Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/namei.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * Some corrections by tytso.
  10 */
  11
  12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  13 * lookup logic.
  14 */
  15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  16 */
  17
  18#include <linux/init.h>
  19#include <linux/export.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/fs.h>
  23#include <linux/namei.h>
  24#include <linux/pagemap.h>
  25#include <linux/fsnotify.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/ima.h>
  29#include <linux/syscalls.h>
  30#include <linux/mount.h>
  31#include <linux/audit.h>
  32#include <linux/capability.h>
  33#include <linux/file.h>
  34#include <linux/fcntl.h>
  35#include <linux/device_cgroup.h>
  36#include <linux/fs_struct.h>
  37#include <linux/posix_acl.h>
  38#include <linux/hash.h>
  39#include <linux/bitops.h>
  40#include <linux/init_task.h>
  41#include <linux/uaccess.h>
  42
  43#include "internal.h"
  44#include "mount.h"
  45
  46/* [Feb-1997 T. Schoebel-Theuer]
  47 * Fundamental changes in the pathname lookup mechanisms (namei)
  48 * were necessary because of omirr.  The reason is that omirr needs
  49 * to know the _real_ pathname, not the user-supplied one, in case
  50 * of symlinks (and also when transname replacements occur).
  51 *
  52 * The new code replaces the old recursive symlink resolution with
  53 * an iterative one (in case of non-nested symlink chains).  It does
  54 * this with calls to <fs>_follow_link().
  55 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  56 * replaced with a single function lookup_dentry() that can handle all 
  57 * the special cases of the former code.
  58 *
  59 * With the new dcache, the pathname is stored at each inode, at least as
  60 * long as the refcount of the inode is positive.  As a side effect, the
  61 * size of the dcache depends on the inode cache and thus is dynamic.
  62 *
  63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  64 * resolution to correspond with current state of the code.
  65 *
  66 * Note that the symlink resolution is not *completely* iterative.
  67 * There is still a significant amount of tail- and mid- recursion in
  68 * the algorithm.  Also, note that <fs>_readlink() is not used in
  69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  70 * may return different results than <fs>_follow_link().  Many virtual
  71 * filesystems (including /proc) exhibit this behavior.
  72 */
  73
  74/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  76 * and the name already exists in form of a symlink, try to create the new
  77 * name indicated by the symlink. The old code always complained that the
  78 * name already exists, due to not following the symlink even if its target
  79 * is nonexistent.  The new semantics affects also mknod() and link() when
  80 * the name is a symlink pointing to a non-existent name.
  81 *
  82 * I don't know which semantics is the right one, since I have no access
  83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  85 * "old" one. Personally, I think the new semantics is much more logical.
  86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  87 * file does succeed in both HP-UX and SunOs, but not in Solaris
  88 * and in the old Linux semantics.
  89 */
  90
  91/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  92 * semantics.  See the comments in "open_namei" and "do_link" below.
  93 *
  94 * [10-Sep-98 Alan Modra] Another symlink change.
  95 */
  96
  97/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  98 *	inside the path - always follow.
  99 *	in the last component in creation/removal/renaming - never follow.
 100 *	if LOOKUP_FOLLOW passed - follow.
 101 *	if the pathname has trailing slashes - follow.
 102 *	otherwise - don't follow.
 103 * (applied in that order).
 104 *
 105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 107 * During the 2.4 we need to fix the userland stuff depending on it -
 108 * hopefully we will be able to get rid of that wart in 2.5. So far only
 109 * XEmacs seems to be relying on it...
 110 */
 111/*
 112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 113 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 114 * any extra contention...
 115 */
 116
 117/* In order to reduce some races, while at the same time doing additional
 118 * checking and hopefully speeding things up, we copy filenames to the
 119 * kernel data space before using them..
 120 *
 121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 122 * PATH_MAX includes the nul terminator --RR.
 123 */
 124
 125#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 126
 127struct filename *
 128getname_flags(const char __user *filename, int flags, int *empty)
 129{
 130	struct filename *result;
 131	char *kname;
 132	int len;
 133
 134	result = audit_reusename(filename);
 135	if (result)
 136		return result;
 137
 138	result = __getname();
 139	if (unlikely(!result))
 140		return ERR_PTR(-ENOMEM);
 141
 142	/*
 143	 * First, try to embed the struct filename inside the names_cache
 144	 * allocation
 145	 */
 146	kname = (char *)result->iname;
 147	result->name = kname;
 148
 149	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 150	if (unlikely(len < 0)) {
 151		__putname(result);
 152		return ERR_PTR(len);
 153	}
 154
 155	/*
 156	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 157	 * separate struct filename so we can dedicate the entire
 158	 * names_cache allocation for the pathname, and re-do the copy from
 159	 * userland.
 160	 */
 161	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 162		const size_t size = offsetof(struct filename, iname[1]);
 163		kname = (char *)result;
 164
 165		/*
 166		 * size is chosen that way we to guarantee that
 167		 * result->iname[0] is within the same object and that
 168		 * kname can't be equal to result->iname, no matter what.
 169		 */
 170		result = kzalloc(size, GFP_KERNEL);
 171		if (unlikely(!result)) {
 172			__putname(kname);
 173			return ERR_PTR(-ENOMEM);
 174		}
 175		result->name = kname;
 176		len = strncpy_from_user(kname, filename, PATH_MAX);
 177		if (unlikely(len < 0)) {
 178			__putname(kname);
 179			kfree(result);
 180			return ERR_PTR(len);
 181		}
 182		if (unlikely(len == PATH_MAX)) {
 183			__putname(kname);
 184			kfree(result);
 185			return ERR_PTR(-ENAMETOOLONG);
 186		}
 187	}
 188
 189	result->refcnt = 1;
 190	/* The empty path is special. */
 191	if (unlikely(!len)) {
 192		if (empty)
 193			*empty = 1;
 194		if (!(flags & LOOKUP_EMPTY)) {
 195			putname(result);
 196			return ERR_PTR(-ENOENT);
 197		}
 198	}
 199
 200	result->uptr = filename;
 201	result->aname = NULL;
 202	audit_getname(result);
 203	return result;
 204}
 205
 206struct filename *
 207getname(const char __user * filename)
 208{
 209	return getname_flags(filename, 0, NULL);
 210}
 211
 212struct filename *
 213getname_kernel(const char * filename)
 214{
 215	struct filename *result;
 216	int len = strlen(filename) + 1;
 217
 218	result = __getname();
 219	if (unlikely(!result))
 220		return ERR_PTR(-ENOMEM);
 221
 222	if (len <= EMBEDDED_NAME_MAX) {
 223		result->name = (char *)result->iname;
 224	} else if (len <= PATH_MAX) {
 225		const size_t size = offsetof(struct filename, iname[1]);
 226		struct filename *tmp;
 227
 228		tmp = kmalloc(size, GFP_KERNEL);
 229		if (unlikely(!tmp)) {
 230			__putname(result);
 231			return ERR_PTR(-ENOMEM);
 232		}
 233		tmp->name = (char *)result;
 234		result = tmp;
 235	} else {
 236		__putname(result);
 237		return ERR_PTR(-ENAMETOOLONG);
 238	}
 239	memcpy((char *)result->name, filename, len);
 240	result->uptr = NULL;
 241	result->aname = NULL;
 242	result->refcnt = 1;
 243	audit_getname(result);
 244
 245	return result;
 246}
 247
 248void putname(struct filename *name)
 249{
 250	BUG_ON(name->refcnt <= 0);
 251
 252	if (--name->refcnt > 0)
 253		return;
 254
 255	if (name->name != name->iname) {
 256		__putname(name->name);
 257		kfree(name);
 258	} else
 259		__putname(name);
 260}
 261
 262static int check_acl(struct inode *inode, int mask)
 263{
 264#ifdef CONFIG_FS_POSIX_ACL
 265	struct posix_acl *acl;
 266
 267	if (mask & MAY_NOT_BLOCK) {
 268		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 269	        if (!acl)
 270	                return -EAGAIN;
 271		/* no ->get_acl() calls in RCU mode... */
 272		if (is_uncached_acl(acl))
 273			return -ECHILD;
 274	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
 275	}
 276
 277	acl = get_acl(inode, ACL_TYPE_ACCESS);
 278	if (IS_ERR(acl))
 279		return PTR_ERR(acl);
 280	if (acl) {
 281	        int error = posix_acl_permission(inode, acl, mask);
 282	        posix_acl_release(acl);
 283	        return error;
 284	}
 285#endif
 286
 287	return -EAGAIN;
 288}
 289
 290/*
 291 * This does the basic permission checking
 292 */
 293static int acl_permission_check(struct inode *inode, int mask)
 294{
 295	unsigned int mode = inode->i_mode;
 296
 297	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
 298		mode >>= 6;
 299	else {
 300		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 301			int error = check_acl(inode, mask);
 302			if (error != -EAGAIN)
 303				return error;
 304		}
 305
 306		if (in_group_p(inode->i_gid))
 307			mode >>= 3;
 308	}
 309
 310	/*
 311	 * If the DACs are ok we don't need any capability check.
 312	 */
 313	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
 314		return 0;
 315	return -EACCES;
 316}
 317
 318/**
 319 * generic_permission -  check for access rights on a Posix-like filesystem
 320 * @inode:	inode to check access rights for
 321 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
 322 *
 323 * Used to check for read/write/execute permissions on a file.
 324 * We use "fsuid" for this, letting us set arbitrary permissions
 325 * for filesystem access without changing the "normal" uids which
 326 * are used for other things.
 327 *
 328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 329 * request cannot be satisfied (eg. requires blocking or too much complexity).
 330 * It would then be called again in ref-walk mode.
 331 */
 332int generic_permission(struct inode *inode, int mask)
 333{
 334	int ret;
 335
 336	/*
 337	 * Do the basic permission checks.
 338	 */
 339	ret = acl_permission_check(inode, mask);
 340	if (ret != -EACCES)
 341		return ret;
 342
 343	if (S_ISDIR(inode->i_mode)) {
 344		/* DACs are overridable for directories */
 
 
 345		if (!(mask & MAY_WRITE))
 346			if (capable_wrt_inode_uidgid(inode,
 347						     CAP_DAC_READ_SEARCH))
 348				return 0;
 349		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 350			return 0;
 351		return -EACCES;
 352	}
 353
 354	/*
 355	 * Searching includes executable on directories, else just read.
 356	 */
 357	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 358	if (mask == MAY_READ)
 359		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
 360			return 0;
 361	/*
 362	 * Read/write DACs are always overridable.
 363	 * Executable DACs are overridable when there is
 364	 * at least one exec bit set.
 365	 */
 366	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 367		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 368			return 0;
 369
 
 
 
 
 
 
 
 
 370	return -EACCES;
 371}
 372EXPORT_SYMBOL(generic_permission);
 373
 374/*
 375 * We _really_ want to just do "generic_permission()" without
 376 * even looking at the inode->i_op values. So we keep a cache
 377 * flag in inode->i_opflags, that says "this has not special
 378 * permission function, use the fast case".
 379 */
 380static inline int do_inode_permission(struct inode *inode, int mask)
 381{
 382	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 383		if (likely(inode->i_op->permission))
 384			return inode->i_op->permission(inode, mask);
 385
 386		/* This gets set once for the inode lifetime */
 387		spin_lock(&inode->i_lock);
 388		inode->i_opflags |= IOP_FASTPERM;
 389		spin_unlock(&inode->i_lock);
 390	}
 391	return generic_permission(inode, mask);
 392}
 393
 394/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395 * sb_permission - Check superblock-level permissions
 396 * @sb: Superblock of inode to check permission on
 397 * @inode: Inode to check permission on
 398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 399 *
 400 * Separate out file-system wide checks from inode-specific permission checks.
 401 */
 402static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 403{
 404	if (unlikely(mask & MAY_WRITE)) {
 405		umode_t mode = inode->i_mode;
 406
 407		/* Nobody gets write access to a read-only fs. */
 408		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 
 409			return -EROFS;
 410	}
 411	return 0;
 412}
 413
 414/**
 415 * inode_permission - Check for access rights to a given inode
 416 * @inode: Inode to check permission on
 417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 418 *
 419 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 420 * this, letting us set arbitrary permissions for filesystem access without
 421 * changing the "normal" UIDs which are used for other things.
 422 *
 423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 424 */
 425int inode_permission(struct inode *inode, int mask)
 426{
 427	int retval;
 428
 429	retval = sb_permission(inode->i_sb, inode, mask);
 430	if (retval)
 431		return retval;
 432
 433	if (unlikely(mask & MAY_WRITE)) {
 434		/*
 435		 * Nobody gets write access to an immutable file.
 436		 */
 437		if (IS_IMMUTABLE(inode))
 438			return -EPERM;
 439
 440		/*
 441		 * Updating mtime will likely cause i_uid and i_gid to be
 442		 * written back improperly if their true value is unknown
 443		 * to the vfs.
 444		 */
 445		if (HAS_UNMAPPED_ID(inode))
 446			return -EACCES;
 447	}
 448
 449	retval = do_inode_permission(inode, mask);
 450	if (retval)
 451		return retval;
 452
 453	retval = devcgroup_inode_permission(inode, mask);
 454	if (retval)
 455		return retval;
 456
 457	return security_inode_permission(inode, mask);
 458}
 459EXPORT_SYMBOL(inode_permission);
 460
 461/**
 462 * path_get - get a reference to a path
 463 * @path: path to get the reference to
 464 *
 465 * Given a path increment the reference count to the dentry and the vfsmount.
 466 */
 467void path_get(const struct path *path)
 468{
 469	mntget(path->mnt);
 470	dget(path->dentry);
 471}
 472EXPORT_SYMBOL(path_get);
 473
 474/**
 475 * path_put - put a reference to a path
 476 * @path: path to put the reference to
 477 *
 478 * Given a path decrement the reference count to the dentry and the vfsmount.
 479 */
 480void path_put(const struct path *path)
 481{
 482	dput(path->dentry);
 483	mntput(path->mnt);
 484}
 485EXPORT_SYMBOL(path_put);
 486
 487#define EMBEDDED_LEVELS 2
 488struct nameidata {
 489	struct path	path;
 490	struct qstr	last;
 491	struct path	root;
 492	struct inode	*inode; /* path.dentry.d_inode */
 493	unsigned int	flags;
 494	unsigned	seq, m_seq;
 495	int		last_type;
 496	unsigned	depth;
 497	int		total_link_count;
 498	struct saved {
 499		struct path link;
 500		struct delayed_call done;
 501		const char *name;
 502		unsigned seq;
 503	} *stack, internal[EMBEDDED_LEVELS];
 504	struct filename	*name;
 505	struct nameidata *saved;
 506	struct inode	*link_inode;
 507	unsigned	root_seq;
 508	int		dfd;
 509} __randomize_layout;
 510
 511static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 512{
 513	struct nameidata *old = current->nameidata;
 514	p->stack = p->internal;
 515	p->dfd = dfd;
 516	p->name = name;
 517	p->total_link_count = old ? old->total_link_count : 0;
 518	p->saved = old;
 519	current->nameidata = p;
 520}
 521
 522static void restore_nameidata(void)
 523{
 524	struct nameidata *now = current->nameidata, *old = now->saved;
 525
 526	current->nameidata = old;
 527	if (old)
 528		old->total_link_count = now->total_link_count;
 529	if (now->stack != now->internal)
 530		kfree(now->stack);
 531}
 532
 533static int __nd_alloc_stack(struct nameidata *nd)
 534{
 535	struct saved *p;
 536
 537	if (nd->flags & LOOKUP_RCU) {
 538		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 539				  GFP_ATOMIC);
 540		if (unlikely(!p))
 541			return -ECHILD;
 542	} else {
 543		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
 544				  GFP_KERNEL);
 545		if (unlikely(!p))
 546			return -ENOMEM;
 547	}
 548	memcpy(p, nd->internal, sizeof(nd->internal));
 549	nd->stack = p;
 550	return 0;
 551}
 552
 553/**
 554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
 555 * @path: nameidate to verify
 556 *
 557 * Rename can sometimes move a file or directory outside of a bind
 558 * mount, path_connected allows those cases to be detected.
 559 */
 560static bool path_connected(const struct path *path)
 561{
 562	struct vfsmount *mnt = path->mnt;
 563	struct super_block *sb = mnt->mnt_sb;
 564
 565	/* Bind mounts and multi-root filesystems can have disconnected paths */
 566	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
 567		return true;
 568
 569	return is_subdir(path->dentry, mnt->mnt_root);
 570}
 571
 572static inline int nd_alloc_stack(struct nameidata *nd)
 573{
 574	if (likely(nd->depth != EMBEDDED_LEVELS))
 575		return 0;
 576	if (likely(nd->stack != nd->internal))
 577		return 0;
 578	return __nd_alloc_stack(nd);
 579}
 580
 581static void drop_links(struct nameidata *nd)
 582{
 583	int i = nd->depth;
 584	while (i--) {
 585		struct saved *last = nd->stack + i;
 586		do_delayed_call(&last->done);
 587		clear_delayed_call(&last->done);
 588	}
 589}
 590
 591static void terminate_walk(struct nameidata *nd)
 592{
 593	drop_links(nd);
 594	if (!(nd->flags & LOOKUP_RCU)) {
 595		int i;
 596		path_put(&nd->path);
 597		for (i = 0; i < nd->depth; i++)
 598			path_put(&nd->stack[i].link);
 599		if (nd->flags & LOOKUP_ROOT_GRABBED) {
 600			path_put(&nd->root);
 601			nd->flags &= ~LOOKUP_ROOT_GRABBED;
 602		}
 603	} else {
 604		nd->flags &= ~LOOKUP_RCU;
 
 
 605		rcu_read_unlock();
 606	}
 607	nd->depth = 0;
 608}
 609
 610/* path_put is needed afterwards regardless of success or failure */
 611static bool legitimize_path(struct nameidata *nd,
 612			    struct path *path, unsigned seq)
 613{
 614	int res = __legitimize_mnt(path->mnt, nd->m_seq);
 615	if (unlikely(res)) {
 616		if (res > 0)
 617			path->mnt = NULL;
 618		path->dentry = NULL;
 619		return false;
 620	}
 621	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 622		path->dentry = NULL;
 623		return false;
 624	}
 625	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 626}
 627
 628static bool legitimize_links(struct nameidata *nd)
 629{
 630	int i;
 631	for (i = 0; i < nd->depth; i++) {
 632		struct saved *last = nd->stack + i;
 633		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 634			drop_links(nd);
 635			nd->depth = i + 1;
 636			return false;
 637		}
 638	}
 639	return true;
 640}
 641
 642static bool legitimize_root(struct nameidata *nd)
 643{
 644	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
 645		return true;
 646	nd->flags |= LOOKUP_ROOT_GRABBED;
 647	return legitimize_path(nd, &nd->root, nd->root_seq);
 648}
 649
 650/*
 651 * Path walking has 2 modes, rcu-walk and ref-walk (see
 652 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 654 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 655 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 656 * got stuck, so ref-walk may continue from there. If this is not successful
 657 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 658 * to restart the path walk from the beginning in ref-walk mode.
 659 */
 660
 661/**
 662 * unlazy_walk - try to switch to ref-walk mode.
 663 * @nd: nameidata pathwalk data
 
 
 664 * Returns: 0 on success, -ECHILD on failure
 665 *
 666 * unlazy_walk attempts to legitimize the current nd->path and nd->root
 667 * for ref-walk mode.
 668 * Must be called from rcu-walk context.
 669 * Nothing should touch nameidata between unlazy_walk() failure and
 670 * terminate_walk().
 671 */
 672static int unlazy_walk(struct nameidata *nd)
 673{
 674	struct dentry *parent = nd->path.dentry;
 675
 676	BUG_ON(!(nd->flags & LOOKUP_RCU));
 677
 678	nd->flags &= ~LOOKUP_RCU;
 679	if (unlikely(!legitimize_links(nd)))
 680		goto out1;
 681	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
 682		goto out;
 683	if (unlikely(!legitimize_root(nd)))
 684		goto out;
 685	rcu_read_unlock();
 686	BUG_ON(nd->inode != parent->d_inode);
 687	return 0;
 688
 689out1:
 690	nd->path.mnt = NULL;
 691	nd->path.dentry = NULL;
 692out:
 693	rcu_read_unlock();
 694	return -ECHILD;
 695}
 696
 697/**
 698 * unlazy_child - try to switch to ref-walk mode.
 699 * @nd: nameidata pathwalk data
 700 * @dentry: child of nd->path.dentry
 701 * @seq: seq number to check dentry against
 702 * Returns: 0 on success, -ECHILD on failure
 703 *
 704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
 705 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
 706 * @nd.  Must be called from rcu-walk context.
 707 * Nothing should touch nameidata between unlazy_child() failure and
 708 * terminate_walk().
 709 */
 710static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
 711{
 712	BUG_ON(!(nd->flags & LOOKUP_RCU));
 713
 714	nd->flags &= ~LOOKUP_RCU;
 715	if (unlikely(!legitimize_links(nd)))
 716		goto out2;
 717	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
 718		goto out2;
 719	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
 720		goto out1;
 721
 722	/*
 723	 * We need to move both the parent and the dentry from the RCU domain
 724	 * to be properly refcounted. And the sequence number in the dentry
 725	 * validates *both* dentry counters, since we checked the sequence
 726	 * number of the parent after we got the child sequence number. So we
 727	 * know the parent must still be valid if the child sequence number is
 
 
 
 
 728	 */
 729	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
 730		goto out;
 731	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
 732		goto out_dput;
 
 
 
 
 
 
 
 733	/*
 734	 * Sequence counts matched. Now make sure that the root is
 735	 * still valid and get it if required.
 736	 */
 737	if (unlikely(!legitimize_root(nd)))
 738		goto out_dput;
 
 
 
 
 
 
 739	rcu_read_unlock();
 740	return 0;
 741
 
 
 
 
 742out2:
 743	nd->path.mnt = NULL;
 744out1:
 745	nd->path.dentry = NULL;
 746out:
 747	rcu_read_unlock();
 
 
 
 748	return -ECHILD;
 749out_dput:
 750	rcu_read_unlock();
 751	dput(dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752	return -ECHILD;
 753}
 754
 755static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 756{
 757	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
 758		return dentry->d_op->d_revalidate(dentry, flags);
 759	else
 760		return 1;
 761}
 762
 763/**
 764 * complete_walk - successful completion of path walk
 765 * @nd:  pointer nameidata
 766 *
 767 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 768 * Revalidate the final result, unless we'd already done that during
 769 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 770 * success, -error on failure.  In case of failure caller does not
 771 * need to drop nd->path.
 772 */
 773static int complete_walk(struct nameidata *nd)
 774{
 775	struct dentry *dentry = nd->path.dentry;
 776	int status;
 777
 778	if (nd->flags & LOOKUP_RCU) {
 779		if (!(nd->flags & LOOKUP_ROOT))
 780			nd->root.mnt = NULL;
 781		if (unlikely(unlazy_walk(nd)))
 782			return -ECHILD;
 783	}
 784
 785	if (likely(!(nd->flags & LOOKUP_JUMPED)))
 786		return 0;
 787
 788	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 789		return 0;
 790
 791	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 792	if (status > 0)
 793		return 0;
 794
 795	if (!status)
 796		status = -ESTALE;
 797
 798	return status;
 799}
 800
 801static void set_root(struct nameidata *nd)
 802{
 803	struct fs_struct *fs = current->fs;
 804
 805	if (nd->flags & LOOKUP_RCU) {
 806		unsigned seq;
 807
 808		do {
 809			seq = read_seqcount_begin(&fs->seq);
 810			nd->root = fs->root;
 811			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 812		} while (read_seqcount_retry(&fs->seq, seq));
 813	} else {
 814		get_fs_root(fs, &nd->root);
 815		nd->flags |= LOOKUP_ROOT_GRABBED;
 816	}
 817}
 818
 819static void path_put_conditional(struct path *path, struct nameidata *nd)
 820{
 821	dput(path->dentry);
 822	if (path->mnt != nd->path.mnt)
 823		mntput(path->mnt);
 824}
 825
 826static inline void path_to_nameidata(const struct path *path,
 827					struct nameidata *nd)
 828{
 829	if (!(nd->flags & LOOKUP_RCU)) {
 830		dput(nd->path.dentry);
 831		if (nd->path.mnt != path->mnt)
 832			mntput(nd->path.mnt);
 833	}
 834	nd->path.mnt = path->mnt;
 835	nd->path.dentry = path->dentry;
 836}
 837
 838static int nd_jump_root(struct nameidata *nd)
 839{
 840	if (nd->flags & LOOKUP_RCU) {
 841		struct dentry *d;
 842		nd->path = nd->root;
 843		d = nd->path.dentry;
 844		nd->inode = d->d_inode;
 845		nd->seq = nd->root_seq;
 846		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
 847			return -ECHILD;
 848	} else {
 849		path_put(&nd->path);
 850		nd->path = nd->root;
 851		path_get(&nd->path);
 852		nd->inode = nd->path.dentry->d_inode;
 853	}
 854	nd->flags |= LOOKUP_JUMPED;
 855	return 0;
 856}
 857
 858/*
 859 * Helper to directly jump to a known parsed path from ->get_link,
 860 * caller must have taken a reference to path beforehand.
 861 */
 862void nd_jump_link(struct path *path)
 863{
 864	struct nameidata *nd = current->nameidata;
 865	path_put(&nd->path);
 866
 867	nd->path = *path;
 868	nd->inode = nd->path.dentry->d_inode;
 869	nd->flags |= LOOKUP_JUMPED;
 870}
 871
 872static inline void put_link(struct nameidata *nd)
 873{
 874	struct saved *last = nd->stack + --nd->depth;
 875	do_delayed_call(&last->done);
 876	if (!(nd->flags & LOOKUP_RCU))
 877		path_put(&last->link);
 878}
 879
 880int sysctl_protected_symlinks __read_mostly = 0;
 881int sysctl_protected_hardlinks __read_mostly = 0;
 882int sysctl_protected_fifos __read_mostly;
 883int sysctl_protected_regular __read_mostly;
 884
 885/**
 886 * may_follow_link - Check symlink following for unsafe situations
 887 * @nd: nameidata pathwalk data
 888 *
 889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
 890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
 891 * in a sticky world-writable directory. This is to protect privileged
 892 * processes from failing races against path names that may change out
 893 * from under them by way of other users creating malicious symlinks.
 894 * It will permit symlinks to be followed only when outside a sticky
 895 * world-writable directory, or when the uid of the symlink and follower
 896 * match, or when the directory owner matches the symlink's owner.
 897 *
 898 * Returns 0 if following the symlink is allowed, -ve on error.
 899 */
 900static inline int may_follow_link(struct nameidata *nd)
 901{
 902	const struct inode *inode;
 903	const struct inode *parent;
 904	kuid_t puid;
 905
 906	if (!sysctl_protected_symlinks)
 907		return 0;
 908
 909	/* Allowed if owner and follower match. */
 910	inode = nd->link_inode;
 911	if (uid_eq(current_cred()->fsuid, inode->i_uid))
 912		return 0;
 913
 914	/* Allowed if parent directory not sticky and world-writable. */
 915	parent = nd->inode;
 916	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 917		return 0;
 918
 919	/* Allowed if parent directory and link owner match. */
 920	puid = parent->i_uid;
 921	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
 922		return 0;
 923
 924	if (nd->flags & LOOKUP_RCU)
 925		return -ECHILD;
 926
 927	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
 928	audit_log_link_denied("follow_link");
 929	return -EACCES;
 930}
 931
 932/**
 933 * safe_hardlink_source - Check for safe hardlink conditions
 934 * @inode: the source inode to hardlink from
 935 *
 936 * Return false if at least one of the following conditions:
 937 *    - inode is not a regular file
 938 *    - inode is setuid
 939 *    - inode is setgid and group-exec
 940 *    - access failure for read and write
 941 *
 942 * Otherwise returns true.
 943 */
 944static bool safe_hardlink_source(struct inode *inode)
 945{
 946	umode_t mode = inode->i_mode;
 947
 948	/* Special files should not get pinned to the filesystem. */
 949	if (!S_ISREG(mode))
 950		return false;
 951
 952	/* Setuid files should not get pinned to the filesystem. */
 953	if (mode & S_ISUID)
 954		return false;
 955
 956	/* Executable setgid files should not get pinned to the filesystem. */
 957	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
 958		return false;
 959
 960	/* Hardlinking to unreadable or unwritable sources is dangerous. */
 961	if (inode_permission(inode, MAY_READ | MAY_WRITE))
 962		return false;
 963
 964	return true;
 965}
 966
 967/**
 968 * may_linkat - Check permissions for creating a hardlink
 969 * @link: the source to hardlink from
 970 *
 971 * Block hardlink when all of:
 972 *  - sysctl_protected_hardlinks enabled
 973 *  - fsuid does not match inode
 974 *  - hardlink source is unsafe (see safe_hardlink_source() above)
 975 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
 976 *
 977 * Returns 0 if successful, -ve on error.
 978 */
 979static int may_linkat(struct path *link)
 980{
 981	struct inode *inode = link->dentry->d_inode;
 982
 983	/* Inode writeback is not safe when the uid or gid are invalid. */
 984	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
 985		return -EOVERFLOW;
 986
 987	if (!sysctl_protected_hardlinks)
 988		return 0;
 989
 
