Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/blkdev.h>
8#include <linux/radix-tree.h>
9#include <linux/writeback.h>
10#include <linux/buffer_head.h>
11#include <linux/workqueue.h>
12#include <linux/kthread.h>
13#include <linux/slab.h>
14#include <linux/migrate.h>
15#include <linux/ratelimit.h>
16#include <linux/uuid.h>
17#include <linux/semaphore.h>
18#include <linux/error-injection.h>
19#include <linux/crc32c.h>
20#include <linux/sched/mm.h>
21#include <asm/unaligned.h>
22#include <crypto/hash.h>
23#include "ctree.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "btrfs_inode.h"
27#include "volumes.h"
28#include "print-tree.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "free-space-cache.h"
32#include "free-space-tree.h"
33#include "inode-map.h"
34#include "check-integrity.h"
35#include "rcu-string.h"
36#include "dev-replace.h"
37#include "raid56.h"
38#include "sysfs.h"
39#include "qgroup.h"
40#include "compression.h"
41#include "tree-checker.h"
42#include "ref-verify.h"
43#include "block-group.h"
44
45#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
46 BTRFS_HEADER_FLAG_RELOC |\
47 BTRFS_SUPER_FLAG_ERROR |\
48 BTRFS_SUPER_FLAG_SEEDING |\
49 BTRFS_SUPER_FLAG_METADUMP |\
50 BTRFS_SUPER_FLAG_METADUMP_V2)
51
52static const struct extent_io_ops btree_extent_io_ops;
53static void end_workqueue_fn(struct btrfs_work *work);
54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66/*
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71struct btrfs_end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 blk_status_t status;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
79};
80
81static struct kmem_cache *btrfs_end_io_wq_cache;
82
83int __init btrfs_end_io_wq_init(void)
84{
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
88 SLAB_MEM_SPREAD,
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93}
94
95void __cold btrfs_end_io_wq_exit(void)
96{
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
98}
99
100/*
101 * async submit bios are used to offload expensive checksumming
102 * onto the worker threads. They checksum file and metadata bios
103 * just before they are sent down the IO stack.
104 */
105struct async_submit_bio {
106 void *private_data;
107 struct bio *bio;
108 extent_submit_bio_start_t *submit_bio_start;
109 int mirror_num;
110 /*
111 * bio_offset is optional, can be used if the pages in the bio
112 * can't tell us where in the file the bio should go
113 */
114 u64 bio_offset;
115 struct btrfs_work work;
116 blk_status_t status;
117};
118
119/*
120 * Lockdep class keys for extent_buffer->lock's in this root. For a given
121 * eb, the lockdep key is determined by the btrfs_root it belongs to and
122 * the level the eb occupies in the tree.
123 *
124 * Different roots are used for different purposes and may nest inside each
125 * other and they require separate keysets. As lockdep keys should be
126 * static, assign keysets according to the purpose of the root as indicated
127 * by btrfs_root->root_key.objectid. This ensures that all special purpose
128 * roots have separate keysets.
129 *
130 * Lock-nesting across peer nodes is always done with the immediate parent
131 * node locked thus preventing deadlock. As lockdep doesn't know this, use
132 * subclass to avoid triggering lockdep warning in such cases.
133 *
134 * The key is set by the readpage_end_io_hook after the buffer has passed
135 * csum validation but before the pages are unlocked. It is also set by
136 * btrfs_init_new_buffer on freshly allocated blocks.
137 *
138 * We also add a check to make sure the highest level of the tree is the
139 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
140 * needs update as well.
141 */
142#ifdef CONFIG_DEBUG_LOCK_ALLOC
143# if BTRFS_MAX_LEVEL != 8
144# error
145# endif
146
147static struct btrfs_lockdep_keyset {
148 u64 id; /* root objectid */
149 const char *name_stem; /* lock name stem */
150 char names[BTRFS_MAX_LEVEL + 1][20];
151 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
152} btrfs_lockdep_keysets[] = {
153 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
154 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
155 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
156 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
157 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
158 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
159 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
160 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
161 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
162 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
163 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
164 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
165 { .id = 0, .name_stem = "tree" },
166};
167
168void __init btrfs_init_lockdep(void)
169{
170 int i, j;
171
172 /* initialize lockdep class names */
173 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177 snprintf(ks->names[j], sizeof(ks->names[j]),
178 "btrfs-%s-%02d", ks->name_stem, j);
179 }
180}
181
182void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183 int level)
184{
185 struct btrfs_lockdep_keyset *ks;
186
187 BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189 /* find the matching keyset, id 0 is the default entry */
190 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191 if (ks->id == objectid)
192 break;
193
194 lockdep_set_class_and_name(&eb->lock,
195 &ks->keys[level], ks->names[level]);
196}
197
198#endif
199
200/*
201 * extents on the btree inode are pretty simple, there's one extent
202 * that covers the entire device
203 */
204struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205 struct page *page, size_t pg_offset, u64 start, u64 len,
206 int create)
207{
208 struct btrfs_fs_info *fs_info = inode->root->fs_info;
209 struct extent_map_tree *em_tree = &inode->extent_tree;
210 struct extent_map *em;
211 int ret;
212
213 read_lock(&em_tree->lock);
214 em = lookup_extent_mapping(em_tree, start, len);
215 if (em) {
216 em->bdev = fs_info->fs_devices->latest_bdev;
217 read_unlock(&em_tree->lock);
218 goto out;
219 }
220 read_unlock(&em_tree->lock);
221
222 em = alloc_extent_map();
223 if (!em) {
224 em = ERR_PTR(-ENOMEM);
225 goto out;
226 }
227 em->start = 0;
228 em->len = (u64)-1;
229 em->block_len = (u64)-1;
230 em->block_start = 0;
231 em->bdev = fs_info->fs_devices->latest_bdev;
232
233 write_lock(&em_tree->lock);
234 ret = add_extent_mapping(em_tree, em, 0);
235 if (ret == -EEXIST) {
236 free_extent_map(em);
237 em = lookup_extent_mapping(em_tree, start, len);
238 if (!em)
239 em = ERR_PTR(-EIO);
240 } else if (ret) {
241 free_extent_map(em);
242 em = ERR_PTR(ret);
243 }
244 write_unlock(&em_tree->lock);
245
246out:
247 return em;
248}
249
250/*
251 * Compute the csum of a btree block and store the result to provided buffer.
252 *
253 * Returns error if the extent buffer cannot be mapped.
254 */
255static int csum_tree_block(struct extent_buffer *buf, u8 *result)
256{
257 struct btrfs_fs_info *fs_info = buf->fs_info;
258 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
259 unsigned long len;
260 unsigned long cur_len;
261 unsigned long offset = BTRFS_CSUM_SIZE;
262 char *kaddr;
263 unsigned long map_start;
264 unsigned long map_len;
265 int err;
266
267 shash->tfm = fs_info->csum_shash;
268 crypto_shash_init(shash);
269
270 len = buf->len - offset;
271
272 while (len > 0) {
273 /*
274 * Note: we don't need to check for the err == 1 case here, as
275 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276 * and 'min_len = 32' and the currently implemented mapping
277 * algorithm we cannot cross a page boundary.
278 */
279 err = map_private_extent_buffer(buf, offset, 32,
280 &kaddr, &map_start, &map_len);
281 if (WARN_ON(err))
282 return err;
283 cur_len = min(len, map_len - (offset - map_start));
284 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
285 len -= cur_len;
286 offset += cur_len;
287 }
288 memset(result, 0, BTRFS_CSUM_SIZE);
289
290 crypto_shash_final(shash, result);
291
292 return 0;
293}
294
295/*
296 * we can't consider a given block up to date unless the transid of the
297 * block matches the transid in the parent node's pointer. This is how we
298 * detect blocks that either didn't get written at all or got written
299 * in the wrong place.
300 */
301static int verify_parent_transid(struct extent_io_tree *io_tree,
302 struct extent_buffer *eb, u64 parent_transid,
303 int atomic)
304{
305 struct extent_state *cached_state = NULL;
306 int ret;
307 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
308
309 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310 return 0;
311
312 if (atomic)
313 return -EAGAIN;
314
315 if (need_lock) {
316 btrfs_tree_read_lock(eb);
317 btrfs_set_lock_blocking_read(eb);
318 }
319
320 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
321 &cached_state);
322 if (extent_buffer_uptodate(eb) &&
323 btrfs_header_generation(eb) == parent_transid) {
324 ret = 0;
325 goto out;
326 }
327 btrfs_err_rl(eb->fs_info,
328 "parent transid verify failed on %llu wanted %llu found %llu",
329 eb->start,
330 parent_transid, btrfs_header_generation(eb));
331 ret = 1;
332
333 /*
334 * Things reading via commit roots that don't have normal protection,
335 * like send, can have a really old block in cache that may point at a
336 * block that has been freed and re-allocated. So don't clear uptodate
337 * if we find an eb that is under IO (dirty/writeback) because we could
338 * end up reading in the stale data and then writing it back out and
339 * making everybody very sad.
340 */
341 if (!extent_buffer_under_io(eb))
342 clear_extent_buffer_uptodate(eb);
343out:
344 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345 &cached_state);
346 if (need_lock)
347 btrfs_tree_read_unlock_blocking(eb);
348 return ret;
349}
350
351static bool btrfs_supported_super_csum(u16 csum_type)
352{
353 switch (csum_type) {
354 case BTRFS_CSUM_TYPE_CRC32:
355 return true;
356 default:
357 return false;
358 }
359}
360
361/*
362 * Return 0 if the superblock checksum type matches the checksum value of that
363 * algorithm. Pass the raw disk superblock data.
364 */
365static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366 char *raw_disk_sb)
367{
368 struct btrfs_super_block *disk_sb =
369 (struct btrfs_super_block *)raw_disk_sb;
370 char result[BTRFS_CSUM_SIZE];
371 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372
373 shash->tfm = fs_info->csum_shash;
374 crypto_shash_init(shash);
375
376 /*
377 * The super_block structure does not span the whole
378 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379 * filled with zeros and is included in the checksum.
380 */
381 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383 crypto_shash_final(shash, result);
384
385 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386 return 1;
387
388 return 0;
389}
390
391int btrfs_verify_level_key(struct extent_buffer *eb, int level,
392 struct btrfs_key *first_key, u64 parent_transid)
393{
394 struct btrfs_fs_info *fs_info = eb->fs_info;
395 int found_level;
396 struct btrfs_key found_key;
397 int ret;
398
399 found_level = btrfs_header_level(eb);
400 if (found_level != level) {
401 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402 KERN_ERR "BTRFS: tree level check failed\n");
403 btrfs_err(fs_info,
404"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405 eb->start, level, found_level);
406 return -EIO;
407 }
408
409 if (!first_key)
410 return 0;
411
412 /*
413 * For live tree block (new tree blocks in current transaction),
414 * we need proper lock context to avoid race, which is impossible here.
415 * So we only checks tree blocks which is read from disk, whose
416 * generation <= fs_info->last_trans_committed.
417 */
418 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419 return 0;
420
421 /* We have @first_key, so this @eb must have at least one item */
422 if (btrfs_header_nritems(eb) == 0) {
423 btrfs_err(fs_info,
424 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425 eb->start);
426 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427 return -EUCLEAN;
428 }
429
430 if (found_level)
431 btrfs_node_key_to_cpu(eb, &found_key, 0);
432 else
433 btrfs_item_key_to_cpu(eb, &found_key, 0);
434 ret = btrfs_comp_cpu_keys(first_key, &found_key);
435
436 if (ret) {
437 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438 KERN_ERR "BTRFS: tree first key check failed\n");
439 btrfs_err(fs_info,
440"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441 eb->start, parent_transid, first_key->objectid,
442 first_key->type, first_key->offset,
443 found_key.objectid, found_key.type,
444 found_key.offset);
445 }
446 return ret;
447}
448
449/*
450 * helper to read a given tree block, doing retries as required when
451 * the checksums don't match and we have alternate mirrors to try.
452 *
453 * @parent_transid: expected transid, skip check if 0
454 * @level: expected level, mandatory check
455 * @first_key: expected key of first slot, skip check if NULL
456 */
457static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
458 u64 parent_transid, int level,
459 struct btrfs_key *first_key)
460{
461 struct btrfs_fs_info *fs_info = eb->fs_info;
462 struct extent_io_tree *io_tree;
463 int failed = 0;
464 int ret;
465 int num_copies = 0;
466 int mirror_num = 0;
467 int failed_mirror = 0;
468
469 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
470 while (1) {
471 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
472 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
473 if (!ret) {
474 if (verify_parent_transid(io_tree, eb,
475 parent_transid, 0))
476 ret = -EIO;
477 else if (btrfs_verify_level_key(eb, level,
478 first_key, parent_transid))
479 ret = -EUCLEAN;
480 else
481 break;
482 }
483
484 num_copies = btrfs_num_copies(fs_info,
485 eb->start, eb->len);
486 if (num_copies == 1)
487 break;
488
489 if (!failed_mirror) {
490 failed = 1;
491 failed_mirror = eb->read_mirror;
492 }
493
494 mirror_num++;
495 if (mirror_num == failed_mirror)
496 mirror_num++;
497
498 if (mirror_num > num_copies)
499 break;
500 }
501
502 if (failed && !ret && failed_mirror)
503 btrfs_repair_eb_io_failure(eb, failed_mirror);
504
505 return ret;
506}
507
508/*
509 * checksum a dirty tree block before IO. This has extra checks to make sure
510 * we only fill in the checksum field in the first page of a multi-page block
511 */
512
513static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
514{
515 u64 start = page_offset(page);
516 u64 found_start;
517 u8 result[BTRFS_CSUM_SIZE];
518 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
519 struct extent_buffer *eb;
520 int ret;
521
522 eb = (struct extent_buffer *)page->private;
523 if (page != eb->pages[0])
524 return 0;
525
526 found_start = btrfs_header_bytenr(eb);
527 /*
528 * Please do not consolidate these warnings into a single if.
529 * It is useful to know what went wrong.
530 */
531 if (WARN_ON(found_start != start))
532 return -EUCLEAN;
533 if (WARN_ON(!PageUptodate(page)))
534 return -EUCLEAN;
535
536 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
537 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538
539 if (csum_tree_block(eb, result))
540 return -EINVAL;
541
542 if (btrfs_header_level(eb))
543 ret = btrfs_check_node(eb);
544 else
545 ret = btrfs_check_leaf_full(eb);
546
547 if (ret < 0) {
548 btrfs_err(fs_info,
549 "block=%llu write time tree block corruption detected",
550 eb->start);
551 return ret;
552 }
553 write_extent_buffer(eb, result, 0, csum_size);
554
555 return 0;
556}
557
558static int check_tree_block_fsid(struct extent_buffer *eb)
559{
560 struct btrfs_fs_info *fs_info = eb->fs_info;
561 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
562 u8 fsid[BTRFS_FSID_SIZE];
563 int ret = 1;
564
565 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
566 while (fs_devices) {
567 u8 *metadata_uuid;
568
569 /*
570 * Checking the incompat flag is only valid for the current
571 * fs. For seed devices it's forbidden to have their uuid
572 * changed so reading ->fsid in this case is fine
573 */
574 if (fs_devices == fs_info->fs_devices &&
575 btrfs_fs_incompat(fs_info, METADATA_UUID))
576 metadata_uuid = fs_devices->metadata_uuid;
577 else
578 metadata_uuid = fs_devices->fsid;
579
580 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
581 ret = 0;
582 break;
583 }
584 fs_devices = fs_devices->seed;
585 }
586 return ret;
587}
588
589static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590 u64 phy_offset, struct page *page,
591 u64 start, u64 end, int mirror)
592{
593 u64 found_start;
594 int found_level;
595 struct extent_buffer *eb;
596 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
597 struct btrfs_fs_info *fs_info = root->fs_info;
598 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
599 int ret = 0;
600 u8 result[BTRFS_CSUM_SIZE];
601 int reads_done;
602
603 if (!page->private)
604 goto out;
605
606 eb = (struct extent_buffer *)page->private;
607
608 /* the pending IO might have been the only thing that kept this buffer
609 * in memory. Make sure we have a ref for all this other checks
610 */
611 extent_buffer_get(eb);
612
613 reads_done = atomic_dec_and_test(&eb->io_pages);
614 if (!reads_done)
615 goto err;
616
617 eb->read_mirror = mirror;
618 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
619 ret = -EIO;
620 goto err;
621 }
622
623 found_start = btrfs_header_bytenr(eb);
624 if (found_start != eb->start) {
625 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
626 eb->start, found_start);
627 ret = -EIO;
628 goto err;
629 }
630 if (check_tree_block_fsid(eb)) {
631 btrfs_err_rl(fs_info, "bad fsid on block %llu",
632 eb->start);
633 ret = -EIO;
634 goto err;
635 }
636 found_level = btrfs_header_level(eb);
637 if (found_level >= BTRFS_MAX_LEVEL) {
638 btrfs_err(fs_info, "bad tree block level %d on %llu",
639 (int)btrfs_header_level(eb), eb->start);
640 ret = -EIO;
641 goto err;
642 }
643
644 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
645 eb, found_level);
646
647 ret = csum_tree_block(eb, result);
648 if (ret)
649 goto err;
650
651 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
652 u32 val;
653 u32 found = 0;
654
655 memcpy(&found, result, csum_size);
656
657 read_extent_buffer(eb, &val, 0, csum_size);
658 btrfs_warn_rl(fs_info,
659 "%s checksum verify failed on %llu wanted %x found %x level %d",
660 fs_info->sb->s_id, eb->start,
661 val, found, btrfs_header_level(eb));
662 ret = -EUCLEAN;
663 goto err;
664 }
665
666 /*
667 * If this is a leaf block and it is corrupt, set the corrupt bit so
668 * that we don't try and read the other copies of this block, just
669 * return -EIO.
670 */
671 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
672 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
673 ret = -EIO;
674 }
675
676 if (found_level > 0 && btrfs_check_node(eb))
677 ret = -EIO;
678
679 if (!ret)
680 set_extent_buffer_uptodate(eb);
681 else
682 btrfs_err(fs_info,
683 "block=%llu read time tree block corruption detected",
684 eb->start);
685err:
686 if (reads_done &&
687 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
688 btree_readahead_hook(eb, ret);
689
690 if (ret) {
691 /*
692 * our io error hook is going to dec the io pages
693 * again, we have to make sure it has something
694 * to decrement
695 */
696 atomic_inc(&eb->io_pages);
697 clear_extent_buffer_uptodate(eb);
698 }
699 free_extent_buffer(eb);
700out:
701 return ret;
702}
703
704static void end_workqueue_bio(struct bio *bio)
705{
706 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
707 struct btrfs_fs_info *fs_info;
708 struct btrfs_workqueue *wq;
709 btrfs_work_func_t func;
710
711 fs_info = end_io_wq->info;
712 end_io_wq->status = bio->bi_status;
713
714 if (bio_op(bio) == REQ_OP_WRITE) {
715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
716 wq = fs_info->endio_meta_write_workers;
717 func = btrfs_endio_meta_write_helper;
718 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
719 wq = fs_info->endio_freespace_worker;
720 func = btrfs_freespace_write_helper;
721 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
722 wq = fs_info->endio_raid56_workers;
723 func = btrfs_endio_raid56_helper;
724 } else {
725 wq = fs_info->endio_write_workers;
726 func = btrfs_endio_write_helper;
727 }
728 } else {
729 if (unlikely(end_io_wq->metadata ==
730 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
731 wq = fs_info->endio_repair_workers;
732 func = btrfs_endio_repair_helper;
733 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
734 wq = fs_info->endio_raid56_workers;
735 func = btrfs_endio_raid56_helper;
736 } else if (end_io_wq->metadata) {
737 wq = fs_info->endio_meta_workers;
738 func = btrfs_endio_meta_helper;
739 } else {
740 wq = fs_info->endio_workers;
741 func = btrfs_endio_helper;
742 }
743 }
744
745 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
746 btrfs_queue_work(wq, &end_io_wq->work);
747}
748
749blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
750 enum btrfs_wq_endio_type metadata)
751{
752 struct btrfs_end_io_wq *end_io_wq;
753
754 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
755 if (!end_io_wq)
756 return BLK_STS_RESOURCE;
757
758 end_io_wq->private = bio->bi_private;
759 end_io_wq->end_io = bio->bi_end_io;
760 end_io_wq->info = info;
761 end_io_wq->status = 0;
762 end_io_wq->bio = bio;
763 end_io_wq->metadata = metadata;
764
765 bio->bi_private = end_io_wq;
766 bio->bi_end_io = end_workqueue_bio;
767 return 0;
768}
769
770static void run_one_async_start(struct btrfs_work *work)
771{
772 struct async_submit_bio *async;
773 blk_status_t ret;
774
775 async = container_of(work, struct async_submit_bio, work);
776 ret = async->submit_bio_start(async->private_data, async->bio,
777 async->bio_offset);
778 if (ret)
779 async->status = ret;
780}
781
782/*
783 * In order to insert checksums into the metadata in large chunks, we wait
784 * until bio submission time. All the pages in the bio are checksummed and
785 * sums are attached onto the ordered extent record.
786 *
787 * At IO completion time the csums attached on the ordered extent record are
788 * inserted into the tree.
789 */
790static void run_one_async_done(struct btrfs_work *work)
791{
792 struct async_submit_bio *async;
793 struct inode *inode;
794 blk_status_t ret;
795
796 async = container_of(work, struct async_submit_bio, work);
797 inode = async->private_data;
798
799 /* If an error occurred we just want to clean up the bio and move on */
800 if (async->status) {
801 async->bio->bi_status = async->status;
802 bio_endio(async->bio);
803 return;
804 }
805
806 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
807 async->mirror_num, 1);
808 if (ret) {
809 async->bio->bi_status = ret;
810 bio_endio(async->bio);
811 }
812}
813
814static void run_one_async_free(struct btrfs_work *work)
815{
816 struct async_submit_bio *async;
817
818 async = container_of(work, struct async_submit_bio, work);
819 kfree(async);
820}
821
822blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
823 int mirror_num, unsigned long bio_flags,
824 u64 bio_offset, void *private_data,
825 extent_submit_bio_start_t *submit_bio_start)
826{
827 struct async_submit_bio *async;
828
829 async = kmalloc(sizeof(*async), GFP_NOFS);
830 if (!async)
831 return BLK_STS_RESOURCE;
832
833 async->private_data = private_data;
834 async->bio = bio;
835 async->mirror_num = mirror_num;
836 async->submit_bio_start = submit_bio_start;
837
838 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
839 run_one_async_done, run_one_async_free);
840
841 async->bio_offset = bio_offset;
842
843 async->status = 0;
844
845 if (op_is_sync(bio->bi_opf))
846 btrfs_set_work_high_priority(&async->work);
847
848 btrfs_queue_work(fs_info->workers, &async->work);
849 return 0;
850}
851
852static blk_status_t btree_csum_one_bio(struct bio *bio)
853{
854 struct bio_vec *bvec;
855 struct btrfs_root *root;
856 int ret = 0;
857 struct bvec_iter_all iter_all;
858
859 ASSERT(!bio_flagged(bio, BIO_CLONED));
860 bio_for_each_segment_all(bvec, bio, iter_all) {
861 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
862 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
863 if (ret)
864 break;
865 }
866
867 return errno_to_blk_status(ret);
868}
869
870static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
871 u64 bio_offset)
872{
873 /*
874 * when we're called for a write, we're already in the async
875 * submission context. Just jump into btrfs_map_bio
876 */
877 return btree_csum_one_bio(bio);
878}
879
880static int check_async_write(struct btrfs_fs_info *fs_info,
881 struct btrfs_inode *bi)
882{
883 if (atomic_read(&bi->sync_writers))
884 return 0;
885 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
886 return 0;
887 return 1;
888}
889
890static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
891 int mirror_num,
892 unsigned long bio_flags)
893{
894 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
895 int async = check_async_write(fs_info, BTRFS_I(inode));
896 blk_status_t ret;
897
898 if (bio_op(bio) != REQ_OP_WRITE) {
899 /*
900 * called for a read, do the setup so that checksum validation
901 * can happen in the async kernel threads
902 */
903 ret = btrfs_bio_wq_end_io(fs_info, bio,
904 BTRFS_WQ_ENDIO_METADATA);
905 if (ret)
906 goto out_w_error;
907 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
908 } else if (!async) {
909 ret = btree_csum_one_bio(bio);
910 if (ret)
911 goto out_w_error;
912 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
913 } else {
914 /*
915 * kthread helpers are used to submit writes so that
916 * checksumming can happen in parallel across all CPUs
917 */
918 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
919 0, inode, btree_submit_bio_start);
920 }
921
922 if (ret)
923 goto out_w_error;
924 return 0;
925
926out_w_error:
927 bio->bi_status = ret;
928 bio_endio(bio);
929 return ret;
930}
931
932#ifdef CONFIG_MIGRATION
933static int btree_migratepage(struct address_space *mapping,
934 struct page *newpage, struct page *page,
935 enum migrate_mode mode)
936{
937 /*
938 * we can't safely write a btree page from here,
939 * we haven't done the locking hook
940 */
941 if (PageDirty(page))
942 return -EAGAIN;
943 /*
944 * Buffers may be managed in a filesystem specific way.
945 * We must have no buffers or drop them.
946 */
947 if (page_has_private(page) &&
948 !try_to_release_page(page, GFP_KERNEL))
949 return -EAGAIN;
950 return migrate_page(mapping, newpage, page, mode);
951}
952#endif
953
954
955static int btree_writepages(struct address_space *mapping,
956 struct writeback_control *wbc)
957{
958 struct btrfs_fs_info *fs_info;
959 int ret;
960
961 if (wbc->sync_mode == WB_SYNC_NONE) {
962
963 if (wbc->for_kupdate)
964 return 0;
965
966 fs_info = BTRFS_I(mapping->host)->root->fs_info;
967 /* this is a bit racy, but that's ok */
968 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
969 BTRFS_DIRTY_METADATA_THRESH,
970 fs_info->dirty_metadata_batch);
971 if (ret < 0)
972 return 0;
973 }
974 return btree_write_cache_pages(mapping, wbc);
975}
976
977static int btree_readpage(struct file *file, struct page *page)
978{
979 struct extent_io_tree *tree;
980 tree = &BTRFS_I(page->mapping->host)->io_tree;
981 return extent_read_full_page(tree, page, btree_get_extent, 0);
982}
983
984static int btree_releasepage(struct page *page, gfp_t gfp_flags)
985{
986 if (PageWriteback(page) || PageDirty(page))
987 return 0;
988
989 return try_release_extent_buffer(page);
990}
991
992static void btree_invalidatepage(struct page *page, unsigned int offset,
993 unsigned int length)
994{
995 struct extent_io_tree *tree;
996 tree = &BTRFS_I(page->mapping->host)->io_tree;
997 extent_invalidatepage(tree, page, offset);
998 btree_releasepage(page, GFP_NOFS);
999 if (PagePrivate(page)) {
1000 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1001 "page private not zero on page %llu",
1002 (unsigned long long)page_offset(page));
1003 ClearPagePrivate(page);
1004 set_page_private(page, 0);
1005 put_page(page);
1006 }
1007}
1008
1009static int btree_set_page_dirty(struct page *page)
1010{
1011#ifdef DEBUG
1012 struct extent_buffer *eb;
1013
1014 BUG_ON(!PagePrivate(page));
1015 eb = (struct extent_buffer *)page->private;
1016 BUG_ON(!eb);
1017 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1018 BUG_ON(!atomic_read(&eb->refs));
1019 btrfs_assert_tree_locked(eb);
1020#endif
1021 return __set_page_dirty_nobuffers(page);
1022}
1023
1024static const struct address_space_operations btree_aops = {
1025 .readpage = btree_readpage,
1026 .writepages = btree_writepages,
1027 .releasepage = btree_releasepage,
1028 .invalidatepage = btree_invalidatepage,
1029#ifdef CONFIG_MIGRATION
1030 .migratepage = btree_migratepage,
1031#endif
1032 .set_page_dirty = btree_set_page_dirty,
1033};
1034
1035void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1036{
1037 struct extent_buffer *buf = NULL;
1038 int ret;
1039
1040 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1041 if (IS_ERR(buf))
1042 return;
1043
1044 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1045 if (ret < 0)
1046 free_extent_buffer_stale(buf);
1047 else
1048 free_extent_buffer(buf);
1049}
1050
1051struct extent_buffer *btrfs_find_create_tree_block(
1052 struct btrfs_fs_info *fs_info,
1053 u64 bytenr)
1054{
1055 if (btrfs_is_testing(fs_info))
1056 return alloc_test_extent_buffer(fs_info, bytenr);
1057 return alloc_extent_buffer(fs_info, bytenr);
1058}
1059
1060/*
1061 * Read tree block at logical address @bytenr and do variant basic but critical
1062 * verification.
