Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/livepatch.h>
  47#include <linux/cgroup.h>
  48#include <linux/audit.h>
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/signal.h>
  52
  53#include <asm/param.h>
  54#include <linux/uaccess.h>
  55#include <asm/unistd.h>
  56#include <asm/siginfo.h>
  57#include <asm/cacheflush.h>
 
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 
 
 
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current) &&
 185	    !klp_patch_pending(current))
 186		clear_thread_flag(TIF_SIGPENDING);
 187
 188}
 189EXPORT_SYMBOL(recalc_sigpending);
 190
 191void calculate_sigpending(void)
 192{
 193	/* Have any signals or users of TIF_SIGPENDING been delayed
 194	 * until after fork?
 195	 */
 196	spin_lock_irq(&current->sighand->siglock);
 197	set_tsk_thread_flag(current, TIF_SIGPENDING);
 198	recalc_sigpending();
 199	spin_unlock_irq(&current->sighand->siglock);
 200}
 201
 202/* Given the mask, find the first available signal that should be serviced. */
 203
 204#define SYNCHRONOUS_MASK \
 205	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 206	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 207
 208int next_signal(struct sigpending *pending, sigset_t *mask)
 209{
 210	unsigned long i, *s, *m, x;
 211	int sig = 0;
 212
 213	s = pending->signal.sig;
 214	m = mask->sig;
 215
 216	/*
 217	 * Handle the first word specially: it contains the
 218	 * synchronous signals that need to be dequeued first.
 219	 */
 220	x = *s &~ *m;
 221	if (x) {
 222		if (x & SYNCHRONOUS_MASK)
 223			x &= SYNCHRONOUS_MASK;
 224		sig = ffz(~x) + 1;
 225		return sig;
 226	}
 227
 228	switch (_NSIG_WORDS) {
 229	default:
 230		for (i = 1; i < _NSIG_WORDS; ++i) {
 231			x = *++s &~ *++m;
 232			if (!x)
 233				continue;
 234			sig = ffz(~x) + i*_NSIG_BPW + 1;
 235			break;
 236		}
 237		break;
 238
 239	case 2:
 240		x = s[1] &~ m[1];
 241		if (!x)
 242			break;
 243		sig = ffz(~x) + _NSIG_BPW + 1;
 244		break;
 245
 246	case 1:
 247		/* Nothing to do */
 248		break;
 249	}
 250
 251	return sig;
 252}
 253
 254static inline void print_dropped_signal(int sig)
 255{
 256	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 257
 258	if (!print_fatal_signals)
 259		return;
 260
 261	if (!__ratelimit(&ratelimit_state))
 262		return;
 263
 264	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 265				current->comm, current->pid, sig);
 266}
 267
 268/**
 269 * task_set_jobctl_pending - set jobctl pending bits
 270 * @task: target task
 271 * @mask: pending bits to set
 272 *
 273 * Clear @mask from @task->jobctl.  @mask must be subset of
 274 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 275 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 276 * cleared.  If @task is already being killed or exiting, this function
 277 * becomes noop.
 278 *
 279 * CONTEXT:
 280 * Must be called with @task->sighand->siglock held.
 281 *
 282 * RETURNS:
 283 * %true if @mask is set, %false if made noop because @task was dying.
 284 */
 285bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 286{
 287	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 288			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 289	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 290
 291	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 292		return false;
 293
 294	if (mask & JOBCTL_STOP_SIGMASK)
 295		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 296
 297	task->jobctl |= mask;
 298	return true;
 299}
 300
 301/**
 302 * task_clear_jobctl_trapping - clear jobctl trapping bit
 303 * @task: target task
 304 *
 305 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 306 * Clear it and wake up the ptracer.  Note that we don't need any further
 307 * locking.  @task->siglock guarantees that @task->parent points to the
 308 * ptracer.
 309 *
 310 * CONTEXT:
 311 * Must be called with @task->sighand->siglock held.
 312 */
 313void task_clear_jobctl_trapping(struct task_struct *task)
 314{
 315	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 316		task->jobctl &= ~JOBCTL_TRAPPING;
 317		smp_mb();	/* advised by wake_up_bit() */
 318		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 319	}
 320}
 321
 322/**
 323 * task_clear_jobctl_pending - clear jobctl pending bits
 324 * @task: target task
 325 * @mask: pending bits to clear
 326 *
 327 * Clear @mask from @task->jobctl.  @mask must be subset of
 328 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 329 * STOP bits are cleared together.
 330 *
 331 * If clearing of @mask leaves no stop or trap pending, this function calls
 332 * task_clear_jobctl_trapping().
 333 *
 334 * CONTEXT:
 335 * Must be called with @task->sighand->siglock held.
 336 */
 337void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 338{
 339	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 340
 341	if (mask & JOBCTL_STOP_PENDING)
 342		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 343
 344	task->jobctl &= ~mask;
 345
 346	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 347		task_clear_jobctl_trapping(task);
 348}
 349
 350/**
 351 * task_participate_group_stop - participate in a group stop
 352 * @task: task participating in a group stop
 353 *
 354 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 355 * Group stop states are cleared and the group stop count is consumed if
 356 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 357 * stop, the appropriate `SIGNAL_*` flags are set.
 358 *
 359 * CONTEXT:
 360 * Must be called with @task->sighand->siglock held.
 361 *
 362 * RETURNS:
 363 * %true if group stop completion should be notified to the parent, %false
 364 * otherwise.
 365 */
 366static bool task_participate_group_stop(struct task_struct *task)
 367{
 368	struct signal_struct *sig = task->signal;
 369	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 370
 371	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 372
 373	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 374
 375	if (!consume)
 376		return false;
 377
 378	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 379		sig->group_stop_count--;
 380
 381	/*
 382	 * Tell the caller to notify completion iff we are entering into a
 383	 * fresh group stop.  Read comment in do_signal_stop() for details.
 384	 */
 385	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 386		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 387		return true;
 388	}
 389	return false;
 390}
 391
 392void task_join_group_stop(struct task_struct *task)
 393{
 394	/* Have the new thread join an on-going signal group stop */
 395	unsigned long jobctl = current->jobctl;
 396	if (jobctl & JOBCTL_STOP_PENDING) {
 397		struct signal_struct *sig = current->signal;
 398		unsigned long signr = jobctl & JOBCTL_STOP_SIGMASK;
 399		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
 400		if (task_set_jobctl_pending(task, signr | gstop)) {
 401			sig->group_stop_count++;
 402		}
 403	}
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 413{
 414	struct sigqueue *q = NULL;
 415	struct user_struct *user;
 416
 417	/*
 418	 * Protect access to @t credentials. This can go away when all
 419	 * callers hold rcu read lock.
 420	 */
 421	rcu_read_lock();
 422	user = get_uid(__task_cred(t)->user);
 423	atomic_inc(&user->sigpending);
 424	rcu_read_unlock();
 425
 426	if (override_rlimit ||
 427	    atomic_read(&user->sigpending) <=
 428			task_rlimit(t, RLIMIT_SIGPENDING)) {
 429		q = kmem_cache_alloc(sigqueue_cachep, flags);
 430	} else {
 431		print_dropped_signal(sig);
 432	}
 433
 434	if (unlikely(q == NULL)) {
 435		atomic_dec(&user->sigpending);
 436		free_uid(user);
 437	} else {
 438		INIT_LIST_HEAD(&q->list);
 439		q->flags = 0;
 440		q->user = user;
 441	}
 442
 443	return q;
 444}
 445
 446static void __sigqueue_free(struct sigqueue *q)
 447{
 448	if (q->flags & SIGQUEUE_PREALLOC)
 449		return;
 450	atomic_dec(&q->user->sigpending);
 451	free_uid(q->user);
 452	kmem_cache_free(sigqueue_cachep, q);
 453}
 454
 455void flush_sigqueue(struct sigpending *queue)
 456{
 457	struct sigqueue *q;
 458
 459	sigemptyset(&queue->signal);
 460	while (!list_empty(&queue->list)) {
 461		q = list_entry(queue->list.next, struct sigqueue , list);
 462		list_del_init(&q->list);
 463		__sigqueue_free(q);
 464	}
 465}
 466
 467/*
 468 * Flush all pending signals for this kthread.
 469 */
 
 
 
 
 
 
 
 470void flush_signals(struct task_struct *t)
 471{
 472	unsigned long flags;
 473
 474	spin_lock_irqsave(&t->sighand->siglock, flags);
 475	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 476	flush_sigqueue(&t->pending);
 477	flush_sigqueue(&t->signal->shared_pending);
 478	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 479}
 480EXPORT_SYMBOL(flush_signals);
 481
 482#ifdef CONFIG_POSIX_TIMERS
 483static void __flush_itimer_signals(struct sigpending *pending)
 484{
 485	sigset_t signal, retain;
 486	struct sigqueue *q, *n;
 487
 488	signal = pending->signal;
 489	sigemptyset(&retain);
 490
 491	list_for_each_entry_safe(q, n, &pending->list, list) {
 492		int sig = q->info.si_signo;
 493
 494		if (likely(q->info.si_code != SI_TIMER)) {
 495			sigaddset(&retain, sig);
 496		} else {
 497			sigdelset(&signal, sig);
 498			list_del_init(&q->list);
 499			__sigqueue_free(q);
 500		}
 501	}
 502
 503	sigorsets(&pending->signal, &signal, &retain);
 504}
 505
 506void flush_itimer_signals(void)
 507{
 508	struct task_struct *tsk = current;
 509	unsigned long flags;
 510
 511	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 512	__flush_itimer_signals(&tsk->pending);
 513	__flush_itimer_signals(&tsk->signal->shared_pending);
 514	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 515}
 516#endif
 517
 518void ignore_signals(struct task_struct *t)
 519{
 520	int i;
 521
 522	for (i = 0; i < _NSIG; ++i)
 523		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 524
 525	flush_signals(t);
 526}
 527
 528/*
 529 * Flush all handlers for a task.
 530 */
 531
 532void
 533flush_signal_handlers(struct task_struct *t, int force_default)
 534{
 535	int i;
 536	struct k_sigaction *ka = &t->sighand->action[0];
 537	for (i = _NSIG ; i != 0 ; i--) {
 538		if (force_default || ka->sa.sa_handler != SIG_IGN)
 539			ka->sa.sa_handler = SIG_DFL;
 540		ka->sa.sa_flags = 0;
 541#ifdef __ARCH_HAS_SA_RESTORER
 542		ka->sa.sa_restorer = NULL;
 543#endif
 544		sigemptyset(&ka->sa.sa_mask);
 545		ka++;
 546	}
 547}
 548
 549bool unhandled_signal(struct task_struct *tsk, int sig)
 550{
 551	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 552	if (is_global_init(tsk))
 553		return true;
 554
 555	if (handler != SIG_IGN && handler != SIG_DFL)
 556		return false;
 557
 558	/* if ptraced, let the tracer determine */
 559	return !tsk->ptrace;
 560}
 561
 562static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 563			   bool *resched_timer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564{
 565	struct sigqueue *q, *first = NULL;
 566
 567	/*
 568	 * Collect the siginfo appropriate to this signal.  Check if
 569	 * there is another siginfo for the same signal.
 570	*/
 571	list_for_each_entry(q, &list->list, list) {
 572		if (q->info.si_signo == sig) {
 573			if (first)
 574				goto still_pending;
 575			first = q;
 576		}
 577	}
 578
 579	sigdelset(&list->signal, sig);
 580
 581	if (first) {
 582still_pending:
 583		list_del_init(&first->list);
 584		copy_siginfo(info, &first->info);
 585
 586		*resched_timer =
 587			(first->flags & SIGQUEUE_PREALLOC) &&
 588			(info->si_code == SI_TIMER) &&
 589			(info->si_sys_private);
 590
 591		__sigqueue_free(first);
 592	} else {
 593		/*
 594		 * Ok, it wasn't in the queue.  This must be
 595		 * a fast-pathed signal or we must have been
 596		 * out of queue space.  So zero out the info.
 597		 */
 598		clear_siginfo(info);
 599		info->si_signo = sig;
 600		info->si_errno = 0;
 601		info->si_code = SI_USER;
 602		info->si_pid = 0;
 603		info->si_uid = 0;
 604	}
 605}
 606
 607static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 608			kernel_siginfo_t *info, bool *resched_timer)
 609{
 610	int sig = next_signal(pending, mask);
 611
 612	if (sig)
 613		collect_signal(sig, pending, info, resched_timer);
 
 
 
 
 
 
 
 
 
 
 
 614	return sig;
 615}
 616
 617/*
 618 * Dequeue a signal and return the element to the caller, which is
 619 * expected to free it.
 620 *
 621 * All callers have to hold the siglock.
 622 */
 623int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 624{
 625	bool resched_timer = false;
 626	int signr;
 627
 628	/* We only dequeue private signals from ourselves, we don't let
 629	 * signalfd steal them
 630	 */
 631	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 632	if (!signr) {
 633		signr = __dequeue_signal(&tsk->signal->shared_pending,
 634					 mask, info, &resched_timer);
 635#ifdef CONFIG_POSIX_TIMERS
 636		/*
 637		 * itimer signal ?
 638		 *
 639		 * itimers are process shared and we restart periodic
 640		 * itimers in the signal delivery path to prevent DoS
 641		 * attacks in the high resolution timer case. This is
 642		 * compliant with the old way of self-restarting
 643		 * itimers, as the SIGALRM is a legacy signal and only
 644		 * queued once. Changing the restart behaviour to
 645		 * restart the timer in the signal dequeue path is
 646		 * reducing the timer noise on heavy loaded !highres
 647		 * systems too.
 648		 */
 649		if (unlikely(signr == SIGALRM)) {
 650			struct hrtimer *tmr = &tsk->signal->real_timer;
 651
 652			if (!hrtimer_is_queued(tmr) &&
 653			    tsk->signal->it_real_incr != 0) {
 654				hrtimer_forward(tmr, tmr->base->get_time(),
 655						tsk->signal->it_real_incr);
 656				hrtimer_restart(tmr);
 657			}
 658		}
 659#endif
 660	}
 661
 662	recalc_sigpending();
 663	if (!signr)
 664		return 0;
 665
 666	if (unlikely(sig_kernel_stop(signr))) {
 667		/*
 668		 * Set a marker that we have dequeued a stop signal.  Our
 669		 * caller might release the siglock and then the pending
 670		 * stop signal it is about to process is no longer in the
 671		 * pending bitmasks, but must still be cleared by a SIGCONT
 672		 * (and overruled by a SIGKILL).  So those cases clear this
 673		 * shared flag after we've set it.  Note that this flag may
 674		 * remain set after the signal we return is ignored or
 675		 * handled.  That doesn't matter because its only purpose
 676		 * is to alert stop-signal processing code when another
 677		 * processor has come along and cleared the flag.
 678		 */
 679		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 680	}
 681#ifdef CONFIG_POSIX_TIMERS
 682	if (resched_timer) {
 683		/*
 684		 * Release the siglock to ensure proper locking order
 685		 * of timer locks outside of siglocks.  Note, we leave
 686		 * irqs disabled here, since the posix-timers code is
 687		 * about to disable them again anyway.
 688		 */
 689		spin_unlock(&tsk->sighand->siglock);
 690		posixtimer_rearm(info);
 691		spin_lock(&tsk->sighand->siglock);
 692
 693		/* Don't expose the si_sys_private value to userspace */
 694		info->si_sys_private = 0;
 695	}
 696#endif
 697	return signr;
 698}
 699EXPORT_SYMBOL_GPL(dequeue_signal);
 700
 701static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 702{
 703	struct task_struct *tsk = current;
 704	struct sigpending *pending = &tsk->pending;
 705	struct sigqueue *q, *sync = NULL;
 706
 707	/*
 708	 * Might a synchronous signal be in the queue?
 709	 */
 710	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 711		return 0;
 712
 713	/*
 714	 * Return the first synchronous signal in the queue.
 715	 */
 716	list_for_each_entry(q, &pending->list, list) {
 717		/* Synchronous signals have a postive si_code */
 718		if ((q->info.si_code > SI_USER) &&
 719		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 720			sync = q;
 721			goto next;
 722		}
 723	}
 724	return 0;
 725next:
 726	/*
 727	 * Check if there is another siginfo for the same signal.
 728	 */
 729	list_for_each_entry_continue(q, &pending->list, list) {
 730		if (q->info.si_signo == sync->info.si_signo)
 731			goto still_pending;
 732	}
 733
 734	sigdelset(&pending->signal, sync->info.si_signo);
 735	recalc_sigpending();
 736still_pending:
 737	list_del_init(&sync->list);
 738	copy_siginfo(info, &sync->info);
 739	__sigqueue_free(sync);
 740	return info->si_signo;
 741}
 742
 743/*
 744 * Tell a process that it has a new active signal..
 745 *
 746 * NOTE! we rely on the previous spin_lock to
 747 * lock interrupts for us! We can only be called with
 748 * "siglock" held, and the local interrupt must
 749 * have been disabled when that got acquired!
 750 *
 751 * No need to set need_resched since signal event passing
 752 * goes through ->blocked
 753 */
 754void signal_wake_up_state(struct task_struct *t, unsigned int state)
 755{
 
 
 756	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 757	/*
 758	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 759	 * case. We don't check t->state here because there is a race with it
 760	 * executing another processor and just now entering stopped state.
 761	 * By using wake_up_state, we ensure the process will wake up and
 762	 * handle its death signal.
 763	 */
 764	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 
 
 
 765		kick_process(t);
 766}
 767
 768/*
 769 * Remove signals in mask from the pending set and queue.
 770 * Returns 1 if any signals were found.
 771 *
 772 * All callers must be holding the siglock.
 
 
 
 773 */
 774static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 775{
 776	struct sigqueue *q, *n;
 777	sigset_t m;
 778
 779	sigandsets(&m, mask, &s->signal);
 780	if (sigisemptyset(&m))
 781		return;
 782
 783	sigandnsets(&s->signal, &s->signal, mask);
 784	list_for_each_entry_safe(q, n, &s->list, list) {
 785		if (sigismember(mask, q->info.si_signo)) {
 786			list_del_init(&q->list);
 787			__sigqueue_free(q);
 788		}
 789	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790}
 791
 792static inline int is_si_special(const struct kernel_siginfo *info)
 793{
 794	return info <= SEND_SIG_PRIV;
 795}
 796
 797static inline bool si_fromuser(const struct kernel_siginfo *info)
 798{
 799	return info == SEND_SIG_NOINFO ||
 800		(!is_si_special(info) && SI_FROMUSER(info));
 801}
 802
 803/*
 804 * called with RCU read lock from check_kill_permission()
 805 */
 806static bool kill_ok_by_cred(struct task_struct *t)
 807{
 808	const struct cred *cred = current_cred();
 809	const struct cred *tcred = __task_cred(t);
 810
 811	return uid_eq(cred->euid, tcred->suid) ||
 812	       uid_eq(cred->euid, tcred->uid) ||
 813	       uid_eq(cred->uid, tcred->suid) ||
 814	       uid_eq(cred->uid, tcred->uid) ||
 815	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 816}
 817
 818/*
 819 * Bad permissions for sending the signal
 820 * - the caller must hold the RCU read lock
 821 */
 822static int check_kill_permission(int sig, struct kernel_siginfo *info,
 823				 struct task_struct *t)
 824{
 825	struct pid *sid;
 826	int error;
 827
 828	if (!valid_signal(sig))
 829		return -EINVAL;
 830
 831	if (!si_fromuser(info))
 832		return 0;
 833
 834	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 835	if (error)
 836		return error;
 837
 838	if (!same_thread_group(current, t) &&
 839	    !kill_ok_by_cred(t)) {
 840		switch (sig) {
 841		case SIGCONT:
 842			sid = task_session(t);
 843			/*
 844			 * We don't return the error if sid == NULL. The
 845			 * task was unhashed, the caller must notice this.
 846			 */
 847			if (!sid || sid == task_session(current))
 848				break;
 849			/* fall through */
 850		default:
 851			return -EPERM;
 852		}
 853	}
 854
 855	return security_task_kill(t, info, sig, NULL);
 856}
 857
 858/**
 859 * ptrace_trap_notify - schedule trap to notify ptracer
 860 * @t: tracee wanting to notify tracer
 861 *
 862 * This function schedules sticky ptrace trap which is cleared on the next
 863 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 864 * ptracer.
 865 *
 866 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 867 * ptracer is listening for events, tracee is woken up so that it can
 868 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 869 * eventually taken without returning to userland after the existing traps
 870 * are finished by PTRACE_CONT.
 871 *
 872 * CONTEXT:
 873 * Must be called with @task->sighand->siglock held.
 874 */
 875static void ptrace_trap_notify(struct task_struct *t)
 876{
 877	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 878	assert_spin_locked(&t->sighand->siglock);
 879
 880	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 881	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 882}
 883
 884/*
 885 * Handle magic process-wide effects of stop/continue signals. Unlike
 886 * the signal actions, these happen immediately at signal-generation
 887 * time regardless of blocking, ignoring, or handling.  This does the
 888 * actual continuing for SIGCONT, but not the actual stopping for stop
 889 * signals. The process stop is done as a signal action for SIG_DFL.
 890 *
 891 * Returns true if the signal should be actually delivered, otherwise
 892 * it should be dropped.
 893 */
 894static bool prepare_signal(int sig, struct task_struct *p, bool force)
 895{
 896	struct signal_struct *signal = p->signal;
 897	struct task_struct *t;
 898	sigset_t flush;
 899
 900	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 901		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 902			return sig == SIGKILL;
 903		/*
 904		 * The process is in the middle of dying, nothing to do.
 905		 */
 906	} else if (sig_kernel_stop(sig)) {
 907		/*
 908		 * This is a stop signal.  Remove SIGCONT from all queues.
 909		 */
 910		siginitset(&flush, sigmask(SIGCONT));
 911		flush_sigqueue_mask(&flush, &signal->shared_pending);
 912		for_each_thread(p, t)
 913			flush_sigqueue_mask(&flush, &t->pending);
 
 914	} else if (sig == SIGCONT) {
 915		unsigned int why;
 916		/*
 917		 * Remove all stop signals from all queues, wake all threads.
 918		 */
 919		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 920		flush_sigqueue_mask(&flush, &signal->shared_pending);
 921		for_each_thread(p, t) {
 922			flush_sigqueue_mask(&flush, &t->pending);
 923			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 
 924			if (likely(!(t->ptrace & PT_SEIZED)))
 925				wake_up_state(t, __TASK_STOPPED);
 926			else
 927				ptrace_trap_notify(t);
 928		}
 929
 930		/*
 931		 * Notify the parent with CLD_CONTINUED if we were stopped.
 932		 *
 933		 * If we were in the middle of a group stop, we pretend it
 934		 * was already finished, and then continued. Since SIGCHLD
 935		 * doesn't queue we report only CLD_STOPPED, as if the next
 936		 * CLD_CONTINUED was dropped.
 937		 */
 938		why = 0;
 939		if (signal->flags & SIGNAL_STOP_STOPPED)
 940			why |= SIGNAL_CLD_CONTINUED;
 941		else if (signal->group_stop_count)
 942			why |= SIGNAL_CLD_STOPPED;
 943
 944		if (why) {
 945			/*
 946			 * The first thread which returns from do_signal_stop()
 947			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 948			 * notify its parent. See get_signal().
 949			 */
 950			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 951			signal->group_stop_count = 0;
 952			signal->group_exit_code = 0;
 953		}
 954	}
 955
 956	return !sig_ignored(p, sig, force);
 957}
 958
 959/*
 960 * Test if P wants to take SIG.  After we've checked all threads with this,
 961 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 962 * blocking SIG were ruled out because they are not running and already
 963 * have pending signals.  Such threads will dequeue from the shared queue
 964 * as soon as they're available, so putting the signal on the shared queue
 965 * will be equivalent to sending it to one such thread.
 966 */
 967static inline bool wants_signal(int sig, struct task_struct *p)
 968{
 969	if (sigismember(&p->blocked, sig))
 970		return false;
 971
 972	if (p->flags & PF_EXITING)
 973		return false;
 974
 975	if (sig == SIGKILL)
 976		return true;
 977
 978	if (task_is_stopped_or_traced(p))
 979		return false;
 980
 981	return task_curr(p) || !signal_pending(p);
 982}
 983
 984static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 985{
 986	struct signal_struct *signal = p->signal;
 987	struct task_struct *t;
 988
 989	/*
 990	 * Now find a thread we can wake up to take the signal off the queue.
 991	 *
 992	 * If the main thread wants the signal, it gets first crack.
 993	 * Probably the least surprising to the average bear.
 994	 */
 995	if (wants_signal(sig, p))
 996		t = p;
 997	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
 998		/*
 999		 * There is just one thread and it does not need to be woken.
1000		 * It will dequeue unblocked signals before it runs again.
1001		 */
1002		return;
1003	else {
1004		/*
1005		 * Otherwise try to find a suitable thread.
1006		 */
1007		t = signal->curr_target;
1008		while (!wants_signal(sig, t)) {
1009			t = next_thread(t);
1010			if (t == signal->curr_target)
1011				/*
1012				 * No thread needs to be woken.
1013				 * Any eligible threads will see
1014				 * the signal in the queue soon.
1015				 */
1016				return;
1017		}
1018		signal->curr_target = t;
1019	}
1020
1021	/*
1022	 * Found a killable thread.  If the signal will be fatal,
1023	 * then start taking the whole group down immediately.
1024	 */
1025	if (sig_fatal(p, sig) &&
1026	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1027	    !sigismember(&t->real_blocked, sig) &&
1028	    (sig == SIGKILL || !p->ptrace)) {
1029		/*
1030		 * This signal will be fatal to the whole group.
1031		 */
1032		if (!sig_kernel_coredump(sig)) {
1033			/*
1034			 * Start a group exit and wake everybody up.
1035			 * This way we don't have other threads
1036			 * running and doing things after a slower
1037			 * thread has the fatal signal pending.
1038			 */
1039			signal->flags = SIGNAL_GROUP_EXIT;
1040			signal->group_exit_code = sig;
1041			signal->group_stop_count = 0;
1042			t = p;
1043			do {
1044				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1045				sigaddset(&t->pending.signal, SIGKILL);
1046				signal_wake_up(t, 1);
1047			} while_each_thread(p, t);
1048			return;
1049		}
1050	}
1051
1052	/*
1053	 * The signal is already in the shared-pending queue.
1054	 * Tell the chosen thread to wake up and dequeue it.
1055	 */
1056	signal_wake_up(t, sig == SIGKILL);
1057	return;
1058}
1059
1060static inline bool legacy_queue(struct sigpending *signals, int sig)
1061{
1062	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1063}
1064
1065static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1066			enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067{
1068	struct sigpending *pending;
1069	struct sigqueue *q;
1070	int override_rlimit;
1071	int ret = 0, result;
1072
1073	assert_spin_locked(&t->sighand->siglock);
1074
1075	result = TRACE_SIGNAL_IGNORED;
1076	if (!prepare_signal(sig, t, force))
 
1077		goto ret;
1078
1079	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1080	/*
1081	 * Short-circuit ignored signals and support queuing
1082	 * exactly one non-rt signal, so that we can get more
1083	 * detailed information about the cause of the signal.
1084	 */
1085	result = TRACE_SIGNAL_ALREADY_PENDING;
1086	if (legacy_queue(pending, sig))
1087		goto ret;
1088
1089	result = TRACE_SIGNAL_DELIVERED;
1090	/*
1091	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1092	 */
1093	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1094		goto out_set;
1095
1096	/*
1097	 * Real-time signals must be queued if sent by sigqueue, or
1098	 * some other real-time mechanism.  It is implementation
1099	 * defined whether kill() does so.  We attempt to do so, on
1100	 * the principle of least surprise, but since kill is not
1101	 * allowed to fail with EAGAIN when low on memory we just
1102	 * make sure at least one signal gets delivered and don't
1103	 * pass on the info struct.
1104	 */
1105	if (sig < SIGRTMIN)
1106		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1107	else
1108		override_rlimit = 0;
1109
1110	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
 
1111	if (q) {
1112		list_add_tail(&q->list, &pending->list);
1113		switch ((unsigned long) info) {
1114		case (unsigned long) SEND_SIG_NOINFO:
1115			clear_siginfo(&q->info);
1116			q->info.si_signo = sig;
1117			q->info.si_errno = 0;
1118			q->info.si_code = SI_USER;
1119			q->info.si_pid = task_tgid_nr_ns(current,
1120							task_active_pid_ns(t));
1121			rcu_read_lock();
1122			q->info.si_uid =
1123				from_kuid_munged(task_cred_xxx(t, user_ns),
1124						 current_uid());
1125			rcu_read_unlock();
1126			break;
1127		case (unsigned long) SEND_SIG_PRIV:
1128			clear_siginfo(&q->info);
1129			q->info.si_signo = sig;
1130			q->info.si_errno = 0;
1131			q->info.si_code = SI_KERNEL;
1132			q->info.si_pid = 0;
1133			q->info.si_uid = 0;
1134			break;
1135		default:
1136			copy_siginfo(&q->info, info);
 
