h>
  26#include <linux/fsnotify.h>
  27#include <linux/personality.h>
  28#include <linux/security.h>
  29#include <linux/ima.h>
  30#include <linux/syscalls.h>
  31#include <linux/mount.h>
  32#include <linux/audit.h>
  33#include <linux/capability.h>
  34#include <linux/file.h>
  35#include <linux/fcntl.h>
  36#include <linux/device_cgroup.h>
  37#include <linux/fs_struct.h>
  38#include <linux/posix_acl.h>
  39#include <linux/hash.h>
  40#include <linux/bitops.h>
  41#include <linux/init_task.h>
  42#include <linux/uaccess.h>
  43
  44#include "internal.h"
  45#include "mount.h"
  46
  47/* [Feb-1997 T. Schoebel-Theuer]
  48 * Fundamental changes in the pathname lookup mechanisms (namei)
  49 * were necessary because of omirr.  The reason is that omirr needs
  50 * to know the _real_ pathname, not the user-supplied one, in case
  51 * of symlinks (and also when transname replacements occur).
  52 *
  53 * The new code replaces the old recursive symlink resolution with
  54 * an iterative one (in case of non-nested symlink chains).  It does
  55 * this with calls to <fs>_follow_link().
  56 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  57 * replaced with a single function lookup_dentry() that can handle all 
  58 * the special cases of the former code.
  59 *
  60 * With the new dcache, the pathname is stored at each inode, at least as
  61 * long as the refcount of the inode is positive.  As a side effect, the
  62 * size of the dcache depends on the inode cache and thus is dynamic.
  63 *
  64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  65 * resolution to correspond with current state of the code.
  66 *
  67 * Note that the symlink resolution is not *completely* iterative.
  68 * There is still a significant amount of tail- and mid- recursion in
  69 * the algorithm.  Also, note that <fs>_readlink() is not used in
  70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  71 * may return different results than <fs>_follow_link().  Many virtual
  72 * filesystems (including /proc) exhibit this behavior.
  73 */
  74
  75/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  77 * and the name already exists in form of a symlink, try to create the new
  78 * name indicated by the symlink. The old code always complained that the
  79 * name already exists, due to not following the symlink even if its target
  80 * is nonexistent.  The new semantics affects also mknod() and link() when
  81 * the name is a symlink pointing to a non-existent name.
  82 *
  83 * I don't know which semantics is the right one, since I have no access
  84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  86 * "old" one. Personally, I think the new semantics is much more logical.
  87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  88 * file does succeed in both HP-UX and SunOs, but not in Solaris
  89 * and in the old Linux semantics.
  90 */
  91
  92/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  93 * semantics.  See the comments in "open_namei" and "do_link" below.
  94 *
  95 * [10-Sep-98 Alan Modra] Another symlink change.
  96 */
  97
  98/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  99 *	inside the path - always follow.
 100 *	in the last component in creation/removal/renaming - never follow.
 101 *	if LOOKUP_FOLLOW passed - follow.
 102 *	if the pathname has trailing slashes - follow.
 103 *	otherwise - don't follow.
 104 * (applied in that order).
 105 *
 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 108 * During the 2.4 we need to fix the userland stuff depending on it -
 109 * hopefully we will be able to get rid of that wart in 2.5. So far only
 110 * XEmacs seems to be relying on it...
 111 */
 112/*
 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 114 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 115 * any extra contention...
 116 */
 117
 118/* In order to reduce some races, while at the same time doing additional
 119 * checking and hopefully speeding things up, we copy filenames to the
 120 * kernel data space before using them..
 121 *
 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 123 * PATH_MAX includes the nul terminator --RR.
 124 */
 125
 126#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 127
 128struct filename *
 129getname_flags(const char __user *filename, int flags, int *empty)
 130{
 131	struct filename *result;
 132	char *kname;
 133	int len;
 134
 135	result = audit_reusename(filename);
 136	if (result)
 137		return result;
 138
 139	result = __getname();
 140	if (unlikely(!result))
 141		return ERR_PTR(-ENOMEM);
 142
 143	/*
 144	 * First, try to embed the struct filename inside the names_cache
 145	 * allocation
 146	 */
 147	kname = (char *)result->iname;
 148	result->name = kname;
 149
 150	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 151	if (unlikely(len < 0)) {
 152		__putname(result);
 153		return ERR_PTR(len);
 154	}
 155
 156	/*
 157	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 158	 * separate struct filename so we can dedicate the entire
 159	 * names_cache allocation for the pathname, and re-do the copy from
 160	 * userland.
 161	 */
 162	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 163		const size_t size = offsetof(struct filename, iname[1]);
 164		kname = (char *)result;
 165
 166		/*
 167		 * size is chosen that way we to guarantee that
 168		 * result->iname[0] is within the same object and that
 169		 * kname can't be equal to result->iname, no matter what.
 170		 */
 171		result = kzalloc(size, GFP_KERNEL);
 172		if (unlikely(!result)) {
 173			__putname(kname);
 174			return ERR_PTR(-ENOMEM);
 175		}
 176		result->name = kname;
 177		len = strncpy_from_user(kname, filename, PATH_MAX);
 178		if (unlikely(len < 0)) {
 179			__putname(kname);
 180			kfree(result);
 181			return ERR_PTR(len);
 182		}
 183		if (unlikely(len == PATH_MAX)) {
 184			__putname(kname);
 185			kfree(result);
 186			return ERR_PTR(-ENAMETOOLONG);
 187		}
 188	}
 189
 190	result->refcnt = 1;
 191	/* The empty path is special. */
 192	if (unlikely(!len)) {
 193		if (empty)
 194			*empty = 1;
 195		if (!(flags & LOOKUP_EMPTY)) {
 196			putname(result);
 197			return ERR_PTR(-ENOENT);
 198		}
 199	}
 200
 201	result->uptr = filename;
 202	result->aname = NULL;
 203	audit_getname(result);
 204	return result;
 205}
 206
 207struct filename *
 208getname_uflags(const char __user *filename, int uflags)
 209{
 210	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
 211
 212	return getname_flags(filename, flags, NULL);
 213}
 214
 215struct filename *
 216getname(const char __user * filename)
 217{
 218	return getname_flags(filename, 0, NULL);
 219}
 220
 221struct filename *
 222getname_kernel(const char * filename)
 223{
 224	struct filename *result;
 225	int len = strlen(filename) + 1;
 226
 227	result = __getname();
 228	if (unlikely(!result))
 229		return ERR_PTR(-ENOMEM);
 230
 231	if (len <= EMBEDDED_NAME_MAX) {
 232		result->name = (char *)result->iname;
 233	} else if (len <= PATH_MAX) {
 234		const size_t size = offsetof(struct filename, iname[1]);
 235		struct filename *tmp;
 236
 237		tmp = kmalloc(size, GFP_KERNEL);
 238		if (unlikely(!tmp)) {
 239			__putname(result);
 240			return ERR_PTR(-ENOMEM);
 241		}
 242		tmp->name = (char *)result;
 243		result = tmp;
 244	} else {
 245		__putname(result);
 246		return ERR_PTR(-ENAMETOOLONG);
 247	}
 248	memcpy((char *)result->name, filename, len);
 249	result->uptr = NULL;
 250	result->aname = NULL;
 251	result->refcnt = 1;
 252	audit_getname(result);
 253
 254	return result;
 255}
 256
 257void putname(struct filename *name)
 258{
 259	if (IS_ERR(name))
 260		return;
 261
 262	BUG_ON(name->refcnt <= 0);
 263
 264	if (--name->refcnt > 0)
 265		return;
 266
 267	if (name->name != name->iname) {
 268		__putname(name->name);
 269		kfree(name);
 270	} else
 271		__putname(name);
 272}
 273
 274/**
 275 * check_acl - perform ACL permission checking
 276 * @mnt_userns:	user namespace of the mount the inode was found from
 277 * @inode:	inode to check permissions on
 278 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 279 *
 280 * This function performs the ACL permission checking. Since this function
 281 * retrieve POSIX acls it needs to know whether it is called from a blocking or
 282 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 283 *
 284 * If the inode has been found through an idmapped mount the user namespace of
 285 * the vfsmount must be passed through @mnt_userns. This function will then take
 286 * care to map the inode according to @mnt_userns before checking permissions.
 287 * On non-idmapped mounts or if permission checking is to be performed on the
 288 * raw inode simply passs init_user_ns.
 289 */
 290static int check_acl(struct user_namespace *mnt_userns,
 291		     struct inode *inode, int mask)
 292{
 293#ifdef CONFIG_FS_POSIX_ACL
 294	struct posix_acl *acl;
 295
 296	if (mask & MAY_NOT_BLOCK) {
 297		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 298	        if (!acl)
 299	                return -EAGAIN;
 300		/* no ->get_inode_acl() calls in RCU mode... */
 301		if (is_uncached_acl(acl))
 302			return -ECHILD;
 303	        return posix_acl_permission(mnt_userns, inode, acl, mask);
 304	}
 305
 306	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
 307	if (IS_ERR(acl))
 308		return PTR_ERR(acl);
 309	if (acl) {
 310	        int error = posix_acl_permission(mnt_userns, inode, acl, mask);
 311	        posix_acl_release(acl);
 312	        return error;
 313	}
 314#endif
 315
 316	return -EAGAIN;
 317}
 318
 319/**
 320 * acl_permission_check - perform basic UNIX permission checking
 321 * @mnt_userns:	user namespace of the mount the inode was found from
 322 * @inode:	inode to check permissions on
 323 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 324 *
 325 * This function performs the basic UNIX permission checking. Since this
 326 * function may retrieve POSIX acls it needs to know whether it is called from a
 327 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 328 *
 329 * If the inode has been found through an idmapped mount the user namespace of
 330 * the vfsmount must be passed through @mnt_userns. This function will then take
 331 * care to map the inode according to @mnt_userns before checking permissions.
 332 * On non-idmapped mounts or if permission checking is to be performed on the
 333 * raw inode simply passs init_user_ns.
 334 */
 335static int acl_permission_check(struct user_namespace *mnt_userns,
 336				struct inode *inode, int mask)
 337{
 338	unsigned int mode = inode->i_mode;
 339	vfsuid_t vfsuid;
 340
 341	/* Are we the owner? If so, ACL's don't matter */
 342	vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
 343	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
 344		mask &= 7;
 345		mode >>= 6;
 346		return (mask & ~mode) ? -EACCES : 0;
 347	}
 
 
 
 
 348
 349	/* Do we have ACL's? */
 350	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 351		int error = check_acl(mnt_userns, inode, mask);
 352		if (error != -EAGAIN)
 353			return error;
 354	}
 355
 356	/* Only RWX matters for group/other mode bits */
 357	mask &= 7;
 358
 359	/*
 360	 * Are the group permissions different from
 361	 * the other permissions in the bits we care
 362	 * about? Need to check group ownership if so.
 363	 */
 364	if (mask & (mode ^ (mode >> 3))) {
 365		vfsgid_t vfsgid = i_gid_into_vfsgid(mnt_userns, inode);
 366		if (vfsgid_in_group_p(vfsgid))
 367			mode >>= 3;
 368	}
 369
 370	/* Bits in 'mode' clear that we require? */
 371	return (mask & ~mode) ? -EACCES : 0;
 372}
 373
 374/**
 375 * generic_permission -  check for access rights on a Posix-like filesystem
 376 * @mnt_userns:	user namespace of the mount the inode was found from
 377 * @inode:	inode to check access rights for
 378 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
 379 *		%MAY_NOT_BLOCK ...)
 380 *
 381 * Used to check for read/write/execute permissions on a file.
 382 * We use "fsuid" for this, letting us set arbitrary permissions
 383 * for filesystem access without changing the "normal" uids which
 384 * are used for other things.
 385 *
 386 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 387 * request cannot be satisfied (eg. requires blocking or too much complexity).
 388 * It would then be called again in ref-walk mode.
 389 *
 390 * If the inode has been found through an idmapped mount the user namespace of
 391 * the vfsmount must be passed through @mnt_userns. This function will then take
 392 * care to map the inode according to @mnt_userns before checking permissions.
 393 * On non-idmapped mounts or if permission checking is to be performed on the
 394 * raw inode simply passs init_user_ns.
 395 */
 396int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
 397		       int mask)
 398{
 399	int ret;
 400
 401	/*
 402	 * Do the basic permission checks.
 403	 */
 404	ret = acl_permission_check(mnt_userns, inode, mask);
 405	if (ret != -EACCES)
 406		return ret;
 407
 408	if (S_ISDIR(inode->i_mode)) {
 409		/* DACs are overridable for directories */
 410		if (!(mask & MAY_WRITE))
 411			if (capable_wrt_inode_uidgid(mnt_userns, inode,
 412						     CAP_DAC_READ_SEARCH))
 413				return 0;
 414		if (capable_wrt_inode_uidgid(mnt_userns, inode,
 415					     CAP_DAC_OVERRIDE))
 416			return 0;
 417		return -EACCES;
 418	}
 419
 420	/*
 421	 * Searching includes executable on directories, else just read.
 422	 */
 423	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 424	if (mask == MAY_READ)
 425		if (capable_wrt_inode_uidgid(mnt_userns, inode,
 426					     CAP_DAC_READ_SEARCH))
 427			return 0;
 428	/*
 429	 * Read/write DACs are always overridable.
 430	 * Executable DACs are overridable when there is
 431	 * at least one exec bit set.
 432	 */
 433	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 434		if (capable_wrt_inode_uidgid(mnt_userns, inode,
 435					     CAP_DAC_OVERRIDE))
 436			return 0;
 437
 438	return -EACCES;
 439}
 440EXPORT_SYMBOL(generic_permission);
 441
 442/**
 443 * do_inode_permission - UNIX permission checking
 444 * @mnt_userns:	user namespace of the mount the inode was found from
 445 * @inode:	inode to check permissions on
 446 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 447 *
 448 * We _really_ want to just do "generic_permission()" without
 449 * even looking at the inode->i_op values. So we keep a cache
 450 * flag in inode->i_opflags, that says "this has not special
 451 * permission function, use the fast case".
 452 */
 453static inline int do_inode_permission(struct user_namespace *mnt_userns,
 454				      struct inode *inode, int mask)
 455{
 456	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 457		if (likely(inode->i_op->permission))
 458			return inode->i_op->permission(mnt_userns, inode, mask);
 459
 460		/* This gets set once for the inode lifetime */
 461		spin_lock(&inode->i_lock);
 462		inode->i_opflags |= IOP_FASTPERM;
 463		spin_unlock(&inode->i_lock);
 464	}
 465	return generic_permission(mnt_userns, inode, mask);
 466}
 467
 468/**
 469 * sb_permission - Check superblock-level permissions
 470 * @sb: Superblock of inode to check permission on
 471 * @inode: Inode to check permission on
 472 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 473 *
 474 * Separate out file-system wide checks from inode-specific permission checks.
 475 */
 476static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 477{
 478	if (unlikely(mask & MAY_WRITE)) {
 479		umode_t mode = inode->i_mode;
 480
 481		/* Nobody gets write access to a read-only fs. */
 482		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 483			return -EROFS;
 484	}
 485	return 0;
 486}
 487
 488/**
 489 * inode_permission - Check for access rights to a given inode
 490 * @mnt_userns:	User namespace of the mount the inode was found from
 491 * @inode:	Inode to check permission on
 492 * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 493 *
 494 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 495 * this, letting us set arbitrary permissions for filesystem access without
 496 * changing the "normal" UIDs which are used for other things.
 497 *
 498 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 499 */
 500int inode_permission(struct user_namespace *mnt_userns,
 501		     struct inode *inode, int mask)
 502{
 503	int retval;
 504
 505	retval = sb_permission(inode->i_sb, inode, mask);
 506	if (retval)
 507		return retval;
 508
 509	if (unlikely(mask & MAY_WRITE)) {
 510		/*
 511		 * Nobody gets write access to an immutable file.
 512		 */
 513		if (IS_IMMUTABLE(inode))
 514			return -EPERM;
 515
 516		/*
 517		 * Updating mtime will likely cause i_uid and i_gid to be
 518		 * written back improperly if their true value is unknown
 519		 * to the vfs.
 520		 */
 521		if (HAS_UNMAPPED_ID(mnt_userns, inode))
 522			return -EACCES;
 523	}
 524
 525	retval = do_inode_permission(mnt_userns, inode, mask);
 526	if (retval)
 527		return retval;
 528
 529	retval = devcgroup_inode_permission(inode, mask);
 530	if (retval)
 531		return retval;
 532
 533	return security_inode_permission(inode, mask);
 534}
 535EXPORT_SYMBOL(inode_permission);
 536
 537/**
 538 * path_get - get a reference to a path
 539 * @path: path to get the reference to
 540 *
 541 * Given a path increment the reference count to the dentry and the vfsmount.
 542 */
 543void path_get(const struct path *path)
 544{
 545	mntget(path->mnt);
 546	dget(path->dentry);
 547}
 548EXPORT_SYMBOL(path_get);
 549
 550/**
 551 * path_put - put a reference to a path
 552 * @path: path to put the reference to
 553 *
 554 * Given a path decrement the reference count to the dentry and the vfsmount.
 555 */
 556void path_put(const struct path *path)
 557{
 558	dput(path->dentry);
 559	mntput(path->mnt);
 560}
 561EXPORT_SYMBOL(path_put);
 562
 563#define EMBEDDED_LEVELS 2
 564struct nameidata {
 565	struct path	path;
 566	struct qstr	last;
 567	struct path	root;
 568	struct inode	*inode; /* path.dentry.d_inode */
 569	unsigned int	flags, state;
 570	unsigned	seq, next_seq, m_seq, r_seq;
 571	int		last_type;
 572	unsigned	depth;
 573	int		total_link_count;
 574	struct saved {
 575		struct path link;
 576		struct delayed_call done;
 577		const char *name;
 578		unsigned seq;
 579	} *stack, internal[EMBEDDED_LEVELS];
 580	struct filename	*name;
 581	struct nameidata *saved;
 
 582	unsigned	root_seq;
 583	int		dfd;
 584	vfsuid_t	dir_vfsuid;
 585	umode_t		dir_mode;
 586} __randomize_layout;
 587
 588#define ND_ROOT_PRESET 1
 589#define ND_ROOT_GRABBED 2
 590#define ND_JUMPED 4
 591
 592static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 593{
 594	struct nameidata *old = current->nameidata;
 595	p->stack = p->internal;
 596	p->depth = 0;
 597	p->dfd = dfd;
 598	p->name = name;
 599	p->path.mnt = NULL;
 600	p->path.dentry = NULL;
 601	p->total_link_count = old ? old->total_link_count : 0;
 602	p->saved = old;
 603	current->nameidata = p;
 604}
 605
 606static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
 607			  const struct path *root)
 608{
 609	__set_nameidata(p, dfd, name);
 610	p->state = 0;
 611	if (unlikely(root)) {
 612		p->state = ND_ROOT_PRESET;
 613		p->root = *root;
 614	}
 615}
 616
 617static void restore_nameidata(void)
 618{
 619	struct nameidata *now = current->nameidata, *old = now->saved;
 620
 621	current->nameidata = old;
 622	if (old)
 623		old->total_link_count = now->total_link_count;
 624	if (now->stack != now->internal)
 625		kfree(now->stack);
 626}
 627
 628static bool nd_alloc_stack(struct nameidata *nd)
 629{
 630	struct saved *p;
 631
 632	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 633			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
 634	if (unlikely(!p))
 635		return false;
 
 
 
 
 
 
 
 636	memcpy(p, nd->internal, sizeof(nd->internal));
 637	nd->stack = p;
 638	return true;
 639}
 640
 641/**
 642 * path_connected - Verify that a dentry is below mnt.mnt_root
 
 643 *
 644 * Rename can sometimes move a file or directory outside of a bind
 645 * mount, path_connected allows those cases to be detected.
 646 */
 647static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
 648{
 
 649	struct super_block *sb = mnt->mnt_sb;
 650
 651	/* Bind mounts can have disconnected paths */
 652	if (mnt->mnt_root == sb->s_root)
 653		return true;
 654
 655	return is_subdir(dentry, mnt->mnt_root);
 
