Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/livepatch.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/signal.h>
  52
  53#include <asm/param.h>
  54#include <linux/uaccess.h>
  55#include <asm/unistd.h>
  56#include <asm/siginfo.h>
  57#include <asm/cacheflush.h>
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 185	    !klp_patch_pending(current))
 186		clear_thread_flag(TIF_SIGPENDING);
 187
 188}
 189EXPORT_SYMBOL(recalc_sigpending);
 190
 191void calculate_sigpending(void)
 192{
 193	/* Have any signals or users of TIF_SIGPENDING been delayed
 194	 * until after fork?
 195	 */
 196	spin_lock_irq(&current->sighand->siglock);
 197	set_tsk_thread_flag(current, TIF_SIGPENDING);
 198	recalc_sigpending();
 199	spin_unlock_irq(&current->sighand->siglock);
 200}
 201
 202/* Given the mask, find the first available signal that should be serviced. */
 203
 204#define SYNCHRONOUS_MASK \
 205	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 206	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 207
 208int next_signal(struct sigpending *pending, sigset_t *mask)
 209{
 210	unsigned long i, *s, *m, x;
 211	int sig = 0;
 212
 213	s = pending->signal.sig;
 214	m = mask->sig;
 215
 216	/*
 217	 * Handle the first word specially: it contains the
 218	 * synchronous signals that need to be dequeued first.
 219	 */
 220	x = *s &~ *m;
 221	if (x) {
 222		if (x & SYNCHRONOUS_MASK)
 223			x &= SYNCHRONOUS_MASK;
 224		sig = ffz(~x) + 1;
 225		return sig;
 226	}
 227
 228	switch (_NSIG_WORDS) {
 229	default:
 230		for (i = 1; i < _NSIG_WORDS; ++i) {
 231			x = *++s &~ *++m;
 232			if (!x)
 233				continue;
 234			sig = ffz(~x) + i*_NSIG_BPW + 1;
 235			break;
 236		}
 237		break;
 238
 239	case 2:
 240		x = s[1] &~ m[1];
 241		if (!x)
 242			break;
 243		sig = ffz(~x) + _NSIG_BPW + 1;
 244		break;
 245
 246	case 1:
 247		/* Nothing to do */
 248		break;
 249	}
 250
 251	return sig;
 252}
 253
 254static inline void print_dropped_signal(int sig)
 255{
 256	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 257
 258	if (!print_fatal_signals)
 259		return;
 260
 261	if (!__ratelimit(&ratelimit_state))
 262		return;
 263
 264	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 265				current->comm, current->pid, sig);
 266}
 267
 268/**
 269 * task_set_jobctl_pending - set jobctl pending bits
 270 * @task: target task
 271 * @mask: pending bits to set
 272 *
 273 * Clear @mask from @task->jobctl.  @mask must be subset of
 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 275 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 276 * cleared.  If @task is already being killed or exiting, this function
 277 * becomes noop.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 *
 282 * RETURNS:
 283 * %true if @mask is set, %false if made noop because @task was dying.
 284 */
 285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 286{
 287	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 288			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 289	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 290
 291	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 292		return false;
 293
 294	if (mask & JOBCTL_STOP_SIGMASK)
 295		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 296
 297	task->jobctl |= mask;
 298	return true;
 299}
 300
 301/**
 302 * task_clear_jobctl_trapping - clear jobctl trapping bit
 303 * @task: target task
 304 *
 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 306 * Clear it and wake up the ptracer.  Note that we don't need any further
 307 * locking.  @task->siglock guarantees that @task->parent points to the
 308 * ptracer.
 309 *
 310 * CONTEXT:
 311 * Must be called with @task->sighand->siglock held.
 312 */
 313void task_clear_jobctl_trapping(struct task_struct *task)
 314{
 315	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 316		task->jobctl &= ~JOBCTL_TRAPPING;
 317		smp_mb();	/* advised by wake_up_bit() */
 318		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 319	}
 320}
 321
 322/**
 323 * task_clear_jobctl_pending - clear jobctl pending bits
 324 * @task: target task
 325 * @mask: pending bits to clear
 326 *
 327 * Clear @mask from @task->jobctl.  @mask must be subset of
 328 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 329 * STOP bits are cleared together.
 330 *
 331 * If clearing of @mask leaves no stop or trap pending, this function calls
 332 * task_clear_jobctl_trapping().
 333 *
 334 * CONTEXT:
 335 * Must be called with @task->sighand->siglock held.
 336 */
 337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 338{
 339	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 340
 341	if (mask & JOBCTL_STOP_PENDING)
 342		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 343
 344	task->jobctl &= ~mask;
 345
 346	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 347		task_clear_jobctl_trapping(task);
 348}
 349
 350/**
 351 * task_participate_group_stop - participate in a group stop
 352 * @task: task participating in a group stop
 353 *
 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 355 * Group stop states are cleared and the group stop count is consumed if
 356 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 357 * stop, the appropriate `SIGNAL_*` flags are set.
 358 *
 359 * CONTEXT:
 360 * Must be called with @task->sighand->siglock held.
 361 *
 362 * RETURNS:
 363 * %true if group stop completion should be notified to the parent, %false
 364 * otherwise.
 365 */
 366static bool task_participate_group_stop(struct task_struct *task)
 367{
 368	struct signal_struct *sig = task->signal;
 369	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 370
 371	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 372
 373	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 374
 375	if (!consume)
 376		return false;
 377
 378	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 379		sig->group_stop_count--;
 380
 381	/*
 382	 * Tell the caller to notify completion iff we are entering into a
 383	 * fresh group stop.  Read comment in do_signal_stop() for details.
 384	 */
 385	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 386		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 387		return true;
 388	}
 389	return false;
 390}
 391
 392void task_join_group_stop(struct task_struct *task)
 393{
 394	/* Have the new thread join an on-going signal group stop */
 395	unsigned long jobctl = current->jobctl;
 396	if (jobctl & JOBCTL_STOP_PENDING) {
 397		struct signal_struct *sig = current->signal;
 398		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
 399		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 400		if (task_set_jobctl_pending(task, signr | gstop)) {
 401			sig->group_stop_count++;
 402		}
 403	}
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 413{
 414	struct sigqueue *q = NULL;
 415	struct user_struct *user;
 
 416
 417	/*
 418	 * Protect access to @t credentials. This can go away when all
 419	 * callers hold rcu read lock.
 
 
 
 
 420	 */
 421	rcu_read_lock();
 422	user = get_uid(__task_cred(t)->user);
 423	atomic_inc(&user->sigpending);
 
 
 424	rcu_read_unlock();
 425
 426	if (override_rlimit ||
 427	    atomic_read(&user->sigpending) <=
 428			task_rlimit(t, RLIMIT_SIGPENDING)) {
 429		q = kmem_cache_alloc(sigqueue_cachep, flags);
 430	} else {
 431		print_dropped_signal(sig);
 432	}
 433
 434	if (unlikely(q == NULL)) {
 435		atomic_dec(&user->sigpending);
 436		free_uid(user);
 437	} else {
 438		INIT_LIST_HEAD(&q->list);
 439		q->flags = 0;
 440		q->user = user;
 441	}
 442
 443	return q;
 444}
 445
 446static void __sigqueue_free(struct sigqueue *q)
 447{
 448	if (q->flags & SIGQUEUE_PREALLOC)
 449		return;
 450	atomic_dec(&q->user->sigpending);
 451	free_uid(q->user);
 452	kmem_cache_free(sigqueue_cachep, q);
 453}
 454
 455void flush_sigqueue(struct sigpending *queue)
 456{
 457	struct sigqueue *q;
 458
 459	sigemptyset(&queue->signal);
 460	while (!list_empty(&queue->list)) {
 461		q = list_entry(queue->list.next, struct sigqueue , list);
 462		list_del_init(&q->list);
 463		__sigqueue_free(q);
 464	}
 465}
 466
 467/*
 468 * Flush all pending signals for this kthread.
 469 */
 470void flush_signals(struct task_struct *t)
 471{
 472	unsigned long flags;
 473
 474	spin_lock_irqsave(&t->sighand->siglock, flags);
 475	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 476	flush_sigqueue(&t->pending);
 477	flush_sigqueue(&t->signal->shared_pending);
 478	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 479}
 480EXPORT_SYMBOL(flush_signals);
 481
 482#ifdef CONFIG_POSIX_TIMERS
 483static void __flush_itimer_signals(struct sigpending *pending)
 484{
 485	sigset_t signal, retain;
 486	struct sigqueue *q, *n;
 487
 488	signal = pending->signal;
 489	sigemptyset(&retain);
 490
 491	list_for_each_entry_safe(q, n, &pending->list, list) {
 492		int sig = q->info.si_signo;
 493
 494		if (likely(q->info.si_code != SI_TIMER)) {
 495			sigaddset(&retain, sig);
 496		} else {
 497			sigdelset(&signal, sig);
 498			list_del_init(&q->list);
 499			__sigqueue_free(q);
 500		}
 501	}
 502
 503	sigorsets(&pending->signal, &signal, &retain);
 504}
 505
 506void flush_itimer_signals(void)
 507{
 508	struct task_struct *tsk = current;
 509	unsigned long flags;
 510
 511	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 512	__flush_itimer_signals(&tsk->pending);
 513	__flush_itimer_signals(&tsk->signal->shared_pending);
 514	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 515}
 516#endif
 517
 518void ignore_signals(struct task_struct *t)
 519{
 520	int i;
 521
 522	for (i = 0; i < _NSIG; ++i)
 523		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 524
 525	flush_signals(t);
 526}
 527
 528/*
 529 * Flush all handlers for a task.
 530 */
 531
 532void
 533flush_signal_handlers(struct task_struct *t, int force_default)
 534{
 535	int i;
 536	struct k_sigaction *ka = &t->sighand->action[0];
 537	for (i = _NSIG ; i != 0 ; i--) {
 538		if (force_default || ka->sa.sa_handler != SIG_IGN)
 539			ka->sa.sa_handler = SIG_DFL;
 540		ka->sa.sa_flags = 0;
 541#ifdef __ARCH_HAS_SA_RESTORER
 542		ka->sa.sa_restorer = NULL;
 543#endif
 544		sigemptyset(&ka->sa.sa_mask);
 545		ka++;
 546	}
 547}
 548
 549bool unhandled_signal(struct task_struct *tsk, int sig)
 550{
 551	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 552	if (is_global_init(tsk))
 553		return true;
 554
 555	if (handler != SIG_IGN && handler != SIG_DFL)
 556		return false;
 557
 558	/* if ptraced, let the tracer determine */
 559	return !tsk->ptrace;
 560}
 561
 562static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 563			   bool *resched_timer)
 564{
 565	struct sigqueue *q, *first = NULL;
 566
 567	/*
 568	 * Collect the siginfo appropriate to this signal.  Check if
 569	 * there is another siginfo for the same signal.
 570	*/
 571	list_for_each_entry(q, &list->list, list) {
 572		if (q->info.si_signo == sig) {
 573			if (first)
 574				goto still_pending;
 575			first = q;
 576		}
 577	}
 578
 579	sigdelset(&list->signal, sig);
 580
 581	if (first) {
 582still_pending:
 583		list_del_init(&first->list);
 584		copy_siginfo(info, &first->info);
 585
 586		*resched_timer =
 587			(first->flags & SIGQUEUE_PREALLOC) &&
 588			(info->si_code == SI_TIMER) &&
 589			(info->si_sys_private);
 590
 591		__sigqueue_free(first);
 592	} else {
 593		/*
 594		 * Ok, it wasn't in the queue.  This must be
 595		 * a fast-pathed signal or we must have been
 596		 * out of queue space.  So zero out the info.
 597		 */
 598		clear_siginfo(info);
 599		info->si_signo = sig;
 600		info->si_errno = 0;
 601		info->si_code = SI_USER;
 602		info->si_pid = 0;
 603		info->si_uid = 0;
 604	}
 605}
 606
 607static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 608			kernel_siginfo_t *info, bool *resched_timer)
 609{
 610	int sig = next_signal(pending, mask);
 611
 612	if (sig)
 613		collect_signal(sig, pending, info, resched_timer);
 614	return sig;
 615}
 616
 617/*
 618 * Dequeue a signal and return the element to the caller, which is
 619 * expected to free it.
 620 *
 621 * All callers have to hold the siglock.
 622 */
 623int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 624{
 625	bool resched_timer = false;
 626	int signr;
 627
 628	/* We only dequeue private signals from ourselves, we don't let
 629	 * signalfd steal them
 630	 */
 631	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 632	if (!signr) {
 633		signr = __dequeue_signal(&tsk->signal->shared_pending,
 634					 mask, info, &resched_timer);
 635#ifdef CONFIG_POSIX_TIMERS
 636		/*
 637		 * itimer signal ?
 638		 *
 639		 * itimers are process shared and we restart periodic
 640		 * itimers in the signal delivery path to prevent DoS
 641		 * attacks in the high resolution timer case. This is
 642		 * compliant with the old way of self-restarting
 643		 * itimers, as the SIGALRM is a legacy signal and only
 644		 * queued once. Changing the restart behaviour to
 645		 * restart the timer in the signal dequeue path is
 646		 * reducing the timer noise on heavy loaded !highres
 647		 * systems too.
 648		 */
 649		if (unlikely(signr == SIGALRM)) {
 650			struct hrtimer *tmr = &tsk->signal->real_timer;
 651
 652			if (!hrtimer_is_queued(tmr) &&
 653			    tsk->signal->it_real_incr != 0) {
 654				hrtimer_forward(tmr, tmr->base->get_time(),
 655						tsk->signal->it_real_incr);
 656				hrtimer_restart(tmr);
 657			}
 658		}
 659#endif
 660	}
 661
 662	recalc_sigpending();
 663	if (!signr)
 664		return 0;
 665
 666	if (unlikely(sig_kernel_stop(signr))) {
 667		/*
 668		 * Set a marker that we have dequeued a stop signal.  Our
 669		 * caller might release the siglock and then the pending
 670		 * stop signal it is about to process is no longer in the
 671		 * pending bitmasks, but must still be cleared by a SIGCONT
 672		 * (and overruled by a SIGKILL).  So those cases clear this
 673		 * shared flag after we've set it.  Note that this flag may
 674		 * remain set after the signal we return is ignored or
 675		 * handled.  That doesn't matter because its only purpose
 676		 * is to alert stop-signal processing code when another
 677		 * processor has come along and cleared the flag.
 678		 */
 679		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 680	}
 681#ifdef CONFIG_POSIX_TIMERS
 682	if (resched_timer) {
 683		/*
 684		 * Release the siglock to ensure proper locking order
 685		 * of timer locks outside of siglocks.  Note, we leave
 686		 * irqs disabled here, since the posix-timers code is
 687		 * about to disable them again anyway.
 688		 */
 689		spin_unlock(&tsk->sighand->siglock);
 690		posixtimer_rearm(info);
 691		spin_lock(&tsk->sighand->siglock);
 692
 693		/* Don't expose the si_sys_private value to userspace */
 694		info->si_sys_private = 0;
 695	}
 696#endif
 697	return signr;
 698}
 699EXPORT_SYMBOL_GPL(dequeue_signal);
 700
 701static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 702{
 703	struct task_struct *tsk = current;
 704	struct sigpending *pending = &tsk->pending;
 705	struct sigqueue *q, *sync = NULL;
 706
 707	/*
 708	 * Might a synchronous signal be in the queue?
 709	 */
 710	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 711		return 0;
 712
 713	/*
 714	 * Return the first synchronous signal in the queue.
 715	 */
 716	list_for_each_entry(q, &pending->list, list) {
 717		/* Synchronous signals have a postive si_code */
 718		if ((q->info.si_code > SI_USER) &&
 719		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 720			sync = q;
 721			goto next;
 722		}
 723	}
 724	return 0;
 725next:
 726	/*
 727	 * Check if there is another siginfo for the same signal.
 728	 */
 729	list_for_each_entry_continue(q, &pending->list, list) {
 730		if (q->info.si_signo == sync->info.si_signo)
 731			goto still_pending;
 732	}
 733
 734	sigdelset(&pending->signal, sync->info.si_signo);
 735	recalc_sigpending();
 736still_pending:
 737	list_del_init(&sync->list);
 738	copy_siginfo(info, &sync->info);
 739	__sigqueue_free(sync);
 740	return info->si_signo;
 741}
 742
 743/*
 744 * Tell a process that it has a new active signal..
 745 *
 746 * NOTE! we rely on the previous spin_lock to
 747 * lock interrupts for us! We can only be called with
 748 * "siglock" held, and the local interrupt must
 749 * have been disabled when that got acquired!
 750 *
 751 * No need to set need_resched since signal event passing
 752 * goes through ->blocked
 753 */
 754void signal_wake_up_state(struct task_struct *t, unsigned int state)
 755{
 756	set_tsk_thread_flag(t, TIF_SIGPENDING);
 757	/*
 758	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 759	 * case. We don't check t->state here because there is a race with it
 760	 * executing another processor and just now entering stopped state.
 761	 * By using wake_up_state, we ensure the process will wake up and
 762	 * handle its death signal.
 763	 */
 764	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 765		kick_process(t);
 766}
 767
 768/*
 769 * Remove signals in mask from the pending set and queue.
 770 * Returns 1 if any signals were found.
 771 *
 772 * All callers must be holding the siglock.
 773 */
 774static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 775{
 776	struct sigqueue *q, *n;
 777	sigset_t m;
 778
 779	sigandsets(&m, mask, &s->signal);
 780	if (sigisemptyset(&m))
 781		return;
 782
 783	sigandnsets(&s->signal, &s->signal, mask);
 784	list_for_each_entry_safe(q, n, &s->list, list) {
 785		if (sigismember(mask, q->info.si_signo)) {
 786			list_del_init(&q->list);
 787			__sigqueue_free(q);
 788		}
 789	}
 790}
 791
 792static inline int is_si_special(const struct kernel_siginfo *info)
 793{
 794	return info <= SEND_SIG_PRIV;
 795}
 796
 797static inline bool si_fromuser(const struct kernel_siginfo *info)
 798{
 799	return info == SEND_SIG_NOINFO ||
 800		(!is_si_special(info) && SI_FROMUSER(info));
 801}
 802
 803/*
 804 * called with RCU read lock from check_kill_permission()
 805 */
 806static bool kill_ok_by_cred(struct task_struct *t)
 807{
 808	const struct cred *cred = current_cred();
 809	const struct cred *tcred = __task_cred(t);
 810
 811	return uid_eq(cred->euid, tcred->suid) ||
 812	       uid_eq(cred->euid, tcred->uid) ||
 813	       uid_eq(cred->uid, tcred->suid) ||
 814	       uid_eq(cred->uid, tcred->uid) ||
 815	       ns_capable(tcred->user_ns, CAP_KILL);
 816}
 817
 818/*
 819 * Bad permissions for sending the signal
 820 * - the caller must hold the RCU read lock
 821 */
 822static int check_kill_permission(int sig, struct kernel_siginfo *info,
 823				 struct task_struct *t)
 824{
 825	struct pid *sid;
 826	int error;
 827
 828	if (!valid_signal(sig))
 829		return -EINVAL;
 830
 831	if (!si_fromuser(info))
 832		return 0;
 833
 834	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 835	if (error)
 836		return error;
 837
 838	if (!same_thread_group(current, t) &&
 839	    !kill_ok_by_cred(t)) {
 840		switch (sig) {
 841		case SIGCONT:
 842			sid = task_session(t);
 843			/*
 844			 * We don't return the error if sid == NULL. The
 845			 * task was unhashed, the caller must notice this.
 846			 */
 847			if (!sid || sid == task_session(current))
 848				break;
 849			/* fall through */
 850		default:
 851			return -EPERM;
 852		}
 853	}
 854
 855	return security_task_kill(t, info, sig, NULL);
 856}
 857
 858/**
 859 * ptrace_trap_notify - schedule trap to notify ptracer
 860 * @t: tracee wanting to notify tracer
 861 *
 862 * This function schedules sticky ptrace trap which is cleared on the next
 863 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 864 * ptracer.
 865 *
 866 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 867 * ptracer is listening for events, tracee is woken up so that it can
 868 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 869 * eventually taken without returning to userland after the existing traps
 870 * are finished by PTRACE_CONT.
 871 *
 872 * CONTEXT:
 873 * Must be called with @task->sighand->siglock held.
 874 */
 875static void ptrace_trap_notify(struct task_struct *t)
 876{
 877	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 878	assert_spin_locked(&t->sighand->siglock);
 879
 880	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 881	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 882}
 883
 884/*
 885 * Handle magic process-wide effects of stop/continue signals. Unlike
 886 * the signal actions, these happen immediately at signal-generation
 887 * time regardless of blocking, ignoring, or handling.  This does the
 888 * actual continuing for SIGCONT, but not the actual stopping for stop
 889 * signals. The process stop is done as a signal action for SIG_DFL.
 890 *
 891 * Returns true if the signal should be actually delivered, otherwise
 892 * it should be dropped.
 893 */
 894static bool prepare_signal(int sig, struct task_struct *p, bool force)
 895{
 896	struct signal_struct *signal = p->signal;
 897	struct task_struct *t;
 898	sigset_t flush;
 899
 900	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 901		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 902			return sig == SIGKILL;
 903		/*
 904		 * The process is in the middle of dying, nothing to do.
 905		 */
 906	} else if (sig_kernel_stop(sig)) {
 907		/*
 908		 * This is a stop signal.  Remove SIGCONT from all queues.
 909		 */
 910		siginitset(&flush, sigmask(SIGCONT));
 911		flush_sigqueue_mask(&flush, &signal->shared_pending);
 912		for_each_thread(p, t)
 913			flush_sigqueue_mask(&flush, &t->pending);
 914	} else if (sig == SIGCONT) {
 915		unsigned int why;
 916		/*
 917		 * Remove all stop signals from all queues, wake all threads.
 918		 */
 919		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 920		flush_sigqueue_mask(&flush, &signal->shared_pending);
 921		for_each_thread(p, t) {
 922			flush_sigqueue_mask(&flush, &t->pending);
 923			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 924			if (likely(!(t->ptrace & PT_SEIZED)))
 925				wake_up_state(t, __TASK_STOPPED);
 926			else
 927				ptrace_trap_notify(t);
 928		}
 929
 930		/*
 931		 * Notify the parent with CLD_CONTINUED if we were stopped.
 932		 *
 933		 * If we were in the middle of a group stop, we pretend it
 934		 * was already finished, and then continued. Since SIGCHLD
 935		 * doesn't queue we report only CLD_STOPPED, as if the next
 936		 * CLD_CONTINUED was dropped.
 937		 */
 938		why = 0;
 939		if (signal->flags & SIGNAL_STOP_STOPPED)
 940			why |= SIGNAL_CLD_CONTINUED;
 941		else if (signal->group_stop_count)
 942			why |= SIGNAL_CLD_STOPPED;
 943
 944		if (why) {
 945			/*
 946			 * The first thread which returns from do_signal_stop()
 947			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 948			 * notify its parent. See get_signal().
 949			 */
 950			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 951			signal->group_stop_count = 0;
 952			signal->group_exit_code = 0;
 953		}
 954	}
 955
 956	return !sig_ignored(p, sig, force);
 957}
 958
 959/*
 960 * Test if P wants to take SIG.  After we've checked all threads with this,
 961 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 962 * blocking SIG were ruled out because they are not running and already
 963 * have pending signals.  Such threads will dequeue from the shared queue
 964 * as soon as they're available, so putting the signal on the shared queue
 965 * will be equivalent to sending it to one such thread.
 966 */
 967static inline bool wants_signal(int sig, struct task_struct *p)
 968{
 969	if (sigismember(&p->blocked, sig))
 970		return false;
 971
 972	if (p->flags & PF_EXITING)
 973		return false;
 974
 975	if (sig == SIGKILL)
 976		return true;
 977
 978	if (task_is_stopped_or_traced(p))
 979		return false;
 980
 981	return task_curr(p) || !signal_pending(p);
 982}
 983
 984static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 985{
 986	struct signal_struct *signal = p->signal;
 987	struct task_struct *t;
 988
 989	/*
 990	 * Now find a thread we can wake up to take the signal off the queue.
 991	 *
 992	 * If the main thread wants the signal, it gets first crack.
 993	 * Probably the least surprising to the average bear.
 994	 */
 995	if (wants_signal(sig, p))
 996		t = p;
 997	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
 998		/*
 999		 * There is just one thread and it does not need to be woken.
1000		 * It will dequeue unblocked signals before it runs again.
1001		 */
1002		return;
1003	else {
1004		/*
1005		 * Otherwise try to find a suitable thread.
1006		 */
1007		t = signal->curr_target;
1008		while (!wants_signal(sig, t)) {
1009			t = next_thread(t);
1010			if (t == signal->curr_target)
1011				/*
1012				 * No thread needs to be woken.
1013				 * Any eligible threads will see
1014				 * the signal in the queue soon.
1015				 */
1016				return;
1017		}
1018		signal->curr_target = t;
1019	}
1020
1021	/*
1022	 * Found a killable thread.  If the signal will be fatal,
1023	 * then start taking the whole group down immediately.
1024	 */
1025	if (sig_fatal(p, sig) &&
1026	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027	    !sigismember(&t->real_blocked, sig) &&
1028	    (sig == SIGKILL || !p->ptrace)) {
1029		/*
1030		 * This signal will be fatal to the whole group.
1031		 */
1032		if (!sig_kernel_coredump(sig)) {
1033			/*
1034			 * Start a group exit and wake everybody up.
1035			 * This way we don't have other threads
1036			 * running and doing things after a slower
1037			 * thread has the fatal signal pending.
1038			 */
1039			signal->flags = SIGNAL_GROUP_EXIT;
1040			signal->group_exit_code = sig;
1041			signal->group_stop_count = 0;
1042			t = p;
1043			do {
1044				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045				sigaddset(&t->pending.signal, SIGKILL);
1046				signal_wake_up(t, 1);
1047			} while_each_thread(p, t);
1048			return;
1049		}
1050	}
1051
1052	/*
1053	 * The signal is already in the shared-pending queue.
1054	 * Tell the chosen thread to wake up and dequeue it.
1055	 */
1056	signal_wake_up(t, sig == SIGKILL);
1057	return;
1058}
1059
1060static inline bool legacy_queue(struct sigpending *signals, int sig)
1061{
1062	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063}
1064
1065static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066			enum pid_type type, bool force)
1067{
1068	struct sigpending *pending;
1069	struct sigqueue *q;
1070	int override_rlimit;
1071	int ret = 0, result;
1072
1073	assert_spin_locked(&t->sighand->siglock);
1074
1075	result = TRACE_SIGNAL_IGNORED;
1076	if (!prepare_signal(sig, t, force))
1077		goto ret;
1078
1079	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080	/*
1081	 * Short-circuit ignored signals and support queuing
1082	 * exactly one non-rt signal, so that we can get more
1083	 * detailed information about the cause of the signal.
1084	 */
1085	result = TRACE_SIGNAL_ALREADY_PENDING;
1086	if (legacy_queue(pending, sig))
1087		goto ret;
1088
1089	result = TRACE_SIGNAL_DELIVERED;
1090	/*
1091	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1092	 */
1093	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094		goto out_set;
1095
1096	/*
1097	 * Real-time signals must be queued if sent by sigqueue, or
1098	 * some other real-time mechanism.  It is implementation
1099	 * defined whether kill() does so.  We attempt to do so, on
1100	 * the principle of least surprise, but since kill is not
1101	 * allowed to fail with EAGAIN when low on memory we just
1102	 * make sure at least one signal gets delivered and don't
1103	 * pass on the info struct.
1104	 */
1105	if (sig < SIGRTMIN)
1106		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107	else
1108		override_rlimit = 0;
1109
1110	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1111	if (q) {
1112		list_add_tail(&q->list, &pending->list);
1113		switch ((unsigned long) info) {
1114		case (unsigned long) SEND_SIG_NOINFO:
1115			clear_siginfo(&q->info);
1116			q->info.si_signo = sig;
1117			q->info.si_errno = 0;
1118			q->info.si_code = SI_USER;
1119			q->info.si_pid = task_tgid_nr_ns(current,
1120							task_active_pid_ns(t));
1121			rcu_read_lock();
1122			q->info.si_uid =
1123				from_kuid_munged(task_cred_xxx(t, user_ns),
1124						 current_uid());
1125			rcu_read_unlock();
1126			break;
1127		case (unsigned long) SEND_SIG_PRIV:
1128			clear_siginfo(&q->info);
1129			q->info.si_signo = sig;
1130			q->info.si_errno = 0;
1131			q->info.si_code = SI_KERNEL;
1132			q->info.si_pid = 0;
1133			q->info.si_uid = 0;
1134			break;
1135		default:
1136			copy_siginfo(&q->info, info);
1137			break;
1138		}
1139	} else if (!is_si_special(info) &&
1140		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1141		/*
1142		 * Queue overflow, abort.  We may abort if the
1143		 * signal was rt and sent by user using something
1144		 * other than kill().
1145		 */
1146		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147		ret = -EAGAIN;
1148		goto ret;
1149	} else {
1150		/*
1151		 * This is a silent loss of information.  We still
1152		 * send the signal, but the *info bits are lost.
1153		 */
1154		result = TRACE_SIGNAL_LOSE_INFO;
1155	}
1156
1157out_set:
1158	signalfd_notify(t, sig);
1159	sigaddset(&pending->signal, sig);
1160
1161	/* Let multiprocess signals appear after on-going forks */
1162	if (type > PIDTYPE_TGID) {
1163		struct multiprocess_signals *delayed;
1164		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165			sigset_t *signal = &delayed->signal;
1166			/* Can't queue both a stop and a continue signal */
1167			if (sig == SIGCONT)
1168				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169			else if (sig_kernel_stop(sig))
1170				sigdelset(signal, SIGCONT);
1171			sigaddset(signal, sig);
1172		}
1173	}
1174
1175	complete_signal(sig, t, type);
1176ret:
1177	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178	return ret;
1179}
1180
1181static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1182{
1183	bool ret = false;
1184	switch (siginfo_layout(info->si_signo, info->si_code)) {
1185	case SIL_KILL:
1186	case SIL_CHLD:
1187	case SIL_RT:
1188		ret = true;
1189		break;
1190	case SIL_TIMER:
1191	case SIL_POLL:
1192	case SIL_FAULT:
1193	case SIL_FAULT_MCEERR:
1194	case SIL_FAULT_BNDERR:
1195	case SIL_FAULT_PKUERR:
1196	case SIL_SYS:
1197		ret = false;
1198		break;
1199	}
1200	return ret;
1201}
1202
1203static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204			enum pid_type type)
1205{
1206	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207	bool force = false;
1208
1209	if (info == SEND_SIG_NOINFO) {
1210		/* Force if sent from an ancestor pid namespace */
1211		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212	} else if (info == SEND_SIG_PRIV) {
1213		/* Don't ignore kernel generated signals */
1214		force = true;
1215	} else if (has_si_pid_and_uid(info)) {
1216		/* SIGKILL and SIGSTOP is special or has ids */
1217		struct user_namespace *t_user_ns;
1218
1219		rcu_read_lock();
1220		t_user_ns = task_cred_xxx(t, user_ns);
1221		if (current_user_ns() != t_user_ns) {
1222			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223			info->si_uid = from_kuid_munged(t_user_ns, uid);
1224		}
1225		rcu_read_unlock();
1226
1227		/* A kernel generated signal? */
1228		force = (info->si_code == SI_KERNEL);
1229
1230		/* From an ancestor pid namespace? */
1231		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232			info->si_pid = 0;
1233			force = true;
1234		}
1235	}
1236	return __send_signal(sig, info, t, type, force);
1237}
1238
1239static void print_fatal_signal(int signr)
1240{
1241	struct pt_regs *regs = signal_pt_regs();
1242	pr_info("potentially unexpected fatal signal %d.\n", signr);
1243
1244#if defined(__i386__) && !defined(__arch_um__)
1245	pr_info("code at %08lx: ", regs->ip);
1246	{
1247		int i;
1248		for (i = 0; i < 16; i++) {
1249			unsigned char insn;
1250
1251			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252				break;
1253			pr_cont("%02x ", insn);
1254		}
1255	}
1256	pr_cont("\n");
1257#endif
1258	preempt_disable();
1259	show_regs(regs);
1260	preempt_enable();
1261}
1262
1263static int __init setup_print_fatal_signals(char *str)
1264{
1265	get_option (&str, &print_fatal_signals);
1266
1267	return 1;
1268}
1269
1270__setup("print-fatal-signals=", setup_print_fatal_signals);
1271
1272int
1273__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1274{
1275	return send_signal(sig, info, p, PIDTYPE_TGID);
1276}
1277
1278int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279			enum pid_type type)
1280{
1281	unsigned long flags;
1282	int ret = -ESRCH;
1283
1284	if (lock_task_sighand(p, &flags)) {
1285		ret = send_signal(sig, info, p, type);
1286		unlock_task_sighand(p, &flags);
1287	}
1288
1289	return ret;
1290}
1291
1292/*
1293 * Force a signal that the process can't ignore: if necessary
1294 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295 *
1296 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297 * since we do not want to have a signal handler that was blocked
1298 * be invoked when user space had explicitly blocked it.
1299 *
1300 * We don't want to have recursive SIGSEGV's etc, for example,
1301 * that is why we also clear SIGNAL_UNKILLABLE.
1302 */
1303static int
1304force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1305{
1306	unsigned long int flags;
1307	int ret, blocked, ignored;
1308	struct k_sigaction *action;
1309	int sig = info->si_signo;
1310
1311	spin_lock_irqsave(&t->sighand->siglock, flags);
1312	action = &t->sighand->action[sig-1];
1313	ignored = action->sa.sa_handler == SIG_IGN;
1314	blocked = sigismember(&t->blocked, sig);
1315	if (blocked || ignored) {
1316		action->sa.sa_handler = SIG_DFL;
1317		if (blocked) {
1318			sigdelset(&t->blocked, sig);
1319			recalc_sigpending_and_wake(t);
1320		}
1321	}
1322	/*
1323	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324	 * debugging to leave init killable.
1325	 */
1326	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1327		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328	ret = send_signal(sig, info, t, PIDTYPE_PID);
1329	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330
1331	return ret;
1332}
1333
1334int force_sig_info(struct kernel_siginfo *info)
1335{
1336	return force_sig_info_to_task(info, current);
1337}
1338
1339/*
1340 * Nuke all other threads in the group.
1341 */
1342int zap_other_threads(struct task_struct *p)
1343{
1344	struct task_struct *t = p;
1345	int count = 0;
1346
1347	p->signal->group_stop_count = 0;
1348
1349	while_each_thread(p, t) {
1350		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351		count++;
1352
1353		/* Don't bother with already dead threads */
1354		if (t->exit_state)
1355			continue;
1356		sigaddset(&t->pending.signal, SIGKILL);
1357		signal_wake_up(t, 1);
1358	}
1359
1360	return count;
1361}
1362
1363struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364					   unsigned long *flags)
1365{
1366	struct sighand_struct *sighand;
1367
1368	rcu_read_lock();
1369	for (;;) {
1370		sighand = rcu_dereference(tsk->sighand);
1371		if (unlikely(sighand == NULL))
1372			break;
1373
1374		/*
1375		 * This sighand can be already freed and even reused, but
1376		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377		 * initializes ->siglock: this slab can't go away, it has
1378		 * the same object type, ->siglock can't be reinitialized.
1379		 *
1380		 * We need to ensure that tsk->sighand is still the same
1381		 * after we take the lock, we can race with de_thread() or
1382		 * __exit_signal(). In the latter case the next iteration
1383		 * must see ->sighand == NULL.
1384		 */
1385		spin_lock_irqsave(&sighand->siglock, *flags);
1386		if (likely(sighand == tsk->sighand))
1387			break;
1388		spin_unlock_irqrestore(&sighand->siglock, *flags);
1389	}
1390	rcu_read_unlock();
1391
1392	return sighand;
1393}
1394
1395/*
1396 * send signal info to all the members of a group
1397 */
1398int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399			struct task_struct *p, enum pid_type type)
1400{
1401	int ret;
1402
1403	rcu_read_lock();
1404	ret = check_kill_permission(sig, info, p);
1405	rcu_read_unlock();
1406
1407	if (!ret && sig)
1408		ret = do_send_sig_info(sig, info, p, type);
1409
1410	return ret;
1411}
1412
1413/*
1414 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415 * control characters do (^C, ^Z etc)
1416 * - the caller must hold at least a readlock on tasklist_lock
1417 */
1418int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419{
1420	struct task_struct *p = NULL;
1421	int retval, success;
1422
1423	success = 0;
1424	retval = -ESRCH;
1425	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427		success |= !err;
1428		retval = err;
1429	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430	return success ? 0 : retval;
1431}
1432
1433int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1434{
1435	int error = -ESRCH;
1436	struct task_struct *p;
1437
1438	for (;;) {
1439		rcu_read_lock();
1440		p = pid_task(pid, PIDTYPE_PID);
1441		if (p)
1442			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443		rcu_read_unlock();
1444		if (likely(!p || error != -ESRCH))
1445			return error;
1446
1447		/*
1448		 * The task was unhashed in between, try again.  If it
1449		 * is dead, pid_task() will return NULL, if we race with
1450		 * de_thread() it will find the new leader.
1451		 */
1452	}
1453}
1454
1455static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456{
1457	int error;
1458	rcu_read_lock();
1459	error = kill_pid_info(sig, info, find_vpid(pid));
1460	rcu_read_unlock();
1461	return error;
1462}
1463
1464static inline bool kill_as_cred_perm(const struct cred *cred,
1465				     struct task_struct *target)
1466{
1467	const struct cred *pcred = __task_cred(target);
1468
1469	return uid_eq(cred->euid, pcred->suid) ||
1470	       uid_eq(cred->euid, pcred->uid) ||
1471	       uid_eq(cred->uid, pcred->suid) ||
1472	       uid_eq(cred->uid, pcred->uid);
1473}
1474
1475/*
1476 * The usb asyncio usage of siginfo is wrong.  The glibc support
1477 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478 * AKA after the generic fields:
1479 *	kernel_pid_t	si_pid;
1480 *	kernel_uid32_t	si_uid;
1481 *	sigval_t	si_value;
1482 *
1483 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484 * after the generic fields is:
1485 *	void __user 	*si_addr;
1486 *
1487 * This is a practical problem when there is a 64bit big endian kernel
1488 * and a 32bit userspace.  As the 32bit address will encoded in the low
1489 * 32bits of the pointer.  Those low 32bits will be stored at higher
1490 * address than appear in a 32 bit pointer.  So userspace will not
1491 * see the address it was expecting for it's completions.
1492 *
1493 * There is nothing in the encoding that can allow
1494 * copy_siginfo_to_user32 to detect this confusion of formats, so
1495 * handle this by requiring the caller of kill_pid_usb_asyncio to
1496 * notice when this situration takes place and to store the 32bit
1497 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498 * parameter.
1499 */
1500int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501			 struct pid *pid, const struct cred *cred)
1502{
1503	struct kernel_siginfo info;
1504	struct task_struct *p;
1505	unsigned long flags;
1506	int ret = -EINVAL;
1507
 
