Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_INODE_H
  7#define BTRFS_INODE_H
  8
  9#include <linux/hash.h>
 
 10#include "extent_map.h"
 11#include "extent_io.h"
 12#include "ordered-data.h"
 13#include "delayed-inode.h"
 14
 15/*
 16 * ordered_data_close is set by truncate when a file that used
 17 * to have good data has been truncated to zero.  When it is set
 18 * the btrfs file release call will add this inode to the
 19 * ordered operations list so that we make sure to flush out any
 20 * new data the application may have written before commit.
 21 */
 22enum {
 23	BTRFS_INODE_ORDERED_DATA_CLOSE,
 24	BTRFS_INODE_DUMMY,
 25	BTRFS_INODE_IN_DEFRAG,
 26	BTRFS_INODE_HAS_ASYNC_EXTENT,
 
 
 
 
 
 27	BTRFS_INODE_NEEDS_FULL_SYNC,
 28	BTRFS_INODE_COPY_EVERYTHING,
 29	BTRFS_INODE_IN_DELALLOC_LIST,
 30	BTRFS_INODE_READDIO_NEED_LOCK,
 31	BTRFS_INODE_HAS_PROPS,
 32	BTRFS_INODE_SNAPSHOT_FLUSH,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33};
 34
 35/* in memory btrfs inode */
 36struct btrfs_inode {
 37	/* which subvolume this inode belongs to */
 38	struct btrfs_root *root;
 39
 40	/* key used to find this inode on disk.  This is used by the code
 41	 * to read in roots of subvolumes
 42	 */
 43	struct btrfs_key location;
 44
 45	/*
 46	 * Lock for counters and all fields used to determine if the inode is in
 47	 * the log or not (last_trans, last_sub_trans, last_log_commit,
 48	 * logged_trans).
 
 49	 */
 50	spinlock_t lock;
 51
 52	/* the extent_tree has caches of all the extent mappings to disk */
 53	struct extent_map_tree extent_tree;
 54
 55	/* the io_tree does range state (DIRTY, LOCKED etc) */
 56	struct extent_io_tree io_tree;
 57
 58	/* special utility tree used to record which mirrors have already been
 59	 * tried when checksums fail for a given block
 60	 */
 61	struct extent_io_tree io_failure_tree;
 62
 
 
 
 
 
 
 63	/* held while logging the inode in tree-log.c */
 64	struct mutex log_mutex;
 65
 66	/* held while doing delalloc reservations */
 67	struct mutex delalloc_mutex;
 68
 69	/* used to order data wrt metadata */
 70	struct btrfs_ordered_inode_tree ordered_tree;
 71
 72	/* list of all the delalloc inodes in the FS.  There are times we need
 73	 * to write all the delalloc pages to disk, and this list is used
 74	 * to walk them all.
 75	 */
 76	struct list_head delalloc_inodes;
 77
 78	/* node for the red-black tree that links inodes in subvolume root */
 79	struct rb_node rb_node;
 80
 81	unsigned long runtime_flags;
 82
 83	/* Keep track of who's O_SYNC/fsyncing currently */
 84	atomic_t sync_writers;
 85
 86	/* full 64 bit generation number, struct vfs_inode doesn't have a big
 87	 * enough field for this.
 88	 */
 89	u64 generation;
 90
 91	/*
 92	 * transid of the trans_handle that last modified this inode
 93	 */
 94	u64 last_trans;
 95
 96	/*
 97	 * transid that last logged this inode
 98	 */
 99	u64 logged_trans;
100
101	/*
102	 * log transid when this inode was last modified
103	 */
104	int last_sub_trans;
105
106	/* a local copy of root's last_log_commit */
107	int last_log_commit;
108
109	/* total number of bytes pending delalloc, used by stat to calc the
110	 * real block usage of the file
111	 */
112	u64 delalloc_bytes;
113
114	/*
115	 * Total number of bytes pending delalloc that fall within a file
116	 * range that is either a hole or beyond EOF (and no prealloc extent
117	 * exists in the range). This is always <= delalloc_bytes.
118	 */
119	u64 new_delalloc_bytes;
120
121	/*
122	 * total number of bytes pending defrag, used by stat to check whether
123	 * it needs COW.
124	 */
125	u64 defrag_bytes;
126
127	/*
128	 * the size of the file stored in the metadata on disk.  data=ordered
129	 * means the in-memory i_size might be larger than the size on disk
130	 * because not all the blocks are written yet.
131	 */
132	u64 disk_i_size;
133
134	/*
135	 * if this is a directory then index_cnt is the counter for the index
136	 * number for new files that are created
137	 */
138	u64 index_cnt;
139
140	/* Cache the directory index number to speed the dir/file remove */
141	u64 dir_index;
142
143	/* the fsync log has some corner cases that mean we have to check
144	 * directories to see if any unlinks have been done before
145	 * the directory was logged.  See tree-log.c for all the
146	 * details
147	 */
148	u64 last_unlink_trans;
149
150	/*
 