1063 *
1064 * @parent_transid: expected transid of this tree block, skip check if 0
1065 * @level: expected level, mandatory check
1066 * @first_key: expected key in slot 0, skip check if NULL
1067 */
1068struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1069 u64 parent_transid, int level,
1070 struct btrfs_key *first_key)
1071{
1072 struct extent_buffer *buf = NULL;
1073 int ret;
1074
1075 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1076 if (IS_ERR(buf))
1077 return buf;
1078
1079 ret = btree_read_extent_buffer_pages(buf, parent_transid,
1080 level, first_key);
1081 if (ret) {
1082 free_extent_buffer_stale(buf);
1083 return ERR_PTR(ret);
1084 }
1085 return buf;
1086
1087}
1088
1089void btrfs_clean_tree_block(struct extent_buffer *buf)
1090{
1091 struct btrfs_fs_info *fs_info = buf->fs_info;
1092 if (btrfs_header_generation(buf) ==
1093 fs_info->running_transaction->transid) {
1094 btrfs_assert_tree_locked(buf);
1095
1096 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1097 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1098 -buf->len,
1099 fs_info->dirty_metadata_batch);
1100 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1101 btrfs_set_lock_blocking_write(buf);
1102 clear_extent_buffer_dirty(buf);
1103 }
1104 }
1105}
1106
1107static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1108{
1109 struct btrfs_subvolume_writers *writers;
1110 int ret;
1111
1112 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1113 if (!writers)
1114 return ERR_PTR(-ENOMEM);
1115
1116 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1117 if (ret < 0) {
1118 kfree(writers);
1119 return ERR_PTR(ret);
1120 }
1121
1122 init_waitqueue_head(&writers->wait);
1123 return writers;
1124}
1125
1126static void
1127btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1128{
1129 percpu_counter_destroy(&writers->counter);
1130 kfree(writers);
1131}
1132
1133static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1134 u64 objectid)
1135{
1136 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1137 root->node = NULL;
1138 root->commit_root = NULL;
1139 root->state = 0;
1140 root->orphan_cleanup_state = 0;
1141
1142 root->last_trans = 0;
1143 root->highest_objectid = 0;
1144 root->nr_delalloc_inodes = 0;
1145 root->nr_ordered_extents = 0;
1146 root->inode_tree = RB_ROOT;
1147 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1148 root->block_rsv = NULL;
1149
1150 INIT_LIST_HEAD(&root->dirty_list);
1151 INIT_LIST_HEAD(&root->root_list);
1152 INIT_LIST_HEAD(&root->delalloc_inodes);
1153 INIT_LIST_HEAD(&root->delalloc_root);
1154 INIT_LIST_HEAD(&root->ordered_extents);
1155 INIT_LIST_HEAD(&root->ordered_root);
1156 INIT_LIST_HEAD(&root->reloc_dirty_list);
1157 INIT_LIST_HEAD(&root->logged_list[0]);
1158 INIT_LIST_HEAD(&root->logged_list[1]);
1159 spin_lock_init(&root->inode_lock);
1160 spin_lock_init(&root->delalloc_lock);
1161 spin_lock_init(&root->ordered_extent_lock);
1162 spin_lock_init(&root->accounting_lock);
1163 spin_lock_init(&root->log_extents_lock[0]);
1164 spin_lock_init(&root->log_extents_lock[1]);
1165 spin_lock_init(&root->qgroup_meta_rsv_lock);
1166 mutex_init(&root->objectid_mutex);
1167 mutex_init(&root->log_mutex);
1168 mutex_init(&root->ordered_extent_mutex);
1169 mutex_init(&root->delalloc_mutex);
1170 init_waitqueue_head(&root->log_writer_wait);
1171 init_waitqueue_head(&root->log_commit_wait[0]);
1172 init_waitqueue_head(&root->log_commit_wait[1]);
1173 INIT_LIST_HEAD(&root->log_ctxs[0]);
1174 INIT_LIST_HEAD(&root->log_ctxs[1]);
1175 atomic_set(&root->log_commit[0], 0);
1176 atomic_set(&root->log_commit[1], 0);
1177 atomic_set(&root->log_writers, 0);
1178 atomic_set(&root->log_batch, 0);
1179 refcount_set(&root->refs, 1);
1180 atomic_set(&root->will_be_snapshotted, 0);
1181 atomic_set(&root->snapshot_force_cow, 0);
1182 atomic_set(&root->nr_swapfiles, 0);
1183 root->log_transid = 0;
1184 root->log_transid_committed = -1;
1185 root->last_log_commit = 0;
1186 if (!dummy)
1187 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1188 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1189
1190 memset(&root->root_key, 0, sizeof(root->root_key));
1191 memset(&root->root_item, 0, sizeof(root->root_item));
1192 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1193 if (!dummy)
1194 root->defrag_trans_start = fs_info->generation;
1195 else
1196 root->defrag_trans_start = 0;
1197 root->root_key.objectid = objectid;
1198 root->anon_dev = 0;
1199
1200 spin_lock_init(&root->root_item_lock);
1201 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1202}
1203
1204static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1205 gfp_t flags)
1206{
1207 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1208 if (root)
1209 root->fs_info = fs_info;
1210 return root;
1211}
1212
1213#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1214/* Should only be used by the testing infrastructure */
1215struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1216{
1217 struct btrfs_root *root;
1218
1219 if (!fs_info)
1220 return ERR_PTR(-EINVAL);
1221
1222 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1223 if (!root)
1224 return ERR_PTR(-ENOMEM);
1225
1226 /* We don't use the stripesize in selftest, set it as sectorsize */
1227 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1228 root->alloc_bytenr = 0;
1229
1230 return root;
1231}
1232#endif
1233
1234struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1235 u64 objectid)
1236{
1237 struct btrfs_fs_info *fs_info = trans->fs_info;
1238 struct extent_buffer *leaf;
1239 struct btrfs_root *tree_root = fs_info->tree_root;
1240 struct btrfs_root *root;
1241 struct btrfs_key key;
1242 unsigned int nofs_flag;
1243 int ret = 0;
1244 uuid_le uuid = NULL_UUID_LE;
1245
1246 /*
1247 * We're holding a transaction handle, so use a NOFS memory allocation
1248 * context to avoid deadlock if reclaim happens.
1249 */
1250 nofs_flag = memalloc_nofs_save();
1251 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1252 memalloc_nofs_restore(nofs_flag);
1253 if (!root)
1254 return ERR_PTR(-ENOMEM);
1255
1256 __setup_root(root, fs_info, objectid);
1257 root->root_key.objectid = objectid;
1258 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1259 root->root_key.offset = 0;
1260
1261 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1262 if (IS_ERR(leaf)) {
1263 ret = PTR_ERR(leaf);
1264 leaf = NULL;
1265 goto fail;
1266 }
1267
1268 root->node = leaf;
1269 btrfs_mark_buffer_dirty(leaf);
1270
1271 root->commit_root = btrfs_root_node(root);
1272 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1273
1274 root->root_item.flags = 0;
1275 root->root_item.byte_limit = 0;
1276 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1277 btrfs_set_root_generation(&root->root_item, trans->transid);
1278 btrfs_set_root_level(&root->root_item, 0);
1279 btrfs_set_root_refs(&root->root_item, 1);
1280 btrfs_set_root_used(&root->root_item, leaf->len);
1281 btrfs_set_root_last_snapshot(&root->root_item, 0);
1282 btrfs_set_root_dirid(&root->root_item, 0);
1283 if (is_fstree(objectid))
1284 uuid_le_gen(&uuid);
1285 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1286 root->root_item.drop_level = 0;
1287
1288 key.objectid = objectid;
1289 key.type = BTRFS_ROOT_ITEM_KEY;
1290 key.offset = 0;
1291 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292 if (ret)
1293 goto fail;
1294
1295 btrfs_tree_unlock(leaf);
1296
1297 return root;
1298
1299fail:
1300 if (leaf) {
1301 btrfs_tree_unlock(leaf);
1302 free_extent_buffer(root->commit_root);
1303 free_extent_buffer(leaf);
1304 }
1305 kfree(root);
1306
1307 return ERR_PTR(ret);
1308}
1309
1310static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1311 struct btrfs_fs_info *fs_info)
1312{
1313 struct btrfs_root *root;
1314 struct extent_buffer *leaf;
1315
1316 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1317 if (!root)
1318 return ERR_PTR(-ENOMEM);
1319
1320 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1321
1322 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1323 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1324 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1325
1326 /*
1327 * DON'T set REF_COWS for log trees
1328 *
1329 * log trees do not get reference counted because they go away
1330 * before a real commit is actually done. They do store pointers
1331 * to file data extents, and those reference counts still get
1332 * updated (along with back refs to the log tree).
1333 */
1334
1335 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1336 NULL, 0, 0, 0);
1337 if (IS_ERR(leaf)) {
1338 kfree(root);
1339 return ERR_CAST(leaf);
1340 }
1341
1342 root->node = leaf;
1343
1344 btrfs_mark_buffer_dirty(root->node);
1345 btrfs_tree_unlock(root->node);
1346 return root;
1347}
1348
1349int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1350 struct btrfs_fs_info *fs_info)
1351{
1352 struct btrfs_root *log_root;
1353
1354 log_root = alloc_log_tree(trans, fs_info);
1355 if (IS_ERR(log_root))
1356 return PTR_ERR(log_root);
1357 WARN_ON(fs_info->log_root_tree);
1358 fs_info->log_root_tree = log_root;
1359 return 0;
1360}
1361
1362int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root)
1364{
1365 struct btrfs_fs_info *fs_info = root->fs_info;
1366 struct btrfs_root *log_root;
1367 struct btrfs_inode_item *inode_item;
1368
1369 log_root = alloc_log_tree(trans, fs_info);
1370 if (IS_ERR(log_root))
1371 return PTR_ERR(log_root);
1372
1373 log_root->last_trans = trans->transid;
1374 log_root->root_key.offset = root->root_key.objectid;
1375
1376 inode_item = &log_root->root_item.inode;
1377 btrfs_set_stack_inode_generation(inode_item, 1);
1378 btrfs_set_stack_inode_size(inode_item, 3);
1379 btrfs_set_stack_inode_nlink(inode_item, 1);
1380 btrfs_set_stack_inode_nbytes(inode_item,
1381 fs_info->nodesize);
1382 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1383
1384 btrfs_set_root_node(&log_root->root_item, log_root->node);
1385
1386 WARN_ON(root->log_root);
1387 root->log_root = log_root;
1388 root->log_transid = 0;
1389 root->log_transid_committed = -1;
1390 root->last_log_commit = 0;
1391 return 0;
1392}
1393
1394static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1395 struct btrfs_key *key)
1396{
1397 struct btrfs_root *root;
1398 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1399 struct btrfs_path *path;
1400 u64 generation;
1401 int ret;
1402 int level;
1403
1404 path = btrfs_alloc_path();
1405 if (!path)
1406 return ERR_PTR(-ENOMEM);
1407
1408 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1409 if (!root) {
1410 ret = -ENOMEM;
1411 goto alloc_fail;
1412 }
1413
1414 __setup_root(root, fs_info, key->objectid);
1415
1416 ret = btrfs_find_root(tree_root, key, path,
1417 &root->root_item, &root->root_key);
1418 if (ret) {
1419 if (ret > 0)
1420 ret = -ENOENT;
1421 goto find_fail;
1422 }
1423
1424 generation = btrfs_root_generation(&root->root_item);
1425 level = btrfs_root_level(&root->root_item);
1426 root->node = read_tree_block(fs_info,
1427 btrfs_root_bytenr(&root->root_item),
1428 generation, level, NULL);
1429 if (IS_ERR(root->node)) {
1430 ret = PTR_ERR(root->node);
1431 goto find_fail;
1432 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1433 ret = -EIO;
1434 free_extent_buffer(root->node);
1435 goto find_fail;
1436 }
1437 root->commit_root = btrfs_root_node(root);
1438out:
1439 btrfs_free_path(path);
1440 return root;
1441
1442find_fail:
1443 kfree(root);
1444alloc_fail:
1445 root = ERR_PTR(ret);
1446 goto out;
1447}
1448
1449struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1450 struct btrfs_key *location)
1451{
1452 struct btrfs_root *root;
1453
1454 root = btrfs_read_tree_root(tree_root, location);
1455 if (IS_ERR(root))
1456 return root;
1457
1458 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1459 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1460 btrfs_check_and_init_root_item(&root->root_item);
1461 }
1462
1463 return root;
1464}
1465
1466int btrfs_init_fs_root(struct btrfs_root *root)
1467{
1468 int ret;
1469 struct btrfs_subvolume_writers *writers;
1470
1471 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1472 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1473 GFP_NOFS);
1474 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1475 ret = -ENOMEM;
1476 goto fail;
1477 }
1478
1479 writers = btrfs_alloc_subvolume_writers();
1480 if (IS_ERR(writers)) {
1481 ret = PTR_ERR(writers);
1482 goto fail;
1483 }
1484 root->subv_writers = writers;
1485
1486 btrfs_init_free_ino_ctl(root);
1487 spin_lock_init(&root->ino_cache_lock);
1488 init_waitqueue_head(&root->ino_cache_wait);
1489
1490 ret = get_anon_bdev(&root->anon_dev);
1491 if (ret)
1492 goto fail;
1493
1494 mutex_lock(&root->objectid_mutex);
1495 ret = btrfs_find_highest_objectid(root,
1496 &root->highest_objectid);
1497 if (ret) {
1498 mutex_unlock(&root->objectid_mutex);
1499 goto fail;
1500 }
1501
1502 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1503
1504 mutex_unlock(&root->objectid_mutex);
1505
1506 return 0;
1507fail:
1508 /* The caller is responsible to call btrfs_free_fs_root */
1509 return ret;
1510}
1511
1512struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1513 u64 root_id)
1514{
1515 struct btrfs_root *root;
1516
1517 spin_lock(&fs_info->fs_roots_radix_lock);
1518 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1519 (unsigned long)root_id);
1520 spin_unlock(&fs_info->fs_roots_radix_lock);
1521 return root;
1522}
1523
1524int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1525 struct btrfs_root *root)
1526{
1527 int ret;
1528
1529 ret = radix_tree_preload(GFP_NOFS);
1530 if (ret)
1531 return ret;
1532
1533 spin_lock(&fs_info->fs_roots_radix_lock);
1534 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1535 (unsigned long)root->root_key.objectid,
1536 root);
1537 if (ret == 0)
1538 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1539 spin_unlock(&fs_info->fs_roots_radix_lock);
1540 radix_tree_preload_end();
1541
1542 return ret;
1543}
1544
1545struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1546 struct btrfs_key *location,
1547 bool check_ref)
1548{
1549 struct btrfs_root *root;
1550 struct btrfs_path *path;
1551 struct btrfs_key key;
1552 int ret;
1553
1554 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1555 return fs_info->tree_root;
1556 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1557 return fs_info->extent_root;
1558 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1559 return fs_info->chunk_root;
1560 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1561 return fs_info->dev_root;
1562 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1563 return fs_info->csum_root;
1564 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1565 return fs_info->quota_root ? fs_info->quota_root :
1566 ERR_PTR(-ENOENT);
1567 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1568 return fs_info->uuid_root ? fs_info->uuid_root :
1569 ERR_PTR(-ENOENT);
1570 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1571 return fs_info->free_space_root ? fs_info->free_space_root :
1572 ERR_PTR(-ENOENT);
1573again:
1574 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1575 if (root) {
1576 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1577 return ERR_PTR(-ENOENT);
1578 return root;
1579 }
1580
1581 root = btrfs_read_fs_root(fs_info->tree_root, location);
1582 if (IS_ERR(root))
1583 return root;
1584
1585 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1586 ret = -ENOENT;
1587 goto fail;
1588 }
1589
1590 ret = btrfs_init_fs_root(root);
1591 if (ret)
1592 goto fail;
1593
1594 path = btrfs_alloc_path();
1595 if (!path) {
1596 ret = -ENOMEM;
1597 goto fail;
1598 }
1599 key.objectid = BTRFS_ORPHAN_OBJECTID;
1600 key.type = BTRFS_ORPHAN_ITEM_KEY;
1601 key.offset = location->objectid;
1602
1603 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1604 btrfs_free_path(path);
1605 if (ret < 0)
1606 goto fail;
1607 if (ret == 0)
1608 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1609
1610 ret = btrfs_insert_fs_root(fs_info, root);
1611 if (ret) {
1612 if (ret == -EEXIST) {
1613 btrfs_free_fs_root(root);
1614 goto again;
1615 }
1616 goto fail;
1617 }
1618 return root;
1619fail:
1620 btrfs_free_fs_root(root);
1621 return ERR_PTR(ret);
1622}
1623
1624static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1625{
1626 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627 int ret = 0;
1628 struct btrfs_device *device;
1629 struct backing_dev_info *bdi;
1630
1631 rcu_read_lock();
1632 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1633 if (!device->bdev)
1634 continue;
1635 bdi = device->bdev->bd_bdi;
1636 if (bdi_congested(bdi, bdi_bits)) {
1637 ret = 1;
1638 break;
1639 }
1640 }
1641 rcu_read_unlock();
1642 return ret;
1643}
1644
1645/*
1646 * called by the kthread helper functions to finally call the bio end_io
1647 * functions. This is where read checksum verification actually happens
1648 */
1649static void end_workqueue_fn(struct btrfs_work *work)
1650{
1651 struct bio *bio;
1652 struct btrfs_end_io_wq *end_io_wq;
1653
1654 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1655 bio = end_io_wq->bio;
1656
1657 bio->bi_status = end_io_wq->status;
1658 bio->bi_private = end_io_wq->private;
1659 bio->bi_end_io = end_io_wq->end_io;
1660 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1661 bio_endio(bio);
1662}
1663
1664static int cleaner_kthread(void *arg)
1665{
1666 struct btrfs_root *root = arg;
1667 struct btrfs_fs_info *fs_info = root->fs_info;
1668 int again;
1669
1670 while (1) {
1671 again = 0;
1672
1673 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1674
1675 /* Make the cleaner go to sleep early. */
1676 if (btrfs_need_cleaner_sleep(fs_info))
1677 goto sleep;
1678
1679 /*
1680 * Do not do anything if we might cause open_ctree() to block
1681 * before we have finished mounting the filesystem.
1682 */
1683 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1684 goto sleep;
1685
1686 if (!mutex_trylock(&fs_info->cleaner_mutex))
1687 goto sleep;
1688
1689 /*
1690 * Avoid the problem that we change the status of the fs
1691 * during the above check and trylock.
1692 */
1693 if (btrfs_need_cleaner_sleep(fs_info)) {
1694 mutex_unlock(&fs_info->cleaner_mutex);
1695 goto sleep;
1696 }
1697
1698 btrfs_run_delayed_iputs(fs_info);
1699
1700 again = btrfs_clean_one_deleted_snapshot(root);
1701 mutex_unlock(&fs_info->cleaner_mutex);
1702
1703 /*
1704 * The defragger has dealt with the R/O remount and umount,
1705 * needn't do anything special here.
1706 */
1707 btrfs_run_defrag_inodes(fs_info);
1708
1709 /*
1710 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711 * with relocation (btrfs_relocate_chunk) and relocation
1712 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715 * unused block groups.
1716 */
1717 btrfs_delete_unused_bgs(fs_info);
1718sleep:
1719 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1720 if (kthread_should_park())
1721 kthread_parkme();
1722 if (kthread_should_stop())
1723 return 0;
1724 if (!again) {
1725 set_current_state(TASK_INTERRUPTIBLE);
1726 schedule();
1727 __set_current_state(TASK_RUNNING);
1728 }
1729 }
1730}
1731
1732static int transaction_kthread(void *arg)
1733{
1734 struct btrfs_root *root = arg;
1735 struct btrfs_fs_info *fs_info = root->fs_info;
1736 struct btrfs_trans_handle *trans;
1737 struct btrfs_transaction *cur;
1738 u64 transid;
1739 time64_t now;
1740 unsigned long delay;
1741 bool cannot_commit;
1742
1743 do {
1744 cannot_commit = false;
1745 delay = HZ * fs_info->commit_interval;
1746 mutex_lock(&fs_info->transaction_kthread_mutex);
1747
1748 spin_lock(&fs_info->trans_lock);
1749 cur = fs_info->running_transaction;
1750 if (!cur) {
1751 spin_unlock(&fs_info->trans_lock);
1752 goto sleep;
1753 }
1754
1755 now = ktime_get_seconds();
1756 if (cur->state < TRANS_STATE_BLOCKED &&
1757 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1758 (now < cur->start_time ||
1759 now - cur->start_time < fs_info->commit_interval)) {
1760 spin_unlock(&fs_info->trans_lock);
1761 delay = HZ * 5;
1762 goto sleep;
1763 }
1764 transid = cur->transid;
1765 spin_unlock(&fs_info->trans_lock);
1766
1767 /* If the file system is aborted, this will always fail. */
1768 trans = btrfs_attach_transaction(root);
1769 if (IS_ERR(trans)) {
1770 if (PTR_ERR(trans) != -ENOENT)
1771 cannot_commit = true;
1772 goto sleep;
1773 }
1774 if (transid == trans->transid) {
1775 btrfs_commit_transaction(trans);
1776 } else {
1777 btrfs_end_transaction(trans);
1778 }
1779sleep:
1780 wake_up_process(fs_info->cleaner_kthread);
1781 mutex_unlock(&fs_info->transaction_kthread_mutex);
1782
1783 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1784 &fs_info->fs_state)))
1785 btrfs_cleanup_transaction(fs_info);
1786 if (!kthread_should_stop() &&
1787 (!btrfs_transaction_blocked(fs_info) ||
1788 cannot_commit))
1789 schedule_timeout_interruptible(delay);
1790 } while (!kthread_should_stop());
1791 return 0;
1792}
1793
1794/*
1795 * this will find the highest generation in the array of
1796 * root backups. The index of the highest array is returned,
1797 * or -1 if we can't find anything.
1798 *
1799 * We check to make sure the array is valid by comparing the
1800 * generation of the latest root in the array with the generation
1801 * in the super block. If they don't match we pitch it.
1802 */
1803static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804{
1805 u64 cur;
1806 int newest_index = -1;
1807 struct btrfs_root_backup *root_backup;
1808 int i;
1809
1810 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811 root_backup = info->super_copy->super_roots + i;
1812 cur = btrfs_backup_tree_root_gen(root_backup);
1813 if (cur == newest_gen)
1814 newest_index = i;
1815 }
1816
1817 /* check to see if we actually wrapped around */
1818 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819 root_backup = info->super_copy->super_roots;
1820 cur = btrfs_backup_tree_root_gen(root_backup);
1821 if (cur == newest_gen)
1822 newest_index = 0;
1823 }
1824 return newest_index;
1825}
1826
1827
1828/*
1829 * find the oldest backup so we know where to store new entries
1830 * in the backup array. This will set the backup_root_index
1831 * field in the fs_info struct
1832 */
1833static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834 u64 newest_gen)
1835{
1836 int newest_index = -1;
1837
1838 newest_index = find_newest_super_backup(info, newest_gen);
1839 /* if there was garbage in there, just move along */
1840 if (newest_index == -1) {
1841 info->backup_root_index = 0;
1842 } else {
1843 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844 }
1845}
1846
1847/*
1848 * copy all the root pointers into the super backup array.
1849 * this will bump the backup pointer by one when it is
1850 * done
1851 */
1852static void backup_super_roots(struct btrfs_fs_info *info)
1853{
1854 int next_backup;
1855 struct btrfs_root_backup *root_backup;
1856 int last_backup;
1857
1858 next_backup = info->backup_root_index;
1859 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860 BTRFS_NUM_BACKUP_ROOTS;
1861
1862 /*
1863 * just overwrite the last backup if we're at the same generation
1864 * this happens only at umount
1865 */
1866 root_backup = info->super_for_commit->super_roots + last_backup;
1867 if (btrfs_backup_tree_root_gen(root_backup) ==
1868 btrfs_header_generation(info->tree_root->node))
1869 next_backup = last_backup;
1870
1871 root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873 /*
1874 * make sure all of our padding and empty slots get zero filled
1875 * regardless of which ones we use today
1876 */
1877 memset(root_backup, 0, sizeof(*root_backup));
1878
1879 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882 btrfs_set_backup_tree_root_gen(root_backup,
1883 btrfs_header_generation(info->tree_root->node));
1884
1885 btrfs_set_backup_tree_root_level(root_backup,
1886 btrfs_header_level(info->tree_root->node));
1887
1888 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889 btrfs_set_backup_chunk_root_gen(root_backup,
1890 btrfs_header_generation(info->chunk_root->node));
1891 btrfs_set_backup_chunk_root_level(root_backup,
1892 btrfs_header_level(info->chunk_root->node));
1893
1894 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895 btrfs_set_backup_extent_root_gen(root_backup,
1896 btrfs_header_generation(info->extent_root->node));
1897 btrfs_set_backup_extent_root_level(root_backup,
1898 btrfs_header_level(info->extent_root->node));
1899
1900 /*
1901 * we might commit during log recovery, which happens before we set
1902 * the fs_root. Make sure it is valid before we fill it in.
1903 */
1904 if (info->fs_root && info->fs_root->node) {
1905 btrfs_set_backup_fs_root(root_backup,
1906 info->fs_root->node->start);
1907 btrfs_set_backup_fs_root_gen(root_backup,
1908 btrfs_header_generation(info->fs_root->node));
1909 btrfs_set_backup_fs_root_level(root_backup,
1910 btrfs_header_level(info->fs_root->node));
1911 }
1912
1913 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914 btrfs_set_backup_dev_root_gen(root_backup,
1915 btrfs_header_generation(info->dev_root->node));
1916 btrfs_set_backup_dev_root_level(root_backup,
1917 btrfs_header_level(info->dev_root->node));
1918
1919 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920 btrfs_set_backup_csum_root_gen(root_backup,
1921 btrfs_header_generation(info->csum_root->node));
1922 btrfs_set_backup_csum_root_level(root_backup,
1923 btrfs_header_level(info->csum_root->node));
1924
1925 btrfs_set_backup_total_bytes(root_backup,
1926 btrfs_super_total_bytes(info->super_copy));
1927 btrfs_set_backup_bytes_used(root_backup,
1928 btrfs_super_bytes_used(info->super_copy));
1929 btrfs_set_backup_num_devices(root_backup,
1930 btrfs_super_num_devices(info->super_copy));
1931
1932 /*
1933 * if we don't copy this out to the super_copy, it won't get remembered
1934 * for the next commit
1935 */
1936 memcpy(&info->super_copy->super_roots,
1937 &info->super_for_commit->super_roots,
1938 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939}
1940
1941/*
1942 * this copies info out of the root backup array and back into
1943 * the in-memory super block. It is meant to help iterate through
1944 * the array, so you send it the number of backups you've already
1945 * tried and the last backup index you used.
1946 *
1947 * this returns -1 when it has tried all the backups
1948 */
1949static noinline int next_root_backup(struct btrfs_fs_info *info,
1950 struct btrfs_super_block *super,
1951 int *num_backups_tried, int *backup_index)
1952{
1953 struct btrfs_root_backup *root_backup;
1954 int newest = *backup_index;
1955
1956 if (*num_backups_tried == 0) {
1957 u64 gen = btrfs_super_generation(super);
1958
1959 newest = find_newest_super_backup(info, gen);
1960 if (newest == -1)
1961 return -1;
1962
1963 *backup_index = newest;
1964 *num_backups_tried = 1;
1965 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966 /* we've tried all the backups, all done */
1967 return -1;
1968 } else {
1969 /* jump to the next oldest backup */
1970 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971 BTRFS_NUM_BACKUP_ROOTS;
1972 *backup_index = newest;
1973 *num_backups_tried += 1;
1974 }
1975 root_backup = super->super_roots + newest;
1976
1977 btrfs_set_super_generation(super,
1978 btrfs_backup_tree_root_gen(root_backup));
1979 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980 btrfs_set_super_root_level(super,
1981 btrfs_backup_tree_root_level(root_backup));
1982 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984 /*
1985 * fixme: the total bytes and num_devices need to match or we should
1986 * need a fsck
1987 */
1988 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990 return 0;
1991}
1992
1993/* helper to cleanup workers */
1994static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995{
1996 btrfs_destroy_workqueue(fs_info->fixup_workers);
1997 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1998 btrfs_destroy_workqueue(fs_info->workers);
1999 btrfs_destroy_workqueue(fs_info->endio_workers);
2000 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2001 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2002 btrfs_destroy_workqueue(fs_info->rmw_workers);
2003 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2004 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2005 btrfs_destroy_workqueue(fs_info->submit_workers);
2006 btrfs_destroy_workqueue(fs_info->delayed_workers);
2007 btrfs_destroy_workqueue(fs_info->caching_workers);
2008 btrfs_destroy_workqueue(fs_info->readahead_workers);
2009 btrfs_destroy_workqueue(fs_info->flush_workers);
2010 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2011 /*
2012 * Now that all other work queues are destroyed, we can safely destroy
2013 * the queues used for metadata I/O, since tasks from those other work
2014 * queues can do metadata I/O operations.
