Linux Audio

Check our new training course

Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_INODE_H
  7#define BTRFS_INODE_H
  8
  9#include <linux/hash.h>
 
 
 
 
 
 
 
 
 
 
 
 
 10#include "extent_map.h"
 11#include "extent_io.h"
 
 12#include "ordered-data.h"
 13#include "delayed-inode.h"
 14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 15/*
 16 * ordered_data_close is set by truncate when a file that used
 17 * to have good data has been truncated to zero.  When it is set
 18 * the btrfs file release call will add this inode to the
 19 * ordered operations list so that we make sure to flush out any
 20 * new data the application may have written before commit.
 21 */
 22enum {
 23	BTRFS_INODE_ORDERED_DATA_CLOSE,
 24	BTRFS_INODE_DUMMY,
 25	BTRFS_INODE_IN_DEFRAG,
 26	BTRFS_INODE_HAS_ASYNC_EXTENT,
 
 
 
 
 
 27	BTRFS_INODE_NEEDS_FULL_SYNC,
 28	BTRFS_INODE_COPY_EVERYTHING,
 29	BTRFS_INODE_IN_DELALLOC_LIST,
 30	BTRFS_INODE_READDIO_NEED_LOCK,
 31	BTRFS_INODE_HAS_PROPS,
 32	BTRFS_INODE_SNAPSHOT_FLUSH,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 33};
 34
 35/* in memory btrfs inode */
 36struct btrfs_inode {
 37	/* which subvolume this inode belongs to */
 38	struct btrfs_root *root;
 39
 40	/* key used to find this inode on disk.  This is used by the code
 41	 * to read in roots of subvolumes
 
 
 
 42	 */
 43	struct btrfs_key location;
 
 
 
 
 
 
 
 
 
 
 44
 45	/*
 46	 * Lock for counters and all fields used to determine if the inode is in
 47	 * the log or not (last_trans, last_sub_trans, last_log_commit,
 48	 * logged_trans).
 
 
 
 49	 */
 50	spinlock_t lock;
 51
 52	/* the extent_tree has caches of all the extent mappings to disk */
 53	struct extent_map_tree extent_tree;
 54
 55	/* the io_tree does range state (DIRTY, LOCKED etc) */
 56	struct extent_io_tree io_tree;
 57
 58	/* special utility tree used to record which mirrors have already been
 59	 * tried when checksums fail for a given block
 
 
 
 60	 */
 61	struct extent_io_tree io_failure_tree;
 62
 63	/* held while logging the inode in tree-log.c */
 64	struct mutex log_mutex;
 65
 66	/* held while doing delalloc reservations */
 67	struct mutex delalloc_mutex;
 
 
 
 
 
 68
 69	/* used to order data wrt metadata */
 70	struct btrfs_ordered_inode_tree ordered_tree;
 
 
 71
 72	/* list of all the delalloc inodes in the FS.  There are times we need
 73	 * to write all the delalloc pages to disk, and this list is used
 74	 * to walk them all.
 75	 */
 76	struct list_head delalloc_inodes;
 77
 78	/* node for the red-black tree that links inodes in subvolume root */
 79	struct rb_node rb_node;
 80
 81	unsigned long runtime_flags;
 82
 83	/* Keep track of who's O_SYNC/fsyncing currently */
 84	atomic_t sync_writers;
 85
 86	/* full 64 bit generation number, struct vfs_inode doesn't have a big
 87	 * enough field for this.
 88	 */
 89	u64 generation;
 90
 91	/*
 92	 * transid of the trans_handle that last modified this inode
 
 93	 */
 94	u64 last_trans;
 95
 96	/*
 97	 * transid that last logged this inode
 
 98	 */
 99	u64 logged_trans;
100
101	/*
102	 * log transid when this inode was last modified
 
103	 */
104	int last_sub_trans;
105
106	/* a local copy of root's last_log_commit */
107	int last_log_commit;
108
109	/* total number of bytes pending delalloc, used by stat to calc the
110	 * real block usage of the file
111	 */
112	u64 delalloc_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
113
114	/*
115	 * Total number of bytes pending delalloc that fall within a file
116	 * range that is either a hole or beyond EOF (and no prealloc extent
117	 * exists in the range). This is always <= delalloc_bytes.
118	 */
119	u64 new_delalloc_bytes;
 
 
 
 
 
 
 