 
 
1508	clear_siginfo(&info);
1509	info.si_signo = sig;
1510	info.si_errno = errno;
1511	info.si_code = SI_ASYNCIO;
1512	*((sigval_t *)&info.si_pid) = addr;
1513
1514	if (!valid_signal(sig))
1515		return ret;
1516
1517	rcu_read_lock();
1518	p = pid_task(pid, PIDTYPE_PID);
1519	if (!p) {
1520		ret = -ESRCH;
1521		goto out_unlock;
1522	}
1523	if (!kill_as_cred_perm(cred, p)) {
1524		ret = -EPERM;
1525		goto out_unlock;
1526	}
1527	ret = security_task_kill(p, &info, sig, cred);
1528	if (ret)
1529		goto out_unlock;
1530
1531	if (sig) {
1532		if (lock_task_sighand(p, &flags)) {
1533			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534			unlock_task_sighand(p, &flags);
1535		} else
1536			ret = -ESRCH;
1537	}
1538out_unlock:
1539	rcu_read_unlock();
1540	return ret;
1541}
1542EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543
1544/*
1545 * kill_something_info() interprets pid in interesting ways just like kill(2).
1546 *
1547 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548 * is probably wrong.  Should make it like BSD or SYSV.
1549 */
1550
1551static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552{
1553	int ret;
1554
1555	if (pid > 0) {
1556		rcu_read_lock();
1557		ret = kill_pid_info(sig, info, find_vpid(pid));
1558		rcu_read_unlock();
1559		return ret;
1560	}
1561
1562	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1563	if (pid == INT_MIN)
1564		return -ESRCH;
1565
1566	read_lock(&tasklist_lock);
1567	if (pid != -1) {
1568		ret = __kill_pgrp_info(sig, info,
1569				pid ? find_vpid(-pid) : task_pgrp(current));
1570	} else {
1571		int retval = 0, count = 0;
1572		struct task_struct * p;
1573
1574		for_each_process(p) {
1575			if (task_pid_vnr(p) > 1 &&
1576					!same_thread_group(p, current)) {
1577				int err = group_send_sig_info(sig, info, p,
1578							      PIDTYPE_MAX);
1579				++count;
1580				if (err != -EPERM)
1581					retval = err;
1582			}
1583		}
1584		ret = count ? retval : -ESRCH;
1585	}
1586	read_unlock(&tasklist_lock);
1587
1588	return ret;
1589}
1590
1591/*
1592 * These are for backward compatibility with the rest of the kernel source.
1593 */
1594
1595int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596{
1597	/*
1598	 * Make sure legacy kernel users don't send in bad values
1599	 * (normal paths check this in check_kill_permission).
1600	 */
1601	if (!valid_signal(sig))
1602		return -EINVAL;
1603
1604	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605}
1606EXPORT_SYMBOL(send_sig_info);
1607
1608#define __si_special(priv) \
1609	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610
1611int
1612send_sig(int sig, struct task_struct *p, int priv)
1613{
1614	return send_sig_info(sig, __si_special(priv), p);
1615}
1616EXPORT_SYMBOL(send_sig);
1617
1618void force_sig(int sig)
1619{
1620	struct kernel_siginfo info;
1621
1622	clear_siginfo(&info);
1623	info.si_signo = sig;
1624	info.si_errno = 0;
1625	info.si_code = SI_KERNEL;
1626	info.si_pid = 0;
1627	info.si_uid = 0;
1628	force_sig_info(&info);
1629}
1630EXPORT_SYMBOL(force_sig);
1631
1632/*
1633 * When things go south during signal handling, we
1634 * will force a SIGSEGV. And if the signal that caused
1635 * the problem was already a SIGSEGV, we'll want to
1636 * make sure we don't even try to deliver the signal..
1637 */
1638void force_sigsegv(int sig)
1639{
1640	struct task_struct *p = current;
1641
1642	if (sig == SIGSEGV) {
1643		unsigned long flags;
1644		spin_lock_irqsave(&p->sighand->siglock, flags);
1645		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647	}
1648	force_sig(SIGSEGV);
1649}
1650
1651int force_sig_fault_to_task(int sig, int code, void __user *addr
1652	___ARCH_SI_TRAPNO(int trapno)
1653	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654	, struct task_struct *t)
1655{
1656	struct kernel_siginfo info;
1657
1658	clear_siginfo(&info);
1659	info.si_signo = sig;
1660	info.si_errno = 0;
1661	info.si_code  = code;
1662	info.si_addr  = addr;
1663#ifdef __ARCH_SI_TRAPNO
1664	info.si_trapno = trapno;
1665#endif
1666#ifdef __ia64__
1667	info.si_imm = imm;
1668	info.si_flags = flags;
1669	info.si_isr = isr;
1670#endif
1671	return force_sig_info_to_task(&info, t);
1672}
1673
1674int force_sig_fault(int sig, int code, void __user *addr
1675	___ARCH_SI_TRAPNO(int trapno)
1676	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677{
1678	return force_sig_fault_to_task(sig, code, addr
1679				       ___ARCH_SI_TRAPNO(trapno)
1680				       ___ARCH_SI_IA64(imm, flags, isr), current);
1681}
1682
1683int send_sig_fault(int sig, int code, void __user *addr
1684	___ARCH_SI_TRAPNO(int trapno)
1685	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686	, struct task_struct *t)
1687{
1688	struct kernel_siginfo info;
1689
1690	clear_siginfo(&info);
1691	info.si_signo = sig;
1692	info.si_errno = 0;
1693	info.si_code  = code;
1694	info.si_addr  = addr;
1695#ifdef __ARCH_SI_TRAPNO
1696	info.si_trapno = trapno;
1697#endif
1698#ifdef __ia64__
1699	info.si_imm = imm;
1700	info.si_flags = flags;
1701	info.si_isr = isr;
1702#endif
1703	return send_sig_info(info.si_signo, &info, t);
1704}
1705
1706int force_sig_mceerr(int code, void __user *addr, short lsb)
1707{
1708	struct kernel_siginfo info;
1709
1710	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711	clear_siginfo(&info);
1712	info.si_signo = SIGBUS;
1713	info.si_errno = 0;
1714	info.si_code = code;
1715	info.si_addr = addr;
1716	info.si_addr_lsb = lsb;
1717	return force_sig_info(&info);
1718}
1719
1720int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721{
1722	struct kernel_siginfo info;
1723
1724	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725	clear_siginfo(&info);
1726	info.si_signo = SIGBUS;
1727	info.si_errno = 0;
1728	info.si_code = code;
1729	info.si_addr = addr;
1730	info.si_addr_lsb = lsb;
1731	return send_sig_info(info.si_signo, &info, t);
1732}
1733EXPORT_SYMBOL(send_sig_mceerr);
1734
1735int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736{
1737	struct kernel_siginfo info;
1738
1739	clear_siginfo(&info);
1740	info.si_signo = SIGSEGV;
1741	info.si_errno = 0;
1742	info.si_code  = SEGV_BNDERR;
1743	info.si_addr  = addr;
1744	info.si_lower = lower;
1745	info.si_upper = upper;
1746	return force_sig_info(&info);
1747}
1748
1749#ifdef SEGV_PKUERR
1750int force_sig_pkuerr(void __user *addr, u32 pkey)
1751{
1752	struct kernel_siginfo info;
1753
1754	clear_siginfo(&info);
1755	info.si_signo = SIGSEGV;
1756	info.si_errno = 0;
1757	info.si_code  = SEGV_PKUERR;
1758	info.si_addr  = addr;
1759	info.si_pkey  = pkey;
1760	return force_sig_info(&info);
1761}
1762#endif
1763
1764/* For the crazy architectures that include trap information in
1765 * the errno field, instead of an actual errno value.
1766 */
1767int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768{
1769	struct kernel_siginfo info;
1770
1771	clear_siginfo(&info);
1772	info.si_signo = SIGTRAP;
1773	info.si_errno = errno;
1774	info.si_code  = TRAP_HWBKPT;
1775	info.si_addr  = addr;
1776	return force_sig_info(&info);
1777}
1778
1779int kill_pgrp(struct pid *pid, int sig, int priv)
1780{
1781	int ret;
1782
1783	read_lock(&tasklist_lock);
1784	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785	read_unlock(&tasklist_lock);
1786
1787	return ret;
1788}
1789EXPORT_SYMBOL(kill_pgrp);
1790
1791int kill_pid(struct pid *pid, int sig, int priv)
1792{
1793	return kill_pid_info(sig, __si_special(priv), pid);
1794}
1795EXPORT_SYMBOL(kill_pid);
1796
1797/*
1798 * These functions support sending signals using preallocated sigqueue
1799 * structures.  This is needed "because realtime applications cannot
1800 * afford to lose notifications of asynchronous events, like timer
1801 * expirations or I/O completions".  In the case of POSIX Timers
1802 * we allocate the sigqueue structure from the timer_create.  If this
1803 * allocation fails we are able to report the failure to the application
1804 * with an EAGAIN error.
1805 */
1806struct sigqueue *sigqueue_alloc(void)
1807{
1808	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1809
1810	if (q)
1811		q->flags |= SIGQUEUE_PREALLOC;
1812
1813	return q;
1814}
1815
1816void sigqueue_free(struct sigqueue *q)
1817{
1818	unsigned long flags;
1819	spinlock_t *lock = &current->sighand->siglock;
1820
1821	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822	/*
1823	 * We must hold ->siglock while testing q->list
1824	 * to serialize with collect_signal() or with
1825	 * __exit_signal()->flush_sigqueue().
1826	 */
1827	spin_lock_irqsave(lock, flags);
1828	q->flags &= ~SIGQUEUE_PREALLOC;
1829	/*
1830	 * If it is queued it will be freed when dequeued,
1831	 * like the "regular" sigqueue.
1832	 */
1833	if (!list_empty(&q->list))
1834		q = NULL;
1835	spin_unlock_irqrestore(lock, flags);
1836
1837	if (q)
1838		__sigqueue_free(q);
1839}
1840
1841int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842{
1843	int sig = q->info.si_signo;
1844	struct sigpending *pending;
1845	struct task_struct *t;
1846	unsigned long flags;
1847	int ret, result;
1848
1849	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850
1851	ret = -1;
1852	rcu_read_lock();
1853	t = pid_task(pid, type);
1854	if (!t || !likely(lock_task_sighand(t, &flags)))
1855		goto ret;
1856
1857	ret = 1; /* the signal is ignored */
1858	result = TRACE_SIGNAL_IGNORED;
1859	if (!prepare_signal(sig, t, false))
1860		goto out;
1861
1862	ret = 0;
1863	if (unlikely(!list_empty(&q->list))) {
1864		/*
1865		 * If an SI_TIMER entry is already queue just increment
1866		 * the overrun count.
1867		 */
1868		BUG_ON(q->info.si_code != SI_TIMER);
1869		q->info.si_overrun++;
1870		result = TRACE_SIGNAL_ALREADY_PENDING;
1871		goto out;
1872	}
1873	q->info.si_overrun = 0;
1874
1875	signalfd_notify(t, sig);
1876	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877	list_add_tail(&q->list, &pending->list);
1878	sigaddset(&pending->signal, sig);
1879	complete_signal(sig, t, type);
1880	result = TRACE_SIGNAL_DELIVERED;
1881out:
1882	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883	unlock_task_sighand(t, &flags);
1884ret:
1885	rcu_read_unlock();
1886	return ret;
1887}
1888
1889static void do_notify_pidfd(struct task_struct *task)
1890{
1891	struct pid *pid;
1892
1893	WARN_ON(task->exit_state == 0);
1894	pid = task_pid(task);
1895	wake_up_all(&pid->wait_pidfd);
1896}
1897
1898/*
1899 * Let a parent know about the death of a child.
1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901 *
1902 * Returns true if our parent ignored us and so we've switched to
1903 * self-reaping.
1904 */
1905bool do_notify_parent(struct task_struct *tsk, int sig)
1906{
1907	struct kernel_siginfo info;
1908	unsigned long flags;
1909	struct sighand_struct *psig;
1910	bool autoreap = false;
1911	u64 utime, stime;
1912
1913	BUG_ON(sig == -1);
1914
1915 	/* do_notify_parent_cldstop should have been called instead.  */
1916 	BUG_ON(task_is_stopped_or_traced(tsk));
1917
1918	BUG_ON(!tsk->ptrace &&
1919	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920
1921	/* Wake up all pidfd waiters */
1922	do_notify_pidfd(tsk);
1923
1924	if (sig != SIGCHLD) {
1925		/*
1926		 * This is only possible if parent == real_parent.
1927		 * Check if it has changed security domain.
1928		 */
1929		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930			sig = SIGCHLD;
1931	}
1932
1933	clear_siginfo(&info);
1934	info.si_signo = sig;
1935	info.si_errno = 0;
1936	/*
1937	 * We are under tasklist_lock here so our parent is tied to
1938	 * us and cannot change.
1939	 *
1940	 * task_active_pid_ns will always return the same pid namespace
1941	 * until a task passes through release_task.
1942	 *
1943	 * write_lock() currently calls preempt_disable() which is the
1944	 * same as rcu_read_lock(), but according to Oleg, this is not
1945	 * correct to rely on this
1946	 */
1947	rcu_read_lock();
1948	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950				       task_uid(tsk));
1951	rcu_read_unlock();
1952
1953	task_cputime(tsk, &utime, &stime);
1954	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956
1957	info.si_status = tsk->exit_code & 0x7f;
1958	if (tsk->exit_code & 0x80)
1959		info.si_code = CLD_DUMPED;
1960	else if (tsk->exit_code & 0x7f)
1961		info.si_code = CLD_KILLED;
1962	else {
1963		info.si_code = CLD_EXITED;
1964		info.si_status = tsk->exit_code >> 8;
1965	}
1966
1967	psig = tsk->parent->sighand;
1968	spin_lock_irqsave(&psig->siglock, flags);
1969	if (!tsk->ptrace && sig == SIGCHLD &&
1970	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972		/*
1973		 * We are exiting and our parent doesn't care.  POSIX.1
1974		 * defines special semantics for setting SIGCHLD to SIG_IGN
1975		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976		 * automatically and not left for our parent's wait4 call.
1977		 * Rather than having the parent do it as a magic kind of
1978		 * signal handler, we just set this to tell do_exit that we
1979		 * can be cleaned up without becoming a zombie.  Note that
1980		 * we still call __wake_up_parent in this case, because a
1981		 * blocked sys_wait4 might now return -ECHILD.
1982		 *
1983		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984		 * is implementation-defined: we do (if you don't want
1985		 * it, just use SIG_IGN instead).
1986		 */
1987		autoreap = true;
1988		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989			sig = 0;
1990	}
 
 
 