2015 */
2016 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2017 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2018}
2019
2020static void free_root_extent_buffers(struct btrfs_root *root)
2021{
2022 if (root) {
2023 free_extent_buffer(root->node);
2024 free_extent_buffer(root->commit_root);
2025 root->node = NULL;
2026 root->commit_root = NULL;
2027 }
2028}
2029
2030/* helper to cleanup tree roots */
2031static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2032{
2033 free_root_extent_buffers(info->tree_root);
2034
2035 free_root_extent_buffers(info->dev_root);
2036 free_root_extent_buffers(info->extent_root);
2037 free_root_extent_buffers(info->csum_root);
2038 free_root_extent_buffers(info->quota_root);
2039 free_root_extent_buffers(info->uuid_root);
2040 if (chunk_root)
2041 free_root_extent_buffers(info->chunk_root);
2042 free_root_extent_buffers(info->free_space_root);
2043}
2044
2045void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2046{
2047 int ret;
2048 struct btrfs_root *gang[8];
2049 int i;
2050
2051 while (!list_empty(&fs_info->dead_roots)) {
2052 gang[0] = list_entry(fs_info->dead_roots.next,
2053 struct btrfs_root, root_list);
2054 list_del(&gang[0]->root_list);
2055
2056 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2057 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2058 } else {
2059 free_extent_buffer(gang[0]->node);
2060 free_extent_buffer(gang[0]->commit_root);
2061 btrfs_put_fs_root(gang[0]);
2062 }
2063 }
2064
2065 while (1) {
2066 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2067 (void **)gang, 0,
2068 ARRAY_SIZE(gang));
2069 if (!ret)
2070 break;
2071 for (i = 0; i < ret; i++)
2072 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2073 }
2074
2075 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2076 btrfs_free_log_root_tree(NULL, fs_info);
2077 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2078 }
2079}
2080
2081static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082{
2083 mutex_init(&fs_info->scrub_lock);
2084 atomic_set(&fs_info->scrubs_running, 0);
2085 atomic_set(&fs_info->scrub_pause_req, 0);
2086 atomic_set(&fs_info->scrubs_paused, 0);
2087 atomic_set(&fs_info->scrub_cancel_req, 0);
2088 init_waitqueue_head(&fs_info->scrub_pause_wait);
2089 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2090}
2091
2092static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093{
2094 spin_lock_init(&fs_info->balance_lock);
2095 mutex_init(&fs_info->balance_mutex);
2096 atomic_set(&fs_info->balance_pause_req, 0);
2097 atomic_set(&fs_info->balance_cancel_req, 0);
2098 fs_info->balance_ctl = NULL;
2099 init_waitqueue_head(&fs_info->balance_wait_q);
2100}
2101
2102static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2103{
2104 struct inode *inode = fs_info->btree_inode;
2105
2106 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107 set_nlink(inode, 1);
2108 /*
2109 * we set the i_size on the btree inode to the max possible int.
2110 * the real end of the address space is determined by all of
2111 * the devices in the system
2112 */
2113 inode->i_size = OFFSET_MAX;
2114 inode->i_mapping->a_ops = &btree_aops;
2115
2116 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2117 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118 IO_TREE_INODE_IO, inode);
2119 BTRFS_I(inode)->io_tree.track_uptodate = false;
2120 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2121
2122 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124 BTRFS_I(inode)->root = fs_info->tree_root;
2125 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127 btrfs_insert_inode_hash(inode);
2128}
2129
2130static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131{
2132 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2133 init_rwsem(&fs_info->dev_replace.rwsem);
2134 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2135}
2136
2137static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138{
2139 spin_lock_init(&fs_info->qgroup_lock);
2140 mutex_init(&fs_info->qgroup_ioctl_lock);
2141 fs_info->qgroup_tree = RB_ROOT;
2142 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143 fs_info->qgroup_seq = 1;
2144 fs_info->qgroup_ulist = NULL;
2145 fs_info->qgroup_rescan_running = false;
2146 mutex_init(&fs_info->qgroup_rescan_lock);
2147}
2148
2149static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150 struct btrfs_fs_devices *fs_devices)
2151{
2152 u32 max_active = fs_info->thread_pool_size;
2153 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2154
2155 fs_info->workers =
2156 btrfs_alloc_workqueue(fs_info, "worker",
2157 flags | WQ_HIGHPRI, max_active, 16);
2158
2159 fs_info->delalloc_workers =
2160 btrfs_alloc_workqueue(fs_info, "delalloc",
2161 flags, max_active, 2);
2162
2163 fs_info->flush_workers =
2164 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165 flags, max_active, 0);
2166
2167 fs_info->caching_workers =
2168 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169
2170 /*
2171 * a higher idle thresh on the submit workers makes it much more
2172 * likely that bios will be send down in a sane order to the
2173 * devices
2174 */
2175 fs_info->submit_workers =
2176 btrfs_alloc_workqueue(fs_info, "submit", flags,
2177 min_t(u64, fs_devices->num_devices,
2178 max_active), 64);
2179
2180 fs_info->fixup_workers =
2181 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2182
2183 /*
2184 * endios are largely parallel and should have a very
2185 * low idle thresh
2186 */
2187 fs_info->endio_workers =
2188 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2189 fs_info->endio_meta_workers =
2190 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2191 max_active, 4);
2192 fs_info->endio_meta_write_workers =
2193 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2194 max_active, 2);
2195 fs_info->endio_raid56_workers =
2196 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2197 max_active, 4);
2198 fs_info->endio_repair_workers =
2199 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2200 fs_info->rmw_workers =
2201 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2202 fs_info->endio_write_workers =
2203 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2204 max_active, 2);
2205 fs_info->endio_freespace_worker =
2206 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2207 max_active, 0);
2208 fs_info->delayed_workers =
2209 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2210 max_active, 0);
2211 fs_info->readahead_workers =
2212 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2213 max_active, 2);
2214 fs_info->qgroup_rescan_workers =
2215 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2216
2217 if (!(fs_info->workers && fs_info->delalloc_workers &&
2218 fs_info->submit_workers && fs_info->flush_workers &&
2219 fs_info->endio_workers && fs_info->endio_meta_workers &&
2220 fs_info->endio_meta_write_workers &&
2221 fs_info->endio_repair_workers &&
2222 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2223 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2224 fs_info->caching_workers && fs_info->readahead_workers &&
2225 fs_info->fixup_workers && fs_info->delayed_workers &&
2226 fs_info->qgroup_rescan_workers)) {
2227 return -ENOMEM;
2228 }
2229
2230 return 0;
2231}
2232
2233static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2234{
2235 struct crypto_shash *csum_shash;
2236 const char *csum_name = btrfs_super_csum_name(csum_type);
2237
2238 csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2239
2240 if (IS_ERR(csum_shash)) {
2241 btrfs_err(fs_info, "error allocating %s hash for checksum",
2242 csum_name);
2243 return PTR_ERR(csum_shash);
2244 }
2245
2246 fs_info->csum_shash = csum_shash;
2247
2248 return 0;
2249}
2250
2251static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2252{
2253 crypto_free_shash(fs_info->csum_shash);
2254}
2255
2256static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2257 struct btrfs_fs_devices *fs_devices)
2258{
2259 int ret;
2260 struct btrfs_root *log_tree_root;
2261 struct btrfs_super_block *disk_super = fs_info->super_copy;
2262 u64 bytenr = btrfs_super_log_root(disk_super);
2263 int level = btrfs_super_log_root_level(disk_super);
2264
2265 if (fs_devices->rw_devices == 0) {
2266 btrfs_warn(fs_info, "log replay required on RO media");
2267 return -EIO;
2268 }
2269
2270 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2271 if (!log_tree_root)
2272 return -ENOMEM;
2273
2274 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2275
2276 log_tree_root->node = read_tree_block(fs_info, bytenr,
2277 fs_info->generation + 1,
2278 level, NULL);
2279 if (IS_ERR(log_tree_root->node)) {
2280 btrfs_warn(fs_info, "failed to read log tree");
2281 ret = PTR_ERR(log_tree_root->node);
2282 kfree(log_tree_root);
2283 return ret;
2284 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2285 btrfs_err(fs_info, "failed to read log tree");
2286 free_extent_buffer(log_tree_root->node);
2287 kfree(log_tree_root);
2288 return -EIO;
2289 }
2290 /* returns with log_tree_root freed on success */
2291 ret = btrfs_recover_log_trees(log_tree_root);
2292 if (ret) {
2293 btrfs_handle_fs_error(fs_info, ret,
2294 "Failed to recover log tree");
2295 free_extent_buffer(log_tree_root->node);
2296 kfree(log_tree_root);
2297 return ret;
2298 }
2299
2300 if (sb_rdonly(fs_info->sb)) {
2301 ret = btrfs_commit_super(fs_info);
2302 if (ret)
2303 return ret;
2304 }
2305
2306 return 0;
2307}
2308
2309static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2310{
2311 struct btrfs_root *tree_root = fs_info->tree_root;
2312 struct btrfs_root *root;
2313 struct btrfs_key location;
2314 int ret;
2315
2316 BUG_ON(!fs_info->tree_root);
2317
2318 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2319 location.type = BTRFS_ROOT_ITEM_KEY;
2320 location.offset = 0;
2321
2322 root = btrfs_read_tree_root(tree_root, &location);
2323 if (IS_ERR(root)) {
2324 ret = PTR_ERR(root);
2325 goto out;
2326 }
2327 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328 fs_info->extent_root = root;
2329
2330 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2331 root = btrfs_read_tree_root(tree_root, &location);
2332 if (IS_ERR(root)) {
2333 ret = PTR_ERR(root);
2334 goto out;
2335 }
2336 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337 fs_info->dev_root = root;
2338 btrfs_init_devices_late(fs_info);
2339
2340 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2341 root = btrfs_read_tree_root(tree_root, &location);
2342 if (IS_ERR(root)) {
2343 ret = PTR_ERR(root);
2344 goto out;
2345 }
2346 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347 fs_info->csum_root = root;
2348
2349 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2350 root = btrfs_read_tree_root(tree_root, &location);
2351 if (!IS_ERR(root)) {
2352 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2354 fs_info->quota_root = root;
2355 }
2356
2357 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2358 root = btrfs_read_tree_root(tree_root, &location);
2359 if (IS_ERR(root)) {
2360 ret = PTR_ERR(root);
2361 if (ret != -ENOENT)
2362 goto out;
2363 } else {
2364 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2365 fs_info->uuid_root = root;
2366 }
2367
2368 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2369 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2370 root = btrfs_read_tree_root(tree_root, &location);
2371 if (IS_ERR(root)) {
2372 ret = PTR_ERR(root);
2373 goto out;
2374 }
2375 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376 fs_info->free_space_root = root;
2377 }
2378
2379 return 0;
2380out:
2381 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2382 location.objectid, ret);
2383 return ret;
2384}
2385
2386/*
2387 * Real super block validation
2388 * NOTE: super csum type and incompat features will not be checked here.
2389 *
2390 * @sb: super block to check
2391 * @mirror_num: the super block number to check its bytenr:
2392 * 0 the primary (1st) sb
2393 * 1, 2 2nd and 3rd backup copy
2394 * -1 skip bytenr check
2395 */
2396static int validate_super(struct btrfs_fs_info *fs_info,
2397 struct btrfs_super_block *sb, int mirror_num)
2398{
2399 u64 nodesize = btrfs_super_nodesize(sb);
2400 u64 sectorsize = btrfs_super_sectorsize(sb);
2401 int ret = 0;
2402
2403 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2404 btrfs_err(fs_info, "no valid FS found");
2405 ret = -EINVAL;
2406 }
2407 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2408 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2409 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2410 ret = -EINVAL;
2411 }
2412 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2413 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2414 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2415 ret = -EINVAL;
2416 }
2417 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2418 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2419 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2420 ret = -EINVAL;
2421 }
2422 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2424 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2425 ret = -EINVAL;
2426 }
2427
2428 /*
2429 * Check sectorsize and nodesize first, other check will need it.
2430 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2431 */
2432 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2433 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2434 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2435 ret = -EINVAL;
2436 }
2437 /* Only PAGE SIZE is supported yet */
2438 if (sectorsize != PAGE_SIZE) {
2439 btrfs_err(fs_info,
2440 "sectorsize %llu not supported yet, only support %lu",
2441 sectorsize, PAGE_SIZE);
2442 ret = -EINVAL;
2443 }
2444 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2445 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2446 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2447 ret = -EINVAL;
2448 }
2449 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2450 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2451 le32_to_cpu(sb->__unused_leafsize), nodesize);
2452 ret = -EINVAL;
2453 }
2454
2455 /* Root alignment check */
2456 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2457 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2458 btrfs_super_root(sb));
2459 ret = -EINVAL;
2460 }
2461 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2462 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2463 btrfs_super_chunk_root(sb));
2464 ret = -EINVAL;
2465 }
2466 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2467 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2468 btrfs_super_log_root(sb));
2469 ret = -EINVAL;
2470 }
2471
2472 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2473 BTRFS_FSID_SIZE) != 0) {
2474 btrfs_err(fs_info,
2475 "dev_item UUID does not match metadata fsid: %pU != %pU",
2476 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2477 ret = -EINVAL;
2478 }
2479
2480 /*
2481 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2482 * done later
2483 */
2484 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2485 btrfs_err(fs_info, "bytes_used is too small %llu",
2486 btrfs_super_bytes_used(sb));
2487 ret = -EINVAL;
2488 }
2489 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2490 btrfs_err(fs_info, "invalid stripesize %u",
2491 btrfs_super_stripesize(sb));
2492 ret = -EINVAL;
2493 }
2494 if (btrfs_super_num_devices(sb) > (1UL << 31))
2495 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2496 btrfs_super_num_devices(sb));
2497 if (btrfs_super_num_devices(sb) == 0) {
2498 btrfs_err(fs_info, "number of devices is 0");
2499 ret = -EINVAL;
2500 }
2501
2502 if (mirror_num >= 0 &&
2503 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2504 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2505 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2506 ret = -EINVAL;
2507 }
2508
2509 /*
2510 * Obvious sys_chunk_array corruptions, it must hold at least one key
2511 * and one chunk
2512 */
2513 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2514 btrfs_err(fs_info, "system chunk array too big %u > %u",
2515 btrfs_super_sys_array_size(sb),
2516 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2517 ret = -EINVAL;
2518 }
2519 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2520 + sizeof(struct btrfs_chunk)) {
2521 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2522 btrfs_super_sys_array_size(sb),
2523 sizeof(struct btrfs_disk_key)
2524 + sizeof(struct btrfs_chunk));
2525 ret = -EINVAL;
2526 }
2527
2528 /*
2529 * The generation is a global counter, we'll trust it more than the others
2530 * but it's still possible that it's the one that's wrong.
2531 */
2532 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2533 btrfs_warn(fs_info,
2534 "suspicious: generation < chunk_root_generation: %llu < %llu",
2535 btrfs_super_generation(sb),
2536 btrfs_super_chunk_root_generation(sb));
2537 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2538 && btrfs_super_cache_generation(sb) != (u64)-1)
2539 btrfs_warn(fs_info,
2540 "suspicious: generation < cache_generation: %llu < %llu",
2541 btrfs_super_generation(sb),
2542 btrfs_super_cache_generation(sb));
2543
2544 return ret;
2545}
2546
2547/*
2548 * Validation of super block at mount time.
2549 * Some checks already done early at mount time, like csum type and incompat
2550 * flags will be skipped.
2551 */
2552static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2553{
2554 return validate_super(fs_info, fs_info->super_copy, 0);
2555}
2556
2557/*
2558 * Validation of super block at write time.
2559 * Some checks like bytenr check will be skipped as their values will be
2560 * overwritten soon.
2561 * Extra checks like csum type and incompat flags will be done here.
2562 */
2563static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2564 struct btrfs_super_block *sb)
2565{
2566 int ret;
2567
2568 ret = validate_super(fs_info, sb, -1);
2569 if (ret < 0)
2570 goto out;
2571 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2572 ret = -EUCLEAN;
2573 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2574 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2575 goto out;
2576 }
2577 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2578 ret = -EUCLEAN;
2579 btrfs_err(fs_info,
2580 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2581 btrfs_super_incompat_flags(sb),
2582 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2583 goto out;
2584 }
2585out:
2586 if (ret < 0)
2587 btrfs_err(fs_info,
2588 "super block corruption detected before writing it to disk");
2589 return ret;
2590}
2591
2592int open_ctree(struct super_block *sb,
2593 struct btrfs_fs_devices *fs_devices,
2594 char *options)
2595{
2596 u32 sectorsize;
2597 u32 nodesize;
2598 u32 stripesize;
2599 u64 generation;
2600 u64 features;
2601 u16 csum_type;
2602 struct btrfs_key location;
2603 struct buffer_head *bh;
2604 struct btrfs_super_block *disk_super;
2605 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2606 struct btrfs_root *tree_root;
2607 struct btrfs_root *chunk_root;
2608 int ret;
2609 int err = -EINVAL;
2610 int num_backups_tried = 0;
2611 int backup_index = 0;
2612 int clear_free_space_tree = 0;
2613 int level;
2614
2615 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2616 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2617 if (!tree_root || !chunk_root) {
2618 err = -ENOMEM;
2619 goto fail;
2620 }
2621
2622 ret = init_srcu_struct(&fs_info->subvol_srcu);
2623 if (ret) {
2624 err = ret;
2625 goto fail;
2626 }
2627
2628 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2629 if (ret) {
2630 err = ret;
2631 goto fail_srcu;
2632 }
2633
2634 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2635 if (ret) {
2636 err = ret;
2637 goto fail_dio_bytes;
2638 }
2639 fs_info->dirty_metadata_batch = PAGE_SIZE *
2640 (1 + ilog2(nr_cpu_ids));
2641
2642 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2643 if (ret) {
2644 err = ret;
2645 goto fail_dirty_metadata_bytes;
2646 }
2647
2648 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2649 GFP_KERNEL);
2650 if (ret) {
2651 err = ret;
2652 goto fail_delalloc_bytes;
2653 }
2654
2655 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2656 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2657 INIT_LIST_HEAD(&fs_info->trans_list);
2658 INIT_LIST_HEAD(&fs_info->dead_roots);
2659 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2660 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2661 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2662 spin_lock_init(&fs_info->delalloc_root_lock);
2663 spin_lock_init(&fs_info->trans_lock);
2664 spin_lock_init(&fs_info->fs_roots_radix_lock);
2665 spin_lock_init(&fs_info->delayed_iput_lock);
2666 spin_lock_init(&fs_info->defrag_inodes_lock);
2667 spin_lock_init(&fs_info->tree_mod_seq_lock);
2668 spin_lock_init(&fs_info->super_lock);
2669 spin_lock_init(&fs_info->buffer_lock);
2670 spin_lock_init(&fs_info->unused_bgs_lock);
2671 rwlock_init(&fs_info->tree_mod_log_lock);
2672 mutex_init(&fs_info->unused_bg_unpin_mutex);
2673 mutex_init(&fs_info->delete_unused_bgs_mutex);
2674 mutex_init(&fs_info->reloc_mutex);
2675 mutex_init(&fs_info->delalloc_root_mutex);
2676 seqlock_init(&fs_info->profiles_lock);
2677
2678 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2679 INIT_LIST_HEAD(&fs_info->space_info);
2680 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2681 INIT_LIST_HEAD(&fs_info->unused_bgs);
2682 extent_map_tree_init(&fs_info->mapping_tree);
2683 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2684 BTRFS_BLOCK_RSV_GLOBAL);
2685 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2686 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2687 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2688 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2689 BTRFS_BLOCK_RSV_DELOPS);
2690 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2691 BTRFS_BLOCK_RSV_DELREFS);
2692
2693 atomic_set(&fs_info->async_delalloc_pages, 0);
2694 atomic_set(&fs_info->defrag_running, 0);
2695 atomic_set(&fs_info->reada_works_cnt, 0);
2696 atomic_set(&fs_info->nr_delayed_iputs, 0);
2697 atomic64_set(&fs_info->tree_mod_seq, 0);
2698 fs_info->sb = sb;
2699 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2700 fs_info->metadata_ratio = 0;
2701 fs_info->defrag_inodes = RB_ROOT;
2702 atomic64_set(&fs_info->free_chunk_space, 0);
2703 fs_info->tree_mod_log = RB_ROOT;
2704 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2705 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2706 /* readahead state */
2707 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2708 spin_lock_init(&fs_info->reada_lock);
2709 btrfs_init_ref_verify(fs_info);
2710
2711 fs_info->thread_pool_size = min_t(unsigned long,
2712 num_online_cpus() + 2, 8);
2713
2714 INIT_LIST_HEAD(&fs_info->ordered_roots);
2715 spin_lock_init(&fs_info->ordered_root_lock);
2716
2717 fs_info->btree_inode = new_inode(sb);
2718 if (!fs_info->btree_inode) {
2719 err = -ENOMEM;
2720 goto fail_bio_counter;
2721 }
2722 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2723
2724 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2725 GFP_KERNEL);
2726 if (!fs_info->delayed_root) {
2727 err = -ENOMEM;
2728 goto fail_iput;
2729 }
2730 btrfs_init_delayed_root(fs_info->delayed_root);
2731
2732 btrfs_init_scrub(fs_info);
2733#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2734 fs_info->check_integrity_print_mask = 0;
2735#endif
2736 btrfs_init_balance(fs_info);
2737 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2738
2739 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2740 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2741
2742 btrfs_init_btree_inode(fs_info);
2743
2744 spin_lock_init(&fs_info->block_group_cache_lock);
2745 fs_info->block_group_cache_tree = RB_ROOT;
2746 fs_info->first_logical_byte = (u64)-1;
2747
2748 extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2749 IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2750 extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2751 IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2752 fs_info->pinned_extents = &fs_info->freed_extents[0];
2753 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2754
2755 mutex_init(&fs_info->ordered_operations_mutex);
2756 mutex_init(&fs_info->tree_log_mutex);
2757 mutex_init(&fs_info->chunk_mutex);
2758 mutex_init(&fs_info->transaction_kthread_mutex);
2759 mutex_init(&fs_info->cleaner_mutex);
2760 mutex_init(&fs_info->ro_block_group_mutex);
2761 init_rwsem(&fs_info->commit_root_sem);
2762 init_rwsem(&fs_info->cleanup_work_sem);
2763 init_rwsem(&fs_info->subvol_sem);
2764 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2765
2766 btrfs_init_dev_replace_locks(fs_info);
2767 btrfs_init_qgroup(fs_info);
2768
2769 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2770 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2771
2772 init_waitqueue_head(&fs_info->transaction_throttle);
2773 init_waitqueue_head(&fs_info->transaction_wait);
2774 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2775 init_waitqueue_head(&fs_info->async_submit_wait);
2776 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2777
2778 /* Usable values until the real ones are cached from the superblock */
2779 fs_info->nodesize = 4096;
2780 fs_info->sectorsize = 4096;
2781 fs_info->stripesize = 4096;
2782
2783 spin_lock_init(&fs_info->swapfile_pins_lock);
2784 fs_info->swapfile_pins = RB_ROOT;
2785
2786 fs_info->send_in_progress = 0;
2787
2788 ret = btrfs_alloc_stripe_hash_table(fs_info);
2789 if (ret) {
2790 err = ret;
2791 goto fail_alloc;
2792 }
2793
2794 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2795
2796 invalidate_bdev(fs_devices->latest_bdev);
2797
2798 /*
2799 * Read super block and check the signature bytes only
2800 */
2801 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2802 if (IS_ERR(bh)) {
2803 err = PTR_ERR(bh);
2804 goto fail_alloc;
2805 }
2806
2807 /*
2808 * Verify the type first, if that or the the checksum value are
2809 * corrupted, we'll find out
2810 */
2811 csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2812 if (!btrfs_supported_super_csum(csum_type)) {
2813 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2814 csum_type);
2815 err = -EINVAL;
2816 brelse(bh);
2817 goto fail_alloc;
2818 }
2819
2820 ret = btrfs_init_csum_hash(fs_info, csum_type);
2821 if (ret) {
2822 err = ret;
2823 goto fail_alloc;
2824 }
2825
2826 /*
2827 * We want to check superblock checksum, the type is stored inside.
2828 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2829 */
2830 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2831 btrfs_err(fs_info, "superblock checksum mismatch");
2832 err = -EINVAL;
2833 brelse(bh);
2834 goto fail_csum;
2835 }
2836
2837 /*
2838 * super_copy is zeroed at allocation time and we never touch the
2839 * following bytes up to INFO_SIZE, the checksum is calculated from
2840 * the whole block of INFO_SIZE
2841 */
2842 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2843 brelse(bh);
2844
2845 disk_super = fs_info->super_copy;
2846
2847 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2848 BTRFS_FSID_SIZE));
2849
2850 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2851 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2852 fs_info->super_copy->metadata_uuid,
2853 BTRFS_FSID_SIZE));
2854 }
2855
2856 features = btrfs_super_flags(disk_super);
2857 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2858 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2859 btrfs_set_super_flags(disk_super, features);
2860 btrfs_info(fs_info,
2861 "found metadata UUID change in progress flag, clearing");
2862 }
2863
2864 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2865 sizeof(*fs_info->super_for_commit));
2866
2867 ret = btrfs_validate_mount_super(fs_info);
2868 if (ret) {
2869 btrfs_err(fs_info, "superblock contains fatal errors");
2870 err = -EINVAL;
2871 goto fail_csum;
2872 }
2873
2874 if (!btrfs_super_root(disk_super))
2875 goto fail_csum;
2876
2877 /* check FS state, whether FS is broken. */
2878 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2879 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2880
2881 /*
2882 * run through our array of backup supers and setup
2883 * our ring pointer to the oldest one
2884 */
2885 generation = btrfs_super_generation(disk_super);
2886 find_oldest_super_backup(fs_info, generation);
2887
2888 /*
2889 * In the long term, we'll store the compression type in the super
2890 * block, and it'll be used for per file compression control.
2891 */
2892 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2893
2894 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2895 if (ret) {
2896 err = ret;
2897 goto fail_csum;
2898 }
2899
2900 features = btrfs_super_incompat_flags(disk_super) &
2901 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2902 if (features) {
2903 btrfs_err(fs_info,
2904 "cannot mount because of unsupported optional features (%llx)",
2905 features);
2906 err = -EINVAL;
2907 goto fail_csum;
2908 }
2909
2910 features = btrfs_super_incompat_flags(disk_super);
2911 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2912 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2913 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2914 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2915 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2916
2917 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2918 btrfs_info(fs_info, "has skinny extents");
2919
2920 /*
2921 * flag our filesystem as having big metadata blocks if
2922 * they are bigger than the page size
2923 */
2924 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2925 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2926 btrfs_info(fs_info,
2927 "flagging fs with big metadata feature");
2928 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2929 }
2930
2931 nodesize = btrfs_super_nodesize(disk_super);
2932 sectorsize = btrfs_super_sectorsize(disk_super);
2933 stripesize = sectorsize;
2934 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2935 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2936
2937 /* Cache block sizes */
2938 fs_info->nodesize = nodesize;
2939 fs_info->sectorsize = sectorsize;
2940 fs_info->stripesize = stripesize;
2941
2942 /*
2943 * mixed block groups end up with duplicate but slightly offset
2944 * extent buffers for the same range. It leads to corruptions
2945 */
2946 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2947 (sectorsize != nodesize)) {
2948 btrfs_err(fs_info,
2949"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2950 nodesize, sectorsize);
2951 goto fail_csum;
2952 }
2953
2954 /*
2955 * Needn't use the lock because there is no other task which will
2956 * update the flag.
