Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_INODE_H
  7#define BTRFS_INODE_H
  8
  9#include <linux/hash.h>
 10#include "extent_map.h"
 11#include "extent_io.h"
 12#include "ordered-data.h"
 13#include "delayed-inode.h"
 14
 15/*
 16 * ordered_data_close is set by truncate when a file that used
 17 * to have good data has been truncated to zero.  When it is set
 18 * the btrfs file release call will add this inode to the
 19 * ordered operations list so that we make sure to flush out any
 20 * new data the application may have written before commit.
 21 */
 22enum {
 23	BTRFS_INODE_ORDERED_DATA_CLOSE,
 24	BTRFS_INODE_DUMMY,
 25	BTRFS_INODE_IN_DEFRAG,
 26	BTRFS_INODE_HAS_ASYNC_EXTENT,
 27	BTRFS_INODE_NEEDS_FULL_SYNC,
 28	BTRFS_INODE_COPY_EVERYTHING,
 29	BTRFS_INODE_IN_DELALLOC_LIST,
 30	BTRFS_INODE_READDIO_NEED_LOCK,
 31	BTRFS_INODE_HAS_PROPS,
 32	BTRFS_INODE_SNAPSHOT_FLUSH,
 33};
 34
 35/* in memory btrfs inode */
 36struct btrfs_inode {
 37	/* which subvolume this inode belongs to */
 38	struct btrfs_root *root;
 39
 40	/* key used to find this inode on disk.  This is used by the code
 41	 * to read in roots of subvolumes
 42	 */
 43	struct btrfs_key location;
 44
 45	/*
 46	 * Lock for counters and all fields used to determine if the inode is in
 47	 * the log or not (last_trans, last_sub_trans, last_log_commit,
 48	 * logged_trans).
 49	 */
 50	spinlock_t lock;
 51
 52	/* the extent_tree has caches of all the extent mappings to disk */
 53	struct extent_map_tree extent_tree;
 54
 55	/* the io_tree does range state (DIRTY, LOCKED etc) */
 56	struct extent_io_tree io_tree;
 57
 58	/* special utility tree used to record which mirrors have already been
 59	 * tried when checksums fail for a given block
 60	 */
 61	struct extent_io_tree io_failure_tree;
 62
 63	/* held while logging the inode in tree-log.c */
 64	struct mutex log_mutex;
 65
 66	/* held while doing delalloc reservations */
 67	struct mutex delalloc_mutex;
 68
 69	/* used to order data wrt metadata */
 70	struct btrfs_ordered_inode_tree ordered_tree;
 71
 72	/* list of all the delalloc inodes in the FS.  There are times we need
 73	 * to write all the delalloc pages to disk, and this list is used
 74	 * to walk them all.
 75	 */
 76	struct list_head delalloc_inodes;
 77
 78	/* node for the red-black tree that links inodes in subvolume root */
 79	struct rb_node rb_node;
 80
 81	unsigned long runtime_flags;
 82
 83	/* Keep track of who's O_SYNC/fsyncing currently */
 84	atomic_t sync_writers;
 85
 86	/* full 64 bit generation number, struct vfs_inode doesn't have a big
 87	 * enough field for this.
 88	 */
 89	u64 generation;
 90
 91	/*
 92	 * transid of the trans_handle that last modified this inode
 93	 */
 94	u64 last_trans;
 95
 96	/*
 97	 * transid that last logged this inode
 98	 */
 99	u64 logged_trans;
100
101	/*
102	 * log transid when this inode was last modified
103	 */
104	int last_sub_trans;
105
106	/* a local copy of root's last_log_commit */
107	int last_log_commit;
108
109	/* total number of bytes pending delalloc, used by stat to calc the
110	 * real block usage of the file
111	 */
112	u64 delalloc_bytes;
113
114	/*
115	 * Total number of bytes pending delalloc that fall within a file
116	 * range that is either a hole or beyond EOF (and no prealloc extent
117	 * exists in the range). This is always <= delalloc_bytes.
118	 */
119	u64 new_delalloc_bytes;
120
121	/*
122	 * total number of bytes pending defrag, used by stat to check whether
123	 * it needs COW.
124	 */
125	u64 defrag_bytes;
126
127	/*
128	 * the size of the file stored in the metadata on disk.  data=ordered
129	 * means the in-memory i_size might be larger than the size on disk
130	 * because not all the blocks are written yet.
131	 */
132	u64 disk_i_size;
133
134	/*
135	 * if this is a directory then index_cnt is the counter for the index
136	 * number for new files that are created
137	 */
138	u64 index_cnt;
139
140	/* Cache the directory index number to speed the dir/file remove */
141	u64 dir_index;
142
143	/* the fsync log has some corner cases that mean we have to check
144	 * directories to see if any unlinks have been done before
145	 * the directory was logged.  See tree-log.c for all the
146	 * details
147	 */
148	u64 last_unlink_trans;
149
150	/*
151	 * Number of bytes outstanding that are going to need csums.  This is
152	 * used in ENOSPC accounting.
153	 */
154	u64 csum_bytes;
155
156	/* flags field from the on disk inode */
157	u32 flags;
158
159	/*
160	 * Counters to keep track of the number of extent item's we may use due
161	 * to delalloc and such.  outstanding_extents is the number of extent
162	 * items we think we'll end up using, and reserved_extents is the number
163	 * of extent items we've reserved metadata for.
164	 */
165	unsigned outstanding_extents;
166
167	struct btrfs_block_rsv block_rsv;
168
169	/*
170	 * Cached values of inode properties
171	 */
172	unsigned prop_compress;		/* per-file compression algorithm */
173	/*
174	 * Force compression on the file using the defrag ioctl, could be
175	 * different from prop_compress and takes precedence if set
176	 */
177	unsigned defrag_compress;
178
179	struct btrfs_delayed_node *delayed_node;
180
181	/* File creation time. */
182	struct timespec64 i_otime;
183
184	/* Hook into fs_info->delayed_iputs */
185	struct list_head delayed_iput;
186
187	/*
188	 * To avoid races between lockless (i_mutex not held) direct IO writes
189	 * and concurrent fsync requests. Direct IO writes must acquire read
190	 * access on this semaphore for creating an extent map and its
191	 * corresponding ordered extent. The fast fsync path must acquire write
192	 * access on this semaphore before it collects ordered extents and
193	 * extent maps.
194	 */
195	struct rw_semaphore dio_sem;
196
197	struct inode vfs_inode;
198};
199
 
