Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/fs.h>
  23#include <linux/namei.h>
  24#include <linux/pagemap.h>
  25#include <linux/fsnotify.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/ima.h>
  29#include <linux/syscalls.h>
  30#include <linux/mount.h>
  31#include <linux/audit.h>
  32#include <linux/capability.h>
  33#include <linux/file.h>
  34#include <linux/fcntl.h>
  35#include <linux/device_cgroup.h>
  36#include <linux/fs_struct.h>
  37#include <linux/posix_acl.h>
  38#include <linux/hash.h>
  39#include <linux/bitops.h>
  40#include <linux/init_task.h>
  41#include <linux/uaccess.h>
  42
  43#include "internal.h"
  44#include "mount.h"
  45
  46/* [Feb-1997 T. Schoebel-Theuer]
  47 * Fundamental changes in the pathname lookup mechanisms (namei)
  48 * were necessary because of omirr.  The reason is that omirr needs
  49 * to know the _real_ pathname, not the user-supplied one, in case
  50 * of symlinks (and also when transname replacements occur).
  51 *
  52 * The new code replaces the old recursive symlink resolution with
  53 * an iterative one (in case of non-nested symlink chains).  It does
  54 * this with calls to <fs>_follow_link().
  55 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  56 * replaced with a single function lookup_dentry() that can handle all 
  57 * the special cases of the former code.
  58 *
  59 * With the new dcache, the pathname is stored at each inode, at least as
  60 * long as the refcount of the inode is positive.  As a side effect, the
  61 * size of the dcache depends on the inode cache and thus is dynamic.
  62 *
  63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  64 * resolution to correspond with current state of the code.
  65 *
  66 * Note that the symlink resolution is not *completely* iterative.
  67 * There is still a significant amount of tail- and mid- recursion in
  68 * the algorithm.  Also, note that <fs>_readlink() is not used in
  69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  70 * may return different results than <fs>_follow_link().  Many virtual
  71 * filesystems (including /proc) exhibit this behavior.
  72 */
  73
  74/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  76 * and the name already exists in form of a symlink, try to create the new
  77 * name indicated by the symlink. The old code always complained that the
  78 * name already exists, due to not following the symlink even if its target
  79 * is nonexistent.  The new semantics affects also mknod() and link() when
  80 * the name is a symlink pointing to a non-existent name.
  81 *
  82 * I don't know which semantics is the right one, since I have no access
  83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  85 * "old" one. Personally, I think the new semantics is much more logical.
  86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  87 * file does succeed in both HP-UX and SunOs, but not in Solaris
  88 * and in the old Linux semantics.
  89 */
  90
  91/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  92 * semantics.  See the comments in "open_namei" and "do_link" below.
  93 *
  94 * [10-Sep-98 Alan Modra] Another symlink change.
  95 */
  96
  97/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  98 *	inside the path - always follow.
  99 *	in the last component in creation/removal/renaming - never follow.
 100 *	if LOOKUP_FOLLOW passed - follow.
 101 *	if the pathname has trailing slashes - follow.
 102 *	otherwise - don't follow.
 103 * (applied in that order).
 104 *
 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 107 * During the 2.4 we need to fix the userland stuff depending on it -
 108 * hopefully we will be able to get rid of that wart in 2.5. So far only
 109 * XEmacs seems to be relying on it...
 110 */
 111/*
 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 113 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 114 * any extra contention...
 115 */
 116
 117/* In order to reduce some races, while at the same time doing additional
 118 * checking and hopefully speeding things up, we copy filenames to the
 119 * kernel data space before using them..
 120 *
 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 122 * PATH_MAX includes the nul terminator --RR.
 123 */
 124
 125#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 126
 127struct filename *
 128getname_flags(const char __user *filename, int flags, int *empty)
 129{
 130	struct filename *result;
 131	char *kname;
 132	int len;
 133
 134	result = audit_reusename(filename);
 135	if (result)
 136		return result;
 137
 138	result = __getname();
 139	if (unlikely(!result))
 140		return ERR_PTR(-ENOMEM);
 141
 142	/*
 143	 * First, try to embed the struct filename inside the names_cache
 144	 * allocation
 145	 */
 146	kname = (char *)result->iname;
 147	result->name = kname;
 148
 149	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 150	if (unlikely(len < 0)) {
 151		__putname(result);
 152		return ERR_PTR(len);
 153	}
 154
 155	/*
 156	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 157	 * separate struct filename so we can dedicate the entire
 158	 * names_cache allocation for the pathname, and re-do the copy from
 159	 * userland.
 160	 */
 161	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 162		const size_t size = offsetof(struct filename, iname[1]);
 163		kname = (char *)result;
 164
 165		/*
 166		 * size is chosen that way we to guarantee that
 167		 * result->iname[0] is within the same object and that
 168		 * kname can't be equal to result->iname, no matter what.
 169		 */
 170		result = kzalloc(size, GFP_KERNEL);
 171		if (unlikely(!result)) {
 172			__putname(kname);
 173			return ERR_PTR(-ENOMEM);
 174		}
 175		result->name = kname;
 176		len = strncpy_from_user(kname, filename, PATH_MAX);
 177		if (unlikely(len < 0)) {
 178			__putname(kname);
 179			kfree(result);
 180			return ERR_PTR(len);
 181		}
 182		if (unlikely(len == PATH_MAX)) {
 183			__putname(kname);
 184			kfree(result);
 185			return ERR_PTR(-ENAMETOOLONG);
 186		}
 187	}
 188
 189	result->refcnt = 1;
 190	/* The empty path is special. */
 191	if (unlikely(!len)) {
 192		if (empty)
 193			*empty = 1;
 194		if (!(flags & LOOKUP_EMPTY)) {
 195			putname(result);
 196			return ERR_PTR(-ENOENT);
 197		}
 198	}
 199
 200	result->uptr = filename;
 201	result->aname = NULL;
 202	audit_getname(result);
 203	return result;
 204}
 205
 206struct filename *
 207getname(const char __user * filename)
 208{
 209	return getname_flags(filename, 0, NULL);
 210}
 211
 212struct filename *
 213getname_kernel(const char * filename)
 214{
 215	struct filename *result;
 216	int len = strlen(filename) + 1;
 217
 218	result = __getname();
 219	if (unlikely(!result))
 220		return ERR_PTR(-ENOMEM);
 221
 222	if (len <= EMBEDDED_NAME_MAX) {
 223		result->name = (char *)result->iname;
 224	} else if (len <= PATH_MAX) {
 225		const size_t size = offsetof(struct filename, iname[1]);
 226		struct filename *tmp;
 227
 228		tmp = kmalloc(size, GFP_KERNEL);
 229		if (unlikely(!tmp)) {
 230			__putname(result);
 231			return ERR_PTR(-ENOMEM);
 232		}
 233		tmp->name = (char *)result;
 234		result = tmp;
 235	} else {
 236		__putname(result);
 237		return ERR_PTR(-ENAMETOOLONG);
 238	}
 239	memcpy((char *)result->name, filename, len);
 240	result->uptr = NULL;
 241	result->aname = NULL;
 242	result->refcnt = 1;
 243	audit_getname(result);
 244
 245	return result;
 246}
 247
 248void putname(struct filename *name)
 249{
 250	BUG_ON(name->refcnt <= 0);
 251
 252	if (--name->refcnt > 0)
 253		return;
 254
 255	if (name->name != name->iname) {
 256		__putname(name->name);
 257		kfree(name);
 258	} else
 259		__putname(name);
 260}
 261
 262static int check_acl(struct inode *inode, int mask)
 263{
 264#ifdef CONFIG_FS_POSIX_ACL
 265	struct posix_acl *acl;
 266
 267	if (mask & MAY_NOT_BLOCK) {
 268		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 269	        if (!acl)
 270	                return -EAGAIN;
 271		/* no ->get_acl() calls in RCU mode... */
 272		if (is_uncached_acl(acl))
 273			return -ECHILD;
 274	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
 275	}
 276
 277	acl = get_acl(inode, ACL_TYPE_ACCESS);
 278	if (IS_ERR(acl))
 279		return PTR_ERR(acl);
 280	if (acl) {
 281	        int error = posix_acl_permission(inode, acl, mask);
 282	        posix_acl_release(acl);
 283	        return error;
 284	}
 285#endif
 286
 287	return -EAGAIN;
 288}
 289
 290/*
 291 * This does the basic permission checking
 292 */
 293static int acl_permission_check(struct inode *inode, int mask)
 294{
 295	unsigned int mode = inode->i_mode;
 296
 297	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
 298		mode >>= 6;
 299	else {
 300		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 301			int error = check_acl(inode, mask);
 302			if (error != -EAGAIN)
 303				return error;
 304		}
 305
 306		if (in_group_p(inode->i_gid))
 307			mode >>= 3;
 308	}
 309
 310	/*
 311	 * If the DACs are ok we don't need any capability check.
 312	 */
 313	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
 314		return 0;
 315	return -EACCES;
 316}
 317
 318/**
 319 * generic_permission -  check for access rights on a Posix-like filesystem
 320 * @inode:	inode to check access rights for
 321 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
 322 *
 323 * Used to check for read/write/execute permissions on a file.
 324 * We use "fsuid" for this, letting us set arbitrary permissions
 325 * for filesystem access without changing the "normal" uids which
 326 * are used for other things.
 327 *
 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 329 * request cannot be satisfied (eg. requires blocking or too much complexity).
 330 * It would then be called again in ref-walk mode.
 331 */
 332int generic_permission(struct inode *inode, int mask)
 333{
 334	int ret;
 335
 336	/*
 337	 * Do the basic permission checks.
 338	 */
 339	ret = acl_permission_check(inode, mask);
 340	if (ret != -EACCES)
 341		return ret;
 342
 343	if (S_ISDIR(inode->i_mode)) {
 344		/* DACs are overridable for directories */
 
 
 345		if (!(mask & MAY_WRITE))
 346			if (capable_wrt_inode_uidgid(inode,
 347						     CAP_DAC_READ_SEARCH))
 348				return 0;
 349		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 350			return 0;
 351		return -EACCES;
 352	}
 353
 354	/*
 355	 * Searching includes executable on directories, else just read.
 356	 */
 357	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 358	if (mask == MAY_READ)
 359		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
 360			return 0;
 361	/*
 362	 * Read/write DACs are always overridable.
 363	 * Executable DACs are overridable when there is
 364	 * at least one exec bit set.
 365	 */
 366	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 367		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 368			return 0;
 369
 
 
 
 
 
 
 
 
 370	return -EACCES;
 371}
 372EXPORT_SYMBOL(generic_permission);
 373
 374/*
 375 * We _really_ want to just do "generic_permission()" without
 376 * even looking at the inode->i_op values. So we keep a cache
 377 * flag in inode->i_opflags, that says "this has not special
 378 * permission function, use the fast case".
 379 */
 380static inline int do_inode_permission(struct inode *inode, int mask)
 381{
 382	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 383		if (likely(inode->i_op->permission))
 384			return inode->i_op->permission(inode, mask);
 385
 386		/* This gets set once for the inode lifetime */
 387		spin_lock(&inode->i_lock);
 388		inode->i_opflags |= IOP_FASTPERM;
 389		spin_unlock(&inode->i_lock);
 390	}
 391	return generic_permission(inode, mask);
 392}
 393
 394/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395 * sb_permission - Check superblock-level permissions
 396 * @sb: Superblock of inode to check permission on
 397 * @inode: Inode to check permission on
 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 399 *
 400 * Separate out file-system wide checks from inode-specific permission checks.
 401 */
 402static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 403{
 404	if (unlikely(mask & MAY_WRITE)) {
 405		umode_t mode = inode->i_mode;
 406
 407		/* Nobody gets write access to a read-only fs. */
 408		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 
 409			return -EROFS;
 410	}
 411	return 0;
 412}
 413
 414/**
 415 * inode_permission - Check for access rights to a given inode
 416 * @inode: Inode to check permission on
 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 418 *
 419 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 420 * this, letting us set arbitrary permissions for filesystem access without
 421 * changing the "normal" UIDs which are used for other things.
 422 *
 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 424 */
 425int inode_permission(struct inode *inode, int mask)
 426{
 427	int retval;
 428
 429	retval = sb_permission(inode->i_sb, inode, mask);
 430	if (retval)
 431		return retval;
 432
 433	if (unlikely(mask & MAY_WRITE)) {
 434		/*
 435		 * Nobody gets write access to an immutable file.
 436		 */
 437		if (IS_IMMUTABLE(inode))
 438			return -EPERM;
 439
 440		/*
 441		 * Updating mtime will likely cause i_uid and i_gid to be
 442		 * written back improperly if their true value is unknown
 443		 * to the vfs.
 444		 */
 445		if (HAS_UNMAPPED_ID(inode))
 446			return -EACCES;
 447	}
 448
 449	retval = do_inode_permission(inode, mask);
 450	if (retval)
 451		return retval;
 452
 453	retval = devcgroup_inode_permission(inode, mask);
 454	if (retval)
 455		return retval;
 456
 457	return security_inode_permission(inode, mask);
 458}
 459EXPORT_SYMBOL(inode_permission);
 460
 461/**
 462 * path_get - get a reference to a path
 463 * @path: path to get the reference to
 464 *
 465 * Given a path increment the reference count to the dentry and the vfsmount.
 466 */
 467void path_get(const struct path *path)
 468{
 469	mntget(path->mnt);
 470	dget(path->dentry);
 471}
 472EXPORT_SYMBOL(path_get);
 473
 474/**
 475 * path_put - put a reference to a path
 476 * @path: path to put the reference to
 477 *
 478 * Given a path decrement the reference count to the dentry and the vfsmount.
 479 */
 480void path_put(const struct path *path)
 481{
 482	dput(path->dentry);
 483	mntput(path->mnt);
 484}
 485EXPORT_SYMBOL(path_put);
 486
 487#define EMBEDDED_LEVELS 2
 488struct nameidata {
 489	struct path	path;
 490	struct qstr	last;
 491	struct path	root;
 492	struct inode	*inode; /* path.dentry.d_inode */
 493	unsigned int	flags;
 494	unsigned	seq, m_seq;
 495	int		last_type;
 496	unsigned	depth;
 497	int		total_link_count;
 498	struct saved {
 499		struct path link;
 500		struct delayed_call done;
 501		const char *name;
 502		unsigned seq;
 503	} *stack, internal[EMBEDDED_LEVELS];
 504	struct filename	*name;
 505	struct nameidata *saved;
 506	struct inode	*link_inode;
 507	unsigned	root_seq;
 508	int		dfd;
 509} __randomize_layout;
 510
 511static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 512{
 513	struct nameidata *old = current->nameidata;
 514	p->stack = p->internal;
 515	p->dfd = dfd;
 516	p->name = name;
 517	p->total_link_count = old ? old->total_link_count : 0;
 518	p->saved = old;
 519	current->nameidata = p;
 520}
 521
 522static void restore_nameidata(void)
 523{
 524	struct nameidata *now = current->nameidata, *old = now->saved;
 525
 526	current->nameidata = old;
 527	if (old)
 528		old->total_link_count = now->total_link_count;
 529	if (now->stack != now->internal)
 530		kfree(now->stack);
 531}
 532
 533static int __nd_alloc_stack(struct nameidata *nd)
 534{
 535	struct saved *p;
 536
 537	if (nd->flags & LOOKUP_RCU) {
 538		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 539				  GFP_ATOMIC);
 540		if (unlikely(!p))
 541			return -ECHILD;
 542	} else {
 543		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 544				  GFP_KERNEL);
 545		if (unlikely(!p))
 546			return -ENOMEM;
 547	}
 548	memcpy(p, nd->internal, sizeof(nd->internal));
 549	nd->stack = p;
 550	return 0;
 551}
 552
 553/**
 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
 555 * @path: nameidate to verify
 556 *
 557 * Rename can sometimes move a file or directory outside of a bind
 558 * mount, path_connected allows those cases to be detected.
 559 */
 560static bool path_connected(const struct path *path)
 561{
 562	struct vfsmount *mnt = path->mnt;
 563	struct super_block *sb = mnt->mnt_sb;
 564
 565	/* Bind mounts and multi-root filesystems can have disconnected paths */
 566	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
 567		return true;
 568
 569	return is_subdir(path->dentry, mnt->mnt_root);
 570}
 571
 572static inline int nd_alloc_stack(struct nameidata *nd)
 573{
 574	if (likely(nd->depth != EMBEDDED_LEVELS))
 575		return 0;
 576	if (likely(nd->stack != nd->internal))
 577		return 0;
 578	return __nd_alloc_stack(nd);
 579}
 580
 581static void drop_links(struct nameidata *nd)
 582{
 583	int i = nd->depth;
 584	while (i--) {
 585		struct saved *last = nd->stack + i;
 586		do_delayed_call(&last->done);
 587		clear_delayed_call(&last->done);
 588	}
 589}
 590
 591static void terminate_walk(struct nameidata *nd)
 592{
 593	drop_links(nd);
 594	if (!(nd->flags & LOOKUP_RCU)) {
 595		int i;
 596		path_put(&nd->path);
 597		for (i = 0; i < nd->depth; i++)
 598			path_put(&nd->stack[i].link);
 599		if (nd->flags & LOOKUP_ROOT_GRABBED) {
 600			path_put(&nd->root);
 601			nd->flags &= ~LOOKUP_ROOT_GRABBED;
 602		}
 603	} else {
 604		nd->flags &= ~LOOKUP_RCU;
 
 
 605		rcu_read_unlock();
 606	}
 607	nd->depth = 0;
 608}
 609
 610/* path_put is needed afterwards regardless of success or failure */
 611static bool legitimize_path(struct nameidata *nd,
 612			    struct path *path, unsigned seq)
 613{
 614	int res = __legitimize_mnt(path->mnt, nd->m_seq);
 615	if (unlikely(res)) {
 616		if (res > 0)
 617			path->mnt = NULL;
 618		path->dentry = NULL;
 619		return false;
 620	}
 621	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 622		path->dentry = NULL;
 623		return false;
 624	}
 625	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 626}
 627
 628static bool legitimize_links(struct nameidata *nd)
 629{
 630	int i;
 631	for (i = 0; i < nd->depth; i++) {
 632		struct saved *last = nd->stack + i;
 633		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 634			drop_links(nd);
 635			nd->depth = i + 1;
 636			return false;
 637		}
 638	}
 639	return true;
 640}
 641
 642static bool legitimize_root(struct nameidata *nd)
 643{
 644	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
 645		return true;
 646	nd->flags |= LOOKUP_ROOT_GRABBED;
 647	return legitimize_path(nd, &nd->root, nd->root_seq);
 648}
 649
 650/*
 651 * Path walking has 2 modes, rcu-walk and ref-walk (see
 652 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 654 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 655 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 656 * got stuck, so ref-walk may continue from there. If this is not successful
 657 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 658 * to restart the path walk from the beginning in ref-walk mode.
 659 */
 660
 661/**
 662 * unlazy_walk - try to switch to ref-walk mode.
 663 * @nd: nameidata pathwalk data
 
 
 664 * Returns: 0 on success, -ECHILD on failure
 665 *
 666 * unlazy_walk attempts to legitimize the current nd->path and nd->root
 667 * for ref-walk mode.
 668 * Must be called from rcu-walk context.
 669 * Nothing should touch nameidata between unlazy_walk() failure and
 670 * terminate_walk().
 671 */
 672static int unlazy_walk(struct nameidata *nd)
 673{
 674	struct dentry *parent = nd->path.dentry;
 675
 676	BUG_ON(!(nd->flags & LOOKUP_RCU));
 677
 678	nd->flags &= ~LOOKUP_RCU;
 679	if (unlikely(!legitimize_links(nd)))
 680		goto out1;
 681	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 682		goto out;
 683	if (unlikely(!legitimize_root(nd)))
 684		goto out;
 685	rcu_read_unlock();
 686	BUG_ON(nd->inode != parent->d_inode);
 687	return 0;
 688
 689out1:
 690	nd->path.mnt = NULL;
 691	nd->path.dentry = NULL;
 692out:
 693	rcu_read_unlock();
 694	return -ECHILD;
 695}
 696
 697/**
 698 * unlazy_child - try to switch to ref-walk mode.
 699 * @nd: nameidata pathwalk data
 700 * @dentry: child of nd->path.dentry
 701 * @seq: seq number to check dentry against
 702 * Returns: 0 on success, -ECHILD on failure
 703 *
 704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
 705 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
 706 * @nd.  Must be called from rcu-walk context.
 707 * Nothing should touch nameidata between unlazy_child() failure and
 708 * terminate_walk().
 709 */
 710static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
 711{
 712	BUG_ON(!(nd->flags & LOOKUP_RCU));
 713
 714	nd->flags &= ~LOOKUP_RCU;
 715	if (unlikely(!legitimize_links(nd)))
 716		goto out2;
 717	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
 718		goto out2;
 719	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 720		goto out1;
 721
 722	/*
 723	 * We need to move both the parent and the dentry from the RCU domain
 724	 * to be properly refcounted. And the sequence number in the dentry
 725	 * validates *both* dentry counters, since we checked the sequence
 726	 * number of the parent after we got the child sequence number. So we
 727	 * know the parent must still be valid if the child sequence number is
 
 
 
 
 728	 */
 729	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 730		goto out;
 731	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
 732		goto out_dput;
 
 
 
 
 
 
 
 733	/*
 734	 * Sequence counts matched. Now make sure that the root is
 735	 * still valid and get it if required.
 736	 */
 737	if (unlikely(!legitimize_root(nd)))
 738		goto out_dput;
 
 
 
 
 
 
 739	rcu_read_unlock();
 740	return 0;
 741
 
 
 
 
 742out2:
 743	nd->path.mnt = NULL;
 744out1:
 745	nd->path.dentry = NULL;
 746out:
 747	rcu_read_unlock();
 
 
 
 748	return -ECHILD;
 749out_dput:
 750	rcu_read_unlock();
 751	dput(dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752	return -ECHILD;
 753}
 754
 755static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 756{
 757	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 758		return dentry->d_op->d_revalidate(dentry, flags);
 759	else
 760		return 1;
 761}
 762
 763/**
 764 * complete_walk - successful completion of path walk
 765 * @nd:  pointer nameidata
 766 *
 767 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 768 * Revalidate the final result, unless we'd already done that during
 769 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 770 * success, -error on failure.  In case of failure caller does not
 771 * need to drop nd->path.
 772 */
 773static int complete_walk(struct nameidata *nd)
 774{
 775	struct dentry *dentry = nd->path.dentry;
 776	int status;
 777
 778	if (nd->flags & LOOKUP_RCU) {
 779		if (!(nd->flags & LOOKUP_ROOT))
 780			nd->root.mnt = NULL;
 781		if (unlikely(unlazy_walk(nd)))
 782			return -ECHILD;
 783	}
 784
 785	if (likely(!(nd->flags & LOOKUP_JUMPED)))
 786		return 0;
 787
 788	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 789		return 0;
 790
 791	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 792	if (status > 0)
 793		return 0;
 794
 795	if (!status)
 796		status = -ESTALE;
 797
 798	return status;
 799}
 800
 801static void set_root(struct nameidata *nd)
 802{
 803	struct fs_struct *fs = current->fs;
 804
 805	if (nd->flags & LOOKUP_RCU) {
 806		unsigned seq;
 807
 808		do {
 809			seq = read_seqcount_begin(&fs->seq);
 810			nd->root = fs->root;
 811			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 812		} while (read_seqcount_retry(&fs->seq, seq));
 813	} else {
 814		get_fs_root(fs, &nd->root);
 815		nd->flags |= LOOKUP_ROOT_GRABBED;
 816	}
 817}
 818
 819static void path_put_conditional(struct path *path, struct nameidata *nd)
 820{
 821	dput(path->dentry);
 822	if (path->mnt != nd->path.mnt)
 823		mntput(path->mnt);
 824}
 825
 826static inline void path_to_nameidata(const struct path *path,
 827					struct nameidata *nd)
 828{
 829	if (!(nd->flags & LOOKUP_RCU)) {
 830		dput(nd->path.dentry);
 831		if (nd->path.mnt != path->mnt)
 832			mntput(nd->path.mnt);
 833	}
 834	nd->path.mnt = path->mnt;
 835	nd->path.dentry = path->dentry;
 836}
 837
 838static int nd_jump_root(struct nameidata *nd)
 839{
 840	if (nd->flags & LOOKUP_RCU) {
 841		struct dentry *d;
 842		nd->path = nd->root;
 843		d = nd->path.dentry;
 844		nd->inode = d->d_inode;
 845		nd->seq = nd->root_seq;
 846		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
 847			return -ECHILD;
 848	} else {
 849		path_put(&nd->path);
 850		nd->path = nd->root;
 851		path_get(&nd->path);
 852		nd->inode = nd->path.dentry->d_inode;
 853	}
 854	nd->flags |= LOOKUP_JUMPED;
 855	return 0;
 856}
 857
 858/*
 859 * Helper to directly jump to a known parsed path from ->get_link,
 860 * caller must have taken a reference to path beforehand.
 861 */
 862void nd_jump_link(struct path *path)
 863{
 864	struct nameidata *nd = current->nameidata;
 865	path_put(&nd->path);
 866
 867	nd->path = *path;
 868	nd->inode = nd->path.dentry->d_inode;
 869	nd->flags |= LOOKUP_JUMPED;
 870}
 871
 872static inline void put_link(struct nameidata *nd)
 873{
 874	struct saved *last = nd->stack + --nd->depth;
 875	do_delayed_call(&last->done);
 876	if (!(nd->flags & LOOKUP_RCU))
 877		path_put(&last->link);
 878}
 879
 880int sysctl_protected_symlinks __read_mostly = 0;
 881int sysctl_protected_hardlinks __read_mostly = 0;
 882int sysctl_protected_fifos __read_mostly;
 883int sysctl_protected_regular __read_mostly;
 884
 885/**
 886 * may_follow_link - Check symlink following for unsafe situations
 887 * @nd: nameidata pathwalk data
 888 *
 889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
 891 * in a sticky world-writable directory. This is to protect privileged
 892 * processes from failing races against path names that may change out
 893 * from under them by way of other users creating malicious symlinks.
 894 * It will permit symlinks to be followed only when outside a sticky
 895 * world-writable directory, or when the uid of the symlink and follower
 896 * match, or when the directory owner matches the symlink's owner.
 897 *
 898 * Returns 0 if following the symlink is allowed, -ve on error.
 899 */
 900static inline int may_follow_link(struct nameidata *nd)
 901{
 902	const struct inode *inode;
 903	const struct inode *parent;
 904	kuid_t puid;
 905
 906	if (!sysctl_protected_symlinks)
 907		return 0;
 908
 909	/* Allowed if owner and follower match. */
 910	inode = nd->link_inode;
 911	if (uid_eq(current_cred()->fsuid, inode->i_uid))
 912		return 0;
 913
 914	/* Allowed if parent directory not sticky and world-writable. */
 915	parent = nd->inode;
 916	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 917		return 0;
 918
 919	/* Allowed if parent directory and link owner match. */
 920	puid = parent->i_uid;
 921	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
 922		return 0;
 923
 924	if (nd->flags & LOOKUP_RCU)
 925		return -ECHILD;
 926
 927	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
 928	audit_log_link_denied("follow_link");
 929	return -EACCES;
 930}
 931
 932/**
 933 * safe_hardlink_source - Check for safe hardlink conditions
 934 * @inode: the source inode to hardlink from
 935 *
 936 * Return false if at least one of the following conditions:
 937 *    - inode is not a regular file
 938 *    - inode is setuid
 939 *    - inode is setgid and group-exec
 940 *    - access failure for read and write
 941 *
 942 * Otherwise returns true.
 943 */
 944static bool safe_hardlink_source(struct inode *inode)
 945{
 946	umode_t mode = inode->i_mode;
 947
 948	/* Special files should not get pinned to the filesystem. */
 949	if (!S_ISREG(mode))
 950		return false;
 951
 952	/* Setuid files should not get pinned to the filesystem. */
 953	if (mode & S_ISUID)
 954		return false;
 955
 956	/* Executable setgid files should not get pinned to the filesystem. */
 957	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
 958		return false;
 959
 960	/* Hardlinking to unreadable or unwritable sources is dangerous. */
 961	if (inode_permission(inode, MAY_READ | MAY_WRITE))
 962		return false;
 963
 964	return true;
 965}
 966
 967/**
 968 * may_linkat - Check permissions for creating a hardlink
 969 * @link: the source to hardlink from
 970 *
 971 * Block hardlink when all of:
 972 *  - sysctl_protected_hardlinks enabled
 973 *  - fsuid does not match inode
 974 *  - hardlink source is unsafe (see safe_hardlink_source() above)
 975 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
 976 *
 977 * Returns 0 if successful, -ve on error.
 978 */
 979static int may_linkat(struct path *link)
 980{
 981	struct inode *inode = link->dentry->d_inode;
 982
 983	/* Inode writeback is not safe when the uid or gid are invalid. */
 984	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
 985		return -EOVERFLOW;
 986
 987	if (!sysctl_protected_hardlinks)
 988		return 0;
 989
 
 
 990	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
 991	 * otherwise, it must be a safe source.
 992	 */
 993	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
 994		return 0;
 995
 996	audit_log_link_denied("linkat");
 997	return -EPERM;
 998}
 999
1000/**
1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002 *			  should be allowed, or not, on files that already
1003 *			  exist.
1004 * @dir: the sticky parent directory
1005 * @inode: the inode of the file to open
1006 *
1007 * Block an O_CREAT open of a FIFO (or a regular file) when:
1008 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1009 *   - the file already exists
1010 *   - we are in a sticky directory
1011 *   - we don't own the file
1012 *   - the owner of the directory doesn't own the file
1013 *   - the directory is world writable
1014 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1015 * the directory doesn't have to be world writable: being group writable will
1016 * be enough.
1017 *
1018 * Returns 0 if the open is allowed, -ve on error.
1019 */
1020static int may_create_in_sticky(struct dentry * const dir,
1021				struct inode * const inode)
1022{
1023	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1024	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1025	    likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1026	    uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1027	    uid_eq(current_fsuid(), inode->i_uid))
1028		return 0;
1029
1030	if (likely(dir->d_inode->i_mode & 0002) ||
1031	    (dir->d_inode->i_mode & 0020 &&
1032	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1033	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1034		return -EACCES;
1035	}
1036	return 0;
1037}
1038
1039static __always_inline
1040const char *get_link(struct nameidata *nd)
1041{
1042	struct saved *last = nd->stack + nd->depth - 1;
1043	struct dentry *dentry = last->link.dentry;
1044	struct inode *inode = nd->link_inode;
1045	int error;
1046	const char *res;
1047
1048	if (!(nd->flags & LOOKUP_RCU)) {
1049		touch_atime(&last->link);
1050		cond_resched();
1051	} else if (atime_needs_update(&last->link, inode)) {
1052		if (unlikely(unlazy_walk(nd)))
1053			return ERR_PTR(-ECHILD);
1054		touch_atime(&last->link);
1055	}
1056
1057	error = security_inode_follow_link(dentry, inode,
1058					   nd->flags & LOOKUP_RCU);
1059	if (unlikely(error))
1060		return ERR_PTR(error);
1061
1062	nd->last_type = LAST_BIND;
1063	res = READ_ONCE(inode->i_link);
1064	if (!res) {
1065		const char * (*get)(struct dentry *, struct inode *,
1066				struct delayed_call *);
1067		get = inode->i_op->get_link;
1068		if (nd->flags & LOOKUP_RCU) {
1069			res = get(NULL, inode, &last->done);
1070			if (res == ERR_PTR(-ECHILD)) {
1071				if (unlikely(unlazy_walk(nd)))
1072					return ERR_PTR(-ECHILD);
1073				res = get(dentry, inode, &last->done);
1074			}
1075		} else {
1076			res = get(dentry, inode, &last->done);
1077		}
1078		if (IS_ERR_OR_NULL(res))
1079			return res;
1080	}
1081	if (*res == '/') {
1082		if (!nd->root.mnt)
1083			set_root(nd);
1084		if (unlikely(nd_jump_root(nd)))
1085			return ERR_PTR(-ECHILD);
1086		while (unlikely(*++res == '/'))
1087			;
1088	}
1089	if (!*res)
1090		res = NULL;
1091	return res;
1092}
1093
1094/*
1095 * follow_up - Find the mountpoint of path's vfsmount
1096 *
1097 * Given a path, find the mountpoint of its source file system.
1098 * Replace @path with the path of the mountpoint in the parent mount.
1099 * Up is towards /.
1100 *
1101 * Return 1 if we went up a level and 0 if we were already at the
1102 * root.
1103 */
1104int follow_up(struct path *path)
1105{
1106	struct mount *mnt = real_mount(path->mnt);
1107	struct mount *parent;
1108	struct dentry *mountpoint;
1109
1110	read_seqlock_excl(&mount_lock);
1111	parent = mnt->mnt_parent;
1112	if (parent == mnt) {
1113		read_sequnlock_excl(&mount_lock);
1114		return 0;
1115	}
1116	mntget(&parent->mnt);
1117	mountpoint = dget(mnt->mnt_mountpoint);
1118	read_sequnlock_excl(&mount_lock);
1119	dput(path->dentry);
1120	path->dentry = mountpoint;
1121	mntput(path->mnt);
1122	path->mnt = &parent->mnt;
1123	return 1;
1124}
1125EXPORT_SYMBOL(follow_up);
1126
1127/*
1128 * Perform an automount
1129 * - return -EISDIR to tell follow_managed() to stop and return the path we
1130 *   were called with.
1131 */
1132static int follow_automount(struct path *path, struct nameidata *nd,
1133			    bool *need_mntput)
1134{
1135	struct vfsmount *mnt;
1136	int err;
1137
1138	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1139		return -EREMOTE;
1140
1141	/* We don't want to mount if someone's just doing a stat -
1142	 * unless they're stat'ing a directory and appended a '/' to
1143	 * the name.
1144	 *
1145	 * We do, however, want to mount if someone wants to open or
1146	 * create a file of any type under the mountpoint, wants to
1147	 * traverse through the mountpoint or wants to open the
1148	 * mounted directory.  Also, autofs may mark negative dentries
1149	 * as being automount points.  These will need the attentions
1150	 * of the daemon to instantiate them before they can be used.
1151	 */
1152	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1153			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1154	    path->dentry->d_inode)
1155		return -EISDIR;
1156
 
 
 