2957 */
2958 btrfs_set_super_incompat_flags(disk_super, features);
2959
2960 features = btrfs_super_compat_ro_flags(disk_super) &
2961 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2962 if (!sb_rdonly(sb) && features) {
2963 btrfs_err(fs_info,
2964 "cannot mount read-write because of unsupported optional features (%llx)",
2965 features);
2966 err = -EINVAL;
2967 goto fail_csum;
2968 }
2969
2970 ret = btrfs_init_workqueues(fs_info, fs_devices);
2971 if (ret) {
2972 err = ret;
2973 goto fail_sb_buffer;
2974 }
2975
2976 sb->s_bdi->congested_fn = btrfs_congested_fn;
2977 sb->s_bdi->congested_data = fs_info;
2978 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2979 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2980 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2981 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2982
2983 sb->s_blocksize = sectorsize;
2984 sb->s_blocksize_bits = blksize_bits(sectorsize);
2985 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2986
2987 mutex_lock(&fs_info->chunk_mutex);
2988 ret = btrfs_read_sys_array(fs_info);
2989 mutex_unlock(&fs_info->chunk_mutex);
2990 if (ret) {
2991 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2992 goto fail_sb_buffer;
2993 }
2994
2995 generation = btrfs_super_chunk_root_generation(disk_super);
2996 level = btrfs_super_chunk_root_level(disk_super);
2997
2998 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2999
3000 chunk_root->node = read_tree_block(fs_info,
3001 btrfs_super_chunk_root(disk_super),
3002 generation, level, NULL);
3003 if (IS_ERR(chunk_root->node) ||
3004 !extent_buffer_uptodate(chunk_root->node)) {
3005 btrfs_err(fs_info, "failed to read chunk root");
3006 if (!IS_ERR(chunk_root->node))
3007 free_extent_buffer(chunk_root->node);
3008 chunk_root->node = NULL;
3009 goto fail_tree_roots;
3010 }
3011 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3012 chunk_root->commit_root = btrfs_root_node(chunk_root);
3013
3014 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3015 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3016
3017 ret = btrfs_read_chunk_tree(fs_info);
3018 if (ret) {
3019 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3020 goto fail_tree_roots;
3021 }
3022
3023 /*
3024 * Keep the devid that is marked to be the target device for the
3025 * device replace procedure
3026 */
3027 btrfs_free_extra_devids(fs_devices, 0);
3028
3029 if (!fs_devices->latest_bdev) {
3030 btrfs_err(fs_info, "failed to read devices");
3031 goto fail_tree_roots;
3032 }
3033
3034retry_root_backup:
3035 generation = btrfs_super_generation(disk_super);
3036 level = btrfs_super_root_level(disk_super);
3037
3038 tree_root->node = read_tree_block(fs_info,
3039 btrfs_super_root(disk_super),
3040 generation, level, NULL);
3041 if (IS_ERR(tree_root->node) ||
3042 !extent_buffer_uptodate(tree_root->node)) {
3043 btrfs_warn(fs_info, "failed to read tree root");
3044 if (!IS_ERR(tree_root->node))
3045 free_extent_buffer(tree_root->node);
3046 tree_root->node = NULL;
3047 goto recovery_tree_root;
3048 }
3049
3050 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3051 tree_root->commit_root = btrfs_root_node(tree_root);
3052 btrfs_set_root_refs(&tree_root->root_item, 1);
3053
3054 mutex_lock(&tree_root->objectid_mutex);
3055 ret = btrfs_find_highest_objectid(tree_root,
3056 &tree_root->highest_objectid);
3057 if (ret) {
3058 mutex_unlock(&tree_root->objectid_mutex);
3059 goto recovery_tree_root;
3060 }
3061
3062 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3063
3064 mutex_unlock(&tree_root->objectid_mutex);
3065
3066 ret = btrfs_read_roots(fs_info);
3067 if (ret)
3068 goto recovery_tree_root;
3069
3070 fs_info->generation = generation;
3071 fs_info->last_trans_committed = generation;
3072
3073 ret = btrfs_verify_dev_extents(fs_info);
3074 if (ret) {
3075 btrfs_err(fs_info,
3076 "failed to verify dev extents against chunks: %d",
3077 ret);
3078 goto fail_block_groups;
3079 }
3080 ret = btrfs_recover_balance(fs_info);
3081 if (ret) {
3082 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3083 goto fail_block_groups;
3084 }
3085
3086 ret = btrfs_init_dev_stats(fs_info);
3087 if (ret) {
3088 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3089 goto fail_block_groups;
3090 }
3091
3092 ret = btrfs_init_dev_replace(fs_info);
3093 if (ret) {
3094 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3095 goto fail_block_groups;
3096 }
3097
3098 btrfs_free_extra_devids(fs_devices, 1);
3099
3100 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3101 if (ret) {
3102 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3103 ret);
3104 goto fail_block_groups;
3105 }
3106
3107 ret = btrfs_sysfs_add_device(fs_devices);
3108 if (ret) {
3109 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3110 ret);
3111 goto fail_fsdev_sysfs;
3112 }
3113
3114 ret = btrfs_sysfs_add_mounted(fs_info);
3115 if (ret) {
3116 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3117 goto fail_fsdev_sysfs;
3118 }
3119
3120 ret = btrfs_init_space_info(fs_info);
3121 if (ret) {
3122 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3123 goto fail_sysfs;
3124 }
3125
3126 ret = btrfs_read_block_groups(fs_info);
3127 if (ret) {
3128 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3129 goto fail_sysfs;
3130 }
3131
3132 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3133 btrfs_warn(fs_info,
3134 "writable mount is not allowed due to too many missing devices");
3135 goto fail_sysfs;
3136 }
3137
3138 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3139 "btrfs-cleaner");
3140 if (IS_ERR(fs_info->cleaner_kthread))
3141 goto fail_sysfs;
3142
3143 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3144 tree_root,
3145 "btrfs-transaction");
3146 if (IS_ERR(fs_info->transaction_kthread))
3147 goto fail_cleaner;
3148
3149 if (!btrfs_test_opt(fs_info, NOSSD) &&
3150 !fs_info->fs_devices->rotating) {
3151 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3152 }
3153
3154 /*
3155 * Mount does not set all options immediately, we can do it now and do
3156 * not have to wait for transaction commit
3157 */
3158 btrfs_apply_pending_changes(fs_info);
3159
3160#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3161 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3162 ret = btrfsic_mount(fs_info, fs_devices,
3163 btrfs_test_opt(fs_info,
3164 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3165 1 : 0,
3166 fs_info->check_integrity_print_mask);
3167 if (ret)
3168 btrfs_warn(fs_info,
3169 "failed to initialize integrity check module: %d",
3170 ret);
3171 }
3172#endif
3173 ret = btrfs_read_qgroup_config(fs_info);
3174 if (ret)
3175 goto fail_trans_kthread;
3176
3177 if (btrfs_build_ref_tree(fs_info))
3178 btrfs_err(fs_info, "couldn't build ref tree");
3179
3180 /* do not make disk changes in broken FS or nologreplay is given */
3181 if (btrfs_super_log_root(disk_super) != 0 &&
3182 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3183 ret = btrfs_replay_log(fs_info, fs_devices);
3184 if (ret) {
3185 err = ret;
3186 goto fail_qgroup;
3187 }
3188 }
3189
3190 ret = btrfs_find_orphan_roots(fs_info);
3191 if (ret)
3192 goto fail_qgroup;
3193
3194 if (!sb_rdonly(sb)) {
3195 ret = btrfs_cleanup_fs_roots(fs_info);
3196 if (ret)
3197 goto fail_qgroup;
3198
3199 mutex_lock(&fs_info->cleaner_mutex);
3200 ret = btrfs_recover_relocation(tree_root);
3201 mutex_unlock(&fs_info->cleaner_mutex);
3202 if (ret < 0) {
3203 btrfs_warn(fs_info, "failed to recover relocation: %d",
3204 ret);
3205 err = -EINVAL;
3206 goto fail_qgroup;
3207 }
3208 }
3209
3210 location.objectid = BTRFS_FS_TREE_OBJECTID;
3211 location.type = BTRFS_ROOT_ITEM_KEY;
3212 location.offset = 0;
3213
3214 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3215 if (IS_ERR(fs_info->fs_root)) {
3216 err = PTR_ERR(fs_info->fs_root);
3217 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3218 goto fail_qgroup;
3219 }
3220
3221 if (sb_rdonly(sb))
3222 return 0;
3223
3224 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3225 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3226 clear_free_space_tree = 1;
3227 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3228 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3229 btrfs_warn(fs_info, "free space tree is invalid");
3230 clear_free_space_tree = 1;
3231 }
3232
3233 if (clear_free_space_tree) {
3234 btrfs_info(fs_info, "clearing free space tree");
3235 ret = btrfs_clear_free_space_tree(fs_info);
3236 if (ret) {
3237 btrfs_warn(fs_info,
3238 "failed to clear free space tree: %d", ret);
3239 close_ctree(fs_info);
3240 return ret;
3241 }
3242 }
3243
3244 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3245 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3246 btrfs_info(fs_info, "creating free space tree");
3247 ret = btrfs_create_free_space_tree(fs_info);
3248 if (ret) {
3249 btrfs_warn(fs_info,
3250 "failed to create free space tree: %d", ret);
3251 close_ctree(fs_info);
3252 return ret;
3253 }
3254 }
3255
3256 down_read(&fs_info->cleanup_work_sem);
3257 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3258 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3259 up_read(&fs_info->cleanup_work_sem);
3260 close_ctree(fs_info);
3261 return ret;
3262 }
3263 up_read(&fs_info->cleanup_work_sem);
3264
3265 ret = btrfs_resume_balance_async(fs_info);
3266 if (ret) {
3267 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3268 close_ctree(fs_info);
3269 return ret;
3270 }
3271
3272 ret = btrfs_resume_dev_replace_async(fs_info);
3273 if (ret) {
3274 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3275 close_ctree(fs_info);
3276 return ret;
3277 }
3278
3279 btrfs_qgroup_rescan_resume(fs_info);
3280
3281 if (!fs_info->uuid_root) {
3282 btrfs_info(fs_info, "creating UUID tree");
3283 ret = btrfs_create_uuid_tree(fs_info);
3284 if (ret) {
3285 btrfs_warn(fs_info,
3286 "failed to create the UUID tree: %d", ret);
3287 close_ctree(fs_info);
3288 return ret;
3289 }
3290 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3291 fs_info->generation !=
3292 btrfs_super_uuid_tree_generation(disk_super)) {
3293 btrfs_info(fs_info, "checking UUID tree");
3294 ret = btrfs_check_uuid_tree(fs_info);
3295 if (ret) {
3296 btrfs_warn(fs_info,
3297 "failed to check the UUID tree: %d", ret);
3298 close_ctree(fs_info);
3299 return ret;
3300 }
3301 } else {
3302 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3303 }
3304 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3305
3306 /*
3307 * backuproot only affect mount behavior, and if open_ctree succeeded,
3308 * no need to keep the flag
3309 */
3310 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3311
3312 return 0;
3313
3314fail_qgroup:
3315 btrfs_free_qgroup_config(fs_info);
3316fail_trans_kthread:
3317 kthread_stop(fs_info->transaction_kthread);
3318 btrfs_cleanup_transaction(fs_info);
3319 btrfs_free_fs_roots(fs_info);
3320fail_cleaner:
3321 kthread_stop(fs_info->cleaner_kthread);
3322
3323 /*
3324 * make sure we're done with the btree inode before we stop our
3325 * kthreads
3326 */
3327 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3328
3329fail_sysfs:
3330 btrfs_sysfs_remove_mounted(fs_info);
3331
3332fail_fsdev_sysfs:
3333 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3334
3335fail_block_groups:
3336 btrfs_put_block_group_cache(fs_info);
3337
3338fail_tree_roots:
3339 free_root_pointers(fs_info, 1);
3340 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3341
3342fail_sb_buffer:
3343 btrfs_stop_all_workers(fs_info);
3344 btrfs_free_block_groups(fs_info);
3345fail_csum:
3346 btrfs_free_csum_hash(fs_info);
3347fail_alloc:
3348fail_iput:
3349 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3350
3351 iput(fs_info->btree_inode);
3352fail_bio_counter:
3353 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3354fail_delalloc_bytes:
3355 percpu_counter_destroy(&fs_info->delalloc_bytes);
3356fail_dirty_metadata_bytes:
3357 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3358fail_dio_bytes:
3359 percpu_counter_destroy(&fs_info->dio_bytes);
3360fail_srcu:
3361 cleanup_srcu_struct(&fs_info->subvol_srcu);
3362fail:
3363 btrfs_free_stripe_hash_table(fs_info);
3364 btrfs_close_devices(fs_info->fs_devices);
3365 return err;
3366
3367recovery_tree_root:
3368 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3369 goto fail_tree_roots;
3370
3371 free_root_pointers(fs_info, 0);
3372
3373 /* don't use the log in recovery mode, it won't be valid */
3374 btrfs_set_super_log_root(disk_super, 0);
3375
3376 /* we can't trust the free space cache either */
3377 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3378
3379 ret = next_root_backup(fs_info, fs_info->super_copy,
3380 &num_backups_tried, &backup_index);
3381 if (ret == -1)
3382 goto fail_block_groups;
3383 goto retry_root_backup;
3384}
3385ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3386
3387static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3388{
3389 if (uptodate) {
3390 set_buffer_uptodate(bh);
3391 } else {
3392 struct btrfs_device *device = (struct btrfs_device *)
3393 bh->b_private;
3394
3395 btrfs_warn_rl_in_rcu(device->fs_info,
3396 "lost page write due to IO error on %s",
3397 rcu_str_deref(device->name));
3398 /* note, we don't set_buffer_write_io_error because we have
3399 * our own ways of dealing with the IO errors
3400 */
3401 clear_buffer_uptodate(bh);
3402 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3403 }
3404 unlock_buffer(bh);
3405 put_bh(bh);
3406}
3407
3408int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3409 struct buffer_head **bh_ret)
3410{
3411 struct buffer_head *bh;
3412 struct btrfs_super_block *super;
3413 u64 bytenr;
3414
3415 bytenr = btrfs_sb_offset(copy_num);
3416 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3417 return -EINVAL;
3418
3419 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3420 /*
3421 * If we fail to read from the underlying devices, as of now
3422 * the best option we have is to mark it EIO.
3423 */
3424 if (!bh)
3425 return -EIO;
3426
3427 super = (struct btrfs_super_block *)bh->b_data;
3428 if (btrfs_super_bytenr(super) != bytenr ||
3429 btrfs_super_magic(super) != BTRFS_MAGIC) {
3430 brelse(bh);
3431 return -EINVAL;
3432 }
3433
3434 *bh_ret = bh;
3435 return 0;
3436}
3437
3438
3439struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3440{
3441 struct buffer_head *bh;
3442 struct buffer_head *latest = NULL;
3443 struct btrfs_super_block *super;
3444 int i;
3445 u64 transid = 0;
3446 int ret = -EINVAL;
3447
3448 /* we would like to check all the supers, but that would make
3449 * a btrfs mount succeed after a mkfs from a different FS.
3450 * So, we need to add a special mount option to scan for
3451 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3452 */
3453 for (i = 0; i < 1; i++) {
3454 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3455 if (ret)
3456 continue;
3457
3458 super = (struct btrfs_super_block *)bh->b_data;
3459
3460 if (!latest || btrfs_super_generation(super) > transid) {
3461 brelse(latest);
3462 latest = bh;
3463 transid = btrfs_super_generation(super);
3464 } else {
3465 brelse(bh);
3466 }
3467 }
3468
3469 if (!latest)
3470 return ERR_PTR(ret);
3471
3472 return latest;
3473}
3474
3475/*
3476 * Write superblock @sb to the @device. Do not wait for completion, all the
3477 * buffer heads we write are pinned.
3478 *
3479 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3480 * the expected device size at commit time. Note that max_mirrors must be
3481 * same for write and wait phases.
3482 *
3483 * Return number of errors when buffer head is not found or submission fails.
3484 */
3485static int write_dev_supers(struct btrfs_device *device,
3486 struct btrfs_super_block *sb, int max_mirrors)
3487{
3488 struct btrfs_fs_info *fs_info = device->fs_info;
3489 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3490 struct buffer_head *bh;
3491 int i;
3492 int ret;
3493 int errors = 0;
3494 u64 bytenr;
3495 int op_flags;
3496
3497 if (max_mirrors == 0)
3498 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3499
3500 shash->tfm = fs_info->csum_shash;
3501
3502 for (i = 0; i < max_mirrors; i++) {
3503 bytenr = btrfs_sb_offset(i);
3504 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3505 device->commit_total_bytes)
3506 break;
3507
3508 btrfs_set_super_bytenr(sb, bytenr);
3509
3510 crypto_shash_init(shash);
3511 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3512 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3513 crypto_shash_final(shash, sb->csum);
3514
3515 /* One reference for us, and we leave it for the caller */
3516 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3517 BTRFS_SUPER_INFO_SIZE);
3518 if (!bh) {
3519 btrfs_err(device->fs_info,
3520 "couldn't get super buffer head for bytenr %llu",
3521 bytenr);
3522 errors++;
3523 continue;
3524 }
3525
3526 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3527
3528 /* one reference for submit_bh */
3529 get_bh(bh);
3530
3531 set_buffer_uptodate(bh);
3532 lock_buffer(bh);
3533 bh->b_end_io = btrfs_end_buffer_write_sync;
3534 bh->b_private = device;
3535
3536 /*
3537 * we fua the first super. The others we allow
3538 * to go down lazy.
3539 */
3540 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3541 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3542 op_flags |= REQ_FUA;
3543 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3544 if (ret)
3545 errors++;
3546 }
3547 return errors < i ? 0 : -1;
3548}
3549
3550/*
3551 * Wait for write completion of superblocks done by write_dev_supers,
3552 * @max_mirrors same for write and wait phases.
3553 *
3554 * Return number of errors when buffer head is not found or not marked up to
3555 * date.
3556 */
3557static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3558{
3559 struct buffer_head *bh;
3560 int i;
3561 int errors = 0;
3562 bool primary_failed = false;
3563 u64 bytenr;
3564
3565 if (max_mirrors == 0)
3566 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3567
3568 for (i = 0; i < max_mirrors; i++) {
3569 bytenr = btrfs_sb_offset(i);
3570 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3571 device->commit_total_bytes)
3572 break;
3573
3574 bh = __find_get_block(device->bdev,
3575 bytenr / BTRFS_BDEV_BLOCKSIZE,
3576 BTRFS_SUPER_INFO_SIZE);
3577 if (!bh) {
3578 errors++;
3579 if (i == 0)
3580 primary_failed = true;
3581 continue;
3582 }
3583 wait_on_buffer(bh);
3584 if (!buffer_uptodate(bh)) {
3585 errors++;
3586 if (i == 0)
3587 primary_failed = true;
3588 }
3589
3590 /* drop our reference */
3591 brelse(bh);
3592
3593 /* drop the reference from the writing run */
3594 brelse(bh);
3595 }
3596
3597 /* log error, force error return */
3598 if (primary_failed) {
3599 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3600 device->devid);
3601 return -1;
3602 }
3603
3604 return errors < i ? 0 : -1;
3605}
3606
3607/*
3608 * endio for the write_dev_flush, this will wake anyone waiting
3609 * for the barrier when it is done
3610 */
3611static void btrfs_end_empty_barrier(struct bio *bio)
3612{
3613 complete(bio->bi_private);
3614}
3615
3616/*
3617 * Submit a flush request to the device if it supports it. Error handling is
3618 * done in the waiting counterpart.
3619 */
3620static void write_dev_flush(struct btrfs_device *device)
3621{
3622 struct request_queue *q = bdev_get_queue(device->bdev);
3623 struct bio *bio = device->flush_bio;
3624
3625 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3626 return;
3627
3628 bio_reset(bio);
3629 bio->bi_end_io = btrfs_end_empty_barrier;
3630 bio_set_dev(bio, device->bdev);
3631 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3632 init_completion(&device->flush_wait);
3633 bio->bi_private = &device->flush_wait;
3634
3635 btrfsic_submit_bio(bio);
3636 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3637}
3638
3639/*
3640 * If the flush bio has been submitted by write_dev_flush, wait for it.
3641 */
3642static blk_status_t wait_dev_flush(struct btrfs_device *device)
3643{
3644 struct bio *bio = device->flush_bio;
3645
3646 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3647 return BLK_STS_OK;
3648
3649 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3650 wait_for_completion_io(&device->flush_wait);
3651
3652 return bio->bi_status;
3653}
3654
3655static int check_barrier_error(struct btrfs_fs_info *fs_info)
3656{
3657 if (!btrfs_check_rw_degradable(fs_info, NULL))
3658 return -EIO;
3659 return 0;
3660}
3661
3662/*
3663 * send an empty flush down to each device in parallel,
3664 * then wait for them
3665 */
3666static int barrier_all_devices(struct btrfs_fs_info *info)
3667{
3668 struct list_head *head;
3669 struct btrfs_device *dev;
3670 int errors_wait = 0;
3671 blk_status_t ret;
3672
3673 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3674 /* send down all the barriers */
3675 head = &info->fs_devices->devices;
3676 list_for_each_entry(dev, head, dev_list) {
3677 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3678 continue;
3679 if (!dev->bdev)
3680 continue;
3681 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3682 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3683 continue;
3684
3685 write_dev_flush(dev);
3686 dev->last_flush_error = BLK_STS_OK;
3687 }
3688
3689 /* wait for all the barriers */
3690 list_for_each_entry(dev, head, dev_list) {
3691 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3692 continue;
3693 if (!dev->bdev) {
3694 errors_wait++;
3695 continue;
3696 }
3697 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3698 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3699 continue;
3700
3701 ret = wait_dev_flush(dev);
3702 if (ret) {
3703 dev->last_flush_error = ret;
3704 btrfs_dev_stat_inc_and_print(dev,
3705 BTRFS_DEV_STAT_FLUSH_ERRS);
3706 errors_wait++;
3707 }
3708 }
3709
3710 if (errors_wait) {
3711 /*
3712 * At some point we need the status of all disks
3713 * to arrive at the volume status. So error checking
3714 * is being pushed to a separate loop.
3715 */
3716 return check_barrier_error(info);
3717 }
3718 return 0;
3719}
3720
3721int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3722{
3723 int raid_type;
3724 int min_tolerated = INT_MAX;
3725
3726 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3727 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3728 min_tolerated = min_t(int, min_tolerated,
3729 btrfs_raid_array[BTRFS_RAID_SINGLE].
3730 tolerated_failures);
3731
3732 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3733 if (raid_type == BTRFS_RAID_SINGLE)
3734 continue;
3735 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3736 continue;
3737 min_tolerated = min_t(int, min_tolerated,
3738 btrfs_raid_array[raid_type].
3739 tolerated_failures);
3740 }
3741
3742 if (min_tolerated == INT_MAX) {
3743 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3744 min_tolerated = 0;
3745 }
3746
3747 return min_tolerated;
3748}
3749
3750int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3751{
3752 struct list_head *head;
3753 struct btrfs_device *dev;
3754 struct btrfs_super_block *sb;
3755 struct btrfs_dev_item *dev_item;
3756 int ret;
3757 int do_barriers;
3758 int max_errors;
3759 int total_errors = 0;
3760 u64 flags;
3761
3762 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3763
3764 /*
3765 * max_mirrors == 0 indicates we're from commit_transaction,
3766 * not from fsync where the tree roots in fs_info have not
3767 * been consistent on disk.
3768 */
3769 if (max_mirrors == 0)
3770 backup_super_roots(fs_info);
3771
3772 sb = fs_info->super_for_commit;
3773 dev_item = &sb->dev_item;
3774
3775 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3776 head = &fs_info->fs_devices->devices;
3777 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3778
3779 if (do_barriers) {
3780 ret = barrier_all_devices(fs_info);
3781 if (ret) {
3782 mutex_unlock(
3783 &fs_info->fs_devices->device_list_mutex);
3784 btrfs_handle_fs_error(fs_info, ret,
3785 "errors while submitting device barriers.");
3786 return ret;
3787 }
3788 }
3789
3790 list_for_each_entry(dev, head, dev_list) {
3791 if (!dev->bdev) {
3792 total_errors++;
3793 continue;
3794 }
3795 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3796 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3797 continue;
3798
3799 btrfs_set_stack_device_generation(dev_item, 0);
3800 btrfs_set_stack_device_type(dev_item, dev->type);
3801 btrfs_set_stack_device_id(dev_item, dev->devid);
3802 btrfs_set_stack_device_total_bytes(dev_item,
3803 dev->commit_total_bytes);
3804 btrfs_set_stack_device_bytes_used(dev_item,
3805 dev->commit_bytes_used);
3806 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3807 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3808 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3809 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3810 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3811 BTRFS_FSID_SIZE);
3812
3813 flags = btrfs_super_flags(sb);
3814 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3815
3816 ret = btrfs_validate_write_super(fs_info, sb);
3817 if (ret < 0) {
3818 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3819 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3820 "unexpected superblock corruption detected");
3821 return -EUCLEAN;
3822 }
3823
3824 ret = write_dev_supers(dev, sb, max_mirrors);
3825 if (ret)
3826 total_errors++;
3827 }
3828 if (total_errors > max_errors) {
3829 btrfs_err(fs_info, "%d errors while writing supers",
3830 total_errors);
3831 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3832
3833 /* FUA is masked off if unsupported and can't be the reason */
3834 btrfs_handle_fs_error(fs_info, -EIO,
3835 "%d errors while writing supers",
3836 total_errors);
3837 return -EIO;
3838 }
3839
3840 total_errors = 0;
3841 list_for_each_entry(dev, head, dev_list) {
3842 if (!dev->bdev)
3843 continue;
3844 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3845 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3846 continue;
3847
3848 ret = wait_dev_supers(dev, max_mirrors);
3849 if (ret)
3850 total_errors++;
3851 }
3852 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3853 if (total_errors > max_errors) {
3854 btrfs_handle_fs_error(fs_info, -EIO,
3855 "%d errors while writing supers",
3856 total_errors);
3857 return -EIO;
3858 }
3859 return 0;
3860}
3861
3862/* Drop a fs root from the radix tree and free it. */
3863void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3864 struct btrfs_root *root)
3865{
3866 spin_lock(&fs_info->fs_roots_radix_lock);
3867 radix_tree_delete(&fs_info->fs_roots_radix,
3868 (unsigned long)root->root_key.objectid);
3869 spin_unlock(&fs_info->fs_roots_radix_lock);
3870
3871 if (btrfs_root_refs(&root->root_item) == 0)
3872 synchronize_srcu(&fs_info->subvol_srcu);
3873
3874 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3875 btrfs_free_log(NULL, root);
3876 if (root->reloc_root) {
3877 free_extent_buffer(root->reloc_root->node);
3878 free_extent_buffer(root->reloc_root->commit_root);
3879 btrfs_put_fs_root(root->reloc_root);
3880 root->reloc_root = NULL;
3881 }
3882 }
3883
3884 if (root->free_ino_pinned)
3885 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3886 if (root->free_ino_ctl)
3887 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3888 btrfs_free_fs_root(root);
3889}
3890
3891void btrfs_free_fs_root(struct btrfs_root *root)
3892{
3893 iput(root->ino_cache_inode);
3894 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3895 if (root->anon_dev)
3896 free_anon_bdev(root->anon_dev);
3897 if (root->subv_writers)
3898 btrfs_free_subvolume_writers(root->subv_writers);
3899 free_extent_buffer(root->node);
3900 free_extent_buffer(root->commit_root);
3901 kfree(root->free_ino_ctl);
3902 kfree(root->free_ino_pinned);
3903 btrfs_put_fs_root(root);
3904}
3905
3906int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3907{
3908 u64 root_objectid = 0;
3909 struct btrfs_root *gang[8];
3910 int i = 0;
3911 int err = 0;
3912 unsigned int ret = 0;
3913 int index;
3914
3915 while (1) {
3916 index = srcu_read_lock(&fs_info->subvol_srcu);
3917 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3918 (void **)gang, root_objectid,
3919 ARRAY_SIZE(gang));
3920 if (!ret) {
3921 srcu_read_unlock(&fs_info->subvol_srcu, index);
3922 break;
3923 }
3924 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3925
3926 for (i = 0; i < ret; i++) {
3927 /* Avoid to grab roots in dead_roots */
3928 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3929 gang[i] = NULL;
3930 continue;
3931 }
3932 /* grab all the search result for later use */
3933 gang[i] = btrfs_grab_fs_root(gang[i]);
3934 }
3935 srcu_read_unlock(&fs_info->subvol_srcu, index);
3936
3937 for (i = 0; i < ret; i++) {
3938 if (!gang[i])
3939 continue;
3940 root_objectid = gang[i]->root_key.objectid;
3941 err = btrfs_orphan_cleanup(gang[i]);
3942 if (err)
3943 break;
3944 btrfs_put_fs_root(gang[i]);
3945 }
3946 root_objectid++;
3947 }
3948
3949 /* release the uncleaned roots due to error */
3950 for (; i < ret; i++) {
3951 if (gang[i])
3952 btrfs_put_fs_root(gang[i]);
3953 }
3954 return err;
3955}
3956
3957int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3958{
3959 struct btrfs_root *root = fs_info->tree_root;
3960 struct btrfs_trans_handle *trans;
3961
3962 mutex_lock(&fs_info->cleaner_mutex);
3963 btrfs_run_delayed_iputs(fs_info);
3964 mutex_unlock(&fs_info->cleaner_mutex);
3965 wake_up_process(fs_info->cleaner_kthread);
3966
3967 /* wait until ongoing cleanup work done */
3968 down_write(&fs_info->cleanup_work_sem);
3969 up_write(&fs_info->cleanup_work_sem);
3970
3971 trans = btrfs_join_transaction(root);
3972 if (IS_ERR(trans))
3973 return PTR_ERR(trans);
3974 return btrfs_commit_transaction(trans);
3975}
3976
3977void close_ctree(struct btrfs_fs_info *fs_info)
3978{
3979 int ret;
3980
3981 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3982 /*
3983 * We don't want the cleaner to start new transactions, add more delayed
3984 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3985 * because that frees the task_struct, and the transaction kthread might
3986 * still try to wake up the cleaner.
3987 */
3988 kthread_park(fs_info->cleaner_kthread);
3989
3990 /* wait for the qgroup rescan worker to stop */
3991 btrfs_qgroup_wait_for_completion(fs_info, false);
3992
3993 /* wait for the uuid_scan task to finish */
3994 down(&fs_info->uuid_tree_rescan_sem);
3995 /* avoid complains from lockdep et al., set sem back to initial state */
3996 up(&fs_info->uuid_tree_rescan_sem);
3997
3998 /* pause restriper - we want to resume on mount */
3999 btrfs_pause_balance(fs_info);
4000
4001 btrfs_dev_replace_suspend_for_unmount(fs_info);
4002
4003 btrfs_scrub_cancel(fs_info);
4004
4005 /* wait for any defraggers to finish */
4006 wait_event(fs_info->transaction_wait,
4007 (atomic_read(&fs_info->defrag_running) == 0));
4008
4009 /* clear out the rbtree of defraggable inodes */
4010 btrfs_cleanup_defrag_inodes(fs_info);
4011
4012 cancel_work_sync(&fs_info->async_reclaim_work);
4013
4014 if (!sb_rdonly(fs_info->sb)) {
4015 /*
4016 * The cleaner kthread is stopped, so do one final pass over
4017 * unused block groups.
4018 */
4019 btrfs_delete_unused_bgs(fs_info);
4020
4021 ret = btrfs_commit_super(fs_info);
4022 if (ret)
4023 btrfs_err(fs_info, "commit super ret %d", ret);
4024 }
4025
4026 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4027 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4028 btrfs_error_commit_super(fs_info);
4029
4030 kthread_stop(fs_info->transaction_kthread);
4031 kthread_stop(fs_info->cleaner_kthread);
4032
4033 ASSERT(list_empty(&fs_info->delayed_iputs));
4034 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4035
4036 btrfs_free_qgroup_config(fs_info);
4037 ASSERT(list_empty(&fs_info->delalloc_roots));
4038
4039 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4040 btrfs_info(fs_info, "at unmount delalloc count %lld",
4041 percpu_counter_sum(&fs_info->delalloc_bytes));
4042 }
4043
4044 if (percpu_counter_sum(&fs_info->dio_bytes))
4045 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4046 percpu_counter_sum(&fs_info->dio_bytes));
4047
4048 btrfs_sysfs_remove_mounted(fs_info);
4049 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4050
4051 btrfs_free_fs_roots(fs_info);
4052
4053 btrfs_put_block_group_cache(fs_info);
4054
4055 /*
4056 * we must make sure there is not any read request to
4057 * submit after we stopping all workers.
