Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
 
 
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
  10#include <linux/buffer_head.h>
  11#include <linux/workqueue.h>
  12#include <linux/kthread.h>
  13#include <linux/slab.h>
  14#include <linux/migrate.h>
  15#include <linux/ratelimit.h>
  16#include <linux/uuid.h>
  17#include <linux/semaphore.h>
  18#include <linux/error-injection.h>
  19#include <linux/crc32c.h>
  20#include <linux/sched/mm.h>
  21#include <asm/unaligned.h>
  22#include <crypto/hash.h>
  23#include "ctree.h"
  24#include "disk-io.h"
 
  25#include "transaction.h"
  26#include "btrfs_inode.h"
  27#include "volumes.h"
  28#include "print-tree.h"
  29#include "locking.h"
  30#include "tree-log.h"
  31#include "free-space-cache.h"
  32#include "free-space-tree.h"
  33#include "inode-map.h"
  34#include "check-integrity.h"
  35#include "rcu-string.h"
  36#include "dev-replace.h"
  37#include "raid56.h"
  38#include "sysfs.h"
  39#include "qgroup.h"
  40#include "compression.h"
  41#include "tree-checker.h"
  42#include "ref-verify.h"
  43#include "block-group.h"
 
  44
  45#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  46				 BTRFS_HEADER_FLAG_RELOC |\
  47				 BTRFS_SUPER_FLAG_ERROR |\
  48				 BTRFS_SUPER_FLAG_SEEDING |\
  49				 BTRFS_SUPER_FLAG_METADUMP |\
  50				 BTRFS_SUPER_FLAG_METADUMP_V2)
  51
  52static const struct extent_io_ops btree_extent_io_ops;
  53static void end_workqueue_fn(struct btrfs_work *work);
 
 
 
  54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  56				      struct btrfs_fs_info *fs_info);
  57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  59					struct extent_io_tree *dirty_pages,
  60					int mark);
  61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  62				       struct extent_io_tree *pinned_extents);
  63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  65
  66/*
  67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  68 * is complete.  This is used during reads to verify checksums, and it is used
  69 * by writes to insert metadata for new file extents after IO is complete.
  70 */
  71struct btrfs_end_io_wq {
  72	struct bio *bio;
  73	bio_end_io_t *end_io;
  74	void *private;
  75	struct btrfs_fs_info *info;
  76	blk_status_t status;
  77	enum btrfs_wq_endio_type metadata;
 
  78	struct btrfs_work work;
  79};
  80
  81static struct kmem_cache *btrfs_end_io_wq_cache;
  82
  83int __init btrfs_end_io_wq_init(void)
  84{
  85	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  86					sizeof(struct btrfs_end_io_wq),
  87					0,
  88					SLAB_MEM_SPREAD,
  89					NULL);
  90	if (!btrfs_end_io_wq_cache)
  91		return -ENOMEM;
  92	return 0;
  93}
  94
  95void __cold btrfs_end_io_wq_exit(void)
  96{
  97	kmem_cache_destroy(btrfs_end_io_wq_cache);
  98}
  99
 100/*
 101 * async submit bios are used to offload expensive checksumming
 102 * onto the worker threads.  They checksum file and metadata bios
 103 * just before they are sent down the IO stack.
 104 */
 105struct async_submit_bio {
 106	void *private_data;
 107	struct bio *bio;
 108	extent_submit_bio_start_t *submit_bio_start;
 
 
 109	int mirror_num;
 
 110	/*
 111	 * bio_offset is optional, can be used if the pages in the bio
 112	 * can't tell us where in the file the bio should go
 113	 */
 114	u64 bio_offset;
 115	struct btrfs_work work;
 116	blk_status_t status;
 117};
 118
 119/*
 120 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 121 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 122 * the level the eb occupies in the tree.
 123 *
 124 * Different roots are used for different purposes and may nest inside each
 125 * other and they require separate keysets.  As lockdep keys should be
 126 * static, assign keysets according to the purpose of the root as indicated
 127 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 128 * roots have separate keysets.
 129 *
 130 * Lock-nesting across peer nodes is always done with the immediate parent
 131 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 132 * subclass to avoid triggering lockdep warning in such cases.
 133 *
 134 * The key is set by the readpage_end_io_hook after the buffer has passed
 135 * csum validation but before the pages are unlocked.  It is also set by
 136 * btrfs_init_new_buffer on freshly allocated blocks.
 137 *
 138 * We also add a check to make sure the highest level of the tree is the
 139 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 140 * needs update as well.
 141 */
 142#ifdef CONFIG_DEBUG_LOCK_ALLOC
 143# if BTRFS_MAX_LEVEL != 8
 144#  error
 145# endif
 146
 147static struct btrfs_lockdep_keyset {
 148	u64			id;		/* root objectid */
 149	const char		*name_stem;	/* lock name stem */
 150	char			names[BTRFS_MAX_LEVEL + 1][20];
 151	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 152} btrfs_lockdep_keysets[] = {
 153	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 154	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 155	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 156	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 157	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 158	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 159	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 160	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 161	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 162	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 163	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 164	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 165	{ .id = 0,				.name_stem = "tree"	},
 166};
 167
 168void __init btrfs_init_lockdep(void)
 169{
 170	int i, j;
 171
 172	/* initialize lockdep class names */
 173	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 174		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 175
 176		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 177			snprintf(ks->names[j], sizeof(ks->names[j]),
 178				 "btrfs-%s-%02d", ks->name_stem, j);
 179	}
 180}
 181
 182void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 183				    int level)
 184{
 185	struct btrfs_lockdep_keyset *ks;
 186
 187	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 188
 189	/* find the matching keyset, id 0 is the default entry */
 190	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 191		if (ks->id == objectid)
 192			break;
 193
 194	lockdep_set_class_and_name(&eb->lock,
 195				   &ks->keys[level], ks->names[level]);
 196}
 197
 198#endif
 199
 200/*
 201 * extents on the btree inode are pretty simple, there's one extent
 202 * that covers the entire device
 203 */
 204struct extent_map *btree_get_extent(struct btrfs_inode *inode,
 205		struct page *page, size_t pg_offset, u64 start, u64 len,
 206		int create)
 207{
 208	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 209	struct extent_map_tree *em_tree = &inode->extent_tree;
 210	struct extent_map *em;
 211	int ret;
 212
 213	read_lock(&em_tree->lock);
 214	em = lookup_extent_mapping(em_tree, start, len);
 215	if (em) {
 216		em->bdev = fs_info->fs_devices->latest_bdev;
 217		read_unlock(&em_tree->lock);
 218		goto out;
 219	}
 220	read_unlock(&em_tree->lock);
 221
 222	em = alloc_extent_map();
 223	if (!em) {
 224		em = ERR_PTR(-ENOMEM);
 225		goto out;
 226	}
 227	em->start = 0;
 228	em->len = (u64)-1;
 229	em->block_len = (u64)-1;
 230	em->block_start = 0;
 231	em->bdev = fs_info->fs_devices->latest_bdev;
 232
 233	write_lock(&em_tree->lock);
 234	ret = add_extent_mapping(em_tree, em, 0);
 235	if (ret == -EEXIST) {
 236		free_extent_map(em);
 237		em = lookup_extent_mapping(em_tree, start, len);
 238		if (!em)
 239			em = ERR_PTR(-EIO);
 240	} else if (ret) {
 241		free_extent_map(em);
 242		em = ERR_PTR(ret);
 243	}
 244	write_unlock(&em_tree->lock);
 245
 246out:
 247	return em;
 248}
 249
 
 
 
 
 
 
 
 
 
 
 250/*
 251 * Compute the csum of a btree block and store the result to provided buffer.
 252 *
 253 * Returns error if the extent buffer cannot be mapped.
 254 */
 255static int csum_tree_block(struct extent_buffer *buf, u8 *result)
 
 
 256{
 257	struct btrfs_fs_info *fs_info = buf->fs_info;
 258	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 259	unsigned long len;
 260	unsigned long cur_len;
 261	unsigned long offset = BTRFS_CSUM_SIZE;
 262	char *kaddr;
 263	unsigned long map_start;
 264	unsigned long map_len;
 265	int err;
 266
 267	shash->tfm = fs_info->csum_shash;
 268	crypto_shash_init(shash);
 269
 270	len = buf->len - offset;
 271
 272	while (len > 0) {
 273		/*
 274		 * Note: we don't need to check for the err == 1 case here, as
 275		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
 276		 * and 'min_len = 32' and the currently implemented mapping
 277		 * algorithm we cannot cross a page boundary.
 278		 */
 279		err = map_private_extent_buffer(buf, offset, 32,
 280					&kaddr, &map_start, &map_len);
 281		if (WARN_ON(err))
 282			return err;
 283		cur_len = min(len, map_len - (offset - map_start));
 284		crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
 
 285		len -= cur_len;
 286		offset += cur_len;
 287	}
 288	memset(result, 0, BTRFS_CSUM_SIZE);
 
 
 
 
 
 
 289
 290	crypto_shash_final(shash, result);
 291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292	return 0;
 293}
 294
 295/*
 296 * we can't consider a given block up to date unless the transid of the
 297 * block matches the transid in the parent node's pointer.  This is how we
 298 * detect blocks that either didn't get written at all or got written
 299 * in the wrong place.
 300 */
 301static int verify_parent_transid(struct extent_io_tree *io_tree,
 302				 struct extent_buffer *eb, u64 parent_transid,
 303				 int atomic)
 304{
 305	struct extent_state *cached_state = NULL;
 306	int ret;
 307	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 308
 309	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 310		return 0;
 311
 312	if (atomic)
 313		return -EAGAIN;
 314
 315	if (need_lock) {
 316		btrfs_tree_read_lock(eb);
 317		btrfs_set_lock_blocking_read(eb);
 318	}
 319
 320	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 321			 &cached_state);
 322	if (extent_buffer_uptodate(eb) &&
 323	    btrfs_header_generation(eb) == parent_transid) {
 324		ret = 0;
 325		goto out;
 326	}
 327	btrfs_err_rl(eb->fs_info,
 328		"parent transid verify failed on %llu wanted %llu found %llu",
 329			eb->start,
 330			parent_transid, btrfs_header_generation(eb));
 331	ret = 1;
 332
 333	/*
 334	 * Things reading via commit roots that don't have normal protection,
 335	 * like send, can have a really old block in cache that may point at a
 336	 * block that has been freed and re-allocated.  So don't clear uptodate
 337	 * if we find an eb that is under IO (dirty/writeback) because we could
 338	 * end up reading in the stale data and then writing it back out and
 339	 * making everybody very sad.
 340	 */
 341	if (!extent_buffer_under_io(eb))
 342		clear_extent_buffer_uptodate(eb);
 343out:
 344	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 345			     &cached_state);
 346	if (need_lock)
 347		btrfs_tree_read_unlock_blocking(eb);
 348	return ret;
 349}
 350
 351static bool btrfs_supported_super_csum(u16 csum_type)
 352{
 353	switch (csum_type) {
 354	case BTRFS_CSUM_TYPE_CRC32:
 355		return true;
 356	default:
 357		return false;
 358	}
 359}
 360
 361/*
 362 * Return 0 if the superblock checksum type matches the checksum value of that
 363 * algorithm. Pass the raw disk superblock data.
 364 */
 365static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 366				  char *raw_disk_sb)
 367{
 368	struct btrfs_super_block *disk_sb =
 369		(struct btrfs_super_block *)raw_disk_sb;
 370	char result[BTRFS_CSUM_SIZE];
 371	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 372
 373	shash->tfm = fs_info->csum_shash;
 374	crypto_shash_init(shash);
 375
 376	/*
 377	 * The super_block structure does not span the whole
 378	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 379	 * filled with zeros and is included in the checksum.
 380	 */
 381	crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
 382			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 383	crypto_shash_final(shash, result);
 384
 385	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
 386		return 1;
 387
 388	return 0;
 389}
 
 
 390
 391int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 392			   struct btrfs_key *first_key, u64 parent_transid)
 393{
 394	struct btrfs_fs_info *fs_info = eb->fs_info;
 395	int found_level;
 396	struct btrfs_key found_key;
 397	int ret;
 
 398
 399	found_level = btrfs_header_level(eb);
 400	if (found_level != level) {
 401		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 402		     KERN_ERR "BTRFS: tree level check failed\n");
 403		btrfs_err(fs_info,
 404"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 405			  eb->start, level, found_level);
 406		return -EIO;
 407	}
 408
 409	if (!first_key)
 410		return 0;
 411
 412	/*
 413	 * For live tree block (new tree blocks in current transaction),
 414	 * we need proper lock context to avoid race, which is impossible here.
 415	 * So we only checks tree blocks which is read from disk, whose
 416	 * generation <= fs_info->last_trans_committed.
 417	 */
 418	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 419		return 0;
 420
 421	/* We have @first_key, so this @eb must have at least one item */
 422	if (btrfs_header_nritems(eb) == 0) {
 423		btrfs_err(fs_info,
 424		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 425			  eb->start);
 426		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 427		return -EUCLEAN;
 428	}
 429
 430	if (found_level)
 431		btrfs_node_key_to_cpu(eb, &found_key, 0);
 432	else
 433		btrfs_item_key_to_cpu(eb, &found_key, 0);
 434	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 435
 436	if (ret) {
 437		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 438		     KERN_ERR "BTRFS: tree first key check failed\n");
 439		btrfs_err(fs_info,
 440"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 441			  eb->start, parent_transid, first_key->objectid,
 442			  first_key->type, first_key->offset,
 443			  found_key.objectid, found_key.type,
 444			  found_key.offset);
 445	}
 446	return ret;
 447}
 448
 449/*
 450 * helper to read a given tree block, doing retries as required when
 451 * the checksums don't match and we have alternate mirrors to try.
 452 *
 453 * @parent_transid:	expected transid, skip check if 0
 454 * @level:		expected level, mandatory check
 455 * @first_key:		expected key of first slot, skip check if NULL
 456 */
 457static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 458					  u64 parent_transid, int level,
 459					  struct btrfs_key *first_key)
 460{
 461	struct btrfs_fs_info *fs_info = eb->fs_info;
 462	struct extent_io_tree *io_tree;
 463	int failed = 0;
 464	int ret;
 465	int num_copies = 0;
 466	int mirror_num = 0;
 467	int failed_mirror = 0;
 468
 
 469	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 470	while (1) {
 471		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 472		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 473		if (!ret) {
 474			if (verify_parent_transid(io_tree, eb,
 475						   parent_transid, 0))
 476				ret = -EIO;
 477			else if (btrfs_verify_level_key(eb, level,
 478						first_key, parent_transid))
 479				ret = -EUCLEAN;
 480			else
 481				break;
 
 
 482		}
 483
 
 
 
 
 
 
 
 
 484		num_copies = btrfs_num_copies(fs_info,
 485					      eb->start, eb->len);
 486		if (num_copies == 1)
 487			break;
 488
 489		if (!failed_mirror) {
 490			failed = 1;
 491			failed_mirror = eb->read_mirror;
 492		}
 493
 494		mirror_num++;
 495		if (mirror_num == failed_mirror)
 496			mirror_num++;
 497
 498		if (mirror_num > num_copies)
 499			break;
 500	}
 501
 502	if (failed && !ret && failed_mirror)
 503		btrfs_repair_eb_io_failure(eb, failed_mirror);
 504
 505	return ret;
 506}
 507
 508/*
 509 * checksum a dirty tree block before IO.  This has extra checks to make sure
 510 * we only fill in the checksum field in the first page of a multi-page block
 511 */
 512
 513static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 514{
 515	u64 start = page_offset(page);
 516	u64 found_start;
 517	u8 result[BTRFS_CSUM_SIZE];
 518	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 519	struct extent_buffer *eb;
 520	int ret;
 521
 522	eb = (struct extent_buffer *)page->private;
 523	if (page != eb->pages[0])
 524		return 0;
 525
 526	found_start = btrfs_header_bytenr(eb);
 527	/*
 528	 * Please do not consolidate these warnings into a single if.
 529	 * It is useful to know what went wrong.
 530	 */
 531	if (WARN_ON(found_start != start))
 532		return -EUCLEAN;
 533	if (WARN_ON(!PageUptodate(page)))
 534		return -EUCLEAN;
 535
 536	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 537			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 538
 539	if (csum_tree_block(eb, result))
 540		return -EINVAL;
 541
 542	if (btrfs_header_level(eb))
 543		ret = btrfs_check_node(eb);
 544	else
 545		ret = btrfs_check_leaf_full(eb);
 546
 547	if (ret < 0) {
 548		btrfs_err(fs_info,
 549		"block=%llu write time tree block corruption detected",
 550			  eb->start);
 551		return ret;
 552	}
 553	write_extent_buffer(eb, result, 0, csum_size);
 554
 555	return 0;
 556}
 557
 558static int check_tree_block_fsid(struct extent_buffer *eb)
 
 559{
 560	struct btrfs_fs_info *fs_info = eb->fs_info;
 561	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 562	u8 fsid[BTRFS_FSID_SIZE];
 563	int ret = 1;
 564
 565	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 566	while (fs_devices) {
 567		u8 *metadata_uuid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568
 
 569		/*
 570		 * Checking the incompat flag is only valid for the current
 571		 * fs. For seed devices it's forbidden to have their uuid
 572		 * changed so reading ->fsid in this case is fine
 573		 */
 574		if (fs_devices == fs_info->fs_devices &&
 575		    btrfs_fs_incompat(fs_info, METADATA_UUID))
 576			metadata_uuid = fs_devices->metadata_uuid;
 577		else
 578			metadata_uuid = fs_devices->fsid;
 579
 580		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
 581			ret = 0;
 582			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583		}
 584		fs_devices = fs_devices->seed;
 585	}
 
 586	return ret;
 587}
 588
 589static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 590				      u64 phy_offset, struct page *page,
 591				      u64 start, u64 end, int mirror)
 592{
 593	u64 found_start;
 594	int found_level;
 595	struct extent_buffer *eb;
 596	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 597	struct btrfs_fs_info *fs_info = root->fs_info;
 598	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 599	int ret = 0;
 600	u8 result[BTRFS_CSUM_SIZE];
 601	int reads_done;
 602
 603	if (!page->private)
 604		goto out;
 605
 606	eb = (struct extent_buffer *)page->private;
 607
 608	/* the pending IO might have been the only thing that kept this buffer
 609	 * in memory.  Make sure we have a ref for all this other checks
 610	 */
 611	extent_buffer_get(eb);
 612
 613	reads_done = atomic_dec_and_test(&eb->io_pages);
 614	if (!reads_done)
 615		goto err;
 616
 617	eb->read_mirror = mirror;
 618	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 619		ret = -EIO;
 620		goto err;
 621	}
 622
 623	found_start = btrfs_header_bytenr(eb);
 624	if (found_start != eb->start) {
 625		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 626			     eb->start, found_start);
 627		ret = -EIO;
 628		goto err;
 629	}
 630	if (check_tree_block_fsid(eb)) {
 631		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 632			     eb->start);
 633		ret = -EIO;
 634		goto err;
 635	}
 636	found_level = btrfs_header_level(eb);
 637	if (found_level >= BTRFS_MAX_LEVEL) {
 638		btrfs_err(fs_info, "bad tree block level %d on %llu",
 639			  (int)btrfs_header_level(eb), eb->start);
 640		ret = -EIO;
 641		goto err;
 642	}
 643
 644	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 645				       eb, found_level);
 646
 647	ret = csum_tree_block(eb, result);
 648	if (ret)
 649		goto err;
 650
 651	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
 652		u32 val;
 653		u32 found = 0;
 654
 655		memcpy(&found, result, csum_size);
 656
 657		read_extent_buffer(eb, &val, 0, csum_size);
 658		btrfs_warn_rl(fs_info,
 659		"%s checksum verify failed on %llu wanted %x found %x level %d",
 660			      fs_info->sb->s_id, eb->start,
 661			      val, found, btrfs_header_level(eb));
 662		ret = -EUCLEAN;
 663		goto err;
 664	}
 665
 666	/*
 667	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 668	 * that we don't try and read the other copies of this block, just
 669	 * return -EIO.
 670	 */
 671	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 672		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 673		ret = -EIO;
 674	}
 675
 676	if (found_level > 0 && btrfs_check_node(eb))
 677		ret = -EIO;
 678
 679	if (!ret)
 680		set_extent_buffer_uptodate(eb);
 681	else
 682		btrfs_err(fs_info,
 683			  "block=%llu read time tree block corruption detected",
 684			  eb->start);
 685err:
 686	if (reads_done &&
 687	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 688		btree_readahead_hook(eb, ret);
 689
 690	if (ret) {
 691		/*
 692		 * our io error hook is going to dec the io pages
 693		 * again, we have to make sure it has something
 694		 * to decrement
 695		 */
 696		atomic_inc(&eb->io_pages);
 697		clear_extent_buffer_uptodate(eb);
 698	}
 699	free_extent_buffer(eb);
 700out:
 701	return ret;
 702}
 703
 
 
 
 
 
 
 
 
 
 
 
 
 
 704static void end_workqueue_bio(struct bio *bio)
 705{
 706	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 707	struct btrfs_fs_info *fs_info;
 708	struct btrfs_workqueue *wq;
 709	btrfs_work_func_t func;
 710
 711	fs_info = end_io_wq->info;
 712	end_io_wq->status = bio->bi_status;
 713
 714	if (bio_op(bio) == REQ_OP_WRITE) {
 715		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 716			wq = fs_info->endio_meta_write_workers;
 717			func = btrfs_endio_meta_write_helper;
 718		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 719			wq = fs_info->endio_freespace_worker;
 720			func = btrfs_freespace_write_helper;
 721		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 722			wq = fs_info->endio_raid56_workers;
 723			func = btrfs_endio_raid56_helper;
 724		} else {
 725			wq = fs_info->endio_write_workers;
 726			func = btrfs_endio_write_helper;
 727		}
 728	} else {
 729		if (unlikely(end_io_wq->metadata ==
 730			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 731			wq = fs_info->endio_repair_workers;
 732			func = btrfs_endio_repair_helper;
 733		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 734			wq = fs_info->endio_raid56_workers;
 735			func = btrfs_endio_raid56_helper;
 736		} else if (end_io_wq->metadata) {
 737			wq = fs_info->endio_meta_workers;
 738			func = btrfs_endio_meta_helper;
 739		} else {
 740			wq = fs_info->endio_workers;
 741			func = btrfs_endio_helper;
 742		}
 743	}
 744
 745	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 746	btrfs_queue_work(wq, &end_io_wq->work);
 747}
 748
 749blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 750			enum btrfs_wq_endio_type metadata)
 751{
 752	struct btrfs_end_io_wq *end_io_wq;
 753
 754	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 755	if (!end_io_wq)
 756		return BLK_STS_RESOURCE;
 757
 758	end_io_wq->private = bio->bi_private;
 759	end_io_wq->end_io = bio->bi_end_io;
 760	end_io_wq->info = info;
 761	end_io_wq->status = 0;
 762	end_io_wq->bio = bio;
 763	end_io_wq->metadata = metadata;
 764
 765	bio->bi_private = end_io_wq;
 766	bio->bi_end_io = end_workqueue_bio;
 767	return 0;
 768}
 769
 
 
 
 
 
 
 
 
 770static void run_one_async_start(struct btrfs_work *work)
 771{
 772	struct async_submit_bio *async;
 773	blk_status_t ret;
 774
 775	async = container_of(work, struct  async_submit_bio, work);
 776	ret = async->submit_bio_start(async->private_data, async->bio,
 
 777				      async->bio_offset);
 778	if (ret)
 779		async->status = ret;
 780}
 781
 782/*
 783 * In order to insert checksums into the metadata in large chunks, we wait
 784 * until bio submission time.   All the pages in the bio are checksummed and
 785 * sums are attached onto the ordered extent record.
 786 *
 787 * At IO completion time the csums attached on the ordered extent record are
 788 * inserted into the tree.
 789 */
 790static void run_one_async_done(struct btrfs_work *work)
 791{
 
 792	struct async_submit_bio *async;
 793	struct inode *inode;
 794	blk_status_t ret;
 795
 796	async = container_of(work, struct  async_submit_bio, work);
 797	inode = async->private_data;
 
 
 
 
 
 
 
 
 
 
 798
 799	/* If an error occurred we just want to clean up the bio and move on */
 800	if (async->status) {
 801		async->bio->bi_status = async->status;
 802		bio_endio(async->bio);
 803		return;
 804	}
 805
 806	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
 807			async->mirror_num, 1);
 808	if (ret) {
 809		async->bio->bi_status = ret;
 810		bio_endio(async->bio);
 811	}
 812}
 813
 814static void run_one_async_free(struct btrfs_work *work)
 815{
 816	struct async_submit_bio *async;
 817
 818	async = container_of(work, struct  async_submit_bio, work);
 819	kfree(async);
 820}
 821
 822blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
 823				 int mirror_num, unsigned long bio_flags,
 824				 u64 bio_offset, void *private_data,
 825				 extent_submit_bio_start_t *submit_bio_start)
 
 
 826{
 827	struct async_submit_bio *async;
 828
 829	async = kmalloc(sizeof(*async), GFP_NOFS);
 830	if (!async)
 831		return BLK_STS_RESOURCE;
 832
 833	async->private_data = private_data;
 834	async->bio = bio;
 835	async->mirror_num = mirror_num;
 836	async->submit_bio_start = submit_bio_start;
 
 837
 838	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 839			run_one_async_done, run_one_async_free);
 840
 
 841	async->bio_offset = bio_offset;
 842
 843	async->status = 0;
 
 
 844
 845	if (op_is_sync(bio->bi_opf))
 846		btrfs_set_work_high_priority(&async->work);
 847
 848	btrfs_queue_work(fs_info->workers, &async->work);
 
 
 
 
 
 
 
 849	return 0;
 850}
 851
 852static blk_status_t btree_csum_one_bio(struct bio *bio)
 853{
 854	struct bio_vec *bvec;
 855	struct btrfs_root *root;
 856	int ret = 0;
 857	struct bvec_iter_all iter_all;
 858
 859	ASSERT(!bio_flagged(bio, BIO_CLONED));
 860	bio_for_each_segment_all(bvec, bio, iter_all) {
 861		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 862		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 863		if (ret)
 864			break;
 865	}
 866
 867	return errno_to_blk_status(ret);
 868}
 869
 870static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
 871					     u64 bio_offset)
 
 872{
 873	/*
 874	 * when we're called for a write, we're already in the async
 875	 * submission context.  Just jump into btrfs_map_bio
 876	 */
 877	return btree_csum_one_bio(bio);
 878}
 879
 880static int check_async_write(struct btrfs_fs_info *fs_info,
 881			     struct btrfs_inode *bi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882{
 883	if (atomic_read(&bi->sync_writers))
 884		return 0;
 885	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 
 886		return 0;
 
 887	return 1;
 888}
 889
 890static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
 891					  int mirror_num,
 892					  unsigned long bio_flags)
 893{
 894	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 895	int async = check_async_write(fs_info, BTRFS_I(inode));
 896	blk_status_t ret;
 897
 898	if (bio_op(bio) != REQ_OP_WRITE) {
 899		/*
 900		 * called for a read, do the setup so that checksum validation
 901		 * can happen in the async kernel threads
 902		 */
 903		ret = btrfs_bio_wq_end_io(fs_info, bio,
 904					  BTRFS_WQ_ENDIO_METADATA);
 905		if (ret)
 906			goto out_w_error;
 907		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 908	} else if (!async) {
 909		ret = btree_csum_one_bio(bio);
 910		if (ret)
 911			goto out_w_error;
 912		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
 913	} else {
 914		/*
 915		 * kthread helpers are used to submit writes so that
 916		 * checksumming can happen in parallel across all CPUs
 917		 */
 918		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
 919					  0, inode, btree_submit_bio_start);
 
 
 920	}
 921
 922	if (ret)
 923		goto out_w_error;
 924	return 0;
 925
 926out_w_error:
 927	bio->bi_status = ret;
 928	bio_endio(bio);
 929	return ret;
 930}
 931
 932#ifdef CONFIG_MIGRATION
 933static int btree_migratepage(struct address_space *mapping,
 934			struct page *newpage, struct page *page,
 935			enum migrate_mode mode)
 936{
 937	/*
 938	 * we can't safely write a btree page from here,
 939	 * we haven't done the locking hook
 940	 */
 941	if (PageDirty(page))
 942		return -EAGAIN;
 943	/*
 944	 * Buffers may be managed in a filesystem specific way.
 945	 * We must have no buffers or drop them.
 946	 */
 947	if (page_has_private(page) &&
 948	    !try_to_release_page(page, GFP_KERNEL))
 949		return -EAGAIN;
 950	return migrate_page(mapping, newpage, page, mode);
 951}
 952#endif
 953
 954
 955static int btree_writepages(struct address_space *mapping,
 956			    struct writeback_control *wbc)
 957{
 958	struct btrfs_fs_info *fs_info;
 959	int ret;
 960
 961	if (wbc->sync_mode == WB_SYNC_NONE) {
 962
 963		if (wbc->for_kupdate)
 964			return 0;
 965
 966		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 967		/* this is a bit racy, but that's ok */
 968		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 969					     BTRFS_DIRTY_METADATA_THRESH,
 970					     fs_info->dirty_metadata_batch);
 971		if (ret < 0)
 972			return 0;
 973	}
 974	return btree_write_cache_pages(mapping, wbc);
 975}
 976
 977static int btree_readpage(struct file *file, struct page *page)
 978{
 979	struct extent_io_tree *tree;
 980	tree = &BTRFS_I(page->mapping->host)->io_tree;
 981	return extent_read_full_page(tree, page, btree_get_extent, 0);
 982}
 983
 984static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 985{
 986	if (PageWriteback(page) || PageDirty(page))
 987		return 0;
 988
 989	return try_release_extent_buffer(page);
 990}
 991
 992static void btree_invalidatepage(struct page *page, unsigned int offset,
 993				 unsigned int length)
 994{
 995	struct extent_io_tree *tree;
 996	tree = &BTRFS_I(page->mapping->host)->io_tree;
 997	extent_invalidatepage(tree, page, offset);
 998	btree_releasepage(page, GFP_NOFS);
 999	if (PagePrivate(page)) {
1000		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1001			   "page private not zero on page %llu",
1002			   (unsigned long long)page_offset(page));
1003		ClearPagePrivate(page);
1004		set_page_private(page, 0);
1005		put_page(page);
1006	}
1007}
1008
1009static int btree_set_page_dirty(struct page *page)
1010{
1011#ifdef DEBUG
1012	struct extent_buffer *eb;
1013
1014	BUG_ON(!PagePrivate(page));
1015	eb = (struct extent_buffer *)page->private;
1016	BUG_ON(!eb);
1017	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1018	BUG_ON(!atomic_read(&eb->refs));
1019	btrfs_assert_tree_locked(eb);
1020#endif
1021	return __set_page_dirty_nobuffers(page);
1022}
1023
1024static const struct address_space_operations btree_aops = {
1025	.readpage	= btree_readpage,
1026	.writepages	= btree_writepages,
1027	.releasepage	= btree_releasepage,
1028	.invalidatepage = btree_invalidatepage,
1029#ifdef CONFIG_MIGRATION
1030	.migratepage	= btree_migratepage,
1031#endif
1032	.set_page_dirty = btree_set_page_dirty,
1033};
1034
1035void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1036{
1037	struct extent_buffer *buf = NULL;
1038	int ret;
1039
1040	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1041	if (IS_ERR(buf))
1042		return;
 
 
 
 
1043
1044	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1045	if (ret < 0)
1046		free_extent_buffer_stale(buf);
1047	else
 
 
 
 
 
 
 
 
 
 
 
 
 
1048		free_extent_buffer(buf);
 
 
 
 
 
 
 
 
 
 
 
 
1049}
1050
1051struct extent_buffer *btrfs_find_create_tree_block(
1052						struct btrfs_fs_info *fs_info,
1053						u64 bytenr)
1054{
1055	if (btrfs_is_testing(fs_info))
1056		return alloc_test_extent_buffer(fs_info, bytenr);
1057	return alloc_extent_buffer(fs_info, bytenr);
1058}
1059
1060/*
1061 * Read tree block at logical address @bytenr and do variant basic but critical
1062 * verification.
1063 *
1064 * @parent_transid:	expected transid of this tree block, skip check if 0
1065 * @level:		expected level, mandatory check
1066 * @first_key:		expected key in slot 0, skip check if NULL
1067 */
 
 
 
 
 
1068struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1069				      u64 parent_transid, int level,
1070				      struct btrfs_key *first_key)
1071{
1072	struct extent_buffer *buf = NULL;
1073	int ret;
1074
1075	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1076	if (IS_ERR(buf))
1077		return buf;
1078
1079	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1080					     level, first_key);
1081	if (ret) {
1082		free_extent_buffer_stale(buf);
1083		return ERR_PTR(ret);
1084	}
1085	return buf;
1086
1087}
1088
1089void btrfs_clean_tree_block(struct extent_buffer *buf)
 
 
1090{
1091	struct btrfs_fs_info *fs_info = buf->fs_info;
1092	if (btrfs_header_generation(buf) ==
1093	    fs_info->running_transaction->transid) {
1094		btrfs_assert_tree_locked(buf);
1095
1096		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1097			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1098						 -buf->len,
1099						 fs_info->dirty_metadata_batch);
1100			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1101			btrfs_set_lock_blocking_write(buf);
1102			clear_extent_buffer_dirty(buf);
1103		}
1104	}
1105}
1106
1107static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1108{
1109	struct btrfs_subvolume_writers *writers;
1110	int ret;
1111
1112	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1113	if (!writers)
1114		return ERR_PTR(-ENOMEM);
1115
1116	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1117	if (ret < 0) {
1118		kfree(writers);
1119		return ERR_PTR(ret);
1120	}
1121
1122	init_waitqueue_head(&writers->wait);
1123	return writers;
1124}
1125
1126static void
1127btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1128{
1129	percpu_counter_destroy(&writers->counter);
1130	kfree(writers);
1131}
1132
1133static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1134			 u64 objectid)
1135{
1136	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1137	root->node = NULL;
1138	root->commit_root = NULL;
1139	root->state = 0;
1140	root->orphan_cleanup_state = 0;
1141
 
1142	root->last_trans = 0;
1143	root->highest_objectid = 0;
1144	root->nr_delalloc_inodes = 0;
1145	root->nr_ordered_extents = 0;
 
1146	root->inode_tree = RB_ROOT;
1147	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1148	root->block_rsv = NULL;
 
1149
1150	INIT_LIST_HEAD(&root->dirty_list);
1151	INIT_LIST_HEAD(&root->root_list);
1152	INIT_LIST_HEAD(&root->delalloc_inodes);
1153	INIT_LIST_HEAD(&root->delalloc_root);
1154	INIT_LIST_HEAD(&root->ordered_extents);
1155	INIT_LIST_HEAD(&root->ordered_root);
1156	INIT_LIST_HEAD(&root->reloc_dirty_list);
1157	INIT_LIST_HEAD(&root->logged_list[0]);
1158	INIT_LIST_HEAD(&root->logged_list[1]);
 