 
 
 
 
 
 
 
 
 656}
 657
 658static void drop_links(struct nameidata *nd)
 659{
 660	int i = nd->depth;
 661	while (i--) {
 662		struct saved *last = nd->stack + i;
 663		do_delayed_call(&last->done);
 664		clear_delayed_call(&last->done);
 665	}
 666}
 667
 668static void leave_rcu(struct nameidata *nd)
 669{
 670	nd->flags &= ~LOOKUP_RCU;
 671	nd->seq = nd->next_seq = 0;
 672	rcu_read_unlock();
 673}
 674
 675static void terminate_walk(struct nameidata *nd)
 676{
 677	drop_links(nd);
 678	if (!(nd->flags & LOOKUP_RCU)) {
 679		int i;
 680		path_put(&nd->path);
 681		for (i = 0; i < nd->depth; i++)
 682			path_put(&nd->stack[i].link);
 683		if (nd->state & ND_ROOT_GRABBED) {
 684			path_put(&nd->root);
 685			nd->state &= ~ND_ROOT_GRABBED;
 686		}
 687	} else {
 688		leave_rcu(nd);
 
 689	}
 690	nd->depth = 0;
 691	nd->path.mnt = NULL;
 692	nd->path.dentry = NULL;
 693}
 694
 695/* path_put is needed afterwards regardless of success or failure */
 696static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
 
 697{
 698	int res = __legitimize_mnt(path->mnt, mseq);
 699	if (unlikely(res)) {
 700		if (res > 0)
 701			path->mnt = NULL;
 702		path->dentry = NULL;
 703		return false;
 704	}
 705	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 706		path->dentry = NULL;
 707		return false;
 708	}
 709	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 710}
 711
 712static inline bool legitimize_path(struct nameidata *nd,
 713			    struct path *path, unsigned seq)
 714{
 715	return __legitimize_path(path, seq, nd->m_seq);
 716}
 717
 718static bool legitimize_links(struct nameidata *nd)
 719{
 720	int i;
 721	if (unlikely(nd->flags & LOOKUP_CACHED)) {
 722		drop_links(nd);
 723		nd->depth = 0;
 724		return false;
 725	}
 726	for (i = 0; i < nd->depth; i++) {
 727		struct saved *last = nd->stack + i;
 728		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 729			drop_links(nd);
 730			nd->depth = i + 1;
 731			return false;
 732		}
 733	}
 734	return true;
 735}
 736
 737static bool legitimize_root(struct nameidata *nd)
 738{
 739	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
 740	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
 741		return true;
 742	nd->state |= ND_ROOT_GRABBED;
 743	return legitimize_path(nd, &nd->root, nd->root_seq);
 744}
 745
 746/*
 747 * Path walking has 2 modes, rcu-walk and ref-walk (see
 748 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 749 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 750 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 751 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 752 * got stuck, so ref-walk may continue from there. If this is not successful
 753 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 754 * to restart the path walk from the beginning in ref-walk mode.
 755 */
 756
 757/**
 758 * try_to_unlazy - try to switch to ref-walk mode.
 759 * @nd: nameidata pathwalk data
 760 * Returns: true on success, false on failure
 761 *
 762 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
 763 * for ref-walk mode.
 764 * Must be called from rcu-walk context.
 765 * Nothing should touch nameidata between try_to_unlazy() failure and
 766 * terminate_walk().
 767 */
 768static bool try_to_unlazy(struct nameidata *nd)
 769{
 770	struct dentry *parent = nd->path.dentry;
 771
 772	BUG_ON(!(nd->flags & LOOKUP_RCU));
 773
 
 774	if (unlikely(!legitimize_links(nd)))
 775		goto out1;
 776	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 777		goto out;
 778	if (unlikely(!legitimize_root(nd)))
 779		goto out;
 780	leave_rcu(nd);
 781	BUG_ON(nd->inode != parent->d_inode);
 782	return true;
 783
 784out1:
 785	nd->path.mnt = NULL;
 786	nd->path.dentry = NULL;
 787out:
 788	leave_rcu(nd);
 789	return false;
 790}
 791
 792/**
 793 * try_to_unlazy_next - try to switch to ref-walk mode.
 794 * @nd: nameidata pathwalk data
 795 * @dentry: next dentry to step into
 796 * Returns: true on success, false on failure
 797 *
 798 * Similar to try_to_unlazy(), but here we have the next dentry already
 799 * picked by rcu-walk and want to legitimize that in addition to the current
 800 * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
 801 * Nothing should touch nameidata between try_to_unlazy_next() failure and
 
 802 * terminate_walk().
 803 */
 804static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
 805{
 806	int res;
 807	BUG_ON(!(nd->flags & LOOKUP_RCU));
 808
 
 809	if (unlikely(!legitimize_links(nd)))
 810		goto out2;
 811	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
 812	if (unlikely(res)) {
 813		if (res > 0)
 814			goto out2;
 815		goto out1;
 816	}
 817	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 818		goto out1;
 819
 820	/*
 821	 * We need to move both the parent and the dentry from the RCU domain
 822	 * to be properly refcounted. And the sequence number in the dentry
 823	 * validates *both* dentry counters, since we checked the sequence
 824	 * number of the parent after we got the child sequence number. So we
 825	 * know the parent must still be valid if the child sequence number is
 826	 */
 827	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 828		goto out;
 829	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
 830		goto out_dput;
 831	/*
 832	 * Sequence counts matched. Now make sure that the root is
 833	 * still valid and get it if required.
 834	 */
 835	if (unlikely(!legitimize_root(nd)))
 836		goto out_dput;
 837	leave_rcu(nd);
 838	return true;
 839
 840out2:
 841	nd->path.mnt = NULL;
 842out1:
 843	nd->path.dentry = NULL;
 844out:
 845	leave_rcu(nd);
 846	return false;
 847out_dput:
 848	leave_rcu(nd);
 849	dput(dentry);
 850	return false;
 851}
 852
 853static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 854{
 855	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 856		return dentry->d_op->d_revalidate(dentry, flags);
 857	else
 858		return 1;
 859}
 860
 861/**
 862 * complete_walk - successful completion of path walk
 863 * @nd:  pointer nameidata
 864 *
 865 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 866 * Revalidate the final result, unless we'd already done that during
 867 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 868 * success, -error on failure.  In case of failure caller does not
 869 * need to drop nd->path.
 870 */
 871static int complete_walk(struct nameidata *nd)
 872{
 873	struct dentry *dentry = nd->path.dentry;
 874	int status;
 875
 876	if (nd->flags & LOOKUP_RCU) {
 877		/*
 878		 * We don't want to zero nd->root for scoped-lookups or
 879		 * externally-managed nd->root.
 880		 */
 881		if (!(nd->state & ND_ROOT_PRESET))
 882			if (!(nd->flags & LOOKUP_IS_SCOPED))
 883				nd->root.mnt = NULL;
 884		nd->flags &= ~LOOKUP_CACHED;
 885		if (!try_to_unlazy(nd))
 886			return -ECHILD;
 887	}
 888
 889	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
 890		/*
 891		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
 892		 * ever step outside the root during lookup" and should already
 893		 * be guaranteed by the rest of namei, we want to avoid a namei
 894		 * BUG resulting in userspace being given a path that was not
 895		 * scoped within the root at some point during the lookup.
 896		 *
 897		 * So, do a final sanity-check to make sure that in the
 898		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
 899		 * we won't silently return an fd completely outside of the
 900		 * requested root to userspace.
 901		 *
 902		 * Userspace could move the path outside the root after this
 903		 * check, but as discussed elsewhere this is not a concern (the
 904		 * resolved file was inside the root at some point).
 905		 */
 906		if (!path_is_under(&nd->path, &nd->root))
 907			return -EXDEV;
 908	}
 909
 910	if (likely(!(nd->state & ND_JUMPED)))
 911		return 0;
 912
 913	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 914		return 0;
 915
 916	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 917	if (status > 0)
 918		return 0;
 919
 920	if (!status)
 921		status = -ESTALE;
 922
 923	return status;
 924}
 925
 926static int set_root(struct nameidata *nd)
 927{
 928	struct fs_struct *fs = current->fs;
 929
 930	/*
 931	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
 932	 * still have to ensure it doesn't happen because it will cause a breakout
 933	 * from the dirfd.
 934	 */
 935	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
 936		return -ENOTRECOVERABLE;
 937
 938	if (nd->flags & LOOKUP_RCU) {
 939		unsigned seq;
 940
 941		do {
 942			seq = read_seqcount_begin(&fs->seq);
 943			nd->root = fs->root;
 944			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 945		} while (read_seqcount_retry(&fs->seq, seq));
 946	} else {
 947		get_fs_root(fs, &nd->root);
 948		nd->state |= ND_ROOT_GRABBED;
 949	}
 950	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 951}
 952
 953static int nd_jump_root(struct nameidata *nd)
 954{
 955	if (unlikely(nd->flags & LOOKUP_BENEATH))
 956		return -EXDEV;
 957	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
 958		/* Absolute path arguments to path_init() are allowed. */
 959		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
 960			return -EXDEV;
 961	}
 962	if (!nd->root.mnt) {
 963		int error = set_root(nd);
 964		if (error)
 965			return error;
 966	}
 967	if (nd->flags & LOOKUP_RCU) {
 968		struct dentry *d;
 969		nd->path = nd->root;
 970		d = nd->path.dentry;
 971		nd->inode = d->d_inode;
 972		nd->seq = nd->root_seq;
 973		if (read_seqcount_retry(&d->d_seq, nd->seq))
 974			return -ECHILD;
 975	} else {
 976		path_put(&nd->path);
 977		nd->path = nd->root;
 978		path_get(&nd->path);
 979		nd->inode = nd->path.dentry->d_inode;
 980	}
 981	nd->state |= ND_JUMPED;
 982	return 0;
 983}
 984
 985/*
 986 * Helper to directly jump to a known parsed path from ->get_link,
 987 * caller must have taken a reference to path beforehand.
 988 */
 989int nd_jump_link(const struct path *path)
 990{
 991	int error = -ELOOP;
 992	struct nameidata *nd = current->nameidata;
 
 993
 994	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
 995		goto err;
 996
 997	error = -EXDEV;
 998	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
 999		if (nd->path.mnt != path->mnt)
1000			goto err;
1001	}
1002	/* Not currently safe for scoped-lookups. */
1003	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1004		goto err;
1005
1006	path_put(&nd->path);
1007	nd->path = *path;
1008	nd->inode = nd->path.dentry->d_inode;
1009	nd->state |= ND_JUMPED;
1010	return 0;
1011
1012err:
1013	path_put(path);
1014	return error;
1015}
1016
1017static inline void put_link(struct nameidata *nd)
1018{
1019	struct saved *last = nd->stack + --nd->depth;
1020	do_delayed_call(&last->done);
1021	if (!(nd->flags & LOOKUP_RCU))
1022		path_put(&last->link);
1023}
1024
1025static int sysctl_protected_symlinks __read_mostly;
1026static int sysctl_protected_hardlinks __read_mostly;
1027static int sysctl_protected_fifos __read_mostly;
1028static int sysctl_protected_regular __read_mostly;
1029
1030#ifdef CONFIG_SYSCTL
1031static struct ctl_table namei_sysctls[] = {
1032	{
1033		.procname	= "protected_symlinks",
1034		.data		= &sysctl_protected_symlinks,
1035		.maxlen		= sizeof(int),
1036		.mode		= 0644,
1037		.proc_handler	= proc_dointvec_minmax,
1038		.extra1		= SYSCTL_ZERO,
1039		.extra2		= SYSCTL_ONE,
1040	},
1041	{
1042		.procname	= "protected_hardlinks",
1043		.data		= &sysctl_protected_hardlinks,
1044		.maxlen		= sizeof(int),
1045		.mode		= 0644,
1046		.proc_handler	= proc_dointvec_minmax,
1047		.extra1		= SYSCTL_ZERO,
1048		.extra2		= SYSCTL_ONE,
1049	},
1050	{
1051		.procname	= "protected_fifos",
1052		.data		= &sysctl_protected_fifos,
1053		.maxlen		= sizeof(int),
1054		.mode		= 0644,
1055		.proc_handler	= proc_dointvec_minmax,
1056		.extra1		= SYSCTL_ZERO,
1057		.extra2		= SYSCTL_TWO,
1058	},
1059	{
1060		.procname	= "protected_regular",
1061		.data		= &sysctl_protected_regular,
1062		.maxlen		= sizeof(int),
1063		.mode		= 0644,
1064		.proc_handler	= proc_dointvec_minmax,
1065		.extra1		= SYSCTL_ZERO,
1066		.extra2		= SYSCTL_TWO,
1067	},
1068	{ }
1069};
1070
1071static int __init init_fs_namei_sysctls(void)
1072{
1073	register_sysctl_init("fs", namei_sysctls);
1074	return 0;
1075}
1076fs_initcall(init_fs_namei_sysctls);
1077
1078#endif /* CONFIG_SYSCTL */
1079
1080/**
1081 * may_follow_link - Check symlink following for unsafe situations
1082 * @nd: nameidata pathwalk data
1083 *
1084 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1085 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1086 * in a sticky world-writable directory. This is to protect privileged
1087 * processes from failing races against path names that may change out
1088 * from under them by way of other users creating malicious symlinks.
1089 * It will permit symlinks to be followed only when outside a sticky
1090 * world-writable directory, or when the uid of the symlink and follower
1091 * match, or when the directory owner matches the symlink's owner.
1092 *
1093 * Returns 0 if following the symlink is allowed, -ve on error.
1094 */
1095static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1096{
1097	struct user_namespace *mnt_userns;
1098	vfsuid_t vfsuid;
 
1099
1100	if (!sysctl_protected_symlinks)
1101		return 0;
1102
1103	mnt_userns = mnt_user_ns(nd->path.mnt);
1104	vfsuid = i_uid_into_vfsuid(mnt_userns, inode);
1105	/* Allowed if owner and follower match. */
1106	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
 
1107		return 0;
1108
1109	/* Allowed if parent directory not sticky and world-writable. */
1110	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 
1111		return 0;
1112
1113	/* Allowed if parent directory and link owner match. */
1114	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
 
1115		return 0;
1116
1117	if (nd->flags & LOOKUP_RCU)
1118		return -ECHILD;
1119
1120	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1121	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1122	return -EACCES;
1123}
1124
1125/**
1126 * safe_hardlink_source - Check for safe hardlink conditions
1127 * @mnt_userns:	user namespace of the mount the inode was found from
1128 * @inode: the source inode to hardlink from
1129 *
1130 * Return false if at least one of the following conditions:
1131 *    - inode is not a regular file
1132 *    - inode is setuid
1133 *    - inode is setgid and group-exec
1134 *    - access failure for read and write
1135 *
1136 * Otherwise returns true.
1137 */
1138static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1139				 struct inode *inode)
1140{
1141	umode_t mode = inode->i_mode;
1142
1143	/* Special files should not get pinned to the filesystem. */
1144	if (!S_ISREG(mode))
1145		return false;
1146
1147	/* Setuid files should not get pinned to the filesystem. */
1148	if (mode & S_ISUID)
1149		return false;
1150
1151	/* Executable setgid files should not get pinned to the filesystem. */
1152	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1153		return false;
1154
1155	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1156	if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1157		return false;
1158
1159	return true;
1160}
1161
1162/**
1163 * may_linkat - Check permissions for creating a hardlink
1164 * @mnt_userns:	user namespace of the mount the inode was found from
1165 * @link: the source to hardlink from
1166 *
1167 * Block hardlink when all of:
1168 *  - sysctl_protected_hardlinks enabled
1169 *  - fsuid does not match inode
1170 *  - hardlink source is unsafe (see safe_hardlink_source() above)
1171 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1172 *
1173 * If the inode has been found through an idmapped mount the user namespace of
1174 * the vfsmount must be passed through @mnt_userns. This function will then take
1175 * care to map the inode according to @mnt_userns before checking permissions.
1176 * On non-idmapped mounts or if permission checking is to be performed on the
1177 * raw inode simply passs init_user_ns.
1178 *
1179 * Returns 0 if successful, -ve on error.
1180 */
1181int may_linkat(struct user_namespace *mnt_userns, const struct path *link)
1182{
1183	struct inode *inode = link->dentry->d_inode;
1184
1185	/* Inode writeback is not safe when the uid or gid are invalid. */
1186	if (!vfsuid_valid(i_uid_into_vfsuid(mnt_userns, inode)) ||
1187	    !vfsgid_valid(i_gid_into_vfsgid(mnt_userns, inode)))
1188		return -EOVERFLOW;
1189
1190	if (!sysctl_protected_hardlinks)
1191		return 0;
1192
1193	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1194	 * otherwise, it must be a safe source.
1195	 */
1196	if (safe_hardlink_source(mnt_userns, inode) ||
1197	    inode_owner_or_capable(mnt_userns, inode))
1198		return 0;
1199
1200	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1201	return -EPERM;
1202}
1203
1204/**
1205 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1206 *			  should be allowed, or not, on files that already
1207 *			  exist.
1208 * @mnt_userns:	user namespace of the mount the inode was found from
1209 * @nd: nameidata pathwalk data
1210 * @inode: the inode of the file to open
1211 *
1212 * Block an O_CREAT open of a FIFO (or a regular file) when:
1213 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1214 *   - the file already exists
1215 *   - we are in a sticky directory
1216 *   - we don't own the file
1217 *   - the owner of the directory doesn't own the file
1218 *   - the directory is world writable
1219 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1220 * the directory doesn't have to be world writable: being group writable will
1221 * be enough.
1222 *
1223 * If the inode has been found through an idmapped mount the user namespace of
1224 * the vfsmount must be passed through @mnt_userns. This function will then take
1225 * care to map the inode according to @mnt_userns before checking permissions.
1226 * On non-idmapped mounts or if permission checking is to be performed on the
1227 * raw inode simply passs init_user_ns.
1228 *
1229 * Returns 0 if the open is allowed, -ve on error.
1230 */
1231static int may_create_in_sticky(struct user_namespace *mnt_userns,
1232				struct nameidata *nd, struct inode *const inode)
1233{
1234	umode_t dir_mode = nd->dir_mode;
1235	vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1236
1237	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1238	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1239	    likely(!(dir_mode & S_ISVTX)) ||
1240	    vfsuid_eq(i_uid_into_vfsuid(mnt_userns, inode), dir_vfsuid) ||
1241	    vfsuid_eq_kuid(i_uid_into_vfsuid(mnt_userns, inode), current_fsuid()))
1242		return 0;
1243
1244	if (likely(dir_mode & 0002) ||
1245	    (dir_mode & 0020 &&
1246	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1247	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1248		const char *operation = S_ISFIFO(inode->i_mode) ?
1249					"sticky_create_fifo" :
1250					"sticky_create_regular";
1251		audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1252		return -EACCES;
1253	}
1254	return 0;
1255}
1256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1257/*
1258 * follow_up - Find the mountpoint of path's vfsmount
1259 *
1260 * Given a path, find the mountpoint of its source file system.
1261 * Replace @path with the path of the mountpoint in the parent mount.
1262 * Up is towards /.
1263 *
1264 * Return 1 if we went up a level and 0 if we were already at the
1265 * root.
1266 */
1267int follow_up(struct path *path)
1268{
1269	struct mount *mnt = real_mount(path->mnt);
1270	struct mount *parent;
1271	struct dentry *mountpoint;
1272
1273	read_seqlock_excl(&mount_lock);
1274	parent = mnt->mnt_parent;
1275	if (parent == mnt) {
1276		read_sequnlock_excl(&mount_lock);
1277		return 0;
1278	}
1279	mntget(&parent->mnt);
1280	mountpoint = dget(mnt->mnt_mountpoint);
1281	read_sequnlock_excl(&mount_lock);
1282	dput(path->dentry);
1283	path->dentry = mountpoint;
1284	mntput(path->mnt);
1285	path->mnt = &parent->mnt;
1286	return 1;
1287}
1288EXPORT_SYMBOL(follow_up);
1289
1290static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1291				  struct path *path, unsigned *seqp)
1292{
1293	while (mnt_has_parent(m)) {
1294		struct dentry *mountpoint = m->mnt_mountpoint;
1295
1296		m = m->mnt_parent;
1297		if (unlikely(root->dentry == mountpoint &&
1298			     root->mnt == &m->mnt))
1299			break;
1300		if (mountpoint != m->mnt.mnt_root) {
1301			path->mnt = &m->mnt;
1302			path->dentry = mountpoint;
1303			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1304			return true;
1305		}
1306	}
1307	return false;
1308}
1309
1310static bool choose_mountpoint(struct mount *m, const struct path *root,
1311			      struct path *path)
1312{
1313	bool found;
1314
1315	rcu_read_lock();
1316	while (1) {
1317		unsigned seq, mseq = read_seqbegin(&mount_lock);
1318
1319		found = choose_mountpoint_rcu(m, root, path, &seq);
1320		if (unlikely(!found)) {
1321			if (!read_seqretry(&mount_lock, mseq))
1322				break;
1323		} else {
1324			if (likely(__legitimize_path(path, seq, mseq)))
1325				break;
1326			rcu_read_unlock();
1327			path_put(path);
1328			rcu_read_lock();
1329		}
1330	}
1331	rcu_read_unlock();
1332	return found;
1333}
1334
1335/*
1336 * Perform an automount
1337 * - return -EISDIR to tell follow_managed() to stop and return the path we
1338 *   were called with.
1339 */
1340static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
 
1341{
1342	struct dentry *dentry = path->dentry;
 
 
 
 
1343
1344	/* We don't want to mount if someone's just doing a stat -
1345	 * unless they're stat'ing a directory and appended a '/' to
1346	 * the name.
1347	 *
1348	 * We do, however, want to mount if someone wants to open or
1349	 * create a file of any type under the mountpoint, wants to
1350	 * traverse through the mountpoint or wants to open the
1351	 * mounted directory.  Also, autofs may mark negative dentries
1352	 * as being automount points.  These will need the attentions
1353	 * of the daemon to instantiate them before they can be used.
1354	 */
1355	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1356			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1357	    dentry->d_inode)
1358		return -EISDIR;
1359
1360	if (count && (*count)++ >= MAXSYMLINKS)
 
1361		return -ELOOP;
1362
1363	return finish_automount(dentry->d_op->d_automount(path), path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364}
1365
1366/*
1367 * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1368 * dentries are pinned but not locked here, so negative dentry can go
1369 * positive right under us.  Use of smp_load_acquire() provides a barrier
1370 * sufficient for ->d_inode and ->d_flags consistency.
 