 
200static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
201{
202	return container_of(inode, struct btrfs_inode, vfs_inode);
203}
204
205static inline unsigned long btrfs_inode_hash(u64 objectid,
206					     const struct btrfs_root *root)
207{
208	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
209
210#if BITS_PER_LONG == 32
211	h = (h >> 32) ^ (h & 0xffffffff);
212#endif
213
214	return (unsigned long)h;
215}
216
217static inline void btrfs_insert_inode_hash(struct inode *inode)
218{
219	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
220
221	__insert_inode_hash(inode, h);
222}
223
224static inline u64 btrfs_ino(const struct btrfs_inode *inode)
225{
226	u64 ino = inode->location.objectid;
227
228	/*
229	 * !ino: btree_inode
230	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
231	 */
232	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
233		ino = inode->vfs_inode.i_ino;
234	return ino;
235}
236
237static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
238{
239	i_size_write(&inode->vfs_inode, size);
240	inode->disk_i_size = size;
241}
242
243static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
244{
245	struct btrfs_root *root = inode->root;
246
247	if (root == root->fs_info->tree_root &&
248	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
249		return true;
250	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
251		return true;
252	return false;
253}
254
255static inline bool is_data_inode(struct inode *inode)
256{
257	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
258}
259
260static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
261						 int mod)
262{
263	lockdep_assert_held(&inode->lock);
264	inode->outstanding_extents += mod;
265	if (btrfs_is_free_space_inode(inode))
266		return;
267	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
268						  mod);
269}
270
271static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
272{
273	int ret = 0;
274
275	spin_lock(&inode->lock);
276	if (inode->logged_trans == generation &&
277	    inode->last_sub_trans <= inode->last_log_commit &&
278	    inode->last_sub_trans <= inode->root->last_log_commit) {
279		/*
280		 * After a ranged fsync we might have left some extent maps
281		 * (that fall outside the fsync's range). So return false
282		 * here if the list isn't empty, to make sure btrfs_log_inode()
283		 * will be called and process those extent maps.
284		 */
285		smp_mb();
286		if (list_empty(&inode->extent_tree.modified_extents))
287			ret = 1;
288	}
289	spin_unlock(&inode->lock);
290	return ret;
291}
292
293#define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
294
295struct btrfs_dio_private {
296	struct inode *inode;
297	unsigned long flags;
298	u64 logical_offset;
299	u64 disk_bytenr;
300	u64 bytes;
301	void *private;
302
303	/* number of bios pending for this dio */
304	atomic_t pending_bios;
305
306	/* IO errors */
307	int errors;
308
309	/* orig_bio is our btrfs_io_bio */
310	struct bio *orig_bio;
311
312	/* dio_bio came from fs/direct-io.c */
313	struct bio *dio_bio;
314
315	/*
316	 * The original bio may be split to several sub-bios, this is
317	 * done during endio of sub-bios
318	 */
319	blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
320			blk_status_t);
321};
322
323/*
324 * Disable DIO read nolock optimization, so new dio readers will be forced
325 * to grab i_mutex. It is used to avoid the endless truncate due to
326 * nonlocked dio read.
327 */
328static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
329{
330	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
331	smp_mb();
332}
333
334static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
335{
336	smp_mb__before_atomic();
337	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
338}
339
340/* Array of bytes with variable length, hexadecimal format 0x1234 */
341#define CSUM_FMT				"0x%*phN"
342#define CSUM_FMT_VALUE(size, bytes)		size, bytes
343
344static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
345		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
346{
347	struct btrfs_root *root = inode->root;
348	struct btrfs_super_block *sb = root->fs_info->super_copy;
349	const u16 csum_size = btrfs_super_csum_size(sb);
350
351	/* Output minus objectid, which is more meaningful */
352	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
353		btrfs_warn_rl(root->fs_info,
354"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
355			root->root_key.objectid, btrfs_ino(inode),
356			logical_start,
357			CSUM_FMT_VALUE(csum_size, csum),
358			CSUM_FMT_VALUE(csum_size, csum_expected),
359			mirror_num);
360	else
361		btrfs_warn_rl(root->fs_info,
362"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
363			root->root_key.objectid, btrfs_ino(inode),
364			logical_start,
365			CSUM_FMT_VALUE(csum_size, csum),
366			CSUM_FMT_VALUE(csum_size, csum_expected),
367			mirror_num);
368}
369
370#endif
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_INODE_H
  7#define BTRFS_INODE_H
  8
  9#include <linux/hash.h>
 10#include "extent_map.h"
 11#include "extent_io.h"
 12#include "ordered-data.h"
 13#include "delayed-inode.h"
 14
 15/*
 16 * ordered_data_close is set by truncate when a file that used
 17 * to have good data has been truncated to zero.  When it is set
 18 * the btrfs file release call will add this inode to the
 19 * ordered operations list so that we make sure to flush out any
 20 * new data the application may have written before commit.
 21 */
 22#define BTRFS_INODE_ORDERED_DATA_CLOSE		0
 23#define BTRFS_INODE_ORPHAN_META_RESERVED	1
 24#define BTRFS_INODE_DUMMY			2
 25#define BTRFS_INODE_IN_DEFRAG			3
 26#define BTRFS_INODE_HAS_ORPHAN_ITEM		4
 27#define BTRFS_INODE_HAS_ASYNC_EXTENT		5
 28#define BTRFS_INODE_NEEDS_FULL_SYNC		6
 29#define BTRFS_INODE_COPY_EVERYTHING		7
 30#define BTRFS_INODE_IN_DELALLOC_LIST		8
 31#define BTRFS_INODE_READDIO_NEED_LOCK		9
 32#define BTRFS_INODE_HAS_PROPS		        10
 