 
 
 
 
 
 
 
 
 
 
151	 * Number of bytes outstanding that are going to need csums.  This is
152	 * used in ENOSPC accounting.
153	 */
154	u64 csum_bytes;
155
156	/* flags field from the on disk inode */
157	u32 flags;
158
159	/*
160	 * Counters to keep track of the number of extent item's we may use due
161	 * to delalloc and such.  outstanding_extents is the number of extent
162	 * items we think we'll end up using, and reserved_extents is the number
163	 * of extent items we've reserved metadata for.
164	 */
165	unsigned outstanding_extents;
166
167	struct btrfs_block_rsv block_rsv;
168
169	/*
170	 * Cached values of inode properties
171	 */
172	unsigned prop_compress;		/* per-file compression algorithm */
173	/*
174	 * Force compression on the file using the defrag ioctl, could be
175	 * different from prop_compress and takes precedence if set
176	 */
177	unsigned defrag_compress;
178
179	struct btrfs_delayed_node *delayed_node;
180
181	/* File creation time. */
182	struct timespec64 i_otime;
183
184	/* Hook into fs_info->delayed_iputs */
185	struct list_head delayed_iput;
186
187	/*
188	 * To avoid races between lockless (i_mutex not held) direct IO writes
189	 * and concurrent fsync requests. Direct IO writes must acquire read
190	 * access on this semaphore for creating an extent map and its
191	 * corresponding ordered extent. The fast fsync path must acquire write
192	 * access on this semaphore before it collects ordered extents and
193	 * extent maps.
194	 */
195	struct rw_semaphore dio_sem;
196
197	struct inode vfs_inode;
198};
199
 
 
 
 
 
200static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
201{
202	return container_of(inode, struct btrfs_inode, vfs_inode);
203}
204
205static inline unsigned long btrfs_inode_hash(u64 objectid,
206					     const struct btrfs_root *root)
207{
208	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
209
210#if BITS_PER_LONG == 32
211	h = (h >> 32) ^ (h & 0xffffffff);
212#endif
213
214	return (unsigned long)h;
215}
216
217static inline void btrfs_insert_inode_hash(struct inode *inode)
218{
219	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
220
221	__insert_inode_hash(inode, h);
222}
223
224static inline u64 btrfs_ino(const struct btrfs_inode *inode)
225{
226	u64 ino = inode->location.objectid;
227
228	/*
229	 * !ino: btree_inode
230	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
231	 */
232	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
233		ino = inode->vfs_inode.i_ino;
234	return ino;
235}
236
237static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
238{
239	i_size_write(&inode->vfs_inode, size);
240	inode->disk_i_size = size;
241}
242
243static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
244{
245	struct btrfs_root *root = inode->root;
246
247	if (root == root->fs_info->tree_root &&
248	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
249		return true;
250	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
251		return true;
252	return false;
253}
254
255static inline bool is_data_inode(struct inode *inode)
256{
257	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
258}
259
260static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
261						 int mod)
262{
263	lockdep_assert_held(&inode->lock);
264	inode->outstanding_extents += mod;
265	if (btrfs_is_free_space_inode(inode))
266		return;
267	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
268						  mod);
269}
270
271static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
 
 
 
 
 
 
 
 
272{
273	int ret = 0;
 
 
 
 
 
 
 
