Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/fs.h>
  23#include <linux/namei.h>
  24#include <linux/pagemap.h>
  25#include <linux/fsnotify.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/ima.h>
  29#include <linux/syscalls.h>
  30#include <linux/mount.h>
  31#include <linux/audit.h>
  32#include <linux/capability.h>
  33#include <linux/file.h>
  34#include <linux/fcntl.h>
  35#include <linux/device_cgroup.h>
  36#include <linux/fs_struct.h>
  37#include <linux/posix_acl.h>
  38#include <linux/hash.h>
  39#include <linux/bitops.h>
  40#include <linux/init_task.h>
  41#include <linux/uaccess.h>
  42
  43#include "internal.h"
  44#include "mount.h"
  45
  46/* [Feb-1997 T. Schoebel-Theuer]
  47 * Fundamental changes in the pathname lookup mechanisms (namei)
  48 * were necessary because of omirr.  The reason is that omirr needs
  49 * to know the _real_ pathname, not the user-supplied one, in case
  50 * of symlinks (and also when transname replacements occur).
  51 *
  52 * The new code replaces the old recursive symlink resolution with
  53 * an iterative one (in case of non-nested symlink chains).  It does
  54 * this with calls to <fs>_follow_link().
  55 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  56 * replaced with a single function lookup_dentry() that can handle all 
  57 * the special cases of the former code.
  58 *
  59 * With the new dcache, the pathname is stored at each inode, at least as
  60 * long as the refcount of the inode is positive.  As a side effect, the
  61 * size of the dcache depends on the inode cache and thus is dynamic.
  62 *
  63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  64 * resolution to correspond with current state of the code.
  65 *
  66 * Note that the symlink resolution is not *completely* iterative.
  67 * There is still a significant amount of tail- and mid- recursion in
  68 * the algorithm.  Also, note that <fs>_readlink() is not used in
  69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  70 * may return different results than <fs>_follow_link().  Many virtual
  71 * filesystems (including /proc) exhibit this behavior.
  72 */
  73
  74/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  76 * and the name already exists in form of a symlink, try to create the new
  77 * name indicated by the symlink. The old code always complained that the
  78 * name already exists, due to not following the symlink even if its target
  79 * is nonexistent.  The new semantics affects also mknod() and link() when
  80 * the name is a symlink pointing to a non-existent name.
  81 *
  82 * I don't know which semantics is the right one, since I have no access
  83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  85 * "old" one. Personally, I think the new semantics is much more logical.
  86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  87 * file does succeed in both HP-UX and SunOs, but not in Solaris
  88 * and in the old Linux semantics.
  89 */
  90
  91/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  92 * semantics.  See the comments in "open_namei" and "do_link" below.
  93 *
  94 * [10-Sep-98 Alan Modra] Another symlink change.
  95 */
  96
  97/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  98 *	inside the path - always follow.
  99 *	in the last component in creation/removal/renaming - never follow.
 100 *	if LOOKUP_FOLLOW passed - follow.
 101 *	if the pathname has trailing slashes - follow.
 102 *	otherwise - don't follow.
 103 * (applied in that order).
 104 *
 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 107 * During the 2.4 we need to fix the userland stuff depending on it -
 108 * hopefully we will be able to get rid of that wart in 2.5. So far only
 109 * XEmacs seems to be relying on it...
 110 */
 111/*
 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 113 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 114 * any extra contention...
 115 */
 116
 117/* In order to reduce some races, while at the same time doing additional
 118 * checking and hopefully speeding things up, we copy filenames to the
 119 * kernel data space before using them..
 120 *
 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 122 * PATH_MAX includes the nul terminator --RR.
 123 */
 124
 125#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 126
 127struct filename *
 128getname_flags(const char __user *filename, int flags, int *empty)
 129{
 130	struct filename *result;
 131	char *kname;
 132	int len;
 133
 134	result = audit_reusename(filename);
 135	if (result)
 136		return result;
 137
 138	result = __getname();
 139	if (unlikely(!result))
 140		return ERR_PTR(-ENOMEM);
 141
 142	/*
 143	 * First, try to embed the struct filename inside the names_cache
 144	 * allocation
 145	 */
 146	kname = (char *)result->iname;
 147	result->name = kname;
 148
 149	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 150	if (unlikely(len < 0)) {
 151		__putname(result);
 152		return ERR_PTR(len);
 153	}
 154
 155	/*
 156	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 157	 * separate struct filename so we can dedicate the entire
 158	 * names_cache allocation for the pathname, and re-do the copy from
 159	 * userland.
 160	 */
 161	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 162		const size_t size = offsetof(struct filename, iname[1]);
 163		kname = (char *)result;
 164
 165		/*
 166		 * size is chosen that way we to guarantee that
 167		 * result->iname[0] is within the same object and that
 168		 * kname can't be equal to result->iname, no matter what.
 169		 */
 170		result = kzalloc(size, GFP_KERNEL);
 171		if (unlikely(!result)) {
 172			__putname(kname);
 173			return ERR_PTR(-ENOMEM);
 174		}
 175		result->name = kname;
 176		len = strncpy_from_user(kname, filename, PATH_MAX);
 177		if (unlikely(len < 0)) {
 178			__putname(kname);
 179			kfree(result);
 180			return ERR_PTR(len);
 181		}
 182		if (unlikely(len == PATH_MAX)) {
 183			__putname(kname);
 184			kfree(result);
 185			return ERR_PTR(-ENAMETOOLONG);
 186		}
 187	}
 188
 189	result->refcnt = 1;
 190	/* The empty path is special. */
 191	if (unlikely(!len)) {
 192		if (empty)
 193			*empty = 1;
 194		if (!(flags & LOOKUP_EMPTY)) {
 195			putname(result);
 196			return ERR_PTR(-ENOENT);
 197		}
 198	}
 199
 200	result->uptr = filename;
 201	result->aname = NULL;
 202	audit_getname(result);
 203	return result;
 204}
 205
 206struct filename *
 207getname(const char __user * filename)
 208{
 209	return getname_flags(filename, 0, NULL);
 210}
 211
 212struct filename *
 213getname_kernel(const char * filename)
 214{
 215	struct filename *result;
 216	int len = strlen(filename) + 1;
 217
 218	result = __getname();
 219	if (unlikely(!result))
 220		return ERR_PTR(-ENOMEM);
 
 221
 222	if (len <= EMBEDDED_NAME_MAX) {
 223		result->name = (char *)result->iname;
 224	} else if (len <= PATH_MAX) {
 225		const size_t size = offsetof(struct filename, iname[1]);
 226		struct filename *tmp;
 227
 228		tmp = kmalloc(size, GFP_KERNEL);
 229		if (unlikely(!tmp)) {
 230			__putname(result);
 231			return ERR_PTR(-ENOMEM);
 232		}
 233		tmp->name = (char *)result;
 234		result = tmp;
 235	} else {
 236		__putname(result);
 237		return ERR_PTR(-ENAMETOOLONG);
 
 
 
 238	}
 239	memcpy((char *)result->name, filename, len);
 240	result->uptr = NULL;
 241	result->aname = NULL;
 242	result->refcnt = 1;
 243	audit_getname(result);
 244
 245	return result;
 246}
 247
 248void putname(struct filename *name)
 249{
 250	BUG_ON(name->refcnt <= 0);
 251
 252	if (--name->refcnt > 0)
 253		return;
 254
 255	if (name->name != name->iname) {
 256		__putname(name->name);
 257		kfree(name);
 258	} else
 
 
 259		__putname(name);
 260}
 
 
 261
 262static int check_acl(struct inode *inode, int mask)
 263{
 264#ifdef CONFIG_FS_POSIX_ACL
 265	struct posix_acl *acl;
 266
 267	if (mask & MAY_NOT_BLOCK) {
 268		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 269	        if (!acl)
 270	                return -EAGAIN;
 271		/* no ->get_acl() calls in RCU mode... */
 272		if (is_uncached_acl(acl))
 273			return -ECHILD;
 274	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
 275	}
 276
 277	acl = get_acl(inode, ACL_TYPE_ACCESS);
 278	if (IS_ERR(acl))
 279		return PTR_ERR(acl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280	if (acl) {
 281	        int error = posix_acl_permission(inode, acl, mask);
 282	        posix_acl_release(acl);
 283	        return error;
 284	}
 285#endif
 286
 287	return -EAGAIN;
 288}
 289
 290/*
 291 * This does the basic permission checking
 292 */
 293static int acl_permission_check(struct inode *inode, int mask)
 294{
 295	unsigned int mode = inode->i_mode;
 296
 297	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
 
 
 
 
 
 298		mode >>= 6;
 299	else {
 300		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 301			int error = check_acl(inode, mask);
 302			if (error != -EAGAIN)
 303				return error;
 304		}
 305
 306		if (in_group_p(inode->i_gid))
 307			mode >>= 3;
 308	}
 309
 
 310	/*
 311	 * If the DACs are ok we don't need any capability check.
 312	 */
 313	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
 314		return 0;
 315	return -EACCES;
 316}
 317
 318/**
 319 * generic_permission -  check for access rights on a Posix-like filesystem
 320 * @inode:	inode to check access rights for
 321 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
 322 *
 323 * Used to check for read/write/execute permissions on a file.
 324 * We use "fsuid" for this, letting us set arbitrary permissions
 325 * for filesystem access without changing the "normal" uids which
 326 * are used for other things.
 327 *
 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 329 * request cannot be satisfied (eg. requires blocking or too much complexity).
 330 * It would then be called again in ref-walk mode.
 331 */
 332int generic_permission(struct inode *inode, int mask)
 333{
 334	int ret;
 335
 336	/*
 337	 * Do the basic permission checks.
 338	 */
 339	ret = acl_permission_check(inode, mask);
 340	if (ret != -EACCES)
 341		return ret;
 342
 343	if (S_ISDIR(inode->i_mode)) {
 344		/* DACs are overridable for directories */
 
 
 345		if (!(mask & MAY_WRITE))
 346			if (capable_wrt_inode_uidgid(inode,
 347						     CAP_DAC_READ_SEARCH))
 348				return 0;
 349		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 350			return 0;
 351		return -EACCES;
 352	}
 353
 354	/*
 355	 * Searching includes executable on directories, else just read.
 356	 */
 357	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 358	if (mask == MAY_READ)
 359		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
 360			return 0;
 361	/*
 362	 * Read/write DACs are always overridable.
 363	 * Executable DACs are overridable when there is
 364	 * at least one exec bit set.
 365	 */
 366	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 367		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 
 
 
 
 
 
 
 
 368			return 0;
 369
 370	return -EACCES;
 371}
 372EXPORT_SYMBOL(generic_permission);
 373
 374/*
 375 * We _really_ want to just do "generic_permission()" without
 376 * even looking at the inode->i_op values. So we keep a cache
 377 * flag in inode->i_opflags, that says "this has not special
 378 * permission function, use the fast case".
 379 */
 380static inline int do_inode_permission(struct inode *inode, int mask)
 381{
 382	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 383		if (likely(inode->i_op->permission))
 384			return inode->i_op->permission(inode, mask);
 385
 386		/* This gets set once for the inode lifetime */
 387		spin_lock(&inode->i_lock);
 388		inode->i_opflags |= IOP_FASTPERM;
 389		spin_unlock(&inode->i_lock);
 390	}
 391	return generic_permission(inode, mask);
 392}
 393
 394/**
 395 * sb_permission - Check superblock-level permissions
 396 * @sb: Superblock of inode to check permission on
 397 * @inode: Inode to check permission on
 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 399 *
 400 * Separate out file-system wide checks from inode-specific permission checks.
 401 */
 402static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 403{
 404	if (unlikely(mask & MAY_WRITE)) {
 405		umode_t mode = inode->i_mode;
 406
 407		/* Nobody gets write access to a read-only fs. */
 408		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 409			return -EROFS;
 410	}
 411	return 0;
 412}
 413
 414/**
 415 * inode_permission - Check for access rights to a given inode
 416 * @inode: Inode to check permission on
 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 418 *
 419 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 420 * this, letting us set arbitrary permissions for filesystem access without
 421 * changing the "normal" UIDs which are used for other things.
 422 *
 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 424 */
 425int inode_permission(struct inode *inode, int mask)
 426{
 427	int retval;
 428
 429	retval = sb_permission(inode->i_sb, inode, mask);
 430	if (retval)
 431		return retval;
 432
 433	if (unlikely(mask & MAY_WRITE)) {
 
 
 434		/*
 435		 * Nobody gets write access to an immutable file.
 436		 */
 437		if (IS_IMMUTABLE(inode))
 438			return -EPERM;
 
 439
 440		/*
 441		 * Updating mtime will likely cause i_uid and i_gid to be
 442		 * written back improperly if their true value is unknown
 443		 * to the vfs.
 444		 */
 445		if (HAS_UNMAPPED_ID(inode))
 446			return -EACCES;
 447	}
 448
 449	retval = do_inode_permission(inode, mask);
 450	if (retval)
 451		return retval;
 452
 453	retval = devcgroup_inode_permission(inode, mask);
 454	if (retval)
 455		return retval;
 456
 457	return security_inode_permission(inode, mask);
 458}
 459EXPORT_SYMBOL(inode_permission);
 460
 461/**
 462 * path_get - get a reference to a path
 463 * @path: path to get the reference to
 464 *
 465 * Given a path increment the reference count to the dentry and the vfsmount.
 466 */
 467void path_get(const struct path *path)
 468{
 469	mntget(path->mnt);
 470	dget(path->dentry);
 471}
 472EXPORT_SYMBOL(path_get);
 473
 474/**
 475 * path_put - put a reference to a path
 476 * @path: path to put the reference to
 477 *
 478 * Given a path decrement the reference count to the dentry and the vfsmount.
 479 */
 480void path_put(const struct path *path)
 481{
 482	dput(path->dentry);
 483	mntput(path->mnt);
 484}
 485EXPORT_SYMBOL(path_put);
 486
 487#define EMBEDDED_LEVELS 2
 488struct nameidata {
 489	struct path	path;
 490	struct qstr	last;
 491	struct path	root;
 492	struct inode	*inode; /* path.dentry.d_inode */
 493	unsigned int	flags;
 494	unsigned	seq, m_seq;
 495	int		last_type;
 496	unsigned	depth;
 497	int		total_link_count;
 498	struct saved {
 499		struct path link;
 500		struct delayed_call done;
 501		const char *name;
 502		unsigned seq;
 503	} *stack, internal[EMBEDDED_LEVELS];
 504	struct filename	*name;
 505	struct nameidata *saved;
 506	struct inode	*link_inode;
 507	unsigned	root_seq;
 508	int		dfd;
 509} __randomize_layout;
 510
 511static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 512{
 513	struct nameidata *old = current->nameidata;
 514	p->stack = p->internal;
 515	p->dfd = dfd;
 516	p->name = name;
 517	p->total_link_count = old ? old->total_link_count : 0;
 518	p->saved = old;
 519	current->nameidata = p;
 520}
 521
 522static void restore_nameidata(void)
 523{
 524	struct nameidata *now = current->nameidata, *old = now->saved;
 525
 526	current->nameidata = old;
 527	if (old)
 528		old->total_link_count = now->total_link_count;
 529	if (now->stack != now->internal)
 530		kfree(now->stack);
 531}
 532
 533static int __nd_alloc_stack(struct nameidata *nd)
 534{
 535	struct saved *p;
 536
 537	if (nd->flags & LOOKUP_RCU) {
 538		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 539				  GFP_ATOMIC);
 540		if (unlikely(!p))
 541			return -ECHILD;
 542	} else {
 543		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 544				  GFP_KERNEL);
 545		if (unlikely(!p))
 546			return -ENOMEM;
 547	}
 548	memcpy(p, nd->internal, sizeof(nd->internal));
 549	nd->stack = p;
 550	return 0;
 551}
 552
 553/**
 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
 555 * @path: nameidate to verify
 556 *
 557 * Rename can sometimes move a file or directory outside of a bind
 558 * mount, path_connected allows those cases to be detected.
 559 */
 560static bool path_connected(const struct path *path)
 561{
 562	struct vfsmount *mnt = path->mnt;
 563	struct super_block *sb = mnt->mnt_sb;
 564
 565	/* Bind mounts and multi-root filesystems can have disconnected paths */
 566	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
 567		return true;
 568
 569	return is_subdir(path->dentry, mnt->mnt_root);
 570}
 571
 572static inline int nd_alloc_stack(struct nameidata *nd)
 573{
 574	if (likely(nd->depth != EMBEDDED_LEVELS))
 575		return 0;
 576	if (likely(nd->stack != nd->internal))
 577		return 0;
 578	return __nd_alloc_stack(nd);
 579}
 580
 581static void drop_links(struct nameidata *nd)
 582{
 583	int i = nd->depth;
 584	while (i--) {
 585		struct saved *last = nd->stack + i;
 586		do_delayed_call(&last->done);
 587		clear_delayed_call(&last->done);
 588	}
 589}
 590
 591static void terminate_walk(struct nameidata *nd)
 592{
 593	drop_links(nd);
 594	if (!(nd->flags & LOOKUP_RCU)) {
 595		int i;
 596		path_put(&nd->path);
 597		for (i = 0; i < nd->depth; i++)
 598			path_put(&nd->stack[i].link);
 599		if (nd->flags & LOOKUP_ROOT_GRABBED) {
 600			path_put(&nd->root);
 601			nd->flags &= ~LOOKUP_ROOT_GRABBED;
 602		}
 603	} else {
 604		nd->flags &= ~LOOKUP_RCU;
 605		rcu_read_unlock();
 606	}
 607	nd->depth = 0;
 608}
 609
 610/* path_put is needed afterwards regardless of success or failure */
 611static bool legitimize_path(struct nameidata *nd,
 612			    struct path *path, unsigned seq)
 613{
 614	int res = __legitimize_mnt(path->mnt, nd->m_seq);
 615	if (unlikely(res)) {
 616		if (res > 0)
 617			path->mnt = NULL;
 618		path->dentry = NULL;
 619		return false;
 620	}
 621	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 622		path->dentry = NULL;
 623		return false;
 624	}
 625	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 626}
 627
 628static bool legitimize_links(struct nameidata *nd)
 629{
 630	int i;
 631	for (i = 0; i < nd->depth; i++) {
 632		struct saved *last = nd->stack + i;
 633		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 634			drop_links(nd);
 635			nd->depth = i + 1;
 636			return false;
 637		}
 638	}
 639	return true;
 640}
 641
 642static bool legitimize_root(struct nameidata *nd)
 643{
 644	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
 645		return true;
 646	nd->flags |= LOOKUP_ROOT_GRABBED;
 647	return legitimize_path(nd, &nd->root, nd->root_seq);
 648}
 649
 650/*
 651 * Path walking has 2 modes, rcu-walk and ref-walk (see
 652 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 654 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 655 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 656 * got stuck, so ref-walk may continue from there. If this is not successful
 657 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 658 * to restart the path walk from the beginning in ref-walk mode.
 659 */
 660
 661/**
 662 * unlazy_walk - try to switch to ref-walk mode.
 663 * @nd: nameidata pathwalk data
 
 664 * Returns: 0 on success, -ECHILD on failure
 665 *
 666 * unlazy_walk attempts to legitimize the current nd->path and nd->root
 667 * for ref-walk mode.
 668 * Must be called from rcu-walk context.
 669 * Nothing should touch nameidata between unlazy_walk() failure and
 670 * terminate_walk().
 671 */
 672static int unlazy_walk(struct nameidata *nd)
 673{
 
 674	struct dentry *parent = nd->path.dentry;
 
 675
 676	BUG_ON(!(nd->flags & LOOKUP_RCU));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677
 678	nd->flags &= ~LOOKUP_RCU;
 679	if (unlikely(!legitimize_links(nd)))
 680		goto out1;
 681	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 682		goto out;
 683	if (unlikely(!legitimize_root(nd)))
 684		goto out;
 685	rcu_read_unlock();
 686	BUG_ON(nd->inode != parent->d_inode);
 
 687	return 0;
 688
 689out1:
 690	nd->path.mnt = NULL;
 691	nd->path.dentry = NULL;
 692out:
 693	rcu_read_unlock();
 
 
 694	return -ECHILD;
 695}
 696
 697/**
 698 * unlazy_child - try to switch to ref-walk mode.
 699 * @nd: nameidata pathwalk data
 700 * @dentry: child of nd->path.dentry
 701 * @seq: seq number to check dentry against
 702 * Returns: 0 on success, -ECHILD on failure
 703 *
 704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
 705 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
 706 * @nd.  Must be called from rcu-walk context.
 707 * Nothing should touch nameidata between unlazy_child() failure and
 708 * terminate_walk().
 709 */
 710static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
 711{
 712	BUG_ON(!(nd->flags & LOOKUP_RCU));
 713
 714	nd->flags &= ~LOOKUP_RCU;
 715	if (unlikely(!legitimize_links(nd)))
 716		goto out2;
 717	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
 718		goto out2;
 719	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 720		goto out1;
 721
 722	/*
 723	 * We need to move both the parent and the dentry from the RCU domain
 724	 * to be properly refcounted. And the sequence number in the dentry
 725	 * validates *both* dentry counters, since we checked the sequence
 726	 * number of the parent after we got the child sequence number. So we
 727	 * know the parent must still be valid if the child sequence number is
 728	 */
 729	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 730		goto out;
 731	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
 732		goto out_dput;
 733	/*
 734	 * Sequence counts matched. Now make sure that the root is
 735	 * still valid and get it if required.
 736	 */
 737	if (unlikely(!legitimize_root(nd)))
 738		goto out_dput;
 739	rcu_read_unlock();
 740	return 0;
 741
 742out2:
 743	nd->path.mnt = NULL;
 744out1:
 745	nd->path.dentry = NULL;
 746out:
 747	rcu_read_unlock();
 748	return -ECHILD;
 749out_dput:
 750	rcu_read_unlock();
 751	dput(dentry);
 752	return -ECHILD;
 753}
 754
 755static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 756{
 757	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 758		return dentry->d_op->d_revalidate(dentry, flags);
 759	else
 760		return 1;
 761}
 762
 763/**
 764 * complete_walk - successful completion of path walk
 765 * @nd:  pointer nameidata
 766 *
 767 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 768 * Revalidate the final result, unless we'd already done that during
 769 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 770 * success, -error on failure.  In case of failure caller does not
 771 * need to drop nd->path.
 772 */
 773static int complete_walk(struct nameidata *nd)
 774{
 775	struct dentry *dentry = nd->path.dentry;
 776	int status;
 777
 778	if (nd->flags & LOOKUP_RCU) {
 
 779		if (!(nd->flags & LOOKUP_ROOT))
 780			nd->root.mnt = NULL;
 781		if (unlikely(unlazy_walk(nd)))
 
 
 
 
 782			return -ECHILD;
 
 
 
 
 
 
 783	}
 784
 785	if (likely(!(nd->flags & LOOKUP_JUMPED)))
 786		return 0;
 787
 788	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 
 
 
 789		return 0;
 790
 791	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 
 792	if (status > 0)
 793		return 0;
 794
 795	if (!status)
 796		status = -ESTALE;
 797
 
 798	return status;
 799}
 800
 801static void set_root(struct nameidata *nd)
 802{
 803	struct fs_struct *fs = current->fs;
 
 
 804
 805	if (nd->flags & LOOKUP_RCU) {
 
 
 
 
 
 806		unsigned seq;
 807
 808		do {
 809			seq = read_seqcount_begin(&fs->seq);
 810			nd->root = fs->root;
 811			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 812		} while (read_seqcount_retry(&fs->seq, seq));
 813	} else {
 814		get_fs_root(fs, &nd->root);
 815		nd->flags |= LOOKUP_ROOT_GRABBED;
 816	}
 817}
 818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 819static void path_put_conditional(struct path *path, struct nameidata *nd)
 820{
 821	dput(path->dentry);
 822	if (path->mnt != nd->path.mnt)
 823		mntput(path->mnt);
 824}
 825
 826static inline void path_to_nameidata(const struct path *path,
 827					struct nameidata *nd)
 828{
 829	if (!(nd->flags & LOOKUP_RCU)) {
 830		dput(nd->path.dentry);
 831		if (nd->path.mnt != path->mnt)
 832			mntput(nd->path.mnt);
 833	}
 834	nd->path.mnt = path->mnt;
 835	nd->path.dentry = path->dentry;
 836}
 837
 838static int nd_jump_root(struct nameidata *nd)
 839{
 840	if (nd->flags & LOOKUP_RCU) {
 841		struct dentry *d;
 842		nd->path = nd->root;
 843		d = nd->path.dentry;
 844		nd->inode = d->d_inode;
 845		nd->seq = nd->root_seq;
 846		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
 847			return -ECHILD;
 848	} else {
 849		path_put(&nd->path);
 850		nd->path = nd->root;
 851		path_get(&nd->path);
 852		nd->inode = nd->path.dentry->d_inode;
 853	}
 854	nd->flags |= LOOKUP_JUMPED;
 855	return 0;
 856}
 857
 858/*
 859 * Helper to directly jump to a known parsed path from ->get_link,
 860 * caller must have taken a reference to path beforehand.
 861 */
 862void nd_jump_link(struct path *path)
 863{
 864	struct nameidata *nd = current->nameidata;
 865	path_put(&nd->path);
 866
 867	nd->path = *path;
 868	nd->inode = nd->path.dentry->d_inode;
 869	nd->flags |= LOOKUP_JUMPED;
 870}
 871
 872static inline void put_link(struct nameidata *nd)
 873{
 874	struct saved *last = nd->stack + --nd->depth;
 875	do_delayed_call(&last->done);
 876	if (!(nd->flags & LOOKUP_RCU))
 877		path_put(&last->link);
 878}
 879
 880int sysctl_protected_symlinks __read_mostly = 0;
 881int sysctl_protected_hardlinks __read_mostly = 0;
 882int sysctl_protected_fifos __read_mostly;
 883int sysctl_protected_regular __read_mostly;
 884
 885/**
 886 * may_follow_link - Check symlink following for unsafe situations
 887 * @nd: nameidata pathwalk data
 888 *
 889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
 891 * in a sticky world-writable directory. This is to protect privileged
 892 * processes from failing races against path names that may change out
 893 * from under them by way of other users creating malicious symlinks.
 894 * It will permit symlinks to be followed only when outside a sticky
 895 * world-writable directory, or when the uid of the symlink and follower
 896 * match, or when the directory owner matches the symlink's owner.
 897 *
 898 * Returns 0 if following the symlink is allowed, -ve on error.
 899 */
 900static inline int may_follow_link(struct nameidata *nd)
 901{
 902	const struct inode *inode;
 903	const struct inode *parent;
 904	kuid_t puid;
 905
 906	if (!sysctl_protected_symlinks)
 907		return 0;
 908
 909	/* Allowed if owner and follower match. */
 910	inode = nd->link_inode;
 911	if (uid_eq(current_cred()->fsuid, inode->i_uid))
 912		return 0;
 913
 914	/* Allowed if parent directory not sticky and world-writable. */
 915	parent = nd->inode;
 916	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 917		return 0;
 918
 919	/* Allowed if parent directory and link owner match. */
 920	puid = parent->i_uid;
 921	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
 922		return 0;
 923
 924	if (nd->flags & LOOKUP_RCU)
 925		return -ECHILD;
 926
 927	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
 928	audit_log_link_denied("follow_link");
 929	return -EACCES;
 930}
 931
 932/**
 933 * safe_hardlink_source - Check for safe hardlink conditions
 934 * @inode: the source inode to hardlink from
 935 *
 936 * Return false if at least one of the following conditions:
 937 *    - inode is not a regular file
 938 *    - inode is setuid
 939 *    - inode is setgid and group-exec
 940 *    - access failure for read and write
 941 *
 942 * Otherwise returns true.
 943 */
 944static bool safe_hardlink_source(struct inode *inode)
 945{
 946	umode_t mode = inode->i_mode;
 947
 948	/* Special files should not get pinned to the filesystem. */
 949	if (!S_ISREG(mode))
 950		return false;
 951
 952	/* Setuid files should not get pinned to the filesystem. */
 953	if (mode & S_ISUID)
 954		return false;
 955
 956	/* Executable setgid files should not get pinned to the filesystem. */
 957	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
 958		return false;
 959
 960	/* Hardlinking to unreadable or unwritable sources is dangerous. */
 961	if (inode_permission(inode, MAY_READ | MAY_WRITE))
 962		return false;
 963
 964	return true;
 965}
 966
 967/**
 968 * may_linkat - Check permissions for creating a hardlink
 969 * @link: the source to hardlink from
 970 *
 971 * Block hardlink when all of:
 972 *  - sysctl_protected_hardlinks enabled
 973 *  - fsuid does not match inode
 974 *  - hardlink source is unsafe (see safe_hardlink_source() above)
 975 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
 976 *
 977 * Returns 0 if successful, -ve on error.
 978 */
 979static int may_linkat(struct path *link)
 980{
 981	struct inode *inode = link->dentry->d_inode;
 982
 983	/* Inode writeback is not safe when the uid or gid are invalid. */
 984	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
 985		return -EOVERFLOW;
 986
 987	if (!sysctl_protected_hardlinks)
 988		return 0;
 989
 990	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
 991	 * otherwise, it must be a safe source.
 992	 */
 993	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
 994		return 0;
 995
 996	audit_log_link_denied("linkat");
 997	return -EPERM;
 998}
 999
1000/**
1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002 *			  should be allowed, or not, on files that already
1003 *			  exist.
1004 * @dir: the sticky parent directory
1005 * @inode: the inode of the file to open
1006 *
1007 * Block an O_CREAT open of a FIFO (or a regular file) when:
1008 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1009 *   - the file already exists
1010 *   - we are in a sticky directory
1011 *   - we don't own the file
1012 *   - the owner of the directory doesn't own the file
1013 *   - the directory is world writable
1014 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1015 * the directory doesn't have to be world writable: being group writable will
1016 * be enough.
1017 *
1018 * Returns 0 if the open is allowed, -ve on error.
1019 */
1020static int may_create_in_sticky(struct dentry * const dir,
1021				struct inode * const inode)
1022{
1023	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1024	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1025	    likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1026	    uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1027	    uid_eq(current_fsuid(), inode->i_uid))
1028		return 0;
1029
1030	if (likely(dir->d_inode->i_mode & 0002) ||
1031	    (dir->d_inode->i_mode & 0020 &&
1032	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1033	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1034		return -EACCES;
1035	}
1036	return 0;
1037}
1038
1039static __always_inline
1040const char *get_link(struct nameidata *nd)
1041{
1042	struct saved *last = nd->stack + nd->depth - 1;
1043	struct dentry *dentry = last->link.dentry;
1044	struct inode *inode = nd->link_inode;
1045	int error;
1046	const char *res;
1047
1048	if (!(nd->flags & LOOKUP_RCU)) {
1049		touch_atime(&last->link);
1050		cond_resched();
1051	} else if (atime_needs_update(&last->link, inode)) {
1052		if (unlikely(unlazy_walk(nd)))
1053			return ERR_PTR(-ECHILD);
1054		touch_atime(&last->link);
1055	}
1056
1057	error = security_inode_follow_link(dentry, inode,
1058					   nd->flags & LOOKUP_RCU);
1059	if (unlikely(error))
1060		return ERR_PTR(error);
1061
1062	nd->last_type = LAST_BIND;
1063	res = READ_ONCE(inode->i_link);
1064	if (!res) {
1065		const char * (*get)(struct dentry *, struct inode *,
1066				struct delayed_call *);
1067		get = inode->i_op->get_link;
1068		if (nd->flags & LOOKUP_RCU) {
1069			res = get(NULL, inode, &last->done);
1070			if (res == ERR_PTR(-ECHILD)) {
1071				if (unlikely(unlazy_walk(nd)))
1072					return ERR_PTR(-ECHILD);
1073				res = get(dentry, inode, &last->done);
 