4058 */
4059 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4060 btrfs_stop_all_workers(fs_info);
4061
4062 btrfs_free_block_groups(fs_info);
4063
4064 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4065 free_root_pointers(fs_info, 1);
4066
4067 iput(fs_info->btree_inode);
4068
4069#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4070 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4071 btrfsic_unmount(fs_info->fs_devices);
4072#endif
4073
4074 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4075 btrfs_close_devices(fs_info->fs_devices);
4076
4077 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4078 percpu_counter_destroy(&fs_info->delalloc_bytes);
4079 percpu_counter_destroy(&fs_info->dio_bytes);
4080 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4081 cleanup_srcu_struct(&fs_info->subvol_srcu);
4082
4083 btrfs_free_csum_hash(fs_info);
4084 btrfs_free_stripe_hash_table(fs_info);
4085 btrfs_free_ref_cache(fs_info);
4086}
4087
4088int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4089 int atomic)
4090{
4091 int ret;
4092 struct inode *btree_inode = buf->pages[0]->mapping->host;
4093
4094 ret = extent_buffer_uptodate(buf);
4095 if (!ret)
4096 return ret;
4097
4098 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4099 parent_transid, atomic);
4100 if (ret == -EAGAIN)
4101 return ret;
4102 return !ret;
4103}
4104
4105void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4106{
4107 struct btrfs_fs_info *fs_info;
4108 struct btrfs_root *root;
4109 u64 transid = btrfs_header_generation(buf);
4110 int was_dirty;
4111
4112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4113 /*
4114 * This is a fast path so only do this check if we have sanity tests
4115 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4116 * outside of the sanity tests.
4117 */
4118 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4119 return;
4120#endif
4121 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4122 fs_info = root->fs_info;
4123 btrfs_assert_tree_locked(buf);
4124 if (transid != fs_info->generation)
4125 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4126 buf->start, transid, fs_info->generation);
4127 was_dirty = set_extent_buffer_dirty(buf);
4128 if (!was_dirty)
4129 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4130 buf->len,
4131 fs_info->dirty_metadata_batch);
4132#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4133 /*
4134 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4135 * but item data not updated.
4136 * So here we should only check item pointers, not item data.
4137 */
4138 if (btrfs_header_level(buf) == 0 &&
4139 btrfs_check_leaf_relaxed(buf)) {
4140 btrfs_print_leaf(buf);
4141 ASSERT(0);
4142 }
4143#endif
4144}
4145
4146static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4147 int flush_delayed)
4148{
4149 /*
4150 * looks as though older kernels can get into trouble with
4151 * this code, they end up stuck in balance_dirty_pages forever
4152 */
4153 int ret;
4154
4155 if (current->flags & PF_MEMALLOC)
4156 return;
4157
4158 if (flush_delayed)
4159 btrfs_balance_delayed_items(fs_info);
4160
4161 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4162 BTRFS_DIRTY_METADATA_THRESH,
4163 fs_info->dirty_metadata_batch);
4164 if (ret > 0) {
4165 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4166 }
4167}
4168
4169void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4170{
4171 __btrfs_btree_balance_dirty(fs_info, 1);
4172}
4173
4174void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4175{
4176 __btrfs_btree_balance_dirty(fs_info, 0);
4177}
4178
4179int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4180 struct btrfs_key *first_key)
4181{
4182 return btree_read_extent_buffer_pages(buf, parent_transid,
4183 level, first_key);
4184}
4185
4186static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4187{
4188 /* cleanup FS via transaction */
4189 btrfs_cleanup_transaction(fs_info);
4190
4191 mutex_lock(&fs_info->cleaner_mutex);
4192 btrfs_run_delayed_iputs(fs_info);
4193 mutex_unlock(&fs_info->cleaner_mutex);
4194
4195 down_write(&fs_info->cleanup_work_sem);
4196 up_write(&fs_info->cleanup_work_sem);
4197}
4198
4199static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4200{
4201 struct btrfs_ordered_extent *ordered;
4202
4203 spin_lock(&root->ordered_extent_lock);
4204 /*
4205 * This will just short circuit the ordered completion stuff which will
4206 * make sure the ordered extent gets properly cleaned up.
4207 */
4208 list_for_each_entry(ordered, &root->ordered_extents,
4209 root_extent_list)
4210 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4211 spin_unlock(&root->ordered_extent_lock);
4212}
4213
4214static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4215{
4216 struct btrfs_root *root;
4217 struct list_head splice;
4218
4219 INIT_LIST_HEAD(&splice);
4220
4221 spin_lock(&fs_info->ordered_root_lock);
4222 list_splice_init(&fs_info->ordered_roots, &splice);
4223 while (!list_empty(&splice)) {
4224 root = list_first_entry(&splice, struct btrfs_root,
4225 ordered_root);
4226 list_move_tail(&root->ordered_root,
4227 &fs_info->ordered_roots);
4228
4229 spin_unlock(&fs_info->ordered_root_lock);
4230 btrfs_destroy_ordered_extents(root);
4231
4232 cond_resched();
4233 spin_lock(&fs_info->ordered_root_lock);
4234 }
4235 spin_unlock(&fs_info->ordered_root_lock);
4236
4237 /*
4238 * We need this here because if we've been flipped read-only we won't
4239 * get sync() from the umount, so we need to make sure any ordered
4240 * extents that haven't had their dirty pages IO start writeout yet
4241 * actually get run and error out properly.
4242 */
4243 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4244}
4245
4246static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4247 struct btrfs_fs_info *fs_info)
4248{
4249 struct rb_node *node;
4250 struct btrfs_delayed_ref_root *delayed_refs;
4251 struct btrfs_delayed_ref_node *ref;
4252 int ret = 0;
4253
4254 delayed_refs = &trans->delayed_refs;
4255
4256 spin_lock(&delayed_refs->lock);
4257 if (atomic_read(&delayed_refs->num_entries) == 0) {
4258 spin_unlock(&delayed_refs->lock);
4259 btrfs_info(fs_info, "delayed_refs has NO entry");
4260 return ret;
4261 }
4262
4263 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4264 struct btrfs_delayed_ref_head *head;
4265 struct rb_node *n;
4266 bool pin_bytes = false;
4267
4268 head = rb_entry(node, struct btrfs_delayed_ref_head,
4269 href_node);
4270 if (btrfs_delayed_ref_lock(delayed_refs, head))
4271 continue;
4272
4273 spin_lock(&head->lock);
4274 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4275 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4276 ref_node);
4277 ref->in_tree = 0;
4278 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4279 RB_CLEAR_NODE(&ref->ref_node);
4280 if (!list_empty(&ref->add_list))
4281 list_del(&ref->add_list);
4282 atomic_dec(&delayed_refs->num_entries);
4283 btrfs_put_delayed_ref(ref);
4284 }
4285 if (head->must_insert_reserved)
4286 pin_bytes = true;
4287 btrfs_free_delayed_extent_op(head->extent_op);
4288 btrfs_delete_ref_head(delayed_refs, head);
4289 spin_unlock(&head->lock);
4290 spin_unlock(&delayed_refs->lock);
4291 mutex_unlock(&head->mutex);
4292
4293 if (pin_bytes)
4294 btrfs_pin_extent(fs_info, head->bytenr,
4295 head->num_bytes, 1);
4296 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4297 btrfs_put_delayed_ref_head(head);
4298 cond_resched();
4299 spin_lock(&delayed_refs->lock);
4300 }
4301
4302 spin_unlock(&delayed_refs->lock);
4303
4304 return ret;
4305}
4306
4307static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4308{
4309 struct btrfs_inode *btrfs_inode;
4310 struct list_head splice;
4311
4312 INIT_LIST_HEAD(&splice);
4313
4314 spin_lock(&root->delalloc_lock);
4315 list_splice_init(&root->delalloc_inodes, &splice);
4316
4317 while (!list_empty(&splice)) {
4318 struct inode *inode = NULL;
4319 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4320 delalloc_inodes);
4321 __btrfs_del_delalloc_inode(root, btrfs_inode);
4322 spin_unlock(&root->delalloc_lock);
4323
4324 /*
4325 * Make sure we get a live inode and that it'll not disappear
4326 * meanwhile.
4327 */
4328 inode = igrab(&btrfs_inode->vfs_inode);
4329 if (inode) {
4330 invalidate_inode_pages2(inode->i_mapping);
4331 iput(inode);
4332 }
4333 spin_lock(&root->delalloc_lock);
4334 }
4335 spin_unlock(&root->delalloc_lock);
4336}
4337
4338static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4339{
4340 struct btrfs_root *root;
4341 struct list_head splice;
4342
4343 INIT_LIST_HEAD(&splice);
4344
4345 spin_lock(&fs_info->delalloc_root_lock);
4346 list_splice_init(&fs_info->delalloc_roots, &splice);
4347 while (!list_empty(&splice)) {
4348 root = list_first_entry(&splice, struct btrfs_root,
4349 delalloc_root);
4350 root = btrfs_grab_fs_root(root);
4351 BUG_ON(!root);
4352 spin_unlock(&fs_info->delalloc_root_lock);
4353
4354 btrfs_destroy_delalloc_inodes(root);
4355 btrfs_put_fs_root(root);
4356
4357 spin_lock(&fs_info->delalloc_root_lock);
4358 }
4359 spin_unlock(&fs_info->delalloc_root_lock);
4360}
4361
4362static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4363 struct extent_io_tree *dirty_pages,
4364 int mark)
4365{
4366 int ret;
4367 struct extent_buffer *eb;
4368 u64 start = 0;
4369 u64 end;
4370
4371 while (1) {
4372 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4373 mark, NULL);
4374 if (ret)
4375 break;
4376
4377 clear_extent_bits(dirty_pages, start, end, mark);
4378 while (start <= end) {
4379 eb = find_extent_buffer(fs_info, start);
4380 start += fs_info->nodesize;
4381 if (!eb)
4382 continue;
4383 wait_on_extent_buffer_writeback(eb);
4384
4385 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4386 &eb->bflags))
4387 clear_extent_buffer_dirty(eb);
4388 free_extent_buffer_stale(eb);
4389 }
4390 }
4391
4392 return ret;
4393}
4394
4395static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4396 struct extent_io_tree *pinned_extents)
4397{
4398 struct extent_io_tree *unpin;
4399 u64 start;
4400 u64 end;
4401 int ret;
4402 bool loop = true;
4403
4404 unpin = pinned_extents;
4405again:
4406 while (1) {
4407 struct extent_state *cached_state = NULL;
4408
4409 /*
4410 * The btrfs_finish_extent_commit() may get the same range as
4411 * ours between find_first_extent_bit and clear_extent_dirty.
4412 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4413 * the same extent range.
4414 */
4415 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4416 ret = find_first_extent_bit(unpin, 0, &start, &end,
4417 EXTENT_DIRTY, &cached_state);
4418 if (ret) {
4419 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4420 break;
4421 }
4422
4423 clear_extent_dirty(unpin, start, end, &cached_state);
4424 free_extent_state(cached_state);
4425 btrfs_error_unpin_extent_range(fs_info, start, end);
4426 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4427 cond_resched();
4428 }
4429
4430 if (loop) {
4431 if (unpin == &fs_info->freed_extents[0])
4432 unpin = &fs_info->freed_extents[1];
4433 else
4434 unpin = &fs_info->freed_extents[0];
4435 loop = false;
4436 goto again;
4437 }
4438
4439 return 0;
4440}
4441
4442static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4443{
4444 struct inode *inode;
4445
4446 inode = cache->io_ctl.inode;
4447 if (inode) {
4448 invalidate_inode_pages2(inode->i_mapping);
4449 BTRFS_I(inode)->generation = 0;
4450 cache->io_ctl.inode = NULL;
4451 iput(inode);
4452 }
4453 btrfs_put_block_group(cache);
4454}
4455
4456void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4457 struct btrfs_fs_info *fs_info)
4458{
4459 struct btrfs_block_group_cache *cache;
4460
4461 spin_lock(&cur_trans->dirty_bgs_lock);
4462 while (!list_empty(&cur_trans->dirty_bgs)) {
4463 cache = list_first_entry(&cur_trans->dirty_bgs,
4464 struct btrfs_block_group_cache,
4465 dirty_list);
4466
4467 if (!list_empty(&cache->io_list)) {
4468 spin_unlock(&cur_trans->dirty_bgs_lock);
4469 list_del_init(&cache->io_list);
4470 btrfs_cleanup_bg_io(cache);
4471 spin_lock(&cur_trans->dirty_bgs_lock);
4472 }
4473
4474 list_del_init(&cache->dirty_list);
4475 spin_lock(&cache->lock);
4476 cache->disk_cache_state = BTRFS_DC_ERROR;
4477 spin_unlock(&cache->lock);
4478
4479 spin_unlock(&cur_trans->dirty_bgs_lock);
4480 btrfs_put_block_group(cache);
4481 btrfs_delayed_refs_rsv_release(fs_info, 1);
4482 spin_lock(&cur_trans->dirty_bgs_lock);
4483 }
4484 spin_unlock(&cur_trans->dirty_bgs_lock);
4485
4486 /*
4487 * Refer to the definition of io_bgs member for details why it's safe
4488 * to use it without any locking
4489 */
4490 while (!list_empty(&cur_trans->io_bgs)) {
4491 cache = list_first_entry(&cur_trans->io_bgs,
4492 struct btrfs_block_group_cache,
4493 io_list);
4494
4495 list_del_init(&cache->io_list);
4496 spin_lock(&cache->lock);
4497 cache->disk_cache_state = BTRFS_DC_ERROR;
4498 spin_unlock(&cache->lock);
4499 btrfs_cleanup_bg_io(cache);
4500 }
4501}
4502
4503void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4504 struct btrfs_fs_info *fs_info)
4505{
4506 struct btrfs_device *dev, *tmp;
4507
4508 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4509 ASSERT(list_empty(&cur_trans->dirty_bgs));
4510 ASSERT(list_empty(&cur_trans->io_bgs));
4511
4512 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4513 post_commit_list) {
4514 list_del_init(&dev->post_commit_list);
4515 }
4516
4517 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4518
4519 cur_trans->state = TRANS_STATE_COMMIT_START;
4520 wake_up(&fs_info->transaction_blocked_wait);
4521
4522 cur_trans->state = TRANS_STATE_UNBLOCKED;
4523 wake_up(&fs_info->transaction_wait);
4524
4525 btrfs_destroy_delayed_inodes(fs_info);
4526 btrfs_assert_delayed_root_empty(fs_info);
4527
4528 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4529 EXTENT_DIRTY);
4530 btrfs_destroy_pinned_extent(fs_info,
4531 fs_info->pinned_extents);
4532
4533 cur_trans->state =TRANS_STATE_COMPLETED;
4534 wake_up(&cur_trans->commit_wait);
4535}
4536
4537static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4538{
4539 struct btrfs_transaction *t;
4540
4541 mutex_lock(&fs_info->transaction_kthread_mutex);
4542
4543 spin_lock(&fs_info->trans_lock);
4544 while (!list_empty(&fs_info->trans_list)) {
4545 t = list_first_entry(&fs_info->trans_list,
4546 struct btrfs_transaction, list);
4547 if (t->state >= TRANS_STATE_COMMIT_START) {
4548 refcount_inc(&t->use_count);
4549 spin_unlock(&fs_info->trans_lock);
4550 btrfs_wait_for_commit(fs_info, t->transid);
4551 btrfs_put_transaction(t);
4552 spin_lock(&fs_info->trans_lock);
4553 continue;
4554 }
4555 if (t == fs_info->running_transaction) {
4556 t->state = TRANS_STATE_COMMIT_DOING;
4557 spin_unlock(&fs_info->trans_lock);
4558 /*
4559 * We wait for 0 num_writers since we don't hold a trans
4560 * handle open currently for this transaction.
4561 */
4562 wait_event(t->writer_wait,
4563 atomic_read(&t->num_writers) == 0);
4564 } else {
4565 spin_unlock(&fs_info->trans_lock);
4566 }
4567 btrfs_cleanup_one_transaction(t, fs_info);
4568
4569 spin_lock(&fs_info->trans_lock);
4570 if (t == fs_info->running_transaction)
4571 fs_info->running_transaction = NULL;
4572 list_del_init(&t->list);
4573 spin_unlock(&fs_info->trans_lock);
4574
4575 btrfs_put_transaction(t);
4576 trace_btrfs_transaction_commit(fs_info->tree_root);
4577 spin_lock(&fs_info->trans_lock);
4578 }
4579 spin_unlock(&fs_info->trans_lock);
4580 btrfs_destroy_all_ordered_extents(fs_info);
4581 btrfs_destroy_delayed_inodes(fs_info);
4582 btrfs_assert_delayed_root_empty(fs_info);
4583 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4584 btrfs_destroy_all_delalloc_inodes(fs_info);
4585 mutex_unlock(&fs_info->transaction_kthread_mutex);
4586
4587 return 0;
4588}
4589
4590static const struct extent_io_ops btree_extent_io_ops = {
4591 /* mandatory callbacks */
4592 .submit_bio_hook = btree_submit_bio_hook,
4593 .readpage_end_io_hook = btree_readpage_end_io_hook,
4594};
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/blkdev.h>
21#include <linux/scatterlist.h>
22#include <linux/swap.h>
23#include <linux/radix-tree.h>
24#include <linux/writeback.h>
25#include <linux/buffer_head.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28#include <linux/freezer.h>
29#include <linux/crc32c.h>
30#include <linux/slab.h>
31#include <linux/migrate.h>
32#include <linux/ratelimit.h>
33#include <asm/unaligned.h>
34#include "compat.h"
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "print-tree.h"
41#include "async-thread.h"
42#include "locking.h"
43#include "tree-log.h"
44#include "free-space-cache.h"
45#include "inode-map.h"
46#include "check-integrity.h"
47#include "rcu-string.h"
48
49static struct extent_io_ops btree_extent_io_ops;
50static void end_workqueue_fn(struct btrfs_work *work);
51static void free_fs_root(struct btrfs_root *root);
52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53 int read_only);
54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
65
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
77 int metadata;
78 struct list_head list;
79 struct btrfs_work work;
80};
81
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
93 int rw;
94 int mirror_num;
95 unsigned long bio_flags;
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
101 struct btrfs_work work;
102 int error;
103};
104
105/*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
115 *
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
119 *
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
123 *
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
127 */
128#ifdef CONFIG_DEBUG_LOCK_ALLOC
129# if BTRFS_MAX_LEVEL != 8
130# error
131# endif
132
133static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138} btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
150};
151
152void __init btrfs_init_lockdep(void)
153{
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164}
165
166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168{
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180}
181
182#endif
183
184/*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
188static struct extent_map *btree_get_extent(struct inode *inode,
189 struct page *page, size_t pg_offset, u64 start, u64 len,
190 int create)
191{
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
196 read_lock(&em_tree->lock);
197 em = lookup_extent_mapping(em_tree, start, len);
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201 read_unlock(&em_tree->lock);
202 goto out;
203 }
204 read_unlock(&em_tree->lock);
205
206 em = alloc_extent_map();
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
212 em->len = (u64)-1;
213 em->block_len = (u64)-1;
214 em->block_start = 0;
215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216
217 write_lock(&em_tree->lock);
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
223 free_extent_map(em);
224 em = lookup_extent_mapping(em_tree, start, len);
225 if (em) {
226 ret = 0;
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
230 ret = -EIO;
231 }
232 } else if (ret) {
233 free_extent_map(em);
234 em = NULL;
235 }
236 write_unlock(&em_tree->lock);
237
238 if (ret)
239 em = ERR_PTR(ret);
240out:
241 return em;
242}
243
244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245{
246 return crc32c(seed, data, len);
247}
248
249void btrfs_csum_final(u32 crc, char *result)
250{
251 put_unaligned_le32(~crc, result);
252}
253
254/*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260{
261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 char *result = NULL;
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
271 unsigned long inline_result;
272
273 len = buf->len - offset;
274 while (len > 0) {
275 err = map_private_extent_buffer(buf, offset, 32,
276 &kaddr, &map_start, &map_len);
277 if (err)
278 return 1;
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
284 }
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 u32 val;
298 u32 found = 0;
299 memcpy(&found, result, csum_size);
300
301 read_extent_buffer(buf, &val, 0, csum_size);
302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
308 if (result != (char *)&inline_result)
309 kfree(result);
310 return 1;
311 }
312 } else {
313 write_extent_buffer(buf, result, 0, csum_size);
314 }
315 if (result != (char *)&inline_result)
316 kfree(result);
317 return 0;
318}
319
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
326static int verify_parent_transid(struct extent_io_tree *io_tree,
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
329{
330 struct extent_state *cached_state = NULL;
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
336 if (atomic)
337 return -EAGAIN;
338
339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 0, &cached_state);
341 if (extent_buffer_uptodate(eb) &&
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
351 ret = 1;
352 clear_extent_buffer_uptodate(eb);
353out:
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
356 return ret;
357}
358
359/*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
365 u64 start, u64 parent_transid)
366{
367 struct extent_io_tree *io_tree;
368 int failed = 0;
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
372 int failed_mirror = 0;
373
374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
379 btree_get_extent, mirror_num);
380 if (!ret && !verify_parent_transid(io_tree, eb,
381 parent_transid, 0))
382 break;
383
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390 break;
391
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
394 if (num_copies == 1)
395 break;
396
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
402 mirror_num++;
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
406 if (mirror_num > num_copies)
407 break;
408 }
409
410 if (failed && !ret)
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
414}
415
416/*
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
419 */
420
421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422{
423 struct extent_io_tree *tree;
424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425 u64 found_start;
426 struct extent_buffer *eb;
427
428 tree = &BTRFS_I(page->mapping->host)->io_tree;
429
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
435 WARN_ON(1);
436 return 0;
437 }
438 if (eb->pages[0] != page) {
439 WARN_ON(1);
440 return 0;
441 }
442 if (!PageUptodate(page)) {
443 WARN_ON(1);
444 return 0;
445 }
446 csum_tree_block(root, eb, 0);
447 return 0;
448}
449
450static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452{
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467}
468
469#define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477{
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534}
535
536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 struct page *page, int max_walk)
538{
539 struct extent_buffer *eb;
540 u64 start = page_offset(page);
541 u64 target = start;
542 u64 min_start;
543
544 if (start < max_walk)
545 min_start = 0;
546 else
547 min_start = start - max_walk;
548
549 while (start >= min_start) {
550 eb = find_extent_buffer(tree, start, 0);
551 if (eb) {
552 /*
553 * we found an extent buffer and it contains our page
554 * horray!
555 */
556 if (eb->start <= target &&
557 eb->start + eb->len > target)
558 return eb;
559
560 /* we found an extent buffer that wasn't for us */
561 free_extent_buffer(eb);
562 return NULL;
563 }
564 if (start == 0)
565 break;
566 start -= PAGE_CACHE_SIZE;
567 }
568 return NULL;
569}
570
571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
572 struct extent_state *state, int mirror)
573{
574 struct extent_io_tree *tree;
575 u64 found_start;
576 int found_level;
577 struct extent_buffer *eb;
578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579 int ret = 0;
580 int reads_done;
581
582 if (!page->private)
583 goto out;
584
585 tree = &BTRFS_I(page->mapping->host)->io_tree;
586 eb = (struct extent_buffer *)page->private;
587
588 /* the pending IO might have been the only thing that kept this buffer
589 * in memory. Make sure we have a ref for all this other checks
590 */
591 extent_buffer_get(eb);
592
593 reads_done = atomic_dec_and_test(&eb->io_pages);
594 if (!reads_done)
595 goto err;
596
597 eb->read_mirror = mirror;
598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 ret = -EIO;
600 goto err;
601 }
602
603 found_start = btrfs_header_bytenr(eb);
604 if (found_start != eb->start) {
605 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606 "%llu %llu\n",
607 (unsigned long long)found_start,
608 (unsigned long long)eb->start);
609 ret = -EIO;
610 goto err;
611 }
612 if (check_tree_block_fsid(root, eb)) {
613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
614 (unsigned long long)eb->start);
615 ret = -EIO;
616 goto err;
617 }
618 found_level = btrfs_header_level(eb);
619
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
622
623 ret = csum_tree_block(root, eb, 1);
624 if (ret) {
625 ret = -EIO;
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
638
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
641err:
642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 btree_readahead_hook(root, eb, eb->start, ret);
645 }
646
647 if (ret)
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
650out:
651 return ret;
652}
653
654static int btree_io_failed_hook(struct page *page, int failed_mirror)
655{
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
659 eb = (struct extent_buffer *)page->private;
660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
661 eb->read_mirror = failed_mirror;
662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663 btree_readahead_hook(root, eb, eb->start, -EIO);
664 return -EIO; /* we fixed nothing */
665}
666
667static void end_workqueue_bio(struct bio *bio, int err)
668{
669 struct end_io_wq *end_io_wq = bio->bi_private;
670 struct btrfs_fs_info *fs_info;
671
672 fs_info = end_io_wq->info;
673 end_io_wq->error = err;
674 end_io_wq->work.func = end_workqueue_fn;
675 end_io_wq->work.flags = 0;
676
677 if (bio->bi_rw & REQ_WRITE) {
678 if (end_io_wq->metadata == 1)
679 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 &end_io_wq->work);
681 else if (end_io_wq->metadata == 2)
682 btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 &end_io_wq->work);
684 else
685 btrfs_queue_worker(&fs_info->endio_write_workers,
686 &end_io_wq->work);
687 } else {
688 if (end_io_wq->metadata)
689 btrfs_queue_worker(&fs_info->endio_meta_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_workers,
693 &end_io_wq->work);
694 }
695}
696
697/*
698 * For the metadata arg you want
699 *
700 * 0 - if data
701 * 1 - if normal metadta
702 * 2 - if writing to the free space cache area
703 */
704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 int metadata)
706{
707 struct end_io_wq *end_io_wq;
708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 if (!end_io_wq)
710 return -ENOMEM;
711
712 end_io_wq->private = bio->bi_private;
713 end_io_wq->end_io = bio->bi_end_io;
714 end_io_wq->info = info;
715 end_io_wq->error = 0;
716 end_io_wq->bio = bio;
717 end_io_wq->metadata = metadata;
718
719 bio->bi_private = end_io_wq;
720 bio->bi_end_io = end_workqueue_bio;
721 return 0;
722}
723
724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725{
726 unsigned long limit = min_t(unsigned long,
727 info->workers.max_workers,
728 info->fs_devices->open_devices);
729 return 256 * limit;
730}
731
732static void run_one_async_start(struct btrfs_work *work)
733{
734 struct async_submit_bio *async;
735 int ret;
736
737 async = container_of(work, struct async_submit_bio, work);
738 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 async->mirror_num, async->bio_flags,
740 async->bio_offset);
741 if (ret)
742 async->error = ret;
743}
744
745static void run_one_async_done(struct btrfs_work *work)
746{
747 struct btrfs_fs_info *fs_info;
748 struct async_submit_bio *async;
749 int limit;
750
751 async = container_of(work, struct async_submit_bio, work);
752 fs_info = BTRFS_I(async->inode)->root->fs_info;
753
754 limit = btrfs_async_submit_limit(fs_info);
755 limit = limit * 2 / 3;
756
757 atomic_dec(&fs_info->nr_async_submits);
758
759 if (atomic_read(&fs_info->nr_async_submits) < limit &&
760 waitqueue_active(&fs_info->async_submit_wait))
761 wake_up(&fs_info->async_submit_wait);
762
763 /* If an error occured we just want to clean up the bio and move on */
764 if (async->error) {
765 bio_endio(async->bio, async->error);
766 return;
767 }
768
769 async->submit_bio_done(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
772}
773
774static void run_one_async_free(struct btrfs_work *work)
775{
776 struct async_submit_bio *async;
777
778 async = container_of(work, struct async_submit_bio, work);
779 kfree(async);
780}
781
782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783 int rw, struct bio *bio, int mirror_num,
784 unsigned long bio_flags,
785 u64 bio_offset,
786 extent_submit_bio_hook_t *submit_bio_start,
787 extent_submit_bio_hook_t *submit_bio_done)
788{
789 struct async_submit_bio *async;
790
791 async = kmalloc(sizeof(*async), GFP_NOFS);
792 if (!async)
793 return -ENOMEM;
794
795 async->inode = inode;
796 async->rw = rw;
797 async->bio = bio;
798 async->mirror_num = mirror_num;
799 async->submit_bio_start = submit_bio_start;
800 async->submit_bio_done = submit_bio_done;
801
802 async->work.func = run_one_async_start;
803 async->work.ordered_func = run_one_async_done;
804 async->work.ordered_free = run_one_async_free;
805
806 async->work.flags = 0;
807 async->bio_flags = bio_flags;
808 async->bio_offset = bio_offset;
809
810 async->error = 0;
811
812 atomic_inc(&fs_info->nr_async_submits);
813
814 if (rw & REQ_SYNC)
815 btrfs_set_work_high_prio(&async->work);
816
817 btrfs_queue_worker(&fs_info->workers, &async->work);
818
819 while (atomic_read(&fs_info->async_submit_draining) &&
820 atomic_read(&fs_info->nr_async_submits)) {
821 wait_event(fs_info->async_submit_wait,
822 (atomic_read(&fs_info->nr_async_submits) == 0));
823 }
824
825 return 0;
826}
827
828static int btree_csum_one_bio(struct bio *bio)
829{
830 struct bio_vec *bvec = bio->bi_io_vec;
831 int bio_index = 0;
832 struct btrfs_root *root;
833 int ret = 0;
834
835 WARN_ON(bio->bi_vcnt <= 0);
836 while (bio_index < bio->bi_vcnt) {
837 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
838 ret = csum_dirty_buffer(root, bvec->bv_page);
839 if (ret)
840 break;
841 bio_index++;
842 bvec++;
843 }
844 return ret;
845}
846
847static int __btree_submit_bio_start(struct inode *inode, int rw,
848 struct bio *bio, int mirror_num,
849 unsigned long bio_flags,
850 u64 bio_offset)
851{
852 /*
853 * when we're called for a write, we're already in the async
854 * submission context. Just jump into btrfs_map_bio
855 */
856 return btree_csum_one_bio(bio);
857}
858
859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
860 int mirror_num, unsigned long bio_flags,
861 u64 bio_offset)
862{
863 /*
864 * when we're called for a write, we're already in the async
865 * submission context. Just jump into btrfs_map_bio
866 */
867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
868}
869
870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
871 int mirror_num, unsigned long bio_flags,
872 u64 bio_offset)
873{
874 int ret;
875
876 if (!(rw & REQ_WRITE)) {
877
878 /*
879 * called for a read, do the setup so that checksum validation
880 * can happen in the async kernel threads
881 */
882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883 bio, 1);
884 if (ret)
885 return ret;
886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
887 mirror_num, 0);
888 }
889
890 /*
891 * kthread helpers are used to submit writes so that checksumming
892 * can happen in parallel across all CPUs
893 */
894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
895 inode, rw, bio, mirror_num, 0,
896 bio_offset,
897 __btree_submit_bio_start,
898 __btree_submit_bio_done);
899}
900
901#ifdef CONFIG_MIGRATION
902static int btree_migratepage(struct address_space *mapping,
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
905{
906 /*
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
909 */
910 if (PageDirty(page))
911 return -EAGAIN;
912 /*
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
915 */
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
918 return -EAGAIN;
919 return migrate_page(mapping, newpage, page, mode);
920}
921#endif
922
923
924static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926{
927 struct extent_io_tree *tree;
928 tree = &BTRFS_I(mapping->host)->io_tree;
929 if (wbc->sync_mode == WB_SYNC_NONE) {
930 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931 u64 num_dirty;
932 unsigned long thresh = 32 * 1024 * 1024;
933
934 if (wbc->for_kupdate)
935 return 0;
936
937 /* this is a bit racy, but that's ok */
938 num_dirty = root->fs_info->dirty_metadata_bytes;
939 if (num_dirty < thresh)
940 return 0;
941 }
942 return btree_write_cache_pages(mapping, wbc);
943}
944
945static int btree_readpage(struct file *file, struct page *page)
946{
947 struct extent_io_tree *tree;
948 tree = &BTRFS_I(page->mapping->host)->io_tree;
949 return extent_read_full_page(tree, page, btree_get_extent, 0);
950}
951
952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953{
954 if (PageWriteback(page) || PageDirty(page))
955 return 0;
956 /*
957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958 * slab allocation from alloc_extent_state down the callchain where
959 * it'd hit a BUG_ON as those flags are not allowed.
