Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
  10#include <linux/buffer_head.h>
  11#include <linux/workqueue.h>
  12#include <linux/kthread.h>
  13#include <linux/slab.h>
  14#include <linux/migrate.h>
  15#include <linux/ratelimit.h>
  16#include <linux/uuid.h>
  17#include <linux/semaphore.h>
  18#include <linux/error-injection.h>
  19#include <linux/crc32c.h>
  20#include <linux/sched/mm.h>
  21#include <asm/unaligned.h>
  22#include <crypto/hash.h>
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "btrfs_inode.h"
  27#include "volumes.h"
  28#include "print-tree.h"
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "free-space-cache.h"
  32#include "free-space-tree.h"
  33#include "inode-map.h"
  34#include "check-integrity.h"
  35#include "rcu-string.h"
  36#include "dev-replace.h"
  37#include "raid56.h"
  38#include "sysfs.h"
  39#include "qgroup.h"
  40#include "compression.h"
  41#include "tree-checker.h"
  42#include "ref-verify.h"
  43#include "block-group.h"
 
 
  44
  45#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  46				 BTRFS_HEADER_FLAG_RELOC |\
  47				 BTRFS_SUPER_FLAG_ERROR |\
  48				 BTRFS_SUPER_FLAG_SEEDING |\
  49				 BTRFS_SUPER_FLAG_METADUMP |\
  50				 BTRFS_SUPER_FLAG_METADUMP_V2)
  51
  52static const struct extent_io_ops btree_extent_io_ops;
  53static void end_workqueue_fn(struct btrfs_work *work);
  54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  56				      struct btrfs_fs_info *fs_info);
  57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  59					struct extent_io_tree *dirty_pages,
  60					int mark);
  61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  62				       struct extent_io_tree *pinned_extents);
  63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  65
  66/*
  67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  68 * is complete.  This is used during reads to verify checksums, and it is used
  69 * by writes to insert metadata for new file extents after IO is complete.
  70 */
  71struct btrfs_end_io_wq {
  72	struct bio *bio;
  73	bio_end_io_t *end_io;
  74	void *private;
  75	struct btrfs_fs_info *info;
  76	blk_status_t status;
  77	enum btrfs_wq_endio_type metadata;
  78	struct btrfs_work work;
  79};
  80
  81static struct kmem_cache *btrfs_end_io_wq_cache;
  82
  83int __init btrfs_end_io_wq_init(void)
  84{
  85	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  86					sizeof(struct btrfs_end_io_wq),
  87					0,
  88					SLAB_MEM_SPREAD,
  89					NULL);
  90	if (!btrfs_end_io_wq_cache)
  91		return -ENOMEM;
  92	return 0;
  93}
  94
  95void __cold btrfs_end_io_wq_exit(void)
  96{
  97	kmem_cache_destroy(btrfs_end_io_wq_cache);
  98}
  99
 
 
 
 
 
 
 100/*
 101 * async submit bios are used to offload expensive checksumming
 102 * onto the worker threads.  They checksum file and metadata bios
 103 * just before they are sent down the IO stack.
 104 */
 105struct async_submit_bio {
 106	void *private_data;
 107	struct bio *bio;
 108	extent_submit_bio_start_t *submit_bio_start;
 109	int mirror_num;
 110	/*
 111	 * bio_offset is optional, can be used if the pages in the bio
 112	 * can't tell us where in the file the bio should go
 113	 */
 114	u64 bio_offset;
 115	struct btrfs_work work;
 116	blk_status_t status;
 117};
 118
 119/*
 120 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 121 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 122 * the level the eb occupies in the tree.
 123 *
 124 * Different roots are used for different purposes and may nest inside each
 125 * other and they require separate keysets.  As lockdep keys should be
 126 * static, assign keysets according to the purpose of the root as indicated
 127 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 128 * roots have separate keysets.
 129 *
 130 * Lock-nesting across peer nodes is always done with the immediate parent
 131 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 132 * subclass to avoid triggering lockdep warning in such cases.
 133 *
 134 * The key is set by the readpage_end_io_hook after the buffer has passed
 135 * csum validation but before the pages are unlocked.  It is also set by
 136 * btrfs_init_new_buffer on freshly allocated blocks.
 137 *
 138 * We also add a check to make sure the highest level of the tree is the
 139 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 140 * needs update as well.
 141 */
 142#ifdef CONFIG_DEBUG_LOCK_ALLOC
 143# if BTRFS_MAX_LEVEL != 8
 144#  error
 145# endif
 146
 147static struct btrfs_lockdep_keyset {
 148	u64			id;		/* root objectid */
 149	const char		*name_stem;	/* lock name stem */
 150	char			names[BTRFS_MAX_LEVEL + 1][20];
 151	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 152} btrfs_lockdep_keysets[] = {
 153	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 154	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 155	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 156	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 157	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 158	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 159	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 160	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 161	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 162	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 163	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 164	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 165	{ .id = 0,				.name_stem = "tree"	},
 166};
 167
 168void __init btrfs_init_lockdep(void)
 169{
 170	int i, j;
 171
 172	/* initialize lockdep class names */
 173	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 174		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 175
 176		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 177			snprintf(ks->names[j], sizeof(ks->names[j]),
 178				 "btrfs-%s-%02d", ks->name_stem, j);
 179	}
 180}
 181
 182void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 183				    int level)
 184{
 185	struct btrfs_lockdep_keyset *ks;
 186
 187	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 188
 189	/* find the matching keyset, id 0 is the default entry */
 190	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 191		if (ks->id == objectid)
 192			break;
 193
 194	lockdep_set_class_and_name(&eb->lock,
 195				   &ks->keys[level], ks->names[level]);
 196}
 197
 198#endif
 199
 200/*
 201 * extents on the btree inode are pretty simple, there's one extent
 202 * that covers the entire device
 203 */
 204struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 205		struct page *page, size_t pg_offset, u64 start, u64 len,
 206		int create)
 207{
 208	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 209	struct extent_map_tree *em_tree = &inode->extent_tree;
 210	struct extent_map *em;
 211	int ret;
 212
 213	read_lock(&em_tree->lock);
 214	em = lookup_extent_mapping(em_tree, start, len);
 215	if (em) {
 216		em->bdev = fs_info->fs_devices->latest_bdev;
 217		read_unlock(&em_tree->lock);
 218		goto out;
 219	}
 220	read_unlock(&em_tree->lock);
 221
 222	em = alloc_extent_map();
 223	if (!em) {
 224		em = ERR_PTR(-ENOMEM);
 225		goto out;
 226	}
 227	em->start = 0;
 228	em->len = (u64)-1;
 229	em->block_len = (u64)-1;
 230	em->block_start = 0;
 231	em->bdev = fs_info->fs_devices->latest_bdev;
 232
 233	write_lock(&em_tree->lock);
 234	ret = add_extent_mapping(em_tree, em, 0);
 235	if (ret == -EEXIST) {
 236		free_extent_map(em);
 237		em = lookup_extent_mapping(em_tree, start, len);
 238		if (!em)
 239			em = ERR_PTR(-EIO);
 240	} else if (ret) {
 241		free_extent_map(em);
 242		em = ERR_PTR(ret);
 243	}
 244	write_unlock(&em_tree->lock);
 245
 246out:
 247	return em;
 248}
 249
 250/*
 251 * Compute the csum of a btree block and store the result to provided buffer.
 252 *
 253 * Returns error if the extent buffer cannot be mapped.
 254 */
 255static int csum_tree_block(struct extent_buffer *buf, u8 *result)
 256{
 257	struct btrfs_fs_info *fs_info = buf->fs_info;
 
 258	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 259	unsigned long len;
 260	unsigned long cur_len;
 261	unsigned long offset = BTRFS_CSUM_SIZE;
 262	char *kaddr;
 263	unsigned long map_start;
 264	unsigned long map_len;
 265	int err;
 266
 267	shash->tfm = fs_info->csum_shash;
 268	crypto_shash_init(shash);
 269
 270	len = buf->len - offset;
 271
 272	while (len > 0) {
 273		/*
 274		 * Note: we don't need to check for the err == 1 case here, as
 275		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
 276		 * and 'min_len = 32' and the currently implemented mapping
 277		 * algorithm we cannot cross a page boundary.
 278		 */
 279		err = map_private_extent_buffer(buf, offset, 32,
 280					&kaddr, &map_start, &map_len);
 281		if (WARN_ON(err))
 282			return err;
 283		cur_len = min(len, map_len - (offset - map_start));
 284		crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
 285		len -= cur_len;
 286		offset += cur_len;
 287	}
 288	memset(result, 0, BTRFS_CSUM_SIZE);
 289
 290	crypto_shash_final(shash, result);
 291
 292	return 0;
 293}
 294
 295/*
 296 * we can't consider a given block up to date unless the transid of the
 297 * block matches the transid in the parent node's pointer.  This is how we
 298 * detect blocks that either didn't get written at all or got written
 299 * in the wrong place.
 300 */
 301static int verify_parent_transid(struct extent_io_tree *io_tree,
 302				 struct extent_buffer *eb, u64 parent_transid,
 303				 int atomic)
 304{
 305	struct extent_state *cached_state = NULL;
 306	int ret;
 307	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 308
 309	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 310		return 0;
 311
 312	if (atomic)
 313		return -EAGAIN;
 314
 315	if (need_lock) {
 316		btrfs_tree_read_lock(eb);
 317		btrfs_set_lock_blocking_read(eb);
 318	}
 319
 320	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 321			 &cached_state);
 322	if (extent_buffer_uptodate(eb) &&
 323	    btrfs_header_generation(eb) == parent_transid) {
 324		ret = 0;
 325		goto out;
 326	}
 327	btrfs_err_rl(eb->fs_info,
 328		"parent transid verify failed on %llu wanted %llu found %llu",
 329			eb->start,
 330			parent_transid, btrfs_header_generation(eb));
 331	ret = 1;
 332
 333	/*
 334	 * Things reading via commit roots that don't have normal protection,
 335	 * like send, can have a really old block in cache that may point at a
 336	 * block that has been freed and re-allocated.  So don't clear uptodate
 337	 * if we find an eb that is under IO (dirty/writeback) because we could
 338	 * end up reading in the stale data and then writing it back out and
 339	 * making everybody very sad.
 340	 */
 341	if (!extent_buffer_under_io(eb))
 342		clear_extent_buffer_uptodate(eb);
 343out:
 344	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 345			     &cached_state);
 346	if (need_lock)
 347		btrfs_tree_read_unlock_blocking(eb);
 348	return ret;
 349}
 350
 351static bool btrfs_supported_super_csum(u16 csum_type)
 352{
 353	switch (csum_type) {
 354	case BTRFS_CSUM_TYPE_CRC32:
 
 
 
 355		return true;
 356	default:
 357		return false;
 358	}
 359}
 360
 361/*
 362 * Return 0 if the superblock checksum type matches the checksum value of that
 363 * algorithm. Pass the raw disk superblock data.
 364 */
 365static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 366				  char *raw_disk_sb)
 367{
 368	struct btrfs_super_block *disk_sb =
 369		(struct btrfs_super_block *)raw_disk_sb;
 370	char result[BTRFS_CSUM_SIZE];
 371	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 372
 373	shash->tfm = fs_info->csum_shash;
 374	crypto_shash_init(shash);
 375
 376	/*
 377	 * The super_block structure does not span the whole
 378	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 379	 * filled with zeros and is included in the checksum.
 380	 */
 381	crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
 382			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 383	crypto_shash_final(shash, result);
 384
 385	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
 386		return 1;
 387
 388	return 0;
 389}
 390
 391int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 392			   struct btrfs_key *first_key, u64 parent_transid)
 393{
 394	struct btrfs_fs_info *fs_info = eb->fs_info;
 395	int found_level;
 396	struct btrfs_key found_key;
 397	int ret;
 398
 399	found_level = btrfs_header_level(eb);
 400	if (found_level != level) {
 401		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 402		     KERN_ERR "BTRFS: tree level check failed\n");
 403		btrfs_err(fs_info,
 404"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 405			  eb->start, level, found_level);
 406		return -EIO;
 407	}
 408
 409	if (!first_key)
 410		return 0;
 411
 412	/*
 413	 * For live tree block (new tree blocks in current transaction),
 414	 * we need proper lock context to avoid race, which is impossible here.
 415	 * So we only checks tree blocks which is read from disk, whose
 416	 * generation <= fs_info->last_trans_committed.
 417	 */
 418	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 419		return 0;
 420
 421	/* We have @first_key, so this @eb must have at least one item */
 422	if (btrfs_header_nritems(eb) == 0) {
 423		btrfs_err(fs_info,
 424		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 425			  eb->start);
 426		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 427		return -EUCLEAN;
 428	}
 429
 430	if (found_level)
 431		btrfs_node_key_to_cpu(eb, &found_key, 0);
 432	else
 433		btrfs_item_key_to_cpu(eb, &found_key, 0);
 434	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 435
 436	if (ret) {
 437		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 438		     KERN_ERR "BTRFS: tree first key check failed\n");
 439		btrfs_err(fs_info,
 440"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 441			  eb->start, parent_transid, first_key->objectid,
 442			  first_key->type, first_key->offset,
 443			  found_key.objectid, found_key.type,
 444			  found_key.offset);
 445	}
 446	return ret;
 447}
 448
 449/*
 450 * helper to read a given tree block, doing retries as required when
 451 * the checksums don't match and we have alternate mirrors to try.
 452 *
 453 * @parent_transid:	expected transid, skip check if 0
 454 * @level:		expected level, mandatory check
 455 * @first_key:		expected key of first slot, skip check if NULL
 456 */
 457static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 458					  u64 parent_transid, int level,
 459					  struct btrfs_key *first_key)
 460{
 461	struct btrfs_fs_info *fs_info = eb->fs_info;
 462	struct extent_io_tree *io_tree;
 463	int failed = 0;
 464	int ret;
 465	int num_copies = 0;
 466	int mirror_num = 0;
 467	int failed_mirror = 0;
 468
 469	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 470	while (1) {
 471		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 472		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 473		if (!ret) {
 474			if (verify_parent_transid(io_tree, eb,
 475						   parent_transid, 0))
 476				ret = -EIO;
 477			else if (btrfs_verify_level_key(eb, level,
 478						first_key, parent_transid))
 479				ret = -EUCLEAN;
 480			else
 481				break;
 482		}
 483
 484		num_copies = btrfs_num_copies(fs_info,
 485					      eb->start, eb->len);
 486		if (num_copies == 1)
 487			break;
 488
 489		if (!failed_mirror) {
 490			failed = 1;
 491			failed_mirror = eb->read_mirror;
 492		}
 493
 494		mirror_num++;
 495		if (mirror_num == failed_mirror)
 496			mirror_num++;
 497
 498		if (mirror_num > num_copies)
 499			break;
 500	}
 501
 502	if (failed && !ret && failed_mirror)
 503		btrfs_repair_eb_io_failure(eb, failed_mirror);
 504
 505	return ret;
 506}
 507
 508/*
 509 * checksum a dirty tree block before IO.  This has extra checks to make sure
 510 * we only fill in the checksum field in the first page of a multi-page block
 511 */
 512
 513static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 514{
 515	u64 start = page_offset(page);
 516	u64 found_start;
 517	u8 result[BTRFS_CSUM_SIZE];
 518	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 519	struct extent_buffer *eb;
 520	int ret;
 521
 522	eb = (struct extent_buffer *)page->private;
 523	if (page != eb->pages[0])
 524		return 0;
 525
 526	found_start = btrfs_header_bytenr(eb);
 527	/*
 528	 * Please do not consolidate these warnings into a single if.
 529	 * It is useful to know what went wrong.
 530	 */
 531	if (WARN_ON(found_start != start))
 532		return -EUCLEAN;
 533	if (WARN_ON(!PageUptodate(page)))
 534		return -EUCLEAN;
 535
 536	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 537			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 
 538
 539	if (csum_tree_block(eb, result))
 540		return -EINVAL;
 541
 542	if (btrfs_header_level(eb))
 543		ret = btrfs_check_node(eb);
 544	else
 545		ret = btrfs_check_leaf_full(eb);
 546
 547	if (ret < 0) {
 
 548		btrfs_err(fs_info,
 549		"block=%llu write time tree block corruption detected",
 550			  eb->start);
 
 551		return ret;
 552	}
 553	write_extent_buffer(eb, result, 0, csum_size);
 554
 555	return 0;
 556}
 557
 558static int check_tree_block_fsid(struct extent_buffer *eb)
 559{
 560	struct btrfs_fs_info *fs_info = eb->fs_info;
 561	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 562	u8 fsid[BTRFS_FSID_SIZE];
 563	int ret = 1;
 564
 565	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 
 566	while (fs_devices) {
 567		u8 *metadata_uuid;
 568
 569		/*
 570		 * Checking the incompat flag is only valid for the current
 571		 * fs. For seed devices it's forbidden to have their uuid
 572		 * changed so reading ->fsid in this case is fine
 573		 */
 574		if (fs_devices == fs_info->fs_devices &&
 575		    btrfs_fs_incompat(fs_info, METADATA_UUID))
 576			metadata_uuid = fs_devices->metadata_uuid;
 577		else
 578			metadata_uuid = fs_devices->fsid;
 579
 580		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
 581			ret = 0;
 582			break;
 583		}
 584		fs_devices = fs_devices->seed;
 585	}
 586	return ret;
 587}
 588
 589static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 590				      u64 phy_offset, struct page *page,
 591				      u64 start, u64 end, int mirror)
 592{
 593	u64 found_start;
 594	int found_level;
 595	struct extent_buffer *eb;
 596	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 597	struct btrfs_fs_info *fs_info = root->fs_info;
 598	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 599	int ret = 0;
 600	u8 result[BTRFS_CSUM_SIZE];
 601	int reads_done;
 602
 603	if (!page->private)
 604		goto out;
 605
 606	eb = (struct extent_buffer *)page->private;
 
 
 607
 608	/* the pending IO might have been the only thing that kept this buffer
 609	 * in memory.  Make sure we have a ref for all this other checks
 610	 */
 611	extent_buffer_get(eb);
 612
 613	reads_done = atomic_dec_and_test(&eb->io_pages);
 614	if (!reads_done)
 615		goto err;
 616
 617	eb->read_mirror = mirror;
 618	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 619		ret = -EIO;
 620		goto err;
 621	}
 622
 623	found_start = btrfs_header_bytenr(eb);
 624	if (found_start != eb->start) {
 625		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 626			     eb->start, found_start);
 627		ret = -EIO;
 628		goto err;
 629	}
 630	if (check_tree_block_fsid(eb)) {
 631		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 632			     eb->start);
 633		ret = -EIO;
 634		goto err;
 635	}
 636	found_level = btrfs_header_level(eb);
 637	if (found_level >= BTRFS_MAX_LEVEL) {
 638		btrfs_err(fs_info, "bad tree block level %d on %llu",
 639			  (int)btrfs_header_level(eb), eb->start);
 640		ret = -EIO;
 641		goto err;
 642	}
 643
 644	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 645				       eb, found_level);
 646
 647	ret = csum_tree_block(eb, result);
 648	if (ret)
 649		goto err;
 650
 651	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
 652		u32 val;
 653		u32 found = 0;
 654
 655		memcpy(&found, result, csum_size);
 656
 657		read_extent_buffer(eb, &val, 0, csum_size);
 658		btrfs_warn_rl(fs_info,
 659		"%s checksum verify failed on %llu wanted %x found %x level %d",
 660			      fs_info->sb->s_id, eb->start,
 661			      val, found, btrfs_header_level(eb));
 
 
 662		ret = -EUCLEAN;
 663		goto err;
 664	}
 665
 666	/*
 667	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 668	 * that we don't try and read the other copies of this block, just
 669	 * return -EIO.
 670	 */
 671	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 672		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 673		ret = -EIO;
 674	}
 675
 676	if (found_level > 0 && btrfs_check_node(eb))
 677		ret = -EIO;
 678
 679	if (!ret)
 680		set_extent_buffer_uptodate(eb);
 681	else
 682		btrfs_err(fs_info,
 683			  "block=%llu read time tree block corruption detected",
 684			  eb->start);
 685err:
 686	if (reads_done &&
 687	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 688		btree_readahead_hook(eb, ret);
 689
 690	if (ret) {
 691		/*
 692		 * our io error hook is going to dec the io pages
 693		 * again, we have to make sure it has something
 694		 * to decrement
 695		 */
 696		atomic_inc(&eb->io_pages);
 697		clear_extent_buffer_uptodate(eb);
 698	}
 699	free_extent_buffer(eb);
 700out:
 701	return ret;
 702}
 703
 704static void end_workqueue_bio(struct bio *bio)
 705{
 706	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 707	struct btrfs_fs_info *fs_info;
 708	struct btrfs_workqueue *wq;
 709	btrfs_work_func_t func;
 710
 711	fs_info = end_io_wq->info;
 712	end_io_wq->status = bio->bi_status;
 713
 714	if (bio_op(bio) == REQ_OP_WRITE) {
 715		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 716			wq = fs_info->endio_meta_write_workers;
 717			func = btrfs_endio_meta_write_helper;
 718		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 719			wq = fs_info->endio_freespace_worker;
 720			func = btrfs_freespace_write_helper;
 721		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 722			wq = fs_info->endio_raid56_workers;
 723			func = btrfs_endio_raid56_helper;
 724		} else {
 725			wq = fs_info->endio_write_workers;
 726			func = btrfs_endio_write_helper;
 727		}
 728	} else {
 729		if (unlikely(end_io_wq->metadata ==
 730			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 731			wq = fs_info->endio_repair_workers;
 732			func = btrfs_endio_repair_helper;
 733		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 734			wq = fs_info->endio_raid56_workers;
 735			func = btrfs_endio_raid56_helper;
 736		} else if (end_io_wq->metadata) {
 737			wq = fs_info->endio_meta_workers;
 738			func = btrfs_endio_meta_helper;
 739		} else {
 740			wq = fs_info->endio_workers;
 741			func = btrfs_endio_helper;
 742		}
 743	}
 744
 745	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 746	btrfs_queue_work(wq, &end_io_wq->work);
 747}
 748
 749blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 750			enum btrfs_wq_endio_type metadata)
 751{
 752	struct btrfs_end_io_wq *end_io_wq;
 753
 754	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 755	if (!end_io_wq)
 756		return BLK_STS_RESOURCE;
 757
 758	end_io_wq->private = bio->bi_private;
 759	end_io_wq->end_io = bio->bi_end_io;
 760	end_io_wq->info = info;
 761	end_io_wq->status = 0;
 762	end_io_wq->bio = bio;
 763	end_io_wq->metadata = metadata;
 764
 765	bio->bi_private = end_io_wq;
 766	bio->bi_end_io = end_workqueue_bio;
 767	return 0;
 768}
 769
 770static void run_one_async_start(struct btrfs_work *work)
 771{
 772	struct async_submit_bio *async;
 773	blk_status_t ret;
 774
 775	async = container_of(work, struct  async_submit_bio, work);
 776	ret = async->submit_bio_start(async->private_data, async->bio,
 777				      async->bio_offset);
 778	if (ret)
 779		async->status = ret;
 780}
 781
 782/*
 783 * In order to insert checksums into the metadata in large chunks, we wait
 784 * until bio submission time.   All the pages in the bio are checksummed and
 785 * sums are attached onto the ordered extent record.
 786 *
 787 * At IO completion time the csums attached on the ordered extent record are
 788 * inserted into the tree.
 789 */
 790static void run_one_async_done(struct btrfs_work *work)
 791{
 792	struct async_submit_bio *async;
 793	struct inode *inode;
 794	blk_status_t ret;
 795
 796	async = container_of(work, struct  async_submit_bio, work);
 797	inode = async->private_data;
 798
 799	/* If an error occurred we just want to clean up the bio and move on */
 800	if (async->status) {
 801		async->bio->bi_status = async->status;
 802		bio_endio(async->bio);
 803		return;
 804	}
 805
 806	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
 807			async->mirror_num, 1);
 
 
 
 
 
 808	if (ret) {
 809		async->bio->bi_status = ret;
 810		bio_endio(async->bio);
 811	}
 812}
 813
 814static void run_one_async_free(struct btrfs_work *work)
 815{
 816	struct async_submit_bio *async;
 817
 818	async = container_of(work, struct  async_submit_bio, work);
 819	kfree(async);
 820}
 821
 822blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 823				 int mirror_num, unsigned long bio_flags,
 824				 u64 bio_offset, void *private_data,
 825				 extent_submit_bio_start_t *submit_bio_start)
 826{
 827	struct async_submit_bio *async;
 828
 829	async = kmalloc(sizeof(*async), GFP_NOFS);
 830	if (!async)
 831		return BLK_STS_RESOURCE;
 832
 833	async->private_data = private_data;
 834	async->bio = bio;
 835	async->mirror_num = mirror_num;
 836	async->submit_bio_start = submit_bio_start;
 837
 838	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 839			run_one_async_done, run_one_async_free);
 840
 841	async->bio_offset = bio_offset;
 842
 843	async->status = 0;
 844
 845	if (op_is_sync(bio->bi_opf))
 846		btrfs_set_work_high_priority(&async->work);
 847
 848	btrfs_queue_work(fs_info->workers, &async->work);
 849	return 0;
 850}
 851
 852static blk_status_t btree_csum_one_bio(struct bio *bio)
 853{
 854	struct bio_vec *bvec;
 855	struct btrfs_root *root;
 856	int ret = 0;
 857	struct bvec_iter_all iter_all;
 858
 859	ASSERT(!bio_flagged(bio, BIO_CLONED));
 860	bio_for_each_segment_all(bvec, bio, iter_all) {
 861		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 862		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 863		if (ret)
 864			break;
 865	}
 866
 867	return errno_to_blk_status(ret);
 868}
 869
 870static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 871					     u64 bio_offset)
 872{
 873	/*
 874	 * when we're called for a write, we're already in the async
 875	 * submission context.  Just jump into btrfs_map_bio
 876	 */
 877	return btree_csum_one_bio(bio);
 878}
 879
 880static int check_async_write(struct btrfs_fs_info *fs_info,
 881			     struct btrfs_inode *bi)
 882{
 883	if (atomic_read(&bi->sync_writers))
 884		return 0;
 885	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 886		return 0;
 887	return 1;
 888}
 889
 890static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
 891					  int mirror_num,
 892					  unsigned long bio_flags)
 893{
 894	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 895	int async = check_async_write(fs_info, BTRFS_I(inode));
 896	blk_status_t ret;
 897
 898	if (bio_op(bio) != REQ_OP_WRITE) {
 899		/*
 900		 * called for a read, do the setup so that checksum validation
 901		 * can happen in the async kernel threads
 902		 */
 903		ret = btrfs_bio_wq_end_io(fs_info, bio,
 904					  BTRFS_WQ_ENDIO_METADATA);
 905		if (ret)
 906			goto out_w_error;
 907		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 908	} else if (!async) {
 909		ret = btree_csum_one_bio(bio);
 910		if (ret)
 911			goto out_w_error;
 912		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 913	} else {
 914		/*
 915		 * kthread helpers are used to submit writes so that
 916		 * checksumming can happen in parallel across all CPUs
 917		 */
 918		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 919					  0, inode, btree_submit_bio_start);
 920	}
 921
 922	if (ret)
 923		goto out_w_error;
 924	return 0;
 925
 926out_w_error:
 927	bio->bi_status = ret;
 928	bio_endio(bio);
 929	return ret;
 930}
 931
 932#ifdef CONFIG_MIGRATION
 933static int btree_migratepage(struct address_space *mapping,
 934			struct page *newpage, struct page *page,
 935			enum migrate_mode mode)
 936{
 937	/*
 938	 * we can't safely write a btree page from here,
 939	 * we haven't done the locking hook
 940	 */
 941	if (PageDirty(page))
 942		return -EAGAIN;
 943	/*
 944	 * Buffers may be managed in a filesystem specific way.
 945	 * We must have no buffers or drop them.
 946	 */
 947	if (page_has_private(page) &&
 948	    !try_to_release_page(page, GFP_KERNEL))
 949		return -EAGAIN;
 950	return migrate_page(mapping, newpage, page, mode);
 951}
 952#endif
 953
 954
 955static int btree_writepages(struct address_space *mapping,
 956			    struct writeback_control *wbc)
 957{
 958	struct btrfs_fs_info *fs_info;
 959	int ret;
 960
 961	if (wbc->sync_mode == WB_SYNC_NONE) {
 962
 963		if (wbc->for_kupdate)
 964			return 0;
 965
 966		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 967		/* this is a bit racy, but that's ok */
 968		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 969					     BTRFS_DIRTY_METADATA_THRESH,
 970					     fs_info->dirty_metadata_batch);
 971		if (ret < 0)
 972			return 0;
 973	}
 974	return btree_write_cache_pages(mapping, wbc);
 975}
 976
 977static int btree_readpage(struct file *file, struct page *page)
 978{
 979	struct extent_io_tree *tree;
 980	tree = &BTRFS_I(page->mapping->host)->io_tree;
 981	return extent_read_full_page(tree, page, btree_get_extent, 0);
 982}
 983
 984static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 985{
 986	if (PageWriteback(page) || PageDirty(page))
 987		return 0;
 988
 989	return try_release_extent_buffer(page);
 990}
 991
 992static void btree_invalidatepage(struct page *page, unsigned int offset,
 993				 unsigned int length)
 994{
 995	struct extent_io_tree *tree;
 996	tree = &BTRFS_I(page->mapping->host)->io_tree;
 997	extent_invalidatepage(tree, page, offset);
 998	btree_releasepage(page, GFP_NOFS);
 999	if (PagePrivate(page)) {
1000		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1001			   "page private not zero on page %llu",
1002			   (unsigned long long)page_offset(page));
1003		ClearPagePrivate(page);
1004		set_page_private(page, 0);
1005		put_page(page);
1006	}
1007}
1008
1009static int btree_set_page_dirty(struct page *page)
1010{
1011#ifdef DEBUG
1012	struct extent_buffer *eb;
1013
1014	BUG_ON(!PagePrivate(page));
1015	eb = (struct extent_buffer *)page->private;
1016	BUG_ON(!eb);
1017	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1018	BUG_ON(!atomic_read(&eb->refs));
1019	btrfs_assert_tree_locked(eb);
1020#endif
1021	return __set_page_dirty_nobuffers(page);
1022}
1023
1024static const struct address_space_operations btree_aops = {
1025	.readpage	= btree_readpage,
1026	.writepages	= btree_writepages,
1027	.releasepage	= btree_releasepage,
1028	.invalidatepage = btree_invalidatepage,
1029#ifdef CONFIG_MIGRATION
1030	.migratepage	= btree_migratepage,
1031#endif
1032	.set_page_dirty = btree_set_page_dirty,
1033};
1034
1035void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1036{
1037	struct extent_buffer *buf = NULL;
1038	int ret;
1039
1040	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1041	if (IS_ERR(buf))
1042		return;
1043
1044	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1045	if (ret < 0)
1046		free_extent_buffer_stale(buf);
1047	else
1048		free_extent_buffer(buf);
1049}
1050
1051struct extent_buffer *btrfs_find_create_tree_block(
1052						struct btrfs_fs_info *fs_info,
1053						u64 bytenr)
1054{
1055	if (btrfs_is_testing(fs_info))
1056		return alloc_test_extent_buffer(fs_info, bytenr);
1057	return alloc_extent_buffer(fs_info, bytenr);
1058}
1059
1060/*
1061 * Read tree block at logical address @bytenr and do variant basic but critical
1062 * verification.
1063 *
1064 * @parent_transid:	expected transid of this tree block, skip check if 0
1065 * @level:		expected level, mandatory check
1066 * @first_key:		expected key in slot 0, skip check if NULL
1067 */
1068struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1069				      u64 parent_transid, int level,
1070				      struct btrfs_key *first_key)
1071{
1072	struct extent_buffer *buf = NULL;
1073	int ret;
1074
1075	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1076	if (IS_ERR(buf))
1077		return buf;
1078
1079	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1080					     level, first_key);
1081	if (ret) {
1082		free_extent_buffer_stale(buf);
1083		return ERR_PTR(ret);
1084	}
1085	return buf;
1086
1087}
1088
1089void btrfs_clean_tree_block(struct extent_buffer *buf)
1090{
1091	struct btrfs_fs_info *fs_info = buf->fs_info;
1092	if (btrfs_header_generation(buf) ==
1093	    fs_info->running_transaction->transid) {
1094		btrfs_assert_tree_locked(buf);
1095
1096		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1097			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1098						 -buf->len,
1099						 fs_info->dirty_metadata_batch);
1100			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1101			btrfs_set_lock_blocking_write(buf);
1102			clear_extent_buffer_dirty(buf);
1103		}
1104	}
1105}
1106
1107static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1108{
1109	struct btrfs_subvolume_writers *writers;
1110	int ret;
1111
1112	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1113	if (!writers)
1114		return ERR_PTR(-ENOMEM);
1115
1116	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1117	if (ret < 0) {
1118		kfree(writers);
1119		return ERR_PTR(ret);
1120	}
1121
1122	init_waitqueue_head(&writers->wait);
1123	return writers;
1124}
1125
1126static void
1127btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1128{
1129	percpu_counter_destroy(&writers->counter);
1130	kfree(writers);
1131}
1132
1133static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1134			 u64 objectid)
1135{
1136	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
 
1137	root->node = NULL;
1138	root->commit_root = NULL;
1139	root->state = 0;
1140	root->orphan_cleanup_state = 0;
1141
1142	root->last_trans = 0;
1143	root->highest_objectid = 0;
1144	root->nr_delalloc_inodes = 0;
1145	root->nr_ordered_extents = 0;
1146	root->inode_tree = RB_ROOT;
1147	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1148	root->block_rsv = NULL;
1149
1150	INIT_LIST_HEAD(&root->dirty_list);
1151	INIT_LIST_HEAD(&root->root_list);
1152	INIT_LIST_HEAD(&root->delalloc_inodes);
1153	INIT_LIST_HEAD(&root->delalloc_root);
1154	INIT_LIST_HEAD(&root->ordered_extents);
1155	INIT_LIST_HEAD(&root->ordered_root);
1156	INIT_LIST_HEAD(&root->reloc_dirty_list);
1157	INIT_LIST_HEAD(&root->logged_list[0]);
1158	INIT_LIST_HEAD(&root->logged_list[1]);
1159	spin_lock_init(&root->inode_lock);
1160	spin_lock_init(&root->delalloc_lock);
1161	spin_lock_init(&root->ordered_extent_lock);
1162	spin_lock_init(&root->accounting_lock);
1163	spin_lock_init(&root->log_extents_lock[0]);
1164	spin_lock_init(&root->log_extents_lock[1]);
1165	spin_lock_init(&root->qgroup_meta_rsv_lock);
1166	mutex_init(&root->objectid_mutex);
1167	mutex_init(&root->log_mutex);
1168	mutex_init(&root->ordered_extent_mutex);
1169	mutex_init(&root->delalloc_mutex);
 