 
 
1074			}
1075		} else {
1076			res = get(dentry, inode, &last->done);
1077		}
1078		if (IS_ERR_OR_NULL(res))
1079			return res;
1080	}
1081	if (*res == '/') {
1082		if (!nd->root.mnt)
1083			set_root(nd);
1084		if (unlikely(nd_jump_root(nd)))
1085			return ERR_PTR(-ECHILD);
1086		while (unlikely(*++res == '/'))
1087			;
1088	}
1089	if (!*res)
1090		res = NULL;
1091	return res;
 
 
 
 
 
 
 
 
 
 
 
 
1092}
1093
1094/*
1095 * follow_up - Find the mountpoint of path's vfsmount
1096 *
1097 * Given a path, find the mountpoint of its source file system.
1098 * Replace @path with the path of the mountpoint in the parent mount.
1099 * Up is towards /.
1100 *
1101 * Return 1 if we went up a level and 0 if we were already at the
1102 * root.
1103 */
1104int follow_up(struct path *path)
1105{
1106	struct mount *mnt = real_mount(path->mnt);
1107	struct mount *parent;
1108	struct dentry *mountpoint;
1109
1110	read_seqlock_excl(&mount_lock);
1111	parent = mnt->mnt_parent;
1112	if (parent == mnt) {
1113		read_sequnlock_excl(&mount_lock);
1114		return 0;
1115	}
1116	mntget(&parent->mnt);
1117	mountpoint = dget(mnt->mnt_mountpoint);
1118	read_sequnlock_excl(&mount_lock);
1119	dput(path->dentry);
1120	path->dentry = mountpoint;
1121	mntput(path->mnt);
1122	path->mnt = &parent->mnt;
1123	return 1;
1124}
1125EXPORT_SYMBOL(follow_up);
1126
1127/*
1128 * Perform an automount
1129 * - return -EISDIR to tell follow_managed() to stop and return the path we
1130 *   were called with.
1131 */
1132static int follow_automount(struct path *path, struct nameidata *nd,
1133			    bool *need_mntput)
1134{
1135	struct vfsmount *mnt;
1136	int err;
1137
1138	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1139		return -EREMOTE;
1140
1141	/* We don't want to mount if someone's just doing a stat -
1142	 * unless they're stat'ing a directory and appended a '/' to
1143	 * the name.
1144	 *
1145	 * We do, however, want to mount if someone wants to open or
1146	 * create a file of any type under the mountpoint, wants to
1147	 * traverse through the mountpoint or wants to open the
1148	 * mounted directory.  Also, autofs may mark negative dentries
1149	 * as being automount points.  These will need the attentions
1150	 * of the daemon to instantiate them before they can be used.
1151	 */
1152	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1153			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1154	    path->dentry->d_inode)
1155		return -EISDIR;
1156
1157	nd->total_link_count++;
1158	if (nd->total_link_count >= 40)
1159		return -ELOOP;
1160
1161	mnt = path->dentry->d_op->d_automount(path);
1162	if (IS_ERR(mnt)) {
1163		/*
1164		 * The filesystem is allowed to return -EISDIR here to indicate
1165		 * it doesn't want to automount.  For instance, autofs would do
1166		 * this so that its userspace daemon can mount on this dentry.
1167		 *
1168		 * However, we can only permit this if it's a terminal point in
1169		 * the path being looked up; if it wasn't then the remainder of
1170		 * the path is inaccessible and we should say so.
1171		 */
1172		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1173			return -EREMOTE;
1174		return PTR_ERR(mnt);
1175	}
1176
1177	if (!mnt) /* mount collision */
1178		return 0;
1179
1180	if (!*need_mntput) {
1181		/* lock_mount() may release path->mnt on error */
1182		mntget(path->mnt);
1183		*need_mntput = true;
1184	}
1185	err = finish_automount(mnt, path);
1186
1187	switch (err) {
1188	case -EBUSY:
1189		/* Someone else made a mount here whilst we were busy */
1190		return 0;
1191	case 0:
1192		path_put(path);
1193		path->mnt = mnt;
1194		path->dentry = dget(mnt->mnt_root);
1195		return 0;
1196	default:
1197		return err;
1198	}
1199
1200}
1201
1202/*
1203 * Handle a dentry that is managed in some way.
1204 * - Flagged for transit management (autofs)
1205 * - Flagged as mountpoint
1206 * - Flagged as automount point
1207 *
1208 * This may only be called in refwalk mode.
1209 *
1210 * Serialization is taken care of in namespace.c
1211 */
1212static int follow_managed(struct path *path, struct nameidata *nd)
1213{
1214	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1215	unsigned managed;
1216	bool need_mntput = false;
1217	int ret = 0;
1218
1219	/* Given that we're not holding a lock here, we retain the value in a
1220	 * local variable for each dentry as we look at it so that we don't see
1221	 * the components of that value change under us */
1222	while (managed = READ_ONCE(path->dentry->d_flags),
1223	       managed &= DCACHE_MANAGED_DENTRY,
1224	       unlikely(managed != 0)) {
1225		/* Allow the filesystem to manage the transit without i_mutex
1226		 * being held. */
1227		if (managed & DCACHE_MANAGE_TRANSIT) {
1228			BUG_ON(!path->dentry->d_op);
1229			BUG_ON(!path->dentry->d_op->d_manage);
1230			ret = path->dentry->d_op->d_manage(path, false);
1231			if (ret < 0)
1232				break;
1233		}
1234
1235		/* Transit to a mounted filesystem. */
1236		if (managed & DCACHE_MOUNTED) {
1237			struct vfsmount *mounted = lookup_mnt(path);
1238			if (mounted) {
1239				dput(path->dentry);
1240				if (need_mntput)
1241					mntput(path->mnt);
1242				path->mnt = mounted;
1243				path->dentry = dget(mounted->mnt_root);
1244				need_mntput = true;
1245				continue;
1246			}
1247
1248			/* Something is mounted on this dentry in another
1249			 * namespace and/or whatever was mounted there in this
1250			 * namespace got unmounted before lookup_mnt() could
1251			 * get it */
1252		}
1253
1254		/* Handle an automount point */
1255		if (managed & DCACHE_NEED_AUTOMOUNT) {
1256			ret = follow_automount(path, nd, &need_mntput);
1257			if (ret < 0)
1258				break;
1259			continue;
1260		}
1261
1262		/* We didn't change the current path point */
1263		break;
1264	}
1265
1266	if (need_mntput && path->mnt == mnt)
1267		mntput(path->mnt);
1268	if (ret == -EISDIR || !ret)
1269		ret = 1;
1270	if (need_mntput)
1271		nd->flags |= LOOKUP_JUMPED;
1272	if (unlikely(ret < 0))
1273		path_put_conditional(path, nd);
1274	return ret;
1275}
1276
1277int follow_down_one(struct path *path)
1278{
1279	struct vfsmount *mounted;
1280
1281	mounted = lookup_mnt(path);
1282	if (mounted) {
1283		dput(path->dentry);
1284		mntput(path->mnt);
1285		path->mnt = mounted;
1286		path->dentry = dget(mounted->mnt_root);
1287		return 1;
1288	}
1289	return 0;
1290}
1291EXPORT_SYMBOL(follow_down_one);
1292
1293static inline int managed_dentry_rcu(const struct path *path)
1294{
1295	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1296		path->dentry->d_op->d_manage(path, true) : 0;
1297}
1298
1299/*
1300 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1301 * we meet a managed dentry that would need blocking.
1302 */
1303static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1304			       struct inode **inode, unsigned *seqp)
1305{
1306	for (;;) {
1307		struct mount *mounted;
1308		/*
1309		 * Don't forget we might have a non-mountpoint managed dentry
1310		 * that wants to block transit.
1311		 */
1312		switch (managed_dentry_rcu(path)) {
1313		case -ECHILD:
1314		default:
1315			return false;
1316		case -EISDIR:
1317			return true;
1318		case 0:
1319			break;
1320		}
1321
1322		if (!d_mountpoint(path->dentry))
1323			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1324
1325		mounted = __lookup_mnt(path->mnt, path->dentry);
1326		if (!mounted)
1327			break;
1328		path->mnt = &mounted->mnt;
1329		path->dentry = mounted->mnt.mnt_root;
1330		nd->flags |= LOOKUP_JUMPED;
1331		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1332		/*
1333		 * Update the inode too. We don't need to re-check the
1334		 * dentry sequence number here after this d_inode read,
1335		 * because a mount-point is always pinned.
1336		 */
1337		*inode = path->dentry->d_inode;
1338	}
1339	return !read_seqretry(&mount_lock, nd->m_seq) &&
1340		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
 
 
 
 
 
 
 
 
 
 
 
 
1341}
1342
1343static int follow_dotdot_rcu(struct nameidata *nd)
1344{
1345	struct inode *inode = nd->inode;
1346
1347	while (1) {
1348		if (path_equal(&nd->path, &nd->root))
 
1349			break;
 
1350		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1351			struct dentry *old = nd->path.dentry;
1352			struct dentry *parent = old->d_parent;
1353			unsigned seq;
1354
1355			inode = parent->d_inode;
1356			seq = read_seqcount_begin(&parent->d_seq);
1357			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1358				return -ECHILD;
1359			nd->path.dentry = parent;
1360			nd->seq = seq;
1361			if (unlikely(!path_connected(&nd->path)))
1362				return -ENOENT;
1363			break;
1364		} else {
1365			struct mount *mnt = real_mount(nd->path.mnt);
1366			struct mount *mparent = mnt->mnt_parent;
1367			struct dentry *mountpoint = mnt->mnt_mountpoint;
1368			struct inode *inode2 = mountpoint->d_inode;
1369			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1370			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1371				return -ECHILD;
1372			if (&mparent->mnt == nd->path.mnt)
1373				break;
1374			/* we know that mountpoint was pinned */
1375			nd->path.dentry = mountpoint;
1376			nd->path.mnt = &mparent->mnt;
1377			inode = inode2;
1378			nd->seq = seq;
1379		}
1380	}
1381	while (unlikely(d_mountpoint(nd->path.dentry))) {
1382		struct mount *mounted;
1383		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1384		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1385			return -ECHILD;
1386		if (!mounted)
1387			break;
1388		nd->path.mnt = &mounted->mnt;
1389		nd->path.dentry = mounted->mnt.mnt_root;
1390		inode = nd->path.dentry->d_inode;
1391		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1392	}
1393	nd->inode = inode;
 
1394	return 0;
 
 
 
 
 
 
 
 
1395}
1396
1397/*
1398 * Follow down to the covering mount currently visible to userspace.  At each
1399 * point, the filesystem owning that dentry may be queried as to whether the
1400 * caller is permitted to proceed or not.
1401 */
1402int follow_down(struct path *path)
1403{
1404	unsigned managed;
1405	int ret;
1406
1407	while (managed = READ_ONCE(path->dentry->d_flags),
1408	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1409		/* Allow the filesystem to manage the transit without i_mutex
1410		 * being held.
1411		 *
1412		 * We indicate to the filesystem if someone is trying to mount
1413		 * something here.  This gives autofs the chance to deny anyone
1414		 * other than its daemon the right to mount on its
1415		 * superstructure.
1416		 *
1417		 * The filesystem may sleep at this point.
1418		 */
1419		if (managed & DCACHE_MANAGE_TRANSIT) {
1420			BUG_ON(!path->dentry->d_op);
1421			BUG_ON(!path->dentry->d_op->d_manage);
1422			ret = path->dentry->d_op->d_manage(path, false);
 
1423			if (ret < 0)
1424				return ret == -EISDIR ? 0 : ret;
1425		}
1426
1427		/* Transit to a mounted filesystem. */
1428		if (managed & DCACHE_MOUNTED) {
1429			struct vfsmount *mounted = lookup_mnt(path);
1430			if (!mounted)
1431				break;
1432			dput(path->dentry);
1433			mntput(path->mnt);
1434			path->mnt = mounted;
1435			path->dentry = dget(mounted->mnt_root);
1436			continue;
1437		}
1438
1439		/* Don't handle automount points here */
1440		break;
1441	}
1442	return 0;
1443}
1444EXPORT_SYMBOL(follow_down);
1445
1446/*
1447 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1448 */
1449static void follow_mount(struct path *path)
1450{
1451	while (d_mountpoint(path->dentry)) {
1452		struct vfsmount *mounted = lookup_mnt(path);
1453		if (!mounted)
1454			break;
1455		dput(path->dentry);
1456		mntput(path->mnt);
1457		path->mnt = mounted;
1458		path->dentry = dget(mounted->mnt_root);
1459	}
1460}
1461
1462static int path_parent_directory(struct path *path)
1463{
1464	struct dentry *old = path->dentry;
1465	/* rare case of legitimate dget_parent()... */
1466	path->dentry = dget_parent(path->dentry);
1467	dput(old);
1468	if (unlikely(!path_connected(path)))
1469		return -ENOENT;
1470	return 0;
1471}
1472
1473static int follow_dotdot(struct nameidata *nd)
1474{
1475	while(1) {
1476		if (path_equal(&nd->path, &nd->root))
 
 
 
1477			break;
 
1478		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1479			int ret = path_parent_directory(&nd->path);
1480			if (ret)
1481				return ret;
1482			break;
1483		}
1484		if (!follow_up(&nd->path))
1485			break;
1486	}
1487	follow_mount(&nd->path);
1488	nd->inode = nd->path.dentry->d_inode;
1489	return 0;
1490}
1491
1492/*
1493 * This looks up the name in dcache and possibly revalidates the found dentry.
1494 * NULL is returned if the dentry does not exist in the cache.
 
 
1495 */
1496static struct dentry *lookup_dcache(const struct qstr *name,
1497				    struct dentry *dir,
1498				    unsigned int flags)
1499{
1500	struct dentry *dentry = d_lookup(dir, name);
1501	if (dentry) {
1502		int error = d_revalidate(dentry, flags);
1503		if (unlikely(error <= 0)) {
1504			if (!error)
1505				d_invalidate(dentry);
1506			dput(dentry);
1507			return ERR_PTR(error);
1508		}
 
 
 
 
 
 
1509	}
1510	return dentry;
1511}
1512
1513/*
1514 * Parent directory has inode locked exclusive.  This is one
1515 * and only case when ->lookup() gets called on non in-lookup
1516 * dentries - as the matter of fact, this only gets called
1517 * when directory is guaranteed to have no in-lookup children
1518 * at all.
1519 */
1520static struct dentry *__lookup_hash(const struct qstr *name,
1521		struct dentry *base, unsigned int flags)
1522{
1523	struct dentry *dentry = lookup_dcache(name, base, flags);
1524	struct dentry *old;
1525	struct inode *dir = base->d_inode;
1526
1527	if (dentry)
1528		return dentry;
1529
1530	/* Don't create child dentry for a dead directory. */
1531	if (unlikely(IS_DEADDIR(dir)))
1532		return ERR_PTR(-ENOENT);
1533
1534	dentry = d_alloc(base, name);
1535	if (unlikely(!dentry))
1536		return ERR_PTR(-ENOMEM);
1537
1538	old = dir->i_op->lookup(dir, dentry, flags);
1539	if (unlikely(old)) {
1540		dput(dentry);
1541		dentry = old;
1542	}
1543	return dentry;
1544}
1545
1546static int lookup_fast(struct nameidata *nd,
1547		       struct path *path, struct inode **inode,
1548		       unsigned *seqp)
 
 
 
 
1549{
1550	struct vfsmount *mnt = nd->path.mnt;
1551	struct dentry *dentry, *parent = nd->path.dentry;
 
1552	int status = 1;
1553	int err;
1554
1555	/*
1556	 * Rename seqlock is not required here because in the off chance
1557	 * of a false negative due to a concurrent rename, the caller is
1558	 * going to fall back to non-racy lookup.
1559	 */
1560	if (nd->flags & LOOKUP_RCU) {
1561		unsigned seq;
1562		bool negative;
1563		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1564		if (unlikely(!dentry)) {
1565			if (unlazy_walk(nd))
1566				return -ECHILD;
1567			return 0;
1568		}
1569
1570		/*
1571		 * This sequence count validates that the inode matches
1572		 * the dentry name information from lookup.
1573		 */
1574		*inode = d_backing_inode(dentry);
1575		negative = d_is_negative(dentry);
1576		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1577			return -ECHILD;
1578
1579		/*
1580		 * This sequence count validates that the parent had no
1581		 * changes while we did the lookup of the dentry above.
1582		 *
1583		 * The memory barrier in read_seqcount_begin of child is
1584		 *  enough, we can use __read_seqcount_retry here.
1585		 */
1586		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1587			return -ECHILD;
 
1588
1589		*seqp = seq;
1590		status = d_revalidate(dentry, nd->flags);
1591		if (likely(status > 0)) {
1592			/*
1593			 * Note: do negative dentry check after revalidation in
1594			 * case that drops it.
1595			 */
1596			if (unlikely(negative))
1597				return -ENOENT;
1598			path->mnt = mnt;
1599			path->dentry = dentry;
1600			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1601				return 1;
1602		}
1603		if (unlazy_child(nd, dentry, seq))
 
 
 
 
 
 
 
 
 
 
1604			return -ECHILD;
1605		if (unlikely(status == -ECHILD))
1606			/* we'd been told to redo it in non-rcu mode */
1607			status = d_revalidate(dentry, nd->flags);
1608	} else {
1609		dentry = __d_lookup(parent, &nd->last);
1610		if (unlikely(!dentry))
1611			return 0;
1612		status = d_revalidate(dentry, nd->flags);
1613	}
1614	if (unlikely(status <= 0)) {
1615		if (!status)
1616			d_invalidate(dentry);
1617		dput(dentry);
1618		return status;
1619	}
1620	if (unlikely(d_is_negative(dentry))) {
 
1621		dput(dentry);
1622		return -ENOENT;
1623	}
1624
1625	path->mnt = mnt;
1626	path->dentry = dentry;
1627	err = follow_managed(path, nd);
1628	if (likely(err > 0))
1629		*inode = d_backing_inode(path->dentry);
1630	return err;
1631}
1632
1633/* Fast lookup failed, do it the slow way */
1634static struct dentry *__lookup_slow(const struct qstr *name,
1635				    struct dentry *dir,
1636				    unsigned int flags)
1637{
1638	struct dentry *dentry, *old;
1639	struct inode *inode = dir->d_inode;
1640	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1641
1642	/* Don't go there if it's already dead */
1643	if (unlikely(IS_DEADDIR(inode)))
1644		return ERR_PTR(-ENOENT);
1645again:
1646	dentry = d_alloc_parallel(dir, name, &wq);
1647	if (IS_ERR(dentry))
1648		return dentry;
1649	if (unlikely(!d_in_lookup(dentry))) {
1650		if (!(flags & LOOKUP_NO_REVAL)) {
1651			int error = d_revalidate(dentry, flags);
1652			if (unlikely(error <= 0)) {
1653				if (!error) {
1654					d_invalidate(dentry);
1655					dput(dentry);
1656					goto again;
1657				}
1658				dput(dentry);
1659				dentry = ERR_PTR(error);
1660			}
 
 
 
 
 
 
 
 
 
 
 
 
1661		}
1662	} else {
1663		old = inode->i_op->lookup(inode, dentry, flags);
1664		d_lookup_done(dentry);
1665		if (unlikely(old)) {
 
 
1666			dput(dentry);
1667			dentry = old;
 
 
 
 
 
 
1668		}
1669	}
1670	return dentry;
1671}
1672
1673static struct dentry *lookup_slow(const struct qstr *name,
1674				  struct dentry *dir,
1675				  unsigned int flags)
1676{
1677	struct inode *inode = dir->d_inode;
1678	struct dentry *res;
1679	inode_lock_shared(inode);
1680	res = __lookup_slow(name, dir, flags);
1681	inode_unlock_shared(inode);
1682	return res;
1683}
1684
1685static inline int may_lookup(struct nameidata *nd)
1686{
1687	if (nd->flags & LOOKUP_RCU) {
1688		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1689		if (err != -ECHILD)
1690			return err;
1691		if (unlazy_walk(nd))
1692			return -ECHILD;
1693	}
1694	return inode_permission(nd->inode, MAY_EXEC);
1695}
1696
1697static inline int handle_dots(struct nameidata *nd, int type)
1698{
1699	if (type == LAST_DOTDOT) {
1700		if (!nd->root.mnt)
1701			set_root(nd);
1702		if (nd->flags & LOOKUP_RCU) {
1703			return follow_dotdot_rcu(nd);
 
1704		} else
1705			return follow_dotdot(nd);
1706	}
1707	return 0;
1708}
1709
1710static int pick_link(struct nameidata *nd, struct path *link,
1711		     struct inode *inode, unsigned seq)
1712{
1713	int error;
1714	struct saved *last;
1715	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1716		path_to_nameidata(link, nd);
1717		return -ELOOP;
1718	}
1719	if (!(nd->flags & LOOKUP_RCU)) {
1720		if (link->mnt == nd->path.mnt)
1721			mntget(link->mnt);
1722	}
1723	error = nd_alloc_stack(nd);
1724	if (unlikely(error)) {
1725		if (error == -ECHILD) {
1726			if (unlikely(!legitimize_path(nd, link, seq))) {
1727				drop_links(nd);
1728				nd->depth = 0;
1729				nd->flags &= ~LOOKUP_RCU;
1730				nd->path.mnt = NULL;
1731				nd->path.dentry = NULL;
1732				rcu_read_unlock();
1733			} else if (likely(unlazy_walk(nd)) == 0)
1734				error = nd_alloc_stack(nd);
1735		}
1736		if (error) {
1737			path_put(link);
1738			return error;
1739		}
1740	}
1741
1742	last = nd->stack + nd->depth++;
1743	last->link = *link;
1744	clear_delayed_call(&last->done);
1745	nd->link_inode = inode;
1746	last->seq = seq;
1747	return 1;
1748}
1749
1750enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1751
1752/*
1753 * Do we need to follow links? We _really_ want to be able
1754 * to do this check without having to look at inode->i_op,
1755 * so we keep a cache of "no, this doesn't need follow_link"
1756 * for the common case.
1757 */
1758static inline int step_into(struct nameidata *nd, struct path *path,
1759			    int flags, struct inode *inode, unsigned seq)
1760{
1761	if (!(flags & WALK_MORE) && nd->depth)
1762		put_link(nd);
1763	if (likely(!d_is_symlink(path->dentry)) ||
1764	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1765		/* not a symlink or should not follow */
1766		path_to_nameidata(path, nd);
1767		nd->inode = inode;
1768		nd->seq = seq;
1769		return 0;
1770	}
1771	/* make sure that d_is_symlink above matches inode */
1772	if (nd->flags & LOOKUP_RCU) {
1773		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1774			return -ECHILD;
1775	}
1776	return pick_link(nd, path, inode, seq);
1777}
1778
1779static int walk_component(struct nameidata *nd, int flags)
 
1780{
1781	struct path path;
1782	struct inode *inode;
1783	unsigned seq;
1784	int err;
1785	/*
1786	 * "." and ".." are special - ".." especially so because it has
1787	 * to be able to know about the current root directory and
1788	 * parent relationships.
1789	 */
1790	if (unlikely(nd->last_type != LAST_NORM)) {
1791		err = handle_dots(nd, nd->last_type);
1792		if (!(flags & WALK_MORE) && nd->depth)
1793			put_link(nd);
 
1794		return err;
1795	}
1796	err = lookup_fast(nd, &path, &inode, &seq);
1797	if (unlikely(err <= 0)) {
1798		if (err < 0)
1799			return err;
1800		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1801					  nd->flags);
1802		if (IS_ERR(path.dentry))
1803			return PTR_ERR(path.dentry);
1804
1805		path.mnt = nd->path.mnt;
1806		err = follow_managed(&path, nd);
1807		if (unlikely(err < 0))
1808			return err;
1809
1810		if (unlikely(d_is_negative(path.dentry))) {
1811			path_to_nameidata(&path, nd);
1812			return -ENOENT;
1813		}
1814
1815		seq = 0;	/* we are already out of RCU mode */
1816		inode = d_backing_inode(path.dentry);
1817	}
1818
1819	return step_into(nd, &path, flags, inode, seq);
 
1820}
1821
1822/*
1823 * We can do the critical dentry name comparison and hashing
1824 * operations one word at a time, but we are limited to:
1825 *
1826 * - Architectures with fast unaligned word accesses. We could
1827 *   do a "get_unaligned()" if this helps and is sufficiently
1828 *   fast.
1829 *
1830 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1831 *   do not trap on the (extremely unlikely) case of a page
1832 *   crossing operation.
1833 *
1834 * - Furthermore, we need an efficient 64-bit compile for the
1835 *   64-bit case in order to generate the "number of bytes in
1836 *   the final mask". Again, that could be replaced with a
1837 *   efficient population count instruction or similar.
1838 */
1839#ifdef CONFIG_DCACHE_WORD_ACCESS
1840
1841#include <asm/word-at-a-time.h>
1842
1843#ifdef HASH_MIX
1844
1845/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1846
1847#elif defined(CONFIG_64BIT)
1848/*
1849 * Register pressure in the mixing function is an issue, particularly
1850 * on 32-bit x86, but almost any function requires one state value and
1851 * one temporary.  Instead, use a function designed for two state values
1852 * and no temporaries.
1853 *
1854 * This function cannot create a collision in only two iterations, so
1855 * we have two iterations to achieve avalanche.  In those two iterations,
1856 * we have six layers of mixing, which is enough to spread one bit's
1857 * influence out to 2^6 = 64 state bits.
1858 *
1859 * Rotate constants are scored by considering either 64 one-bit input
1860 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1861 * probability of that delta causing a change to each of the 128 output
1862 * bits, using a sample of random initial states.
1863 *
1864 * The Shannon entropy of the computed probabilities is then summed
1865 * to produce a score.  Ideally, any input change has a 50% chance of
1866 * toggling any given output bit.
1867 *
1868 * Mixing scores (in bits) for (12,45):
1869 * Input delta: 1-bit      2-bit
1870 * 1 round:     713.3    42542.6
1871 * 2 rounds:   2753.7   140389.8
1872 * 3 rounds:   5954.1   233458.2
1873 * 4 rounds:   7862.6   256672.2
1874 * Perfect:    8192     258048
1875 *            (64*128) (64*63/2 * 128)
1876 */
1877#define HASH_MIX(x, y, a)	\
1878	(	x ^= (a),	\
1879	y ^= x,	x = rol64(x,12),\
1880	x += y,	y = rol64(y,45),\
1881	y *= 9			)
1882
1883/*
1884 * Fold two longs into one 32-bit hash value.  This must be fast, but
1885 * latency isn't quite as critical, as there is a fair bit of additional
1886 * work done before the hash value is used.
1887 */
1888static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1889{
1890	y ^= x * GOLDEN_RATIO_64;
1891	y *= GOLDEN_RATIO_64;
1892	return y >> 32;
1893}
1894
1895#else	/* 32-bit case */
1896
1897/*
1898 * Mixing scores (in bits) for (7,20):
1899 * Input delta: 1-bit      2-bit
1900 * 1 round:     330.3     9201.6
1901 * 2 rounds:   1246.4    25475.4
1902 * 3 rounds:   1907.1    31295.1
1903 * 4 rounds:   2042.3    31718.6
1904 * Perfect:    2048      31744
1905 *            (32*64)   (32*31/2 * 64)
1906 */
1907#define HASH_MIX(x, y, a)	\
1908	(	x ^= (a),	\
1909	y ^= x,	x = rol32(x, 7),\
1910	x += y,	y = rol32(y,20),\
1911	y *= 9			)
1912
1913static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1914{
1915	/* Use arch-optimized multiply if one exists */
1916	return __hash_32(y ^ __hash_32(x));
1917}
1918
1919#endif
1920
1921/*
1922 * Return the hash of a string of known length.  This is carfully
1923 * designed to match hash_name(), which is the more critical function.
1924 * In particular, we must end by hashing a final word containing 0..7
1925 * payload bytes, to match the way that hash_name() iterates until it
1926 * finds the delimiter after the name.
1927 */
1928unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1929{
1930	unsigned long a, x = 0, y = (unsigned long)salt;
1931
1932	for (;;) {
1933		if (!len)
1934			goto done;
1935		a = load_unaligned_zeropad(name);
1936		if (len < sizeof(unsigned long))
1937			break;
1938		HASH_MIX(x, y, a);
1939		name += sizeof(unsigned long);
1940		len -= sizeof(unsigned long);
1941	}
1942	x ^= a & bytemask_from_count(len);
1943done:
1944	return fold_hash(x, y);
1945}
1946EXPORT_SYMBOL(full_name_hash);
1947
1948/* Return the "hash_len" (hash and length) of a null-terminated string */
1949u64 hashlen_string(const void *salt, const char *name)
1950{
1951	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1952	unsigned long adata, mask, len;
1953	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1954
1955	len = 0;
1956	goto inside;
1957
1958	do {
1959		HASH_MIX(x, y, a);
1960		len += sizeof(unsigned long);
1961inside:
1962		a = load_unaligned_zeropad(name+len);
1963	} while (!has_zero(a, &adata, &constants));
1964
1965	adata = prep_zero_mask(a, adata, &constants);
1966	mask = create_zero_mask(adata);
1967	x ^= a & zero_bytemask(mask);
1968
1969	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1970}
1971EXPORT_SYMBOL(hashlen_string);
1972
1973/*
1974 * Calculate the length and hash of the path component, and
1975 * return the "hash_len" as the result.
1976 */
1977static inline u64 hash_name(const void *salt, const char *name)
1978{
1979	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1980	unsigned long adata, bdata, mask, len;
1981	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1982
1983	len = 0;
1984	goto inside;
1985
1986	do {
1987		HASH_MIX(x, y, a);
1988		len += sizeof(unsigned long);
1989inside:
1990		a = load_unaligned_zeropad(name+len);
1991		b = a ^ REPEAT_BYTE('/');
1992	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1993
1994	adata = prep_zero_mask(a, adata, &constants);
1995	bdata = prep_zero_mask(b, bdata, &constants);
1996	mask = create_zero_mask(adata | bdata);
1997	x ^= a & zero_bytemask(mask);
1998
1999	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2000}
2001
2002#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2003
2004/* Return the hash of a string of known length */
2005unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2006{
2007	unsigned long hash = init_name_hash(salt);
2008	while (len--)
2009		hash = partial_name_hash((unsigned char)*name++, hash);
2010	return end_name_hash(hash);
2011}
2012EXPORT_SYMBOL(full_name_hash);
2013
2014/* Return the "hash_len" (hash and length) of a null-terminated string */
2015u64 hashlen_string(const void *salt, const char *name)
2016{
2017	unsigned long hash = init_name_hash(salt);
2018	unsigned long len = 0, c;
2019
2020	c = (unsigned char)*name;
2021	while (c) {
2022		len++;
2023		hash = partial_name_hash(c, hash);
2024		c = (unsigned char)name[len];
2025	}
2026	return hashlen_create(end_name_hash(hash), len);
2027}
2028EXPORT_SYMBOL(hashlen_string);
2029
2030/*
2031 * We know there's a real path component here of at least
2032 * one character.
 