 33
 34/* in memory btrfs inode */
 35struct btrfs_inode {
 36	/* which subvolume this inode belongs to */
 37	struct btrfs_root *root;
 38
 39	/* key used to find this inode on disk.  This is used by the code
 40	 * to read in roots of subvolumes
 41	 */
 42	struct btrfs_key location;
 43
 44	/*
 45	 * Lock for counters and all fields used to determine if the inode is in
 46	 * the log or not (last_trans, last_sub_trans, last_log_commit,
 47	 * logged_trans).
 48	 */
 49	spinlock_t lock;
 50
 51	/* the extent_tree has caches of all the extent mappings to disk */
 52	struct extent_map_tree extent_tree;
 53
 54	/* the io_tree does range state (DIRTY, LOCKED etc) */
 55	struct extent_io_tree io_tree;
 56
 57	/* special utility tree used to record which mirrors have already been
 58	 * tried when checksums fail for a given block
 59	 */
 60	struct extent_io_tree io_failure_tree;
 61
 62	/* held while logging the inode in tree-log.c */
 63	struct mutex log_mutex;
 64
 65	/* held while doing delalloc reservations */
 66	struct mutex delalloc_mutex;
 67
 68	/* used to order data wrt metadata */
 69	struct btrfs_ordered_inode_tree ordered_tree;
 70
 71	/* list of all the delalloc inodes in the FS.  There are times we need
 72	 * to write all the delalloc pages to disk, and this list is used
 73	 * to walk them all.
 74	 */
 75	struct list_head delalloc_inodes;
 76
 77	/* node for the red-black tree that links inodes in subvolume root */
 78	struct rb_node rb_node;
 79
 80	unsigned long runtime_flags;
 81
 82	/* Keep track of who's O_SYNC/fsyncing currently */
 83	atomic_t sync_writers;
 84
 85	/* full 64 bit generation number, struct vfs_inode doesn't have a big
 86	 * enough field for this.
 87	 */
 88	u64 generation;
 89
 90	/*
 91	 * transid of the trans_handle that last modified this inode
 92	 */
 93	u64 last_trans;
 94
 95	/*
 96	 * transid that last logged this inode
 97	 */
 98	u64 logged_trans;
 99
100	/*
101	 * log transid when this inode was last modified
102	 */
103	int last_sub_trans;
104
105	/* a local copy of root's last_log_commit */
106	int last_log_commit;
107
108	/* total number of bytes pending delalloc, used by stat to calc the
109	 * real block usage of the file
110	 */
111	u64 delalloc_bytes;
112
113	/*
114	 * Total number of bytes pending delalloc that fall within a file
115	 * range that is either a hole or beyond EOF (and no prealloc extent
116	 * exists in the range). This is always <= delalloc_bytes.
117	 */
118	u64 new_delalloc_bytes;
119
120	/*
121	 * total number of bytes pending defrag, used by stat to check whether
122	 * it needs COW.
123	 */
124	u64 defrag_bytes;
125
126	/*
127	 * the size of the file stored in the metadata on disk.  data=ordered
128	 * means the in-memory i_size might be larger than the size on disk
129	 * because not all the blocks are written yet.
130	 */
131	u64 disk_i_size;
132
133	/*
134	 * if this is a directory then index_cnt is the counter for the index
135	 * number for new files that are created
136	 */
137	u64 index_cnt;
138
139	/* Cache the directory index number to speed the dir/file remove */
140	u64 dir_index;
141
142	/* the fsync log has some corner cases that mean we have to check
