Linux Audio

Check our new training course

Loading...
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/slab.h>
  21#include <linux/wordpart.h>
  22#include <linux/fs.h>
  23#include <linux/filelock.h>
  24#include <linux/namei.h>
  25#include <linux/pagemap.h>
  26#include <linux/sched/mm.h>
  27#include <linux/fsnotify.h>
  28#include <linux/personality.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/mount.h>
  32#include <linux/audit.h>
  33#include <linux/capability.h>
  34#include <linux/file.h>
  35#include <linux/fcntl.h>
  36#include <linux/device_cgroup.h>
  37#include <linux/fs_struct.h>
  38#include <linux/posix_acl.h>
  39#include <linux/hash.h>
  40#include <linux/bitops.h>
  41#include <linux/init_task.h>
  42#include <linux/uaccess.h>
  43
  44#include "internal.h"
  45#include "mount.h"
  46
  47/* [Feb-1997 T. Schoebel-Theuer]
  48 * Fundamental changes in the pathname lookup mechanisms (namei)
  49 * were necessary because of omirr.  The reason is that omirr needs
  50 * to know the _real_ pathname, not the user-supplied one, in case
  51 * of symlinks (and also when transname replacements occur).
  52 *
  53 * The new code replaces the old recursive symlink resolution with
  54 * an iterative one (in case of non-nested symlink chains).  It does
  55 * this with calls to <fs>_follow_link().
  56 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  57 * replaced with a single function lookup_dentry() that can handle all 
  58 * the special cases of the former code.
  59 *
  60 * With the new dcache, the pathname is stored at each inode, at least as
  61 * long as the refcount of the inode is positive.  As a side effect, the
  62 * size of the dcache depends on the inode cache and thus is dynamic.
  63 *
  64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  65 * resolution to correspond with current state of the code.
  66 *
  67 * Note that the symlink resolution is not *completely* iterative.
  68 * There is still a significant amount of tail- and mid- recursion in
  69 * the algorithm.  Also, note that <fs>_readlink() is not used in
  70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  71 * may return different results than <fs>_follow_link().  Many virtual
  72 * filesystems (including /proc) exhibit this behavior.
  73 */
  74
  75/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  77 * and the name already exists in form of a symlink, try to create the new
  78 * name indicated by the symlink. The old code always complained that the
  79 * name already exists, due to not following the symlink even if its target
  80 * is nonexistent.  The new semantics affects also mknod() and link() when
  81 * the name is a symlink pointing to a non-existent name.
  82 *
  83 * I don't know which semantics is the right one, since I have no access
  84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  86 * "old" one. Personally, I think the new semantics is much more logical.
  87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  88 * file does succeed in both HP-UX and SunOs, but not in Solaris
  89 * and in the old Linux semantics.
  90 */
  91
  92/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  93 * semantics.  See the comments in "open_namei" and "do_link" below.
  94 *
  95 * [10-Sep-98 Alan Modra] Another symlink change.
  96 */
  97
  98/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  99 *	inside the path - always follow.
 100 *	in the last component in creation/removal/renaming - never follow.
 101 *	if LOOKUP_FOLLOW passed - follow.
 102 *	if the pathname has trailing slashes - follow.
 103 *	otherwise - don't follow.
 104 * (applied in that order).
 105 *
 106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 108 * During the 2.4 we need to fix the userland stuff depending on it -
 109 * hopefully we will be able to get rid of that wart in 2.5. So far only
 110 * XEmacs seems to be relying on it...
 111 */
 112/*
 113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 114 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 115 * any extra contention...
 116 */
 117
 118/* In order to reduce some races, while at the same time doing additional
 119 * checking and hopefully speeding things up, we copy filenames to the
 120 * kernel data space before using them..
 121 *
 122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 123 * PATH_MAX includes the nul terminator --RR.
 124 */
 125
 126#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 127
 128struct filename *
 129getname_flags(const char __user *filename, int flags)
 130{
 131	struct filename *result;
 132	char *kname;
 133	int len;
 134
 135	result = audit_reusename(filename);
 136	if (result)
 137		return result;
 138
 139	result = __getname();
 140	if (unlikely(!result))
 141		return ERR_PTR(-ENOMEM);
 142
 143	/*
 144	 * First, try to embed the struct filename inside the names_cache
 145	 * allocation
 146	 */
 147	kname = (char *)result->iname;
 148	result->name = kname;
 149
 150	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 151	/*
 152	 * Handle both empty path and copy failure in one go.
 153	 */
 154	if (unlikely(len <= 0)) {
 155		if (unlikely(len < 0)) {
 156			__putname(result);
 157			return ERR_PTR(len);
 158		}
 159
 160		/* The empty path is special. */
 161		if (!(flags & LOOKUP_EMPTY)) {
 162			__putname(result);
 163			return ERR_PTR(-ENOENT);
 164		}
 165	}
 166
 167	/*
 168	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 169	 * separate struct filename so we can dedicate the entire
 170	 * names_cache allocation for the pathname, and re-do the copy from
 171	 * userland.
 172	 */
 173	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 174		const size_t size = offsetof(struct filename, iname[1]);
 175		kname = (char *)result;
 176
 177		/*
 178		 * size is chosen that way we to guarantee that
 179		 * result->iname[0] is within the same object and that
 180		 * kname can't be equal to result->iname, no matter what.
 181		 */
 182		result = kzalloc(size, GFP_KERNEL);
 183		if (unlikely(!result)) {
 184			__putname(kname);
 185			return ERR_PTR(-ENOMEM);
 186		}
 187		result->name = kname;
 188		len = strncpy_from_user(kname, filename, PATH_MAX);
 189		if (unlikely(len < 0)) {
 190			__putname(kname);
 191			kfree(result);
 192			return ERR_PTR(len);
 193		}
 194		/* The empty path is special. */
 195		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
 196			__putname(kname);
 197			kfree(result);
 198			return ERR_PTR(-ENOENT);
 199		}
 200		if (unlikely(len == PATH_MAX)) {
 201			__putname(kname);
 202			kfree(result);
 203			return ERR_PTR(-ENAMETOOLONG);
 204		}
 205	}
 206
 207	atomic_set(&result->refcnt, 1);
 208	result->uptr = filename;
 209	result->aname = NULL;
 210	audit_getname(result);
 211	return result;
 212}
 213
 214struct filename *getname_uflags(const char __user *filename, int uflags)
 215{
 216	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
 217
 218	return getname_flags(filename, flags);
 219}
 220
 221struct filename *getname(const char __user * filename)
 222{
 223	return getname_flags(filename, 0);
 224}
 225
 226struct filename *__getname_maybe_null(const char __user *pathname)
 227{
 228	struct filename *name;
 229	char c;
 230
 231	/* try to save on allocations; loss on um, though */
 232	if (get_user(c, pathname))
 233		return ERR_PTR(-EFAULT);
 234	if (!c)
 235		return NULL;
 236
 237	name = getname_flags(pathname, LOOKUP_EMPTY);
 238	if (!IS_ERR(name) && !(name->name[0])) {
 239		putname(name);
 240		name = NULL;
 241	}
 242	return name;
 243}
 244
 245struct filename *getname_kernel(const char * filename)
 246{
 247	struct filename *result;
 248	int len = strlen(filename) + 1;
 249
 250	result = __getname();
 251	if (unlikely(!result))
 252		return ERR_PTR(-ENOMEM);
 253
 254	if (len <= EMBEDDED_NAME_MAX) {
 255		result->name = (char *)result->iname;
 256	} else if (len <= PATH_MAX) {
 257		const size_t size = offsetof(struct filename, iname[1]);
 258		struct filename *tmp;
 259
 260		tmp = kmalloc(size, GFP_KERNEL);
 261		if (unlikely(!tmp)) {
 262			__putname(result);
 263			return ERR_PTR(-ENOMEM);
 264		}
 265		tmp->name = (char *)result;
 266		result = tmp;
 267	} else {
 268		__putname(result);
 269		return ERR_PTR(-ENAMETOOLONG);
 270	}
 271	memcpy((char *)result->name, filename, len);
 272	result->uptr = NULL;
 273	result->aname = NULL;
 274	atomic_set(&result->refcnt, 1);
 275	audit_getname(result);
 276
 277	return result;
 278}
 279EXPORT_SYMBOL(getname_kernel);
 280
 281void putname(struct filename *name)
 282{
 283	if (IS_ERR_OR_NULL(name))
 284		return;
 285
 286	if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
 287		return;
 288
 289	if (!atomic_dec_and_test(&name->refcnt))
 290		return;
 291
 292	if (name->name != name->iname) {
 293		__putname(name->name);
 294		kfree(name);
 295	} else
 296		__putname(name);
 297}
 298EXPORT_SYMBOL(putname);
 299
 300/**
 301 * check_acl - perform ACL permission checking
 302 * @idmap:	idmap of the mount the inode was found from
 303 * @inode:	inode to check permissions on
 304 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 305 *
 306 * This function performs the ACL permission checking. Since this function
 307 * retrieve POSIX acls it needs to know whether it is called from a blocking or
 308 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 309 *
 310 * If the inode has been found through an idmapped mount the idmap of
 311 * the vfsmount must be passed through @idmap. This function will then take
 312 * care to map the inode according to @idmap before checking permissions.
 313 * On non-idmapped mounts or if permission checking is to be performed on the
 314 * raw inode simply pass @nop_mnt_idmap.
 315 */
 316static int check_acl(struct mnt_idmap *idmap,
 317		     struct inode *inode, int mask)
 318{
 319#ifdef CONFIG_FS_POSIX_ACL
 320	struct posix_acl *acl;
 321
 322	if (mask & MAY_NOT_BLOCK) {
 323		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 324	        if (!acl)
 325	                return -EAGAIN;
 326		/* no ->get_inode_acl() calls in RCU mode... */
 327		if (is_uncached_acl(acl))
 328			return -ECHILD;
 329	        return posix_acl_permission(idmap, inode, acl, mask);
 330	}
 331
 332	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
 333	if (IS_ERR(acl))
 334		return PTR_ERR(acl);
 335	if (acl) {
 336	        int error = posix_acl_permission(idmap, inode, acl, mask);
 337	        posix_acl_release(acl);
 338	        return error;
 339	}
 340#endif
 341
 342	return -EAGAIN;
 343}
 344
 345/*
 346 * Very quick optimistic "we know we have no ACL's" check.
 347 *
 348 * Note that this is purely for ACL_TYPE_ACCESS, and purely
 349 * for the "we have cached that there are no ACLs" case.
 350 *
 351 * If this returns true, we know there are no ACLs. But if
 352 * it returns false, we might still not have ACLs (it could
 353 * be the is_uncached_acl() case).
 354 */
 355static inline bool no_acl_inode(struct inode *inode)
 356{
 357#ifdef CONFIG_FS_POSIX_ACL
 358	return likely(!READ_ONCE(inode->i_acl));
 359#else
 360	return true;
 361#endif
 362}
 363
 364/**
 365 * acl_permission_check - perform basic UNIX permission checking
 366 * @idmap:	idmap of the mount the inode was found from
 367 * @inode:	inode to check permissions on
 368 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 369 *
 370 * This function performs the basic UNIX permission checking. Since this
 371 * function may retrieve POSIX acls it needs to know whether it is called from a
 372 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
 373 *
 374 * If the inode has been found through an idmapped mount the idmap of
 375 * the vfsmount must be passed through @idmap. This function will then take
 376 * care to map the inode according to @idmap before checking permissions.
 377 * On non-idmapped mounts or if permission checking is to be performed on the
 378 * raw inode simply pass @nop_mnt_idmap.
 379 */
 380static int acl_permission_check(struct mnt_idmap *idmap,
 381				struct inode *inode, int mask)
 382{
 383	unsigned int mode = inode->i_mode;
 384	vfsuid_t vfsuid;
 385
 386	/*
 387	 * Common cheap case: everybody has the requested
 388	 * rights, and there are no ACLs to check. No need
 389	 * to do any owner/group checks in that case.
 390	 *
 391	 *  - 'mask&7' is the requested permission bit set
 392	 *  - multiplying by 0111 spreads them out to all of ugo
 393	 *  - '& ~mode' looks for missing inode permission bits
 394	 *  - the '!' is for "no missing permissions"
 395	 *
 396	 * After that, we just need to check that there are no
 397	 * ACL's on the inode - do the 'IS_POSIXACL()' check last
 398	 * because it will dereference the ->i_sb pointer and we
 399	 * want to avoid that if at all possible.
 400	 */
 401	if (!((mask & 7) * 0111 & ~mode)) {
 402		if (no_acl_inode(inode))
 403			return 0;
 404		if (!IS_POSIXACL(inode))
 405			return 0;
 406	}
 407
 408	/* Are we the owner? If so, ACL's don't matter */
 409	vfsuid = i_uid_into_vfsuid(idmap, inode);
 410	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
 411		mask &= 7;
 412		mode >>= 6;
 413		return (mask & ~mode) ? -EACCES : 0;
 414	}
 415
 416	/* Do we have ACL's? */
 417	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 418		int error = check_acl(idmap, inode, mask);
 419		if (error != -EAGAIN)
 420			return error;
 421	}
 422
 423	/* Only RWX matters for group/other mode bits */
 424	mask &= 7;
 425
 426	/*
 427	 * Are the group permissions different from
 428	 * the other permissions in the bits we care
 429	 * about? Need to check group ownership if so.
 430	 */
 431	if (mask & (mode ^ (mode >> 3))) {
 432		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
 433		if (vfsgid_in_group_p(vfsgid))
 434			mode >>= 3;
 435	}
 436
 437	/* Bits in 'mode' clear that we require? */
 438	return (mask & ~mode) ? -EACCES : 0;
 439}
 440
 441/**
 442 * generic_permission -  check for access rights on a Posix-like filesystem
 443 * @idmap:	idmap of the mount the inode was found from
 444 * @inode:	inode to check access rights for
 445 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
 446 *		%MAY_NOT_BLOCK ...)
 447 *
 448 * Used to check for read/write/execute permissions on a file.
 449 * We use "fsuid" for this, letting us set arbitrary permissions
 450 * for filesystem access without changing the "normal" uids which
 451 * are used for other things.
 452 *
 453 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 454 * request cannot be satisfied (eg. requires blocking or too much complexity).
 455 * It would then be called again in ref-walk mode.
 456 *
 457 * If the inode has been found through an idmapped mount the idmap of
 458 * the vfsmount must be passed through @idmap. This function will then take
 459 * care to map the inode according to @idmap before checking permissions.
 460 * On non-idmapped mounts or if permission checking is to be performed on the
 461 * raw inode simply pass @nop_mnt_idmap.
 462 */
 463int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
 464		       int mask)
 465{
 466	int ret;
 467
 468	/*
 469	 * Do the basic permission checks.
 470	 */
 471	ret = acl_permission_check(idmap, inode, mask);
 472	if (ret != -EACCES)
 473		return ret;
 474
 475	if (S_ISDIR(inode->i_mode)) {
 476		/* DACs are overridable for directories */
 477		if (!(mask & MAY_WRITE))
 478			if (capable_wrt_inode_uidgid(idmap, inode,
 479						     CAP_DAC_READ_SEARCH))
 480				return 0;
 481		if (capable_wrt_inode_uidgid(idmap, inode,
 482					     CAP_DAC_OVERRIDE))
 483			return 0;
 484		return -EACCES;
 485	}
 486
 487	/*
 488	 * Searching includes executable on directories, else just read.
 489	 */
 490	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 491	if (mask == MAY_READ)
 492		if (capable_wrt_inode_uidgid(idmap, inode,
 493					     CAP_DAC_READ_SEARCH))
 494			return 0;
 495	/*
 496	 * Read/write DACs are always overridable.
 497	 * Executable DACs are overridable when there is
 498	 * at least one exec bit set.
 499	 */
 500	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 501		if (capable_wrt_inode_uidgid(idmap, inode,
 502					     CAP_DAC_OVERRIDE))
 503			return 0;
 504
 505	return -EACCES;
 506}
 507EXPORT_SYMBOL(generic_permission);
 508
 509/**
 510 * do_inode_permission - UNIX permission checking
 511 * @idmap:	idmap of the mount the inode was found from
 512 * @inode:	inode to check permissions on
 513 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
 514 *
 515 * We _really_ want to just do "generic_permission()" without
 516 * even looking at the inode->i_op values. So we keep a cache
 517 * flag in inode->i_opflags, that says "this has not special
 518 * permission function, use the fast case".
 519 */
 520static inline int do_inode_permission(struct mnt_idmap *idmap,
 521				      struct inode *inode, int mask)
 522{
 523	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 524		if (likely(inode->i_op->permission))
 525			return inode->i_op->permission(idmap, inode, mask);
 526
 527		/* This gets set once for the inode lifetime */
 528		spin_lock(&inode->i_lock);
 529		inode->i_opflags |= IOP_FASTPERM;
 530		spin_unlock(&inode->i_lock);
 531	}
 532	return generic_permission(idmap, inode, mask);
 533}
 534
 535/**
 536 * sb_permission - Check superblock-level permissions
 537 * @sb: Superblock of inode to check permission on
 538 * @inode: Inode to check permission on
 539 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 540 *
 541 * Separate out file-system wide checks from inode-specific permission checks.
 542 */
 543static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 544{
 545	if (unlikely(mask & MAY_WRITE)) {
 546		umode_t mode = inode->i_mode;
 547
 548		/* Nobody gets write access to a read-only fs. */
 549		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 550			return -EROFS;
 551	}
 552	return 0;
 553}
 554
 555/**
 556 * inode_permission - Check for access rights to a given inode
 557 * @idmap:	idmap of the mount the inode was found from
 558 * @inode:	Inode to check permission on
 559 * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 560 *
 561 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 562 * this, letting us set arbitrary permissions for filesystem access without
 563 * changing the "normal" UIDs which are used for other things.
 564 *
 565 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 566 */
 567int inode_permission(struct mnt_idmap *idmap,
 568		     struct inode *inode, int mask)
 569{
 570	int retval;
 571
 572	retval = sb_permission(inode->i_sb, inode, mask);
 573	if (retval)
 574		return retval;
 575
 576	if (unlikely(mask & MAY_WRITE)) {
 577		/*
 578		 * Nobody gets write access to an immutable file.
 579		 */
 580		if (IS_IMMUTABLE(inode))
 581			return -EPERM;
 582
 583		/*
 584		 * Updating mtime will likely cause i_uid and i_gid to be
 585		 * written back improperly if their true value is unknown
 586		 * to the vfs.
 587		 */
 588		if (HAS_UNMAPPED_ID(idmap, inode))
 589			return -EACCES;
 590	}
 591
 592	retval = do_inode_permission(idmap, inode, mask);
 593	if (retval)
 594		return retval;
 595
 596	retval = devcgroup_inode_permission(inode, mask);
 597	if (retval)
 598		return retval;
 599
 600	return security_inode_permission(inode, mask);
 601}
 602EXPORT_SYMBOL(inode_permission);
 603
 604/**
 605 * path_get - get a reference to a path
 606 * @path: path to get the reference to
 607 *
 608 * Given a path increment the reference count to the dentry and the vfsmount.
 609 */
 610void path_get(const struct path *path)
 611{
 612	mntget(path->mnt);
 613	dget(path->dentry);
 614}
 615EXPORT_SYMBOL(path_get);
 616
 617/**
 618 * path_put - put a reference to a path
 619 * @path: path to put the reference to
 620 *
 621 * Given a path decrement the reference count to the dentry and the vfsmount.
 622 */
 623void path_put(const struct path *path)
 624{
 625	dput(path->dentry);
 626	mntput(path->mnt);
 627}
 628EXPORT_SYMBOL(path_put);
 629
 630#define EMBEDDED_LEVELS 2
 631struct nameidata {
 632	struct path	path;
 633	struct qstr	last;
 634	struct path	root;
 635	struct inode	*inode; /* path.dentry.d_inode */
 636	unsigned int	flags, state;
 637	unsigned	seq, next_seq, m_seq, r_seq;
 638	int		last_type;
 639	unsigned	depth;
 640	int		total_link_count;
 641	struct saved {
 642		struct path link;
 643		struct delayed_call done;
 644		const char *name;
 645		unsigned seq;
 646	} *stack, internal[EMBEDDED_LEVELS];
 647	struct filename	*name;
 648	const char *pathname;
 649	struct nameidata *saved;
 650	unsigned	root_seq;
 651	int		dfd;
 652	vfsuid_t	dir_vfsuid;
 653	umode_t		dir_mode;
 654} __randomize_layout;
 655
 656#define ND_ROOT_PRESET 1
 657#define ND_ROOT_GRABBED 2
 658#define ND_JUMPED 4
 659
 660static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 661{
 662	struct nameidata *old = current->nameidata;
 663	p->stack = p->internal;
 664	p->depth = 0;
 665	p->dfd = dfd;
 666	p->name = name;
 667	p->pathname = likely(name) ? name->name : "";
 668	p->path.mnt = NULL;
 669	p->path.dentry = NULL;
 670	p->total_link_count = old ? old->total_link_count : 0;
 671	p->saved = old;
 672	current->nameidata = p;
 673}
 674
 675static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
 676			  const struct path *root)
 677{
 678	__set_nameidata(p, dfd, name);
 679	p->state = 0;
 680	if (unlikely(root)) {
 681		p->state = ND_ROOT_PRESET;
 682		p->root = *root;
 683	}
 684}
 685
 686static void restore_nameidata(void)
 687{
 688	struct nameidata *now = current->nameidata, *old = now->saved;
 689
 690	current->nameidata = old;
 691	if (old)
 692		old->total_link_count = now->total_link_count;
 693	if (now->stack != now->internal)
 694		kfree(now->stack);
 695}
 696
 697static bool nd_alloc_stack(struct nameidata *nd)
 698{
 699	struct saved *p;
 700
 701	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 702			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
 703	if (unlikely(!p))
 704		return false;
 705	memcpy(p, nd->internal, sizeof(nd->internal));
 706	nd->stack = p;
 707	return true;
 708}
 709
 710/**
 711 * path_connected - Verify that a dentry is below mnt.mnt_root
 712 * @mnt: The mountpoint to check.