 
 990	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
 991	 * otherwise, it must be a safe source.
 992	 */
 993	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
 994		return 0;
 995
 996	audit_log_link_denied("linkat");
 997	return -EPERM;
 998}
 999
1000/**
1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002 *			  should be allowed, or not, on files that already
1003 *			  exist.
1004 * @dir: the sticky parent directory
1005 * @inode: the inode of the file to open
1006 *
1007 * Block an O_CREAT open of a FIFO (or a regular file) when:
1008 *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1009 *   - the file already exists
1010 *   - we are in a sticky directory
1011 *   - we don't own the file
1012 *   - the owner of the directory doesn't own the file
1013 *   - the directory is world writable
1014 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1015 * the directory doesn't have to be world writable: being group writable will
1016 * be enough.
1017 *
1018 * Returns 0 if the open is allowed, -ve on error.
1019 */
1020static int may_create_in_sticky(struct dentry * const dir,
1021				struct inode * const inode)
1022{
1023	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1024	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1025	    likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1026	    uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1027	    uid_eq(current_fsuid(), inode->i_uid))
1028		return 0;
1029
1030	if (likely(dir->d_inode->i_mode & 0002) ||
1031	    (dir->d_inode->i_mode & 0020 &&
1032	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1033	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1034		return -EACCES;
1035	}
1036	return 0;
1037}
1038
1039static __always_inline
1040const char *get_link(struct nameidata *nd)
1041{
1042	struct saved *last = nd->stack + nd->depth - 1;
1043	struct dentry *dentry = last->link.dentry;
1044	struct inode *inode = nd->link_inode;
1045	int error;
1046	const char *res;
1047
1048	if (!(nd->flags & LOOKUP_RCU)) {
1049		touch_atime(&last->link);
1050		cond_resched();
1051	} else if (atime_needs_update(&last->link, inode)) {
1052		if (unlikely(unlazy_walk(nd)))
1053			return ERR_PTR(-ECHILD);
1054		touch_atime(&last->link);
1055	}
1056
1057	error = security_inode_follow_link(dentry, inode,
1058					   nd->flags & LOOKUP_RCU);
1059	if (unlikely(error))
1060		return ERR_PTR(error);
1061
1062	nd->last_type = LAST_BIND;
1063	res = READ_ONCE(inode->i_link);
1064	if (!res) {
1065		const char * (*get)(struct dentry *, struct inode *,
1066				struct delayed_call *);
1067		get = inode->i_op->get_link;
1068		if (nd->flags & LOOKUP_RCU) {
1069			res = get(NULL, inode, &last->done);
1070			if (res == ERR_PTR(-ECHILD)) {
1071				if (unlikely(unlazy_walk(nd)))
1072					return ERR_PTR(-ECHILD);
1073				res = get(dentry, inode, &last->done);
1074			}
1075		} else {
1076			res = get(dentry, inode, &last->done);
1077		}
1078		if (IS_ERR_OR_NULL(res))
1079			return res;
1080	}
1081	if (*res == '/') {
1082		if (!nd->root.mnt)
1083			set_root(nd);
1084		if (unlikely(nd_jump_root(nd)))
1085			return ERR_PTR(-ECHILD);
1086		while (unlikely(*++res == '/'))
1087			;
1088	}
1089	if (!*res)
1090		res = NULL;
1091	return res;
1092}
1093
1094/*
1095 * follow_up - Find the mountpoint of path's vfsmount
1096 *
1097 * Given a path, find the mountpoint of its source file system.
1098 * Replace @path with the path of the mountpoint in the parent mount.
1099 * Up is towards /.
1100 *
1101 * Return 1 if we went up a level and 0 if we were already at the
1102 * root.
1103 */
1104int follow_up(struct path *path)
1105{
1106	struct mount *mnt = real_mount(path->mnt);
1107	struct mount *parent;
1108	struct dentry *mountpoint;
1109
1110	read_seqlock_excl(&mount_lock);
1111	parent = mnt->mnt_parent;
1112	if (parent == mnt) {
1113		read_sequnlock_excl(&mount_lock);
1114		return 0;
1115	}
1116	mntget(&parent->mnt);
1117	mountpoint = dget(mnt->mnt_mountpoint);
1118	read_sequnlock_excl(&mount_lock);
1119	dput(path->dentry);
1120	path->dentry = mountpoint;
1121	mntput(path->mnt);
1122	path->mnt = &parent->mnt;
1123	return 1;
1124}
1125EXPORT_SYMBOL(follow_up);
1126
1127/*
1128 * Perform an automount
1129 * - return -EISDIR to tell follow_managed() to stop and return the path we
1130 *   were called with.
1131 */
1132static int follow_automount(struct path *path, struct nameidata *nd,
1133			    bool *need_mntput)
1134{
1135	struct vfsmount *mnt;
1136	int err;
1137
1138	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1139		return -EREMOTE;
1140
1141	/* We don't want to mount if someone's just doing a stat -
1142	 * unless they're stat'ing a directory and appended a '/' to
1143	 * the name.
1144	 *
1145	 * We do, however, want to mount if someone wants to open or
1146	 * create a file of any type under the mountpoint, wants to
1147	 * traverse through the mountpoint or wants to open the
1148	 * mounted directory.  Also, autofs may mark negative dentries
1149	 * as being automount points.  These will need the attentions
1150	 * of the daemon to instantiate them before they can be used.
1151	 */
1152	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1153			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1154	    path->dentry->d_inode)
1155		return -EISDIR;
1156
1157	nd->total_link_count++;
1158	if (nd->total_link_count >= 40)
1159		return -ELOOP;
1160
1161	mnt = path->dentry->d_op->d_automount(path);
1162	if (IS_ERR(mnt)) {
1163		/*
1164		 * The filesystem is allowed to return -EISDIR here to indicate
1165		 * it doesn't want to automount.  For instance, autofs would do
1166		 * this so that its userspace daemon can mount on this dentry.
1167		 *
1168		 * However, we can only permit this if it's a terminal point in
1169		 * the path being looked up; if it wasn't then the remainder of
1170		 * the path is inaccessible and we should say so.
1171		 */
1172		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1173			return -EREMOTE;
1174		return PTR_ERR(mnt);
1175	}
1176
1177	if (!mnt) /* mount collision */
1178		return 0;
1179
1180	if (!*need_mntput) {
1181		/* lock_mount() may release path->mnt on error */
1182		mntget(path->mnt);
1183		*need_mntput = true;
1184	}
1185	err = finish_automount(mnt, path);
1186
1187	switch (err) {
1188	case -EBUSY:
1189		/* Someone else made a mount here whilst we were busy */
1190		return 0;
1191	case 0:
1192		path_put(path);
1193		path->mnt = mnt;
1194		path->dentry = dget(mnt->mnt_root);
1195		return 0;
1196	default:
1197		return err;
1198	}
1199
1200}
1201
1202/*
1203 * Handle a dentry that is managed in some way.
1204 * - Flagged for transit management (autofs)
1205 * - Flagged as mountpoint
1206 * - Flagged as automount point
1207 *
1208 * This may only be called in refwalk mode.
1209 *
1210 * Serialization is taken care of in namespace.c
1211 */
1212static int follow_managed(struct path *path, struct nameidata *nd)
1213{
1214	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1215	unsigned managed;
1216	bool need_mntput = false;
1217	int ret = 0;
1218
1219	/* Given that we're not holding a lock here, we retain the value in a
1220	 * local variable for each dentry as we look at it so that we don't see
1221	 * the components of that value change under us */
1222	while (managed = READ_ONCE(path->dentry->d_flags),
1223	       managed &= DCACHE_MANAGED_DENTRY,
1224	       unlikely(managed != 0)) {
1225		/* Allow the filesystem to manage the transit without i_mutex
1226		 * being held. */
1227		if (managed & DCACHE_MANAGE_TRANSIT) {
1228			BUG_ON(!path->dentry->d_op);
1229			BUG_ON(!path->dentry->d_op->d_manage);
1230			ret = path->dentry->d_op->d_manage(path, false);
1231			if (ret < 0)
1232				break;
1233		}
1234
1235		/* Transit to a mounted filesystem. */
1236		if (managed & DCACHE_MOUNTED) {
1237			struct vfsmount *mounted = lookup_mnt(path);
1238			if (mounted) {
1239				dput(path->dentry);
1240				if (need_mntput)
1241					mntput(path->mnt);
1242				path->mnt = mounted;
1243				path->dentry = dget(mounted->mnt_root);
1244				need_mntput = true;
1245				continue;
1246			}
1247
1248			/* Something is mounted on this dentry in another
1249			 * namespace and/or whatever was mounted there in this
1250			 * namespace got unmounted before lookup_mnt() could
1251			 * get it */
1252		}
1253
1254		/* Handle an automount point */
1255		if (managed & DCACHE_NEED_AUTOMOUNT) {
1256			ret = follow_automount(path, nd, &need_mntput);
1257			if (ret < 0)
1258				break;
1259			continue;
1260		}
1261
1262		/* We didn't change the current path point */
1263		break;
1264	}
1265
1266	if (need_mntput && path->mnt == mnt)
1267		mntput(path->mnt);
1268	if (ret == -EISDIR || !ret)
1269		ret = 1;
1270	if (need_mntput)
1271		nd->flags |= LOOKUP_JUMPED;
1272	if (unlikely(ret < 0))
1273		path_put_conditional(path, nd);
1274	return ret;
1275}
1276
1277int follow_down_one(struct path *path)
1278{
1279	struct vfsmount *mounted;
1280
1281	mounted = lookup_mnt(path);
1282	if (mounted) {
1283		dput(path->dentry);
1284		mntput(path->mnt);
1285		path->mnt = mounted;
1286		path->dentry = dget(mounted->mnt_root);
1287		return 1;
1288	}
1289	return 0;
1290}
1291EXPORT_SYMBOL(follow_down_one);
1292
1293static inline int managed_dentry_rcu(const struct path *path)
1294{
1295	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1296		path->dentry->d_op->d_manage(path, true) : 0;
1297}
1298
1299/*
1300 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1301 * we meet a managed dentry that would need blocking.
1302 */
1303static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1304			       struct inode **inode, unsigned *seqp)
1305{
1306	for (;;) {
1307		struct mount *mounted;
1308		/*
1309		 * Don't forget we might have a non-mountpoint managed dentry
1310		 * that wants to block transit.
1311		 */
1312		switch (managed_dentry_rcu(path)) {
1313		case -ECHILD:
1314		default:
1315			return false;
1316		case -EISDIR:
1317			return true;
1318		case 0:
1319			break;
1320		}
1321
1322		if (!d_mountpoint(path->dentry))
1323			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1324
1325		mounted = __lookup_mnt(path->mnt, path->dentry);
1326		if (!mounted)
1327			break;
1328		path->mnt = &mounted->mnt;
1329		path->dentry = mounted->mnt.mnt_root;
1330		nd->flags |= LOOKUP_JUMPED;
1331		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1332		/*
1333		 * Update the inode too. We don't need to re-check the
1334		 * dentry sequence number here after this d_inode read,
1335		 * because a mount-point is always pinned.
1336		 */
1337		*inode = path->dentry->d_inode;
1338	}
1339	return !read_seqretry(&mount_lock, nd->m_seq) &&
1340		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1341}
1342
1343static int follow_dotdot_rcu(struct nameidata *nd)
1344{
1345	struct inode *inode = nd->inode;
1346
1347	while (1) {
1348		if (path_equal(&nd->path, &nd->root))
1349			break;
1350		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1351			struct dentry *old = nd->path.dentry;
1352			struct dentry *parent = old->d_parent;
1353			unsigned seq;
1354
1355			inode = parent->d_inode;
1356			seq = read_seqcount_begin(&parent->d_seq);
1357			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1358				return -ECHILD;
1359			nd->path.dentry = parent;
1360			nd->seq = seq;
1361			if (unlikely(!path_connected(&nd->path)))
1362				return -ENOENT;
1363			break;
1364		} else {
1365			struct mount *mnt = real_mount(nd->path.mnt);
1366			struct mount *mparent = mnt->mnt_parent;
1367			struct dentry *mountpoint = mnt->mnt_mountpoint;
1368			struct inode *inode2 = mountpoint->d_inode;
1369			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1370			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1371				return -ECHILD;
1372			if (&mparent->mnt == nd->path.mnt)
1373				break;
1374			/* we know that mountpoint was pinned */
1375			nd->path.dentry = mountpoint;
1376			nd->path.mnt = &mparent->mnt;
1377			inode = inode2;
1378			nd->seq = seq;
1379		}
1380	}
1381	while (unlikely(d_mountpoint(nd->path.dentry))) {
1382		struct mount *mounted;
1383		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1384		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1385			return -ECHILD;
1386		if (!mounted)
1387			break;
1388		nd->path.mnt = &mounted->mnt;
1389		nd->path.dentry = mounted->mnt.mnt_root;
1390		inode = nd->path.dentry->d_inode;
1391		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1392	}
1393	nd->inode = inode;
1394	return 0;
1395}
1396
1397/*
1398 * Follow down to the covering mount currently visible to userspace.  At each
1399 * point, the filesystem owning that dentry may be queried as to whether the
1400 * caller is permitted to proceed or not.
1401 */
1402int follow_down(struct path *path)
1403{
1404	unsigned managed;
1405	int ret;
1406
1407	while (managed = READ_ONCE(path->dentry->d_flags),
1408	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1409		/* Allow the filesystem to manage the transit without i_mutex
1410		 * being held.
1411		 *
1412		 * We indicate to the filesystem if someone is trying to mount
1413		 * something here.  This gives autofs the chance to deny anyone
1414		 * other than its daemon the right to mount on its
1415		 * superstructure.
1416		 *
1417		 * The filesystem may sleep at this point.
1418		 */
1419		if (managed & DCACHE_MANAGE_TRANSIT) {
1420			BUG_ON(!path->dentry->d_op);
1421			BUG_ON(!path->dentry->d_op->d_manage);
1422			ret = path->dentry->d_op->d_manage(path, false);
 
1423			if (ret < 0)
1424				return ret == -EISDIR ? 0 : ret;
1425		}
1426
1427		/* Transit to a mounted filesystem. */
1428		if (managed & DCACHE_MOUNTED) {
1429			struct vfsmount *mounted = lookup_mnt(path);
1430			if (!mounted)
1431				break;
1432			dput(path->dentry);
1433			mntput(path->mnt);
1434			path->mnt = mounted;
1435			path->dentry = dget(mounted->mnt_root);
1436			continue;
1437		}
1438
1439		/* Don't handle automount points here */
1440		break;
1441	}
1442	return 0;
1443}
1444EXPORT_SYMBOL(follow_down);
1445
1446/*
1447 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1448 */
1449static void follow_mount(struct path *path)
1450{
1451	while (d_mountpoint(path->dentry)) {
1452		struct vfsmount *mounted = lookup_mnt(path);
1453		if (!mounted)
1454			break;
1455		dput(path->dentry);
1456		mntput(path->mnt);
1457		path->mnt = mounted;
1458		path->dentry = dget(mounted->mnt_root);
1459	}
1460}
1461
1462static int path_parent_directory(struct path *path)
1463{
1464	struct dentry *old = path->dentry;
1465	/* rare case of legitimate dget_parent()... */
1466	path->dentry = dget_parent(path->dentry);
1467	dput(old);
1468	if (unlikely(!path_connected(path)))
1469		return -ENOENT;
1470	return 0;
1471}
1472
1473static int follow_dotdot(struct nameidata *nd)
1474{
1475	while(1) {
1476		if (path_equal(&nd->path, &nd->root))
 
 
 
1477			break;
 
1478		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1479			int ret = path_parent_directory(&nd->path);
1480			if (ret)
1481				return ret;
 
 
1482			break;
1483		}
1484		if (!follow_up(&nd->path))
1485			break;
1486	}
1487	follow_mount(&nd->path);
1488	nd->inode = nd->path.dentry->d_inode;
1489	return 0;
1490}
1491
1492/*
1493 * This looks up the name in dcache and possibly revalidates the found dentry.
1494 * NULL is returned if the dentry does not exist in the cache.
 
1495 */
1496static struct dentry *lookup_dcache(const struct qstr *name,
1497				    struct dentry *dir,
1498				    unsigned int flags)
1499{
1500	struct dentry *dentry = d_lookup(dir, name);
 
 
 
1501	if (dentry) {
1502		int error = d_revalidate(dentry, flags);
1503		if (unlikely(error <= 0)) {
1504			if (!error)
1505				d_invalidate(dentry);
1506			dput(dentry);
1507			return ERR_PTR(error);
 
 
1508		}
1509	}
1510	return dentry;
1511}
1512
1513/*
1514 * Parent directory has inode locked exclusive.  This is one
1515 * and only case when ->lookup() gets called on non in-lookup
1516 * dentries - as the matter of fact, this only gets called
1517 * when directory is guaranteed to have no in-lookup children
1518 * at all.
1519 */
1520static struct dentry *__lookup_hash(const struct qstr *name,
1521		struct dentry *base, unsigned int flags)
1522{
1523	struct dentry *dentry = lookup_dcache(name, base, flags);
1524	struct dentry *old;
1525	struct inode *dir = base->d_inode;
1526
1527	if (dentry)
1528		return dentry;
1529
1530	/* Don't create child dentry for a dead directory. */
1531	if (unlikely(IS_DEADDIR(dir)))
 
1532		return ERR_PTR(-ENOENT);
1533
1534	dentry = d_alloc(base, name);
1535	if (unlikely(!dentry))
1536		return ERR_PTR(-ENOMEM);
1537
1538	old = dir->i_op->lookup(dir, dentry, flags);
1539	if (unlikely(old)) {
1540		dput(dentry);
1541		dentry = old;
1542	}
1543	return dentry;
1544}
1545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1546static int lookup_fast(struct nameidata *nd,
1547		       struct path *path, struct inode **inode,
1548		       unsigned *seqp)
1549{
1550	struct vfsmount *mnt = nd->path.mnt;
1551	struct dentry *dentry, *parent = nd->path.dentry;
1552	int status = 1;
1553	int err;
1554
1555	/*
1556	 * Rename seqlock is not required here because in the off chance
1557	 * of a false negative due to a concurrent rename, the caller is
1558	 * going to fall back to non-racy lookup.
1559	 */
1560	if (nd->flags & LOOKUP_RCU) {
1561		unsigned seq;
1562		bool negative;
1563		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1564		if (unlikely(!dentry)) {
1565			if (unlazy_walk(nd))
1566				return -ECHILD;
1567			return 0;
1568		}
1569
1570		/*
1571		 * This sequence count validates that the inode matches
1572		 * the dentry name information from lookup.
1573		 */
1574		*inode = d_backing_inode(dentry);
1575		negative = d_is_negative(dentry);
1576		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1577			return -ECHILD;
1578
1579		/*
1580		 * This sequence count validates that the parent had no
1581		 * changes while we did the lookup of the dentry above.
1582		 *
1583		 * The memory barrier in read_seqcount_begin of child is
1584		 *  enough, we can use __read_seqcount_retry here.
1585		 */
1586		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1587			return -ECHILD;
1588
1589		*seqp = seq;
1590		status = d_revalidate(dentry, nd->flags);
1591		if (likely(status > 0)) {
 
 
 
 
 
 
1592			/*
1593			 * Note: do negative dentry check after revalidation in
1594			 * case that drops it.
1595			 */
1596			if (unlikely(negative))
1597				return -ENOENT;
1598			path->mnt = mnt;
1599			path->dentry = dentry;
1600			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1601				return 1;
 
 
1602		}
1603		if (unlazy_child(nd, dentry, seq))
1604			return -ECHILD;
1605		if (unlikely(status == -ECHILD))
1606			/* we'd been told to redo it in non-rcu mode */
1607			status = d_revalidate(dentry, nd->flags);
1608	} else {
1609		dentry = __d_lookup(parent, &nd->last);
1610		if (unlikely(!dentry))
1611			return 0;
1612		status = d_revalidate(dentry, nd->flags);
 
1613	}
1614	if (unlikely(status <= 0)) {
1615		if (!status)
1616			d_invalidate(dentry);
1617		dput(dentry);
1618		return status;
1619	}
1620	if (unlikely(d_is_negative(dentry))) {
1621		dput(dentry);
1622		return -ENOENT;
1623	}
1624
1625	path->mnt = mnt;
1626	path->dentry = dentry;
1627	err = follow_managed(path, nd);
1628	if (likely(err > 0))
1629		*inode = d_backing_inode(path->dentry);
1630	return err;
1631}
1632
1633/* Fast lookup failed, do it the slow way */
1634static struct dentry *__lookup_slow(const struct qstr *name,
1635				    struct dentry *dir,
1636				    unsigned int flags)
1637{
1638	struct dentry *dentry, *old;
1639	struct inode *inode = dir->d_inode;
1640	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1641
1642	/* Don't go there if it's already dead */
1643	if (unlikely(IS_DEADDIR(inode)))
1644		return ERR_PTR(-ENOENT);
1645again:
1646	dentry = d_alloc_parallel(dir, name, &wq);
1647	if (IS_ERR(dentry))
1648		return dentry;
1649	if (unlikely(!d_in_lookup(dentry))) {
1650		if (!(flags & LOOKUP_NO_REVAL)) {
1651			int error = d_revalidate(dentry, flags);
1652			if (unlikely(error <= 0)) {
1653				if (!error) {
1654					d_invalidate(dentry);
1655					dput(dentry);
1656					goto again;
1657				}
1658				dput(dentry);
1659				dentry = ERR_PTR(error);
1660			}
1661		}
1662	} else {
1663		old = inode->i_op->lookup(inode, dentry, flags);
1664		d_lookup_done(dentry);
1665		if (unlikely(old)) {
1666			dput(dentry);
1667			dentry = old;
1668		}
1669	}
 
 
 
 
 
 
 
1670	return dentry;
1671}
1672
1673static struct dentry *lookup_slow(const struct qstr *name,
1674				  struct dentry *dir,
1675				  unsigned int flags)
1676{
1677	struct inode *inode = dir->d_inode;
1678	struct dentry *res;
1679	inode_lock_shared(inode);
1680	res = __lookup_slow(name, dir, flags);
1681	inode_unlock_shared(inode);
1682	return res;
1683}
1684
1685static inline int may_lookup(struct nameidata *nd)
1686{
1687	if (nd->flags & LOOKUP_RCU) {
1688		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1689		if (err != -ECHILD)
1690			return err;
1691		if (unlazy_walk(nd))
1692			return -ECHILD;
1693	}
1694	return inode_permission(nd->inode, MAY_EXEC);
1695}
1696
1697static inline int handle_dots(struct nameidata *nd, int type)
1698{
1699	if (type == LAST_DOTDOT) {
1700		if (!nd->root.mnt)
1701			set_root(nd);
1702		if (nd->flags & LOOKUP_RCU) {
1703			return follow_dotdot_rcu(nd);
1704		} else
1705			return follow_dotdot(nd);
1706	}
1707	return 0;
1708}
1709
1710static int pick_link(struct nameidata *nd, struct path *link,
1711		     struct inode *inode, unsigned seq)
1712{
1713	int error;
1714	struct saved *last;
1715	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1716		path_to_nameidata(link, nd);
1717		return -ELOOP;
1718	}
1719	if (!(nd->flags & LOOKUP_RCU)) {
1720		if (link->mnt == nd->path.mnt)
1721			mntget(link->mnt);
1722	}
1723	error = nd_alloc_stack(nd);
1724	if (unlikely(error)) {
1725		if (error == -ECHILD) {
1726			if (unlikely(!legitimize_path(nd, link, seq))) {
1727				drop_links(nd);
1728				nd->depth = 0;
1729				nd->flags &= ~LOOKUP_RCU;
1730				nd->path.mnt = NULL;
1731				nd->path.dentry = NULL;
1732				rcu_read_unlock();
1733			} else if (likely(unlazy_walk(nd)) == 0)
1734				error = nd_alloc_stack(nd);
1735		}
1736		if (error) {
1737			path_put(link);
1738			return error;
1739		}
1740	}
1741
1742	last = nd->stack + nd->depth++;
1743	last->link = *link;
1744	clear_delayed_call(&last->done);
1745	nd->link_inode = inode;
1746	last->seq = seq;
1747	return 1;
1748}
1749
1750enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1751
1752/*
1753 * Do we need to follow links? We _really_ want to be able
1754 * to do this check without having to look at inode->i_op,
1755 * so we keep a cache of "no, this doesn't need follow_link"
1756 * for the common case.
1757 */
1758static inline int step_into(struct nameidata *nd, struct path *path,
1759			    int flags, struct inode *inode, unsigned seq)
 
1760{
1761	if (!(flags & WALK_MORE) && nd->depth)
1762		put_link(nd);
1763	if (likely(!d_is_symlink(path->dentry)) ||
1764	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1765		/* not a symlink or should not follow */
1766		path_to_nameidata(path, nd);
1767		nd->inode = inode;
1768		nd->seq = seq;
1769		return 0;
1770	}
1771	/* make sure that d_is_symlink above matches inode */
1772	if (nd->flags & LOOKUP_RCU) {
1773		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1774			return -ECHILD;
1775	}
1776	return pick_link(nd, path, inode, seq);
1777}
1778
 
 
1779static int walk_component(struct nameidata *nd, int flags)
1780{
1781	struct path path;
1782	struct inode *inode;
1783	unsigned seq;
1784	int err;
1785	/*
1786	 * "." and ".." are special - ".." especially so because it has
1787	 * to be able to know about the current root directory and
1788	 * parent relationships.
1789	 */
1790	if (unlikely(nd->last_type != LAST_NORM)) {
1791		err = handle_dots(nd, nd->last_type);
1792		if (!(flags & WALK_MORE) && nd->depth)
1793			put_link(nd);
1794		return err;
1795	}
1796	err = lookup_fast(nd, &path, &inode, &seq);
1797	if (unlikely(err <= 0)) {
1798		if (err < 0)
1799			return err;
1800		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1801					  nd->flags);
1802		if (IS_ERR(path.dentry))
1803			return PTR_ERR(path.dentry);
1804
1805		path.mnt = nd->path.mnt;
1806		err = follow_managed(&path, nd);
1807		if (unlikely(err < 0))
1808			return err;
1809
1810		if (unlikely(d_is_negative(path.dentry))) {
1811			path_to_nameidata(&path, nd);
1812			return -ENOENT;
1813		}
1814
1815		seq = 0;	/* we are already out of RCU mode */
1816		inode = d_backing_inode(path.dentry);
1817	}
1818
1819	return step_into(nd, &path, flags, inode, seq);
 
 
 
 
 
 
 
 
1820}
1821
1822/*
1823 * We can do the critical dentry name comparison and hashing
1824 * operations one word at a time, but we are limited to:
1825 *
1826 * - Architectures with fast unaligned word accesses. We could
1827 *   do a "get_unaligned()" if this helps and is sufficiently
1828 *   fast.
1829 *
1830 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1831 *   do not trap on the (extremely unlikely) case of a page
1832 *   crossing operation.
1833 *
1834 * - Furthermore, we need an efficient 64-bit compile for the
1835 *   64-bit case in order to generate the "number of bytes in
1836 *   the final mask". Again, that could be replaced with a
1837 *   efficient population count instruction or similar.
1838 */
1839#ifdef CONFIG_DCACHE_WORD_ACCESS
1840
1841#include <asm/word-at-a-time.h>
1842
1843#ifdef HASH_MIX
1844
1845/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1846
1847#elif defined(CONFIG_64BIT)
1848/*
1849 * Register pressure in the mixing function is an issue, particularly
1850 * on 32-bit x86, but almost any function requires one state value and
1851 * one temporary.  Instead, use a function designed for two state values
1852 * and no temporaries.
1853 *
1854 * This function cannot create a collision in only two iterations, so
1855 * we have two iterations to achieve avalanche.  In those two iterations,
1856 * we have six layers of mixing, which is enough to spread one bit's
1857 * influence out to 2^6 = 64 state bits.
1858 *
1859 * Rotate constants are scored by considering either 64 one-bit input
1860 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1861 * probability of that delta causing a change to each of the 128 output
1862 * bits, using a sample of random initial states.
1863 *
1864 * The Shannon entropy of the computed probabilities is then summed
1865 * to produce a score.  Ideally, any input change has a 50% chance of
1866 * toggling any given output bit.
1867 *
1868 * Mixing scores (in bits) for (12,45):
1869 * Input delta: 1-bit      2-bit
1870 * 1 round:     713.3    42542.6
1871 * 2 rounds:   2753.7   140389.8
1872 * 3 rounds:   5954.1   233458.2
1873 * 4 rounds:   7862.6   256672.2
1874 * Perfect:    8192     258048
1875 *            (64*128) (64*63/2 * 128)
1876 */
1877#define HASH_MIX(x, y, a)	\
1878	(	x ^= (a),	\
1879	y ^= x,	x = rol64(x,12),\
1880	x += y,	y = rol64(y,45),\
1881	y *= 9			)
1882
1883/*
1884 * Fold two longs into one 32-bit hash value.  This must be fast, but
1885 * latency isn't quite as critical, as there is a fair bit of additional
1886 * work done before the hash value is used.
1887 */
1888static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1889{
1890	y ^= x * GOLDEN_RATIO_64;
1891	y *= GOLDEN_RATIO_64;
1892	return y >> 32;
1893}
1894
1895#else	/* 32-bit case */
1896
1897/*
1898 * Mixing scores (in bits) for (7,20):
1899 * Input delta: 1-bit      2-bit
1900 * 1 round:     330.3     9201.6
1901 * 2 rounds:   1246.4    25475.4
1902 * 3 rounds:   1907.1    31295.1
1903 * 4 rounds:   2042.3    31718.6
1904 * Perfect:    2048      31744
1905 *            (32*64)   (32*31/2 * 64)
1906 */
1907#define HASH_MIX(x, y, a)	\
1908	(	x ^= (a),	\
1909	y ^= x,	x = rol32(x, 7),\
1910	x += y,	y = rol32(y,20),\
1911	y *= 9			)
1912
1913static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1914{
1915	/* Use arch-optimized multiply if one exists */
1916	return __hash_32(y ^ __hash_32(x));
1917}
1918
1919#endif
1920
1921/*
1922 * Return the hash of a string of known length.  This is carfully
1923 * designed to match hash_name(), which is the more critical function.
1924 * In particular, we must end by hashing a final word containing 0..7
1925 * payload bytes, to match the way that hash_name() iterates until it
1926 * finds the delimiter after the name.
1927 */
1928unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1929{
1930	unsigned long a, x = 0, y = (unsigned long)salt;
 
1931
1932	for (;;) {
1933		if (!len)
1934			goto done;
1935		a = load_unaligned_zeropad(name);
1936		if (len < sizeof(unsigned long))
1937			break;
1938		HASH_MIX(x, y, a);
 
1939		name += sizeof(unsigned long);
1940		len -= sizeof(unsigned long);
 
 
1941	}
1942	x ^= a & bytemask_from_count(len);
 
1943done:
1944	return fold_hash(x, y);
1945}
1946EXPORT_SYMBOL(full_name_hash);
1947
1948/* Return the "hash_len" (hash and length) of a null-terminated string */
1949u64 hashlen_string(const void *salt, const char *name)
1950{
1951	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1952	unsigned long adata, mask, len;
1953	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1954
1955	len = 0;
1956	goto inside;
1957
1958	do {
1959		HASH_MIX(x, y, a);
1960		len += sizeof(unsigned long);
1961inside:
1962		a = load_unaligned_zeropad(name+len);
1963	} while (!has_zero(a, &adata, &constants));
1964
1965	adata = prep_zero_mask(a, adata, &constants);
1966	mask = create_zero_mask(adata);
1967	x ^= a & zero_bytemask(mask);
1968
1969	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1970}
1971EXPORT_SYMBOL(hashlen_string);
1972
1973/*
1974 * Calculate the length and hash of the path component, and
1975 * return the "hash_len" as the result.
1976 */
1977static inline u64 hash_name(const void *salt, const char *name)
1978{
1979	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1980	unsigned long adata, bdata, mask, len;
1981	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1982
1983	len = 0;
1984	goto inside;
1985
1986	do {
1987		HASH_MIX(x, y, a);
1988		len += sizeof(unsigned long);
1989inside:
1990		a = load_unaligned_zeropad(name+len);
1991		b = a ^ REPEAT_BYTE('/');
1992	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1993
1994	adata = prep_zero_mask(a, adata, &constants);
1995	bdata = prep_zero_mask(b, bdata, &constants);
 
1996	mask = create_zero_mask(adata | bdata);
1997	x ^= a & zero_bytemask(mask);
1998
1999	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
 
 
2000}
2001
2002#else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2003
2004/* Return the hash of a string of known length */
2005unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2006{
2007	unsigned long hash = init_name_hash(salt);
2008	while (len--)
2009		hash = partial_name_hash((unsigned char)*name++, hash);
2010	return end_name_hash(hash);
2011}
2012EXPORT_SYMBOL(full_name_hash);
2013
2014/* Return the "hash_len" (hash and length) of a null-terminated string */
2015u64 hashlen_string(const void *salt, const char *name)
2016{
2017	unsigned long hash = init_name_hash(salt);
2018	unsigned long len = 0, c;
2019
2020	c = (unsigned char)*name;
2021	while (c) {
2022		len++;
2023		hash = partial_name_hash(c, hash);
2024		c = (unsigned char)name[len];
2025	}
2026	return hashlen_create(end_name_hash(hash), len);
2027}
2028EXPORT_SYMBOL(hashlen_string);
2029
2030/*
2031 * We know there's a real path component here of at least
2032 * one character.
2033 */
2034static inline u64 hash_name(const void *salt, const char *name)
2035{
2036	unsigned long hash = init_name_hash(salt);
2037	unsigned long len = 0, c;
2038
2039	c = (unsigned char)*name;
2040	do {
2041		len++;
2042		hash = partial_name_hash(c, hash);
2043		c = (unsigned char)name[len];
2044	} while (c && c != '/');
2045	return hashlen_create(end_name_hash(hash), len);
2046}
2047
2048#endif
2049
2050/*
2051 * Name resolution.
2052 * This is the basic name resolution function, turning a pathname into
2053 * the final dentry. We expect 'base' to be positive and a directory.
2054 *
2055 * Returns 0 and nd will have valid dentry and mnt on success.
2056 * Returns error and drops reference to input namei data on failure.
2057 */
2058static int link_path_walk(const char *name, struct nameidata *nd)
2059{
2060	int err;
2061
2062	if (IS_ERR(name))
2063		return PTR_ERR(name);
2064	while (*name=='/')
2065		name++;
2066	if (!*name)
2067		return 0;
2068
2069	/* At this point we know we have a real path component. */
2070	for(;;) {
2071		u64 hash_len;
2072		int type;
2073
2074		err = may_lookup(nd);
2075		if (err)
2076			return err;
2077
2078		hash_len = hash_name(nd->path.dentry, name);
2079
2080		type = LAST_NORM;
2081		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2082			case 2:
2083				if (name[1] == '.') {
2084					type = LAST_DOTDOT;
2085					nd->flags |= LOOKUP_JUMPED;
2086				}
2087				break;
2088			case 1:
2089				type = LAST_DOT;
2090		}
2091		if (likely(type == LAST_NORM)) {
2092			struct dentry *parent = nd->path.dentry;
2093			nd->flags &= ~LOOKUP_JUMPED;
2094			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2095				struct qstr this = { { .hash_len = hash_len }, .name = name };
2096				err = parent->d_op->d_hash(parent, &this);
2097				if (err < 0)
2098					return err;
2099				hash_len = this.hash_len;
2100				name = this.name;
2101			}
2102		}
2103
2104		nd->last.hash_len = hash_len;
2105		nd->last.name = name;
2106		nd->last_type = type;
2107
2108		name += hashlen_len(hash_len);
2109		if (!*name)
2110			goto OK;
2111		/*
2112		 * If it wasn't NUL, we know it was '/'. Skip that
2113		 * slash, and continue until no more slashes.
2114		 */
2115		do {
2116			name++;
2117		} while (unlikely(*name == '/'));
2118		if (unlikely(!*name)) {
2119OK:
2120			/* pathname body, done */
2121			if (!nd->depth)
2122				return 0;
2123			name = nd->stack[nd->depth - 1].name;
2124			/* trailing symlink, done */
2125			if (!name)
2126				return 0;
2127			/* last component of nested symlink */
2128			err = walk_component(nd, WALK_FOLLOW);
2129		} else {
2130			/* not the last component */
2131			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2132		}
2133		if (err < 0)
2134			return err;
2135
2136		if (err) {
2137			const char *s = get_link(nd);
2138
2139			if (IS_ERR(s))
2140				return PTR_ERR(s);
2141			err = 0;
2142			if (unlikely(!s)) {
2143				/* jumped */
2144				put_link(nd);
2145			} else {
2146				nd->stack[nd->depth - 1].name = name;
2147				name = s;
2148				continue;
2149			}
2150		}
2151		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2152			if (nd->flags & LOOKUP_RCU) {
2153				if (unlazy_walk(nd))
2154					return -ECHILD;
2155			}
2156			return -ENOTDIR;
2157		}
2158	}
2159}
2160
2161/* must be paired with terminate_walk() */
2162static const char *path_init(struct nameidata *nd, unsigned flags)
2163{
 
2164	const char *s = nd->name->name;
2165
2166	if (!*s)
2167		flags &= ~LOOKUP_RCU;
2168	if (flags & LOOKUP_RCU)
2169		rcu_read_lock();
2170
2171	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2172	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2173	nd->depth = 0;
2174	if (flags & LOOKUP_ROOT) {
2175		struct dentry *root = nd->root.dentry;
2176		struct inode *inode = root->d_inode;
2177		if (*s && unlikely(!d_can_lookup(root)))
2178			return ERR_PTR(-ENOTDIR);
 
 
 
 
 
2179		nd->path = nd->root;
2180		nd->inode = inode;
2181		if (flags & LOOKUP_RCU) {
 
2182			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2183			nd->root_seq = nd->seq;
2184			nd->m_seq = read_seqbegin(&mount_lock);
2185		} else {
2186			path_get(&nd->path);
2187		}
2188		return s;
2189	}
2190
2191	nd->root.mnt = NULL;
2192	nd->path.mnt = NULL;
2193	nd->path.dentry = NULL;
2194
2195	nd->m_seq = read_seqbegin(&mount_lock);
2196	if (*s == '/') {
 
 
2197		set_root(nd);
2198		if (likely(!nd_jump_root(nd)))
2199			return s;
 
 
2200		return ERR_PTR(-ECHILD);
2201	} else if (nd->dfd == AT_FDCWD) {
2202		if (flags & LOOKUP_RCU) {
2203			struct fs_struct *fs = current->fs;
2204			unsigned seq;
2205
 
 
2206			do {
2207				seq = read_seqcount_begin(&fs->seq);
2208				nd->path = fs->pwd;
2209				nd->inode = nd->path.dentry->d_inode;
2210				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2211			} while (read_seqcount_retry(&fs->seq, seq));
2212		} else {
2213			get_fs_pwd(current->fs, &nd->path);
2214			nd->inode = nd->path.dentry->d_inode;
2215		}
2216		return s;
2217	} else {
2218		/* Caller must check execute permissions on the starting path component */
2219		struct fd f = fdget_raw(nd->dfd);
2220		struct dentry *dentry;
2221
2222		if (!f.file)
2223			return ERR_PTR(-EBADF);
2224
2225		dentry = f.file->f_path.dentry;
2226
2227		if (*s && unlikely(!d_can_lookup(dentry))) {
2228			fdput(f);
2229			return ERR_PTR(-ENOTDIR);
 
 
2230		}
2231
2232		nd->path = f.file->f_path;
2233		if (flags & LOOKUP_RCU) {
 
2234			nd->inode = nd->path.dentry->d_inode;
2235			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2236		} else {
2237			path_get(&nd->path);
2238			nd->inode = nd->path.dentry->d_inode;
2239		}
2240		fdput(f);
2241		return s;
2242	}
2243}
2244
2245static const char *trailing_symlink(struct nameidata *nd)
2246{
2247	const char *s;
2248	int error = may_follow_link(nd);
2249	if (unlikely(error))
2250		return ERR_PTR(error);
2251	nd->flags |= LOOKUP_PARENT;
2252	nd->stack[0].name = NULL;
2253	s = get_link(nd);
2254	return s ? s : "";
2255}
2256
2257static inline int lookup_last(struct nameidata *nd)
2258{
2259	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2260		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2261
2262	nd->flags &= ~LOOKUP_PARENT;
2263	return walk_component(nd, 0);
2264}
2265
2266static int handle_lookup_down(struct nameidata *nd)
2267{
2268	struct path path = nd->path;
2269	struct inode *inode = nd->inode;
2270	unsigned seq = nd->seq;
2271	int err;
2272
2273	if (nd->flags & LOOKUP_RCU) {
2274		/*
2275		 * don't bother with unlazy_walk on failure - we are
2276		 * at the very beginning of walk, so we lose nothing
2277		 * if we simply redo everything in non-RCU mode
2278		 */
2279		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2280			return -ECHILD;
2281	} else {
2282		dget(path.dentry);
2283		err = follow_managed(&path, nd);
2284		if (unlikely(err < 0))
2285			return err;
2286		inode = d_backing_inode(path.dentry);
2287		seq = 0;
2288	}
2289	path_to_nameidata(&path, nd);
2290	nd->inode = inode;
2291	nd->seq = seq;
2292	return 0;
2293}
2294
2295/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2296static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2297{
2298	const char *s = path_init(nd, flags);
2299	int err;
2300
2301	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2302		err = handle_lookup_down(nd);
2303		if (unlikely(err < 0))
2304			s = ERR_PTR(err);
2305	}
2306
2307	while (!(err = link_path_walk(s, nd))
2308		&& ((err = lookup_last(nd)) > 0)) {
2309		s = trailing_symlink(nd);
 
 
 
 
2310	}
2311	if (!err)
2312		err = complete_walk(nd);
2313
2314	if (!err && nd->flags & LOOKUP_DIRECTORY)
2315		if (!d_can_lookup(nd->path.dentry))
2316			err = -ENOTDIR;
2317	if (!err) {
2318		*path = nd->path;
2319		nd->path.mnt = NULL;
2320		nd->path.dentry = NULL;
2321	}
2322	terminate_walk(nd);
2323	return err;
2324}
2325
2326int filename_lookup(int dfd, struct filename *name, unsigned flags,
2327		    struct path *path, struct path *root)
2328{
2329	int retval;
2330	struct nameidata nd;
2331	if (IS_ERR(name))
2332		return PTR_ERR(name);
2333	if (unlikely(root)) {
2334		nd.root = *root;
2335		flags |= LOOKUP_ROOT;
2336	}
2337	set_nameidata(&nd, dfd, name);
2338	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2339	if (unlikely(retval == -ECHILD))
2340		retval = path_lookupat(&nd, flags, path);
2341	if (unlikely(retval == -ESTALE))
2342		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2343
2344	if (likely(!retval))
2345		audit_inode(name, path->dentry, 0);
2346	restore_nameidata();
2347	putname(name);
2348	return retval;
2349}
2350
2351/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2352static int path_parentat(struct nameidata *nd, unsigned flags,
2353				struct path *parent)
2354{
2355	const char *s = path_init(nd, flags);
2356	int err = link_path_walk(s, nd);
 
 
 
2357	if (!err)
2358		err = complete_walk(nd);
2359	if (!err) {
2360		*parent = nd->path;
2361		nd->path.mnt = NULL;
2362		nd->path.dentry = NULL;
2363	}
2364	terminate_walk(nd);
2365	return err;
2366}
2367
2368static struct filename *filename_parentat(int dfd, struct filename *name,
2369				unsigned int flags, struct path *parent,
2370				struct qstr *last, int *type)
2371{
2372	int retval;
2373	struct nameidata nd;
2374
2375	if (IS_ERR(name))
2376		return name;
2377	set_nameidata(&nd, dfd, name);
2378	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2379	if (unlikely(retval == -ECHILD))
2380		retval = path_parentat(&nd, flags, parent);
2381	if (unlikely(retval == -ESTALE))
2382		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2383	if (likely(!retval)) {
2384		*last = nd.last;
2385		*type = nd.last_type;
2386		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2387	} else {
2388		putname(name);
2389		name = ERR_PTR(retval);
2390	}
2391	restore_nameidata();
2392	return name;
2393}
2394
2395/* does lookup, returns the object with parent locked */
2396struct dentry *kern_path_locked(const char *name, struct path *path)
2397{
2398	struct filename *filename;
2399	struct dentry *d;
2400	struct qstr last;
2401	int type;
2402
2403	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2404				    &last, &type);
2405	if (IS_ERR(filename))
2406		return ERR_CAST(filename);
2407	if (unlikely(type != LAST_NORM)) {
2408		path_put(path);
2409		putname(filename);
2410		return ERR_PTR(-EINVAL);
2411	}
2412	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2413	d = __lookup_hash(&last, path->dentry, 0);
2414	if (IS_ERR(d)) {
2415		inode_unlock(path->dentry->d_inode);
2416		path_put(path);
2417	}
2418	putname(filename);
2419	return d;
2420}
2421
2422int kern_path(const char *name, unsigned int flags, struct path *path)
2423{
2424	return filename_lookup(AT_FDCWD, getname_kernel(name),
2425			       flags, path, NULL);
2426}
2427EXPORT_SYMBOL(kern_path);
2428
2429/**
2430 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2431 * @dentry:  pointer to dentry of the base directory
2432 * @mnt: pointer to vfs mount of the base directory
2433 * @name: pointer to file name
2434 * @flags: lookup flags
2435 * @path: pointer to struct path to fill
2436 */
2437int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2438		    const char *name, unsigned int flags,
2439		    struct path *path)
2440{
2441	struct path root = {.mnt = mnt, .dentry = dentry};
2442	/* the first argument of filename_lookup() is ignored with root */
2443	return filename_lookup(AT_FDCWD, getname_kernel(name),
2444			       flags , path, &root);
2445}
2446EXPORT_SYMBOL(vfs_path_lookup);
2447
2448static int lookup_one_len_common(const char *name, struct dentry *base,
2449				 int len, struct qstr *this)
2450{
2451	this->name = name;
2452	this->len = len;
2453	this->hash = full_name_hash(base, name, len);
2454	if (!len)
2455		return -EACCES;
2456
2457	if (unlikely(name[0] == '.')) {
2458		if (len < 2 || (len == 2 && name[1] == '.'))
2459			return -EACCES;
2460	}
2461
2462	while (len--) {
2463		unsigned int c = *(const unsigned char *)name++;
2464		if (c == '/' || c == '\0')
2465			return -EACCES;
2466	}
2467	/*
2468	 * See if the low-level filesystem might want
2469	 * to use its own hash..
2470	 */
2471	if (base->d_flags & DCACHE_OP_HASH) {
2472		int err = base->d_op->d_hash(base, this);
2473		if (err < 0)
2474			return err;
2475	}
2476
2477	return inode_permission(base->d_inode, MAY_EXEC);
2478}
2479
2480/**
2481 * try_lookup_one_len - filesystem helper to lookup single pathname component
2482 * @name:	pathname component to lookup
2483 * @base:	base directory to lookup from
2484 * @len:	maximum length @len should be interpreted to
2485 *
2486 * Look up a dentry by name in the dcache, returning NULL if it does not
2487 * currently exist.  The function does not try to create a dentry.
2488 *
2489 * Note that this routine is purely a helper for filesystem usage and should
2490 * not be called by generic code.
2491 *
2492 * The caller must hold base->i_mutex.
 