1159	spin_lock_init(&root->inode_lock);
1160	spin_lock_init(&root->delalloc_lock);
1161	spin_lock_init(&root->ordered_extent_lock);
1162	spin_lock_init(&root->accounting_lock);
1163	spin_lock_init(&root->log_extents_lock[0]);
1164	spin_lock_init(&root->log_extents_lock[1]);
1165	spin_lock_init(&root->qgroup_meta_rsv_lock);
1166	mutex_init(&root->objectid_mutex);
1167	mutex_init(&root->log_mutex);
1168	mutex_init(&root->ordered_extent_mutex);
1169	mutex_init(&root->delalloc_mutex);
1170	init_waitqueue_head(&root->log_writer_wait);
1171	init_waitqueue_head(&root->log_commit_wait[0]);
1172	init_waitqueue_head(&root->log_commit_wait[1]);
1173	INIT_LIST_HEAD(&root->log_ctxs[0]);
1174	INIT_LIST_HEAD(&root->log_ctxs[1]);
1175	atomic_set(&root->log_commit[0], 0);
1176	atomic_set(&root->log_commit[1], 0);
1177	atomic_set(&root->log_writers, 0);
1178	atomic_set(&root->log_batch, 0);
1179	refcount_set(&root->refs, 1);
1180	atomic_set(&root->will_be_snapshotted, 0);
1181	atomic_set(&root->snapshot_force_cow, 0);
1182	atomic_set(&root->nr_swapfiles, 0);
1183	root->log_transid = 0;
1184	root->log_transid_committed = -1;
1185	root->last_log_commit = 0;
1186	if (!dummy)
1187		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1188				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1189
1190	memset(&root->root_key, 0, sizeof(root->root_key));
1191	memset(&root->root_item, 0, sizeof(root->root_item));
1192	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1193	if (!dummy)
1194		root->defrag_trans_start = fs_info->generation;
1195	else
1196		root->defrag_trans_start = 0;
1197	root->root_key.objectid = objectid;
1198	root->anon_dev = 0;
1199
1200	spin_lock_init(&root->root_item_lock);
1201	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1202}
1203
1204static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1205		gfp_t flags)
1206{
1207	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1208	if (root)
1209		root->fs_info = fs_info;
1210	return root;
1211}
1212
1213#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1214/* Should only be used by the testing infrastructure */
1215struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1216{
1217	struct btrfs_root *root;
1218
1219	if (!fs_info)
1220		return ERR_PTR(-EINVAL);
1221
1222	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1223	if (!root)
1224		return ERR_PTR(-ENOMEM);
1225
1226	/* We don't use the stripesize in selftest, set it as sectorsize */
1227	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1228	root->alloc_bytenr = 0;
1229
1230	return root;
1231}
1232#endif
1233
1234struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
 
1235				     u64 objectid)
1236{
1237	struct btrfs_fs_info *fs_info = trans->fs_info;
1238	struct extent_buffer *leaf;
1239	struct btrfs_root *tree_root = fs_info->tree_root;
1240	struct btrfs_root *root;
1241	struct btrfs_key key;
1242	unsigned int nofs_flag;
1243	int ret = 0;
1244	uuid_le uuid = NULL_UUID_LE;
1245
1246	/*
1247	 * We're holding a transaction handle, so use a NOFS memory allocation
1248	 * context to avoid deadlock if reclaim happens.
1249	 */
1250	nofs_flag = memalloc_nofs_save();
1251	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1252	memalloc_nofs_restore(nofs_flag);
1253	if (!root)
1254		return ERR_PTR(-ENOMEM);
1255
1256	__setup_root(root, fs_info, objectid);
1257	root->root_key.objectid = objectid;
1258	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1259	root->root_key.offset = 0;
1260
1261	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1262	if (IS_ERR(leaf)) {
1263		ret = PTR_ERR(leaf);
1264		leaf = NULL;
1265		goto fail;
1266	}
1267
 
 
 
 
 
1268	root->node = leaf;
 
 
 
1269	btrfs_mark_buffer_dirty(leaf);
1270
1271	root->commit_root = btrfs_root_node(root);
1272	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1273
1274	root->root_item.flags = 0;
1275	root->root_item.byte_limit = 0;
1276	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1277	btrfs_set_root_generation(&root->root_item, trans->transid);
1278	btrfs_set_root_level(&root->root_item, 0);
1279	btrfs_set_root_refs(&root->root_item, 1);
1280	btrfs_set_root_used(&root->root_item, leaf->len);
1281	btrfs_set_root_last_snapshot(&root->root_item, 0);
1282	btrfs_set_root_dirid(&root->root_item, 0);
1283	if (is_fstree(objectid))
1284		uuid_le_gen(&uuid);
1285	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1286	root->root_item.drop_level = 0;
1287
1288	key.objectid = objectid;
1289	key.type = BTRFS_ROOT_ITEM_KEY;
1290	key.offset = 0;
1291	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292	if (ret)
1293		goto fail;
1294
1295	btrfs_tree_unlock(leaf);
1296
1297	return root;
1298
1299fail:
1300	if (leaf) {
1301		btrfs_tree_unlock(leaf);
1302		free_extent_buffer(root->commit_root);
1303		free_extent_buffer(leaf);
1304	}
1305	kfree(root);
1306
1307	return ERR_PTR(ret);
1308}
1309
1310static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1311					 struct btrfs_fs_info *fs_info)
1312{
1313	struct btrfs_root *root;
1314	struct extent_buffer *leaf;
1315
1316	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1317	if (!root)
1318		return ERR_PTR(-ENOMEM);
1319
1320	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1321
1322	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1323	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1324	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1325
1326	/*
1327	 * DON'T set REF_COWS for log trees
1328	 *
1329	 * log trees do not get reference counted because they go away
1330	 * before a real commit is actually done.  They do store pointers
1331	 * to file data extents, and those reference counts still get
1332	 * updated (along with back refs to the log tree).
1333	 */
1334
1335	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1336			NULL, 0, 0, 0);
1337	if (IS_ERR(leaf)) {
1338		kfree(root);
1339		return ERR_CAST(leaf);
1340	}
1341
 
 
 
 
 
1342	root->node = leaf;
1343
 
1344	btrfs_mark_buffer_dirty(root->node);
1345	btrfs_tree_unlock(root->node);
1346	return root;
1347}
1348
1349int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1350			     struct btrfs_fs_info *fs_info)
1351{
1352	struct btrfs_root *log_root;
1353
1354	log_root = alloc_log_tree(trans, fs_info);
1355	if (IS_ERR(log_root))
1356		return PTR_ERR(log_root);
1357	WARN_ON(fs_info->log_root_tree);
1358	fs_info->log_root_tree = log_root;
1359	return 0;
1360}
1361
1362int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1363		       struct btrfs_root *root)
1364{
1365	struct btrfs_fs_info *fs_info = root->fs_info;
1366	struct btrfs_root *log_root;
1367	struct btrfs_inode_item *inode_item;
1368
1369	log_root = alloc_log_tree(trans, fs_info);
1370	if (IS_ERR(log_root))
1371		return PTR_ERR(log_root);
1372
1373	log_root->last_trans = trans->transid;
1374	log_root->root_key.offset = root->root_key.objectid;
1375
1376	inode_item = &log_root->root_item.inode;
1377	btrfs_set_stack_inode_generation(inode_item, 1);
1378	btrfs_set_stack_inode_size(inode_item, 3);
1379	btrfs_set_stack_inode_nlink(inode_item, 1);
1380	btrfs_set_stack_inode_nbytes(inode_item,
1381				     fs_info->nodesize);
1382	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1383
1384	btrfs_set_root_node(&log_root->root_item, log_root->node);
1385
1386	WARN_ON(root->log_root);
1387	root->log_root = log_root;
1388	root->log_transid = 0;
1389	root->log_transid_committed = -1;
1390	root->last_log_commit = 0;
1391	return 0;
1392}
1393
1394static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1395					       struct btrfs_key *key)
1396{
1397	struct btrfs_root *root;
1398	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1399	struct btrfs_path *path;
1400	u64 generation;
1401	int ret;
1402	int level;
1403
1404	path = btrfs_alloc_path();
1405	if (!path)
1406		return ERR_PTR(-ENOMEM);
1407
1408	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1409	if (!root) {
1410		ret = -ENOMEM;
1411		goto alloc_fail;
1412	}
1413
1414	__setup_root(root, fs_info, key->objectid);
1415
1416	ret = btrfs_find_root(tree_root, key, path,
1417			      &root->root_item, &root->root_key);
1418	if (ret) {
1419		if (ret > 0)
1420			ret = -ENOENT;
1421		goto find_fail;
1422	}
1423
1424	generation = btrfs_root_generation(&root->root_item);
1425	level = btrfs_root_level(&root->root_item);
1426	root->node = read_tree_block(fs_info,
1427				     btrfs_root_bytenr(&root->root_item),
1428				     generation, level, NULL);
1429	if (IS_ERR(root->node)) {
1430		ret = PTR_ERR(root->node);
1431		goto find_fail;
1432	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1433		ret = -EIO;
1434		free_extent_buffer(root->node);
1435		goto find_fail;
1436	}
1437	root->commit_root = btrfs_root_node(root);
1438out:
1439	btrfs_free_path(path);
1440	return root;
1441
1442find_fail:
1443	kfree(root);
1444alloc_fail:
1445	root = ERR_PTR(ret);
1446	goto out;
1447}
1448
1449struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1450				      struct btrfs_key *location)
1451{
1452	struct btrfs_root *root;
1453
1454	root = btrfs_read_tree_root(tree_root, location);
1455	if (IS_ERR(root))
1456		return root;
1457
1458	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1459		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1460		btrfs_check_and_init_root_item(&root->root_item);
1461	}
1462
1463	return root;
1464}
1465
1466int btrfs_init_fs_root(struct btrfs_root *root)
1467{
1468	int ret;
1469	struct btrfs_subvolume_writers *writers;
1470
1471	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1472	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1473					GFP_NOFS);
1474	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1475		ret = -ENOMEM;
1476		goto fail;
1477	}
1478
1479	writers = btrfs_alloc_subvolume_writers();
1480	if (IS_ERR(writers)) {
1481		ret = PTR_ERR(writers);
1482		goto fail;
1483	}
1484	root->subv_writers = writers;
1485
1486	btrfs_init_free_ino_ctl(root);
1487	spin_lock_init(&root->ino_cache_lock);
1488	init_waitqueue_head(&root->ino_cache_wait);
1489
1490	ret = get_anon_bdev(&root->anon_dev);
1491	if (ret)
1492		goto fail;
1493
1494	mutex_lock(&root->objectid_mutex);
1495	ret = btrfs_find_highest_objectid(root,
1496					&root->highest_objectid);
1497	if (ret) {
1498		mutex_unlock(&root->objectid_mutex);
1499		goto fail;
1500	}
1501
1502	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1503
1504	mutex_unlock(&root->objectid_mutex);
1505
1506	return 0;
1507fail:
1508	/* The caller is responsible to call btrfs_free_fs_root */
1509	return ret;
1510}
1511
1512struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1513					u64 root_id)
1514{
1515	struct btrfs_root *root;
1516
1517	spin_lock(&fs_info->fs_roots_radix_lock);
1518	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1519				 (unsigned long)root_id);
1520	spin_unlock(&fs_info->fs_roots_radix_lock);
1521	return root;
1522}
1523
1524int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1525			 struct btrfs_root *root)
1526{
1527	int ret;
1528
1529	ret = radix_tree_preload(GFP_NOFS);
1530	if (ret)
1531		return ret;
1532
1533	spin_lock(&fs_info->fs_roots_radix_lock);
1534	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1535				(unsigned long)root->root_key.objectid,
1536				root);
1537	if (ret == 0)
1538		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1539	spin_unlock(&fs_info->fs_roots_radix_lock);
1540	radix_tree_preload_end();
1541
1542	return ret;
1543}
1544
1545struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1546				     struct btrfs_key *location,
1547				     bool check_ref)
1548{
1549	struct btrfs_root *root;
1550	struct btrfs_path *path;
1551	struct btrfs_key key;
1552	int ret;
1553
1554	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1555		return fs_info->tree_root;
1556	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1557		return fs_info->extent_root;
1558	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1559		return fs_info->chunk_root;
1560	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1561		return fs_info->dev_root;
1562	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1563		return fs_info->csum_root;
1564	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1565		return fs_info->quota_root ? fs_info->quota_root :
1566					     ERR_PTR(-ENOENT);
1567	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1568		return fs_info->uuid_root ? fs_info->uuid_root :
1569					    ERR_PTR(-ENOENT);
1570	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1571		return fs_info->free_space_root ? fs_info->free_space_root :
1572						  ERR_PTR(-ENOENT);
1573again:
1574	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1575	if (root) {
1576		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1577			return ERR_PTR(-ENOENT);
1578		return root;
1579	}
1580
1581	root = btrfs_read_fs_root(fs_info->tree_root, location);
1582	if (IS_ERR(root))
1583		return root;
1584
1585	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1586		ret = -ENOENT;
1587		goto fail;
1588	}
1589
1590	ret = btrfs_init_fs_root(root);
1591	if (ret)
1592		goto fail;
1593
1594	path = btrfs_alloc_path();
1595	if (!path) {
1596		ret = -ENOMEM;
1597		goto fail;
1598	}
1599	key.objectid = BTRFS_ORPHAN_OBJECTID;
1600	key.type = BTRFS_ORPHAN_ITEM_KEY;
1601	key.offset = location->objectid;
1602
1603	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1604	btrfs_free_path(path);
1605	if (ret < 0)
1606		goto fail;
1607	if (ret == 0)
1608		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1609
1610	ret = btrfs_insert_fs_root(fs_info, root);
1611	if (ret) {
1612		if (ret == -EEXIST) {
1613			btrfs_free_fs_root(root);
1614			goto again;
1615		}
1616		goto fail;
1617	}
1618	return root;
1619fail:
1620	btrfs_free_fs_root(root);
1621	return ERR_PTR(ret);
1622}
1623
1624static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1625{
1626	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627	int ret = 0;
1628	struct btrfs_device *device;
1629	struct backing_dev_info *bdi;
1630
1631	rcu_read_lock();
1632	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1633		if (!device->bdev)
1634			continue;
1635		bdi = device->bdev->bd_bdi;
1636		if (bdi_congested(bdi, bdi_bits)) {
1637			ret = 1;
1638			break;
1639		}
1640	}
1641	rcu_read_unlock();
1642	return ret;
1643}
1644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645/*
1646 * called by the kthread helper functions to finally call the bio end_io
1647 * functions.  This is where read checksum verification actually happens
1648 */
1649static void end_workqueue_fn(struct btrfs_work *work)
1650{
1651	struct bio *bio;
1652	struct btrfs_end_io_wq *end_io_wq;
1653
1654	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1655	bio = end_io_wq->bio;
1656
1657	bio->bi_status = end_io_wq->status;
1658	bio->bi_private = end_io_wq->private;
1659	bio->bi_end_io = end_io_wq->end_io;
1660	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1661	bio_endio(bio);
1662}
1663
1664static int cleaner_kthread(void *arg)
1665{
1666	struct btrfs_root *root = arg;
1667	struct btrfs_fs_info *fs_info = root->fs_info;
1668	int again;
 
1669
1670	while (1) {
1671		again = 0;
1672
1673		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1674
1675		/* Make the cleaner go to sleep early. */
1676		if (btrfs_need_cleaner_sleep(fs_info))
1677			goto sleep;
1678
1679		/*
1680		 * Do not do anything if we might cause open_ctree() to block
1681		 * before we have finished mounting the filesystem.
1682		 */
1683		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1684			goto sleep;
1685
1686		if (!mutex_trylock(&fs_info->cleaner_mutex))
1687			goto sleep;
1688
1689		/*
1690		 * Avoid the problem that we change the status of the fs
1691		 * during the above check and trylock.
1692		 */
1693		if (btrfs_need_cleaner_sleep(fs_info)) {
1694			mutex_unlock(&fs_info->cleaner_mutex);
1695			goto sleep;
1696		}
1697
 
1698		btrfs_run_delayed_iputs(fs_info);
 
1699
1700		again = btrfs_clean_one_deleted_snapshot(root);
1701		mutex_unlock(&fs_info->cleaner_mutex);
1702
1703		/*
1704		 * The defragger has dealt with the R/O remount and umount,
1705		 * needn't do anything special here.
1706		 */
1707		btrfs_run_defrag_inodes(fs_info);
1708
1709		/*
1710		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711		 * with relocation (btrfs_relocate_chunk) and relocation
1712		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715		 * unused block groups.
1716		 */
1717		btrfs_delete_unused_bgs(fs_info);
1718sleep:
1719		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1720		if (kthread_should_park())
1721			kthread_parkme();
1722		if (kthread_should_stop())
1723			return 0;
1724		if (!again) {
1725			set_current_state(TASK_INTERRUPTIBLE);
1726			schedule();
 
1727			__set_current_state(TASK_RUNNING);
1728		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729	}
 
 
1730}
1731
1732static int transaction_kthread(void *arg)
1733{
1734	struct btrfs_root *root = arg;
1735	struct btrfs_fs_info *fs_info = root->fs_info;
1736	struct btrfs_trans_handle *trans;
1737	struct btrfs_transaction *cur;
1738	u64 transid;
1739	time64_t now;
1740	unsigned long delay;
1741	bool cannot_commit;
1742
1743	do {
1744		cannot_commit = false;
1745		delay = HZ * fs_info->commit_interval;
1746		mutex_lock(&fs_info->transaction_kthread_mutex);
1747
1748		spin_lock(&fs_info->trans_lock);
1749		cur = fs_info->running_transaction;
1750		if (!cur) {
1751			spin_unlock(&fs_info->trans_lock);
1752			goto sleep;
1753		}
1754
1755		now = ktime_get_seconds();
1756		if (cur->state < TRANS_STATE_BLOCKED &&
1757		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1758		    (now < cur->start_time ||
1759		     now - cur->start_time < fs_info->commit_interval)) {
1760			spin_unlock(&fs_info->trans_lock);
1761			delay = HZ * 5;
1762			goto sleep;
1763		}
1764		transid = cur->transid;
1765		spin_unlock(&fs_info->trans_lock);
1766
1767		/* If the file system is aborted, this will always fail. */
1768		trans = btrfs_attach_transaction(root);
1769		if (IS_ERR(trans)) {
1770			if (PTR_ERR(trans) != -ENOENT)
1771				cannot_commit = true;
1772			goto sleep;
1773		}
1774		if (transid == trans->transid) {
1775			btrfs_commit_transaction(trans);
1776		} else {
1777			btrfs_end_transaction(trans);
1778		}
1779sleep:
1780		wake_up_process(fs_info->cleaner_kthread);
1781		mutex_unlock(&fs_info->transaction_kthread_mutex);
1782
1783		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1784				      &fs_info->fs_state)))
1785			btrfs_cleanup_transaction(fs_info);
 
1786		if (!kthread_should_stop() &&
1787				(!btrfs_transaction_blocked(fs_info) ||
1788				 cannot_commit))
1789			schedule_timeout_interruptible(delay);
 
1790	} while (!kthread_should_stop());
1791	return 0;
1792}
1793
1794/*
1795 * this will find the highest generation in the array of
1796 * root backups.  The index of the highest array is returned,
1797 * or -1 if we can't find anything.
1798 *
1799 * We check to make sure the array is valid by comparing the
1800 * generation of the latest  root in the array with the generation
1801 * in the super block.  If they don't match we pitch it.
1802 */
1803static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804{
1805	u64 cur;
1806	int newest_index = -1;
1807	struct btrfs_root_backup *root_backup;
1808	int i;
1809
1810	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811		root_backup = info->super_copy->super_roots + i;
1812		cur = btrfs_backup_tree_root_gen(root_backup);
1813		if (cur == newest_gen)
1814			newest_index = i;
1815	}
1816
1817	/* check to see if we actually wrapped around */
1818	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819		root_backup = info->super_copy->super_roots;
1820		cur = btrfs_backup_tree_root_gen(root_backup);
1821		if (cur == newest_gen)
1822			newest_index = 0;
1823	}
1824	return newest_index;
1825}
1826
1827
1828/*
1829 * find the oldest backup so we know where to store new entries
1830 * in the backup array.  This will set the backup_root_index
1831 * field in the fs_info struct
1832 */
1833static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834				     u64 newest_gen)
1835{
1836	int newest_index = -1;
1837
1838	newest_index = find_newest_super_backup(info, newest_gen);
1839	/* if there was garbage in there, just move along */
1840	if (newest_index == -1) {
1841		info->backup_root_index = 0;
1842	} else {
1843		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844	}
1845}
1846
1847/*
1848 * copy all the root pointers into the super backup array.
1849 * this will bump the backup pointer by one when it is
1850 * done
1851 */
1852static void backup_super_roots(struct btrfs_fs_info *info)
1853{
1854	int next_backup;
1855	struct btrfs_root_backup *root_backup;
1856	int last_backup;
1857
1858	next_backup = info->backup_root_index;
1859	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860		BTRFS_NUM_BACKUP_ROOTS;
1861
1862	/*
1863	 * just overwrite the last backup if we're at the same generation
1864	 * this happens only at umount
1865	 */
1866	root_backup = info->super_for_commit->super_roots + last_backup;
1867	if (btrfs_backup_tree_root_gen(root_backup) ==
1868	    btrfs_header_generation(info->tree_root->node))
1869		next_backup = last_backup;
1870
1871	root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873	/*
1874	 * make sure all of our padding and empty slots get zero filled
1875	 * regardless of which ones we use today
1876	 */
1877	memset(root_backup, 0, sizeof(*root_backup));
1878
1879	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882	btrfs_set_backup_tree_root_gen(root_backup,
1883			       btrfs_header_generation(info->tree_root->node));
1884
1885	btrfs_set_backup_tree_root_level(root_backup,
1886			       btrfs_header_level(info->tree_root->node));
1887
1888	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889	btrfs_set_backup_chunk_root_gen(root_backup,
1890			       btrfs_header_generation(info->chunk_root->node));
1891	btrfs_set_backup_chunk_root_level(root_backup,
1892			       btrfs_header_level(info->chunk_root->node));
1893
1894	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895	btrfs_set_backup_extent_root_gen(root_backup,
1896			       btrfs_header_generation(info->extent_root->node));
1897	btrfs_set_backup_extent_root_level(root_backup,
1898			       btrfs_header_level(info->extent_root->node));
1899
1900	/*
1901	 * we might commit during log recovery, which happens before we set
1902	 * the fs_root.  Make sure it is valid before we fill it in.
1903	 */
1904	if (info->fs_root && info->fs_root->node) {
1905		btrfs_set_backup_fs_root(root_backup,
1906					 info->fs_root->node->start);
1907		btrfs_set_backup_fs_root_gen(root_backup,
1908			       btrfs_header_generation(info->fs_root->node));
1909		btrfs_set_backup_fs_root_level(root_backup,
1910			       btrfs_header_level(info->fs_root->node));
1911	}
1912
1913	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914	btrfs_set_backup_dev_root_gen(root_backup,
1915			       btrfs_header_generation(info->dev_root->node));
1916	btrfs_set_backup_dev_root_level(root_backup,
1917				       btrfs_header_level(info->dev_root->node));
1918
1919	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920	btrfs_set_backup_csum_root_gen(root_backup,
1921			       btrfs_header_generation(info->csum_root->node));
1922	btrfs_set_backup_csum_root_level(root_backup,
1923			       btrfs_header_level(info->csum_root->node));
1924
1925	btrfs_set_backup_total_bytes(root_backup,
1926			     btrfs_super_total_bytes(info->super_copy));
1927	btrfs_set_backup_bytes_used(root_backup,
1928			     btrfs_super_bytes_used(info->super_copy));
1929	btrfs_set_backup_num_devices(root_backup,
1930			     btrfs_super_num_devices(info->super_copy));
1931
1932	/*
1933	 * if we don't copy this out to the super_copy, it won't get remembered
1934	 * for the next commit
1935	 */
1936	memcpy(&info->super_copy->super_roots,
1937	       &info->super_for_commit->super_roots,
1938	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939}
1940
1941/*
1942 * this copies info out of the root backup array and back into
1943 * the in-memory super block.  It is meant to help iterate through
1944 * the array, so you send it the number of backups you've already
1945 * tried and the last backup index you used.
1946 *
1947 * this returns -1 when it has tried all the backups
1948 */
1949static noinline int next_root_backup(struct btrfs_fs_info *info,
1950				     struct btrfs_super_block *super,
1951				     int *num_backups_tried, int *backup_index)
1952{
1953	struct btrfs_root_backup *root_backup;
1954	int newest = *backup_index;
1955
1956	if (*num_backups_tried == 0) {
1957		u64 gen = btrfs_super_generation(super);
1958
1959		newest = find_newest_super_backup(info, gen);
1960		if (newest == -1)
1961			return -1;
1962
1963		*backup_index = newest;
1964		*num_backups_tried = 1;
1965	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966		/* we've tried all the backups, all done */
1967		return -1;
1968	} else {
1969		/* jump to the next oldest backup */
1970		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971			BTRFS_NUM_BACKUP_ROOTS;
1972		*backup_index = newest;
1973		*num_backups_tried += 1;
1974	}
1975	root_backup = super->super_roots + newest;
1976
1977	btrfs_set_super_generation(super,
1978				   btrfs_backup_tree_root_gen(root_backup));
1979	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980	btrfs_set_super_root_level(super,
1981				   btrfs_backup_tree_root_level(root_backup));
1982	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984	/*
1985	 * fixme: the total bytes and num_devices need to match or we should
1986	 * need a fsck
1987	 */
1988	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990	return 0;
1991}
1992
1993/* helper to cleanup workers */
1994static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995{
1996	btrfs_destroy_workqueue(fs_info->fixup_workers);
1997	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1998	btrfs_destroy_workqueue(fs_info->workers);
1999	btrfs_destroy_workqueue(fs_info->endio_workers);
 
2000	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2001	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2002	btrfs_destroy_workqueue(fs_info->rmw_workers);
 
2003	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2004	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2005	btrfs_destroy_workqueue(fs_info->submit_workers);
2006	btrfs_destroy_workqueue(fs_info->delayed_workers);
2007	btrfs_destroy_workqueue(fs_info->caching_workers);
2008	btrfs_destroy_workqueue(fs_info->readahead_workers);
2009	btrfs_destroy_workqueue(fs_info->flush_workers);
2010	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2011	/*
2012	 * Now that all other work queues are destroyed, we can safely destroy
2013	 * the queues used for metadata I/O, since tasks from those other work
2014	 * queues can do metadata I/O operations.
2015	 */
2016	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2017	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2018}
2019
2020static void free_root_extent_buffers(struct btrfs_root *root)
2021{
2022	if (root) {
2023		free_extent_buffer(root->node);
2024		free_extent_buffer(root->commit_root);
2025		root->node = NULL;
2026		root->commit_root = NULL;
2027	}
2028}
2029
2030/* helper to cleanup tree roots */
2031static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2032{
2033	free_root_extent_buffers(info->tree_root);
2034
2035	free_root_extent_buffers(info->dev_root);
2036	free_root_extent_buffers(info->extent_root);
2037	free_root_extent_buffers(info->csum_root);
2038	free_root_extent_buffers(info->quota_root);
2039	free_root_extent_buffers(info->uuid_root);
2040	if (chunk_root)
2041		free_root_extent_buffers(info->chunk_root);
2042	free_root_extent_buffers(info->free_space_root);
2043}
2044
2045void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2046{
2047	int ret;
2048	struct btrfs_root *gang[8];
2049	int i;
2050
2051	while (!list_empty(&fs_info->dead_roots)) {
2052		gang[0] = list_entry(fs_info->dead_roots.next,
2053				     struct btrfs_root, root_list);
2054		list_del(&gang[0]->root_list);
2055
2056		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2057			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2058		} else {
2059			free_extent_buffer(gang[0]->node);
2060			free_extent_buffer(gang[0]->commit_root);
2061			btrfs_put_fs_root(gang[0]);
2062		}
2063	}
2064
2065	while (1) {
2066		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2067					     (void **)gang, 0,
2068					     ARRAY_SIZE(gang));
2069		if (!ret)
2070			break;
2071		for (i = 0; i < ret; i++)
2072			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2073	}
2074
2075	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2076		btrfs_free_log_root_tree(NULL, fs_info);
2077		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2078	}
2079}
2080
2081static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082{
2083	mutex_init(&fs_info->scrub_lock);
2084	atomic_set(&fs_info->scrubs_running, 0);
2085	atomic_set(&fs_info->scrub_pause_req, 0);
2086	atomic_set(&fs_info->scrubs_paused, 0);
2087	atomic_set(&fs_info->scrub_cancel_req, 0);
2088	init_waitqueue_head(&fs_info->scrub_pause_wait);
2089	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2090}
2091
2092static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093{
2094	spin_lock_init(&fs_info->balance_lock);
2095	mutex_init(&fs_info->balance_mutex);
 
2096	atomic_set(&fs_info->balance_pause_req, 0);
2097	atomic_set(&fs_info->balance_cancel_req, 0);
2098	fs_info->balance_ctl = NULL;
2099	init_waitqueue_head(&fs_info->balance_wait_q);
2100}
2101
2102static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2103{
2104	struct inode *inode = fs_info->btree_inode;
2105
2106	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107	set_nlink(inode, 1);
2108	/*
2109	 * we set the i_size on the btree inode to the max possible int.
2110	 * the real end of the address space is determined by all of
2111	 * the devices in the system
2112	 */
2113	inode->i_size = OFFSET_MAX;
2114	inode->i_mapping->a_ops = &btree_aops;
2115
2116	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2117	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118			    IO_TREE_INODE_IO, inode);
2119	BTRFS_I(inode)->io_tree.track_uptodate = false;
2120	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2121
2122	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124	BTRFS_I(inode)->root = fs_info->tree_root;
2125	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127	btrfs_insert_inode_hash(inode);
2128}
2129
2130static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131{
 
 
2132	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2133	init_rwsem(&fs_info->dev_replace.rwsem);
2134	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
 
 
 
2135}
2136
2137static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138{
2139	spin_lock_init(&fs_info->qgroup_lock);
2140	mutex_init(&fs_info->qgroup_ioctl_lock);
2141	fs_info->qgroup_tree = RB_ROOT;
 
2142	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143	fs_info->qgroup_seq = 1;
2144	fs_info->qgroup_ulist = NULL;
2145	fs_info->qgroup_rescan_running = false;
2146	mutex_init(&fs_info->qgroup_rescan_lock);
2147}
2148
2149static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150		struct btrfs_fs_devices *fs_devices)
2151{
2152	u32 max_active = fs_info->thread_pool_size;
2153	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2154
2155	fs_info->workers =
2156		btrfs_alloc_workqueue(fs_info, "worker",
2157				      flags | WQ_HIGHPRI, max_active, 16);
2158
2159	fs_info->delalloc_workers =
2160		btrfs_alloc_workqueue(fs_info, "delalloc",
2161				      flags, max_active, 2);
2162
2163	fs_info->flush_workers =
2164		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165				      flags, max_active, 0);
2166
2167	fs_info->caching_workers =
2168		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169
2170	/*
2171	 * a higher idle thresh on the submit workers makes it much more
2172	 * likely that bios will be send down in a sane order to the
2173	 * devices
2174	 */
2175	fs_info->submit_workers =
2176		btrfs_alloc_workqueue(fs_info, "submit", flags,
2177				      min_t(u64, fs_devices->num_devices,
2178					    max_active), 64);
2179
2180	fs_info->fixup_workers =
2181		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2182
2183	/*
2184	 * endios are largely parallel and should have a very
2185	 * low idle thresh
2186	 */
2187	fs_info->endio_workers =
2188		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2189	fs_info->endio_meta_workers =
2190		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2191				      max_active, 4);
2192	fs_info->endio_meta_write_workers =
2193		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2194				      max_active, 2);
2195	fs_info->endio_raid56_workers =
2196		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2197				      max_active, 4);
2198	fs_info->endio_repair_workers =
2199		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2200	fs_info->rmw_workers =
2201		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2202	fs_info->endio_write_workers =
2203		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2204				      max_active, 2);
2205	fs_info->endio_freespace_worker =
2206		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2207				      max_active, 0);
2208	fs_info->delayed_workers =
2209		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2210				      max_active, 0);
2211	fs_info->readahead_workers =
2212		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2213				      max_active, 2);
2214	fs_info->qgroup_rescan_workers =
2215		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
 
 
 
 
2216
2217	if (!(fs_info->workers && fs_info->delalloc_workers &&
2218	      fs_info->submit_workers && fs_info->flush_workers &&
2219	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2220	      fs_info->endio_meta_write_workers &&
2221	      fs_info->endio_repair_workers &&
2222	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2223	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2224	      fs_info->caching_workers && fs_info->readahead_workers &&
2225	      fs_info->fixup_workers && fs_info->delayed_workers &&
 