 
1137			break;
1138		}
1139	} else if (!is_si_special(info) &&
1140		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1141		/*
1142		 * Queue overflow, abort.  We may abort if the
1143		 * signal was rt and sent by user using something
1144		 * other than kill().
1145		 */
1146		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1147		ret = -EAGAIN;
1148		goto ret;
1149	} else {
1150		/*
1151		 * This is a silent loss of information.  We still
1152		 * send the signal, but the *info bits are lost.
1153		 */
1154		result = TRACE_SIGNAL_LOSE_INFO;
1155	}
1156
1157out_set:
1158	signalfd_notify(t, sig);
1159	sigaddset(&pending->signal, sig);
1160
1161	/* Let multiprocess signals appear after on-going forks */
1162	if (type > PIDTYPE_TGID) {
1163		struct multiprocess_signals *delayed;
1164		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1165			sigset_t *signal = &delayed->signal;
1166			/* Can't queue both a stop and a continue signal */
1167			if (sig == SIGCONT)
1168				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1169			else if (sig_kernel_stop(sig))
1170				sigdelset(signal, SIGCONT);
1171			sigaddset(signal, sig);
 
 
 
 
 
1172		}
1173	}
1174
1175	complete_signal(sig, t, type);
 
 
 
1176ret:
1177	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1178	return ret;
1179}
1180
1181static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1182{
1183	bool ret = false;
1184	switch (siginfo_layout(info->si_signo, info->si_code)) {
1185	case SIL_KILL:
1186	case SIL_CHLD:
1187	case SIL_RT:
1188		ret = true;
1189		break;
1190	case SIL_TIMER:
1191	case SIL_POLL:
1192	case SIL_FAULT:
1193	case SIL_FAULT_MCEERR:
1194	case SIL_FAULT_BNDERR:
1195	case SIL_FAULT_PKUERR:
1196	case SIL_SYS:
1197		ret = false;
1198		break;
1199	}
1200	return ret;
1201}
1202
1203static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1204			enum pid_type type)
1205{
1206	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1207	bool force = false;
1208
1209	if (info == SEND_SIG_NOINFO) {
1210		/* Force if sent from an ancestor pid namespace */
1211		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1212	} else if (info == SEND_SIG_PRIV) {
1213		/* Don't ignore kernel generated signals */
1214		force = true;
1215	} else if (has_si_pid_and_uid(info)) {
1216		/* SIGKILL and SIGSTOP is special or has ids */
1217		struct user_namespace *t_user_ns;
1218
1219		rcu_read_lock();
1220		t_user_ns = task_cred_xxx(t, user_ns);
1221		if (current_user_ns() != t_user_ns) {
1222			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1223			info->si_uid = from_kuid_munged(t_user_ns, uid);
1224		}
1225		rcu_read_unlock();
1226
1227		/* A kernel generated signal? */
1228		force = (info->si_code == SI_KERNEL);
1229
1230		/* From an ancestor pid namespace? */
1231		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1232			info->si_pid = 0;
1233			force = true;
1234		}
1235	}
1236	return __send_signal(sig, info, t, type, force);
1237}
1238
1239static void print_fatal_signal(int signr)
1240{
1241	struct pt_regs *regs = signal_pt_regs();
1242	pr_info("potentially unexpected fatal signal %d.\n", signr);
1243
1244#if defined(__i386__) && !defined(__arch_um__)
1245	pr_info("code at %08lx: ", regs->ip);
1246	{
1247		int i;
1248		for (i = 0; i < 16; i++) {
1249			unsigned char insn;
1250
1251			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1252				break;
1253			pr_cont("%02x ", insn);
1254		}
1255	}
1256	pr_cont("\n");
1257#endif
 
1258	preempt_disable();
1259	show_regs(regs);
1260	preempt_enable();
1261}
1262
1263static int __init setup_print_fatal_signals(char *str)
1264{
1265	get_option (&str, &print_fatal_signals);
1266
1267	return 1;
1268}
1269
1270__setup("print-fatal-signals=", setup_print_fatal_signals);
1271
1272int
1273__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
 
 
 
 
 
 
1274{
1275	return send_signal(sig, info, p, PIDTYPE_TGID);
1276}
1277
1278int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1279			enum pid_type type)
1280{
1281	unsigned long flags;
1282	int ret = -ESRCH;
1283
1284	if (lock_task_sighand(p, &flags)) {
1285		ret = send_signal(sig, info, p, type);
1286		unlock_task_sighand(p, &flags);
1287	}
1288
1289	return ret;
1290}
1291
1292/*
1293 * Force a signal that the process can't ignore: if necessary
1294 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1295 *
1296 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1297 * since we do not want to have a signal handler that was blocked
1298 * be invoked when user space had explicitly blocked it.
1299 *
1300 * We don't want to have recursive SIGSEGV's etc, for example,
1301 * that is why we also clear SIGNAL_UNKILLABLE.
1302 */
1303static int
1304force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1305{
1306	unsigned long int flags;
1307	int ret, blocked, ignored;
1308	struct k_sigaction *action;
1309	int sig = info->si_signo;
1310
1311	spin_lock_irqsave(&t->sighand->siglock, flags);
1312	action = &t->sighand->action[sig-1];
1313	ignored = action->sa.sa_handler == SIG_IGN;
1314	blocked = sigismember(&t->blocked, sig);
1315	if (blocked || ignored) {
1316		action->sa.sa_handler = SIG_DFL;
1317		if (blocked) {
1318			sigdelset(&t->blocked, sig);
1319			recalc_sigpending_and_wake(t);
1320		}
1321	}
1322	/*
1323	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1324	 * debugging to leave init killable.
1325	 */
1326	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1327		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1328	ret = send_signal(sig, info, t, PIDTYPE_PID);
1329	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1330
1331	return ret;
1332}
1333
1334int force_sig_info(struct kernel_siginfo *info)
1335{
1336	return force_sig_info_to_task(info, current);
1337}
1338
1339/*
1340 * Nuke all other threads in the group.
1341 */
1342int zap_other_threads(struct task_struct *p)
1343{
1344	struct task_struct *t = p;
1345	int count = 0;
1346
1347	p->signal->group_stop_count = 0;
1348
1349	while_each_thread(p, t) {
1350		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1351		count++;
1352
1353		/* Don't bother with already dead threads */
1354		if (t->exit_state)
1355			continue;
1356		sigaddset(&t->pending.signal, SIGKILL);
1357		signal_wake_up(t, 1);
1358	}
1359
1360	return count;
1361}
1362
1363struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1364					   unsigned long *flags)
1365{
1366	struct sighand_struct *sighand;
1367
1368	rcu_read_lock();
1369	for (;;) {
 
 
1370		sighand = rcu_dereference(tsk->sighand);
1371		if (unlikely(sighand == NULL))
 
 
1372			break;
 
1373
1374		/*
1375		 * This sighand can be already freed and even reused, but
1376		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1377		 * initializes ->siglock: this slab can't go away, it has
1378		 * the same object type, ->siglock can't be reinitialized.
1379		 *
1380		 * We need to ensure that tsk->sighand is still the same
1381		 * after we take the lock, we can race with de_thread() or
1382		 * __exit_signal(). In the latter case the next iteration
1383		 * must see ->sighand == NULL.
1384		 */
1385		spin_lock_irqsave(&sighand->siglock, *flags);
1386		if (likely(sighand == tsk->sighand))
1387			break;
1388		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1389	}
1390	rcu_read_unlock();
1391
1392	return sighand;
1393}
1394
1395/*
1396 * send signal info to all the members of a group
1397 */
1398int group_send_sig_info(int sig, struct kernel_siginfo *info,
1399			struct task_struct *p, enum pid_type type)
1400{
1401	int ret;
1402
1403	rcu_read_lock();
1404	ret = check_kill_permission(sig, info, p);
1405	rcu_read_unlock();
1406
1407	if (!ret && sig)
1408		ret = do_send_sig_info(sig, info, p, type);
1409
1410	return ret;
1411}
1412
1413/*
1414 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1415 * control characters do (^C, ^Z etc)
1416 * - the caller must hold at least a readlock on tasklist_lock
1417 */
1418int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1419{
1420	struct task_struct *p = NULL;
1421	int retval, success;
1422
1423	success = 0;
1424	retval = -ESRCH;
1425	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1426		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1427		success |= !err;
1428		retval = err;
1429	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1430	return success ? 0 : retval;
1431}
1432
1433int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1434{
1435	int error = -ESRCH;
1436	struct task_struct *p;
1437
1438	for (;;) {
1439		rcu_read_lock();
1440		p = pid_task(pid, PIDTYPE_PID);
1441		if (p)
1442			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1443		rcu_read_unlock();
1444		if (likely(!p || error != -ESRCH))
1445			return error;
1446
1447		/*
1448		 * The task was unhashed in between, try again.  If it
1449		 * is dead, pid_task() will return NULL, if we race with
1450		 * de_thread() it will find the new leader.
1451		 */
1452	}
 
 
 
1453}
1454
1455static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1456{
1457	int error;
1458	rcu_read_lock();
1459	error = kill_pid_info(sig, info, find_vpid(pid));
1460	rcu_read_unlock();
1461	return error;
1462}
1463
1464static inline bool kill_as_cred_perm(const struct cred *cred,
1465				     struct task_struct *target)
1466{
1467	const struct cred *pcred = __task_cred(target);
1468
1469	return uid_eq(cred->euid, pcred->suid) ||
1470	       uid_eq(cred->euid, pcred->uid) ||
1471	       uid_eq(cred->uid, pcred->suid) ||
1472	       uid_eq(cred->uid, pcred->uid);
1473}
1474
1475/*
1476 * The usb asyncio usage of siginfo is wrong.  The glibc support
1477 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1478 * AKA after the generic fields:
1479 *	kernel_pid_t	si_pid;
1480 *	kernel_uid32_t	si_uid;
1481 *	sigval_t	si_value;
1482 *
1483 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1484 * after the generic fields is:
1485 *	void __user 	*si_addr;
1486 *
1487 * This is a practical problem when there is a 64bit big endian kernel
1488 * and a 32bit userspace.  As the 32bit address will encoded in the low
1489 * 32bits of the pointer.  Those low 32bits will be stored at higher
1490 * address than appear in a 32 bit pointer.  So userspace will not
1491 * see the address it was expecting for it's completions.
1492 *
1493 * There is nothing in the encoding that can allow
1494 * copy_siginfo_to_user32 to detect this confusion of formats, so
1495 * handle this by requiring the caller of kill_pid_usb_asyncio to
1496 * notice when this situration takes place and to store the 32bit
1497 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1498 * parameter.
1499 */
1500int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1501			 struct pid *pid, const struct cred *cred)
1502{
1503	struct kernel_siginfo info;
1504	struct task_struct *p;
1505	unsigned long flags;
1506	int ret = -EINVAL;
1507
1508	clear_siginfo(&info);
1509	info.si_signo = sig;
1510	info.si_errno = errno;
1511	info.si_code = SI_ASYNCIO;
1512	*((sigval_t *)&info.si_pid) = addr;
1513
1514	if (!valid_signal(sig))
1515		return ret;
1516
1517	rcu_read_lock();
1518	p = pid_task(pid, PIDTYPE_PID);
1519	if (!p) {
1520		ret = -ESRCH;
1521		goto out_unlock;
1522	}
1523	if (!kill_as_cred_perm(cred, p)) {
1524		ret = -EPERM;
1525		goto out_unlock;
1526	}
1527	ret = security_task_kill(p, &info, sig, cred);
1528	if (ret)
1529		goto out_unlock;
1530
1531	if (sig) {
1532		if (lock_task_sighand(p, &flags)) {
1533			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1534			unlock_task_sighand(p, &flags);
1535		} else
1536			ret = -ESRCH;
1537	}
1538out_unlock:
1539	rcu_read_unlock();
1540	return ret;
1541}
1542EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1543
1544/*
1545 * kill_something_info() interprets pid in interesting ways just like kill(2).
1546 *
1547 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1548 * is probably wrong.  Should make it like BSD or SYSV.
1549 */
1550
1551static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1552{
1553	int ret;
1554
1555	if (pid > 0) {
1556		rcu_read_lock();
1557		ret = kill_pid_info(sig, info, find_vpid(pid));
1558		rcu_read_unlock();
1559		return ret;
1560	}
1561
1562	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1563	if (pid == INT_MIN)
1564		return -ESRCH;
1565
1566	read_lock(&tasklist_lock);
1567	if (pid != -1) {
1568		ret = __kill_pgrp_info(sig, info,
1569				pid ? find_vpid(-pid) : task_pgrp(current));
1570	} else {
1571		int retval = 0, count = 0;
1572		struct task_struct * p;
1573
1574		for_each_process(p) {
1575			if (task_pid_vnr(p) > 1 &&
1576					!same_thread_group(p, current)) {
1577				int err = group_send_sig_info(sig, info, p,
1578							      PIDTYPE_MAX);
1579				++count;
1580				if (err != -EPERM)
1581					retval = err;
1582			}
1583		}
1584		ret = count ? retval : -ESRCH;
1585	}
1586	read_unlock(&tasklist_lock);
1587
1588	return ret;
1589}
1590
1591/*
1592 * These are for backward compatibility with the rest of the kernel source.
1593 */
1594
1595int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1596{
1597	/*
1598	 * Make sure legacy kernel users don't send in bad values
1599	 * (normal paths check this in check_kill_permission).
1600	 */
1601	if (!valid_signal(sig))
1602		return -EINVAL;
1603
1604	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1605}
1606EXPORT_SYMBOL(send_sig_info);
1607
1608#define __si_special(priv) \
1609	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1610
1611int
1612send_sig(int sig, struct task_struct *p, int priv)
1613{
1614	return send_sig_info(sig, __si_special(priv), p);
1615}
1616EXPORT_SYMBOL(send_sig);
1617
1618void force_sig(int sig)
 
1619{
1620	struct kernel_siginfo info;
1621
1622	clear_siginfo(&info);
1623	info.si_signo = sig;
1624	info.si_errno = 0;
1625	info.si_code = SI_KERNEL;
1626	info.si_pid = 0;
1627	info.si_uid = 0;
1628	force_sig_info(&info);
1629}
1630EXPORT_SYMBOL(force_sig);
1631
1632/*
1633 * When things go south during signal handling, we
1634 * will force a SIGSEGV. And if the signal that caused
1635 * the problem was already a SIGSEGV, we'll want to
1636 * make sure we don't even try to deliver the signal..
1637 */
1638void force_sigsegv(int sig)
 
1639{
1640	struct task_struct *p = current;
1641
1642	if (sig == SIGSEGV) {
1643		unsigned long flags;
1644		spin_lock_irqsave(&p->sighand->siglock, flags);
1645		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1646		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1647	}
1648	force_sig(SIGSEGV);
1649}
1650
1651int force_sig_fault_to_task(int sig, int code, void __user *addr
1652	___ARCH_SI_TRAPNO(int trapno)
1653	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1654	, struct task_struct *t)
1655{
1656	struct kernel_siginfo info;
1657
1658	clear_siginfo(&info);
1659	info.si_signo = sig;
1660	info.si_errno = 0;
1661	info.si_code  = code;
1662	info.si_addr  = addr;
1663#ifdef __ARCH_SI_TRAPNO
1664	info.si_trapno = trapno;
1665#endif
1666#ifdef __ia64__
1667	info.si_imm = imm;
1668	info.si_flags = flags;
1669	info.si_isr = isr;
1670#endif
1671	return force_sig_info_to_task(&info, t);
1672}
1673
1674int force_sig_fault(int sig, int code, void __user *addr
1675	___ARCH_SI_TRAPNO(int trapno)
1676	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1677{
1678	return force_sig_fault_to_task(sig, code, addr
1679				       ___ARCH_SI_TRAPNO(trapno)
1680				       ___ARCH_SI_IA64(imm, flags, isr), current);
1681}
1682
1683int send_sig_fault(int sig, int code, void __user *addr
1684	___ARCH_SI_TRAPNO(int trapno)
1685	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1686	, struct task_struct *t)
1687{
1688	struct kernel_siginfo info;
1689
1690	clear_siginfo(&info);
1691	info.si_signo = sig;
1692	info.si_errno = 0;
1693	info.si_code  = code;
1694	info.si_addr  = addr;
1695#ifdef __ARCH_SI_TRAPNO
1696	info.si_trapno = trapno;
1697#endif
1698#ifdef __ia64__
1699	info.si_imm = imm;
1700	info.si_flags = flags;
1701	info.si_isr = isr;
1702#endif
1703	return send_sig_info(info.si_signo, &info, t);
1704}
1705
1706int force_sig_mceerr(int code, void __user *addr, short lsb)
1707{
1708	struct kernel_siginfo info;
1709
1710	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1711	clear_siginfo(&info);
1712	info.si_signo = SIGBUS;
1713	info.si_errno = 0;
1714	info.si_code = code;
1715	info.si_addr = addr;
1716	info.si_addr_lsb = lsb;
1717	return force_sig_info(&info);
1718}
1719
1720int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1721{
1722	struct kernel_siginfo info;
1723
1724	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1725	clear_siginfo(&info);
1726	info.si_signo = SIGBUS;
1727	info.si_errno = 0;
1728	info.si_code = code;
1729	info.si_addr = addr;
1730	info.si_addr_lsb = lsb;
1731	return send_sig_info(info.si_signo, &info, t);
1732}
1733EXPORT_SYMBOL(send_sig_mceerr);
1734
1735int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1736{
1737	struct kernel_siginfo info;
1738
1739	clear_siginfo(&info);
1740	info.si_signo = SIGSEGV;
1741	info.si_errno = 0;
1742	info.si_code  = SEGV_BNDERR;
1743	info.si_addr  = addr;
1744	info.si_lower = lower;
1745	info.si_upper = upper;
1746	return force_sig_info(&info);
1747}
1748
1749#ifdef SEGV_PKUERR
1750int force_sig_pkuerr(void __user *addr, u32 pkey)
1751{
1752	struct kernel_siginfo info;
1753
1754	clear_siginfo(&info);
1755	info.si_signo = SIGSEGV;
1756	info.si_errno = 0;
1757	info.si_code  = SEGV_PKUERR;
1758	info.si_addr  = addr;
1759	info.si_pkey  = pkey;
1760	return force_sig_info(&info);
1761}
1762#endif
1763
1764/* For the crazy architectures that include trap information in
1765 * the errno field, instead of an actual errno value.
1766 */
1767int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1768{
1769	struct kernel_siginfo info;
1770
1771	clear_siginfo(&info);
1772	info.si_signo = SIGTRAP;
1773	info.si_errno = errno;
1774	info.si_code  = TRAP_HWBKPT;
1775	info.si_addr  = addr;
1776	return force_sig_info(&info);
1777}
1778
1779int kill_pgrp(struct pid *pid, int sig, int priv)
1780{
1781	int ret;
1782
1783	read_lock(&tasklist_lock);
1784	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1785	read_unlock(&tasklist_lock);
1786
1787	return ret;
1788}
1789EXPORT_SYMBOL(kill_pgrp);
1790
1791int kill_pid(struct pid *pid, int sig, int priv)
1792{
1793	return kill_pid_info(sig, __si_special(priv), pid);
1794}
1795EXPORT_SYMBOL(kill_pid);
1796
1797/*
1798 * These functions support sending signals using preallocated sigqueue
1799 * structures.  This is needed "because realtime applications cannot
1800 * afford to lose notifications of asynchronous events, like timer
1801 * expirations or I/O completions".  In the case of POSIX Timers
1802 * we allocate the sigqueue structure from the timer_create.  If this
1803 * allocation fails we are able to report the failure to the application
1804 * with an EAGAIN error.
1805 */
1806struct sigqueue *sigqueue_alloc(void)
1807{
1808	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1809
1810	if (q)
1811		q->flags |= SIGQUEUE_PREALLOC;
1812
1813	return q;
1814}
1815
1816void sigqueue_free(struct sigqueue *q)
1817{
1818	unsigned long flags;
1819	spinlock_t *lock = &current->sighand->siglock;
1820
1821	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1822	/*
1823	 * We must hold ->siglock while testing q->list
1824	 * to serialize with collect_signal() or with
1825	 * __exit_signal()->flush_sigqueue().
1826	 */
1827	spin_lock_irqsave(lock, flags);
1828	q->flags &= ~SIGQUEUE_PREALLOC;
1829	/*
1830	 * If it is queued it will be freed when dequeued,
1831	 * like the "regular" sigqueue.
1832	 */
1833	if (!list_empty(&q->list))
1834		q = NULL;
1835	spin_unlock_irqrestore(lock, flags);
1836
1837	if (q)
1838		__sigqueue_free(q);
1839}
1840
1841int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1842{
1843	int sig = q->info.si_signo;
1844	struct sigpending *pending;
1845	struct task_struct *t;
1846	unsigned long flags;
1847	int ret, result;
1848
1849	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1850
1851	ret = -1;
1852	rcu_read_lock();
1853	t = pid_task(pid, type);
1854	if (!t || !likely(lock_task_sighand(t, &flags)))
1855		goto ret;
1856
1857	ret = 1; /* the signal is ignored */
1858	result = TRACE_SIGNAL_IGNORED;
1859	if (!prepare_signal(sig, t, false))
1860		goto out;
1861
1862	ret = 0;
1863	if (unlikely(!list_empty(&q->list))) {
1864		/*
1865		 * If an SI_TIMER entry is already queue just increment
1866		 * the overrun count.
1867		 */
1868		BUG_ON(q->info.si_code != SI_TIMER);
1869		q->info.si_overrun++;
1870		result = TRACE_SIGNAL_ALREADY_PENDING;
1871		goto out;
1872	}
1873	q->info.si_overrun = 0;
1874
1875	signalfd_notify(t, sig);
1876	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1877	list_add_tail(&q->list, &pending->list);
1878	sigaddset(&pending->signal, sig);
1879	complete_signal(sig, t, type);
1880	result = TRACE_SIGNAL_DELIVERED;
1881out:
1882	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1883	unlock_task_sighand(t, &flags);
1884ret:
1885	rcu_read_unlock();
1886	return ret;
1887}
1888
1889static void do_notify_pidfd(struct task_struct *task)
1890{
1891	struct pid *pid;
1892
1893	WARN_ON(task->exit_state == 0);
1894	pid = task_pid(task);
1895	wake_up_all(&pid->wait_pidfd);
1896}
1897
1898/*
1899 * Let a parent know about the death of a child.
1900 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1901 *
1902 * Returns true if our parent ignored us and so we've switched to
1903 * self-reaping.
1904 */
1905bool do_notify_parent(struct task_struct *tsk, int sig)
1906{
1907	struct kernel_siginfo info;
1908	unsigned long flags;
1909	struct sighand_struct *psig;
1910	bool autoreap = false;
1911	u64 utime, stime;
1912
1913	BUG_ON(sig == -1);
1914
1915 	/* do_notify_parent_cldstop should have been called instead.  */
1916 	BUG_ON(task_is_stopped_or_traced(tsk));
1917
1918	BUG_ON(!tsk->ptrace &&
1919	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1920
1921	/* Wake up all pidfd waiters */
1922	do_notify_pidfd(tsk);
1923
1924	if (sig != SIGCHLD) {
1925		/*
1926		 * This is only possible if parent == real_parent.
1927		 * Check if it has changed security domain.
1928		 */
1929		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1930			sig = SIGCHLD;
1931	}
1932
1933	clear_siginfo(&info);
1934	info.si_signo = sig;
1935	info.si_errno = 0;
1936	/*
1937	 * We are under tasklist_lock here so our parent is tied to
1938	 * us and cannot change.
1939	 *
1940	 * task_active_pid_ns will always return the same pid namespace
1941	 * until a task passes through release_task.
1942	 *
1943	 * write_lock() currently calls preempt_disable() which is the
1944	 * same as rcu_read_lock(), but according to Oleg, this is not
1945	 * correct to rely on this
1946	 */
1947	rcu_read_lock();
1948	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1949	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1950				       task_uid(tsk));
1951	rcu_read_unlock();
1952
1953	task_cputime(tsk, &utime, &stime);
1954	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1955	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1956
1957	info.si_status = tsk->exit_code & 0x7f;
1958	if (tsk->exit_code & 0x80)
1959		info.si_code = CLD_DUMPED;
1960	else if (tsk->exit_code & 0x7f)
1961		info.si_code = CLD_KILLED;
1962	else {
1963		info.si_code = CLD_EXITED;
1964		info.si_status = tsk->exit_code >> 8;
1965	}
1966
1967	psig = tsk->parent->sighand;
1968	spin_lock_irqsave(&psig->siglock, flags);
1969	if (!tsk->ptrace && sig == SIGCHLD &&
1970	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1971	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1972		/*
1973		 * We are exiting and our parent doesn't care.  POSIX.1
1974		 * defines special semantics for setting SIGCHLD to SIG_IGN
1975		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1976		 * automatically and not left for our parent's wait4 call.
1977		 * Rather than having the parent do it as a magic kind of
1978		 * signal handler, we just set this to tell do_exit that we
1979		 * can be cleaned up without becoming a zombie.  Note that
1980		 * we still call __wake_up_parent in this case, because a
1981		 * blocked sys_wait4 might now return -ECHILD.
1982		 *
1983		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1984		 * is implementation-defined: we do (if you don't want
1985		 * it, just use SIG_IGN instead).
1986		 */
1987		autoreap = true;
1988		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1989			sig = 0;
1990	}
1991	if (valid_signal(sig) && sig)
1992		__group_send_sig_info(sig, &info, tsk->parent);
1993	__wake_up_parent(tsk, tsk->parent);
1994	spin_unlock_irqrestore(&psig->siglock, flags);
1995
1996	return autoreap;
1997}
1998
1999/**
2000 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2001 * @tsk: task reporting the state change
2002 * @for_ptracer: the notification is for ptracer
2003 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2004 *
2005 * Notify @tsk's parent that the stopped/continued state has changed.  If
2006 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2007 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2008 *
2009 * CONTEXT:
2010 * Must be called with tasklist_lock at least read locked.
2011 */
2012static void do_notify_parent_cldstop(struct task_struct *tsk,
2013				     bool for_ptracer, int why)
2014{
2015	struct kernel_siginfo info;
2016	unsigned long flags;
2017	struct task_struct *parent;
2018	struct sighand_struct *sighand;
2019	u64 utime, stime;
2020
2021	if (for_ptracer) {
2022		parent = tsk->parent;
2023	} else {
2024		tsk = tsk->group_leader;
2025		parent = tsk->real_parent;
2026	}
2027
2028	clear_siginfo(&info);
2029	info.si_signo = SIGCHLD;
2030	info.si_errno = 0;
2031	/*
2032	 * see comment in do_notify_parent() about the following 4 lines
2033	 */
2034	rcu_read_lock();
2035	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2036	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2037	rcu_read_unlock();
2038
2039	task_cputime(tsk, &utime, &stime);
2040	info.si_utime = nsec_to_clock_t(utime);
2041	info.si_stime = nsec_to_clock_t(stime);
2042
2043 	info.si_code = why;
2044 	switch (why) {
2045 	case CLD_CONTINUED:
2046 		info.si_status = SIGCONT;
2047 		break;
2048 	case CLD_STOPPED:
2049 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2050 		break;
2051 	case CLD_TRAPPED:
2052 		info.si_status = tsk->exit_code & 0x7f;
2053 		break;
2054 	default:
2055 		BUG();
2056 	}
2057
2058	sighand = parent->sighand;
2059	spin_lock_irqsave(&sighand->siglock, flags);
2060	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2061	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2062		__group_send_sig_info(SIGCHLD, &info, parent);
2063	/*
2064	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2065	 */
2066	__wake_up_parent(tsk, parent);
2067	spin_unlock_irqrestore(&sighand->siglock, flags);
2068}
2069
2070static inline bool may_ptrace_stop(void)
2071{
2072	if (!likely(current->ptrace))
2073		return false;
2074	/*
2075	 * Are we in the middle of do_coredump?
2076	 * If so and our tracer is also part of the coredump stopping
2077	 * is a deadlock situation, and pointless because our tracer
2078	 * is dead so don't allow us to stop.
2079	 * If SIGKILL was already sent before the caller unlocked
2080	 * ->siglock we must see ->core_state != NULL. Otherwise it
2081	 * is safe to enter schedule().
2082	 *
2083	 * This is almost outdated, a task with the pending SIGKILL can't
2084	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2085	 * after SIGKILL was already dequeued.
2086	 */
2087	if (unlikely(current->mm->core_state) &&
2088	    unlikely(current->mm == current->parent->mm))
2089		return false;
2090
2091	return true;
2092}
2093
2094/*
2095 * Return non-zero if there is a SIGKILL that should be waking us up.
2096 * Called with the siglock held.
2097 */
2098static bool sigkill_pending(struct task_struct *tsk)
2099{
2100	return sigismember(&tsk->pending.signal, SIGKILL) ||
2101	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2102}
2103
2104/*
2105 * This must be called with current->sighand->siglock held.
2106 *
2107 * This should be the path for all ptrace stops.
2108 * We always set current->last_siginfo while stopped here.
2109 * That makes it a way to test a stopped process for
2110 * being ptrace-stopped vs being job-control-stopped.
2111 *
2112 * If we actually decide not to stop at all because the tracer
2113 * is gone, we keep current->exit_code unless clear_code.
2114 */
2115static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2116	__releases(&current->sighand->siglock)
2117	__acquires(&current->sighand->siglock)
2118{
2119	bool gstop_done = false;
2120
2121	if (arch_ptrace_stop_needed(exit_code, info)) {
2122		/*
2123		 * The arch code has something special to do before a
2124		 * ptrace stop.  This is allowed to block, e.g. for faults
2125		 * on user stack pages.  We can't keep the siglock while
2126		 * calling arch_ptrace_stop, so we must release it now.
2127		 * To preserve proper semantics, we must do this before
2128		 * any signal bookkeeping like checking group_stop_count.
2129		 * Meanwhile, a SIGKILL could come in before we retake the
2130		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2131		 * So after regaining the lock, we must check for SIGKILL.
2132		 */
2133		spin_unlock_irq(&current->sighand->siglock);
2134		arch_ptrace_stop(exit_code, info);
2135		spin_lock_irq(&current->sighand->siglock);
2136		if (sigkill_pending(current))
2137			return;
2138	}
2139
2140	set_special_state(TASK_TRACED);
2141
2142	/*
2143	 * We're committing to trapping.  TRACED should be visible before
2144	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2145	 * Also, transition to TRACED and updates to ->jobctl should be
2146	 * atomic with respect to siglock and should be done after the arch
2147	 * hook as siglock is released and regrabbed across it.
2148	 *
2149	 *     TRACER				    TRACEE
2150	 *
2151	 *     ptrace_attach()
2152	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2153	 *     do_wait()
2154	 *       set_current_state()                smp_wmb();
2155	 *       ptrace_do_wait()
2156	 *         wait_task_stopped()
2157	 *           task_stopped_code()
2158	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2159	 */
2160	smp_wmb();
2161
2162	current->last_siginfo = info;
2163	current->exit_code = exit_code;
2164
2165	/*
2166	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2167	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2168	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2169	 * could be clear now.  We act as if SIGCONT is received after
2170	 * TASK_TRACED is entered - ignore it.
2171	 */
2172	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2173		gstop_done = task_participate_group_stop(current);
2174
2175	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2176	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2177	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2178		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2179
2180	/* entering a trap, clear TRAPPING */
2181	task_clear_jobctl_trapping(current);
2182
2183	spin_unlock_irq(&current->sighand->siglock);
2184	read_lock(&tasklist_lock);
2185	if (may_ptrace_stop()) {
2186		/*
2187		 * Notify parents of the stop.
2188		 *
2189		 * While ptraced, there are two parents - the ptracer and
2190		 * the real_parent of the group_leader.  The ptracer should
2191		 * know about every stop while the real parent is only
2192		 * interested in the completion of group stop.  The states
2193		 * for the two don't interact with each other.  Notify
2194		 * separately unless they're gonna be duplicates.
2195		 */
2196		do_notify_parent_cldstop(current, true, why);
2197		if (gstop_done && ptrace_reparented(current))
2198			do_notify_parent_cldstop(current, false, why);
2199
2200		/*
2201		 * Don't want to allow preemption here, because
2202		 * sys_ptrace() needs this task to be inactive.
2203		 *
2204		 * XXX: implement read_unlock_no_resched().
2205		 */
2206		preempt_disable();
2207		read_unlock(&tasklist_lock);
2208		cgroup_enter_frozen();
2209		preempt_enable_no_resched();
2210		freezable_schedule();
2211		cgroup_leave_frozen(true);
2212	} else {
2213		/*
2214		 * By the time we got the lock, our tracer went away.
2215		 * Don't drop the lock yet, another tracer may come.
2216		 *
2217		 * If @gstop_done, the ptracer went away between group stop
2218		 * completion and here.  During detach, it would have set
2219		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2220		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2221		 * the real parent of the group stop completion is enough.
2222		 */
2223		if (gstop_done)
2224			do_notify_parent_cldstop(current, false, why);
2225
2226		/* tasklist protects us from ptrace_freeze_traced() */
2227		__set_current_state(TASK_RUNNING);
2228		if (clear_code)
2229			current->exit_code = 0;
2230		read_unlock(&tasklist_lock);
2231	}
2232
2233	/*
 