 
120
121	/*
122	 * total number of bytes pending defrag, used by stat to check whether
123	 * it needs COW.
124	 */
125	u64 defrag_bytes;
 
 
 
 
 
 
 
 
 
126
127	/*
128	 * the size of the file stored in the metadata on disk.  data=ordered
129	 * means the in-memory i_size might be larger than the size on disk
130	 * because not all the blocks are written yet.
131	 */
132	u64 disk_i_size;
133
134	/*
135	 * if this is a directory then index_cnt is the counter for the index
136	 * number for new files that are created
137	 */
138	u64 index_cnt;
 
 
 
 
 
 
 
 
 
 
139
140	/* Cache the directory index number to speed the dir/file remove */
141	u64 dir_index;
142
143	/* the fsync log has some corner cases that mean we have to check
144	 * directories to see if any unlinks have been done before
145	 * the directory was logged.  See tree-log.c for all the
146	 * details
147	 */
148	u64 last_unlink_trans;
149
150	/*
151	 * Number of bytes outstanding that are going to need csums.  This is
152	 * used in ENOSPC accounting.
153	 */
154	u64 csum_bytes;
 
 
 
 
 
 
 
155
156	/* flags field from the on disk inode */
157	u32 flags;
 
 
 
 
158
159	/*
160	 * Counters to keep track of the number of extent item's we may use due
161	 * to delalloc and such.  outstanding_extents is the number of extent
162	 * items we think we'll end up using, and reserved_extents is the number
163	 * of extent items we've reserved metadata for.
164	 */
165	unsigned outstanding_extents;
166
167	struct btrfs_block_rsv block_rsv;
168
169	/*
170	 * Cached values of inode properties
171	 */
172	unsigned prop_compress;		/* per-file compression algorithm */
173	/*
174	 * Force compression on the file using the defrag ioctl, could be
175	 * different from prop_compress and takes precedence if set
176	 */
177	unsigned defrag_compress;
178
179	struct btrfs_delayed_node *delayed_node;
180
181	/* File creation time. */
182	struct timespec64 i_otime;
 
183
184	/* Hook into fs_info->delayed_iputs */
185	struct list_head delayed_iput;
186
187	/*
188	 * To avoid races between lockless (i_mutex not held) direct IO writes
189	 * and concurrent fsync requests. Direct IO writes must acquire read
190	 * access on this semaphore for creating an extent map and its
191	 * corresponding ordered extent. The fast fsync path must acquire write
192	 * access on this semaphore before it collects ordered extents and
193	 * extent maps.
194	 */
195	struct rw_semaphore dio_sem;
196
197	struct inode vfs_inode;
198};
199
200static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
201{
202	return container_of(inode, struct btrfs_inode, vfs_inode);
203}
204
 
 
 
 
 
 
 
 
 
 
 
 
 
205static inline unsigned long btrfs_inode_hash(u64 objectid,
206					     const struct btrfs_root *root)
207{
208	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
209
210#if BITS_PER_LONG == 32
211	h = (h >> 32) ^ (h & 0xffffffff);
212#endif
213
214	return (unsigned long)h;
215}
216
217static inline void btrfs_insert_inode_hash(struct inode *inode)
 
 
 
 
 
 
218{
219	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
220
221	__insert_inode_hash(inode, h);
 
 
222}
223
 
 
224static inline u64 btrfs_ino(const struct btrfs_inode *inode)
225{
226	u64 ino = inode->location.objectid;
 
 
 
 
 
 
 
 
 
 
 
227
228	/*
229	 * !ino: btree_inode
230	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
231	 */
232	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
233		ino = inode->vfs_inode.i_ino;
234	return ino;
235}
236
237static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
238{
239	i_size_write(&inode->vfs_inode, size);
240	inode->disk_i_size = size;
241}
242
243static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
244{
245	struct btrfs_root *root = inode->root;
246
247	if (root == root->fs_info->tree_root &&
248	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
249		return true;
250	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
251		return true;
252	return false;
253}
254
255static inline bool is_data_inode(struct inode *inode)
256{
257	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
258}
259
260static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
261						 int mod)
262{
263	lockdep_assert_held(&inode->lock);
264	inode->outstanding_extents += mod;
265	if (btrfs_is_free_space_inode(inode))
266		return;
267	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
268						  mod);
269}
270
271static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
 
 
 
 
 
 
 
