Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_INODE_H
  7#define BTRFS_INODE_H
  8
  9#include <linux/hash.h>
 
 10#include "extent_map.h"
 11#include "extent_io.h"
 12#include "ordered-data.h"
 13#include "delayed-inode.h"
 14
 15/*
 
 
 
 
 
 
 
 16 * ordered_data_close is set by truncate when a file that used
 17 * to have good data has been truncated to zero.  When it is set
 18 * the btrfs file release call will add this inode to the
 19 * ordered operations list so that we make sure to flush out any
 20 * new data the application may have written before commit.
 21 */
 22enum {
 23	BTRFS_INODE_ORDERED_DATA_CLOSE,
 24	BTRFS_INODE_DUMMY,
 25	BTRFS_INODE_IN_DEFRAG,
 26	BTRFS_INODE_HAS_ASYNC_EXTENT,
 
 
 
 
 
 27	BTRFS_INODE_NEEDS_FULL_SYNC,
 28	BTRFS_INODE_COPY_EVERYTHING,
 29	BTRFS_INODE_IN_DELALLOC_LIST,
 30	BTRFS_INODE_READDIO_NEED_LOCK,
 31	BTRFS_INODE_HAS_PROPS,
 32	BTRFS_INODE_SNAPSHOT_FLUSH,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33};
 34
 35/* in memory btrfs inode */
 36struct btrfs_inode {
 37	/* which subvolume this inode belongs to */
 38	struct btrfs_root *root;
 39
 40	/* key used to find this inode on disk.  This is used by the code
 41	 * to read in roots of subvolumes
 42	 */
 43	struct btrfs_key location;
 44
 45	/*
 46	 * Lock for counters and all fields used to determine if the inode is in
 47	 * the log or not (last_trans, last_sub_trans, last_log_commit,
 48	 * logged_trans).
 
 49	 */
 50	spinlock_t lock;
 51
 52	/* the extent_tree has caches of all the extent mappings to disk */
 53	struct extent_map_tree extent_tree;
 54
 55	/* the io_tree does range state (DIRTY, LOCKED etc) */
 56	struct extent_io_tree io_tree;
 57
 58	/* special utility tree used to record which mirrors have already been
 59	 * tried when checksums fail for a given block
 60	 */
 61	struct extent_io_tree io_failure_tree;
 
 
 
 
 
 
 
 62
 63	/* held while logging the inode in tree-log.c */
 64	struct mutex log_mutex;
 65
 66	/* held while doing delalloc reservations */
 67	struct mutex delalloc_mutex;
 68
 69	/* used to order data wrt metadata */
 70	struct btrfs_ordered_inode_tree ordered_tree;
 71
 72	/* list of all the delalloc inodes in the FS.  There are times we need
 73	 * to write all the delalloc pages to disk, and this list is used
 74	 * to walk them all.
 75	 */
 76	struct list_head delalloc_inodes;
 77
 78	/* node for the red-black tree that links inodes in subvolume root */
 79	struct rb_node rb_node;
 80
 81	unsigned long runtime_flags;
 82
 83	/* Keep track of who's O_SYNC/fsyncing currently */
 84	atomic_t sync_writers;
 85
 86	/* full 64 bit generation number, struct vfs_inode doesn't have a big
 87	 * enough field for this.
 88	 */
 89	u64 generation;
 90
 91	/*
 92	 * transid of the trans_handle that last modified this inode
 93	 */
 94	u64 last_trans;
 95
 96	/*
 97	 * transid that last logged this inode
 98	 */
 99	u64 logged_trans;
100
101	/*
102	 * log transid when this inode was last modified
103	 */
104	int last_sub_trans;
105
106	/* a local copy of root's last_log_commit */
107	int last_log_commit;
108
109	/* total number of bytes pending delalloc, used by stat to calc the
110	 * real block usage of the file
 
111	 */
112	u64 delalloc_bytes;
113
114	/*
115	 * Total number of bytes pending delalloc that fall within a file
116	 * range that is either a hole or beyond EOF (and no prealloc extent
117	 * exists in the range). This is always <= delalloc_bytes.
118	 */
119	u64 new_delalloc_bytes;
 
 
 
 
 
 
 
