Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
  10#include <linux/buffer_head.h>
  11#include <linux/workqueue.h>
  12#include <linux/kthread.h>
  13#include <linux/slab.h>
  14#include <linux/migrate.h>
  15#include <linux/ratelimit.h>
  16#include <linux/uuid.h>
  17#include <linux/semaphore.h>
  18#include <linux/error-injection.h>
  19#include <linux/crc32c.h>
  20#include <linux/sched/mm.h>
  21#include <asm/unaligned.h>
  22#include <crypto/hash.h>
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "btrfs_inode.h"
  27#include "volumes.h"
  28#include "print-tree.h"
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "free-space-cache.h"
  32#include "free-space-tree.h"
  33#include "inode-map.h"
  34#include "check-integrity.h"
  35#include "rcu-string.h"
  36#include "dev-replace.h"
  37#include "raid56.h"
  38#include "sysfs.h"
  39#include "qgroup.h"
  40#include "compression.h"
  41#include "tree-checker.h"
  42#include "ref-verify.h"
  43#include "block-group.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
  44
  45#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  46				 BTRFS_HEADER_FLAG_RELOC |\
  47				 BTRFS_SUPER_FLAG_ERROR |\
  48				 BTRFS_SUPER_FLAG_SEEDING |\
  49				 BTRFS_SUPER_FLAG_METADUMP |\
  50				 BTRFS_SUPER_FLAG_METADUMP_V2)
  51
  52static const struct extent_io_ops btree_extent_io_ops;
  53static void end_workqueue_fn(struct btrfs_work *work);
  54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  56				      struct btrfs_fs_info *fs_info);
  57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  59					struct extent_io_tree *dirty_pages,
  60					int mark);
  61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  62				       struct extent_io_tree *pinned_extents);
  63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  65
  66/*
  67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  68 * is complete.  This is used during reads to verify checksums, and it is used
  69 * by writes to insert metadata for new file extents after IO is complete.
  70 */
  71struct btrfs_end_io_wq {
  72	struct bio *bio;
  73	bio_end_io_t *end_io;
  74	void *private;
  75	struct btrfs_fs_info *info;
  76	blk_status_t status;
  77	enum btrfs_wq_endio_type metadata;
  78	struct btrfs_work work;
  79};
  80
  81static struct kmem_cache *btrfs_end_io_wq_cache;
  82
  83int __init btrfs_end_io_wq_init(void)
  84{
  85	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  86					sizeof(struct btrfs_end_io_wq),
  87					0,
  88					SLAB_MEM_SPREAD,
  89					NULL);
  90	if (!btrfs_end_io_wq_cache)
  91		return -ENOMEM;
  92	return 0;
  93}
  94
  95void __cold btrfs_end_io_wq_exit(void)
  96{
  97	kmem_cache_destroy(btrfs_end_io_wq_cache);
  98}
  99
 100/*
 101 * async submit bios are used to offload expensive checksumming
 102 * onto the worker threads.  They checksum file and metadata bios
 103 * just before they are sent down the IO stack.
 104 */
 105struct async_submit_bio {
 106	void *private_data;
 107	struct bio *bio;
 108	extent_submit_bio_start_t *submit_bio_start;
 109	int mirror_num;
 110	/*
 111	 * bio_offset is optional, can be used if the pages in the bio
 112	 * can't tell us where in the file the bio should go
 113	 */
 114	u64 bio_offset;
 115	struct btrfs_work work;
 116	blk_status_t status;
 117};
 118
 119/*
 120 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 121 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 122 * the level the eb occupies in the tree.
 123 *
 124 * Different roots are used for different purposes and may nest inside each
 125 * other and they require separate keysets.  As lockdep keys should be
 126 * static, assign keysets according to the purpose of the root as indicated
 127 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 128 * roots have separate keysets.
 129 *
 130 * Lock-nesting across peer nodes is always done with the immediate parent
 131 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 132 * subclass to avoid triggering lockdep warning in such cases.
 133 *
 134 * The key is set by the readpage_end_io_hook after the buffer has passed
 135 * csum validation but before the pages are unlocked.  It is also set by
 136 * btrfs_init_new_buffer on freshly allocated blocks.
 137 *
 138 * We also add a check to make sure the highest level of the tree is the
 139 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 140 * needs update as well.
 141 */
 142#ifdef CONFIG_DEBUG_LOCK_ALLOC
 143# if BTRFS_MAX_LEVEL != 8
 144#  error
 145# endif
 146
 147static struct btrfs_lockdep_keyset {
 148	u64			id;		/* root objectid */
 149	const char		*name_stem;	/* lock name stem */
 150	char			names[BTRFS_MAX_LEVEL + 1][20];
 151	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 152} btrfs_lockdep_keysets[] = {
 153	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 154	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 155	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 156	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 157	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 158	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 159	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 160	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 161	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 162	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 163	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 164	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 165	{ .id = 0,				.name_stem = "tree"	},
 166};
 167
 168void __init btrfs_init_lockdep(void)
 169{
 170	int i, j;
 171
 172	/* initialize lockdep class names */
 173	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 174		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 175
 176		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 177			snprintf(ks->names[j], sizeof(ks->names[j]),
 178				 "btrfs-%s-%02d", ks->name_stem, j);
 179	}
 180}
 181
 182void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 183				    int level)
 184{
 185	struct btrfs_lockdep_keyset *ks;
 186
 187	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 188
 189	/* find the matching keyset, id 0 is the default entry */
 190	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 191		if (ks->id == objectid)
 192			break;
 193
 194	lockdep_set_class_and_name(&eb->lock,
 195				   &ks->keys[level], ks->names[level]);
 196}
 197
 198#endif
 199
 200/*
 201 * extents on the btree inode are pretty simple, there's one extent
 202 * that covers the entire device
 203 */
 204struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 205		struct page *page, size_t pg_offset, u64 start, u64 len,
 206		int create)
 207{
 208	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 209	struct extent_map_tree *em_tree = &inode->extent_tree;
 210	struct extent_map *em;
 211	int ret;
 212
 213	read_lock(&em_tree->lock);
 214	em = lookup_extent_mapping(em_tree, start, len);
 215	if (em) {
 216		em->bdev = fs_info->fs_devices->latest_bdev;
 217		read_unlock(&em_tree->lock);
 218		goto out;
 219	}
 220	read_unlock(&em_tree->lock);
 221
 222	em = alloc_extent_map();
 223	if (!em) {
 224		em = ERR_PTR(-ENOMEM);
 225		goto out;
 226	}
 227	em->start = 0;
 228	em->len = (u64)-1;
 229	em->block_len = (u64)-1;
 230	em->block_start = 0;
 231	em->bdev = fs_info->fs_devices->latest_bdev;
 232
 233	write_lock(&em_tree->lock);
 234	ret = add_extent_mapping(em_tree, em, 0);
 235	if (ret == -EEXIST) {
 236		free_extent_map(em);
 237		em = lookup_extent_mapping(em_tree, start, len);
 238		if (!em)
 239			em = ERR_PTR(-EIO);
 240	} else if (ret) {
 241		free_extent_map(em);
 242		em = ERR_PTR(ret);
 243	}
 244	write_unlock(&em_tree->lock);
 245
 246out:
 247	return em;
 248}
 249
 250/*
 251 * Compute the csum of a btree block and store the result to provided buffer.
 252 *
 253 * Returns error if the extent buffer cannot be mapped.
 254 */
 255static int csum_tree_block(struct extent_buffer *buf, u8 *result)
 256{
 257	struct btrfs_fs_info *fs_info = buf->fs_info;
 
 
 258	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 259	unsigned long len;
 260	unsigned long cur_len;
 261	unsigned long offset = BTRFS_CSUM_SIZE;
 262	char *kaddr;
 263	unsigned long map_start;
 264	unsigned long map_len;
 265	int err;
 266
 267	shash->tfm = fs_info->csum_shash;
 268	crypto_shash_init(shash);
 269
 270	len = buf->len - offset;
 
 
 
 
 
 
 
 
 
 271
 272	while (len > 0) {
 273		/*
 274		 * Note: we don't need to check for the err == 1 case here, as
 275		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
 276		 * and 'min_len = 32' and the currently implemented mapping
 277		 * algorithm we cannot cross a page boundary.
 278		 */
 279		err = map_private_extent_buffer(buf, offset, 32,
 280					&kaddr, &map_start, &map_len);
 281		if (WARN_ON(err))
 282			return err;
 283		cur_len = min(len, map_len - (offset - map_start));
 284		crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
 285		len -= cur_len;
 286		offset += cur_len;
 287	}
 288	memset(result, 0, BTRFS_CSUM_SIZE);
 289
 290	crypto_shash_final(shash, result);
 291
 292	return 0;
 293}
 294
 295/*
 296 * we can't consider a given block up to date unless the transid of the
 297 * block matches the transid in the parent node's pointer.  This is how we
 298 * detect blocks that either didn't get written at all or got written
 299 * in the wrong place.
 300 */
 301static int verify_parent_transid(struct extent_io_tree *io_tree,
 302				 struct extent_buffer *eb, u64 parent_transid,
 303				 int atomic)
 304{
 305	struct extent_state *cached_state = NULL;
 306	int ret;
 307	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 308
 309	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 310		return 0;
 311
 312	if (atomic)
 313		return -EAGAIN;
 314
 315	if (need_lock) {
 316		btrfs_tree_read_lock(eb);
 317		btrfs_set_lock_blocking_read(eb);
 318	}
 319
 320	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 321			 &cached_state);
 322	if (extent_buffer_uptodate(eb) &&
 323	    btrfs_header_generation(eb) == parent_transid) {
 324		ret = 0;
 325		goto out;
 326	}
 327	btrfs_err_rl(eb->fs_info,
 328		"parent transid verify failed on %llu wanted %llu found %llu",
 329			eb->start,
 330			parent_transid, btrfs_header_generation(eb));
 331	ret = 1;
 332
 333	/*
 334	 * Things reading via commit roots that don't have normal protection,
 335	 * like send, can have a really old block in cache that may point at a
 336	 * block that has been freed and re-allocated.  So don't clear uptodate
 337	 * if we find an eb that is under IO (dirty/writeback) because we could
 338	 * end up reading in the stale data and then writing it back out and
 339	 * making everybody very sad.
 340	 */
 341	if (!extent_buffer_under_io(eb))
 342		clear_extent_buffer_uptodate(eb);
 343out:
 344	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 345			     &cached_state);
 346	if (need_lock)
 347		btrfs_tree_read_unlock_blocking(eb);
 348	return ret;
 349}
 350
 351static bool btrfs_supported_super_csum(u16 csum_type)
 352{
 353	switch (csum_type) {
 354	case BTRFS_CSUM_TYPE_CRC32:
 
 
 
 355		return true;
 356	default:
 357		return false;
 358	}
 359}
 360
 361/*
 362 * Return 0 if the superblock checksum type matches the checksum value of that
 363 * algorithm. Pass the raw disk superblock data.
 364 */
 365static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 366				  char *raw_disk_sb)
 367{
 368	struct btrfs_super_block *disk_sb =
 369		(struct btrfs_super_block *)raw_disk_sb;
 370	char result[BTRFS_CSUM_SIZE];
 371	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 372
 373	shash->tfm = fs_info->csum_shash;
 374	crypto_shash_init(shash);
 375
 376	/*
 377	 * The super_block structure does not span the whole
 378	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 379	 * filled with zeros and is included in the checksum.
 380	 */
 381	crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
 382			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 383	crypto_shash_final(shash, result);
 384
 385	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
 386		return 1;
 387
 388	return 0;
 389}
 390
 391int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 392			   struct btrfs_key *first_key, u64 parent_transid)
 393{
 394	struct btrfs_fs_info *fs_info = eb->fs_info;
 395	int found_level;
 396	struct btrfs_key found_key;
 397	int ret;
 398
 399	found_level = btrfs_header_level(eb);
 400	if (found_level != level) {
 401		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 402		     KERN_ERR "BTRFS: tree level check failed\n");
 403		btrfs_err(fs_info,
 404"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 405			  eb->start, level, found_level);
 406		return -EIO;
 407	}
 408
 409	if (!first_key)
 410		return 0;
 411
 412	/*
 413	 * For live tree block (new tree blocks in current transaction),
 414	 * we need proper lock context to avoid race, which is impossible here.
 415	 * So we only checks tree blocks which is read from disk, whose
 416	 * generation <= fs_info->last_trans_committed.
 417	 */
 418	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 419		return 0;
 420
 421	/* We have @first_key, so this @eb must have at least one item */
 422	if (btrfs_header_nritems(eb) == 0) {
 423		btrfs_err(fs_info,
 424		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 425			  eb->start);
 426		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 427		return -EUCLEAN;
 
 
 
 
 
 428	}
 429
 430	if (found_level)
 431		btrfs_node_key_to_cpu(eb, &found_key, 0);
 432	else
 433		btrfs_item_key_to_cpu(eb, &found_key, 0);
 434	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 435
 436	if (ret) {
 437		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 438		     KERN_ERR "BTRFS: tree first key check failed\n");
 439		btrfs_err(fs_info,
 440"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 441			  eb->start, parent_transid, first_key->objectid,
 442			  first_key->type, first_key->offset,
 443			  found_key.objectid, found_key.type,
 444			  found_key.offset);
 445	}
 446	return ret;
 447}
 448
 449/*
 450 * helper to read a given tree block, doing retries as required when
 451 * the checksums don't match and we have alternate mirrors to try.
 452 *
 453 * @parent_transid:	expected transid, skip check if 0
 454 * @level:		expected level, mandatory check
 455 * @first_key:		expected key of first slot, skip check if NULL
 456 */
 457static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 458					  u64 parent_transid, int level,
 459					  struct btrfs_key *first_key)
 460{
 461	struct btrfs_fs_info *fs_info = eb->fs_info;
 462	struct extent_io_tree *io_tree;
 463	int failed = 0;
 464	int ret;
 465	int num_copies = 0;
 466	int mirror_num = 0;
 467	int failed_mirror = 0;
 468
 469	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 
 470	while (1) {
 471		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 472		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 473		if (!ret) {
 474			if (verify_parent_transid(io_tree, eb,
 475						   parent_transid, 0))
 476				ret = -EIO;
 477			else if (btrfs_verify_level_key(eb, level,
 478						first_key, parent_transid))
 479				ret = -EUCLEAN;
 480			else
 481				break;
 482		}
 483
 484		num_copies = btrfs_num_copies(fs_info,
 485					      eb->start, eb->len);
 486		if (num_copies == 1)
 487			break;
 488
 489		if (!failed_mirror) {
 490			failed = 1;
 491			failed_mirror = eb->read_mirror;
 492		}
 493
 494		mirror_num++;
 495		if (mirror_num == failed_mirror)
 496			mirror_num++;
 497
 498		if (mirror_num > num_copies)
 499			break;
 500	}
 501
 502	if (failed && !ret && failed_mirror)
 503		btrfs_repair_eb_io_failure(eb, failed_mirror);
 504
 505	return ret;
 506}
 507
 508/*
 509 * checksum a dirty tree block before IO.  This has extra checks to make sure
 510 * we only fill in the checksum field in the first page of a multi-page block
 511 */
 512
 513static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 514{
 515	u64 start = page_offset(page);
 516	u64 found_start;
 
 
 517	u8 result[BTRFS_CSUM_SIZE];
 518	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 519	struct extent_buffer *eb;
 520	int ret;
 521
 522	eb = (struct extent_buffer *)page->private;
 523	if (page != eb->pages[0])
 524		return 0;
 
 
 525
 526	found_start = btrfs_header_bytenr(eb);
 527	/*
 528	 * Please do not consolidate these warnings into a single if.
 529	 * It is useful to know what went wrong.
 
 530	 */
 531	if (WARN_ON(found_start != start))
 532		return -EUCLEAN;
 533	if (WARN_ON(!PageUptodate(page)))
 534		return -EUCLEAN;
 535
 536	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 537			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 
 
 
 538
 539	if (csum_tree_block(eb, result))
 540		return -EINVAL;
 
 
 541
 542	if (btrfs_header_level(eb))
 543		ret = btrfs_check_node(eb);
 544	else
 545		ret = btrfs_check_leaf_full(eb);
 546
 547	if (ret < 0) {
 548		btrfs_err(fs_info,
 549		"block=%llu write time tree block corruption detected",
 550			  eb->start);
 551		return ret;
 552	}
 553	write_extent_buffer(eb, result, 0, csum_size);
 554
 555	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556}
 557
 558static int check_tree_block_fsid(struct extent_buffer *eb)
 559{
 560	struct btrfs_fs_info *fs_info = eb->fs_info;
 561	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 562	u8 fsid[BTRFS_FSID_SIZE];
 563	int ret = 1;
 564
 565	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 566	while (fs_devices) {
 567		u8 *metadata_uuid;
 568
 569		/*
 570		 * Checking the incompat flag is only valid for the current
 571		 * fs. For seed devices it's forbidden to have their uuid
 572		 * changed so reading ->fsid in this case is fine
 573		 */
 574		if (fs_devices == fs_info->fs_devices &&
 575		    btrfs_fs_incompat(fs_info, METADATA_UUID))
 576			metadata_uuid = fs_devices->metadata_uuid;
 577		else
 578			metadata_uuid = fs_devices->fsid;
 579
 580		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
 581			ret = 0;
 582			break;
 583		}
 584		fs_devices = fs_devices->seed;
 585	}
 586	return ret;
 587}
 588
 589static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 590				      u64 phy_offset, struct page *page,
 591				      u64 start, u64 end, int mirror)
 592{
 
 593	u64 found_start;
 594	int found_level;
 595	struct extent_buffer *eb;
 596	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 597	struct btrfs_fs_info *fs_info = root->fs_info;
 598	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 599	int ret = 0;
 600	u8 result[BTRFS_CSUM_SIZE];
 601	int reads_done;
 602
 603	if (!page->private)
 604		goto out;
 605
 606	eb = (struct extent_buffer *)page->private;
 607
 608	/* the pending IO might have been the only thing that kept this buffer
 609	 * in memory.  Make sure we have a ref for all this other checks
 610	 */
 611	extent_buffer_get(eb);
 612
 613	reads_done = atomic_dec_and_test(&eb->io_pages);
 614	if (!reads_done)
 615		goto err;
 616
 617	eb->read_mirror = mirror;
 618	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 619		ret = -EIO;
 620		goto err;
 621	}
 622
 623	found_start = btrfs_header_bytenr(eb);
 624	if (found_start != eb->start) {
 625		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 626			     eb->start, found_start);
 
 627		ret = -EIO;
 628		goto err;
 629	}
 630	if (check_tree_block_fsid(eb)) {
 631		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 632			     eb->start);
 633		ret = -EIO;
 634		goto err;
 635	}
 636	found_level = btrfs_header_level(eb);
 637	if (found_level >= BTRFS_MAX_LEVEL) {
 638		btrfs_err(fs_info, "bad tree block level %d on %llu",
 639			  (int)btrfs_header_level(eb), eb->start);
 
 640		ret = -EIO;
 641		goto err;
 642	}
 643
 644	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 645				       eb, found_level);
 646
 647	ret = csum_tree_block(eb, result);
 648	if (ret)
 649		goto err;
 650
 651	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
 652		u32 val;
 653		u32 found = 0;
 
 
 
 
 
 
 
 
 
 
 654
 655		memcpy(&found, result, csum_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656
 657		read_extent_buffer(eb, &val, 0, csum_size);
 658		btrfs_warn_rl(fs_info,
 659		"%s checksum verify failed on %llu wanted %x found %x level %d",
 660			      fs_info->sb->s_id, eb->start,
 661			      val, found, btrfs_header_level(eb));
 662		ret = -EUCLEAN;
 663		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 664	}
 665
 666	/*
 667	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 668	 * that we don't try and read the other copies of this block, just
 669	 * return -EIO.
 670	 */
 671	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 672		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 673		ret = -EIO;
 674	}
 675
 676	if (found_level > 0 && btrfs_check_node(eb))
 677		ret = -EIO;
 678
 679	if (!ret)
 680		set_extent_buffer_uptodate(eb);
 681	else
 682		btrfs_err(fs_info,
 683			  "block=%llu read time tree block corruption detected",
 684			  eb->start);
 685err:
 686	if (reads_done &&
 687	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 688		btree_readahead_hook(eb, ret);
 689
 690	if (ret) {
 691		/*
 692		 * our io error hook is going to dec the io pages
 693		 * again, we have to make sure it has something
 694		 * to decrement
 695		 */
 696		atomic_inc(&eb->io_pages);
 697		clear_extent_buffer_uptodate(eb);
 698	}
 699	free_extent_buffer(eb);
 700out:
 701	return ret;
 702}
 703
 704static void end_workqueue_bio(struct bio *bio)
 705{
 706	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 707	struct btrfs_fs_info *fs_info;
 708	struct btrfs_workqueue *wq;
 709	btrfs_work_func_t func;
 710
 711	fs_info = end_io_wq->info;
 712	end_io_wq->status = bio->bi_status;
 713
 714	if (bio_op(bio) == REQ_OP_WRITE) {
 715		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 716			wq = fs_info->endio_meta_write_workers;
 717			func = btrfs_endio_meta_write_helper;
 718		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 719			wq = fs_info->endio_freespace_worker;
 720			func = btrfs_freespace_write_helper;
 721		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 722			wq = fs_info->endio_raid56_workers;
 723			func = btrfs_endio_raid56_helper;
 724		} else {
 725			wq = fs_info->endio_write_workers;
 726			func = btrfs_endio_write_helper;
 727		}
 728	} else {
 729		if (unlikely(end_io_wq->metadata ==
 730			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 731			wq = fs_info->endio_repair_workers;
 732			func = btrfs_endio_repair_helper;
 733		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 734			wq = fs_info->endio_raid56_workers;
 735			func = btrfs_endio_raid56_helper;
 736		} else if (end_io_wq->metadata) {
 737			wq = fs_info->endio_meta_workers;
 738			func = btrfs_endio_meta_helper;
 739		} else {
 740			wq = fs_info->endio_workers;
 741			func = btrfs_endio_helper;
 742		}
 743	}
 744
 745	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 746	btrfs_queue_work(wq, &end_io_wq->work);
 747}
 748
 749blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 750			enum btrfs_wq_endio_type metadata)
 751{
 752	struct btrfs_end_io_wq *end_io_wq;
 753
 754	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 755	if (!end_io_wq)
 756		return BLK_STS_RESOURCE;
 757
 758	end_io_wq->private = bio->bi_private;
 759	end_io_wq->end_io = bio->bi_end_io;
 760	end_io_wq->info = info;
 761	end_io_wq->status = 0;
 762	end_io_wq->bio = bio;
 763	end_io_wq->metadata = metadata;
 764
 765	bio->bi_private = end_io_wq;
 766	bio->bi_end_io = end_workqueue_bio;
 767	return 0;
 768}
 769
 770static void run_one_async_start(struct btrfs_work *work)
 771{
 772	struct async_submit_bio *async;
 773	blk_status_t ret;
 774
 775	async = container_of(work, struct  async_submit_bio, work);
 776	ret = async->submit_bio_start(async->private_data, async->bio,
 777				      async->bio_offset);
 778	if (ret)
 779		async->status = ret;
 780}
 781
 782/*
 783 * In order to insert checksums into the metadata in large chunks, we wait
 784 * until bio submission time.   All the pages in the bio are checksummed and
 785 * sums are attached onto the ordered extent record.
 786 *
 787 * At IO completion time the csums attached on the ordered extent record are
 788 * inserted into the tree.
 789 */
 790static void run_one_async_done(struct btrfs_work *work)
 791{
 792	struct async_submit_bio *async;
 793	struct inode *inode;
 794	blk_status_t ret;
 795
 796	async = container_of(work, struct  async_submit_bio, work);
 797	inode = async->private_data;
 798
 799	/* If an error occurred we just want to clean up the bio and move on */
 800	if (async->status) {
 801		async->bio->bi_status = async->status;
 802		bio_endio(async->bio);
 803		return;
 804	}
 805
 806	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
 807			async->mirror_num, 1);
 808	if (ret) {
 809		async->bio->bi_status = ret;
 810		bio_endio(async->bio);
 811	}
 812}
 813
 814static void run_one_async_free(struct btrfs_work *work)
 815{
 816	struct async_submit_bio *async;
 817
 818	async = container_of(work, struct  async_submit_bio, work);
 819	kfree(async);
 820}
 821
 822blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 823				 int mirror_num, unsigned long bio_flags,
 824				 u64 bio_offset, void *private_data,
 825				 extent_submit_bio_start_t *submit_bio_start)
 826{
 827	struct async_submit_bio *async;
 828
 829	async = kmalloc(sizeof(*async), GFP_NOFS);
 830	if (!async)
 831		return BLK_STS_RESOURCE;
 832
 833	async->private_data = private_data;
 834	async->bio = bio;
 835	async->mirror_num = mirror_num;
 836	async->submit_bio_start = submit_bio_start;
 837
 838	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 839			run_one_async_done, run_one_async_free);
 840
 841	async->bio_offset = bio_offset;
 842
 843	async->status = 0;
 844
 845	if (op_is_sync(bio->bi_opf))
 846		btrfs_set_work_high_priority(&async->work);
 847
 848	btrfs_queue_work(fs_info->workers, &async->work);
 849	return 0;
 850}
 851
 852static blk_status_t btree_csum_one_bio(struct bio *bio)
 853{
 854	struct bio_vec *bvec;
 855	struct btrfs_root *root;
 856	int ret = 0;
 857	struct bvec_iter_all iter_all;
 858
 859	ASSERT(!bio_flagged(bio, BIO_CLONED));
 860	bio_for_each_segment_all(bvec, bio, iter_all) {
 861		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 862		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 863		if (ret)
 864			break;
 865	}
 866
 867	return errno_to_blk_status(ret);
 868}
 869
 870static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 871					     u64 bio_offset)
 872{
 873	/*
 874	 * when we're called for a write, we're already in the async
 875	 * submission context.  Just jump into btrfs_map_bio
 876	 */
 877	return btree_csum_one_bio(bio);
 878}
 879
 880static int check_async_write(struct btrfs_fs_info *fs_info,
 881			     struct btrfs_inode *bi)
 882{
 883	if (atomic_read(&bi->sync_writers))
 884		return 0;
 885	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 886		return 0;
 887	return 1;
 888}
 889
 890static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
 891					  int mirror_num,
 892					  unsigned long bio_flags)
 893{
 894	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 895	int async = check_async_write(fs_info, BTRFS_I(inode));
 896	blk_status_t ret;
 897
 898	if (bio_op(bio) != REQ_OP_WRITE) {
 899		/*
 900		 * called for a read, do the setup so that checksum validation
 901		 * can happen in the async kernel threads
 902		 */
 903		ret = btrfs_bio_wq_end_io(fs_info, bio,
 904					  BTRFS_WQ_ENDIO_METADATA);
 905		if (ret)
 906			goto out_w_error;
 907		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 908	} else if (!async) {
 909		ret = btree_csum_one_bio(bio);
 910		if (ret)
 911			goto out_w_error;
 912		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 913	} else {
 914		/*
 915		 * kthread helpers are used to submit writes so that
 916		 * checksumming can happen in parallel across all CPUs
 917		 */
 918		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 919					  0, inode, btree_submit_bio_start);
 920	}
 921
 922	if (ret)
 923		goto out_w_error;
 924	return 0;
 925
 926out_w_error:
 927	bio->bi_status = ret;
 928	bio_endio(bio);
 929	return ret;
 930}
 931
 932#ifdef CONFIG_MIGRATION
 933static int btree_migratepage(struct address_space *mapping,
 934			struct page *newpage, struct page *page,
 935			enum migrate_mode mode)
 936{
 937	/*
 938	 * we can't safely write a btree page from here,
 939	 * we haven't done the locking hook
 940	 */
 941	if (PageDirty(page))
 942		return -EAGAIN;
 943	/*
 944	 * Buffers may be managed in a filesystem specific way.
 945	 * We must have no buffers or drop them.
 946	 */
 947	if (page_has_private(page) &&
 948	    !try_to_release_page(page, GFP_KERNEL))
 949		return -EAGAIN;
 950	return migrate_page(mapping, newpage, page, mode);
 951}
 
 
 952#endif
 953
 954
 955static int btree_writepages(struct address_space *mapping,
 956			    struct writeback_control *wbc)
 957{
 958	struct btrfs_fs_info *fs_info;
 959	int ret;
 960
 961	if (wbc->sync_mode == WB_SYNC_NONE) {
 
 962
 963		if (wbc->for_kupdate)
 964			return 0;
 965
 966		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 967		/* this is a bit racy, but that's ok */
 968		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 969					     BTRFS_DIRTY_METADATA_THRESH,
 970					     fs_info->dirty_metadata_batch);
 971		if (ret < 0)
 972			return 0;
 973	}
 974	return btree_write_cache_pages(mapping, wbc);
 975}
 976
 977static int btree_readpage(struct file *file, struct page *page)
 978{
 979	struct extent_io_tree *tree;
 980	tree = &BTRFS_I(page->mapping->host)->io_tree;
 981	return extent_read_full_page(tree, page, btree_get_extent, 0);
 982}
 983
 984static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 985{
 986	if (PageWriteback(page) || PageDirty(page))
 987		return 0;
 988
 989	return try_release_extent_buffer(page);
 990}
 991
 992static void btree_invalidatepage(struct page *page, unsigned int offset,
 993				 unsigned int length)
 994{
 995	struct extent_io_tree *tree;
 996	tree = &BTRFS_I(page->mapping->host)->io_tree;
 997	extent_invalidatepage(tree, page, offset);
 998	btree_releasepage(page, GFP_NOFS);
 999	if (PagePrivate(page)) {
1000		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1001			   "page private not zero on page %llu",
1002			   (unsigned long long)page_offset(page));
1003		ClearPagePrivate(page);
1004		set_page_private(page, 0);
1005		put_page(page);
1006	}
1007}
1008
1009static int btree_set_page_dirty(struct page *page)
1010{
1011#ifdef DEBUG
 
 
 
 
 
 
1012	struct extent_buffer *eb;
 
 
1013
1014	BUG_ON(!PagePrivate(page));
1015	eb = (struct extent_buffer *)page->private;
1016	BUG_ON(!eb);
1017	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1018	BUG_ON(!atomic_read(&eb->refs));
1019	btrfs_assert_tree_locked(eb);
1020#endif
1021	return __set_page_dirty_nobuffers(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022}
 
 
 
1023
1024static const struct address_space_operations btree_aops = {
1025	.readpage	= btree_readpage,
1026	.writepages	= btree_writepages,
1027	.releasepage	= btree_releasepage,
1028	.invalidatepage = btree_invalidatepage,
1029#ifdef CONFIG_MIGRATION
1030	.migratepage	= btree_migratepage,
1031#endif
1032	.set_page_dirty = btree_set_page_dirty,
1033};
1034
1035void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1036{
1037	struct extent_buffer *buf = NULL;
1038	int ret;
1039
1040	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1041	if (IS_ERR(buf))
1042		return;
1043
1044	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1045	if (ret < 0)
1046		free_extent_buffer_stale(buf);
1047	else
1048		free_extent_buffer(buf);
1049}
1050
1051struct extent_buffer *btrfs_find_create_tree_block(
1052						struct btrfs_fs_info *fs_info,
1053						u64 bytenr)
 
1054{
1055	if (btrfs_is_testing(fs_info))
1056		return alloc_test_extent_buffer(fs_info, bytenr);
1057	return alloc_extent_buffer(fs_info, bytenr);
1058}
1059
1060/*
1061 * Read tree block at logical address @bytenr and do variant basic but critical
1062 * verification.
1063 *
1064 * @parent_transid:	expected transid of this tree block, skip check if 0
1065 * @level:		expected level, mandatory check
1066 * @first_key:		expected key in slot 0, skip check if NULL
1067 */
1068struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1069				      u64 parent_transid, int level,
1070				      struct btrfs_key *first_key)
1071{
1072	struct extent_buffer *buf = NULL;
1073	int ret;
1074
1075	buf = btrfs_find_create_tree_block(fs_info, bytenr);
 
 
 
1076	if (IS_ERR(buf))
1077		return buf;
1078
1079	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1080					     level, first_key);
1081	if (ret) {
1082		free_extent_buffer_stale(buf);
1083		return ERR_PTR(ret);
1084	}
1085	return buf;
1086
1087}
1088
1089void btrfs_clean_tree_block(struct extent_buffer *buf)
1090{
1091	struct btrfs_fs_info *fs_info = buf->fs_info;
1092	if (btrfs_header_generation(buf) ==
1093	    fs_info->running_transaction->transid) {
1094		btrfs_assert_tree_locked(buf);
1095
1096		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1097			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1098						 -buf->len,
1099						 fs_info->dirty_metadata_batch);
1100			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1101			btrfs_set_lock_blocking_write(buf);
1102			clear_extent_buffer_dirty(buf);
1103		}
1104	}
1105}
1106
1107static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1108{
1109	struct btrfs_subvolume_writers *writers;
1110	int ret;
1111
1112	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1113	if (!writers)
1114		return ERR_PTR(-ENOMEM);
1115
1116	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1117	if (ret < 0) {
1118		kfree(writers);
1119		return ERR_PTR(ret);
1120	}
1121
1122	init_waitqueue_head(&writers->wait);
1123	return writers;
1124}
1125
1126static void
1127btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1128{
1129	percpu_counter_destroy(&writers->counter);
1130	kfree(writers);
1131}
1132
1133static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1134			 u64 objectid)
1135{
1136	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
 
 
 
 
 
 
1137	root->node = NULL;
1138	root->commit_root = NULL;
1139	root->state = 0;
1140	root->orphan_cleanup_state = 0;
1141
1142	root->last_trans = 0;
1143	root->highest_objectid = 0;
1144	root->nr_delalloc_inodes = 0;
1145	root->nr_ordered_extents = 0;
1146	root->inode_tree = RB_ROOT;
1147	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1148	root->block_rsv = NULL;
 
1149
1150	INIT_LIST_HEAD(&root->dirty_list);
1151	INIT_LIST_HEAD(&root->root_list);
1152	INIT_LIST_HEAD(&root->delalloc_inodes);
1153	INIT_LIST_HEAD(&root->delalloc_root);
1154	INIT_LIST_HEAD(&root->ordered_extents);
1155	INIT_LIST_HEAD(&root->ordered_root);
1156	INIT_LIST_HEAD(&root->reloc_dirty_list);
1157	INIT_LIST_HEAD(&root->logged_list[0]);
1158	INIT_LIST_HEAD(&root->logged_list[1]);
1159	spin_lock_init(&root->inode_lock);
1160	spin_lock_init(&root->delalloc_lock);
1161	spin_lock_init(&root->ordered_extent_lock);
1162	spin_lock_init(&root->accounting_lock);
1163	spin_lock_init(&root->log_extents_lock[0]);
1164	spin_lock_init(&root->log_extents_lock[1]);
1165	spin_lock_init(&root->qgroup_meta_rsv_lock);
1166	mutex_init(&root->objectid_mutex);
1167	mutex_init(&root->log_mutex);
1168	mutex_init(&root->ordered_extent_mutex);
1169	mutex_init(&root->delalloc_mutex);
 
1170	init_waitqueue_head(&root->log_writer_wait);
1171	init_waitqueue_head(&root->log_commit_wait[0]);
1172	init_waitqueue_head(&root->log_commit_wait[1]);
1173	INIT_LIST_HEAD(&root->log_ctxs[0]);
1174	INIT_LIST_HEAD(&root->log_ctxs[1]);
1175	atomic_set(&root->log_commit[0], 0);
1176	atomic_set(&root->log_commit[1], 0);
1177	atomic_set(&root->log_writers, 0);
1178	atomic_set(&root->log_batch, 0);
1179	refcount_set(&root->refs, 1);
1180	atomic_set(&root->will_be_snapshotted, 0);
1181	atomic_set(&root->snapshot_force_cow, 0);
1182	atomic_set(&root->nr_swapfiles, 0);
1183	root->log_transid = 0;
1184	root->log_transid_committed = -1;
1185	root->last_log_commit = 0;
1186	if (!dummy)
1187		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1188				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1189
1190	memset(&root->root_key, 0, sizeof(root->root_key));
1191	memset(&root->root_item, 0, sizeof(root->root_item));
1192	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1193	if (!dummy)
1194		root->defrag_trans_start = fs_info->generation;
1195	else
1196		root->defrag_trans_start = 0;
1197	root->root_key.objectid = objectid;
1198	root->anon_dev = 0;
 
 
 
 
 
 
1199
1200	spin_lock_init(&root->root_item_lock);
1201	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
 