 
272{
273	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
274
275	spin_lock(&inode->lock);
276	if (inode->logged_trans == generation &&
277	    inode->last_sub_trans <= inode->last_log_commit &&
278	    inode->last_sub_trans <= inode->root->last_log_commit) {
279		/*
280		 * After a ranged fsync we might have left some extent maps
281		 * (that fall outside the fsync's range). So return false
282		 * here if the list isn't empty, to make sure btrfs_log_inode()
283		 * will be called and process those extent maps.
284		 */
285		smp_mb();
286		if (list_empty(&inode->extent_tree.modified_extents))
287			ret = 1;
288	}
289	spin_unlock(&inode->lock);
290	return ret;
291}
292
293#define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
294
295struct btrfs_dio_private {
296	struct inode *inode;
297	unsigned long flags;
298	u64 logical_offset;
299	u64 disk_bytenr;
300	u64 bytes;
301	void *private;
302
303	/* number of bios pending for this dio */
304	atomic_t pending_bios;
305
306	/* IO errors */
307	int errors;
308
309	/* orig_bio is our btrfs_io_bio */
310	struct bio *orig_bio;
311
312	/* dio_bio came from fs/direct-io.c */
313	struct bio *dio_bio;
314
315	/*
316	 * The original bio may be split to several sub-bios, this is
317	 * done during endio of sub-bios
318	 */
319	blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
320			blk_status_t);
321};
322
323/*
324 * Disable DIO read nolock optimization, so new dio readers will be forced
325 * to grab i_mutex. It is used to avoid the endless truncate due to
326 * nonlocked dio read.
327 */
328static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
329{
330	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
331	smp_mb();
 
 
332}
333
334static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
335{
336	smp_mb__before_atomic();
337	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
 
 
338}
339
340/* Array of bytes with variable length, hexadecimal format 0x1234 */
341#define CSUM_FMT				"0x%*phN"
342#define CSUM_FMT_VALUE(size, bytes)		size, bytes
343
344static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
345		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
346{
347	struct btrfs_root *root = inode->root;
348	struct btrfs_super_block *sb = root->fs_info->super_copy;
349	const u16 csum_size = btrfs_super_csum_size(sb);
350
351	/* Output minus objectid, which is more meaningful */
352	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
353		btrfs_warn_rl(root->fs_info,
354"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
355			root->root_key.objectid, btrfs_ino(inode),
356			logical_start,
357			CSUM_FMT_VALUE(csum_size, csum),
358			CSUM_FMT_VALUE(csum_size, csum_expected),
359			mirror_num);
360	else
361		btrfs_warn_rl(root->fs_info,
362"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
363			root->root_key.objectid, btrfs_ino(inode),
364			logical_start,
365			CSUM_FMT_VALUE(csum_size, csum),
366			CSUM_FMT_VALUE(csum_size, csum_expected),
367			mirror_num);
368}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369
370#endif
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_INODE_H
  7#define BTRFS_INODE_H
  8
  9#include <linux/hash.h>
 10#include <linux/refcount.h>
 11#include <linux/spinlock.h>
 12#include <linux/mutex.h>
 13#include <linux/rwsem.h>
 14#include <linux/fs.h>
 15#include <linux/mm.h>
 16#include <linux/compiler.h>
 17#include <linux/fscrypt.h>
 18#include <linux/lockdep.h>
 19#include <uapi/linux/btrfs_tree.h>
 20#include <trace/events/btrfs.h>
 21#include "block-rsv.h"
 22#include "extent_map.h"
 23#include "extent_io.h"
 24#include "extent-io-tree.h"
 25#include "ordered-data.h"
 26#include "delayed-inode.h"
 27
 28struct extent_state;
 29struct posix_acl;
 30struct iov_iter;
 31struct writeback_control;
 32struct btrfs_root;
 33struct btrfs_fs_info;
 34struct btrfs_trans_handle;
 35
 36/*
 37 * Since we search a directory based on f_pos (struct dir_context::pos) we have
 38 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so
 39 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()).
 40 */
 41#define BTRFS_DIR_START_INDEX 2
 42
 43/*
 44 * ordered_data_close is set by truncate when a file that used
 45 * to have good data has been truncated to zero.  When it is set
 46 * the btrfs file release call will add this inode to the
 47 * ordered operations list so that we make sure to flush out any
 48 * new data the application may have written before commit.
 49 */
 50enum {
 51	BTRFS_INODE_FLUSH_ON_CLOSE,
 52	BTRFS_INODE_DUMMY,
 53	BTRFS_INODE_IN_DEFRAG,
 54	BTRFS_INODE_HAS_ASYNC_EXTENT,
 55	 /*
 56	  * Always set under the VFS' inode lock, otherwise it can cause races
 57	  * during fsync (we start as a fast fsync and then end up in a full
 58	  * fsync racing with ordered extent completion).
 59	  */
 60	BTRFS_INODE_NEEDS_FULL_SYNC,
 61	BTRFS_INODE_COPY_EVERYTHING,
 