 
2033 */
2034static inline u64 hash_name(const void *salt, const char *name)
2035{
2036	unsigned long hash = init_name_hash(salt);
2037	unsigned long len = 0, c;
 
 
2038
2039	c = (unsigned char)*name;
2040	do {
2041		len++;
2042		hash = partial_name_hash(c, hash);
2043		c = (unsigned char)name[len];
2044	} while (c && c != '/');
2045	return hashlen_create(end_name_hash(hash), len);
2046}
2047
2048#endif
2049
2050/*
2051 * Name resolution.
2052 * This is the basic name resolution function, turning a pathname into
2053 * the final dentry. We expect 'base' to be positive and a directory.
2054 *
2055 * Returns 0 and nd will have valid dentry and mnt on success.
2056 * Returns error and drops reference to input namei data on failure.
2057 */
2058static int link_path_walk(const char *name, struct nameidata *nd)
2059{
 
2060	int err;
2061
2062	if (IS_ERR(name))
2063		return PTR_ERR(name);
2064	while (*name=='/')
2065		name++;
2066	if (!*name)
2067		return 0;
2068
2069	/* At this point we know we have a real path component. */
2070	for(;;) {
2071		u64 hash_len;
 
 
2072		int type;
2073
2074		err = may_lookup(nd);
2075		if (err)
2076			return err;
 
 
 
2077
2078		hash_len = hash_name(nd->path.dentry, name);
 
 
 
 
 
 
 
2079
2080		type = LAST_NORM;
2081		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2082			case 2:
2083				if (name[1] == '.') {
2084					type = LAST_DOTDOT;
2085					nd->flags |= LOOKUP_JUMPED;
2086				}
2087				break;
2088			case 1:
2089				type = LAST_DOT;
2090		}
2091		if (likely(type == LAST_NORM)) {
2092			struct dentry *parent = nd->path.dentry;
2093			nd->flags &= ~LOOKUP_JUMPED;
2094			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2095				struct qstr this = { { .hash_len = hash_len }, .name = name };
2096				err = parent->d_op->d_hash(parent, &this);
2097				if (err < 0)
2098					return err;
2099				hash_len = this.hash_len;
2100				name = this.name;
2101			}
2102		}
2103
2104		nd->last.hash_len = hash_len;
2105		nd->last.name = name;
2106		nd->last_type = type;
2107
2108		name += hashlen_len(hash_len);
2109		if (!*name)
2110			goto OK;
2111		/*
2112		 * If it wasn't NUL, we know it was '/'. Skip that
2113		 * slash, and continue until no more slashes.
2114		 */
2115		do {
2116			name++;
2117		} while (unlikely(*name == '/'));
2118		if (unlikely(!*name)) {
2119OK:
2120			/* pathname body, done */
2121			if (!nd->depth)
2122				return 0;
2123			name = nd->stack[nd->depth - 1].name;
2124			/* trailing symlink, done */
2125			if (!name)
2126				return 0;
2127			/* last component of nested symlink */
2128			err = walk_component(nd, WALK_FOLLOW);
2129		} else {
2130			/* not the last component */
2131			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2132		}
2133		if (err < 0)
2134			return err;
2135
2136		if (err) {
2137			const char *s = get_link(nd);
2138
2139			if (IS_ERR(s))
2140				return PTR_ERR(s);
2141			err = 0;
2142			if (unlikely(!s)) {
2143				/* jumped */
2144				put_link(nd);
2145			} else {
2146				nd->stack[nd->depth - 1].name = name;
2147				name = s;
2148				continue;
2149			}
2150		}
2151		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2152			if (nd->flags & LOOKUP_RCU) {
2153				if (unlazy_walk(nd))
2154					return -ECHILD;
2155			}
2156			return -ENOTDIR;
2157		}
 
 
 
 
 
 
 
 
 
 
2158	}
 
 
2159}
2160
2161/* must be paired with terminate_walk() */
2162static const char *path_init(struct nameidata *nd, unsigned flags)
2163{
2164	const char *s = nd->name->name;
2165
2166	if (!*s)
2167		flags &= ~LOOKUP_RCU;
2168	if (flags & LOOKUP_RCU)
2169		rcu_read_lock();
2170
2171	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2172	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2173	nd->depth = 0;
2174	if (flags & LOOKUP_ROOT) {
2175		struct dentry *root = nd->root.dentry;
2176		struct inode *inode = root->d_inode;
2177		if (*s && unlikely(!d_can_lookup(root)))
2178			return ERR_PTR(-ENOTDIR);
 
 
 
 
2179		nd->path = nd->root;
2180		nd->inode = inode;
2181		if (flags & LOOKUP_RCU) {
 
 
2182			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2183			nd->root_seq = nd->seq;
2184			nd->m_seq = read_seqbegin(&mount_lock);
2185		} else {
2186			path_get(&nd->path);
2187		}
2188		return s;
2189	}
2190
2191	nd->root.mnt = NULL;
2192	nd->path.mnt = NULL;
2193	nd->path.dentry = NULL;
2194
2195	nd->m_seq = read_seqbegin(&mount_lock);
2196	if (*s == '/') {
2197		set_root(nd);
2198		if (likely(!nd_jump_root(nd)))
2199			return s;
2200		return ERR_PTR(-ECHILD);
2201	} else if (nd->dfd == AT_FDCWD) {
 
 
 
 
2202		if (flags & LOOKUP_RCU) {
2203			struct fs_struct *fs = current->fs;
2204			unsigned seq;
2205
 
 
 
2206			do {
2207				seq = read_seqcount_begin(&fs->seq);
2208				nd->path = fs->pwd;
2209				nd->inode = nd->path.dentry->d_inode;
2210				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2211			} while (read_seqcount_retry(&fs->seq, seq));
2212		} else {
2213			get_fs_pwd(current->fs, &nd->path);
2214			nd->inode = nd->path.dentry->d_inode;
2215		}
2216		return s;
2217	} else {
2218		/* Caller must check execute permissions on the starting path component */
2219		struct fd f = fdget_raw(nd->dfd);
2220		struct dentry *dentry;
2221
2222		if (!f.file)
2223			return ERR_PTR(-EBADF);
 
 
2224
2225		dentry = f.file->f_path.dentry;
2226
2227		if (*s && unlikely(!d_can_lookup(dentry))) {
2228			fdput(f);
2229			return ERR_PTR(-ENOTDIR);
 
 
 
 
 
2230		}
2231
2232		nd->path = f.file->f_path;
2233		if (flags & LOOKUP_RCU) {
2234			nd->inode = nd->path.dentry->d_inode;
2235			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
 
 
 
2236		} else {
2237			path_get(&nd->path);
2238			nd->inode = nd->path.dentry->d_inode;
2239		}
2240		fdput(f);
2241		return s;
2242	}
2243}
2244
2245static const char *trailing_symlink(struct nameidata *nd)
2246{
2247	const char *s;
2248	int error = may_follow_link(nd);
2249	if (unlikely(error))
2250		return ERR_PTR(error);
2251	nd->flags |= LOOKUP_PARENT;
2252	nd->stack[0].name = NULL;
2253	s = get_link(nd);
2254	return s ? s : "";
2255}
2256
2257static inline int lookup_last(struct nameidata *nd)
2258{
2259	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2260		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2261
2262	nd->flags &= ~LOOKUP_PARENT;
2263	return walk_component(nd, 0);
 
2264}
2265
2266static int handle_lookup_down(struct nameidata *nd)
 
 
2267{
2268	struct path path = nd->path;
2269	struct inode *inode = nd->inode;
2270	unsigned seq = nd->seq;
2271	int err;
2272
2273	if (nd->flags & LOOKUP_RCU) {
2274		/*
2275		 * don't bother with unlazy_walk on failure - we are
2276		 * at the very beginning of walk, so we lose nothing
2277		 * if we simply redo everything in non-RCU mode
2278		 */
2279		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2280			return -ECHILD;
2281	} else {
2282		dget(path.dentry);
2283		err = follow_managed(&path, nd);
2284		if (unlikely(err < 0))
2285			return err;
2286		inode = d_backing_inode(path.dentry);
2287		seq = 0;
2288	}
2289	path_to_nameidata(&path, nd);
2290	nd->inode = inode;
2291	nd->seq = seq;
2292	return 0;
2293}
2294
2295/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2296static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2297{
2298	const char *s = path_init(nd, flags);
2299	int err;
2300
2301	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2302		err = handle_lookup_down(nd);
2303		if (unlikely(err < 0))
2304			s = ERR_PTR(err);
2305	}
2306
2307	while (!(err = link_path_walk(s, nd))
2308		&& ((err = lookup_last(nd)) > 0)) {
2309		s = trailing_symlink(nd);
 
 
 
 
 
 
 
 
2310	}
 
2311	if (!err)
2312		err = complete_walk(nd);
2313
2314	if (!err && nd->flags & LOOKUP_DIRECTORY)
2315		if (!d_can_lookup(nd->path.dentry))
 
2316			err = -ENOTDIR;
2317	if (!err) {
2318		*path = nd->path;
2319		nd->path.mnt = NULL;
2320		nd->path.dentry = NULL;
2321	}
2322	terminate_walk(nd);
2323	return err;
2324}
2325
2326int filename_lookup(int dfd, struct filename *name, unsigned flags,
2327		    struct path *path, struct path *root)
2328{
2329	int retval;
2330	struct nameidata nd;
2331	if (IS_ERR(name))
2332		return PTR_ERR(name);
2333	if (unlikely(root)) {
2334		nd.root = *root;
2335		flags |= LOOKUP_ROOT;
2336	}
2337	set_nameidata(&nd, dfd, name);
2338	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2339	if (unlikely(retval == -ECHILD))
2340		retval = path_lookupat(&nd, flags, path);
2341	if (unlikely(retval == -ESTALE))
2342		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2343
2344	if (likely(!retval))
2345		audit_inode(name, path->dentry, 0);
2346	restore_nameidata();
2347	putname(name);
2348	return retval;
2349}
2350
2351/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2352static int path_parentat(struct nameidata *nd, unsigned flags,
2353				struct path *parent)
2354{
2355	const char *s = path_init(nd, flags);
2356	int err = link_path_walk(s, nd);
2357	if (!err)
2358		err = complete_walk(nd);
2359	if (!err) {
2360		*parent = nd->path;
2361		nd->path.mnt = NULL;
2362		nd->path.dentry = NULL;
2363	}
2364	terminate_walk(nd);
2365	return err;
2366}
2367
2368static struct filename *filename_parentat(int dfd, struct filename *name,
2369				unsigned int flags, struct path *parent,
2370				struct qstr *last, int *type)
2371{
2372	int retval;
2373	struct nameidata nd;
2374
2375	if (IS_ERR(name))
2376		return name;
2377	set_nameidata(&nd, dfd, name);
2378	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2379	if (unlikely(retval == -ECHILD))
2380		retval = path_parentat(&nd, flags, parent);
2381	if (unlikely(retval == -ESTALE))
2382		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
 
2383	if (likely(!retval)) {
2384		*last = nd.last;
2385		*type = nd.last_type;
2386		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2387	} else {
2388		putname(name);
2389		name = ERR_PTR(retval);
2390	}
2391	restore_nameidata();
2392	return name;
2393}
2394
2395/* does lookup, returns the object with parent locked */
2396struct dentry *kern_path_locked(const char *name, struct path *path)
2397{
2398	struct filename *filename;
2399	struct dentry *d;
2400	struct qstr last;
2401	int type;
2402
2403	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2404				    &last, &type);
2405	if (IS_ERR(filename))
2406		return ERR_CAST(filename);
2407	if (unlikely(type != LAST_NORM)) {
2408		path_put(path);
2409		putname(filename);
2410		return ERR_PTR(-EINVAL);
2411	}
2412	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2413	d = __lookup_hash(&last, path->dentry, 0);
2414	if (IS_ERR(d)) {
2415		inode_unlock(path->dentry->d_inode);
2416		path_put(path);
2417	}
2418	putname(filename);
2419	return d;
2420}
2421
2422int kern_path(const char *name, unsigned int flags, struct path *path)
2423{
2424	return filename_lookup(AT_FDCWD, getname_kernel(name),
2425			       flags, path, NULL);
 
 
 
2426}
2427EXPORT_SYMBOL(kern_path);
2428
2429/**
2430 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2431 * @dentry:  pointer to dentry of the base directory
2432 * @mnt: pointer to vfs mount of the base directory
2433 * @name: pointer to file name
2434 * @flags: lookup flags
2435 * @path: pointer to struct path to fill
2436 */
2437int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2438		    const char *name, unsigned int flags,
2439		    struct path *path)
2440{
2441	struct path root = {.mnt = mnt, .dentry = dentry};
2442	/* the first argument of filename_lookup() is ignored with root */
2443	return filename_lookup(AT_FDCWD, getname_kernel(name),
2444			       flags , path, &root);
 
 
 
 
 
 
2445}
2446EXPORT_SYMBOL(vfs_path_lookup);
2447
2448static int lookup_one_len_common(const char *name, struct dentry *base,
2449				 int len, struct qstr *this)
2450{
2451	this->name = name;
2452	this->len = len;
2453	this->hash = full_name_hash(base, name, len);
2454	if (!len)
2455		return -EACCES;
2456
2457	if (unlikely(name[0] == '.')) {
2458		if (len < 2 || (len == 2 && name[1] == '.'))
2459			return -EACCES;
2460	}
2461
2462	while (len--) {
2463		unsigned int c = *(const unsigned char *)name++;
2464		if (c == '/' || c == '\0')
2465			return -EACCES;
2466	}
2467	/*
2468	 * See if the low-level filesystem might want
2469	 * to use its own hash..
 
2470	 */
2471	if (base->d_flags & DCACHE_OP_HASH) {
2472		int err = base->d_op->d_hash(base, this);
2473		if (err < 0)
2474			return err;
2475	}
2476
2477	return inode_permission(base->d_inode, MAY_EXEC);
2478}
2479
2480/**
2481 * try_lookup_one_len - filesystem helper to lookup single pathname component
2482 * @name:	pathname component to lookup
2483 * @base:	base directory to lookup from
2484 * @len:	maximum length @len should be interpreted to
2485 *
2486 * Look up a dentry by name in the dcache, returning NULL if it does not
2487 * currently exist.  The function does not try to create a dentry.
2488 *
2489 * Note that this routine is purely a helper for filesystem usage and should
2490 * not be called by generic code.
2491 *
2492 * The caller must hold base->i_mutex.
2493 */
2494struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2495{
2496	struct qstr this;
2497	int err;
2498
2499	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2500
2501	err = lookup_one_len_common(name, base, len, &this);
2502	if (err)
2503		return ERR_PTR(err);
2504
2505	return lookup_dcache(&this, base, 0);
2506}
2507EXPORT_SYMBOL(try_lookup_one_len);
2508
2509/**
2510 * lookup_one_len - filesystem helper to lookup single pathname component
2511 * @name:	pathname component to lookup
2512 * @base:	base directory to lookup from
2513 * @len:	maximum length @len should be interpreted to
2514 *
2515 * Note that this routine is purely a helper for filesystem usage and should
2516 * not be called by generic code.
2517 *
2518 * The caller must hold base->i_mutex.
2519 */
2520struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2521{
2522	struct dentry *dentry;
2523	struct qstr this;
2524	int err;
2525
2526	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2527
2528	err = lookup_one_len_common(name, base, len, &this);
2529	if (err)
2530		return ERR_PTR(err);
2531
2532	dentry = lookup_dcache(&this, base, 0);
2533	return dentry ? dentry : __lookup_slow(&this, base, 0);
2534}
2535EXPORT_SYMBOL(lookup_one_len);
2536
2537/**
2538 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2539 * @name:	pathname component to lookup
2540 * @base:	base directory to lookup from
2541 * @len:	maximum length @len should be interpreted to
2542 *
2543 * Note that this routine is purely a helper for filesystem usage and should
2544 * not be called by generic code.
2545 *
2546 * Unlike lookup_one_len, it should be called without the parent
2547 * i_mutex held, and will take the i_mutex itself if necessary.
2548 */
2549struct dentry *lookup_one_len_unlocked(const char *name,
2550				       struct dentry *base, int len)
2551{
2552	struct qstr this;
2553	int err;
2554	struct dentry *ret;
2555
2556	err = lookup_one_len_common(name, base, len, &this);
2557	if (err)
2558		return ERR_PTR(err);
2559
2560	ret = lookup_dcache(&this, base, 0);
2561	if (!ret)
2562		ret = lookup_slow(&this, base, 0);
2563	return ret;
2564}
2565EXPORT_SYMBOL(lookup_one_len_unlocked);
2566
2567#ifdef CONFIG_UNIX98_PTYS
2568int path_pts(struct path *path)
2569{
2570	/* Find something mounted on "pts" in the same directory as
2571	 * the input path.
 
 
 
 
 
 
2572	 */
2573	struct dentry *child, *parent;
2574	struct qstr this;
2575	int ret;
2576
2577	ret = path_parent_directory(path);
2578	if (ret)
2579		return ret;
2580
2581	parent = path->dentry;
2582	this.name = "pts";
2583	this.len = 3;
2584	child = d_hash_and_lookup(parent, &this);
2585	if (!child)
2586		return -ENOENT;
2587
2588	path->dentry = child;
2589	dput(parent);
2590	follow_mount(path);
2591	return 0;
2592}
2593#endif
2594
2595int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2596		 struct path *path, int *empty)
2597{
2598	return filename_lookup(dfd, getname_flags(name, flags, empty),
2599			       flags, path, NULL);
2600}
2601EXPORT_SYMBOL(user_path_at_empty);
2602
2603/**
2604 * mountpoint_last - look up last component for umount
2605 * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2606 *
2607 * This is a special lookup_last function just for umount. In this case, we
2608 * need to resolve the path without doing any revalidation.
2609 *
2610 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2611 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2612 * in almost all cases, this lookup will be served out of the dcache. The only
2613 * cases where it won't are if nd->last refers to a symlink or the path is
2614 * bogus and it doesn't exist.
2615 *
2616 * Returns:
2617 * -error: if there was an error during lookup. This includes -ENOENT if the
2618 *         lookup found a negative dentry.
2619 *
2620 * 0:      if we successfully resolved nd->last and found it to not to be a
2621 *         symlink that needs to be followed.
2622 *
2623 * 1:      if we successfully resolved nd->last and found it to be a symlink
2624 *         that needs to be followed.
2625 */
2626static int
2627mountpoint_last(struct nameidata *nd)
2628{
2629	int error = 0;
2630	struct dentry *dir = nd->path.dentry;
2631	struct path path;
2632
2633	/* If we're in rcuwalk, drop out of it to handle last component */
2634	if (nd->flags & LOOKUP_RCU) {
2635		if (unlazy_walk(nd))
2636			return -ECHILD;
2637	}
2638
2639	nd->flags &= ~LOOKUP_PARENT;
2640
2641	if (unlikely(nd->last_type != LAST_NORM)) {
2642		error = handle_dots(nd, nd->last_type);
2643		if (error)
2644			return error;
2645		path.dentry = dget(nd->path.dentry);
2646	} else {
2647		path.dentry = d_lookup(dir, &nd->last);
2648		if (!path.dentry) {
2649			/*
2650			 * No cached dentry. Mounted dentries are pinned in the
2651			 * cache, so that means that this dentry is probably
2652			 * a symlink or the path doesn't actually point
2653			 * to a mounted dentry.
2654			 */
2655			path.dentry = lookup_slow(&nd->last, dir,
2656					     nd->flags | LOOKUP_NO_REVAL);
2657			if (IS_ERR(path.dentry))
2658				return PTR_ERR(path.dentry);
2659		}
2660	}
2661	if (d_is_negative(path.dentry)) {
2662		dput(path.dentry);
2663		return -ENOENT;
2664	}
2665	path.mnt = nd->path.mnt;
2666	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2667}
2668
2669/**
2670 * path_mountpoint - look up a path to be umounted
2671 * @nd:		lookup context
2672 * @flags:	lookup flags
2673 * @path:	pointer to container for result
2674 *
2675 * Look up the given name, but don't attempt to revalidate the last component.
2676 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2677 */
2678static int
2679path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2680{
2681	const char *s = path_init(nd, flags);
2682	int err;
2683
2684	while (!(err = link_path_walk(s, nd)) &&
2685		(err = mountpoint_last(nd)) > 0) {
2686		s = trailing_symlink(nd);
2687	}
2688	if (!err) {
2689		*path = nd->path;
2690		nd->path.mnt = NULL;
2691		nd->path.dentry = NULL;
2692		follow_mount(path);
2693	}
2694	terminate_walk(nd);
2695	return err;
2696}
2697
2698static int
2699filename_mountpoint(int dfd, struct filename *name, struct path *path,
2700			unsigned int flags)
2701{
2702	struct nameidata nd;
2703	int error;
2704	if (IS_ERR(name))
2705		return PTR_ERR(name);
2706	set_nameidata(&nd, dfd, name);
2707	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2708	if (unlikely(error == -ECHILD))
2709		error = path_mountpoint(&nd, flags, path);
2710	if (unlikely(error == -ESTALE))
2711		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2712	if (likely(!error))
2713		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2714	restore_nameidata();
2715	putname(name);
2716	return error;
2717}
2718
2719/**
2720 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2721 * @dfd:	directory file descriptor
2722 * @name:	pathname from userland
2723 * @flags:	lookup flags
2724 * @path:	pointer to container to hold result
2725 *
2726 * A umount is a special case for path walking. We're not actually interested
2727 * in the inode in this situation, and ESTALE errors can be a problem. We
2728 * simply want track down the dentry and vfsmount attached at the mountpoint
2729 * and avoid revalidating the last component.
2730 *
2731 * Returns 0 and populates "path" on success.
2732 */
2733int
2734user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2735			struct path *path)
2736{
2737	return filename_mountpoint(dfd, getname(name), path, flags);
2738}
2739
2740int
2741kern_path_mountpoint(int dfd, const char *name, struct path *path,
2742			unsigned int flags)
2743{
2744	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
 
 
2745}
2746EXPORT_SYMBOL(kern_path_mountpoint);
2747
2748int __check_sticky(struct inode *dir, struct inode *inode)
 
 
 
 
2749{
2750	kuid_t fsuid = current_fsuid();
2751
2752	if (uid_eq(inode->i_uid, fsuid))
 
 
 
 
2753		return 0;
2754	if (uid_eq(dir->i_uid, fsuid))
2755		return 0;
2756	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
 
 
2757}
2758EXPORT_SYMBOL(__check_sticky);
2759
2760/*
2761 *	Check whether we can remove a link victim from directory dir, check
2762 *  whether the type of victim is right.
2763 *  1. We can't do it if dir is read-only (done in permission())
2764 *  2. We should have write and exec permissions on dir
2765 *  3. We can't remove anything from append-only dir
2766 *  4. We can't do anything with immutable dir (done in permission())
2767 *  5. If the sticky bit on dir is set we should either
2768 *	a. be owner of dir, or
2769 *	b. be owner of victim, or
2770 *	c. have CAP_FOWNER capability
2771 *  6. If the victim is append-only or immutable we can't do antyhing with
2772 *     links pointing to it.
2773 *  7. If the victim has an unknown uid or gid we can't change the inode.
2774 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2775 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2776 * 10. We can't remove a root or mountpoint.
2777 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2778 *     nfs_async_unlink().
2779 */
2780static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2781{
2782	struct inode *inode = d_backing_inode(victim);
2783	int error;
2784
2785	if (d_is_negative(victim))
2786		return -ENOENT;
2787	BUG_ON(!inode);
2788
2789	BUG_ON(victim->d_parent->d_inode != dir);
2790
2791	/* Inode writeback is not safe when the uid or gid are invalid. */
2792	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2793		return -EOVERFLOW;
2794
2795	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2796
2797	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2798	if (error)
2799		return error;
2800	if (IS_APPEND(dir))
2801		return -EPERM;
2802
2803	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2804	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2805		return -EPERM;
2806	if (isdir) {
2807		if (!d_is_dir(victim))
2808			return -ENOTDIR;
2809		if (IS_ROOT(victim))
2810			return -EBUSY;
2811	} else if (d_is_dir(victim))
2812		return -EISDIR;
2813	if (IS_DEADDIR(dir))
2814		return -ENOENT;
2815	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2816		return -EBUSY;
2817	return 0;
2818}
2819
2820/*	Check whether we can create an object with dentry child in directory
2821 *  dir.
2822 *  1. We can't do it if child already exists (open has special treatment for
2823 *     this case, but since we are inlined it's OK)
2824 *  2. We can't do it if dir is read-only (done in permission())
2825 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2826 *  4. We should have write and exec permissions on dir
2827 *  5. We can't do it if dir is immutable (done in permission())
2828 */
2829static inline int may_create(struct inode *dir, struct dentry *child)
2830{
2831	struct user_namespace *s_user_ns;
2832	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2833	if (child->d_inode)
2834		return -EEXIST;
2835	if (IS_DEADDIR(dir))
2836		return -ENOENT;
2837	s_user_ns = dir->i_sb->s_user_ns;
2838	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2839	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2840		return -EOVERFLOW;
2841	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2842}
2843
2844/*
2845 * p1 and p2 should be directories on the same fs.
2846 */
2847struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2848{
2849	struct dentry *p;
2850
2851	if (p1 == p2) {
2852		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2853		return NULL;
2854	}
2855
2856	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2857
2858	p = d_ancestor(p2, p1);
2859	if (p) {
2860		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2861		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2862		return p;
2863	}
2864
2865	p = d_ancestor(p1, p2);
2866	if (p) {
2867		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2868		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2869		return p;
2870	}
2871
2872	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2873	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2874	return NULL;
2875}
2876EXPORT_SYMBOL(lock_rename);
2877
2878void unlock_rename(struct dentry *p1, struct dentry *p2)
2879{
2880	inode_unlock(p1->d_inode);
2881	if (p1 != p2) {
2882		inode_unlock(p2->d_inode);
2883		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2884	}
2885}
2886EXPORT_SYMBOL(unlock_rename);
2887
2888int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2889		bool want_excl)
2890{
2891	int error = may_create(dir, dentry);
 
2892	if (error)
2893		return error;
2894
2895	if (!dir->i_op->create)
2896		return -EACCES;	/* shouldn't it be ENOSYS? */
2897	mode &= S_IALLUGO;
2898	mode |= S_IFREG;
2899	error = security_inode_create(dir, dentry, mode);
2900	if (error)
2901		return error;
2902	error = dir->i_op->create(dir, dentry, mode, want_excl);
2903	if (!error)
2904		fsnotify_create(dir, dentry);
2905	return error;
2906}
2907EXPORT_SYMBOL(vfs_create);
2908
2909int vfs_mkobj(struct dentry *dentry, umode_t mode,
2910		int (*f)(struct dentry *, umode_t, void *),
2911		void *arg)
2912{
2913	struct inode *dir = dentry->d_parent->d_inode;
2914	int error = may_create(dir, dentry);
2915	if (error)
2916		return error;
2917
2918	mode &= S_IALLUGO;
2919	mode |= S_IFREG;
2920	error = security_inode_create(dir, dentry, mode);
2921	if (error)
2922		return error;
2923	error = f(dentry, mode, arg);
2924	if (!error)
2925		fsnotify_create(dir, dentry);
2926	return error;
2927}
2928EXPORT_SYMBOL(vfs_mkobj);
2929
2930bool may_open_dev(const struct path *path)
2931{
2932	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2933		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2934}
2935
2936static int may_open(const struct path *path, int acc_mode, int flag)
2937{
2938	struct dentry *dentry = path->dentry;
2939	struct inode *inode = dentry->d_inode;
2940	int error;
2941
 
 
 
 
2942	if (!inode)
2943		return -ENOENT;
2944
2945	switch (inode->i_mode & S_IFMT) {
2946	case S_IFLNK:
2947		return -ELOOP;
2948	case S_IFDIR:
2949		if (acc_mode & MAY_WRITE)
2950			return -EISDIR;
2951		break;
2952	case S_IFBLK:
2953	case S_IFCHR:
2954		if (!may_open_dev(path))
2955			return -EACCES;
2956		/*FALLTHRU*/
2957	case S_IFIFO:
2958	case S_IFSOCK:
2959		flag &= ~O_TRUNC;
2960		break;
2961	}
2962
2963	error = inode_permission(inode, MAY_OPEN | acc_mode);
2964	if (error)
2965		return error;
2966
2967	/*
2968	 * An append-only file must be opened in append mode for writing.
2969	 */
2970	if (IS_APPEND(inode)) {
2971		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2972			return -EPERM;
2973		if (flag & O_TRUNC)
2974			return -EPERM;
2975	}
2976
2977	/* O_NOATIME can only be set by the owner or superuser */
2978	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2979		return -EPERM;
2980
2981	return 0;
 
 
 