960 */
961 gfp_flags &= ~GFP_SLAB_BUG_MASK;
962
963 return try_release_extent_buffer(page, gfp_flags);
964}
965
966static void btree_invalidatepage(struct page *page, unsigned long offset)
967{
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
970 extent_invalidatepage(tree, page, offset);
971 btree_releasepage(page, GFP_NOFS);
972 if (PagePrivate(page)) {
973 printk(KERN_WARNING "btrfs warning page private not zero "
974 "on page %llu\n", (unsigned long long)page_offset(page));
975 ClearPagePrivate(page);
976 set_page_private(page, 0);
977 page_cache_release(page);
978 }
979}
980
981static int btree_set_page_dirty(struct page *page)
982{
983 struct extent_buffer *eb;
984
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!eb);
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
991 return __set_page_dirty_nobuffers(page);
992}
993
994static const struct address_space_operations btree_aops = {
995 .readpage = btree_readpage,
996 .writepages = btree_writepages,
997 .releasepage = btree_releasepage,
998 .invalidatepage = btree_invalidatepage,
999#ifdef CONFIG_MIGRATION
1000 .migratepage = btree_migratepage,
1001#endif
1002 .set_page_dirty = btree_set_page_dirty,
1003};
1004
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 u64 parent_transid)
1007{
1008 struct extent_buffer *buf = NULL;
1009 struct inode *btree_inode = root->fs_info->btree_inode;
1010 int ret = 0;
1011
1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013 if (!buf)
1014 return 0;
1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017 free_extent_buffer(buf);
1018 return ret;
1019}
1020
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 int mirror_num, struct extent_buffer **eb)
1023{
1024 struct extent_buffer *buf = NULL;
1025 struct inode *btree_inode = root->fs_info->btree_inode;
1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 int ret;
1028
1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 if (!buf)
1031 return 0;
1032
1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 btree_get_extent, mirror_num);
1037 if (ret) {
1038 free_extent_buffer(buf);
1039 return ret;
1040 }
1041
1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 free_extent_buffer(buf);
1044 return -EIO;
1045 } else if (extent_buffer_uptodate(buf)) {
1046 *eb = buf;
1047 } else {
1048 free_extent_buffer(buf);
1049 }
1050 return 0;
1051}
1052
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 u64 bytenr, u32 blocksize)
1055{
1056 struct inode *btree_inode = root->fs_info->btree_inode;
1057 struct extent_buffer *eb;
1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059 bytenr, blocksize);
1060 return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 u64 bytenr, u32 blocksize)
1065{
1066 struct inode *btree_inode = root->fs_info->btree_inode;
1067 struct extent_buffer *eb;
1068
1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070 bytenr, blocksize);
1071 return eb;
1072}
1073
1074
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078 buf->start + buf->len - 1);
1079}
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
1083 return filemap_fdatawait_range(buf->pages[0]->mapping,
1084 buf->start, buf->start + buf->len - 1);
1085}
1086
1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088 u32 blocksize, u64 parent_transid)
1089{
1090 struct extent_buffer *buf = NULL;
1091 int ret;
1092
1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 if (!buf)
1095 return NULL;
1096
1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098 return buf;
1099
1100}
1101
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 struct extent_buffer *buf)
1104{
1105 if (btrfs_header_generation(buf) ==
1106 root->fs_info->running_transaction->transid) {
1107 btrfs_assert_tree_locked(buf);
1108
1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110 spin_lock(&root->fs_info->delalloc_lock);
1111 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112 root->fs_info->dirty_metadata_bytes -= buf->len;
1113 else {
1114 spin_unlock(&root->fs_info->delalloc_lock);
1115 btrfs_panic(root->fs_info, -EOVERFLOW,
1116 "Can't clear %lu bytes from "
1117 " dirty_mdatadata_bytes (%lu)",
1118 buf->len,
1119 root->fs_info->dirty_metadata_bytes);
1120 }
1121 spin_unlock(&root->fs_info->delalloc_lock);
1122 }
1123
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
1126 clear_extent_buffer_dirty(buf);
1127 }
1128}
1129
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 u32 stripesize, struct btrfs_root *root,
1132 struct btrfs_fs_info *fs_info,
1133 u64 objectid)
1134{
1135 root->node = NULL;
1136 root->commit_root = NULL;
1137 root->sectorsize = sectorsize;
1138 root->nodesize = nodesize;
1139 root->leafsize = leafsize;
1140 root->stripesize = stripesize;
1141 root->ref_cows = 0;
1142 root->track_dirty = 0;
1143 root->in_radix = 0;
1144 root->orphan_item_inserted = 0;
1145 root->orphan_cleanup_state = 0;
1146
1147 root->objectid = objectid;
1148 root->last_trans = 0;
1149 root->highest_objectid = 0;
1150 root->name = NULL;
1151 root->inode_tree = RB_ROOT;
1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 root->block_rsv = NULL;
1154 root->orphan_block_rsv = NULL;
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
1157 INIT_LIST_HEAD(&root->root_list);
1158 spin_lock_init(&root->orphan_lock);
1159 spin_lock_init(&root->inode_lock);
1160 spin_lock_init(&root->accounting_lock);
1161 mutex_init(&root->objectid_mutex);
1162 mutex_init(&root->log_mutex);
1163 init_waitqueue_head(&root->log_writer_wait);
1164 init_waitqueue_head(&root->log_commit_wait[0]);
1165 init_waitqueue_head(&root->log_commit_wait[1]);
1166 atomic_set(&root->log_commit[0], 0);
1167 atomic_set(&root->log_commit[1], 0);
1168 atomic_set(&root->log_writers, 0);
1169 atomic_set(&root->orphan_inodes, 0);
1170 root->log_batch = 0;
1171 root->log_transid = 0;
1172 root->last_log_commit = 0;
1173 extent_io_tree_init(&root->dirty_log_pages,
1174 fs_info->btree_inode->i_mapping);
1175
1176 memset(&root->root_key, 0, sizeof(root->root_key));
1177 memset(&root->root_item, 0, sizeof(root->root_item));
1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180 root->defrag_trans_start = fs_info->generation;
1181 init_completion(&root->kobj_unregister);
1182 root->defrag_running = 0;
1183 root->root_key.objectid = objectid;
1184 root->anon_dev = 0;
1185}
1186
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188 struct btrfs_fs_info *fs_info,
1189 u64 objectid,
1190 struct btrfs_root *root)
1191{
1192 int ret;
1193 u32 blocksize;
1194 u64 generation;
1195
1196 __setup_root(tree_root->nodesize, tree_root->leafsize,
1197 tree_root->sectorsize, tree_root->stripesize,
1198 root, fs_info, objectid);
1199 ret = btrfs_find_last_root(tree_root, objectid,
1200 &root->root_item, &root->root_key);
1201 if (ret > 0)
1202 return -ENOENT;
1203 else if (ret < 0)
1204 return ret;
1205
1206 generation = btrfs_root_generation(&root->root_item);
1207 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208 root->commit_root = NULL;
1209 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210 blocksize, generation);
1211 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212 free_extent_buffer(root->node);
1213 root->node = NULL;
1214 return -EIO;
1215 }
1216 root->commit_root = btrfs_root_node(root);
1217 return 0;
1218}
1219
1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221{
1222 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 if (root)
1224 root->fs_info = fs_info;
1225 return root;
1226}
1227
1228static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229 struct btrfs_fs_info *fs_info)
1230{
1231 struct btrfs_root *root;
1232 struct btrfs_root *tree_root = fs_info->tree_root;
1233 struct extent_buffer *leaf;
1234
1235 root = btrfs_alloc_root(fs_info);
1236 if (!root)
1237 return ERR_PTR(-ENOMEM);
1238
1239 __setup_root(tree_root->nodesize, tree_root->leafsize,
1240 tree_root->sectorsize, tree_root->stripesize,
1241 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242
1243 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1246 /*
1247 * log trees do not get reference counted because they go away
1248 * before a real commit is actually done. They do store pointers
1249 * to file data extents, and those reference counts still get
1250 * updated (along with back refs to the log tree).
1251 */
1252 root->ref_cows = 0;
1253
1254 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255 BTRFS_TREE_LOG_OBJECTID, NULL,
1256 0, 0, 0);
1257 if (IS_ERR(leaf)) {
1258 kfree(root);
1259 return ERR_CAST(leaf);
1260 }
1261
1262 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263 btrfs_set_header_bytenr(leaf, leaf->start);
1264 btrfs_set_header_generation(leaf, trans->transid);
1265 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267 root->node = leaf;
1268
1269 write_extent_buffer(root->node, root->fs_info->fsid,
1270 (unsigned long)btrfs_header_fsid(root->node),
1271 BTRFS_FSID_SIZE);
1272 btrfs_mark_buffer_dirty(root->node);
1273 btrfs_tree_unlock(root->node);
1274 return root;
1275}
1276
1277int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278 struct btrfs_fs_info *fs_info)
1279{
1280 struct btrfs_root *log_root;
1281
1282 log_root = alloc_log_tree(trans, fs_info);
1283 if (IS_ERR(log_root))
1284 return PTR_ERR(log_root);
1285 WARN_ON(fs_info->log_root_tree);
1286 fs_info->log_root_tree = log_root;
1287 return 0;
1288}
1289
1290int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291 struct btrfs_root *root)
1292{
1293 struct btrfs_root *log_root;
1294 struct btrfs_inode_item *inode_item;
1295
1296 log_root = alloc_log_tree(trans, root->fs_info);
1297 if (IS_ERR(log_root))
1298 return PTR_ERR(log_root);
1299
1300 log_root->last_trans = trans->transid;
1301 log_root->root_key.offset = root->root_key.objectid;
1302
1303 inode_item = &log_root->root_item.inode;
1304 inode_item->generation = cpu_to_le64(1);
1305 inode_item->size = cpu_to_le64(3);
1306 inode_item->nlink = cpu_to_le32(1);
1307 inode_item->nbytes = cpu_to_le64(root->leafsize);
1308 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1309
1310 btrfs_set_root_node(&log_root->root_item, log_root->node);
1311
1312 WARN_ON(root->log_root);
1313 root->log_root = log_root;
1314 root->log_transid = 0;
1315 root->last_log_commit = 0;
1316 return 0;
1317}
1318
1319struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320 struct btrfs_key *location)
1321{
1322 struct btrfs_root *root;
1323 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324 struct btrfs_path *path;
1325 struct extent_buffer *l;
1326 u64 generation;
1327 u32 blocksize;
1328 int ret = 0;
1329
1330 root = btrfs_alloc_root(fs_info);
1331 if (!root)
1332 return ERR_PTR(-ENOMEM);
1333 if (location->offset == (u64)-1) {
1334 ret = find_and_setup_root(tree_root, fs_info,
1335 location->objectid, root);
1336 if (ret) {
1337 kfree(root);
1338 return ERR_PTR(ret);
1339 }
1340 goto out;
1341 }
1342
1343 __setup_root(tree_root->nodesize, tree_root->leafsize,
1344 tree_root->sectorsize, tree_root->stripesize,
1345 root, fs_info, location->objectid);
1346
1347 path = btrfs_alloc_path();
1348 if (!path) {
1349 kfree(root);
1350 return ERR_PTR(-ENOMEM);
1351 }
1352 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353 if (ret == 0) {
1354 l = path->nodes[0];
1355 read_extent_buffer(l, &root->root_item,
1356 btrfs_item_ptr_offset(l, path->slots[0]),
1357 sizeof(root->root_item));
1358 memcpy(&root->root_key, location, sizeof(*location));
1359 }
1360 btrfs_free_path(path);
1361 if (ret) {
1362 kfree(root);
1363 if (ret > 0)
1364 ret = -ENOENT;
1365 return ERR_PTR(ret);
1366 }
1367
1368 generation = btrfs_root_generation(&root->root_item);
1369 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371 blocksize, generation);
1372 root->commit_root = btrfs_root_node(root);
1373 BUG_ON(!root->node); /* -ENOMEM */
1374out:
1375 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376 root->ref_cows = 1;
1377 btrfs_check_and_init_root_item(&root->root_item);
1378 }
1379
1380 return root;
1381}
1382
1383struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384 struct btrfs_key *location)
1385{
1386 struct btrfs_root *root;
1387 int ret;
1388
1389 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390 return fs_info->tree_root;
1391 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392 return fs_info->extent_root;
1393 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394 return fs_info->chunk_root;
1395 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396 return fs_info->dev_root;
1397 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398 return fs_info->csum_root;
1399again:
1400 spin_lock(&fs_info->fs_roots_radix_lock);
1401 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402 (unsigned long)location->objectid);
1403 spin_unlock(&fs_info->fs_roots_radix_lock);
1404 if (root)
1405 return root;
1406
1407 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1408 if (IS_ERR(root))
1409 return root;
1410
1411 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413 GFP_NOFS);
1414 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415 ret = -ENOMEM;
1416 goto fail;
1417 }
1418
1419 btrfs_init_free_ino_ctl(root);
1420 mutex_init(&root->fs_commit_mutex);
1421 spin_lock_init(&root->cache_lock);
1422 init_waitqueue_head(&root->cache_wait);
1423
1424 ret = get_anon_bdev(&root->anon_dev);
1425 if (ret)
1426 goto fail;
1427
1428 if (btrfs_root_refs(&root->root_item) == 0) {
1429 ret = -ENOENT;
1430 goto fail;
1431 }
1432
1433 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1434 if (ret < 0)
1435 goto fail;
1436 if (ret == 0)
1437 root->orphan_item_inserted = 1;
1438
1439 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440 if (ret)
1441 goto fail;
1442
1443 spin_lock(&fs_info->fs_roots_radix_lock);
1444 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445 (unsigned long)root->root_key.objectid,
1446 root);
1447 if (ret == 0)
1448 root->in_radix = 1;
1449
1450 spin_unlock(&fs_info->fs_roots_radix_lock);
1451 radix_tree_preload_end();
1452 if (ret) {
1453 if (ret == -EEXIST) {
1454 free_fs_root(root);
1455 goto again;
1456 }
1457 goto fail;
1458 }
1459
1460 ret = btrfs_find_dead_roots(fs_info->tree_root,
1461 root->root_key.objectid);
1462 WARN_ON(ret);
1463 return root;
1464fail:
1465 free_fs_root(root);
1466 return ERR_PTR(ret);
1467}
1468
1469static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1470{
1471 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472 int ret = 0;
1473 struct btrfs_device *device;
1474 struct backing_dev_info *bdi;
1475
1476 rcu_read_lock();
1477 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478 if (!device->bdev)
1479 continue;
1480 bdi = blk_get_backing_dev_info(device->bdev);
1481 if (bdi && bdi_congested(bdi, bdi_bits)) {
1482 ret = 1;
1483 break;
1484 }
1485 }
1486 rcu_read_unlock();
1487 return ret;
1488}
1489
1490/*
1491 * If this fails, caller must call bdi_destroy() to get rid of the
1492 * bdi again.
1493 */
1494static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1495{
1496 int err;
1497
1498 bdi->capabilities = BDI_CAP_MAP_COPY;
1499 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500 if (err)
1501 return err;
1502
1503 bdi->ra_pages = default_backing_dev_info.ra_pages;
1504 bdi->congested_fn = btrfs_congested_fn;
1505 bdi->congested_data = info;
1506 return 0;
1507}
1508
1509/*
1510 * called by the kthread helper functions to finally call the bio end_io
1511 * functions. This is where read checksum verification actually happens
1512 */
1513static void end_workqueue_fn(struct btrfs_work *work)
1514{
1515 struct bio *bio;
1516 struct end_io_wq *end_io_wq;
1517 struct btrfs_fs_info *fs_info;
1518 int error;
1519
1520 end_io_wq = container_of(work, struct end_io_wq, work);
1521 bio = end_io_wq->bio;
1522 fs_info = end_io_wq->info;
1523
1524 error = end_io_wq->error;
1525 bio->bi_private = end_io_wq->private;
1526 bio->bi_end_io = end_io_wq->end_io;
1527 kfree(end_io_wq);
1528 bio_endio(bio, error);
1529}
1530
1531static int cleaner_kthread(void *arg)
1532{
1533 struct btrfs_root *root = arg;
1534
1535 do {
1536 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537
1538 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539 mutex_trylock(&root->fs_info->cleaner_mutex)) {
1540 btrfs_run_delayed_iputs(root);
1541 btrfs_clean_old_snapshots(root);
1542 mutex_unlock(&root->fs_info->cleaner_mutex);
1543 btrfs_run_defrag_inodes(root->fs_info);
1544 }
1545
1546 if (!try_to_freeze()) {
1547 set_current_state(TASK_INTERRUPTIBLE);
1548 if (!kthread_should_stop())
1549 schedule();
1550 __set_current_state(TASK_RUNNING);
1551 }
1552 } while (!kthread_should_stop());
1553 return 0;
1554}
1555
1556static int transaction_kthread(void *arg)
1557{
1558 struct btrfs_root *root = arg;
1559 struct btrfs_trans_handle *trans;
1560 struct btrfs_transaction *cur;
1561 u64 transid;
1562 unsigned long now;
1563 unsigned long delay;
1564 bool cannot_commit;
1565
1566 do {
1567 cannot_commit = false;
1568 delay = HZ * 30;
1569 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571
1572 spin_lock(&root->fs_info->trans_lock);
1573 cur = root->fs_info->running_transaction;
1574 if (!cur) {
1575 spin_unlock(&root->fs_info->trans_lock);
1576 goto sleep;
1577 }
1578
1579 now = get_seconds();
1580 if (!cur->blocked &&
1581 (now < cur->start_time || now - cur->start_time < 30)) {
1582 spin_unlock(&root->fs_info->trans_lock);
1583 delay = HZ * 5;
1584 goto sleep;
1585 }
1586 transid = cur->transid;
1587 spin_unlock(&root->fs_info->trans_lock);
1588
1589 /* If the file system is aborted, this will always fail. */
1590 trans = btrfs_join_transaction(root);
1591 if (IS_ERR(trans)) {
1592 cannot_commit = true;
1593 goto sleep;
1594 }
1595 if (transid == trans->transid) {
1596 btrfs_commit_transaction(trans, root);
1597 } else {
1598 btrfs_end_transaction(trans, root);
1599 }
1600sleep:
1601 wake_up_process(root->fs_info->cleaner_kthread);
1602 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603
1604 if (!try_to_freeze()) {
1605 set_current_state(TASK_INTERRUPTIBLE);
1606 if (!kthread_should_stop() &&
1607 (!btrfs_transaction_blocked(root->fs_info) ||
1608 cannot_commit))
1609 schedule_timeout(delay);
1610 __set_current_state(TASK_RUNNING);
1611 }
1612 } while (!kthread_should_stop());
1613 return 0;
1614}
1615
1616/*
1617 * this will find the highest generation in the array of
1618 * root backups. The index of the highest array is returned,
1619 * or -1 if we can't find anything.
1620 *
1621 * We check to make sure the array is valid by comparing the
1622 * generation of the latest root in the array with the generation
1623 * in the super block. If they don't match we pitch it.
1624 */
1625static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626{
1627 u64 cur;
1628 int newest_index = -1;
1629 struct btrfs_root_backup *root_backup;
1630 int i;
1631
1632 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633 root_backup = info->super_copy->super_roots + i;
1634 cur = btrfs_backup_tree_root_gen(root_backup);
1635 if (cur == newest_gen)
1636 newest_index = i;
1637 }
1638
1639 /* check to see if we actually wrapped around */
1640 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641 root_backup = info->super_copy->super_roots;
1642 cur = btrfs_backup_tree_root_gen(root_backup);
1643 if (cur == newest_gen)
1644 newest_index = 0;
1645 }
1646 return newest_index;
1647}
1648
1649
1650/*
1651 * find the oldest backup so we know where to store new entries
1652 * in the backup array. This will set the backup_root_index
1653 * field in the fs_info struct
1654 */
1655static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656 u64 newest_gen)
1657{
1658 int newest_index = -1;
1659
1660 newest_index = find_newest_super_backup(info, newest_gen);
1661 /* if there was garbage in there, just move along */
1662 if (newest_index == -1) {
1663 info->backup_root_index = 0;
1664 } else {
1665 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666 }
1667}
1668
1669/*
1670 * copy all the root pointers into the super backup array.
1671 * this will bump the backup pointer by one when it is
1672 * done
1673 */
1674static void backup_super_roots(struct btrfs_fs_info *info)
1675{
1676 int next_backup;
1677 struct btrfs_root_backup *root_backup;
1678 int last_backup;
1679
1680 next_backup = info->backup_root_index;
1681 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682 BTRFS_NUM_BACKUP_ROOTS;
1683
1684 /*
1685 * just overwrite the last backup if we're at the same generation
1686 * this happens only at umount
1687 */
1688 root_backup = info->super_for_commit->super_roots + last_backup;
1689 if (btrfs_backup_tree_root_gen(root_backup) ==
1690 btrfs_header_generation(info->tree_root->node))
1691 next_backup = last_backup;
1692
1693 root_backup = info->super_for_commit->super_roots + next_backup;
1694
1695 /*
1696 * make sure all of our padding and empty slots get zero filled
1697 * regardless of which ones we use today
1698 */
1699 memset(root_backup, 0, sizeof(*root_backup));
1700
1701 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702
1703 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704 btrfs_set_backup_tree_root_gen(root_backup,
1705 btrfs_header_generation(info->tree_root->node));
1706
1707 btrfs_set_backup_tree_root_level(root_backup,
1708 btrfs_header_level(info->tree_root->node));
1709
1710 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711 btrfs_set_backup_chunk_root_gen(root_backup,
1712 btrfs_header_generation(info->chunk_root->node));
1713 btrfs_set_backup_chunk_root_level(root_backup,
1714 btrfs_header_level(info->chunk_root->node));
1715
1716 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717 btrfs_set_backup_extent_root_gen(root_backup,
1718 btrfs_header_generation(info->extent_root->node));
1719 btrfs_set_backup_extent_root_level(root_backup,
1720 btrfs_header_level(info->extent_root->node));
1721
1722 /*
1723 * we might commit during log recovery, which happens before we set
1724 * the fs_root. Make sure it is valid before we fill it in.
1725 */
1726 if (info->fs_root && info->fs_root->node) {
1727 btrfs_set_backup_fs_root(root_backup,
1728 info->fs_root->node->start);
1729 btrfs_set_backup_fs_root_gen(root_backup,
1730 btrfs_header_generation(info->fs_root->node));
1731 btrfs_set_backup_fs_root_level(root_backup,
1732 btrfs_header_level(info->fs_root->node));
1733 }
1734
1735 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736 btrfs_set_backup_dev_root_gen(root_backup,
1737 btrfs_header_generation(info->dev_root->node));
1738 btrfs_set_backup_dev_root_level(root_backup,
1739 btrfs_header_level(info->dev_root->node));
1740
1741 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742 btrfs_set_backup_csum_root_gen(root_backup,
1743 btrfs_header_generation(info->csum_root->node));
1744 btrfs_set_backup_csum_root_level(root_backup,
1745 btrfs_header_level(info->csum_root->node));
1746
1747 btrfs_set_backup_total_bytes(root_backup,
1748 btrfs_super_total_bytes(info->super_copy));
1749 btrfs_set_backup_bytes_used(root_backup,
1750 btrfs_super_bytes_used(info->super_copy));
1751 btrfs_set_backup_num_devices(root_backup,
1752 btrfs_super_num_devices(info->super_copy));
1753
1754 /*
1755 * if we don't copy this out to the super_copy, it won't get remembered
1756 * for the next commit
1757 */
1758 memcpy(&info->super_copy->super_roots,
1759 &info->super_for_commit->super_roots,
1760 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761}
1762
1763/*
1764 * this copies info out of the root backup array and back into
1765 * the in-memory super block. It is meant to help iterate through
1766 * the array, so you send it the number of backups you've already
1767 * tried and the last backup index you used.