 
 
2493 */
2494struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2495{
2496	struct qstr this;
2497	int err;
2498
2499	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2500
2501	err = lookup_one_len_common(name, base, len, &this);
2502	if (err)
2503		return ERR_PTR(err);
2504
2505	return lookup_dcache(&this, base, 0);
2506}
2507EXPORT_SYMBOL(try_lookup_one_len);
2508
2509/**
2510 * lookup_one_len - filesystem helper to lookup single pathname component
2511 * @name:	pathname component to lookup
2512 * @base:	base directory to lookup from
2513 * @len:	maximum length @len should be interpreted to
2514 *
2515 * Note that this routine is purely a helper for filesystem usage and should
2516 * not be called by generic code.
2517 *
2518 * The caller must hold base->i_mutex.
2519 */
2520struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2521{
2522	struct dentry *dentry;
2523	struct qstr this;
 
2524	int err;
2525
2526	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2527
2528	err = lookup_one_len_common(name, base, len, &this);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2529	if (err)
2530		return ERR_PTR(err);
2531
2532	dentry = lookup_dcache(&this, base, 0);
2533	return dentry ? dentry : __lookup_slow(&this, base, 0);
2534}
2535EXPORT_SYMBOL(lookup_one_len);
2536
2537/**
2538 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2539 * @name:	pathname component to lookup
2540 * @base:	base directory to lookup from
2541 * @len:	maximum length @len should be interpreted to
2542 *
2543 * Note that this routine is purely a helper for filesystem usage and should
2544 * not be called by generic code.
2545 *
2546 * Unlike lookup_one_len, it should be called without the parent
2547 * i_mutex held, and will take the i_mutex itself if necessary.
2548 */
2549struct dentry *lookup_one_len_unlocked(const char *name,
2550				       struct dentry *base, int len)
2551{
2552	struct qstr this;
 
2553	int err;
2554	struct dentry *ret;
2555
2556	err = lookup_one_len_common(name, base, len, &this);
2557	if (err)
2558		return ERR_PTR(err);
 
 
2559
2560	ret = lookup_dcache(&this, base, 0);
2561	if (!ret)
2562		ret = lookup_slow(&this, base, 0);
2563	return ret;
2564}
2565EXPORT_SYMBOL(lookup_one_len_unlocked);
2566
2567#ifdef CONFIG_UNIX98_PTYS
2568int path_pts(struct path *path)
2569{
2570	/* Find something mounted on "pts" in the same directory as
2571	 * the input path.
 
 
 
2572	 */
2573	struct dentry *child, *parent;
2574	struct qstr this;
2575	int ret;
2576
2577	ret = path_parent_directory(path);
2578	if (ret)
2579		return ret;
2580
2581	parent = path->dentry;
2582	this.name = "pts";
2583	this.len = 3;
2584	child = d_hash_and_lookup(parent, &this);
2585	if (!child)
2586		return -ENOENT;
2587
2588	path->dentry = child;
2589	dput(parent);
2590	follow_mount(path);
2591	return 0;
2592}
2593#endif
2594
2595int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2596		 struct path *path, int *empty)
2597{
2598	return filename_lookup(dfd, getname_flags(name, flags, empty),
2599			       flags, path, NULL);
2600}
2601EXPORT_SYMBOL(user_path_at_empty);
2602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603/**
2604 * mountpoint_last - look up last component for umount
2605 * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
 
2606 *
2607 * This is a special lookup_last function just for umount. In this case, we
2608 * need to resolve the path without doing any revalidation.
2609 *
2610 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2611 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2612 * in almost all cases, this lookup will be served out of the dcache. The only
2613 * cases where it won't are if nd->last refers to a symlink or the path is
2614 * bogus and it doesn't exist.
2615 *
2616 * Returns:
2617 * -error: if there was an error during lookup. This includes -ENOENT if the
2618 *         lookup found a negative dentry.
 
2619 *
2620 * 0:      if we successfully resolved nd->last and found it to not to be a
2621 *         symlink that needs to be followed.
 
2622 *
2623 * 1:      if we successfully resolved nd->last and found it to be a symlink
2624 *         that needs to be followed.
 
2625 */
2626static int
2627mountpoint_last(struct nameidata *nd)
2628{
2629	int error = 0;
 
2630	struct dentry *dir = nd->path.dentry;
2631	struct path path;
2632
2633	/* If we're in rcuwalk, drop out of it to handle last component */
2634	if (nd->flags & LOOKUP_RCU) {
2635		if (unlazy_walk(nd))
2636			return -ECHILD;
2637	}
2638
2639	nd->flags &= ~LOOKUP_PARENT;
2640
2641	if (unlikely(nd->last_type != LAST_NORM)) {
2642		error = handle_dots(nd, nd->last_type);
2643		if (error)
2644			return error;
2645		path.dentry = dget(nd->path.dentry);
2646	} else {
2647		path.dentry = d_lookup(dir, &nd->last);
2648		if (!path.dentry) {
2649			/*
2650			 * No cached dentry. Mounted dentries are pinned in the
2651			 * cache, so that means that this dentry is probably
2652			 * a symlink or the path doesn't actually point
2653			 * to a mounted dentry.
2654			 */
2655			path.dentry = lookup_slow(&nd->last, dir,
2656					     nd->flags | LOOKUP_NO_REVAL);
2657			if (IS_ERR(path.dentry))
2658				return PTR_ERR(path.dentry);
2659		}
2660	}
2661	if (d_is_negative(path.dentry)) {
2662		dput(path.dentry);
2663		return -ENOENT;
2664	}
2665	path.mnt = nd->path.mnt;
2666	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
 
 
 
 
 
 
 
 
 
2667}
2668
2669/**
2670 * path_mountpoint - look up a path to be umounted
2671 * @nd:		lookup context
2672 * @flags:	lookup flags
2673 * @path:	pointer to container for result
2674 *
2675 * Look up the given name, but don't attempt to revalidate the last component.
2676 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2677 */
2678static int
2679path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2680{
2681	const char *s = path_init(nd, flags);
2682	int err;
2683
 
2684	while (!(err = link_path_walk(s, nd)) &&
2685		(err = mountpoint_last(nd)) > 0) {
2686		s = trailing_symlink(nd);
2687	}
2688	if (!err) {
2689		*path = nd->path;
2690		nd->path.mnt = NULL;
2691		nd->path.dentry = NULL;
2692		follow_mount(path);
2693	}
2694	terminate_walk(nd);
2695	return err;
2696}
2697
2698static int
2699filename_mountpoint(int dfd, struct filename *name, struct path *path,
2700			unsigned int flags)
2701{
2702	struct nameidata nd;
2703	int error;
2704	if (IS_ERR(name))
2705		return PTR_ERR(name);
2706	set_nameidata(&nd, dfd, name);
2707	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2708	if (unlikely(error == -ECHILD))
2709		error = path_mountpoint(&nd, flags, path);
2710	if (unlikely(error == -ESTALE))
2711		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2712	if (likely(!error))
2713		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2714	restore_nameidata();
2715	putname(name);
2716	return error;
2717}
2718
2719/**
2720 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2721 * @dfd:	directory file descriptor
2722 * @name:	pathname from userland
2723 * @flags:	lookup flags
2724 * @path:	pointer to container to hold result
2725 *
2726 * A umount is a special case for path walking. We're not actually interested
2727 * in the inode in this situation, and ESTALE errors can be a problem. We
2728 * simply want track down the dentry and vfsmount attached at the mountpoint
2729 * and avoid revalidating the last component.
2730 *
2731 * Returns 0 and populates "path" on success.
2732 */
2733int
2734user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2735			struct path *path)
2736{
2737	return filename_mountpoint(dfd, getname(name), path, flags);
2738}
2739
2740int
2741kern_path_mountpoint(int dfd, const char *name, struct path *path,
2742			unsigned int flags)
2743{
2744	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2745}
2746EXPORT_SYMBOL(kern_path_mountpoint);
2747
2748int __check_sticky(struct inode *dir, struct inode *inode)
2749{
2750	kuid_t fsuid = current_fsuid();
2751
2752	if (uid_eq(inode->i_uid, fsuid))
2753		return 0;
2754	if (uid_eq(dir->i_uid, fsuid))
2755		return 0;
2756	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2757}
2758EXPORT_SYMBOL(__check_sticky);
2759
2760/*
2761 *	Check whether we can remove a link victim from directory dir, check
2762 *  whether the type of victim is right.
2763 *  1. We can't do it if dir is read-only (done in permission())
2764 *  2. We should have write and exec permissions on dir
2765 *  3. We can't remove anything from append-only dir
2766 *  4. We can't do anything with immutable dir (done in permission())
2767 *  5. If the sticky bit on dir is set we should either
2768 *	a. be owner of dir, or
2769 *	b. be owner of victim, or
2770 *	c. have CAP_FOWNER capability
2771 *  6. If the victim is append-only or immutable we can't do antyhing with
2772 *     links pointing to it.
2773 *  7. If the victim has an unknown uid or gid we can't change the inode.
2774 *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2775 *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2776 * 10. We can't remove a root or mountpoint.
2777 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2778 *     nfs_async_unlink().
2779 */
2780static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2781{
2782	struct inode *inode = d_backing_inode(victim);
2783	int error;
2784
2785	if (d_is_negative(victim))
2786		return -ENOENT;
2787	BUG_ON(!inode);
2788
2789	BUG_ON(victim->d_parent->d_inode != dir);
2790
2791	/* Inode writeback is not safe when the uid or gid are invalid. */
2792	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2793		return -EOVERFLOW;
2794
2795	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2796
2797	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2798	if (error)
2799		return error;
2800	if (IS_APPEND(dir))
2801		return -EPERM;
2802
2803	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2804	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2805		return -EPERM;
2806	if (isdir) {
2807		if (!d_is_dir(victim))
2808			return -ENOTDIR;
2809		if (IS_ROOT(victim))
2810			return -EBUSY;
2811	} else if (d_is_dir(victim))
2812		return -EISDIR;
2813	if (IS_DEADDIR(dir))
2814		return -ENOENT;
2815	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2816		return -EBUSY;
2817	return 0;
2818}
2819
2820/*	Check whether we can create an object with dentry child in directory
2821 *  dir.
2822 *  1. We can't do it if child already exists (open has special treatment for
2823 *     this case, but since we are inlined it's OK)
2824 *  2. We can't do it if dir is read-only (done in permission())
2825 *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2826 *  4. We should have write and exec permissions on dir
2827 *  5. We can't do it if dir is immutable (done in permission())
2828 */
2829static inline int may_create(struct inode *dir, struct dentry *child)
2830{
2831	struct user_namespace *s_user_ns;
2832	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2833	if (child->d_inode)
2834		return -EEXIST;
2835	if (IS_DEADDIR(dir))
2836		return -ENOENT;
2837	s_user_ns = dir->i_sb->s_user_ns;
2838	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2839	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2840		return -EOVERFLOW;
2841	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2842}
2843
2844/*
2845 * p1 and p2 should be directories on the same fs.
2846 */
2847struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2848{
2849	struct dentry *p;
2850
2851	if (p1 == p2) {
2852		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2853		return NULL;
2854	}
2855
2856	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2857
2858	p = d_ancestor(p2, p1);
2859	if (p) {
2860		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2861		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2862		return p;
2863	}
2864
2865	p = d_ancestor(p1, p2);
2866	if (p) {
2867		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2868		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2869		return p;
2870	}
2871
2872	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2873	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2874	return NULL;
2875}
2876EXPORT_SYMBOL(lock_rename);
2877
2878void unlock_rename(struct dentry *p1, struct dentry *p2)
2879{
2880	inode_unlock(p1->d_inode);
2881	if (p1 != p2) {
2882		inode_unlock(p2->d_inode);
2883		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2884	}
2885}
2886EXPORT_SYMBOL(unlock_rename);
2887
2888int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2889		bool want_excl)
2890{
2891	int error = may_create(dir, dentry);
2892	if (error)
2893		return error;
2894
2895	if (!dir->i_op->create)
2896		return -EACCES;	/* shouldn't it be ENOSYS? */
2897	mode &= S_IALLUGO;
2898	mode |= S_IFREG;
2899	error = security_inode_create(dir, dentry, mode);
2900	if (error)
2901		return error;
2902	error = dir->i_op->create(dir, dentry, mode, want_excl);
2903	if (!error)
2904		fsnotify_create(dir, dentry);
2905	return error;
2906}
2907EXPORT_SYMBOL(vfs_create);
2908
2909int vfs_mkobj(struct dentry *dentry, umode_t mode,
2910		int (*f)(struct dentry *, umode_t, void *),
2911		void *arg)
2912{
2913	struct inode *dir = dentry->d_parent->d_inode;
2914	int error = may_create(dir, dentry);
2915	if (error)
2916		return error;
2917
2918	mode &= S_IALLUGO;
2919	mode |= S_IFREG;
2920	error = security_inode_create(dir, dentry, mode);
2921	if (error)
2922		return error;
2923	error = f(dentry, mode, arg);
2924	if (!error)
2925		fsnotify_create(dir, dentry);
2926	return error;
2927}
2928EXPORT_SYMBOL(vfs_mkobj);
2929
2930bool may_open_dev(const struct path *path)
2931{
2932	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2933		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2934}
2935
2936static int may_open(const struct path *path, int acc_mode, int flag)
2937{
2938	struct dentry *dentry = path->dentry;
2939	struct inode *inode = dentry->d_inode;
2940	int error;
2941
2942	if (!inode)
2943		return -ENOENT;
2944
2945	switch (inode->i_mode & S_IFMT) {
2946	case S_IFLNK:
2947		return -ELOOP;
2948	case S_IFDIR:
2949		if (acc_mode & MAY_WRITE)
2950			return -EISDIR;
2951		break;
2952	case S_IFBLK:
2953	case S_IFCHR:
2954		if (!may_open_dev(path))
2955			return -EACCES;
2956		/*FALLTHRU*/
2957	case S_IFIFO:
2958	case S_IFSOCK:
2959		flag &= ~O_TRUNC;
2960		break;
2961	}
2962
2963	error = inode_permission(inode, MAY_OPEN | acc_mode);
2964	if (error)
2965		return error;
2966
2967	/*
2968	 * An append-only file must be opened in append mode for writing.
2969	 */
2970	if (IS_APPEND(inode)) {
2971		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2972			return -EPERM;
2973		if (flag & O_TRUNC)
2974			return -EPERM;
2975	}
2976
2977	/* O_NOATIME can only be set by the owner or superuser */
2978	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2979		return -EPERM;
2980
2981	return 0;
2982}
2983
2984static int handle_truncate(struct file *filp)
2985{
2986	const struct path *path = &filp->f_path;
2987	struct inode *inode = path->dentry->d_inode;
2988	int error = get_write_access(inode);
2989	if (error)
2990		return error;
2991	/*
2992	 * Refuse to truncate files with mandatory locks held on them.
2993	 */
2994	error = locks_verify_locked(filp);
2995	if (!error)
2996		error = security_path_truncate(path);
2997	if (!error) {
2998		error = do_truncate(path->dentry, 0,
2999				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3000				    filp);
3001	}
3002	put_write_access(inode);
3003	return error;
3004}
3005
3006static inline int open_to_namei_flags(int flag)
3007{
3008	if ((flag & O_ACCMODE) == 3)
3009		flag--;
3010	return flag;
3011}
3012
3013static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3014{
3015	struct user_namespace *s_user_ns;
3016	int error = security_path_mknod(dir, dentry, mode, 0);
3017	if (error)
3018		return error;
3019
3020	s_user_ns = dir->dentry->d_sb->s_user_ns;
3021	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3022	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3023		return -EOVERFLOW;
3024
3025	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3026	if (error)
3027		return error;
3028
3029	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3030}
3031
3032/*
3033 * Attempt to atomically look up, create and open a file from a negative
3034 * dentry.
3035 *
3036 * Returns 0 if successful.  The file will have been created and attached to
3037 * @file by the filesystem calling finish_open().
3038 *
3039 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3040 * be set.  The caller will need to perform the open themselves.  @path will
3041 * have been updated to point to the new dentry.  This may be negative.
3042 *
3043 * Returns an error code otherwise.
3044 */
3045static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3046			struct path *path, struct file *file,
3047			const struct open_flags *op,
3048			int open_flag, umode_t mode)
 
3049{
3050	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3051	struct inode *dir =  nd->path.dentry->d_inode;
 
 
3052	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3053
3054	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
 
3055		open_flag &= ~O_TRUNC;
3056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3057	if (nd->flags & LOOKUP_DIRECTORY)
3058		open_flag |= O_DIRECTORY;
3059
3060	file->f_path.dentry = DENTRY_NOT_SET;
3061	file->f_path.mnt = nd->path.mnt;
3062	error = dir->i_op->atomic_open(dir, dentry, file,
3063				       open_to_namei_flags(open_flag), mode);
3064	d_lookup_done(dentry);
3065	if (!error) {
3066		if (file->f_mode & FMODE_OPENED) {
3067			/*
3068			 * We didn't have the inode before the open, so check open
3069			 * permission here.
3070			 */
3071			int acc_mode = op->acc_mode;
3072			if (file->f_mode & FMODE_CREATED) {
3073				WARN_ON(!(open_flag & O_CREAT));
3074				fsnotify_create(dir, dentry);
3075				acc_mode = 0;
3076			}
3077			error = may_open(&file->f_path, acc_mode, open_flag);
3078			if (WARN_ON(error > 0))
3079				error = -EINVAL;
3080		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3081			error = -EIO;
3082		} else {
3083			if (file->f_path.dentry) {
3084				dput(dentry);
3085				dentry = file->f_path.dentry;
 
 
 
 
 
 
 
 
 
3086			}
3087			if (file->f_mode & FMODE_CREATED)
3088				fsnotify_create(dir, dentry);
3089			if (unlikely(d_is_negative(dentry))) {
3090				error = -ENOENT;
3091			} else {
3092				path->dentry = dentry;
3093				path->mnt = nd->path.mnt;
3094				return 0;
3095			}
3096		}
 
3097	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3098	dput(dentry);
3099	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3100}
3101
3102/*
3103 * Look up and maybe create and open the last component.
3104 *
3105 * Must be called with parent locked (exclusive in O_CREAT case).
3106 *
3107 * Returns 0 on success, that is, if
3108 *  the file was successfully atomically created (if necessary) and opened, or
3109 *  the file was not completely opened at this time, though lookups and
3110 *  creations were performed.
3111 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3112 * In the latter case dentry returned in @path might be negative if O_CREAT
3113 * hadn't been specified.
3114 *
3115 * An error code is returned on failure.
 
 
 
 
 
 
 
 
3116 */
3117static int lookup_open(struct nameidata *nd, struct path *path,
3118			struct file *file,
3119			const struct open_flags *op,
3120			bool got_write)
3121{
3122	struct dentry *dir = nd->path.dentry;
3123	struct inode *dir_inode = dir->d_inode;
3124	int open_flag = op->open_flag;
3125	struct dentry *dentry;
3126	int error, create_error = 0;
3127	umode_t mode = op->mode;
3128	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3129
3130	if (unlikely(IS_DEADDIR(dir_inode)))
3131		return -ENOENT;
3132
3133	file->f_mode &= ~FMODE_CREATED;
3134	dentry = d_lookup(dir, &nd->last);
3135	for (;;) {
3136		if (!dentry) {
3137			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3138			if (IS_ERR(dentry))
3139				return PTR_ERR(dentry);
3140		}
3141		if (d_in_lookup(dentry))
3142			break;
3143
3144		error = d_revalidate(dentry, nd->flags);
3145		if (likely(error > 0))
3146			break;
3147		if (error)
3148			goto out_dput;
3149		d_invalidate(dentry);
3150		dput(dentry);
3151		dentry = NULL;
3152	}
3153	if (dentry->d_inode) {
3154		/* Cached positive dentry: will open in f_op->open */
3155		goto out_no_open;
3156	}
3157
3158	/*
3159	 * Checking write permission is tricky, bacuse we don't know if we are
3160	 * going to actually need it: O_CREAT opens should work as long as the
3161	 * file exists.  But checking existence breaks atomicity.  The trick is
3162	 * to check access and if not granted clear O_CREAT from the flags.
3163	 *
3164	 * Another problem is returing the "right" error value (e.g. for an
3165	 * O_EXCL open we want to return EEXIST not EROFS).
3166	 */
3167	if (open_flag & O_CREAT) {
3168		if (!IS_POSIXACL(dir->d_inode))
3169			mode &= ~current_umask();
3170		if (unlikely(!got_write)) {
3171			create_error = -EROFS;
3172			open_flag &= ~O_CREAT;
3173			if (open_flag & (O_EXCL | O_TRUNC))
3174				goto no_open;
3175			/* No side effects, safe to clear O_CREAT */
3176		} else {
3177			create_error = may_o_create(&nd->path, dentry, mode);
3178			if (create_error) {
3179				open_flag &= ~O_CREAT;
3180				if (open_flag & O_EXCL)
3181					goto no_open;
3182			}
3183		}
3184	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3185		   unlikely(!got_write)) {
3186		/*
3187		 * No O_CREATE -> atomicity not a requirement -> fall
3188		 * back to lookup + open
3189		 */
3190		goto no_open;
3191	}
3192
3193	if (dir_inode->i_op->atomic_open) {
3194		error = atomic_open(nd, dentry, path, file, op, open_flag,
3195				    mode);
3196		if (unlikely(error == -ENOENT) && create_error)
3197			error = create_error;
3198		return error;
3199	}
3200
3201no_open:
3202	if (d_in_lookup(dentry)) {
3203		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3204							     nd->flags);
3205		d_lookup_done(dentry);
3206		if (unlikely(res)) {
3207			if (IS_ERR(res)) {
3208				error = PTR_ERR(res);
3209				goto out_dput;
3210			}
3211			dput(dentry);
3212			dentry = res;
3213		}
3214	}
3215
3216	/* Negative dentry, just create the file */
3217	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3218		file->f_mode |= FMODE_CREATED;
3219		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3220		if (!dir_inode->i_op->create) {
3221			error = -EACCES;
 
 
 
 
 
 
 
 
3222			goto out_dput;
3223		}
3224		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3225						open_flag & O_EXCL);
 
 
 
 
3226		if (error)
3227			goto out_dput;
3228		fsnotify_create(dir_inode, dentry);
3229	}
3230	if (unlikely(create_error) && !dentry->d_inode) {
3231		error = create_error;
3232		goto out_dput;
3233	}
3234out_no_open:
3235	path->dentry = dentry;
3236	path->mnt = nd->path.mnt;
3237	return 0;
3238
3239out_dput:
3240	dput(dentry);
3241	return error;
3242}
3243
3244/*
3245 * Handle the last step of open()
3246 */
3247static int do_last(struct nameidata *nd,
3248		   struct file *file, const struct open_flags *op)
 
3249{
3250	struct dentry *dir = nd->path.dentry;
3251	int open_flag = op->open_flag;
3252	bool will_truncate = (open_flag & O_TRUNC) != 0;
3253	bool got_write = false;
3254	int acc_mode = op->acc_mode;
3255	unsigned seq;
3256	struct inode *inode;
 
3257	struct path path;
 
3258	int error;
3259
3260	nd->flags &= ~LOOKUP_PARENT;
3261	nd->flags |= op->intent;
3262
3263	if (nd->last_type != LAST_NORM) {
3264		error = handle_dots(nd, nd->last_type);
3265		if (unlikely(error))
3266			return error;
3267		goto finish_open;
3268	}
3269
3270	if (!(open_flag & O_CREAT)) {
3271		if (nd->last.name[nd->last.len])
3272			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3273		/* we _can_ be in RCU mode here */
3274		error = lookup_fast(nd, &path, &inode, &seq);
3275		if (likely(error > 0))
3276			goto finish_lookup;
3277
3278		if (error < 0)
3279			return error;
3280
3281		BUG_ON(nd->inode != dir->d_inode);
3282		BUG_ON(nd->flags & LOOKUP_RCU);
3283	} else {
3284		/* create side of things */
3285		/*
3286		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3287		 * has been cleared when we got to the last component we are
3288		 * about to look up
3289		 */
3290		error = complete_walk(nd);
3291		if (error)
3292			return error;
3293
3294		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3295		/* trailing slashes? */
3296		if (unlikely(nd->last.name[nd->last.len]))
3297			return -EISDIR;
3298	}
3299
3300	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
 
3301		error = mnt_want_write(nd->path.mnt);
3302		if (!error)
3303			got_write = true;
3304		/*
3305		 * do _not_ fail yet - we might not need that or fail with
3306		 * a different error; let lookup_open() decide; we'll be
3307		 * dropping this one anyway.
3308		 */
3309	}
3310	if (open_flag & O_CREAT)
3311		inode_lock(dir->d_inode);
3312	else
3313		inode_lock_shared(dir->d_inode);
3314	error = lookup_open(nd, &path, file, op, got_write);
3315	if (open_flag & O_CREAT)
3316		inode_unlock(dir->d_inode);
3317	else
3318		inode_unlock_shared(dir->d_inode);
3319
3320	if (error)
3321		goto out;
 
3322
3323	if (file->f_mode & FMODE_OPENED) {
3324		if ((file->f_mode & FMODE_CREATED) ||
3325		    !S_ISREG(file_inode(file)->i_mode))
3326			will_truncate = false;
3327
3328		audit_inode(nd->name, file->f_path.dentry, 0);
3329		goto opened;
3330	}
3331
3332	if (file->f_mode & FMODE_CREATED) {
3333		/* Don't check for write permission, don't truncate */
3334		open_flag &= ~O_TRUNC;
3335		will_truncate = false;
3336		acc_mode = 0;
3337		path_to_nameidata(&path, nd);
3338		goto finish_open_created;
3339	}
3340
3341	/*
3342	 * If atomic_open() acquired write access it is dropped now due to
3343	 * possible mount and symlink following (this might be optimized away if
3344	 * necessary...)
3345	 */
3346	if (got_write) {
3347		mnt_drop_write(nd->path.mnt);
3348		got_write = false;
3349	}
3350
3351	error = follow_managed(&path, nd);
3352	if (unlikely(error < 0))
3353		return error;
3354
3355	if (unlikely(d_is_negative(path.dentry))) {
3356		path_to_nameidata(&path, nd);
3357		return -ENOENT;
3358	}
3359
3360	/*
3361	 * create/update audit record if it already exists.
3362	 */
3363	audit_inode(nd->name, path.dentry, 0);
3364
3365	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3366		path_to_nameidata(&path, nd);
3367		return -EEXIST;
3368	}
3369
 
 
 
 
3370	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3371	inode = d_backing_inode(path.dentry);
3372finish_lookup:
3373	error = step_into(nd, &path, 0, inode, seq);
 
 
 
3374	if (unlikely(error))
3375		return error;
3376finish_open:
 
 
 
 
 
 
 
 
 
 
3377	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
 
3378	error = complete_walk(nd);
3379	if (error)
 
3380		return error;
 
3381	audit_inode(nd->name, nd->path.dentry, 0);
3382	if (open_flag & O_CREAT) {
3383		error = -EISDIR;
3384		if (d_is_dir(nd->path.dentry))
3385			goto out;
3386		error = may_create_in_sticky(dir,
3387					     d_backing_inode(nd->path.dentry));
3388		if (unlikely(error))
3389			goto out;
3390	}
 
 
 
3391	error = -ENOTDIR;
3392	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3393		goto out;
3394	if (!d_is_reg(nd->path.dentry))
3395		will_truncate = false;
3396
3397	if (will_truncate) {
3398		error = mnt_want_write(nd->path.mnt);
3399		if (error)
3400			goto out;
3401		got_write = true;
3402	}
3403finish_open_created:
3404	error = may_open(&nd->path, acc_mode, open_flag);
3405	if (error)
3406		goto out;
3407	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3408	error = vfs_open(&nd->path, file);
3409	if (error)
 
 
 
 
 
 
3410		goto out;
 
3411opened:
3412	error = ima_file_check(file, op->acc_mode);
3413	if (!error && will_truncate)
 
 
 
 
 
 
3414		error = handle_truncate(file);
 
 
 
3415out:
3416	if (unlikely(error > 0)) {
3417		WARN_ON(1);
3418		error = -EINVAL;
3419	}
3420	if (got_write)
3421		mnt_drop_write(nd->path.mnt);
 
3422	return error;
3423}
3424
3425struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3426{
3427	struct dentry *child = NULL;
3428	struct inode *dir = dentry->d_inode;
3429	struct inode *inode;
3430	int error;
3431
3432	/* we want directory to be writable */
3433	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3434	if (error)
3435		goto out_err;
3436	error = -EOPNOTSUPP;
3437	if (!dir->i_op->tmpfile)
3438		goto out_err;
3439	error = -ENOMEM;
3440	child = d_alloc(dentry, &slash_name);
3441	if (unlikely(!child))
3442		goto out_err;
3443	error = dir->i_op->tmpfile(dir, child, mode);
3444	if (error)
3445		goto out_err;
3446	error = -ENOENT;
3447	inode = child->d_inode;
3448	if (unlikely(!inode))
3449		goto out_err;
3450	if (!(open_flag & O_EXCL)) {
3451		spin_lock(&inode->i_lock);
3452		inode->i_state |= I_LINKABLE;
3453		spin_unlock(&inode->i_lock);
3454	}
3455	ima_post_create_tmpfile(inode);
3456	return child;
3457
3458out_err:
3459	dput(child);
3460	return ERR_PTR(error);
 
 
 
 
 
 
 
 
 
3461}
3462EXPORT_SYMBOL(vfs_tmpfile);
3463
3464static int do_tmpfile(struct nameidata *nd, unsigned flags,
3465		const struct open_flags *op,
3466		struct file *file)
3467{
 
3468	struct dentry *child;
 
3469	struct path path;
3470	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3471	if (unlikely(error))
3472		return error;
3473	error = mnt_want_write(path.mnt);
3474	if (unlikely(error))
3475		goto out;
3476	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3477	error = PTR_ERR(child);
3478	if (IS_ERR(child))
 
 
 
 
 
 
 
 
 
3479		goto out2;
 
3480	dput(path.dentry);
3481	path.dentry = child;
 
 
 
3482	audit_inode(nd->name, child, 0);
3483	/* Don't check for other permissions, the inode was just created */
3484	error = may_open(&path, 0, op->open_flag);
3485	if (error)
3486		goto out2;
3487	file->f_path.mnt = path.mnt;
3488	error = finish_open(file, child, NULL);
 
 
 
 
 
 
 
 
 
 
 
3489out2:
3490	mnt_drop_write(path.mnt);
3491out:
3492	path_put(&path);
3493	return error;
3494}
3495
3496static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3497{
3498	struct path path;
3499	int error = path_lookupat(nd, flags, &path);
3500	if (!error) {
3501		audit_inode(nd->name, path.dentry, 0);
3502		error = vfs_open(&path, file);
3503		path_put(&path);
3504	}
3505	return error;
3506}
3507
3508static struct file *path_openat(struct nameidata *nd,
3509			const struct open_flags *op, unsigned flags)
3510{
 