2982}
2983
2984static int handle_truncate(struct file *filp)
2985{
2986	const struct path *path = &filp->f_path;
2987	struct inode *inode = path->dentry->d_inode;
2988	int error = get_write_access(inode);
2989	if (error)
2990		return error;
2991	/*
2992	 * Refuse to truncate files with mandatory locks held on them.
2993	 */
2994	error = locks_verify_locked(filp);
2995	if (!error)
2996		error = security_path_truncate(path);
2997	if (!error) {
2998		error = do_truncate(path->dentry, 0,
2999				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3000				    filp);
3001	}
3002	put_write_access(inode);
3003	return error;
3004}
3005
3006static inline int open_to_namei_flags(int flag)
3007{
3008	if ((flag & O_ACCMODE) == 3)
3009		flag--;
3010	return flag;
3011}
3012
3013static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3014{
3015	struct user_namespace *s_user_ns;
3016	int error = security_path_mknod(dir, dentry, mode, 0);
3017	if (error)
3018		return error;
3019
3020	s_user_ns = dir->dentry->d_sb->s_user_ns;
3021	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3022	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3023		return -EOVERFLOW;
3024
3025	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3026	if (error)
3027		return error;
3028
3029	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3030}
3031
3032/*
3033 * Attempt to atomically look up, create and open a file from a negative
3034 * dentry.
3035 *
3036 * Returns 0 if successful.  The file will have been created and attached to
3037 * @file by the filesystem calling finish_open().
3038 *
3039 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3040 * be set.  The caller will need to perform the open themselves.  @path will
3041 * have been updated to point to the new dentry.  This may be negative.
3042 *
3043 * Returns an error code otherwise.
3044 */
3045static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3046			struct path *path, struct file *file,
3047			const struct open_flags *op,
3048			int open_flag, umode_t mode)
3049{
3050	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3051	struct inode *dir =  nd->path.dentry->d_inode;
3052	int error;
3053
3054	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3055		open_flag &= ~O_TRUNC;
3056
3057	if (nd->flags & LOOKUP_DIRECTORY)
3058		open_flag |= O_DIRECTORY;
3059
3060	file->f_path.dentry = DENTRY_NOT_SET;
3061	file->f_path.mnt = nd->path.mnt;
3062	error = dir->i_op->atomic_open(dir, dentry, file,
3063				       open_to_namei_flags(open_flag), mode);
3064	d_lookup_done(dentry);
3065	if (!error) {
3066		if (file->f_mode & FMODE_OPENED) {
3067			/*
3068			 * We didn't have the inode before the open, so check open
3069			 * permission here.
3070			 */
3071			int acc_mode = op->acc_mode;
3072			if (file->f_mode & FMODE_CREATED) {
3073				WARN_ON(!(open_flag & O_CREAT));
3074				fsnotify_create(dir, dentry);
3075				acc_mode = 0;
3076			}
3077			error = may_open(&file->f_path, acc_mode, open_flag);
3078			if (WARN_ON(error > 0))
3079				error = -EINVAL;
3080		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3081			error = -EIO;
3082		} else {
3083			if (file->f_path.dentry) {
3084				dput(dentry);
3085				dentry = file->f_path.dentry;
3086			}
3087			if (file->f_mode & FMODE_CREATED)
3088				fsnotify_create(dir, dentry);
3089			if (unlikely(d_is_negative(dentry))) {
3090				error = -ENOENT;
3091			} else {
3092				path->dentry = dentry;
3093				path->mnt = nd->path.mnt;
3094				return 0;
3095			}
3096		}
3097	}
3098	dput(dentry);
3099	return error;
3100}
3101
3102/*
3103 * Look up and maybe create and open the last component.
3104 *
3105 * Must be called with parent locked (exclusive in O_CREAT case).
3106 *
3107 * Returns 0 on success, that is, if
3108 *  the file was successfully atomically created (if necessary) and opened, or
3109 *  the file was not completely opened at this time, though lookups and
3110 *  creations were performed.
3111 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3112 * In the latter case dentry returned in @path might be negative if O_CREAT
3113 * hadn't been specified.
3114 *
3115 * An error code is returned on failure.
3116 */
3117static int lookup_open(struct nameidata *nd, struct path *path,
3118			struct file *file,
3119			const struct open_flags *op,
3120			bool got_write)
3121{
3122	struct dentry *dir = nd->path.dentry;
3123	struct inode *dir_inode = dir->d_inode;
3124	int open_flag = op->open_flag;
3125	struct dentry *dentry;
3126	int error, create_error = 0;
3127	umode_t mode = op->mode;
3128	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3129
3130	if (unlikely(IS_DEADDIR(dir_inode)))
3131		return -ENOENT;
3132
3133	file->f_mode &= ~FMODE_CREATED;
3134	dentry = d_lookup(dir, &nd->last);
3135	for (;;) {
3136		if (!dentry) {
3137			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3138			if (IS_ERR(dentry))
3139				return PTR_ERR(dentry);
3140		}
3141		if (d_in_lookup(dentry))
3142			break;
3143
3144		error = d_revalidate(dentry, nd->flags);
3145		if (likely(error > 0))
3146			break;
3147		if (error)
3148			goto out_dput;
3149		d_invalidate(dentry);
3150		dput(dentry);
3151		dentry = NULL;
3152	}
3153	if (dentry->d_inode) {
3154		/* Cached positive dentry: will open in f_op->open */
3155		goto out_no_open;
3156	}
3157
3158	/*
3159	 * Checking write permission is tricky, bacuse we don't know if we are
3160	 * going to actually need it: O_CREAT opens should work as long as the
3161	 * file exists.  But checking existence breaks atomicity.  The trick is
3162	 * to check access and if not granted clear O_CREAT from the flags.
3163	 *
3164	 * Another problem is returing the "right" error value (e.g. for an
3165	 * O_EXCL open we want to return EEXIST not EROFS).
3166	 */
3167	if (open_flag & O_CREAT) {
3168		if (!IS_POSIXACL(dir->d_inode))
3169			mode &= ~current_umask();
3170		if (unlikely(!got_write)) {
3171			create_error = -EROFS;
3172			open_flag &= ~O_CREAT;
3173			if (open_flag & (O_EXCL | O_TRUNC))
3174				goto no_open;
3175			/* No side effects, safe to clear O_CREAT */
3176		} else {
3177			create_error = may_o_create(&nd->path, dentry, mode);
3178			if (create_error) {
3179				open_flag &= ~O_CREAT;
3180				if (open_flag & O_EXCL)
3181					goto no_open;
3182			}
3183		}
3184	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3185		   unlikely(!got_write)) {
3186		/*
3187		 * No O_CREATE -> atomicity not a requirement -> fall
3188		 * back to lookup + open
3189		 */
3190		goto no_open;
3191	}
3192
3193	if (dir_inode->i_op->atomic_open) {
3194		error = atomic_open(nd, dentry, path, file, op, open_flag,
3195				    mode);
3196		if (unlikely(error == -ENOENT) && create_error)
3197			error = create_error;
3198		return error;
3199	}
3200
3201no_open:
3202	if (d_in_lookup(dentry)) {
3203		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3204							     nd->flags);
3205		d_lookup_done(dentry);
3206		if (unlikely(res)) {
3207			if (IS_ERR(res)) {
3208				error = PTR_ERR(res);
3209				goto out_dput;
3210			}
3211			dput(dentry);
3212			dentry = res;
3213		}
3214	}
3215
3216	/* Negative dentry, just create the file */
3217	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3218		file->f_mode |= FMODE_CREATED;
3219		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3220		if (!dir_inode->i_op->create) {
3221			error = -EACCES;
3222			goto out_dput;
3223		}
3224		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3225						open_flag & O_EXCL);
3226		if (error)
3227			goto out_dput;
3228		fsnotify_create(dir_inode, dentry);
3229	}
3230	if (unlikely(create_error) && !dentry->d_inode) {
3231		error = create_error;
3232		goto out_dput;
3233	}
3234out_no_open:
3235	path->dentry = dentry;
3236	path->mnt = nd->path.mnt;
3237	return 0;
3238
3239out_dput:
3240	dput(dentry);
3241	return error;
3242}
3243
3244/*
3245 * Handle the last step of open()
3246 */
3247static int do_last(struct nameidata *nd,
3248		   struct file *file, const struct open_flags *op)
3249{
3250	struct dentry *dir = nd->path.dentry;
 
3251	int open_flag = op->open_flag;
3252	bool will_truncate = (open_flag & O_TRUNC) != 0;
3253	bool got_write = false;
3254	int acc_mode = op->acc_mode;
3255	unsigned seq;
3256	struct inode *inode;
3257	struct path path;
3258	int error;
3259
3260	nd->flags &= ~LOOKUP_PARENT;
3261	nd->flags |= op->intent;
3262
3263	if (nd->last_type != LAST_NORM) {
 
 
3264		error = handle_dots(nd, nd->last_type);
3265		if (unlikely(error))
3266			return error;
3267		goto finish_open;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268	}
3269
3270	if (!(open_flag & O_CREAT)) {
 
3271		if (nd->last.name[nd->last.len])
3272			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
 
 
3273		/* we _can_ be in RCU mode here */
3274		error = lookup_fast(nd, &path, &inode, &seq);
3275		if (likely(error > 0))
3276			goto finish_lookup;
3277
3278		if (error < 0)
3279			return error;
3280
3281		BUG_ON(nd->inode != dir->d_inode);
3282		BUG_ON(nd->flags & LOOKUP_RCU);
3283	} else {
3284		/* create side of things */
3285		/*
3286		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3287		 * has been cleared when we got to the last component we are
3288		 * about to look up
3289		 */
3290		error = complete_walk(nd);
3291		if (error)
3292			return error;
3293
3294		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3295		/* trailing slashes? */
3296		if (unlikely(nd->last.name[nd->last.len]))
3297			return -EISDIR;
3298	}
3299
3300	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3301		error = mnt_want_write(nd->path.mnt);
3302		if (!error)
3303			got_write = true;
3304		/*
3305		 * do _not_ fail yet - we might not need that or fail with
3306		 * a different error; let lookup_open() decide; we'll be
3307		 * dropping this one anyway.
3308		 */
3309	}
3310	if (open_flag & O_CREAT)
3311		inode_lock(dir->d_inode);
3312	else
3313		inode_lock_shared(dir->d_inode);
3314	error = lookup_open(nd, &path, file, op, got_write);
3315	if (open_flag & O_CREAT)
3316		inode_unlock(dir->d_inode);
3317	else
3318		inode_unlock_shared(dir->d_inode);
3319
 
 
3320	if (error)
3321		goto out;
 
 
 
 
 
 
3322
3323	if (file->f_mode & FMODE_OPENED) {
3324		if ((file->f_mode & FMODE_CREATED) ||
3325		    !S_ISREG(file_inode(file)->i_mode))
3326			will_truncate = false;
3327
3328		audit_inode(nd->name, file->f_path.dentry, 0);
3329		goto opened;
 
 
 
3330	}
3331
3332	if (file->f_mode & FMODE_CREATED) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3333		/* Don't check for write permission, don't truncate */
3334		open_flag &= ~O_TRUNC;
3335		will_truncate = false;
3336		acc_mode = 0;
3337		path_to_nameidata(&path, nd);
3338		goto finish_open_created;
 
 
 
 
 
 
 
 
3339	}
3340
3341	/*
3342	 * If atomic_open() acquired write access it is dropped now due to
3343	 * possible mount and symlink following (this might be optimized away if
3344	 * necessary...)
3345	 */
3346	if (got_write) {
3347		mnt_drop_write(nd->path.mnt);
3348		got_write = false;
3349	}
3350
3351	error = follow_managed(&path, nd);
3352	if (unlikely(error < 0))
3353		return error;
3354
3355	if (unlikely(d_is_negative(path.dentry))) {
3356		path_to_nameidata(&path, nd);
3357		return -ENOENT;
3358	}
3359
3360	/*
3361	 * create/update audit record if it already exists.
3362	 */
3363	audit_inode(nd->name, path.dentry, 0);
3364
3365	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3366		path_to_nameidata(&path, nd);
3367		return -EEXIST;
3368	}
3369
3370	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3371	inode = d_backing_inode(path.dentry);
3372finish_lookup:
3373	error = step_into(nd, &path, 0, inode, seq);
3374	if (unlikely(error))
3375		return error;
3376finish_open:
3377	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3378	error = complete_walk(nd);
3379	if (error)
3380		return error;
3381	audit_inode(nd->name, nd->path.dentry, 0);
3382	if (open_flag & O_CREAT) {
3383		error = -EISDIR;
3384		if (d_is_dir(nd->path.dentry))
3385			goto out;
3386		error = may_create_in_sticky(dir,
3387					     d_backing_inode(nd->path.dentry));
3388		if (unlikely(error))
3389			goto out;
3390	}
3391	error = -ENOTDIR;
3392	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3393		goto out;
3394	if (!d_is_reg(nd->path.dentry))
3395		will_truncate = false;
3396
3397	if (will_truncate) {
3398		error = mnt_want_write(nd->path.mnt);
3399		if (error)
3400			goto out;
3401		got_write = true;
3402	}
3403finish_open_created:
3404	error = may_open(&nd->path, acc_mode, open_flag);
3405	if (error)
3406		goto out;
3407	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3408	error = vfs_open(&nd->path, file);
3409	if (error)
3410		goto out;
3411opened:
3412	error = ima_file_check(file, op->acc_mode);
3413	if (!error && will_truncate)
3414		error = handle_truncate(file);
3415out:
3416	if (unlikely(error > 0)) {
3417		WARN_ON(1);
3418		error = -EINVAL;
3419	}
3420	if (got_write)
 
 
 
 
 
 
 
 
 
 
3421		mnt_drop_write(nd->path.mnt);
3422	return error;
 
 
 
 
 
 
 
 
 
3423}
3424
3425struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
 
3426{
3427	struct dentry *child = NULL;
3428	struct inode *dir = dentry->d_inode;
3429	struct inode *inode;
3430	int error;
3431
3432	/* we want directory to be writable */
3433	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3434	if (error)
3435		goto out_err;
3436	error = -EOPNOTSUPP;
3437	if (!dir->i_op->tmpfile)
3438		goto out_err;
3439	error = -ENOMEM;
3440	child = d_alloc(dentry, &slash_name);
3441	if (unlikely(!child))
3442		goto out_err;
3443	error = dir->i_op->tmpfile(dir, child, mode);
3444	if (error)
3445		goto out_err;
3446	error = -ENOENT;
3447	inode = child->d_inode;
3448	if (unlikely(!inode))
3449		goto out_err;
3450	if (!(open_flag & O_EXCL)) {
3451		spin_lock(&inode->i_lock);
3452		inode->i_state |= I_LINKABLE;
3453		spin_unlock(&inode->i_lock);
3454	}
3455	ima_post_create_tmpfile(inode);
3456	return child;
3457
3458out_err:
3459	dput(child);
3460	return ERR_PTR(error);
3461}
3462EXPORT_SYMBOL(vfs_tmpfile);
3463
3464static int do_tmpfile(struct nameidata *nd, unsigned flags,
3465		const struct open_flags *op,
3466		struct file *file)
3467{
3468	struct dentry *child;
3469	struct path path;
3470	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3471	if (unlikely(error))
3472		return error;
3473	error = mnt_want_write(path.mnt);
3474	if (unlikely(error))
3475		goto out;
3476	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3477	error = PTR_ERR(child);
3478	if (IS_ERR(child))
3479		goto out2;
3480	dput(path.dentry);
3481	path.dentry = child;
3482	audit_inode(nd->name, child, 0);
3483	/* Don't check for other permissions, the inode was just created */
3484	error = may_open(&path, 0, op->open_flag);
3485	if (error)
3486		goto out2;
3487	file->f_path.mnt = path.mnt;
3488	error = finish_open(file, child, NULL);
3489out2:
3490	mnt_drop_write(path.mnt);
3491out:
3492	path_put(&path);
3493	return error;
3494}
3495
3496static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3497{
3498	struct path path;
3499	int error = path_lookupat(nd, flags, &path);
3500	if (!error) {
3501		audit_inode(nd->name, path.dentry, 0);
3502		error = vfs_open(&path, file);
3503		path_put(&path);
3504	}
3505	return error;
3506}
3507
3508static struct file *path_openat(struct nameidata *nd,
3509			const struct open_flags *op, unsigned flags)
3510{
3511	struct file *file;
3512	int error;
3513
3514	file = alloc_empty_file(op->open_flag, current_cred());
3515	if (IS_ERR(file))
3516		return file;
3517
3518	if (unlikely(file->f_flags & __O_TMPFILE)) {
3519		error = do_tmpfile(nd, flags, op, file);
3520	} else if (unlikely(file->f_flags & O_PATH)) {
3521		error = do_o_path(nd, flags, file);
3522	} else {
3523		const char *s = path_init(nd, flags);
3524		while (!(error = link_path_walk(s, nd)) &&
3525			(error = do_last(nd, file, op)) > 0) {
3526			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3527			s = trailing_symlink(nd);
3528		}
3529		terminate_walk(nd);
3530	}
3531	if (likely(!error)) {
3532		if (likely(file->f_mode & FMODE_OPENED))
3533			return file;
3534		WARN_ON(1);
3535		error = -EINVAL;
3536	}
3537	fput(file);
3538	if (error == -EOPENSTALE) {
3539		if (flags & LOOKUP_RCU)
3540			error = -ECHILD;
3541		else
3542			error = -ESTALE;
 
3543	}
3544	return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
3545}
3546
3547struct file *do_filp_open(int dfd, struct filename *pathname,
3548		const struct open_flags *op)
3549{
3550	struct nameidata nd;
3551	int flags = op->lookup_flags;
3552	struct file *filp;
3553
3554	set_nameidata(&nd, dfd, pathname);
3555	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3556	if (unlikely(filp == ERR_PTR(-ECHILD)))
3557		filp = path_openat(&nd, op, flags);
3558	if (unlikely(filp == ERR_PTR(-ESTALE)))
3559		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3560	restore_nameidata();
3561	return filp;
3562}
3563
3564struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3565		const char *name, const struct open_flags *op)
3566{
3567	struct nameidata nd;
3568	struct file *file;
3569	struct filename *filename;
3570	int flags = op->lookup_flags | LOOKUP_ROOT;
3571
3572	nd.root.mnt = mnt;
3573	nd.root.dentry = dentry;
3574
3575	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3576		return ERR_PTR(-ELOOP);
3577
3578	filename = getname_kernel(name);
3579	if (IS_ERR(filename))
3580		return ERR_CAST(filename);
3581
3582	set_nameidata(&nd, -1, filename);
3583	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3584	if (unlikely(file == ERR_PTR(-ECHILD)))
3585		file = path_openat(&nd, op, flags);
3586	if (unlikely(file == ERR_PTR(-ESTALE)))
3587		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3588	restore_nameidata();
3589	putname(filename);
3590	return file;
3591}
3592
3593static struct dentry *filename_create(int dfd, struct filename *name,
3594				struct path *path, unsigned int lookup_flags)
3595{
3596	struct dentry *dentry = ERR_PTR(-EEXIST);
3597	struct qstr last;
3598	int type;
3599	int err2;
3600	int error;
3601	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3602
3603	/*
3604	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3605	 * other flags passed in are ignored!
3606	 */
3607	lookup_flags &= LOOKUP_REVAL;
3608
3609	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3610	if (IS_ERR(name))
3611		return ERR_CAST(name);
3612
3613	/*
3614	 * Yucky last component or no last component at all?
3615	 * (foo/., foo/.., /////)
3616	 */
3617	if (unlikely(type != LAST_NORM))
3618		goto out;
 
 
 
3619
3620	/* don't fail immediately if it's r/o, at least try to report other errors */
3621	err2 = mnt_want_write(path->mnt);
3622	/*
3623	 * Do the final lookup.
3624	 */
3625	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3626	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3627	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3628	if (IS_ERR(dentry))
3629		goto unlock;
3630
3631	error = -EEXIST;
3632	if (d_is_positive(dentry))
3633		goto fail;
3634
 
 
3635	/*
3636	 * Special case - lookup gave negative, but... we had foo/bar/
3637	 * From the vfs_mknod() POV we just have a negative dentry -
3638	 * all is fine. Let's be bastards - you had / on the end, you've
3639	 * been asking for (non-existent) directory. -ENOENT for you.
3640	 */
3641	if (unlikely(!is_dir && last.name[last.len])) {
3642		error = -ENOENT;
3643		goto fail;
3644	}
3645	if (unlikely(err2)) {
3646		error = err2;
3647		goto fail;
3648	}
3649	putname(name);
3650	return dentry;
3651fail:
3652	dput(dentry);
3653	dentry = ERR_PTR(error);
3654unlock:
3655	inode_unlock(path->dentry->d_inode);
3656	if (!err2)
3657		mnt_drop_write(path->mnt);
3658out:
3659	path_put(path);
3660	putname(name);
3661	return dentry;
3662}
3663
3664struct dentry *kern_path_create(int dfd, const char *pathname,
3665				struct path *path, unsigned int lookup_flags)
3666{
3667	return filename_create(dfd, getname_kernel(pathname),
3668				path, lookup_flags);
3669}
3670EXPORT_SYMBOL(kern_path_create);
3671
3672void done_path_create(struct path *path, struct dentry *dentry)
3673{
3674	dput(dentry);
3675	inode_unlock(path->dentry->d_inode);
3676	mnt_drop_write(path->mnt);
3677	path_put(path);
3678}
3679EXPORT_SYMBOL(done_path_create);
3680
3681inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3682				struct path *path, unsigned int lookup_flags)
3683{
3684	return filename_create(dfd, getname(pathname), path, lookup_flags);
 
 
 
 
 
 
3685}
3686EXPORT_SYMBOL(user_path_create);
3687
3688int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3689{
3690	int error = may_create(dir, dentry);
3691
3692	if (error)
3693		return error;
3694
3695	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
 
3696		return -EPERM;
3697
3698	if (!dir->i_op->mknod)
3699		return -EPERM;
3700
3701	error = devcgroup_inode_mknod(mode, dev);
3702	if (error)
3703		return error;
3704
3705	error = security_inode_mknod(dir, dentry, mode, dev);
3706	if (error)
3707		return error;
3708
3709	error = dir->i_op->mknod(dir, dentry, mode, dev);
3710	if (!error)
3711		fsnotify_create(dir, dentry);
3712	return error;
3713}
3714EXPORT_SYMBOL(vfs_mknod);
3715
3716static int may_mknod(umode_t mode)
3717{
3718	switch (mode & S_IFMT) {
3719	case S_IFREG:
3720	case S_IFCHR:
3721	case S_IFBLK:
3722	case S_IFIFO:
3723	case S_IFSOCK:
3724	case 0: /* zero mode translates to S_IFREG */
3725		return 0;
3726	case S_IFDIR:
3727		return -EPERM;
3728	default:
3729		return -EINVAL;
3730	}
3731}
3732
3733long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3734		unsigned int dev)
3735{
3736	struct dentry *dentry;
3737	struct path path;
3738	int error;
3739	unsigned int lookup_flags = 0;
3740
3741	error = may_mknod(mode);
3742	if (error)
3743		return error;
3744retry:
3745	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3746	if (IS_ERR(dentry))
3747		return PTR_ERR(dentry);
3748
3749	if (!IS_POSIXACL(path.dentry->d_inode))
3750		mode &= ~current_umask();
 
 
 
 
 
 
3751	error = security_path_mknod(&path, dentry, mode, dev);
3752	if (error)
3753		goto out;
3754	switch (mode & S_IFMT) {
3755		case 0: case S_IFREG:
3756			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3757			if (!error)
3758				ima_post_path_mknod(dentry);
3759			break;
3760		case S_IFCHR: case S_IFBLK:
3761			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3762					new_decode_dev(dev));
3763			break;
3764		case S_IFIFO: case S_IFSOCK:
3765			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3766			break;
3767	}
3768out:
3769	done_path_create(&path, dentry);
3770	if (retry_estale(error, lookup_flags)) {
3771		lookup_flags |= LOOKUP_REVAL;
3772		goto retry;
3773	}
3774	return error;
3775}
3776
3777SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3778		unsigned int, dev)
3779{
3780	return do_mknodat(dfd, filename, mode, dev);
3781}
3782
3783SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3784{
3785	return do_mknodat(AT_FDCWD, filename, mode, dev);
3786}
3787
3788int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3789{
3790	int error = may_create(dir, dentry);
3791	unsigned max_links = dir->i_sb->s_max_links;
3792
3793	if (error)
3794		return error;
3795
3796	if (!dir->i_op->mkdir)
3797		return -EPERM;
3798
3799	mode &= (S_IRWXUGO|S_ISVTX);
3800	error = security_inode_mkdir(dir, dentry, mode);
3801	if (error)
3802		return error;
3803
3804	if (max_links && dir->i_nlink >= max_links)
3805		return -EMLINK;
3806
3807	error = dir->i_op->mkdir(dir, dentry, mode);
3808	if (!error)
3809		fsnotify_mkdir(dir, dentry);
3810	return error;
3811}
3812EXPORT_SYMBOL(vfs_mkdir);
3813
3814long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3815{
3816	struct dentry *dentry;
3817	struct path path;
3818	int error;
3819	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3820
3821retry:
3822	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3823	if (IS_ERR(dentry))
3824		return PTR_ERR(dentry);
3825
3826	if (!IS_POSIXACL(path.dentry->d_inode))
3827		mode &= ~current_umask();
 
 
 
3828	error = security_path_mkdir(&path, dentry, mode);
3829	if (!error)
3830		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3831	done_path_create(&path, dentry);
3832	if (retry_estale(error, lookup_flags)) {
3833		lookup_flags |= LOOKUP_REVAL;
3834		goto retry;
3835	}
 
 
3836	return error;
3837}
3838
3839SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3840{
3841	return do_mkdirat(dfd, pathname, mode);
3842}
3843
3844SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3845{
3846	return do_mkdirat(AT_FDCWD, pathname, mode);
 
 
 
 
3847}
3848
3849int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3850{
3851	int error = may_delete(dir, dentry, 1);
3852
3853	if (error)
3854		return error;
3855
3856	if (!dir->i_op->rmdir)
3857		return -EPERM;
3858
3859	dget(dentry);
3860	inode_lock(dentry->d_inode);
3861
3862	error = -EBUSY;
3863	if (is_local_mountpoint(dentry))
3864		goto out;
3865
3866	error = security_inode_rmdir(dir, dentry);
3867	if (error)
3868		goto out;
3869
 
3870	error = dir->i_op->rmdir(dir, dentry);
3871	if (error)
3872		goto out;
3873
3874	shrink_dcache_parent(dentry);
3875	dentry->d_inode->i_flags |= S_DEAD;
3876	dont_mount(dentry);
3877	detach_mounts(dentry);
3878	fsnotify_rmdir(dir, dentry);
3879
3880out:
3881	inode_unlock(dentry->d_inode);
3882	dput(dentry);
3883	if (!error)
3884		d_delete(dentry);
3885	return error;
3886}
3887EXPORT_SYMBOL(vfs_rmdir);
3888
3889long do_rmdir(int dfd, const char __user *pathname)
3890{
3891	int error = 0;
3892	struct filename *name;
3893	struct dentry *dentry;
3894	struct path path;
3895	struct qstr last;
3896	int type;
3897	unsigned int lookup_flags = 0;
3898retry:
3899	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3900				&path, &last, &type);
3901	if (IS_ERR(name))
3902		return PTR_ERR(name);
3903
3904	switch (type) {
 
 
 
 
3905	case LAST_DOTDOT:
3906		error = -ENOTEMPTY;
3907		goto exit1;
3908	case LAST_DOT:
3909		error = -EINVAL;
3910		goto exit1;
3911	case LAST_ROOT:
3912		error = -EBUSY;
3913		goto exit1;
3914	}
3915
3916	error = mnt_want_write(path.mnt);
3917	if (error)
3918		goto exit1;
3919
3920	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3921	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3922	error = PTR_ERR(dentry);
3923	if (IS_ERR(dentry))
3924		goto exit2;
3925	if (!dentry->d_inode) {
3926		error = -ENOENT;
3927		goto exit3;
3928	}
3929	error = security_path_rmdir(&path, dentry);
3930	if (error)
3931		goto exit3;
3932	error = vfs_rmdir(path.dentry->d_inode, dentry);
 
 
 
 
 
3933exit3:
3934	dput(dentry);
3935exit2:
3936	inode_unlock(path.dentry->d_inode);
3937	mnt_drop_write(path.mnt);
3938exit1:
3939	path_put(&path);
3940	putname(name);
3941	if (retry_estale(error, lookup_flags)) {
3942		lookup_flags |= LOOKUP_REVAL;
3943		goto retry;
3944	}
3945	return error;
3946}
3947
3948SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3949{
3950	return do_rmdir(AT_FDCWD, pathname);
3951}
3952
3953/**
3954 * vfs_unlink - unlink a filesystem object
3955 * @dir:	parent directory
3956 * @dentry:	victim
3957 * @delegated_inode: returns victim inode, if the inode is delegated.
3958 *
3959 * The caller must hold dir->i_mutex.
3960 *
3961 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3962 * return a reference to the inode in delegated_inode.  The caller
3963 * should then break the delegation on that inode and retry.  Because
3964 * breaking a delegation may take a long time, the caller should drop
3965 * dir->i_mutex before doing so.
3966 *
3967 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3968 * be appropriate for callers that expect the underlying filesystem not
3969 * to be NFS exported.
3970 */
3971int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3972{
3973	struct inode *target = dentry->d_inode;
3974	int error = may_delete(dir, dentry, 0);
3975
3976	if (error)
3977		return error;
3978
3979	if (!dir->i_op->unlink)
3980		return -EPERM;
3981
3982	inode_lock(target);
3983	if (is_local_mountpoint(dentry))
3984		error = -EBUSY;
3985	else {
3986		error = security_inode_unlink(dir, dentry);
3987		if (!error) {
3988			error = try_break_deleg(target, delegated_inode);
3989			if (error)
3990				goto out;
3991			error = dir->i_op->unlink(dir, dentry);
3992			if (!error) {
3993				dont_mount(dentry);
3994				detach_mounts(dentry);
3995				fsnotify_unlink(dir, dentry);
3996			}
3997		}
3998	}
3999out:
4000	inode_unlock(target);
4001
4002	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4003	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4004		fsnotify_link_count(target);
4005		d_delete(dentry);
4006	}
4007
4008	return error;
4009}
4010EXPORT_SYMBOL(vfs_unlink);
4011
4012/*
4013 * Make sure that the actual truncation of the file will occur outside its
4014 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4015 * writeout happening, and we don't want to prevent access to the directory
4016 * while waiting on the I/O.
4017 */
4018long do_unlinkat(int dfd, struct filename *name)
4019{
4020	int error;
 
4021	struct dentry *dentry;
4022	struct path path;
4023	struct qstr last;
4024	int type;
4025	struct inode *inode = NULL;
4026	struct inode *delegated_inode = NULL;
4027	unsigned int lookup_flags = 0;
4028retry:
4029	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4030	if (IS_ERR(name))
4031		return PTR_ERR(name);
4032
4033	error = -EISDIR;
4034	if (type != LAST_NORM)
4035		goto exit1;
4036
4037	error = mnt_want_write(path.mnt);
4038	if (error)
4039		goto exit1;
4040retry_deleg:
4041	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4042	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4043	error = PTR_ERR(dentry);
4044	if (!IS_ERR(dentry)) {
4045		/* Why not before? Because we want correct error value */
4046		if (last.name[last.len])
4047			goto slashes;
4048		inode = dentry->d_inode;
4049		if (d_is_negative(dentry))
4050			goto slashes;
4051		ihold(inode);
4052		error = security_path_unlink(&path, dentry);
4053		if (error)
4054			goto exit2;
4055		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4056exit2:
 
 
 
 
 
4057		dput(dentry);
4058	}
4059	inode_unlock(path.dentry->d_inode);
4060	if (inode)
4061		iput(inode);	/* truncate the inode here */
4062	inode = NULL;
4063	if (delegated_inode) {
4064		error = break_deleg_wait(&delegated_inode);
4065		if (!error)
4066			goto retry_deleg;
4067	}
4068	mnt_drop_write(path.mnt);
4069exit1:
4070	path_put(&path);
4071	if (retry_estale(error, lookup_flags)) {
4072		lookup_flags |= LOOKUP_REVAL;
4073		inode = NULL;
4074		goto retry;
4075	}
4076	putname(name);
4077	return error;
4078
4079slashes:
4080	if (d_is_negative(dentry))
4081		error = -ENOENT;
4082	else if (d_is_dir(dentry))
4083		error = -EISDIR;
4084	else
4085		error = -ENOTDIR;
4086	goto exit2;
4087}
4088
4089SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4090{
4091	if ((flag & ~AT_REMOVEDIR) != 0)
4092		return -EINVAL;
4093
4094	if (flag & AT_REMOVEDIR)
4095		return do_rmdir(dfd, pathname);
4096
4097	return do_unlinkat(dfd, getname(pathname));
4098}
4099
4100SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4101{
4102	return do_unlinkat(AT_FDCWD, getname(pathname));
4103}
4104
4105int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4106{
4107	int error = may_create(dir, dentry);
4108
4109	if (error)
4110		return error;
4111
4112	if (!dir->i_op->symlink)
4113		return -EPERM;
4114
4115	error = security_inode_symlink(dir, dentry, oldname);
4116	if (error)
4117		return error;
4118
4119	error = dir->i_op->symlink(dir, dentry, oldname);
4120	if (!error)
4121		fsnotify_create(dir, dentry);
4122	return error;
4123}
4124EXPORT_SYMBOL(vfs_symlink);
4125
4126long do_symlinkat(const char __user *oldname, int newdfd,
4127		  const char __user *newname)
4128{
4129	int error;
4130	struct filename *from;
4131	struct dentry *dentry;
4132	struct path path;
4133	unsigned int lookup_flags = 0;
4134
4135	from = getname(oldname);
4136	if (IS_ERR(from))
4137		return PTR_ERR(from);
4138retry:
4139	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4140	error = PTR_ERR(dentry);
4141	if (IS_ERR(dentry))
4142		goto out_putname;
4143
4144	error = security_path_symlink(&path, dentry, from->name);
4145	if (!error)
4146		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4147	done_path_create(&path, dentry);
4148	if (retry_estale(error, lookup_flags)) {
4149		lookup_flags |= LOOKUP_REVAL;
4150		goto retry;
4151	}
 