1170	init_waitqueue_head(&root->log_writer_wait);
1171	init_waitqueue_head(&root->log_commit_wait[0]);
1172	init_waitqueue_head(&root->log_commit_wait[1]);
1173	INIT_LIST_HEAD(&root->log_ctxs[0]);
1174	INIT_LIST_HEAD(&root->log_ctxs[1]);
1175	atomic_set(&root->log_commit[0], 0);
1176	atomic_set(&root->log_commit[1], 0);
1177	atomic_set(&root->log_writers, 0);
1178	atomic_set(&root->log_batch, 0);
1179	refcount_set(&root->refs, 1);
1180	atomic_set(&root->will_be_snapshotted, 0);
1181	atomic_set(&root->snapshot_force_cow, 0);
1182	atomic_set(&root->nr_swapfiles, 0);
1183	root->log_transid = 0;
1184	root->log_transid_committed = -1;
1185	root->last_log_commit = 0;
1186	if (!dummy)
1187		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1188				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
 
 
 
1189
1190	memset(&root->root_key, 0, sizeof(root->root_key));
1191	memset(&root->root_item, 0, sizeof(root->root_item));
1192	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1193	if (!dummy)
1194		root->defrag_trans_start = fs_info->generation;
1195	else
1196		root->defrag_trans_start = 0;
1197	root->root_key.objectid = objectid;
1198	root->anon_dev = 0;
1199
1200	spin_lock_init(&root->root_item_lock);
1201	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
 
 
 
 
 
 
1202}
1203
1204static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1205		gfp_t flags)
1206{
1207	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1208	if (root)
1209		root->fs_info = fs_info;
1210	return root;
1211}
1212
1213#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1214/* Should only be used by the testing infrastructure */
1215struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1216{
1217	struct btrfs_root *root;
1218
1219	if (!fs_info)
1220		return ERR_PTR(-EINVAL);
1221
1222	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1223	if (!root)
1224		return ERR_PTR(-ENOMEM);
1225
1226	/* We don't use the stripesize in selftest, set it as sectorsize */
1227	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1228	root->alloc_bytenr = 0;
1229
1230	return root;
1231}
1232#endif
1233
1234struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1235				     u64 objectid)
1236{
1237	struct btrfs_fs_info *fs_info = trans->fs_info;
1238	struct extent_buffer *leaf;
1239	struct btrfs_root *tree_root = fs_info->tree_root;
1240	struct btrfs_root *root;
1241	struct btrfs_key key;
1242	unsigned int nofs_flag;
1243	int ret = 0;
1244	uuid_le uuid = NULL_UUID_LE;
1245
1246	/*
1247	 * We're holding a transaction handle, so use a NOFS memory allocation
1248	 * context to avoid deadlock if reclaim happens.
1249	 */
1250	nofs_flag = memalloc_nofs_save();
1251	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1252	memalloc_nofs_restore(nofs_flag);
1253	if (!root)
1254		return ERR_PTR(-ENOMEM);
1255
1256	__setup_root(root, fs_info, objectid);
1257	root->root_key.objectid = objectid;
1258	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1259	root->root_key.offset = 0;
1260
1261	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1262	if (IS_ERR(leaf)) {
1263		ret = PTR_ERR(leaf);
1264		leaf = NULL;
1265		goto fail;
1266	}
1267
1268	root->node = leaf;
1269	btrfs_mark_buffer_dirty(leaf);
1270
1271	root->commit_root = btrfs_root_node(root);
1272	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1273
1274	root->root_item.flags = 0;
1275	root->root_item.byte_limit = 0;
1276	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1277	btrfs_set_root_generation(&root->root_item, trans->transid);
1278	btrfs_set_root_level(&root->root_item, 0);
1279	btrfs_set_root_refs(&root->root_item, 1);
1280	btrfs_set_root_used(&root->root_item, leaf->len);
1281	btrfs_set_root_last_snapshot(&root->root_item, 0);
1282	btrfs_set_root_dirid(&root->root_item, 0);
1283	if (is_fstree(objectid))
1284		uuid_le_gen(&uuid);
1285	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
 
1286	root->root_item.drop_level = 0;
1287
1288	key.objectid = objectid;
1289	key.type = BTRFS_ROOT_ITEM_KEY;
1290	key.offset = 0;
1291	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292	if (ret)
1293		goto fail;
1294
1295	btrfs_tree_unlock(leaf);
1296
1297	return root;
1298
1299fail:
1300	if (leaf) {
1301		btrfs_tree_unlock(leaf);
1302		free_extent_buffer(root->commit_root);
1303		free_extent_buffer(leaf);
1304	}
1305	kfree(root);
1306
1307	return ERR_PTR(ret);
1308}
1309
1310static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1311					 struct btrfs_fs_info *fs_info)
1312{
1313	struct btrfs_root *root;
1314	struct extent_buffer *leaf;
1315
1316	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1317	if (!root)
1318		return ERR_PTR(-ENOMEM);
1319
1320	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1321
1322	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1323	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1324	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1325
1326	/*
1327	 * DON'T set REF_COWS for log trees
 
 
 
1328	 *
1329	 * log trees do not get reference counted because they go away
1330	 * before a real commit is actually done.  They do store pointers
1331	 * to file data extents, and those reference counts still get
1332	 * updated (along with back refs to the log tree).
1333	 */
1334
1335	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1336			NULL, 0, 0, 0);
1337	if (IS_ERR(leaf)) {
1338		kfree(root);
1339		return ERR_CAST(leaf);
1340	}
1341
1342	root->node = leaf;
1343
1344	btrfs_mark_buffer_dirty(root->node);
1345	btrfs_tree_unlock(root->node);
1346	return root;
1347}
1348
1349int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1350			     struct btrfs_fs_info *fs_info)
1351{
1352	struct btrfs_root *log_root;
1353
1354	log_root = alloc_log_tree(trans, fs_info);
1355	if (IS_ERR(log_root))
1356		return PTR_ERR(log_root);
1357	WARN_ON(fs_info->log_root_tree);
1358	fs_info->log_root_tree = log_root;
1359	return 0;
1360}
1361
1362int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1363		       struct btrfs_root *root)
1364{
1365	struct btrfs_fs_info *fs_info = root->fs_info;
1366	struct btrfs_root *log_root;
1367	struct btrfs_inode_item *inode_item;
1368
1369	log_root = alloc_log_tree(trans, fs_info);
1370	if (IS_ERR(log_root))
1371		return PTR_ERR(log_root);
1372
1373	log_root->last_trans = trans->transid;
1374	log_root->root_key.offset = root->root_key.objectid;
1375
1376	inode_item = &log_root->root_item.inode;
1377	btrfs_set_stack_inode_generation(inode_item, 1);
1378	btrfs_set_stack_inode_size(inode_item, 3);
1379	btrfs_set_stack_inode_nlink(inode_item, 1);
1380	btrfs_set_stack_inode_nbytes(inode_item,
1381				     fs_info->nodesize);
1382	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1383
1384	btrfs_set_root_node(&log_root->root_item, log_root->node);
1385
1386	WARN_ON(root->log_root);
1387	root->log_root = log_root;
1388	root->log_transid = 0;
1389	root->log_transid_committed = -1;
1390	root->last_log_commit = 0;
1391	return 0;
1392}
1393
1394static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1395					       struct btrfs_key *key)
1396{
1397	struct btrfs_root *root;
1398	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1399	struct btrfs_path *path;
1400	u64 generation;
1401	int ret;
1402	int level;
1403
1404	path = btrfs_alloc_path();
1405	if (!path)
1406		return ERR_PTR(-ENOMEM);
1407
1408	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1409	if (!root) {
1410		ret = -ENOMEM;
1411		goto alloc_fail;
1412	}
1413
1414	__setup_root(root, fs_info, key->objectid);
1415
1416	ret = btrfs_find_root(tree_root, key, path,
1417			      &root->root_item, &root->root_key);
1418	if (ret) {
1419		if (ret > 0)
1420			ret = -ENOENT;
1421		goto find_fail;
1422	}
1423
1424	generation = btrfs_root_generation(&root->root_item);
1425	level = btrfs_root_level(&root->root_item);
1426	root->node = read_tree_block(fs_info,
1427				     btrfs_root_bytenr(&root->root_item),
1428				     generation, level, NULL);
1429	if (IS_ERR(root->node)) {
1430		ret = PTR_ERR(root->node);
 
1431		goto find_fail;
1432	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1433		ret = -EIO;
1434		free_extent_buffer(root->node);
1435		goto find_fail;
1436	}
1437	root->commit_root = btrfs_root_node(root);
1438out:
1439	btrfs_free_path(path);
1440	return root;
1441
1442find_fail:
1443	kfree(root);
1444alloc_fail:
1445	root = ERR_PTR(ret);
1446	goto out;
1447}
1448
1449struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1450				      struct btrfs_key *location)
1451{
1452	struct btrfs_root *root;
1453
1454	root = btrfs_read_tree_root(tree_root, location);
1455	if (IS_ERR(root))
1456		return root;
1457
1458	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1459		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1460		btrfs_check_and_init_root_item(&root->root_item);
1461	}
1462
1463	return root;
1464}
1465
1466int btrfs_init_fs_root(struct btrfs_root *root)
1467{
1468	int ret;
1469	struct btrfs_subvolume_writers *writers;
1470
1471	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1472	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1473					GFP_NOFS);
1474	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1475		ret = -ENOMEM;
1476		goto fail;
1477	}
1478
1479	writers = btrfs_alloc_subvolume_writers();
1480	if (IS_ERR(writers)) {
1481		ret = PTR_ERR(writers);
 
 
 
 
 
1482		goto fail;
 
 
 
 
 
1483	}
1484	root->subv_writers = writers;
1485
1486	btrfs_init_free_ino_ctl(root);
1487	spin_lock_init(&root->ino_cache_lock);
1488	init_waitqueue_head(&root->ino_cache_wait);
1489
1490	ret = get_anon_bdev(&root->anon_dev);
1491	if (ret)
1492		goto fail;
 
 
 
 
 
 
 
 
 
 
 
1493
1494	mutex_lock(&root->objectid_mutex);
1495	ret = btrfs_find_highest_objectid(root,
1496					&root->highest_objectid);
1497	if (ret) {
1498		mutex_unlock(&root->objectid_mutex);
1499		goto fail;
1500	}
1501
1502	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1503
1504	mutex_unlock(&root->objectid_mutex);
1505
1506	return 0;
1507fail:
1508	/* The caller is responsible to call btrfs_free_fs_root */
1509	return ret;
1510}
1511
1512struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1513					u64 root_id)
1514{
1515	struct btrfs_root *root;
1516
1517	spin_lock(&fs_info->fs_roots_radix_lock);
1518	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1519				 (unsigned long)root_id);
 
 
1520	spin_unlock(&fs_info->fs_roots_radix_lock);
1521	return root;
1522}
1523
1524int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1525			 struct btrfs_root *root)
1526{
1527	int ret;
1528
1529	ret = radix_tree_preload(GFP_NOFS);
1530	if (ret)
1531		return ret;
1532
1533	spin_lock(&fs_info->fs_roots_radix_lock);
1534	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1535				(unsigned long)root->root_key.objectid,
1536				root);
1537	if (ret == 0)
 
1538		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
 
1539	spin_unlock(&fs_info->fs_roots_radix_lock);
1540	radix_tree_preload_end();
1541
1542	return ret;
1543}
1544
1545struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1546				     struct btrfs_key *location,
1547				     bool check_ref)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1548{
1549	struct btrfs_root *root;
1550	struct btrfs_path *path;
1551	struct btrfs_key key;
1552	int ret;
1553
1554	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1555		return fs_info->tree_root;
1556	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1557		return fs_info->extent_root;
1558	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1559		return fs_info->chunk_root;
1560	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1561		return fs_info->dev_root;
1562	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1563		return fs_info->csum_root;
1564	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1565		return fs_info->quota_root ? fs_info->quota_root :
1566					     ERR_PTR(-ENOENT);
1567	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1568		return fs_info->uuid_root ? fs_info->uuid_root :
1569					    ERR_PTR(-ENOENT);
1570	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1571		return fs_info->free_space_root ? fs_info->free_space_root :
1572						  ERR_PTR(-ENOENT);
1573again:
1574	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1575	if (root) {
1576		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
 
 
 
1577			return ERR_PTR(-ENOENT);
 
1578		return root;
1579	}
1580
1581	root = btrfs_read_fs_root(fs_info->tree_root, location);
 
 
 
1582	if (IS_ERR(root))
1583		return root;
1584
1585	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1586		ret = -ENOENT;
1587		goto fail;
1588	}
1589
1590	ret = btrfs_init_fs_root(root);
1591	if (ret)
1592		goto fail;
1593
1594	path = btrfs_alloc_path();
1595	if (!path) {
1596		ret = -ENOMEM;
1597		goto fail;
1598	}
1599	key.objectid = BTRFS_ORPHAN_OBJECTID;
1600	key.type = BTRFS_ORPHAN_ITEM_KEY;
1601	key.offset = location->objectid;
1602
1603	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1604	btrfs_free_path(path);
1605	if (ret < 0)
1606		goto fail;
1607	if (ret == 0)
1608		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1609
1610	ret = btrfs_insert_fs_root(fs_info, root);
1611	if (ret) {
1612		if (ret == -EEXIST) {
1613			btrfs_free_fs_root(root);
1614			goto again;
1615		}
1616		goto fail;
1617	}
1618	return root;
1619fail:
1620	btrfs_free_fs_root(root);
1621	return ERR_PTR(ret);
1622}
1623
1624static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
1625{
1626	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627	int ret = 0;
1628	struct btrfs_device *device;
1629	struct backing_dev_info *bdi;
1630
1631	rcu_read_lock();
1632	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1633		if (!device->bdev)
1634			continue;
1635		bdi = device->bdev->bd_bdi;
1636		if (bdi_congested(bdi, bdi_bits)) {
1637			ret = 1;
1638			break;
1639		}
1640	}
1641	rcu_read_unlock();
1642	return ret;
1643}
1644
1645/*
1646 * called by the kthread helper functions to finally call the bio end_io
1647 * functions.  This is where read checksum verification actually happens
1648 */
1649static void end_workqueue_fn(struct btrfs_work *work)
1650{
1651	struct bio *bio;
1652	struct btrfs_end_io_wq *end_io_wq;
1653
1654	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1655	bio = end_io_wq->bio;
1656
1657	bio->bi_status = end_io_wq->status;
1658	bio->bi_private = end_io_wq->private;
1659	bio->bi_end_io = end_io_wq->end_io;
1660	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1661	bio_endio(bio);
 
1662}
1663
1664static int cleaner_kthread(void *arg)
1665{
1666	struct btrfs_root *root = arg;
1667	struct btrfs_fs_info *fs_info = root->fs_info;
1668	int again;
1669
1670	while (1) {
1671		again = 0;
1672
1673		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1674
1675		/* Make the cleaner go to sleep early. */
1676		if (btrfs_need_cleaner_sleep(fs_info))
1677			goto sleep;
1678
1679		/*
1680		 * Do not do anything if we might cause open_ctree() to block
1681		 * before we have finished mounting the filesystem.
1682		 */
1683		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1684			goto sleep;
1685
1686		if (!mutex_trylock(&fs_info->cleaner_mutex))
1687			goto sleep;
1688
1689		/*
1690		 * Avoid the problem that we change the status of the fs
1691		 * during the above check and trylock.
1692		 */
1693		if (btrfs_need_cleaner_sleep(fs_info)) {
1694			mutex_unlock(&fs_info->cleaner_mutex);
1695			goto sleep;
1696		}
1697
1698		btrfs_run_delayed_iputs(fs_info);
1699
1700		again = btrfs_clean_one_deleted_snapshot(root);
1701		mutex_unlock(&fs_info->cleaner_mutex);
1702
1703		/*
1704		 * The defragger has dealt with the R/O remount and umount,
1705		 * needn't do anything special here.
1706		 */
1707		btrfs_run_defrag_inodes(fs_info);
1708
1709		/*
1710		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711		 * with relocation (btrfs_relocate_chunk) and relocation
1712		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715		 * unused block groups.
1716		 */
1717		btrfs_delete_unused_bgs(fs_info);
1718sleep:
1719		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1720		if (kthread_should_park())
1721			kthread_parkme();
1722		if (kthread_should_stop())
1723			return 0;
1724		if (!again) {
1725			set_current_state(TASK_INTERRUPTIBLE);
1726			schedule();
1727			__set_current_state(TASK_RUNNING);
1728		}
1729	}
1730}
1731
1732static int transaction_kthread(void *arg)
1733{
1734	struct btrfs_root *root = arg;
1735	struct btrfs_fs_info *fs_info = root->fs_info;
1736	struct btrfs_trans_handle *trans;
1737	struct btrfs_transaction *cur;
1738	u64 transid;
1739	time64_t now;
1740	unsigned long delay;
1741	bool cannot_commit;
1742
1743	do {
1744		cannot_commit = false;
1745		delay = HZ * fs_info->commit_interval;
1746		mutex_lock(&fs_info->transaction_kthread_mutex);
1747
1748		spin_lock(&fs_info->trans_lock);
1749		cur = fs_info->running_transaction;
1750		if (!cur) {
1751			spin_unlock(&fs_info->trans_lock);
1752			goto sleep;
1753		}
1754
1755		now = ktime_get_seconds();
1756		if (cur->state < TRANS_STATE_BLOCKED &&
1757		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1758		    (now < cur->start_time ||
1759		     now - cur->start_time < fs_info->commit_interval)) {
1760			spin_unlock(&fs_info->trans_lock);
1761			delay = HZ * 5;
1762			goto sleep;
1763		}
1764		transid = cur->transid;
1765		spin_unlock(&fs_info->trans_lock);
1766
1767		/* If the file system is aborted, this will always fail. */
1768		trans = btrfs_attach_transaction(root);
1769		if (IS_ERR(trans)) {
1770			if (PTR_ERR(trans) != -ENOENT)
1771				cannot_commit = true;
1772			goto sleep;
1773		}
1774		if (transid == trans->transid) {
1775			btrfs_commit_transaction(trans);
1776		} else {
1777			btrfs_end_transaction(trans);
1778		}
1779sleep:
1780		wake_up_process(fs_info->cleaner_kthread);
1781		mutex_unlock(&fs_info->transaction_kthread_mutex);
1782
1783		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1784				      &fs_info->fs_state)))
1785			btrfs_cleanup_transaction(fs_info);
1786		if (!kthread_should_stop() &&
1787				(!btrfs_transaction_blocked(fs_info) ||
1788				 cannot_commit))
1789			schedule_timeout_interruptible(delay);
1790	} while (!kthread_should_stop());
1791	return 0;
1792}
1793
1794/*
1795 * this will find the highest generation in the array of
1796 * root backups.  The index of the highest array is returned,
1797 * or -1 if we can't find anything.
1798 *
1799 * We check to make sure the array is valid by comparing the
1800 * generation of the latest  root in the array with the generation
1801 * in the super block.  If they don't match we pitch it.
1802 */
1803static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804{
 
1805	u64 cur;
1806	int newest_index = -1;
1807	struct btrfs_root_backup *root_backup;
1808	int i;
1809
1810	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811		root_backup = info->super_copy->super_roots + i;
1812		cur = btrfs_backup_tree_root_gen(root_backup);
1813		if (cur == newest_gen)
1814			newest_index = i;
1815	}
1816
1817	/* check to see if we actually wrapped around */
1818	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819		root_backup = info->super_copy->super_roots;
1820		cur = btrfs_backup_tree_root_gen(root_backup);
1821		if (cur == newest_gen)
1822			newest_index = 0;
1823	}
1824	return newest_index;
1825}
1826
1827
1828/*
1829 * find the oldest backup so we know where to store new entries
1830 * in the backup array.  This will set the backup_root_index
1831 * field in the fs_info struct
1832 */
1833static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834				     u64 newest_gen)
1835{
1836	int newest_index = -1;
1837
1838	newest_index = find_newest_super_backup(info, newest_gen);
1839	/* if there was garbage in there, just move along */
1840	if (newest_index == -1) {
1841		info->backup_root_index = 0;
1842	} else {
1843		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844	}
1845}
1846
1847/*
1848 * copy all the root pointers into the super backup array.
1849 * this will bump the backup pointer by one when it is
1850 * done
1851 */
1852static void backup_super_roots(struct btrfs_fs_info *info)
1853{
1854	int next_backup;
1855	struct btrfs_root_backup *root_backup;
1856	int last_backup;
1857
1858	next_backup = info->backup_root_index;
1859	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860		BTRFS_NUM_BACKUP_ROOTS;
1861
1862	/*
1863	 * just overwrite the last backup if we're at the same generation
1864	 * this happens only at umount
1865	 */
1866	root_backup = info->super_for_commit->super_roots + last_backup;
1867	if (btrfs_backup_tree_root_gen(root_backup) ==
1868	    btrfs_header_generation(info->tree_root->node))
1869		next_backup = last_backup;
1870
1871	root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873	/*
1874	 * make sure all of our padding and empty slots get zero filled
1875	 * regardless of which ones we use today
1876	 */
1877	memset(root_backup, 0, sizeof(*root_backup));
1878
1879	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882	btrfs_set_backup_tree_root_gen(root_backup,
1883			       btrfs_header_generation(info->tree_root->node));
1884
1885	btrfs_set_backup_tree_root_level(root_backup,
1886			       btrfs_header_level(info->tree_root->node));
1887
1888	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889	btrfs_set_backup_chunk_root_gen(root_backup,
1890			       btrfs_header_generation(info->chunk_root->node));
1891	btrfs_set_backup_chunk_root_level(root_backup,
1892			       btrfs_header_level(info->chunk_root->node));
1893
1894	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895	btrfs_set_backup_extent_root_gen(root_backup,
1896			       btrfs_header_generation(info->extent_root->node));
1897	btrfs_set_backup_extent_root_level(root_backup,
1898			       btrfs_header_level(info->extent_root->node));
1899
1900	/*
1901	 * we might commit during log recovery, which happens before we set
1902	 * the fs_root.  Make sure it is valid before we fill it in.
1903	 */
1904	if (info->fs_root && info->fs_root->node) {
1905		btrfs_set_backup_fs_root(root_backup,
1906					 info->fs_root->node->start);
1907		btrfs_set_backup_fs_root_gen(root_backup,
1908			       btrfs_header_generation(info->fs_root->node));
1909		btrfs_set_backup_fs_root_level(root_backup,
1910			       btrfs_header_level(info->fs_root->node));
1911	}
1912
1913	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914	btrfs_set_backup_dev_root_gen(root_backup,
1915			       btrfs_header_generation(info->dev_root->node));
1916	btrfs_set_backup_dev_root_level(root_backup,
1917				       btrfs_header_level(info->dev_root->node));
1918
1919	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920	btrfs_set_backup_csum_root_gen(root_backup,
1921			       btrfs_header_generation(info->csum_root->node));
1922	btrfs_set_backup_csum_root_level(root_backup,
1923			       btrfs_header_level(info->csum_root->node));
1924
1925	btrfs_set_backup_total_bytes(root_backup,
1926			     btrfs_super_total_bytes(info->super_copy));
1927	btrfs_set_backup_bytes_used(root_backup,
1928			     btrfs_super_bytes_used(info->super_copy));
1929	btrfs_set_backup_num_devices(root_backup,
1930			     btrfs_super_num_devices(info->super_copy));
1931
1932	/*
1933	 * if we don't copy this out to the super_copy, it won't get remembered
1934	 * for the next commit
1935	 */
1936	memcpy(&info->super_copy->super_roots,
1937	       &info->super_for_commit->super_roots,
1938	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939}
1940
1941/*
1942 * this copies info out of the root backup array and back into
1943 * the in-memory super block.  It is meant to help iterate through
1944 * the array, so you send it the number of backups you've already
1945 * tried and the last backup index you used.
1946 *
1947 * this returns -1 when it has tried all the backups
 
 
 
1948 */
1949static noinline int next_root_backup(struct btrfs_fs_info *info,
1950				     struct btrfs_super_block *super,
1951				     int *num_backups_tried, int *backup_index)
1952{
 
 
1953	struct btrfs_root_backup *root_backup;
1954	int newest = *backup_index;
1955
1956	if (*num_backups_tried == 0) {
1957		u64 gen = btrfs_super_generation(super);
 
1958
1959		newest = find_newest_super_backup(info, gen);
1960		if (newest == -1)
1961			return -1;
1962
1963		*backup_index = newest;
1964		*num_backups_tried = 1;
1965	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966		/* we've tried all the backups, all done */
1967		return -1;
1968	} else {
1969		/* jump to the next oldest backup */
1970		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971			BTRFS_NUM_BACKUP_ROOTS;
1972		*backup_index = newest;
1973		*num_backups_tried += 1;
1974	}
1975	root_backup = super->super_roots + newest;
 
1976
1977	btrfs_set_super_generation(super,
1978				   btrfs_backup_tree_root_gen(root_backup));
1979	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980	btrfs_set_super_root_level(super,
1981				   btrfs_backup_tree_root_level(root_backup));
1982	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984	/*
1985	 * fixme: the total bytes and num_devices need to match or we should
1986	 * need a fsck
1987	 */
1988	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990	return 0;
 
1991}
1992
1993/* helper to cleanup workers */
1994static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995{
1996	btrfs_destroy_workqueue(fs_info->fixup_workers);
1997	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1998	btrfs_destroy_workqueue(fs_info->workers);
1999	btrfs_destroy_workqueue(fs_info->endio_workers);
2000	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2001	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2002	btrfs_destroy_workqueue(fs_info->rmw_workers);
2003	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2004	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2005	btrfs_destroy_workqueue(fs_info->submit_workers);
2006	btrfs_destroy_workqueue(fs_info->delayed_workers);
2007	btrfs_destroy_workqueue(fs_info->caching_workers);
2008	btrfs_destroy_workqueue(fs_info->readahead_workers);
2009	btrfs_destroy_workqueue(fs_info->flush_workers);
2010	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
 
 
2011	/*
2012	 * Now that all other work queues are destroyed, we can safely destroy
2013	 * the queues used for metadata I/O, since tasks from those other work
2014	 * queues can do metadata I/O operations.
2015	 */
2016	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2017	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2018}
2019
2020static void free_root_extent_buffers(struct btrfs_root *root)
2021{
2022	if (root) {
2023		free_extent_buffer(root->node);
2024		free_extent_buffer(root->commit_root);
2025		root->node = NULL;
2026		root->commit_root = NULL;
2027	}
2028}
2029
2030/* helper to cleanup tree roots */
2031static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2032{
2033	free_root_extent_buffers(info->tree_root);
2034
2035	free_root_extent_buffers(info->dev_root);
2036	free_root_extent_buffers(info->extent_root);
2037	free_root_extent_buffers(info->csum_root);
2038	free_root_extent_buffers(info->quota_root);
2039	free_root_extent_buffers(info->uuid_root);
2040	if (chunk_root)
 
 
2041		free_root_extent_buffers(info->chunk_root);
2042	free_root_extent_buffers(info->free_space_root);
2043}
2044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2046{
2047	int ret;
2048	struct btrfs_root *gang[8];
2049	int i;
2050
2051	while (!list_empty(&fs_info->dead_roots)) {
2052		gang[0] = list_entry(fs_info->dead_roots.next,
2053				     struct btrfs_root, root_list);
2054		list_del(&gang[0]->root_list);
2055
2056		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2057			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2058		} else {
2059			free_extent_buffer(gang[0]->node);
2060			free_extent_buffer(gang[0]->commit_root);
2061			btrfs_put_fs_root(gang[0]);
2062		}
2063	}
2064
2065	while (1) {
2066		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2067					     (void **)gang, 0,
2068					     ARRAY_SIZE(gang));
2069		if (!ret)
2070			break;
2071		for (i = 0; i < ret; i++)
2072			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2073	}
2074
2075	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2076		btrfs_free_log_root_tree(NULL, fs_info);
2077		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2078	}
2079}
2080
2081static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082{
2083	mutex_init(&fs_info->scrub_lock);
2084	atomic_set(&fs_info->scrubs_running, 0);
2085	atomic_set(&fs_info->scrub_pause_req, 0);
2086	atomic_set(&fs_info->scrubs_paused, 0);
2087	atomic_set(&fs_info->scrub_cancel_req, 0);
2088	init_waitqueue_head(&fs_info->scrub_pause_wait);
2089	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2090}
2091
2092static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093{
2094	spin_lock_init(&fs_info->balance_lock);
2095	mutex_init(&fs_info->balance_mutex);
2096	atomic_set(&fs_info->balance_pause_req, 0);
2097	atomic_set(&fs_info->balance_cancel_req, 0);
2098	fs_info->balance_ctl = NULL;
2099	init_waitqueue_head(&fs_info->balance_wait_q);
2100}
2101
2102static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2103{
2104	struct inode *inode = fs_info->btree_inode;
2105
2106	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107	set_nlink(inode, 1);
2108	/*
2109	 * we set the i_size on the btree inode to the max possible int.
2110	 * the real end of the address space is determined by all of
2111	 * the devices in the system
2112	 */
2113	inode->i_size = OFFSET_MAX;
2114	inode->i_mapping->a_ops = &btree_aops;
2115
2116	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2117	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118			    IO_TREE_INODE_IO, inode);
2119	BTRFS_I(inode)->io_tree.track_uptodate = false;
2120	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2121
2122	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124	BTRFS_I(inode)->root = fs_info->tree_root;
2125	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127	btrfs_insert_inode_hash(inode);
2128}
2129
2130static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131{
2132	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2133	init_rwsem(&fs_info->dev_replace.rwsem);
2134	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2135}
2136
2137static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138{
2139	spin_lock_init(&fs_info->qgroup_lock);
2140	mutex_init(&fs_info->qgroup_ioctl_lock);
2141	fs_info->qgroup_tree = RB_ROOT;
2142	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143	fs_info->qgroup_seq = 1;
2144	fs_info->qgroup_ulist = NULL;
2145	fs_info->qgroup_rescan_running = false;
2146	mutex_init(&fs_info->qgroup_rescan_lock);
2147}
2148
2149static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150		struct btrfs_fs_devices *fs_devices)
2151{
2152	u32 max_active = fs_info->thread_pool_size;
2153	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2154
2155	fs_info->workers =
2156		btrfs_alloc_workqueue(fs_info, "worker",
2157				      flags | WQ_HIGHPRI, max_active, 16);
2158
2159	fs_info->delalloc_workers =
2160		btrfs_alloc_workqueue(fs_info, "delalloc",
2161				      flags, max_active, 2);
2162
2163	fs_info->flush_workers =
2164		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165				      flags, max_active, 0);
2166
2167	fs_info->caching_workers =
2168		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169
2170	/*
2171	 * a higher idle thresh on the submit workers makes it much more
2172	 * likely that bios will be send down in a sane order to the
2173	 * devices
2174	 */
2175	fs_info->submit_workers =
2176		btrfs_alloc_workqueue(fs_info, "submit", flags,
2177				      min_t(u64, fs_devices->num_devices,
2178					    max_active), 64);
2179
2180	fs_info->fixup_workers =
2181		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2182
2183	/*
2184	 * endios are largely parallel and should have a very
2185	 * low idle thresh
2186	 */
2187	fs_info->endio_workers =
2188		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2189	fs_info->endio_meta_workers =
2190		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2191				      max_active, 4);
2192	fs_info->endio_meta_write_workers =
2193		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2194				      max_active, 2);
2195	fs_info->endio_raid56_workers =
2196		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2197				      max_active, 4);
2198	fs_info->endio_repair_workers =
2199		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2200	fs_info->rmw_workers =
2201		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2202	fs_info->endio_write_workers =
2203		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2204				      max_active, 2);
2205	fs_info->endio_freespace_worker =
2206		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2207				      max_active, 0);
2208	fs_info->delayed_workers =
2209		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2210				      max_active, 0);
2211	fs_info->readahead_workers =
2212		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2213				      max_active, 2);
2214	fs_info->qgroup_rescan_workers =
2215		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
 
 
2216
2217	if (!(fs_info->workers && fs_info->delalloc_workers &&
2218	      fs_info->submit_workers && fs_info->flush_workers &&
2219	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2220	      fs_info->endio_meta_write_workers &&
2221	      fs_info->endio_repair_workers &&
2222	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2223	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2224	      fs_info->caching_workers && fs_info->readahead_workers &&
2225	      fs_info->fixup_workers && fs_info->delayed_workers &&
2226	      fs_info->qgroup_rescan_workers)) {
 
2227		return -ENOMEM;
2228	}
2229
2230	return 0;
2231}
2232
2233static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2234{
2235	struct crypto_shash *csum_shash;
2236	const char *csum_name = btrfs_super_csum_name(csum_type);
2237
2238	csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2239
2240	if (IS_ERR(csum_shash)) {
2241		btrfs_err(fs_info, "error allocating %s hash for checksum",
2242			  csum_name);
2243		return PTR_ERR(csum_shash);
2244	}
2245
2246	fs_info->csum_shash = csum_shash;
2247
2248	return 0;
2249}
2250
2251static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2252{
2253	crypto_free_shash(fs_info->csum_shash);
2254}
2255
2256static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2257			    struct btrfs_fs_devices *fs_devices)
2258{
2259	int ret;
2260	struct btrfs_root *log_tree_root;
2261	struct btrfs_super_block *disk_super = fs_info->super_copy;
2262	u64 bytenr = btrfs_super_log_root(disk_super);
2263	int level = btrfs_super_log_root_level(disk_super);
2264
2265	if (fs_devices->rw_devices == 0) {
2266		btrfs_warn(fs_info, "log replay required on RO media");
2267		return -EIO;
2268	}
2269
2270	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
2271	if (!log_tree_root)
2272		return -ENOMEM;
2273
2274	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2275
2276	log_tree_root->node = read_tree_block(fs_info, bytenr,
2277					      fs_info->generation + 1,
2278					      level, NULL);
2279	if (IS_ERR(log_tree_root->node)) {
2280		btrfs_warn(fs_info, "failed to read log tree");
2281		ret = PTR_ERR(log_tree_root->node);
2282		kfree(log_tree_root);
 
2283		return ret;
2284	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2285		btrfs_err(fs_info, "failed to read log tree");
2286		free_extent_buffer(log_tree_root->node);
2287		kfree(log_tree_root);
2288		return -EIO;
2289	}
2290	/* returns with log_tree_root freed on success */
2291	ret = btrfs_recover_log_trees(log_tree_root);
2292	if (ret) {
2293		btrfs_handle_fs_error(fs_info, ret,
2294				      "Failed to recover log tree");
2295		free_extent_buffer(log_tree_root->node);
2296		kfree(log_tree_root);
2297		return ret;
2298	}
2299
2300	if (sb_rdonly(fs_info->sb)) {
2301		ret = btrfs_commit_super(fs_info);
2302		if (ret)
2303			return ret;
2304	}
2305
2306	return 0;
2307}
2308
2309static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2310{
2311	struct btrfs_root *tree_root = fs_info->tree_root;
2312	struct btrfs_root *root;
2313	struct btrfs_key location;
2314	int ret;
2315
2316	BUG_ON(!fs_info->tree_root);
2317
2318	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2319	location.type = BTRFS_ROOT_ITEM_KEY;
2320	location.offset = 0;
2321
2322	root = btrfs_read_tree_root(tree_root, &location);
2323	if (IS_ERR(root)) {
2324		ret = PTR_ERR(root);
2325		goto out;
2326	}
2327	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328	fs_info->extent_root = root;
2329
2330	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2331	root = btrfs_read_tree_root(tree_root, &location);
2332	if (IS_ERR(root)) {
2333		ret = PTR_ERR(root);
2334		goto out;
2335	}
2336	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337	fs_info->dev_root = root;
2338	btrfs_init_devices_late(fs_info);
2339
2340	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2341	root = btrfs_read_tree_root(tree_root, &location);
2342	if (IS_ERR(root)) {
2343		ret = PTR_ERR(root);
2344		goto out;
2345	}
2346	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347	fs_info->csum_root = root;
2348
 