1157	nd->total_link_count++;
1158	if (nd->total_link_count >= 40)
1159		return -ELOOP;
1160
1161	mnt = path->dentry->d_op->d_automount(path);
1162	if (IS_ERR(mnt)) {
1163		/*
1164		 * The filesystem is allowed to return -EISDIR here to indicate
1165		 * it doesn't want to automount.  For instance, autofs would do
1166		 * this so that its userspace daemon can mount on this dentry.
1167		 *
1168		 * However, we can only permit this if it's a terminal point in
1169		 * the path being looked up; if it wasn't then the remainder of
1170		 * the path is inaccessible and we should say so.
1171		 */
1172		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1173			return -EREMOTE;
1174		return PTR_ERR(mnt);
1175	}
1176
1177	if (!mnt) /* mount collision */
1178		return 0;
1179
1180	if (!*need_mntput) {
1181		/* lock_mount() may release path->mnt on error */
1182		mntget(path->mnt);
1183		*need_mntput = true;
1184	}
1185	err = finish_automount(mnt, path);
1186
1187	switch (err) {
1188	case -EBUSY:
1189		/* Someone else made a mount here whilst we were busy */
1190		return 0;
1191	case 0:
1192		path_put(path);
1193		path->mnt = mnt;
1194		path->dentry = dget(mnt->mnt_root);
1195		return 0;
1196	default:
1197		return err;
1198	}
1199
1200}
1201
1202/*
1203 * Handle a dentry that is managed in some way.
1204 * - Flagged for transit management (autofs)
1205 * - Flagged as mountpoint
1206 * - Flagged as automount point
1207 *
1208 * This may only be called in refwalk mode.
1209 *
1210 * Serialization is taken care of in namespace.c
1211 */
1212static int follow_managed(struct path *path, struct nameidata *nd)
1213{
1214	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1215	unsigned managed;
1216	bool need_mntput = false;
1217	int ret = 0;
1218
1219	/* Given that we're not holding a lock here, we retain the value in a
1220	 * local variable for each dentry as we look at it so that we don't see
1221	 * the components of that value change under us */
1222	while (managed = READ_ONCE(path->dentry->d_flags),
1223	       managed &= DCACHE_MANAGED_DENTRY,
1224	       unlikely(managed != 0)) {
1225		/* Allow the filesystem to manage the transit without i_mutex
1226		 * being held. */
1227		if (managed & DCACHE_MANAGE_TRANSIT) {
1228			BUG_ON(!path->dentry->d_op);
1229			BUG_ON(!path->dentry->d_op->d_manage);
1230			ret = path->dentry->d_op->d_manage(path, false);
1231			if (ret < 0)
1232				break;
1233		}
1234
1235		/* Transit to a mounted filesystem. */
1236		if (managed & DCACHE_MOUNTED) {
1237			struct vfsmount *mounted = lookup_mnt(path);
1238			if (mounted) {
1239				dput(path->dentry);
1240				if (need_mntput)
1241					mntput(path->mnt);
1242				path->mnt = mounted;
1243				path->dentry = dget(mounted->mnt_root);
1244				need_mntput = true;
1245				continue;
1246			}
1247
1248			/* Something is mounted on this dentry in another
1249			 * namespace and/or whatever was mounted there in this
1250			 * namespace got unmounted before lookup_mnt() could
1251			 * get it */
1252		}
1253
1254		/* Handle an automount point */
1255		if (managed & DCACHE_NEED_AUTOMOUNT) {
1256			ret = follow_automount(path, nd, &need_mntput);
1257			if (ret < 0)
1258				break;
1259			continue;
1260		}
1261
1262		/* We didn't change the current path point */
1263		break;
1264	}
1265
1266	if (need_mntput && path->mnt == mnt)
1267		mntput(path->mnt);
1268	if (ret == -EISDIR || !ret)
1269		ret = 1;
1270	if (need_mntput)
1271		nd->flags |= LOOKUP_JUMPED;
1272	if (unlikely(ret < 0))
1273		path_put_conditional(path, nd);
1274	return ret;
1275}
1276
1277int follow_down_one(struct path *path)
1278{
1279	struct vfsmount *mounted;
1280
1281	mounted = lookup_mnt(path);
1282	if (mounted) {
1283		dput(path->dentry);
1284		mntput(path->mnt);
1285		path->mnt = mounted;
1286		path->dentry = dget(mounted->mnt_root);
1287		return 1;
1288	}
1289	return 0;
1290}
1291EXPORT_SYMBOL(follow_down_one);
1292
1293static inline int managed_dentry_rcu(const struct path *path)
1294{
1295	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1296		path->dentry->d_op->d_manage(path, true) : 0;
1297}
1298
1299/*
1300 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1301 * we meet a managed dentry that would need blocking.
1302 */
1303static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1304			       struct inode **inode, unsigned *seqp)
1305{
1306	for (;;) {
1307		struct mount *mounted;
1308		/*
1309		 * Don't forget we might have a non-mountpoint managed dentry
1310		 * that wants to block transit.
1311		 */
1312		switch (managed_dentry_rcu(path)) {
1313		case -ECHILD:
1314		default:
1315			return false;
1316		case -EISDIR:
1317			return true;
1318		case 0:
1319			break;
1320		}
1321
1322		if (!d_mountpoint(path->dentry))
1323			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1324
1325		mounted = __lookup_mnt(path->mnt, path->dentry);
1326		if (!mounted)
1327			break;
1328		path->mnt = &mounted->mnt;
1329		path->dentry = mounted->mnt.mnt_root;
1330		nd->flags |= LOOKUP_JUMPED;
1331		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1332		/*
1333		 * Update the inode too. We don't need to re-check the
1334		 * dentry sequence number here after this d_inode read,
1335		 * because a mount-point is always pinned.
1336		 */
1337		*inode = path->dentry->d_inode;
1338	}
1339	return !read_seqretry(&mount_lock, nd->m_seq) &&
1340		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1341}
1342
1343static int follow_dotdot_rcu(struct nameidata *nd)
1344{
1345	struct inode *inode = nd->inode;
1346
1347	while (1) {
1348		if (path_equal(&nd->path, &nd->root))
1349			break;
1350		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1351			struct dentry *old = nd->path.dentry;
1352			struct dentry *parent = old->d_parent;
1353			unsigned seq;
1354
1355			inode = parent->d_inode;
1356			seq = read_seqcount_begin(&parent->d_seq);
1357			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1358				return -ECHILD;
1359			nd->path.dentry = parent;
1360			nd->seq = seq;
1361			if (unlikely(!path_connected(&nd->path)))
1362				return -ENOENT;
1363			break;
1364		} else {
1365			struct mount *mnt = real_mount(nd->path.mnt);
1366			struct mount *mparent = mnt->mnt_parent;
1367			struct dentry *mountpoint = mnt->mnt_mountpoint;
1368			struct inode *inode2 = mountpoint->d_inode;
1369			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1370			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1371				return -ECHILD;
1372			if (&mparent->mnt == nd->path.mnt)
1373				break;
1374			/* we know that mountpoint was pinned */
1375			nd->path.dentry = mountpoint;
1376			nd->path.mnt = &mparent->mnt;
1377			inode = inode2;
1378			nd->seq = seq;
1379		}
1380	}
1381	while (unlikely(d_mountpoint(nd->path.dentry))) {
1382		struct mount *mounted;
1383		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1384		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1385			return -ECHILD;
1386		if (!mounted)
1387			break;
1388		nd->path.mnt = &mounted->mnt;
1389		nd->path.dentry = mounted->mnt.mnt_root;
1390		inode = nd->path.dentry->d_inode;
1391		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1392	}
1393	nd->inode = inode;
1394	return 0;
1395}
1396
1397/*
1398 * Follow down to the covering mount currently visible to userspace.  At each
1399 * point, the filesystem owning that dentry may be queried as to whether the
1400 * caller is permitted to proceed or not.
1401 */
1402int follow_down(struct path *path)
1403{
1404	unsigned managed;
1405	int ret;
1406
1407	while (managed = READ_ONCE(path->dentry->d_flags),
1408	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1409		/* Allow the filesystem to manage the transit without i_mutex
1410		 * being held.
1411		 *
1412		 * We indicate to the filesystem if someone is trying to mount
1413		 * something here.  This gives autofs the chance to deny anyone
1414		 * other than its daemon the right to mount on its
1415		 * superstructure.
1416		 *
1417		 * The filesystem may sleep at this point.
1418		 */
1419		if (managed & DCACHE_MANAGE_TRANSIT) {
1420			BUG_ON(!path->dentry->d_op);
1421			BUG_ON(!path->dentry->d_op->d_manage);
1422			ret = path->dentry->d_op->d_manage(path, false);
1423			if (ret < 0)
1424				return ret == -EISDIR ? 0 : ret;
1425		}
1426
1427		/* Transit to a mounted filesystem. */
1428		if (managed & DCACHE_MOUNTED) {
1429			struct vfsmount *mounted = lookup_mnt(path);
1430			if (!mounted)
1431				break;
1432			dput(path->dentry);
1433			mntput(path->mnt);
1434			path->mnt = mounted;
1435			path->dentry = dget(mounted->mnt_root);
1436			continue;
1437		}
1438
1439		/* Don't handle automount points here */
1440		break;
1441	}
1442	return 0;
1443}
1444EXPORT_SYMBOL(follow_down);
1445
1446/*
1447 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1448 */
1449static void follow_mount(struct path *path)
1450{
1451	while (d_mountpoint(path->dentry)) {
1452		struct vfsmount *mounted = lookup_mnt(path);
1453		if (!mounted)
1454			break;
1455		dput(path->dentry);
1456		mntput(path->mnt);
1457		path->mnt = mounted;
1458		path->dentry = dget(mounted->mnt_root);
1459	}
1460}
1461
1462static int path_parent_directory(struct path *path)
1463{
1464	struct dentry *old = path->dentry;
1465	/* rare case of legitimate dget_parent()... */
1466	path->dentry = dget_parent(path->dentry);
1467	dput(old);
1468	if (unlikely(!path_connected(path)))
1469		return -ENOENT;
1470	return 0;
1471}
1472
1473static int follow_dotdot(struct nameidata *nd)
1474{
1475	while(1) {
1476		if (path_equal(&nd->path, &nd->root))
 
1477			break;
 
1478		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1479			int ret = path_parent_directory(&nd->path);
1480			if (ret)
1481				return ret;
1482			break;
1483		}
1484		if (!follow_up(&nd->path))
1485			break;
1486	}
1487	follow_mount(&nd->path);
1488	nd->inode = nd->path.dentry->d_inode;
1489	return 0;
1490}
1491
1492/*
1493 * This looks up the name in dcache and possibly revalidates the found dentry.
1494 * NULL is returned if the dentry does not exist in the cache.
1495 */
1496static struct dentry *lookup_dcache(const struct qstr *name,
1497				    struct dentry *dir,
1498				    unsigned int flags)
1499{
1500	struct dentry *dentry = d_lookup(dir, name);
 
 
 
1501	if (dentry) {
1502		int error = d_revalidate(dentry, flags);
1503		if (unlikely(error <= 0)) {
1504			if (!error)
1505				d_invalidate(dentry);
1506			dput(dentry);
1507			return ERR_PTR(error);
 
 
1508		}
1509	}
1510	return dentry;
1511}
1512
1513/*
1514 * Parent directory has inode locked exclusive.  This is one
1515 * and only case when ->lookup() gets called on non in-lookup
1516 * dentries - as the matter of fact, this only gets called
1517 * when directory is guaranteed to have no in-lookup children
1518 * at all.
1519 */
1520static struct dentry *__lookup_hash(const struct qstr *name,
1521		struct dentry *base, unsigned int flags)
1522{
1523	struct dentry *dentry = lookup_dcache(name, base, flags);
1524	struct dentry *old;
1525	struct inode *dir = base->d_inode;
1526
1527	if (dentry)
1528		return dentry;
1529
1530	/* Don't create child dentry for a dead directory. */
1531	if (unlikely(IS_DEADDIR(dir)))
 
1532		return ERR_PTR(-ENOENT);
1533
1534	dentry = d_alloc(base, name);
1535	if (unlikely(!dentry))
1536		return ERR_PTR(-ENOMEM);
1537
1538	old = dir->i_op->lookup(dir, dentry, flags);
1539	if (unlikely(old)) {
1540		dput(dentry);
1541		dentry = old;
1542	}
1543	return dentry;
1544}
1545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1546static int lookup_fast(struct nameidata *nd,
1547		       struct path *path, struct inode **inode,
1548		       unsigned *seqp)
1549{
1550	struct vfsmount *mnt = nd->path.mnt;
1551	struct dentry *dentry, *parent = nd->path.dentry;
1552	int status = 1;
1553	int err;
1554
1555	/*
1556	 * Rename seqlock is not required here because in the off chance
1557	 * of a false negative due to a concurrent rename, the caller is
1558	 * going to fall back to non-racy lookup.
1559	 */
1560	if (nd->flags & LOOKUP_RCU) {
1561		unsigned seq;
1562		bool negative;
1563		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1564		if (unlikely(!dentry)) {
1565			if (unlazy_walk(nd))
1566				return -ECHILD;
1567			return 0;
1568		}
1569
1570		/*
1571		 * This sequence count validates that the inode matches
1572		 * the dentry name information from lookup.
1573		 */
1574		*inode = d_backing_inode(dentry);
1575		negative = d_is_negative(dentry);
1576		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1577			return -ECHILD;
1578
1579		/*
1580		 * This sequence count validates that the parent had no
1581		 * changes while we did the lookup of the dentry above.
1582		 *
1583		 * The memory barrier in read_seqcount_begin of child is
1584		 *  enough, we can use __read_seqcount_retry here.
1585		 */
1586		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1587			return -ECHILD;
1588
1589		*seqp = seq;
1590		status = d_revalidate(dentry, nd->flags);
1591		if (likely(status > 0)) {
 
 
 
 
 
 
1592			/*
1593			 * Note: do negative dentry check after revalidation in
1594			 * case that drops it.
1595			 */
1596			if (unlikely(negative))
1597				return -ENOENT;
1598			path->mnt = mnt;
1599			path->dentry = dentry;
1600			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1601				return 1;
 
 
1602		}
1603		if (unlazy_child(nd, dentry, seq))
1604			return -ECHILD;
1605		if (unlikely(status == -ECHILD))
1606			/* we'd been told to redo it in non-rcu mode */
1607			status = d_revalidate(dentry, nd->flags);
1608	} else {
1609		dentry = __d_lookup(parent, &nd->last);
1610		if (unlikely(!dentry))
1611			return 0;
1612		status = d_revalidate(dentry, nd->flags);
 
1613	}
1614	if (unlikely(status <= 0)) {
1615		if (!status)
1616			d_invalidate(dentry);
1617		dput(dentry);
1618		return status;
1619	}
1620	if (unlikely(d_is_negative(dentry))) {
1621		dput(dentry);
1622		return -ENOENT;
1623	}
1624
1625	path->mnt = mnt;
1626	path->dentry = dentry;
1627	err = follow_managed(path, nd);
1628	if (likely(err > 0))
1629		*inode = d_backing_inode(path->dentry);
1630	return err;
1631}
1632
1633/* Fast lookup failed, do it the slow way */
1634static struct dentry *__lookup_slow(const struct qstr *name,
1635				    struct dentry *dir,
1636				    unsigned int flags)
1637{
1638	struct dentry *dentry, *old;
1639	struct inode *inode = dir->d_inode;
1640	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1641
 
1642	/* Don't go there if it's already dead */
1643	if (unlikely(IS_DEADDIR(inode)))
1644		return ERR_PTR(-ENOENT);
1645again:
1646	dentry = d_alloc_parallel(dir, name, &wq);
1647	if (IS_ERR(dentry))
1648		return dentry;
1649	if (unlikely(!d_in_lookup(dentry))) {
1650		if (!(flags & LOOKUP_NO_REVAL)) {
 
1651			int error = d_revalidate(dentry, flags);
1652			if (unlikely(error <= 0)) {
1653				if (!error) {
1654					d_invalidate(dentry);
1655					dput(dentry);
1656					goto again;
1657				}
1658				dput(dentry);
1659				dentry = ERR_PTR(error);
1660			}
1661		}
1662	} else {
1663		old = inode->i_op->lookup(inode, dentry, flags);
1664		d_lookup_done(dentry);
1665		if (unlikely(old)) {
1666			dput(dentry);
1667			dentry = old;
1668		}
1669	}
1670	return dentry;
1671}
1672
1673static struct dentry *lookup_slow(const struct qstr *name,
1674				  struct dentry *dir,
1675				  unsigned int flags)
1676{
1677	struct inode *inode = dir->d_inode;
1678	struct dentry *res;
1679	inode_lock_shared(inode);
1680	res = __lookup_slow(name, dir, flags);
1681	inode_unlock_shared(inode);
1682	return res;
1683}
1684
1685static inline int may_lookup(struct nameidata *nd)
1686{
1687	if (nd->flags & LOOKUP_RCU) {
1688		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1689		if (err != -ECHILD)
1690			return err;
1691		if (unlazy_walk(nd))
1692			return -ECHILD;
1693	}
1694	return inode_permission(nd->inode, MAY_EXEC);
1695}
1696
1697static inline int handle_dots(struct nameidata *nd, int type)
1698{
1699	if (type == LAST_DOTDOT) {
1700		if (!nd->root.mnt)
1701			set_root(nd);
1702		if (nd->flags & LOOKUP_RCU) {
1703			return follow_dotdot_rcu(nd);
1704		} else
1705			return follow_dotdot(nd);
1706	}
1707	return 0;
1708}
1709
1710static int pick_link(struct nameidata *nd, struct path *link,
1711		     struct inode *inode, unsigned seq)
1712{
1713	int error;
1714	struct saved *last;
1715	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1716		path_to_nameidata(link, nd);
1717		return -ELOOP;
1718	}
1719	if (!(nd->flags & LOOKUP_RCU)) {
1720		if (link->mnt == nd->path.mnt)
1721			mntget(link->mnt);
1722	}
1723	error = nd_alloc_stack(nd);
1724	if (unlikely(error)) {
1725		if (error == -ECHILD) {
1726			if (unlikely(!legitimize_path(nd, link, seq))) {
1727				drop_links(nd);
1728				nd->depth = 0;
1729				nd->flags &= ~LOOKUP_RCU;
1730				nd->path.mnt = NULL;
1731				nd->path.dentry = NULL;
1732				rcu_read_unlock();
1733			} else if (likely(unlazy_walk(nd)) == 0)
1734				error = nd_alloc_stack(nd);
1735		}
1736		if (error) {
1737			path_put(link);
1738			return error;
1739		}
1740	}
1741
1742	last = nd->stack + nd->depth++;
1743	last->link = *link;
1744	clear_delayed_call(&last->done);
1745	nd->link_inode = inode;
1746	last->seq = seq;
1747	return 1;
1748}
1749
1750enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1751
1752/*
1753 * Do we need to follow links? We _really_ want to be able
1754 * to do this check without having to look at inode->i_op,
1755 * so we keep a cache of "no, this doesn't need follow_link"
1756 * for the common case.
1757 */
1758static inline int step_into(struct nameidata *nd, struct path *path,
1759			    int flags, struct inode *inode, unsigned seq)
1760{
1761	if (!(flags & WALK_MORE) && nd->depth)
1762		put_link(nd);
1763	if (likely(!d_is_symlink(path->dentry)) ||
1764	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1765		/* not a symlink or should not follow */
1766		path_to_nameidata(path, nd);
1767		nd->inode = inode;
1768		nd->seq = seq;
1769		return 0;
1770	}
1771	/* make sure that d_is_symlink above matches inode */
1772	if (nd->flags & LOOKUP_RCU) {
1773		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1774			return -ECHILD;
1775	}
1776	return pick_link(nd, path, inode, seq);
1777}
1778
1779static int walk_component(struct nameidata *nd, int flags)
1780{
1781	struct path path;
1782	struct inode *inode;
1783	unsigned seq;
1784	int err;
1785	/*
1786	 * "." and ".." are special - ".." especially so because it has
1787	 * to be able to know about the current root directory and
1788	 * parent relationships.
1789	 */
1790	if (unlikely(nd->last_type != LAST_NORM)) {
1791		err = handle_dots(nd, nd->last_type);
1792		if (!(flags & WALK_MORE) && nd->depth)
1793			put_link(nd);
1794		return err;
1795	}
1796	err = lookup_fast(nd, &path, &inode, &seq);
1797	if (unlikely(err <= 0)) {
1798		if (err < 0)
1799			return err;
1800		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1801					  nd->flags);
1802		if (IS_ERR(path.dentry))
1803			return PTR_ERR(path.dentry);
1804
1805		path.mnt = nd->path.mnt;
1806		err = follow_managed(&path, nd);
1807		if (unlikely(err < 0))
1808			return err;
1809
1810		if (unlikely(d_is_negative(path.dentry))) {
1811			path_to_nameidata(&path, nd);
1812			return -ENOENT;
1813		}
1814
1815		seq = 0;	/* we are already out of RCU mode */
1816		inode = d_backing_inode(path.dentry);
1817	}
1818
1819	return step_into(nd, &path, flags, inode, seq);
1820}
1821
1822/*
1823 * We can do the critical dentry name comparison and hashing
1824 * operations one word at a time, but we are limited to:
1825 *
1826 * - Architectures with fast unaligned word accesses. We could
1827 *   do a "get_unaligned()" if this helps and is sufficiently
1828 *   fast.
1829 *
1830 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1831 *   do not trap on the (extremely unlikely) case of a page
1832 *   crossing operation.
1833 *
1834 * - Furthermore, we need an efficient 64-bit compile for the
1835 *   64-bit case in order to generate the "number of bytes in
1836 *   the final mask". Again, that could be replaced with a
1837 *   efficient population count instruction or similar.
1838 */
1839#ifdef CONFIG_DCACHE_WORD_ACCESS
1840
1841#include <asm/word-at-a-time.h>
1842
1843#ifdef HASH_MIX
1844
1845/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1846
1847#elif defined(CONFIG_64BIT)
1848/*
1849 * Register pressure in the mixing function is an issue, particularly
1850 * on 32-bit x86, but almost any function requires one state value and
1851 * one temporary.  Instead, use a function designed for two state values
1852 * and no temporaries.
1853 *
1854 * This function cannot create a collision in only two iterations, so
1855 * we have two iterations to achieve avalanche.  In those two iterations,
1856 * we have six layers of mixing, which is enough to spread one bit's
1857 * influence out to 2^6 = 64 state bits.
1858 *
1859 * Rotate constants are scored by considering either 64 one-bit input
1860 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1861 * probability of that delta causing a change to each of the 128 output
1862 * bits, using a sample of random initial states.
1863 *
1864 * The Shannon entropy of the computed probabilities is then summed
1865 * to produce a score.  Ideally, any input change has a 50% chance of
1866 * toggling any given output bit.
1867 *
1868 * Mixing scores (in bits) for (12,45):
1869 * Input delta: 1-bit      2-bit
1870 * 1 round:     713.3    42542.6
1871 * 2 rounds:   2753.7   140389.8
1872 * 3 rounds:   5954.1   233458.2
1873 * 4 rounds:   7862.6   256672.2
1874 * Perfect:    8192     258048
1875 *            (64*128) (64*63/2 * 128)
1876 */
1877#define HASH_MIX(x, y, a)	\
1878	(	x ^= (a),	\
1879	y ^= x,	x = rol64(x,12),\
1880	x += y,	y = rol64(y,45),\
1881	y *= 9			)
1882
1883/*
1884 * Fold two longs into one 32-bit hash value.  This must be fast, but
1885 * latency isn't quite as critical, as there is a fair bit of additional
1886 * work done before the hash value is used.
1887 */
1888static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1889{
1890	y ^= x * GOLDEN_RATIO_64;
1891	y *= GOLDEN_RATIO_64;
1892	return y >> 32;
1893}
1894
1895#else	/* 32-bit case */
1896
1897/*
1898 * Mixing scores (in bits) for (7,20):
1899 * Input delta: 1-bit      2-bit
1900 * 1 round:     330.3     9201.6
1901 * 2 rounds:   1246.4    25475.4
1902 * 3 rounds:   1907.1    31295.1
1903 * 4 rounds:   2042.3    31718.6
1904 * Perfect:    2048      31744
1905 *            (32*64)   (32*31/2 * 64)
1906 */
1907#define HASH_MIX(x, y, a)	\
1908	(	x ^= (a),	\
1909	y ^= x,	x = rol32(x, 7),\
1910	x += y,	y = rol32(y,20),\
1911	y *= 9			)
1912
1913static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1914{
1915	/* Use arch-optimized multiply if one exists */
1916	return __hash_32(y ^ __hash_32(x));
1917}
1918
1919#endif
1920
1921/*
1922 * Return the hash of a string of known length.  This is carfully
1923 * designed to match hash_name(), which is the more critical function.
1924 * In particular, we must end by hashing a final word containing 0..7
1925 * payload bytes, to match the way that hash_name() iterates until it
1926 * finds the delimiter after the name.
1927 */
1928unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1929{
1930	unsigned long a, x = 0, y = (unsigned long)salt;
1931
1932	for (;;) {
1933		if (!len)
1934			goto done;
1935		a = load_unaligned_zeropad(name);
1936		if (len < sizeof(unsigned long))
1937			break;
1938		HASH_MIX(x, y, a);
1939		name += sizeof(unsigned long);
1940		len -= sizeof(unsigned long);
1941	}
1942	x ^= a & bytemask_from_count(len);
1943done:
1944	return fold_hash(x, y);
1945}
1946EXPORT_SYMBOL(full_name_hash);
1947
1948/* Return the "hash_len" (hash and length) of a null-terminated string */
1949u64 hashlen_string(const void *salt, const char *name)
1950{
1951	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1952	unsigned long adata, mask, len;
1953	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1954
1955	len = 0;
1956	goto inside;
1957
1958	do {
1959		HASH_MIX(x, y, a);
1960		len += sizeof(unsigned long);
1961inside:
1962		a = load_unaligned_zeropad(name+len);
1963	} while (!has_zero(a, &adata, &constants));
1964
1965	adata = prep_zero_mask(a, adata, &constants);
1966	mask = create_zero_mask(adata);
1967	x ^= a & zero_bytemask(mask);
1968
1969	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1970}
1971EXPORT_SYMBOL(hashlen_string);
1972
1973/*
1974 * Calculate the length and hash of the path component, and
1975 * return the "hash_len" as the result.
1976 */
1977static inline u64 hash_name(const void *salt, const char *name)
1978{
1979	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1980	unsigned long adata, bdata, mask, len;
1981	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1982
1983	len = 0;
1984	goto inside;
1985
1986	do {
1987		HASH_MIX(x, y, a);
1988		len += sizeof(unsigned long);
1989inside:
1990		a = load_unaligned_zeropad(name+len);
1991		b = a ^ REPEAT_BYTE('/');
1992	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1993
1994	adata = prep_zero_mask(a, adata, &constants);
1995	bdata = prep_zero_mask(b, bdata, &constants);
1996	mask = create_zero_mask(adata | bdata);
1997	x ^= a & zero_bytemask(mask);
1998
1999	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2000}
2001
2002#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2003
2004/* Return the hash of a string of known length */
2005unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2006{
2007	unsigned long hash = init_name_hash(salt);
2008	while (len--)
2009		hash = partial_name_hash((unsigned char)*name++, hash);
2010	return end_name_hash(hash);
2011}
2012EXPORT_SYMBOL(full_name_hash);
2013
2014/* Return the "hash_len" (hash and length) of a null-terminated string */
2015u64 hashlen_string(const void *salt, const char *name)
2016{
2017	unsigned long hash = init_name_hash(salt);
2018	unsigned long len = 0, c;
2019
2020	c = (unsigned char)*name;
2021	while (c) {
2022		len++;
2023		hash = partial_name_hash(c, hash);
2024		c = (unsigned char)name[len];
2025	}
2026	return hashlen_create(end_name_hash(hash), len);
2027}
2028EXPORT_SYMBOL(hashlen_string);
2029
2030/*
2031 * We know there's a real path component here of at least
2032 * one character.
2033 */
2034static inline u64 hash_name(const void *salt, const char *name)
2035{
2036	unsigned long hash = init_name_hash(salt);
2037	unsigned long len = 0, c;
2038
2039	c = (unsigned char)*name;
2040	do {
2041		len++;
2042		hash = partial_name_hash(c, hash);
2043		c = (unsigned char)name[len];
2044	} while (c && c != '/');
2045	return hashlen_create(end_name_hash(hash), len);
2046}
2047
2048#endif
2049
2050/*
2051 * Name resolution.
2052 * This is the basic name resolution function, turning a pathname into
2053 * the final dentry. We expect 'base' to be positive and a directory.
2054 *
2055 * Returns 0 and nd will have valid dentry and mnt on success.
2056 * Returns error and drops reference to input namei data on failure.
2057 */
2058static int link_path_walk(const char *name, struct nameidata *nd)
2059{
2060	int err;
2061
2062	if (IS_ERR(name))
2063		return PTR_ERR(name);
2064	while (*name=='/')
2065		name++;
2066	if (!*name)
2067		return 0;
2068
2069	/* At this point we know we have a real path component. */
2070	for(;;) {
2071		u64 hash_len;
2072		int type;
2073
2074		err = may_lookup(nd);
2075		if (err)
2076			return err;
2077
2078		hash_len = hash_name(nd->path.dentry, name);
2079
2080		type = LAST_NORM;
2081		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2082			case 2:
2083				if (name[1] == '.') {
2084					type = LAST_DOTDOT;
2085					nd->flags |= LOOKUP_JUMPED;
2086				}
2087				break;
2088			case 1:
2089				type = LAST_DOT;
2090		}
2091		if (likely(type == LAST_NORM)) {
2092			struct dentry *parent = nd->path.dentry;
2093			nd->flags &= ~LOOKUP_JUMPED;
2094			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2095				struct qstr this = { { .hash_len = hash_len }, .name = name };
2096				err = parent->d_op->d_hash(parent, &this);
2097				if (err < 0)
2098					return err;
2099				hash_len = this.hash_len;
2100				name = this.name;
2101			}
2102		}
2103
2104		nd->last.hash_len = hash_len;
2105		nd->last.name = name;
2106		nd->last_type = type;
2107
2108		name += hashlen_len(hash_len);
2109		if (!*name)
2110			goto OK;
2111		/*
2112		 * If it wasn't NUL, we know it was '/'. Skip that
2113		 * slash, and continue until no more slashes.
2114		 */
2115		do {
2116			name++;
2117		} while (unlikely(*name == '/'));
2118		if (unlikely(!*name)) {
2119OK:
2120			/* pathname body, done */
2121			if (!nd->depth)
2122				return 0;
2123			name = nd->stack[nd->depth - 1].name;
2124			/* trailing symlink, done */
2125			if (!name)
2126				return 0;
2127			/* last component of nested symlink */
2128			err = walk_component(nd, WALK_FOLLOW);
2129		} else {
2130			/* not the last component */
2131			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2132		}
2133		if (err < 0)
2134			return err;
2135
2136		if (err) {
2137			const char *s = get_link(nd);
2138
2139			if (IS_ERR(s))
2140				return PTR_ERR(s);
2141			err = 0;
2142			if (unlikely(!s)) {
2143				/* jumped */
2144				put_link(nd);
2145			} else {
2146				nd->stack[nd->depth - 1].name = name;
2147				name = s;
2148				continue;
2149			}
2150		}
2151		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2152			if (nd->flags & LOOKUP_RCU) {
2153				if (unlazy_walk(nd))
2154					return -ECHILD;
2155			}
2156			return -ENOTDIR;
2157		}
2158	}
2159}
2160
2161/* must be paired with terminate_walk() */
2162static const char *path_init(struct nameidata *nd, unsigned flags)
2163{
 
2164	const char *s = nd->name->name;
2165
2166	if (!*s)
2167		flags &= ~LOOKUP_RCU;
2168	if (flags & LOOKUP_RCU)
2169		rcu_read_lock();
2170
2171	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2172	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2173	nd->depth = 0;
2174	if (flags & LOOKUP_ROOT) {
2175		struct dentry *root = nd->root.dentry;
2176		struct inode *inode = root->d_inode;
2177		if (*s && unlikely(!d_can_lookup(root)))
2178			return ERR_PTR(-ENOTDIR);
 
 
 
 
 
2179		nd->path = nd->root;
2180		nd->inode = inode;
2181		if (flags & LOOKUP_RCU) {
 
2182			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2183			nd->root_seq = nd->seq;
2184			nd->m_seq = read_seqbegin(&mount_lock);
2185		} else {
2186			path_get(&nd->path);
2187		}
2188		return s;
2189	}
2190
2191	nd->root.mnt = NULL;
2192	nd->path.mnt = NULL;
2193	nd->path.dentry = NULL;
2194
2195	nd->m_seq = read_seqbegin(&mount_lock);
2196	if (*s == '/') {
 
 
2197		set_root(nd);
2198		if (likely(!nd_jump_root(nd)))
2199			return s;
 
 
2200		return ERR_PTR(-ECHILD);
2201	} else if (nd->dfd == AT_FDCWD) {
2202		if (flags & LOOKUP_RCU) {
2203			struct fs_struct *fs = current->fs;
2204			unsigned seq;
2205
 
 
2206			do {
2207				seq = read_seqcount_begin(&fs->seq);
2208				nd->path = fs->pwd;
2209				nd->inode = nd->path.dentry->d_inode;
2210				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2211			} while (read_seqcount_retry(&fs->seq, seq));
2212		} else {
2213			get_fs_pwd(current->fs, &nd->path);
2214			nd->inode = nd->path.dentry->d_inode;
2215		}
2216		return s;
2217	} else {
2218		/* Caller must check execute permissions on the starting path component */
2219		struct fd f = fdget_raw(nd->dfd);
2220		struct dentry *dentry;
2221
2222		if (!f.file)
2223			return ERR_PTR(-EBADF);
2224
2225		dentry = f.file->f_path.dentry;
2226
2227		if (*s && unlikely(!d_can_lookup(dentry))) {
2228			fdput(f);
2229			return ERR_PTR(-ENOTDIR);
 
 
2230		}
2231
2232		nd->path = f.file->f_path;
2233		if (flags & LOOKUP_RCU) {
 
2234			nd->inode = nd->path.dentry->d_inode;
2235			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2236		} else {
2237			path_get(&nd->path);
2238			nd->inode = nd->path.dentry->d_inode;
2239		}
2240		fdput(f);
2241		return s;
2242	}
2243}
2244
2245static const char *trailing_symlink(struct nameidata *nd)
2246{
2247	const char *s;
2248	int error = may_follow_link(nd);
2249	if (unlikely(error))
2250		return ERR_PTR(error);
2251	nd->flags |= LOOKUP_PARENT;
2252	nd->stack[0].name = NULL;
2253	s = get_link(nd);
2254	return s ? s : "";
2255}
2256
2257static inline int lookup_last(struct nameidata *nd)
2258{
2259	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2260		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2261
2262	nd->flags &= ~LOOKUP_PARENT;
2263	return walk_component(nd, 0);
2264}
2265
2266static int handle_lookup_down(struct nameidata *nd)
2267{
2268	struct path path = nd->path;
2269	struct inode *inode = nd->inode;
2270	unsigned seq = nd->seq;
2271	int err;
2272
2273	if (nd->flags & LOOKUP_RCU) {
2274		/*
2275		 * don't bother with unlazy_walk on failure - we are
2276		 * at the very beginning of walk, so we lose nothing
2277		 * if we simply redo everything in non-RCU mode
2278		 */
2279		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2280			return -ECHILD;
2281	} else {
2282		dget(path.dentry);
2283		err = follow_managed(&path, nd);
2284		if (unlikely(err < 0))
2285			return err;
2286		inode = d_backing_inode(path.dentry);
2287		seq = 0;
2288	}
2289	path_to_nameidata(&path, nd);
2290	nd->inode = inode;
2291	nd->seq = seq;
2292	return 0;
2293}
2294
2295/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2296static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2297{
2298	const char *s = path_init(nd, flags);
2299	int err;
2300
2301	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2302		err = handle_lookup_down(nd);
2303		if (unlikely(err < 0))
2304			s = ERR_PTR(err);
2305	}
2306
2307	while (!(err = link_path_walk(s, nd))
2308		&& ((err = lookup_last(nd)) > 0)) {
2309		s = trailing_symlink(nd);
 
 
 
 
2310	}
2311	if (!err)
2312		err = complete_walk(nd);
2313
2314	if (!err && nd->flags & LOOKUP_DIRECTORY)
2315		if (!d_can_lookup(nd->path.dentry))
2316			err = -ENOTDIR;
2317	if (!err) {
2318		*path = nd->path;
2319		nd->path.mnt = NULL;
2320		nd->path.dentry = NULL;
2321	}
2322	terminate_walk(nd);
2323	return err;
2324}
2325
2326int filename_lookup(int dfd, struct filename *name, unsigned flags,
2327		    struct path *path, struct path *root)
2328{
2329	int retval;
2330	struct nameidata nd;
2331	if (IS_ERR(name))
2332		return PTR_ERR(name);
2333	if (unlikely(root)) {
2334		nd.root = *root;
2335		flags |= LOOKUP_ROOT;
2336	}
2337	set_nameidata(&nd, dfd, name);
2338	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2339	if (unlikely(retval == -ECHILD))
2340		retval = path_lookupat(&nd, flags, path);
2341	if (unlikely(retval == -ESTALE))
2342		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2343
2344	if (likely(!retval))
2345		audit_inode(name, path->dentry, 0);
2346	restore_nameidata();
2347	putname(name);
2348	return retval;
2349}
2350
2351/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2352static int path_parentat(struct nameidata *nd, unsigned flags,
2353				struct path *parent)
2354{
2355	const char *s = path_init(nd, flags);
2356	int err = link_path_walk(s, nd);
 
 
 