2226	      fs_info->qgroup_rescan_workers)) {
2227		return -ENOMEM;
2228	}
2229
2230	return 0;
2231}
2232
2233static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2234{
2235	struct crypto_shash *csum_shash;
2236	const char *csum_name = btrfs_super_csum_name(csum_type);
2237
2238	csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2239
2240	if (IS_ERR(csum_shash)) {
2241		btrfs_err(fs_info, "error allocating %s hash for checksum",
2242			  csum_name);
2243		return PTR_ERR(csum_shash);
2244	}
2245
2246	fs_info->csum_shash = csum_shash;
2247
2248	return 0;
2249}
2250
2251static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2252{
2253	crypto_free_shash(fs_info->csum_shash);
2254}
2255
2256static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2257			    struct btrfs_fs_devices *fs_devices)
2258{
2259	int ret;
2260	struct btrfs_root *log_tree_root;
2261	struct btrfs_super_block *disk_super = fs_info->super_copy;
2262	u64 bytenr = btrfs_super_log_root(disk_super);
2263	int level = btrfs_super_log_root_level(disk_super);
2264
2265	if (fs_devices->rw_devices == 0) {
2266		btrfs_warn(fs_info, "log replay required on RO media");
2267		return -EIO;
2268	}
2269
2270	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2271	if (!log_tree_root)
2272		return -ENOMEM;
2273
2274	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2275
2276	log_tree_root->node = read_tree_block(fs_info, bytenr,
2277					      fs_info->generation + 1,
2278					      level, NULL);
2279	if (IS_ERR(log_tree_root->node)) {
2280		btrfs_warn(fs_info, "failed to read log tree");
2281		ret = PTR_ERR(log_tree_root->node);
2282		kfree(log_tree_root);
2283		return ret;
2284	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2285		btrfs_err(fs_info, "failed to read log tree");
2286		free_extent_buffer(log_tree_root->node);
2287		kfree(log_tree_root);
2288		return -EIO;
2289	}
2290	/* returns with log_tree_root freed on success */
2291	ret = btrfs_recover_log_trees(log_tree_root);
2292	if (ret) {
2293		btrfs_handle_fs_error(fs_info, ret,
2294				      "Failed to recover log tree");
2295		free_extent_buffer(log_tree_root->node);
2296		kfree(log_tree_root);
2297		return ret;
2298	}
2299
2300	if (sb_rdonly(fs_info->sb)) {
2301		ret = btrfs_commit_super(fs_info);
2302		if (ret)
2303			return ret;
2304	}
2305
2306	return 0;
2307}
2308
2309static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2310{
2311	struct btrfs_root *tree_root = fs_info->tree_root;
2312	struct btrfs_root *root;
2313	struct btrfs_key location;
2314	int ret;
2315
2316	BUG_ON(!fs_info->tree_root);
2317
2318	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2319	location.type = BTRFS_ROOT_ITEM_KEY;
2320	location.offset = 0;
2321
2322	root = btrfs_read_tree_root(tree_root, &location);
2323	if (IS_ERR(root)) {
2324		ret = PTR_ERR(root);
2325		goto out;
2326	}
2327	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328	fs_info->extent_root = root;
2329
2330	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2331	root = btrfs_read_tree_root(tree_root, &location);
2332	if (IS_ERR(root)) {
2333		ret = PTR_ERR(root);
2334		goto out;
2335	}
2336	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337	fs_info->dev_root = root;
2338	btrfs_init_devices_late(fs_info);
2339
2340	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2341	root = btrfs_read_tree_root(tree_root, &location);
2342	if (IS_ERR(root)) {
2343		ret = PTR_ERR(root);
2344		goto out;
2345	}
2346	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347	fs_info->csum_root = root;
2348
2349	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2350	root = btrfs_read_tree_root(tree_root, &location);
2351	if (!IS_ERR(root)) {
2352		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2354		fs_info->quota_root = root;
2355	}
2356
2357	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2358	root = btrfs_read_tree_root(tree_root, &location);
2359	if (IS_ERR(root)) {
2360		ret = PTR_ERR(root);
2361		if (ret != -ENOENT)
2362			goto out;
2363	} else {
2364		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2365		fs_info->uuid_root = root;
2366	}
2367
2368	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2369		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2370		root = btrfs_read_tree_root(tree_root, &location);
2371		if (IS_ERR(root)) {
2372			ret = PTR_ERR(root);
2373			goto out;
2374		}
2375		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376		fs_info->free_space_root = root;
2377	}
2378
2379	return 0;
2380out:
2381	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2382		   location.objectid, ret);
2383	return ret;
2384}
2385
2386/*
2387 * Real super block validation
2388 * NOTE: super csum type and incompat features will not be checked here.
2389 *
2390 * @sb:		super block to check
2391 * @mirror_num:	the super block number to check its bytenr:
2392 * 		0	the primary (1st) sb
2393 * 		1, 2	2nd and 3rd backup copy
2394 * 	       -1	skip bytenr check
2395 */
2396static int validate_super(struct btrfs_fs_info *fs_info,
2397			    struct btrfs_super_block *sb, int mirror_num)
2398{
2399	u64 nodesize = btrfs_super_nodesize(sb);
2400	u64 sectorsize = btrfs_super_sectorsize(sb);
2401	int ret = 0;
2402
2403	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2404		btrfs_err(fs_info, "no valid FS found");
2405		ret = -EINVAL;
2406	}
2407	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2408		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2409				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2410		ret = -EINVAL;
2411	}
2412	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2413		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2414				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2415		ret = -EINVAL;
2416	}
2417	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2418		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2419				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2420		ret = -EINVAL;
2421	}
2422	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2424				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2425		ret = -EINVAL;
2426	}
2427
2428	/*
2429	 * Check sectorsize and nodesize first, other check will need it.
2430	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2431	 */
2432	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2433	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2434		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2435		ret = -EINVAL;
2436	}
2437	/* Only PAGE SIZE is supported yet */
2438	if (sectorsize != PAGE_SIZE) {
2439		btrfs_err(fs_info,
2440			"sectorsize %llu not supported yet, only support %lu",
2441			sectorsize, PAGE_SIZE);
2442		ret = -EINVAL;
2443	}
2444	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2445	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2446		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2447		ret = -EINVAL;
2448	}
2449	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2450		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2451			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2452		ret = -EINVAL;
2453	}
2454
2455	/* Root alignment check */
2456	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2457		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2458			   btrfs_super_root(sb));
2459		ret = -EINVAL;
2460	}
2461	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2462		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2463			   btrfs_super_chunk_root(sb));
2464		ret = -EINVAL;
2465	}
2466	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2467		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2468			   btrfs_super_log_root(sb));
2469		ret = -EINVAL;
2470	}
2471
2472	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2473		   BTRFS_FSID_SIZE) != 0) {
2474		btrfs_err(fs_info,
2475			"dev_item UUID does not match metadata fsid: %pU != %pU",
2476			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2477		ret = -EINVAL;
2478	}
2479
2480	/*
2481	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2482	 * done later
2483	 */
2484	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2485		btrfs_err(fs_info, "bytes_used is too small %llu",
2486			  btrfs_super_bytes_used(sb));
2487		ret = -EINVAL;
2488	}
2489	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2490		btrfs_err(fs_info, "invalid stripesize %u",
2491			  btrfs_super_stripesize(sb));
2492		ret = -EINVAL;
2493	}
2494	if (btrfs_super_num_devices(sb) > (1UL << 31))
2495		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2496			   btrfs_super_num_devices(sb));
2497	if (btrfs_super_num_devices(sb) == 0) {
2498		btrfs_err(fs_info, "number of devices is 0");
2499		ret = -EINVAL;
2500	}
2501
2502	if (mirror_num >= 0 &&
2503	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2504		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2505			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2506		ret = -EINVAL;
2507	}
2508
2509	/*
2510	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2511	 * and one chunk
2512	 */
2513	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2514		btrfs_err(fs_info, "system chunk array too big %u > %u",
2515			  btrfs_super_sys_array_size(sb),
2516			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2517		ret = -EINVAL;
2518	}
2519	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2520			+ sizeof(struct btrfs_chunk)) {
2521		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2522			  btrfs_super_sys_array_size(sb),
2523			  sizeof(struct btrfs_disk_key)
2524			  + sizeof(struct btrfs_chunk));
2525		ret = -EINVAL;
2526	}
2527
2528	/*
2529	 * The generation is a global counter, we'll trust it more than the others
2530	 * but it's still possible that it's the one that's wrong.
2531	 */
2532	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2533		btrfs_warn(fs_info,
2534			"suspicious: generation < chunk_root_generation: %llu < %llu",
2535			btrfs_super_generation(sb),
2536			btrfs_super_chunk_root_generation(sb));
2537	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2538	    && btrfs_super_cache_generation(sb) != (u64)-1)
2539		btrfs_warn(fs_info,
2540			"suspicious: generation < cache_generation: %llu < %llu",
2541			btrfs_super_generation(sb),
2542			btrfs_super_cache_generation(sb));
2543
2544	return ret;
2545}
2546
2547/*
2548 * Validation of super block at mount time.
2549 * Some checks already done early at mount time, like csum type and incompat
2550 * flags will be skipped.
2551 */
2552static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2553{
2554	return validate_super(fs_info, fs_info->super_copy, 0);
2555}
2556
2557/*
2558 * Validation of super block at write time.
2559 * Some checks like bytenr check will be skipped as their values will be
2560 * overwritten soon.
2561 * Extra checks like csum type and incompat flags will be done here.
2562 */
2563static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2564				      struct btrfs_super_block *sb)
2565{
2566	int ret;
2567
2568	ret = validate_super(fs_info, sb, -1);
2569	if (ret < 0)
2570		goto out;
2571	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2572		ret = -EUCLEAN;
2573		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2574			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2575		goto out;
2576	}
2577	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2578		ret = -EUCLEAN;
2579		btrfs_err(fs_info,
2580		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2581			  btrfs_super_incompat_flags(sb),
2582			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2583		goto out;
2584	}
2585out:
2586	if (ret < 0)
2587		btrfs_err(fs_info,
2588		"super block corruption detected before writing it to disk");
2589	return ret;
2590}
2591
2592int open_ctree(struct super_block *sb,
2593	       struct btrfs_fs_devices *fs_devices,
2594	       char *options)
2595{
2596	u32 sectorsize;
2597	u32 nodesize;
2598	u32 stripesize;
2599	u64 generation;
2600	u64 features;
2601	u16 csum_type;
2602	struct btrfs_key location;
2603	struct buffer_head *bh;
2604	struct btrfs_super_block *disk_super;
2605	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2606	struct btrfs_root *tree_root;
2607	struct btrfs_root *chunk_root;
2608	int ret;
2609	int err = -EINVAL;
2610	int num_backups_tried = 0;
2611	int backup_index = 0;
 
2612	int clear_free_space_tree = 0;
2613	int level;
2614
2615	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2616	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2617	if (!tree_root || !chunk_root) {
2618		err = -ENOMEM;
2619		goto fail;
2620	}
2621
2622	ret = init_srcu_struct(&fs_info->subvol_srcu);
2623	if (ret) {
2624		err = ret;
2625		goto fail;
2626	}
2627
2628	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2629	if (ret) {
2630		err = ret;
2631		goto fail_srcu;
2632	}
2633
2634	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2635	if (ret) {
2636		err = ret;
2637		goto fail_dio_bytes;
2638	}
2639	fs_info->dirty_metadata_batch = PAGE_SIZE *
2640					(1 + ilog2(nr_cpu_ids));
2641
2642	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2643	if (ret) {
2644		err = ret;
2645		goto fail_dirty_metadata_bytes;
2646	}
2647
2648	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2649			GFP_KERNEL);
2650	if (ret) {
2651		err = ret;
2652		goto fail_delalloc_bytes;
2653	}
2654
 
 
 
 
 
 
 
 
2655	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2656	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2657	INIT_LIST_HEAD(&fs_info->trans_list);
2658	INIT_LIST_HEAD(&fs_info->dead_roots);
2659	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2660	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2661	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2662	spin_lock_init(&fs_info->delalloc_root_lock);
2663	spin_lock_init(&fs_info->trans_lock);
2664	spin_lock_init(&fs_info->fs_roots_radix_lock);
2665	spin_lock_init(&fs_info->delayed_iput_lock);
2666	spin_lock_init(&fs_info->defrag_inodes_lock);
 
2667	spin_lock_init(&fs_info->tree_mod_seq_lock);
2668	spin_lock_init(&fs_info->super_lock);
 
2669	spin_lock_init(&fs_info->buffer_lock);
2670	spin_lock_init(&fs_info->unused_bgs_lock);
2671	rwlock_init(&fs_info->tree_mod_log_lock);
2672	mutex_init(&fs_info->unused_bg_unpin_mutex);
2673	mutex_init(&fs_info->delete_unused_bgs_mutex);
2674	mutex_init(&fs_info->reloc_mutex);
2675	mutex_init(&fs_info->delalloc_root_mutex);
 
2676	seqlock_init(&fs_info->profiles_lock);
2677
2678	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2679	INIT_LIST_HEAD(&fs_info->space_info);
2680	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2681	INIT_LIST_HEAD(&fs_info->unused_bgs);
2682	extent_map_tree_init(&fs_info->mapping_tree);
2683	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2684			     BTRFS_BLOCK_RSV_GLOBAL);
 
 
2685	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2686	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2687	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2688	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2689			     BTRFS_BLOCK_RSV_DELOPS);
2690	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2691			     BTRFS_BLOCK_RSV_DELREFS);
2692
2693	atomic_set(&fs_info->async_delalloc_pages, 0);
 
 
2694	atomic_set(&fs_info->defrag_running, 0);
 
2695	atomic_set(&fs_info->reada_works_cnt, 0);
2696	atomic_set(&fs_info->nr_delayed_iputs, 0);
2697	atomic64_set(&fs_info->tree_mod_seq, 0);
 
2698	fs_info->sb = sb;
2699	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2700	fs_info->metadata_ratio = 0;
2701	fs_info->defrag_inodes = RB_ROOT;
2702	atomic64_set(&fs_info->free_chunk_space, 0);
2703	fs_info->tree_mod_log = RB_ROOT;
2704	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2705	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2706	/* readahead state */
2707	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2708	spin_lock_init(&fs_info->reada_lock);
2709	btrfs_init_ref_verify(fs_info);
2710
2711	fs_info->thread_pool_size = min_t(unsigned long,
2712					  num_online_cpus() + 2, 8);
2713
2714	INIT_LIST_HEAD(&fs_info->ordered_roots);
2715	spin_lock_init(&fs_info->ordered_root_lock);
2716
2717	fs_info->btree_inode = new_inode(sb);
2718	if (!fs_info->btree_inode) {
2719		err = -ENOMEM;
2720		goto fail_bio_counter;
2721	}
2722	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2723
2724	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2725					GFP_KERNEL);
2726	if (!fs_info->delayed_root) {
2727		err = -ENOMEM;
2728		goto fail_iput;
2729	}
2730	btrfs_init_delayed_root(fs_info->delayed_root);
2731
2732	btrfs_init_scrub(fs_info);
2733#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2734	fs_info->check_integrity_print_mask = 0;
2735#endif
2736	btrfs_init_balance(fs_info);
2737	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2738
2739	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2740	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
 
2741
2742	btrfs_init_btree_inode(fs_info);
2743
2744	spin_lock_init(&fs_info->block_group_cache_lock);
2745	fs_info->block_group_cache_tree = RB_ROOT;
2746	fs_info->first_logical_byte = (u64)-1;
2747
2748	extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2749			    IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2750	extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2751			    IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2752	fs_info->pinned_extents = &fs_info->freed_extents[0];
2753	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2754
2755	mutex_init(&fs_info->ordered_operations_mutex);
2756	mutex_init(&fs_info->tree_log_mutex);
2757	mutex_init(&fs_info->chunk_mutex);
2758	mutex_init(&fs_info->transaction_kthread_mutex);
2759	mutex_init(&fs_info->cleaner_mutex);
 
2760	mutex_init(&fs_info->ro_block_group_mutex);
2761	init_rwsem(&fs_info->commit_root_sem);
2762	init_rwsem(&fs_info->cleanup_work_sem);
2763	init_rwsem(&fs_info->subvol_sem);
2764	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2765
2766	btrfs_init_dev_replace_locks(fs_info);
2767	btrfs_init_qgroup(fs_info);
2768
2769	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2770	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2771
2772	init_waitqueue_head(&fs_info->transaction_throttle);
2773	init_waitqueue_head(&fs_info->transaction_wait);
2774	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2775	init_waitqueue_head(&fs_info->async_submit_wait);
2776	init_waitqueue_head(&fs_info->delayed_iputs_wait);
 
2777
2778	/* Usable values until the real ones are cached from the superblock */
2779	fs_info->nodesize = 4096;
2780	fs_info->sectorsize = 4096;
2781	fs_info->stripesize = 4096;
2782
2783	spin_lock_init(&fs_info->swapfile_pins_lock);
2784	fs_info->swapfile_pins = RB_ROOT;
2785
2786	fs_info->send_in_progress = 0;
2787
2788	ret = btrfs_alloc_stripe_hash_table(fs_info);
2789	if (ret) {
2790		err = ret;
2791		goto fail_alloc;
2792	}
2793
2794	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2795
2796	invalidate_bdev(fs_devices->latest_bdev);
2797
2798	/*
2799	 * Read super block and check the signature bytes only
2800	 */
2801	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2802	if (IS_ERR(bh)) {
2803		err = PTR_ERR(bh);
2804		goto fail_alloc;
2805	}
2806
2807	/*
2808	 * Verify the type first, if that or the the checksum value are
2809	 * corrupted, we'll find out
2810	 */
2811	csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2812	if (!btrfs_supported_super_csum(csum_type)) {
2813		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2814			  csum_type);
2815		err = -EINVAL;
2816		brelse(bh);
2817		goto fail_alloc;
2818	}
2819
2820	ret = btrfs_init_csum_hash(fs_info, csum_type);
2821	if (ret) {
2822		err = ret;
2823		goto fail_alloc;
2824	}
2825
2826	/*
2827	 * We want to check superblock checksum, the type is stored inside.
2828	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2829	 */
2830	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2831		btrfs_err(fs_info, "superblock checksum mismatch");
2832		err = -EINVAL;
2833		brelse(bh);
2834		goto fail_csum;
2835	}
2836
2837	/*
2838	 * super_copy is zeroed at allocation time and we never touch the
2839	 * following bytes up to INFO_SIZE, the checksum is calculated from
2840	 * the whole block of INFO_SIZE
2841	 */
2842	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2843	brelse(bh);
2844
2845	disk_super = fs_info->super_copy;
2846
2847	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2848		       BTRFS_FSID_SIZE));
2849
2850	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2851		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2852				fs_info->super_copy->metadata_uuid,
2853				BTRFS_FSID_SIZE));
2854	}
2855
2856	features = btrfs_super_flags(disk_super);
2857	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2858		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2859		btrfs_set_super_flags(disk_super, features);
2860		btrfs_info(fs_info,
2861			"found metadata UUID change in progress flag, clearing");
2862	}
2863
2864	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2865	       sizeof(*fs_info->super_for_commit));
 
 
 
2866
2867	ret = btrfs_validate_mount_super(fs_info);
2868	if (ret) {
2869		btrfs_err(fs_info, "superblock contains fatal errors");
2870		err = -EINVAL;
2871		goto fail_csum;
2872	}
2873
 
2874	if (!btrfs_super_root(disk_super))
2875		goto fail_csum;
2876
2877	/* check FS state, whether FS is broken. */
2878	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2879		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2880
2881	/*
2882	 * run through our array of backup supers and setup
2883	 * our ring pointer to the oldest one
2884	 */
2885	generation = btrfs_super_generation(disk_super);
2886	find_oldest_super_backup(fs_info, generation);
2887
2888	/*
2889	 * In the long term, we'll store the compression type in the super
2890	 * block, and it'll be used for per file compression control.
2891	 */
2892	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2893
2894	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2895	if (ret) {
2896		err = ret;
2897		goto fail_csum;
2898	}
2899
2900	features = btrfs_super_incompat_flags(disk_super) &
2901		~BTRFS_FEATURE_INCOMPAT_SUPP;
2902	if (features) {
2903		btrfs_err(fs_info,
2904		    "cannot mount because of unsupported optional features (%llx)",
2905		    features);
2906		err = -EINVAL;
2907		goto fail_csum;
2908	}
2909
2910	features = btrfs_super_incompat_flags(disk_super);
2911	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2912	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2913		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2914	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2915		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2916
2917	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2918		btrfs_info(fs_info, "has skinny extents");
2919
2920	/*
2921	 * flag our filesystem as having big metadata blocks if
2922	 * they are bigger than the page size
2923	 */
2924	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2925		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2926			btrfs_info(fs_info,
2927				"flagging fs with big metadata feature");
2928		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2929	}
2930
2931	nodesize = btrfs_super_nodesize(disk_super);
2932	sectorsize = btrfs_super_sectorsize(disk_super);
2933	stripesize = sectorsize;
2934	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2935	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2936
2937	/* Cache block sizes */
2938	fs_info->nodesize = nodesize;
2939	fs_info->sectorsize = sectorsize;
2940	fs_info->stripesize = stripesize;
2941
2942	/*
2943	 * mixed block groups end up with duplicate but slightly offset
2944	 * extent buffers for the same range.  It leads to corruptions
2945	 */
2946	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2947	    (sectorsize != nodesize)) {
2948		btrfs_err(fs_info,
2949"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2950			nodesize, sectorsize);
2951		goto fail_csum;
2952	}
2953
2954	/*
2955	 * Needn't use the lock because there is no other task which will
2956	 * update the flag.
2957	 */
2958	btrfs_set_super_incompat_flags(disk_super, features);
2959
2960	features = btrfs_super_compat_ro_flags(disk_super) &
2961		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2962	if (!sb_rdonly(sb) && features) {
2963		btrfs_err(fs_info,
2964	"cannot mount read-write because of unsupported optional features (%llx)",
2965		       features);
2966		err = -EINVAL;
2967		goto fail_csum;
2968	}
2969
 
 
2970	ret = btrfs_init_workqueues(fs_info, fs_devices);
2971	if (ret) {
2972		err = ret;
2973		goto fail_sb_buffer;
2974	}
2975
2976	sb->s_bdi->congested_fn = btrfs_congested_fn;
2977	sb->s_bdi->congested_data = fs_info;
2978	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2979	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2980	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2981	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2982
2983	sb->s_blocksize = sectorsize;
2984	sb->s_blocksize_bits = blksize_bits(sectorsize);
2985	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2986
2987	mutex_lock(&fs_info->chunk_mutex);
2988	ret = btrfs_read_sys_array(fs_info);
2989	mutex_unlock(&fs_info->chunk_mutex);
2990	if (ret) {
2991		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2992		goto fail_sb_buffer;
2993	}
2994
2995	generation = btrfs_super_chunk_root_generation(disk_super);
2996	level = btrfs_super_chunk_root_level(disk_super);
2997
2998	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2999
3000	chunk_root->node = read_tree_block(fs_info,
3001					   btrfs_super_chunk_root(disk_super),
3002					   generation, level, NULL);
3003	if (IS_ERR(chunk_root->node) ||
3004	    !extent_buffer_uptodate(chunk_root->node)) {
3005		btrfs_err(fs_info, "failed to read chunk root");
3006		if (!IS_ERR(chunk_root->node))
3007			free_extent_buffer(chunk_root->node);
3008		chunk_root->node = NULL;
3009		goto fail_tree_roots;
3010	}
3011	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3012	chunk_root->commit_root = btrfs_root_node(chunk_root);
3013
3014	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3015	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3016
3017	ret = btrfs_read_chunk_tree(fs_info);
3018	if (ret) {
3019		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3020		goto fail_tree_roots;
3021	}
3022
3023	/*
3024	 * Keep the devid that is marked to be the target device for the
3025	 * device replace procedure
3026	 */
3027	btrfs_free_extra_devids(fs_devices, 0);
3028
3029	if (!fs_devices->latest_bdev) {
3030		btrfs_err(fs_info, "failed to read devices");
3031		goto fail_tree_roots;
3032	}
3033
3034retry_root_backup:
3035	generation = btrfs_super_generation(disk_super);
3036	level = btrfs_super_root_level(disk_super);
3037
3038	tree_root->node = read_tree_block(fs_info,
3039					  btrfs_super_root(disk_super),
3040					  generation, level, NULL);
3041	if (IS_ERR(tree_root->node) ||
3042	    !extent_buffer_uptodate(tree_root->node)) {
3043		btrfs_warn(fs_info, "failed to read tree root");
3044		if (!IS_ERR(tree_root->node))
3045			free_extent_buffer(tree_root->node);
3046		tree_root->node = NULL;
3047		goto recovery_tree_root;
3048	}
3049
3050	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3051	tree_root->commit_root = btrfs_root_node(tree_root);
3052	btrfs_set_root_refs(&tree_root->root_item, 1);
3053
3054	mutex_lock(&tree_root->objectid_mutex);
3055	ret = btrfs_find_highest_objectid(tree_root,
3056					&tree_root->highest_objectid);
3057	if (ret) {
3058		mutex_unlock(&tree_root->objectid_mutex);
3059		goto recovery_tree_root;
3060	}
3061
3062	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3063
3064	mutex_unlock(&tree_root->objectid_mutex);
3065
3066	ret = btrfs_read_roots(fs_info);
3067	if (ret)
3068		goto recovery_tree_root;
3069
3070	fs_info->generation = generation;
3071	fs_info->last_trans_committed = generation;
3072
3073	ret = btrfs_verify_dev_extents(fs_info);
3074	if (ret) {
3075		btrfs_err(fs_info,
3076			  "failed to verify dev extents against chunks: %d",
3077			  ret);
3078		goto fail_block_groups;
3079	}
3080	ret = btrfs_recover_balance(fs_info);
3081	if (ret) {
3082		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3083		goto fail_block_groups;
3084	}
3085
3086	ret = btrfs_init_dev_stats(fs_info);
3087	if (ret) {
3088		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3089		goto fail_block_groups;
3090	}
3091
3092	ret = btrfs_init_dev_replace(fs_info);
3093	if (ret) {
3094		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3095		goto fail_block_groups;
3096	}
3097
3098	btrfs_free_extra_devids(fs_devices, 1);
3099
3100	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3101	if (ret) {
3102		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3103				ret);
3104		goto fail_block_groups;
3105	}
3106
3107	ret = btrfs_sysfs_add_device(fs_devices);
3108	if (ret) {
3109		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3110				ret);
3111		goto fail_fsdev_sysfs;
3112	}
3113
3114	ret = btrfs_sysfs_add_mounted(fs_info);
3115	if (ret) {
3116		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3117		goto fail_fsdev_sysfs;
3118	}
3119
3120	ret = btrfs_init_space_info(fs_info);
3121	if (ret) {
3122		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3123		goto fail_sysfs;
3124	}
3125
3126	ret = btrfs_read_block_groups(fs_info);
3127	if (ret) {
3128		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3129		goto fail_sysfs;
3130	}
3131
3132	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
 
 
 
3133		btrfs_warn(fs_info,
3134		"writable mount is not allowed due to too many missing devices");
 
 
3135		goto fail_sysfs;
3136	}
3137
3138	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3139					       "btrfs-cleaner");
3140	if (IS_ERR(fs_info->cleaner_kthread))
3141		goto fail_sysfs;
3142
3143	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3144						   tree_root,
3145						   "btrfs-transaction");
3146	if (IS_ERR(fs_info->transaction_kthread))
3147		goto fail_cleaner;
3148
3149	if (!btrfs_test_opt(fs_info, NOSSD) &&
 
3150	    !fs_info->fs_devices->rotating) {
3151		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
 
3152	}
3153
3154	/*
3155	 * Mount does not set all options immediately, we can do it now and do
3156	 * not have to wait for transaction commit
3157	 */
3158	btrfs_apply_pending_changes(fs_info);
3159
3160#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3161	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3162		ret = btrfsic_mount(fs_info, fs_devices,
3163				    btrfs_test_opt(fs_info,
3164					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3165				    1 : 0,
3166				    fs_info->check_integrity_print_mask);
3167		if (ret)
3168			btrfs_warn(fs_info,
3169				"failed to initialize integrity check module: %d",
3170				ret);
3171	}
3172#endif
3173	ret = btrfs_read_qgroup_config(fs_info);
3174	if (ret)
3175		goto fail_trans_kthread;
3176
3177	if (btrfs_build_ref_tree(fs_info))
3178		btrfs_err(fs_info, "couldn't build ref tree");
3179
3180	/* do not make disk changes in broken FS or nologreplay is given */
3181	if (btrfs_super_log_root(disk_super) != 0 &&
3182	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3183		ret = btrfs_replay_log(fs_info, fs_devices);
3184		if (ret) {
3185			err = ret;
3186			goto fail_qgroup;
3187		}
3188	}
3189
3190	ret = btrfs_find_orphan_roots(fs_info);
3191	if (ret)
3192		goto fail_qgroup;
3193
3194	if (!sb_rdonly(sb)) {
3195		ret = btrfs_cleanup_fs_roots(fs_info);
3196		if (ret)
3197			goto fail_qgroup;
3198
3199		mutex_lock(&fs_info->cleaner_mutex);
3200		ret = btrfs_recover_relocation(tree_root);
3201		mutex_unlock(&fs_info->cleaner_mutex);
3202		if (ret < 0) {
3203			btrfs_warn(fs_info, "failed to recover relocation: %d",
3204					ret);
3205			err = -EINVAL;
3206			goto fail_qgroup;
3207		}
3208	}
3209
3210	location.objectid = BTRFS_FS_TREE_OBJECTID;
3211	location.type = BTRFS_ROOT_ITEM_KEY;
3212	location.offset = 0;
3213
3214	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3215	if (IS_ERR(fs_info->fs_root)) {
3216		err = PTR_ERR(fs_info->fs_root);
3217		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3218		goto fail_qgroup;
3219	}
3220
3221	if (sb_rdonly(sb))
3222		return 0;
3223
3224	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3225	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3226		clear_free_space_tree = 1;
3227	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3228		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3229		btrfs_warn(fs_info, "free space tree is invalid");
3230		clear_free_space_tree = 1;
3231	}
3232
3233	if (clear_free_space_tree) {
3234		btrfs_info(fs_info, "clearing free space tree");
3235		ret = btrfs_clear_free_space_tree(fs_info);
3236		if (ret) {
3237			btrfs_warn(fs_info,
3238				   "failed to clear free space tree: %d", ret);
3239			close_ctree(fs_info);
3240			return ret;
3241		}
3242	}
3243
3244	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3245	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3246		btrfs_info(fs_info, "creating free space tree");
3247		ret = btrfs_create_free_space_tree(fs_info);
3248		if (ret) {
3249			btrfs_warn(fs_info,
3250				"failed to create free space tree: %d", ret);
3251			close_ctree(fs_info);
3252			return ret;
3253		}
3254	}
3255
3256	down_read(&fs_info->cleanup_work_sem);
3257	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3258	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3259		up_read(&fs_info->cleanup_work_sem);
3260		close_ctree(fs_info);
3261		return ret;
3262	}
3263	up_read(&fs_info->cleanup_work_sem);
3264
3265	ret = btrfs_resume_balance_async(fs_info);
3266	if (ret) {
3267		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3268		close_ctree(fs_info);
3269		return ret;
3270	}
3271
3272	ret = btrfs_resume_dev_replace_async(fs_info);
3273	if (ret) {
3274		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3275		close_ctree(fs_info);
3276		return ret;
3277	}
3278
3279	btrfs_qgroup_rescan_resume(fs_info);
3280
3281	if (!fs_info->uuid_root) {
3282		btrfs_info(fs_info, "creating UUID tree");
3283		ret = btrfs_create_uuid_tree(fs_info);
3284		if (ret) {
3285			btrfs_warn(fs_info,
3286				"failed to create the UUID tree: %d", ret);
3287			close_ctree(fs_info);
3288			return ret;
3289		}
3290	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3291		   fs_info->generation !=
3292				btrfs_super_uuid_tree_generation(disk_super)) {
3293		btrfs_info(fs_info, "checking UUID tree");
3294		ret = btrfs_check_uuid_tree(fs_info);
3295		if (ret) {
3296			btrfs_warn(fs_info,
3297				"failed to check the UUID tree: %d", ret);
3298			close_ctree(fs_info);
3299			return ret;
3300		}
3301	} else {
3302		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3303	}
3304	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3305
3306	/*
3307	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3308	 * no need to keep the flag
3309	 */
3310	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3311
3312	return 0;
3313
3314fail_qgroup:
3315	btrfs_free_qgroup_config(fs_info);
3316fail_trans_kthread:
3317	kthread_stop(fs_info->transaction_kthread);
3318	btrfs_cleanup_transaction(fs_info);
3319	btrfs_free_fs_roots(fs_info);
3320fail_cleaner:
3321	kthread_stop(fs_info->cleaner_kthread);
3322
3323	/*
3324	 * make sure we're done with the btree inode before we stop our
3325	 * kthreads
3326	 */
3327	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3328
3329fail_sysfs:
3330	btrfs_sysfs_remove_mounted(fs_info);
3331
3332fail_fsdev_sysfs:
3333	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3334
3335fail_block_groups:
3336	btrfs_put_block_group_cache(fs_info);
 
3337
3338fail_tree_roots:
3339	free_root_pointers(fs_info, 1);
3340	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3341
3342fail_sb_buffer:
3343	btrfs_stop_all_workers(fs_info);
3344	btrfs_free_block_groups(fs_info);
3345fail_csum:
3346	btrfs_free_csum_hash(fs_info);
3347fail_alloc:
3348fail_iput:
3349	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3350
3351	iput(fs_info->btree_inode);
3352fail_bio_counter:
3353	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3354fail_delalloc_bytes:
3355	percpu_counter_destroy(&fs_info->delalloc_bytes);
3356fail_dirty_metadata_bytes:
3357	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3358fail_dio_bytes:
3359	percpu_counter_destroy(&fs_info->dio_bytes);
3360fail_srcu:
3361	cleanup_srcu_struct(&fs_info->subvol_srcu);
3362fail:
3363	btrfs_free_stripe_hash_table(fs_info);
3364	btrfs_close_devices(fs_info->fs_devices);
3365	return err;
3366
3367recovery_tree_root:
3368	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3369		goto fail_tree_roots;
3370
3371	free_root_pointers(fs_info, 0);
3372
3373	/* don't use the log in recovery mode, it won't be valid */
3374	btrfs_set_super_log_root(disk_super, 0);
3375
3376	/* we can't trust the free space cache either */
3377	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3378
3379	ret = next_root_backup(fs_info, fs_info->super_copy,
3380			       &num_backups_tried, &backup_index);
3381	if (ret == -1)
3382		goto fail_block_groups;
3383	goto retry_root_backup;
3384}
3385ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3386
3387static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3388{
3389	if (uptodate) {
3390		set_buffer_uptodate(bh);
3391	} else {
3392		struct btrfs_device *device = (struct btrfs_device *)
3393			bh->b_private;
3394
3395		btrfs_warn_rl_in_rcu(device->fs_info,
3396				"lost page write due to IO error on %s",
3397					  rcu_str_deref(device->name));
3398		/* note, we don't set_buffer_write_io_error because we have
3399		 * our own ways of dealing with the IO errors
3400		 */
3401		clear_buffer_uptodate(bh);
3402		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3403	}
3404	unlock_buffer(bh);
3405	put_bh(bh);
3406}
3407
3408int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3409			struct buffer_head **bh_ret)
3410{
3411	struct buffer_head *bh;
3412	struct btrfs_super_block *super;
3413	u64 bytenr;
3414
3415	bytenr = btrfs_sb_offset(copy_num);
3416	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3417		return -EINVAL;
3418
3419	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3420	/*
3421	 * If we fail to read from the underlying devices, as of now
3422	 * the best option we have is to mark it EIO.
3423	 */
3424	if (!bh)
3425		return -EIO;
3426
3427	super = (struct btrfs_super_block *)bh->b_data;
3428	if (btrfs_super_bytenr(super) != bytenr ||
3429		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3430		brelse(bh);
3431		return -EINVAL;
3432	}
3433
3434	*bh_ret = bh;
3435	return 0;
3436}
3437
3438
3439struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3440{
3441	struct buffer_head *bh;
3442	struct buffer_head *latest = NULL;
3443	struct btrfs_super_block *super;
3444	int i;
3445	u64 transid = 0;
3446	int ret = -EINVAL;
3447
3448	/* we would like to check all the supers, but that would make
3449	 * a btrfs mount succeed after a mkfs from a different FS.
3450	 * So, we need to add a special mount option to scan for
3451	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3452	 */
3453	for (i = 0; i < 1; i++) {
3454		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3455		if (ret)
3456			continue;
3457
3458		super = (struct btrfs_super_block *)bh->b_data;
3459
3460		if (!latest || btrfs_super_generation(super) > transid) {
3461			brelse(latest);
3462			latest = bh;
3463			transid = btrfs_super_generation(super);
3464		} else {
3465			brelse(bh);
3466		}
3467	}
3468
3469	if (!latest)
3470		return ERR_PTR(ret);
3471
3472	return latest;
3473}
3474
3475/*
3476 * Write superblock @sb to the @device. Do not wait for completion, all the
3477 * buffer heads we write are pinned.
 