 713 * @dentry: The dentry to check.
 714 *
 715 * Rename can sometimes move a file or directory outside of a bind
 716 * mount, path_connected allows those cases to be detected.
 717 */
 718static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
 719{
 720	struct super_block *sb = mnt->mnt_sb;
 721
 722	/* Bind mounts can have disconnected paths */
 723	if (mnt->mnt_root == sb->s_root)
 724		return true;
 725
 726	return is_subdir(dentry, mnt->mnt_root);
 727}
 728
 729static void drop_links(struct nameidata *nd)
 730{
 731	int i = nd->depth;
 732	while (i--) {
 733		struct saved *last = nd->stack + i;
 734		do_delayed_call(&last->done);
 735		clear_delayed_call(&last->done);
 736	}
 737}
 738
 739static void leave_rcu(struct nameidata *nd)
 740{
 741	nd->flags &= ~LOOKUP_RCU;
 742	nd->seq = nd->next_seq = 0;
 743	rcu_read_unlock();
 744}
 745
 746static void terminate_walk(struct nameidata *nd)
 747{
 748	drop_links(nd);
 749	if (!(nd->flags & LOOKUP_RCU)) {
 750		int i;
 751		path_put(&nd->path);
 752		for (i = 0; i < nd->depth; i++)
 753			path_put(&nd->stack[i].link);
 754		if (nd->state & ND_ROOT_GRABBED) {
 755			path_put(&nd->root);
 756			nd->state &= ~ND_ROOT_GRABBED;
 757		}
 758	} else {
 759		leave_rcu(nd);
 760	}
 761	nd->depth = 0;
 762	nd->path.mnt = NULL;
 763	nd->path.dentry = NULL;
 764}
 765
 766/* path_put is needed afterwards regardless of success or failure */
 767static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
 768{
 769	int res = __legitimize_mnt(path->mnt, mseq);
 770	if (unlikely(res)) {
 771		if (res > 0)
 772			path->mnt = NULL;
 773		path->dentry = NULL;
 774		return false;
 775	}
 776	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 777		path->dentry = NULL;
 778		return false;
 779	}
 780	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 781}
 782
 783static inline bool legitimize_path(struct nameidata *nd,
 784			    struct path *path, unsigned seq)
 785{
 786	return __legitimize_path(path, seq, nd->m_seq);
 787}
 788
 789static bool legitimize_links(struct nameidata *nd)
 790{
 791	int i;
 792	if (unlikely(nd->flags & LOOKUP_CACHED)) {
 793		drop_links(nd);
 794		nd->depth = 0;
 795		return false;
 796	}
 797	for (i = 0; i < nd->depth; i++) {
 798		struct saved *last = nd->stack + i;
 799		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 800			drop_links(nd);
 801			nd->depth = i + 1;
 802			return false;
 803		}
 804	}
 805	return true;
 806}
 807
 808static bool legitimize_root(struct nameidata *nd)
 809{
 810	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
 811	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
 812		return true;
 813	nd->state |= ND_ROOT_GRABBED;
 814	return legitimize_path(nd, &nd->root, nd->root_seq);
 815}
 816
 817/*
 818 * Path walking has 2 modes, rcu-walk and ref-walk (see
 819 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 820 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 821 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 822 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 823 * got stuck, so ref-walk may continue from there. If this is not successful
 824 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 825 * to restart the path walk from the beginning in ref-walk mode.
 826 */
 827
 828/**
 829 * try_to_unlazy - try to switch to ref-walk mode.
 830 * @nd: nameidata pathwalk data
 831 * Returns: true on success, false on failure
 832 *
 833 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
 834 * for ref-walk mode.
 835 * Must be called from rcu-walk context.
 836 * Nothing should touch nameidata between try_to_unlazy() failure and
 837 * terminate_walk().
 838 */
 839static bool try_to_unlazy(struct nameidata *nd)
 840{
 841	struct dentry *parent = nd->path.dentry;
 842
 843	BUG_ON(!(nd->flags & LOOKUP_RCU));
 844
 845	if (unlikely(!legitimize_links(nd)))
 846		goto out1;
 847	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 848		goto out;
 849	if (unlikely(!legitimize_root(nd)))
 850		goto out;
 851	leave_rcu(nd);
 852	BUG_ON(nd->inode != parent->d_inode);
 853	return true;
 854
 855out1:
 856	nd->path.mnt = NULL;
 857	nd->path.dentry = NULL;
 858out:
 859	leave_rcu(nd);
 860	return false;
 861}
 862
 863/**
 864 * try_to_unlazy_next - try to switch to ref-walk mode.
 865 * @nd: nameidata pathwalk data
 866 * @dentry: next dentry to step into
 867 * Returns: true on success, false on failure
 868 *
 869 * Similar to try_to_unlazy(), but here we have the next dentry already
 870 * picked by rcu-walk and want to legitimize that in addition to the current
 871 * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
 872 * Nothing should touch nameidata between try_to_unlazy_next() failure and
 873 * terminate_walk().
 874 */
 875static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
 876{
 877	int res;
 878	BUG_ON(!(nd->flags & LOOKUP_RCU));
 879
 880	if (unlikely(!legitimize_links(nd)))
 881		goto out2;
 882	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
 883	if (unlikely(res)) {
 884		if (res > 0)
 885			goto out2;
 886		goto out1;
 887	}
 888	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 889		goto out1;
 890
 891	/*
 892	 * We need to move both the parent and the dentry from the RCU domain
 893	 * to be properly refcounted. And the sequence number in the dentry
 894	 * validates *both* dentry counters, since we checked the sequence
 895	 * number of the parent after we got the child sequence number. So we
 896	 * know the parent must still be valid if the child sequence number is
 897	 */
 898	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 899		goto out;
 900	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
 901		goto out_dput;
 902	/*
 903	 * Sequence counts matched. Now make sure that the root is
 904	 * still valid and get it if required.
 905	 */
 906	if (unlikely(!legitimize_root(nd)))
 907		goto out_dput;
 908	leave_rcu(nd);
 909	return true;
 910
 911out2:
 912	nd->path.mnt = NULL;
 913out1:
 914	nd->path.dentry = NULL;
 915out:
 916	leave_rcu(nd);
 917	return false;
 918out_dput:
 919	leave_rcu(nd);
 920	dput(dentry);
 921	return false;
 922}
 923
 924static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 925{
 926	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 927		return dentry->d_op->d_revalidate(dentry, flags);
 928	else
 929		return 1;
 930}
 931
 932/**
 933 * complete_walk - successful completion of path walk
 934 * @nd:  pointer nameidata
 935 *
 936 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 937 * Revalidate the final result, unless we'd already done that during
 938 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 939 * success, -error on failure.  In case of failure caller does not
 940 * need to drop nd->path.
 941 */
 942static int complete_walk(struct nameidata *nd)
 943{
 944	struct dentry *dentry = nd->path.dentry;
 945	int status;
 946
 947	if (nd->flags & LOOKUP_RCU) {
 948		/*
 949		 * We don't want to zero nd->root for scoped-lookups or
 950		 * externally-managed nd->root.
 951		 */
 952		if (!(nd->state & ND_ROOT_PRESET))
 953			if (!(nd->flags & LOOKUP_IS_SCOPED))
 954				nd->root.mnt = NULL;
 955		nd->flags &= ~LOOKUP_CACHED;
 956		if (!try_to_unlazy(nd))
 957			return -ECHILD;
 958	}
 959
 960	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
 961		/*
 962		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
 963		 * ever step outside the root during lookup" and should already
 964		 * be guaranteed by the rest of namei, we want to avoid a namei
 965		 * BUG resulting in userspace being given a path that was not
 966		 * scoped within the root at some point during the lookup.
 967		 *
 968		 * So, do a final sanity-check to make sure that in the
 969		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
 970		 * we won't silently return an fd completely outside of the
 971		 * requested root to userspace.
 972		 *
 973		 * Userspace could move the path outside the root after this
 974		 * check, but as discussed elsewhere this is not a concern (the
 975		 * resolved file was inside the root at some point).
 976		 */
 977		if (!path_is_under(&nd->path, &nd->root))
 978			return -EXDEV;
 979	}
 980
 981	if (likely(!(nd->state & ND_JUMPED)))
 982		return 0;
 983
 984	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 985		return 0;
 986
 987	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 988	if (status > 0)
 989		return 0;
 990
 991	if (!status)
 992		status = -ESTALE;
 993
 994	return status;
 995}
 996
 997static int set_root(struct nameidata *nd)
 998{
 999	struct fs_struct *fs = current->fs;
1000
1001	/*
1002	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1003	 * still have to ensure it doesn't happen because it will cause a breakout
1004	 * from the dirfd.
1005	 */
1006	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1007		return -ENOTRECOVERABLE;
1008
1009	if (nd->flags & LOOKUP_RCU) {
1010		unsigned seq;
1011
1012		do {
1013			seq = read_seqcount_begin(&fs->seq);
1014			nd->root = fs->root;
1015			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1016		} while (read_seqcount_retry(&fs->seq, seq));
1017	} else {
1018		get_fs_root(fs, &nd->root);
1019		nd->state |= ND_ROOT_GRABBED;
1020	}
1021	return 0;
1022}
1023
1024static int nd_jump_root(struct nameidata *nd)
1025{
1026	if (unlikely(nd->flags & LOOKUP_BENEATH))
1027		return -EXDEV;
1028	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1029		/* Absolute path arguments to path_init() are allowed. */
1030		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1031			return -EXDEV;
1032	}
1033	if (!nd->root.mnt) {
1034		int error = set_root(nd);
1035		if (error)
1036			return error;
1037	}
1038	if (nd->flags & LOOKUP_RCU) {
1039		struct dentry *d;
1040		nd->path = nd->root;
1041		d = nd->path.dentry;
1042		nd->inode = d->d_inode;
1043		nd->seq = nd->root_seq;
1044		if (read_seqcount_retry(&d->d_seq, nd->seq))
1045			return -ECHILD;
1046	} else {
1047		path_put(&nd->path);
1048		nd->path = nd->root;
1049		path_get(&nd->path);
1050		nd->inode = nd->path.dentry->d_inode;
1051	}
1052	nd->state |= ND_JUMPED;
1053	return 0;
1054}
1055
1056/*
1057 * Helper to directly jump to a known parsed path from ->get_link,
1058 * caller must have taken a reference to path beforehand.
1059 */
1060int nd_jump_link(const struct path *path)
1061{
1062	int error = -ELOOP;
1063	struct nameidata *nd = current->nameidata;
1064
1065	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1066		goto err;
1067
1068	error = -EXDEV;
1069	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1070		if (nd->path.mnt != path->mnt)
1071			goto err;
1072	}
1073	/* Not currently safe for scoped-lookups. */
1074	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1075		goto err;
1076
1077	path_put(&nd->path);
1078	nd->path = *path;
1079	nd->inode = nd->path.dentry->d_inode;
1080	nd->state |= ND_JUMPED;
1081	return 0;
1082
1083err:
1084	path_put(path);
1085	return error;
1086}
1087
1088static inline void put_link(struct nameidata *nd)
1089{
1090	struct saved *last = nd->stack + --nd->depth;
1091	do_delayed_call(&last->done);
1092	if (!(nd->flags & LOOKUP_RCU))
1093		path_put(&last->link);
1094}
1095
1096static int sysctl_protected_symlinks __read_mostly;
1097static int sysctl_protected_hardlinks __read_mostly;
1098static int sysctl_protected_fifos __read_mostly;
1099static int sysctl_protected_regular __read_mostly;
1100
1101#ifdef CONFIG_SYSCTL
1102static struct ctl_table namei_sysctls[] = {
1103	{
1104		.procname	= "protected_symlinks",
1105		.data		= &sysctl_protected_symlinks,
1106		.maxlen		= sizeof(int),
1107		.mode		= 0644,
1108		.proc_handler	= proc_dointvec_minmax,
1109		.extra1		= SYSCTL_ZERO,
1110		.extra2		= SYSCTL_ONE,
1111	},
1112	{
1113		.procname	= "protected_hardlinks",
1114		.data		= &sysctl_protected_hardlinks,
1115		.maxlen		= sizeof(int),
1116		.mode		= 0644,
1117		.proc_handler	= proc_dointvec_minmax,
1118		.extra1		= SYSCTL_ZERO,
1119		.extra2		= SYSCTL_ONE,
1120	},
1121	{
1122		.procname	= "protected_fifos",
1123		.data		= &sysctl_protected_fifos,
1124		.maxlen		= sizeof(int),
1125		.mode		= 0644,
1126		.proc_handler	= proc_dointvec_minmax,
1127		.extra1		= SYSCTL_ZERO,
1128		.extra2		= SYSCTL_TWO,
1129	},
1130	{
1131		.procname	= "protected_regular",
1132		.data		= &sysctl_protected_regular,
1133		.maxlen		= sizeof(int),
1134		.mode		= 0644,
1135		.proc_handler	= proc_dointvec_minmax,
1136		.extra1		= SYSCTL_ZERO,
1137		.extra2		= SYSCTL_TWO,
1138	},
1139};
1140
1141static int __init init_fs_namei_sysctls(void)
1142{
1143	register_sysctl_init("fs", namei_sysctls);
1144	return 0;
1145}
1146fs_initcall(init_fs_namei_sysctls);
1147
1148#endif /* CONFIG_SYSCTL */
1149
1150/**
1151 * may_follow_link - Check symlink following for unsafe situations
1152 * @nd: nameidata pathwalk data
1153 * @inode: Used for idmapping.
1154 *
1155 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1156 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1157 * in a sticky world-writable directory. This is to protect privileged
1158 * processes from failing races against path names that may change out
1159 * from under them by way of other users creating malicious symlinks.
1160 * It will permit symlinks to be followed only when outside a sticky
1161 * world-writable directory, or when the uid of the symlink and follower
1162 * match, or when the directory owner matches the symlink's owner.
1163 *
1164 * Returns 0 if following the symlink is allowed, -ve on error.
1165 */
1166static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1167{
1168	struct mnt_idmap *idmap;
1169	vfsuid_t vfsuid;
1170
1171	if (!sysctl_protected_symlinks)
1172		return 0;
1173
1174	idmap = mnt_idmap(nd->path.mnt);
1175	vfsuid = i_uid_into_vfsuid(idmap, inode);
1176	/* Allowed if owner and follower match. */
1177	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1178		return 0;
1179
1180	/* Allowed if parent directory not sticky and world-writable. */
1181	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1182		return 0;
1183
1184	/* Allowed if parent directory and link owner match. */
1185	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1186		return 0;
1187
1188	if (nd->flags & LOOKUP_RCU)
1189		return -ECHILD;
1190
1191	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1192	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1193	return -EACCES;
1194}
1195
1196/**
1197 * safe_hardlink_source - Check for safe hardlink conditions
1198 * @idmap: idmap of the mount the inode was found from
1199 * @inode: the source inode to hardlink from
1200 *
1201 * Return false if at least one of the following conditions:
1202 *    - inode is not a regular file
1203 *    - inode is setuid
1204 *    - inode is setgid and group-exec
1205 *    - access failure for read and write
1206 *
1207 * Otherwise returns true.
1208 */
1209static bool safe_hardlink_source(struct mnt_idmap *idmap,
1210				 struct inode *inode)
1211{
1212	umode_t mode = inode->i_mode;
1213
1214	/* Special files should not get pinned to the filesystem. */
1215	if (!S_ISREG(mode))
1216		return false;
1217
1218	/* Setuid files should not get pinned to the filesystem. */
1219	if (mode & S_ISUID)
1220		return false;
1221
1222	/* Executable setgid files should not get pinned to the filesystem. */
1223	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1224		return false;
1225
1226	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1227	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1228		return false;
1229
1230	return true;
1231}
1232
1233/**
1234 * may_linkat - Check permissions for creating a hardlink
1235 * @idmap: idmap of the mount the inode was found from
1236 * @link:  the source to hardlink from
1237 *
1238 * Block hardlink when all of:
1239 *  - sysctl_protected_hardlinks enabled
1240 *  - fsuid does not match inode
1241 *  - hardlink source is unsafe (see safe_hardlink_source() above)
1242 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1243 *
1244 * If the inode has been found through an idmapped mount the idmap of
1245 * the vfsmount must be passed through @idmap. This function will then take
1246 * care to map the inode according to @idmap before checking permissions.
1247 * On non-idmapped mounts or if permission checking is to be performed on the
1248 * raw inode simply pass @nop_mnt_idmap.
1249 *
1250 * Returns 0 if successful, -ve on error.
1251 */
1252int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1253{
1254	struct inode *inode = link->dentry->d_inode;
1255
1256	/* Inode writeback is not safe when the uid or gid are invalid. */
1257	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1258	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1259		return -EOVERFLOW;
1260
1261	if (!sysctl_protected_hardlinks)
1262		return 0;
1263
1264	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1265	 * otherwise, it must be a safe source.
1266	 */
1267	if (safe_hardlink_source(idmap, inode) ||
1268	    inode_owner_or_capable(idmap, inode))
1269		return 0;
1270
1271	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1272	return -EPERM;
1273}
1274
1275/**
1276 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1277 *			  should be allowed, or not, on files that already
1278 *			  exist.
1279 * @idmap: idmap of the mount the inode was found from
1280 * @nd: nameidata pathwalk data
1281 * @inode: the inode of the file to open
1282 *
1283 * Block an O_CREAT open of a FIFO (or a regular file) when:
1284 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1285 *   - the file already exists
1286 *   - we are in a sticky directory
1287 *   - we don't own the file
1288 *   - the owner of the directory doesn't own the file
1289 *   - the directory is world writable
1290 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1291 * the directory doesn't have to be world writable: being group writable will
1292 * be enough.
1293 *
1294 * If the inode has been found through an idmapped mount the idmap of
1295 * the vfsmount must be passed through @idmap. This function will then take
1296 * care to map the inode according to @idmap before checking permissions.
1297 * On non-idmapped mounts or if permission checking is to be performed on the
1298 * raw inode simply pass @nop_mnt_idmap.
1299 *
1300 * Returns 0 if the open is allowed, -ve on error.
1301 */
1302static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1303				struct inode *const inode)
1304{
1305	umode_t dir_mode = nd->dir_mode;
1306	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1307
1308	if (likely(!(dir_mode & S_ISVTX)))
1309		return 0;
1310
1311	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1312		return 0;
1313
1314	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1315		return 0;
1316
1317	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1318
1319	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1320		return 0;
1321
1322	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1323		return 0;
1324
1325	if (likely(dir_mode & 0002)) {
1326		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1327		return -EACCES;
1328	}
1329
1330	if (dir_mode & 0020) {
1331		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1332			audit_log_path_denied(AUDIT_ANOM_CREAT,
1333					      "sticky_create_fifo");
1334			return -EACCES;
1335		}
1336
1337		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1338			audit_log_path_denied(AUDIT_ANOM_CREAT,
1339					      "sticky_create_regular");
1340			return -EACCES;
1341		}
1342	}
1343
1344	return 0;
1345}
1346
1347/*
1348 * follow_up - Find the mountpoint of path's vfsmount
1349 *
1350 * Given a path, find the mountpoint of its source file system.
1351 * Replace @path with the path of the mountpoint in the parent mount.
1352 * Up is towards /.
1353 *
1354 * Return 1 if we went up a level and 0 if we were already at the
1355 * root.