 
 
 
 
 
 
2234	 * We are back.  Now reacquire the siglock before touching
2235	 * last_siginfo, so that we are sure to have synchronized with
2236	 * any signal-sending on another CPU that wants to examine it.
2237	 */
2238	spin_lock_irq(&current->sighand->siglock);
2239	current->last_siginfo = NULL;
2240
2241	/* LISTENING can be set only during STOP traps, clear it */
2242	current->jobctl &= ~JOBCTL_LISTENING;
2243
2244	/*
2245	 * Queued signals ignored us while we were stopped for tracing.
2246	 * So check for any that we should take before resuming user mode.
2247	 * This sets TIF_SIGPENDING, but never clears it.
2248	 */
2249	recalc_sigpending_tsk(current);
2250}
2251
2252static void ptrace_do_notify(int signr, int exit_code, int why)
2253{
2254	kernel_siginfo_t info;
2255
2256	clear_siginfo(&info);
2257	info.si_signo = signr;
2258	info.si_code = exit_code;
2259	info.si_pid = task_pid_vnr(current);
2260	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2261
2262	/* Let the debugger run.  */
2263	ptrace_stop(exit_code, why, 1, &info);
2264}
2265
2266void ptrace_notify(int exit_code)
2267{
2268	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2269	if (unlikely(current->task_works))
2270		task_work_run();
2271
2272	spin_lock_irq(&current->sighand->siglock);
2273	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2274	spin_unlock_irq(&current->sighand->siglock);
2275}
2276
2277/**
2278 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2279 * @signr: signr causing group stop if initiating
2280 *
2281 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2282 * and participate in it.  If already set, participate in the existing
2283 * group stop.  If participated in a group stop (and thus slept), %true is
2284 * returned with siglock released.
2285 *
2286 * If ptraced, this function doesn't handle stop itself.  Instead,
2287 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2288 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2289 * places afterwards.
2290 *
2291 * CONTEXT:
2292 * Must be called with @current->sighand->siglock held, which is released
2293 * on %true return.
2294 *
2295 * RETURNS:
2296 * %false if group stop is already cancelled or ptrace trap is scheduled.
2297 * %true if participated in group stop.
2298 */
2299static bool do_signal_stop(int signr)
2300	__releases(&current->sighand->siglock)
2301{
2302	struct signal_struct *sig = current->signal;
2303
2304	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2305		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2306		struct task_struct *t;
2307
2308		/* signr will be recorded in task->jobctl for retries */
2309		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2310
2311		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2312		    unlikely(signal_group_exit(sig)))
2313			return false;
2314		/*
2315		 * There is no group stop already in progress.  We must
2316		 * initiate one now.
2317		 *
2318		 * While ptraced, a task may be resumed while group stop is
2319		 * still in effect and then receive a stop signal and
2320		 * initiate another group stop.  This deviates from the
2321		 * usual behavior as two consecutive stop signals can't
2322		 * cause two group stops when !ptraced.  That is why we
2323		 * also check !task_is_stopped(t) below.
2324		 *
2325		 * The condition can be distinguished by testing whether
2326		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2327		 * group_exit_code in such case.
2328		 *
2329		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2330		 * an intervening stop signal is required to cause two
2331		 * continued events regardless of ptrace.
2332		 */
2333		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2334			sig->group_exit_code = signr;
2335
2336		sig->group_stop_count = 0;
2337
2338		if (task_set_jobctl_pending(current, signr | gstop))
2339			sig->group_stop_count++;
2340
2341		t = current;
2342		while_each_thread(current, t) {
2343			/*
2344			 * Setting state to TASK_STOPPED for a group
2345			 * stop is always done with the siglock held,
2346			 * so this check has no races.
2347			 */
2348			if (!task_is_stopped(t) &&
2349			    task_set_jobctl_pending(t, signr | gstop)) {
2350				sig->group_stop_count++;
2351				if (likely(!(t->ptrace & PT_SEIZED)))
2352					signal_wake_up(t, 0);
2353				else
2354					ptrace_trap_notify(t);
2355			}
2356		}
2357	}
2358
2359	if (likely(!current->ptrace)) {
2360		int notify = 0;
2361
2362		/*
2363		 * If there are no other threads in the group, or if there
2364		 * is a group stop in progress and we are the last to stop,
2365		 * report to the parent.
2366		 */
2367		if (task_participate_group_stop(current))
2368			notify = CLD_STOPPED;
2369
2370		set_special_state(TASK_STOPPED);
2371		spin_unlock_irq(&current->sighand->siglock);
2372
2373		/*
2374		 * Notify the parent of the group stop completion.  Because
2375		 * we're not holding either the siglock or tasklist_lock
2376		 * here, ptracer may attach inbetween; however, this is for
2377		 * group stop and should always be delivered to the real
2378		 * parent of the group leader.  The new ptracer will get
2379		 * its notification when this task transitions into
2380		 * TASK_TRACED.
2381		 */
2382		if (notify) {
2383			read_lock(&tasklist_lock);
2384			do_notify_parent_cldstop(current, false, notify);
2385			read_unlock(&tasklist_lock);
2386		}
2387
2388		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2389		cgroup_enter_frozen();
2390		freezable_schedule();
2391		return true;
2392	} else {
2393		/*
2394		 * While ptraced, group stop is handled by STOP trap.
2395		 * Schedule it and let the caller deal with it.
2396		 */
2397		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2398		return false;
2399	}
2400}
2401
2402/**
2403 * do_jobctl_trap - take care of ptrace jobctl traps
2404 *
2405 * When PT_SEIZED, it's used for both group stop and explicit
2406 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2407 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2408 * the stop signal; otherwise, %SIGTRAP.
2409 *
2410 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2411 * number as exit_code and no siginfo.
2412 *
2413 * CONTEXT:
2414 * Must be called with @current->sighand->siglock held, which may be
2415 * released and re-acquired before returning with intervening sleep.
2416 */
2417static void do_jobctl_trap(void)
2418{
2419	struct signal_struct *signal = current->signal;
2420	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2421
2422	if (current->ptrace & PT_SEIZED) {
2423		if (!signal->group_stop_count &&
2424		    !(signal->flags & SIGNAL_STOP_STOPPED))
2425			signr = SIGTRAP;
2426		WARN_ON_ONCE(!signr);
2427		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2428				 CLD_STOPPED);
2429	} else {
2430		WARN_ON_ONCE(!signr);
2431		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2432		current->exit_code = 0;
2433	}
2434}
2435
2436/**
2437 * do_freezer_trap - handle the freezer jobctl trap
2438 *
2439 * Puts the task into frozen state, if only the task is not about to quit.
2440 * In this case it drops JOBCTL_TRAP_FREEZE.
2441 *
2442 * CONTEXT:
2443 * Must be called with @current->sighand->siglock held,
2444 * which is always released before returning.
2445 */
2446static void do_freezer_trap(void)
2447	__releases(&current->sighand->siglock)
2448{
2449	/*
2450	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2451	 * let's make another loop to give it a chance to be handled.
2452	 * In any case, we'll return back.
2453	 */
2454	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2455	     JOBCTL_TRAP_FREEZE) {
2456		spin_unlock_irq(&current->sighand->siglock);
2457		return;
2458	}
2459
2460	/*
2461	 * Now we're sure that there is no pending fatal signal and no
2462	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2463	 * immediately (if there is a non-fatal signal pending), and
2464	 * put the task into sleep.
2465	 */
2466	__set_current_state(TASK_INTERRUPTIBLE);
2467	clear_thread_flag(TIF_SIGPENDING);
2468	spin_unlock_irq(&current->sighand->siglock);
2469	cgroup_enter_frozen();
2470	freezable_schedule();
2471}
2472
2473static int ptrace_signal(int signr, kernel_siginfo_t *info)
2474{
 
2475	/*
2476	 * We do not check sig_kernel_stop(signr) but set this marker
2477	 * unconditionally because we do not know whether debugger will
2478	 * change signr. This flag has no meaning unless we are going
2479	 * to stop after return from ptrace_stop(). In this case it will
2480	 * be checked in do_signal_stop(), we should only stop if it was
2481	 * not cleared by SIGCONT while we were sleeping. See also the
2482	 * comment in dequeue_signal().
2483	 */
2484	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2485	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2486
2487	/* We're back.  Did the debugger cancel the sig?  */
2488	signr = current->exit_code;
2489	if (signr == 0)
2490		return signr;
2491
2492	current->exit_code = 0;
2493
2494	/*
2495	 * Update the siginfo structure if the signal has
2496	 * changed.  If the debugger wanted something
2497	 * specific in the siginfo structure then it should
2498	 * have updated *info via PTRACE_SETSIGINFO.
2499	 */
2500	if (signr != info->si_signo) {
2501		clear_siginfo(info);
2502		info->si_signo = signr;
2503		info->si_errno = 0;
2504		info->si_code = SI_USER;
2505		rcu_read_lock();
2506		info->si_pid = task_pid_vnr(current->parent);
2507		info->si_uid = from_kuid_munged(current_user_ns(),
2508						task_uid(current->parent));
2509		rcu_read_unlock();
2510	}
2511
2512	/* If the (new) signal is now blocked, requeue it.  */
2513	if (sigismember(&current->blocked, signr)) {
2514		send_signal(signr, info, current, PIDTYPE_PID);
2515		signr = 0;
2516	}
2517
2518	return signr;
2519}
2520
2521bool get_signal(struct ksignal *ksig)
 
2522{
2523	struct sighand_struct *sighand = current->sighand;
2524	struct signal_struct *signal = current->signal;
2525	int signr;
2526
2527	if (unlikely(current->task_works))
2528		task_work_run();
2529
2530	if (unlikely(uprobe_deny_signal()))
2531		return false;
2532
 
2533	/*
2534	 * Do this once, we can't return to user-mode if freezing() == T.
2535	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2536	 * thus do not need another check after return.
 
2537	 */
2538	try_to_freeze();
2539
2540relock:
2541	spin_lock_irq(&sighand->siglock);
2542	/*
2543	 * Every stopped thread goes here after wakeup. Check to see if
2544	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2545	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2546	 */
2547	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2548		int why;
2549
2550		if (signal->flags & SIGNAL_CLD_CONTINUED)
2551			why = CLD_CONTINUED;
2552		else
2553			why = CLD_STOPPED;
2554
2555		signal->flags &= ~SIGNAL_CLD_MASK;
2556
2557		spin_unlock_irq(&sighand->siglock);
2558
2559		/*
2560		 * Notify the parent that we're continuing.  This event is
2561		 * always per-process and doesn't make whole lot of sense
2562		 * for ptracers, who shouldn't consume the state via
2563		 * wait(2) either, but, for backward compatibility, notify
2564		 * the ptracer of the group leader too unless it's gonna be
2565		 * a duplicate.
2566		 */
2567		read_lock(&tasklist_lock);
2568		do_notify_parent_cldstop(current, false, why);
2569
2570		if (ptrace_reparented(current->group_leader))
2571			do_notify_parent_cldstop(current->group_leader,
2572						true, why);
2573		read_unlock(&tasklist_lock);
2574
2575		goto relock;
2576	}
2577
2578	/* Has this task already been marked for death? */
2579	if (signal_group_exit(signal)) {
2580		ksig->info.si_signo = signr = SIGKILL;
2581		sigdelset(&current->pending.signal, SIGKILL);
2582		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2583				&sighand->action[SIGKILL - 1]);
2584		recalc_sigpending();
2585		goto fatal;
2586	}
2587
2588	for (;;) {
2589		struct k_sigaction *ka;
2590
2591		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2592		    do_signal_stop(0))
2593			goto relock;
2594
2595		if (unlikely(current->jobctl &
2596			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2597			if (current->jobctl & JOBCTL_TRAP_MASK) {
2598				do_jobctl_trap();
2599				spin_unlock_irq(&sighand->siglock);
2600			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2601				do_freezer_trap();
2602
2603			goto relock;
2604		}
2605
2606		/*
2607		 * If the task is leaving the frozen state, let's update
2608		 * cgroup counters and reset the frozen bit.
2609		 */
2610		if (unlikely(cgroup_task_frozen(current))) {
2611			spin_unlock_irq(&sighand->siglock);
2612			cgroup_leave_frozen(false);
2613			goto relock;
2614		}
2615
2616		/*
2617		 * Signals generated by the execution of an instruction
2618		 * need to be delivered before any other pending signals
2619		 * so that the instruction pointer in the signal stack
2620		 * frame points to the faulting instruction.
2621		 */
2622		signr = dequeue_synchronous_signal(&ksig->info);
2623		if (!signr)
2624			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2625
2626		if (!signr)
2627			break; /* will return 0 */
2628
2629		if (unlikely(current->ptrace) && signr != SIGKILL) {
2630			signr = ptrace_signal(signr, &ksig->info);
 
2631			if (!signr)
2632				continue;
2633		}
2634
2635		ka = &sighand->action[signr-1];
2636
2637		/* Trace actually delivered signals. */
2638		trace_signal_deliver(signr, &ksig->info, ka);
2639
2640		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2641			continue;
2642		if (ka->sa.sa_handler != SIG_DFL) {
2643			/* Run the handler.  */
2644			ksig->ka = *ka;
2645
2646			if (ka->sa.sa_flags & SA_ONESHOT)
2647				ka->sa.sa_handler = SIG_DFL;
2648
2649			break; /* will return non-zero "signr" value */
2650		}
2651
2652		/*
2653		 * Now we are doing the default action for this signal.
2654		 */
2655		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2656			continue;
2657
2658		/*
2659		 * Global init gets no signals it doesn't want.
2660		 * Container-init gets no signals it doesn't want from same
2661		 * container.
2662		 *
2663		 * Note that if global/container-init sees a sig_kernel_only()
2664		 * signal here, the signal must have been generated internally
2665		 * or must have come from an ancestor namespace. In either
2666		 * case, the signal cannot be dropped.
2667		 */
2668		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2669				!sig_kernel_only(signr))
2670			continue;
2671
2672		if (sig_kernel_stop(signr)) {
2673			/*
2674			 * The default action is to stop all threads in
2675			 * the thread group.  The job control signals
2676			 * do nothing in an orphaned pgrp, but SIGSTOP
2677			 * always works.  Note that siglock needs to be
2678			 * dropped during the call to is_orphaned_pgrp()
2679			 * because of lock ordering with tasklist_lock.
2680			 * This allows an intervening SIGCONT to be posted.
2681			 * We need to check for that and bail out if necessary.
2682			 */
2683			if (signr != SIGSTOP) {
2684				spin_unlock_irq(&sighand->siglock);
2685
2686				/* signals can be posted during this window */
2687
2688				if (is_current_pgrp_orphaned())
2689					goto relock;
2690
2691				spin_lock_irq(&sighand->siglock);
2692			}
2693
2694			if (likely(do_signal_stop(ksig->info.si_signo))) {
2695				/* It released the siglock.  */
2696				goto relock;
2697			}
2698
2699			/*
2700			 * We didn't actually stop, due to a race
2701			 * with SIGCONT or something like that.
2702			 */
2703			continue;
2704		}
2705
2706	fatal:
2707		spin_unlock_irq(&sighand->siglock);
2708		if (unlikely(cgroup_task_frozen(current)))
2709			cgroup_leave_frozen(true);
2710
2711		/*
2712		 * Anything else is fatal, maybe with a core dump.
2713		 */
2714		current->flags |= PF_SIGNALED;
2715
2716		if (sig_kernel_coredump(signr)) {
2717			if (print_fatal_signals)
2718				print_fatal_signal(ksig->info.si_signo);
2719			proc_coredump_connector(current);
2720			/*
2721			 * If it was able to dump core, this kills all
2722			 * other threads in the group and synchronizes with
2723			 * their demise.  If we lost the race with another
2724			 * thread getting here, it set group_exit_code
2725			 * first and our do_group_exit call below will use
2726			 * that value and ignore the one we pass it.
2727			 */
2728			do_coredump(&ksig->info);
2729		}
2730
2731		/*
2732		 * Death signals, no core dump.
2733		 */
2734		do_group_exit(ksig->info.si_signo);
2735		/* NOTREACHED */
2736	}
2737	spin_unlock_irq(&sighand->siglock);
2738
2739	ksig->sig = signr;
2740	return ksig->sig > 0;
2741}
2742
2743/**
2744 * signal_delivered - 
2745 * @ksig:		kernel signal struct
 
 
 
2746 * @stepping:		nonzero if debugger single-step or block-step in use
2747 *
2748 * This function should be called when a signal has successfully been
2749 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2750 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2751 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2752 */
2753static void signal_delivered(struct ksignal *ksig, int stepping)
 
2754{
2755	sigset_t blocked;
2756
2757	/* A signal was successfully delivered, and the
2758	   saved sigmask was stored on the signal frame,
2759	   and will be restored by sigreturn.  So we can
2760	   simply clear the restore sigmask flag.  */
2761	clear_restore_sigmask();
2762
2763	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2764	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2765		sigaddset(&blocked, ksig->sig);
2766	set_current_blocked(&blocked);
2767	tracehook_signal_handler(stepping);
2768}
2769
2770void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2771{
2772	if (failed)
2773		force_sigsegv(ksig->sig);
2774	else
2775		signal_delivered(ksig, stepping);
2776}
2777
2778/*
2779 * It could be that complete_signal() picked us to notify about the
2780 * group-wide signal. Other threads should be notified now to take
2781 * the shared signals in @which since we will not.
2782 */
2783static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2784{
2785	sigset_t retarget;
2786	struct task_struct *t;
2787
2788	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2789	if (sigisemptyset(&retarget))
2790		return;
2791
2792	t = tsk;
2793	while_each_thread(tsk, t) {
2794		if (t->flags & PF_EXITING)
2795			continue;
2796
2797		if (!has_pending_signals(&retarget, &t->blocked))
2798			continue;
2799		/* Remove the signals this thread can handle. */
2800		sigandsets(&retarget, &retarget, &t->blocked);
2801
2802		if (!signal_pending(t))
2803			signal_wake_up(t, 0);
2804
2805		if (sigisemptyset(&retarget))
2806			break;
2807	}
2808}
2809
2810void exit_signals(struct task_struct *tsk)
2811{
2812	int group_stop = 0;
2813	sigset_t unblocked;
2814
2815	/*
2816	 * @tsk is about to have PF_EXITING set - lock out users which
2817	 * expect stable threadgroup.
2818	 */
2819	cgroup_threadgroup_change_begin(tsk);
2820
2821	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2822		tsk->flags |= PF_EXITING;
2823		cgroup_threadgroup_change_end(tsk);
2824		return;
2825	}
2826
2827	spin_lock_irq(&tsk->sighand->siglock);
2828	/*
2829	 * From now this task is not visible for group-wide signals,
2830	 * see wants_signal(), do_signal_stop().
2831	 */
2832	tsk->flags |= PF_EXITING;
2833
2834	cgroup_threadgroup_change_end(tsk);
2835
2836	if (!signal_pending(tsk))
2837		goto out;
2838
2839	unblocked = tsk->blocked;
2840	signotset(&unblocked);
2841	retarget_shared_pending(tsk, &unblocked);
2842
2843	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2844	    task_participate_group_stop(tsk))
2845		group_stop = CLD_STOPPED;
2846out:
2847	spin_unlock_irq(&tsk->sighand->siglock);
2848
2849	/*
2850	 * If group stop has completed, deliver the notification.  This
2851	 * should always go to the real parent of the group leader.
2852	 */
2853	if (unlikely(group_stop)) {
2854		read_lock(&tasklist_lock);
2855		do_notify_parent_cldstop(tsk, false, group_stop);
2856		read_unlock(&tasklist_lock);
2857	}
2858}
2859
 
 
 
 
 
 
 
 
 
 
 
2860/*
2861 * System call entry points.
2862 */
2863
2864/**
2865 *  sys_restart_syscall - restart a system call
2866 */
2867SYSCALL_DEFINE0(restart_syscall)
2868{
2869	struct restart_block *restart = &current->restart_block;
2870	return restart->fn(restart);
2871}
2872
2873long do_no_restart_syscall(struct restart_block *param)
2874{
2875	return -EINTR;
2876}
2877
2878static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2879{
2880	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2881		sigset_t newblocked;
2882		/* A set of now blocked but previously unblocked signals. */
2883		sigandnsets(&newblocked, newset, &current->blocked);
2884		retarget_shared_pending(tsk, &newblocked);
2885	}
2886	tsk->blocked = *newset;
2887	recalc_sigpending();
2888}
2889
2890/**
2891 * set_current_blocked - change current->blocked mask
2892 * @newset: new mask
2893 *
2894 * It is wrong to change ->blocked directly, this helper should be used
2895 * to ensure the process can't miss a shared signal we are going to block.
2896 */
2897void set_current_blocked(sigset_t *newset)
2898{
 
2899	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2900	__set_current_blocked(newset);
 
 
2901}
2902
2903void __set_current_blocked(const sigset_t *newset)
2904{
2905	struct task_struct *tsk = current;
2906
2907	/*
2908	 * In case the signal mask hasn't changed, there is nothing we need
2909	 * to do. The current->blocked shouldn't be modified by other task.
2910	 */
2911	if (sigequalsets(&tsk->blocked, newset))
2912		return;
2913
2914	spin_lock_irq(&tsk->sighand->siglock);
2915	__set_task_blocked(tsk, newset);
2916	spin_unlock_irq(&tsk->sighand->siglock);
2917}
2918
2919/*
2920 * This is also useful for kernel threads that want to temporarily
2921 * (or permanently) block certain signals.
2922 *
2923 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2924 * interface happily blocks "unblockable" signals like SIGKILL
2925 * and friends.
2926 */
2927int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2928{
2929	struct task_struct *tsk = current;
2930	sigset_t newset;
2931
2932	/* Lockless, only current can change ->blocked, never from irq */
2933	if (oldset)
2934		*oldset = tsk->blocked;
2935
2936	switch (how) {
2937	case SIG_BLOCK:
2938		sigorsets(&newset, &tsk->blocked, set);
2939		break;
2940	case SIG_UNBLOCK:
2941		sigandnsets(&newset, &tsk->blocked, set);
2942		break;
2943	case SIG_SETMASK:
2944		newset = *set;
2945		break;
2946	default:
2947		return -EINVAL;
2948	}
2949
2950	__set_current_blocked(&newset);
2951	return 0;
2952}
2953EXPORT_SYMBOL(sigprocmask);
2954
2955/*
2956 * The api helps set app-provided sigmasks.
2957 *
2958 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
2959 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
2960 *
2961 * Note that it does set_restore_sigmask() in advance, so it must be always
2962 * paired with restore_saved_sigmask_unless() before return from syscall.
2963 */
2964int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
2965{
2966	sigset_t kmask;
2967
2968	if (!umask)
2969		return 0;
2970	if (sigsetsize != sizeof(sigset_t))
2971		return -EINVAL;
2972	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
2973		return -EFAULT;
2974
2975	set_restore_sigmask();
2976	current->saved_sigmask = current->blocked;
2977	set_current_blocked(&kmask);
2978
2979	return 0;
2980}
2981
2982#ifdef CONFIG_COMPAT
2983int set_compat_user_sigmask(const compat_sigset_t __user *umask,
2984			    size_t sigsetsize)
2985{
2986	sigset_t kmask;
2987
2988	if (!umask)
2989		return 0;
2990	if (sigsetsize != sizeof(compat_sigset_t))
2991		return -EINVAL;
2992	if (get_compat_sigset(&kmask, umask))
2993		return -EFAULT;
2994
2995	set_restore_sigmask();
2996	current->saved_sigmask = current->blocked;
2997	set_current_blocked(&kmask);
2998
2999	return 0;
3000}
3001#endif
3002
3003/**
3004 *  sys_rt_sigprocmask - change the list of currently blocked signals
3005 *  @how: whether to add, remove, or set signals
3006 *  @nset: stores pending signals
3007 *  @oset: previous value of signal mask if non-null
3008 *  @sigsetsize: size of sigset_t type
3009 */
3010SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3011		sigset_t __user *, oset, size_t, sigsetsize)
3012{
3013	sigset_t old_set, new_set;
3014	int error;
3015
3016	/* XXX: Don't preclude handling different sized sigset_t's.  */
3017	if (sigsetsize != sizeof(sigset_t))
3018		return -EINVAL;
3019
3020	old_set = current->blocked;
3021
3022	if (nset) {
3023		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3024			return -EFAULT;
3025		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3026
3027		error = sigprocmask(how, &new_set, NULL);
3028		if (error)
3029			return error;
3030	}
3031
3032	if (oset) {
3033		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3034			return -EFAULT;
3035	}
3036
3037	return 0;
3038}
3039
3040#ifdef CONFIG_COMPAT
3041COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3042		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3043{
3044	sigset_t old_set = current->blocked;
 
3045
3046	/* XXX: Don't preclude handling different sized sigset_t's.  */
3047	if (sigsetsize != sizeof(sigset_t))
3048		return -EINVAL;
3049
3050	if (nset) {
3051		sigset_t new_set;
3052		int error;
3053		if (get_compat_sigset(&new_set, nset))
3054			return -EFAULT;
3055		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3056
3057		error = sigprocmask(how, &new_set, NULL);
3058		if (error)
3059			return error;
3060	}
3061	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3062}
3063#endif
3064
3065static void do_sigpending(sigset_t *set)
3066{
3067	spin_lock_irq(&current->sighand->siglock);
3068	sigorsets(set, &current->pending.signal,
3069		  &current->signal->shared_pending.signal);
3070	spin_unlock_irq(&current->sighand->siglock);
3071
3072	/* Outside the lock because only this thread touches it.  */
3073	sigandsets(set, &current->blocked, set);
 
 
 
 
 
 
 