3478 *
3479 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3480 * the expected device size at commit time. Note that max_mirrors must be
3481 * same for write and wait phases.
3482 *
3483 * Return number of errors when buffer head is not found or submission fails.
3484 */
3485static int write_dev_supers(struct btrfs_device *device,
3486			    struct btrfs_super_block *sb, int max_mirrors)
 
3487{
3488	struct btrfs_fs_info *fs_info = device->fs_info;
3489	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3490	struct buffer_head *bh;
3491	int i;
3492	int ret;
3493	int errors = 0;
 
3494	u64 bytenr;
3495	int op_flags;
3496
3497	if (max_mirrors == 0)
3498		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3499
3500	shash->tfm = fs_info->csum_shash;
3501
3502	for (i = 0; i < max_mirrors; i++) {
3503		bytenr = btrfs_sb_offset(i);
3504		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3505		    device->commit_total_bytes)
3506			break;
3507
3508		btrfs_set_super_bytenr(sb, bytenr);
 
 
 
 
 
 
 
 
 
3509
3510		crypto_shash_init(shash);
3511		crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3512				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3513		crypto_shash_final(shash, sb->csum);
3514
3515		/* One reference for us, and we leave it for the caller */
3516		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3517			      BTRFS_SUPER_INFO_SIZE);
3518		if (!bh) {
3519			btrfs_err(device->fs_info,
3520			    "couldn't get super buffer head for bytenr %llu",
3521			    bytenr);
3522			errors++;
3523			continue;
3524		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3525
3526		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3527
3528		/* one reference for submit_bh */
3529		get_bh(bh);
3530
3531		set_buffer_uptodate(bh);
3532		lock_buffer(bh);
3533		bh->b_end_io = btrfs_end_buffer_write_sync;
3534		bh->b_private = device;
 
3535
3536		/*
3537		 * we fua the first super.  The others we allow
3538		 * to go down lazy.
3539		 */
3540		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3541		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3542			op_flags |= REQ_FUA;
3543		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3544		if (ret)
3545			errors++;
3546	}
3547	return errors < i ? 0 : -1;
3548}
3549
3550/*
3551 * Wait for write completion of superblocks done by write_dev_supers,
3552 * @max_mirrors same for write and wait phases.
3553 *
3554 * Return number of errors when buffer head is not found or not marked up to
3555 * date.
3556 */
3557static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3558{
3559	struct buffer_head *bh;
3560	int i;
3561	int errors = 0;
3562	bool primary_failed = false;
3563	u64 bytenr;
3564
3565	if (max_mirrors == 0)
3566		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3567
3568	for (i = 0; i < max_mirrors; i++) {
3569		bytenr = btrfs_sb_offset(i);
3570		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3571		    device->commit_total_bytes)
3572			break;
3573
3574		bh = __find_get_block(device->bdev,
3575				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3576				      BTRFS_SUPER_INFO_SIZE);
3577		if (!bh) {
3578			errors++;
3579			if (i == 0)
3580				primary_failed = true;
3581			continue;
3582		}
3583		wait_on_buffer(bh);
3584		if (!buffer_uptodate(bh)) {
3585			errors++;
3586			if (i == 0)
3587				primary_failed = true;
3588		}
3589
3590		/* drop our reference */
3591		brelse(bh);
3592
3593		/* drop the reference from the writing run */
3594		brelse(bh);
3595	}
3596
3597	/* log error, force error return */
3598	if (primary_failed) {
3599		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3600			  device->devid);
3601		return -1;
3602	}
3603
3604	return errors < i ? 0 : -1;
3605}
3606
3607/*
3608 * endio for the write_dev_flush, this will wake anyone waiting
3609 * for the barrier when it is done
3610 */
3611static void btrfs_end_empty_barrier(struct bio *bio)
3612{
3613	complete(bio->bi_private);
 
 
3614}
3615
3616/*
3617 * Submit a flush request to the device if it supports it. Error handling is
3618 * done in the waiting counterpart.
 
 
 
3619 */
3620static void write_dev_flush(struct btrfs_device *device)
3621{
3622	struct request_queue *q = bdev_get_queue(device->bdev);
3623	struct bio *bio = device->flush_bio;
3624
3625	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3626		return;
3627
3628	bio_reset(bio);
3629	bio->bi_end_io = btrfs_end_empty_barrier;
3630	bio_set_dev(bio, device->bdev);
3631	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3632	init_completion(&device->flush_wait);
3633	bio->bi_private = &device->flush_wait;
3634
3635	btrfsic_submit_bio(bio);
3636	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3637}
3638
3639/*
3640 * If the flush bio has been submitted by write_dev_flush, wait for it.
3641 */
3642static blk_status_t wait_dev_flush(struct btrfs_device *device)
3643{
3644	struct bio *bio = device->flush_bio;
3645
3646	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3647		return BLK_STS_OK;
 
3648
3649	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3650	wait_for_completion_io(&device->flush_wait);
3651
3652	return bio->bi_status;
3653}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3654
3655static int check_barrier_error(struct btrfs_fs_info *fs_info)
3656{
3657	if (!btrfs_check_rw_degradable(fs_info, NULL))
3658		return -EIO;
3659	return 0;
3660}
3661
3662/*
3663 * send an empty flush down to each device in parallel,
3664 * then wait for them
3665 */
3666static int barrier_all_devices(struct btrfs_fs_info *info)
3667{
3668	struct list_head *head;
3669	struct btrfs_device *dev;
 
3670	int errors_wait = 0;
3671	blk_status_t ret;
3672
3673	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3674	/* send down all the barriers */
3675	head = &info->fs_devices->devices;
3676	list_for_each_entry(dev, head, dev_list) {
3677		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3678			continue;
3679		if (!dev->bdev)
 
3680			continue;
3681		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3682		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3683			continue;
3684
3685		write_dev_flush(dev);
3686		dev->last_flush_error = BLK_STS_OK;
 
3687	}
3688
3689	/* wait for all the barriers */
3690	list_for_each_entry(dev, head, dev_list) {
3691		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3692			continue;
3693		if (!dev->bdev) {
3694			errors_wait++;
3695			continue;
3696		}
3697		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3698		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3699			continue;
3700
3701		ret = wait_dev_flush(dev);
3702		if (ret) {
3703			dev->last_flush_error = ret;
3704			btrfs_dev_stat_inc_and_print(dev,
3705					BTRFS_DEV_STAT_FLUSH_ERRS);
3706			errors_wait++;
3707		}
3708	}
3709
3710	if (errors_wait) {
3711		/*
3712		 * At some point we need the status of all disks
3713		 * to arrive at the volume status. So error checking
3714		 * is being pushed to a separate loop.
3715		 */
3716		return check_barrier_error(info);
3717	}
 
 
 
3718	return 0;
3719}
3720
3721int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3722{
3723	int raid_type;
3724	int min_tolerated = INT_MAX;
3725
3726	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3727	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3728		min_tolerated = min_t(int, min_tolerated,
3729				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3730				    tolerated_failures);
3731
3732	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3733		if (raid_type == BTRFS_RAID_SINGLE)
3734			continue;
3735		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3736			continue;
3737		min_tolerated = min_t(int, min_tolerated,
3738				    btrfs_raid_array[raid_type].
3739				    tolerated_failures);
3740	}
3741
3742	if (min_tolerated == INT_MAX) {
3743		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3744		min_tolerated = 0;
3745	}
3746
3747	return min_tolerated;
3748}
3749
3750int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3751{
3752	struct list_head *head;
3753	struct btrfs_device *dev;
3754	struct btrfs_super_block *sb;
3755	struct btrfs_dev_item *dev_item;
3756	int ret;
3757	int do_barriers;
3758	int max_errors;
3759	int total_errors = 0;
3760	u64 flags;
3761
3762	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3763
3764	/*
3765	 * max_mirrors == 0 indicates we're from commit_transaction,
3766	 * not from fsync where the tree roots in fs_info have not
3767	 * been consistent on disk.
3768	 */
3769	if (max_mirrors == 0)
3770		backup_super_roots(fs_info);
3771
3772	sb = fs_info->super_for_commit;
3773	dev_item = &sb->dev_item;
3774
3775	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3776	head = &fs_info->fs_devices->devices;
3777	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3778
3779	if (do_barriers) {
3780		ret = barrier_all_devices(fs_info);
3781		if (ret) {
3782			mutex_unlock(
3783				&fs_info->fs_devices->device_list_mutex);
3784			btrfs_handle_fs_error(fs_info, ret,
3785					      "errors while submitting device barriers.");
3786			return ret;
3787		}
3788	}
3789
3790	list_for_each_entry(dev, head, dev_list) {
3791		if (!dev->bdev) {
3792			total_errors++;
3793			continue;
3794		}
3795		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3796		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3797			continue;
3798
3799		btrfs_set_stack_device_generation(dev_item, 0);
3800		btrfs_set_stack_device_type(dev_item, dev->type);
3801		btrfs_set_stack_device_id(dev_item, dev->devid);
3802		btrfs_set_stack_device_total_bytes(dev_item,
3803						   dev->commit_total_bytes);
3804		btrfs_set_stack_device_bytes_used(dev_item,
3805						  dev->commit_bytes_used);
3806		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3807		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3808		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3809		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3810		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3811		       BTRFS_FSID_SIZE);
3812
3813		flags = btrfs_super_flags(sb);
3814		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3815
3816		ret = btrfs_validate_write_super(fs_info, sb);
3817		if (ret < 0) {
3818			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3819			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3820				"unexpected superblock corruption detected");
3821			return -EUCLEAN;
3822		}
3823
3824		ret = write_dev_supers(dev, sb, max_mirrors);
3825		if (ret)
3826			total_errors++;
3827	}
3828	if (total_errors > max_errors) {
3829		btrfs_err(fs_info, "%d errors while writing supers",
3830			  total_errors);
3831		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3832
3833		/* FUA is masked off if unsupported and can't be the reason */
3834		btrfs_handle_fs_error(fs_info, -EIO,
3835				      "%d errors while writing supers",
3836				      total_errors);
3837		return -EIO;
3838	}
3839
3840	total_errors = 0;
3841	list_for_each_entry(dev, head, dev_list) {
3842		if (!dev->bdev)
3843			continue;
3844		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3845		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3846			continue;
3847
3848		ret = wait_dev_supers(dev, max_mirrors);
3849		if (ret)
3850			total_errors++;
3851	}
3852	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3853	if (total_errors > max_errors) {
3854		btrfs_handle_fs_error(fs_info, -EIO,
3855				      "%d errors while writing supers",
3856				      total_errors);
3857		return -EIO;
3858	}
3859	return 0;
3860}
3861
 
 
 
 
 
 
3862/* Drop a fs root from the radix tree and free it. */
3863void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3864				  struct btrfs_root *root)
3865{
3866	spin_lock(&fs_info->fs_roots_radix_lock);
3867	radix_tree_delete(&fs_info->fs_roots_radix,
3868			  (unsigned long)root->root_key.objectid);
3869	spin_unlock(&fs_info->fs_roots_radix_lock);
3870
3871	if (btrfs_root_refs(&root->root_item) == 0)
3872		synchronize_srcu(&fs_info->subvol_srcu);
3873
3874	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3875		btrfs_free_log(NULL, root);
3876		if (root->reloc_root) {
3877			free_extent_buffer(root->reloc_root->node);
3878			free_extent_buffer(root->reloc_root->commit_root);
3879			btrfs_put_fs_root(root->reloc_root);
3880			root->reloc_root = NULL;
3881		}
3882	}
3883
3884	if (root->free_ino_pinned)
3885		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3886	if (root->free_ino_ctl)
3887		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3888	btrfs_free_fs_root(root);
3889}
3890
3891void btrfs_free_fs_root(struct btrfs_root *root)
3892{
3893	iput(root->ino_cache_inode);
3894	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
 
 
3895	if (root->anon_dev)
3896		free_anon_bdev(root->anon_dev);
3897	if (root->subv_writers)
3898		btrfs_free_subvolume_writers(root->subv_writers);
3899	free_extent_buffer(root->node);
3900	free_extent_buffer(root->commit_root);
3901	kfree(root->free_ino_ctl);
3902	kfree(root->free_ino_pinned);
 
3903	btrfs_put_fs_root(root);
3904}
3905
 
 
 
 
 
3906int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3907{
3908	u64 root_objectid = 0;
3909	struct btrfs_root *gang[8];
3910	int i = 0;
3911	int err = 0;
3912	unsigned int ret = 0;
3913	int index;
3914
3915	while (1) {
3916		index = srcu_read_lock(&fs_info->subvol_srcu);
3917		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3918					     (void **)gang, root_objectid,
3919					     ARRAY_SIZE(gang));
3920		if (!ret) {
3921			srcu_read_unlock(&fs_info->subvol_srcu, index);
3922			break;
3923		}
3924		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3925
3926		for (i = 0; i < ret; i++) {
3927			/* Avoid to grab roots in dead_roots */
3928			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3929				gang[i] = NULL;
3930				continue;
3931			}
3932			/* grab all the search result for later use */
3933			gang[i] = btrfs_grab_fs_root(gang[i]);
3934		}
3935		srcu_read_unlock(&fs_info->subvol_srcu, index);
3936
3937		for (i = 0; i < ret; i++) {
3938			if (!gang[i])
3939				continue;
3940			root_objectid = gang[i]->root_key.objectid;
3941			err = btrfs_orphan_cleanup(gang[i]);
3942			if (err)
3943				break;
3944			btrfs_put_fs_root(gang[i]);
3945		}
3946		root_objectid++;
3947	}
3948
3949	/* release the uncleaned roots due to error */
3950	for (; i < ret; i++) {
3951		if (gang[i])
3952			btrfs_put_fs_root(gang[i]);
3953	}
3954	return err;
3955}
3956
3957int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3958{
3959	struct btrfs_root *root = fs_info->tree_root;
3960	struct btrfs_trans_handle *trans;
3961
3962	mutex_lock(&fs_info->cleaner_mutex);
3963	btrfs_run_delayed_iputs(fs_info);
3964	mutex_unlock(&fs_info->cleaner_mutex);
3965	wake_up_process(fs_info->cleaner_kthread);
3966
3967	/* wait until ongoing cleanup work done */
3968	down_write(&fs_info->cleanup_work_sem);
3969	up_write(&fs_info->cleanup_work_sem);
3970
3971	trans = btrfs_join_transaction(root);
3972	if (IS_ERR(trans))
3973		return PTR_ERR(trans);
3974	return btrfs_commit_transaction(trans);
3975}
3976
3977void close_ctree(struct btrfs_fs_info *fs_info)
3978{
 
3979	int ret;
3980
3981	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3982	/*
3983	 * We don't want the cleaner to start new transactions, add more delayed
3984	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3985	 * because that frees the task_struct, and the transaction kthread might
3986	 * still try to wake up the cleaner.
3987	 */
3988	kthread_park(fs_info->cleaner_kthread);
3989
3990	/* wait for the qgroup rescan worker to stop */
3991	btrfs_qgroup_wait_for_completion(fs_info, false);
3992
3993	/* wait for the uuid_scan task to finish */
3994	down(&fs_info->uuid_tree_rescan_sem);
3995	/* avoid complains from lockdep et al., set sem back to initial state */
3996	up(&fs_info->uuid_tree_rescan_sem);
3997
3998	/* pause restriper - we want to resume on mount */
3999	btrfs_pause_balance(fs_info);
4000
4001	btrfs_dev_replace_suspend_for_unmount(fs_info);
4002
4003	btrfs_scrub_cancel(fs_info);
4004
4005	/* wait for any defraggers to finish */
4006	wait_event(fs_info->transaction_wait,
4007		   (atomic_read(&fs_info->defrag_running) == 0));
4008
4009	/* clear out the rbtree of defraggable inodes */
4010	btrfs_cleanup_defrag_inodes(fs_info);
4011
4012	cancel_work_sync(&fs_info->async_reclaim_work);
4013
4014	if (!sb_rdonly(fs_info->sb)) {
4015		/*
4016		 * The cleaner kthread is stopped, so do one final pass over
4017		 * unused block groups.
 
4018		 */
4019		btrfs_delete_unused_bgs(fs_info);
4020
4021		ret = btrfs_commit_super(fs_info);
4022		if (ret)
4023			btrfs_err(fs_info, "commit super ret %d", ret);
4024	}
4025
4026	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4027	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4028		btrfs_error_commit_super(fs_info);
4029
4030	kthread_stop(fs_info->transaction_kthread);
4031	kthread_stop(fs_info->cleaner_kthread);
4032
4033	ASSERT(list_empty(&fs_info->delayed_iputs));
4034	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4035
4036	btrfs_free_qgroup_config(fs_info);
4037	ASSERT(list_empty(&fs_info->delalloc_roots));
4038
4039	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4040		btrfs_info(fs_info, "at unmount delalloc count %lld",
4041		       percpu_counter_sum(&fs_info->delalloc_bytes));
4042	}
4043
4044	if (percpu_counter_sum(&fs_info->dio_bytes))
4045		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4046			   percpu_counter_sum(&fs_info->dio_bytes));
4047
4048	btrfs_sysfs_remove_mounted(fs_info);
4049	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4050
4051	btrfs_free_fs_roots(fs_info);
4052
4053	btrfs_put_block_group_cache(fs_info);
4054
 
 
4055	/*
4056	 * we must make sure there is not any read request to
4057	 * submit after we stopping all workers.
4058	 */
4059	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4060	btrfs_stop_all_workers(fs_info);
4061
4062	btrfs_free_block_groups(fs_info);
4063
4064	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4065	free_root_pointers(fs_info, 1);
4066
4067	iput(fs_info->btree_inode);
4068
4069#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4070	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4071		btrfsic_unmount(fs_info->fs_devices);
4072#endif
4073
4074	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4075	btrfs_close_devices(fs_info->fs_devices);
 
4076
4077	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4078	percpu_counter_destroy(&fs_info->delalloc_bytes);
4079	percpu_counter_destroy(&fs_info->dio_bytes);
4080	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4081	cleanup_srcu_struct(&fs_info->subvol_srcu);
4082
4083	btrfs_free_csum_hash(fs_info);
4084	btrfs_free_stripe_hash_table(fs_info);
4085	btrfs_free_ref_cache(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
4086}
4087
4088int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4089			  int atomic)
4090{
4091	int ret;
4092	struct inode *btree_inode = buf->pages[0]->mapping->host;
4093
4094	ret = extent_buffer_uptodate(buf);
4095	if (!ret)
4096		return ret;
4097
4098	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4099				    parent_transid, atomic);
4100	if (ret == -EAGAIN)
4101		return ret;
4102	return !ret;
4103}
4104
4105void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4106{
4107	struct btrfs_fs_info *fs_info;
4108	struct btrfs_root *root;
4109	u64 transid = btrfs_header_generation(buf);
4110	int was_dirty;
4111
4112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4113	/*
4114	 * This is a fast path so only do this check if we have sanity tests
4115	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4116	 * outside of the sanity tests.
4117	 */
4118	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4119		return;
4120#endif
4121	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4122	fs_info = root->fs_info;
4123	btrfs_assert_tree_locked(buf);
4124	if (transid != fs_info->generation)
4125		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4126			buf->start, transid, fs_info->generation);
4127	was_dirty = set_extent_buffer_dirty(buf);
4128	if (!was_dirty)
4129		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4130					 buf->len,
4131					 fs_info->dirty_metadata_batch);
4132#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4133	/*
4134	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4135	 * but item data not updated.
4136	 * So here we should only check item pointers, not item data.
4137	 */
4138	if (btrfs_header_level(buf) == 0 &&
4139	    btrfs_check_leaf_relaxed(buf)) {
4140		btrfs_print_leaf(buf);
4141		ASSERT(0);
4142	}
4143#endif
4144}
4145
4146static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4147					int flush_delayed)
4148{
4149	/*
4150	 * looks as though older kernels can get into trouble with
4151	 * this code, they end up stuck in balance_dirty_pages forever
4152	 */
4153	int ret;
4154
4155	if (current->flags & PF_MEMALLOC)
4156		return;
4157
4158	if (flush_delayed)
4159		btrfs_balance_delayed_items(fs_info);
4160
4161	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4162				     BTRFS_DIRTY_METADATA_THRESH,
4163				     fs_info->dirty_metadata_batch);
4164	if (ret > 0) {
4165		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4166	}
4167}
4168
4169void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4170{
4171	__btrfs_btree_balance_dirty(fs_info, 1);
4172}
4173
4174void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4175{
4176	__btrfs_btree_balance_dirty(fs_info, 0);
4177}
4178
4179int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4180		      struct btrfs_key *first_key)
4181{
4182	return btree_read_extent_buffer_pages(buf, parent_transid,
4183					      level, first_key);
 
 
4184}
4185
4186static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
 
4187{
4188	/* cleanup FS via transaction */
4189	btrfs_cleanup_transaction(fs_info);
 
 
4190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4191	mutex_lock(&fs_info->cleaner_mutex);
4192	btrfs_run_delayed_iputs(fs_info);
4193	mutex_unlock(&fs_info->cleaner_mutex);
4194
4195	down_write(&fs_info->cleanup_work_sem);
4196	up_write(&fs_info->cleanup_work_sem);
 
 
 
4197}
4198
4199static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4200{
4201	struct btrfs_ordered_extent *ordered;
4202
4203	spin_lock(&root->ordered_extent_lock);
4204	/*
4205	 * This will just short circuit the ordered completion stuff which will
4206	 * make sure the ordered extent gets properly cleaned up.
4207	 */
4208	list_for_each_entry(ordered, &root->ordered_extents,
4209			    root_extent_list)
4210		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4211	spin_unlock(&root->ordered_extent_lock);
4212}
4213
4214static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4215{
4216	struct btrfs_root *root;
4217	struct list_head splice;
4218
4219	INIT_LIST_HEAD(&splice);
4220
4221	spin_lock(&fs_info->ordered_root_lock);
4222	list_splice_init(&fs_info->ordered_roots, &splice);
4223	while (!list_empty(&splice)) {
4224		root = list_first_entry(&splice, struct btrfs_root,
4225					ordered_root);
4226		list_move_tail(&root->ordered_root,
4227			       &fs_info->ordered_roots);
4228
4229		spin_unlock(&fs_info->ordered_root_lock);
4230		btrfs_destroy_ordered_extents(root);
4231
4232		cond_resched();
4233		spin_lock(&fs_info->ordered_root_lock);
4234	}
4235	spin_unlock(&fs_info->ordered_root_lock);
4236
4237	/*
4238	 * We need this here because if we've been flipped read-only we won't
4239	 * get sync() from the umount, so we need to make sure any ordered
4240	 * extents that haven't had their dirty pages IO start writeout yet
4241	 * actually get run and error out properly.
4242	 */
4243	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4244}
4245
4246static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4247				      struct btrfs_fs_info *fs_info)
4248{
4249	struct rb_node *node;
4250	struct btrfs_delayed_ref_root *delayed_refs;
4251	struct btrfs_delayed_ref_node *ref;
4252	int ret = 0;
4253
4254	delayed_refs = &trans->delayed_refs;
4255
4256	spin_lock(&delayed_refs->lock);
4257	if (atomic_read(&delayed_refs->num_entries) == 0) {
4258		spin_unlock(&delayed_refs->lock);
4259		btrfs_info(fs_info, "delayed_refs has NO entry");
4260		return ret;
4261	}
4262
4263	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4264		struct btrfs_delayed_ref_head *head;
4265		struct rb_node *n;
4266		bool pin_bytes = false;
4267
4268		head = rb_entry(node, struct btrfs_delayed_ref_head,
4269				href_node);
4270		if (btrfs_delayed_ref_lock(delayed_refs, head))
 
 
 
 
 
 
 
4271			continue;
4272
4273		spin_lock(&head->lock);
4274		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4275			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4276				       ref_node);
4277			ref->in_tree = 0;
4278			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4279			RB_CLEAR_NODE(&ref->ref_node);
4280			if (!list_empty(&ref->add_list))
4281				list_del(&ref->add_list);
4282			atomic_dec(&delayed_refs->num_entries);
4283			btrfs_put_delayed_ref(ref);
4284		}
4285		if (head->must_insert_reserved)
4286			pin_bytes = true;
4287		btrfs_free_delayed_extent_op(head->extent_op);
4288		btrfs_delete_ref_head(delayed_refs, head);
 
 
 
 
 
4289		spin_unlock(&head->lock);
4290		spin_unlock(&delayed_refs->lock);
4291		mutex_unlock(&head->mutex);
4292
4293		if (pin_bytes)
4294			btrfs_pin_extent(fs_info, head->bytenr,
4295					 head->num_bytes, 1);
4296		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4297		btrfs_put_delayed_ref_head(head);
4298		cond_resched();
4299		spin_lock(&delayed_refs->lock);
4300	}
4301
4302	spin_unlock(&delayed_refs->lock);
4303
4304	return ret;
4305}
4306
4307static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4308{
4309	struct btrfs_inode *btrfs_inode;
4310	struct list_head splice;
4311
4312	INIT_LIST_HEAD(&splice);
4313
4314	spin_lock(&root->delalloc_lock);
4315	list_splice_init(&root->delalloc_inodes, &splice);
4316
4317	while (!list_empty(&splice)) {
4318		struct inode *inode = NULL;
4319		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4320					       delalloc_inodes);
4321		__btrfs_del_delalloc_inode(root, btrfs_inode);
 
 
 
4322		spin_unlock(&root->delalloc_lock);
4323
4324		/*
4325		 * Make sure we get a live inode and that it'll not disappear
4326		 * meanwhile.
4327		 */
4328		inode = igrab(&btrfs_inode->vfs_inode);
4329		if (inode) {
4330			invalidate_inode_pages2(inode->i_mapping);
4331			iput(inode);
4332		}
4333		spin_lock(&root->delalloc_lock);
4334	}
 
4335	spin_unlock(&root->delalloc_lock);
4336}
4337
4338static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4339{
4340	struct btrfs_root *root;
4341	struct list_head splice;
4342
4343	INIT_LIST_HEAD(&splice);
4344
4345	spin_lock(&fs_info->delalloc_root_lock);
4346	list_splice_init(&fs_info->delalloc_roots, &splice);
4347	while (!list_empty(&splice)) {
4348		root = list_first_entry(&splice, struct btrfs_root,
4349					 delalloc_root);
 
4350		root = btrfs_grab_fs_root(root);
4351		BUG_ON(!root);
4352		spin_unlock(&fs_info->delalloc_root_lock);
4353
4354		btrfs_destroy_delalloc_inodes(root);
4355		btrfs_put_fs_root(root);
4356
4357		spin_lock(&fs_info->delalloc_root_lock);
4358	}
4359	spin_unlock(&fs_info->delalloc_root_lock);
4360}
4361
4362static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4363					struct extent_io_tree *dirty_pages,
4364					int mark)
4365{
4366	int ret;
4367	struct extent_buffer *eb;
4368	u64 start = 0;
4369	u64 end;
4370
4371	while (1) {
4372		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4373					    mark, NULL);
4374		if (ret)
4375			break;
4376
4377		clear_extent_bits(dirty_pages, start, end, mark);
4378		while (start <= end) {
4379			eb = find_extent_buffer(fs_info, start);
4380			start += fs_info->nodesize;
4381			if (!eb)
4382				continue;
4383			wait_on_extent_buffer_writeback(eb);
4384
4385			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4386					       &eb->bflags))
4387				clear_extent_buffer_dirty(eb);
4388			free_extent_buffer_stale(eb);
4389		}
4390	}
4391
4392	return ret;
4393}
4394
4395static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4396				       struct extent_io_tree *pinned_extents)
4397{
4398	struct extent_io_tree *unpin;
4399	u64 start;
4400	u64 end;
4401	int ret;
4402	bool loop = true;
4403
4404	unpin = pinned_extents;
4405again:
4406	while (1) {
4407		struct extent_state *cached_state = NULL;
4408
4409		/*
4410		 * The btrfs_finish_extent_commit() may get the same range as
4411		 * ours between find_first_extent_bit and clear_extent_dirty.
4412		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4413		 * the same extent range.
4414		 */
4415		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4416		ret = find_first_extent_bit(unpin, 0, &start, &end,
4417					    EXTENT_DIRTY, &cached_state);
4418		if (ret) {
4419			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4420			break;
4421		}
4422
4423		clear_extent_dirty(unpin, start, end, &cached_state);
4424		free_extent_state(cached_state);
4425		btrfs_error_unpin_extent_range(fs_info, start, end);
4426		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4427		cond_resched();
4428	}
4429
4430	if (loop) {
4431		if (unpin == &fs_info->freed_extents[0])
4432			unpin = &fs_info->freed_extents[1];
4433		else
4434			unpin = &fs_info->freed_extents[0];
4435		loop = false;
4436		goto again;
4437	}
4438
4439	return 0;
4440}
4441
4442static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4443{
4444	struct inode *inode;
4445
4446	inode = cache->io_ctl.inode;
4447	if (inode) {
4448		invalidate_inode_pages2(inode->i_mapping);
4449		BTRFS_I(inode)->generation = 0;
4450		cache->io_ctl.inode = NULL;
4451		iput(inode);
4452	}
4453	btrfs_put_block_group(cache);
4454}
4455
4456void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4457			     struct btrfs_fs_info *fs_info)
4458{
4459	struct btrfs_block_group_cache *cache;
4460
4461	spin_lock(&cur_trans->dirty_bgs_lock);
4462	while (!list_empty(&cur_trans->dirty_bgs)) {
4463		cache = list_first_entry(&cur_trans->dirty_bgs,
4464					 struct btrfs_block_group_cache,
4465					 dirty_list);
 
 
 
 
 
4466
4467		if (!list_empty(&cache->io_list)) {
4468			spin_unlock(&cur_trans->dirty_bgs_lock);
4469			list_del_init(&cache->io_list);
4470			btrfs_cleanup_bg_io(cache);
4471			spin_lock(&cur_trans->dirty_bgs_lock);
4472		}
4473
4474		list_del_init(&cache->dirty_list);
4475		spin_lock(&cache->lock);
4476		cache->disk_cache_state = BTRFS_DC_ERROR;
4477		spin_unlock(&cache->lock);
4478
4479		spin_unlock(&cur_trans->dirty_bgs_lock);
4480		btrfs_put_block_group(cache);
4481		btrfs_delayed_refs_rsv_release(fs_info, 1);
4482		spin_lock(&cur_trans->dirty_bgs_lock);
4483	}
4484	spin_unlock(&cur_trans->dirty_bgs_lock);
4485
4486	/*
4487	 * Refer to the definition of io_bgs member for details why it's safe
4488	 * to use it without any locking
4489	 */
4490	while (!list_empty(&cur_trans->io_bgs)) {
4491		cache = list_first_entry(&cur_trans->io_bgs,
4492					 struct btrfs_block_group_cache,
4493					 io_list);
 
 
 
 
4494
4495		list_del_init(&cache->io_list);
4496		spin_lock(&cache->lock);
4497		cache->disk_cache_state = BTRFS_DC_ERROR;
4498		spin_unlock(&cache->lock);
4499		btrfs_cleanup_bg_io(cache);
4500	}
4501}
4502
4503void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4504				   struct btrfs_fs_info *fs_info)
4505{
4506	struct btrfs_device *dev, *tmp;
4507
4508	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4509	ASSERT(list_empty(&cur_trans->dirty_bgs));
4510	ASSERT(list_empty(&cur_trans->io_bgs));
4511
4512	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4513				 post_commit_list) {
4514		list_del_init(&dev->post_commit_list);
4515	}
4516
4517	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4518
4519	cur_trans->state = TRANS_STATE_COMMIT_START;
4520	wake_up(&fs_info->transaction_blocked_wait);
4521
4522	cur_trans->state = TRANS_STATE_UNBLOCKED;
4523	wake_up(&fs_info->transaction_wait);
4524
4525	btrfs_destroy_delayed_inodes(fs_info);
4526	btrfs_assert_delayed_root_empty(fs_info);
4527
4528	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4529				     EXTENT_DIRTY);
4530	btrfs_destroy_pinned_extent(fs_info,
4531				    fs_info->pinned_extents);
4532
4533	cur_trans->state =TRANS_STATE_COMPLETED;
4534	wake_up(&cur_trans->commit_wait);
 
 
 
 
 
4535}
4536
4537static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4538{
4539	struct btrfs_transaction *t;
4540
4541	mutex_lock(&fs_info->transaction_kthread_mutex);
4542
4543	spin_lock(&fs_info->trans_lock);
4544	while (!list_empty(&fs_info->trans_list)) {
4545		t = list_first_entry(&fs_info->trans_list,
4546				     struct btrfs_transaction, list);
4547		if (t->state >= TRANS_STATE_COMMIT_START) {
4548			refcount_inc(&t->use_count);
4549			spin_unlock(&fs_info->trans_lock);
4550			btrfs_wait_for_commit(fs_info, t->transid);
4551			btrfs_put_transaction(t);
4552			spin_lock(&fs_info->trans_lock);
4553			continue;
4554		}
4555		if (t == fs_info->running_transaction) {
4556			t->state = TRANS_STATE_COMMIT_DOING;
4557			spin_unlock(&fs_info->trans_lock);
4558			/*
4559			 * We wait for 0 num_writers since we don't hold a trans
4560			 * handle open currently for this transaction.
4561			 */
4562			wait_event(t->writer_wait,
4563				   atomic_read(&t->num_writers) == 0);
4564		} else {
4565			spin_unlock(&fs_info->trans_lock);
4566		}
4567		btrfs_cleanup_one_transaction(t, fs_info);
4568
4569		spin_lock(&fs_info->trans_lock);
4570		if (t == fs_info->running_transaction)
4571			fs_info->running_transaction = NULL;
4572		list_del_init(&t->list);
4573		spin_unlock(&fs_info->trans_lock);
4574
4575		btrfs_put_transaction(t);
4576		trace_btrfs_transaction_commit(fs_info->tree_root);
4577		spin_lock(&fs_info->trans_lock);
4578	}
4579	spin_unlock(&fs_info->trans_lock);
4580	btrfs_destroy_all_ordered_extents(fs_info);
4581	btrfs_destroy_delayed_inodes(fs_info);
4582	btrfs_assert_delayed_root_empty(fs_info);
4583	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4584	btrfs_destroy_all_delalloc_inodes(fs_info);
4585	mutex_unlock(&fs_info->transaction_kthread_mutex);
4586
4587	return 0;
4588}
4589
4590static const struct extent_io_ops btree_extent_io_ops = {
4591	/* mandatory callbacks */
4592	.submit_bio_hook = btree_submit_bio_hook,
4593	.readpage_end_io_hook = btree_readpage_end_io_hook,
 
 
 
 
4594};
v4.10.11
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/slab.h>
  29#include <linux/migrate.h>
  30#include <linux/ratelimit.h>
  31#include <linux/uuid.h>
  32#include <linux/semaphore.h>
 
 
 
  33#include <asm/unaligned.h>
 
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "hash.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "locking.h"
  42#include "tree-log.h"
  43#include "free-space-cache.h"
  44#include "free-space-tree.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
  48#include "dev-replace.h"
  49#include "raid56.h"
  50#include "sysfs.h"
  51#include "qgroup.h"
  52#include "compression.h"
  53
  54#ifdef CONFIG_X86
  55#include <asm/cpufeature.h>
  56#endif
  57
  58#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  59				 BTRFS_HEADER_FLAG_RELOC |\
  60				 BTRFS_SUPER_FLAG_ERROR |\
  61				 BTRFS_SUPER_FLAG_SEEDING |\
  62				 BTRFS_SUPER_FLAG_METADUMP)
 