1356 */
1357int follow_up(struct path *path)
1358{
1359	struct mount *mnt = real_mount(path->mnt);
1360	struct mount *parent;
1361	struct dentry *mountpoint;
1362
1363	read_seqlock_excl(&mount_lock);
1364	parent = mnt->mnt_parent;
1365	if (parent == mnt) {
1366		read_sequnlock_excl(&mount_lock);
1367		return 0;
1368	}
1369	mntget(&parent->mnt);
1370	mountpoint = dget(mnt->mnt_mountpoint);
1371	read_sequnlock_excl(&mount_lock);
1372	dput(path->dentry);
1373	path->dentry = mountpoint;
1374	mntput(path->mnt);
1375	path->mnt = &parent->mnt;
1376	return 1;
1377}
1378EXPORT_SYMBOL(follow_up);
1379
1380static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1381				  struct path *path, unsigned *seqp)
1382{
1383	while (mnt_has_parent(m)) {
1384		struct dentry *mountpoint = m->mnt_mountpoint;
1385
1386		m = m->mnt_parent;
1387		if (unlikely(root->dentry == mountpoint &&
1388			     root->mnt == &m->mnt))
1389			break;
1390		if (mountpoint != m->mnt.mnt_root) {
1391			path->mnt = &m->mnt;
1392			path->dentry = mountpoint;
1393			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1394			return true;
1395		}
1396	}
1397	return false;
1398}
1399
1400static bool choose_mountpoint(struct mount *m, const struct path *root,
1401			      struct path *path)
1402{
1403	bool found;
1404
1405	rcu_read_lock();
1406	while (1) {
1407		unsigned seq, mseq = read_seqbegin(&mount_lock);
1408
1409		found = choose_mountpoint_rcu(m, root, path, &seq);
1410		if (unlikely(!found)) {
1411			if (!read_seqretry(&mount_lock, mseq))
1412				break;
1413		} else {
1414			if (likely(__legitimize_path(path, seq, mseq)))
1415				break;
1416			rcu_read_unlock();
1417			path_put(path);
1418			rcu_read_lock();
1419		}
1420	}
1421	rcu_read_unlock();
1422	return found;
1423}
1424
1425/*
1426 * Perform an automount
1427 * - return -EISDIR to tell follow_managed() to stop and return the path we
1428 *   were called with.
1429 */
1430static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1431{
1432	struct dentry *dentry = path->dentry;
1433
1434	/* We don't want to mount if someone's just doing a stat -
1435	 * unless they're stat'ing a directory and appended a '/' to
1436	 * the name.
1437	 *
1438	 * We do, however, want to mount if someone wants to open or
1439	 * create a file of any type under the mountpoint, wants to
1440	 * traverse through the mountpoint or wants to open the
1441	 * mounted directory.  Also, autofs may mark negative dentries
1442	 * as being automount points.  These will need the attentions
1443	 * of the daemon to instantiate them before they can be used.
1444	 */
1445	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1446			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1447	    dentry->d_inode)
1448		return -EISDIR;
1449
1450	if (count && (*count)++ >= MAXSYMLINKS)
1451		return -ELOOP;
1452
1453	return finish_automount(dentry->d_op->d_automount(path), path);
1454}
1455
1456/*
1457 * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1458 * dentries are pinned but not locked here, so negative dentry can go
1459 * positive right under us.  Use of smp_load_acquire() provides a barrier
1460 * sufficient for ->d_inode and ->d_flags consistency.
1461 */
1462static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1463			     int *count, unsigned lookup_flags)
1464{
1465	struct vfsmount *mnt = path->mnt;
1466	bool need_mntput = false;
1467	int ret = 0;
1468
1469	while (flags & DCACHE_MANAGED_DENTRY) {
1470		/* Allow the filesystem to manage the transit without i_mutex
1471		 * being held. */
1472		if (flags & DCACHE_MANAGE_TRANSIT) {
1473			ret = path->dentry->d_op->d_manage(path, false);
1474			flags = smp_load_acquire(&path->dentry->d_flags);
1475			if (ret < 0)
1476				break;
1477		}
1478
1479		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1480			struct vfsmount *mounted = lookup_mnt(path);
1481			if (mounted) {		// ... in our namespace
1482				dput(path->dentry);
1483				if (need_mntput)
1484					mntput(path->mnt);
1485				path->mnt = mounted;
1486				path->dentry = dget(mounted->mnt_root);
1487				// here we know it's positive
1488				flags = path->dentry->d_flags;
1489				need_mntput = true;
1490				continue;
1491			}
1492		}
1493
1494		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1495			break;
1496
1497		// uncovered automount point
1498		ret = follow_automount(path, count, lookup_flags);
1499		flags = smp_load_acquire(&path->dentry->d_flags);
1500		if (ret < 0)
1501			break;
1502	}
1503
1504	if (ret == -EISDIR)
1505		ret = 0;
1506	// possible if you race with several mount --move
1507	if (need_mntput && path->mnt == mnt)
1508		mntput(path->mnt);
1509	if (!ret && unlikely(d_flags_negative(flags)))
1510		ret = -ENOENT;
1511	*jumped = need_mntput;
1512	return ret;
1513}
1514
1515static inline int traverse_mounts(struct path *path, bool *jumped,
1516				  int *count, unsigned lookup_flags)
1517{
1518	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1519
1520	/* fastpath */
1521	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1522		*jumped = false;
1523		if (unlikely(d_flags_negative(flags)))
1524			return -ENOENT;
1525		return 0;
1526	}
1527	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1528}
1529
1530int follow_down_one(struct path *path)
1531{
1532	struct vfsmount *mounted;
1533
1534	mounted = lookup_mnt(path);
1535	if (mounted) {
1536		dput(path->dentry);
1537		mntput(path->mnt);
1538		path->mnt = mounted;
1539		path->dentry = dget(mounted->mnt_root);
1540		return 1;
1541	}
1542	return 0;
1543}
1544EXPORT_SYMBOL(follow_down_one);
1545
1546/*
1547 * Follow down to the covering mount currently visible to userspace.  At each
1548 * point, the filesystem owning that dentry may be queried as to whether the
1549 * caller is permitted to proceed or not.
1550 */
1551int follow_down(struct path *path, unsigned int flags)
1552{
1553	struct vfsmount *mnt = path->mnt;
1554	bool jumped;
1555	int ret = traverse_mounts(path, &jumped, NULL, flags);
1556
1557	if (path->mnt != mnt)
1558		mntput(mnt);
1559	return ret;
1560}
1561EXPORT_SYMBOL(follow_down);
1562
1563/*
1564 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1565 * we meet a managed dentry that would need blocking.
1566 */
1567static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1568{
1569	struct dentry *dentry = path->dentry;
1570	unsigned int flags = dentry->d_flags;
1571
1572	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1573		return true;
1574
1575	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1576		return false;
1577
1578	for (;;) {
1579		/*
1580		 * Don't forget we might have a non-mountpoint managed dentry
1581		 * that wants to block transit.
1582		 */
1583		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1584			int res = dentry->d_op->d_manage(path, true);
1585			if (res)
1586				return res == -EISDIR;
1587			flags = dentry->d_flags;
1588		}
1589
1590		if (flags & DCACHE_MOUNTED) {
1591			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1592			if (mounted) {
1593				path->mnt = &mounted->mnt;
1594				dentry = path->dentry = mounted->mnt.mnt_root;
1595				nd->state |= ND_JUMPED;
1596				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1597				flags = dentry->d_flags;
1598				// makes sure that non-RCU pathwalk could reach
1599				// this state.
1600				if (read_seqretry(&mount_lock, nd->m_seq))
1601					return false;
1602				continue;
1603			}
1604			if (read_seqretry(&mount_lock, nd->m_seq))
1605				return false;
1606		}
1607		return !(flags & DCACHE_NEED_AUTOMOUNT);
1608	}
1609}
1610
1611static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1612			  struct path *path)
1613{
1614	bool jumped;
1615	int ret;
1616
1617	path->mnt = nd->path.mnt;
1618	path->dentry = dentry;
1619	if (nd->flags & LOOKUP_RCU) {
1620		unsigned int seq = nd->next_seq;
1621		if (likely(__follow_mount_rcu(nd, path)))
1622			return 0;
1623		// *path and nd->next_seq might've been clobbered
1624		path->mnt = nd->path.mnt;
1625		path->dentry = dentry;
1626		nd->next_seq = seq;
1627		if (!try_to_unlazy_next(nd, dentry))
1628			return -ECHILD;
1629	}
1630	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1631	if (jumped) {
1632		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1633			ret = -EXDEV;
1634		else
1635			nd->state |= ND_JUMPED;
1636	}
1637	if (unlikely(ret)) {
1638		dput(path->dentry);
1639		if (path->mnt != nd->path.mnt)
1640			mntput(path->mnt);
1641	}
1642	return ret;
1643}
1644
1645/*
1646 * This looks up the name in dcache and possibly revalidates the found dentry.
1647 * NULL is returned if the dentry does not exist in the cache.
1648 */
1649static struct dentry *lookup_dcache(const struct qstr *name,
1650				    struct dentry *dir,
1651				    unsigned int flags)
1652{
1653	struct dentry *dentry = d_lookup(dir, name);
1654	if (dentry) {
1655		int error = d_revalidate(dentry, flags);
1656		if (unlikely(error <= 0)) {
1657			if (!error)
1658				d_invalidate(dentry);
1659			dput(dentry);
1660			return ERR_PTR(error);
1661		}
1662	}
1663	return dentry;
1664}
1665
1666/*
1667 * Parent directory has inode locked exclusive.  This is one
1668 * and only case when ->lookup() gets called on non in-lookup
1669 * dentries - as the matter of fact, this only gets called
1670 * when directory is guaranteed to have no in-lookup children
1671 * at all.
1672 */
1673struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1674				    struct dentry *base,
1675				    unsigned int flags)
1676{
1677	struct dentry *dentry = lookup_dcache(name, base, flags);
1678	struct dentry *old;
1679	struct inode *dir = base->d_inode;
1680
1681	if (dentry)
1682		return dentry;
1683
1684	/* Don't create child dentry for a dead directory. */
1685	if (unlikely(IS_DEADDIR(dir)))
1686		return ERR_PTR(-ENOENT);
1687
1688	dentry = d_alloc(base, name);
1689	if (unlikely(!dentry))
1690		return ERR_PTR(-ENOMEM);
1691
1692	old = dir->i_op->lookup(dir, dentry, flags);
1693	if (unlikely(old)) {
1694		dput(dentry);
1695		dentry = old;
1696	}
1697	return dentry;
1698}
1699EXPORT_SYMBOL(lookup_one_qstr_excl);
1700
1701/**
1702 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1703 * @nd: current nameidata
1704 *
1705 * Do a fast, but racy lookup in the dcache for the given dentry, and
1706 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1707 * found. On error, an ERR_PTR will be returned.
1708 *
1709 * If this function returns a valid dentry and the walk is no longer
1710 * lazy, the dentry will carry a reference that must later be put. If
1711 * RCU mode is still in force, then this is not the case and the dentry
1712 * must be legitimized before use. If this returns NULL, then the walk
1713 * will no longer be in RCU mode.
1714 */
1715static struct dentry *lookup_fast(struct nameidata *nd)
1716{
1717	struct dentry *dentry, *parent = nd->path.dentry;
1718	int status = 1;
1719
1720	/*
1721	 * Rename seqlock is not required here because in the off chance
1722	 * of a false negative due to a concurrent rename, the caller is
1723	 * going to fall back to non-racy lookup.
1724	 */
1725	if (nd->flags & LOOKUP_RCU) {
1726		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1727		if (unlikely(!dentry)) {
1728			if (!try_to_unlazy(nd))
1729				return ERR_PTR(-ECHILD);
1730			return NULL;
1731		}
1732
1733		/*
1734		 * This sequence count validates that the parent had no
1735		 * changes while we did the lookup of the dentry above.
1736		 */
1737		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1738			return ERR_PTR(-ECHILD);
1739
1740		status = d_revalidate(dentry, nd->flags);
1741		if (likely(status > 0))
1742			return dentry;
1743		if (!try_to_unlazy_next(nd, dentry))
1744			return ERR_PTR(-ECHILD);
1745		if (status == -ECHILD)
1746			/* we'd been told to redo it in non-rcu mode */
1747			status = d_revalidate(dentry, nd->flags);
1748	} else {
1749		dentry = __d_lookup(parent, &nd->last);
1750		if (unlikely(!dentry))
1751			return NULL;
1752		status = d_revalidate(dentry, nd->flags);
1753	}
1754	if (unlikely(status <= 0)) {
1755		if (!status)
1756			d_invalidate(dentry);
1757		dput(dentry);
1758		return ERR_PTR(status);
1759	}
1760	return dentry;
1761}
1762
1763/* Fast lookup failed, do it the slow way */
1764static struct dentry *__lookup_slow(const struct qstr *name,
1765				    struct dentry *dir,
1766				    unsigned int flags)
1767{
1768	struct dentry *dentry, *old;
1769	struct inode *inode = dir->d_inode;
1770	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1771
1772	/* Don't go there if it's already dead */
1773	if (unlikely(IS_DEADDIR(inode)))
1774		return ERR_PTR(-ENOENT);
1775again:
1776	dentry = d_alloc_parallel(dir, name, &wq);
1777	if (IS_ERR(dentry))
1778		return dentry;
1779	if (unlikely(!d_in_lookup(dentry))) {
1780		int error = d_revalidate(dentry, flags);
1781		if (unlikely(error <= 0)) {
1782			if (!error) {
1783				d_invalidate(dentry);
1784				dput(dentry);
1785				goto again;
1786			}
1787			dput(dentry);
1788			dentry = ERR_PTR(error);
1789		}
1790	} else {
1791		old = inode->i_op->lookup(inode, dentry, flags);
1792		d_lookup_done(dentry);
1793		if (unlikely(old)) {
1794			dput(dentry);
1795			dentry = old;
1796		}
1797	}
1798	return dentry;
1799}
1800
1801static struct dentry *lookup_slow(const struct qstr *name,
1802				  struct dentry *dir,
1803				  unsigned int flags)
1804{
1805	struct inode *inode = dir->d_inode;
1806	struct dentry *res;
1807	inode_lock_shared(inode);
1808	res = __lookup_slow(name, dir, flags);
1809	inode_unlock_shared(inode);
1810	return res;
1811}
1812
1813static inline int may_lookup(struct mnt_idmap *idmap,
1814			     struct nameidata *restrict nd)
1815{
1816	int err, mask;
1817
1818	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1819	err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1820	if (likely(!err))
1821		return 0;
1822
1823	// If we failed, and we weren't in LOOKUP_RCU, it's final
1824	if (!(nd->flags & LOOKUP_RCU))
1825		return err;
1826
1827	// Drop out of RCU mode to make sure it wasn't transient
1828	if (!try_to_unlazy(nd))
1829		return -ECHILD;	// redo it all non-lazy
1830
1831	if (err != -ECHILD)	// hard error
1832		return err;
1833
1834	return inode_permission(idmap, nd->inode, MAY_EXEC);
1835}
1836
1837static int reserve_stack(struct nameidata *nd, struct path *link)
1838{
1839	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1840		return -ELOOP;
1841
1842	if (likely(nd->depth != EMBEDDED_LEVELS))
1843		return 0;
1844	if (likely(nd->stack != nd->internal))
1845		return 0;
1846	if (likely(nd_alloc_stack(nd)))
1847		return 0;
1848
1849	if (nd->flags & LOOKUP_RCU) {
1850		// we need to grab link before we do unlazy.  And we can't skip
1851		// unlazy even if we fail to grab the link - cleanup needs it
1852		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1853
1854		if (!try_to_unlazy(nd) || !grabbed_link)
1855			return -ECHILD;
1856
1857		if (nd_alloc_stack(nd))
1858			return 0;
1859	}
1860	return -ENOMEM;
1861}
1862
1863enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1864
1865static const char *pick_link(struct nameidata *nd, struct path *link,
1866		     struct inode *inode, int flags)
1867{
1868	struct saved *last;
1869	const char *res;
1870	int error = reserve_stack(nd, link);
1871
1872	if (unlikely(error)) {
1873		if (!(nd->flags & LOOKUP_RCU))
1874			path_put(link);
1875		return ERR_PTR(error);
1876	}
1877	last = nd->stack + nd->depth++;
1878	last->link = *link;
1879	clear_delayed_call(&last->done);
1880	last->seq = nd->next_seq;
1881
1882	if (flags & WALK_TRAILING) {
1883		error = may_follow_link(nd, inode);
1884		if (unlikely(error))
1885			return ERR_PTR(error);
1886	}
1887
1888	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1889			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1890		return ERR_PTR(-ELOOP);
1891
1892	if (!(nd->flags & LOOKUP_RCU)) {
1893		touch_atime(&last->link);
1894		cond_resched();
1895	} else if (atime_needs_update(&last->link, inode)) {
1896		if (!try_to_unlazy(nd))
1897			return ERR_PTR(-ECHILD);
1898		touch_atime(&last->link);
1899	}
1900
1901	error = security_inode_follow_link(link->dentry, inode,
1902					   nd->flags & LOOKUP_RCU);
1903	if (unlikely(error))
1904		return ERR_PTR(error);
1905
1906	res = READ_ONCE(inode->i_link);
1907	if (!res) {
1908		const char * (*get)(struct dentry *, struct inode *,
1909				struct delayed_call *);
1910		get = inode->i_op->get_link;
1911		if (nd->flags & LOOKUP_RCU) {
1912			res = get(NULL, inode, &last->done);
1913			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1914				res = get(link->dentry, inode, &last->done);
1915		} else {
1916			res = get(link->dentry, inode, &last->done);
1917		}
1918		if (!res)
1919			goto all_done;
1920		if (IS_ERR(res))
1921			return res;
1922	}
1923	if (*res == '/') {
1924		error = nd_jump_root(nd);
1925		if (unlikely(error))
1926			return ERR_PTR(error);
1927		while (unlikely(*++res == '/'))
1928			;
1929	}
1930	if (*res)
1931		return res;
1932all_done: // pure jump
1933	put_link(nd);
1934	return NULL;
1935}
1936
1937/*
1938 * Do we need to follow links? We _really_ want to be able
1939 * to do this check without having to look at inode->i_op,
1940 * so we keep a cache of "no, this doesn't need follow_link"
1941 * for the common case.
1942 *
1943 * NOTE: dentry must be what nd->next_seq had been sampled from.
1944 */
1945static const char *step_into(struct nameidata *nd, int flags,
1946		     struct dentry *dentry)
1947{
1948	struct path path;
1949	struct inode *inode;
1950	int err = handle_mounts(nd, dentry, &path);
1951
1952	if (err < 0)
1953		return ERR_PTR(err);
1954	inode = path.dentry->d_inode;
1955	if (likely(!d_is_symlink(path.dentry)) ||
1956	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1957	   (flags & WALK_NOFOLLOW)) {
1958		/* not a symlink or should not follow */
1959		if (nd->flags & LOOKUP_RCU) {
1960			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1961				return ERR_PTR(-ECHILD);
1962			if (unlikely(!inode))
1963				return ERR_PTR(-ENOENT);
1964		} else {
1965			dput(nd->path.dentry);
1966			if (nd->path.mnt != path.mnt)
1967				mntput(nd->path.mnt);
1968		}
1969		nd->path = path;
1970		nd->inode = inode;
1971		nd->seq = nd->next_seq;
1972		return NULL;
1973	}
1974	if (nd->flags & LOOKUP_RCU) {
1975		/* make sure that d_is_symlink above matches inode */
1976		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1977			return ERR_PTR(-ECHILD);
1978	} else {
1979		if (path.mnt == nd->path.mnt)
1980			mntget(path.mnt);
1981	}
1982	return pick_link(nd, &path, inode, flags);
1983}
1984
1985static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1986{
1987	struct dentry *parent, *old;
1988
1989	if (path_equal(&nd->path, &nd->root))
1990		goto in_root;
1991	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1992		struct path path;
1993		unsigned seq;
1994		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1995					   &nd->root, &path, &seq))
1996			goto in_root;
1997		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1998			return ERR_PTR(-ECHILD);
1999		nd->path = path;
2000		nd->inode = path.dentry->d_inode;
2001		nd->seq = seq;
2002		// makes sure that non-RCU pathwalk could reach this state
2003		if (read_seqretry(&mount_lock, nd->m_seq))
2004			return ERR_PTR(-ECHILD);
2005		/* we know that mountpoint was pinned */
2006	}
2007	old = nd->path.dentry;
2008	parent = old->d_parent;
2009	nd->next_seq = read_seqcount_begin(&parent->d_seq);
2010	// makes sure that non-RCU pathwalk could reach this state
2011	if (read_seqcount_retry(&old->d_seq, nd->seq))
2012		return ERR_PTR(-ECHILD);
2013	if (unlikely(!path_connected(nd->path.mnt, parent)))
2014		return ERR_PTR(-ECHILD);
2015	return parent;
2016in_root:
2017	if (read_seqretry(&mount_lock, nd->m_seq))
2018		return ERR_PTR(-ECHILD);
2019	if (unlikely(nd->flags & LOOKUP_BENEATH))
2020		return ERR_PTR(-ECHILD);
2021	nd->next_seq = nd->seq;
2022	return nd->path.dentry;
2023}
2024
2025static struct dentry *follow_dotdot(struct nameidata *nd)
2026{
2027	struct dentry *parent;
2028
2029	if (path_equal(&nd->path, &nd->root))
2030		goto in_root;
2031	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2032		struct path path;
2033
2034		if (!choose_mountpoint(real_mount(nd->path.mnt),
2035				       &nd->root, &path))
2036			goto in_root;
2037		path_put(&nd->path);
2038		nd->path = path;
2039		nd->inode = path.dentry->d_inode;
2040		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2041			return ERR_PTR(-EXDEV);
2042	}
2043	/* rare case of legitimate dget_parent()... */
2044	parent = dget_parent(nd->path.dentry);
2045	if (unlikely(!path_connected(nd->path.mnt, parent))) {
2046		dput(parent);
2047		return ERR_PTR(-ENOENT);
2048	}
2049	return parent;
2050
2051in_root:
2052	if (unlikely(nd->flags & LOOKUP_BENEATH))
2053		return ERR_PTR(-EXDEV);
2054	return dget(nd->path.dentry);
2055}
2056
2057static const char *handle_dots(struct nameidata *nd, int type)
2058{
2059	if (type == LAST_DOTDOT) {
2060		const char *error = NULL;
2061		struct dentry *parent;
2062
2063		if (!nd->root.mnt) {
2064			error = ERR_PTR(set_root(nd));
2065			if (error)
2066				return error;
2067		}
2068		if (nd->flags & LOOKUP_RCU)
2069			parent = follow_dotdot_rcu(nd);
2070		else
2071			parent = follow_dotdot(nd);
2072		if (IS_ERR(parent))
2073			return ERR_CAST(parent);
2074		error = step_into(nd, WALK_NOFOLLOW, parent);
2075		if (unlikely(error))
2076			return error;
2077
2078		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2079			/*
2080			 * If there was a racing rename or mount along our
2081			 * path, then we can't be sure that ".." hasn't jumped
2082			 * above nd->root (and so userspace should retry or use
2083			 * some fallback).