 
 62	BTRFS_INODE_HAS_PROPS,
 63	BTRFS_INODE_SNAPSHOT_FLUSH,
 64	/*
 65	 * Set and used when logging an inode and it serves to signal that an
 66	 * inode does not have xattrs, so subsequent fsyncs can avoid searching
 67	 * for xattrs to log. This bit must be cleared whenever a xattr is added
 68	 * to an inode.
 69	 */
 70	BTRFS_INODE_NO_XATTRS,
 71	/*
 72	 * Set when we are in a context where we need to start a transaction and
 73	 * have dirty pages with the respective file range locked. This is to
 74	 * ensure that when reserving space for the transaction, if we are low
 75	 * on available space and need to flush delalloc, we will not flush
 76	 * delalloc for this inode, because that could result in a deadlock (on
 77	 * the file range, inode's io_tree).
 78	 */
 79	BTRFS_INODE_NO_DELALLOC_FLUSH,
 80	/*
 81	 * Set when we are working on enabling verity for a file. Computing and
 82	 * writing the whole Merkle tree can take a while so we want to prevent
 83	 * races where two separate tasks attempt to simultaneously start verity
 84	 * on the same file.
 85	 */
 86	BTRFS_INODE_VERITY_IN_PROGRESS,
 87	/* Set when this inode is a free space inode. */
 88	BTRFS_INODE_FREE_SPACE_INODE,
 89	/* Set when there are no capabilities in XATTs for the inode. */
 90	BTRFS_INODE_NO_CAP_XATTR,
 91	/*
 92	 * Set if an error happened when doing a COW write before submitting a
 93	 * bio or during writeback. Used for both buffered writes and direct IO
 94	 * writes. This is to signal a fast fsync that it has to wait for
 95	 * ordered extents to complete and therefore not log extent maps that
 96	 * point to unwritten extents (when an ordered extent completes and it
 97	 * has the BTRFS_ORDERED_IOERR flag set, it drops extent maps in its
 98	 * range).
 99	 */
100	BTRFS_INODE_COW_WRITE_ERROR,
101	/*
102	 * Indicate this is a directory that points to a subvolume for which
103	 * there is no root reference item. That's a case like the following:
104	 *
105	 *   $ btrfs subvolume create /mnt/parent
106	 *   $ btrfs subvolume create /mnt/parent/child
107	 *   $ btrfs subvolume snapshot /mnt/parent /mnt/snap
108	 *
109	 * If subvolume "parent" is root 256, subvolume "child" is root 257 and
110	 * snapshot "snap" is root 258, then there's no root reference item (key
111	 * BTRFS_ROOT_REF_KEY in the root tree) for the subvolume "child"
112	 * associated to root 258 (the snapshot) - there's only for the root
113	 * of the "parent" subvolume (root 256). In the chunk root we have a
114	 * (256 BTRFS_ROOT_REF_KEY 257) key but we don't have a
115	 * (258 BTRFS_ROOT_REF_KEY 257) key - the sames goes for backrefs, we
116	 * have a (257 BTRFS_ROOT_BACKREF_KEY 256) but we don't have a
117	 * (257 BTRFS_ROOT_BACKREF_KEY 258) key.
118	 *
119	 * So when opening the "child" dentry from the snapshot's directory,
120	 * we don't find a root ref item and we create a stub inode. This is
121	 * done at new_simple_dir(), called from btrfs_lookup_dentry().
122	 */
123	BTRFS_INODE_ROOT_STUB,
124};
125
126/* in memory btrfs inode */
127struct btrfs_inode {
128	/* which subvolume this inode belongs to */
129	struct btrfs_root *root;
130
131#if BITS_PER_LONG == 32
132	/*
133	 * The objectid of the corresponding BTRFS_INODE_ITEM_KEY.
134	 * On 64 bits platforms we can get it from vfs_inode.i_ino, which is an
135	 * unsigned long and therefore 64 bits on such platforms.
136	 */
137	u64 objectid;
138#endif
139
140	/* Cached value of inode property 'compression'. */
141	u8 prop_compress;
142
143	/*
144	 * Force compression on the file using the defrag ioctl, could be
145	 * different from prop_compress and takes precedence if set.
146	 */
147	u8 defrag_compress;
148
149	/*
150	 * Lock for counters and all fields used to determine if the inode is in
151	 * the log or not (last_trans, last_sub_trans, last_log_commit,
152	 * logged_trans), to access/update delalloc_bytes, new_delalloc_bytes,
153	 * defrag_bytes, disk_i_size, outstanding_extents, csum_bytes and to
154	 * update the VFS' inode number of bytes used.
155	 * Also protects setting struct file::private_data.
156	 */
157	spinlock_t lock;
158
159	/* the extent_tree has caches of all the extent mappings to disk */
160	struct extent_map_tree extent_tree;
161
162	/* the io_tree does range state (DIRTY, LOCKED etc) */
163	struct extent_io_tree io_tree;
164
165	/*
166	 * Keep track of where the inode has extent items mapped in order to
167	 * make sure the i_size adjustments are accurate. Not required when the
168	 * filesystem is NO_HOLES, the status can't be set while mounted as
169	 * it's a mkfs-time feature.
170	 */
171	struct extent_io_tree *file_extent_tree;
172
173	/* held while logging the inode in tree-log.c */
174	struct mutex log_mutex;
175
176	/*
177	 * Counters to keep track of the number of extent item's we may use due
178	 * to delalloc and such.  outstanding_extents is the number of extent
179	 * items we think we'll end up using, and reserved_extents is the number
180	 * of extent items we've reserved metadata for. Protected by 'lock'.
181	 */
182	unsigned outstanding_extents;
183
184	/* used to order data wrt metadata */
185	spinlock_t ordered_tree_lock;
186	struct rb_root ordered_tree;
187	struct rb_node *ordered_tree_last;
188
189	/* list of all the delalloc inodes in the FS.  There are times we need
190	 * to write all the delalloc pages to disk, and this list is used
191	 * to walk them all.
192	 */
193	struct list_head delalloc_inodes;
194
 