 
1991	if (valid_signal(sig) && sig)
1992		__group_send_sig_info(sig, &info, tsk->parent);
1993	__wake_up_parent(tsk, tsk->parent);
1994	spin_unlock_irqrestore(&psig->siglock, flags);
1995
1996	return autoreap;
1997}
1998
1999/**
2000 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001 * @tsk: task reporting the state change
2002 * @for_ptracer: the notification is for ptracer
2003 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004 *
2005 * Notify @tsk's parent that the stopped/continued state has changed.  If
2006 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008 *
2009 * CONTEXT:
2010 * Must be called with tasklist_lock at least read locked.
2011 */
2012static void do_notify_parent_cldstop(struct task_struct *tsk,
2013				     bool for_ptracer, int why)
2014{
2015	struct kernel_siginfo info;
2016	unsigned long flags;
2017	struct task_struct *parent;
2018	struct sighand_struct *sighand;
2019	u64 utime, stime;
2020
2021	if (for_ptracer) {
2022		parent = tsk->parent;
2023	} else {
2024		tsk = tsk->group_leader;
2025		parent = tsk->real_parent;
2026	}
2027
2028	clear_siginfo(&info);
2029	info.si_signo = SIGCHLD;
2030	info.si_errno = 0;
2031	/*
2032	 * see comment in do_notify_parent() about the following 4 lines
2033	 */
2034	rcu_read_lock();
2035	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037	rcu_read_unlock();
2038
2039	task_cputime(tsk, &utime, &stime);
2040	info.si_utime = nsec_to_clock_t(utime);
2041	info.si_stime = nsec_to_clock_t(stime);
2042
2043 	info.si_code = why;
2044 	switch (why) {
2045 	case CLD_CONTINUED:
2046 		info.si_status = SIGCONT;
2047 		break;
2048 	case CLD_STOPPED:
2049 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2050 		break;
2051 	case CLD_TRAPPED:
2052 		info.si_status = tsk->exit_code & 0x7f;
2053 		break;
2054 	default:
2055 		BUG();
2056 	}
2057
2058	sighand = parent->sighand;
2059	spin_lock_irqsave(&sighand->siglock, flags);
2060	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062		__group_send_sig_info(SIGCHLD, &info, parent);
2063	/*
2064	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065	 */
2066	__wake_up_parent(tsk, parent);
2067	spin_unlock_irqrestore(&sighand->siglock, flags);
2068}
2069
2070static inline bool may_ptrace_stop(void)
2071{
2072	if (!likely(current->ptrace))
2073		return false;
2074	/*
2075	 * Are we in the middle of do_coredump?
2076	 * If so and our tracer is also part of the coredump stopping
2077	 * is a deadlock situation, and pointless because our tracer
2078	 * is dead so don't allow us to stop.
2079	 * If SIGKILL was already sent before the caller unlocked
2080	 * ->siglock we must see ->core_state != NULL. Otherwise it
2081	 * is safe to enter schedule().
2082	 *
2083	 * This is almost outdated, a task with the pending SIGKILL can't
2084	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085	 * after SIGKILL was already dequeued.
2086	 */
2087	if (unlikely(current->mm->core_state) &&
2088	    unlikely(current->mm == current->parent->mm))
2089		return false;
2090
2091	return true;
2092}
2093
2094/*
2095 * Return non-zero if there is a SIGKILL that should be waking us up.
2096 * Called with the siglock held.
2097 */
2098static bool sigkill_pending(struct task_struct *tsk)
2099{
2100	return sigismember(&tsk->pending.signal, SIGKILL) ||
2101	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102}
2103
2104/*
2105 * This must be called with current->sighand->siglock held.
2106 *
2107 * This should be the path for all ptrace stops.
2108 * We always set current->last_siginfo while stopped here.
2109 * That makes it a way to test a stopped process for
2110 * being ptrace-stopped vs being job-control-stopped.
2111 *
2112 * If we actually decide not to stop at all because the tracer
2113 * is gone, we keep current->exit_code unless clear_code.
2114 */
2115static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2116	__releases(&current->sighand->siglock)
2117	__acquires(&current->sighand->siglock)
2118{
2119	bool gstop_done = false;
2120
2121	if (arch_ptrace_stop_needed(exit_code, info)) {
2122		/*
2123		 * The arch code has something special to do before a
2124		 * ptrace stop.  This is allowed to block, e.g. for faults
2125		 * on user stack pages.  We can't keep the siglock while
2126		 * calling arch_ptrace_stop, so we must release it now.
2127		 * To preserve proper semantics, we must do this before
2128		 * any signal bookkeeping like checking group_stop_count.
2129		 * Meanwhile, a SIGKILL could come in before we retake the
2130		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2131		 * So after regaining the lock, we must check for SIGKILL.
2132		 */
2133		spin_unlock_irq(&current->sighand->siglock);
2134		arch_ptrace_stop(exit_code, info);
2135		spin_lock_irq(&current->sighand->siglock);
2136		if (sigkill_pending(current))
2137			return;
2138	}
2139
2140	set_special_state(TASK_TRACED);
2141
2142	/*
2143	 * We're committing to trapping.  TRACED should be visible before
2144	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145	 * Also, transition to TRACED and updates to ->jobctl should be
2146	 * atomic with respect to siglock and should be done after the arch
2147	 * hook as siglock is released and regrabbed across it.
2148	 *
2149	 *     TRACER				    TRACEE
2150	 *
2151	 *     ptrace_attach()
2152	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2153	 *     do_wait()
2154	 *       set_current_state()                smp_wmb();
2155	 *       ptrace_do_wait()
2156	 *         wait_task_stopped()
2157	 *           task_stopped_code()
2158	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2159	 */
2160	smp_wmb();
2161
2162	current->last_siginfo = info;
2163	current->exit_code = exit_code;
2164
2165	/*
2166	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2168	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169	 * could be clear now.  We act as if SIGCONT is received after
2170	 * TASK_TRACED is entered - ignore it.
2171	 */
2172	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173		gstop_done = task_participate_group_stop(current);
2174
2175	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180	/* entering a trap, clear TRAPPING */
2181	task_clear_jobctl_trapping(current);
2182
2183	spin_unlock_irq(&current->sighand->siglock);
2184	read_lock(&tasklist_lock);
2185	if (may_ptrace_stop()) {
2186		/*
2187		 * Notify parents of the stop.
2188		 *
2189		 * While ptraced, there are two parents - the ptracer and
2190		 * the real_parent of the group_leader.  The ptracer should
2191		 * know about every stop while the real parent is only
2192		 * interested in the completion of group stop.  The states
2193		 * for the two don't interact with each other.  Notify
2194		 * separately unless they're gonna be duplicates.
2195		 */
2196		do_notify_parent_cldstop(current, true, why);
2197		if (gstop_done && ptrace_reparented(current))
2198			do_notify_parent_cldstop(current, false, why);
2199
2200		/*
2201		 * Don't want to allow preemption here, because
2202		 * sys_ptrace() needs this task to be inactive.
2203		 *
2204		 * XXX: implement read_unlock_no_resched().
2205		 */
2206		preempt_disable();
2207		read_unlock(&tasklist_lock);
2208		cgroup_enter_frozen();
2209		preempt_enable_no_resched();
2210		freezable_schedule();
2211		cgroup_leave_frozen(true);
2212	} else {
2213		/*
2214		 * By the time we got the lock, our tracer went away.
2215		 * Don't drop the lock yet, another tracer may come.
2216		 *
2217		 * If @gstop_done, the ptracer went away between group stop
2218		 * completion and here.  During detach, it would have set
2219		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221		 * the real parent of the group stop completion is enough.
2222		 */
2223		if (gstop_done)
2224			do_notify_parent_cldstop(current, false, why);
2225
2226		/* tasklist protects us from ptrace_freeze_traced() */
2227		__set_current_state(TASK_RUNNING);
2228		if (clear_code)
2229			current->exit_code = 0;
2230		read_unlock(&tasklist_lock);
2231	}
2232
2233	/*
2234	 * We are back.  Now reacquire the siglock before touching
2235	 * last_siginfo, so that we are sure to have synchronized with
2236	 * any signal-sending on another CPU that wants to examine it.
2237	 */
2238	spin_lock_irq(&current->sighand->siglock);
2239	current->last_siginfo = NULL;
2240
2241	/* LISTENING can be set only during STOP traps, clear it */
2242	current->jobctl &= ~JOBCTL_LISTENING;
2243
2244	/*
2245	 * Queued signals ignored us while we were stopped for tracing.
2246	 * So check for any that we should take before resuming user mode.
2247	 * This sets TIF_SIGPENDING, but never clears it.
2248	 */
2249	recalc_sigpending_tsk(current);
2250}
2251
2252static void ptrace_do_notify(int signr, int exit_code, int why)
2253{
2254	kernel_siginfo_t info;
2255
2256	clear_siginfo(&info);
2257	info.si_signo = signr;
2258	info.si_code = exit_code;
2259	info.si_pid = task_pid_vnr(current);
2260	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262	/* Let the debugger run.  */
2263	ptrace_stop(exit_code, why, 1, &info);
2264}
2265
2266void ptrace_notify(int exit_code)
2267{
2268	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269	if (unlikely(current->task_works))
2270		task_work_run();
2271
2272	spin_lock_irq(&current->sighand->siglock);
2273	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274	spin_unlock_irq(&current->sighand->siglock);
2275}
2276
2277/**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it.  If already set, participate in the existing
2283 * group stop.  If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself.  Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299static bool do_signal_stop(int signr)
2300	__releases(&current->sighand->siglock)
2301{
2302	struct signal_struct *sig = current->signal;
2303
2304	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306		struct task_struct *t;
2307
2308		/* signr will be recorded in task->jobctl for retries */
2309		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312		    unlikely(signal_group_exit(sig)))
2313			return false;
2314		/*
2315		 * There is no group stop already in progress.  We must
2316		 * initiate one now.
2317		 *
2318		 * While ptraced, a task may be resumed while group stop is
2319		 * still in effect and then receive a stop signal and
2320		 * initiate another group stop.  This deviates from the
2321		 * usual behavior as two consecutive stop signals can't
2322		 * cause two group stops when !ptraced.  That is why we
2323		 * also check !task_is_stopped(t) below.
2324		 *
2325		 * The condition can be distinguished by testing whether
2326		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2327		 * group_exit_code in such case.
2328		 *
2329		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330		 * an intervening stop signal is required to cause two
2331		 * continued events regardless of ptrace.
2332		 */
2333		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334			sig->group_exit_code = signr;
2335
2336		sig->group_stop_count = 0;
2337
2338		if (task_set_jobctl_pending(current, signr | gstop))
2339			sig->group_stop_count++;
2340
2341		t = current;
2342		while_each_thread(current, t) {
2343			/*
2344			 * Setting state to TASK_STOPPED for a group
2345			 * stop is always done with the siglock held,
2346			 * so this check has no races.
2347			 */
2348			if (!task_is_stopped(t) &&
2349			    task_set_jobctl_pending(t, signr | gstop)) {
2350				sig->group_stop_count++;
2351				if (likely(!(t->ptrace & PT_SEIZED)))
2352					signal_wake_up(t, 0);
2353				else
2354					ptrace_trap_notify(t);
2355			}
2356		}
2357	}
2358
2359	if (likely(!current->ptrace)) {
2360		int notify = 0;
2361
2362		/*
2363		 * If there are no other threads in the group, or if there
2364		 * is a group stop in progress and we are the last to stop,
2365		 * report to the parent.
2366		 */
2367		if (task_participate_group_stop(current))
2368			notify = CLD_STOPPED;
2369
2370		set_special_state(TASK_STOPPED);
2371		spin_unlock_irq(&current->sighand->siglock);
2372
2373		/*
2374		 * Notify the parent of the group stop completion.  Because
2375		 * we're not holding either the siglock or tasklist_lock
2376		 * here, ptracer may attach inbetween; however, this is for
2377		 * group stop and should always be delivered to the real
2378		 * parent of the group leader.  The new ptracer will get
2379		 * its notification when this task transitions into
2380		 * TASK_TRACED.
2381		 */
2382		if (notify) {
2383			read_lock(&tasklist_lock);
2384			do_notify_parent_cldstop(current, false, notify);
2385			read_unlock(&tasklist_lock);
2386		}
2387
2388		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2389		cgroup_enter_frozen();
2390		freezable_schedule();
2391		return true;
2392	} else {
2393		/*
2394		 * While ptraced, group stop is handled by STOP trap.
2395		 * Schedule it and let the caller deal with it.
2396		 */
2397		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398		return false;
2399	}
2400}
2401
2402/**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417static void do_jobctl_trap(void)
2418{
2419	struct signal_struct *signal = current->signal;
2420	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422	if (current->ptrace & PT_SEIZED) {
2423		if (!signal->group_stop_count &&
2424		    !(signal->flags & SIGNAL_STOP_STOPPED))
2425			signr = SIGTRAP;
2426		WARN_ON_ONCE(!signr);
2427		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428				 CLD_STOPPED);
2429	} else {
2430		WARN_ON_ONCE(!signr);
2431		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432		current->exit_code = 0;
2433	}
2434}
2435
2436/**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446static void do_freezer_trap(void)
2447	__releases(&current->sighand->siglock)
2448{
2449	/*
2450	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451	 * let's make another loop to give it a chance to be handled.
2452	 * In any case, we'll return back.
2453	 */
2454	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455	     JOBCTL_TRAP_FREEZE) {
2456		spin_unlock_irq(&current->sighand->siglock);
2457		return;
2458	}
2459
2460	/*
2461	 * Now we're sure that there is no pending fatal signal and no
2462	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463	 * immediately (if there is a non-fatal signal pending), and
2464	 * put the task into sleep.
2465	 */
2466	__set_current_state(TASK_INTERRUPTIBLE);
2467	clear_thread_flag(TIF_SIGPENDING);
2468	spin_unlock_irq(&current->sighand->siglock);
2469	cgroup_enter_frozen();
2470	freezable_schedule();
2471}
2472
2473static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474{
2475	/*
2476	 * We do not check sig_kernel_stop(signr) but set this marker
2477	 * unconditionally because we do not know whether debugger will
2478	 * change signr. This flag has no meaning unless we are going
2479	 * to stop after return from ptrace_stop(). In this case it will
2480	 * be checked in do_signal_stop(), we should only stop if it was
2481	 * not cleared by SIGCONT while we were sleeping. See also the
2482	 * comment in dequeue_signal().
2483	 */
2484	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487	/* We're back.  Did the debugger cancel the sig?  */
2488	signr = current->exit_code;
2489	if (signr == 0)
2490		return signr;
2491
2492	current->exit_code = 0;
2493
2494	/*
2495	 * Update the siginfo structure if the signal has
2496	 * changed.  If the debugger wanted something
2497	 * specific in the siginfo structure then it should
2498	 * have updated *info via PTRACE_SETSIGINFO.
2499	 */
2500	if (signr != info->si_signo) {
2501		clear_siginfo(info);
2502		info->si_signo = signr;
2503		info->si_errno = 0;
2504		info->si_code = SI_USER;
2505		rcu_read_lock();
2506		info->si_pid = task_pid_vnr(current->parent);
2507		info->si_uid = from_kuid_munged(current_user_ns(),
2508						task_uid(current->parent));
2509		rcu_read_unlock();
2510	}
2511
2512	/* If the (new) signal is now blocked, requeue it.  */
2513	if (sigismember(&current->blocked, signr)) {
2514		send_signal(signr, info, current, PIDTYPE_PID);
2515		signr = 0;
2516	}
2517
2518	return signr;
2519}
2520
2521bool get_signal(struct ksignal *ksig)
2522{
2523	struct sighand_struct *sighand = current->sighand;
2524	struct signal_struct *signal = current->signal;
2525	int signr;
2526
2527	if (unlikely(current->task_works))
2528		task_work_run();
2529
2530	if (unlikely(uprobe_deny_signal()))
2531		return false;
2532
2533	/*
2534	 * Do this once, we can't return to user-mode if freezing() == T.
2535	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536	 * thus do not need another check after return.
2537	 */
2538	try_to_freeze();
2539
2540relock:
2541	spin_lock_irq(&sighand->siglock);
2542	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543	 * Every stopped thread goes here after wakeup. Check to see if
2544	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546	 */
2547	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548		int why;
2549
2550		if (signal->flags & SIGNAL_CLD_CONTINUED)
2551			why = CLD_CONTINUED;
2552		else
2553			why = CLD_STOPPED;
2554
2555		signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557		spin_unlock_irq(&sighand->siglock);
2558
2559		/*
2560		 * Notify the parent that we're continuing.  This event is
2561		 * always per-process and doesn't make whole lot of sense
2562		 * for ptracers, who shouldn't consume the state via
2563		 * wait(2) either, but, for backward compatibility, notify
2564		 * the ptracer of the group leader too unless it's gonna be
2565		 * a duplicate.
2566		 */
2567		read_lock(&tasklist_lock);
2568		do_notify_parent_cldstop(current, false, why);
2569
2570		if (ptrace_reparented(current->group_leader))
2571			do_notify_parent_cldstop(current->group_leader,
2572						true, why);
2573		read_unlock(&tasklist_lock);
2574
2575		goto relock;
2576	}
2577
2578	/* Has this task already been marked for death? */
2579	if (signal_group_exit(signal)) {
2580		ksig->info.si_signo = signr = SIGKILL;
2581		sigdelset(&current->pending.signal, SIGKILL);
2582		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583				&sighand->action[SIGKILL - 1]);
2584		recalc_sigpending();
2585		goto fatal;
2586	}
2587
2588	for (;;) {
2589		struct k_sigaction *ka;
2590
2591		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592		    do_signal_stop(0))
2593			goto relock;
2594
2595		if (unlikely(current->jobctl &
2596			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597			if (current->jobctl & JOBCTL_TRAP_MASK) {
2598				do_jobctl_trap();
2599				spin_unlock_irq(&sighand->siglock);
2600			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601				do_freezer_trap();
2602
2603			goto relock;
2604		}
2605
2606		/*
2607		 * If the task is leaving the frozen state, let's update
2608		 * cgroup counters and reset the frozen bit.
2609		 */
2610		if (unlikely(cgroup_task_frozen(current))) {
2611			spin_unlock_irq(&sighand->siglock);
2612			cgroup_leave_frozen(false);
2613			goto relock;
2614		}
2615
2616		/*
2617		 * Signals generated by the execution of an instruction
2618		 * need to be delivered before any other pending signals
2619		 * so that the instruction pointer in the signal stack
2620		 * frame points to the faulting instruction.
2621		 */
2622		signr = dequeue_synchronous_signal(&ksig->info);
2623		if (!signr)
2624			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2625
2626		if (!signr)
2627			break; /* will return 0 */
2628
2629		if (unlikely(current->ptrace) && signr != SIGKILL) {
2630			signr = ptrace_signal(signr, &ksig->info);
2631			if (!signr)
2632				continue;
2633		}
2634
2635		ka = &sighand->action[signr-1];
2636
2637		/* Trace actually delivered signals. */
2638		trace_signal_deliver(signr, &ksig->info, ka);
2639
2640		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2641			continue;
2642		if (ka->sa.sa_handler != SIG_DFL) {
2643			/* Run the handler.  */
2644			ksig->ka = *ka;
2645
2646			if (ka->sa.sa_flags & SA_ONESHOT)
2647				ka->sa.sa_handler = SIG_DFL;
2648
2649			break; /* will return non-zero "signr" value */
2650		}
2651
2652		/*
2653		 * Now we are doing the default action for this signal.
2654		 */
2655		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656			continue;
2657
2658		/*
2659		 * Global init gets no signals it doesn't want.
2660		 * Container-init gets no signals it doesn't want from same
2661		 * container.
2662		 *
2663		 * Note that if global/container-init sees a sig_kernel_only()
2664		 * signal here, the signal must have been generated internally
2665		 * or must have come from an ancestor namespace. In either
2666		 * case, the signal cannot be dropped.
2667		 */
2668		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669				!sig_kernel_only(signr))
2670			continue;
2671
2672		if (sig_kernel_stop(signr)) {
2673			/*
2674			 * The default action is to stop all threads in
2675			 * the thread group.  The job control signals
2676			 * do nothing in an orphaned pgrp, but SIGSTOP
2677			 * always works.  Note that siglock needs to be
2678			 * dropped during the call to is_orphaned_pgrp()
2679			 * because of lock ordering with tasklist_lock.
2680			 * This allows an intervening SIGCONT to be posted.
2681			 * We need to check for that and bail out if necessary.
2682			 */
2683			if (signr != SIGSTOP) {
2684				spin_unlock_irq(&sighand->siglock);
2685
2686				/* signals can be posted during this window */
2687
2688				if (is_current_pgrp_orphaned())
2689					goto relock;
2690
2691				spin_lock_irq(&sighand->siglock);
2692			}
2693
2694			if (likely(do_signal_stop(ksig->info.si_signo))) {
2695				/* It released the siglock.  */
2696				goto relock;
2697			}
2698
2699			/*
2700			 * We didn't actually stop, due to a race
2701			 * with SIGCONT or something like that.
2702			 */
2703			continue;
2704		}
2705
2706	fatal:
2707		spin_unlock_irq(&sighand->siglock);
2708		if (unlikely(cgroup_task_frozen(current)))
2709			cgroup_leave_frozen(true);
2710
2711		/*
2712		 * Anything else is fatal, maybe with a core dump.
2713		 */
2714		current->flags |= PF_SIGNALED;
2715
2716		if (sig_kernel_coredump(signr)) {
2717			if (print_fatal_signals)
2718				print_fatal_signal(ksig->info.si_signo);
2719			proc_coredump_connector(current);
2720			/*
2721			 * If it was able to dump core, this kills all
2722			 * other threads in the group and synchronizes with
2723			 * their demise.  If we lost the race with another
2724			 * thread getting here, it set group_exit_code
2725			 * first and our do_group_exit call below will use
2726			 * that value and ignore the one we pass it.
2727			 */
2728			do_coredump(&ksig->info);
2729		}
2730
2731		/*
2732		 * Death signals, no core dump.
2733		 */
2734		do_group_exit(ksig->info.si_signo);
2735		/* NOTREACHED */
2736	}
2737	spin_unlock_irq(&sighand->siglock);
2738
2739	ksig->sig = signr;
2740	return ksig->sig > 0;
2741}
2742
2743/**
2744 * signal_delivered - 
2745 * @ksig:		kernel signal struct
2746 * @stepping:		nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2752 */
2753static void signal_delivered(struct ksignal *ksig, int stepping)
2754{
2755	sigset_t blocked;
2756
2757	/* A signal was successfully delivered, and the
2758	   saved sigmask was stored on the signal frame,
2759	   and will be restored by sigreturn.  So we can
2760	   simply clear the restore sigmask flag.  */
2761	clear_restore_sigmask();
2762
2763	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2764	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765		sigaddset(&blocked, ksig->sig);
2766	set_current_blocked(&blocked);
2767	tracehook_signal_handler(stepping);
2768}
2769
2770void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771{
2772	if (failed)
2773		force_sigsegv(ksig->sig);
2774	else
2775		signal_delivered(ksig, stepping);
2776}
2777
2778/*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784{
2785	sigset_t retarget;
2786	struct task_struct *t;
2787
2788	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789	if (sigisemptyset(&retarget))
2790		return;
2791
2792	t = tsk;
2793	while_each_thread(tsk, t) {
2794		if (t->flags & PF_EXITING)
2795			continue;
2796
2797		if (!has_pending_signals(&retarget, &t->blocked))
2798			continue;
2799		/* Remove the signals this thread can handle. */
2800		sigandsets(&retarget, &retarget, &t->blocked);
2801
2802		if (!signal_pending(t))
2803			signal_wake_up(t, 0);
2804
2805		if (sigisemptyset(&retarget))
2806			break;
2807	}
2808}
2809
2810void exit_signals(struct task_struct *tsk)
2811{
2812	int group_stop = 0;
2813	sigset_t unblocked;
2814
2815	/*
2816	 * @tsk is about to have PF_EXITING set - lock out users which
2817	 * expect stable threadgroup.
2818	 */
2819	cgroup_threadgroup_change_begin(tsk);
2820
2821	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822		tsk->flags |= PF_EXITING;
2823		cgroup_threadgroup_change_end(tsk);
2824		return;
2825	}
2826
2827	spin_lock_irq(&tsk->sighand->siglock);
2828	/*
2829	 * From now this task is not visible for group-wide signals,
2830	 * see wants_signal(), do_signal_stop().
2831	 */
2832	tsk->flags |= PF_EXITING;
2833
2834	cgroup_threadgroup_change_end(tsk);
2835
2836	if (!signal_pending(tsk))
2837		goto out;
2838
2839	unblocked = tsk->blocked;
2840	signotset(&unblocked);
2841	retarget_shared_pending(tsk, &unblocked);
2842
2843	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844	    task_participate_group_stop(tsk))
2845		group_stop = CLD_STOPPED;
2846out:
2847	spin_unlock_irq(&tsk->sighand->siglock);
2848
2849	/*
2850	 * If group stop has completed, deliver the notification.  This
2851	 * should always go to the real parent of the group leader.
2852	 */
2853	if (unlikely(group_stop)) {
2854		read_lock(&tasklist_lock);
2855		do_notify_parent_cldstop(tsk, false, group_stop);
2856		read_unlock(&tasklist_lock);
2857	}
2858}
2859
2860/*
2861 * System call entry points.
2862 */
2863
2864/**
2865 *  sys_restart_syscall - restart a system call
2866 */
2867SYSCALL_DEFINE0(restart_syscall)
2868{
2869	struct restart_block *restart = &current->restart_block;
2870	return restart->fn(restart);
2871}
2872
2873long do_no_restart_syscall(struct restart_block *param)
2874{
2875	return -EINTR;
2876}
2877
2878static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879{
2880	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881		sigset_t newblocked;
2882		/* A set of now blocked but previously unblocked signals. */
2883		sigandnsets(&newblocked, newset, &current->blocked);
2884		retarget_shared_pending(tsk, &newblocked);
2885	}
2886	tsk->blocked = *newset;
2887	recalc_sigpending();
2888}
2889
2890/**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897void set_current_blocked(sigset_t *newset)
2898{
2899	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900	__set_current_blocked(newset);
2901}
2902
2903void __set_current_blocked(const sigset_t *newset)
2904{
2905	struct task_struct *tsk = current;
2906
2907	/*
2908	 * In case the signal mask hasn't changed, there is nothing we need
2909	 * to do. The current->blocked shouldn't be modified by other task.
2910	 */
2911	if (sigequalsets(&tsk->blocked, newset))
2912		return;
2913
2914	spin_lock_irq(&tsk->sighand->siglock);
2915	__set_task_blocked(tsk, newset);
2916	spin_unlock_irq(&tsk->sighand->siglock);
2917}
2918
2919/*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928{
2929	struct task_struct *tsk = current;
2930	sigset_t newset;
2931
2932	/* Lockless, only current can change ->blocked, never from irq */
2933	if (oldset)
2934		*oldset = tsk->blocked;
2935
2936	switch (how) {
2937	case SIG_BLOCK:
2938		sigorsets(&newset, &tsk->blocked, set);
2939		break;
2940	case SIG_UNBLOCK:
2941		sigandnsets(&newset, &tsk->blocked, set);
2942		break;
2943	case SIG_SETMASK:
2944		newset = *set;
2945		break;
2946	default:
2947		return -EINVAL;
2948	}
2949
2950	__set_current_blocked(&newset);
2951	return 0;
2952}
2953EXPORT_SYMBOL(sigprocmask);
2954
2955/*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965{
2966	sigset_t kmask;
2967
2968	if (!umask)
2969		return 0;
2970	if (sigsetsize != sizeof(sigset_t))
2971		return -EINVAL;
2972	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973		return -EFAULT;
2974
2975	set_restore_sigmask();
2976	current->saved_sigmask = current->blocked;
2977	set_current_blocked(&kmask);
2978
2979	return 0;
2980}
2981
2982#ifdef CONFIG_COMPAT
2983int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984			    size_t sigsetsize)
2985{
2986	sigset_t kmask;
2987
2988	if (!umask)
2989		return 0;
2990	if (sigsetsize != sizeof(compat_sigset_t))
2991		return -EINVAL;
2992	if (get_compat_sigset(&kmask, umask))
2993		return -EFAULT;
2994
2995	set_restore_sigmask();
2996	current->saved_sigmask = current->blocked;
2997	set_current_blocked(&kmask);
2998
2999	return 0;
3000}
3001#endif
3002
3003/**
3004 *  sys_rt_sigprocmask - change the list of currently blocked signals
3005 *  @how: whether to add, remove, or set signals
3006 *  @nset: stores pending signals
3007 *  @oset: previous value of signal mask if non-null
3008 *  @sigsetsize: size of sigset_t type
3009 */
3010SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011		sigset_t __user *, oset, size_t, sigsetsize)
3012{
3013	sigset_t old_set, new_set;
3014	int error;
3015
3016	/* XXX: Don't preclude handling different sized sigset_t's.  */
3017	if (sigsetsize != sizeof(sigset_t))
3018		return -EINVAL;
3019
3020	old_set = current->blocked;
3021
3022	if (nset) {
3023		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024			return -EFAULT;
3025		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027		error = sigprocmask(how, &new_set, NULL);
3028		if (error)
3029			return error;
3030	}
3031
3032	if (oset) {
3033		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034			return -EFAULT;
3035	}
3036
3037	return 0;
3038}
3039
3040#ifdef CONFIG_COMPAT
3041COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043{
3044	sigset_t old_set = current->blocked;
3045
3046	/* XXX: Don't preclude handling different sized sigset_t's.  */
3047	if (sigsetsize != sizeof(sigset_t))
3048		return -EINVAL;
3049
3050	if (nset) {
3051		sigset_t new_set;
3052		int error;
3053		if (get_compat_sigset(&new_set, nset))
3054			return -EFAULT;
3055		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057		error = sigprocmask(how, &new_set, NULL);
3058		if (error)
3059			return error;
3060	}
3061	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3062}
3063#endif
3064
3065static void do_sigpending(sigset_t *set)
3066{
3067	spin_lock_irq(&current->sighand->siglock);
3068	sigorsets(set, &current->pending.signal,
3069		  &current->signal->shared_pending.signal);
3070	spin_unlock_irq(&current->sighand->siglock);
3071
3072	/* Outside the lock because only this thread touches it.  */
3073	sigandsets(set, &current->blocked, set);
3074}
3075
3076/**
3077 *  sys_rt_sigpending - examine a pending signal that has been raised
3078 *			while blocked
3079 *  @uset: stores pending signals
3080 *  @sigsetsize: size of sigset_t type or larger
3081 */
3082SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083{
3084	sigset_t set;
3085
3086	if (sigsetsize > sizeof(*uset))
3087		return -EINVAL;
3088
3089	do_sigpending(&set);
3090
3091	if (copy_to_user(uset, &set, sigsetsize))
3092		return -EFAULT;
3093
3094	return 0;
3095}
3096
3097#ifdef CONFIG_COMPAT
3098COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099		compat_size_t, sigsetsize)
3100{
3101	sigset_t set;
3102
3103	if (sigsetsize > sizeof(*uset))
3104		return -EINVAL;
3105
3106	do_sigpending(&set);
3107
3108	return put_compat_sigset(uset, &set, sigsetsize);
3109}
3110#endif
3111
3112static const struct {
3113	unsigned char limit, layout;
3114} sig_sicodes[] = {
3115	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3116	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3117	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3119	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120#if defined(SIGEMT)
3121	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3122#endif
3123	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3126};
3127
3128static bool known_siginfo_layout(unsigned sig, int si_code)
3129{
3130	if (si_code == SI_KERNEL)
3131		return true;
3132	else if ((si_code > SI_USER)) {
3133		if (sig_specific_sicodes(sig)) {
3134			if (si_code <= sig_sicodes[sig].limit)
3135				return true;
3136		}
3137		else if (si_code <= NSIGPOLL)
3138			return true;
3139	}
3140	else if (si_code >= SI_DETHREAD)
3141		return true;
3142	else if (si_code == SI_ASYNCNL)
3143		return true;
3144	return false;
3145}
3146
3147enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148{
3149	enum siginfo_layout layout = SIL_KILL;
3150	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152		    (si_code <= sig_sicodes[sig].limit)) {
3153			layout = sig_sicodes[sig].layout;
3154			/* Handle the exceptions */
3155			if ((sig == SIGBUS) &&
3156			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157				layout = SIL_FAULT_MCEERR;
3158			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159				layout = SIL_FAULT_BNDERR;
3160#ifdef SEGV_PKUERR
3161			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162				layout = SIL_FAULT_PKUERR;
3163#endif
3164		}
3165		else if (si_code <= NSIGPOLL)
3166			layout = SIL_POLL;
3167	} else {
3168		if (si_code == SI_TIMER)
3169			layout = SIL_TIMER;
3170		else if (si_code == SI_SIGIO)
3171			layout = SIL_POLL;
3172		else if (si_code < 0)
3173			layout = SIL_RT;
3174	}
3175	return layout;
3176}
3177
3178static inline char __user *si_expansion(const siginfo_t __user *info)
3179{
3180	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181}
3182
3183int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184{
3185	char __user *expansion = si_expansion(to);
3186	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187		return -EFAULT;
3188	if (clear_user(expansion, SI_EXPANSION_SIZE))
3189		return -EFAULT;
3190	return 0;
3191}
3192
3193static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194				       const siginfo_t __user *from)
3195{
3196	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197		char __user *expansion = si_expansion(from);
3198		char buf[SI_EXPANSION_SIZE];
3199		int i;
3200		/*
3201		 * An unknown si_code might need more than
3202		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3203		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3204		 * will return this data to userspace exactly.
3205		 */
3206		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207			return -EFAULT;
3208		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209			if (buf[i] != 0)
3210				return -E2BIG;
3211		}
3212	}
3213	return 0;
3214}
3215
3216static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217				    const siginfo_t __user *from)
3218{
3219	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220		return -EFAULT;
3221	to->si_signo = signo;
3222	return post_copy_siginfo_from_user(to, from);
3223}
3224
3225int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226{
3227	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228		return -EFAULT;
3229	return post_copy_siginfo_from_user(to, from);
3230}
3231
3232#ifdef CONFIG_COMPAT
3233int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234			   const struct kernel_siginfo *from)
3235#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236{
3237	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238}
3239int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240			     const struct kernel_siginfo *from, bool x32_ABI)
3241#endif
3242{
3243	struct compat_siginfo new;
3244	memset(&new, 0, sizeof(new));
3245
3246	new.si_signo = from->si_signo;
3247	new.si_errno = from->si_errno;
3248	new.si_code  = from->si_code;
 
 
3249	switch(siginfo_layout(from->si_signo, from->si_code)) {
3250	case SIL_KILL:
3251		new.si_pid = from->si_pid;
3252		new.si_uid = from->si_uid;
3253		break;
3254	case SIL_TIMER:
3255		new.si_tid     = from->si_tid;
3256		new.si_overrun = from->si_overrun;
3257		new.si_int     = from->si_int;
3258		break;
3259	case SIL_POLL:
3260		new.si_band = from->si_band;
3261		new.si_fd   = from->si_fd;
3262		break;
3263	case SIL_FAULT:
3264		new.si_addr = ptr_to_compat(from->si_addr);
3265#ifdef __ARCH_SI_TRAPNO
3266		new.si_trapno = from->si_trapno;
3267#endif
3268		break;
3269	case SIL_FAULT_MCEERR:
3270		new.si_addr = ptr_to_compat(from->si_addr);
3271#ifdef __ARCH_SI_TRAPNO
3272		new.si_trapno = from->si_trapno;
3273#endif
3274		new.si_addr_lsb = from->si_addr_lsb;
3275		break;
3276	case SIL_FAULT_BNDERR:
3277		new.si_addr = ptr_to_compat(from->si_addr);
3278#ifdef __ARCH_SI_TRAPNO
3279		new.si_trapno = from->si_trapno;
3280#endif
3281		new.si_lower = ptr_to_compat(from->si_lower);
3282		new.si_upper = ptr_to_compat(from->si_upper);
3283		break;
3284	case SIL_FAULT_PKUERR:
3285		new.si_addr = ptr_to_compat(from->si_addr);
3286#ifdef __ARCH_SI_TRAPNO
3287		new.si_trapno = from->si_trapno;
3288#endif
3289		new.si_pkey = from->si_pkey;
3290		break;
3291	case SIL_CHLD:
3292		new.si_pid    = from->si_pid;
3293		new.si_uid    = from->si_uid;
3294		new.si_status = from->si_status;
3295#ifdef CONFIG_X86_X32_ABI
3296		if (x32_ABI) {
3297			new._sifields._sigchld_x32._utime = from->si_utime;
3298			new._sifields._sigchld_x32._stime = from->si_stime;
3299		} else
3300#endif
3301		{
3302			new.si_utime = from->si_utime;
3303			new.si_stime = from->si_stime;
3304		}
3305		break;
3306	case SIL_RT:
3307		new.si_pid = from->si_pid;
3308		new.si_uid = from->si_uid;
3309		new.si_int = from->si_int;
3310		break;
3311	case SIL_SYS:
3312		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313		new.si_syscall   = from->si_syscall;
3314		new.si_arch      = from->si_arch;
3315		break;
3316	}
 
3317
 
 
 
 
 