3074}
3075
3076/**
3077 *  sys_rt_sigpending - examine a pending signal that has been raised
3078 *			while blocked
3079 *  @uset: stores pending signals
3080 *  @sigsetsize: size of sigset_t type or larger
3081 */
3082SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3083{
3084	sigset_t set;
3085
3086	if (sigsetsize > sizeof(*uset))
3087		return -EINVAL;
3088
3089	do_sigpending(&set);
3090
3091	if (copy_to_user(uset, &set, sigsetsize))
3092		return -EFAULT;
3093
3094	return 0;
3095}
3096
3097#ifdef CONFIG_COMPAT
3098COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3099		compat_size_t, sigsetsize)
3100{
3101	sigset_t set;
3102
3103	if (sigsetsize > sizeof(*uset))
3104		return -EINVAL;
3105
3106	do_sigpending(&set);
3107
3108	return put_compat_sigset(uset, &set, sigsetsize);
3109}
3110#endif
3111
3112static const struct {
3113	unsigned char limit, layout;
3114} sig_sicodes[] = {
3115	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3116	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3117	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3118	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3119	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3120#if defined(SIGEMT)
3121	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3122#endif
3123	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3124	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3125	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3126};
3127
3128static bool known_siginfo_layout(unsigned sig, int si_code)
3129{
3130	if (si_code == SI_KERNEL)
3131		return true;
3132	else if ((si_code > SI_USER)) {
3133		if (sig_specific_sicodes(sig)) {
3134			if (si_code <= sig_sicodes[sig].limit)
3135				return true;
3136		}
3137		else if (si_code <= NSIGPOLL)
3138			return true;
3139	}
3140	else if (si_code >= SI_DETHREAD)
3141		return true;
3142	else if (si_code == SI_ASYNCNL)
3143		return true;
3144	return false;
3145}
3146
3147enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3148{
3149	enum siginfo_layout layout = SIL_KILL;
3150	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3151		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3152		    (si_code <= sig_sicodes[sig].limit)) {
3153			layout = sig_sicodes[sig].layout;
3154			/* Handle the exceptions */
3155			if ((sig == SIGBUS) &&
3156			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3157				layout = SIL_FAULT_MCEERR;
3158			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3159				layout = SIL_FAULT_BNDERR;
3160#ifdef SEGV_PKUERR
3161			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3162				layout = SIL_FAULT_PKUERR;
3163#endif
3164		}
3165		else if (si_code <= NSIGPOLL)
3166			layout = SIL_POLL;
3167	} else {
3168		if (si_code == SI_TIMER)
3169			layout = SIL_TIMER;
3170		else if (si_code == SI_SIGIO)
3171			layout = SIL_POLL;
3172		else if (si_code < 0)
3173			layout = SIL_RT;
3174	}
3175	return layout;
3176}
3177
3178static inline char __user *si_expansion(const siginfo_t __user *info)
3179{
3180	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3181}
3182
3183int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3184{
3185	char __user *expansion = si_expansion(to);
3186	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3187		return -EFAULT;
3188	if (clear_user(expansion, SI_EXPANSION_SIZE))
3189		return -EFAULT;
3190	return 0;
3191}
3192
3193static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3194				       const siginfo_t __user *from)
3195{
3196	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3197		char __user *expansion = si_expansion(from);
3198		char buf[SI_EXPANSION_SIZE];
3199		int i;
3200		/*
3201		 * An unknown si_code might need more than
3202		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3203		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3204		 * will return this data to userspace exactly.
3205		 */
3206		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3207			return -EFAULT;
3208		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3209			if (buf[i] != 0)
3210				return -E2BIG;
3211		}
3212	}
3213	return 0;
3214}
3215
3216static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3217				    const siginfo_t __user *from)
3218{
3219	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3220		return -EFAULT;
3221	to->si_signo = signo;
3222	return post_copy_siginfo_from_user(to, from);
3223}
3224
3225int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3226{
3227	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3228		return -EFAULT;
3229	return post_copy_siginfo_from_user(to, from);
3230}
3231
3232#ifdef CONFIG_COMPAT
3233int copy_siginfo_to_user32(struct compat_siginfo __user *to,
3234			   const struct kernel_siginfo *from)
3235#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
3236{
3237	return __copy_siginfo_to_user32(to, from, in_x32_syscall());
3238}
3239int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3240			     const struct kernel_siginfo *from, bool x32_ABI)
3241#endif
3242{
3243	struct compat_siginfo new;
3244	memset(&new, 0, sizeof(new));
3245
3246	new.si_signo = from->si_signo;
3247	new.si_errno = from->si_errno;
3248	new.si_code  = from->si_code;
3249	switch(siginfo_layout(from->si_signo, from->si_code)) {
3250	case SIL_KILL:
3251		new.si_pid = from->si_pid;
3252		new.si_uid = from->si_uid;
3253		break;
3254	case SIL_TIMER:
3255		new.si_tid     = from->si_tid;
3256		new.si_overrun = from->si_overrun;
3257		new.si_int     = from->si_int;
3258		break;
3259	case SIL_POLL:
3260		new.si_band = from->si_band;
3261		new.si_fd   = from->si_fd;
3262		break;
3263	case SIL_FAULT:
3264		new.si_addr = ptr_to_compat(from->si_addr);
3265#ifdef __ARCH_SI_TRAPNO
3266		new.si_trapno = from->si_trapno;
3267#endif
3268		break;
3269	case SIL_FAULT_MCEERR:
3270		new.si_addr = ptr_to_compat(from->si_addr);
3271#ifdef __ARCH_SI_TRAPNO
3272		new.si_trapno = from->si_trapno;
3273#endif
3274		new.si_addr_lsb = from->si_addr_lsb;
3275		break;
3276	case SIL_FAULT_BNDERR:
3277		new.si_addr = ptr_to_compat(from->si_addr);
3278#ifdef __ARCH_SI_TRAPNO
3279		new.si_trapno = from->si_trapno;
3280#endif
3281		new.si_lower = ptr_to_compat(from->si_lower);
3282		new.si_upper = ptr_to_compat(from->si_upper);
3283		break;
3284	case SIL_FAULT_PKUERR:
3285		new.si_addr = ptr_to_compat(from->si_addr);
3286#ifdef __ARCH_SI_TRAPNO
3287		new.si_trapno = from->si_trapno;
3288#endif
3289		new.si_pkey = from->si_pkey;
3290		break;
3291	case SIL_CHLD:
3292		new.si_pid    = from->si_pid;
3293		new.si_uid    = from->si_uid;
3294		new.si_status = from->si_status;
3295#ifdef CONFIG_X86_X32_ABI
3296		if (x32_ABI) {
3297			new._sifields._sigchld_x32._utime = from->si_utime;
3298			new._sifields._sigchld_x32._stime = from->si_stime;
3299		} else
3300#endif
3301		{
3302			new.si_utime = from->si_utime;
3303			new.si_stime = from->si_stime;
3304		}
3305		break;
3306	case SIL_RT:
3307		new.si_pid = from->si_pid;
3308		new.si_uid = from->si_uid;
3309		new.si_int = from->si_int;
3310		break;
3311	case SIL_SYS:
3312		new.si_call_addr = ptr_to_compat(from->si_call_addr);
3313		new.si_syscall   = from->si_syscall;
3314		new.si_arch      = from->si_arch;
3315		break;
3316	}
3317
3318	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3319		return -EFAULT;
3320
3321	return 0;
3322}
3323
3324static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3325					 const struct compat_siginfo *from)
3326{
3327	clear_siginfo(to);
3328	to->si_signo = from->si_signo;
3329	to->si_errno = from->si_errno;
3330	to->si_code  = from->si_code;
3331	switch(siginfo_layout(from->si_signo, from->si_code)) {
3332	case SIL_KILL:
3333		to->si_pid = from->si_pid;
3334		to->si_uid = from->si_uid;
3335		break;
3336	case SIL_TIMER:
3337		to->si_tid     = from->si_tid;
3338		to->si_overrun = from->si_overrun;
3339		to->si_int     = from->si_int;
3340		break;
3341	case SIL_POLL:
3342		to->si_band = from->si_band;
3343		to->si_fd   = from->si_fd;
3344		break;
3345	case SIL_FAULT:
3346		to->si_addr = compat_ptr(from->si_addr);
3347#ifdef __ARCH_SI_TRAPNO
3348		to->si_trapno = from->si_trapno;
3349#endif
3350		break;
3351	case SIL_FAULT_MCEERR:
3352		to->si_addr = compat_ptr(from->si_addr);
3353#ifdef __ARCH_SI_TRAPNO
3354		to->si_trapno = from->si_trapno;
3355#endif
3356		to->si_addr_lsb = from->si_addr_lsb;
3357		break;
3358	case SIL_FAULT_BNDERR:
3359		to->si_addr = compat_ptr(from->si_addr);
3360#ifdef __ARCH_SI_TRAPNO
3361		to->si_trapno = from->si_trapno;
3362#endif
3363		to->si_lower = compat_ptr(from->si_lower);
3364		to->si_upper = compat_ptr(from->si_upper);
3365		break;
3366	case SIL_FAULT_PKUERR:
3367		to->si_addr = compat_ptr(from->si_addr);
3368#ifdef __ARCH_SI_TRAPNO
3369		to->si_trapno = from->si_trapno;
3370#endif
3371		to->si_pkey = from->si_pkey;
3372		break;
3373	case SIL_CHLD:
3374		to->si_pid    = from->si_pid;
3375		to->si_uid    = from->si_uid;
3376		to->si_status = from->si_status;
3377#ifdef CONFIG_X86_X32_ABI
3378		if (in_x32_syscall()) {
3379			to->si_utime = from->_sifields._sigchld_x32._utime;
3380			to->si_stime = from->_sifields._sigchld_x32._stime;
3381		} else
3382#endif
3383		{
3384			to->si_utime = from->si_utime;
3385			to->si_stime = from->si_stime;
3386		}
3387		break;
3388	case SIL_RT:
3389		to->si_pid = from->si_pid;
3390		to->si_uid = from->si_uid;
3391		to->si_int = from->si_int;
3392		break;
3393	case SIL_SYS:
3394		to->si_call_addr = compat_ptr(from->si_call_addr);
3395		to->si_syscall   = from->si_syscall;
3396		to->si_arch      = from->si_arch;
3397		break;
3398	}
3399	return 0;
3400}
3401
3402static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3403				      const struct compat_siginfo __user *ufrom)
3404{
3405	struct compat_siginfo from;
3406
3407	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3408		return -EFAULT;
3409
3410	from.si_signo = signo;
3411	return post_copy_siginfo_from_user32(to, &from);
3412}
3413
3414int copy_siginfo_from_user32(struct kernel_siginfo *to,
3415			     const struct compat_siginfo __user *ufrom)
3416{
3417	struct compat_siginfo from;
3418
3419	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3420		return -EFAULT;
3421
3422	return post_copy_siginfo_from_user32(to, &from);
3423}
3424#endif /* CONFIG_COMPAT */
3425
3426/**
3427 *  do_sigtimedwait - wait for queued signals specified in @which
3428 *  @which: queued signals to wait for
3429 *  @info: if non-null, the signal's siginfo is returned here
3430 *  @ts: upper bound on process time suspension
3431 */
3432static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3433		    const struct timespec64 *ts)
3434{
3435	ktime_t *to = NULL, timeout = KTIME_MAX;
3436	struct task_struct *tsk = current;
 
3437	sigset_t mask = *which;
3438	int sig, ret = 0;
3439
3440	if (ts) {
3441		if (!timespec64_valid(ts))
3442			return -EINVAL;
3443		timeout = timespec64_to_ktime(*ts);
3444		to = &timeout;
 
 
 
 
 
3445	}
3446
3447	/*
3448	 * Invert the set of allowed signals to get those we want to block.
3449	 */
3450	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3451	signotset(&mask);
3452
3453	spin_lock_irq(&tsk->sighand->siglock);
3454	sig = dequeue_signal(tsk, &mask, info);
3455	if (!sig && timeout) {
3456		/*
3457		 * None ready, temporarily unblock those we're interested
3458		 * while we are sleeping in so that we'll be awakened when
3459		 * they arrive. Unblocking is always fine, we can avoid
3460		 * set_current_blocked().
3461		 */
3462		tsk->real_blocked = tsk->blocked;
3463		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3464		recalc_sigpending();
3465		spin_unlock_irq(&tsk->sighand->siglock);
3466
3467		__set_current_state(TASK_INTERRUPTIBLE);
3468		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3469							 HRTIMER_MODE_REL);
3470		spin_lock_irq(&tsk->sighand->siglock);
3471		__set_task_blocked(tsk, &tsk->real_blocked);
3472		sigemptyset(&tsk->real_blocked);
3473		sig = dequeue_signal(tsk, &mask, info);
3474	}
3475	spin_unlock_irq(&tsk->sighand->siglock);
3476
3477	if (sig)
3478		return sig;
3479	return ret ? -EINTR : -EAGAIN;
3480}
3481
3482/**
3483 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3484 *			in @uthese
3485 *  @uthese: queued signals to wait for
3486 *  @uinfo: if non-null, the signal's siginfo is returned here
3487 *  @uts: upper bound on process time suspension
3488 *  @sigsetsize: size of sigset_t type
3489 */
3490SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3491		siginfo_t __user *, uinfo,
3492		const struct __kernel_timespec __user *, uts,
3493		size_t, sigsetsize)
3494{
3495	sigset_t these;
3496	struct timespec64 ts;
3497	kernel_siginfo_t info;
3498	int ret;
3499
3500	/* XXX: Don't preclude handling different sized sigset_t's.  */
3501	if (sigsetsize != sizeof(sigset_t))
3502		return -EINVAL;
3503
3504	if (copy_from_user(&these, uthese, sizeof(these)))
3505		return -EFAULT;
3506
3507	if (uts) {
3508		if (get_timespec64(&ts, uts))
3509			return -EFAULT;
3510	}
3511
3512	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3513
3514	if (ret > 0 && uinfo) {
3515		if (copy_siginfo_to_user(uinfo, &info))
3516			ret = -EFAULT;
3517	}
3518
3519	return ret;
3520}
3521
3522#ifdef CONFIG_COMPAT_32BIT_TIME
3523SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3524		siginfo_t __user *, uinfo,
3525		const struct old_timespec32 __user *, uts,
3526		size_t, sigsetsize)
3527{
3528	sigset_t these;
3529	struct timespec64 ts;
3530	kernel_siginfo_t info;
3531	int ret;
3532
3533	if (sigsetsize != sizeof(sigset_t))
3534		return -EINVAL;
3535
3536	if (copy_from_user(&these, uthese, sizeof(these)))
3537		return -EFAULT;
3538
3539	if (uts) {
3540		if (get_old_timespec32(&ts, uts))
3541			return -EFAULT;
3542	}
3543
3544	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3545
3546	if (ret > 0 && uinfo) {
3547		if (copy_siginfo_to_user(uinfo, &info))
3548			ret = -EFAULT;
3549	}
3550
3551	return ret;
3552}
3553#endif
3554
3555#ifdef CONFIG_COMPAT
3556COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3557		struct compat_siginfo __user *, uinfo,
3558		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3559{
3560	sigset_t s;
3561	struct timespec64 t;
3562	kernel_siginfo_t info;
3563	long ret;
3564
3565	if (sigsetsize != sizeof(sigset_t))
3566		return -EINVAL;
3567
3568	if (get_compat_sigset(&s, uthese))
3569		return -EFAULT;
3570
3571	if (uts) {
3572		if (get_timespec64(&t, uts))
3573			return -EFAULT;
3574	}
3575
3576	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3577
3578	if (ret > 0 && uinfo) {
3579		if (copy_siginfo_to_user32(uinfo, &info))
3580			ret = -EFAULT;
3581	}
3582
3583	return ret;
3584}
3585
3586#ifdef CONFIG_COMPAT_32BIT_TIME
3587COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3588		struct compat_siginfo __user *, uinfo,
3589		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3590{
3591	sigset_t s;
3592	struct timespec64 t;
3593	kernel_siginfo_t info;
3594	long ret;
3595
3596	if (sigsetsize != sizeof(sigset_t))
3597		return -EINVAL;
3598
3599	if (get_compat_sigset(&s, uthese))
3600		return -EFAULT;
3601
3602	if (uts) {
3603		if (get_old_timespec32(&t, uts))
3604			return -EFAULT;
3605	}
3606
3607	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3608
3609	if (ret > 0 && uinfo) {
3610		if (copy_siginfo_to_user32(uinfo, &info))
3611			ret = -EFAULT;
3612	}
3613
3614	return ret;
3615}
3616#endif
3617#endif
3618
3619static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3620{
3621	clear_siginfo(info);
3622	info->si_signo = sig;
3623	info->si_errno = 0;
3624	info->si_code = SI_USER;
3625	info->si_pid = task_tgid_vnr(current);
3626	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3627}
3628
3629/**
3630 *  sys_kill - send a signal to a process
3631 *  @pid: the PID of the process
3632 *  @sig: signal to be sent
3633 */
3634SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3635{
3636	struct kernel_siginfo info;
3637
3638	prepare_kill_siginfo(sig, &info);
 
 
 
 
3639
3640	return kill_something_info(sig, &info, pid);
3641}
3642
3643/*
3644 * Verify that the signaler and signalee either are in the same pid namespace
3645 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3646 * namespace.
3647 */
3648static bool access_pidfd_pidns(struct pid *pid)
3649{
3650	struct pid_namespace *active = task_active_pid_ns(current);
3651	struct pid_namespace *p = ns_of_pid(pid);
3652
3653	for (;;) {
3654		if (!p)
3655			return false;
3656		if (p == active)
3657			break;
3658		p = p->parent;
3659	}
3660
3661	return true;
3662}
3663
3664static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo, siginfo_t *info)
3665{
3666#ifdef CONFIG_COMPAT
3667	/*
3668	 * Avoid hooking up compat syscalls and instead handle necessary
3669	 * conversions here. Note, this is a stop-gap measure and should not be
3670	 * considered a generic solution.
3671	 */
3672	if (in_compat_syscall())
3673		return copy_siginfo_from_user32(
3674			kinfo, (struct compat_siginfo __user *)info);
3675#endif
3676	return copy_siginfo_from_user(kinfo, info);
3677}
3678
3679static struct pid *pidfd_to_pid(const struct file *file)
3680{
3681	struct pid *pid;
3682
3683	pid = pidfd_pid(file);
3684	if (!IS_ERR(pid))
3685		return pid;
3686
3687	return tgid_pidfd_to_pid(file);
3688}
3689
3690/**
3691 * sys_pidfd_send_signal - Signal a process through a pidfd
3692 * @pidfd:  file descriptor of the process
3693 * @sig:    signal to send
3694 * @info:   signal info
3695 * @flags:  future flags
3696 *
3697 * The syscall currently only signals via PIDTYPE_PID which covers
3698 * kill(<positive-pid>, <signal>. It does not signal threads or process
3699 * groups.
3700 * In order to extend the syscall to threads and process groups the @flags
3701 * argument should be used. In essence, the @flags argument will determine
3702 * what is signaled and not the file descriptor itself. Put in other words,
3703 * grouping is a property of the flags argument not a property of the file
3704 * descriptor.
3705 *
3706 * Return: 0 on success, negative errno on failure
3707 */
3708SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3709		siginfo_t __user *, info, unsigned int, flags)
3710{
3711	int ret;
3712	struct fd f;
3713	struct pid *pid;
3714	kernel_siginfo_t kinfo;
3715
3716	/* Enforce flags be set to 0 until we add an extension. */
3717	if (flags)
3718		return -EINVAL;
3719
3720	f = fdget(pidfd);
3721	if (!f.file)
3722		return -EBADF;
3723
3724	/* Is this a pidfd? */
3725	pid = pidfd_to_pid(f.file);
3726	if (IS_ERR(pid)) {
3727		ret = PTR_ERR(pid);
3728		goto err;
3729	}
3730
3731	ret = -EINVAL;
3732	if (!access_pidfd_pidns(pid))
3733		goto err;
3734
3735	if (info) {
3736		ret = copy_siginfo_from_user_any(&kinfo, info);
3737		if (unlikely(ret))
3738			goto err;
3739
3740		ret = -EINVAL;
3741		if (unlikely(sig != kinfo.si_signo))
3742			goto err;
3743
3744		/* Only allow sending arbitrary signals to yourself. */
3745		ret = -EPERM;
3746		if ((task_pid(current) != pid) &&
3747		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3748			goto err;
3749	} else {
3750		prepare_kill_siginfo(sig, &kinfo);
3751	}
3752
3753	ret = kill_pid_info(sig, &kinfo, pid);
3754
3755err:
3756	fdput(f);
3757	return ret;
3758}
3759
3760static int
3761do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3762{
3763	struct task_struct *p;
3764	int error = -ESRCH;
3765
3766	rcu_read_lock();
3767	p = find_task_by_vpid(pid);
3768	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3769		error = check_kill_permission(sig, info, p);
3770		/*
3771		 * The null signal is a permissions and process existence
3772		 * probe.  No signal is actually delivered.
3773		 */
3774		if (!error && sig) {
3775			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3776			/*
3777			 * If lock_task_sighand() failed we pretend the task
3778			 * dies after receiving the signal. The window is tiny,
3779			 * and the signal is private anyway.
3780			 */
3781			if (unlikely(error == -ESRCH))
3782				error = 0;
3783		}
3784	}
3785	rcu_read_unlock();
3786
3787	return error;
3788}
3789
3790static int do_tkill(pid_t tgid, pid_t pid, int sig)
3791{
3792	struct kernel_siginfo info;
3793
3794	clear_siginfo(&info);
3795	info.si_signo = sig;
3796	info.si_errno = 0;
3797	info.si_code = SI_TKILL;
3798	info.si_pid = task_tgid_vnr(current);
3799	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3800
3801	return do_send_specific(tgid, pid, sig, &info);
3802}
3803
3804/**
3805 *  sys_tgkill - send signal to one specific thread
3806 *  @tgid: the thread group ID of the thread
3807 *  @pid: the PID of the thread
3808 *  @sig: signal to be sent
3809 *
3810 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3811 *  exists but it's not belonging to the target process anymore. This
3812 *  method solves the problem of threads exiting and PIDs getting reused.
3813 */
3814SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3815{
3816	/* This is only valid for single tasks */
3817	if (pid <= 0 || tgid <= 0)
3818		return -EINVAL;
3819
3820	return do_tkill(tgid, pid, sig);
3821}
3822
3823/**
3824 *  sys_tkill - send signal to one specific task
3825 *  @pid: the PID of the task
3826 *  @sig: signal to be sent
3827 *
3828 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3829 */
3830SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3831{
3832	/* This is only valid for single tasks */
3833	if (pid <= 0)
3834		return -EINVAL;
3835
3836	return do_tkill(0, pid, sig);
3837}
3838
3839static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3840{
3841	/* Not even root can pretend to send signals from the kernel.
3842	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3843	 */
3844	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3845	    (task_pid_vnr(current) != pid))
3846		return -EPERM;
3847
3848	/* POSIX.1b doesn't mention process groups.  */
3849	return kill_proc_info(sig, info, pid);
3850}
3851
3852/**
3853 *  sys_rt_sigqueueinfo - send signal information to a signal
3854 *  @pid: the PID of the thread
3855 *  @sig: signal to be sent
3856 *  @uinfo: signal info to be sent
3857 */
3858SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3859		siginfo_t __user *, uinfo)
3860{
3861	kernel_siginfo_t info;
3862	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3863	if (unlikely(ret))
3864		return ret;
3865	return do_rt_sigqueueinfo(pid, sig, &info);
3866}
3867
3868#ifdef CONFIG_COMPAT
3869COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3870			compat_pid_t, pid,
3871			int, sig,
3872			struct compat_siginfo __user *, uinfo)
3873{
3874	kernel_siginfo_t info;
3875	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3876	if (unlikely(ret))
3877		return ret;
3878	return do_rt_sigqueueinfo(pid, sig, &info);
 
 
 
 
3879}
3880#endif
3881
3882static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3883{
3884	/* This is only valid for single tasks */
3885	if (pid <= 0 || tgid <= 0)
3886		return -EINVAL;
3887
3888	/* Not even root can pretend to send signals from the kernel.
3889	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3890	 */
3891	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3892	    (task_pid_vnr(current) != pid))
 
3893		return -EPERM;
 
 
3894
3895	return do_send_specific(tgid, pid, sig, info);
3896}
3897
3898SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3899		siginfo_t __user *, uinfo)
3900{
3901	kernel_siginfo_t info;
3902	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3903	if (unlikely(ret))
3904		return ret;
3905	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3906}
3907
3908#ifdef CONFIG_COMPAT
3909COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3910			compat_pid_t, tgid,
3911			compat_pid_t, pid,
3912			int, sig,
3913			struct compat_siginfo __user *, uinfo)
3914{
3915	kernel_siginfo_t info;
3916	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3917	if (unlikely(ret))
3918		return ret;
3919	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3920}
3921#endif
3922
3923/*
3924 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3925 */
3926void kernel_sigaction(int sig, __sighandler_t action)
3927{
3928	spin_lock_irq(&current->sighand->siglock);
3929	current->sighand->action[sig - 1].sa.sa_handler = action;
3930	if (action == SIG_IGN) {
3931		sigset_t mask;
3932
3933		sigemptyset(&mask);
3934		sigaddset(&mask, sig);
3935
3936		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3937		flush_sigqueue_mask(&mask, &current->pending);
3938		recalc_sigpending();
3939	}
3940	spin_unlock_irq(&current->sighand->siglock);
3941}
3942EXPORT_SYMBOL(kernel_sigaction);
3943
3944void __weak sigaction_compat_abi(struct k_sigaction *act,
3945		struct k_sigaction *oact)
3946{
3947}
3948
3949int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3950{
3951	struct task_struct *p = current, *t;
3952	struct k_sigaction *k;
3953	sigset_t mask;
3954
3955	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3956		return -EINVAL;
3957
3958	k = &p->sighand->action[sig-1];
3959
3960	spin_lock_irq(&p->sighand->siglock);
3961	if (oact)
3962		*oact = *k;
3963
3964	sigaction_compat_abi(act, oact);
3965
3966	if (act) {
3967		sigdelsetmask(&act->sa.sa_mask,
3968			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3969		*k = *act;
3970		/*
3971		 * POSIX 3.3.1.3:
3972		 *  "Setting a signal action to SIG_IGN for a signal that is
3973		 *   pending shall cause the pending signal to be discarded,
3974		 *   whether or not it is blocked."
3975		 *
3976		 *  "Setting a signal action to SIG_DFL for a signal that is
3977		 *   pending and whose default action is to ignore the signal
3978		 *   (for example, SIGCHLD), shall cause the pending signal to
3979		 *   be discarded, whether or not it is blocked"
3980		 */
3981		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3982			sigemptyset(&mask);
3983			sigaddset(&mask, sig);
3984			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3985			for_each_thread(p, t)
3986				flush_sigqueue_mask(&mask, &t->pending);
 
 
3987		}
3988	}
3989
3990	spin_unlock_irq(&p->sighand->siglock);
3991	return 0;
3992}
3993
3994static int
3995do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
3996		size_t min_ss_size)
3997{
3998	struct task_struct *t = current;
3999
4000	if (oss) {
4001		memset(oss, 0, sizeof(stack_t));
4002		oss->ss_sp = (void __user *) t->sas_ss_sp;
4003		oss->ss_size = t->sas_ss_size;
4004		oss->ss_flags = sas_ss_flags(sp) |
4005			(current->sas_ss_flags & SS_FLAG_BITS);
4006	}
4007
4008	if (ss) {
4009		void __user *ss_sp = ss->ss_sp;
4010		size_t ss_size = ss->ss_size;
4011		unsigned ss_flags = ss->ss_flags;
4012		int ss_mode;
 
 
 
 
 
 
 
 
 
 
 
 
4013
4014		if (unlikely(on_sig_stack(sp)))
4015			return -EPERM;
 
4016
4017		ss_mode = ss_flags & ~SS_FLAG_BITS;
4018		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4019				ss_mode != 0))
4020			return -EINVAL;
 
 
 
 
 