2357	if (!err)
2358		err = complete_walk(nd);
2359	if (!err) {
2360		*parent = nd->path;
2361		nd->path.mnt = NULL;
2362		nd->path.dentry = NULL;
2363	}
2364	terminate_walk(nd);
2365	return err;
2366}
2367
2368static struct filename *filename_parentat(int dfd, struct filename *name,
2369				unsigned int flags, struct path *parent,
2370				struct qstr *last, int *type)
2371{
2372	int retval;
2373	struct nameidata nd;
2374
2375	if (IS_ERR(name))
2376		return name;
2377	set_nameidata(&nd, dfd, name);
2378	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2379	if (unlikely(retval == -ECHILD))
2380		retval = path_parentat(&nd, flags, parent);
2381	if (unlikely(retval == -ESTALE))
2382		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2383	if (likely(!retval)) {
2384		*last = nd.last;
2385		*type = nd.last_type;
2386		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2387	} else {
2388		putname(name);
2389		name = ERR_PTR(retval);
2390	}
2391	restore_nameidata();
2392	return name;
2393}
2394
2395/* does lookup, returns the object with parent locked */
2396struct dentry *kern_path_locked(const char *name, struct path *path)
2397{
2398	struct filename *filename;
2399	struct dentry *d;
2400	struct qstr last;
2401	int type;
2402
2403	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2404				    &last, &type);
2405	if (IS_ERR(filename))
2406		return ERR_CAST(filename);
2407	if (unlikely(type != LAST_NORM)) {
2408		path_put(path);
2409		putname(filename);
2410		return ERR_PTR(-EINVAL);
2411	}
2412	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2413	d = __lookup_hash(&last, path->dentry, 0);
2414	if (IS_ERR(d)) {
2415		inode_unlock(path->dentry->d_inode);
2416		path_put(path);
2417	}
2418	putname(filename);
2419	return d;
2420}
2421
2422int kern_path(const char *name, unsigned int flags, struct path *path)
2423{
2424	return filename_lookup(AT_FDCWD, getname_kernel(name),
2425			       flags, path, NULL);
2426}
2427EXPORT_SYMBOL(kern_path);
2428
2429/**
2430 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2431 * @dentry:  pointer to dentry of the base directory
2432 * @mnt: pointer to vfs mount of the base directory
2433 * @name: pointer to file name
2434 * @flags: lookup flags
2435 * @path: pointer to struct path to fill
2436 */
2437int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2438		    const char *name, unsigned int flags,
2439		    struct path *path)
2440{
2441	struct path root = {.mnt = mnt, .dentry = dentry};
2442	/* the first argument of filename_lookup() is ignored with root */
2443	return filename_lookup(AT_FDCWD, getname_kernel(name),
2444			       flags , path, &root);
2445}
2446EXPORT_SYMBOL(vfs_path_lookup);
2447
2448static int lookup_one_len_common(const char *name, struct dentry *base,
2449				 int len, struct qstr *this)
2450{
2451	this->name = name;
2452	this->len = len;
2453	this->hash = full_name_hash(base, name, len);
2454	if (!len)
2455		return -EACCES;
2456
2457	if (unlikely(name[0] == '.')) {
2458		if (len < 2 || (len == 2 && name[1] == '.'))
2459			return -EACCES;
2460	}
2461
2462	while (len--) {
2463		unsigned int c = *(const unsigned char *)name++;
2464		if (c == '/' || c == '\0')
2465			return -EACCES;
2466	}
2467	/*
2468	 * See if the low-level filesystem might want
2469	 * to use its own hash..
2470	 */
2471	if (base->d_flags & DCACHE_OP_HASH) {
2472		int err = base->d_op->d_hash(base, this);
2473		if (err < 0)
2474			return err;
2475	}
2476
2477	return inode_permission(base->d_inode, MAY_EXEC);
2478}
2479
2480/**
2481 * try_lookup_one_len - filesystem helper to lookup single pathname component
2482 * @name:	pathname component to lookup
2483 * @base:	base directory to lookup from
2484 * @len:	maximum length @len should be interpreted to
2485 *
2486 * Look up a dentry by name in the dcache, returning NULL if it does not
2487 * currently exist.  The function does not try to create a dentry.
2488 *
2489 * Note that this routine is purely a helper for filesystem usage and should
2490 * not be called by generic code.
2491 *
2492 * The caller must hold base->i_mutex.
2493 */
2494struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2495{
2496	struct qstr this;
 
2497	int err;
2498
2499	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2500
2501	err = lookup_one_len_common(name, base, len, &this);
2502	if (err)
2503		return ERR_PTR(err);
2504
2505	return lookup_dcache(&this, base, 0);
2506}
2507EXPORT_SYMBOL(try_lookup_one_len);
2508
2509/**
2510 * lookup_one_len - filesystem helper to lookup single pathname component
2511 * @name:	pathname component to lookup
2512 * @base:	base directory to lookup from
2513 * @len:	maximum length @len should be interpreted to
2514 *
2515 * Note that this routine is purely a helper for filesystem usage and should
2516 * not be called by generic code.
2517 *
2518 * The caller must hold base->i_mutex.
2519 */
2520struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2521{
2522	struct dentry *dentry;
2523	struct qstr this;
2524	int err;
2525
2526	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
2527
2528	err = lookup_one_len_common(name, base, len, &this);
2529	if (err)
2530		return ERR_PTR(err);
2531
2532	dentry = lookup_dcache(&this, base, 0);
2533	return dentry ? dentry : __lookup_slow(&this, base, 0);
2534}
2535EXPORT_SYMBOL(lookup_one_len);
2536
2537/**
2538 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2539 * @name:	pathname component to lookup
2540 * @base:	base directory to lookup from
2541 * @len:	maximum length @len should be interpreted to
2542 *
2543 * Note that this routine is purely a helper for filesystem usage and should
2544 * not be called by generic code.
2545 *
2546 * Unlike lookup_one_len, it should be called without the parent
2547 * i_mutex held, and will take the i_mutex itself if necessary.
2548 */
2549struct dentry *lookup_one_len_unlocked(const char *name,
2550				       struct dentry *base, int len)
2551{
2552	struct qstr this;
 
2553	int err;
2554	struct dentry *ret;
2555
2556	err = lookup_one_len_common(name, base, len, &this);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557	if (err)
2558		return ERR_PTR(err);
2559
2560	ret = lookup_dcache(&this, base, 0);
2561	if (!ret)
2562		ret = lookup_slow(&this, base, 0);
2563	return ret;
2564}
2565EXPORT_SYMBOL(lookup_one_len_unlocked);
2566
2567#ifdef CONFIG_UNIX98_PTYS
2568int path_pts(struct path *path)
2569{
2570	/* Find something mounted on "pts" in the same directory as
2571	 * the input path.
2572	 */
2573	struct dentry *child, *parent;
2574	struct qstr this;
2575	int ret;
2576
2577	ret = path_parent_directory(path);
2578	if (ret)
2579		return ret;
2580
2581	parent = path->dentry;
2582	this.name = "pts";
2583	this.len = 3;
2584	child = d_hash_and_lookup(parent, &this);
2585	if (!child)
2586		return -ENOENT;
2587
2588	path->dentry = child;
2589	dput(parent);
2590	follow_mount(path);
2591	return 0;
2592}
2593#endif
2594
2595int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2596		 struct path *path, int *empty)
2597{
2598	return filename_lookup(dfd, getname_flags(name, flags, empty),
2599			       flags, path, NULL);
2600}
2601EXPORT_SYMBOL(user_path_at_empty);
2602
2603/**
2604 * mountpoint_last - look up last component for umount
2605 * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2606 *
2607 * This is a special lookup_last function just for umount. In this case, we
2608 * need to resolve the path without doing any revalidation.
2609 *
2610 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2611 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2612 * in almost all cases, this lookup will be served out of the dcache. The only
2613 * cases where it won't are if nd->last refers to a symlink or the path is
2614 * bogus and it doesn't exist.
2615 *
2616 * Returns:
2617 * -error: if there was an error during lookup. This includes -ENOENT if the
2618 *         lookup found a negative dentry.
2619 *
2620 * 0:      if we successfully resolved nd->last and found it to not to be a
2621 *         symlink that needs to be followed.
2622 *
2623 * 1:      if we successfully resolved nd->last and found it to be a symlink
2624 *         that needs to be followed.
2625 */
2626static int
2627mountpoint_last(struct nameidata *nd)
2628{
2629	int error = 0;
2630	struct dentry *dir = nd->path.dentry;
2631	struct path path;
2632
2633	/* If we're in rcuwalk, drop out of it to handle last component */
2634	if (nd->flags & LOOKUP_RCU) {
2635		if (unlazy_walk(nd))
2636			return -ECHILD;
2637	}
2638
2639	nd->flags &= ~LOOKUP_PARENT;
2640
2641	if (unlikely(nd->last_type != LAST_NORM)) {
2642		error = handle_dots(nd, nd->last_type);
2643		if (error)
2644			return error;
2645		path.dentry = dget(nd->path.dentry);
2646	} else {
2647		path.dentry = d_lookup(dir, &nd->last);
2648		if (!path.dentry) {
2649			/*
2650			 * No cached dentry. Mounted dentries are pinned in the
2651			 * cache, so that means that this dentry is probably
2652			 * a symlink or the path doesn't actually point
2653			 * to a mounted dentry.
2654			 */
2655			path.dentry = lookup_slow(&nd->last, dir,
2656					     nd->flags | LOOKUP_NO_REVAL);
2657			if (IS_ERR(path.dentry))
2658				return PTR_ERR(path.dentry);
2659		}
2660	}
2661	if (d_is_negative(path.dentry)) {
2662		dput(path.dentry);
2663		return -ENOENT;
2664	}
2665	path.mnt = nd->path.mnt;
2666	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2667}
2668
2669/**
2670 * path_mountpoint - look up a path to be umounted
2671 * @nd:		lookup context
2672 * @flags:	lookup flags
2673 * @path:	pointer to container for result
2674 *
2675 * Look up the given name, but don't attempt to revalidate the last component.
2676 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2677 */
2678static int
2679path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2680{
2681	const char *s = path_init(nd, flags);
2682	int err;
2683
 
2684	while (!(err = link_path_walk(s, nd)) &&
2685		(err = mountpoint_last(nd)) > 0) {
2686		s = trailing_symlink(nd);
 
 
 
 
2687	}
2688	if (!err) {
2689		*path = nd->path;
2690		nd->path.mnt = NULL;
2691		nd->path.dentry = NULL;
2692		follow_mount(path);
2693	}
2694	terminate_walk(nd);
2695	return err;
2696}
2697
2698static int
2699filename_mountpoint(int dfd, struct filename *name, struct path *path,
2700			unsigned int flags)
2701{
2702	struct nameidata nd;
2703	int error;
2704	if (IS_ERR(name))
2705		return PTR_ERR(name);
2706	set_nameidata(&nd, dfd, name);
2707	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2708	if (unlikely(error == -ECHILD))
2709		error = path_mountpoint(&nd, flags, path);
2710	if (unlikely(error == -ESTALE))
2711		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2712	if (likely(!error))
2713		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2714	restore_nameidata();
2715	putname(name);
2716	return error;
2717}
2718
2719/**
2720 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2721 * @dfd:	directory file descriptor
2722 * @name:	pathname from userland
2723 * @flags:	lookup flags
2724 * @path:	pointer to container to hold result
2725 *
2726 * A umount is a special case for path walking. We're not actually interested
2727 * in the inode in this situation, and ESTALE errors can be a problem. We
2728 * simply want track down the dentry and vfsmount attached at the mountpoint
2729 * and avoid revalidating the last component.
2730 *
2731 * Returns 0 and populates "path" on success.
2732 */
2733int
2734user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2735			struct path *path)
2736{
2737	return filename_mountpoint(dfd, getname(name), path, flags);
2738}
2739
2740int
2741kern_path_mountpoint(int dfd, const char *name, struct path *path,
2742			unsigned int flags)
2743{
2744	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2745}
2746EXPORT_SYMBOL(kern_path_mountpoint);
2747
2748int __check_sticky(struct inode *dir, struct inode *inode)
2749{
2750	kuid_t fsuid = current_fsuid();
2751
2752	if (uid_eq(inode->i_uid, fsuid))
2753		return 0;
2754	if (uid_eq(dir->i_uid, fsuid))
2755		return 0;
2756	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2757}
2758EXPORT_SYMBOL(__check_sticky);
2759
2760/*
2761 *	Check whether we can remove a link victim from directory dir, check
2762 *  whether the type of victim is right.
2763 *  1. We can't do it if dir is read-only (done in permission())
2764 *  2. We should have write and exec permissions on dir
2765 *  3. We can't remove anything from append-only dir
2766 *  4. We can't do anything with immutable dir (done in permission())
2767 *  5. If the sticky bit on dir is set we should either
2768 *	a. be owner of dir, or
2769 *	b. be owner of victim, or
2770 *	c. have CAP_FOWNER capability
2771 *  6. If the victim is append-only or immutable we can't do antyhing with
2772 *     links pointing to it.
2773 *  7. If the victim has an unknown uid or gid we can't change the inode.
2774 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2775 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2776 * 10. We can't remove a root or mountpoint.
2777 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2778 *     nfs_async_unlink().
2779 */
2780static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2781{
2782	struct inode *inode = d_backing_inode(victim);
2783	int error;
2784
2785	if (d_is_negative(victim))
2786		return -ENOENT;
2787	BUG_ON(!inode);
2788
2789	BUG_ON(victim->d_parent->d_inode != dir);
2790
2791	/* Inode writeback is not safe when the uid or gid are invalid. */
2792	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2793		return -EOVERFLOW;
2794
2795	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2796
2797	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2798	if (error)
2799		return error;
2800	if (IS_APPEND(dir))
2801		return -EPERM;
2802
2803	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2804	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2805		return -EPERM;
2806	if (isdir) {
2807		if (!d_is_dir(victim))
2808			return -ENOTDIR;
2809		if (IS_ROOT(victim))
2810			return -EBUSY;
2811	} else if (d_is_dir(victim))
2812		return -EISDIR;
2813	if (IS_DEADDIR(dir))
2814		return -ENOENT;
2815	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2816		return -EBUSY;
2817	return 0;
2818}
2819
2820/*	Check whether we can create an object with dentry child in directory
2821 *  dir.
2822 *  1. We can't do it if child already exists (open has special treatment for
2823 *     this case, but since we are inlined it's OK)
2824 *  2. We can't do it if dir is read-only (done in permission())
2825 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2826 *  4. We should have write and exec permissions on dir
2827 *  5. We can't do it if dir is immutable (done in permission())
2828 */
2829static inline int may_create(struct inode *dir, struct dentry *child)
2830{
2831	struct user_namespace *s_user_ns;
2832	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2833	if (child->d_inode)
2834		return -EEXIST;
2835	if (IS_DEADDIR(dir))
2836		return -ENOENT;
2837	s_user_ns = dir->i_sb->s_user_ns;
2838	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2839	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2840		return -EOVERFLOW;
2841	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2842}
2843
2844/*
2845 * p1 and p2 should be directories on the same fs.
2846 */
2847struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2848{
2849	struct dentry *p;
2850
2851	if (p1 == p2) {
2852		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2853		return NULL;
2854	}
2855
2856	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2857
2858	p = d_ancestor(p2, p1);
2859	if (p) {
2860		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2861		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2862		return p;
2863	}
2864
2865	p = d_ancestor(p1, p2);
2866	if (p) {
2867		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2868		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2869		return p;
2870	}
2871
2872	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2873	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2874	return NULL;
2875}
2876EXPORT_SYMBOL(lock_rename);
2877
2878void unlock_rename(struct dentry *p1, struct dentry *p2)
2879{
2880	inode_unlock(p1->d_inode);
2881	if (p1 != p2) {
2882		inode_unlock(p2->d_inode);
2883		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2884	}
2885}
2886EXPORT_SYMBOL(unlock_rename);
2887
2888int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2889		bool want_excl)
2890{
2891	int error = may_create(dir, dentry);
2892	if (error)
2893		return error;
2894
2895	if (!dir->i_op->create)
2896		return -EACCES;	/* shouldn't it be ENOSYS? */
2897	mode &= S_IALLUGO;
2898	mode |= S_IFREG;
2899	error = security_inode_create(dir, dentry, mode);
2900	if (error)
2901		return error;
2902	error = dir->i_op->create(dir, dentry, mode, want_excl);
2903	if (!error)
2904		fsnotify_create(dir, dentry);
2905	return error;
2906}
2907EXPORT_SYMBOL(vfs_create);
2908
2909int vfs_mkobj(struct dentry *dentry, umode_t mode,
2910		int (*f)(struct dentry *, umode_t, void *),
2911		void *arg)
2912{
2913	struct inode *dir = dentry->d_parent->d_inode;
2914	int error = may_create(dir, dentry);
2915	if (error)
2916		return error;
2917
2918	mode &= S_IALLUGO;
2919	mode |= S_IFREG;
2920	error = security_inode_create(dir, dentry, mode);
2921	if (error)
2922		return error;
2923	error = f(dentry, mode, arg);
2924	if (!error)
2925		fsnotify_create(dir, dentry);
2926	return error;
2927}
2928EXPORT_SYMBOL(vfs_mkobj);
2929
2930bool may_open_dev(const struct path *path)
2931{
2932	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2933		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2934}
2935
2936static int may_open(const struct path *path, int acc_mode, int flag)
2937{
2938	struct dentry *dentry = path->dentry;
2939	struct inode *inode = dentry->d_inode;
2940	int error;
2941
2942	if (!inode)
2943		return -ENOENT;
2944
2945	switch (inode->i_mode & S_IFMT) {
2946	case S_IFLNK:
2947		return -ELOOP;
2948	case S_IFDIR:
2949		if (acc_mode & MAY_WRITE)
2950			return -EISDIR;
2951		break;
2952	case S_IFBLK:
2953	case S_IFCHR:
2954		if (!may_open_dev(path))
2955			return -EACCES;
2956		/*FALLTHRU*/
2957	case S_IFIFO:
2958	case S_IFSOCK:
2959		flag &= ~O_TRUNC;
2960		break;
2961	}
2962
2963	error = inode_permission(inode, MAY_OPEN | acc_mode);
2964	if (error)
2965		return error;
2966
2967	/*
2968	 * An append-only file must be opened in append mode for writing.
2969	 */
2970	if (IS_APPEND(inode)) {
2971		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2972			return -EPERM;
2973		if (flag & O_TRUNC)
2974			return -EPERM;
2975	}
2976
2977	/* O_NOATIME can only be set by the owner or superuser */
2978	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2979		return -EPERM;
2980
2981	return 0;
2982}
2983
2984static int handle_truncate(struct file *filp)
2985{
2986	const struct path *path = &filp->f_path;
2987	struct inode *inode = path->dentry->d_inode;
2988	int error = get_write_access(inode);
2989	if (error)
2990		return error;
2991	/*
2992	 * Refuse to truncate files with mandatory locks held on them.
2993	 */
2994	error = locks_verify_locked(filp);
2995	if (!error)
2996		error = security_path_truncate(path);
2997	if (!error) {
2998		error = do_truncate(path->dentry, 0,
2999				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3000				    filp);
3001	}
3002	put_write_access(inode);
3003	return error;
3004}
3005
3006static inline int open_to_namei_flags(int flag)
3007{
3008	if ((flag & O_ACCMODE) == 3)
3009		flag--;
3010	return flag;
3011}
3012
3013static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3014{
3015	struct user_namespace *s_user_ns;
3016	int error = security_path_mknod(dir, dentry, mode, 0);
3017	if (error)
3018		return error;
3019
3020	s_user_ns = dir->dentry->d_sb->s_user_ns;
3021	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3022	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3023		return -EOVERFLOW;
3024
3025	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3026	if (error)
3027		return error;
3028
3029	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3030}
3031
3032/*
3033 * Attempt to atomically look up, create and open a file from a negative
3034 * dentry.
3035 *
3036 * Returns 0 if successful.  The file will have been created and attached to
3037 * @file by the filesystem calling finish_open().
3038 *
3039 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3040 * be set.  The caller will need to perform the open themselves.  @path will
3041 * have been updated to point to the new dentry.  This may be negative.
3042 *
3043 * Returns an error code otherwise.
3044 */
3045static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3046			struct path *path, struct file *file,
3047			const struct open_flags *op,
3048			int open_flag, umode_t mode)
 
3049{
3050	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3051	struct inode *dir =  nd->path.dentry->d_inode;
3052	int error;
3053
3054	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3055		open_flag &= ~O_TRUNC;
3056
3057	if (nd->flags & LOOKUP_DIRECTORY)
3058		open_flag |= O_DIRECTORY;
3059
3060	file->f_path.dentry = DENTRY_NOT_SET;
3061	file->f_path.mnt = nd->path.mnt;
3062	error = dir->i_op->atomic_open(dir, dentry, file,
3063				       open_to_namei_flags(open_flag), mode);
 
3064	d_lookup_done(dentry);
3065	if (!error) {
3066		if (file->f_mode & FMODE_OPENED) {
3067			/*
3068			 * We didn't have the inode before the open, so check open
3069			 * permission here.
3070			 */
3071			int acc_mode = op->acc_mode;
3072			if (file->f_mode & FMODE_CREATED) {
3073				WARN_ON(!(open_flag & O_CREAT));
3074				fsnotify_create(dir, dentry);
3075				acc_mode = 0;
3076			}
3077			error = may_open(&file->f_path, acc_mode, open_flag);
3078			if (WARN_ON(error > 0))
3079				error = -EINVAL;
3080		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3081			error = -EIO;
3082		} else {
3083			if (file->f_path.dentry) {
3084				dput(dentry);
3085				dentry = file->f_path.dentry;
3086			}
3087			if (file->f_mode & FMODE_CREATED)
3088				fsnotify_create(dir, dentry);
3089			if (unlikely(d_is_negative(dentry))) {
3090				error = -ENOENT;
3091			} else {
3092				path->dentry = dentry;
3093				path->mnt = nd->path.mnt;
3094				return 0;
3095			}
3096		}
3097	}
3098	dput(dentry);
3099	return error;
3100}
3101
3102/*
3103 * Look up and maybe create and open the last component.
3104 *
3105 * Must be called with parent locked (exclusive in O_CREAT case).
 
 
 
 
 
 
 
 
3106 *
3107 * Returns 0 on success, that is, if
3108 *  the file was successfully atomically created (if necessary) and opened, or
3109 *  the file was not completely opened at this time, though lookups and
3110 *  creations were performed.
3111 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3112 * In the latter case dentry returned in @path might be negative if O_CREAT
3113 * hadn't been specified.
3114 *
3115 * An error code is returned on failure.
 
3116 */
3117static int lookup_open(struct nameidata *nd, struct path *path,
3118			struct file *file,
3119			const struct open_flags *op,
3120			bool got_write)
3121{
3122	struct dentry *dir = nd->path.dentry;
3123	struct inode *dir_inode = dir->d_inode;
3124	int open_flag = op->open_flag;
3125	struct dentry *dentry;
3126	int error, create_error = 0;
3127	umode_t mode = op->mode;
3128	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3129
3130	if (unlikely(IS_DEADDIR(dir_inode)))
3131		return -ENOENT;
3132
3133	file->f_mode &= ~FMODE_CREATED;
3134	dentry = d_lookup(dir, &nd->last);
3135	for (;;) {
3136		if (!dentry) {
3137			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3138			if (IS_ERR(dentry))
3139				return PTR_ERR(dentry);
3140		}
3141		if (d_in_lookup(dentry))
3142			break;
3143
 
 
 
3144		error = d_revalidate(dentry, nd->flags);
3145		if (likely(error > 0))
3146			break;
3147		if (error)
3148			goto out_dput;
3149		d_invalidate(dentry);
3150		dput(dentry);
3151		dentry = NULL;
3152	}
3153	if (dentry->d_inode) {
3154		/* Cached positive dentry: will open in f_op->open */
3155		goto out_no_open;
3156	}
3157
3158	/*
3159	 * Checking write permission is tricky, bacuse we don't know if we are
3160	 * going to actually need it: O_CREAT opens should work as long as the
3161	 * file exists.  But checking existence breaks atomicity.  The trick is
3162	 * to check access and if not granted clear O_CREAT from the flags.
3163	 *
3164	 * Another problem is returing the "right" error value (e.g. for an
3165	 * O_EXCL open we want to return EEXIST not EROFS).
3166	 */
3167	if (open_flag & O_CREAT) {
3168		if (!IS_POSIXACL(dir->d_inode))
3169			mode &= ~current_umask();
3170		if (unlikely(!got_write)) {
3171			create_error = -EROFS;
3172			open_flag &= ~O_CREAT;
3173			if (open_flag & (O_EXCL | O_TRUNC))
3174				goto no_open;
3175			/* No side effects, safe to clear O_CREAT */
3176		} else {
3177			create_error = may_o_create(&nd->path, dentry, mode);
3178			if (create_error) {
3179				open_flag &= ~O_CREAT;
3180				if (open_flag & O_EXCL)
3181					goto no_open;
3182			}
3183		}
3184	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3185		   unlikely(!got_write)) {
3186		/*
3187		 * No O_CREATE -> atomicity not a requirement -> fall
3188		 * back to lookup + open
3189		 */
3190		goto no_open;
3191	}
3192
3193	if (dir_inode->i_op->atomic_open) {
3194		error = atomic_open(nd, dentry, path, file, op, open_flag,
3195				    mode);
3196		if (unlikely(error == -ENOENT) && create_error)
3197			error = create_error;
3198		return error;
3199	}
3200
3201no_open:
3202	if (d_in_lookup(dentry)) {
3203		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3204							     nd->flags);
3205		d_lookup_done(dentry);
3206		if (unlikely(res)) {
3207			if (IS_ERR(res)) {
3208				error = PTR_ERR(res);
3209				goto out_dput;
3210			}
3211			dput(dentry);
3212			dentry = res;
3213		}
3214	}
3215
3216	/* Negative dentry, just create the file */
3217	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3218		file->f_mode |= FMODE_CREATED;
3219		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3220		if (!dir_inode->i_op->create) {
3221			error = -EACCES;
3222			goto out_dput;
3223		}
3224		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3225						open_flag & O_EXCL);
3226		if (error)
3227			goto out_dput;
3228		fsnotify_create(dir_inode, dentry);
3229	}
3230	if (unlikely(create_error) && !dentry->d_inode) {
3231		error = create_error;
3232		goto out_dput;
3233	}
3234out_no_open:
3235	path->dentry = dentry;
3236	path->mnt = nd->path.mnt;
3237	return 0;
3238
3239out_dput:
3240	dput(dentry);
3241	return error;
3242}
3243
3244/*
3245 * Handle the last step of open()
3246 */
3247static int do_last(struct nameidata *nd,
3248		   struct file *file, const struct open_flags *op)
 
3249{
3250	struct dentry *dir = nd->path.dentry;
3251	int open_flag = op->open_flag;
3252	bool will_truncate = (open_flag & O_TRUNC) != 0;
3253	bool got_write = false;
3254	int acc_mode = op->acc_mode;
3255	unsigned seq;
3256	struct inode *inode;
3257	struct path path;
3258	int error;
3259
3260	nd->flags &= ~LOOKUP_PARENT;
3261	nd->flags |= op->intent;
3262
3263	if (nd->last_type != LAST_NORM) {
3264		error = handle_dots(nd, nd->last_type);
3265		if (unlikely(error))
3266			return error;
3267		goto finish_open;
3268	}
3269
3270	if (!(open_flag & O_CREAT)) {
3271		if (nd->last.name[nd->last.len])
3272			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3273		/* we _can_ be in RCU mode here */
3274		error = lookup_fast(nd, &path, &inode, &seq);
3275		if (likely(error > 0))
3276			goto finish_lookup;
3277
3278		if (error < 0)
3279			return error;
3280
3281		BUG_ON(nd->inode != dir->d_inode);
3282		BUG_ON(nd->flags & LOOKUP_RCU);
3283	} else {
3284		/* create side of things */
3285		/*
3286		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3287		 * has been cleared when we got to the last component we are
3288		 * about to look up
3289		 */
3290		error = complete_walk(nd);
3291		if (error)
3292			return error;
3293
3294		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3295		/* trailing slashes? */
3296		if (unlikely(nd->last.name[nd->last.len]))
3297			return -EISDIR;
3298	}
3299
3300	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3301		error = mnt_want_write(nd->path.mnt);
3302		if (!error)
3303			got_write = true;
3304		/*
3305		 * do _not_ fail yet - we might not need that or fail with
3306		 * a different error; let lookup_open() decide; we'll be
3307		 * dropping this one anyway.
3308		 */
3309	}
3310	if (open_flag & O_CREAT)
3311		inode_lock(dir->d_inode);
3312	else
3313		inode_lock_shared(dir->d_inode);
3314	error = lookup_open(nd, &path, file, op, got_write);
3315	if (open_flag & O_CREAT)
3316		inode_unlock(dir->d_inode);
3317	else
3318		inode_unlock_shared(dir->d_inode);
3319
3320	if (error)
3321		goto out;
 
3322
3323	if (file->f_mode & FMODE_OPENED) {
3324		if ((file->f_mode & FMODE_CREATED) ||
3325		    !S_ISREG(file_inode(file)->i_mode))
3326			will_truncate = false;
3327
3328		audit_inode(nd->name, file->f_path.dentry, 0);
3329		goto opened;
3330	}
3331
3332	if (file->f_mode & FMODE_CREATED) {
3333		/* Don't check for write permission, don't truncate */
3334		open_flag &= ~O_TRUNC;
3335		will_truncate = false;
3336		acc_mode = 0;
3337		path_to_nameidata(&path, nd);
3338		goto finish_open_created;
3339	}
3340
3341	/*
3342	 * If atomic_open() acquired write access it is dropped now due to
3343	 * possible mount and symlink following (this might be optimized away if
3344	 * necessary...)
3345	 */
3346	if (got_write) {
3347		mnt_drop_write(nd->path.mnt);
3348		got_write = false;
3349	}
3350
3351	error = follow_managed(&path, nd);
3352	if (unlikely(error < 0))
3353		return error;
3354
3355	if (unlikely(d_is_negative(path.dentry))) {
3356		path_to_nameidata(&path, nd);
3357		return -ENOENT;
3358	}
3359
3360	/*
3361	 * create/update audit record if it already exists.
3362	 */
3363	audit_inode(nd->name, path.dentry, 0);
3364
3365	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3366		path_to_nameidata(&path, nd);
3367		return -EEXIST;
3368	}
3369
3370	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3371	inode = d_backing_inode(path.dentry);
3372finish_lookup:
3373	error = step_into(nd, &path, 0, inode, seq);
3374	if (unlikely(error))
3375		return error;
3376finish_open:
3377	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3378	error = complete_walk(nd);
3379	if (error)
3380		return error;
3381	audit_inode(nd->name, nd->path.dentry, 0);
3382	if (open_flag & O_CREAT) {
3383		error = -EISDIR;
3384		if (d_is_dir(nd->path.dentry))
3385			goto out;
3386		error = may_create_in_sticky(dir,
3387					     d_backing_inode(nd->path.dentry));
3388		if (unlikely(error))
3389			goto out;
3390	}
3391	error = -ENOTDIR;
3392	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3393		goto out;
3394	if (!d_is_reg(nd->path.dentry))
3395		will_truncate = false;
3396
3397	if (will_truncate) {
3398		error = mnt_want_write(nd->path.mnt);
3399		if (error)
3400			goto out;
3401		got_write = true;
3402	}
3403finish_open_created:
3404	error = may_open(&nd->path, acc_mode, open_flag);
3405	if (error)
3406		goto out;
3407	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3408	error = vfs_open(&nd->path, file);
3409	if (error)
3410		goto out;
 
3411opened:
3412	error = ima_file_check(file, op->acc_mode);
 
 
3413	if (!error && will_truncate)
3414		error = handle_truncate(file);
3415out:
 
 
3416	if (unlikely(error > 0)) {
3417		WARN_ON(1);
3418		error = -EINVAL;
3419	}
3420	if (got_write)
3421		mnt_drop_write(nd->path.mnt);
3422	return error;
3423}
3424
3425struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3426{
3427	struct dentry *child = NULL;
3428	struct inode *dir = dentry->d_inode;
3429	struct inode *inode;
3430	int error;
3431
3432	/* we want directory to be writable */
3433	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3434	if (error)
3435		goto out_err;
3436	error = -EOPNOTSUPP;
3437	if (!dir->i_op->tmpfile)
3438		goto out_err;
3439	error = -ENOMEM;
3440	child = d_alloc(dentry, &slash_name);
3441	if (unlikely(!child))
3442		goto out_err;
3443	error = dir->i_op->tmpfile(dir, child, mode);
3444	if (error)
3445		goto out_err;
3446	error = -ENOENT;
3447	inode = child->d_inode;
3448	if (unlikely(!inode))
3449		goto out_err;
3450	if (!(open_flag & O_EXCL)) {
3451		spin_lock(&inode->i_lock);
3452		inode->i_state |= I_LINKABLE;
3453		spin_unlock(&inode->i_lock);
3454	}
3455	ima_post_create_tmpfile(inode);
3456	return child;
3457
3458out_err:
3459	dput(child);
3460	return ERR_PTR(error);
3461}
3462EXPORT_SYMBOL(vfs_tmpfile);
3463
3464static int do_tmpfile(struct nameidata *nd, unsigned flags,
3465		const struct open_flags *op,
3466		struct file *file)
3467{
 
3468	struct dentry *child;
 
3469	struct path path;
3470	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3471	if (unlikely(error))
3472		return error;
3473	error = mnt_want_write(path.mnt);
3474	if (unlikely(error))
3475		goto out;
3476	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3477	error = PTR_ERR(child);
3478	if (IS_ERR(child))
 
 
 
 
3479		goto out2;
 
 
 
 
 
 
3480	dput(path.dentry);
3481	path.dentry = child;
 
 
 
3482	audit_inode(nd->name, child, 0);
3483	/* Don't check for other permissions, the inode was just created */
3484	error = may_open(&path, 0, op->open_flag);
3485	if (error)
3486		goto out2;
3487	file->f_path.mnt = path.mnt;
3488	error = finish_open(file, child, NULL);
 
 
 
 
 
 
 
 
 
 
 
3489out2:
3490	mnt_drop_write(path.mnt);
3491out:
3492	path_put(&path);
3493	return error;
3494}
3495
3496static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3497{
3498	struct path path;
3499	int error = path_lookupat(nd, flags, &path);
3500	if (!error) {
3501		audit_inode(nd->name, path.dentry, 0);
3502		error = vfs_open(&path, file);
3503		path_put(&path);
3504	}
3505	return error;
3506}
3507
3508static struct file *path_openat(struct nameidata *nd,
3509			const struct open_flags *op, unsigned flags)
3510{
 
3511	struct file *file;
 
3512	int error;
3513
3514	file = alloc_empty_file(op->open_flag, current_cred());
3515	if (IS_ERR(file))
3516		return file;
3517
 
 
3518	if (unlikely(file->f_flags & __O_TMPFILE)) {
3519		error = do_tmpfile(nd, flags, op, file);
3520	} else if (unlikely(file->f_flags & O_PATH)) {
 
 
 