 
3318	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319		return -EFAULT;
3320
3321	return 0;
3322}
3323
3324static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325					 const struct compat_siginfo *from)
3326{
3327	clear_siginfo(to);
3328	to->si_signo = from->si_signo;
3329	to->si_errno = from->si_errno;
3330	to->si_code  = from->si_code;
3331	switch(siginfo_layout(from->si_signo, from->si_code)) {
3332	case SIL_KILL:
3333		to->si_pid = from->si_pid;
3334		to->si_uid = from->si_uid;
3335		break;
3336	case SIL_TIMER:
3337		to->si_tid     = from->si_tid;
3338		to->si_overrun = from->si_overrun;
3339		to->si_int     = from->si_int;
3340		break;
3341	case SIL_POLL:
3342		to->si_band = from->si_band;
3343		to->si_fd   = from->si_fd;
3344		break;
3345	case SIL_FAULT:
3346		to->si_addr = compat_ptr(from->si_addr);
3347#ifdef __ARCH_SI_TRAPNO
3348		to->si_trapno = from->si_trapno;
3349#endif
3350		break;
3351	case SIL_FAULT_MCEERR:
3352		to->si_addr = compat_ptr(from->si_addr);
3353#ifdef __ARCH_SI_TRAPNO
3354		to->si_trapno = from->si_trapno;
3355#endif
3356		to->si_addr_lsb = from->si_addr_lsb;
3357		break;
3358	case SIL_FAULT_BNDERR:
3359		to->si_addr = compat_ptr(from->si_addr);
3360#ifdef __ARCH_SI_TRAPNO
3361		to->si_trapno = from->si_trapno;
3362#endif
3363		to->si_lower = compat_ptr(from->si_lower);
3364		to->si_upper = compat_ptr(from->si_upper);
3365		break;
3366	case SIL_FAULT_PKUERR:
3367		to->si_addr = compat_ptr(from->si_addr);
3368#ifdef __ARCH_SI_TRAPNO
3369		to->si_trapno = from->si_trapno;
3370#endif
3371		to->si_pkey = from->si_pkey;
3372		break;
3373	case SIL_CHLD:
3374		to->si_pid    = from->si_pid;
3375		to->si_uid    = from->si_uid;
3376		to->si_status = from->si_status;
3377#ifdef CONFIG_X86_X32_ABI
3378		if (in_x32_syscall()) {
3379			to->si_utime = from->_sifields._sigchld_x32._utime;
3380			to->si_stime = from->_sifields._sigchld_x32._stime;
3381		} else
3382#endif
3383		{
3384			to->si_utime = from->si_utime;
3385			to->si_stime = from->si_stime;
3386		}
3387		break;
3388	case SIL_RT:
3389		to->si_pid = from->si_pid;
3390		to->si_uid = from->si_uid;
3391		to->si_int = from->si_int;
3392		break;
3393	case SIL_SYS:
3394		to->si_call_addr = compat_ptr(from->si_call_addr);
3395		to->si_syscall   = from->si_syscall;
3396		to->si_arch      = from->si_arch;
3397		break;
3398	}
3399	return 0;
3400}
3401
3402static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403				      const struct compat_siginfo __user *ufrom)
3404{
3405	struct compat_siginfo from;
3406
3407	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408		return -EFAULT;
3409
3410	from.si_signo = signo;
3411	return post_copy_siginfo_from_user32(to, &from);
3412}
3413
3414int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415			     const struct compat_siginfo __user *ufrom)
3416{
3417	struct compat_siginfo from;
3418
3419	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420		return -EFAULT;
3421
3422	return post_copy_siginfo_from_user32(to, &from);
3423}
3424#endif /* CONFIG_COMPAT */
3425
3426/**
3427 *  do_sigtimedwait - wait for queued signals specified in @which
3428 *  @which: queued signals to wait for
3429 *  @info: if non-null, the signal's siginfo is returned here
3430 *  @ts: upper bound on process time suspension
3431 */
3432static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433		    const struct timespec64 *ts)
3434{
3435	ktime_t *to = NULL, timeout = KTIME_MAX;
3436	struct task_struct *tsk = current;
3437	sigset_t mask = *which;
3438	int sig, ret = 0;
3439
3440	if (ts) {
3441		if (!timespec64_valid(ts))
3442			return -EINVAL;
3443		timeout = timespec64_to_ktime(*ts);
3444		to = &timeout;
3445	}
3446
3447	/*
3448	 * Invert the set of allowed signals to get those we want to block.
3449	 */
3450	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451	signotset(&mask);
3452
3453	spin_lock_irq(&tsk->sighand->siglock);
3454	sig = dequeue_signal(tsk, &mask, info);
3455	if (!sig && timeout) {
3456		/*
3457		 * None ready, temporarily unblock those we're interested
3458		 * while we are sleeping in so that we'll be awakened when
3459		 * they arrive. Unblocking is always fine, we can avoid
3460		 * set_current_blocked().
3461		 */
3462		tsk->real_blocked = tsk->blocked;
3463		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464		recalc_sigpending();
3465		spin_unlock_irq(&tsk->sighand->siglock);
3466
3467		__set_current_state(TASK_INTERRUPTIBLE);
3468		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469							 HRTIMER_MODE_REL);
3470		spin_lock_irq(&tsk->sighand->siglock);
3471		__set_task_blocked(tsk, &tsk->real_blocked);
3472		sigemptyset(&tsk->real_blocked);
3473		sig = dequeue_signal(tsk, &mask, info);
3474	}
3475	spin_unlock_irq(&tsk->sighand->siglock);
3476
3477	if (sig)
3478		return sig;
3479	return ret ? -EINTR : -EAGAIN;
3480}
3481
3482/**
3483 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 *			in @uthese
3485 *  @uthese: queued signals to wait for
3486 *  @uinfo: if non-null, the signal's siginfo is returned here
3487 *  @uts: upper bound on process time suspension
3488 *  @sigsetsize: size of sigset_t type
3489 */
3490SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491		siginfo_t __user *, uinfo,
3492		const struct __kernel_timespec __user *, uts,
3493		size_t, sigsetsize)
3494{
3495	sigset_t these;
3496	struct timespec64 ts;
3497	kernel_siginfo_t info;
3498	int ret;
3499
3500	/* XXX: Don't preclude handling different sized sigset_t's.  */
3501	if (sigsetsize != sizeof(sigset_t))
3502		return -EINVAL;
3503
3504	if (copy_from_user(&these, uthese, sizeof(these)))
3505		return -EFAULT;
3506
3507	if (uts) {
3508		if (get_timespec64(&ts, uts))
3509			return -EFAULT;
3510	}
3511
3512	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514	if (ret > 0 && uinfo) {
3515		if (copy_siginfo_to_user(uinfo, &info))
3516			ret = -EFAULT;
3517	}
3518
3519	return ret;
3520}
3521
3522#ifdef CONFIG_COMPAT_32BIT_TIME
3523SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524		siginfo_t __user *, uinfo,
3525		const struct old_timespec32 __user *, uts,
3526		size_t, sigsetsize)
3527{
3528	sigset_t these;
3529	struct timespec64 ts;
3530	kernel_siginfo_t info;
3531	int ret;
3532
3533	if (sigsetsize != sizeof(sigset_t))
3534		return -EINVAL;
3535
3536	if (copy_from_user(&these, uthese, sizeof(these)))
3537		return -EFAULT;
3538
3539	if (uts) {
3540		if (get_old_timespec32(&ts, uts))
3541			return -EFAULT;
3542	}
3543
3544	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546	if (ret > 0 && uinfo) {
3547		if (copy_siginfo_to_user(uinfo, &info))
3548			ret = -EFAULT;
3549	}
3550
3551	return ret;
3552}
3553#endif
3554
3555#ifdef CONFIG_COMPAT
3556COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557		struct compat_siginfo __user *, uinfo,
3558		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559{
3560	sigset_t s;
3561	struct timespec64 t;
3562	kernel_siginfo_t info;
3563	long ret;
3564
3565	if (sigsetsize != sizeof(sigset_t))
3566		return -EINVAL;
3567
3568	if (get_compat_sigset(&s, uthese))
3569		return -EFAULT;
3570
3571	if (uts) {
3572		if (get_timespec64(&t, uts))
3573			return -EFAULT;
3574	}
3575
3576	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578	if (ret > 0 && uinfo) {
3579		if (copy_siginfo_to_user32(uinfo, &info))
3580			ret = -EFAULT;
3581	}
3582
3583	return ret;
3584}
3585
3586#ifdef CONFIG_COMPAT_32BIT_TIME
3587COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588		struct compat_siginfo __user *, uinfo,
3589		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590{
3591	sigset_t s;
3592	struct timespec64 t;
3593	kernel_siginfo_t info;
3594	long ret;
3595
3596	if (sigsetsize != sizeof(sigset_t))
3597		return -EINVAL;
3598
3599	if (get_compat_sigset(&s, uthese))
3600		return -EFAULT;
3601
3602	if (uts) {
3603		if (get_old_timespec32(&t, uts))
3604			return -EFAULT;
3605	}
3606
3607	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609	if (ret > 0 && uinfo) {
3610		if (copy_siginfo_to_user32(uinfo, &info))
3611			ret = -EFAULT;
3612	}
3613
3614	return ret;
3615}
3616#endif
3617#endif
3618
3619static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620{
3621	clear_siginfo(info);
3622	info->si_signo = sig;
3623	info->si_errno = 0;
3624	info->si_code = SI_USER;
3625	info->si_pid = task_tgid_vnr(current);
3626	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627}
3628
3629/**
3630 *  sys_kill - send a signal to a process
3631 *  @pid: the PID of the process
3632 *  @sig: signal to be sent
3633 */
3634SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635{
3636	struct kernel_siginfo info;
3637
3638	prepare_kill_siginfo(sig, &info);
3639
3640	return kill_something_info(sig, &info, pid);
3641}
3642
3643/*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648static bool access_pidfd_pidns(struct pid *pid)
3649{
3650	struct pid_namespace *active = task_active_pid_ns(current);
3651	struct pid_namespace *p = ns_of_pid(pid);
3652
3653	for (;;) {
3654		if (!p)
3655			return false;
3656		if (p == active)
3657			break;
3658		p = p->parent;
3659	}
3660
3661	return true;
3662}
3663
3664static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3665{
3666#ifdef CONFIG_COMPAT
3667	/*
3668	 * Avoid hooking up compat syscalls and instead handle necessary
3669	 * conversions here. Note, this is a stop-gap measure and should not be
3670	 * considered a generic solution.
3671	 */
3672	if (in_compat_syscall())
3673		return copy_siginfo_from_user32(
3674			kinfo, (struct compat_siginfo __user *)info);
3675#endif
3676	return copy_siginfo_from_user(kinfo, info);
3677}
3678
3679static struct pid *pidfd_to_pid(const struct file *file)
3680{
3681	struct pid *pid;
3682
3683	pid = pidfd_pid(file);
3684	if (!IS_ERR(pid))
3685		return pid;
3686
3687	return tgid_pidfd_to_pid(file);
3688}
3689
3690/**
3691 * sys_pidfd_send_signal - Signal a process through a pidfd
3692 * @pidfd:  file descriptor of the process
3693 * @sig:    signal to send
3694 * @info:   signal info
3695 * @flags:  future flags
3696 *
3697 * The syscall currently only signals via PIDTYPE_PID which covers
3698 * kill(<positive-pid>, <signal>. It does not signal threads or process
3699 * groups.
3700 * In order to extend the syscall to threads and process groups the @flags
3701 * argument should be used. In essence, the @flags argument will determine
3702 * what is signaled and not the file descriptor itself. Put in other words,
3703 * grouping is a property of the flags argument not a property of the file
3704 * descriptor.
3705 *
3706 * Return: 0 on success, negative errno on failure
3707 */
3708SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709		siginfo_t __user *, info, unsigned int, flags)
3710{
3711	int ret;
3712	struct fd f;
3713	struct pid *pid;
3714	kernel_siginfo_t kinfo;
3715
3716	/* Enforce flags be set to 0 until we add an extension. */
3717	if (flags)
3718		return -EINVAL;
3719
3720	f = fdget(pidfd);
3721	if (!f.file)
3722		return -EBADF;
3723
3724	/* Is this a pidfd? */
3725	pid = pidfd_to_pid(f.file);
3726	if (IS_ERR(pid)) {
3727		ret = PTR_ERR(pid);
3728		goto err;
3729	}
3730
3731	ret = -EINVAL;
3732	if (!access_pidfd_pidns(pid))
3733		goto err;
3734
3735	if (info) {
3736		ret = copy_siginfo_from_user_any(&kinfo, info);
3737		if (unlikely(ret))
3738			goto err;
3739
3740		ret = -EINVAL;
3741		if (unlikely(sig != kinfo.si_signo))
3742			goto err;
3743
3744		/* Only allow sending arbitrary signals to yourself. */
3745		ret = -EPERM;
3746		if ((task_pid(current) != pid) &&
3747		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748			goto err;
3749	} else {
3750		prepare_kill_siginfo(sig, &kinfo);
3751	}
3752
3753	ret = kill_pid_info(sig, &kinfo, pid);
3754
3755err:
3756	fdput(f);
3757	return ret;
3758}
3759
3760static int
3761do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762{
3763	struct task_struct *p;
3764	int error = -ESRCH;
3765
3766	rcu_read_lock();
3767	p = find_task_by_vpid(pid);
3768	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769		error = check_kill_permission(sig, info, p);
3770		/*
3771		 * The null signal is a permissions and process existence
3772		 * probe.  No signal is actually delivered.
3773		 */
3774		if (!error && sig) {
3775			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776			/*
3777			 * If lock_task_sighand() failed we pretend the task
3778			 * dies after receiving the signal. The window is tiny,
3779			 * and the signal is private anyway.
3780			 */
3781			if (unlikely(error == -ESRCH))
3782				error = 0;
3783		}
3784	}
3785	rcu_read_unlock();
3786
3787	return error;
3788}
3789
3790static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791{
3792	struct kernel_siginfo info;
3793
3794	clear_siginfo(&info);
3795	info.si_signo = sig;
3796	info.si_errno = 0;
3797	info.si_code = SI_TKILL;
3798	info.si_pid = task_tgid_vnr(current);
3799	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800
3801	return do_send_specific(tgid, pid, sig, &info);
3802}
3803
3804/**
3805 *  sys_tgkill - send signal to one specific thread
3806 *  @tgid: the thread group ID of the thread
3807 *  @pid: the PID of the thread
3808 *  @sig: signal to be sent
3809 *
3810 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3811 *  exists but it's not belonging to the target process anymore. This
3812 *  method solves the problem of threads exiting and PIDs getting reused.
3813 */
3814SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815{
3816	/* This is only valid for single tasks */
3817	if (pid <= 0 || tgid <= 0)
3818		return -EINVAL;
3819
3820	return do_tkill(tgid, pid, sig);
3821}
3822
3823/**
3824 *  sys_tkill - send signal to one specific task
3825 *  @pid: the PID of the task
3826 *  @sig: signal to be sent
3827 *
3828 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3829 */
3830SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831{
3832	/* This is only valid for single tasks */
3833	if (pid <= 0)
3834		return -EINVAL;
3835
3836	return do_tkill(0, pid, sig);
3837}
3838
3839static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840{
3841	/* Not even root can pretend to send signals from the kernel.
3842	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843	 */
3844	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845	    (task_pid_vnr(current) != pid))
3846		return -EPERM;
3847
3848	/* POSIX.1b doesn't mention process groups.  */
3849	return kill_proc_info(sig, info, pid);
3850}
3851
3852/**
3853 *  sys_rt_sigqueueinfo - send signal information to a signal
3854 *  @pid: the PID of the thread
3855 *  @sig: signal to be sent
3856 *  @uinfo: signal info to be sent
3857 */
3858SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859		siginfo_t __user *, uinfo)
3860{
3861	kernel_siginfo_t info;
3862	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863	if (unlikely(ret))
3864		return ret;
3865	return do_rt_sigqueueinfo(pid, sig, &info);
3866}
3867
3868#ifdef CONFIG_COMPAT
3869COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870			compat_pid_t, pid,
3871			int, sig,
3872			struct compat_siginfo __user *, uinfo)
3873{
3874	kernel_siginfo_t info;
3875	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876	if (unlikely(ret))
3877		return ret;
3878	return do_rt_sigqueueinfo(pid, sig, &info);
3879}
3880#endif
3881
3882static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883{
3884	/* This is only valid for single tasks */
3885	if (pid <= 0 || tgid <= 0)
3886		return -EINVAL;
3887
3888	/* Not even root can pretend to send signals from the kernel.
3889	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890	 */
3891	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892	    (task_pid_vnr(current) != pid))
3893		return -EPERM;
3894
3895	return do_send_specific(tgid, pid, sig, info);
3896}
3897
3898SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899		siginfo_t __user *, uinfo)
3900{
3901	kernel_siginfo_t info;
3902	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903	if (unlikely(ret))
3904		return ret;
3905	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906}
3907
3908#ifdef CONFIG_COMPAT
3909COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910			compat_pid_t, tgid,
3911			compat_pid_t, pid,
3912			int, sig,
3913			struct compat_siginfo __user *, uinfo)
3914{
3915	kernel_siginfo_t info;
3916	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917	if (unlikely(ret))
3918		return ret;
3919	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920}
3921#endif
3922
3923/*
3924 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925 */
3926void kernel_sigaction(int sig, __sighandler_t action)
3927{
3928	spin_lock_irq(&current->sighand->siglock);
3929	current->sighand->action[sig - 1].sa.sa_handler = action;
3930	if (action == SIG_IGN) {
3931		sigset_t mask;
3932
3933		sigemptyset(&mask);
3934		sigaddset(&mask, sig);
3935
3936		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3937		flush_sigqueue_mask(&mask, &current->pending);
3938		recalc_sigpending();
3939	}
3940	spin_unlock_irq(&current->sighand->siglock);
3941}
3942EXPORT_SYMBOL(kernel_sigaction);
3943
3944void __weak sigaction_compat_abi(struct k_sigaction *act,
3945		struct k_sigaction *oact)
3946{
3947}
3948
3949int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950{
3951	struct task_struct *p = current, *t;
3952	struct k_sigaction *k;
3953	sigset_t mask;
3954
3955	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956		return -EINVAL;
3957
3958	k = &p->sighand->action[sig-1];
3959
3960	spin_lock_irq(&p->sighand->siglock);
3961	if (oact)
3962		*oact = *k;
3963
3964	sigaction_compat_abi(act, oact);
3965
3966	if (act) {
3967		sigdelsetmask(&act->sa.sa_mask,
3968			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3969		*k = *act;
3970		/*
3971		 * POSIX 3.3.1.3:
3972		 *  "Setting a signal action to SIG_IGN for a signal that is
3973		 *   pending shall cause the pending signal to be discarded,
3974		 *   whether or not it is blocked."
3975		 *
3976		 *  "Setting a signal action to SIG_DFL for a signal that is
3977		 *   pending and whose default action is to ignore the signal
3978		 *   (for example, SIGCHLD), shall cause the pending signal to
3979		 *   be discarded, whether or not it is blocked"
3980		 */
3981		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982			sigemptyset(&mask);
3983			sigaddset(&mask, sig);
3984			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985			for_each_thread(p, t)
3986				flush_sigqueue_mask(&mask, &t->pending);
3987		}
3988	}
3989
3990	spin_unlock_irq(&p->sighand->siglock);
3991	return 0;
3992}
3993
3994static int
3995do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996		size_t min_ss_size)
3997{
3998	struct task_struct *t = current;
3999
4000	if (oss) {
4001		memset(oss, 0, sizeof(stack_t));
4002		oss->ss_sp = (void __user *) t->sas_ss_sp;
4003		oss->ss_size = t->sas_ss_size;
4004		oss->ss_flags = sas_ss_flags(sp) |
4005			(current->sas_ss_flags & SS_FLAG_BITS);
4006	}
4007
4008	if (ss) {
4009		void __user *ss_sp = ss->ss_sp;
4010		size_t ss_size = ss->ss_size;
4011		unsigned ss_flags = ss->ss_flags;
4012		int ss_mode;
4013
4014		if (unlikely(on_sig_stack(sp)))
4015			return -EPERM;
4016
4017		ss_mode = ss_flags & ~SS_FLAG_BITS;
4018		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019				ss_mode != 0))
4020			return -EINVAL;
4021
4022		if (ss_mode == SS_DISABLE) {
4023			ss_size = 0;
4024			ss_sp = NULL;
4025		} else {
4026			if (unlikely(ss_size < min_ss_size))
4027				return -ENOMEM;
4028		}
4029
4030		t->sas_ss_sp = (unsigned long) ss_sp;
4031		t->sas_ss_size = ss_size;
4032		t->sas_ss_flags = ss_flags;
4033	}
4034	return 0;
4035}
4036
4037SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038{
4039	stack_t new, old;
4040	int err;
4041	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042		return -EFAULT;
4043	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044			      current_user_stack_pointer(),
4045			      MINSIGSTKSZ);
4046	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047		err = -EFAULT;
4048	return err;
4049}
4050
4051int restore_altstack(const stack_t __user *uss)
4052{
4053	stack_t new;
4054	if (copy_from_user(&new, uss, sizeof(stack_t)))
4055		return -EFAULT;
4056	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057			     MINSIGSTKSZ);
4058	/* squash all but EFAULT for now */
4059	return 0;
4060}
4061
4062int __save_altstack(stack_t __user *uss, unsigned long sp)
4063{
4064	struct task_struct *t = current;
4065	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4067		__put_user(t->sas_ss_size, &uss->ss_size);
4068	if (err)
4069		return err;
4070	if (t->sas_ss_flags & SS_AUTODISARM)
4071		sas_ss_reset(t);
4072	return 0;
4073}
4074
4075#ifdef CONFIG_COMPAT
4076static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077				 compat_stack_t __user *uoss_ptr)
4078{
4079	stack_t uss, uoss;
4080	int ret;
4081
4082	if (uss_ptr) {
4083		compat_stack_t uss32;
4084		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085			return -EFAULT;
4086		uss.ss_sp = compat_ptr(uss32.ss_sp);
4087		uss.ss_flags = uss32.ss_flags;
4088		uss.ss_size = uss32.ss_size;
4089	}
4090	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091			     compat_user_stack_pointer(),
4092			     COMPAT_MINSIGSTKSZ);
4093	if (ret >= 0 && uoss_ptr)  {
4094		compat_stack_t old;
4095		memset(&old, 0, sizeof(old));
4096		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097		old.ss_flags = uoss.ss_flags;
4098		old.ss_size = uoss.ss_size;
4099		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100			ret = -EFAULT;
4101	}
4102	return ret;
4103}
4104
4105COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106			const compat_stack_t __user *, uss_ptr,
4107			compat_stack_t __user *, uoss_ptr)
4108{
4109	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110}
4111
4112int compat_restore_altstack(const compat_stack_t __user *uss)
4113{
4114	int err = do_compat_sigaltstack(uss, NULL);
4115	/* squash all but -EFAULT for now */
4116	return err == -EFAULT ? err : 0;
4117}
4118
4119int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120{
4121	int err;
4122	struct task_struct *t = current;
4123	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124			 &uss->ss_sp) |
4125		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4126		__put_user(t->sas_ss_size, &uss->ss_size);
4127	if (err)
4128		return err;
4129	if (t->sas_ss_flags & SS_AUTODISARM)
4130		sas_ss_reset(t);
4131	return 0;
4132}
4133#endif
4134
4135#ifdef __ARCH_WANT_SYS_SIGPENDING
4136
4137/**
4138 *  sys_sigpending - examine pending signals
4139 *  @uset: where mask of pending signal is returned
4140 */
4141SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142{
4143	sigset_t set;
4144
4145	if (sizeof(old_sigset_t) > sizeof(*uset))
4146		return -EINVAL;
4147
4148	do_sigpending(&set);
4149
4150	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151		return -EFAULT;
4152
4153	return 0;
4154}
4155
4156#ifdef CONFIG_COMPAT
4157COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158{
4159	sigset_t set;
4160
4161	do_sigpending(&set);
4162
4163	return put_user(set.sig[0], set32);
4164}
4165#endif
4166
4167#endif
4168
4169#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170/**
4171 *  sys_sigprocmask - examine and change blocked signals
4172 *  @how: whether to add, remove, or set signals
4173 *  @nset: signals to add or remove (if non-null)
4174 *  @oset: previous value of signal mask if non-null
4175 *
4176 * Some platforms have their own version with special arguments;
4177 * others support only sys_rt_sigprocmask.
4178 */
4179
4180SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181		old_sigset_t __user *, oset)
4182{
4183	old_sigset_t old_set, new_set;
4184	sigset_t new_blocked;
4185
4186	old_set = current->blocked.sig[0];
4187
4188	if (nset) {
4189		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190			return -EFAULT;
4191
4192		new_blocked = current->blocked;
4193
4194		switch (how) {
4195		case SIG_BLOCK:
4196			sigaddsetmask(&new_blocked, new_set);
4197			break;
4198		case SIG_UNBLOCK:
4199			sigdelsetmask(&new_blocked, new_set);
4200			break;
4201		case SIG_SETMASK:
4202			new_blocked.sig[0] = new_set;
4203			break;
4204		default:
4205			return -EINVAL;
4206		}
4207
4208		set_current_blocked(&new_blocked);
4209	}
4210
4211	if (oset) {
4212		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213			return -EFAULT;
4214	}
4215
4216	return 0;
4217}
4218#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219
4220#ifndef CONFIG_ODD_RT_SIGACTION
4221/**
4222 *  sys_rt_sigaction - alter an action taken by a process
4223 *  @sig: signal to be sent
4224 *  @act: new sigaction
4225 *  @oact: used to save the previous sigaction
4226 *  @sigsetsize: size of sigset_t type
4227 */
4228SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229		const struct sigaction __user *, act,
4230		struct sigaction __user *, oact,
4231		size_t, sigsetsize)
4232{
4233	struct k_sigaction new_sa, old_sa;
4234	int ret;
4235
4236	/* XXX: Don't preclude handling different sized sigset_t's.  */
4237	if (sigsetsize != sizeof(sigset_t))
4238		return -EINVAL;
4239
4240	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241		return -EFAULT;
4242
4243	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244	if (ret)
4245		return ret;
4246
4247	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248		return -EFAULT;
4249
4250	return 0;
4251}
4252#ifdef CONFIG_COMPAT
4253COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254		const struct compat_sigaction __user *, act,
4255		struct compat_sigaction __user *, oact,
4256		compat_size_t, sigsetsize)
4257{
4258	struct k_sigaction new_ka, old_ka;
4259#ifdef __ARCH_HAS_SA_RESTORER
4260	compat_uptr_t restorer;
4261#endif
4262	int ret;
4263
4264	/* XXX: Don't preclude handling different sized sigset_t's.  */
4265	if (sigsetsize != sizeof(compat_sigset_t))
4266		return -EINVAL;
4267
4268	if (act) {
4269		compat_uptr_t handler;
4270		ret = get_user(handler, &act->sa_handler);
4271		new_ka.sa.sa_handler = compat_ptr(handler);
4272#ifdef __ARCH_HAS_SA_RESTORER
4273		ret |= get_user(restorer, &act->sa_restorer);
4274		new_ka.sa.sa_restorer = compat_ptr(restorer);
4275#endif
4276		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278		if (ret)
4279			return -EFAULT;
4280	}
4281
4282	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283	if (!ret && oact) {
4284		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4285			       &oact->sa_handler);
4286		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287					 sizeof(oact->sa_mask));
4288		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289#ifdef __ARCH_HAS_SA_RESTORER
4290		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291				&oact->sa_restorer);
4292#endif
4293	}
4294	return ret;
4295}
4296#endif
4297#endif /* !CONFIG_ODD_RT_SIGACTION */
4298
4299#ifdef CONFIG_OLD_SIGACTION
4300SYSCALL_DEFINE3(sigaction, int, sig,
4301		const struct old_sigaction __user *, act,
4302	        struct old_sigaction __user *, oact)
4303{
4304	struct k_sigaction new_ka, old_ka;
4305	int ret;
4306
4307	if (act) {
4308		old_sigset_t mask;
4309		if (!access_ok(act, sizeof(*act)) ||
4310		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313		    __get_user(mask, &act->sa_mask))
4314			return -EFAULT;
4315#ifdef __ARCH_HAS_KA_RESTORER
4316		new_ka.ka_restorer = NULL;
4317#endif
4318		siginitset(&new_ka.sa.sa_mask, mask);
4319	}
4320
4321	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322
4323	if (!ret && oact) {
4324		if (!access_ok(oact, sizeof(*oact)) ||
4325		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329			return -EFAULT;
4330	}
4331
4332	return ret;
4333}
4334#endif
4335#ifdef CONFIG_COMPAT_OLD_SIGACTION
4336COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337		const struct compat_old_sigaction __user *, act,
4338	        struct compat_old_sigaction __user *, oact)
4339{
4340	struct k_sigaction new_ka, old_ka;
4341	int ret;
4342	compat_old_sigset_t mask;
4343	compat_uptr_t handler, restorer;
4344
4345	if (act) {
4346		if (!access_ok(act, sizeof(*act)) ||
4347		    __get_user(handler, &act->sa_handler) ||
4348		    __get_user(restorer, &act->sa_restorer) ||
4349		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350		    __get_user(mask, &act->sa_mask))
4351			return -EFAULT;
4352
4353#ifdef __ARCH_HAS_KA_RESTORER
4354		new_ka.ka_restorer = NULL;
4355#endif
4356		new_ka.sa.sa_handler = compat_ptr(handler);
4357		new_ka.sa.sa_restorer = compat_ptr(restorer);
4358		siginitset(&new_ka.sa.sa_mask, mask);
4359	}
4360
4361	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362
4363	if (!ret && oact) {
4364		if (!access_ok(oact, sizeof(*oact)) ||
4365		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366			       &oact->sa_handler) ||
4367		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368			       &oact->sa_restorer) ||
4369		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371			return -EFAULT;
4372	}
4373	return ret;
4374}
4375#endif
4376
4377#ifdef CONFIG_SGETMASK_SYSCALL
4378
4379/*
4380 * For backwards compatibility.  Functionality superseded by sigprocmask.
4381 */
4382SYSCALL_DEFINE0(sgetmask)
4383{
4384	/* SMP safe */
4385	return current->blocked.sig[0];
4386}
4387
4388SYSCALL_DEFINE1(ssetmask, int, newmask)
4389{
4390	int old = current->blocked.sig[0];
4391	sigset_t newset;
4392
4393	siginitset(&newset, newmask);
4394	set_current_blocked(&newset);
4395
4396	return old;
4397}
4398#endif /* CONFIG_SGETMASK_SYSCALL */
4399
4400#ifdef __ARCH_WANT_SYS_SIGNAL
4401/*
4402 * For backwards compatibility.  Functionality superseded by sigaction.
4403 */
4404SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405{
4406	struct k_sigaction new_sa, old_sa;
4407	int ret;
4408
4409	new_sa.sa.sa_handler = handler;
4410	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411	sigemptyset(&new_sa.sa.sa_mask);
4412
4413	ret = do_sigaction(sig, &new_sa, &old_sa);
4414
4415	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416}
4417#endif /* __ARCH_WANT_SYS_SIGNAL */
4418
4419#ifdef __ARCH_WANT_SYS_PAUSE
4420
4421SYSCALL_DEFINE0(pause)
4422{
4423	while (!signal_pending(current)) {
4424		__set_current_state(TASK_INTERRUPTIBLE);
4425		schedule();
4426	}
4427	return -ERESTARTNOHAND;
4428}
4429
4430#endif
4431
4432static int sigsuspend(sigset_t *set)
4433{
4434	current->saved_sigmask = current->blocked;
4435	set_current_blocked(set);
4436
4437	while (!signal_pending(current)) {
4438		__set_current_state(TASK_INTERRUPTIBLE);
4439		schedule();
4440	}
4441	set_restore_sigmask();
4442	return -ERESTARTNOHAND;
4443}
4444
4445/**
4446 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4447 *	@unewset value until a signal is received
4448 *  @unewset: new signal mask value
4449 *  @sigsetsize: size of sigset_t type
4450 */
4451SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452{
4453	sigset_t newset;
4454
4455	/* XXX: Don't preclude handling different sized sigset_t's.  */
4456	if (sigsetsize != sizeof(sigset_t))
4457		return -EINVAL;
4458
4459	if (copy_from_user(&newset, unewset, sizeof(newset)))
4460		return -EFAULT;
4461	return sigsuspend(&newset);
4462}
4463 
4464#ifdef CONFIG_COMPAT
4465COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466{
4467	sigset_t newset;
4468
4469	/* XXX: Don't preclude handling different sized sigset_t's.  */
4470	if (sigsetsize != sizeof(sigset_t))
4471		return -EINVAL;
4472
4473	if (get_compat_sigset(&newset, unewset))
4474		return -EFAULT;
4475	return sigsuspend(&newset);
4476}
4477#endif
4478
4479#ifdef CONFIG_OLD_SIGSUSPEND
4480SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481{
4482	sigset_t blocked;
4483	siginitset(&blocked, mask);
4484	return sigsuspend(&blocked);
4485}
4486#endif
4487#ifdef CONFIG_OLD_SIGSUSPEND3
4488SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489{
4490	sigset_t blocked;
4491	siginitset(&blocked, mask);
4492	return sigsuspend(&blocked);
4493}
4494#endif
4495
4496__weak const char *arch_vma_name(struct vm_area_struct *vma)
4497{
4498	return NULL;
4499}
4500
4501static inline void siginfo_buildtime_checks(void)
4502{
4503	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504
4505	/* Verify the offsets in the two siginfos match */
4506#define CHECK_OFFSET(field) \
4507	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508
4509	/* kill */
4510	CHECK_OFFSET(si_pid);
4511	CHECK_OFFSET(si_uid);
4512
4513	/* timer */
4514	CHECK_OFFSET(si_tid);
4515	CHECK_OFFSET(si_overrun);
4516	CHECK_OFFSET(si_value);
4517
4518	/* rt */
4519	CHECK_OFFSET(si_pid);
4520	CHECK_OFFSET(si_uid);
4521	CHECK_OFFSET(si_value);
4522
4523	/* sigchld */
4524	CHECK_OFFSET(si_pid);
4525	CHECK_OFFSET(si_uid);
4526	CHECK_OFFSET(si_status);
4527	CHECK_OFFSET(si_utime);
4528	CHECK_OFFSET(si_stime);
4529
4530	/* sigfault */
4531	CHECK_OFFSET(si_addr);
4532	CHECK_OFFSET(si_addr_lsb);
4533	CHECK_OFFSET(si_lower);
4534	CHECK_OFFSET(si_upper);
4535	CHECK_OFFSET(si_pkey);
4536
4537	/* sigpoll */
4538	CHECK_OFFSET(si_band);
4539	CHECK_OFFSET(si_fd);
4540
4541	/* sigsys */
4542	CHECK_OFFSET(si_call_addr);
4543	CHECK_OFFSET(si_syscall);
4544	CHECK_OFFSET(si_arch);
4545#undef CHECK_OFFSET
4546
4547	/* usb asyncio */
4548	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549		     offsetof(struct siginfo, si_addr));
4550	if (sizeof(int) == sizeof(void __user *)) {
4551		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552			     sizeof(void __user *));
4553	} else {
4554		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555			      sizeof_field(struct siginfo, si_uid)) !=
4556			     sizeof(void __user *));
4557		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558			     offsetof(struct siginfo, si_uid));
4559	}
4560#ifdef CONFIG_COMPAT
4561	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562		     offsetof(struct compat_siginfo, si_addr));
4563	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564		     sizeof(compat_uptr_t));
4565	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566		     sizeof_field(struct siginfo, si_pid));
4567#endif
4568}
4569
4570void __init signals_init(void)
4571{
4572	siginfo_buildtime_checks();
4573
4574	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575}
4576
4577#ifdef CONFIG_KGDB_KDB
4578#include <linux/kdb.h>
4579/*
4580 * kdb_send_sig - Allows kdb to send signals without exposing
4581 * signal internals.  This function checks if the required locks are
4582 * available before calling the main signal code, to avoid kdb
4583 * deadlocks.
4584 */
4585void kdb_send_sig(struct task_struct *t, int sig)
4586{
4587	static struct task_struct *kdb_prev_t;
4588	int new_t, ret;
4589	if (!spin_trylock(&t->sighand->siglock)) {
4590		kdb_printf("Can't do kill command now.\n"
4591			   "The sigmask lock is held somewhere else in "
4592			   "kernel, try again later\n");
4593		return;
4594	}
4595	new_t = kdb_prev_t != t;
4596	kdb_prev_t = t;
4597	if (t->state != TASK_RUNNING && new_t) {
4598		spin_unlock(&t->sighand->siglock);
4599		kdb_printf("Process is not RUNNING, sending a signal from "
4600			   "kdb risks deadlock\n"
4601			   "on the run queue locks. "
4602			   "The signal has _not_ been sent.\n"
4603			   "Reissue the kill command if you want to risk "
4604			   "the deadlock.\n");
4605		return;
4606	}
4607	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608	spin_unlock(&t->sighand->siglock);
4609	if (ret)
4610		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611			   sig, t->pid);
4612	else
4613		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614}
4615#endif	/* CONFIG_KGDB_KDB */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/livepatch.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/signal.h>
  52
  53#include <asm/param.h>
  54#include <linux/uaccess.h>
  55#include <asm/unistd.h>
  56#include <asm/siginfo.h>
  57#include <asm/cacheflush.h>
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 185	    !klp_patch_pending(current))
 186		clear_thread_flag(TIF_SIGPENDING);
 187
 188}
 189EXPORT_SYMBOL(recalc_sigpending);
 190
 191void calculate_sigpending(void)
 192{
 193	/* Have any signals or users of TIF_SIGPENDING been delayed
 194	 * until after fork?
 195	 */
 196	spin_lock_irq(&current->sighand->siglock);
 197	set_tsk_thread_flag(current, TIF_SIGPENDING);
 198	recalc_sigpending();
 199	spin_unlock_irq(&current->sighand->siglock);
 200}
 201
 202/* Given the mask, find the first available signal that should be serviced. */
 203
 204#define SYNCHRONOUS_MASK \
 205	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 206	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 207
 208int next_signal(struct sigpending *pending, sigset_t *mask)
 209{
 210	unsigned long i, *s, *m, x;
 211	int sig = 0;
 212
 213	s = pending->signal.sig;
 214	m = mask->sig;
 215
 216	/*
 217	 * Handle the first word specially: it contains the
 218	 * synchronous signals that need to be dequeued first.
 219	 */
 220	x = *s &~ *m;
 221	if (x) {
 222		if (x & SYNCHRONOUS_MASK)
 223			x &= SYNCHRONOUS_MASK;
 224		sig = ffz(~x) + 1;
 225		return sig;
 226	}
 227
 228	switch (_NSIG_WORDS) {
 229	default:
 230		for (i = 1; i < _NSIG_WORDS; ++i) {
 231			x = *++s &~ *++m;
 232			if (!x)
 233				continue;
 234			sig = ffz(~x) + i*_NSIG_BPW + 1;
 235			break;
 236		}
 237		break;
 238
 239	case 2:
 240		x = s[1] &~ m[1];
 241		if (!x)
 242			break;
 243		sig = ffz(~x) + _NSIG_BPW + 1;
 244		break;
 245
 246	case 1:
 247		/* Nothing to do */
 248		break;
 249	}
 250
 251	return sig;
 252}
 253
 254static inline void print_dropped_signal(int sig)
 255{
 256	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 257
 258	if (!print_fatal_signals)
 259		return;
 260
 261	if (!__ratelimit(&ratelimit_state))
 262		return;
 263
 264	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 265				current->comm, current->pid, sig);
 266}
 267
 268/**
 269 * task_set_jobctl_pending - set jobctl pending bits
 270 * @task: target task
 271 * @mask: pending bits to set
 272 *
 273 * Clear @mask from @task->jobctl.  @mask must be subset of
 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 275 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 276 * cleared.  If @task is already being killed or exiting, this function
 277 * becomes noop.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 *
 282 * RETURNS:
 283 * %true if @mask is set, %false if made noop because @task was dying.
 284 */
 285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 286{
 287	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 288			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 289	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 290
 291	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 292		return false;
 293
 294	if (mask & JOBCTL_STOP_SIGMASK)
 295		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 296
 297	task->jobctl |= mask;
 298	return true;
 299}
 300
 301/**
 302 * task_clear_jobctl_trapping - clear jobctl trapping bit
 303 * @task: target task
 304 *
 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 306 * Clear it and wake up the ptracer.  Note that we don't need any further
 307 * locking.  @task->siglock guarantees that @task->parent points to the
 308 * ptracer.
 309 *
 310 * CONTEXT:
 311 * Must be called with @task->sighand->siglock held.
 312 */
 313void task_clear_jobctl_trapping(struct task_struct *task)
 314{
 315	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 316		task->jobctl &= ~JOBCTL_TRAPPING;
 317		smp_mb();	/* advised by wake_up_bit() */
 318		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 319	}
 320}
 321
 322/**
 323 * task_clear_jobctl_pending - clear jobctl pending bits
 324 * @task: target task
 325 * @mask: pending bits to clear
 326 *
 327 * Clear @mask from @task->jobctl.  @mask must be subset of
 328 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 329 * STOP bits are cleared together.
 330 *
 331 * If clearing of @mask leaves no stop or trap pending, this function calls
 332 * task_clear_jobctl_trapping().
 333 *
 334 * CONTEXT:
 335 * Must be called with @task->sighand->siglock held.
 336 */
 337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 338{
 339	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 340
 341	if (mask & JOBCTL_STOP_PENDING)
 342		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 343
 344	task->jobctl &= ~mask;
 345
 346	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 347		task_clear_jobctl_trapping(task);
 348}
 349
 350/**
 351 * task_participate_group_stop - participate in a group stop
 352 * @task: task participating in a group stop
 353 *
 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 355 * Group stop states are cleared and the group stop count is consumed if
 356 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 357 * stop, the appropriate `SIGNAL_*` flags are set.
 358 *
 359 * CONTEXT:
 360 * Must be called with @task->sighand->siglock held.
 361 *
 362 * RETURNS:
 363 * %true if group stop completion should be notified to the parent, %false
 364 * otherwise.
 365 */
 366static bool task_participate_group_stop(struct task_struct *task)
 367{
 368	struct signal_struct *sig = task->signal;
 369	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 370
 371	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 372
 373	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 374
 375	if (!consume)
 376		return false;
 377
 378	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 379		sig->group_stop_count--;
 380
 381	/*
 382	 * Tell the caller to notify completion iff we are entering into a
 383	 * fresh group stop.  Read comment in do_signal_stop() for details.
 384	 */
 385	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 386		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 387		return true;
 388	}
 389	return false;
 390}
 391
 392void task_join_group_stop(struct task_struct *task)
 393{
 394	/* Have the new thread join an on-going signal group stop */
 395	unsigned long jobctl = current->jobctl;
 396	if (jobctl & JOBCTL_STOP_PENDING) {
 397		struct signal_struct *sig = current->signal;
 398		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
 399		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 400		if (task_set_jobctl_pending(task, signr | gstop)) {
 401			sig->group_stop_count++;
 402		}
 403	}
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 413{
 414	struct sigqueue *q = NULL;
 415	struct user_struct *user;
 416	int sigpending;
 417
 418	/*
 419	 * Protect access to @t credentials. This can go away when all
 420	 * callers hold rcu read lock.
 421	 *
 422	 * NOTE! A pending signal will hold on to the user refcount,
 423	 * and we get/put the refcount only when the sigpending count
 424	 * changes from/to zero.
 425	 */
 426	rcu_read_lock();
 427	user = __task_cred(t)->user;
 428	sigpending = atomic_inc_return(&user->sigpending);
 429	if (sigpending == 1)
 430		get_uid(user);
 431	rcu_read_unlock();
 432
 433	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 
 