 
4021
4022		if (ss_mode == SS_DISABLE) {
4023			ss_size = 0;
4024			ss_sp = NULL;
4025		} else {
4026			if (unlikely(ss_size < min_ss_size))
4027				return -ENOMEM;
4028		}
4029
4030		t->sas_ss_sp = (unsigned long) ss_sp;
4031		t->sas_ss_size = ss_size;
4032		t->sas_ss_flags = ss_flags;
4033	}
4034	return 0;
4035}
4036
4037SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4038{
4039	stack_t new, old;
4040	int err;
4041	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4042		return -EFAULT;
4043	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4044			      current_user_stack_pointer(),
4045			      MINSIGSTKSZ);
4046	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4047		err = -EFAULT;
4048	return err;
4049}
4050
4051int restore_altstack(const stack_t __user *uss)
4052{
4053	stack_t new;
4054	if (copy_from_user(&new, uss, sizeof(stack_t)))
4055		return -EFAULT;
4056	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4057			     MINSIGSTKSZ);
4058	/* squash all but EFAULT for now */
4059	return 0;
4060}
4061
4062int __save_altstack(stack_t __user *uss, unsigned long sp)
4063{
4064	struct task_struct *t = current;
4065	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4066		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4067		__put_user(t->sas_ss_size, &uss->ss_size);
4068	if (err)
4069		return err;
4070	if (t->sas_ss_flags & SS_AUTODISARM)
4071		sas_ss_reset(t);
4072	return 0;
4073}
4074
4075#ifdef CONFIG_COMPAT
4076static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4077				 compat_stack_t __user *uoss_ptr)
4078{
4079	stack_t uss, uoss;
4080	int ret;
4081
4082	if (uss_ptr) {
4083		compat_stack_t uss32;
4084		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4085			return -EFAULT;
4086		uss.ss_sp = compat_ptr(uss32.ss_sp);
4087		uss.ss_flags = uss32.ss_flags;
4088		uss.ss_size = uss32.ss_size;
4089	}
4090	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4091			     compat_user_stack_pointer(),
4092			     COMPAT_MINSIGSTKSZ);
4093	if (ret >= 0 && uoss_ptr)  {
4094		compat_stack_t old;
4095		memset(&old, 0, sizeof(old));
4096		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4097		old.ss_flags = uoss.ss_flags;
4098		old.ss_size = uoss.ss_size;
4099		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4100			ret = -EFAULT;
4101	}
4102	return ret;
4103}
4104
4105COMPAT_SYSCALL_DEFINE2(sigaltstack,
4106			const compat_stack_t __user *, uss_ptr,
4107			compat_stack_t __user *, uoss_ptr)
4108{
4109	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4110}
4111
4112int compat_restore_altstack(const compat_stack_t __user *uss)
4113{
4114	int err = do_compat_sigaltstack(uss, NULL);
4115	/* squash all but -EFAULT for now */
4116	return err == -EFAULT ? err : 0;
4117}
4118
4119int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4120{
4121	int err;
4122	struct task_struct *t = current;
4123	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4124			 &uss->ss_sp) |
4125		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4126		__put_user(t->sas_ss_size, &uss->ss_size);
4127	if (err)
4128		return err;
4129	if (t->sas_ss_flags & SS_AUTODISARM)
4130		sas_ss_reset(t);
4131	return 0;
4132}
4133#endif
4134
4135#ifdef __ARCH_WANT_SYS_SIGPENDING
4136
4137/**
4138 *  sys_sigpending - examine pending signals
4139 *  @uset: where mask of pending signal is returned
4140 */
4141SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4142{
4143	sigset_t set;
4144
4145	if (sizeof(old_sigset_t) > sizeof(*uset))
4146		return -EINVAL;
4147
4148	do_sigpending(&set);
4149
4150	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4151		return -EFAULT;
4152
4153	return 0;
4154}
4155
4156#ifdef CONFIG_COMPAT
4157COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4158{
4159	sigset_t set;
4160
4161	do_sigpending(&set);
4162
4163	return put_user(set.sig[0], set32);
4164}
4165#endif
4166
4167#endif
4168
4169#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4170/**
4171 *  sys_sigprocmask - examine and change blocked signals
4172 *  @how: whether to add, remove, or set signals
4173 *  @nset: signals to add or remove (if non-null)
4174 *  @oset: previous value of signal mask if non-null
4175 *
4176 * Some platforms have their own version with special arguments;
4177 * others support only sys_rt_sigprocmask.
4178 */
4179
4180SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4181		old_sigset_t __user *, oset)
4182{
4183	old_sigset_t old_set, new_set;
4184	sigset_t new_blocked;
4185
4186	old_set = current->blocked.sig[0];
4187
4188	if (nset) {
4189		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4190			return -EFAULT;
 
4191
4192		new_blocked = current->blocked;
4193
4194		switch (how) {
4195		case SIG_BLOCK:
4196			sigaddsetmask(&new_blocked, new_set);
4197			break;
4198		case SIG_UNBLOCK:
4199			sigdelsetmask(&new_blocked, new_set);
4200			break;
4201		case SIG_SETMASK:
4202			new_blocked.sig[0] = new_set;
4203			break;
4204		default:
4205			return -EINVAL;
4206		}
4207
4208		set_current_blocked(&new_blocked);
4209	}
4210
4211	if (oset) {
4212		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4213			return -EFAULT;
4214	}
4215
4216	return 0;
4217}
4218#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4219
4220#ifndef CONFIG_ODD_RT_SIGACTION
4221/**
4222 *  sys_rt_sigaction - alter an action taken by a process
4223 *  @sig: signal to be sent
4224 *  @act: new sigaction
4225 *  @oact: used to save the previous sigaction
4226 *  @sigsetsize: size of sigset_t type
4227 */
4228SYSCALL_DEFINE4(rt_sigaction, int, sig,
4229		const struct sigaction __user *, act,
4230		struct sigaction __user *, oact,
4231		size_t, sigsetsize)
4232{
4233	struct k_sigaction new_sa, old_sa;
4234	int ret;
4235
4236	/* XXX: Don't preclude handling different sized sigset_t's.  */
4237	if (sigsetsize != sizeof(sigset_t))
4238		return -EINVAL;
4239
4240	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4241		return -EFAULT;
4242
4243	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4244	if (ret)
4245		return ret;
4246
4247	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4248		return -EFAULT;
4249
4250	return 0;
4251}
4252#ifdef CONFIG_COMPAT
4253COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4254		const struct compat_sigaction __user *, act,
4255		struct compat_sigaction __user *, oact,
4256		compat_size_t, sigsetsize)
4257{
4258	struct k_sigaction new_ka, old_ka;
4259#ifdef __ARCH_HAS_SA_RESTORER
4260	compat_uptr_t restorer;
4261#endif
4262	int ret;
4263
4264	/* XXX: Don't preclude handling different sized sigset_t's.  */
4265	if (sigsetsize != sizeof(compat_sigset_t))
4266		return -EINVAL;
4267
4268	if (act) {
4269		compat_uptr_t handler;
4270		ret = get_user(handler, &act->sa_handler);
4271		new_ka.sa.sa_handler = compat_ptr(handler);
4272#ifdef __ARCH_HAS_SA_RESTORER
4273		ret |= get_user(restorer, &act->sa_restorer);
4274		new_ka.sa.sa_restorer = compat_ptr(restorer);
4275#endif
4276		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4277		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4278		if (ret)
4279			return -EFAULT;
4280	}
4281
4282	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4283	if (!ret && oact) {
4284		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4285			       &oact->sa_handler);
4286		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4287					 sizeof(oact->sa_mask));
4288		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4289#ifdef __ARCH_HAS_SA_RESTORER
4290		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4291				&oact->sa_restorer);
4292#endif
4293	}
4294	return ret;
4295}
4296#endif
4297#endif /* !CONFIG_ODD_RT_SIGACTION */
4298
4299#ifdef CONFIG_OLD_SIGACTION
4300SYSCALL_DEFINE3(sigaction, int, sig,
4301		const struct old_sigaction __user *, act,
4302	        struct old_sigaction __user *, oact)
4303{
4304	struct k_sigaction new_ka, old_ka;
4305	int ret;
4306
4307	if (act) {
4308		old_sigset_t mask;
4309		if (!access_ok(act, sizeof(*act)) ||
4310		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4311		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4312		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4313		    __get_user(mask, &act->sa_mask))
4314			return -EFAULT;
4315#ifdef __ARCH_HAS_KA_RESTORER
4316		new_ka.ka_restorer = NULL;
4317#endif
4318		siginitset(&new_ka.sa.sa_mask, mask);
4319	}
4320
4321	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4322
4323	if (!ret && oact) {
4324		if (!access_ok(oact, sizeof(*oact)) ||
4325		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4326		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4327		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4328		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4329			return -EFAULT;
4330	}
4331
4332	return ret;
4333}
4334#endif
4335#ifdef CONFIG_COMPAT_OLD_SIGACTION
4336COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4337		const struct compat_old_sigaction __user *, act,
4338	        struct compat_old_sigaction __user *, oact)
4339{
4340	struct k_sigaction new_ka, old_ka;
4341	int ret;
4342	compat_old_sigset_t mask;
4343	compat_uptr_t handler, restorer;
4344
4345	if (act) {
4346		if (!access_ok(act, sizeof(*act)) ||
4347		    __get_user(handler, &act->sa_handler) ||
4348		    __get_user(restorer, &act->sa_restorer) ||
4349		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4350		    __get_user(mask, &act->sa_mask))
4351			return -EFAULT;
4352
4353#ifdef __ARCH_HAS_KA_RESTORER
4354		new_ka.ka_restorer = NULL;
4355#endif
4356		new_ka.sa.sa_handler = compat_ptr(handler);
4357		new_ka.sa.sa_restorer = compat_ptr(restorer);
4358		siginitset(&new_ka.sa.sa_mask, mask);
4359	}
4360
4361	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4362
4363	if (!ret && oact) {
4364		if (!access_ok(oact, sizeof(*oact)) ||
4365		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4366			       &oact->sa_handler) ||
4367		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4368			       &oact->sa_restorer) ||
4369		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4370		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4371			return -EFAULT;
4372	}
 
4373	return ret;
4374}
4375#endif
4376
4377#ifdef CONFIG_SGETMASK_SYSCALL
4378
4379/*
4380 * For backwards compatibility.  Functionality superseded by sigprocmask.
4381 */
4382SYSCALL_DEFINE0(sgetmask)
4383{
4384	/* SMP safe */
4385	return current->blocked.sig[0];
4386}
4387
4388SYSCALL_DEFINE1(ssetmask, int, newmask)
4389{
4390	int old = current->blocked.sig[0];
4391	sigset_t newset;
4392
4393	siginitset(&newset, newmask);
4394	set_current_blocked(&newset);
4395
4396	return old;
4397}
4398#endif /* CONFIG_SGETMASK_SYSCALL */
4399
4400#ifdef __ARCH_WANT_SYS_SIGNAL
4401/*
4402 * For backwards compatibility.  Functionality superseded by sigaction.
4403 */
4404SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4405{
4406	struct k_sigaction new_sa, old_sa;
4407	int ret;
4408
4409	new_sa.sa.sa_handler = handler;
4410	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4411	sigemptyset(&new_sa.sa.sa_mask);
4412
4413	ret = do_sigaction(sig, &new_sa, &old_sa);
4414
4415	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4416}
4417#endif /* __ARCH_WANT_SYS_SIGNAL */
4418
4419#ifdef __ARCH_WANT_SYS_PAUSE
4420
4421SYSCALL_DEFINE0(pause)
4422{
4423	while (!signal_pending(current)) {
4424		__set_current_state(TASK_INTERRUPTIBLE);
4425		schedule();
4426	}
4427	return -ERESTARTNOHAND;
4428}
4429
4430#endif
4431
4432static int sigsuspend(sigset_t *set)
4433{
4434	current->saved_sigmask = current->blocked;
4435	set_current_blocked(set);
4436
4437	while (!signal_pending(current)) {
4438		__set_current_state(TASK_INTERRUPTIBLE);
4439		schedule();
4440	}
4441	set_restore_sigmask();
4442	return -ERESTARTNOHAND;
4443}
4444
 
4445/**
4446 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4447 *	@unewset value until a signal is received
4448 *  @unewset: new signal mask value
4449 *  @sigsetsize: size of sigset_t type
4450 */
4451SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4452{
4453	sigset_t newset;
4454
4455	/* XXX: Don't preclude handling different sized sigset_t's.  */
4456	if (sigsetsize != sizeof(sigset_t))
4457		return -EINVAL;
4458
4459	if (copy_from_user(&newset, unewset, sizeof(newset)))
4460		return -EFAULT;
4461	return sigsuspend(&newset);
4462}
4463 
4464#ifdef CONFIG_COMPAT
4465COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4466{
4467	sigset_t newset;
4468
4469	/* XXX: Don't preclude handling different sized sigset_t's.  */
4470	if (sigsetsize != sizeof(sigset_t))
4471		return -EINVAL;
4472
4473	if (get_compat_sigset(&newset, unewset))
4474		return -EFAULT;
4475	return sigsuspend(&newset);
4476}
4477#endif
4478
4479#ifdef CONFIG_OLD_SIGSUSPEND
4480SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4481{
4482	sigset_t blocked;
4483	siginitset(&blocked, mask);
4484	return sigsuspend(&blocked);
4485}
4486#endif
4487#ifdef CONFIG_OLD_SIGSUSPEND3
4488SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4489{
4490	sigset_t blocked;
4491	siginitset(&blocked, mask);
4492	return sigsuspend(&blocked);
4493}
4494#endif
4495
4496__weak const char *arch_vma_name(struct vm_area_struct *vma)
4497{
4498	return NULL;
4499}
4500
4501static inline void siginfo_buildtime_checks(void)
4502{
4503	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4504
4505	/* Verify the offsets in the two siginfos match */
4506#define CHECK_OFFSET(field) \
4507	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4508
4509	/* kill */
4510	CHECK_OFFSET(si_pid);
4511	CHECK_OFFSET(si_uid);
4512
4513	/* timer */
4514	CHECK_OFFSET(si_tid);
4515	CHECK_OFFSET(si_overrun);
4516	CHECK_OFFSET(si_value);
4517
4518	/* rt */
4519	CHECK_OFFSET(si_pid);
4520	CHECK_OFFSET(si_uid);
4521	CHECK_OFFSET(si_value);
4522
4523	/* sigchld */
4524	CHECK_OFFSET(si_pid);
4525	CHECK_OFFSET(si_uid);
4526	CHECK_OFFSET(si_status);
4527	CHECK_OFFSET(si_utime);
4528	CHECK_OFFSET(si_stime);
4529
4530	/* sigfault */
4531	CHECK_OFFSET(si_addr);
4532	CHECK_OFFSET(si_addr_lsb);
4533	CHECK_OFFSET(si_lower);
4534	CHECK_OFFSET(si_upper);
4535	CHECK_OFFSET(si_pkey);
4536
4537	/* sigpoll */
4538	CHECK_OFFSET(si_band);
4539	CHECK_OFFSET(si_fd);
4540
4541	/* sigsys */
4542	CHECK_OFFSET(si_call_addr);
4543	CHECK_OFFSET(si_syscall);
4544	CHECK_OFFSET(si_arch);
4545#undef CHECK_OFFSET
4546
4547	/* usb asyncio */
4548	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4549		     offsetof(struct siginfo, si_addr));
4550	if (sizeof(int) == sizeof(void __user *)) {
4551		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4552			     sizeof(void __user *));
4553	} else {
4554		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4555			      sizeof_field(struct siginfo, si_uid)) !=
4556			     sizeof(void __user *));
4557		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4558			     offsetof(struct siginfo, si_uid));
4559	}
4560#ifdef CONFIG_COMPAT
4561	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4562		     offsetof(struct compat_siginfo, si_addr));
4563	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4564		     sizeof(compat_uptr_t));
4565	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4566		     sizeof_field(struct siginfo, si_pid));
4567#endif
4568}
4569
4570void __init signals_init(void)
4571{
4572	siginfo_buildtime_checks();
4573
4574	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4575}
4576
4577#ifdef CONFIG_KGDB_KDB
4578#include <linux/kdb.h>
4579/*
4580 * kdb_send_sig - Allows kdb to send signals without exposing
4581 * signal internals.  This function checks if the required locks are
4582 * available before calling the main signal code, to avoid kdb
4583 * deadlocks.
4584 */
4585void kdb_send_sig(struct task_struct *t, int sig)
 
4586{
4587	static struct task_struct *kdb_prev_t;
4588	int new_t, ret;
4589	if (!spin_trylock(&t->sighand->siglock)) {
4590		kdb_printf("Can't do kill command now.\n"
4591			   "The sigmask lock is held somewhere else in "
4592			   "kernel, try again later\n");
4593		return;
4594	}
 
4595	new_t = kdb_prev_t != t;
4596	kdb_prev_t = t;
4597	if (t->state != TASK_RUNNING && new_t) {
4598		spin_unlock(&t->sighand->siglock);
4599		kdb_printf("Process is not RUNNING, sending a signal from "
4600			   "kdb risks deadlock\n"
4601			   "on the run queue locks. "
4602			   "The signal has _not_ been sent.\n"
4603			   "Reissue the kill command if you want to risk "
4604			   "the deadlock.\n");
4605		return;
4606	}
4607	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4608	spin_unlock(&t->sighand->siglock);
4609	if (ret)
4610		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4611			   sig, t->pid);
4612	else
4613		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4614}
4615#endif	/* CONFIG_KGDB_KDB */
v3.5.6
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
 
 
 
 
 
 
  17#include <linux/fs.h>
 
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
 
  20#include <linux/security.h>
  21#include <linux/syscalls.h>
  22#include <linux/ptrace.h>
  23#include <linux/signal.h>
  24#include <linux/signalfd.h>
  25#include <linux/ratelimit.h>
  26#include <linux/tracehook.h>
  27#include <linux/capability.h>
  28#include <linux/freezer.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/nsproxy.h>
  31#include <linux/user_namespace.h>
  32#include <linux/uprobes.h>
 
 
 
 
 
 
 
 
  33#define CREATE_TRACE_POINTS
  34#include <trace/events/signal.h>
  35
  36#include <asm/param.h>
  37#include <asm/uaccess.h>
  38#include <asm/unistd.h>
  39#include <asm/siginfo.h>
  40#include <asm/cacheflush.h>
  41#include "audit.h"	/* audit_signal_info() */
  42
  43/*
  44 * SLAB caches for signal bits.
  45 */
  46
  47static struct kmem_cache *sigqueue_cachep;
  48
  49int print_fatal_signals __read_mostly;
  50
  51static void __user *sig_handler(struct task_struct *t, int sig)
  52{
  53	return t->sighand->action[sig - 1].sa.sa_handler;
  54}
  55
  56static int sig_handler_ignored(void __user *handler, int sig)
  57{
  58	/* Is it explicitly or implicitly ignored? */
  59	return handler == SIG_IGN ||
  60		(handler == SIG_DFL && sig_kernel_ignore(sig));
  61}
  62
  63static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  64{
  65	void __user *handler;
  66
  67	handler = sig_handler(t, sig);
  68
 
 
 
 
  69	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  70			handler == SIG_DFL && !force)
  71		return 1;
 
 
 
 
 
  72
  73	return sig_handler_ignored(handler, sig);
  74}
  75
  76static int sig_ignored(struct task_struct *t, int sig, bool force)
  77{
  78	/*
  79	 * Blocked signals are never ignored, since the
  80	 * signal handler may change by the time it is
  81	 * unblocked.
  82	 */
  83	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  84		return 0;
  85
  86	if (!sig_task_ignored(t, sig, force))
  87		return 0;
  88
  89	/*
  90	 * Tracers may want to know about even ignored signals.
 
 
  91	 */
  92	return !t->ptrace;
 
 
 
  93}
  94
  95/*
  96 * Re-calculate pending state from the set of locally pending
  97 * signals, globally pending signals, and blocked signals.
  98 */
  99static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 100{
 101	unsigned long ready;
 102	long i;
 103
 104	switch (_NSIG_WORDS) {
 105	default:
 106		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 107			ready |= signal->sig[i] &~ blocked->sig[i];
 108		break;
 109
 110	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 111		ready |= signal->sig[2] &~ blocked->sig[2];
 112		ready |= signal->sig[1] &~ blocked->sig[1];
 113		ready |= signal->sig[0] &~ blocked->sig[0];
 114		break;
 115
 116	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 117		ready |= signal->sig[0] &~ blocked->sig[0];
 118		break;
 119
 120	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 121	}
 122	return ready !=	0;
 123}
 124
 125#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 126
 127static int recalc_sigpending_tsk(struct task_struct *t)
 128{
 129	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 130	    PENDING(&t->pending, &t->blocked) ||
 131	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 132		set_tsk_thread_flag(t, TIF_SIGPENDING);
 133		return 1;
 134	}
 
 135	/*
 136	 * We must never clear the flag in another thread, or in current
 137	 * when it's possible the current syscall is returning -ERESTART*.
 138	 * So we don't clear it here, and only callers who know they should do.
 139	 */
 140	return 0;
 141}
 142
 143/*
 144 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 145 * This is superfluous when called on current, the wakeup is a harmless no-op.
 146 */
 147void recalc_sigpending_and_wake(struct task_struct *t)
 148{
 149	if (recalc_sigpending_tsk(t))
 150		signal_wake_up(t, 0);
 151}
 152
 153void recalc_sigpending(void)
 154{
 155	if (!recalc_sigpending_tsk(current) && !freezing(current))
 
 156		clear_thread_flag(TIF_SIGPENDING);
 157
 158}
 
 
 
 
 
 
 
 
 
 
 
 
 159
 160/* Given the mask, find the first available signal that should be serviced. */
 161
 162#define SYNCHRONOUS_MASK \
 163	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 164	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 165
 166int next_signal(struct sigpending *pending, sigset_t *mask)
 167{
 168	unsigned long i, *s, *m, x;
 169	int sig = 0;
 170
 171	s = pending->signal.sig;
 172	m = mask->sig;
 173
 174	/*
 175	 * Handle the first word specially: it contains the
 176	 * synchronous signals that need to be dequeued first.
 177	 */
 178	x = *s &~ *m;
 179	if (x) {
 180		if (x & SYNCHRONOUS_MASK)
 181			x &= SYNCHRONOUS_MASK;
 182		sig = ffz(~x) + 1;
 183		return sig;
 184	}
 185
 186	switch (_NSIG_WORDS) {
 187	default:
 188		for (i = 1; i < _NSIG_WORDS; ++i) {
 189			x = *++s &~ *++m;
 190			if (!x)
 191				continue;
 192			sig = ffz(~x) + i*_NSIG_BPW + 1;
 193			break;
 194		}
 195		break;
 196
 197	case 2:
 198		x = s[1] &~ m[1];
 199		if (!x)
 200			break;
 201		sig = ffz(~x) + _NSIG_BPW + 1;
 202		break;
 203
 204	case 1:
 205		/* Nothing to do */
 206		break;
 207	}
 208
 209	return sig;
 210}
 211
 212static inline void print_dropped_signal(int sig)
 213{
 214	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 215
 216	if (!print_fatal_signals)
 217		return;
 218
 219	if (!__ratelimit(&ratelimit_state))
 220		return;
 221
 222	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 223				current->comm, current->pid, sig);
 224}
 225
 226/**
 227 * task_set_jobctl_pending - set jobctl pending bits
 228 * @task: target task
 229 * @mask: pending bits to set
 230 *
 231 * Clear @mask from @task->jobctl.  @mask must be subset of
 232 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 233 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 234 * cleared.  If @task is already being killed or exiting, this function
 235 * becomes noop.
 236 *
 237 * CONTEXT:
 238 * Must be called with @task->sighand->siglock held.
 239 *
 240 * RETURNS:
 241 * %true if @mask is set, %false if made noop because @task was dying.
 242 */
 243bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 244{
 245	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 246			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 247	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 248
 249	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 250		return false;
 251
 252	if (mask & JOBCTL_STOP_SIGMASK)
 253		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 254
 255	task->jobctl |= mask;
 256	return true;
 257}
 258
 259/**
 260 * task_clear_jobctl_trapping - clear jobctl trapping bit
 261 * @task: target task
 262 *
 263 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 264 * Clear it and wake up the ptracer.  Note that we don't need any further
 265 * locking.  @task->siglock guarantees that @task->parent points to the
 266 * ptracer.
 267 *
 268 * CONTEXT:
 269 * Must be called with @task->sighand->siglock held.
 270 */
 271void task_clear_jobctl_trapping(struct task_struct *task)
 272{
 273	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 274		task->jobctl &= ~JOBCTL_TRAPPING;
 
 275		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 276	}
 277}
 278
 279/**
 280 * task_clear_jobctl_pending - clear jobctl pending bits
 281 * @task: target task
 282 * @mask: pending bits to clear
 283 *
 284 * Clear @mask from @task->jobctl.  @mask must be subset of
 285 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 286 * STOP bits are cleared together.
 287 *
 288 * If clearing of @mask leaves no stop or trap pending, this function calls
 289 * task_clear_jobctl_trapping().
 290 *
 291 * CONTEXT:
 292 * Must be called with @task->sighand->siglock held.
 293 */
 294void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 295{
 296	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 297
 298	if (mask & JOBCTL_STOP_PENDING)
 299		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 300
 301	task->jobctl &= ~mask;
 302
 303	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 304		task_clear_jobctl_trapping(task);
 305}
 306
 307/**
 308 * task_participate_group_stop - participate in a group stop
 309 * @task: task participating in a group stop
 310 *
 311 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 312 * Group stop states are cleared and the group stop count is consumed if
 313 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 314 * stop, the appropriate %SIGNAL_* flags are set.
 315 *
 316 * CONTEXT:
 317 * Must be called with @task->sighand->siglock held.
 318 *
 319 * RETURNS:
 320 * %true if group stop completion should be notified to the parent, %false
 321 * otherwise.
 322 */
 323static bool task_participate_group_stop(struct task_struct *task)
 324{
 325	struct signal_struct *sig = task->signal;
 326	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 327
 328	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 329
 330	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 331
 332	if (!consume)
 333		return false;
 334
 335	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 336		sig->group_stop_count--;
 337
 338	/*
 339	 * Tell the caller to notify completion iff we are entering into a
 340	 * fresh group stop.  Read comment in do_signal_stop() for details.
 341	 */
 342	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 343		sig->flags = SIGNAL_STOP_STOPPED;
 344		return true;
 345	}
 346	return false;
 347}
 348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349/*
 350 * allocate a new signal queue record
 351 * - this may be called without locks if and only if t == current, otherwise an
 352 *   appropriate lock must be held to stop the target task from exiting
 353 */
 354static struct sigqueue *
 355__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 356{
 357	struct sigqueue *q = NULL;
 358	struct user_struct *user;
 359
 360	/*
 361	 * Protect access to @t credentials. This can go away when all
 362	 * callers hold rcu read lock.
 363	 */
 364	rcu_read_lock();
 365	user = get_uid(__task_cred(t)->user);
 366	atomic_inc(&user->sigpending);
 367	rcu_read_unlock();
 368
 369	if (override_rlimit ||
 370	    atomic_read(&user->sigpending) <=
 371			task_rlimit(t, RLIMIT_SIGPENDING)) {
 372		q = kmem_cache_alloc(sigqueue_cachep, flags);
 373	} else {
 374		print_dropped_signal(sig);
 375	}
 376
 377	if (unlikely(q == NULL)) {
 378		atomic_dec(&user->sigpending);
 379		free_uid(user);
 380	} else {
 381		INIT_LIST_HEAD(&q->list);
 382		q->flags = 0;
 383		q->user = user;
 384	}
 385
 386	return q;
 387}
 388
 389static void __sigqueue_free(struct sigqueue *q)
 390{
 391	if (q->flags & SIGQUEUE_PREALLOC)
 392		return;
 393	atomic_dec(&q->user->sigpending);
 394	free_uid(q->user);
 395	kmem_cache_free(sigqueue_cachep, q);
 396}
 397
 398void flush_sigqueue(struct sigpending *queue)
 399{
 400	struct sigqueue *q;
 401
 402	sigemptyset(&queue->signal);
 403	while (!list_empty(&queue->list)) {
 404		q = list_entry(queue->list.next, struct sigqueue , list);
 405		list_del_init(&q->list);
 406		__sigqueue_free(q);
 407	}
 408}
 409
 410/*
 411 * Flush all pending signals for a task.
 412 */
 413void __flush_signals(struct task_struct *t)
 414{
 415	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 416	flush_sigqueue(&t->pending);
 417	flush_sigqueue(&t->signal->shared_pending);
 418}
 419
 420void flush_signals(struct task_struct *t)
 421{
 422	unsigned long flags;
 423
 424	spin_lock_irqsave(&t->sighand->siglock, flags);
 425	__flush_signals(t);
 
 
 426	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 427}
 
 428
 
 429static void __flush_itimer_signals(struct sigpending *pending)
 430{
 431	sigset_t signal, retain;
 432	struct sigqueue *q, *n;
 433
 434	signal = pending->signal;
 435	sigemptyset(&retain);
 436
 437	list_for_each_entry_safe(q, n, &pending->list, list) {
 438		int sig = q->info.si_signo;
 439
 440		if (likely(q->info.si_code != SI_TIMER)) {
 441			sigaddset(&retain, sig);
 442		} else {
 443			sigdelset(&signal, sig);
 444			list_del_init(&q->list);
 445			__sigqueue_free(q);
 446		}
 447	}
 448
 449	sigorsets(&pending->signal, &signal, &retain);
 450}
 451
 452void flush_itimer_signals(void)
 453{
 454	struct task_struct *tsk = current;
 455	unsigned long flags;
 456
 457	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 458	__flush_itimer_signals(&tsk->pending);
 459	__flush_itimer_signals(&tsk->signal->shared_pending);
 460	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 461}
 
 462
 463void ignore_signals(struct task_struct *t)
 464{
 465	int i;
 466
 467	for (i = 0; i < _NSIG; ++i)
 468		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 469
 470	flush_signals(t);
 471}
 472
 473/*
 474 * Flush all handlers for a task.
 475 */
 476
 477void
 478flush_signal_handlers(struct task_struct *t, int force_default)
 479{
 480	int i;
 481	struct k_sigaction *ka = &t->sighand->action[0];
 482	for (i = _NSIG ; i != 0 ; i--) {
 483		if (force_default || ka->sa.sa_handler != SIG_IGN)
 484			ka->sa.sa_handler = SIG_DFL;
 485		ka->sa.sa_flags = 0;
 