 
 
 
 
 
1202}
1203
1204static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1205		gfp_t flags)
1206{
1207	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1208	if (root)
1209		root->fs_info = fs_info;
1210	return root;
1211}
1212
1213#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1214/* Should only be used by the testing infrastructure */
1215struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1216{
1217	struct btrfs_root *root;
1218
1219	if (!fs_info)
1220		return ERR_PTR(-EINVAL);
1221
1222	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1223	if (!root)
1224		return ERR_PTR(-ENOMEM);
1225
1226	/* We don't use the stripesize in selftest, set it as sectorsize */
1227	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1228	root->alloc_bytenr = 0;
1229
1230	return root;
1231}
1232#endif
1233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1235				     u64 objectid)
1236{
1237	struct btrfs_fs_info *fs_info = trans->fs_info;
1238	struct extent_buffer *leaf;
1239	struct btrfs_root *tree_root = fs_info->tree_root;
1240	struct btrfs_root *root;
1241	struct btrfs_key key;
1242	unsigned int nofs_flag;
1243	int ret = 0;
1244	uuid_le uuid = NULL_UUID_LE;
1245
1246	/*
1247	 * We're holding a transaction handle, so use a NOFS memory allocation
1248	 * context to avoid deadlock if reclaim happens.
1249	 */
1250	nofs_flag = memalloc_nofs_save();
1251	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1252	memalloc_nofs_restore(nofs_flag);
1253	if (!root)
1254		return ERR_PTR(-ENOMEM);
1255
1256	__setup_root(root, fs_info, objectid);
1257	root->root_key.objectid = objectid;
1258	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1259	root->root_key.offset = 0;
1260
1261	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
 
1262	if (IS_ERR(leaf)) {
1263		ret = PTR_ERR(leaf);
1264		leaf = NULL;
1265		goto fail;
1266	}
1267
1268	root->node = leaf;
1269	btrfs_mark_buffer_dirty(leaf);
1270
1271	root->commit_root = btrfs_root_node(root);
1272	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1273
1274	root->root_item.flags = 0;
1275	root->root_item.byte_limit = 0;
1276	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1277	btrfs_set_root_generation(&root->root_item, trans->transid);
1278	btrfs_set_root_level(&root->root_item, 0);
1279	btrfs_set_root_refs(&root->root_item, 1);
1280	btrfs_set_root_used(&root->root_item, leaf->len);
1281	btrfs_set_root_last_snapshot(&root->root_item, 0);
1282	btrfs_set_root_dirid(&root->root_item, 0);
1283	if (is_fstree(objectid))
1284		uuid_le_gen(&uuid);
1285	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1286	root->root_item.drop_level = 0;
 
 
 
1287
1288	key.objectid = objectid;
1289	key.type = BTRFS_ROOT_ITEM_KEY;
1290	key.offset = 0;
1291	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292	if (ret)
1293		goto fail;
1294
1295	btrfs_tree_unlock(leaf);
1296
1297	return root;
1298
1299fail:
1300	if (leaf) {
1301		btrfs_tree_unlock(leaf);
1302		free_extent_buffer(root->commit_root);
1303		free_extent_buffer(leaf);
1304	}
1305	kfree(root);
1306
1307	return ERR_PTR(ret);
1308}
1309
1310static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1311					 struct btrfs_fs_info *fs_info)
1312{
1313	struct btrfs_root *root;
1314	struct extent_buffer *leaf;
1315
1316	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1317	if (!root)
1318		return ERR_PTR(-ENOMEM);
1319
1320	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1321
1322	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1323	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1324	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1325
 
 
 
 
 
 
 
 
1326	/*
1327	 * DON'T set REF_COWS for log trees
 
 
 
1328	 *
1329	 * log trees do not get reference counted because they go away
1330	 * before a real commit is actually done.  They do store pointers
1331	 * to file data extents, and those reference counts still get
1332	 * updated (along with back refs to the log tree).
1333	 */
1334
1335	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1336			NULL, 0, 0, 0);
1337	if (IS_ERR(leaf)) {
1338		kfree(root);
1339		return ERR_CAST(leaf);
1340	}
1341
1342	root->node = leaf;
1343
1344	btrfs_mark_buffer_dirty(root->node);
1345	btrfs_tree_unlock(root->node);
1346	return root;
 
1347}
1348
1349int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1350			     struct btrfs_fs_info *fs_info)
1351{
1352	struct btrfs_root *log_root;
1353
1354	log_root = alloc_log_tree(trans, fs_info);
1355	if (IS_ERR(log_root))
1356		return PTR_ERR(log_root);
 
 
 
 
 
 
 
 
 
 
1357	WARN_ON(fs_info->log_root_tree);
1358	fs_info->log_root_tree = log_root;
1359	return 0;
1360}
1361
1362int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1363		       struct btrfs_root *root)
1364{
1365	struct btrfs_fs_info *fs_info = root->fs_info;
1366	struct btrfs_root *log_root;
1367	struct btrfs_inode_item *inode_item;
 
1368
1369	log_root = alloc_log_tree(trans, fs_info);
1370	if (IS_ERR(log_root))
1371		return PTR_ERR(log_root);
1372
1373	log_root->last_trans = trans->transid;
1374	log_root->root_key.offset = root->root_key.objectid;
 
 
 
 
 
 
1375
1376	inode_item = &log_root->root_item.inode;
1377	btrfs_set_stack_inode_generation(inode_item, 1);
1378	btrfs_set_stack_inode_size(inode_item, 3);
1379	btrfs_set_stack_inode_nlink(inode_item, 1);
1380	btrfs_set_stack_inode_nbytes(inode_item,
1381				     fs_info->nodesize);
1382	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1383
1384	btrfs_set_root_node(&log_root->root_item, log_root->node);
1385
1386	WARN_ON(root->log_root);
1387	root->log_root = log_root;
1388	root->log_transid = 0;
1389	root->log_transid_committed = -1;
1390	root->last_log_commit = 0;
1391	return 0;
1392}
1393
1394static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1395					       struct btrfs_key *key)
 
1396{
1397	struct btrfs_root *root;
 
1398	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1399	struct btrfs_path *path;
1400	u64 generation;
1401	int ret;
1402	int level;
1403
1404	path = btrfs_alloc_path();
1405	if (!path)
1406		return ERR_PTR(-ENOMEM);
1407
1408	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1409	if (!root) {
1410		ret = -ENOMEM;
1411		goto alloc_fail;
1412	}
1413
1414	__setup_root(root, fs_info, key->objectid);
1415
1416	ret = btrfs_find_root(tree_root, key, path,
1417			      &root->root_item, &root->root_key);
1418	if (ret) {
1419		if (ret > 0)
1420			ret = -ENOENT;
1421		goto find_fail;
1422	}
1423
1424	generation = btrfs_root_generation(&root->root_item);
1425	level = btrfs_root_level(&root->root_item);
1426	root->node = read_tree_block(fs_info,
1427				     btrfs_root_bytenr(&root->root_item),
1428				     generation, level, NULL);
 
 
1429	if (IS_ERR(root->node)) {
1430		ret = PTR_ERR(root->node);
1431		goto find_fail;
1432	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
 
 
1433		ret = -EIO;
1434		free_extent_buffer(root->node);
1435		goto find_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436	}
1437	root->commit_root = btrfs_root_node(root);
1438out:
1439	btrfs_free_path(path);
1440	return root;
1441
1442find_fail:
1443	kfree(root);
1444alloc_fail:
1445	root = ERR_PTR(ret);
1446	goto out;
1447}
1448
1449struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1450				      struct btrfs_key *location)
1451{
1452	struct btrfs_root *root;
 
1453
1454	root = btrfs_read_tree_root(tree_root, location);
1455	if (IS_ERR(root))
1456		return root;
1457
1458	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1459		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1460		btrfs_check_and_init_root_item(&root->root_item);
1461	}
1462
1463	return root;
1464}
1465
1466int btrfs_init_fs_root(struct btrfs_root *root)
 
 
 
 
 
1467{
1468	int ret;
1469	struct btrfs_subvolume_writers *writers;
1470
1471	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1472	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1473					GFP_NOFS);
1474	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1475		ret = -ENOMEM;
1476		goto fail;
1477	}
1478
1479	writers = btrfs_alloc_subvolume_writers();
1480	if (IS_ERR(writers)) {
1481		ret = PTR_ERR(writers);
1482		goto fail;
 
1483	}
1484	root->subv_writers = writers;
1485
1486	btrfs_init_free_ino_ctl(root);
1487	spin_lock_init(&root->ino_cache_lock);
1488	init_waitqueue_head(&root->ino_cache_wait);
1489
1490	ret = get_anon_bdev(&root->anon_dev);
1491	if (ret)
1492		goto fail;
 
 
 
 
 
 
 
1493
1494	mutex_lock(&root->objectid_mutex);
1495	ret = btrfs_find_highest_objectid(root,
1496					&root->highest_objectid);
1497	if (ret) {
1498		mutex_unlock(&root->objectid_mutex);
1499		goto fail;
1500	}
1501
1502	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1503
1504	mutex_unlock(&root->objectid_mutex);
1505
1506	return 0;
1507fail:
1508	/* The caller is responsible to call btrfs_free_fs_root */
1509	return ret;
1510}
1511
1512struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1513					u64 root_id)
1514{
1515	struct btrfs_root *root;
1516
1517	spin_lock(&fs_info->fs_roots_radix_lock);
1518	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1519				 (unsigned long)root_id);
 
1520	spin_unlock(&fs_info->fs_roots_radix_lock);
1521	return root;
1522}
1523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1525			 struct btrfs_root *root)
1526{
1527	int ret;
1528
1529	ret = radix_tree_preload(GFP_NOFS);
1530	if (ret)
1531		return ret;
1532
1533	spin_lock(&fs_info->fs_roots_radix_lock);
1534	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1535				(unsigned long)root->root_key.objectid,
1536				root);
1537	if (ret == 0)
 
1538		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
 
1539	spin_unlock(&fs_info->fs_roots_radix_lock);
1540	radix_tree_preload_end();
1541
1542	return ret;
1543}
1544
1545struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1546				     struct btrfs_key *location,
1547				     bool check_ref)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548{
1549	struct btrfs_root *root;
1550	struct btrfs_path *path;
1551	struct btrfs_key key;
1552	int ret;
1553
1554	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1555		return fs_info->tree_root;
1556	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1557		return fs_info->extent_root;
1558	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1559		return fs_info->chunk_root;
1560	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1561		return fs_info->dev_root;
1562	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1563		return fs_info->csum_root;
1564	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1565		return fs_info->quota_root ? fs_info->quota_root :
1566					     ERR_PTR(-ENOENT);
1567	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1568		return fs_info->uuid_root ? fs_info->uuid_root :
1569					    ERR_PTR(-ENOENT);
1570	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1571		return fs_info->free_space_root ? fs_info->free_space_root :
1572						  ERR_PTR(-ENOENT);
1573again:
1574	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1575	if (root) {
1576		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
1577			return ERR_PTR(-ENOENT);
 
1578		return root;
1579	}
1580
1581	root = btrfs_read_fs_root(fs_info->tree_root, location);
 
 
 
1582	if (IS_ERR(root))
1583		return root;
1584
1585	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1586		ret = -ENOENT;
1587		goto fail;
1588	}
1589
1590	ret = btrfs_init_fs_root(root);
1591	if (ret)
1592		goto fail;
1593
1594	path = btrfs_alloc_path();
1595	if (!path) {
1596		ret = -ENOMEM;
1597		goto fail;
1598	}
1599	key.objectid = BTRFS_ORPHAN_OBJECTID;
1600	key.type = BTRFS_ORPHAN_ITEM_KEY;
1601	key.offset = location->objectid;
1602
1603	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1604	btrfs_free_path(path);
1605	if (ret < 0)
1606		goto fail;
1607	if (ret == 0)
1608		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1609
1610	ret = btrfs_insert_fs_root(fs_info, root);
1611	if (ret) {
1612		if (ret == -EEXIST) {
1613			btrfs_free_fs_root(root);
1614			goto again;
1615		}
1616		goto fail;
1617	}
1618	return root;
1619fail:
1620	btrfs_free_fs_root(root);
 
 
 
 
 
 
 
 
1621	return ERR_PTR(ret);
1622}
1623
1624static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
1625{
1626	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627	int ret = 0;
1628	struct btrfs_device *device;
1629	struct backing_dev_info *bdi;
1630
1631	rcu_read_lock();
1632	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1633		if (!device->bdev)
1634			continue;
1635		bdi = device->bdev->bd_bdi;
1636		if (bdi_congested(bdi, bdi_bits)) {
1637			ret = 1;
1638			break;
1639		}
1640	}
1641	rcu_read_unlock();
1642	return ret;
1643}
1644
1645/*
1646 * called by the kthread helper functions to finally call the bio end_io
1647 * functions.  This is where read checksum verification actually happens
 
 
 
 
 
 
 
 
 
 
 
1648 */
1649static void end_workqueue_fn(struct btrfs_work *work)
 
 
1650{
1651	struct bio *bio;
1652	struct btrfs_end_io_wq *end_io_wq;
 
 
1653
1654	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1655	bio = end_io_wq->bio;
 
 
 
 
 
 
 
1656
1657	bio->bi_status = end_io_wq->status;
1658	bio->bi_private = end_io_wq->private;
1659	bio->bi_end_io = end_io_wq->end_io;
1660	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1661	bio_endio(bio);
 
 
 
 
 
 
1662}
1663
1664static int cleaner_kthread(void *arg)
1665{
1666	struct btrfs_root *root = arg;
1667	struct btrfs_fs_info *fs_info = root->fs_info;
1668	int again;
1669
1670	while (1) {
1671		again = 0;
1672
1673		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1674
1675		/* Make the cleaner go to sleep early. */
1676		if (btrfs_need_cleaner_sleep(fs_info))
1677			goto sleep;
1678
1679		/*
1680		 * Do not do anything if we might cause open_ctree() to block
1681		 * before we have finished mounting the filesystem.
1682		 */
1683		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1684			goto sleep;
1685
1686		if (!mutex_trylock(&fs_info->cleaner_mutex))
1687			goto sleep;
1688
1689		/*
1690		 * Avoid the problem that we change the status of the fs
1691		 * during the above check and trylock.
1692		 */
1693		if (btrfs_need_cleaner_sleep(fs_info)) {
1694			mutex_unlock(&fs_info->cleaner_mutex);
1695			goto sleep;
1696		}
1697
 
 
 
1698		btrfs_run_delayed_iputs(fs_info);
1699
1700		again = btrfs_clean_one_deleted_snapshot(root);
1701		mutex_unlock(&fs_info->cleaner_mutex);
1702
1703		/*
1704		 * The defragger has dealt with the R/O remount and umount,
1705		 * needn't do anything special here.
1706		 */
1707		btrfs_run_defrag_inodes(fs_info);
1708
1709		/*
1710		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711		 * with relocation (btrfs_relocate_chunk) and relocation
1712		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715		 * unused block groups.
1716		 */
1717		btrfs_delete_unused_bgs(fs_info);
 
 
 
 
 
 
 
1718sleep:
1719		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1720		if (kthread_should_park())
1721			kthread_parkme();
1722		if (kthread_should_stop())
1723			return 0;
1724		if (!again) {
1725			set_current_state(TASK_INTERRUPTIBLE);
1726			schedule();
1727			__set_current_state(TASK_RUNNING);
1728		}
1729	}
1730}
1731
1732static int transaction_kthread(void *arg)
1733{
1734	struct btrfs_root *root = arg;
1735	struct btrfs_fs_info *fs_info = root->fs_info;
1736	struct btrfs_trans_handle *trans;
1737	struct btrfs_transaction *cur;
1738	u64 transid;
1739	time64_t now;
1740	unsigned long delay;
1741	bool cannot_commit;
1742
1743	do {
1744		cannot_commit = false;
1745		delay = HZ * fs_info->commit_interval;
1746		mutex_lock(&fs_info->transaction_kthread_mutex);
1747
1748		spin_lock(&fs_info->trans_lock);
1749		cur = fs_info->running_transaction;
1750		if (!cur) {
1751			spin_unlock(&fs_info->trans_lock);
1752			goto sleep;
1753		}
1754
1755		now = ktime_get_seconds();
1756		if (cur->state < TRANS_STATE_BLOCKED &&
1757		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1758		    (now < cur->start_time ||
1759		     now - cur->start_time < fs_info->commit_interval)) {
1760			spin_unlock(&fs_info->trans_lock);
1761			delay = HZ * 5;
 
 
1762			goto sleep;
1763		}
1764		transid = cur->transid;
1765		spin_unlock(&fs_info->trans_lock);
1766
1767		/* If the file system is aborted, this will always fail. */
1768		trans = btrfs_attach_transaction(root);
1769		if (IS_ERR(trans)) {
1770			if (PTR_ERR(trans) != -ENOENT)
1771				cannot_commit = true;
1772			goto sleep;
1773		}
1774		if (transid == trans->transid) {
1775			btrfs_commit_transaction(trans);
1776		} else {
1777			btrfs_end_transaction(trans);
1778		}
1779sleep:
1780		wake_up_process(fs_info->cleaner_kthread);
1781		mutex_unlock(&fs_info->transaction_kthread_mutex);
1782
1783		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1784				      &fs_info->fs_state)))
1785			btrfs_cleanup_transaction(fs_info);
1786		if (!kthread_should_stop() &&
1787				(!btrfs_transaction_blocked(fs_info) ||
1788				 cannot_commit))
1789			schedule_timeout_interruptible(delay);
1790	} while (!kthread_should_stop());
1791	return 0;
1792}
1793
1794/*
1795 * this will find the highest generation in the array of
1796 * root backups.  The index of the highest array is returned,
1797 * or -1 if we can't find anything.
1798 *
1799 * We check to make sure the array is valid by comparing the
1800 * generation of the latest  root in the array with the generation
1801 * in the super block.  If they don't match we pitch it.
1802 */
1803static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804{
 
1805	u64 cur;
1806	int newest_index = -1;
1807	struct btrfs_root_backup *root_backup;
1808	int i;
1809
1810	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811		root_backup = info->super_copy->super_roots + i;
1812		cur = btrfs_backup_tree_root_gen(root_backup);
1813		if (cur == newest_gen)
1814			newest_index = i;
1815	}
1816
1817	/* check to see if we actually wrapped around */
1818	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819		root_backup = info->super_copy->super_roots;
1820		cur = btrfs_backup_tree_root_gen(root_backup);
1821		if (cur == newest_gen)
1822			newest_index = 0;
1823	}
1824	return newest_index;
1825}
1826
1827
1828/*
1829 * find the oldest backup so we know where to store new entries
1830 * in the backup array.  This will set the backup_root_index
1831 * field in the fs_info struct
1832 */
1833static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834				     u64 newest_gen)
1835{
1836	int newest_index = -1;
1837
1838	newest_index = find_newest_super_backup(info, newest_gen);
1839	/* if there was garbage in there, just move along */
1840	if (newest_index == -1) {
1841		info->backup_root_index = 0;
1842	} else {
1843		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844	}
1845}
1846
1847/*
1848 * copy all the root pointers into the super backup array.
1849 * this will bump the backup pointer by one when it is
1850 * done
1851 */
1852static void backup_super_roots(struct btrfs_fs_info *info)
1853{
1854	int next_backup;
1855	struct btrfs_root_backup *root_backup;
1856	int last_backup;
1857
1858	next_backup = info->backup_root_index;
1859	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860		BTRFS_NUM_BACKUP_ROOTS;
1861
1862	/*
1863	 * just overwrite the last backup if we're at the same generation
1864	 * this happens only at umount
1865	 */
1866	root_backup = info->super_for_commit->super_roots + last_backup;
1867	if (btrfs_backup_tree_root_gen(root_backup) ==
1868	    btrfs_header_generation(info->tree_root->node))
1869		next_backup = last_backup;
1870
1871	root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873	/*
1874	 * make sure all of our padding and empty slots get zero filled
1875	 * regardless of which ones we use today
1876	 */
1877	memset(root_backup, 0, sizeof(*root_backup));
1878
1879	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882	btrfs_set_backup_tree_root_gen(root_backup,
1883			       btrfs_header_generation(info->tree_root->node));
1884
1885	btrfs_set_backup_tree_root_level(root_backup,
1886			       btrfs_header_level(info->tree_root->node));
1887
1888	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889	btrfs_set_backup_chunk_root_gen(root_backup,
1890			       btrfs_header_generation(info->chunk_root->node));
1891	btrfs_set_backup_chunk_root_level(root_backup,
1892			       btrfs_header_level(info->chunk_root->node));
1893
1894	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895	btrfs_set_backup_extent_root_gen(root_backup,
1896			       btrfs_header_generation(info->extent_root->node));
1897	btrfs_set_backup_extent_root_level(root_backup,
1898			       btrfs_header_level(info->extent_root->node));
 
 
 
 
 
 
 
 
 
 
 
 
1899
1900	/*
1901	 * we might commit during log recovery, which happens before we set
1902	 * the fs_root.  Make sure it is valid before we fill it in.
1903	 */
1904	if (info->fs_root && info->fs_root->node) {
1905		btrfs_set_backup_fs_root(root_backup,
1906					 info->fs_root->node->start);
1907		btrfs_set_backup_fs_root_gen(root_backup,
1908			       btrfs_header_generation(info->fs_root->node));
1909		btrfs_set_backup_fs_root_level(root_backup,
1910			       btrfs_header_level(info->fs_root->node));
1911	}
1912
1913	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914	btrfs_set_backup_dev_root_gen(root_backup,
1915			       btrfs_header_generation(info->dev_root->node));
1916	btrfs_set_backup_dev_root_level(root_backup,
1917				       btrfs_header_level(info->dev_root->node));
1918
1919	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920	btrfs_set_backup_csum_root_gen(root_backup,
1921			       btrfs_header_generation(info->csum_root->node));
1922	btrfs_set_backup_csum_root_level(root_backup,
1923			       btrfs_header_level(info->csum_root->node));
1924
1925	btrfs_set_backup_total_bytes(root_backup,
1926			     btrfs_super_total_bytes(info->super_copy));
1927	btrfs_set_backup_bytes_used(root_backup,
1928			     btrfs_super_bytes_used(info->super_copy));
1929	btrfs_set_backup_num_devices(root_backup,
1930			     btrfs_super_num_devices(info->super_copy));
1931
1932	/*
1933	 * if we don't copy this out to the super_copy, it won't get remembered
1934	 * for the next commit
1935	 */
1936	memcpy(&info->super_copy->super_roots,
1937	       &info->super_for_commit->super_roots,
1938	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939}
1940
1941/*
1942 * this copies info out of the root backup array and back into
1943 * the in-memory super block.  It is meant to help iterate through
1944 * the array, so you send it the number of backups you've already
1945 * tried and the last backup index you used.
1946 *
1947 * this returns -1 when it has tried all the backups
 
 
 
1948 */
1949static noinline int next_root_backup(struct btrfs_fs_info *info,
1950				     struct btrfs_super_block *super,
1951				     int *num_backups_tried, int *backup_index)
1952{
 
 
1953	struct btrfs_root_backup *root_backup;
1954	int newest = *backup_index;
1955
1956	if (*num_backups_tried == 0) {
1957		u64 gen = btrfs_super_generation(super);
 
1958
1959		newest = find_newest_super_backup(info, gen);
1960		if (newest == -1)
1961			return -1;
1962
1963		*backup_index = newest;
1964		*num_backups_tried = 1;
1965	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966		/* we've tried all the backups, all done */
1967		return -1;
1968	} else {
1969		/* jump to the next oldest backup */
1970		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971			BTRFS_NUM_BACKUP_ROOTS;
1972		*backup_index = newest;
1973		*num_backups_tried += 1;
1974	}
1975	root_backup = super->super_roots + newest;
 
1976
1977	btrfs_set_super_generation(super,
1978				   btrfs_backup_tree_root_gen(root_backup));
1979	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980	btrfs_set_super_root_level(super,
1981				   btrfs_backup_tree_root_level(root_backup));
1982	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984	/*
1985	 * fixme: the total bytes and num_devices need to match or we should
1986	 * need a fsck
1987	 */
1988	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990	return 0;
 
1991}
1992
1993/* helper to cleanup workers */
1994static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995{
1996	btrfs_destroy_workqueue(fs_info->fixup_workers);
1997	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1998	btrfs_destroy_workqueue(fs_info->workers);
1999	btrfs_destroy_workqueue(fs_info->endio_workers);
2000	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2001	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2002	btrfs_destroy_workqueue(fs_info->rmw_workers);
 
 
2003	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2004	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2005	btrfs_destroy_workqueue(fs_info->submit_workers);
2006	btrfs_destroy_workqueue(fs_info->delayed_workers);
2007	btrfs_destroy_workqueue(fs_info->caching_workers);
2008	btrfs_destroy_workqueue(fs_info->readahead_workers);
2009	btrfs_destroy_workqueue(fs_info->flush_workers);
2010	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
 
 
2011	/*
2012	 * Now that all other work queues are destroyed, we can safely destroy
2013	 * the queues used for metadata I/O, since tasks from those other work
2014	 * queues can do metadata I/O operations.
2015	 */
2016	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2017	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2018}
2019
2020static void free_root_extent_buffers(struct btrfs_root *root)
2021{
2022	if (root) {
2023		free_extent_buffer(root->node);
2024		free_extent_buffer(root->commit_root);
2025		root->node = NULL;
2026		root->commit_root = NULL;
2027	}
2028}
2029
 
 
 
 
 
 
 
 
 
 
2030/* helper to cleanup tree roots */
2031static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2032{
2033	free_root_extent_buffers(info->tree_root);
2034
 
2035	free_root_extent_buffers(info->dev_root);
2036	free_root_extent_buffers(info->extent_root);
2037	free_root_extent_buffers(info->csum_root);
2038	free_root_extent_buffers(info->quota_root);
2039	free_root_extent_buffers(info->uuid_root);
2040	if (chunk_root)
 
 
 
 
2041		free_root_extent_buffers(info->chunk_root);
2042	free_root_extent_buffers(info->free_space_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2043}
2044
2045void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2046{
2047	int ret;
2048	struct btrfs_root *gang[8];
2049	int i;
2050
2051	while (!list_empty(&fs_info->dead_roots)) {
2052		gang[0] = list_entry(fs_info->dead_roots.next,
2053				     struct btrfs_root, root_list);
2054		list_del(&gang[0]->root_list);
2055
2056		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2057			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2058		} else {
2059			free_extent_buffer(gang[0]->node);
2060			free_extent_buffer(gang[0]->commit_root);
2061			btrfs_put_fs_root(gang[0]);
2062		}
2063	}
2064
2065	while (1) {
2066		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2067					     (void **)gang, 0,
2068					     ARRAY_SIZE(gang));
2069		if (!ret)
2070			break;
2071		for (i = 0; i < ret; i++)
2072			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2073	}
2074
2075	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2076		btrfs_free_log_root_tree(NULL, fs_info);
2077		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2078	}
2079}
2080
2081static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082{
2083	mutex_init(&fs_info->scrub_lock);
2084	atomic_set(&fs_info->scrubs_running, 0);
2085	atomic_set(&fs_info->scrub_pause_req, 0);
2086	atomic_set(&fs_info->scrubs_paused, 0);
2087	atomic_set(&fs_info->scrub_cancel_req, 0);
2088	init_waitqueue_head(&fs_info->scrub_pause_wait);
2089	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2090}
2091
2092static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093{
2094	spin_lock_init(&fs_info->balance_lock);
2095	mutex_init(&fs_info->balance_mutex);
2096	atomic_set(&fs_info->balance_pause_req, 0);
2097	atomic_set(&fs_info->balance_cancel_req, 0);
2098	fs_info->balance_ctl = NULL;
2099	init_waitqueue_head(&fs_info->balance_wait_q);
 
2100}
2101
2102static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2103{
2104	struct inode *inode = fs_info->btree_inode;
 
 
 
 
 
 
 
2105
2106	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107	set_nlink(inode, 1);
2108	/*
2109	 * we set the i_size on the btree inode to the max possible int.
2110	 * the real end of the address space is determined by all of
2111	 * the devices in the system
2112	 */
2113	inode->i_size = OFFSET_MAX;
2114	inode->i_mapping->a_ops = &btree_aops;
 
2115
2116	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2117	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118			    IO_TREE_INODE_IO, inode);
2119	BTRFS_I(inode)->io_tree.track_uptodate = false;
2120	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2121
2122	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124	BTRFS_I(inode)->root = fs_info->tree_root;
2125	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127	btrfs_insert_inode_hash(inode);
 
 
 
2128}
2129
2130static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131{
2132	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2133	init_rwsem(&fs_info->dev_replace.rwsem);
2134	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2135}
2136
2137static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138{
2139	spin_lock_init(&fs_info->qgroup_lock);
2140	mutex_init(&fs_info->qgroup_ioctl_lock);
2141	fs_info->qgroup_tree = RB_ROOT;
2142	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143	fs_info->qgroup_seq = 1;
2144	fs_info->qgroup_ulist = NULL;
2145	fs_info->qgroup_rescan_running = false;
 
2146	mutex_init(&fs_info->qgroup_rescan_lock);
2147}
2148
2149static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150		struct btrfs_fs_devices *fs_devices)
2151{
2152	u32 max_active = fs_info->thread_pool_size;
2153	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
 
2154
2155	fs_info->workers =
2156		btrfs_alloc_workqueue(fs_info, "worker",
2157				      flags | WQ_HIGHPRI, max_active, 16);
2158
2159	fs_info->delalloc_workers =
2160		btrfs_alloc_workqueue(fs_info, "delalloc",
2161				      flags, max_active, 2);
2162
2163	fs_info->flush_workers =
2164		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165				      flags, max_active, 0);
2166
2167	fs_info->caching_workers =
2168		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169
2170	/*
2171	 * a higher idle thresh on the submit workers makes it much more
2172	 * likely that bios will be send down in a sane order to the
2173	 * devices
2174	 */
2175	fs_info->submit_workers =
2176		btrfs_alloc_workqueue(fs_info, "submit", flags,
2177				      min_t(u64, fs_devices->num_devices,
2178					    max_active), 64);
2179
2180	fs_info->fixup_workers =
2181		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2182
2183	/*
2184	 * endios are largely parallel and should have a very
2185	 * low idle thresh
2186	 */
2187	fs_info->endio_workers =
2188		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2189	fs_info->endio_meta_workers =
2190		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2191				      max_active, 4);
2192	fs_info->endio_meta_write_workers =
2193		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2194				      max_active, 2);
2195	fs_info->endio_raid56_workers =
2196		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2197				      max_active, 4);
2198	fs_info->endio_repair_workers =
2199		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2200	fs_info->rmw_workers =
2201		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2202	fs_info->endio_write_workers =
2203		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2204				      max_active, 2);
 
 
2205	fs_info->endio_freespace_worker =
2206		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2207				      max_active, 0);
2208	fs_info->delayed_workers =
2209		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2210				      max_active, 0);
2211	fs_info->readahead_workers =
2212		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2213				      max_active, 2);
2214	fs_info->qgroup_rescan_workers =
2215		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
 
 
 
2216
2217	if (!(fs_info->workers && fs_info->delalloc_workers &&
2218	      fs_info->submit_workers && fs_info->flush_workers &&
2219	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2220	      fs_info->endio_meta_write_workers &&
2221	      fs_info->endio_repair_workers &&
2222	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2223	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2224	      fs_info->caching_workers && fs_info->readahead_workers &&
2225	      fs_info->fixup_workers && fs_info->delayed_workers &&
2226	      fs_info->qgroup_rescan_workers)) {
2227		return -ENOMEM;
2228	}
2229
2230	return 0;
2231}
2232
2233static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2234{
2235	struct crypto_shash *csum_shash;
2236	const char *csum_name = btrfs_super_csum_name(csum_type);
2237
2238	csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2239
2240	if (IS_ERR(csum_shash)) {
2241		btrfs_err(fs_info, "error allocating %s hash for checksum",
2242			  csum_name);
2243		return PTR_ERR(csum_shash);
2244	}
2245
2246	fs_info->csum_shash = csum_shash;
2247
2248	return 0;
2249}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250
2251static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2252{
2253	crypto_free_shash(fs_info->csum_shash);
 
2254}
2255
2256static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2257			    struct btrfs_fs_devices *fs_devices)
2258{
2259	int ret;
 
2260	struct btrfs_root *log_tree_root;
2261	struct btrfs_super_block *disk_super = fs_info->super_copy;
2262	u64 bytenr = btrfs_super_log_root(disk_super);
2263	int level = btrfs_super_log_root_level(disk_super);
2264
2265	if (fs_devices->rw_devices == 0) {
2266		btrfs_warn(fs_info, "log replay required on RO media");
2267		return -EIO;
2268	}
2269
2270	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
2271	if (!log_tree_root)
2272		return -ENOMEM;
2273
2274	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2275
2276	log_tree_root->node = read_tree_block(fs_info, bytenr,
2277					      fs_info->generation + 1,
2278					      level, NULL);
2279	if (IS_ERR(log_tree_root->node)) {
2280		btrfs_warn(fs_info, "failed to read log tree");
2281		ret = PTR_ERR(log_tree_root->node);
2282		kfree(log_tree_root);
 
2283		return ret;
2284	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
 
2285		btrfs_err(fs_info, "failed to read log tree");
2286		free_extent_buffer(log_tree_root->node);
2287		kfree(log_tree_root);
2288		return -EIO;
2289	}
 
2290	/* returns with log_tree_root freed on success */
2291	ret = btrfs_recover_log_trees(log_tree_root);
2292	if (ret) {
2293		btrfs_handle_fs_error(fs_info, ret,
2294				      "Failed to recover log tree");
2295		free_extent_buffer(log_tree_root->node);
2296		kfree(log_tree_root);
2297		return ret;
2298	}
2299
2300	if (sb_rdonly(fs_info->sb)) {
2301		ret = btrfs_commit_super(fs_info);
2302		if (ret)
2303			return ret;
2304	}
2305
2306	return 0;
2307}
2308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2309static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2310{
2311	struct btrfs_root *tree_root = fs_info->tree_root;
2312	struct btrfs_root *root;
2313	struct btrfs_key location;
2314	int ret;
2315
2316	BUG_ON(!fs_info->tree_root);
 
 
 
 
2317
2318	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2319	location.type = BTRFS_ROOT_ITEM_KEY;
2320	location.offset = 0;
2321
2322	root = btrfs_read_tree_root(tree_root, &location);
2323	if (IS_ERR(root)) {
2324		ret = PTR_ERR(root);
2325		goto out;
 
 
 
 
 
 
 
 
2326	}
2327	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328	fs_info->extent_root = root;
2329
2330	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2331	root = btrfs_read_tree_root(tree_root, &location);
2332	if (IS_ERR(root)) {
2333		ret = PTR_ERR(root);
2334		goto out;
 
 
 
 
 
2335	}
2336	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337	fs_info->dev_root = root;
2338	btrfs_init_devices_late(fs_info);
 
2339
2340	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2341	root = btrfs_read_tree_root(tree_root, &location);
 
 
 
 
2342	if (IS_ERR(root)) {
2343		ret = PTR_ERR(root);
2344		goto out;
 
 
 
 
 
2345	}
2346	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347	fs_info->csum_root = root;
2348
2349	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2350	root = btrfs_read_tree_root(tree_root, &location);
2351	if (!IS_ERR(root)) {
2352		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2354		fs_info->quota_root = root;
2355	}
2356
2357	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2358	root = btrfs_read_tree_root(tree_root, &location);
2359	if (IS_ERR(root)) {
2360		ret = PTR_ERR(root);
2361		if (ret != -ENOENT)
2362			goto out;
 
 
2363	} else {
2364		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2365		fs_info->uuid_root = root;
2366	}
2367
2368	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2369		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2370		root = btrfs_read_tree_root(tree_root, &location);
2371		if (IS_ERR(root)) {
2372			ret = PTR_ERR(root);
2373			goto out;
 
 
 
 
 
2374		}
2375		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376		fs_info->free_space_root = root;
2377	}
2378
2379	return 0;
2380out:
2381	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2382		   location.objectid, ret);
2383	return ret;
2384}
2385
2386/*
2387 * Real super block validation
2388 * NOTE: super csum type and incompat features will not be checked here.
2389 *
2390 * @sb:		super block to check
2391 * @mirror_num:	the super block number to check its bytenr:
2392 * 		0	the primary (1st) sb
2393 * 		1, 2	2nd and 3rd backup copy
2394 * 	       -1	skip bytenr check
2395 */
2396static int validate_super(struct btrfs_fs_info *fs_info,
2397			    struct btrfs_super_block *sb, int mirror_num)
2398{
2399	u64 nodesize = btrfs_super_nodesize(sb);
2400	u64 sectorsize = btrfs_super_sectorsize(sb);
2401	int ret = 0;
 