 
 
195	unsigned long runtime_flags;
196
 
 
 
197	/* full 64 bit generation number, struct vfs_inode doesn't have a big
198	 * enough field for this.
199	 */
200	u64 generation;
201
202	/*
203	 * ID of the transaction handle that last modified this inode.
204	 * Protected by 'lock'.
205	 */
206	u64 last_trans;
207
208	/*
209	 * ID of the transaction that last logged this inode.
210	 * Protected by 'lock'.
211	 */
212	u64 logged_trans;
213
214	/*
215	 * Log transaction ID when this inode was last modified.
216	 * Protected by 'lock'.
217	 */
218	int last_sub_trans;
219
220	/* A local copy of root's last_log_commit. Protected by 'lock'. */
221	int last_log_commit;
222
223	union {
224		/*
225		 * Total number of bytes pending delalloc, used by stat to
226		 * calculate the real block usage of the file. This is used
227		 * only for files. Protected by 'lock'.
228		 */
229		u64 delalloc_bytes;
230		/*
231		 * The lowest possible index of the next dir index key which
232		 * points to an inode that needs to be logged.
233		 * This is used only for directories.
234		 * Use the helpers btrfs_get_first_dir_index_to_log() and
235		 * btrfs_set_first_dir_index_to_log() to access this field.
236		 */
237		u64 first_dir_index_to_log;
238	};
239
240	union {
241		/*
242		 * Total number of bytes pending delalloc that fall within a file
243		 * range that is either a hole or beyond EOF (and no prealloc extent
244		 * exists in the range). This is always <= delalloc_bytes and this
245		 * is used only for files. Protected by 'lock'.
246		 */
247		u64 new_delalloc_bytes;
248		/*
249		 * The offset of the last dir index key that was logged.
250		 * This is used only for directories.
251		 */
252		u64 last_dir_index_offset;
253	};
254
255	union {
256		/*
257		 * Total number of bytes pending defrag, used by stat to check whether
258		 * it needs COW. Protected by 'lock'.
259		 * Used by inodes other than the data relocation inode.
260		 */
261		u64 defrag_bytes;
262
263		/*
264		 * Logical address of the block group being relocated.
265		 * Used only by the data relocation inode.
266		 */
267		u64 reloc_block_group_start;
268	};
269
270	/*
271	 * The size of the file stored in the metadata on disk.  data=ordered
272	 * means the in-memory i_size might be larger than the size on disk
273	 * because not all the blocks are written yet. Protected by 'lock'.
274	 */
275	u64 disk_i_size;
276
277	union {
278		/*
279		 * If this is a directory then index_cnt is the counter for the
280		 * index number for new files that are created. For an empty
281		 * directory, this must be initialized to BTRFS_DIR_START_INDEX.
282		 */
283		u64 index_cnt;
284
285		/*
286		 * If this is not a directory, this is the number of bytes
287		 * outstanding that are going to need csums. This is used in
288		 * ENOSPC accounting. Protected by 'lock'.
289		 */
290		u64 csum_bytes;
291	};
292
293	/* Cache the directory index number to speed the dir/file remove */
294	u64 dir_index;
295
296	/* the fsync log has some corner cases that mean we have to check
297	 * directories to see if any unlinks have been done before
298	 * the directory was logged.  See tree-log.c for all the
299	 * details
300	 */