 
 
 
1371 */
1372static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1373			     int *count, unsigned lookup_flags)
1374{
1375	struct vfsmount *mnt = path->mnt;
 
1376	bool need_mntput = false;
1377	int ret = 0;
1378
1379	while (flags & DCACHE_MANAGED_DENTRY) {
 
 
 
 
 
1380		/* Allow the filesystem to manage the transit without i_mutex
1381		 * being held. */
1382		if (flags & DCACHE_MANAGE_TRANSIT) {
 
 
1383			ret = path->dentry->d_op->d_manage(path, false);
1384			flags = smp_load_acquire(&path->dentry->d_flags);
1385			if (ret < 0)
1386				break;
1387		}
1388
1389		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
 
1390			struct vfsmount *mounted = lookup_mnt(path);
1391			if (mounted) {		// ... in our namespace
1392				dput(path->dentry);
1393				if (need_mntput)
1394					mntput(path->mnt);
1395				path->mnt = mounted;
1396				path->dentry = dget(mounted->mnt_root);
1397				// here we know it's positive
1398				flags = path->dentry->d_flags;
1399				need_mntput = true;
1400				continue;
1401			}
 
 
 
 
 
1402		}
1403
1404		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1405			break;
 
 
 
 
 
1406
1407		// uncovered automount point
1408		ret = follow_automount(path, count, lookup_flags);
1409		flags = smp_load_acquire(&path->dentry->d_flags);
1410		if (ret < 0)
1411			break;
1412	}
1413
1414	if (ret == -EISDIR)
1415		ret = 0;
1416	// possible if you race with several mount --move
1417	if (need_mntput && path->mnt == mnt)
1418		mntput(path->mnt);
1419	if (!ret && unlikely(d_flags_negative(flags)))
1420		ret = -ENOENT;
1421	*jumped = need_mntput;
 
 
 
1422	return ret;
1423}
1424
1425static inline int traverse_mounts(struct path *path, bool *jumped,
1426				  int *count, unsigned lookup_flags)
1427{
1428	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1429
1430	/* fastpath */
1431	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1432		*jumped = false;
1433		if (unlikely(d_flags_negative(flags)))
1434			return -ENOENT;
1435		return 0;
1436	}
1437	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1438}
1439
1440int follow_down_one(struct path *path)
1441{
1442	struct vfsmount *mounted;
1443
1444	mounted = lookup_mnt(path);
1445	if (mounted) {
1446		dput(path->dentry);
1447		mntput(path->mnt);
1448		path->mnt = mounted;
1449		path->dentry = dget(mounted->mnt_root);
1450		return 1;
1451	}
1452	return 0;
1453}
1454EXPORT_SYMBOL(follow_down_one);
1455
1456/*
1457 * Follow down to the covering mount currently visible to userspace.  At each
1458 * point, the filesystem owning that dentry may be queried as to whether the
1459 * caller is permitted to proceed or not.
1460 */
1461int follow_down(struct path *path)
1462{
1463	struct vfsmount *mnt = path->mnt;
1464	bool jumped;
1465	int ret = traverse_mounts(path, &jumped, NULL, 0);
1466
1467	if (path->mnt != mnt)
1468		mntput(mnt);
1469	return ret;
1470}
1471EXPORT_SYMBOL(follow_down);
1472
1473/*
1474 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1475 * we meet a managed dentry that would need blocking.
1476 */
1477static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
 
1478{
1479	struct dentry *dentry = path->dentry;
1480	unsigned int flags = dentry->d_flags;
1481
1482	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1483		return true;
1484
1485	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1486		return false;
1487
1488	for (;;) {
 
1489		/*
1490		 * Don't forget we might have a non-mountpoint managed dentry
1491		 * that wants to block transit.
1492		 */
1493		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1494			int res = dentry->d_op->d_manage(path, true);
1495			if (res)
1496				return res == -EISDIR;
1497			flags = dentry->d_flags;
 
 
 
1498		}
1499
1500		if (flags & DCACHE_MOUNTED) {
1501			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1502			if (mounted) {
1503				path->mnt = &mounted->mnt;
1504				dentry = path->dentry = mounted->mnt.mnt_root;
1505				nd->state |= ND_JUMPED;
1506				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1507				flags = dentry->d_flags;
1508				// makes sure that non-RCU pathwalk could reach
1509				// this state.
1510				if (read_seqretry(&mount_lock, nd->m_seq))
1511					return false;
1512				continue;
1513			}
1514			if (read_seqretry(&mount_lock, nd->m_seq))
1515				return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516		}
1517		return !(flags & DCACHE_NEED_AUTOMOUNT);
1518	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519}
1520
1521static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1522			  struct path *path)
 
 
 
 
1523{
1524	bool jumped;
1525	int ret;
1526
1527	path->mnt = nd->path.mnt;
1528	path->dentry = dentry;
1529	if (nd->flags & LOOKUP_RCU) {
1530		unsigned int seq = nd->next_seq;
1531		if (likely(__follow_mount_rcu(nd, path)))
1532			return 0;
1533		// *path and nd->next_seq might've been clobbered
1534		path->mnt = nd->path.mnt;
1535		path->dentry = dentry;
1536		nd->next_seq = seq;
1537		if (!try_to_unlazy_next(nd, dentry))
1538			return -ECHILD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539	}
1540	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1541	if (jumped) {
1542		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1543			ret = -EXDEV;
1544		else
1545			nd->state |= ND_JUMPED;
 
 
 
 
 
 
 
 
 
 
 
1546	}
1547	if (unlikely(ret)) {
1548		dput(path->dentry);
1549		if (path->mnt != nd->path.mnt)
1550			mntput(path->mnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1551	}
1552	return ret;
 
 
1553}
1554
1555/*
1556 * This looks up the name in dcache and possibly revalidates the found dentry.
1557 * NULL is returned if the dentry does not exist in the cache.
1558 */
1559static struct dentry *lookup_dcache(const struct qstr *name,
1560				    struct dentry *dir,
1561				    unsigned int flags)
1562{
1563	struct dentry *dentry = d_lookup(dir, name);
1564	if (dentry) {
1565		int error = d_revalidate(dentry, flags);
1566		if (unlikely(error <= 0)) {
1567			if (!error)
1568				d_invalidate(dentry);
1569			dput(dentry);
1570			return ERR_PTR(error);
1571		}
1572	}
1573	return dentry;
1574}
1575
1576/*
1577 * Parent directory has inode locked exclusive.  This is one
1578 * and only case when ->lookup() gets called on non in-lookup
1579 * dentries - as the matter of fact, this only gets called
1580 * when directory is guaranteed to have no in-lookup children
1581 * at all.
1582 */
1583static struct dentry *__lookup_hash(const struct qstr *name,
1584		struct dentry *base, unsigned int flags)
1585{
1586	struct dentry *dentry = lookup_dcache(name, base, flags);
1587	struct dentry *old;
1588	struct inode *dir = base->d_inode;
1589
1590	if (dentry)
1591		return dentry;
1592
1593	/* Don't create child dentry for a dead directory. */
1594	if (unlikely(IS_DEADDIR(dir)))
1595		return ERR_PTR(-ENOENT);
1596
1597	dentry = d_alloc(base, name);
1598	if (unlikely(!dentry))
1599		return ERR_PTR(-ENOMEM);
1600
1601	old = dir->i_op->lookup(dir, dentry, flags);
1602	if (unlikely(old)) {
1603		dput(dentry);
1604		dentry = old;
1605	}
1606	return dentry;
1607}
1608
1609static struct dentry *lookup_fast(struct nameidata *nd)
 
 
1610{
 
1611	struct dentry *dentry, *parent = nd->path.dentry;
1612	int status = 1;
 
1613
1614	/*
1615	 * Rename seqlock is not required here because in the off chance
1616	 * of a false negative due to a concurrent rename, the caller is
1617	 * going to fall back to non-racy lookup.
1618	 */
1619	if (nd->flags & LOOKUP_RCU) {
1620		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
 
 
1621		if (unlikely(!dentry)) {
1622			if (!try_to_unlazy(nd))
1623				return ERR_PTR(-ECHILD);
1624			return NULL;
1625		}
1626
1627		/*
 
 
 
 
 
 
 
 
 
1628		 * This sequence count validates that the parent had no
1629		 * changes while we did the lookup of the dentry above.
 
 
 
1630		 */
1631		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1632			return ERR_PTR(-ECHILD);
1633
 
1634		status = d_revalidate(dentry, nd->flags);
1635		if (likely(status > 0))
1636			return dentry;
1637		if (!try_to_unlazy_next(nd, dentry))
1638			return ERR_PTR(-ECHILD);
1639		if (status == -ECHILD)
 
 
 
 
 
 
 
 
 
 
1640			/* we'd been told to redo it in non-rcu mode */
1641			status = d_revalidate(dentry, nd->flags);
1642	} else {
1643		dentry = __d_lookup(parent, &nd->last);
1644		if (unlikely(!dentry))
1645			return NULL;
1646		status = d_revalidate(dentry, nd->flags);
1647	}
1648	if (unlikely(status <= 0)) {
1649		if (!status)
1650			d_invalidate(dentry);
1651		dput(dentry);
1652		return ERR_PTR(status);
 
 
 
 
1653	}
1654	return dentry;
 
 
 
 
 
 
1655}
1656
1657/* Fast lookup failed, do it the slow way */
1658static struct dentry *__lookup_slow(const struct qstr *name,
1659				    struct dentry *dir,
1660				    unsigned int flags)
1661{
1662	struct dentry *dentry, *old;
1663	struct inode *inode = dir->d_inode;
1664	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1665
1666	/* Don't go there if it's already dead */
1667	if (unlikely(IS_DEADDIR(inode)))
1668		return ERR_PTR(-ENOENT);
1669again:
1670	dentry = d_alloc_parallel(dir, name, &wq);
1671	if (IS_ERR(dentry))
1672		return dentry;
1673	if (unlikely(!d_in_lookup(dentry))) {
1674		int error = d_revalidate(dentry, flags);
1675		if (unlikely(error <= 0)) {
1676			if (!error) {
1677				d_invalidate(dentry);
 
 
 
 
1678				dput(dentry);
1679				goto again;
1680			}
1681			dput(dentry);
1682			dentry = ERR_PTR(error);
1683		}
1684	} else {
1685		old = inode->i_op->lookup(inode, dentry, flags);
1686		d_lookup_done(dentry);
1687		if (unlikely(old)) {
1688			dput(dentry);
1689			dentry = old;
1690		}
1691	}
1692	return dentry;
1693}
1694
1695static struct dentry *lookup_slow(const struct qstr *name,
1696				  struct dentry *dir,
1697				  unsigned int flags)
1698{
1699	struct inode *inode = dir->d_inode;
1700	struct dentry *res;
1701	inode_lock_shared(inode);
1702	res = __lookup_slow(name, dir, flags);
1703	inode_unlock_shared(inode);
1704	return res;
1705}
1706
1707static inline int may_lookup(struct user_namespace *mnt_userns,
1708			     struct nameidata *nd)
1709{
1710	if (nd->flags & LOOKUP_RCU) {
1711		int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1712		if (err != -ECHILD || !try_to_unlazy(nd))
1713			return err;
 
 
1714	}
1715	return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1716}
1717
1718static int reserve_stack(struct nameidata *nd, struct path *link)
1719{
1720	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1721		return -ELOOP;
1722
1723	if (likely(nd->depth != EMBEDDED_LEVELS))
1724		return 0;
1725	if (likely(nd->stack != nd->internal))
1726		return 0;
1727	if (likely(nd_alloc_stack(nd)))
1728		return 0;
1729
1730	if (nd->flags & LOOKUP_RCU) {
1731		// we need to grab link before we do unlazy.  And we can't skip
1732		// unlazy even if we fail to grab the link - cleanup needs it
1733		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1734
1735		if (!try_to_unlazy(nd) || !grabbed_link)
1736			return -ECHILD;
1737
1738		if (nd_alloc_stack(nd))
1739			return 0;
1740	}
1741	return -ENOMEM;
1742}
1743
1744enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1745
1746static const char *pick_link(struct nameidata *nd, struct path *link,
1747		     struct inode *inode, int flags)
1748{
 
1749	struct saved *last;
1750	const char *res;
1751	int error = reserve_stack(nd, link);
1752
 
 
 
 
 
 
1753	if (unlikely(error)) {
1754		if (!(nd->flags & LOOKUP_RCU))
 
 
 
 
 
 
 
 
 
 
 
1755			path_put(link);
1756		return ERR_PTR(error);
 
1757	}
 
1758	last = nd->stack + nd->depth++;
1759	last->link = *link;
1760	clear_delayed_call(&last->done);
1761	last->seq = nd->next_seq;
1762
1763	if (flags & WALK_TRAILING) {
1764		error = may_follow_link(nd, inode);
1765		if (unlikely(error))
1766			return ERR_PTR(error);
1767	}
1768
1769	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1770			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1771		return ERR_PTR(-ELOOP);
1772
1773	if (!(nd->flags & LOOKUP_RCU)) {
1774		touch_atime(&last->link);
1775		cond_resched();
1776	} else if (atime_needs_update(&last->link, inode)) {
1777		if (!try_to_unlazy(nd))
1778			return ERR_PTR(-ECHILD);
1779		touch_atime(&last->link);
1780	}
1781
1782	error = security_inode_follow_link(link->dentry, inode,
1783					   nd->flags & LOOKUP_RCU);
1784	if (unlikely(error))
1785		return ERR_PTR(error);
1786
1787	res = READ_ONCE(inode->i_link);
1788	if (!res) {
1789		const char * (*get)(struct dentry *, struct inode *,
1790				struct delayed_call *);
1791		get = inode->i_op->get_link;
1792		if (nd->flags & LOOKUP_RCU) {
1793			res = get(NULL, inode, &last->done);
1794			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1795				res = get(link->dentry, inode, &last->done);
1796		} else {
1797			res = get(link->dentry, inode, &last->done);
1798		}
1799		if (!res)
1800			goto all_done;
1801		if (IS_ERR(res))
1802			return res;
1803	}
1804	if (*res == '/') {
1805		error = nd_jump_root(nd);
1806		if (unlikely(error))
1807			return ERR_PTR(error);
1808		while (unlikely(*++res == '/'))
1809			;
1810	}
1811	if (*res)
1812		return res;
1813all_done: // pure jump
1814	put_link(nd);
1815	return NULL;
1816}
1817
1818/*
1819 * Do we need to follow links? We _really_ want to be able
1820 * to do this check without having to look at inode->i_op,
1821 * so we keep a cache of "no, this doesn't need follow_link"
1822 * for the common case.
1823 *
1824 * NOTE: dentry must be what nd->next_seq had been sampled from.
1825 */
1826static const char *step_into(struct nameidata *nd, int flags,
1827		     struct dentry *dentry)
1828{
1829	struct path path;
1830	struct inode *inode;
1831	int err = handle_mounts(nd, dentry, &path);
1832
1833	if (err < 0)
1834		return ERR_PTR(err);
1835	inode = path.dentry->d_inode;
1836	if (likely(!d_is_symlink(path.dentry)) ||
1837	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1838	   (flags & WALK_NOFOLLOW)) {
1839		/* not a symlink or should not follow */
1840		if (nd->flags & LOOKUP_RCU) {
1841			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1842				return ERR_PTR(-ECHILD);
1843			if (unlikely(!inode))
1844				return ERR_PTR(-ENOENT);
1845		} else {
1846			dput(nd->path.dentry);
1847			if (nd->path.mnt != path.mnt)
1848				mntput(nd->path.mnt);
1849		}
1850		nd->path = path;
1851		nd->inode = inode;
1852		nd->seq = nd->next_seq;
1853		return NULL;
1854	}
 