 
120
121	/*
122	 * total number of bytes pending defrag, used by stat to check whether
123	 * it needs COW.
124	 */
125	u64 defrag_bytes;
126
127	/*
128	 * the size of the file stored in the metadata on disk.  data=ordered
129	 * means the in-memory i_size might be larger than the size on disk
130	 * because not all the blocks are written yet.
131	 */
132	u64 disk_i_size;
133
134	/*
135	 * if this is a directory then index_cnt is the counter for the index
136	 * number for new files that are created
 
137	 */
138	u64 index_cnt;
139
140	/* Cache the directory index number to speed the dir/file remove */
141	u64 dir_index;
142
143	/* the fsync log has some corner cases that mean we have to check
144	 * directories to see if any unlinks have been done before
145	 * the directory was logged.  See tree-log.c for all the
146	 * details
147	 */
148	u64 last_unlink_trans;
149
150	/*
 
 
 
 
 
 
 
 
 
 
 
151	 * Number of bytes outstanding that are going to need csums.  This is
152	 * used in ENOSPC accounting.
153	 */
154	u64 csum_bytes;
155
156	/* flags field from the on disk inode */
157	u32 flags;
 
 
158
159	/*
160	 * Counters to keep track of the number of extent item's we may use due
161	 * to delalloc and such.  outstanding_extents is the number of extent
162	 * items we think we'll end up using, and reserved_extents is the number
163	 * of extent items we've reserved metadata for.
164	 */
165	unsigned outstanding_extents;
166
167	struct btrfs_block_rsv block_rsv;
168
169	/*
170	 * Cached values of inode properties
171	 */
172	unsigned prop_compress;		/* per-file compression algorithm */
173	/*
174	 * Force compression on the file using the defrag ioctl, could be
175	 * different from prop_compress and takes precedence if set
176	 */
177	unsigned defrag_compress;
178
179	struct btrfs_delayed_node *delayed_node;
180
181	/* File creation time. */
182	struct timespec64 i_otime;
183
184	/* Hook into fs_info->delayed_iputs */
185	struct list_head delayed_iput;
186
187	/*
188	 * To avoid races between lockless (i_mutex not held) direct IO writes
189	 * and concurrent fsync requests. Direct IO writes must acquire read
190	 * access on this semaphore for creating an extent map and its
191	 * corresponding ordered extent. The fast fsync path must acquire write
192	 * access on this semaphore before it collects ordered extents and
193	 * extent maps.
194	 */
195	struct rw_semaphore dio_sem;
196
197	struct inode vfs_inode;
198};
199
200static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
201{
202	return container_of(inode, struct btrfs_inode, vfs_inode);
203}
204
205static inline unsigned long btrfs_inode_hash(u64 objectid,
206					     const struct btrfs_root *root)
207{
208	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
209
210#if BITS_PER_LONG == 32
211	h = (h >> 32) ^ (h & 0xffffffff);
212#endif
213
214	return (unsigned long)h;
215}
216
217static inline void btrfs_insert_inode_hash(struct inode *inode)
218{
219	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
220
221	__insert_inode_hash(inode, h);
222}
223
 
 
 
 
224static inline u64 btrfs_ino(const struct btrfs_inode *inode)
225{
226	u64 ino = inode->location.objectid;
227
228	/*
229	 * !ino: btree_inode
230	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
231	 */
232	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
233		ino = inode->vfs_inode.i_ino;
234	return ino;
235}
236
 
 
 
 
 
 
 
 
 
237static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
238{
239	i_size_write(&inode->vfs_inode, size);
240	inode->disk_i_size = size;
241}
242
243static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
244{
245	struct btrfs_root *root = inode->root;
246
247	if (root == root->fs_info->tree_root &&
248	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
249		return true;
250	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
251		return true;
252	return false;
253}
254
255static inline bool is_data_inode(struct inode *inode)
256{
257	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
258}
259
260static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
261						 int mod)
262{
263	lockdep_assert_held(&inode->lock);
264	inode->outstanding_extents += mod;
265	if (btrfs_is_free_space_inode(inode))
266		return;
267	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
268						  mod);
269}
270
271static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
 
 
 
 
 
 
 