301	u64 last_unlink_trans;
302
303	union {
304		/*
305		 * The id/generation of the last transaction where this inode
306		 * was either the source or the destination of a clone/dedupe
307		 * operation. Used when logging an inode to know if there are
308		 * shared extents that need special care when logging checksum
309		 * items, to avoid duplicate checksum items in a log (which can
310		 * lead to a corruption where we end up with missing checksum
311		 * ranges after log replay). Protected by the VFS inode lock.
312		 * Used for regular files only.
313		 */
314		u64 last_reflink_trans;
315
316		/*
317		 * In case this a root stub inode (BTRFS_INODE_ROOT_STUB flag set),
318		 * the ID of that root.
319		 */
320		u64 ref_root_id;
321	};
322
323	/* Backwards incompatible flags, lower half of inode_item::flags  */
324	u32 flags;
325	/* Read-only compatibility flags, upper half of inode_item::flags */
326	u32 ro_flags;
 
 
 
327
328	struct btrfs_block_rsv block_rsv;
329
 
 
 
 
 
 
 
 
 
 
330	struct btrfs_delayed_node *delayed_node;
331
332	/* File creation time. */
333	u64 i_otime_sec;
334	u32 i_otime_nsec;
335
336	/* Hook into fs_info->delayed_iputs */
337	struct list_head delayed_iput;
338
339	struct rw_semaphore i_mmap_lock;
 
 
 
 
 
 
 
 
 
340	struct inode vfs_inode;
341};
342
343static inline u64 btrfs_get_first_dir_index_to_log(const struct btrfs_inode *inode)
344{
345	return READ_ONCE(inode->first_dir_index_to_log);
346}
347
348static inline void btrfs_set_first_dir_index_to_log(struct btrfs_inode *inode,
349						    u64 index)
350{
351	WRITE_ONCE(inode->first_dir_index_to_log, index);
352}
353
354/* Type checked and const-preserving VFS inode -> btrfs inode. */
355#define BTRFS_I(_inode)								\
356	_Generic(_inode,							\
357		 struct inode *: container_of(_inode, struct btrfs_inode, vfs_inode),	\
358		 const struct inode *: (const struct btrfs_inode *)container_of(	\
359					_inode, const struct btrfs_inode, vfs_inode))
360
361static inline unsigned long btrfs_inode_hash(u64 objectid,
362					     const struct btrfs_root *root)
363{
364	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
365
366#if BITS_PER_LONG == 32
367	h = (h >> 32) ^ (h & 0xffffffff);
368#endif
369
370	return (unsigned long)h;
371}
372
373#if BITS_PER_LONG == 32
374
375/*
376 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so
377 * we use the inode's location objectid which is a u64 to avoid truncation.
378 */
379static inline u64 btrfs_ino(const struct btrfs_inode *inode)
380{
381	u64 ino = inode->objectid;
382
383	if (test_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags))
384		ino = inode->vfs_inode.i_ino;
385	return ino;
386}
387
388#else
389
390static inline u64 btrfs_ino(const struct btrfs_inode *inode)
391{
392	return inode->vfs_inode.i_ino;
393}
394
395#endif
396
397static inline void btrfs_get_inode_key(const struct btrfs_inode *inode,
398				       struct btrfs_key *key)
399{
400	key->objectid = btrfs_ino(inode);
401	key->type = BTRFS_INODE_ITEM_KEY;
402	key->offset = 0;
403}
404
405static inline void btrfs_set_inode_number(struct btrfs_inode *inode, u64 ino)
406{
407#if BITS_PER_LONG == 32
408	inode->objectid = ino;
409#endif
410	inode->vfs_inode.i_ino = ino;
 