1855	if (nd->flags & LOOKUP_RCU) {
1856		/* make sure that d_is_symlink above matches inode */
1857		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1858			return ERR_PTR(-ECHILD);
1859	} else {
1860		if (path.mnt == nd->path.mnt)
1861			mntget(path.mnt);
1862	}
1863	return pick_link(nd, &path, inode, flags);
1864}
1865
1866static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1867{
1868	struct dentry *parent, *old;
1869
1870	if (path_equal(&nd->path, &nd->root))
1871		goto in_root;
1872	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1873		struct path path;
1874		unsigned seq;
1875		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1876					   &nd->root, &path, &seq))
1877			goto in_root;
1878		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1879			return ERR_PTR(-ECHILD);
1880		nd->path = path;
1881		nd->inode = path.dentry->d_inode;
1882		nd->seq = seq;
1883		// makes sure that non-RCU pathwalk could reach this state
1884		if (read_seqretry(&mount_lock, nd->m_seq))
1885			return ERR_PTR(-ECHILD);
1886		/* we know that mountpoint was pinned */
1887	}
1888	old = nd->path.dentry;
1889	parent = old->d_parent;
1890	nd->next_seq = read_seqcount_begin(&parent->d_seq);
1891	// makes sure that non-RCU pathwalk could reach this state
1892	if (read_seqcount_retry(&old->d_seq, nd->seq))
1893		return ERR_PTR(-ECHILD);
1894	if (unlikely(!path_connected(nd->path.mnt, parent)))
1895		return ERR_PTR(-ECHILD);
1896	return parent;
1897in_root:
1898	if (read_seqretry(&mount_lock, nd->m_seq))
1899		return ERR_PTR(-ECHILD);
1900	if (unlikely(nd->flags & LOOKUP_BENEATH))
1901		return ERR_PTR(-ECHILD);
1902	nd->next_seq = nd->seq;
1903	return nd->path.dentry;
1904}
1905
1906static struct dentry *follow_dotdot(struct nameidata *nd)
1907{
1908	struct dentry *parent;
1909
1910	if (path_equal(&nd->path, &nd->root))
1911		goto in_root;
1912	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1913		struct path path;
1914
1915		if (!choose_mountpoint(real_mount(nd->path.mnt),
1916				       &nd->root, &path))
1917			goto in_root;
1918		path_put(&nd->path);
1919		nd->path = path;
1920		nd->inode = path.dentry->d_inode;
1921		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1922			return ERR_PTR(-EXDEV);
1923	}
1924	/* rare case of legitimate dget_parent()... */
1925	parent = dget_parent(nd->path.dentry);
1926	if (unlikely(!path_connected(nd->path.mnt, parent))) {
1927		dput(parent);
1928		return ERR_PTR(-ENOENT);
1929	}
1930	return parent;
1931
1932in_root:
1933	if (unlikely(nd->flags & LOOKUP_BENEATH))
1934		return ERR_PTR(-EXDEV);
1935	return dget(nd->path.dentry);
1936}
1937
1938static const char *handle_dots(struct nameidata *nd, int type)
1939{
1940	if (type == LAST_DOTDOT) {
1941		const char *error = NULL;
1942		struct dentry *parent;
1943
1944		if (!nd->root.mnt) {
1945			error = ERR_PTR(set_root(nd));
1946			if (error)
1947				return error;
1948		}
1949		if (nd->flags & LOOKUP_RCU)
1950			parent = follow_dotdot_rcu(nd);
1951		else
1952			parent = follow_dotdot(nd);
1953		if (IS_ERR(parent))
1954			return ERR_CAST(parent);
1955		error = step_into(nd, WALK_NOFOLLOW, parent);
1956		if (unlikely(error))
1957			return error;
1958
1959		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1960			/*
1961			 * If there was a racing rename or mount along our
1962			 * path, then we can't be sure that ".." hasn't jumped
1963			 * above nd->root (and so userspace should retry or use
1964			 * some fallback).
1965			 */
1966			smp_rmb();
1967			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1968				return ERR_PTR(-EAGAIN);
1969			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1970				return ERR_PTR(-EAGAIN);
1971		}
1972	}
1973	return NULL;
1974}
1975
1976static const char *walk_component(struct nameidata *nd, int flags)
1977{
1978	struct dentry *dentry;
1979	/*
1980	 * "." and ".." are special - ".." especially so because it has
1981	 * to be able to know about the current root directory and
1982	 * parent relationships.
1983	 */
1984	if (unlikely(nd->last_type != LAST_NORM)) {
 
1985		if (!(flags & WALK_MORE) && nd->depth)
1986			put_link(nd);
1987		return handle_dots(nd, nd->last_type);
1988	}
1989	dentry = lookup_fast(nd);
1990	if (IS_ERR(dentry))
1991		return ERR_CAST(dentry);
1992	if (unlikely(!dentry)) {
1993		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1994		if (IS_ERR(dentry))
1995			return ERR_CAST(dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1996	}
1997	if (!(flags & WALK_MORE) && nd->depth)
1998		put_link(nd);
1999	return step_into(nd, flags, dentry);
2000}
2001
2002/*
2003 * We can do the critical dentry name comparison and hashing
2004 * operations one word at a time, but we are limited to:
2005 *
2006 * - Architectures with fast unaligned word accesses. We could
2007 *   do a "get_unaligned()" if this helps and is sufficiently
2008 *   fast.
2009 *
2010 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2011 *   do not trap on the (extremely unlikely) case of a page
2012 *   crossing operation.
2013 *
2014 * - Furthermore, we need an efficient 64-bit compile for the
2015 *   64-bit case in order to generate the "number of bytes in
2016 *   the final mask". Again, that could be replaced with a
2017 *   efficient population count instruction or similar.
2018 */
2019#ifdef CONFIG_DCACHE_WORD_ACCESS
2020
2021#include <asm/word-at-a-time.h>
2022
2023#ifdef HASH_MIX
2024
2025/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2026
2027#elif defined(CONFIG_64BIT)
2028/*
2029 * Register pressure in the mixing function is an issue, particularly
2030 * on 32-bit x86, but almost any function requires one state value and
2031 * one temporary.  Instead, use a function designed for two state values
2032 * and no temporaries.
2033 *
2034 * This function cannot create a collision in only two iterations, so
2035 * we have two iterations to achieve avalanche.  In those two iterations,
2036 * we have six layers of mixing, which is enough to spread one bit's
2037 * influence out to 2^6 = 64 state bits.
2038 *
2039 * Rotate constants are scored by considering either 64 one-bit input
2040 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2041 * probability of that delta causing a change to each of the 128 output
2042 * bits, using a sample of random initial states.
2043 *
2044 * The Shannon entropy of the computed probabilities is then summed
2045 * to produce a score.  Ideally, any input change has a 50% chance of
2046 * toggling any given output bit.
2047 *
2048 * Mixing scores (in bits) for (12,45):
2049 * Input delta: 1-bit      2-bit
2050 * 1 round:     713.3    42542.6
2051 * 2 rounds:   2753.7   140389.8
2052 * 3 rounds:   5954.1   233458.2
2053 * 4 rounds:   7862.6   256672.2
2054 * Perfect:    8192     258048
2055 *            (64*128) (64*63/2 * 128)
2056 */
2057#define HASH_MIX(x, y, a)	\
2058	(	x ^= (a),	\
2059	y ^= x,	x = rol64(x,12),\
2060	x += y,	y = rol64(y,45),\
2061	y *= 9			)
2062
2063/*
2064 * Fold two longs into one 32-bit hash value.  This must be fast, but
2065 * latency isn't quite as critical, as there is a fair bit of additional
2066 * work done before the hash value is used.
2067 */
2068static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2069{
2070	y ^= x * GOLDEN_RATIO_64;
2071	y *= GOLDEN_RATIO_64;
2072	return y >> 32;
2073}
2074
2075#else	/* 32-bit case */
2076
2077/*
2078 * Mixing scores (in bits) for (7,20):
2079 * Input delta: 1-bit      2-bit
2080 * 1 round:     330.3     9201.6
2081 * 2 rounds:   1246.4    25475.4
2082 * 3 rounds:   1907.1    31295.1
2083 * 4 rounds:   2042.3    31718.6
2084 * Perfect:    2048      31744
2085 *            (32*64)   (32*31/2 * 64)
2086 */
2087#define HASH_MIX(x, y, a)	\
2088	(	x ^= (a),	\
2089	y ^= x,	x = rol32(x, 7),\
2090	x += y,	y = rol32(y,20),\
2091	y *= 9			)
2092
2093static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2094{
2095	/* Use arch-optimized multiply if one exists */
2096	return __hash_32(y ^ __hash_32(x));
2097}
2098
2099#endif
2100
2101/*
2102 * Return the hash of a string of known length.  This is carfully
2103 * designed to match hash_name(), which is the more critical function.
2104 * In particular, we must end by hashing a final word containing 0..7
2105 * payload bytes, to match the way that hash_name() iterates until it
2106 * finds the delimiter after the name.
2107 */
2108unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2109{
2110	unsigned long a, x = 0, y = (unsigned long)salt;
2111
2112	for (;;) {
2113		if (!len)
2114			goto done;
2115		a = load_unaligned_zeropad(name);
2116		if (len < sizeof(unsigned long))
2117			break;
2118		HASH_MIX(x, y, a);
2119		name += sizeof(unsigned long);
2120		len -= sizeof(unsigned long);
2121	}
2122	x ^= a & bytemask_from_count(len);
2123done:
2124	return fold_hash(x, y);
2125}
2126EXPORT_SYMBOL(full_name_hash);
2127
2128/* Return the "hash_len" (hash and length) of a null-terminated string */
2129u64 hashlen_string(const void *salt, const char *name)
2130{
2131	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2132	unsigned long adata, mask, len;
2133	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2134
2135	len = 0;
2136	goto inside;
2137
2138	do {
2139		HASH_MIX(x, y, a);
2140		len += sizeof(unsigned long);
2141inside:
2142		a = load_unaligned_zeropad(name+len);
2143	} while (!has_zero(a, &adata, &constants));
2144
2145	adata = prep_zero_mask(a, adata, &constants);
2146	mask = create_zero_mask(adata);
2147	x ^= a & zero_bytemask(mask);
2148
2149	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2150}
2151EXPORT_SYMBOL(hashlen_string);
2152
2153/*
2154 * Calculate the length and hash of the path component, and
2155 * return the "hash_len" as the result.
2156 */
2157static inline u64 hash_name(const void *salt, const char *name)
2158{
2159	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2160	unsigned long adata, bdata, mask, len;
2161	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2162
2163	len = 0;
2164	goto inside;
2165
2166	do {
2167		HASH_MIX(x, y, a);
2168		len += sizeof(unsigned long);
2169inside:
2170		a = load_unaligned_zeropad(name+len);
2171		b = a ^ REPEAT_BYTE('/');
2172	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2173
2174	adata = prep_zero_mask(a, adata, &constants);
2175	bdata = prep_zero_mask(b, bdata, &constants);
2176	mask = create_zero_mask(adata | bdata);
2177	x ^= a & zero_bytemask(mask);
2178
2179	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2180}
2181
2182#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2183
2184/* Return the hash of a string of known length */
2185unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2186{
2187	unsigned long hash = init_name_hash(salt);
2188	while (len--)
2189		hash = partial_name_hash((unsigned char)*name++, hash);
2190	return end_name_hash(hash);
2191}
2192EXPORT_SYMBOL(full_name_hash);
2193
2194/* Return the "hash_len" (hash and length) of a null-terminated string */
2195u64 hashlen_string(const void *salt, const char *name)
2196{
2197	unsigned long hash = init_name_hash(salt);
2198	unsigned long len = 0, c;
2199
2200	c = (unsigned char)*name;
2201	while (c) {
2202		len++;
2203		hash = partial_name_hash(c, hash);
2204		c = (unsigned char)name[len];
2205	}
2206	return hashlen_create(end_name_hash(hash), len);
2207}
2208EXPORT_SYMBOL(hashlen_string);
2209
2210/*
2211 * We know there's a real path component here of at least
2212 * one character.
2213 */
2214static inline u64 hash_name(const void *salt, const char *name)
2215{
2216	unsigned long hash = init_name_hash(salt);
2217	unsigned long len = 0, c;
2218
2219	c = (unsigned char)*name;
2220	do {
2221		len++;
2222		hash = partial_name_hash(c, hash);
2223		c = (unsigned char)name[len];
2224	} while (c && c != '/');
2225	return hashlen_create(end_name_hash(hash), len);
2226}
2227
2228#endif
2229
2230/*
2231 * Name resolution.
2232 * This is the basic name resolution function, turning a pathname into
2233 * the final dentry. We expect 'base' to be positive and a directory.
2234 *
2235 * Returns 0 and nd will have valid dentry and mnt on success.
2236 * Returns error and drops reference to input namei data on failure.
2237 */
2238static int link_path_walk(const char *name, struct nameidata *nd)
2239{
2240	int depth = 0; // depth <= nd->depth
2241	int err;
2242
2243	nd->last_type = LAST_ROOT;
2244	nd->flags |= LOOKUP_PARENT;
2245	if (IS_ERR(name))
2246		return PTR_ERR(name);
2247	while (*name=='/')
2248		name++;
2249	if (!*name) {
2250		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2251		return 0;
2252	}
2253
2254	/* At this point we know we have a real path component. */
2255	for(;;) {
2256		struct user_namespace *mnt_userns;
2257		const char *link;
2258		u64 hash_len;
2259		int type;
2260
2261		mnt_userns = mnt_user_ns(nd->path.mnt);
2262		err = may_lookup(mnt_userns, nd);
2263		if (err)
2264			return err;
2265
2266		hash_len = hash_name(nd->path.dentry, name);
2267
2268		type = LAST_NORM;
2269		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2270			case 2:
2271				if (name[1] == '.') {
2272					type = LAST_DOTDOT;
2273					nd->state |= ND_JUMPED;
2274				}
2275				break;
2276			case 1:
2277				type = LAST_DOT;
2278		}
2279		if (likely(type == LAST_NORM)) {
2280			struct dentry *parent = nd->path.dentry;
2281			nd->state &= ~ND_JUMPED;
2282			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2283				struct qstr this = { { .hash_len = hash_len }, .name = name };
2284				err = parent->d_op->d_hash(parent, &this);
2285				if (err < 0)
2286					return err;
2287				hash_len = this.hash_len;
2288				name = this.name;
2289			}
2290		}
2291
2292		nd->last.hash_len = hash_len;
2293		nd->last.name = name;
2294		nd->last_type = type;
2295
2296		name += hashlen_len(hash_len);
2297		if (!*name)
2298			goto OK;
2299		/*
2300		 * If it wasn't NUL, we know it was '/'. Skip that
2301		 * slash, and continue until no more slashes.
2302		 */
2303		do {
2304			name++;
2305		} while (unlikely(*name == '/'));
2306		if (unlikely(!*name)) {
2307OK:
2308			/* pathname or trailing symlink, done */
2309			if (!depth) {
2310				nd->dir_vfsuid = i_uid_into_vfsuid(mnt_userns, nd->inode);
2311				nd->dir_mode = nd->inode->i_mode;
2312				nd->flags &= ~LOOKUP_PARENT;
 
2313				return 0;
2314			}
2315			/* last component of nested symlink */
2316			name = nd->stack[--depth].name;
2317			link = walk_component(nd, 0);
2318		} else {
2319			/* not the last component */
2320			link = walk_component(nd, WALK_MORE);
2321		}
2322		if (unlikely(link)) {
2323			if (IS_ERR(link))
2324				return PTR_ERR(link);
2325			/* a symlink to follow */
2326			nd->stack[depth++].name = name;
2327			name = link;
2328			continue;
 
 
 
 
 
 
 
 
 
 
2329		}
2330		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2331			if (nd->flags & LOOKUP_RCU) {
2332				if (!try_to_unlazy(nd))
2333					return -ECHILD;
2334			}
2335			return -ENOTDIR;
2336		}
2337	}
2338}
2339
2340/* must be paired with terminate_walk() */
2341static const char *path_init(struct nameidata *nd, unsigned flags)
2342{
2343	int error;
2344	const char *s = nd->name->name;
2345
2346	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2347	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2348		return ERR_PTR(-EAGAIN);
2349
2350	if (!*s)
2351		flags &= ~LOOKUP_RCU;
2352	if (flags & LOOKUP_RCU)
2353		rcu_read_lock();
2354	else
2355		nd->seq = nd->next_seq = 0;
2356
2357	nd->flags = flags;
2358	nd->state |= ND_JUMPED;
2359
2360	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2361	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2362	smp_rmb();
2363
2364	if (nd->state & ND_ROOT_PRESET) {
2365		struct dentry *root = nd->root.dentry;
2366		struct inode *inode = root->d_inode;
2367		if (*s && unlikely(!d_can_lookup(root)))
2368			return ERR_PTR(-ENOTDIR);
2369		nd->path = nd->root;
2370		nd->inode = inode;
2371		if (flags & LOOKUP_RCU) {
2372			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2373			nd->root_seq = nd->seq;
 
2374		} else {
2375			path_get(&nd->path);
2376		}
2377		return s;
2378	}
2379
2380	nd->root.mnt = NULL;
 
 
2381
2382	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2383	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2384		error = nd_jump_root(nd);
2385		if (unlikely(error))
2386			return ERR_PTR(error);
2387		return s;
2388	}
2389
2390	/* Relative pathname -- get the starting-point it is relative to. */
2391	if (nd->dfd == AT_FDCWD) {
2392		if (flags & LOOKUP_RCU) {
2393			struct fs_struct *fs = current->fs;
2394			unsigned seq;
2395
2396			do {
2397				seq = read_seqcount_begin(&fs->seq);
2398				nd->path = fs->pwd;
2399				nd->inode = nd->path.dentry->d_inode;
2400				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2401			} while (read_seqcount_retry(&fs->seq, seq));
2402		} else {
2403			get_fs_pwd(current->fs, &nd->path);
2404			nd->inode = nd->path.dentry->d_inode;
2405		}
 
2406	} else {
2407		/* Caller must check execute permissions on the starting path component */
2408		struct fd f = fdget_raw(nd->dfd);
2409		struct dentry *dentry;
2410
2411		if (!f.file)
2412			return ERR_PTR(-EBADF);
2413
2414		dentry = f.file->f_path.dentry;
2415
2416		if (*s && unlikely(!d_can_lookup(dentry))) {
2417			fdput(f);
2418			return ERR_PTR(-ENOTDIR);
2419		}
2420
2421		nd->path = f.file->f_path;
2422		if (flags & LOOKUP_RCU) {
2423			nd->inode = nd->path.dentry->d_inode;
2424			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2425		} else {
2426			path_get(&nd->path);
2427			nd->inode = nd->path.dentry->d_inode;
2428		}
2429		fdput(f);
 
2430	}
 
2431
2432	/* For scoped-lookups we need to set the root to the dirfd as well. */
2433	if (flags & LOOKUP_IS_SCOPED) {
2434		nd->root = nd->path;
2435		if (flags & LOOKUP_RCU) {
2436			nd->root_seq = nd->seq;
2437		} else {
2438			path_get(&nd->root);
2439			nd->state |= ND_ROOT_GRABBED;
2440		}
2441	}
2442	return s;
2443}
2444
2445static inline const char *lookup_last(struct nameidata *nd)
2446{
2447	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2448		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2449
2450	return walk_component(nd, WALK_TRAILING);
 
2451}
2452
2453static int handle_lookup_down(struct nameidata *nd)
2454{
2455	if (!(nd->flags & LOOKUP_RCU))
2456		dget(nd->path.dentry);
2457	nd->next_seq = nd->seq;
2458	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2459}
2460
2461/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2462static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2463{
2464	const char *s = path_init(nd, flags);
2465	int err;
2466
2467	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2468		err = handle_lookup_down(nd);
2469		if (unlikely(err < 0))
2470			s = ERR_PTR(err);
2471	}
2472
2473	while (!(err = link_path_walk(s, nd)) &&
2474	       (s = lookup_last(nd)) != NULL)
2475		;
2476	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2477		err = handle_lookup_down(nd);
2478		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2479	}
2480	if (!err)
2481		err = complete_walk(nd);
2482
2483	if (!err && nd->flags & LOOKUP_DIRECTORY)
2484		if (!d_can_lookup(nd->path.dentry))
2485			err = -ENOTDIR;
2486	if (!err) {
2487		*path = nd->path;
2488		nd->path.mnt = NULL;
2489		nd->path.dentry = NULL;
2490	}
2491	terminate_walk(nd);
2492	return err;
2493}
2494
2495int filename_lookup(int dfd, struct filename *name, unsigned flags,
2496		    struct path *path, struct path *root)
2497{
2498	int retval;
2499	struct nameidata nd;
2500	if (IS_ERR(name))
2501		return PTR_ERR(name);
2502	set_nameidata(&nd, dfd, name, root);
 
 
 
 
2503	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2504	if (unlikely(retval == -ECHILD))
2505		retval = path_lookupat(&nd, flags, path);
2506	if (unlikely(retval == -ESTALE))
2507		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2508
2509	if (likely(!retval))
2510		audit_inode(name, path->dentry,
2511			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2512	restore_nameidata();
 
2513	return retval;
2514}
2515
2516/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2517static int path_parentat(struct nameidata *nd, unsigned flags,
2518				struct path *parent)
2519{
2520	const char *s = path_init(nd, flags);
2521	int err = link_path_walk(s, nd);
2522	if (!err)
2523		err = complete_walk(nd);
2524	if (!err) {
2525		*parent = nd->path;
2526		nd->path.mnt = NULL;
2527		nd->path.dentry = NULL;
2528	}
2529	terminate_walk(nd);
2530	return err;
2531}
2532
2533/* Note: this does not consume "name" */
2534static int filename_parentat(int dfd, struct filename *name,
2535			     unsigned int flags, struct path *parent,
2536			     struct qstr *last, int *type)
2537{
2538	int retval;
2539	struct nameidata nd;
2540
2541	if (IS_ERR(name))
2542		return PTR_ERR(name);
2543	set_nameidata(&nd, dfd, name, NULL);
2544	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2545	if (unlikely(retval == -ECHILD))
2546		retval = path_parentat(&nd, flags, parent);
2547	if (unlikely(retval == -ESTALE))
2548		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2549	if (likely(!retval)) {
2550		*last = nd.last;
2551		*type = nd.last_type;
2552		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
 