3511	struct file *file;
 
3512	int error;
3513
3514	file = alloc_empty_file(op->open_flag, current_cred());
3515	if (IS_ERR(file))
3516		return file;
3517
 
 
3518	if (unlikely(file->f_flags & __O_TMPFILE)) {
3519		error = do_tmpfile(nd, flags, op, file);
3520	} else if (unlikely(file->f_flags & O_PATH)) {
3521		error = do_o_path(nd, flags, file);
3522	} else {
3523		const char *s = path_init(nd, flags);
3524		while (!(error = link_path_walk(s, nd)) &&
3525			(error = do_last(nd, file, op)) > 0) {
3526			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3527			s = trailing_symlink(nd);
3528		}
3529		terminate_walk(nd);
3530	}
3531	if (likely(!error)) {
3532		if (likely(file->f_mode & FMODE_OPENED))
3533			return file;
3534		WARN_ON(1);
3535		error = -EINVAL;
3536	}
3537	fput(file);
3538	if (error == -EOPENSTALE) {
3539		if (flags & LOOKUP_RCU)
3540			error = -ECHILD;
3541		else
3542			error = -ESTALE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3543	}
3544	return ERR_PTR(error);
3545}
3546
3547struct file *do_filp_open(int dfd, struct filename *pathname,
3548		const struct open_flags *op)
3549{
3550	struct nameidata nd;
3551	int flags = op->lookup_flags;
3552	struct file *filp;
3553
3554	set_nameidata(&nd, dfd, pathname);
3555	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3556	if (unlikely(filp == ERR_PTR(-ECHILD)))
3557		filp = path_openat(&nd, op, flags);
3558	if (unlikely(filp == ERR_PTR(-ESTALE)))
3559		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3560	restore_nameidata();
3561	return filp;
3562}
3563
3564struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3565		const char *name, const struct open_flags *op)
3566{
3567	struct nameidata nd;
3568	struct file *file;
3569	struct filename *filename;
3570	int flags = op->lookup_flags | LOOKUP_ROOT;
3571
3572	nd.root.mnt = mnt;
3573	nd.root.dentry = dentry;
3574
3575	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3576		return ERR_PTR(-ELOOP);
3577
3578	filename = getname_kernel(name);
3579	if (IS_ERR(filename))
3580		return ERR_CAST(filename);
3581
3582	set_nameidata(&nd, -1, filename);
3583	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3584	if (unlikely(file == ERR_PTR(-ECHILD)))
3585		file = path_openat(&nd, op, flags);
3586	if (unlikely(file == ERR_PTR(-ESTALE)))
3587		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3588	restore_nameidata();
3589	putname(filename);
3590	return file;
3591}
3592
3593static struct dentry *filename_create(int dfd, struct filename *name,
3594				struct path *path, unsigned int lookup_flags)
3595{
3596	struct dentry *dentry = ERR_PTR(-EEXIST);
3597	struct qstr last;
3598	int type;
3599	int err2;
3600	int error;
3601	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3602
3603	/*
3604	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3605	 * other flags passed in are ignored!
3606	 */
3607	lookup_flags &= LOOKUP_REVAL;
3608
3609	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3610	if (IS_ERR(name))
3611		return ERR_CAST(name);
3612
3613	/*
3614	 * Yucky last component or no last component at all?
3615	 * (foo/., foo/.., /////)
3616	 */
3617	if (unlikely(type != LAST_NORM))
3618		goto out;
3619
3620	/* don't fail immediately if it's r/o, at least try to report other errors */
3621	err2 = mnt_want_write(path->mnt);
3622	/*
3623	 * Do the final lookup.
3624	 */
3625	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3626	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3627	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3628	if (IS_ERR(dentry))
3629		goto unlock;
3630
3631	error = -EEXIST;
3632	if (d_is_positive(dentry))
3633		goto fail;
3634
3635	/*
3636	 * Special case - lookup gave negative, but... we had foo/bar/
3637	 * From the vfs_mknod() POV we just have a negative dentry -
3638	 * all is fine. Let's be bastards - you had / on the end, you've
3639	 * been asking for (non-existent) directory. -ENOENT for you.
3640	 */
3641	if (unlikely(!is_dir && last.name[last.len])) {
3642		error = -ENOENT;
3643		goto fail;
3644	}
3645	if (unlikely(err2)) {
3646		error = err2;
3647		goto fail;
3648	}
3649	putname(name);
3650	return dentry;
3651fail:
3652	dput(dentry);
3653	dentry = ERR_PTR(error);
3654unlock:
3655	inode_unlock(path->dentry->d_inode);
3656	if (!err2)
3657		mnt_drop_write(path->mnt);
3658out:
3659	path_put(path);
3660	putname(name);
3661	return dentry;
3662}
3663
3664struct dentry *kern_path_create(int dfd, const char *pathname,
3665				struct path *path, unsigned int lookup_flags)
3666{
3667	return filename_create(dfd, getname_kernel(pathname),
3668				path, lookup_flags);
3669}
3670EXPORT_SYMBOL(kern_path_create);
3671
3672void done_path_create(struct path *path, struct dentry *dentry)
3673{
3674	dput(dentry);
3675	inode_unlock(path->dentry->d_inode);
3676	mnt_drop_write(path->mnt);
3677	path_put(path);
3678}
3679EXPORT_SYMBOL(done_path_create);
3680
3681inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3682				struct path *path, unsigned int lookup_flags)
3683{
3684	return filename_create(dfd, getname(pathname), path, lookup_flags);
3685}
3686EXPORT_SYMBOL(user_path_create);
3687
3688int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3689{
3690	int error = may_create(dir, dentry);
3691
3692	if (error)
3693		return error;
3694
3695	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3696		return -EPERM;
3697
3698	if (!dir->i_op->mknod)
3699		return -EPERM;
3700
3701	error = devcgroup_inode_mknod(mode, dev);
3702	if (error)
3703		return error;
3704
3705	error = security_inode_mknod(dir, dentry, mode, dev);
3706	if (error)
3707		return error;
3708
3709	error = dir->i_op->mknod(dir, dentry, mode, dev);
3710	if (!error)
3711		fsnotify_create(dir, dentry);
3712	return error;
3713}
3714EXPORT_SYMBOL(vfs_mknod);
3715
3716static int may_mknod(umode_t mode)
3717{
3718	switch (mode & S_IFMT) {
3719	case S_IFREG:
3720	case S_IFCHR:
3721	case S_IFBLK:
3722	case S_IFIFO:
3723	case S_IFSOCK:
3724	case 0: /* zero mode translates to S_IFREG */
3725		return 0;
3726	case S_IFDIR:
3727		return -EPERM;
3728	default:
3729		return -EINVAL;
3730	}
3731}
3732
3733long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3734		unsigned int dev)
3735{
3736	struct dentry *dentry;
3737	struct path path;
3738	int error;
3739	unsigned int lookup_flags = 0;
3740
3741	error = may_mknod(mode);
3742	if (error)
3743		return error;
3744retry:
3745	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3746	if (IS_ERR(dentry))
3747		return PTR_ERR(dentry);
3748
3749	if (!IS_POSIXACL(path.dentry->d_inode))
3750		mode &= ~current_umask();
3751	error = security_path_mknod(&path, dentry, mode, dev);
3752	if (error)
3753		goto out;
3754	switch (mode & S_IFMT) {
3755		case 0: case S_IFREG:
3756			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3757			if (!error)
3758				ima_post_path_mknod(dentry);
3759			break;
3760		case S_IFCHR: case S_IFBLK:
3761			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3762					new_decode_dev(dev));
3763			break;
3764		case S_IFIFO: case S_IFSOCK:
3765			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3766			break;
3767	}
3768out:
3769	done_path_create(&path, dentry);
3770	if (retry_estale(error, lookup_flags)) {
3771		lookup_flags |= LOOKUP_REVAL;
3772		goto retry;
3773	}
3774	return error;
3775}
3776
3777SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3778		unsigned int, dev)
3779{
3780	return do_mknodat(dfd, filename, mode, dev);
3781}
3782
3783SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3784{
3785	return do_mknodat(AT_FDCWD, filename, mode, dev);
3786}
3787
3788int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3789{
3790	int error = may_create(dir, dentry);
3791	unsigned max_links = dir->i_sb->s_max_links;
3792
3793	if (error)
3794		return error;
3795
3796	if (!dir->i_op->mkdir)
3797		return -EPERM;
3798
3799	mode &= (S_IRWXUGO|S_ISVTX);
3800	error = security_inode_mkdir(dir, dentry, mode);
3801	if (error)
3802		return error;
3803
3804	if (max_links && dir->i_nlink >= max_links)
3805		return -EMLINK;
3806
3807	error = dir->i_op->mkdir(dir, dentry, mode);
3808	if (!error)
3809		fsnotify_mkdir(dir, dentry);
3810	return error;
3811}
3812EXPORT_SYMBOL(vfs_mkdir);
3813
3814long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3815{
3816	struct dentry *dentry;
3817	struct path path;
3818	int error;
3819	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3820
3821retry:
3822	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3823	if (IS_ERR(dentry))
3824		return PTR_ERR(dentry);
3825
3826	if (!IS_POSIXACL(path.dentry->d_inode))
3827		mode &= ~current_umask();
3828	error = security_path_mkdir(&path, dentry, mode);
3829	if (!error)
3830		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3831	done_path_create(&path, dentry);
3832	if (retry_estale(error, lookup_flags)) {
3833		lookup_flags |= LOOKUP_REVAL;
3834		goto retry;
3835	}
3836	return error;
3837}
3838
3839SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3840{
3841	return do_mkdirat(dfd, pathname, mode);
3842}
3843
3844SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3845{
3846	return do_mkdirat(AT_FDCWD, pathname, mode);
3847}
3848
3849int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3850{
3851	int error = may_delete(dir, dentry, 1);
3852
3853	if (error)
3854		return error;
3855
3856	if (!dir->i_op->rmdir)
3857		return -EPERM;
3858
3859	dget(dentry);
3860	inode_lock(dentry->d_inode);
3861
3862	error = -EBUSY;
3863	if (is_local_mountpoint(dentry))
3864		goto out;
3865
3866	error = security_inode_rmdir(dir, dentry);
3867	if (error)
3868		goto out;
3869
 
3870	error = dir->i_op->rmdir(dir, dentry);
3871	if (error)
3872		goto out;
3873
3874	shrink_dcache_parent(dentry);
3875	dentry->d_inode->i_flags |= S_DEAD;
3876	dont_mount(dentry);
3877	detach_mounts(dentry);
3878	fsnotify_rmdir(dir, dentry);
3879
3880out:
3881	inode_unlock(dentry->d_inode);
3882	dput(dentry);
3883	if (!error)
3884		d_delete(dentry);
3885	return error;
3886}
3887EXPORT_SYMBOL(vfs_rmdir);
3888
3889long do_rmdir(int dfd, const char __user *pathname)
3890{
3891	int error = 0;
3892	struct filename *name;
3893	struct dentry *dentry;
3894	struct path path;
3895	struct qstr last;
3896	int type;
3897	unsigned int lookup_flags = 0;
3898retry:
3899	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3900				&path, &last, &type);
3901	if (IS_ERR(name))
3902		return PTR_ERR(name);
3903
3904	switch (type) {
3905	case LAST_DOTDOT:
3906		error = -ENOTEMPTY;
3907		goto exit1;
3908	case LAST_DOT:
3909		error = -EINVAL;
3910		goto exit1;
3911	case LAST_ROOT:
3912		error = -EBUSY;
3913		goto exit1;
3914	}
3915
3916	error = mnt_want_write(path.mnt);
3917	if (error)
3918		goto exit1;
3919
3920	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3921	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3922	error = PTR_ERR(dentry);
3923	if (IS_ERR(dentry))
3924		goto exit2;
3925	if (!dentry->d_inode) {
3926		error = -ENOENT;
3927		goto exit3;
3928	}
3929	error = security_path_rmdir(&path, dentry);
3930	if (error)
3931		goto exit3;
3932	error = vfs_rmdir(path.dentry->d_inode, dentry);
3933exit3:
3934	dput(dentry);
3935exit2:
3936	inode_unlock(path.dentry->d_inode);
3937	mnt_drop_write(path.mnt);
3938exit1:
3939	path_put(&path);
3940	putname(name);
3941	if (retry_estale(error, lookup_flags)) {
3942		lookup_flags |= LOOKUP_REVAL;
3943		goto retry;
3944	}
3945	return error;
3946}
3947
3948SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3949{
3950	return do_rmdir(AT_FDCWD, pathname);
3951}
3952
3953/**
3954 * vfs_unlink - unlink a filesystem object
3955 * @dir:	parent directory
3956 * @dentry:	victim
3957 * @delegated_inode: returns victim inode, if the inode is delegated.
3958 *
3959 * The caller must hold dir->i_mutex.
3960 *
3961 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3962 * return a reference to the inode in delegated_inode.  The caller
3963 * should then break the delegation on that inode and retry.  Because
3964 * breaking a delegation may take a long time, the caller should drop
3965 * dir->i_mutex before doing so.
3966 *
3967 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3968 * be appropriate for callers that expect the underlying filesystem not
3969 * to be NFS exported.
3970 */
3971int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3972{
3973	struct inode *target = dentry->d_inode;
3974	int error = may_delete(dir, dentry, 0);
3975
3976	if (error)
3977		return error;
3978
3979	if (!dir->i_op->unlink)
3980		return -EPERM;
3981
3982	inode_lock(target);
3983	if (is_local_mountpoint(dentry))
3984		error = -EBUSY;
3985	else {
3986		error = security_inode_unlink(dir, dentry);
3987		if (!error) {
3988			error = try_break_deleg(target, delegated_inode);
3989			if (error)
3990				goto out;
3991			error = dir->i_op->unlink(dir, dentry);
3992			if (!error) {
3993				dont_mount(dentry);
3994				detach_mounts(dentry);
3995				fsnotify_unlink(dir, dentry);
3996			}
3997		}
3998	}
3999out:
4000	inode_unlock(target);
4001
4002	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4003	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4004		fsnotify_link_count(target);
4005		d_delete(dentry);
4006	}
4007
4008	return error;
4009}
4010EXPORT_SYMBOL(vfs_unlink);
4011
4012/*
4013 * Make sure that the actual truncation of the file will occur outside its
4014 * directory's i_mutex.  Truncate can take a long time if there is a lot of
4015 * writeout happening, and we don't want to prevent access to the directory
4016 * while waiting on the I/O.
4017 */
4018long do_unlinkat(int dfd, struct filename *name)
4019{
4020	int error;
 
4021	struct dentry *dentry;
4022	struct path path;
4023	struct qstr last;
4024	int type;
4025	struct inode *inode = NULL;
4026	struct inode *delegated_inode = NULL;
4027	unsigned int lookup_flags = 0;
4028retry:
4029	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
 
4030	if (IS_ERR(name))
4031		return PTR_ERR(name);
4032
4033	error = -EISDIR;
4034	if (type != LAST_NORM)
4035		goto exit1;
4036
4037	error = mnt_want_write(path.mnt);
4038	if (error)
4039		goto exit1;
4040retry_deleg:
4041	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4042	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4043	error = PTR_ERR(dentry);
4044	if (!IS_ERR(dentry)) {
4045		/* Why not before? Because we want correct error value */
4046		if (last.name[last.len])
4047			goto slashes;
4048		inode = dentry->d_inode;
4049		if (d_is_negative(dentry))
4050			goto slashes;
4051		ihold(inode);
4052		error = security_path_unlink(&path, dentry);
4053		if (error)
4054			goto exit2;
4055		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4056exit2:
4057		dput(dentry);
4058	}
4059	inode_unlock(path.dentry->d_inode);
4060	if (inode)
4061		iput(inode);	/* truncate the inode here */
4062	inode = NULL;
4063	if (delegated_inode) {
4064		error = break_deleg_wait(&delegated_inode);
4065		if (!error)
4066			goto retry_deleg;
4067	}
4068	mnt_drop_write(path.mnt);
4069exit1:
4070	path_put(&path);
 
4071	if (retry_estale(error, lookup_flags)) {
4072		lookup_flags |= LOOKUP_REVAL;
4073		inode = NULL;
4074		goto retry;
4075	}
4076	putname(name);
4077	return error;
4078
4079slashes:
4080	if (d_is_negative(dentry))
4081		error = -ENOENT;
4082	else if (d_is_dir(dentry))
4083		error = -EISDIR;
4084	else
4085		error = -ENOTDIR;
4086	goto exit2;
4087}
4088
4089SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4090{
4091	if ((flag & ~AT_REMOVEDIR) != 0)
4092		return -EINVAL;
4093
4094	if (flag & AT_REMOVEDIR)
4095		return do_rmdir(dfd, pathname);
4096
4097	return do_unlinkat(dfd, getname(pathname));
4098}
4099
4100SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4101{
4102	return do_unlinkat(AT_FDCWD, getname(pathname));
4103}
4104
4105int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4106{
4107	int error = may_create(dir, dentry);
4108
4109	if (error)
4110		return error;
4111
4112	if (!dir->i_op->symlink)
4113		return -EPERM;
4114
4115	error = security_inode_symlink(dir, dentry, oldname);
4116	if (error)
4117		return error;
4118
4119	error = dir->i_op->symlink(dir, dentry, oldname);
4120	if (!error)
4121		fsnotify_create(dir, dentry);
4122	return error;
4123}
4124EXPORT_SYMBOL(vfs_symlink);
4125
4126long do_symlinkat(const char __user *oldname, int newdfd,
4127		  const char __user *newname)
4128{
4129	int error;
4130	struct filename *from;
4131	struct dentry *dentry;
4132	struct path path;
4133	unsigned int lookup_flags = 0;
4134
4135	from = getname(oldname);
4136	if (IS_ERR(from))
4137		return PTR_ERR(from);
4138retry:
4139	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4140	error = PTR_ERR(dentry);
4141	if (IS_ERR(dentry))
4142		goto out_putname;
4143
4144	error = security_path_symlink(&path, dentry, from->name);
4145	if (!error)
4146		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4147	done_path_create(&path, dentry);
4148	if (retry_estale(error, lookup_flags)) {
4149		lookup_flags |= LOOKUP_REVAL;
4150		goto retry;
4151	}
4152out_putname:
4153	putname(from);
4154	return error;
4155}
4156
4157SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4158		int, newdfd, const char __user *, newname)
4159{
4160	return do_symlinkat(oldname, newdfd, newname);
4161}
4162
4163SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4164{
4165	return do_symlinkat(oldname, AT_FDCWD, newname);
4166}
4167
4168/**
4169 * vfs_link - create a new link
4170 * @old_dentry:	object to be linked
4171 * @dir:	new parent
4172 * @new_dentry:	where to create the new link
4173 * @delegated_inode: returns inode needing a delegation break
4174 *
4175 * The caller must hold dir->i_mutex
4176 *
4177 * If vfs_link discovers a delegation on the to-be-linked file in need
4178 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4179 * inode in delegated_inode.  The caller should then break the delegation
4180 * and retry.  Because breaking a delegation may take a long time, the
4181 * caller should drop the i_mutex before doing so.
4182 *
4183 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4184 * be appropriate for callers that expect the underlying filesystem not
4185 * to be NFS exported.
4186 */
4187int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4188{
4189	struct inode *inode = old_dentry->d_inode;
4190	unsigned max_links = dir->i_sb->s_max_links;
4191	int error;
4192
4193	if (!inode)
4194		return -ENOENT;
4195
4196	error = may_create(dir, new_dentry);
4197	if (error)
4198		return error;
4199
4200	if (dir->i_sb != inode->i_sb)
4201		return -EXDEV;
4202
4203	/*
4204	 * A link to an append-only or immutable file cannot be created.
4205	 */
4206	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4207		return -EPERM;
4208	/*
4209	 * Updating the link count will likely cause i_uid and i_gid to
4210	 * be writen back improperly if their true value is unknown to
4211	 * the vfs.
4212	 */
4213	if (HAS_UNMAPPED_ID(inode))
4214		return -EPERM;
4215	if (!dir->i_op->link)
4216		return -EPERM;
4217	if (S_ISDIR(inode->i_mode))
4218		return -EPERM;
4219
4220	error = security_inode_link(old_dentry, dir, new_dentry);
4221	if (error)
4222		return error;
4223
4224	inode_lock(inode);
4225	/* Make sure we don't allow creating hardlink to an unlinked file */
4226	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4227		error =  -ENOENT;
4228	else if (max_links && inode->i_nlink >= max_links)
4229		error = -EMLINK;
4230	else {
4231		error = try_break_deleg(inode, delegated_inode);
4232		if (!error)
4233			error = dir->i_op->link(old_dentry, dir, new_dentry);
4234	}
4235
4236	if (!error && (inode->i_state & I_LINKABLE)) {
4237		spin_lock(&inode->i_lock);
4238		inode->i_state &= ~I_LINKABLE;
4239		spin_unlock(&inode->i_lock);
4240	}
4241	inode_unlock(inode);
4242	if (!error)
4243		fsnotify_link(dir, inode, new_dentry);
4244	return error;
4245}
4246EXPORT_SYMBOL(vfs_link);
4247
4248/*
4249 * Hardlinks are often used in delicate situations.  We avoid
4250 * security-related surprises by not following symlinks on the
4251 * newname.  --KAB
4252 *
4253 * We don't follow them on the oldname either to be compatible
4254 * with linux 2.0, and to avoid hard-linking to directories
4255 * and other special files.  --ADM
4256 */
4257int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4258	      const char __user *newname, int flags)
4259{
4260	struct dentry *new_dentry;
4261	struct path old_path, new_path;
4262	struct inode *delegated_inode = NULL;
4263	int how = 0;
4264	int error;
4265
4266	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4267		return -EINVAL;
4268	/*
4269	 * To use null names we require CAP_DAC_READ_SEARCH
4270	 * This ensures that not everyone will be able to create
4271	 * handlink using the passed filedescriptor.
4272	 */
4273	if (flags & AT_EMPTY_PATH) {
4274		if (!capable(CAP_DAC_READ_SEARCH))
4275			return -ENOENT;
4276		how = LOOKUP_EMPTY;
4277	}
4278
4279	if (flags & AT_SYMLINK_FOLLOW)
4280		how |= LOOKUP_FOLLOW;
4281retry:
4282	error = user_path_at(olddfd, oldname, how, &old_path);
4283	if (error)
4284		return error;
4285
4286	new_dentry = user_path_create(newdfd, newname, &new_path,
4287					(how & LOOKUP_REVAL));
4288	error = PTR_ERR(new_dentry);
4289	if (IS_ERR(new_dentry))
4290		goto out;
4291
4292	error = -EXDEV;
4293	if (old_path.mnt != new_path.mnt)
4294		goto out_dput;
4295	error = may_linkat(&old_path);
4296	if (unlikely(error))
4297		goto out_dput;
4298	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4299	if (error)
4300		goto out_dput;
4301	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4302out_dput:
4303	done_path_create(&new_path, new_dentry);
4304	if (delegated_inode) {
4305		error = break_deleg_wait(&delegated_inode);
4306		if (!error) {
4307			path_put(&old_path);
4308			goto retry;
4309		}
4310	}
4311	if (retry_estale(error, how)) {
4312		path_put(&old_path);
4313		how |= LOOKUP_REVAL;
4314		goto retry;
4315	}
4316out:
4317	path_put(&old_path);
4318
4319	return error;
4320}
4321
4322SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4323		int, newdfd, const char __user *, newname, int, flags)
4324{
4325	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4326}
4327
4328SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4329{
4330	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4331}
4332
4333/**
4334 * vfs_rename - rename a filesystem object
4335 * @old_dir:	parent of source
4336 * @old_dentry:	source
4337 * @new_dir:	parent of destination
4338 * @new_dentry:	destination
4339 * @delegated_inode: returns an inode needing a delegation break
4340 * @flags:	rename flags
4341 *
4342 * The caller must hold multiple mutexes--see lock_rename()).
4343 *
4344 * If vfs_rename discovers a delegation in need of breaking at either
4345 * the source or destination, it will return -EWOULDBLOCK and return a
4346 * reference to the inode in delegated_inode.  The caller should then
4347 * break the delegation and retry.  Because breaking a delegation may
4348 * take a long time, the caller should drop all locks before doing
4349 * so.
4350 *
4351 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4352 * be appropriate for callers that expect the underlying filesystem not
4353 * to be NFS exported.
4354 *
4355 * The worst of all namespace operations - renaming directory. "Perverted"
4356 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4357 * Problems:
4358 *
4359 *	a) we can get into loop creation.
4360 *	b) race potential - two innocent renames can create a loop together.
4361 *	   That's where 4.4 screws up. Current fix: serialization on
4362 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4363 *	   story.
4364 *	c) we have to lock _four_ objects - parents and victim (if it exists),
4365 *	   and source (if it is not a directory).
4366 *	   And that - after we got ->i_mutex on parents (until then we don't know
4367 *	   whether the target exists).  Solution: try to be smart with locking
4368 *	   order for inodes.  We rely on the fact that tree topology may change
4369 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4370 *	   move will be locked.  Thus we can rank directories by the tree
4371 *	   (ancestors first) and rank all non-directories after them.
4372 *	   That works since everybody except rename does "lock parent, lookup,
4373 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4374 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4375 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4376 *	   we'd better make sure that there's no link(2) for them.
4377 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4378 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4379 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4380 *	   ->i_mutex on parents, which works but leads to some truly excessive
4381 *	   locking].
4382 */
4383int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4384	       struct inode *new_dir, struct dentry *new_dentry,
4385	       struct inode **delegated_inode, unsigned int flags)
4386{
4387	int error;
4388	bool is_dir = d_is_dir(old_dentry);
 
4389	struct inode *source = old_dentry->d_inode;
4390	struct inode *target = new_dentry->d_inode;
4391	bool new_is_dir = false;
4392	unsigned max_links = new_dir->i_sb->s_max_links;
4393	struct name_snapshot old_name;
4394
4395	if (source == target)
 
 
 
 
4396		return 0;
4397
4398	error = may_delete(old_dir, old_dentry, is_dir);
4399	if (error)
4400		return error;
4401
4402	if (!target) {
4403		error = may_create(new_dir, new_dentry);
4404	} else {
4405		new_is_dir = d_is_dir(new_dentry);
4406
4407		if (!(flags & RENAME_EXCHANGE))
4408			error = may_delete(new_dir, new_dentry, is_dir);
4409		else
4410			error = may_delete(new_dir, new_dentry, new_is_dir);
4411	}
4412	if (error)
4413		return error;
4414
4415	if (!old_dir->i_op->rename)
4416		return -EPERM;
4417
 
 
 
4418	/*
4419	 * If we are going to change the parent - check write permissions,
4420	 * we'll need to flip '..'.
4421	 */
4422	if (new_dir != old_dir) {
4423		if (is_dir) {
4424			error = inode_permission(source, MAY_WRITE);
4425			if (error)
4426				return error;
4427		}
4428		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4429			error = inode_permission(target, MAY_WRITE);
4430			if (error)
4431				return error;
4432		}
4433	}
4434
4435	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4436				      flags);
4437	if (error)
4438		return error;
4439
4440	take_dentry_name_snapshot(&old_name, old_dentry);
4441	dget(new_dentry);
4442	if (!is_dir || (flags & RENAME_EXCHANGE))
4443		lock_two_nondirectories(source, target);
4444	else if (target)
4445		inode_lock(target);
4446
4447	error = -EBUSY;
4448	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4449		goto out;
4450
4451	if (max_links && new_dir != old_dir) {
4452		error = -EMLINK;
4453		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4454			goto out;
4455		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4456		    old_dir->i_nlink >= max_links)
4457			goto out;
4458	}
 
 
4459	if (!is_dir) {
4460		error = try_break_deleg(source, delegated_inode);
4461		if (error)
4462			goto out;
4463	}
4464	if (target && !new_is_dir) {
4465		error = try_break_deleg(target, delegated_inode);
4466		if (error)
4467			goto out;
4468	}
4469	error = old_dir->i_op->rename(old_dir, old_dentry,
4470				       new_dir, new_dentry, flags);
 
 
 
 
 
 
4471	if (error)
4472		goto out;
4473
4474	if (!(flags & RENAME_EXCHANGE) && target) {
4475		if (is_dir) {
4476			shrink_dcache_parent(new_dentry);
4477			target->i_flags |= S_DEAD;
4478		}
4479		dont_mount(new_dentry);
4480		detach_mounts(new_dentry);
4481	}
4482	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4483		if (!(flags & RENAME_EXCHANGE))
4484			d_move(old_dentry, new_dentry);
4485		else
4486			d_exchange(old_dentry, new_dentry);
4487	}
4488out:
4489	if (!is_dir || (flags & RENAME_EXCHANGE))
4490		unlock_two_nondirectories(source, target);
4491	else if (target)
4492		inode_unlock(target);
4493	dput(new_dentry);
4494	if (!error) {
4495		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4496			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4497		if (flags & RENAME_EXCHANGE) {
4498			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4499				      new_is_dir, NULL, new_dentry);
4500		}
4501	}
4502	release_dentry_name_snapshot(&old_name);
4503
4504	return error;
4505}
4506EXPORT_SYMBOL(vfs_rename);
4507
4508static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4509			const char __user *newname, unsigned int flags)
4510{
4511	struct dentry *old_dentry, *new_dentry;
4512	struct dentry *trap;
4513	struct path old_path, new_path;
4514	struct qstr old_last, new_last;
4515	int old_type, new_type;
4516	struct inode *delegated_inode = NULL;
4517	struct filename *from;
4518	struct filename *to;
4519	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4520	bool should_retry = false;
4521	int error;
4522
4523	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4524		return -EINVAL;
4525
4526	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4527	    (flags & RENAME_EXCHANGE))
4528		return -EINVAL;
4529
4530	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4531		return -EPERM;
4532
4533	if (flags & RENAME_EXCHANGE)
4534		target_flags = 0;
4535
4536retry:
4537	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4538				&old_path, &old_last, &old_type);
4539	if (IS_ERR(from)) {
4540		error = PTR_ERR(from);
4541		goto exit;
4542	}
4543
4544	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4545				&new_path, &new_last, &new_type);
4546	if (IS_ERR(to)) {
4547		error = PTR_ERR(to);
4548		goto exit1;
4549	}
4550
4551	error = -EXDEV;
4552	if (old_path.mnt != new_path.mnt)
4553		goto exit2;
4554
4555	error = -EBUSY;
4556	if (old_type != LAST_NORM)
4557		goto exit2;
4558
4559	if (flags & RENAME_NOREPLACE)
4560		error = -EEXIST;
4561	if (new_type != LAST_NORM)
4562		goto exit2;
4563
4564	error = mnt_want_write(old_path.mnt);
4565	if (error)
4566		goto exit2;
4567
4568retry_deleg:
4569	trap = lock_rename(new_path.dentry, old_path.dentry);
4570
4571	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4572	error = PTR_ERR(old_dentry);
4573	if (IS_ERR(old_dentry))
4574		goto exit3;
4575	/* source must exist */
4576	error = -ENOENT;
4577	if (d_is_negative(old_dentry))
4578		goto exit4;
4579	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4580	error = PTR_ERR(new_dentry);
4581	if (IS_ERR(new_dentry))
4582		goto exit4;
4583	error = -EEXIST;
4584	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4585		goto exit5;
4586	if (flags & RENAME_EXCHANGE) {
4587		error = -ENOENT;
4588		if (d_is_negative(new_dentry))
4589			goto exit5;
4590
4591		if (!d_is_dir(new_dentry)) {
4592			error = -ENOTDIR;
4593			if (new_last.name[new_last.len])
4594				goto exit5;
4595		}
4596	}
4597	/* unless the source is a directory trailing slashes give -ENOTDIR */
4598	if (!d_is_dir(old_dentry)) {
4599		error = -ENOTDIR;
4600		if (old_last.name[old_last.len])
4601			goto exit5;
4602		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4603			goto exit5;
4604	}
4605	/* source should not be ancestor of target */
4606	error = -EINVAL;
4607	if (old_dentry == trap)
4608		goto exit5;
4609	/* target should not be an ancestor of source */
4610	if (!(flags & RENAME_EXCHANGE))
4611		error = -ENOTEMPTY;
4612	if (new_dentry == trap)
4613		goto exit5;
4614
4615	error = security_path_rename(&old_path, old_dentry,
4616				     &new_path, new_dentry, flags);
4617	if (error)
4618		goto exit5;
4619	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4620			   new_path.dentry->d_inode, new_dentry,
4621			   &delegated_inode, flags);
4622exit5:
4623	dput(new_dentry);
4624exit4:
4625	dput(old_dentry);
4626exit3:
4627	unlock_rename(new_path.dentry, old_path.dentry);
4628	if (delegated_inode) {
4629		error = break_deleg_wait(&delegated_inode);
4630		if (!error)
4631			goto retry_deleg;
4632	}
4633	mnt_drop_write(old_path.mnt);
4634exit2:
4635	if (retry_estale(error, lookup_flags))
4636		should_retry = true;
4637	path_put(&new_path);
4638	putname(to);
4639exit1:
4640	path_put(&old_path);
4641	putname(from);
4642	if (should_retry) {
4643		should_retry = false;
4644		lookup_flags |= LOOKUP_REVAL;
4645		goto retry;
4646	}
4647exit:
4648	return error;
4649}
4650
4651SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4652		int, newdfd, const char __user *, newname, unsigned int, flags)
4653{
4654	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4655}
4656
4657SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4658		int, newdfd, const char __user *, newname)
4659{
4660	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4661}
4662
4663SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4664{
4665	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4666}
4667
4668int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4669{
4670	int error = may_create(dir, dentry);
4671	if (error)
4672		return error;
4673
4674	if (!dir->i_op->mknod)
4675		return -EPERM;
4676
4677	return dir->i_op->mknod(dir, dentry,
4678				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4679}
4680EXPORT_SYMBOL(vfs_whiteout);
4681
4682int readlink_copy(char __user *buffer, int buflen, const char *link)
4683{
4684	int len = PTR_ERR(link);
4685	if (IS_ERR(link))
4686		goto out;
4687
4688	len = strlen(link);
4689	if (len > (unsigned) buflen)
4690		len = buflen;
4691	if (copy_to_user(buffer, link, len))
4692		len = -EFAULT;
4693out:
4694	return len;
4695}
 
4696
4697/**
4698 * vfs_readlink - copy symlink body into userspace buffer
4699 * @dentry: dentry on which to get symbolic link
4700 * @buffer: user memory pointer
4701 * @buflen: size of buffer
4702 *
4703 * Does not touch atime.  That's up to the caller if necessary
4704 *
4705 * Does not call security hook.
4706 */
4707int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4708{
4709	struct inode *inode = d_inode(dentry);
4710	DEFINE_DELAYED_CALL(done);
4711	const char *link;
 