143	 * directories to see if any unlinks have been done before
144	 * the directory was logged.  See tree-log.c for all the
145	 * details
146	 */
147	u64 last_unlink_trans;
148
149	/*
150	 * Number of bytes outstanding that are going to need csums.  This is
151	 * used in ENOSPC accounting.
152	 */
153	u64 csum_bytes;
154
155	/* flags field from the on disk inode */
156	u32 flags;
157
158	/*
159	 * Counters to keep track of the number of extent item's we may use due
160	 * to delalloc and such.  outstanding_extents is the number of extent
161	 * items we think we'll end up using, and reserved_extents is the number
162	 * of extent items we've reserved metadata for.
163	 */
164	unsigned outstanding_extents;
165
166	struct btrfs_block_rsv block_rsv;
167
168	/*
169	 * Cached values of inode properties
170	 */
171	unsigned prop_compress;		/* per-file compression algorithm */
172	/*
173	 * Force compression on the file using the defrag ioctl, could be
174	 * different from prop_compress and takes precedence if set
175	 */
176	unsigned defrag_compress;
177
178	struct btrfs_delayed_node *delayed_node;
179
180	/* File creation time. */
181	struct timespec i_otime;
182
183	/* Hook into fs_info->delayed_iputs */
184	struct list_head delayed_iput;
185
186	/*
187	 * To avoid races between lockless (i_mutex not held) direct IO writes
188	 * and concurrent fsync requests. Direct IO writes must acquire read
189	 * access on this semaphore for creating an extent map and its
190	 * corresponding ordered extent. The fast fsync path must acquire write
191	 * access on this semaphore before it collects ordered extents and
192	 * extent maps.
193	 */
194	struct rw_semaphore dio_sem;
195
196	struct inode vfs_inode;
197};
198
199extern unsigned char btrfs_filetype_table[];
200
201static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
202{
203	return container_of(inode, struct btrfs_inode, vfs_inode);
204}
205
206static inline unsigned long btrfs_inode_hash(u64 objectid,
207					     const struct btrfs_root *root)
208{
209	u64 h = objectid ^ (root->objectid * GOLDEN_RATIO_PRIME);
210
211#if BITS_PER_LONG == 32
212	h = (h >> 32) ^ (h & 0xffffffff);
213#endif
214
215	return (unsigned long)h;
216}
217
218static inline void btrfs_insert_inode_hash(struct inode *inode)
219{
220	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
221
222	__insert_inode_hash(inode, h);
223}
224
225static inline u64 btrfs_ino(const struct btrfs_inode *inode)
226{
227	u64 ino = inode->location.objectid;
228
229	/*
230	 * !ino: btree_inode
231	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
232	 */
233	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
234		ino = inode->vfs_inode.i_ino;
235	return ino;
236}
237
238static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
239{
240	i_size_write(&inode->vfs_inode, size);
241	inode->disk_i_size = size;
242}
243
244static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
245{
246	struct btrfs_root *root = inode->root;
247
248	if (root == root->fs_info->tree_root &&
249	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
250		return true;
251	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
252		return true;
253	return false;
254}
255
 