411}
412
413static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
414{
415	i_size_write(&inode->vfs_inode, size);
416	inode->disk_i_size = size;
417}
418
419static inline bool btrfs_is_free_space_inode(const struct btrfs_inode *inode)
420{
421	return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags);
 
 
 
 
 
 
 
422}
423
424static inline bool is_data_inode(const struct btrfs_inode *inode)
425{
426	return btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID;
427}
428
429static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
430						 int mod)
431{
432	lockdep_assert_held(&inode->lock);
433	inode->outstanding_extents += mod;
434	if (btrfs_is_free_space_inode(inode))
435		return;
436	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
437						  mod, inode->outstanding_extents);
438}
439
440/*
441 * Called every time after doing a buffered, direct IO or memory mapped write.
442 *
443 * This is to ensure that if we write to a file that was previously fsynced in
444 * the current transaction, then try to fsync it again in the same transaction,
445 * we will know that there were changes in the file and that it needs to be
446 * logged.
447 */
448static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
449{
450	spin_lock(&inode->lock);
451	inode->last_sub_trans = inode->root->log_transid;
452	spin_unlock(&inode->lock);
453}
454
455/*
456 * Should be called while holding the inode's VFS lock in exclusive mode, or
457 * while holding the inode's mmap lock (struct btrfs_inode::i_mmap_lock) in
458 * either shared or exclusive mode, or in a context where no one else can access
459 * the inode concurrently (during inode creation or when loading an inode from
460 * disk).
461 */
462static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode)
463{
464	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
465	/*
466	 * The inode may have been part of a reflink operation in the last
467	 * transaction that modified it, and then a fsync has reset the
468	 * last_reflink_trans to avoid subsequent fsyncs in the same
469	 * transaction to do unnecessary work. So update last_reflink_trans
470	 * to the last_trans value (we have to be pessimistic and assume a
471	 * reflink happened).
472	 *
473	 * The ->last_trans is protected by the inode's spinlock and we can
474	 * have a concurrent ordered extent completion update it. Also set
475	 * last_reflink_trans to ->last_trans only if the former is less than
476	 * the later, because we can be called in a context where
477	 * last_reflink_trans was set to the current transaction generation
478	 * while ->last_trans was not yet updated in the current transaction,
479	 * and therefore has a lower value.
480	 */
481	spin_lock(&inode->lock);
482	if (inode->last_reflink_trans < inode->last_trans)
483		inode->last_reflink_trans = inode->last_trans;
484	spin_unlock(&inode->lock);
485}
486
487static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
488{
489	bool ret = false;
490
491	spin_lock(&inode->lock);
492	if (inode->logged_trans == generation &&
493	    inode->last_sub_trans <= inode->last_log_commit &&
494	    inode->last_sub_trans <= btrfs_get_root_last_log_commit(inode->root))
495		ret = true;
 
 
 
 
 
 
 
 
 
496	spin_unlock(&inode->lock);
497	return ret;
498}
499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500/*
501 * Check if the inode has flags compatible with compression
 