4712	int res;
4713
4714	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4715		if (unlikely(inode->i_op->readlink))
4716			return inode->i_op->readlink(dentry, buffer, buflen);
4717
4718		if (!d_is_symlink(dentry))
4719			return -EINVAL;
4720
4721		spin_lock(&inode->i_lock);
4722		inode->i_opflags |= IOP_DEFAULT_READLINK;
4723		spin_unlock(&inode->i_lock);
4724	}
4725
4726	link = READ_ONCE(inode->i_link);
4727	if (!link) {
4728		link = inode->i_op->get_link(dentry, inode, &done);
4729		if (IS_ERR(link))
4730			return PTR_ERR(link);
4731	}
4732	res = readlink_copy(buffer, buflen, link);
4733	do_delayed_call(&done);
4734	return res;
4735}
4736EXPORT_SYMBOL(vfs_readlink);
4737
4738/**
4739 * vfs_get_link - get symlink body
4740 * @dentry: dentry on which to get symbolic link
4741 * @done: caller needs to free returned data with this
4742 *
4743 * Calls security hook and i_op->get_link() on the supplied inode.
4744 *
4745 * It does not touch atime.  That's up to the caller if necessary.
4746 *
4747 * Does not work on "special" symlinks like /proc/$$/fd/N
4748 */
4749const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4750{
4751	const char *res = ERR_PTR(-EINVAL);
4752	struct inode *inode = d_inode(dentry);
4753
4754	if (d_is_symlink(dentry)) {
4755		res = ERR_PTR(security_inode_readlink(dentry));
4756		if (!res)
4757			res = inode->i_op->get_link(dentry, inode, done);
4758	}
4759	return res;
4760}
4761EXPORT_SYMBOL(vfs_get_link);
4762
4763/* get the link contents into pagecache */
4764const char *page_get_link(struct dentry *dentry, struct inode *inode,
4765			  struct delayed_call *callback)
4766{
4767	char *kaddr;
4768	struct page *page;
4769	struct address_space *mapping = inode->i_mapping;
4770
4771	if (!dentry) {
4772		page = find_get_page(mapping, 0);
4773		if (!page)
4774			return ERR_PTR(-ECHILD);
4775		if (!PageUptodate(page)) {
4776			put_page(page);
4777			return ERR_PTR(-ECHILD);
4778		}
4779	} else {
4780		page = read_mapping_page(mapping, 0, NULL);
4781		if (IS_ERR(page))
4782			return (char*)page;
4783	}
4784	set_delayed_call(callback, page_put_link, page);
4785	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4786	kaddr = page_address(page);
4787	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4788	return kaddr;
4789}
4790
4791EXPORT_SYMBOL(page_get_link);
4792
4793void page_put_link(void *arg)
4794{
4795	put_page(arg);
4796}
4797EXPORT_SYMBOL(page_put_link);
4798
4799int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4800{
4801	DEFINE_DELAYED_CALL(done);
4802	int res = readlink_copy(buffer, buflen,
4803				page_get_link(dentry, d_inode(dentry),
4804					      &done));
4805	do_delayed_call(&done);
4806	return res;
4807}
4808EXPORT_SYMBOL(page_readlink);
4809
4810/*
4811 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4812 */
4813int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4814{
4815	struct address_space *mapping = inode->i_mapping;
4816	struct page *page;
4817	void *fsdata;
4818	int err;
4819	unsigned int flags = 0;
4820	if (nofs)
4821		flags |= AOP_FLAG_NOFS;
4822
4823retry:
4824	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4825				flags, &page, &fsdata);
4826	if (err)
4827		goto fail;
4828
4829	memcpy(page_address(page), symname, len-1);
4830
4831	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4832							page, fsdata);
4833	if (err < 0)
4834		goto fail;
4835	if (err < len-1)
4836		goto retry;
4837
4838	mark_inode_dirty(inode);
4839	return 0;
4840fail:
4841	return err;
4842}
4843EXPORT_SYMBOL(__page_symlink);
4844
4845int page_symlink(struct inode *inode, const char *symname, int len)
4846{
4847	return __page_symlink(inode, symname, len,
4848			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4849}
4850EXPORT_SYMBOL(page_symlink);
4851
4852const struct inode_operations page_symlink_inode_operations = {
 
4853	.get_link	= page_get_link,
4854};
4855EXPORT_SYMBOL(page_symlink_inode_operations);
v4.6
 
   1/*
   2 *  linux/fs/namei.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * Some corrections by tytso.
   9 */
  10
  11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
  12 * lookup logic.
  13 */
  14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
  15 */
  16
  17#include <linux/init.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/slab.h>
  21#include <linux/fs.h>
  22#include <linux/namei.h>
  23#include <linux/pagemap.h>
  24#include <linux/fsnotify.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/ima.h>
  28#include <linux/syscalls.h>
  29#include <linux/mount.h>
  30#include <linux/audit.h>
  31#include <linux/capability.h>
  32#include <linux/file.h>
  33#include <linux/fcntl.h>
  34#include <linux/device_cgroup.h>
  35#include <linux/fs_struct.h>
  36#include <linux/posix_acl.h>
  37#include <linux/hash.h>
  38#include <asm/uaccess.h>
 
 
  39
  40#include "internal.h"
  41#include "mount.h"
  42
  43/* [Feb-1997 T. Schoebel-Theuer]
  44 * Fundamental changes in the pathname lookup mechanisms (namei)
  45 * were necessary because of omirr.  The reason is that omirr needs
  46 * to know the _real_ pathname, not the user-supplied one, in case
  47 * of symlinks (and also when transname replacements occur).
  48 *
  49 * The new code replaces the old recursive symlink resolution with
  50 * an iterative one (in case of non-nested symlink chains).  It does
  51 * this with calls to <fs>_follow_link().
  52 * As a side effect, dir_namei(), _namei() and follow_link() are now 
  53 * replaced with a single function lookup_dentry() that can handle all 
  54 * the special cases of the former code.
  55 *
  56 * With the new dcache, the pathname is stored at each inode, at least as
  57 * long as the refcount of the inode is positive.  As a side effect, the
  58 * size of the dcache depends on the inode cache and thus is dynamic.
  59 *
  60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
  61 * resolution to correspond with current state of the code.
  62 *
  63 * Note that the symlink resolution is not *completely* iterative.
  64 * There is still a significant amount of tail- and mid- recursion in
  65 * the algorithm.  Also, note that <fs>_readlink() is not used in
  66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
  67 * may return different results than <fs>_follow_link().  Many virtual
  68 * filesystems (including /proc) exhibit this behavior.
  69 */
  70
  71/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
  72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
  73 * and the name already exists in form of a symlink, try to create the new
  74 * name indicated by the symlink. The old code always complained that the
  75 * name already exists, due to not following the symlink even if its target
  76 * is nonexistent.  The new semantics affects also mknod() and link() when
  77 * the name is a symlink pointing to a non-existent name.
  78 *
  79 * I don't know which semantics is the right one, since I have no access
  80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
  81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
  82 * "old" one. Personally, I think the new semantics is much more logical.
  83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
  84 * file does succeed in both HP-UX and SunOs, but not in Solaris
  85 * and in the old Linux semantics.
  86 */
  87
  88/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
  89 * semantics.  See the comments in "open_namei" and "do_link" below.
  90 *
  91 * [10-Sep-98 Alan Modra] Another symlink change.
  92 */
  93
  94/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
  95 *	inside the path - always follow.
  96 *	in the last component in creation/removal/renaming - never follow.
  97 *	if LOOKUP_FOLLOW passed - follow.
  98 *	if the pathname has trailing slashes - follow.
  99 *	otherwise - don't follow.
 100 * (applied in that order).
 101 *
 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
 104 * During the 2.4 we need to fix the userland stuff depending on it -
 105 * hopefully we will be able to get rid of that wart in 2.5. So far only
 106 * XEmacs seems to be relying on it...
 107 */
 108/*
 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
 110 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
 111 * any extra contention...
 112 */
 113
 114/* In order to reduce some races, while at the same time doing additional
 115 * checking and hopefully speeding things up, we copy filenames to the
 116 * kernel data space before using them..
 117 *
 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
 119 * PATH_MAX includes the nul terminator --RR.
 120 */
 121
 122#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
 123
 124struct filename *
 125getname_flags(const char __user *filename, int flags, int *empty)
 126{
 127	struct filename *result;
 128	char *kname;
 129	int len;
 130
 131	result = audit_reusename(filename);
 132	if (result)
 133		return result;
 134
 135	result = __getname();
 136	if (unlikely(!result))
 137		return ERR_PTR(-ENOMEM);
 138
 139	/*
 140	 * First, try to embed the struct filename inside the names_cache
 141	 * allocation
 142	 */
 143	kname = (char *)result->iname;
 144	result->name = kname;
 145
 146	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
 147	if (unlikely(len < 0)) {
 148		__putname(result);
 149		return ERR_PTR(len);
 150	}
 151
 152	/*
 153	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
 154	 * separate struct filename so we can dedicate the entire
 155	 * names_cache allocation for the pathname, and re-do the copy from
 156	 * userland.
 157	 */
 158	if (unlikely(len == EMBEDDED_NAME_MAX)) {
 159		const size_t size = offsetof(struct filename, iname[1]);
 160		kname = (char *)result;
 161
 162		/*
 163		 * size is chosen that way we to guarantee that
 164		 * result->iname[0] is within the same object and that
 165		 * kname can't be equal to result->iname, no matter what.
 166		 */
 167		result = kzalloc(size, GFP_KERNEL);
 168		if (unlikely(!result)) {
 169			__putname(kname);
 170			return ERR_PTR(-ENOMEM);
 171		}
 172		result->name = kname;
 173		len = strncpy_from_user(kname, filename, PATH_MAX);
 174		if (unlikely(len < 0)) {
 175			__putname(kname);
 176			kfree(result);
 177			return ERR_PTR(len);
 178		}
 179		if (unlikely(len == PATH_MAX)) {
 180			__putname(kname);
 181			kfree(result);
 182			return ERR_PTR(-ENAMETOOLONG);
 183		}
 184	}
 185
 186	result->refcnt = 1;
 187	/* The empty path is special. */
 188	if (unlikely(!len)) {
 189		if (empty)
 190			*empty = 1;
 191		if (!(flags & LOOKUP_EMPTY)) {
 192			putname(result);
 193			return ERR_PTR(-ENOENT);
 194		}
 195	}
 196
 197	result->uptr = filename;
 198	result->aname = NULL;
 199	audit_getname(result);
 200	return result;
 201}
 202
 203struct filename *
 204getname(const char __user * filename)
 205{
 206	return getname_flags(filename, 0, NULL);
 207}
 208
 209struct filename *
 210getname_kernel(const char * filename)
 211{
 212	struct filename *result;
 213	int len = strlen(filename) + 1;
 214
 215	result = __getname();
 216	if (unlikely(!result))
 217		return ERR_PTR(-ENOMEM);
 218
 219	if (len <= EMBEDDED_NAME_MAX) {
 220		result->name = (char *)result->iname;
 221	} else if (len <= PATH_MAX) {
 
 222		struct filename *tmp;
 223
 224		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
 225		if (unlikely(!tmp)) {
 226			__putname(result);
 227			return ERR_PTR(-ENOMEM);
 228		}
 229		tmp->name = (char *)result;
 230		result = tmp;
 231	} else {
 232		__putname(result);
 233		return ERR_PTR(-ENAMETOOLONG);
 234	}
 235	memcpy((char *)result->name, filename, len);
 236	result->uptr = NULL;
 237	result->aname = NULL;
 238	result->refcnt = 1;
 239	audit_getname(result);
 240
 241	return result;
 242}
 243
 244void putname(struct filename *name)
 245{
 246	BUG_ON(name->refcnt <= 0);
 247
 248	if (--name->refcnt > 0)
 249		return;
 250
 251	if (name->name != name->iname) {
 252		__putname(name->name);
 253		kfree(name);
 254	} else
 255		__putname(name);
 256}
 257
 258static int check_acl(struct inode *inode, int mask)
 259{
 260#ifdef CONFIG_FS_POSIX_ACL
 261	struct posix_acl *acl;
 262
 263	if (mask & MAY_NOT_BLOCK) {
 264		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
 265	        if (!acl)
 266	                return -EAGAIN;
 267		/* no ->get_acl() calls in RCU mode... */
 268		if (acl == ACL_NOT_CACHED)
 269			return -ECHILD;
 270	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
 271	}
 272
 273	acl = get_acl(inode, ACL_TYPE_ACCESS);
 274	if (IS_ERR(acl))
 275		return PTR_ERR(acl);
 276	if (acl) {
 277	        int error = posix_acl_permission(inode, acl, mask);
 278	        posix_acl_release(acl);
 279	        return error;
 280	}
 281#endif
 282
 283	return -EAGAIN;
 284}
 285
 286/*
 287 * This does the basic permission checking
 288 */
 289static int acl_permission_check(struct inode *inode, int mask)
 290{
 291	unsigned int mode = inode->i_mode;
 292
 293	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
 294		mode >>= 6;
 295	else {
 296		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
 297			int error = check_acl(inode, mask);
 298			if (error != -EAGAIN)
 299				return error;
 300		}
 301
 302		if (in_group_p(inode->i_gid))
 303			mode >>= 3;
 304	}
 305
 306	/*
 307	 * If the DACs are ok we don't need any capability check.
 308	 */
 309	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
 310		return 0;
 311	return -EACCES;
 312}
 313
 314/**
 315 * generic_permission -  check for access rights on a Posix-like filesystem
 316 * @inode:	inode to check access rights for
 317 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
 318 *
 319 * Used to check for read/write/execute permissions on a file.
 320 * We use "fsuid" for this, letting us set arbitrary permissions
 321 * for filesystem access without changing the "normal" uids which
 322 * are used for other things.
 323 *
 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
 325 * request cannot be satisfied (eg. requires blocking or too much complexity).
 326 * It would then be called again in ref-walk mode.
 327 */
 328int generic_permission(struct inode *inode, int mask)
 329{
 330	int ret;
 331
 332	/*
 333	 * Do the basic permission checks.
 334	 */
 335	ret = acl_permission_check(inode, mask);
 336	if (ret != -EACCES)
 337		return ret;
 338
 339	if (S_ISDIR(inode->i_mode)) {
 340		/* DACs are overridable for directories */
 341		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 342			return 0;
 343		if (!(mask & MAY_WRITE))
 344			if (capable_wrt_inode_uidgid(inode,
 345						     CAP_DAC_READ_SEARCH))
 346				return 0;
 
 
 347		return -EACCES;
 348	}
 
 
 
 
 
 
 
 
 349	/*
 350	 * Read/write DACs are always overridable.
 351	 * Executable DACs are overridable when there is
 352	 * at least one exec bit set.
 353	 */
 354	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
 355		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
 356			return 0;
 357
 358	/*
 359	 * Searching includes executable on directories, else just read.
 360	 */
 361	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
 362	if (mask == MAY_READ)
 363		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
 364			return 0;
 365
 366	return -EACCES;
 367}
 368EXPORT_SYMBOL(generic_permission);
 369
 370/*
 371 * We _really_ want to just do "generic_permission()" without
 372 * even looking at the inode->i_op values. So we keep a cache
 373 * flag in inode->i_opflags, that says "this has not special
 374 * permission function, use the fast case".
 375 */
 376static inline int do_inode_permission(struct inode *inode, int mask)
 377{
 378	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
 379		if (likely(inode->i_op->permission))
 380			return inode->i_op->permission(inode, mask);
 381
 382		/* This gets set once for the inode lifetime */
 383		spin_lock(&inode->i_lock);
 384		inode->i_opflags |= IOP_FASTPERM;
 385		spin_unlock(&inode->i_lock);
 386	}
 387	return generic_permission(inode, mask);
 388}
 389
 390/**
 391 * __inode_permission - Check for access rights to a given inode
 392 * @inode: Inode to check permission on
 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 394 *
 395 * Check for read/write/execute permissions on an inode.
 396 *
 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 398 *
 399 * This does not check for a read-only file system.  You probably want
 400 * inode_permission().
 401 */
 402int __inode_permission(struct inode *inode, int mask)
 403{
 404	int retval;
 405
 406	if (unlikely(mask & MAY_WRITE)) {
 407		/*
 408		 * Nobody gets write access to an immutable file.
 409		 */
 410		if (IS_IMMUTABLE(inode))
 411			return -EACCES;
 412	}
 413
 414	retval = do_inode_permission(inode, mask);
 415	if (retval)
 416		return retval;
 417
 418	retval = devcgroup_inode_permission(inode, mask);
 419	if (retval)
 420		return retval;
 421
 422	return security_inode_permission(inode, mask);
 423}
 424EXPORT_SYMBOL(__inode_permission);
 425
 426/**
 427 * sb_permission - Check superblock-level permissions
 428 * @sb: Superblock of inode to check permission on
 429 * @inode: Inode to check permission on
 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 431 *
 432 * Separate out file-system wide checks from inode-specific permission checks.
 433 */
 434static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
 435{
 436	if (unlikely(mask & MAY_WRITE)) {
 437		umode_t mode = inode->i_mode;
 438
 439		/* Nobody gets write access to a read-only fs. */
 440		if ((sb->s_flags & MS_RDONLY) &&
 441		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
 442			return -EROFS;
 443	}
 444	return 0;
 445}
 446
 447/**
 448 * inode_permission - Check for access rights to a given inode
 449 * @inode: Inode to check permission on
 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
 451 *
 452 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
 453 * this, letting us set arbitrary permissions for filesystem access without
 454 * changing the "normal" UIDs which are used for other things.
 455 *
 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
 457 */
 458int inode_permission(struct inode *inode, int mask)
 459{
 460	int retval;
 461
 462	retval = sb_permission(inode->i_sb, inode, mask);
 463	if (retval)
 464		return retval;
 465	return __inode_permission(inode, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466}
 467EXPORT_SYMBOL(inode_permission);
 468
 469/**
 470 * path_get - get a reference to a path
 471 * @path: path to get the reference to
 472 *
 473 * Given a path increment the reference count to the dentry and the vfsmount.
 474 */
 475void path_get(const struct path *path)
 476{
 477	mntget(path->mnt);
 478	dget(path->dentry);
 479}
 480EXPORT_SYMBOL(path_get);
 481
 482/**
 483 * path_put - put a reference to a path
 484 * @path: path to put the reference to
 485 *
 486 * Given a path decrement the reference count to the dentry and the vfsmount.
 487 */
 488void path_put(const struct path *path)
 489{
 490	dput(path->dentry);
 491	mntput(path->mnt);
 492}
 493EXPORT_SYMBOL(path_put);
 494
 495#define EMBEDDED_LEVELS 2
 496struct nameidata {
 497	struct path	path;
 498	struct qstr	last;
 499	struct path	root;
 500	struct inode	*inode; /* path.dentry.d_inode */
 501	unsigned int	flags;
 502	unsigned	seq, m_seq;
 503	int		last_type;
 504	unsigned	depth;
 505	int		total_link_count;
 506	struct saved {
 507		struct path link;
 508		struct delayed_call done;
 509		const char *name;
 510		unsigned seq;
 511	} *stack, internal[EMBEDDED_LEVELS];
 512	struct filename	*name;
 513	struct nameidata *saved;
 514	struct inode	*link_inode;
 515	unsigned	root_seq;
 516	int		dfd;
 517};
 518
 519static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
 520{
 521	struct nameidata *old = current->nameidata;
 522	p->stack = p->internal;
 523	p->dfd = dfd;
 524	p->name = name;
 525	p->total_link_count = old ? old->total_link_count : 0;
 526	p->saved = old;
 527	current->nameidata = p;
 528}
 529
 530static void restore_nameidata(void)
 531{
 532	struct nameidata *now = current->nameidata, *old = now->saved;
 533
 534	current->nameidata = old;
 535	if (old)
 536		old->total_link_count = now->total_link_count;
 537	if (now->stack != now->internal)
 538		kfree(now->stack);
 539}
 540
 541static int __nd_alloc_stack(struct nameidata *nd)
 542{
 543	struct saved *p;
 544
 545	if (nd->flags & LOOKUP_RCU) {
 546		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
 547				  GFP_ATOMIC);
 548		if (unlikely(!p))
 549			return -ECHILD;
 550	} else {
 551		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
 552				  GFP_KERNEL);
 553		if (unlikely(!p))
 554			return -ENOMEM;
 555	}
 556	memcpy(p, nd->internal, sizeof(nd->internal));
 557	nd->stack = p;
 558	return 0;
 559}
 560
 561/**
 562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
 563 * @path: nameidate to verify
 564 *
 565 * Rename can sometimes move a file or directory outside of a bind
 566 * mount, path_connected allows those cases to be detected.
 567 */
 568static bool path_connected(const struct path *path)
 569{
 570	struct vfsmount *mnt = path->mnt;
 
 571
 572	/* Only bind mounts can have disconnected paths */
 573	if (mnt->mnt_root == mnt->mnt_sb->s_root)
 574		return true;
 575
 576	return is_subdir(path->dentry, mnt->mnt_root);
 577}
 578
 579static inline int nd_alloc_stack(struct nameidata *nd)
 580{
 581	if (likely(nd->depth != EMBEDDED_LEVELS))
 582		return 0;
 583	if (likely(nd->stack != nd->internal))
 584		return 0;
 585	return __nd_alloc_stack(nd);
 586}
 587
 588static void drop_links(struct nameidata *nd)
 589{
 590	int i = nd->depth;
 591	while (i--) {
 592		struct saved *last = nd->stack + i;
 593		do_delayed_call(&last->done);
 594		clear_delayed_call(&last->done);
 595	}
 596}
 597
 598static void terminate_walk(struct nameidata *nd)
 599{
 600	drop_links(nd);
 601	if (!(nd->flags & LOOKUP_RCU)) {
 602		int i;
 603		path_put(&nd->path);
 604		for (i = 0; i < nd->depth; i++)
 605			path_put(&nd->stack[i].link);
 606		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
 607			path_put(&nd->root);
 608			nd->root.mnt = NULL;
 609		}
 610	} else {
 611		nd->flags &= ~LOOKUP_RCU;
 612		if (!(nd->flags & LOOKUP_ROOT))
 613			nd->root.mnt = NULL;
 614		rcu_read_unlock();
 615	}
 616	nd->depth = 0;
 617}
 618
 619/* path_put is needed afterwards regardless of success or failure */
 620static bool legitimize_path(struct nameidata *nd,
 621			    struct path *path, unsigned seq)
 622{
 623	int res = __legitimize_mnt(path->mnt, nd->m_seq);
 624	if (unlikely(res)) {
 625		if (res > 0)
 626			path->mnt = NULL;
 627		path->dentry = NULL;
 628		return false;
 629	}
 630	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
 631		path->dentry = NULL;
 632		return false;
 633	}
 634	return !read_seqcount_retry(&path->dentry->d_seq, seq);
 635}
 636
 637static bool legitimize_links(struct nameidata *nd)
 638{
 639	int i;
 640	for (i = 0; i < nd->depth; i++) {
 641		struct saved *last = nd->stack + i;
 642		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
 643			drop_links(nd);
 644			nd->depth = i + 1;
 645			return false;
 646		}
 647	}
 648	return true;
 649}
 650
 
 
 
 
 
 
 
 
 651/*
 652 * Path walking has 2 modes, rcu-walk and ref-walk (see
 653 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
 654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
 655 * normal reference counts on dentries and vfsmounts to transition to ref-walk
 656 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
 657 * got stuck, so ref-walk may continue from there. If this is not successful
 658 * (eg. a seqcount has changed), then failure is returned and it's up to caller
 659 * to restart the path walk from the beginning in ref-walk mode.
 660 */
 661
 662/**
 663 * unlazy_walk - try to switch to ref-walk mode.
 664 * @nd: nameidata pathwalk data
 665 * @dentry: child of nd->path.dentry or NULL
 666 * @seq: seq number to check dentry against
 667 * Returns: 0 on success, -ECHILD on failure
 668 *
 669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
 670 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
 671 * @nd or NULL.  Must be called from rcu-walk context.
 672 * Nothing should touch nameidata between unlazy_walk() failure and
 673 * terminate_walk().
 674 */
 675static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
 676{
 677	struct dentry *parent = nd->path.dentry;
 678
 679	BUG_ON(!(nd->flags & LOOKUP_RCU));
 680
 681	nd->flags &= ~LOOKUP_RCU;
 682	if (unlikely(!legitimize_links(nd)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683		goto out2;
 684	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
 685		goto out2;
 686	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
 687		goto out1;
 688
 689	/*
 690	 * For a negative lookup, the lookup sequence point is the parents
 691	 * sequence point, and it only needs to revalidate the parent dentry.
 692	 *
 693	 * For a positive lookup, we need to move both the parent and the
 694	 * dentry from the RCU domain to be properly refcounted. And the
 695	 * sequence number in the dentry validates *both* dentry counters,
 696	 * since we checked the sequence number of the parent after we got
 697	 * the child sequence number. So we know the parent must still
 698	 * be valid if the child sequence number is still valid.
 699	 */
 700	if (!dentry) {
 701		if (read_seqcount_retry(&parent->d_seq, nd->seq))
 702			goto out;
 703		BUG_ON(nd->inode != parent->d_inode);
 704	} else {
 705		if (!lockref_get_not_dead(&dentry->d_lockref))
 706			goto out;
 707		if (read_seqcount_retry(&dentry->d_seq, seq))
 708			goto drop_dentry;
 709	}
 710
 711	/*
 712	 * Sequence counts matched. Now make sure that the root is
 713	 * still valid and get it if required.
 714	 */
 715	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
 716		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
 717			rcu_read_unlock();
 718			dput(dentry);
 719			return -ECHILD;
 720		}
 721	}
 722
 723	rcu_read_unlock();
 724	return 0;
 725
 726drop_dentry:
 727	rcu_read_unlock();
 728	dput(dentry);
 729	goto drop_root_mnt;
 730out2:
 731	nd->path.mnt = NULL;
 732out1:
 733	nd->path.dentry = NULL;
 734out:
 735	rcu_read_unlock();
 736drop_root_mnt:
 737	if (!(nd->flags & LOOKUP_ROOT))
 738		nd->root.mnt = NULL;
 739	return -ECHILD;
 740}
 741
 742static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
 743{
 744	if (unlikely(!legitimize_path(nd, link, seq))) {
 745		drop_links(nd);
 746		nd->depth = 0;
 747		nd->flags &= ~LOOKUP_RCU;
 748		nd->path.mnt = NULL;
 749		nd->path.dentry = NULL;
 750		if (!(nd->flags & LOOKUP_ROOT))
 751			nd->root.mnt = NULL;
 752		rcu_read_unlock();
 753	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
 754		return 0;
 755	}
 756	path_put(link);
 757	return -ECHILD;
 758}
 759
 760static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
 761{
 762	return dentry->d_op->d_revalidate(dentry, flags);
 
 
 
 763}
 764
 765/**
 766 * complete_walk - successful completion of path walk
 767 * @nd:  pointer nameidata
 768 *
 769 * If we had been in RCU mode, drop out of it and legitimize nd->path.
 770 * Revalidate the final result, unless we'd already done that during
 771 * the path walk or the filesystem doesn't ask for it.  Return 0 on
 772 * success, -error on failure.  In case of failure caller does not
 773 * need to drop nd->path.
 774 */
 775static int complete_walk(struct nameidata *nd)
 776{
 777	struct dentry *dentry = nd->path.dentry;
 778	int status;
 779
 780	if (nd->flags & LOOKUP_RCU) {
 781		if (!(nd->flags & LOOKUP_ROOT))
 782			nd->root.mnt = NULL;
 783		if (unlikely(unlazy_walk(nd, NULL, 0)))
 784			return -ECHILD;
 785	}
 786
 787	if (likely(!(nd->flags & LOOKUP_JUMPED)))
 788		return 0;
 789
 790	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
 791		return 0;
 792
 793	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
 794	if (status > 0)
 795		return 0;
 796
 797	if (!status)
 798		status = -ESTALE;
 799
 800	return status;
 801}
 802
 803static void set_root(struct nameidata *nd)
 804{
 805	struct fs_struct *fs = current->fs;
 806
 807	if (nd->flags & LOOKUP_RCU) {
 808		unsigned seq;
 809
 810		do {
 811			seq = read_seqcount_begin(&fs->seq);
 812			nd->root = fs->root;
 813			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
 814		} while (read_seqcount_retry(&fs->seq, seq));
 815	} else {
 816		get_fs_root(fs, &nd->root);
 
 817	}
 818}
 819
 820static void path_put_conditional(struct path *path, struct nameidata *nd)
 821{
 822	dput(path->dentry);
 823	if (path->mnt != nd->path.mnt)
 824		mntput(path->mnt);
 825}
 826
 827static inline void path_to_nameidata(const struct path *path,
 828					struct nameidata *nd)
 829{
 830	if (!(nd->flags & LOOKUP_RCU)) {
 831		dput(nd->path.dentry);
 832		if (nd->path.mnt != path->mnt)
 833			mntput(nd->path.mnt);
 834	}
 835	nd->path.mnt = path->mnt;
 836	nd->path.dentry = path->dentry;
 837}
 838
 839static int nd_jump_root(struct nameidata *nd)
 840{
 841	if (nd->flags & LOOKUP_RCU) {
 842		struct dentry *d;
 843		nd->path = nd->root;
 844		d = nd->path.dentry;
 845		nd->inode = d->d_inode;
 846		nd->seq = nd->root_seq;
 847		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
 848			return -ECHILD;
 849	} else {
 850		path_put(&nd->path);
 851		nd->path = nd->root;
 852		path_get(&nd->path);
 853		nd->inode = nd->path.dentry->d_inode;
 854	}
 855	nd->flags |= LOOKUP_JUMPED;
 856	return 0;
 857}
 858
 859/*
 860 * Helper to directly jump to a known parsed path from ->get_link,
 861 * caller must have taken a reference to path beforehand.
 862 */
 863void nd_jump_link(struct path *path)
 864{
 865	struct nameidata *nd = current->nameidata;
 866	path_put(&nd->path);
 867
 868	nd->path = *path;
 869	nd->inode = nd->path.dentry->d_inode;
 870	nd->flags |= LOOKUP_JUMPED;
 871}
 872
 873static inline void put_link(struct nameidata *nd)
 874{
 875	struct saved *last = nd->stack + --nd->depth;
 876	do_delayed_call(&last->done);
 877	if (!(nd->flags & LOOKUP_RCU))
 878		path_put(&last->link);
 879}
 880
 881int sysctl_protected_symlinks __read_mostly = 0;
 882int sysctl_protected_hardlinks __read_mostly = 0;
 
 
 883
 884/**
 885 * may_follow_link - Check symlink following for unsafe situations
 886 * @nd: nameidata pathwalk data
 887 *
 888 * In the case of the sysctl_protected_symlinks sysctl being enabled,
 889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
 890 * in a sticky world-writable directory. This is to protect privileged
 891 * processes from failing races against path names that may change out
 892 * from under them by way of other users creating malicious symlinks.
 893 * It will permit symlinks to be followed only when outside a sticky
 894 * world-writable directory, or when the uid of the symlink and follower
 895 * match, or when the directory owner matches the symlink's owner.
 896 *
 897 * Returns 0 if following the symlink is allowed, -ve on error.
 898 */
 899static inline int may_follow_link(struct nameidata *nd)
 900{
 901	const struct inode *inode;
 902	const struct inode *parent;
 
 903
 904	if (!sysctl_protected_symlinks)
 905		return 0;
 906
 907	/* Allowed if owner and follower match. */
 908	inode = nd->link_inode;
 909	if (uid_eq(current_cred()->fsuid, inode->i_uid))
 910		return 0;
 911
 912	/* Allowed if parent directory not sticky and world-writable. */
 913	parent = nd->inode;
 914	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
 915		return 0;
 916
 917	/* Allowed if parent directory and link owner match. */
 918	if (uid_eq(parent->i_uid, inode->i_uid))
 
 919		return 0;
 920
 921	if (nd->flags & LOOKUP_RCU)
 922		return -ECHILD;
 923
 924	audit_log_link_denied("follow_link", &nd->stack[0].link);
 
 925	return -EACCES;
 926}
 927
 928/**
 929 * safe_hardlink_source - Check for safe hardlink conditions
 930 * @inode: the source inode to hardlink from
 931 *
 932 * Return false if at least one of the following conditions:
 933 *    - inode is not a regular file
 934 *    - inode is setuid
 935 *    - inode is setgid and group-exec
 936 *    - access failure for read and write
 937 *
 938 * Otherwise returns true.
 939 */
 940static bool safe_hardlink_source(struct inode *inode)
 941{
 942	umode_t mode = inode->i_mode;
 943
 944	/* Special files should not get pinned to the filesystem. */
 945	if (!S_ISREG(mode))
 946		return false;
 947
 948	/* Setuid files should not get pinned to the filesystem. */
 949	if (mode & S_ISUID)
 950		return false;
 951
 952	/* Executable setgid files should not get pinned to the filesystem. */
 953	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
 954		return false;
 955
 956	/* Hardlinking to unreadable or unwritable sources is dangerous. */
 957	if (inode_permission(inode, MAY_READ | MAY_WRITE))
 958		return false;
 959
 960	return true;
 961}
 962
 963/**
 964 * may_linkat - Check permissions for creating a hardlink
 965 * @link: the source to hardlink from
 966 *
 967 * Block hardlink when all of:
 968 *  - sysctl_protected_hardlinks enabled
 969 *  - fsuid does not match inode
 970 *  - hardlink source is unsafe (see safe_hardlink_source() above)
 971 *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
 972 *
 973 * Returns 0 if successful, -ve on error.
 974 */
 975static int may_linkat(struct path *link)
 976{
 977	struct inode *inode;
 
 
 