 
 
 
 
4152out_putname:
4153	putname(from);
4154	return error;
4155}
4156
4157SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4158		int, newdfd, const char __user *, newname)
4159{
4160	return do_symlinkat(oldname, newdfd, newname);
4161}
4162
4163SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4164{
4165	return do_symlinkat(oldname, AT_FDCWD, newname);
4166}
4167
4168/**
4169 * vfs_link - create a new link
4170 * @old_dentry:	object to be linked
4171 * @dir:	new parent
4172 * @new_dentry:	where to create the new link
4173 * @delegated_inode: returns inode needing a delegation break
4174 *
4175 * The caller must hold dir->i_mutex
4176 *
4177 * If vfs_link discovers a delegation on the to-be-linked file in need
4178 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4179 * inode in delegated_inode.  The caller should then break the delegation
4180 * and retry.  Because breaking a delegation may take a long time, the
4181 * caller should drop the i_mutex before doing so.
4182 *
4183 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4184 * be appropriate for callers that expect the underlying filesystem not
4185 * to be NFS exported.
4186 */
4187int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4188{
4189	struct inode *inode = old_dentry->d_inode;
4190	unsigned max_links = dir->i_sb->s_max_links;
4191	int error;
4192
4193	if (!inode)
4194		return -ENOENT;
4195
4196	error = may_create(dir, new_dentry);
4197	if (error)
4198		return error;
4199
4200	if (dir->i_sb != inode->i_sb)
4201		return -EXDEV;
4202
4203	/*
4204	 * A link to an append-only or immutable file cannot be created.
4205	 */
4206	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4207		return -EPERM;
4208	/*
4209	 * Updating the link count will likely cause i_uid and i_gid to
4210	 * be writen back improperly if their true value is unknown to
4211	 * the vfs.
4212	 */
4213	if (HAS_UNMAPPED_ID(inode))
4214		return -EPERM;
4215	if (!dir->i_op->link)
4216		return -EPERM;
4217	if (S_ISDIR(inode->i_mode))
4218		return -EPERM;
4219
4220	error = security_inode_link(old_dentry, dir, new_dentry);
4221	if (error)
4222		return error;
4223
4224	inode_lock(inode);
4225	/* Make sure we don't allow creating hardlink to an unlinked file */
4226	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4227		error =  -ENOENT;
4228	else if (max_links && inode->i_nlink >= max_links)
4229		error = -EMLINK;
4230	else {
4231		error = try_break_deleg(inode, delegated_inode);
4232		if (!error)
4233			error = dir->i_op->link(old_dentry, dir, new_dentry);
4234	}
4235
4236	if (!error && (inode->i_state & I_LINKABLE)) {
4237		spin_lock(&inode->i_lock);
4238		inode->i_state &= ~I_LINKABLE;
4239		spin_unlock(&inode->i_lock);
4240	}
4241	inode_unlock(inode);
4242	if (!error)
4243		fsnotify_link(dir, inode, new_dentry);
4244	return error;
4245}
4246EXPORT_SYMBOL(vfs_link);
4247
4248/*
4249 * Hardlinks are often used in delicate situations.  We avoid
4250 * security-related surprises by not following symlinks on the
4251 * newname.  --KAB
4252 *
4253 * We don't follow them on the oldname either to be compatible
4254 * with linux 2.0, and to avoid hard-linking to directories
4255 * and other special files.  --ADM
4256 */
4257int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4258	      const char __user *newname, int flags)
4259{
4260	struct dentry *new_dentry;
4261	struct path old_path, new_path;
4262	struct inode *delegated_inode = NULL;
4263	int how = 0;
4264	int error;
4265
4266	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4267		return -EINVAL;
4268	/*
4269	 * To use null names we require CAP_DAC_READ_SEARCH
4270	 * This ensures that not everyone will be able to create
4271	 * handlink using the passed filedescriptor.
4272	 */
4273	if (flags & AT_EMPTY_PATH) {
4274		if (!capable(CAP_DAC_READ_SEARCH))
4275			return -ENOENT;
4276		how = LOOKUP_EMPTY;
4277	}
4278
4279	if (flags & AT_SYMLINK_FOLLOW)
4280		how |= LOOKUP_FOLLOW;
4281retry:
4282	error = user_path_at(olddfd, oldname, how, &old_path);
4283	if (error)
4284		return error;
4285
4286	new_dentry = user_path_create(newdfd, newname, &new_path,
4287					(how & LOOKUP_REVAL));
4288	error = PTR_ERR(new_dentry);
4289	if (IS_ERR(new_dentry))
4290		goto out;
4291
4292	error = -EXDEV;
4293	if (old_path.mnt != new_path.mnt)
4294		goto out_dput;
4295	error = may_linkat(&old_path);
4296	if (unlikely(error))
4297		goto out_dput;
4298	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4299	if (error)
4300		goto out_dput;
4301	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
 
 
4302out_dput:
4303	done_path_create(&new_path, new_dentry);
4304	if (delegated_inode) {
4305		error = break_deleg_wait(&delegated_inode);
4306		if (!error) {
4307			path_put(&old_path);
4308			goto retry;
4309		}
4310	}
4311	if (retry_estale(error, how)) {
4312		path_put(&old_path);
4313		how |= LOOKUP_REVAL;
4314		goto retry;
4315	}
4316out:
4317	path_put(&old_path);
4318
4319	return error;
4320}
4321
4322SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4323		int, newdfd, const char __user *, newname, int, flags)
4324{
4325	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4326}
4327
4328SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4329{
4330	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4331}
4332
4333/**
4334 * vfs_rename - rename a filesystem object
4335 * @old_dir:	parent of source
4336 * @old_dentry:	source
4337 * @new_dir:	parent of destination
4338 * @new_dentry:	destination
4339 * @delegated_inode: returns an inode needing a delegation break
4340 * @flags:	rename flags
4341 *
4342 * The caller must hold multiple mutexes--see lock_rename()).
4343 *
4344 * If vfs_rename discovers a delegation in need of breaking at either
4345 * the source or destination, it will return -EWOULDBLOCK and return a
4346 * reference to the inode in delegated_inode.  The caller should then
4347 * break the delegation and retry.  Because breaking a delegation may
4348 * take a long time, the caller should drop all locks before doing
4349 * so.
4350 *
4351 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4352 * be appropriate for callers that expect the underlying filesystem not
4353 * to be NFS exported.
4354 *
4355 * The worst of all namespace operations - renaming directory. "Perverted"
4356 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4357 * Problems:
4358 *
4359 *	a) we can get into loop creation.
4360 *	b) race potential - two innocent renames can create a loop together.
4361 *	   That's where 4.4 screws up. Current fix: serialization on
4362 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4363 *	   story.
4364 *	c) we have to lock _four_ objects - parents and victim (if it exists),
4365 *	   and source (if it is not a directory).
4366 *	   And that - after we got ->i_mutex on parents (until then we don't know
4367 *	   whether the target exists).  Solution: try to be smart with locking
4368 *	   order for inodes.  We rely on the fact that tree topology may change
4369 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4370 *	   move will be locked.  Thus we can rank directories by the tree
4371 *	   (ancestors first) and rank all non-directories after them.
4372 *	   That works since everybody except rename does "lock parent, lookup,
4373 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4374 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4375 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4376 *	   we'd better make sure that there's no link(2) for them.
4377 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4378 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4379 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4380 *	   ->i_mutex on parents, which works but leads to some truly excessive
4381 *	   locking].
4382 */
4383int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4384	       struct inode *new_dir, struct dentry *new_dentry,
4385	       struct inode **delegated_inode, unsigned int flags)
4386{
4387	int error;
4388	bool is_dir = d_is_dir(old_dentry);
4389	struct inode *source = old_dentry->d_inode;
4390	struct inode *target = new_dentry->d_inode;
4391	bool new_is_dir = false;
4392	unsigned max_links = new_dir->i_sb->s_max_links;
4393	struct name_snapshot old_name;
4394
4395	if (source == target)
4396		return 0;
4397
4398	error = may_delete(old_dir, old_dentry, is_dir);
4399	if (error)
4400		return error;
4401
4402	if (!target) {
4403		error = may_create(new_dir, new_dentry);
4404	} else {
4405		new_is_dir = d_is_dir(new_dentry);
4406
4407		if (!(flags & RENAME_EXCHANGE))
4408			error = may_delete(new_dir, new_dentry, is_dir);
4409		else
4410			error = may_delete(new_dir, new_dentry, new_is_dir);
4411	}
4412	if (error)
4413		return error;
4414
4415	if (!old_dir->i_op->rename)
4416		return -EPERM;
4417
4418	/*
4419	 * If we are going to change the parent - check write permissions,
4420	 * we'll need to flip '..'.
4421	 */
4422	if (new_dir != old_dir) {
4423		if (is_dir) {
4424			error = inode_permission(source, MAY_WRITE);
4425			if (error)
4426				return error;
4427		}
4428		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4429			error = inode_permission(target, MAY_WRITE);
4430			if (error)
4431				return error;
4432		}
4433	}
4434
4435	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4436				      flags);
4437	if (error)
4438		return error;
4439
4440	take_dentry_name_snapshot(&old_name, old_dentry);
4441	dget(new_dentry);
4442	if (!is_dir || (flags & RENAME_EXCHANGE))
4443		lock_two_nondirectories(source, target);
4444	else if (target)
4445		inode_lock(target);
4446
4447	error = -EBUSY;
4448	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4449		goto out;
4450
4451	if (max_links && new_dir != old_dir) {
4452		error = -EMLINK;
4453		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4454			goto out;
4455		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4456		    old_dir->i_nlink >= max_links)
4457			goto out;
4458	}
4459	if (!is_dir) {
4460		error = try_break_deleg(source, delegated_inode);
4461		if (error)
4462			goto out;
4463	}
4464	if (target && !new_is_dir) {
4465		error = try_break_deleg(target, delegated_inode);
4466		if (error)
4467			goto out;
4468	}
4469	error = old_dir->i_op->rename(old_dir, old_dentry,
4470				       new_dir, new_dentry, flags);
4471	if (error)
4472		goto out;
4473
4474	if (!(flags & RENAME_EXCHANGE) && target) {
4475		if (is_dir) {
4476			shrink_dcache_parent(new_dentry);
4477			target->i_flags |= S_DEAD;
4478		}
4479		dont_mount(new_dentry);
4480		detach_mounts(new_dentry);
4481	}
4482	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4483		if (!(flags & RENAME_EXCHANGE))
4484			d_move(old_dentry, new_dentry);
4485		else
4486			d_exchange(old_dentry, new_dentry);
4487	}
4488out:
4489	if (!is_dir || (flags & RENAME_EXCHANGE))
4490		unlock_two_nondirectories(source, target);
4491	else if (target)
4492		inode_unlock(target);
4493	dput(new_dentry);
4494	if (!error) {
4495		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4496			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4497		if (flags & RENAME_EXCHANGE) {
4498			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4499				      new_is_dir, NULL, new_dentry);
4500		}
4501	}
4502	release_dentry_name_snapshot(&old_name);
 
 
4503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4504	return error;
4505}
4506EXPORT_SYMBOL(vfs_rename);
4507
4508static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4509			const char __user *newname, unsigned int flags)
4510{
4511	struct dentry *old_dentry, *new_dentry;
4512	struct dentry *trap;
4513	struct path old_path, new_path;
4514	struct qstr old_last, new_last;
4515	int old_type, new_type;
4516	struct inode *delegated_inode = NULL;
4517	struct filename *from;
4518	struct filename *to;
4519	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4520	bool should_retry = false;
4521	int error;
 
 
4522
4523	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4524		return -EINVAL;
 
 
 
 
4525
4526	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4527	    (flags & RENAME_EXCHANGE))
4528		return -EINVAL;
 
 
 
4529
4530	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4531		return -EPERM;
4532
4533	if (flags & RENAME_EXCHANGE)
4534		target_flags = 0;
4535
4536retry:
4537	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4538				&old_path, &old_last, &old_type);
4539	if (IS_ERR(from)) {
4540		error = PTR_ERR(from);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4541		goto exit;
4542	}
4543
4544	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4545				&new_path, &new_last, &new_type);
4546	if (IS_ERR(to)) {
4547		error = PTR_ERR(to);
4548		goto exit1;
4549	}
4550
4551	error = -EXDEV;
4552	if (old_path.mnt != new_path.mnt)
4553		goto exit2;
4554
 
4555	error = -EBUSY;
4556	if (old_type != LAST_NORM)
4557		goto exit2;
4558
4559	if (flags & RENAME_NOREPLACE)
4560		error = -EEXIST;
4561	if (new_type != LAST_NORM)
4562		goto exit2;
4563
4564	error = mnt_want_write(old_path.mnt);
4565	if (error)
4566		goto exit2;
4567
4568retry_deleg:
4569	trap = lock_rename(new_path.dentry, old_path.dentry);
4570
4571	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4572	error = PTR_ERR(old_dentry);
4573	if (IS_ERR(old_dentry))
4574		goto exit3;
4575	/* source must exist */
4576	error = -ENOENT;
4577	if (d_is_negative(old_dentry))
4578		goto exit4;
4579	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4580	error = PTR_ERR(new_dentry);
4581	if (IS_ERR(new_dentry))
4582		goto exit4;
4583	error = -EEXIST;
4584	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4585		goto exit5;
4586	if (flags & RENAME_EXCHANGE) {
4587		error = -ENOENT;
4588		if (d_is_negative(new_dentry))
4589			goto exit5;
4590
4591		if (!d_is_dir(new_dentry)) {
4592			error = -ENOTDIR;
4593			if (new_last.name[new_last.len])
4594				goto exit5;
4595		}
4596	}
4597	/* unless the source is a directory trailing slashes give -ENOTDIR */
4598	if (!d_is_dir(old_dentry)) {
4599		error = -ENOTDIR;
4600		if (old_last.name[old_last.len])
4601			goto exit5;
4602		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4603			goto exit5;
4604	}
4605	/* source should not be ancestor of target */
4606	error = -EINVAL;
4607	if (old_dentry == trap)
4608		goto exit5;
 
 
 
 
4609	/* target should not be an ancestor of source */
4610	if (!(flags & RENAME_EXCHANGE))
4611		error = -ENOTEMPTY;
4612	if (new_dentry == trap)
4613		goto exit5;
4614
4615	error = security_path_rename(&old_path, old_dentry,
4616				     &new_path, new_dentry, flags);
4617	if (error)
4618		goto exit5;
4619	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4620			   new_path.dentry->d_inode, new_dentry,
4621			   &delegated_inode, flags);
 
 
 
 
 
4622exit5:
4623	dput(new_dentry);
4624exit4:
4625	dput(old_dentry);
4626exit3:
4627	unlock_rename(new_path.dentry, old_path.dentry);
4628	if (delegated_inode) {
4629		error = break_deleg_wait(&delegated_inode);
4630		if (!error)
4631			goto retry_deleg;
4632	}
4633	mnt_drop_write(old_path.mnt);
4634exit2:
4635	if (retry_estale(error, lookup_flags))
4636		should_retry = true;
4637	path_put(&new_path);
4638	putname(to);
4639exit1:
4640	path_put(&old_path);
4641	putname(from);
4642	if (should_retry) {
4643		should_retry = false;
4644		lookup_flags |= LOOKUP_REVAL;
4645		goto retry;
4646	}
4647exit:
4648	return error;
4649}
4650
4651SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4652		int, newdfd, const char __user *, newname, unsigned int, flags)
4653{
4654	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4655}
4656
4657SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4658		int, newdfd, const char __user *, newname)
4659{
4660	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4661}
4662
4663SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4664{
4665	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4666}
4667
4668int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4669{
4670	int error = may_create(dir, dentry);
4671	if (error)
4672		return error;
4673
4674	if (!dir->i_op->mknod)
4675		return -EPERM;
4676
4677	return dir->i_op->mknod(dir, dentry,
4678				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4679}
4680EXPORT_SYMBOL(vfs_whiteout);
4681
4682int readlink_copy(char __user *buffer, int buflen, const char *link)
4683{
4684	int len = PTR_ERR(link);
4685	if (IS_ERR(link))
4686		goto out;
4687
4688	len = strlen(link);
4689	if (len > (unsigned) buflen)
4690		len = buflen;
4691	if (copy_to_user(buffer, link, len))
4692		len = -EFAULT;
4693out:
4694	return len;
4695}
4696
4697/**
4698 * vfs_readlink - copy symlink body into userspace buffer
4699 * @dentry: dentry on which to get symbolic link
4700 * @buffer: user memory pointer
4701 * @buflen: size of buffer
4702 *
4703 * Does not touch atime.  That's up to the caller if necessary
4704 *
4705 * Does not call security hook.
4706 */
4707int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4708{
4709	struct inode *inode = d_inode(dentry);
4710	DEFINE_DELAYED_CALL(done);
4711	const char *link;
4712	int res;
4713
4714	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4715		if (unlikely(inode->i_op->readlink))
4716			return inode->i_op->readlink(dentry, buffer, buflen);
4717
4718		if (!d_is_symlink(dentry))
4719			return -EINVAL;
4720
4721		spin_lock(&inode->i_lock);
4722		inode->i_opflags |= IOP_DEFAULT_READLINK;
4723		spin_unlock(&inode->i_lock);
4724	}
4725
4726	link = READ_ONCE(inode->i_link);
4727	if (!link) {
4728		link = inode->i_op->get_link(dentry, inode, &done);
4729		if (IS_ERR(link))
4730			return PTR_ERR(link);
4731	}
4732	res = readlink_copy(buffer, buflen, link);
4733	do_delayed_call(&done);
4734	return res;
4735}
4736EXPORT_SYMBOL(vfs_readlink);
4737
4738/**
4739 * vfs_get_link - get symlink body
4740 * @dentry: dentry on which to get symbolic link
4741 * @done: caller needs to free returned data with this
4742 *
4743 * Calls security hook and i_op->get_link() on the supplied inode.
4744 *
4745 * It does not touch atime.  That's up to the caller if necessary.
4746 *
4747 * Does not work on "special" symlinks like /proc/$$/fd/N
4748 */
4749const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4750{
4751	const char *res = ERR_PTR(-EINVAL);
4752	struct inode *inode = d_inode(dentry);
4753
4754	if (d_is_symlink(dentry)) {
4755		res = ERR_PTR(security_inode_readlink(dentry));
4756		if (!res)
4757			res = inode->i_op->get_link(dentry, inode, done);
4758	}
4759	return res;
4760}
4761EXPORT_SYMBOL(vfs_get_link);
4762
4763/* get the link contents into pagecache */
4764const char *page_get_link(struct dentry *dentry, struct inode *inode,
4765			  struct delayed_call *callback)
4766{
4767	char *kaddr;
4768	struct page *page;
4769	struct address_space *mapping = inode->i_mapping;
4770
4771	if (!dentry) {
4772		page = find_get_page(mapping, 0);
4773		if (!page)
4774			return ERR_PTR(-ECHILD);
4775		if (!PageUptodate(page)) {
4776			put_page(page);
4777			return ERR_PTR(-ECHILD);
4778		}
4779	} else {
4780		page = read_mapping_page(mapping, 0, NULL);
4781		if (IS_ERR(page))
4782			return (char*)page;
4783	}
4784	set_delayed_call(callback, page_put_link, page);
4785	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4786	kaddr = page_address(page);
4787	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4788	return kaddr;
4789}
4790
4791EXPORT_SYMBOL(page_get_link);
 
 
 
 
 
 
 
 
 
 
4792
4793void page_put_link(void *arg)
4794{
4795	put_page(arg);
 
 
4796}
4797EXPORT_SYMBOL(page_put_link);
4798
4799int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4800{
4801	DEFINE_DELAYED_CALL(done);
4802	int res = readlink_copy(buffer, buflen,
4803				page_get_link(dentry, d_inode(dentry),
4804					      &done));
4805	do_delayed_call(&done);
4806	return res;
4807}
4808EXPORT_SYMBOL(page_readlink);
4809
4810/*
4811 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4812 */
4813int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4814{
4815	struct address_space *mapping = inode->i_mapping;
4816	struct page *page;
4817	void *fsdata;
4818	int err;
4819	unsigned int flags = 0;
 
4820	if (nofs)
4821		flags |= AOP_FLAG_NOFS;
4822
4823retry:
4824	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4825				flags, &page, &fsdata);
4826	if (err)
4827		goto fail;
4828
4829	memcpy(page_address(page), symname, len-1);
 
 
4830
4831	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4832							page, fsdata);
4833	if (err < 0)
4834		goto fail;
4835	if (err < len-1)
4836		goto retry;
4837
4838	mark_inode_dirty(inode);
4839	return 0;
4840fail:
4841	return err;
4842}
4843EXPORT_SYMBOL(__page_symlink);
4844
4845int page_symlink(struct inode *inode, const char *symname, int len)
4846{
4847	return __page_symlink(inode, symname, len,
4848			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4849}
4850EXPORT_SYMBOL(page_symlink);
4851
4852const struct inode_operations page_symlink_inode_operations = {
4853	.get_link	= page_get_link,
 
 
4854};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4855EXPORT_SYMBOL(page_symlink_inode_operations);
v3.1
 
   1/*
   2 *  linux/fs/namei.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * Some corrections by tytso.
   9 */
  10
  11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  12 * lookup logic.
  13 */
  14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  15 */
  16
  17#include <linux/init.h>
  18#include <linux/module.h>
 
  19#include <linux/slab.h>
  20#include <linux/fs.h>
  21#include <linux/namei.h>
  22#include <linux/pagemap.h>
  23#include <linux/fsnotify.h>
  24#include <linux/personality.h>
  25#include <linux/security.h>
  26#include <linux/ima.h>
  27#include <linux/syscalls.h>
  28#include <linux/mount.h>
  29#include <linux/audit.h>
  30#include <linux/capability.h>
  31#include <linux/file.h>
  32#include <linux/fcntl.h>
  33#include <linux/device_cgroup.h>
  34#include <linux/fs_struct.h>
  35#include <linux/posix_acl.h>
  36#include <asm/uaccess.h>
 
 
 
  37
  38#include "internal.h"
 
  39
  40/* [Feb-1997 T. Schoebel-Theuer]
  41 * Fundamental changes in the pathname lookup mechanisms (namei)
  42 * were necessary because of omirr.  The reason is that omirr needs
  43 * to know the _real_ pathname, not the user-supplied one, in case
  44 * of symlinks (and also when transname replacements occur).
  45 *
  46 * The new code replaces the old recursive symlink resolution with
  47 * an iterative one (in case of non-nested symlink chains).  It does
  48 * this with calls to <fs>_follow_link().
  49 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  50 * replaced with a single function lookup_dentry() that can handle all 
  51 * the special cases of the former code.
  52 *
  53 * With the new dcache, the pathname is stored at each inode, at least as
  54 * long as the refcount of the inode is positive.  As a side effect, the
  55 * size of the dcache depends on the inode cache and thus is dynamic.
  56 *
  57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  58 * resolution to correspond with current state of the code.
  59 *
  60 * Note that the symlink resolution is not *completely* iterative.
  61 * There is still a significant amount of tail- and mid- recursion in
  62 * the algorithm.  Also, note that <fs>_readlink() is not used in
  63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  64 * may return different results than <fs>_follow_link().  Many virtual
  65 * filesystems (including /proc) exhibit this behavior.
  66 */
  67
  68/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  70 * and the name already exists in form of a symlink, try to create the new
  71 * name indicated by the symlink. The old code always complained that the
  72 * name already exists, due to not following the symlink even if its target
  73 * is nonexistent.  The new semantics affects also mknod() and link() when
  74 * the name is a symlink pointing to a non-existent name.
  75 *
  76 * I don't know which semantics is the right one, since I have no access
  77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  79 * "old" one. Personally, I think the new semantics is much more logical.
  80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  81 * file does succeed in both HP-UX and SunOs, but not in Solaris
  82 * and in the old Linux semantics.
  83 */
  84
  85/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  86 * semantics.  See the comments in "open_namei" and "do_link" below.
  87 *
  88 * [10-Sep-98 Alan Modra] Another symlink change.
  89 */
  90
  91/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  92 *	inside the path - always follow.
  93 *	in the last component in creation/removal/renaming - never follow.
  94 *	if LOOKUP_FOLLOW passed - follow.
  95 *	if the pathname has trailing slashes - follow.
  96 *	otherwise - don't follow.
  97 * (applied in that order).
  98 *
  99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 101 * During the 2.4 we need to fix the userland stuff depending on it -
 102 * hopefully we will be able to get rid of that wart in 2.5. So far only
 103 * XEmacs seems to be relying on it...
 104 */
 105/*
 106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 107 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 108 * any extra contention...
 109 */
 110
 111/* In order to reduce some races, while at the same time doing additional
 112 * checking and hopefully speeding things up, we copy filenames to the
 113 * kernel data space before using them..
 114 *
 115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 116 * PATH_MAX includes the nul terminator --RR.
 117 */
 118static int do_getname(const char __user *filename, char *page)
 
 
 
 
 119{
 120	int retval;
 121	unsigned long len = PATH_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122
 123	if (!segment_eq(get_fs(), KERNEL_DS)) {
 124		if ((unsigned long) filename >= TASK_SIZE)
 125			return -EFAULT;
 126		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
 127			len = TASK_SIZE - (unsigned long) filename;
 
 
 
 
 128	}
 129
 130	retval = strncpy_from_user(page, filename, len);
 131	if (retval > 0) {
 132		if (retval < len)
 133			return 0;
 134		return -ENAMETOOLONG;
 135	} else if (!retval)
 136		retval = -ENOENT;
 137	return retval;
 
 
 138}
 139
 140static char *getname_flags(const char __user * filename, int flags)
 
 141{
 142	char *tmp, *result;
 
 143
 144	result = ERR_PTR(-ENOMEM);
 145	tmp = __getname();
 146	if (tmp)  {
 147		int retval = do_getname(filename, tmp);
 148
 
 
 
 
 
 
 
 
 
 
 
 
 149		result = tmp;
 150		if (retval < 0) {
 151			if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
 152				__putname(tmp);
 153				result = ERR_PTR(retval);
 154			}
 155		}
 156	}
 
 
 
 
 157	audit_getname(result);
 
 158	return result;
 159}
 160
 161char *getname(const char __user * filename)
 162{
 163	return getname_flags(filename, 0);
 164}
 
 
 165
 166#ifdef CONFIG_AUDITSYSCALL
 167void putname(const char *name)
 168{
 169	if (unlikely(!audit_dummy_context()))
 170		audit_putname(name);
 171	else
 172		__putname(name);
 173}
 174EXPORT_SYMBOL(putname);
 175#endif
 176
 177static int check_acl(struct inode *inode, int mask)
 178{
 179#ifdef CONFIG_FS_POSIX_ACL
 180	struct posix_acl *acl;
 181
 182	if (mask & MAY_NOT_BLOCK) {
 183		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 184	        if (!acl)
 185	                return -EAGAIN;
 186		/* no ->get_acl() calls in RCU mode... */
 187		if (acl == ACL_NOT_CACHED)
 188			return -ECHILD;
 189	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
 190	}
 191
 192	acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
 193
 194	/*
 195	 * A filesystem can force a ACL callback by just never filling the
 196	 * ACL cache. But normally you'd fill the cache either at inode
 197	 * instantiation time, or on the first ->get_acl call.
 198	 *
 199	 * If the filesystem doesn't have a get_acl() function at all, we'll
 200	 * just create the negative cache entry.
 201	 */
 202	if (acl == ACL_NOT_CACHED) {
 203	        if (inode->i_op->get_acl) {
 204			acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
 205			if (IS_ERR(acl))
 206				return PTR_ERR(acl);
 207		} else {
 208		        set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
 209		        return -EAGAIN;
 210		}
 211	}
 212
 213	if (acl) {
 214	        int error = posix_acl_permission(inode, acl, mask);
 215	        posix_acl_release(acl);
 216	        return error;
 217	}
 218#endif
 219
 220	return -EAGAIN;
 221}
 222
 223/*
 224 * This does basic POSIX ACL permission checking
 225 */
 226static int acl_permission_check(struct inode *inode, int mask)
 227{
 228	unsigned int mode = inode->i_mode;
 229
 230	mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK;
 231
 232	if (current_user_ns() != inode_userns(inode))
 233		goto other_perms;
 234
 235	if (likely(current_fsuid() == inode->i_uid))
 236		mode >>= 6;
 237	else {
 238		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 239			int error = check_acl(inode, mask);
 240			if (error != -EAGAIN)
 241				return error;
 242		}
 243
 244		if (in_group_p(inode->i_gid))
 245			mode >>= 3;
 246	}
 247
 248other_perms:
 249	/*
 250	 * If the DACs are ok we don't need any capability check.
 251	 */
 252	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
 253		return 0;
 254	return -EACCES;
 255}
 256
 257/**
 258 * generic_permission -  check for access rights on a Posix-like filesystem
 259 * @inode:	inode to check access rights for
 260 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 261 *
 262 * Used to check for read/write/execute permissions on a file.
 263 * We use "fsuid" for this, letting us set arbitrary permissions
 264 * for filesystem access without changing the "normal" uids which
 265 * are used for other things.
 266 *
 267 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 268 * request cannot be satisfied (eg. requires blocking or too much complexity).
 269 * It would then be called again in ref-walk mode.
 270 */
 271int generic_permission(struct inode *inode, int mask)
 272{
 273	int ret;
 274
 275	/*
 276	 * Do the basic POSIX ACL permission checks.
 277	 */
 278	ret = acl_permission_check(inode, mask);
 279	if (ret != -EACCES)
 280		return ret;
 281
 282	if (S_ISDIR(inode->i_mode)) {
 283		/* DACs are overridable for directories */
 284		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
 285			return 0;
 286		if (!(mask & MAY_WRITE))
 287			if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
 
 288				return 0;
 
 
 289		return -EACCES;
 290	}
 
 
 
 
 
 
 
 
 291	/*
 292	 * Read/write DACs are always overridable.
 293	 * Executable DACs are overridable when there is
 294	 * at least one exec bit set.
 295	 */
 296	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 297		if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
 298			return 0;
 299
 300	/*
 301	 * Searching includes executable on directories, else just read.
 302	 */
 303	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 304	if (mask == MAY_READ)
 305		if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
 306			return 0;
 307
 308	return -EACCES;
 309}
 
 310
 311/*
 312 * We _really_ want to just do "generic_permission()" without
 313 * even looking at the inode->i_op values. So we keep a cache
 314 * flag in inode->i_opflags, that says "this has not special
 315 * permission function, use the fast case".
 316 */
 317static inline int do_inode_permission(struct inode *inode, int mask)
 318{
 319	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 320		if (likely(inode->i_op->permission))
 321			return inode->i_op->permission(inode, mask);
 322
 323		/* This gets set once for the inode lifetime */
 324		spin_lock(&inode->i_lock);
 325		inode->i_opflags |= IOP_FASTPERM;
 326		spin_unlock(&inode->i_lock);
 327	}
 328	return generic_permission(inode, mask);
 329}
 330
 331/**
 332 * inode_permission  -  check for access rights to a given inode
 333 * @inode:	inode to check permission on
 334 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 
 335 *
 336 * Used to check for read/write/execute permissions on an inode.
 337 * We use "fsuid" for this, letting us set arbitrary permissions
 338 * for filesystem access without changing the "normal" uids which
 339 * are used for other things.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340 */
 341int inode_permission(struct inode *inode, int mask)
 342{
 343	int retval;
 344
 
 
 
 
 345	if (unlikely(mask & MAY_WRITE)) {
 346		umode_t mode = inode->i_mode;
 347
 348		/*
 349		 * Nobody gets write access to a read-only fs.
 350		 */
 351		if (IS_RDONLY(inode) &&
 352		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 353			return -EROFS;
 354
 355		/*
 356		 * Nobody gets write access to an immutable file.
 