 
 
 486		sigemptyset(&ka->sa.sa_mask);
 487		ka++;
 488	}
 489}
 490
 491int unhandled_signal(struct task_struct *tsk, int sig)
 492{
 493	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 494	if (is_global_init(tsk))
 495		return 1;
 
 496	if (handler != SIG_IGN && handler != SIG_DFL)
 497		return 0;
 
 498	/* if ptraced, let the tracer determine */
 499	return !tsk->ptrace;
 500}
 501
 502/*
 503 * Notify the system that a driver wants to block all signals for this
 504 * process, and wants to be notified if any signals at all were to be
 505 * sent/acted upon.  If the notifier routine returns non-zero, then the
 506 * signal will be acted upon after all.  If the notifier routine returns 0,
 507 * then then signal will be blocked.  Only one block per process is
 508 * allowed.  priv is a pointer to private data that the notifier routine
 509 * can use to determine if the signal should be blocked or not.
 510 */
 511void
 512block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 513{
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&current->sighand->siglock, flags);
 517	current->notifier_mask = mask;
 518	current->notifier_data = priv;
 519	current->notifier = notifier;
 520	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 521}
 522
 523/* Notify the system that blocking has ended. */
 524
 525void
 526unblock_all_signals(void)
 527{
 528	unsigned long flags;
 529
 530	spin_lock_irqsave(&current->sighand->siglock, flags);
 531	current->notifier = NULL;
 532	current->notifier_data = NULL;
 533	recalc_sigpending();
 534	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 535}
 536
 537static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 538{
 539	struct sigqueue *q, *first = NULL;
 540
 541	/*
 542	 * Collect the siginfo appropriate to this signal.  Check if
 543	 * there is another siginfo for the same signal.
 544	*/
 545	list_for_each_entry(q, &list->list, list) {
 546		if (q->info.si_signo == sig) {
 547			if (first)
 548				goto still_pending;
 549			first = q;
 550		}
 551	}
 552
 553	sigdelset(&list->signal, sig);
 554
 555	if (first) {
 556still_pending:
 557		list_del_init(&first->list);
 558		copy_siginfo(info, &first->info);
 
 
 
 
 
 
 559		__sigqueue_free(first);
 560	} else {
 561		/*
 562		 * Ok, it wasn't in the queue.  This must be
 563		 * a fast-pathed signal or we must have been
 564		 * out of queue space.  So zero out the info.
 565		 */
 
 566		info->si_signo = sig;
 567		info->si_errno = 0;
 568		info->si_code = SI_USER;
 569		info->si_pid = 0;
 570		info->si_uid = 0;
 571	}
 572}
 573
 574static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 575			siginfo_t *info)
 576{
 577	int sig = next_signal(pending, mask);
 578
 579	if (sig) {
 580		if (current->notifier) {
 581			if (sigismember(current->notifier_mask, sig)) {
 582				if (!(current->notifier)(current->notifier_data)) {
 583					clear_thread_flag(TIF_SIGPENDING);
 584					return 0;
 585				}
 586			}
 587		}
 588
 589		collect_signal(sig, pending, info);
 590	}
 591
 592	return sig;
 593}
 594
 595/*
 596 * Dequeue a signal and return the element to the caller, which is
 597 * expected to free it.
 598 *
 599 * All callers have to hold the siglock.
 600 */
 601int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 602{
 
 603	int signr;
 604
 605	/* We only dequeue private signals from ourselves, we don't let
 606	 * signalfd steal them
 607	 */
 608	signr = __dequeue_signal(&tsk->pending, mask, info);
 609	if (!signr) {
 610		signr = __dequeue_signal(&tsk->signal->shared_pending,
 611					 mask, info);
 
 612		/*
 613		 * itimer signal ?
 614		 *
 615		 * itimers are process shared and we restart periodic
 616		 * itimers in the signal delivery path to prevent DoS
 617		 * attacks in the high resolution timer case. This is
 618		 * compliant with the old way of self-restarting
 619		 * itimers, as the SIGALRM is a legacy signal and only
 620		 * queued once. Changing the restart behaviour to
 621		 * restart the timer in the signal dequeue path is
 622		 * reducing the timer noise on heavy loaded !highres
 623		 * systems too.
 624		 */
 625		if (unlikely(signr == SIGALRM)) {
 626			struct hrtimer *tmr = &tsk->signal->real_timer;
 627
 628			if (!hrtimer_is_queued(tmr) &&
 629			    tsk->signal->it_real_incr.tv64 != 0) {
 630				hrtimer_forward(tmr, tmr->base->get_time(),
 631						tsk->signal->it_real_incr);
 632				hrtimer_restart(tmr);
 633			}
 634		}
 
 635	}
 636
 637	recalc_sigpending();
 638	if (!signr)
 639		return 0;
 640
 641	if (unlikely(sig_kernel_stop(signr))) {
 642		/*
 643		 * Set a marker that we have dequeued a stop signal.  Our
 644		 * caller might release the siglock and then the pending
 645		 * stop signal it is about to process is no longer in the
 646		 * pending bitmasks, but must still be cleared by a SIGCONT
 647		 * (and overruled by a SIGKILL).  So those cases clear this
 648		 * shared flag after we've set it.  Note that this flag may
 649		 * remain set after the signal we return is ignored or
 650		 * handled.  That doesn't matter because its only purpose
 651		 * is to alert stop-signal processing code when another
 652		 * processor has come along and cleared the flag.
 653		 */
 654		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 655	}
 656	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 
 657		/*
 658		 * Release the siglock to ensure proper locking order
 659		 * of timer locks outside of siglocks.  Note, we leave
 660		 * irqs disabled here, since the posix-timers code is
 661		 * about to disable them again anyway.
 662		 */
 663		spin_unlock(&tsk->sighand->siglock);
 664		do_schedule_next_timer(info);
 665		spin_lock(&tsk->sighand->siglock);
 
 
 
 666	}
 
 667	return signr;
 668}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669
 670/*
 671 * Tell a process that it has a new active signal..
 672 *
 673 * NOTE! we rely on the previous spin_lock to
 674 * lock interrupts for us! We can only be called with
 675 * "siglock" held, and the local interrupt must
 676 * have been disabled when that got acquired!
 677 *
 678 * No need to set need_resched since signal event passing
 679 * goes through ->blocked
 680 */
 681void signal_wake_up(struct task_struct *t, int resume)
 682{
 683	unsigned int mask;
 684
 685	set_tsk_thread_flag(t, TIF_SIGPENDING);
 686
 687	/*
 688	 * For SIGKILL, we want to wake it up in the stopped/traced/killable
 689	 * case. We don't check t->state here because there is a race with it
 690	 * executing another processor and just now entering stopped state.
 691	 * By using wake_up_state, we ensure the process will wake up and
 692	 * handle its death signal.
 693	 */
 694	mask = TASK_INTERRUPTIBLE;
 695	if (resume)
 696		mask |= TASK_WAKEKILL;
 697	if (!wake_up_state(t, mask))
 698		kick_process(t);
 699}
 700
 701/*
 702 * Remove signals in mask from the pending set and queue.
 703 * Returns 1 if any signals were found.
 704 *
 705 * All callers must be holding the siglock.
 706 *
 707 * This version takes a sigset mask and looks at all signals,
 708 * not just those in the first mask word.
 709 */
 710static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 711{
 712	struct sigqueue *q, *n;
 713	sigset_t m;
 714
 715	sigandsets(&m, mask, &s->signal);
 716	if (sigisemptyset(&m))
 717		return 0;
 718
 719	sigandnsets(&s->signal, &s->signal, mask);
 720	list_for_each_entry_safe(q, n, &s->list, list) {
 721		if (sigismember(mask, q->info.si_signo)) {
 722			list_del_init(&q->list);
 723			__sigqueue_free(q);
 724		}
 725	}
 726	return 1;
 727}
 728/*
 729 * Remove signals in mask from the pending set and queue.
 730 * Returns 1 if any signals were found.
 731 *
 732 * All callers must be holding the siglock.
 733 */
 734static int rm_from_queue(unsigned long mask, struct sigpending *s)
 735{
 736	struct sigqueue *q, *n;
 737
 738	if (!sigtestsetmask(&s->signal, mask))
 739		return 0;
 740
 741	sigdelsetmask(&s->signal, mask);
 742	list_for_each_entry_safe(q, n, &s->list, list) {
 743		if (q->info.si_signo < SIGRTMIN &&
 744		    (mask & sigmask(q->info.si_signo))) {
 745			list_del_init(&q->list);
 746			__sigqueue_free(q);
 747		}
 748	}
 749	return 1;
 750}
 751
 752static inline int is_si_special(const struct siginfo *info)
 753{
 754	return info <= SEND_SIG_FORCED;
 755}
 756
 757static inline bool si_fromuser(const struct siginfo *info)
 758{
 759	return info == SEND_SIG_NOINFO ||
 760		(!is_si_special(info) && SI_FROMUSER(info));
 761}
 762
 763/*
 764 * called with RCU read lock from check_kill_permission()
 765 */
 766static int kill_ok_by_cred(struct task_struct *t)
 767{
 768	const struct cred *cred = current_cred();
 769	const struct cred *tcred = __task_cred(t);
 770
 771	if (uid_eq(cred->euid, tcred->suid) ||
 772	    uid_eq(cred->euid, tcred->uid)  ||
 773	    uid_eq(cred->uid,  tcred->suid) ||
 774	    uid_eq(cred->uid,  tcred->uid))
 775		return 1;
 776
 777	if (ns_capable(tcred->user_ns, CAP_KILL))
 778		return 1;
 779
 780	return 0;
 781}
 782
 783/*
 784 * Bad permissions for sending the signal
 785 * - the caller must hold the RCU read lock
 786 */
 787static int check_kill_permission(int sig, struct siginfo *info,
 788				 struct task_struct *t)
 789{
 790	struct pid *sid;
 791	int error;
 792
 793	if (!valid_signal(sig))
 794		return -EINVAL;
 795
 796	if (!si_fromuser(info))
 797		return 0;
 798
 799	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 800	if (error)
 801		return error;
 802
 803	if (!same_thread_group(current, t) &&
 804	    !kill_ok_by_cred(t)) {
 805		switch (sig) {
 806		case SIGCONT:
 807			sid = task_session(t);
 808			/*
 809			 * We don't return the error if sid == NULL. The
 810			 * task was unhashed, the caller must notice this.
 811			 */
 812			if (!sid || sid == task_session(current))
 813				break;
 
 814		default:
 815			return -EPERM;
 816		}
 817	}
 818
 819	return security_task_kill(t, info, sig, 0);
 820}
 821
 822/**
 823 * ptrace_trap_notify - schedule trap to notify ptracer
 824 * @t: tracee wanting to notify tracer
 825 *
 826 * This function schedules sticky ptrace trap which is cleared on the next
 827 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 828 * ptracer.
 829 *
 830 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 831 * ptracer is listening for events, tracee is woken up so that it can
 832 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 833 * eventually taken without returning to userland after the existing traps
 834 * are finished by PTRACE_CONT.
 835 *
 836 * CONTEXT:
 837 * Must be called with @task->sighand->siglock held.
 838 */
 839static void ptrace_trap_notify(struct task_struct *t)
 840{
 841	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 842	assert_spin_locked(&t->sighand->siglock);
 843
 844	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 845	signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 846}
 847
 848/*
 849 * Handle magic process-wide effects of stop/continue signals. Unlike
 850 * the signal actions, these happen immediately at signal-generation
 851 * time regardless of blocking, ignoring, or handling.  This does the
 852 * actual continuing for SIGCONT, but not the actual stopping for stop
 853 * signals. The process stop is done as a signal action for SIG_DFL.
 854 *
 855 * Returns true if the signal should be actually delivered, otherwise
 856 * it should be dropped.
 857 */
 858static int prepare_signal(int sig, struct task_struct *p, bool force)
 859{
 860	struct signal_struct *signal = p->signal;
 861	struct task_struct *t;
 
 862
 863	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
 
 
 864		/*
 865		 * The process is in the middle of dying, nothing to do.
 866		 */
 867	} else if (sig_kernel_stop(sig)) {
 868		/*
 869		 * This is a stop signal.  Remove SIGCONT from all queues.
 870		 */
 871		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 872		t = p;
 873		do {
 874			rm_from_queue(sigmask(SIGCONT), &t->pending);
 875		} while_each_thread(p, t);
 876	} else if (sig == SIGCONT) {
 877		unsigned int why;
 878		/*
 879		 * Remove all stop signals from all queues, wake all threads.
 880		 */
 881		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 882		t = p;
 883		do {
 
 884			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 885			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 886			if (likely(!(t->ptrace & PT_SEIZED)))
 887				wake_up_state(t, __TASK_STOPPED);
 888			else
 889				ptrace_trap_notify(t);
 890		} while_each_thread(p, t);
 891
 892		/*
 893		 * Notify the parent with CLD_CONTINUED if we were stopped.
 894		 *
 895		 * If we were in the middle of a group stop, we pretend it
 896		 * was already finished, and then continued. Since SIGCHLD
 897		 * doesn't queue we report only CLD_STOPPED, as if the next
 898		 * CLD_CONTINUED was dropped.
 899		 */
 900		why = 0;
 901		if (signal->flags & SIGNAL_STOP_STOPPED)
 902			why |= SIGNAL_CLD_CONTINUED;
 903		else if (signal->group_stop_count)
 904			why |= SIGNAL_CLD_STOPPED;
 905
 906		if (why) {
 907			/*
 908			 * The first thread which returns from do_signal_stop()
 909			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 910			 * notify its parent. See get_signal_to_deliver().
 911			 */
 912			signal->flags = why | SIGNAL_STOP_CONTINUED;
 913			signal->group_stop_count = 0;
 914			signal->group_exit_code = 0;
 915		}
 916	}
 917
 918	return !sig_ignored(p, sig, force);
 919}
 920
 921/*
 922 * Test if P wants to take SIG.  After we've checked all threads with this,
 923 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 924 * blocking SIG were ruled out because they are not running and already
 925 * have pending signals.  Such threads will dequeue from the shared queue
 926 * as soon as they're available, so putting the signal on the shared queue
 927 * will be equivalent to sending it to one such thread.
 928 */
 929static inline int wants_signal(int sig, struct task_struct *p)
 930{
 931	if (sigismember(&p->blocked, sig))
 932		return 0;
 
 933	if (p->flags & PF_EXITING)
 934		return 0;
 
 935	if (sig == SIGKILL)
 936		return 1;
 
 937	if (task_is_stopped_or_traced(p))
 938		return 0;
 
 939	return task_curr(p) || !signal_pending(p);
 940}
 941
 942static void complete_signal(int sig, struct task_struct *p, int group)
 943{
 944	struct signal_struct *signal = p->signal;
 945	struct task_struct *t;
 946
 947	/*
 948	 * Now find a thread we can wake up to take the signal off the queue.
 949	 *
 950	 * If the main thread wants the signal, it gets first crack.
 951	 * Probably the least surprising to the average bear.
 952	 */
 953	if (wants_signal(sig, p))
 954		t = p;
 955	else if (!group || thread_group_empty(p))
 956		/*
 957		 * There is just one thread and it does not need to be woken.
 958		 * It will dequeue unblocked signals before it runs again.
 959		 */
 960		return;
 961	else {
 962		/*
 963		 * Otherwise try to find a suitable thread.
 964		 */
 965		t = signal->curr_target;
 966		while (!wants_signal(sig, t)) {
 967			t = next_thread(t);
 968			if (t == signal->curr_target)
 969				/*
 970				 * No thread needs to be woken.
 971				 * Any eligible threads will see
 972				 * the signal in the queue soon.
 973				 */
 974				return;
 975		}
 976		signal->curr_target = t;
 977	}
 978
 979	/*
 980	 * Found a killable thread.  If the signal will be fatal,
 981	 * then start taking the whole group down immediately.
 982	 */
 983	if (sig_fatal(p, sig) &&
 984	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 985	    !sigismember(&t->real_blocked, sig) &&
 986	    (sig == SIGKILL || !t->ptrace)) {
 987		/*
 988		 * This signal will be fatal to the whole group.
 989		 */
 990		if (!sig_kernel_coredump(sig)) {
 991			/*
 992			 * Start a group exit and wake everybody up.
 993			 * This way we don't have other threads
 994			 * running and doing things after a slower
 995			 * thread has the fatal signal pending.
 996			 */
 997			signal->flags = SIGNAL_GROUP_EXIT;
 998			signal->group_exit_code = sig;
 999			signal->group_stop_count = 0;
1000			t = p;
1001			do {
1002				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1003				sigaddset(&t->pending.signal, SIGKILL);
1004				signal_wake_up(t, 1);
1005			} while_each_thread(p, t);
1006			return;
1007		}
1008	}
1009
1010	/*
1011	 * The signal is already in the shared-pending queue.
1012	 * Tell the chosen thread to wake up and dequeue it.
1013	 */
1014	signal_wake_up(t, sig == SIGKILL);
1015	return;
1016}
1017
1018static inline int legacy_queue(struct sigpending *signals, int sig)
1019{
1020	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1021}
1022
1023#ifdef CONFIG_USER_NS
1024static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1025{
1026	if (current_user_ns() == task_cred_xxx(t, user_ns))
1027		return;
1028
1029	if (SI_FROMKERNEL(info))
1030		return;
1031
1032	rcu_read_lock();
1033	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1034					make_kuid(current_user_ns(), info->si_uid));
1035	rcu_read_unlock();
1036}
1037#else
1038static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1039{
1040	return;
1041}
1042#endif
1043
1044static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1045			int group, int from_ancestor_ns)
1046{
1047	struct sigpending *pending;
1048	struct sigqueue *q;
1049	int override_rlimit;
1050	int ret = 0, result;
1051
1052	assert_spin_locked(&t->sighand->siglock);
1053
1054	result = TRACE_SIGNAL_IGNORED;
1055	if (!prepare_signal(sig, t,
1056			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1057		goto ret;
1058
1059	pending = group ? &t->signal->shared_pending : &t->pending;
1060	/*
1061	 * Short-circuit ignored signals and support queuing
1062	 * exactly one non-rt signal, so that we can get more
1063	 * detailed information about the cause of the signal.
1064	 */
1065	result = TRACE_SIGNAL_ALREADY_PENDING;
1066	if (legacy_queue(pending, sig))
1067		goto ret;
1068
1069	result = TRACE_SIGNAL_DELIVERED;
1070	/*
1071	 * fast-pathed signals for kernel-internal things like SIGSTOP
1072	 * or SIGKILL.
1073	 */
1074	if (info == SEND_SIG_FORCED)
1075		goto out_set;
1076
1077	/*
1078	 * Real-time signals must be queued if sent by sigqueue, or
1079	 * some other real-time mechanism.  It is implementation
1080	 * defined whether kill() does so.  We attempt to do so, on
1081	 * the principle of least surprise, but since kill is not
1082	 * allowed to fail with EAGAIN when low on memory we just
1083	 * make sure at least one signal gets delivered and don't
1084	 * pass on the info struct.
1085	 */
1086	if (sig < SIGRTMIN)
1087		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1088	else
1089		override_rlimit = 0;
1090
1091	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1092		override_rlimit);
1093	if (q) {
1094		list_add_tail(&q->list, &pending->list);
1095		switch ((unsigned long) info) {
1096		case (unsigned long) SEND_SIG_NOINFO:
 
1097			q->info.si_signo = sig;
1098			q->info.si_errno = 0;
1099			q->info.si_code = SI_USER;
1100			q->info.si_pid = task_tgid_nr_ns(current,
1101							task_active_pid_ns(t));
1102			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1103			break;
1104		case (unsigned long) SEND_SIG_PRIV:
 
1105			q->info.si_signo = sig;
1106			q->info.si_errno = 0;
1107			q->info.si_code = SI_KERNEL;
1108			q->info.si_pid = 0;
1109			q->info.si_uid = 0;
1110			break;
1111		default:
1112			copy_siginfo(&q->info, info);
1113			if (from_ancestor_ns)
1114				q->info.si_pid = 0;
1115			break;
1116		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1117
1118		userns_fixup_signal_uid(&q->info, t);
 
 
1119
1120	} else if (!is_si_special(info)) {
1121		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1122			/*
1123			 * Queue overflow, abort.  We may abort if the
1124			 * signal was rt and sent by user using something
1125			 * other than kill().
1126			 */
1127			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1128			ret = -EAGAIN;
1129			goto ret;
1130		} else {
1131			/*
1132			 * This is a silent loss of information.  We still
1133			 * send the signal, but the *info bits are lost.
1134			 */
1135			result = TRACE_SIGNAL_LOSE_INFO;
1136		}
1137	}
1138
1139out_set:
1140	signalfd_notify(t, sig);
1141	sigaddset(&pending->signal, sig);
1142	complete_signal(sig, t, group);
1143ret:
1144	trace_signal_generate(sig, info, t, group, result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145	return ret;
1146}
1147
1148static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1149			int group)
1150{
1151	int from_ancestor_ns = 0;
 
1152
1153#ifdef CONFIG_PID_NS
1154	from_ancestor_ns = si_fromuser(info) &&
1155			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1156#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157
1158	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
1159}
1160
1161static void print_fatal_signal(struct pt_regs *regs, int signr)
1162{
1163	printk("%s/%d: potentially unexpected fatal signal %d.\n",
1164		current->comm, task_pid_nr(current), signr);
1165
1166#if defined(__i386__) && !defined(__arch_um__)
1167	printk("code at %08lx: ", regs->ip);
1168	{
1169		int i;
1170		for (i = 0; i < 16; i++) {
1171			unsigned char insn;
1172
1173			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1174				break;
1175			printk("%02x ", insn);
1176		}
1177	}
 
1178#endif
1179	printk("\n");
1180	preempt_disable();
1181	show_regs(regs);
1182	preempt_enable();
1183}
1184
1185static int __init setup_print_fatal_signals(char *str)
1186{
1187	get_option (&str, &print_fatal_signals);
1188
1189	return 1;
1190}
1191
1192__setup("print-fatal-signals=", setup_print_fatal_signals);
1193
1194int
1195__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196{
1197	return send_signal(sig, info, p, 1);
1198}
1199
1200static int
1201specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1202{
1203	return send_signal(sig, info, t, 0);
1204}
1205
1206int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1207			bool group)
1208{
1209	unsigned long flags;
1210	int ret = -ESRCH;
1211
1212	if (lock_task_sighand(p, &flags)) {
1213		ret = send_signal(sig, info, p, group);
1214		unlock_task_sighand(p, &flags);
1215	}
1216
1217	return ret;
1218}
1219
1220/*
1221 * Force a signal that the process can't ignore: if necessary
1222 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1223 *
1224 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1225 * since we do not want to have a signal handler that was blocked
1226 * be invoked when user space had explicitly blocked it.
1227 *
1228 * We don't want to have recursive SIGSEGV's etc, for example,
1229 * that is why we also clear SIGNAL_UNKILLABLE.
1230 */
1231int
1232force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1233{
1234	unsigned long int flags;
1235	int ret, blocked, ignored;
1236	struct k_sigaction *action;
 
1237
1238	spin_lock_irqsave(&t->sighand->siglock, flags);
1239	action = &t->sighand->action[sig-1];
1240	ignored = action->sa.sa_handler == SIG_IGN;
1241	blocked = sigismember(&t->blocked, sig);
1242	if (blocked || ignored) {
1243		action->sa.sa_handler = SIG_DFL;
1244		if (blocked) {
1245			sigdelset(&t->blocked, sig);
1246			recalc_sigpending_and_wake(t);
1247		}
1248	}
1249	if (action->sa.sa_handler == SIG_DFL)
 
 
 
 
1250		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1251	ret = specific_send_sig_info(sig, info, t);
1252	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1253
1254	return ret;
1255}
1256
 
 
 
 
 
1257/*
1258 * Nuke all other threads in the group.
1259 */
1260int zap_other_threads(struct task_struct *p)
1261{
1262	struct task_struct *t = p;
1263	int count = 0;
1264
1265	p->signal->group_stop_count = 0;
1266
1267	while_each_thread(p, t) {
1268		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1269		count++;
1270
1271		/* Don't bother with already dead threads */
1272		if (t->exit_state)
1273			continue;
1274		sigaddset(&t->pending.signal, SIGKILL);
1275		signal_wake_up(t, 1);
1276	}
1277
1278	return count;
1279}
1280
1281struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1282					   unsigned long *flags)
1283{
1284	struct sighand_struct *sighand;
1285
 
1286	for (;;) {
1287		local_irq_save(*flags);
1288		rcu_read_lock();
1289		sighand = rcu_dereference(tsk->sighand);
1290		if (unlikely(sighand == NULL)) {
1291			rcu_read_unlock();
1292			local_irq_restore(*flags);
1293			break;
1294		}
1295
1296		spin_lock(&sighand->siglock);
1297		if (likely(sighand == tsk->sighand)) {
1298			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
1299			break;
1300		}
1301		spin_unlock(&sighand->siglock);
1302		rcu_read_unlock();
1303		local_irq_restore(*flags);
1304	}
 
1305
1306	return sighand;
1307}
1308
1309/*
1310 * send signal info to all the members of a group
1311 */
1312int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1313{
1314	int ret;
1315
1316	rcu_read_lock();
1317	ret = check_kill_permission(sig, info, p);
1318	rcu_read_unlock();
1319
1320	if (!ret && sig)
1321		ret = do_send_sig_info(sig, info, p, true);
1322
1323	return ret;
1324}
1325
1326/*
1327 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1328 * control characters do (^C, ^Z etc)
1329 * - the caller must hold at least a readlock on tasklist_lock
1330 */
1331int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1332{
1333	struct task_struct *p = NULL;
1334	int retval, success;
1335
1336	success = 0;
1337	retval = -ESRCH;
1338	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1339		int err = group_send_sig_info(sig, info, p);
1340		success |= !err;
1341		retval = err;
1342	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1343	return success ? 0 : retval;
1344}
1345
1346int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1347{
1348	int error = -ESRCH;
1349	struct task_struct *p;
1350
1351	rcu_read_lock();
1352retry:
1353	p = pid_task(pid, PIDTYPE_PID);
1354	if (p) {
1355		error = group_send_sig_info(sig, info, p);
1356		if (unlikely(error == -ESRCH))
1357			/*
1358			 * The task was unhashed in between, try again.
1359			 * If it is dead, pid_task() will return NULL,
1360			 * if we race with de_thread() it will find the
1361			 * new leader.
1362			 */
1363			goto retry;
 
1364	}
1365	rcu_read_unlock();
1366
1367	return error;
1368}
1369
1370int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1371{
1372	int error;
1373	rcu_read_lock();
1374	error = kill_pid_info(sig, info, find_vpid(pid));
1375	rcu_read_unlock();
1376	return error;
1377}
1378
1379static int kill_as_cred_perm(const struct cred *cred,
1380			     struct task_struct *target)
1381{
1382	const struct cred *pcred = __task_cred(target);
1383	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1384	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1385		return 0;
1386	return 1;
 
1387}
1388
1389/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1390int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1391			 const struct cred *cred, u32 secid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392{
1393	int ret = -EINVAL;
1394	struct task_struct *p;
1395	unsigned long flags;
 
 
 
 
 
 
 
1396
1397	if (!valid_signal(sig))
1398		return ret;
1399
1400	rcu_read_lock();
1401	p = pid_task(pid, PIDTYPE_PID);
1402	if (!p) {
1403		ret = -ESRCH;
1404		goto out_unlock;
1405	}
1406	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1407		ret = -EPERM;
1408		goto out_unlock;
1409	}
1410	ret = security_task_kill(p, info, sig, secid);
1411	if (ret)
1412		goto out_unlock;
1413
1414	if (sig) {
1415		if (lock_task_sighand(p, &flags)) {
1416			ret = __send_signal(sig, info, p, 1, 0);
1417			unlock_task_sighand(p, &flags);
1418		} else
1419			ret = -ESRCH;
1420	}
1421out_unlock:
1422	rcu_read_unlock();
1423	return ret;
1424}
1425EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1426
1427/*
1428 * kill_something_info() interprets pid in interesting ways just like kill(2).
1429 *
1430 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1431 * is probably wrong.  Should make it like BSD or SYSV.
1432 */
1433
1434static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1435{
1436	int ret;
1437
1438	if (pid > 0) {
1439		rcu_read_lock();
1440		ret = kill_pid_info(sig, info, find_vpid(pid));
1441		rcu_read_unlock();
1442		return ret;
1443	}
1444
 
 
 
 
1445	read_lock(&tasklist_lock);
1446	if (pid != -1) {
1447		ret = __kill_pgrp_info(sig, info,
1448				pid ? find_vpid(-pid) : task_pgrp(current));
1449	} else {
1450		int retval = 0, count = 0;
1451		struct task_struct * p;
1452
1453		for_each_process(p) {
1454			if (task_pid_vnr(p) > 1 &&
1455					!same_thread_group(p, current)) {
1456				int err = group_send_sig_info(sig, info, p);
 
1457				++count;
1458				if (err != -EPERM)
1459					retval = err;
1460			}
1461		}
1462		ret = count ? retval : -ESRCH;
1463	}
1464	read_unlock(&tasklist_lock);
1465
1466	return ret;
1467}
1468
1469/*
1470 * These are for backward compatibility with the rest of the kernel source.
1471 */
1472
1473int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1474{
1475	/*
1476	 * Make sure legacy kernel users don't send in bad values
1477	 * (normal paths check this in check_kill_permission).
1478	 */
1479	if (!valid_signal(sig))
1480		return -EINVAL;
1481
1482	return do_send_sig_info(sig, info, p, false);
1483}
 