 
 978
 979	if (!sysctl_protected_hardlinks)
 980		return 0;
 981
 982	inode = link->dentry->d_inode;
 983
 984	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
 985	 * otherwise, it must be a safe source.
 986	 */
 987	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
 988		return 0;
 989
 990	audit_log_link_denied("linkat", link);
 991	return -EPERM;
 992}
 993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 994static __always_inline
 995const char *get_link(struct nameidata *nd)
 996{
 997	struct saved *last = nd->stack + nd->depth - 1;
 998	struct dentry *dentry = last->link.dentry;
 999	struct inode *inode = nd->link_inode;
1000	int error;
1001	const char *res;
1002
1003	if (!(nd->flags & LOOKUP_RCU)) {
1004		touch_atime(&last->link);
1005		cond_resched();
1006	} else if (atime_needs_update(&last->link, inode)) {
1007		if (unlikely(unlazy_walk(nd, NULL, 0)))
1008			return ERR_PTR(-ECHILD);
1009		touch_atime(&last->link);
1010	}
1011
1012	error = security_inode_follow_link(dentry, inode,
1013					   nd->flags & LOOKUP_RCU);
1014	if (unlikely(error))
1015		return ERR_PTR(error);
1016
1017	nd->last_type = LAST_BIND;
1018	res = inode->i_link;
1019	if (!res) {
1020		const char * (*get)(struct dentry *, struct inode *,
1021				struct delayed_call *);
1022		get = inode->i_op->get_link;
1023		if (nd->flags & LOOKUP_RCU) {
1024			res = get(NULL, inode, &last->done);
1025			if (res == ERR_PTR(-ECHILD)) {
1026				if (unlikely(unlazy_walk(nd, NULL, 0)))
1027					return ERR_PTR(-ECHILD);
1028				res = get(dentry, inode, &last->done);
1029			}
1030		} else {
1031			res = get(dentry, inode, &last->done);
1032		}
1033		if (IS_ERR_OR_NULL(res))
1034			return res;
1035	}
1036	if (*res == '/') {
1037		if (!nd->root.mnt)
1038			set_root(nd);
1039		if (unlikely(nd_jump_root(nd)))
1040			return ERR_PTR(-ECHILD);
1041		while (unlikely(*++res == '/'))
1042			;
1043	}
1044	if (!*res)
1045		res = NULL;
1046	return res;
1047}
1048
1049/*
1050 * follow_up - Find the mountpoint of path's vfsmount
1051 *
1052 * Given a path, find the mountpoint of its source file system.
1053 * Replace @path with the path of the mountpoint in the parent mount.
1054 * Up is towards /.
1055 *
1056 * Return 1 if we went up a level and 0 if we were already at the
1057 * root.
1058 */
1059int follow_up(struct path *path)
1060{
1061	struct mount *mnt = real_mount(path->mnt);
1062	struct mount *parent;
1063	struct dentry *mountpoint;
1064
1065	read_seqlock_excl(&mount_lock);
1066	parent = mnt->mnt_parent;
1067	if (parent == mnt) {
1068		read_sequnlock_excl(&mount_lock);
1069		return 0;
1070	}
1071	mntget(&parent->mnt);
1072	mountpoint = dget(mnt->mnt_mountpoint);
1073	read_sequnlock_excl(&mount_lock);
1074	dput(path->dentry);
1075	path->dentry = mountpoint;
1076	mntput(path->mnt);
1077	path->mnt = &parent->mnt;
1078	return 1;
1079}
1080EXPORT_SYMBOL(follow_up);
1081
1082/*
1083 * Perform an automount
1084 * - return -EISDIR to tell follow_managed() to stop and return the path we
1085 *   were called with.
1086 */
1087static int follow_automount(struct path *path, struct nameidata *nd,
1088			    bool *need_mntput)
1089{
1090	struct vfsmount *mnt;
1091	int err;
1092
1093	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094		return -EREMOTE;
1095
1096	/* We don't want to mount if someone's just doing a stat -
1097	 * unless they're stat'ing a directory and appended a '/' to
1098	 * the name.
1099	 *
1100	 * We do, however, want to mount if someone wants to open or
1101	 * create a file of any type under the mountpoint, wants to
1102	 * traverse through the mountpoint or wants to open the
1103	 * mounted directory.  Also, autofs may mark negative dentries
1104	 * as being automount points.  These will need the attentions
1105	 * of the daemon to instantiate them before they can be used.
1106	 */
1107	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109	    path->dentry->d_inode)
1110		return -EISDIR;
1111
1112	nd->total_link_count++;
1113	if (nd->total_link_count >= 40)
1114		return -ELOOP;
1115
1116	mnt = path->dentry->d_op->d_automount(path);
1117	if (IS_ERR(mnt)) {
1118		/*
1119		 * The filesystem is allowed to return -EISDIR here to indicate
1120		 * it doesn't want to automount.  For instance, autofs would do
1121		 * this so that its userspace daemon can mount on this dentry.
1122		 *
1123		 * However, we can only permit this if it's a terminal point in
1124		 * the path being looked up; if it wasn't then the remainder of
1125		 * the path is inaccessible and we should say so.
1126		 */
1127		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128			return -EREMOTE;
1129		return PTR_ERR(mnt);
1130	}
1131
1132	if (!mnt) /* mount collision */
1133		return 0;
1134
1135	if (!*need_mntput) {
1136		/* lock_mount() may release path->mnt on error */
1137		mntget(path->mnt);
1138		*need_mntput = true;
1139	}
1140	err = finish_automount(mnt, path);
1141
1142	switch (err) {
1143	case -EBUSY:
1144		/* Someone else made a mount here whilst we were busy */
1145		return 0;
1146	case 0:
1147		path_put(path);
1148		path->mnt = mnt;
1149		path->dentry = dget(mnt->mnt_root);
1150		return 0;
1151	default:
1152		return err;
1153	}
1154
1155}
1156
1157/*
1158 * Handle a dentry that is managed in some way.
1159 * - Flagged for transit management (autofs)
1160 * - Flagged as mountpoint
1161 * - Flagged as automount point
1162 *
1163 * This may only be called in refwalk mode.
1164 *
1165 * Serialization is taken care of in namespace.c
1166 */
1167static int follow_managed(struct path *path, struct nameidata *nd)
1168{
1169	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170	unsigned managed;
1171	bool need_mntput = false;
1172	int ret = 0;
1173
1174	/* Given that we're not holding a lock here, we retain the value in a
1175	 * local variable for each dentry as we look at it so that we don't see
1176	 * the components of that value change under us */
1177	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178	       managed &= DCACHE_MANAGED_DENTRY,
1179	       unlikely(managed != 0)) {
1180		/* Allow the filesystem to manage the transit without i_mutex
1181		 * being held. */
1182		if (managed & DCACHE_MANAGE_TRANSIT) {
1183			BUG_ON(!path->dentry->d_op);
1184			BUG_ON(!path->dentry->d_op->d_manage);
1185			ret = path->dentry->d_op->d_manage(path->dentry, false);
1186			if (ret < 0)
1187				break;
1188		}
1189
1190		/* Transit to a mounted filesystem. */
1191		if (managed & DCACHE_MOUNTED) {
1192			struct vfsmount *mounted = lookup_mnt(path);
1193			if (mounted) {
1194				dput(path->dentry);
1195				if (need_mntput)
1196					mntput(path->mnt);
1197				path->mnt = mounted;
1198				path->dentry = dget(mounted->mnt_root);
1199				need_mntput = true;
1200				continue;
1201			}
1202
1203			/* Something is mounted on this dentry in another
1204			 * namespace and/or whatever was mounted there in this
1205			 * namespace got unmounted before lookup_mnt() could
1206			 * get it */
1207		}
1208
1209		/* Handle an automount point */
1210		if (managed & DCACHE_NEED_AUTOMOUNT) {
1211			ret = follow_automount(path, nd, &need_mntput);
1212			if (ret < 0)
1213				break;
1214			continue;
1215		}
1216
1217		/* We didn't change the current path point */
1218		break;
1219	}
1220
1221	if (need_mntput && path->mnt == mnt)
1222		mntput(path->mnt);
1223	if (ret == -EISDIR || !ret)
1224		ret = 1;
1225	if (need_mntput)
1226		nd->flags |= LOOKUP_JUMPED;
1227	if (unlikely(ret < 0))
1228		path_put_conditional(path, nd);
1229	return ret;
1230}
1231
1232int follow_down_one(struct path *path)
1233{
1234	struct vfsmount *mounted;
1235
1236	mounted = lookup_mnt(path);
1237	if (mounted) {
1238		dput(path->dentry);
1239		mntput(path->mnt);
1240		path->mnt = mounted;
1241		path->dentry = dget(mounted->mnt_root);
1242		return 1;
1243	}
1244	return 0;
1245}
1246EXPORT_SYMBOL(follow_down_one);
1247
1248static inline int managed_dentry_rcu(struct dentry *dentry)
1249{
1250	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251		dentry->d_op->d_manage(dentry, true) : 0;
1252}
1253
1254/*
1255 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1256 * we meet a managed dentry that would need blocking.
1257 */
1258static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259			       struct inode **inode, unsigned *seqp)
1260{
1261	for (;;) {
1262		struct mount *mounted;
1263		/*
1264		 * Don't forget we might have a non-mountpoint managed dentry
1265		 * that wants to block transit.
1266		 */
1267		switch (managed_dentry_rcu(path->dentry)) {
1268		case -ECHILD:
1269		default:
1270			return false;
1271		case -EISDIR:
1272			return true;
1273		case 0:
1274			break;
1275		}
1276
1277		if (!d_mountpoint(path->dentry))
1278			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279
1280		mounted = __lookup_mnt(path->mnt, path->dentry);
1281		if (!mounted)
1282			break;
1283		path->mnt = &mounted->mnt;
1284		path->dentry = mounted->mnt.mnt_root;
1285		nd->flags |= LOOKUP_JUMPED;
1286		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1287		/*
1288		 * Update the inode too. We don't need to re-check the
1289		 * dentry sequence number here after this d_inode read,
1290		 * because a mount-point is always pinned.
1291		 */
1292		*inode = path->dentry->d_inode;
1293	}
1294	return !read_seqretry(&mount_lock, nd->m_seq) &&
1295		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296}
1297
1298static int follow_dotdot_rcu(struct nameidata *nd)
1299{
1300	struct inode *inode = nd->inode;
1301
1302	while (1) {
1303		if (path_equal(&nd->path, &nd->root))
1304			break;
1305		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306			struct dentry *old = nd->path.dentry;
1307			struct dentry *parent = old->d_parent;
1308			unsigned seq;
1309
1310			inode = parent->d_inode;
1311			seq = read_seqcount_begin(&parent->d_seq);
1312			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313				return -ECHILD;
1314			nd->path.dentry = parent;
1315			nd->seq = seq;
1316			if (unlikely(!path_connected(&nd->path)))
1317				return -ENOENT;
1318			break;
1319		} else {
1320			struct mount *mnt = real_mount(nd->path.mnt);
1321			struct mount *mparent = mnt->mnt_parent;
1322			struct dentry *mountpoint = mnt->mnt_mountpoint;
1323			struct inode *inode2 = mountpoint->d_inode;
1324			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326				return -ECHILD;
1327			if (&mparent->mnt == nd->path.mnt)
1328				break;
1329			/* we know that mountpoint was pinned */
1330			nd->path.dentry = mountpoint;
1331			nd->path.mnt = &mparent->mnt;
1332			inode = inode2;
1333			nd->seq = seq;
1334		}
1335	}
1336	while (unlikely(d_mountpoint(nd->path.dentry))) {
1337		struct mount *mounted;
1338		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340			return -ECHILD;
1341		if (!mounted)
1342			break;
1343		nd->path.mnt = &mounted->mnt;
1344		nd->path.dentry = mounted->mnt.mnt_root;
1345		inode = nd->path.dentry->d_inode;
1346		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347	}
1348	nd->inode = inode;
1349	return 0;
1350}
1351
1352/*
1353 * Follow down to the covering mount currently visible to userspace.  At each
1354 * point, the filesystem owning that dentry may be queried as to whether the
1355 * caller is permitted to proceed or not.
1356 */
1357int follow_down(struct path *path)
1358{
1359	unsigned managed;
1360	int ret;
1361
1362	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364		/* Allow the filesystem to manage the transit without i_mutex
1365		 * being held.
1366		 *
1367		 * We indicate to the filesystem if someone is trying to mount
1368		 * something here.  This gives autofs the chance to deny anyone
1369		 * other than its daemon the right to mount on its
1370		 * superstructure.
1371		 *
1372		 * The filesystem may sleep at this point.
1373		 */
1374		if (managed & DCACHE_MANAGE_TRANSIT) {
1375			BUG_ON(!path->dentry->d_op);
1376			BUG_ON(!path->dentry->d_op->d_manage);
1377			ret = path->dentry->d_op->d_manage(
1378				path->dentry, false);
1379			if (ret < 0)
1380				return ret == -EISDIR ? 0 : ret;
1381		}
1382
1383		/* Transit to a mounted filesystem. */
1384		if (managed & DCACHE_MOUNTED) {
1385			struct vfsmount *mounted = lookup_mnt(path);
1386			if (!mounted)
1387				break;
1388			dput(path->dentry);
1389			mntput(path->mnt);
1390			path->mnt = mounted;
1391			path->dentry = dget(mounted->mnt_root);
1392			continue;
1393		}
1394
1395		/* Don't handle automount points here */
1396		break;
1397	}
1398	return 0;
1399}
1400EXPORT_SYMBOL(follow_down);
1401
1402/*
1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404 */
1405static void follow_mount(struct path *path)
1406{
1407	while (d_mountpoint(path->dentry)) {
1408		struct vfsmount *mounted = lookup_mnt(path);
1409		if (!mounted)
1410			break;
1411		dput(path->dentry);
1412		mntput(path->mnt);
1413		path->mnt = mounted;
1414		path->dentry = dget(mounted->mnt_root);
1415	}
1416}
1417
 
 
 
 
 
 
 
 
 
 
 
1418static int follow_dotdot(struct nameidata *nd)
1419{
1420	while(1) {
1421		struct dentry *old = nd->path.dentry;
1422
1423		if (nd->path.dentry == nd->root.dentry &&
1424		    nd->path.mnt == nd->root.mnt) {
1425			break;
1426		}
1427		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428			/* rare case of legitimate dget_parent()... */
1429			nd->path.dentry = dget_parent(nd->path.dentry);
1430			dput(old);
1431			if (unlikely(!path_connected(&nd->path)))
1432				return -ENOENT;
1433			break;
1434		}
1435		if (!follow_up(&nd->path))
1436			break;
1437	}
1438	follow_mount(&nd->path);
1439	nd->inode = nd->path.dentry->d_inode;
1440	return 0;
1441}
1442
1443/*
1444 * This looks up the name in dcache, possibly revalidates the old dentry and
1445 * allocates a new one if not found or not valid.  In the need_lookup argument
1446 * returns whether i_op->lookup is necessary.
1447 */
1448static struct dentry *lookup_dcache(const struct qstr *name,
1449				    struct dentry *dir,
1450				    unsigned int flags)
1451{
1452	struct dentry *dentry;
1453	int error;
1454
1455	dentry = d_lookup(dir, name);
1456	if (dentry) {
1457		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1458			error = d_revalidate(dentry, flags);
1459			if (unlikely(error <= 0)) {
1460				if (!error)
1461					d_invalidate(dentry);
1462				dput(dentry);
1463				return ERR_PTR(error);
1464			}
1465		}
1466	}
1467	return dentry;
1468}
1469
1470/*
1471 * Call i_op->lookup on the dentry.  The dentry must be negative and
1472 * unhashed.
1473 *
1474 * dir->d_inode->i_mutex must be held
 
1475 */
1476static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1477				  unsigned int flags)
1478{
 
1479	struct dentry *old;
 
 
 
 
1480
1481	/* Don't create child dentry for a dead directory. */
1482	if (unlikely(IS_DEADDIR(dir))) {
1483		dput(dentry);
1484		return ERR_PTR(-ENOENT);
1485	}
 
 
 
1486
1487	old = dir->i_op->lookup(dir, dentry, flags);
1488	if (unlikely(old)) {
1489		dput(dentry);
1490		dentry = old;
1491	}
1492	return dentry;
1493}
1494
1495static struct dentry *__lookup_hash(const struct qstr *name,
1496		struct dentry *base, unsigned int flags)
1497{
1498	struct dentry *dentry = lookup_dcache(name, base, flags);
1499
1500	if (dentry)
1501		return dentry;
1502
1503	dentry = d_alloc(base, name);
1504	if (unlikely(!dentry))
1505		return ERR_PTR(-ENOMEM);
1506
1507	return lookup_real(base->d_inode, dentry, flags);
1508}
1509
1510static int lookup_fast(struct nameidata *nd,
1511		       struct path *path, struct inode **inode,
1512		       unsigned *seqp)
1513{
1514	struct vfsmount *mnt = nd->path.mnt;
1515	struct dentry *dentry, *parent = nd->path.dentry;
1516	int status = 1;
1517	int err;
1518
1519	/*
1520	 * Rename seqlock is not required here because in the off chance
1521	 * of a false negative due to a concurrent rename, the caller is
1522	 * going to fall back to non-racy lookup.
1523	 */
1524	if (nd->flags & LOOKUP_RCU) {
1525		unsigned seq;
1526		bool negative;
1527		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1528		if (unlikely(!dentry)) {
1529			if (unlazy_walk(nd, NULL, 0))
1530				return -ECHILD;
1531			return 0;
1532		}
1533
1534		/*
1535		 * This sequence count validates that the inode matches
1536		 * the dentry name information from lookup.
1537		 */
1538		*inode = d_backing_inode(dentry);
1539		negative = d_is_negative(dentry);
1540		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1541			return -ECHILD;
1542
1543		/*
1544		 * This sequence count validates that the parent had no
1545		 * changes while we did the lookup of the dentry above.
1546		 *
1547		 * The memory barrier in read_seqcount_begin of child is
1548		 *  enough, we can use __read_seqcount_retry here.
1549		 */
1550		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1551			return -ECHILD;
1552
1553		*seqp = seq;
1554		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1555			status = d_revalidate(dentry, nd->flags);
1556		if (unlikely(status <= 0)) {
1557			if (unlazy_walk(nd, dentry, seq))
1558				return -ECHILD;
1559			if (status == -ECHILD)
1560				status = d_revalidate(dentry, nd->flags);
1561		} else {
1562			/*
1563			 * Note: do negative dentry check after revalidation in
1564			 * case that drops it.
1565			 */
1566			if (unlikely(negative))
1567				return -ENOENT;
1568			path->mnt = mnt;
1569			path->dentry = dentry;
1570			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1571				return 1;
1572			if (unlazy_walk(nd, dentry, seq))
1573				return -ECHILD;
1574		}
 
 
 
 
 
1575	} else {
1576		dentry = __d_lookup(parent, &nd->last);
1577		if (unlikely(!dentry))
1578			return 0;
1579		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1580			status = d_revalidate(dentry, nd->flags);
1581	}
1582	if (unlikely(status <= 0)) {
1583		if (!status)
1584			d_invalidate(dentry);
1585		dput(dentry);
1586		return status;
1587	}
1588	if (unlikely(d_is_negative(dentry))) {
1589		dput(dentry);
1590		return -ENOENT;
1591	}
1592
1593	path->mnt = mnt;
1594	path->dentry = dentry;
1595	err = follow_managed(path, nd);
1596	if (likely(err > 0))
1597		*inode = d_backing_inode(path->dentry);
1598	return err;
1599}
1600
1601/* Fast lookup failed, do it the slow way */
1602static struct dentry *lookup_slow(const struct qstr *name,
1603				  struct dentry *dir,
1604				  unsigned int flags)
1605{
1606	struct dentry *dentry;
1607	inode_lock(dir->d_inode);
1608	dentry = d_lookup(dir, name);
1609	if (unlikely(dentry)) {
1610		if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1611		    !(flags & LOOKUP_NO_REVAL)) {
 
 
 
 
 
 
 
1612			int error = d_revalidate(dentry, flags);
1613			if (unlikely(error <= 0)) {
1614				if (!error)
1615					d_invalidate(dentry);
 
 
 
1616				dput(dentry);
1617				dentry = ERR_PTR(error);
1618			}
1619		}
1620		if (dentry) {
1621			inode_unlock(dir->d_inode);
1622			return dentry;
 
 
 
1623		}
1624	}
1625	dentry = d_alloc(dir, name);
1626	if (unlikely(!dentry)) {
1627		inode_unlock(dir->d_inode);
1628		return ERR_PTR(-ENOMEM);
1629	}
1630	dentry = lookup_real(dir->d_inode, dentry, flags);
1631	inode_unlock(dir->d_inode);
1632	return dentry;
1633}
1634
 
 
 
 
 
 
 
 
 
 
 
 
1635static inline int may_lookup(struct nameidata *nd)
1636{
1637	if (nd->flags & LOOKUP_RCU) {
1638		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1639		if (err != -ECHILD)
1640			return err;
1641		if (unlazy_walk(nd, NULL, 0))
1642			return -ECHILD;
1643	}
1644	return inode_permission(nd->inode, MAY_EXEC);
1645}
1646
1647static inline int handle_dots(struct nameidata *nd, int type)
1648{
1649	if (type == LAST_DOTDOT) {
1650		if (!nd->root.mnt)
1651			set_root(nd);
1652		if (nd->flags & LOOKUP_RCU) {
1653			return follow_dotdot_rcu(nd);
1654		} else
1655			return follow_dotdot(nd);
1656	}
1657	return 0;
1658}
1659
1660static int pick_link(struct nameidata *nd, struct path *link,
1661		     struct inode *inode, unsigned seq)
1662{
1663	int error;
1664	struct saved *last;
1665	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1666		path_to_nameidata(link, nd);
1667		return -ELOOP;
1668	}
1669	if (!(nd->flags & LOOKUP_RCU)) {
1670		if (link->mnt == nd->path.mnt)
1671			mntget(link->mnt);
1672	}
1673	error = nd_alloc_stack(nd);
1674	if (unlikely(error)) {
1675		if (error == -ECHILD) {
1676			if (unlikely(unlazy_link(nd, link, seq)))
1677				return -ECHILD;
1678			error = nd_alloc_stack(nd);
 
 
 
 
 
 
1679		}
1680		if (error) {
1681			path_put(link);
1682			return error;
1683		}
1684	}
1685
1686	last = nd->stack + nd->depth++;
1687	last->link = *link;
1688	clear_delayed_call(&last->done);
1689	nd->link_inode = inode;
1690	last->seq = seq;
1691	return 1;
1692}
1693
 
 
1694/*
1695 * Do we need to follow links? We _really_ want to be able
1696 * to do this check without having to look at inode->i_op,
1697 * so we keep a cache of "no, this doesn't need follow_link"
1698 * for the common case.
1699 */
1700static inline int should_follow_link(struct nameidata *nd, struct path *link,
1701				     int follow,
1702				     struct inode *inode, unsigned seq)
1703{
1704	if (likely(!d_is_symlink(link->dentry)))
1705		return 0;
1706	if (!follow)
 
 
 
 
 
1707		return 0;
 
1708	/* make sure that d_is_symlink above matches inode */
1709	if (nd->flags & LOOKUP_RCU) {
1710		if (read_seqcount_retry(&link->dentry->d_seq, seq))
1711			return -ECHILD;
1712	}
1713	return pick_link(nd, link, inode, seq);
1714}
1715
1716enum {WALK_GET = 1, WALK_PUT = 2};
1717
1718static int walk_component(struct nameidata *nd, int flags)
1719{
1720	struct path path;
1721	struct inode *inode;
1722	unsigned seq;
1723	int err;
1724	/*
1725	 * "." and ".." are special - ".." especially so because it has
1726	 * to be able to know about the current root directory and
1727	 * parent relationships.
1728	 */
1729	if (unlikely(nd->last_type != LAST_NORM)) {
1730		err = handle_dots(nd, nd->last_type);
1731		if (flags & WALK_PUT)
1732			put_link(nd);
1733		return err;
1734	}
1735	err = lookup_fast(nd, &path, &inode, &seq);
1736	if (unlikely(err <= 0)) {
1737		if (err < 0)
1738			return err;
1739		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1740					  nd->flags);
1741		if (IS_ERR(path.dentry))
1742			return PTR_ERR(path.dentry);
1743
1744		path.mnt = nd->path.mnt;
1745		err = follow_managed(&path, nd);
1746		if (unlikely(err < 0))
1747			return err;
1748
1749		if (unlikely(d_is_negative(path.dentry))) {
1750			path_to_nameidata(&path, nd);
1751			return -ENOENT;
1752		}
1753
1754		seq = 0;	/* we are already out of RCU mode */
1755		inode = d_backing_inode(path.dentry);
1756	}
1757
1758	if (flags & WALK_PUT)
1759		put_link(nd);
1760	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1761	if (unlikely(err))
1762		return err;
1763	path_to_nameidata(&path, nd);
1764	nd->inode = inode;
1765	nd->seq = seq;
1766	return 0;
1767}
1768
1769/*
1770 * We can do the critical dentry name comparison and hashing
1771 * operations one word at a time, but we are limited to:
1772 *
1773 * - Architectures with fast unaligned word accesses. We could
1774 *   do a "get_unaligned()" if this helps and is sufficiently
1775 *   fast.
1776 *
1777 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1778 *   do not trap on the (extremely unlikely) case of a page
1779 *   crossing operation.
1780 *
1781 * - Furthermore, we need an efficient 64-bit compile for the
1782 *   64-bit case in order to generate the "number of bytes in
1783 *   the final mask". Again, that could be replaced with a
1784 *   efficient population count instruction or similar.
1785 */
1786#ifdef CONFIG_DCACHE_WORD_ACCESS
1787
1788#include <asm/word-at-a-time.h>
1789
1790#ifdef CONFIG_64BIT
 
 
1791
1792static inline unsigned int fold_hash(unsigned long hash)
1793{
1794	return hash_64(hash, 32);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795}
1796
1797#else	/* 32-bit case */
1798
1799#define fold_hash(x) (x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800
1801#endif
1802
1803unsigned int full_name_hash(const unsigned char *name, unsigned int len)
 
 
 
 
 
 
 
1804{
1805	unsigned long a, mask;
1806	unsigned long hash = 0;
1807
1808	for (;;) {
 
 
1809		a = load_unaligned_zeropad(name);
1810		if (len < sizeof(unsigned long))
1811			break;
1812		hash += a;
1813		hash *= 9;
1814		name += sizeof(unsigned long);
1815		len -= sizeof(unsigned long);
1816		if (!len)
1817			goto done;
1818	}
1819	mask = bytemask_from_count(len);
1820	hash += mask & a;
1821done:
1822	return fold_hash(hash);
1823}
1824EXPORT_SYMBOL(full_name_hash);
1825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826/*
1827 * Calculate the length and hash of the path component, and
1828 * return the "hash_len" as the result.
1829 */
1830static inline u64 hash_name(const char *name)
1831{
1832	unsigned long a, b, adata, bdata, mask, hash, len;
 
1833	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1834
1835	hash = a = 0;
1836	len = -sizeof(unsigned long);
 
1837	do {
1838		hash = (hash + a) * 9;
1839		len += sizeof(unsigned long);
 
1840		a = load_unaligned_zeropad(name+len);
1841		b = a ^ REPEAT_BYTE('/');
1842	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1843
1844	adata = prep_zero_mask(a, adata, &constants);
1845	bdata = prep_zero_mask(b, bdata, &constants);
1846
1847	mask = create_zero_mask(adata | bdata);
 
1848
1849	hash += a & zero_bytemask(mask);
1850	len += find_zero(mask);
1851	return hashlen_create(fold_hash(hash), len);
1852}
1853
1854#else
1855
1856unsigned int full_name_hash(const unsigned char *name, unsigned int len)
 
1857{
1858	unsigned long hash = init_name_hash();
1859	while (len--)
1860		hash = partial_name_hash(*name++, hash);
1861	return end_name_hash(hash);
1862}
1863EXPORT_SYMBOL(full_name_hash);
1864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865/*
1866 * We know there's a real path component here of at least
1867 * one character.
1868 */
1869static inline u64 hash_name(const char *name)
1870{
1871	unsigned long hash = init_name_hash();
1872	unsigned long len = 0, c;
1873
1874	c = (unsigned char)*name;
1875	do {
1876		len++;
1877		hash = partial_name_hash(c, hash);
1878		c = (unsigned char)name[len];
1879	} while (c && c != '/');
1880	return hashlen_create(end_name_hash(hash), len);
1881}
1882
1883#endif
1884
1885/*
1886 * Name resolution.
1887 * This is the basic name resolution function, turning a pathname into
1888 * the final dentry. We expect 'base' to be positive and a directory.
1889 *
1890 * Returns 0 and nd will have valid dentry and mnt on success.
1891 * Returns error and drops reference to input namei data on failure.
1892 */
1893static int link_path_walk(const char *name, struct nameidata *nd)
1894{
1895	int err;
1896
 
 
1897	while (*name=='/')
1898		name++;
1899	if (!*name)
1900		return 0;
1901
1902	/* At this point we know we have a real path component. */
1903	for(;;) {
1904		u64 hash_len;
1905		int type;
1906
1907		err = may_lookup(nd);
1908 		if (err)
1909			return err;
1910
1911		hash_len = hash_name(name);
1912
1913		type = LAST_NORM;
1914		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1915			case 2:
1916				if (name[1] == '.') {
1917					type = LAST_DOTDOT;
1918					nd->flags |= LOOKUP_JUMPED;
1919				}
1920				break;
1921			case 1:
1922				type = LAST_DOT;
1923		}
1924		if (likely(type == LAST_NORM)) {
1925			struct dentry *parent = nd->path.dentry;
1926			nd->flags &= ~LOOKUP_JUMPED;
1927			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1928				struct qstr this = { { .hash_len = hash_len }, .name = name };
1929				err = parent->d_op->d_hash(parent, &this);
1930				if (err < 0)
1931					return err;
1932				hash_len = this.hash_len;
1933				name = this.name;
1934			}
1935		}
1936
1937		nd->last.hash_len = hash_len;
1938		nd->last.name = name;
1939		nd->last_type = type;
1940
1941		name += hashlen_len(hash_len);
1942		if (!*name)
1943			goto OK;
1944		/*
1945		 * If it wasn't NUL, we know it was '/'. Skip that
1946		 * slash, and continue until no more slashes.
1947		 */
1948		do {
1949			name++;
1950		} while (unlikely(*name == '/'));
1951		if (unlikely(!*name)) {
1952OK:
1953			/* pathname body, done */
1954			if (!nd->depth)
1955				return 0;
1956			name = nd->stack[nd->depth - 1].name;
1957			/* trailing symlink, done */
1958			if (!name)
1959				return 0;
1960			/* last component of nested symlink */
1961			err = walk_component(nd, WALK_GET | WALK_PUT);
1962		} else {
1963			err = walk_component(nd, WALK_GET);
 
1964		}
1965		if (err < 0)
1966			return err;
1967
1968		if (err) {
1969			const char *s = get_link(nd);
1970
1971			if (IS_ERR(s))
1972				return PTR_ERR(s);
1973			err = 0;
1974			if (unlikely(!s)) {
1975				/* jumped */
1976				put_link(nd);
1977			} else {
1978				nd->stack[nd->depth - 1].name = name;
1979				name = s;
1980				continue;
1981			}
1982		}
1983		if (unlikely(!d_can_lookup(nd->path.dentry))) {
1984			if (nd->flags & LOOKUP_RCU) {
1985				if (unlazy_walk(nd, NULL, 0))
1986					return -ECHILD;
1987			}
1988			return -ENOTDIR;
1989		}
1990	}
1991}
1992
 
1993static const char *path_init(struct nameidata *nd, unsigned flags)
1994{
1995	int retval = 0;
1996	const char *s = nd->name->name;
1997
 
 
 
 
 
1998	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1999	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2000	nd->depth = 0;
2001	if (flags & LOOKUP_ROOT) {
2002		struct dentry *root = nd->root.dentry;
2003		struct inode *inode = root->d_inode;
2004		if (*s) {
2005			if (!d_can_lookup(root))
2006				return ERR_PTR(-ENOTDIR);
2007			retval = inode_permission(inode, MAY_EXEC);
2008			if (retval)
2009				return ERR_PTR(retval);
2010		}
2011		nd->path = nd->root;
2012		nd->inode = inode;
2013		if (flags & LOOKUP_RCU) {
2014			rcu_read_lock();
2015			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2016			nd->root_seq = nd->seq;
2017			nd->m_seq = read_seqbegin(&mount_lock);
2018		} else {
2019			path_get(&nd->path);
2020		}
2021		return s;
2022	}
2023
2024	nd->root.mnt = NULL;
2025	nd->path.mnt = NULL;
2026	nd->path.dentry = NULL;
2027
2028	nd->m_seq = read_seqbegin(&mount_lock);
2029	if (*s == '/') {
2030		if (flags & LOOKUP_RCU)
2031			rcu_read_lock();
2032		set_root(nd);
2033		if (likely(!nd_jump_root(nd)))
2034			return s;
2035		nd->root.mnt = NULL;
2036		rcu_read_unlock();
2037		return ERR_PTR(-ECHILD);
2038	} else if (nd->dfd == AT_FDCWD) {
2039		if (flags & LOOKUP_RCU) {
2040			struct fs_struct *fs = current->fs;
2041			unsigned seq;
2042
2043			rcu_read_lock();
2044
2045			do {
2046				seq = read_seqcount_begin(&fs->seq);
2047				nd->path = fs->pwd;
2048				nd->inode = nd->path.dentry->d_inode;
2049				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2050			} while (read_seqcount_retry(&fs->seq, seq));
2051		} else {
2052			get_fs_pwd(current->fs, &nd->path);
2053			nd->inode = nd->path.dentry->d_inode;
2054		}
2055		return s;
2056	} else {
2057		/* Caller must check execute permissions on the starting path component */
2058		struct fd f = fdget_raw(nd->dfd);
2059		struct dentry *dentry;
2060
2061		if (!f.file)
2062			return ERR_PTR(-EBADF);
2063
2064		dentry = f.file->f_path.dentry;
2065
2066		if (*s) {
2067			if (!d_can_lookup(dentry)) {
2068				fdput(f);
2069				return ERR_PTR(-ENOTDIR);
2070			}
2071		}
2072
2073		nd->path = f.file->f_path;
2074		if (flags & LOOKUP_RCU) {
2075			rcu_read_lock();
2076			nd->inode = nd->path.dentry->d_inode;
2077			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2078		} else {
2079			path_get(&nd->path);
2080			nd->inode = nd->path.dentry->d_inode;
2081		}
2082		fdput(f);
2083		return s;
2084	}
2085}
2086
2087static const char *trailing_symlink(struct nameidata *nd)
2088{
2089	const char *s;
2090	int error = may_follow_link(nd);
2091	if (unlikely(error))
2092		return ERR_PTR(error);
2093	nd->flags |= LOOKUP_PARENT;
2094	nd->stack[0].name = NULL;
2095	s = get_link(nd);
2096	return s ? s : "";
2097}
2098
2099static inline int lookup_last(struct nameidata *nd)
2100{
2101	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2102		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2103
2104	nd->flags &= ~LOOKUP_PARENT;
2105	return walk_component(nd,
2106			nd->flags & LOOKUP_FOLLOW
2107				? nd->depth
2108					? WALK_PUT | WALK_GET
2109					: WALK_GET
2110				: 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2111}
2112
2113/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2114static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2115{
2116	const char *s = path_init(nd, flags);
2117	int err;
2118
2119	if (IS_ERR(s))
2120		return PTR_ERR(s);
 
 
 
 
2121	while (!(err = link_path_walk(s, nd))
2122		&& ((err = lookup_last(nd)) > 0)) {
2123		s = trailing_symlink(nd);
2124		if (IS_ERR(s)) {
2125			err = PTR_ERR(s);
2126			break;
2127		}
2128	}
2129	if (!err)
2130		err = complete_walk(nd);
2131
2132	if (!err && nd->flags & LOOKUP_DIRECTORY)
2133		if (!d_can_lookup(nd->path.dentry))
2134			err = -ENOTDIR;
2135	if (!err) {
2136		*path = nd->path;
2137		nd->path.mnt = NULL;
2138		nd->path.dentry = NULL;
2139	}
2140	terminate_walk(nd);
2141	return err;
2142}
2143
2144static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2145			   struct path *path, struct path *root)
2146{
2147	int retval;
2148	struct nameidata nd;
2149	if (IS_ERR(name))
2150		return PTR_ERR(name);
2151	if (unlikely(root)) {
2152		nd.root = *root;
2153		flags |= LOOKUP_ROOT;
2154	}
2155	set_nameidata(&nd, dfd, name);
2156	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2157	if (unlikely(retval == -ECHILD))
2158		retval = path_lookupat(&nd, flags, path);
2159	if (unlikely(retval == -ESTALE))
2160		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2161
2162	if (likely(!retval))
2163		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2164	restore_nameidata();
2165	putname(name);
2166	return retval;
2167}
2168
2169/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2170static int path_parentat(struct nameidata *nd, unsigned flags,
2171				struct path *parent)
2172{
2173	const char *s = path_init(nd, flags);
2174	int err;
2175	if (IS_ERR(s))
2176		return PTR_ERR(s);
2177	err = link_path_walk(s, nd);
2178	if (!err)
2179		err = complete_walk(nd);
2180	if (!err) {
2181		*parent = nd->path;
2182		nd->path.mnt = NULL;
2183		nd->path.dentry = NULL;
2184	}
2185	terminate_walk(nd);
2186	return err;
2187}
2188
2189static struct filename *filename_parentat(int dfd, struct filename *name,
2190				unsigned int flags, struct path *parent,
2191				struct qstr *last, int *type)
2192{
2193	int retval;
2194	struct nameidata nd;
2195
2196	if (IS_ERR(name))
2197		return name;
2198	set_nameidata(&nd, dfd, name);
2199	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2200	if (unlikely(retval == -ECHILD))
2201		retval = path_parentat(&nd, flags, parent);
2202	if (unlikely(retval == -ESTALE))
2203		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2204	if (likely(!retval)) {
2205		*last = nd.last;
2206		*type = nd.last_type;
2207		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2208	} else {
2209		putname(name);
2210		name = ERR_PTR(retval);
2211	}
2212	restore_nameidata();
2213	return name;
2214}
2215
2216/* does lookup, returns the object with parent locked */
2217struct dentry *kern_path_locked(const char *name, struct path *path)
2218{
2219	struct filename *filename;
2220	struct dentry *d;
2221	struct qstr last;
2222	int type;
2223
2224	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2225				    &last, &type);
2226	if (IS_ERR(filename))
2227		return ERR_CAST(filename);
2228	if (unlikely(type != LAST_NORM)) {
2229		path_put(path);
2230		putname(filename);
2231		return ERR_PTR(-EINVAL);
2232	}
2233	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2234	d = __lookup_hash(&last, path->dentry, 0);
2235	if (IS_ERR(d)) {
2236		inode_unlock(path->dentry->d_inode);
2237		path_put(path);
2238	}
2239	putname(filename);
2240	return d;
2241}
2242
2243int kern_path(const char *name, unsigned int flags, struct path *path)
2244{
2245	return filename_lookup(AT_FDCWD, getname_kernel(name),
2246			       flags, path, NULL);
2247}
2248EXPORT_SYMBOL(kern_path);
2249
2250/**
2251 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2252 * @dentry:  pointer to dentry of the base directory
2253 * @mnt: pointer to vfs mount of the base directory
2254 * @name: pointer to file name
2255 * @flags: lookup flags
2256 * @path: pointer to struct path to fill
2257 */
2258int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2259		    const char *name, unsigned int flags,
2260		    struct path *path)
2261{
2262	struct path root = {.mnt = mnt, .dentry = dentry};
2263	/* the first argument of filename_lookup() is ignored with root */
2264	return filename_lookup(AT_FDCWD, getname_kernel(name),
2265			       flags , path, &root);
2266}
2267EXPORT_SYMBOL(vfs_path_lookup);
2268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2269/**
2270 * lookup_hash - lookup single pathname component on already hashed name
2271 * @name:	name and hash to lookup
2272 * @base:	base directory to lookup from
 
2273 *
2274 * The name must have been verified and hashed (see lookup_one_len()).  Using
2275 * this after just full_name_hash() is unsafe.
2276 *
2277 * This function also doesn't check for search permission on base directory.
 