2084			 */
2085			smp_rmb();
2086			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2087				return ERR_PTR(-EAGAIN);
2088			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2089				return ERR_PTR(-EAGAIN);
2090		}
2091	}
2092	return NULL;
2093}
2094
2095static const char *walk_component(struct nameidata *nd, int flags)
2096{
2097	struct dentry *dentry;
2098	/*
2099	 * "." and ".." are special - ".." especially so because it has
2100	 * to be able to know about the current root directory and
2101	 * parent relationships.
2102	 */
2103	if (unlikely(nd->last_type != LAST_NORM)) {
2104		if (!(flags & WALK_MORE) && nd->depth)
2105			put_link(nd);
2106		return handle_dots(nd, nd->last_type);
2107	}
2108	dentry = lookup_fast(nd);
2109	if (IS_ERR(dentry))
2110		return ERR_CAST(dentry);
2111	if (unlikely(!dentry)) {
2112		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2113		if (IS_ERR(dentry))
2114			return ERR_CAST(dentry);
2115	}
2116	if (!(flags & WALK_MORE) && nd->depth)
2117		put_link(nd);
2118	return step_into(nd, flags, dentry);
2119}
2120
2121/*
2122 * We can do the critical dentry name comparison and hashing
2123 * operations one word at a time, but we are limited to:
2124 *
2125 * - Architectures with fast unaligned word accesses. We could
2126 *   do a "get_unaligned()" if this helps and is sufficiently
2127 *   fast.
2128 *
2129 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2130 *   do not trap on the (extremely unlikely) case of a page
2131 *   crossing operation.
2132 *
2133 * - Furthermore, we need an efficient 64-bit compile for the
2134 *   64-bit case in order to generate the "number of bytes in
2135 *   the final mask". Again, that could be replaced with a
2136 *   efficient population count instruction or similar.
2137 */
2138#ifdef CONFIG_DCACHE_WORD_ACCESS
2139
2140#include <asm/word-at-a-time.h>
2141
2142#ifdef HASH_MIX
2143
2144/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2145
2146#elif defined(CONFIG_64BIT)
2147/*
2148 * Register pressure in the mixing function is an issue, particularly
2149 * on 32-bit x86, but almost any function requires one state value and
2150 * one temporary.  Instead, use a function designed for two state values
2151 * and no temporaries.
2152 *
2153 * This function cannot create a collision in only two iterations, so
2154 * we have two iterations to achieve avalanche.  In those two iterations,
2155 * we have six layers of mixing, which is enough to spread one bit's
2156 * influence out to 2^6 = 64 state bits.
2157 *
2158 * Rotate constants are scored by considering either 64 one-bit input
2159 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2160 * probability of that delta causing a change to each of the 128 output
2161 * bits, using a sample of random initial states.
2162 *
2163 * The Shannon entropy of the computed probabilities is then summed
2164 * to produce a score.  Ideally, any input change has a 50% chance of
2165 * toggling any given output bit.
2166 *
2167 * Mixing scores (in bits) for (12,45):
2168 * Input delta: 1-bit      2-bit
2169 * 1 round:     713.3    42542.6
2170 * 2 rounds:   2753.7   140389.8
2171 * 3 rounds:   5954.1   233458.2
2172 * 4 rounds:   7862.6   256672.2
2173 * Perfect:    8192     258048
2174 *            (64*128) (64*63/2 * 128)
2175 */
2176#define HASH_MIX(x, y, a)	\
2177	(	x ^= (a),	\
2178	y ^= x,	x = rol64(x,12),\
2179	x += y,	y = rol64(y,45),\
2180	y *= 9			)
2181
2182/*
2183 * Fold two longs into one 32-bit hash value.  This must be fast, but
2184 * latency isn't quite as critical, as there is a fair bit of additional
2185 * work done before the hash value is used.
2186 */
2187static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2188{
2189	y ^= x * GOLDEN_RATIO_64;
2190	y *= GOLDEN_RATIO_64;
2191	return y >> 32;
2192}
2193
2194#else	/* 32-bit case */
2195
2196/*
2197 * Mixing scores (in bits) for (7,20):
2198 * Input delta: 1-bit      2-bit
2199 * 1 round:     330.3     9201.6
2200 * 2 rounds:   1246.4    25475.4
2201 * 3 rounds:   1907.1    31295.1
2202 * 4 rounds:   2042.3    31718.6
2203 * Perfect:    2048      31744
2204 *            (32*64)   (32*31/2 * 64)
2205 */
2206#define HASH_MIX(x, y, a)	\
2207	(	x ^= (a),	\
2208	y ^= x,	x = rol32(x, 7),\
2209	x += y,	y = rol32(y,20),\
2210	y *= 9			)
2211
2212static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2213{
2214	/* Use arch-optimized multiply if one exists */
2215	return __hash_32(y ^ __hash_32(x));
2216}
2217
2218#endif
2219
2220/*
2221 * Return the hash of a string of known length.  This is carfully
2222 * designed to match hash_name(), which is the more critical function.
2223 * In particular, we must end by hashing a final word containing 0..7
2224 * payload bytes, to match the way that hash_name() iterates until it
2225 * finds the delimiter after the name.
2226 */
2227unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2228{
2229	unsigned long a, x = 0, y = (unsigned long)salt;
2230
2231	for (;;) {
2232		if (!len)
2233			goto done;
2234		a = load_unaligned_zeropad(name);
2235		if (len < sizeof(unsigned long))
2236			break;
2237		HASH_MIX(x, y, a);
2238		name += sizeof(unsigned long);
2239		len -= sizeof(unsigned long);
2240	}
2241	x ^= a & bytemask_from_count(len);
2242done:
2243	return fold_hash(x, y);
2244}
2245EXPORT_SYMBOL(full_name_hash);
2246
2247/* Return the "hash_len" (hash and length) of a null-terminated string */
2248u64 hashlen_string(const void *salt, const char *name)
2249{
2250	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2251	unsigned long adata, mask, len;
2252	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2253
2254	len = 0;
2255	goto inside;
2256
2257	do {
2258		HASH_MIX(x, y, a);
2259		len += sizeof(unsigned long);
2260inside:
2261		a = load_unaligned_zeropad(name+len);
2262	} while (!has_zero(a, &adata, &constants));
2263
2264	adata = prep_zero_mask(a, adata, &constants);
2265	mask = create_zero_mask(adata);
2266	x ^= a & zero_bytemask(mask);
2267
2268	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2269}
2270EXPORT_SYMBOL(hashlen_string);
2271
2272/*
2273 * Calculate the length and hash of the path component, and
2274 * return the length as the result.
2275 */
2276static inline const char *hash_name(struct nameidata *nd,
2277				    const char *name,
2278				    unsigned long *lastword)
2279{
2280	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2281	unsigned long adata, bdata, mask, len;
2282	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2283
2284	/*
2285	 * The first iteration is special, because it can result in
2286	 * '.' and '..' and has no mixing other than the final fold.
2287	 */
2288	a = load_unaligned_zeropad(name);
2289	b = a ^ REPEAT_BYTE('/');
2290	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2291		adata = prep_zero_mask(a, adata, &constants);
2292		bdata = prep_zero_mask(b, bdata, &constants);
2293		mask = create_zero_mask(adata | bdata);
2294		a &= zero_bytemask(mask);
2295		*lastword = a;
2296		len = find_zero(mask);
2297		nd->last.hash = fold_hash(a, y);
2298		nd->last.len = len;
2299		return name + len;
2300	}
2301
2302	len = 0;
2303	x = 0;
2304	do {
2305		HASH_MIX(x, y, a);
2306		len += sizeof(unsigned long);
2307		a = load_unaligned_zeropad(name+len);
2308		b = a ^ REPEAT_BYTE('/');
2309	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2310
2311	adata = prep_zero_mask(a, adata, &constants);
2312	bdata = prep_zero_mask(b, bdata, &constants);
2313	mask = create_zero_mask(adata | bdata);
2314	a &= zero_bytemask(mask);
2315	x ^= a;
2316	len += find_zero(mask);
2317	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2318
2319	nd->last.hash = fold_hash(x, y);
2320	nd->last.len = len;
2321	return name + len;
2322}
2323
2324/*
2325 * Note that the 'last' word is always zero-masked, but
2326 * was loaded as a possibly big-endian word.
2327 */
2328#ifdef __BIG_ENDIAN
2329  #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2330  #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2331#endif
2332
2333#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2334
2335/* Return the hash of a string of known length */
2336unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2337{
2338	unsigned long hash = init_name_hash(salt);
2339	while (len--)
2340		hash = partial_name_hash((unsigned char)*name++, hash);
2341	return end_name_hash(hash);
2342}
2343EXPORT_SYMBOL(full_name_hash);
2344
2345/* Return the "hash_len" (hash and length) of a null-terminated string */
2346u64 hashlen_string(const void *salt, const char *name)
2347{
2348	unsigned long hash = init_name_hash(salt);
2349	unsigned long len = 0, c;
2350
2351	c = (unsigned char)*name;
2352	while (c) {
2353		len++;
2354		hash = partial_name_hash(c, hash);
2355		c = (unsigned char)name[len];
2356	}
2357	return hashlen_create(end_name_hash(hash), len);
2358}
2359EXPORT_SYMBOL(hashlen_string);
2360
2361/*
2362 * We know there's a real path component here of at least
2363 * one character.
2364 */
2365static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2366{
2367	unsigned long hash = init_name_hash(nd->path.dentry);
2368	unsigned long len = 0, c, last = 0;
2369
2370	c = (unsigned char)*name;
2371	do {
2372		last = (last << 8) + c;
2373		len++;
2374		hash = partial_name_hash(c, hash);
2375		c = (unsigned char)name[len];
2376	} while (c && c != '/');
2377
2378	// This is reliable for DOT or DOTDOT, since the component
2379	// cannot contain NUL characters - top bits being zero means
2380	// we cannot have had any other pathnames.
2381	*lastword = last;
2382	nd->last.hash = end_name_hash(hash);
2383	nd->last.len = len;
2384	return name + len;
2385}
2386
2387#endif
2388
2389#ifndef LAST_WORD_IS_DOT
2390  #define LAST_WORD_IS_DOT	0x2e
2391  #define LAST_WORD_IS_DOTDOT	0x2e2e
2392#endif
2393
2394/*
2395 * Name resolution.
2396 * This is the basic name resolution function, turning a pathname into
2397 * the final dentry. We expect 'base' to be positive and a directory.
2398 *
2399 * Returns 0 and nd will have valid dentry and mnt on success.
2400 * Returns error and drops reference to input namei data on failure.
2401 */
2402static int link_path_walk(const char *name, struct nameidata *nd)
2403{
2404	int depth = 0; // depth <= nd->depth
2405	int err;
2406
2407	nd->last_type = LAST_ROOT;
2408	nd->flags |= LOOKUP_PARENT;
2409	if (IS_ERR(name))
2410		return PTR_ERR(name);
2411	while (*name=='/')
2412		name++;
2413	if (!*name) {
2414		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2415		return 0;
2416	}
2417
2418	/* At this point we know we have a real path component. */
2419	for(;;) {
2420		struct mnt_idmap *idmap;
2421		const char *link;
2422		unsigned long lastword;
2423
2424		idmap = mnt_idmap(nd->path.mnt);
2425		err = may_lookup(idmap, nd);
2426		if (err)
2427			return err;
2428
2429		nd->last.name = name;
2430		name = hash_name(nd, name, &lastword);
2431
2432		switch(lastword) {
2433		case LAST_WORD_IS_DOTDOT:
2434			nd->last_type = LAST_DOTDOT;
2435			nd->state |= ND_JUMPED;
2436			break;
2437
2438		case LAST_WORD_IS_DOT:
2439			nd->last_type = LAST_DOT;
2440			break;
2441
2442		default:
2443			nd->last_type = LAST_NORM;
2444			nd->state &= ~ND_JUMPED;
2445
2446			struct dentry *parent = nd->path.dentry;
2447			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2448				err = parent->d_op->d_hash(parent, &nd->last);
2449				if (err < 0)
2450					return err;
2451			}
2452		}
2453
2454		if (!*name)
2455			goto OK;
2456		/*
2457		 * If it wasn't NUL, we know it was '/'. Skip that
2458		 * slash, and continue until no more slashes.
2459		 */
2460		do {
2461			name++;
2462		} while (unlikely(*name == '/'));
2463		if (unlikely(!*name)) {
2464OK:
2465			/* pathname or trailing symlink, done */
2466			if (!depth) {
2467				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2468				nd->dir_mode = nd->inode->i_mode;
2469				nd->flags &= ~LOOKUP_PARENT;
2470				return 0;
2471			}
2472			/* last component of nested symlink */
2473			name = nd->stack[--depth].name;
2474			link = walk_component(nd, 0);
2475		} else {
2476			/* not the last component */
2477			link = walk_component(nd, WALK_MORE);
2478		}
2479		if (unlikely(link)) {
2480			if (IS_ERR(link))
2481				return PTR_ERR(link);
2482			/* a symlink to follow */
2483			nd->stack[depth++].name = name;
2484			name = link;
2485			continue;
2486		}
2487		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2488			if (nd->flags & LOOKUP_RCU) {
2489				if (!try_to_unlazy(nd))
2490					return -ECHILD;
2491			}
2492			return -ENOTDIR;
2493		}
2494	}
2495}
2496
2497/* must be paired with terminate_walk() */
2498static const char *path_init(struct nameidata *nd, unsigned flags)
2499{
2500	int error;
2501	const char *s = nd->pathname;
2502
2503	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2504	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2505		return ERR_PTR(-EAGAIN);
2506
2507	if (!*s)
2508		flags &= ~LOOKUP_RCU;
2509	if (flags & LOOKUP_RCU)
2510		rcu_read_lock();
2511	else
2512		nd->seq = nd->next_seq = 0;
2513
2514	nd->flags = flags;
2515	nd->state |= ND_JUMPED;
2516
2517	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2518	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2519	smp_rmb();
2520
2521	if (nd->state & ND_ROOT_PRESET) {
2522		struct dentry *root = nd->root.dentry;
2523		struct inode *inode = root->d_inode;
2524		if (*s && unlikely(!d_can_lookup(root)))
2525			return ERR_PTR(-ENOTDIR);
2526		nd->path = nd->root;
2527		nd->inode = inode;
2528		if (flags & LOOKUP_RCU) {
2529			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2530			nd->root_seq = nd->seq;
2531		} else {
2532			path_get(&nd->path);
2533		}
2534		return s;
2535	}
2536
2537	nd->root.mnt = NULL;
2538
2539	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2540	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2541		error = nd_jump_root(nd);
2542		if (unlikely(error))
2543			return ERR_PTR(error);
2544		return s;
2545	}
2546
2547	/* Relative pathname -- get the starting-point it is relative to. */
2548	if (nd->dfd == AT_FDCWD) {
2549		if (flags & LOOKUP_RCU) {
2550			struct fs_struct *fs = current->fs;
2551			unsigned seq;
2552
2553			do {
2554				seq = read_seqcount_begin(&fs->seq);
2555				nd->path = fs->pwd;
2556				nd->inode = nd->path.dentry->d_inode;
2557				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2558			} while (read_seqcount_retry(&fs->seq, seq));
2559		} else {
2560			get_fs_pwd(current->fs, &nd->path);
2561			nd->inode = nd->path.dentry->d_inode;
2562		}
2563	} else {
2564		/* Caller must check execute permissions on the starting path component */
2565		CLASS(fd_raw, f)(nd->dfd);
2566		struct dentry *dentry;
2567
2568		if (fd_empty(f))
2569			return ERR_PTR(-EBADF);
2570
2571		if (flags & LOOKUP_LINKAT_EMPTY) {
2572			if (fd_file(f)->f_cred != current_cred() &&
2573			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2574				return ERR_PTR(-ENOENT);
2575		}
2576
2577		dentry = fd_file(f)->f_path.dentry;
2578
2579		if (*s && unlikely(!d_can_lookup(dentry)))
2580			return ERR_PTR(-ENOTDIR);
2581
2582		nd->path = fd_file(f)->f_path;
2583		if (flags & LOOKUP_RCU) {
2584			nd->inode = nd->path.dentry->d_inode;
2585			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2586		} else {
2587			path_get(&nd->path);
2588			nd->inode = nd->path.dentry->d_inode;
2589		}
2590	}
2591
2592	/* For scoped-lookups we need to set the root to the dirfd as well. */
2593	if (flags & LOOKUP_IS_SCOPED) {
2594		nd->root = nd->path;
2595		if (flags & LOOKUP_RCU) {
2596			nd->root_seq = nd->seq;
2597		} else {
2598			path_get(&nd->root);
2599			nd->state |= ND_ROOT_GRABBED;
2600		}
2601	}
2602	return s;
2603}
2604
2605static inline const char *lookup_last(struct nameidata *nd)
2606{
2607	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2608		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2609
2610	return walk_component(nd, WALK_TRAILING);
2611}
2612
2613static int handle_lookup_down(struct nameidata *nd)
2614{
2615	if (!(nd->flags & LOOKUP_RCU))
2616		dget(nd->path.dentry);
2617	nd->next_seq = nd->seq;
2618	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2619}
2620
2621/* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2622static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2623{
2624	const char *s = path_init(nd, flags);
2625	int err;
2626
2627	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2628		err = handle_lookup_down(nd);
2629		if (unlikely(err < 0))
2630			s = ERR_PTR(err);
2631	}
2632
2633	while (!(err = link_path_walk(s, nd)) &&
2634	       (s = lookup_last(nd)) != NULL)
2635		;
2636	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2637		err = handle_lookup_down(nd);
2638		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2639	}
2640	if (!err)
2641		err = complete_walk(nd);
2642
2643	if (!err && nd->flags & LOOKUP_DIRECTORY)
2644		if (!d_can_lookup(nd->path.dentry))
2645			err = -ENOTDIR;
2646	if (!err) {
2647		*path = nd->path;
2648		nd->path.mnt = NULL;
2649		nd->path.dentry = NULL;
2650	}
2651	terminate_walk(nd);
2652	return err;
2653}
2654
2655int filename_lookup(int dfd, struct filename *name, unsigned flags,
2656		    struct path *path, struct path *root)
2657{
2658	int retval;
2659	struct nameidata nd;
2660	if (IS_ERR(name))
2661		return PTR_ERR(name);
2662	set_nameidata(&nd, dfd, name, root);
2663	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2664	if (unlikely(retval == -ECHILD))
2665		retval = path_lookupat(&nd, flags, path);
2666	if (unlikely(retval == -ESTALE))
2667		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2668
2669	if (likely(!retval))
2670		audit_inode(name, path->dentry,
2671			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2672	restore_nameidata();
2673	return retval;
2674}
2675
2676/* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2677static int path_parentat(struct nameidata *nd, unsigned flags,
2678				struct path *parent)
2679{
2680	const char *s = path_init(nd, flags);
2681	int err = link_path_walk(s, nd);
2682	if (!err)
2683		err = complete_walk(nd);
2684	if (!err) {
2685		*parent = nd->path;
2686		nd->path.mnt = NULL;
2687		nd->path.dentry = NULL;
2688	}
2689	terminate_walk(nd);
2690	return err;
2691}
2692
2693/* Note: this does not consume "name" */
2694static int __filename_parentat(int dfd, struct filename *name,
2695			       unsigned int flags, struct path *parent,
2696			       struct qstr *last, int *type,
2697			       const struct path *root)
2698{
2699	int retval;
2700	struct nameidata nd;
2701
2702	if (IS_ERR(name))
2703		return PTR_ERR(name);
2704	set_nameidata(&nd, dfd, name, root);
2705	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2706	if (unlikely(retval == -ECHILD))
2707		retval = path_parentat(&nd, flags, parent);
2708	if (unlikely(retval == -ESTALE))
2709		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2710	if (likely(!retval)) {
2711		*last = nd.last;
2712		*type = nd.last_type;
2713		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2714	}
2715	restore_nameidata();
2716	return retval;
2717}
2718
2719static int filename_parentat(int dfd, struct filename *name,
2720			     unsigned int flags, struct path *parent,
2721			     struct qstr *last, int *type)
2722{
2723	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2724}
2725
2726/* does lookup, returns the object with parent locked */
2727static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2728{
2729	struct dentry *d;
2730	struct qstr last;
2731	int type, error;
2732
2733	error = filename_parentat(dfd, name, 0, path, &last, &type);
2734	if (error)
2735		return ERR_PTR(error);
2736	if (unlikely(type != LAST_NORM)) {
2737		path_put(path);
2738		return ERR_PTR(-EINVAL);
2739	}
2740	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2741	d = lookup_one_qstr_excl(&last, path->dentry, 0);
2742	if (IS_ERR(d)) {
2743		inode_unlock(path->dentry->d_inode);
2744		path_put(path);
2745	}
2746	return d;
2747}
2748
2749struct dentry *kern_path_locked(const char *name, struct path *path)
2750{
2751	struct filename *filename = getname_kernel(name);
2752	struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2753
2754	putname(filename);
2755	return res;
2756}
2757
2758struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2759{
2760	struct filename *filename = getname(name);
2761	struct dentry *res = __kern_path_locked(dfd, filename, path);
2762
2763	putname(filename);
2764	return res;
2765}
2766EXPORT_SYMBOL(user_path_locked_at);
2767
2768int kern_path(const char *name, unsigned int flags, struct path *path)
2769{
2770	struct filename *filename = getname_kernel(name);
2771	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2772
2773	putname(filename);
2774	return ret;
2775
2776}
2777EXPORT_SYMBOL(kern_path);
2778
2779/**
2780 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2781 * @filename: filename structure
2782 * @flags: lookup flags
2783 * @parent: pointer to struct path to fill
2784 * @last: last component
2785 * @type: type of the last component
2786 * @root: pointer to struct path of the base directory
2787 */
2788int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2789			   struct path *parent, struct qstr *last, int *type,
2790			   const struct path *root)
2791{
2792	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2793				    type, root);
2794}
2795EXPORT_SYMBOL(vfs_path_parent_lookup);
2796
2797/**
2798 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2799 * @dentry:  pointer to dentry of the base directory
2800 * @mnt: pointer to vfs mount of the base directory
2801 * @name: pointer to file name
2802 * @flags: lookup flags
2803 * @path: pointer to struct path to fill
2804 */
2805int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2806		    const char *name, unsigned int flags,
2807		    struct path *path)
2808{
2809	struct filename *filename;
2810	struct path root = {.mnt = mnt, .dentry = dentry};
2811	int ret;
2812
2813	filename = getname_kernel(name);
2814	/* the first argument of filename_lookup() is ignored with root */
2815	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2816	putname(filename);
2817	return ret;
2818}
2819EXPORT_SYMBOL(vfs_path_lookup);
2820
2821static int lookup_one_common(struct mnt_idmap *idmap,
2822			     const char *name, struct dentry *base, int len,
2823			     struct qstr *this)
2824{
2825	this->name = name;
2826	this->len = len;
2827	this->hash = full_name_hash(base, name, len);
2828	if (!len)
2829		return -EACCES;
2830
2831	if (is_dot_dotdot(name, len))
2832		return -EACCES;
2833
2834	while (len--) {
2835		unsigned int c = *(const unsigned char *)name++;
2836		if (c == '/' || c == '\0')
2837			return -EACCES;
2838	}
2839	/*
2840	 * See if the low-level filesystem might want
2841	 * to use its own hash..