  63
  64static const struct extent_io_ops btree_extent_io_ops;
  65static void end_workqueue_fn(struct btrfs_work *work);
  66static void free_fs_root(struct btrfs_root *root);
  67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  68				    int read_only);
  69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  71				      struct btrfs_fs_info *fs_info);
  72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  73static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  74					struct extent_io_tree *dirty_pages,
  75					int mark);
  76static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  77				       struct extent_io_tree *pinned_extents);
  78static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  79static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  80
  81/*
  82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  83 * is complete.  This is used during reads to verify checksums, and it is used
  84 * by writes to insert metadata for new file extents after IO is complete.
  85 */
  86struct btrfs_end_io_wq {
  87	struct bio *bio;
  88	bio_end_io_t *end_io;
  89	void *private;
  90	struct btrfs_fs_info *info;
  91	int error;
  92	enum btrfs_wq_endio_type metadata;
  93	struct list_head list;
  94	struct btrfs_work work;
  95};
  96
  97static struct kmem_cache *btrfs_end_io_wq_cache;
  98
  99int __init btrfs_end_io_wq_init(void)
 100{
 101	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
 102					sizeof(struct btrfs_end_io_wq),
 103					0,
 104					SLAB_MEM_SPREAD,
 105					NULL);
 106	if (!btrfs_end_io_wq_cache)
 107		return -ENOMEM;
 108	return 0;
 109}
 110
 111void btrfs_end_io_wq_exit(void)
 112{
 113	kmem_cache_destroy(btrfs_end_io_wq_cache);
 114}
 115
 116/*
 117 * async submit bios are used to offload expensive checksumming
 118 * onto the worker threads.  They checksum file and metadata bios
 119 * just before they are sent down the IO stack.
 120 */
 121struct async_submit_bio {
 122	struct inode *inode;
 123	struct bio *bio;
 124	struct list_head list;
 125	extent_submit_bio_hook_t *submit_bio_start;
 126	extent_submit_bio_hook_t *submit_bio_done;
 127	int mirror_num;
 128	unsigned long bio_flags;
 129	/*
 130	 * bio_offset is optional, can be used if the pages in the bio
 131	 * can't tell us where in the file the bio should go
 132	 */
 133	u64 bio_offset;
 134	struct btrfs_work work;
 135	int error;
 136};
 137
 138/*
 139 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 141 * the level the eb occupies in the tree.
 142 *
 143 * Different roots are used for different purposes and may nest inside each
 144 * other and they require separate keysets.  As lockdep keys should be
 145 * static, assign keysets according to the purpose of the root as indicated
 146 * by btrfs_root->objectid.  This ensures that all special purpose roots
 147 * have separate keysets.
 148 *
 149 * Lock-nesting across peer nodes is always done with the immediate parent
 150 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 151 * subclass to avoid triggering lockdep warning in such cases.
 152 *
 153 * The key is set by the readpage_end_io_hook after the buffer has passed
 154 * csum validation but before the pages are unlocked.  It is also set by
 155 * btrfs_init_new_buffer on freshly allocated blocks.
 156 *
 157 * We also add a check to make sure the highest level of the tree is the
 158 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 159 * needs update as well.
 160 */
 161#ifdef CONFIG_DEBUG_LOCK_ALLOC
 162# if BTRFS_MAX_LEVEL != 8
 163#  error
 164# endif
 165
 166static struct btrfs_lockdep_keyset {
 167	u64			id;		/* root objectid */
 168	const char		*name_stem;	/* lock name stem */
 169	char			names[BTRFS_MAX_LEVEL + 1][20];
 170	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 171} btrfs_lockdep_keysets[] = {
 172	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 173	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 174	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 175	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 176	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 177	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 178	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 179	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 180	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 181	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 182	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 183	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 184	{ .id = 0,				.name_stem = "tree"	},
 185};
 186
 187void __init btrfs_init_lockdep(void)
 188{
 189	int i, j;
 190
 191	/* initialize lockdep class names */
 192	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 193		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 194
 195		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 196			snprintf(ks->names[j], sizeof(ks->names[j]),
 197				 "btrfs-%s-%02d", ks->name_stem, j);
 198	}
 199}
 200
 201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 202				    int level)
 203{
 204	struct btrfs_lockdep_keyset *ks;
 205
 206	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 207
 208	/* find the matching keyset, id 0 is the default entry */
 209	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 210		if (ks->id == objectid)
 211			break;
 212
 213	lockdep_set_class_and_name(&eb->lock,
 214				   &ks->keys[level], ks->names[level]);
 215}
 216
 217#endif
 218
 219/*
 220 * extents on the btree inode are pretty simple, there's one extent
 221 * that covers the entire device
 222 */
 223static struct extent_map *btree_get_extent(struct inode *inode,
 224		struct page *page, size_t pg_offset, u64 start, u64 len,
 225		int create)
 226{
 227	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 228	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 229	struct extent_map *em;
 230	int ret;
 231
 232	read_lock(&em_tree->lock);
 233	em = lookup_extent_mapping(em_tree, start, len);
 234	if (em) {
 235		em->bdev = fs_info->fs_devices->latest_bdev;
 236		read_unlock(&em_tree->lock);
 237		goto out;
 238	}
 239	read_unlock(&em_tree->lock);
 240
 241	em = alloc_extent_map();
 242	if (!em) {
 243		em = ERR_PTR(-ENOMEM);
 244		goto out;
 245	}
 246	em->start = 0;
 247	em->len = (u64)-1;
 248	em->block_len = (u64)-1;
 249	em->block_start = 0;
 250	em->bdev = fs_info->fs_devices->latest_bdev;
 251
 252	write_lock(&em_tree->lock);
 253	ret = add_extent_mapping(em_tree, em, 0);
 254	if (ret == -EEXIST) {
 255		free_extent_map(em);
 256		em = lookup_extent_mapping(em_tree, start, len);
 257		if (!em)
 258			em = ERR_PTR(-EIO);
 259	} else if (ret) {
 260		free_extent_map(em);
 261		em = ERR_PTR(ret);
 262	}
 263	write_unlock(&em_tree->lock);
 264
 265out:
 266	return em;
 267}
 268
 269u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 270{
 271	return btrfs_crc32c(seed, data, len);
 272}
 273
 274void btrfs_csum_final(u32 crc, u8 *result)
 275{
 276	put_unaligned_le32(~crc, result);
 277}
 278
 279/*
 280 * compute the csum for a btree block, and either verify it or write it
 281 * into the csum field of the block.
 
 282 */
 283static int csum_tree_block(struct btrfs_fs_info *fs_info,
 284			   struct extent_buffer *buf,
 285			   int verify)
 286{
 287	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 288	char *result = NULL;
 289	unsigned long len;
 290	unsigned long cur_len;
 291	unsigned long offset = BTRFS_CSUM_SIZE;
 292	char *kaddr;
 293	unsigned long map_start;
 294	unsigned long map_len;
 295	int err;
 296	u32 crc = ~(u32)0;
 297	unsigned long inline_result;
 
 298
 299	len = buf->len - offset;
 
 300	while (len > 0) {
 
 
 
 
 
 
 301		err = map_private_extent_buffer(buf, offset, 32,
 302					&kaddr, &map_start, &map_len);
 303		if (err)
 304			return err;
 305		cur_len = min(len, map_len - (offset - map_start));
 306		crc = btrfs_csum_data(kaddr + offset - map_start,
 307				      crc, cur_len);
 308		len -= cur_len;
 309		offset += cur_len;
 310	}
 311	if (csum_size > sizeof(inline_result)) {
 312		result = kzalloc(csum_size, GFP_NOFS);
 313		if (!result)
 314			return -ENOMEM;
 315	} else {
 316		result = (char *)&inline_result;
 317	}
 318
 319	btrfs_csum_final(crc, result);
 320
 321	if (verify) {
 322		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 323			u32 val;
 324			u32 found = 0;
 325			memcpy(&found, result, csum_size);
 326
 327			read_extent_buffer(buf, &val, 0, csum_size);
 328			btrfs_warn_rl(fs_info,
 329				"%s checksum verify failed on %llu wanted %X found %X level %d",
 330				fs_info->sb->s_id, buf->start,
 331				val, found, btrfs_header_level(buf));
 332			if (result != (char *)&inline_result)
 333				kfree(result);
 334			return -EUCLEAN;
 335		}
 336	} else {
 337		write_extent_buffer(buf, result, 0, csum_size);
 338	}
 339	if (result != (char *)&inline_result)
 340		kfree(result);
 341	return 0;
 342}
 343
 344/*
 345 * we can't consider a given block up to date unless the transid of the
 346 * block matches the transid in the parent node's pointer.  This is how we
 347 * detect blocks that either didn't get written at all or got written
 348 * in the wrong place.
 349 */
 350static int verify_parent_transid(struct extent_io_tree *io_tree,
 351				 struct extent_buffer *eb, u64 parent_transid,
 352				 int atomic)
 353{
 354	struct extent_state *cached_state = NULL;
 355	int ret;
 356	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 357
 358	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 359		return 0;
 360
 361	if (atomic)
 362		return -EAGAIN;
 363
 364	if (need_lock) {
 365		btrfs_tree_read_lock(eb);
 366		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 367	}
 368
 369	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 370			 &cached_state);
 371	if (extent_buffer_uptodate(eb) &&
 372	    btrfs_header_generation(eb) == parent_transid) {
 373		ret = 0;
 374		goto out;
 375	}
 376	btrfs_err_rl(eb->fs_info,
 377		"parent transid verify failed on %llu wanted %llu found %llu",
 378			eb->start,
 379			parent_transid, btrfs_header_generation(eb));
 380	ret = 1;
 381
 382	/*
 383	 * Things reading via commit roots that don't have normal protection,
 384	 * like send, can have a really old block in cache that may point at a
 385	 * block that has been freed and re-allocated.  So don't clear uptodate
 386	 * if we find an eb that is under IO (dirty/writeback) because we could
 387	 * end up reading in the stale data and then writing it back out and
 388	 * making everybody very sad.
 389	 */
 390	if (!extent_buffer_under_io(eb))
 391		clear_extent_buffer_uptodate(eb);
 392out:
 393	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 394			     &cached_state, GFP_NOFS);
 395	if (need_lock)
 396		btrfs_tree_read_unlock_blocking(eb);
 397	return ret;
 398}
 399
 
 
 
 
 
 
 
 
 
 
 400/*
 401 * Return 0 if the superblock checksum type matches the checksum value of that
 402 * algorithm. Pass the raw disk superblock data.
 403 */
 404static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 405				  char *raw_disk_sb)
 406{
 407	struct btrfs_super_block *disk_sb =
 408		(struct btrfs_super_block *)raw_disk_sb;
 409	u16 csum_type = btrfs_super_csum_type(disk_sb);
 410	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411
 412	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 413		u32 crc = ~(u32)0;
 414		const int csum_size = sizeof(crc);
 415		char result[csum_size];
 416
 417		/*
 418		 * The super_block structure does not span the whole
 419		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 420		 * is filled with zeros and is included in the checksum.
 421		 */
 422		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 423				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 424		btrfs_csum_final(crc, result);
 425
 426		if (memcmp(raw_disk_sb, result, csum_size))
 427			ret = 1;
 
 
 
 
 
 
 428	}
 429
 430	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 431		btrfs_err(fs_info, "unsupported checksum algorithm %u",
 432				csum_type);
 433		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434	}
 435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436	return ret;
 437}
 438
 439/*
 440 * helper to read a given tree block, doing retries as required when
 441 * the checksums don't match and we have alternate mirrors to try.
 
 
 
 
 442 */
 443static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
 444					  struct extent_buffer *eb,
 445					  u64 parent_transid)
 446{
 
 447	struct extent_io_tree *io_tree;
 448	int failed = 0;
 449	int ret;
 450	int num_copies = 0;
 451	int mirror_num = 0;
 452	int failed_mirror = 0;
 453
 454	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 455	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 456	while (1) {
 457		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
 458					       btree_get_extent, mirror_num);
 459		if (!ret) {
 460			if (!verify_parent_transid(io_tree, eb,
 461						   parent_transid, 0))
 
 
 
 
 
 462				break;
 463			else
 464				ret = -EIO;
 465		}
 466
 467		/*
 468		 * This buffer's crc is fine, but its contents are corrupted, so
 469		 * there is no reason to read the other copies, they won't be
 470		 * any less wrong.
 471		 */
 472		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 473			break;
 474
 475		num_copies = btrfs_num_copies(fs_info,
 476					      eb->start, eb->len);
 477		if (num_copies == 1)
 478			break;
 479
 480		if (!failed_mirror) {
 481			failed = 1;
 482			failed_mirror = eb->read_mirror;
 483		}
 484
 485		mirror_num++;
 486		if (mirror_num == failed_mirror)
 487			mirror_num++;
 488
 489		if (mirror_num > num_copies)
 490			break;
 491	}
 492
 493	if (failed && !ret && failed_mirror)
 494		repair_eb_io_failure(fs_info, eb, failed_mirror);
 495
 496	return ret;
 497}
 498
 499/*
 500 * checksum a dirty tree block before IO.  This has extra checks to make sure
 501 * we only fill in the checksum field in the first page of a multi-page block
 502 */
 503
 504static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 505{
 506	u64 start = page_offset(page);
 507	u64 found_start;
 
 
 508	struct extent_buffer *eb;
 
 509
 510	eb = (struct extent_buffer *)page->private;
 511	if (page != eb->pages[0])
 512		return 0;
 513
 514	found_start = btrfs_header_bytenr(eb);
 515	/*
 516	 * Please do not consolidate these warnings into a single if.
 517	 * It is useful to know what went wrong.
 518	 */
 519	if (WARN_ON(found_start != start))
 520		return -EUCLEAN;
 521	if (WARN_ON(!PageUptodate(page)))
 522		return -EUCLEAN;
 523
 524	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 525			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 526
 527	return csum_tree_block(fs_info, eb, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528}
 529
 530static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 531				 struct extent_buffer *eb)
 532{
 
 533	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 534	u8 fsid[BTRFS_UUID_SIZE];
 535	int ret = 1;
 536
 537	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 538	while (fs_devices) {
 539		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 540			ret = 0;
 541			break;
 542		}
 543		fs_devices = fs_devices->seed;
 544	}
 545	return ret;
 546}
 547
 548#define CORRUPT(reason, eb, root, slot)					\
 549	btrfs_crit(root->fs_info,					\
 550		   "corrupt %s, %s: block=%llu, root=%llu, slot=%d",	\
 551		   btrfs_header_level(eb) == 0 ? "leaf" : "node",	\
 552		   reason, btrfs_header_bytenr(eb), root->objectid, slot)
 553
 554static noinline int check_leaf(struct btrfs_root *root,
 555			       struct extent_buffer *leaf)
 556{
 557	struct btrfs_fs_info *fs_info = root->fs_info;
 558	struct btrfs_key key;
 559	struct btrfs_key leaf_key;
 560	u32 nritems = btrfs_header_nritems(leaf);
 561	int slot;
 562
 563	/*
 564	 * Extent buffers from a relocation tree have a owner field that
 565	 * corresponds to the subvolume tree they are based on. So just from an
 566	 * extent buffer alone we can not find out what is the id of the
 567	 * corresponding subvolume tree, so we can not figure out if the extent
 568	 * buffer corresponds to the root of the relocation tree or not. So skip
 569	 * this check for relocation trees.
 570	 */
 571	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
 572		struct btrfs_root *check_root;
 573
 574		key.objectid = btrfs_header_owner(leaf);
 575		key.type = BTRFS_ROOT_ITEM_KEY;
 576		key.offset = (u64)-1;
 577
 578		check_root = btrfs_get_fs_root(fs_info, &key, false);
 579		/*
 580		 * The only reason we also check NULL here is that during
 581		 * open_ctree() some roots has not yet been set up.
 
 582		 */
 583		if (!IS_ERR_OR_NULL(check_root)) {
 584			struct extent_buffer *eb;
 
 
 
 585
 586			eb = btrfs_root_node(check_root);
 587			/* if leaf is the root, then it's fine */
 588			if (leaf != eb) {
 589				CORRUPT("non-root leaf's nritems is 0",
 590					leaf, check_root, 0);
 591				free_extent_buffer(eb);
 592				return -EIO;
 593			}
 594			free_extent_buffer(eb);
 595		}
 596		return 0;
 597	}
 598
 599	if (nritems == 0)
 600		return 0;
 601
 602	/* Check the 0 item */
 603	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 604	    BTRFS_LEAF_DATA_SIZE(fs_info)) {
 605		CORRUPT("invalid item offset size pair", leaf, root, 0);
 606		return -EIO;
 607	}
 608
 609	/*
 610	 * Check to make sure each items keys are in the correct order and their
 611	 * offsets make sense.  We only have to loop through nritems-1 because
 612	 * we check the current slot against the next slot, which verifies the
 613	 * next slot's offset+size makes sense and that the current's slot
 614	 * offset is correct.
 615	 */
 616	for (slot = 0; slot < nritems - 1; slot++) {
 617		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 618		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 619
 620		/* Make sure the keys are in the right order */
 621		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 622			CORRUPT("bad key order", leaf, root, slot);
 623			return -EIO;
 624		}
 625
 626		/*
 627		 * Make sure the offset and ends are right, remember that the
 628		 * item data starts at the end of the leaf and grows towards the
 629		 * front.
 630		 */
 631		if (btrfs_item_offset_nr(leaf, slot) !=
 632			btrfs_item_end_nr(leaf, slot + 1)) {
 633			CORRUPT("slot offset bad", leaf, root, slot);
 634			return -EIO;
 635		}
 636
 637		/*
 638		 * Check to make sure that we don't point outside of the leaf,
 639		 * just in case all the items are consistent to each other, but
 640		 * all point outside of the leaf.
 641		 */
 642		if (btrfs_item_end_nr(leaf, slot) >
 643		    BTRFS_LEAF_DATA_SIZE(fs_info)) {
 644			CORRUPT("slot end outside of leaf", leaf, root, slot);
 645			return -EIO;
 646		}
 647	}
 648
 649	return 0;
 650}
 651
 652static int check_node(struct btrfs_root *root, struct extent_buffer *node)
 653{
 654	unsigned long nr = btrfs_header_nritems(node);
 655	struct btrfs_key key, next_key;
 656	int slot;
 657	u64 bytenr;
 658	int ret = 0;
 659
 660	if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
 661		btrfs_crit(root->fs_info,
 662			   "corrupt node: block %llu root %llu nritems %lu",
 663			   node->start, root->objectid, nr);
 664		return -EIO;
 665	}
 666
 667	for (slot = 0; slot < nr - 1; slot++) {
 668		bytenr = btrfs_node_blockptr(node, slot);
 669		btrfs_node_key_to_cpu(node, &key, slot);
 670		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
 671
 672		if (!bytenr) {
 673			CORRUPT("invalid item slot", node, root, slot);
 674			ret = -EIO;
 675			goto out;
 676		}
 677
 678		if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
 679			CORRUPT("bad key order", node, root, slot);
 680			ret = -EIO;
 681			goto out;
 682		}
 
 683	}
 684out:
 685	return ret;
 686}
 687
 688static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 689				      u64 phy_offset, struct page *page,
 690				      u64 start, u64 end, int mirror)
 691{
 692	u64 found_start;
 693	int found_level;
 694	struct extent_buffer *eb;
 695	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 696	struct btrfs_fs_info *fs_info = root->fs_info;
 
 697	int ret = 0;
 
 698	int reads_done;
 699
 700	if (!page->private)
 701		goto out;
 702
 703	eb = (struct extent_buffer *)page->private;
 704
 705	/* the pending IO might have been the only thing that kept this buffer
 706	 * in memory.  Make sure we have a ref for all this other checks
 707	 */
 708	extent_buffer_get(eb);
 709
 710	reads_done = atomic_dec_and_test(&eb->io_pages);
 711	if (!reads_done)
 712		goto err;
 713
 714	eb->read_mirror = mirror;
 715	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 716		ret = -EIO;
 717		goto err;
 718	}
 719
 720	found_start = btrfs_header_bytenr(eb);
 721	if (found_start != eb->start) {
 722		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 723			     found_start, eb->start);
 724		ret = -EIO;
 725		goto err;
 726	}
 727	if (check_tree_block_fsid(fs_info, eb)) {
 728		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 729			     eb->start);
 730		ret = -EIO;
 731		goto err;
 732	}
 733	found_level = btrfs_header_level(eb);
 734	if (found_level >= BTRFS_MAX_LEVEL) {
 735		btrfs_err(fs_info, "bad tree block level %d",
 736			  (int)btrfs_header_level(eb));
 737		ret = -EIO;
 738		goto err;
 739	}
 740
 741	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 742				       eb, found_level);
 743
 744	ret = csum_tree_block(fs_info, eb, 1);
 745	if (ret)
 746		goto err;
 747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748	/*
 749	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 750	 * that we don't try and read the other copies of this block, just
 751	 * return -EIO.
 752	 */
 753	if (found_level == 0 && check_leaf(root, eb)) {
 754		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 755		ret = -EIO;
 756	}
 757
 758	if (found_level > 0 && check_node(root, eb))
 759		ret = -EIO;
 760
 761	if (!ret)
 762		set_extent_buffer_uptodate(eb);
 
 
 
 
 763err:
 764	if (reads_done &&
 765	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 766		btree_readahead_hook(fs_info, eb, ret);
 767
 768	if (ret) {
 769		/*
 770		 * our io error hook is going to dec the io pages
 771		 * again, we have to make sure it has something
 772		 * to decrement
 773		 */
 774		atomic_inc(&eb->io_pages);
 775		clear_extent_buffer_uptodate(eb);
 776	}
 777	free_extent_buffer(eb);
 778out:
 779	return ret;
 780}
 781
 782static int btree_io_failed_hook(struct page *page, int failed_mirror)
 783{
 784	struct extent_buffer *eb;
 785
 786	eb = (struct extent_buffer *)page->private;
 787	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 788	eb->read_mirror = failed_mirror;
 789	atomic_dec(&eb->io_pages);
 790	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 791		btree_readahead_hook(eb->fs_info, eb, -EIO);
 792	return -EIO;	/* we fixed nothing */
 793}
 794
 795static void end_workqueue_bio(struct bio *bio)
 796{
 797	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 798	struct btrfs_fs_info *fs_info;
 799	struct btrfs_workqueue *wq;
 800	btrfs_work_func_t func;
 801
 802	fs_info = end_io_wq->info;
 803	end_io_wq->error = bio->bi_error;
 804
 805	if (bio_op(bio) == REQ_OP_WRITE) {
 806		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 807			wq = fs_info->endio_meta_write_workers;
 808			func = btrfs_endio_meta_write_helper;
 809		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 810			wq = fs_info->endio_freespace_worker;
 811			func = btrfs_freespace_write_helper;
 812		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 813			wq = fs_info->endio_raid56_workers;
 814			func = btrfs_endio_raid56_helper;
 815		} else {
 816			wq = fs_info->endio_write_workers;
 817			func = btrfs_endio_write_helper;
 818		}
 819	} else {
 820		if (unlikely(end_io_wq->metadata ==
 821			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 822			wq = fs_info->endio_repair_workers;
 823			func = btrfs_endio_repair_helper;
 824		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 825			wq = fs_info->endio_raid56_workers;
 826			func = btrfs_endio_raid56_helper;
 827		} else if (end_io_wq->metadata) {
 828			wq = fs_info->endio_meta_workers;
 829			func = btrfs_endio_meta_helper;
 830		} else {
 831			wq = fs_info->endio_workers;
 832			func = btrfs_endio_helper;
 833		}
 834	}
 835
 836	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 837	btrfs_queue_work(wq, &end_io_wq->work);
 838}
 839
 840int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 841			enum btrfs_wq_endio_type metadata)
 842{
 843	struct btrfs_end_io_wq *end_io_wq;
 844
 845	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 846	if (!end_io_wq)
 847		return -ENOMEM;
 848
 849	end_io_wq->private = bio->bi_private;
 850	end_io_wq->end_io = bio->bi_end_io;
 851	end_io_wq->info = info;
 852	end_io_wq->error = 0;
 853	end_io_wq->bio = bio;
 854	end_io_wq->metadata = metadata;
 855
 856	bio->bi_private = end_io_wq;
 857	bio->bi_end_io = end_workqueue_bio;
 858	return 0;
 859}
 860
 861unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 862{
 863	unsigned long limit = min_t(unsigned long,
 864				    info->thread_pool_size,
 865				    info->fs_devices->open_devices);
 866	return 256 * limit;
 867}
 868
 869static void run_one_async_start(struct btrfs_work *work)
 870{
 871	struct async_submit_bio *async;
 872	int ret;
 873
 874	async = container_of(work, struct  async_submit_bio, work);
 875	ret = async->submit_bio_start(async->inode, async->bio,
 876				      async->mirror_num, async->bio_flags,
 877				      async->bio_offset);
 878	if (ret)
 879		async->error = ret;
 880}
 881
 
 
 
 
 
 
 
 
 882static void run_one_async_done(struct btrfs_work *work)
 883{
 884	struct btrfs_fs_info *fs_info;
 885	struct async_submit_bio *async;
 886	int limit;
 
 887
 888	async = container_of(work, struct  async_submit_bio, work);
 889	fs_info = BTRFS_I(async->inode)->root->fs_info;
 890
 891	limit = btrfs_async_submit_limit(fs_info);
 892	limit = limit * 2 / 3;
 893
 894	/*
 895	 * atomic_dec_return implies a barrier for waitqueue_active
 896	 */
 897	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 898	    waitqueue_active(&fs_info->async_submit_wait))
 899		wake_up(&fs_info->async_submit_wait);
 900
 901	/* If an error occurred we just want to clean up the bio and move on */
 902	if (async->error) {
 903		async->bio->bi_error = async->error;
 904		bio_endio(async->bio);
 905		return;
 906	}
 907
 908	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
 909			       async->bio_flags, async->bio_offset);
 
 
 
 
 910}
 911
 912static void run_one_async_free(struct btrfs_work *work)
 913{
 914	struct async_submit_bio *async;
 915
 916	async = container_of(work, struct  async_submit_bio, work);
 917	kfree(async);
 918}
 919
 920int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 921			struct bio *bio, int mirror_num,
 922			unsigned long bio_flags,
 923			u64 bio_offset,
 924			extent_submit_bio_hook_t *submit_bio_start,
 925			extent_submit_bio_hook_t *submit_bio_done)
 926{
 927	struct async_submit_bio *async;
 928
 929	async = kmalloc(sizeof(*async), GFP_NOFS);
 930	if (!async)
 931		return -ENOMEM;
 932
 933	async->inode = inode;
 934	async->bio = bio;
 935	async->mirror_num = mirror_num;
 936	async->submit_bio_start = submit_bio_start;
 937	async->submit_bio_done = submit_bio_done;
 938
 939	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 940			run_one_async_done, run_one_async_free);
 941
 942	async->bio_flags = bio_flags;
 943	async->bio_offset = bio_offset;
 944
 945	async->error = 0;
 946
 947	atomic_inc(&fs_info->nr_async_submits);
 948
 949	if (op_is_sync(bio->bi_opf))
 950		btrfs_set_work_high_priority(&async->work);
 951
 952	btrfs_queue_work(fs_info->workers, &async->work);
 953
 954	while (atomic_read(&fs_info->async_submit_draining) &&
 955	      atomic_read(&fs_info->nr_async_submits)) {
 956		wait_event(fs_info->async_submit_wait,
 957			   (atomic_read(&fs_info->nr_async_submits) == 0));
 958	}
 959
 960	return 0;
 961}
 962
 963static int btree_csum_one_bio(struct bio *bio)
 964{
 965	struct bio_vec *bvec;
 966	struct btrfs_root *root;
 967	int i, ret = 0;
 
 968
 969	bio_for_each_segment_all(bvec, bio, i) {
 
 970		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 971		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 972		if (ret)
 973			break;
 974	}
 975
 976	return ret;
 977}
 978
 979static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
 980				    int mirror_num, unsigned long bio_flags,
 981				    u64 bio_offset)
 982{
 983	/*
 984	 * when we're called for a write, we're already in the async
 985	 * submission context.  Just jump into btrfs_map_bio
 986	 */
 987	return btree_csum_one_bio(bio);
 988}
 989
 990static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
 991				 int mirror_num, unsigned long bio_flags,
 992				 u64 bio_offset)
 993{
 994	int ret;
 995
 996	/*
 997	 * when we're called for a write, we're already in the async
 998	 * submission context.  Just jump into btrfs_map_bio
 999	 */
1000	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
1001	if (ret) {
1002		bio->bi_error = ret;
1003		bio_endio(bio);
1004	}
1005	return ret;
1006}
1007
1008static int check_async_write(struct inode *inode, unsigned long bio_flags)
1009{
1010	if (bio_flags & EXTENT_BIO_TREE_LOG)
1011		return 0;
1012#ifdef CONFIG_X86
1013	if (static_cpu_has(X86_FEATURE_XMM4_2))
1014		return 0;
1015#endif
1016	return 1;
1017}
1018
1019static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1020				 int mirror_num, unsigned long bio_flags,
1021				 u64 bio_offset)
1022{
1023	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1024	int async = check_async_write(inode, bio_flags);
1025	int ret;
1026
1027	if (bio_op(bio) != REQ_OP_WRITE) {
1028		/*
1029		 * called for a read, do the setup so that checksum validation
1030		 * can happen in the async kernel threads
1031		 */
1032		ret = btrfs_bio_wq_end_io(fs_info, bio,
1033					  BTRFS_WQ_ENDIO_METADATA);
1034		if (ret)
1035			goto out_w_error;
1036		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1037	} else if (!async) {
1038		ret = btree_csum_one_bio(bio);
1039		if (ret)
1040			goto out_w_error;
1041		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1042	} else {
1043		/*
1044		 * kthread helpers are used to submit writes so that
1045		 * checksumming can happen in parallel across all CPUs
1046		 */
1047		ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
1048					  bio_offset,
1049					  __btree_submit_bio_start,
1050					  __btree_submit_bio_done);
1051	}
1052
1053	if (ret)
1054		goto out_w_error;
1055	return 0;
1056
1057out_w_error:
1058	bio->bi_error = ret;
1059	bio_endio(bio);
1060	return ret;
1061}
1062
1063#ifdef CONFIG_MIGRATION
1064static int btree_migratepage(struct address_space *mapping,
1065			struct page *newpage, struct page *page,
1066			enum migrate_mode mode)
1067{
1068	/*
1069	 * we can't safely write a btree page from here,
1070	 * we haven't done the locking hook
1071	 */
1072	if (PageDirty(page))
1073		return -EAGAIN;
1074	/*
1075	 * Buffers may be managed in a filesystem specific way.
1076	 * We must have no buffers or drop them.
1077	 */
1078	if (page_has_private(page) &&
1079	    !try_to_release_page(page, GFP_KERNEL))
1080		return -EAGAIN;
1081	return migrate_page(mapping, newpage, page, mode);
1082}
1083#endif
1084
1085
1086static int btree_writepages(struct address_space *mapping,
1087			    struct writeback_control *wbc)
1088{
1089	struct btrfs_fs_info *fs_info;
1090	int ret;
1091
1092	if (wbc->sync_mode == WB_SYNC_NONE) {
1093
1094		if (wbc->for_kupdate)
1095			return 0;
1096
1097		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1098		/* this is a bit racy, but that's ok */
1099		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1100					     BTRFS_DIRTY_METADATA_THRESH);
 
1101		if (ret < 0)
1102			return 0;
1103	}
1104	return btree_write_cache_pages(mapping, wbc);
1105}
1106
1107static int btree_readpage(struct file *file, struct page *page)
1108{
1109	struct extent_io_tree *tree;
1110	tree = &BTRFS_I(page->mapping->host)->io_tree;
1111	return extent_read_full_page(tree, page, btree_get_extent, 0);
1112}
1113
1114static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1115{
1116	if (PageWriteback(page) || PageDirty(page))
1117		return 0;
1118
1119	return try_release_extent_buffer(page);
1120}
1121
1122static void btree_invalidatepage(struct page *page, unsigned int offset,
1123				 unsigned int length)
1124{
1125	struct extent_io_tree *tree;
1126	tree = &BTRFS_I(page->mapping->host)->io_tree;
1127	extent_invalidatepage(tree, page, offset);
1128	btree_releasepage(page, GFP_NOFS);
1129	if (PagePrivate(page)) {
1130		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1131			   "page private not zero on page %llu",
1132			   (unsigned long long)page_offset(page));
1133		ClearPagePrivate(page);
1134		set_page_private(page, 0);
1135		put_page(page);
1136	}
1137}
1138
1139static int btree_set_page_dirty(struct page *page)
1140{
1141#ifdef DEBUG
1142	struct extent_buffer *eb;
1143
1144	BUG_ON(!PagePrivate(page));
1145	eb = (struct extent_buffer *)page->private;
1146	BUG_ON(!eb);
1147	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1148	BUG_ON(!atomic_read(&eb->refs));
1149	btrfs_assert_tree_locked(eb);
1150#endif
1151	return __set_page_dirty_nobuffers(page);
1152}
1153
1154static const struct address_space_operations btree_aops = {
1155	.readpage	= btree_readpage,
1156	.writepages	= btree_writepages,
1157	.releasepage	= btree_releasepage,
1158	.invalidatepage = btree_invalidatepage,
1159#ifdef CONFIG_MIGRATION
1160	.migratepage	= btree_migratepage,
1161#endif
1162	.set_page_dirty = btree_set_page_dirty,
1163};
1164
1165void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1166{
1167	struct extent_buffer *buf = NULL;
1168	struct inode *btree_inode = fs_info->btree_inode;
1169
1170	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1171	if (IS_ERR(buf))
1172		return;
1173	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1174				 buf, WAIT_NONE, btree_get_extent, 0);
1175	free_extent_buffer(buf);
1176}
1177
1178int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1179			 int mirror_num, struct extent_buffer **eb)
1180{
1181	struct extent_buffer *buf = NULL;
1182	struct inode *btree_inode = fs_info->btree_inode;
1183	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1184	int ret;
1185
1186	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1187	if (IS_ERR(buf))
1188		return 0;
1189
1190	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1191
1192	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1193				       btree_get_extent, mirror_num);
1194	if (ret) {
1195		free_extent_buffer(buf);
1196		return ret;
1197	}
1198
1199	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1200		free_extent_buffer(buf);
1201		return -EIO;
1202	} else if (extent_buffer_uptodate(buf)) {
1203		*eb = buf;
1204	} else {
1205		free_extent_buffer(buf);
1206	}
1207	return 0;
1208}
1209
1210struct extent_buffer *btrfs_find_create_tree_block(
1211						struct btrfs_fs_info *fs_info,
1212						u64 bytenr)
1213{
1214	if (btrfs_is_testing(fs_info))
1215		return alloc_test_extent_buffer(fs_info, bytenr);
1216	return alloc_extent_buffer(fs_info, bytenr);
1217}
1218
1219
1220int btrfs_write_tree_block(struct extent_buffer *buf)
1221{
1222	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1223					buf->start + buf->len - 1);
1224}
1225
1226int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1227{
1228	return filemap_fdatawait_range(buf->pages[0]->mapping,
1229				       buf->start, buf->start + buf->len - 1);
1230}
1231
1232struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1233				      u64 parent_transid)
 
1234{
1235	struct extent_buffer *buf = NULL;
1236	int ret;
1237
1238	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1239	if (IS_ERR(buf))
1240		return buf;
1241
1242	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
 
1243	if (ret) {
1244		free_extent_buffer(buf);
1245		return ERR_PTR(ret);
1246	}
1247	return buf;
1248
1249}
1250
1251void clean_tree_block(struct btrfs_trans_handle *trans,
1252		      struct btrfs_fs_info *fs_info,
1253		      struct extent_buffer *buf)
1254{
 