2278 *
2279 * Use lookup_one_len_unlocked() instead, unless you really know what you are
2280 * doing.
2281 *
2282 * Do not hold i_mutex; this helper takes i_mutex if necessary.
2283 */
2284struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2285{
2286	struct dentry *ret;
 
 
 
2287
2288	ret = lookup_dcache(name, base, 0);
2289	if (!ret)
2290		ret = lookup_slow(name, base, 0);
2291
2292	return ret;
2293}
2294EXPORT_SYMBOL(lookup_hash);
2295
2296/**
2297 * lookup_one_len - filesystem helper to lookup single pathname component
2298 * @name:	pathname component to lookup
2299 * @base:	base directory to lookup from
2300 * @len:	maximum length @len should be interpreted to
2301 *
2302 * Note that this routine is purely a helper for filesystem usage and should
2303 * not be called by generic code.
2304 *
2305 * The caller must hold base->i_mutex.
2306 */
2307struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2308{
 
2309	struct qstr this;
2310	unsigned int c;
2311	int err;
2312
2313	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2314
2315	this.name = name;
2316	this.len = len;
2317	this.hash = full_name_hash(name, len);
2318	if (!len)
2319		return ERR_PTR(-EACCES);
2320
2321	if (unlikely(name[0] == '.')) {
2322		if (len < 2 || (len == 2 && name[1] == '.'))
2323			return ERR_PTR(-EACCES);
2324	}
2325
2326	while (len--) {
2327		c = *(const unsigned char *)name++;
2328		if (c == '/' || c == '\0')
2329			return ERR_PTR(-EACCES);
2330	}
2331	/*
2332	 * See if the low-level filesystem might want
2333	 * to use its own hash..
2334	 */
2335	if (base->d_flags & DCACHE_OP_HASH) {
2336		int err = base->d_op->d_hash(base, &this);
2337		if (err < 0)
2338			return ERR_PTR(err);
2339	}
2340
2341	err = inode_permission(base->d_inode, MAY_EXEC);
2342	if (err)
2343		return ERR_PTR(err);
2344
2345	return __lookup_hash(&this, base, 0);
 
2346}
2347EXPORT_SYMBOL(lookup_one_len);
2348
2349/**
2350 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2351 * @name:	pathname component to lookup
2352 * @base:	base directory to lookup from
2353 * @len:	maximum length @len should be interpreted to
2354 *
2355 * Note that this routine is purely a helper for filesystem usage and should
2356 * not be called by generic code.
2357 *
2358 * Unlike lookup_one_len, it should be called without the parent
2359 * i_mutex held, and will take the i_mutex itself if necessary.
2360 */
2361struct dentry *lookup_one_len_unlocked(const char *name,
2362				       struct dentry *base, int len)
2363{
2364	struct qstr this;
2365	unsigned int c;
2366	int err;
 
2367
2368	this.name = name;
2369	this.len = len;
2370	this.hash = full_name_hash(name, len);
2371	if (!len)
2372		return ERR_PTR(-EACCES);
2373
2374	if (unlikely(name[0] == '.')) {
2375		if (len < 2 || (len == 2 && name[1] == '.'))
2376			return ERR_PTR(-EACCES);
2377	}
 
 
2378
2379	while (len--) {
2380		c = *(const unsigned char *)name++;
2381		if (c == '/' || c == '\0')
2382			return ERR_PTR(-EACCES);
2383	}
2384	/*
2385	 * See if the low-level filesystem might want
2386	 * to use its own hash..
2387	 */
2388	if (base->d_flags & DCACHE_OP_HASH) {
2389		int err = base->d_op->d_hash(base, &this);
2390		if (err < 0)
2391			return ERR_PTR(err);
2392	}
 
 
2393
2394	err = inode_permission(base->d_inode, MAY_EXEC);
2395	if (err)
2396		return ERR_PTR(err);
 
 
 
2397
2398	return lookup_hash(&this, base);
 
 
 
2399}
2400EXPORT_SYMBOL(lookup_one_len_unlocked);
2401
2402int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2403		 struct path *path, int *empty)
2404{
2405	return filename_lookup(dfd, getname_flags(name, flags, empty),
2406			       flags, path, NULL);
2407}
2408EXPORT_SYMBOL(user_path_at_empty);
2409
2410/*
2411 * NB: most callers don't do anything directly with the reference to the
2412 *     to struct filename, but the nd->last pointer points into the name string
2413 *     allocated by getname. So we must hold the reference to it until all
2414 *     path-walking is complete.
2415 */
2416static inline struct filename *
2417user_path_parent(int dfd, const char __user *path,
2418		 struct path *parent,
2419		 struct qstr *last,
2420		 int *type,
2421		 unsigned int flags)
2422{
2423	/* only LOOKUP_REVAL is allowed in extra flags */
2424	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2425				 parent, last, type);
2426}
2427
2428/**
2429 * mountpoint_last - look up last component for umount
2430 * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2431 * @path: pointer to container for result
2432 *
2433 * This is a special lookup_last function just for umount. In this case, we
2434 * need to resolve the path without doing any revalidation.
2435 *
2436 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2437 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2438 * in almost all cases, this lookup will be served out of the dcache. The only
2439 * cases where it won't are if nd->last refers to a symlink or the path is
2440 * bogus and it doesn't exist.
2441 *
2442 * Returns:
2443 * -error: if there was an error during lookup. This includes -ENOENT if the
2444 *         lookup found a negative dentry. The nd->path reference will also be
2445 *         put in this case.
2446 *
2447 * 0:      if we successfully resolved nd->path and found it to not to be a
2448 *         symlink that needs to be followed. "path" will also be populated.
2449 *         The nd->path reference will also be put.
2450 *
2451 * 1:      if we successfully resolved nd->last and found it to be a symlink
2452 *         that needs to be followed. "path" will be populated with the path
2453 *         to the link, and nd->path will *not* be put.
2454 */
2455static int
2456mountpoint_last(struct nameidata *nd, struct path *path)
2457{
2458	int error = 0;
2459	struct dentry *dentry;
2460	struct dentry *dir = nd->path.dentry;
 
2461
2462	/* If we're in rcuwalk, drop out of it to handle last component */
2463	if (nd->flags & LOOKUP_RCU) {
2464		if (unlazy_walk(nd, NULL, 0))
2465			return -ECHILD;
2466	}
2467
2468	nd->flags &= ~LOOKUP_PARENT;
2469
2470	if (unlikely(nd->last_type != LAST_NORM)) {
2471		error = handle_dots(nd, nd->last_type);
2472		if (error)
2473			return error;
2474		dentry = dget(nd->path.dentry);
2475	} else {
2476		dentry = d_lookup(dir, &nd->last);
2477		if (!dentry) {
2478			/*
2479			 * No cached dentry. Mounted dentries are pinned in the
2480			 * cache, so that means that this dentry is probably
2481			 * a symlink or the path doesn't actually point
2482			 * to a mounted dentry.
2483			 */
2484			dentry = lookup_slow(&nd->last, dir,
2485					     nd->flags | LOOKUP_NO_REVAL);
2486			if (IS_ERR(dentry))
2487				return PTR_ERR(dentry);
2488		}
2489	}
2490	if (d_is_negative(dentry)) {
2491		dput(dentry);
2492		return -ENOENT;
2493	}
2494	if (nd->depth)
2495		put_link(nd);
2496	path->dentry = dentry;
2497	path->mnt = nd->path.mnt;
2498	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2499				   d_backing_inode(dentry), 0);
2500	if (unlikely(error))
2501		return error;
2502	mntget(path->mnt);
2503	follow_mount(path);
2504	return 0;
2505}
2506
2507/**
2508 * path_mountpoint - look up a path to be umounted
2509 * @nd:		lookup context
2510 * @flags:	lookup flags
2511 * @path:	pointer to container for result
2512 *
2513 * Look up the given name, but don't attempt to revalidate the last component.
2514 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2515 */
2516static int
2517path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2518{
2519	const char *s = path_init(nd, flags);
2520	int err;
2521	if (IS_ERR(s))
2522		return PTR_ERR(s);
2523	while (!(err = link_path_walk(s, nd)) &&
2524		(err = mountpoint_last(nd, path)) > 0) {
2525		s = trailing_symlink(nd);
2526		if (IS_ERR(s)) {
2527			err = PTR_ERR(s);
2528			break;
2529		}
 
 
2530	}
2531	terminate_walk(nd);
2532	return err;
2533}
2534
2535static int
2536filename_mountpoint(int dfd, struct filename *name, struct path *path,
2537			unsigned int flags)
2538{
2539	struct nameidata nd;
2540	int error;
2541	if (IS_ERR(name))
2542		return PTR_ERR(name);
2543	set_nameidata(&nd, dfd, name);
2544	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2545	if (unlikely(error == -ECHILD))
2546		error = path_mountpoint(&nd, flags, path);
2547	if (unlikely(error == -ESTALE))
2548		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2549	if (likely(!error))
2550		audit_inode(name, path->dentry, 0);
2551	restore_nameidata();
2552	putname(name);
2553	return error;
2554}
2555
2556/**
2557 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2558 * @dfd:	directory file descriptor
2559 * @name:	pathname from userland
2560 * @flags:	lookup flags
2561 * @path:	pointer to container to hold result
2562 *
2563 * A umount is a special case for path walking. We're not actually interested
2564 * in the inode in this situation, and ESTALE errors can be a problem. We
2565 * simply want track down the dentry and vfsmount attached at the mountpoint
2566 * and avoid revalidating the last component.
2567 *
2568 * Returns 0 and populates "path" on success.
2569 */
2570int
2571user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2572			struct path *path)
2573{
2574	return filename_mountpoint(dfd, getname(name), path, flags);
2575}
2576
2577int
2578kern_path_mountpoint(int dfd, const char *name, struct path *path,
2579			unsigned int flags)
2580{
2581	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2582}
2583EXPORT_SYMBOL(kern_path_mountpoint);
2584
2585int __check_sticky(struct inode *dir, struct inode *inode)
2586{
2587	kuid_t fsuid = current_fsuid();
2588
2589	if (uid_eq(inode->i_uid, fsuid))
2590		return 0;
2591	if (uid_eq(dir->i_uid, fsuid))
2592		return 0;
2593	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2594}
2595EXPORT_SYMBOL(__check_sticky);
2596
2597/*
2598 *	Check whether we can remove a link victim from directory dir, check
2599 *  whether the type of victim is right.
2600 *  1. We can't do it if dir is read-only (done in permission())
2601 *  2. We should have write and exec permissions on dir
2602 *  3. We can't remove anything from append-only dir
2603 *  4. We can't do anything with immutable dir (done in permission())
2604 *  5. If the sticky bit on dir is set we should either
2605 *	a. be owner of dir, or
2606 *	b. be owner of victim, or
2607 *	c. have CAP_FOWNER capability
2608 *  6. If the victim is append-only or immutable we can't do antyhing with
2609 *     links pointing to it.
2610 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2611 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2612 *  9. We can't remove a root or mountpoint.
2613 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 
2614 *     nfs_async_unlink().
2615 */
2616static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2617{
2618	struct inode *inode = d_backing_inode(victim);
2619	int error;
2620
2621	if (d_is_negative(victim))
2622		return -ENOENT;
2623	BUG_ON(!inode);
2624
2625	BUG_ON(victim->d_parent->d_inode != dir);
 
 
 
 
 
2626	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2627
2628	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2629	if (error)
2630		return error;
2631	if (IS_APPEND(dir))
2632		return -EPERM;
2633
2634	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2635	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2636		return -EPERM;
2637	if (isdir) {
2638		if (!d_is_dir(victim))
2639			return -ENOTDIR;
2640		if (IS_ROOT(victim))
2641			return -EBUSY;
2642	} else if (d_is_dir(victim))
2643		return -EISDIR;
2644	if (IS_DEADDIR(dir))
2645		return -ENOENT;
2646	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2647		return -EBUSY;
2648	return 0;
2649}
2650
2651/*	Check whether we can create an object with dentry child in directory
2652 *  dir.
2653 *  1. We can't do it if child already exists (open has special treatment for
2654 *     this case, but since we are inlined it's OK)
2655 *  2. We can't do it if dir is read-only (done in permission())
2656 *  3. We should have write and exec permissions on dir
2657 *  4. We can't do it if dir is immutable (done in permission())
 
2658 */
2659static inline int may_create(struct inode *dir, struct dentry *child)
2660{
 
2661	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2662	if (child->d_inode)
2663		return -EEXIST;
2664	if (IS_DEADDIR(dir))
2665		return -ENOENT;
 
 
 
 
2666	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2667}
2668
2669/*
2670 * p1 and p2 should be directories on the same fs.
2671 */
2672struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2673{
2674	struct dentry *p;
2675
2676	if (p1 == p2) {
2677		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2678		return NULL;
2679	}
2680
2681	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2682
2683	p = d_ancestor(p2, p1);
2684	if (p) {
2685		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2686		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2687		return p;
2688	}
2689
2690	p = d_ancestor(p1, p2);
2691	if (p) {
2692		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2693		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2694		return p;
2695	}
2696
2697	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2698	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2699	return NULL;
2700}
2701EXPORT_SYMBOL(lock_rename);
2702
2703void unlock_rename(struct dentry *p1, struct dentry *p2)
2704{
2705	inode_unlock(p1->d_inode);
2706	if (p1 != p2) {
2707		inode_unlock(p2->d_inode);
2708		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2709	}
2710}
2711EXPORT_SYMBOL(unlock_rename);
2712
2713int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2714		bool want_excl)
2715{
2716	int error = may_create(dir, dentry);
2717	if (error)
2718		return error;
2719
2720	if (!dir->i_op->create)
2721		return -EACCES;	/* shouldn't it be ENOSYS? */
2722	mode &= S_IALLUGO;
2723	mode |= S_IFREG;
2724	error = security_inode_create(dir, dentry, mode);
2725	if (error)
2726		return error;
2727	error = dir->i_op->create(dir, dentry, mode, want_excl);
2728	if (!error)
2729		fsnotify_create(dir, dentry);
2730	return error;
2731}
2732EXPORT_SYMBOL(vfs_create);
2733
2734static int may_open(struct path *path, int acc_mode, int flag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2735{
2736	struct dentry *dentry = path->dentry;
2737	struct inode *inode = dentry->d_inode;
2738	int error;
2739
2740	if (!inode)
2741		return -ENOENT;
2742
2743	switch (inode->i_mode & S_IFMT) {
2744	case S_IFLNK:
2745		return -ELOOP;
2746	case S_IFDIR:
2747		if (acc_mode & MAY_WRITE)
2748			return -EISDIR;
2749		break;
2750	case S_IFBLK:
2751	case S_IFCHR:
2752		if (path->mnt->mnt_flags & MNT_NODEV)
2753			return -EACCES;
2754		/*FALLTHRU*/
2755	case S_IFIFO:
2756	case S_IFSOCK:
2757		flag &= ~O_TRUNC;
2758		break;
2759	}
2760
2761	error = inode_permission(inode, MAY_OPEN | acc_mode);
2762	if (error)
2763		return error;
2764
2765	/*
2766	 * An append-only file must be opened in append mode for writing.
2767	 */
2768	if (IS_APPEND(inode)) {
2769		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2770			return -EPERM;
2771		if (flag & O_TRUNC)
2772			return -EPERM;
2773	}
2774
2775	/* O_NOATIME can only be set by the owner or superuser */
2776	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2777		return -EPERM;
2778
2779	return 0;
2780}
2781
2782static int handle_truncate(struct file *filp)
2783{
2784	struct path *path = &filp->f_path;
2785	struct inode *inode = path->dentry->d_inode;
2786	int error = get_write_access(inode);
2787	if (error)
2788		return error;
2789	/*
2790	 * Refuse to truncate files with mandatory locks held on them.
2791	 */
2792	error = locks_verify_locked(filp);
2793	if (!error)
2794		error = security_path_truncate(path);
2795	if (!error) {
2796		error = do_truncate(path->dentry, 0,
2797				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2798				    filp);
2799	}
2800	put_write_access(inode);
2801	return error;
2802}
2803
2804static inline int open_to_namei_flags(int flag)
2805{
2806	if ((flag & O_ACCMODE) == 3)
2807		flag--;
2808	return flag;
2809}
2810
2811static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2812{
 
2813	int error = security_path_mknod(dir, dentry, mode, 0);
2814	if (error)
2815		return error;
2816
 
 
 
 
 
2817	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2818	if (error)
2819		return error;
2820
2821	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2822}
2823
2824/*
2825 * Attempt to atomically look up, create and open a file from a negative
2826 * dentry.
2827 *
2828 * Returns 0 if successful.  The file will have been created and attached to
2829 * @file by the filesystem calling finish_open().
2830 *
2831 * Returns 1 if the file was looked up only or didn't need creating.  The
2832 * caller will need to perform the open themselves.  @path will have been
2833 * updated to point to the new dentry.  This may be negative.
2834 *
2835 * Returns an error code otherwise.
2836 */
2837static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2838			struct path *path, struct file *file,
2839			const struct open_flags *op,
2840			bool got_write, bool need_lookup,
2841			int *opened)
2842{
 
2843	struct inode *dir =  nd->path.dentry->d_inode;
2844	unsigned open_flag = open_to_namei_flags(op->open_flag);
2845	umode_t mode;
2846	int error;
2847	int acc_mode;
2848	int create_error = 0;
2849	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2850	bool excl;
2851
2852	BUG_ON(dentry->d_inode);
2853
2854	/* Don't create child dentry for a dead directory. */
2855	if (unlikely(IS_DEADDIR(dir))) {
2856		error = -ENOENT;
2857		goto out;
2858	}
2859
2860	mode = op->mode;
2861	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2862		mode &= ~current_umask();
2863
2864	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2865	if (excl)
2866		open_flag &= ~O_TRUNC;
2867
2868	/*
2869	 * Checking write permission is tricky, bacuse we don't know if we are
2870	 * going to actually need it: O_CREAT opens should work as long as the
2871	 * file exists.  But checking existence breaks atomicity.  The trick is
2872	 * to check access and if not granted clear O_CREAT from the flags.
2873	 *
2874	 * Another problem is returing the "right" error value (e.g. for an
2875	 * O_EXCL open we want to return EEXIST not EROFS).
2876	 */
2877	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2878	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2879		if (!(open_flag & O_CREAT)) {
2880			/*
2881			 * No O_CREATE -> atomicity not a requirement -> fall
2882			 * back to lookup + open
2883			 */
2884			goto no_open;
2885		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2886			/* Fall back and fail with the right error */
2887			create_error = -EROFS;
2888			goto no_open;
2889		} else {
2890			/* No side effects, safe to clear O_CREAT */
2891			create_error = -EROFS;
2892			open_flag &= ~O_CREAT;
2893		}
2894	}
2895
2896	if (open_flag & O_CREAT) {
2897		error = may_o_create(&nd->path, dentry, mode);
2898		if (error) {
2899			create_error = error;
2900			if (open_flag & O_EXCL)
2901				goto no_open;
2902			open_flag &= ~O_CREAT;
2903		}
2904	}
2905
2906	if (nd->flags & LOOKUP_DIRECTORY)
2907		open_flag |= O_DIRECTORY;
2908
2909	file->f_path.dentry = DENTRY_NOT_SET;
2910	file->f_path.mnt = nd->path.mnt;
2911	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2912				      opened);
2913	if (error < 0) {
2914		if (create_error && error == -ENOENT)
2915			error = create_error;
2916		goto out;
2917	}
2918
2919	if (error) {	/* returned 1, that is */
2920		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
 
 
 
 
 
 
 
 
 
2921			error = -EIO;
2922			goto out;
2923		}
2924		if (file->f_path.dentry) {
2925			dput(dentry);
2926			dentry = file->f_path.dentry;
2927		}
2928		if (*opened & FILE_CREATED)
2929			fsnotify_create(dir, dentry);
2930		if (!dentry->d_inode) {
2931			WARN_ON(*opened & FILE_CREATED);
2932			if (create_error) {
2933				error = create_error;
2934				goto out;
2935			}
2936		} else {
2937			if (excl && !(*opened & FILE_CREATED)) {
2938				error = -EEXIST;
2939				goto out;
 
 
 
 
2940			}
2941		}
2942		goto looked_up;
2943	}
2944
2945	/*
2946	 * We didn't have the inode before the open, so check open permission
2947	 * here.
2948	 */
2949	acc_mode = op->acc_mode;
2950	if (*opened & FILE_CREATED) {
2951		WARN_ON(!(open_flag & O_CREAT));
2952		fsnotify_create(dir, dentry);
2953		acc_mode = 0;
2954	}
2955	error = may_open(&file->f_path, acc_mode, open_flag);
2956	if (error)
2957		fput(file);
2958
2959out:
2960	dput(dentry);
2961	return error;
2962
2963no_open:
2964	if (need_lookup) {
2965		dentry = lookup_real(dir, dentry, nd->flags);
2966		if (IS_ERR(dentry))
2967			return PTR_ERR(dentry);
2968	}
2969	if (create_error && !dentry->d_inode) {
2970		error = create_error;
2971		goto out;
2972	}
2973looked_up:
2974	path->dentry = dentry;
2975	path->mnt = nd->path.mnt;
2976	return 1;
2977}
2978
2979/*
2980 * Look up and maybe create and open the last component.
2981 *
2982 * Must be called with i_mutex held on parent.
2983 *
2984 * Returns 0 if the file was successfully atomically created (if necessary) and
2985 * opened.  In this case the file will be returned attached to @file.
 
 
 
 
 
2986 *
2987 * Returns 1 if the file was not completely opened at this time, though lookups
2988 * and creations will have been performed and the dentry returned in @path will
2989 * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2990 * specified then a negative dentry may be returned.
2991 *
2992 * An error code is returned otherwise.
2993 *
2994 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2995 * cleared otherwise prior to returning.
2996 */
2997static int lookup_open(struct nameidata *nd, struct path *path,
2998			struct file *file,
2999			const struct open_flags *op,
3000			bool got_write, int *opened)
3001{
3002	struct dentry *dir = nd->path.dentry;
3003	struct inode *dir_inode = dir->d_inode;
 
3004	struct dentry *dentry;
3005	int error;
3006	bool need_lookup = false;
 
 
 
 
3007
3008	*opened &= ~FILE_CREATED;
3009	dentry = lookup_dcache(&nd->last, dir, nd->flags);
3010	if (IS_ERR(dentry))
3011		return PTR_ERR(dentry);
 
 
 
 
 
 
3012
3013	if (!dentry) {
3014		dentry = d_alloc(dir, &nd->last);
3015		if (unlikely(!dentry))
3016			return -ENOMEM;
3017		need_lookup = true;
3018	} else if (dentry->d_inode) {
 
 
 
 
3019		/* Cached positive dentry: will open in f_op->open */
3020		goto out_no_open;
3021	}
3022
3023	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3024		return atomic_open(nd, dentry, path, file, op, got_write,
3025				   need_lookup, opened);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3026	}
3027
3028	if (need_lookup) {
3029		BUG_ON(dentry->d_inode);
 
 
 
 
 
3030
3031		dentry = lookup_real(dir_inode, dentry, nd->flags);
3032		if (IS_ERR(dentry))
3033			return PTR_ERR(dentry);
 
 
 
 
 
 
 
 
 
 
3034	}
3035
3036	/* Negative dentry, just create the file */
3037	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3038		umode_t mode = op->mode;
3039		if (!IS_POSIXACL(dir->d_inode))
3040			mode &= ~current_umask();
3041		/*
3042		 * This write is needed to ensure that a
3043		 * rw->ro transition does not occur between
3044		 * the time when the file is created and when
3045		 * a permanent write count is taken through
3046		 * the 'struct file' in finish_open().
3047		 */
3048		if (!got_write) {
3049			error = -EROFS;
3050			goto out_dput;
3051		}
3052		*opened |= FILE_CREATED;
3053		error = security_path_mknod(&nd->path, dentry, mode, 0);
3054		if (error)
3055			goto out_dput;
3056		error = vfs_create(dir->d_inode, dentry, mode,
3057				   nd->flags & LOOKUP_EXCL);
3058		if (error)
3059			goto out_dput;
 
 
 
 
 
3060	}
3061out_no_open:
3062	path->dentry = dentry;
3063	path->mnt = nd->path.mnt;
3064	return 1;
3065
3066out_dput:
3067	dput(dentry);
3068	return error;
3069}
3070
3071/*
3072 * Handle the last step of open()
3073 */
3074static int do_last(struct nameidata *nd,
3075		   struct file *file, const struct open_flags *op,
3076		   int *opened)
3077{
3078	struct dentry *dir = nd->path.dentry;
3079	int open_flag = op->open_flag;
3080	bool will_truncate = (open_flag & O_TRUNC) != 0;
3081	bool got_write = false;
3082	int acc_mode = op->acc_mode;
3083	unsigned seq;
3084	struct inode *inode;
3085	struct path save_parent = { .dentry = NULL, .mnt = NULL };
3086	struct path path;
3087	bool retried = false;
3088	int error;
3089
3090	nd->flags &= ~LOOKUP_PARENT;
3091	nd->flags |= op->intent;
3092
3093	if (nd->last_type != LAST_NORM) {
3094		error = handle_dots(nd, nd->last_type);
3095		if (unlikely(error))
3096			return error;
3097		goto finish_open;
3098	}
3099
3100	if (!(open_flag & O_CREAT)) {
3101		if (nd->last.name[nd->last.len])
3102			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3103		/* we _can_ be in RCU mode here */
3104		error = lookup_fast(nd, &path, &inode, &seq);
3105		if (likely(error > 0))
3106			goto finish_lookup;
3107
3108		if (error < 0)
3109			return error;
3110
3111		BUG_ON(nd->inode != dir->d_inode);
3112		BUG_ON(nd->flags & LOOKUP_RCU);
3113	} else {
3114		/* create side of things */
3115		/*
3116		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3117		 * has been cleared when we got to the last component we are
3118		 * about to look up
3119		 */
3120		error = complete_walk(nd);
3121		if (error)
3122			return error;
3123
3124		audit_inode(nd->name, dir, LOOKUP_PARENT);
3125		/* trailing slashes? */
3126		if (unlikely(nd->last.name[nd->last.len]))
3127			return -EISDIR;
3128	}
3129
3130retry_lookup:
3131	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3132		error = mnt_want_write(nd->path.mnt);
3133		if (!error)
3134			got_write = true;
3135		/*
3136		 * do _not_ fail yet - we might not need that or fail with
3137		 * a different error; let lookup_open() decide; we'll be
3138		 * dropping this one anyway.
3139		 */
3140	}
3141	inode_lock(dir->d_inode);
3142	error = lookup_open(nd, &path, file, op, got_write, opened);
3143	inode_unlock(dir->d_inode);
 
 
 
 
 
 
3144
3145	if (error <= 0) {
3146		if (error)
3147			goto out;
3148
3149		if ((*opened & FILE_CREATED) ||
 
3150		    !S_ISREG(file_inode(file)->i_mode))
3151			will_truncate = false;
3152
3153		audit_inode(nd->name, file->f_path.dentry, 0);
3154		goto opened;
3155	}
3156
3157	if (*opened & FILE_CREATED) {
3158		/* Don't check for write permission, don't truncate */
3159		open_flag &= ~O_TRUNC;
3160		will_truncate = false;
3161		acc_mode = 0;
3162		path_to_nameidata(&path, nd);
3163		goto finish_open_created;
3164	}
3165
3166	/*
3167	 * If atomic_open() acquired write access it is dropped now due to
3168	 * possible mount and symlink following (this might be optimized away if
3169	 * necessary...)
3170	 */
3171	if (got_write) {
3172		mnt_drop_write(nd->path.mnt);
3173		got_write = false;
3174	}
3175
 
 
 
 
3176	if (unlikely(d_is_negative(path.dentry))) {
3177		path_to_nameidata(&path, nd);
3178		return -ENOENT;
3179	}
3180
3181	/*
3182	 * create/update audit record if it already exists.
3183	 */
3184	audit_inode(nd->name, path.dentry, 0);
3185
3186	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3187		path_to_nameidata(&path, nd);
3188		return -EEXIST;
3189	}
3190
3191	error = follow_managed(&path, nd);
3192	if (unlikely(error < 0))
3193		return error;
3194
3195	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3196	inode = d_backing_inode(path.dentry);
3197finish_lookup:
3198	if (nd->depth)
3199		put_link(nd);
3200	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3201				   inode, seq);
3202	if (unlikely(error))
3203		return error;
3204
3205	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3206		path_to_nameidata(&path, nd);
3207	} else {
3208		save_parent.dentry = nd->path.dentry;
3209		save_parent.mnt = mntget(path.mnt);
3210		nd->path.dentry = path.dentry;
3211
3212	}
3213	nd->inode = inode;
3214	nd->seq = seq;
3215	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3216finish_open:
3217	error = complete_walk(nd);
3218	if (error) {
3219		path_put(&save_parent);
3220		return error;
3221	}
3222	audit_inode(nd->name, nd->path.dentry, 0);
3223	if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3224		error = -ELOOP;
3225		goto out;
 
 
 
 
 
3226	}
3227	error = -EISDIR;
3228	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3229		goto out;
3230	error = -ENOTDIR;
3231	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3232		goto out;
3233	if (!d_is_reg(nd->path.dentry))
3234		will_truncate = false;
3235
3236	if (will_truncate) {
3237		error = mnt_want_write(nd->path.mnt);
3238		if (error)
3239			goto out;
3240		got_write = true;
3241	}
3242finish_open_created:
3243	if (likely(!(open_flag & O_PATH))) {
3244		error = may_open(&nd->path, acc_mode, open_flag);
3245		if (error)
3246			goto out;
3247	}
3248	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3249	error = vfs_open(&nd->path, file, current_cred());
3250	if (!error) {
3251		*opened |= FILE_OPENED;
3252	} else {
3253		if (error == -EOPENSTALE)
3254			goto stale_open;
3255		goto out;
3256	}
3257opened:
3258	error = open_check_o_direct(file);
3259	if (error)
3260		goto exit_fput;
3261	error = ima_file_check(file, op->acc_mode, *opened);
3262	if (error)
3263		goto exit_fput;
3264
3265	if (will_truncate) {
3266		error = handle_truncate(file);
3267		if (error)
3268			goto exit_fput;
3269	}
3270out:
3271	if (unlikely(error > 0)) {
3272		WARN_ON(1);
3273		error = -EINVAL;
3274	}
3275	if (got_write)
3276		mnt_drop_write(nd->path.mnt);
3277	path_put(&save_parent);
3278	return error;
 
3279
3280exit_fput:
3281	fput(file);
3282	goto out;
 
 
 
3283
3284stale_open:
3285	/* If no saved parent or already retried then can't retry */
3286	if (!save_parent.dentry || retried)
3287		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3288
3289	BUG_ON(save_parent.dentry != dir);
3290	path_put(&nd->path);
3291	nd->path = save_parent;
3292	nd->inode = dir->d_inode;
3293	save_parent.mnt = NULL;
3294	save_parent.dentry = NULL;
3295	if (got_write) {
3296		mnt_drop_write(nd->path.mnt);
3297		got_write = false;
3298	}
3299	retried = true;
3300	goto retry_lookup;
3301}
 
3302
3303static int do_tmpfile(struct nameidata *nd, unsigned flags,
3304		const struct open_flags *op,
3305		struct file *file, int *opened)
3306{
3307	static const struct qstr name = QSTR_INIT("/", 1);
3308	struct dentry *child;
3309	struct inode *dir;
3310	struct path path;
3311	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3312	if (unlikely(error))
3313		return error;
3314	error = mnt_want_write(path.mnt);
3315	if (unlikely(error))
3316		goto out;
3317	dir = path.dentry->d_inode;
3318	/* we want directory to be writable */
3319	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3320	if (error)
3321		goto out2;
3322	if (!dir->i_op->tmpfile) {
3323		error = -EOPNOTSUPP;
3324		goto out2;
3325	}
3326	child = d_alloc(path.dentry, &name);
3327	if (unlikely(!child)) {
3328		error = -ENOMEM;
3329		goto out2;
3330	}
3331	dput(path.dentry);
3332	path.dentry = child;
3333	error = dir->i_op->tmpfile(dir, child, op->mode);
3334	if (error)
3335		goto out2;
3336	audit_inode(nd->name, child, 0);
3337	/* Don't check for other permissions, the inode was just created */
3338	error = may_open(&path, 0, op->open_flag);
3339	if (error)
3340		goto out2;
3341	file->f_path.mnt = path.mnt;
3342	error = finish_open(file, child, NULL, opened);
3343	if (error)
3344		goto out2;
3345	error = open_check_o_direct(file);
3346	if (error) {
3347		fput(file);
3348	} else if (!(op->open_flag & O_EXCL)) {
3349		struct inode *inode = file_inode(file);
3350		spin_lock(&inode->i_lock);
3351		inode->i_state |= I_LINKABLE;
3352		spin_unlock(&inode->i_lock);
3353	}
3354out2:
3355	mnt_drop_write(path.mnt);
3356out:
3357	path_put(&path);
3358	return error;
3359}
3360
 
 
 
 
 
 
 
 
 
 
 