 434		q = kmem_cache_alloc(sigqueue_cachep, flags);
 435	} else {
 436		print_dropped_signal(sig);
 437	}
 438
 439	if (unlikely(q == NULL)) {
 440		if (atomic_dec_and_test(&user->sigpending))
 441			free_uid(user);
 442	} else {
 443		INIT_LIST_HEAD(&q->list);
 444		q->flags = 0;
 445		q->user = user;
 446	}
 447
 448	return q;
 449}
 450
 451static void __sigqueue_free(struct sigqueue *q)
 452{
 453	if (q->flags & SIGQUEUE_PREALLOC)
 454		return;
 455	if (atomic_dec_and_test(&q->user->sigpending))
 456		free_uid(q->user);
 457	kmem_cache_free(sigqueue_cachep, q);
 458}
 459
 460void flush_sigqueue(struct sigpending *queue)
 461{
 462	struct sigqueue *q;
 463
 464	sigemptyset(&queue->signal);
 465	while (!list_empty(&queue->list)) {
 466		q = list_entry(queue->list.next, struct sigqueue , list);
 467		list_del_init(&q->list);
 468		__sigqueue_free(q);
 469	}
 470}
 471
 472/*
 473 * Flush all pending signals for this kthread.
 474 */
 475void flush_signals(struct task_struct *t)
 476{
 477	unsigned long flags;
 478
 479	spin_lock_irqsave(&t->sighand->siglock, flags);
 480	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 481	flush_sigqueue(&t->pending);
 482	flush_sigqueue(&t->signal->shared_pending);
 483	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 484}
 485EXPORT_SYMBOL(flush_signals);
 486
 487#ifdef CONFIG_POSIX_TIMERS
 488static void __flush_itimer_signals(struct sigpending *pending)
 489{
 490	sigset_t signal, retain;
 491	struct sigqueue *q, *n;
 492
 493	signal = pending->signal;
 494	sigemptyset(&retain);
 495
 496	list_for_each_entry_safe(q, n, &pending->list, list) {
 497		int sig = q->info.si_signo;
 498
 499		if (likely(q->info.si_code != SI_TIMER)) {
 500			sigaddset(&retain, sig);
 501		} else {
 502			sigdelset(&signal, sig);
 503			list_del_init(&q->list);
 504			__sigqueue_free(q);
 505		}
 506	}
 507
 508	sigorsets(&pending->signal, &signal, &retain);
 509}
 510
 511void flush_itimer_signals(void)
 512{
 513	struct task_struct *tsk = current;
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 517	__flush_itimer_signals(&tsk->pending);
 518	__flush_itimer_signals(&tsk->signal->shared_pending);
 519	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 520}
 521#endif
 522
 523void ignore_signals(struct task_struct *t)
 524{
 525	int i;
 526
 527	for (i = 0; i < _NSIG; ++i)
 528		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 529
 530	flush_signals(t);
 531}
 532
 533/*
 534 * Flush all handlers for a task.
 535 */
 536
 537void
 538flush_signal_handlers(struct task_struct *t, int force_default)
 539{
 540	int i;
 541	struct k_sigaction *ka = &t->sighand->action[0];
 542	for (i = _NSIG ; i != 0 ; i--) {
 543		if (force_default || ka->sa.sa_handler != SIG_IGN)
 544			ka->sa.sa_handler = SIG_DFL;
 545		ka->sa.sa_flags = 0;
 546#ifdef __ARCH_HAS_SA_RESTORER
 547		ka->sa.sa_restorer = NULL;
 548#endif
 549		sigemptyset(&ka->sa.sa_mask);
 550		ka++;
 551	}
 552}
 553
 554bool unhandled_signal(struct task_struct *tsk, int sig)
 555{
 556	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 557	if (is_global_init(tsk))
 558		return true;
 559
 560	if (handler != SIG_IGN && handler != SIG_DFL)
 561		return false;
 562
 563	/* if ptraced, let the tracer determine */
 564	return !tsk->ptrace;
 565}
 566
 567static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 568			   bool *resched_timer)
 569{
 570	struct sigqueue *q, *first = NULL;
 571
 572	/*
 573	 * Collect the siginfo appropriate to this signal.  Check if
 574	 * there is another siginfo for the same signal.
 575	*/
 576	list_for_each_entry(q, &list->list, list) {
 577		if (q->info.si_signo == sig) {
 578			if (first)
 579				goto still_pending;
 580			first = q;
 581		}
 582	}
 583
 584	sigdelset(&list->signal, sig);
 585
 586	if (first) {
 587still_pending:
 588		list_del_init(&first->list);
 589		copy_siginfo(info, &first->info);
 590
 591		*resched_timer =
 592			(first->flags & SIGQUEUE_PREALLOC) &&
 593			(info->si_code == SI_TIMER) &&
 594			(info->si_sys_private);
 595
 596		__sigqueue_free(first);
 597	} else {
 598		/*
 599		 * Ok, it wasn't in the queue.  This must be
 600		 * a fast-pathed signal or we must have been
 601		 * out of queue space.  So zero out the info.
 602		 */
 603		clear_siginfo(info);
 604		info->si_signo = sig;
 605		info->si_errno = 0;
 606		info->si_code = SI_USER;
 607		info->si_pid = 0;
 608		info->si_uid = 0;
 609	}
 610}
 611
 612static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 613			kernel_siginfo_t *info, bool *resched_timer)
 614{
 615	int sig = next_signal(pending, mask);
 616
 617	if (sig)
 618		collect_signal(sig, pending, info, resched_timer);
 619	return sig;
 620}
 621
 622/*
 623 * Dequeue a signal and return the element to the caller, which is
 624 * expected to free it.
 625 *
 626 * All callers have to hold the siglock.
 627 */
 628int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 629{
 630	bool resched_timer = false;
 631	int signr;
 632
 633	/* We only dequeue private signals from ourselves, we don't let
 634	 * signalfd steal them
 635	 */
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 637	if (!signr) {
 638		signr = __dequeue_signal(&tsk->signal->shared_pending,
 639					 mask, info, &resched_timer);
 640#ifdef CONFIG_POSIX_TIMERS
 641		/*
 642		 * itimer signal ?
 643		 *
 644		 * itimers are process shared and we restart periodic
 645		 * itimers in the signal delivery path to prevent DoS
 646		 * attacks in the high resolution timer case. This is
 647		 * compliant with the old way of self-restarting
 648		 * itimers, as the SIGALRM is a legacy signal and only
 649		 * queued once. Changing the restart behaviour to
 650		 * restart the timer in the signal dequeue path is
 651		 * reducing the timer noise on heavy loaded !highres
 652		 * systems too.
 653		 */
 654		if (unlikely(signr == SIGALRM)) {
 655			struct hrtimer *tmr = &tsk->signal->real_timer;
 656
 657			if (!hrtimer_is_queued(tmr) &&
 658			    tsk->signal->it_real_incr != 0) {
 659				hrtimer_forward(tmr, tmr->base->get_time(),
 660						tsk->signal->it_real_incr);
 661				hrtimer_restart(tmr);
 662			}
 663		}
 664#endif
 665	}
 666
 667	recalc_sigpending();
 668	if (!signr)
 669		return 0;
 670
 671	if (unlikely(sig_kernel_stop(signr))) {
 672		/*
 673		 * Set a marker that we have dequeued a stop signal.  Our
 674		 * caller might release the siglock and then the pending
 675		 * stop signal it is about to process is no longer in the
 676		 * pending bitmasks, but must still be cleared by a SIGCONT
 677		 * (and overruled by a SIGKILL).  So those cases clear this
 678		 * shared flag after we've set it.  Note that this flag may
 679		 * remain set after the signal we return is ignored or
 680		 * handled.  That doesn't matter because its only purpose
 681		 * is to alert stop-signal processing code when another
 682		 * processor has come along and cleared the flag.
 683		 */
 684		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 685	}
 686#ifdef CONFIG_POSIX_TIMERS
 687	if (resched_timer) {
 688		/*
 689		 * Release the siglock to ensure proper locking order
 690		 * of timer locks outside of siglocks.  Note, we leave
 691		 * irqs disabled here, since the posix-timers code is
 692		 * about to disable them again anyway.
 693		 */
 694		spin_unlock(&tsk->sighand->siglock);
 695		posixtimer_rearm(info);
 696		spin_lock(&tsk->sighand->siglock);
 697
 698		/* Don't expose the si_sys_private value to userspace */
 699		info->si_sys_private = 0;
 700	}
 701#endif
 702	return signr;
 703}
 704EXPORT_SYMBOL_GPL(dequeue_signal);
 705
 706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 707{
 708	struct task_struct *tsk = current;
 709	struct sigpending *pending = &tsk->pending;
 710	struct sigqueue *q, *sync = NULL;
 711
 712	/*
 713	 * Might a synchronous signal be in the queue?
 714	 */
 715	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 716		return 0;
 717
 718	/*
 719	 * Return the first synchronous signal in the queue.
 720	 */
 721	list_for_each_entry(q, &pending->list, list) {
 722		/* Synchronous signals have a positive si_code */
 723		if ((q->info.si_code > SI_USER) &&
 724		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 725			sync = q;
 726			goto next;
 727		}
 728	}
 729	return 0;
 730next:
 731	/*
 732	 * Check if there is another siginfo for the same signal.
 733	 */
 734	list_for_each_entry_continue(q, &pending->list, list) {
 735		if (q->info.si_signo == sync->info.si_signo)
 736			goto still_pending;
 737	}
 738
 739	sigdelset(&pending->signal, sync->info.si_signo);
 740	recalc_sigpending();
 741still_pending:
 742	list_del_init(&sync->list);
 743	copy_siginfo(info, &sync->info);
 744	__sigqueue_free(sync);
 745	return info->si_signo;
 746}
 747
 748/*
 749 * Tell a process that it has a new active signal..
 750 *
 751 * NOTE! we rely on the previous spin_lock to
 752 * lock interrupts for us! We can only be called with
 753 * "siglock" held, and the local interrupt must
 754 * have been disabled when that got acquired!
 755 *
 756 * No need to set need_resched since signal event passing
 757 * goes through ->blocked
 758 */
 759void signal_wake_up_state(struct task_struct *t, unsigned int state)
 760{
 761	set_tsk_thread_flag(t, TIF_SIGPENDING);
 762	/*
 763	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 764	 * case. We don't check t->state here because there is a race with it
 765	 * executing another processor and just now entering stopped state.
 766	 * By using wake_up_state, we ensure the process will wake up and
 767	 * handle its death signal.
 768	 */
 769	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 770		kick_process(t);
 771}
 772
 773/*
 774 * Remove signals in mask from the pending set and queue.
 775 * Returns 1 if any signals were found.
 776 *
 777 * All callers must be holding the siglock.
 778 */
 779static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 780{
 781	struct sigqueue *q, *n;
 782	sigset_t m;
 783
 784	sigandsets(&m, mask, &s->signal);
 785	if (sigisemptyset(&m))
 786		return;
 787
 788	sigandnsets(&s->signal, &s->signal, mask);
 789	list_for_each_entry_safe(q, n, &s->list, list) {
 790		if (sigismember(mask, q->info.si_signo)) {
 791			list_del_init(&q->list);
 792			__sigqueue_free(q);
 793		}
 794	}
 795}
 796
 797static inline int is_si_special(const struct kernel_siginfo *info)
 798{
 799	return info <= SEND_SIG_PRIV;
 800}
 801
 802static inline bool si_fromuser(const struct kernel_siginfo *info)
 803{
 804	return info == SEND_SIG_NOINFO ||
 805		(!is_si_special(info) && SI_FROMUSER(info));
 806}
 807
 808/*
 809 * called with RCU read lock from check_kill_permission()
 810 */
 811static bool kill_ok_by_cred(struct task_struct *t)
 812{
 813	const struct cred *cred = current_cred();
 814	const struct cred *tcred = __task_cred(t);
 815
 816	return uid_eq(cred->euid, tcred->suid) ||
 817	       uid_eq(cred->euid, tcred->uid) ||
 818	       uid_eq(cred->uid, tcred->suid) ||
 819	       uid_eq(cred->uid, tcred->uid) ||
 820	       ns_capable(tcred->user_ns, CAP_KILL);
 821}
 822
 823/*
 824 * Bad permissions for sending the signal
 825 * - the caller must hold the RCU read lock
 826 */
 827static int check_kill_permission(int sig, struct kernel_siginfo *info,
 828				 struct task_struct *t)
 829{
 830	struct pid *sid;
 831	int error;
 832
 833	if (!valid_signal(sig))
 834		return -EINVAL;
 835
 836	if (!si_fromuser(info))
 837		return 0;
 838
 839	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 840	if (error)
 841		return error;
 842
 843	if (!same_thread_group(current, t) &&
 844	    !kill_ok_by_cred(t)) {
 845		switch (sig) {
 846		case SIGCONT:
 847			sid = task_session(t);
 848			/*
 849			 * We don't return the error if sid == NULL. The
 850			 * task was unhashed, the caller must notice this.
 851			 */
 852			if (!sid || sid == task_session(current))
 853				break;
 854			fallthrough;
 855		default:
 856			return -EPERM;
 857		}
 858	}
 859
 860	return security_task_kill(t, info, sig, NULL);
 861}
 862
 863/**
 864 * ptrace_trap_notify - schedule trap to notify ptracer
 865 * @t: tracee wanting to notify tracer
 866 *
 867 * This function schedules sticky ptrace trap which is cleared on the next
 868 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 869 * ptracer.
 870 *
 871 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 872 * ptracer is listening for events, tracee is woken up so that it can
 873 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 874 * eventually taken without returning to userland after the existing traps
 875 * are finished by PTRACE_CONT.
 876 *
 877 * CONTEXT:
 878 * Must be called with @task->sighand->siglock held.
 879 */
 880static void ptrace_trap_notify(struct task_struct *t)
 881{
 882	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 883	assert_spin_locked(&t->sighand->siglock);
 884
 885	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 886	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 887}
 888
 889/*
 890 * Handle magic process-wide effects of stop/continue signals. Unlike
 891 * the signal actions, these happen immediately at signal-generation
 892 * time regardless of blocking, ignoring, or handling.  This does the
 893 * actual continuing for SIGCONT, but not the actual stopping for stop
 894 * signals. The process stop is done as a signal action for SIG_DFL.
 895 *
 896 * Returns true if the signal should be actually delivered, otherwise
 897 * it should be dropped.
 898 */
 899static bool prepare_signal(int sig, struct task_struct *p, bool force)
 900{
 901	struct signal_struct *signal = p->signal;
 902	struct task_struct *t;
 903	sigset_t flush;
 904
 905	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 906		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 907			return sig == SIGKILL;
 908		/*
 909		 * The process is in the middle of dying, nothing to do.
 910		 */
 911	} else if (sig_kernel_stop(sig)) {
 912		/*
 913		 * This is a stop signal.  Remove SIGCONT from all queues.
 914		 */
 915		siginitset(&flush, sigmask(SIGCONT));
 916		flush_sigqueue_mask(&flush, &signal->shared_pending);
 917		for_each_thread(p, t)
 918			flush_sigqueue_mask(&flush, &t->pending);
 919	} else if (sig == SIGCONT) {
 920		unsigned int why;
 921		/*
 922		 * Remove all stop signals from all queues, wake all threads.
 923		 */
 924		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 925		flush_sigqueue_mask(&flush, &signal->shared_pending);
 926		for_each_thread(p, t) {
 927			flush_sigqueue_mask(&flush, &t->pending);
 928			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 929			if (likely(!(t->ptrace & PT_SEIZED)))
 930				wake_up_state(t, __TASK_STOPPED);
 931			else
 932				ptrace_trap_notify(t);
 933		}
 934
 935		/*
 936		 * Notify the parent with CLD_CONTINUED if we were stopped.
 937		 *
 938		 * If we were in the middle of a group stop, we pretend it
 939		 * was already finished, and then continued. Since SIGCHLD
 940		 * doesn't queue we report only CLD_STOPPED, as if the next
 941		 * CLD_CONTINUED was dropped.
 942		 */
 943		why = 0;
 944		if (signal->flags & SIGNAL_STOP_STOPPED)
 945			why |= SIGNAL_CLD_CONTINUED;
 946		else if (signal->group_stop_count)
 947			why |= SIGNAL_CLD_STOPPED;
 948
 949		if (why) {
 950			/*
 951			 * The first thread which returns from do_signal_stop()
 952			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 953			 * notify its parent. See get_signal().
 954			 */
 955			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 956			signal->group_stop_count = 0;
 957			signal->group_exit_code = 0;
 958		}
 959	}
 960
 961	return !sig_ignored(p, sig, force);
 962}
 963
 964/*
 965 * Test if P wants to take SIG.  After we've checked all threads with this,
 966 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 967 * blocking SIG were ruled out because they are not running and already
 968 * have pending signals.  Such threads will dequeue from the shared queue
 969 * as soon as they're available, so putting the signal on the shared queue
 970 * will be equivalent to sending it to one such thread.
 971 */
 972static inline bool wants_signal(int sig, struct task_struct *p)
 973{
 974	if (sigismember(&p->blocked, sig))
 975		return false;
 976
 977	if (p->flags & PF_EXITING)
 978		return false;
 979
 980	if (sig == SIGKILL)
 981		return true;
 982
 983	if (task_is_stopped_or_traced(p))
 984		return false;
 985
 986	return task_curr(p) || !signal_pending(p);
 987}
 988
 989static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 990{
 991	struct signal_struct *signal = p->signal;
 992	struct task_struct *t;
 993
 994	/*
 995	 * Now find a thread we can wake up to take the signal off the queue.
 996	 *
 997	 * If the main thread wants the signal, it gets first crack.
 998	 * Probably the least surprising to the average bear.
 999	 */
1000	if (wants_signal(sig, p))
1001		t = p;
1002	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003		/*
1004		 * There is just one thread and it does not need to be woken.
1005		 * It will dequeue unblocked signals before it runs again.
1006		 */
1007		return;
1008	else {
1009		/*
1010		 * Otherwise try to find a suitable thread.
1011		 */
1012		t = signal->curr_target;
1013		while (!wants_signal(sig, t)) {
1014			t = next_thread(t);
1015			if (t == signal->curr_target)
1016				/*
1017				 * No thread needs to be woken.
1018				 * Any eligible threads will see
1019				 * the signal in the queue soon.
1020				 */
1021				return;
1022		}
1023		signal->curr_target = t;
1024	}
1025
1026	/*
1027	 * Found a killable thread.  If the signal will be fatal,
1028	 * then start taking the whole group down immediately.
1029	 */
1030	if (sig_fatal(p, sig) &&
1031	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032	    !sigismember(&t->real_blocked, sig) &&
1033	    (sig == SIGKILL || !p->ptrace)) {
1034		/*
1035		 * This signal will be fatal to the whole group.
1036		 */
1037		if (!sig_kernel_coredump(sig)) {
1038			/*
1039			 * Start a group exit and wake everybody up.
1040			 * This way we don't have other threads
1041			 * running and doing things after a slower
1042			 * thread has the fatal signal pending.
1043			 */
1044			signal->flags = SIGNAL_GROUP_EXIT;
1045			signal->group_exit_code = sig;
1046			signal->group_stop_count = 0;
1047			t = p;
1048			do {
1049				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050				sigaddset(&t->pending.signal, SIGKILL);
1051				signal_wake_up(t, 1);
1052			} while_each_thread(p, t);
1053			return;
1054		}
1055	}
1056
1057	/*
1058	 * The signal is already in the shared-pending queue.
1059	 * Tell the chosen thread to wake up and dequeue it.
1060	 */
1061	signal_wake_up(t, sig == SIGKILL);
1062	return;
1063}
1064
1065static inline bool legacy_queue(struct sigpending *signals, int sig)
1066{
1067	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068}
1069
1070static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071			enum pid_type type, bool force)
1072{
1073	struct sigpending *pending;
1074	struct sigqueue *q;
1075	int override_rlimit;
1076	int ret = 0, result;
1077
1078	assert_spin_locked(&t->sighand->siglock);
1079
1080	result = TRACE_SIGNAL_IGNORED;
1081	if (!prepare_signal(sig, t, force))
1082		goto ret;
1083
1084	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085	/*
1086	 * Short-circuit ignored signals and support queuing
1087	 * exactly one non-rt signal, so that we can get more
1088	 * detailed information about the cause of the signal.
1089	 */
1090	result = TRACE_SIGNAL_ALREADY_PENDING;
1091	if (legacy_queue(pending, sig))
1092		goto ret;
1093
1094	result = TRACE_SIGNAL_DELIVERED;
1095	/*
1096	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097	 */
1098	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099		goto out_set;
1100
1101	/*
1102	 * Real-time signals must be queued if sent by sigqueue, or
1103	 * some other real-time mechanism.  It is implementation
1104	 * defined whether kill() does so.  We attempt to do so, on
1105	 * the principle of least surprise, but since kill is not
1106	 * allowed to fail with EAGAIN when low on memory we just
1107	 * make sure at least one signal gets delivered and don't
1108	 * pass on the info struct.
1109	 */
1110	if (sig < SIGRTMIN)
1111		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112	else
1113		override_rlimit = 0;
1114
1115	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
1116	if (q) {
1117		list_add_tail(&q->list, &pending->list);
1118		switch ((unsigned long) info) {
1119		case (unsigned long) SEND_SIG_NOINFO:
1120			clear_siginfo(&q->info);
1121			q->info.si_signo = sig;
1122			q->info.si_errno = 0;
1123			q->info.si_code = SI_USER;
1124			q->info.si_pid = task_tgid_nr_ns(current,
1125							task_active_pid_ns(t));
1126			rcu_read_lock();
1127			q->info.si_uid =
1128				from_kuid_munged(task_cred_xxx(t, user_ns),
1129						 current_uid());
1130			rcu_read_unlock();
1131			break;
1132		case (unsigned long) SEND_SIG_PRIV:
1133			clear_siginfo(&q->info);
1134			q->info.si_signo = sig;
1135			q->info.si_errno = 0;
1136			q->info.si_code = SI_KERNEL;
1137			q->info.si_pid = 0;
1138			q->info.si_uid = 0;
1139			break;
1140		default:
1141			copy_siginfo(&q->info, info);
1142			break;
1143		}
1144	} else if (!is_si_special(info) &&
1145		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1146		/*
1147		 * Queue overflow, abort.  We may abort if the
1148		 * signal was rt and sent by user using something
1149		 * other than kill().
1150		 */
1151		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1152		ret = -EAGAIN;
1153		goto ret;
1154	} else {
1155		/*
1156		 * This is a silent loss of information.  We still
1157		 * send the signal, but the *info bits are lost.
1158		 */
1159		result = TRACE_SIGNAL_LOSE_INFO;
1160	}
1161
1162out_set:
1163	signalfd_notify(t, sig);
1164	sigaddset(&pending->signal, sig);
1165
1166	/* Let multiprocess signals appear after on-going forks */
1167	if (type > PIDTYPE_TGID) {
1168		struct multiprocess_signals *delayed;
1169		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1170			sigset_t *signal = &delayed->signal;
1171			/* Can't queue both a stop and a continue signal */
1172			if (sig == SIGCONT)
1173				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1174			else if (sig_kernel_stop(sig))
1175				sigdelset(signal, SIGCONT);
1176			sigaddset(signal, sig);
1177		}
1178	}
1179
1180	complete_signal(sig, t, type);
1181ret:
1182	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1183	return ret;
1184}
1185
1186static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1187{
1188	bool ret = false;
1189	switch (siginfo_layout(info->si_signo, info->si_code)) {
1190	case SIL_KILL:
1191	case SIL_CHLD:
1192	case SIL_RT:
1193		ret = true;
1194		break;
1195	case SIL_TIMER:
1196	case SIL_POLL:
1197	case SIL_FAULT:
1198	case SIL_FAULT_MCEERR:
1199	case SIL_FAULT_BNDERR:
1200	case SIL_FAULT_PKUERR:
1201	case SIL_SYS:
1202		ret = false;
1203		break;
1204	}
1205	return ret;
1206}
1207
1208static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1209			enum pid_type type)
1210{
1211	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1212	bool force = false;
1213
1214	if (info == SEND_SIG_NOINFO) {
1215		/* Force if sent from an ancestor pid namespace */
1216		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1217	} else if (info == SEND_SIG_PRIV) {
1218		/* Don't ignore kernel generated signals */
1219		force = true;
1220	} else if (has_si_pid_and_uid(info)) {
1221		/* SIGKILL and SIGSTOP is special or has ids */
1222		struct user_namespace *t_user_ns;
1223
1224		rcu_read_lock();
1225		t_user_ns = task_cred_xxx(t, user_ns);
1226		if (current_user_ns() != t_user_ns) {
1227			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1228			info->si_uid = from_kuid_munged(t_user_ns, uid);
1229		}
1230		rcu_read_unlock();
1231
1232		/* A kernel generated signal? */
1233		force = (info->si_code == SI_KERNEL);
1234
1235		/* From an ancestor pid namespace? */
1236		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1237			info->si_pid = 0;
1238			force = true;
1239		}
1240	}
1241	return __send_signal(sig, info, t, type, force);
1242}
1243
1244static void print_fatal_signal(int signr)
1245{
1246	struct pt_regs *regs = signal_pt_regs();
1247	pr_info("potentially unexpected fatal signal %d.\n", signr);
1248
1249#if defined(__i386__) && !defined(__arch_um__)
1250	pr_info("code at %08lx: ", regs->ip);
1251	{
1252		int i;
1253		for (i = 0; i < 16; i++) {
1254			unsigned char insn;
1255
1256			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1257				break;
1258			pr_cont("%02x ", insn);
1259		}
1260	}
1261	pr_cont("\n");
1262#endif
1263	preempt_disable();
1264	show_regs(regs);
1265	preempt_enable();
1266}
1267
1268static int __init setup_print_fatal_signals(char *str)
1269{
1270	get_option (&str, &print_fatal_signals);
1271
1272	return 1;
1273}
1274
1275__setup("print-fatal-signals=", setup_print_fatal_signals);
1276
1277int
1278__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1279{
1280	return send_signal(sig, info, p, PIDTYPE_TGID);
1281}
1282
1283int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1284			enum pid_type type)
1285{
1286	unsigned long flags;
1287	int ret = -ESRCH;
1288
1289	if (lock_task_sighand(p, &flags)) {
1290		ret = send_signal(sig, info, p, type);
1291		unlock_task_sighand(p, &flags);
1292	}
1293
1294	return ret;
1295}
1296
1297/*
1298 * Force a signal that the process can't ignore: if necessary
1299 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1300 *
1301 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1302 * since we do not want to have a signal handler that was blocked
1303 * be invoked when user space had explicitly blocked it.
1304 *
1305 * We don't want to have recursive SIGSEGV's etc, for example,
1306 * that is why we also clear SIGNAL_UNKILLABLE.
1307 */
1308static int
1309force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1310{
1311	unsigned long int flags;
1312	int ret, blocked, ignored;
1313	struct k_sigaction *action;
1314	int sig = info->si_signo;
1315
1316	spin_lock_irqsave(&t->sighand->siglock, flags);
1317	action = &t->sighand->action[sig-1];
1318	ignored = action->sa.sa_handler == SIG_IGN;
1319	blocked = sigismember(&t->blocked, sig);
1320	if (blocked || ignored) {
1321		action->sa.sa_handler = SIG_DFL;
1322		if (blocked) {
1323			sigdelset(&t->blocked, sig);
1324			recalc_sigpending_and_wake(t);
1325		}
1326	}
1327	/*
1328	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1329	 * debugging to leave init killable.
1330	 */
1331	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1332		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1333	ret = send_signal(sig, info, t, PIDTYPE_PID);
1334	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1335
1336	return ret;
1337}
1338
1339int force_sig_info(struct kernel_siginfo *info)
1340{
1341	return force_sig_info_to_task(info, current);
1342}
1343
1344/*
1345 * Nuke all other threads in the group.
1346 */
1347int zap_other_threads(struct task_struct *p)
1348{
1349	struct task_struct *t = p;
1350	int count = 0;
1351
1352	p->signal->group_stop_count = 0;
1353
1354	while_each_thread(p, t) {
1355		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1356		count++;
1357
1358		/* Don't bother with already dead threads */
1359		if (t->exit_state)
1360			continue;
1361		sigaddset(&t->pending.signal, SIGKILL);
1362		signal_wake_up(t, 1);
1363	}
1364
1365	return count;
1366}
1367
1368struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1369					   unsigned long *flags)
1370{
1371	struct sighand_struct *sighand;
1372
1373	rcu_read_lock();
1374	for (;;) {
1375		sighand = rcu_dereference(tsk->sighand);
1376		if (unlikely(sighand == NULL))
1377			break;
1378
1379		/*
1380		 * This sighand can be already freed and even reused, but
1381		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1382		 * initializes ->siglock: this slab can't go away, it has
1383		 * the same object type, ->siglock can't be reinitialized.
1384		 *
1385		 * We need to ensure that tsk->sighand is still the same
1386		 * after we take the lock, we can race with de_thread() or
1387		 * __exit_signal(). In the latter case the next iteration
1388		 * must see ->sighand == NULL.
1389		 */
1390		spin_lock_irqsave(&sighand->siglock, *flags);
1391		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1392			break;
1393		spin_unlock_irqrestore(&sighand->siglock, *flags);
1394	}
1395	rcu_read_unlock();
1396
1397	return sighand;
1398}
1399
1400/*
1401 * send signal info to all the members of a group
1402 */
1403int group_send_sig_info(int sig, struct kernel_siginfo *info,
1404			struct task_struct *p, enum pid_type type)
1405{
1406	int ret;
1407
1408	rcu_read_lock();
1409	ret = check_kill_permission(sig, info, p);
1410	rcu_read_unlock();
1411
1412	if (!ret && sig)
1413		ret = do_send_sig_info(sig, info, p, type);
1414
1415	return ret;
1416}
1417
1418/*
1419 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1420 * control characters do (^C, ^Z etc)
1421 * - the caller must hold at least a readlock on tasklist_lock
1422 */
1423int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1424{
1425	struct task_struct *p = NULL;
1426	int retval, success;
1427
1428	success = 0;
1429	retval = -ESRCH;
1430	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1431		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1432		success |= !err;
1433		retval = err;
1434	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1435	return success ? 0 : retval;
1436}
1437
1438int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1439{
1440	int error = -ESRCH;
1441	struct task_struct *p;
1442
1443	for (;;) {
1444		rcu_read_lock();
1445		p = pid_task(pid, PIDTYPE_PID);
1446		if (p)
1447			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1448		rcu_read_unlock();
1449		if (likely(!p || error != -ESRCH))
1450			return error;
1451
1452		/*
1453		 * The task was unhashed in between, try again.  If it
1454		 * is dead, pid_task() will return NULL, if we race with
1455		 * de_thread() it will find the new leader.
1456		 */
1457	}
1458}
1459
1460static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1461{
1462	int error;
1463	rcu_read_lock();
1464	error = kill_pid_info(sig, info, find_vpid(pid));
1465	rcu_read_unlock();
1466	return error;
1467}
1468
1469static inline bool kill_as_cred_perm(const struct cred *cred,
1470				     struct task_struct *target)
1471{
1472	const struct cred *pcred = __task_cred(target);
1473
1474	return uid_eq(cred->euid, pcred->suid) ||
1475	       uid_eq(cred->euid, pcred->uid) ||
1476	       uid_eq(cred->uid, pcred->suid) ||
1477	       uid_eq(cred->uid, pcred->uid);
1478}
1479
1480/*
1481 * The usb asyncio usage of siginfo is wrong.  The glibc support
1482 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1483 * AKA after the generic fields:
1484 *	kernel_pid_t	si_pid;
1485 *	kernel_uid32_t	si_uid;
1486 *	sigval_t	si_value;
1487 *
1488 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1489 * after the generic fields is:
1490 *	void __user 	*si_addr;
1491 *
1492 * This is a practical problem when there is a 64bit big endian kernel
1493 * and a 32bit userspace.  As the 32bit address will encoded in the low
1494 * 32bits of the pointer.  Those low 32bits will be stored at higher
1495 * address than appear in a 32 bit pointer.  So userspace will not
1496 * see the address it was expecting for it's completions.
1497 *
1498 * There is nothing in the encoding that can allow
1499 * copy_siginfo_to_user32 to detect this confusion of formats, so
1500 * handle this by requiring the caller of kill_pid_usb_asyncio to
1501 * notice when this situration takes place and to store the 32bit
1502 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1503 * parameter.
1504 */
1505int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1506			 struct pid *pid, const struct cred *cred)
1507{
1508	struct kernel_siginfo info;
1509	struct task_struct *p;
1510	unsigned long flags;
1511	int ret = -EINVAL;
1512
1513	if (!valid_signal(sig))
1514		return ret;
1515
1516	clear_siginfo(&info);
1517	info.si_signo = sig;
1518	info.si_errno = errno;
1519	info.si_code = SI_ASYNCIO;
1520	*((sigval_t *)&info.si_pid) = addr;
1521
 