3521		error = do_o_path(nd, flags, file);
3522	} else {
3523		const char *s = path_init(nd, flags);
3524		while (!(error = link_path_walk(s, nd)) &&
3525			(error = do_last(nd, file, op)) > 0) {
3526			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3527			s = trailing_symlink(nd);
3528		}
3529		terminate_walk(nd);
3530	}
3531	if (likely(!error)) {
3532		if (likely(file->f_mode & FMODE_OPENED))
3533			return file;
3534		WARN_ON(1);
3535		error = -EINVAL;
3536	}
3537	fput(file);
3538	if (error == -EOPENSTALE) {
3539		if (flags & LOOKUP_RCU)
3540			error = -ECHILD;
3541		else
3542			error = -ESTALE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3543	}
3544	return ERR_PTR(error);
3545}
3546
3547struct file *do_filp_open(int dfd, struct filename *pathname,
3548		const struct open_flags *op)
3549{
3550	struct nameidata nd;
3551	int flags = op->lookup_flags;
3552	struct file *filp;
3553
3554	set_nameidata(&nd, dfd, pathname);
3555	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3556	if (unlikely(filp == ERR_PTR(-ECHILD)))
3557		filp = path_openat(&nd, op, flags);
3558	if (unlikely(filp == ERR_PTR(-ESTALE)))
3559		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3560	restore_nameidata();
3561	return filp;
3562}
3563
3564struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3565		const char *name, const struct open_flags *op)
3566{
3567	struct nameidata nd;
3568	struct file *file;
3569	struct filename *filename;
3570	int flags = op->lookup_flags | LOOKUP_ROOT;
3571
3572	nd.root.mnt = mnt;
3573	nd.root.dentry = dentry;
3574
3575	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3576		return ERR_PTR(-ELOOP);
3577
3578	filename = getname_kernel(name);
3579	if (IS_ERR(filename))
3580		return ERR_CAST(filename);
3581
3582	set_nameidata(&nd, -1, filename);
3583	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3584	if (unlikely(file == ERR_PTR(-ECHILD)))
3585		file = path_openat(&nd, op, flags);
3586	if (unlikely(file == ERR_PTR(-ESTALE)))
3587		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3588	restore_nameidata();
3589	putname(filename);
3590	return file;
3591}
3592
3593static struct dentry *filename_create(int dfd, struct filename *name,
3594				struct path *path, unsigned int lookup_flags)
3595{
3596	struct dentry *dentry = ERR_PTR(-EEXIST);
3597	struct qstr last;
3598	int type;
3599	int err2;
3600	int error;
3601	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3602
3603	/*
3604	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3605	 * other flags passed in are ignored!
3606	 */
3607	lookup_flags &= LOOKUP_REVAL;
3608
3609	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3610	if (IS_ERR(name))
3611		return ERR_CAST(name);
3612
3613	/*
3614	 * Yucky last component or no last component at all?
3615	 * (foo/., foo/.., /////)
3616	 */
3617	if (unlikely(type != LAST_NORM))
3618		goto out;
3619
3620	/* don't fail immediately if it's r/o, at least try to report other errors */
3621	err2 = mnt_want_write(path->mnt);
3622	/*
3623	 * Do the final lookup.
3624	 */
3625	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3626	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3627	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3628	if (IS_ERR(dentry))
3629		goto unlock;
3630
3631	error = -EEXIST;
3632	if (d_is_positive(dentry))
3633		goto fail;
3634
3635	/*
3636	 * Special case - lookup gave negative, but... we had foo/bar/
3637	 * From the vfs_mknod() POV we just have a negative dentry -
3638	 * all is fine. Let's be bastards - you had / on the end, you've
3639	 * been asking for (non-existent) directory. -ENOENT for you.
3640	 */
3641	if (unlikely(!is_dir && last.name[last.len])) {
3642		error = -ENOENT;
3643		goto fail;
3644	}
3645	if (unlikely(err2)) {
3646		error = err2;
3647		goto fail;
3648	}
3649	putname(name);
3650	return dentry;
3651fail:
3652	dput(dentry);
3653	dentry = ERR_PTR(error);
3654unlock:
3655	inode_unlock(path->dentry->d_inode);
3656	if (!err2)
3657		mnt_drop_write(path->mnt);
3658out:
3659	path_put(path);
3660	putname(name);
3661	return dentry;
3662}
3663
3664struct dentry *kern_path_create(int dfd, const char *pathname,
3665				struct path *path, unsigned int lookup_flags)
3666{
3667	return filename_create(dfd, getname_kernel(pathname),
3668				path, lookup_flags);
3669}
3670EXPORT_SYMBOL(kern_path_create);
3671
3672void done_path_create(struct path *path, struct dentry *dentry)
3673{
3674	dput(dentry);
3675	inode_unlock(path->dentry->d_inode);
3676	mnt_drop_write(path->mnt);
3677	path_put(path);
3678}
3679EXPORT_SYMBOL(done_path_create);
3680
3681inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3682				struct path *path, unsigned int lookup_flags)
3683{
3684	return filename_create(dfd, getname(pathname), path, lookup_flags);
3685}
3686EXPORT_SYMBOL(user_path_create);
3687
3688int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3689{
3690	int error = may_create(dir, dentry);
3691
3692	if (error)
3693		return error;
3694
3695	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3696		return -EPERM;
3697
3698	if (!dir->i_op->mknod)
3699		return -EPERM;
3700
3701	error = devcgroup_inode_mknod(mode, dev);
3702	if (error)
3703		return error;
3704
3705	error = security_inode_mknod(dir, dentry, mode, dev);
3706	if (error)
3707		return error;
3708
3709	error = dir->i_op->mknod(dir, dentry, mode, dev);
3710	if (!error)
3711		fsnotify_create(dir, dentry);
3712	return error;
3713}
3714EXPORT_SYMBOL(vfs_mknod);
3715
3716static int may_mknod(umode_t mode)
3717{
3718	switch (mode & S_IFMT) {
3719	case S_IFREG:
3720	case S_IFCHR:
3721	case S_IFBLK:
3722	case S_IFIFO:
3723	case S_IFSOCK:
3724	case 0: /* zero mode translates to S_IFREG */
3725		return 0;
3726	case S_IFDIR:
3727		return -EPERM;
3728	default:
3729		return -EINVAL;
3730	}
3731}
3732
3733long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3734		unsigned int dev)
3735{
3736	struct dentry *dentry;
3737	struct path path;
3738	int error;
3739	unsigned int lookup_flags = 0;
3740
3741	error = may_mknod(mode);
3742	if (error)
3743		return error;
3744retry:
3745	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3746	if (IS_ERR(dentry))
3747		return PTR_ERR(dentry);
3748
3749	if (!IS_POSIXACL(path.dentry->d_inode))
3750		mode &= ~current_umask();
3751	error = security_path_mknod(&path, dentry, mode, dev);
3752	if (error)
3753		goto out;
3754	switch (mode & S_IFMT) {
3755		case 0: case S_IFREG:
3756			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3757			if (!error)
3758				ima_post_path_mknod(dentry);
3759			break;
3760		case S_IFCHR: case S_IFBLK:
3761			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3762					new_decode_dev(dev));
3763			break;
3764		case S_IFIFO: case S_IFSOCK:
3765			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3766			break;
3767	}
3768out:
3769	done_path_create(&path, dentry);
3770	if (retry_estale(error, lookup_flags)) {
3771		lookup_flags |= LOOKUP_REVAL;
3772		goto retry;
3773	}
3774	return error;
3775}
3776
3777SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3778		unsigned int, dev)
3779{
3780	return do_mknodat(dfd, filename, mode, dev);
3781}
3782
3783SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3784{
3785	return do_mknodat(AT_FDCWD, filename, mode, dev);
3786}
3787
3788int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3789{
3790	int error = may_create(dir, dentry);
3791	unsigned max_links = dir->i_sb->s_max_links;
3792
3793	if (error)
3794		return error;
3795
3796	if (!dir->i_op->mkdir)
3797		return -EPERM;
3798
3799	mode &= (S_IRWXUGO|S_ISVTX);
3800	error = security_inode_mkdir(dir, dentry, mode);
3801	if (error)
3802		return error;
3803
3804	if (max_links && dir->i_nlink >= max_links)
3805		return -EMLINK;
3806
3807	error = dir->i_op->mkdir(dir, dentry, mode);
3808	if (!error)
3809		fsnotify_mkdir(dir, dentry);
3810	return error;
3811}
3812EXPORT_SYMBOL(vfs_mkdir);
3813
3814long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3815{
3816	struct dentry *dentry;
3817	struct path path;
3818	int error;
3819	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3820
3821retry:
3822	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3823	if (IS_ERR(dentry))
3824		return PTR_ERR(dentry);
3825
3826	if (!IS_POSIXACL(path.dentry->d_inode))
3827		mode &= ~current_umask();
3828	error = security_path_mkdir(&path, dentry, mode);
3829	if (!error)
3830		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3831	done_path_create(&path, dentry);
3832	if (retry_estale(error, lookup_flags)) {
3833		lookup_flags |= LOOKUP_REVAL;
3834		goto retry;
3835	}
3836	return error;
3837}
3838
3839SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3840{
3841	return do_mkdirat(dfd, pathname, mode);
3842}
3843
3844SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3845{
3846	return do_mkdirat(AT_FDCWD, pathname, mode);
3847}
3848
3849int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3850{
3851	int error = may_delete(dir, dentry, 1);
3852
3853	if (error)
3854		return error;
3855
3856	if (!dir->i_op->rmdir)
3857		return -EPERM;
3858
3859	dget(dentry);
3860	inode_lock(dentry->d_inode);
3861
3862	error = -EBUSY;
3863	if (is_local_mountpoint(dentry))
3864		goto out;
3865
3866	error = security_inode_rmdir(dir, dentry);
3867	if (error)
3868		goto out;
3869
 
3870	error = dir->i_op->rmdir(dir, dentry);
3871	if (error)
3872		goto out;
3873
3874	shrink_dcache_parent(dentry);
3875	dentry->d_inode->i_flags |= S_DEAD;
3876	dont_mount(dentry);
3877	detach_mounts(dentry);
3878	fsnotify_rmdir(dir, dentry);
3879
3880out:
3881	inode_unlock(dentry->d_inode);
3882	dput(dentry);
3883	if (!error)
3884		d_delete(dentry);
3885	return error;
3886}
3887EXPORT_SYMBOL(vfs_rmdir);
3888
3889long do_rmdir(int dfd, const char __user *pathname)
3890{
3891	int error = 0;
3892	struct filename *name;
3893	struct dentry *dentry;
3894	struct path path;
3895	struct qstr last;
3896	int type;
3897	unsigned int lookup_flags = 0;
3898retry:
3899	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3900				&path, &last, &type);
3901	if (IS_ERR(name))
3902		return PTR_ERR(name);
3903
3904	switch (type) {
3905	case LAST_DOTDOT:
3906		error = -ENOTEMPTY;
3907		goto exit1;
3908	case LAST_DOT:
3909		error = -EINVAL;
3910		goto exit1;
3911	case LAST_ROOT:
3912		error = -EBUSY;
3913		goto exit1;
3914	}
3915
3916	error = mnt_want_write(path.mnt);
3917	if (error)
3918		goto exit1;
3919
3920	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3921	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3922	error = PTR_ERR(dentry);
3923	if (IS_ERR(dentry))
3924		goto exit2;
3925	if (!dentry->d_inode) {
3926		error = -ENOENT;
3927		goto exit3;
3928	}
3929	error = security_path_rmdir(&path, dentry);
3930	if (error)
3931		goto exit3;
3932	error = vfs_rmdir(path.dentry->d_inode, dentry);
3933exit3:
3934	dput(dentry);
3935exit2:
3936	inode_unlock(path.dentry->d_inode);
3937	mnt_drop_write(path.mnt);
3938exit1:
3939	path_put(&path);
3940	putname(name);
3941	if (retry_estale(error, lookup_flags)) {
3942		lookup_flags |= LOOKUP_REVAL;
3943		goto retry;
3944	}
3945	return error;
3946}
3947
3948SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3949{
3950	return do_rmdir(AT_FDCWD, pathname);
3951}
3952
3953/**
3954 * vfs_unlink - unlink a filesystem object
3955 * @dir:	parent directory
3956 * @dentry:	victim
3957 * @delegated_inode: returns victim inode, if the inode is delegated.
3958 *
3959 * The caller must hold dir->i_mutex.
3960 *
3961 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3962 * return a reference to the inode in delegated_inode.  The caller
3963 * should then break the delegation on that inode and retry.  Because
3964 * breaking a delegation may take a long time, the caller should drop
3965 * dir->i_mutex before doing so.
3966 *
3967 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3968 * be appropriate for callers that expect the underlying filesystem not
3969 * to be NFS exported.
3970 */
3971int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3972{
3973	struct inode *target = dentry->d_inode;
3974	int error = may_delete(dir, dentry, 0);
3975
3976	if (error)
3977		return error;
3978
3979	if (!dir->i_op->unlink)
3980		return -EPERM;
3981
3982	inode_lock(target);
3983	if (is_local_mountpoint(dentry))
3984		error = -EBUSY;
3985	else {
3986		error = security_inode_unlink(dir, dentry);
3987		if (!error) {
3988			error = try_break_deleg(target, delegated_inode);
3989			if (error)
3990				goto out;
3991			error = dir->i_op->unlink(dir, dentry);
3992			if (!error) {
3993				dont_mount(dentry);
3994				detach_mounts(dentry);
3995				fsnotify_unlink(dir, dentry);
3996			}
3997		}
3998	}
3999out:
4000	inode_unlock(target);
4001
4002	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4003	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4004		fsnotify_link_count(target);
4005		d_delete(dentry);
4006	}
4007
4008	return error;
4009}
4010EXPORT_SYMBOL(vfs_unlink);
4011
4012/*
4013 * Make sure that the actual truncation of the file will occur outside its
4014 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4015 * writeout happening, and we don't want to prevent access to the directory
4016 * while waiting on the I/O.
4017 */
4018long do_unlinkat(int dfd, struct filename *name)
4019{
4020	int error;
 
4021	struct dentry *dentry;
4022	struct path path;
4023	struct qstr last;
4024	int type;
4025	struct inode *inode = NULL;
4026	struct inode *delegated_inode = NULL;
4027	unsigned int lookup_flags = 0;
4028retry:
4029	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
 
4030	if (IS_ERR(name))
4031		return PTR_ERR(name);
4032
4033	error = -EISDIR;
4034	if (type != LAST_NORM)
4035		goto exit1;
4036
4037	error = mnt_want_write(path.mnt);
4038	if (error)
4039		goto exit1;
4040retry_deleg:
4041	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4042	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4043	error = PTR_ERR(dentry);
4044	if (!IS_ERR(dentry)) {
4045		/* Why not before? Because we want correct error value */
4046		if (last.name[last.len])
4047			goto slashes;
4048		inode = dentry->d_inode;
4049		if (d_is_negative(dentry))
4050			goto slashes;
4051		ihold(inode);
4052		error = security_path_unlink(&path, dentry);
4053		if (error)
4054			goto exit2;
4055		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4056exit2:
4057		dput(dentry);
4058	}
4059	inode_unlock(path.dentry->d_inode);
4060	if (inode)
4061		iput(inode);	/* truncate the inode here */
4062	inode = NULL;
4063	if (delegated_inode) {
4064		error = break_deleg_wait(&delegated_inode);
4065		if (!error)
4066			goto retry_deleg;
4067	}
4068	mnt_drop_write(path.mnt);
4069exit1:
4070	path_put(&path);
 
4071	if (retry_estale(error, lookup_flags)) {
4072		lookup_flags |= LOOKUP_REVAL;
4073		inode = NULL;
4074		goto retry;
4075	}
4076	putname(name);
4077	return error;
4078
4079slashes:
4080	if (d_is_negative(dentry))
4081		error = -ENOENT;
4082	else if (d_is_dir(dentry))
4083		error = -EISDIR;
4084	else
4085		error = -ENOTDIR;
4086	goto exit2;
4087}
4088
4089SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4090{
4091	if ((flag & ~AT_REMOVEDIR) != 0)
4092		return -EINVAL;
4093
4094	if (flag & AT_REMOVEDIR)
4095		return do_rmdir(dfd, pathname);
4096
4097	return do_unlinkat(dfd, getname(pathname));
4098}
4099
4100SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4101{
4102	return do_unlinkat(AT_FDCWD, getname(pathname));
4103}
4104
4105int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4106{
4107	int error = may_create(dir, dentry);
4108
4109	if (error)
4110		return error;
4111
4112	if (!dir->i_op->symlink)
4113		return -EPERM;
4114
4115	error = security_inode_symlink(dir, dentry, oldname);
4116	if (error)
4117		return error;
4118
4119	error = dir->i_op->symlink(dir, dentry, oldname);
4120	if (!error)
4121		fsnotify_create(dir, dentry);
4122	return error;
4123}
4124EXPORT_SYMBOL(vfs_symlink);
4125
4126long do_symlinkat(const char __user *oldname, int newdfd,
4127		  const char __user *newname)
4128{
4129	int error;
4130	struct filename *from;
4131	struct dentry *dentry;
4132	struct path path;
4133	unsigned int lookup_flags = 0;
4134
4135	from = getname(oldname);
4136	if (IS_ERR(from))
4137		return PTR_ERR(from);
4138retry:
4139	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4140	error = PTR_ERR(dentry);
4141	if (IS_ERR(dentry))
4142		goto out_putname;
4143
4144	error = security_path_symlink(&path, dentry, from->name);
4145	if (!error)
4146		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4147	done_path_create(&path, dentry);
4148	if (retry_estale(error, lookup_flags)) {
4149		lookup_flags |= LOOKUP_REVAL;
4150		goto retry;
4151	}
4152out_putname:
4153	putname(from);
4154	return error;
4155}
4156
4157SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4158		int, newdfd, const char __user *, newname)
4159{
4160	return do_symlinkat(oldname, newdfd, newname);
4161}
4162
4163SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4164{
4165	return do_symlinkat(oldname, AT_FDCWD, newname);
4166}
4167
4168/**
4169 * vfs_link - create a new link
4170 * @old_dentry:	object to be linked
4171 * @dir:	new parent
4172 * @new_dentry:	where to create the new link
4173 * @delegated_inode: returns inode needing a delegation break
4174 *
4175 * The caller must hold dir->i_mutex
4176 *
4177 * If vfs_link discovers a delegation on the to-be-linked file in need
4178 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4179 * inode in delegated_inode.  The caller should then break the delegation
4180 * and retry.  Because breaking a delegation may take a long time, the
4181 * caller should drop the i_mutex before doing so.
4182 *
4183 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4184 * be appropriate for callers that expect the underlying filesystem not
4185 * to be NFS exported.
4186 */
4187int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4188{
4189	struct inode *inode = old_dentry->d_inode;
4190	unsigned max_links = dir->i_sb->s_max_links;
4191	int error;
4192
4193	if (!inode)
4194		return -ENOENT;
4195
4196	error = may_create(dir, new_dentry);
4197	if (error)
4198		return error;
4199
4200	if (dir->i_sb != inode->i_sb)
4201		return -EXDEV;
4202
4203	/*
4204	 * A link to an append-only or immutable file cannot be created.
4205	 */
4206	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4207		return -EPERM;
4208	/*
4209	 * Updating the link count will likely cause i_uid and i_gid to
4210	 * be writen back improperly if their true value is unknown to
4211	 * the vfs.
4212	 */
4213	if (HAS_UNMAPPED_ID(inode))
4214		return -EPERM;
4215	if (!dir->i_op->link)
4216		return -EPERM;
4217	if (S_ISDIR(inode->i_mode))
4218		return -EPERM;
4219
4220	error = security_inode_link(old_dentry, dir, new_dentry);
4221	if (error)
4222		return error;
4223
4224	inode_lock(inode);
4225	/* Make sure we don't allow creating hardlink to an unlinked file */
4226	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4227		error =  -ENOENT;
4228	else if (max_links && inode->i_nlink >= max_links)
4229		error = -EMLINK;
4230	else {
4231		error = try_break_deleg(inode, delegated_inode);
4232		if (!error)
4233			error = dir->i_op->link(old_dentry, dir, new_dentry);
4234	}
4235
4236	if (!error && (inode->i_state & I_LINKABLE)) {
4237		spin_lock(&inode->i_lock);
4238		inode->i_state &= ~I_LINKABLE;
4239		spin_unlock(&inode->i_lock);
4240	}
4241	inode_unlock(inode);
4242	if (!error)
4243		fsnotify_link(dir, inode, new_dentry);
4244	return error;
4245}
4246EXPORT_SYMBOL(vfs_link);
4247
4248/*
4249 * Hardlinks are often used in delicate situations.  We avoid
4250 * security-related surprises by not following symlinks on the
4251 * newname.  --KAB
4252 *
4253 * We don't follow them on the oldname either to be compatible
4254 * with linux 2.0, and to avoid hard-linking to directories
4255 * and other special files.  --ADM
4256 */
4257int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4258	      const char __user *newname, int flags)
4259{
4260	struct dentry *new_dentry;
4261	struct path old_path, new_path;
4262	struct inode *delegated_inode = NULL;
4263	int how = 0;
4264	int error;
4265
4266	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4267		return -EINVAL;
4268	/*
4269	 * To use null names we require CAP_DAC_READ_SEARCH
4270	 * This ensures that not everyone will be able to create
4271	 * handlink using the passed filedescriptor.
4272	 */
4273	if (flags & AT_EMPTY_PATH) {
4274		if (!capable(CAP_DAC_READ_SEARCH))
4275			return -ENOENT;
4276		how = LOOKUP_EMPTY;
4277	}
4278
4279	if (flags & AT_SYMLINK_FOLLOW)
4280		how |= LOOKUP_FOLLOW;
4281retry:
4282	error = user_path_at(olddfd, oldname, how, &old_path);
4283	if (error)
4284		return error;
4285
4286	new_dentry = user_path_create(newdfd, newname, &new_path,
4287					(how & LOOKUP_REVAL));
4288	error = PTR_ERR(new_dentry);
4289	if (IS_ERR(new_dentry))
4290		goto out;
4291
4292	error = -EXDEV;
4293	if (old_path.mnt != new_path.mnt)
4294		goto out_dput;
4295	error = may_linkat(&old_path);
4296	if (unlikely(error))
4297		goto out_dput;
4298	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4299	if (error)
4300		goto out_dput;
4301	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4302out_dput:
4303	done_path_create(&new_path, new_dentry);
4304	if (delegated_inode) {
4305		error = break_deleg_wait(&delegated_inode);
4306		if (!error) {
4307			path_put(&old_path);
4308			goto retry;
4309		}
4310	}
4311	if (retry_estale(error, how)) {
4312		path_put(&old_path);
4313		how |= LOOKUP_REVAL;
4314		goto retry;
4315	}
4316out:
4317	path_put(&old_path);
4318
4319	return error;
4320}
4321
4322SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4323		int, newdfd, const char __user *, newname, int, flags)
4324{
4325	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4326}
4327
4328SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4329{
4330	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4331}
4332
4333/**
4334 * vfs_rename - rename a filesystem object
4335 * @old_dir:	parent of source
4336 * @old_dentry:	source
4337 * @new_dir:	parent of destination
4338 * @new_dentry:	destination
4339 * @delegated_inode: returns an inode needing a delegation break
4340 * @flags:	rename flags
4341 *
4342 * The caller must hold multiple mutexes--see lock_rename()).
4343 *
4344 * If vfs_rename discovers a delegation in need of breaking at either
4345 * the source or destination, it will return -EWOULDBLOCK and return a
4346 * reference to the inode in delegated_inode.  The caller should then
4347 * break the delegation and retry.  Because breaking a delegation may
4348 * take a long time, the caller should drop all locks before doing
4349 * so.
4350 *
4351 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4352 * be appropriate for callers that expect the underlying filesystem not
4353 * to be NFS exported.
4354 *
4355 * The worst of all namespace operations - renaming directory. "Perverted"
4356 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4357 * Problems:
4358 *
4359 *	a) we can get into loop creation.
4360 *	b) race potential - two innocent renames can create a loop together.
4361 *	   That's where 4.4 screws up. Current fix: serialization on
4362 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4363 *	   story.
4364 *	c) we have to lock _four_ objects - parents and victim (if it exists),
4365 *	   and source (if it is not a directory).
4366 *	   And that - after we got ->i_mutex on parents (until then we don't know
4367 *	   whether the target exists).  Solution: try to be smart with locking
4368 *	   order for inodes.  We rely on the fact that tree topology may change
4369 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4370 *	   move will be locked.  Thus we can rank directories by the tree
4371 *	   (ancestors first) and rank all non-directories after them.
4372 *	   That works since everybody except rename does "lock parent, lookup,
4373 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4374 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4375 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4376 *	   we'd better make sure that there's no link(2) for them.
4377 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4378 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4379 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4380 *	   ->i_mutex on parents, which works but leads to some truly excessive
4381 *	   locking].
4382 */
4383int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4384	       struct inode *new_dir, struct dentry *new_dentry,
4385	       struct inode **delegated_inode, unsigned int flags)
4386{
4387	int error;
4388	bool is_dir = d_is_dir(old_dentry);
 
4389	struct inode *source = old_dentry->d_inode;
4390	struct inode *target = new_dentry->d_inode;
4391	bool new_is_dir = false;
4392	unsigned max_links = new_dir->i_sb->s_max_links;
4393	struct name_snapshot old_name;
4394
4395	if (source == target)
4396		return 0;
4397
4398	error = may_delete(old_dir, old_dentry, is_dir);
4399	if (error)
4400		return error;
4401
4402	if (!target) {
4403		error = may_create(new_dir, new_dentry);
4404	} else {
4405		new_is_dir = d_is_dir(new_dentry);
4406
4407		if (!(flags & RENAME_EXCHANGE))
4408			error = may_delete(new_dir, new_dentry, is_dir);
4409		else
4410			error = may_delete(new_dir, new_dentry, new_is_dir);
4411	}
4412	if (error)
4413		return error;
4414
4415	if (!old_dir->i_op->rename)
4416		return -EPERM;
4417
4418	/*
4419	 * If we are going to change the parent - check write permissions,
4420	 * we'll need to flip '..'.
4421	 */
4422	if (new_dir != old_dir) {
4423		if (is_dir) {
4424			error = inode_permission(source, MAY_WRITE);
4425			if (error)
4426				return error;
4427		}
4428		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4429			error = inode_permission(target, MAY_WRITE);
4430			if (error)
4431				return error;
4432		}
4433	}
4434
4435	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4436				      flags);
4437	if (error)
4438		return error;
4439
4440	take_dentry_name_snapshot(&old_name, old_dentry);
4441	dget(new_dentry);
4442	if (!is_dir || (flags & RENAME_EXCHANGE))
4443		lock_two_nondirectories(source, target);
4444	else if (target)
4445		inode_lock(target);
4446
4447	error = -EBUSY;
4448	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4449		goto out;
4450
4451	if (max_links && new_dir != old_dir) {
4452		error = -EMLINK;
4453		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4454			goto out;
4455		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4456		    old_dir->i_nlink >= max_links)
4457			goto out;
4458	}
 
 
4459	if (!is_dir) {
4460		error = try_break_deleg(source, delegated_inode);
4461		if (error)
4462			goto out;
4463	}
4464	if (target && !new_is_dir) {
4465		error = try_break_deleg(target, delegated_inode);
4466		if (error)
4467			goto out;
4468	}
4469	error = old_dir->i_op->rename(old_dir, old_dentry,
4470				       new_dir, new_dentry, flags);
4471	if (error)
4472		goto out;
4473
4474	if (!(flags & RENAME_EXCHANGE) && target) {
4475		if (is_dir) {
4476			shrink_dcache_parent(new_dentry);
4477			target->i_flags |= S_DEAD;
4478		}
4479		dont_mount(new_dentry);
4480		detach_mounts(new_dentry);
4481	}
4482	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4483		if (!(flags & RENAME_EXCHANGE))
4484			d_move(old_dentry, new_dentry);
4485		else
4486			d_exchange(old_dentry, new_dentry);
4487	}
4488out:
4489	if (!is_dir || (flags & RENAME_EXCHANGE))
4490		unlock_two_nondirectories(source, target);
4491	else if (target)
4492		inode_unlock(target);
4493	dput(new_dentry);
4494	if (!error) {
4495		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4496			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4497		if (flags & RENAME_EXCHANGE) {
4498			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4499				      new_is_dir, NULL, new_dentry);
4500		}
4501	}
4502	release_dentry_name_snapshot(&old_name);
4503
4504	return error;
4505}
4506EXPORT_SYMBOL(vfs_rename);
4507
4508static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4509			const char __user *newname, unsigned int flags)
4510{
4511	struct dentry *old_dentry, *new_dentry;
4512	struct dentry *trap;
4513	struct path old_path, new_path;
4514	struct qstr old_last, new_last;
4515	int old_type, new_type;
4516	struct inode *delegated_inode = NULL;
4517	struct filename *from;
4518	struct filename *to;
4519	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4520	bool should_retry = false;
4521	int error;
4522
4523	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4524		return -EINVAL;
4525
4526	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4527	    (flags & RENAME_EXCHANGE))
4528		return -EINVAL;
4529
4530	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4531		return -EPERM;
4532
4533	if (flags & RENAME_EXCHANGE)
4534		target_flags = 0;
4535
4536retry:
4537	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4538				&old_path, &old_last, &old_type);
4539	if (IS_ERR(from)) {
4540		error = PTR_ERR(from);
4541		goto exit;
4542	}
4543
4544	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4545				&new_path, &new_last, &new_type);
4546	if (IS_ERR(to)) {
4547		error = PTR_ERR(to);
4548		goto exit1;
4549	}
4550
4551	error = -EXDEV;
4552	if (old_path.mnt != new_path.mnt)
4553		goto exit2;
4554
4555	error = -EBUSY;
4556	if (old_type != LAST_NORM)
4557		goto exit2;
4558
4559	if (flags & RENAME_NOREPLACE)
4560		error = -EEXIST;
4561	if (new_type != LAST_NORM)
4562		goto exit2;
4563
4564	error = mnt_want_write(old_path.mnt);
4565	if (error)
4566		goto exit2;
4567
4568retry_deleg:
4569	trap = lock_rename(new_path.dentry, old_path.dentry);
4570
4571	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4572	error = PTR_ERR(old_dentry);
4573	if (IS_ERR(old_dentry))
4574		goto exit3;
4575	/* source must exist */
4576	error = -ENOENT;
4577	if (d_is_negative(old_dentry))
4578		goto exit4;
4579	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4580	error = PTR_ERR(new_dentry);
4581	if (IS_ERR(new_dentry))
4582		goto exit4;
4583	error = -EEXIST;
4584	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4585		goto exit5;
4586	if (flags & RENAME_EXCHANGE) {
4587		error = -ENOENT;
4588		if (d_is_negative(new_dentry))
4589			goto exit5;
4590
4591		if (!d_is_dir(new_dentry)) {
4592			error = -ENOTDIR;
4593			if (new_last.name[new_last.len])
4594				goto exit5;
4595		}
4596	}
4597	/* unless the source is a directory trailing slashes give -ENOTDIR */
4598	if (!d_is_dir(old_dentry)) {
4599		error = -ENOTDIR;
4600		if (old_last.name[old_last.len])
4601			goto exit5;
4602		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4603			goto exit5;
4604	}
4605	/* source should not be ancestor of target */
4606	error = -EINVAL;
4607	if (old_dentry == trap)
4608		goto exit5;
4609	/* target should not be an ancestor of source */
4610	if (!(flags & RENAME_EXCHANGE))
4611		error = -ENOTEMPTY;
4612	if (new_dentry == trap)
4613		goto exit5;
4614
4615	error = security_path_rename(&old_path, old_dentry,
4616				     &new_path, new_dentry, flags);
4617	if (error)
4618		goto exit5;
4619	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4620			   new_path.dentry->d_inode, new_dentry,
4621			   &delegated_inode, flags);
4622exit5:
4623	dput(new_dentry);
4624exit4:
4625	dput(old_dentry);
4626exit3:
4627	unlock_rename(new_path.dentry, old_path.dentry);
4628	if (delegated_inode) {
4629		error = break_deleg_wait(&delegated_inode);
4630		if (!error)
4631			goto retry_deleg;
4632	}
4633	mnt_drop_write(old_path.mnt);
4634exit2:
4635	if (retry_estale(error, lookup_flags))
4636		should_retry = true;
4637	path_put(&new_path);
4638	putname(to);
4639exit1:
4640	path_put(&old_path);
4641	putname(from);
4642	if (should_retry) {
4643		should_retry = false;
4644		lookup_flags |= LOOKUP_REVAL;
4645		goto retry;
4646	}
4647exit:
4648	return error;
4649}
4650
4651SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4652		int, newdfd, const char __user *, newname, unsigned int, flags)
4653{
4654	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4655}
4656
4657SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4658		int, newdfd, const char __user *, newname)
4659{
4660	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4661}
4662
4663SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4664{
4665	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4666}
4667
4668int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4669{
4670	int error = may_create(dir, dentry);
4671	if (error)
4672		return error;
4673
4674	if (!dir->i_op->mknod)
4675		return -EPERM;
4676
4677	return dir->i_op->mknod(dir, dentry,
4678				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4679}
4680EXPORT_SYMBOL(vfs_whiteout);
4681
4682int readlink_copy(char __user *buffer, int buflen, const char *link)
4683{
4684	int len = PTR_ERR(link);
4685	if (IS_ERR(link))
4686		goto out;
4687
4688	len = strlen(link);
4689	if (len > (unsigned) buflen)
4690		len = buflen;
4691	if (copy_to_user(buffer, link, len))
4692		len = -EFAULT;
4693out:
4694	return len;
4695}
4696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4697/**
4698 * vfs_readlink - copy symlink body into userspace buffer
4699 * @dentry: dentry on which to get symbolic link
4700 * @buffer: user memory pointer
4701 * @buflen: size of buffer
4702 *
4703 * Does not touch atime.  That's up to the caller if necessary
4704 *
4705 * Does not call security hook.
4706 */
4707int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4708{
4709	struct inode *inode = d_inode(dentry);
4710	DEFINE_DELAYED_CALL(done);
4711	const char *link;
4712	int res;
4713
4714	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4715		if (unlikely(inode->i_op->readlink))
4716			return inode->i_op->readlink(dentry, buffer, buflen);
4717
4718		if (!d_is_symlink(dentry))
4719			return -EINVAL;
4720
4721		spin_lock(&inode->i_lock);
4722		inode->i_opflags |= IOP_DEFAULT_READLINK;
4723		spin_unlock(&inode->i_lock);
4724	}
4725
4726	link = READ_ONCE(inode->i_link);
4727	if (!link) {
4728		link = inode->i_op->get_link(dentry, inode, &done);
4729		if (IS_ERR(link))
4730			return PTR_ERR(link);
4731	}
4732	res = readlink_copy(buffer, buflen, link);
4733	do_delayed_call(&done);
4734	return res;
4735}
4736EXPORT_SYMBOL(vfs_readlink);
4737
4738/**
4739 * vfs_get_link - get symlink body
4740 * @dentry: dentry on which to get symbolic link
4741 * @done: caller needs to free returned data with this
4742 *
4743 * Calls security hook and i_op->get_link() on the supplied inode.
4744 *
4745 * It does not touch atime.  That's up to the caller if necessary.
4746 *
4747 * Does not work on "special" symlinks like /proc/$$/fd/N
4748 */
4749const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4750{
4751	const char *res = ERR_PTR(-EINVAL);
4752	struct inode *inode = d_inode(dentry);
4753
4754	if (d_is_symlink(dentry)) {
4755		res = ERR_PTR(security_inode_readlink(dentry));
4756		if (!res)
4757			res = inode->i_op->get_link(dentry, inode, done);
4758	}
4759	return res;
4760}
4761EXPORT_SYMBOL(vfs_get_link);
4762
4763/* get the link contents into pagecache */
4764const char *page_get_link(struct dentry *dentry, struct inode *inode,
4765			  struct delayed_call *callback)
4766{
4767	char *kaddr;
4768	struct page *page;
4769	struct address_space *mapping = inode->i_mapping;
4770
4771	if (!dentry) {
4772		page = find_get_page(mapping, 0);
4773		if (!page)
4774			return ERR_PTR(-ECHILD);
4775		if (!PageUptodate(page)) {
4776			put_page(page);
4777			return ERR_PTR(-ECHILD);
4778		}
4779	} else {
4780		page = read_mapping_page(mapping, 0, NULL);
4781		if (IS_ERR(page))
4782			return (char*)page;
4783	}
4784	set_delayed_call(callback, page_put_link, page);
4785	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4786	kaddr = page_address(page);
4787	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4788	return kaddr;
4789}
4790
4791EXPORT_SYMBOL(page_get_link);
4792
4793void page_put_link(void *arg)
4794{
4795	put_page(arg);
4796}
4797EXPORT_SYMBOL(page_put_link);
4798
4799int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4800{
4801	DEFINE_DELAYED_CALL(done);
4802	int res = readlink_copy(buffer, buflen,
4803				page_get_link(dentry, d_inode(dentry),
4804					      &done));
4805	do_delayed_call(&done);
4806	return res;
4807}
4808EXPORT_SYMBOL(page_readlink);
4809
4810/*
4811 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4812 */
4813int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4814{
4815	struct address_space *mapping = inode->i_mapping;
4816	struct page *page;
4817	void *fsdata;
4818	int err;
4819	unsigned int flags = 0;
4820	if (nofs)
4821		flags |= AOP_FLAG_NOFS;
4822
4823retry:
4824	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4825				flags, &page, &fsdata);
4826	if (err)
4827		goto fail;
4828
4829	memcpy(page_address(page), symname, len-1);
4830
4831	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4832							page, fsdata);
4833	if (err < 0)
4834		goto fail;
4835	if (err < len-1)
4836		goto retry;
4837
4838	mark_inode_dirty(inode);
4839	return 0;
4840fail:
4841	return err;
4842}
4843EXPORT_SYMBOL(__page_symlink);
4844
4845int page_symlink(struct inode *inode, const char *symname, int len)
4846{
4847	return __page_symlink(inode, symname, len,
4848			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4849}
4850EXPORT_SYMBOL(page_symlink);
4851
4852const struct inode_operations page_symlink_inode_operations = {
4853	.get_link	= page_get_link,
4854};
4855EXPORT_SYMBOL(page_symlink_inode_operations);
v4.10.11
 