 
272{
273	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274
275	spin_lock(&inode->lock);
276	if (inode->logged_trans == generation &&
277	    inode->last_sub_trans <= inode->last_log_commit &&
278	    inode->last_sub_trans <= inode->root->last_log_commit) {
279		/*
280		 * After a ranged fsync we might have left some extent maps
281		 * (that fall outside the fsync's range). So return false
282		 * here if the list isn't empty, to make sure btrfs_log_inode()
283		 * will be called and process those extent maps.
284		 */
285		smp_mb();
286		if (list_empty(&inode->extent_tree.modified_extents))
287			ret = 1;
288	}
289	spin_unlock(&inode->lock);
290	return ret;
291}
292
293#define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
294
295struct btrfs_dio_private {
296	struct inode *inode;
297	unsigned long flags;
298	u64 logical_offset;
299	u64 disk_bytenr;
300	u64 bytes;
301	void *private;
302
303	/* number of bios pending for this dio */
304	atomic_t pending_bios;
305
306	/* IO errors */
307	int errors;
308
309	/* orig_bio is our btrfs_io_bio */
310	struct bio *orig_bio;
311
312	/* dio_bio came from fs/direct-io.c */
313	struct bio *dio_bio;
314
315	/*
316	 * The original bio may be split to several sub-bios, this is
317	 * done during endio of sub-bios
318	 */
319	blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
320			blk_status_t);
321};
322
323/*
324 * Disable DIO read nolock optimization, so new dio readers will be forced
325 * to grab i_mutex. It is used to avoid the endless truncate due to
326 * nonlocked dio read.
327 */
328static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
329{
330	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
331	smp_mb();
332}
333
334static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
 
335{
336	smp_mb__before_atomic();
337	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
338}
339
340/* Array of bytes with variable length, hexadecimal format 0x1234 */
341#define CSUM_FMT				"0x%*phN"
342#define CSUM_FMT_VALUE(size, bytes)		size, bytes
343
344static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
345		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
346{
347	struct btrfs_root *root = inode->root;
348	struct btrfs_super_block *sb = root->fs_info->super_copy;
349	const u16 csum_size = btrfs_super_csum_size(sb);
350
351	/* Output minus objectid, which is more meaningful */
352	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
353		btrfs_warn_rl(root->fs_info,
354"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
355			root->root_key.objectid, btrfs_ino(inode),
356			logical_start,
357			CSUM_FMT_VALUE(csum_size, csum),
358			CSUM_FMT_VALUE(csum_size, csum_expected),
359			mirror_num);
360	else
361		btrfs_warn_rl(root->fs_info,
362"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
363			root->root_key.objectid, btrfs_ino(inode),
364			logical_start,
365			CSUM_FMT_VALUE(csum_size, csum),
366			CSUM_FMT_VALUE(csum_size, csum_expected),
367			mirror_num);
368}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369
370#endif
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_INODE_H
  7#define BTRFS_INODE_H
  8
  9#include <linux/hash.h>
 10#include <linux/refcount.h>
 11#include "extent_map.h"
 12#include "extent_io.h"
 13#include "ordered-data.h"
 14#include "delayed-inode.h"
 15
 16/*
 17 * Since we search a directory based on f_pos (struct dir_context::pos) we have
 18 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so
 19 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()).
 20 */
 21#define BTRFS_DIR_START_INDEX 2
 22
 23/*
 24 * ordered_data_close is set by truncate when a file that used
 25 * to have good data has been truncated to zero.  When it is set
 26 * the btrfs file release call will add this inode to the
 27 * ordered operations list so that we make sure to flush out any
 28 * new data the application may have written before commit.
 29 */
 30enum {
 31	BTRFS_INODE_FLUSH_ON_CLOSE,
 32	BTRFS_INODE_DUMMY,
 33	BTRFS_INODE_IN_DEFRAG,
 34	BTRFS_INODE_HAS_ASYNC_EXTENT,
 35	 /*
 36	  * Always set under the VFS' inode lock, otherwise it can cause races
 37	  * during fsync (we start as a fast fsync and then end up in a full
 38	  * fsync racing with ordered extent completion).
 39	  */
 40	BTRFS_INODE_NEEDS_FULL_SYNC,
 41	BTRFS_INODE_COPY_EVERYTHING,
 42	BTRFS_INODE_IN_DELALLOC_LIST,
 