 
 
2553	}
2554	restore_nameidata();
2555	return retval;
2556}
2557
2558/* does lookup, returns the object with parent locked */
2559static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2560{
 
2561	struct dentry *d;
2562	struct qstr last;
2563	int type, error;
2564
2565	error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2566	if (error)
2567		return ERR_PTR(error);
 
2568	if (unlikely(type != LAST_NORM)) {
2569		path_put(path);
 
2570		return ERR_PTR(-EINVAL);
2571	}
2572	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2573	d = __lookup_hash(&last, path->dentry, 0);
2574	if (IS_ERR(d)) {
2575		inode_unlock(path->dentry->d_inode);
2576		path_put(path);
2577	}
 
2578	return d;
2579}
2580
2581struct dentry *kern_path_locked(const char *name, struct path *path)
2582{
2583	struct filename *filename = getname_kernel(name);
2584	struct dentry *res = __kern_path_locked(filename, path);
2585
2586	putname(filename);
2587	return res;
2588}
2589
2590int kern_path(const char *name, unsigned int flags, struct path *path)
2591{
2592	struct filename *filename = getname_kernel(name);
2593	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2594
2595	putname(filename);
2596	return ret;
2597
2598}
2599EXPORT_SYMBOL(kern_path);
2600
2601/**
2602 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2603 * @dentry:  pointer to dentry of the base directory
2604 * @mnt: pointer to vfs mount of the base directory
2605 * @name: pointer to file name
2606 * @flags: lookup flags
2607 * @path: pointer to struct path to fill
2608 */
2609int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2610		    const char *name, unsigned int flags,
2611		    struct path *path)
2612{
2613	struct filename *filename;
2614	struct path root = {.mnt = mnt, .dentry = dentry};
2615	int ret;
2616
2617	filename = getname_kernel(name);
2618	/* the first argument of filename_lookup() is ignored with root */
2619	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2620	putname(filename);
2621	return ret;
2622}
2623EXPORT_SYMBOL(vfs_path_lookup);
2624
2625static int lookup_one_common(struct user_namespace *mnt_userns,
2626			     const char *name, struct dentry *base, int len,
2627			     struct qstr *this)
2628{
2629	this->name = name;
2630	this->len = len;
2631	this->hash = full_name_hash(base, name, len);
2632	if (!len)
2633		return -EACCES;
2634
2635	if (unlikely(name[0] == '.')) {
2636		if (len < 2 || (len == 2 && name[1] == '.'))
2637			return -EACCES;
2638	}
2639
2640	while (len--) {
2641		unsigned int c = *(const unsigned char *)name++;
2642		if (c == '/' || c == '\0')
2643			return -EACCES;
2644	}
2645	/*
2646	 * See if the low-level filesystem might want
2647	 * to use its own hash..
2648	 */
2649	if (base->d_flags & DCACHE_OP_HASH) {
2650		int err = base->d_op->d_hash(base, this);
2651		if (err < 0)
2652			return err;
2653	}
2654
2655	return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2656}
2657
2658/**
2659 * try_lookup_one_len - filesystem helper to lookup single pathname component
2660 * @name:	pathname component to lookup
2661 * @base:	base directory to lookup from
2662 * @len:	maximum length @len should be interpreted to
2663 *
2664 * Look up a dentry by name in the dcache, returning NULL if it does not
2665 * currently exist.  The function does not try to create a dentry.
2666 *
2667 * Note that this routine is purely a helper for filesystem usage and should
2668 * not be called by generic code.
2669 *
2670 * The caller must hold base->i_mutex.
2671 */
2672struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2673{
2674	struct qstr this;
2675	int err;
2676
2677	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2678
2679	err = lookup_one_common(&init_user_ns, name, base, len, &this);
2680	if (err)
2681		return ERR_PTR(err);
2682
2683	return lookup_dcache(&this, base, 0);
2684}
2685EXPORT_SYMBOL(try_lookup_one_len);
2686
2687/**
2688 * lookup_one_len - filesystem helper to lookup single pathname component
2689 * @name:	pathname component to lookup
2690 * @base:	base directory to lookup from
2691 * @len:	maximum length @len should be interpreted to
2692 *
2693 * Note that this routine is purely a helper for filesystem usage and should
2694 * not be called by generic code.
2695 *
2696 * The caller must hold base->i_mutex.
2697 */
2698struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2699{
2700	struct dentry *dentry;
2701	struct qstr this;
2702	int err;
2703
2704	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2705
2706	err = lookup_one_common(&init_user_ns, name, base, len, &this);
2707	if (err)
2708		return ERR_PTR(err);
2709
2710	dentry = lookup_dcache(&this, base, 0);
2711	return dentry ? dentry : __lookup_slow(&this, base, 0);
2712}
2713EXPORT_SYMBOL(lookup_one_len);
2714
2715/**
2716 * lookup_one - filesystem helper to lookup single pathname component
2717 * @mnt_userns:	user namespace of the mount the lookup is performed from
2718 * @name:	pathname component to lookup
2719 * @base:	base directory to lookup from
2720 * @len:	maximum length @len should be interpreted to
2721 *
2722 * Note that this routine is purely a helper for filesystem usage and should
2723 * not be called by generic code.
2724 *
2725 * The caller must hold base->i_mutex.
2726 */
2727struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2728			  struct dentry *base, int len)
2729{
2730	struct dentry *dentry;
2731	struct qstr this;
2732	int err;
2733
2734	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2735
2736	err = lookup_one_common(mnt_userns, name, base, len, &this);
2737	if (err)
2738		return ERR_PTR(err);
2739
2740	dentry = lookup_dcache(&this, base, 0);
2741	return dentry ? dentry : __lookup_slow(&this, base, 0);
2742}
2743EXPORT_SYMBOL(lookup_one);
2744
2745/**
2746 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2747 * @mnt_userns:	idmapping of the mount the lookup is performed from
2748 * @name:	pathname component to lookup
2749 * @base:	base directory to lookup from
2750 * @len:	maximum length @len should be interpreted to
2751 *
2752 * Note that this routine is purely a helper for filesystem usage and should
2753 * not be called by generic code.
2754 *
2755 * Unlike lookup_one_len, it should be called without the parent
2756 * i_mutex held, and will take the i_mutex itself if necessary.
2757 */
2758struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2759				   const char *name, struct dentry *base,
2760				   int len)
2761{
2762	struct qstr this;
2763	int err;
2764	struct dentry *ret;
2765
2766	err = lookup_one_common(mnt_userns, name, base, len, &this);
2767	if (err)
2768		return ERR_PTR(err);
2769
2770	ret = lookup_dcache(&this, base, 0);
2771	if (!ret)
2772		ret = lookup_slow(&this, base, 0);
2773	return ret;
2774}
2775EXPORT_SYMBOL(lookup_one_unlocked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2776
2777/**
2778 * lookup_one_positive_unlocked - filesystem helper to lookup single
2779 *				  pathname component
2780 * @mnt_userns:	idmapping of the mount the lookup is performed from
2781 * @name:	pathname component to lookup
2782 * @base:	base directory to lookup from
2783 * @len:	maximum length @len should be interpreted to
2784 *
2785 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2786 * known positive or ERR_PTR(). This is what most of the users want.
 
 
 
2787 *
2788 * Note that pinned negative with unlocked parent _can_ become positive at any
2789 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2790 * positives have >d_inode stable, so this one avoids such problems.
2791 *
2792 * Note that this routine is purely a helper for filesystem usage and should
2793 * not be called by generic code.
2794 *
2795 * The helper should be called without i_mutex held.
 
2796 */
2797struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2798					    const char *name,
2799					    struct dentry *base, int len)
2800{
2801	struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
 
 
 
 
 
 
 
 
2802
2803	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2804		dput(ret);
2805		ret = ERR_PTR(-ENOENT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806	}
2807	return ret;
 
 
 
 
 
2808}
2809EXPORT_SYMBOL(lookup_one_positive_unlocked);
2810
2811/**
2812 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2813 * @name:	pathname component to lookup
2814 * @base:	base directory to lookup from
2815 * @len:	maximum length @len should be interpreted to
2816 *
2817 * Note that this routine is purely a helper for filesystem usage and should
2818 * not be called by generic code.
2819 *
2820 * Unlike lookup_one_len, it should be called without the parent
2821 * i_mutex held, and will take the i_mutex itself if necessary.
2822 */
2823struct dentry *lookup_one_len_unlocked(const char *name,
2824				       struct dentry *base, int len)
2825{
2826	return lookup_one_unlocked(&init_user_ns, name, base, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2827}
2828EXPORT_SYMBOL(lookup_one_len_unlocked);
2829
2830/*
2831 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2832 * on negatives.  Returns known positive or ERR_PTR(); that's what
2833 * most of the users want.  Note that pinned negative with unlocked parent
2834 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2835 * need to be very careful; pinned positives have ->d_inode stable, so
2836 * this one avoids such problems.
2837 */
2838struct dentry *lookup_positive_unlocked(const char *name,
2839				       struct dentry *base, int len)
2840{
2841	return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2842}
2843EXPORT_SYMBOL(lookup_positive_unlocked);
2844
2845#ifdef CONFIG_UNIX98_PTYS
2846int path_pts(struct path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2847{
2848	/* Find something mounted on "pts" in the same directory as
2849	 * the input path.
2850	 */
2851	struct dentry *parent = dget_parent(path->dentry);
2852	struct dentry *child;
2853	struct qstr this = QSTR_INIT("pts", 3);
2854
2855	if (unlikely(!path_connected(path->mnt, parent))) {
2856		dput(parent);
2857		return -ENOENT;
2858	}
2859	dput(path->dentry);
2860	path->dentry = parent;
2861	child = d_hash_and_lookup(parent, &this);
2862	if (!child)
2863		return -ENOENT;
2864
2865	path->dentry = child;
2866	dput(parent);
2867	follow_down(path);
2868	return 0;
2869}
2870#endif
2871
2872int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2873		 struct path *path, int *empty)
 
2874{
2875	struct filename *filename = getname_flags(name, flags, empty);
2876	int ret = filename_lookup(dfd, filename, flags, path, NULL);
2877
2878	putname(filename);
2879	return ret;
2880}
2881EXPORT_SYMBOL(user_path_at_empty);
2882
2883int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2884		   struct inode *inode)
2885{
2886	kuid_t fsuid = current_fsuid();
2887
2888	if (vfsuid_eq_kuid(i_uid_into_vfsuid(mnt_userns, inode), fsuid))
2889		return 0;
2890	if (vfsuid_eq_kuid(i_uid_into_vfsuid(mnt_userns, dir), fsuid))
2891		return 0;
2892	return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2893}
2894EXPORT_SYMBOL(__check_sticky);
2895
2896/*
2897 *	Check whether we can remove a link victim from directory dir, check
2898 *  whether the type of victim is right.
2899 *  1. We can't do it if dir is read-only (done in permission())
2900 *  2. We should have write and exec permissions on dir
2901 *  3. We can't remove anything from append-only dir
2902 *  4. We can't do anything with immutable dir (done in permission())
2903 *  5. If the sticky bit on dir is set we should either
2904 *	a. be owner of dir, or
2905 *	b. be owner of victim, or
2906 *	c. have CAP_FOWNER capability
2907 *  6. If the victim is append-only or immutable we can't do antyhing with
2908 *     links pointing to it.
2909 *  7. If the victim has an unknown uid or gid we can't change the inode.
2910 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2911 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2912 * 10. We can't remove a root or mountpoint.
2913 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2914 *     nfs_async_unlink().
2915 */
2916static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2917		      struct dentry *victim, bool isdir)
2918{
2919	struct inode *inode = d_backing_inode(victim);
2920	int error;
2921
2922	if (d_is_negative(victim))
2923		return -ENOENT;
2924	BUG_ON(!inode);
2925
2926	BUG_ON(victim->d_parent->d_inode != dir);
2927
2928	/* Inode writeback is not safe when the uid or gid are invalid. */
2929	if (!vfsuid_valid(i_uid_into_vfsuid(mnt_userns, inode)) ||
2930	    !vfsgid_valid(i_gid_into_vfsgid(mnt_userns, inode)))
2931		return -EOVERFLOW;
2932
2933	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2934
2935	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2936	if (error)
2937		return error;
2938	if (IS_APPEND(dir))
2939		return -EPERM;
2940
2941	if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2942	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2943	    HAS_UNMAPPED_ID(mnt_userns, inode))
2944		return -EPERM;
2945	if (isdir) {
2946		if (!d_is_dir(victim))
2947			return -ENOTDIR;
2948		if (IS_ROOT(victim))
2949			return -EBUSY;
2950	} else if (d_is_dir(victim))
2951		return -EISDIR;
2952	if (IS_DEADDIR(dir))
2953		return -ENOENT;
2954	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2955		return -EBUSY;
2956	return 0;
2957}
2958
2959/*	Check whether we can create an object with dentry child in directory
2960 *  dir.
2961 *  1. We can't do it if child already exists (open has special treatment for
2962 *     this case, but since we are inlined it's OK)
2963 *  2. We can't do it if dir is read-only (done in permission())
2964 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2965 *  4. We should have write and exec permissions on dir
2966 *  5. We can't do it if dir is immutable (done in permission())
2967 */
2968static inline int may_create(struct user_namespace *mnt_userns,
2969			     struct inode *dir, struct dentry *child)
2970{
 
2971	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2972	if (child->d_inode)
2973		return -EEXIST;
2974	if (IS_DEADDIR(dir))
2975		return -ENOENT;
2976	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
 
 
2977		return -EOVERFLOW;
2978
2979	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2980}
2981
2982/*
2983 * p1 and p2 should be directories on the same fs.
2984 */
2985struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2986{
2987	struct dentry *p;
2988
2989	if (p1 == p2) {
2990		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2991		return NULL;
2992	}
2993
2994	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2995
2996	p = d_ancestor(p2, p1);
2997	if (p) {
2998		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2999		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3000		return p;
3001	}
3002
3003	p = d_ancestor(p1, p2);
3004	if (p) {
3005		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3006		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3007		return p;
3008	}
3009
3010	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3011	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3012	return NULL;
3013}
3014EXPORT_SYMBOL(lock_rename);
3015
3016void unlock_rename(struct dentry *p1, struct dentry *p2)
3017{
3018	inode_unlock(p1->d_inode);
3019	if (p1 != p2) {
3020		inode_unlock(p2->d_inode);
3021		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3022	}
3023}
3024EXPORT_SYMBOL(unlock_rename);
3025
3026/**
3027 * mode_strip_umask - handle vfs umask stripping
3028 * @dir:	parent directory of the new inode
3029 * @mode:	mode of the new inode to be created in @dir
3030 *
3031 * Umask stripping depends on whether or not the filesystem supports POSIX
3032 * ACLs. If the filesystem doesn't support it umask stripping is done directly
3033 * in here. If the filesystem does support POSIX ACLs umask stripping is
3034 * deferred until the filesystem calls posix_acl_create().
3035 *
3036 * Returns: mode
3037 */
3038static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3039{
3040	if (!IS_POSIXACL(dir))
3041		mode &= ~current_umask();
3042	return mode;
3043}
3044
3045/**
3046 * vfs_prepare_mode - prepare the mode to be used for a new inode
3047 * @mnt_userns:		user namespace of the mount the inode was found from
3048 * @dir:	parent directory of the new inode
3049 * @mode:	mode of the new inode
3050 * @mask_perms:	allowed permission by the vfs
3051 * @type:	type of file to be created
3052 *
3053 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3054 * object to be created.
3055 *
3056 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3057 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3058 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3059 * POSIX ACL supporting filesystems.
3060 *
3061 * Note that it's currently valid for @type to be 0 if a directory is created.
3062 * Filesystems raise that flag individually and we need to check whether each
3063 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3064 * non-zero type.
3065 *
3066 * Returns: mode to be passed to the filesystem
3067 */
3068static inline umode_t vfs_prepare_mode(struct user_namespace *mnt_userns,
3069				       const struct inode *dir, umode_t mode,
3070				       umode_t mask_perms, umode_t type)
3071{
3072	mode = mode_strip_sgid(mnt_userns, dir, mode);
3073	mode = mode_strip_umask(dir, mode);
3074
3075	/*
3076	 * Apply the vfs mandated allowed permission mask and set the type of
3077	 * file to be created before we call into the filesystem.
3078	 */
3079	mode &= (mask_perms & ~S_IFMT);
3080	mode |= (type & S_IFMT);
3081
3082	return mode;
3083}
3084
3085/**
3086 * vfs_create - create new file
3087 * @mnt_userns:	user namespace of the mount the inode was found from
3088 * @dir:	inode of @dentry
3089 * @dentry:	pointer to dentry of the base directory
3090 * @mode:	mode of the new file
3091 * @want_excl:	whether the file must not yet exist
3092 *
3093 * Create a new file.
3094 *
3095 * If the inode has been found through an idmapped mount the user namespace of
3096 * the vfsmount must be passed through @mnt_userns. This function will then take
3097 * care to map the inode according to @mnt_userns before checking permissions.
3098 * On non-idmapped mounts or if permission checking is to be performed on the
3099 * raw inode simply passs init_user_ns.
3100 */
3101int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3102	       struct dentry *dentry, umode_t mode, bool want_excl)
3103{
3104	int error = may_create(mnt_userns, dir, dentry);
3105	if (error)
3106		return error;
3107
3108	if (!dir->i_op->create)
3109		return -EACCES;	/* shouldn't it be ENOSYS? */
3110
3111	mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IALLUGO, S_IFREG);
3112	error = security_inode_create(dir, dentry, mode);
3113	if (error)
3114		return error;
3115	error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3116	if (!error)
3117		fsnotify_create(dir, dentry);
3118	return error;
3119}
3120EXPORT_SYMBOL(vfs_create);
3121
3122int vfs_mkobj(struct dentry *dentry, umode_t mode,
3123		int (*f)(struct dentry *, umode_t, void *),
3124		void *arg)
3125{
3126	struct inode *dir = dentry->d_parent->d_inode;
3127	int error = may_create(&init_user_ns, dir, dentry);
3128	if (error)
3129		return error;
3130
3131	mode &= S_IALLUGO;
3132	mode |= S_IFREG;
3133	error = security_inode_create(dir, dentry, mode);
3134	if (error)
3135		return error;
3136	error = f(dentry, mode, arg);
3137	if (!error)
3138		fsnotify_create(dir, dentry);
3139	return error;
3140}
3141EXPORT_SYMBOL(vfs_mkobj);
3142
3143bool may_open_dev(const struct path *path)
3144{
3145	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3146		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3147}
3148
3149static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3150		    int acc_mode, int flag)
3151{
3152	struct dentry *dentry = path->dentry;
3153	struct inode *inode = dentry->d_inode;
3154	int error;
3155
3156	if (!inode)
3157		return -ENOENT;
3158
3159	switch (inode->i_mode & S_IFMT) {
3160	case S_IFLNK:
3161		return -ELOOP;
3162	case S_IFDIR:
3163		if (acc_mode & MAY_WRITE)
3164			return -EISDIR;
3165		if (acc_mode & MAY_EXEC)
3166			return -EACCES;
3167		break;
3168	case S_IFBLK:
3169	case S_IFCHR:
3170		if (!may_open_dev(path))
3171			return -EACCES;
3172		fallthrough;
3173	case S_IFIFO:
3174	case S_IFSOCK:
3175		if (acc_mode & MAY_EXEC)
3176			return -EACCES;
3177		flag &= ~O_TRUNC;
3178		break;
3179	case S_IFREG:
3180		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3181			return -EACCES;
3182		break;
3183	}
3184
3185	error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3186	if (error)
3187		return error;
3188
3189	/*
3190	 * An append-only file must be opened in append mode for writing.
3191	 */
3192	if (IS_APPEND(inode)) {
3193		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3194			return -EPERM;
3195		if (flag & O_TRUNC)
3196			return -EPERM;
3197	}
3198
3199	/* O_NOATIME can only be set by the owner or superuser */
3200	if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3201		return -EPERM;
3202
3203	return 0;
3204}
3205
3206static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3207{
3208	const struct path *path = &filp->f_path;
3209	struct inode *inode = path->dentry->d_inode;
3210	int error = get_write_access(inode);
3211	if (error)
3212		return error;
3213
3214	error = security_file_truncate(filp);
 