1484
1485#define __si_special(priv) \
1486	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1487
1488int
1489send_sig(int sig, struct task_struct *p, int priv)
1490{
1491	return send_sig_info(sig, __si_special(priv), p);
1492}
 
1493
1494void
1495force_sig(int sig, struct task_struct *p)
1496{
1497	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1498}
 
1499
1500/*
1501 * When things go south during signal handling, we
1502 * will force a SIGSEGV. And if the signal that caused
1503 * the problem was already a SIGSEGV, we'll want to
1504 * make sure we don't even try to deliver the signal..
1505 */
1506int
1507force_sigsegv(int sig, struct task_struct *p)
1508{
 
 
1509	if (sig == SIGSEGV) {
1510		unsigned long flags;
1511		spin_lock_irqsave(&p->sighand->siglock, flags);
1512		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1513		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1514	}
1515	force_sig(SIGSEGV, p);
1516	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517}
1518
1519int kill_pgrp(struct pid *pid, int sig, int priv)
1520{
1521	int ret;
1522
1523	read_lock(&tasklist_lock);
1524	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1525	read_unlock(&tasklist_lock);
1526
1527	return ret;
1528}
1529EXPORT_SYMBOL(kill_pgrp);
1530
1531int kill_pid(struct pid *pid, int sig, int priv)
1532{
1533	return kill_pid_info(sig, __si_special(priv), pid);
1534}
1535EXPORT_SYMBOL(kill_pid);
1536
1537/*
1538 * These functions support sending signals using preallocated sigqueue
1539 * structures.  This is needed "because realtime applications cannot
1540 * afford to lose notifications of asynchronous events, like timer
1541 * expirations or I/O completions".  In the case of POSIX Timers
1542 * we allocate the sigqueue structure from the timer_create.  If this
1543 * allocation fails we are able to report the failure to the application
1544 * with an EAGAIN error.
1545 */
1546struct sigqueue *sigqueue_alloc(void)
1547{
1548	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1549
1550	if (q)
1551		q->flags |= SIGQUEUE_PREALLOC;
1552
1553	return q;
1554}
1555
1556void sigqueue_free(struct sigqueue *q)
1557{
1558	unsigned long flags;
1559	spinlock_t *lock = &current->sighand->siglock;
1560
1561	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1562	/*
1563	 * We must hold ->siglock while testing q->list
1564	 * to serialize with collect_signal() or with
1565	 * __exit_signal()->flush_sigqueue().
1566	 */
1567	spin_lock_irqsave(lock, flags);
1568	q->flags &= ~SIGQUEUE_PREALLOC;
1569	/*
1570	 * If it is queued it will be freed when dequeued,
1571	 * like the "regular" sigqueue.
1572	 */
1573	if (!list_empty(&q->list))
1574		q = NULL;
1575	spin_unlock_irqrestore(lock, flags);
1576
1577	if (q)
1578		__sigqueue_free(q);
1579}
1580
1581int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1582{
1583	int sig = q->info.si_signo;
1584	struct sigpending *pending;
 
1585	unsigned long flags;
1586	int ret, result;
1587
1588	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1589
1590	ret = -1;
1591	if (!likely(lock_task_sighand(t, &flags)))
 
 
1592		goto ret;
1593
1594	ret = 1; /* the signal is ignored */
1595	result = TRACE_SIGNAL_IGNORED;
1596	if (!prepare_signal(sig, t, false))
1597		goto out;
1598
1599	ret = 0;
1600	if (unlikely(!list_empty(&q->list))) {
1601		/*
1602		 * If an SI_TIMER entry is already queue just increment
1603		 * the overrun count.
1604		 */
1605		BUG_ON(q->info.si_code != SI_TIMER);
1606		q->info.si_overrun++;
1607		result = TRACE_SIGNAL_ALREADY_PENDING;
1608		goto out;
1609	}
1610	q->info.si_overrun = 0;
1611
1612	signalfd_notify(t, sig);
1613	pending = group ? &t->signal->shared_pending : &t->pending;
1614	list_add_tail(&q->list, &pending->list);
1615	sigaddset(&pending->signal, sig);
1616	complete_signal(sig, t, group);
1617	result = TRACE_SIGNAL_DELIVERED;
1618out:
1619	trace_signal_generate(sig, &q->info, t, group, result);
1620	unlock_task_sighand(t, &flags);
1621ret:
 
1622	return ret;
1623}
1624
 
 
 
 
 
 
 
 
 
1625/*
1626 * Let a parent know about the death of a child.
1627 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1628 *
1629 * Returns true if our parent ignored us and so we've switched to
1630 * self-reaping.
1631 */
1632bool do_notify_parent(struct task_struct *tsk, int sig)
1633{
1634	struct siginfo info;
1635	unsigned long flags;
1636	struct sighand_struct *psig;
1637	bool autoreap = false;
 
1638
1639	BUG_ON(sig == -1);
1640
1641 	/* do_notify_parent_cldstop should have been called instead.  */
1642 	BUG_ON(task_is_stopped_or_traced(tsk));
1643
1644	BUG_ON(!tsk->ptrace &&
1645	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1646
 
 
 
1647	if (sig != SIGCHLD) {
1648		/*
1649		 * This is only possible if parent == real_parent.
1650		 * Check if it has changed security domain.
1651		 */
1652		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1653			sig = SIGCHLD;
1654	}
1655
 
1656	info.si_signo = sig;
1657	info.si_errno = 0;
1658	/*
1659	 * We are under tasklist_lock here so our parent is tied to
1660	 * us and cannot change.
1661	 *
1662	 * task_active_pid_ns will always return the same pid namespace
1663	 * until a task passes through release_task.
1664	 *
1665	 * write_lock() currently calls preempt_disable() which is the
1666	 * same as rcu_read_lock(), but according to Oleg, this is not
1667	 * correct to rely on this
1668	 */
1669	rcu_read_lock();
1670	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1671	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1672				       task_uid(tsk));
1673	rcu_read_unlock();
1674
1675	info.si_utime = cputime_to_clock_t(tsk->utime + tsk->signal->utime);
1676	info.si_stime = cputime_to_clock_t(tsk->stime + tsk->signal->stime);
 
1677
1678	info.si_status = tsk->exit_code & 0x7f;
1679	if (tsk->exit_code & 0x80)
1680		info.si_code = CLD_DUMPED;
1681	else if (tsk->exit_code & 0x7f)
1682		info.si_code = CLD_KILLED;
1683	else {
1684		info.si_code = CLD_EXITED;
1685		info.si_status = tsk->exit_code >> 8;
1686	}
1687
1688	psig = tsk->parent->sighand;
1689	spin_lock_irqsave(&psig->siglock, flags);
1690	if (!tsk->ptrace && sig == SIGCHLD &&
1691	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1692	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1693		/*
1694		 * We are exiting and our parent doesn't care.  POSIX.1
1695		 * defines special semantics for setting SIGCHLD to SIG_IGN
1696		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1697		 * automatically and not left for our parent's wait4 call.
1698		 * Rather than having the parent do it as a magic kind of
1699		 * signal handler, we just set this to tell do_exit that we
1700		 * can be cleaned up without becoming a zombie.  Note that
1701		 * we still call __wake_up_parent in this case, because a
1702		 * blocked sys_wait4 might now return -ECHILD.
1703		 *
1704		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1705		 * is implementation-defined: we do (if you don't want
1706		 * it, just use SIG_IGN instead).
1707		 */
1708		autoreap = true;
1709		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1710			sig = 0;
1711	}
1712	if (valid_signal(sig) && sig)
1713		__group_send_sig_info(sig, &info, tsk->parent);
1714	__wake_up_parent(tsk, tsk->parent);
1715	spin_unlock_irqrestore(&psig->siglock, flags);
1716
1717	return autoreap;
1718}
1719
1720/**
1721 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1722 * @tsk: task reporting the state change
1723 * @for_ptracer: the notification is for ptracer
1724 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1725 *
1726 * Notify @tsk's parent that the stopped/continued state has changed.  If
1727 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1728 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1729 *
1730 * CONTEXT:
1731 * Must be called with tasklist_lock at least read locked.
1732 */
1733static void do_notify_parent_cldstop(struct task_struct *tsk,
1734				     bool for_ptracer, int why)
1735{
1736	struct siginfo info;
1737	unsigned long flags;
1738	struct task_struct *parent;
1739	struct sighand_struct *sighand;
 
1740
1741	if (for_ptracer) {
1742		parent = tsk->parent;
1743	} else {
1744		tsk = tsk->group_leader;
1745		parent = tsk->real_parent;
1746	}
1747
 
1748	info.si_signo = SIGCHLD;
1749	info.si_errno = 0;
1750	/*
1751	 * see comment in do_notify_parent() about the following 4 lines
1752	 */
1753	rcu_read_lock();
1754	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns);
1755	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1756	rcu_read_unlock();
1757
1758	info.si_utime = cputime_to_clock_t(tsk->utime);
1759	info.si_stime = cputime_to_clock_t(tsk->stime);
 
1760
1761 	info.si_code = why;
1762 	switch (why) {
1763 	case CLD_CONTINUED:
1764 		info.si_status = SIGCONT;
1765 		break;
1766 	case CLD_STOPPED:
1767 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1768 		break;
1769 	case CLD_TRAPPED:
1770 		info.si_status = tsk->exit_code & 0x7f;
1771 		break;
1772 	default:
1773 		BUG();
1774 	}
1775
1776	sighand = parent->sighand;
1777	spin_lock_irqsave(&sighand->siglock, flags);
1778	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1779	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1780		__group_send_sig_info(SIGCHLD, &info, parent);
1781	/*
1782	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1783	 */
1784	__wake_up_parent(tsk, parent);
1785	spin_unlock_irqrestore(&sighand->siglock, flags);
1786}
1787
1788static inline int may_ptrace_stop(void)
1789{
1790	if (!likely(current->ptrace))
1791		return 0;
1792	/*
1793	 * Are we in the middle of do_coredump?
1794	 * If so and our tracer is also part of the coredump stopping
1795	 * is a deadlock situation, and pointless because our tracer
1796	 * is dead so don't allow us to stop.
1797	 * If SIGKILL was already sent before the caller unlocked
1798	 * ->siglock we must see ->core_state != NULL. Otherwise it
1799	 * is safe to enter schedule().
 
 
 
 
1800	 */
1801	if (unlikely(current->mm->core_state) &&
1802	    unlikely(current->mm == current->parent->mm))
1803		return 0;
1804
1805	return 1;
1806}
1807
1808/*
1809 * Return non-zero if there is a SIGKILL that should be waking us up.
1810 * Called with the siglock held.
1811 */
1812static int sigkill_pending(struct task_struct *tsk)
1813{
1814	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1815		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1816}
1817
1818/*
1819 * This must be called with current->sighand->siglock held.
1820 *
1821 * This should be the path for all ptrace stops.
1822 * We always set current->last_siginfo while stopped here.
1823 * That makes it a way to test a stopped process for
1824 * being ptrace-stopped vs being job-control-stopped.
1825 *
1826 * If we actually decide not to stop at all because the tracer
1827 * is gone, we keep current->exit_code unless clear_code.
1828 */
1829static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1830	__releases(&current->sighand->siglock)
1831	__acquires(&current->sighand->siglock)
1832{
1833	bool gstop_done = false;
1834
1835	if (arch_ptrace_stop_needed(exit_code, info)) {
1836		/*
1837		 * The arch code has something special to do before a
1838		 * ptrace stop.  This is allowed to block, e.g. for faults
1839		 * on user stack pages.  We can't keep the siglock while
1840		 * calling arch_ptrace_stop, so we must release it now.
1841		 * To preserve proper semantics, we must do this before
1842		 * any signal bookkeeping like checking group_stop_count.
1843		 * Meanwhile, a SIGKILL could come in before we retake the
1844		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1845		 * So after regaining the lock, we must check for SIGKILL.
1846		 */
1847		spin_unlock_irq(&current->sighand->siglock);
1848		arch_ptrace_stop(exit_code, info);
1849		spin_lock_irq(&current->sighand->siglock);
1850		if (sigkill_pending(current))
1851			return;
1852	}
1853
 
 
1854	/*
1855	 * We're committing to trapping.  TRACED should be visible before
1856	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1857	 * Also, transition to TRACED and updates to ->jobctl should be
1858	 * atomic with respect to siglock and should be done after the arch
1859	 * hook as siglock is released and regrabbed across it.
 
 
 
 
 
 
 
 
 
 
 
1860	 */
1861	set_current_state(TASK_TRACED);
1862
1863	current->last_siginfo = info;
1864	current->exit_code = exit_code;
1865
1866	/*
1867	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1868	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1869	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1870	 * could be clear now.  We act as if SIGCONT is received after
1871	 * TASK_TRACED is entered - ignore it.
1872	 */
1873	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1874		gstop_done = task_participate_group_stop(current);
1875
1876	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1877	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1878	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1879		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1880
1881	/* entering a trap, clear TRAPPING */
1882	task_clear_jobctl_trapping(current);
1883
1884	spin_unlock_irq(&current->sighand->siglock);
1885	read_lock(&tasklist_lock);
1886	if (may_ptrace_stop()) {
1887		/*
1888		 * Notify parents of the stop.
1889		 *
1890		 * While ptraced, there are two parents - the ptracer and
1891		 * the real_parent of the group_leader.  The ptracer should
1892		 * know about every stop while the real parent is only
1893		 * interested in the completion of group stop.  The states
1894		 * for the two don't interact with each other.  Notify
1895		 * separately unless they're gonna be duplicates.
1896		 */
1897		do_notify_parent_cldstop(current, true, why);
1898		if (gstop_done && ptrace_reparented(current))
1899			do_notify_parent_cldstop(current, false, why);
1900
1901		/*
1902		 * Don't want to allow preemption here, because
1903		 * sys_ptrace() needs this task to be inactive.
1904		 *
1905		 * XXX: implement read_unlock_no_resched().
1906		 */
1907		preempt_disable();
1908		read_unlock(&tasklist_lock);
 
1909		preempt_enable_no_resched();
1910		schedule();
 
1911	} else {
1912		/*
1913		 * By the time we got the lock, our tracer went away.
1914		 * Don't drop the lock yet, another tracer may come.
1915		 *
1916		 * If @gstop_done, the ptracer went away between group stop
1917		 * completion and here.  During detach, it would have set
1918		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1919		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1920		 * the real parent of the group stop completion is enough.
1921		 */
1922		if (gstop_done)
1923			do_notify_parent_cldstop(current, false, why);
1924
 
1925		__set_current_state(TASK_RUNNING);
1926		if (clear_code)
1927			current->exit_code = 0;
1928		read_unlock(&tasklist_lock);
1929	}
1930
1931	/*
1932	 * While in TASK_TRACED, we were considered "frozen enough".
1933	 * Now that we woke up, it's crucial if we're supposed to be
1934	 * frozen that we freeze now before running anything substantial.
1935	 */
1936	try_to_freeze();
1937
1938	/*
1939	 * We are back.  Now reacquire the siglock before touching
1940	 * last_siginfo, so that we are sure to have synchronized with
1941	 * any signal-sending on another CPU that wants to examine it.
1942	 */
1943	spin_lock_irq(&current->sighand->siglock);
1944	current->last_siginfo = NULL;
1945
1946	/* LISTENING can be set only during STOP traps, clear it */
1947	current->jobctl &= ~JOBCTL_LISTENING;
1948
1949	/*
1950	 * Queued signals ignored us while we were stopped for tracing.
1951	 * So check for any that we should take before resuming user mode.
1952	 * This sets TIF_SIGPENDING, but never clears it.
1953	 */
1954	recalc_sigpending_tsk(current);
1955}
1956
1957static void ptrace_do_notify(int signr, int exit_code, int why)
1958{
1959	siginfo_t info;
1960
1961	memset(&info, 0, sizeof info);
1962	info.si_signo = signr;
1963	info.si_code = exit_code;
1964	info.si_pid = task_pid_vnr(current);
1965	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1966
1967	/* Let the debugger run.  */
1968	ptrace_stop(exit_code, why, 1, &info);
1969}
1970
1971void ptrace_notify(int exit_code)
1972{
1973	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
 
 
1974
1975	spin_lock_irq(&current->sighand->siglock);
1976	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1977	spin_unlock_irq(&current->sighand->siglock);
1978}
1979
1980/**
1981 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1982 * @signr: signr causing group stop if initiating
1983 *
1984 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1985 * and participate in it.  If already set, participate in the existing
1986 * group stop.  If participated in a group stop (and thus slept), %true is
1987 * returned with siglock released.
1988 *
1989 * If ptraced, this function doesn't handle stop itself.  Instead,
1990 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1991 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1992 * places afterwards.
1993 *
1994 * CONTEXT:
1995 * Must be called with @current->sighand->siglock held, which is released
1996 * on %true return.
1997 *
1998 * RETURNS:
1999 * %false if group stop is already cancelled or ptrace trap is scheduled.
2000 * %true if participated in group stop.
2001 */
2002static bool do_signal_stop(int signr)
2003	__releases(&current->sighand->siglock)
2004{
2005	struct signal_struct *sig = current->signal;
2006
2007	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2008		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2009		struct task_struct *t;
2010
2011		/* signr will be recorded in task->jobctl for retries */
2012		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2013
2014		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2015		    unlikely(signal_group_exit(sig)))
2016			return false;
2017		/*
2018		 * There is no group stop already in progress.  We must
2019		 * initiate one now.
2020		 *
2021		 * While ptraced, a task may be resumed while group stop is
2022		 * still in effect and then receive a stop signal and
2023		 * initiate another group stop.  This deviates from the
2024		 * usual behavior as two consecutive stop signals can't
2025		 * cause two group stops when !ptraced.  That is why we
2026		 * also check !task_is_stopped(t) below.
2027		 *
2028		 * The condition can be distinguished by testing whether
2029		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2030		 * group_exit_code in such case.
2031		 *
2032		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2033		 * an intervening stop signal is required to cause two
2034		 * continued events regardless of ptrace.
2035		 */
2036		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2037			sig->group_exit_code = signr;
2038
2039		sig->group_stop_count = 0;
2040
2041		if (task_set_jobctl_pending(current, signr | gstop))
2042			sig->group_stop_count++;
2043
2044		for (t = next_thread(current); t != current;
2045		     t = next_thread(t)) {
2046			/*
2047			 * Setting state to TASK_STOPPED for a group
2048			 * stop is always done with the siglock held,
2049			 * so this check has no races.
2050			 */
2051			if (!task_is_stopped(t) &&
2052			    task_set_jobctl_pending(t, signr | gstop)) {
2053				sig->group_stop_count++;
2054				if (likely(!(t->ptrace & PT_SEIZED)))
2055					signal_wake_up(t, 0);
2056				else
2057					ptrace_trap_notify(t);
2058			}
2059		}
2060	}
2061
2062	if (likely(!current->ptrace)) {
2063		int notify = 0;
2064
2065		/*
2066		 * If there are no other threads in the group, or if there
2067		 * is a group stop in progress and we are the last to stop,
2068		 * report to the parent.
2069		 */
2070		if (task_participate_group_stop(current))
2071			notify = CLD_STOPPED;
2072
2073		__set_current_state(TASK_STOPPED);
2074		spin_unlock_irq(&current->sighand->siglock);
2075
2076		/*
2077		 * Notify the parent of the group stop completion.  Because
2078		 * we're not holding either the siglock or tasklist_lock
2079		 * here, ptracer may attach inbetween; however, this is for
2080		 * group stop and should always be delivered to the real
2081		 * parent of the group leader.  The new ptracer will get
2082		 * its notification when this task transitions into
2083		 * TASK_TRACED.
2084		 */
2085		if (notify) {
2086			read_lock(&tasklist_lock);
2087			do_notify_parent_cldstop(current, false, notify);
2088			read_unlock(&tasklist_lock);
2089		}
2090
2091		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2092		schedule();
 
2093		return true;
2094	} else {
2095		/*
2096		 * While ptraced, group stop is handled by STOP trap.
2097		 * Schedule it and let the caller deal with it.
2098		 */
2099		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2100		return false;
2101	}
2102}
2103
2104/**
2105 * do_jobctl_trap - take care of ptrace jobctl traps
2106 *
2107 * When PT_SEIZED, it's used for both group stop and explicit
2108 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2109 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2110 * the stop signal; otherwise, %SIGTRAP.
2111 *
2112 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2113 * number as exit_code and no siginfo.
2114 *
2115 * CONTEXT:
2116 * Must be called with @current->sighand->siglock held, which may be
2117 * released and re-acquired before returning with intervening sleep.
2118 */
2119static void do_jobctl_trap(void)
2120{
2121	struct signal_struct *signal = current->signal;
2122	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2123
2124	if (current->ptrace & PT_SEIZED) {
2125		if (!signal->group_stop_count &&
2126		    !(signal->flags & SIGNAL_STOP_STOPPED))
2127			signr = SIGTRAP;
2128		WARN_ON_ONCE(!signr);
2129		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2130				 CLD_STOPPED);
2131	} else {
2132		WARN_ON_ONCE(!signr);
2133		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2134		current->exit_code = 0;
2135	}
2136}
2137
2138static int ptrace_signal(int signr, siginfo_t *info,
2139			 struct pt_regs *regs, void *cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2140{
2141	ptrace_signal_deliver(regs, cookie);
2142	/*
2143	 * We do not check sig_kernel_stop(signr) but set this marker
2144	 * unconditionally because we do not know whether debugger will
2145	 * change signr. This flag has no meaning unless we are going
2146	 * to stop after return from ptrace_stop(). In this case it will
2147	 * be checked in do_signal_stop(), we should only stop if it was
2148	 * not cleared by SIGCONT while we were sleeping. See also the
2149	 * comment in dequeue_signal().
2150	 */
2151	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2152	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2153
2154	/* We're back.  Did the debugger cancel the sig?  */
2155	signr = current->exit_code;
2156	if (signr == 0)
2157		return signr;
2158
2159	current->exit_code = 0;
2160
2161	/*
2162	 * Update the siginfo structure if the signal has
2163	 * changed.  If the debugger wanted something
2164	 * specific in the siginfo structure then it should
2165	 * have updated *info via PTRACE_SETSIGINFO.
2166	 */
2167	if (signr != info->si_signo) {
 
2168		info->si_signo = signr;
2169		info->si_errno = 0;
2170		info->si_code = SI_USER;
2171		rcu_read_lock();
2172		info->si_pid = task_pid_vnr(current->parent);
2173		info->si_uid = from_kuid_munged(current_user_ns(),
2174						task_uid(current->parent));
2175		rcu_read_unlock();
2176	}
2177
2178	/* If the (new) signal is now blocked, requeue it.  */
2179	if (sigismember(&current->blocked, signr)) {
2180		specific_send_sig_info(signr, info, current);
2181		signr = 0;
2182	}
2183
2184	return signr;
2185}
2186
2187int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2188			  struct pt_regs *regs, void *cookie)
2189{
2190	struct sighand_struct *sighand = current->sighand;
2191	struct signal_struct *signal = current->signal;
2192	int signr;
2193
 
 
 
2194	if (unlikely(uprobe_deny_signal()))
2195		return 0;
2196
2197relock:
2198	/*
2199	 * We'll jump back here after any time we were stopped in TASK_STOPPED.
2200	 * While in TASK_STOPPED, we were considered "frozen enough".
2201	 * Now that we woke up, it's crucial if we're supposed to be
2202	 * frozen that we freeze now before running anything substantial.
2203	 */
2204	try_to_freeze();
2205
 
2206	spin_lock_irq(&sighand->siglock);
2207	/*
2208	 * Every stopped thread goes here after wakeup. Check to see if
2209	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2210	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2211	 */
2212	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2213		int why;
2214
2215		if (signal->flags & SIGNAL_CLD_CONTINUED)
2216			why = CLD_CONTINUED;
2217		else
2218			why = CLD_STOPPED;
2219
2220		signal->flags &= ~SIGNAL_CLD_MASK;
2221
2222		spin_unlock_irq(&sighand->siglock);
2223
2224		/*
2225		 * Notify the parent that we're continuing.  This event is
2226		 * always per-process and doesn't make whole lot of sense
2227		 * for ptracers, who shouldn't consume the state via
2228		 * wait(2) either, but, for backward compatibility, notify
2229		 * the ptracer of the group leader too unless it's gonna be
2230		 * a duplicate.
2231		 */
2232		read_lock(&tasklist_lock);
2233		do_notify_parent_cldstop(current, false, why);
2234
2235		if (ptrace_reparented(current->group_leader))
2236			do_notify_parent_cldstop(current->group_leader,
2237						true, why);
2238		read_unlock(&tasklist_lock);
2239
2240		goto relock;
2241	}
2242
 
 
 
 
 
 
 
 
 
 
2243	for (;;) {
2244		struct k_sigaction *ka;
2245
2246		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2247		    do_signal_stop(0))
2248			goto relock;
2249
2250		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2251			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2252			spin_unlock_irq(&sighand->siglock);
 
2253			goto relock;
2254		}
2255
2256		signr = dequeue_signal(current, &current->blocked, info);
 
 
 
 
 
 
 
 
2257
2258		if (!signr)
2259			break; /* will return 0 */
2260
2261		if (unlikely(current->ptrace) && signr != SIGKILL) {
2262			signr = ptrace_signal(signr, info,
2263					      regs, cookie);
2264			if (!signr)
2265				continue;
2266		}
2267
2268		ka = &sighand->action[signr-1];
2269
2270		/* Trace actually delivered signals. */
2271		trace_signal_deliver(signr, info, ka);
2272
2273		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2274			continue;
2275		if (ka->sa.sa_handler != SIG_DFL) {
2276			/* Run the handler.  */
2277			*return_ka = *ka;
2278
2279			if (ka->sa.sa_flags & SA_ONESHOT)
2280				ka->sa.sa_handler = SIG_DFL;
2281
2282			break; /* will return non-zero "signr" value */
2283		}
2284
2285		/*
2286		 * Now we are doing the default action for this signal.
2287		 */
2288		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2289			continue;
2290
2291		/*
2292		 * Global init gets no signals it doesn't want.
2293		 * Container-init gets no signals it doesn't want from same
2294		 * container.
2295		 *
2296		 * Note that if global/container-init sees a sig_kernel_only()
2297		 * signal here, the signal must have been generated internally
2298		 * or must have come from an ancestor namespace. In either
2299		 * case, the signal cannot be dropped.
2300		 */
2301		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2302				!sig_kernel_only(signr))
2303			continue;
2304
2305		if (sig_kernel_stop(signr)) {
2306			/*
2307			 * The default action is to stop all threads in
2308			 * the thread group.  The job control signals
2309			 * do nothing in an orphaned pgrp, but SIGSTOP
2310			 * always works.  Note that siglock needs to be
2311			 * dropped during the call to is_orphaned_pgrp()
2312			 * because of lock ordering with tasklist_lock.
2313			 * This allows an intervening SIGCONT to be posted.
2314			 * We need to check for that and bail out if necessary.
2315			 */
2316			if (signr != SIGSTOP) {
2317				spin_unlock_irq(&sighand->siglock);
2318
2319				/* signals can be posted during this window */
2320
2321				if (is_current_pgrp_orphaned())
2322					goto relock;
2323
2324				spin_lock_irq(&sighand->siglock);
2325			}
2326
2327			if (likely(do_signal_stop(info->si_signo))) {
2328				/* It released the siglock.  */
2329				goto relock;
2330			}
2331
2332			/*
2333			 * We didn't actually stop, due to a race
2334			 * with SIGCONT or something like that.
2335			 */
2336			continue;
2337		}
2338
 
2339		spin_unlock_irq(&sighand->siglock);
 
 
2340
2341		/*
2342		 * Anything else is fatal, maybe with a core dump.
2343		 */
2344		current->flags |= PF_SIGNALED;
2345
2346		if (sig_kernel_coredump(signr)) {
2347			if (print_fatal_signals)
2348				print_fatal_signal(regs, info->si_signo);
 
2349			/*
2350			 * If it was able to dump core, this kills all
2351			 * other threads in the group and synchronizes with
2352			 * their demise.  If we lost the race with another
2353			 * thread getting here, it set group_exit_code
2354			 * first and our do_group_exit call below will use
2355			 * that value and ignore the one we pass it.
2356			 */
2357			do_coredump(info->si_signo, info->si_signo, regs);
2358		}
2359
2360		/*
2361		 * Death signals, no core dump.
2362		 */
2363		do_group_exit(info->si_signo);
2364		/* NOTREACHED */
2365	}
2366	spin_unlock_irq(&sighand->siglock);
2367	return signr;
 