2842	 */
2843	if (base->d_flags & DCACHE_OP_HASH) {
2844		int err = base->d_op->d_hash(base, this);
2845		if (err < 0)
2846			return err;
2847	}
2848
2849	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2850}
2851
2852/**
2853 * try_lookup_one_len - filesystem helper to lookup single pathname component
2854 * @name:	pathname component to lookup
2855 * @base:	base directory to lookup from
2856 * @len:	maximum length @len should be interpreted to
2857 *
2858 * Look up a dentry by name in the dcache, returning NULL if it does not
2859 * currently exist.  The function does not try to create a dentry.
2860 *
2861 * Note that this routine is purely a helper for filesystem usage and should
2862 * not be called by generic code.
2863 *
2864 * The caller must hold base->i_mutex.
2865 */
2866struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2867{
2868	struct qstr this;
2869	int err;
2870
2871	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2872
2873	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2874	if (err)
2875		return ERR_PTR(err);
2876
2877	return lookup_dcache(&this, base, 0);
2878}
2879EXPORT_SYMBOL(try_lookup_one_len);
2880
2881/**
2882 * lookup_one_len - filesystem helper to lookup single pathname component
2883 * @name:	pathname component to lookup
2884 * @base:	base directory to lookup from
2885 * @len:	maximum length @len should be interpreted to
2886 *
2887 * Note that this routine is purely a helper for filesystem usage and should
2888 * not be called by generic code.
2889 *
2890 * The caller must hold base->i_mutex.
2891 */
2892struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2893{
2894	struct dentry *dentry;
2895	struct qstr this;
2896	int err;
2897
2898	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2899
2900	err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2901	if (err)
2902		return ERR_PTR(err);
2903
2904	dentry = lookup_dcache(&this, base, 0);
2905	return dentry ? dentry : __lookup_slow(&this, base, 0);
2906}
2907EXPORT_SYMBOL(lookup_one_len);
2908
2909/**
2910 * lookup_one - filesystem helper to lookup single pathname component
2911 * @idmap:	idmap of the mount the lookup is performed from
2912 * @name:	pathname component to lookup
2913 * @base:	base directory to lookup from
2914 * @len:	maximum length @len should be interpreted to
2915 *
2916 * Note that this routine is purely a helper for filesystem usage and should
2917 * not be called by generic code.
2918 *
2919 * The caller must hold base->i_mutex.
2920 */
2921struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2922			  struct dentry *base, int len)
2923{
2924	struct dentry *dentry;
2925	struct qstr this;
2926	int err;
2927
2928	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2929
2930	err = lookup_one_common(idmap, name, base, len, &this);
2931	if (err)
2932		return ERR_PTR(err);
2933
2934	dentry = lookup_dcache(&this, base, 0);
2935	return dentry ? dentry : __lookup_slow(&this, base, 0);
2936}
2937EXPORT_SYMBOL(lookup_one);
2938
2939/**
2940 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2941 * @idmap:	idmap of the mount the lookup is performed from
2942 * @name:	pathname component to lookup
2943 * @base:	base directory to lookup from
2944 * @len:	maximum length @len should be interpreted to
2945 *
2946 * Note that this routine is purely a helper for filesystem usage and should
2947 * not be called by generic code.
2948 *
2949 * Unlike lookup_one_len, it should be called without the parent
2950 * i_mutex held, and will take the i_mutex itself if necessary.
2951 */
2952struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2953				   const char *name, struct dentry *base,
2954				   int len)
2955{
2956	struct qstr this;
2957	int err;
2958	struct dentry *ret;
2959
2960	err = lookup_one_common(idmap, name, base, len, &this);
2961	if (err)
2962		return ERR_PTR(err);
2963
2964	ret = lookup_dcache(&this, base, 0);
2965	if (!ret)
2966		ret = lookup_slow(&this, base, 0);
2967	return ret;
2968}
2969EXPORT_SYMBOL(lookup_one_unlocked);
2970
2971/**
2972 * lookup_one_positive_unlocked - filesystem helper to lookup single
2973 *				  pathname component
2974 * @idmap:	idmap of the mount the lookup is performed from
2975 * @name:	pathname component to lookup
2976 * @base:	base directory to lookup from
2977 * @len:	maximum length @len should be interpreted to
2978 *
2979 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2980 * known positive or ERR_PTR(). This is what most of the users want.
2981 *
2982 * Note that pinned negative with unlocked parent _can_ become positive at any
2983 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2984 * positives have >d_inode stable, so this one avoids such problems.
2985 *
2986 * Note that this routine is purely a helper for filesystem usage and should
2987 * not be called by generic code.
2988 *
2989 * The helper should be called without i_mutex held.
2990 */
2991struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2992					    const char *name,
2993					    struct dentry *base, int len)
2994{
2995	struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2996
2997	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2998		dput(ret);
2999		ret = ERR_PTR(-ENOENT);
3000	}
3001	return ret;
3002}
3003EXPORT_SYMBOL(lookup_one_positive_unlocked);
3004
3005/**
3006 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
3007 * @name:	pathname component to lookup
3008 * @base:	base directory to lookup from
3009 * @len:	maximum length @len should be interpreted to
3010 *
3011 * Note that this routine is purely a helper for filesystem usage and should
3012 * not be called by generic code.
3013 *
3014 * Unlike lookup_one_len, it should be called without the parent
3015 * i_mutex held, and will take the i_mutex itself if necessary.
3016 */
3017struct dentry *lookup_one_len_unlocked(const char *name,
3018				       struct dentry *base, int len)
3019{
3020	return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
3021}
3022EXPORT_SYMBOL(lookup_one_len_unlocked);
3023
3024/*
3025 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
3026 * on negatives.  Returns known positive or ERR_PTR(); that's what
3027 * most of the users want.  Note that pinned negative with unlocked parent
3028 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
3029 * need to be very careful; pinned positives have ->d_inode stable, so
3030 * this one avoids such problems.
3031 */
3032struct dentry *lookup_positive_unlocked(const char *name,
3033				       struct dentry *base, int len)
3034{
3035	return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
3036}
3037EXPORT_SYMBOL(lookup_positive_unlocked);
3038
3039#ifdef CONFIG_UNIX98_PTYS
3040int path_pts(struct path *path)
3041{
3042	/* Find something mounted on "pts" in the same directory as
3043	 * the input path.
3044	 */
3045	struct dentry *parent = dget_parent(path->dentry);
3046	struct dentry *child;
3047	struct qstr this = QSTR_INIT("pts", 3);
3048
3049	if (unlikely(!path_connected(path->mnt, parent))) {
3050		dput(parent);
3051		return -ENOENT;
3052	}
3053	dput(path->dentry);
3054	path->dentry = parent;
3055	child = d_hash_and_lookup(parent, &this);
3056	if (IS_ERR_OR_NULL(child))
3057		return -ENOENT;
3058
3059	path->dentry = child;
3060	dput(parent);
3061	follow_down(path, 0);
3062	return 0;
3063}
3064#endif
3065
3066int user_path_at(int dfd, const char __user *name, unsigned flags,
3067		 struct path *path)
3068{
3069	struct filename *filename = getname_flags(name, flags);
3070	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3071
3072	putname(filename);
3073	return ret;
3074}
3075EXPORT_SYMBOL(user_path_at);
3076
3077int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3078		   struct inode *inode)
3079{
3080	kuid_t fsuid = current_fsuid();
3081
3082	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3083		return 0;
3084	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3085		return 0;
3086	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3087}
3088EXPORT_SYMBOL(__check_sticky);
3089
3090/*
3091 *	Check whether we can remove a link victim from directory dir, check
3092 *  whether the type of victim is right.
3093 *  1. We can't do it if dir is read-only (done in permission())
3094 *  2. We should have write and exec permissions on dir
3095 *  3. We can't remove anything from append-only dir
3096 *  4. We can't do anything with immutable dir (done in permission())
3097 *  5. If the sticky bit on dir is set we should either
3098 *	a. be owner of dir, or
3099 *	b. be owner of victim, or
3100 *	c. have CAP_FOWNER capability
3101 *  6. If the victim is append-only or immutable we can't do antyhing with
3102 *     links pointing to it.
3103 *  7. If the victim has an unknown uid or gid we can't change the inode.
3104 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3105 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3106 * 10. We can't remove a root or mountpoint.
3107 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3108 *     nfs_async_unlink().
3109 */
3110static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3111		      struct dentry *victim, bool isdir)
3112{
3113	struct inode *inode = d_backing_inode(victim);
3114	int error;
3115
3116	if (d_is_negative(victim))
3117		return -ENOENT;
3118	BUG_ON(!inode);
3119
3120	BUG_ON(victim->d_parent->d_inode != dir);
3121
3122	/* Inode writeback is not safe when the uid or gid are invalid. */
3123	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3124	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3125		return -EOVERFLOW;
3126
3127	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3128
3129	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3130	if (error)
3131		return error;
3132	if (IS_APPEND(dir))
3133		return -EPERM;
3134
3135	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3136	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3137	    HAS_UNMAPPED_ID(idmap, inode))
3138		return -EPERM;
3139	if (isdir) {
3140		if (!d_is_dir(victim))
3141			return -ENOTDIR;
3142		if (IS_ROOT(victim))
3143			return -EBUSY;
3144	} else if (d_is_dir(victim))
3145		return -EISDIR;
3146	if (IS_DEADDIR(dir))
3147		return -ENOENT;
3148	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3149		return -EBUSY;
3150	return 0;
3151}
3152
3153/*	Check whether we can create an object with dentry child in directory
3154 *  dir.
3155 *  1. We can't do it if child already exists (open has special treatment for
3156 *     this case, but since we are inlined it's OK)
3157 *  2. We can't do it if dir is read-only (done in permission())
3158 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3159 *  4. We should have write and exec permissions on dir
3160 *  5. We can't do it if dir is immutable (done in permission())
3161 */
3162static inline int may_create(struct mnt_idmap *idmap,
3163			     struct inode *dir, struct dentry *child)
3164{
3165	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3166	if (child->d_inode)
3167		return -EEXIST;
3168	if (IS_DEADDIR(dir))
3169		return -ENOENT;
3170	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3171		return -EOVERFLOW;
3172
3173	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3174}
3175
3176// p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3177static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3178{
3179	struct dentry *p = p1, *q = p2, *r;
3180
3181	while ((r = p->d_parent) != p2 && r != p)
3182		p = r;
3183	if (r == p2) {
3184		// p is a child of p2 and an ancestor of p1 or p1 itself
3185		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3186		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3187		return p;
3188	}
3189	// p is the root of connected component that contains p1
3190	// p2 does not occur on the path from p to p1
3191	while ((r = q->d_parent) != p1 && r != p && r != q)
3192		q = r;
3193	if (r == p1) {
3194		// q is a child of p1 and an ancestor of p2 or p2 itself
3195		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3196		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3197		return q;
3198	} else if (likely(r == p)) {
3199		// both p2 and p1 are descendents of p
3200		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3201		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3202		return NULL;
3203	} else { // no common ancestor at the time we'd been called
3204		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3205		return ERR_PTR(-EXDEV);
3206	}
3207}
3208
3209/*
3210 * p1 and p2 should be directories on the same fs.
3211 */
3212struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3213{
3214	if (p1 == p2) {
3215		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3216		return NULL;
3217	}
3218
3219	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3220	return lock_two_directories(p1, p2);
3221}
3222EXPORT_SYMBOL(lock_rename);
3223
3224/*
3225 * c1 and p2 should be on the same fs.
3226 */
3227struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3228{
3229	if (READ_ONCE(c1->d_parent) == p2) {
3230		/*
3231		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3232		 */
3233		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3234		/*
3235		 * now that p2 is locked, nobody can move in or out of it,
3236		 * so the test below is safe.
3237		 */
3238		if (likely(c1->d_parent == p2))
3239			return NULL;
3240
3241		/*
3242		 * c1 got moved out of p2 while we'd been taking locks;
3243		 * unlock and fall back to slow case.
3244		 */
3245		inode_unlock(p2->d_inode);
3246	}
3247
3248	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3249	/*
3250	 * nobody can move out of any directories on this fs.
3251	 */
3252	if (likely(c1->d_parent != p2))
3253		return lock_two_directories(c1->d_parent, p2);
3254
3255	/*
3256	 * c1 got moved into p2 while we were taking locks;
3257	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3258	 * for consistency with lock_rename().
3259	 */
3260	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3261	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3262	return NULL;
3263}
3264EXPORT_SYMBOL(lock_rename_child);
3265
3266void unlock_rename(struct dentry *p1, struct dentry *p2)
3267{
3268	inode_unlock(p1->d_inode);
3269	if (p1 != p2) {
3270		inode_unlock(p2->d_inode);
3271		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3272	}
3273}
3274EXPORT_SYMBOL(unlock_rename);
3275
3276/**
3277 * vfs_prepare_mode - prepare the mode to be used for a new inode
3278 * @idmap:	idmap of the mount the inode was found from
3279 * @dir:	parent directory of the new inode
3280 * @mode:	mode of the new inode
3281 * @mask_perms:	allowed permission by the vfs
3282 * @type:	type of file to be created
3283 *
3284 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3285 * object to be created.
3286 *
3287 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3288 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3289 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3290 * POSIX ACL supporting filesystems.
3291 *
3292 * Note that it's currently valid for @type to be 0 if a directory is created.
3293 * Filesystems raise that flag individually and we need to check whether each
3294 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3295 * non-zero type.
3296 *
3297 * Returns: mode to be passed to the filesystem
3298 */
3299static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3300				       const struct inode *dir, umode_t mode,
3301				       umode_t mask_perms, umode_t type)
3302{
3303	mode = mode_strip_sgid(idmap, dir, mode);
3304	mode = mode_strip_umask(dir, mode);
3305
3306	/*
3307	 * Apply the vfs mandated allowed permission mask and set the type of
3308	 * file to be created before we call into the filesystem.
3309	 */
3310	mode &= (mask_perms & ~S_IFMT);
3311	mode |= (type & S_IFMT);
3312
3313	return mode;
3314}
3315
3316/**
3317 * vfs_create - create new file
3318 * @idmap:	idmap of the mount the inode was found from
3319 * @dir:	inode of the parent directory
3320 * @dentry:	dentry of the child file
3321 * @mode:	mode of the child file
3322 * @want_excl:	whether the file must not yet exist
3323 *
3324 * Create a new file.
3325 *
3326 * If the inode has been found through an idmapped mount the idmap of
3327 * the vfsmount must be passed through @idmap. This function will then take
3328 * care to map the inode according to @idmap before checking permissions.
3329 * On non-idmapped mounts or if permission checking is to be performed on the
3330 * raw inode simply pass @nop_mnt_idmap.
3331 */
3332int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3333	       struct dentry *dentry, umode_t mode, bool want_excl)
3334{
3335	int error;
3336
3337	error = may_create(idmap, dir, dentry);
3338	if (error)
3339		return error;
3340
3341	if (!dir->i_op->create)
3342		return -EACCES;	/* shouldn't it be ENOSYS? */
3343
3344	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3345	error = security_inode_create(dir, dentry, mode);
3346	if (error)
3347		return error;
3348	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3349	if (!error)
3350		fsnotify_create(dir, dentry);
3351	return error;
3352}
3353EXPORT_SYMBOL(vfs_create);
3354
3355int vfs_mkobj(struct dentry *dentry, umode_t mode,
3356		int (*f)(struct dentry *, umode_t, void *),
3357		void *arg)
3358{
3359	struct inode *dir = dentry->d_parent->d_inode;
3360	int error = may_create(&nop_mnt_idmap, dir, dentry);
3361	if (error)
3362		return error;
3363
3364	mode &= S_IALLUGO;
3365	mode |= S_IFREG;
3366	error = security_inode_create(dir, dentry, mode);
3367	if (error)
3368		return error;
3369	error = f(dentry, mode, arg);
3370	if (!error)
3371		fsnotify_create(dir, dentry);
3372	return error;
3373}
3374EXPORT_SYMBOL(vfs_mkobj);
3375
3376bool may_open_dev(const struct path *path)
3377{
3378	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3379		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3380}
3381
3382static int may_open(struct mnt_idmap *idmap, const struct path *path,
3383		    int acc_mode, int flag)
3384{
3385	struct dentry *dentry = path->dentry;
3386	struct inode *inode = dentry->d_inode;
3387	int error;
3388
3389	if (!inode)
3390		return -ENOENT;
3391
3392	switch (inode->i_mode & S_IFMT) {
3393	case S_IFLNK:
3394		return -ELOOP;
3395	case S_IFDIR:
3396		if (acc_mode & MAY_WRITE)
3397			return -EISDIR;
3398		if (acc_mode & MAY_EXEC)
3399			return -EACCES;
3400		break;
3401	case S_IFBLK:
3402	case S_IFCHR:
3403		if (!may_open_dev(path))
3404			return -EACCES;
3405		fallthrough;
3406	case S_IFIFO:
3407	case S_IFSOCK:
3408		if (acc_mode & MAY_EXEC)
3409			return -EACCES;
3410		flag &= ~O_TRUNC;
3411		break;
3412	case S_IFREG:
3413		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3414			return -EACCES;
3415		break;
3416	}
3417
3418	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3419	if (error)
3420		return error;
3421
3422	/*
3423	 * An append-only file must be opened in append mode for writing.