2402
2403	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2404		btrfs_err(fs_info, "no valid FS found");
2405		ret = -EINVAL;
2406	}
2407	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2408		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2409				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2410		ret = -EINVAL;
 
 
 
 
 
 
 
2411	}
2412	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2413		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2414				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2415		ret = -EINVAL;
2416	}
2417	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2418		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2419				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2420		ret = -EINVAL;
2421	}
2422	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2424				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2425		ret = -EINVAL;
2426	}
2427
2428	/*
2429	 * Check sectorsize and nodesize first, other check will need it.
2430	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2431	 */
2432	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2433	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2434		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2435		ret = -EINVAL;
2436	}
2437	/* Only PAGE SIZE is supported yet */
2438	if (sectorsize != PAGE_SIZE) {
 
 
 
 
 
 
 
 
2439		btrfs_err(fs_info,
2440			"sectorsize %llu not supported yet, only support %lu",
2441			sectorsize, PAGE_SIZE);
2442		ret = -EINVAL;
2443	}
 
2444	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2445	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2446		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2447		ret = -EINVAL;
2448	}
2449	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2450		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2451			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2452		ret = -EINVAL;
2453	}
2454
2455	/* Root alignment check */
2456	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2457		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2458			   btrfs_super_root(sb));
2459		ret = -EINVAL;
2460	}
2461	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2462		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2463			   btrfs_super_chunk_root(sb));
2464		ret = -EINVAL;
2465	}
2466	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2467		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2468			   btrfs_super_log_root(sb));
2469		ret = -EINVAL;
2470	}
2471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2472	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2473		   BTRFS_FSID_SIZE) != 0) {
2474		btrfs_err(fs_info,
2475			"dev_item UUID does not match metadata fsid: %pU != %pU",
2476			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2477		ret = -EINVAL;
2478	}
2479
2480	/*
 
 
 
 
 
 
 
 
 
 
 
 
2481	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2482	 * done later
2483	 */
2484	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2485		btrfs_err(fs_info, "bytes_used is too small %llu",
2486			  btrfs_super_bytes_used(sb));
2487		ret = -EINVAL;
2488	}
2489	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2490		btrfs_err(fs_info, "invalid stripesize %u",
2491			  btrfs_super_stripesize(sb));
2492		ret = -EINVAL;
2493	}
2494	if (btrfs_super_num_devices(sb) > (1UL << 31))
2495		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2496			   btrfs_super_num_devices(sb));
2497	if (btrfs_super_num_devices(sb) == 0) {
2498		btrfs_err(fs_info, "number of devices is 0");
2499		ret = -EINVAL;
2500	}
2501
2502	if (mirror_num >= 0 &&
2503	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2504		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2505			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2506		ret = -EINVAL;
2507	}
2508
2509	/*
2510	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2511	 * and one chunk
2512	 */
2513	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2514		btrfs_err(fs_info, "system chunk array too big %u > %u",
2515			  btrfs_super_sys_array_size(sb),
2516			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2517		ret = -EINVAL;
2518	}
2519	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2520			+ sizeof(struct btrfs_chunk)) {
2521		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2522			  btrfs_super_sys_array_size(sb),
2523			  sizeof(struct btrfs_disk_key)
2524			  + sizeof(struct btrfs_chunk));
2525		ret = -EINVAL;
2526	}
2527
2528	/*
2529	 * The generation is a global counter, we'll trust it more than the others
2530	 * but it's still possible that it's the one that's wrong.
2531	 */
2532	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2533		btrfs_warn(fs_info,
2534			"suspicious: generation < chunk_root_generation: %llu < %llu",
2535			btrfs_super_generation(sb),
2536			btrfs_super_chunk_root_generation(sb));
2537	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2538	    && btrfs_super_cache_generation(sb) != (u64)-1)
2539		btrfs_warn(fs_info,
2540			"suspicious: generation < cache_generation: %llu < %llu",
2541			btrfs_super_generation(sb),
2542			btrfs_super_cache_generation(sb));
2543
2544	return ret;
2545}
2546
2547/*
2548 * Validation of super block at mount time.
2549 * Some checks already done early at mount time, like csum type and incompat
2550 * flags will be skipped.
2551 */
2552static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2553{
2554	return validate_super(fs_info, fs_info->super_copy, 0);
2555}
2556
2557/*
2558 * Validation of super block at write time.
2559 * Some checks like bytenr check will be skipped as their values will be
2560 * overwritten soon.
2561 * Extra checks like csum type and incompat flags will be done here.
2562 */
2563static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2564				      struct btrfs_super_block *sb)
2565{
2566	int ret;
2567
2568	ret = validate_super(fs_info, sb, -1);
2569	if (ret < 0)
2570		goto out;
2571	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2572		ret = -EUCLEAN;
2573		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2574			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2575		goto out;
2576	}
2577	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2578		ret = -EUCLEAN;
2579		btrfs_err(fs_info,
2580		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2581			  btrfs_super_incompat_flags(sb),
2582			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2583		goto out;
2584	}
2585out:
2586	if (ret < 0)
2587		btrfs_err(fs_info,
2588		"super block corruption detected before writing it to disk");
2589	return ret;
2590}
2591
2592int open_ctree(struct super_block *sb,
2593	       struct btrfs_fs_devices *fs_devices,
2594	       char *options)
2595{
2596	u32 sectorsize;
2597	u32 nodesize;
2598	u32 stripesize;
2599	u64 generation;
2600	u64 features;
2601	u16 csum_type;
2602	struct btrfs_key location;
2603	struct buffer_head *bh;
2604	struct btrfs_super_block *disk_super;
2605	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2606	struct btrfs_root *tree_root;
2607	struct btrfs_root *chunk_root;
2608	int ret;
2609	int err = -EINVAL;
2610	int num_backups_tried = 0;
2611	int backup_index = 0;
2612	int clear_free_space_tree = 0;
2613	int level;
2614
2615	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2616	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2617	if (!tree_root || !chunk_root) {
2618		err = -ENOMEM;
2619		goto fail;
2620	}
2621
2622	ret = init_srcu_struct(&fs_info->subvol_srcu);
2623	if (ret) {
2624		err = ret;
2625		goto fail;
2626	}
2627
2628	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2629	if (ret) {
2630		err = ret;
2631		goto fail_srcu;
2632	}
2633
2634	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
2635	if (ret) {
2636		err = ret;
2637		goto fail_dio_bytes;
2638	}
2639	fs_info->dirty_metadata_batch = PAGE_SIZE *
2640					(1 + ilog2(nr_cpu_ids));
2641
2642	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2643	if (ret) {
2644		err = ret;
2645		goto fail_dirty_metadata_bytes;
2646	}
 
 
 
2647
2648	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2649			GFP_KERNEL);
2650	if (ret) {
2651		err = ret;
2652		goto fail_delalloc_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2653	}
2654
 
 
 
 
 
2655	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2656	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2657	INIT_LIST_HEAD(&fs_info->trans_list);
2658	INIT_LIST_HEAD(&fs_info->dead_roots);
2659	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2660	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2661	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2662	spin_lock_init(&fs_info->delalloc_root_lock);
2663	spin_lock_init(&fs_info->trans_lock);
2664	spin_lock_init(&fs_info->fs_roots_radix_lock);
2665	spin_lock_init(&fs_info->delayed_iput_lock);
2666	spin_lock_init(&fs_info->defrag_inodes_lock);
2667	spin_lock_init(&fs_info->tree_mod_seq_lock);
2668	spin_lock_init(&fs_info->super_lock);
2669	spin_lock_init(&fs_info->buffer_lock);
2670	spin_lock_init(&fs_info->unused_bgs_lock);
 
 
 
2671	rwlock_init(&fs_info->tree_mod_log_lock);
 
2672	mutex_init(&fs_info->unused_bg_unpin_mutex);
2673	mutex_init(&fs_info->delete_unused_bgs_mutex);
2674	mutex_init(&fs_info->reloc_mutex);
2675	mutex_init(&fs_info->delalloc_root_mutex);
 
 
2676	seqlock_init(&fs_info->profiles_lock);
2677
 
 
 
 
 
 
 
 
 
 
 
 
 
2678	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2679	INIT_LIST_HEAD(&fs_info->space_info);
2680	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2681	INIT_LIST_HEAD(&fs_info->unused_bgs);
2682	extent_map_tree_init(&fs_info->mapping_tree);
 
 
 
 
 
 
 
 
2683	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2684			     BTRFS_BLOCK_RSV_GLOBAL);
2685	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2686	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2687	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2688	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2689			     BTRFS_BLOCK_RSV_DELOPS);
2690	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2691			     BTRFS_BLOCK_RSV_DELREFS);
2692
2693	atomic_set(&fs_info->async_delalloc_pages, 0);
2694	atomic_set(&fs_info->defrag_running, 0);
2695	atomic_set(&fs_info->reada_works_cnt, 0);
2696	atomic_set(&fs_info->nr_delayed_iputs, 0);
2697	atomic64_set(&fs_info->tree_mod_seq, 0);
2698	fs_info->sb = sb;
2699	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2700	fs_info->metadata_ratio = 0;
2701	fs_info->defrag_inodes = RB_ROOT;
2702	atomic64_set(&fs_info->free_chunk_space, 0);
2703	fs_info->tree_mod_log = RB_ROOT;
2704	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2705	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2706	/* readahead state */
2707	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2708	spin_lock_init(&fs_info->reada_lock);
2709	btrfs_init_ref_verify(fs_info);
2710
2711	fs_info->thread_pool_size = min_t(unsigned long,
2712					  num_online_cpus() + 2, 8);
2713
2714	INIT_LIST_HEAD(&fs_info->ordered_roots);
2715	spin_lock_init(&fs_info->ordered_root_lock);
2716
2717	fs_info->btree_inode = new_inode(sb);
2718	if (!fs_info->btree_inode) {
2719		err = -ENOMEM;
2720		goto fail_bio_counter;
2721	}
2722	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2723
2724	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2725					GFP_KERNEL);
2726	if (!fs_info->delayed_root) {
2727		err = -ENOMEM;
2728		goto fail_iput;
2729	}
2730	btrfs_init_delayed_root(fs_info->delayed_root);
2731
2732	btrfs_init_scrub(fs_info);
2733#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2734	fs_info->check_integrity_print_mask = 0;
2735#endif
2736	btrfs_init_balance(fs_info);
2737	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2738
2739	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2740	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2741
2742	btrfs_init_btree_inode(fs_info);
 
2743
2744	spin_lock_init(&fs_info->block_group_cache_lock);
2745	fs_info->block_group_cache_tree = RB_ROOT;
2746	fs_info->first_logical_byte = (u64)-1;
2747
2748	extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2749			    IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2750	extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2751			    IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2752	fs_info->pinned_extents = &fs_info->freed_extents[0];
2753	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2754
2755	mutex_init(&fs_info->ordered_operations_mutex);
2756	mutex_init(&fs_info->tree_log_mutex);
2757	mutex_init(&fs_info->chunk_mutex);
2758	mutex_init(&fs_info->transaction_kthread_mutex);
2759	mutex_init(&fs_info->cleaner_mutex);
2760	mutex_init(&fs_info->ro_block_group_mutex);
2761	init_rwsem(&fs_info->commit_root_sem);
2762	init_rwsem(&fs_info->cleanup_work_sem);
2763	init_rwsem(&fs_info->subvol_sem);
2764	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2765
2766	btrfs_init_dev_replace_locks(fs_info);
2767	btrfs_init_qgroup(fs_info);
 
2768
2769	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2770	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2771
2772	init_waitqueue_head(&fs_info->transaction_throttle);
2773	init_waitqueue_head(&fs_info->transaction_wait);
2774	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2775	init_waitqueue_head(&fs_info->async_submit_wait);
2776	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2777
2778	/* Usable values until the real ones are cached from the superblock */
2779	fs_info->nodesize = 4096;
2780	fs_info->sectorsize = 4096;
 
2781	fs_info->stripesize = 4096;
2782
 
 
 
 
 
2783	spin_lock_init(&fs_info->swapfile_pins_lock);
2784	fs_info->swapfile_pins = RB_ROOT;
2785
2786	fs_info->send_in_progress = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2787
2788	ret = btrfs_alloc_stripe_hash_table(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2789	if (ret) {
2790		err = ret;
2791		goto fail_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2792	}
2793
2794	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
 
 
 
2795
2796	invalidate_bdev(fs_devices->latest_bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2797
2798	/*
2799	 * Read super block and check the signature bytes only
2800	 */
2801	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2802	if (IS_ERR(bh)) {
2803		err = PTR_ERR(bh);
2804		goto fail_alloc;
2805	}
2806
 
2807	/*
2808	 * Verify the type first, if that or the the checksum value are
2809	 * corrupted, we'll find out
2810	 */
2811	csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2812	if (!btrfs_supported_super_csum(csum_type)) {
2813		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2814			  csum_type);
2815		err = -EINVAL;
2816		brelse(bh);
2817		goto fail_alloc;
2818	}
2819
 
 
2820	ret = btrfs_init_csum_hash(fs_info, csum_type);
2821	if (ret) {
2822		err = ret;
2823		goto fail_alloc;
2824	}
2825
2826	/*
2827	 * We want to check superblock checksum, the type is stored inside.
2828	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2829	 */
2830	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2831		btrfs_err(fs_info, "superblock checksum mismatch");
2832		err = -EINVAL;
2833		brelse(bh);
2834		goto fail_csum;
2835	}
2836
2837	/*
2838	 * super_copy is zeroed at allocation time and we never touch the
2839	 * following bytes up to INFO_SIZE, the checksum is calculated from
2840	 * the whole block of INFO_SIZE
2841	 */
2842	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2843	brelse(bh);
2844
2845	disk_super = fs_info->super_copy;
2846
2847	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2848		       BTRFS_FSID_SIZE));
2849
2850	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2851		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2852				fs_info->super_copy->metadata_uuid,
2853				BTRFS_FSID_SIZE));
2854	}
2855
2856	features = btrfs_super_flags(disk_super);
2857	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2858		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2859		btrfs_set_super_flags(disk_super, features);
2860		btrfs_info(fs_info,
2861			"found metadata UUID change in progress flag, clearing");
2862	}
2863
2864	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2865	       sizeof(*fs_info->super_for_commit));
2866
2867	ret = btrfs_validate_mount_super(fs_info);
2868	if (ret) {
2869		btrfs_err(fs_info, "superblock contains fatal errors");
2870		err = -EINVAL;
2871		goto fail_csum;
2872	}
2873
2874	if (!btrfs_super_root(disk_super))
2875		goto fail_csum;
 
 
 
2876
2877	/* check FS state, whether FS is broken. */
2878	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2879		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2880
2881	/*
2882	 * run through our array of backup supers and setup
2883	 * our ring pointer to the oldest one
2884	 */
2885	generation = btrfs_super_generation(disk_super);
2886	find_oldest_super_backup(fs_info, generation);
2887
2888	/*
2889	 * In the long term, we'll store the compression type in the super
2890	 * block, and it'll be used for per file compression control.
2891	 */
2892	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2893
2894	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2895	if (ret) {
2896		err = ret;
2897		goto fail_csum;
2898	}
2899
2900	features = btrfs_super_incompat_flags(disk_super) &
2901		~BTRFS_FEATURE_INCOMPAT_SUPP;
2902	if (features) {
2903		btrfs_err(fs_info,
2904		    "cannot mount because of unsupported optional features (%llx)",
2905		    features);
2906		err = -EINVAL;
2907		goto fail_csum;
2908	}
2909
2910	features = btrfs_super_incompat_flags(disk_super);
2911	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2912	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2913		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2914	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2915		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2916
2917	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2918		btrfs_info(fs_info, "has skinny extents");
2919
2920	/*
2921	 * flag our filesystem as having big metadata blocks if
2922	 * they are bigger than the page size
2923	 */
2924	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2925		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2926			btrfs_info(fs_info,
2927				"flagging fs with big metadata feature");
2928		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2929	}
2930
 
2931	nodesize = btrfs_super_nodesize(disk_super);
2932	sectorsize = btrfs_super_sectorsize(disk_super);
2933	stripesize = sectorsize;
2934	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2935	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2936
2937	/* Cache block sizes */
2938	fs_info->nodesize = nodesize;
2939	fs_info->sectorsize = sectorsize;
 
 
 
2940	fs_info->stripesize = stripesize;
2941
2942	/*
2943	 * mixed block groups end up with duplicate but slightly offset
2944	 * extent buffers for the same range.  It leads to corruptions
2945	 */
2946	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2947	    (sectorsize != nodesize)) {
2948		btrfs_err(fs_info,
2949"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2950			nodesize, sectorsize);
2951		goto fail_csum;
2952	}
2953
 
 
 
 
2954	/*
2955	 * Needn't use the lock because there is no other task which will
2956	 * update the flag.
2957	 */
2958	btrfs_set_super_incompat_flags(disk_super, features);
2959
2960	features = btrfs_super_compat_ro_flags(disk_super) &
2961		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2962	if (!sb_rdonly(sb) && features) {
2963		btrfs_err(fs_info,
2964	"cannot mount read-write because of unsupported optional features (%llx)",
2965		       features);
2966		err = -EINVAL;
2967		goto fail_csum;
2968	}
2969
2970	ret = btrfs_init_workqueues(fs_info, fs_devices);
2971	if (ret) {
2972		err = ret;
2973		goto fail_sb_buffer;
2974	}
2975
2976	sb->s_bdi->congested_fn = btrfs_congested_fn;
2977	sb->s_bdi->congested_data = fs_info;
2978	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2979	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2980	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2981	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2982
 
2983	sb->s_blocksize = sectorsize;
2984	sb->s_blocksize_bits = blksize_bits(sectorsize);
2985	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2986
2987	mutex_lock(&fs_info->chunk_mutex);
2988	ret = btrfs_read_sys_array(fs_info);
2989	mutex_unlock(&fs_info->chunk_mutex);
2990	if (ret) {
2991		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2992		goto fail_sb_buffer;
2993	}
2994
2995	generation = btrfs_super_chunk_root_generation(disk_super);
2996	level = btrfs_super_chunk_root_level(disk_super);
2997
2998	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2999
3000	chunk_root->node = read_tree_block(fs_info,
3001					   btrfs_super_chunk_root(disk_super),
3002					   generation, level, NULL);
3003	if (IS_ERR(chunk_root->node) ||
3004	    !extent_buffer_uptodate(chunk_root->node)) {
3005		btrfs_err(fs_info, "failed to read chunk root");
3006		if (!IS_ERR(chunk_root->node))
3007			free_extent_buffer(chunk_root->node);
3008		chunk_root->node = NULL;
3009		goto fail_tree_roots;
3010	}
3011	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3012	chunk_root->commit_root = btrfs_root_node(chunk_root);
3013
3014	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3015	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 
3016
3017	ret = btrfs_read_chunk_tree(fs_info);
3018	if (ret) {
3019		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3020		goto fail_tree_roots;
3021	}
3022
3023	/*
3024	 * Keep the devid that is marked to be the target device for the
3025	 * device replace procedure
 
 
 
3026	 */
3027	btrfs_free_extra_devids(fs_devices, 0);
3028
3029	if (!fs_devices->latest_bdev) {
3030		btrfs_err(fs_info, "failed to read devices");
 
3031		goto fail_tree_roots;
3032	}
3033
3034retry_root_backup:
3035	generation = btrfs_super_generation(disk_super);
3036	level = btrfs_super_root_level(disk_super);
3037
3038	tree_root->node = read_tree_block(fs_info,
3039					  btrfs_super_root(disk_super),
3040					  generation, level, NULL);
3041	if (IS_ERR(tree_root->node) ||
3042	    !extent_buffer_uptodate(tree_root->node)) {
3043		btrfs_warn(fs_info, "failed to read tree root");
3044		if (!IS_ERR(tree_root->node))
3045			free_extent_buffer(tree_root->node);
3046		tree_root->node = NULL;
3047		goto recovery_tree_root;
3048	}
3049
3050	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3051	tree_root->commit_root = btrfs_root_node(tree_root);
3052	btrfs_set_root_refs(&tree_root->root_item, 1);
3053
3054	mutex_lock(&tree_root->objectid_mutex);
3055	ret = btrfs_find_highest_objectid(tree_root,
3056					&tree_root->highest_objectid);
3057	if (ret) {
3058		mutex_unlock(&tree_root->objectid_mutex);
3059		goto recovery_tree_root;
 
3060	}
3061
3062	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3063
3064	mutex_unlock(&tree_root->objectid_mutex);
3065
3066	ret = btrfs_read_roots(fs_info);
3067	if (ret)
3068		goto recovery_tree_root;
3069
3070	fs_info->generation = generation;
3071	fs_info->last_trans_committed = generation;
 
3072
3073	ret = btrfs_verify_dev_extents(fs_info);
3074	if (ret) {
3075		btrfs_err(fs_info,
3076			  "failed to verify dev extents against chunks: %d",
3077			  ret);
3078		goto fail_block_groups;
3079	}
3080	ret = btrfs_recover_balance(fs_info);
3081	if (ret) {
3082		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3083		goto fail_block_groups;
3084	}
3085
3086	ret = btrfs_init_dev_stats(fs_info);
3087	if (ret) {
3088		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3089		goto fail_block_groups;
3090	}
3091
3092	ret = btrfs_init_dev_replace(fs_info);
3093	if (ret) {
3094		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3095		goto fail_block_groups;
3096	}
3097
3098	btrfs_free_extra_devids(fs_devices, 1);
3099
3100	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3101	if (ret) {
3102		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3103				ret);
3104		goto fail_block_groups;
3105	}
3106
3107	ret = btrfs_sysfs_add_device(fs_devices);
3108	if (ret) {
3109		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3110				ret);
3111		goto fail_fsdev_sysfs;
3112	}
3113
3114	ret = btrfs_sysfs_add_mounted(fs_info);
3115	if (ret) {
3116		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3117		goto fail_fsdev_sysfs;
3118	}
3119
3120	ret = btrfs_init_space_info(fs_info);
3121	if (ret) {
3122		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3123		goto fail_sysfs;
3124	}
3125
3126	ret = btrfs_read_block_groups(fs_info);
3127	if (ret) {
3128		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3129		goto fail_sysfs;
3130	}
3131
3132	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
 
 
 
 
 
3133		btrfs_warn(fs_info,
3134		"writable mount is not allowed due to too many missing devices");
 
3135		goto fail_sysfs;
3136	}
3137
3138	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3139					       "btrfs-cleaner");
3140	if (IS_ERR(fs_info->cleaner_kthread))
 
3141		goto fail_sysfs;
 
3142
3143	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3144						   tree_root,
3145						   "btrfs-transaction");
3146	if (IS_ERR(fs_info->transaction_kthread))
 
3147		goto fail_cleaner;
3148
3149	if (!btrfs_test_opt(fs_info, NOSSD) &&
3150	    !fs_info->fs_devices->rotating) {
3151		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3152	}
3153
3154	/*
3155	 * Mount does not set all options immediately, we can do it now and do
3156	 * not have to wait for transaction commit
3157	 */
3158	btrfs_apply_pending_changes(fs_info);
3159
3160#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3161	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3162		ret = btrfsic_mount(fs_info, fs_devices,
3163				    btrfs_test_opt(fs_info,
3164					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3165				    1 : 0,
3166				    fs_info->check_integrity_print_mask);
3167		if (ret)
3168			btrfs_warn(fs_info,
3169				"failed to initialize integrity check module: %d",
3170				ret);
3171	}
3172#endif
3173	ret = btrfs_read_qgroup_config(fs_info);
3174	if (ret)
3175		goto fail_trans_kthread;
3176
3177	if (btrfs_build_ref_tree(fs_info))
3178		btrfs_err(fs_info, "couldn't build ref tree");
3179
3180	/* do not make disk changes in broken FS or nologreplay is given */
3181	if (btrfs_super_log_root(disk_super) != 0 &&
3182	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
 
3183		ret = btrfs_replay_log(fs_info, fs_devices);
3184		if (ret) {
3185			err = ret;
3186			goto fail_qgroup;
3187		}
3188	}
3189
3190	ret = btrfs_find_orphan_roots(fs_info);
3191	if (ret)
3192		goto fail_qgroup;
3193
3194	if (!sb_rdonly(sb)) {
3195		ret = btrfs_cleanup_fs_roots(fs_info);
3196		if (ret)
3197			goto fail_qgroup;
3198
3199		mutex_lock(&fs_info->cleaner_mutex);
3200		ret = btrfs_recover_relocation(tree_root);
3201		mutex_unlock(&fs_info->cleaner_mutex);
3202		if (ret < 0) {
3203			btrfs_warn(fs_info, "failed to recover relocation: %d",
3204					ret);
3205			err = -EINVAL;
3206			goto fail_qgroup;
3207		}
3208	}
3209
3210	location.objectid = BTRFS_FS_TREE_OBJECTID;
3211	location.type = BTRFS_ROOT_ITEM_KEY;
3212	location.offset = 0;
3213
3214	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3215	if (IS_ERR(fs_info->fs_root)) {
3216		err = PTR_ERR(fs_info->fs_root);
3217		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
 
3218		goto fail_qgroup;
3219	}
3220
3221	if (sb_rdonly(sb))
3222		return 0;
3223
3224	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3225	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3226		clear_free_space_tree = 1;
3227	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3228		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3229		btrfs_warn(fs_info, "free space tree is invalid");
3230		clear_free_space_tree = 1;
3231	}
3232
3233	if (clear_free_space_tree) {
3234		btrfs_info(fs_info, "clearing free space tree");
3235		ret = btrfs_clear_free_space_tree(fs_info);
3236		if (ret) {
3237			btrfs_warn(fs_info,
3238				   "failed to clear free space tree: %d", ret);
3239			close_ctree(fs_info);
3240			return ret;
3241		}
3242	}
3243
3244	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3245	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3246		btrfs_info(fs_info, "creating free space tree");
3247		ret = btrfs_create_free_space_tree(fs_info);
3248		if (ret) {
3249			btrfs_warn(fs_info,
3250				"failed to create free space tree: %d", ret);
3251			close_ctree(fs_info);
3252			return ret;
3253		}
3254	}
3255
3256	down_read(&fs_info->cleanup_work_sem);
3257	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3258	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3259		up_read(&fs_info->cleanup_work_sem);
3260		close_ctree(fs_info);
3261		return ret;
3262	}
3263	up_read(&fs_info->cleanup_work_sem);
3264
3265	ret = btrfs_resume_balance_async(fs_info);
3266	if (ret) {
3267		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3268		close_ctree(fs_info);
3269		return ret;
3270	}
3271
3272	ret = btrfs_resume_dev_replace_async(fs_info);
3273	if (ret) {
3274		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3275		close_ctree(fs_info);
3276		return ret;
3277	}
 
3278
3279	btrfs_qgroup_rescan_resume(fs_info);
3280
3281	if (!fs_info->uuid_root) {
3282		btrfs_info(fs_info, "creating UUID tree");
3283		ret = btrfs_create_uuid_tree(fs_info);
3284		if (ret) {
3285			btrfs_warn(fs_info,
3286				"failed to create the UUID tree: %d", ret);
3287			close_ctree(fs_info);
3288			return ret;
3289		}
3290	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3291		   fs_info->generation !=
3292				btrfs_super_uuid_tree_generation(disk_super)) {
3293		btrfs_info(fs_info, "checking UUID tree");
3294		ret = btrfs_check_uuid_tree(fs_info);
3295		if (ret) {
3296			btrfs_warn(fs_info,
3297				"failed to check the UUID tree: %d", ret);
3298			close_ctree(fs_info);
3299			return ret;
3300		}
3301	} else {
3302		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3303	}
 
3304	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3305
3306	/*
3307	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3308	 * no need to keep the flag
3309	 */
3310	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3311
3312	return 0;
3313
3314fail_qgroup:
3315	btrfs_free_qgroup_config(fs_info);
3316fail_trans_kthread:
3317	kthread_stop(fs_info->transaction_kthread);
3318	btrfs_cleanup_transaction(fs_info);
3319	btrfs_free_fs_roots(fs_info);
3320fail_cleaner:
3321	kthread_stop(fs_info->cleaner_kthread);
3322
3323	/*
3324	 * make sure we're done with the btree inode before we stop our
3325	 * kthreads
3326	 */
3327	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3328
3329fail_sysfs:
3330	btrfs_sysfs_remove_mounted(fs_info);
3331
3332fail_fsdev_sysfs:
3333	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3334
3335fail_block_groups:
3336	btrfs_put_block_group_cache(fs_info);
3337
3338fail_tree_roots:
3339	free_root_pointers(fs_info, 1);
 
 
3340	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3341
3342fail_sb_buffer:
3343	btrfs_stop_all_workers(fs_info);
3344	btrfs_free_block_groups(fs_info);
3345fail_csum:
3346	btrfs_free_csum_hash(fs_info);
3347fail_alloc:
3348fail_iput:
3349	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3350
3351	iput(fs_info->btree_inode);
3352fail_bio_counter:
3353	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3354fail_delalloc_bytes:
3355	percpu_counter_destroy(&fs_info->delalloc_bytes);
3356fail_dirty_metadata_bytes:
3357	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3358fail_dio_bytes:
3359	percpu_counter_destroy(&fs_info->dio_bytes);
3360fail_srcu:
3361	cleanup_srcu_struct(&fs_info->subvol_srcu);
3362fail:
3363	btrfs_free_stripe_hash_table(fs_info);
3364	btrfs_close_devices(fs_info->fs_devices);
3365	return err;
3366
3367recovery_tree_root:
3368	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3369		goto fail_tree_roots;
3370
3371	free_root_pointers(fs_info, 0);
3372
3373	/* don't use the log in recovery mode, it won't be valid */
3374	btrfs_set_super_log_root(disk_super, 0);
3375
3376	/* we can't trust the free space cache either */
3377	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3378
3379	ret = next_root_backup(fs_info, fs_info->super_copy,
3380			       &num_backups_tried, &backup_index);
3381	if (ret == -1)
3382		goto fail_block_groups;
3383	goto retry_root_backup;
3384}
3385ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3386
3387static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3388{
3389	if (uptodate) {
3390		set_buffer_uptodate(bh);
3391	} else {
3392		struct btrfs_device *device = (struct btrfs_device *)
3393			bh->b_private;
3394
3395		btrfs_warn_rl_in_rcu(device->fs_info,
3396				"lost page write due to IO error on %s",
3397					  rcu_str_deref(device->name));
3398		/* note, we don't set_buffer_write_io_error because we have
3399		 * our own ways of dealing with the IO errors
3400		 */
3401		clear_buffer_uptodate(bh);
3402		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
 
 
 
 
 
 
 
 
 
3403	}
3404	unlock_buffer(bh);
3405	put_bh(bh);
3406}
3407
3408int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3409			struct buffer_head **bh_ret)
3410{
3411	struct buffer_head *bh;
3412	struct btrfs_super_block *super;
3413	u64 bytenr;
 
 
 
3414
3415	bytenr = btrfs_sb_offset(copy_num);
3416	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3417		return -EINVAL;
 
 
 
3418
3419	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3420	/*
3421	 * If we fail to read from the underlying devices, as of now
3422	 * the best option we have is to mark it EIO.
3423	 */
3424	if (!bh)
3425		return -EIO;
3426
3427	super = (struct btrfs_super_block *)bh->b_data;
3428	if (btrfs_super_bytenr(super) != bytenr ||
3429		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3430		brelse(bh);
3431		return -EINVAL;
 
 
 
 
 
 
3432	}
3433
3434	*bh_ret = bh;
3435	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3436}
3437
3438
3439struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3440{
3441	struct buffer_head *bh;
3442	struct buffer_head *latest = NULL;
3443	struct btrfs_super_block *super;
3444	int i;
3445	u64 transid = 0;
3446	int ret = -EINVAL;
3447
3448	/* we would like to check all the supers, but that would make
3449	 * a btrfs mount succeed after a mkfs from a different FS.
3450	 * So, we need to add a special mount option to scan for
3451	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3452	 */
3453	for (i = 0; i < 1; i++) {
3454		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3455		if (ret)
3456			continue;
3457
3458		super = (struct btrfs_super_block *)bh->b_data;
3459
3460		if (!latest || btrfs_super_generation(super) > transid) {
3461			brelse(latest);
3462			latest = bh;
 
 
3463			transid = btrfs_super_generation(super);
3464		} else {
3465			brelse(bh);
3466		}
3467	}
3468
3469	if (!latest)
3470		return ERR_PTR(ret);
3471
3472	return latest;
3473}
3474
3475/*
3476 * Write superblock @sb to the @device. Do not wait for completion, all the
3477 * buffer heads we write are pinned.
3478 *
3479 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3480 * the expected device size at commit time. Note that max_mirrors must be
3481 * same for write and wait phases.
3482 *
3483 * Return number of errors when buffer head is not found or submission fails.
3484 */
3485static int write_dev_supers(struct btrfs_device *device,
3486			    struct btrfs_super_block *sb, int max_mirrors)
3487{
3488	struct btrfs_fs_info *fs_info = device->fs_info;
 
3489	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3490	struct buffer_head *bh;
3491	int i;
3492	int ret;
3493	int errors = 0;
3494	u64 bytenr;
3495	int op_flags;
3496
3497	if (max_mirrors == 0)
3498		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3499
3500	shash->tfm = fs_info->csum_shash;
3501
3502	for (i = 0; i < max_mirrors; i++) {
3503		bytenr = btrfs_sb_offset(i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3504		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3505		    device->commit_total_bytes)
3506			break;
3507
3508		btrfs_set_super_bytenr(sb, bytenr);
3509
3510		crypto_shash_init(shash);
3511		crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3512				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3513		crypto_shash_final(shash, sb->csum);
3514
3515		/* One reference for us, and we leave it for the caller */
3516		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3517			      BTRFS_SUPER_INFO_SIZE);
3518		if (!bh) {
3519			btrfs_err(device->fs_info,
3520			    "couldn't get super buffer head for bytenr %llu",
3521			    bytenr);
3522			errors++;
3523			continue;
3524		}
 
3525
3526		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
 
 
3527
3528		/* one reference for submit_bh */
3529		get_bh(bh);
3530
3531		set_buffer_uptodate(bh);
3532		lock_buffer(bh);
3533		bh->b_end_io = btrfs_end_buffer_write_sync;
3534		bh->b_private = device;
 
 
 
 
 
3535
3536		/*
3537		 * we fua the first super.  The others we allow
3538		 * to go down lazy.
 
3539		 */
3540		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3541		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3542			op_flags |= REQ_FUA;
3543		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3544		if (ret)
3545			errors++;
 
3546	}
3547	return errors < i ? 0 : -1;
3548}
3549
3550/*
3551 * Wait for write completion of superblocks done by write_dev_supers,
3552 * @max_mirrors same for write and wait phases.
3553 *
3554 * Return number of errors when buffer head is not found or not marked up to
3555 * date.
3556 */
3557static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3558{
3559	struct buffer_head *bh;
3560	int i;
3561	int errors = 0;
3562	bool primary_failed = false;
 
3563	u64 bytenr;
3564
3565	if (max_mirrors == 0)
3566		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3567
3568	for (i = 0; i < max_mirrors; i++) {
3569		bytenr = btrfs_sb_offset(i);
3570		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3571		    device->commit_total_bytes)
3572			break;
3573
3574		bh = __find_get_block(device->bdev,
3575				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3576				      BTRFS_SUPER_INFO_SIZE);
3577		if (!bh) {
3578			errors++;
3579			if (i == 0)
3580				primary_failed = true;
3581			continue;
3582		}
3583		wait_on_buffer(bh);
3584		if (!buffer_uptodate(bh)) {
3585			errors++;
3586			if (i == 0)
3587				primary_failed = true;
3588		}
3589
3590		/* drop our reference */
3591		brelse(bh);
 
 
 
 
3592
3593		/* drop the reference from the writing run */
3594		brelse(bh);
 
3595	}
3596
3597	/* log error, force error return */
 
 
3598	if (primary_failed) {
3599		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3600			  device->devid);
3601		return -1;
3602	}
3603
3604	return errors < i ? 0 : -1;
3605}
3606
3607/*
3608 * endio for the write_dev_flush, this will wake anyone waiting
3609 * for the barrier when it is done
3610 */
3611static void btrfs_end_empty_barrier(struct bio *bio)
3612{
 
3613	complete(bio->bi_private);
3614}
3615
3616/*
3617 * Submit a flush request to the device if it supports it. Error handling is
3618 * done in the waiting counterpart.
3619 */
3620static void write_dev_flush(struct btrfs_device *device)
3621{
3622	struct request_queue *q = bdev_get_queue(device->bdev);
3623	struct bio *bio = device->flush_bio;
3624
3625	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3626		return;
3627
3628	bio_reset(bio);
 
3629	bio->bi_end_io = btrfs_end_empty_barrier;
3630	bio_set_dev(bio, device->bdev);
3631	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3632	init_completion(&device->flush_wait);
3633	bio->bi_private = &device->flush_wait;
3634
3635	btrfsic_submit_bio(bio);
3636	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3637}
3638
3639/*
3640 * If the flush bio has been submitted by write_dev_flush, wait for it.
 