274
275	spin_lock(&inode->lock);
276	if (inode->logged_trans == generation &&
277	    inode->last_sub_trans <= inode->last_log_commit &&
278	    inode->last_sub_trans <= inode->root->last_log_commit) {
279		/*
280		 * After a ranged fsync we might have left some extent maps
281		 * (that fall outside the fsync's range). So return false
282		 * here if the list isn't empty, to make sure btrfs_log_inode()
283		 * will be called and process those extent maps.
284		 */
285		smp_mb();
286		if (list_empty(&inode->extent_tree.modified_extents))
287			ret = 1;
288	}
289	spin_unlock(&inode->lock);
290	return ret;
291}
292
293#define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
294
295struct btrfs_dio_private {
296	struct inode *inode;
297	unsigned long flags;
298	u64 logical_offset;
299	u64 disk_bytenr;
300	u64 bytes;
301	void *private;
302
303	/* number of bios pending for this dio */
304	atomic_t pending_bios;
305
306	/* IO errors */
307	int errors;
308
309	/* orig_bio is our btrfs_io_bio */
310	struct bio *orig_bio;
311
312	/* dio_bio came from fs/direct-io.c */
313	struct bio *dio_bio;
314
315	/*
316	 * The original bio may be split to several sub-bios, this is
317	 * done during endio of sub-bios
318	 */
319	blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
320			blk_status_t);
321};
322
323/*
324 * Disable DIO read nolock optimization, so new dio readers will be forced
325 * to grab i_mutex. It is used to avoid the endless truncate due to
326 * nonlocked dio read.
327 */
328static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
329{
330	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
331	smp_mb();
332}
333
334static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
335{
336	smp_mb__before_atomic();
337	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
338}
339
340/* Array of bytes with variable length, hexadecimal format 0x1234 */
341#define CSUM_FMT				"0x%*phN"
342#define CSUM_FMT_VALUE(size, bytes)		size, bytes
343
344static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
345		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
346{
347	struct btrfs_root *root = inode->root;
348	struct btrfs_super_block *sb = root->fs_info->super_copy;
349	const u16 csum_size = btrfs_super_csum_size(sb);
350
351	/* Output minus objectid, which is more meaningful */
352	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
353		btrfs_warn_rl(root->fs_info,
354"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
355			root->root_key.objectid, btrfs_ino(inode),
356			logical_start,
357			CSUM_FMT_VALUE(csum_size, csum),
358			CSUM_FMT_VALUE(csum_size, csum_expected),
359			mirror_num);
360	else
361		btrfs_warn_rl(root->fs_info,
362"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
363			root->root_key.objectid, btrfs_ino(inode),
364			logical_start,
365			CSUM_FMT_VALUE(csum_size, csum),
366			CSUM_FMT_VALUE(csum_size, csum_expected),
367			mirror_num);
368}
369
370#endif
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_INODE_H
  7#define BTRFS_INODE_H
  8
  9#include <linux/hash.h>
 10#include <linux/refcount.h>
 11#include "extent_map.h"
 12#include "extent_io.h"
 13#include "ordered-data.h"
 14#include "delayed-inode.h"
 15
 16/*
 17 * ordered_data_close is set by truncate when a file that used
 18 * to have good data has been truncated to zero.  When it is set
 19 * the btrfs file release call will add this inode to the
 20 * ordered operations list so that we make sure to flush out any
 21 * new data the application may have written before commit.
 22 */
 23enum {
 24	BTRFS_INODE_FLUSH_ON_CLOSE,
 25	BTRFS_INODE_DUMMY,
 26	BTRFS_INODE_IN_DEFRAG,
 27	BTRFS_INODE_HAS_ASYNC_EXTENT,
 28	 /*
 29	  * Always set under the VFS' inode lock, otherwise it can cause races
 30	  * during fsync (we start as a fast fsync and then end up in a full
 31	  * fsync racing with ordered extent completion).
 32	  */
 33	BTRFS_INODE_NEEDS_FULL_SYNC,
 34	BTRFS_INODE_COPY_EVERYTHING,
 35	BTRFS_INODE_IN_DELALLOC_LIST,
 
 36	BTRFS_INODE_HAS_PROPS,
 37	BTRFS_INODE_SNAPSHOT_FLUSH,
 38	/*
 39	 * Set and used when logging an inode and it serves to signal that an
 40	 * inode does not have xattrs, so subsequent fsyncs can avoid searching
 41	 * for xattrs to log. This bit must be cleared whenever a xattr is added
 42	 * to an inode.
 43	 */
 44	BTRFS_INODE_NO_XATTRS,
 45	/*
 46	 * Set when we are in a context where we need to start a transaction and
 47	 * have dirty pages with the respective file range locked. This is to
 48	 * ensure that when reserving space for the transaction, if we are low
 49	 * on available space and need to flush delalloc, we will not flush
 50	 * delalloc for this inode, because that could result in a deadlock (on
 51	 * the file range, inode's io_tree).
 52	 */
 53	BTRFS_INODE_NO_DELALLOC_FLUSH,
 54};
 55
 56/* in memory btrfs inode */
 57struct btrfs_inode {
 58	/* which subvolume this inode belongs to */
 59	struct btrfs_root *root;
 60
 61	/* key used to find this inode on disk.  This is used by the code
 62	 * to read in roots of subvolumes
 63	 */
 64	struct btrfs_key location;
 65
 66	/*
 67	 * Lock for counters and all fields used to determine if the inode is in
 68	 * the log or not (last_trans, last_sub_trans, last_log_commit,
 69	 * logged_trans), to access/update new_delalloc_bytes and to update the
 70	 * VFS' inode number of bytes used.
 71	 */
 72	spinlock_t lock;
 73
 74	/* the extent_tree has caches of all the extent mappings to disk */
 75	struct extent_map_tree extent_tree;
 76
 77	/* the io_tree does range state (DIRTY, LOCKED etc) */
 78	struct extent_io_tree io_tree;
 79
 80	/* special utility tree used to record which mirrors have already been
 81	 * tried when checksums fail for a given block
 82	 */
 83	struct extent_io_tree io_failure_tree;
 84
 85	/*
 86	 * Keep track of where the inode has extent items mapped in order to
 87	 * make sure the i_size adjustments are accurate
 88	 */
 89	struct extent_io_tree file_extent_tree;
 90
 91	/* held while logging the inode in tree-log.c */
 92	struct mutex log_mutex;
 93
 