3424	 */
3425	if (IS_APPEND(inode)) {
3426		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3427			return -EPERM;
3428		if (flag & O_TRUNC)
3429			return -EPERM;
3430	}
3431
3432	/* O_NOATIME can only be set by the owner or superuser */
3433	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3434		return -EPERM;
3435
3436	return 0;
3437}
3438
3439static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3440{
3441	const struct path *path = &filp->f_path;
3442	struct inode *inode = path->dentry->d_inode;
3443	int error = get_write_access(inode);
3444	if (error)
3445		return error;
3446
3447	error = security_file_truncate(filp);
3448	if (!error) {
3449		error = do_truncate(idmap, path->dentry, 0,
3450				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3451				    filp);
3452	}
3453	put_write_access(inode);
3454	return error;
3455}
3456
3457static inline int open_to_namei_flags(int flag)
3458{
3459	if ((flag & O_ACCMODE) == 3)
3460		flag--;
3461	return flag;
3462}
3463
3464static int may_o_create(struct mnt_idmap *idmap,
3465			const struct path *dir, struct dentry *dentry,
3466			umode_t mode)
3467{
3468	int error = security_path_mknod(dir, dentry, mode, 0);
3469	if (error)
3470		return error;
3471
3472	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3473		return -EOVERFLOW;
3474
3475	error = inode_permission(idmap, dir->dentry->d_inode,
3476				 MAY_WRITE | MAY_EXEC);
3477	if (error)
3478		return error;
3479
3480	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3481}
3482
3483/*
3484 * Attempt to atomically look up, create and open a file from a negative
3485 * dentry.
3486 *
3487 * Returns 0 if successful.  The file will have been created and attached to
3488 * @file by the filesystem calling finish_open().
3489 *
3490 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3491 * be set.  The caller will need to perform the open themselves.  @path will
3492 * have been updated to point to the new dentry.  This may be negative.
3493 *
3494 * Returns an error code otherwise.
3495 */
3496static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3497				  struct file *file,
3498				  int open_flag, umode_t mode)
3499{
3500	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3501	struct inode *dir =  nd->path.dentry->d_inode;
3502	int error;
3503
3504	if (nd->flags & LOOKUP_DIRECTORY)
3505		open_flag |= O_DIRECTORY;
3506
3507	file->f_path.dentry = DENTRY_NOT_SET;
3508	file->f_path.mnt = nd->path.mnt;
3509	error = dir->i_op->atomic_open(dir, dentry, file,
3510				       open_to_namei_flags(open_flag), mode);
3511	d_lookup_done(dentry);
3512	if (!error) {
3513		if (file->f_mode & FMODE_OPENED) {
3514			if (unlikely(dentry != file->f_path.dentry)) {
3515				dput(dentry);
3516				dentry = dget(file->f_path.dentry);
3517			}
3518		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3519			error = -EIO;
3520		} else {
3521			if (file->f_path.dentry) {
3522				dput(dentry);
3523				dentry = file->f_path.dentry;
3524			}
3525			if (unlikely(d_is_negative(dentry)))
3526				error = -ENOENT;
3527		}
3528	}
3529	if (error) {
3530		dput(dentry);
3531		dentry = ERR_PTR(error);
3532	}
3533	return dentry;
3534}
3535
3536/*
3537 * Look up and maybe create and open the last component.
3538 *
3539 * Must be called with parent locked (exclusive in O_CREAT case).
3540 *
3541 * Returns 0 on success, that is, if
3542 *  the file was successfully atomically created (if necessary) and opened, or
3543 *  the file was not completely opened at this time, though lookups and
3544 *  creations were performed.
3545 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3546 * In the latter case dentry returned in @path might be negative if O_CREAT
3547 * hadn't been specified.
3548 *
3549 * An error code is returned on failure.
3550 */
3551static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3552				  const struct open_flags *op,
3553				  bool got_write)
3554{
3555	struct mnt_idmap *idmap;
3556	struct dentry *dir = nd->path.dentry;
3557	struct inode *dir_inode = dir->d_inode;
3558	int open_flag = op->open_flag;
3559	struct dentry *dentry;
3560	int error, create_error = 0;
3561	umode_t mode = op->mode;
3562	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3563
3564	if (unlikely(IS_DEADDIR(dir_inode)))
3565		return ERR_PTR(-ENOENT);
3566
3567	file->f_mode &= ~FMODE_CREATED;
3568	dentry = d_lookup(dir, &nd->last);
3569	for (;;) {
3570		if (!dentry) {
3571			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3572			if (IS_ERR(dentry))
3573				return dentry;
3574		}
3575		if (d_in_lookup(dentry))
3576			break;
3577
3578		error = d_revalidate(dentry, nd->flags);
3579		if (likely(error > 0))
3580			break;
3581		if (error)
3582			goto out_dput;
3583		d_invalidate(dentry);
3584		dput(dentry);
3585		dentry = NULL;
3586	}
3587	if (dentry->d_inode) {
3588		/* Cached positive dentry: will open in f_op->open */
3589		return dentry;
3590	}
3591
3592	if (open_flag & O_CREAT)
3593		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3594
3595	/*
3596	 * Checking write permission is tricky, bacuse we don't know if we are
3597	 * going to actually need it: O_CREAT opens should work as long as the
3598	 * file exists.  But checking existence breaks atomicity.  The trick is
3599	 * to check access and if not granted clear O_CREAT from the flags.
3600	 *
3601	 * Another problem is returing the "right" error value (e.g. for an
3602	 * O_EXCL open we want to return EEXIST not EROFS).
3603	 */
3604	if (unlikely(!got_write))
3605		open_flag &= ~O_TRUNC;
3606	idmap = mnt_idmap(nd->path.mnt);
3607	if (open_flag & O_CREAT) {
3608		if (open_flag & O_EXCL)
3609			open_flag &= ~O_TRUNC;
3610		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3611		if (likely(got_write))
3612			create_error = may_o_create(idmap, &nd->path,
3613						    dentry, mode);
3614		else
3615			create_error = -EROFS;
3616	}
3617	if (create_error)
3618		open_flag &= ~O_CREAT;
3619	if (dir_inode->i_op->atomic_open) {
3620		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3621		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3622			dentry = ERR_PTR(create_error);
3623		return dentry;
3624	}
3625
3626	if (d_in_lookup(dentry)) {
3627		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3628							     nd->flags);
3629		d_lookup_done(dentry);
3630		if (unlikely(res)) {
3631			if (IS_ERR(res)) {
3632				error = PTR_ERR(res);
3633				goto out_dput;
3634			}
3635			dput(dentry);
3636			dentry = res;
3637		}
3638	}
3639
3640	/* Negative dentry, just create the file */
3641	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3642		file->f_mode |= FMODE_CREATED;
3643		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3644		if (!dir_inode->i_op->create) {
3645			error = -EACCES;
3646			goto out_dput;
3647		}
3648
3649		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3650						mode, open_flag & O_EXCL);
3651		if (error)
3652			goto out_dput;
3653	}
3654	if (unlikely(create_error) && !dentry->d_inode) {
3655		error = create_error;
3656		goto out_dput;
3657	}
3658	return dentry;
3659
3660out_dput:
3661	dput(dentry);
3662	return ERR_PTR(error);
3663}
3664
3665static inline bool trailing_slashes(struct nameidata *nd)
3666{
3667	return (bool)nd->last.name[nd->last.len];
3668}
3669
3670static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3671{
3672	struct dentry *dentry;
3673
3674	if (open_flag & O_CREAT) {
3675		if (trailing_slashes(nd))
3676			return ERR_PTR(-EISDIR);
3677
3678		/* Don't bother on an O_EXCL create */
3679		if (open_flag & O_EXCL)
3680			return NULL;
3681	}
3682
3683	if (trailing_slashes(nd))
3684		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3685
3686	dentry = lookup_fast(nd);
3687	if (IS_ERR_OR_NULL(dentry))
3688		return dentry;
3689
3690	if (open_flag & O_CREAT) {
3691		/* Discard negative dentries. Need inode_lock to do the create */
3692		if (!dentry->d_inode) {
3693			if (!(nd->flags & LOOKUP_RCU))
3694				dput(dentry);
3695			dentry = NULL;
3696		}
3697	}
3698	return dentry;
3699}
3700
3701static const char *open_last_lookups(struct nameidata *nd,
3702		   struct file *file, const struct open_flags *op)
3703{
3704	struct dentry *dir = nd->path.dentry;
3705	int open_flag = op->open_flag;
3706	bool got_write = false;
3707	struct dentry *dentry;
3708	const char *res;
3709
3710	nd->flags |= op->intent;
3711
3712	if (nd->last_type != LAST_NORM) {
3713		if (nd->depth)
3714			put_link(nd);
3715		return handle_dots(nd, nd->last_type);
3716	}
3717
3718	/* We _can_ be in RCU mode here */
3719	dentry = lookup_fast_for_open(nd, open_flag);
3720	if (IS_ERR(dentry))
3721		return ERR_CAST(dentry);
3722
3723	if (likely(dentry))
3724		goto finish_lookup;
3725
3726	if (!(open_flag & O_CREAT)) {
3727		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3728			return ERR_PTR(-ECHILD);
3729	} else {
3730		if (nd->flags & LOOKUP_RCU) {
3731			if (!try_to_unlazy(nd))
3732				return ERR_PTR(-ECHILD);
3733		}
3734	}
3735
3736	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3737		got_write = !mnt_want_write(nd->path.mnt);
3738		/*
3739		 * do _not_ fail yet - we might not need that or fail with
3740		 * a different error; let lookup_open() decide; we'll be
3741		 * dropping this one anyway.
3742		 */
3743	}
3744	if (open_flag & O_CREAT)
3745		inode_lock(dir->d_inode);
3746	else
3747		inode_lock_shared(dir->d_inode);
3748	dentry = lookup_open(nd, file, op, got_write);
3749	if (!IS_ERR(dentry)) {
3750		if (file->f_mode & FMODE_CREATED)
3751			fsnotify_create(dir->d_inode, dentry);
3752		if (file->f_mode & FMODE_OPENED)
3753			fsnotify_open(file);
3754	}
3755	if (open_flag & O_CREAT)
3756		inode_unlock(dir->d_inode);
3757	else
3758		inode_unlock_shared(dir->d_inode);
3759
3760	if (got_write)
3761		mnt_drop_write(nd->path.mnt);
3762
3763	if (IS_ERR(dentry))
3764		return ERR_CAST(dentry);
3765
3766	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3767		dput(nd->path.dentry);
3768		nd->path.dentry = dentry;
3769		return NULL;
3770	}
3771
3772finish_lookup:
3773	if (nd->depth)
3774		put_link(nd);
3775	res = step_into(nd, WALK_TRAILING, dentry);
3776	if (unlikely(res))
3777		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3778	return res;
3779}
3780
3781/*
3782 * Handle the last step of open()
3783 */
3784static int do_open(struct nameidata *nd,
3785		   struct file *file, const struct open_flags *op)
3786{
3787	struct mnt_idmap *idmap;
3788	int open_flag = op->open_flag;
3789	bool do_truncate;
3790	int acc_mode;
3791	int error;
3792
3793	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3794		error = complete_walk(nd);
3795		if (error)
3796			return error;
3797	}
3798	if (!(file->f_mode & FMODE_CREATED))
3799		audit_inode(nd->name, nd->path.dentry, 0);
3800	idmap = mnt_idmap(nd->path.mnt);
3801	if (open_flag & O_CREAT) {
3802		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3803			return -EEXIST;
3804		if (d_is_dir(nd->path.dentry))
3805			return -EISDIR;
3806		error = may_create_in_sticky(idmap, nd,
3807					     d_backing_inode(nd->path.dentry));
3808		if (unlikely(error))
3809			return error;
3810	}
3811	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3812		return -ENOTDIR;
3813
3814	do_truncate = false;
3815	acc_mode = op->acc_mode;
3816	if (file->f_mode & FMODE_CREATED) {
3817		/* Don't check for write permission, don't truncate */
3818		open_flag &= ~O_TRUNC;
3819		acc_mode = 0;
3820	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3821		error = mnt_want_write(nd->path.mnt);
3822		if (error)
3823			return error;
3824		do_truncate = true;
3825	}
3826	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3827	if (!error && !(file->f_mode & FMODE_OPENED))
3828		error = vfs_open(&nd->path, file);
3829	if (!error)
3830		error = security_file_post_open(file, op->acc_mode);
3831	if (!error && do_truncate)
3832		error = handle_truncate(idmap, file);
3833	if (unlikely(error > 0)) {
3834		WARN_ON(1);
3835		error = -EINVAL;
3836	}
3837	if (do_truncate)
3838		mnt_drop_write(nd->path.mnt);
3839	return error;
3840}
3841
3842/**
3843 * vfs_tmpfile - create tmpfile
3844 * @idmap:	idmap of the mount the inode was found from
3845 * @parentpath:	pointer to the path of the base directory
3846 * @file:	file descriptor of the new tmpfile
3847 * @mode:	mode of the new tmpfile
3848 *
3849 * Create a temporary file.
3850 *
3851 * If the inode has been found through an idmapped mount the idmap of
3852 * the vfsmount must be passed through @idmap. This function will then take
3853 * care to map the inode according to @idmap before checking permissions.
3854 * On non-idmapped mounts or if permission checking is to be performed on the
3855 * raw inode simply pass @nop_mnt_idmap.
3856 */
3857int vfs_tmpfile(struct mnt_idmap *idmap,
3858		const struct path *parentpath,
3859		struct file *file, umode_t mode)
3860{
3861	struct dentry *child;
3862	struct inode *dir = d_inode(parentpath->dentry);
3863	struct inode *inode;
3864	int error;
3865	int open_flag = file->f_flags;
3866
3867	/* we want directory to be writable */
3868	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3869	if (error)
3870		return error;
3871	if (!dir->i_op->tmpfile)
3872		return -EOPNOTSUPP;
3873	child = d_alloc(parentpath->dentry, &slash_name);
3874	if (unlikely(!child))
3875		return -ENOMEM;
3876	file->f_path.mnt = parentpath->mnt;
3877	file->f_path.dentry = child;
3878	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3879	error = dir->i_op->tmpfile(idmap, dir, file, mode);
3880	dput(child);
3881	if (file->f_mode & FMODE_OPENED)
3882		fsnotify_open(file);
3883	if (error)
3884		return error;
3885	/* Don't check for other permissions, the inode was just created */
3886	error = may_open(idmap, &file->f_path, 0, file->f_flags);
3887	if (error)
3888		return error;
3889	inode = file_inode(file);
3890	if (!(open_flag & O_EXCL)) {
3891		spin_lock(&inode->i_lock);
3892		inode->i_state |= I_LINKABLE;
3893		spin_unlock(&inode->i_lock);
3894	}
3895	security_inode_post_create_tmpfile(idmap, inode);
3896	return 0;
3897}
3898
3899/**
3900 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3901 * @idmap:	idmap of the mount the inode was found from
3902 * @parentpath:	path of the base directory
3903 * @mode:	mode of the new tmpfile
3904 * @open_flag:	flags
3905 * @cred:	credentials for open
3906 *
3907 * Create and open a temporary file.  The file is not accounted in nr_files,
3908 * hence this is only for kernel internal use, and must not be installed into
3909 * file tables or such.
3910 */
3911struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3912				 const struct path *parentpath,
3913				 umode_t mode, int open_flag,
3914				 const struct cred *cred)
3915{
3916	struct file *file;
3917	int error;
3918
3919	file = alloc_empty_file_noaccount(open_flag, cred);
3920	if (IS_ERR(file))
3921		return file;
3922
3923	error = vfs_tmpfile(idmap, parentpath, file, mode);
3924	if (error) {
3925		fput(file);
3926		file = ERR_PTR(error);
3927	}
3928	return file;
3929}
3930EXPORT_SYMBOL(kernel_tmpfile_open);
3931
3932static int do_tmpfile(struct nameidata *nd, unsigned flags,
3933		const struct open_flags *op,
3934		struct file *file)
3935{
3936	struct path path;
3937	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3938
3939	if (unlikely(error))
3940		return error;
3941	error = mnt_want_write(path.mnt);
3942	if (unlikely(error))
3943		goto out;
3944	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3945	if (error)
3946		goto out2;
3947	audit_inode(nd->name, file->f_path.dentry, 0);
3948out2:
3949	mnt_drop_write(path.mnt);
3950out:
3951	path_put(&path);
3952	return error;
3953}
3954
3955static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3956{
3957	struct path path;
3958	int error = path_lookupat(nd, flags, &path);
3959	if (!error) {
3960		audit_inode(nd->name, path.dentry, 0);
3961		error = vfs_open(&path, file);
3962		path_put(&path);
3963	}
3964	return error;
3965}
3966
3967static struct file *path_openat(struct nameidata *nd,
3968			const struct open_flags *op, unsigned flags)
3969{
3970	struct file *file;
3971	int error;
3972
3973	file = alloc_empty_file(op->open_flag, current_cred());
3974	if (IS_ERR(file))
3975		return file;
3976
3977	if (unlikely(file->f_flags & __O_TMPFILE)) {
3978		error = do_tmpfile(nd, flags, op, file);
3979	} else if (unlikely(file->f_flags & O_PATH)) {
3980		error = do_o_path(nd, flags, file);
3981	} else {
3982		const char *s = path_init(nd, flags);
3983		while (!(error = link_path_walk(s, nd)) &&
3984		       (s = open_last_lookups(nd, file, op)) != NULL)
3985			;
3986		if (!error)
3987			error = do_open(nd, file, op);
3988		terminate_walk(nd);
3989	}
3990	if (likely(!error)) {
3991		if (likely(file->f_mode & FMODE_OPENED))
3992			return file;
3993		WARN_ON(1);
3994		error = -EINVAL;
3995	}
3996	fput(file);
3997	if (error == -EOPENSTALE) {
3998		if (flags & LOOKUP_RCU)
3999			error = -ECHILD;
4000		else
4001			error = -ESTALE;
4002	}
4003	return ERR_PTR(error);
4004}
4005
4006struct file *do_filp_open(int dfd, struct filename *pathname,
4007		const struct open_flags *op)
4008{
4009	struct nameidata nd;
4010	int flags = op->lookup_flags;
4011	struct file *filp;
4012
4013	set_nameidata(&nd, dfd, pathname, NULL);
4014	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4015	if (unlikely(filp == ERR_PTR(-ECHILD)))
4016		filp = path_openat(&nd, op, flags);
4017	if (unlikely(filp == ERR_PTR(-ESTALE)))
4018		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4019	restore_nameidata();
4020	return filp;
4021}
4022
4023struct file *do_file_open_root(const struct path *root,
4024		const char *name, const struct open_flags *op)
4025{
4026	struct nameidata nd;
4027	struct file *file;
4028	struct filename *filename;
4029	int flags = op->lookup_flags;
4030
4031	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4032		return ERR_PTR(-ELOOP);
4033
4034	filename = getname_kernel(name);
4035	if (IS_ERR(filename))
4036		return ERR_CAST(filename);
4037
4038	set_nameidata(&nd, -1, filename, root);
4039	file = path_openat(&nd, op, flags | LOOKUP_RCU);
4040	if (unlikely(file == ERR_PTR(-ECHILD)))
4041		file = path_openat(&nd, op, flags);
4042	if (unlikely(file == ERR_PTR(-ESTALE)))
4043		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4044	restore_nameidata();
4045	putname(filename);
4046	return file;
4047}
4048
4049static struct dentry *filename_create(int dfd, struct filename *name,
4050				      struct path *path, unsigned int lookup_flags)
4051{
4052	struct dentry *dentry = ERR_PTR(-EEXIST);
4053	struct qstr last;
4054	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4055	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4056	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4057	int type;
4058	int err2;
4059	int error;
4060
4061	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4062	if (error)
4063		return ERR_PTR(error);
4064
4065	/*
4066	 * Yucky last component or no last component at all?