 
 
 
3215	if (!error) {
3216		error = do_truncate(mnt_userns, path->dentry, 0,
3217				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3218				    filp);
3219	}
3220	put_write_access(inode);
3221	return error;
3222}
3223
3224static inline int open_to_namei_flags(int flag)
3225{
3226	if ((flag & O_ACCMODE) == 3)
3227		flag--;
3228	return flag;
3229}
3230
3231static int may_o_create(struct user_namespace *mnt_userns,
3232			const struct path *dir, struct dentry *dentry,
3233			umode_t mode)
3234{
 
3235	int error = security_path_mknod(dir, dentry, mode, 0);
3236	if (error)
3237		return error;
3238
3239	if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
 
 
3240		return -EOVERFLOW;
3241
3242	error = inode_permission(mnt_userns, dir->dentry->d_inode,
3243				 MAY_WRITE | MAY_EXEC);
3244	if (error)
3245		return error;
3246
3247	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3248}
3249
3250/*
3251 * Attempt to atomically look up, create and open a file from a negative
3252 * dentry.
3253 *
3254 * Returns 0 if successful.  The file will have been created and attached to
3255 * @file by the filesystem calling finish_open().
3256 *
3257 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3258 * be set.  The caller will need to perform the open themselves.  @path will
3259 * have been updated to point to the new dentry.  This may be negative.
3260 *
3261 * Returns an error code otherwise.
3262 */
3263static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3264				  struct file *file,
3265				  int open_flag, umode_t mode)
 
3266{
3267	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3268	struct inode *dir =  nd->path.dentry->d_inode;
3269	int error;
3270
 
 
 
3271	if (nd->flags & LOOKUP_DIRECTORY)
3272		open_flag |= O_DIRECTORY;
3273
3274	file->f_path.dentry = DENTRY_NOT_SET;
3275	file->f_path.mnt = nd->path.mnt;
3276	error = dir->i_op->atomic_open(dir, dentry, file,
3277				       open_to_namei_flags(open_flag), mode);
3278	d_lookup_done(dentry);
3279	if (!error) {
3280		if (file->f_mode & FMODE_OPENED) {
3281			if (unlikely(dentry != file->f_path.dentry)) {
3282				dput(dentry);
3283				dentry = dget(file->f_path.dentry);
 
 
 
 
 
 
3284			}
 
 
 
3285		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3286			error = -EIO;
3287		} else {
3288			if (file->f_path.dentry) {
3289				dput(dentry);
3290				dentry = file->f_path.dentry;
3291			}
3292			if (unlikely(d_is_negative(dentry)))
 
 
3293				error = -ENOENT;
 
 
 
 
 
3294		}
3295	}
3296	if (error) {
3297		dput(dentry);
3298		dentry = ERR_PTR(error);
3299	}
3300	return dentry;
3301}
3302
3303/*
3304 * Look up and maybe create and open the last component.
3305 *
3306 * Must be called with parent locked (exclusive in O_CREAT case).
3307 *
3308 * Returns 0 on success, that is, if
3309 *  the file was successfully atomically created (if necessary) and opened, or
3310 *  the file was not completely opened at this time, though lookups and
3311 *  creations were performed.
3312 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3313 * In the latter case dentry returned in @path might be negative if O_CREAT
3314 * hadn't been specified.
3315 *
3316 * An error code is returned on failure.
3317 */
3318static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3319				  const struct open_flags *op,
3320				  bool got_write)
 
3321{
3322	struct user_namespace *mnt_userns;
3323	struct dentry *dir = nd->path.dentry;
3324	struct inode *dir_inode = dir->d_inode;
3325	int open_flag = op->open_flag;
3326	struct dentry *dentry;
3327	int error, create_error = 0;
3328	umode_t mode = op->mode;
3329	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3330
3331	if (unlikely(IS_DEADDIR(dir_inode)))
3332		return ERR_PTR(-ENOENT);
3333
3334	file->f_mode &= ~FMODE_CREATED;
3335	dentry = d_lookup(dir, &nd->last);
3336	for (;;) {
3337		if (!dentry) {
3338			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3339			if (IS_ERR(dentry))
3340				return dentry;
3341		}
3342		if (d_in_lookup(dentry))
3343			break;
3344
3345		error = d_revalidate(dentry, nd->flags);
3346		if (likely(error > 0))
3347			break;
3348		if (error)
3349			goto out_dput;
3350		d_invalidate(dentry);
3351		dput(dentry);
3352		dentry = NULL;
3353	}
3354	if (dentry->d_inode) {
3355		/* Cached positive dentry: will open in f_op->open */
3356		return dentry;
3357	}
3358
3359	/*
3360	 * Checking write permission is tricky, bacuse we don't know if we are
3361	 * going to actually need it: O_CREAT opens should work as long as the
3362	 * file exists.  But checking existence breaks atomicity.  The trick is
3363	 * to check access and if not granted clear O_CREAT from the flags.
3364	 *
3365	 * Another problem is returing the "right" error value (e.g. for an
3366	 * O_EXCL open we want to return EEXIST not EROFS).
3367	 */
3368	if (unlikely(!got_write))
3369		open_flag &= ~O_TRUNC;
3370	mnt_userns = mnt_user_ns(nd->path.mnt);
3371	if (open_flag & O_CREAT) {
3372		if (open_flag & O_EXCL)
3373			open_flag &= ~O_TRUNC;
3374		mode = vfs_prepare_mode(mnt_userns, dir->d_inode, mode, mode, mode);
3375		if (likely(got_write))
3376			create_error = may_o_create(mnt_userns, &nd->path,
3377						    dentry, mode);
3378		else
3379			create_error = -EROFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3380	}
3381	if (create_error)
3382		open_flag &= ~O_CREAT;
3383	if (dir_inode->i_op->atomic_open) {
3384		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3385		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3386			dentry = ERR_PTR(create_error);
3387		return dentry;
 
3388	}
3389
 
3390	if (d_in_lookup(dentry)) {
3391		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3392							     nd->flags);
3393		d_lookup_done(dentry);
3394		if (unlikely(res)) {
3395			if (IS_ERR(res)) {
3396				error = PTR_ERR(res);
3397				goto out_dput;
3398			}
3399			dput(dentry);
3400			dentry = res;
3401		}
3402	}
3403
3404	/* Negative dentry, just create the file */
3405	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3406		file->f_mode |= FMODE_CREATED;
3407		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3408		if (!dir_inode->i_op->create) {
3409			error = -EACCES;
3410			goto out_dput;
3411		}
3412
3413		error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3414						mode, open_flag & O_EXCL);
3415		if (error)
3416			goto out_dput;
 
3417	}
3418	if (unlikely(create_error) && !dentry->d_inode) {
3419		error = create_error;
3420		goto out_dput;
3421	}
3422	return dentry;
 
 
 
3423
3424out_dput:
3425	dput(dentry);
3426	return ERR_PTR(error);
3427}
3428
3429static const char *open_last_lookups(struct nameidata *nd,
 
 
 
3430		   struct file *file, const struct open_flags *op)
3431{
3432	struct dentry *dir = nd->path.dentry;
3433	int open_flag = op->open_flag;
 
3434	bool got_write = false;
3435	struct dentry *dentry;
3436	const char *res;
 
 
 
3437
 
3438	nd->flags |= op->intent;
3439
3440	if (nd->last_type != LAST_NORM) {
3441		if (nd->depth)
3442			put_link(nd);
3443		return handle_dots(nd, nd->last_type);
 
3444	}
3445
3446	if (!(open_flag & O_CREAT)) {
3447		if (nd->last.name[nd->last.len])
3448			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3449		/* we _can_ be in RCU mode here */
3450		dentry = lookup_fast(nd);
3451		if (IS_ERR(dentry))
3452			return ERR_CAST(dentry);
3453		if (likely(dentry))
3454			goto finish_lookup;
3455
 
 
 
 
3456		BUG_ON(nd->flags & LOOKUP_RCU);
3457	} else {
3458		/* create side of things */
3459		if (nd->flags & LOOKUP_RCU) {
3460			if (!try_to_unlazy(nd))
3461				return ERR_PTR(-ECHILD);
3462		}
 
 
 
 
 
3463		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3464		/* trailing slashes? */
3465		if (unlikely(nd->last.name[nd->last.len]))
3466			return ERR_PTR(-EISDIR);
3467	}
3468
3469	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3470		got_write = !mnt_want_write(nd->path.mnt);
 
 
3471		/*
3472		 * do _not_ fail yet - we might not need that or fail with
3473		 * a different error; let lookup_open() decide; we'll be
3474		 * dropping this one anyway.
3475		 */
3476	}
3477	if (open_flag & O_CREAT)
3478		inode_lock(dir->d_inode);
3479	else
3480		inode_lock_shared(dir->d_inode);
3481	dentry = lookup_open(nd, file, op, got_write);
3482	if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3483		fsnotify_create(dir->d_inode, dentry);
3484	if (open_flag & O_CREAT)
3485		inode_unlock(dir->d_inode);
3486	else
3487		inode_unlock_shared(dir->d_inode);
3488
3489	if (got_write)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3490		mnt_drop_write(nd->path.mnt);
 
 
3491
3492	if (IS_ERR(dentry))
3493		return ERR_CAST(dentry);
 
3494
3495	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3496		dput(nd->path.dentry);
3497		nd->path.dentry = dentry;
3498		return NULL;
3499	}
3500
3501finish_lookup:
3502	if (nd->depth)
3503		put_link(nd);
3504	res = step_into(nd, WALK_TRAILING, dentry);
3505	if (unlikely(res))
3506		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3507	return res;
3508}
3509
3510/*
3511 * Handle the last step of open()
3512 */
3513static int do_open(struct nameidata *nd,
3514		   struct file *file, const struct open_flags *op)
3515{
3516	struct user_namespace *mnt_userns;
3517	int open_flag = op->open_flag;
3518	bool do_truncate;
3519	int acc_mode;
3520	int error;
3521
3522	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3523		error = complete_walk(nd);
3524		if (error)
3525			return error;
3526	}
3527	if (!(file->f_mode & FMODE_CREATED))
3528		audit_inode(nd->name, nd->path.dentry, 0);
3529	mnt_userns = mnt_user_ns(nd->path.mnt);
 
 
 
 
3530	if (open_flag & O_CREAT) {
3531		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3532			return -EEXIST;
3533		if (d_is_dir(nd->path.dentry))
3534			return -EISDIR;
3535		error = may_create_in_sticky(mnt_userns, nd,
3536					     d_backing_inode(nd->path.dentry));
3537		if (unlikely(error))
3538			return error;
3539	}
 
3540	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3541		return -ENOTDIR;
 
 
3542
3543	do_truncate = false;
3544	acc_mode = op->acc_mode;
3545	if (file->f_mode & FMODE_CREATED) {
3546		/* Don't check for write permission, don't truncate */
3547		open_flag &= ~O_TRUNC;
3548		acc_mode = 0;
3549	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3550		error = mnt_want_write(nd->path.mnt);
3551		if (error)
3552			return error;
3553		do_truncate = true;
3554	}
3555	error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3556	if (!error && !(file->f_mode & FMODE_OPENED))
3557		error = vfs_open(&nd->path, file);
3558	if (!error)
3559		error = ima_file_check(file, op->acc_mode);
3560	if (!error && do_truncate)
3561		error = handle_truncate(mnt_userns, file);
 
 
 
 
 
 
3562	if (unlikely(error > 0)) {
3563		WARN_ON(1);
3564		error = -EINVAL;
3565	}
3566	if (do_truncate)
3567		mnt_drop_write(nd->path.mnt);
3568	return error;
3569}
3570
3571/**
3572 * vfs_tmpfile - create tmpfile
3573 * @mnt_userns:	user namespace of the mount the inode was found from
3574 * @dentry:	pointer to dentry of the base directory
3575 * @mode:	mode of the new tmpfile
3576 * @open_flag:	flags
3577 *
3578 * Create a temporary file.
3579 *
3580 * If the inode has been found through an idmapped mount the user namespace of
3581 * the vfsmount must be passed through @mnt_userns. This function will then take
3582 * care to map the inode according to @mnt_userns before checking permissions.
3583 * On non-idmapped mounts or if permission checking is to be performed on the
3584 * raw inode simply passs init_user_ns.
3585 */
3586static int vfs_tmpfile(struct user_namespace *mnt_userns,
3587		       const struct path *parentpath,
3588		       struct file *file, umode_t mode)
3589{
3590	struct dentry *child;
3591	struct inode *dir = d_inode(parentpath->dentry);
3592	struct inode *inode;
3593	int error;
3594	int open_flag = file->f_flags;
3595
3596	/* we want directory to be writable */
3597	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3598	if (error)
3599		return error;
 
3600	if (!dir->i_op->tmpfile)
3601		return -EOPNOTSUPP;
3602	child = d_alloc(parentpath->dentry, &slash_name);
 
3603	if (unlikely(!child))
3604		return -ENOMEM;
3605	file->f_path.mnt = parentpath->mnt;
3606	file->f_path.dentry = child;
3607	mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3608	error = dir->i_op->tmpfile(mnt_userns, dir, file, mode);
3609	dput(child);
3610	if (error)
3611		return error;
3612	/* Don't check for other permissions, the inode was just created */
3613	error = may_open(mnt_userns, &file->f_path, 0, file->f_flags);
3614	if (error)
3615		return error;
3616	inode = file_inode(file);
3617	if (!(open_flag & O_EXCL)) {
3618		spin_lock(&inode->i_lock);
3619		inode->i_state |= I_LINKABLE;
3620		spin_unlock(&inode->i_lock);
3621	}
3622	ima_post_create_tmpfile(mnt_userns, inode);
3623	return 0;
3624}
3625
3626/**
3627 * vfs_tmpfile_open - open a tmpfile for kernel internal use
3628 * @mnt_userns:	user namespace of the mount the inode was found from
3629 * @parentpath:	path of the base directory
3630 * @mode:	mode of the new tmpfile
3631 * @open_flag:	flags
3632 * @cred:	credentials for open
3633 *
3634 * Create and open a temporary file.  The file is not accounted in nr_files,
3635 * hence this is only for kernel internal use, and must not be installed into
3636 * file tables or such.
3637 */
3638struct file *vfs_tmpfile_open(struct user_namespace *mnt_userns,
3639			  const struct path *parentpath,
3640			  umode_t mode, int open_flag, const struct cred *cred)
3641{
3642	struct file *file;
3643	int error;
3644
3645	file = alloc_empty_file_noaccount(open_flag, cred);
3646	if (!IS_ERR(file)) {
3647		error = vfs_tmpfile(mnt_userns, parentpath, file, mode);
3648		if (error) {
3649			fput(file);
3650			file = ERR_PTR(error);
3651		}
3652	}
3653	return file;
3654}
3655EXPORT_SYMBOL(vfs_tmpfile_open);
3656
3657static int do_tmpfile(struct nameidata *nd, unsigned flags,
3658		const struct open_flags *op,
3659		struct file *file)
3660{
3661	struct user_namespace *mnt_userns;
3662	struct path path;
3663	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3664
3665	if (unlikely(error))
3666		return error;
3667	error = mnt_want_write(path.mnt);
3668	if (unlikely(error))
3669		goto out;
3670	mnt_userns = mnt_user_ns(path.mnt);
3671	error = vfs_tmpfile(mnt_userns, &path, file, op->mode);
 
 
 
 
 
 
 
3672	if (error)
3673		goto out2;
3674	audit_inode(nd->name, file->f_path.dentry, 0);
 
3675out2:
3676	mnt_drop_write(path.mnt);
3677out:
3678	path_put(&path);
3679	return error;
3680}
3681
3682static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3683{
3684	struct path path;
3685	int error = path_lookupat(nd, flags, &path);
3686	if (!error) {
3687		audit_inode(nd->name, path.dentry, 0);
3688		error = vfs_open(&path, file);
3689		path_put(&path);
3690	}
3691	return error;
3692}
3693
3694static struct file *path_openat(struct nameidata *nd,
3695			const struct open_flags *op, unsigned flags)
3696{
3697	struct file *file;
3698	int error;
3699
3700	file = alloc_empty_file(op->open_flag, current_cred());
3701	if (IS_ERR(file))
3702		return file;
3703
3704	if (unlikely(file->f_flags & __O_TMPFILE)) {
3705		error = do_tmpfile(nd, flags, op, file);
3706	} else if (unlikely(file->f_flags & O_PATH)) {
3707		error = do_o_path(nd, flags, file);
3708	} else {
3709		const char *s = path_init(nd, flags);
3710		while (!(error = link_path_walk(s, nd)) &&
3711		       (s = open_last_lookups(nd, file, op)) != NULL)
3712			;
3713		if (!error)
3714			error = do_open(nd, file, op);
3715		terminate_walk(nd);
3716	}
3717	if (likely(!error)) {
3718		if (likely(file->f_mode & FMODE_OPENED))
3719			return file;
3720		WARN_ON(1);
3721		error = -EINVAL;
3722	}
3723	fput(file);
3724	if (error == -EOPENSTALE) {
3725		if (flags & LOOKUP_RCU)
3726			error = -ECHILD;
3727		else
3728			error = -ESTALE;
3729	}
3730	return ERR_PTR(error);
3731}
3732
3733struct file *do_filp_open(int dfd, struct filename *pathname,
3734		const struct open_flags *op)
3735{
3736	struct nameidata nd;
3737	int flags = op->lookup_flags;
3738	struct file *filp;
3739
3740	set_nameidata(&nd, dfd, pathname, NULL);
3741	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3742	if (unlikely(filp == ERR_PTR(-ECHILD)))
3743		filp = path_openat(&nd, op, flags);
3744	if (unlikely(filp == ERR_PTR(-ESTALE)))
3745		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3746	restore_nameidata();
3747	return filp;
3748}
3749
3750struct file *do_file_open_root(const struct path *root,
3751		const char *name, const struct open_flags *op)
3752{
3753	struct nameidata nd;
3754	struct file *file;
3755	struct filename *filename;
3756	int flags = op->lookup_flags;
 
 
 
3757
3758	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3759		return ERR_PTR(-ELOOP);
3760
3761	filename = getname_kernel(name);
3762	if (IS_ERR(filename))
3763		return ERR_CAST(filename);
3764
3765	set_nameidata(&nd, -1, filename, root);
3766	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3767	if (unlikely(file == ERR_PTR(-ECHILD)))
3768		file = path_openat(&nd, op, flags);
3769	if (unlikely(file == ERR_PTR(-ESTALE)))
3770		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3771	restore_nameidata();
3772	putname(filename);
3773	return file;
3774}
3775
3776static struct dentry *filename_create(int dfd, struct filename *name,
3777				      struct path *path, unsigned int lookup_flags)
3778{
3779	struct dentry *dentry = ERR_PTR(-EEXIST);
3780	struct qstr last;
3781	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3782	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3783	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3784	int type;
3785	int err2;
3786	int error;
 
 
 
 
 
 
 
3787
3788	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3789	if (error)
3790		return ERR_PTR(error);
3791
3792	/*
3793	 * Yucky last component or no last component at all?
3794	 * (foo/., foo/.., /////)
3795	 */
3796	if (unlikely(type != LAST_NORM))
3797		goto out;
3798
3799	/* don't fail immediately if it's r/o, at least try to report other errors */
3800	err2 = mnt_want_write(path->mnt);
3801	/*
3802	 * Do the final lookup.  Suppress 'create' if there is a trailing
3803	 * '/', and a directory wasn't requested.
3804	 */
3805	if (last.name[last.len] && !want_dir)
3806		create_flags = 0;
3807	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3808	dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags);
3809	if (IS_ERR(dentry))
3810		goto unlock;
3811
3812	error = -EEXIST;
3813	if (d_is_positive(dentry))
3814		goto fail;
3815
3816	/*
3817	 * Special case - lookup gave negative, but... we had foo/bar/
3818	 * From the vfs_mknod() POV we just have a negative dentry -
3819	 * all is fine. Let's be bastards - you had / on the end, you've
3820	 * been asking for (non-existent) directory. -ENOENT for you.
3821	 */
3822	if (unlikely(!create_flags)) {
3823		error = -ENOENT;
3824		goto fail;
3825	}
3826	if (unlikely(err2)) {
3827		error = err2;
3828		goto fail;
3829	}
 