   1/*
   2 *  linux/fs/namei.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * Some corrections by tytso.
   9 */
  10
  11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  12 * lookup logic.
  13 */
  14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  15 */
  16
  17#include <linux/init.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/slab.h>
  21#include <linux/fs.h>
  22#include <linux/namei.h>
  23#include <linux/pagemap.h>
  24#include <linux/fsnotify.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/ima.h>
  28#include <linux/syscalls.h>
  29#include <linux/mount.h>
  30#include <linux/audit.h>
  31#include <linux/capability.h>
  32#include <linux/file.h>
  33#include <linux/fcntl.h>
  34#include <linux/device_cgroup.h>
  35#include <linux/fs_struct.h>
  36#include <linux/posix_acl.h>
  37#include <linux/hash.h>
  38#include <linux/bitops.h>
  39#include <linux/init_task.h>
  40#include <linux/uaccess.h>
  41
  42#include "internal.h"
  43#include "mount.h"
  44
  45/* [Feb-1997 T. Schoebel-Theuer]
  46 * Fundamental changes in the pathname lookup mechanisms (namei)
  47 * were necessary because of omirr.  The reason is that omirr needs
  48 * to know the _real_ pathname, not the user-supplied one, in case
  49 * of symlinks (and also when transname replacements occur).
  50 *
  51 * The new code replaces the old recursive symlink resolution with
  52 * an iterative one (in case of non-nested symlink chains).  It does
  53 * this with calls to <fs>_follow_link().
  54 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  55 * replaced with a single function lookup_dentry() that can handle all 
  56 * the special cases of the former code.
  57 *
  58 * With the new dcache, the pathname is stored at each inode, at least as
  59 * long as the refcount of the inode is positive.  As a side effect, the
  60 * size of the dcache depends on the inode cache and thus is dynamic.
  61 *
  62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  63 * resolution to correspond with current state of the code.
  64 *
  65 * Note that the symlink resolution is not *completely* iterative.
  66 * There is still a significant amount of tail- and mid- recursion in
  67 * the algorithm.  Also, note that <fs>_readlink() is not used in
  68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  69 * may return different results than <fs>_follow_link().  Many virtual
  70 * filesystems (including /proc) exhibit this behavior.
  71 */
  72
  73/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  75 * and the name already exists in form of a symlink, try to create the new
  76 * name indicated by the symlink. The old code always complained that the
  77 * name already exists, due to not following the symlink even if its target
  78 * is nonexistent.  The new semantics affects also mknod() and link() when
  79 * the name is a symlink pointing to a non-existent name.
  80 *
  81 * I don't know which semantics is the right one, since I have no access
  82 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  84 * "old" one. Personally, I think the new semantics is much more logical.
  85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  86 * file does succeed in both HP-UX and SunOs, but not in Solaris
  87 * and in the old Linux semantics.
  88 */
  89
  90/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  91 * semantics.  See the comments in "open_namei" and "do_link" below.
  92 *
  93 * [10-Sep-98 Alan Modra] Another symlink change.
  94 */
  95
  96/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  97 *	inside the path - always follow.
  98 *	in the last component in creation/removal/renaming - never follow.
  99 *	if LOOKUP_FOLLOW passed - follow.
 100 *	if the pathname has trailing slashes - follow.
 101 *	otherwise - don't follow.
 102 * (applied in that order).
 103 *
 104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 106 * During the 2.4 we need to fix the userland stuff depending on it -
 107 * hopefully we will be able to get rid of that wart in 2.5. So far only
 108 * XEmacs seems to be relying on it...
 109 */
 110/*
 111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 112 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 113 * any extra contention...
 114 */
 115
 116/* In order to reduce some races, while at the same time doing additional
 117 * checking and hopefully speeding things up, we copy filenames to the
 118 * kernel data space before using them..
 119 *
 120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 121 * PATH_MAX includes the nul terminator --RR.
 122 */
 123
 124#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 125
 126struct filename *
 127getname_flags(const char __user *filename, int flags, int *empty)
 128{
 129	struct filename *result;
 130	char *kname;
 131	int len;
 132
 133	result = audit_reusename(filename);
 134	if (result)
 135		return result;
 136
 137	result = __getname();
 138	if (unlikely(!result))
 139		return ERR_PTR(-ENOMEM);
 140
 141	/*
 142	 * First, try to embed the struct filename inside the names_cache
 143	 * allocation
 144	 */
 145	kname = (char *)result->iname;
 146	result->name = kname;
 147
 148	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 149	if (unlikely(len < 0)) {
 150		__putname(result);
 151		return ERR_PTR(len);
 152	}
 153
 154	/*
 155	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 156	 * separate struct filename so we can dedicate the entire
 157	 * names_cache allocation for the pathname, and re-do the copy from
 158	 * userland.
 159	 */
 160	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 161		const size_t size = offsetof(struct filename, iname[1]);
 162		kname = (char *)result;
 163
 164		/*
 165		 * size is chosen that way we to guarantee that
 166		 * result->iname[0] is within the same object and that
 167		 * kname can't be equal to result->iname, no matter what.
 168		 */
 169		result = kzalloc(size, GFP_KERNEL);
 170		if (unlikely(!result)) {
 171			__putname(kname);
 172			return ERR_PTR(-ENOMEM);
 173		}
 174		result->name = kname;
 175		len = strncpy_from_user(kname, filename, PATH_MAX);
 176		if (unlikely(len < 0)) {
 177			__putname(kname);
 178			kfree(result);
 179			return ERR_PTR(len);
 180		}
 181		if (unlikely(len == PATH_MAX)) {
 182			__putname(kname);
 183			kfree(result);
 184			return ERR_PTR(-ENAMETOOLONG);
 185		}
 186	}
 187
 188	result->refcnt = 1;
 189	/* The empty path is special. */
 190	if (unlikely(!len)) {
 191		if (empty)
 192			*empty = 1;
 193		if (!(flags & LOOKUP_EMPTY)) {
 194			putname(result);
 195			return ERR_PTR(-ENOENT);
 196		}
 197	}
 198
 199	result->uptr = filename;
 200	result->aname = NULL;
 201	audit_getname(result);
 202	return result;
 203}
 204
 205struct filename *
 206getname(const char __user * filename)
 207{
 208	return getname_flags(filename, 0, NULL);
 209}
 210
 211struct filename *
 212getname_kernel(const char * filename)
 213{
 214	struct filename *result;
 215	int len = strlen(filename) + 1;
 216
 217	result = __getname();
 218	if (unlikely(!result))
 219		return ERR_PTR(-ENOMEM);
 220
 221	if (len <= EMBEDDED_NAME_MAX) {
 222		result->name = (char *)result->iname;
 223	} else if (len <= PATH_MAX) {
 
 224		struct filename *tmp;
 225
 226		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
 227		if (unlikely(!tmp)) {
 228			__putname(result);
 229			return ERR_PTR(-ENOMEM);
 230		}
 231		tmp->name = (char *)result;
 232		result = tmp;
 233	} else {
 234		__putname(result);
 235		return ERR_PTR(-ENAMETOOLONG);
 236	}
 237	memcpy((char *)result->name, filename, len);
 238	result->uptr = NULL;
 239	result->aname = NULL;
 240	result->refcnt = 1;
 241	audit_getname(result);
 242
 243	return result;
 244}
 245
 246void putname(struct filename *name)
 247{
 248	BUG_ON(name->refcnt <= 0);
 249
 250	if (--name->refcnt > 0)
 251		return;
 252
 253	if (name->name != name->iname) {
 254		__putname(name->name);
 255		kfree(name);
 256	} else
 257		__putname(name);
 258}
 259
 260static int check_acl(struct inode *inode, int mask)
 261{
 262#ifdef CONFIG_FS_POSIX_ACL
 263	struct posix_acl *acl;
 264
 265	if (mask & MAY_NOT_BLOCK) {
 266		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 267	        if (!acl)
 268	                return -EAGAIN;
 269		/* no ->get_acl() calls in RCU mode... */
 270		if (is_uncached_acl(acl))
 271			return -ECHILD;
 272	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
 273	}
 274
 275	acl = get_acl(inode, ACL_TYPE_ACCESS);
 276	if (IS_ERR(acl))
 277		return PTR_ERR(acl);
 278	if (acl) {
 279	        int error = posix_acl_permission(inode, acl, mask);
 280	        posix_acl_release(acl);
 281	        return error;
 282	}
 283#endif
 284
 285	return -EAGAIN;
 286}
 287
 288/*
 289 * This does the basic permission checking
 290 */
 291static int acl_permission_check(struct inode *inode, int mask)
 292{
 293	unsigned int mode = inode->i_mode;
 294
 295	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
 296		mode >>= 6;
 297	else {
 298		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 299			int error = check_acl(inode, mask);
 300			if (error != -EAGAIN)
 301				return error;
 302		}
 303
 304		if (in_group_p(inode->i_gid))
 305			mode >>= 3;
 306	}
 307
 308	/*
 309	 * If the DACs are ok we don't need any capability check.
 310	 */
 311	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
 312		return 0;
 313	return -EACCES;
 314}
 315
 316/**
 317 * generic_permission -  check for access rights on a Posix-like filesystem
 318 * @inode:	inode to check access rights for
 319 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
 320 *
 321 * Used to check for read/write/execute permissions on a file.
 322 * We use "fsuid" for this, letting us set arbitrary permissions
 323 * for filesystem access without changing the "normal" uids which
 324 * are used for other things.
 325 *
 326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 327 * request cannot be satisfied (eg. requires blocking or too much complexity).
 328 * It would then be called again in ref-walk mode.
 329 */
 330int generic_permission(struct inode *inode, int mask)
 331{
 332	int ret;
 333
 334	/*
 335	 * Do the basic permission checks.
 336	 */
 337	ret = acl_permission_check(inode, mask);
 338	if (ret != -EACCES)
 339		return ret;
 340
 341	if (S_ISDIR(inode->i_mode)) {
 342		/* DACs are overridable for directories */
 343		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 344			return 0;
 345		if (!(mask & MAY_WRITE))
 346			if (capable_wrt_inode_uidgid(inode,
 347						     CAP_DAC_READ_SEARCH))
 348				return 0;
 
 
 349		return -EACCES;
 350	}
 
 
 
 
 
 
 
 
 351	/*
 352	 * Read/write DACs are always overridable.
 353	 * Executable DACs are overridable when there is
 354	 * at least one exec bit set.
 355	 */
 356	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 357		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 358			return 0;
 359
 360	/*
 361	 * Searching includes executable on directories, else just read.
 362	 */
 363	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 364	if (mask == MAY_READ)
 365		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
 366			return 0;
 367
 368	return -EACCES;
 369}
 370EXPORT_SYMBOL(generic_permission);
 371
 372/*
 373 * We _really_ want to just do "generic_permission()" without
 374 * even looking at the inode->i_op values. So we keep a cache
 375 * flag in inode->i_opflags, that says "this has not special
 376 * permission function, use the fast case".
 377 */
 378static inline int do_inode_permission(struct inode *inode, int mask)
 379{
 380	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 381		if (likely(inode->i_op->permission))
 382			return inode->i_op->permission(inode, mask);
 383
 384		/* This gets set once for the inode lifetime */
 385		spin_lock(&inode->i_lock);
 386		inode->i_opflags |= IOP_FASTPERM;
 387		spin_unlock(&inode->i_lock);
 388	}
 389	return generic_permission(inode, mask);
 390}
 391
 392/**
 393 * __inode_permission - Check for access rights to a given inode
 394 * @inode: Inode to check permission on
 395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 396 *
 397 * Check for read/write/execute permissions on an inode.
 398 *
 399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 400 *
 401 * This does not check for a read-only file system.  You probably want
 402 * inode_permission().
 403 */
 404int __inode_permission(struct inode *inode, int mask)
 405{
 406	int retval;
 407
 408	if (unlikely(mask & MAY_WRITE)) {
 409		/*
 410		 * Nobody gets write access to an immutable file.
 411		 */
 412		if (IS_IMMUTABLE(inode))
 413			return -EPERM;
 414
 415		/*
 416		 * Updating mtime will likely cause i_uid and i_gid to be
 417		 * written back improperly if their true value is unknown
 418		 * to the vfs.
 419		 */
 420		if (HAS_UNMAPPED_ID(inode))
 421			return -EACCES;
 422	}
 423
 424	retval = do_inode_permission(inode, mask);
 425	if (retval)
 426		return retval;
 427
 428	retval = devcgroup_inode_permission(inode, mask);
 429	if (retval)
 430		return retval;
 431
 432	return security_inode_permission(inode, mask);
 433}
 434EXPORT_SYMBOL(__inode_permission);
 435
 436/**
 437 * sb_permission - Check superblock-level permissions
 438 * @sb: Superblock of inode to check permission on
 439 * @inode: Inode to check permission on
 440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 441 *
 442 * Separate out file-system wide checks from inode-specific permission checks.
 443 */
 444static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 445{
 446	if (unlikely(mask & MAY_WRITE)) {
 447		umode_t mode = inode->i_mode;
 448
 449		/* Nobody gets write access to a read-only fs. */
 450		if ((sb->s_flags & MS_RDONLY) &&
 451		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 452			return -EROFS;
 453	}
 454	return 0;
 455}
 456
 457/**
 458 * inode_permission - Check for access rights to a given inode
 459 * @inode: Inode to check permission on
 460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 461 *
 462 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 463 * this, letting us set arbitrary permissions for filesystem access without
 464 * changing the "normal" UIDs which are used for other things.
 465 *
 466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 467 */
 468int inode_permission(struct inode *inode, int mask)
 469{
 470	int retval;
 471
 472	retval = sb_permission(inode->i_sb, inode, mask);
 473	if (retval)
 474		return retval;
 475	return __inode_permission(inode, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476}
 477EXPORT_SYMBOL(inode_permission);
 478
 479/**
 480 * path_get - get a reference to a path
 481 * @path: path to get the reference to
 482 *
 483 * Given a path increment the reference count to the dentry and the vfsmount.
 484 */
 485void path_get(const struct path *path)
 486{
 487	mntget(path->mnt);
 488	dget(path->dentry);
 489}
 490EXPORT_SYMBOL(path_get);
 491
 492/**
 493 * path_put - put a reference to a path
 494 * @path: path to put the reference to
 495 *
 496 * Given a path decrement the reference count to the dentry and the vfsmount.
 497 */
 498void path_put(const struct path *path)
 499{
 500	dput(path->dentry);
 501	mntput(path->mnt);
 502}
 503EXPORT_SYMBOL(path_put);
 504
 505#define EMBEDDED_LEVELS 2
 506struct nameidata {
 507	struct path	path;
 508	struct qstr	last;
 509	struct path	root;
 510	struct inode	*inode; /* path.dentry.d_inode */
 511	unsigned int	flags;
 512	unsigned	seq, m_seq;
 513	int		last_type;
 514	unsigned	depth;
 515	int		total_link_count;
 516	struct saved {
 517		struct path link;
 518		struct delayed_call done;
 519		const char *name;
 520		unsigned seq;
 521	} *stack, internal[EMBEDDED_LEVELS];
 522	struct filename	*name;
 523	struct nameidata *saved;
 524	struct inode	*link_inode;
 525	unsigned	root_seq;
 526	int		dfd;
 527};
 528
 529static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 530{
 531	struct nameidata *old = current->nameidata;
 532	p->stack = p->internal;
 533	p->dfd = dfd;
 534	p->name = name;
 535	p->total_link_count = old ? old->total_link_count : 0;
 536	p->saved = old;
 537	current->nameidata = p;
 538}
 539
 540static void restore_nameidata(void)
 541{
 542	struct nameidata *now = current->nameidata, *old = now->saved;
 543
 544	current->nameidata = old;
 545	if (old)
 546		old->total_link_count = now->total_link_count;
 547	if (now->stack != now->internal)
 548		kfree(now->stack);
 549}
 550
 551static int __nd_alloc_stack(struct nameidata *nd)
 552{
 553	struct saved *p;
 554
 555	if (nd->flags & LOOKUP_RCU) {
 556		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
 557				  GFP_ATOMIC);
 558		if (unlikely(!p))
 559			return -ECHILD;
 560	} else {
 561		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
 562				  GFP_KERNEL);
 563		if (unlikely(!p))
 564			return -ENOMEM;
 565	}
 566	memcpy(p, nd->internal, sizeof(nd->internal));
 567	nd->stack = p;
 568	return 0;
 569}
 570
 571/**
 572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
 573 * @path: nameidate to verify
 574 *
 575 * Rename can sometimes move a file or directory outside of a bind
 576 * mount, path_connected allows those cases to be detected.
 577 */
 578static bool path_connected(const struct path *path)
 579{
 580	struct vfsmount *mnt = path->mnt;
 
 581
 582	/* Only bind mounts can have disconnected paths */
 583	if (mnt->mnt_root == mnt->mnt_sb->s_root)
 584		return true;
 585
 586	return is_subdir(path->dentry, mnt->mnt_root);
 587}
 588
 589static inline int nd_alloc_stack(struct nameidata *nd)
 590{
 591	if (likely(nd->depth != EMBEDDED_LEVELS))
 592		return 0;
 593	if (likely(nd->stack != nd->internal))
 594		return 0;
 595	return __nd_alloc_stack(nd);
 596}
 597
 598static void drop_links(struct nameidata *nd)
 599{
 600	int i = nd->depth;
 601	while (i--) {
 602		struct saved *last = nd->stack + i;
 603		do_delayed_call(&last->done);
 604		clear_delayed_call(&last->done);
 605	}
 606}
 607
 608static void terminate_walk(struct nameidata *nd)
 609{
 610	drop_links(nd);
 611	if (!(nd->flags & LOOKUP_RCU)) {
 612		int i;
 613		path_put(&nd->path);
 614		for (i = 0; i < nd->depth; i++)
 615			path_put(&nd->stack[i].link);
 616		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
 617			path_put(&nd->root);
 618			nd->root.mnt = NULL;
 619		}
 620	} else {
 621		nd->flags &= ~LOOKUP_RCU;
 622		if (!(nd->flags & LOOKUP_ROOT))
 623			nd->root.mnt = NULL;
 624		rcu_read_unlock();
 625	}
 626	nd->depth = 0;
 627}
 628
 629/* path_put is needed afterwards regardless of success or failure */
 630static bool legitimize_path(struct nameidata *nd,
 631			    struct path *path, unsigned seq)
 632{
 633	int res = __legitimize_mnt(path->mnt, nd->m_seq);
 634	if (unlikely(res)) {
 635		if (res > 0)
 636			path->mnt = NULL;
 637		path->dentry = NULL;
 638		return false;
 639	}
 640	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 641		path->dentry = NULL;
 642		return false;
 643	}
 644	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 645}
 646
 647static bool legitimize_links(struct nameidata *nd)
 648{
 649	int i;
 650	for (i = 0; i < nd->depth; i++) {
 651		struct saved *last = nd->stack + i;
 652		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 653			drop_links(nd);
 654			nd->depth = i + 1;
 655			return false;
 656		}
 657	}
 658	return true;
 659}
 660
 
 
 
 
 
 
 
 
 661/*
 662 * Path walking has 2 modes, rcu-walk and ref-walk (see
 663 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 664 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 665 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 666 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 667 * got stuck, so ref-walk may continue from there. If this is not successful
 668 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 669 * to restart the path walk from the beginning in ref-walk mode.
 670 */
 671
 672/**
 673 * unlazy_walk - try to switch to ref-walk mode.
 674 * @nd: nameidata pathwalk data
 675 * @dentry: child of nd->path.dentry or NULL
 676 * @seq: seq number to check dentry against
 677 * Returns: 0 on success, -ECHILD on failure
 678 *
 679 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
 680 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
 681 * @nd or NULL.  Must be called from rcu-walk context.
 682 * Nothing should touch nameidata between unlazy_walk() failure and
 683 * terminate_walk().
 684 */
 685static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
 686{
 687	struct dentry *parent = nd->path.dentry;
 688
 689	BUG_ON(!(nd->flags & LOOKUP_RCU));
 690
 691	nd->flags &= ~LOOKUP_RCU;
 692	if (unlikely(!legitimize_links(nd)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693		goto out2;
 694	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
 695		goto out2;
 696	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
 697		goto out1;
 698
 699	/*
 700	 * For a negative lookup, the lookup sequence point is the parents
 701	 * sequence point, and it only needs to revalidate the parent dentry.
 702	 *
 703	 * For a positive lookup, we need to move both the parent and the
 704	 * dentry from the RCU domain to be properly refcounted. And the
 705	 * sequence number in the dentry validates *both* dentry counters,
 706	 * since we checked the sequence number of the parent after we got
 707	 * the child sequence number. So we know the parent must still
 708	 * be valid if the child sequence number is still valid.
 709	 */
 710	if (!dentry) {
 711		if (read_seqcount_retry(&parent->d_seq, nd->seq))
 712			goto out;
 713		BUG_ON(nd->inode != parent->d_inode);
 714	} else {
 715		if (!lockref_get_not_dead(&dentry->d_lockref))
 716			goto out;
 717		if (read_seqcount_retry(&dentry->d_seq, seq))
 718			goto drop_dentry;
 719	}
 720
 721	/*
 722	 * Sequence counts matched. Now make sure that the root is
 723	 * still valid and get it if required.
 724	 */
 725	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
 726		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
 727			rcu_read_unlock();
 728			dput(dentry);
 729			return -ECHILD;
 730		}
 731	}
 732
 733	rcu_read_unlock();
 734	return 0;
 735
 736drop_dentry:
 737	rcu_read_unlock();
 738	dput(dentry);
 739	goto drop_root_mnt;
 740out2:
 741	nd->path.mnt = NULL;
 742out1:
 743	nd->path.dentry = NULL;
 744out:
 745	rcu_read_unlock();
 746drop_root_mnt:
 747	if (!(nd->flags & LOOKUP_ROOT))
 748		nd->root.mnt = NULL;
 749	return -ECHILD;
 750}
 751
 752static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
 753{
 754	if (unlikely(!legitimize_path(nd, link, seq))) {
 755		drop_links(nd);
 756		nd->depth = 0;
 757		nd->flags &= ~LOOKUP_RCU;
 758		nd->path.mnt = NULL;
 759		nd->path.dentry = NULL;
 760		if (!(nd->flags & LOOKUP_ROOT))
 761			nd->root.mnt = NULL;
 762		rcu_read_unlock();
 763	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
 764		return 0;
 765	}
 766	path_put(link);
 767	return -ECHILD;
 768}
 769
 770static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 771{
 772	return dentry->d_op->d_revalidate(dentry, flags);
 
 
 
 773}
 774
 775/**
 776 * complete_walk - successful completion of path walk
 777 * @nd:  pointer nameidata
 778 *
 779 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 780 * Revalidate the final result, unless we'd already done that during
 781 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 782 * success, -error on failure.  In case of failure caller does not
 783 * need to drop nd->path.
 784 */
 785static int complete_walk(struct nameidata *nd)
 786{
 787	struct dentry *dentry = nd->path.dentry;
 788	int status;
 789
 790	if (nd->flags & LOOKUP_RCU) {
 791		if (!(nd->flags & LOOKUP_ROOT))
 792			nd->root.mnt = NULL;
 793		if (unlikely(unlazy_walk(nd, NULL, 0)))
 794			return -ECHILD;
 795	}
 796
 797	if (likely(!(nd->flags & LOOKUP_JUMPED)))
 798		return 0;
 799
 800	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 801		return 0;
 802
 803	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 804	if (status > 0)
 805		return 0;
 806
 807	if (!status)
 808		status = -ESTALE;
 809
 810	return status;
 811}
 812
 813static void set_root(struct nameidata *nd)
 814{
 815	struct fs_struct *fs = current->fs;
 816
 817	if (nd->flags & LOOKUP_RCU) {
 818		unsigned seq;
 819
 820		do {
 821			seq = read_seqcount_begin(&fs->seq);
 822			nd->root = fs->root;
 823			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 824		} while (read_seqcount_retry(&fs->seq, seq));
 825	} else {
 826		get_fs_root(fs, &nd->root);
 
 827	}
 828}
 829
 830static void path_put_conditional(struct path *path, struct nameidata *nd)
 831{
 832	dput(path->dentry);
 833	if (path->mnt != nd->path.mnt)
 834		mntput(path->mnt);
 835}
 836
 837static inline void path_to_nameidata(const struct path *path,
 838					struct nameidata *nd)
 839{
 840	if (!(nd->flags & LOOKUP_RCU)) {
 841		dput(nd->path.dentry);
 842		if (nd->path.mnt != path->mnt)
 843			mntput(nd->path.mnt);
 844	}
 845	nd->path.mnt = path->mnt;
 846	nd->path.dentry = path->dentry;
 847}
 848
 849static int nd_jump_root(struct nameidata *nd)
 850{
 851	if (nd->flags & LOOKUP_RCU) {
 852		struct dentry *d;
 853		nd->path = nd->root;
 854		d = nd->path.dentry;
 855		nd->inode = d->d_inode;
 856		nd->seq = nd->root_seq;
 857		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
 858			return -ECHILD;
 859	} else {
 860		path_put(&nd->path);
 861		nd->path = nd->root;
 862		path_get(&nd->path);
 863		nd->inode = nd->path.dentry->d_inode;
 864	}
 865	nd->flags |= LOOKUP_JUMPED;
 866	return 0;
 867}
 868
 869/*
 870 * Helper to directly jump to a known parsed path from ->get_link,
 871 * caller must have taken a reference to path beforehand.
 872 */
 873void nd_jump_link(struct path *path)
 874{
 875	struct nameidata *nd = current->nameidata;
 876	path_put(&nd->path);
 877
 878	nd->path = *path;
 879	nd->inode = nd->path.dentry->d_inode;
 880	nd->flags |= LOOKUP_JUMPED;
 881}
 882
 883static inline void put_link(struct nameidata *nd)
 884{
 885	struct saved *last = nd->stack + --nd->depth;
 886	do_delayed_call(&last->done);
 887	if (!(nd->flags & LOOKUP_RCU))
 888		path_put(&last->link);
 889}
 890
 891int sysctl_protected_symlinks __read_mostly = 0;
 892int sysctl_protected_hardlinks __read_mostly = 0;
 
 
 893
 894/**
 895 * may_follow_link - Check symlink following for unsafe situations
 896 * @nd: nameidata pathwalk data
 897 *
 898 * In the case of the sysctl_protected_symlinks sysctl being enabled,
 899 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
 900 * in a sticky world-writable directory. This is to protect privileged
 901 * processes from failing races against path names that may change out
 902 * from under them by way of other users creating malicious symlinks.
 903 * It will permit symlinks to be followed only when outside a sticky
 904 * world-writable directory, or when the uid of the symlink and follower
 905 * match, or when the directory owner matches the symlink's owner.
 906 *
 907 * Returns 0 if following the symlink is allowed, -ve on error.
 908 */
 909static inline int may_follow_link(struct nameidata *nd)
 910{
 911	const struct inode *inode;
 912	const struct inode *parent;
 913	kuid_t puid;
 914
 915	if (!sysctl_protected_symlinks)
 916		return 0;
 917
 918	/* Allowed if owner and follower match. */
 919	inode = nd->link_inode;
 920	if (uid_eq(current_cred()->fsuid, inode->i_uid))
 921		return 0;
 922
 923	/* Allowed if parent directory not sticky and world-writable. */
 924	parent = nd->inode;
 925	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 926		return 0;
 927
 928	/* Allowed if parent directory and link owner match. */
 929	puid = parent->i_uid;
 930	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
 931		return 0;
 932
 933	if (nd->flags & LOOKUP_RCU)
 934		return -ECHILD;
 935
 936	audit_log_link_denied("follow_link", &nd->stack[0].link);
 
 937	return -EACCES;
 938}
 939
 940/**
 941 * safe_hardlink_source - Check for safe hardlink conditions
 942 * @inode: the source inode to hardlink from
 943 *
 944 * Return false if at least one of the following conditions:
 945 *    - inode is not a regular file
 946 *    - inode is setuid
 947 *    - inode is setgid and group-exec
 948 *    - access failure for read and write
 949 *
 950 * Otherwise returns true.
 951 */
 952static bool safe_hardlink_source(struct inode *inode)
 953{
 954	umode_t mode = inode->i_mode;
 955
 956	/* Special files should not get pinned to the filesystem. */
 957	if (!S_ISREG(mode))
 958		return false;
 959
 960	/* Setuid files should not get pinned to the filesystem. */
 961	if (mode & S_ISUID)
 962		return false;
 963
 964	/* Executable setgid files should not get pinned to the filesystem. */
 965	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
 966		return false;
 967
 968	/* Hardlinking to unreadable or unwritable sources is dangerous. */
 969	if (inode_permission(inode, MAY_READ | MAY_WRITE))
 970		return false;
 971
 972	return true;
 973}
 974
 975/**
 976 * may_linkat - Check permissions for creating a hardlink
 977 * @link: the source to hardlink from
 978 *
 979 * Block hardlink when all of:
 980 *  - sysctl_protected_hardlinks enabled
 981 *  - fsuid does not match inode
 982 *  - hardlink source is unsafe (see safe_hardlink_source() above)
 983 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
 984 *
 985 * Returns 0 if successful, -ve on error.
 986 */
 987static int may_linkat(struct path *link)
 988{
 989	struct inode *inode;
 
 
 