 43	BTRFS_INODE_HAS_PROPS,
 44	BTRFS_INODE_SNAPSHOT_FLUSH,
 45	/*
 46	 * Set and used when logging an inode and it serves to signal that an
 47	 * inode does not have xattrs, so subsequent fsyncs can avoid searching
 48	 * for xattrs to log. This bit must be cleared whenever a xattr is added
 49	 * to an inode.
 50	 */
 51	BTRFS_INODE_NO_XATTRS,
 52	/*
 53	 * Set when we are in a context where we need to start a transaction and
 54	 * have dirty pages with the respective file range locked. This is to
 55	 * ensure that when reserving space for the transaction, if we are low
 56	 * on available space and need to flush delalloc, we will not flush
 57	 * delalloc for this inode, because that could result in a deadlock (on
 58	 * the file range, inode's io_tree).
 59	 */
 60	BTRFS_INODE_NO_DELALLOC_FLUSH,
 61	/*
 62	 * Set when we are working on enabling verity for a file. Computing and
 63	 * writing the whole Merkle tree can take a while so we want to prevent
 64	 * races where two separate tasks attempt to simultaneously start verity
 65	 * on the same file.
 66	 */
 67	BTRFS_INODE_VERITY_IN_PROGRESS,
 68	/* Set when this inode is a free space inode. */
 69	BTRFS_INODE_FREE_SPACE_INODE,
 70};
 71
 72/* in memory btrfs inode */
 73struct btrfs_inode {
 74	/* which subvolume this inode belongs to */
 75	struct btrfs_root *root;
 76
 77	/* key used to find this inode on disk.  This is used by the code
 78	 * to read in roots of subvolumes
 79	 */
 80	struct btrfs_key location;
 81
 82	/*
 83	 * Lock for counters and all fields used to determine if the inode is in
 84	 * the log or not (last_trans, last_sub_trans, last_log_commit,
 85	 * logged_trans), to access/update new_delalloc_bytes and to update the
 86	 * VFS' inode number of bytes used.
 87	 */
 88	spinlock_t lock;
 89
 90	/* the extent_tree has caches of all the extent mappings to disk */
 91	struct extent_map_tree extent_tree;
 92
 93	/* the io_tree does range state (DIRTY, LOCKED etc) */
 94	struct extent_io_tree io_tree;
 95
 96	/* special utility tree used to record which mirrors have already been
 97	 * tried when checksums fail for a given block
 98	 */
 99	struct rb_root io_failure_tree;
100	spinlock_t io_failure_lock;
101
102	/*
103	 * Keep track of where the inode has extent items mapped in order to
104	 * make sure the i_size adjustments are accurate
105	 */
106	struct extent_io_tree file_extent_tree;
107
108	/* held while logging the inode in tree-log.c */
109	struct mutex log_mutex;
110
 
 
 