 
 
 94	/* used to order data wrt metadata */
 95	struct btrfs_ordered_inode_tree ordered_tree;
 96
 97	/* list of all the delalloc inodes in the FS.  There are times we need
 98	 * to write all the delalloc pages to disk, and this list is used
 99	 * to walk them all.
100	 */
101	struct list_head delalloc_inodes;
102
103	/* node for the red-black tree that links inodes in subvolume root */
104	struct rb_node rb_node;
105
106	unsigned long runtime_flags;
107
108	/* Keep track of who's O_SYNC/fsyncing currently */
109	atomic_t sync_writers;
110
111	/* full 64 bit generation number, struct vfs_inode doesn't have a big
112	 * enough field for this.
113	 */
114	u64 generation;
115
116	/*
117	 * transid of the trans_handle that last modified this inode
118	 */
119	u64 last_trans;
120
121	/*
122	 * transid that last logged this inode
123	 */
124	u64 logged_trans;
125
126	/*
127	 * log transid when this inode was last modified
128	 */
129	int last_sub_trans;
130
131	/* a local copy of root's last_log_commit */
132	int last_log_commit;
133
134	/* total number of bytes pending delalloc, used by stat to calc the
135	 * real block usage of the file
136	 */
137	u64 delalloc_bytes;
138
139	/*
140	 * Total number of bytes pending delalloc that fall within a file
141	 * range that is either a hole or beyond EOF (and no prealloc extent
142	 * exists in the range). This is always <= delalloc_bytes.
143	 */
144	u64 new_delalloc_bytes;
145
146	/*
147	 * total number of bytes pending defrag, used by stat to check whether
148	 * it needs COW.
149	 */
150	u64 defrag_bytes;
151
152	/*
153	 * the size of the file stored in the metadata on disk.  data=ordered
154	 * means the in-memory i_size might be larger than the size on disk
155	 * because not all the blocks are written yet.
156	 */
157	u64 disk_i_size;
158
159	/*
160	 * if this is a directory then index_cnt is the counter for the index
161	 * number for new files that are created
162	 */
163	u64 index_cnt;
164
165	/* Cache the directory index number to speed the dir/file remove */
166	u64 dir_index;
167
168	/* the fsync log has some corner cases that mean we have to check
169	 * directories to see if any unlinks have been done before
170	 * the directory was logged.  See tree-log.c for all the
171	 * details
172	 */
173	u64 last_unlink_trans;
174
175	/*
176	 * The id/generation of the last transaction where this inode was
177	 * either the source or the destination of a clone/dedupe operation.
178	 * Used when logging an inode to know if there are shared extents that
179	 * need special care when logging checksum items, to avoid duplicate
180	 * checksum items in a log (which can lead to a corruption where we end
181	 * up with missing checksum ranges after log replay).
182	 * Protected by the vfs inode lock.
183	 */
184	u64 last_reflink_trans;
185
186	/*
187	 * Number of bytes outstanding that are going to need csums.  This is
188	 * used in ENOSPC accounting.
189	 */
190	u64 csum_bytes;
191
192	/* flags field from the on disk inode */
193	u32 flags;
194
195	/*
196	 * Counters to keep track of the number of extent item's we may use due
197	 * to delalloc and such.  outstanding_extents is the number of extent
198	 * items we think we'll end up using, and reserved_extents is the number
199	 * of extent items we've reserved metadata for.
200	 */
201	unsigned outstanding_extents;
202
203	struct btrfs_block_rsv block_rsv;
204
205	/*
206	 * Cached values of inode properties
207	 */
208	unsigned prop_compress;		/* per-file compression algorithm */
209	/*
210	 * Force compression on the file using the defrag ioctl, could be
211	 * different from prop_compress and takes precedence if set
212	 */
213	unsigned defrag_compress;
214
215	struct btrfs_delayed_node *delayed_node;
216
217	/* File creation time. */
218	struct timespec64 i_otime;
219
220	/* Hook into fs_info->delayed_iputs */
221	struct list_head delayed_iput;
222
223	struct rw_semaphore i_mmap_lock;
 