 
 
 
 
 
 
 
 
 
 
 
 
2349	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2350	root = btrfs_read_tree_root(tree_root, &location);
2351	if (!IS_ERR(root)) {
2352		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2354		fs_info->quota_root = root;
2355	}
2356
2357	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2358	root = btrfs_read_tree_root(tree_root, &location);
2359	if (IS_ERR(root)) {
2360		ret = PTR_ERR(root);
2361		if (ret != -ENOENT)
2362			goto out;
2363	} else {
2364		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2365		fs_info->uuid_root = root;
2366	}
2367
2368	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2369		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2370		root = btrfs_read_tree_root(tree_root, &location);
2371		if (IS_ERR(root)) {
2372			ret = PTR_ERR(root);
2373			goto out;
2374		}
2375		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376		fs_info->free_space_root = root;
2377	}
2378
2379	return 0;
2380out:
2381	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2382		   location.objectid, ret);
2383	return ret;
2384}
2385
2386/*
2387 * Real super block validation
2388 * NOTE: super csum type and incompat features will not be checked here.
2389 *
2390 * @sb:		super block to check
2391 * @mirror_num:	the super block number to check its bytenr:
2392 * 		0	the primary (1st) sb
2393 * 		1, 2	2nd and 3rd backup copy
2394 * 	       -1	skip bytenr check
2395 */
2396static int validate_super(struct btrfs_fs_info *fs_info,
2397			    struct btrfs_super_block *sb, int mirror_num)
2398{
2399	u64 nodesize = btrfs_super_nodesize(sb);
2400	u64 sectorsize = btrfs_super_sectorsize(sb);
2401	int ret = 0;
2402
2403	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2404		btrfs_err(fs_info, "no valid FS found");
2405		ret = -EINVAL;
2406	}
2407	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2408		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2409				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2410		ret = -EINVAL;
2411	}
2412	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2413		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2414				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2415		ret = -EINVAL;
2416	}
2417	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2418		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2419				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2420		ret = -EINVAL;
2421	}
2422	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2424				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2425		ret = -EINVAL;
2426	}
2427
2428	/*
2429	 * Check sectorsize and nodesize first, other check will need it.
2430	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2431	 */
2432	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2433	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2434		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2435		ret = -EINVAL;
2436	}
2437	/* Only PAGE SIZE is supported yet */
2438	if (sectorsize != PAGE_SIZE) {
2439		btrfs_err(fs_info,
2440			"sectorsize %llu not supported yet, only support %lu",
2441			sectorsize, PAGE_SIZE);
2442		ret = -EINVAL;
2443	}
2444	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2445	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2446		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2447		ret = -EINVAL;
2448	}
2449	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2450		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2451			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2452		ret = -EINVAL;
2453	}
2454
2455	/* Root alignment check */
2456	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2457		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2458			   btrfs_super_root(sb));
2459		ret = -EINVAL;
2460	}
2461	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2462		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2463			   btrfs_super_chunk_root(sb));
2464		ret = -EINVAL;
2465	}
2466	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2467		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2468			   btrfs_super_log_root(sb));
2469		ret = -EINVAL;
2470	}
2471
2472	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2473		   BTRFS_FSID_SIZE) != 0) {
2474		btrfs_err(fs_info,
2475			"dev_item UUID does not match metadata fsid: %pU != %pU",
2476			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2477		ret = -EINVAL;
2478	}
2479
2480	/*
2481	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2482	 * done later
2483	 */
2484	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2485		btrfs_err(fs_info, "bytes_used is too small %llu",
2486			  btrfs_super_bytes_used(sb));
2487		ret = -EINVAL;
2488	}
2489	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2490		btrfs_err(fs_info, "invalid stripesize %u",
2491			  btrfs_super_stripesize(sb));
2492		ret = -EINVAL;
2493	}
2494	if (btrfs_super_num_devices(sb) > (1UL << 31))
2495		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2496			   btrfs_super_num_devices(sb));
2497	if (btrfs_super_num_devices(sb) == 0) {
2498		btrfs_err(fs_info, "number of devices is 0");
2499		ret = -EINVAL;
2500	}
2501
2502	if (mirror_num >= 0 &&
2503	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2504		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2505			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2506		ret = -EINVAL;
2507	}
2508
2509	/*
2510	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2511	 * and one chunk
2512	 */
2513	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2514		btrfs_err(fs_info, "system chunk array too big %u > %u",
2515			  btrfs_super_sys_array_size(sb),
2516			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2517		ret = -EINVAL;
2518	}
2519	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2520			+ sizeof(struct btrfs_chunk)) {
2521		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2522			  btrfs_super_sys_array_size(sb),
2523			  sizeof(struct btrfs_disk_key)
2524			  + sizeof(struct btrfs_chunk));
2525		ret = -EINVAL;
2526	}
2527
2528	/*
2529	 * The generation is a global counter, we'll trust it more than the others
2530	 * but it's still possible that it's the one that's wrong.
2531	 */
2532	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2533		btrfs_warn(fs_info,
2534			"suspicious: generation < chunk_root_generation: %llu < %llu",
2535			btrfs_super_generation(sb),
2536			btrfs_super_chunk_root_generation(sb));
2537	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2538	    && btrfs_super_cache_generation(sb) != (u64)-1)
2539		btrfs_warn(fs_info,
2540			"suspicious: generation < cache_generation: %llu < %llu",
2541			btrfs_super_generation(sb),
2542			btrfs_super_cache_generation(sb));
2543
2544	return ret;
2545}
2546
2547/*
2548 * Validation of super block at mount time.
2549 * Some checks already done early at mount time, like csum type and incompat
2550 * flags will be skipped.
2551 */
2552static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2553{
2554	return validate_super(fs_info, fs_info->super_copy, 0);
2555}
2556
2557/*
2558 * Validation of super block at write time.
2559 * Some checks like bytenr check will be skipped as their values will be
2560 * overwritten soon.
2561 * Extra checks like csum type and incompat flags will be done here.
2562 */
2563static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2564				      struct btrfs_super_block *sb)
2565{
2566	int ret;
2567
2568	ret = validate_super(fs_info, sb, -1);
2569	if (ret < 0)
2570		goto out;
2571	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2572		ret = -EUCLEAN;
2573		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2574			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2575		goto out;
2576	}
2577	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2578		ret = -EUCLEAN;
2579		btrfs_err(fs_info,
2580		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2581			  btrfs_super_incompat_flags(sb),
2582			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2583		goto out;
2584	}
2585out:
2586	if (ret < 0)
2587		btrfs_err(fs_info,
2588		"super block corruption detected before writing it to disk");
2589	return ret;
2590}
2591
2592int open_ctree(struct super_block *sb,
2593	       struct btrfs_fs_devices *fs_devices,
2594	       char *options)
2595{
2596	u32 sectorsize;
2597	u32 nodesize;
2598	u32 stripesize;
2599	u64 generation;
2600	u64 features;
2601	u16 csum_type;
2602	struct btrfs_key location;
2603	struct buffer_head *bh;
2604	struct btrfs_super_block *disk_super;
2605	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2606	struct btrfs_root *tree_root;
2607	struct btrfs_root *chunk_root;
2608	int ret;
2609	int err = -EINVAL;
2610	int num_backups_tried = 0;
2611	int backup_index = 0;
2612	int clear_free_space_tree = 0;
2613	int level;
2614
2615	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2616	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2617	if (!tree_root || !chunk_root) {
2618		err = -ENOMEM;
2619		goto fail;
2620	}
2621
2622	ret = init_srcu_struct(&fs_info->subvol_srcu);
2623	if (ret) {
2624		err = ret;
2625		goto fail;
2626	}
2627
2628	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2629	if (ret) {
2630		err = ret;
2631		goto fail_srcu;
2632	}
2633
2634	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2635	if (ret) {
2636		err = ret;
2637		goto fail_dio_bytes;
2638	}
2639	fs_info->dirty_metadata_batch = PAGE_SIZE *
2640					(1 + ilog2(nr_cpu_ids));
2641
2642	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2643	if (ret) {
2644		err = ret;
2645		goto fail_dirty_metadata_bytes;
2646	}
2647
2648	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2649			GFP_KERNEL);
2650	if (ret) {
2651		err = ret;
2652		goto fail_delalloc_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2653	}
2654
 
 
 
 
 
2655	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2656	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2657	INIT_LIST_HEAD(&fs_info->trans_list);
2658	INIT_LIST_HEAD(&fs_info->dead_roots);
2659	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2660	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2661	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2662	spin_lock_init(&fs_info->delalloc_root_lock);
2663	spin_lock_init(&fs_info->trans_lock);
2664	spin_lock_init(&fs_info->fs_roots_radix_lock);
2665	spin_lock_init(&fs_info->delayed_iput_lock);
2666	spin_lock_init(&fs_info->defrag_inodes_lock);
2667	spin_lock_init(&fs_info->tree_mod_seq_lock);
2668	spin_lock_init(&fs_info->super_lock);
2669	spin_lock_init(&fs_info->buffer_lock);
2670	spin_lock_init(&fs_info->unused_bgs_lock);
2671	rwlock_init(&fs_info->tree_mod_log_lock);
2672	mutex_init(&fs_info->unused_bg_unpin_mutex);
2673	mutex_init(&fs_info->delete_unused_bgs_mutex);
2674	mutex_init(&fs_info->reloc_mutex);
2675	mutex_init(&fs_info->delalloc_root_mutex);
2676	seqlock_init(&fs_info->profiles_lock);
2677
2678	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2679	INIT_LIST_HEAD(&fs_info->space_info);
2680	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2681	INIT_LIST_HEAD(&fs_info->unused_bgs);
 
 
 
 
 
2682	extent_map_tree_init(&fs_info->mapping_tree);
2683	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2684			     BTRFS_BLOCK_RSV_GLOBAL);
2685	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2686	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2687	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2688	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2689			     BTRFS_BLOCK_RSV_DELOPS);
2690	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2691			     BTRFS_BLOCK_RSV_DELREFS);
2692
2693	atomic_set(&fs_info->async_delalloc_pages, 0);
2694	atomic_set(&fs_info->defrag_running, 0);
2695	atomic_set(&fs_info->reada_works_cnt, 0);
2696	atomic_set(&fs_info->nr_delayed_iputs, 0);
2697	atomic64_set(&fs_info->tree_mod_seq, 0);
2698	fs_info->sb = sb;
2699	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2700	fs_info->metadata_ratio = 0;
2701	fs_info->defrag_inodes = RB_ROOT;
2702	atomic64_set(&fs_info->free_chunk_space, 0);
2703	fs_info->tree_mod_log = RB_ROOT;
2704	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2705	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2706	/* readahead state */
2707	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2708	spin_lock_init(&fs_info->reada_lock);
2709	btrfs_init_ref_verify(fs_info);
2710
2711	fs_info->thread_pool_size = min_t(unsigned long,
2712					  num_online_cpus() + 2, 8);
2713
2714	INIT_LIST_HEAD(&fs_info->ordered_roots);
2715	spin_lock_init(&fs_info->ordered_root_lock);
2716
2717	fs_info->btree_inode = new_inode(sb);
2718	if (!fs_info->btree_inode) {
2719		err = -ENOMEM;
2720		goto fail_bio_counter;
2721	}
2722	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2723
2724	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2725					GFP_KERNEL);
2726	if (!fs_info->delayed_root) {
2727		err = -ENOMEM;
2728		goto fail_iput;
2729	}
2730	btrfs_init_delayed_root(fs_info->delayed_root);
2731
2732	btrfs_init_scrub(fs_info);
2733#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2734	fs_info->check_integrity_print_mask = 0;
2735#endif
2736	btrfs_init_balance(fs_info);
2737	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2738
2739	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2740	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2741
2742	btrfs_init_btree_inode(fs_info);
2743
2744	spin_lock_init(&fs_info->block_group_cache_lock);
2745	fs_info->block_group_cache_tree = RB_ROOT;
2746	fs_info->first_logical_byte = (u64)-1;
2747
2748	extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2749			    IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2750	extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2751			    IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2752	fs_info->pinned_extents = &fs_info->freed_extents[0];
2753	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2754
2755	mutex_init(&fs_info->ordered_operations_mutex);
2756	mutex_init(&fs_info->tree_log_mutex);
2757	mutex_init(&fs_info->chunk_mutex);
2758	mutex_init(&fs_info->transaction_kthread_mutex);
2759	mutex_init(&fs_info->cleaner_mutex);
2760	mutex_init(&fs_info->ro_block_group_mutex);
2761	init_rwsem(&fs_info->commit_root_sem);
2762	init_rwsem(&fs_info->cleanup_work_sem);
2763	init_rwsem(&fs_info->subvol_sem);
2764	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2765
2766	btrfs_init_dev_replace_locks(fs_info);
2767	btrfs_init_qgroup(fs_info);
 
2768
2769	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2770	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2771
2772	init_waitqueue_head(&fs_info->transaction_throttle);
2773	init_waitqueue_head(&fs_info->transaction_wait);
2774	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2775	init_waitqueue_head(&fs_info->async_submit_wait);
2776	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2777
2778	/* Usable values until the real ones are cached from the superblock */
2779	fs_info->nodesize = 4096;
2780	fs_info->sectorsize = 4096;
2781	fs_info->stripesize = 4096;
2782
2783	spin_lock_init(&fs_info->swapfile_pins_lock);
2784	fs_info->swapfile_pins = RB_ROOT;
2785
2786	fs_info->send_in_progress = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2787
2788	ret = btrfs_alloc_stripe_hash_table(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2789	if (ret) {
2790		err = ret;
2791		goto fail_alloc;
2792	}
2793
2794	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2795
2796	invalidate_bdev(fs_devices->latest_bdev);
2797
2798	/*
2799	 * Read super block and check the signature bytes only
2800	 */
2801	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2802	if (IS_ERR(bh)) {
2803		err = PTR_ERR(bh);
2804		goto fail_alloc;
2805	}
2806
2807	/*
2808	 * Verify the type first, if that or the the checksum value are
2809	 * corrupted, we'll find out
2810	 */
2811	csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2812	if (!btrfs_supported_super_csum(csum_type)) {
2813		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2814			  csum_type);
2815		err = -EINVAL;
2816		brelse(bh);
2817		goto fail_alloc;
2818	}
2819
2820	ret = btrfs_init_csum_hash(fs_info, csum_type);
2821	if (ret) {
2822		err = ret;
 
2823		goto fail_alloc;
2824	}
2825
2826	/*
2827	 * We want to check superblock checksum, the type is stored inside.
2828	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2829	 */
2830	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2831		btrfs_err(fs_info, "superblock checksum mismatch");
2832		err = -EINVAL;
2833		brelse(bh);
2834		goto fail_csum;
2835	}
2836
2837	/*
2838	 * super_copy is zeroed at allocation time and we never touch the
2839	 * following bytes up to INFO_SIZE, the checksum is calculated from
2840	 * the whole block of INFO_SIZE
2841	 */
2842	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2843	brelse(bh);
2844
2845	disk_super = fs_info->super_copy;
2846
2847	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2848		       BTRFS_FSID_SIZE));
2849
2850	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2851		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2852				fs_info->super_copy->metadata_uuid,
2853				BTRFS_FSID_SIZE));
2854	}
2855
2856	features = btrfs_super_flags(disk_super);
2857	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2858		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2859		btrfs_set_super_flags(disk_super, features);
2860		btrfs_info(fs_info,
2861			"found metadata UUID change in progress flag, clearing");
2862	}
2863
2864	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2865	       sizeof(*fs_info->super_for_commit));
2866
2867	ret = btrfs_validate_mount_super(fs_info);
2868	if (ret) {
2869		btrfs_err(fs_info, "superblock contains fatal errors");
2870		err = -EINVAL;
2871		goto fail_csum;
2872	}
2873
2874	if (!btrfs_super_root(disk_super))
2875		goto fail_csum;
2876
2877	/* check FS state, whether FS is broken. */
2878	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2879		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2880
2881	/*
2882	 * run through our array of backup supers and setup
2883	 * our ring pointer to the oldest one
2884	 */
2885	generation = btrfs_super_generation(disk_super);
2886	find_oldest_super_backup(fs_info, generation);
2887
2888	/*
2889	 * In the long term, we'll store the compression type in the super
2890	 * block, and it'll be used for per file compression control.
2891	 */
2892	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2893
2894	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2895	if (ret) {
2896		err = ret;
2897		goto fail_csum;
2898	}
2899
2900	features = btrfs_super_incompat_flags(disk_super) &
2901		~BTRFS_FEATURE_INCOMPAT_SUPP;
2902	if (features) {
2903		btrfs_err(fs_info,
2904		    "cannot mount because of unsupported optional features (%llx)",
2905		    features);
2906		err = -EINVAL;
2907		goto fail_csum;
2908	}
2909
2910	features = btrfs_super_incompat_flags(disk_super);
2911	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2912	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2913		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2914	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2915		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2916
2917	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2918		btrfs_info(fs_info, "has skinny extents");
2919
2920	/*
2921	 * flag our filesystem as having big metadata blocks if
2922	 * they are bigger than the page size
2923	 */
2924	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2925		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2926			btrfs_info(fs_info,
2927				"flagging fs with big metadata feature");
2928		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2929	}
2930
2931	nodesize = btrfs_super_nodesize(disk_super);
2932	sectorsize = btrfs_super_sectorsize(disk_super);
2933	stripesize = sectorsize;
2934	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2935	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2936
2937	/* Cache block sizes */
2938	fs_info->nodesize = nodesize;
2939	fs_info->sectorsize = sectorsize;
2940	fs_info->stripesize = stripesize;
2941
2942	/*
2943	 * mixed block groups end up with duplicate but slightly offset
2944	 * extent buffers for the same range.  It leads to corruptions
2945	 */
2946	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2947	    (sectorsize != nodesize)) {
2948		btrfs_err(fs_info,
2949"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2950			nodesize, sectorsize);
2951		goto fail_csum;
2952	}
2953
2954	/*
2955	 * Needn't use the lock because there is no other task which will
2956	 * update the flag.
2957	 */
2958	btrfs_set_super_incompat_flags(disk_super, features);
2959
2960	features = btrfs_super_compat_ro_flags(disk_super) &
2961		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2962	if (!sb_rdonly(sb) && features) {
2963		btrfs_err(fs_info,
2964	"cannot mount read-write because of unsupported optional features (%llx)",
2965		       features);
2966		err = -EINVAL;
2967		goto fail_csum;
2968	}
2969
2970	ret = btrfs_init_workqueues(fs_info, fs_devices);
2971	if (ret) {
2972		err = ret;
2973		goto fail_sb_buffer;
2974	}
2975
2976	sb->s_bdi->congested_fn = btrfs_congested_fn;
2977	sb->s_bdi->congested_data = fs_info;
2978	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2979	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2980	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2981	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2982
2983	sb->s_blocksize = sectorsize;
2984	sb->s_blocksize_bits = blksize_bits(sectorsize);
2985	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2986
2987	mutex_lock(&fs_info->chunk_mutex);
2988	ret = btrfs_read_sys_array(fs_info);
2989	mutex_unlock(&fs_info->chunk_mutex);
2990	if (ret) {
2991		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2992		goto fail_sb_buffer;
2993	}
2994
2995	generation = btrfs_super_chunk_root_generation(disk_super);
2996	level = btrfs_super_chunk_root_level(disk_super);
2997
2998	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2999
3000	chunk_root->node = read_tree_block(fs_info,
3001					   btrfs_super_chunk_root(disk_super),
3002					   generation, level, NULL);
3003	if (IS_ERR(chunk_root->node) ||
3004	    !extent_buffer_uptodate(chunk_root->node)) {
3005		btrfs_err(fs_info, "failed to read chunk root");
3006		if (!IS_ERR(chunk_root->node))
3007			free_extent_buffer(chunk_root->node);
3008		chunk_root->node = NULL;
3009		goto fail_tree_roots;
3010	}
3011	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3012	chunk_root->commit_root = btrfs_root_node(chunk_root);
3013
3014	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3015	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 
3016
3017	ret = btrfs_read_chunk_tree(fs_info);
3018	if (ret) {
3019		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3020		goto fail_tree_roots;
3021	}
3022
3023	/*
3024	 * Keep the devid that is marked to be the target device for the
3025	 * device replace procedure
3026	 */
3027	btrfs_free_extra_devids(fs_devices, 0);
3028
3029	if (!fs_devices->latest_bdev) {
3030		btrfs_err(fs_info, "failed to read devices");
3031		goto fail_tree_roots;
3032	}
3033
3034retry_root_backup:
3035	generation = btrfs_super_generation(disk_super);
3036	level = btrfs_super_root_level(disk_super);
3037
3038	tree_root->node = read_tree_block(fs_info,
3039					  btrfs_super_root(disk_super),
3040					  generation, level, NULL);
3041	if (IS_ERR(tree_root->node) ||
3042	    !extent_buffer_uptodate(tree_root->node)) {
3043		btrfs_warn(fs_info, "failed to read tree root");
3044		if (!IS_ERR(tree_root->node))
3045			free_extent_buffer(tree_root->node);
3046		tree_root->node = NULL;
3047		goto recovery_tree_root;
3048	}
3049
3050	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3051	tree_root->commit_root = btrfs_root_node(tree_root);
3052	btrfs_set_root_refs(&tree_root->root_item, 1);
3053
3054	mutex_lock(&tree_root->objectid_mutex);
3055	ret = btrfs_find_highest_objectid(tree_root,
3056					&tree_root->highest_objectid);
3057	if (ret) {
3058		mutex_unlock(&tree_root->objectid_mutex);
3059		goto recovery_tree_root;
3060	}
3061
3062	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3063
3064	mutex_unlock(&tree_root->objectid_mutex);
3065
3066	ret = btrfs_read_roots(fs_info);
3067	if (ret)
3068		goto recovery_tree_root;
3069
3070	fs_info->generation = generation;
3071	fs_info->last_trans_committed = generation;
 
 
 
 
 
 
 
 
 
3072
3073	ret = btrfs_verify_dev_extents(fs_info);
3074	if (ret) {
3075		btrfs_err(fs_info,
3076			  "failed to verify dev extents against chunks: %d",
3077			  ret);
3078		goto fail_block_groups;
3079	}
3080	ret = btrfs_recover_balance(fs_info);
3081	if (ret) {
3082		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3083		goto fail_block_groups;
3084	}
3085
3086	ret = btrfs_init_dev_stats(fs_info);
3087	if (ret) {
3088		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3089		goto fail_block_groups;
3090	}
3091
3092	ret = btrfs_init_dev_replace(fs_info);
3093	if (ret) {
3094		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3095		goto fail_block_groups;
3096	}
3097
3098	btrfs_free_extra_devids(fs_devices, 1);
3099
3100	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3101	if (ret) {
3102		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3103				ret);
3104		goto fail_block_groups;
3105	}
3106
3107	ret = btrfs_sysfs_add_device(fs_devices);
3108	if (ret) {
3109		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3110				ret);
3111		goto fail_fsdev_sysfs;
3112	}
3113
3114	ret = btrfs_sysfs_add_mounted(fs_info);
3115	if (ret) {
3116		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3117		goto fail_fsdev_sysfs;
3118	}
3119
3120	ret = btrfs_init_space_info(fs_info);
3121	if (ret) {
3122		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3123		goto fail_sysfs;
3124	}
3125
3126	ret = btrfs_read_block_groups(fs_info);
3127	if (ret) {
3128		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3129		goto fail_sysfs;
3130	}
3131
3132	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3133		btrfs_warn(fs_info,
3134		"writable mount is not allowed due to too many missing devices");
3135		goto fail_sysfs;
3136	}
3137
3138	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3139					       "btrfs-cleaner");
3140	if (IS_ERR(fs_info->cleaner_kthread))
3141		goto fail_sysfs;
3142
3143	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3144						   tree_root,
3145						   "btrfs-transaction");
3146	if (IS_ERR(fs_info->transaction_kthread))
3147		goto fail_cleaner;
3148
3149	if (!btrfs_test_opt(fs_info, NOSSD) &&
3150	    !fs_info->fs_devices->rotating) {
3151		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3152	}
3153
3154	/*
3155	 * Mount does not set all options immediately, we can do it now and do
3156	 * not have to wait for transaction commit
3157	 */
3158	btrfs_apply_pending_changes(fs_info);
3159
3160#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3161	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3162		ret = btrfsic_mount(fs_info, fs_devices,
3163				    btrfs_test_opt(fs_info,
3164					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3165				    1 : 0,
3166				    fs_info->check_integrity_print_mask);
3167		if (ret)
3168			btrfs_warn(fs_info,
3169				"failed to initialize integrity check module: %d",
3170				ret);
3171	}
3172#endif
3173	ret = btrfs_read_qgroup_config(fs_info);
3174	if (ret)
3175		goto fail_trans_kthread;
3176
3177	if (btrfs_build_ref_tree(fs_info))
3178		btrfs_err(fs_info, "couldn't build ref tree");
3179
3180	/* do not make disk changes in broken FS or nologreplay is given */
3181	if (btrfs_super_log_root(disk_super) != 0 &&
3182	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
 
3183		ret = btrfs_replay_log(fs_info, fs_devices);
3184		if (ret) {
3185			err = ret;
3186			goto fail_qgroup;
3187		}
3188	}
3189
3190	ret = btrfs_find_orphan_roots(fs_info);
3191	if (ret)
3192		goto fail_qgroup;
3193
3194	if (!sb_rdonly(sb)) {
3195		ret = btrfs_cleanup_fs_roots(fs_info);
3196		if (ret)
3197			goto fail_qgroup;
3198
3199		mutex_lock(&fs_info->cleaner_mutex);
3200		ret = btrfs_recover_relocation(tree_root);
3201		mutex_unlock(&fs_info->cleaner_mutex);
3202		if (ret < 0) {
3203			btrfs_warn(fs_info, "failed to recover relocation: %d",
3204					ret);
3205			err = -EINVAL;
3206			goto fail_qgroup;
3207		}
3208	}
3209
3210	location.objectid = BTRFS_FS_TREE_OBJECTID;
3211	location.type = BTRFS_ROOT_ITEM_KEY;
3212	location.offset = 0;
3213
3214	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3215	if (IS_ERR(fs_info->fs_root)) {
3216		err = PTR_ERR(fs_info->fs_root);
3217		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
 
3218		goto fail_qgroup;
3219	}
3220
3221	if (sb_rdonly(sb))
3222		return 0;
3223
3224	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3225	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3226		clear_free_space_tree = 1;
3227	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3228		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3229		btrfs_warn(fs_info, "free space tree is invalid");
3230		clear_free_space_tree = 1;
3231	}
3232
3233	if (clear_free_space_tree) {
3234		btrfs_info(fs_info, "clearing free space tree");
3235		ret = btrfs_clear_free_space_tree(fs_info);
3236		if (ret) {
3237			btrfs_warn(fs_info,
3238				   "failed to clear free space tree: %d", ret);
3239			close_ctree(fs_info);
3240			return ret;
3241		}
3242	}
3243
3244	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3245	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3246		btrfs_info(fs_info, "creating free space tree");
3247		ret = btrfs_create_free_space_tree(fs_info);
3248		if (ret) {
3249			btrfs_warn(fs_info,
3250				"failed to create free space tree: %d", ret);
3251			close_ctree(fs_info);
3252			return ret;
3253		}
3254	}
3255
3256	down_read(&fs_info->cleanup_work_sem);
3257	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3258	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3259		up_read(&fs_info->cleanup_work_sem);
3260		close_ctree(fs_info);
3261		return ret;
3262	}
3263	up_read(&fs_info->cleanup_work_sem);
3264
3265	ret = btrfs_resume_balance_async(fs_info);
3266	if (ret) {
3267		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3268		close_ctree(fs_info);
3269		return ret;
3270	}
3271
3272	ret = btrfs_resume_dev_replace_async(fs_info);
3273	if (ret) {
3274		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3275		close_ctree(fs_info);
3276		return ret;
3277	}
3278
3279	btrfs_qgroup_rescan_resume(fs_info);
 
3280
3281	if (!fs_info->uuid_root) {
3282		btrfs_info(fs_info, "creating UUID tree");
3283		ret = btrfs_create_uuid_tree(fs_info);
3284		if (ret) {
3285			btrfs_warn(fs_info,
3286				"failed to create the UUID tree: %d", ret);
3287			close_ctree(fs_info);
3288			return ret;
3289		}
3290	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3291		   fs_info->generation !=
3292				btrfs_super_uuid_tree_generation(disk_super)) {
3293		btrfs_info(fs_info, "checking UUID tree");
3294		ret = btrfs_check_uuid_tree(fs_info);
3295		if (ret) {
3296			btrfs_warn(fs_info,
3297				"failed to check the UUID tree: %d", ret);
3298			close_ctree(fs_info);
3299			return ret;
3300		}
3301	} else {
3302		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3303	}
3304	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3305
3306	/*
3307	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3308	 * no need to keep the flag
3309	 */
3310	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3311
3312	return 0;
3313
3314fail_qgroup:
3315	btrfs_free_qgroup_config(fs_info);
3316fail_trans_kthread:
3317	kthread_stop(fs_info->transaction_kthread);
3318	btrfs_cleanup_transaction(fs_info);
3319	btrfs_free_fs_roots(fs_info);
3320fail_cleaner:
3321	kthread_stop(fs_info->cleaner_kthread);
3322
3323	/*
3324	 * make sure we're done with the btree inode before we stop our
3325	 * kthreads
3326	 */
3327	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3328
3329fail_sysfs:
3330	btrfs_sysfs_remove_mounted(fs_info);
3331
3332fail_fsdev_sysfs:
3333	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3334
3335fail_block_groups:
3336	btrfs_put_block_group_cache(fs_info);
3337
3338fail_tree_roots:
3339	free_root_pointers(fs_info, 1);
 
 
3340	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3341
3342fail_sb_buffer:
3343	btrfs_stop_all_workers(fs_info);
3344	btrfs_free_block_groups(fs_info);
3345fail_csum:
3346	btrfs_free_csum_hash(fs_info);
3347fail_alloc:
3348fail_iput:
3349	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3350
3351	iput(fs_info->btree_inode);
3352fail_bio_counter:
3353	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3354fail_delalloc_bytes:
3355	percpu_counter_destroy(&fs_info->delalloc_bytes);
3356fail_dirty_metadata_bytes:
3357	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3358fail_dio_bytes:
3359	percpu_counter_destroy(&fs_info->dio_bytes);
3360fail_srcu:
3361	cleanup_srcu_struct(&fs_info->subvol_srcu);
3362fail:
3363	btrfs_free_stripe_hash_table(fs_info);
3364	btrfs_close_devices(fs_info->fs_devices);
3365	return err;
3366
3367recovery_tree_root:
3368	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3369		goto fail_tree_roots;
3370
3371	free_root_pointers(fs_info, 0);
3372
3373	/* don't use the log in recovery mode, it won't be valid */
3374	btrfs_set_super_log_root(disk_super, 0);
3375
3376	/* we can't trust the free space cache either */
3377	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3378
3379	ret = next_root_backup(fs_info, fs_info->super_copy,
3380			       &num_backups_tried, &backup_index);
3381	if (ret == -1)
3382		goto fail_block_groups;
3383	goto retry_root_backup;
3384}
3385ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3386
3387static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3388{
3389	if (uptodate) {
3390		set_buffer_uptodate(bh);
3391	} else {
3392		struct btrfs_device *device = (struct btrfs_device *)
3393			bh->b_private;
3394
3395		btrfs_warn_rl_in_rcu(device->fs_info,
3396				"lost page write due to IO error on %s",
3397					  rcu_str_deref(device->name));
3398		/* note, we don't set_buffer_write_io_error because we have
3399		 * our own ways of dealing with the IO errors
3400		 */
3401		clear_buffer_uptodate(bh);
3402		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
 
 
 
 
 
 
 
 
 
 
3403	}
3404	unlock_buffer(bh);
3405	put_bh(bh);
3406}
3407
3408int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3409			struct buffer_head **bh_ret)
3410{
3411	struct buffer_head *bh;
3412	struct btrfs_super_block *super;
 
3413	u64 bytenr;
 
3414
3415	bytenr = btrfs_sb_offset(copy_num);
3416	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3417		return -EINVAL;
3418
3419	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3420	/*
3421	 * If we fail to read from the underlying devices, as of now
3422	 * the best option we have is to mark it EIO.
3423	 */
3424	if (!bh)
3425		return -EIO;
3426
3427	super = (struct btrfs_super_block *)bh->b_data;
3428	if (btrfs_super_bytenr(super) != bytenr ||
3429		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3430		brelse(bh);
3431		return -EINVAL;
3432	}
3433
3434	*bh_ret = bh;
3435	return 0;
3436}
3437
3438
3439struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3440{
3441	struct buffer_head *bh;
3442	struct buffer_head *latest = NULL;
3443	struct btrfs_super_block *super;
3444	int i;
3445	u64 transid = 0;
3446	int ret = -EINVAL;
3447
3448	/* we would like to check all the supers, but that would make
3449	 * a btrfs mount succeed after a mkfs from a different FS.
3450	 * So, we need to add a special mount option to scan for
3451	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3452	 */
3453	for (i = 0; i < 1; i++) {
3454		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3455		if (ret)
3456			continue;
3457
3458		super = (struct btrfs_super_block *)bh->b_data;
3459
3460		if (!latest || btrfs_super_generation(super) > transid) {
3461			brelse(latest);
3462			latest = bh;
 
 
3463			transid = btrfs_super_generation(super);
3464		} else {
3465			brelse(bh);
3466		}
3467	}
3468
3469	if (!latest)
3470		return ERR_PTR(ret);
3471
3472	return latest;
3473}
3474
3475/*
3476 * Write superblock @sb to the @device. Do not wait for completion, all the
3477 * buffer heads we write are pinned.
3478 *
3479 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3480 * the expected device size at commit time. Note that max_mirrors must be
3481 * same for write and wait phases.
3482 *
3483 * Return number of errors when buffer head is not found or submission fails.
3484 */
3485static int write_dev_supers(struct btrfs_device *device,
3486			    struct btrfs_super_block *sb, int max_mirrors)
3487{
3488	struct btrfs_fs_info *fs_info = device->fs_info;
 
3489	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3490	struct buffer_head *bh;
3491	int i;
3492	int ret;
3493	int errors = 0;
3494	u64 bytenr;
3495	int op_flags;
3496
3497	if (max_mirrors == 0)
3498		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3499
3500	shash->tfm = fs_info->csum_shash;
3501
3502	for (i = 0; i < max_mirrors; i++) {
 
 
 
 
3503		bytenr = btrfs_sb_offset(i);
3504		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3505		    device->commit_total_bytes)
3506			break;
3507
3508		btrfs_set_super_bytenr(sb, bytenr);
3509
3510		crypto_shash_init(shash);
3511		crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3512				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3513		crypto_shash_final(shash, sb->csum);
3514
3515		/* One reference for us, and we leave it for the caller */
3516		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3517			      BTRFS_SUPER_INFO_SIZE);
3518		if (!bh) {
3519			btrfs_err(device->fs_info,
3520			    "couldn't get super buffer head for bytenr %llu",
3521			    bytenr);
3522			errors++;
3523			continue;
3524		}
3525
3526		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
 
3527
3528		/* one reference for submit_bh */
3529		get_bh(bh);
3530
3531		set_buffer_uptodate(bh);
3532		lock_buffer(bh);
3533		bh->b_end_io = btrfs_end_buffer_write_sync;
3534		bh->b_private = device;
 
 
 
 
 
 
 
 
3535
3536		/*
3537		 * we fua the first super.  The others we allow
3538		 * to go down lazy.
 