4067	 * (foo/., foo/.., /////)
4068	 */
4069	if (unlikely(type != LAST_NORM))
4070		goto out;
4071
4072	/* don't fail immediately if it's r/o, at least try to report other errors */
4073	err2 = mnt_want_write(path->mnt);
4074	/*
4075	 * Do the final lookup.  Suppress 'create' if there is a trailing
4076	 * '/', and a directory wasn't requested.
4077	 */
4078	if (last.name[last.len] && !want_dir)
4079		create_flags = 0;
4080	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4081	dentry = lookup_one_qstr_excl(&last, path->dentry,
4082				      reval_flag | create_flags);
4083	if (IS_ERR(dentry))
4084		goto unlock;
4085
4086	error = -EEXIST;
4087	if (d_is_positive(dentry))
4088		goto fail;
4089
4090	/*
4091	 * Special case - lookup gave negative, but... we had foo/bar/
4092	 * From the vfs_mknod() POV we just have a negative dentry -
4093	 * all is fine. Let's be bastards - you had / on the end, you've
4094	 * been asking for (non-existent) directory. -ENOENT for you.
4095	 */
4096	if (unlikely(!create_flags)) {
4097		error = -ENOENT;
4098		goto fail;
4099	}
4100	if (unlikely(err2)) {
4101		error = err2;
4102		goto fail;
4103	}
4104	return dentry;
4105fail:
4106	dput(dentry);
4107	dentry = ERR_PTR(error);
4108unlock:
4109	inode_unlock(path->dentry->d_inode);
4110	if (!err2)
4111		mnt_drop_write(path->mnt);
4112out:
4113	path_put(path);
4114	return dentry;
4115}
4116
4117struct dentry *kern_path_create(int dfd, const char *pathname,
4118				struct path *path, unsigned int lookup_flags)
4119{
4120	struct filename *filename = getname_kernel(pathname);
4121	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4122
4123	putname(filename);
4124	return res;
4125}
4126EXPORT_SYMBOL(kern_path_create);
4127
4128void done_path_create(struct path *path, struct dentry *dentry)
4129{
4130	dput(dentry);
4131	inode_unlock(path->dentry->d_inode);
4132	mnt_drop_write(path->mnt);
4133	path_put(path);
4134}
4135EXPORT_SYMBOL(done_path_create);
4136
4137inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4138				struct path *path, unsigned int lookup_flags)
4139{
4140	struct filename *filename = getname(pathname);
4141	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4142
4143	putname(filename);
4144	return res;
4145}
4146EXPORT_SYMBOL(user_path_create);
4147
4148/**
4149 * vfs_mknod - create device node or file
4150 * @idmap:	idmap of the mount the inode was found from
4151 * @dir:	inode of the parent directory
4152 * @dentry:	dentry of the child device node
4153 * @mode:	mode of the child device node
4154 * @dev:	device number of device to create
4155 *
4156 * Create a device node or file.
4157 *
4158 * If the inode has been found through an idmapped mount the idmap of
4159 * the vfsmount must be passed through @idmap. This function will then take
4160 * care to map the inode according to @idmap before checking permissions.
4161 * On non-idmapped mounts or if permission checking is to be performed on the
4162 * raw inode simply pass @nop_mnt_idmap.
4163 */
4164int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4165	      struct dentry *dentry, umode_t mode, dev_t dev)
4166{
4167	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4168	int error = may_create(idmap, dir, dentry);
4169
4170	if (error)
4171		return error;
4172
4173	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4174	    !capable(CAP_MKNOD))
4175		return -EPERM;
4176
4177	if (!dir->i_op->mknod)
4178		return -EPERM;
4179
4180	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4181	error = devcgroup_inode_mknod(mode, dev);
4182	if (error)
4183		return error;
4184
4185	error = security_inode_mknod(dir, dentry, mode, dev);
4186	if (error)
4187		return error;
4188
4189	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4190	if (!error)
4191		fsnotify_create(dir, dentry);
4192	return error;
4193}
4194EXPORT_SYMBOL(vfs_mknod);
4195
4196static int may_mknod(umode_t mode)
4197{
4198	switch (mode & S_IFMT) {
4199	case S_IFREG:
4200	case S_IFCHR:
4201	case S_IFBLK:
4202	case S_IFIFO:
4203	case S_IFSOCK:
4204	case 0: /* zero mode translates to S_IFREG */
4205		return 0;
4206	case S_IFDIR:
4207		return -EPERM;
4208	default:
4209		return -EINVAL;
4210	}
4211}
4212
4213static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4214		unsigned int dev)
4215{
4216	struct mnt_idmap *idmap;
4217	struct dentry *dentry;
4218	struct path path;
4219	int error;
4220	unsigned int lookup_flags = 0;
4221
4222	error = may_mknod(mode);
4223	if (error)
4224		goto out1;
4225retry:
4226	dentry = filename_create(dfd, name, &path, lookup_flags);
4227	error = PTR_ERR(dentry);
4228	if (IS_ERR(dentry))
4229		goto out1;
4230
4231	error = security_path_mknod(&path, dentry,
4232			mode_strip_umask(path.dentry->d_inode, mode), dev);
4233	if (error)
4234		goto out2;
4235
4236	idmap = mnt_idmap(path.mnt);
4237	switch (mode & S_IFMT) {
4238		case 0: case S_IFREG:
4239			error = vfs_create(idmap, path.dentry->d_inode,
4240					   dentry, mode, true);
4241			if (!error)
4242				security_path_post_mknod(idmap, dentry);
4243			break;
4244		case S_IFCHR: case S_IFBLK:
4245			error = vfs_mknod(idmap, path.dentry->d_inode,
4246					  dentry, mode, new_decode_dev(dev));
4247			break;
4248		case S_IFIFO: case S_IFSOCK:
4249			error = vfs_mknod(idmap, path.dentry->d_inode,
4250					  dentry, mode, 0);
4251			break;
4252	}
4253out2:
4254	done_path_create(&path, dentry);
4255	if (retry_estale(error, lookup_flags)) {
4256		lookup_flags |= LOOKUP_REVAL;
4257		goto retry;
4258	}
4259out1:
4260	putname(name);
4261	return error;
4262}
4263
4264SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4265		unsigned int, dev)
4266{
4267	return do_mknodat(dfd, getname(filename), mode, dev);
4268}
4269
4270SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4271{
4272	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4273}
4274
4275/**
4276 * vfs_mkdir - create directory
4277 * @idmap:	idmap of the mount the inode was found from
4278 * @dir:	inode of the parent directory
4279 * @dentry:	dentry of the child directory
4280 * @mode:	mode of the child directory
4281 *
4282 * Create a directory.
4283 *
4284 * If the inode has been found through an idmapped mount the idmap of
4285 * the vfsmount must be passed through @idmap. This function will then take
4286 * care to map the inode according to @idmap before checking permissions.
4287 * On non-idmapped mounts or if permission checking is to be performed on the
4288 * raw inode simply pass @nop_mnt_idmap.
4289 */
4290int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4291	      struct dentry *dentry, umode_t mode)
4292{
4293	int error;
4294	unsigned max_links = dir->i_sb->s_max_links;
4295
4296	error = may_create(idmap, dir, dentry);
4297	if (error)
4298		return error;
4299
4300	if (!dir->i_op->mkdir)
4301		return -EPERM;
4302
4303	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4304	error = security_inode_mkdir(dir, dentry, mode);
4305	if (error)
4306		return error;
4307
4308	if (max_links && dir->i_nlink >= max_links)
4309		return -EMLINK;
4310
4311	error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4312	if (!error)
4313		fsnotify_mkdir(dir, dentry);
4314	return error;
4315}
4316EXPORT_SYMBOL(vfs_mkdir);
4317
4318int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4319{
4320	struct dentry *dentry;
4321	struct path path;
4322	int error;
4323	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4324
4325retry:
4326	dentry = filename_create(dfd, name, &path, lookup_flags);
4327	error = PTR_ERR(dentry);
4328	if (IS_ERR(dentry))
4329		goto out_putname;
4330
4331	error = security_path_mkdir(&path, dentry,
4332			mode_strip_umask(path.dentry->d_inode, mode));
4333	if (!error) {
4334		error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4335				  dentry, mode);
4336	}
4337	done_path_create(&path, dentry);
4338	if (retry_estale(error, lookup_flags)) {
4339		lookup_flags |= LOOKUP_REVAL;
4340		goto retry;
4341	}
4342out_putname:
4343	putname(name);
4344	return error;
4345}
4346
4347SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4348{
4349	return do_mkdirat(dfd, getname(pathname), mode);
4350}
4351
4352SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4353{
4354	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4355}
4356
4357/**
4358 * vfs_rmdir - remove directory
4359 * @idmap:	idmap of the mount the inode was found from
4360 * @dir:	inode of the parent directory
4361 * @dentry:	dentry of the child directory
4362 *
4363 * Remove a directory.
4364 *
4365 * If the inode has been found through an idmapped mount the idmap of
4366 * the vfsmount must be passed through @idmap. This function will then take
4367 * care to map the inode according to @idmap before checking permissions.
4368 * On non-idmapped mounts or if permission checking is to be performed on the
4369 * raw inode simply pass @nop_mnt_idmap.
4370 */
4371int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4372		     struct dentry *dentry)
4373{
4374	int error = may_delete(idmap, dir, dentry, 1);
4375
4376	if (error)
4377		return error;
4378
4379	if (!dir->i_op->rmdir)
4380		return -EPERM;
4381
4382	dget(dentry);
4383	inode_lock(dentry->d_inode);
4384
4385	error = -EBUSY;
4386	if (is_local_mountpoint(dentry) ||
4387	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4388		goto out;
4389
4390	error = security_inode_rmdir(dir, dentry);
4391	if (error)
4392		goto out;
4393
4394	error = dir->i_op->rmdir(dir, dentry);
4395	if (error)
4396		goto out;
4397
4398	shrink_dcache_parent(dentry);
4399	dentry->d_inode->i_flags |= S_DEAD;
4400	dont_mount(dentry);
4401	detach_mounts(dentry);
4402
4403out:
4404	inode_unlock(dentry->d_inode);
4405	dput(dentry);
4406	if (!error)
4407		d_delete_notify(dir, dentry);
4408	return error;
4409}
4410EXPORT_SYMBOL(vfs_rmdir);
4411
4412int do_rmdir(int dfd, struct filename *name)
4413{
4414	int error;
4415	struct dentry *dentry;
4416	struct path path;
4417	struct qstr last;
4418	int type;
4419	unsigned int lookup_flags = 0;
4420retry:
4421	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4422	if (error)
4423		goto exit1;
4424
4425	switch (type) {
4426	case LAST_DOTDOT:
4427		error = -ENOTEMPTY;
4428		goto exit2;
4429	case LAST_DOT:
4430		error = -EINVAL;
4431		goto exit2;
4432	case LAST_ROOT:
4433		error = -EBUSY;
4434		goto exit2;
4435	}
4436
4437	error = mnt_want_write(path.mnt);
4438	if (error)
4439		goto exit2;
4440
4441	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4442	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4443	error = PTR_ERR(dentry);
4444	if (IS_ERR(dentry))
4445		goto exit3;
4446	if (!dentry->d_inode) {
4447		error = -ENOENT;
4448		goto exit4;
4449	}
4450	error = security_path_rmdir(&path, dentry);
4451	if (error)
4452		goto exit4;
4453	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4454exit4:
4455	dput(dentry);
4456exit3:
4457	inode_unlock(path.dentry->d_inode);
4458	mnt_drop_write(path.mnt);
4459exit2:
4460	path_put(&path);
4461	if (retry_estale(error, lookup_flags)) {
4462		lookup_flags |= LOOKUP_REVAL;
4463		goto retry;
4464	}
4465exit1:
4466	putname(name);
4467	return error;
4468}
4469
4470SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4471{
4472	return do_rmdir(AT_FDCWD, getname(pathname));
4473}
4474
4475/**
4476 * vfs_unlink - unlink a filesystem object
4477 * @idmap:	idmap of the mount the inode was found from
4478 * @dir:	parent directory
4479 * @dentry:	victim
4480 * @delegated_inode: returns victim inode, if the inode is delegated.
4481 *
4482 * The caller must hold dir->i_mutex.
4483 *
4484 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4485 * return a reference to the inode in delegated_inode.  The caller
4486 * should then break the delegation on that inode and retry.  Because
4487 * breaking a delegation may take a long time, the caller should drop
4488 * dir->i_mutex before doing so.
4489 *
4490 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4491 * be appropriate for callers that expect the underlying filesystem not
4492 * to be NFS exported.
4493 *
4494 * If the inode has been found through an idmapped mount the idmap of
4495 * the vfsmount must be passed through @idmap. This function will then take
4496 * care to map the inode according to @idmap before checking permissions.
4497 * On non-idmapped mounts or if permission checking is to be performed on the
4498 * raw inode simply pass @nop_mnt_idmap.
4499 */
4500int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4501	       struct dentry *dentry, struct inode **delegated_inode)
4502{
4503	struct inode *target = dentry->d_inode;
4504	int error = may_delete(idmap, dir, dentry, 0);
4505
4506	if (error)
4507		return error;
4508
4509	if (!dir->i_op->unlink)
4510		return -EPERM;
4511
4512	inode_lock(target);
4513	if (IS_SWAPFILE(target))
4514		error = -EPERM;
4515	else if (is_local_mountpoint(dentry))
4516		error = -EBUSY;
4517	else {
4518		error = security_inode_unlink(dir, dentry);
4519		if (!error) {
4520			error = try_break_deleg(target, delegated_inode);
4521			if (error)
4522				goto out;
4523			error = dir->i_op->unlink(dir, dentry);
4524			if (!error) {
4525				dont_mount(dentry);
4526				detach_mounts(dentry);
4527			}
4528		}
4529	}
4530out:
4531	inode_unlock(target);
4532
4533	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4534	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4535		fsnotify_unlink(dir, dentry);
4536	} else if (!error) {
4537		fsnotify_link_count(target);
4538		d_delete_notify(dir, dentry);
4539	}
4540
4541	return error;
4542}
4543EXPORT_SYMBOL(vfs_unlink);
4544
4545/*
4546 * Make sure that the actual truncation of the file will occur outside its
4547 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4548 * writeout happening, and we don't want to prevent access to the directory
4549 * while waiting on the I/O.
4550 */
4551int do_unlinkat(int dfd, struct filename *name)
4552{
4553	int error;
4554	struct dentry *dentry;
4555	struct path path;
4556	struct qstr last;
4557	int type;
4558	struct inode *inode = NULL;
4559	struct inode *delegated_inode = NULL;
4560	unsigned int lookup_flags = 0;
4561retry:
4562	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4563	if (error)
4564		goto exit1;
4565
4566	error = -EISDIR;
4567	if (type != LAST_NORM)
4568		goto exit2;
4569
4570	error = mnt_want_write(path.mnt);
4571	if (error)
4572		goto exit2;
4573retry_deleg:
4574	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4575	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4576	error = PTR_ERR(dentry);
4577	if (!IS_ERR(dentry)) {
4578
4579		/* Why not before? Because we want correct error value */
4580		if (last.name[last.len] || d_is_negative(dentry))
4581			goto slashes;
4582		inode = dentry->d_inode;
4583		ihold(inode);
4584		error = security_path_unlink(&path, dentry);
4585		if (error)
4586			goto exit3;
4587		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4588				   dentry, &delegated_inode);
4589exit3:
4590		dput(dentry);
4591	}
4592	inode_unlock(path.dentry->d_inode);
4593	if (inode)
4594		iput(inode);	/* truncate the inode here */
4595	inode = NULL;
4596	if (delegated_inode) {
4597		error = break_deleg_wait(&delegated_inode);
4598		if (!error)
4599			goto retry_deleg;
4600	}
4601	mnt_drop_write(path.mnt);
4602exit2:
4603	path_put(&path);
4604	if (retry_estale(error, lookup_flags)) {
4605		lookup_flags |= LOOKUP_REVAL;
4606		inode = NULL;
4607		goto retry;
4608	}
4609exit1:
4610	putname(name);
4611	return error;
4612
4613slashes:
4614	if (d_is_negative(dentry))
4615		error = -ENOENT;
4616	else if (d_is_dir(dentry))
4617		error = -EISDIR;
4618	else
4619		error = -ENOTDIR;
4620	goto exit3;
4621}
4622
4623SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4624{
4625	if ((flag & ~AT_REMOVEDIR) != 0)
4626		return -EINVAL;
4627
4628	if (flag & AT_REMOVEDIR)
4629		return do_rmdir(dfd, getname(pathname));
4630	return do_unlinkat(dfd, getname(pathname));
4631}
4632
4633SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4634{
4635	return do_unlinkat(AT_FDCWD, getname(pathname));
4636}
4637
4638/**
4639 * vfs_symlink - create symlink
4640 * @idmap:	idmap of the mount the inode was found from
4641 * @dir:	inode of the parent directory
4642 * @dentry:	dentry of the child symlink file
4643 * @oldname:	name of the file to link to
4644 *
4645 * Create a symlink.
4646 *
4647 * If the inode has been found through an idmapped mount the idmap of
4648 * the vfsmount must be passed through @idmap. This function will then take
4649 * care to map the inode according to @idmap before checking permissions.
4650 * On non-idmapped mounts or if permission checking is to be performed on the
4651 * raw inode simply pass @nop_mnt_idmap.
4652 */
4653int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4654		struct dentry *dentry, const char *oldname)
4655{
4656	int error;
4657
4658	error = may_create(idmap, dir, dentry);
4659	if (error)
4660		return error;
4661
4662	if (!dir->i_op->symlink)
4663		return -EPERM;
4664
4665	error = security_inode_symlink(dir, dentry, oldname);
4666	if (error)
4667		return error;
4668
4669	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4670	if (!error)
4671		fsnotify_create(dir, dentry);
4672	return error;
4673}
4674EXPORT_SYMBOL(vfs_symlink);
4675
4676int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4677{
4678	int error;
4679	struct dentry *dentry;
4680	struct path path;
4681	unsigned int lookup_flags = 0;
4682
4683	if (IS_ERR(from)) {
4684		error = PTR_ERR(from);
4685		goto out_putnames;
4686	}
4687retry:
4688	dentry = filename_create(newdfd, to, &path, lookup_flags);
4689	error = PTR_ERR(dentry);
4690	if (IS_ERR(dentry))
4691		goto out_putnames;
4692
4693	error = security_path_symlink(&path, dentry, from->name);
4694	if (!error)
4695		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4696				    dentry, from->name);
4697	done_path_create(&path, dentry);
4698	if (retry_estale(error, lookup_flags)) {
4699		lookup_flags |= LOOKUP_REVAL;
4700		goto retry;
4701	}
4702out_putnames:
4703	putname(to);
4704	putname(from);
4705	return error;
4706}
4707
4708SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4709		int, newdfd, const char __user *, newname)
4710{
4711	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4712}
4713
4714SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4715{
4716	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4717}
4718
4719/**
4720 * vfs_link - create a new link
4721 * @old_dentry:	object to be linked
4722 * @idmap:	idmap of the mount
4723 * @dir:	new parent
4724 * @new_dentry:	where to create the new link
4725 * @delegated_inode: returns inode needing a delegation break
4726 *
4727 * The caller must hold dir->i_mutex
4728 *
4729 * If vfs_link discovers a delegation on the to-be-linked file in need
4730 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4731 * inode in delegated_inode.  The caller should then break the delegation
4732 * and retry.  Because breaking a delegation may take a long time, the
4733 * caller should drop the i_mutex before doing so.
4734 *
4735 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4736 * be appropriate for callers that expect the underlying filesystem not
4737 * to be NFS exported.
4738 *
4739 * If the inode has been found through an idmapped mount the idmap of
4740 * the vfsmount must be passed through @idmap. This function will then take
4741 * care to map the inode according to @idmap before checking permissions.
4742 * On non-idmapped mounts or if permission checking is to be performed on the
4743 * raw inode simply pass @nop_mnt_idmap.
4744 */
4745int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4746	     struct inode *dir, struct dentry *new_dentry,
4747	     struct inode **delegated_inode)
4748{
4749	struct inode *inode = old_dentry->d_inode;
4750	unsigned max_links = dir->i_sb->s_max_links;
4751	int error;
4752
4753	if (!inode)
4754		return -ENOENT;
4755
4756	error = may_create(idmap, dir, new_dentry);
4757	if (error)
4758		return error;
4759
4760	if (dir->i_sb != inode->i_sb)
4761		return -EXDEV;
4762
4763	/*
4764	 * A link to an append-only or immutable file cannot be created.