 
 357		 */
 358		if (IS_IMMUTABLE(inode))
 359			return -EACCES;
 360	}
 361
 362	retval = do_inode_permission(inode, mask);
 363	if (retval)
 364		return retval;
 365
 366	retval = devcgroup_inode_permission(inode, mask);
 367	if (retval)
 368		return retval;
 369
 370	return security_inode_permission(inode, mask);
 371}
 
 372
 373/**
 374 * path_get - get a reference to a path
 375 * @path: path to get the reference to
 376 *
 377 * Given a path increment the reference count to the dentry and the vfsmount.
 378 */
 379void path_get(struct path *path)
 380{
 381	mntget(path->mnt);
 382	dget(path->dentry);
 383}
 384EXPORT_SYMBOL(path_get);
 385
 386/**
 387 * path_put - put a reference to a path
 388 * @path: path to put the reference to
 389 *
 390 * Given a path decrement the reference count to the dentry and the vfsmount.
 391 */
 392void path_put(struct path *path)
 393{
 394	dput(path->dentry);
 395	mntput(path->mnt);
 396}
 397EXPORT_SYMBOL(path_put);
 398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399/*
 400 * Path walking has 2 modes, rcu-walk and ref-walk (see
 401 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 402 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 403 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
 404 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 405 * got stuck, so ref-walk may continue from there. If this is not successful
 406 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 407 * to restart the path walk from the beginning in ref-walk mode.
 408 */
 409
 410/**
 411 * unlazy_walk - try to switch to ref-walk mode.
 412 * @nd: nameidata pathwalk data
 413 * @dentry: child of nd->path.dentry or NULL
 414 * Returns: 0 on success, -ECHILD on failure
 415 *
 416 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
 417 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
 418 * @nd or NULL.  Must be called from rcu-walk context.
 
 
 419 */
 420static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
 421{
 422	struct fs_struct *fs = current->fs;
 423	struct dentry *parent = nd->path.dentry;
 424	int want_root = 0;
 425
 426	BUG_ON(!(nd->flags & LOOKUP_RCU));
 427	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
 428		want_root = 1;
 429		spin_lock(&fs->lock);
 430		if (nd->root.mnt != fs->root.mnt ||
 431				nd->root.dentry != fs->root.dentry)
 432			goto err_root;
 433	}
 434	spin_lock(&parent->d_lock);
 435	if (!dentry) {
 436		if (!__d_rcu_to_refcount(parent, nd->seq))
 437			goto err_parent;
 438		BUG_ON(nd->inode != parent->d_inode);
 439	} else {
 440		if (dentry->d_parent != parent)
 441			goto err_parent;
 442		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 443		if (!__d_rcu_to_refcount(dentry, nd->seq))
 444			goto err_child;
 445		/*
 446		 * If the sequence check on the child dentry passed, then
 447		 * the child has not been removed from its parent. This
 448		 * means the parent dentry must be valid and able to take
 449		 * a reference at this point.
 450		 */
 451		BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
 452		BUG_ON(!parent->d_count);
 453		parent->d_count++;
 454		spin_unlock(&dentry->d_lock);
 455	}
 456	spin_unlock(&parent->d_lock);
 457	if (want_root) {
 458		path_get(&nd->root);
 459		spin_unlock(&fs->lock);
 460	}
 461	mntget(nd->path.mnt);
 462
 
 
 
 
 
 
 
 463	rcu_read_unlock();
 464	br_read_unlock(vfsmount_lock);
 465	nd->flags &= ~LOOKUP_RCU;
 466	return 0;
 467
 468err_child:
 469	spin_unlock(&dentry->d_lock);
 470err_parent:
 471	spin_unlock(&parent->d_lock);
 472err_root:
 473	if (want_root)
 474		spin_unlock(&fs->lock);
 475	return -ECHILD;
 476}
 477
 478/**
 479 * release_open_intent - free up open intent resources
 480 * @nd: pointer to nameidata
 
 
 
 
 
 
 
 
 
 481 */
 482void release_open_intent(struct nameidata *nd)
 483{
 484	struct file *file = nd->intent.open.file;
 
 
 
 
 
 
 
 
 485
 486	if (file && !IS_ERR(file)) {
 487		if (file->f_path.dentry == NULL)
 488			put_filp(file);
 489		else
 490			fput(file);
 491	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492}
 493
 494static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
 495{
 496	return dentry->d_op->d_revalidate(dentry, nd);
 
 
 
 497}
 498
 499/**
 500 * complete_walk - successful completion of path walk
 501 * @nd:  pointer nameidata
 502 *
 503 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 504 * Revalidate the final result, unless we'd already done that during
 505 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 506 * success, -error on failure.  In case of failure caller does not
 507 * need to drop nd->path.
 508 */
 509static int complete_walk(struct nameidata *nd)
 510{
 511	struct dentry *dentry = nd->path.dentry;
 512	int status;
 513
 514	if (nd->flags & LOOKUP_RCU) {
 515		nd->flags &= ~LOOKUP_RCU;
 516		if (!(nd->flags & LOOKUP_ROOT))
 517			nd->root.mnt = NULL;
 518		spin_lock(&dentry->d_lock);
 519		if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
 520			spin_unlock(&dentry->d_lock);
 521			rcu_read_unlock();
 522			br_read_unlock(vfsmount_lock);
 523			return -ECHILD;
 524		}
 525		BUG_ON(nd->inode != dentry->d_inode);
 526		spin_unlock(&dentry->d_lock);
 527		mntget(nd->path.mnt);
 528		rcu_read_unlock();
 529		br_read_unlock(vfsmount_lock);
 530	}
 531
 532	if (likely(!(nd->flags & LOOKUP_JUMPED)))
 533		return 0;
 534
 535	if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
 536		return 0;
 537
 538	if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
 539		return 0;
 540
 541	/* Note: we do not d_invalidate() */
 542	status = d_revalidate(dentry, nd);
 543	if (status > 0)
 544		return 0;
 545
 546	if (!status)
 547		status = -ESTALE;
 548
 549	path_put(&nd->path);
 550	return status;
 551}
 552
 553static __always_inline void set_root(struct nameidata *nd)
 554{
 555	if (!nd->root.mnt)
 556		get_fs_root(current->fs, &nd->root);
 557}
 558
 559static int link_path_walk(const char *, struct nameidata *);
 560
 561static __always_inline void set_root_rcu(struct nameidata *nd)
 562{
 563	if (!nd->root.mnt) {
 564		struct fs_struct *fs = current->fs;
 565		unsigned seq;
 566
 567		do {
 568			seq = read_seqcount_begin(&fs->seq);
 569			nd->root = fs->root;
 570			nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 571		} while (read_seqcount_retry(&fs->seq, seq));
 
 
 
 572	}
 573}
 574
 575static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
 576{
 577	int ret;
 578
 579	if (IS_ERR(link))
 580		goto fail;
 581
 582	if (*link == '/') {
 583		set_root(nd);
 584		path_put(&nd->path);
 585		nd->path = nd->root;
 586		path_get(&nd->root);
 587		nd->flags |= LOOKUP_JUMPED;
 588	}
 589	nd->inode = nd->path.dentry->d_inode;
 590
 591	ret = link_path_walk(link, nd);
 592	return ret;
 593fail:
 594	path_put(&nd->path);
 595	return PTR_ERR(link);
 596}
 597
 598static void path_put_conditional(struct path *path, struct nameidata *nd)
 599{
 600	dput(path->dentry);
 601	if (path->mnt != nd->path.mnt)
 602		mntput(path->mnt);
 603}
 604
 605static inline void path_to_nameidata(const struct path *path,
 606					struct nameidata *nd)
 607{
 608	if (!(nd->flags & LOOKUP_RCU)) {
 609		dput(nd->path.dentry);
 610		if (nd->path.mnt != path->mnt)
 611			mntput(nd->path.mnt);
 612	}
 613	nd->path.mnt = path->mnt;
 614	nd->path.dentry = path->dentry;
 615}
 616
 617static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
 618{
 619	struct inode *inode = link->dentry->d_inode;
 620	if (!IS_ERR(cookie) && inode->i_op->put_link)
 621		inode->i_op->put_link(link->dentry, nd, cookie);
 622	path_put(link);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623}
 624
 625static __always_inline int
 626follow_link(struct path *link, struct nameidata *nd, void **p)
 
 
 
 
 
 
 
 
 
 
 
 627{
 628	int error;
 629	struct dentry *dentry = link->dentry;
 
 
 
 
 
 
 
 
 
 
 
 
 630
 631	BUG_ON(nd->flags & LOOKUP_RCU);
 
 
 632
 633	if (link->mnt == nd->path.mnt)
 634		mntget(link->mnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635
 636	if (unlikely(current->total_link_count >= 40)) {
 637		*p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
 638		path_put(&nd->path);
 639		return -ELOOP;
 
 640	}
 641	cond_resched();
 642	current->total_link_count++;
 643
 644	touch_atime(link->mnt, dentry);
 645	nd_set_link(nd, NULL);
 
 
 
 
 
 
 646
 647	error = security_inode_follow_link(link->dentry, nd);
 648	if (error) {
 649		*p = ERR_PTR(error); /* no ->put_link(), please */
 650		path_put(&nd->path);
 651		return error;
 
 
 652	}
 653
 
 
 
 
 
 654	nd->last_type = LAST_BIND;
 655	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
 656	error = PTR_ERR(*p);
 657	if (!IS_ERR(*p)) {
 658		char *s = nd_get_link(nd);
 659		error = 0;
 660		if (s)
 661			error = __vfs_follow_link(nd, s);
 662		else if (nd->last_type == LAST_BIND) {
 663			nd->flags |= LOOKUP_JUMPED;
 664			nd->inode = nd->path.dentry->d_inode;
 665			if (nd->inode->i_op->follow_link) {
 666				/* stepped on a _really_ weird one */
 667				path_put(&nd->path);
 668				error = -ELOOP;
 669			}
 
 
 670		}
 
 
 
 
 
 
 
 
 
 
 671	}
 672	return error;
 673}
 674
 675static int follow_up_rcu(struct path *path)
 676{
 677	struct vfsmount *parent;
 678	struct dentry *mountpoint;
 679
 680	parent = path->mnt->mnt_parent;
 681	if (parent == path->mnt)
 682		return 0;
 683	mountpoint = path->mnt->mnt_mountpoint;
 684	path->dentry = mountpoint;
 685	path->mnt = parent;
 686	return 1;
 687}
 688
 
 
 
 
 
 
 
 
 
 
 689int follow_up(struct path *path)
 690{
 691	struct vfsmount *parent;
 
 692	struct dentry *mountpoint;
 693
 694	br_read_lock(vfsmount_lock);
 695	parent = path->mnt->mnt_parent;
 696	if (parent == path->mnt) {
 697		br_read_unlock(vfsmount_lock);
 698		return 0;
 699	}
 700	mntget(parent);
 701	mountpoint = dget(path->mnt->mnt_mountpoint);
 702	br_read_unlock(vfsmount_lock);
 703	dput(path->dentry);
 704	path->dentry = mountpoint;
 705	mntput(path->mnt);
 706	path->mnt = parent;
 707	return 1;
 708}
 
 709
 710/*
 711 * Perform an automount
 712 * - return -EISDIR to tell follow_managed() to stop and return the path we
 713 *   were called with.
 714 */
 715static int follow_automount(struct path *path, unsigned flags,
 716			    bool *need_mntput)
 717{
 718	struct vfsmount *mnt;
 719	int err;
 720
 721	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
 722		return -EREMOTE;
 723
 724	/* We don't want to mount if someone's just doing a stat -
 725	 * unless they're stat'ing a directory and appended a '/' to
 726	 * the name.
 727	 *
 728	 * We do, however, want to mount if someone wants to open or
 729	 * create a file of any type under the mountpoint, wants to
 730	 * traverse through the mountpoint or wants to open the
 731	 * mounted directory.  Also, autofs may mark negative dentries
 732	 * as being automount points.  These will need the attentions
 733	 * of the daemon to instantiate them before they can be used.
 734	 */
 735	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
 736		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
 737	    path->dentry->d_inode)
 738		return -EISDIR;
 739
 740	current->total_link_count++;
 741	if (current->total_link_count >= 40)
 742		return -ELOOP;
 743
 744	mnt = path->dentry->d_op->d_automount(path);
 745	if (IS_ERR(mnt)) {
 746		/*
 747		 * The filesystem is allowed to return -EISDIR here to indicate
 748		 * it doesn't want to automount.  For instance, autofs would do
 749		 * this so that its userspace daemon can mount on this dentry.
 750		 *
 751		 * However, we can only permit this if it's a terminal point in
 752		 * the path being looked up; if it wasn't then the remainder of
 753		 * the path is inaccessible and we should say so.
 754		 */
 755		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
 756			return -EREMOTE;
 757		return PTR_ERR(mnt);
 758	}
 759
 760	if (!mnt) /* mount collision */
 761		return 0;
 762
 763	if (!*need_mntput) {
 764		/* lock_mount() may release path->mnt on error */
 765		mntget(path->mnt);
 766		*need_mntput = true;
 767	}
 768	err = finish_automount(mnt, path);
 769
 770	switch (err) {
 771	case -EBUSY:
 772		/* Someone else made a mount here whilst we were busy */
 773		return 0;
 774	case 0:
 775		path_put(path);
 776		path->mnt = mnt;
 777		path->dentry = dget(mnt->mnt_root);
 778		return 0;
 779	default:
 780		return err;
 781	}
 782
 783}
 784
 785/*
 786 * Handle a dentry that is managed in some way.
 787 * - Flagged for transit management (autofs)
 788 * - Flagged as mountpoint
 789 * - Flagged as automount point
 790 *
 791 * This may only be called in refwalk mode.
 792 *
 793 * Serialization is taken care of in namespace.c
 794 */
 795static int follow_managed(struct path *path, unsigned flags)
 796{
 797	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
 798	unsigned managed;
 799	bool need_mntput = false;
 800	int ret = 0;
 801
 802	/* Given that we're not holding a lock here, we retain the value in a
 803	 * local variable for each dentry as we look at it so that we don't see
 804	 * the components of that value change under us */
 805	while (managed = ACCESS_ONCE(path->dentry->d_flags),
 806	       managed &= DCACHE_MANAGED_DENTRY,
 807	       unlikely(managed != 0)) {
 808		/* Allow the filesystem to manage the transit without i_mutex
 809		 * being held. */
 810		if (managed & DCACHE_MANAGE_TRANSIT) {
 811			BUG_ON(!path->dentry->d_op);
 812			BUG_ON(!path->dentry->d_op->d_manage);
 813			ret = path->dentry->d_op->d_manage(path->dentry, false);
 814			if (ret < 0)
 815				break;
 816		}
 817
 818		/* Transit to a mounted filesystem. */
 819		if (managed & DCACHE_MOUNTED) {
 820			struct vfsmount *mounted = lookup_mnt(path);
 821			if (mounted) {
 822				dput(path->dentry);
 823				if (need_mntput)
 824					mntput(path->mnt);
 825				path->mnt = mounted;
 826				path->dentry = dget(mounted->mnt_root);
 827				need_mntput = true;
 828				continue;
 829			}
 830
 831			/* Something is mounted on this dentry in another
 832			 * namespace and/or whatever was mounted there in this
 833			 * namespace got unmounted before we managed to get the
 834			 * vfsmount_lock */
 835		}
 836
 837		/* Handle an automount point */
 838		if (managed & DCACHE_NEED_AUTOMOUNT) {
 839			ret = follow_automount(path, flags, &need_mntput);
 840			if (ret < 0)
 841				break;
 842			continue;
 843		}
 844
 845		/* We didn't change the current path point */
 846		break;
 847	}
 848
 849	if (need_mntput && path->mnt == mnt)
 850		mntput(path->mnt);
 851	if (ret == -EISDIR)
 852		ret = 0;
 
 
 
 
 853	return ret;
 854}
 855
 856int follow_down_one(struct path *path)
 857{
 858	struct vfsmount *mounted;
 859
 860	mounted = lookup_mnt(path);
 861	if (mounted) {
 862		dput(path->dentry);
 863		mntput(path->mnt);
 864		path->mnt = mounted;
 865		path->dentry = dget(mounted->mnt_root);
 866		return 1;
 867	}
 868	return 0;
 869}
 
 870
 871static inline bool managed_dentry_might_block(struct dentry *dentry)
 872{
 873	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
 874		dentry->d_op->d_manage(dentry, true) < 0);
 875}
 876
 877/*
 878 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
 879 * we meet a managed dentry that would need blocking.
 880 */
 881static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
 882			       struct inode **inode)
 883{
 884	for (;;) {
 885		struct vfsmount *mounted;
 886		/*
 887		 * Don't forget we might have a non-mountpoint managed dentry
 888		 * that wants to block transit.
 889		 */
 890		if (unlikely(managed_dentry_might_block(path->dentry)))
 
 
 891			return false;
 
 
 
 
 
 892
 893		if (!d_mountpoint(path->dentry))
 894			break;
 895
 896		mounted = __lookup_mnt(path->mnt, path->dentry, 1);
 897		if (!mounted)
 898			break;
 899		path->mnt = mounted;
 900		path->dentry = mounted->mnt_root;
 901		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
 
 902		/*
 903		 * Update the inode too. We don't need to re-check the
 904		 * dentry sequence number here after this d_inode read,
 905		 * because a mount-point is always pinned.
 906		 */
 907		*inode = path->dentry->d_inode;
 908	}
 909	return true;
 910}
 911
 912static void follow_mount_rcu(struct nameidata *nd)
 913{
 914	while (d_mountpoint(nd->path.dentry)) {
 915		struct vfsmount *mounted;
 916		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
 917		if (!mounted)
 918			break;
 919		nd->path.mnt = mounted;
 920		nd->path.dentry = mounted->mnt_root;
 921		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
 922	}
 923}
 924
 925static int follow_dotdot_rcu(struct nameidata *nd)
 926{
 927	set_root_rcu(nd);
 928
 929	while (1) {
 930		if (nd->path.dentry == nd->root.dentry &&
 931		    nd->path.mnt == nd->root.mnt) {
 932			break;
 933		}
 934		if (nd->path.dentry != nd->path.mnt->mnt_root) {
 935			struct dentry *old = nd->path.dentry;
 936			struct dentry *parent = old->d_parent;
 937			unsigned seq;
 938
 
 939			seq = read_seqcount_begin(&parent->d_seq);
 940			if (read_seqcount_retry(&old->d_seq, nd->seq))
 941				goto failed;
 942			nd->path.dentry = parent;
 943			nd->seq = seq;
 
 
 944			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945		}
 946		if (!follow_up_rcu(&nd->path))
 
 
 
 
 
 
 947			break;
 
 
 
 948		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
 949	}
 950	follow_mount_rcu(nd);
 951	nd->inode = nd->path.dentry->d_inode;
 952	return 0;
 953
 954failed:
 955	nd->flags &= ~LOOKUP_RCU;
 956	if (!(nd->flags & LOOKUP_ROOT))
 957		nd->root.mnt = NULL;
 958	rcu_read_unlock();
 959	br_read_unlock(vfsmount_lock);
 960	return -ECHILD;
 961}
 962
 963/*
 964 * Follow down to the covering mount currently visible to userspace.  At each
 965 * point, the filesystem owning that dentry may be queried as to whether the
 966 * caller is permitted to proceed or not.
 967 */
 968int follow_down(struct path *path)
 969{
 970	unsigned managed;
 971	int ret;
 972
 973	while (managed = ACCESS_ONCE(path->dentry->d_flags),
 974	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
 975		/* Allow the filesystem to manage the transit without i_mutex
 976		 * being held.
 977		 *
 978		 * We indicate to the filesystem if someone is trying to mount
 979		 * something here.  This gives autofs the chance to deny anyone
 980		 * other than its daemon the right to mount on its
 981		 * superstructure.
 982		 *
 983		 * The filesystem may sleep at this point.
 984		 */
 985		if (managed & DCACHE_MANAGE_TRANSIT) {
 986			BUG_ON(!path->dentry->d_op);
 987			BUG_ON(!path->dentry->d_op->d_manage);
 988			ret = path->dentry->d_op->d_manage(
 989				path->dentry, false);
 990			if (ret < 0)
 991				return ret == -EISDIR ? 0 : ret;
 992		}
 993
 994		/* Transit to a mounted filesystem. */
 995		if (managed & DCACHE_MOUNTED) {
 996			struct vfsmount *mounted = lookup_mnt(path);
 997			if (!mounted)
 998				break;
 999			dput(path->dentry);
1000			mntput(path->mnt);
1001			path->mnt = mounted;
1002			path->dentry = dget(mounted->mnt_root);
1003			continue;
1004		}
1005
1006		/* Don't handle automount points here */
1007		break;
1008	}
1009	return 0;
1010}
 
1011
1012/*
1013 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1014 */
1015static void follow_mount(struct path *path)
1016{
1017	while (d_mountpoint(path->dentry)) {
1018		struct vfsmount *mounted = lookup_mnt(path);
1019		if (!mounted)
1020			break;
1021		dput(path->dentry);
1022		mntput(path->mnt);
1023		path->mnt = mounted;
1024		path->dentry = dget(mounted->mnt_root);
1025	}
1026}
1027
1028static void follow_dotdot(struct nameidata *nd)
1029{
1030	set_root(nd);
 
 
 
 
 
 
 
1031
 
 
1032	while(1) {
1033		struct dentry *old = nd->path.dentry;
1034
1035		if (nd->path.dentry == nd->root.dentry &&
1036		    nd->path.mnt == nd->root.mnt) {
1037			break;
1038		}
1039		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1040			/* rare case of legitimate dget_parent()... */
1041			nd->path.dentry = dget_parent(nd->path.dentry);
1042			dput(old);
1043			break;
1044		}
1045		if (!follow_up(&nd->path))
1046			break;
1047	}
1048	follow_mount(&nd->path);
1049	nd->inode = nd->path.dentry->d_inode;
 
1050}
1051
1052/*
1053 * Allocate a dentry with name and parent, and perform a parent
1054 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1055 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1056 * have verified that no child exists while under i_mutex.
1057 */
1058static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1059				struct qstr *name, struct nameidata *nd)
1060{
1061	struct inode *inode = parent->d_inode;
1062	struct dentry *dentry;
1063	struct dentry *old;
1064
1065	/* Don't create child dentry for a dead directory. */
1066	if (unlikely(IS_DEADDIR(inode)))
1067		return ERR_PTR(-ENOENT);
1068
1069	dentry = d_alloc(parent, name);
1070	if (unlikely(!dentry))
1071		return ERR_PTR(-ENOMEM);
1072
1073	old = inode->i_op->lookup(inode, dentry, nd);
1074	if (unlikely(old)) {
1075		dput(dentry);
1076		dentry = old;
1077	}
1078	return dentry;
1079}
1080
1081/*
1082 * We already have a dentry, but require a lookup to be performed on the parent
1083 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1084 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1085 * child exists while under i_mutex.
 
1086 */
1087static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1088				     struct nameidata *nd)
1089{
1090	struct inode *inode = parent->d_inode;
1091	struct dentry *old;
 
 
 
 
1092
1093	/* Don't create child dentry for a dead directory. */
1094	if (unlikely(IS_DEADDIR(inode)))
1095		return ERR_PTR(-ENOENT);
1096
1097	old = inode->i_op->lookup(inode, dentry, nd);
 
 
 
 
1098	if (unlikely(old)) {
1099		dput(dentry);
1100		dentry = old;
1101	}
1102	return dentry;
1103}
1104
1105/*
1106 *  It's more convoluted than I'd like it to be, but... it's still fairly
1107 *  small and for now I'd prefer to have fast path as straight as possible.
1108 *  It _is_ time-critical.
1109 */
1110static int do_lookup(struct nameidata *nd, struct qstr *name,
1111			struct path *path, struct inode **inode)
1112{
1113	struct vfsmount *mnt = nd->path.mnt;
1114	struct dentry *dentry, *parent = nd->path.dentry;
1115	int need_reval = 1;
1116	int status = 1;
1117	int err;
1118
1119	/*
1120	 * Rename seqlock is not required here because in the off chance
1121	 * of a false negative due to a concurrent rename, we're going to
1122	 * do the non-racy lookup, below.
1123	 */
1124	if (nd->flags & LOOKUP_RCU) {
1125		unsigned seq;
1126		*inode = nd->inode;
1127		dentry = __d_lookup_rcu(parent, name, &seq, inode);
1128		if (!dentry)
1129			goto unlazy;
 
 
 
 
 
 
 
 
 
 
 
 
1130
1131		/* Memory barrier in read_seqcount_begin of child is enough */
1132		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
 
 
 
 
 
 
1133			return -ECHILD;
1134		nd->seq = seq;
1135
1136		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1137			status = d_revalidate(dentry, nd);
1138			if (unlikely(status <= 0)) {
1139				if (status != -ECHILD)
1140					need_reval = 0;
1141				goto unlazy;
1142			}
 
 
 
 
 
 
1143		}
1144		if (unlikely(d_need_lookup(dentry)))
1145			goto unlazy;
1146		path->mnt = mnt;
1147		path->dentry = dentry;
1148		if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1149			goto unlazy;
1150		if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1151			goto unlazy;
1152		return 0;
1153unlazy:
1154		if (unlazy_walk(nd, dentry))
1155			return -ECHILD;
 
 
 
1156	} else {
1157		dentry = __d_lookup(parent, name);
 
 
 
 
 
 
 
 
 
1158	}
1159
1160	if (dentry && unlikely(d_need_lookup(dentry))) {
1161		dput(dentry);
1162		dentry = NULL;
1163	}
1164retry:
1165	if (unlikely(!dentry)) {
1166		struct inode *dir = parent->d_inode;
1167		BUG_ON(nd->inode != dir);
1168
1169		mutex_lock(&dir->i_mutex);
1170		dentry = d_lookup(parent, name);
1171		if (likely(!dentry)) {
1172			dentry = d_alloc_and_lookup(parent, name, nd);
1173			if (IS_ERR(dentry)) {
1174				mutex_unlock(&dir->i_mutex);
1175				return PTR_ERR(dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176			}
1177			/* known good */
1178			need_reval = 0;
1179			status = 1;
1180		} else if (unlikely(d_need_lookup(dentry))) {
1181			dentry = d_inode_lookup(parent, dentry, nd);
1182			if (IS_ERR(dentry)) {
1183				mutex_unlock(&dir->i_mutex);
1184				return PTR_ERR(dentry);
1185			}
1186			/* known good */
1187			need_reval = 0;
1188			status = 1;
1189		}
1190		mutex_unlock(&dir->i_mutex);
1191	}
1192	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1193		status = d_revalidate(dentry, nd);
1194	if (unlikely(status <= 0)) {
1195		if (status < 0) {
1196			dput(dentry);
1197			return status;
1198		}
1199		if (!d_invalidate(dentry)) {
1200			dput(dentry);
1201			dentry = NULL;
1202			need_reval = 1;
1203			goto retry;
1204		}
1205	}
 
 
1206
1207	path->mnt = mnt;
1208	path->dentry = dentry;
1209	err = follow_managed(path, nd->flags);
1210	if (unlikely(err < 0)) {
1211		path_put_conditional(path, nd);
1212		return err;
1213	}
1214	*inode = path->dentry->d_inode;
1215	return 0;
 
1216}
1217
1218static inline int may_lookup(struct nameidata *nd)
1219{
1220	if (nd->flags & LOOKUP_RCU) {
1221		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1222		if (err != -ECHILD)
1223			return err;
1224		if (unlazy_walk(nd, NULL))
1225			return -ECHILD;
1226	}
1227	return inode_permission(nd->inode, MAY_EXEC);
1228}
1229
1230static inline int handle_dots(struct nameidata *nd, int type)
1231{
1232	if (type == LAST_DOTDOT) {
 
 
1233		if (nd->flags & LOOKUP_RCU) {
1234			if (follow_dotdot_rcu(nd))
1235				return -ECHILD;
1236		} else
1237			follow_dotdot(nd);
1238	}
1239	return 0;
1240}
1241
1242static void terminate_walk(struct nameidata *nd)
 
1243{
 
 
 
 
 
 
1244	if (!(nd->flags & LOOKUP_RCU)) {
1245		path_put(&nd->path);
1246	} else {
1247		nd->flags &= ~LOOKUP_RCU;
1248		if (!(nd->flags & LOOKUP_ROOT))
1249			nd->root.mnt = NULL;
1250		rcu_read_unlock();
1251		br_read_unlock(vfsmount_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
1252	}
 
 
 
 
 
 
 
1253}
1254
 
 
1255/*
1256 * Do we need to follow links? We _really_ want to be able
1257 * to do this check without having to look at inode->i_op,
1258 * so we keep a cache of "no, this doesn't need follow_link"
1259 * for the common case.
1260 */
1261static inline int should_follow_link(struct inode *inode, int follow)
 
1262{
1263	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1264		if (likely(inode->i_op->follow_link))
1265			return follow;
1266
1267		/* This gets set once for the inode lifetime */
1268		spin_lock(&inode->i_lock);
1269		inode->i_opflags |= IOP_NOFOLLOW;
1270		spin_unlock(&inode->i_lock);
 
 
 
 
 
 
1271	}
1272	return 0;
1273}
1274
1275static inline int walk_component(struct nameidata *nd, struct path *path,
1276		struct qstr *name, int type, int follow)
1277{
 
1278	struct inode *inode;
 
1279	int err;
1280	/*
1281	 * "." and ".." are special - ".." especially so because it has
1282	 * to be able to know about the current root directory and
1283	 * parent relationships.
1284	 */
1285	if (unlikely(type != LAST_NORM))
1286		return handle_dots(nd, type);
1287	err = do_lookup(nd, name, path, &inode);
1288	if (unlikely(err)) {
1289		terminate_walk(nd);
1290		return err;
1291	}
1292	if (!inode) {
1293		path_to_nameidata(path, nd);
1294		terminate_walk(nd);
1295		return -ENOENT;
1296	}
1297	if (should_follow_link(inode, follow)) {
1298		if (nd->flags & LOOKUP_RCU) {
1299			if (unlikely(unlazy_walk(nd, path->dentry))) {
1300				terminate_walk(nd);
1301				return -ECHILD;
1302			}
 
 
 
 
 
 
1303		}
1304		BUG_ON(inode != path->dentry->d_inode);
1305		return 1;
 
1306	}
1307	path_to_nameidata(path, nd);
1308	nd->inode = inode;
1309	return 0;
1310}
1311
1312/*
1313 * This limits recursive symlink follows to 8, while
1314 * limiting consecutive symlinks to 40.
 
 
 
 
 
 
 
 
1315 *
1316 * Without that kind of total limit, nasty chains of consecutive
1317 * symlinks can cause almost arbitrarily long lookups.
 