3539		 */
3540		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3541		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3542			op_flags |= REQ_FUA;
3543		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3544		if (ret)
3545			errors++;
3546	}
3547	return errors < i ? 0 : -1;
3548}
3549
3550/*
3551 * Wait for write completion of superblocks done by write_dev_supers,
3552 * @max_mirrors same for write and wait phases.
3553 *
3554 * Return number of errors when buffer head is not found or not marked up to
3555 * date.
3556 */
3557static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3558{
3559	struct buffer_head *bh;
3560	int i;
3561	int errors = 0;
3562	bool primary_failed = false;
3563	u64 bytenr;
3564
3565	if (max_mirrors == 0)
3566		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3567
3568	for (i = 0; i < max_mirrors; i++) {
 
 
3569		bytenr = btrfs_sb_offset(i);
3570		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3571		    device->commit_total_bytes)
3572			break;
3573
3574		bh = __find_get_block(device->bdev,
3575				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3576				      BTRFS_SUPER_INFO_SIZE);
3577		if (!bh) {
3578			errors++;
3579			if (i == 0)
3580				primary_failed = true;
3581			continue;
3582		}
3583		wait_on_buffer(bh);
3584		if (!buffer_uptodate(bh)) {
 
3585			errors++;
3586			if (i == 0)
3587				primary_failed = true;
3588		}
3589
3590		/* drop our reference */
3591		brelse(bh);
3592
3593		/* drop the reference from the writing run */
3594		brelse(bh);
3595	}
3596
3597	/* log error, force error return */
3598	if (primary_failed) {
3599		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3600			  device->devid);
3601		return -1;
3602	}
3603
3604	return errors < i ? 0 : -1;
3605}
3606
3607/*
3608 * endio for the write_dev_flush, this will wake anyone waiting
3609 * for the barrier when it is done
3610 */
3611static void btrfs_end_empty_barrier(struct bio *bio)
3612{
3613	complete(bio->bi_private);
3614}
3615
3616/*
3617 * Submit a flush request to the device if it supports it. Error handling is
3618 * done in the waiting counterpart.
3619 */
3620static void write_dev_flush(struct btrfs_device *device)
3621{
3622	struct request_queue *q = bdev_get_queue(device->bdev);
3623	struct bio *bio = device->flush_bio;
3624
3625	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3626		return;
3627
3628	bio_reset(bio);
3629	bio->bi_end_io = btrfs_end_empty_barrier;
3630	bio_set_dev(bio, device->bdev);
3631	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3632	init_completion(&device->flush_wait);
3633	bio->bi_private = &device->flush_wait;
3634
3635	btrfsic_submit_bio(bio);
3636	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3637}
3638
3639/*
3640 * If the flush bio has been submitted by write_dev_flush, wait for it.
3641 */
3642static blk_status_t wait_dev_flush(struct btrfs_device *device)
3643{
3644	struct bio *bio = device->flush_bio;
3645
3646	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3647		return BLK_STS_OK;
3648
3649	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3650	wait_for_completion_io(&device->flush_wait);
3651
3652	return bio->bi_status;
3653}
3654
3655static int check_barrier_error(struct btrfs_fs_info *fs_info)
3656{
3657	if (!btrfs_check_rw_degradable(fs_info, NULL))
3658		return -EIO;
3659	return 0;
3660}
3661
3662/*
3663 * send an empty flush down to each device in parallel,
3664 * then wait for them
3665 */
3666static int barrier_all_devices(struct btrfs_fs_info *info)
3667{
3668	struct list_head *head;
3669	struct btrfs_device *dev;
3670	int errors_wait = 0;
3671	blk_status_t ret;
3672
3673	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3674	/* send down all the barriers */
3675	head = &info->fs_devices->devices;
3676	list_for_each_entry(dev, head, dev_list) {
3677		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3678			continue;
3679		if (!dev->bdev)
3680			continue;
3681		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3682		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3683			continue;
3684
3685		write_dev_flush(dev);
3686		dev->last_flush_error = BLK_STS_OK;
3687	}
3688
3689	/* wait for all the barriers */
3690	list_for_each_entry(dev, head, dev_list) {
3691		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3692			continue;
3693		if (!dev->bdev) {
3694			errors_wait++;
3695			continue;
3696		}
3697		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3698		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3699			continue;
3700
3701		ret = wait_dev_flush(dev);
3702		if (ret) {
3703			dev->last_flush_error = ret;
3704			btrfs_dev_stat_inc_and_print(dev,
3705					BTRFS_DEV_STAT_FLUSH_ERRS);
3706			errors_wait++;
3707		}
3708	}
3709
3710	if (errors_wait) {
3711		/*
3712		 * At some point we need the status of all disks
3713		 * to arrive at the volume status. So error checking
3714		 * is being pushed to a separate loop.
3715		 */
3716		return check_barrier_error(info);
3717	}
3718	return 0;
3719}
3720
3721int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3722{
3723	int raid_type;
3724	int min_tolerated = INT_MAX;
3725
3726	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3727	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3728		min_tolerated = min_t(int, min_tolerated,
3729				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3730				    tolerated_failures);
3731
3732	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3733		if (raid_type == BTRFS_RAID_SINGLE)
3734			continue;
3735		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3736			continue;
3737		min_tolerated = min_t(int, min_tolerated,
3738				    btrfs_raid_array[raid_type].
3739				    tolerated_failures);
3740	}
3741
3742	if (min_tolerated == INT_MAX) {
3743		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3744		min_tolerated = 0;
3745	}
3746
3747	return min_tolerated;
3748}
3749
3750int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3751{
3752	struct list_head *head;
3753	struct btrfs_device *dev;
3754	struct btrfs_super_block *sb;
3755	struct btrfs_dev_item *dev_item;
3756	int ret;
3757	int do_barriers;
3758	int max_errors;
3759	int total_errors = 0;
3760	u64 flags;
3761
3762	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3763
3764	/*
3765	 * max_mirrors == 0 indicates we're from commit_transaction,
3766	 * not from fsync where the tree roots in fs_info have not
3767	 * been consistent on disk.
3768	 */
3769	if (max_mirrors == 0)
3770		backup_super_roots(fs_info);
3771
3772	sb = fs_info->super_for_commit;
3773	dev_item = &sb->dev_item;
3774
3775	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3776	head = &fs_info->fs_devices->devices;
3777	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3778
3779	if (do_barriers) {
3780		ret = barrier_all_devices(fs_info);
3781		if (ret) {
3782			mutex_unlock(
3783				&fs_info->fs_devices->device_list_mutex);
3784			btrfs_handle_fs_error(fs_info, ret,
3785					      "errors while submitting device barriers.");
3786			return ret;
3787		}
3788	}
3789
3790	list_for_each_entry(dev, head, dev_list) {
3791		if (!dev->bdev) {
3792			total_errors++;
3793			continue;
3794		}
3795		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3796		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3797			continue;
3798
3799		btrfs_set_stack_device_generation(dev_item, 0);
3800		btrfs_set_stack_device_type(dev_item, dev->type);
3801		btrfs_set_stack_device_id(dev_item, dev->devid);
3802		btrfs_set_stack_device_total_bytes(dev_item,
3803						   dev->commit_total_bytes);
3804		btrfs_set_stack_device_bytes_used(dev_item,
3805						  dev->commit_bytes_used);
3806		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3807		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3808		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3809		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3810		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3811		       BTRFS_FSID_SIZE);
3812
3813		flags = btrfs_super_flags(sb);
3814		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3815
3816		ret = btrfs_validate_write_super(fs_info, sb);
3817		if (ret < 0) {
3818			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3819			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3820				"unexpected superblock corruption detected");
3821			return -EUCLEAN;
3822		}
3823
3824		ret = write_dev_supers(dev, sb, max_mirrors);
3825		if (ret)
3826			total_errors++;
3827	}
3828	if (total_errors > max_errors) {
3829		btrfs_err(fs_info, "%d errors while writing supers",
3830			  total_errors);
3831		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3832
3833		/* FUA is masked off if unsupported and can't be the reason */
3834		btrfs_handle_fs_error(fs_info, -EIO,
3835				      "%d errors while writing supers",
3836				      total_errors);
3837		return -EIO;
3838	}
3839
3840	total_errors = 0;
3841	list_for_each_entry(dev, head, dev_list) {
3842		if (!dev->bdev)
3843			continue;
3844		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3845		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3846			continue;
3847
3848		ret = wait_dev_supers(dev, max_mirrors);
3849		if (ret)
3850			total_errors++;
3851	}
3852	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3853	if (total_errors > max_errors) {
3854		btrfs_handle_fs_error(fs_info, -EIO,
3855				      "%d errors while writing supers",
3856				      total_errors);
3857		return -EIO;
3858	}
3859	return 0;
3860}
3861
3862/* Drop a fs root from the radix tree and free it. */
3863void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3864				  struct btrfs_root *root)
3865{
 
 
3866	spin_lock(&fs_info->fs_roots_radix_lock);
3867	radix_tree_delete(&fs_info->fs_roots_radix,
3868			  (unsigned long)root->root_key.objectid);
 
 
3869	spin_unlock(&fs_info->fs_roots_radix_lock);
3870
3871	if (btrfs_root_refs(&root->root_item) == 0)
3872		synchronize_srcu(&fs_info->subvol_srcu);
3873
3874	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3875		btrfs_free_log(NULL, root);
3876		if (root->reloc_root) {
3877			free_extent_buffer(root->reloc_root->node);
3878			free_extent_buffer(root->reloc_root->commit_root);
3879			btrfs_put_fs_root(root->reloc_root);
3880			root->reloc_root = NULL;
3881		}
3882	}
3883
3884	if (root->free_ino_pinned)
3885		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3886	if (root->free_ino_ctl)
3887		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3888	btrfs_free_fs_root(root);
3889}
3890
3891void btrfs_free_fs_root(struct btrfs_root *root)
3892{
3893	iput(root->ino_cache_inode);
3894	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3895	if (root->anon_dev)
3896		free_anon_bdev(root->anon_dev);
3897	if (root->subv_writers)
3898		btrfs_free_subvolume_writers(root->subv_writers);
3899	free_extent_buffer(root->node);
3900	free_extent_buffer(root->commit_root);
3901	kfree(root->free_ino_ctl);
3902	kfree(root->free_ino_pinned);
3903	btrfs_put_fs_root(root);
3904}
3905
3906int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3907{
3908	u64 root_objectid = 0;
3909	struct btrfs_root *gang[8];
3910	int i = 0;
3911	int err = 0;
3912	unsigned int ret = 0;
3913	int index;
3914
3915	while (1) {
3916		index = srcu_read_lock(&fs_info->subvol_srcu);
3917		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3918					     (void **)gang, root_objectid,
3919					     ARRAY_SIZE(gang));
3920		if (!ret) {
3921			srcu_read_unlock(&fs_info->subvol_srcu, index);
3922			break;
3923		}
3924		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3925
3926		for (i = 0; i < ret; i++) {
3927			/* Avoid to grab roots in dead_roots */
3928			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3929				gang[i] = NULL;
3930				continue;
3931			}
3932			/* grab all the search result for later use */
3933			gang[i] = btrfs_grab_fs_root(gang[i]);
3934		}
3935		srcu_read_unlock(&fs_info->subvol_srcu, index);
3936
3937		for (i = 0; i < ret; i++) {
3938			if (!gang[i])
3939				continue;
3940			root_objectid = gang[i]->root_key.objectid;
3941			err = btrfs_orphan_cleanup(gang[i]);
3942			if (err)
3943				break;
3944			btrfs_put_fs_root(gang[i]);
3945		}
3946		root_objectid++;
3947	}
3948
3949	/* release the uncleaned roots due to error */
3950	for (; i < ret; i++) {
3951		if (gang[i])
3952			btrfs_put_fs_root(gang[i]);
3953	}
3954	return err;
3955}
3956
3957int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3958{
3959	struct btrfs_root *root = fs_info->tree_root;
3960	struct btrfs_trans_handle *trans;
3961
3962	mutex_lock(&fs_info->cleaner_mutex);
3963	btrfs_run_delayed_iputs(fs_info);
3964	mutex_unlock(&fs_info->cleaner_mutex);
3965	wake_up_process(fs_info->cleaner_kthread);
3966
3967	/* wait until ongoing cleanup work done */
3968	down_write(&fs_info->cleanup_work_sem);
3969	up_write(&fs_info->cleanup_work_sem);
3970
3971	trans = btrfs_join_transaction(root);
3972	if (IS_ERR(trans))
3973		return PTR_ERR(trans);
3974	return btrfs_commit_transaction(trans);
3975}
3976
3977void close_ctree(struct btrfs_fs_info *fs_info)
3978{
3979	int ret;
3980
3981	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3982	/*
3983	 * We don't want the cleaner to start new transactions, add more delayed
3984	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3985	 * because that frees the task_struct, and the transaction kthread might
3986	 * still try to wake up the cleaner.
3987	 */
3988	kthread_park(fs_info->cleaner_kthread);
3989
3990	/* wait for the qgroup rescan worker to stop */
3991	btrfs_qgroup_wait_for_completion(fs_info, false);
3992
3993	/* wait for the uuid_scan task to finish */
3994	down(&fs_info->uuid_tree_rescan_sem);
3995	/* avoid complains from lockdep et al., set sem back to initial state */
3996	up(&fs_info->uuid_tree_rescan_sem);
3997
3998	/* pause restriper - we want to resume on mount */
3999	btrfs_pause_balance(fs_info);
4000
4001	btrfs_dev_replace_suspend_for_unmount(fs_info);
4002
4003	btrfs_scrub_cancel(fs_info);
4004
4005	/* wait for any defraggers to finish */
4006	wait_event(fs_info->transaction_wait,
4007		   (atomic_read(&fs_info->defrag_running) == 0));
4008
4009	/* clear out the rbtree of defraggable inodes */
4010	btrfs_cleanup_defrag_inodes(fs_info);
4011
4012	cancel_work_sync(&fs_info->async_reclaim_work);
4013
 
 
 
4014	if (!sb_rdonly(fs_info->sb)) {
4015		/*
4016		 * The cleaner kthread is stopped, so do one final pass over
4017		 * unused block groups.
4018		 */
4019		btrfs_delete_unused_bgs(fs_info);
4020
 
 
 
 
 
 
 
 
 
 
 
 
 
4021		ret = btrfs_commit_super(fs_info);
4022		if (ret)
4023			btrfs_err(fs_info, "commit super ret %d", ret);
4024	}
4025
4026	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4027	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4028		btrfs_error_commit_super(fs_info);
4029
4030	kthread_stop(fs_info->transaction_kthread);
4031	kthread_stop(fs_info->cleaner_kthread);
4032
4033	ASSERT(list_empty(&fs_info->delayed_iputs));
4034	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4035
 
 
 
 
 
4036	btrfs_free_qgroup_config(fs_info);
4037	ASSERT(list_empty(&fs_info->delalloc_roots));
4038
4039	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4040		btrfs_info(fs_info, "at unmount delalloc count %lld",
4041		       percpu_counter_sum(&fs_info->delalloc_bytes));
4042	}
4043
4044	if (percpu_counter_sum(&fs_info->dio_bytes))
4045		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4046			   percpu_counter_sum(&fs_info->dio_bytes));
4047
4048	btrfs_sysfs_remove_mounted(fs_info);
4049	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4050
4051	btrfs_free_fs_roots(fs_info);
4052
4053	btrfs_put_block_group_cache(fs_info);
4054
4055	/*
4056	 * we must make sure there is not any read request to
4057	 * submit after we stopping all workers.
4058	 */
4059	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4060	btrfs_stop_all_workers(fs_info);
4061
4062	btrfs_free_block_groups(fs_info);
4063
4064	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4065	free_root_pointers(fs_info, 1);
 
 
 
 
 
 
 
 
 
 
4066
4067	iput(fs_info->btree_inode);
4068
4069#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4070	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4071		btrfsic_unmount(fs_info->fs_devices);
4072#endif
4073
4074	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4075	btrfs_close_devices(fs_info->fs_devices);
4076
4077	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4078	percpu_counter_destroy(&fs_info->delalloc_bytes);
4079	percpu_counter_destroy(&fs_info->dio_bytes);
4080	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4081	cleanup_srcu_struct(&fs_info->subvol_srcu);
4082
4083	btrfs_free_csum_hash(fs_info);
4084	btrfs_free_stripe_hash_table(fs_info);
4085	btrfs_free_ref_cache(fs_info);
4086}
4087
4088int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4089			  int atomic)
4090{
4091	int ret;
4092	struct inode *btree_inode = buf->pages[0]->mapping->host;
4093
4094	ret = extent_buffer_uptodate(buf);
4095	if (!ret)
4096		return ret;
4097
4098	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4099				    parent_transid, atomic);
4100	if (ret == -EAGAIN)
4101		return ret;
4102	return !ret;
4103}
4104
4105void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4106{
4107	struct btrfs_fs_info *fs_info;
4108	struct btrfs_root *root;
4109	u64 transid = btrfs_header_generation(buf);
4110	int was_dirty;
4111
4112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4113	/*
4114	 * This is a fast path so only do this check if we have sanity tests
4115	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4116	 * outside of the sanity tests.
4117	 */
4118	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4119		return;
4120#endif
4121	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4122	fs_info = root->fs_info;
4123	btrfs_assert_tree_locked(buf);
4124	if (transid != fs_info->generation)
4125		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4126			buf->start, transid, fs_info->generation);
4127	was_dirty = set_extent_buffer_dirty(buf);
4128	if (!was_dirty)
4129		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4130					 buf->len,
4131					 fs_info->dirty_metadata_batch);
4132#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4133	/*
4134	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4135	 * but item data not updated.
4136	 * So here we should only check item pointers, not item data.
4137	 */
4138	if (btrfs_header_level(buf) == 0 &&
4139	    btrfs_check_leaf_relaxed(buf)) {
4140		btrfs_print_leaf(buf);
4141		ASSERT(0);
4142	}
4143#endif
4144}
4145
4146static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4147					int flush_delayed)
4148{
4149	/*
4150	 * looks as though older kernels can get into trouble with
4151	 * this code, they end up stuck in balance_dirty_pages forever
4152	 */
4153	int ret;
4154
4155	if (current->flags & PF_MEMALLOC)
4156		return;
4157
4158	if (flush_delayed)
4159		btrfs_balance_delayed_items(fs_info);
4160
4161	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4162				     BTRFS_DIRTY_METADATA_THRESH,
4163				     fs_info->dirty_metadata_batch);
4164	if (ret > 0) {
4165		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4166	}
4167}
4168
4169void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4170{
4171	__btrfs_btree_balance_dirty(fs_info, 1);
4172}
4173
4174void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4175{
4176	__btrfs_btree_balance_dirty(fs_info, 0);
4177}
4178
4179int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4180		      struct btrfs_key *first_key)
4181{
4182	return btree_read_extent_buffer_pages(buf, parent_transid,
4183					      level, first_key);
4184}
4185
4186static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4187{
4188	/* cleanup FS via transaction */
4189	btrfs_cleanup_transaction(fs_info);
4190
4191	mutex_lock(&fs_info->cleaner_mutex);
4192	btrfs_run_delayed_iputs(fs_info);
4193	mutex_unlock(&fs_info->cleaner_mutex);
4194
4195	down_write(&fs_info->cleanup_work_sem);
4196	up_write(&fs_info->cleanup_work_sem);
4197}
4198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4199static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4200{
4201	struct btrfs_ordered_extent *ordered;
4202
4203	spin_lock(&root->ordered_extent_lock);
4204	/*
4205	 * This will just short circuit the ordered completion stuff which will
4206	 * make sure the ordered extent gets properly cleaned up.
4207	 */
4208	list_for_each_entry(ordered, &root->ordered_extents,
4209			    root_extent_list)
4210		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4211	spin_unlock(&root->ordered_extent_lock);
4212}
4213
4214static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4215{
4216	struct btrfs_root *root;
4217	struct list_head splice;
4218
4219	INIT_LIST_HEAD(&splice);
4220
4221	spin_lock(&fs_info->ordered_root_lock);
4222	list_splice_init(&fs_info->ordered_roots, &splice);
4223	while (!list_empty(&splice)) {
4224		root = list_first_entry(&splice, struct btrfs_root,
4225					ordered_root);
4226		list_move_tail(&root->ordered_root,
4227			       &fs_info->ordered_roots);
4228
4229		spin_unlock(&fs_info->ordered_root_lock);
4230		btrfs_destroy_ordered_extents(root);
4231
4232		cond_resched();
4233		spin_lock(&fs_info->ordered_root_lock);
4234	}
4235	spin_unlock(&fs_info->ordered_root_lock);
4236
4237	/*
4238	 * We need this here because if we've been flipped read-only we won't
4239	 * get sync() from the umount, so we need to make sure any ordered
4240	 * extents that haven't had their dirty pages IO start writeout yet
4241	 * actually get run and error out properly.
4242	 */
4243	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4244}
4245
4246static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4247				      struct btrfs_fs_info *fs_info)
4248{
4249	struct rb_node *node;
4250	struct btrfs_delayed_ref_root *delayed_refs;
4251	struct btrfs_delayed_ref_node *ref;
4252	int ret = 0;
4253
4254	delayed_refs = &trans->delayed_refs;
4255
4256	spin_lock(&delayed_refs->lock);
4257	if (atomic_read(&delayed_refs->num_entries) == 0) {
4258		spin_unlock(&delayed_refs->lock);
4259		btrfs_info(fs_info, "delayed_refs has NO entry");
4260		return ret;
4261	}
4262
4263	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4264		struct btrfs_delayed_ref_head *head;
4265		struct rb_node *n;
4266		bool pin_bytes = false;
4267
4268		head = rb_entry(node, struct btrfs_delayed_ref_head,
4269				href_node);
4270		if (btrfs_delayed_ref_lock(delayed_refs, head))
4271			continue;
4272
4273		spin_lock(&head->lock);
4274		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4275			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4276				       ref_node);
4277			ref->in_tree = 0;
4278			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4279			RB_CLEAR_NODE(&ref->ref_node);
4280			if (!list_empty(&ref->add_list))
4281				list_del(&ref->add_list);
4282			atomic_dec(&delayed_refs->num_entries);
4283			btrfs_put_delayed_ref(ref);
4284		}
4285		if (head->must_insert_reserved)
4286			pin_bytes = true;
4287		btrfs_free_delayed_extent_op(head->extent_op);
4288		btrfs_delete_ref_head(delayed_refs, head);
4289		spin_unlock(&head->lock);
4290		spin_unlock(&delayed_refs->lock);
4291		mutex_unlock(&head->mutex);
4292
4293		if (pin_bytes)
4294			btrfs_pin_extent(fs_info, head->bytenr,
4295					 head->num_bytes, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4296		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4297		btrfs_put_delayed_ref_head(head);
4298		cond_resched();
4299		spin_lock(&delayed_refs->lock);
4300	}
 
4301
4302	spin_unlock(&delayed_refs->lock);
4303
4304	return ret;
4305}
4306
4307static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4308{
4309	struct btrfs_inode *btrfs_inode;
4310	struct list_head splice;
4311
4312	INIT_LIST_HEAD(&splice);
4313
4314	spin_lock(&root->delalloc_lock);
4315	list_splice_init(&root->delalloc_inodes, &splice);
4316
4317	while (!list_empty(&splice)) {
4318		struct inode *inode = NULL;
4319		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4320					       delalloc_inodes);
4321		__btrfs_del_delalloc_inode(root, btrfs_inode);
4322		spin_unlock(&root->delalloc_lock);
4323
4324		/*
4325		 * Make sure we get a live inode and that it'll not disappear
4326		 * meanwhile.
4327		 */
4328		inode = igrab(&btrfs_inode->vfs_inode);
4329		if (inode) {
4330			invalidate_inode_pages2(inode->i_mapping);
4331			iput(inode);
4332		}
4333		spin_lock(&root->delalloc_lock);
4334	}
4335	spin_unlock(&root->delalloc_lock);
4336}
4337
4338static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4339{
4340	struct btrfs_root *root;
4341	struct list_head splice;
4342
4343	INIT_LIST_HEAD(&splice);
4344
4345	spin_lock(&fs_info->delalloc_root_lock);
4346	list_splice_init(&fs_info->delalloc_roots, &splice);
4347	while (!list_empty(&splice)) {
4348		root = list_first_entry(&splice, struct btrfs_root,
4349					 delalloc_root);
4350		root = btrfs_grab_fs_root(root);
4351		BUG_ON(!root);
4352		spin_unlock(&fs_info->delalloc_root_lock);
4353
4354		btrfs_destroy_delalloc_inodes(root);
4355		btrfs_put_fs_root(root);
4356
4357		spin_lock(&fs_info->delalloc_root_lock);
4358	}
4359	spin_unlock(&fs_info->delalloc_root_lock);
4360}
4361
4362static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4363					struct extent_io_tree *dirty_pages,
4364					int mark)
4365{
4366	int ret;
4367	struct extent_buffer *eb;
4368	u64 start = 0;
4369	u64 end;
4370
4371	while (1) {
4372		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4373					    mark, NULL);
4374		if (ret)
4375			break;
4376
4377		clear_extent_bits(dirty_pages, start, end, mark);
4378		while (start <= end) {
4379			eb = find_extent_buffer(fs_info, start);
4380			start += fs_info->nodesize;
4381			if (!eb)
4382				continue;
4383			wait_on_extent_buffer_writeback(eb);
4384
4385			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4386					       &eb->bflags))
4387				clear_extent_buffer_dirty(eb);
4388			free_extent_buffer_stale(eb);
4389		}
4390	}
4391
4392	return ret;
4393}
4394
4395static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4396				       struct extent_io_tree *pinned_extents)
4397{
4398	struct extent_io_tree *unpin;
4399	u64 start;
4400	u64 end;
4401	int ret;
4402	bool loop = true;
4403
4404	unpin = pinned_extents;
4405again:
4406	while (1) {
4407		struct extent_state *cached_state = NULL;
4408
4409		/*
4410		 * The btrfs_finish_extent_commit() may get the same range as
4411		 * ours between find_first_extent_bit and clear_extent_dirty.
4412		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4413		 * the same extent range.
4414		 */
4415		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4416		ret = find_first_extent_bit(unpin, 0, &start, &end,
4417					    EXTENT_DIRTY, &cached_state);
4418		if (ret) {
4419			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4420			break;
4421		}
4422
4423		clear_extent_dirty(unpin, start, end, &cached_state);
4424		free_extent_state(cached_state);
4425		btrfs_error_unpin_extent_range(fs_info, start, end);
4426		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4427		cond_resched();
4428	}
4429
4430	if (loop) {
4431		if (unpin == &fs_info->freed_extents[0])
4432			unpin = &fs_info->freed_extents[1];
4433		else
4434			unpin = &fs_info->freed_extents[0];
4435		loop = false;
4436		goto again;
4437	}
4438
4439	return 0;
4440}
4441
4442static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4443{
4444	struct inode *inode;
4445
4446	inode = cache->io_ctl.inode;
4447	if (inode) {
4448		invalidate_inode_pages2(inode->i_mapping);
4449		BTRFS_I(inode)->generation = 0;
4450		cache->io_ctl.inode = NULL;
4451		iput(inode);
4452	}
 
4453	btrfs_put_block_group(cache);
4454}
4455
4456void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4457			     struct btrfs_fs_info *fs_info)
4458{
4459	struct btrfs_block_group_cache *cache;
4460
4461	spin_lock(&cur_trans->dirty_bgs_lock);
4462	while (!list_empty(&cur_trans->dirty_bgs)) {
4463		cache = list_first_entry(&cur_trans->dirty_bgs,
4464					 struct btrfs_block_group_cache,
4465					 dirty_list);
4466
4467		if (!list_empty(&cache->io_list)) {
4468			spin_unlock(&cur_trans->dirty_bgs_lock);
4469			list_del_init(&cache->io_list);
4470			btrfs_cleanup_bg_io(cache);
4471			spin_lock(&cur_trans->dirty_bgs_lock);
4472		}
4473
4474		list_del_init(&cache->dirty_list);
4475		spin_lock(&cache->lock);
4476		cache->disk_cache_state = BTRFS_DC_ERROR;
4477		spin_unlock(&cache->lock);
4478
4479		spin_unlock(&cur_trans->dirty_bgs_lock);
4480		btrfs_put_block_group(cache);
4481		btrfs_delayed_refs_rsv_release(fs_info, 1);
4482		spin_lock(&cur_trans->dirty_bgs_lock);
4483	}
4484	spin_unlock(&cur_trans->dirty_bgs_lock);
4485
4486	/*
4487	 * Refer to the definition of io_bgs member for details why it's safe
4488	 * to use it without any locking
4489	 */
4490	while (!list_empty(&cur_trans->io_bgs)) {
4491		cache = list_first_entry(&cur_trans->io_bgs,
4492					 struct btrfs_block_group_cache,
4493					 io_list);
4494
4495		list_del_init(&cache->io_list);
4496		spin_lock(&cache->lock);
4497		cache->disk_cache_state = BTRFS_DC_ERROR;
4498		spin_unlock(&cache->lock);
4499		btrfs_cleanup_bg_io(cache);
4500	}
4501}
4502
4503void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4504				   struct btrfs_fs_info *fs_info)
4505{
4506	struct btrfs_device *dev, *tmp;
4507
4508	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4509	ASSERT(list_empty(&cur_trans->dirty_bgs));
4510	ASSERT(list_empty(&cur_trans->io_bgs));
4511
4512	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4513				 post_commit_list) {
4514		list_del_init(&dev->post_commit_list);
4515	}
4516
4517	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4518
4519	cur_trans->state = TRANS_STATE_COMMIT_START;
4520	wake_up(&fs_info->transaction_blocked_wait);
4521
4522	cur_trans->state = TRANS_STATE_UNBLOCKED;
4523	wake_up(&fs_info->transaction_wait);
4524
4525	btrfs_destroy_delayed_inodes(fs_info);
4526	btrfs_assert_delayed_root_empty(fs_info);
4527
4528	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4529				     EXTENT_DIRTY);
4530	btrfs_destroy_pinned_extent(fs_info,
4531				    fs_info->pinned_extents);
4532
4533	cur_trans->state =TRANS_STATE_COMPLETED;
4534	wake_up(&cur_trans->commit_wait);
4535}
4536
4537static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4538{
4539	struct btrfs_transaction *t;
4540
4541	mutex_lock(&fs_info->transaction_kthread_mutex);
4542
4543	spin_lock(&fs_info->trans_lock);
4544	while (!list_empty(&fs_info->trans_list)) {
4545		t = list_first_entry(&fs_info->trans_list,
4546				     struct btrfs_transaction, list);
4547		if (t->state >= TRANS_STATE_COMMIT_START) {
4548			refcount_inc(&t->use_count);
4549			spin_unlock(&fs_info->trans_lock);
4550			btrfs_wait_for_commit(fs_info, t->transid);
4551			btrfs_put_transaction(t);
4552			spin_lock(&fs_info->trans_lock);
4553			continue;
4554		}
4555		if (t == fs_info->running_transaction) {
4556			t->state = TRANS_STATE_COMMIT_DOING;
4557			spin_unlock(&fs_info->trans_lock);
4558			/*
4559			 * We wait for 0 num_writers since we don't hold a trans
4560			 * handle open currently for this transaction.
4561			 */
4562			wait_event(t->writer_wait,
4563				   atomic_read(&t->num_writers) == 0);
4564		} else {
4565			spin_unlock(&fs_info->trans_lock);
4566		}
4567		btrfs_cleanup_one_transaction(t, fs_info);
4568
4569		spin_lock(&fs_info->trans_lock);
4570		if (t == fs_info->running_transaction)
4571			fs_info->running_transaction = NULL;
4572		list_del_init(&t->list);
4573		spin_unlock(&fs_info->trans_lock);
4574
4575		btrfs_put_transaction(t);
4576		trace_btrfs_transaction_commit(fs_info->tree_root);
4577		spin_lock(&fs_info->trans_lock);
4578	}
4579	spin_unlock(&fs_info->trans_lock);
4580	btrfs_destroy_all_ordered_extents(fs_info);
4581	btrfs_destroy_delayed_inodes(fs_info);
4582	btrfs_assert_delayed_root_empty(fs_info);
4583	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4584	btrfs_destroy_all_delalloc_inodes(fs_info);
 
4585	mutex_unlock(&fs_info->transaction_kthread_mutex);
4586
4587	return 0;
4588}
4589
4590static const struct extent_io_ops btree_extent_io_ops = {
4591	/* mandatory callbacks */
4592	.submit_bio_hook = btree_submit_bio_hook,
4593	.readpage_end_io_hook = btree_readpage_end_io_hook,
4594};
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
 
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <asm/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "print-tree.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
  32#include "inode-map.h"
  33#include "check-integrity.h"
  34#include "rcu-string.h"
  35#include "dev-replace.h"
  36#include "raid56.h"
  37#include "sysfs.h"
  38#include "qgroup.h"
  39#include "compression.h"
  40#include "tree-checker.h"
  41#include "ref-verify.h"
  42#include "block-group.h"
  43#include "discard.h"
  44#include "space-info.h"
  45
  46#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  47				 BTRFS_HEADER_FLAG_RELOC |\
  48				 BTRFS_SUPER_FLAG_ERROR |\
  49				 BTRFS_SUPER_FLAG_SEEDING |\
  50				 BTRFS_SUPER_FLAG_METADUMP |\
  51				 BTRFS_SUPER_FLAG_METADUMP_V2)
  52
  53static const struct extent_io_ops btree_extent_io_ops;
  54static void end_workqueue_fn(struct btrfs_work *work);
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57				      struct btrfs_fs_info *fs_info);
  58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  60					struct extent_io_tree *dirty_pages,
  61					int mark);
  62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  63				       struct extent_io_tree *pinned_extents);
  64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  66
  67/*
  68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  69 * is complete.  This is used during reads to verify checksums, and it is used
  70 * by writes to insert metadata for new file extents after IO is complete.
  71 */
  72struct btrfs_end_io_wq {
  73	struct bio *bio;
  74	bio_end_io_t *end_io;
  75	void *private;
  76	struct btrfs_fs_info *info;
  77	blk_status_t status;
  78	enum btrfs_wq_endio_type metadata;
  79	struct btrfs_work work;
  80};
  81
  82static struct kmem_cache *btrfs_end_io_wq_cache;
  83
  84int __init btrfs_end_io_wq_init(void)
  85{
  86	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  87					sizeof(struct btrfs_end_io_wq),
  88					0,
  89					SLAB_MEM_SPREAD,
  90					NULL);
  91	if (!btrfs_end_io_wq_cache)
  92		return -ENOMEM;
  93	return 0;
  94}
  95
  96void __cold btrfs_end_io_wq_exit(void)
  97{
  98	kmem_cache_destroy(btrfs_end_io_wq_cache);
  99}
 100
 101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 102{
 103	if (fs_info->csum_shash)
 104		crypto_free_shash(fs_info->csum_shash);
 105}
 106
 107/*
 108 * async submit bios are used to offload expensive checksumming
 109 * onto the worker threads.  They checksum file and metadata bios
 110 * just before they are sent down the IO stack.
 111 */
 112struct async_submit_bio {
 113	void *private_data;
 114	struct bio *bio;
 115	extent_submit_bio_start_t *submit_bio_start;
 116	int mirror_num;
 117	/*
 118	 * bio_offset is optional, can be used if the pages in the bio
 119	 * can't tell us where in the file the bio should go
 120	 */
 121	u64 bio_offset;
 122	struct btrfs_work work;
 123	blk_status_t status;
 124};
 125
 126/*
 127 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 129 * the level the eb occupies in the tree.
 130 *
 131 * Different roots are used for different purposes and may nest inside each
 132 * other and they require separate keysets.  As lockdep keys should be
 133 * static, assign keysets according to the purpose of the root as indicated
 134 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 135 * roots have separate keysets.
 136 *
 137 * Lock-nesting across peer nodes is always done with the immediate parent
 138 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 139 * subclass to avoid triggering lockdep warning in such cases.
 140 *
 141 * The key is set by the readpage_end_io_hook after the buffer has passed
 142 * csum validation but before the pages are unlocked.  It is also set by
 143 * btrfs_init_new_buffer on freshly allocated blocks.
 144 *
 145 * We also add a check to make sure the highest level of the tree is the
 146 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 147 * needs update as well.
 148 */
 149#ifdef CONFIG_DEBUG_LOCK_ALLOC
 150# if BTRFS_MAX_LEVEL != 8
 151#  error
 152# endif
 153
 154static struct btrfs_lockdep_keyset {
 155	u64			id;		/* root objectid */
 156	const char		*name_stem;	/* lock name stem */
 157	char			names[BTRFS_MAX_LEVEL + 1][20];
 158	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 159} btrfs_lockdep_keysets[] = {
 160	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 161	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 162	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 163	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 164	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 165	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 166	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 167	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 168	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 169	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 170	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 171	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 172	{ .id = 0,				.name_stem = "tree"	},
 173};
 174
 175void __init btrfs_init_lockdep(void)
 176{
 177	int i, j;
 178
 179	/* initialize lockdep class names */
 180	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 181		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 182
 183		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 184			snprintf(ks->names[j], sizeof(ks->names[j]),
 185				 "btrfs-%s-%02d", ks->name_stem, j);
 186	}
 187}
 188
 189void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 190				    int level)
 191{
 192	struct btrfs_lockdep_keyset *ks;
 193
 194	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 195
 196	/* find the matching keyset, id 0 is the default entry */
 197	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 198		if (ks->id == objectid)
 199			break;
 200
 201	lockdep_set_class_and_name(&eb->lock,
 202				   &ks->keys[level], ks->names[level]);
 203}
 204
 205#endif
 206
 207/*
 208 * extents on the btree inode are pretty simple, there's one extent
 209 * that covers the entire device
 210 */
 211struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 212				    struct page *page, size_t pg_offset,
 213				    u64 start, u64 len)
 214{
 
 215	struct extent_map_tree *em_tree = &inode->extent_tree;
 216	struct extent_map *em;
 217	int ret;
 218
 219	read_lock(&em_tree->lock);
 220	em = lookup_extent_mapping(em_tree, start, len);
 221	if (em) {
 
 222		read_unlock(&em_tree->lock);
 223		goto out;
 224	}
 225	read_unlock(&em_tree->lock);
 226
 227	em = alloc_extent_map();
 228	if (!em) {
 229		em = ERR_PTR(-ENOMEM);
 230		goto out;
 231	}
 232	em->start = 0;
 233	em->len = (u64)-1;
 234	em->block_len = (u64)-1;
 235	em->block_start = 0;
 
 236
 237	write_lock(&em_tree->lock);
 238	ret = add_extent_mapping(em_tree, em, 0);
 239	if (ret == -EEXIST) {
 240		free_extent_map(em);
 241		em = lookup_extent_mapping(em_tree, start, len);
 242		if (!em)
 243			em = ERR_PTR(-EIO);
 244	} else if (ret) {
 245		free_extent_map(em);
 246		em = ERR_PTR(ret);
 247	}
 248	write_unlock(&em_tree->lock);
 249
 250out:
 251	return em;
 252}
 253
 254/*
 255 * Compute the csum of a btree block and store the result to provided buffer.
 