1768 *
1769 * this returns -1 when it has tried all the backups
1770 */
1771static noinline int next_root_backup(struct btrfs_fs_info *info,
1772 struct btrfs_super_block *super,
1773 int *num_backups_tried, int *backup_index)
1774{
1775 struct btrfs_root_backup *root_backup;
1776 int newest = *backup_index;
1777
1778 if (*num_backups_tried == 0) {
1779 u64 gen = btrfs_super_generation(super);
1780
1781 newest = find_newest_super_backup(info, gen);
1782 if (newest == -1)
1783 return -1;
1784
1785 *backup_index = newest;
1786 *num_backups_tried = 1;
1787 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788 /* we've tried all the backups, all done */
1789 return -1;
1790 } else {
1791 /* jump to the next oldest backup */
1792 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793 BTRFS_NUM_BACKUP_ROOTS;
1794 *backup_index = newest;
1795 *num_backups_tried += 1;
1796 }
1797 root_backup = super->super_roots + newest;
1798
1799 btrfs_set_super_generation(super,
1800 btrfs_backup_tree_root_gen(root_backup));
1801 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802 btrfs_set_super_root_level(super,
1803 btrfs_backup_tree_root_level(root_backup));
1804 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805
1806 /*
1807 * fixme: the total bytes and num_devices need to match or we should
1808 * need a fsck
1809 */
1810 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1812 return 0;
1813}
1814
1815/* helper to cleanup tree roots */
1816static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817{
1818 free_extent_buffer(info->tree_root->node);
1819 free_extent_buffer(info->tree_root->commit_root);
1820 free_extent_buffer(info->dev_root->node);
1821 free_extent_buffer(info->dev_root->commit_root);
1822 free_extent_buffer(info->extent_root->node);
1823 free_extent_buffer(info->extent_root->commit_root);
1824 free_extent_buffer(info->csum_root->node);
1825 free_extent_buffer(info->csum_root->commit_root);
1826
1827 info->tree_root->node = NULL;
1828 info->tree_root->commit_root = NULL;
1829 info->dev_root->node = NULL;
1830 info->dev_root->commit_root = NULL;
1831 info->extent_root->node = NULL;
1832 info->extent_root->commit_root = NULL;
1833 info->csum_root->node = NULL;
1834 info->csum_root->commit_root = NULL;
1835
1836 if (chunk_root) {
1837 free_extent_buffer(info->chunk_root->node);
1838 free_extent_buffer(info->chunk_root->commit_root);
1839 info->chunk_root->node = NULL;
1840 info->chunk_root->commit_root = NULL;
1841 }
1842}
1843
1844
1845int open_ctree(struct super_block *sb,
1846 struct btrfs_fs_devices *fs_devices,
1847 char *options)
1848{
1849 u32 sectorsize;
1850 u32 nodesize;
1851 u32 leafsize;
1852 u32 blocksize;
1853 u32 stripesize;
1854 u64 generation;
1855 u64 features;
1856 struct btrfs_key location;
1857 struct buffer_head *bh;
1858 struct btrfs_super_block *disk_super;
1859 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1860 struct btrfs_root *tree_root;
1861 struct btrfs_root *extent_root;
1862 struct btrfs_root *csum_root;
1863 struct btrfs_root *chunk_root;
1864 struct btrfs_root *dev_root;
1865 struct btrfs_root *log_tree_root;
1866 int ret;
1867 int err = -EINVAL;
1868 int num_backups_tried = 0;
1869 int backup_index = 0;
1870
1871 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1872 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1876
1877 if (!tree_root || !extent_root || !csum_root ||
1878 !chunk_root || !dev_root) {
1879 err = -ENOMEM;
1880 goto fail;
1881 }
1882
1883 ret = init_srcu_struct(&fs_info->subvol_srcu);
1884 if (ret) {
1885 err = ret;
1886 goto fail;
1887 }
1888
1889 ret = setup_bdi(fs_info, &fs_info->bdi);
1890 if (ret) {
1891 err = ret;
1892 goto fail_srcu;
1893 }
1894
1895 fs_info->btree_inode = new_inode(sb);
1896 if (!fs_info->btree_inode) {
1897 err = -ENOMEM;
1898 goto fail_bdi;
1899 }
1900
1901 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1902
1903 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1904 INIT_LIST_HEAD(&fs_info->trans_list);
1905 INIT_LIST_HEAD(&fs_info->dead_roots);
1906 INIT_LIST_HEAD(&fs_info->delayed_iputs);
1907 INIT_LIST_HEAD(&fs_info->hashers);
1908 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1909 INIT_LIST_HEAD(&fs_info->ordered_operations);
1910 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1911 spin_lock_init(&fs_info->delalloc_lock);
1912 spin_lock_init(&fs_info->trans_lock);
1913 spin_lock_init(&fs_info->ref_cache_lock);
1914 spin_lock_init(&fs_info->fs_roots_radix_lock);
1915 spin_lock_init(&fs_info->delayed_iput_lock);
1916 spin_lock_init(&fs_info->defrag_inodes_lock);
1917 spin_lock_init(&fs_info->free_chunk_lock);
1918 spin_lock_init(&fs_info->tree_mod_seq_lock);
1919 rwlock_init(&fs_info->tree_mod_log_lock);
1920 mutex_init(&fs_info->reloc_mutex);
1921
1922 init_completion(&fs_info->kobj_unregister);
1923 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1924 INIT_LIST_HEAD(&fs_info->space_info);
1925 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
1926 btrfs_mapping_init(&fs_info->mapping_tree);
1927 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1932 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1933 atomic_set(&fs_info->nr_async_submits, 0);
1934 atomic_set(&fs_info->async_delalloc_pages, 0);
1935 atomic_set(&fs_info->async_submit_draining, 0);
1936 atomic_set(&fs_info->nr_async_bios, 0);
1937 atomic_set(&fs_info->defrag_running, 0);
1938 atomic_set(&fs_info->tree_mod_seq, 0);
1939 fs_info->sb = sb;
1940 fs_info->max_inline = 8192 * 1024;
1941 fs_info->metadata_ratio = 0;
1942 fs_info->defrag_inodes = RB_ROOT;
1943 fs_info->trans_no_join = 0;
1944 fs_info->free_chunk_space = 0;
1945 fs_info->tree_mod_log = RB_ROOT;
1946
1947 /* readahead state */
1948 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1949 spin_lock_init(&fs_info->reada_lock);
1950
1951 fs_info->thread_pool_size = min_t(unsigned long,
1952 num_online_cpus() + 2, 8);
1953
1954 INIT_LIST_HEAD(&fs_info->ordered_extents);
1955 spin_lock_init(&fs_info->ordered_extent_lock);
1956 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1957 GFP_NOFS);
1958 if (!fs_info->delayed_root) {
1959 err = -ENOMEM;
1960 goto fail_iput;
1961 }
1962 btrfs_init_delayed_root(fs_info->delayed_root);
1963
1964 mutex_init(&fs_info->scrub_lock);
1965 atomic_set(&fs_info->scrubs_running, 0);
1966 atomic_set(&fs_info->scrub_pause_req, 0);
1967 atomic_set(&fs_info->scrubs_paused, 0);
1968 atomic_set(&fs_info->scrub_cancel_req, 0);
1969 init_waitqueue_head(&fs_info->scrub_pause_wait);
1970 init_rwsem(&fs_info->scrub_super_lock);
1971 fs_info->scrub_workers_refcnt = 0;
1972#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1973 fs_info->check_integrity_print_mask = 0;
1974#endif
1975
1976 spin_lock_init(&fs_info->balance_lock);
1977 mutex_init(&fs_info->balance_mutex);
1978 atomic_set(&fs_info->balance_running, 0);
1979 atomic_set(&fs_info->balance_pause_req, 0);
1980 atomic_set(&fs_info->balance_cancel_req, 0);
1981 fs_info->balance_ctl = NULL;
1982 init_waitqueue_head(&fs_info->balance_wait_q);
1983
1984 sb->s_blocksize = 4096;
1985 sb->s_blocksize_bits = blksize_bits(4096);
1986 sb->s_bdi = &fs_info->bdi;
1987
1988 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1989 set_nlink(fs_info->btree_inode, 1);
1990 /*
1991 * we set the i_size on the btree inode to the max possible int.
1992 * the real end of the address space is determined by all of
1993 * the devices in the system
1994 */
1995 fs_info->btree_inode->i_size = OFFSET_MAX;
1996 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1997 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1998
1999 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2000 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2001 fs_info->btree_inode->i_mapping);
2002 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2003 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2004
2005 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2006
2007 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2008 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2009 sizeof(struct btrfs_key));
2010 set_bit(BTRFS_INODE_DUMMY,
2011 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2012 insert_inode_hash(fs_info->btree_inode);
2013
2014 spin_lock_init(&fs_info->block_group_cache_lock);
2015 fs_info->block_group_cache_tree = RB_ROOT;
2016
2017 extent_io_tree_init(&fs_info->freed_extents[0],
2018 fs_info->btree_inode->i_mapping);
2019 extent_io_tree_init(&fs_info->freed_extents[1],
2020 fs_info->btree_inode->i_mapping);
2021 fs_info->pinned_extents = &fs_info->freed_extents[0];
2022 fs_info->do_barriers = 1;
2023
2024
2025 mutex_init(&fs_info->ordered_operations_mutex);
2026 mutex_init(&fs_info->tree_log_mutex);
2027 mutex_init(&fs_info->chunk_mutex);
2028 mutex_init(&fs_info->transaction_kthread_mutex);
2029 mutex_init(&fs_info->cleaner_mutex);
2030 mutex_init(&fs_info->volume_mutex);
2031 init_rwsem(&fs_info->extent_commit_sem);
2032 init_rwsem(&fs_info->cleanup_work_sem);
2033 init_rwsem(&fs_info->subvol_sem);
2034
2035 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2036 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2037
2038 init_waitqueue_head(&fs_info->transaction_throttle);
2039 init_waitqueue_head(&fs_info->transaction_wait);
2040 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2041 init_waitqueue_head(&fs_info->async_submit_wait);
2042
2043 __setup_root(4096, 4096, 4096, 4096, tree_root,
2044 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2045
2046 invalidate_bdev(fs_devices->latest_bdev);
2047 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2048 if (!bh) {
2049 err = -EINVAL;
2050 goto fail_alloc;
2051 }
2052
2053 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2054 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2055 sizeof(*fs_info->super_for_commit));
2056 brelse(bh);
2057
2058 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2059
2060 disk_super = fs_info->super_copy;
2061 if (!btrfs_super_root(disk_super))
2062 goto fail_alloc;
2063
2064 /* check FS state, whether FS is broken. */
2065 fs_info->fs_state |= btrfs_super_flags(disk_super);
2066
2067 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2068 if (ret) {
2069 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2070 err = ret;
2071 goto fail_alloc;
2072 }
2073
2074 /*
2075 * run through our array of backup supers and setup
2076 * our ring pointer to the oldest one
2077 */
2078 generation = btrfs_super_generation(disk_super);
2079 find_oldest_super_backup(fs_info, generation);
2080
2081 /*
2082 * In the long term, we'll store the compression type in the super
2083 * block, and it'll be used for per file compression control.
2084 */
2085 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2086
2087 ret = btrfs_parse_options(tree_root, options);
2088 if (ret) {
2089 err = ret;
2090 goto fail_alloc;
2091 }
2092
2093 features = btrfs_super_incompat_flags(disk_super) &
2094 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2095 if (features) {
2096 printk(KERN_ERR "BTRFS: couldn't mount because of "
2097 "unsupported optional features (%Lx).\n",
2098 (unsigned long long)features);
2099 err = -EINVAL;
2100 goto fail_alloc;
2101 }
2102
2103 if (btrfs_super_leafsize(disk_super) !=
2104 btrfs_super_nodesize(disk_super)) {
2105 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2106 "blocksizes don't match. node %d leaf %d\n",
2107 btrfs_super_nodesize(disk_super),
2108 btrfs_super_leafsize(disk_super));
2109 err = -EINVAL;
2110 goto fail_alloc;
2111 }
2112 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2113 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2114 "blocksize (%d) was too large\n",
2115 btrfs_super_leafsize(disk_super));
2116 err = -EINVAL;
2117 goto fail_alloc;
2118 }
2119
2120 features = btrfs_super_incompat_flags(disk_super);
2121 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2122 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2123 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2124
2125 /*
2126 * flag our filesystem as having big metadata blocks if
2127 * they are bigger than the page size
2128 */
2129 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2130 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2131 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2132 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2133 }
2134
2135 nodesize = btrfs_super_nodesize(disk_super);
2136 leafsize = btrfs_super_leafsize(disk_super);
2137 sectorsize = btrfs_super_sectorsize(disk_super);
2138 stripesize = btrfs_super_stripesize(disk_super);
2139
2140 /*
2141 * mixed block groups end up with duplicate but slightly offset
2142 * extent buffers for the same range. It leads to corruptions
2143 */
2144 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2145 (sectorsize != leafsize)) {
2146 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2147 "are not allowed for mixed block groups on %s\n",
2148 sb->s_id);
2149 goto fail_alloc;
2150 }
2151
2152 btrfs_set_super_incompat_flags(disk_super, features);
2153
2154 features = btrfs_super_compat_ro_flags(disk_super) &
2155 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2156 if (!(sb->s_flags & MS_RDONLY) && features) {
2157 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2158 "unsupported option features (%Lx).\n",
2159 (unsigned long long)features);
2160 err = -EINVAL;
2161 goto fail_alloc;
2162 }
2163
2164 btrfs_init_workers(&fs_info->generic_worker,
2165 "genwork", 1, NULL);
2166
2167 btrfs_init_workers(&fs_info->workers, "worker",
2168 fs_info->thread_pool_size,
2169 &fs_info->generic_worker);
2170
2171 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2172 fs_info->thread_pool_size,
2173 &fs_info->generic_worker);
2174
2175 btrfs_init_workers(&fs_info->submit_workers, "submit",
2176 min_t(u64, fs_devices->num_devices,
2177 fs_info->thread_pool_size),
2178 &fs_info->generic_worker);
2179
2180 btrfs_init_workers(&fs_info->caching_workers, "cache",
2181 2, &fs_info->generic_worker);
2182
2183 /* a higher idle thresh on the submit workers makes it much more
2184 * likely that bios will be send down in a sane order to the
2185 * devices
2186 */
2187 fs_info->submit_workers.idle_thresh = 64;
2188
2189 fs_info->workers.idle_thresh = 16;
2190 fs_info->workers.ordered = 1;
2191
2192 fs_info->delalloc_workers.idle_thresh = 2;
2193 fs_info->delalloc_workers.ordered = 1;
2194
2195 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2196 &fs_info->generic_worker);
2197 btrfs_init_workers(&fs_info->endio_workers, "endio",
2198 fs_info->thread_pool_size,
2199 &fs_info->generic_worker);
2200 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2201 fs_info->thread_pool_size,
2202 &fs_info->generic_worker);
2203 btrfs_init_workers(&fs_info->endio_meta_write_workers,
2204 "endio-meta-write", fs_info->thread_pool_size,
2205 &fs_info->generic_worker);
2206 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2207 fs_info->thread_pool_size,
2208 &fs_info->generic_worker);
2209 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2210 1, &fs_info->generic_worker);
2211 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2212 fs_info->thread_pool_size,
2213 &fs_info->generic_worker);
2214 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2215 fs_info->thread_pool_size,
2216 &fs_info->generic_worker);
2217
2218 /*
2219 * endios are largely parallel and should have a very
2220 * low idle thresh
2221 */
2222 fs_info->endio_workers.idle_thresh = 4;
2223 fs_info->endio_meta_workers.idle_thresh = 4;
2224
2225 fs_info->endio_write_workers.idle_thresh = 2;
2226 fs_info->endio_meta_write_workers.idle_thresh = 2;
2227 fs_info->readahead_workers.idle_thresh = 2;
2228
2229 /*
2230 * btrfs_start_workers can really only fail because of ENOMEM so just
2231 * return -ENOMEM if any of these fail.
2232 */
2233 ret = btrfs_start_workers(&fs_info->workers);
2234 ret |= btrfs_start_workers(&fs_info->generic_worker);
2235 ret |= btrfs_start_workers(&fs_info->submit_workers);
2236 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2237 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2238 ret |= btrfs_start_workers(&fs_info->endio_workers);
2239 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2240 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2241 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2242 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2243 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2244 ret |= btrfs_start_workers(&fs_info->caching_workers);
2245 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2246 if (ret) {
2247 ret = -ENOMEM;
2248 goto fail_sb_buffer;
2249 }
2250
2251 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2252 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2253 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2254
2255 tree_root->nodesize = nodesize;
2256 tree_root->leafsize = leafsize;
2257 tree_root->sectorsize = sectorsize;
2258 tree_root->stripesize = stripesize;
2259
2260 sb->s_blocksize = sectorsize;
2261 sb->s_blocksize_bits = blksize_bits(sectorsize);
2262
2263 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264 sizeof(disk_super->magic))) {
2265 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2266 goto fail_sb_buffer;
2267 }
2268
2269 if (sectorsize != PAGE_SIZE) {
2270 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2271 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2272 goto fail_sb_buffer;
2273 }
2274
2275 mutex_lock(&fs_info->chunk_mutex);
2276 ret = btrfs_read_sys_array(tree_root);
2277 mutex_unlock(&fs_info->chunk_mutex);
2278 if (ret) {
2279 printk(KERN_WARNING "btrfs: failed to read the system "
2280 "array on %s\n", sb->s_id);
2281 goto fail_sb_buffer;
2282 }
2283
2284 blocksize = btrfs_level_size(tree_root,
2285 btrfs_super_chunk_root_level(disk_super));
2286 generation = btrfs_super_chunk_root_generation(disk_super);
2287
2288 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2289 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290
2291 chunk_root->node = read_tree_block(chunk_root,
2292 btrfs_super_chunk_root(disk_super),
2293 blocksize, generation);
2294 BUG_ON(!chunk_root->node); /* -ENOMEM */
2295 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297 sb->s_id);
2298 goto fail_tree_roots;
2299 }
2300 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301 chunk_root->commit_root = btrfs_root_node(chunk_root);
2302
2303 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2304 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305 BTRFS_UUID_SIZE);
2306
2307 ret = btrfs_read_chunk_tree(chunk_root);
2308 if (ret) {
2309 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310 sb->s_id);
2311 goto fail_tree_roots;
2312 }
2313
2314 btrfs_close_extra_devices(fs_devices);
2315
2316 if (!fs_devices->latest_bdev) {
2317 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318 sb->s_id);
2319 goto fail_tree_roots;
2320 }
2321
2322retry_root_backup:
2323 blocksize = btrfs_level_size(tree_root,
2324 btrfs_super_root_level(disk_super));
2325 generation = btrfs_super_generation(disk_super);
2326
2327 tree_root->node = read_tree_block(tree_root,
2328 btrfs_super_root(disk_super),
2329 blocksize, generation);
2330 if (!tree_root->node ||
2331 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2332 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333 sb->s_id);
2334
2335 goto recovery_tree_root;
2336 }
2337
2338 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339 tree_root->commit_root = btrfs_root_node(tree_root);
2340
2341 ret = find_and_setup_root(tree_root, fs_info,
2342 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2343 if (ret)
2344 goto recovery_tree_root;
2345 extent_root->track_dirty = 1;
2346
2347 ret = find_and_setup_root(tree_root, fs_info,
2348 BTRFS_DEV_TREE_OBJECTID, dev_root);
2349 if (ret)
2350 goto recovery_tree_root;
2351 dev_root->track_dirty = 1;
2352
2353 ret = find_and_setup_root(tree_root, fs_info,
2354 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355 if (ret)
2356 goto recovery_tree_root;
2357 csum_root->track_dirty = 1;
2358
2359 fs_info->generation = generation;
2360 fs_info->last_trans_committed = generation;
2361
2362 ret = btrfs_recover_balance(fs_info);
2363 if (ret) {
2364 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2365 goto fail_block_groups;
2366 }
2367
2368 ret = btrfs_init_dev_stats(fs_info);
2369 if (ret) {
2370 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2371 ret);
2372 goto fail_block_groups;
2373 }
2374
2375 ret = btrfs_init_space_info(fs_info);
2376 if (ret) {
2377 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2378 goto fail_block_groups;
2379 }
2380
2381 ret = btrfs_read_block_groups(extent_root);
2382 if (ret) {
2383 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2384 goto fail_block_groups;
2385 }
2386
2387 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2388 "btrfs-cleaner");
2389 if (IS_ERR(fs_info->cleaner_kthread))
2390 goto fail_block_groups;
2391
2392 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2393 tree_root,
2394 "btrfs-transaction");
2395 if (IS_ERR(fs_info->transaction_kthread))
2396 goto fail_cleaner;
2397
2398 if (!btrfs_test_opt(tree_root, SSD) &&
2399 !btrfs_test_opt(tree_root, NOSSD) &&
2400 !fs_info->fs_devices->rotating) {
2401 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2402 "mode\n");
2403 btrfs_set_opt(fs_info->mount_opt, SSD);
2404 }
2405
2406#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2407 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2408 ret = btrfsic_mount(tree_root, fs_devices,
2409 btrfs_test_opt(tree_root,
2410 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2411 1 : 0,
2412 fs_info->check_integrity_print_mask);
2413 if (ret)
2414 printk(KERN_WARNING "btrfs: failed to initialize"
2415 " integrity check module %s\n", sb->s_id);
2416 }
2417#endif
2418
2419 /* do not make disk changes in broken FS */
2420 if (btrfs_super_log_root(disk_super) != 0 &&
2421 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2422 u64 bytenr = btrfs_super_log_root(disk_super);
2423
2424 if (fs_devices->rw_devices == 0) {
2425 printk(KERN_WARNING "Btrfs log replay required "
2426 "on RO media\n");
2427 err = -EIO;
2428 goto fail_trans_kthread;
2429 }
2430 blocksize =
2431 btrfs_level_size(tree_root,
2432 btrfs_super_log_root_level(disk_super));
2433
2434 log_tree_root = btrfs_alloc_root(fs_info);
2435 if (!log_tree_root) {
2436 err = -ENOMEM;
2437 goto fail_trans_kthread;
2438 }
2439
2440 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2441 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2442
2443 log_tree_root->node = read_tree_block(tree_root, bytenr,
2444 blocksize,
2445 generation + 1);
2446 /* returns with log_tree_root freed on success */
2447 ret = btrfs_recover_log_trees(log_tree_root);
2448 if (ret) {
2449 btrfs_error(tree_root->fs_info, ret,
2450 "Failed to recover log tree");
2451 free_extent_buffer(log_tree_root->node);
2452 kfree(log_tree_root);
2453 goto fail_trans_kthread;
2454 }
2455
2456 if (sb->s_flags & MS_RDONLY) {
2457 ret = btrfs_commit_super(tree_root);
2458 if (ret)
2459 goto fail_trans_kthread;
2460 }
2461 }
2462
2463 ret = btrfs_find_orphan_roots(tree_root);
2464 if (ret)
2465 goto fail_trans_kthread;
2466
2467 if (!(sb->s_flags & MS_RDONLY)) {
2468 ret = btrfs_cleanup_fs_roots(fs_info);
2469 if (ret) {
2470 }
2471
2472 ret = btrfs_recover_relocation(tree_root);
2473 if (ret < 0) {
2474 printk(KERN_WARNING
2475 "btrfs: failed to recover relocation\n");
2476 err = -EINVAL;
2477 goto fail_trans_kthread;
2478 }
2479 }
2480
2481 location.objectid = BTRFS_FS_TREE_OBJECTID;
2482 location.type = BTRFS_ROOT_ITEM_KEY;
2483 location.offset = (u64)-1;
2484
2485 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2486 if (!fs_info->fs_root)
2487 goto fail_trans_kthread;
2488 if (IS_ERR(fs_info->fs_root)) {
2489 err = PTR_ERR(fs_info->fs_root);
2490 goto fail_trans_kthread;
2491 }
2492
2493 if (sb->s_flags & MS_RDONLY)
2494 return 0;
2495
2496 down_read(&fs_info->cleanup_work_sem);
2497 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2498 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2499 up_read(&fs_info->cleanup_work_sem);
2500 close_ctree(tree_root);
2501 return ret;
2502 }
2503 up_read(&fs_info->cleanup_work_sem);
2504
2505 ret = btrfs_resume_balance_async(fs_info);
2506 if (ret) {
2507 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2508 close_ctree(tree_root);
2509 return ret;
2510 }
2511
2512 return 0;
2513
2514fail_trans_kthread:
2515 kthread_stop(fs_info->transaction_kthread);
2516fail_cleaner:
2517 kthread_stop(fs_info->cleaner_kthread);
2518
2519 /*
2520 * make sure we're done with the btree inode before we stop our
2521 * kthreads
2522 */
2523 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2524 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2525
2526fail_block_groups:
2527 btrfs_free_block_groups(fs_info);
2528
2529fail_tree_roots:
2530 free_root_pointers(fs_info, 1);
2531
2532fail_sb_buffer:
2533 btrfs_stop_workers(&fs_info->generic_worker);
2534 btrfs_stop_workers(&fs_info->readahead_workers);
2535 btrfs_stop_workers(&fs_info->fixup_workers);
2536 btrfs_stop_workers(&fs_info->delalloc_workers);
2537 btrfs_stop_workers(&fs_info->workers);
2538 btrfs_stop_workers(&fs_info->endio_workers);
2539 btrfs_stop_workers(&fs_info->endio_meta_workers);
2540 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2541 btrfs_stop_workers(&fs_info->endio_write_workers);
2542 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2543 btrfs_stop_workers(&fs_info->submit_workers);
2544 btrfs_stop_workers(&fs_info->delayed_workers);
2545 btrfs_stop_workers(&fs_info->caching_workers);
2546fail_alloc:
2547fail_iput:
2548 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2549
2550 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2551 iput(fs_info->btree_inode);
2552fail_bdi:
2553 bdi_destroy(&fs_info->bdi);
2554fail_srcu:
2555 cleanup_srcu_struct(&fs_info->subvol_srcu);
2556fail:
2557 btrfs_close_devices(fs_info->fs_devices);
2558 return err;
2559
2560recovery_tree_root:
2561 if (!btrfs_test_opt(tree_root, RECOVERY))
2562 goto fail_tree_roots;
2563
2564 free_root_pointers(fs_info, 0);
2565
2566 /* don't use the log in recovery mode, it won't be valid */
2567 btrfs_set_super_log_root(disk_super, 0);
2568
2569 /* we can't trust the free space cache either */
2570 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2571
2572 ret = next_root_backup(fs_info, fs_info->super_copy,
2573 &num_backups_tried, &backup_index);
2574 if (ret == -1)
2575 goto fail_block_groups;
2576 goto retry_root_backup;
2577}
2578
2579static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2580{
2581 if (uptodate) {
2582 set_buffer_uptodate(bh);
2583 } else {
2584 struct btrfs_device *device = (struct btrfs_device *)
2585 bh->b_private;
2586
2587 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2588 "I/O error on %s\n",
2589 rcu_str_deref(device->name));
2590 /* note, we dont' set_buffer_write_io_error because we have
2591 * our own ways of dealing with the IO errors
2592 */
2593 clear_buffer_uptodate(bh);
2594 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2595 }
2596 unlock_buffer(bh);
2597 put_bh(bh);
2598}
2599
2600struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2601{
2602 struct buffer_head *bh;
2603 struct buffer_head *latest = NULL;
2604 struct btrfs_super_block *super;
2605 int i;
2606 u64 transid = 0;
2607 u64 bytenr;
2608
2609 /* we would like to check all the supers, but that would make
2610 * a btrfs mount succeed after a mkfs from a different FS.
2611 * So, we need to add a special mount option to scan for
2612 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2613 */
2614 for (i = 0; i < 1; i++) {
2615 bytenr = btrfs_sb_offset(i);
2616 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2617 break;
2618 bh = __bread(bdev, bytenr / 4096, 4096);
2619 if (!bh)
2620 continue;
2621
2622 super = (struct btrfs_super_block *)bh->b_data;
2623 if (btrfs_super_bytenr(super) != bytenr ||
2624 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2625 sizeof(super->magic))) {
2626 brelse(bh);
2627 continue;
2628 }
2629
2630 if (!latest || btrfs_super_generation(super) > transid) {
2631 brelse(latest);
2632 latest = bh;
2633 transid = btrfs_super_generation(super);
2634 } else {
2635 brelse(bh);
2636 }
2637 }
2638 return latest;
2639}
2640
2641/*
2642 * this should be called twice, once with wait == 0 and
2643 * once with wait == 1. When wait == 0 is done, all the buffer heads
2644 * we write are pinned.
2645 *
2646 * They are released when wait == 1 is done.
2647 * max_mirrors must be the same for both runs, and it indicates how
2648 * many supers on this one device should be written.
2649 *
2650 * max_mirrors == 0 means to write them all.
2651 */
2652static int write_dev_supers(struct btrfs_device *device,
2653 struct btrfs_super_block *sb,
2654 int do_barriers, int wait, int max_mirrors)
2655{
2656 struct buffer_head *bh;
2657 int i;
2658 int ret;
2659 int errors = 0;
2660 u32 crc;
2661 u64 bytenr;
2662
2663 if (max_mirrors == 0)
2664 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2665
2666 for (i = 0; i < max_mirrors; i++) {
2667 bytenr = btrfs_sb_offset(i);
2668 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2669 break;
2670
2671 if (wait) {
2672 bh = __find_get_block(device->bdev, bytenr / 4096,
2673 BTRFS_SUPER_INFO_SIZE);
2674 BUG_ON(!bh);
2675 wait_on_buffer(bh);
2676 if (!buffer_uptodate(bh))
2677 errors++;
2678
2679 /* drop our reference */
2680 brelse(bh);
2681
2682 /* drop the reference from the wait == 0 run */
2683 brelse(bh);
2684 continue;
2685 } else {
2686 btrfs_set_super_bytenr(sb, bytenr);
2687
2688 crc = ~(u32)0;
2689 crc = btrfs_csum_data(NULL, (char *)sb +
2690 BTRFS_CSUM_SIZE, crc,
2691 BTRFS_SUPER_INFO_SIZE -
2692 BTRFS_CSUM_SIZE);
2693 btrfs_csum_final(crc, sb->csum);
2694
2695 /*
2696 * one reference for us, and we leave it for the
2697 * caller
2698 */
2699 bh = __getblk(device->bdev, bytenr / 4096,
2700 BTRFS_SUPER_INFO_SIZE);
2701 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2702
2703 /* one reference for submit_bh */
2704 get_bh(bh);
2705
2706 set_buffer_uptodate(bh);
2707 lock_buffer(bh);
2708 bh->b_end_io = btrfs_end_buffer_write_sync;
2709 bh->b_private = device;
2710 }
2711
2712 /*
2713 * we fua the first super. The others we allow
2714 * to go down lazy.
2715 */
2716 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2717 if (ret)
2718 errors++;
2719 }
2720 return errors < i ? 0 : -1;
2721}
2722
2723/*
2724 * endio for the write_dev_flush, this will wake anyone waiting
2725 * for the barrier when it is done
2726 */
2727static void btrfs_end_empty_barrier(struct bio *bio, int err)
2728{
2729 if (err) {
2730 if (err == -EOPNOTSUPP)
2731 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2732 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2733 }
2734 if (bio->bi_private)
2735 complete(bio->bi_private);
2736 bio_put(bio);
2737}
2738
2739/*
2740 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2741 * sent down. With wait == 1, it waits for the previous flush.