1255	if (btrfs_header_generation(buf) ==
1256	    fs_info->running_transaction->transid) {
1257		btrfs_assert_tree_locked(buf);
1258
1259		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1260			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1261					     -buf->len,
1262					     fs_info->dirty_metadata_batch);
1263			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1264			btrfs_set_lock_blocking(buf);
1265			clear_extent_buffer_dirty(buf);
1266		}
1267	}
1268}
1269
1270static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1271{
1272	struct btrfs_subvolume_writers *writers;
1273	int ret;
1274
1275	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1276	if (!writers)
1277		return ERR_PTR(-ENOMEM);
1278
1279	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1280	if (ret < 0) {
1281		kfree(writers);
1282		return ERR_PTR(ret);
1283	}
1284
1285	init_waitqueue_head(&writers->wait);
1286	return writers;
1287}
1288
1289static void
1290btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1291{
1292	percpu_counter_destroy(&writers->counter);
1293	kfree(writers);
1294}
1295
1296static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1297			 u64 objectid)
1298{
1299	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1300	root->node = NULL;
1301	root->commit_root = NULL;
1302	root->state = 0;
1303	root->orphan_cleanup_state = 0;
1304
1305	root->objectid = objectid;
1306	root->last_trans = 0;
1307	root->highest_objectid = 0;
1308	root->nr_delalloc_inodes = 0;
1309	root->nr_ordered_extents = 0;
1310	root->name = NULL;
1311	root->inode_tree = RB_ROOT;
1312	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1313	root->block_rsv = NULL;
1314	root->orphan_block_rsv = NULL;
1315
1316	INIT_LIST_HEAD(&root->dirty_list);
1317	INIT_LIST_HEAD(&root->root_list);
1318	INIT_LIST_HEAD(&root->delalloc_inodes);
1319	INIT_LIST_HEAD(&root->delalloc_root);
1320	INIT_LIST_HEAD(&root->ordered_extents);
1321	INIT_LIST_HEAD(&root->ordered_root);
 
1322	INIT_LIST_HEAD(&root->logged_list[0]);
1323	INIT_LIST_HEAD(&root->logged_list[1]);
1324	spin_lock_init(&root->orphan_lock);
1325	spin_lock_init(&root->inode_lock);
1326	spin_lock_init(&root->delalloc_lock);
1327	spin_lock_init(&root->ordered_extent_lock);
1328	spin_lock_init(&root->accounting_lock);
1329	spin_lock_init(&root->log_extents_lock[0]);
1330	spin_lock_init(&root->log_extents_lock[1]);
 
1331	mutex_init(&root->objectid_mutex);
1332	mutex_init(&root->log_mutex);
1333	mutex_init(&root->ordered_extent_mutex);
1334	mutex_init(&root->delalloc_mutex);
1335	init_waitqueue_head(&root->log_writer_wait);
1336	init_waitqueue_head(&root->log_commit_wait[0]);
1337	init_waitqueue_head(&root->log_commit_wait[1]);
1338	INIT_LIST_HEAD(&root->log_ctxs[0]);
1339	INIT_LIST_HEAD(&root->log_ctxs[1]);
1340	atomic_set(&root->log_commit[0], 0);
1341	atomic_set(&root->log_commit[1], 0);
1342	atomic_set(&root->log_writers, 0);
1343	atomic_set(&root->log_batch, 0);
1344	atomic_set(&root->orphan_inodes, 0);
1345	atomic_set(&root->refs, 1);
1346	atomic_set(&root->will_be_snapshoted, 0);
1347	atomic_set(&root->qgroup_meta_rsv, 0);
1348	root->log_transid = 0;
1349	root->log_transid_committed = -1;
1350	root->last_log_commit = 0;
1351	if (!dummy)
1352		extent_io_tree_init(&root->dirty_log_pages,
1353				     fs_info->btree_inode->i_mapping);
1354
1355	memset(&root->root_key, 0, sizeof(root->root_key));
1356	memset(&root->root_item, 0, sizeof(root->root_item));
1357	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1358	if (!dummy)
1359		root->defrag_trans_start = fs_info->generation;
1360	else
1361		root->defrag_trans_start = 0;
1362	root->root_key.objectid = objectid;
1363	root->anon_dev = 0;
1364
1365	spin_lock_init(&root->root_item_lock);
 
1366}
1367
1368static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1369		gfp_t flags)
1370{
1371	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1372	if (root)
1373		root->fs_info = fs_info;
1374	return root;
1375}
1376
1377#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1378/* Should only be used by the testing infrastructure */
1379struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1380{
1381	struct btrfs_root *root;
1382
1383	if (!fs_info)
1384		return ERR_PTR(-EINVAL);
1385
1386	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1387	if (!root)
1388		return ERR_PTR(-ENOMEM);
1389
1390	/* We don't use the stripesize in selftest, set it as sectorsize */
1391	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1392	root->alloc_bytenr = 0;
1393
1394	return root;
1395}
1396#endif
1397
1398struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1399				     struct btrfs_fs_info *fs_info,
1400				     u64 objectid)
1401{
 
1402	struct extent_buffer *leaf;
1403	struct btrfs_root *tree_root = fs_info->tree_root;
1404	struct btrfs_root *root;
1405	struct btrfs_key key;
 
1406	int ret = 0;
1407	uuid_le uuid;
1408
 
 
 
 
 
1409	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
1410	if (!root)
1411		return ERR_PTR(-ENOMEM);
1412
1413	__setup_root(root, fs_info, objectid);
1414	root->root_key.objectid = objectid;
1415	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1416	root->root_key.offset = 0;
1417
1418	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1419	if (IS_ERR(leaf)) {
1420		ret = PTR_ERR(leaf);
1421		leaf = NULL;
1422		goto fail;
1423	}
1424
1425	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1426	btrfs_set_header_bytenr(leaf, leaf->start);
1427	btrfs_set_header_generation(leaf, trans->transid);
1428	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1429	btrfs_set_header_owner(leaf, objectid);
1430	root->node = leaf;
1431
1432	write_extent_buffer_fsid(leaf, fs_info->fsid);
1433	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1434	btrfs_mark_buffer_dirty(leaf);
1435
1436	root->commit_root = btrfs_root_node(root);
1437	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1438
1439	root->root_item.flags = 0;
1440	root->root_item.byte_limit = 0;
1441	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1442	btrfs_set_root_generation(&root->root_item, trans->transid);
1443	btrfs_set_root_level(&root->root_item, 0);
1444	btrfs_set_root_refs(&root->root_item, 1);
1445	btrfs_set_root_used(&root->root_item, leaf->len);
1446	btrfs_set_root_last_snapshot(&root->root_item, 0);
1447	btrfs_set_root_dirid(&root->root_item, 0);
1448	uuid_le_gen(&uuid);
 
1449	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1450	root->root_item.drop_level = 0;
1451
1452	key.objectid = objectid;
1453	key.type = BTRFS_ROOT_ITEM_KEY;
1454	key.offset = 0;
1455	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1456	if (ret)
1457		goto fail;
1458
1459	btrfs_tree_unlock(leaf);
1460
1461	return root;
1462
1463fail:
1464	if (leaf) {
1465		btrfs_tree_unlock(leaf);
1466		free_extent_buffer(root->commit_root);
1467		free_extent_buffer(leaf);
1468	}
1469	kfree(root);
1470
1471	return ERR_PTR(ret);
1472}
1473
1474static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1475					 struct btrfs_fs_info *fs_info)
1476{
1477	struct btrfs_root *root;
1478	struct extent_buffer *leaf;
1479
1480	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1481	if (!root)
1482		return ERR_PTR(-ENOMEM);
1483
1484	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1485
1486	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1487	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1488	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1489
1490	/*
1491	 * DON'T set REF_COWS for log trees
1492	 *
1493	 * log trees do not get reference counted because they go away
1494	 * before a real commit is actually done.  They do store pointers
1495	 * to file data extents, and those reference counts still get
1496	 * updated (along with back refs to the log tree).
1497	 */
1498
1499	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1500			NULL, 0, 0, 0);
1501	if (IS_ERR(leaf)) {
1502		kfree(root);
1503		return ERR_CAST(leaf);
1504	}
1505
1506	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1507	btrfs_set_header_bytenr(leaf, leaf->start);
1508	btrfs_set_header_generation(leaf, trans->transid);
1509	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1510	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1511	root->node = leaf;
1512
1513	write_extent_buffer_fsid(root->node, fs_info->fsid);
1514	btrfs_mark_buffer_dirty(root->node);
1515	btrfs_tree_unlock(root->node);
1516	return root;
1517}
1518
1519int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1520			     struct btrfs_fs_info *fs_info)
1521{
1522	struct btrfs_root *log_root;
1523
1524	log_root = alloc_log_tree(trans, fs_info);
1525	if (IS_ERR(log_root))
1526		return PTR_ERR(log_root);
1527	WARN_ON(fs_info->log_root_tree);
1528	fs_info->log_root_tree = log_root;
1529	return 0;
1530}
1531
1532int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1533		       struct btrfs_root *root)
1534{
1535	struct btrfs_fs_info *fs_info = root->fs_info;
1536	struct btrfs_root *log_root;
1537	struct btrfs_inode_item *inode_item;
1538
1539	log_root = alloc_log_tree(trans, fs_info);
1540	if (IS_ERR(log_root))
1541		return PTR_ERR(log_root);
1542
1543	log_root->last_trans = trans->transid;
1544	log_root->root_key.offset = root->root_key.objectid;
1545
1546	inode_item = &log_root->root_item.inode;
1547	btrfs_set_stack_inode_generation(inode_item, 1);
1548	btrfs_set_stack_inode_size(inode_item, 3);
1549	btrfs_set_stack_inode_nlink(inode_item, 1);
1550	btrfs_set_stack_inode_nbytes(inode_item,
1551				     fs_info->nodesize);
1552	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1553
1554	btrfs_set_root_node(&log_root->root_item, log_root->node);
1555
1556	WARN_ON(root->log_root);
1557	root->log_root = log_root;
1558	root->log_transid = 0;
1559	root->log_transid_committed = -1;
1560	root->last_log_commit = 0;
1561	return 0;
1562}
1563
1564static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1565					       struct btrfs_key *key)
1566{
1567	struct btrfs_root *root;
1568	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1569	struct btrfs_path *path;
1570	u64 generation;
1571	int ret;
 
1572
1573	path = btrfs_alloc_path();
1574	if (!path)
1575		return ERR_PTR(-ENOMEM);
1576
1577	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1578	if (!root) {
1579		ret = -ENOMEM;
1580		goto alloc_fail;
1581	}
1582
1583	__setup_root(root, fs_info, key->objectid);
1584
1585	ret = btrfs_find_root(tree_root, key, path,
1586			      &root->root_item, &root->root_key);
1587	if (ret) {
1588		if (ret > 0)
1589			ret = -ENOENT;
1590		goto find_fail;
1591	}
1592
1593	generation = btrfs_root_generation(&root->root_item);
 
1594	root->node = read_tree_block(fs_info,
1595				     btrfs_root_bytenr(&root->root_item),
1596				     generation);
1597	if (IS_ERR(root->node)) {
1598		ret = PTR_ERR(root->node);
1599		goto find_fail;
1600	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1601		ret = -EIO;
1602		free_extent_buffer(root->node);
1603		goto find_fail;
1604	}
1605	root->commit_root = btrfs_root_node(root);
1606out:
1607	btrfs_free_path(path);
1608	return root;
1609
1610find_fail:
1611	kfree(root);
1612alloc_fail:
1613	root = ERR_PTR(ret);
1614	goto out;
1615}
1616
1617struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1618				      struct btrfs_key *location)
1619{
1620	struct btrfs_root *root;
1621
1622	root = btrfs_read_tree_root(tree_root, location);
1623	if (IS_ERR(root))
1624		return root;
1625
1626	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1627		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1628		btrfs_check_and_init_root_item(&root->root_item);
1629	}
1630
1631	return root;
1632}
1633
1634int btrfs_init_fs_root(struct btrfs_root *root)
1635{
1636	int ret;
1637	struct btrfs_subvolume_writers *writers;
1638
1639	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1640	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1641					GFP_NOFS);
1642	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1643		ret = -ENOMEM;
1644		goto fail;
1645	}
1646
1647	writers = btrfs_alloc_subvolume_writers();
1648	if (IS_ERR(writers)) {
1649		ret = PTR_ERR(writers);
1650		goto fail;
1651	}
1652	root->subv_writers = writers;
1653
1654	btrfs_init_free_ino_ctl(root);
1655	spin_lock_init(&root->ino_cache_lock);
1656	init_waitqueue_head(&root->ino_cache_wait);
1657
1658	ret = get_anon_bdev(&root->anon_dev);
1659	if (ret)
1660		goto fail;
1661
1662	mutex_lock(&root->objectid_mutex);
1663	ret = btrfs_find_highest_objectid(root,
1664					&root->highest_objectid);
1665	if (ret) {
1666		mutex_unlock(&root->objectid_mutex);
1667		goto fail;
1668	}
1669
1670	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1671
1672	mutex_unlock(&root->objectid_mutex);
1673
1674	return 0;
1675fail:
1676	/* the caller is responsible to call free_fs_root */
1677	return ret;
1678}
1679
1680struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1681					u64 root_id)
1682{
1683	struct btrfs_root *root;
1684
1685	spin_lock(&fs_info->fs_roots_radix_lock);
1686	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1687				 (unsigned long)root_id);
1688	spin_unlock(&fs_info->fs_roots_radix_lock);
1689	return root;
1690}
1691
1692int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1693			 struct btrfs_root *root)
1694{
1695	int ret;
1696
1697	ret = radix_tree_preload(GFP_NOFS);
1698	if (ret)
1699		return ret;
1700
1701	spin_lock(&fs_info->fs_roots_radix_lock);
1702	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1703				(unsigned long)root->root_key.objectid,
1704				root);
1705	if (ret == 0)
1706		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1707	spin_unlock(&fs_info->fs_roots_radix_lock);
1708	radix_tree_preload_end();
1709
1710	return ret;
1711}
1712
1713struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1714				     struct btrfs_key *location,
1715				     bool check_ref)
1716{
1717	struct btrfs_root *root;
1718	struct btrfs_path *path;
1719	struct btrfs_key key;
1720	int ret;
1721
1722	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1723		return fs_info->tree_root;
1724	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1725		return fs_info->extent_root;
1726	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1727		return fs_info->chunk_root;
1728	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1729		return fs_info->dev_root;
1730	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1731		return fs_info->csum_root;
1732	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1733		return fs_info->quota_root ? fs_info->quota_root :
1734					     ERR_PTR(-ENOENT);
1735	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1736		return fs_info->uuid_root ? fs_info->uuid_root :
1737					    ERR_PTR(-ENOENT);
1738	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1739		return fs_info->free_space_root ? fs_info->free_space_root :
1740						  ERR_PTR(-ENOENT);
1741again:
1742	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1743	if (root) {
1744		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1745			return ERR_PTR(-ENOENT);
1746		return root;
1747	}
1748
1749	root = btrfs_read_fs_root(fs_info->tree_root, location);
1750	if (IS_ERR(root))
1751		return root;
1752
1753	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1754		ret = -ENOENT;
1755		goto fail;
1756	}
1757
1758	ret = btrfs_init_fs_root(root);
1759	if (ret)
1760		goto fail;
1761
1762	path = btrfs_alloc_path();
1763	if (!path) {
1764		ret = -ENOMEM;
1765		goto fail;
1766	}
1767	key.objectid = BTRFS_ORPHAN_OBJECTID;
1768	key.type = BTRFS_ORPHAN_ITEM_KEY;
1769	key.offset = location->objectid;
1770
1771	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1772	btrfs_free_path(path);
1773	if (ret < 0)
1774		goto fail;
1775	if (ret == 0)
1776		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1777
1778	ret = btrfs_insert_fs_root(fs_info, root);
1779	if (ret) {
1780		if (ret == -EEXIST) {
1781			free_fs_root(root);
1782			goto again;
1783		}
1784		goto fail;
1785	}
1786	return root;
1787fail:
1788	free_fs_root(root);
1789	return ERR_PTR(ret);
1790}
1791
1792static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1793{
1794	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1795	int ret = 0;
1796	struct btrfs_device *device;
1797	struct backing_dev_info *bdi;
1798
1799	rcu_read_lock();
1800	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1801		if (!device->bdev)
1802			continue;
1803		bdi = blk_get_backing_dev_info(device->bdev);
1804		if (bdi_congested(bdi, bdi_bits)) {
1805			ret = 1;
1806			break;
1807		}
1808	}
1809	rcu_read_unlock();
1810	return ret;
1811}
1812
1813static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1814{
1815	int err;
1816
1817	err = bdi_setup_and_register(bdi, "btrfs");
1818	if (err)
1819		return err;
1820
1821	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1822	bdi->congested_fn	= btrfs_congested_fn;
1823	bdi->congested_data	= info;
1824	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1825	return 0;
1826}
1827
1828/*
1829 * called by the kthread helper functions to finally call the bio end_io
1830 * functions.  This is where read checksum verification actually happens
1831 */
1832static void end_workqueue_fn(struct btrfs_work *work)
1833{
1834	struct bio *bio;
1835	struct btrfs_end_io_wq *end_io_wq;
1836
1837	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1838	bio = end_io_wq->bio;
1839
1840	bio->bi_error = end_io_wq->error;
1841	bio->bi_private = end_io_wq->private;
1842	bio->bi_end_io = end_io_wq->end_io;
1843	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1844	bio_endio(bio);
1845}
1846
1847static int cleaner_kthread(void *arg)
1848{
1849	struct btrfs_root *root = arg;
1850	struct btrfs_fs_info *fs_info = root->fs_info;
1851	int again;
1852	struct btrfs_trans_handle *trans;
1853
1854	do {
1855		again = 0;
1856
 
 
1857		/* Make the cleaner go to sleep early. */
1858		if (btrfs_need_cleaner_sleep(fs_info))
1859			goto sleep;
1860
1861		/*
1862		 * Do not do anything if we might cause open_ctree() to block
1863		 * before we have finished mounting the filesystem.
1864		 */
1865		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1866			goto sleep;
1867
1868		if (!mutex_trylock(&fs_info->cleaner_mutex))
1869			goto sleep;
1870
1871		/*
1872		 * Avoid the problem that we change the status of the fs
1873		 * during the above check and trylock.
1874		 */
1875		if (btrfs_need_cleaner_sleep(fs_info)) {
1876			mutex_unlock(&fs_info->cleaner_mutex);
1877			goto sleep;
1878		}
1879
1880		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1881		btrfs_run_delayed_iputs(fs_info);
1882		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1883
1884		again = btrfs_clean_one_deleted_snapshot(root);
1885		mutex_unlock(&fs_info->cleaner_mutex);
1886
1887		/*
1888		 * The defragger has dealt with the R/O remount and umount,
1889		 * needn't do anything special here.
1890		 */
1891		btrfs_run_defrag_inodes(fs_info);
1892
1893		/*
1894		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895		 * with relocation (btrfs_relocate_chunk) and relocation
1896		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899		 * unused block groups.
1900		 */
1901		btrfs_delete_unused_bgs(fs_info);
1902sleep:
 
 
 
 
 
1903		if (!again) {
1904			set_current_state(TASK_INTERRUPTIBLE);
1905			if (!kthread_should_stop())
1906				schedule();
1907			__set_current_state(TASK_RUNNING);
1908		}
1909	} while (!kthread_should_stop());
1910
1911	/*
1912	 * Transaction kthread is stopped before us and wakes us up.
1913	 * However we might have started a new transaction and COWed some
1914	 * tree blocks when deleting unused block groups for example. So
1915	 * make sure we commit the transaction we started to have a clean
1916	 * shutdown when evicting the btree inode - if it has dirty pages
1917	 * when we do the final iput() on it, eviction will trigger a
1918	 * writeback for it which will fail with null pointer dereferences
1919	 * since work queues and other resources were already released and
1920	 * destroyed by the time the iput/eviction/writeback is made.
1921	 */
1922	trans = btrfs_attach_transaction(root);
1923	if (IS_ERR(trans)) {
1924		if (PTR_ERR(trans) != -ENOENT)
1925			btrfs_err(fs_info,
1926				  "cleaner transaction attach returned %ld",
1927				  PTR_ERR(trans));
1928	} else {
1929		int ret;
1930
1931		ret = btrfs_commit_transaction(trans);
1932		if (ret)
1933			btrfs_err(fs_info,
1934				  "cleaner open transaction commit returned %d",
1935				  ret);
1936	}
1937
1938	return 0;
1939}
1940
1941static int transaction_kthread(void *arg)
1942{
1943	struct btrfs_root *root = arg;
1944	struct btrfs_fs_info *fs_info = root->fs_info;
1945	struct btrfs_trans_handle *trans;
1946	struct btrfs_transaction *cur;
1947	u64 transid;
1948	unsigned long now;
1949	unsigned long delay;
1950	bool cannot_commit;
1951
1952	do {
1953		cannot_commit = false;
1954		delay = HZ * fs_info->commit_interval;
1955		mutex_lock(&fs_info->transaction_kthread_mutex);
1956
1957		spin_lock(&fs_info->trans_lock);
1958		cur = fs_info->running_transaction;
1959		if (!cur) {
1960			spin_unlock(&fs_info->trans_lock);
1961			goto sleep;
1962		}
1963
1964		now = get_seconds();
1965		if (cur->state < TRANS_STATE_BLOCKED &&
 
1966		    (now < cur->start_time ||
1967		     now - cur->start_time < fs_info->commit_interval)) {
1968			spin_unlock(&fs_info->trans_lock);
1969			delay = HZ * 5;
1970			goto sleep;
1971		}
1972		transid = cur->transid;
1973		spin_unlock(&fs_info->trans_lock);
1974
1975		/* If the file system is aborted, this will always fail. */
1976		trans = btrfs_attach_transaction(root);
1977		if (IS_ERR(trans)) {
1978			if (PTR_ERR(trans) != -ENOENT)
1979				cannot_commit = true;
1980			goto sleep;
1981		}
1982		if (transid == trans->transid) {
1983			btrfs_commit_transaction(trans);
1984		} else {
1985			btrfs_end_transaction(trans);
1986		}
1987sleep:
1988		wake_up_process(fs_info->cleaner_kthread);
1989		mutex_unlock(&fs_info->transaction_kthread_mutex);
1990
1991		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1992				      &fs_info->fs_state)))
1993			btrfs_cleanup_transaction(fs_info);
1994		set_current_state(TASK_INTERRUPTIBLE);
1995		if (!kthread_should_stop() &&
1996				(!btrfs_transaction_blocked(fs_info) ||
1997				 cannot_commit))
1998			schedule_timeout(delay);
1999		__set_current_state(TASK_RUNNING);
2000	} while (!kthread_should_stop());
2001	return 0;
2002}
2003
2004/*
2005 * this will find the highest generation in the array of
2006 * root backups.  The index of the highest array is returned,
2007 * or -1 if we can't find anything.
2008 *
2009 * We check to make sure the array is valid by comparing the
2010 * generation of the latest  root in the array with the generation
2011 * in the super block.  If they don't match we pitch it.
2012 */
2013static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2014{
2015	u64 cur;
2016	int newest_index = -1;
2017	struct btrfs_root_backup *root_backup;
2018	int i;
2019
2020	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2021		root_backup = info->super_copy->super_roots + i;
2022		cur = btrfs_backup_tree_root_gen(root_backup);
2023		if (cur == newest_gen)
2024			newest_index = i;
2025	}
2026
2027	/* check to see if we actually wrapped around */
2028	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2029		root_backup = info->super_copy->super_roots;
2030		cur = btrfs_backup_tree_root_gen(root_backup);
2031		if (cur == newest_gen)
2032			newest_index = 0;
2033	}
2034	return newest_index;
2035}
2036
2037
2038/*
2039 * find the oldest backup so we know where to store new entries
2040 * in the backup array.  This will set the backup_root_index
2041 * field in the fs_info struct
2042 */
2043static void find_oldest_super_backup(struct btrfs_fs_info *info,
2044				     u64 newest_gen)
2045{
2046	int newest_index = -1;
2047
2048	newest_index = find_newest_super_backup(info, newest_gen);
2049	/* if there was garbage in there, just move along */
2050	if (newest_index == -1) {
2051		info->backup_root_index = 0;
2052	} else {
2053		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2054	}
2055}
2056
2057/*
2058 * copy all the root pointers into the super backup array.
2059 * this will bump the backup pointer by one when it is
2060 * done
2061 */
2062static void backup_super_roots(struct btrfs_fs_info *info)
2063{
2064	int next_backup;
2065	struct btrfs_root_backup *root_backup;
2066	int last_backup;
2067
2068	next_backup = info->backup_root_index;
2069	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2070		BTRFS_NUM_BACKUP_ROOTS;
2071
2072	/*
2073	 * just overwrite the last backup if we're at the same generation
2074	 * this happens only at umount
2075	 */
2076	root_backup = info->super_for_commit->super_roots + last_backup;
2077	if (btrfs_backup_tree_root_gen(root_backup) ==
2078	    btrfs_header_generation(info->tree_root->node))
2079		next_backup = last_backup;
2080
2081	root_backup = info->super_for_commit->super_roots + next_backup;
2082
2083	/*
2084	 * make sure all of our padding and empty slots get zero filled
2085	 * regardless of which ones we use today
2086	 */
2087	memset(root_backup, 0, sizeof(*root_backup));
2088
2089	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2090
2091	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2092	btrfs_set_backup_tree_root_gen(root_backup,
2093			       btrfs_header_generation(info->tree_root->node));
2094
2095	btrfs_set_backup_tree_root_level(root_backup,
2096			       btrfs_header_level(info->tree_root->node));
2097
2098	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2099	btrfs_set_backup_chunk_root_gen(root_backup,
2100			       btrfs_header_generation(info->chunk_root->node));
2101	btrfs_set_backup_chunk_root_level(root_backup,
2102			       btrfs_header_level(info->chunk_root->node));
2103
2104	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2105	btrfs_set_backup_extent_root_gen(root_backup,
2106			       btrfs_header_generation(info->extent_root->node));
2107	btrfs_set_backup_extent_root_level(root_backup,
2108			       btrfs_header_level(info->extent_root->node));
2109
2110	/*
2111	 * we might commit during log recovery, which happens before we set
2112	 * the fs_root.  Make sure it is valid before we fill it in.
2113	 */
2114	if (info->fs_root && info->fs_root->node) {
2115		btrfs_set_backup_fs_root(root_backup,
2116					 info->fs_root->node->start);
2117		btrfs_set_backup_fs_root_gen(root_backup,
2118			       btrfs_header_generation(info->fs_root->node));
2119		btrfs_set_backup_fs_root_level(root_backup,
2120			       btrfs_header_level(info->fs_root->node));
2121	}
2122
2123	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2124	btrfs_set_backup_dev_root_gen(root_backup,
2125			       btrfs_header_generation(info->dev_root->node));
2126	btrfs_set_backup_dev_root_level(root_backup,
2127				       btrfs_header_level(info->dev_root->node));
2128
2129	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2130	btrfs_set_backup_csum_root_gen(root_backup,
2131			       btrfs_header_generation(info->csum_root->node));
2132	btrfs_set_backup_csum_root_level(root_backup,
2133			       btrfs_header_level(info->csum_root->node));
2134
2135	btrfs_set_backup_total_bytes(root_backup,
2136			     btrfs_super_total_bytes(info->super_copy));
2137	btrfs_set_backup_bytes_used(root_backup,
2138			     btrfs_super_bytes_used(info->super_copy));
2139	btrfs_set_backup_num_devices(root_backup,
2140			     btrfs_super_num_devices(info->super_copy));
2141
2142	/*
2143	 * if we don't copy this out to the super_copy, it won't get remembered
2144	 * for the next commit
2145	 */
2146	memcpy(&info->super_copy->super_roots,
2147	       &info->super_for_commit->super_roots,
2148	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2149}
2150
2151/*
2152 * this copies info out of the root backup array and back into
2153 * the in-memory super block.  It is meant to help iterate through
2154 * the array, so you send it the number of backups you've already
2155 * tried and the last backup index you used.
2156 *
2157 * this returns -1 when it has tried all the backups
2158 */
2159static noinline int next_root_backup(struct btrfs_fs_info *info,
2160				     struct btrfs_super_block *super,
2161				     int *num_backups_tried, int *backup_index)
2162{
2163	struct btrfs_root_backup *root_backup;
2164	int newest = *backup_index;
2165
2166	if (*num_backups_tried == 0) {
2167		u64 gen = btrfs_super_generation(super);
2168
2169		newest = find_newest_super_backup(info, gen);
2170		if (newest == -1)
2171			return -1;
2172
2173		*backup_index = newest;
2174		*num_backups_tried = 1;
2175	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2176		/* we've tried all the backups, all done */
2177		return -1;
2178	} else {
2179		/* jump to the next oldest backup */
2180		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2181			BTRFS_NUM_BACKUP_ROOTS;
2182		*backup_index = newest;
2183		*num_backups_tried += 1;
2184	}
2185	root_backup = super->super_roots + newest;
2186
2187	btrfs_set_super_generation(super,
2188				   btrfs_backup_tree_root_gen(root_backup));
2189	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2190	btrfs_set_super_root_level(super,
2191				   btrfs_backup_tree_root_level(root_backup));
2192	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2193
2194	/*
2195	 * fixme: the total bytes and num_devices need to match or we should
2196	 * need a fsck
2197	 */
2198	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2199	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2200	return 0;
2201}
2202
2203/* helper to cleanup workers */
2204static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2205{
2206	btrfs_destroy_workqueue(fs_info->fixup_workers);
2207	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2208	btrfs_destroy_workqueue(fs_info->workers);
2209	btrfs_destroy_workqueue(fs_info->endio_workers);
2210	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2211	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2212	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2213	btrfs_destroy_workqueue(fs_info->rmw_workers);
2214	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2215	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2216	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2217	btrfs_destroy_workqueue(fs_info->submit_workers);
2218	btrfs_destroy_workqueue(fs_info->delayed_workers);
2219	btrfs_destroy_workqueue(fs_info->caching_workers);
2220	btrfs_destroy_workqueue(fs_info->readahead_workers);
2221	btrfs_destroy_workqueue(fs_info->flush_workers);
2222	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2223	btrfs_destroy_workqueue(fs_info->extent_workers);
 
 
 
 
 
 
2224}
2225
2226static void free_root_extent_buffers(struct btrfs_root *root)
2227{
2228	if (root) {
2229		free_extent_buffer(root->node);
2230		free_extent_buffer(root->commit_root);
2231		root->node = NULL;
2232		root->commit_root = NULL;
2233	}
2234}
2235
2236/* helper to cleanup tree roots */
2237static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2238{
2239	free_root_extent_buffers(info->tree_root);
2240
2241	free_root_extent_buffers(info->dev_root);
2242	free_root_extent_buffers(info->extent_root);
2243	free_root_extent_buffers(info->csum_root);
2244	free_root_extent_buffers(info->quota_root);
2245	free_root_extent_buffers(info->uuid_root);
2246	if (chunk_root)
2247		free_root_extent_buffers(info->chunk_root);
2248	free_root_extent_buffers(info->free_space_root);
2249}
2250
2251void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2252{
2253	int ret;
2254	struct btrfs_root *gang[8];
2255	int i;
2256
2257	while (!list_empty(&fs_info->dead_roots)) {
2258		gang[0] = list_entry(fs_info->dead_roots.next,
2259				     struct btrfs_root, root_list);
2260		list_del(&gang[0]->root_list);
2261
2262		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2263			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2264		} else {
2265			free_extent_buffer(gang[0]->node);
2266			free_extent_buffer(gang[0]->commit_root);
2267			btrfs_put_fs_root(gang[0]);
2268		}
2269	}
2270
2271	while (1) {
2272		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2273					     (void **)gang, 0,
2274					     ARRAY_SIZE(gang));
2275		if (!ret)
2276			break;
2277		for (i = 0; i < ret; i++)
2278			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2279	}
2280
2281	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2282		btrfs_free_log_root_tree(NULL, fs_info);
2283		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2284	}
2285}
2286
2287static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2288{
2289	mutex_init(&fs_info->scrub_lock);
2290	atomic_set(&fs_info->scrubs_running, 0);
2291	atomic_set(&fs_info->scrub_pause_req, 0);
2292	atomic_set(&fs_info->scrubs_paused, 0);
2293	atomic_set(&fs_info->scrub_cancel_req, 0);
2294	init_waitqueue_head(&fs_info->scrub_pause_wait);
2295	fs_info->scrub_workers_refcnt = 0;
2296}
2297
2298static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2299{
2300	spin_lock_init(&fs_info->balance_lock);
2301	mutex_init(&fs_info->balance_mutex);
2302	atomic_set(&fs_info->balance_running, 0);
2303	atomic_set(&fs_info->balance_pause_req, 0);
2304	atomic_set(&fs_info->balance_cancel_req, 0);
2305	fs_info->balance_ctl = NULL;
2306	init_waitqueue_head(&fs_info->balance_wait_q);
2307}
2308
2309static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2310{
2311	struct inode *inode = fs_info->btree_inode;
2312
2313	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2314	set_nlink(inode, 1);
2315	/*
2316	 * we set the i_size on the btree inode to the max possible int.
2317	 * the real end of the address space is determined by all of
2318	 * the devices in the system
2319	 */
2320	inode->i_size = OFFSET_MAX;
2321	inode->i_mapping->a_ops = &btree_aops;
2322
2323	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2324	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2325	BTRFS_I(inode)->io_tree.track_uptodate = 0;
 
2326	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2327
2328	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2329
2330	BTRFS_I(inode)->root = fs_info->tree_root;
2331	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2332	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2333	btrfs_insert_inode_hash(inode);
2334}
2335
2336static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2337{
2338	fs_info->dev_replace.lock_owner = 0;
2339	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2340	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2341	rwlock_init(&fs_info->dev_replace.lock);
2342	atomic_set(&fs_info->dev_replace.read_locks, 0);
2343	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2344	init_waitqueue_head(&fs_info->replace_wait);
2345	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2346}
2347
2348static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2349{
2350	spin_lock_init(&fs_info->qgroup_lock);
2351	mutex_init(&fs_info->qgroup_ioctl_lock);
2352	fs_info->qgroup_tree = RB_ROOT;
2353	fs_info->qgroup_op_tree = RB_ROOT;
2354	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2355	fs_info->qgroup_seq = 1;
2356	fs_info->qgroup_ulist = NULL;
2357	fs_info->qgroup_rescan_running = false;
2358	mutex_init(&fs_info->qgroup_rescan_lock);
2359}
2360
2361static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2362		struct btrfs_fs_devices *fs_devices)
2363{
2364	int max_active = fs_info->thread_pool_size;
2365	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2366
2367	fs_info->workers =
2368		btrfs_alloc_workqueue(fs_info, "worker",
2369				      flags | WQ_HIGHPRI, max_active, 16);
2370
2371	fs_info->delalloc_workers =
2372		btrfs_alloc_workqueue(fs_info, "delalloc",
2373				      flags, max_active, 2);
2374
2375	fs_info->flush_workers =
2376		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2377				      flags, max_active, 0);
2378
2379	fs_info->caching_workers =
2380		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2381
2382	/*
2383	 * a higher idle thresh on the submit workers makes it much more
2384	 * likely that bios will be send down in a sane order to the
2385	 * devices
2386	 */
2387	fs_info->submit_workers =
2388		btrfs_alloc_workqueue(fs_info, "submit", flags,
2389				      min_t(u64, fs_devices->num_devices,
2390					    max_active), 64);
2391
2392	fs_info->fixup_workers =
2393		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2394
2395	/*
2396	 * endios are largely parallel and should have a very
2397	 * low idle thresh
2398	 */
2399	fs_info->endio_workers =
2400		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2401	fs_info->endio_meta_workers =
2402		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2403				      max_active, 4);
2404	fs_info->endio_meta_write_workers =
2405		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2406				      max_active, 2);
2407	fs_info->endio_raid56_workers =
2408		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2409				      max_active, 4);
2410	fs_info->endio_repair_workers =
2411		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2412	fs_info->rmw_workers =
2413		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2414	fs_info->endio_write_workers =
2415		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2416				      max_active, 2);
2417	fs_info->endio_freespace_worker =
2418		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2419				      max_active, 0);
2420	fs_info->delayed_workers =
2421		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2422				      max_active, 0);
2423	fs_info->readahead_workers =
2424		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2425				      max_active, 2);
2426	fs_info->qgroup_rescan_workers =
2427		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2428	fs_info->extent_workers =
2429		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2430				      min_t(u64, fs_devices->num_devices,
2431					    max_active), 8);
2432
2433	if (!(fs_info->workers && fs_info->delalloc_workers &&
2434	      fs_info->submit_workers && fs_info->flush_workers &&
2435	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2436	      fs_info->endio_meta_write_workers &&
2437	      fs_info->endio_repair_workers &&
2438	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2439	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2440	      fs_info->caching_workers && fs_info->readahead_workers &&
2441	      fs_info->fixup_workers && fs_info->delayed_workers &&
2442	      fs_info->extent_workers &&
2443	      fs_info->qgroup_rescan_workers)) {
2444		return -ENOMEM;
2445	}
2446
2447	return 0;
2448}
2449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2451			    struct btrfs_fs_devices *fs_devices)
2452{
2453	int ret;
2454	struct btrfs_root *log_tree_root;
2455	struct btrfs_super_block *disk_super = fs_info->super_copy;
2456	u64 bytenr = btrfs_super_log_root(disk_super);
 