 
 
1522	rcu_read_lock();
1523	p = pid_task(pid, PIDTYPE_PID);
1524	if (!p) {
1525		ret = -ESRCH;
1526		goto out_unlock;
1527	}
1528	if (!kill_as_cred_perm(cred, p)) {
1529		ret = -EPERM;
1530		goto out_unlock;
1531	}
1532	ret = security_task_kill(p, &info, sig, cred);
1533	if (ret)
1534		goto out_unlock;
1535
1536	if (sig) {
1537		if (lock_task_sighand(p, &flags)) {
1538			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1539			unlock_task_sighand(p, &flags);
1540		} else
1541			ret = -ESRCH;
1542	}
1543out_unlock:
1544	rcu_read_unlock();
1545	return ret;
1546}
1547EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1548
1549/*
1550 * kill_something_info() interprets pid in interesting ways just like kill(2).
1551 *
1552 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1553 * is probably wrong.  Should make it like BSD or SYSV.
1554 */
1555
1556static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1557{
1558	int ret;
1559
1560	if (pid > 0)
1561		return kill_proc_info(sig, info, pid);
 
 
 
 
1562
1563	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1564	if (pid == INT_MIN)
1565		return -ESRCH;
1566
1567	read_lock(&tasklist_lock);
1568	if (pid != -1) {
1569		ret = __kill_pgrp_info(sig, info,
1570				pid ? find_vpid(-pid) : task_pgrp(current));
1571	} else {
1572		int retval = 0, count = 0;
1573		struct task_struct * p;
1574
1575		for_each_process(p) {
1576			if (task_pid_vnr(p) > 1 &&
1577					!same_thread_group(p, current)) {
1578				int err = group_send_sig_info(sig, info, p,
1579							      PIDTYPE_MAX);
1580				++count;
1581				if (err != -EPERM)
1582					retval = err;
1583			}
1584		}
1585		ret = count ? retval : -ESRCH;
1586	}
1587	read_unlock(&tasklist_lock);
1588
1589	return ret;
1590}
1591
1592/*
1593 * These are for backward compatibility with the rest of the kernel source.
1594 */
1595
1596int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1597{
1598	/*
1599	 * Make sure legacy kernel users don't send in bad values
1600	 * (normal paths check this in check_kill_permission).
1601	 */
1602	if (!valid_signal(sig))
1603		return -EINVAL;
1604
1605	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1606}
1607EXPORT_SYMBOL(send_sig_info);
1608
1609#define __si_special(priv) \
1610	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1611
1612int
1613send_sig(int sig, struct task_struct *p, int priv)
1614{
1615	return send_sig_info(sig, __si_special(priv), p);
1616}
1617EXPORT_SYMBOL(send_sig);
1618
1619void force_sig(int sig)
1620{
1621	struct kernel_siginfo info;
1622
1623	clear_siginfo(&info);
1624	info.si_signo = sig;
1625	info.si_errno = 0;
1626	info.si_code = SI_KERNEL;
1627	info.si_pid = 0;
1628	info.si_uid = 0;
1629	force_sig_info(&info);
1630}
1631EXPORT_SYMBOL(force_sig);
1632
1633/*
1634 * When things go south during signal handling, we
1635 * will force a SIGSEGV. And if the signal that caused
1636 * the problem was already a SIGSEGV, we'll want to
1637 * make sure we don't even try to deliver the signal..
1638 */
1639void force_sigsegv(int sig)
1640{
1641	struct task_struct *p = current;
1642
1643	if (sig == SIGSEGV) {
1644		unsigned long flags;
1645		spin_lock_irqsave(&p->sighand->siglock, flags);
1646		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1647		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1648	}
1649	force_sig(SIGSEGV);
1650}
1651
1652int force_sig_fault_to_task(int sig, int code, void __user *addr
1653	___ARCH_SI_TRAPNO(int trapno)
1654	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1655	, struct task_struct *t)
1656{
1657	struct kernel_siginfo info;
1658
1659	clear_siginfo(&info);
1660	info.si_signo = sig;
1661	info.si_errno = 0;
1662	info.si_code  = code;
1663	info.si_addr  = addr;
1664#ifdef __ARCH_SI_TRAPNO
1665	info.si_trapno = trapno;
1666#endif
1667#ifdef __ia64__
1668	info.si_imm = imm;
1669	info.si_flags = flags;
1670	info.si_isr = isr;
1671#endif
1672	return force_sig_info_to_task(&info, t);
1673}
1674
1675int force_sig_fault(int sig, int code, void __user *addr
1676	___ARCH_SI_TRAPNO(int trapno)
1677	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1678{
1679	return force_sig_fault_to_task(sig, code, addr
1680				       ___ARCH_SI_TRAPNO(trapno)
1681				       ___ARCH_SI_IA64(imm, flags, isr), current);
1682}
1683
1684int send_sig_fault(int sig, int code, void __user *addr
1685	___ARCH_SI_TRAPNO(int trapno)
1686	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1687	, struct task_struct *t)
1688{
1689	struct kernel_siginfo info;
1690
1691	clear_siginfo(&info);
1692	info.si_signo = sig;
1693	info.si_errno = 0;
1694	info.si_code  = code;
1695	info.si_addr  = addr;
1696#ifdef __ARCH_SI_TRAPNO
1697	info.si_trapno = trapno;
1698#endif
1699#ifdef __ia64__
1700	info.si_imm = imm;
1701	info.si_flags = flags;
1702	info.si_isr = isr;
1703#endif
1704	return send_sig_info(info.si_signo, &info, t);
1705}
1706
1707int force_sig_mceerr(int code, void __user *addr, short lsb)
1708{
1709	struct kernel_siginfo info;
1710
1711	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1712	clear_siginfo(&info);
1713	info.si_signo = SIGBUS;
1714	info.si_errno = 0;
1715	info.si_code = code;
1716	info.si_addr = addr;
1717	info.si_addr_lsb = lsb;
1718	return force_sig_info(&info);
1719}
1720
1721int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1722{
1723	struct kernel_siginfo info;
1724
1725	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1726	clear_siginfo(&info);
1727	info.si_signo = SIGBUS;
1728	info.si_errno = 0;
1729	info.si_code = code;
1730	info.si_addr = addr;
1731	info.si_addr_lsb = lsb;
1732	return send_sig_info(info.si_signo, &info, t);
1733}
1734EXPORT_SYMBOL(send_sig_mceerr);
1735
1736int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1737{
1738	struct kernel_siginfo info;
1739
1740	clear_siginfo(&info);
1741	info.si_signo = SIGSEGV;
1742	info.si_errno = 0;
1743	info.si_code  = SEGV_BNDERR;
1744	info.si_addr  = addr;
1745	info.si_lower = lower;
1746	info.si_upper = upper;
1747	return force_sig_info(&info);
1748}
1749
1750#ifdef SEGV_PKUERR
1751int force_sig_pkuerr(void __user *addr, u32 pkey)
1752{
1753	struct kernel_siginfo info;
1754
1755	clear_siginfo(&info);
1756	info.si_signo = SIGSEGV;
1757	info.si_errno = 0;
1758	info.si_code  = SEGV_PKUERR;
1759	info.si_addr  = addr;
1760	info.si_pkey  = pkey;
1761	return force_sig_info(&info);
1762}
1763#endif
1764
1765/* For the crazy architectures that include trap information in
1766 * the errno field, instead of an actual errno value.
1767 */
1768int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1769{
1770	struct kernel_siginfo info;
1771
1772	clear_siginfo(&info);
1773	info.si_signo = SIGTRAP;
1774	info.si_errno = errno;
1775	info.si_code  = TRAP_HWBKPT;
1776	info.si_addr  = addr;
1777	return force_sig_info(&info);
1778}
1779
1780int kill_pgrp(struct pid *pid, int sig, int priv)
1781{
1782	int ret;
1783
1784	read_lock(&tasklist_lock);
1785	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1786	read_unlock(&tasklist_lock);
1787
1788	return ret;
1789}
1790EXPORT_SYMBOL(kill_pgrp);
1791
1792int kill_pid(struct pid *pid, int sig, int priv)
1793{
1794	return kill_pid_info(sig, __si_special(priv), pid);
1795}
1796EXPORT_SYMBOL(kill_pid);
1797
1798/*
1799 * These functions support sending signals using preallocated sigqueue
1800 * structures.  This is needed "because realtime applications cannot
1801 * afford to lose notifications of asynchronous events, like timer
1802 * expirations or I/O completions".  In the case of POSIX Timers
1803 * we allocate the sigqueue structure from the timer_create.  If this
1804 * allocation fails we are able to report the failure to the application
1805 * with an EAGAIN error.
1806 */
1807struct sigqueue *sigqueue_alloc(void)
1808{
1809	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1810
1811	if (q)
1812		q->flags |= SIGQUEUE_PREALLOC;
1813
1814	return q;
1815}
1816
1817void sigqueue_free(struct sigqueue *q)
1818{
1819	unsigned long flags;
1820	spinlock_t *lock = &current->sighand->siglock;
1821
1822	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1823	/*
1824	 * We must hold ->siglock while testing q->list
1825	 * to serialize with collect_signal() or with
1826	 * __exit_signal()->flush_sigqueue().
1827	 */
1828	spin_lock_irqsave(lock, flags);
1829	q->flags &= ~SIGQUEUE_PREALLOC;
1830	/*
1831	 * If it is queued it will be freed when dequeued,
1832	 * like the "regular" sigqueue.
1833	 */
1834	if (!list_empty(&q->list))
1835		q = NULL;
1836	spin_unlock_irqrestore(lock, flags);
1837
1838	if (q)
1839		__sigqueue_free(q);
1840}
1841
1842int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1843{
1844	int sig = q->info.si_signo;
1845	struct sigpending *pending;
1846	struct task_struct *t;
1847	unsigned long flags;
1848	int ret, result;
1849
1850	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1851
1852	ret = -1;
1853	rcu_read_lock();
1854	t = pid_task(pid, type);
1855	if (!t || !likely(lock_task_sighand(t, &flags)))
1856		goto ret;
1857
1858	ret = 1; /* the signal is ignored */
1859	result = TRACE_SIGNAL_IGNORED;
1860	if (!prepare_signal(sig, t, false))
1861		goto out;
1862
1863	ret = 0;
1864	if (unlikely(!list_empty(&q->list))) {
1865		/*
1866		 * If an SI_TIMER entry is already queue just increment
1867		 * the overrun count.
1868		 */
1869		BUG_ON(q->info.si_code != SI_TIMER);
1870		q->info.si_overrun++;
1871		result = TRACE_SIGNAL_ALREADY_PENDING;
1872		goto out;
1873	}
1874	q->info.si_overrun = 0;
1875
1876	signalfd_notify(t, sig);
1877	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1878	list_add_tail(&q->list, &pending->list);
1879	sigaddset(&pending->signal, sig);
1880	complete_signal(sig, t, type);
1881	result = TRACE_SIGNAL_DELIVERED;
1882out:
1883	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1884	unlock_task_sighand(t, &flags);
1885ret:
1886	rcu_read_unlock();
1887	return ret;
1888}
1889
1890static void do_notify_pidfd(struct task_struct *task)
1891{
1892	struct pid *pid;
1893
1894	WARN_ON(task->exit_state == 0);
1895	pid = task_pid(task);
1896	wake_up_all(&pid->wait_pidfd);
1897}
1898
1899/*
1900 * Let a parent know about the death of a child.
1901 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1902 *
1903 * Returns true if our parent ignored us and so we've switched to
1904 * self-reaping.
1905 */
1906bool do_notify_parent(struct task_struct *tsk, int sig)
1907{
1908	struct kernel_siginfo info;
1909	unsigned long flags;
1910	struct sighand_struct *psig;
1911	bool autoreap = false;
1912	u64 utime, stime;
1913
1914	BUG_ON(sig == -1);
1915
1916 	/* do_notify_parent_cldstop should have been called instead.  */
1917 	BUG_ON(task_is_stopped_or_traced(tsk));
1918
1919	BUG_ON(!tsk->ptrace &&
1920	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1921
1922	/* Wake up all pidfd waiters */
1923	do_notify_pidfd(tsk);
1924
1925	if (sig != SIGCHLD) {
1926		/*
1927		 * This is only possible if parent == real_parent.
1928		 * Check if it has changed security domain.
1929		 */
1930		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1931			sig = SIGCHLD;
1932	}
1933
1934	clear_siginfo(&info);
1935	info.si_signo = sig;
1936	info.si_errno = 0;
1937	/*
1938	 * We are under tasklist_lock here so our parent is tied to
1939	 * us and cannot change.
1940	 *
1941	 * task_active_pid_ns will always return the same pid namespace
1942	 * until a task passes through release_task.
1943	 *
1944	 * write_lock() currently calls preempt_disable() which is the
1945	 * same as rcu_read_lock(), but according to Oleg, this is not
1946	 * correct to rely on this
1947	 */
1948	rcu_read_lock();
1949	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1950	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1951				       task_uid(tsk));
1952	rcu_read_unlock();
1953
1954	task_cputime(tsk, &utime, &stime);
1955	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1956	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1957
1958	info.si_status = tsk->exit_code & 0x7f;
1959	if (tsk->exit_code & 0x80)
1960		info.si_code = CLD_DUMPED;
1961	else if (tsk->exit_code & 0x7f)
1962		info.si_code = CLD_KILLED;
1963	else {
1964		info.si_code = CLD_EXITED;
1965		info.si_status = tsk->exit_code >> 8;
1966	}
1967
1968	psig = tsk->parent->sighand;
1969	spin_lock_irqsave(&psig->siglock, flags);
1970	if (!tsk->ptrace && sig == SIGCHLD &&
1971	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1972	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1973		/*
1974		 * We are exiting and our parent doesn't care.  POSIX.1
1975		 * defines special semantics for setting SIGCHLD to SIG_IGN
1976		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1977		 * automatically and not left for our parent's wait4 call.
1978		 * Rather than having the parent do it as a magic kind of
1979		 * signal handler, we just set this to tell do_exit that we
1980		 * can be cleaned up without becoming a zombie.  Note that
1981		 * we still call __wake_up_parent in this case, because a
1982		 * blocked sys_wait4 might now return -ECHILD.
1983		 *
1984		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1985		 * is implementation-defined: we do (if you don't want
1986		 * it, just use SIG_IGN instead).
1987		 */
1988		autoreap = true;
1989		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1990			sig = 0;
1991	}
1992	/*
1993	 * Send with __send_signal as si_pid and si_uid are in the
1994	 * parent's namespaces.
1995	 */
1996	if (valid_signal(sig) && sig)
1997		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
1998	__wake_up_parent(tsk, tsk->parent);
1999	spin_unlock_irqrestore(&psig->siglock, flags);
2000
2001	return autoreap;
2002}
2003
2004/**
2005 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2006 * @tsk: task reporting the state change
2007 * @for_ptracer: the notification is for ptracer
2008 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2009 *
2010 * Notify @tsk's parent that the stopped/continued state has changed.  If
2011 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2012 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2013 *
2014 * CONTEXT:
2015 * Must be called with tasklist_lock at least read locked.
2016 */
2017static void do_notify_parent_cldstop(struct task_struct *tsk,
2018				     bool for_ptracer, int why)
2019{
2020	struct kernel_siginfo info;
2021	unsigned long flags;
2022	struct task_struct *parent;
2023	struct sighand_struct *sighand;
2024	u64 utime, stime;
2025
2026	if (for_ptracer) {
2027		parent = tsk->parent;
2028	} else {
2029		tsk = tsk->group_leader;
2030		parent = tsk->real_parent;
2031	}
2032
2033	clear_siginfo(&info);
2034	info.si_signo = SIGCHLD;
2035	info.si_errno = 0;
2036	/*
2037	 * see comment in do_notify_parent() about the following 4 lines
2038	 */
2039	rcu_read_lock();
2040	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2041	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2042	rcu_read_unlock();
2043
2044	task_cputime(tsk, &utime, &stime);
2045	info.si_utime = nsec_to_clock_t(utime);
2046	info.si_stime = nsec_to_clock_t(stime);
2047
2048 	info.si_code = why;
2049 	switch (why) {
2050 	case CLD_CONTINUED:
2051 		info.si_status = SIGCONT;
2052 		break;
2053 	case CLD_STOPPED:
2054 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2055 		break;
2056 	case CLD_TRAPPED:
2057 		info.si_status = tsk->exit_code & 0x7f;
2058 		break;
2059 	default:
2060 		BUG();
2061 	}
2062
2063	sighand = parent->sighand;
2064	spin_lock_irqsave(&sighand->siglock, flags);
2065	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2066	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2067		__group_send_sig_info(SIGCHLD, &info, parent);
2068	/*
2069	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2070	 */
2071	__wake_up_parent(tsk, parent);
2072	spin_unlock_irqrestore(&sighand->siglock, flags);
2073}
2074
2075static inline bool may_ptrace_stop(void)
2076{
2077	if (!likely(current->ptrace))
2078		return false;
2079	/*
2080	 * Are we in the middle of do_coredump?
2081	 * If so and our tracer is also part of the coredump stopping
2082	 * is a deadlock situation, and pointless because our tracer
2083	 * is dead so don't allow us to stop.
2084	 * If SIGKILL was already sent before the caller unlocked
2085	 * ->siglock we must see ->core_state != NULL. Otherwise it
2086	 * is safe to enter schedule().
2087	 *
2088	 * This is almost outdated, a task with the pending SIGKILL can't
2089	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2090	 * after SIGKILL was already dequeued.
2091	 */
2092	if (unlikely(current->mm->core_state) &&
2093	    unlikely(current->mm == current->parent->mm))
2094		return false;
2095
2096	return true;
2097}
2098
2099/*
2100 * Return non-zero if there is a SIGKILL that should be waking us up.
2101 * Called with the siglock held.
2102 */
2103static bool sigkill_pending(struct task_struct *tsk)
2104{
2105	return sigismember(&tsk->pending.signal, SIGKILL) ||
2106	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2107}
2108
2109/*
2110 * This must be called with current->sighand->siglock held.
2111 *
2112 * This should be the path for all ptrace stops.
2113 * We always set current->last_siginfo while stopped here.
2114 * That makes it a way to test a stopped process for
2115 * being ptrace-stopped vs being job-control-stopped.
2116 *
2117 * If we actually decide not to stop at all because the tracer
2118 * is gone, we keep current->exit_code unless clear_code.
2119 */
2120static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2121	__releases(&current->sighand->siglock)
2122	__acquires(&current->sighand->siglock)
2123{
2124	bool gstop_done = false;
2125
2126	if (arch_ptrace_stop_needed(exit_code, info)) {
2127		/*
2128		 * The arch code has something special to do before a
2129		 * ptrace stop.  This is allowed to block, e.g. for faults
2130		 * on user stack pages.  We can't keep the siglock while
2131		 * calling arch_ptrace_stop, so we must release it now.
2132		 * To preserve proper semantics, we must do this before
2133		 * any signal bookkeeping like checking group_stop_count.
2134		 * Meanwhile, a SIGKILL could come in before we retake the
2135		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2136		 * So after regaining the lock, we must check for SIGKILL.
2137		 */
2138		spin_unlock_irq(&current->sighand->siglock);
2139		arch_ptrace_stop(exit_code, info);
2140		spin_lock_irq(&current->sighand->siglock);
2141		if (sigkill_pending(current))
2142			return;
2143	}
2144
2145	set_special_state(TASK_TRACED);
2146
2147	/*
2148	 * We're committing to trapping.  TRACED should be visible before
2149	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2150	 * Also, transition to TRACED and updates to ->jobctl should be
2151	 * atomic with respect to siglock and should be done after the arch
2152	 * hook as siglock is released and regrabbed across it.
2153	 *
2154	 *     TRACER				    TRACEE
2155	 *
2156	 *     ptrace_attach()
2157	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2158	 *     do_wait()
2159	 *       set_current_state()                smp_wmb();
2160	 *       ptrace_do_wait()
2161	 *         wait_task_stopped()
2162	 *           task_stopped_code()
2163	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2164	 */
2165	smp_wmb();
2166
2167	current->last_siginfo = info;
2168	current->exit_code = exit_code;
2169
2170	/*
2171	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2172	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2173	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2174	 * could be clear now.  We act as if SIGCONT is received after
2175	 * TASK_TRACED is entered - ignore it.
2176	 */
2177	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2178		gstop_done = task_participate_group_stop(current);
2179
2180	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2181	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2182	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2183		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2184
2185	/* entering a trap, clear TRAPPING */
2186	task_clear_jobctl_trapping(current);
2187
2188	spin_unlock_irq(&current->sighand->siglock);
2189	read_lock(&tasklist_lock);
2190	if (may_ptrace_stop()) {
2191		/*
2192		 * Notify parents of the stop.
2193		 *
2194		 * While ptraced, there are two parents - the ptracer and
2195		 * the real_parent of the group_leader.  The ptracer should
2196		 * know about every stop while the real parent is only
2197		 * interested in the completion of group stop.  The states
2198		 * for the two don't interact with each other.  Notify
2199		 * separately unless they're gonna be duplicates.
2200		 */
2201		do_notify_parent_cldstop(current, true, why);
2202		if (gstop_done && ptrace_reparented(current))
2203			do_notify_parent_cldstop(current, false, why);
2204
2205		/*
2206		 * Don't want to allow preemption here, because
2207		 * sys_ptrace() needs this task to be inactive.
2208		 *
2209		 * XXX: implement read_unlock_no_resched().
2210		 */
2211		preempt_disable();
2212		read_unlock(&tasklist_lock);
2213		cgroup_enter_frozen();
2214		preempt_enable_no_resched();
2215		freezable_schedule();
2216		cgroup_leave_frozen(true);
2217	} else {
2218		/*
2219		 * By the time we got the lock, our tracer went away.
2220		 * Don't drop the lock yet, another tracer may come.
2221		 *
2222		 * If @gstop_done, the ptracer went away between group stop
2223		 * completion and here.  During detach, it would have set
2224		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2225		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2226		 * the real parent of the group stop completion is enough.
2227		 */
2228		if (gstop_done)
2229			do_notify_parent_cldstop(current, false, why);
2230
2231		/* tasklist protects us from ptrace_freeze_traced() */
2232		__set_current_state(TASK_RUNNING);
2233		if (clear_code)
2234			current->exit_code = 0;
2235		read_unlock(&tasklist_lock);
2236	}
2237
2238	/*
2239	 * We are back.  Now reacquire the siglock before touching
2240	 * last_siginfo, so that we are sure to have synchronized with
2241	 * any signal-sending on another CPU that wants to examine it.
2242	 */
2243	spin_lock_irq(&current->sighand->siglock);
2244	current->last_siginfo = NULL;
2245
2246	/* LISTENING can be set only during STOP traps, clear it */
2247	current->jobctl &= ~JOBCTL_LISTENING;
2248
2249	/*
2250	 * Queued signals ignored us while we were stopped for tracing.
2251	 * So check for any that we should take before resuming user mode.
2252	 * This sets TIF_SIGPENDING, but never clears it.
2253	 */
2254	recalc_sigpending_tsk(current);
2255}
2256
2257static void ptrace_do_notify(int signr, int exit_code, int why)
2258{
2259	kernel_siginfo_t info;
2260
2261	clear_siginfo(&info);
2262	info.si_signo = signr;
2263	info.si_code = exit_code;
2264	info.si_pid = task_pid_vnr(current);
2265	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2266
2267	/* Let the debugger run.  */
2268	ptrace_stop(exit_code, why, 1, &info);
2269}
2270
2271void ptrace_notify(int exit_code)
2272{
2273	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2274	if (unlikely(current->task_works))
2275		task_work_run();
2276
2277	spin_lock_irq(&current->sighand->siglock);
2278	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2279	spin_unlock_irq(&current->sighand->siglock);
2280}
2281
2282/**
2283 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2284 * @signr: signr causing group stop if initiating
2285 *
2286 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2287 * and participate in it.  If already set, participate in the existing
2288 * group stop.  If participated in a group stop (and thus slept), %true is
2289 * returned with siglock released.
2290 *
2291 * If ptraced, this function doesn't handle stop itself.  Instead,
2292 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2293 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2294 * places afterwards.
2295 *
2296 * CONTEXT:
2297 * Must be called with @current->sighand->siglock held, which is released
2298 * on %true return.
2299 *
2300 * RETURNS:
2301 * %false if group stop is already cancelled or ptrace trap is scheduled.
2302 * %true if participated in group stop.
2303 */
2304static bool do_signal_stop(int signr)
2305	__releases(&current->sighand->siglock)
2306{
2307	struct signal_struct *sig = current->signal;
2308
2309	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2310		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2311		struct task_struct *t;
2312
2313		/* signr will be recorded in task->jobctl for retries */
2314		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2315
2316		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2317		    unlikely(signal_group_exit(sig)))
2318			return false;
2319		/*
2320		 * There is no group stop already in progress.  We must
2321		 * initiate one now.
2322		 *
2323		 * While ptraced, a task may be resumed while group stop is
2324		 * still in effect and then receive a stop signal and
2325		 * initiate another group stop.  This deviates from the
2326		 * usual behavior as two consecutive stop signals can't
2327		 * cause two group stops when !ptraced.  That is why we
2328		 * also check !task_is_stopped(t) below.
2329		 *
2330		 * The condition can be distinguished by testing whether
2331		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2332		 * group_exit_code in such case.
2333		 *
2334		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2335		 * an intervening stop signal is required to cause two
2336		 * continued events regardless of ptrace.
2337		 */
2338		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2339			sig->group_exit_code = signr;
2340
2341		sig->group_stop_count = 0;
2342
2343		if (task_set_jobctl_pending(current, signr | gstop))
2344			sig->group_stop_count++;
2345
2346		t = current;
2347		while_each_thread(current, t) {
2348			/*
2349			 * Setting state to TASK_STOPPED for a group
2350			 * stop is always done with the siglock held,
2351			 * so this check has no races.
2352			 */
2353			if (!task_is_stopped(t) &&
2354			    task_set_jobctl_pending(t, signr | gstop)) {
2355				sig->group_stop_count++;
2356				if (likely(!(t->ptrace & PT_SEIZED)))
2357					signal_wake_up(t, 0);
2358				else
2359					ptrace_trap_notify(t);
2360			}
2361		}
2362	}
2363
2364	if (likely(!current->ptrace)) {
2365		int notify = 0;
2366
2367		/*
2368		 * If there are no other threads in the group, or if there
2369		 * is a group stop in progress and we are the last to stop,
2370		 * report to the parent.
2371		 */
2372		if (task_participate_group_stop(current))
2373			notify = CLD_STOPPED;
2374
2375		set_special_state(TASK_STOPPED);
2376		spin_unlock_irq(&current->sighand->siglock);
2377
2378		/*
2379		 * Notify the parent of the group stop completion.  Because
2380		 * we're not holding either the siglock or tasklist_lock
2381		 * here, ptracer may attach inbetween; however, this is for
2382		 * group stop and should always be delivered to the real
2383		 * parent of the group leader.  The new ptracer will get
2384		 * its notification when this task transitions into
2385		 * TASK_TRACED.
2386		 */
2387		if (notify) {
2388			read_lock(&tasklist_lock);
2389			do_notify_parent_cldstop(current, false, notify);
2390			read_unlock(&tasklist_lock);
2391		}
2392
2393		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2394		cgroup_enter_frozen();
2395		freezable_schedule();
2396		return true;
2397	} else {
2398		/*
2399		 * While ptraced, group stop is handled by STOP trap.
2400		 * Schedule it and let the caller deal with it.
2401		 */
2402		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2403		return false;
2404	}
2405}
2406
2407/**
2408 * do_jobctl_trap - take care of ptrace jobctl traps
2409 *
2410 * When PT_SEIZED, it's used for both group stop and explicit
2411 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2412 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2413 * the stop signal; otherwise, %SIGTRAP.
2414 *
2415 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2416 * number as exit_code and no siginfo.
2417 *
2418 * CONTEXT:
2419 * Must be called with @current->sighand->siglock held, which may be
2420 * released and re-acquired before returning with intervening sleep.
2421 */
2422static void do_jobctl_trap(void)
2423{
2424	struct signal_struct *signal = current->signal;
2425	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2426
2427	if (current->ptrace & PT_SEIZED) {
2428		if (!signal->group_stop_count &&
2429		    !(signal->flags & SIGNAL_STOP_STOPPED))
2430			signr = SIGTRAP;
2431		WARN_ON_ONCE(!signr);
2432		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2433				 CLD_STOPPED);
2434	} else {
2435		WARN_ON_ONCE(!signr);
2436		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2437		current->exit_code = 0;
2438	}
2439}
2440
2441/**
2442 * do_freezer_trap - handle the freezer jobctl trap
2443 *
2444 * Puts the task into frozen state, if only the task is not about to quit.
2445 * In this case it drops JOBCTL_TRAP_FREEZE.
2446 *
2447 * CONTEXT:
2448 * Must be called with @current->sighand->siglock held,
2449 * which is always released before returning.
2450 */
2451static void do_freezer_trap(void)
2452	__releases(&current->sighand->siglock)
2453{
2454	/*
2455	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2456	 * let's make another loop to give it a chance to be handled.
2457	 * In any case, we'll return back.
2458	 */
2459	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2460	     JOBCTL_TRAP_FREEZE) {
2461		spin_unlock_irq(&current->sighand->siglock);
2462		return;
2463	}
2464
2465	/*
2466	 * Now we're sure that there is no pending fatal signal and no
2467	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2468	 * immediately (if there is a non-fatal signal pending), and
2469	 * put the task into sleep.
2470	 */
2471	__set_current_state(TASK_INTERRUPTIBLE);
2472	clear_thread_flag(TIF_SIGPENDING);
2473	spin_unlock_irq(&current->sighand->siglock);
2474	cgroup_enter_frozen();
2475	freezable_schedule();
2476}
2477
2478static int ptrace_signal(int signr, kernel_siginfo_t *info)
2479{
2480	/*
2481	 * We do not check sig_kernel_stop(signr) but set this marker
2482	 * unconditionally because we do not know whether debugger will
2483	 * change signr. This flag has no meaning unless we are going
2484	 * to stop after return from ptrace_stop(). In this case it will
2485	 * be checked in do_signal_stop(), we should only stop if it was
2486	 * not cleared by SIGCONT while we were sleeping. See also the
2487	 * comment in dequeue_signal().
2488	 */
2489	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2490	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2491
2492	/* We're back.  Did the debugger cancel the sig?  */
2493	signr = current->exit_code;
2494	if (signr == 0)
2495		return signr;
2496
2497	current->exit_code = 0;
2498
2499	/*
2500	 * Update the siginfo structure if the signal has
2501	 * changed.  If the debugger wanted something
2502	 * specific in the siginfo structure then it should
2503	 * have updated *info via PTRACE_SETSIGINFO.
2504	 */
2505	if (signr != info->si_signo) {
2506		clear_siginfo(info);
2507		info->si_signo = signr;
2508		info->si_errno = 0;
2509		info->si_code = SI_USER;
2510		rcu_read_lock();
2511		info->si_pid = task_pid_vnr(current->parent);
2512		info->si_uid = from_kuid_munged(current_user_ns(),
2513						task_uid(current->parent));
2514		rcu_read_unlock();
2515	}
2516
2517	/* If the (new) signal is now blocked, requeue it.  */
2518	if (sigismember(&current->blocked, signr)) {
2519		send_signal(signr, info, current, PIDTYPE_PID);
2520		signr = 0;
2521	}
2522
2523	return signr;
2524}
2525
2526bool get_signal(struct ksignal *ksig)
2527{
2528	struct sighand_struct *sighand = current->sighand;
2529	struct signal_struct *signal = current->signal;
2530	int signr;
2531
 