 
1318 */
1319static inline int nested_symlink(struct path *path, struct nameidata *nd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1320{
1321	int res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322
1323	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1324		path_put_conditional(path, nd);
1325		path_put(&nd->path);
1326		return -ELOOP;
 
 
 
 
 
1327	}
1328	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329
1330	nd->depth++;
1331	current->link_count++;
1332
1333	do {
1334		struct path link = *path;
1335		void *cookie;
 
 
 
 
1336
1337		res = follow_link(&link, nd, &cookie);
1338		if (!res)
1339			res = walk_component(nd, path, &nd->last,
1340					     nd->last_type, LOOKUP_FOLLOW);
1341		put_link(nd, &link, cookie);
1342	} while (res > 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343
1344	current->link_count--;
1345	nd->depth--;
1346	return res;
 
 
 
 
1347}
 
1348
1349/*
1350 * We really don't want to look at inode->i_op->lookup
1351 * when we don't have to. So we keep a cache bit in
1352 * the inode ->i_opflags field that says "yes, we can
1353 * do lookup on this inode".
1354 */
1355static inline int can_lookup(struct inode *inode)
1356{
1357	if (likely(inode->i_opflags & IOP_LOOKUP))
1358		return 1;
1359	if (likely(!inode->i_op->lookup))
1360		return 0;
1361
1362	/* We do this once for the lifetime of the inode */
1363	spin_lock(&inode->i_lock);
1364	inode->i_opflags |= IOP_LOOKUP;
1365	spin_unlock(&inode->i_lock);
1366	return 1;
 
 
1367}
1368
 
 
1369/*
1370 * Name resolution.
1371 * This is the basic name resolution function, turning a pathname into
1372 * the final dentry. We expect 'base' to be positive and a directory.
1373 *
1374 * Returns 0 and nd will have valid dentry and mnt on success.
1375 * Returns error and drops reference to input namei data on failure.
1376 */
1377static int link_path_walk(const char *name, struct nameidata *nd)
1378{
1379	struct path next;
1380	int err;
1381	
 
 
1382	while (*name=='/')
1383		name++;
1384	if (!*name)
1385		return 0;
1386
1387	/* At this point we know we have a real path component. */
1388	for(;;) {
1389		unsigned long hash;
1390		struct qstr this;
1391		unsigned int c;
1392		int type;
1393
1394		err = may_lookup(nd);
1395 		if (err)
1396			break;
1397
1398		this.name = name;
1399		c = *(const unsigned char *)name;
1400
1401		hash = init_name_hash();
1402		do {
1403			name++;
1404			hash = partial_name_hash(c, hash);
1405			c = *(const unsigned char *)name;
1406		} while (c && (c != '/'));
1407		this.len = name - (const char *) this.name;
1408		this.hash = end_name_hash(hash);
1409
1410		type = LAST_NORM;
1411		if (this.name[0] == '.') switch (this.len) {
1412			case 2:
1413				if (this.name[1] == '.') {
1414					type = LAST_DOTDOT;
1415					nd->flags |= LOOKUP_JUMPED;
1416				}
1417				break;
1418			case 1:
1419				type = LAST_DOT;
1420		}
1421		if (likely(type == LAST_NORM)) {
1422			struct dentry *parent = nd->path.dentry;
1423			nd->flags &= ~LOOKUP_JUMPED;
1424			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1425				err = parent->d_op->d_hash(parent, nd->inode,
1426							   &this);
1427				if (err < 0)
1428					break;
 
 
1429			}
1430		}
1431
1432		/* remove trailing slashes? */
1433		if (!c)
1434			goto last_component;
1435		while (*++name == '/');
 
1436		if (!*name)
1437			goto last_component;
1438
1439		err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440		if (err < 0)
1441			return err;
1442
1443		if (err) {
1444			err = nested_symlink(&next, nd);
1445			if (err)
1446				return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447		}
1448		if (can_lookup(nd->inode))
1449			continue;
1450		err = -ENOTDIR; 
1451		break;
1452		/* here ends the main loop */
1453
1454last_component:
1455		nd->last = this;
1456		nd->last_type = type;
1457		return 0;
1458	}
1459	terminate_walk(nd);
1460	return err;
1461}
1462
1463static int path_init(int dfd, const char *name, unsigned int flags,
1464		     struct nameidata *nd, struct file **fp)
1465{
1466	int retval = 0;
1467	int fput_needed;
1468	struct file *file;
 
 
 
1469
1470	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1471	nd->flags = flags | LOOKUP_JUMPED;
1472	nd->depth = 0;
1473	if (flags & LOOKUP_ROOT) {
1474		struct inode *inode = nd->root.dentry->d_inode;
1475		if (*name) {
1476			if (!inode->i_op->lookup)
1477				return -ENOTDIR;
1478			retval = inode_permission(inode, MAY_EXEC);
1479			if (retval)
1480				return retval;
1481		}
1482		nd->path = nd->root;
1483		nd->inode = inode;
1484		if (flags & LOOKUP_RCU) {
1485			br_read_lock(vfsmount_lock);
1486			rcu_read_lock();
1487			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
 
 
1488		} else {
1489			path_get(&nd->path);
1490		}
1491		return 0;
1492	}
1493
1494	nd->root.mnt = NULL;
 
 
1495
1496	if (*name=='/') {
1497		if (flags & LOOKUP_RCU) {
1498			br_read_lock(vfsmount_lock);
1499			rcu_read_lock();
1500			set_root_rcu(nd);
1501		} else {
1502			set_root(nd);
1503			path_get(&nd->root);
1504		}
1505		nd->path = nd->root;
1506	} else if (dfd == AT_FDCWD) {
1507		if (flags & LOOKUP_RCU) {
1508			struct fs_struct *fs = current->fs;
1509			unsigned seq;
1510
1511			br_read_lock(vfsmount_lock);
1512			rcu_read_lock();
1513
1514			do {
1515				seq = read_seqcount_begin(&fs->seq);
1516				nd->path = fs->pwd;
 
1517				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1518			} while (read_seqcount_retry(&fs->seq, seq));
1519		} else {
1520			get_fs_pwd(current->fs, &nd->path);
 
1521		}
 
1522	} else {
 
 
1523		struct dentry *dentry;
1524
1525		file = fget_raw_light(dfd, &fput_needed);
1526		retval = -EBADF;
1527		if (!file)
1528			goto out_fail;
1529
1530		dentry = file->f_path.dentry;
1531
1532		if (*name) {
1533			retval = -ENOTDIR;
1534			if (!S_ISDIR(dentry->d_inode->i_mode))
1535				goto fput_fail;
1536
1537			retval = inode_permission(dentry->d_inode, MAY_EXEC);
1538			if (retval)
1539				goto fput_fail;
1540		}
1541
1542		nd->path = file->f_path;
1543		if (flags & LOOKUP_RCU) {
1544			if (fput_needed)
1545				*fp = file;
1546			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1547			br_read_lock(vfsmount_lock);
1548			rcu_read_lock();
1549		} else {
1550			path_get(&file->f_path);
1551			fput_light(file, fput_needed);
1552		}
 
 
1553	}
 
1554
1555	nd->inode = nd->path.dentry->d_inode;
1556	return 0;
1557
1558fput_fail:
1559	fput_light(file, fput_needed);
1560out_fail:
1561	return retval;
 
 
 
1562}
1563
1564static inline int lookup_last(struct nameidata *nd, struct path *path)
1565{
1566	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1567		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1568
1569	nd->flags &= ~LOOKUP_PARENT;
1570	return walk_component(nd, path, &nd->last, nd->last_type,
1571					nd->flags & LOOKUP_FOLLOW);
1572}
1573
1574/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1575static int path_lookupat(int dfd, const char *name,
1576				unsigned int flags, struct nameidata *nd)
1577{
1578	struct file *base = NULL;
1579	struct path path;
 
1580	int err;
1581
1582	/*
1583	 * Path walking is largely split up into 2 different synchronisation
1584	 * schemes, rcu-walk and ref-walk (explained in
1585	 * Documentation/filesystems/path-lookup.txt). These share much of the
1586	 * path walk code, but some things particularly setup, cleanup, and
1587	 * following mounts are sufficiently divergent that functions are
1588	 * duplicated. Typically there is a function foo(), and its RCU
1589	 * analogue, foo_rcu().
1590	 *
1591	 * -ECHILD is the error number of choice (just to avoid clashes) that
1592	 * is returned if some aspect of an rcu-walk fails. Such an error must
1593	 * be handled by restarting a traditional ref-walk (which will always
1594	 * be able to complete).
1595	 */
1596	err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
 
 
 
 
 
 
1597
1598	if (unlikely(err))
1599		return err;
 
 
 
1600
1601	current->total_link_count = 0;
1602	err = link_path_walk(name, nd);
 
 
 
1603
1604	if (!err && !(flags & LOOKUP_PARENT)) {
1605		err = lookup_last(nd, &path);
1606		while (err > 0) {
1607			void *cookie;
1608			struct path link = path;
1609			nd->flags |= LOOKUP_PARENT;
1610			err = follow_link(&link, nd, &cookie);
1611			if (!err)
1612				err = lookup_last(nd, &path);
1613			put_link(nd, &link, cookie);
1614		}
1615	}
1616
1617	if (!err)
1618		err = complete_walk(nd);
1619
1620	if (!err && nd->flags & LOOKUP_DIRECTORY) {
1621		if (!nd->inode->i_op->lookup) {
1622			path_put(&nd->path);
1623			err = -ENOTDIR;
1624		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625	}
 
 
 
 
 
 
1626
1627	if (base)
1628		fput(base);
 
 
 
 
1629
1630	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1631		path_put(&nd->root);
1632		nd->root.mnt = NULL;
 
 
 
 
 
 
 
 
 
1633	}
 
1634	return err;
1635}
1636
1637static int do_path_lookup(int dfd, const char *name,
1638				unsigned int flags, struct nameidata *nd)
 
1639{
1640	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
 
 
 
 
 
 
1641	if (unlikely(retval == -ECHILD))
1642		retval = path_lookupat(dfd, name, flags, nd);
1643	if (unlikely(retval == -ESTALE))
1644		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1645
1646	if (likely(!retval)) {
1647		if (unlikely(!audit_dummy_context())) {
1648			if (nd->path.dentry && nd->inode)
1649				audit_inode(name, nd->path.dentry);
1650		}
 
 
1651	}
1652	return retval;
 
1653}
1654
1655int kern_path_parent(const char *name, struct nameidata *nd)
1656{
1657	return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658}
1659
1660int kern_path(const char *name, unsigned int flags, struct path *path)
1661{
1662	struct nameidata nd;
1663	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1664	if (!res)
1665		*path = nd.path;
1666	return res;
1667}
 
1668
1669/**
1670 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1671 * @dentry:  pointer to dentry of the base directory
1672 * @mnt: pointer to vfs mount of the base directory
1673 * @name: pointer to file name
1674 * @flags: lookup flags
1675 * @path: pointer to struct path to fill
1676 */
1677int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1678		    const char *name, unsigned int flags,
1679		    struct path *path)
1680{
1681	struct nameidata nd;
1682	int err;
1683	nd.root.dentry = dentry;
1684	nd.root.mnt = mnt;
1685	BUG_ON(flags & LOOKUP_PARENT);
1686	/* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1687	err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1688	if (!err)
1689		*path = nd.path;
1690	return err;
1691}
 
1692
1693static struct dentry *__lookup_hash(struct qstr *name,
1694		struct dentry *base, struct nameidata *nd)
1695{
1696	struct inode *inode = base->d_inode;
1697	struct dentry *dentry;
1698	int err;
 
 
1699
1700	err = inode_permission(inode, MAY_EXEC);
1701	if (err)
1702		return ERR_PTR(err);
 
1703
 
 
 
 
 
1704	/*
1705	 * Don't bother with __d_lookup: callers are for creat as
1706	 * well as unlink, so a lot of the time it would cost
1707	 * a double lookup.
1708	 */
1709	dentry = d_lookup(base, name);
 
 
 
 
 
 
 
1710
1711	if (dentry && d_need_lookup(dentry)) {
1712		/*
1713		 * __lookup_hash is called with the parent dir's i_mutex already
1714		 * held, so we are good to go here.
1715		 */
1716		dentry = d_inode_lookup(base, dentry, nd);
1717		if (IS_ERR(dentry))
1718			return dentry;
1719	}
 
 
 
 
 
 
 
 
 
1720
1721	if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1722		int status = d_revalidate(dentry, nd);
1723		if (unlikely(status <= 0)) {
1724			/*
1725			 * The dentry failed validation.
1726			 * If d_revalidate returned 0 attempt to invalidate
1727			 * the dentry otherwise d_revalidate is asking us
1728			 * to return a fail status.
1729			 */
1730			if (status < 0) {
1731				dput(dentry);
1732				return ERR_PTR(status);
1733			} else if (!d_invalidate(dentry)) {
1734				dput(dentry);
1735				dentry = NULL;
1736			}
1737		}
1738	}
1739
1740	if (!dentry)
1741		dentry = d_alloc_and_lookup(base, name, nd);
 
1742
1743	return dentry;
1744}
 
1745
1746/*
1747 * Restricted form of lookup. Doesn't follow links, single-component only,
1748 * needs parent already locked. Doesn't follow mounts.
1749 * SMP-safe.
 
 
 
 
 
 
1750 */
1751static struct dentry *lookup_hash(struct nameidata *nd)
1752{
1753	return __lookup_hash(&nd->last, nd->path.dentry, nd);
 
 
 
 
 
 
 
 
 
 
 
1754}
 
1755
1756/**
1757 * lookup_one_len - filesystem helper to lookup single pathname component
1758 * @name:	pathname component to lookup
1759 * @base:	base directory to lookup from
1760 * @len:	maximum length @len should be interpreted to
1761 *
1762 * Note that this routine is purely a helper for filesystem usage and should
1763 * not be called by generic code.  Also note that by using this function the
1764 * nameidata argument is passed to the filesystem methods and a filesystem
1765 * using this helper needs to be prepared for that.
 
1766 */
1767struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
 
1768{
1769	struct qstr this;
1770	unsigned long hash;
1771	unsigned int c;
1772
1773	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
 
 
1774
1775	this.name = name;
1776	this.len = len;
1777	if (!len)
1778		return ERR_PTR(-EACCES);
 
 
1779
1780	hash = init_name_hash();
1781	while (len--) {
1782		c = *(const unsigned char *)name++;
1783		if (c == '/' || c == '\0')
1784			return ERR_PTR(-EACCES);
1785		hash = partial_name_hash(c, hash);
1786	}
1787	this.hash = end_name_hash(hash);
1788	/*
1789	 * See if the low-level filesystem might want
1790	 * to use its own hash..
1791	 */
1792	if (base->d_flags & DCACHE_OP_HASH) {
1793		int err = base->d_op->d_hash(base, base->d_inode, &this);
1794		if (err < 0)
1795			return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796	}
1797
1798	return __lookup_hash(&this, base, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799}
1800
1801int user_path_at(int dfd, const char __user *name, unsigned flags,
1802		 struct path *path)
 
 
 
 
 
 
 
 
 
1803{
1804	struct nameidata nd;
1805	char *tmp = getname_flags(name, flags);
1806	int err = PTR_ERR(tmp);
1807	if (!IS_ERR(tmp)) {
1808
1809		BUG_ON(flags & LOOKUP_PARENT);
1810
1811		err = do_path_lookup(dfd, tmp, flags, &nd);
1812		putname(tmp);
1813		if (!err)
1814			*path = nd.path;
 
1815	}
 
1816	return err;
1817}
1818
1819static int user_path_parent(int dfd, const char __user *path,
1820			struct nameidata *nd, char **name)
 
1821{
1822	char *s = getname(path);
1823	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1824
1825	if (IS_ERR(s))
1826		return PTR_ERR(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1827
1828	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1829	if (error)
1830		putname(s);
1831	else
1832		*name = s;
1833
1834	return error;
1835}
 
1836
1837/*
1838 * It's inline, so penalty for filesystems that don't use sticky bit is
1839 * minimal.
1840 */
1841static inline int check_sticky(struct inode *dir, struct inode *inode)
1842{
1843	uid_t fsuid = current_fsuid();
1844
1845	if (!(dir->i_mode & S_ISVTX))
1846		return 0;
1847	if (current_user_ns() != inode_userns(inode))
1848		goto other_userns;
1849	if (inode->i_uid == fsuid)
1850		return 0;
1851	if (dir->i_uid == fsuid)
1852		return 0;
1853
1854other_userns:
1855	return !ns_capable(inode_userns(inode), CAP_FOWNER);
1856}
 
1857
1858/*
1859 *	Check whether we can remove a link victim from directory dir, check
1860 *  whether the type of victim is right.
1861 *  1. We can't do it if dir is read-only (done in permission())
1862 *  2. We should have write and exec permissions on dir
1863 *  3. We can't remove anything from append-only dir
1864 *  4. We can't do anything with immutable dir (done in permission())
1865 *  5. If the sticky bit on dir is set we should either
1866 *	a. be owner of dir, or
1867 *	b. be owner of victim, or
1868 *	c. have CAP_FOWNER capability
1869 *  6. If the victim is append-only or immutable we can't do antyhing with
1870 *     links pointing to it.
1871 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1872 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1873 *  9. We can't remove a root or mountpoint.
1874 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 
1875 *     nfs_async_unlink().
1876 */
1877static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1878{
 
1879	int error;
1880
1881	if (!victim->d_inode)
1882		return -ENOENT;
 
1883
1884	BUG_ON(victim->d_parent->d_inode != dir);
1885	audit_inode_child(victim, dir);
 
 
 
 
 
1886
1887	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1888	if (error)
1889		return error;
1890	if (IS_APPEND(dir))
1891		return -EPERM;
1892	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1893	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
 
1894		return -EPERM;
1895	if (isdir) {
1896		if (!S_ISDIR(victim->d_inode->i_mode))
1897			return -ENOTDIR;
1898		if (IS_ROOT(victim))
1899			return -EBUSY;
1900	} else if (S_ISDIR(victim->d_inode->i_mode))
1901		return -EISDIR;
1902	if (IS_DEADDIR(dir))
1903		return -ENOENT;
1904	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1905		return -EBUSY;
1906	return 0;
1907}
1908
1909/*	Check whether we can create an object with dentry child in directory
1910 *  dir.
1911 *  1. We can't do it if child already exists (open has special treatment for
1912 *     this case, but since we are inlined it's OK)
1913 *  2. We can't do it if dir is read-only (done in permission())
1914 *  3. We should have write and exec permissions on dir
1915 *  4. We can't do it if dir is immutable (done in permission())
 
1916 */
1917static inline int may_create(struct inode *dir, struct dentry *child)
1918{
 
 
1919	if (child->d_inode)
1920		return -EEXIST;
1921	if (IS_DEADDIR(dir))
1922		return -ENOENT;
 
 
 
 
1923	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1924}
1925
1926/*
1927 * p1 and p2 should be directories on the same fs.
1928 */
1929struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1930{
1931	struct dentry *p;
1932
1933	if (p1 == p2) {
1934		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1935		return NULL;
1936	}
1937
1938	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1939
1940	p = d_ancestor(p2, p1);
1941	if (p) {
1942		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1943		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1944		return p;
1945	}
1946
1947	p = d_ancestor(p1, p2);
1948	if (p) {
1949		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1950		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1951		return p;
1952	}
1953
1954	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1955	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1956	return NULL;
1957}
 
1958
1959void unlock_rename(struct dentry *p1, struct dentry *p2)
1960{
1961	mutex_unlock(&p1->d_inode->i_mutex);
1962	if (p1 != p2) {
1963		mutex_unlock(&p2->d_inode->i_mutex);
1964		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1965	}
1966}
 
1967
1968int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1969		struct nameidata *nd)
1970{
1971	int error = may_create(dir, dentry);
1972
1973	if (error)
1974		return error;
1975
1976	if (!dir->i_op->create)
1977		return -EACCES;	/* shouldn't it be ENOSYS? */
1978	mode &= S_IALLUGO;
1979	mode |= S_IFREG;
1980	error = security_inode_create(dir, dentry, mode);
1981	if (error)
1982		return error;
1983	error = dir->i_op->create(dir, dentry, mode, nd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1984	if (!error)
1985		fsnotify_create(dir, dentry);
1986	return error;
1987}
 
 
 
 
 
 
 
1988
1989static int may_open(struct path *path, int acc_mode, int flag)
1990{
1991	struct dentry *dentry = path->dentry;
1992	struct inode *inode = dentry->d_inode;
1993	int error;
1994
1995	/* O_PATH? */
1996	if (!acc_mode)
1997		return 0;
1998
1999	if (!inode)
2000		return -ENOENT;
2001
2002	switch (inode->i_mode & S_IFMT) {
2003	case S_IFLNK:
2004		return -ELOOP;
2005	case S_IFDIR:
2006		if (acc_mode & MAY_WRITE)
2007			return -EISDIR;
2008		break;
2009	case S_IFBLK:
2010	case S_IFCHR:
2011		if (path->mnt->mnt_flags & MNT_NODEV)
2012			return -EACCES;
2013		/*FALLTHRU*/
2014	case S_IFIFO:
2015	case S_IFSOCK:
2016		flag &= ~O_TRUNC;
2017		break;
2018	}
2019
2020	error = inode_permission(inode, acc_mode);
2021	if (error)
2022		return error;
2023
2024	/*
2025	 * An append-only file must be opened in append mode for writing.
2026	 */
2027	if (IS_APPEND(inode)) {
2028		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2029			return -EPERM;
2030		if (flag & O_TRUNC)
2031			return -EPERM;
2032	}
2033
2034	/* O_NOATIME can only be set by the owner or superuser */
2035	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2036		return -EPERM;
2037
2038	/*
2039	 * Ensure there are no outstanding leases on the file.
2040	 */
2041	return break_lease(inode, flag);
2042}
2043
2044static int handle_truncate(struct file *filp)
2045{
2046	struct path *path = &filp->f_path;
2047	struct inode *inode = path->dentry->d_inode;
2048	int error = get_write_access(inode);
2049	if (error)
2050		return error;
2051	/*
2052	 * Refuse to truncate files with mandatory locks held on them.
2053	 */
2054	error = locks_verify_locked(inode);
2055	if (!error)
2056		error = security_path_truncate(path);
2057	if (!error) {
2058		error = do_truncate(path->dentry, 0,
2059				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2060				    filp);
2061	}
2062	put_write_access(inode);
2063	return error;
2064}
2065
2066static inline int open_to_namei_flags(int flag)
2067{
2068	if ((flag & O_ACCMODE) == 3)
2069		flag--;
2070	return flag;
2071}
2072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073/*
2074 * Handle the last step of open()
2075 */
2076static struct file *do_last(struct nameidata *nd, struct path *path,
2077			    const struct open_flags *op, const char *pathname)
2078{
2079	struct dentry *dir = nd->path.dentry;
2080	struct dentry *dentry;
2081	int open_flag = op->open_flag;
2082	int will_truncate = open_flag & O_TRUNC;
2083	int want_write = 0;
2084	int acc_mode = op->acc_mode;
2085	struct file *filp;
 
 
2086	int error;
2087
2088	nd->flags &= ~LOOKUP_PARENT;
2089	nd->flags |= op->intent;
2090
2091	switch (nd->last_type) {
2092	case LAST_DOTDOT:
2093	case LAST_DOT:
2094		error = handle_dots(nd, nd->last_type);
2095		if (error)
2096			return ERR_PTR(error);
2097		/* fallthrough */
2098	case LAST_ROOT:
2099		error = complete_walk(nd);
2100		if (error)
2101			return ERR_PTR(error);
2102		audit_inode(pathname, nd->path.dentry);
2103		if (open_flag & O_CREAT) {
2104			error = -EISDIR;
2105			goto exit;
2106		}
2107		goto ok;
2108	case LAST_BIND:
2109		error = complete_walk(nd);
2110		if (error)
2111			return ERR_PTR(error);
2112		audit_inode(pathname, dir);
2113		goto ok;
2114	}
2115
2116	if (!(open_flag & O_CREAT)) {
2117		int symlink_ok = 0;
2118		if (nd->last.name[nd->last.len])
2119			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2120		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2121			symlink_ok = 1;
2122		/* we _can_ be in RCU mode here */
2123		error = walk_component(nd, path, &nd->last, LAST_NORM,
2124					!symlink_ok);
 
 
2125		if (error < 0)
2126			return ERR_PTR(error);
2127		if (error) /* symlink */
2128			return NULL;
2129		/* sayonara */
 
 
 
 
 
 
 
2130		error = complete_walk(nd);
2131		if (error)
2132			return ERR_PTR(-ECHILD);
 
 
 
 
 
 
2133
2134		error = -ENOTDIR;
2135		if (nd->flags & LOOKUP_DIRECTORY) {
2136			if (!nd->inode->i_op->lookup)
2137				goto exit;
2138		}
2139		audit_inode(pathname, nd->path.dentry);
2140		goto ok;
 
 
2141	}
 
 
 
 
 
 
 
 
 
2142
2143	/* create side of things */
2144	error = complete_walk(nd);
2145	if (error)
2146		return ERR_PTR(error);
2147
2148	audit_inode(pathname, dir);
2149	error = -EISDIR;
2150	/* trailing slashes? */
2151	if (nd->last.name[nd->last.len])
2152		goto exit;
2153
2154	mutex_lock(&dir->d_inode->i_mutex);
 
 
 
2155
2156	dentry = lookup_hash(nd);
2157	error = PTR_ERR(dentry);
2158	if (IS_ERR(dentry)) {
2159		mutex_unlock(&dir->d_inode->i_mutex);
2160		goto exit;
2161	}
2162
2163	path->dentry = dentry;
2164	path->mnt = nd->path.mnt;
2165
2166	/* Negative dentry, just create the file */
2167	if (!dentry->d_inode) {
2168		int mode = op->mode;
2169		if (!IS_POSIXACL(dir->d_inode))
2170			mode &= ~current_umask();
2171		/*
2172		 * This write is needed to ensure that a
2173		 * rw->ro transition does not occur between
2174		 * the time when the file is created and when
2175		 * a permanent write count is taken through
2176		 * the 'struct file' in nameidata_to_filp().
2177		 */
2178		error = mnt_want_write(nd->path.mnt);
2179		if (error)
2180			goto exit_mutex_unlock;
2181		want_write = 1;
2182		/* Don't check for write permission, don't truncate */
2183		open_flag &= ~O_TRUNC;
2184		will_truncate = 0;
2185		acc_mode = MAY_OPEN;
2186		error = security_path_mknod(&nd->path, dentry, mode, 0);
2187		if (error)
2188			goto exit_mutex_unlock;
2189		error = vfs_create(dir->d_inode, dentry, mode, nd);
2190		if (error)
2191			goto exit_mutex_unlock;
2192		mutex_unlock(&dir->d_inode->i_mutex);
2193		dput(nd->path.dentry);
2194		nd->path.dentry = dentry;
2195		goto common;
2196	}
2197
2198	/*
2199	 * It already exists.
 