3830	return dentry;
3831fail:
3832	dput(dentry);
3833	dentry = ERR_PTR(error);
3834unlock:
3835	inode_unlock(path->dentry->d_inode);
3836	if (!err2)
3837		mnt_drop_write(path->mnt);
3838out:
3839	path_put(path);
 
3840	return dentry;
3841}
3842
3843struct dentry *kern_path_create(int dfd, const char *pathname,
3844				struct path *path, unsigned int lookup_flags)
3845{
3846	struct filename *filename = getname_kernel(pathname);
3847	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3848
3849	putname(filename);
3850	return res;
3851}
3852EXPORT_SYMBOL(kern_path_create);
3853
3854void done_path_create(struct path *path, struct dentry *dentry)
3855{
3856	dput(dentry);
3857	inode_unlock(path->dentry->d_inode);
3858	mnt_drop_write(path->mnt);
3859	path_put(path);
3860}
3861EXPORT_SYMBOL(done_path_create);
3862
3863inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3864				struct path *path, unsigned int lookup_flags)
3865{
3866	struct filename *filename = getname(pathname);
3867	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3868
3869	putname(filename);
3870	return res;
3871}
3872EXPORT_SYMBOL(user_path_create);
3873
3874/**
3875 * vfs_mknod - create device node or file
3876 * @mnt_userns:	user namespace of the mount the inode was found from
3877 * @dir:	inode of @dentry
3878 * @dentry:	pointer to dentry of the base directory
3879 * @mode:	mode of the new device node or file
3880 * @dev:	device number of device to create
3881 *
3882 * Create a device node or file.
3883 *
3884 * If the inode has been found through an idmapped mount the user namespace of
3885 * the vfsmount must be passed through @mnt_userns. This function will then take
3886 * care to map the inode according to @mnt_userns before checking permissions.
3887 * On non-idmapped mounts or if permission checking is to be performed on the
3888 * raw inode simply passs init_user_ns.
3889 */
3890int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3891	      struct dentry *dentry, umode_t mode, dev_t dev)
3892{
3893	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3894	int error = may_create(mnt_userns, dir, dentry);
3895
3896	if (error)
3897		return error;
3898
3899	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3900	    !capable(CAP_MKNOD))
3901		return -EPERM;
3902
3903	if (!dir->i_op->mknod)
3904		return -EPERM;
3905
3906	mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3907	error = devcgroup_inode_mknod(mode, dev);
3908	if (error)
3909		return error;
3910
3911	error = security_inode_mknod(dir, dentry, mode, dev);
3912	if (error)
3913		return error;
3914
3915	error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3916	if (!error)
3917		fsnotify_create(dir, dentry);
3918	return error;
3919}
3920EXPORT_SYMBOL(vfs_mknod);
3921
3922static int may_mknod(umode_t mode)
3923{
3924	switch (mode & S_IFMT) {
3925	case S_IFREG:
3926	case S_IFCHR:
3927	case S_IFBLK:
3928	case S_IFIFO:
3929	case S_IFSOCK:
3930	case 0: /* zero mode translates to S_IFREG */
3931		return 0;
3932	case S_IFDIR:
3933		return -EPERM;
3934	default:
3935		return -EINVAL;
3936	}
3937}
3938
3939static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3940		unsigned int dev)
3941{
3942	struct user_namespace *mnt_userns;
3943	struct dentry *dentry;
3944	struct path path;
3945	int error;
3946	unsigned int lookup_flags = 0;
3947
3948	error = may_mknod(mode);
3949	if (error)
3950		goto out1;
3951retry:
3952	dentry = filename_create(dfd, name, &path, lookup_flags);
3953	error = PTR_ERR(dentry);
3954	if (IS_ERR(dentry))
3955		goto out1;
3956
3957	error = security_path_mknod(&path, dentry,
3958			mode_strip_umask(path.dentry->d_inode, mode), dev);
 
3959	if (error)
3960		goto out2;
3961
3962	mnt_userns = mnt_user_ns(path.mnt);
3963	switch (mode & S_IFMT) {
3964		case 0: case S_IFREG:
3965			error = vfs_create(mnt_userns, path.dentry->d_inode,
3966					   dentry, mode, true);
3967			if (!error)
3968				ima_post_path_mknod(mnt_userns, dentry);
3969			break;
3970		case S_IFCHR: case S_IFBLK:
3971			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3972					  dentry, mode, new_decode_dev(dev));
3973			break;
3974		case S_IFIFO: case S_IFSOCK:
3975			error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3976					  dentry, mode, 0);
3977			break;
3978	}
3979out2:
3980	done_path_create(&path, dentry);
3981	if (retry_estale(error, lookup_flags)) {
3982		lookup_flags |= LOOKUP_REVAL;
3983		goto retry;
3984	}
3985out1:
3986	putname(name);
3987	return error;
3988}
3989
3990SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3991		unsigned int, dev)
3992{
3993	return do_mknodat(dfd, getname(filename), mode, dev);
3994}
3995
3996SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3997{
3998	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
3999}
4000
4001/**
4002 * vfs_mkdir - create directory
4003 * @mnt_userns:	user namespace of the mount the inode was found from
4004 * @dir:	inode of @dentry
4005 * @dentry:	pointer to dentry of the base directory
4006 * @mode:	mode of the new directory
4007 *
4008 * Create a directory.
4009 *
4010 * If the inode has been found through an idmapped mount the user namespace of
4011 * the vfsmount must be passed through @mnt_userns. This function will then take
4012 * care to map the inode according to @mnt_userns before checking permissions.
4013 * On non-idmapped mounts or if permission checking is to be performed on the
4014 * raw inode simply passs init_user_ns.
4015 */
4016int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
4017	      struct dentry *dentry, umode_t mode)
4018{
4019	int error = may_create(mnt_userns, dir, dentry);
4020	unsigned max_links = dir->i_sb->s_max_links;
4021
4022	if (error)
4023		return error;
4024
4025	if (!dir->i_op->mkdir)
4026		return -EPERM;
4027
4028	mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4029	error = security_inode_mkdir(dir, dentry, mode);
4030	if (error)
4031		return error;
4032
4033	if (max_links && dir->i_nlink >= max_links)
4034		return -EMLINK;
4035
4036	error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
4037	if (!error)
4038		fsnotify_mkdir(dir, dentry);
4039	return error;
4040}
4041EXPORT_SYMBOL(vfs_mkdir);
4042
4043int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4044{
4045	struct dentry *dentry;
4046	struct path path;
4047	int error;
4048	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4049
4050retry:
4051	dentry = filename_create(dfd, name, &path, lookup_flags);
4052	error = PTR_ERR(dentry);
4053	if (IS_ERR(dentry))
4054		goto out_putname;
4055
4056	error = security_path_mkdir(&path, dentry,
4057			mode_strip_umask(path.dentry->d_inode, mode));
4058	if (!error) {
4059		struct user_namespace *mnt_userns;
4060		mnt_userns = mnt_user_ns(path.mnt);
4061		error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
4062				  mode);
4063	}
4064	done_path_create(&path, dentry);
4065	if (retry_estale(error, lookup_flags)) {
4066		lookup_flags |= LOOKUP_REVAL;
4067		goto retry;
4068	}
4069out_putname:
4070	putname(name);
4071	return error;
4072}
4073
4074SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4075{
4076	return do_mkdirat(dfd, getname(pathname), mode);
4077}
4078
4079SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4080{
4081	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4082}
4083
4084/**
4085 * vfs_rmdir - remove directory
4086 * @mnt_userns:	user namespace of the mount the inode was found from
4087 * @dir:	inode of @dentry
4088 * @dentry:	pointer to dentry of the base directory
4089 *
4090 * Remove a directory.
4091 *
4092 * If the inode has been found through an idmapped mount the user namespace of
4093 * the vfsmount must be passed through @mnt_userns. This function will then take
4094 * care to map the inode according to @mnt_userns before checking permissions.
4095 * On non-idmapped mounts or if permission checking is to be performed on the
4096 * raw inode simply passs init_user_ns.
4097 */
4098int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
4099		     struct dentry *dentry)
4100{
4101	int error = may_delete(mnt_userns, dir, dentry, 1);
4102
4103	if (error)
4104		return error;
4105
4106	if (!dir->i_op->rmdir)
4107		return -EPERM;
4108
4109	dget(dentry);
4110	inode_lock(dentry->d_inode);
4111
4112	error = -EBUSY;
4113	if (is_local_mountpoint(dentry) ||
4114	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4115		goto out;
4116
4117	error = security_inode_rmdir(dir, dentry);
4118	if (error)
4119		goto out;
4120
4121	error = dir->i_op->rmdir(dir, dentry);
4122	if (error)
4123		goto out;
4124
4125	shrink_dcache_parent(dentry);
4126	dentry->d_inode->i_flags |= S_DEAD;
4127	dont_mount(dentry);
4128	detach_mounts(dentry);
 
4129
4130out:
4131	inode_unlock(dentry->d_inode);
4132	dput(dentry);
4133	if (!error)
4134		d_delete_notify(dir, dentry);
4135	return error;
4136}
4137EXPORT_SYMBOL(vfs_rmdir);
4138
4139int do_rmdir(int dfd, struct filename *name)
4140{
4141	struct user_namespace *mnt_userns;
4142	int error;
4143	struct dentry *dentry;
4144	struct path path;
4145	struct qstr last;
4146	int type;
4147	unsigned int lookup_flags = 0;
4148retry:
4149	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4150	if (error)
4151		goto exit1;
 
4152
4153	switch (type) {
4154	case LAST_DOTDOT:
4155		error = -ENOTEMPTY;
4156		goto exit2;
4157	case LAST_DOT:
4158		error = -EINVAL;
4159		goto exit2;
4160	case LAST_ROOT:
4161		error = -EBUSY;
4162		goto exit2;
4163	}
4164
4165	error = mnt_want_write(path.mnt);
4166	if (error)
4167		goto exit2;
4168
4169	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4170	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4171	error = PTR_ERR(dentry);
4172	if (IS_ERR(dentry))
4173		goto exit3;
4174	if (!dentry->d_inode) {
4175		error = -ENOENT;
4176		goto exit4;
4177	}
4178	error = security_path_rmdir(&path, dentry);
4179	if (error)
4180		goto exit4;
4181	mnt_userns = mnt_user_ns(path.mnt);
4182	error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4183exit4:
4184	dput(dentry);
4185exit3:
4186	inode_unlock(path.dentry->d_inode);
4187	mnt_drop_write(path.mnt);
4188exit2:
4189	path_put(&path);
 
4190	if (retry_estale(error, lookup_flags)) {
4191		lookup_flags |= LOOKUP_REVAL;
4192		goto retry;
4193	}
4194exit1:
4195	putname(name);
4196	return error;
4197}
4198
4199SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4200{
4201	return do_rmdir(AT_FDCWD, getname(pathname));
4202}
4203
4204/**
4205 * vfs_unlink - unlink a filesystem object
4206 * @mnt_userns:	user namespace of the mount the inode was found from
4207 * @dir:	parent directory
4208 * @dentry:	victim
4209 * @delegated_inode: returns victim inode, if the inode is delegated.
4210 *
4211 * The caller must hold dir->i_mutex.
4212 *
4213 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4214 * return a reference to the inode in delegated_inode.  The caller
4215 * should then break the delegation on that inode and retry.  Because
4216 * breaking a delegation may take a long time, the caller should drop
4217 * dir->i_mutex before doing so.
4218 *
4219 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4220 * be appropriate for callers that expect the underlying filesystem not
4221 * to be NFS exported.
4222 *
4223 * If the inode has been found through an idmapped mount the user namespace of
4224 * the vfsmount must be passed through @mnt_userns. This function will then take
4225 * care to map the inode according to @mnt_userns before checking permissions.
4226 * On non-idmapped mounts or if permission checking is to be performed on the
4227 * raw inode simply passs init_user_ns.
4228 */
4229int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4230	       struct dentry *dentry, struct inode **delegated_inode)
4231{
4232	struct inode *target = dentry->d_inode;
4233	int error = may_delete(mnt_userns, dir, dentry, 0);
4234
4235	if (error)
4236		return error;
4237
4238	if (!dir->i_op->unlink)
4239		return -EPERM;
4240
4241	inode_lock(target);
4242	if (IS_SWAPFILE(target))
4243		error = -EPERM;
4244	else if (is_local_mountpoint(dentry))
4245		error = -EBUSY;
4246	else {
4247		error = security_inode_unlink(dir, dentry);
4248		if (!error) {
4249			error = try_break_deleg(target, delegated_inode);
4250			if (error)
4251				goto out;
4252			error = dir->i_op->unlink(dir, dentry);
4253			if (!error) {
4254				dont_mount(dentry);
4255				detach_mounts(dentry);
 
4256			}
4257		}
4258	}
4259out:
4260	inode_unlock(target);
4261
4262	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4263	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4264		fsnotify_unlink(dir, dentry);
4265	} else if (!error) {
4266		fsnotify_link_count(target);
4267		d_delete_notify(dir, dentry);
4268	}
4269
4270	return error;
4271}
4272EXPORT_SYMBOL(vfs_unlink);
4273
4274/*
4275 * Make sure that the actual truncation of the file will occur outside its
4276 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4277 * writeout happening, and we don't want to prevent access to the directory
4278 * while waiting on the I/O.
4279 */
4280int do_unlinkat(int dfd, struct filename *name)
4281{
4282	int error;
4283	struct dentry *dentry;
4284	struct path path;
4285	struct qstr last;
4286	int type;
4287	struct inode *inode = NULL;
4288	struct inode *delegated_inode = NULL;
4289	unsigned int lookup_flags = 0;
4290retry:
4291	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4292	if (error)
4293		goto exit1;
4294
4295	error = -EISDIR;
4296	if (type != LAST_NORM)
4297		goto exit2;
4298
4299	error = mnt_want_write(path.mnt);
4300	if (error)
4301		goto exit2;
4302retry_deleg:
4303	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4304	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4305	error = PTR_ERR(dentry);
4306	if (!IS_ERR(dentry)) {
4307		struct user_namespace *mnt_userns;
4308
4309		/* Why not before? Because we want correct error value */
4310		if (last.name[last.len])
4311			goto slashes;
4312		inode = dentry->d_inode;
4313		if (d_is_negative(dentry))
4314			goto slashes;
4315		ihold(inode);
4316		error = security_path_unlink(&path, dentry);
4317		if (error)
4318			goto exit3;
4319		mnt_userns = mnt_user_ns(path.mnt);
4320		error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4321				   &delegated_inode);
4322exit3:
4323		dput(dentry);
4324	}
4325	inode_unlock(path.dentry->d_inode);
4326	if (inode)
4327		iput(inode);	/* truncate the inode here */
4328	inode = NULL;
4329	if (delegated_inode) {
4330		error = break_deleg_wait(&delegated_inode);
4331		if (!error)
4332			goto retry_deleg;
4333	}
4334	mnt_drop_write(path.mnt);
4335exit2:
4336	path_put(&path);
4337	if (retry_estale(error, lookup_flags)) {
4338		lookup_flags |= LOOKUP_REVAL;
4339		inode = NULL;
4340		goto retry;
4341	}
4342exit1:
4343	putname(name);
4344	return error;
4345
4346slashes:
4347	if (d_is_negative(dentry))
4348		error = -ENOENT;
4349	else if (d_is_dir(dentry))
4350		error = -EISDIR;
4351	else
4352		error = -ENOTDIR;
4353	goto exit3;
4354}
4355
4356SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4357{
4358	if ((flag & ~AT_REMOVEDIR) != 0)
4359		return -EINVAL;
4360
4361	if (flag & AT_REMOVEDIR)
4362		return do_rmdir(dfd, getname(pathname));
 
4363	return do_unlinkat(dfd, getname(pathname));
4364}
4365
4366SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4367{
4368	return do_unlinkat(AT_FDCWD, getname(pathname));
4369}
4370
4371/**
4372 * vfs_symlink - create symlink
4373 * @mnt_userns:	user namespace of the mount the inode was found from
4374 * @dir:	inode of @dentry
4375 * @dentry:	pointer to dentry of the base directory
4376 * @oldname:	name of the file to link to
4377 *
4378 * Create a symlink.
4379 *
4380 * If the inode has been found through an idmapped mount the user namespace of
4381 * the vfsmount must be passed through @mnt_userns. This function will then take
4382 * care to map the inode according to @mnt_userns before checking permissions.
4383 * On non-idmapped mounts or if permission checking is to be performed on the
4384 * raw inode simply passs init_user_ns.
4385 */
4386int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4387		struct dentry *dentry, const char *oldname)
4388{
4389	int error = may_create(mnt_userns, dir, dentry);
4390
4391	if (error)
4392		return error;
4393
4394	if (!dir->i_op->symlink)
4395		return -EPERM;
4396
4397	error = security_inode_symlink(dir, dentry, oldname);
4398	if (error)
4399		return error;
4400
4401	error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4402	if (!error)
4403		fsnotify_create(dir, dentry);
4404	return error;
4405}
4406EXPORT_SYMBOL(vfs_symlink);
4407
4408int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
 
4409{
4410	int error;
 