3641 */
3642static blk_status_t wait_dev_flush(struct btrfs_device *device)
3643{
3644	struct bio *bio = device->flush_bio;
3645
3646	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3647		return BLK_STS_OK;
3648
3649	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3650	wait_for_completion_io(&device->flush_wait);
3651
3652	return bio->bi_status;
3653}
 
 
 
3654
3655static int check_barrier_error(struct btrfs_fs_info *fs_info)
3656{
3657	if (!btrfs_check_rw_degradable(fs_info, NULL))
3658		return -EIO;
3659	return 0;
3660}
3661
3662/*
3663 * send an empty flush down to each device in parallel,
3664 * then wait for them
3665 */
3666static int barrier_all_devices(struct btrfs_fs_info *info)
3667{
3668	struct list_head *head;
3669	struct btrfs_device *dev;
3670	int errors_wait = 0;
3671	blk_status_t ret;
3672
3673	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3674	/* send down all the barriers */
3675	head = &info->fs_devices->devices;
3676	list_for_each_entry(dev, head, dev_list) {
3677		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3678			continue;
3679		if (!dev->bdev)
3680			continue;
3681		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3682		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3683			continue;
3684
3685		write_dev_flush(dev);
3686		dev->last_flush_error = BLK_STS_OK;
3687	}
3688
3689	/* wait for all the barriers */
3690	list_for_each_entry(dev, head, dev_list) {
3691		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3692			continue;
3693		if (!dev->bdev) {
3694			errors_wait++;
3695			continue;
3696		}
3697		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3698		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3699			continue;
3700
3701		ret = wait_dev_flush(dev);
3702		if (ret) {
3703			dev->last_flush_error = ret;
3704			btrfs_dev_stat_inc_and_print(dev,
3705					BTRFS_DEV_STAT_FLUSH_ERRS);
3706			errors_wait++;
3707		}
3708	}
3709
3710	if (errors_wait) {
3711		/*
3712		 * At some point we need the status of all disks
3713		 * to arrive at the volume status. So error checking
3714		 * is being pushed to a separate loop.
3715		 */
3716		return check_barrier_error(info);
3717	}
3718	return 0;
3719}
3720
3721int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3722{
3723	int raid_type;
3724	int min_tolerated = INT_MAX;
3725
3726	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3727	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3728		min_tolerated = min_t(int, min_tolerated,
3729				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3730				    tolerated_failures);
3731
3732	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3733		if (raid_type == BTRFS_RAID_SINGLE)
3734			continue;
3735		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3736			continue;
3737		min_tolerated = min_t(int, min_tolerated,
3738				    btrfs_raid_array[raid_type].
3739				    tolerated_failures);
3740	}
3741
3742	if (min_tolerated == INT_MAX) {
3743		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3744		min_tolerated = 0;
3745	}
3746
3747	return min_tolerated;
3748}
3749
3750int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3751{
3752	struct list_head *head;
3753	struct btrfs_device *dev;
3754	struct btrfs_super_block *sb;
3755	struct btrfs_dev_item *dev_item;
3756	int ret;
3757	int do_barriers;
3758	int max_errors;
3759	int total_errors = 0;
3760	u64 flags;
3761
3762	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3763
3764	/*
3765	 * max_mirrors == 0 indicates we're from commit_transaction,
3766	 * not from fsync where the tree roots in fs_info have not
3767	 * been consistent on disk.
3768	 */
3769	if (max_mirrors == 0)
3770		backup_super_roots(fs_info);
3771
3772	sb = fs_info->super_for_commit;
3773	dev_item = &sb->dev_item;
3774
3775	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3776	head = &fs_info->fs_devices->devices;
3777	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3778
3779	if (do_barriers) {
3780		ret = barrier_all_devices(fs_info);
3781		if (ret) {
3782			mutex_unlock(
3783				&fs_info->fs_devices->device_list_mutex);
3784			btrfs_handle_fs_error(fs_info, ret,
3785					      "errors while submitting device barriers.");
3786			return ret;
3787		}
3788	}
3789
3790	list_for_each_entry(dev, head, dev_list) {
3791		if (!dev->bdev) {
3792			total_errors++;
3793			continue;
3794		}
3795		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3796		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3797			continue;
3798
3799		btrfs_set_stack_device_generation(dev_item, 0);
3800		btrfs_set_stack_device_type(dev_item, dev->type);
3801		btrfs_set_stack_device_id(dev_item, dev->devid);
3802		btrfs_set_stack_device_total_bytes(dev_item,
3803						   dev->commit_total_bytes);
3804		btrfs_set_stack_device_bytes_used(dev_item,
3805						  dev->commit_bytes_used);
3806		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3807		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3808		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3809		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3810		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3811		       BTRFS_FSID_SIZE);
3812
3813		flags = btrfs_super_flags(sb);
3814		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3815
3816		ret = btrfs_validate_write_super(fs_info, sb);
3817		if (ret < 0) {
3818			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3819			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3820				"unexpected superblock corruption detected");
3821			return -EUCLEAN;
3822		}
3823
3824		ret = write_dev_supers(dev, sb, max_mirrors);
3825		if (ret)
3826			total_errors++;
3827	}
3828	if (total_errors > max_errors) {
3829		btrfs_err(fs_info, "%d errors while writing supers",
3830			  total_errors);
3831		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3832
3833		/* FUA is masked off if unsupported and can't be the reason */
3834		btrfs_handle_fs_error(fs_info, -EIO,
3835				      "%d errors while writing supers",
3836				      total_errors);
3837		return -EIO;
3838	}
3839
3840	total_errors = 0;
3841	list_for_each_entry(dev, head, dev_list) {
3842		if (!dev->bdev)
3843			continue;
3844		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3845		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3846			continue;
3847
3848		ret = wait_dev_supers(dev, max_mirrors);
3849		if (ret)
3850			total_errors++;
3851	}
3852	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3853	if (total_errors > max_errors) {
3854		btrfs_handle_fs_error(fs_info, -EIO,
3855				      "%d errors while writing supers",
3856				      total_errors);
3857		return -EIO;
3858	}
3859	return 0;
3860}
3861
3862/* Drop a fs root from the radix tree and free it. */
3863void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3864				  struct btrfs_root *root)
3865{
 
 
3866	spin_lock(&fs_info->fs_roots_radix_lock);
3867	radix_tree_delete(&fs_info->fs_roots_radix,
3868			  (unsigned long)root->root_key.objectid);
 
 
3869	spin_unlock(&fs_info->fs_roots_radix_lock);
3870
3871	if (btrfs_root_refs(&root->root_item) == 0)
3872		synchronize_srcu(&fs_info->subvol_srcu);
3873
3874	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3875		btrfs_free_log(NULL, root);
3876		if (root->reloc_root) {
3877			free_extent_buffer(root->reloc_root->node);
3878			free_extent_buffer(root->reloc_root->commit_root);
3879			btrfs_put_fs_root(root->reloc_root);
3880			root->reloc_root = NULL;
3881		}
3882	}
3883
3884	if (root->free_ino_pinned)
3885		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3886	if (root->free_ino_ctl)
3887		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3888	btrfs_free_fs_root(root);
3889}
3890
3891void btrfs_free_fs_root(struct btrfs_root *root)
3892{
3893	iput(root->ino_cache_inode);
3894	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3895	if (root->anon_dev)
3896		free_anon_bdev(root->anon_dev);
3897	if (root->subv_writers)
3898		btrfs_free_subvolume_writers(root->subv_writers);
3899	free_extent_buffer(root->node);
3900	free_extent_buffer(root->commit_root);
3901	kfree(root->free_ino_ctl);
3902	kfree(root->free_ino_pinned);
3903	btrfs_put_fs_root(root);
3904}
3905
3906int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3907{
3908	u64 root_objectid = 0;
3909	struct btrfs_root *gang[8];
3910	int i = 0;
3911	int err = 0;
3912	unsigned int ret = 0;
3913	int index;
3914
3915	while (1) {
3916		index = srcu_read_lock(&fs_info->subvol_srcu);
3917		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3918					     (void **)gang, root_objectid,
3919					     ARRAY_SIZE(gang));
3920		if (!ret) {
3921			srcu_read_unlock(&fs_info->subvol_srcu, index);
3922			break;
3923		}
3924		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3925
3926		for (i = 0; i < ret; i++) {
3927			/* Avoid to grab roots in dead_roots */
3928			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3929				gang[i] = NULL;
3930				continue;
3931			}
3932			/* grab all the search result for later use */
3933			gang[i] = btrfs_grab_fs_root(gang[i]);
3934		}
3935		srcu_read_unlock(&fs_info->subvol_srcu, index);
3936
3937		for (i = 0; i < ret; i++) {
3938			if (!gang[i])
3939				continue;
3940			root_objectid = gang[i]->root_key.objectid;
3941			err = btrfs_orphan_cleanup(gang[i]);
3942			if (err)
3943				break;
3944			btrfs_put_fs_root(gang[i]);
3945		}
3946		root_objectid++;
3947	}
3948
3949	/* release the uncleaned roots due to error */
3950	for (; i < ret; i++) {
3951		if (gang[i])
3952			btrfs_put_fs_root(gang[i]);
3953	}
3954	return err;
3955}
3956
3957int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3958{
3959	struct btrfs_root *root = fs_info->tree_root;
3960	struct btrfs_trans_handle *trans;
3961
3962	mutex_lock(&fs_info->cleaner_mutex);
3963	btrfs_run_delayed_iputs(fs_info);
3964	mutex_unlock(&fs_info->cleaner_mutex);
3965	wake_up_process(fs_info->cleaner_kthread);
3966
3967	/* wait until ongoing cleanup work done */
3968	down_write(&fs_info->cleanup_work_sem);
3969	up_write(&fs_info->cleanup_work_sem);
3970
3971	trans = btrfs_join_transaction(root);
3972	if (IS_ERR(trans))
3973		return PTR_ERR(trans);
3974	return btrfs_commit_transaction(trans);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3975}
3976
3977void close_ctree(struct btrfs_fs_info *fs_info)
3978{
3979	int ret;
3980
3981	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3982	/*
3983	 * We don't want the cleaner to start new transactions, add more delayed
3984	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3985	 * because that frees the task_struct, and the transaction kthread might
3986	 * still try to wake up the cleaner.
3987	 */
3988	kthread_park(fs_info->cleaner_kthread);
3989
3990	/* wait for the qgroup rescan worker to stop */
3991	btrfs_qgroup_wait_for_completion(fs_info, false);
3992
3993	/* wait for the uuid_scan task to finish */
3994	down(&fs_info->uuid_tree_rescan_sem);
3995	/* avoid complains from lockdep et al., set sem back to initial state */
3996	up(&fs_info->uuid_tree_rescan_sem);
3997
3998	/* pause restriper - we want to resume on mount */
3999	btrfs_pause_balance(fs_info);
4000
4001	btrfs_dev_replace_suspend_for_unmount(fs_info);
4002
4003	btrfs_scrub_cancel(fs_info);
4004
4005	/* wait for any defraggers to finish */
4006	wait_event(fs_info->transaction_wait,
4007		   (atomic_read(&fs_info->defrag_running) == 0));
4008
4009	/* clear out the rbtree of defraggable inodes */
4010	btrfs_cleanup_defrag_inodes(fs_info);
4011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4012	cancel_work_sync(&fs_info->async_reclaim_work);
 
 
 
 
 
 
4013
4014	if (!sb_rdonly(fs_info->sb)) {
4015		/*
4016		 * The cleaner kthread is stopped, so do one final pass over
4017		 * unused block groups.
4018		 */
4019		btrfs_delete_unused_bgs(fs_info);
4020
 
 
 
 
 
 
 
 
 
 
 
 
 
4021		ret = btrfs_commit_super(fs_info);
4022		if (ret)
4023			btrfs_err(fs_info, "commit super ret %d", ret);
4024	}
4025
4026	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4027	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4028		btrfs_error_commit_super(fs_info);
4029
4030	kthread_stop(fs_info->transaction_kthread);
4031	kthread_stop(fs_info->cleaner_kthread);
4032
4033	ASSERT(list_empty(&fs_info->delayed_iputs));
4034	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4035
 
 
 
 
 
4036	btrfs_free_qgroup_config(fs_info);
4037	ASSERT(list_empty(&fs_info->delalloc_roots));
4038
4039	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4040		btrfs_info(fs_info, "at unmount delalloc count %lld",
4041		       percpu_counter_sum(&fs_info->delalloc_bytes));
4042	}
4043
4044	if (percpu_counter_sum(&fs_info->dio_bytes))
4045		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4046			   percpu_counter_sum(&fs_info->dio_bytes));
4047
4048	btrfs_sysfs_remove_mounted(fs_info);
4049	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4050
4051	btrfs_free_fs_roots(fs_info);
4052
4053	btrfs_put_block_group_cache(fs_info);
4054
4055	/*
4056	 * we must make sure there is not any read request to
4057	 * submit after we stopping all workers.
4058	 */
4059	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4060	btrfs_stop_all_workers(fs_info);
4061
4062	btrfs_free_block_groups(fs_info);
 
4063
4064	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4065	free_root_pointers(fs_info, 1);
 
4066
4067	iput(fs_info->btree_inode);
 
 
 
 
 
 
 
4068
4069#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4070	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4071		btrfsic_unmount(fs_info->fs_devices);
4072#endif
4073
4074	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4075	btrfs_close_devices(fs_info->fs_devices);
4076
4077	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4078	percpu_counter_destroy(&fs_info->delalloc_bytes);
4079	percpu_counter_destroy(&fs_info->dio_bytes);
4080	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4081	cleanup_srcu_struct(&fs_info->subvol_srcu);
4082
4083	btrfs_free_csum_hash(fs_info);
4084	btrfs_free_stripe_hash_table(fs_info);
4085	btrfs_free_ref_cache(fs_info);
4086}
4087
4088int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4089			  int atomic)
4090{
4091	int ret;
4092	struct inode *btree_inode = buf->pages[0]->mapping->host;
4093
4094	ret = extent_buffer_uptodate(buf);
4095	if (!ret)
4096		return ret;
4097
4098	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4099				    parent_transid, atomic);
4100	if (ret == -EAGAIN)
4101		return ret;
4102	return !ret;
4103}
4104
4105void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4106{
4107	struct btrfs_fs_info *fs_info;
4108	struct btrfs_root *root;
4109	u64 transid = btrfs_header_generation(buf);
4110	int was_dirty;
4111
4112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4113	/*
4114	 * This is a fast path so only do this check if we have sanity tests
4115	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4116	 * outside of the sanity tests.
4117	 */
4118	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4119		return;
4120#endif
4121	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4122	fs_info = root->fs_info;
4123	btrfs_assert_tree_locked(buf);
4124	if (transid != fs_info->generation)
4125		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4126			buf->start, transid, fs_info->generation);
4127	was_dirty = set_extent_buffer_dirty(buf);
4128	if (!was_dirty)
4129		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4130					 buf->len,
4131					 fs_info->dirty_metadata_batch);
4132#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4133	/*
4134	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4135	 * but item data not updated.
4136	 * So here we should only check item pointers, not item data.
4137	 */
4138	if (btrfs_header_level(buf) == 0 &&
4139	    btrfs_check_leaf_relaxed(buf)) {
4140		btrfs_print_leaf(buf);
4141		ASSERT(0);
4142	}
4143#endif
4144}
4145
4146static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4147					int flush_delayed)
4148{
4149	/*
4150	 * looks as though older kernels can get into trouble with
4151	 * this code, they end up stuck in balance_dirty_pages forever
4152	 */
4153	int ret;
4154
4155	if (current->flags & PF_MEMALLOC)
4156		return;
4157
4158	if (flush_delayed)
4159		btrfs_balance_delayed_items(fs_info);
4160
4161	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4162				     BTRFS_DIRTY_METADATA_THRESH,
4163				     fs_info->dirty_metadata_batch);
4164	if (ret > 0) {
4165		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4166	}
4167}
4168
4169void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4170{
4171	__btrfs_btree_balance_dirty(fs_info, 1);
4172}
4173
4174void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4175{
4176	__btrfs_btree_balance_dirty(fs_info, 0);
4177}
4178
4179int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4180		      struct btrfs_key *first_key)
4181{
4182	return btree_read_extent_buffer_pages(buf, parent_transid,
4183					      level, first_key);
4184}
4185
4186static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4187{
4188	/* cleanup FS via transaction */
4189	btrfs_cleanup_transaction(fs_info);
4190
4191	mutex_lock(&fs_info->cleaner_mutex);
4192	btrfs_run_delayed_iputs(fs_info);
4193	mutex_unlock(&fs_info->cleaner_mutex);
4194
4195	down_write(&fs_info->cleanup_work_sem);
4196	up_write(&fs_info->cleanup_work_sem);
4197}
4198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4199static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4200{
4201	struct btrfs_ordered_extent *ordered;
4202
4203	spin_lock(&root->ordered_extent_lock);
4204	/*
4205	 * This will just short circuit the ordered completion stuff which will
4206	 * make sure the ordered extent gets properly cleaned up.
4207	 */
4208	list_for_each_entry(ordered, &root->ordered_extents,
4209			    root_extent_list)
4210		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4211	spin_unlock(&root->ordered_extent_lock);
4212}
4213
4214static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4215{
4216	struct btrfs_root *root;
4217	struct list_head splice;
4218
4219	INIT_LIST_HEAD(&splice);
4220
4221	spin_lock(&fs_info->ordered_root_lock);
4222	list_splice_init(&fs_info->ordered_roots, &splice);
4223	while (!list_empty(&splice)) {
4224		root = list_first_entry(&splice, struct btrfs_root,
4225					ordered_root);
4226		list_move_tail(&root->ordered_root,
4227			       &fs_info->ordered_roots);
4228
4229		spin_unlock(&fs_info->ordered_root_lock);
4230		btrfs_destroy_ordered_extents(root);
4231
4232		cond_resched();
4233		spin_lock(&fs_info->ordered_root_lock);
4234	}
4235	spin_unlock(&fs_info->ordered_root_lock);
4236
4237	/*
4238	 * We need this here because if we've been flipped read-only we won't
4239	 * get sync() from the umount, so we need to make sure any ordered
4240	 * extents that haven't had their dirty pages IO start writeout yet
4241	 * actually get run and error out properly.
4242	 */
4243	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4244}
4245
4246static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4247				      struct btrfs_fs_info *fs_info)
4248{
4249	struct rb_node *node;
4250	struct btrfs_delayed_ref_root *delayed_refs;
4251	struct btrfs_delayed_ref_node *ref;
4252	int ret = 0;
4253
4254	delayed_refs = &trans->delayed_refs;
4255
4256	spin_lock(&delayed_refs->lock);
4257	if (atomic_read(&delayed_refs->num_entries) == 0) {
4258		spin_unlock(&delayed_refs->lock);
4259		btrfs_info(fs_info, "delayed_refs has NO entry");
4260		return ret;
4261	}
4262
4263	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4264		struct btrfs_delayed_ref_head *head;
4265		struct rb_node *n;
4266		bool pin_bytes = false;
4267
4268		head = rb_entry(node, struct btrfs_delayed_ref_head,
4269				href_node);
4270		if (btrfs_delayed_ref_lock(delayed_refs, head))
4271			continue;
4272
4273		spin_lock(&head->lock);
4274		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4275			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4276				       ref_node);
4277			ref->in_tree = 0;
4278			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4279			RB_CLEAR_NODE(&ref->ref_node);
4280			if (!list_empty(&ref->add_list))
4281				list_del(&ref->add_list);
4282			atomic_dec(&delayed_refs->num_entries);
4283			btrfs_put_delayed_ref(ref);
4284		}
4285		if (head->must_insert_reserved)
4286			pin_bytes = true;
4287		btrfs_free_delayed_extent_op(head->extent_op);
4288		btrfs_delete_ref_head(delayed_refs, head);
4289		spin_unlock(&head->lock);
4290		spin_unlock(&delayed_refs->lock);
4291		mutex_unlock(&head->mutex);
4292
4293		if (pin_bytes)
4294			btrfs_pin_extent(fs_info, head->bytenr,
4295					 head->num_bytes, 1);
4296		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4297		btrfs_put_delayed_ref_head(head);
4298		cond_resched();
4299		spin_lock(&delayed_refs->lock);
4300	}
4301
4302	spin_unlock(&delayed_refs->lock);
4303
4304	return ret;
4305}
4306
4307static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4308{
4309	struct btrfs_inode *btrfs_inode;
4310	struct list_head splice;
4311
4312	INIT_LIST_HEAD(&splice);
4313
4314	spin_lock(&root->delalloc_lock);
4315	list_splice_init(&root->delalloc_inodes, &splice);
4316
4317	while (!list_empty(&splice)) {
4318		struct inode *inode = NULL;
4319		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4320					       delalloc_inodes);
4321		__btrfs_del_delalloc_inode(root, btrfs_inode);
4322		spin_unlock(&root->delalloc_lock);
4323
4324		/*
4325		 * Make sure we get a live inode and that it'll not disappear
4326		 * meanwhile.
4327		 */
4328		inode = igrab(&btrfs_inode->vfs_inode);
4329		if (inode) {
 
 
 
4330			invalidate_inode_pages2(inode->i_mapping);
 
4331			iput(inode);
4332		}
4333		spin_lock(&root->delalloc_lock);
4334	}
4335	spin_unlock(&root->delalloc_lock);
4336}
4337
4338static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4339{
4340	struct btrfs_root *root;
4341	struct list_head splice;
4342
4343	INIT_LIST_HEAD(&splice);
4344
4345	spin_lock(&fs_info->delalloc_root_lock);
4346	list_splice_init(&fs_info->delalloc_roots, &splice);
4347	while (!list_empty(&splice)) {
4348		root = list_first_entry(&splice, struct btrfs_root,
4349					 delalloc_root);
4350		root = btrfs_grab_fs_root(root);
4351		BUG_ON(!root);
4352		spin_unlock(&fs_info->delalloc_root_lock);
4353
4354		btrfs_destroy_delalloc_inodes(root);
4355		btrfs_put_fs_root(root);
4356
4357		spin_lock(&fs_info->delalloc_root_lock);
4358	}
4359	spin_unlock(&fs_info->delalloc_root_lock);
4360}
4361
4362static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4363					struct extent_io_tree *dirty_pages,
4364					int mark)
4365{
4366	int ret;
4367	struct extent_buffer *eb;
4368	u64 start = 0;
4369	u64 end;
4370
4371	while (1) {
4372		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4373					    mark, NULL);
4374		if (ret)
4375			break;
4376
4377		clear_extent_bits(dirty_pages, start, end, mark);
4378		while (start <= end) {
4379			eb = find_extent_buffer(fs_info, start);
4380			start += fs_info->nodesize;
4381			if (!eb)
4382				continue;
 
 
4383			wait_on_extent_buffer_writeback(eb);
 
 
4384
4385			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4386					       &eb->bflags))
4387				clear_extent_buffer_dirty(eb);
4388			free_extent_buffer_stale(eb);
4389		}
4390	}
4391
4392	return ret;
4393}
4394
4395static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4396				       struct extent_io_tree *pinned_extents)
4397{
4398	struct extent_io_tree *unpin;
4399	u64 start;
4400	u64 end;
4401	int ret;
4402	bool loop = true;
4403
4404	unpin = pinned_extents;
4405again:
4406	while (1) {
4407		struct extent_state *cached_state = NULL;
4408
4409		/*
4410		 * The btrfs_finish_extent_commit() may get the same range as
4411		 * ours between find_first_extent_bit and clear_extent_dirty.
4412		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4413		 * the same extent range.
4414		 */
4415		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4416		ret = find_first_extent_bit(unpin, 0, &start, &end,
4417					    EXTENT_DIRTY, &cached_state);
4418		if (ret) {
4419			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4420			break;
4421		}
4422
4423		clear_extent_dirty(unpin, start, end, &cached_state);
4424		free_extent_state(cached_state);
4425		btrfs_error_unpin_extent_range(fs_info, start, end);
4426		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4427		cond_resched();
4428	}
4429
4430	if (loop) {
4431		if (unpin == &fs_info->freed_extents[0])
4432			unpin = &fs_info->freed_extents[1];
4433		else
4434			unpin = &fs_info->freed_extents[0];
4435		loop = false;
4436		goto again;
4437	}
4438
4439	return 0;
4440}
4441
4442static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4443{
4444	struct inode *inode;
4445
4446	inode = cache->io_ctl.inode;
4447	if (inode) {
 
 
 
4448		invalidate_inode_pages2(inode->i_mapping);
 
 
4449		BTRFS_I(inode)->generation = 0;
4450		cache->io_ctl.inode = NULL;
4451		iput(inode);
4452	}
 
4453	btrfs_put_block_group(cache);
4454}
4455
4456void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4457			     struct btrfs_fs_info *fs_info)
4458{
4459	struct btrfs_block_group_cache *cache;
4460
4461	spin_lock(&cur_trans->dirty_bgs_lock);
4462	while (!list_empty(&cur_trans->dirty_bgs)) {
4463		cache = list_first_entry(&cur_trans->dirty_bgs,
4464					 struct btrfs_block_group_cache,
4465					 dirty_list);
4466
4467		if (!list_empty(&cache->io_list)) {
4468			spin_unlock(&cur_trans->dirty_bgs_lock);
4469			list_del_init(&cache->io_list);
4470			btrfs_cleanup_bg_io(cache);
4471			spin_lock(&cur_trans->dirty_bgs_lock);
4472		}
4473
4474		list_del_init(&cache->dirty_list);
4475		spin_lock(&cache->lock);
4476		cache->disk_cache_state = BTRFS_DC_ERROR;
4477		spin_unlock(&cache->lock);
4478
4479		spin_unlock(&cur_trans->dirty_bgs_lock);
4480		btrfs_put_block_group(cache);
4481		btrfs_delayed_refs_rsv_release(fs_info, 1);
4482		spin_lock(&cur_trans->dirty_bgs_lock);
4483	}
4484	spin_unlock(&cur_trans->dirty_bgs_lock);
4485
4486	/*
4487	 * Refer to the definition of io_bgs member for details why it's safe
4488	 * to use it without any locking
4489	 */
4490	while (!list_empty(&cur_trans->io_bgs)) {
4491		cache = list_first_entry(&cur_trans->io_bgs,
4492					 struct btrfs_block_group_cache,
4493					 io_list);
4494
4495		list_del_init(&cache->io_list);
4496		spin_lock(&cache->lock);
4497		cache->disk_cache_state = BTRFS_DC_ERROR;
4498		spin_unlock(&cache->lock);
4499		btrfs_cleanup_bg_io(cache);
4500	}
4501}
4502
4503void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4504				   struct btrfs_fs_info *fs_info)
4505{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4506	struct btrfs_device *dev, *tmp;
4507
4508	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4509	ASSERT(list_empty(&cur_trans->dirty_bgs));
4510	ASSERT(list_empty(&cur_trans->io_bgs));
4511
4512	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4513				 post_commit_list) {
4514		list_del_init(&dev->post_commit_list);
4515	}
4516
4517	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4518
4519	cur_trans->state = TRANS_STATE_COMMIT_START;
4520	wake_up(&fs_info->transaction_blocked_wait);
4521
4522	cur_trans->state = TRANS_STATE_UNBLOCKED;
4523	wake_up(&fs_info->transaction_wait);
4524
4525	btrfs_destroy_delayed_inodes(fs_info);
4526	btrfs_assert_delayed_root_empty(fs_info);
4527
4528	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4529				     EXTENT_DIRTY);
4530	btrfs_destroy_pinned_extent(fs_info,
4531				    fs_info->pinned_extents);
4532
4533	cur_trans->state =TRANS_STATE_COMPLETED;
4534	wake_up(&cur_trans->commit_wait);
4535}
4536
4537static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4538{
4539	struct btrfs_transaction *t;
4540
4541	mutex_lock(&fs_info->transaction_kthread_mutex);
4542
4543	spin_lock(&fs_info->trans_lock);
4544	while (!list_empty(&fs_info->trans_list)) {
4545		t = list_first_entry(&fs_info->trans_list,
4546				     struct btrfs_transaction, list);
4547		if (t->state >= TRANS_STATE_COMMIT_START) {
4548			refcount_inc(&t->use_count);
4549			spin_unlock(&fs_info->trans_lock);
4550			btrfs_wait_for_commit(fs_info, t->transid);
4551			btrfs_put_transaction(t);
4552			spin_lock(&fs_info->trans_lock);
4553			continue;
4554		}
4555		if (t == fs_info->running_transaction) {
4556			t->state = TRANS_STATE_COMMIT_DOING;
4557			spin_unlock(&fs_info->trans_lock);
4558			/*
4559			 * We wait for 0 num_writers since we don't hold a trans
4560			 * handle open currently for this transaction.
4561			 */
4562			wait_event(t->writer_wait,
4563				   atomic_read(&t->num_writers) == 0);
4564		} else {
4565			spin_unlock(&fs_info->trans_lock);
4566		}
4567		btrfs_cleanup_one_transaction(t, fs_info);
4568
4569		spin_lock(&fs_info->trans_lock);
4570		if (t == fs_info->running_transaction)
4571			fs_info->running_transaction = NULL;
4572		list_del_init(&t->list);
4573		spin_unlock(&fs_info->trans_lock);
4574
4575		btrfs_put_transaction(t);
4576		trace_btrfs_transaction_commit(fs_info->tree_root);
4577		spin_lock(&fs_info->trans_lock);
4578	}
4579	spin_unlock(&fs_info->trans_lock);
4580	btrfs_destroy_all_ordered_extents(fs_info);
4581	btrfs_destroy_delayed_inodes(fs_info);
4582	btrfs_assert_delayed_root_empty(fs_info);
4583	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4584	btrfs_destroy_all_delalloc_inodes(fs_info);
 
 
4585	mutex_unlock(&fs_info->transaction_kthread_mutex);
4586
4587	return 0;
4588}
4589
4590static const struct extent_io_ops btree_extent_io_ops = {
4591	/* mandatory callbacks */
4592	.submit_bio_hook = btree_submit_bio_hook,
4593	.readpage_end_io_hook = btree_readpage_end_io_hook,
4594};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
 
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <linux/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "bio.h"
  27#include "print-tree.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
 
 
 
  32#include "dev-replace.h"
  33#include "raid56.h"
  34#include "sysfs.h"
  35#include "qgroup.h"
  36#include "compression.h"
  37#include "tree-checker.h"
  38#include "ref-verify.h"
  39#include "block-group.h"
  40#include "discard.h"
  41#include "space-info.h"
  42#include "zoned.h"
  43#include "subpage.h"
  44#include "fs.h"
  45#include "accessors.h"
  46#include "extent-tree.h"
  47#include "root-tree.h"
  48#include "defrag.h"
  49#include "uuid-tree.h"
  50#include "relocation.h"
  51#include "scrub.h"
  52#include "super.h"
  53
  54#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  55				 BTRFS_HEADER_FLAG_RELOC |\
  56				 BTRFS_SUPER_FLAG_ERROR |\
  57				 BTRFS_SUPER_FLAG_SEEDING |\
  58				 BTRFS_SUPER_FLAG_METADUMP |\
  59				 BTRFS_SUPER_FLAG_METADUMP_V2)
  60
 
 
 
 
 
 
 
 
 
 
 
  61static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  62static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  63
  64static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65{
  66	if (fs_info->csum_shash)
  67		crypto_free_shash(fs_info->csum_shash);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68}
  69
  70/*
  71 * Compute the csum of a btree block and store the result to provided buffer.
 
 
  72 */
  73static void csum_tree_block(struct extent_buffer *buf, u8 *result)
  74{
  75	struct btrfs_fs_info *fs_info = buf->fs_info;
  76	int num_pages;
  77	u32 first_page_part;
  78	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
 
 
  79	char *kaddr;
  80	int i;
 
 
  81
  82	shash->tfm = fs_info->csum_shash;
  83	crypto_shash_init(shash);
  84
  85	if (buf->addr) {
  86		/* Pages are contiguous, handle them as a big one. */
  87		kaddr = buf->addr;
  88		first_page_part = fs_info->nodesize;
  89		num_pages = 1;
  90	} else {
  91		kaddr = folio_address(buf->folios[0]);
  92		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
  93		num_pages = num_extent_pages(buf);
  94	}
  95
  96	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
  97			    first_page_part - BTRFS_CSUM_SIZE);
  98
  99	/*
 100	 * Multiple single-page folios case would reach here.
 101	 *
 102	 * nodesize <= PAGE_SIZE and large folio all handled by above
 103	 * crypto_shash_update() already.
 104	 */
 105	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
 106		kaddr = folio_address(buf->folios[i]);
 107		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 
 
 
 108	}
 109	memset(result, 0, BTRFS_CSUM_SIZE);
 
 110	crypto_shash_final(shash, result);
 
 
 111}
 112
 113/*
 114 * we can't consider a given block up to date unless the transid of the
 115 * block matches the transid in the parent node's pointer.  This is how we
 116 * detect blocks that either didn't get written at all or got written
 117 * in the wrong place.
 118 */
 119int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
 
 
 120{
 121	if (!extent_buffer_uptodate(eb))
 122		return 0;
 
 123
 124	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 125		return 1;
 126
 127	if (atomic)
 128		return -EAGAIN;
 129
 130	if (!extent_buffer_uptodate(eb) ||
 131	    btrfs_header_generation(eb) != parent_transid) {
 132		btrfs_err_rl(eb->fs_info,
 133"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 134			eb->start, eb->read_mirror,
 
 
 
 
 
 
 
 
 
 
 135			parent_transid, btrfs_header_generation(eb));
 
 
 
 
 
 
 
 
 
 
 
 136		clear_extent_buffer_uptodate(eb);
 137		return 0;
 138	}
 139	return 1;
 
 
 
 140}
 141
 142static bool btrfs_supported_super_csum(u16 csum_type)
 143{
 144	switch (csum_type) {
 145	case BTRFS_CSUM_TYPE_CRC32:
 146	case BTRFS_CSUM_TYPE_XXHASH:
 147	case BTRFS_CSUM_TYPE_SHA256:
 148	case BTRFS_CSUM_TYPE_BLAKE2:
 149		return true;
 150	default:
 151		return false;
 152	}
 153}
 154
 155/*
 156 * Return 0 if the superblock checksum type matches the checksum value of that
 157 * algorithm. Pass the raw disk superblock data.
 158 */
 159int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 160			   const struct btrfs_super_block *disk_sb)
 161{
 
 
 162	char result[BTRFS_CSUM_SIZE];
 163	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 164
 165	shash->tfm = fs_info->csum_shash;
 
 166
 167	/*
 168	 * The super_block structure does not span the whole
 169	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 170	 * filled with zeros and is included in the checksum.
 171	 */
 172	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
 173			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 
 174
 175	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
 176		return 1;
 177
 178	return 0;
 179}
 180
 181static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
 182				      int mirror_num)
 183{
 184	struct btrfs_fs_info *fs_info = eb->fs_info;
 185	int num_folios = num_extent_folios(eb);
 186	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187
 188	if (sb_rdonly(fs_info->sb))
 189		return -EROFS;
 
 
 
 
 
 
 190
 191	for (int i = 0; i < num_folios; i++) {
 192		struct folio *folio = eb->folios[i];
 193		u64 start = max_t(u64, eb->start, folio_pos(folio));
 194		u64 end = min_t(u64, eb->start + eb->len,
 195				folio_pos(folio) + eb->folio_size);
 196		u32 len = end - start;
 197
 198		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
 199					      start, folio, offset_in_folio(folio, start),
 200					      mirror_num);
 201		if (ret)
 202			break;
 203	}
 204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205	return ret;
 206}
 207
 208/*
 209 * helper to read a given tree block, doing retries as required when
 210 * the checksums don't match and we have alternate mirrors to try.
 211 *
 212 * @check:		expected tree parentness check, see the comments of the
 213 *			structure for details.
 