2742 *
2743 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2744 * capable
2745 */
2746static int write_dev_flush(struct btrfs_device *device, int wait)
2747{
2748 struct bio *bio;
2749 int ret = 0;
2750
2751 if (device->nobarriers)
2752 return 0;
2753
2754 if (wait) {
2755 bio = device->flush_bio;
2756 if (!bio)
2757 return 0;
2758
2759 wait_for_completion(&device->flush_wait);
2760
2761 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2762 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2763 rcu_str_deref(device->name));
2764 device->nobarriers = 1;
2765 }
2766 if (!bio_flagged(bio, BIO_UPTODATE)) {
2767 ret = -EIO;
2768 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2769 btrfs_dev_stat_inc_and_print(device,
2770 BTRFS_DEV_STAT_FLUSH_ERRS);
2771 }
2772
2773 /* drop the reference from the wait == 0 run */
2774 bio_put(bio);
2775 device->flush_bio = NULL;
2776
2777 return ret;
2778 }
2779
2780 /*
2781 * one reference for us, and we leave it for the
2782 * caller
2783 */
2784 device->flush_bio = NULL;
2785 bio = bio_alloc(GFP_NOFS, 0);
2786 if (!bio)
2787 return -ENOMEM;
2788
2789 bio->bi_end_io = btrfs_end_empty_barrier;
2790 bio->bi_bdev = device->bdev;
2791 init_completion(&device->flush_wait);
2792 bio->bi_private = &device->flush_wait;
2793 device->flush_bio = bio;
2794
2795 bio_get(bio);
2796 btrfsic_submit_bio(WRITE_FLUSH, bio);
2797
2798 return 0;
2799}
2800
2801/*
2802 * send an empty flush down to each device in parallel,
2803 * then wait for them
2804 */
2805static int barrier_all_devices(struct btrfs_fs_info *info)
2806{
2807 struct list_head *head;
2808 struct btrfs_device *dev;
2809 int errors = 0;
2810 int ret;
2811
2812 /* send down all the barriers */
2813 head = &info->fs_devices->devices;
2814 list_for_each_entry_rcu(dev, head, dev_list) {
2815 if (!dev->bdev) {
2816 errors++;
2817 continue;
2818 }
2819 if (!dev->in_fs_metadata || !dev->writeable)
2820 continue;
2821
2822 ret = write_dev_flush(dev, 0);
2823 if (ret)
2824 errors++;
2825 }
2826
2827 /* wait for all the barriers */
2828 list_for_each_entry_rcu(dev, head, dev_list) {
2829 if (!dev->bdev) {
2830 errors++;
2831 continue;
2832 }
2833 if (!dev->in_fs_metadata || !dev->writeable)
2834 continue;
2835
2836 ret = write_dev_flush(dev, 1);
2837 if (ret)
2838 errors++;
2839 }
2840 if (errors)
2841 return -EIO;
2842 return 0;
2843}
2844
2845int write_all_supers(struct btrfs_root *root, int max_mirrors)
2846{
2847 struct list_head *head;
2848 struct btrfs_device *dev;
2849 struct btrfs_super_block *sb;
2850 struct btrfs_dev_item *dev_item;
2851 int ret;
2852 int do_barriers;
2853 int max_errors;
2854 int total_errors = 0;
2855 u64 flags;
2856
2857 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2858 do_barriers = !btrfs_test_opt(root, NOBARRIER);
2859 backup_super_roots(root->fs_info);
2860
2861 sb = root->fs_info->super_for_commit;
2862 dev_item = &sb->dev_item;
2863
2864 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2865 head = &root->fs_info->fs_devices->devices;
2866
2867 if (do_barriers)
2868 barrier_all_devices(root->fs_info);
2869
2870 list_for_each_entry_rcu(dev, head, dev_list) {
2871 if (!dev->bdev) {
2872 total_errors++;
2873 continue;
2874 }
2875 if (!dev->in_fs_metadata || !dev->writeable)
2876 continue;
2877
2878 btrfs_set_stack_device_generation(dev_item, 0);
2879 btrfs_set_stack_device_type(dev_item, dev->type);
2880 btrfs_set_stack_device_id(dev_item, dev->devid);
2881 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2882 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2883 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2884 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2885 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2886 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2887 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2888
2889 flags = btrfs_super_flags(sb);
2890 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2891
2892 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2893 if (ret)
2894 total_errors++;
2895 }
2896 if (total_errors > max_errors) {
2897 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2898 total_errors);
2899
2900 /* This shouldn't happen. FUA is masked off if unsupported */
2901 BUG();
2902 }
2903
2904 total_errors = 0;
2905 list_for_each_entry_rcu(dev, head, dev_list) {
2906 if (!dev->bdev)
2907 continue;
2908 if (!dev->in_fs_metadata || !dev->writeable)
2909 continue;
2910
2911 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2912 if (ret)
2913 total_errors++;
2914 }
2915 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916 if (total_errors > max_errors) {
2917 btrfs_error(root->fs_info, -EIO,
2918 "%d errors while writing supers", total_errors);
2919 return -EIO;
2920 }
2921 return 0;
2922}
2923
2924int write_ctree_super(struct btrfs_trans_handle *trans,
2925 struct btrfs_root *root, int max_mirrors)
2926{
2927 int ret;
2928
2929 ret = write_all_supers(root, max_mirrors);
2930 return ret;
2931}
2932
2933void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2934{
2935 spin_lock(&fs_info->fs_roots_radix_lock);
2936 radix_tree_delete(&fs_info->fs_roots_radix,
2937 (unsigned long)root->root_key.objectid);
2938 spin_unlock(&fs_info->fs_roots_radix_lock);
2939
2940 if (btrfs_root_refs(&root->root_item) == 0)
2941 synchronize_srcu(&fs_info->subvol_srcu);
2942
2943 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2944 __btrfs_remove_free_space_cache(root->free_ino_ctl);
2945 free_fs_root(root);
2946}
2947
2948static void free_fs_root(struct btrfs_root *root)
2949{
2950 iput(root->cache_inode);
2951 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2952 if (root->anon_dev)
2953 free_anon_bdev(root->anon_dev);
2954 free_extent_buffer(root->node);
2955 free_extent_buffer(root->commit_root);
2956 kfree(root->free_ino_ctl);
2957 kfree(root->free_ino_pinned);
2958 kfree(root->name);
2959 kfree(root);
2960}
2961
2962static void del_fs_roots(struct btrfs_fs_info *fs_info)
2963{
2964 int ret;
2965 struct btrfs_root *gang[8];
2966 int i;
2967
2968 while (!list_empty(&fs_info->dead_roots)) {
2969 gang[0] = list_entry(fs_info->dead_roots.next,
2970 struct btrfs_root, root_list);
2971 list_del(&gang[0]->root_list);
2972
2973 if (gang[0]->in_radix) {
2974 btrfs_free_fs_root(fs_info, gang[0]);
2975 } else {
2976 free_extent_buffer(gang[0]->node);
2977 free_extent_buffer(gang[0]->commit_root);
2978 kfree(gang[0]);
2979 }
2980 }
2981
2982 while (1) {
2983 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2984 (void **)gang, 0,
2985 ARRAY_SIZE(gang));
2986 if (!ret)
2987 break;
2988 for (i = 0; i < ret; i++)
2989 btrfs_free_fs_root(fs_info, gang[i]);
2990 }
2991}
2992
2993int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2994{
2995 u64 root_objectid = 0;
2996 struct btrfs_root *gang[8];
2997 int i;
2998 int ret;
2999
3000 while (1) {
3001 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3002 (void **)gang, root_objectid,
3003 ARRAY_SIZE(gang));
3004 if (!ret)
3005 break;
3006
3007 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3008 for (i = 0; i < ret; i++) {
3009 int err;
3010
3011 root_objectid = gang[i]->root_key.objectid;
3012 err = btrfs_orphan_cleanup(gang[i]);
3013 if (err)
3014 return err;
3015 }
3016 root_objectid++;
3017 }
3018 return 0;
3019}
3020
3021int btrfs_commit_super(struct btrfs_root *root)
3022{
3023 struct btrfs_trans_handle *trans;
3024 int ret;
3025
3026 mutex_lock(&root->fs_info->cleaner_mutex);
3027 btrfs_run_delayed_iputs(root);
3028 btrfs_clean_old_snapshots(root);
3029 mutex_unlock(&root->fs_info->cleaner_mutex);
3030
3031 /* wait until ongoing cleanup work done */
3032 down_write(&root->fs_info->cleanup_work_sem);
3033 up_write(&root->fs_info->cleanup_work_sem);
3034
3035 trans = btrfs_join_transaction(root);
3036 if (IS_ERR(trans))
3037 return PTR_ERR(trans);
3038 ret = btrfs_commit_transaction(trans, root);
3039 if (ret)
3040 return ret;
3041 /* run commit again to drop the original snapshot */
3042 trans = btrfs_join_transaction(root);
3043 if (IS_ERR(trans))
3044 return PTR_ERR(trans);
3045 ret = btrfs_commit_transaction(trans, root);
3046 if (ret)
3047 return ret;
3048 ret = btrfs_write_and_wait_transaction(NULL, root);
3049 if (ret) {
3050 btrfs_error(root->fs_info, ret,
3051 "Failed to sync btree inode to disk.");
3052 return ret;
3053 }
3054
3055 ret = write_ctree_super(NULL, root, 0);
3056 return ret;
3057}
3058
3059int close_ctree(struct btrfs_root *root)
3060{
3061 struct btrfs_fs_info *fs_info = root->fs_info;
3062 int ret;
3063
3064 fs_info->closing = 1;
3065 smp_mb();
3066
3067 /* pause restriper - we want to resume on mount */
3068 btrfs_pause_balance(root->fs_info);
3069
3070 btrfs_scrub_cancel(root);
3071
3072 /* wait for any defraggers to finish */
3073 wait_event(fs_info->transaction_wait,
3074 (atomic_read(&fs_info->defrag_running) == 0));
3075
3076 /* clear out the rbtree of defraggable inodes */
3077 btrfs_run_defrag_inodes(fs_info);
3078
3079 /*
3080 * Here come 2 situations when btrfs is broken to flip readonly:
3081 *
3082 * 1. when btrfs flips readonly somewhere else before
3083 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3084 * and btrfs will skip to write sb directly to keep
3085 * ERROR state on disk.
3086 *
3087 * 2. when btrfs flips readonly just in btrfs_commit_super,
3088 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3089 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3090 * btrfs will cleanup all FS resources first and write sb then.
3091 */
3092 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3093 ret = btrfs_commit_super(root);
3094 if (ret)
3095 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3096 }
3097
3098 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3099 ret = btrfs_error_commit_super(root);
3100 if (ret)
3101 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3102 }
3103
3104 btrfs_put_block_group_cache(fs_info);
3105
3106 kthread_stop(fs_info->transaction_kthread);
3107 kthread_stop(fs_info->cleaner_kthread);
3108
3109 fs_info->closing = 2;
3110 smp_mb();
3111
3112 if (fs_info->delalloc_bytes) {
3113 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3114 (unsigned long long)fs_info->delalloc_bytes);
3115 }
3116 if (fs_info->total_ref_cache_size) {
3117 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3118 (unsigned long long)fs_info->total_ref_cache_size);
3119 }
3120
3121 free_extent_buffer(fs_info->extent_root->node);
3122 free_extent_buffer(fs_info->extent_root->commit_root);
3123 free_extent_buffer(fs_info->tree_root->node);
3124 free_extent_buffer(fs_info->tree_root->commit_root);
3125 free_extent_buffer(fs_info->chunk_root->node);
3126 free_extent_buffer(fs_info->chunk_root->commit_root);
3127 free_extent_buffer(fs_info->dev_root->node);
3128 free_extent_buffer(fs_info->dev_root->commit_root);
3129 free_extent_buffer(fs_info->csum_root->node);
3130 free_extent_buffer(fs_info->csum_root->commit_root);
3131
3132 btrfs_free_block_groups(fs_info);
3133
3134 del_fs_roots(fs_info);
3135
3136 iput(fs_info->btree_inode);
3137
3138 btrfs_stop_workers(&fs_info->generic_worker);
3139 btrfs_stop_workers(&fs_info->fixup_workers);
3140 btrfs_stop_workers(&fs_info->delalloc_workers);
3141 btrfs_stop_workers(&fs_info->workers);
3142 btrfs_stop_workers(&fs_info->endio_workers);
3143 btrfs_stop_workers(&fs_info->endio_meta_workers);
3144 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3145 btrfs_stop_workers(&fs_info->endio_write_workers);
3146 btrfs_stop_workers(&fs_info->endio_freespace_worker);
3147 btrfs_stop_workers(&fs_info->submit_workers);
3148 btrfs_stop_workers(&fs_info->delayed_workers);
3149 btrfs_stop_workers(&fs_info->caching_workers);
3150 btrfs_stop_workers(&fs_info->readahead_workers);
3151
3152#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3153 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3154 btrfsic_unmount(root, fs_info->fs_devices);
3155#endif
3156
3157 btrfs_close_devices(fs_info->fs_devices);
3158 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3159
3160 bdi_destroy(&fs_info->bdi);
3161 cleanup_srcu_struct(&fs_info->subvol_srcu);
3162
3163 return 0;
3164}
3165
3166int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3167 int atomic)
3168{
3169 int ret;
3170 struct inode *btree_inode = buf->pages[0]->mapping->host;
3171
3172 ret = extent_buffer_uptodate(buf);
3173 if (!ret)
3174 return ret;
3175
3176 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3177 parent_transid, atomic);
3178 if (ret == -EAGAIN)
3179 return ret;
3180 return !ret;
3181}
3182
3183int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3184{
3185 return set_extent_buffer_uptodate(buf);
3186}
3187
3188void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3189{
3190 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3191 u64 transid = btrfs_header_generation(buf);
3192 int was_dirty;
3193
3194 btrfs_assert_tree_locked(buf);
3195 if (transid != root->fs_info->generation) {
3196 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3197 "found %llu running %llu\n",
3198 (unsigned long long)buf->start,
3199 (unsigned long long)transid,
3200 (unsigned long long)root->fs_info->generation);
3201 WARN_ON(1);
3202 }
3203 was_dirty = set_extent_buffer_dirty(buf);
3204 if (!was_dirty) {
3205 spin_lock(&root->fs_info->delalloc_lock);
3206 root->fs_info->dirty_metadata_bytes += buf->len;
3207 spin_unlock(&root->fs_info->delalloc_lock);
3208 }
3209}
3210
3211void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3212{
3213 /*
3214 * looks as though older kernels can get into trouble with
3215 * this code, they end up stuck in balance_dirty_pages forever
3216 */
3217 u64 num_dirty;
3218 unsigned long thresh = 32 * 1024 * 1024;
3219
3220 if (current->flags & PF_MEMALLOC)
3221 return;
3222
3223 btrfs_balance_delayed_items(root);
3224
3225 num_dirty = root->fs_info->dirty_metadata_bytes;
3226
3227 if (num_dirty > thresh) {
3228 balance_dirty_pages_ratelimited_nr(
3229 root->fs_info->btree_inode->i_mapping, 1);
3230 }
3231 return;
3232}
3233
3234void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3235{
3236 /*
3237 * looks as though older kernels can get into trouble with
3238 * this code, they end up stuck in balance_dirty_pages forever
3239 */
3240 u64 num_dirty;
3241 unsigned long thresh = 32 * 1024 * 1024;
3242
3243 if (current->flags & PF_MEMALLOC)
3244 return;
3245
3246 num_dirty = root->fs_info->dirty_metadata_bytes;
3247
3248 if (num_dirty > thresh) {
3249 balance_dirty_pages_ratelimited_nr(
3250 root->fs_info->btree_inode->i_mapping, 1);
3251 }
3252 return;
3253}
3254
3255int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3256{
3257 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3258 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3259}
3260
3261static int btree_lock_page_hook(struct page *page, void *data,
3262 void (*flush_fn)(void *))
3263{
3264 struct inode *inode = page->mapping->host;
3265 struct btrfs_root *root = BTRFS_I(inode)->root;
3266 struct extent_buffer *eb;
3267
3268 /*
3269 * We culled this eb but the page is still hanging out on the mapping,
3270 * carry on.
3271 */
3272 if (!PagePrivate(page))
3273 goto out;
3274
3275 eb = (struct extent_buffer *)page->private;
3276 if (!eb) {
3277 WARN_ON(1);
3278 goto out;
3279 }
3280 if (page != eb->pages[0])
3281 goto out;
3282
3283 if (!btrfs_try_tree_write_lock(eb)) {
3284 flush_fn(data);
3285 btrfs_tree_lock(eb);
3286 }
3287 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3288
3289 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3290 spin_lock(&root->fs_info->delalloc_lock);
3291 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3292 root->fs_info->dirty_metadata_bytes -= eb->len;
3293 else
3294 WARN_ON(1);
3295 spin_unlock(&root->fs_info->delalloc_lock);
3296 }
3297
3298 btrfs_tree_unlock(eb);
3299out:
3300 if (!trylock_page(page)) {
3301 flush_fn(data);
3302 lock_page(page);
3303 }
3304 return 0;
3305}
3306
3307static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3308 int read_only)
3309{
3310 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3311 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3312 return -EINVAL;
3313 }
3314
3315 if (read_only)
3316 return 0;
3317
3318 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3319 printk(KERN_WARNING "warning: mount fs with errors, "
3320 "running btrfsck is recommended\n");
3321 }
3322
3323 return 0;
3324}
3325
3326int btrfs_error_commit_super(struct btrfs_root *root)
3327{
3328 int ret;
3329
3330 mutex_lock(&root->fs_info->cleaner_mutex);
3331 btrfs_run_delayed_iputs(root);
3332 mutex_unlock(&root->fs_info->cleaner_mutex);
3333
3334 down_write(&root->fs_info->cleanup_work_sem);
3335 up_write(&root->fs_info->cleanup_work_sem);
3336
3337 /* cleanup FS via transaction */
3338 btrfs_cleanup_transaction(root);
3339
3340 ret = write_ctree_super(NULL, root, 0);
3341
3342 return ret;
3343}
3344
3345static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3346{
3347 struct btrfs_inode *btrfs_inode;
3348 struct list_head splice;
3349
3350 INIT_LIST_HEAD(&splice);
3351
3352 mutex_lock(&root->fs_info->ordered_operations_mutex);
3353 spin_lock(&root->fs_info->ordered_extent_lock);
3354
3355 list_splice_init(&root->fs_info->ordered_operations, &splice);
3356 while (!list_empty(&splice)) {
3357 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3358 ordered_operations);
3359
3360 list_del_init(&btrfs_inode->ordered_operations);
3361
3362 btrfs_invalidate_inodes(btrfs_inode->root);
3363 }
3364
3365 spin_unlock(&root->fs_info->ordered_extent_lock);
3366 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3367}
3368
3369static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3370{
3371 struct list_head splice;
3372 struct btrfs_ordered_extent *ordered;
3373 struct inode *inode;
3374
3375 INIT_LIST_HEAD(&splice);
3376
3377 spin_lock(&root->fs_info->ordered_extent_lock);
3378
3379 list_splice_init(&root->fs_info->ordered_extents, &splice);
3380 while (!list_empty(&splice)) {
3381 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3382 root_extent_list);
3383
3384 list_del_init(&ordered->root_extent_list);
3385 atomic_inc(&ordered->refs);
3386
3387 /* the inode may be getting freed (in sys_unlink path). */
3388 inode = igrab(ordered->inode);
3389
3390 spin_unlock(&root->fs_info->ordered_extent_lock);
3391 if (inode)
3392 iput(inode);
3393
3394 atomic_set(&ordered->refs, 1);
3395 btrfs_put_ordered_extent(ordered);
3396
3397 spin_lock(&root->fs_info->ordered_extent_lock);
3398 }
3399
3400 spin_unlock(&root->fs_info->ordered_extent_lock);
3401}
3402
3403int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3404 struct btrfs_root *root)
3405{
3406 struct rb_node *node;
3407 struct btrfs_delayed_ref_root *delayed_refs;
3408 struct btrfs_delayed_ref_node *ref;
3409 int ret = 0;
3410
3411 delayed_refs = &trans->delayed_refs;
3412
3413 spin_lock(&delayed_refs->lock);
3414 if (delayed_refs->num_entries == 0) {
3415 spin_unlock(&delayed_refs->lock);
3416 printk(KERN_INFO "delayed_refs has NO entry\n");
3417 return ret;
3418 }
3419
3420 while ((node = rb_first(&delayed_refs->root)) != NULL) {
3421 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3422
3423 atomic_set(&ref->refs, 1);
3424 if (btrfs_delayed_ref_is_head(ref)) {
3425 struct btrfs_delayed_ref_head *head;
3426
3427 head = btrfs_delayed_node_to_head(ref);
3428 if (!mutex_trylock(&head->mutex)) {
3429 atomic_inc(&ref->refs);
3430 spin_unlock(&delayed_refs->lock);
3431
3432 /* Need to wait for the delayed ref to run */
3433 mutex_lock(&head->mutex);
3434 mutex_unlock(&head->mutex);
3435 btrfs_put_delayed_ref(ref);
3436
3437 spin_lock(&delayed_refs->lock);
3438 continue;
3439 }
3440
3441 kfree(head->extent_op);
3442 delayed_refs->num_heads--;
3443 if (list_empty(&head->cluster))
3444 delayed_refs->num_heads_ready--;
3445 list_del_init(&head->cluster);
3446 }
3447 ref->in_tree = 0;
3448 rb_erase(&ref->rb_node, &delayed_refs->root);
3449 delayed_refs->num_entries--;
3450
3451 spin_unlock(&delayed_refs->lock);
3452 btrfs_put_delayed_ref(ref);
3453
3454 cond_resched();
3455 spin_lock(&delayed_refs->lock);
3456 }
3457
3458 spin_unlock(&delayed_refs->lock);
3459
3460 return ret;
3461}
3462
3463static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3464{
3465 struct btrfs_pending_snapshot *snapshot;
3466 struct list_head splice;
3467
3468 INIT_LIST_HEAD(&splice);
3469
3470 list_splice_init(&t->pending_snapshots, &splice);
3471
3472 while (!list_empty(&splice)) {
3473 snapshot = list_entry(splice.next,
3474 struct btrfs_pending_snapshot,
3475 list);
3476
3477 list_del_init(&snapshot->list);
3478
3479 kfree(snapshot);
3480 }
3481}
3482
3483static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3484{
3485 struct btrfs_inode *btrfs_inode;
3486 struct list_head splice;
3487
3488 INIT_LIST_HEAD(&splice);
3489
3490 spin_lock(&root->fs_info->delalloc_lock);
3491 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3492
3493 while (!list_empty(&splice)) {
3494 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3495 delalloc_inodes);
3496
3497 list_del_init(&btrfs_inode->delalloc_inodes);
3498
3499 btrfs_invalidate_inodes(btrfs_inode->root);
3500 }
3501
3502 spin_unlock(&root->fs_info->delalloc_lock);
3503}
3504
3505static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3506 struct extent_io_tree *dirty_pages,
3507 int mark)
3508{
3509 int ret;
3510 struct page *page;
3511 struct inode *btree_inode = root->fs_info->btree_inode;
3512 struct extent_buffer *eb;
3513 u64 start = 0;
3514 u64 end;
3515 u64 offset;
3516 unsigned long index;
3517
3518 while (1) {
3519 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3520 mark);
3521 if (ret)
3522 break;
3523
3524 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3525 while (start <= end) {
3526 index = start >> PAGE_CACHE_SHIFT;
3527 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3528 page = find_get_page(btree_inode->i_mapping, index);
3529 if (!page)
3530 continue;
3531 offset = page_offset(page);
3532
3533 spin_lock(&dirty_pages->buffer_lock);
3534 eb = radix_tree_lookup(
3535 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3536 offset >> PAGE_CACHE_SHIFT);
3537 spin_unlock(&dirty_pages->buffer_lock);
3538 if (eb)
3539 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3540 &eb->bflags);
3541 if (PageWriteback(page))
3542 end_page_writeback(page);
3543
3544 lock_page(page);
3545 if (PageDirty(page)) {
3546 clear_page_dirty_for_io(page);
3547 spin_lock_irq(&page->mapping->tree_lock);
3548 radix_tree_tag_clear(&page->mapping->page_tree,
3549 page_index(page),
3550 PAGECACHE_TAG_DIRTY);
3551 spin_unlock_irq(&page->mapping->tree_lock);
3552 }
3553
3554 unlock_page(page);
3555 page_cache_release(page);
3556 }
3557 }
3558
3559 return ret;
3560}
3561
3562static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3563 struct extent_io_tree *pinned_extents)
3564{
3565 struct extent_io_tree *unpin;
3566 u64 start;
3567 u64 end;
3568 int ret;
3569 bool loop = true;
3570
3571 unpin = pinned_extents;
3572again:
3573 while (1) {
3574 ret = find_first_extent_bit(unpin, 0, &start, &end,
3575 EXTENT_DIRTY);
3576 if (ret)
3577 break;
3578
3579 /* opt_discard */
3580 if (btrfs_test_opt(root, DISCARD))
3581 ret = btrfs_error_discard_extent(root, start,
3582 end + 1 - start,
3583 NULL);
3584
3585 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3586 btrfs_error_unpin_extent_range(root, start, end);
3587 cond_resched();
3588 }
3589
3590 if (loop) {
3591 if (unpin == &root->fs_info->freed_extents[0])
3592 unpin = &root->fs_info->freed_extents[1];
3593 else
3594 unpin = &root->fs_info->freed_extents[0];
3595 loop = false;
3596 goto again;
3597 }
3598
3599 return 0;
3600}
3601
3602void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3603 struct btrfs_root *root)
3604{
3605 btrfs_destroy_delayed_refs(cur_trans, root);
3606 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3607 cur_trans->dirty_pages.dirty_bytes);
3608
3609 /* FIXME: cleanup wait for commit */
3610 cur_trans->in_commit = 1;
3611 cur_trans->blocked = 1;
3612 wake_up(&root->fs_info->transaction_blocked_wait);
3613
3614 cur_trans->blocked = 0;
3615 wake_up(&root->fs_info->transaction_wait);
3616
3617 cur_trans->commit_done = 1;
3618 wake_up(&cur_trans->commit_wait);
3619
3620 btrfs_destroy_delayed_inodes(root);
3621 btrfs_assert_delayed_root_empty(root);
3622
3623 btrfs_destroy_pending_snapshots(cur_trans);
3624
3625 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3626 EXTENT_DIRTY);
3627 btrfs_destroy_pinned_extent(root,
3628 root->fs_info->pinned_extents);
3629
3630 /*
3631 memset(cur_trans, 0, sizeof(*cur_trans));
3632 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3633 */
3634}
3635
3636int btrfs_cleanup_transaction(struct btrfs_root *root)
3637{
3638 struct btrfs_transaction *t;
3639 LIST_HEAD(list);
3640
3641 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3642
3643 spin_lock(&root->fs_info->trans_lock);
3644 list_splice_init(&root->fs_info->trans_list, &list);
3645 root->fs_info->trans_no_join = 1;
3646 spin_unlock(&root->fs_info->trans_lock);
3647
3648 while (!list_empty(&list)) {
3649 t = list_entry(list.next, struct btrfs_transaction, list);
3650 if (!t)
3651 break;
3652
3653 btrfs_destroy_ordered_operations(root);
3654
3655 btrfs_destroy_ordered_extents(root);
3656
3657 btrfs_destroy_delayed_refs(t, root);
3658
3659 btrfs_block_rsv_release(root,
3660 &root->fs_info->trans_block_rsv,
3661 t->dirty_pages.dirty_bytes);
3662
3663 /* FIXME: cleanup wait for commit */
3664 t->in_commit = 1;
3665 t->blocked = 1;
3666 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3667 wake_up(&root->fs_info->transaction_blocked_wait);
3668
3669 t->blocked = 0;
3670 if (waitqueue_active(&root->fs_info->transaction_wait))
3671 wake_up(&root->fs_info->transaction_wait);
3672
3673 t->commit_done = 1;
3674 if (waitqueue_active(&t->commit_wait))
3675 wake_up(&t->commit_wait);
3676
3677 btrfs_destroy_delayed_inodes(root);
3678 btrfs_assert_delayed_root_empty(root);
3679
3680 btrfs_destroy_pending_snapshots(t);
3681
3682 btrfs_destroy_delalloc_inodes(root);
3683
3684 spin_lock(&root->fs_info->trans_lock);
3685 root->fs_info->running_transaction = NULL;
3686 spin_unlock(&root->fs_info->trans_lock);
3687
3688 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3689 EXTENT_DIRTY);
3690
3691 btrfs_destroy_pinned_extent(root,
3692 root->fs_info->pinned_extents);
3693
3694 atomic_set(&t->use_count, 0);
3695 list_del_init(&t->list);
3696 memset(t, 0, sizeof(*t));
3697 kmem_cache_free(btrfs_transaction_cachep, t);
3698 }
3699
3700 spin_lock(&root->fs_info->trans_lock);
3701 root->fs_info->trans_no_join = 0;
3702 spin_unlock(&root->fs_info->trans_lock);
3703 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3704
3705 return 0;
3706}
3707
3708static struct extent_io_ops btree_extent_io_ops = {
3709 .write_cache_pages_lock_hook = btree_lock_page_hook,
3710 .readpage_end_io_hook = btree_readpage_end_io_hook,
3711 .readpage_io_failed_hook = btree_io_failed_hook,
3712 .submit_bio_hook = btree_submit_bio_hook,
3713 /* note we're sharing with inode.c for the merge bio hook */
3714 .merge_bio_hook = btrfs_merge_bio_hook,
3715};