 
 990
 991	if (!sysctl_protected_hardlinks)
 992		return 0;
 993
 994	inode = link->dentry->d_inode;
 995
 996	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
 997	 * otherwise, it must be a safe source.
 998	 */
 999	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1000		return 0;
1001
1002	audit_log_link_denied("linkat", link);
1003	return -EPERM;
1004}
1005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1006static __always_inline
1007const char *get_link(struct nameidata *nd)
1008{
1009	struct saved *last = nd->stack + nd->depth - 1;
1010	struct dentry *dentry = last->link.dentry;
1011	struct inode *inode = nd->link_inode;
1012	int error;
1013	const char *res;
1014
1015	if (!(nd->flags & LOOKUP_RCU)) {
1016		touch_atime(&last->link);
1017		cond_resched();
1018	} else if (atime_needs_update_rcu(&last->link, inode)) {
1019		if (unlikely(unlazy_walk(nd, NULL, 0)))
1020			return ERR_PTR(-ECHILD);
1021		touch_atime(&last->link);
1022	}
1023
1024	error = security_inode_follow_link(dentry, inode,
1025					   nd->flags & LOOKUP_RCU);
1026	if (unlikely(error))
1027		return ERR_PTR(error);
1028
1029	nd->last_type = LAST_BIND;
1030	res = inode->i_link;
1031	if (!res) {
1032		const char * (*get)(struct dentry *, struct inode *,
1033				struct delayed_call *);
1034		get = inode->i_op->get_link;
1035		if (nd->flags & LOOKUP_RCU) {
1036			res = get(NULL, inode, &last->done);
1037			if (res == ERR_PTR(-ECHILD)) {
1038				if (unlikely(unlazy_walk(nd, NULL, 0)))
1039					return ERR_PTR(-ECHILD);
1040				res = get(dentry, inode, &last->done);
1041			}
1042		} else {
1043			res = get(dentry, inode, &last->done);
1044		}
1045		if (IS_ERR_OR_NULL(res))
1046			return res;
1047	}
1048	if (*res == '/') {
1049		if (!nd->root.mnt)
1050			set_root(nd);
1051		if (unlikely(nd_jump_root(nd)))
1052			return ERR_PTR(-ECHILD);
1053		while (unlikely(*++res == '/'))
1054			;
1055	}
1056	if (!*res)
1057		res = NULL;
1058	return res;
1059}
1060
1061/*
1062 * follow_up - Find the mountpoint of path's vfsmount
1063 *
1064 * Given a path, find the mountpoint of its source file system.
1065 * Replace @path with the path of the mountpoint in the parent mount.
1066 * Up is towards /.
1067 *
1068 * Return 1 if we went up a level and 0 if we were already at the
1069 * root.
1070 */
1071int follow_up(struct path *path)
1072{
1073	struct mount *mnt = real_mount(path->mnt);
1074	struct mount *parent;
1075	struct dentry *mountpoint;
1076
1077	read_seqlock_excl(&mount_lock);
1078	parent = mnt->mnt_parent;
1079	if (parent == mnt) {
1080		read_sequnlock_excl(&mount_lock);
1081		return 0;
1082	}
1083	mntget(&parent->mnt);
1084	mountpoint = dget(mnt->mnt_mountpoint);
1085	read_sequnlock_excl(&mount_lock);
1086	dput(path->dentry);
1087	path->dentry = mountpoint;
1088	mntput(path->mnt);
1089	path->mnt = &parent->mnt;
1090	return 1;
1091}
1092EXPORT_SYMBOL(follow_up);
1093
1094/*
1095 * Perform an automount
1096 * - return -EISDIR to tell follow_managed() to stop and return the path we
1097 *   were called with.
1098 */
1099static int follow_automount(struct path *path, struct nameidata *nd,
1100			    bool *need_mntput)
1101{
1102	struct vfsmount *mnt;
1103	int err;
1104
1105	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1106		return -EREMOTE;
1107
1108	/* We don't want to mount if someone's just doing a stat -
1109	 * unless they're stat'ing a directory and appended a '/' to
1110	 * the name.
1111	 *
1112	 * We do, however, want to mount if someone wants to open or
1113	 * create a file of any type under the mountpoint, wants to
1114	 * traverse through the mountpoint or wants to open the
1115	 * mounted directory.  Also, autofs may mark negative dentries
1116	 * as being automount points.  These will need the attentions
1117	 * of the daemon to instantiate them before they can be used.
1118	 */
1119	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1120			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1121	    path->dentry->d_inode)
1122		return -EISDIR;
1123
1124	if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1125		return -EACCES;
1126
1127	nd->total_link_count++;
1128	if (nd->total_link_count >= 40)
1129		return -ELOOP;
1130
1131	mnt = path->dentry->d_op->d_automount(path);
1132	if (IS_ERR(mnt)) {
1133		/*
1134		 * The filesystem is allowed to return -EISDIR here to indicate
1135		 * it doesn't want to automount.  For instance, autofs would do
1136		 * this so that its userspace daemon can mount on this dentry.
1137		 *
1138		 * However, we can only permit this if it's a terminal point in
1139		 * the path being looked up; if it wasn't then the remainder of
1140		 * the path is inaccessible and we should say so.
1141		 */
1142		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1143			return -EREMOTE;
1144		return PTR_ERR(mnt);
1145	}
1146
1147	if (!mnt) /* mount collision */
1148		return 0;
1149
1150	if (!*need_mntput) {
1151		/* lock_mount() may release path->mnt on error */
1152		mntget(path->mnt);
1153		*need_mntput = true;
1154	}
1155	err = finish_automount(mnt, path);
1156
1157	switch (err) {
1158	case -EBUSY:
1159		/* Someone else made a mount here whilst we were busy */
1160		return 0;
1161	case 0:
1162		path_put(path);
1163		path->mnt = mnt;
1164		path->dentry = dget(mnt->mnt_root);
1165		return 0;
1166	default:
1167		return err;
1168	}
1169
1170}
1171
1172/*
1173 * Handle a dentry that is managed in some way.
1174 * - Flagged for transit management (autofs)
1175 * - Flagged as mountpoint
1176 * - Flagged as automount point
1177 *
1178 * This may only be called in refwalk mode.
1179 *
1180 * Serialization is taken care of in namespace.c
1181 */
1182static int follow_managed(struct path *path, struct nameidata *nd)
1183{
1184	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1185	unsigned managed;
1186	bool need_mntput = false;
1187	int ret = 0;
1188
1189	/* Given that we're not holding a lock here, we retain the value in a
1190	 * local variable for each dentry as we look at it so that we don't see
1191	 * the components of that value change under us */
1192	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1193	       managed &= DCACHE_MANAGED_DENTRY,
1194	       unlikely(managed != 0)) {
1195		/* Allow the filesystem to manage the transit without i_mutex
1196		 * being held. */
1197		if (managed & DCACHE_MANAGE_TRANSIT) {
1198			BUG_ON(!path->dentry->d_op);
1199			BUG_ON(!path->dentry->d_op->d_manage);
1200			ret = path->dentry->d_op->d_manage(path, false);
1201			if (ret < 0)
1202				break;
1203		}
1204
1205		/* Transit to a mounted filesystem. */
1206		if (managed & DCACHE_MOUNTED) {
1207			struct vfsmount *mounted = lookup_mnt(path);
1208			if (mounted) {
1209				dput(path->dentry);
1210				if (need_mntput)
1211					mntput(path->mnt);
1212				path->mnt = mounted;
1213				path->dentry = dget(mounted->mnt_root);
1214				need_mntput = true;
1215				continue;
1216			}
1217
1218			/* Something is mounted on this dentry in another
1219			 * namespace and/or whatever was mounted there in this
1220			 * namespace got unmounted before lookup_mnt() could
1221			 * get it */
1222		}
1223
1224		/* Handle an automount point */
1225		if (managed & DCACHE_NEED_AUTOMOUNT) {
1226			ret = follow_automount(path, nd, &need_mntput);
1227			if (ret < 0)
1228				break;
1229			continue;
1230		}
1231
1232		/* We didn't change the current path point */
1233		break;
1234	}
1235
1236	if (need_mntput && path->mnt == mnt)
1237		mntput(path->mnt);
1238	if (ret == -EISDIR || !ret)
1239		ret = 1;
1240	if (need_mntput)
1241		nd->flags |= LOOKUP_JUMPED;
1242	if (unlikely(ret < 0))
1243		path_put_conditional(path, nd);
1244	return ret;
1245}
1246
1247int follow_down_one(struct path *path)
1248{
1249	struct vfsmount *mounted;
1250
1251	mounted = lookup_mnt(path);
1252	if (mounted) {
1253		dput(path->dentry);
1254		mntput(path->mnt);
1255		path->mnt = mounted;
1256		path->dentry = dget(mounted->mnt_root);
1257		return 1;
1258	}
1259	return 0;
1260}
1261EXPORT_SYMBOL(follow_down_one);
1262
1263static inline int managed_dentry_rcu(const struct path *path)
1264{
1265	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1266		path->dentry->d_op->d_manage(path, true) : 0;
1267}
1268
1269/*
1270 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1271 * we meet a managed dentry that would need blocking.
1272 */
1273static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1274			       struct inode **inode, unsigned *seqp)
1275{
1276	for (;;) {
1277		struct mount *mounted;
1278		/*
1279		 * Don't forget we might have a non-mountpoint managed dentry
1280		 * that wants to block transit.
1281		 */
1282		switch (managed_dentry_rcu(path)) {
1283		case -ECHILD:
1284		default:
1285			return false;
1286		case -EISDIR:
1287			return true;
1288		case 0:
1289			break;
1290		}
1291
1292		if (!d_mountpoint(path->dentry))
1293			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1294
1295		mounted = __lookup_mnt(path->mnt, path->dentry);
1296		if (!mounted)
1297			break;
1298		path->mnt = &mounted->mnt;
1299		path->dentry = mounted->mnt.mnt_root;
1300		nd->flags |= LOOKUP_JUMPED;
1301		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1302		/*
1303		 * Update the inode too. We don't need to re-check the
1304		 * dentry sequence number here after this d_inode read,
1305		 * because a mount-point is always pinned.
1306		 */
1307		*inode = path->dentry->d_inode;
1308	}
1309	return !read_seqretry(&mount_lock, nd->m_seq) &&
1310		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1311}
1312
1313static int follow_dotdot_rcu(struct nameidata *nd)
1314{
1315	struct inode *inode = nd->inode;
1316
1317	while (1) {
1318		if (path_equal(&nd->path, &nd->root))
1319			break;
1320		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1321			struct dentry *old = nd->path.dentry;
1322			struct dentry *parent = old->d_parent;
1323			unsigned seq;
1324
1325			inode = parent->d_inode;
1326			seq = read_seqcount_begin(&parent->d_seq);
1327			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1328				return -ECHILD;
1329			nd->path.dentry = parent;
1330			nd->seq = seq;
1331			if (unlikely(!path_connected(&nd->path)))
1332				return -ENOENT;
1333			break;
1334		} else {
1335			struct mount *mnt = real_mount(nd->path.mnt);
1336			struct mount *mparent = mnt->mnt_parent;
1337			struct dentry *mountpoint = mnt->mnt_mountpoint;
1338			struct inode *inode2 = mountpoint->d_inode;
1339			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1340			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341				return -ECHILD;
1342			if (&mparent->mnt == nd->path.mnt)
1343				break;
1344			/* we know that mountpoint was pinned */
1345			nd->path.dentry = mountpoint;
1346			nd->path.mnt = &mparent->mnt;
1347			inode = inode2;
1348			nd->seq = seq;
1349		}
1350	}
1351	while (unlikely(d_mountpoint(nd->path.dentry))) {
1352		struct mount *mounted;
1353		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1354		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1355			return -ECHILD;
1356		if (!mounted)
1357			break;
1358		nd->path.mnt = &mounted->mnt;
1359		nd->path.dentry = mounted->mnt.mnt_root;
1360		inode = nd->path.dentry->d_inode;
1361		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1362	}
1363	nd->inode = inode;
1364	return 0;
1365}
1366
1367/*
1368 * Follow down to the covering mount currently visible to userspace.  At each
1369 * point, the filesystem owning that dentry may be queried as to whether the
1370 * caller is permitted to proceed or not.
1371 */
1372int follow_down(struct path *path)
1373{
1374	unsigned managed;
1375	int ret;
1376
1377	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1378	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1379		/* Allow the filesystem to manage the transit without i_mutex
1380		 * being held.
1381		 *
1382		 * We indicate to the filesystem if someone is trying to mount
1383		 * something here.  This gives autofs the chance to deny anyone
1384		 * other than its daemon the right to mount on its
1385		 * superstructure.
1386		 *
1387		 * The filesystem may sleep at this point.
1388		 */
1389		if (managed & DCACHE_MANAGE_TRANSIT) {
1390			BUG_ON(!path->dentry->d_op);
1391			BUG_ON(!path->dentry->d_op->d_manage);
1392			ret = path->dentry->d_op->d_manage(path, false);
1393			if (ret < 0)
1394				return ret == -EISDIR ? 0 : ret;
1395		}
1396
1397		/* Transit to a mounted filesystem. */
1398		if (managed & DCACHE_MOUNTED) {
1399			struct vfsmount *mounted = lookup_mnt(path);
1400			if (!mounted)
1401				break;
1402			dput(path->dentry);
1403			mntput(path->mnt);
1404			path->mnt = mounted;
1405			path->dentry = dget(mounted->mnt_root);
1406			continue;
1407		}
1408
1409		/* Don't handle automount points here */
1410		break;
1411	}
1412	return 0;
1413}
1414EXPORT_SYMBOL(follow_down);
1415
1416/*
1417 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1418 */
1419static void follow_mount(struct path *path)
1420{
1421	while (d_mountpoint(path->dentry)) {
1422		struct vfsmount *mounted = lookup_mnt(path);
1423		if (!mounted)
1424			break;
1425		dput(path->dentry);
1426		mntput(path->mnt);
1427		path->mnt = mounted;
1428		path->dentry = dget(mounted->mnt_root);
1429	}
1430}
1431
1432static int path_parent_directory(struct path *path)
1433{
1434	struct dentry *old = path->dentry;
1435	/* rare case of legitimate dget_parent()... */
1436	path->dentry = dget_parent(path->dentry);
1437	dput(old);
1438	if (unlikely(!path_connected(path)))
1439		return -ENOENT;
1440	return 0;
1441}
1442
1443static int follow_dotdot(struct nameidata *nd)
1444{
1445	while(1) {
1446		if (nd->path.dentry == nd->root.dentry &&
1447		    nd->path.mnt == nd->root.mnt) {
1448			break;
1449		}
1450		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1451			int ret = path_parent_directory(&nd->path);
1452			if (ret)
1453				return ret;
1454			break;
1455		}
1456		if (!follow_up(&nd->path))
1457			break;
1458	}
1459	follow_mount(&nd->path);
1460	nd->inode = nd->path.dentry->d_inode;
1461	return 0;
1462}
1463
1464/*
1465 * This looks up the name in dcache and possibly revalidates the found dentry.
1466 * NULL is returned if the dentry does not exist in the cache.
1467 */
1468static struct dentry *lookup_dcache(const struct qstr *name,
1469				    struct dentry *dir,
1470				    unsigned int flags)
1471{
1472	struct dentry *dentry;
1473	int error;
1474
1475	dentry = d_lookup(dir, name);
1476	if (dentry) {
1477		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1478			error = d_revalidate(dentry, flags);
1479			if (unlikely(error <= 0)) {
1480				if (!error)
1481					d_invalidate(dentry);
1482				dput(dentry);
1483				return ERR_PTR(error);
1484			}
1485		}
1486	}
1487	return dentry;
1488}
1489
1490/*
1491 * Call i_op->lookup on the dentry.  The dentry must be negative and
1492 * unhashed.
1493 *
1494 * dir->d_inode->i_mutex must be held
 
1495 */
1496static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1497				  unsigned int flags)
1498{
 
1499	struct dentry *old;
 
 
 
 
1500
1501	/* Don't create child dentry for a dead directory. */
1502	if (unlikely(IS_DEADDIR(dir))) {
1503		dput(dentry);
1504		return ERR_PTR(-ENOENT);
1505	}
 
 
 
1506
1507	old = dir->i_op->lookup(dir, dentry, flags);
1508	if (unlikely(old)) {
1509		dput(dentry);
1510		dentry = old;
1511	}
1512	return dentry;
1513}
1514
1515static struct dentry *__lookup_hash(const struct qstr *name,
1516		struct dentry *base, unsigned int flags)
1517{
1518	struct dentry *dentry = lookup_dcache(name, base, flags);
1519
1520	if (dentry)
1521		return dentry;
1522
1523	dentry = d_alloc(base, name);
1524	if (unlikely(!dentry))
1525		return ERR_PTR(-ENOMEM);
1526
1527	return lookup_real(base->d_inode, dentry, flags);
1528}
1529
1530static int lookup_fast(struct nameidata *nd,
1531		       struct path *path, struct inode **inode,
1532		       unsigned *seqp)
1533{
1534	struct vfsmount *mnt = nd->path.mnt;
1535	struct dentry *dentry, *parent = nd->path.dentry;
1536	int status = 1;
1537	int err;
1538
1539	/*
1540	 * Rename seqlock is not required here because in the off chance
1541	 * of a false negative due to a concurrent rename, the caller is
1542	 * going to fall back to non-racy lookup.
1543	 */
1544	if (nd->flags & LOOKUP_RCU) {
1545		unsigned seq;
1546		bool negative;
1547		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1548		if (unlikely(!dentry)) {
1549			if (unlazy_walk(nd, NULL, 0))
1550				return -ECHILD;
1551			return 0;
1552		}
1553
1554		/*
1555		 * This sequence count validates that the inode matches
1556		 * the dentry name information from lookup.
1557		 */
1558		*inode = d_backing_inode(dentry);
1559		negative = d_is_negative(dentry);
1560		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1561			return -ECHILD;
1562
1563		/*
1564		 * This sequence count validates that the parent had no
1565		 * changes while we did the lookup of the dentry above.
1566		 *
1567		 * The memory barrier in read_seqcount_begin of child is
1568		 *  enough, we can use __read_seqcount_retry here.
1569		 */
1570		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1571			return -ECHILD;
1572
1573		*seqp = seq;
1574		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1575			status = d_revalidate(dentry, nd->flags);
1576		if (unlikely(status <= 0)) {
1577			if (unlazy_walk(nd, dentry, seq))
1578				return -ECHILD;
1579			if (status == -ECHILD)
1580				status = d_revalidate(dentry, nd->flags);
1581		} else {
1582			/*
1583			 * Note: do negative dentry check after revalidation in
1584			 * case that drops it.
1585			 */
1586			if (unlikely(negative))
1587				return -ENOENT;
1588			path->mnt = mnt;
1589			path->dentry = dentry;
1590			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1591				return 1;
1592			if (unlazy_walk(nd, dentry, seq))
1593				return -ECHILD;
1594		}
 
 
 
 
 
1595	} else {
1596		dentry = __d_lookup(parent, &nd->last);
1597		if (unlikely(!dentry))
1598			return 0;
1599		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1600			status = d_revalidate(dentry, nd->flags);
1601	}
1602	if (unlikely(status <= 0)) {
1603		if (!status)
1604			d_invalidate(dentry);
1605		dput(dentry);
1606		return status;
1607	}
1608	if (unlikely(d_is_negative(dentry))) {
1609		dput(dentry);
1610		return -ENOENT;
1611	}
1612
1613	path->mnt = mnt;
1614	path->dentry = dentry;
1615	err = follow_managed(path, nd);
1616	if (likely(err > 0))
1617		*inode = d_backing_inode(path->dentry);
1618	return err;
1619}
1620
1621/* Fast lookup failed, do it the slow way */
1622static struct dentry *lookup_slow(const struct qstr *name,
1623				  struct dentry *dir,
1624				  unsigned int flags)
1625{
1626	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1627	struct inode *inode = dir->d_inode;
1628	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1629
1630	inode_lock_shared(inode);
1631	/* Don't go there if it's already dead */
1632	if (unlikely(IS_DEADDIR(inode)))
1633		goto out;
1634again:
1635	dentry = d_alloc_parallel(dir, name, &wq);
1636	if (IS_ERR(dentry))
1637		goto out;
1638	if (unlikely(!d_in_lookup(dentry))) {
1639		if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1640		    !(flags & LOOKUP_NO_REVAL)) {
1641			int error = d_revalidate(dentry, flags);
1642			if (unlikely(error <= 0)) {
1643				if (!error) {
1644					d_invalidate(dentry);
1645					dput(dentry);
1646					goto again;
1647				}
1648				dput(dentry);
1649				dentry = ERR_PTR(error);
1650			}
1651		}
1652	} else {
1653		old = inode->i_op->lookup(inode, dentry, flags);
1654		d_lookup_done(dentry);
1655		if (unlikely(old)) {
1656			dput(dentry);
1657			dentry = old;
1658		}
1659	}
1660out:
 
 
 
 
 
 
 
 
 
 
1661	inode_unlock_shared(inode);
1662	return dentry;
1663}
1664
1665static inline int may_lookup(struct nameidata *nd)
1666{
1667	if (nd->flags & LOOKUP_RCU) {
1668		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1669		if (err != -ECHILD)
1670			return err;
1671		if (unlazy_walk(nd, NULL, 0))
1672			return -ECHILD;
1673	}
1674	return inode_permission(nd->inode, MAY_EXEC);
1675}
1676
1677static inline int handle_dots(struct nameidata *nd, int type)
1678{
1679	if (type == LAST_DOTDOT) {
1680		if (!nd->root.mnt)
1681			set_root(nd);
1682		if (nd->flags & LOOKUP_RCU) {
1683			return follow_dotdot_rcu(nd);
1684		} else
1685			return follow_dotdot(nd);
1686	}
1687	return 0;
1688}
1689
1690static int pick_link(struct nameidata *nd, struct path *link,
1691		     struct inode *inode, unsigned seq)
1692{
1693	int error;
1694	struct saved *last;
1695	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1696		path_to_nameidata(link, nd);
1697		return -ELOOP;
1698	}
1699	if (!(nd->flags & LOOKUP_RCU)) {
1700		if (link->mnt == nd->path.mnt)
1701			mntget(link->mnt);
1702	}
1703	error = nd_alloc_stack(nd);
1704	if (unlikely(error)) {
1705		if (error == -ECHILD) {
1706			if (unlikely(unlazy_link(nd, link, seq)))
1707				return -ECHILD;
1708			error = nd_alloc_stack(nd);
 
 
 
 
 
 
1709		}
1710		if (error) {
1711			path_put(link);
1712			return error;
1713		}
1714	}
1715
1716	last = nd->stack + nd->depth++;
1717	last->link = *link;
1718	clear_delayed_call(&last->done);
1719	nd->link_inode = inode;
1720	last->seq = seq;
1721	return 1;
1722}
1723
1724enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1725
1726/*
1727 * Do we need to follow links? We _really_ want to be able
1728 * to do this check without having to look at inode->i_op,
1729 * so we keep a cache of "no, this doesn't need follow_link"
1730 * for the common case.
1731 */
1732static inline int step_into(struct nameidata *nd, struct path *path,
1733			    int flags, struct inode *inode, unsigned seq)
1734{
1735	if (!(flags & WALK_MORE) && nd->depth)
1736		put_link(nd);
1737	if (likely(!d_is_symlink(path->dentry)) ||
1738	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1739		/* not a symlink or should not follow */
1740		path_to_nameidata(path, nd);
1741		nd->inode = inode;
1742		nd->seq = seq;
1743		return 0;
1744	}
1745	/* make sure that d_is_symlink above matches inode */
1746	if (nd->flags & LOOKUP_RCU) {
1747		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1748			return -ECHILD;
1749	}
1750	return pick_link(nd, path, inode, seq);
1751}
1752
1753static int walk_component(struct nameidata *nd, int flags)
1754{
1755	struct path path;
1756	struct inode *inode;
1757	unsigned seq;
1758	int err;
1759	/*
1760	 * "." and ".." are special - ".." especially so because it has
1761	 * to be able to know about the current root directory and
1762	 * parent relationships.
1763	 */
1764	if (unlikely(nd->last_type != LAST_NORM)) {
1765		err = handle_dots(nd, nd->last_type);
1766		if (!(flags & WALK_MORE) && nd->depth)
1767			put_link(nd);
1768		return err;
1769	}
1770	err = lookup_fast(nd, &path, &inode, &seq);
1771	if (unlikely(err <= 0)) {
1772		if (err < 0)
1773			return err;
1774		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1775					  nd->flags);
1776		if (IS_ERR(path.dentry))
1777			return PTR_ERR(path.dentry);
1778
1779		path.mnt = nd->path.mnt;
1780		err = follow_managed(&path, nd);
1781		if (unlikely(err < 0))
1782			return err;
1783
1784		if (unlikely(d_is_negative(path.dentry))) {
1785			path_to_nameidata(&path, nd);
1786			return -ENOENT;
1787		}
1788
1789		seq = 0;	/* we are already out of RCU mode */
1790		inode = d_backing_inode(path.dentry);
1791	}
1792
1793	return step_into(nd, &path, flags, inode, seq);
1794}
1795
1796/*
1797 * We can do the critical dentry name comparison and hashing
1798 * operations one word at a time, but we are limited to:
1799 *
1800 * - Architectures with fast unaligned word accesses. We could
1801 *   do a "get_unaligned()" if this helps and is sufficiently
1802 *   fast.
1803 *
1804 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1805 *   do not trap on the (extremely unlikely) case of a page
1806 *   crossing operation.
1807 *
1808 * - Furthermore, we need an efficient 64-bit compile for the
1809 *   64-bit case in order to generate the "number of bytes in
1810 *   the final mask". Again, that could be replaced with a
1811 *   efficient population count instruction or similar.
1812 */
1813#ifdef CONFIG_DCACHE_WORD_ACCESS
1814
1815#include <asm/word-at-a-time.h>
1816
1817#ifdef HASH_MIX
1818
1819/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1820
1821#elif defined(CONFIG_64BIT)
1822/*
1823 * Register pressure in the mixing function is an issue, particularly
1824 * on 32-bit x86, but almost any function requires one state value and
1825 * one temporary.  Instead, use a function designed for two state values
1826 * and no temporaries.
1827 *
1828 * This function cannot create a collision in only two iterations, so
1829 * we have two iterations to achieve avalanche.  In those two iterations,
1830 * we have six layers of mixing, which is enough to spread one bit's
1831 * influence out to 2^6 = 64 state bits.
1832 *
1833 * Rotate constants are scored by considering either 64 one-bit input
1834 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1835 * probability of that delta causing a change to each of the 128 output
1836 * bits, using a sample of random initial states.
1837 *
1838 * The Shannon entropy of the computed probabilities is then summed
1839 * to produce a score.  Ideally, any input change has a 50% chance of
1840 * toggling any given output bit.
1841 *
1842 * Mixing scores (in bits) for (12,45):
1843 * Input delta: 1-bit      2-bit
1844 * 1 round:     713.3    42542.6
1845 * 2 rounds:   2753.7   140389.8
1846 * 3 rounds:   5954.1   233458.2
1847 * 4 rounds:   7862.6   256672.2
1848 * Perfect:    8192     258048
1849 *            (64*128) (64*63/2 * 128)
1850 */
1851#define HASH_MIX(x, y, a)	\
1852	(	x ^= (a),	\
1853	y ^= x,	x = rol64(x,12),\
1854	x += y,	y = rol64(y,45),\
1855	y *= 9			)
1856
1857/*
1858 * Fold two longs into one 32-bit hash value.  This must be fast, but
1859 * latency isn't quite as critical, as there is a fair bit of additional
1860 * work done before the hash value is used.
1861 */
1862static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1863{
1864	y ^= x * GOLDEN_RATIO_64;
1865	y *= GOLDEN_RATIO_64;
1866	return y >> 32;
1867}
1868
1869#else	/* 32-bit case */
1870
1871/*
1872 * Mixing scores (in bits) for (7,20):
1873 * Input delta: 1-bit      2-bit
1874 * 1 round:     330.3     9201.6
1875 * 2 rounds:   1246.4    25475.4
1876 * 3 rounds:   1907.1    31295.1
1877 * 4 rounds:   2042.3    31718.6
1878 * Perfect:    2048      31744
1879 *            (32*64)   (32*31/2 * 64)
1880 */
1881#define HASH_MIX(x, y, a)	\
1882	(	x ^= (a),	\
1883	y ^= x,	x = rol32(x, 7),\
1884	x += y,	y = rol32(y,20),\
1885	y *= 9			)
1886
1887static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1888{
1889	/* Use arch-optimized multiply if one exists */
1890	return __hash_32(y ^ __hash_32(x));
1891}
1892
1893#endif
1894
1895/*
1896 * Return the hash of a string of known length.  This is carfully
1897 * designed to match hash_name(), which is the more critical function.
1898 * In particular, we must end by hashing a final word containing 0..7
1899 * payload bytes, to match the way that hash_name() iterates until it
1900 * finds the delimiter after the name.
1901 */
1902unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1903{
1904	unsigned long a, x = 0, y = (unsigned long)salt;
1905
1906	for (;;) {
1907		if (!len)
1908			goto done;
1909		a = load_unaligned_zeropad(name);
1910		if (len < sizeof(unsigned long))
1911			break;
1912		HASH_MIX(x, y, a);
1913		name += sizeof(unsigned long);
1914		len -= sizeof(unsigned long);
1915	}
1916	x ^= a & bytemask_from_count(len);
1917done:
1918	return fold_hash(x, y);
1919}
1920EXPORT_SYMBOL(full_name_hash);
1921
1922/* Return the "hash_len" (hash and length) of a null-terminated string */
1923u64 hashlen_string(const void *salt, const char *name)
1924{
1925	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1926	unsigned long adata, mask, len;
1927	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1928
1929	len = 0;
1930	goto inside;
1931
1932	do {
1933		HASH_MIX(x, y, a);
1934		len += sizeof(unsigned long);
1935inside:
1936		a = load_unaligned_zeropad(name+len);
1937	} while (!has_zero(a, &adata, &constants));
1938
1939	adata = prep_zero_mask(a, adata, &constants);
1940	mask = create_zero_mask(adata);
1941	x ^= a & zero_bytemask(mask);
1942
1943	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1944}
1945EXPORT_SYMBOL(hashlen_string);
1946
1947/*
1948 * Calculate the length and hash of the path component, and
1949 * return the "hash_len" as the result.
1950 */
1951static inline u64 hash_name(const void *salt, const char *name)
1952{
1953	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1954	unsigned long adata, bdata, mask, len;
1955	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1956
1957	len = 0;
1958	goto inside;
1959
1960	do {
1961		HASH_MIX(x, y, a);
1962		len += sizeof(unsigned long);
1963inside:
1964		a = load_unaligned_zeropad(name+len);
1965		b = a ^ REPEAT_BYTE('/');
1966	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1967
1968	adata = prep_zero_mask(a, adata, &constants);
1969	bdata = prep_zero_mask(b, bdata, &constants);
1970	mask = create_zero_mask(adata | bdata);
1971	x ^= a & zero_bytemask(mask);
1972
1973	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1974}
1975
1976#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1977
1978/* Return the hash of a string of known length */
1979unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1980{
1981	unsigned long hash = init_name_hash(salt);
1982	while (len--)
1983		hash = partial_name_hash((unsigned char)*name++, hash);
1984	return end_name_hash(hash);
1985}
1986EXPORT_SYMBOL(full_name_hash);
1987
1988/* Return the "hash_len" (hash and length) of a null-terminated string */
1989u64 hashlen_string(const void *salt, const char *name)
1990{
1991	unsigned long hash = init_name_hash(salt);
1992	unsigned long len = 0, c;
1993
1994	c = (unsigned char)*name;
1995	while (c) {
1996		len++;
1997		hash = partial_name_hash(c, hash);
1998		c = (unsigned char)name[len];
1999	}
2000	return hashlen_create(end_name_hash(hash), len);
2001}
2002EXPORT_SYMBOL(hashlen_string);
2003
2004/*
2005 * We know there's a real path component here of at least
2006 * one character.
2007 */
2008static inline u64 hash_name(const void *salt, const char *name)
2009{
2010	unsigned long hash = init_name_hash(salt);
2011	unsigned long len = 0, c;
2012
2013	c = (unsigned char)*name;
2014	do {
2015		len++;
2016		hash = partial_name_hash(c, hash);
2017		c = (unsigned char)name[len];
2018	} while (c && c != '/');
2019	return hashlen_create(end_name_hash(hash), len);
2020}
2021
2022#endif
2023
2024/*
2025 * Name resolution.
2026 * This is the basic name resolution function, turning a pathname into
2027 * the final dentry. We expect 'base' to be positive and a directory.
2028 *
2029 * Returns 0 and nd will have valid dentry and mnt on success.
2030 * Returns error and drops reference to input namei data on failure.
2031 */
2032static int link_path_walk(const char *name, struct nameidata *nd)
2033{
2034	int err;
2035
 
 
2036	while (*name=='/')
2037		name++;
2038	if (!*name)
2039		return 0;
2040
2041	/* At this point we know we have a real path component. */
2042	for(;;) {
2043		u64 hash_len;
2044		int type;
2045
2046		err = may_lookup(nd);
2047		if (err)
2048			return err;
2049
2050		hash_len = hash_name(nd->path.dentry, name);
2051
2052		type = LAST_NORM;
2053		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2054			case 2:
2055				if (name[1] == '.') {
2056					type = LAST_DOTDOT;
2057					nd->flags |= LOOKUP_JUMPED;
2058				}
2059				break;
2060			case 1:
2061				type = LAST_DOT;
2062		}
2063		if (likely(type == LAST_NORM)) {
2064			struct dentry *parent = nd->path.dentry;
2065			nd->flags &= ~LOOKUP_JUMPED;
2066			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2067				struct qstr this = { { .hash_len = hash_len }, .name = name };
2068				err = parent->d_op->d_hash(parent, &this);
2069				if (err < 0)
2070					return err;
2071				hash_len = this.hash_len;
2072				name = this.name;
2073			}
2074		}
2075
2076		nd->last.hash_len = hash_len;
2077		nd->last.name = name;
2078		nd->last_type = type;
2079
2080		name += hashlen_len(hash_len);
2081		if (!*name)
2082			goto OK;
2083		/*
2084		 * If it wasn't NUL, we know it was '/'. Skip that
2085		 * slash, and continue until no more slashes.
2086		 */
2087		do {
2088			name++;
2089		} while (unlikely(*name == '/'));
2090		if (unlikely(!*name)) {
2091OK:
2092			/* pathname body, done */
2093			if (!nd->depth)
2094				return 0;
2095			name = nd->stack[nd->depth - 1].name;
2096			/* trailing symlink, done */
2097			if (!name)
2098				return 0;
2099			/* last component of nested symlink */
2100			err = walk_component(nd, WALK_FOLLOW);
2101		} else {
2102			/* not the last component */
2103			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2104		}
2105		if (err < 0)
2106			return err;
2107
2108		if (err) {
2109			const char *s = get_link(nd);
2110
2111			if (IS_ERR(s))
2112				return PTR_ERR(s);
2113			err = 0;
2114			if (unlikely(!s)) {
2115				/* jumped */
2116				put_link(nd);
2117			} else {
2118				nd->stack[nd->depth - 1].name = name;
2119				name = s;
2120				continue;
2121			}
2122		}
2123		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2124			if (nd->flags & LOOKUP_RCU) {
2125				if (unlazy_walk(nd, NULL, 0))
2126					return -ECHILD;
2127			}
2128			return -ENOTDIR;
2129		}
2130	}
2131}
2132
 
2133static const char *path_init(struct nameidata *nd, unsigned flags)
2134{
2135	int retval = 0;
2136	const char *s = nd->name->name;
2137
 
 
 
 
 
2138	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2139	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2140	nd->depth = 0;
2141	if (flags & LOOKUP_ROOT) {
2142		struct dentry *root = nd->root.dentry;
2143		struct inode *inode = root->d_inode;
2144		if (*s) {
2145			if (!d_can_lookup(root))
2146				return ERR_PTR(-ENOTDIR);
2147			retval = inode_permission(inode, MAY_EXEC);
2148			if (retval)
2149				return ERR_PTR(retval);
2150		}
2151		nd->path = nd->root;
2152		nd->inode = inode;
2153		if (flags & LOOKUP_RCU) {
2154			rcu_read_lock();
2155			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2156			nd->root_seq = nd->seq;
2157			nd->m_seq = read_seqbegin(&mount_lock);
2158		} else {
2159			path_get(&nd->path);
2160		}
2161		return s;
2162	}
2163
2164	nd->root.mnt = NULL;
2165	nd->path.mnt = NULL;
2166	nd->path.dentry = NULL;
2167
2168	nd->m_seq = read_seqbegin(&mount_lock);
2169	if (*s == '/') {
2170		if (flags & LOOKUP_RCU)
2171			rcu_read_lock();
2172		set_root(nd);
2173		if (likely(!nd_jump_root(nd)))
2174			return s;
2175		nd->root.mnt = NULL;
2176		rcu_read_unlock();
2177		return ERR_PTR(-ECHILD);
2178	} else if (nd->dfd == AT_FDCWD) {
2179		if (flags & LOOKUP_RCU) {
2180			struct fs_struct *fs = current->fs;
2181			unsigned seq;
2182
2183			rcu_read_lock();
2184
2185			do {
2186				seq = read_seqcount_begin(&fs->seq);
2187				nd->path = fs->pwd;
2188				nd->inode = nd->path.dentry->d_inode;
2189				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2190			} while (read_seqcount_retry(&fs->seq, seq));
2191		} else {
2192			get_fs_pwd(current->fs, &nd->path);
2193			nd->inode = nd->path.dentry->d_inode;
2194		}
2195		return s;
2196	} else {
2197		/* Caller must check execute permissions on the starting path component */
2198		struct fd f = fdget_raw(nd->dfd);
2199		struct dentry *dentry;
2200
2201		if (!f.file)
2202			return ERR_PTR(-EBADF);
2203
2204		dentry = f.file->f_path.dentry;
2205
2206		if (*s) {
2207			if (!d_can_lookup(dentry)) {
2208				fdput(f);
2209				return ERR_PTR(-ENOTDIR);
2210			}
2211		}
2212
2213		nd->path = f.file->f_path;
2214		if (flags & LOOKUP_RCU) {
2215			rcu_read_lock();
2216			nd->inode = nd->path.dentry->d_inode;
2217			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2218		} else {
2219			path_get(&nd->path);
2220			nd->inode = nd->path.dentry->d_inode;
2221		}
2222		fdput(f);
2223		return s;
2224	}
2225}
2226
2227static const char *trailing_symlink(struct nameidata *nd)
2228{
2229	const char *s;
2230	int error = may_follow_link(nd);
2231	if (unlikely(error))
2232		return ERR_PTR(error);
2233	nd->flags |= LOOKUP_PARENT;
2234	nd->stack[0].name = NULL;
2235	s = get_link(nd);
2236	return s ? s : "";
2237}
2238
2239static inline int lookup_last(struct nameidata *nd)
2240{
2241	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2242		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2243
2244	nd->flags &= ~LOOKUP_PARENT;
2245	return walk_component(nd, 0);
2246}
2247
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2249static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2250{
2251	const char *s = path_init(nd, flags);
2252	int err;
2253
2254	if (IS_ERR(s))
2255		return PTR_ERR(s);
 
 
 