 214 */
 215int btrfs_read_extent_buffer(struct extent_buffer *eb,
 216			     const struct btrfs_tree_parent_check *check)
 
 217{
 218	struct btrfs_fs_info *fs_info = eb->fs_info;
 
 219	int failed = 0;
 220	int ret;
 221	int num_copies = 0;
 222	int mirror_num = 0;
 223	int failed_mirror = 0;
 224
 225	ASSERT(check);
 226
 227	while (1) {
 228		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 229		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
 230		if (!ret)
 231			break;
 
 
 
 
 
 
 
 
 232
 233		num_copies = btrfs_num_copies(fs_info,
 234					      eb->start, eb->len);
 235		if (num_copies == 1)
 236			break;
 237
 238		if (!failed_mirror) {
 239			failed = 1;
 240			failed_mirror = eb->read_mirror;
 241		}
 242
 243		mirror_num++;
 244		if (mirror_num == failed_mirror)
 245			mirror_num++;
 246
 247		if (mirror_num > num_copies)
 248			break;
 249	}
 250
 251	if (failed && !ret && failed_mirror)
 252		btrfs_repair_eb_io_failure(eb, failed_mirror);
 253
 254	return ret;
 255}
 256
 257/*
 258 * Checksum a dirty tree block before IO.
 
 259 */
 260blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
 
 261{
 262	struct extent_buffer *eb = bbio->private;
 263	struct btrfs_fs_info *fs_info = eb->fs_info;
 264	u64 found_start = btrfs_header_bytenr(eb);
 265	u64 last_trans;
 266	u8 result[BTRFS_CSUM_SIZE];
 
 
 267	int ret;
 268
 269	/* Btree blocks are always contiguous on disk. */
 270	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
 271		return BLK_STS_IOERR;
 272	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
 273		return BLK_STS_IOERR;
 274
 
 275	/*
 276	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
 277	 * checksum it but zero-out its content. This is done to preserve
 278	 * ordering of I/O without unnecessarily writing out data.
 279	 */
 280	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
 281		memzero_extent_buffer(eb, 0, eb->len);
 282		return BLK_STS_OK;
 283	}
 284
 285	if (WARN_ON_ONCE(found_start != eb->start))
 286		return BLK_STS_IOERR;
 287	if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
 288					       eb->start, eb->len)))
 289		return BLK_STS_IOERR;
 290
 291	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 292				    offsetof(struct btrfs_header, fsid),
 293				    BTRFS_FSID_SIZE) == 0);
 294	csum_tree_block(eb, result);
 295
 296	if (btrfs_header_level(eb))
 297		ret = btrfs_check_node(eb);
 298	else
 299		ret = btrfs_check_leaf(eb);
 300
 301	if (ret < 0)
 302		goto error;
 
 
 
 
 
 303
 304	/*
 305	 * Also check the generation, the eb reached here must be newer than
 306	 * last committed. Or something seriously wrong happened.
 307	 */
 308	last_trans = btrfs_get_last_trans_committed(fs_info);
 309	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
 310		ret = -EUCLEAN;
 311		btrfs_err(fs_info,
 312			"block=%llu bad generation, have %llu expect > %llu",
 313			  eb->start, btrfs_header_generation(eb), last_trans);
 314		goto error;
 315	}
 316	write_extent_buffer(eb, result, 0, fs_info->csum_size);
 317	return BLK_STS_OK;
 318
 319error:
 320	btrfs_print_tree(eb, 0);
 321	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
 322		  eb->start);
 323	/*
 324	 * Be noisy if this is an extent buffer from a log tree. We don't abort
 325	 * a transaction in case there's a bad log tree extent buffer, we just
 326	 * fallback to a transaction commit. Still we want to know when there is
 327	 * a bad log tree extent buffer, as that may signal a bug somewhere.
 328	 */
 329	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
 330		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
 331	return errno_to_blk_status(ret);
 332}
 333
 334static bool check_tree_block_fsid(struct extent_buffer *eb)
 335{
 336	struct btrfs_fs_info *fs_info = eb->fs_info;
 337	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 338	u8 fsid[BTRFS_FSID_SIZE];
 
 339
 340	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 341			   BTRFS_FSID_SIZE);
 
 342
 343	/*
 344	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
 345	 * This is then overwritten by metadata_uuid if it is present in the
 346	 * device_list_add(). The same true for a seed device as well. So use of
 347	 * fs_devices::metadata_uuid is appropriate here.
 348	 */
 349	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
 350		return false;
 
 
 351
 352	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
 353		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
 354			return false;
 355
 356	return true;
 
 
 357}
 358
 359/* Do basic extent buffer checks at read time */
 360int btrfs_validate_extent_buffer(struct extent_buffer *eb,
 361				 const struct btrfs_tree_parent_check *check)
 362{
 363	struct btrfs_fs_info *fs_info = eb->fs_info;
 364	u64 found_start;
 365	const u32 csum_size = fs_info->csum_size;
 366	u8 found_level;
 
 
 
 
 367	u8 result[BTRFS_CSUM_SIZE];
 368	const u8 *header_csum;
 369	int ret = 0;
 370	const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS);
 
 
 
 
 
 
 
 
 371
 372	ASSERT(check);
 
 
 
 
 
 
 
 
 373
 374	found_start = btrfs_header_bytenr(eb);
 375	if (found_start != eb->start) {
 376		btrfs_err_rl(fs_info,
 377			"bad tree block start, mirror %u want %llu have %llu",
 378			     eb->read_mirror, eb->start, found_start);
 379		ret = -EIO;
 380		goto out;
 381	}
 382	if (check_tree_block_fsid(eb)) {
 383		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
 384			     eb->start, eb->read_mirror);
 385		ret = -EIO;
 386		goto out;
 387	}
 388	found_level = btrfs_header_level(eb);
 389	if (found_level >= BTRFS_MAX_LEVEL) {
 390		btrfs_err(fs_info,
 391			"bad tree block level, mirror %u level %d on logical %llu",
 392			eb->read_mirror, btrfs_header_level(eb), eb->start);
 393		ret = -EIO;
 394		goto out;
 395	}
 396
 397	csum_tree_block(eb, result);
 398	header_csum = folio_address(eb->folios[0]) +
 399		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
 
 
 
 400
 401	if (memcmp(result, header_csum, csum_size) != 0) {
 402		btrfs_warn_rl(fs_info,
 403"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s",
 404			      eb->start, eb->read_mirror,
 405			      CSUM_FMT_VALUE(csum_size, header_csum),
 406			      CSUM_FMT_VALUE(csum_size, result),
 407			      btrfs_header_level(eb),
 408			      ignore_csum ? ", ignored" : "");
 409		if (!ignore_csum) {
 410			ret = -EUCLEAN;
 411			goto out;
 412		}
 413	}
 414
 415	if (found_level != check->level) {
 416		btrfs_err(fs_info,
 417		"level verify failed on logical %llu mirror %u wanted %u found %u",
 418			  eb->start, eb->read_mirror, check->level, found_level);
 419		ret = -EIO;
 420		goto out;
 421	}
 422	if (unlikely(check->transid &&
 423		     btrfs_header_generation(eb) != check->transid)) {
 424		btrfs_err_rl(eb->fs_info,
 425"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 426				eb->start, eb->read_mirror, check->transid,
 427				btrfs_header_generation(eb));
 428		ret = -EIO;
 429		goto out;
 430	}
 431	if (check->has_first_key) {
 432		const struct btrfs_key *expect_key = &check->first_key;
 433		struct btrfs_key found_key;
 434
 435		if (found_level)
 436			btrfs_node_key_to_cpu(eb, &found_key, 0);
 437		else
 438			btrfs_item_key_to_cpu(eb, &found_key, 0);
 439		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
 440			btrfs_err(fs_info,
 441"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 442				  eb->start, check->transid,
 443				  expect_key->objectid,
 444				  expect_key->type, expect_key->offset,
 445				  found_key.objectid, found_key.type,
 446				  found_key.offset);
 447			ret = -EUCLEAN;
 448			goto out;
 449		}
 450	}
 451	if (check->owner_root) {
 452		ret = btrfs_check_eb_owner(eb, check->owner_root);
 453		if (ret < 0)
 454			goto out;
 455	}
 456
 457	/*
 458	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 459	 * that we don't try and read the other copies of this block, just
 460	 * return -EIO.
 461	 */
 462	if (found_level == 0 && btrfs_check_leaf(eb)) {
 463		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 464		ret = -EIO;
 465	}
 466
 467	if (found_level > 0 && btrfs_check_node(eb))
 468		ret = -EIO;
 469
 470	if (ret)
 
 
 471		btrfs_err(fs_info,
 472		"read time tree block corruption detected on logical %llu mirror %u",
 473			  eb->start, eb->read_mirror);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474out:
 475	return ret;
 476}
 477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478#ifdef CONFIG_MIGRATION
 479static int btree_migrate_folio(struct address_space *mapping,
 480		struct folio *dst, struct folio *src, enum migrate_mode mode)
 
 481{
 482	/*
 483	 * we can't safely write a btree page from here,
 484	 * we haven't done the locking hook
 485	 */
 486	if (folio_test_dirty(src))
 487		return -EAGAIN;
 488	/*
 489	 * Buffers may be managed in a filesystem specific way.
 490	 * We must have no buffers or drop them.
 491	 */
 492	if (folio_get_private(src) &&
 493	    !filemap_release_folio(src, GFP_KERNEL))
 494		return -EAGAIN;
 495	return migrate_folio(mapping, dst, src, mode);
 496}
 497#else
 498#define btree_migrate_folio NULL
 499#endif
 500
 
 501static int btree_writepages(struct address_space *mapping,
 502			    struct writeback_control *wbc)
 503{
 
 504	int ret;
 505
 506	if (wbc->sync_mode == WB_SYNC_NONE) {
 507		struct btrfs_fs_info *fs_info;
 508
 509		if (wbc->for_kupdate)
 510			return 0;
 511
 512		fs_info = inode_to_fs_info(mapping->host);
 513		/* this is a bit racy, but that's ok */
 514		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 515					     BTRFS_DIRTY_METADATA_THRESH,
 516					     fs_info->dirty_metadata_batch);
 517		if (ret < 0)
 518			return 0;
 519	}
 520	return btree_write_cache_pages(mapping, wbc);
 521}
 522
 523static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
 
 
 
 
 
 
 
 524{
 525	if (folio_test_writeback(folio) || folio_test_dirty(folio))
 526		return false;
 527
 528	return try_release_extent_buffer(folio);
 529}
 530
 531static void btree_invalidate_folio(struct folio *folio, size_t offset,
 532				 size_t length)
 533{
 534	struct extent_io_tree *tree;
 535
 536	tree = &folio_to_inode(folio)->io_tree;
 537	extent_invalidate_folio(tree, folio, offset);
 538	btree_release_folio(folio, GFP_NOFS);
 539	if (folio_get_private(folio)) {
 540		btrfs_warn(folio_to_fs_info(folio),
 541			   "folio private not zero on folio %llu",
 542			   (unsigned long long)folio_pos(folio));
 543		folio_detach_private(folio);
 
 544	}
 545}
 546
 
 
 547#ifdef DEBUG
 548static bool btree_dirty_folio(struct address_space *mapping,
 549		struct folio *folio)
 550{
 551	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 552	struct btrfs_subpage_info *spi = fs_info->subpage_info;
 553	struct btrfs_subpage *subpage;
 554	struct extent_buffer *eb;
 555	int cur_bit = 0;
 556	u64 page_start = folio_pos(folio);
 557
 558	if (fs_info->sectorsize == PAGE_SIZE) {
 559		eb = folio_get_private(folio);
 560		BUG_ON(!eb);
 561		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 562		BUG_ON(!atomic_read(&eb->refs));
 563		btrfs_assert_tree_write_locked(eb);
 564		return filemap_dirty_folio(mapping, folio);
 565	}
 566
 567	ASSERT(spi);
 568	subpage = folio_get_private(folio);
 569
 570	for (cur_bit = spi->dirty_offset;
 571	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
 572	     cur_bit++) {
 573		unsigned long flags;
 574		u64 cur;
 575
 576		spin_lock_irqsave(&subpage->lock, flags);
 577		if (!test_bit(cur_bit, subpage->bitmaps)) {
 578			spin_unlock_irqrestore(&subpage->lock, flags);
 579			continue;
 580		}
 581		spin_unlock_irqrestore(&subpage->lock, flags);
 582		cur = page_start + cur_bit * fs_info->sectorsize;
 583
 584		eb = find_extent_buffer(fs_info, cur);
 585		ASSERT(eb);
 586		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 587		ASSERT(atomic_read(&eb->refs));
 588		btrfs_assert_tree_write_locked(eb);
 589		free_extent_buffer(eb);
 590
 591		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
 592	}
 593	return filemap_dirty_folio(mapping, folio);
 594}
 595#else
 596#define btree_dirty_folio filemap_dirty_folio
 597#endif
 598
 599static const struct address_space_operations btree_aops = {
 
 600	.writepages	= btree_writepages,
 601	.release_folio	= btree_release_folio,
 602	.invalidate_folio = btree_invalidate_folio,
 603	.migrate_folio	= btree_migrate_folio,
 604	.dirty_folio	= btree_dirty_folio,
 
 
 605};
 606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607struct extent_buffer *btrfs_find_create_tree_block(
 608						struct btrfs_fs_info *fs_info,
 609						u64 bytenr, u64 owner_root,
 610						int level)
 611{
 612	if (btrfs_is_testing(fs_info))
 613		return alloc_test_extent_buffer(fs_info, bytenr);
 614	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
 615}
 616
 617/*
 618 * Read tree block at logical address @bytenr and do variant basic but critical
 619 * verification.
 620 *
 621 * @check:		expected tree parentness check, see comments of the
 622 *			structure for details.
 
 623 */
 624struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
 625				      struct btrfs_tree_parent_check *check)
 
 626{
 627	struct extent_buffer *buf = NULL;
 628	int ret;
 629
 630	ASSERT(check);
 631
 632	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
 633					   check->level);
 634	if (IS_ERR(buf))
 635		return buf;
 636
 637	ret = btrfs_read_extent_buffer(buf, check);
 
 638	if (ret) {
 639		free_extent_buffer_stale(buf);
 640		return ERR_PTR(ret);
 641	}
 642	return buf;
 643
 644}
 645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
 647			 u64 objectid)
 648{
 649	bool dummy = btrfs_is_testing(fs_info);
 650
 651	memset(&root->root_key, 0, sizeof(root->root_key));
 652	memset(&root->root_item, 0, sizeof(root->root_item));
 653	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
 654	root->fs_info = fs_info;
 655	root->root_key.objectid = objectid;
 656	root->node = NULL;
 657	root->commit_root = NULL;
 658	root->state = 0;
 659	RB_CLEAR_NODE(&root->rb_node);
 660
 661	btrfs_set_root_last_trans(root, 0);
 662	root->free_objectid = 0;
 663	root->nr_delalloc_inodes = 0;
 664	root->nr_ordered_extents = 0;
 665	xa_init(&root->inodes);
 666	xa_init(&root->delayed_nodes);
 667
 668	btrfs_init_root_block_rsv(root);
 669
 670	INIT_LIST_HEAD(&root->dirty_list);
 671	INIT_LIST_HEAD(&root->root_list);
 672	INIT_LIST_HEAD(&root->delalloc_inodes);
 673	INIT_LIST_HEAD(&root->delalloc_root);
 674	INIT_LIST_HEAD(&root->ordered_extents);
 675	INIT_LIST_HEAD(&root->ordered_root);
 676	INIT_LIST_HEAD(&root->reloc_dirty_list);
 
 
 
 677	spin_lock_init(&root->delalloc_lock);
 678	spin_lock_init(&root->ordered_extent_lock);
 679	spin_lock_init(&root->accounting_lock);
 
 
 680	spin_lock_init(&root->qgroup_meta_rsv_lock);
 681	mutex_init(&root->objectid_mutex);
 682	mutex_init(&root->log_mutex);
 683	mutex_init(&root->ordered_extent_mutex);
 684	mutex_init(&root->delalloc_mutex);
 685	init_waitqueue_head(&root->qgroup_flush_wait);
 686	init_waitqueue_head(&root->log_writer_wait);
 687	init_waitqueue_head(&root->log_commit_wait[0]);
 688	init_waitqueue_head(&root->log_commit_wait[1]);
 689	INIT_LIST_HEAD(&root->log_ctxs[0]);
 690	INIT_LIST_HEAD(&root->log_ctxs[1]);
 691	atomic_set(&root->log_commit[0], 0);
 692	atomic_set(&root->log_commit[1], 0);
 693	atomic_set(&root->log_writers, 0);
 694	atomic_set(&root->log_batch, 0);
 695	refcount_set(&root->refs, 1);
 
 696	atomic_set(&root->snapshot_force_cow, 0);
 697	atomic_set(&root->nr_swapfiles, 0);
 698	btrfs_set_root_log_transid(root, 0);
 699	root->log_transid_committed = -1;
 700	btrfs_set_root_last_log_commit(root, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 701	root->anon_dev = 0;
 702	if (!dummy) {
 703		extent_io_tree_init(fs_info, &root->dirty_log_pages,
 704				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
 705		extent_io_tree_init(fs_info, &root->log_csum_range,
 706				    IO_TREE_LOG_CSUM_RANGE);
 707	}
 708
 709	spin_lock_init(&root->root_item_lock);
 710	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
 711#ifdef CONFIG_BTRFS_DEBUG
 712	INIT_LIST_HEAD(&root->leak_list);
 713	spin_lock(&fs_info->fs_roots_radix_lock);
 714	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
 715	spin_unlock(&fs_info->fs_roots_radix_lock);
 716#endif
 717}
 718
 719static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
 720					   u64 objectid, gfp_t flags)
 721{
 722	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
 723	if (root)
 724		__setup_root(root, fs_info, objectid);
 725	return root;
 726}
 727
 728#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 729/* Should only be used by the testing infrastructure */
 730struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
 731{
 732	struct btrfs_root *root;
 733
 734	if (!fs_info)
 735		return ERR_PTR(-EINVAL);
 736
 737	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
 738	if (!root)
 739		return ERR_PTR(-ENOMEM);
 740
 741	/* We don't use the stripesize in selftest, set it as sectorsize */
 
 742	root->alloc_bytenr = 0;
 743
 744	return root;
 745}
 746#endif
 747
 748static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
 749{
 750	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
 751	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
 752
 753	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
 754}
 755
 756static int global_root_key_cmp(const void *k, const struct rb_node *node)
 757{
 758	const struct btrfs_key *key = k;
 759	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
 760
 761	return btrfs_comp_cpu_keys(key, &root->root_key);
 762}
 763
 764int btrfs_global_root_insert(struct btrfs_root *root)
 765{
 766	struct btrfs_fs_info *fs_info = root->fs_info;
 767	struct rb_node *tmp;
 768	int ret = 0;
 769
 770	write_lock(&fs_info->global_root_lock);
 771	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
 772	write_unlock(&fs_info->global_root_lock);
 773
 774	if (tmp) {
 775		ret = -EEXIST;
 776		btrfs_warn(fs_info, "global root %llu %llu already exists",
 777			   btrfs_root_id(root), root->root_key.offset);
 778	}
 779	return ret;
 780}
 781
 782void btrfs_global_root_delete(struct btrfs_root *root)
 783{
 784	struct btrfs_fs_info *fs_info = root->fs_info;
 785
 786	write_lock(&fs_info->global_root_lock);
 787	rb_erase(&root->rb_node, &fs_info->global_root_tree);
 788	write_unlock(&fs_info->global_root_lock);
 789}
 790
 791struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
 792				     struct btrfs_key *key)
 793{
 794	struct rb_node *node;
 795	struct btrfs_root *root = NULL;
 796
 797	read_lock(&fs_info->global_root_lock);
 798	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
 799	if (node)
 800		root = container_of(node, struct btrfs_root, rb_node);
 801	read_unlock(&fs_info->global_root_lock);
 802
 803	return root;
 804}
 805
 806static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
 807{
 808	struct btrfs_block_group *block_group;
 809	u64 ret;
 810
 811	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
 812		return 0;
 813
 814	if (bytenr)
 815		block_group = btrfs_lookup_block_group(fs_info, bytenr);
 816	else
 817		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
 818	ASSERT(block_group);
 819	if (!block_group)
 820		return 0;
 821	ret = block_group->global_root_id;
 822	btrfs_put_block_group(block_group);
 823
 824	return ret;
 825}
 826
 827struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 828{
 829	struct btrfs_key key = {
 830		.objectid = BTRFS_CSUM_TREE_OBJECTID,
 831		.type = BTRFS_ROOT_ITEM_KEY,
 832		.offset = btrfs_global_root_id(fs_info, bytenr),
 833	};
 834
 835	return btrfs_global_root(fs_info, &key);
 836}
 837
 838struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 839{
 840	struct btrfs_key key = {
 841		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
 842		.type = BTRFS_ROOT_ITEM_KEY,
 843		.offset = btrfs_global_root_id(fs_info, bytenr),
 844	};
 845
 846	return btrfs_global_root(fs_info, &key);
 847}
 848
 849struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
 850				     u64 objectid)
 851{
 852	struct btrfs_fs_info *fs_info = trans->fs_info;
 853	struct extent_buffer *leaf;
 854	struct btrfs_root *tree_root = fs_info->tree_root;
 855	struct btrfs_root *root;
 856	struct btrfs_key key;
 857	unsigned int nofs_flag;
 858	int ret = 0;
 
 859
 860	/*
 861	 * We're holding a transaction handle, so use a NOFS memory allocation
 862	 * context to avoid deadlock if reclaim happens.
 863	 */
 864	nofs_flag = memalloc_nofs_save();
 865	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
 866	memalloc_nofs_restore(nofs_flag);
 867	if (!root)
 868		return ERR_PTR(-ENOMEM);
 869
 
 870	root->root_key.objectid = objectid;
 871	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 872	root->root_key.offset = 0;
 873
 874	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 875				      0, BTRFS_NESTING_NORMAL);
 876	if (IS_ERR(leaf)) {
 877		ret = PTR_ERR(leaf);
 878		leaf = NULL;
 879		goto fail;
 880	}
 881
 882	root->node = leaf;
 883	btrfs_mark_buffer_dirty(trans, leaf);
 884
 885	root->commit_root = btrfs_root_node(root);
 886	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 887
 888	btrfs_set_root_flags(&root->root_item, 0);
 889	btrfs_set_root_limit(&root->root_item, 0);
 890	btrfs_set_root_bytenr(&root->root_item, leaf->start);
 891	btrfs_set_root_generation(&root->root_item, trans->transid);
 892	btrfs_set_root_level(&root->root_item, 0);
 893	btrfs_set_root_refs(&root->root_item, 1);
 894	btrfs_set_root_used(&root->root_item, leaf->len);
 895	btrfs_set_root_last_snapshot(&root->root_item, 0);
 896	btrfs_set_root_dirid(&root->root_item, 0);
 897	if (is_fstree(objectid))
 898		generate_random_guid(root->root_item.uuid);
 899	else
 900		export_guid(root->root_item.uuid, &guid_null);
 901	btrfs_set_root_drop_level(&root->root_item, 0);
 902
 903	btrfs_tree_unlock(leaf);
 904
 905	key.objectid = objectid;
 906	key.type = BTRFS_ROOT_ITEM_KEY;
 907	key.offset = 0;
 908	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
 909	if (ret)
 910		goto fail;
 911
 
 
 912	return root;
 913
 914fail:
 915	btrfs_put_root(root);
 
 
 
 
 
 916
 917	return ERR_PTR(ret);
 918}
 919
 920static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info)
 
 921{
 922	struct btrfs_root *root;
 
 923
 924	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
 925	if (!root)
 926		return ERR_PTR(-ENOMEM);
 927
 
 
 928	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
 929	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 930	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 931
 932	return root;
 933}
 934
 935int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
 936			      struct btrfs_root *root)
 937{
 938	struct extent_buffer *leaf;
 939
 940	/*
 941	 * DON'T set SHAREABLE bit for log trees.
 942	 *
 943	 * Log trees are not exposed to user space thus can't be snapshotted,
 944	 * and they go away before a real commit is actually done.
 945	 *
 946	 * They do store pointers to file data extents, and those reference
 947	 * counts still get updated (along with back refs to the log tree).
 
 
 948	 */
 949
 950	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
 951			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
 952	if (IS_ERR(leaf))
 953		return PTR_ERR(leaf);
 
 
 954
 955	root->node = leaf;
 956
 957	btrfs_mark_buffer_dirty(trans, root->node);
 958	btrfs_tree_unlock(root->node);
 959
 960	return 0;
 961}
 962
 963int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
 964			     struct btrfs_fs_info *fs_info)
 965{
 966	struct btrfs_root *log_root;
 967
 968	log_root = alloc_log_tree(fs_info);
 969	if (IS_ERR(log_root))
 970		return PTR_ERR(log_root);
 971
 972	if (!btrfs_is_zoned(fs_info)) {
 973		int ret = btrfs_alloc_log_tree_node(trans, log_root);
 974
 975		if (ret) {
 976			btrfs_put_root(log_root);
 977			return ret;
 978		}
 979	}
 980
 981	WARN_ON(fs_info->log_root_tree);
 982	fs_info->log_root_tree = log_root;
 983	return 0;
 984}
 985
 986int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
 987		       struct btrfs_root *root)
 988{
 989	struct btrfs_fs_info *fs_info = root->fs_info;
 990	struct btrfs_root *log_root;
 991	struct btrfs_inode_item *inode_item;
 992	int ret;
 993
 994	log_root = alloc_log_tree(fs_info);
 995	if (IS_ERR(log_root))
 996		return PTR_ERR(log_root);
 997
 998	ret = btrfs_alloc_log_tree_node(trans, log_root);
 999	if (ret) {
1000		btrfs_put_root(log_root);
1001		return ret;
1002	}
1003
1004	btrfs_set_root_last_trans(log_root, trans->transid);
1005	log_root->root_key.offset = btrfs_root_id(root);
1006
1007	inode_item = &log_root->root_item.inode;
1008	btrfs_set_stack_inode_generation(inode_item, 1);
1009	btrfs_set_stack_inode_size(inode_item, 3);
1010	btrfs_set_stack_inode_nlink(inode_item, 1);
1011	btrfs_set_stack_inode_nbytes(inode_item,
1012				     fs_info->nodesize);
1013	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1014
1015	btrfs_set_root_node(&log_root->root_item, log_root->node);
1016
1017	WARN_ON(root->log_root);
1018	root->log_root = log_root;
1019	btrfs_set_root_log_transid(root, 0);
1020	root->log_transid_committed = -1;
1021	btrfs_set_root_last_log_commit(root, 0);
1022	return 0;
1023}
1024
1025static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1026					      struct btrfs_path *path,
1027					      const struct btrfs_key *key)
1028{
1029	struct btrfs_root *root;
1030	struct btrfs_tree_parent_check check = { 0 };
1031	struct btrfs_fs_info *fs_info = tree_root->fs_info;
 
1032	u64 generation;
1033	int ret;
1034	int level;
1035
1036	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1037	if (!root)
1038		return ERR_PTR(-ENOMEM);
1039
 
 
 
 
 
 
 
 
1040	ret = btrfs_find_root(tree_root, key, path,
1041			      &root->root_item, &root->root_key);
1042	if (ret) {
1043		if (ret > 0)
1044			ret = -ENOENT;
1045		goto fail;
1046	}
1047
1048	generation = btrfs_root_generation(&root->root_item);
1049	level = btrfs_root_level(&root->root_item);
1050	check.level = level;
1051	check.transid = generation;
1052	check.owner_root = key->objectid;
1053	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1054				     &check);
1055	if (IS_ERR(root->node)) {
1056		ret = PTR_ERR(root->node);
1057		root->node = NULL;
1058		goto fail;
1059	}
1060	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1061		ret = -EIO;
1062		goto fail;
1063	}
1064
1065	/*
1066	 * For real fs, and not log/reloc trees, root owner must
1067	 * match its root node owner
1068	 */
1069	if (!btrfs_is_testing(fs_info) &&
1070	    btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1071	    btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1072	    btrfs_root_id(root) != btrfs_header_owner(root->node)) {
1073		btrfs_crit(fs_info,
1074"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1075			   btrfs_root_id(root), root->node->start,
1076			   btrfs_header_owner(root->node),
1077			   btrfs_root_id(root));
1078		ret = -EUCLEAN;
1079		goto fail;
1080	}
1081	root->commit_root = btrfs_root_node(root);
 
 
1082	return root;
1083fail:
1084	btrfs_put_root(root);
1085	return ERR_PTR(ret);
 
 
 
1086}
1087
1088struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1089					const struct btrfs_key *key)
1090{
1091	struct btrfs_root *root;
1092	struct btrfs_path *path;
1093
1094	path = btrfs_alloc_path();
1095	if (!path)
1096		return ERR_PTR(-ENOMEM);
1097	root = read_tree_root_path(tree_root, path, key);
1098	btrfs_free_path(path);
 
 
 
1099
1100	return root;
1101}
1102
1103/*
1104 * Initialize subvolume root in-memory structure
1105 *
1106 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1107 */
1108static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1109{
1110	int ret;
 
1111
1112	btrfs_drew_lock_init(&root->snapshot_lock);
 
 
 
 
 
 
1113
1114	if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1115	    !btrfs_is_data_reloc_root(root) &&
1116	    is_fstree(btrfs_root_id(root))) {
1117		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1118		btrfs_check_and_init_root_item(&root->root_item);
1119	}
 
1120
1121	/*
1122	 * Don't assign anonymous block device to roots that are not exposed to
1123	 * userspace, the id pool is limited to 1M
1124	 */
1125	if (is_fstree(btrfs_root_id(root)) &&
1126	    btrfs_root_refs(&root->root_item) > 0) {
1127		if (!anon_dev) {
1128			ret = get_anon_bdev(&root->anon_dev);
1129			if (ret)
1130				goto fail;
1131		} else {
1132			root->anon_dev = anon_dev;
1133		}
1134	}
1135
1136	mutex_lock(&root->objectid_mutex);
1137	ret = btrfs_init_root_free_objectid(root);
 
1138	if (ret) {
1139		mutex_unlock(&root->objectid_mutex);
1140		goto fail;
1141	}
1142
1143	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1144
1145	mutex_unlock(&root->objectid_mutex);
1146
1147	return 0;
1148fail:
1149	/* The caller is responsible to call btrfs_free_fs_root */
1150	return ret;
1151}
1152
1153static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1154					       u64 root_id)
1155{
1156	struct btrfs_root *root;
1157
1158	spin_lock(&fs_info->fs_roots_radix_lock);
1159	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1160				 (unsigned long)root_id);
1161	root = btrfs_grab_root(root);
1162	spin_unlock(&fs_info->fs_roots_radix_lock);
1163	return root;
1164}
1165
1166static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1167						u64 objectid)
1168{
1169	struct btrfs_key key = {
1170		.objectid = objectid,
1171		.type = BTRFS_ROOT_ITEM_KEY,
1172		.offset = 0,
1173	};
1174
1175	switch (objectid) {
1176	case BTRFS_ROOT_TREE_OBJECTID:
1177		return btrfs_grab_root(fs_info->tree_root);
1178	case BTRFS_EXTENT_TREE_OBJECTID:
1179		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1180	case BTRFS_CHUNK_TREE_OBJECTID:
1181		return btrfs_grab_root(fs_info->chunk_root);
1182	case BTRFS_DEV_TREE_OBJECTID:
1183		return btrfs_grab_root(fs_info->dev_root);
1184	case BTRFS_CSUM_TREE_OBJECTID:
1185		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1186	case BTRFS_QUOTA_TREE_OBJECTID:
1187		return btrfs_grab_root(fs_info->quota_root);
1188	case BTRFS_UUID_TREE_OBJECTID:
1189		return btrfs_grab_root(fs_info->uuid_root);
1190	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1191		return btrfs_grab_root(fs_info->block_group_root);
1192	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1193		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1194	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1195		return btrfs_grab_root(fs_info->stripe_root);
1196	default:
1197		return NULL;
1198	}
1199}
1200
1201int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1202			 struct btrfs_root *root)
1203{
1204	int ret;
1205
1206	ret = radix_tree_preload(GFP_NOFS);
1207	if (ret)
1208		return ret;
1209
1210	spin_lock(&fs_info->fs_roots_radix_lock);
1211	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1212				(unsigned long)btrfs_root_id(root),
1213				root);
1214	if (ret == 0) {
1215		btrfs_grab_root(root);
1216		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1217	}
1218	spin_unlock(&fs_info->fs_roots_radix_lock);
1219	radix_tree_preload_end();
1220
1221	return ret;
1222}
1223
1224void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info)
1225{
1226#ifdef CONFIG_BTRFS_DEBUG
1227	struct btrfs_root *root;
1228
1229	while (!list_empty(&fs_info->allocated_roots)) {
1230		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1231
1232		root = list_first_entry(&fs_info->allocated_roots,
1233					struct btrfs_root, leak_list);
1234		btrfs_err(fs_info, "leaked root %s refcount %d",
1235			  btrfs_root_name(&root->root_key, buf),
1236			  refcount_read(&root->refs));
1237		WARN_ON_ONCE(1);
1238		while (refcount_read(&root->refs) > 1)
1239			btrfs_put_root(root);
1240		btrfs_put_root(root);
1241	}
1242#endif
1243}
1244
1245static void free_global_roots(struct btrfs_fs_info *fs_info)
1246{
1247	struct btrfs_root *root;
1248	struct rb_node *node;
1249
1250	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1251		root = rb_entry(node, struct btrfs_root, rb_node);
1252		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1253		btrfs_put_root(root);
1254	}
1255}
1256
1257void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1258{
1259	struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1260
1261	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1262	percpu_counter_destroy(&fs_info->delalloc_bytes);
1263	percpu_counter_destroy(&fs_info->ordered_bytes);
1264	if (percpu_counter_initialized(em_counter))
1265		ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1266	percpu_counter_destroy(em_counter);
1267	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1268	btrfs_free_csum_hash(fs_info);
1269	btrfs_free_stripe_hash_table(fs_info);
1270	btrfs_free_ref_cache(fs_info);
1271	kfree(fs_info->balance_ctl);
1272	kfree(fs_info->delayed_root);
1273	free_global_roots(fs_info);
1274	btrfs_put_root(fs_info->tree_root);
1275	btrfs_put_root(fs_info->chunk_root);
1276	btrfs_put_root(fs_info->dev_root);
1277	btrfs_put_root(fs_info->quota_root);
1278	btrfs_put_root(fs_info->uuid_root);
1279	btrfs_put_root(fs_info->fs_root);
1280	btrfs_put_root(fs_info->data_reloc_root);
1281	btrfs_put_root(fs_info->block_group_root);
1282	btrfs_put_root(fs_info->stripe_root);
1283	btrfs_check_leaked_roots(fs_info);
1284	btrfs_extent_buffer_leak_debug_check(fs_info);
1285	kfree(fs_info->super_copy);
1286	kfree(fs_info->super_for_commit);
1287	kvfree(fs_info);
1288}
1289
1290
1291/*
1292 * Get an in-memory reference of a root structure.
1293 *
1294 * For essential trees like root/extent tree, we grab it from fs_info directly.
1295 * For subvolume trees, we check the cached filesystem roots first. If not
1296 * found, then read it from disk and add it to cached fs roots.
1297 *
1298 * Caller should release the root by calling btrfs_put_root() after the usage.
1299 *
1300 * NOTE: Reloc and log trees can't be read by this function as they share the
1301 *	 same root objectid.
1302 *
1303 * @objectid:	root id
1304 * @anon_dev:	preallocated anonymous block device number for new roots,
1305 *		pass NULL for a new allocation.
1306 * @check_ref:	whether to check root item references, If true, return -ENOENT
1307 *		for orphan roots
1308 */
1309static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1310					     u64 objectid, dev_t *anon_dev,
1311					     bool check_ref)
1312{
1313	struct btrfs_root *root;
1314	struct btrfs_path *path;
1315	struct btrfs_key key;
1316	int ret;
1317
1318	root = btrfs_get_global_root(fs_info, objectid);
1319	if (root)
1320		return root;
1321
1322	/*
1323	 * If we're called for non-subvolume trees, and above function didn't
1324	 * find one, do not try to read it from disk.
1325	 *
1326	 * This is namely for free-space-tree and quota tree, which can change
1327	 * at runtime and should only be grabbed from fs_info.
1328	 */
1329	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1330		return ERR_PTR(-ENOENT);
 
 
 