 
 256 */
 257static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 258{
 259	struct btrfs_fs_info *fs_info = buf->fs_info;
 260	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
 261	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
 
 
 262	char *kaddr;
 263	int i;
 
 
 264
 265	shash->tfm = fs_info->csum_shash;
 266	crypto_shash_init(shash);
 267	kaddr = page_address(buf->pages[0]);
 268	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 269			    PAGE_SIZE - BTRFS_CSUM_SIZE);
 270
 271	for (i = 1; i < num_pages; i++) {
 272		kaddr = page_address(buf->pages[i]);
 273		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 274	}
 275	memset(result, 0, BTRFS_CSUM_SIZE);
 
 276	crypto_shash_final(shash, result);
 
 
 277}
 278
 279/*
 280 * we can't consider a given block up to date unless the transid of the
 281 * block matches the transid in the parent node's pointer.  This is how we
 282 * detect blocks that either didn't get written at all or got written
 283 * in the wrong place.
 284 */
 285static int verify_parent_transid(struct extent_io_tree *io_tree,
 286				 struct extent_buffer *eb, u64 parent_transid,
 287				 int atomic)
 288{
 289	struct extent_state *cached_state = NULL;
 290	int ret;
 291	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 292
 293	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 294		return 0;
 295
 296	if (atomic)
 297		return -EAGAIN;
 298
 299	if (need_lock) {
 300		btrfs_tree_read_lock(eb);
 301		btrfs_set_lock_blocking_read(eb);
 302	}
 303
 304	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 305			 &cached_state);
 306	if (extent_buffer_uptodate(eb) &&
 307	    btrfs_header_generation(eb) == parent_transid) {
 308		ret = 0;
 309		goto out;
 310	}
 311	btrfs_err_rl(eb->fs_info,
 312		"parent transid verify failed on %llu wanted %llu found %llu",
 313			eb->start,
 314			parent_transid, btrfs_header_generation(eb));
 315	ret = 1;
 316
 317	/*
 318	 * Things reading via commit roots that don't have normal protection,
 319	 * like send, can have a really old block in cache that may point at a
 320	 * block that has been freed and re-allocated.  So don't clear uptodate
 321	 * if we find an eb that is under IO (dirty/writeback) because we could
 322	 * end up reading in the stale data and then writing it back out and
 323	 * making everybody very sad.
 324	 */
 325	if (!extent_buffer_under_io(eb))
 326		clear_extent_buffer_uptodate(eb);
 327out:
 328	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 329			     &cached_state);
 330	if (need_lock)
 331		btrfs_tree_read_unlock_blocking(eb);
 332	return ret;
 333}
 334
 335static bool btrfs_supported_super_csum(u16 csum_type)
 336{
 337	switch (csum_type) {
 338	case BTRFS_CSUM_TYPE_CRC32:
 339	case BTRFS_CSUM_TYPE_XXHASH:
 340	case BTRFS_CSUM_TYPE_SHA256:
 341	case BTRFS_CSUM_TYPE_BLAKE2:
 342		return true;
 343	default:
 344		return false;
 345	}
 346}
 347
 348/*
 349 * Return 0 if the superblock checksum type matches the checksum value of that
 350 * algorithm. Pass the raw disk superblock data.
 351 */
 352static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 353				  char *raw_disk_sb)
 354{
 355	struct btrfs_super_block *disk_sb =
 356		(struct btrfs_super_block *)raw_disk_sb;
 357	char result[BTRFS_CSUM_SIZE];
 358	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 359
 360	shash->tfm = fs_info->csum_shash;
 
 361
 362	/*
 363	 * The super_block structure does not span the whole
 364	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 365	 * filled with zeros and is included in the checksum.
 366	 */
 367	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
 368			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 
 369
 370	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
 371		return 1;
 372
 373	return 0;
 374}
 375
 376int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 377			   struct btrfs_key *first_key, u64 parent_transid)
 378{
 379	struct btrfs_fs_info *fs_info = eb->fs_info;
 380	int found_level;
 381	struct btrfs_key found_key;
 382	int ret;
 383
 384	found_level = btrfs_header_level(eb);
 385	if (found_level != level) {
 386		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 387		     KERN_ERR "BTRFS: tree level check failed\n");
 388		btrfs_err(fs_info,
 389"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 390			  eb->start, level, found_level);
 391		return -EIO;
 392	}
 393
 394	if (!first_key)
 395		return 0;
 396
 397	/*
 398	 * For live tree block (new tree blocks in current transaction),
 399	 * we need proper lock context to avoid race, which is impossible here.
 400	 * So we only checks tree blocks which is read from disk, whose
 401	 * generation <= fs_info->last_trans_committed.
 402	 */
 403	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 404		return 0;
 405
 406	/* We have @first_key, so this @eb must have at least one item */
 407	if (btrfs_header_nritems(eb) == 0) {
 408		btrfs_err(fs_info,
 409		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 410			  eb->start);
 411		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 412		return -EUCLEAN;
 413	}
 414
 415	if (found_level)
 416		btrfs_node_key_to_cpu(eb, &found_key, 0);
 417	else
 418		btrfs_item_key_to_cpu(eb, &found_key, 0);
 419	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 420
 421	if (ret) {
 422		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 423		     KERN_ERR "BTRFS: tree first key check failed\n");
 424		btrfs_err(fs_info,
 425"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 426			  eb->start, parent_transid, first_key->objectid,
 427			  first_key->type, first_key->offset,
 428			  found_key.objectid, found_key.type,
 429			  found_key.offset);
 430	}
 431	return ret;
 432}
 433
 434/*
 435 * helper to read a given tree block, doing retries as required when
 436 * the checksums don't match and we have alternate mirrors to try.
 437 *
 438 * @parent_transid:	expected transid, skip check if 0
 439 * @level:		expected level, mandatory check
 440 * @first_key:		expected key of first slot, skip check if NULL
 441 */
 442static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 443					  u64 parent_transid, int level,
 444					  struct btrfs_key *first_key)
 445{
 446	struct btrfs_fs_info *fs_info = eb->fs_info;
 447	struct extent_io_tree *io_tree;
 448	int failed = 0;
 449	int ret;
 450	int num_copies = 0;
 451	int mirror_num = 0;
 452	int failed_mirror = 0;
 453
 454	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 455	while (1) {
 456		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 457		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 458		if (!ret) {
 459			if (verify_parent_transid(io_tree, eb,
 460						   parent_transid, 0))
 461				ret = -EIO;
 462			else if (btrfs_verify_level_key(eb, level,
 463						first_key, parent_transid))
 464				ret = -EUCLEAN;
 465			else
 466				break;
 467		}
 468
 469		num_copies = btrfs_num_copies(fs_info,
 470					      eb->start, eb->len);
 471		if (num_copies == 1)
 472			break;
 473
 474		if (!failed_mirror) {
 475			failed = 1;
 476			failed_mirror = eb->read_mirror;
 477		}
 478
 479		mirror_num++;
 480		if (mirror_num == failed_mirror)
 481			mirror_num++;
 482
 483		if (mirror_num > num_copies)
 484			break;
 485	}
 486
 487	if (failed && !ret && failed_mirror)
 488		btrfs_repair_eb_io_failure(eb, failed_mirror);
 489
 490	return ret;
 491}
 492
 493/*
 494 * checksum a dirty tree block before IO.  This has extra checks to make sure
 495 * we only fill in the checksum field in the first page of a multi-page block
 496 */
 497
 498static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 499{
 500	u64 start = page_offset(page);
 501	u64 found_start;
 502	u8 result[BTRFS_CSUM_SIZE];
 503	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 504	struct extent_buffer *eb;
 505	int ret;
 506
 507	eb = (struct extent_buffer *)page->private;
 508	if (page != eb->pages[0])
 509		return 0;
 510
 511	found_start = btrfs_header_bytenr(eb);
 512	/*
 513	 * Please do not consolidate these warnings into a single if.
 514	 * It is useful to know what went wrong.
 515	 */
 516	if (WARN_ON(found_start != start))
 517		return -EUCLEAN;
 518	if (WARN_ON(!PageUptodate(page)))
 519		return -EUCLEAN;
 520
 521	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 522				    offsetof(struct btrfs_header, fsid),
 523				    BTRFS_FSID_SIZE) == 0);
 524
 525	csum_tree_block(eb, result);
 
 526
 527	if (btrfs_header_level(eb))
 528		ret = btrfs_check_node(eb);
 529	else
 530		ret = btrfs_check_leaf_full(eb);
 531
 532	if (ret < 0) {
 533		btrfs_print_tree(eb, 0);
 534		btrfs_err(fs_info,
 535		"block=%llu write time tree block corruption detected",
 536			  eb->start);
 537		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 538		return ret;
 539	}
 540	write_extent_buffer(eb, result, 0, csum_size);
 541
 542	return 0;
 543}
 544
 545static int check_tree_block_fsid(struct extent_buffer *eb)
 546{
 547	struct btrfs_fs_info *fs_info = eb->fs_info;
 548	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 549	u8 fsid[BTRFS_FSID_SIZE];
 550	int ret = 1;
 551
 552	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 553			   BTRFS_FSID_SIZE);
 554	while (fs_devices) {
 555		u8 *metadata_uuid;
 556
 557		/*
 558		 * Checking the incompat flag is only valid for the current
 559		 * fs. For seed devices it's forbidden to have their uuid
 560		 * changed so reading ->fsid in this case is fine
 561		 */
 562		if (fs_devices == fs_info->fs_devices &&
 563		    btrfs_fs_incompat(fs_info, METADATA_UUID))
 564			metadata_uuid = fs_devices->metadata_uuid;
 565		else
 566			metadata_uuid = fs_devices->fsid;
 567
 568		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
 569			ret = 0;
 570			break;
 571		}
 572		fs_devices = fs_devices->seed;
 573	}
 574	return ret;
 575}
 576
 577static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 578				      u64 phy_offset, struct page *page,
 579				      u64 start, u64 end, int mirror)
 580{
 581	u64 found_start;
 582	int found_level;
 583	struct extent_buffer *eb;
 584	struct btrfs_fs_info *fs_info;
 585	u16 csum_size;
 
 586	int ret = 0;
 587	u8 result[BTRFS_CSUM_SIZE];
 588	int reads_done;
 589
 590	if (!page->private)
 591		goto out;
 592
 593	eb = (struct extent_buffer *)page->private;
 594	fs_info = eb->fs_info;
 595	csum_size = btrfs_super_csum_size(fs_info->super_copy);
 596
 597	/* the pending IO might have been the only thing that kept this buffer
 598	 * in memory.  Make sure we have a ref for all this other checks
 599	 */
 600	atomic_inc(&eb->refs);
 601
 602	reads_done = atomic_dec_and_test(&eb->io_pages);
 603	if (!reads_done)
 604		goto err;
 605
 606	eb->read_mirror = mirror;
 607	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 608		ret = -EIO;
 609		goto err;
 610	}
 611
 612	found_start = btrfs_header_bytenr(eb);
 613	if (found_start != eb->start) {
 614		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 615			     eb->start, found_start);
 616		ret = -EIO;
 617		goto err;
 618	}
 619	if (check_tree_block_fsid(eb)) {
 620		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 621			     eb->start);
 622		ret = -EIO;
 623		goto err;
 624	}
 625	found_level = btrfs_header_level(eb);
 626	if (found_level >= BTRFS_MAX_LEVEL) {
 627		btrfs_err(fs_info, "bad tree block level %d on %llu",
 628			  (int)btrfs_header_level(eb), eb->start);
 629		ret = -EIO;
 630		goto err;
 631	}
 632
 633	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 634				       eb, found_level);
 635
 636	csum_tree_block(eb, result);
 
 
 637
 638	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
 639		u8 val[BTRFS_CSUM_SIZE] = { 0 };
 
 
 
 640
 641		read_extent_buffer(eb, &val, 0, csum_size);
 642		btrfs_warn_rl(fs_info,
 643	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
 644			      fs_info->sb->s_id, eb->start,
 645			      CSUM_FMT_VALUE(csum_size, val),
 646			      CSUM_FMT_VALUE(csum_size, result),
 647			      btrfs_header_level(eb));
 648		ret = -EUCLEAN;
 649		goto err;
 650	}
 651
 652	/*
 653	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 654	 * that we don't try and read the other copies of this block, just
 655	 * return -EIO.
 656	 */
 657	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 658		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 659		ret = -EIO;
 660	}
 661
 662	if (found_level > 0 && btrfs_check_node(eb))
 663		ret = -EIO;
 664
 665	if (!ret)
 666		set_extent_buffer_uptodate(eb);
 667	else
 668		btrfs_err(fs_info,
 669			  "block=%llu read time tree block corruption detected",
 670			  eb->start);
 671err:
 672	if (reads_done &&
 673	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 674		btree_readahead_hook(eb, ret);
 675
 676	if (ret) {
 677		/*
 678		 * our io error hook is going to dec the io pages
 679		 * again, we have to make sure it has something
 680		 * to decrement
 681		 */
 682		atomic_inc(&eb->io_pages);
 683		clear_extent_buffer_uptodate(eb);
 684	}
 685	free_extent_buffer(eb);
 686out:
 687	return ret;
 688}
 689
 690static void end_workqueue_bio(struct bio *bio)
 691{
 692	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 693	struct btrfs_fs_info *fs_info;
 694	struct btrfs_workqueue *wq;
 
 695
 696	fs_info = end_io_wq->info;
 697	end_io_wq->status = bio->bi_status;
 698
 699	if (bio_op(bio) == REQ_OP_WRITE) {
 700		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
 701			wq = fs_info->endio_meta_write_workers;
 702		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
 
 703			wq = fs_info->endio_freespace_worker;
 704		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 
 705			wq = fs_info->endio_raid56_workers;
 706		else
 
 707			wq = fs_info->endio_write_workers;
 
 
 708	} else {
 709		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 
 
 
 
 710			wq = fs_info->endio_raid56_workers;
 711		else if (end_io_wq->metadata)
 
 712			wq = fs_info->endio_meta_workers;
 713		else
 
 714			wq = fs_info->endio_workers;
 
 
 715	}
 716
 717	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
 718	btrfs_queue_work(wq, &end_io_wq->work);
 719}
 720
 721blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 722			enum btrfs_wq_endio_type metadata)
 723{
 724	struct btrfs_end_io_wq *end_io_wq;
 725
 726	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 727	if (!end_io_wq)
 728		return BLK_STS_RESOURCE;
 729
 730	end_io_wq->private = bio->bi_private;
 731	end_io_wq->end_io = bio->bi_end_io;
 732	end_io_wq->info = info;
 733	end_io_wq->status = 0;
 734	end_io_wq->bio = bio;
 735	end_io_wq->metadata = metadata;
 736
 737	bio->bi_private = end_io_wq;
 738	bio->bi_end_io = end_workqueue_bio;
 739	return 0;
 740}
 741
 742static void run_one_async_start(struct btrfs_work *work)
 743{
 744	struct async_submit_bio *async;
 745	blk_status_t ret;
 746
 747	async = container_of(work, struct  async_submit_bio, work);
 748	ret = async->submit_bio_start(async->private_data, async->bio,
 749				      async->bio_offset);
 750	if (ret)
 751		async->status = ret;
 752}
 753
 754/*
 755 * In order to insert checksums into the metadata in large chunks, we wait
 756 * until bio submission time.   All the pages in the bio are checksummed and
 757 * sums are attached onto the ordered extent record.
 758 *
 759 * At IO completion time the csums attached on the ordered extent record are
 760 * inserted into the tree.
 761 */
 762static void run_one_async_done(struct btrfs_work *work)
 763{
 764	struct async_submit_bio *async;
 765	struct inode *inode;
 766	blk_status_t ret;
 767
 768	async = container_of(work, struct  async_submit_bio, work);
 769	inode = async->private_data;
 770
 771	/* If an error occurred we just want to clean up the bio and move on */
 772	if (async->status) {
 773		async->bio->bi_status = async->status;
 774		bio_endio(async->bio);
 775		return;
 776	}
 777
 778	/*
 779	 * All of the bios that pass through here are from async helpers.
 780	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
 781	 * This changes nothing when cgroups aren't in use.
 782	 */
 783	async->bio->bi_opf |= REQ_CGROUP_PUNT;
 784	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
 785	if (ret) {
 786		async->bio->bi_status = ret;
 787		bio_endio(async->bio);
 788	}
 789}
 790
 791static void run_one_async_free(struct btrfs_work *work)
 792{
 793	struct async_submit_bio *async;
 794
 795	async = container_of(work, struct  async_submit_bio, work);
 796	kfree(async);
 797}
 798
 799blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 800				 int mirror_num, unsigned long bio_flags,
 801				 u64 bio_offset, void *private_data,
 802				 extent_submit_bio_start_t *submit_bio_start)
 803{
 804	struct async_submit_bio *async;
 805
 806	async = kmalloc(sizeof(*async), GFP_NOFS);
 807	if (!async)
 808		return BLK_STS_RESOURCE;
 809
 810	async->private_data = private_data;
 811	async->bio = bio;
 812	async->mirror_num = mirror_num;
 813	async->submit_bio_start = submit_bio_start;
 814
 815	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
 816			run_one_async_free);
 817
 818	async->bio_offset = bio_offset;
 819
 820	async->status = 0;
 821
 822	if (op_is_sync(bio->bi_opf))
 823		btrfs_set_work_high_priority(&async->work);
 824
 825	btrfs_queue_work(fs_info->workers, &async->work);
 826	return 0;
 827}
 828
 829static blk_status_t btree_csum_one_bio(struct bio *bio)
 830{
 831	struct bio_vec *bvec;
 832	struct btrfs_root *root;
 833	int ret = 0;
 834	struct bvec_iter_all iter_all;
 835
 836	ASSERT(!bio_flagged(bio, BIO_CLONED));
 837	bio_for_each_segment_all(bvec, bio, iter_all) {
 838		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 839		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 840		if (ret)
 841			break;
 842	}
 843
 844	return errno_to_blk_status(ret);
 845}
 846
 847static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 848					     u64 bio_offset)
 849{
 850	/*
 851	 * when we're called for a write, we're already in the async
 852	 * submission context.  Just jump into btrfs_map_bio
 853	 */
 854	return btree_csum_one_bio(bio);
 855}
 856
 857static int check_async_write(struct btrfs_fs_info *fs_info,
 858			     struct btrfs_inode *bi)
 859{
 860	if (atomic_read(&bi->sync_writers))
 861		return 0;
 862	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 863		return 0;
 864	return 1;
 865}
 866
 867static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
 868					  int mirror_num,
 869					  unsigned long bio_flags)
 870{
 871	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 872	int async = check_async_write(fs_info, BTRFS_I(inode));
 873	blk_status_t ret;
 874
 875	if (bio_op(bio) != REQ_OP_WRITE) {
 876		/*
 877		 * called for a read, do the setup so that checksum validation
 878		 * can happen in the async kernel threads
 879		 */
 880		ret = btrfs_bio_wq_end_io(fs_info, bio,
 881					  BTRFS_WQ_ENDIO_METADATA);
 882		if (ret)
 883			goto out_w_error;
 884		ret = btrfs_map_bio(fs_info, bio, mirror_num);
 885	} else if (!async) {
 886		ret = btree_csum_one_bio(bio);
 887		if (ret)
 888			goto out_w_error;
 889		ret = btrfs_map_bio(fs_info, bio, mirror_num);
 890	} else {
 891		/*
 892		 * kthread helpers are used to submit writes so that
 893		 * checksumming can happen in parallel across all CPUs
 894		 */
 895		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 896					  0, inode, btree_submit_bio_start);
 897	}
 898
 899	if (ret)
 900		goto out_w_error;
 901	return 0;
 902
 903out_w_error:
 904	bio->bi_status = ret;
 905	bio_endio(bio);
 906	return ret;
 907}
 908
 909#ifdef CONFIG_MIGRATION
 910static int btree_migratepage(struct address_space *mapping,
 911			struct page *newpage, struct page *page,
 912			enum migrate_mode mode)
 913{
 914	/*
 915	 * we can't safely write a btree page from here,
 916	 * we haven't done the locking hook
 917	 */
 918	if (PageDirty(page))
 919		return -EAGAIN;
 920	/*
 921	 * Buffers may be managed in a filesystem specific way.
 922	 * We must have no buffers or drop them.
 923	 */
 924	if (page_has_private(page) &&
 925	    !try_to_release_page(page, GFP_KERNEL))
 926		return -EAGAIN;
 927	return migrate_page(mapping, newpage, page, mode);
 928}
 929#endif
 930
 931
 932static int btree_writepages(struct address_space *mapping,
 933			    struct writeback_control *wbc)
 934{
 935	struct btrfs_fs_info *fs_info;
 936	int ret;
 937
 938	if (wbc->sync_mode == WB_SYNC_NONE) {
 939
 940		if (wbc->for_kupdate)
 941			return 0;
 942
 943		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 944		/* this is a bit racy, but that's ok */
 945		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 946					     BTRFS_DIRTY_METADATA_THRESH,
 947					     fs_info->dirty_metadata_batch);
 948		if (ret < 0)
 949			return 0;
 950	}
 951	return btree_write_cache_pages(mapping, wbc);
 952}
 953
 954static int btree_readpage(struct file *file, struct page *page)
 955{
 956	return extent_read_full_page(page, btree_get_extent, 0);
 
 
 957}
 958
 959static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 960{
 961	if (PageWriteback(page) || PageDirty(page))
 962		return 0;
 963
 964	return try_release_extent_buffer(page);
 965}
 966
 967static void btree_invalidatepage(struct page *page, unsigned int offset,
 968				 unsigned int length)
 969{
 970	struct extent_io_tree *tree;
 971	tree = &BTRFS_I(page->mapping->host)->io_tree;
 972	extent_invalidatepage(tree, page, offset);
 973	btree_releasepage(page, GFP_NOFS);
 974	if (PagePrivate(page)) {
 975		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
 976			   "page private not zero on page %llu",
 977			   (unsigned long long)page_offset(page));
 978		detach_page_private(page);
 
 
 979	}
 980}
 981
 982static int btree_set_page_dirty(struct page *page)
 983{
 984#ifdef DEBUG
 985	struct extent_buffer *eb;
 986
 987	BUG_ON(!PagePrivate(page));
 988	eb = (struct extent_buffer *)page->private;
 989	BUG_ON(!eb);
 990	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 991	BUG_ON(!atomic_read(&eb->refs));
 992	btrfs_assert_tree_locked(eb);
 993#endif
 994	return __set_page_dirty_nobuffers(page);
 995}
 996
 997static const struct address_space_operations btree_aops = {
 998	.readpage	= btree_readpage,
 999	.writepages	= btree_writepages,
1000	.releasepage	= btree_releasepage,
1001	.invalidatepage = btree_invalidatepage,
1002#ifdef CONFIG_MIGRATION
1003	.migratepage	= btree_migratepage,
1004#endif
1005	.set_page_dirty = btree_set_page_dirty,
1006};
1007
1008void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1009{
1010	struct extent_buffer *buf = NULL;
1011	int ret;
1012
1013	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1014	if (IS_ERR(buf))
1015		return;
1016
1017	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1018	if (ret < 0)
1019		free_extent_buffer_stale(buf);
1020	else
1021		free_extent_buffer(buf);
1022}
1023
1024struct extent_buffer *btrfs_find_create_tree_block(
1025						struct btrfs_fs_info *fs_info,
1026						u64 bytenr)
1027{
1028	if (btrfs_is_testing(fs_info))
1029		return alloc_test_extent_buffer(fs_info, bytenr);
1030	return alloc_extent_buffer(fs_info, bytenr);
1031}
1032
1033/*
1034 * Read tree block at logical address @bytenr and do variant basic but critical
1035 * verification.
1036 *
1037 * @parent_transid:	expected transid of this tree block, skip check if 0
1038 * @level:		expected level, mandatory check
1039 * @first_key:		expected key in slot 0, skip check if NULL
1040 */
1041struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1042				      u64 parent_transid, int level,
1043				      struct btrfs_key *first_key)
1044{
1045	struct extent_buffer *buf = NULL;
1046	int ret;
1047
1048	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1049	if (IS_ERR(buf))
1050		return buf;
1051
1052	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1053					     level, first_key);
1054	if (ret) {
1055		free_extent_buffer_stale(buf);
1056		return ERR_PTR(ret);
1057	}
1058	return buf;
1059
1060}
1061
1062void btrfs_clean_tree_block(struct extent_buffer *buf)
1063{
1064	struct btrfs_fs_info *fs_info = buf->fs_info;
1065	if (btrfs_header_generation(buf) ==
1066	    fs_info->running_transaction->transid) {
1067		btrfs_assert_tree_locked(buf);
1068
1069		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1070			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1071						 -buf->len,
1072						 fs_info->dirty_metadata_batch);
1073			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1074			btrfs_set_lock_blocking_write(buf);
1075			clear_extent_buffer_dirty(buf);
1076		}
1077	}
1078}
1079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1081			 u64 objectid)
1082{
1083	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1084	root->fs_info = fs_info;
1085	root->node = NULL;
1086	root->commit_root = NULL;
1087	root->state = 0;
1088	root->orphan_cleanup_state = 0;
1089
1090	root->last_trans = 0;
1091	root->highest_objectid = 0;
1092	root->nr_delalloc_inodes = 0;
1093	root->nr_ordered_extents = 0;
1094	root->inode_tree = RB_ROOT;
1095	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1096	root->block_rsv = NULL;
1097
1098	INIT_LIST_HEAD(&root->dirty_list);
1099	INIT_LIST_HEAD(&root->root_list);
1100	INIT_LIST_HEAD(&root->delalloc_inodes);
1101	INIT_LIST_HEAD(&root->delalloc_root);
1102	INIT_LIST_HEAD(&root->ordered_extents);
1103	INIT_LIST_HEAD(&root->ordered_root);
1104	INIT_LIST_HEAD(&root->reloc_dirty_list);
1105	INIT_LIST_HEAD(&root->logged_list[0]);
1106	INIT_LIST_HEAD(&root->logged_list[1]);
1107	spin_lock_init(&root->inode_lock);
1108	spin_lock_init(&root->delalloc_lock);
1109	spin_lock_init(&root->ordered_extent_lock);
1110	spin_lock_init(&root->accounting_lock);
1111	spin_lock_init(&root->log_extents_lock[0]);
1112	spin_lock_init(&root->log_extents_lock[1]);
1113	spin_lock_init(&root->qgroup_meta_rsv_lock);
1114	mutex_init(&root->objectid_mutex);
1115	mutex_init(&root->log_mutex);
1116	mutex_init(&root->ordered_extent_mutex);
1117	mutex_init(&root->delalloc_mutex);
1118	init_waitqueue_head(&root->qgroup_flush_wait);
1119	init_waitqueue_head(&root->log_writer_wait);
1120	init_waitqueue_head(&root->log_commit_wait[0]);
1121	init_waitqueue_head(&root->log_commit_wait[1]);
1122	INIT_LIST_HEAD(&root->log_ctxs[0]);
1123	INIT_LIST_HEAD(&root->log_ctxs[1]);
1124	atomic_set(&root->log_commit[0], 0);
1125	atomic_set(&root->log_commit[1], 0);
1126	atomic_set(&root->log_writers, 0);
1127	atomic_set(&root->log_batch, 0);
1128	refcount_set(&root->refs, 1);
 
1129	atomic_set(&root->snapshot_force_cow, 0);
1130	atomic_set(&root->nr_swapfiles, 0);
1131	root->log_transid = 0;
1132	root->log_transid_committed = -1;
1133	root->last_log_commit = 0;
1134	if (!dummy) {
1135		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1137		extent_io_tree_init(fs_info, &root->log_csum_range,
1138				    IO_TREE_LOG_CSUM_RANGE, NULL);
1139	}
1140
1141	memset(&root->root_key, 0, sizeof(root->root_key));
1142	memset(&root->root_item, 0, sizeof(root->root_item));
1143	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
 
 
 
 
1144	root->root_key.objectid = objectid;
1145	root->anon_dev = 0;
1146
1147	spin_lock_init(&root->root_item_lock);
1148	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1149#ifdef CONFIG_BTRFS_DEBUG
1150	INIT_LIST_HEAD(&root->leak_list);
1151	spin_lock(&fs_info->fs_roots_radix_lock);
1152	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1153	spin_unlock(&fs_info->fs_roots_radix_lock);
1154#endif
1155}
1156
1157static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1158					   u64 objectid, gfp_t flags)
1159{
1160	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1161	if (root)
1162		__setup_root(root, fs_info, objectid);
1163	return root;
1164}
1165
1166#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1167/* Should only be used by the testing infrastructure */
1168struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1169{
1170	struct btrfs_root *root;
1171
1172	if (!fs_info)
1173		return ERR_PTR(-EINVAL);
1174
1175	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1176	if (!root)
1177		return ERR_PTR(-ENOMEM);
1178
1179	/* We don't use the stripesize in selftest, set it as sectorsize */
 
1180	root->alloc_bytenr = 0;
1181
1182	return root;
1183}
1184#endif
1185
1186struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1187				     u64 objectid)
1188{
1189	struct btrfs_fs_info *fs_info = trans->fs_info;
1190	struct extent_buffer *leaf;
1191	struct btrfs_root *tree_root = fs_info->tree_root;
1192	struct btrfs_root *root;
1193	struct btrfs_key key;
1194	unsigned int nofs_flag;
1195	int ret = 0;
 
1196
1197	/*
1198	 * We're holding a transaction handle, so use a NOFS memory allocation
1199	 * context to avoid deadlock if reclaim happens.
1200	 */
1201	nofs_flag = memalloc_nofs_save();
1202	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1203	memalloc_nofs_restore(nofs_flag);
1204	if (!root)
1205		return ERR_PTR(-ENOMEM);
1206
 
1207	root->root_key.objectid = objectid;
1208	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1209	root->root_key.offset = 0;
1210
1211	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1212	if (IS_ERR(leaf)) {
1213		ret = PTR_ERR(leaf);
1214		leaf = NULL;
1215		goto fail;
1216	}
1217
1218	root->node = leaf;
1219	btrfs_mark_buffer_dirty(leaf);
1220
1221	root->commit_root = btrfs_root_node(root);
1222	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1223
1224	root->root_item.flags = 0;
1225	root->root_item.byte_limit = 0;
1226	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1227	btrfs_set_root_generation(&root->root_item, trans->transid);
1228	btrfs_set_root_level(&root->root_item, 0);
1229	btrfs_set_root_refs(&root->root_item, 1);
1230	btrfs_set_root_used(&root->root_item, leaf->len);
1231	btrfs_set_root_last_snapshot(&root->root_item, 0);
1232	btrfs_set_root_dirid(&root->root_item, 0);
1233	if (is_fstree(objectid))
1234		generate_random_guid(root->root_item.uuid);
1235	else
1236		export_guid(root->root_item.uuid, &guid_null);
1237	root->root_item.drop_level = 0;
1238
1239	key.objectid = objectid;
1240	key.type = BTRFS_ROOT_ITEM_KEY;
1241	key.offset = 0;
1242	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1243	if (ret)
1244		goto fail;
1245
1246	btrfs_tree_unlock(leaf);
1247
1248	return root;
1249
1250fail:
1251	if (leaf)
1252		btrfs_tree_unlock(leaf);
1253	btrfs_put_root(root);
 
 
 
1254
1255	return ERR_PTR(ret);
1256}
1257
1258static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1259					 struct btrfs_fs_info *fs_info)
1260{
1261	struct btrfs_root *root;
1262	struct extent_buffer *leaf;
1263
1264	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1265	if (!root)
1266		return ERR_PTR(-ENOMEM);
1267
 
 
1268	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1269	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1271
1272	/*
1273	 * DON'T set SHAREABLE bit for log trees.
1274	 *
1275	 * Log trees are not exposed to user space thus can't be snapshotted,
1276	 * and they go away before a real commit is actually done.
1277	 *
1278	 * They do store pointers to file data extents, and those reference
1279	 * counts still get updated (along with back refs to the log tree).
 