111	/* used to order data wrt metadata */
112	struct btrfs_ordered_inode_tree ordered_tree;
113
114	/* list of all the delalloc inodes in the FS.  There are times we need
115	 * to write all the delalloc pages to disk, and this list is used
116	 * to walk them all.
117	 */
118	struct list_head delalloc_inodes;
119
120	/* node for the red-black tree that links inodes in subvolume root */
121	struct rb_node rb_node;
122
123	unsigned long runtime_flags;
124
125	/* Keep track of who's O_SYNC/fsyncing currently */
126	atomic_t sync_writers;
127
128	/* full 64 bit generation number, struct vfs_inode doesn't have a big
129	 * enough field for this.
130	 */
131	u64 generation;
132
133	/*
134	 * transid of the trans_handle that last modified this inode
135	 */
136	u64 last_trans;
137
138	/*
139	 * transid that last logged this inode
140	 */
141	u64 logged_trans;
142
143	/*
144	 * log transid when this inode was last modified
145	 */
146	int last_sub_trans;
147
148	/* a local copy of root's last_log_commit */
149	int last_log_commit;
150
151	/*
152	 * Total number of bytes pending delalloc, used by stat to calculate the
153	 * real block usage of the file. This is used only for files.
154	 */
155	u64 delalloc_bytes;
156
157	union {
158		/*
159		 * Total number of bytes pending delalloc that fall within a file
160		 * range that is either a hole or beyond EOF (and no prealloc extent
161		 * exists in the range). This is always <= delalloc_bytes and this
162		 * is used only for files.
163		 */
164		u64 new_delalloc_bytes;
165		/*
166		 * The offset of the last dir index key that was logged.
167		 * This is used only for directories.
168		 */
169		u64 last_dir_index_offset;
170	};
171
172	/*
173	 * total number of bytes pending defrag, used by stat to check whether
174	 * it needs COW.
175	 */
176	u64 defrag_bytes;
177
178	/*
179	 * the size of the file stored in the metadata on disk.  data=ordered
180	 * means the in-memory i_size might be larger than the size on disk
181	 * because not all the blocks are written yet.
182	 */
183	u64 disk_i_size;
184
185	/*
186	 * If this is a directory then index_cnt is the counter for the index
187	 * number for new files that are created. For an empty directory, this
188	 * must be initialized to BTRFS_DIR_START_INDEX.
189	 */
190	u64 index_cnt;
191
192	/* Cache the directory index number to speed the dir/file remove */
193	u64 dir_index;
194
195	/* the fsync log has some corner cases that mean we have to check
196	 * directories to see if any unlinks have been done before
197	 * the directory was logged.  See tree-log.c for all the
198	 * details
199	 */
200	u64 last_unlink_trans;
201
202	/*
203	 * The id/generation of the last transaction where this inode was
204	 * either the source or the destination of a clone/dedupe operation.
205	 * Used when logging an inode to know if there are shared extents that
206	 * need special care when logging checksum items, to avoid duplicate
207	 * checksum items in a log (which can lead to a corruption where we end
208	 * up with missing checksum ranges after log replay).
209	 * Protected by the vfs inode lock.
210	 */
211	u64 last_reflink_trans;
212
213	/*
214	 * Number of bytes outstanding that are going to need csums.  This is
215	 * used in ENOSPC accounting.
216	 */
217	u64 csum_bytes;
218
219	/* Backwards incompatible flags, lower half of inode_item::flags  */
220	u32 flags;
221	/* Read-only compatibility flags, upper half of inode_item::flags */
222	u32 ro_flags;
223
224	/*
225	 * Counters to keep track of the number of extent item's we may use due
226	 * to delalloc and such.  outstanding_extents is the number of extent
227	 * items we think we'll end up using, and reserved_extents is the number
228	 * of extent items we've reserved metadata for.
229	 */
230	unsigned outstanding_extents;
231
232	struct btrfs_block_rsv block_rsv;
233
234	/*
235	 * Cached values of inode properties
236	 */
237	unsigned prop_compress;		/* per-file compression algorithm */
238	/*
239	 * Force compression on the file using the defrag ioctl, could be
240	 * different from prop_compress and takes precedence if set
241	 */
242	unsigned defrag_compress;
243
244	struct btrfs_delayed_node *delayed_node;
245
246	/* File creation time. */
247	struct timespec64 i_otime;
248
249	/* Hook into fs_info->delayed_iputs */
250	struct list_head delayed_iput;
251
252	struct rw_semaphore i_mmap_lock;
 
 
 
 
 
 
 
 
 
253	struct inode vfs_inode;
254};
255
256static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
257{
258	return container_of(inode, struct btrfs_inode, vfs_inode);
259}
260
261static inline unsigned long btrfs_inode_hash(u64 objectid,
262					     const struct btrfs_root *root)
263{
264	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
265
266#if BITS_PER_LONG == 32
267	h = (h >> 32) ^ (h & 0xffffffff);
268#endif
269
270	return (unsigned long)h;
271}
272
273#if BITS_PER_LONG == 32
 
 
 
 
 
274
275/*
276 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so
277 * we use the inode's location objectid which is a u64 to avoid truncation.
278 */
279static inline u64 btrfs_ino(const struct btrfs_inode *inode)
280{
281	u64 ino = inode->location.objectid;
282
283	/* type == BTRFS_ROOT_ITEM_KEY: subvol dir */
284	if (inode->location.type == BTRFS_ROOT_ITEM_KEY)
 
 
 
285		ino = inode->vfs_inode.i_ino;
286	return ino;
287}
288
289#else
290
291static inline u64 btrfs_ino(const struct btrfs_inode *inode)
292{
293	return inode->vfs_inode.i_ino;
294}
295
296#endif
297
298static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
299{
300	i_size_write(&inode->vfs_inode, size);
301	inode->disk_i_size = size;
302}
303
304static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
305{
306	return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags);
 
 
 