 
 
 
1331again:
1332	root = btrfs_lookup_fs_root(fs_info, objectid);
1333	if (root) {
1334		/*
1335		 * Some other caller may have read out the newly inserted
1336		 * subvolume already (for things like backref walk etc).  Not
1337		 * that common but still possible.  In that case, we just need
1338		 * to free the anon_dev.
1339		 */
1340		if (unlikely(anon_dev && *anon_dev)) {
1341			free_anon_bdev(*anon_dev);
1342			*anon_dev = 0;
1343		}
1344
1345		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1346			btrfs_put_root(root);
1347			return ERR_PTR(-ENOENT);
1348		}
1349		return root;
1350	}
1351
1352	key.objectid = objectid;
1353	key.type = BTRFS_ROOT_ITEM_KEY;
1354	key.offset = (u64)-1;
1355	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1356	if (IS_ERR(root))
1357		return root;
1358
1359	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1360		ret = -ENOENT;
1361		goto fail;
1362	}
1363
1364	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1365	if (ret)
1366		goto fail;
1367
1368	path = btrfs_alloc_path();
1369	if (!path) {
1370		ret = -ENOMEM;
1371		goto fail;
1372	}
1373	key.objectid = BTRFS_ORPHAN_OBJECTID;
1374	key.type = BTRFS_ORPHAN_ITEM_KEY;
1375	key.offset = objectid;
1376
1377	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1378	btrfs_free_path(path);
1379	if (ret < 0)
1380		goto fail;
1381	if (ret == 0)
1382		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1383
1384	ret = btrfs_insert_fs_root(fs_info, root);
1385	if (ret) {
1386		if (ret == -EEXIST) {
1387			btrfs_put_root(root);
1388			goto again;
1389		}
1390		goto fail;
1391	}
1392	return root;
1393fail:
1394	/*
1395	 * If our caller provided us an anonymous device, then it's his
1396	 * responsibility to free it in case we fail. So we have to set our
1397	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1398	 * and once again by our caller.
1399	 */
1400	if (anon_dev && *anon_dev)
1401		root->anon_dev = 0;
1402	btrfs_put_root(root);
1403	return ERR_PTR(ret);
1404}
1405
1406/*
1407 * Get in-memory reference of a root structure
1408 *
1409 * @objectid:	tree objectid
1410 * @check_ref:	if set, verify that the tree exists and the item has at least
1411 *		one reference
1412 */
1413struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1414				     u64 objectid, bool check_ref)
1415{
1416	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1417}
 
 
1418
1419/*
1420 * Get in-memory reference of a root structure, created as new, optionally pass
1421 * the anonymous block device id
1422 *
1423 * @objectid:	tree objectid
1424 * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1425 *		parameter value if not NULL
1426 */
1427struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1428					 u64 objectid, dev_t *anon_dev)
1429{
1430	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1431}
1432
1433/*
1434 * Return a root for the given objectid.
1435 *
1436 * @fs_info:	the fs_info
1437 * @objectid:	the objectid we need to lookup
1438 *
1439 * This is exclusively used for backref walking, and exists specifically because
1440 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1441 * creation time, which means we may have to read the tree_root in order to look
1442 * up a fs root that is not in memory.  If the root is not in memory we will
1443 * read the tree root commit root and look up the fs root from there.  This is a
1444 * temporary root, it will not be inserted into the radix tree as it doesn't
1445 * have the most uptodate information, it'll simply be discarded once the
1446 * backref code is finished using the root.
1447 */
1448struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1449						 struct btrfs_path *path,
1450						 u64 objectid)
1451{
1452	struct btrfs_root *root;
1453	struct btrfs_key key;
1454
1455	ASSERT(path->search_commit_root && path->skip_locking);
1456
1457	/*
1458	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1459	 * since this is called via the backref walking code we won't be looking
1460	 * up a root that doesn't exist, unless there's corruption.  So if root
1461	 * != NULL just return it.
1462	 */
1463	root = btrfs_get_global_root(fs_info, objectid);
1464	if (root)
1465		return root;
1466
1467	root = btrfs_lookup_fs_root(fs_info, objectid);
1468	if (root)
1469		return root;
1470
1471	key.objectid = objectid;
1472	key.type = BTRFS_ROOT_ITEM_KEY;
1473	key.offset = (u64)-1;
1474	root = read_tree_root_path(fs_info->tree_root, path, &key);
1475	btrfs_release_path(path);
1476
1477	return root;
1478}
1479
1480static int cleaner_kthread(void *arg)
1481{
1482	struct btrfs_fs_info *fs_info = arg;
 
1483	int again;
1484
1485	while (1) {
1486		again = 0;
1487
1488		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1489
1490		/* Make the cleaner go to sleep early. */
1491		if (btrfs_need_cleaner_sleep(fs_info))
1492			goto sleep;
1493
1494		/*
1495		 * Do not do anything if we might cause open_ctree() to block
1496		 * before we have finished mounting the filesystem.
1497		 */
1498		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1499			goto sleep;
1500
1501		if (!mutex_trylock(&fs_info->cleaner_mutex))
1502			goto sleep;
1503
1504		/*
1505		 * Avoid the problem that we change the status of the fs
1506		 * during the above check and trylock.
1507		 */
1508		if (btrfs_need_cleaner_sleep(fs_info)) {
1509			mutex_unlock(&fs_info->cleaner_mutex);
1510			goto sleep;
1511		}
1512
1513		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1514			btrfs_sysfs_feature_update(fs_info);
1515
1516		btrfs_run_delayed_iputs(fs_info);
1517
1518		again = btrfs_clean_one_deleted_snapshot(fs_info);
1519		mutex_unlock(&fs_info->cleaner_mutex);
1520
1521		/*
1522		 * The defragger has dealt with the R/O remount and umount,
1523		 * needn't do anything special here.
1524		 */
1525		btrfs_run_defrag_inodes(fs_info);
1526
1527		/*
1528		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1529		 * with relocation (btrfs_relocate_chunk) and relocation
1530		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1531		 * after acquiring fs_info->reclaim_bgs_lock. So we
1532		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1533		 * unused block groups.
1534		 */
1535		btrfs_delete_unused_bgs(fs_info);
1536
1537		/*
1538		 * Reclaim block groups in the reclaim_bgs list after we deleted
1539		 * all unused block_groups. This possibly gives us some more free
1540		 * space.
1541		 */
1542		btrfs_reclaim_bgs(fs_info);
1543sleep:
1544		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1545		if (kthread_should_park())
1546			kthread_parkme();
1547		if (kthread_should_stop())
1548			return 0;
1549		if (!again) {
1550			set_current_state(TASK_INTERRUPTIBLE);
1551			schedule();
1552			__set_current_state(TASK_RUNNING);
1553		}
1554	}
1555}
1556
1557static int transaction_kthread(void *arg)
1558{
1559	struct btrfs_root *root = arg;
1560	struct btrfs_fs_info *fs_info = root->fs_info;
1561	struct btrfs_trans_handle *trans;
1562	struct btrfs_transaction *cur;
1563	u64 transid;
1564	time64_t delta;
1565	unsigned long delay;
1566	bool cannot_commit;
1567
1568	do {
1569		cannot_commit = false;
1570		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1571		mutex_lock(&fs_info->transaction_kthread_mutex);
1572
1573		spin_lock(&fs_info->trans_lock);
1574		cur = fs_info->running_transaction;
1575		if (!cur) {
1576			spin_unlock(&fs_info->trans_lock);
1577			goto sleep;
1578		}
1579
1580		delta = ktime_get_seconds() - cur->start_time;
1581		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1582		    cur->state < TRANS_STATE_COMMIT_PREP &&
1583		    delta < fs_info->commit_interval) {
 
1584			spin_unlock(&fs_info->trans_lock);
1585			delay -= msecs_to_jiffies((delta - 1) * 1000);
1586			delay = min(delay,
1587				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1588			goto sleep;
1589		}
1590		transid = cur->transid;
1591		spin_unlock(&fs_info->trans_lock);
1592
1593		/* If the file system is aborted, this will always fail. */
1594		trans = btrfs_attach_transaction(root);
1595		if (IS_ERR(trans)) {
1596			if (PTR_ERR(trans) != -ENOENT)
1597				cannot_commit = true;
1598			goto sleep;
1599		}
1600		if (transid == trans->transid) {
1601			btrfs_commit_transaction(trans);
1602		} else {
1603			btrfs_end_transaction(trans);
1604		}
1605sleep:
1606		wake_up_process(fs_info->cleaner_kthread);
1607		mutex_unlock(&fs_info->transaction_kthread_mutex);
1608
1609		if (BTRFS_FS_ERROR(fs_info))
 
1610			btrfs_cleanup_transaction(fs_info);
1611		if (!kthread_should_stop() &&
1612				(!btrfs_transaction_blocked(fs_info) ||
1613				 cannot_commit))
1614			schedule_timeout_interruptible(delay);
1615	} while (!kthread_should_stop());
1616	return 0;
1617}
1618
1619/*
1620 * This will find the highest generation in the array of root backups.  The
1621 * index of the highest array is returned, or -EINVAL if we can't find
1622 * anything.
1623 *
1624 * We check to make sure the array is valid by comparing the
1625 * generation of the latest  root in the array with the generation
1626 * in the super block.  If they don't match we pitch it.
1627 */
1628static int find_newest_super_backup(struct btrfs_fs_info *info)
1629{
1630	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1631	u64 cur;
 
1632	struct btrfs_root_backup *root_backup;
1633	int i;
1634
1635	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1636		root_backup = info->super_copy->super_roots + i;
1637		cur = btrfs_backup_tree_root_gen(root_backup);
1638		if (cur == newest_gen)
1639			return i;
 
 
 
 
 
 
 
 
1640	}
 
 
1641
1642	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643}
1644
1645/*
1646 * copy all the root pointers into the super backup array.
1647 * this will bump the backup pointer by one when it is
1648 * done
1649 */
1650static void backup_super_roots(struct btrfs_fs_info *info)
1651{
1652	const int next_backup = info->backup_root_index;
1653	struct btrfs_root_backup *root_backup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654
1655	root_backup = info->super_for_commit->super_roots + next_backup;
1656
1657	/*
1658	 * make sure all of our padding and empty slots get zero filled
1659	 * regardless of which ones we use today
1660	 */
1661	memset(root_backup, 0, sizeof(*root_backup));
1662
1663	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1664
1665	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1666	btrfs_set_backup_tree_root_gen(root_backup,
1667			       btrfs_header_generation(info->tree_root->node));
1668
1669	btrfs_set_backup_tree_root_level(root_backup,
1670			       btrfs_header_level(info->tree_root->node));
1671
1672	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1673	btrfs_set_backup_chunk_root_gen(root_backup,
1674			       btrfs_header_generation(info->chunk_root->node));
1675	btrfs_set_backup_chunk_root_level(root_backup,
1676			       btrfs_header_level(info->chunk_root->node));
1677
1678	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1679		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1680		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1681
1682		btrfs_set_backup_extent_root(root_backup,
1683					     extent_root->node->start);
1684		btrfs_set_backup_extent_root_gen(root_backup,
1685				btrfs_header_generation(extent_root->node));
1686		btrfs_set_backup_extent_root_level(root_backup,
1687					btrfs_header_level(extent_root->node));
1688
1689		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1690		btrfs_set_backup_csum_root_gen(root_backup,
1691					       btrfs_header_generation(csum_root->node));
1692		btrfs_set_backup_csum_root_level(root_backup,
1693						 btrfs_header_level(csum_root->node));
1694	}
1695
1696	/*
1697	 * we might commit during log recovery, which happens before we set
1698	 * the fs_root.  Make sure it is valid before we fill it in.
1699	 */
1700	if (info->fs_root && info->fs_root->node) {
1701		btrfs_set_backup_fs_root(root_backup,
1702					 info->fs_root->node->start);
1703		btrfs_set_backup_fs_root_gen(root_backup,
1704			       btrfs_header_generation(info->fs_root->node));
1705		btrfs_set_backup_fs_root_level(root_backup,
1706			       btrfs_header_level(info->fs_root->node));
1707	}
1708
1709	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1710	btrfs_set_backup_dev_root_gen(root_backup,
1711			       btrfs_header_generation(info->dev_root->node));
1712	btrfs_set_backup_dev_root_level(root_backup,
1713				       btrfs_header_level(info->dev_root->node));
1714
 
 
 
 
 
 
1715	btrfs_set_backup_total_bytes(root_backup,
1716			     btrfs_super_total_bytes(info->super_copy));
1717	btrfs_set_backup_bytes_used(root_backup,
1718			     btrfs_super_bytes_used(info->super_copy));
1719	btrfs_set_backup_num_devices(root_backup,
1720			     btrfs_super_num_devices(info->super_copy));
1721
1722	/*
1723	 * if we don't copy this out to the super_copy, it won't get remembered
1724	 * for the next commit
1725	 */
1726	memcpy(&info->super_copy->super_roots,
1727	       &info->super_for_commit->super_roots,
1728	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1729}
1730
1731/*
1732 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1733 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
 
 
1734 *
1735 * @fs_info:  filesystem whose backup roots need to be read
1736 * @priority: priority of backup root required
1737 *
1738 * Returns backup root index on success and -EINVAL otherwise.
1739 */
1740static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 
 
1741{
1742	int backup_index = find_newest_super_backup(fs_info);
1743	struct btrfs_super_block *super = fs_info->super_copy;
1744	struct btrfs_root_backup *root_backup;
 
1745
1746	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1747		if (priority == 0)
1748			return backup_index;
1749
1750		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1751		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 
 
 
 
 
 
 
1752	} else {
1753		return -EINVAL;
 
 
 
 
1754	}
1755
1756	root_backup = super->super_roots + backup_index;
1757
1758	btrfs_set_super_generation(super,
1759				   btrfs_backup_tree_root_gen(root_backup));
1760	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1761	btrfs_set_super_root_level(super,
1762				   btrfs_backup_tree_root_level(root_backup));
1763	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1764
1765	/*
1766	 * Fixme: the total bytes and num_devices need to match or we should
1767	 * need a fsck
1768	 */
1769	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1770	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1771
1772	return backup_index;
1773}
1774
1775/* helper to cleanup workers */
1776static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1777{
1778	btrfs_destroy_workqueue(fs_info->fixup_workers);
1779	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1780	btrfs_destroy_workqueue(fs_info->workers);
1781	if (fs_info->endio_workers)
1782		destroy_workqueue(fs_info->endio_workers);
1783	if (fs_info->rmw_workers)
1784		destroy_workqueue(fs_info->rmw_workers);
1785	if (fs_info->compressed_write_workers)
1786		destroy_workqueue(fs_info->compressed_write_workers);
1787	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1788	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
 
1789	btrfs_destroy_workqueue(fs_info->delayed_workers);
1790	btrfs_destroy_workqueue(fs_info->caching_workers);
 
1791	btrfs_destroy_workqueue(fs_info->flush_workers);
1792	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1793	if (fs_info->discard_ctl.discard_workers)
1794		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1795	/*
1796	 * Now that all other work queues are destroyed, we can safely destroy
1797	 * the queues used for metadata I/O, since tasks from those other work
1798	 * queues can do metadata I/O operations.
1799	 */
1800	if (fs_info->endio_meta_workers)
1801		destroy_workqueue(fs_info->endio_meta_workers);
1802}
1803
1804static void free_root_extent_buffers(struct btrfs_root *root)
1805{
1806	if (root) {
1807		free_extent_buffer(root->node);
1808		free_extent_buffer(root->commit_root);
1809		root->node = NULL;
1810		root->commit_root = NULL;
1811	}
1812}
1813
1814static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1815{
1816	struct btrfs_root *root, *tmp;
1817
1818	rbtree_postorder_for_each_entry_safe(root, tmp,
1819					     &fs_info->global_root_tree,
1820					     rb_node)
1821		free_root_extent_buffers(root);
1822}
1823
1824/* helper to cleanup tree roots */
1825static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1826{
1827	free_root_extent_buffers(info->tree_root);
1828
1829	free_global_root_pointers(info);
1830	free_root_extent_buffers(info->dev_root);
 
 
1831	free_root_extent_buffers(info->quota_root);
1832	free_root_extent_buffers(info->uuid_root);
1833	free_root_extent_buffers(info->fs_root);
1834	free_root_extent_buffers(info->data_reloc_root);
1835	free_root_extent_buffers(info->block_group_root);
1836	free_root_extent_buffers(info->stripe_root);
1837	if (free_chunk_root)
1838		free_root_extent_buffers(info->chunk_root);
1839}
1840
1841void btrfs_put_root(struct btrfs_root *root)
1842{
1843	if (!root)
1844		return;
1845
1846	if (refcount_dec_and_test(&root->refs)) {
1847		if (WARN_ON(!xa_empty(&root->inodes)))
1848			xa_destroy(&root->inodes);
1849		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1850		if (root->anon_dev)
1851			free_anon_bdev(root->anon_dev);
1852		free_root_extent_buffers(root);
1853#ifdef CONFIG_BTRFS_DEBUG
1854		spin_lock(&root->fs_info->fs_roots_radix_lock);
1855		list_del_init(&root->leak_list);
1856		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1857#endif
1858		kfree(root);
1859	}
1860}
1861
1862void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1863{
1864	int ret;
1865	struct btrfs_root *gang[8];
1866	int i;
1867
1868	while (!list_empty(&fs_info->dead_roots)) {
1869		gang[0] = list_entry(fs_info->dead_roots.next,
1870				     struct btrfs_root, root_list);
1871		list_del(&gang[0]->root_list);
1872
1873		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1874			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1875		btrfs_put_root(gang[0]);
 
 
 
 
1876	}
1877
1878	while (1) {
1879		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1880					     (void **)gang, 0,
1881					     ARRAY_SIZE(gang));
1882		if (!ret)
1883			break;
1884		for (i = 0; i < ret; i++)
1885			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1886	}
 
 
 
 
 
1887}
1888
1889static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1890{
1891	mutex_init(&fs_info->scrub_lock);
1892	atomic_set(&fs_info->scrubs_running, 0);
1893	atomic_set(&fs_info->scrub_pause_req, 0);
1894	atomic_set(&fs_info->scrubs_paused, 0);
1895	atomic_set(&fs_info->scrub_cancel_req, 0);
1896	init_waitqueue_head(&fs_info->scrub_pause_wait);
1897	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1898}
1899
1900static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1901{
1902	spin_lock_init(&fs_info->balance_lock);
1903	mutex_init(&fs_info->balance_mutex);
1904	atomic_set(&fs_info->balance_pause_req, 0);
1905	atomic_set(&fs_info->balance_cancel_req, 0);
1906	fs_info->balance_ctl = NULL;
1907	init_waitqueue_head(&fs_info->balance_wait_q);
1908	atomic_set(&fs_info->reloc_cancel_req, 0);
1909}
1910
1911static int btrfs_init_btree_inode(struct super_block *sb)
1912{
1913	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1914	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1915					      fs_info->tree_root);
1916	struct inode *inode;
1917
1918	inode = new_inode(sb);
1919	if (!inode)
1920		return -ENOMEM;
1921
1922	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID);
1923	set_nlink(inode, 1);
1924	/*
1925	 * we set the i_size on the btree inode to the max possible int.
1926	 * the real end of the address space is determined by all of
1927	 * the devices in the system
1928	 */
1929	inode->i_size = OFFSET_MAX;
1930	inode->i_mapping->a_ops = &btree_aops;
1931	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1932
 
1933	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1934			    IO_TREE_BTREE_INODE_IO);
 
1935	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1936
1937	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
 
 
 
1938	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1939	__insert_inode_hash(inode, hash);
1940	fs_info->btree_inode = inode;
1941
1942	return 0;
1943}
1944
1945static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1946{
1947	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1948	init_rwsem(&fs_info->dev_replace.rwsem);
1949	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1950}
1951
1952static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1953{
1954	spin_lock_init(&fs_info->qgroup_lock);
1955	mutex_init(&fs_info->qgroup_ioctl_lock);
1956	fs_info->qgroup_tree = RB_ROOT;
1957	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1958	fs_info->qgroup_seq = 1;
1959	fs_info->qgroup_ulist = NULL;
1960	fs_info->qgroup_rescan_running = false;
1961	fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT;
1962	mutex_init(&fs_info->qgroup_rescan_lock);
1963}
1964
1965static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
 
1966{
1967	u32 max_active = fs_info->thread_pool_size;
1968	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1969	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1970
1971	fs_info->workers =
1972		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
 
1973
1974	fs_info->delalloc_workers =
1975		btrfs_alloc_workqueue(fs_info, "delalloc",
1976				      flags, max_active, 2);
1977
1978	fs_info->flush_workers =
1979		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1980				      flags, max_active, 0);
1981
1982	fs_info->caching_workers =
1983		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1984
 
 
 
 
 
 
 
 
 
 
1985	fs_info->fixup_workers =
1986		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1987
 
 
 
 
1988	fs_info->endio_workers =
1989		alloc_workqueue("btrfs-endio", flags, max_active);
1990	fs_info->endio_meta_workers =
1991		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1992	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
 
 
 
 
 
 
 
 
 
 
1993	fs_info->endio_write_workers =
1994		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1995				      max_active, 2);
1996	fs_info->compressed_write_workers =
1997		alloc_workqueue("btrfs-compressed-write", flags, max_active);
1998	fs_info->endio_freespace_worker =
1999		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2000				      max_active, 0);
2001	fs_info->delayed_workers =
2002		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2003				      max_active, 0);
 
 
 
2004	fs_info->qgroup_rescan_workers =
2005		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2006					      ordered_flags);
2007	fs_info->discard_ctl.discard_workers =
2008		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2009
2010	if (!(fs_info->workers &&
2011	      fs_info->delalloc_workers && fs_info->flush_workers &&
2012	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2013	      fs_info->compressed_write_workers &&
2014	      fs_info->endio_write_workers &&
 
2015	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2016	      fs_info->caching_workers && fs_info->fixup_workers &&
2017	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2018	      fs_info->discard_ctl.discard_workers)) {
2019		return -ENOMEM;
2020	}
2021
2022	return 0;
2023}
2024
2025static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2026{
2027	struct crypto_shash *csum_shash;
2028	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2029
2030	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2031
2032	if (IS_ERR(csum_shash)) {
2033		btrfs_err(fs_info, "error allocating %s hash for checksum",
2034			  csum_driver);
2035		return PTR_ERR(csum_shash);
2036	}
2037
2038	fs_info->csum_shash = csum_shash;
2039
2040	/*
2041	 * Check if the checksum implementation is a fast accelerated one.
2042	 * As-is this is a bit of a hack and should be replaced once the csum
2043	 * implementations provide that information themselves.
2044	 */
2045	switch (csum_type) {
2046	case BTRFS_CSUM_TYPE_CRC32:
2047		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2048			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2049		break;
2050	case BTRFS_CSUM_TYPE_XXHASH:
2051		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2052		break;
2053	default:
2054		break;
2055	}
2056
2057	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2058			btrfs_super_csum_name(csum_type),
2059			crypto_shash_driver_name(csum_shash));
2060	return 0;
2061}
2062
2063static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2064			    struct btrfs_fs_devices *fs_devices)
2065{
2066	int ret;
2067	struct btrfs_tree_parent_check check = { 0 };
2068	struct btrfs_root *log_tree_root;
2069	struct btrfs_super_block *disk_super = fs_info->super_copy;
2070	u64 bytenr = btrfs_super_log_root(disk_super);
2071	int level = btrfs_super_log_root_level(disk_super);
2072
2073	if (fs_devices->rw_devices == 0) {
2074		btrfs_warn(fs_info, "log replay required on RO media");
2075		return -EIO;
2076	}
2077
2078	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2079					 GFP_KERNEL);
2080	if (!log_tree_root)
2081		return -ENOMEM;
2082
2083	check.level = level;
2084	check.transid = fs_info->generation + 1;
2085	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2086	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
 
2087	if (IS_ERR(log_tree_root->node)) {
2088		btrfs_warn(fs_info, "failed to read log tree");
2089		ret = PTR_ERR(log_tree_root->node);
2090		log_tree_root->node = NULL;
2091		btrfs_put_root(log_tree_root);
2092		return ret;
2093	}
2094	if (!extent_buffer_uptodate(log_tree_root->node)) {
2095		btrfs_err(fs_info, "failed to read log tree");
2096		btrfs_put_root(log_tree_root);
 
2097		return -EIO;
2098	}
2099
2100	/* returns with log_tree_root freed on success */
2101	ret = btrfs_recover_log_trees(log_tree_root);
2102	if (ret) {
2103		btrfs_handle_fs_error(fs_info, ret,
2104				      "Failed to recover log tree");
2105		btrfs_put_root(log_tree_root);
 
2106		return ret;
2107	}
2108
2109	if (sb_rdonly(fs_info->sb)) {
2110		ret = btrfs_commit_super(fs_info);
2111		if (ret)
2112			return ret;
2113	}
2114
2115	return 0;
2116}
2117
2118static int load_global_roots_objectid(struct btrfs_root *tree_root,
2119				      struct btrfs_path *path, u64 objectid,
2120				      const char *name)
2121{
2122	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2123	struct btrfs_root *root;
2124	u64 max_global_id = 0;
2125	int ret;
2126	struct btrfs_key key = {
2127		.objectid = objectid,
2128		.type = BTRFS_ROOT_ITEM_KEY,
2129		.offset = 0,
2130	};
2131	bool found = false;
2132
2133	/* If we have IGNOREDATACSUMS skip loading these roots. */
2134	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2135	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2136		set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2137		return 0;
2138	}
2139
2140	while (1) {
2141		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2142		if (ret < 0)
2143			break;
2144
2145		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2146			ret = btrfs_next_leaf(tree_root, path);
2147			if (ret) {
2148				if (ret > 0)
2149					ret = 0;
2150				break;
2151			}
2152		}
2153		ret = 0;
2154
2155		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2156		if (key.objectid != objectid)
2157			break;
2158		btrfs_release_path(path);
2159
2160		/*
2161		 * Just worry about this for extent tree, it'll be the same for
2162		 * everybody.
2163		 */
2164		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2165			max_global_id = max(max_global_id, key.offset);
2166
2167		found = true;
2168		root = read_tree_root_path(tree_root, path, &key);
2169		if (IS_ERR(root)) {
2170			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2171				ret = PTR_ERR(root);
2172			break;
2173		}
2174		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2175		ret = btrfs_global_root_insert(root);
2176		if (ret) {
2177			btrfs_put_root(root);
2178			break;
2179		}
2180		key.offset++;
2181	}
2182	btrfs_release_path(path);
2183
2184	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2185		fs_info->nr_global_roots = max_global_id + 1;
2186
2187	if (!found || ret) {
2188		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2189			set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state);
2190
2191		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2192			ret = ret ? ret : -ENOENT;
2193		else
2194			ret = 0;
2195		btrfs_err(fs_info, "failed to load root %s", name);
2196	}
2197	return ret;
2198}
2199
2200static int load_global_roots(struct btrfs_root *tree_root)
2201{
2202	struct btrfs_path *path;
2203	int ret = 0;
2204
2205	path = btrfs_alloc_path();
2206	if (!path)
2207		return -ENOMEM;
2208
2209	ret = load_global_roots_objectid(tree_root, path,
2210					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2211	if (ret)
2212		goto out;
2213	ret = load_global_roots_objectid(tree_root, path,
2214					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2215	if (ret)
2216		goto out;
2217	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2218		goto out;
2219	ret = load_global_roots_objectid(tree_root, path,
2220					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2221					 "free space");
2222out:
2223	btrfs_free_path(path);
2224	return ret;
2225}
2226
2227static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2228{
2229	struct btrfs_root *tree_root = fs_info->tree_root;
2230	struct btrfs_root *root;
2231	struct btrfs_key location;
2232	int ret;
2233
2234	ASSERT(fs_info->tree_root);
2235
2236	ret = load_global_roots(tree_root);
2237	if (ret)
2238		return ret;
2239
 
2240	location.type = BTRFS_ROOT_ITEM_KEY;
2241	location.offset = 0;
2242
2243	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2244		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2245		root = btrfs_read_tree_root(tree_root, &location);
2246		if (IS_ERR(root)) {
2247			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2248				ret = PTR_ERR(root);
2249				goto out;
2250			}
2251		} else {
2252			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2253			fs_info->block_group_root = root;
2254		}
2255	}
 
 
2256
2257	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2258	root = btrfs_read_tree_root(tree_root, &location);
2259	if (IS_ERR(root)) {
2260		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2261			ret = PTR_ERR(root);
2262			goto out;
2263		}
2264	} else {
2265		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2266		fs_info->dev_root = root;
2267	}
2268	/* Initialize fs_info for all devices in any case */
2269	ret = btrfs_init_devices_late(fs_info);
2270	if (ret)
2271		goto out;
2272
2273	/*
2274	 * This tree can share blocks with some other fs tree during relocation
2275	 * and we need a proper setup by btrfs_get_fs_root
2276	 */
2277	root = btrfs_get_fs_root(tree_root->fs_info,
2278				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2279	if (IS_ERR(root)) {
2280		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2281			ret = PTR_ERR(root);
2282			goto out;
2283		}
2284	} else {
2285		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2286		fs_info->data_reloc_root = root;
2287	}
 
 
2288
2289	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2290	root = btrfs_read_tree_root(tree_root, &location);
2291	if (!IS_ERR(root)) {
2292		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 
2293		fs_info->quota_root = root;
2294	}
2295
2296	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2297	root = btrfs_read_tree_root(tree_root, &location);
2298	if (IS_ERR(root)) {
2299		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2300			ret = PTR_ERR(root);
2301			if (ret != -ENOENT)
2302				goto out;
2303		}
2304	} else {
2305		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306		fs_info->uuid_root = root;
2307	}
2308
2309	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2310		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2311		root = btrfs_read_tree_root(tree_root, &location);
2312		if (IS_ERR(root)) {
2313			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2314				ret = PTR_ERR(root);
2315				goto out;
2316			}
2317		} else {
2318			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319			fs_info->stripe_root = root;
2320		}
 
 
2321	}
2322
2323	return 0;
2324out:
2325	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2326		   location.objectid, ret);
2327	return ret;
2328}
2329
2330/*
2331 * Real super block validation
2332 * NOTE: super csum type and incompat features will not be checked here.
2333 *
2334 * @sb:		super block to check
2335 * @mirror_num:	the super block number to check its bytenr:
2336 * 		0	the primary (1st) sb
2337 * 		1, 2	2nd and 3rd backup copy
2338 * 	       -1	skip bytenr check
2339 */
2340int btrfs_validate_super(const struct btrfs_fs_info *fs_info,
2341			 const struct btrfs_super_block *sb, int mirror_num)
2342{
2343	u64 nodesize = btrfs_super_nodesize(sb);
2344	u64 sectorsize = btrfs_super_sectorsize(sb);
2345	int ret = 0;
2346	const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS);
2347
2348	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2349		btrfs_err(fs_info, "no valid FS found");
2350		ret = -EINVAL;
2351	}
2352	if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) {
2353		if (!ignore_flags) {
2354			btrfs_err(fs_info,
2355			"unrecognized or unsupported super flag 0x%llx",
2356				  btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2357			ret = -EINVAL;
2358		} else {
2359			btrfs_info(fs_info,
2360			"unrecognized or unsupported super flags: 0x%llx, ignored",
2361				   btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2362		}
2363	}
2364	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2365		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2366				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2367		ret = -EINVAL;
2368	}
2369	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2371				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2372		ret = -EINVAL;
2373	}
2374	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2376				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2377		ret = -EINVAL;
2378	}
2379
2380	/*
2381	 * Check sectorsize and nodesize first, other check will need it.
2382	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2383	 */
2384	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2385	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2386		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2387		ret = -EINVAL;
2388	}
2389
2390	/*
2391	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2392	 *
2393	 * We can support 16K sectorsize with 64K page size without problem,
2394	 * but such sectorsize/pagesize combination doesn't make much sense.
2395	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2396	 * beginning.
2397	 */
2398	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2399		btrfs_err(fs_info,
2400			"sectorsize %llu not yet supported for page size %lu",
2401			sectorsize, PAGE_SIZE);
2402		ret = -EINVAL;
2403	}
2404
2405	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2406	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2407		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2408		ret = -EINVAL;
2409	}
2410	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2411		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2412			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2413		ret = -EINVAL;
2414	}
2415
2416	/* Root alignment check */
2417	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2418		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2419			   btrfs_super_root(sb));
2420		ret = -EINVAL;
2421	}
2422	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2423		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2424			   btrfs_super_chunk_root(sb));
2425		ret = -EINVAL;
2426	}
2427	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2428		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2429			   btrfs_super_log_root(sb));
2430		ret = -EINVAL;
2431	}
2432
2433	if (!fs_info->fs_devices->temp_fsid &&
2434	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2435		btrfs_err(fs_info,
2436		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2437			  sb->fsid, fs_info->fs_devices->fsid);
2438		ret = -EINVAL;
2439	}
2440
2441	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2442		   BTRFS_FSID_SIZE) != 0) {
2443		btrfs_err(fs_info,
2444"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2445			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2446		ret = -EINVAL;
2447	}
2448
2449	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2450		   BTRFS_FSID_SIZE) != 0) {
2451		btrfs_err(fs_info,
2452			"dev_item UUID does not match metadata fsid: %pU != %pU",
2453			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2454		ret = -EINVAL;
2455	}
2456
2457	/*
2458	 * Artificial requirement for block-group-tree to force newer features
2459	 * (free-space-tree, no-holes) so the test matrix is smaller.
2460	 */
2461	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2462	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2463	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2464		btrfs_err(fs_info,
2465		"block-group-tree feature requires free-space-tree and no-holes");
2466		ret = -EINVAL;
2467	}
2468
2469	/*
2470	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2471	 * done later
2472	 */
2473	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2474		btrfs_err(fs_info, "bytes_used is too small %llu",
2475			  btrfs_super_bytes_used(sb));
2476		ret = -EINVAL;
2477	}
2478	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2479		btrfs_err(fs_info, "invalid stripesize %u",
2480			  btrfs_super_stripesize(sb));
2481		ret = -EINVAL;
2482	}
2483	if (btrfs_super_num_devices(sb) > (1UL << 31))
2484		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2485			   btrfs_super_num_devices(sb));
2486	if (btrfs_super_num_devices(sb) == 0) {
2487		btrfs_err(fs_info, "number of devices is 0");
2488		ret = -EINVAL;
2489	}
2490
2491	if (mirror_num >= 0 &&
2492	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2493		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2494			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2495		ret = -EINVAL;
2496	}
2497
2498	/*
2499	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2500	 * and one chunk
2501	 */
2502	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2503		btrfs_err(fs_info, "system chunk array too big %u > %u",
2504			  btrfs_super_sys_array_size(sb),
2505			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2506		ret = -EINVAL;
2507	}
2508	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2509			+ sizeof(struct btrfs_chunk)) {
2510		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2511			  btrfs_super_sys_array_size(sb),
2512			  sizeof(struct btrfs_disk_key)
2513			  + sizeof(struct btrfs_chunk));
2514		ret = -EINVAL;
2515	}
2516
2517	/*
2518	 * The generation is a global counter, we'll trust it more than the others
2519	 * but it's still possible that it's the one that's wrong.
2520	 */
2521	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2522		btrfs_warn(fs_info,
2523			"suspicious: generation < chunk_root_generation: %llu < %llu",
2524			btrfs_super_generation(sb),
2525			btrfs_super_chunk_root_generation(sb));
2526	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2527	    && btrfs_super_cache_generation(sb) != (u64)-1)
2528		btrfs_warn(fs_info,
2529			"suspicious: generation < cache_generation: %llu < %llu",
2530			btrfs_super_generation(sb),
2531			btrfs_super_cache_generation(sb));
2532
2533	return ret;
2534}
2535
2536/*
2537 * Validation of super block at mount time.
2538 * Some checks already done early at mount time, like csum type and incompat
2539 * flags will be skipped.
2540 */
2541static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2542{
2543	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2544}
2545
2546/*
2547 * Validation of super block at write time.
2548 * Some checks like bytenr check will be skipped as their values will be
2549 * overwritten soon.
2550 * Extra checks like csum type and incompat flags will be done here.
2551 */
2552static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2553				      struct btrfs_super_block *sb)
2554{
2555	int ret;
2556
2557	ret = btrfs_validate_super(fs_info, sb, -1);
2558	if (ret < 0)
2559		goto out;
2560	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2561		ret = -EUCLEAN;
2562		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2563			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2564		goto out;
2565	}
2566	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2567		ret = -EUCLEAN;
2568		btrfs_err(fs_info,
2569		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2570			  btrfs_super_incompat_flags(sb),
2571			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2572		goto out;
2573	}
2574out:
2575	if (ret < 0)
2576		btrfs_err(fs_info,
2577		"super block corruption detected before writing it to disk");
2578	return ret;
2579}
2580
2581static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
 