 
2200	 */
2201	mutex_unlock(&dir->d_inode->i_mutex);
2202	audit_inode(pathname, path->dentry);
 
 
2203
2204	error = -EEXIST;
2205	if (open_flag & O_EXCL)
2206		goto exit_dput;
2207
2208	error = follow_managed(path, nd->flags);
2209	if (error < 0)
2210		goto exit_dput;
 
2211
2212	error = -ENOENT;
2213	if (!path->dentry->d_inode)
2214		goto exit_dput;
 
2215
2216	if (path->dentry->d_inode->i_op->follow_link)
2217		return NULL;
 
 
2218
2219	path_to_nameidata(path, nd);
2220	nd->inode = path->dentry->d_inode;
2221	error = -EISDIR;
2222	if (S_ISDIR(nd->inode->i_mode))
2223		goto exit;
2224ok:
2225	if (!S_ISREG(nd->inode->i_mode))
2226		will_truncate = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2227
2228	if (will_truncate) {
2229		error = mnt_want_write(nd->path.mnt);
2230		if (error)
2231			goto exit;
2232		want_write = 1;
2233	}
2234common:
2235	error = may_open(&nd->path, acc_mode, open_flag);
2236	if (error)
2237		goto exit;
2238	filp = nameidata_to_filp(nd);
2239	if (!IS_ERR(filp)) {
2240		error = ima_file_check(filp, op->acc_mode);
2241		if (error) {
2242			fput(filp);
2243			filp = ERR_PTR(error);
2244		}
 
 
 
 
 
2245	}
2246	if (!IS_ERR(filp)) {
2247		if (will_truncate) {
2248			error = handle_truncate(filp);
2249			if (error) {
2250				fput(filp);
2251				filp = ERR_PTR(error);
2252			}
2253		}
2254	}
2255out:
2256	if (want_write)
2257		mnt_drop_write(nd->path.mnt);
2258	path_put(&nd->path);
2259	return filp;
2260
2261exit_mutex_unlock:
2262	mutex_unlock(&dir->d_inode->i_mutex);
2263exit_dput:
2264	path_put_conditional(path, nd);
2265exit:
2266	filp = ERR_PTR(error);
2267	goto out;
2268}
2269
2270static struct file *path_openat(int dfd, const char *pathname,
2271		struct nameidata *nd, const struct open_flags *op, int flags)
2272{
2273	struct file *base = NULL;
2274	struct file *filp;
2275	struct path path;
2276	int error;
2277
2278	filp = get_empty_filp();
2279	if (!filp)
2280		return ERR_PTR(-ENFILE);
2281
2282	filp->f_flags = op->open_flag;
2283	nd->intent.open.file = filp;
2284	nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2285	nd->intent.open.create_mode = op->mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2286
2287	error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
 
 
 
 
 
 
 
 
 
 
 
 
2288	if (unlikely(error))
2289		goto out_filp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2290
2291	current->total_link_count = 0;
2292	error = link_path_walk(pathname, nd);
2293	if (unlikely(error))
2294		goto out_filp;
 
 
 
 
 
 
 
 
 
 
 
 
 
2295
2296	filp = do_last(nd, &path, op, pathname);
2297	while (unlikely(!filp)) { /* trailing symlink */
2298		struct path link = path;
2299		void *cookie;
2300		if (!(nd->flags & LOOKUP_FOLLOW)) {
2301			path_put_conditional(&path, nd);
2302			path_put(&nd->path);
2303			filp = ERR_PTR(-ELOOP);
2304			break;
 
 
 
 
 
2305		}
2306		nd->flags |= LOOKUP_PARENT;
2307		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2308		error = follow_link(&link, nd, &cookie);
2309		if (unlikely(error))
2310			filp = ERR_PTR(error);
 
 
 
 
 
 
 
2311		else
2312			filp = do_last(nd, &path, op, pathname);
2313		put_link(nd, &link, cookie);
2314	}
2315out:
2316	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2317		path_put(&nd->root);
2318	if (base)
2319		fput(base);
2320	release_open_intent(nd);
2321	return filp;
2322
2323out_filp:
2324	filp = ERR_PTR(error);
2325	goto out;
2326}
2327
2328struct file *do_filp_open(int dfd, const char *pathname,
2329		const struct open_flags *op, int flags)
2330{
2331	struct nameidata nd;
 
2332	struct file *filp;
2333
2334	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
 
2335	if (unlikely(filp == ERR_PTR(-ECHILD)))
2336		filp = path_openat(dfd, pathname, &nd, op, flags);
2337	if (unlikely(filp == ERR_PTR(-ESTALE)))
2338		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
 
2339	return filp;
2340}
2341
2342struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2343		const char *name, const struct open_flags *op, int flags)
2344{
2345	struct nameidata nd;
2346	struct file *file;
 
 
2347
2348	nd.root.mnt = mnt;
2349	nd.root.dentry = dentry;
2350
2351	flags |= LOOKUP_ROOT;
 
2352
2353	if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2354		return ERR_PTR(-ELOOP);
 
2355
2356	file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
 
2357	if (unlikely(file == ERR_PTR(-ECHILD)))
2358		file = path_openat(-1, name, &nd, op, flags);
2359	if (unlikely(file == ERR_PTR(-ESTALE)))
2360		file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
 
 
2361	return file;
2362}
2363
2364struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
 
2365{
2366	struct dentry *dentry = ERR_PTR(-EEXIST);
2367	struct nameidata nd;
2368	int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2369	if (error)
2370		return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
 
 
2371
2372	/*
2373	 * Yucky last component or no last component at all?
2374	 * (foo/., foo/.., /////)
2375	 */
2376	if (nd.last_type != LAST_NORM)
2377		goto out;
2378	nd.flags &= ~LOOKUP_PARENT;
2379	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2380	nd.intent.open.flags = O_EXCL;
2381
 
 
2382	/*
2383	 * Do the final lookup.
2384	 */
2385	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2386	dentry = lookup_hash(&nd);
 
2387	if (IS_ERR(dentry))
 
 
 
 
2388		goto fail;
2389
2390	if (dentry->d_inode)
2391		goto eexist;
2392	/*
2393	 * Special case - lookup gave negative, but... we had foo/bar/
2394	 * From the vfs_mknod() POV we just have a negative dentry -
2395	 * all is fine. Let's be bastards - you had / on the end, you've
2396	 * been asking for (non-existent) directory. -ENOENT for you.
2397	 */
2398	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2399		dput(dentry);
2400		dentry = ERR_PTR(-ENOENT);
 
 
 
2401		goto fail;
2402	}
2403	*path = nd.path;
2404	return dentry;
2405eexist:
2406	dput(dentry);
2407	dentry = ERR_PTR(-EEXIST);
2408fail:
2409	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
 
 
2410out:
2411	path_put(&nd.path);
 
2412	return dentry;
2413}
 
 
 
 
 
 
 
2414EXPORT_SYMBOL(kern_path_create);
2415
2416struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
 
 
 
 
 
 
 
 
 
 
2417{
2418	char *tmp = getname(pathname);
2419	struct dentry *res;
2420	if (IS_ERR(tmp))
2421		return ERR_CAST(tmp);
2422	res = kern_path_create(dfd, tmp, path, is_dir);
2423	putname(tmp);
2424	return res;
2425}
2426EXPORT_SYMBOL(user_path_create);
2427
2428int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2429{
2430	int error = may_create(dir, dentry);
2431
2432	if (error)
2433		return error;
2434
2435	if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2436	    !ns_capable(inode_userns(dir), CAP_MKNOD))
2437		return -EPERM;
2438
2439	if (!dir->i_op->mknod)
2440		return -EPERM;
2441
2442	error = devcgroup_inode_mknod(mode, dev);
2443	if (error)
2444		return error;
2445
2446	error = security_inode_mknod(dir, dentry, mode, dev);
2447	if (error)
2448		return error;
2449
2450	error = dir->i_op->mknod(dir, dentry, mode, dev);
2451	if (!error)
2452		fsnotify_create(dir, dentry);
2453	return error;
2454}
 
2455
2456static int may_mknod(mode_t mode)
2457{
2458	switch (mode & S_IFMT) {
2459	case S_IFREG:
2460	case S_IFCHR:
2461	case S_IFBLK:
2462	case S_IFIFO:
2463	case S_IFSOCK:
2464	case 0: /* zero mode translates to S_IFREG */
2465		return 0;
2466	case S_IFDIR:
2467		return -EPERM;
2468	default:
2469		return -EINVAL;
2470	}
2471}
2472
2473SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2474		unsigned, dev)
2475{
2476	struct dentry *dentry;
2477	struct path path;
2478	int error;
 
2479
2480	if (S_ISDIR(mode))
2481		return -EPERM;
2482
2483	dentry = user_path_create(dfd, filename, &path, 0);
 
2484	if (IS_ERR(dentry))
2485		return PTR_ERR(dentry);
2486
2487	if (!IS_POSIXACL(path.dentry->d_inode))
2488		mode &= ~current_umask();
2489	error = may_mknod(mode);
2490	if (error)
2491		goto out_dput;
2492	error = mnt_want_write(path.mnt);
2493	if (error)
2494		goto out_dput;
2495	error = security_path_mknod(&path, dentry, mode, dev);
2496	if (error)
2497		goto out_drop_write;
2498	switch (mode & S_IFMT) {
2499		case 0: case S_IFREG:
2500			error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
 
 
2501			break;
2502		case S_IFCHR: case S_IFBLK:
2503			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2504					new_decode_dev(dev));
2505			break;
2506		case S_IFIFO: case S_IFSOCK:
2507			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2508			break;
2509	}
2510out_drop_write:
2511	mnt_drop_write(path.mnt);
2512out_dput:
2513	dput(dentry);
2514	mutex_unlock(&path.dentry->d_inode->i_mutex);
2515	path_put(&path);
 
 
2516
2517	return error;
 
 
 
2518}
2519
2520SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2521{
2522	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2523}
2524
2525int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2526{
2527	int error = may_create(dir, dentry);
 
2528
2529	if (error)
2530		return error;
2531
2532	if (!dir->i_op->mkdir)
2533		return -EPERM;
2534
2535	mode &= (S_IRWXUGO|S_ISVTX);
2536	error = security_inode_mkdir(dir, dentry, mode);
2537	if (error)
2538		return error;
2539
 
 
 
2540	error = dir->i_op->mkdir(dir, dentry, mode);
2541	if (!error)
2542		fsnotify_mkdir(dir, dentry);
2543	return error;
2544}
 
2545
2546SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2547{
2548	struct dentry *dentry;
2549	struct path path;
2550	int error;
 
2551
2552	dentry = user_path_create(dfd, pathname, &path, 1);
 
2553	if (IS_ERR(dentry))
2554		return PTR_ERR(dentry);
2555
2556	if (!IS_POSIXACL(path.dentry->d_inode))
2557		mode &= ~current_umask();
2558	error = mnt_want_write(path.mnt);
2559	if (error)
2560		goto out_dput;
2561	error = security_path_mkdir(&path, dentry, mode);
2562	if (error)
2563		goto out_drop_write;
2564	error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2565out_drop_write:
2566	mnt_drop_write(path.mnt);
2567out_dput:
2568	dput(dentry);
2569	mutex_unlock(&path.dentry->d_inode->i_mutex);
2570	path_put(&path);
2571	return error;
2572}
2573
2574SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2575{
2576	return sys_mkdirat(AT_FDCWD, pathname, mode);
2577}
2578
2579/*
2580 * The dentry_unhash() helper will try to drop the dentry early: we
2581 * should have a usage count of 2 if we're the only user of this
2582 * dentry, and if that is true (possibly after pruning the dcache),
2583 * then we drop the dentry now.
2584 *
2585 * A low-level filesystem can, if it choses, legally
2586 * do a
2587 *
2588 *	if (!d_unhashed(dentry))
2589 *		return -EBUSY;
2590 *
2591 * if it cannot handle the case of removing a directory
2592 * that is still in use by something else..
2593 */
2594void dentry_unhash(struct dentry *dentry)
2595{
2596	shrink_dcache_parent(dentry);
2597	spin_lock(&dentry->d_lock);
2598	if (dentry->d_count == 1)
2599		__d_drop(dentry);
2600	spin_unlock(&dentry->d_lock);
2601}
2602
2603int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2604{
2605	int error = may_delete(dir, dentry, 1);
2606
2607	if (error)
2608		return error;
2609
2610	if (!dir->i_op->rmdir)
2611		return -EPERM;
2612
2613	dget(dentry);
2614	mutex_lock(&dentry->d_inode->i_mutex);
2615
2616	error = -EBUSY;
2617	if (d_mountpoint(dentry))
2618		goto out;
2619
2620	error = security_inode_rmdir(dir, dentry);
2621	if (error)
2622		goto out;
2623
2624	shrink_dcache_parent(dentry);
2625	error = dir->i_op->rmdir(dir, dentry);
2626	if (error)
2627		goto out;
2628
 
2629	dentry->d_inode->i_flags |= S_DEAD;
2630	dont_mount(dentry);
 
 
2631
2632out:
2633	mutex_unlock(&dentry->d_inode->i_mutex);
2634	dput(dentry);
2635	if (!error)
2636		d_delete(dentry);
2637	return error;
2638}
 
2639
2640static long do_rmdir(int dfd, const char __user *pathname)
2641{
2642	int error = 0;
2643	char * name;
2644	struct dentry *dentry;
2645	struct nameidata nd;
 
 
 
 
 
 
 
 
2646
2647	error = user_path_parent(dfd, pathname, &nd, &name);
2648	if (error)
2649		return error;
2650
2651	switch(nd.last_type) {
2652	case LAST_DOTDOT:
2653		error = -ENOTEMPTY;
2654		goto exit1;
2655	case LAST_DOT:
2656		error = -EINVAL;
2657		goto exit1;
2658	case LAST_ROOT:
2659		error = -EBUSY;
2660		goto exit1;
2661	}
2662
2663	nd.flags &= ~LOOKUP_PARENT;
 
 
2664
2665	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2666	dentry = lookup_hash(&nd);
2667	error = PTR_ERR(dentry);
2668	if (IS_ERR(dentry))
2669		goto exit2;
2670	if (!dentry->d_inode) {
2671		error = -ENOENT;
2672		goto exit3;
2673	}
2674	error = mnt_want_write(nd.path.mnt);
2675	if (error)
2676		goto exit3;
2677	error = security_path_rmdir(&nd.path, dentry);
2678	if (error)
2679		goto exit4;
2680	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2681exit4:
2682	mnt_drop_write(nd.path.mnt);
2683exit3:
2684	dput(dentry);
2685exit2:
2686	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
 
2687exit1:
2688	path_put(&nd.path);
2689	putname(name);
 
 
 
 
2690	return error;
2691}
2692
2693SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2694{
2695	return do_rmdir(AT_FDCWD, pathname);
2696}
2697
2698int vfs_unlink(struct inode *dir, struct dentry *dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699{
 
2700	int error = may_delete(dir, dentry, 0);
2701
2702	if (error)
2703		return error;
2704
2705	if (!dir->i_op->unlink)
2706		return -EPERM;
2707
2708	mutex_lock(&dentry->d_inode->i_mutex);
2709	if (d_mountpoint(dentry))
2710		error = -EBUSY;
2711	else {
2712		error = security_inode_unlink(dir, dentry);
2713		if (!error) {
 
 
 
2714			error = dir->i_op->unlink(dir, dentry);
2715			if (!error)
2716				dont_mount(dentry);
 
 
 
2717		}
2718	}
2719	mutex_unlock(&dentry->d_inode->i_mutex);
 
2720
2721	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2722	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2723		fsnotify_link_count(dentry->d_inode);
2724		d_delete(dentry);
2725	}
2726
2727	return error;
2728}
 
2729
2730/*
2731 * Make sure that the actual truncation of the file will occur outside its
2732 * directory's i_mutex.  Truncate can take a long time if there is a lot of
2733 * writeout happening, and we don't want to prevent access to the directory
2734 * while waiting on the I/O.
2735 */
2736static long do_unlinkat(int dfd, const char __user *pathname)
2737{
2738	int error;
2739	char *name;
2740	struct dentry *dentry;
2741	struct nameidata nd;
 
 
2742	struct inode *inode = NULL;
2743
2744	error = user_path_parent(dfd, pathname, &nd, &name);
2745	if (error)
2746		return error;
 
 
2747
2748	error = -EISDIR;
2749	if (nd.last_type != LAST_NORM)
2750		goto exit1;
2751
2752	nd.flags &= ~LOOKUP_PARENT;
2753
2754	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2755	dentry = lookup_hash(&nd);
 
 
2756	error = PTR_ERR(dentry);
2757	if (!IS_ERR(dentry)) {
2758		/* Why not before? Because we want correct error value */
2759		if (nd.last.name[nd.last.len])
2760			goto slashes;
2761		inode = dentry->d_inode;
2762		if (!inode)
2763			goto slashes;
2764		ihold(inode);
2765		error = mnt_want_write(nd.path.mnt);
2766		if (error)
2767			goto exit2;
2768		error = security_path_unlink(&nd.path, dentry);
2769		if (error)
2770			goto exit3;
2771		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2772exit3:
2773		mnt_drop_write(nd.path.mnt);
2774	exit2:
2775		dput(dentry);
2776	}
2777	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2778	if (inode)
2779		iput(inode);	/* truncate the inode here */
 
 
 
 
 
 
 
2780exit1:
2781	path_put(&nd.path);
 
 
 
 
 
2782	putname(name);
2783	return error;
2784
2785slashes:
2786	error = !dentry->d_inode ? -ENOENT :
2787		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
 
 
 
 
2788	goto exit2;
2789}
2790
2791SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2792{
2793	if ((flag & ~AT_REMOVEDIR) != 0)
2794		return -EINVAL;
2795
2796	if (flag & AT_REMOVEDIR)
2797		return do_rmdir(dfd, pathname);
2798
2799	return do_unlinkat(dfd, pathname);
2800}
2801
2802SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2803{
2804	return do_unlinkat(AT_FDCWD, pathname);
2805}
2806
2807int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2808{
2809	int error = may_create(dir, dentry);
2810
2811	if (error)
2812		return error;
2813
2814	if (!dir->i_op->symlink)
2815		return -EPERM;
2816
2817	error = security_inode_symlink(dir, dentry, oldname);
2818	if (error)
2819		return error;
2820
2821	error = dir->i_op->symlink(dir, dentry, oldname);
2822	if (!error)
2823		fsnotify_create(dir, dentry);
2824	return error;
2825}
 
2826
2827SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2828		int, newdfd, const char __user *, newname)
2829{
2830	int error;
2831	char *from;
2832	struct dentry *dentry;
2833	struct path path;
 
2834
2835	from = getname(oldname);
2836	if (IS_ERR(from))
2837		return PTR_ERR(from);
2838
2839	dentry = user_path_create(newdfd, newname, &path, 0);
2840	error = PTR_ERR(dentry);
2841	if (IS_ERR(dentry))
2842		goto out_putname;
2843
2844	error = mnt_want_write(path.mnt);
2845	if (error)
2846		goto out_dput;
2847	error = security_path_symlink(&path, dentry, from);
2848	if (error)
2849		goto out_drop_write;
2850	error = vfs_symlink(path.dentry->d_inode, dentry, from);
2851out_drop_write:
2852	mnt_drop_write(path.mnt);
2853out_dput:
2854	dput(dentry);
2855	mutex_unlock(&path.dentry->d_inode->i_mutex);
2856	path_put(&path);
2857out_putname:
2858	putname(from);
2859	return error;
2860}
2861
 
 
 
 
 
 
2862SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2863{
2864	return sys_symlinkat(oldname, AT_FDCWD, newname);
2865}
2866
2867int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2868{
2869	struct inode *inode = old_dentry->d_inode;
 
2870	int error;
2871
2872	if (!inode)
2873		return -ENOENT;
2874
2875	error = may_create(dir, new_dentry);
2876	if (error)
2877		return error;
2878
2879	if (dir->i_sb != inode->i_sb)
2880		return -EXDEV;
2881
2882	/*
2883	 * A link to an append-only or immutable file cannot be created.
2884	 */
2885	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2886		return -EPERM;
 
 
 
 
 
 
 
2887	if (!dir->i_op->link)
2888		return -EPERM;
2889	if (S_ISDIR(inode->i_mode))
2890		return -EPERM;
2891
2892	error = security_inode_link(old_dentry, dir, new_dentry);
2893	if (error)
2894		return error;
2895
2896	mutex_lock(&inode->i_mutex);
2897	/* Make sure we don't allow creating hardlink to an unlinked file */
2898	if (inode->i_nlink == 0)
2899		error =  -ENOENT;
2900	else
2901		error = dir->i_op->link(old_dentry, dir, new_dentry);
2902	mutex_unlock(&inode->i_mutex);
 
 
 
 
 
 
 
 
 
 
 
2903	if (!error)
2904		fsnotify_link(dir, inode, new_dentry);
2905	return error;
2906}
 
2907
2908/*
2909 * Hardlinks are often used in delicate situations.  We avoid
2910 * security-related surprises by not following symlinks on the
2911 * newname.  --KAB
2912 *
2913 * We don't follow them on the oldname either to be compatible
2914 * with linux 2.0, and to avoid hard-linking to directories
2915 * and other special files.  --ADM
2916 */
2917SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2918		int, newdfd, const char __user *, newname, int, flags)
2919{
2920	struct dentry *new_dentry;
2921	struct path old_path, new_path;
 
2922	int how = 0;
2923	int error;
2924
2925	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2926		return -EINVAL;
2927	/*
2928	 * To use null names we require CAP_DAC_READ_SEARCH
2929	 * This ensures that not everyone will be able to create
2930	 * handlink using the passed filedescriptor.
2931	 */
2932	if (flags & AT_EMPTY_PATH) {
2933		if (!capable(CAP_DAC_READ_SEARCH))
2934			return -ENOENT;
2935		how = LOOKUP_EMPTY;
2936	}
2937
2938	if (flags & AT_SYMLINK_FOLLOW)
2939		how |= LOOKUP_FOLLOW;
2940
2941	error = user_path_at(olddfd, oldname, how, &old_path);
2942	if (error)
2943		return error;
2944
2945	new_dentry = user_path_create(newdfd, newname, &new_path, 0);
 
2946	error = PTR_ERR(new_dentry);
2947	if (IS_ERR(new_dentry))
2948		goto out;
2949
2950	error = -EXDEV;
2951	if (old_path.mnt != new_path.mnt)
2952		goto out_dput;
2953	error = mnt_want_write(new_path.mnt);
2954	if (error)
2955		goto out_dput;
2956	error = security_path_link(old_path.dentry, &new_path, new_dentry);
2957	if (error)
2958		goto out_drop_write;
2959	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2960out_drop_write:
2961	mnt_drop_write(new_path.mnt);
2962out_dput:
2963	dput(new_dentry);
2964	mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2965	path_put(&new_path);
 
 
 
 
 
 
 
 
 
 
2966out:
2967	path_put(&old_path);
2968
2969	return error;
2970}
2971
 
 
 
 
 
 
2972SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2973{
2974	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2975}
2976
2977/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2978 * The worst of all namespace operations - renaming directory. "Perverted"
2979 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2980 * Problems:
2981 *	a) we can get into loop creation. Check is done in is_subdir().
 
2982 *	b) race potential - two innocent renames can create a loop together.
2983 *	   That's where 4.4 screws up. Current fix: serialization on
2984 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2985 *	   story.
2986 *	c) we have to lock _three_ objects - parents and victim (if it exists).
 
2987 *	   And that - after we got ->i_mutex on parents (until then we don't know
2988 *	   whether the target exists).  Solution: try to be smart with locking
2989 *	   order for inodes.  We rely on the fact that tree topology may change
2990 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2991 *	   move will be locked.  Thus we can rank directories by the tree
2992 *	   (ancestors first) and rank all non-directories after them.
2993 *	   That works since everybody except rename does "lock parent, lookup,
2994 *	   lock child" and rename is under ->s_vfs_rename_mutex.
2995 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2996 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2997 *	   we'd better make sure that there's no link(2) for them.
2998 *	d) conversion from fhandle to dentry may come in the wrong moment - when
2999 *	   we are removing the target. Solution: we will have to grab ->i_mutex
3000 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3001 *	   ->i_mutex on parents, which works but leads to some truly excessive
3002 *	   locking].
3003 */
3004static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3005			  struct inode *new_dir, struct dentry *new_dentry)
 
3006{
3007	int error = 0;
 
 
3008	struct inode *target = new_dentry->d_inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3009
3010	/*
3011	 * If we are going to change the parent - check write permissions,
3012	 * we'll need to flip '..'.
3013	 */
3014	if (new_dir != old_dir) {
3015		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3016		if (error)
3017			return error;
 
 
 
 
 
 
 
3018	}
3019
3020	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
 
3021	if (error)
3022		return error;
3023
 
3024	dget(new_dentry);
3025	if (target)
3026		mutex_lock(&target->i_mutex);
 
 
3027
3028	error = -EBUSY;
3029	if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3030		goto out;
3031
3032	if (target)
3033		shrink_dcache_parent(new_dentry);
3034	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035	if (error)
3036		goto out;
3037
3038	if (target) {
3039		target->i_flags |= S_DEAD;
 
 
 
3040		dont_mount(new_dentry);
 
 
 
 
 
 
 
3041	}
3042out:
3043	if (target)
3044		mutex_unlock(&target->i_mutex);
 
 
3045	dput(new_dentry);
3046	if (!error)
3047		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3048			d_move(old_dentry,new_dentry);
3049	return error;
3050}
3051
3052static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3053			    struct inode *new_dir, struct dentry *new_dentry)
3054{
3055	struct inode *target = new_dentry->d_inode;
3056	int error;
3057
3058	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3059	if (error)
3060		return error;
3061
3062	dget(new_dentry);
3063	if (target)
3064		mutex_lock(&target->i_mutex);
3065
3066	error = -EBUSY;
3067	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3068		goto out;
3069
3070	error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3071	if (error)
3072		goto out;
3073
3074	if (target)
3075		dont_mount(new_dentry);
3076	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3077		d_move(old_dentry, new_dentry);
3078out:
3079	if (target)
3080		mutex_unlock(&target->i_mutex);
3081	dput(new_dentry);
3082	return error;
3083}
 
3084
3085int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3086	       struct inode *new_dir, struct dentry *new_dentry)
3087{
 
 
 
 
 
 
 
 
 
 
3088	int error;
3089	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3090	const unsigned char *old_name;
3091
3092	if (old_dentry->d_inode == new_dentry->d_inode)
3093 		return 0;
3094 
3095	error = may_delete(old_dir, old_dentry, is_dir);
3096	if (error)
3097		return error;
3098
3099	if (!new_dentry->d_inode)
3100		error = may_create(new_dir, new_dentry);
3101	else
3102		error = may_delete(new_dir, new_dentry, is_dir);
3103	if (error)
3104		return error;
3105
3106	if (!old_dir->i_op->rename)
3107		return -EPERM;
3108
3109	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
 
3110
3111	if (is_dir)
3112		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3113	else
3114		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3115	if (!error)
3116		fsnotify_move(old_dir, new_dir, old_name, is_dir,
3117			      new_dentry->d_inode, old_dentry);
3118	fsnotify_oldname_free(old_name);
3119
3120	return error;
3121}
3122
3123SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3124		int, newdfd, const char __user *, newname)
3125{
3126	struct dentry *old_dir, *new_dir;
3127	struct dentry *old_dentry, *new_dentry;
3128	struct dentry *trap;
3129	struct nameidata oldnd, newnd;
3130	char *from;
3131	char *to;
3132	int error;
3133
3134	error = user_path_parent(olddfd, oldname, &oldnd, &from);
3135	if (error)
3136		goto exit;
 
3137
3138	error = user_path_parent(newdfd, newname, &newnd, &to);
3139	if (error)
 
 
3140		goto exit1;
 
3141
3142	error = -EXDEV;
3143	if (oldnd.path.mnt != newnd.path.mnt)
3144		goto exit2;
3145
3146	old_dir = oldnd.path.dentry;
3147	error = -EBUSY;
3148	if (oldnd.last_type != LAST_NORM)
3149		goto exit2;
3150
3151	new_dir = newnd.path.dentry;
3152	if (newnd.last_type != LAST_NORM)
 
3153		goto exit2;
3154
3155	oldnd.flags &= ~LOOKUP_PARENT;
3156	newnd.flags &= ~LOOKUP_PARENT;
3157	newnd.flags |= LOOKUP_RENAME_TARGET;
3158
3159	trap = lock_rename(new_dir, old_dir);
 
3160
3161	old_dentry = lookup_hash(&oldnd);
3162	error = PTR_ERR(old_dentry);
3163	if (IS_ERR(old_dentry))
3164		goto exit3;
3165	/* source must exist */
3166	error = -ENOENT;
3167	if (!old_dentry->d_inode)
3168		goto exit4;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3169	/* unless the source is a directory trailing slashes give -ENOTDIR */
3170	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3171		error = -ENOTDIR;
3172		if (oldnd.last.name[oldnd.last.len])
3173			goto exit4;
3174		if (newnd.last.name[newnd.last.len])
3175			goto exit4;
3176	}
3177	/* source should not be ancestor of target */
3178	error = -EINVAL;
3179	if (old_dentry == trap)
3180		goto exit4;
3181	new_dentry = lookup_hash(&newnd);
3182	error = PTR_ERR(new_dentry);
3183	if (IS_ERR(new_dentry))
3184		goto exit4;
3185	/* target should not be an ancestor of source */
3186	error = -ENOTEMPTY;
 
3187	if (new_dentry == trap)
3188		goto exit5;
3189
3190	error = mnt_want_write(oldnd.path.mnt);
 
3191	if (error)
3192		goto exit5;
3193	error = security_path_rename(&oldnd.path, old_dentry,
3194				     &newnd.path, new_dentry);
3195	if (error)
3196		goto exit6;
3197	error = vfs_rename(old_dir->d_inode, old_dentry,
3198				   new_dir->d_inode, new_dentry);
3199exit6:
3200	mnt_drop_write(oldnd.path.mnt);
3201exit5:
3202	dput(new_dentry);
3203exit4:
3204	dput(old_dentry);
3205exit3:
3206	unlock_rename(new_dir, old_dir);
 
 
 
 
 
 
3207exit2:
3208	path_put(&newnd.path);
 
 
3209	putname(to);
3210exit1:
3211	path_put(&oldnd.path);
3212	putname(from);
 
 
 
 
 
3213exit:
3214	return error;
3215}
3216
 
 
 
 
 
 
 
 
 
 
 
 
3217SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3218{
3219	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3220}
3221
3222int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3223{
3224	int len;
 
 
 
 
 
 
 
 
 
 
3225
3226	len = PTR_ERR(link);
 
 
3227	if (IS_ERR(link))
3228		goto out;
3229
3230	len = strlen(link);
3231	if (len > (unsigned) buflen)
3232		len = buflen;
3233	if (copy_to_user(buffer, link, len))
3234		len = -EFAULT;
3235out:
3236	return len;
3237}
3238
3239/*
3240 * A helper for ->readlink().  This should be used *ONLY* for symlinks that
3241 * have ->follow_link() touching nd only in nd_set_link().  Using (or not
3242 * using) it for any given inode is up to filesystem.
 
 
 
 
 
3243 */
3244int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3245{
3246	struct nameidata nd;
3247	void *cookie;
 
3248	int res;
3249
3250	nd.depth = 0;
3251	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3252	if (IS_ERR(cookie))
3253		return PTR_ERR(cookie);
3254
3255	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3256	if (dentry->d_inode->i_op->put_link)
3257		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
 
 
 
 
 
 
 
 
 
 
 
 
3258	return res;
3259}
 
3260
3261int vfs_follow_link(struct nameidata *nd, const char *link)
 
 
 
 
 
 
 
 
 
 
 
3262{
3263	return __vfs_follow_link(nd, link);
 
 
 
 
 
 
 
 
3264}
 
3265
3266/* get the link contents into pagecache */
3267static char *page_getlink(struct dentry * dentry, struct page **ppage)
 
3268{
3269	char *kaddr;
3270	struct page *page;
3271	struct address_space *mapping = dentry->d_inode->i_mapping;
3272	page = read_mapping_page(mapping, 0, NULL);
3273	if (IS_ERR(page))
3274		return (char*)page;
3275	*ppage = page;
3276	kaddr = kmap(page);
3277	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
 
 
 
 
 
 
 
 
 
 
 
 
3278	return kaddr;
3279}
3280
3281int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3282{
3283	struct page *page = NULL;
3284	char *s = page_getlink(dentry, &page);
3285	int res = vfs_readlink(dentry,buffer,buflen,s);
3286	if (page) {
3287		kunmap(page);
3288		page_cache_release(page);
3289	}
3290	return res;
3291}
3292
3293void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3294{
3295	struct page *page = NULL;
3296	nd_set_link(nd, page_getlink(dentry, &page));
3297	return page;
3298}
 
3299
3300void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3301{
3302	struct page *page = cookie;
3303
3304	if (page) {
3305		kunmap(page);
3306		page_cache_release(page);
3307	}
3308}
 
3309
3310/*
3311 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3312 */
3313int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3314{
3315	struct address_space *mapping = inode->i_mapping;
3316	struct page *page;
3317	void *fsdata;
3318	int err;
3319	char *kaddr;
3320	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3321	if (nofs)
3322		flags |= AOP_FLAG_NOFS;
3323
3324retry:
3325	err = pagecache_write_begin(NULL, mapping, 0, len-1,
3326				flags, &page, &fsdata);
3327	if (err)
3328		goto fail;
3329
3330	kaddr = kmap_atomic(page, KM_USER0);
3331	memcpy(kaddr, symname, len-1);
3332	kunmap_atomic(kaddr, KM_USER0);
3333
3334	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3335							page, fsdata);
3336	if (err < 0)
3337		goto fail;
3338	if (err < len-1)
3339		goto retry;
3340
3341	mark_inode_dirty(inode);
3342	return 0;
3343fail:
3344	return err;
3345}
 
3346
3347int page_symlink(struct inode *inode, const char *symname, int len)
3348{
3349	return __page_symlink(inode, symname, len,
3350			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3351}
 
3352
3353const struct inode_operations page_symlink_inode_operations = {
3354	.readlink	= generic_readlink,
3355	.follow_link	= page_follow_link_light,
3356	.put_link	= page_put_link,
3357};
3358
3359EXPORT_SYMBOL(user_path_at);
3360EXPORT_SYMBOL(follow_down_one);
3361EXPORT_SYMBOL(follow_down);
3362EXPORT_SYMBOL(follow_up);
3363EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3364EXPORT_SYMBOL(getname);
3365EXPORT_SYMBOL(lock_rename);
3366EXPORT_SYMBOL(lookup_one_len);
3367EXPORT_SYMBOL(page_follow_link_light);
3368EXPORT_SYMBOL(page_put_link);
3369EXPORT_SYMBOL(page_readlink);
3370EXPORT_SYMBOL(__page_symlink);
3371EXPORT_SYMBOL(page_symlink);
3372EXPORT_SYMBOL(page_symlink_inode_operations);
3373EXPORT_SYMBOL(kern_path);
3374EXPORT_SYMBOL(vfs_path_lookup);
3375EXPORT_SYMBOL(inode_permission);
3376EXPORT_SYMBOL(unlock_rename);
3377EXPORT_SYMBOL(vfs_create);
3378EXPORT_SYMBOL(vfs_follow_link);
3379EXPORT_SYMBOL(vfs_link);
3380EXPORT_SYMBOL(vfs_mkdir);
3381EXPORT_SYMBOL(vfs_mknod);
3382EXPORT_SYMBOL(generic_permission);
3383EXPORT_SYMBOL(vfs_readlink);
3384EXPORT_SYMBOL(vfs_rename);
3385EXPORT_SYMBOL(vfs_rmdir);
3386EXPORT_SYMBOL(vfs_symlink);
3387EXPORT_SYMBOL(vfs_unlink);
3388EXPORT_SYMBOL(dentry_unhash);
3389EXPORT_SYMBOL(generic_readlink);