 
 
2532	if (unlikely(uprobe_deny_signal()))
2533		return false;
2534
2535	/*
2536	 * Do this once, we can't return to user-mode if freezing() == T.
2537	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2538	 * thus do not need another check after return.
2539	 */
2540	try_to_freeze();
2541
2542relock:
2543	spin_lock_irq(&sighand->siglock);
2544	/*
2545	 * Make sure we can safely read ->jobctl() in task_work add. As Oleg
2546	 * states:
2547	 *
2548	 * It pairs with mb (implied by cmpxchg) before READ_ONCE. So we
2549	 * roughly have
2550	 *
2551	 *	task_work_add:				get_signal:
2552	 *	STORE(task->task_works, new_work);	STORE(task->jobctl);
2553	 *	mb();					mb();
2554	 *	LOAD(task->jobctl);			LOAD(task->task_works);
2555	 *
2556	 * and we can rely on STORE-MB-LOAD [ in task_work_add].
2557	 */
2558	smp_store_mb(current->jobctl, current->jobctl & ~JOBCTL_TASK_WORK);
2559	if (unlikely(current->task_works)) {
2560		spin_unlock_irq(&sighand->siglock);
2561		task_work_run();
2562		goto relock;
2563	}
2564
2565	/*
2566	 * Every stopped thread goes here after wakeup. Check to see if
2567	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2568	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2569	 */
2570	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2571		int why;
2572
2573		if (signal->flags & SIGNAL_CLD_CONTINUED)
2574			why = CLD_CONTINUED;
2575		else
2576			why = CLD_STOPPED;
2577
2578		signal->flags &= ~SIGNAL_CLD_MASK;
2579
2580		spin_unlock_irq(&sighand->siglock);
2581
2582		/*
2583		 * Notify the parent that we're continuing.  This event is
2584		 * always per-process and doesn't make whole lot of sense
2585		 * for ptracers, who shouldn't consume the state via
2586		 * wait(2) either, but, for backward compatibility, notify
2587		 * the ptracer of the group leader too unless it's gonna be
2588		 * a duplicate.
2589		 */
2590		read_lock(&tasklist_lock);
2591		do_notify_parent_cldstop(current, false, why);
2592
2593		if (ptrace_reparented(current->group_leader))
2594			do_notify_parent_cldstop(current->group_leader,
2595						true, why);
2596		read_unlock(&tasklist_lock);
2597
2598		goto relock;
2599	}
2600
2601	/* Has this task already been marked for death? */
2602	if (signal_group_exit(signal)) {
2603		ksig->info.si_signo = signr = SIGKILL;
2604		sigdelset(&current->pending.signal, SIGKILL);
2605		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2606				&sighand->action[SIGKILL - 1]);
2607		recalc_sigpending();
2608		goto fatal;
2609	}
2610
2611	for (;;) {
2612		struct k_sigaction *ka;
2613
2614		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2615		    do_signal_stop(0))
2616			goto relock;
2617
2618		if (unlikely(current->jobctl &
2619			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2620			if (current->jobctl & JOBCTL_TRAP_MASK) {
2621				do_jobctl_trap();
2622				spin_unlock_irq(&sighand->siglock);
2623			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2624				do_freezer_trap();
2625
2626			goto relock;
2627		}
2628
2629		/*
2630		 * If the task is leaving the frozen state, let's update
2631		 * cgroup counters and reset the frozen bit.
2632		 */
2633		if (unlikely(cgroup_task_frozen(current))) {
2634			spin_unlock_irq(&sighand->siglock);
2635			cgroup_leave_frozen(false);
2636			goto relock;
2637		}
2638
2639		/*
2640		 * Signals generated by the execution of an instruction
2641		 * need to be delivered before any other pending signals
2642		 * so that the instruction pointer in the signal stack
2643		 * frame points to the faulting instruction.
2644		 */
2645		signr = dequeue_synchronous_signal(&ksig->info);
2646		if (!signr)
2647			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2648
2649		if (!signr)
2650			break; /* will return 0 */
2651
2652		if (unlikely(current->ptrace) && signr != SIGKILL) {
2653			signr = ptrace_signal(signr, &ksig->info);
2654			if (!signr)
2655				continue;
2656		}
2657
2658		ka = &sighand->action[signr-1];
2659
2660		/* Trace actually delivered signals. */
2661		trace_signal_deliver(signr, &ksig->info, ka);
2662
2663		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2664			continue;
2665		if (ka->sa.sa_handler != SIG_DFL) {
2666			/* Run the handler.  */
2667			ksig->ka = *ka;
2668
2669			if (ka->sa.sa_flags & SA_ONESHOT)
2670				ka->sa.sa_handler = SIG_DFL;
2671
2672			break; /* will return non-zero "signr" value */
2673		}
2674
2675		/*
2676		 * Now we are doing the default action for this signal.
2677		 */
2678		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2679			continue;
2680
2681		/*
2682		 * Global init gets no signals it doesn't want.
2683		 * Container-init gets no signals it doesn't want from same
2684		 * container.
2685		 *
2686		 * Note that if global/container-init sees a sig_kernel_only()
2687		 * signal here, the signal must have been generated internally
2688		 * or must have come from an ancestor namespace. In either
2689		 * case, the signal cannot be dropped.
2690		 */
2691		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2692				!sig_kernel_only(signr))
2693			continue;
2694
2695		if (sig_kernel_stop(signr)) {
2696			/*
2697			 * The default action is to stop all threads in
2698			 * the thread group.  The job control signals
2699			 * do nothing in an orphaned pgrp, but SIGSTOP
2700			 * always works.  Note that siglock needs to be
2701			 * dropped during the call to is_orphaned_pgrp()
2702			 * because of lock ordering with tasklist_lock.
2703			 * This allows an intervening SIGCONT to be posted.
2704			 * We need to check for that and bail out if necessary.
2705			 */
2706			if (signr != SIGSTOP) {
2707				spin_unlock_irq(&sighand->siglock);
2708
2709				/* signals can be posted during this window */
2710
2711				if (is_current_pgrp_orphaned())
2712					goto relock;
2713
2714				spin_lock_irq(&sighand->siglock);
2715			}
2716
2717			if (likely(do_signal_stop(ksig->info.si_signo))) {
2718				/* It released the siglock.  */
2719				goto relock;
2720			}
2721
2722			/*
2723			 * We didn't actually stop, due to a race
2724			 * with SIGCONT or something like that.
2725			 */
2726			continue;
2727		}
2728
2729	fatal:
2730		spin_unlock_irq(&sighand->siglock);
2731		if (unlikely(cgroup_task_frozen(current)))
2732			cgroup_leave_frozen(true);
2733
2734		/*
2735		 * Anything else is fatal, maybe with a core dump.
2736		 */
2737		current->flags |= PF_SIGNALED;
2738
2739		if (sig_kernel_coredump(signr)) {
2740			if (print_fatal_signals)
2741				print_fatal_signal(ksig->info.si_signo);
2742			proc_coredump_connector(current);
2743			/*
2744			 * If it was able to dump core, this kills all
2745			 * other threads in the group and synchronizes with
2746			 * their demise.  If we lost the race with another
2747			 * thread getting here, it set group_exit_code
2748			 * first and our do_group_exit call below will use
2749			 * that value and ignore the one we pass it.
2750			 */
2751			do_coredump(&ksig->info);
2752		}
2753
2754		/*
2755		 * Death signals, no core dump.
2756		 */
2757		do_group_exit(ksig->info.si_signo);
2758		/* NOTREACHED */
2759	}
2760	spin_unlock_irq(&sighand->siglock);
2761
2762	ksig->sig = signr;
2763	return ksig->sig > 0;
2764}
2765
2766/**
2767 * signal_delivered - 
2768 * @ksig:		kernel signal struct
2769 * @stepping:		nonzero if debugger single-step or block-step in use
2770 *
2771 * This function should be called when a signal has successfully been
2772 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2773 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2774 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2775 */
2776static void signal_delivered(struct ksignal *ksig, int stepping)
2777{
2778	sigset_t blocked;
2779
2780	/* A signal was successfully delivered, and the
2781	   saved sigmask was stored on the signal frame,
2782	   and will be restored by sigreturn.  So we can
2783	   simply clear the restore sigmask flag.  */
2784	clear_restore_sigmask();
2785
2786	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2787	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2788		sigaddset(&blocked, ksig->sig);
2789	set_current_blocked(&blocked);
2790	tracehook_signal_handler(stepping);
2791}
2792
2793void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2794{
2795	if (failed)
2796		force_sigsegv(ksig->sig);
2797	else
2798		signal_delivered(ksig, stepping);
2799}
2800
2801/*
2802 * It could be that complete_signal() picked us to notify about the
2803 * group-wide signal. Other threads should be notified now to take
2804 * the shared signals in @which since we will not.
2805 */
2806static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2807{
2808	sigset_t retarget;
2809	struct task_struct *t;
2810
2811	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2812	if (sigisemptyset(&retarget))
2813		return;
2814
2815	t = tsk;
2816	while_each_thread(tsk, t) {
2817		if (t->flags & PF_EXITING)
2818			continue;
2819
2820		if (!has_pending_signals(&retarget, &t->blocked))
2821			continue;
2822		/* Remove the signals this thread can handle. */
2823		sigandsets(&retarget, &retarget, &t->blocked);
2824
2825		if (!signal_pending(t))
2826			signal_wake_up(t, 0);
2827
2828		if (sigisemptyset(&retarget))
2829			break;
2830	}
2831}
2832
2833void exit_signals(struct task_struct *tsk)
2834{
2835	int group_stop = 0;
2836	sigset_t unblocked;
2837
2838	/*
2839	 * @tsk is about to have PF_EXITING set - lock out users which
2840	 * expect stable threadgroup.
2841	 */
2842	cgroup_threadgroup_change_begin(tsk);
2843
2844	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2845		tsk->flags |= PF_EXITING;
2846		cgroup_threadgroup_change_end(tsk);
2847		return;
2848	}
2849
2850	spin_lock_irq(&tsk->sighand->siglock);
2851	/*
2852	 * From now this task is not visible for group-wide signals,
2853	 * see wants_signal(), do_signal_stop().
2854	 */
2855	tsk->flags |= PF_EXITING;
2856
2857	cgroup_threadgroup_change_end(tsk);
2858
2859	if (!signal_pending(tsk))
2860		goto out;
2861
2862	unblocked = tsk->blocked;
2863	signotset(&unblocked);
2864	retarget_shared_pending(tsk, &unblocked);
2865
2866	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2867	    task_participate_group_stop(tsk))
2868		group_stop = CLD_STOPPED;
2869out:
2870	spin_unlock_irq(&tsk->sighand->siglock);
2871
2872	/*
2873	 * If group stop has completed, deliver the notification.  This
2874	 * should always go to the real parent of the group leader.
2875	 */
2876	if (unlikely(group_stop)) {
2877		read_lock(&tasklist_lock);
2878		do_notify_parent_cldstop(tsk, false, group_stop);
2879		read_unlock(&tasklist_lock);
2880	}
2881}
2882
2883/*
2884 * System call entry points.
2885 */
2886
2887/**
2888 *  sys_restart_syscall - restart a system call
2889 */
2890SYSCALL_DEFINE0(restart_syscall)
2891{
2892	struct restart_block *restart = &current->restart_block;
2893	return restart->fn(restart);
2894}
2895
2896long do_no_restart_syscall(struct restart_block *param)
2897{
2898	return -EINTR;
2899}
2900
2901static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2902{
2903	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2904		sigset_t newblocked;
2905		/* A set of now blocked but previously unblocked signals. */
2906		sigandnsets(&newblocked, newset, &current->blocked);
2907		retarget_shared_pending(tsk, &newblocked);
2908	}
2909	tsk->blocked = *newset;
2910	recalc_sigpending();
2911}
2912
2913/**
2914 * set_current_blocked - change current->blocked mask
2915 * @newset: new mask
2916 *
2917 * It is wrong to change ->blocked directly, this helper should be used
2918 * to ensure the process can't miss a shared signal we are going to block.
2919 */
2920void set_current_blocked(sigset_t *newset)
2921{
2922	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2923	__set_current_blocked(newset);
2924}
2925
2926void __set_current_blocked(const sigset_t *newset)
2927{
2928	struct task_struct *tsk = current;
2929
2930	/*
2931	 * In case the signal mask hasn't changed, there is nothing we need
2932	 * to do. The current->blocked shouldn't be modified by other task.
2933	 */
2934	if (sigequalsets(&tsk->blocked, newset))
2935		return;
2936
2937	spin_lock_irq(&tsk->sighand->siglock);
2938	__set_task_blocked(tsk, newset);
2939	spin_unlock_irq(&tsk->sighand->siglock);
2940}
2941
2942/*
2943 * This is also useful for kernel threads that want to temporarily
2944 * (or permanently) block certain signals.
2945 *
2946 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2947 * interface happily blocks "unblockable" signals like SIGKILL
2948 * and friends.
2949 */
2950int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2951{
2952	struct task_struct *tsk = current;
2953	sigset_t newset;
2954
2955	/* Lockless, only current can change ->blocked, never from irq */
2956	if (oldset)
2957		*oldset = tsk->blocked;
2958
2959	switch (how) {
2960	case SIG_BLOCK:
2961		sigorsets(&newset, &tsk->blocked, set);
2962		break;
2963	case SIG_UNBLOCK:
2964		sigandnsets(&newset, &tsk->blocked, set);
2965		break;
2966	case SIG_SETMASK:
2967		newset = *set;
2968		break;
2969	default:
2970		return -EINVAL;
2971	}
2972
2973	__set_current_blocked(&newset);
2974	return 0;
2975}
2976EXPORT_SYMBOL(sigprocmask);
2977
2978/*
2979 * The api helps set app-provided sigmasks.
2980 *
2981 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2982 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2983 *
2984 * Note that it does set_restore_sigmask() in advance, so it must be always
2985 * paired with restore_saved_sigmask_unless() before return from syscall.
2986 */
2987int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2988{
2989	sigset_t kmask;
2990
2991	if (!umask)
2992		return 0;
2993	if (sigsetsize != sizeof(sigset_t))
2994		return -EINVAL;
2995	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2996		return -EFAULT;
2997
2998	set_restore_sigmask();
2999	current->saved_sigmask = current->blocked;
3000	set_current_blocked(&kmask);
3001
3002	return 0;
3003}
3004
3005#ifdef CONFIG_COMPAT
3006int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3007			    size_t sigsetsize)
3008{
3009	sigset_t kmask;
3010
3011	if (!umask)
3012		return 0;
3013	if (sigsetsize != sizeof(compat_sigset_t))
3014		return -EINVAL;
3015	if (get_compat_sigset(&kmask, umask))
3016		return -EFAULT;
3017
3018	set_restore_sigmask();
3019	current->saved_sigmask = current->blocked;
3020	set_current_blocked(&kmask);
3021
3022	return 0;
3023}
3024#endif
3025
3026/**
3027 *  sys_rt_sigprocmask - change the list of currently blocked signals
3028 *  @how: whether to add, remove, or set signals
3029 *  @nset: stores pending signals
3030 *  @oset: previous value of signal mask if non-null
3031 *  @sigsetsize: size of sigset_t type
3032 */
3033SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3034		sigset_t __user *, oset, size_t, sigsetsize)
3035{
3036	sigset_t old_set, new_set;
3037	int error;
3038
3039	/* XXX: Don't preclude handling different sized sigset_t's.  */
3040	if (sigsetsize != sizeof(sigset_t))
3041		return -EINVAL;
3042
3043	old_set = current->blocked;
3044
3045	if (nset) {
3046		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3047			return -EFAULT;
3048		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3049
3050		error = sigprocmask(how, &new_set, NULL);
3051		if (error)
3052			return error;
3053	}
3054
3055	if (oset) {
3056		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3057			return -EFAULT;
3058	}
3059
3060	return 0;
3061}
3062
3063#ifdef CONFIG_COMPAT
3064COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3065		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3066{
3067	sigset_t old_set = current->blocked;
3068
3069	/* XXX: Don't preclude handling different sized sigset_t's.  */
3070	if (sigsetsize != sizeof(sigset_t))
3071		return -EINVAL;
3072
3073	if (nset) {
3074		sigset_t new_set;
3075		int error;
3076		if (get_compat_sigset(&new_set, nset))
3077			return -EFAULT;
3078		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3079
3080		error = sigprocmask(how, &new_set, NULL);
3081		if (error)
3082			return error;
3083	}
3084	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3085}
3086#endif
3087
3088static void do_sigpending(sigset_t *set)
3089{
3090	spin_lock_irq(&current->sighand->siglock);
3091	sigorsets(set, &current->pending.signal,
3092		  &current->signal->shared_pending.signal);
3093	spin_unlock_irq(&current->sighand->siglock);
3094
3095	/* Outside the lock because only this thread touches it.  */
3096	sigandsets(set, &current->blocked, set);
3097}
3098
3099/**
3100 *  sys_rt_sigpending - examine a pending signal that has been raised
3101 *			while blocked
3102 *  @uset: stores pending signals
3103 *  @sigsetsize: size of sigset_t type or larger
3104 */
3105SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3106{
3107	sigset_t set;
3108
3109	if (sigsetsize > sizeof(*uset))
3110		return -EINVAL;
3111
3112	do_sigpending(&set);
3113
3114	if (copy_to_user(uset, &set, sigsetsize))
3115		return -EFAULT;
3116
3117	return 0;
3118}
3119
3120#ifdef CONFIG_COMPAT
3121COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3122		compat_size_t, sigsetsize)
3123{
3124	sigset_t set;
3125
3126	if (sigsetsize > sizeof(*uset))
3127		return -EINVAL;
3128
3129	do_sigpending(&set);
3130
3131	return put_compat_sigset(uset, &set, sigsetsize);
3132}
3133#endif
3134
3135static const struct {
3136	unsigned char limit, layout;
3137} sig_sicodes[] = {
3138	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3139	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3140	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3141	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3142	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3143#if defined(SIGEMT)
3144	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3145#endif
3146	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3147	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3148	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3149};
3150
3151static bool known_siginfo_layout(unsigned sig, int si_code)
3152{
3153	if (si_code == SI_KERNEL)
3154		return true;
3155	else if ((si_code > SI_USER)) {
3156		if (sig_specific_sicodes(sig)) {
3157			if (si_code <= sig_sicodes[sig].limit)
3158				return true;
3159		}
3160		else if (si_code <= NSIGPOLL)
3161			return true;
3162	}
3163	else if (si_code >= SI_DETHREAD)
3164		return true;
3165	else if (si_code == SI_ASYNCNL)
3166		return true;
3167	return false;
3168}
3169
3170enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3171{
3172	enum siginfo_layout layout = SIL_KILL;
3173	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3174		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3175		    (si_code <= sig_sicodes[sig].limit)) {
3176			layout = sig_sicodes[sig].layout;
3177			/* Handle the exceptions */
3178			if ((sig == SIGBUS) &&
3179			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3180				layout = SIL_FAULT_MCEERR;
3181			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3182				layout = SIL_FAULT_BNDERR;
3183#ifdef SEGV_PKUERR
3184			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3185				layout = SIL_FAULT_PKUERR;
3186#endif
3187		}
3188		else if (si_code <= NSIGPOLL)
3189			layout = SIL_POLL;
3190	} else {
3191		if (si_code == SI_TIMER)
3192			layout = SIL_TIMER;
3193		else if (si_code == SI_SIGIO)
3194			layout = SIL_POLL;
3195		else if (si_code < 0)
3196			layout = SIL_RT;
3197	}
3198	return layout;
3199}
3200
3201static inline char __user *si_expansion(const siginfo_t __user *info)
3202{
3203	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3204}
3205
3206int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3207{
3208	char __user *expansion = si_expansion(to);
3209	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3210		return -EFAULT;
3211	if (clear_user(expansion, SI_EXPANSION_SIZE))
3212		return -EFAULT;
3213	return 0;
3214}
3215
3216static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3217				       const siginfo_t __user *from)
3218{
3219	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3220		char __user *expansion = si_expansion(from);
3221		char buf[SI_EXPANSION_SIZE];
3222		int i;
3223		/*
3224		 * An unknown si_code might need more than
3225		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3226		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3227		 * will return this data to userspace exactly.
3228		 */
3229		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3230			return -EFAULT;
3231		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3232			if (buf[i] != 0)
3233				return -E2BIG;
3234		}
3235	}
3236	return 0;
3237}
3238
3239static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3240				    const siginfo_t __user *from)
3241{
3242	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3243		return -EFAULT;
3244	to->si_signo = signo;
3245	return post_copy_siginfo_from_user(to, from);
3246}
3247
3248int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3249{
3250	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3251		return -EFAULT;
3252	return post_copy_siginfo_from_user(to, from);
3253}
3254
3255#ifdef CONFIG_COMPAT
3256/**
3257 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3258 * @to: compat siginfo destination
3259 * @from: kernel siginfo source
3260 *
3261 * Note: This function does not work properly for the SIGCHLD on x32, but
3262 * fortunately it doesn't have to.  The only valid callers for this function are
3263 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3264 * The latter does not care because SIGCHLD will never cause a coredump.
3265 */
3266void copy_siginfo_to_external32(struct compat_siginfo *to,
3267		const struct kernel_siginfo *from)
3268{
3269	memset(to, 0, sizeof(*to));
3270
3271	to->si_signo = from->si_signo;
3272	to->si_errno = from->si_errno;
3273	to->si_code  = from->si_code;
3274	switch(siginfo_layout(from->si_signo, from->si_code)) {
3275	case SIL_KILL:
3276		to->si_pid = from->si_pid;
3277		to->si_uid = from->si_uid;
3278		break;
3279	case SIL_TIMER:
3280		to->si_tid     = from->si_tid;
3281		to->si_overrun = from->si_overrun;
3282		to->si_int     = from->si_int;
3283		break;
3284	case SIL_POLL:
3285		to->si_band = from->si_band;
3286		to->si_fd   = from->si_fd;
3287		break;
3288	case SIL_FAULT:
3289		to->si_addr = ptr_to_compat(from->si_addr);
3290#ifdef __ARCH_SI_TRAPNO
3291		to->si_trapno = from->si_trapno;
3292#endif
3293		break;
3294	case SIL_FAULT_MCEERR:
3295		to->si_addr = ptr_to_compat(from->si_addr);
3296#ifdef __ARCH_SI_TRAPNO
3297		to->si_trapno = from->si_trapno;
3298#endif
3299		to->si_addr_lsb = from->si_addr_lsb;
3300		break;
3301	case SIL_FAULT_BNDERR:
3302		to->si_addr = ptr_to_compat(from->si_addr);
3303#ifdef __ARCH_SI_TRAPNO
3304		to->si_trapno = from->si_trapno;
3305#endif
3306		to->si_lower = ptr_to_compat(from->si_lower);
3307		to->si_upper = ptr_to_compat(from->si_upper);
3308		break;
3309	case SIL_FAULT_PKUERR:
3310		to->si_addr = ptr_to_compat(from->si_addr);
3311#ifdef __ARCH_SI_TRAPNO
3312		to->si_trapno = from->si_trapno;
3313#endif
3314		to->si_pkey = from->si_pkey;
3315		break;
3316	case SIL_CHLD:
3317		to->si_pid = from->si_pid;
3318		to->si_uid = from->si_uid;
3319		to->si_status = from->si_status;
3320		to->si_utime = from->si_utime;
3321		to->si_stime = from->si_stime;
 
 
 
 
 
 
 
 
3322		break;
3323	case SIL_RT:
3324		to->si_pid = from->si_pid;
3325		to->si_uid = from->si_uid;
3326		to->si_int = from->si_int;
3327		break;
3328	case SIL_SYS:
3329		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3330		to->si_syscall   = from->si_syscall;
3331		to->si_arch      = from->si_arch;
3332		break;
3333	}
3334}
3335
3336int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3337			   const struct kernel_siginfo *from)
3338{
3339	struct compat_siginfo new;
3340
3341	copy_siginfo_to_external32(&new, from);
3342	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3343		return -EFAULT;
 