 
2582{
2583	struct btrfs_tree_parent_check check = {
2584		.level = level,
2585		.transid = gen,
2586		.owner_root = btrfs_root_id(root)
2587	};
2588	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
2589
2590	root->node = read_tree_block(root->fs_info, bytenr, &check);
2591	if (IS_ERR(root->node)) {
2592		ret = PTR_ERR(root->node);
2593		root->node = NULL;
2594		return ret;
2595	}
2596	if (!extent_buffer_uptodate(root->node)) {
2597		free_extent_buffer(root->node);
2598		root->node = NULL;
2599		return -EIO;
 
2600	}
2601
2602	btrfs_set_root_node(&root->root_item, root->node);
2603	root->commit_root = btrfs_root_node(root);
2604	btrfs_set_root_refs(&root->root_item, 1);
2605	return ret;
2606}
2607
2608static int load_important_roots(struct btrfs_fs_info *fs_info)
2609{
2610	struct btrfs_super_block *sb = fs_info->super_copy;
2611	u64 gen, bytenr;
2612	int level, ret;
2613
2614	bytenr = btrfs_super_root(sb);
2615	gen = btrfs_super_generation(sb);
2616	level = btrfs_super_root_level(sb);
2617	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2618	if (ret) {
2619		btrfs_warn(fs_info, "couldn't read tree root");
2620		return ret;
2621	}
2622	return 0;
2623}
2624
2625static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2626{
2627	int backup_index = find_newest_super_backup(fs_info);
2628	struct btrfs_super_block *sb = fs_info->super_copy;
2629	struct btrfs_root *tree_root = fs_info->tree_root;
2630	bool handle_error = false;
2631	int ret = 0;
2632	int i;
2633
2634	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2635		if (handle_error) {
2636			if (!IS_ERR(tree_root->node))
2637				free_extent_buffer(tree_root->node);
2638			tree_root->node = NULL;
2639
2640			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2641				break;
2642
2643			free_root_pointers(fs_info, 0);
2644
2645			/*
2646			 * Don't use the log in recovery mode, it won't be
2647			 * valid
2648			 */
2649			btrfs_set_super_log_root(sb, 0);
2650
2651			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2652			ret = read_backup_root(fs_info, i);
2653			backup_index = ret;
2654			if (ret < 0)
2655				return ret;
2656		}
2657
2658		ret = load_important_roots(fs_info);
2659		if (ret) {
2660			handle_error = true;
2661			continue;
2662		}
2663
2664		/*
2665		 * No need to hold btrfs_root::objectid_mutex since the fs
2666		 * hasn't been fully initialised and we are the only user
2667		 */
2668		ret = btrfs_init_root_free_objectid(tree_root);
2669		if (ret < 0) {
2670			handle_error = true;
2671			continue;
2672		}
2673
2674		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2675
2676		ret = btrfs_read_roots(fs_info);
2677		if (ret < 0) {
2678			handle_error = true;
2679			continue;
2680		}
2681
2682		/* All successful */
2683		fs_info->generation = btrfs_header_generation(tree_root->node);
2684		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2685		fs_info->last_reloc_trans = 0;
2686
2687		/* Always begin writing backup roots after the one being used */
2688		if (backup_index < 0) {
2689			fs_info->backup_root_index = 0;
2690		} else {
2691			fs_info->backup_root_index = backup_index + 1;
2692			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2693		}
2694		break;
2695	}
2696
2697	return ret;
2698}
2699
2700void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2701{
2702	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2703	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2704	INIT_LIST_HEAD(&fs_info->trans_list);
2705	INIT_LIST_HEAD(&fs_info->dead_roots);
2706	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2707	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2708	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2709	spin_lock_init(&fs_info->delalloc_root_lock);
2710	spin_lock_init(&fs_info->trans_lock);
2711	spin_lock_init(&fs_info->fs_roots_radix_lock);
2712	spin_lock_init(&fs_info->delayed_iput_lock);
2713	spin_lock_init(&fs_info->defrag_inodes_lock);
 
2714	spin_lock_init(&fs_info->super_lock);
2715	spin_lock_init(&fs_info->buffer_lock);
2716	spin_lock_init(&fs_info->unused_bgs_lock);
2717	spin_lock_init(&fs_info->treelog_bg_lock);
2718	spin_lock_init(&fs_info->zone_active_bgs_lock);
2719	spin_lock_init(&fs_info->relocation_bg_lock);
2720	rwlock_init(&fs_info->tree_mod_log_lock);
2721	rwlock_init(&fs_info->global_root_lock);
2722	mutex_init(&fs_info->unused_bg_unpin_mutex);
2723	mutex_init(&fs_info->reclaim_bgs_lock);
2724	mutex_init(&fs_info->reloc_mutex);
2725	mutex_init(&fs_info->delalloc_root_mutex);
2726	mutex_init(&fs_info->zoned_meta_io_lock);
2727	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2728	seqlock_init(&fs_info->profiles_lock);
2729
2730	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2731	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2732	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2733	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2734	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2735				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2736	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2737				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2738	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2739				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2740	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2741				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2742
2743	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2744	INIT_LIST_HEAD(&fs_info->space_info);
2745	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2746	INIT_LIST_HEAD(&fs_info->unused_bgs);
2747	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2748	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2749#ifdef CONFIG_BTRFS_DEBUG
2750	INIT_LIST_HEAD(&fs_info->allocated_roots);
2751	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2752	spin_lock_init(&fs_info->eb_leak_lock);
2753#endif
2754	fs_info->mapping_tree = RB_ROOT_CACHED;
2755	rwlock_init(&fs_info->mapping_tree_lock);
2756	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2757			     BTRFS_BLOCK_RSV_GLOBAL);
2758	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2759	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2760	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2761	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2762			     BTRFS_BLOCK_RSV_DELOPS);
2763	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2764			     BTRFS_BLOCK_RSV_DELREFS);
2765
2766	atomic_set(&fs_info->async_delalloc_pages, 0);
2767	atomic_set(&fs_info->defrag_running, 0);
 
2768	atomic_set(&fs_info->nr_delayed_iputs, 0);
2769	atomic64_set(&fs_info->tree_mod_seq, 0);
2770	fs_info->global_root_tree = RB_ROOT;
2771	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2772	fs_info->metadata_ratio = 0;
2773	fs_info->defrag_inodes = RB_ROOT;
2774	atomic64_set(&fs_info->free_chunk_space, 0);
2775	fs_info->tree_mod_log = RB_ROOT;
2776	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 
 
 
 
2777	btrfs_init_ref_verify(fs_info);
2778
2779	fs_info->thread_pool_size = min_t(unsigned long,
2780					  num_online_cpus() + 2, 8);
2781
2782	INIT_LIST_HEAD(&fs_info->ordered_roots);
2783	spin_lock_init(&fs_info->ordered_root_lock);
2784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785	btrfs_init_scrub(fs_info);
 
 
 
2786	btrfs_init_balance(fs_info);
2787	btrfs_init_async_reclaim_work(fs_info);
2788	btrfs_init_extent_map_shrinker_work(fs_info);
 
 
2789
2790	rwlock_init(&fs_info->block_group_cache_lock);
2791	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2792
2793	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2794			    IO_TREE_FS_EXCLUDED_EXTENTS);
 
 
 
 
 
 
 
 
2795
2796	mutex_init(&fs_info->ordered_operations_mutex);
2797	mutex_init(&fs_info->tree_log_mutex);
2798	mutex_init(&fs_info->chunk_mutex);
2799	mutex_init(&fs_info->transaction_kthread_mutex);
2800	mutex_init(&fs_info->cleaner_mutex);
2801	mutex_init(&fs_info->ro_block_group_mutex);
2802	init_rwsem(&fs_info->commit_root_sem);
2803	init_rwsem(&fs_info->cleanup_work_sem);
2804	init_rwsem(&fs_info->subvol_sem);
2805	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2806
2807	btrfs_init_dev_replace_locks(fs_info);
2808	btrfs_init_qgroup(fs_info);
2809	btrfs_discard_init(fs_info);
2810
2811	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2812	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2813
2814	init_waitqueue_head(&fs_info->transaction_throttle);
2815	init_waitqueue_head(&fs_info->transaction_wait);
2816	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2817	init_waitqueue_head(&fs_info->async_submit_wait);
2818	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2819
2820	/* Usable values until the real ones are cached from the superblock */
2821	fs_info->nodesize = 4096;
2822	fs_info->sectorsize = 4096;
2823	fs_info->sectorsize_bits = ilog2(4096);
2824	fs_info->stripesize = 4096;
2825
2826	/* Default compress algorithm when user does -o compress */
2827	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2828
2829	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2830
2831	spin_lock_init(&fs_info->swapfile_pins_lock);
2832	fs_info->swapfile_pins = RB_ROOT;
2833
2834	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2835	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2836}
2837
2838static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2839{
2840	int ret;
2841
2842	fs_info->sb = sb;
2843	/* Temporary fixed values for block size until we read the superblock. */
2844	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2845	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2846
2847	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2848	if (ret)
2849		return ret;
2850
2851	ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2852	if (ret)
2853		return ret;
2854
2855	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2856	if (ret)
2857		return ret;
2858
2859	fs_info->dirty_metadata_batch = PAGE_SIZE *
2860					(1 + ilog2(nr_cpu_ids));
2861
2862	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2863	if (ret)
2864		return ret;
2865
2866	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2867			GFP_KERNEL);
2868	if (ret)
2869		return ret;
2870
2871	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2872					GFP_KERNEL);
2873	if (!fs_info->delayed_root)
2874		return -ENOMEM;
2875	btrfs_init_delayed_root(fs_info->delayed_root);
2876
2877	if (sb_rdonly(sb))
2878		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2879	if (btrfs_test_opt(fs_info, IGNOREMETACSUMS))
2880		set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state);
2881
2882	return btrfs_alloc_stripe_hash_table(fs_info);
2883}
2884
2885static int btrfs_uuid_rescan_kthread(void *data)
2886{
2887	struct btrfs_fs_info *fs_info = data;
2888	int ret;
2889
2890	/*
2891	 * 1st step is to iterate through the existing UUID tree and
2892	 * to delete all entries that contain outdated data.
2893	 * 2nd step is to add all missing entries to the UUID tree.
2894	 */
2895	ret = btrfs_uuid_tree_iterate(fs_info);
2896	if (ret < 0) {
2897		if (ret != -EINTR)
2898			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2899				   ret);
2900		up(&fs_info->uuid_tree_rescan_sem);
2901		return ret;
2902	}
2903	return btrfs_uuid_scan_kthread(data);
2904}
2905
2906static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2907{
2908	struct task_struct *task;
2909
2910	down(&fs_info->uuid_tree_rescan_sem);
2911	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2912	if (IS_ERR(task)) {
2913		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2914		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2915		up(&fs_info->uuid_tree_rescan_sem);
2916		return PTR_ERR(task);
2917	}
2918
2919	return 0;
2920}
2921
2922static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2923{
2924	u64 root_objectid = 0;
2925	struct btrfs_root *gang[8];
2926	int ret = 0;
2927
2928	while (1) {
2929		unsigned int found;
2930
2931		spin_lock(&fs_info->fs_roots_radix_lock);
2932		found = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2933					     (void **)gang, root_objectid,
2934					     ARRAY_SIZE(gang));
2935		if (!found) {
2936			spin_unlock(&fs_info->fs_roots_radix_lock);
2937			break;
2938		}
2939		root_objectid = btrfs_root_id(gang[found - 1]) + 1;
2940
2941		for (int i = 0; i < found; i++) {
2942			/* Avoid to grab roots in dead_roots. */
2943			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2944				gang[i] = NULL;
2945				continue;
2946			}
2947			/* Grab all the search result for later use. */
2948			gang[i] = btrfs_grab_root(gang[i]);
2949		}
2950		spin_unlock(&fs_info->fs_roots_radix_lock);
2951
2952		for (int i = 0; i < found; i++) {
2953			if (!gang[i])
2954				continue;
2955			root_objectid = btrfs_root_id(gang[i]);
2956			/*
2957			 * Continue to release the remaining roots after the first
2958			 * error without cleanup and preserve the first error
2959			 * for the return.
2960			 */
2961			if (!ret)
2962				ret = btrfs_orphan_cleanup(gang[i]);
2963			btrfs_put_root(gang[i]);
2964		}
2965		if (ret)
2966			break;
2967
2968		root_objectid++;
2969	}
2970	return ret;
2971}
2972
2973/*
2974 * Mounting logic specific to read-write file systems. Shared by open_ctree
2975 * and btrfs_remount when remounting from read-only to read-write.
2976 */
2977int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2978{
2979	int ret;
2980	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2981	bool rebuild_free_space_tree = false;
2982
2983	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2984	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2985		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2986			btrfs_warn(fs_info,
2987				   "'clear_cache' option is ignored with extent tree v2");
2988		else
2989			rebuild_free_space_tree = true;
2990	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2991		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2992		btrfs_warn(fs_info, "free space tree is invalid");
2993		rebuild_free_space_tree = true;
2994	}
2995
2996	if (rebuild_free_space_tree) {
2997		btrfs_info(fs_info, "rebuilding free space tree");
2998		ret = btrfs_rebuild_free_space_tree(fs_info);
2999		if (ret) {
3000			btrfs_warn(fs_info,
3001				   "failed to rebuild free space tree: %d", ret);
3002			goto out;
3003		}
3004	}
3005
3006	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3007	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3008		btrfs_info(fs_info, "disabling free space tree");
3009		ret = btrfs_delete_free_space_tree(fs_info);
3010		if (ret) {
3011			btrfs_warn(fs_info,
3012				   "failed to disable free space tree: %d", ret);
3013			goto out;
3014		}
3015	}
3016
3017	/*
3018	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3019	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3020	 * them into the fs_info->fs_roots_radix tree. This must be done before
3021	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3022	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3023	 * item before the root's tree is deleted - this means that if we unmount
3024	 * or crash before the deletion completes, on the next mount we will not
3025	 * delete what remains of the tree because the orphan item does not
3026	 * exists anymore, which is what tells us we have a pending deletion.
3027	 */
3028	ret = btrfs_find_orphan_roots(fs_info);
3029	if (ret)
3030		goto out;
3031
3032	ret = btrfs_cleanup_fs_roots(fs_info);
3033	if (ret)
3034		goto out;
3035
3036	down_read(&fs_info->cleanup_work_sem);
3037	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3038	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3039		up_read(&fs_info->cleanup_work_sem);
3040		goto out;
3041	}
3042	up_read(&fs_info->cleanup_work_sem);
3043
3044	mutex_lock(&fs_info->cleaner_mutex);
3045	ret = btrfs_recover_relocation(fs_info);
3046	mutex_unlock(&fs_info->cleaner_mutex);
3047	if (ret < 0) {
3048		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3049		goto out;
3050	}
3051
3052	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3053	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3054		btrfs_info(fs_info, "creating free space tree");
3055		ret = btrfs_create_free_space_tree(fs_info);
3056		if (ret) {
3057			btrfs_warn(fs_info,
3058				"failed to create free space tree: %d", ret);
3059			goto out;
3060		}
3061	}
3062
3063	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3064		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3065		if (ret)
3066			goto out;
3067	}
3068
3069	ret = btrfs_resume_balance_async(fs_info);
3070	if (ret)
3071		goto out;
3072
3073	ret = btrfs_resume_dev_replace_async(fs_info);
3074	if (ret) {
3075		btrfs_warn(fs_info, "failed to resume dev_replace");
3076		goto out;
3077	}
3078
3079	btrfs_qgroup_rescan_resume(fs_info);
3080
3081	if (!fs_info->uuid_root) {
3082		btrfs_info(fs_info, "creating UUID tree");
3083		ret = btrfs_create_uuid_tree(fs_info);
3084		if (ret) {
3085			btrfs_warn(fs_info,
3086				   "failed to create the UUID tree %d", ret);
3087			goto out;
3088		}
3089	}
3090
3091out:
3092	return ret;
3093}
3094
3095/*
3096 * Do various sanity and dependency checks of different features.
3097 *
3098 * @is_rw_mount:	If the mount is read-write.
3099 *
3100 * This is the place for less strict checks (like for subpage or artificial
3101 * feature dependencies).
3102 *
3103 * For strict checks or possible corruption detection, see
3104 * btrfs_validate_super().
3105 *
3106 * This should be called after btrfs_parse_options(), as some mount options
3107 * (space cache related) can modify on-disk format like free space tree and
3108 * screw up certain feature dependencies.
3109 */
3110int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3111{
3112	struct btrfs_super_block *disk_super = fs_info->super_copy;
3113	u64 incompat = btrfs_super_incompat_flags(disk_super);
3114	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3115	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3116
3117	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3118		btrfs_err(fs_info,
3119		"cannot mount because of unknown incompat features (0x%llx)",
3120		    incompat);
3121		return -EINVAL;
3122	}
3123
3124	/* Runtime limitation for mixed block groups. */
3125	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3126	    (fs_info->sectorsize != fs_info->nodesize)) {
3127		btrfs_err(fs_info,
3128"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3129			fs_info->nodesize, fs_info->sectorsize);
3130		return -EINVAL;
3131	}
3132
3133	/* Mixed backref is an always-enabled feature. */
3134	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3135
3136	/* Set compression related flags just in case. */
3137	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3138		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3139	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3140		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3141
3142	/*
3143	 * An ancient flag, which should really be marked deprecated.
3144	 * Such runtime limitation doesn't really need a incompat flag.
3145	 */
3146	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3147		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3148
3149	if (compat_ro_unsupp && is_rw_mount) {
3150		btrfs_err(fs_info,
3151	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3152		       compat_ro);
3153		return -EINVAL;
3154	}
3155
3156	/*
3157	 * We have unsupported RO compat features, although RO mounted, we
3158	 * should not cause any metadata writes, including log replay.
3159	 * Or we could screw up whatever the new feature requires.
3160	 */
3161	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3162	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3163		btrfs_err(fs_info,
3164"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3165			  compat_ro);
3166		return -EINVAL;
3167	}
3168
3169	/*
3170	 * Artificial limitations for block group tree, to force
3171	 * block-group-tree to rely on no-holes and free-space-tree.
3172	 */
3173	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3174	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3175	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3176		btrfs_err(fs_info,
3177"block-group-tree feature requires no-holes and free-space-tree features");
3178		return -EINVAL;
3179	}
3180
3181	/*
3182	 * Subpage runtime limitation on v1 cache.
3183	 *
3184	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3185	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3186	 * going to be deprecated anyway.
3187	 */
3188	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3189		btrfs_warn(fs_info,
3190	"v1 space cache is not supported for page size %lu with sectorsize %u",
3191			   PAGE_SIZE, fs_info->sectorsize);
3192		return -EINVAL;
3193	}
3194
3195	/* This can be called by remount, we need to protect the super block. */
3196	spin_lock(&fs_info->super_lock);
3197	btrfs_set_super_incompat_flags(disk_super, incompat);
3198	spin_unlock(&fs_info->super_lock);
3199
3200	return 0;
3201}
3202
3203int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices)
3204{
3205	u32 sectorsize;
3206	u32 nodesize;
3207	u32 stripesize;
3208	u64 generation;
3209	u16 csum_type;
3210	struct btrfs_super_block *disk_super;
3211	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3212	struct btrfs_root *tree_root;
3213	struct btrfs_root *chunk_root;
3214	int ret;
3215	int level;
3216
3217	ret = init_mount_fs_info(fs_info, sb);
3218	if (ret)
3219		goto fail;
3220
3221	/* These need to be init'ed before we start creating inodes and such. */
3222	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3223				     GFP_KERNEL);
3224	fs_info->tree_root = tree_root;
3225	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3226				      GFP_KERNEL);
3227	fs_info->chunk_root = chunk_root;
3228	if (!tree_root || !chunk_root) {
3229		ret = -ENOMEM;
3230		goto fail;
3231	}
3232
3233	ret = btrfs_init_btree_inode(sb);
3234	if (ret)
3235		goto fail;
3236
3237	invalidate_bdev(fs_devices->latest_dev->bdev);
3238
3239	/*
3240	 * Read super block and check the signature bytes only
3241	 */
3242	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3243	if (IS_ERR(disk_super)) {
3244		ret = PTR_ERR(disk_super);
3245		goto fail_alloc;
3246	}
3247
3248	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3249	/*
3250	 * Verify the type first, if that or the checksum value are
3251	 * corrupted, we'll find out
3252	 */
3253	csum_type = btrfs_super_csum_type(disk_super);
3254	if (!btrfs_supported_super_csum(csum_type)) {
3255		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3256			  csum_type);
3257		ret = -EINVAL;
3258		btrfs_release_disk_super(disk_super);
3259		goto fail_alloc;
3260	}
3261
3262	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3263
3264	ret = btrfs_init_csum_hash(fs_info, csum_type);
3265	if (ret) {
3266		btrfs_release_disk_super(disk_super);
3267		goto fail_alloc;
3268	}
3269
3270	/*
3271	 * We want to check superblock checksum, the type is stored inside.
3272	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3273	 */
3274	if (btrfs_check_super_csum(fs_info, disk_super)) {
3275		btrfs_err(fs_info, "superblock checksum mismatch");
3276		ret = -EINVAL;
3277		btrfs_release_disk_super(disk_super);
3278		goto fail_alloc;
3279	}
3280
3281	/*
3282	 * super_copy is zeroed at allocation time and we never touch the
3283	 * following bytes up to INFO_SIZE, the checksum is calculated from
3284	 * the whole block of INFO_SIZE
3285	 */
3286	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3287	btrfs_release_disk_super(disk_super);
3288
3289	disk_super = fs_info->super_copy;
3290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3291	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3292	       sizeof(*fs_info->super_for_commit));
3293
3294	ret = btrfs_validate_mount_super(fs_info);
3295	if (ret) {
3296		btrfs_err(fs_info, "superblock contains fatal errors");
3297		ret = -EINVAL;
3298		goto fail_alloc;
3299	}
3300
3301	if (!btrfs_super_root(disk_super)) {
3302		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3303		ret = -EINVAL;
3304		goto fail_alloc;
3305	}
3306
3307	/* check FS state, whether FS is broken. */
3308	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3309		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3310
3311	/* Set up fs_info before parsing mount options */
3312	nodesize = btrfs_super_nodesize(disk_super);
3313	sectorsize = btrfs_super_sectorsize(disk_super);
3314	stripesize = sectorsize;
3315	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3316	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3317
 
3318	fs_info->nodesize = nodesize;
3319	fs_info->sectorsize = sectorsize;
3320	fs_info->sectorsize_bits = ilog2(sectorsize);
3321	fs_info->sectors_per_page = (PAGE_SIZE >> fs_info->sectorsize_bits);
3322	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3323	fs_info->stripesize = stripesize;
3324
3325	/*
3326	 * Handle the space caching options appropriately now that we have the
3327	 * super block loaded and validated.
3328	 */
3329	btrfs_set_free_space_cache_settings(fs_info);
3330
3331	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3332		ret = -EINVAL;
3333		goto fail_alloc;
 
3334	}
3335
3336	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3337	if (ret < 0)
3338		goto fail_alloc;
3339
3340	/*
3341	 * At this point our mount options are validated, if we set ->max_inline
3342	 * to something non-standard make sure we truncate it to sectorsize.
3343	 */
3344	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3345
3346	if (sectorsize < PAGE_SIZE)
3347		btrfs_warn(fs_info,
3348		"read-write for sector size %u with page size %lu is experimental",
3349			   sectorsize, PAGE_SIZE);
 
 
 
 
 
3350
3351	ret = btrfs_init_workqueues(fs_info);
3352	if (ret)
 
3353		goto fail_sb_buffer;
 
3354
 
 
 
 
3355	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3356	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3357
3358	/* Update the values for the current filesystem. */
3359	sb->s_blocksize = sectorsize;
3360	sb->s_blocksize_bits = blksize_bits(sectorsize);
3361	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3362
3363	mutex_lock(&fs_info->chunk_mutex);
3364	ret = btrfs_read_sys_array(fs_info);
3365	mutex_unlock(&fs_info->chunk_mutex);
3366	if (ret) {
3367		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3368		goto fail_sb_buffer;
3369	}
3370
3371	generation = btrfs_super_chunk_root_generation(disk_super);
3372	level = btrfs_super_chunk_root_level(disk_super);
3373	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3374			      generation, level);
3375	if (ret) {
 
 
 
 
 
3376		btrfs_err(fs_info, "failed to read chunk root");
 
 
 
3377		goto fail_tree_roots;
3378	}
 
 
3379
3380	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3381			   offsetof(struct btrfs_header, chunk_tree_uuid),
3382			   BTRFS_UUID_SIZE);
3383
3384	ret = btrfs_read_chunk_tree(fs_info);
3385	if (ret) {
3386		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3387		goto fail_tree_roots;
3388	}
3389
3390	/*
3391	 * At this point we know all the devices that make this filesystem,
3392	 * including the seed devices but we don't know yet if the replace
3393	 * target is required. So free devices that are not part of this
3394	 * filesystem but skip the replace target device which is checked
3395	 * below in btrfs_init_dev_replace().
3396	 */
3397	btrfs_free_extra_devids(fs_devices);
3398	if (!fs_devices->latest_dev->bdev) {
 
3399		btrfs_err(fs_info, "failed to read devices");
3400		ret = -EIO;
3401		goto fail_tree_roots;
3402	}
3403
3404	ret = init_tree_roots(fs_info);
3405	if (ret)
3406		goto fail_tree_roots;
3407
3408	/*
3409	 * Get zone type information of zoned block devices. This will also
3410	 * handle emulation of a zoned filesystem if a regular device has the
3411	 * zoned incompat feature flag set.
3412	 */
3413	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
3414	if (ret) {
3415		btrfs_err(fs_info,
3416			  "zoned: failed to read device zone info: %d", ret);
3417		goto fail_block_groups;
3418	}
3419
3420	/*
3421	 * If we have a uuid root and we're not being told to rescan we need to
3422	 * check the generation here so we can set the
3423	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3424	 * transaction during a balance or the log replay without updating the
3425	 * uuid generation, and then if we crash we would rescan the uuid tree,
3426	 * even though it was perfectly fine.
3427	 */
3428	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3429	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3430		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3431
3432	ret = btrfs_verify_dev_extents(fs_info);
3433	if (ret) {
3434		btrfs_err(fs_info,
3435			  "failed to verify dev extents against chunks: %d",
3436			  ret);
3437		goto fail_block_groups;
3438	}
3439	ret = btrfs_recover_balance(fs_info);
3440	if (ret) {
3441		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3442		goto fail_block_groups;
3443	}
3444
3445	ret = btrfs_init_dev_stats(fs_info);
3446	if (ret) {
3447		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3448		goto fail_block_groups;
3449	}
3450
3451	ret = btrfs_init_dev_replace(fs_info);
3452	if (ret) {
3453		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3454		goto fail_block_groups;
3455	}
3456
3457	ret = btrfs_check_zoned_mode(fs_info);
 
 
3458	if (ret) {
3459		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3460			  ret);
3461		goto fail_block_groups;
3462	}
3463
3464	ret = btrfs_sysfs_add_fsid(fs_devices);
3465	if (ret) {
3466		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3467				ret);
3468		goto fail_block_groups;
3469	}
3470
3471	ret = btrfs_sysfs_add_mounted(fs_info);
3472	if (ret) {
3473		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3474		goto fail_fsdev_sysfs;
3475	}
3476
3477	ret = btrfs_init_space_info(fs_info);
3478	if (ret) {
3479		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3480		goto fail_sysfs;
3481	}
3482
3483	ret = btrfs_read_block_groups(fs_info);
3484	if (ret) {
3485		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3486		goto fail_sysfs;
3487	}
3488
3489	btrfs_free_zone_cache(fs_info);
3490
3491	btrfs_check_active_zone_reservation(fs_info);
3492
3493	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3494	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3495		btrfs_warn(fs_info,
3496		"writable mount is not allowed due to too many missing devices");
3497		ret = -EINVAL;
3498		goto fail_sysfs;
3499	}
3500
3501	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3502					       "btrfs-cleaner");
3503	if (IS_ERR(fs_info->cleaner_kthread)) {
3504		ret = PTR_ERR(fs_info->cleaner_kthread);
3505		goto fail_sysfs;
3506	}
3507
3508	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3509						   tree_root,
3510						   "btrfs-transaction");
3511	if (IS_ERR(fs_info->transaction_kthread)) {
3512		ret = PTR_ERR(fs_info->transaction_kthread);
3513		goto fail_cleaner;
 
 
 
 
3514	}
3515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3516	ret = btrfs_read_qgroup_config(fs_info);
3517	if (ret)
3518		goto fail_trans_kthread;
3519
3520	if (btrfs_build_ref_tree(fs_info))
3521		btrfs_err(fs_info, "couldn't build ref tree");
3522
3523	/* do not make disk changes in broken FS or nologreplay is given */
3524	if (btrfs_super_log_root(disk_super) != 0 &&
3525	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3526		btrfs_info(fs_info, "start tree-log replay");
3527		ret = btrfs_replay_log(fs_info, fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
3528		if (ret)
3529			goto fail_qgroup;
 
 
 
 
 
 
 
 
 
 
3530	}
3531
3532	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 
 
 
 
3533	if (IS_ERR(fs_info->fs_root)) {
3534		ret = PTR_ERR(fs_info->fs_root);
3535		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3536		fs_info->fs_root = NULL;
3537		goto fail_qgroup;
3538	}
3539
3540	if (sb_rdonly(sb))
3541		return 0;
3542
3543	ret = btrfs_start_pre_rw_mount(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3544	if (ret) {
 
3545		close_ctree(fs_info);
3546		return ret;
3547	}
3548	btrfs_discard_resume(fs_info);
3549
3550	if (fs_info->uuid_root &&
3551	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3552	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
 
 
 
 
 
 
 
 
 
 
 
3553		btrfs_info(fs_info, "checking UUID tree");
3554		ret = btrfs_check_uuid_tree(fs_info);
3555		if (ret) {
3556			btrfs_warn(fs_info,
3557				"failed to check the UUID tree: %d", ret);
3558			close_ctree(fs_info);
3559			return ret;
3560		}
 
 
3561	}
3562
3563	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3564
3565	/* Kick the cleaner thread so it'll start deleting snapshots. */
3566	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3567		wake_up_process(fs_info->cleaner_kthread);
 
 
3568
3569	return 0;
3570
3571fail_qgroup:
3572	btrfs_free_qgroup_config(fs_info);
3573fail_trans_kthread:
3574	kthread_stop(fs_info->transaction_kthread);
3575	btrfs_cleanup_transaction(fs_info);
3576	btrfs_free_fs_roots(fs_info);
3577fail_cleaner:
3578	kthread_stop(fs_info->cleaner_kthread);
3579
3580	/*
3581	 * make sure we're done with the btree inode before we stop our
3582	 * kthreads
3583	 */
3584	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3585
3586fail_sysfs:
3587	btrfs_sysfs_remove_mounted(fs_info);
3588
3589fail_fsdev_sysfs:
3590	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3591
3592fail_block_groups:
3593	btrfs_put_block_group_cache(fs_info);
3594
3595fail_tree_roots:
3596	if (fs_info->data_reloc_root)
3597		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3598	free_root_pointers(fs_info, true);
3599	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3600
3601fail_sb_buffer:
3602	btrfs_stop_all_workers(fs_info);
3603	btrfs_free_block_groups(fs_info);
 
 
3604fail_alloc:
3605	btrfs_mapping_tree_free(fs_info);
 
3606
3607	iput(fs_info->btree_inode);
 
 
 
 
 
 
 
 
 
 
3608fail:
 
3609	btrfs_close_devices(fs_info->fs_devices);
3610	ASSERT(ret < 0);
3611	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3612}
3613ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3614
3615static void btrfs_end_super_write(struct bio *bio)
3616{
3617	struct btrfs_device *device = bio->bi_private;
3618	struct folio_iter fi;
 
 
 
3619
3620	bio_for_each_folio_all(fi, bio) {
3621		if (bio->bi_status) {
3622			btrfs_warn_rl_in_rcu(device->fs_info,
3623				"lost super block write due to IO error on %s (%d)",
3624				btrfs_dev_name(device),
3625				blk_status_to_errno(bio->bi_status));
3626			btrfs_dev_stat_inc_and_print(device,
3627						     BTRFS_DEV_STAT_WRITE_ERRS);
3628			/* Ensure failure if the primary sb fails. */
3629			if (bio->bi_opf & REQ_FUA)
3630				atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3631					   &device->sb_write_errors);
3632			else
3633				atomic_inc(&device->sb_write_errors);
3634		}
3635		folio_unlock(fi.folio);
3636		folio_put(fi.folio);
3637	}
3638
3639	bio_put(bio);
3640}
3641
3642struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3643						   int copy_num, bool drop_cache)
3644{
 
3645	struct btrfs_super_block *super;
3646	struct page *page;
3647	u64 bytenr, bytenr_orig;
3648	struct address_space *mapping = bdev->bd_mapping;
3649	int ret;
3650
3651	bytenr_orig = btrfs_sb_offset(copy_num);
3652	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3653	if (ret == -ENOENT)
3654		return ERR_PTR(-EINVAL);
3655	else if (ret)
3656		return ERR_PTR(ret);
3657
3658	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3659		return ERR_PTR(-EINVAL);
 
 
 
 
 
3660
3661	if (drop_cache) {
3662		/* This should only be called with the primary sb. */
3663		ASSERT(copy_num == 0);
3664
3665		/*
3666		 * Drop the page of the primary superblock, so later read will
3667		 * always read from the device.
3668		 */
3669		invalidate_inode_pages2_range(mapping,
3670				bytenr >> PAGE_SHIFT,
3671				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3672	}
3673
3674	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3675	if (IS_ERR(page))
3676		return ERR_CAST(page);
3677
3678	super = page_address(page);
3679	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3680		btrfs_release_disk_super(super);
3681		return ERR_PTR(-ENODATA);
3682	}
3683
3684	if (btrfs_super_bytenr(super) != bytenr_orig) {
3685		btrfs_release_disk_super(super);
3686		return ERR_PTR(-EINVAL);
3687	}
3688
3689	return super;
3690}
3691
3692
3693struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3694{
3695	struct btrfs_super_block *super, *latest = NULL;
 
 
3696	int i;
3697	u64 transid = 0;
 
3698
3699	/* we would like to check all the supers, but that would make
3700	 * a btrfs mount succeed after a mkfs from a different FS.
3701	 * So, we need to add a special mount option to scan for
3702	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3703	 */
3704	for (i = 0; i < 1; i++) {
3705		super = btrfs_read_dev_one_super(bdev, i, false);
3706		if (IS_ERR(super))
3707			continue;
3708
 
 
3709		if (!latest || btrfs_super_generation(super) > transid) {
3710			if (latest)
3711				btrfs_release_disk_super(super);
3712
3713			latest = super;
3714			transid = btrfs_super_generation(super);
 
 
3715		}
3716	}
3717
3718	return super;
 
 
 
3719}
3720
3721/*
3722 * Write superblock @sb to the @device. Do not wait for completion, all the
3723 * folios we use for writing are locked.
3724 *
3725 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3726 * the expected device size at commit time. Note that max_mirrors must be
3727 * same for write and wait phases.
3728 *
3729 * Return number of errors when folio is not found or submission fails.
3730 */
3731static int write_dev_supers(struct btrfs_device *device,
3732			    struct btrfs_super_block *sb, int max_mirrors)
3733{
3734	struct btrfs_fs_info *fs_info = device->fs_info;
3735	struct address_space *mapping = device->bdev->bd_mapping;
3736	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
3737	int i;
3738	int ret;
3739	u64 bytenr, bytenr_orig;
3740
3741	atomic_set(&device->sb_write_errors, 0);
3742
3743	if (max_mirrors == 0)
3744		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3745
3746	shash->tfm = fs_info->csum_shash;
3747
3748	for (i = 0; i < max_mirrors; i++) {
3749		struct folio *folio;
3750		struct bio *bio;
3751		struct btrfs_super_block *disk_super;
3752		size_t offset;
3753
3754		bytenr_orig = btrfs_sb_offset(i);
3755		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3756		if (ret == -ENOENT) {
3757			continue;
3758		} else if (ret < 0) {
3759			btrfs_err(device->fs_info,
3760				"couldn't get super block location for mirror %d",
3761				i);
3762			atomic_inc(&device->sb_write_errors);
3763			continue;
3764		}
3765		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3766		    device->commit_total_bytes)
3767			break;
3768
3769		btrfs_set_super_bytenr(sb, bytenr_orig);
3770
3771		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3772				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3773				    sb->csum);
3774
3775		folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3776					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3777					    GFP_NOFS);
3778		if (IS_ERR(folio)) {
 