 
1280	 */
1281
1282	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1283			NULL, 0, 0, 0);
1284	if (IS_ERR(leaf)) {
1285		btrfs_put_root(root);
1286		return ERR_CAST(leaf);
1287	}
1288
1289	root->node = leaf;
1290
1291	btrfs_mark_buffer_dirty(root->node);
1292	btrfs_tree_unlock(root->node);
1293	return root;
1294}
1295
1296int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1297			     struct btrfs_fs_info *fs_info)
1298{
1299	struct btrfs_root *log_root;
1300
1301	log_root = alloc_log_tree(trans, fs_info);
1302	if (IS_ERR(log_root))
1303		return PTR_ERR(log_root);
1304	WARN_ON(fs_info->log_root_tree);
1305	fs_info->log_root_tree = log_root;
1306	return 0;
1307}
1308
1309int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1310		       struct btrfs_root *root)
1311{
1312	struct btrfs_fs_info *fs_info = root->fs_info;
1313	struct btrfs_root *log_root;
1314	struct btrfs_inode_item *inode_item;
1315
1316	log_root = alloc_log_tree(trans, fs_info);
1317	if (IS_ERR(log_root))
1318		return PTR_ERR(log_root);
1319
1320	log_root->last_trans = trans->transid;
1321	log_root->root_key.offset = root->root_key.objectid;
1322
1323	inode_item = &log_root->root_item.inode;
1324	btrfs_set_stack_inode_generation(inode_item, 1);
1325	btrfs_set_stack_inode_size(inode_item, 3);
1326	btrfs_set_stack_inode_nlink(inode_item, 1);
1327	btrfs_set_stack_inode_nbytes(inode_item,
1328				     fs_info->nodesize);
1329	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1330
1331	btrfs_set_root_node(&log_root->root_item, log_root->node);
1332
1333	WARN_ON(root->log_root);
1334	root->log_root = log_root;
1335	root->log_transid = 0;
1336	root->log_transid_committed = -1;
1337	root->last_log_commit = 0;
1338	return 0;
1339}
1340
1341struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1342					struct btrfs_key *key)
1343{
1344	struct btrfs_root *root;
1345	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1346	struct btrfs_path *path;
1347	u64 generation;
1348	int ret;
1349	int level;
1350
1351	path = btrfs_alloc_path();
1352	if (!path)
1353		return ERR_PTR(-ENOMEM);
1354
1355	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1356	if (!root) {
1357		ret = -ENOMEM;
1358		goto alloc_fail;
1359	}
1360
 
 
1361	ret = btrfs_find_root(tree_root, key, path,
1362			      &root->root_item, &root->root_key);
1363	if (ret) {
1364		if (ret > 0)
1365			ret = -ENOENT;
1366		goto find_fail;
1367	}
1368
1369	generation = btrfs_root_generation(&root->root_item);
1370	level = btrfs_root_level(&root->root_item);
1371	root->node = read_tree_block(fs_info,
1372				     btrfs_root_bytenr(&root->root_item),
1373				     generation, level, NULL);
1374	if (IS_ERR(root->node)) {
1375		ret = PTR_ERR(root->node);
1376		root->node = NULL;
1377		goto find_fail;
1378	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1379		ret = -EIO;
 
1380		goto find_fail;
1381	}
1382	root->commit_root = btrfs_root_node(root);
1383out:
1384	btrfs_free_path(path);
1385	return root;
1386
1387find_fail:
1388	btrfs_put_root(root);
1389alloc_fail:
1390	root = ERR_PTR(ret);
1391	goto out;
1392}
1393
1394/*
1395 * Initialize subvolume root in-memory structure
1396 *
1397 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1398 */
1399static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
 
 
 
 
 
 
 
 
 
 
 
 
1400{
1401	int ret;
1402	unsigned int nofs_flag;
1403
1404	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1405	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1406					GFP_NOFS);
1407	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1408		ret = -ENOMEM;
1409		goto fail;
1410	}
1411
1412	/*
1413	 * We might be called under a transaction (e.g. indirect backref
1414	 * resolution) which could deadlock if it triggers memory reclaim
1415	 */
1416	nofs_flag = memalloc_nofs_save();
1417	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1418	memalloc_nofs_restore(nofs_flag);
1419	if (ret)
1420		goto fail;
1421
1422	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1423	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1424		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1425		btrfs_check_and_init_root_item(&root->root_item);
1426	}
 
1427
1428	btrfs_init_free_ino_ctl(root);
1429	spin_lock_init(&root->ino_cache_lock);
1430	init_waitqueue_head(&root->ino_cache_wait);
1431
1432	/*
1433	 * Don't assign anonymous block device to roots that are not exposed to
1434	 * userspace, the id pool is limited to 1M
1435	 */
1436	if (is_fstree(root->root_key.objectid) &&
1437	    btrfs_root_refs(&root->root_item) > 0) {
1438		if (!anon_dev) {
1439			ret = get_anon_bdev(&root->anon_dev);
1440			if (ret)
1441				goto fail;
1442		} else {
1443			root->anon_dev = anon_dev;
1444		}
1445	}
1446
1447	mutex_lock(&root->objectid_mutex);
1448	ret = btrfs_find_highest_objectid(root,
1449					&root->highest_objectid);
1450	if (ret) {
1451		mutex_unlock(&root->objectid_mutex);
1452		goto fail;
1453	}
1454
1455	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1456
1457	mutex_unlock(&root->objectid_mutex);
1458
1459	return 0;
1460fail:
1461	/* The caller is responsible to call btrfs_free_fs_root */
1462	return ret;
1463}
1464
1465static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1466					       u64 root_id)
1467{
1468	struct btrfs_root *root;
1469
1470	spin_lock(&fs_info->fs_roots_radix_lock);
1471	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1472				 (unsigned long)root_id);
1473	if (root)
1474		root = btrfs_grab_root(root);
1475	spin_unlock(&fs_info->fs_roots_radix_lock);
1476	return root;
1477}
1478
1479int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1480			 struct btrfs_root *root)
1481{
1482	int ret;
1483
1484	ret = radix_tree_preload(GFP_NOFS);
1485	if (ret)
1486		return ret;
1487
1488	spin_lock(&fs_info->fs_roots_radix_lock);
1489	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1490				(unsigned long)root->root_key.objectid,
1491				root);
1492	if (ret == 0) {
1493		btrfs_grab_root(root);
1494		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1495	}
1496	spin_unlock(&fs_info->fs_roots_radix_lock);
1497	radix_tree_preload_end();
1498
1499	return ret;
1500}
1501
1502void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1503{
1504#ifdef CONFIG_BTRFS_DEBUG
1505	struct btrfs_root *root;
1506
1507	while (!list_empty(&fs_info->allocated_roots)) {
1508		root = list_first_entry(&fs_info->allocated_roots,
1509					struct btrfs_root, leak_list);
1510		btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1511			  root->root_key.objectid, root->root_key.offset,
1512			  refcount_read(&root->refs));
1513		while (refcount_read(&root->refs) > 1)
1514			btrfs_put_root(root);
1515		btrfs_put_root(root);
1516	}
1517#endif
1518}
1519
1520void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1521{
1522	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1523	percpu_counter_destroy(&fs_info->delalloc_bytes);
1524	percpu_counter_destroy(&fs_info->dio_bytes);
1525	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1526	btrfs_free_csum_hash(fs_info);
1527	btrfs_free_stripe_hash_table(fs_info);
1528	btrfs_free_ref_cache(fs_info);
1529	kfree(fs_info->balance_ctl);
1530	kfree(fs_info->delayed_root);
1531	btrfs_put_root(fs_info->extent_root);
1532	btrfs_put_root(fs_info->tree_root);
1533	btrfs_put_root(fs_info->chunk_root);
1534	btrfs_put_root(fs_info->dev_root);
1535	btrfs_put_root(fs_info->csum_root);
1536	btrfs_put_root(fs_info->quota_root);
1537	btrfs_put_root(fs_info->uuid_root);
1538	btrfs_put_root(fs_info->free_space_root);
1539	btrfs_put_root(fs_info->fs_root);
1540	btrfs_put_root(fs_info->data_reloc_root);
1541	btrfs_check_leaked_roots(fs_info);
1542	btrfs_extent_buffer_leak_debug_check(fs_info);
1543	kfree(fs_info->super_copy);
1544	kfree(fs_info->super_for_commit);
1545	kvfree(fs_info);
1546}
1547
1548
1549/*
1550 * Get an in-memory reference of a root structure.
1551 *
1552 * For essential trees like root/extent tree, we grab it from fs_info directly.
1553 * For subvolume trees, we check the cached filesystem roots first. If not
1554 * found, then read it from disk and add it to cached fs roots.
1555 *
1556 * Caller should release the root by calling btrfs_put_root() after the usage.
1557 *
1558 * NOTE: Reloc and log trees can't be read by this function as they share the
1559 *	 same root objectid.
1560 *
1561 * @objectid:	root id
1562 * @anon_dev:	preallocated anonymous block device number for new roots,
1563 * 		pass 0 for new allocation.
1564 * @check_ref:	whether to check root item references, If true, return -ENOENT
1565 *		for orphan roots
1566 */
1567static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1568					     u64 objectid, dev_t anon_dev,
1569					     bool check_ref)
1570{
1571	struct btrfs_root *root;
1572	struct btrfs_path *path;
1573	struct btrfs_key key;
1574	int ret;
1575
1576	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1577		return btrfs_grab_root(fs_info->tree_root);
1578	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1579		return btrfs_grab_root(fs_info->extent_root);
1580	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1581		return btrfs_grab_root(fs_info->chunk_root);
1582	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1583		return btrfs_grab_root(fs_info->dev_root);
1584	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1585		return btrfs_grab_root(fs_info->csum_root);
1586	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1587		return btrfs_grab_root(fs_info->quota_root) ?
1588			fs_info->quota_root : ERR_PTR(-ENOENT);
1589	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1590		return btrfs_grab_root(fs_info->uuid_root) ?
1591			fs_info->uuid_root : ERR_PTR(-ENOENT);
1592	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1593		return btrfs_grab_root(fs_info->free_space_root) ?
1594			fs_info->free_space_root : ERR_PTR(-ENOENT);
1595again:
1596	root = btrfs_lookup_fs_root(fs_info, objectid);
1597	if (root) {
1598		/* Shouldn't get preallocated anon_dev for cached roots */
1599		ASSERT(!anon_dev);
1600		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1601			btrfs_put_root(root);
1602			return ERR_PTR(-ENOENT);
1603		}
1604		return root;
1605	}
1606
1607	key.objectid = objectid;
1608	key.type = BTRFS_ROOT_ITEM_KEY;
1609	key.offset = (u64)-1;
1610	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1611	if (IS_ERR(root))
1612		return root;
1613
1614	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1615		ret = -ENOENT;
1616		goto fail;
1617	}
1618
1619	ret = btrfs_init_fs_root(root, anon_dev);
1620	if (ret)
1621		goto fail;
1622
1623	path = btrfs_alloc_path();
1624	if (!path) {
1625		ret = -ENOMEM;
1626		goto fail;
1627	}
1628	key.objectid = BTRFS_ORPHAN_OBJECTID;
1629	key.type = BTRFS_ORPHAN_ITEM_KEY;
1630	key.offset = objectid;
1631
1632	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1633	btrfs_free_path(path);
1634	if (ret < 0)
1635		goto fail;
1636	if (ret == 0)
1637		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1638
1639	ret = btrfs_insert_fs_root(fs_info, root);
1640	if (ret) {
1641		btrfs_put_root(root);
1642		if (ret == -EEXIST)
1643			goto again;
 
1644		goto fail;
1645	}
1646	return root;
1647fail:
1648	btrfs_put_root(root);
1649	return ERR_PTR(ret);
1650}
1651
1652/*
1653 * Get in-memory reference of a root structure
1654 *
1655 * @objectid:	tree objectid
1656 * @check_ref:	if set, verify that the tree exists and the item has at least
1657 *		one reference
1658 */
1659struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660				     u64 objectid, bool check_ref)
1661{
1662	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1663}
 
 
1664
1665/*
1666 * Get in-memory reference of a root structure, created as new, optionally pass
1667 * the anonymous block device id
1668 *
1669 * @objectid:	tree objectid
1670 * @anon_dev:	if zero, allocate a new anonymous block device or use the
1671 *		parameter value
1672 */
1673struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1674					 u64 objectid, dev_t anon_dev)
1675{
1676	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1677}
1678
1679/*
1680 * called by the kthread helper functions to finally call the bio end_io
1681 * functions.  This is where read checksum verification actually happens
1682 */
1683static void end_workqueue_fn(struct btrfs_work *work)
1684{
1685	struct bio *bio;
1686	struct btrfs_end_io_wq *end_io_wq;
1687
1688	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1689	bio = end_io_wq->bio;
1690
1691	bio->bi_status = end_io_wq->status;
1692	bio->bi_private = end_io_wq->private;
1693	bio->bi_end_io = end_io_wq->end_io;
 
1694	bio_endio(bio);
1695	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1696}
1697
1698static int cleaner_kthread(void *arg)
1699{
1700	struct btrfs_root *root = arg;
1701	struct btrfs_fs_info *fs_info = root->fs_info;
1702	int again;
1703
1704	while (1) {
1705		again = 0;
1706
1707		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1708
1709		/* Make the cleaner go to sleep early. */
1710		if (btrfs_need_cleaner_sleep(fs_info))
1711			goto sleep;
1712
1713		/*
1714		 * Do not do anything if we might cause open_ctree() to block
1715		 * before we have finished mounting the filesystem.
1716		 */
1717		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1718			goto sleep;
1719
1720		if (!mutex_trylock(&fs_info->cleaner_mutex))
1721			goto sleep;
1722
1723		/*
1724		 * Avoid the problem that we change the status of the fs
1725		 * during the above check and trylock.
1726		 */
1727		if (btrfs_need_cleaner_sleep(fs_info)) {
1728			mutex_unlock(&fs_info->cleaner_mutex);
1729			goto sleep;
1730		}
1731
1732		btrfs_run_delayed_iputs(fs_info);
1733
1734		again = btrfs_clean_one_deleted_snapshot(root);
1735		mutex_unlock(&fs_info->cleaner_mutex);
1736
1737		/*
1738		 * The defragger has dealt with the R/O remount and umount,
1739		 * needn't do anything special here.
1740		 */
1741		btrfs_run_defrag_inodes(fs_info);
1742
1743		/*
1744		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1745		 * with relocation (btrfs_relocate_chunk) and relocation
1746		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1747		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1748		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1749		 * unused block groups.
1750		 */
1751		btrfs_delete_unused_bgs(fs_info);
1752sleep:
1753		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1754		if (kthread_should_park())
1755			kthread_parkme();
1756		if (kthread_should_stop())
1757			return 0;
1758		if (!again) {
1759			set_current_state(TASK_INTERRUPTIBLE);
1760			schedule();
1761			__set_current_state(TASK_RUNNING);
1762		}
1763	}
1764}
1765
1766static int transaction_kthread(void *arg)
1767{
1768	struct btrfs_root *root = arg;
1769	struct btrfs_fs_info *fs_info = root->fs_info;
1770	struct btrfs_trans_handle *trans;
1771	struct btrfs_transaction *cur;
1772	u64 transid;
1773	time64_t now;
1774	unsigned long delay;
1775	bool cannot_commit;
1776
1777	do {
1778		cannot_commit = false;
1779		delay = HZ * fs_info->commit_interval;
1780		mutex_lock(&fs_info->transaction_kthread_mutex);
1781
1782		spin_lock(&fs_info->trans_lock);
1783		cur = fs_info->running_transaction;
1784		if (!cur) {
1785			spin_unlock(&fs_info->trans_lock);
1786			goto sleep;
1787		}
1788
1789		now = ktime_get_seconds();
1790		if (cur->state < TRANS_STATE_COMMIT_START &&
 
1791		    (now < cur->start_time ||
1792		     now - cur->start_time < fs_info->commit_interval)) {
1793			spin_unlock(&fs_info->trans_lock);
1794			delay = HZ * 5;
1795			goto sleep;
1796		}
1797		transid = cur->transid;
1798		spin_unlock(&fs_info->trans_lock);
1799
1800		/* If the file system is aborted, this will always fail. */
1801		trans = btrfs_attach_transaction(root);
1802		if (IS_ERR(trans)) {
1803			if (PTR_ERR(trans) != -ENOENT)
1804				cannot_commit = true;
1805			goto sleep;
1806		}
1807		if (transid == trans->transid) {
1808			btrfs_commit_transaction(trans);
1809		} else {
1810			btrfs_end_transaction(trans);
1811		}
1812sleep:
1813		wake_up_process(fs_info->cleaner_kthread);
1814		mutex_unlock(&fs_info->transaction_kthread_mutex);
1815
1816		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1817				      &fs_info->fs_state)))
1818			btrfs_cleanup_transaction(fs_info);
1819		if (!kthread_should_stop() &&
1820				(!btrfs_transaction_blocked(fs_info) ||
1821				 cannot_commit))
1822			schedule_timeout_interruptible(delay);
1823	} while (!kthread_should_stop());
1824	return 0;
1825}
1826
1827/*
1828 * This will find the highest generation in the array of root backups.  The
1829 * index of the highest array is returned, or -EINVAL if we can't find
1830 * anything.
1831 *
1832 * We check to make sure the array is valid by comparing the
1833 * generation of the latest  root in the array with the generation
1834 * in the super block.  If they don't match we pitch it.
1835 */
1836static int find_newest_super_backup(struct btrfs_fs_info *info)
1837{
1838	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1839	u64 cur;
 
1840	struct btrfs_root_backup *root_backup;
1841	int i;
1842
1843	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1844		root_backup = info->super_copy->super_roots + i;
1845		cur = btrfs_backup_tree_root_gen(root_backup);
1846		if (cur == newest_gen)
1847			return i;
 
 
 
 
 
 
 
 
1848	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1849
1850	return -EINVAL;
 
 
 
 
 
 
1851}
1852
1853/*
1854 * copy all the root pointers into the super backup array.
1855 * this will bump the backup pointer by one when it is
1856 * done
1857 */
1858static void backup_super_roots(struct btrfs_fs_info *info)
1859{
1860	const int next_backup = info->backup_root_index;
1861	struct btrfs_root_backup *root_backup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1862
1863	root_backup = info->super_for_commit->super_roots + next_backup;
1864
1865	/*
1866	 * make sure all of our padding and empty slots get zero filled
1867	 * regardless of which ones we use today
1868	 */
1869	memset(root_backup, 0, sizeof(*root_backup));
1870
1871	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1872
1873	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1874	btrfs_set_backup_tree_root_gen(root_backup,
1875			       btrfs_header_generation(info->tree_root->node));
1876
1877	btrfs_set_backup_tree_root_level(root_backup,
1878			       btrfs_header_level(info->tree_root->node));
1879
1880	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1881	btrfs_set_backup_chunk_root_gen(root_backup,
1882			       btrfs_header_generation(info->chunk_root->node));
1883	btrfs_set_backup_chunk_root_level(root_backup,
1884			       btrfs_header_level(info->chunk_root->node));
1885
1886	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1887	btrfs_set_backup_extent_root_gen(root_backup,
1888			       btrfs_header_generation(info->extent_root->node));
1889	btrfs_set_backup_extent_root_level(root_backup,
1890			       btrfs_header_level(info->extent_root->node));
1891
1892	/*
1893	 * we might commit during log recovery, which happens before we set
1894	 * the fs_root.  Make sure it is valid before we fill it in.
1895	 */
1896	if (info->fs_root && info->fs_root->node) {
1897		btrfs_set_backup_fs_root(root_backup,
1898					 info->fs_root->node->start);
1899		btrfs_set_backup_fs_root_gen(root_backup,
1900			       btrfs_header_generation(info->fs_root->node));
1901		btrfs_set_backup_fs_root_level(root_backup,
1902			       btrfs_header_level(info->fs_root->node));
1903	}
1904
1905	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1906	btrfs_set_backup_dev_root_gen(root_backup,
1907			       btrfs_header_generation(info->dev_root->node));
1908	btrfs_set_backup_dev_root_level(root_backup,
1909				       btrfs_header_level(info->dev_root->node));
1910
1911	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1912	btrfs_set_backup_csum_root_gen(root_backup,
1913			       btrfs_header_generation(info->csum_root->node));
1914	btrfs_set_backup_csum_root_level(root_backup,
1915			       btrfs_header_level(info->csum_root->node));
1916
1917	btrfs_set_backup_total_bytes(root_backup,
1918			     btrfs_super_total_bytes(info->super_copy));
1919	btrfs_set_backup_bytes_used(root_backup,
1920			     btrfs_super_bytes_used(info->super_copy));
1921	btrfs_set_backup_num_devices(root_backup,
1922			     btrfs_super_num_devices(info->super_copy));
1923
1924	/*
1925	 * if we don't copy this out to the super_copy, it won't get remembered
1926	 * for the next commit
1927	 */
1928	memcpy(&info->super_copy->super_roots,
1929	       &info->super_for_commit->super_roots,
1930	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1931}
1932
1933/*
1934 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1935 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
 
 
1936 *
1937 * fs_info - filesystem whose backup roots need to be read
1938 * priority - priority of backup root required
1939 *
1940 * Returns backup root index on success and -EINVAL otherwise.
1941 */
1942static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 
 
1943{
1944	int backup_index = find_newest_super_backup(fs_info);
1945	struct btrfs_super_block *super = fs_info->super_copy;
1946	struct btrfs_root_backup *root_backup;
 
1947
1948	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1949		if (priority == 0)
1950			return backup_index;
1951
1952		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1953		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 
 
 
 
 
 
 
1954	} else {
1955		return -EINVAL;
 
 
 
 
1956	}
1957
1958	root_backup = super->super_roots + backup_index;
1959
1960	btrfs_set_super_generation(super,
1961				   btrfs_backup_tree_root_gen(root_backup));
1962	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1963	btrfs_set_super_root_level(super,
1964				   btrfs_backup_tree_root_level(root_backup));
1965	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1966
1967	/*
1968	 * Fixme: the total bytes and num_devices need to match or we should
1969	 * need a fsck
1970	 */
1971	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1972	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1973
1974	return backup_index;
1975}
1976
1977/* helper to cleanup workers */
1978static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1979{
1980	btrfs_destroy_workqueue(fs_info->fixup_workers);
1981	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1982	btrfs_destroy_workqueue(fs_info->workers);
1983	btrfs_destroy_workqueue(fs_info->endio_workers);
1984	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
 
1985	btrfs_destroy_workqueue(fs_info->rmw_workers);
1986	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1987	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
 
1988	btrfs_destroy_workqueue(fs_info->delayed_workers);
1989	btrfs_destroy_workqueue(fs_info->caching_workers);
1990	btrfs_destroy_workqueue(fs_info->readahead_workers);
1991	btrfs_destroy_workqueue(fs_info->flush_workers);
1992	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1993	if (fs_info->discard_ctl.discard_workers)
1994		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1995	/*
1996	 * Now that all other work queues are destroyed, we can safely destroy
1997	 * the queues used for metadata I/O, since tasks from those other work
1998	 * queues can do metadata I/O operations.
1999	 */
2000	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2001	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2002}
2003
2004static void free_root_extent_buffers(struct btrfs_root *root)
2005{
2006	if (root) {
2007		free_extent_buffer(root->node);
2008		free_extent_buffer(root->commit_root);
2009		root->node = NULL;
2010		root->commit_root = NULL;
2011	}
2012}
2013
2014/* helper to cleanup tree roots */
2015static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2016{
2017	free_root_extent_buffers(info->tree_root);
2018
2019	free_root_extent_buffers(info->dev_root);
2020	free_root_extent_buffers(info->extent_root);
2021	free_root_extent_buffers(info->csum_root);
2022	free_root_extent_buffers(info->quota_root);
2023	free_root_extent_buffers(info->uuid_root);
2024	free_root_extent_buffers(info->fs_root);
2025	free_root_extent_buffers(info->data_reloc_root);
2026	if (free_chunk_root)
2027		free_root_extent_buffers(info->chunk_root);
2028	free_root_extent_buffers(info->free_space_root);
2029}
2030
2031void btrfs_put_root(struct btrfs_root *root)
2032{
2033	if (!root)
2034		return;
2035
2036	if (refcount_dec_and_test(&root->refs)) {
2037		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2038		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2039		if (root->anon_dev)
2040			free_anon_bdev(root->anon_dev);
2041		btrfs_drew_lock_destroy(&root->snapshot_lock);
2042		free_root_extent_buffers(root);
2043		kfree(root->free_ino_ctl);
2044		kfree(root->free_ino_pinned);
2045#ifdef CONFIG_BTRFS_DEBUG
2046		spin_lock(&root->fs_info->fs_roots_radix_lock);
2047		list_del_init(&root->leak_list);
2048		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2049#endif
2050		kfree(root);
2051	}
2052}
2053
2054void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2055{
2056	int ret;
2057	struct btrfs_root *gang[8];
2058	int i;
2059
2060	while (!list_empty(&fs_info->dead_roots)) {
2061		gang[0] = list_entry(fs_info->dead_roots.next,
2062				     struct btrfs_root, root_list);
2063		list_del(&gang[0]->root_list);
2064
2065		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2066			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2067		btrfs_put_root(gang[0]);
 
 
 
 
2068	}
2069
2070	while (1) {
2071		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2072					     (void **)gang, 0,
2073					     ARRAY_SIZE(gang));
2074		if (!ret)
2075			break;
2076		for (i = 0; i < ret; i++)
2077			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2078	}
 
 
 
 
 
2079}
2080
2081static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082{
2083	mutex_init(&fs_info->scrub_lock);
2084	atomic_set(&fs_info->scrubs_running, 0);
2085	atomic_set(&fs_info->scrub_pause_req, 0);
2086	atomic_set(&fs_info->scrubs_paused, 0);
2087	atomic_set(&fs_info->scrub_cancel_req, 0);
2088	init_waitqueue_head(&fs_info->scrub_pause_wait);
2089	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2090}
2091
2092static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093{
2094	spin_lock_init(&fs_info->balance_lock);
2095	mutex_init(&fs_info->balance_mutex);
2096	atomic_set(&fs_info->balance_pause_req, 0);
2097	atomic_set(&fs_info->balance_cancel_req, 0);
2098	fs_info->balance_ctl = NULL;
2099	init_waitqueue_head(&fs_info->balance_wait_q);
2100}
2101
2102static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2103{
2104	struct inode *inode = fs_info->btree_inode;
2105
2106	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107	set_nlink(inode, 1);
2108	/*
2109	 * we set the i_size on the btree inode to the max possible int.
2110	 * the real end of the address space is determined by all of
2111	 * the devices in the system
2112	 */
2113	inode->i_size = OFFSET_MAX;
2114	inode->i_mapping->a_ops = &btree_aops;
2115
2116	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2117	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118			    IO_TREE_INODE_IO, inode);
2119	BTRFS_I(inode)->io_tree.track_uptodate = false;
2120	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2121
2122	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2125	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127	btrfs_insert_inode_hash(inode);
2128}
2129
2130static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131{
2132	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2133	init_rwsem(&fs_info->dev_replace.rwsem);
2134	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2135}
2136
2137static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138{
2139	spin_lock_init(&fs_info->qgroup_lock);
2140	mutex_init(&fs_info->qgroup_ioctl_lock);
2141	fs_info->qgroup_tree = RB_ROOT;
2142	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143	fs_info->qgroup_seq = 1;
2144	fs_info->qgroup_ulist = NULL;
2145	fs_info->qgroup_rescan_running = false;
2146	mutex_init(&fs_info->qgroup_rescan_lock);
2147}
2148
2149static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150		struct btrfs_fs_devices *fs_devices)
2151{
2152	u32 max_active = fs_info->thread_pool_size;
2153	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2154
2155	fs_info->workers =
2156		btrfs_alloc_workqueue(fs_info, "worker",
2157				      flags | WQ_HIGHPRI, max_active, 16);
2158
2159	fs_info->delalloc_workers =
2160		btrfs_alloc_workqueue(fs_info, "delalloc",
2161				      flags, max_active, 2);
2162
2163	fs_info->flush_workers =
2164		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165				      flags, max_active, 0);
2166
2167	fs_info->caching_workers =
2168		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169
 
 
 
 
 
 
 
 
 
 
2170	fs_info->fixup_workers =
2171		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2172
2173	/*
2174	 * endios are largely parallel and should have a very
2175	 * low idle thresh
2176	 */
2177	fs_info->endio_workers =
2178		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2179	fs_info->endio_meta_workers =
2180		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2181				      max_active, 4);
2182	fs_info->endio_meta_write_workers =
2183		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2184				      max_active, 2);
2185	fs_info->endio_raid56_workers =
2186		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2187				      max_active, 4);
 
 
2188	fs_info->rmw_workers =
2189		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2190	fs_info->endio_write_workers =
2191		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2192				      max_active, 2);
2193	fs_info->endio_freespace_worker =
2194		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2195				      max_active, 0);
2196	fs_info->delayed_workers =
2197		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2198				      max_active, 0);
2199	fs_info->readahead_workers =
2200		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2201				      max_active, 2);
2202	fs_info->qgroup_rescan_workers =
2203		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2204	fs_info->discard_ctl.discard_workers =
2205		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2206
2207	if (!(fs_info->workers && fs_info->delalloc_workers &&
2208	      fs_info->flush_workers &&
2209	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2210	      fs_info->endio_meta_write_workers &&
 
2211	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2212	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2213	      fs_info->caching_workers && fs_info->readahead_workers &&
2214	      fs_info->fixup_workers && fs_info->delayed_workers &&
2215	      fs_info->qgroup_rescan_workers &&
2216	      fs_info->discard_ctl.discard_workers)) {
2217		return -ENOMEM;
2218	}
2219
2220	return 0;
2221}
2222
2223static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2224{
2225	struct crypto_shash *csum_shash;
2226	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2227
2228	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2229
2230	if (IS_ERR(csum_shash)) {
2231		btrfs_err(fs_info, "error allocating %s hash for checksum",
2232			  csum_driver);
2233		return PTR_ERR(csum_shash);
2234	}
2235
2236	fs_info->csum_shash = csum_shash;
2237
2238	return 0;
2239}
2240
 
 
 
 
 
2241static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2242			    struct btrfs_fs_devices *fs_devices)
2243{
2244	int ret;
2245	struct btrfs_root *log_tree_root;
2246	struct btrfs_super_block *disk_super = fs_info->super_copy;
2247	u64 bytenr = btrfs_super_log_root(disk_super);
2248	int level = btrfs_super_log_root_level(disk_super);
2249
2250	if (fs_devices->rw_devices == 0) {
2251		btrfs_warn(fs_info, "log replay required on RO media");
2252		return -EIO;
2253	}
2254
2255	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2256					 GFP_KERNEL);
2257	if (!log_tree_root)
2258		return -ENOMEM;
2259
 
 
2260	log_tree_root->node = read_tree_block(fs_info, bytenr,
2261					      fs_info->generation + 1,
2262					      level, NULL);
2263	if (IS_ERR(log_tree_root->node)) {
2264		btrfs_warn(fs_info, "failed to read log tree");
2265		ret = PTR_ERR(log_tree_root->node);
2266		log_tree_root->node = NULL;
2267		btrfs_put_root(log_tree_root);
2268		return ret;
2269	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2270		btrfs_err(fs_info, "failed to read log tree");
2271		btrfs_put_root(log_tree_root);
 
2272		return -EIO;
2273	}
2274	/* returns with log_tree_root freed on success */
2275	ret = btrfs_recover_log_trees(log_tree_root);
2276	if (ret) {
2277		btrfs_handle_fs_error(fs_info, ret,
2278				      "Failed to recover log tree");
2279		btrfs_put_root(log_tree_root);
 