4411	struct dentry *dentry;
4412	struct path path;
4413	unsigned int lookup_flags = 0;
4414
4415	if (IS_ERR(from)) {
4416		error = PTR_ERR(from);
4417		goto out_putnames;
4418	}
4419retry:
4420	dentry = filename_create(newdfd, to, &path, lookup_flags);
4421	error = PTR_ERR(dentry);
4422	if (IS_ERR(dentry))
4423		goto out_putnames;
4424
4425	error = security_path_symlink(&path, dentry, from->name);
4426	if (!error) {
4427		struct user_namespace *mnt_userns;
4428
4429		mnt_userns = mnt_user_ns(path.mnt);
4430		error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4431				    from->name);
4432	}
4433	done_path_create(&path, dentry);
4434	if (retry_estale(error, lookup_flags)) {
4435		lookup_flags |= LOOKUP_REVAL;
4436		goto retry;
4437	}
4438out_putnames:
4439	putname(to);
4440	putname(from);
4441	return error;
4442}
4443
4444SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4445		int, newdfd, const char __user *, newname)
4446{
4447	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4448}
4449
4450SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4451{
4452	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4453}
4454
4455/**
4456 * vfs_link - create a new link
4457 * @old_dentry:	object to be linked
4458 * @mnt_userns:	the user namespace of the mount
4459 * @dir:	new parent
4460 * @new_dentry:	where to create the new link
4461 * @delegated_inode: returns inode needing a delegation break
4462 *
4463 * The caller must hold dir->i_mutex
4464 *
4465 * If vfs_link discovers a delegation on the to-be-linked file in need
4466 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4467 * inode in delegated_inode.  The caller should then break the delegation
4468 * and retry.  Because breaking a delegation may take a long time, the
4469 * caller should drop the i_mutex before doing so.
4470 *
4471 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4472 * be appropriate for callers that expect the underlying filesystem not
4473 * to be NFS exported.
4474 *
4475 * If the inode has been found through an idmapped mount the user namespace of
4476 * the vfsmount must be passed through @mnt_userns. This function will then take
4477 * care to map the inode according to @mnt_userns before checking permissions.
4478 * On non-idmapped mounts or if permission checking is to be performed on the
4479 * raw inode simply passs init_user_ns.
4480 */
4481int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4482	     struct inode *dir, struct dentry *new_dentry,
4483	     struct inode **delegated_inode)
4484{
4485	struct inode *inode = old_dentry->d_inode;
4486	unsigned max_links = dir->i_sb->s_max_links;
4487	int error;
4488
4489	if (!inode)
4490		return -ENOENT;
4491
4492	error = may_create(mnt_userns, dir, new_dentry);
4493	if (error)
4494		return error;
4495
4496	if (dir->i_sb != inode->i_sb)
4497		return -EXDEV;
4498
4499	/*
4500	 * A link to an append-only or immutable file cannot be created.
4501	 */
4502	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4503		return -EPERM;
4504	/*
4505	 * Updating the link count will likely cause i_uid and i_gid to
4506	 * be writen back improperly if their true value is unknown to
4507	 * the vfs.
4508	 */
4509	if (HAS_UNMAPPED_ID(mnt_userns, inode))
4510		return -EPERM;
4511	if (!dir->i_op->link)
4512		return -EPERM;
4513	if (S_ISDIR(inode->i_mode))
4514		return -EPERM;
4515
4516	error = security_inode_link(old_dentry, dir, new_dentry);
4517	if (error)
4518		return error;
4519
4520	inode_lock(inode);
4521	/* Make sure we don't allow creating hardlink to an unlinked file */
4522	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4523		error =  -ENOENT;
4524	else if (max_links && inode->i_nlink >= max_links)
4525		error = -EMLINK;
4526	else {
4527		error = try_break_deleg(inode, delegated_inode);
4528		if (!error)
4529			error = dir->i_op->link(old_dentry, dir, new_dentry);
4530	}
4531
4532	if (!error && (inode->i_state & I_LINKABLE)) {
4533		spin_lock(&inode->i_lock);
4534		inode->i_state &= ~I_LINKABLE;
4535		spin_unlock(&inode->i_lock);
4536	}
4537	inode_unlock(inode);
4538	if (!error)
4539		fsnotify_link(dir, inode, new_dentry);
4540	return error;
4541}
4542EXPORT_SYMBOL(vfs_link);
4543
4544/*
4545 * Hardlinks are often used in delicate situations.  We avoid
4546 * security-related surprises by not following symlinks on the
4547 * newname.  --KAB
4548 *
4549 * We don't follow them on the oldname either to be compatible
4550 * with linux 2.0, and to avoid hard-linking to directories
4551 * and other special files.  --ADM
4552 */
4553int do_linkat(int olddfd, struct filename *old, int newdfd,
4554	      struct filename *new, int flags)
4555{
4556	struct user_namespace *mnt_userns;
4557	struct dentry *new_dentry;
4558	struct path old_path, new_path;
4559	struct inode *delegated_inode = NULL;
4560	int how = 0;
4561	int error;
4562
4563	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4564		error = -EINVAL;
4565		goto out_putnames;
4566	}
4567	/*
4568	 * To use null names we require CAP_DAC_READ_SEARCH
4569	 * This ensures that not everyone will be able to create
4570	 * handlink using the passed filedescriptor.
4571	 */
4572	if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4573		error = -ENOENT;
4574		goto out_putnames;
 
4575	}
4576
4577	if (flags & AT_SYMLINK_FOLLOW)
4578		how |= LOOKUP_FOLLOW;
4579retry:
4580	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4581	if (error)
4582		goto out_putnames;
4583
4584	new_dentry = filename_create(newdfd, new, &new_path,
4585					(how & LOOKUP_REVAL));
4586	error = PTR_ERR(new_dentry);
4587	if (IS_ERR(new_dentry))
4588		goto out_putpath;
4589
4590	error = -EXDEV;
4591	if (old_path.mnt != new_path.mnt)
4592		goto out_dput;
4593	mnt_userns = mnt_user_ns(new_path.mnt);
4594	error = may_linkat(mnt_userns, &old_path);
4595	if (unlikely(error))
4596		goto out_dput;
4597	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4598	if (error)
4599		goto out_dput;
4600	error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4601			 new_dentry, &delegated_inode);
4602out_dput:
4603	done_path_create(&new_path, new_dentry);
4604	if (delegated_inode) {
4605		error = break_deleg_wait(&delegated_inode);
4606		if (!error) {
4607			path_put(&old_path);
4608			goto retry;
4609		}
4610	}
4611	if (retry_estale(error, how)) {
4612		path_put(&old_path);
4613		how |= LOOKUP_REVAL;
4614		goto retry;
4615	}
4616out_putpath:
4617	path_put(&old_path);
4618out_putnames:
4619	putname(old);
4620	putname(new);
4621
4622	return error;
4623}
4624
4625SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4626		int, newdfd, const char __user *, newname, int, flags)
4627{
4628	return do_linkat(olddfd, getname_uflags(oldname, flags),
4629		newdfd, getname(newname), flags);
4630}
4631
4632SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4633{
4634	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4635}
4636
4637/**
4638 * vfs_rename - rename a filesystem object
4639 * @rd:		pointer to &struct renamedata info
 
 
 
 
 
4640 *
4641 * The caller must hold multiple mutexes--see lock_rename()).
4642 *
4643 * If vfs_rename discovers a delegation in need of breaking at either
4644 * the source or destination, it will return -EWOULDBLOCK and return a
4645 * reference to the inode in delegated_inode.  The caller should then
4646 * break the delegation and retry.  Because breaking a delegation may
4647 * take a long time, the caller should drop all locks before doing
4648 * so.
4649 *
4650 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4651 * be appropriate for callers that expect the underlying filesystem not
4652 * to be NFS exported.
4653 *
4654 * The worst of all namespace operations - renaming directory. "Perverted"
4655 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4656 * Problems:
4657 *
4658 *	a) we can get into loop creation.
4659 *	b) race potential - two innocent renames can create a loop together.
4660 *	   That's where 4.4 screws up. Current fix: serialization on
4661 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4662 *	   story.
4663 *	c) we have to lock _four_ objects - parents and victim (if it exists),
4664 *	   and source (if it is not a directory).
4665 *	   And that - after we got ->i_mutex on parents (until then we don't know
4666 *	   whether the target exists).  Solution: try to be smart with locking
4667 *	   order for inodes.  We rely on the fact that tree topology may change
4668 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4669 *	   move will be locked.  Thus we can rank directories by the tree
4670 *	   (ancestors first) and rank all non-directories after them.
4671 *	   That works since everybody except rename does "lock parent, lookup,
4672 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4673 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4674 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4675 *	   we'd better make sure that there's no link(2) for them.
4676 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4677 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4678 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4679 *	   ->i_mutex on parents, which works but leads to some truly excessive
4680 *	   locking].
4681 */
4682int vfs_rename(struct renamedata *rd)
 
 
4683{
4684	int error;
4685	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4686	struct dentry *old_dentry = rd->old_dentry;
4687	struct dentry *new_dentry = rd->new_dentry;
4688	struct inode **delegated_inode = rd->delegated_inode;
4689	unsigned int flags = rd->flags;
4690	bool is_dir = d_is_dir(old_dentry);
4691	struct inode *source = old_dentry->d_inode;
4692	struct inode *target = new_dentry->d_inode;
4693	bool new_is_dir = false;
4694	unsigned max_links = new_dir->i_sb->s_max_links;
4695	struct name_snapshot old_name;
4696
4697	if (source == target)
4698		return 0;
4699
4700	error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4701	if (error)
4702		return error;
4703
4704	if (!target) {
4705		error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4706	} else {
4707		new_is_dir = d_is_dir(new_dentry);
4708
4709		if (!(flags & RENAME_EXCHANGE))
4710			error = may_delete(rd->new_mnt_userns, new_dir,
4711					   new_dentry, is_dir);
4712		else
4713			error = may_delete(rd->new_mnt_userns, new_dir,
4714					   new_dentry, new_is_dir);
4715	}
4716	if (error)
4717		return error;
4718
4719	if (!old_dir->i_op->rename)
4720		return -EPERM;
4721
4722	/*
4723	 * If we are going to change the parent - check write permissions,
4724	 * we'll need to flip '..'.
4725	 */
4726	if (new_dir != old_dir) {
4727		if (is_dir) {
4728			error = inode_permission(rd->old_mnt_userns, source,
4729						 MAY_WRITE);
4730			if (error)
4731				return error;
4732		}
4733		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4734			error = inode_permission(rd->new_mnt_userns, target,
4735						 MAY_WRITE);
4736			if (error)
4737				return error;
4738		}
4739	}
4740
4741	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4742				      flags);
4743	if (error)
4744		return error;
4745
4746	take_dentry_name_snapshot(&old_name, old_dentry);
4747	dget(new_dentry);
4748	if (!is_dir || (flags & RENAME_EXCHANGE))
4749		lock_two_nondirectories(source, target);
4750	else if (target)
4751		inode_lock(target);
4752
4753	error = -EPERM;
4754	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4755		goto out;
4756
4757	error = -EBUSY;
4758	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4759		goto out;
4760
4761	if (max_links && new_dir != old_dir) {
4762		error = -EMLINK;
4763		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4764			goto out;
4765		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4766		    old_dir->i_nlink >= max_links)
4767			goto out;
4768	}
4769	if (!is_dir) {
4770		error = try_break_deleg(source, delegated_inode);
4771		if (error)
4772			goto out;
4773	}
4774	if (target && !new_is_dir) {
4775		error = try_break_deleg(target, delegated_inode);
4776		if (error)
4777			goto out;
4778	}
4779	error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4780				      new_dir, new_dentry, flags);
4781	if (error)
4782		goto out;
4783
4784	if (!(flags & RENAME_EXCHANGE) && target) {
4785		if (is_dir) {
4786			shrink_dcache_parent(new_dentry);
4787			target->i_flags |= S_DEAD;
4788		}
4789		dont_mount(new_dentry);
4790		detach_mounts(new_dentry);
4791	}
4792	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4793		if (!(flags & RENAME_EXCHANGE))
4794			d_move(old_dentry, new_dentry);
4795		else
4796			d_exchange(old_dentry, new_dentry);
4797	}
4798out:
4799	if (!is_dir || (flags & RENAME_EXCHANGE))
4800		unlock_two_nondirectories(source, target);
4801	else if (target)
4802		inode_unlock(target);
4803	dput(new_dentry);
4804	if (!error) {
4805		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4806			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4807		if (flags & RENAME_EXCHANGE) {
4808			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4809				      new_is_dir, NULL, new_dentry);
4810		}
4811	}
4812	release_dentry_name_snapshot(&old_name);
4813
4814	return error;
4815}
4816EXPORT_SYMBOL(vfs_rename);
4817
4818int do_renameat2(int olddfd, struct filename *from, int newdfd,
4819		 struct filename *to, unsigned int flags)
4820{
4821	struct renamedata rd;
4822	struct dentry *old_dentry, *new_dentry;
4823	struct dentry *trap;
4824	struct path old_path, new_path;
4825	struct qstr old_last, new_last;
4826	int old_type, new_type;
4827	struct inode *delegated_inode = NULL;
 
 
4828	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4829	bool should_retry = false;
4830	int error = -EINVAL;
4831
4832	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4833		goto put_names;
4834
4835	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4836	    (flags & RENAME_EXCHANGE))
4837		goto put_names;
 
 
 
4838
4839	if (flags & RENAME_EXCHANGE)
4840		target_flags = 0;
4841
4842retry:
4843	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4844				  &old_last, &old_type);
4845	if (error)
4846		goto put_names;
 
 
4847
4848	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4849				  &new_type);
4850	if (error)
 
4851		goto exit1;
 
4852
4853	error = -EXDEV;
4854	if (old_path.mnt != new_path.mnt)
4855		goto exit2;
4856
4857	error = -EBUSY;
4858	if (old_type != LAST_NORM)
4859		goto exit2;
4860
4861	if (flags & RENAME_NOREPLACE)
4862		error = -EEXIST;
4863	if (new_type != LAST_NORM)
4864		goto exit2;
4865
4866	error = mnt_want_write(old_path.mnt);
4867	if (error)
4868		goto exit2;
4869
4870retry_deleg:
4871	trap = lock_rename(new_path.dentry, old_path.dentry);
4872
4873	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4874	error = PTR_ERR(old_dentry);
4875	if (IS_ERR(old_dentry))
4876		goto exit3;
4877	/* source must exist */
4878	error = -ENOENT;
4879	if (d_is_negative(old_dentry))
4880		goto exit4;
4881	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4882	error = PTR_ERR(new_dentry);
4883	if (IS_ERR(new_dentry))
4884		goto exit4;
4885	error = -EEXIST;
4886	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4887		goto exit5;
4888	if (flags & RENAME_EXCHANGE) {
4889		error = -ENOENT;
4890		if (d_is_negative(new_dentry))
4891			goto exit5;
4892
4893		if (!d_is_dir(new_dentry)) {
4894			error = -ENOTDIR;
4895			if (new_last.name[new_last.len])
4896				goto exit5;
4897		}
4898	}
4899	/* unless the source is a directory trailing slashes give -ENOTDIR */
4900	if (!d_is_dir(old_dentry)) {
4901		error = -ENOTDIR;
4902		if (old_last.name[old_last.len])
4903			goto exit5;
4904		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4905			goto exit5;
4906	}
4907	/* source should not be ancestor of target */
4908	error = -EINVAL;
4909	if (old_dentry == trap)
4910		goto exit5;
4911	/* target should not be an ancestor of source */
4912	if (!(flags & RENAME_EXCHANGE))
4913		error = -ENOTEMPTY;
4914	if (new_dentry == trap)
4915		goto exit5;
4916
4917	error = security_path_rename(&old_path, old_dentry,
4918				     &new_path, new_dentry, flags);
4919	if (error)
4920		goto exit5;
4921
4922	rd.old_dir	   = old_path.dentry->d_inode;
4923	rd.old_dentry	   = old_dentry;
4924	rd.old_mnt_userns  = mnt_user_ns(old_path.mnt);
4925	rd.new_dir	   = new_path.dentry->d_inode;
4926	rd.new_dentry	   = new_dentry;
4927	rd.new_mnt_userns  = mnt_user_ns(new_path.mnt);
4928	rd.delegated_inode = &delegated_inode;
4929	rd.flags	   = flags;
4930	error = vfs_rename(&rd);
4931exit5:
4932	dput(new_dentry);
4933exit4:
4934	dput(old_dentry);
4935exit3:
4936	unlock_rename(new_path.dentry, old_path.dentry);
4937	if (delegated_inode) {
4938		error = break_deleg_wait(&delegated_inode);
4939		if (!error)
4940			goto retry_deleg;
4941	}
4942	mnt_drop_write(old_path.mnt);
4943exit2:
4944	if (retry_estale(error, lookup_flags))
4945		should_retry = true;
4946	path_put(&new_path);
 
4947exit1:
4948	path_put(&old_path);
 
4949	if (should_retry) {
4950		should_retry = false;
4951		lookup_flags |= LOOKUP_REVAL;
4952		goto retry;
4953	}
4954put_names:
4955	putname(from);
4956	putname(to);
4957	return error;
4958}
4959
4960SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4961		int, newdfd, const char __user *, newname, unsigned int, flags)
4962{
4963	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4964				flags);
4965}
4966
4967SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4968		int, newdfd, const char __user *, newname)
4969{
4970	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4971				0);
4972}
4973
4974SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4975{
4976	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4977				getname(newname), 0);
 
 
 
 
 
 
 
 
 
 
 
 
4978}
 
4979
4980int readlink_copy(char __user *buffer, int buflen, const char *link)
4981{
4982	int len = PTR_ERR(link);
4983	if (IS_ERR(link))
4984		goto out;
4985
4986	len = strlen(link);
4987	if (len > (unsigned) buflen)
4988		len = buflen;
4989	if (copy_to_user(buffer, link, len))
4990		len = -EFAULT;
4991out:
4992	return len;
4993}
4994
4995/**
4996 * vfs_readlink - copy symlink body into userspace buffer
4997 * @dentry: dentry on which to get symbolic link
4998 * @buffer: user memory pointer
4999 * @buflen: size of buffer
5000 *
5001 * Does not touch atime.  That's up to the caller if necessary
5002 *
5003 * Does not call security hook.
5004 */
5005int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5006{
5007	struct inode *inode = d_inode(dentry);
5008	DEFINE_DELAYED_CALL(done);
5009	const char *link;
5010	int res;
5011
5012	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5013		if (unlikely(inode->i_op->readlink))
5014			return inode->i_op->readlink(dentry, buffer, buflen);
5015
5016		if (!d_is_symlink(dentry))
5017			return -EINVAL;
5018
5019		spin_lock(&inode->i_lock);
5020		inode->i_opflags |= IOP_DEFAULT_READLINK;
5021		spin_unlock(&inode->i_lock);
5022	}
5023
5024	link = READ_ONCE(inode->i_link);
5025	if (!link) {
5026		link = inode->i_op->get_link(dentry, inode, &done);
5027		if (IS_ERR(link))
5028			return PTR_ERR(link);
5029	}
5030	res = readlink_copy(buffer, buflen, link);
5031	do_delayed_call(&done);
5032	return res;
5033}
5034EXPORT_SYMBOL(vfs_readlink);
5035
5036/**
5037 * vfs_get_link - get symlink body
5038 * @dentry: dentry on which to get symbolic link
5039 * @done: caller needs to free returned data with this
5040 *
5041 * Calls security hook and i_op->get_link() on the supplied inode.
5042 *
5043 * It does not touch atime.  That's up to the caller if necessary.
5044 *
5045 * Does not work on "special" symlinks like /proc/$$/fd/N
5046 */
5047const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5048{
5049	const char *res = ERR_PTR(-EINVAL);
5050	struct inode *inode = d_inode(dentry);
5051
5052	if (d_is_symlink(dentry)) {
5053		res = ERR_PTR(security_inode_readlink(dentry));
5054		if (!res)
5055			res = inode->i_op->get_link(dentry, inode, done);
5056	}
5057	return res;
5058}
5059EXPORT_SYMBOL(vfs_get_link);
5060
5061/* get the link contents into pagecache */
5062const char *page_get_link(struct dentry *dentry, struct inode *inode,
5063			  struct delayed_call *callback)
5064{
5065	char *kaddr;
5066	struct page *page;
5067	struct address_space *mapping = inode->i_mapping;
5068
5069	if (!dentry) {
5070		page = find_get_page(mapping, 0);
5071		if (!page)
5072			return ERR_PTR(-ECHILD);
5073		if (!PageUptodate(page)) {
5074			put_page(page);
5075			return ERR_PTR(-ECHILD);
5076		}
5077	} else {
5078		page = read_mapping_page(mapping, 0, NULL);
5079		if (IS_ERR(page))
5080			return (char*)page;
5081	}
5082	set_delayed_call(callback, page_put_link, page);
5083	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5084	kaddr = page_address(page);
5085	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5086	return kaddr;
5087}
5088
5089EXPORT_SYMBOL(page_get_link);
5090
5091void page_put_link(void *arg)
5092{
5093	put_page(arg);
5094}
5095EXPORT_SYMBOL(page_put_link);
5096
5097int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5098{
5099	DEFINE_DELAYED_CALL(done);
5100	int res = readlink_copy(buffer, buflen,
5101				page_get_link(dentry, d_inode(dentry),
5102					      &done));
5103	do_delayed_call(&done);
5104	return res;
5105}
5106EXPORT_SYMBOL(page_readlink);
5107
5108int page_symlink(struct inode *inode, const char *symname, int len)
 
 
 
5109{
5110	struct address_space *mapping = inode->i_mapping;
5111	const struct address_space_operations *aops = mapping->a_ops;
5112	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5113	struct page *page;
5114	void *fsdata = NULL;
5115	int err;
5116	unsigned int flags;
 
 
5117
5118retry:
5119	if (nofs)
5120		flags = memalloc_nofs_save();
5121	err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5122	if (nofs)
5123		memalloc_nofs_restore(flags);
5124	if (err)
5125		goto fail;
5126
5127	memcpy(page_address(page), symname, len-1);
5128
5129	err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5130							page, fsdata);
5131	if (err < 0)
5132		goto fail;
5133	if (err < len-1)
5134		goto retry;
5135
5136	mark_inode_dirty(inode);
5137	return 0;
5138fail:
5139	return err;
 
 
 
 
 
 
 
5140}
5141EXPORT_SYMBOL(page_symlink);
5142
5143const struct inode_operations page_symlink_inode_operations = {
5144	.get_link	= page_get_link,
5145};
5146EXPORT_SYMBOL(page_symlink_inode_operations);