 
502 */
503static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode)
504{
505	if (inode->flags & BTRFS_INODE_NODATACOW ||
506	    inode->flags & BTRFS_INODE_NODATASUM)
507		return false;
508	return true;
509}
510
511static inline void btrfs_assert_inode_locked(struct btrfs_inode *inode)
512{
513	/* Immediately trigger a crash if the inode is not locked. */
514	ASSERT(inode_is_locked(&inode->vfs_inode));
515	/* Trigger a splat in dmesg if this task is not holding the lock. */
516	lockdep_assert_held(&inode->vfs_inode.i_rwsem);
517}
518
519/* Array of bytes with variable length, hexadecimal format 0x1234 */
520#define CSUM_FMT				"0x%*phN"
521#define CSUM_FMT_VALUE(size, bytes)		size, bytes
522
523int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
524			    u32 pgoff, u8 *csum, const u8 * const csum_expected);
525bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
526			u32 bio_offset, struct bio_vec *bv);
527noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
528			      struct btrfs_file_extent *file_extent,
529			      bool nowait, bool strict);
530
531void btrfs_del_delalloc_inode(struct btrfs_inode *inode);
532struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
533int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
534int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
535		       struct btrfs_inode *dir, struct btrfs_inode *inode,
536		       const struct fscrypt_str *name);
537int btrfs_add_link(struct btrfs_trans_handle *trans,
538		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
539		   const struct fscrypt_str *name, int add_backref, u64 index);
540int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry);
541int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
542			 int front);
543
544int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
545int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
546			       bool in_reclaim_context);
547int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
548			      unsigned int extra_bits,
549			      struct extent_state **cached_state);
550
551struct btrfs_new_inode_args {
552	/* Input */
553	struct inode *dir;
554	struct dentry *dentry;
555	struct inode *inode;
556	bool orphan;
557	bool subvol;
558
559	/* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */
560	struct posix_acl *default_acl;
561	struct posix_acl *acl;
562	struct fscrypt_name fname;
563};
564
565int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
566			    unsigned int *trans_num_items);
567int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
568			   struct btrfs_new_inode_args *args);
569void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
570struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
571				     struct inode *dir);
572 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
573			        u32 bits);
574void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
575				 struct extent_state *state, u32 bits);
576void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
577				 struct extent_state *other);
578void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
579				 struct extent_state *orig, u64 split);
580void btrfs_evict_inode(struct inode *inode);
581struct inode *btrfs_alloc_inode(struct super_block *sb);
582void btrfs_destroy_inode(struct inode *inode);
583void btrfs_free_inode(struct inode *inode);
584int btrfs_drop_inode(struct inode *inode);
585int __init btrfs_init_cachep(void);
586void __cold btrfs_destroy_cachep(void);
587struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
588			      struct btrfs_path *path);
589struct inode *btrfs_iget(u64 ino, struct btrfs_root *root);
590struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
591				    struct folio *folio, u64 start, u64 len);
592int btrfs_update_inode(struct btrfs_trans_handle *trans,
593		       struct btrfs_inode *inode);
594int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
595				struct btrfs_inode *inode);
596int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode);
597int btrfs_orphan_cleanup(struct btrfs_root *root);
598int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
599void btrfs_add_delayed_iput(struct btrfs_inode *inode);
600void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
601int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
602int btrfs_prealloc_file_range(struct inode *inode, int mode,
603			      u64 start, u64 num_bytes, u64 min_size,
604			      loff_t actual_len, u64 *alloc_hint);
605int btrfs_prealloc_file_range_trans(struct inode *inode,
606				    struct btrfs_trans_handle *trans, int mode,
607				    u64 start, u64 num_bytes, u64 min_size,
608				    loff_t actual_len, u64 *alloc_hint);
609int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
610			     u64 start, u64 end, struct writeback_control *wbc);
611int btrfs_writepage_cow_fixup(struct folio *folio);
612int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
613					     int compress_type);
614int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
615					  u64 disk_bytenr, u64 disk_io_size,
616					  struct page **pages, void *uring_ctx);
617ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
618			   struct btrfs_ioctl_encoded_io_args *encoded,
619			   struct extent_state **cached_state,
620			   u64 *disk_bytenr, u64 *disk_io_size);
621ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
622				   u64 start, u64 lockend,
623				   struct extent_state **cached_state,
624				   u64 disk_bytenr, u64 disk_io_size,
625				   size_t count, bool compressed, bool *unlocked);
626ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
627			       const struct btrfs_ioctl_encoded_io_args *encoded);
628
629struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino);
630
631extern const struct dentry_operations btrfs_dentry_operations;
632
633/* Inode locking type flags, by default the exclusive lock is taken. */
634enum btrfs_ilock_type {
635	ENUM_BIT(BTRFS_ILOCK_SHARED),
636	ENUM_BIT(BTRFS_ILOCK_TRY),
637	ENUM_BIT(BTRFS_ILOCK_MMAP),
638};
639
640int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags);
641void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags);
642void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes,
643			      const u64 del_bytes);
644void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
645u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
646				     u64 num_bytes);
647struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
648				      const struct btrfs_file_extent *file_extent,
649				      int type);
650
651#endif