 
 
 
 
307}
308
309static inline bool is_data_inode(struct inode *inode)
310{
311	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
312}
313
314static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
315						 int mod)
316{
317	lockdep_assert_held(&inode->lock);
318	inode->outstanding_extents += mod;
319	if (btrfs_is_free_space_inode(inode))
320		return;
321	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
322						  mod);
323}
324
325/*
326 * Called every time after doing a buffered, direct IO or memory mapped write.
327 *
328 * This is to ensure that if we write to a file that was previously fsynced in
329 * the current transaction, then try to fsync it again in the same transaction,
330 * we will know that there were changes in the file and that it needs to be
331 * logged.
332 */
333static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
334{
335	spin_lock(&inode->lock);
336	inode->last_sub_trans = inode->root->log_transid;
337	spin_unlock(&inode->lock);
338}
339
340/*
341 * Should be called while holding the inode's VFS lock in exclusive mode or in a
342 * context where no one else can access the inode concurrently (during inode
343 * creation or when loading an inode from disk).
344 */
345static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode)
346{
347	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
348	/*
349	 * The inode may have been part of a reflink operation in the last
350	 * transaction that modified it, and then a fsync has reset the
351	 * last_reflink_trans to avoid subsequent fsyncs in the same
352	 * transaction to do unnecessary work. So update last_reflink_trans
353	 * to the last_trans value (we have to be pessimistic and assume a
354	 * reflink happened).
355	 *
356	 * The ->last_trans is protected by the inode's spinlock and we can
357	 * have a concurrent ordered extent completion update it. Also set
358	 * last_reflink_trans to ->last_trans only if the former is less than
359	 * the later, because we can be called in a context where
360	 * last_reflink_trans was set to the current transaction generation
361	 * while ->last_trans was not yet updated in the current transaction,
362	 * and therefore has a lower value.
363	 */
364	spin_lock(&inode->lock);
365	if (inode->last_reflink_trans < inode->last_trans)
366		inode->last_reflink_trans = inode->last_trans;
367	spin_unlock(&inode->lock);
368}
369
370static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
371{
372	bool ret = false;
373
374	spin_lock(&inode->lock);
375	if (inode->logged_trans == generation &&
376	    inode->last_sub_trans <= inode->last_log_commit &&
377	    inode->last_sub_trans <= inode->root->last_log_commit)
378		ret = true;
 
 
 
 
 
 
 
 
 
379	spin_unlock(&inode->lock);
380	return ret;
381}
382
383/*
384 * Check if the inode has flags compatible with compression
385 */
386static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode)
387{
388	if (inode->flags & BTRFS_INODE_NODATACOW ||
389	    inode->flags & BTRFS_INODE_NODATASUM)
390		return false;
391	return true;
392}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393
394/*
395 * btrfs_inode_item stores flags in a u64, btrfs_inode stores them in two
396 * separate u32s. These two functions convert between the two representations.
 
397 */
398static inline u64 btrfs_inode_combine_flags(u32 flags, u32 ro_flags)
399{
400	return (flags | ((u64)ro_flags << 32));
 