2457
2458	if (fs_devices->rw_devices == 0) {
2459		btrfs_warn(fs_info, "log replay required on RO media");
2460		return -EIO;
2461	}
2462
2463	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2464	if (!log_tree_root)
2465		return -ENOMEM;
2466
2467	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2468
2469	log_tree_root->node = read_tree_block(fs_info, bytenr,
2470					      fs_info->generation + 1);
 
2471	if (IS_ERR(log_tree_root->node)) {
2472		btrfs_warn(fs_info, "failed to read log tree");
2473		ret = PTR_ERR(log_tree_root->node);
2474		kfree(log_tree_root);
2475		return ret;
2476	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2477		btrfs_err(fs_info, "failed to read log tree");
2478		free_extent_buffer(log_tree_root->node);
2479		kfree(log_tree_root);
2480		return -EIO;
2481	}
2482	/* returns with log_tree_root freed on success */
2483	ret = btrfs_recover_log_trees(log_tree_root);
2484	if (ret) {
2485		btrfs_handle_fs_error(fs_info, ret,
2486				      "Failed to recover log tree");
2487		free_extent_buffer(log_tree_root->node);
2488		kfree(log_tree_root);
2489		return ret;
2490	}
2491
2492	if (fs_info->sb->s_flags & MS_RDONLY) {
2493		ret = btrfs_commit_super(fs_info);
2494		if (ret)
2495			return ret;
2496	}
2497
2498	return 0;
2499}
2500
2501static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2502{
2503	struct btrfs_root *tree_root = fs_info->tree_root;
2504	struct btrfs_root *root;
2505	struct btrfs_key location;
2506	int ret;
2507
2508	BUG_ON(!fs_info->tree_root);
2509
2510	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2511	location.type = BTRFS_ROOT_ITEM_KEY;
2512	location.offset = 0;
2513
2514	root = btrfs_read_tree_root(tree_root, &location);
2515	if (IS_ERR(root))
2516		return PTR_ERR(root);
 
 
2517	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2518	fs_info->extent_root = root;
2519
2520	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2521	root = btrfs_read_tree_root(tree_root, &location);
2522	if (IS_ERR(root))
2523		return PTR_ERR(root);
 
 
2524	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2525	fs_info->dev_root = root;
2526	btrfs_init_devices_late(fs_info);
2527
2528	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2529	root = btrfs_read_tree_root(tree_root, &location);
2530	if (IS_ERR(root))
2531		return PTR_ERR(root);
 
 
2532	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2533	fs_info->csum_root = root;
2534
2535	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2536	root = btrfs_read_tree_root(tree_root, &location);
2537	if (!IS_ERR(root)) {
2538		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2539		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2540		fs_info->quota_root = root;
2541	}
2542
2543	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2544	root = btrfs_read_tree_root(tree_root, &location);
2545	if (IS_ERR(root)) {
2546		ret = PTR_ERR(root);
2547		if (ret != -ENOENT)
2548			return ret;
2549	} else {
2550		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551		fs_info->uuid_root = root;
2552	}
2553
2554	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2555		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2556		root = btrfs_read_tree_root(tree_root, &location);
2557		if (IS_ERR(root))
2558			return PTR_ERR(root);
 
 
2559		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2560		fs_info->free_space_root = root;
2561	}
2562
2563	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2564}
2565
2566int open_ctree(struct super_block *sb,
2567	       struct btrfs_fs_devices *fs_devices,
2568	       char *options)
2569{
2570	u32 sectorsize;
2571	u32 nodesize;
2572	u32 stripesize;
2573	u64 generation;
2574	u64 features;
 
2575	struct btrfs_key location;
2576	struct buffer_head *bh;
2577	struct btrfs_super_block *disk_super;
2578	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2579	struct btrfs_root *tree_root;
2580	struct btrfs_root *chunk_root;
2581	int ret;
2582	int err = -EINVAL;
2583	int num_backups_tried = 0;
2584	int backup_index = 0;
2585	int max_active;
2586	int clear_free_space_tree = 0;
 
2587
2588	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2589	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2590	if (!tree_root || !chunk_root) {
2591		err = -ENOMEM;
2592		goto fail;
2593	}
2594
2595	ret = init_srcu_struct(&fs_info->subvol_srcu);
2596	if (ret) {
2597		err = ret;
2598		goto fail;
2599	}
2600
2601	ret = setup_bdi(fs_info, &fs_info->bdi);
2602	if (ret) {
2603		err = ret;
2604		goto fail_srcu;
2605	}
2606
2607	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2608	if (ret) {
2609		err = ret;
2610		goto fail_bdi;
2611	}
2612	fs_info->dirty_metadata_batch = PAGE_SIZE *
2613					(1 + ilog2(nr_cpu_ids));
2614
2615	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2616	if (ret) {
2617		err = ret;
2618		goto fail_dirty_metadata_bytes;
2619	}
2620
2621	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
 
2622	if (ret) {
2623		err = ret;
2624		goto fail_delalloc_bytes;
2625	}
2626
2627	fs_info->btree_inode = new_inode(sb);
2628	if (!fs_info->btree_inode) {
2629		err = -ENOMEM;
2630		goto fail_bio_counter;
2631	}
2632
2633	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2634
2635	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2636	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2637	INIT_LIST_HEAD(&fs_info->trans_list);
2638	INIT_LIST_HEAD(&fs_info->dead_roots);
2639	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2640	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2641	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2642	spin_lock_init(&fs_info->delalloc_root_lock);
2643	spin_lock_init(&fs_info->trans_lock);
2644	spin_lock_init(&fs_info->fs_roots_radix_lock);
2645	spin_lock_init(&fs_info->delayed_iput_lock);
2646	spin_lock_init(&fs_info->defrag_inodes_lock);
2647	spin_lock_init(&fs_info->free_chunk_lock);
2648	spin_lock_init(&fs_info->tree_mod_seq_lock);
2649	spin_lock_init(&fs_info->super_lock);
2650	spin_lock_init(&fs_info->qgroup_op_lock);
2651	spin_lock_init(&fs_info->buffer_lock);
2652	spin_lock_init(&fs_info->unused_bgs_lock);
2653	rwlock_init(&fs_info->tree_mod_log_lock);
2654	mutex_init(&fs_info->unused_bg_unpin_mutex);
2655	mutex_init(&fs_info->delete_unused_bgs_mutex);
2656	mutex_init(&fs_info->reloc_mutex);
2657	mutex_init(&fs_info->delalloc_root_mutex);
2658	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2659	seqlock_init(&fs_info->profiles_lock);
2660
2661	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2662	INIT_LIST_HEAD(&fs_info->space_info);
2663	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2664	INIT_LIST_HEAD(&fs_info->unused_bgs);
2665	btrfs_mapping_init(&fs_info->mapping_tree);
2666	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2667			     BTRFS_BLOCK_RSV_GLOBAL);
2668	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2669			     BTRFS_BLOCK_RSV_DELALLOC);
2670	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2671	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2672	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2673	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2674			     BTRFS_BLOCK_RSV_DELOPS);
2675	atomic_set(&fs_info->nr_async_submits, 0);
 
 
2676	atomic_set(&fs_info->async_delalloc_pages, 0);
2677	atomic_set(&fs_info->async_submit_draining, 0);
2678	atomic_set(&fs_info->nr_async_bios, 0);
2679	atomic_set(&fs_info->defrag_running, 0);
2680	atomic_set(&fs_info->qgroup_op_seq, 0);
2681	atomic_set(&fs_info->reada_works_cnt, 0);
 
2682	atomic64_set(&fs_info->tree_mod_seq, 0);
2683	fs_info->fs_frozen = 0;
2684	fs_info->sb = sb;
2685	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2686	fs_info->metadata_ratio = 0;
2687	fs_info->defrag_inodes = RB_ROOT;
2688	fs_info->free_chunk_space = 0;
2689	fs_info->tree_mod_log = RB_ROOT;
2690	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2691	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2692	/* readahead state */
2693	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2694	spin_lock_init(&fs_info->reada_lock);
 
2695
2696	fs_info->thread_pool_size = min_t(unsigned long,
2697					  num_online_cpus() + 2, 8);
2698
2699	INIT_LIST_HEAD(&fs_info->ordered_roots);
2700	spin_lock_init(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
2701	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2702					GFP_KERNEL);
2703	if (!fs_info->delayed_root) {
2704		err = -ENOMEM;
2705		goto fail_iput;
2706	}
2707	btrfs_init_delayed_root(fs_info->delayed_root);
2708
2709	btrfs_init_scrub(fs_info);
2710#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2711	fs_info->check_integrity_print_mask = 0;
2712#endif
2713	btrfs_init_balance(fs_info);
2714	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2715
2716	sb->s_blocksize = 4096;
2717	sb->s_blocksize_bits = blksize_bits(4096);
2718	sb->s_bdi = &fs_info->bdi;
2719
2720	btrfs_init_btree_inode(fs_info);
2721
2722	spin_lock_init(&fs_info->block_group_cache_lock);
2723	fs_info->block_group_cache_tree = RB_ROOT;
2724	fs_info->first_logical_byte = (u64)-1;
2725
2726	extent_io_tree_init(&fs_info->freed_extents[0],
2727			     fs_info->btree_inode->i_mapping);
2728	extent_io_tree_init(&fs_info->freed_extents[1],
2729			     fs_info->btree_inode->i_mapping);
2730	fs_info->pinned_extents = &fs_info->freed_extents[0];
2731	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2732
2733	mutex_init(&fs_info->ordered_operations_mutex);
2734	mutex_init(&fs_info->tree_log_mutex);
2735	mutex_init(&fs_info->chunk_mutex);
2736	mutex_init(&fs_info->transaction_kthread_mutex);
2737	mutex_init(&fs_info->cleaner_mutex);
2738	mutex_init(&fs_info->volume_mutex);
2739	mutex_init(&fs_info->ro_block_group_mutex);
2740	init_rwsem(&fs_info->commit_root_sem);
2741	init_rwsem(&fs_info->cleanup_work_sem);
2742	init_rwsem(&fs_info->subvol_sem);
2743	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2744
2745	btrfs_init_dev_replace_locks(fs_info);
2746	btrfs_init_qgroup(fs_info);
2747
2748	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2749	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2750
2751	init_waitqueue_head(&fs_info->transaction_throttle);
2752	init_waitqueue_head(&fs_info->transaction_wait);
2753	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2754	init_waitqueue_head(&fs_info->async_submit_wait);
2755
2756	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2757
2758	/* Usable values until the real ones are cached from the superblock */
2759	fs_info->nodesize = 4096;
2760	fs_info->sectorsize = 4096;
2761	fs_info->stripesize = 4096;
2762
 
 
 
 
 
2763	ret = btrfs_alloc_stripe_hash_table(fs_info);
2764	if (ret) {
2765		err = ret;
2766		goto fail_alloc;
2767	}
2768
2769	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2770
2771	invalidate_bdev(fs_devices->latest_bdev);
2772
2773	/*
2774	 * Read super block and check the signature bytes only
2775	 */
2776	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2777	if (IS_ERR(bh)) {
2778		err = PTR_ERR(bh);
2779		goto fail_alloc;
2780	}
2781
2782	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2783	 * We want to check superblock checksum, the type is stored inside.
2784	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2785	 */
2786	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2787		btrfs_err(fs_info, "superblock checksum mismatch");
2788		err = -EINVAL;
2789		brelse(bh);
2790		goto fail_alloc;
2791	}
2792
2793	/*
2794	 * super_copy is zeroed at allocation time and we never touch the
2795	 * following bytes up to INFO_SIZE, the checksum is calculated from
2796	 * the whole block of INFO_SIZE
2797	 */
2798	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2800	       sizeof(*fs_info->super_for_commit));
2801	brelse(bh);
2802
2803	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2804
2805	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2806	if (ret) {
2807		btrfs_err(fs_info, "superblock contains fatal errors");
2808		err = -EINVAL;
2809		goto fail_alloc;
2810	}
2811
2812	disk_super = fs_info->super_copy;
2813	if (!btrfs_super_root(disk_super))
2814		goto fail_alloc;
2815
2816	/* check FS state, whether FS is broken. */
2817	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2818		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2819
2820	/*
2821	 * run through our array of backup supers and setup
2822	 * our ring pointer to the oldest one
2823	 */
2824	generation = btrfs_super_generation(disk_super);
2825	find_oldest_super_backup(fs_info, generation);
2826
2827	/*
2828	 * In the long term, we'll store the compression type in the super
2829	 * block, and it'll be used for per file compression control.
2830	 */
2831	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2832
2833	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2834	if (ret) {
2835		err = ret;
2836		goto fail_alloc;
2837	}
2838
2839	features = btrfs_super_incompat_flags(disk_super) &
2840		~BTRFS_FEATURE_INCOMPAT_SUPP;
2841	if (features) {
2842		btrfs_err(fs_info,
2843		    "cannot mount because of unsupported optional features (%llx)",
2844		    features);
2845		err = -EINVAL;
2846		goto fail_alloc;
2847	}
2848
2849	features = btrfs_super_incompat_flags(disk_super);
2850	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2851	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2852		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
 
 
2853
2854	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2855		btrfs_info(fs_info, "has skinny extents");
2856
2857	/*
2858	 * flag our filesystem as having big metadata blocks if
2859	 * they are bigger than the page size
2860	 */
2861	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2862		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2863			btrfs_info(fs_info,
2864				"flagging fs with big metadata feature");
2865		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2866	}
2867
2868	nodesize = btrfs_super_nodesize(disk_super);
2869	sectorsize = btrfs_super_sectorsize(disk_super);
2870	stripesize = sectorsize;
2871	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2872	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2873
2874	/* Cache block sizes */
2875	fs_info->nodesize = nodesize;
2876	fs_info->sectorsize = sectorsize;
2877	fs_info->stripesize = stripesize;
2878
2879	/*
2880	 * mixed block groups end up with duplicate but slightly offset
2881	 * extent buffers for the same range.  It leads to corruptions
2882	 */
2883	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2884	    (sectorsize != nodesize)) {
2885		btrfs_err(fs_info,
2886"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2887			nodesize, sectorsize);
2888		goto fail_alloc;
2889	}
2890
2891	/*
2892	 * Needn't use the lock because there is no other task which will
2893	 * update the flag.
2894	 */
2895	btrfs_set_super_incompat_flags(disk_super, features);
2896
2897	features = btrfs_super_compat_ro_flags(disk_super) &
2898		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2899	if (!(sb->s_flags & MS_RDONLY) && features) {
2900		btrfs_err(fs_info,
2901	"cannot mount read-write because of unsupported optional features (%llx)",
2902		       features);
2903		err = -EINVAL;
2904		goto fail_alloc;
2905	}
2906
2907	max_active = fs_info->thread_pool_size;
2908
2909	ret = btrfs_init_workqueues(fs_info, fs_devices);
2910	if (ret) {
2911		err = ret;
2912		goto fail_sb_buffer;
2913	}
2914
2915	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2916	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2917				    SZ_4M / PAGE_SIZE);
 
 
 
2918
2919	sb->s_blocksize = sectorsize;
2920	sb->s_blocksize_bits = blksize_bits(sectorsize);
 
2921
2922	mutex_lock(&fs_info->chunk_mutex);
2923	ret = btrfs_read_sys_array(fs_info);
2924	mutex_unlock(&fs_info->chunk_mutex);
2925	if (ret) {
2926		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2927		goto fail_sb_buffer;
2928	}
2929
2930	generation = btrfs_super_chunk_root_generation(disk_super);
 
2931
2932	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2933
2934	chunk_root->node = read_tree_block(fs_info,
2935					   btrfs_super_chunk_root(disk_super),
2936					   generation);
2937	if (IS_ERR(chunk_root->node) ||
2938	    !extent_buffer_uptodate(chunk_root->node)) {
2939		btrfs_err(fs_info, "failed to read chunk root");
2940		if (!IS_ERR(chunk_root->node))
2941			free_extent_buffer(chunk_root->node);
2942		chunk_root->node = NULL;
2943		goto fail_tree_roots;
2944	}
2945	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2946	chunk_root->commit_root = btrfs_root_node(chunk_root);
2947
2948	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2949	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2950
2951	ret = btrfs_read_chunk_tree(fs_info);
2952	if (ret) {
2953		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2954		goto fail_tree_roots;
2955	}
2956
2957	/*
2958	 * keep the device that is marked to be the target device for the
2959	 * dev_replace procedure
2960	 */
2961	btrfs_close_extra_devices(fs_devices, 0);
2962
2963	if (!fs_devices->latest_bdev) {
2964		btrfs_err(fs_info, "failed to read devices");
2965		goto fail_tree_roots;
2966	}
2967
2968retry_root_backup:
2969	generation = btrfs_super_generation(disk_super);
 
2970
2971	tree_root->node = read_tree_block(fs_info,
2972					  btrfs_super_root(disk_super),
2973					  generation);
2974	if (IS_ERR(tree_root->node) ||
2975	    !extent_buffer_uptodate(tree_root->node)) {
2976		btrfs_warn(fs_info, "failed to read tree root");
2977		if (!IS_ERR(tree_root->node))
2978			free_extent_buffer(tree_root->node);
2979		tree_root->node = NULL;
2980		goto recovery_tree_root;
2981	}
2982
2983	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2984	tree_root->commit_root = btrfs_root_node(tree_root);
2985	btrfs_set_root_refs(&tree_root->root_item, 1);
2986
2987	mutex_lock(&tree_root->objectid_mutex);
2988	ret = btrfs_find_highest_objectid(tree_root,
2989					&tree_root->highest_objectid);
2990	if (ret) {
2991		mutex_unlock(&tree_root->objectid_mutex);
2992		goto recovery_tree_root;
2993	}
2994
2995	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2996
2997	mutex_unlock(&tree_root->objectid_mutex);
2998
2999	ret = btrfs_read_roots(fs_info);
3000	if (ret)
3001		goto recovery_tree_root;
3002
3003	fs_info->generation = generation;
3004	fs_info->last_trans_committed = generation;
3005
 
 
 
 
 
 
 
3006	ret = btrfs_recover_balance(fs_info);
3007	if (ret) {
3008		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3009		goto fail_block_groups;
3010	}
3011
3012	ret = btrfs_init_dev_stats(fs_info);
3013	if (ret) {
3014		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3015		goto fail_block_groups;
3016	}
3017
3018	ret = btrfs_init_dev_replace(fs_info);
3019	if (ret) {
3020		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3021		goto fail_block_groups;
3022	}
3023
3024	btrfs_close_extra_devices(fs_devices, 1);
3025
3026	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3027	if (ret) {
3028		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3029				ret);
3030		goto fail_block_groups;
3031	}
3032
3033	ret = btrfs_sysfs_add_device(fs_devices);
3034	if (ret) {
3035		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3036				ret);
3037		goto fail_fsdev_sysfs;
3038	}
3039
3040	ret = btrfs_sysfs_add_mounted(fs_info);
3041	if (ret) {
3042		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3043		goto fail_fsdev_sysfs;
3044	}
3045
3046	ret = btrfs_init_space_info(fs_info);
3047	if (ret) {
3048		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3049		goto fail_sysfs;
3050	}
3051
3052	ret = btrfs_read_block_groups(fs_info);
3053	if (ret) {
3054		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3055		goto fail_sysfs;
3056	}
3057	fs_info->num_tolerated_disk_barrier_failures =
3058		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3059	if (fs_info->fs_devices->missing_devices >
3060	     fs_info->num_tolerated_disk_barrier_failures &&
3061	    !(sb->s_flags & MS_RDONLY)) {
3062		btrfs_warn(fs_info,
3063"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3064			fs_info->fs_devices->missing_devices,
3065			fs_info->num_tolerated_disk_barrier_failures);
3066		goto fail_sysfs;
3067	}
3068
3069	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3070					       "btrfs-cleaner");
3071	if (IS_ERR(fs_info->cleaner_kthread))
3072		goto fail_sysfs;
3073
3074	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3075						   tree_root,
3076						   "btrfs-transaction");
3077	if (IS_ERR(fs_info->transaction_kthread))
3078		goto fail_cleaner;
3079
3080	if (!btrfs_test_opt(fs_info, SSD) &&
3081	    !btrfs_test_opt(fs_info, NOSSD) &&
3082	    !fs_info->fs_devices->rotating) {
3083		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3084		btrfs_set_opt(fs_info->mount_opt, SSD);
3085	}
3086
3087	/*
3088	 * Mount does not set all options immediately, we can do it now and do
3089	 * not have to wait for transaction commit
3090	 */
3091	btrfs_apply_pending_changes(fs_info);
3092
3093#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3094	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3095		ret = btrfsic_mount(fs_info, fs_devices,
3096				    btrfs_test_opt(fs_info,
3097					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3098				    1 : 0,
3099				    fs_info->check_integrity_print_mask);
3100		if (ret)
3101			btrfs_warn(fs_info,
3102				"failed to initialize integrity check module: %d",
3103				ret);
3104	}
3105#endif
3106	ret = btrfs_read_qgroup_config(fs_info);
3107	if (ret)
3108		goto fail_trans_kthread;
3109
 
 
 
3110	/* do not make disk changes in broken FS or nologreplay is given */
3111	if (btrfs_super_log_root(disk_super) != 0 &&
3112	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3113		ret = btrfs_replay_log(fs_info, fs_devices);
3114		if (ret) {
3115			err = ret;
3116			goto fail_qgroup;
3117		}
3118	}
3119
3120	ret = btrfs_find_orphan_roots(fs_info);
3121	if (ret)
3122		goto fail_qgroup;
3123
3124	if (!(sb->s_flags & MS_RDONLY)) {
3125		ret = btrfs_cleanup_fs_roots(fs_info);
3126		if (ret)
3127			goto fail_qgroup;
3128
3129		mutex_lock(&fs_info->cleaner_mutex);
3130		ret = btrfs_recover_relocation(tree_root);
3131		mutex_unlock(&fs_info->cleaner_mutex);
3132		if (ret < 0) {
3133			btrfs_warn(fs_info, "failed to recover relocation: %d",
3134					ret);
3135			err = -EINVAL;
3136			goto fail_qgroup;
3137		}
3138	}
3139
3140	location.objectid = BTRFS_FS_TREE_OBJECTID;
3141	location.type = BTRFS_ROOT_ITEM_KEY;
3142	location.offset = 0;
3143
3144	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3145	if (IS_ERR(fs_info->fs_root)) {
3146		err = PTR_ERR(fs_info->fs_root);
 
3147		goto fail_qgroup;
3148	}
3149
3150	if (sb->s_flags & MS_RDONLY)
3151		return 0;
3152
3153	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3154	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3155		clear_free_space_tree = 1;
3156	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3157		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3158		btrfs_warn(fs_info, "free space tree is invalid");
3159		clear_free_space_tree = 1;
3160	}
3161
3162	if (clear_free_space_tree) {
3163		btrfs_info(fs_info, "clearing free space tree");
3164		ret = btrfs_clear_free_space_tree(fs_info);
3165		if (ret) {
3166			btrfs_warn(fs_info,
3167				   "failed to clear free space tree: %d", ret);
3168			close_ctree(fs_info);
3169			return ret;
3170		}
3171	}
3172
3173	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3174	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3175		btrfs_info(fs_info, "creating free space tree");
3176		ret = btrfs_create_free_space_tree(fs_info);
3177		if (ret) {
3178			btrfs_warn(fs_info,
3179				"failed to create free space tree: %d", ret);
3180			close_ctree(fs_info);
3181			return ret;
3182		}
3183	}
3184
3185	down_read(&fs_info->cleanup_work_sem);
3186	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3187	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3188		up_read(&fs_info->cleanup_work_sem);
3189		close_ctree(fs_info);
3190		return ret;
3191	}
3192	up_read(&fs_info->cleanup_work_sem);
3193
3194	ret = btrfs_resume_balance_async(fs_info);
3195	if (ret) {
3196		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3197		close_ctree(fs_info);
3198		return ret;
3199	}
3200
3201	ret = btrfs_resume_dev_replace_async(fs_info);
3202	if (ret) {
3203		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3204		close_ctree(fs_info);
3205		return ret;
3206	}
3207
3208	btrfs_qgroup_rescan_resume(fs_info);
3209
3210	if (!fs_info->uuid_root) {
3211		btrfs_info(fs_info, "creating UUID tree");
3212		ret = btrfs_create_uuid_tree(fs_info);
3213		if (ret) {
3214			btrfs_warn(fs_info,
3215				"failed to create the UUID tree: %d", ret);
3216			close_ctree(fs_info);
3217			return ret;
3218		}
3219	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3220		   fs_info->generation !=
3221				btrfs_super_uuid_tree_generation(disk_super)) {
3222		btrfs_info(fs_info, "checking UUID tree");
3223		ret = btrfs_check_uuid_tree(fs_info);
3224		if (ret) {
3225			btrfs_warn(fs_info,
3226				"failed to check the UUID tree: %d", ret);
3227			close_ctree(fs_info);
3228			return ret;
3229		}
3230	} else {
3231		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3232	}
3233	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3234
3235	/*
3236	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3237	 * no need to keep the flag
3238	 */
3239	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3240
3241	return 0;
3242
3243fail_qgroup:
3244	btrfs_free_qgroup_config(fs_info);
3245fail_trans_kthread:
3246	kthread_stop(fs_info->transaction_kthread);
3247	btrfs_cleanup_transaction(fs_info);
3248	btrfs_free_fs_roots(fs_info);
3249fail_cleaner:
3250	kthread_stop(fs_info->cleaner_kthread);
3251
3252	/*
3253	 * make sure we're done with the btree inode before we stop our
3254	 * kthreads
3255	 */
3256	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3257
3258fail_sysfs:
3259	btrfs_sysfs_remove_mounted(fs_info);
3260
3261fail_fsdev_sysfs:
3262	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3263
3264fail_block_groups:
3265	btrfs_put_block_group_cache(fs_info);
3266	btrfs_free_block_groups(fs_info);
3267
3268fail_tree_roots:
3269	free_root_pointers(fs_info, 1);
3270	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3271
3272fail_sb_buffer:
3273	btrfs_stop_all_workers(fs_info);
 
 
 
3274fail_alloc:
3275fail_iput:
3276	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3277
3278	iput(fs_info->btree_inode);
3279fail_bio_counter:
3280	percpu_counter_destroy(&fs_info->bio_counter);
3281fail_delalloc_bytes:
3282	percpu_counter_destroy(&fs_info->delalloc_bytes);
3283fail_dirty_metadata_bytes:
3284	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3285fail_bdi:
3286	bdi_destroy(&fs_info->bdi);
3287fail_srcu:
3288	cleanup_srcu_struct(&fs_info->subvol_srcu);
3289fail:
3290	btrfs_free_stripe_hash_table(fs_info);
3291	btrfs_close_devices(fs_info->fs_devices);
3292	return err;
3293
3294recovery_tree_root:
3295	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3296		goto fail_tree_roots;
3297
3298	free_root_pointers(fs_info, 0);
3299
3300	/* don't use the log in recovery mode, it won't be valid */
3301	btrfs_set_super_log_root(disk_super, 0);
3302
3303	/* we can't trust the free space cache either */
3304	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3305
3306	ret = next_root_backup(fs_info, fs_info->super_copy,
3307			       &num_backups_tried, &backup_index);
3308	if (ret == -1)
3309		goto fail_block_groups;
3310	goto retry_root_backup;
3311}
 
3312
3313static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3314{
3315	if (uptodate) {
3316		set_buffer_uptodate(bh);
3317	} else {
3318		struct btrfs_device *device = (struct btrfs_device *)
3319			bh->b_private;
3320
3321		btrfs_warn_rl_in_rcu(device->fs_info,
3322				"lost page write due to IO error on %s",
3323					  rcu_str_deref(device->name));
3324		/* note, we don't set_buffer_write_io_error because we have
3325		 * our own ways of dealing with the IO errors
3326		 */
3327		clear_buffer_uptodate(bh);
3328		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3329	}
3330	unlock_buffer(bh);
3331	put_bh(bh);
3332}
3333
3334int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3335			struct buffer_head **bh_ret)
3336{
3337	struct buffer_head *bh;
3338	struct btrfs_super_block *super;
3339	u64 bytenr;
3340
3341	bytenr = btrfs_sb_offset(copy_num);
3342	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3343		return -EINVAL;
3344
3345	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3346	/*
3347	 * If we fail to read from the underlying devices, as of now
3348	 * the best option we have is to mark it EIO.
3349	 */
3350	if (!bh)
3351		return -EIO;
3352
3353	super = (struct btrfs_super_block *)bh->b_data;
3354	if (btrfs_super_bytenr(super) != bytenr ||
3355		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3356		brelse(bh);
3357		return -EINVAL;
3358	}
3359
3360	*bh_ret = bh;
3361	return 0;
3362}
3363
3364
3365struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3366{
3367	struct buffer_head *bh;
3368	struct buffer_head *latest = NULL;
3369	struct btrfs_super_block *super;
3370	int i;
3371	u64 transid = 0;
3372	int ret = -EINVAL;
3373
3374	/* we would like to check all the supers, but that would make
3375	 * a btrfs mount succeed after a mkfs from a different FS.
3376	 * So, we need to add a special mount option to scan for
3377	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3378	 */
3379	for (i = 0; i < 1; i++) {
3380		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3381		if (ret)
3382			continue;
3383
3384		super = (struct btrfs_super_block *)bh->b_data;
3385
3386		if (!latest || btrfs_super_generation(super) > transid) {
3387			brelse(latest);
3388			latest = bh;
3389			transid = btrfs_super_generation(super);
3390		} else {
3391			brelse(bh);
3392		}
3393	}
3394
3395	if (!latest)
3396		return ERR_PTR(ret);
3397
3398	return latest;
3399}
3400
3401/*
3402 * this should be called twice, once with wait == 0 and
3403 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3404 * we write are pinned.
3405 *
3406 * They are released when wait == 1 is done.
3407 * max_mirrors must be the same for both runs, and it indicates how
3408 * many supers on this one device should be written.
3409 *
3410 * max_mirrors == 0 means to write them all.
3411 */
3412static int write_dev_supers(struct btrfs_device *device,
3413			    struct btrfs_super_block *sb,
3414			    int do_barriers, int wait, int max_mirrors)
3415{
 
 
3416	struct buffer_head *bh;
3417	int i;
3418	int ret;
3419	int errors = 0;
3420	u32 crc;
3421	u64 bytenr;
 
3422
3423	if (max_mirrors == 0)
3424		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3425
 
 
3426	for (i = 0; i < max_mirrors; i++) {
3427		bytenr = btrfs_sb_offset(i);
3428		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3429		    device->commit_total_bytes)
3430			break;
3431
3432		if (wait) {
3433			bh = __find_get_block(device->bdev, bytenr / 4096,
3434					      BTRFS_SUPER_INFO_SIZE);
3435			if (!bh) {
3436				errors++;
3437				continue;
3438			}
3439			wait_on_buffer(bh);
3440			if (!buffer_uptodate(bh))
3441				errors++;
3442
3443			/* drop our reference */
3444			brelse(bh);
3445
3446			/* drop the reference from the wait == 0 run */
3447			brelse(bh);
 
 
 
 
 
 
 
 
3448			continue;
3449		} else {
3450			btrfs_set_super_bytenr(sb, bytenr);
3451
3452			crc = ~(u32)0;
3453			crc = btrfs_csum_data((char *)sb +
3454					      BTRFS_CSUM_SIZE, crc,
3455					      BTRFS_SUPER_INFO_SIZE -
3456					      BTRFS_CSUM_SIZE);
3457			btrfs_csum_final(crc, sb->csum);
3458
3459			/*
3460			 * one reference for us, and we leave it for the
3461			 * caller
3462			 */
3463			bh = __getblk(device->bdev, bytenr / 4096,
3464				      BTRFS_SUPER_INFO_SIZE);
3465			if (!bh) {
3466				btrfs_err(device->fs_info,
3467				    "couldn't get super buffer head for bytenr %llu",
3468				    bytenr);
3469				errors++;
3470				continue;
3471			}
3472
3473			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3474
3475			/* one reference for submit_bh */
3476			get_bh(bh);
3477
3478			set_buffer_uptodate(bh);
3479			lock_buffer(bh);
3480			bh->b_end_io = btrfs_end_buffer_write_sync;
3481			bh->b_private = device;
3482		}
3483
3484		/*
3485		 * we fua the first super.  The others we allow
3486		 * to go down lazy.
3487		 */
3488		if (i == 0)
3489			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
3490		else
3491			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3492		if (ret)
3493			errors++;
3494	}
3495	return errors < i ? 0 : -1;
3496}
3497
3498/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3499 * endio for the write_dev_flush, this will wake anyone waiting
3500 * for the barrier when it is done
3501 */
3502static void btrfs_end_empty_barrier(struct bio *bio)
3503{
3504	if (bio->bi_private)
3505		complete(bio->bi_private);
3506	bio_put(bio);
3507}
3508
3509/*
3510 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3511 * sent down.  With wait == 1, it waits for the previous flush.
3512 *
3513 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3514 * capable
3515 */
3516static int write_dev_flush(struct btrfs_device *device, int wait)
3517{
3518	struct bio *bio;
3519	int ret = 0;
3520
3521	if (device->nobarriers)
3522		return 0;
3523
3524	if (wait) {
3525		bio = device->flush_bio;
3526		if (!bio)
3527			return 0;
 
 
3528
3529		wait_for_completion(&device->flush_wait);
 
 
3530
3531		if (bio->bi_error) {
3532			ret = bio->bi_error;
3533			btrfs_dev_stat_inc_and_print(device,
3534				BTRFS_DEV_STAT_FLUSH_ERRS);
3535		}
 