3344	return 0;
3345}
3346
3347static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3348					 const struct compat_siginfo *from)
3349{
3350	clear_siginfo(to);
3351	to->si_signo = from->si_signo;
3352	to->si_errno = from->si_errno;
3353	to->si_code  = from->si_code;
3354	switch(siginfo_layout(from->si_signo, from->si_code)) {
3355	case SIL_KILL:
3356		to->si_pid = from->si_pid;
3357		to->si_uid = from->si_uid;
3358		break;
3359	case SIL_TIMER:
3360		to->si_tid     = from->si_tid;
3361		to->si_overrun = from->si_overrun;
3362		to->si_int     = from->si_int;
3363		break;
3364	case SIL_POLL:
3365		to->si_band = from->si_band;
3366		to->si_fd   = from->si_fd;
3367		break;
3368	case SIL_FAULT:
3369		to->si_addr = compat_ptr(from->si_addr);
3370#ifdef __ARCH_SI_TRAPNO
3371		to->si_trapno = from->si_trapno;
3372#endif
3373		break;
3374	case SIL_FAULT_MCEERR:
3375		to->si_addr = compat_ptr(from->si_addr);
3376#ifdef __ARCH_SI_TRAPNO
3377		to->si_trapno = from->si_trapno;
3378#endif
3379		to->si_addr_lsb = from->si_addr_lsb;
3380		break;
3381	case SIL_FAULT_BNDERR:
3382		to->si_addr = compat_ptr(from->si_addr);
3383#ifdef __ARCH_SI_TRAPNO
3384		to->si_trapno = from->si_trapno;
3385#endif
3386		to->si_lower = compat_ptr(from->si_lower);
3387		to->si_upper = compat_ptr(from->si_upper);
3388		break;
3389	case SIL_FAULT_PKUERR:
3390		to->si_addr = compat_ptr(from->si_addr);
3391#ifdef __ARCH_SI_TRAPNO
3392		to->si_trapno = from->si_trapno;
3393#endif
3394		to->si_pkey = from->si_pkey;
3395		break;
3396	case SIL_CHLD:
3397		to->si_pid    = from->si_pid;
3398		to->si_uid    = from->si_uid;
3399		to->si_status = from->si_status;
3400#ifdef CONFIG_X86_X32_ABI
3401		if (in_x32_syscall()) {
3402			to->si_utime = from->_sifields._sigchld_x32._utime;
3403			to->si_stime = from->_sifields._sigchld_x32._stime;
3404		} else
3405#endif
3406		{
3407			to->si_utime = from->si_utime;
3408			to->si_stime = from->si_stime;
3409		}
3410		break;
3411	case SIL_RT:
3412		to->si_pid = from->si_pid;
3413		to->si_uid = from->si_uid;
3414		to->si_int = from->si_int;
3415		break;
3416	case SIL_SYS:
3417		to->si_call_addr = compat_ptr(from->si_call_addr);
3418		to->si_syscall   = from->si_syscall;
3419		to->si_arch      = from->si_arch;
3420		break;
3421	}
3422	return 0;
3423}
3424
3425static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3426				      const struct compat_siginfo __user *ufrom)
3427{
3428	struct compat_siginfo from;
3429
3430	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3431		return -EFAULT;
3432
3433	from.si_signo = signo;
3434	return post_copy_siginfo_from_user32(to, &from);
3435}
3436
3437int copy_siginfo_from_user32(struct kernel_siginfo *to,
3438			     const struct compat_siginfo __user *ufrom)
3439{
3440	struct compat_siginfo from;
3441
3442	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3443		return -EFAULT;
3444
3445	return post_copy_siginfo_from_user32(to, &from);
3446}
3447#endif /* CONFIG_COMPAT */
3448
3449/**
3450 *  do_sigtimedwait - wait for queued signals specified in @which
3451 *  @which: queued signals to wait for
3452 *  @info: if non-null, the signal's siginfo is returned here
3453 *  @ts: upper bound on process time suspension
3454 */
3455static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3456		    const struct timespec64 *ts)
3457{
3458	ktime_t *to = NULL, timeout = KTIME_MAX;
3459	struct task_struct *tsk = current;
3460	sigset_t mask = *which;
3461	int sig, ret = 0;
3462
3463	if (ts) {
3464		if (!timespec64_valid(ts))
3465			return -EINVAL;
3466		timeout = timespec64_to_ktime(*ts);
3467		to = &timeout;
3468	}
3469
3470	/*
3471	 * Invert the set of allowed signals to get those we want to block.
3472	 */
3473	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3474	signotset(&mask);
3475
3476	spin_lock_irq(&tsk->sighand->siglock);
3477	sig = dequeue_signal(tsk, &mask, info);
3478	if (!sig && timeout) {
3479		/*
3480		 * None ready, temporarily unblock those we're interested
3481		 * while we are sleeping in so that we'll be awakened when
3482		 * they arrive. Unblocking is always fine, we can avoid
3483		 * set_current_blocked().
3484		 */
3485		tsk->real_blocked = tsk->blocked;
3486		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3487		recalc_sigpending();
3488		spin_unlock_irq(&tsk->sighand->siglock);
3489
3490		__set_current_state(TASK_INTERRUPTIBLE);
3491		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3492							 HRTIMER_MODE_REL);
3493		spin_lock_irq(&tsk->sighand->siglock);
3494		__set_task_blocked(tsk, &tsk->real_blocked);
3495		sigemptyset(&tsk->real_blocked);
3496		sig = dequeue_signal(tsk, &mask, info);
3497	}
3498	spin_unlock_irq(&tsk->sighand->siglock);
3499
3500	if (sig)
3501		return sig;
3502	return ret ? -EINTR : -EAGAIN;
3503}
3504
3505/**
3506 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3507 *			in @uthese
3508 *  @uthese: queued signals to wait for
3509 *  @uinfo: if non-null, the signal's siginfo is returned here
3510 *  @uts: upper bound on process time suspension
3511 *  @sigsetsize: size of sigset_t type
3512 */
3513SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3514		siginfo_t __user *, uinfo,
3515		const struct __kernel_timespec __user *, uts,
3516		size_t, sigsetsize)
3517{
3518	sigset_t these;
3519	struct timespec64 ts;
3520	kernel_siginfo_t info;
3521	int ret;
3522
3523	/* XXX: Don't preclude handling different sized sigset_t's.  */
3524	if (sigsetsize != sizeof(sigset_t))
3525		return -EINVAL;
3526
3527	if (copy_from_user(&these, uthese, sizeof(these)))
3528		return -EFAULT;
3529
3530	if (uts) {
3531		if (get_timespec64(&ts, uts))
3532			return -EFAULT;
3533	}
3534
3535	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3536
3537	if (ret > 0 && uinfo) {
3538		if (copy_siginfo_to_user(uinfo, &info))
3539			ret = -EFAULT;
3540	}
3541
3542	return ret;
3543}
3544
3545#ifdef CONFIG_COMPAT_32BIT_TIME
3546SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3547		siginfo_t __user *, uinfo,
3548		const struct old_timespec32 __user *, uts,
3549		size_t, sigsetsize)
3550{
3551	sigset_t these;
3552	struct timespec64 ts;
3553	kernel_siginfo_t info;
3554	int ret;
3555
3556	if (sigsetsize != sizeof(sigset_t))
3557		return -EINVAL;
3558
3559	if (copy_from_user(&these, uthese, sizeof(these)))
3560		return -EFAULT;
3561
3562	if (uts) {
3563		if (get_old_timespec32(&ts, uts))
3564			return -EFAULT;
3565	}
3566
3567	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3568
3569	if (ret > 0 && uinfo) {
3570		if (copy_siginfo_to_user(uinfo, &info))
3571			ret = -EFAULT;
3572	}
3573
3574	return ret;
3575}
3576#endif
3577
3578#ifdef CONFIG_COMPAT
3579COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3580		struct compat_siginfo __user *, uinfo,
3581		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3582{
3583	sigset_t s;
3584	struct timespec64 t;
3585	kernel_siginfo_t info;
3586	long ret;
3587
3588	if (sigsetsize != sizeof(sigset_t))
3589		return -EINVAL;
3590
3591	if (get_compat_sigset(&s, uthese))
3592		return -EFAULT;
3593
3594	if (uts) {
3595		if (get_timespec64(&t, uts))
3596			return -EFAULT;
3597	}
3598
3599	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3600
3601	if (ret > 0 && uinfo) {
3602		if (copy_siginfo_to_user32(uinfo, &info))
3603			ret = -EFAULT;
3604	}
3605
3606	return ret;
3607}
3608
3609#ifdef CONFIG_COMPAT_32BIT_TIME
3610COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3611		struct compat_siginfo __user *, uinfo,
3612		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3613{
3614	sigset_t s;
3615	struct timespec64 t;
3616	kernel_siginfo_t info;
3617	long ret;
3618
3619	if (sigsetsize != sizeof(sigset_t))
3620		return -EINVAL;
3621
3622	if (get_compat_sigset(&s, uthese))
3623		return -EFAULT;
3624
3625	if (uts) {
3626		if (get_old_timespec32(&t, uts))
3627			return -EFAULT;
3628	}
3629
3630	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3631
3632	if (ret > 0 && uinfo) {
3633		if (copy_siginfo_to_user32(uinfo, &info))
3634			ret = -EFAULT;
3635	}
3636
3637	return ret;
3638}
3639#endif
3640#endif
3641
3642static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3643{
3644	clear_siginfo(info);
3645	info->si_signo = sig;
3646	info->si_errno = 0;
3647	info->si_code = SI_USER;
3648	info->si_pid = task_tgid_vnr(current);
3649	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3650}
3651
3652/**
3653 *  sys_kill - send a signal to a process
3654 *  @pid: the PID of the process
3655 *  @sig: signal to be sent
3656 */
3657SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3658{
3659	struct kernel_siginfo info;
3660
3661	prepare_kill_siginfo(sig, &info);
3662
3663	return kill_something_info(sig, &info, pid);
3664}
3665
3666/*
3667 * Verify that the signaler and signalee either are in the same pid namespace
3668 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3669 * namespace.
3670 */
3671static bool access_pidfd_pidns(struct pid *pid)
3672{
3673	struct pid_namespace *active = task_active_pid_ns(current);
3674	struct pid_namespace *p = ns_of_pid(pid);
3675
3676	for (;;) {
3677		if (!p)
3678			return false;
3679		if (p == active)
3680			break;
3681		p = p->parent;
3682	}
3683
3684	return true;
3685}
3686
3687static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3688{
3689#ifdef CONFIG_COMPAT
3690	/*
3691	 * Avoid hooking up compat syscalls and instead handle necessary
3692	 * conversions here. Note, this is a stop-gap measure and should not be
3693	 * considered a generic solution.
3694	 */
3695	if (in_compat_syscall())
3696		return copy_siginfo_from_user32(
3697			kinfo, (struct compat_siginfo __user *)info);
3698#endif
3699	return copy_siginfo_from_user(kinfo, info);
3700}
3701
3702static struct pid *pidfd_to_pid(const struct file *file)
3703{
3704	struct pid *pid;
3705
3706	pid = pidfd_pid(file);
3707	if (!IS_ERR(pid))
3708		return pid;
3709
3710	return tgid_pidfd_to_pid(file);
3711}
3712
3713/**
3714 * sys_pidfd_send_signal - Signal a process through a pidfd
3715 * @pidfd:  file descriptor of the process
3716 * @sig:    signal to send
3717 * @info:   signal info
3718 * @flags:  future flags
3719 *
3720 * The syscall currently only signals via PIDTYPE_PID which covers
3721 * kill(<positive-pid>, <signal>. It does not signal threads or process
3722 * groups.
3723 * In order to extend the syscall to threads and process groups the @flags
3724 * argument should be used. In essence, the @flags argument will determine
3725 * what is signaled and not the file descriptor itself. Put in other words,
3726 * grouping is a property of the flags argument not a property of the file
3727 * descriptor.
3728 *
3729 * Return: 0 on success, negative errno on failure
3730 */
3731SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3732		siginfo_t __user *, info, unsigned int, flags)
3733{
3734	int ret;
3735	struct fd f;
3736	struct pid *pid;
3737	kernel_siginfo_t kinfo;
3738
3739	/* Enforce flags be set to 0 until we add an extension. */
3740	if (flags)
3741		return -EINVAL;
3742
3743	f = fdget(pidfd);
3744	if (!f.file)
3745		return -EBADF;
3746
3747	/* Is this a pidfd? */
3748	pid = pidfd_to_pid(f.file);
3749	if (IS_ERR(pid)) {
3750		ret = PTR_ERR(pid);
3751		goto err;
3752	}
3753
3754	ret = -EINVAL;
3755	if (!access_pidfd_pidns(pid))
3756		goto err;
3757
3758	if (info) {
3759		ret = copy_siginfo_from_user_any(&kinfo, info);
3760		if (unlikely(ret))
3761			goto err;
3762
3763		ret = -EINVAL;
3764		if (unlikely(sig != kinfo.si_signo))
3765			goto err;
3766
3767		/* Only allow sending arbitrary signals to yourself. */
3768		ret = -EPERM;
3769		if ((task_pid(current) != pid) &&
3770		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3771			goto err;
3772	} else {
3773		prepare_kill_siginfo(sig, &kinfo);
3774	}
3775
3776	ret = kill_pid_info(sig, &kinfo, pid);
3777
3778err:
3779	fdput(f);
3780	return ret;
3781}
3782
3783static int
3784do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3785{
3786	struct task_struct *p;
3787	int error = -ESRCH;
3788
3789	rcu_read_lock();
3790	p = find_task_by_vpid(pid);
3791	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3792		error = check_kill_permission(sig, info, p);
3793		/*
3794		 * The null signal is a permissions and process existence
3795		 * probe.  No signal is actually delivered.
3796		 */
3797		if (!error && sig) {
3798			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3799			/*
3800			 * If lock_task_sighand() failed we pretend the task
3801			 * dies after receiving the signal. The window is tiny,
3802			 * and the signal is private anyway.
3803			 */
3804			if (unlikely(error == -ESRCH))
3805				error = 0;
3806		}
3807	}
3808	rcu_read_unlock();
3809
3810	return error;
3811}
3812
3813static int do_tkill(pid_t tgid, pid_t pid, int sig)
3814{
3815	struct kernel_siginfo info;
3816
3817	clear_siginfo(&info);
3818	info.si_signo = sig;
3819	info.si_errno = 0;
3820	info.si_code = SI_TKILL;
3821	info.si_pid = task_tgid_vnr(current);
3822	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3823
3824	return do_send_specific(tgid, pid, sig, &info);
3825}
3826
3827/**
3828 *  sys_tgkill - send signal to one specific thread
3829 *  @tgid: the thread group ID of the thread
3830 *  @pid: the PID of the thread
3831 *  @sig: signal to be sent
3832 *
3833 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3834 *  exists but it's not belonging to the target process anymore. This
3835 *  method solves the problem of threads exiting and PIDs getting reused.
3836 */
3837SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3838{
3839	/* This is only valid for single tasks */
3840	if (pid <= 0 || tgid <= 0)
3841		return -EINVAL;
3842
3843	return do_tkill(tgid, pid, sig);
3844}
3845
3846/**
3847 *  sys_tkill - send signal to one specific task
3848 *  @pid: the PID of the task
3849 *  @sig: signal to be sent
3850 *
3851 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3852 */
3853SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3854{
3855	/* This is only valid for single tasks */
3856	if (pid <= 0)
3857		return -EINVAL;
3858
3859	return do_tkill(0, pid, sig);
3860}
3861
3862static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3863{
3864	/* Not even root can pretend to send signals from the kernel.
3865	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3866	 */
3867	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3868	    (task_pid_vnr(current) != pid))
3869		return -EPERM;
3870
3871	/* POSIX.1b doesn't mention process groups.  */
3872	return kill_proc_info(sig, info, pid);
3873}
3874
3875/**
3876 *  sys_rt_sigqueueinfo - send signal information to a signal
3877 *  @pid: the PID of the thread
3878 *  @sig: signal to be sent
3879 *  @uinfo: signal info to be sent
3880 */
3881SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3882		siginfo_t __user *, uinfo)
3883{
3884	kernel_siginfo_t info;
3885	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3886	if (unlikely(ret))
3887		return ret;
3888	return do_rt_sigqueueinfo(pid, sig, &info);
3889}
3890
3891#ifdef CONFIG_COMPAT
3892COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3893			compat_pid_t, pid,
3894			int, sig,
3895			struct compat_siginfo __user *, uinfo)
3896{
3897	kernel_siginfo_t info;
3898	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3899	if (unlikely(ret))
3900		return ret;
3901	return do_rt_sigqueueinfo(pid, sig, &info);
3902}
3903#endif
3904
3905static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3906{
3907	/* This is only valid for single tasks */
3908	if (pid <= 0 || tgid <= 0)
3909		return -EINVAL;
3910
3911	/* Not even root can pretend to send signals from the kernel.
3912	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3913	 */
3914	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3915	    (task_pid_vnr(current) != pid))
3916		return -EPERM;
3917
3918	return do_send_specific(tgid, pid, sig, info);
3919}
3920
3921SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3922		siginfo_t __user *, uinfo)
3923{
3924	kernel_siginfo_t info;
3925	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3926	if (unlikely(ret))
3927		return ret;
3928	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3929}
3930
3931#ifdef CONFIG_COMPAT
3932COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3933			compat_pid_t, tgid,
3934			compat_pid_t, pid,
3935			int, sig,
3936			struct compat_siginfo __user *, uinfo)
3937{
3938	kernel_siginfo_t info;
3939	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3940	if (unlikely(ret))
3941		return ret;
3942	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3943}
3944#endif
3945
3946/*
3947 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3948 */
3949void kernel_sigaction(int sig, __sighandler_t action)
3950{
3951	spin_lock_irq(&current->sighand->siglock);
3952	current->sighand->action[sig - 1].sa.sa_handler = action;
3953	if (action == SIG_IGN) {
3954		sigset_t mask;
3955
3956		sigemptyset(&mask);
3957		sigaddset(&mask, sig);
3958
3959		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3960		flush_sigqueue_mask(&mask, &current->pending);
3961		recalc_sigpending();
3962	}
3963	spin_unlock_irq(&current->sighand->siglock);
3964}
3965EXPORT_SYMBOL(kernel_sigaction);
3966
3967void __weak sigaction_compat_abi(struct k_sigaction *act,
3968		struct k_sigaction *oact)
3969{
3970}
3971
3972int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3973{
3974	struct task_struct *p = current, *t;
3975	struct k_sigaction *k;
3976	sigset_t mask;
3977
3978	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3979		return -EINVAL;
3980
3981	k = &p->sighand->action[sig-1];
3982
3983	spin_lock_irq(&p->sighand->siglock);
3984	if (oact)
3985		*oact = *k;
3986
3987	sigaction_compat_abi(act, oact);
3988
3989	if (act) {
3990		sigdelsetmask(&act->sa.sa_mask,
3991			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3992		*k = *act;
3993		/*
3994		 * POSIX 3.3.1.3:
3995		 *  "Setting a signal action to SIG_IGN for a signal that is
3996		 *   pending shall cause the pending signal to be discarded,
3997		 *   whether or not it is blocked."
3998		 *
3999		 *  "Setting a signal action to SIG_DFL for a signal that is
4000		 *   pending and whose default action is to ignore the signal
4001		 *   (for example, SIGCHLD), shall cause the pending signal to
4002		 *   be discarded, whether or not it is blocked"
4003		 */
4004		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4005			sigemptyset(&mask);
4006			sigaddset(&mask, sig);
4007			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4008			for_each_thread(p, t)
4009				flush_sigqueue_mask(&mask, &t->pending);
4010		}
4011	}
4012
4013	spin_unlock_irq(&p->sighand->siglock);
4014	return 0;
4015}
4016
4017static int
4018do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4019		size_t min_ss_size)
4020{
4021	struct task_struct *t = current;
4022
4023	if (oss) {
4024		memset(oss, 0, sizeof(stack_t));
4025		oss->ss_sp = (void __user *) t->sas_ss_sp;
4026		oss->ss_size = t->sas_ss_size;
4027		oss->ss_flags = sas_ss_flags(sp) |
4028			(current->sas_ss_flags & SS_FLAG_BITS);
4029	}
4030
4031	if (ss) {
4032		void __user *ss_sp = ss->ss_sp;
4033		size_t ss_size = ss->ss_size;
4034		unsigned ss_flags = ss->ss_flags;
4035		int ss_mode;
4036
4037		if (unlikely(on_sig_stack(sp)))
4038			return -EPERM;
4039
4040		ss_mode = ss_flags & ~SS_FLAG_BITS;
4041		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4042				ss_mode != 0))
4043			return -EINVAL;
4044
4045		if (ss_mode == SS_DISABLE) {
4046			ss_size = 0;
4047			ss_sp = NULL;
4048		} else {
4049			if (unlikely(ss_size < min_ss_size))
4050				return -ENOMEM;
4051		}
4052
4053		t->sas_ss_sp = (unsigned long) ss_sp;
4054		t->sas_ss_size = ss_size;
4055		t->sas_ss_flags = ss_flags;
4056	}
4057	return 0;
4058}
4059
4060SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4061{
4062	stack_t new, old;
4063	int err;
4064	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4065		return -EFAULT;
4066	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4067			      current_user_stack_pointer(),
4068			      MINSIGSTKSZ);
4069	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4070		err = -EFAULT;
4071	return err;
4072}
4073
4074int restore_altstack(const stack_t __user *uss)
4075{
4076	stack_t new;
4077	if (copy_from_user(&new, uss, sizeof(stack_t)))
4078		return -EFAULT;
4079	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4080			     MINSIGSTKSZ);
4081	/* squash all but EFAULT for now */
4082	return 0;
4083}
4084
4085int __save_altstack(stack_t __user *uss, unsigned long sp)
4086{
4087	struct task_struct *t = current;
4088	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4089		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4090		__put_user(t->sas_ss_size, &uss->ss_size);
4091	if (err)
4092		return err;
4093	if (t->sas_ss_flags & SS_AUTODISARM)
4094		sas_ss_reset(t);
4095	return 0;
4096}
4097
4098#ifdef CONFIG_COMPAT
4099static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4100				 compat_stack_t __user *uoss_ptr)
4101{
4102	stack_t uss, uoss;
4103	int ret;
4104
4105	if (uss_ptr) {
4106		compat_stack_t uss32;
4107		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4108			return -EFAULT;
4109		uss.ss_sp = compat_ptr(uss32.ss_sp);
4110		uss.ss_flags = uss32.ss_flags;
4111		uss.ss_size = uss32.ss_size;
4112	}
4113	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4114			     compat_user_stack_pointer(),
4115			     COMPAT_MINSIGSTKSZ);
4116	if (ret >= 0 && uoss_ptr)  {
4117		compat_stack_t old;
4118		memset(&old, 0, sizeof(old));
4119		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4120		old.ss_flags = uoss.ss_flags;
4121		old.ss_size = uoss.ss_size;
4122		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4123			ret = -EFAULT;
4124	}
4125	return ret;
4126}
4127
4128COMPAT_SYSCALL_DEFINE2(sigaltstack,
4129			const compat_stack_t __user *, uss_ptr,
4130			compat_stack_t __user *, uoss_ptr)
4131{
4132	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4133}
4134
4135int compat_restore_altstack(const compat_stack_t __user *uss)
4136{
4137	int err = do_compat_sigaltstack(uss, NULL);
4138	/* squash all but -EFAULT for now */
4139	return err == -EFAULT ? err : 0;
4140}
4141
4142int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4143{
4144	int err;
4145	struct task_struct *t = current;
4146	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4147			 &uss->ss_sp) |
4148		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4149		__put_user(t->sas_ss_size, &uss->ss_size);
4150	if (err)
4151		return err;
4152	if (t->sas_ss_flags & SS_AUTODISARM)
4153		sas_ss_reset(t);
4154	return 0;
4155}
4156#endif
4157
4158#ifdef __ARCH_WANT_SYS_SIGPENDING
4159
4160/**
4161 *  sys_sigpending - examine pending signals
4162 *  @uset: where mask of pending signal is returned
4163 */
4164SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4165{
4166	sigset_t set;
4167
4168	if (sizeof(old_sigset_t) > sizeof(*uset))
4169		return -EINVAL;
4170
4171	do_sigpending(&set);
4172
4173	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4174		return -EFAULT;
4175
4176	return 0;
4177}
4178
4179#ifdef CONFIG_COMPAT
4180COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4181{
4182	sigset_t set;
4183
4184	do_sigpending(&set);
4185
4186	return put_user(set.sig[0], set32);
4187}
4188#endif
4189
4190#endif
4191
4192#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4193/**
4194 *  sys_sigprocmask - examine and change blocked signals
4195 *  @how: whether to add, remove, or set signals
4196 *  @nset: signals to add or remove (if non-null)
4197 *  @oset: previous value of signal mask if non-null
4198 *
4199 * Some platforms have their own version with special arguments;
4200 * others support only sys_rt_sigprocmask.
4201 */
4202
4203SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4204		old_sigset_t __user *, oset)
4205{
4206	old_sigset_t old_set, new_set;
4207	sigset_t new_blocked;
4208
4209	old_set = current->blocked.sig[0];
4210
4211	if (nset) {
4212		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4213			return -EFAULT;
4214
4215		new_blocked = current->blocked;
4216
4217		switch (how) {
4218		case SIG_BLOCK:
4219			sigaddsetmask(&new_blocked, new_set);
4220			break;
4221		case SIG_UNBLOCK:
4222			sigdelsetmask(&new_blocked, new_set);
4223			break;
4224		case SIG_SETMASK:
4225			new_blocked.sig[0] = new_set;
4226			break;
4227		default:
4228			return -EINVAL;
4229		}
4230
4231		set_current_blocked(&new_blocked);
4232	}
4233
4234	if (oset) {
4235		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4236			return -EFAULT;
4237	}
4238
4239	return 0;
4240}
4241#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4242
4243#ifndef CONFIG_ODD_RT_SIGACTION
4244/**
4245 *  sys_rt_sigaction - alter an action taken by a process
4246 *  @sig: signal to be sent
4247 *  @act: new sigaction
4248 *  @oact: used to save the previous sigaction
4249 *  @sigsetsize: size of sigset_t type
4250 */
4251SYSCALL_DEFINE4(rt_sigaction, int, sig,
4252		const struct sigaction __user *, act,
4253		struct sigaction __user *, oact,
4254		size_t, sigsetsize)
4255{
4256	struct k_sigaction new_sa, old_sa;
4257	int ret;
4258
4259	/* XXX: Don't preclude handling different sized sigset_t's.  */
4260	if (sigsetsize != sizeof(sigset_t))
4261		return -EINVAL;
4262
4263	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4264		return -EFAULT;
4265
4266	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4267	if (ret)
4268		return ret;
4269
4270	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4271		return -EFAULT;
4272
4273	return 0;
4274}
4275#ifdef CONFIG_COMPAT
4276COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4277		const struct compat_sigaction __user *, act,
4278		struct compat_sigaction __user *, oact,
4279		compat_size_t, sigsetsize)
4280{
4281	struct k_sigaction new_ka, old_ka;
4282#ifdef __ARCH_HAS_SA_RESTORER
4283	compat_uptr_t restorer;
4284#endif
4285	int ret;
4286
4287	/* XXX: Don't preclude handling different sized sigset_t's.  */
4288	if (sigsetsize != sizeof(compat_sigset_t))
4289		return -EINVAL;
4290
4291	if (act) {
4292		compat_uptr_t handler;
4293		ret = get_user(handler, &act->sa_handler);
4294		new_ka.sa.sa_handler = compat_ptr(handler);
4295#ifdef __ARCH_HAS_SA_RESTORER
4296		ret |= get_user(restorer, &act->sa_restorer);
4297		new_ka.sa.sa_restorer = compat_ptr(restorer);
4298#endif
4299		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4300		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4301		if (ret)
4302			return -EFAULT;
4303	}
4304
4305	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4306	if (!ret && oact) {
4307		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4308			       &oact->sa_handler);
4309		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4310					 sizeof(oact->sa_mask));
4311		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4312#ifdef __ARCH_HAS_SA_RESTORER
4313		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4314				&oact->sa_restorer);
4315#endif
4316	}
4317	return ret;
4318}
4319#endif
4320#endif /* !CONFIG_ODD_RT_SIGACTION */
4321
4322#ifdef CONFIG_OLD_SIGACTION
4323SYSCALL_DEFINE3(sigaction, int, sig,
4324		const struct old_sigaction __user *, act,
4325	        struct old_sigaction __user *, oact)
4326{
4327	struct k_sigaction new_ka, old_ka;
4328	int ret;
4329
4330	if (act) {
4331		old_sigset_t mask;
4332		if (!access_ok(act, sizeof(*act)) ||
4333		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4334		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4335		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4336		    __get_user(mask, &act->sa_mask))
4337			return -EFAULT;
4338#ifdef __ARCH_HAS_KA_RESTORER
4339		new_ka.ka_restorer = NULL;
4340#endif
4341		siginitset(&new_ka.sa.sa_mask, mask);
4342	}
4343
4344	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4345
4346	if (!ret && oact) {
4347		if (!access_ok(oact, sizeof(*oact)) ||
4348		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4349		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4350		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4351		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4352			return -EFAULT;
4353	}
4354
4355	return ret;
4356}
4357#endif
4358#ifdef CONFIG_COMPAT_OLD_SIGACTION
4359COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4360		const struct compat_old_sigaction __user *, act,
4361	        struct compat_old_sigaction __user *, oact)
4362{
4363	struct k_sigaction new_ka, old_ka;
4364	int ret;
4365	compat_old_sigset_t mask;
4366	compat_uptr_t handler, restorer;
4367
4368	if (act) {
4369		if (!access_ok(act, sizeof(*act)) ||
4370		    __get_user(handler, &act->sa_handler) ||
4371		    __get_user(restorer, &act->sa_restorer) ||
4372		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4373		    __get_user(mask, &act->sa_mask))
4374			return -EFAULT;
4375
4376#ifdef __ARCH_HAS_KA_RESTORER
4377		new_ka.ka_restorer = NULL;
4378#endif
4379		new_ka.sa.sa_handler = compat_ptr(handler);
4380		new_ka.sa.sa_restorer = compat_ptr(restorer);
4381		siginitset(&new_ka.sa.sa_mask, mask);
4382	}
4383
4384	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4385
4386	if (!ret && oact) {
4387		if (!access_ok(oact, sizeof(*oact)) ||
4388		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4389			       &oact->sa_handler) ||
4390		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4391			       &oact->sa_restorer) ||
4392		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4393		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4394			return -EFAULT;
4395	}
4396	return ret;
4397}
4398#endif
4399
4400#ifdef CONFIG_SGETMASK_SYSCALL
4401
4402/*
4403 * For backwards compatibility.  Functionality superseded by sigprocmask.
4404 */
4405SYSCALL_DEFINE0(sgetmask)
4406{
4407	/* SMP safe */
4408	return current->blocked.sig[0];
4409}
4410
4411SYSCALL_DEFINE1(ssetmask, int, newmask)
4412{
4413	int old = current->blocked.sig[0];
4414	sigset_t newset;
4415
4416	siginitset(&newset, newmask);
4417	set_current_blocked(&newset);
4418
4419	return old;
4420}
4421#endif /* CONFIG_SGETMASK_SYSCALL */
4422
4423#ifdef __ARCH_WANT_SYS_SIGNAL
4424/*
4425 * For backwards compatibility.  Functionality superseded by sigaction.
4426 */
4427SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4428{
4429	struct k_sigaction new_sa, old_sa;
4430	int ret;
4431
4432	new_sa.sa.sa_handler = handler;
4433	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4434	sigemptyset(&new_sa.sa.sa_mask);
4435
4436	ret = do_sigaction(sig, &new_sa, &old_sa);
4437
4438	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4439}
4440#endif /* __ARCH_WANT_SYS_SIGNAL */
4441
4442#ifdef __ARCH_WANT_SYS_PAUSE
4443
4444SYSCALL_DEFINE0(pause)
4445{
4446	while (!signal_pending(current)) {
4447		__set_current_state(TASK_INTERRUPTIBLE);
4448		schedule();
4449	}
4450	return -ERESTARTNOHAND;
4451}
4452
4453#endif
4454
4455static int sigsuspend(sigset_t *set)
4456{
4457	current->saved_sigmask = current->blocked;
4458	set_current_blocked(set);
4459
4460	while (!signal_pending(current)) {
4461		__set_current_state(TASK_INTERRUPTIBLE);
4462		schedule();
4463	}
4464	set_restore_sigmask();
4465	return -ERESTARTNOHAND;
4466}
4467
4468/**
4469 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4470 *	@unewset value until a signal is received
4471 *  @unewset: new signal mask value
4472 *  @sigsetsize: size of sigset_t type
4473 */
4474SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4475{
4476	sigset_t newset;
4477
4478	/* XXX: Don't preclude handling different sized sigset_t's.  */
4479	if (sigsetsize != sizeof(sigset_t))
4480		return -EINVAL;
4481
4482	if (copy_from_user(&newset, unewset, sizeof(newset)))
4483		return -EFAULT;
4484	return sigsuspend(&newset);
4485}
4486 
4487#ifdef CONFIG_COMPAT
4488COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4489{
4490	sigset_t newset;
4491
4492	/* XXX: Don't preclude handling different sized sigset_t's.  */
4493	if (sigsetsize != sizeof(sigset_t))
4494		return -EINVAL;
4495
4496	if (get_compat_sigset(&newset, unewset))
4497		return -EFAULT;
4498	return sigsuspend(&newset);
4499}
4500#endif
4501
4502#ifdef CONFIG_OLD_SIGSUSPEND
4503SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4504{
4505	sigset_t blocked;
4506	siginitset(&blocked, mask);
4507	return sigsuspend(&blocked);
4508}
4509#endif
4510#ifdef CONFIG_OLD_SIGSUSPEND3
4511SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4512{
4513	sigset_t blocked;
4514	siginitset(&blocked, mask);
4515	return sigsuspend(&blocked);
4516}
4517#endif
4518
4519__weak const char *arch_vma_name(struct vm_area_struct *vma)
4520{
4521	return NULL;
4522}
4523
4524static inline void siginfo_buildtime_checks(void)
4525{
4526	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4527
4528	/* Verify the offsets in the two siginfos match */
4529#define CHECK_OFFSET(field) \
4530	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4531
4532	/* kill */
4533	CHECK_OFFSET(si_pid);
4534	CHECK_OFFSET(si_uid);
4535
4536	/* timer */
4537	CHECK_OFFSET(si_tid);
4538	CHECK_OFFSET(si_overrun);
4539	CHECK_OFFSET(si_value);
4540
4541	/* rt */
4542	CHECK_OFFSET(si_pid);
4543	CHECK_OFFSET(si_uid);
4544	CHECK_OFFSET(si_value);
4545
4546	/* sigchld */
4547	CHECK_OFFSET(si_pid);
4548	CHECK_OFFSET(si_uid);
4549	CHECK_OFFSET(si_status);
4550	CHECK_OFFSET(si_utime);
4551	CHECK_OFFSET(si_stime);
4552
4553	/* sigfault */
4554	CHECK_OFFSET(si_addr);
4555	CHECK_OFFSET(si_addr_lsb);
4556	CHECK_OFFSET(si_lower);
4557	CHECK_OFFSET(si_upper);
4558	CHECK_OFFSET(si_pkey);
4559
4560	/* sigpoll */
4561	CHECK_OFFSET(si_band);
4562	CHECK_OFFSET(si_fd);
4563
4564	/* sigsys */
4565	CHECK_OFFSET(si_call_addr);
4566	CHECK_OFFSET(si_syscall);
4567	CHECK_OFFSET(si_arch);
4568#undef CHECK_OFFSET
4569
4570	/* usb asyncio */
4571	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4572		     offsetof(struct siginfo, si_addr));
4573	if (sizeof(int) == sizeof(void __user *)) {
4574		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4575			     sizeof(void __user *));
4576	} else {
4577		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4578			      sizeof_field(struct siginfo, si_uid)) !=
4579			     sizeof(void __user *));
4580		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4581			     offsetof(struct siginfo, si_uid));
4582	}
4583#ifdef CONFIG_COMPAT
4584	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4585		     offsetof(struct compat_siginfo, si_addr));
4586	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4587		     sizeof(compat_uptr_t));
4588	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4589		     sizeof_field(struct siginfo, si_pid));
4590#endif
4591}
4592
4593void __init signals_init(void)
4594{
4595	siginfo_buildtime_checks();
4596
4597	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4598}
4599
4600#ifdef CONFIG_KGDB_KDB
4601#include <linux/kdb.h>
4602/*
4603 * kdb_send_sig - Allows kdb to send signals without exposing
4604 * signal internals.  This function checks if the required locks are
4605 * available before calling the main signal code, to avoid kdb
4606 * deadlocks.
4607 */
4608void kdb_send_sig(struct task_struct *t, int sig)
4609{
4610	static struct task_struct *kdb_prev_t;
4611	int new_t, ret;
4612	if (!spin_trylock(&t->sighand->siglock)) {
4613		kdb_printf("Can't do kill command now.\n"
4614			   "The sigmask lock is held somewhere else in "
4615			   "kernel, try again later\n");
4616		return;
4617	}
4618	new_t = kdb_prev_t != t;
4619	kdb_prev_t = t;
4620	if (t->state != TASK_RUNNING && new_t) {
4621		spin_unlock(&t->sighand->siglock);
4622		kdb_printf("Process is not RUNNING, sending a signal from "
4623			   "kdb risks deadlock\n"
4624			   "on the run queue locks. "
4625			   "The signal has _not_ been sent.\n"
4626			   "Reissue the kill command if you want to risk "
4627			   "the deadlock.\n");
4628		return;
4629	}
4630	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4631	spin_unlock(&t->sighand->siglock);
4632	if (ret)
4633		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4634			   sig, t->pid);
4635	else
4636		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4637}
4638#endif	/* CONFIG_KGDB_KDB */