401}
402
403static inline void btrfs_inode_split_flags(u64 inode_item_flags,
404					   u32 *flags, u32 *ro_flags)
405{
406	*flags = (u32)inode_item_flags;
407	*ro_flags = (u32)(inode_item_flags >> 32);
408}
409
410/* Array of bytes with variable length, hexadecimal format 0x1234 */
411#define CSUM_FMT				"0x%*phN"
412#define CSUM_FMT_VALUE(size, bytes)		size, bytes
413
414void btrfs_submit_data_write_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num);
415void btrfs_submit_data_read_bio(struct btrfs_inode *inode, struct bio *bio,
416			int mirror_num, enum btrfs_compression_type compress_type);
417void btrfs_submit_dio_repair_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num);
418blk_status_t btrfs_submit_bio_start(struct btrfs_inode *inode, struct bio *bio);
419blk_status_t btrfs_submit_bio_start_direct_io(struct btrfs_inode *inode,
420					      struct bio *bio,
421					      u64 dio_file_offset);
422int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
423			    u32 pgoff, u8 *csum, const u8 * const csum_expected);
424int btrfs_check_data_csum(struct btrfs_inode *inode, struct btrfs_bio *bbio,
425			  u32 bio_offset, struct page *page, u32 pgoff);
426unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
427				    u32 bio_offset, struct page *page,
428				    u64 start, u64 end);
429noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
430			      u64 *orig_start, u64 *orig_block_len,
431			      u64 *ram_bytes, bool nowait, bool strict);
432
433void __btrfs_del_delalloc_inode(struct btrfs_root *root, struct btrfs_inode *inode);
434struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
435int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
436int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
437		       struct btrfs_inode *dir, struct btrfs_inode *inode,
438		       const struct fscrypt_str *name);
439int btrfs_add_link(struct btrfs_trans_handle *trans,
440		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
441		   const struct fscrypt_str *name, int add_backref, u64 index);
442int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry);
443int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
444			 int front);
445
446int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
447int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
448			       bool in_reclaim_context);
449int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
450			      unsigned int extra_bits,
451			      struct extent_state **cached_state);
452
453struct btrfs_new_inode_args {
454	/* Input */
455	struct inode *dir;
456	struct dentry *dentry;
457	struct inode *inode;
458	bool orphan;
459	bool subvol;
460
461	/* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */
462	struct posix_acl *default_acl;
463	struct posix_acl *acl;
464	struct fscrypt_name fname;
465};
466
467int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
468			    unsigned int *trans_num_items);
469int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
470			   struct btrfs_new_inode_args *args);
471void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
472struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
473				     struct inode *dir);
474 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
475			        u32 bits);
476void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
477				 struct extent_state *state, u32 bits);
478void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
479				 struct extent_state *other);
480void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
481				 struct extent_state *orig, u64 split);
482void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
483vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
484void btrfs_evict_inode(struct inode *inode);
485struct inode *btrfs_alloc_inode(struct super_block *sb);
486void btrfs_destroy_inode(struct inode *inode);
487void btrfs_free_inode(struct inode *inode);
488int btrfs_drop_inode(struct inode *inode);
489int __init btrfs_init_cachep(void);
490void __cold btrfs_destroy_cachep(void);
491struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
492			      struct btrfs_root *root, struct btrfs_path *path);
493struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
494struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
495				    struct page *page, size_t pg_offset,
496				    u64 start, u64 end);
497int btrfs_update_inode(struct btrfs_trans_handle *trans,
498		       struct btrfs_root *root, struct btrfs_inode *inode);
499int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
500				struct btrfs_root *root, struct btrfs_inode *inode);
501int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode);
502int btrfs_orphan_cleanup(struct btrfs_root *root);
503int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
504void btrfs_add_delayed_iput(struct btrfs_inode *inode);
505void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
506int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
507int btrfs_prealloc_file_range(struct inode *inode, int mode,
508			      u64 start, u64 num_bytes, u64 min_size,
509			      loff_t actual_len, u64 *alloc_hint);
510int btrfs_prealloc_file_range_trans(struct inode *inode,
511				    struct btrfs_trans_handle *trans, int mode,
512				    u64 start, u64 num_bytes, u64 min_size,
513				    loff_t actual_len, u64 *alloc_hint);
514int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
515			     u64 start, u64 end, int *page_started,
516			     unsigned long *nr_written, struct writeback_control *wbc);
517int btrfs_writepage_cow_fixup(struct page *page);
518void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
519					  struct page *page, u64 start,
520					  u64 end, bool uptodate);
521int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
522					     int compress_type);
523int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
524					  u64 file_offset, u64 disk_bytenr,
525					  u64 disk_io_size,
526					  struct page **pages);
527ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
528			   struct btrfs_ioctl_encoded_io_args *encoded);
529ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
530			       const struct btrfs_ioctl_encoded_io_args *encoded);
531
532ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter,
533		       size_t done_before);
534struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
535				  size_t done_before);
536
537extern const struct dentry_operations btrfs_dentry_operations;
538
539/* Inode locking type flags, by default the exclusive lock is taken. */
540enum btrfs_ilock_type {
541	ENUM_BIT(BTRFS_ILOCK_SHARED),
542	ENUM_BIT(BTRFS_ILOCK_TRY),
543	ENUM_BIT(BTRFS_ILOCK_MMAP),
544};
545
546int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags);
547void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags);
548void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes,
549			      const u64 del_bytes);
550void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
551
552#endif