3536
3537		/* drop the reference from the wait == 0 run */
3538		bio_put(bio);
3539		device->flush_bio = NULL;
3540
3541		return ret;
3542	}
3543
3544	/*
3545	 * one reference for us, and we leave it for the
3546	 * caller
3547	 */
3548	device->flush_bio = NULL;
3549	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3550	if (!bio)
3551		return -ENOMEM;
3552
3553	bio->bi_end_io = btrfs_end_empty_barrier;
3554	bio->bi_bdev = device->bdev;
3555	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3556	init_completion(&device->flush_wait);
3557	bio->bi_private = &device->flush_wait;
3558	device->flush_bio = bio;
3559
3560	bio_get(bio);
3561	btrfsic_submit_bio(bio);
3562
 
 
 
 
3563	return 0;
3564}
3565
3566/*
3567 * send an empty flush down to each device in parallel,
3568 * then wait for them
3569 */
3570static int barrier_all_devices(struct btrfs_fs_info *info)
3571{
3572	struct list_head *head;
3573	struct btrfs_device *dev;
3574	int errors_send = 0;
3575	int errors_wait = 0;
3576	int ret;
3577
 
3578	/* send down all the barriers */
3579	head = &info->fs_devices->devices;
3580	list_for_each_entry_rcu(dev, head, dev_list) {
3581		if (dev->missing)
3582			continue;
3583		if (!dev->bdev) {
3584			errors_send++;
3585			continue;
3586		}
3587		if (!dev->in_fs_metadata || !dev->writeable)
3588			continue;
3589
3590		ret = write_dev_flush(dev, 0);
3591		if (ret)
3592			errors_send++;
3593	}
3594
3595	/* wait for all the barriers */
3596	list_for_each_entry_rcu(dev, head, dev_list) {
3597		if (dev->missing)
3598			continue;
3599		if (!dev->bdev) {
3600			errors_wait++;
3601			continue;
3602		}
3603		if (!dev->in_fs_metadata || !dev->writeable)
 
3604			continue;
3605
3606		ret = write_dev_flush(dev, 1);
3607		if (ret)
 
 
 
3608			errors_wait++;
 
 
 
 
 
 
 
 
 
 
3609	}
3610	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3611	    errors_wait > info->num_tolerated_disk_barrier_failures)
3612		return -EIO;
3613	return 0;
3614}
3615
3616int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3617{
3618	int raid_type;
3619	int min_tolerated = INT_MAX;
3620
3621	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3622	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3623		min_tolerated = min(min_tolerated,
3624				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3625				    tolerated_failures);
3626
3627	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3628		if (raid_type == BTRFS_RAID_SINGLE)
3629			continue;
3630		if (!(flags & btrfs_raid_group[raid_type]))
3631			continue;
3632		min_tolerated = min(min_tolerated,
3633				    btrfs_raid_array[raid_type].
3634				    tolerated_failures);
3635	}
3636
3637	if (min_tolerated == INT_MAX) {
3638		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3639		min_tolerated = 0;
3640	}
3641
3642	return min_tolerated;
3643}
3644
3645int btrfs_calc_num_tolerated_disk_barrier_failures(
3646	struct btrfs_fs_info *fs_info)
3647{
3648	struct btrfs_ioctl_space_info space;
3649	struct btrfs_space_info *sinfo;
3650	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3651		       BTRFS_BLOCK_GROUP_SYSTEM,
3652		       BTRFS_BLOCK_GROUP_METADATA,
3653		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3654	int i;
3655	int c;
3656	int num_tolerated_disk_barrier_failures =
3657		(int)fs_info->fs_devices->num_devices;
3658
3659	for (i = 0; i < ARRAY_SIZE(types); i++) {
3660		struct btrfs_space_info *tmp;
3661
3662		sinfo = NULL;
3663		rcu_read_lock();
3664		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3665			if (tmp->flags == types[i]) {
3666				sinfo = tmp;
3667				break;
3668			}
3669		}
3670		rcu_read_unlock();
3671
3672		if (!sinfo)
3673			continue;
3674
3675		down_read(&sinfo->groups_sem);
3676		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3677			u64 flags;
3678
3679			if (list_empty(&sinfo->block_groups[c]))
3680				continue;
3681
3682			btrfs_get_block_group_info(&sinfo->block_groups[c],
3683						   &space);
3684			if (space.total_bytes == 0 || space.used_bytes == 0)
3685				continue;
3686			flags = space.flags;
3687
3688			num_tolerated_disk_barrier_failures = min(
3689				num_tolerated_disk_barrier_failures,
3690				btrfs_get_num_tolerated_disk_barrier_failures(
3691					flags));
3692		}
3693		up_read(&sinfo->groups_sem);
3694	}
3695
3696	return num_tolerated_disk_barrier_failures;
3697}
3698
3699static int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3700{
3701	struct list_head *head;
3702	struct btrfs_device *dev;
3703	struct btrfs_super_block *sb;
3704	struct btrfs_dev_item *dev_item;
3705	int ret;
3706	int do_barriers;
3707	int max_errors;
3708	int total_errors = 0;
3709	u64 flags;
3710
3711	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3712	backup_super_roots(fs_info);
 
 
 
 
 
 
 
3713
3714	sb = fs_info->super_for_commit;
3715	dev_item = &sb->dev_item;
3716
3717	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3718	head = &fs_info->fs_devices->devices;
3719	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3720
3721	if (do_barriers) {
3722		ret = barrier_all_devices(fs_info);
3723		if (ret) {
3724			mutex_unlock(
3725				&fs_info->fs_devices->device_list_mutex);
3726			btrfs_handle_fs_error(fs_info, ret,
3727					      "errors while submitting device barriers.");
3728			return ret;
3729		}
3730	}
3731
3732	list_for_each_entry_rcu(dev, head, dev_list) {
3733		if (!dev->bdev) {
3734			total_errors++;
3735			continue;
3736		}
3737		if (!dev->in_fs_metadata || !dev->writeable)
 
3738			continue;
3739
3740		btrfs_set_stack_device_generation(dev_item, 0);
3741		btrfs_set_stack_device_type(dev_item, dev->type);
3742		btrfs_set_stack_device_id(dev_item, dev->devid);
3743		btrfs_set_stack_device_total_bytes(dev_item,
3744						   dev->commit_total_bytes);
3745		btrfs_set_stack_device_bytes_used(dev_item,
3746						  dev->commit_bytes_used);
3747		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3748		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3749		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3750		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3751		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
 
3752
3753		flags = btrfs_super_flags(sb);
3754		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3755
3756		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
 
 
 
 
 
 
 
 
3757		if (ret)
3758			total_errors++;
3759	}
3760	if (total_errors > max_errors) {
3761		btrfs_err(fs_info, "%d errors while writing supers",
3762			  total_errors);
3763		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3764
3765		/* FUA is masked off if unsupported and can't be the reason */
3766		btrfs_handle_fs_error(fs_info, -EIO,
3767				      "%d errors while writing supers",
3768				      total_errors);
3769		return -EIO;
3770	}
3771
3772	total_errors = 0;
3773	list_for_each_entry_rcu(dev, head, dev_list) {
3774		if (!dev->bdev)
3775			continue;
3776		if (!dev->in_fs_metadata || !dev->writeable)
 
3777			continue;
3778
3779		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3780		if (ret)
3781			total_errors++;
3782	}
3783	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3784	if (total_errors > max_errors) {
3785		btrfs_handle_fs_error(fs_info, -EIO,
3786				      "%d errors while writing supers",
3787				      total_errors);
3788		return -EIO;
3789	}
3790	return 0;
3791}
3792
3793int write_ctree_super(struct btrfs_trans_handle *trans,
3794		      struct btrfs_fs_info *fs_info, int max_mirrors)
3795{
3796	return write_all_supers(fs_info, max_mirrors);
3797}
3798
3799/* Drop a fs root from the radix tree and free it. */
3800void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3801				  struct btrfs_root *root)
3802{
3803	spin_lock(&fs_info->fs_roots_radix_lock);
3804	radix_tree_delete(&fs_info->fs_roots_radix,
3805			  (unsigned long)root->root_key.objectid);
3806	spin_unlock(&fs_info->fs_roots_radix_lock);
3807
3808	if (btrfs_root_refs(&root->root_item) == 0)
3809		synchronize_srcu(&fs_info->subvol_srcu);
3810
3811	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3812		btrfs_free_log(NULL, root);
3813		if (root->reloc_root) {
3814			free_extent_buffer(root->reloc_root->node);
3815			free_extent_buffer(root->reloc_root->commit_root);
3816			btrfs_put_fs_root(root->reloc_root);
3817			root->reloc_root = NULL;
3818		}
3819	}
3820
3821	if (root->free_ino_pinned)
3822		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3823	if (root->free_ino_ctl)
3824		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3825	free_fs_root(root);
3826}
3827
3828static void free_fs_root(struct btrfs_root *root)
3829{
3830	iput(root->ino_cache_inode);
3831	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3832	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3833	root->orphan_block_rsv = NULL;
3834	if (root->anon_dev)
3835		free_anon_bdev(root->anon_dev);
3836	if (root->subv_writers)
3837		btrfs_free_subvolume_writers(root->subv_writers);
3838	free_extent_buffer(root->node);
3839	free_extent_buffer(root->commit_root);
3840	kfree(root->free_ino_ctl);
3841	kfree(root->free_ino_pinned);
3842	kfree(root->name);
3843	btrfs_put_fs_root(root);
3844}
3845
3846void btrfs_free_fs_root(struct btrfs_root *root)
3847{
3848	free_fs_root(root);
3849}
3850
3851int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3852{
3853	u64 root_objectid = 0;
3854	struct btrfs_root *gang[8];
3855	int i = 0;
3856	int err = 0;
3857	unsigned int ret = 0;
3858	int index;
3859
3860	while (1) {
3861		index = srcu_read_lock(&fs_info->subvol_srcu);
3862		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3863					     (void **)gang, root_objectid,
3864					     ARRAY_SIZE(gang));
3865		if (!ret) {
3866			srcu_read_unlock(&fs_info->subvol_srcu, index);
3867			break;
3868		}
3869		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3870
3871		for (i = 0; i < ret; i++) {
3872			/* Avoid to grab roots in dead_roots */
3873			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3874				gang[i] = NULL;
3875				continue;
3876			}
3877			/* grab all the search result for later use */
3878			gang[i] = btrfs_grab_fs_root(gang[i]);
3879		}
3880		srcu_read_unlock(&fs_info->subvol_srcu, index);
3881
3882		for (i = 0; i < ret; i++) {
3883			if (!gang[i])
3884				continue;
3885			root_objectid = gang[i]->root_key.objectid;
3886			err = btrfs_orphan_cleanup(gang[i]);
3887			if (err)
3888				break;
3889			btrfs_put_fs_root(gang[i]);
3890		}
3891		root_objectid++;
3892	}
3893
3894	/* release the uncleaned roots due to error */
3895	for (; i < ret; i++) {
3896		if (gang[i])
3897			btrfs_put_fs_root(gang[i]);
3898	}
3899	return err;
3900}
3901
3902int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3903{
3904	struct btrfs_root *root = fs_info->tree_root;
3905	struct btrfs_trans_handle *trans;
3906
3907	mutex_lock(&fs_info->cleaner_mutex);
3908	btrfs_run_delayed_iputs(fs_info);
3909	mutex_unlock(&fs_info->cleaner_mutex);
3910	wake_up_process(fs_info->cleaner_kthread);
3911
3912	/* wait until ongoing cleanup work done */
3913	down_write(&fs_info->cleanup_work_sem);
3914	up_write(&fs_info->cleanup_work_sem);
3915
3916	trans = btrfs_join_transaction(root);
3917	if (IS_ERR(trans))
3918		return PTR_ERR(trans);
3919	return btrfs_commit_transaction(trans);
3920}
3921
3922void close_ctree(struct btrfs_fs_info *fs_info)
3923{
3924	struct btrfs_root *root = fs_info->tree_root;
3925	int ret;
3926
3927	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
 
 
 
 
 
 
 
3928
3929	/* wait for the qgroup rescan worker to stop */
3930	btrfs_qgroup_wait_for_completion(fs_info, false);
3931
3932	/* wait for the uuid_scan task to finish */
3933	down(&fs_info->uuid_tree_rescan_sem);
3934	/* avoid complains from lockdep et al., set sem back to initial state */
3935	up(&fs_info->uuid_tree_rescan_sem);
3936
3937	/* pause restriper - we want to resume on mount */
3938	btrfs_pause_balance(fs_info);
3939
3940	btrfs_dev_replace_suspend_for_unmount(fs_info);
3941
3942	btrfs_scrub_cancel(fs_info);
3943
3944	/* wait for any defraggers to finish */
3945	wait_event(fs_info->transaction_wait,
3946		   (atomic_read(&fs_info->defrag_running) == 0));
3947
3948	/* clear out the rbtree of defraggable inodes */
3949	btrfs_cleanup_defrag_inodes(fs_info);
3950
3951	cancel_work_sync(&fs_info->async_reclaim_work);
3952
3953	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3954		/*
3955		 * If the cleaner thread is stopped and there are
3956		 * block groups queued for removal, the deletion will be
3957		 * skipped when we quit the cleaner thread.
3958		 */
3959		btrfs_delete_unused_bgs(fs_info);
3960
3961		ret = btrfs_commit_super(fs_info);
3962		if (ret)
3963			btrfs_err(fs_info, "commit super ret %d", ret);
3964	}
3965
3966	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 
3967		btrfs_error_commit_super(fs_info);
3968
3969	kthread_stop(fs_info->transaction_kthread);
3970	kthread_stop(fs_info->cleaner_kthread);
3971
 
3972	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3973
3974	btrfs_free_qgroup_config(fs_info);
 
3975
3976	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3977		btrfs_info(fs_info, "at unmount delalloc count %lld",
3978		       percpu_counter_sum(&fs_info->delalloc_bytes));
3979	}
3980
 
 
 
 
3981	btrfs_sysfs_remove_mounted(fs_info);
3982	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3983
3984	btrfs_free_fs_roots(fs_info);
3985
3986	btrfs_put_block_group_cache(fs_info);
3987
3988	btrfs_free_block_groups(fs_info);
3989
3990	/*
3991	 * we must make sure there is not any read request to
3992	 * submit after we stopping all workers.
3993	 */
3994	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3995	btrfs_stop_all_workers(fs_info);
3996
 
 
3997	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3998	free_root_pointers(fs_info, 1);
3999
4000	iput(fs_info->btree_inode);
4001
4002#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4003	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4004		btrfsic_unmount(fs_info->fs_devices);
4005#endif
4006
 
4007	btrfs_close_devices(fs_info->fs_devices);
4008	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4009
4010	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4011	percpu_counter_destroy(&fs_info->delalloc_bytes);
4012	percpu_counter_destroy(&fs_info->bio_counter);
4013	bdi_destroy(&fs_info->bdi);
4014	cleanup_srcu_struct(&fs_info->subvol_srcu);
4015
 
4016	btrfs_free_stripe_hash_table(fs_info);
4017
4018	__btrfs_free_block_rsv(root->orphan_block_rsv);
4019	root->orphan_block_rsv = NULL;
4020
4021	mutex_lock(&fs_info->chunk_mutex);
4022	while (!list_empty(&fs_info->pinned_chunks)) {
4023		struct extent_map *em;
4024
4025		em = list_first_entry(&fs_info->pinned_chunks,
4026				      struct extent_map, list);
4027		list_del_init(&em->list);
4028		free_extent_map(em);
4029	}
4030	mutex_unlock(&fs_info->chunk_mutex);
4031}
4032
4033int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4034			  int atomic)
4035{
4036	int ret;
4037	struct inode *btree_inode = buf->pages[0]->mapping->host;
4038
4039	ret = extent_buffer_uptodate(buf);
4040	if (!ret)
4041		return ret;
4042
4043	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4044				    parent_transid, atomic);
4045	if (ret == -EAGAIN)
4046		return ret;
4047	return !ret;
4048}
4049
4050void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4051{
4052	struct btrfs_fs_info *fs_info;
4053	struct btrfs_root *root;
4054	u64 transid = btrfs_header_generation(buf);
4055	int was_dirty;
4056
4057#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4058	/*
4059	 * This is a fast path so only do this check if we have sanity tests
4060	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4061	 * outside of the sanity tests.
4062	 */
4063	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4064		return;
4065#endif
4066	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4067	fs_info = root->fs_info;
4068	btrfs_assert_tree_locked(buf);
4069	if (transid != fs_info->generation)
4070		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4071			buf->start, transid, fs_info->generation);
4072	was_dirty = set_extent_buffer_dirty(buf);
4073	if (!was_dirty)
4074		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
4075				     buf->len,
4076				     fs_info->dirty_metadata_batch);
4077#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4078	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4079		btrfs_print_leaf(fs_info, buf);
 
 
 
 
 
 
4080		ASSERT(0);
4081	}
4082#endif
4083}
4084
4085static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4086					int flush_delayed)
4087{
4088	/*
4089	 * looks as though older kernels can get into trouble with
4090	 * this code, they end up stuck in balance_dirty_pages forever
4091	 */
4092	int ret;
4093
4094	if (current->flags & PF_MEMALLOC)
4095		return;
4096
4097	if (flush_delayed)
4098		btrfs_balance_delayed_items(fs_info);
4099
4100	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4101				     BTRFS_DIRTY_METADATA_THRESH);
 
4102	if (ret > 0) {
4103		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4104	}
4105}
4106
4107void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4108{
4109	__btrfs_btree_balance_dirty(fs_info, 1);
4110}
4111
4112void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4113{
4114	__btrfs_btree_balance_dirty(fs_info, 0);
4115}
4116
4117int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
 
4118{
4119	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4120	struct btrfs_fs_info *fs_info = root->fs_info;
4121
4122	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
4123}
4124
4125static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4126			      int read_only)
4127{
4128	struct btrfs_super_block *sb = fs_info->super_copy;
4129	u64 nodesize = btrfs_super_nodesize(sb);
4130	u64 sectorsize = btrfs_super_sectorsize(sb);
4131	int ret = 0;
4132
4133	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4134		btrfs_err(fs_info, "no valid FS found");
4135		ret = -EINVAL;
4136	}
4137	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4138		btrfs_warn(fs_info, "unrecognized super flag: %llu",
4139				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4140	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4141		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4142				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4143		ret = -EINVAL;
4144	}
4145	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4146		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4147				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4148		ret = -EINVAL;
4149	}
4150	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4151		btrfs_err(fs_info, "log_root level too big: %d >= %d",
4152				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4153		ret = -EINVAL;
4154	}
4155
4156	/*
4157	 * Check sectorsize and nodesize first, other check will need it.
4158	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4159	 */
4160	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4161	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4162		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4163		ret = -EINVAL;
4164	}
4165	/* Only PAGE SIZE is supported yet */
4166	if (sectorsize != PAGE_SIZE) {
4167		btrfs_err(fs_info,
4168			"sectorsize %llu not supported yet, only support %lu",
4169			sectorsize, PAGE_SIZE);
4170		ret = -EINVAL;
4171	}
4172	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4173	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4174		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4175		ret = -EINVAL;
4176	}
4177	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4178		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4179			  le32_to_cpu(sb->__unused_leafsize), nodesize);
4180		ret = -EINVAL;
4181	}
4182
4183	/* Root alignment check */
4184	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4185		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4186			   btrfs_super_root(sb));
4187		ret = -EINVAL;
4188	}
4189	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4190		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4191			   btrfs_super_chunk_root(sb));
4192		ret = -EINVAL;
4193	}
4194	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4195		btrfs_warn(fs_info, "log_root block unaligned: %llu",
4196			   btrfs_super_log_root(sb));
4197		ret = -EINVAL;
4198	}
4199
4200	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4201		btrfs_err(fs_info,
4202			   "dev_item UUID does not match fsid: %pU != %pU",
4203			   fs_info->fsid, sb->dev_item.fsid);
4204		ret = -EINVAL;
4205	}
4206
4207	/*
4208	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4209	 * done later
4210	 */
4211	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4212		btrfs_err(fs_info, "bytes_used is too small %llu",
4213			  btrfs_super_bytes_used(sb));
4214		ret = -EINVAL;
4215	}
4216	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4217		btrfs_err(fs_info, "invalid stripesize %u",
4218			  btrfs_super_stripesize(sb));
4219		ret = -EINVAL;
4220	}
4221	if (btrfs_super_num_devices(sb) > (1UL << 31))
4222		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4223			   btrfs_super_num_devices(sb));
4224	if (btrfs_super_num_devices(sb) == 0) {
4225		btrfs_err(fs_info, "number of devices is 0");
4226		ret = -EINVAL;
4227	}
4228
4229	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4230		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4231			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4232		ret = -EINVAL;
4233	}
4234
4235	/*
4236	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4237	 * and one chunk
4238	 */
4239	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4240		btrfs_err(fs_info, "system chunk array too big %u > %u",
4241			  btrfs_super_sys_array_size(sb),
4242			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4243		ret = -EINVAL;
4244	}
4245	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4246			+ sizeof(struct btrfs_chunk)) {
4247		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4248			  btrfs_super_sys_array_size(sb),
4249			  sizeof(struct btrfs_disk_key)
4250			  + sizeof(struct btrfs_chunk));
4251		ret = -EINVAL;
4252	}
4253
4254	/*
4255	 * The generation is a global counter, we'll trust it more than the others
4256	 * but it's still possible that it's the one that's wrong.
4257	 */
4258	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4259		btrfs_warn(fs_info,
4260			"suspicious: generation < chunk_root_generation: %llu < %llu",
4261			btrfs_super_generation(sb),
4262			btrfs_super_chunk_root_generation(sb));
4263	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4264	    && btrfs_super_cache_generation(sb) != (u64)-1)
4265		btrfs_warn(fs_info,
4266			"suspicious: generation < cache_generation: %llu < %llu",
4267			btrfs_super_generation(sb),
4268			btrfs_super_cache_generation(sb));
4269
4270	return ret;
4271}
4272
4273static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4274{
4275	mutex_lock(&fs_info->cleaner_mutex);
4276	btrfs_run_delayed_iputs(fs_info);
4277	mutex_unlock(&fs_info->cleaner_mutex);
4278
4279	down_write(&fs_info->cleanup_work_sem);
4280	up_write(&fs_info->cleanup_work_sem);
4281
4282	/* cleanup FS via transaction */
4283	btrfs_cleanup_transaction(fs_info);
4284}
4285
4286static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4287{
4288	struct btrfs_ordered_extent *ordered;
4289
4290	spin_lock(&root->ordered_extent_lock);
4291	/*
4292	 * This will just short circuit the ordered completion stuff which will
4293	 * make sure the ordered extent gets properly cleaned up.
4294	 */
4295	list_for_each_entry(ordered, &root->ordered_extents,
4296			    root_extent_list)
4297		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4298	spin_unlock(&root->ordered_extent_lock);
4299}
4300
4301static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4302{
4303	struct btrfs_root *root;
4304	struct list_head splice;
4305
4306	INIT_LIST_HEAD(&splice);
4307
4308	spin_lock(&fs_info->ordered_root_lock);
4309	list_splice_init(&fs_info->ordered_roots, &splice);
4310	while (!list_empty(&splice)) {
4311		root = list_first_entry(&splice, struct btrfs_root,
4312					ordered_root);
4313		list_move_tail(&root->ordered_root,
4314			       &fs_info->ordered_roots);
4315
4316		spin_unlock(&fs_info->ordered_root_lock);
4317		btrfs_destroy_ordered_extents(root);
4318
4319		cond_resched();
4320		spin_lock(&fs_info->ordered_root_lock);
4321	}
4322	spin_unlock(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
4323}
4324
4325static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4326				      struct btrfs_fs_info *fs_info)
4327{
4328	struct rb_node *node;
4329	struct btrfs_delayed_ref_root *delayed_refs;
4330	struct btrfs_delayed_ref_node *ref;
4331	int ret = 0;
4332
4333	delayed_refs = &trans->delayed_refs;
4334
4335	spin_lock(&delayed_refs->lock);
4336	if (atomic_read(&delayed_refs->num_entries) == 0) {
4337		spin_unlock(&delayed_refs->lock);
4338		btrfs_info(fs_info, "delayed_refs has NO entry");
4339		return ret;
4340	}
4341
4342	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4343		struct btrfs_delayed_ref_head *head;
4344		struct btrfs_delayed_ref_node *tmp;
4345		bool pin_bytes = false;
4346
4347		head = rb_entry(node, struct btrfs_delayed_ref_head,
4348				href_node);
4349		if (!mutex_trylock(&head->mutex)) {
4350			atomic_inc(&head->node.refs);
4351			spin_unlock(&delayed_refs->lock);
4352
4353			mutex_lock(&head->mutex);
4354			mutex_unlock(&head->mutex);
4355			btrfs_put_delayed_ref(&head->node);
4356			spin_lock(&delayed_refs->lock);
4357			continue;
4358		}
4359		spin_lock(&head->lock);
4360		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4361						 list) {
 
4362			ref->in_tree = 0;
4363			list_del(&ref->list);
 
4364			if (!list_empty(&ref->add_list))
4365				list_del(&ref->add_list);
4366			atomic_dec(&delayed_refs->num_entries);
4367			btrfs_put_delayed_ref(ref);
4368		}
4369		if (head->must_insert_reserved)
4370			pin_bytes = true;
4371		btrfs_free_delayed_extent_op(head->extent_op);
4372		delayed_refs->num_heads--;
4373		if (head->processing == 0)
4374			delayed_refs->num_heads_ready--;
4375		atomic_dec(&delayed_refs->num_entries);
4376		head->node.in_tree = 0;
4377		rb_erase(&head->href_node, &delayed_refs->href_root);
4378		spin_unlock(&head->lock);
4379		spin_unlock(&delayed_refs->lock);
4380		mutex_unlock(&head->mutex);
4381
4382		if (pin_bytes)
4383			btrfs_pin_extent(fs_info, head->node.bytenr,
4384					 head->node.num_bytes, 1);
4385		btrfs_put_delayed_ref(&head->node);
 
4386		cond_resched();
4387		spin_lock(&delayed_refs->lock);
4388	}
4389
4390	spin_unlock(&delayed_refs->lock);
4391
4392	return ret;
4393}
4394
4395static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4396{
4397	struct btrfs_inode *btrfs_inode;
4398	struct list_head splice;
4399
4400	INIT_LIST_HEAD(&splice);
4401
4402	spin_lock(&root->delalloc_lock);
4403	list_splice_init(&root->delalloc_inodes, &splice);
4404
4405	while (!list_empty(&splice)) {
 
4406		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4407					       delalloc_inodes);
4408
4409		list_del_init(&btrfs_inode->delalloc_inodes);
4410		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4411			  &btrfs_inode->runtime_flags);
4412		spin_unlock(&root->delalloc_lock);
4413
4414		btrfs_invalidate_inodes(btrfs_inode->root);
4415
 
 
 
 
 
 
 
4416		spin_lock(&root->delalloc_lock);
4417	}
4418
4419	spin_unlock(&root->delalloc_lock);
4420}
4421
4422static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4423{
4424	struct btrfs_root *root;
4425	struct list_head splice;
4426
4427	INIT_LIST_HEAD(&splice);
4428
4429	spin_lock(&fs_info->delalloc_root_lock);
4430	list_splice_init(&fs_info->delalloc_roots, &splice);
4431	while (!list_empty(&splice)) {
4432		root = list_first_entry(&splice, struct btrfs_root,
4433					 delalloc_root);
4434		list_del_init(&root->delalloc_root);
4435		root = btrfs_grab_fs_root(root);
4436		BUG_ON(!root);
4437		spin_unlock(&fs_info->delalloc_root_lock);
4438
4439		btrfs_destroy_delalloc_inodes(root);
4440		btrfs_put_fs_root(root);
4441
4442		spin_lock(&fs_info->delalloc_root_lock);
4443	}
4444	spin_unlock(&fs_info->delalloc_root_lock);
4445}
4446
4447static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4448					struct extent_io_tree *dirty_pages,
4449					int mark)
4450{
4451	int ret;
4452	struct extent_buffer *eb;
4453	u64 start = 0;
4454	u64 end;
4455
4456	while (1) {
4457		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4458					    mark, NULL);
4459		if (ret)
4460			break;
4461
4462		clear_extent_bits(dirty_pages, start, end, mark);
4463		while (start <= end) {
4464			eb = find_extent_buffer(fs_info, start);
4465			start += fs_info->nodesize;
4466			if (!eb)
4467				continue;
4468			wait_on_extent_buffer_writeback(eb);
4469
4470			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4471					       &eb->bflags))
4472				clear_extent_buffer_dirty(eb);
4473			free_extent_buffer_stale(eb);
4474		}
4475	}
4476
4477	return ret;
4478}
4479
4480static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4481				       struct extent_io_tree *pinned_extents)
4482{
4483	struct extent_io_tree *unpin;
4484	u64 start;
4485	u64 end;
4486	int ret;
4487	bool loop = true;
4488
4489	unpin = pinned_extents;
4490again:
4491	while (1) {
 
 
 
 
 
 
 
 
 
4492		ret = find_first_extent_bit(unpin, 0, &start, &end,
4493					    EXTENT_DIRTY, NULL);
4494		if (ret)
 
4495			break;
 
4496
4497		clear_extent_dirty(unpin, start, end);
 
4498		btrfs_error_unpin_extent_range(fs_info, start, end);
 
4499		cond_resched();
4500	}
4501
4502	if (loop) {
4503		if (unpin == &fs_info->freed_extents[0])
4504			unpin = &fs_info->freed_extents[1];
4505		else
4506			unpin = &fs_info->freed_extents[0];
4507		loop = false;
4508		goto again;
4509	}
4510
4511	return 0;
4512}
4513
4514static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4515{
4516	struct inode *inode;
4517
4518	inode = cache->io_ctl.inode;
4519	if (inode) {
4520		invalidate_inode_pages2(inode->i_mapping);
4521		BTRFS_I(inode)->generation = 0;
4522		cache->io_ctl.inode = NULL;
4523		iput(inode);
4524	}
4525	btrfs_put_block_group(cache);
4526}
4527
4528void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4529			     struct btrfs_fs_info *fs_info)
4530{
4531	struct btrfs_block_group_cache *cache;
4532
4533	spin_lock(&cur_trans->dirty_bgs_lock);
4534	while (!list_empty(&cur_trans->dirty_bgs)) {
4535		cache = list_first_entry(&cur_trans->dirty_bgs,
4536					 struct btrfs_block_group_cache,
4537					 dirty_list);
4538		if (!cache) {
4539			btrfs_err(fs_info, "orphan block group dirty_bgs list");
4540			spin_unlock(&cur_trans->dirty_bgs_lock);
4541			return;
4542		}
4543
4544		if (!list_empty(&cache->io_list)) {
4545			spin_unlock(&cur_trans->dirty_bgs_lock);
4546			list_del_init(&cache->io_list);
4547			btrfs_cleanup_bg_io(cache);
4548			spin_lock(&cur_trans->dirty_bgs_lock);
4549		}
4550
4551		list_del_init(&cache->dirty_list);
4552		spin_lock(&cache->lock);
4553		cache->disk_cache_state = BTRFS_DC_ERROR;
4554		spin_unlock(&cache->lock);
4555
4556		spin_unlock(&cur_trans->dirty_bgs_lock);
4557		btrfs_put_block_group(cache);
 
4558		spin_lock(&cur_trans->dirty_bgs_lock);
4559	}
4560	spin_unlock(&cur_trans->dirty_bgs_lock);
4561
 
 
 
 
4562	while (!list_empty(&cur_trans->io_bgs)) {
4563		cache = list_first_entry(&cur_trans->io_bgs,
4564					 struct btrfs_block_group_cache,
4565					 io_list);
4566		if (!cache) {
4567			btrfs_err(fs_info, "orphan block group on io_bgs list");
4568			return;
4569		}
4570
4571		list_del_init(&cache->io_list);
4572		spin_lock(&cache->lock);
4573		cache->disk_cache_state = BTRFS_DC_ERROR;
4574		spin_unlock(&cache->lock);
4575		btrfs_cleanup_bg_io(cache);
4576	}
4577}
4578
4579void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4580				   struct btrfs_fs_info *fs_info)
4581{
 
 
4582	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4583	ASSERT(list_empty(&cur_trans->dirty_bgs));
4584	ASSERT(list_empty(&cur_trans->io_bgs));
4585
 
 
 
 
 
4586	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4587
4588	cur_trans->state = TRANS_STATE_COMMIT_START;
4589	wake_up(&fs_info->transaction_blocked_wait);
4590
4591	cur_trans->state = TRANS_STATE_UNBLOCKED;
4592	wake_up(&fs_info->transaction_wait);
4593
4594	btrfs_destroy_delayed_inodes(fs_info);
4595	btrfs_assert_delayed_root_empty(fs_info);
4596
4597	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4598				     EXTENT_DIRTY);
4599	btrfs_destroy_pinned_extent(fs_info,
4600				    fs_info->pinned_extents);
4601
4602	cur_trans->state =TRANS_STATE_COMPLETED;
4603	wake_up(&cur_trans->commit_wait);
4604
4605	/*
4606	memset(cur_trans, 0, sizeof(*cur_trans));
4607	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4608	*/
4609}
4610
4611static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4612{
4613	struct btrfs_transaction *t;
4614
4615	mutex_lock(&fs_info->transaction_kthread_mutex);
4616
4617	spin_lock(&fs_info->trans_lock);
4618	while (!list_empty(&fs_info->trans_list)) {
4619		t = list_first_entry(&fs_info->trans_list,
4620				     struct btrfs_transaction, list);
4621		if (t->state >= TRANS_STATE_COMMIT_START) {
4622			atomic_inc(&t->use_count);
4623			spin_unlock(&fs_info->trans_lock);
4624			btrfs_wait_for_commit(fs_info, t->transid);
4625			btrfs_put_transaction(t);
4626			spin_lock(&fs_info->trans_lock);
4627			continue;
4628		}
4629		if (t == fs_info->running_transaction) {
4630			t->state = TRANS_STATE_COMMIT_DOING;
4631			spin_unlock(&fs_info->trans_lock);
4632			/*
4633			 * We wait for 0 num_writers since we don't hold a trans
4634			 * handle open currently for this transaction.
4635			 */
4636			wait_event(t->writer_wait,
4637				   atomic_read(&t->num_writers) == 0);
4638		} else {
4639			spin_unlock(&fs_info->trans_lock);
4640		}
4641		btrfs_cleanup_one_transaction(t, fs_info);
4642
4643		spin_lock(&fs_info->trans_lock);
4644		if (t == fs_info->running_transaction)
4645			fs_info->running_transaction = NULL;
4646		list_del_init(&t->list);
4647		spin_unlock(&fs_info->trans_lock);
4648
4649		btrfs_put_transaction(t);
4650		trace_btrfs_transaction_commit(fs_info->tree_root);
4651		spin_lock(&fs_info->trans_lock);
4652	}
4653	spin_unlock(&fs_info->trans_lock);
4654	btrfs_destroy_all_ordered_extents(fs_info);
4655	btrfs_destroy_delayed_inodes(fs_info);
4656	btrfs_assert_delayed_root_empty(fs_info);
4657	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4658	btrfs_destroy_all_delalloc_inodes(fs_info);
4659	mutex_unlock(&fs_info->transaction_kthread_mutex);
4660
4661	return 0;
4662}
4663
4664static const struct extent_io_ops btree_extent_io_ops = {
 
 
4665	.readpage_end_io_hook = btree_readpage_end_io_hook,
4666	.readpage_io_failed_hook = btree_io_failed_hook,
4667	.submit_bio_hook = btree_submit_bio_hook,
4668	/* note we're sharing with inode.c for the merge bio hook */
4669	.merge_bio_hook = btrfs_merge_bio_hook,
4670};