4765	 */
4766	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4767		return -EPERM;
4768	/*
4769	 * Updating the link count will likely cause i_uid and i_gid to
4770	 * be writen back improperly if their true value is unknown to
4771	 * the vfs.
4772	 */
4773	if (HAS_UNMAPPED_ID(idmap, inode))
4774		return -EPERM;
4775	if (!dir->i_op->link)
4776		return -EPERM;
4777	if (S_ISDIR(inode->i_mode))
4778		return -EPERM;
4779
4780	error = security_inode_link(old_dentry, dir, new_dentry);
4781	if (error)
4782		return error;
4783
4784	inode_lock(inode);
4785	/* Make sure we don't allow creating hardlink to an unlinked file */
4786	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4787		error =  -ENOENT;
4788	else if (max_links && inode->i_nlink >= max_links)
4789		error = -EMLINK;
4790	else {
4791		error = try_break_deleg(inode, delegated_inode);
4792		if (!error)
4793			error = dir->i_op->link(old_dentry, dir, new_dentry);
4794	}
4795
4796	if (!error && (inode->i_state & I_LINKABLE)) {
4797		spin_lock(&inode->i_lock);
4798		inode->i_state &= ~I_LINKABLE;
4799		spin_unlock(&inode->i_lock);
4800	}
4801	inode_unlock(inode);
4802	if (!error)
4803		fsnotify_link(dir, inode, new_dentry);
4804	return error;
4805}
4806EXPORT_SYMBOL(vfs_link);
4807
4808/*
4809 * Hardlinks are often used in delicate situations.  We avoid
4810 * security-related surprises by not following symlinks on the
4811 * newname.  --KAB
4812 *
4813 * We don't follow them on the oldname either to be compatible
4814 * with linux 2.0, and to avoid hard-linking to directories
4815 * and other special files.  --ADM
4816 */
4817int do_linkat(int olddfd, struct filename *old, int newdfd,
4818	      struct filename *new, int flags)
4819{
4820	struct mnt_idmap *idmap;
4821	struct dentry *new_dentry;
4822	struct path old_path, new_path;
4823	struct inode *delegated_inode = NULL;
4824	int how = 0;
4825	int error;
4826
4827	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4828		error = -EINVAL;
4829		goto out_putnames;
4830	}
4831	/*
4832	 * To use null names we require CAP_DAC_READ_SEARCH or
4833	 * that the open-time creds of the dfd matches current.
4834	 * This ensures that not everyone will be able to create
4835	 * a hardlink using the passed file descriptor.
4836	 */
4837	if (flags & AT_EMPTY_PATH)
4838		how |= LOOKUP_LINKAT_EMPTY;
4839
4840	if (flags & AT_SYMLINK_FOLLOW)
4841		how |= LOOKUP_FOLLOW;
4842retry:
4843	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4844	if (error)
4845		goto out_putnames;
4846
4847	new_dentry = filename_create(newdfd, new, &new_path,
4848					(how & LOOKUP_REVAL));
4849	error = PTR_ERR(new_dentry);
4850	if (IS_ERR(new_dentry))
4851		goto out_putpath;
4852
4853	error = -EXDEV;
4854	if (old_path.mnt != new_path.mnt)
4855		goto out_dput;
4856	idmap = mnt_idmap(new_path.mnt);
4857	error = may_linkat(idmap, &old_path);
4858	if (unlikely(error))
4859		goto out_dput;
4860	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4861	if (error)
4862		goto out_dput;
4863	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4864			 new_dentry, &delegated_inode);
4865out_dput:
4866	done_path_create(&new_path, new_dentry);
4867	if (delegated_inode) {
4868		error = break_deleg_wait(&delegated_inode);
4869		if (!error) {
4870			path_put(&old_path);
4871			goto retry;
4872		}
4873	}
4874	if (retry_estale(error, how)) {
4875		path_put(&old_path);
4876		how |= LOOKUP_REVAL;
4877		goto retry;
4878	}
4879out_putpath:
4880	path_put(&old_path);
4881out_putnames:
4882	putname(old);
4883	putname(new);
4884
4885	return error;
4886}
4887
4888SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4889		int, newdfd, const char __user *, newname, int, flags)
4890{
4891	return do_linkat(olddfd, getname_uflags(oldname, flags),
4892		newdfd, getname(newname), flags);
4893}
4894
4895SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4896{
4897	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4898}
4899
4900/**
4901 * vfs_rename - rename a filesystem object
4902 * @rd:		pointer to &struct renamedata info
4903 *
4904 * The caller must hold multiple mutexes--see lock_rename()).
4905 *
4906 * If vfs_rename discovers a delegation in need of breaking at either
4907 * the source or destination, it will return -EWOULDBLOCK and return a
4908 * reference to the inode in delegated_inode.  The caller should then
4909 * break the delegation and retry.  Because breaking a delegation may
4910 * take a long time, the caller should drop all locks before doing
4911 * so.
4912 *
4913 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4914 * be appropriate for callers that expect the underlying filesystem not
4915 * to be NFS exported.
4916 *
4917 * The worst of all namespace operations - renaming directory. "Perverted"
4918 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4919 * Problems:
4920 *
4921 *	a) we can get into loop creation.
4922 *	b) race potential - two innocent renames can create a loop together.
4923 *	   That's where 4.4BSD screws up. Current fix: serialization on
4924 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4925 *	   story.
4926 *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4927 *	   and source (if it's a non-directory or a subdirectory that moves to
4928 *	   different parent).
4929 *	   And that - after we got ->i_mutex on parents (until then we don't know
4930 *	   whether the target exists).  Solution: try to be smart with locking
4931 *	   order for inodes.  We rely on the fact that tree topology may change
4932 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4933 *	   move will be locked.  Thus we can rank directories by the tree
4934 *	   (ancestors first) and rank all non-directories after them.
4935 *	   That works since everybody except rename does "lock parent, lookup,
4936 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4937 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4938 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4939 *	   we'd better make sure that there's no link(2) for them.
4940 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4941 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4942 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4943 *	   ->i_mutex on parents, which works but leads to some truly excessive
4944 *	   locking].
4945 */
4946int vfs_rename(struct renamedata *rd)
4947{
4948	int error;
4949	struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4950	struct dentry *old_dentry = rd->old_dentry;
4951	struct dentry *new_dentry = rd->new_dentry;
4952	struct inode **delegated_inode = rd->delegated_inode;
4953	unsigned int flags = rd->flags;
4954	bool is_dir = d_is_dir(old_dentry);
4955	struct inode *source = old_dentry->d_inode;
4956	struct inode *target = new_dentry->d_inode;
4957	bool new_is_dir = false;
4958	unsigned max_links = new_dir->i_sb->s_max_links;
4959	struct name_snapshot old_name;
4960	bool lock_old_subdir, lock_new_subdir;
4961
4962	if (source == target)
4963		return 0;
4964
4965	error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4966	if (error)
4967		return error;
4968
4969	if (!target) {
4970		error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4971	} else {
4972		new_is_dir = d_is_dir(new_dentry);
4973
4974		if (!(flags & RENAME_EXCHANGE))
4975			error = may_delete(rd->new_mnt_idmap, new_dir,
4976					   new_dentry, is_dir);
4977		else
4978			error = may_delete(rd->new_mnt_idmap, new_dir,
4979					   new_dentry, new_is_dir);
4980	}
4981	if (error)
4982		return error;
4983
4984	if (!old_dir->i_op->rename)
4985		return -EPERM;
4986
4987	/*
4988	 * If we are going to change the parent - check write permissions,
4989	 * we'll need to flip '..'.
4990	 */
4991	if (new_dir != old_dir) {
4992		if (is_dir) {
4993			error = inode_permission(rd->old_mnt_idmap, source,
4994						 MAY_WRITE);
4995			if (error)
4996				return error;
4997		}
4998		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4999			error = inode_permission(rd->new_mnt_idmap, target,
5000						 MAY_WRITE);
5001			if (error)
5002				return error;
5003		}
5004	}
5005
5006	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5007				      flags);
5008	if (error)
5009		return error;
5010
5011	take_dentry_name_snapshot(&old_name, old_dentry);
5012	dget(new_dentry);
5013	/*
5014	 * Lock children.
5015	 * The source subdirectory needs to be locked on cross-directory
5016	 * rename or cross-directory exchange since its parent changes.
5017	 * The target subdirectory needs to be locked on cross-directory
5018	 * exchange due to parent change and on any rename due to becoming
5019	 * a victim.
5020	 * Non-directories need locking in all cases (for NFS reasons);
5021	 * they get locked after any subdirectories (in inode address order).
5022	 *
5023	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5024	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5025	 */
5026	lock_old_subdir = new_dir != old_dir;
5027	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5028	if (is_dir) {
5029		if (lock_old_subdir)
5030			inode_lock_nested(source, I_MUTEX_CHILD);
5031		if (target && (!new_is_dir || lock_new_subdir))
5032			inode_lock(target);
5033	} else if (new_is_dir) {
5034		if (lock_new_subdir)
5035			inode_lock_nested(target, I_MUTEX_CHILD);
5036		inode_lock(source);
5037	} else {
5038		lock_two_nondirectories(source, target);
5039	}
5040
5041	error = -EPERM;
5042	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5043		goto out;
5044
5045	error = -EBUSY;
5046	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5047		goto out;
5048
5049	if (max_links && new_dir != old_dir) {
5050		error = -EMLINK;
5051		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5052			goto out;
5053		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5054		    old_dir->i_nlink >= max_links)
5055			goto out;
5056	}
5057	if (!is_dir) {
5058		error = try_break_deleg(source, delegated_inode);
5059		if (error)
5060			goto out;
5061	}
5062	if (target && !new_is_dir) {
5063		error = try_break_deleg(target, delegated_inode);
5064		if (error)
5065			goto out;
5066	}
5067	error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5068				      new_dir, new_dentry, flags);
5069	if (error)
5070		goto out;
5071
5072	if (!(flags & RENAME_EXCHANGE) && target) {
5073		if (is_dir) {
5074			shrink_dcache_parent(new_dentry);
5075			target->i_flags |= S_DEAD;
5076		}
5077		dont_mount(new_dentry);
5078		detach_mounts(new_dentry);
5079	}
5080	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5081		if (!(flags & RENAME_EXCHANGE))
5082			d_move(old_dentry, new_dentry);
5083		else
5084			d_exchange(old_dentry, new_dentry);
5085	}
5086out:
5087	if (!is_dir || lock_old_subdir)
5088		inode_unlock(source);
5089	if (target && (!new_is_dir || lock_new_subdir))
5090		inode_unlock(target);
5091	dput(new_dentry);
5092	if (!error) {
5093		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5094			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5095		if (flags & RENAME_EXCHANGE) {
5096			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5097				      new_is_dir, NULL, new_dentry);
5098		}
5099	}
5100	release_dentry_name_snapshot(&old_name);
5101
5102	return error;
5103}
5104EXPORT_SYMBOL(vfs_rename);
5105
5106int do_renameat2(int olddfd, struct filename *from, int newdfd,
5107		 struct filename *to, unsigned int flags)
5108{
5109	struct renamedata rd;
5110	struct dentry *old_dentry, *new_dentry;
5111	struct dentry *trap;
5112	struct path old_path, new_path;
5113	struct qstr old_last, new_last;
5114	int old_type, new_type;
5115	struct inode *delegated_inode = NULL;
5116	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
5117	bool should_retry = false;
5118	int error = -EINVAL;
5119
5120	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5121		goto put_names;
5122
5123	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5124	    (flags & RENAME_EXCHANGE))
5125		goto put_names;
5126
5127	if (flags & RENAME_EXCHANGE)
5128		target_flags = 0;
5129
5130retry:
5131	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5132				  &old_last, &old_type);
5133	if (error)
5134		goto put_names;
5135
5136	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5137				  &new_type);
5138	if (error)
5139		goto exit1;
5140
5141	error = -EXDEV;
5142	if (old_path.mnt != new_path.mnt)
5143		goto exit2;
5144
5145	error = -EBUSY;
5146	if (old_type != LAST_NORM)
5147		goto exit2;
5148
5149	if (flags & RENAME_NOREPLACE)
5150		error = -EEXIST;
5151	if (new_type != LAST_NORM)
5152		goto exit2;
5153
5154	error = mnt_want_write(old_path.mnt);
5155	if (error)
5156		goto exit2;
5157
5158retry_deleg:
5159	trap = lock_rename(new_path.dentry, old_path.dentry);
5160	if (IS_ERR(trap)) {
5161		error = PTR_ERR(trap);
5162		goto exit_lock_rename;
5163	}
5164
5165	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5166					  lookup_flags);
5167	error = PTR_ERR(old_dentry);
5168	if (IS_ERR(old_dentry))
5169		goto exit3;
5170	/* source must exist */
5171	error = -ENOENT;
5172	if (d_is_negative(old_dentry))
5173		goto exit4;
5174	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5175					  lookup_flags | target_flags);
5176	error = PTR_ERR(new_dentry);
5177	if (IS_ERR(new_dentry))
5178		goto exit4;
5179	error = -EEXIST;
5180	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
5181		goto exit5;
5182	if (flags & RENAME_EXCHANGE) {
5183		error = -ENOENT;
5184		if (d_is_negative(new_dentry))
5185			goto exit5;
5186
5187		if (!d_is_dir(new_dentry)) {
5188			error = -ENOTDIR;
5189			if (new_last.name[new_last.len])
5190				goto exit5;
5191		}
5192	}
5193	/* unless the source is a directory trailing slashes give -ENOTDIR */
5194	if (!d_is_dir(old_dentry)) {
5195		error = -ENOTDIR;
5196		if (old_last.name[old_last.len])
5197			goto exit5;
5198		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5199			goto exit5;
5200	}
5201	/* source should not be ancestor of target */
5202	error = -EINVAL;
5203	if (old_dentry == trap)
5204		goto exit5;
5205	/* target should not be an ancestor of source */
5206	if (!(flags & RENAME_EXCHANGE))
5207		error = -ENOTEMPTY;
5208	if (new_dentry == trap)
5209		goto exit5;
5210
5211	error = security_path_rename(&old_path, old_dentry,
5212				     &new_path, new_dentry, flags);
5213	if (error)
5214		goto exit5;
5215
5216	rd.old_dir	   = old_path.dentry->d_inode;
5217	rd.old_dentry	   = old_dentry;
5218	rd.old_mnt_idmap   = mnt_idmap(old_path.mnt);
5219	rd.new_dir	   = new_path.dentry->d_inode;
5220	rd.new_dentry	   = new_dentry;
5221	rd.new_mnt_idmap   = mnt_idmap(new_path.mnt);
5222	rd.delegated_inode = &delegated_inode;
5223	rd.flags	   = flags;
5224	error = vfs_rename(&rd);
5225exit5:
5226	dput(new_dentry);
5227exit4:
5228	dput(old_dentry);
5229exit3:
5230	unlock_rename(new_path.dentry, old_path.dentry);
5231exit_lock_rename:
5232	if (delegated_inode) {
5233		error = break_deleg_wait(&delegated_inode);
5234		if (!error)
5235			goto retry_deleg;
5236	}
5237	mnt_drop_write(old_path.mnt);
5238exit2:
5239	if (retry_estale(error, lookup_flags))
5240		should_retry = true;
5241	path_put(&new_path);
5242exit1:
5243	path_put(&old_path);
5244	if (should_retry) {
5245		should_retry = false;
5246		lookup_flags |= LOOKUP_REVAL;
5247		goto retry;
5248	}
5249put_names:
5250	putname(from);
5251	putname(to);
5252	return error;
5253}
5254
5255SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5256		int, newdfd, const char __user *, newname, unsigned int, flags)
5257{
5258	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5259				flags);
5260}
5261
5262SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5263		int, newdfd, const char __user *, newname)
5264{
5265	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5266				0);
5267}
5268
5269SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5270{
5271	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5272				getname(newname), 0);
5273}
5274
5275int readlink_copy(char __user *buffer, int buflen, const char *link)
5276{
5277	int len = PTR_ERR(link);
5278	if (IS_ERR(link))
5279		goto out;
5280
5281	len = strlen(link);
5282	if (len > (unsigned) buflen)
5283		len = buflen;
5284	if (copy_to_user(buffer, link, len))
5285		len = -EFAULT;
5286out:
5287	return len;
5288}
5289
5290/**
5291 * vfs_readlink - copy symlink body into userspace buffer
5292 * @dentry: dentry on which to get symbolic link
5293 * @buffer: user memory pointer
5294 * @buflen: size of buffer
5295 *
5296 * Does not touch atime.  That's up to the caller if necessary
5297 *
5298 * Does not call security hook.
5299 */
5300int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5301{
5302	struct inode *inode = d_inode(dentry);
5303	DEFINE_DELAYED_CALL(done);
5304	const char *link;
5305	int res;
5306
5307	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5308		if (unlikely(inode->i_op->readlink))
5309			return inode->i_op->readlink(dentry, buffer, buflen);
5310
5311		if (!d_is_symlink(dentry))
5312			return -EINVAL;
5313
5314		spin_lock(&inode->i_lock);
5315		inode->i_opflags |= IOP_DEFAULT_READLINK;
5316		spin_unlock(&inode->i_lock);
5317	}
5318
5319	link = READ_ONCE(inode->i_link);
5320	if (!link) {
5321		link = inode->i_op->get_link(dentry, inode, &done);
5322		if (IS_ERR(link))
5323			return PTR_ERR(link);
5324	}
5325	res = readlink_copy(buffer, buflen, link);
5326	do_delayed_call(&done);
5327	return res;
5328}
5329EXPORT_SYMBOL(vfs_readlink);
5330
5331/**
5332 * vfs_get_link - get symlink body
5333 * @dentry: dentry on which to get symbolic link
5334 * @done: caller needs to free returned data with this
5335 *
5336 * Calls security hook and i_op->get_link() on the supplied inode.
5337 *
5338 * It does not touch atime.  That's up to the caller if necessary.
5339 *
5340 * Does not work on "special" symlinks like /proc/$$/fd/N
5341 */
5342const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5343{
5344	const char *res = ERR_PTR(-EINVAL);
5345	struct inode *inode = d_inode(dentry);
5346
5347	if (d_is_symlink(dentry)) {
5348		res = ERR_PTR(security_inode_readlink(dentry));
5349		if (!res)
5350			res = inode->i_op->get_link(dentry, inode, done);
5351	}
5352	return res;
5353}
5354EXPORT_SYMBOL(vfs_get_link);
5355
5356/* get the link contents into pagecache */
5357const char *page_get_link(struct dentry *dentry, struct inode *inode,
5358			  struct delayed_call *callback)
5359{
5360	char *kaddr;
5361	struct page *page;
5362	struct address_space *mapping = inode->i_mapping;
5363
5364	if (!dentry) {
5365		page = find_get_page(mapping, 0);
5366		if (!page)
5367			return ERR_PTR(-ECHILD);
5368		if (!PageUptodate(page)) {
5369			put_page(page);
5370			return ERR_PTR(-ECHILD);
5371		}
5372	} else {
5373		page = read_mapping_page(mapping, 0, NULL);
5374		if (IS_ERR(page))
5375			return (char*)page;
5376	}
5377	set_delayed_call(callback, page_put_link, page);
5378	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5379	kaddr = page_address(page);
5380	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5381	return kaddr;
5382}
5383
5384EXPORT_SYMBOL(page_get_link);
5385
5386void page_put_link(void *arg)
5387{
5388	put_page(arg);
5389}
5390EXPORT_SYMBOL(page_put_link);
5391
5392int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5393{
5394	DEFINE_DELAYED_CALL(done);
5395	int res = readlink_copy(buffer, buflen,
5396				page_get_link(dentry, d_inode(dentry),
5397					      &done));
5398	do_delayed_call(&done);
5399	return res;
5400}
5401EXPORT_SYMBOL(page_readlink);
5402
5403int page_symlink(struct inode *inode, const char *symname, int len)
5404{
5405	struct address_space *mapping = inode->i_mapping;
5406	const struct address_space_operations *aops = mapping->a_ops;
5407	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5408	struct folio *folio;
5409	void *fsdata = NULL;
5410	int err;
5411	unsigned int flags;
5412
5413retry:
5414	if (nofs)
5415		flags = memalloc_nofs_save();
5416	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5417	if (nofs)
5418		memalloc_nofs_restore(flags);
5419	if (err)
5420		goto fail;
5421
5422	memcpy(folio_address(folio), symname, len - 1);
5423
5424	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5425						folio, fsdata);
5426	if (err < 0)
5427		goto fail;
5428	if (err < len-1)
5429		goto retry;
5430
5431	mark_inode_dirty(inode);
5432	return 0;
5433fail:
5434	return err;
5435}
5436EXPORT_SYMBOL(page_symlink);
5437
5438const struct inode_operations page_symlink_inode_operations = {
5439	.get_link	= page_get_link,
5440};
5441EXPORT_SYMBOL(page_symlink_inode_operations);