 
2256	while (!(err = link_path_walk(s, nd))
2257		&& ((err = lookup_last(nd)) > 0)) {
2258		s = trailing_symlink(nd);
2259		if (IS_ERR(s)) {
2260			err = PTR_ERR(s);
2261			break;
2262		}
2263	}
2264	if (!err)
2265		err = complete_walk(nd);
2266
2267	if (!err && nd->flags & LOOKUP_DIRECTORY)
2268		if (!d_can_lookup(nd->path.dentry))
2269			err = -ENOTDIR;
2270	if (!err) {
2271		*path = nd->path;
2272		nd->path.mnt = NULL;
2273		nd->path.dentry = NULL;
2274	}
2275	terminate_walk(nd);
2276	return err;
2277}
2278
2279static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2280			   struct path *path, struct path *root)
2281{
2282	int retval;
2283	struct nameidata nd;
2284	if (IS_ERR(name))
2285		return PTR_ERR(name);
2286	if (unlikely(root)) {
2287		nd.root = *root;
2288		flags |= LOOKUP_ROOT;
2289	}
2290	set_nameidata(&nd, dfd, name);
2291	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2292	if (unlikely(retval == -ECHILD))
2293		retval = path_lookupat(&nd, flags, path);
2294	if (unlikely(retval == -ESTALE))
2295		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2296
2297	if (likely(!retval))
2298		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2299	restore_nameidata();
2300	putname(name);
2301	return retval;
2302}
2303
2304/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2305static int path_parentat(struct nameidata *nd, unsigned flags,
2306				struct path *parent)
2307{
2308	const char *s = path_init(nd, flags);
2309	int err;
2310	if (IS_ERR(s))
2311		return PTR_ERR(s);
2312	err = link_path_walk(s, nd);
2313	if (!err)
2314		err = complete_walk(nd);
2315	if (!err) {
2316		*parent = nd->path;
2317		nd->path.mnt = NULL;
2318		nd->path.dentry = NULL;
2319	}
2320	terminate_walk(nd);
2321	return err;
2322}
2323
2324static struct filename *filename_parentat(int dfd, struct filename *name,
2325				unsigned int flags, struct path *parent,
2326				struct qstr *last, int *type)
2327{
2328	int retval;
2329	struct nameidata nd;
2330
2331	if (IS_ERR(name))
2332		return name;
2333	set_nameidata(&nd, dfd, name);
2334	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2335	if (unlikely(retval == -ECHILD))
2336		retval = path_parentat(&nd, flags, parent);
2337	if (unlikely(retval == -ESTALE))
2338		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2339	if (likely(!retval)) {
2340		*last = nd.last;
2341		*type = nd.last_type;
2342		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2343	} else {
2344		putname(name);
2345		name = ERR_PTR(retval);
2346	}
2347	restore_nameidata();
2348	return name;
2349}
2350
2351/* does lookup, returns the object with parent locked */
2352struct dentry *kern_path_locked(const char *name, struct path *path)
2353{
2354	struct filename *filename;
2355	struct dentry *d;
2356	struct qstr last;
2357	int type;
2358
2359	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2360				    &last, &type);
2361	if (IS_ERR(filename))
2362		return ERR_CAST(filename);
2363	if (unlikely(type != LAST_NORM)) {
2364		path_put(path);
2365		putname(filename);
2366		return ERR_PTR(-EINVAL);
2367	}
2368	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2369	d = __lookup_hash(&last, path->dentry, 0);
2370	if (IS_ERR(d)) {
2371		inode_unlock(path->dentry->d_inode);
2372		path_put(path);
2373	}
2374	putname(filename);
2375	return d;
2376}
2377
2378int kern_path(const char *name, unsigned int flags, struct path *path)
2379{
2380	return filename_lookup(AT_FDCWD, getname_kernel(name),
2381			       flags, path, NULL);
2382}
2383EXPORT_SYMBOL(kern_path);
2384
2385/**
2386 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2387 * @dentry:  pointer to dentry of the base directory
2388 * @mnt: pointer to vfs mount of the base directory
2389 * @name: pointer to file name
2390 * @flags: lookup flags
2391 * @path: pointer to struct path to fill
2392 */
2393int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2394		    const char *name, unsigned int flags,
2395		    struct path *path)
2396{
2397	struct path root = {.mnt = mnt, .dentry = dentry};
2398	/* the first argument of filename_lookup() is ignored with root */
2399	return filename_lookup(AT_FDCWD, getname_kernel(name),
2400			       flags , path, &root);
2401}
2402EXPORT_SYMBOL(vfs_path_lookup);
2403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2404/**
2405 * lookup_one_len - filesystem helper to lookup single pathname component
2406 * @name:	pathname component to lookup
2407 * @base:	base directory to lookup from
2408 * @len:	maximum length @len should be interpreted to
2409 *
 
 
 
2410 * Note that this routine is purely a helper for filesystem usage and should
2411 * not be called by generic code.
2412 *
2413 * The caller must hold base->i_mutex.
2414 */
2415struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2416{
2417	struct qstr this;
2418	unsigned int c;
2419	int err;
2420
2421	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2422
2423	this.name = name;
2424	this.len = len;
2425	this.hash = full_name_hash(base, name, len);
2426	if (!len)
2427		return ERR_PTR(-EACCES);
 
 
2428
2429	if (unlikely(name[0] == '.')) {
2430		if (len < 2 || (len == 2 && name[1] == '.'))
2431			return ERR_PTR(-EACCES);
2432	}
 
 
 
 
 
 
 
 
 
 
 
 
2433
2434	while (len--) {
2435		c = *(const unsigned char *)name++;
2436		if (c == '/' || c == '\0')
2437			return ERR_PTR(-EACCES);
2438	}
2439	/*
2440	 * See if the low-level filesystem might want
2441	 * to use its own hash..
2442	 */
2443	if (base->d_flags & DCACHE_OP_HASH) {
2444		int err = base->d_op->d_hash(base, &this);
2445		if (err < 0)
2446			return ERR_PTR(err);
2447	}
2448
2449	err = inode_permission(base->d_inode, MAY_EXEC);
2450	if (err)
2451		return ERR_PTR(err);
2452
2453	return __lookup_hash(&this, base, 0);
 
2454}
2455EXPORT_SYMBOL(lookup_one_len);
2456
2457/**
2458 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2459 * @name:	pathname component to lookup
2460 * @base:	base directory to lookup from
2461 * @len:	maximum length @len should be interpreted to
2462 *
2463 * Note that this routine is purely a helper for filesystem usage and should
2464 * not be called by generic code.
2465 *
2466 * Unlike lookup_one_len, it should be called without the parent
2467 * i_mutex held, and will take the i_mutex itself if necessary.
2468 */
2469struct dentry *lookup_one_len_unlocked(const char *name,
2470				       struct dentry *base, int len)
2471{
2472	struct qstr this;
2473	unsigned int c;
2474	int err;
2475	struct dentry *ret;
2476
2477	this.name = name;
2478	this.len = len;
2479	this.hash = full_name_hash(base, name, len);
2480	if (!len)
2481		return ERR_PTR(-EACCES);
2482
2483	if (unlikely(name[0] == '.')) {
2484		if (len < 2 || (len == 2 && name[1] == '.'))
2485			return ERR_PTR(-EACCES);
2486	}
2487
2488	while (len--) {
2489		c = *(const unsigned char *)name++;
2490		if (c == '/' || c == '\0')
2491			return ERR_PTR(-EACCES);
2492	}
2493	/*
2494	 * See if the low-level filesystem might want
2495	 * to use its own hash..
2496	 */
2497	if (base->d_flags & DCACHE_OP_HASH) {
2498		int err = base->d_op->d_hash(base, &this);
2499		if (err < 0)
2500			return ERR_PTR(err);
2501	}
2502
2503	err = inode_permission(base->d_inode, MAY_EXEC);
2504	if (err)
2505		return ERR_PTR(err);
2506
2507	ret = lookup_dcache(&this, base, 0);
2508	if (!ret)
2509		ret = lookup_slow(&this, base, 0);
2510	return ret;
2511}
2512EXPORT_SYMBOL(lookup_one_len_unlocked);
2513
2514#ifdef CONFIG_UNIX98_PTYS
2515int path_pts(struct path *path)
2516{
2517	/* Find something mounted on "pts" in the same directory as
2518	 * the input path.
2519	 */
2520	struct dentry *child, *parent;
2521	struct qstr this;
2522	int ret;
2523
2524	ret = path_parent_directory(path);
2525	if (ret)
2526		return ret;
2527
2528	parent = path->dentry;
2529	this.name = "pts";
2530	this.len = 3;
2531	child = d_hash_and_lookup(parent, &this);
2532	if (!child)
2533		return -ENOENT;
2534
2535	path->dentry = child;
2536	dput(parent);
2537	follow_mount(path);
2538	return 0;
2539}
2540#endif
2541
2542int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2543		 struct path *path, int *empty)
2544{
2545	return filename_lookup(dfd, getname_flags(name, flags, empty),
2546			       flags, path, NULL);
2547}
2548EXPORT_SYMBOL(user_path_at_empty);
2549
2550/**
2551 * mountpoint_last - look up last component for umount
2552 * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2553 *
2554 * This is a special lookup_last function just for umount. In this case, we
2555 * need to resolve the path without doing any revalidation.
2556 *
2557 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2558 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2559 * in almost all cases, this lookup will be served out of the dcache. The only
2560 * cases where it won't are if nd->last refers to a symlink or the path is
2561 * bogus and it doesn't exist.
2562 *
2563 * Returns:
2564 * -error: if there was an error during lookup. This includes -ENOENT if the
2565 *         lookup found a negative dentry.
2566 *
2567 * 0:      if we successfully resolved nd->last and found it to not to be a
2568 *         symlink that needs to be followed.
2569 *
2570 * 1:      if we successfully resolved nd->last and found it to be a symlink
2571 *         that needs to be followed.
2572 */
2573static int
2574mountpoint_last(struct nameidata *nd)
2575{
2576	int error = 0;
2577	struct dentry *dir = nd->path.dentry;
2578	struct path path;
2579
2580	/* If we're in rcuwalk, drop out of it to handle last component */
2581	if (nd->flags & LOOKUP_RCU) {
2582		if (unlazy_walk(nd, NULL, 0))
2583			return -ECHILD;
2584	}
2585
2586	nd->flags &= ~LOOKUP_PARENT;
2587
2588	if (unlikely(nd->last_type != LAST_NORM)) {
2589		error = handle_dots(nd, nd->last_type);
2590		if (error)
2591			return error;
2592		path.dentry = dget(nd->path.dentry);
2593	} else {
2594		path.dentry = d_lookup(dir, &nd->last);
2595		if (!path.dentry) {
2596			/*
2597			 * No cached dentry. Mounted dentries are pinned in the
2598			 * cache, so that means that this dentry is probably
2599			 * a symlink or the path doesn't actually point
2600			 * to a mounted dentry.
2601			 */
2602			path.dentry = lookup_slow(&nd->last, dir,
2603					     nd->flags | LOOKUP_NO_REVAL);
2604			if (IS_ERR(path.dentry))
2605				return PTR_ERR(path.dentry);
2606		}
2607	}
2608	if (d_is_negative(path.dentry)) {
2609		dput(path.dentry);
2610		return -ENOENT;
2611	}
2612	path.mnt = nd->path.mnt;
2613	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2614}
2615
2616/**
2617 * path_mountpoint - look up a path to be umounted
2618 * @nd:		lookup context
2619 * @flags:	lookup flags
2620 * @path:	pointer to container for result
2621 *
2622 * Look up the given name, but don't attempt to revalidate the last component.
2623 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2624 */
2625static int
2626path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2627{
2628	const char *s = path_init(nd, flags);
2629	int err;
2630	if (IS_ERR(s))
2631		return PTR_ERR(s);
2632	while (!(err = link_path_walk(s, nd)) &&
2633		(err = mountpoint_last(nd)) > 0) {
2634		s = trailing_symlink(nd);
2635		if (IS_ERR(s)) {
2636			err = PTR_ERR(s);
2637			break;
2638		}
2639	}
2640	if (!err) {
2641		*path = nd->path;
2642		nd->path.mnt = NULL;
2643		nd->path.dentry = NULL;
2644		follow_mount(path);
2645	}
2646	terminate_walk(nd);
2647	return err;
2648}
2649
2650static int
2651filename_mountpoint(int dfd, struct filename *name, struct path *path,
2652			unsigned int flags)
2653{
2654	struct nameidata nd;
2655	int error;
2656	if (IS_ERR(name))
2657		return PTR_ERR(name);
2658	set_nameidata(&nd, dfd, name);
2659	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2660	if (unlikely(error == -ECHILD))
2661		error = path_mountpoint(&nd, flags, path);
2662	if (unlikely(error == -ESTALE))
2663		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2664	if (likely(!error))
2665		audit_inode(name, path->dentry, 0);
2666	restore_nameidata();
2667	putname(name);
2668	return error;
2669}
2670
2671/**
2672 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2673 * @dfd:	directory file descriptor
2674 * @name:	pathname from userland
2675 * @flags:	lookup flags
2676 * @path:	pointer to container to hold result
2677 *
2678 * A umount is a special case for path walking. We're not actually interested
2679 * in the inode in this situation, and ESTALE errors can be a problem. We
2680 * simply want track down the dentry and vfsmount attached at the mountpoint
2681 * and avoid revalidating the last component.
2682 *
2683 * Returns 0 and populates "path" on success.
2684 */
2685int
2686user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2687			struct path *path)
2688{
2689	return filename_mountpoint(dfd, getname(name), path, flags);
2690}
2691
2692int
2693kern_path_mountpoint(int dfd, const char *name, struct path *path,
2694			unsigned int flags)
2695{
2696	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2697}
2698EXPORT_SYMBOL(kern_path_mountpoint);
2699
2700int __check_sticky(struct inode *dir, struct inode *inode)
2701{
2702	kuid_t fsuid = current_fsuid();
2703
2704	if (uid_eq(inode->i_uid, fsuid))
2705		return 0;
2706	if (uid_eq(dir->i_uid, fsuid))
2707		return 0;
2708	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2709}
2710EXPORT_SYMBOL(__check_sticky);
2711
2712/*
2713 *	Check whether we can remove a link victim from directory dir, check
2714 *  whether the type of victim is right.
2715 *  1. We can't do it if dir is read-only (done in permission())
2716 *  2. We should have write and exec permissions on dir
2717 *  3. We can't remove anything from append-only dir
2718 *  4. We can't do anything with immutable dir (done in permission())
2719 *  5. If the sticky bit on dir is set we should either
2720 *	a. be owner of dir, or
2721 *	b. be owner of victim, or
2722 *	c. have CAP_FOWNER capability
2723 *  6. If the victim is append-only or immutable we can't do antyhing with
2724 *     links pointing to it.
2725 *  7. If the victim has an unknown uid or gid we can't change the inode.
2726 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2727 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2728 * 10. We can't remove a root or mountpoint.
2729 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2730 *     nfs_async_unlink().
2731 */
2732static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2733{
2734	struct inode *inode = d_backing_inode(victim);
2735	int error;
2736
2737	if (d_is_negative(victim))
2738		return -ENOENT;
2739	BUG_ON(!inode);
2740
2741	BUG_ON(victim->d_parent->d_inode != dir);
 
 
 
 
 
2742	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2743
2744	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2745	if (error)
2746		return error;
2747	if (IS_APPEND(dir))
2748		return -EPERM;
2749
2750	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2751	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2752		return -EPERM;
2753	if (isdir) {
2754		if (!d_is_dir(victim))
2755			return -ENOTDIR;
2756		if (IS_ROOT(victim))
2757			return -EBUSY;
2758	} else if (d_is_dir(victim))
2759		return -EISDIR;
2760	if (IS_DEADDIR(dir))
2761		return -ENOENT;
2762	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2763		return -EBUSY;
2764	return 0;
2765}
2766
2767/*	Check whether we can create an object with dentry child in directory
2768 *  dir.
2769 *  1. We can't do it if child already exists (open has special treatment for
2770 *     this case, but since we are inlined it's OK)
2771 *  2. We can't do it if dir is read-only (done in permission())
2772 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2773 *  4. We should have write and exec permissions on dir
2774 *  5. We can't do it if dir is immutable (done in permission())
2775 */
2776static inline int may_create(struct inode *dir, struct dentry *child)
2777{
2778	struct user_namespace *s_user_ns;
2779	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2780	if (child->d_inode)
2781		return -EEXIST;
2782	if (IS_DEADDIR(dir))
2783		return -ENOENT;
2784	s_user_ns = dir->i_sb->s_user_ns;
2785	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2786	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2787		return -EOVERFLOW;
2788	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2789}
2790
2791/*
2792 * p1 and p2 should be directories on the same fs.
2793 */
2794struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2795{
2796	struct dentry *p;
2797
2798	if (p1 == p2) {
2799		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2800		return NULL;
2801	}
2802
2803	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2804
2805	p = d_ancestor(p2, p1);
2806	if (p) {
2807		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2808		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2809		return p;
2810	}
2811
2812	p = d_ancestor(p1, p2);
2813	if (p) {
2814		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2815		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2816		return p;
2817	}
2818
2819	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2820	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2821	return NULL;
2822}
2823EXPORT_SYMBOL(lock_rename);
2824
2825void unlock_rename(struct dentry *p1, struct dentry *p2)
2826{
2827	inode_unlock(p1->d_inode);
2828	if (p1 != p2) {
2829		inode_unlock(p2->d_inode);
2830		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2831	}
2832}
2833EXPORT_SYMBOL(unlock_rename);
2834
2835int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2836		bool want_excl)
2837{
2838	int error = may_create(dir, dentry);
2839	if (error)
2840		return error;
2841
2842	if (!dir->i_op->create)
2843		return -EACCES;	/* shouldn't it be ENOSYS? */
2844	mode &= S_IALLUGO;
2845	mode |= S_IFREG;
2846	error = security_inode_create(dir, dentry, mode);
2847	if (error)
2848		return error;
2849	error = dir->i_op->create(dir, dentry, mode, want_excl);
2850	if (!error)
2851		fsnotify_create(dir, dentry);
2852	return error;
2853}
2854EXPORT_SYMBOL(vfs_create);
2855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2856bool may_open_dev(const struct path *path)
2857{
2858	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2859		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2860}
2861
2862static int may_open(const struct path *path, int acc_mode, int flag)
2863{
2864	struct dentry *dentry = path->dentry;
2865	struct inode *inode = dentry->d_inode;
2866	int error;
2867
2868	if (!inode)
2869		return -ENOENT;
2870
2871	switch (inode->i_mode & S_IFMT) {
2872	case S_IFLNK:
2873		return -ELOOP;
2874	case S_IFDIR:
2875		if (acc_mode & MAY_WRITE)
2876			return -EISDIR;
2877		break;
2878	case S_IFBLK:
2879	case S_IFCHR:
2880		if (!may_open_dev(path))
2881			return -EACCES;
2882		/*FALLTHRU*/
2883	case S_IFIFO:
2884	case S_IFSOCK:
2885		flag &= ~O_TRUNC;
2886		break;
2887	}
2888
2889	error = inode_permission(inode, MAY_OPEN | acc_mode);
2890	if (error)
2891		return error;
2892
2893	/*
2894	 * An append-only file must be opened in append mode for writing.
2895	 */
2896	if (IS_APPEND(inode)) {
2897		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2898			return -EPERM;
2899		if (flag & O_TRUNC)
2900			return -EPERM;
2901	}
2902
2903	/* O_NOATIME can only be set by the owner or superuser */
2904	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2905		return -EPERM;
2906
2907	return 0;
2908}
2909
2910static int handle_truncate(struct file *filp)
2911{
2912	const struct path *path = &filp->f_path;
2913	struct inode *inode = path->dentry->d_inode;
2914	int error = get_write_access(inode);
2915	if (error)
2916		return error;
2917	/*
2918	 * Refuse to truncate files with mandatory locks held on them.
2919	 */
2920	error = locks_verify_locked(filp);
2921	if (!error)
2922		error = security_path_truncate(path);
2923	if (!error) {
2924		error = do_truncate(path->dentry, 0,
2925				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2926				    filp);
2927	}
2928	put_write_access(inode);
2929	return error;
2930}
2931
2932static inline int open_to_namei_flags(int flag)
2933{
2934	if ((flag & O_ACCMODE) == 3)
2935		flag--;
2936	return flag;
2937}
2938
2939static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2940{
 
2941	int error = security_path_mknod(dir, dentry, mode, 0);
2942	if (error)
2943		return error;
2944
 
 
 
 
 
2945	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2946	if (error)
2947		return error;
2948
2949	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2950}
2951
2952/*
2953 * Attempt to atomically look up, create and open a file from a negative
2954 * dentry.
2955 *
2956 * Returns 0 if successful.  The file will have been created and attached to
2957 * @file by the filesystem calling finish_open().
2958 *
2959 * Returns 1 if the file was looked up only or didn't need creating.  The
2960 * caller will need to perform the open themselves.  @path will have been
2961 * updated to point to the new dentry.  This may be negative.
2962 *
2963 * Returns an error code otherwise.
2964 */
2965static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2966			struct path *path, struct file *file,
2967			const struct open_flags *op,
2968			int open_flag, umode_t mode,
2969			int *opened)
2970{
2971	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2972	struct inode *dir =  nd->path.dentry->d_inode;
2973	int error;
2974
2975	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
2976		open_flag &= ~O_TRUNC;
2977
2978	if (nd->flags & LOOKUP_DIRECTORY)
2979		open_flag |= O_DIRECTORY;
2980
2981	file->f_path.dentry = DENTRY_NOT_SET;
2982	file->f_path.mnt = nd->path.mnt;
2983	error = dir->i_op->atomic_open(dir, dentry, file,
2984				       open_to_namei_flags(open_flag),
2985				       mode, opened);
2986	d_lookup_done(dentry);
2987	if (!error) {
2988		/*
2989		 * We didn't have the inode before the open, so check open
2990		 * permission here.
2991		 */
2992		int acc_mode = op->acc_mode;
2993		if (*opened & FILE_CREATED) {
2994			WARN_ON(!(open_flag & O_CREAT));
2995			fsnotify_create(dir, dentry);
2996			acc_mode = 0;
2997		}
2998		error = may_open(&file->f_path, acc_mode, open_flag);
2999		if (WARN_ON(error > 0))
3000			error = -EINVAL;
3001	} else if (error > 0) {
3002		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3003			error = -EIO;
3004		} else {
3005			if (file->f_path.dentry) {
3006				dput(dentry);
3007				dentry = file->f_path.dentry;
3008			}
3009			if (*opened & FILE_CREATED)
3010				fsnotify_create(dir, dentry);
3011			if (unlikely(d_is_negative(dentry))) {
3012				error = -ENOENT;
3013			} else {
3014				path->dentry = dentry;
3015				path->mnt = nd->path.mnt;
3016				return 1;
3017			}
3018		}
3019	}
3020	dput(dentry);
3021	return error;
3022}
3023
3024/*
3025 * Look up and maybe create and open the last component.
3026 *
3027 * Must be called with i_mutex held on parent.
3028 *
3029 * Returns 0 if the file was successfully atomically created (if necessary) and
3030 * opened.  In this case the file will be returned attached to @file.
3031 *
3032 * Returns 1 if the file was not completely opened at this time, though lookups
3033 * and creations will have been performed and the dentry returned in @path will
3034 * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3035 * specified then a negative dentry may be returned.
3036 *
3037 * An error code is returned otherwise.
 
 
 
 
 
 
3038 *
3039 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3040 * cleared otherwise prior to returning.
3041 */
3042static int lookup_open(struct nameidata *nd, struct path *path,
3043			struct file *file,
3044			const struct open_flags *op,
3045			bool got_write, int *opened)
3046{
3047	struct dentry *dir = nd->path.dentry;
3048	struct inode *dir_inode = dir->d_inode;
3049	int open_flag = op->open_flag;
3050	struct dentry *dentry;
3051	int error, create_error = 0;
3052	umode_t mode = op->mode;
3053	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3054
3055	if (unlikely(IS_DEADDIR(dir_inode)))
3056		return -ENOENT;
3057
3058	*opened &= ~FILE_CREATED;
3059	dentry = d_lookup(dir, &nd->last);
3060	for (;;) {
3061		if (!dentry) {
3062			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3063			if (IS_ERR(dentry))
3064				return PTR_ERR(dentry);
3065		}
3066		if (d_in_lookup(dentry))
3067			break;
3068
3069		if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3070			break;
3071
3072		error = d_revalidate(dentry, nd->flags);
3073		if (likely(error > 0))
3074			break;
3075		if (error)
3076			goto out_dput;
3077		d_invalidate(dentry);
3078		dput(dentry);
3079		dentry = NULL;
3080	}
3081	if (dentry->d_inode) {
3082		/* Cached positive dentry: will open in f_op->open */
3083		goto out_no_open;
3084	}
3085
3086	/*
3087	 * Checking write permission is tricky, bacuse we don't know if we are
3088	 * going to actually need it: O_CREAT opens should work as long as the
3089	 * file exists.  But checking existence breaks atomicity.  The trick is
3090	 * to check access and if not granted clear O_CREAT from the flags.
3091	 *
3092	 * Another problem is returing the "right" error value (e.g. for an
3093	 * O_EXCL open we want to return EEXIST not EROFS).
3094	 */
3095	if (open_flag & O_CREAT) {
3096		if (!IS_POSIXACL(dir->d_inode))
3097			mode &= ~current_umask();
3098		if (unlikely(!got_write)) {
3099			create_error = -EROFS;
3100			open_flag &= ~O_CREAT;
3101			if (open_flag & (O_EXCL | O_TRUNC))
3102				goto no_open;
3103			/* No side effects, safe to clear O_CREAT */
3104		} else {
3105			create_error = may_o_create(&nd->path, dentry, mode);
3106			if (create_error) {
3107				open_flag &= ~O_CREAT;
3108				if (open_flag & O_EXCL)
3109					goto no_open;
3110			}
3111		}
3112	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3113		   unlikely(!got_write)) {
3114		/*
3115		 * No O_CREATE -> atomicity not a requirement -> fall
3116		 * back to lookup + open
3117		 */
3118		goto no_open;
3119	}
3120
3121	if (dir_inode->i_op->atomic_open) {
3122		error = atomic_open(nd, dentry, path, file, op, open_flag,
3123				    mode, opened);
3124		if (unlikely(error == -ENOENT) && create_error)
3125			error = create_error;
3126		return error;
3127	}
3128
3129no_open:
3130	if (d_in_lookup(dentry)) {
3131		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3132							     nd->flags);
3133		d_lookup_done(dentry);
3134		if (unlikely(res)) {
3135			if (IS_ERR(res)) {
3136				error = PTR_ERR(res);
3137				goto out_dput;
3138			}
3139			dput(dentry);
3140			dentry = res;
3141		}
3142	}
3143
3144	/* Negative dentry, just create the file */
3145	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3146		*opened |= FILE_CREATED;
3147		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3148		if (!dir_inode->i_op->create) {
3149			error = -EACCES;
3150			goto out_dput;
3151		}
3152		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3153						open_flag & O_EXCL);
3154		if (error)
3155			goto out_dput;
3156		fsnotify_create(dir_inode, dentry);
3157	}
3158	if (unlikely(create_error) && !dentry->d_inode) {
3159		error = create_error;
3160		goto out_dput;
3161	}
3162out_no_open:
3163	path->dentry = dentry;
3164	path->mnt = nd->path.mnt;
3165	return 1;
3166
3167out_dput:
3168	dput(dentry);
3169	return error;
3170}
3171
3172/*
3173 * Handle the last step of open()
3174 */
3175static int do_last(struct nameidata *nd,
3176		   struct file *file, const struct open_flags *op,
3177		   int *opened)
3178{
3179	struct dentry *dir = nd->path.dentry;
3180	int open_flag = op->open_flag;
3181	bool will_truncate = (open_flag & O_TRUNC) != 0;
3182	bool got_write = false;
3183	int acc_mode = op->acc_mode;
3184	unsigned seq;
3185	struct inode *inode;
3186	struct path path;
3187	int error;
3188
3189	nd->flags &= ~LOOKUP_PARENT;
3190	nd->flags |= op->intent;
3191
3192	if (nd->last_type != LAST_NORM) {
3193		error = handle_dots(nd, nd->last_type);
3194		if (unlikely(error))
3195			return error;
3196		goto finish_open;
3197	}
3198
3199	if (!(open_flag & O_CREAT)) {
3200		if (nd->last.name[nd->last.len])
3201			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3202		/* we _can_ be in RCU mode here */
3203		error = lookup_fast(nd, &path, &inode, &seq);
3204		if (likely(error > 0))
3205			goto finish_lookup;
3206
3207		if (error < 0)
3208			return error;
3209
3210		BUG_ON(nd->inode != dir->d_inode);
3211		BUG_ON(nd->flags & LOOKUP_RCU);
3212	} else {
3213		/* create side of things */
3214		/*
3215		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3216		 * has been cleared when we got to the last component we are
3217		 * about to look up
3218		 */
3219		error = complete_walk(nd);
3220		if (error)
3221			return error;
3222
3223		audit_inode(nd->name, dir, LOOKUP_PARENT);
3224		/* trailing slashes? */
3225		if (unlikely(nd->last.name[nd->last.len]))
3226			return -EISDIR;
3227	}
3228
3229	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3230		error = mnt_want_write(nd->path.mnt);
3231		if (!error)
3232			got_write = true;
3233		/*
3234		 * do _not_ fail yet - we might not need that or fail with
3235		 * a different error; let lookup_open() decide; we'll be
3236		 * dropping this one anyway.
3237		 */
3238	}
3239	if (open_flag & O_CREAT)
3240		inode_lock(dir->d_inode);
3241	else
3242		inode_lock_shared(dir->d_inode);
3243	error = lookup_open(nd, &path, file, op, got_write, opened);
3244	if (open_flag & O_CREAT)
3245		inode_unlock(dir->d_inode);
3246	else
3247		inode_unlock_shared(dir->d_inode);
3248
3249	if (error <= 0) {
3250		if (error)
3251			goto out;
3252
3253		if ((*opened & FILE_CREATED) ||
 
3254		    !S_ISREG(file_inode(file)->i_mode))
3255			will_truncate = false;
3256
3257		audit_inode(nd->name, file->f_path.dentry, 0);
3258		goto opened;
3259	}
3260
3261	if (*opened & FILE_CREATED) {
3262		/* Don't check for write permission, don't truncate */
3263		open_flag &= ~O_TRUNC;
3264		will_truncate = false;
3265		acc_mode = 0;
3266		path_to_nameidata(&path, nd);
3267		goto finish_open_created;
3268	}
3269
3270	/*
3271	 * If atomic_open() acquired write access it is dropped now due to
3272	 * possible mount and symlink following (this might be optimized away if
3273	 * necessary...)
3274	 */
3275	if (got_write) {
3276		mnt_drop_write(nd->path.mnt);
3277		got_write = false;
3278	}
3279
3280	error = follow_managed(&path, nd);
3281	if (unlikely(error < 0))
3282		return error;
3283
3284	if (unlikely(d_is_negative(path.dentry))) {
3285		path_to_nameidata(&path, nd);
3286		return -ENOENT;
3287	}
3288
3289	/*
3290	 * create/update audit record if it already exists.
3291	 */
3292	audit_inode(nd->name, path.dentry, 0);
3293
3294	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3295		path_to_nameidata(&path, nd);
3296		return -EEXIST;
3297	}
3298
3299	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3300	inode = d_backing_inode(path.dentry);
3301finish_lookup:
3302	error = step_into(nd, &path, 0, inode, seq);
3303	if (unlikely(error))
3304		return error;
3305finish_open:
3306	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3307	error = complete_walk(nd);
3308	if (error)
3309		return error;
3310	audit_inode(nd->name, nd->path.dentry, 0);
3311	error = -EISDIR;
3312	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3313		goto out;
 
 
 
 
 
 
3314	error = -ENOTDIR;
3315	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3316		goto out;
3317	if (!d_is_reg(nd->path.dentry))
3318		will_truncate = false;
3319
3320	if (will_truncate) {
3321		error = mnt_want_write(nd->path.mnt);
3322		if (error)
3323			goto out;
3324		got_write = true;
3325	}
3326finish_open_created:
3327	error = may_open(&nd->path, acc_mode, open_flag);
3328	if (error)
3329		goto out;
3330	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3331	error = vfs_open(&nd->path, file, current_cred());
3332	if (error)
3333		goto out;
3334	*opened |= FILE_OPENED;
3335opened:
3336	error = open_check_o_direct(file);
3337	if (!error)
3338		error = ima_file_check(file, op->acc_mode, *opened);
3339	if (!error && will_truncate)
3340		error = handle_truncate(file);
3341out:
3342	if (unlikely(error) && (*opened & FILE_OPENED))
3343		fput(file);
3344	if (unlikely(error > 0)) {
3345		WARN_ON(1);
3346		error = -EINVAL;
3347	}
3348	if (got_write)
3349		mnt_drop_write(nd->path.mnt);
3350	return error;
3351}
3352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3353static int do_tmpfile(struct nameidata *nd, unsigned flags,
3354		const struct open_flags *op,
3355		struct file *file, int *opened)
3356{
3357	static const struct qstr name = QSTR_INIT("/", 1);
3358	struct dentry *child;
3359	struct inode *dir;
3360	struct path path;
3361	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3362	if (unlikely(error))
3363		return error;
3364	error = mnt_want_write(path.mnt);
3365	if (unlikely(error))
3366		goto out;
3367	dir = path.dentry->d_inode;
3368	/* we want directory to be writable */
3369	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3370	if (error)
3371		goto out2;
3372	if (!dir->i_op->tmpfile) {
3373		error = -EOPNOTSUPP;
3374		goto out2;
3375	}
3376	child = d_alloc(path.dentry, &name);
3377	if (unlikely(!child)) {
3378		error = -ENOMEM;
3379		goto out2;
3380	}
3381	dput(path.dentry);
3382	path.dentry = child;
3383	error = dir->i_op->tmpfile(dir, child, op->mode);
3384	if (error)
3385		goto out2;
3386	audit_inode(nd->name, child, 0);
3387	/* Don't check for other permissions, the inode was just created */
3388	error = may_open(&path, 0, op->open_flag);
3389	if (error)
3390		goto out2;
3391	file->f_path.mnt = path.mnt;
3392	error = finish_open(file, child, NULL, opened);
3393	if (error)
3394		goto out2;
3395	error = open_check_o_direct(file);
3396	if (error) {
3397		fput(file);
3398	} else if (!(op->open_flag & O_EXCL)) {
3399		struct inode *inode = file_inode(file);
3400		spin_lock(&inode->i_lock);
3401		inode->i_state |= I_LINKABLE;
3402		spin_unlock(&inode->i_lock);
3403	}
3404out2:
3405	mnt_drop_write(path.mnt);
3406out:
3407	path_put(&path);
3408	return error;
3409}
3410
3411static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3412{
3413	struct path path;
3414	int error = path_lookupat(nd, flags, &path);
3415	if (!error) {
3416		audit_inode(nd->name, path.dentry, 0);
3417		error = vfs_open(&path, file, current_cred());
3418		path_put(&path);
3419	}
3420	return error;
3421}
3422
3423static struct file *path_openat(struct nameidata *nd,
3424			const struct open_flags *op, unsigned flags)
3425{
3426	const char *s;
3427	struct file *file;
3428	int opened = 0;
3429	int error;
3430
3431	file = get_empty_filp();
3432	if (IS_ERR(file))
3433		return file;
3434
3435	file->f_flags = op->open_flag;
3436
3437	if (unlikely(file->f_flags & __O_TMPFILE)) {
3438		error = do_tmpfile(nd, flags, op, file, &opened);
3439		goto out2;
3440	}
3441
3442	if (unlikely(file->f_flags & O_PATH)) {
3443		error = do_o_path(nd, flags, file);
3444		if (!error)
3445			opened |= FILE_OPENED;
3446		goto out2;
 
 
 
 
 
 
 
 
 
 
 