 
 
 
 
256static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
257						 int mod)
258{
259	lockdep_assert_held(&inode->lock);
260	inode->outstanding_extents += mod;
261	if (btrfs_is_free_space_inode(inode))
262		return;
263	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
264						  mod);
265}
266
267static inline int btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
268{
269	int ret = 0;
270
271	spin_lock(&inode->lock);
272	if (inode->logged_trans == generation &&
273	    inode->last_sub_trans <= inode->last_log_commit &&
274	    inode->last_sub_trans <= inode->root->last_log_commit) {
275		/*
276		 * After a ranged fsync we might have left some extent maps
277		 * (that fall outside the fsync's range). So return false
278		 * here if the list isn't empty, to make sure btrfs_log_inode()
279		 * will be called and process those extent maps.
280		 */
281		smp_mb();
282		if (list_empty(&inode->extent_tree.modified_extents))
283			ret = 1;
284	}
285	spin_unlock(&inode->lock);
286	return ret;
287}
288
289#define BTRFS_DIO_ORIG_BIO_SUBMITTED	0x1
290
291struct btrfs_dio_private {
292	struct inode *inode;
293	unsigned long flags;
294	u64 logical_offset;
295	u64 disk_bytenr;
296	u64 bytes;
297	void *private;
298
299	/* number of bios pending for this dio */
300	atomic_t pending_bios;
301
302	/* IO errors */
303	int errors;
304
305	/* orig_bio is our btrfs_io_bio */
306	struct bio *orig_bio;
307
308	/* dio_bio came from fs/direct-io.c */
309	struct bio *dio_bio;
310
311	/*
312	 * The original bio may be split to several sub-bios, this is
313	 * done during endio of sub-bios
314	 */
315	blk_status_t (*subio_endio)(struct inode *, struct btrfs_io_bio *,
316			blk_status_t);
317};
318
319/*
320 * Disable DIO read nolock optimization, so new dio readers will be forced
321 * to grab i_mutex. It is used to avoid the endless truncate due to
322 * nonlocked dio read.
323 */
324static inline void btrfs_inode_block_unlocked_dio(struct btrfs_inode *inode)
325{
326	set_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
327	smp_mb();
328}
329
330static inline void btrfs_inode_resume_unlocked_dio(struct btrfs_inode *inode)
331{
332	smp_mb__before_atomic();
333	clear_bit(BTRFS_INODE_READDIO_NEED_LOCK, &inode->runtime_flags);
334}
335
 
 
 
 
336static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
337		u64 logical_start, u32 csum, u32 csum_expected, int mirror_num)
338{
339	struct btrfs_root *root = inode->root;
 
 
340
341	/* Output minus objectid, which is more meaningful */
342	if (root->objectid >= BTRFS_LAST_FREE_OBJECTID)
343		btrfs_warn_rl(root->fs_info,
344	"csum failed root %lld ino %lld off %llu csum 0x%08x expected csum 0x%08x mirror %d",
345			root->objectid, btrfs_ino(inode),
346			logical_start, csum, csum_expected, mirror_num);
 
 
 
347	else
348		btrfs_warn_rl(root->fs_info,
349	"csum failed root %llu ino %llu off %llu csum 0x%08x expected csum 0x%08x mirror %d",
350			root->objectid, btrfs_ino(inode),
351			logical_start, csum, csum_expected, mirror_num);
 
 
 
352}
353
354#endif