 
3361static struct file *path_openat(struct nameidata *nd,
3362			const struct open_flags *op, unsigned flags)
3363{
3364	const char *s;
3365	struct file *file;
3366	int opened = 0;
3367	int error;
3368
3369	file = get_empty_filp();
3370	if (IS_ERR(file))
3371		return file;
3372
3373	file->f_flags = op->open_flag;
3374
3375	if (unlikely(file->f_flags & __O_TMPFILE)) {
3376		error = do_tmpfile(nd, flags, op, file, &opened);
3377		goto out2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3378	}
3379
3380	s = path_init(nd, flags);
3381	if (IS_ERR(s)) {
3382		put_filp(file);
3383		return ERR_CAST(s);
3384	}
3385	while (!(error = link_path_walk(s, nd)) &&
3386		(error = do_last(nd, file, op, &opened)) > 0) {
3387		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3388		s = trailing_symlink(nd);
3389		if (IS_ERR(s)) {
3390			error = PTR_ERR(s);
3391			break;
3392		}
3393	}
3394	terminate_walk(nd);
3395out2:
3396	if (!(opened & FILE_OPENED)) {
3397		BUG_ON(!error);
3398		put_filp(file);
3399	}
3400	if (unlikely(error)) {
3401		if (error == -EOPENSTALE) {
3402			if (flags & LOOKUP_RCU)
3403				error = -ECHILD;
3404			else
3405				error = -ESTALE;
3406		}
3407		file = ERR_PTR(error);
3408	}
3409	return file;
3410}
3411
3412struct file *do_filp_open(int dfd, struct filename *pathname,
3413		const struct open_flags *op)
3414{
3415	struct nameidata nd;
3416	int flags = op->lookup_flags;
3417	struct file *filp;
3418
3419	set_nameidata(&nd, dfd, pathname);
3420	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3421	if (unlikely(filp == ERR_PTR(-ECHILD)))
3422		filp = path_openat(&nd, op, flags);
3423	if (unlikely(filp == ERR_PTR(-ESTALE)))
3424		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3425	restore_nameidata();
3426	return filp;
3427}
3428
3429struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3430		const char *name, const struct open_flags *op)
3431{
3432	struct nameidata nd;
3433	struct file *file;
3434	struct filename *filename;
3435	int flags = op->lookup_flags | LOOKUP_ROOT;
3436
3437	nd.root.mnt = mnt;
3438	nd.root.dentry = dentry;
3439
3440	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3441		return ERR_PTR(-ELOOP);
3442
3443	filename = getname_kernel(name);
3444	if (IS_ERR(filename))
3445		return ERR_CAST(filename);
3446
3447	set_nameidata(&nd, -1, filename);
3448	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3449	if (unlikely(file == ERR_PTR(-ECHILD)))
3450		file = path_openat(&nd, op, flags);
3451	if (unlikely(file == ERR_PTR(-ESTALE)))
3452		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3453	restore_nameidata();
3454	putname(filename);
3455	return file;
3456}
3457
3458static struct dentry *filename_create(int dfd, struct filename *name,
3459				struct path *path, unsigned int lookup_flags)
3460{
3461	struct dentry *dentry = ERR_PTR(-EEXIST);
3462	struct qstr last;
3463	int type;
3464	int err2;
3465	int error;
3466	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3467
3468	/*
3469	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3470	 * other flags passed in are ignored!
3471	 */
3472	lookup_flags &= LOOKUP_REVAL;
3473
3474	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3475	if (IS_ERR(name))
3476		return ERR_CAST(name);
3477
3478	/*
3479	 * Yucky last component or no last component at all?
3480	 * (foo/., foo/.., /////)
3481	 */
3482	if (unlikely(type != LAST_NORM))
3483		goto out;
3484
3485	/* don't fail immediately if it's r/o, at least try to report other errors */
3486	err2 = mnt_want_write(path->mnt);
3487	/*
3488	 * Do the final lookup.
3489	 */
3490	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3491	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3492	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3493	if (IS_ERR(dentry))
3494		goto unlock;
3495
3496	error = -EEXIST;
3497	if (d_is_positive(dentry))
3498		goto fail;
3499
3500	/*
3501	 * Special case - lookup gave negative, but... we had foo/bar/
3502	 * From the vfs_mknod() POV we just have a negative dentry -
3503	 * all is fine. Let's be bastards - you had / on the end, you've
3504	 * been asking for (non-existent) directory. -ENOENT for you.
3505	 */
3506	if (unlikely(!is_dir && last.name[last.len])) {
3507		error = -ENOENT;
3508		goto fail;
3509	}
3510	if (unlikely(err2)) {
3511		error = err2;
3512		goto fail;
3513	}
3514	putname(name);
3515	return dentry;
3516fail:
3517	dput(dentry);
3518	dentry = ERR_PTR(error);
3519unlock:
3520	inode_unlock(path->dentry->d_inode);
3521	if (!err2)
3522		mnt_drop_write(path->mnt);
3523out:
3524	path_put(path);
3525	putname(name);
3526	return dentry;
3527}
3528
3529struct dentry *kern_path_create(int dfd, const char *pathname,
3530				struct path *path, unsigned int lookup_flags)
3531{
3532	return filename_create(dfd, getname_kernel(pathname),
3533				path, lookup_flags);
3534}
3535EXPORT_SYMBOL(kern_path_create);
3536
3537void done_path_create(struct path *path, struct dentry *dentry)
3538{
3539	dput(dentry);
3540	inode_unlock(path->dentry->d_inode);
3541	mnt_drop_write(path->mnt);
3542	path_put(path);
3543}
3544EXPORT_SYMBOL(done_path_create);
3545
3546inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3547				struct path *path, unsigned int lookup_flags)
3548{
3549	return filename_create(dfd, getname(pathname), path, lookup_flags);
3550}
3551EXPORT_SYMBOL(user_path_create);
3552
3553int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3554{
3555	int error = may_create(dir, dentry);
3556
3557	if (error)
3558		return error;
3559
3560	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3561		return -EPERM;
3562
3563	if (!dir->i_op->mknod)
3564		return -EPERM;
3565
3566	error = devcgroup_inode_mknod(mode, dev);
3567	if (error)
3568		return error;
3569
3570	error = security_inode_mknod(dir, dentry, mode, dev);
3571	if (error)
3572		return error;
3573
3574	error = dir->i_op->mknod(dir, dentry, mode, dev);
3575	if (!error)
3576		fsnotify_create(dir, dentry);
3577	return error;
3578}
3579EXPORT_SYMBOL(vfs_mknod);
3580
3581static int may_mknod(umode_t mode)
3582{
3583	switch (mode & S_IFMT) {
3584	case S_IFREG:
3585	case S_IFCHR:
3586	case S_IFBLK:
3587	case S_IFIFO:
3588	case S_IFSOCK:
3589	case 0: /* zero mode translates to S_IFREG */
3590		return 0;
3591	case S_IFDIR:
3592		return -EPERM;
3593	default:
3594		return -EINVAL;
3595	}
3596}
3597
3598SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3599		unsigned, dev)
3600{
3601	struct dentry *dentry;
3602	struct path path;
3603	int error;
3604	unsigned int lookup_flags = 0;
3605
3606	error = may_mknod(mode);
3607	if (error)
3608		return error;
3609retry:
3610	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3611	if (IS_ERR(dentry))
3612		return PTR_ERR(dentry);
3613
3614	if (!IS_POSIXACL(path.dentry->d_inode))
3615		mode &= ~current_umask();
3616	error = security_path_mknod(&path, dentry, mode, dev);
3617	if (error)
3618		goto out;
3619	switch (mode & S_IFMT) {
3620		case 0: case S_IFREG:
3621			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
 
 
3622			break;
3623		case S_IFCHR: case S_IFBLK:
3624			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3625					new_decode_dev(dev));
3626			break;
3627		case S_IFIFO: case S_IFSOCK:
3628			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3629			break;
3630	}
3631out:
3632	done_path_create(&path, dentry);
3633	if (retry_estale(error, lookup_flags)) {
3634		lookup_flags |= LOOKUP_REVAL;
3635		goto retry;
3636	}
3637	return error;
3638}
3639
 
 
 
 
 
 
3640SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3641{
3642	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3643}
3644
3645int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3646{
3647	int error = may_create(dir, dentry);
3648	unsigned max_links = dir->i_sb->s_max_links;
3649
3650	if (error)
3651		return error;
3652
3653	if (!dir->i_op->mkdir)
3654		return -EPERM;
3655
3656	mode &= (S_IRWXUGO|S_ISVTX);
3657	error = security_inode_mkdir(dir, dentry, mode);
3658	if (error)
3659		return error;
3660
3661	if (max_links && dir->i_nlink >= max_links)
3662		return -EMLINK;
3663
3664	error = dir->i_op->mkdir(dir, dentry, mode);
3665	if (!error)
3666		fsnotify_mkdir(dir, dentry);
3667	return error;
3668}
3669EXPORT_SYMBOL(vfs_mkdir);
3670
3671SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3672{
3673	struct dentry *dentry;
3674	struct path path;
3675	int error;
3676	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3677
3678retry:
3679	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3680	if (IS_ERR(dentry))
3681		return PTR_ERR(dentry);
3682
3683	if (!IS_POSIXACL(path.dentry->d_inode))
3684		mode &= ~current_umask();
3685	error = security_path_mkdir(&path, dentry, mode);
3686	if (!error)
3687		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3688	done_path_create(&path, dentry);
3689	if (retry_estale(error, lookup_flags)) {
3690		lookup_flags |= LOOKUP_REVAL;
3691		goto retry;
3692	}
3693	return error;
3694}
3695
 
 
 
 
 
3696SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3697{
3698	return sys_mkdirat(AT_FDCWD, pathname, mode);
3699}
3700
3701int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3702{
3703	int error = may_delete(dir, dentry, 1);
3704
3705	if (error)
3706		return error;
3707
3708	if (!dir->i_op->rmdir)
3709		return -EPERM;
3710
3711	dget(dentry);
3712	inode_lock(dentry->d_inode);
3713
3714	error = -EBUSY;
3715	if (is_local_mountpoint(dentry))
3716		goto out;
3717
3718	error = security_inode_rmdir(dir, dentry);
3719	if (error)
3720		goto out;
3721
3722	shrink_dcache_parent(dentry);
3723	error = dir->i_op->rmdir(dir, dentry);
3724	if (error)
3725		goto out;
3726
 
3727	dentry->d_inode->i_flags |= S_DEAD;
3728	dont_mount(dentry);
3729	detach_mounts(dentry);
 
3730
3731out:
3732	inode_unlock(dentry->d_inode);
3733	dput(dentry);
3734	if (!error)
3735		d_delete(dentry);
3736	return error;
3737}
3738EXPORT_SYMBOL(vfs_rmdir);
3739
3740static long do_rmdir(int dfd, const char __user *pathname)
3741{
3742	int error = 0;
3743	struct filename *name;
3744	struct dentry *dentry;
3745	struct path path;
3746	struct qstr last;
3747	int type;
3748	unsigned int lookup_flags = 0;
3749retry:
3750	name = user_path_parent(dfd, pathname,
3751				&path, &last, &type, lookup_flags);
3752	if (IS_ERR(name))
3753		return PTR_ERR(name);
3754
3755	switch (type) {
3756	case LAST_DOTDOT:
3757		error = -ENOTEMPTY;
3758		goto exit1;
3759	case LAST_DOT:
3760		error = -EINVAL;
3761		goto exit1;
3762	case LAST_ROOT:
3763		error = -EBUSY;
3764		goto exit1;
3765	}
3766
3767	error = mnt_want_write(path.mnt);
3768	if (error)
3769		goto exit1;
3770
3771	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3772	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3773	error = PTR_ERR(dentry);
3774	if (IS_ERR(dentry))
3775		goto exit2;
3776	if (!dentry->d_inode) {
3777		error = -ENOENT;
3778		goto exit3;
3779	}
3780	error = security_path_rmdir(&path, dentry);
3781	if (error)
3782		goto exit3;
3783	error = vfs_rmdir(path.dentry->d_inode, dentry);
3784exit3:
3785	dput(dentry);
3786exit2:
3787	inode_unlock(path.dentry->d_inode);
3788	mnt_drop_write(path.mnt);
3789exit1:
3790	path_put(&path);
3791	putname(name);
3792	if (retry_estale(error, lookup_flags)) {
3793		lookup_flags |= LOOKUP_REVAL;
3794		goto retry;
3795	}
3796	return error;
3797}
3798
3799SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3800{
3801	return do_rmdir(AT_FDCWD, pathname);
3802}
3803
3804/**
3805 * vfs_unlink - unlink a filesystem object
3806 * @dir:	parent directory
3807 * @dentry:	victim
3808 * @delegated_inode: returns victim inode, if the inode is delegated.
3809 *
3810 * The caller must hold dir->i_mutex.
3811 *
3812 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3813 * return a reference to the inode in delegated_inode.  The caller
3814 * should then break the delegation on that inode and retry.  Because
3815 * breaking a delegation may take a long time, the caller should drop
3816 * dir->i_mutex before doing so.
3817 *
3818 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3819 * be appropriate for callers that expect the underlying filesystem not
3820 * to be NFS exported.
3821 */
3822int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3823{
3824	struct inode *target = dentry->d_inode;
3825	int error = may_delete(dir, dentry, 0);
3826
3827	if (error)
3828		return error;
3829
3830	if (!dir->i_op->unlink)
3831		return -EPERM;
3832
3833	inode_lock(target);
3834	if (is_local_mountpoint(dentry))
3835		error = -EBUSY;
3836	else {
3837		error = security_inode_unlink(dir, dentry);
3838		if (!error) {
3839			error = try_break_deleg(target, delegated_inode);
3840			if (error)
3841				goto out;
3842			error = dir->i_op->unlink(dir, dentry);
3843			if (!error) {
3844				dont_mount(dentry);
3845				detach_mounts(dentry);
 
3846			}
3847		}
3848	}
3849out:
3850	inode_unlock(target);
3851
3852	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3853	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3854		fsnotify_link_count(target);
3855		d_delete(dentry);
3856	}
3857
3858	return error;
3859}
3860EXPORT_SYMBOL(vfs_unlink);
3861
3862/*
3863 * Make sure that the actual truncation of the file will occur outside its
3864 * directory's i_mutex.  Truncate can take a long time if there is a lot of
3865 * writeout happening, and we don't want to prevent access to the directory
3866 * while waiting on the I/O.
3867 */
3868static long do_unlinkat(int dfd, const char __user *pathname)
3869{
3870	int error;
3871	struct filename *name;
3872	struct dentry *dentry;
3873	struct path path;
3874	struct qstr last;
3875	int type;
3876	struct inode *inode = NULL;
3877	struct inode *delegated_inode = NULL;
3878	unsigned int lookup_flags = 0;
3879retry:
3880	name = user_path_parent(dfd, pathname,
3881				&path, &last, &type, lookup_flags);
3882	if (IS_ERR(name))
3883		return PTR_ERR(name);
3884
3885	error = -EISDIR;
3886	if (type != LAST_NORM)
3887		goto exit1;
3888
3889	error = mnt_want_write(path.mnt);
3890	if (error)
3891		goto exit1;
3892retry_deleg:
3893	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3894	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3895	error = PTR_ERR(dentry);
3896	if (!IS_ERR(dentry)) {
3897		/* Why not before? Because we want correct error value */
3898		if (last.name[last.len])
3899			goto slashes;
3900		inode = dentry->d_inode;
3901		if (d_is_negative(dentry))
3902			goto slashes;
3903		ihold(inode);
3904		error = security_path_unlink(&path, dentry);
3905		if (error)
3906			goto exit2;
3907		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3908exit2:
3909		dput(dentry);
3910	}
3911	inode_unlock(path.dentry->d_inode);
3912	if (inode)
3913		iput(inode);	/* truncate the inode here */
3914	inode = NULL;
3915	if (delegated_inode) {
3916		error = break_deleg_wait(&delegated_inode);
3917		if (!error)
3918			goto retry_deleg;
3919	}
3920	mnt_drop_write(path.mnt);
3921exit1:
3922	path_put(&path);
3923	putname(name);
3924	if (retry_estale(error, lookup_flags)) {
3925		lookup_flags |= LOOKUP_REVAL;
3926		inode = NULL;
3927		goto retry;
3928	}
 
3929	return error;
3930
3931slashes:
3932	if (d_is_negative(dentry))
3933		error = -ENOENT;
3934	else if (d_is_dir(dentry))
3935		error = -EISDIR;
3936	else
3937		error = -ENOTDIR;
3938	goto exit2;
3939}
3940
3941SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3942{
3943	if ((flag & ~AT_REMOVEDIR) != 0)
3944		return -EINVAL;
3945
3946	if (flag & AT_REMOVEDIR)
3947		return do_rmdir(dfd, pathname);
3948
3949	return do_unlinkat(dfd, pathname);
3950}
3951
3952SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3953{
3954	return do_unlinkat(AT_FDCWD, pathname);
3955}
3956
3957int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3958{
3959	int error = may_create(dir, dentry);
3960
3961	if (error)
3962		return error;
3963
3964	if (!dir->i_op->symlink)
3965		return -EPERM;
3966
3967	error = security_inode_symlink(dir, dentry, oldname);
3968	if (error)
3969		return error;
3970
3971	error = dir->i_op->symlink(dir, dentry, oldname);
3972	if (!error)
3973		fsnotify_create(dir, dentry);
3974	return error;
3975}
3976EXPORT_SYMBOL(vfs_symlink);
3977
3978SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3979		int, newdfd, const char __user *, newname)
3980{
3981	int error;
3982	struct filename *from;
3983	struct dentry *dentry;
3984	struct path path;
3985	unsigned int lookup_flags = 0;
3986
3987	from = getname(oldname);
3988	if (IS_ERR(from))
3989		return PTR_ERR(from);
3990retry:
3991	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3992	error = PTR_ERR(dentry);
3993	if (IS_ERR(dentry))
3994		goto out_putname;
3995
3996	error = security_path_symlink(&path, dentry, from->name);
3997	if (!error)
3998		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3999	done_path_create(&path, dentry);
4000	if (retry_estale(error, lookup_flags)) {
4001		lookup_flags |= LOOKUP_REVAL;
4002		goto retry;
4003	}
4004out_putname:
4005	putname(from);
4006	return error;
4007}
4008
 
 
 
 
 
 
4009SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4010{
4011	return sys_symlinkat(oldname, AT_FDCWD, newname);
4012}
4013
4014/**
4015 * vfs_link - create a new link
4016 * @old_dentry:	object to be linked
4017 * @dir:	new parent
4018 * @new_dentry:	where to create the new link
4019 * @delegated_inode: returns inode needing a delegation break
4020 *
4021 * The caller must hold dir->i_mutex
4022 *
4023 * If vfs_link discovers a delegation on the to-be-linked file in need
4024 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4025 * inode in delegated_inode.  The caller should then break the delegation
4026 * and retry.  Because breaking a delegation may take a long time, the
4027 * caller should drop the i_mutex before doing so.
4028 *
4029 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4030 * be appropriate for callers that expect the underlying filesystem not
4031 * to be NFS exported.
4032 */
4033int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4034{
4035	struct inode *inode = old_dentry->d_inode;
4036	unsigned max_links = dir->i_sb->s_max_links;
4037	int error;
4038
4039	if (!inode)
4040		return -ENOENT;
4041
4042	error = may_create(dir, new_dentry);
4043	if (error)
4044		return error;
4045
4046	if (dir->i_sb != inode->i_sb)
4047		return -EXDEV;
4048
4049	/*
4050	 * A link to an append-only or immutable file cannot be created.
4051	 */
4052	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4053		return -EPERM;
 
 
 
 
 
 
 
4054	if (!dir->i_op->link)
4055		return -EPERM;
4056	if (S_ISDIR(inode->i_mode))
4057		return -EPERM;
4058
4059	error = security_inode_link(old_dentry, dir, new_dentry);
4060	if (error)
4061		return error;
4062
4063	inode_lock(inode);
4064	/* Make sure we don't allow creating hardlink to an unlinked file */
4065	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4066		error =  -ENOENT;
4067	else if (max_links && inode->i_nlink >= max_links)
4068		error = -EMLINK;
4069	else {
4070		error = try_break_deleg(inode, delegated_inode);
4071		if (!error)
4072			error = dir->i_op->link(old_dentry, dir, new_dentry);
4073	}
4074
4075	if (!error && (inode->i_state & I_LINKABLE)) {
4076		spin_lock(&inode->i_lock);
4077		inode->i_state &= ~I_LINKABLE;
4078		spin_unlock(&inode->i_lock);
4079	}
4080	inode_unlock(inode);
4081	if (!error)
4082		fsnotify_link(dir, inode, new_dentry);
4083	return error;
4084}
4085EXPORT_SYMBOL(vfs_link);
4086
4087/*
4088 * Hardlinks are often used in delicate situations.  We avoid
4089 * security-related surprises by not following symlinks on the
4090 * newname.  --KAB
4091 *
4092 * We don't follow them on the oldname either to be compatible
4093 * with linux 2.0, and to avoid hard-linking to directories
4094 * and other special files.  --ADM
4095 */
4096SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4097		int, newdfd, const char __user *, newname, int, flags)
4098{
4099	struct dentry *new_dentry;
4100	struct path old_path, new_path;
4101	struct inode *delegated_inode = NULL;
4102	int how = 0;
4103	int error;
4104
4105	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4106		return -EINVAL;
4107	/*
4108	 * To use null names we require CAP_DAC_READ_SEARCH
4109	 * This ensures that not everyone will be able to create
4110	 * handlink using the passed filedescriptor.
4111	 */
4112	if (flags & AT_EMPTY_PATH) {
4113		if (!capable(CAP_DAC_READ_SEARCH))
4114			return -ENOENT;
4115		how = LOOKUP_EMPTY;
4116	}
4117
4118	if (flags & AT_SYMLINK_FOLLOW)
4119		how |= LOOKUP_FOLLOW;
4120retry:
4121	error = user_path_at(olddfd, oldname, how, &old_path);
4122	if (error)
4123		return error;
4124
4125	new_dentry = user_path_create(newdfd, newname, &new_path,
4126					(how & LOOKUP_REVAL));
4127	error = PTR_ERR(new_dentry);
4128	if (IS_ERR(new_dentry))
4129		goto out;
4130
4131	error = -EXDEV;
4132	if (old_path.mnt != new_path.mnt)
4133		goto out_dput;
4134	error = may_linkat(&old_path);
4135	if (unlikely(error))
4136		goto out_dput;
4137	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4138	if (error)
4139		goto out_dput;
4140	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4141out_dput:
4142	done_path_create(&new_path, new_dentry);
4143	if (delegated_inode) {
4144		error = break_deleg_wait(&delegated_inode);
4145		if (!error) {
4146			path_put(&old_path);
4147			goto retry;
4148		}
4149	}
4150	if (retry_estale(error, how)) {
4151		path_put(&old_path);
4152		how |= LOOKUP_REVAL;
4153		goto retry;
4154	}
4155out:
4156	path_put(&old_path);
4157
4158	return error;
4159}
4160
 
 
 
 
 
 
4161SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4162{
4163	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4164}
4165
4166/**
4167 * vfs_rename - rename a filesystem object
4168 * @old_dir:	parent of source
4169 * @old_dentry:	source
4170 * @new_dir:	parent of destination
4171 * @new_dentry:	destination
4172 * @delegated_inode: returns an inode needing a delegation break
4173 * @flags:	rename flags
4174 *
4175 * The caller must hold multiple mutexes--see lock_rename()).
4176 *
4177 * If vfs_rename discovers a delegation in need of breaking at either
4178 * the source or destination, it will return -EWOULDBLOCK and return a
4179 * reference to the inode in delegated_inode.  The caller should then
4180 * break the delegation and retry.  Because breaking a delegation may
4181 * take a long time, the caller should drop all locks before doing
4182 * so.
4183 *
4184 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4185 * be appropriate for callers that expect the underlying filesystem not
4186 * to be NFS exported.
4187 *
4188 * The worst of all namespace operations - renaming directory. "Perverted"
4189 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4190 * Problems:
 
4191 *	a) we can get into loop creation.
4192 *	b) race potential - two innocent renames can create a loop together.
4193 *	   That's where 4.4 screws up. Current fix: serialization on
4194 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4195 *	   story.
4196 *	c) we have to lock _four_ objects - parents and victim (if it exists),
4197 *	   and source (if it is not a directory).
4198 *	   And that - after we got ->i_mutex on parents (until then we don't know
4199 *	   whether the target exists).  Solution: try to be smart with locking
4200 *	   order for inodes.  We rely on the fact that tree topology may change
4201 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4202 *	   move will be locked.  Thus we can rank directories by the tree
4203 *	   (ancestors first) and rank all non-directories after them.
4204 *	   That works since everybody except rename does "lock parent, lookup,
4205 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4206 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4207 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4208 *	   we'd better make sure that there's no link(2) for them.
4209 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4210 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4211 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4212 *	   ->i_mutex on parents, which works but leads to some truly excessive
4213 *	   locking].
4214 */
4215int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4216	       struct inode *new_dir, struct dentry *new_dentry,
4217	       struct inode **delegated_inode, unsigned int flags)
4218{
4219	int error;
4220	bool is_dir = d_is_dir(old_dentry);
4221	const unsigned char *old_name;
4222	struct inode *source = old_dentry->d_inode;
4223	struct inode *target = new_dentry->d_inode;
4224	bool new_is_dir = false;
4225	unsigned max_links = new_dir->i_sb->s_max_links;
 
4226
4227	/*
4228	 * Check source == target.
4229	 * On overlayfs need to look at underlying inodes.
4230	 */
4231	if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4232		return 0;
4233
4234	error = may_delete(old_dir, old_dentry, is_dir);
4235	if (error)
4236		return error;
4237
4238	if (!target) {
4239		error = may_create(new_dir, new_dentry);
4240	} else {
4241		new_is_dir = d_is_dir(new_dentry);
4242
4243		if (!(flags & RENAME_EXCHANGE))
4244			error = may_delete(new_dir, new_dentry, is_dir);
4245		else
4246			error = may_delete(new_dir, new_dentry, new_is_dir);
4247	}
4248	if (error)
4249		return error;
4250
4251	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4252		return -EPERM;
4253
4254	if (flags && !old_dir->i_op->rename2)
4255		return -EINVAL;
4256
4257	/*
4258	 * If we are going to change the parent - check write permissions,
4259	 * we'll need to flip '..'.
4260	 */
4261	if (new_dir != old_dir) {
4262		if (is_dir) {
4263			error = inode_permission(source, MAY_WRITE);
4264			if (error)
4265				return error;
4266		}
4267		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4268			error = inode_permission(target, MAY_WRITE);
4269			if (error)
4270				return error;
4271		}
4272	}
4273
4274	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4275				      flags);
4276	if (error)
4277		return error;
4278
4279	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4280	dget(new_dentry);
4281	if (!is_dir || (flags & RENAME_EXCHANGE))
4282		lock_two_nondirectories(source, target);
4283	else if (target)
4284		inode_lock(target);
4285
4286	error = -EBUSY;
4287	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4288		goto out;
4289
4290	if (max_links && new_dir != old_dir) {
4291		error = -EMLINK;
4292		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4293			goto out;
4294		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4295		    old_dir->i_nlink >= max_links)
4296			goto out;
4297	}
4298	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4299		shrink_dcache_parent(new_dentry);
4300	if (!is_dir) {
4301		error = try_break_deleg(source, delegated_inode);
4302		if (error)
4303			goto out;
4304	}
4305	if (target && !new_is_dir) {
4306		error = try_break_deleg(target, delegated_inode);
4307		if (error)
4308			goto out;
4309	}
4310	if (!old_dir->i_op->rename2) {
4311		error = old_dir->i_op->rename(old_dir, old_dentry,
4312					      new_dir, new_dentry);
4313	} else {
4314		WARN_ON(old_dir->i_op->rename != NULL);
4315		error = old_dir->i_op->rename2(old_dir, old_dentry,
4316					       new_dir, new_dentry, flags);
4317	}
4318	if (error)
4319		goto out;
4320
4321	if (!(flags & RENAME_EXCHANGE) && target) {
4322		if (is_dir)
 
4323			target->i_flags |= S_DEAD;
 
4324		dont_mount(new_dentry);
4325		detach_mounts(new_dentry);
4326	}
4327	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4328		if (!(flags & RENAME_EXCHANGE))
4329			d_move(old_dentry, new_dentry);
4330		else
4331			d_exchange(old_dentry, new_dentry);
4332	}
4333out:
4334	if (!is_dir || (flags & RENAME_EXCHANGE))
4335		unlock_two_nondirectories(source, target);
4336	else if (target)
4337		inode_unlock(target);
4338	dput(new_dentry);
4339	if (!error) {
4340		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4341			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4342		if (flags & RENAME_EXCHANGE) {
4343			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4344				      new_is_dir, NULL, new_dentry);
4345		}
4346	}
4347	fsnotify_oldname_free(old_name);
4348
4349	return error;
4350}
4351EXPORT_SYMBOL(vfs_rename);
4352
4353SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4354		int, newdfd, const char __user *, newname, unsigned int, flags)
4355{
4356	struct dentry *old_dentry, *new_dentry;
4357	struct dentry *trap;
4358	struct path old_path, new_path;
4359	struct qstr old_last, new_last;
4360	int old_type, new_type;
4361	struct inode *delegated_inode = NULL;
4362	struct filename *from;
4363	struct filename *to;
4364	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4365	bool should_retry = false;
4366	int error;
4367
4368	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4369		return -EINVAL;
4370
4371	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4372	    (flags & RENAME_EXCHANGE))
4373		return -EINVAL;
4374
4375	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4376		return -EPERM;
4377
4378	if (flags & RENAME_EXCHANGE)
4379		target_flags = 0;
4380
4381retry:
4382	from = user_path_parent(olddfd, oldname,
4383				&old_path, &old_last, &old_type, lookup_flags);
4384	if (IS_ERR(from)) {
4385		error = PTR_ERR(from);
4386		goto exit;
4387	}
4388
4389	to = user_path_parent(newdfd, newname,
4390				&new_path, &new_last, &new_type, lookup_flags);
4391	if (IS_ERR(to)) {
4392		error = PTR_ERR(to);
4393		goto exit1;
4394	}
4395
4396	error = -EXDEV;
4397	if (old_path.mnt != new_path.mnt)
4398		goto exit2;
4399
4400	error = -EBUSY;
4401	if (old_type != LAST_NORM)
4402		goto exit2;
4403
4404	if (flags & RENAME_NOREPLACE)
4405		error = -EEXIST;
4406	if (new_type != LAST_NORM)
4407		goto exit2;
4408
4409	error = mnt_want_write(old_path.mnt);
4410	if (error)
4411		goto exit2;
4412
4413retry_deleg:
4414	trap = lock_rename(new_path.dentry, old_path.dentry);
4415
4416	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4417	error = PTR_ERR(old_dentry);
4418	if (IS_ERR(old_dentry))
4419		goto exit3;
4420	/* source must exist */
4421	error = -ENOENT;
4422	if (d_is_negative(old_dentry))
4423		goto exit4;
4424	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4425	error = PTR_ERR(new_dentry);
4426	if (IS_ERR(new_dentry))
4427		goto exit4;
4428	error = -EEXIST;
4429	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4430		goto exit5;
4431	if (flags & RENAME_EXCHANGE) {
4432		error = -ENOENT;
4433		if (d_is_negative(new_dentry))
4434			goto exit5;
4435
4436		if (!d_is_dir(new_dentry)) {
4437			error = -ENOTDIR;
4438			if (new_last.name[new_last.len])
4439				goto exit5;
4440		}
4441	}
4442	/* unless the source is a directory trailing slashes give -ENOTDIR */
4443	if (!d_is_dir(old_dentry)) {
4444		error = -ENOTDIR;
4445		if (old_last.name[old_last.len])
4446			goto exit5;
4447		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4448			goto exit5;
4449	}
4450	/* source should not be ancestor of target */
4451	error = -EINVAL;
4452	if (old_dentry == trap)
4453		goto exit5;
4454	/* target should not be an ancestor of source */
4455	if (!(flags & RENAME_EXCHANGE))
4456		error = -ENOTEMPTY;
4457	if (new_dentry == trap)
4458		goto exit5;
4459
4460	error = security_path_rename(&old_path, old_dentry,
4461				     &new_path, new_dentry, flags);
4462	if (error)
4463		goto exit5;
4464	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4465			   new_path.dentry->d_inode, new_dentry,
4466			   &delegated_inode, flags);
4467exit5:
4468	dput(new_dentry);
4469exit4:
4470	dput(old_dentry);
4471exit3:
4472	unlock_rename(new_path.dentry, old_path.dentry);
4473	if (delegated_inode) {
4474		error = break_deleg_wait(&delegated_inode);
4475		if (!error)
4476			goto retry_deleg;
4477	}
4478	mnt_drop_write(old_path.mnt);
4479exit2:
4480	if (retry_estale(error, lookup_flags))
4481		should_retry = true;
4482	path_put(&new_path);
4483	putname(to);
4484exit1:
4485	path_put(&old_path);
4486	putname(from);
4487	if (should_retry) {
4488		should_retry = false;
4489		lookup_flags |= LOOKUP_REVAL;
4490		goto retry;
4491	}
4492exit:
4493	return error;
4494}
4495
 
 
 
 
 
 
4496SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4497		int, newdfd, const char __user *, newname)
4498{
4499	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4500}
4501
4502SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4503{
4504	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4505}
4506
4507int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4508{
4509	int error = may_create(dir, dentry);
4510	if (error)
4511		return error;
4512
4513	if (!dir->i_op->mknod)
4514		return -EPERM;
4515
4516	return dir->i_op->mknod(dir, dentry,
4517				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4518}
4519EXPORT_SYMBOL(vfs_whiteout);
4520
4521int readlink_copy(char __user *buffer, int buflen, const char *link)
4522{
4523	int len = PTR_ERR(link);
4524	if (IS_ERR(link))
4525		goto out;
4526
4527	len = strlen(link);
4528	if (len > (unsigned) buflen)
4529		len = buflen;
4530	if (copy_to_user(buffer, link, len))
4531		len = -EFAULT;
4532out:
4533	return len;
4534}
4535EXPORT_SYMBOL(readlink_copy);
4536
4537/*
4538 * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4539 * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4540 * for any given inode is up to filesystem.
 
 
 
 
 
4541 */
4542int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4543{
 
4544	DEFINE_DELAYED_CALL(done);
4545	struct inode *inode = d_inode(dentry);
4546	const char *link = inode->i_link;
4547	int res;
4548
 
 
 
 
 
 
 
 
 
 
 
 
 
4549	if (!link) {
4550		link = inode->i_op->get_link(dentry, inode, &done);
4551		if (IS_ERR(link))
4552			return PTR_ERR(link);
4553	}
4554	res = readlink_copy(buffer, buflen, link);
4555	do_delayed_call(&done);
4556	return res;
4557}
4558EXPORT_SYMBOL(generic_readlink);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4559
4560/* get the link contents into pagecache */
4561const char *page_get_link(struct dentry *dentry, struct inode *inode,
4562			  struct delayed_call *callback)
4563{
4564	char *kaddr;
4565	struct page *page;
4566	struct address_space *mapping = inode->i_mapping;
4567
4568	if (!dentry) {
4569		page = find_get_page(mapping, 0);
4570		if (!page)
4571			return ERR_PTR(-ECHILD);
4572		if (!PageUptodate(page)) {
4573			put_page(page);
4574			return ERR_PTR(-ECHILD);
4575		}
4576	} else {
4577		page = read_mapping_page(mapping, 0, NULL);
4578		if (IS_ERR(page))
4579			return (char*)page;
4580	}
4581	set_delayed_call(callback, page_put_link, page);
4582	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4583	kaddr = page_address(page);
4584	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4585	return kaddr;
4586}
4587
4588EXPORT_SYMBOL(page_get_link);
4589
4590void page_put_link(void *arg)
4591{
4592	put_page(arg);
4593}
4594EXPORT_SYMBOL(page_put_link);
4595
4596int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4597{
4598	DEFINE_DELAYED_CALL(done);
4599	int res = readlink_copy(buffer, buflen,
4600				page_get_link(dentry, d_inode(dentry),
4601					      &done));
4602	do_delayed_call(&done);
4603	return res;
4604}
4605EXPORT_SYMBOL(page_readlink);
4606
4607/*
4608 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4609 */
4610int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4611{
4612	struct address_space *mapping = inode->i_mapping;
4613	struct page *page;
4614	void *fsdata;
4615	int err;
4616	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4617	if (nofs)
4618		flags |= AOP_FLAG_NOFS;
4619
4620retry:
4621	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4622				flags, &page, &fsdata);
4623	if (err)
4624		goto fail;
4625
4626	memcpy(page_address(page), symname, len-1);
4627
4628	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4629							page, fsdata);
4630	if (err < 0)
4631		goto fail;
4632	if (err < len-1)
4633		goto retry;
4634
4635	mark_inode_dirty(inode);
4636	return 0;
4637fail:
4638	return err;
4639}
4640EXPORT_SYMBOL(__page_symlink);
4641
4642int page_symlink(struct inode *inode, const char *symname, int len)
4643{
4644	return __page_symlink(inode, symname, len,
4645			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4646}
4647EXPORT_SYMBOL(page_symlink);
4648
4649const struct inode_operations page_symlink_inode_operations = {
4650	.readlink	= generic_readlink,
4651	.get_link	= page_get_link,
4652};
4653EXPORT_SYMBOL(page_symlink_inode_operations);