3447	}
3448
3449	s = path_init(nd, flags);
3450	if (IS_ERR(s)) {
3451		put_filp(file);
3452		return ERR_CAST(s);
3453	}
3454	while (!(error = link_path_walk(s, nd)) &&
3455		(error = do_last(nd, file, op, &opened)) > 0) {
3456		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3457		s = trailing_symlink(nd);
3458		if (IS_ERR(s)) {
3459			error = PTR_ERR(s);
3460			break;
3461		}
3462	}
3463	terminate_walk(nd);
3464out2:
3465	if (!(opened & FILE_OPENED)) {
3466		BUG_ON(!error);
3467		put_filp(file);
3468	}
3469	if (unlikely(error)) {
3470		if (error == -EOPENSTALE) {
3471			if (flags & LOOKUP_RCU)
3472				error = -ECHILD;
3473			else
3474				error = -ESTALE;
3475		}
3476		file = ERR_PTR(error);
3477	}
3478	return file;
3479}
3480
3481struct file *do_filp_open(int dfd, struct filename *pathname,
3482		const struct open_flags *op)
3483{
3484	struct nameidata nd;
3485	int flags = op->lookup_flags;
3486	struct file *filp;
3487
3488	set_nameidata(&nd, dfd, pathname);
3489	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3490	if (unlikely(filp == ERR_PTR(-ECHILD)))
3491		filp = path_openat(&nd, op, flags);
3492	if (unlikely(filp == ERR_PTR(-ESTALE)))
3493		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3494	restore_nameidata();
3495	return filp;
3496}
3497
3498struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3499		const char *name, const struct open_flags *op)
3500{
3501	struct nameidata nd;
3502	struct file *file;
3503	struct filename *filename;
3504	int flags = op->lookup_flags | LOOKUP_ROOT;
3505
3506	nd.root.mnt = mnt;
3507	nd.root.dentry = dentry;
3508
3509	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3510		return ERR_PTR(-ELOOP);
3511
3512	filename = getname_kernel(name);
3513	if (IS_ERR(filename))
3514		return ERR_CAST(filename);
3515
3516	set_nameidata(&nd, -1, filename);
3517	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3518	if (unlikely(file == ERR_PTR(-ECHILD)))
3519		file = path_openat(&nd, op, flags);
3520	if (unlikely(file == ERR_PTR(-ESTALE)))
3521		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3522	restore_nameidata();
3523	putname(filename);
3524	return file;
3525}
3526
3527static struct dentry *filename_create(int dfd, struct filename *name,
3528				struct path *path, unsigned int lookup_flags)
3529{
3530	struct dentry *dentry = ERR_PTR(-EEXIST);
3531	struct qstr last;
3532	int type;
3533	int err2;
3534	int error;
3535	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3536
3537	/*
3538	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3539	 * other flags passed in are ignored!
3540	 */
3541	lookup_flags &= LOOKUP_REVAL;
3542
3543	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3544	if (IS_ERR(name))
3545		return ERR_CAST(name);
3546
3547	/*
3548	 * Yucky last component or no last component at all?
3549	 * (foo/., foo/.., /////)
3550	 */
3551	if (unlikely(type != LAST_NORM))
3552		goto out;
3553
3554	/* don't fail immediately if it's r/o, at least try to report other errors */
3555	err2 = mnt_want_write(path->mnt);
3556	/*
3557	 * Do the final lookup.
3558	 */
3559	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3560	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3561	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3562	if (IS_ERR(dentry))
3563		goto unlock;
3564
3565	error = -EEXIST;
3566	if (d_is_positive(dentry))
3567		goto fail;
3568
3569	/*
3570	 * Special case - lookup gave negative, but... we had foo/bar/
3571	 * From the vfs_mknod() POV we just have a negative dentry -
3572	 * all is fine. Let's be bastards - you had / on the end, you've
3573	 * been asking for (non-existent) directory. -ENOENT for you.
3574	 */
3575	if (unlikely(!is_dir && last.name[last.len])) {
3576		error = -ENOENT;
3577		goto fail;
3578	}
3579	if (unlikely(err2)) {
3580		error = err2;
3581		goto fail;
3582	}
3583	putname(name);
3584	return dentry;
3585fail:
3586	dput(dentry);
3587	dentry = ERR_PTR(error);
3588unlock:
3589	inode_unlock(path->dentry->d_inode);
3590	if (!err2)
3591		mnt_drop_write(path->mnt);
3592out:
3593	path_put(path);
3594	putname(name);
3595	return dentry;
3596}
3597
3598struct dentry *kern_path_create(int dfd, const char *pathname,
3599				struct path *path, unsigned int lookup_flags)
3600{
3601	return filename_create(dfd, getname_kernel(pathname),
3602				path, lookup_flags);
3603}
3604EXPORT_SYMBOL(kern_path_create);
3605
3606void done_path_create(struct path *path, struct dentry *dentry)
3607{
3608	dput(dentry);
3609	inode_unlock(path->dentry->d_inode);
3610	mnt_drop_write(path->mnt);
3611	path_put(path);
3612}
3613EXPORT_SYMBOL(done_path_create);
3614
3615inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3616				struct path *path, unsigned int lookup_flags)
3617{
3618	return filename_create(dfd, getname(pathname), path, lookup_flags);
3619}
3620EXPORT_SYMBOL(user_path_create);
3621
3622int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3623{
3624	int error = may_create(dir, dentry);
3625
3626	if (error)
3627		return error;
3628
3629	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3630		return -EPERM;
3631
3632	if (!dir->i_op->mknod)
3633		return -EPERM;
3634
3635	error = devcgroup_inode_mknod(mode, dev);
3636	if (error)
3637		return error;
3638
3639	error = security_inode_mknod(dir, dentry, mode, dev);
3640	if (error)
3641		return error;
3642
3643	error = dir->i_op->mknod(dir, dentry, mode, dev);
3644	if (!error)
3645		fsnotify_create(dir, dentry);
3646	return error;
3647}
3648EXPORT_SYMBOL(vfs_mknod);
3649
3650static int may_mknod(umode_t mode)
3651{
3652	switch (mode & S_IFMT) {
3653	case S_IFREG:
3654	case S_IFCHR:
3655	case S_IFBLK:
3656	case S_IFIFO:
3657	case S_IFSOCK:
3658	case 0: /* zero mode translates to S_IFREG */
3659		return 0;
3660	case S_IFDIR:
3661		return -EPERM;
3662	default:
3663		return -EINVAL;
3664	}
3665}
3666
3667SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3668		unsigned, dev)
3669{
3670	struct dentry *dentry;
3671	struct path path;
3672	int error;
3673	unsigned int lookup_flags = 0;
3674
3675	error = may_mknod(mode);
3676	if (error)
3677		return error;
3678retry:
3679	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3680	if (IS_ERR(dentry))
3681		return PTR_ERR(dentry);
3682
3683	if (!IS_POSIXACL(path.dentry->d_inode))
3684		mode &= ~current_umask();
3685	error = security_path_mknod(&path, dentry, mode, dev);
3686	if (error)
3687		goto out;
3688	switch (mode & S_IFMT) {
3689		case 0: case S_IFREG:
3690			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3691			if (!error)
3692				ima_post_path_mknod(dentry);
3693			break;
3694		case S_IFCHR: case S_IFBLK:
3695			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3696					new_decode_dev(dev));
3697			break;
3698		case S_IFIFO: case S_IFSOCK:
3699			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3700			break;
3701	}
3702out:
3703	done_path_create(&path, dentry);
3704	if (retry_estale(error, lookup_flags)) {
3705		lookup_flags |= LOOKUP_REVAL;
3706		goto retry;
3707	}
3708	return error;
3709}
3710
 
 
 
 
 
 
3711SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3712{
3713	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3714}
3715
3716int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3717{
3718	int error = may_create(dir, dentry);
3719	unsigned max_links = dir->i_sb->s_max_links;
3720
3721	if (error)
3722		return error;
3723
3724	if (!dir->i_op->mkdir)
3725		return -EPERM;
3726
3727	mode &= (S_IRWXUGO|S_ISVTX);
3728	error = security_inode_mkdir(dir, dentry, mode);
3729	if (error)
3730		return error;
3731
3732	if (max_links && dir->i_nlink >= max_links)
3733		return -EMLINK;
3734
3735	error = dir->i_op->mkdir(dir, dentry, mode);
3736	if (!error)
3737		fsnotify_mkdir(dir, dentry);
3738	return error;
3739}
3740EXPORT_SYMBOL(vfs_mkdir);
3741
3742SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3743{
3744	struct dentry *dentry;
3745	struct path path;
3746	int error;
3747	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3748
3749retry:
3750	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3751	if (IS_ERR(dentry))
3752		return PTR_ERR(dentry);
3753
3754	if (!IS_POSIXACL(path.dentry->d_inode))
3755		mode &= ~current_umask();
3756	error = security_path_mkdir(&path, dentry, mode);
3757	if (!error)
3758		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3759	done_path_create(&path, dentry);
3760	if (retry_estale(error, lookup_flags)) {
3761		lookup_flags |= LOOKUP_REVAL;
3762		goto retry;
3763	}
3764	return error;
3765}
3766
 
 
 
 
 
3767SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3768{
3769	return sys_mkdirat(AT_FDCWD, pathname, mode);
3770}
3771
3772int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3773{
3774	int error = may_delete(dir, dentry, 1);
3775
3776	if (error)
3777		return error;
3778
3779	if (!dir->i_op->rmdir)
3780		return -EPERM;
3781
3782	dget(dentry);
3783	inode_lock(dentry->d_inode);
3784
3785	error = -EBUSY;
3786	if (is_local_mountpoint(dentry))
3787		goto out;
3788
3789	error = security_inode_rmdir(dir, dentry);
3790	if (error)
3791		goto out;
3792
3793	shrink_dcache_parent(dentry);
3794	error = dir->i_op->rmdir(dir, dentry);
3795	if (error)
3796		goto out;
3797
 
3798	dentry->d_inode->i_flags |= S_DEAD;
3799	dont_mount(dentry);
3800	detach_mounts(dentry);
 
3801
3802out:
3803	inode_unlock(dentry->d_inode);
3804	dput(dentry);
3805	if (!error)
3806		d_delete(dentry);
3807	return error;
3808}
3809EXPORT_SYMBOL(vfs_rmdir);
3810
3811static long do_rmdir(int dfd, const char __user *pathname)
3812{
3813	int error = 0;
3814	struct filename *name;
3815	struct dentry *dentry;
3816	struct path path;
3817	struct qstr last;
3818	int type;
3819	unsigned int lookup_flags = 0;
3820retry:
3821	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3822				&path, &last, &type);
3823	if (IS_ERR(name))
3824		return PTR_ERR(name);
3825
3826	switch (type) {
3827	case LAST_DOTDOT:
3828		error = -ENOTEMPTY;
3829		goto exit1;
3830	case LAST_DOT:
3831		error = -EINVAL;
3832		goto exit1;
3833	case LAST_ROOT:
3834		error = -EBUSY;
3835		goto exit1;
3836	}
3837
3838	error = mnt_want_write(path.mnt);
3839	if (error)
3840		goto exit1;
3841
3842	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3843	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3844	error = PTR_ERR(dentry);
3845	if (IS_ERR(dentry))
3846		goto exit2;
3847	if (!dentry->d_inode) {
3848		error = -ENOENT;
3849		goto exit3;
3850	}
3851	error = security_path_rmdir(&path, dentry);
3852	if (error)
3853		goto exit3;
3854	error = vfs_rmdir(path.dentry->d_inode, dentry);
3855exit3:
3856	dput(dentry);
3857exit2:
3858	inode_unlock(path.dentry->d_inode);
3859	mnt_drop_write(path.mnt);
3860exit1:
3861	path_put(&path);
3862	putname(name);
3863	if (retry_estale(error, lookup_flags)) {
3864		lookup_flags |= LOOKUP_REVAL;
3865		goto retry;
3866	}
3867	return error;
3868}
3869
3870SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3871{
3872	return do_rmdir(AT_FDCWD, pathname);
3873}
3874
3875/**
3876 * vfs_unlink - unlink a filesystem object
3877 * @dir:	parent directory
3878 * @dentry:	victim
3879 * @delegated_inode: returns victim inode, if the inode is delegated.
3880 *
3881 * The caller must hold dir->i_mutex.
3882 *
3883 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3884 * return a reference to the inode in delegated_inode.  The caller
3885 * should then break the delegation on that inode and retry.  Because
3886 * breaking a delegation may take a long time, the caller should drop
3887 * dir->i_mutex before doing so.
3888 *
3889 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3890 * be appropriate for callers that expect the underlying filesystem not
3891 * to be NFS exported.
3892 */
3893int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3894{
3895	struct inode *target = dentry->d_inode;
3896	int error = may_delete(dir, dentry, 0);
3897
3898	if (error)
3899		return error;
3900
3901	if (!dir->i_op->unlink)
3902		return -EPERM;
3903
3904	inode_lock(target);
3905	if (is_local_mountpoint(dentry))
3906		error = -EBUSY;
3907	else {
3908		error = security_inode_unlink(dir, dentry);
3909		if (!error) {
3910			error = try_break_deleg(target, delegated_inode);
3911			if (error)
3912				goto out;
3913			error = dir->i_op->unlink(dir, dentry);
3914			if (!error) {
3915				dont_mount(dentry);
3916				detach_mounts(dentry);
 
3917			}
3918		}
3919	}
3920out:
3921	inode_unlock(target);
3922
3923	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3924	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3925		fsnotify_link_count(target);
3926		d_delete(dentry);
3927	}
3928
3929	return error;
3930}
3931EXPORT_SYMBOL(vfs_unlink);
3932
3933/*
3934 * Make sure that the actual truncation of the file will occur outside its
3935 * directory's i_mutex.  Truncate can take a long time if there is a lot of
3936 * writeout happening, and we don't want to prevent access to the directory
3937 * while waiting on the I/O.
3938 */
3939static long do_unlinkat(int dfd, const char __user *pathname)
3940{
3941	int error;
3942	struct filename *name;
3943	struct dentry *dentry;
3944	struct path path;
3945	struct qstr last;
3946	int type;
3947	struct inode *inode = NULL;
3948	struct inode *delegated_inode = NULL;
3949	unsigned int lookup_flags = 0;
3950retry:
3951	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3952				&path, &last, &type);
3953	if (IS_ERR(name))
3954		return PTR_ERR(name);
3955
3956	error = -EISDIR;
3957	if (type != LAST_NORM)
3958		goto exit1;
3959
3960	error = mnt_want_write(path.mnt);
3961	if (error)
3962		goto exit1;
3963retry_deleg:
3964	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3965	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3966	error = PTR_ERR(dentry);
3967	if (!IS_ERR(dentry)) {
3968		/* Why not before? Because we want correct error value */
3969		if (last.name[last.len])
3970			goto slashes;
3971		inode = dentry->d_inode;
3972		if (d_is_negative(dentry))
3973			goto slashes;
3974		ihold(inode);
3975		error = security_path_unlink(&path, dentry);
3976		if (error)
3977			goto exit2;
3978		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3979exit2:
3980		dput(dentry);
3981	}
3982	inode_unlock(path.dentry->d_inode);
3983	if (inode)
3984		iput(inode);	/* truncate the inode here */
3985	inode = NULL;
3986	if (delegated_inode) {
3987		error = break_deleg_wait(&delegated_inode);
3988		if (!error)
3989			goto retry_deleg;
3990	}
3991	mnt_drop_write(path.mnt);
3992exit1:
3993	path_put(&path);
3994	putname(name);
3995	if (retry_estale(error, lookup_flags)) {
3996		lookup_flags |= LOOKUP_REVAL;
3997		inode = NULL;
3998		goto retry;
3999	}
 
4000	return error;
4001
4002slashes:
4003	if (d_is_negative(dentry))
4004		error = -ENOENT;
4005	else if (d_is_dir(dentry))
4006		error = -EISDIR;
4007	else
4008		error = -ENOTDIR;
4009	goto exit2;
4010}
4011
4012SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4013{
4014	if ((flag & ~AT_REMOVEDIR) != 0)
4015		return -EINVAL;
4016
4017	if (flag & AT_REMOVEDIR)
4018		return do_rmdir(dfd, pathname);
4019
4020	return do_unlinkat(dfd, pathname);
4021}
4022
4023SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4024{
4025	return do_unlinkat(AT_FDCWD, pathname);
4026}
4027
4028int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4029{
4030	int error = may_create(dir, dentry);
4031
4032	if (error)
4033		return error;
4034
4035	if (!dir->i_op->symlink)
4036		return -EPERM;
4037
4038	error = security_inode_symlink(dir, dentry, oldname);
4039	if (error)
4040		return error;
4041
4042	error = dir->i_op->symlink(dir, dentry, oldname);
4043	if (!error)
4044		fsnotify_create(dir, dentry);
4045	return error;
4046}
4047EXPORT_SYMBOL(vfs_symlink);
4048
4049SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4050		int, newdfd, const char __user *, newname)
4051{
4052	int error;
4053	struct filename *from;
4054	struct dentry *dentry;
4055	struct path path;
4056	unsigned int lookup_flags = 0;
4057
4058	from = getname(oldname);
4059	if (IS_ERR(from))
4060		return PTR_ERR(from);
4061retry:
4062	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4063	error = PTR_ERR(dentry);
4064	if (IS_ERR(dentry))
4065		goto out_putname;
4066
4067	error = security_path_symlink(&path, dentry, from->name);
4068	if (!error)
4069		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4070	done_path_create(&path, dentry);
4071	if (retry_estale(error, lookup_flags)) {
4072		lookup_flags |= LOOKUP_REVAL;
4073		goto retry;
4074	}
4075out_putname:
4076	putname(from);
4077	return error;
4078}
4079
 
 
 
 
 
 
4080SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4081{
4082	return sys_symlinkat(oldname, AT_FDCWD, newname);
4083}
4084
4085/**
4086 * vfs_link - create a new link
4087 * @old_dentry:	object to be linked
4088 * @dir:	new parent
4089 * @new_dentry:	where to create the new link
4090 * @delegated_inode: returns inode needing a delegation break
4091 *
4092 * The caller must hold dir->i_mutex
4093 *
4094 * If vfs_link discovers a delegation on the to-be-linked file in need
4095 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4096 * inode in delegated_inode.  The caller should then break the delegation
4097 * and retry.  Because breaking a delegation may take a long time, the
4098 * caller should drop the i_mutex before doing so.
4099 *
4100 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4101 * be appropriate for callers that expect the underlying filesystem not
4102 * to be NFS exported.
4103 */
4104int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4105{
4106	struct inode *inode = old_dentry->d_inode;
4107	unsigned max_links = dir->i_sb->s_max_links;
4108	int error;
4109
4110	if (!inode)
4111		return -ENOENT;
4112
4113	error = may_create(dir, new_dentry);
4114	if (error)
4115		return error;
4116
4117	if (dir->i_sb != inode->i_sb)
4118		return -EXDEV;
4119
4120	/*
4121	 * A link to an append-only or immutable file cannot be created.
4122	 */
4123	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4124		return -EPERM;
4125	/*
4126	 * Updating the link count will likely cause i_uid and i_gid to
4127	 * be writen back improperly if their true value is unknown to
4128	 * the vfs.
4129	 */
4130	if (HAS_UNMAPPED_ID(inode))
4131		return -EPERM;
4132	if (!dir->i_op->link)
4133		return -EPERM;
4134	if (S_ISDIR(inode->i_mode))
4135		return -EPERM;
4136
4137	error = security_inode_link(old_dentry, dir, new_dentry);
4138	if (error)
4139		return error;
4140
4141	inode_lock(inode);
4142	/* Make sure we don't allow creating hardlink to an unlinked file */
4143	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4144		error =  -ENOENT;
4145	else if (max_links && inode->i_nlink >= max_links)
4146		error = -EMLINK;
4147	else {
4148		error = try_break_deleg(inode, delegated_inode);
4149		if (!error)
4150			error = dir->i_op->link(old_dentry, dir, new_dentry);
4151	}
4152
4153	if (!error && (inode->i_state & I_LINKABLE)) {
4154		spin_lock(&inode->i_lock);
4155		inode->i_state &= ~I_LINKABLE;
4156		spin_unlock(&inode->i_lock);
4157	}
4158	inode_unlock(inode);
4159	if (!error)
4160		fsnotify_link(dir, inode, new_dentry);
4161	return error;
4162}
4163EXPORT_SYMBOL(vfs_link);
4164
4165/*
4166 * Hardlinks are often used in delicate situations.  We avoid
4167 * security-related surprises by not following symlinks on the
4168 * newname.  --KAB
4169 *
4170 * We don't follow them on the oldname either to be compatible
4171 * with linux 2.0, and to avoid hard-linking to directories
4172 * and other special files.  --ADM
4173 */
4174SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4175		int, newdfd, const char __user *, newname, int, flags)
4176{
4177	struct dentry *new_dentry;
4178	struct path old_path, new_path;
4179	struct inode *delegated_inode = NULL;
4180	int how = 0;
4181	int error;
4182
4183	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4184		return -EINVAL;
4185	/*
4186	 * To use null names we require CAP_DAC_READ_SEARCH
4187	 * This ensures that not everyone will be able to create
4188	 * handlink using the passed filedescriptor.
4189	 */
4190	if (flags & AT_EMPTY_PATH) {
4191		if (!capable(CAP_DAC_READ_SEARCH))
4192			return -ENOENT;
4193		how = LOOKUP_EMPTY;
4194	}
4195
4196	if (flags & AT_SYMLINK_FOLLOW)
4197		how |= LOOKUP_FOLLOW;
4198retry:
4199	error = user_path_at(olddfd, oldname, how, &old_path);
4200	if (error)
4201		return error;
4202
4203	new_dentry = user_path_create(newdfd, newname, &new_path,
4204					(how & LOOKUP_REVAL));
4205	error = PTR_ERR(new_dentry);
4206	if (IS_ERR(new_dentry))
4207		goto out;
4208
4209	error = -EXDEV;
4210	if (old_path.mnt != new_path.mnt)
4211		goto out_dput;
4212	error = may_linkat(&old_path);
4213	if (unlikely(error))
4214		goto out_dput;
4215	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4216	if (error)
4217		goto out_dput;
4218	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4219out_dput:
4220	done_path_create(&new_path, new_dentry);
4221	if (delegated_inode) {
4222		error = break_deleg_wait(&delegated_inode);
4223		if (!error) {
4224			path_put(&old_path);
4225			goto retry;
4226		}
4227	}
4228	if (retry_estale(error, how)) {
4229		path_put(&old_path);
4230		how |= LOOKUP_REVAL;
4231		goto retry;
4232	}
4233out:
4234	path_put(&old_path);
4235
4236	return error;
4237}
4238
 
 
 
 
 
 
4239SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4240{
4241	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4242}
4243
4244/**
4245 * vfs_rename - rename a filesystem object
4246 * @old_dir:	parent of source
4247 * @old_dentry:	source
4248 * @new_dir:	parent of destination
4249 * @new_dentry:	destination
4250 * @delegated_inode: returns an inode needing a delegation break
4251 * @flags:	rename flags
4252 *
4253 * The caller must hold multiple mutexes--see lock_rename()).
4254 *
4255 * If vfs_rename discovers a delegation in need of breaking at either
4256 * the source or destination, it will return -EWOULDBLOCK and return a
4257 * reference to the inode in delegated_inode.  The caller should then
4258 * break the delegation and retry.  Because breaking a delegation may
4259 * take a long time, the caller should drop all locks before doing
4260 * so.
4261 *
4262 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4263 * be appropriate for callers that expect the underlying filesystem not
4264 * to be NFS exported.
4265 *
4266 * The worst of all namespace operations - renaming directory. "Perverted"
4267 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4268 * Problems:
 
4269 *	a) we can get into loop creation.
4270 *	b) race potential - two innocent renames can create a loop together.
4271 *	   That's where 4.4 screws up. Current fix: serialization on
4272 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4273 *	   story.
4274 *	c) we have to lock _four_ objects - parents and victim (if it exists),
4275 *	   and source (if it is not a directory).
4276 *	   And that - after we got ->i_mutex on parents (until then we don't know
4277 *	   whether the target exists).  Solution: try to be smart with locking
4278 *	   order for inodes.  We rely on the fact that tree topology may change
4279 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4280 *	   move will be locked.  Thus we can rank directories by the tree
4281 *	   (ancestors first) and rank all non-directories after them.
4282 *	   That works since everybody except rename does "lock parent, lookup,
4283 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4284 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4285 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4286 *	   we'd better make sure that there's no link(2) for them.
4287 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4288 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4289 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4290 *	   ->i_mutex on parents, which works but leads to some truly excessive
4291 *	   locking].
4292 */
4293int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4294	       struct inode *new_dir, struct dentry *new_dentry,
4295	       struct inode **delegated_inode, unsigned int flags)
4296{
4297	int error;
4298	bool is_dir = d_is_dir(old_dentry);
4299	const unsigned char *old_name;
4300	struct inode *source = old_dentry->d_inode;
4301	struct inode *target = new_dentry->d_inode;
4302	bool new_is_dir = false;
4303	unsigned max_links = new_dir->i_sb->s_max_links;
 
4304
4305	if (source == target)
4306		return 0;
4307
4308	error = may_delete(old_dir, old_dentry, is_dir);
4309	if (error)
4310		return error;
4311
4312	if (!target) {
4313		error = may_create(new_dir, new_dentry);
4314	} else {
4315		new_is_dir = d_is_dir(new_dentry);
4316
4317		if (!(flags & RENAME_EXCHANGE))
4318			error = may_delete(new_dir, new_dentry, is_dir);
4319		else
4320			error = may_delete(new_dir, new_dentry, new_is_dir);
4321	}
4322	if (error)
4323		return error;
4324
4325	if (!old_dir->i_op->rename)
4326		return -EPERM;
4327
4328	/*
4329	 * If we are going to change the parent - check write permissions,
4330	 * we'll need to flip '..'.
4331	 */
4332	if (new_dir != old_dir) {
4333		if (is_dir) {
4334			error = inode_permission(source, MAY_WRITE);
4335			if (error)
4336				return error;
4337		}
4338		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4339			error = inode_permission(target, MAY_WRITE);
4340			if (error)
4341				return error;
4342		}
4343	}
4344
4345	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4346				      flags);
4347	if (error)
4348		return error;
4349
4350	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4351	dget(new_dentry);
4352	if (!is_dir || (flags & RENAME_EXCHANGE))
4353		lock_two_nondirectories(source, target);
4354	else if (target)
4355		inode_lock(target);
4356
4357	error = -EBUSY;
4358	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4359		goto out;
4360
4361	if (max_links && new_dir != old_dir) {
4362		error = -EMLINK;
4363		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4364			goto out;
4365		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4366		    old_dir->i_nlink >= max_links)
4367			goto out;
4368	}
4369	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4370		shrink_dcache_parent(new_dentry);
4371	if (!is_dir) {
4372		error = try_break_deleg(source, delegated_inode);
4373		if (error)
4374			goto out;
4375	}
4376	if (target && !new_is_dir) {
4377		error = try_break_deleg(target, delegated_inode);
4378		if (error)
4379			goto out;
4380	}
4381	error = old_dir->i_op->rename(old_dir, old_dentry,
4382				       new_dir, new_dentry, flags);
4383	if (error)
4384		goto out;
4385
4386	if (!(flags & RENAME_EXCHANGE) && target) {
4387		if (is_dir)
 
4388			target->i_flags |= S_DEAD;
 
4389		dont_mount(new_dentry);
4390		detach_mounts(new_dentry);
4391	}
4392	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4393		if (!(flags & RENAME_EXCHANGE))
4394			d_move(old_dentry, new_dentry);
4395		else
4396			d_exchange(old_dentry, new_dentry);
4397	}
4398out:
4399	if (!is_dir || (flags & RENAME_EXCHANGE))
4400		unlock_two_nondirectories(source, target);
4401	else if (target)
4402		inode_unlock(target);
4403	dput(new_dentry);
4404	if (!error) {
4405		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4406			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4407		if (flags & RENAME_EXCHANGE) {
4408			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4409				      new_is_dir, NULL, new_dentry);
4410		}
4411	}
4412	fsnotify_oldname_free(old_name);
4413
4414	return error;
4415}
4416EXPORT_SYMBOL(vfs_rename);
4417
4418SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4419		int, newdfd, const char __user *, newname, unsigned int, flags)
4420{
4421	struct dentry *old_dentry, *new_dentry;
4422	struct dentry *trap;
4423	struct path old_path, new_path;
4424	struct qstr old_last, new_last;
4425	int old_type, new_type;
4426	struct inode *delegated_inode = NULL;
4427	struct filename *from;
4428	struct filename *to;
4429	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4430	bool should_retry = false;
4431	int error;
4432
4433	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4434		return -EINVAL;
4435
4436	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4437	    (flags & RENAME_EXCHANGE))
4438		return -EINVAL;
4439
4440	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4441		return -EPERM;
4442
4443	if (flags & RENAME_EXCHANGE)
4444		target_flags = 0;
4445
4446retry:
4447	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4448				&old_path, &old_last, &old_type);
4449	if (IS_ERR(from)) {
4450		error = PTR_ERR(from);
4451		goto exit;
4452	}
4453
4454	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4455				&new_path, &new_last, &new_type);
4456	if (IS_ERR(to)) {
4457		error = PTR_ERR(to);
4458		goto exit1;
4459	}
4460
4461	error = -EXDEV;
4462	if (old_path.mnt != new_path.mnt)
4463		goto exit2;
4464
4465	error = -EBUSY;
4466	if (old_type != LAST_NORM)
4467		goto exit2;
4468
4469	if (flags & RENAME_NOREPLACE)
4470		error = -EEXIST;
4471	if (new_type != LAST_NORM)
4472		goto exit2;
4473
4474	error = mnt_want_write(old_path.mnt);
4475	if (error)
4476		goto exit2;
4477
4478retry_deleg:
4479	trap = lock_rename(new_path.dentry, old_path.dentry);
4480
4481	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4482	error = PTR_ERR(old_dentry);
4483	if (IS_ERR(old_dentry))
4484		goto exit3;
4485	/* source must exist */
4486	error = -ENOENT;
4487	if (d_is_negative(old_dentry))
4488		goto exit4;
4489	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4490	error = PTR_ERR(new_dentry);
4491	if (IS_ERR(new_dentry))
4492		goto exit4;
4493	error = -EEXIST;
4494	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4495		goto exit5;
4496	if (flags & RENAME_EXCHANGE) {
4497		error = -ENOENT;
4498		if (d_is_negative(new_dentry))
4499			goto exit5;
4500
4501		if (!d_is_dir(new_dentry)) {
4502			error = -ENOTDIR;
4503			if (new_last.name[new_last.len])
4504				goto exit5;
4505		}
4506	}
4507	/* unless the source is a directory trailing slashes give -ENOTDIR */
4508	if (!d_is_dir(old_dentry)) {
4509		error = -ENOTDIR;
4510		if (old_last.name[old_last.len])
4511			goto exit5;
4512		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4513			goto exit5;
4514	}
4515	/* source should not be ancestor of target */
4516	error = -EINVAL;
4517	if (old_dentry == trap)
4518		goto exit5;
4519	/* target should not be an ancestor of source */
4520	if (!(flags & RENAME_EXCHANGE))
4521		error = -ENOTEMPTY;
4522	if (new_dentry == trap)
4523		goto exit5;
4524
4525	error = security_path_rename(&old_path, old_dentry,
4526				     &new_path, new_dentry, flags);
4527	if (error)
4528		goto exit5;
4529	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4530			   new_path.dentry->d_inode, new_dentry,
4531			   &delegated_inode, flags);
4532exit5:
4533	dput(new_dentry);
4534exit4:
4535	dput(old_dentry);
4536exit3:
4537	unlock_rename(new_path.dentry, old_path.dentry);
4538	if (delegated_inode) {
4539		error = break_deleg_wait(&delegated_inode);
4540		if (!error)
4541			goto retry_deleg;
4542	}
4543	mnt_drop_write(old_path.mnt);
4544exit2:
4545	if (retry_estale(error, lookup_flags))
4546		should_retry = true;
4547	path_put(&new_path);
4548	putname(to);
4549exit1:
4550	path_put(&old_path);
4551	putname(from);
4552	if (should_retry) {
4553		should_retry = false;
4554		lookup_flags |= LOOKUP_REVAL;
4555		goto retry;
4556	}
4557exit:
4558	return error;
4559}
4560
 
 
 
 
 
 
4561SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4562		int, newdfd, const char __user *, newname)
4563{
4564	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4565}
4566
4567SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4568{
4569	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4570}
4571
4572int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4573{
4574	int error = may_create(dir, dentry);
4575	if (error)
4576		return error;
4577
4578	if (!dir->i_op->mknod)
4579		return -EPERM;
4580
4581	return dir->i_op->mknod(dir, dentry,
4582				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4583}
4584EXPORT_SYMBOL(vfs_whiteout);
4585
4586int readlink_copy(char __user *buffer, int buflen, const char *link)
4587{
4588	int len = PTR_ERR(link);
4589	if (IS_ERR(link))
4590		goto out;
4591
4592	len = strlen(link);
4593	if (len > (unsigned) buflen)
4594		len = buflen;
4595	if (copy_to_user(buffer, link, len))
4596		len = -EFAULT;
4597out:
4598	return len;
4599}
4600
4601/*
4602 * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4603 * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4604 * for any given inode is up to filesystem.
4605 */
4606static int generic_readlink(struct dentry *dentry, char __user *buffer,
4607			    int buflen)
4608{
4609	DEFINE_DELAYED_CALL(done);
4610	struct inode *inode = d_inode(dentry);
4611	const char *link = inode->i_link;
4612	int res;
4613
4614	if (!link) {
4615		link = inode->i_op->get_link(dentry, inode, &done);
4616		if (IS_ERR(link))
4617			return PTR_ERR(link);
4618	}
4619	res = readlink_copy(buffer, buflen, link);
4620	do_delayed_call(&done);
4621	return res;
4622}
4623
4624/**
4625 * vfs_readlink - copy symlink body into userspace buffer
4626 * @dentry: dentry on which to get symbolic link
4627 * @buffer: user memory pointer
4628 * @buflen: size of buffer
4629 *
4630 * Does not touch atime.  That's up to the caller if necessary
4631 *
4632 * Does not call security hook.
4633 */
4634int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4635{
4636	struct inode *inode = d_inode(dentry);
 
 
 
4637
4638	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4639		if (unlikely(inode->i_op->readlink))
4640			return inode->i_op->readlink(dentry, buffer, buflen);
4641
4642		if (!d_is_symlink(dentry))
4643			return -EINVAL;
4644
4645		spin_lock(&inode->i_lock);
4646		inode->i_opflags |= IOP_DEFAULT_READLINK;
4647		spin_unlock(&inode->i_lock);
4648	}
4649
4650	return generic_readlink(dentry, buffer, buflen);
 
 
 
 
 
 
 
 
4651}
4652EXPORT_SYMBOL(vfs_readlink);
4653
4654/**
4655 * vfs_get_link - get symlink body
4656 * @dentry: dentry on which to get symbolic link
4657 * @done: caller needs to free returned data with this
4658 *
4659 * Calls security hook and i_op->get_link() on the supplied inode.
4660 *
4661 * It does not touch atime.  That's up to the caller if necessary.
4662 *
4663 * Does not work on "special" symlinks like /proc/$$/fd/N
4664 */
4665const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4666{
4667	const char *res = ERR_PTR(-EINVAL);
4668	struct inode *inode = d_inode(dentry);
4669
4670	if (d_is_symlink(dentry)) {
4671		res = ERR_PTR(security_inode_readlink(dentry));
4672		if (!res)
4673			res = inode->i_op->get_link(dentry, inode, done);
4674	}
4675	return res;
4676}
4677EXPORT_SYMBOL(vfs_get_link);
4678
4679/* get the link contents into pagecache */
4680const char *page_get_link(struct dentry *dentry, struct inode *inode,
4681			  struct delayed_call *callback)
4682{
4683	char *kaddr;
4684	struct page *page;
4685	struct address_space *mapping = inode->i_mapping;
4686
4687	if (!dentry) {
4688		page = find_get_page(mapping, 0);
4689		if (!page)
4690			return ERR_PTR(-ECHILD);
4691		if (!PageUptodate(page)) {
4692			put_page(page);
4693			return ERR_PTR(-ECHILD);
4694		}
4695	} else {
4696		page = read_mapping_page(mapping, 0, NULL);
4697		if (IS_ERR(page))
4698			return (char*)page;
4699	}
4700	set_delayed_call(callback, page_put_link, page);
4701	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4702	kaddr = page_address(page);
4703	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4704	return kaddr;
4705}
4706
4707EXPORT_SYMBOL(page_get_link);
4708
4709void page_put_link(void *arg)
4710{
4711	put_page(arg);
4712}
4713EXPORT_SYMBOL(page_put_link);
4714
4715int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4716{
4717	DEFINE_DELAYED_CALL(done);
4718	int res = readlink_copy(buffer, buflen,
4719				page_get_link(dentry, d_inode(dentry),
4720					      &done));
4721	do_delayed_call(&done);
4722	return res;
4723}
4724EXPORT_SYMBOL(page_readlink);
4725
4726/*
4727 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4728 */
4729int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4730{
4731	struct address_space *mapping = inode->i_mapping;
4732	struct page *page;
4733	void *fsdata;
4734	int err;
4735	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4736	if (nofs)
4737		flags |= AOP_FLAG_NOFS;
4738
4739retry:
4740	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4741				flags, &page, &fsdata);
4742	if (err)
4743		goto fail;
4744
4745	memcpy(page_address(page), symname, len-1);
4746
4747	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4748							page, fsdata);
4749	if (err < 0)
4750		goto fail;
4751	if (err < len-1)
4752		goto retry;
4753
4754	mark_inode_dirty(inode);
4755	return 0;
4756fail:
4757	return err;
4758}
4759EXPORT_SYMBOL(__page_symlink);
4760
4761int page_symlink(struct inode *inode, const char *symname, int len)
4762{
4763	return __page_symlink(inode, symname, len,
4764			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4765}
4766EXPORT_SYMBOL(page_symlink);
4767
4768const struct inode_operations page_symlink_inode_operations = {
4769	.get_link	= page_get_link,
4770};
4771EXPORT_SYMBOL(page_symlink_inode_operations);