2280		return ret;
2281	}
2282
2283	if (sb_rdonly(fs_info->sb)) {
2284		ret = btrfs_commit_super(fs_info);
2285		if (ret)
2286			return ret;
2287	}
2288
2289	return 0;
2290}
2291
2292static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2293{
2294	struct btrfs_root *tree_root = fs_info->tree_root;
2295	struct btrfs_root *root;
2296	struct btrfs_key location;
2297	int ret;
2298
2299	BUG_ON(!fs_info->tree_root);
2300
2301	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2302	location.type = BTRFS_ROOT_ITEM_KEY;
2303	location.offset = 0;
2304
2305	root = btrfs_read_tree_root(tree_root, &location);
2306	if (IS_ERR(root)) {
2307		ret = PTR_ERR(root);
2308		goto out;
2309	}
2310	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2311	fs_info->extent_root = root;
2312
2313	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2314	root = btrfs_read_tree_root(tree_root, &location);
2315	if (IS_ERR(root)) {
2316		ret = PTR_ERR(root);
2317		goto out;
2318	}
2319	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2320	fs_info->dev_root = root;
2321	btrfs_init_devices_late(fs_info);
2322
2323	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2324	root = btrfs_read_tree_root(tree_root, &location);
2325	if (IS_ERR(root)) {
2326		ret = PTR_ERR(root);
2327		goto out;
2328	}
2329	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2330	fs_info->csum_root = root;
2331
2332	/*
2333	 * This tree can share blocks with some other fs tree during relocation
2334	 * and we need a proper setup by btrfs_get_fs_root
2335	 */
2336	root = btrfs_get_fs_root(tree_root->fs_info,
2337				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2338	if (IS_ERR(root)) {
2339		ret = PTR_ERR(root);
2340		goto out;
2341	}
2342	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2343	fs_info->data_reloc_root = root;
2344
2345	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2346	root = btrfs_read_tree_root(tree_root, &location);
2347	if (!IS_ERR(root)) {
2348		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2349		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2350		fs_info->quota_root = root;
2351	}
2352
2353	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2354	root = btrfs_read_tree_root(tree_root, &location);
2355	if (IS_ERR(root)) {
2356		ret = PTR_ERR(root);
2357		if (ret != -ENOENT)
2358			goto out;
2359	} else {
2360		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2361		fs_info->uuid_root = root;
2362	}
2363
2364	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2365		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2366		root = btrfs_read_tree_root(tree_root, &location);
2367		if (IS_ERR(root)) {
2368			ret = PTR_ERR(root);
2369			goto out;
2370		}
2371		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2372		fs_info->free_space_root = root;
2373	}
2374
2375	return 0;
2376out:
2377	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2378		   location.objectid, ret);
2379	return ret;
2380}
2381
2382/*
2383 * Real super block validation
2384 * NOTE: super csum type and incompat features will not be checked here.
2385 *
2386 * @sb:		super block to check
2387 * @mirror_num:	the super block number to check its bytenr:
2388 * 		0	the primary (1st) sb
2389 * 		1, 2	2nd and 3rd backup copy
2390 * 	       -1	skip bytenr check
2391 */
2392static int validate_super(struct btrfs_fs_info *fs_info,
2393			    struct btrfs_super_block *sb, int mirror_num)
2394{
2395	u64 nodesize = btrfs_super_nodesize(sb);
2396	u64 sectorsize = btrfs_super_sectorsize(sb);
2397	int ret = 0;
2398
2399	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2400		btrfs_err(fs_info, "no valid FS found");
2401		ret = -EINVAL;
2402	}
2403	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2404		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2405				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2406		ret = -EINVAL;
2407	}
2408	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2409		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2410				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2411		ret = -EINVAL;
2412	}
2413	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2414		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2415				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2416		ret = -EINVAL;
2417	}
2418	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2419		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2420				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2421		ret = -EINVAL;
2422	}
2423
2424	/*
2425	 * Check sectorsize and nodesize first, other check will need it.
2426	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2427	 */
2428	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2429	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2430		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2431		ret = -EINVAL;
2432	}
2433	/* Only PAGE SIZE is supported yet */
2434	if (sectorsize != PAGE_SIZE) {
2435		btrfs_err(fs_info,
2436			"sectorsize %llu not supported yet, only support %lu",
2437			sectorsize, PAGE_SIZE);
2438		ret = -EINVAL;
2439	}
2440	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2441	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2442		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2443		ret = -EINVAL;
2444	}
2445	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2446		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2447			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2448		ret = -EINVAL;
2449	}
2450
2451	/* Root alignment check */
2452	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2453		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2454			   btrfs_super_root(sb));
2455		ret = -EINVAL;
2456	}
2457	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2458		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2459			   btrfs_super_chunk_root(sb));
2460		ret = -EINVAL;
2461	}
2462	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2463		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2464			   btrfs_super_log_root(sb));
2465		ret = -EINVAL;
2466	}
2467
2468	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2469		   BTRFS_FSID_SIZE) != 0) {
2470		btrfs_err(fs_info,
2471			"dev_item UUID does not match metadata fsid: %pU != %pU",
2472			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2473		ret = -EINVAL;
2474	}
2475
2476	/*
2477	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2478	 * done later
2479	 */
2480	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2481		btrfs_err(fs_info, "bytes_used is too small %llu",
2482			  btrfs_super_bytes_used(sb));
2483		ret = -EINVAL;
2484	}
2485	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2486		btrfs_err(fs_info, "invalid stripesize %u",
2487			  btrfs_super_stripesize(sb));
2488		ret = -EINVAL;
2489	}
2490	if (btrfs_super_num_devices(sb) > (1UL << 31))
2491		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2492			   btrfs_super_num_devices(sb));
2493	if (btrfs_super_num_devices(sb) == 0) {
2494		btrfs_err(fs_info, "number of devices is 0");
2495		ret = -EINVAL;
2496	}
2497
2498	if (mirror_num >= 0 &&
2499	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2500		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2501			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2502		ret = -EINVAL;
2503	}
2504
2505	/*
2506	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2507	 * and one chunk
2508	 */
2509	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2510		btrfs_err(fs_info, "system chunk array too big %u > %u",
2511			  btrfs_super_sys_array_size(sb),
2512			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2513		ret = -EINVAL;
2514	}
2515	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2516			+ sizeof(struct btrfs_chunk)) {
2517		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2518			  btrfs_super_sys_array_size(sb),
2519			  sizeof(struct btrfs_disk_key)
2520			  + sizeof(struct btrfs_chunk));
2521		ret = -EINVAL;
2522	}
2523
2524	/*
2525	 * The generation is a global counter, we'll trust it more than the others
2526	 * but it's still possible that it's the one that's wrong.
2527	 */
2528	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2529		btrfs_warn(fs_info,
2530			"suspicious: generation < chunk_root_generation: %llu < %llu",
2531			btrfs_super_generation(sb),
2532			btrfs_super_chunk_root_generation(sb));
2533	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2534	    && btrfs_super_cache_generation(sb) != (u64)-1)
2535		btrfs_warn(fs_info,
2536			"suspicious: generation < cache_generation: %llu < %llu",
2537			btrfs_super_generation(sb),
2538			btrfs_super_cache_generation(sb));
2539
2540	return ret;
2541}
2542
2543/*
2544 * Validation of super block at mount time.
2545 * Some checks already done early at mount time, like csum type and incompat
2546 * flags will be skipped.
2547 */
2548static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2549{
2550	return validate_super(fs_info, fs_info->super_copy, 0);
2551}
2552
2553/*
2554 * Validation of super block at write time.
2555 * Some checks like bytenr check will be skipped as their values will be
2556 * overwritten soon.
2557 * Extra checks like csum type and incompat flags will be done here.
2558 */
2559static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2560				      struct btrfs_super_block *sb)
2561{
2562	int ret;
2563
2564	ret = validate_super(fs_info, sb, -1);
2565	if (ret < 0)
2566		goto out;
2567	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2568		ret = -EUCLEAN;
2569		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2570			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2571		goto out;
2572	}
2573	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2574		ret = -EUCLEAN;
2575		btrfs_err(fs_info,
2576		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2577			  btrfs_super_incompat_flags(sb),
2578			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2579		goto out;
2580	}
2581out:
2582	if (ret < 0)
2583		btrfs_err(fs_info,
2584		"super block corruption detected before writing it to disk");
2585	return ret;
2586}
2587
2588static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
 
 
2589{
2590	int backup_index = find_newest_super_backup(fs_info);
2591	struct btrfs_super_block *sb = fs_info->super_copy;
2592	struct btrfs_root *tree_root = fs_info->tree_root;
2593	bool handle_error = false;
2594	int ret = 0;
2595	int i;
 
 
 
 
 
 
 
 
 
 
 
 
2596
2597	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2598		u64 generation;
2599		int level;
 
 
 
2600
2601		if (handle_error) {
2602			if (!IS_ERR(tree_root->node))
2603				free_extent_buffer(tree_root->node);
2604			tree_root->node = NULL;
 
2605
2606			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2607				break;
 
 
 
2608
2609			free_root_pointers(fs_info, 0);
 
 
 
 
 
 
2610
2611			/*
2612			 * Don't use the log in recovery mode, it won't be
2613			 * valid
2614			 */
2615			btrfs_set_super_log_root(sb, 0);
2616
2617			/* We can't trust the free space cache either */
2618			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2619
2620			ret = read_backup_root(fs_info, i);
2621			backup_index = ret;
2622			if (ret < 0)
2623				return ret;
2624		}
2625		generation = btrfs_super_generation(sb);
2626		level = btrfs_super_root_level(sb);
2627		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2628						  generation, level, NULL);
2629		if (IS_ERR(tree_root->node) ||
2630		    !extent_buffer_uptodate(tree_root->node)) {
2631			handle_error = true;
2632
2633			if (IS_ERR(tree_root->node)) {
2634				ret = PTR_ERR(tree_root->node);
2635				tree_root->node = NULL;
2636			} else if (!extent_buffer_uptodate(tree_root->node)) {
2637				ret = -EUCLEAN;
2638			}
2639
2640			btrfs_warn(fs_info, "failed to read tree root");
2641			continue;
2642		}
2643
2644		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2645		tree_root->commit_root = btrfs_root_node(tree_root);
2646		btrfs_set_root_refs(&tree_root->root_item, 1);
2647
2648		/*
2649		 * No need to hold btrfs_root::objectid_mutex since the fs
2650		 * hasn't been fully initialised and we are the only user
2651		 */
2652		ret = btrfs_find_highest_objectid(tree_root,
2653						&tree_root->highest_objectid);
2654		if (ret < 0) {
2655			handle_error = true;
2656			continue;
2657		}
2658
2659		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2660
2661		ret = btrfs_read_roots(fs_info);
2662		if (ret < 0) {
2663			handle_error = true;
2664			continue;
2665		}
2666
2667		/* All successful */
2668		fs_info->generation = generation;
2669		fs_info->last_trans_committed = generation;
2670
2671		/* Always begin writing backup roots after the one being used */
2672		if (backup_index < 0) {
2673			fs_info->backup_root_index = 0;
2674		} else {
2675			fs_info->backup_root_index = backup_index + 1;
2676			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2677		}
2678		break;
2679	}
2680
2681	return ret;
2682}
2683
2684void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2685{
2686	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2687	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2688	INIT_LIST_HEAD(&fs_info->trans_list);
2689	INIT_LIST_HEAD(&fs_info->dead_roots);
2690	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2691	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2692	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2693	spin_lock_init(&fs_info->delalloc_root_lock);
2694	spin_lock_init(&fs_info->trans_lock);
2695	spin_lock_init(&fs_info->fs_roots_radix_lock);
2696	spin_lock_init(&fs_info->delayed_iput_lock);
2697	spin_lock_init(&fs_info->defrag_inodes_lock);
 
2698	spin_lock_init(&fs_info->super_lock);
2699	spin_lock_init(&fs_info->buffer_lock);
2700	spin_lock_init(&fs_info->unused_bgs_lock);
2701	rwlock_init(&fs_info->tree_mod_log_lock);
2702	mutex_init(&fs_info->unused_bg_unpin_mutex);
2703	mutex_init(&fs_info->delete_unused_bgs_mutex);
2704	mutex_init(&fs_info->reloc_mutex);
2705	mutex_init(&fs_info->delalloc_root_mutex);
2706	seqlock_init(&fs_info->profiles_lock);
2707
2708	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2709	INIT_LIST_HEAD(&fs_info->space_info);
2710	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2711	INIT_LIST_HEAD(&fs_info->unused_bgs);
2712#ifdef CONFIG_BTRFS_DEBUG
2713	INIT_LIST_HEAD(&fs_info->allocated_roots);
2714	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2715	spin_lock_init(&fs_info->eb_leak_lock);
2716#endif
2717	extent_map_tree_init(&fs_info->mapping_tree);
2718	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2719			     BTRFS_BLOCK_RSV_GLOBAL);
2720	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2721	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2722	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2723	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2724			     BTRFS_BLOCK_RSV_DELOPS);
2725	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2726			     BTRFS_BLOCK_RSV_DELREFS);
2727
2728	atomic_set(&fs_info->async_delalloc_pages, 0);
2729	atomic_set(&fs_info->defrag_running, 0);
2730	atomic_set(&fs_info->reada_works_cnt, 0);
2731	atomic_set(&fs_info->nr_delayed_iputs, 0);
2732	atomic64_set(&fs_info->tree_mod_seq, 0);
 
2733	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2734	fs_info->metadata_ratio = 0;
2735	fs_info->defrag_inodes = RB_ROOT;
2736	atomic64_set(&fs_info->free_chunk_space, 0);
2737	fs_info->tree_mod_log = RB_ROOT;
2738	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2739	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2740	/* readahead state */
2741	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2742	spin_lock_init(&fs_info->reada_lock);
2743	btrfs_init_ref_verify(fs_info);
2744
2745	fs_info->thread_pool_size = min_t(unsigned long,
2746					  num_online_cpus() + 2, 8);
2747
2748	INIT_LIST_HEAD(&fs_info->ordered_roots);
2749	spin_lock_init(&fs_info->ordered_root_lock);
2750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2751	btrfs_init_scrub(fs_info);
2752#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2753	fs_info->check_integrity_print_mask = 0;
2754#endif
2755	btrfs_init_balance(fs_info);
2756	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2757
 
 
 
 
 
2758	spin_lock_init(&fs_info->block_group_cache_lock);
2759	fs_info->block_group_cache_tree = RB_ROOT;
2760	fs_info->first_logical_byte = (u64)-1;
2761
2762	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2763			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
 
 
 
2764	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2765
2766	mutex_init(&fs_info->ordered_operations_mutex);
2767	mutex_init(&fs_info->tree_log_mutex);
2768	mutex_init(&fs_info->chunk_mutex);
2769	mutex_init(&fs_info->transaction_kthread_mutex);
2770	mutex_init(&fs_info->cleaner_mutex);
2771	mutex_init(&fs_info->ro_block_group_mutex);
2772	init_rwsem(&fs_info->commit_root_sem);
2773	init_rwsem(&fs_info->cleanup_work_sem);
2774	init_rwsem(&fs_info->subvol_sem);
2775	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2776
2777	btrfs_init_dev_replace_locks(fs_info);
2778	btrfs_init_qgroup(fs_info);
2779	btrfs_discard_init(fs_info);
2780
2781	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2782	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2783
2784	init_waitqueue_head(&fs_info->transaction_throttle);
2785	init_waitqueue_head(&fs_info->transaction_wait);
2786	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2787	init_waitqueue_head(&fs_info->async_submit_wait);
2788	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2789
2790	/* Usable values until the real ones are cached from the superblock */
2791	fs_info->nodesize = 4096;
2792	fs_info->sectorsize = 4096;
2793	fs_info->stripesize = 4096;
2794
2795	spin_lock_init(&fs_info->swapfile_pins_lock);
2796	fs_info->swapfile_pins = RB_ROOT;
2797
2798	fs_info->send_in_progress = 0;
2799}
2800
2801static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2802{
2803	int ret;
2804
2805	fs_info->sb = sb;
2806	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2807	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2808
2809	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2810	if (ret)
2811		return ret;
2812
2813	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2814	if (ret)
2815		return ret;
2816
2817	fs_info->dirty_metadata_batch = PAGE_SIZE *
2818					(1 + ilog2(nr_cpu_ids));
2819
2820	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2821	if (ret)
2822		return ret;
2823
2824	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2825			GFP_KERNEL);
2826	if (ret)
2827		return ret;
2828
2829	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2830					GFP_KERNEL);
2831	if (!fs_info->delayed_root)
2832		return -ENOMEM;
2833	btrfs_init_delayed_root(fs_info->delayed_root);
2834
2835	return btrfs_alloc_stripe_hash_table(fs_info);
2836}
2837
2838static int btrfs_uuid_rescan_kthread(void *data)
2839{
2840	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2841	int ret;
2842
2843	/*
2844	 * 1st step is to iterate through the existing UUID tree and
2845	 * to delete all entries that contain outdated data.
2846	 * 2nd step is to add all missing entries to the UUID tree.
2847	 */
2848	ret = btrfs_uuid_tree_iterate(fs_info);
2849	if (ret < 0) {
2850		if (ret != -EINTR)
2851			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2852				   ret);
2853		up(&fs_info->uuid_tree_rescan_sem);
2854		return ret;
2855	}
2856	return btrfs_uuid_scan_kthread(data);
2857}
2858
2859static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2860{
2861	struct task_struct *task;
2862
2863	down(&fs_info->uuid_tree_rescan_sem);
2864	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2865	if (IS_ERR(task)) {
2866		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2867		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2868		up(&fs_info->uuid_tree_rescan_sem);
2869		return PTR_ERR(task);
2870	}
2871
2872	return 0;
2873}
2874
2875int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2876		      char *options)
2877{
2878	u32 sectorsize;
2879	u32 nodesize;
2880	u32 stripesize;
2881	u64 generation;
2882	u64 features;
2883	u16 csum_type;
2884	struct btrfs_super_block *disk_super;
2885	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2886	struct btrfs_root *tree_root;
2887	struct btrfs_root *chunk_root;
2888	int ret;
2889	int err = -EINVAL;
2890	int clear_free_space_tree = 0;
2891	int level;
2892
2893	ret = init_mount_fs_info(fs_info, sb);
2894	if (ret) {
2895		err = ret;
2896		goto fail;
2897	}
2898
2899	/* These need to be init'ed before we start creating inodes and such. */
2900	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2901				     GFP_KERNEL);
2902	fs_info->tree_root = tree_root;
2903	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2904				      GFP_KERNEL);
2905	fs_info->chunk_root = chunk_root;
2906	if (!tree_root || !chunk_root) {
2907		err = -ENOMEM;
2908		goto fail;
2909	}
2910
2911	fs_info->btree_inode = new_inode(sb);
2912	if (!fs_info->btree_inode) {
2913		err = -ENOMEM;
2914		goto fail;
2915	}
2916	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2917	btrfs_init_btree_inode(fs_info);
2918
2919	invalidate_bdev(fs_devices->latest_bdev);
2920
2921	/*
2922	 * Read super block and check the signature bytes only
2923	 */
2924	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2925	if (IS_ERR(disk_super)) {
2926		err = PTR_ERR(disk_super);
2927		goto fail_alloc;
2928	}
2929
2930	/*
2931	 * Verify the type first, if that or the the checksum value are
2932	 * corrupted, we'll find out
2933	 */
2934	csum_type = btrfs_super_csum_type(disk_super);
2935	if (!btrfs_supported_super_csum(csum_type)) {
2936		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2937			  csum_type);
2938		err = -EINVAL;
2939		btrfs_release_disk_super(disk_super);
2940		goto fail_alloc;
2941	}
2942
2943	ret = btrfs_init_csum_hash(fs_info, csum_type);
2944	if (ret) {
2945		err = ret;
2946		btrfs_release_disk_super(disk_super);
2947		goto fail_alloc;
2948	}
2949
2950	/*
2951	 * We want to check superblock checksum, the type is stored inside.
2952	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2953	 */
2954	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2955		btrfs_err(fs_info, "superblock checksum mismatch");
2956		err = -EINVAL;
2957		btrfs_release_disk_super(disk_super);
2958		goto fail_alloc;
2959	}
2960
2961	/*
2962	 * super_copy is zeroed at allocation time and we never touch the
2963	 * following bytes up to INFO_SIZE, the checksum is calculated from
2964	 * the whole block of INFO_SIZE
2965	 */
2966	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2967	btrfs_release_disk_super(disk_super);
2968
2969	disk_super = fs_info->super_copy;
2970
2971	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2972		       BTRFS_FSID_SIZE));
2973
2974	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2975		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2976				fs_info->super_copy->metadata_uuid,
2977				BTRFS_FSID_SIZE));
2978	}
2979
2980	features = btrfs_super_flags(disk_super);
2981	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2982		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2983		btrfs_set_super_flags(disk_super, features);
2984		btrfs_info(fs_info,
2985			"found metadata UUID change in progress flag, clearing");
2986	}
2987
2988	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2989	       sizeof(*fs_info->super_for_commit));
2990
2991	ret = btrfs_validate_mount_super(fs_info);
2992	if (ret) {
2993		btrfs_err(fs_info, "superblock contains fatal errors");
2994		err = -EINVAL;
2995		goto fail_alloc;
2996	}
2997
2998	if (!btrfs_super_root(disk_super))
2999		goto fail_alloc;
3000
3001	/* check FS state, whether FS is broken. */
3002	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3003		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3004
3005	/*
 
 
 
 
 
 
 
3006	 * In the long term, we'll store the compression type in the super
3007	 * block, and it'll be used for per file compression control.
3008	 */
3009	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3010
3011	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3012	if (ret) {
3013		err = ret;
3014		goto fail_alloc;
3015	}
3016
3017	features = btrfs_super_incompat_flags(disk_super) &
3018		~BTRFS_FEATURE_INCOMPAT_SUPP;
3019	if (features) {
3020		btrfs_err(fs_info,
3021		    "cannot mount because of unsupported optional features (%llx)",
3022		    features);
3023		err = -EINVAL;
3024		goto fail_alloc;
3025	}
3026
3027	features = btrfs_super_incompat_flags(disk_super);
3028	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3029	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3030		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3031	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3032		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3033
3034	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3035		btrfs_info(fs_info, "has skinny extents");
3036
3037	/*
3038	 * flag our filesystem as having big metadata blocks if
3039	 * they are bigger than the page size
3040	 */
3041	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3042		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3043			btrfs_info(fs_info,
3044				"flagging fs with big metadata feature");
3045		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3046	}
3047
3048	nodesize = btrfs_super_nodesize(disk_super);
3049	sectorsize = btrfs_super_sectorsize(disk_super);
3050	stripesize = sectorsize;
3051	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3052	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3053
3054	/* Cache block sizes */
3055	fs_info->nodesize = nodesize;
3056	fs_info->sectorsize = sectorsize;
3057	fs_info->stripesize = stripesize;
3058
3059	/*
3060	 * mixed block groups end up with duplicate but slightly offset
3061	 * extent buffers for the same range.  It leads to corruptions
3062	 */
3063	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3064	    (sectorsize != nodesize)) {
3065		btrfs_err(fs_info,
3066"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3067			nodesize, sectorsize);
3068		goto fail_alloc;
3069	}
3070
3071	/*
3072	 * Needn't use the lock because there is no other task which will
3073	 * update the flag.
3074	 */
3075	btrfs_set_super_incompat_flags(disk_super, features);
3076
3077	features = btrfs_super_compat_ro_flags(disk_super) &
3078		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3079	if (!sb_rdonly(sb) && features) {
3080		btrfs_err(fs_info,
3081	"cannot mount read-write because of unsupported optional features (%llx)",
3082		       features);
3083		err = -EINVAL;
3084		goto fail_alloc;
3085	}
3086
3087	ret = btrfs_init_workqueues(fs_info, fs_devices);
3088	if (ret) {
3089		err = ret;
3090		goto fail_sb_buffer;
3091	}
3092
 
 
3093	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3094	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3095	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3096	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3097
3098	sb->s_blocksize = sectorsize;
3099	sb->s_blocksize_bits = blksize_bits(sectorsize);
3100	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3101
3102	mutex_lock(&fs_info->chunk_mutex);
3103	ret = btrfs_read_sys_array(fs_info);
3104	mutex_unlock(&fs_info->chunk_mutex);
3105	if (ret) {
3106		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3107		goto fail_sb_buffer;
3108	}
3109
3110	generation = btrfs_super_chunk_root_generation(disk_super);
3111	level = btrfs_super_chunk_root_level(disk_super);
3112
 
 
3113	chunk_root->node = read_tree_block(fs_info,
3114					   btrfs_super_chunk_root(disk_super),
3115					   generation, level, NULL);
3116	if (IS_ERR(chunk_root->node) ||
3117	    !extent_buffer_uptodate(chunk_root->node)) {
3118		btrfs_err(fs_info, "failed to read chunk root");
3119		if (!IS_ERR(chunk_root->node))
3120			free_extent_buffer(chunk_root->node);
3121		chunk_root->node = NULL;
3122		goto fail_tree_roots;
3123	}
3124	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3125	chunk_root->commit_root = btrfs_root_node(chunk_root);
3126
3127	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3128			   offsetof(struct btrfs_header, chunk_tree_uuid),
3129			   BTRFS_UUID_SIZE);
3130
3131	ret = btrfs_read_chunk_tree(fs_info);
3132	if (ret) {
3133		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3134		goto fail_tree_roots;
3135	}
3136
3137	/*
3138	 * Keep the devid that is marked to be the target device for the
3139	 * device replace procedure
3140	 */
3141	btrfs_free_extra_devids(fs_devices, 0);
3142
3143	if (!fs_devices->latest_bdev) {
3144		btrfs_err(fs_info, "failed to read devices");
3145		goto fail_tree_roots;
3146	}
3147
3148	ret = init_tree_roots(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3149	if (ret)
3150		goto fail_tree_roots;
3151
3152	/*
3153	 * If we have a uuid root and we're not being told to rescan we need to
3154	 * check the generation here so we can set the
3155	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3156	 * transaction during a balance or the log replay without updating the
3157	 * uuid generation, and then if we crash we would rescan the uuid tree,
3158	 * even though it was perfectly fine.
3159	 */
3160	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3161	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3162		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3163
3164	ret = btrfs_verify_dev_extents(fs_info);
3165	if (ret) {
3166		btrfs_err(fs_info,
3167			  "failed to verify dev extents against chunks: %d",
3168			  ret);
3169		goto fail_block_groups;
3170	}
3171	ret = btrfs_recover_balance(fs_info);
3172	if (ret) {
3173		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3174		goto fail_block_groups;
3175	}
3176
3177	ret = btrfs_init_dev_stats(fs_info);
3178	if (ret) {
3179		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3180		goto fail_block_groups;
3181	}
3182
3183	ret = btrfs_init_dev_replace(fs_info);
3184	if (ret) {
3185		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3186		goto fail_block_groups;
3187	}
3188
3189	btrfs_free_extra_devids(fs_devices, 1);
3190
3191	ret = btrfs_sysfs_add_fsid(fs_devices);
3192	if (ret) {
3193		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3194				ret);
3195		goto fail_block_groups;
3196	}
3197
 
 
 
 
 
 
 
3198	ret = btrfs_sysfs_add_mounted(fs_info);
3199	if (ret) {
3200		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3201		goto fail_fsdev_sysfs;
3202	}
3203
3204	ret = btrfs_init_space_info(fs_info);
3205	if (ret) {
3206		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3207		goto fail_sysfs;
3208	}
3209
3210	ret = btrfs_read_block_groups(fs_info);
3211	if (ret) {
3212		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3213		goto fail_sysfs;
3214	}
3215
3216	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3217		btrfs_warn(fs_info,
3218		"writable mount is not allowed due to too many missing devices");
3219		goto fail_sysfs;
3220	}
3221
3222	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3223					       "btrfs-cleaner");
3224	if (IS_ERR(fs_info->cleaner_kthread))
3225		goto fail_sysfs;
3226
3227	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3228						   tree_root,
3229						   "btrfs-transaction");
3230	if (IS_ERR(fs_info->transaction_kthread))
3231		goto fail_cleaner;
3232
3233	if (!btrfs_test_opt(fs_info, NOSSD) &&
3234	    !fs_info->fs_devices->rotating) {
3235		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3236	}
3237
3238	/*
3239	 * Mount does not set all options immediately, we can do it now and do
3240	 * not have to wait for transaction commit
3241	 */
3242	btrfs_apply_pending_changes(fs_info);
3243
3244#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3245	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3246		ret = btrfsic_mount(fs_info, fs_devices,
3247				    btrfs_test_opt(fs_info,
3248					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3249				    1 : 0,
3250				    fs_info->check_integrity_print_mask);
3251		if (ret)
3252			btrfs_warn(fs_info,
3253				"failed to initialize integrity check module: %d",
3254				ret);
3255	}
3256#endif
3257	ret = btrfs_read_qgroup_config(fs_info);
3258	if (ret)
3259		goto fail_trans_kthread;
3260
3261	if (btrfs_build_ref_tree(fs_info))
3262		btrfs_err(fs_info, "couldn't build ref tree");
3263
3264	/* do not make disk changes in broken FS or nologreplay is given */
3265	if (btrfs_super_log_root(disk_super) != 0 &&
3266	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3267		btrfs_info(fs_info, "start tree-log replay");
3268		ret = btrfs_replay_log(fs_info, fs_devices);
3269		if (ret) {
3270			err = ret;
3271			goto fail_qgroup;
3272		}
3273	}
3274
3275	ret = btrfs_find_orphan_roots(fs_info);
3276	if (ret)
3277		goto fail_qgroup;
3278
3279	if (!sb_rdonly(sb)) {
3280		ret = btrfs_cleanup_fs_roots(fs_info);
3281		if (ret)
3282			goto fail_qgroup;
3283
3284		mutex_lock(&fs_info->cleaner_mutex);
3285		ret = btrfs_recover_relocation(tree_root);
3286		mutex_unlock(&fs_info->cleaner_mutex);
3287		if (ret < 0) {
3288			btrfs_warn(fs_info, "failed to recover relocation: %d",
3289					ret);
3290			err = -EINVAL;
3291			goto fail_qgroup;
3292		}
3293	}
3294
3295	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 
 
 
 
3296	if (IS_ERR(fs_info->fs_root)) {
3297		err = PTR_ERR(fs_info->fs_root);
3298		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3299		fs_info->fs_root = NULL;
3300		goto fail_qgroup;
3301	}
3302
3303	if (sb_rdonly(sb))
3304		return 0;
3305
3306	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3307	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3308		clear_free_space_tree = 1;
3309	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3310		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3311		btrfs_warn(fs_info, "free space tree is invalid");
3312		clear_free_space_tree = 1;
3313	}
3314
3315	if (clear_free_space_tree) {
3316		btrfs_info(fs_info, "clearing free space tree");
3317		ret = btrfs_clear_free_space_tree(fs_info);
3318		if (ret) {
3319			btrfs_warn(fs_info,
3320				   "failed to clear free space tree: %d", ret);
3321			close_ctree(fs_info);
3322			return ret;
3323		}
3324	}
3325
3326	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3327	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3328		btrfs_info(fs_info, "creating free space tree");
3329		ret = btrfs_create_free_space_tree(fs_info);
3330		if (ret) {
3331			btrfs_warn(fs_info,
3332				"failed to create free space tree: %d", ret);
3333			close_ctree(fs_info);
3334			return ret;
3335		}
3336	}
3337
3338	down_read(&fs_info->cleanup_work_sem);
3339	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3340	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3341		up_read(&fs_info->cleanup_work_sem);
3342		close_ctree(fs_info);
3343		return ret;
3344	}
3345	up_read(&fs_info->cleanup_work_sem);
3346
3347	ret = btrfs_resume_balance_async(fs_info);
3348	if (ret) {
3349		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3350		close_ctree(fs_info);
3351		return ret;
3352	}
3353
3354	ret = btrfs_resume_dev_replace_async(fs_info);
3355	if (ret) {
3356		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3357		close_ctree(fs_info);
3358		return ret;
3359	}
3360
3361	btrfs_qgroup_rescan_resume(fs_info);
3362	btrfs_discard_resume(fs_info);
3363
3364	if (!fs_info->uuid_root) {
3365		btrfs_info(fs_info, "creating UUID tree");
3366		ret = btrfs_create_uuid_tree(fs_info);
3367		if (ret) {
3368			btrfs_warn(fs_info,
3369				"failed to create the UUID tree: %d", ret);
3370			close_ctree(fs_info);
3371			return ret;
3372		}
3373	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3374		   fs_info->generation !=
3375				btrfs_super_uuid_tree_generation(disk_super)) {
3376		btrfs_info(fs_info, "checking UUID tree");
3377		ret = btrfs_check_uuid_tree(fs_info);
3378		if (ret) {
3379			btrfs_warn(fs_info,
3380				"failed to check the UUID tree: %d", ret);
3381			close_ctree(fs_info);
3382			return ret;
3383		}
 
 
3384	}
3385	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3386
3387	/*
3388	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3389	 * no need to keep the flag
3390	 */
3391	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3392
3393	return 0;
3394
3395fail_qgroup:
3396	btrfs_free_qgroup_config(fs_info);
3397fail_trans_kthread:
3398	kthread_stop(fs_info->transaction_kthread);
3399	btrfs_cleanup_transaction(fs_info);
3400	btrfs_free_fs_roots(fs_info);
3401fail_cleaner:
3402	kthread_stop(fs_info->cleaner_kthread);
3403
3404	/*
3405	 * make sure we're done with the btree inode before we stop our
3406	 * kthreads
3407	 */
3408	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3409
3410fail_sysfs:
3411	btrfs_sysfs_remove_mounted(fs_info);
3412
3413fail_fsdev_sysfs:
3414	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3415
3416fail_block_groups:
3417	btrfs_put_block_group_cache(fs_info);
3418
3419fail_tree_roots:
3420	if (fs_info->data_reloc_root)
3421		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3422	free_root_pointers(fs_info, true);
3423	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3424
3425fail_sb_buffer:
3426	btrfs_stop_all_workers(fs_info);
3427	btrfs_free_block_groups(fs_info);
 
 
3428fail_alloc:
 
3429	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3430
3431	iput(fs_info->btree_inode);
 
 
 
 
 
 
 
 
 
 
3432fail:
 
3433	btrfs_close_devices(fs_info->fs_devices);
3434	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3435}
3436ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3437
3438static void btrfs_end_super_write(struct bio *bio)
3439{
3440	struct btrfs_device *device = bio->bi_private;
3441	struct bio_vec *bvec;
3442	struct bvec_iter_all iter_all;
3443	struct page *page;
 
3444
3445	bio_for_each_segment_all(bvec, bio, iter_all) {
3446		page = bvec->bv_page;
3447
3448		if (bio->bi_status) {
3449			btrfs_warn_rl_in_rcu(device->fs_info,
3450				"lost page write due to IO error on %s (%d)",
3451				rcu_str_deref(device->name),
3452				blk_status_to_errno(bio->bi_status));
3453			ClearPageUptodate(page);
3454			SetPageError(page);
3455			btrfs_dev_stat_inc_and_print(device,
3456						     BTRFS_DEV_STAT_WRITE_ERRS);
3457		} else {
3458			SetPageUptodate(page);
3459		}
3460
3461		put_page(page);
3462		unlock_page(page);
3463	}
3464
3465	bio_put(bio);
3466}
3467
3468struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3469						   int copy_num)
3470{
 
3471	struct btrfs_super_block *super;
3472	struct page *page;
3473	u64 bytenr;
3474	struct address_space *mapping = bdev->bd_inode->i_mapping;
3475
3476	bytenr = btrfs_sb_offset(copy_num);
3477	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3478		return ERR_PTR(-EINVAL);
3479
3480	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3481	if (IS_ERR(page))
3482		return ERR_CAST(page);
 
 
 
 
3483
3484	super = page_address(page);
3485	if (btrfs_super_bytenr(super) != bytenr ||
3486		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3487		btrfs_release_disk_super(super);
3488		return ERR_PTR(-EINVAL);
3489	}
3490
3491	return super;
 
3492}
3493
3494
3495struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3496{
3497	struct btrfs_super_block *super, *latest = NULL;
 
 
3498	int i;
3499	u64 transid = 0;
 
3500
3501	/* we would like to check all the supers, but that would make
3502	 * a btrfs mount succeed after a mkfs from a different FS.
3503	 * So, we need to add a special mount option to scan for
3504	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3505	 */
3506	for (i = 0; i < 1; i++) {
3507		super = btrfs_read_dev_one_super(bdev, i);
3508		if (IS_ERR(super))
3509			continue;
3510
 
 
3511		if (!latest || btrfs_super_generation(super) > transid) {
3512			if (latest)
3513				btrfs_release_disk_super(super);
3514
3515			latest = super;
3516			transid = btrfs_super_generation(super);
 
 
3517		}
3518	}
3519
3520	return super;
 
 
 
3521}
3522
3523/*
3524 * Write superblock @sb to the @device. Do not wait for completion, all the
3525 * pages we use for writing are locked.
3526 *
3527 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3528 * the expected device size at commit time. Note that max_mirrors must be
3529 * same for write and wait phases.
3530 *
3531 * Return number of errors when page is not found or submission fails.
3532 */
3533static int write_dev_supers(struct btrfs_device *device,
3534			    struct btrfs_super_block *sb, int max_mirrors)
3535{
3536	struct btrfs_fs_info *fs_info = device->fs_info;
3537	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3538	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
3539	int i;
 
3540	int errors = 0;
3541	u64 bytenr;
 
3542
3543	if (max_mirrors == 0)
3544		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3545
3546	shash->tfm = fs_info->csum_shash;
3547
3548	for (i = 0; i < max_mirrors; i++) {
3549		struct page *page;
3550		struct bio *bio;
3551		struct btrfs_super_block *disk_super;
3552
3553		bytenr = btrfs_sb_offset(i);
3554		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3555		    device->commit_total_bytes)
3556			break;
3557
3558		btrfs_set_super_bytenr(sb, bytenr);
3559
3560		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3561				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3562				    sb->csum);
3563
3564		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3565					   GFP_NOFS);
3566		if (!page) {
 