 
 
 
 
 
 
 
 
224	struct inode vfs_inode;
225};
226
227static inline u32 btrfs_inode_sectorsize(const struct btrfs_inode *inode)
228{
229	return inode->root->fs_info->sectorsize;
230}
231
232static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
233{
234	return container_of(inode, struct btrfs_inode, vfs_inode);
235}
236
237static inline unsigned long btrfs_inode_hash(u64 objectid,
238					     const struct btrfs_root *root)
239{
240	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
241
242#if BITS_PER_LONG == 32
243	h = (h >> 32) ^ (h & 0xffffffff);
244#endif
245
246	return (unsigned long)h;
247}
248
249static inline void btrfs_insert_inode_hash(struct inode *inode)
250{
251	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
252
253	__insert_inode_hash(inode, h);
254}
255
256static inline u64 btrfs_ino(const struct btrfs_inode *inode)
257{
258	u64 ino = inode->location.objectid;
259
260	/*
261	 * !ino: btree_inode
262	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
263	 */
264	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
265		ino = inode->vfs_inode.i_ino;
266	return ino;
267}
268
269static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
270{
271	i_size_write(&inode->vfs_inode, size);
272	inode->disk_i_size = size;
273}
274
275static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
276{
277	struct btrfs_root *root = inode->root;
278
279	if (root == root->fs_info->tree_root &&
280	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
281		return true;
282	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
283		return true;
284	return false;
285}
286
287static inline bool is_data_inode(struct inode *inode)
288{
289	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
290}
291
292static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
293						 int mod)
294{
295	lockdep_assert_held(&inode->lock);
296	inode->outstanding_extents += mod;
297	if (btrfs_is_free_space_inode(inode))
298		return;
299	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
300						  mod);
301}
302
303/*
304 * Called every time after doing a buffered, direct IO or memory mapped write.
305 *
306 * This is to ensure that if we write to a file that was previously fsynced in
307 * the current transaction, then try to fsync it again in the same transaction,
308 * we will know that there were changes in the file and that it needs to be
309 * logged.
310 */
311static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
312{
313	spin_lock(&inode->lock);
314	inode->last_sub_trans = inode->root->log_transid;
315	spin_unlock(&inode->lock);
316}
317
318static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
319{
320	bool ret = false;
321
322	spin_lock(&inode->lock);
323	if (inode->logged_trans == generation &&
324	    inode->last_sub_trans <= inode->last_log_commit &&
325	    inode->last_sub_trans <= inode->root->last_log_commit)
326		ret = true;
 
 
 
 
 
 
 
 
 
327	spin_unlock(&inode->lock);
328	return ret;
329}
330
 
 
331struct btrfs_dio_private {
332	struct inode *inode;
 
333	u64 logical_offset;
334	u64 disk_bytenr;
335	/* Used for bio::bi_size */
336	u32 bytes;
 
 
 
337
338	/*
339	 * References to this structure. There is one reference per in-flight
340	 * bio plus one while we're still setting up.
341	 */
342	refcount_t refs;
343
344	/* dio_bio came from fs/direct-io.c */
345	struct bio *dio_bio;
346
347	/* Array of checksums */
348	u8 csums[];
 
 
 
 
349};
350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351/* Array of bytes with variable length, hexadecimal format 0x1234 */
352#define CSUM_FMT				"0x%*phN"
353#define CSUM_FMT_VALUE(size, bytes)		size, bytes
354
355static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
356		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
357{
358	struct btrfs_root *root = inode->root;
359	const u32 csum_size = root->fs_info->csum_size;
 
360
361	/* Output minus objectid, which is more meaningful */
362	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
363		btrfs_warn_rl(root->fs_info,
364"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
365			root->root_key.objectid, btrfs_ino(inode),
366			logical_start,
367			CSUM_FMT_VALUE(csum_size, csum),
368			CSUM_FMT_VALUE(csum_size, csum_expected),
369			mirror_num);
370	else
371		btrfs_warn_rl(root->fs_info,
372"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
373			root->root_key.objectid, btrfs_ino(inode),
374			logical_start,
375			CSUM_FMT_VALUE(csum_size, csum),
376			CSUM_FMT_VALUE(csum_size, csum_expected),
377			mirror_num);
378}
379
380#endif