3779			btrfs_err(device->fs_info,
3780			    "couldn't get super block page for bytenr %llu",
3781			    bytenr);
3782			atomic_inc(&device->sb_write_errors);
3783			continue;
3784		}
3785		ASSERT(folio_order(folio) == 0);
3786
3787		offset = offset_in_folio(folio, bytenr);
3788		disk_super = folio_address(folio) + offset;
3789		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3790
3791		/*
3792		 * Directly use bios here instead of relying on the page cache
3793		 * to do I/O, so we don't lose the ability to do integrity
3794		 * checking.
3795		 */
3796		bio = bio_alloc(device->bdev, 1,
3797				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3798				GFP_NOFS);
3799		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3800		bio->bi_private = device;
3801		bio->bi_end_io = btrfs_end_super_write;
3802		bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
3803
3804		/*
3805		 * We FUA only the first super block.  The others we allow to
3806		 * go down lazy and there's a short window where the on-disk
3807		 * copies might still contain the older version.
3808		 */
 
3809		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3810			bio->bi_opf |= REQ_FUA;
3811		submit_bio(bio);
3812
3813		if (btrfs_advance_sb_log(device, i))
3814			atomic_inc(&device->sb_write_errors);
3815	}
3816	return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
3817}
3818
3819/*
3820 * Wait for write completion of superblocks done by write_dev_supers,
3821 * @max_mirrors same for write and wait phases.
3822 *
3823 * Return -1 if primary super block write failed or when there were no super block
3824 * copies written. Otherwise 0.
3825 */
3826static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3827{
 
3828	int i;
3829	int errors = 0;
3830	bool primary_failed = false;
3831	int ret;
3832	u64 bytenr;
3833
3834	if (max_mirrors == 0)
3835		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3836
3837	for (i = 0; i < max_mirrors; i++) {
3838		struct folio *folio;
 
 
 
3839
3840		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3841		if (ret == -ENOENT) {
3842			break;
3843		} else if (ret < 0) {
3844			errors++;
3845			if (i == 0)
3846				primary_failed = true;
3847			continue;
3848		}
3849		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3850		    device->commit_total_bytes)
3851			break;
 
 
 
3852
3853		folio = filemap_get_folio(device->bdev->bd_mapping,
3854					  bytenr >> PAGE_SHIFT);
3855		/* If the folio has been removed, then we know it completed. */
3856		if (IS_ERR(folio))
3857			continue;
3858		ASSERT(folio_order(folio) == 0);
3859
3860		/* Folio will be unlocked once the write completes. */
3861		folio_wait_locked(folio);
3862		folio_put(folio);
3863	}
3864
3865	errors += atomic_read(&device->sb_write_errors);
3866	if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3867		primary_failed = true;
3868	if (primary_failed) {
3869		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3870			  device->devid);
3871		return -1;
3872	}
3873
3874	return errors < i ? 0 : -1;
3875}
3876
3877/*
3878 * endio for the write_dev_flush, this will wake anyone waiting
3879 * for the barrier when it is done
3880 */
3881static void btrfs_end_empty_barrier(struct bio *bio)
3882{
3883	bio_uninit(bio);
3884	complete(bio->bi_private);
3885}
3886
3887/*
3888 * Submit a flush request to the device if it supports it. Error handling is
3889 * done in the waiting counterpart.
3890 */
3891static void write_dev_flush(struct btrfs_device *device)
3892{
3893	struct bio *bio = &device->flush_bio;
 
3894
3895	device->last_flush_error = BLK_STS_OK;
 
3896
3897	bio_init(bio, device->bdev, NULL, 0,
3898		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3899	bio->bi_end_io = btrfs_end_empty_barrier;
 
 
3900	init_completion(&device->flush_wait);
3901	bio->bi_private = &device->flush_wait;
3902	submit_bio(bio);
 
3903	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3904}
3905
3906/*
3907 * If the flush bio has been submitted by write_dev_flush, wait for it.
3908 * Return true for any error, and false otherwise.
3909 */
3910static bool wait_dev_flush(struct btrfs_device *device)
3911{
3912	struct bio *bio = &device->flush_bio;
3913
3914	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3915		return false;
3916
 
3917	wait_for_completion_io(&device->flush_wait);
3918
3919	if (bio->bi_status) {
3920		device->last_flush_error = bio->bi_status;
3921		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3922		return true;
3923	}
3924
3925	return false;
 
 
 
 
3926}
3927
3928/*
3929 * send an empty flush down to each device in parallel,
3930 * then wait for them
3931 */
3932static int barrier_all_devices(struct btrfs_fs_info *info)
3933{
3934	struct list_head *head;
3935	struct btrfs_device *dev;
3936	int errors_wait = 0;
 
3937
3938	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3939	/* send down all the barriers */
3940	head = &info->fs_devices->devices;
3941	list_for_each_entry(dev, head, dev_list) {
3942		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3943			continue;
3944		if (!dev->bdev)
3945			continue;
3946		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3947		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3948			continue;
3949
3950		write_dev_flush(dev);
 
3951	}
3952
3953	/* wait for all the barriers */
3954	list_for_each_entry(dev, head, dev_list) {
3955		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3956			continue;
3957		if (!dev->bdev) {
3958			errors_wait++;
3959			continue;
3960		}
3961		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3962		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3963			continue;
3964
3965		if (wait_dev_flush(dev))
 
 
 
 
3966			errors_wait++;
 
3967	}
3968
3969	/*
3970	 * Checks last_flush_error of disks in order to determine the device
3971	 * state.
3972	 */
3973	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3974		return -EIO;
3975
 
3976	return 0;
3977}
3978
3979int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3980{
3981	int raid_type;
3982	int min_tolerated = INT_MAX;
3983
3984	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3985	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3986		min_tolerated = min_t(int, min_tolerated,
3987				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3988				    tolerated_failures);
3989
3990	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3991		if (raid_type == BTRFS_RAID_SINGLE)
3992			continue;
3993		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3994			continue;
3995		min_tolerated = min_t(int, min_tolerated,
3996				    btrfs_raid_array[raid_type].
3997				    tolerated_failures);
3998	}
3999
4000	if (min_tolerated == INT_MAX) {
4001		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4002		min_tolerated = 0;
4003	}
4004
4005	return min_tolerated;
4006}
4007
4008int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4009{
4010	struct list_head *head;
4011	struct btrfs_device *dev;
4012	struct btrfs_super_block *sb;
4013	struct btrfs_dev_item *dev_item;
4014	int ret;
4015	int do_barriers;
4016	int max_errors;
4017	int total_errors = 0;
4018	u64 flags;
4019
4020	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4021
4022	/*
4023	 * max_mirrors == 0 indicates we're from commit_transaction,
4024	 * not from fsync where the tree roots in fs_info have not
4025	 * been consistent on disk.
4026	 */
4027	if (max_mirrors == 0)
4028		backup_super_roots(fs_info);
4029
4030	sb = fs_info->super_for_commit;
4031	dev_item = &sb->dev_item;
4032
4033	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4034	head = &fs_info->fs_devices->devices;
4035	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4036
4037	if (do_barriers) {
4038		ret = barrier_all_devices(fs_info);
4039		if (ret) {
4040			mutex_unlock(
4041				&fs_info->fs_devices->device_list_mutex);
4042			btrfs_handle_fs_error(fs_info, ret,
4043					      "errors while submitting device barriers.");
4044			return ret;
4045		}
4046	}
4047
4048	list_for_each_entry(dev, head, dev_list) {
4049		if (!dev->bdev) {
4050			total_errors++;
4051			continue;
4052		}
4053		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4054		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4055			continue;
4056
4057		btrfs_set_stack_device_generation(dev_item, 0);
4058		btrfs_set_stack_device_type(dev_item, dev->type);
4059		btrfs_set_stack_device_id(dev_item, dev->devid);
4060		btrfs_set_stack_device_total_bytes(dev_item,
4061						   dev->commit_total_bytes);
4062		btrfs_set_stack_device_bytes_used(dev_item,
4063						  dev->commit_bytes_used);
4064		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4065		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4066		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4067		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4068		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4069		       BTRFS_FSID_SIZE);
4070
4071		flags = btrfs_super_flags(sb);
4072		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4073
4074		ret = btrfs_validate_write_super(fs_info, sb);
4075		if (ret < 0) {
4076			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4077			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4078				"unexpected superblock corruption detected");
4079			return -EUCLEAN;
4080		}
4081
4082		ret = write_dev_supers(dev, sb, max_mirrors);
4083		if (ret)
4084			total_errors++;
4085	}
4086	if (total_errors > max_errors) {
4087		btrfs_err(fs_info, "%d errors while writing supers",
4088			  total_errors);
4089		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4090
4091		/* FUA is masked off if unsupported and can't be the reason */
4092		btrfs_handle_fs_error(fs_info, -EIO,
4093				      "%d errors while writing supers",
4094				      total_errors);
4095		return -EIO;
4096	}
4097
4098	total_errors = 0;
4099	list_for_each_entry(dev, head, dev_list) {
4100		if (!dev->bdev)
4101			continue;
4102		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4103		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4104			continue;
4105
4106		ret = wait_dev_supers(dev, max_mirrors);
4107		if (ret)
4108			total_errors++;
4109	}
4110	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4111	if (total_errors > max_errors) {
4112		btrfs_handle_fs_error(fs_info, -EIO,
4113				      "%d errors while writing supers",
4114				      total_errors);
4115		return -EIO;
4116	}
4117	return 0;
4118}
4119
4120/* Drop a fs root from the radix tree and free it. */
4121void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4122				  struct btrfs_root *root)
4123{
4124	bool drop_ref = false;
4125
4126	spin_lock(&fs_info->fs_roots_radix_lock);
4127	radix_tree_delete(&fs_info->fs_roots_radix,
4128			  (unsigned long)btrfs_root_id(root));
4129	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4130		drop_ref = true;
4131	spin_unlock(&fs_info->fs_roots_radix_lock);
4132
4133	if (BTRFS_FS_ERROR(fs_info)) {
4134		ASSERT(root->log_root == NULL);
 
 
 
4135		if (root->reloc_root) {
4136			btrfs_put_root(root->reloc_root);
 
 
4137			root->reloc_root = NULL;
4138		}
4139	}
4140
4141	if (drop_ref)
4142		btrfs_put_root(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4143}
4144
4145int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4146{
 
 
 
4147	mutex_lock(&fs_info->cleaner_mutex);
4148	btrfs_run_delayed_iputs(fs_info);
4149	mutex_unlock(&fs_info->cleaner_mutex);
4150	wake_up_process(fs_info->cleaner_kthread);
4151
4152	/* wait until ongoing cleanup work done */
4153	down_write(&fs_info->cleanup_work_sem);
4154	up_write(&fs_info->cleanup_work_sem);
4155
4156	return btrfs_commit_current_transaction(fs_info->tree_root);
4157}
4158
4159static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4160{
4161	struct btrfs_transaction *trans;
4162	struct btrfs_transaction *tmp;
4163	bool found = false;
4164
4165	/*
4166	 * This function is only called at the very end of close_ctree(),
4167	 * thus no other running transaction, no need to take trans_lock.
4168	 */
4169	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4170	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4171		struct extent_state *cached = NULL;
4172		u64 dirty_bytes = 0;
4173		u64 cur = 0;
4174		u64 found_start;
4175		u64 found_end;
4176
4177		found = true;
4178		while (find_first_extent_bit(&trans->dirty_pages, cur,
4179			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4180			dirty_bytes += found_end + 1 - found_start;
4181			cur = found_end + 1;
4182		}
4183		btrfs_warn(fs_info,
4184	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4185			   trans->transid, dirty_bytes);
4186		btrfs_cleanup_one_transaction(trans);
4187
4188		if (trans == fs_info->running_transaction)
4189			fs_info->running_transaction = NULL;
4190		list_del_init(&trans->list);
4191
4192		btrfs_put_transaction(trans);
4193		trace_btrfs_transaction_commit(fs_info);
4194	}
4195	ASSERT(!found);
4196}
4197
4198void __cold close_ctree(struct btrfs_fs_info *fs_info)
4199{
4200	int ret;
4201
4202	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4203
4204	/*
4205	 * If we had UNFINISHED_DROPS we could still be processing them, so
4206	 * clear that bit and wake up relocation so it can stop.
4207	 * We must do this before stopping the block group reclaim task, because
4208	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4209	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4210	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4211	 * return 1.
4212	 */
4213	btrfs_wake_unfinished_drop(fs_info);
4214
4215	/*
4216	 * We may have the reclaim task running and relocating a data block group,
4217	 * in which case it may create delayed iputs. So stop it before we park
4218	 * the cleaner kthread otherwise we can get new delayed iputs after
4219	 * parking the cleaner, and that can make the async reclaim task to hang
4220	 * if it's waiting for delayed iputs to complete, since the cleaner is
4221	 * parked and can not run delayed iputs - this will make us hang when
4222	 * trying to stop the async reclaim task.
4223	 */
4224	cancel_work_sync(&fs_info->reclaim_bgs_work);
4225	/*
4226	 * We don't want the cleaner to start new transactions, add more delayed
4227	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4228	 * because that frees the task_struct, and the transaction kthread might
4229	 * still try to wake up the cleaner.
4230	 */
4231	kthread_park(fs_info->cleaner_kthread);
4232
4233	/* wait for the qgroup rescan worker to stop */
4234	btrfs_qgroup_wait_for_completion(fs_info, false);
4235
4236	/* wait for the uuid_scan task to finish */
4237	down(&fs_info->uuid_tree_rescan_sem);
4238	/* avoid complains from lockdep et al., set sem back to initial state */
4239	up(&fs_info->uuid_tree_rescan_sem);
4240
4241	/* pause restriper - we want to resume on mount */
4242	btrfs_pause_balance(fs_info);
4243
4244	btrfs_dev_replace_suspend_for_unmount(fs_info);
4245
4246	btrfs_scrub_cancel(fs_info);
4247
4248	/* wait for any defraggers to finish */
4249	wait_event(fs_info->transaction_wait,
4250		   (atomic_read(&fs_info->defrag_running) == 0));
4251
4252	/* clear out the rbtree of defraggable inodes */
4253	btrfs_cleanup_defrag_inodes(fs_info);
4254
4255	/*
4256	 * Wait for any fixup workers to complete.
4257	 * If we don't wait for them here and they are still running by the time
4258	 * we call kthread_stop() against the cleaner kthread further below, we
4259	 * get an use-after-free on the cleaner because the fixup worker adds an
4260	 * inode to the list of delayed iputs and then attempts to wakeup the
4261	 * cleaner kthread, which was already stopped and destroyed. We parked
4262	 * already the cleaner, but below we run all pending delayed iputs.
4263	 */
4264	btrfs_flush_workqueue(fs_info->fixup_workers);
4265	/*
4266	 * Similar case here, we have to wait for delalloc workers before we
4267	 * proceed below and stop the cleaner kthread, otherwise we trigger a
4268	 * use-after-tree on the cleaner kthread task_struct when a delalloc
4269	 * worker running submit_compressed_extents() adds a delayed iput, which
4270	 * does a wake up on the cleaner kthread, which was already freed below
4271	 * when we call kthread_stop().
4272	 */
4273	btrfs_flush_workqueue(fs_info->delalloc_workers);
4274
4275	/*
4276	 * After we parked the cleaner kthread, ordered extents may have
4277	 * completed and created new delayed iputs. If one of the async reclaim
4278	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4279	 * can hang forever trying to stop it, because if a delayed iput is
4280	 * added after it ran btrfs_run_delayed_iputs() and before it called
4281	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4282	 * no one else to run iputs.
4283	 *
4284	 * So wait for all ongoing ordered extents to complete and then run
4285	 * delayed iputs. This works because once we reach this point no one
4286	 * can either create new ordered extents nor create delayed iputs
4287	 * through some other means.
4288	 *
4289	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4290	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4291	 * but the delayed iput for the respective inode is made only when doing
4292	 * the final btrfs_put_ordered_extent() (which must happen at
4293	 * btrfs_finish_ordered_io() when we are unmounting).
4294	 */
4295	btrfs_flush_workqueue(fs_info->endio_write_workers);
4296	/* Ordered extents for free space inodes. */
4297	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4298	btrfs_run_delayed_iputs(fs_info);
4299
4300	cancel_work_sync(&fs_info->async_reclaim_work);
4301	cancel_work_sync(&fs_info->async_data_reclaim_work);
4302	cancel_work_sync(&fs_info->preempt_reclaim_work);
4303	cancel_work_sync(&fs_info->em_shrinker_work);
4304
4305	/* Cancel or finish ongoing discard work */
4306	btrfs_discard_cleanup(fs_info);
4307
4308	if (!sb_rdonly(fs_info->sb)) {
4309		/*
4310		 * The cleaner kthread is stopped, so do one final pass over
4311		 * unused block groups.
4312		 */
4313		btrfs_delete_unused_bgs(fs_info);
4314
4315		/*
4316		 * There might be existing delayed inode workers still running
4317		 * and holding an empty delayed inode item. We must wait for
4318		 * them to complete first because they can create a transaction.
4319		 * This happens when someone calls btrfs_balance_delayed_items()
4320		 * and then a transaction commit runs the same delayed nodes
4321		 * before any delayed worker has done something with the nodes.
4322		 * We must wait for any worker here and not at transaction
4323		 * commit time since that could cause a deadlock.
4324		 * This is a very rare case.
4325		 */
4326		btrfs_flush_workqueue(fs_info->delayed_workers);
4327
4328		ret = btrfs_commit_super(fs_info);
4329		if (ret)
4330			btrfs_err(fs_info, "commit super ret %d", ret);
4331	}
4332
4333	if (BTRFS_FS_ERROR(fs_info))
 
4334		btrfs_error_commit_super(fs_info);
4335
4336	kthread_stop(fs_info->transaction_kthread);
4337	kthread_stop(fs_info->cleaner_kthread);
4338
4339	ASSERT(list_empty(&fs_info->delayed_iputs));
4340	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4341
4342	if (btrfs_check_quota_leak(fs_info)) {
4343		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4344		btrfs_err(fs_info, "qgroup reserved space leaked");
4345	}
4346
4347	btrfs_free_qgroup_config(fs_info);
4348	ASSERT(list_empty(&fs_info->delalloc_roots));
4349
4350	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4351		btrfs_info(fs_info, "at unmount delalloc count %lld",
4352		       percpu_counter_sum(&fs_info->delalloc_bytes));
4353	}
4354
4355	if (percpu_counter_sum(&fs_info->ordered_bytes))
4356		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4357			   percpu_counter_sum(&fs_info->ordered_bytes));
4358
4359	btrfs_sysfs_remove_mounted(fs_info);
4360	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4361
 
 
4362	btrfs_put_block_group_cache(fs_info);
4363
4364	/*
4365	 * we must make sure there is not any read request to
4366	 * submit after we stopping all workers.
4367	 */
4368	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4369	btrfs_stop_all_workers(fs_info);
4370
4371	/* We shouldn't have any transaction open at this point */
4372	warn_about_uncommitted_trans(fs_info);
4373
4374	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4375	free_root_pointers(fs_info, true);
4376	btrfs_free_fs_roots(fs_info);
4377
4378	/*
4379	 * We must free the block groups after dropping the fs_roots as we could
4380	 * have had an IO error and have left over tree log blocks that aren't
4381	 * cleaned up until the fs roots are freed.  This makes the block group
4382	 * accounting appear to be wrong because there's pending reserved bytes,
4383	 * so make sure we do the block group cleanup afterwards.
4384	 */
4385	btrfs_free_block_groups(fs_info);
4386
4387	iput(fs_info->btree_inode);
 
 
 
4388
4389	btrfs_mapping_tree_free(fs_info);
4390	btrfs_close_devices(fs_info->fs_devices);
 
 
 
 
 
 
 
 
 
 
4391}
4392
4393void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4394			     struct extent_buffer *buf)
4395{
4396	struct btrfs_fs_info *fs_info = buf->fs_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4397	u64 transid = btrfs_header_generation(buf);
 
4398
4399#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4400	/*
4401	 * This is a fast path so only do this check if we have sanity tests
4402	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4403	 * outside of the sanity tests.
4404	 */
4405	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4406		return;
4407#endif
4408	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4409	ASSERT(trans->transid == fs_info->generation);
4410	btrfs_assert_tree_write_locked(buf);
4411	if (unlikely(transid != fs_info->generation)) {
4412		btrfs_abort_transaction(trans, -EUCLEAN);
4413		btrfs_crit(fs_info,
4414"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4415			   buf->start, transid, fs_info->generation);
 
 
 
 
 
 
 
 
 
 
 
 
 
4416	}
4417	set_extent_buffer_dirty(buf);
4418}
4419
4420static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4421					int flush_delayed)
4422{
4423	/*
4424	 * looks as though older kernels can get into trouble with
4425	 * this code, they end up stuck in balance_dirty_pages forever
4426	 */
4427	int ret;
4428
4429	if (current->flags & PF_MEMALLOC)
4430		return;
4431
4432	if (flush_delayed)
4433		btrfs_balance_delayed_items(fs_info);
4434
4435	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4436				     BTRFS_DIRTY_METADATA_THRESH,
4437				     fs_info->dirty_metadata_batch);
4438	if (ret > 0) {
4439		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4440	}
4441}
4442
4443void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4444{
4445	__btrfs_btree_balance_dirty(fs_info, 1);
4446}
4447
4448void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4449{
4450	__btrfs_btree_balance_dirty(fs_info, 0);
4451}
4452
 
 
 
 
 
 
 
4453static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4454{
4455	/* cleanup FS via transaction */
4456	btrfs_cleanup_transaction(fs_info);
4457
4458	mutex_lock(&fs_info->cleaner_mutex);
4459	btrfs_run_delayed_iputs(fs_info);
4460	mutex_unlock(&fs_info->cleaner_mutex);
4461
4462	down_write(&fs_info->cleanup_work_sem);
4463	up_write(&fs_info->cleanup_work_sem);
4464}
4465
4466static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4467{
4468	struct btrfs_root *gang[8];
4469	u64 root_objectid = 0;
4470	int ret;
4471
4472	spin_lock(&fs_info->fs_roots_radix_lock);
4473	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4474					     (void **)gang, root_objectid,
4475					     ARRAY_SIZE(gang))) != 0) {
4476		int i;
4477
4478		for (i = 0; i < ret; i++)
4479			gang[i] = btrfs_grab_root(gang[i]);
4480		spin_unlock(&fs_info->fs_roots_radix_lock);
4481
4482		for (i = 0; i < ret; i++) {
4483			if (!gang[i])
4484				continue;
4485			root_objectid = btrfs_root_id(gang[i]);
4486			btrfs_free_log(NULL, gang[i]);
4487			btrfs_put_root(gang[i]);
4488		}
4489		root_objectid++;
4490		spin_lock(&fs_info->fs_roots_radix_lock);
4491	}
4492	spin_unlock(&fs_info->fs_roots_radix_lock);
4493	btrfs_free_log_root_tree(NULL, fs_info);
4494}
4495
4496static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4497{
4498	struct btrfs_ordered_extent *ordered;
4499
4500	spin_lock(&root->ordered_extent_lock);
4501	/*
4502	 * This will just short circuit the ordered completion stuff which will
4503	 * make sure the ordered extent gets properly cleaned up.
4504	 */
4505	list_for_each_entry(ordered, &root->ordered_extents,
4506			    root_extent_list)
4507		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4508	spin_unlock(&root->ordered_extent_lock);
4509}
4510
4511static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4512{
4513	struct btrfs_root *root;
4514	LIST_HEAD(splice);
 
 
4515
4516	spin_lock(&fs_info->ordered_root_lock);
4517	list_splice_init(&fs_info->ordered_roots, &splice);
4518	while (!list_empty(&splice)) {
4519		root = list_first_entry(&splice, struct btrfs_root,
4520					ordered_root);
4521		list_move_tail(&root->ordered_root,
4522			       &fs_info->ordered_roots);
4523
4524		spin_unlock(&fs_info->ordered_root_lock);
4525		btrfs_destroy_ordered_extents(root);
4526
4527		cond_resched();
4528		spin_lock(&fs_info->ordered_root_lock);
4529	}
4530	spin_unlock(&fs_info->ordered_root_lock);
4531
4532	/*
4533	 * We need this here because if we've been flipped read-only we won't
4534	 * get sync() from the umount, so we need to make sure any ordered
4535	 * extents that haven't had their dirty pages IO start writeout yet
4536	 * actually get run and error out properly.
4537	 */
4538	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4539}
4540
4541static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4542{
4543	struct btrfs_inode *btrfs_inode;
4544	LIST_HEAD(splice);
 
 
4545
4546	spin_lock(&root->delalloc_lock);
4547	list_splice_init(&root->delalloc_inodes, &splice);
4548
4549	while (!list_empty(&splice)) {
4550		struct inode *inode = NULL;
4551		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4552					       delalloc_inodes);
4553		btrfs_del_delalloc_inode(btrfs_inode);
4554		spin_unlock(&root->delalloc_lock);
4555
4556		/*
4557		 * Make sure we get a live inode and that it'll not disappear
4558		 * meanwhile.
4559		 */
4560		inode = igrab(&btrfs_inode->vfs_inode);
4561		if (inode) {
4562			unsigned int nofs_flag;
4563
4564			nofs_flag = memalloc_nofs_save();
4565			invalidate_inode_pages2(inode->i_mapping);
4566			memalloc_nofs_restore(nofs_flag);
4567			iput(inode);
4568		}
4569		spin_lock(&root->delalloc_lock);
4570	}
4571	spin_unlock(&root->delalloc_lock);
4572}
4573
4574static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4575{
4576	struct btrfs_root *root;
4577	LIST_HEAD(splice);
 
 
4578
4579	spin_lock(&fs_info->delalloc_root_lock);
4580	list_splice_init(&fs_info->delalloc_roots, &splice);
4581	while (!list_empty(&splice)) {
4582		root = list_first_entry(&splice, struct btrfs_root,
4583					 delalloc_root);
4584		root = btrfs_grab_root(root);
4585		BUG_ON(!root);
4586		spin_unlock(&fs_info->delalloc_root_lock);
4587
4588		btrfs_destroy_delalloc_inodes(root);
4589		btrfs_put_root(root);
4590
4591		spin_lock(&fs_info->delalloc_root_lock);
4592	}
4593	spin_unlock(&fs_info->delalloc_root_lock);
4594}
4595
4596static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4597					 struct extent_io_tree *dirty_pages,
4598					 int mark)
4599{
 
4600	struct extent_buffer *eb;
4601	u64 start = 0;
4602	u64 end;
4603
4604	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4605				     mark, NULL)) {
 
 
 
 
4606		clear_extent_bits(dirty_pages, start, end, mark);
4607		while (start <= end) {
4608			eb = find_extent_buffer(fs_info, start);
4609			start += fs_info->nodesize;
4610			if (!eb)
4611				continue;
4612
4613			btrfs_tree_lock(eb);
4614			wait_on_extent_buffer_writeback(eb);
4615			btrfs_clear_buffer_dirty(NULL, eb);
4616			btrfs_tree_unlock(eb);
4617
 
 
 
4618			free_extent_buffer_stale(eb);
4619		}
4620	}
 
 
4621}
4622
4623static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4624					struct extent_io_tree *unpin)
4625{
 
4626	u64 start;
4627	u64 end;
 
 
4628
 
 
4629	while (1) {
4630		struct extent_state *cached_state = NULL;
4631
4632		/*
4633		 * The btrfs_finish_extent_commit() may get the same range as
4634		 * ours between find_first_extent_bit and clear_extent_dirty.
4635		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4636		 * the same extent range.
4637		 */
4638		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4639		if (!find_first_extent_bit(unpin, 0, &start, &end,
4640					   EXTENT_DIRTY, &cached_state)) {
 
4641			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4642			break;
4643		}
4644
4645		clear_extent_dirty(unpin, start, end, &cached_state);
4646		free_extent_state(cached_state);
4647		btrfs_error_unpin_extent_range(fs_info, start, end);
4648		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4649		cond_resched();
4650	}
 
 
 
 
 
 
 
 
 
 
 
4651}
4652
4653static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4654{
4655	struct inode *inode;
4656
4657	inode = cache->io_ctl.inode;
4658	if (inode) {
4659		unsigned int nofs_flag;
4660
4661		nofs_flag = memalloc_nofs_save();
4662		invalidate_inode_pages2(inode->i_mapping);
4663		memalloc_nofs_restore(nofs_flag);
4664
4665		BTRFS_I(inode)->generation = 0;
4666		cache->io_ctl.inode = NULL;
4667		iput(inode);
4668	}
4669	ASSERT(cache->io_ctl.pages == NULL);
4670	btrfs_put_block_group(cache);
4671}
4672
4673void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4674			     struct btrfs_fs_info *fs_info)
4675{
4676	struct btrfs_block_group *cache;
4677
4678	spin_lock(&cur_trans->dirty_bgs_lock);
4679	while (!list_empty(&cur_trans->dirty_bgs)) {
4680		cache = list_first_entry(&cur_trans->dirty_bgs,
4681					 struct btrfs_block_group,
4682					 dirty_list);
4683
4684		if (!list_empty(&cache->io_list)) {
4685			spin_unlock(&cur_trans->dirty_bgs_lock);
4686			list_del_init(&cache->io_list);
4687			btrfs_cleanup_bg_io(cache);
4688			spin_lock(&cur_trans->dirty_bgs_lock);
4689		}
4690
4691		list_del_init(&cache->dirty_list);
4692		spin_lock(&cache->lock);
4693		cache->disk_cache_state = BTRFS_DC_ERROR;
4694		spin_unlock(&cache->lock);
4695
4696		spin_unlock(&cur_trans->dirty_bgs_lock);
4697		btrfs_put_block_group(cache);
4698		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4699		spin_lock(&cur_trans->dirty_bgs_lock);
4700	}
4701	spin_unlock(&cur_trans->dirty_bgs_lock);
4702
4703	/*
4704	 * Refer to the definition of io_bgs member for details why it's safe
4705	 * to use it without any locking
4706	 */
4707	while (!list_empty(&cur_trans->io_bgs)) {
4708		cache = list_first_entry(&cur_trans->io_bgs,
4709					 struct btrfs_block_group,
4710					 io_list);
4711
4712		list_del_init(&cache->io_list);
4713		spin_lock(&cache->lock);
4714		cache->disk_cache_state = BTRFS_DC_ERROR;
4715		spin_unlock(&cache->lock);
4716		btrfs_cleanup_bg_io(cache);
4717	}
4718}
4719
4720static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
 
4721{
4722	struct btrfs_root *gang[8];
4723	int i;
4724	int ret;
4725
4726	spin_lock(&fs_info->fs_roots_radix_lock);
4727	while (1) {
4728		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4729						 (void **)gang, 0,
4730						 ARRAY_SIZE(gang),
4731						 BTRFS_ROOT_TRANS_TAG);
4732		if (ret == 0)
4733			break;
4734		for (i = 0; i < ret; i++) {
4735			struct btrfs_root *root = gang[i];
4736
4737			btrfs_qgroup_free_meta_all_pertrans(root);
4738			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4739					(unsigned long)btrfs_root_id(root),
4740					BTRFS_ROOT_TRANS_TAG);
4741		}
4742	}
4743	spin_unlock(&fs_info->fs_roots_radix_lock);
4744}
4745
4746void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans)
4747{
4748	struct btrfs_fs_info *fs_info = cur_trans->fs_info;
4749	struct btrfs_device *dev, *tmp;
4750
4751	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4752	ASSERT(list_empty(&cur_trans->dirty_bgs));
4753	ASSERT(list_empty(&cur_trans->io_bgs));
4754
4755	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4756				 post_commit_list) {
4757		list_del_init(&dev->post_commit_list);
4758	}
4759
4760	btrfs_destroy_delayed_refs(cur_trans);
4761
4762	cur_trans->state = TRANS_STATE_COMMIT_START;
4763	wake_up(&fs_info->transaction_blocked_wait);
4764
4765	cur_trans->state = TRANS_STATE_UNBLOCKED;
4766	wake_up(&fs_info->transaction_wait);
4767
 
 
 
4768	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4769				     EXTENT_DIRTY);
4770	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
 
4771
4772	cur_trans->state =TRANS_STATE_COMPLETED;
4773	wake_up(&cur_trans->commit_wait);
4774}
4775
4776static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4777{
4778	struct btrfs_transaction *t;
4779
4780	mutex_lock(&fs_info->transaction_kthread_mutex);
4781
4782	spin_lock(&fs_info->trans_lock);
4783	while (!list_empty(&fs_info->trans_list)) {
4784		t = list_first_entry(&fs_info->trans_list,
4785				     struct btrfs_transaction, list);
4786		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4787			refcount_inc(&t->use_count);
4788			spin_unlock(&fs_info->trans_lock);
4789			btrfs_wait_for_commit(fs_info, t->transid);
4790			btrfs_put_transaction(t);
4791			spin_lock(&fs_info->trans_lock);
4792			continue;
4793		}
4794		if (t == fs_info->running_transaction) {
4795			t->state = TRANS_STATE_COMMIT_DOING;
4796			spin_unlock(&fs_info->trans_lock);
4797			/*
4798			 * We wait for 0 num_writers since we don't hold a trans
4799			 * handle open currently for this transaction.
4800			 */
4801			wait_event(t->writer_wait,
4802				   atomic_read(&t->num_writers) == 0);
4803		} else {
4804			spin_unlock(&fs_info->trans_lock);
4805		}
4806		btrfs_cleanup_one_transaction(t);
4807
4808		spin_lock(&fs_info->trans_lock);
4809		if (t == fs_info->running_transaction)
4810			fs_info->running_transaction = NULL;
4811		list_del_init(&t->list);
4812		spin_unlock(&fs_info->trans_lock);
4813
4814		btrfs_put_transaction(t);
4815		trace_btrfs_transaction_commit(fs_info);
4816		spin_lock(&fs_info->trans_lock);
4817	}
4818	spin_unlock(&fs_info->trans_lock);
4819	btrfs_destroy_all_ordered_extents(fs_info);
4820	btrfs_destroy_delayed_inodes(fs_info);
4821	btrfs_assert_delayed_root_empty(fs_info);
 
4822	btrfs_destroy_all_delalloc_inodes(fs_info);
4823	btrfs_drop_all_logs(fs_info);
4824	btrfs_free_all_qgroup_pertrans(fs_info);
4825	mutex_unlock(&fs_info->transaction_kthread_mutex);
4826
4827	return 0;
4828}
4829
4830int btrfs_init_root_free_objectid(struct btrfs_root *root)
4831{
4832	struct btrfs_path *path;
4833	int ret;
4834	struct extent_buffer *l;
4835	struct btrfs_key search_key;
4836	struct btrfs_key found_key;
4837	int slot;
4838
4839	path = btrfs_alloc_path();
4840	if (!path)
4841		return -ENOMEM;
4842
4843	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4844	search_key.type = -1;
4845	search_key.offset = (u64)-1;
4846	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4847	if (ret < 0)
4848		goto error;
4849	if (ret == 0) {
4850		/*
4851		 * Key with offset -1 found, there would have to exist a root
4852		 * with such id, but this is out of valid range.
4853		 */
4854		ret = -EUCLEAN;
4855		goto error;
4856	}
4857	if (path->slots[0] > 0) {
4858		slot = path->slots[0] - 1;
4859		l = path->nodes[0];
4860		btrfs_item_key_to_cpu(l, &found_key, slot);
4861		root->free_objectid = max_t(u64, found_key.objectid + 1,
4862					    BTRFS_FIRST_FREE_OBJECTID);
4863	} else {
4864		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4865	}
4866	ret = 0;
4867error:
4868	btrfs_free_path(path);
4869	return ret;
4870}
4871
4872int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4873{
4874	int ret;
4875	mutex_lock(&root->objectid_mutex);
4876
4877	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4878		btrfs_warn(root->fs_info,
4879			   "the objectid of root %llu reaches its highest value",
4880			   btrfs_root_id(root));
4881		ret = -ENOSPC;
4882		goto out;
4883	}
4884
4885	*objectid = root->free_objectid++;
4886	ret = 0;
4887out:
4888	mutex_unlock(&root->objectid_mutex);
4889	return ret;
4890}