 
2368}
2369
2370/**
2371 * signal_delivered - 
2372 * @sig:		number of signal being delivered
2373 * @info:		siginfo_t of signal being delivered
2374 * @ka:			sigaction setting that chose the handler
2375 * @regs:		user register state
2376 * @stepping:		nonzero if debugger single-step or block-step in use
2377 *
2378 * This function should be called when a signal has succesfully been
2379 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2380 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2381 * is set in @ka->sa.sa_flags.  Tracing is notified.
2382 */
2383void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2384			struct pt_regs *regs, int stepping)
2385{
2386	sigset_t blocked;
2387
2388	/* A signal was successfully delivered, and the
2389	   saved sigmask was stored on the signal frame,
2390	   and will be restored by sigreturn.  So we can
2391	   simply clear the restore sigmask flag.  */
2392	clear_restore_sigmask();
2393
2394	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2395	if (!(ka->sa.sa_flags & SA_NODEFER))
2396		sigaddset(&blocked, sig);
2397	set_current_blocked(&blocked);
2398	tracehook_signal_handler(sig, info, ka, regs, stepping);
 
 
 
 
 
 
 
 
2399}
2400
2401/*
2402 * It could be that complete_signal() picked us to notify about the
2403 * group-wide signal. Other threads should be notified now to take
2404 * the shared signals in @which since we will not.
2405 */
2406static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2407{
2408	sigset_t retarget;
2409	struct task_struct *t;
2410
2411	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2412	if (sigisemptyset(&retarget))
2413		return;
2414
2415	t = tsk;
2416	while_each_thread(tsk, t) {
2417		if (t->flags & PF_EXITING)
2418			continue;
2419
2420		if (!has_pending_signals(&retarget, &t->blocked))
2421			continue;
2422		/* Remove the signals this thread can handle. */
2423		sigandsets(&retarget, &retarget, &t->blocked);
2424
2425		if (!signal_pending(t))
2426			signal_wake_up(t, 0);
2427
2428		if (sigisemptyset(&retarget))
2429			break;
2430	}
2431}
2432
2433void exit_signals(struct task_struct *tsk)
2434{
2435	int group_stop = 0;
2436	sigset_t unblocked;
2437
2438	/*
2439	 * @tsk is about to have PF_EXITING set - lock out users which
2440	 * expect stable threadgroup.
2441	 */
2442	threadgroup_change_begin(tsk);
2443
2444	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2445		tsk->flags |= PF_EXITING;
2446		threadgroup_change_end(tsk);
2447		return;
2448	}
2449
2450	spin_lock_irq(&tsk->sighand->siglock);
2451	/*
2452	 * From now this task is not visible for group-wide signals,
2453	 * see wants_signal(), do_signal_stop().
2454	 */
2455	tsk->flags |= PF_EXITING;
2456
2457	threadgroup_change_end(tsk);
2458
2459	if (!signal_pending(tsk))
2460		goto out;
2461
2462	unblocked = tsk->blocked;
2463	signotset(&unblocked);
2464	retarget_shared_pending(tsk, &unblocked);
2465
2466	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2467	    task_participate_group_stop(tsk))
2468		group_stop = CLD_STOPPED;
2469out:
2470	spin_unlock_irq(&tsk->sighand->siglock);
2471
2472	/*
2473	 * If group stop has completed, deliver the notification.  This
2474	 * should always go to the real parent of the group leader.
2475	 */
2476	if (unlikely(group_stop)) {
2477		read_lock(&tasklist_lock);
2478		do_notify_parent_cldstop(tsk, false, group_stop);
2479		read_unlock(&tasklist_lock);
2480	}
2481}
2482
2483EXPORT_SYMBOL(recalc_sigpending);
2484EXPORT_SYMBOL_GPL(dequeue_signal);
2485EXPORT_SYMBOL(flush_signals);
2486EXPORT_SYMBOL(force_sig);
2487EXPORT_SYMBOL(send_sig);
2488EXPORT_SYMBOL(send_sig_info);
2489EXPORT_SYMBOL(sigprocmask);
2490EXPORT_SYMBOL(block_all_signals);
2491EXPORT_SYMBOL(unblock_all_signals);
2492
2493
2494/*
2495 * System call entry points.
2496 */
2497
2498/**
2499 *  sys_restart_syscall - restart a system call
2500 */
2501SYSCALL_DEFINE0(restart_syscall)
2502{
2503	struct restart_block *restart = &current_thread_info()->restart_block;
2504	return restart->fn(restart);
2505}
2506
2507long do_no_restart_syscall(struct restart_block *param)
2508{
2509	return -EINTR;
2510}
2511
2512static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2513{
2514	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2515		sigset_t newblocked;
2516		/* A set of now blocked but previously unblocked signals. */
2517		sigandnsets(&newblocked, newset, &current->blocked);
2518		retarget_shared_pending(tsk, &newblocked);
2519	}
2520	tsk->blocked = *newset;
2521	recalc_sigpending();
2522}
2523
2524/**
2525 * set_current_blocked - change current->blocked mask
2526 * @newset: new mask
2527 *
2528 * It is wrong to change ->blocked directly, this helper should be used
2529 * to ensure the process can't miss a shared signal we are going to block.
2530 */
2531void set_current_blocked(sigset_t *newset)
2532{
2533	struct task_struct *tsk = current;
2534	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2535	spin_lock_irq(&tsk->sighand->siglock);
2536	__set_task_blocked(tsk, newset);
2537	spin_unlock_irq(&tsk->sighand->siglock);
2538}
2539
2540void __set_current_blocked(const sigset_t *newset)
2541{
2542	struct task_struct *tsk = current;
2543
 
 
 
 
 
 
 
2544	spin_lock_irq(&tsk->sighand->siglock);
2545	__set_task_blocked(tsk, newset);
2546	spin_unlock_irq(&tsk->sighand->siglock);
2547}
2548
2549/*
2550 * This is also useful for kernel threads that want to temporarily
2551 * (or permanently) block certain signals.
2552 *
2553 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2554 * interface happily blocks "unblockable" signals like SIGKILL
2555 * and friends.
2556 */
2557int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2558{
2559	struct task_struct *tsk = current;
2560	sigset_t newset;
2561
2562	/* Lockless, only current can change ->blocked, never from irq */
2563	if (oldset)
2564		*oldset = tsk->blocked;
2565
2566	switch (how) {
2567	case SIG_BLOCK:
2568		sigorsets(&newset, &tsk->blocked, set);
2569		break;
2570	case SIG_UNBLOCK:
2571		sigandnsets(&newset, &tsk->blocked, set);
2572		break;
2573	case SIG_SETMASK:
2574		newset = *set;
2575		break;
2576	default:
2577		return -EINVAL;
2578	}
2579
2580	__set_current_blocked(&newset);
2581	return 0;
2582}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583
2584/**
2585 *  sys_rt_sigprocmask - change the list of currently blocked signals
2586 *  @how: whether to add, remove, or set signals
2587 *  @nset: stores pending signals
2588 *  @oset: previous value of signal mask if non-null
2589 *  @sigsetsize: size of sigset_t type
2590 */
2591SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2592		sigset_t __user *, oset, size_t, sigsetsize)
2593{
2594	sigset_t old_set, new_set;
2595	int error;
2596
2597	/* XXX: Don't preclude handling different sized sigset_t's.  */
2598	if (sigsetsize != sizeof(sigset_t))
2599		return -EINVAL;
2600
2601	old_set = current->blocked;
2602
2603	if (nset) {
2604		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2605			return -EFAULT;
2606		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2607
2608		error = sigprocmask(how, &new_set, NULL);
2609		if (error)
2610			return error;
2611	}
2612
2613	if (oset) {
2614		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2615			return -EFAULT;
2616	}
2617
2618	return 0;
2619}
2620
2621long do_sigpending(void __user *set, unsigned long sigsetsize)
 
 
2622{
2623	long error = -EINVAL;
2624	sigset_t pending;
2625
2626	if (sigsetsize > sizeof(sigset_t))
2627		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2628
 
 
2629	spin_lock_irq(&current->sighand->siglock);
2630	sigorsets(&pending, &current->pending.signal,
2631		  &current->signal->shared_pending.signal);
2632	spin_unlock_irq(&current->sighand->siglock);
2633
2634	/* Outside the lock because only this thread touches it.  */
2635	sigandsets(&pending, &current->blocked, &pending);
2636
2637	error = -EFAULT;
2638	if (!copy_to_user(set, &pending, sigsetsize))
2639		error = 0;
2640
2641out:
2642	return error;
2643}
2644
2645/**
2646 *  sys_rt_sigpending - examine a pending signal that has been raised
2647 *			while blocked
2648 *  @set: stores pending signals
2649 *  @sigsetsize: size of sigset_t type or larger
2650 */
2651SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2652{
2653	return do_sigpending(set, sigsetsize);
2654}
2655
2656#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 
 
 
 
 
 
 
 
2657
2658int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
 
2659{
2660	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661
2662	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
 
 
2663		return -EFAULT;
2664	if (from->si_code < 0)
2665		return __copy_to_user(to, from, sizeof(siginfo_t))
2666			? -EFAULT : 0;
2667	/*
2668	 * If you change siginfo_t structure, please be sure
2669	 * this code is fixed accordingly.
2670	 * Please remember to update the signalfd_copyinfo() function
2671	 * inside fs/signalfd.c too, in case siginfo_t changes.
2672	 * It should never copy any pad contained in the structure
2673	 * to avoid security leaks, but must copy the generic
2674	 * 3 ints plus the relevant union member.
2675	 */
2676	err = __put_user(from->si_signo, &to->si_signo);
2677	err |= __put_user(from->si_errno, &to->si_errno);
2678	err |= __put_user((short)from->si_code, &to->si_code);
2679	switch (from->si_code & __SI_MASK) {
2680	case __SI_KILL:
2681		err |= __put_user(from->si_pid, &to->si_pid);
2682		err |= __put_user(from->si_uid, &to->si_uid);
2683		break;
2684	case __SI_TIMER:
2685		 err |= __put_user(from->si_tid, &to->si_tid);
2686		 err |= __put_user(from->si_overrun, &to->si_overrun);
2687		 err |= __put_user(from->si_ptr, &to->si_ptr);
2688		break;
2689	case __SI_POLL:
2690		err |= __put_user(from->si_band, &to->si_band);
2691		err |= __put_user(from->si_fd, &to->si_fd);
 
2692		break;
2693	case __SI_FAULT:
2694		err |= __put_user(from->si_addr, &to->si_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2695#ifdef __ARCH_SI_TRAPNO
2696		err |= __put_user(from->si_trapno, &to->si_trapno);
2697#endif
2698#ifdef BUS_MCEERR_AO
2699		/*
2700		 * Other callers might not initialize the si_lsb field,
2701		 * so check explicitly for the right codes here.
2702		 */
2703		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2704			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2705#endif
2706		break;
2707	case __SI_CHLD:
2708		err |= __put_user(from->si_pid, &to->si_pid);
2709		err |= __put_user(from->si_uid, &to->si_uid);
2710		err |= __put_user(from->si_status, &to->si_status);
2711		err |= __put_user(from->si_utime, &to->si_utime);
2712		err |= __put_user(from->si_stime, &to->si_stime);
2713		break;
2714	case __SI_RT: /* This is not generated by the kernel as of now. */
2715	case __SI_MESGQ: /* But this is */
2716		err |= __put_user(from->si_pid, &to->si_pid);
2717		err |= __put_user(from->si_uid, &to->si_uid);
2718		err |= __put_user(from->si_ptr, &to->si_ptr);
 
 
2719		break;
2720#ifdef __ARCH_SIGSYS
2721	case __SI_SYS:
2722		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2723		err |= __put_user(from->si_syscall, &to->si_syscall);
2724		err |= __put_user(from->si_arch, &to->si_arch);
 
2725		break;
 
 
 
 
 
 
 
 
 
2726#endif
2727	default: /* this is just in case for now ... */
2728		err |= __put_user(from->si_pid, &to->si_pid);
2729		err |= __put_user(from->si_uid, &to->si_uid);
 
 
 
 
 
 
 
 
 
 
 
2730		break;
2731	}
2732	return err;
 
 
 
 
 
 
 
 
 
 
 
 
2733}
2734
2735#endif
 
 
 
 
 
 
 
 
 
 
2736
2737/**
2738 *  do_sigtimedwait - wait for queued signals specified in @which
2739 *  @which: queued signals to wait for
2740 *  @info: if non-null, the signal's siginfo is returned here
2741 *  @ts: upper bound on process time suspension
2742 */
2743int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2744			const struct timespec *ts)
2745{
 
2746	struct task_struct *tsk = current;
2747	long timeout = MAX_SCHEDULE_TIMEOUT;
2748	sigset_t mask = *which;
2749	int sig;
2750
2751	if (ts) {
2752		if (!timespec_valid(ts))
2753			return -EINVAL;
2754		timeout = timespec_to_jiffies(ts);
2755		/*
2756		 * We can be close to the next tick, add another one
2757		 * to ensure we will wait at least the time asked for.
2758		 */
2759		if (ts->tv_sec || ts->tv_nsec)
2760			timeout++;
2761	}
2762
2763	/*
2764	 * Invert the set of allowed signals to get those we want to block.
2765	 */
2766	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2767	signotset(&mask);
2768
2769	spin_lock_irq(&tsk->sighand->siglock);
2770	sig = dequeue_signal(tsk, &mask, info);
2771	if (!sig && timeout) {
2772		/*
2773		 * None ready, temporarily unblock those we're interested
2774		 * while we are sleeping in so that we'll be awakened when
2775		 * they arrive. Unblocking is always fine, we can avoid
2776		 * set_current_blocked().
2777		 */
2778		tsk->real_blocked = tsk->blocked;
2779		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2780		recalc_sigpending();
2781		spin_unlock_irq(&tsk->sighand->siglock);
2782
2783		timeout = schedule_timeout_interruptible(timeout);
2784
 
2785		spin_lock_irq(&tsk->sighand->siglock);
2786		__set_task_blocked(tsk, &tsk->real_blocked);
2787		siginitset(&tsk->real_blocked, 0);
2788		sig = dequeue_signal(tsk, &mask, info);
2789	}
2790	spin_unlock_irq(&tsk->sighand->siglock);
2791
2792	if (sig)
2793		return sig;
2794	return timeout ? -EINTR : -EAGAIN;
2795}
2796
2797/**
2798 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2799 *			in @uthese
2800 *  @uthese: queued signals to wait for
2801 *  @uinfo: if non-null, the signal's siginfo is returned here
2802 *  @uts: upper bound on process time suspension
2803 *  @sigsetsize: size of sigset_t type
2804 */
2805SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2806		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
2807		size_t, sigsetsize)
2808{
2809	sigset_t these;
2810	struct timespec ts;
2811	siginfo_t info;
2812	int ret;
2813
2814	/* XXX: Don't preclude handling different sized sigset_t's.  */
2815	if (sigsetsize != sizeof(sigset_t))
2816		return -EINVAL;
2817
2818	if (copy_from_user(&these, uthese, sizeof(these)))
2819		return -EFAULT;
2820
2821	if (uts) {
2822		if (copy_from_user(&ts, uts, sizeof(ts)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2823			return -EFAULT;
2824	}
2825
2826	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2827
2828	if (ret > 0 && uinfo) {
2829		if (copy_siginfo_to_user(uinfo, &info))
2830			ret = -EFAULT;
2831	}
2832
2833	return ret;
2834}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2835
2836/**
2837 *  sys_kill - send a signal to a process
2838 *  @pid: the PID of the process
2839 *  @sig: signal to be sent
2840 */
2841SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2842{
2843	struct siginfo info;
2844
2845	info.si_signo = sig;
2846	info.si_errno = 0;
2847	info.si_code = SI_USER;
2848	info.si_pid = task_tgid_vnr(current);
2849	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2850
2851	return kill_something_info(sig, &info, pid);
2852}
2853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854static int
2855do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2856{
2857	struct task_struct *p;
2858	int error = -ESRCH;
2859
2860	rcu_read_lock();
2861	p = find_task_by_vpid(pid);
2862	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2863		error = check_kill_permission(sig, info, p);
2864		/*
2865		 * The null signal is a permissions and process existence
2866		 * probe.  No signal is actually delivered.
2867		 */
2868		if (!error && sig) {
2869			error = do_send_sig_info(sig, info, p, false);
2870			/*
2871			 * If lock_task_sighand() failed we pretend the task
2872			 * dies after receiving the signal. The window is tiny,
2873			 * and the signal is private anyway.
2874			 */
2875			if (unlikely(error == -ESRCH))
2876				error = 0;
2877		}
2878	}
2879	rcu_read_unlock();
2880
2881	return error;
2882}
2883
2884static int do_tkill(pid_t tgid, pid_t pid, int sig)
2885{
2886	struct siginfo info;
2887
 
2888	info.si_signo = sig;
2889	info.si_errno = 0;
2890	info.si_code = SI_TKILL;
2891	info.si_pid = task_tgid_vnr(current);
2892	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2893
2894	return do_send_specific(tgid, pid, sig, &info);
2895}
2896
2897/**
2898 *  sys_tgkill - send signal to one specific thread
2899 *  @tgid: the thread group ID of the thread
2900 *  @pid: the PID of the thread
2901 *  @sig: signal to be sent
2902 *
2903 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2904 *  exists but it's not belonging to the target process anymore. This
2905 *  method solves the problem of threads exiting and PIDs getting reused.
2906 */
2907SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2908{
2909	/* This is only valid for single tasks */
2910	if (pid <= 0 || tgid <= 0)
2911		return -EINVAL;
2912
2913	return do_tkill(tgid, pid, sig);
2914}
2915
2916/**
2917 *  sys_tkill - send signal to one specific task
2918 *  @pid: the PID of the task
2919 *  @sig: signal to be sent
2920 *
2921 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2922 */
2923SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2924{
2925	/* This is only valid for single tasks */
2926	if (pid <= 0)
2927		return -EINVAL;
2928
2929	return do_tkill(0, pid, sig);
2930}
2931
 
 
 
 
 
 
 
 
 
 
 
 
 
2932/**
2933 *  sys_rt_sigqueueinfo - send signal information to a signal
2934 *  @pid: the PID of the thread
2935 *  @sig: signal to be sent
2936 *  @uinfo: signal info to be sent
2937 */
2938SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2939		siginfo_t __user *, uinfo)
2940{
2941	siginfo_t info;
 
 
 
 
 
2942
2943	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2944		return -EFAULT;
2945
2946	/* Not even root can pretend to send signals from the kernel.
2947	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2948	 */
2949	if (info.si_code >= 0 || info.si_code == SI_TKILL) {
2950		/* We used to allow any < 0 si_code */
2951		WARN_ON_ONCE(info.si_code < 0);
2952		return -EPERM;
2953	}
2954	info.si_signo = sig;
2955
2956	/* POSIX.1b doesn't mention process groups.  */
2957	return kill_proc_info(sig, &info, pid);
2958}
 
2959
2960long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2961{
2962	/* This is only valid for single tasks */
2963	if (pid <= 0 || tgid <= 0)
2964		return -EINVAL;
2965
2966	/* Not even root can pretend to send signals from the kernel.
2967	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2968	 */
2969	if (info->si_code >= 0 || info->si_code == SI_TKILL) {
2970		/* We used to allow any < 0 si_code */
2971		WARN_ON_ONCE(info->si_code < 0);
2972		return -EPERM;
2973	}
2974	info->si_signo = sig;
2975
2976	return do_send_specific(tgid, pid, sig, info);
2977}
2978
2979SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
2980		siginfo_t __user *, uinfo)
2981{
2982	siginfo_t info;
 
 
 
 
 
2983
2984	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2985		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2986
2987	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
 
 
2988}
2989
2990int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2991{
2992	struct task_struct *t = current;
2993	struct k_sigaction *k;
2994	sigset_t mask;
2995
2996	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2997		return -EINVAL;
2998
2999	k = &t->sighand->action[sig-1];
3000
3001	spin_lock_irq(&current->sighand->siglock);
3002	if (oact)
3003		*oact = *k;
3004
 
 
3005	if (act) {
3006		sigdelsetmask(&act->sa.sa_mask,
3007			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3008		*k = *act;
3009		/*
3010		 * POSIX 3.3.1.3:
3011		 *  "Setting a signal action to SIG_IGN for a signal that is
3012		 *   pending shall cause the pending signal to be discarded,
3013		 *   whether or not it is blocked."
3014		 *
3015		 *  "Setting a signal action to SIG_DFL for a signal that is
3016		 *   pending and whose default action is to ignore the signal
3017		 *   (for example, SIGCHLD), shall cause the pending signal to
3018		 *   be discarded, whether or not it is blocked"
3019		 */
3020		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3021			sigemptyset(&mask);
3022			sigaddset(&mask, sig);
3023			rm_from_queue_full(&mask, &t->signal->shared_pending);
3024			do {
3025				rm_from_queue_full(&mask, &t->pending);
3026				t = next_thread(t);
3027			} while (t != current);
3028		}
3029	}
3030
3031	spin_unlock_irq(&current->sighand->siglock);
3032	return 0;
3033}
3034
3035int 
3036do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 
3037{
3038	stack_t oss;
3039	int error;
 
 
 
 
 
 
 
3040
3041	oss.ss_sp = (void __user *) current->sas_ss_sp;
3042	oss.ss_size = current->sas_ss_size;
3043	oss.ss_flags = sas_ss_flags(sp);
3044
3045	if (uss) {
3046		void __user *ss_sp;
3047		size_t ss_size;
3048		int ss_flags;
3049
3050		error = -EFAULT;
3051		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3052			goto out;
3053		error = __get_user(ss_sp, &uss->ss_sp) |
3054			__get_user(ss_flags, &uss->ss_flags) |
3055			__get_user(ss_size, &uss->ss_size);
3056		if (error)
3057			goto out;
3058
3059		error = -EPERM;
3060		if (on_sig_stack(sp))
3061			goto out;
3062
3063		error = -EINVAL;
3064		/*
3065		 * Note - this code used to test ss_flags incorrectly:
3066		 *  	  old code may have been written using ss_flags==0
3067		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3068		 *	  way that worked) - this fix preserves that older
3069		 *	  mechanism.
3070		 */
3071		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3072			goto out;
3073
3074		if (ss_flags == SS_DISABLE) {
3075			ss_size = 0;
3076			ss_sp = NULL;
3077		} else {
3078			error = -ENOMEM;
3079			if (ss_size < MINSIGSTKSZ)
3080				goto out;
3081		}
3082
3083		current->sas_ss_sp = (unsigned long) ss_sp;
3084		current->sas_ss_size = ss_size;
3085	}
3086
3087	error = 0;
3088	if (uoss) {
3089		error = -EFAULT;
3090		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3091			goto out;
3092		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3093			__put_user(oss.ss_size, &uoss->ss_size) |
3094			__put_user(oss.ss_flags, &uoss->ss_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095	}
 
 
 
 
 
 
 
 
 
3096
3097out:
3098	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3099}
 
3100
3101#ifdef __ARCH_WANT_SYS_SIGPENDING
3102
3103/**
3104 *  sys_sigpending - examine pending signals
3105 *  @set: where mask of pending signal is returned
3106 */
3107SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3108{
3109	return do_sigpending(set, sizeof(*set));
 
 
 
 
 
 
 
 
 
 
3110}
3111
 
 
 
 
 
 
 
 
 
 
 
3112#endif
3113
3114#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3115/**
3116 *  sys_sigprocmask - examine and change blocked signals
3117 *  @how: whether to add, remove, or set signals
3118 *  @nset: signals to add or remove (if non-null)
3119 *  @oset: previous value of signal mask if non-null
3120 *
3121 * Some platforms have their own version with special arguments;
3122 * others support only sys_rt_sigprocmask.
3123 */
3124
3125SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3126		old_sigset_t __user *, oset)
3127{
3128	old_sigset_t old_set, new_set;
3129	sigset_t new_blocked;
3130
3131	old_set = current->blocked.sig[0];
3132
3133	if (nset) {
3134		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3135			return -EFAULT;
3136		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
3137
3138		new_blocked = current->blocked;
3139
3140		switch (how) {
3141		case SIG_BLOCK:
3142			sigaddsetmask(&new_blocked, new_set);
3143			break;
3144		case SIG_UNBLOCK:
3145			sigdelsetmask(&new_blocked, new_set);
3146			break;
3147		case SIG_SETMASK:
3148			new_blocked.sig[0] = new_set;
3149			break;
3150		default:
3151			return -EINVAL;
3152		}
3153
3154		__set_current_blocked(&new_blocked);
3155	}
3156
3157	if (oset) {
3158		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3159			return -EFAULT;
3160	}
3161
3162	return 0;
3163}
3164#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3165
3166#ifdef __ARCH_WANT_SYS_RT_SIGACTION
3167/**
3168 *  sys_rt_sigaction - alter an action taken by a process
3169 *  @sig: signal to be sent
3170 *  @act: new sigaction
3171 *  @oact: used to save the previous sigaction
3172 *  @sigsetsize: size of sigset_t type
3173 */
3174SYSCALL_DEFINE4(rt_sigaction, int, sig,
3175		const struct sigaction __user *, act,
3176		struct sigaction __user *, oact,
3177		size_t, sigsetsize)
3178{
3179	struct k_sigaction new_sa, old_sa;
3180	int ret = -EINVAL;
3181
3182	/* XXX: Don't preclude handling different sized sigset_t's.  */
3183	if (sigsetsize != sizeof(sigset_t))
3184		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3185
3186	if (act) {
3187		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
 
 
 
 
3188			return -EFAULT;
 
 
 
 
 
 
 
3189	}
3190
3191	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3192
3193	if (!ret && oact) {
3194		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
 
 
 
 
 
 
3195			return -EFAULT;
3196	}
3197out:
3198	return ret;
3199}
3200#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
3201
3202#ifdef __ARCH_WANT_SYS_SGETMASK
3203
3204/*
3205 * For backwards compatibility.  Functionality superseded by sigprocmask.
3206 */
3207SYSCALL_DEFINE0(sgetmask)
3208{
3209	/* SMP safe */
3210	return current->blocked.sig[0];
3211}
3212
3213SYSCALL_DEFINE1(ssetmask, int, newmask)
3214{
3215	int old = current->blocked.sig[0];
3216	sigset_t newset;
3217
 
3218	set_current_blocked(&newset);
3219
3220	return old;
3221}
3222#endif /* __ARCH_WANT_SGETMASK */
3223
3224#ifdef __ARCH_WANT_SYS_SIGNAL
3225/*
3226 * For backwards compatibility.  Functionality superseded by sigaction.
3227 */
3228SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3229{
3230	struct k_sigaction new_sa, old_sa;
3231	int ret;
3232
3233	new_sa.sa.sa_handler = handler;
3234	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3235	sigemptyset(&new_sa.sa.sa_mask);
3236
3237	ret = do_sigaction(sig, &new_sa, &old_sa);
3238
3239	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3240}
3241#endif /* __ARCH_WANT_SYS_SIGNAL */
3242
3243#ifdef __ARCH_WANT_SYS_PAUSE
3244
3245SYSCALL_DEFINE0(pause)
3246{
3247	while (!signal_pending(current)) {
3248		current->state = TASK_INTERRUPTIBLE;
3249		schedule();
3250	}
3251	return -ERESTARTNOHAND;
3252}
3253
3254#endif
3255
3256int sigsuspend(sigset_t *set)
3257{
3258	current->saved_sigmask = current->blocked;
3259	set_current_blocked(set);
3260
3261	current->state = TASK_INTERRUPTIBLE;
3262	schedule();
 
 
3263	set_restore_sigmask();
3264	return -ERESTARTNOHAND;
3265}
3266
3267#ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
3268/**
3269 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3270 *	@unewset value until a signal is received
3271 *  @unewset: new signal mask value
3272 *  @sigsetsize: size of sigset_t type
3273 */
3274SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3275{
3276	sigset_t newset;
3277
3278	/* XXX: Don't preclude handling different sized sigset_t's.  */
3279	if (sigsetsize != sizeof(sigset_t))
3280		return -EINVAL;
3281
3282	if (copy_from_user(&newset, unewset, sizeof(newset)))
3283		return -EFAULT;
3284	return sigsuspend(&newset);
3285}
3286#endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
 
 
 
 
3287
3288__attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3289{
3290	return NULL;
3291}
3292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3293void __init signals_init(void)
3294{
 
 
3295	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3296}
3297
3298#ifdef CONFIG_KGDB_KDB
3299#include <linux/kdb.h>
3300/*
3301 * kdb_send_sig_info - Allows kdb to send signals without exposing
3302 * signal internals.  This function checks if the required locks are
3303 * available before calling the main signal code, to avoid kdb
3304 * deadlocks.
3305 */
3306void
3307kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3308{
3309	static struct task_struct *kdb_prev_t;
3310	int sig, new_t;
3311	if (!spin_trylock(&t->sighand->siglock)) {
3312		kdb_printf("Can't do kill command now.\n"
3313			   "The sigmask lock is held somewhere else in "
3314			   "kernel, try again later\n");
3315		return;
3316	}
3317	spin_unlock(&t->sighand->siglock);
3318	new_t = kdb_prev_t != t;
3319	kdb_prev_t = t;
3320	if (t->state != TASK_RUNNING && new_t) {
 
3321		kdb_printf("Process is not RUNNING, sending a signal from "
3322			   "kdb risks deadlock\n"
3323			   "on the run queue locks. "
3324			   "The signal has _not_ been sent.\n"
3325			   "Reissue the kill command if you want to risk "
3326			   "the deadlock.\n");
3327		return;
3328	}
3329	sig = info->si_signo;
3330	if (send_sig_info(sig, info, t))
 
3331		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3332			   sig, t->pid);
3333	else
3334		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3335}
3336#endif	/* CONFIG_KGDB_KDB */