 
3567			btrfs_err(device->fs_info,
3568			    "couldn't get super block page for bytenr %llu",
3569			    bytenr);
3570			errors++;
3571			continue;
3572		}
3573
3574		/* Bump the refcount for wait_dev_supers() */
3575		get_page(page);
3576
3577		disk_super = page_address(page);
3578		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3579
3580		/*
3581		 * Directly use bios here instead of relying on the page cache
3582		 * to do I/O, so we don't lose the ability to do integrity
3583		 * checking.
3584		 */
3585		bio = bio_alloc(GFP_NOFS, 1);
3586		bio_set_dev(bio, device->bdev);
3587		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3588		bio->bi_private = device;
3589		bio->bi_end_io = btrfs_end_super_write;
3590		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3591			       offset_in_page(bytenr));
3592
3593		/*
3594		 * We FUA only the first super block.  The others we allow to
3595		 * go down lazy and there's a short window where the on-disk
3596		 * copies might still contain the older version.
3597		 */
3598		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3599		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3600			bio->bi_opf |= REQ_FUA;
3601
3602		btrfsic_submit_bio(bio);
 
3603	}
3604	return errors < i ? 0 : -1;
3605}
3606
3607/*
3608 * Wait for write completion of superblocks done by write_dev_supers,
3609 * @max_mirrors same for write and wait phases.
3610 *
3611 * Return number of errors when page is not found or not marked up to
3612 * date.
3613 */
3614static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3615{
 
3616	int i;
3617	int errors = 0;
3618	bool primary_failed = false;
3619	u64 bytenr;
3620
3621	if (max_mirrors == 0)
3622		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3623
3624	for (i = 0; i < max_mirrors; i++) {
3625		struct page *page;
3626
3627		bytenr = btrfs_sb_offset(i);
3628		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3629		    device->commit_total_bytes)
3630			break;
3631
3632		page = find_get_page(device->bdev->bd_inode->i_mapping,
3633				     bytenr >> PAGE_SHIFT);
3634		if (!page) {
 
3635			errors++;
3636			if (i == 0)
3637				primary_failed = true;
3638			continue;
3639		}
3640		/* Page is submitted locked and unlocked once the IO completes */
3641		wait_on_page_locked(page);
3642		if (PageError(page)) {
3643			errors++;
3644			if (i == 0)
3645				primary_failed = true;
3646		}
3647
3648		/* Drop our reference */
3649		put_page(page);
3650
3651		/* Drop the reference from the writing run */
3652		put_page(page);
3653	}
3654
3655	/* log error, force error return */
3656	if (primary_failed) {
3657		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3658			  device->devid);
3659		return -1;
3660	}
3661
3662	return errors < i ? 0 : -1;
3663}
3664
3665/*
3666 * endio for the write_dev_flush, this will wake anyone waiting
3667 * for the barrier when it is done
3668 */
3669static void btrfs_end_empty_barrier(struct bio *bio)
3670{
3671	complete(bio->bi_private);
3672}
3673
3674/*
3675 * Submit a flush request to the device if it supports it. Error handling is
3676 * done in the waiting counterpart.
3677 */
3678static void write_dev_flush(struct btrfs_device *device)
3679{
3680	struct request_queue *q = bdev_get_queue(device->bdev);
3681	struct bio *bio = device->flush_bio;
3682
3683	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3684		return;
3685
3686	bio_reset(bio);
3687	bio->bi_end_io = btrfs_end_empty_barrier;
3688	bio_set_dev(bio, device->bdev);
3689	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3690	init_completion(&device->flush_wait);
3691	bio->bi_private = &device->flush_wait;
3692
3693	btrfsic_submit_bio(bio);
3694	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3695}
3696
3697/*
3698 * If the flush bio has been submitted by write_dev_flush, wait for it.
3699 */
3700static blk_status_t wait_dev_flush(struct btrfs_device *device)
3701{
3702	struct bio *bio = device->flush_bio;
3703
3704	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3705		return BLK_STS_OK;
3706
3707	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3708	wait_for_completion_io(&device->flush_wait);
3709
3710	return bio->bi_status;
3711}
3712
3713static int check_barrier_error(struct btrfs_fs_info *fs_info)
3714{
3715	if (!btrfs_check_rw_degradable(fs_info, NULL))
3716		return -EIO;
3717	return 0;
3718}
3719
3720/*
3721 * send an empty flush down to each device in parallel,
3722 * then wait for them
3723 */
3724static int barrier_all_devices(struct btrfs_fs_info *info)
3725{
3726	struct list_head *head;
3727	struct btrfs_device *dev;
3728	int errors_wait = 0;
3729	blk_status_t ret;
3730
3731	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3732	/* send down all the barriers */
3733	head = &info->fs_devices->devices;
3734	list_for_each_entry(dev, head, dev_list) {
3735		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3736			continue;
3737		if (!dev->bdev)
3738			continue;
3739		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3740		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3741			continue;
3742
3743		write_dev_flush(dev);
3744		dev->last_flush_error = BLK_STS_OK;
3745	}
3746
3747	/* wait for all the barriers */
3748	list_for_each_entry(dev, head, dev_list) {
3749		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3750			continue;
3751		if (!dev->bdev) {
3752			errors_wait++;
3753			continue;
3754		}
3755		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3756		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3757			continue;
3758
3759		ret = wait_dev_flush(dev);
3760		if (ret) {
3761			dev->last_flush_error = ret;
3762			btrfs_dev_stat_inc_and_print(dev,
3763					BTRFS_DEV_STAT_FLUSH_ERRS);
3764			errors_wait++;
3765		}
3766	}
3767
3768	if (errors_wait) {
3769		/*
3770		 * At some point we need the status of all disks
3771		 * to arrive at the volume status. So error checking
3772		 * is being pushed to a separate loop.
3773		 */
3774		return check_barrier_error(info);
3775	}
3776	return 0;
3777}
3778
3779int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3780{
3781	int raid_type;
3782	int min_tolerated = INT_MAX;
3783
3784	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3785	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3786		min_tolerated = min_t(int, min_tolerated,
3787				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3788				    tolerated_failures);
3789
3790	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3791		if (raid_type == BTRFS_RAID_SINGLE)
3792			continue;
3793		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3794			continue;
3795		min_tolerated = min_t(int, min_tolerated,
3796				    btrfs_raid_array[raid_type].
3797				    tolerated_failures);
3798	}
3799
3800	if (min_tolerated == INT_MAX) {
3801		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3802		min_tolerated = 0;
3803	}
3804
3805	return min_tolerated;
3806}
3807
3808int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3809{
3810	struct list_head *head;
3811	struct btrfs_device *dev;
3812	struct btrfs_super_block *sb;
3813	struct btrfs_dev_item *dev_item;
3814	int ret;
3815	int do_barriers;
3816	int max_errors;
3817	int total_errors = 0;
3818	u64 flags;
3819
3820	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3821
3822	/*
3823	 * max_mirrors == 0 indicates we're from commit_transaction,
3824	 * not from fsync where the tree roots in fs_info have not
3825	 * been consistent on disk.
3826	 */
3827	if (max_mirrors == 0)
3828		backup_super_roots(fs_info);
3829
3830	sb = fs_info->super_for_commit;
3831	dev_item = &sb->dev_item;
3832
3833	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3834	head = &fs_info->fs_devices->devices;
3835	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3836
3837	if (do_barriers) {
3838		ret = barrier_all_devices(fs_info);
3839		if (ret) {
3840			mutex_unlock(
3841				&fs_info->fs_devices->device_list_mutex);
3842			btrfs_handle_fs_error(fs_info, ret,
3843					      "errors while submitting device barriers.");
3844			return ret;
3845		}
3846	}
3847
3848	list_for_each_entry(dev, head, dev_list) {
3849		if (!dev->bdev) {
3850			total_errors++;
3851			continue;
3852		}
3853		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3854		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3855			continue;
3856
3857		btrfs_set_stack_device_generation(dev_item, 0);
3858		btrfs_set_stack_device_type(dev_item, dev->type);
3859		btrfs_set_stack_device_id(dev_item, dev->devid);
3860		btrfs_set_stack_device_total_bytes(dev_item,
3861						   dev->commit_total_bytes);
3862		btrfs_set_stack_device_bytes_used(dev_item,
3863						  dev->commit_bytes_used);
3864		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3865		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3866		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3867		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3868		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3869		       BTRFS_FSID_SIZE);
3870
3871		flags = btrfs_super_flags(sb);
3872		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3873
3874		ret = btrfs_validate_write_super(fs_info, sb);
3875		if (ret < 0) {
3876			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3877			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3878				"unexpected superblock corruption detected");
3879			return -EUCLEAN;
3880		}
3881
3882		ret = write_dev_supers(dev, sb, max_mirrors);
3883		if (ret)
3884			total_errors++;
3885	}
3886	if (total_errors > max_errors) {
3887		btrfs_err(fs_info, "%d errors while writing supers",
3888			  total_errors);
3889		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3890
3891		/* FUA is masked off if unsupported and can't be the reason */
3892		btrfs_handle_fs_error(fs_info, -EIO,
3893				      "%d errors while writing supers",
3894				      total_errors);
3895		return -EIO;
3896	}
3897
3898	total_errors = 0;
3899	list_for_each_entry(dev, head, dev_list) {
3900		if (!dev->bdev)
3901			continue;
3902		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3903		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3904			continue;
3905
3906		ret = wait_dev_supers(dev, max_mirrors);
3907		if (ret)
3908			total_errors++;
3909	}
3910	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3911	if (total_errors > max_errors) {
3912		btrfs_handle_fs_error(fs_info, -EIO,
3913				      "%d errors while writing supers",
3914				      total_errors);
3915		return -EIO;
3916	}
3917	return 0;
3918}
3919
3920/* Drop a fs root from the radix tree and free it. */
3921void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3922				  struct btrfs_root *root)
3923{
3924	bool drop_ref = false;
3925
3926	spin_lock(&fs_info->fs_roots_radix_lock);
3927	radix_tree_delete(&fs_info->fs_roots_radix,
3928			  (unsigned long)root->root_key.objectid);
3929	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3930		drop_ref = true;
3931	spin_unlock(&fs_info->fs_roots_radix_lock);
3932
 
 
 
3933	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3934		ASSERT(root->log_root == NULL);
3935		if (root->reloc_root) {
3936			btrfs_put_root(root->reloc_root);
 
 
3937			root->reloc_root = NULL;
3938		}
3939	}
3940
3941	if (root->free_ino_pinned)
3942		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3943	if (root->free_ino_ctl)
3944		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3945	if (root->ino_cache_inode) {
3946		iput(root->ino_cache_inode);
3947		root->ino_cache_inode = NULL;
3948	}
3949	if (drop_ref)
3950		btrfs_put_root(root);
 
 
 
 
 
 
 
 
 
 
3951}
3952
3953int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3954{
3955	u64 root_objectid = 0;
3956	struct btrfs_root *gang[8];
3957	int i = 0;
3958	int err = 0;
3959	unsigned int ret = 0;
 
3960
3961	while (1) {
3962		spin_lock(&fs_info->fs_roots_radix_lock);
3963		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3964					     (void **)gang, root_objectid,
3965					     ARRAY_SIZE(gang));
3966		if (!ret) {
3967			spin_unlock(&fs_info->fs_roots_radix_lock);
3968			break;
3969		}
3970		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3971
3972		for (i = 0; i < ret; i++) {
3973			/* Avoid to grab roots in dead_roots */
3974			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3975				gang[i] = NULL;
3976				continue;
3977			}
3978			/* grab all the search result for later use */
3979			gang[i] = btrfs_grab_root(gang[i]);
3980		}
3981		spin_unlock(&fs_info->fs_roots_radix_lock);
3982
3983		for (i = 0; i < ret; i++) {
3984			if (!gang[i])
3985				continue;
3986			root_objectid = gang[i]->root_key.objectid;
3987			err = btrfs_orphan_cleanup(gang[i]);
3988			if (err)
3989				break;
3990			btrfs_put_root(gang[i]);
3991		}
3992		root_objectid++;
3993	}
3994
3995	/* release the uncleaned roots due to error */
3996	for (; i < ret; i++) {
3997		if (gang[i])
3998			btrfs_put_root(gang[i]);
3999	}
4000	return err;
4001}
4002
4003int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4004{
4005	struct btrfs_root *root = fs_info->tree_root;
4006	struct btrfs_trans_handle *trans;
4007
4008	mutex_lock(&fs_info->cleaner_mutex);
4009	btrfs_run_delayed_iputs(fs_info);
4010	mutex_unlock(&fs_info->cleaner_mutex);
4011	wake_up_process(fs_info->cleaner_kthread);
4012
4013	/* wait until ongoing cleanup work done */
4014	down_write(&fs_info->cleanup_work_sem);
4015	up_write(&fs_info->cleanup_work_sem);
4016
4017	trans = btrfs_join_transaction(root);
4018	if (IS_ERR(trans))
4019		return PTR_ERR(trans);
4020	return btrfs_commit_transaction(trans);
4021}
4022
4023void __cold close_ctree(struct btrfs_fs_info *fs_info)
4024{
4025	int ret;
4026
4027	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4028	/*
4029	 * We don't want the cleaner to start new transactions, add more delayed
4030	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4031	 * because that frees the task_struct, and the transaction kthread might
4032	 * still try to wake up the cleaner.
4033	 */
4034	kthread_park(fs_info->cleaner_kthread);
4035
4036	/* wait for the qgroup rescan worker to stop */
4037	btrfs_qgroup_wait_for_completion(fs_info, false);
4038
4039	/* wait for the uuid_scan task to finish */
4040	down(&fs_info->uuid_tree_rescan_sem);
4041	/* avoid complains from lockdep et al., set sem back to initial state */
4042	up(&fs_info->uuid_tree_rescan_sem);
4043
4044	/* pause restriper - we want to resume on mount */
4045	btrfs_pause_balance(fs_info);
4046
4047	btrfs_dev_replace_suspend_for_unmount(fs_info);
4048
4049	btrfs_scrub_cancel(fs_info);
4050
4051	/* wait for any defraggers to finish */
4052	wait_event(fs_info->transaction_wait,
4053		   (atomic_read(&fs_info->defrag_running) == 0));
4054
4055	/* clear out the rbtree of defraggable inodes */
4056	btrfs_cleanup_defrag_inodes(fs_info);
4057
4058	cancel_work_sync(&fs_info->async_reclaim_work);
4059
4060	/* Cancel or finish ongoing discard work */
4061	btrfs_discard_cleanup(fs_info);
4062
4063	if (!sb_rdonly(fs_info->sb)) {
4064		/*
4065		 * The cleaner kthread is stopped, so do one final pass over
4066		 * unused block groups.
4067		 */
4068		btrfs_delete_unused_bgs(fs_info);
4069
4070		/*
4071		 * There might be existing delayed inode workers still running
4072		 * and holding an empty delayed inode item. We must wait for
4073		 * them to complete first because they can create a transaction.
4074		 * This happens when someone calls btrfs_balance_delayed_items()
4075		 * and then a transaction commit runs the same delayed nodes
4076		 * before any delayed worker has done something with the nodes.
4077		 * We must wait for any worker here and not at transaction
4078		 * commit time since that could cause a deadlock.
4079		 * This is a very rare case.
4080		 */
4081		btrfs_flush_workqueue(fs_info->delayed_workers);
4082
4083		ret = btrfs_commit_super(fs_info);
4084		if (ret)
4085			btrfs_err(fs_info, "commit super ret %d", ret);
4086	}
4087
4088	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4089	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4090		btrfs_error_commit_super(fs_info);
4091
4092	kthread_stop(fs_info->transaction_kthread);
4093	kthread_stop(fs_info->cleaner_kthread);
4094
4095	ASSERT(list_empty(&fs_info->delayed_iputs));
4096	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4097
4098	if (btrfs_check_quota_leak(fs_info)) {
4099		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4100		btrfs_err(fs_info, "qgroup reserved space leaked");
4101	}
4102
4103	btrfs_free_qgroup_config(fs_info);
4104	ASSERT(list_empty(&fs_info->delalloc_roots));
4105
4106	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4107		btrfs_info(fs_info, "at unmount delalloc count %lld",
4108		       percpu_counter_sum(&fs_info->delalloc_bytes));
4109	}
4110
4111	if (percpu_counter_sum(&fs_info->dio_bytes))
4112		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4113			   percpu_counter_sum(&fs_info->dio_bytes));
4114
4115	btrfs_sysfs_remove_mounted(fs_info);
4116	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4117
 
 
4118	btrfs_put_block_group_cache(fs_info);
4119
4120	/*
4121	 * we must make sure there is not any read request to
4122	 * submit after we stopping all workers.
4123	 */
4124	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4125	btrfs_stop_all_workers(fs_info);
4126
 
 
4127	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4128	free_root_pointers(fs_info, true);
4129	btrfs_free_fs_roots(fs_info);
4130
4131	/*
4132	 * We must free the block groups after dropping the fs_roots as we could
4133	 * have had an IO error and have left over tree log blocks that aren't
4134	 * cleaned up until the fs roots are freed.  This makes the block group
4135	 * accounting appear to be wrong because there's pending reserved bytes,
4136	 * so make sure we do the block group cleanup afterwards.
4137	 */
4138	btrfs_free_block_groups(fs_info);
4139
4140	iput(fs_info->btree_inode);
4141
4142#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4143	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4144		btrfsic_unmount(fs_info->fs_devices);
4145#endif
4146
4147	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4148	btrfs_close_devices(fs_info->fs_devices);
 
 
 
 
 
 
 
 
 
 
4149}
4150
4151int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4152			  int atomic)
4153{
4154	int ret;
4155	struct inode *btree_inode = buf->pages[0]->mapping->host;
4156
4157	ret = extent_buffer_uptodate(buf);
4158	if (!ret)
4159		return ret;
4160
4161	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4162				    parent_transid, atomic);
4163	if (ret == -EAGAIN)
4164		return ret;
4165	return !ret;
4166}
4167
4168void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4169{
4170	struct btrfs_fs_info *fs_info;
4171	struct btrfs_root *root;
4172	u64 transid = btrfs_header_generation(buf);
4173	int was_dirty;
4174
4175#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4176	/*
4177	 * This is a fast path so only do this check if we have sanity tests
4178	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4179	 * outside of the sanity tests.
4180	 */
4181	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4182		return;
4183#endif
4184	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4185	fs_info = root->fs_info;
4186	btrfs_assert_tree_locked(buf);
4187	if (transid != fs_info->generation)
4188		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4189			buf->start, transid, fs_info->generation);
4190	was_dirty = set_extent_buffer_dirty(buf);
4191	if (!was_dirty)
4192		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4193					 buf->len,
4194					 fs_info->dirty_metadata_batch);
4195#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4196	/*
4197	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4198	 * but item data not updated.
4199	 * So here we should only check item pointers, not item data.
4200	 */
4201	if (btrfs_header_level(buf) == 0 &&
4202	    btrfs_check_leaf_relaxed(buf)) {
4203		btrfs_print_leaf(buf);
4204		ASSERT(0);
4205	}
4206#endif
4207}
4208
4209static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4210					int flush_delayed)
4211{
4212	/*
4213	 * looks as though older kernels can get into trouble with
4214	 * this code, they end up stuck in balance_dirty_pages forever
4215	 */
4216	int ret;
4217
4218	if (current->flags & PF_MEMALLOC)
4219		return;
4220
4221	if (flush_delayed)
4222		btrfs_balance_delayed_items(fs_info);
4223
4224	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4225				     BTRFS_DIRTY_METADATA_THRESH,
4226				     fs_info->dirty_metadata_batch);
4227	if (ret > 0) {
4228		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4229	}
4230}
4231
4232void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4233{
4234	__btrfs_btree_balance_dirty(fs_info, 1);
4235}
4236
4237void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4238{
4239	__btrfs_btree_balance_dirty(fs_info, 0);
4240}
4241
4242int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4243		      struct btrfs_key *first_key)
4244{
4245	return btree_read_extent_buffer_pages(buf, parent_transid,
4246					      level, first_key);
4247}
4248
4249static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4250{
4251	/* cleanup FS via transaction */
4252	btrfs_cleanup_transaction(fs_info);
4253
4254	mutex_lock(&fs_info->cleaner_mutex);
4255	btrfs_run_delayed_iputs(fs_info);
4256	mutex_unlock(&fs_info->cleaner_mutex);
4257
4258	down_write(&fs_info->cleanup_work_sem);
4259	up_write(&fs_info->cleanup_work_sem);
4260}
4261
4262static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4263{
4264	struct btrfs_root *gang[8];
4265	u64 root_objectid = 0;
4266	int ret;
4267
4268	spin_lock(&fs_info->fs_roots_radix_lock);
4269	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4270					     (void **)gang, root_objectid,
4271					     ARRAY_SIZE(gang))) != 0) {
4272		int i;
4273
4274		for (i = 0; i < ret; i++)
4275			gang[i] = btrfs_grab_root(gang[i]);
4276		spin_unlock(&fs_info->fs_roots_radix_lock);
4277
4278		for (i = 0; i < ret; i++) {
4279			if (!gang[i])
4280				continue;
4281			root_objectid = gang[i]->root_key.objectid;
4282			btrfs_free_log(NULL, gang[i]);
4283			btrfs_put_root(gang[i]);
4284		}
4285		root_objectid++;
4286		spin_lock(&fs_info->fs_roots_radix_lock);
4287	}
4288	spin_unlock(&fs_info->fs_roots_radix_lock);
4289	btrfs_free_log_root_tree(NULL, fs_info);
4290}
4291
4292static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4293{
4294	struct btrfs_ordered_extent *ordered;
4295
4296	spin_lock(&root->ordered_extent_lock);
4297	/*
4298	 * This will just short circuit the ordered completion stuff which will
4299	 * make sure the ordered extent gets properly cleaned up.
4300	 */
4301	list_for_each_entry(ordered, &root->ordered_extents,
4302			    root_extent_list)
4303		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4304	spin_unlock(&root->ordered_extent_lock);
4305}
4306
4307static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4308{
4309	struct btrfs_root *root;
4310	struct list_head splice;
4311
4312	INIT_LIST_HEAD(&splice);
4313
4314	spin_lock(&fs_info->ordered_root_lock);
4315	list_splice_init(&fs_info->ordered_roots, &splice);
4316	while (!list_empty(&splice)) {
4317		root = list_first_entry(&splice, struct btrfs_root,
4318					ordered_root);
4319		list_move_tail(&root->ordered_root,
4320			       &fs_info->ordered_roots);
4321
4322		spin_unlock(&fs_info->ordered_root_lock);
4323		btrfs_destroy_ordered_extents(root);
4324
4325		cond_resched();
4326		spin_lock(&fs_info->ordered_root_lock);
4327	}
4328	spin_unlock(&fs_info->ordered_root_lock);
4329
4330	/*
4331	 * We need this here because if we've been flipped read-only we won't
4332	 * get sync() from the umount, so we need to make sure any ordered
4333	 * extents that haven't had their dirty pages IO start writeout yet
4334	 * actually get run and error out properly.
4335	 */
4336	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4337}
4338
4339static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4340				      struct btrfs_fs_info *fs_info)
4341{
4342	struct rb_node *node;
4343	struct btrfs_delayed_ref_root *delayed_refs;
4344	struct btrfs_delayed_ref_node *ref;
4345	int ret = 0;
4346
4347	delayed_refs = &trans->delayed_refs;
4348
4349	spin_lock(&delayed_refs->lock);
4350	if (atomic_read(&delayed_refs->num_entries) == 0) {
4351		spin_unlock(&delayed_refs->lock);
4352		btrfs_debug(fs_info, "delayed_refs has NO entry");
4353		return ret;
4354	}
4355
4356	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4357		struct btrfs_delayed_ref_head *head;
4358		struct rb_node *n;
4359		bool pin_bytes = false;
4360
4361		head = rb_entry(node, struct btrfs_delayed_ref_head,
4362				href_node);
4363		if (btrfs_delayed_ref_lock(delayed_refs, head))
4364			continue;
4365
4366		spin_lock(&head->lock);
4367		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4368			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4369				       ref_node);
4370			ref->in_tree = 0;
4371			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4372			RB_CLEAR_NODE(&ref->ref_node);
4373			if (!list_empty(&ref->add_list))
4374				list_del(&ref->add_list);
4375			atomic_dec(&delayed_refs->num_entries);
4376			btrfs_put_delayed_ref(ref);
4377		}
4378		if (head->must_insert_reserved)
4379			pin_bytes = true;
4380		btrfs_free_delayed_extent_op(head->extent_op);
4381		btrfs_delete_ref_head(delayed_refs, head);
4382		spin_unlock(&head->lock);
4383		spin_unlock(&delayed_refs->lock);
4384		mutex_unlock(&head->mutex);
4385
4386		if (pin_bytes) {
4387			struct btrfs_block_group *cache;
4388
4389			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4390			BUG_ON(!cache);
4391
4392			spin_lock(&cache->space_info->lock);
4393			spin_lock(&cache->lock);
4394			cache->pinned += head->num_bytes;
4395			btrfs_space_info_update_bytes_pinned(fs_info,
4396				cache->space_info, head->num_bytes);
4397			cache->reserved -= head->num_bytes;
4398			cache->space_info->bytes_reserved -= head->num_bytes;
4399			spin_unlock(&cache->lock);
4400			spin_unlock(&cache->space_info->lock);
4401			percpu_counter_add_batch(
4402				&cache->space_info->total_bytes_pinned,
4403				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4404
4405			btrfs_put_block_group(cache);
4406
4407			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4408				head->bytenr + head->num_bytes - 1);
4409		}
4410		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4411		btrfs_put_delayed_ref_head(head);
4412		cond_resched();
4413		spin_lock(&delayed_refs->lock);
4414	}
4415	btrfs_qgroup_destroy_extent_records(trans);
4416
4417	spin_unlock(&delayed_refs->lock);
4418
4419	return ret;
4420}
4421
4422static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4423{
4424	struct btrfs_inode *btrfs_inode;
4425	struct list_head splice;
4426
4427	INIT_LIST_HEAD(&splice);
4428
4429	spin_lock(&root->delalloc_lock);
4430	list_splice_init(&root->delalloc_inodes, &splice);
4431
4432	while (!list_empty(&splice)) {
4433		struct inode *inode = NULL;
4434		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4435					       delalloc_inodes);
4436		__btrfs_del_delalloc_inode(root, btrfs_inode);
4437		spin_unlock(&root->delalloc_lock);
4438
4439		/*
4440		 * Make sure we get a live inode and that it'll not disappear
4441		 * meanwhile.
4442		 */
4443		inode = igrab(&btrfs_inode->vfs_inode);
4444		if (inode) {
4445			invalidate_inode_pages2(inode->i_mapping);
4446			iput(inode);
4447		}
4448		spin_lock(&root->delalloc_lock);
4449	}
4450	spin_unlock(&root->delalloc_lock);
4451}
4452
4453static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4454{
4455	struct btrfs_root *root;
4456	struct list_head splice;
4457
4458	INIT_LIST_HEAD(&splice);
4459
4460	spin_lock(&fs_info->delalloc_root_lock);
4461	list_splice_init(&fs_info->delalloc_roots, &splice);
4462	while (!list_empty(&splice)) {
4463		root = list_first_entry(&splice, struct btrfs_root,
4464					 delalloc_root);
4465		root = btrfs_grab_root(root);
4466		BUG_ON(!root);
4467		spin_unlock(&fs_info->delalloc_root_lock);
4468
4469		btrfs_destroy_delalloc_inodes(root);
4470		btrfs_put_root(root);
4471
4472		spin_lock(&fs_info->delalloc_root_lock);
4473	}
4474	spin_unlock(&fs_info->delalloc_root_lock);
4475}
4476
4477static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4478					struct extent_io_tree *dirty_pages,
4479					int mark)
4480{
4481	int ret;
4482	struct extent_buffer *eb;
4483	u64 start = 0;
4484	u64 end;
4485
4486	while (1) {
4487		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4488					    mark, NULL);
4489		if (ret)
4490			break;
4491
4492		clear_extent_bits(dirty_pages, start, end, mark);
4493		while (start <= end) {
4494			eb = find_extent_buffer(fs_info, start);
4495			start += fs_info->nodesize;
4496			if (!eb)
4497				continue;
4498			wait_on_extent_buffer_writeback(eb);
4499
4500			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4501					       &eb->bflags))
4502				clear_extent_buffer_dirty(eb);
4503			free_extent_buffer_stale(eb);
4504		}
4505	}
4506
4507	return ret;
4508}
4509
4510static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4511				       struct extent_io_tree *unpin)
4512{
 
4513	u64 start;
4514	u64 end;
4515	int ret;
 
4516
 
 
4517	while (1) {
4518		struct extent_state *cached_state = NULL;
4519
4520		/*
4521		 * The btrfs_finish_extent_commit() may get the same range as
4522		 * ours between find_first_extent_bit and clear_extent_dirty.
4523		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4524		 * the same extent range.
4525		 */
4526		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4527		ret = find_first_extent_bit(unpin, 0, &start, &end,
4528					    EXTENT_DIRTY, &cached_state);
4529		if (ret) {
4530			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4531			break;
4532		}
4533
4534		clear_extent_dirty(unpin, start, end, &cached_state);
4535		free_extent_state(cached_state);
4536		btrfs_error_unpin_extent_range(fs_info, start, end);
4537		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4538		cond_resched();
4539	}
4540
 
 
 
 
 
 
 
 
 
4541	return 0;
4542}
4543
4544static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4545{
4546	struct inode *inode;
4547
4548	inode = cache->io_ctl.inode;
4549	if (inode) {
4550		invalidate_inode_pages2(inode->i_mapping);
4551		BTRFS_I(inode)->generation = 0;
4552		cache->io_ctl.inode = NULL;
4553		iput(inode);
4554	}
4555	ASSERT(cache->io_ctl.pages == NULL);
4556	btrfs_put_block_group(cache);
4557}
4558
4559void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4560			     struct btrfs_fs_info *fs_info)
4561{
4562	struct btrfs_block_group *cache;
4563
4564	spin_lock(&cur_trans->dirty_bgs_lock);
4565	while (!list_empty(&cur_trans->dirty_bgs)) {
4566		cache = list_first_entry(&cur_trans->dirty_bgs,
4567					 struct btrfs_block_group,
4568					 dirty_list);
4569
4570		if (!list_empty(&cache->io_list)) {
4571			spin_unlock(&cur_trans->dirty_bgs_lock);
4572			list_del_init(&cache->io_list);
4573			btrfs_cleanup_bg_io(cache);
4574			spin_lock(&cur_trans->dirty_bgs_lock);
4575		}
4576
4577		list_del_init(&cache->dirty_list);
4578		spin_lock(&cache->lock);
4579		cache->disk_cache_state = BTRFS_DC_ERROR;
4580		spin_unlock(&cache->lock);
4581
4582		spin_unlock(&cur_trans->dirty_bgs_lock);
4583		btrfs_put_block_group(cache);
4584		btrfs_delayed_refs_rsv_release(fs_info, 1);
4585		spin_lock(&cur_trans->dirty_bgs_lock);
4586	}
4587	spin_unlock(&cur_trans->dirty_bgs_lock);
4588
4589	/*
4590	 * Refer to the definition of io_bgs member for details why it's safe
4591	 * to use it without any locking
4592	 */
4593	while (!list_empty(&cur_trans->io_bgs)) {
4594		cache = list_first_entry(&cur_trans->io_bgs,
4595					 struct btrfs_block_group,
4596					 io_list);
4597
4598		list_del_init(&cache->io_list);
4599		spin_lock(&cache->lock);
4600		cache->disk_cache_state = BTRFS_DC_ERROR;
4601		spin_unlock(&cache->lock);
4602		btrfs_cleanup_bg_io(cache);
4603	}
4604}
4605
4606void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4607				   struct btrfs_fs_info *fs_info)
4608{
4609	struct btrfs_device *dev, *tmp;
4610
4611	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4612	ASSERT(list_empty(&cur_trans->dirty_bgs));
4613	ASSERT(list_empty(&cur_trans->io_bgs));
4614
4615	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4616				 post_commit_list) {
4617		list_del_init(&dev->post_commit_list);
4618	}
4619
4620	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4621
4622	cur_trans->state = TRANS_STATE_COMMIT_START;
4623	wake_up(&fs_info->transaction_blocked_wait);
4624
4625	cur_trans->state = TRANS_STATE_UNBLOCKED;
4626	wake_up(&fs_info->transaction_wait);
4627
4628	btrfs_destroy_delayed_inodes(fs_info);
 
4629
4630	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4631				     EXTENT_DIRTY);
4632	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
 
4633
4634	cur_trans->state =TRANS_STATE_COMPLETED;
4635	wake_up(&cur_trans->commit_wait);
4636}
4637
4638static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4639{
4640	struct btrfs_transaction *t;
4641
4642	mutex_lock(&fs_info->transaction_kthread_mutex);
4643
4644	spin_lock(&fs_info->trans_lock);
4645	while (!list_empty(&fs_info->trans_list)) {
4646		t = list_first_entry(&fs_info->trans_list,
4647				     struct btrfs_transaction, list);
4648		if (t->state >= TRANS_STATE_COMMIT_START) {
4649			refcount_inc(&t->use_count);
4650			spin_unlock(&fs_info->trans_lock);
4651			btrfs_wait_for_commit(fs_info, t->transid);
4652			btrfs_put_transaction(t);
4653			spin_lock(&fs_info->trans_lock);
4654			continue;
4655		}
4656		if (t == fs_info->running_transaction) {
4657			t->state = TRANS_STATE_COMMIT_DOING;
4658			spin_unlock(&fs_info->trans_lock);
4659			/*
4660			 * We wait for 0 num_writers since we don't hold a trans
4661			 * handle open currently for this transaction.
4662			 */
4663			wait_event(t->writer_wait,
4664				   atomic_read(&t->num_writers) == 0);
4665		} else {
4666			spin_unlock(&fs_info->trans_lock);
4667		}
4668		btrfs_cleanup_one_transaction(t, fs_info);
4669
4670		spin_lock(&fs_info->trans_lock);
4671		if (t == fs_info->running_transaction)
4672			fs_info->running_transaction = NULL;
4673		list_del_init(&t->list);
4674		spin_unlock(&fs_info->trans_lock);
4675
4676		btrfs_put_transaction(t);
4677		trace_btrfs_transaction_commit(fs_info->tree_root);
4678		spin_lock(&fs_info->trans_lock);
4679	}
4680	spin_unlock(&fs_info->trans_lock);
4681	btrfs_destroy_all_ordered_extents(fs_info);
4682	btrfs_destroy_delayed_inodes(fs_info);
4683	btrfs_assert_delayed_root_empty(fs_info);
 
4684	btrfs_destroy_all_delalloc_inodes(fs_info);
4685	btrfs_drop_all_logs(fs_info);
4686	mutex_unlock(&fs_info->transaction_kthread_mutex);
4687
4688	return 0;
4689}
4690
4691static const struct extent_io_ops btree_extent_io_ops = {
4692	/* mandatory callbacks */
4693	.submit_bio_hook = btree_submit_bio_hook,
4694	.readpage_end_io_hook = btree_readpage_end_io_hook,
4695};